WirelessWorld

February 1969 Three Shillings

Operational amplifiers Multimeter construction

Cut the operational and maintenance costs of your HF radio station right now -with STANFAST

Here's how

STANFAST Systems-the STC concept of automated h.f. radio stations-permit transmitting and receiving installation to be controlled completely by one man from a central location.
STANFAST Systems provide high speed frequency changing, automatic performance monitoring and rapid fault location affordingoptimum traffic handling capability and maximum revenue.

STANFAST Systems use the latest techniques in radio design, demand smaller sites and require less maintenance than hitherto. Initial capital cost is lower and return on investment is greater.

Standard Telephones and Cables Limited, Communications Division, New Southgate, London N.11. Telephone: 01-368 1200. Telex: 261912.

When is an Avo meter not an Avometer?

When it tests nuvistors, compactrons \& 13 -pin valves

The new Avo VCM163 Valve Characteristic Meter is one of the most versatile valve testers ever developed. With facilities for testing valves with as many as 13 pin connections (and 2 top caps), plus recently introduced types such as nuvistors and compactrons, the VCM163 provides both rapid fault diagnosis and comprehensive static/dynamic characteristics data. Nevertheless, it is even simpler to use than previous models - no backing-off is required. A separate meter displays mutual conductance values continuously during testing, and there is pushbutton monitoring of screen parameters. The full range of $h . t$. voltage -12.6 V to 400 V - can be applied to anode and screen, heater voltage is adjustable in 0.1 V steps from 0 to 119.9 and grid voltage may be varied continuously from 0 to 100 V (calibrated). Get complete information about the VCM163 from your local dealer or Avo Ltd, Avocet House, Dover,
 Kent. Telephone Dover 2626. Telex 96283.

Ferrograph Series 7a lifetime of recording

Ferrograph Tape Recorders have been famous ever since 1949. A lifetime's experience of making fine recorders goes into every one of Ferrograph's brilliant new Series 7.
And there is a lifetime's recording in every Ferrograph instrument. Many of the earliest Ferrographs are giving perfect service today, nearly twenty years later. You can be sure your Ferrograph will do the same for you. It will give dependable service for many, many years to come. It will keep its value. It will need the minimum of service. Spare parts will remain available for a lifetime's recording. That's how Ferrograph got its name.

Available in Mono, and in Stereo with and without end amplifiers: combining a unique range of 30 recording facilities, including:

- All silicon solid-state electronics with FET input stages and wide input overload margins. - Vertical or horizontal operation.

Unit construction: The 3 individual units i.e. tape deck, power unit and amplifier complex are mounted on a single frame casily removable from cabinet for service or installation in other cabinets or racks.

- 3 motors (no leelts). 3 tape speeds.
- Variable speed spooling control for easy indexing and editing.
- Electrical deck operation allowing pre-setting for time-switch starting without need for machine to be previously powered.
- Provision for instantaneous stop/start by electrical remote control.
- Single lever-knob deck operation with pause position.
- Independent press-to-record button for safety and to permit click-free recording and insertions.
- $84^{\prime \prime}$ reel capacity.
- Endless loop cassette facility.
- Internal loud speakers (2)--1 each channel on stereo, 2 phased on mono.
- 4 digit, one-press re-set, gear-driven index counter.
© 2 inputs per channel with independent mixing (ability to mix 4 inputs into one channel on stereo machine).
- Signal level meter for each channel operative on playback as well as record.
- Tape/original switching through to output stages.
Re-record facility on stereo models for multiplay, echo effects etc, without external connections.
- Meters switchable to read 100 kHz bias and erase supply with accessible preset adjustment.
- Three outputs per channel i.e. (1) line outlevel response. (2) line out-after tone controls.
(3) power outpul-8-15 ohms.
- Power output low per channel.
- Independent tone controls giving full lift and cut to both bass and treble each channel.
- Retractable carrying handle permitting carrying by one or two persons.

U.K. Retail prices from $\mathfrak{f} 150$ incl. P.T.

See and hear Ferrograph Series 7 recorders at your local Ferrograph stockist, or post coupon for details and address of nearest Ferrograph specialist (or ring 01-589 4485)

Don't take our word for it-test EEV flash tubes against the equivalents you're now using and learn why other users think so highly of those made by EEV. Incorporating extra heavy duty electrodes, EEV flash tubes are renowned for their reliability, long life (up to 10^{6} flashes) and high conversion efficiency. EEV liquid-cooled and air-cooled xenon flash tubes for pumping laser rods offer a wide range of input energy levels and they are capable of operation at high repetition rates.
Full details of the range are available on request-

Outstanding in quality, reliability in quality, reliability and performance

 but if your application calls for a flash tube that is not in the present range, tell us your requirement because we can probably make it for you.
REPEAT PERFDRMANCE FROM GARDNERS

Exceptionally wide band microphone and audio line matching transformers

FREQUENCY RANGE
$100 \mathrm{~K} . \mathrm{ohm}$ models $\pm 1 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$ All other models $\pm 0.5 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$ MAXIMUM AUDIO LEVEL $+12 \mathrm{dBm}(16 \mathrm{~mW})$
INPUT IMPEDANCE maintained to within $\pm 10 \%(\pm 20 \% \mathrm{j})$ at all frequencies within the range $50 \mathrm{c} / \mathrm{s}$ to $8 \mathrm{kc} / \mathrm{s}$ (to $5 \mathrm{kc} / \mathrm{s}$ only for 100 K .0 hm models)
MAGNETICALLY SCREENED
-50 dB reduction in hum pick up.

For professional recording and broadcast transmission equipment, these Octal-based plug-in transformers have a frequency response extending well beyond the audio range. The design achieves dynamic performance with minimum distortionat all levels

Type MU. 7525 may be used in "Hybrid" circuits, as shown, to establish 2 to 4 wire operation in telephony. Accurate balancing of the windings enable guaranteed rejection of better than - 55 dB from $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Up to - 75 dB may be expected for normal rejection levels.

WRITE FOR A.F. BROCHURE GT. 4
giving full details of these and other types of A.F. transformers

EEV glass and ceramic hydrogen thyratrons are extensively used to provide more precise and efficient high speed switching. Here are some of the reasons why:
1 Their short anode delay time of between 20 and 120 nanoseconds depending on triggering method.
2 Low jitter generally of 1 to 2 nanoseconds but down to less than $\frac{1}{2}$ nanosecond depending on heater supply.
3 The negligible change in anode delay timetypically only 10 nanoseconds over a long period of use.
4 A high peak inverse voltage capability of 20 kV immediately following pulse.
5 The low trigger power required.
6 The wide operating voltage range of $1 \mathrm{kV}-120 \mathrm{kV}$ with four tubes.
7 The ability to control anode delay time and rise time of current, using reservoir.
8 The wide reservoir range for maintenance of gas pressure typically 4.5 V to 5.7 V .
The standard range plus EEV's ability to meet special requirements means that virtually any high speed switching application can be met. Here are a few:
Radar modulators with a system output power of $10 \mathrm{~kW}-10 \mathrm{MW}$.
Medical linear accelerators with RF accelerating powers up to 15 MW .
Particle linear accelerators with RF accelerating powers up to 50 MW . They may also be used in first-stage particle beam choppers Particle beam benders where a network of stored energy needs to be discharged into a deflection coil or other device somewhere on the accelerating ring.
Spark chambers
For pulsing light shutters such as Kerr or Pockel cells.
Electronic crowbars and energy diverters

EEV thyratronsfor better high speed switching

	Peak power output max $(M W)$	Heating Factor (V.A.p.p.s.)	Peak forward voltage max (kV)	Peak anode current max	Mean anode current max
CX1154	50.0	30×10^{9}	40	$(\mathrm{~A})$	(A)
CX1157	3.5	7×10^{9}	20	2500	3.0
CX1168	100.0	70×10^{9}	80	350	0.35
CX1171	150	70×10^{9}	120	2500	2.5
CX1174	120	60×10^{9}	40	2500	2.5
CX1175	200	140×10^{9}	80	6000	6.0
CX1180	12.5	9×10^{9}	25	5000	6.0

Send for full details of the complete range of EEV thyratrons.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex: 99103 Grams: Enelectico Chelmsford

I am particularly interested in using a thyratron with the following parameters

Application

Peak power output
Peak forward voltage

Please send me full data on your complete range of glass and ceramic hydrogen thyratrons
\qquad
NAME

COMPANY

Comprehensive range for civil and military authorities as well as domestic users in more than 50 countries.

Teonex now supplies a full range of British made valves and semi-conductors (or their Continental equivalents) to authorities operating stringent quality control, and to private individuals right across the world. Current price list and further particulars available on request from:

TEONEK LIMITED

2a WESTBOURNE GROVE MEWS LONDON • W11 ENGLAND

The secret is in the fixing qf the Brewster window
-the angled glass plate at each end of the tube
In many tubes the seal is made with an epoxy resin which eventually cracks and ruins efficiency by letting in air. EEV, on the other hand, use fu'sion sealed windows where the seal is as strong as any other part of the tube. Fusion sealing allows the tube to be heated to a very high temperature during manufacture, driving out all the gases in the tube surface which would otherwise contaminate the helium-neon filling. EEV tubes have been life tested up to 6000 hours which is two or three times the life generally expected from tubes employing epoxy sealing techniques. There is a standard range of EEV laser tubes available, full details of which can be obtained by filling in the coupon. If your laser design calls for a special tube give us brief details of what you need as we can probably meet your requirements.

Why EEV gas laser tubes

last longer

Send for full details of the complete range of EEV gas laser tubes.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex : 99103 Grams: Enelectico Chelmsford

Please send me full data on your range of gas laser tubes.
I am particularly interested in using a tube with the following parameters.
Wavelength (nm) Power Output (mW) POSITION
NAME
COMPANY
ADDRESS

ADDRESS

Now Plessey cartridge recorders

offer 48 Volt DC operation

The CT85 is the latest model to be added to the wide range of Plessey endless loop cartridge recorders. This unit provides emergency interception services in' Telephone Exchanges and other special services where 48 Volt D.C. operation is required.
The CT85 is suitable for continuous or intermittent service. Audio output is 2 watts into 50 ohms for multiple telephone line distribution. A second track is used for stop cues together with an auxiliary cue for other functions such as redirecting telephone traffic from non-operative numbers. Start can be local or by an external earth signal.
In common with all CT80 cartridge recorders the CT85 operates from an exclusive integral direct drive capstan motor, solenoid and puck wheel assembly. For
long term reliability the motor is an AC type driven through an electronic switching module. Solid state silicon devices are utilized throughout.
The CT85 is supplied in a portable cabinet that can be locked to prevent access to the cartridge, circuit boards and operating controls by unauthorised personnel. The unit can also be supplied for desk top, built-in and rack mounting.
For full details of Plessey broadcast standard CT80 recorders contact your local Plessey office now.

PLESSEY
 Electronics

Choose your duplexer devices from EEV's extensive range

BS390

BS800

BS452
k

Product	Type No	Band	$\begin{aligned} & \text { range } \\ & (\mathrm{MHz}) \end{aligned}$	$\begin{aligned} & \text { power } \\ & \text { (kW) } \end{aligned}$
Pre TR cells	BS834	-	2000-12000	2500
	BS870	-	1240-1365	2500
TR cells	BS390	S	2925-3075	1250
	BS800	S	2840-3100	1250
	BS824*	S	2700-3100	250
-	BS156	X	9000-9600	200
	BS452	x	9310-9510	100
	BS810	X	9250-9550	75
	BS850	X	9300-9500	50
TB cells	BS310	X	9375	5-200
TR limiter cells	BS814	X	9000-9700	200
	BS828	X	9325-9425	50
Solid state microwave switches	BS392	S	2925-3075	0.5
	BS460	X	8500-12000	0.5

Send for this booklet giving full details of the complete range of EEV duplexer devices and waveguide switches.

English Electric Valve Co Ltd

Chelmsford Essex England Telephone : 61777 Telex: 99103 Grams : Enelectico Chelmsford
*For protection of travelling waveguide amplifiers

Please send me a copy of "Duplexer Devices". I am interested in a tube with the following parameters:
Frequency range
Power
Type of cell
\qquad
COMPANY
ADDRESS

Cameras a plenty... but how quickly can you find the right low cost tube?

There is a growing range of closed-circuit equipment available, ranging from the simple black and white camera to sophisticated full-colour facilities. The time inevitably arrives when a replacement vidicon tube is needed quickly. This is the service EMI sets out to provide. Our vidicon range provides a type for virtually every camera, where reliability. good resolution and high sensitivity are required Send for the EMI Vidicon replacement chart. Then, when
 contact your distributor or EMI.

Systems are helping industry's key personnel to stay put while controlling distant out-stations.

The equipment covers transmission of information between out-stations and control rooms by various forms of telemetry, including: Teledata; Teleshift; Telecode and Teleducer, and provides visual presentation of conditions of controlled equipment on mimic diagrams, using the well-known GECAEI Modular Mimic Systems.
 Write today for telemetry literature/modular mimic systems literature.

$$
\begin{aligned}
& \text { Communications } \\
& \text { Division } \\
& S \in C
\end{aligned}
$$

BREAK THE SOUND BARRIER

MODEL 488 SONO-BAR

WithProvid sulpe setine the woalios standard in sturnd

NOISE CANCELLING MICROPHONES

When the chips are down, and noise levels are high, Shure Noise Cancelling microphones with their exclusive Controlled Magnetic cartridges, distancediscrimination design, and specially tailored response get the message through ... even when noise level is so high the operator cannot hear himself! They have been field-tested and proved in such ear-shattering environments as: drop forges, helicopters, police power boats, "hard surface" gyms among cheering crowds, motorcycles, jets revving up, fire engines, etc.

SHURE MODEL 488 SONO-BAR
Rugged, impact resistant "Armo-Dur" case. Four types: High or low impedance transistorized for direct replacement of carbon microphone; and FAA Certified Transistorized Aircraft version.

SHURE MODEL 419 RANGER II

New small size. Only about half the size and weight of conventional mobile communications microphones. Unsurpassed for use with portable or miniaturized equipment.

SHURE MICRDPHDNES - WDRLD STANDARD WHEREVER RELIABILITY AND SDUND QUALITY ARE PARAMDUNT

VALUABLE NEW HANDBOOK FREE EMGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.

Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Draughtsmanship - Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.

Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Structural Eng. - Eng. - Hy - HyEng. - Road Eng. - Hy-
draulics - Mining - Water draulics - Mining - Water Supply - Petrol'Tech.

RADIO ENG.

Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. Diesel Eng. - Press Tool Design Sheet Metal Work - Welding - Eng, Pattern Making -Inspection-Draughtsmanship-- Metallurgy - Production Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair - Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
 M.R.S.H., A.M.I.E.D., A.M.I.Mun.
british institute of engineering technology
446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job. * HOW to qualify for rapid promotion.
* HOW to put some letters ofter your name and become a key man . . . quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depes.
* HOW yau can take advantage of the chonces you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL EQUIPMENT

Basic Practical and Theo retic Courses for beginners in Radio, T.Y., Elec tronies, etc. A.M.I.E.R.E. City Guilds Radio Certificate, P.M.G. Cerificate, Practical Radio Aadio a Television Ser vicing, Practical Elecronics, Electronics Engineering, Automation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation

POST COUPON NOW!

TO B.I.E.T., 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES.'" I am interested in (state subject, exam., or career).

NAME
ADDRESS .
\qquad

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

ALL CHANGE..

THE ELREMCO SUB-MINIATURE SOLDERING IRON TYPE MS1

[^0]
ces> Resistor Service saves you money

Standardise on $\pm 5 \%$ tolerance

for all your requirements

RATING	OHMIC RANGE VALUESTOE24	PACK OF	$\begin{aligned} & \text { PACK OF } \\ & \text { O\# } \end{aligned}$	$\underset{25 *}{\text { PACK OF }}$	$\text { PACK OF }_{100}$
$1 / 8 W \pm 5 \%$	5.1Ω to 330k2	-	2/2d	4/9d	16/.
$1 / 2 W \pm 5 \%$	10Ω to 10 ML 2	-	2/2	4/9	16/-
$1 \mathrm{~W} \pm 5 \%$	10Ω to $10 \mathrm{M} \Omega$	-	3/3	7/6	23/-
$2 W \pm 5 \%$	10Ω to $10 \mathrm{M} \Omega$	3/-	5/9	14/-	45/-

FULL SPECIFICATION OF
WAYCOM CARBON FILM RESISTORS
IS CONTAINED IN OUR NEW 150 PAGE ELECTRONIC COMPONENTS CATALOGUE. COMPLETE COUPON FOR YOUR COPY.

Tel: 01-686 7311 for orders
Tel: 01-688 7722 for other business Telex: 262308

Has red tape been complicating your procurement of electronic components from the U.S.A.?

Procurement of American-made elec. tronic components used to be thought of as a complex, timeconsuming procedure with a myriad of red tape details and problems. Not anymore - now you can join the growing list of companies that rely on the technical skills and services of Milo International, world-wide distributors of electronic components. Our team of experienced specialists will process your order with speed and efficiency from start to finish - immediate price and availability quotations, product information, application data, import certificates, export licenses, declarations, export pack. aging, delivery expediting, etc. And this all-inclusive service is provided for each order, no matter how small or large.

IILO International
World-Wide Electronic Component Suppliers
325 Hudson St., New York, N.Y. 10013/Tel 212-924-5000/Cable MILOLECTRO, N. Y./ Int'I. Telex 62528 or 620715

Erie Blue Chips are resistors. Thick film, metal glaze resistors built to satisfy the circuit designer's need for reduced physical size and increased reliablity. Designed specifically for printed circuit boards, Blue Chips, with radial terminations at 0.2 in centres, make possible a packaging density up to double that of conventional cylindrical resistors.
Resistance range:
1 ohm to 1 megohm with tolerances of $1 \%, 2 \%, 5 \%$ and 10%.

Wattage ratings:

$\frac{1}{8} w, \frac{1}{4} w, \frac{1}{2} w$, with maximum
voltage 350 V d.c.

Temperature range:

$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ with no derating, and an average TCR of $\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Closer T.C.s. available.

'And this is their average size'

Telephone: 04934911
Telex: 97421

Newmarket microcircuitshave several distinguishing features

Rational production

the only UK custom-built thickfilm hybrid
microcircuit manufacturer also producing the active devices for hybrids in house.

Reliable delivery

12 actual weeks from first enquiry to delivery of custombuilt batches for full production (only 6 weeks to prototype production).

Reasonable quantities

typical annual requirement is 500-5,000 off:
no multi-million runs required.

Radical costing

just enquire-you'll probably find the complete Newmarket microcircuit costs no more than your own real discrete component assembly costs.

Newmarket Transistors prove again that it pays to deal with specialists. Not every-electronic-device giants but experts constantly contributing to progress in their own field. Newmarket are the experts in industrial semiconductors and have led the field for two years in custom-built microcircuits. So deal with the team (and the distinguished distributors) in tune with tomorrow.

face tomorrow's pace with Newmarket Transistors
 the specialist semiconductor engineers with the distinguished personal service network:

national
Combined Electronic Services Ltd., Queensway, Waddon Factory Estate, Croydon, CR9 4DR. Call 01-688 3699
RECIONAL
10NDON Lugton \& Cn. Ltd., 209-212 Tottenham Court Road, W. . Call M USeum 3268/9
COVENTRY Coventry Factors Led., Coronet House, Upper Well Street. Call $21051 / 5$
GLASGOW James Scot (Electronic Agencies) Led., 90 West Campbell Street, C. 2. Call CENitral 3866
HARLOW Standard Telephones \& Cables Ltd., Electronic Services Division, Edinburgh Way. Call 26777
HARROGATE G.S.P.K. (Electronics Ltd., Hookstone Park Trading Estate. Call 85415
HOUNSLOW Eastern Aero Electrical Services Lid., Building 44, London (Heathrow) Airport, North. Call SK Yport 1314
PORTSMOUTH S.D.S. (Portsmouth) Lid., Hilsea Industrial Estate. Call 62332

Whether your products are individually assembled or on a flow line, missing components spell loss of time, delayed deliveries - and maybe tied-up capital. When it comes to meters, there's no excuse. Anders carry the largest stocks of meters in the U.K. Standard meters are off-the-shelf and on their way to you within 24 hours of your order. Nonstandard instruments take very little longer. Anders have a fast moving production team of well-equipped specialists in assembly, calibration, and even hand-lettering of dials. In fact the only things missing from the Anders' service are excuses: we take care to see that we don't have to make them. So when it comes to meters, come to Anders.
N.B. The variety of meters in our new catalogue is a revelation - and now we've got extensive new centralised premises for a better-than-ever service. Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries. Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.

ANDERS METER SERVICE
Anders Electronics Ltd., 48:56 Bayham Place, Bayham Street, London, N.W. 1

Telephone: 01-3879092
WW-024 FOR FURTHER DETAILS

LEVELL measure μ V's from 1 Hz to 450 MHz VOLTMETERS

TYPE TM3B £63
TRANSISTOR A.C. MICROVOLTMETERS Response from $1 \mathrm{~Hz}_{\text {to }} 3 \mathrm{MHz}$ with amplifier output available. Two versions differ only in meter size and bandwideh switch on type TM3B.

TYPE TM3A
E49
Complete with battery and input lead.
OPTIONAL
EXTRAS
Leather case
A.C. $64 / 10 /$ -
A.C. Power Unit

Complete with battery and in. put lead.
OPTIONAL
EXTRAS
Leather Case
A.C. Power Unie

VOLTMETER RANGES
$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}$.... 500 V f.s.d. Accuracy $\pm \% \pm \%$ ois.d. \pm M VatikHz

dB RANGES

100 dB to +50 dB in 10 dB steps. Scale

FREQUENCY RESPONSE
Above $500 \mu \mathrm{~V}$: $\pm 3 \mathrm{~dB}$ from $1 \mathrm{~Hz}_{2}$ to 3 MHz . $\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz On 50031 V: $\pm 3 \mathrm{~dB}$ from 2 Hz to 2 MHz on $50 \mu \mathrm{~V}$: $\pm 3 \mathrm{dr}$ from 7 Hz 2 10 Hz On 15 $\mu \mathrm{V}$: $\pm 3 \mathrm{~dB}$ from 20 Hz to 200 kHz .

AMPLIFIER OUTPUT
150 mV at f.s.d. on all ranzes. Will drive a load of $200 \mathrm{k} \Omega$ and $50 \mathrm{p} F$ withoue loss.

POWER SUPPLY

One type PP9 battery, life 1000 hours; or
A.C. mains when Power Unit is fitted
$\star \star \star \star \star \star \star \star \star \star$

BROADBAND VOLTMETERS
As A.C. Microvaltmeters plus H.F. probe to extend response to 450 MHz . Two versions differ only in meter size and L.F. bandwidth switch on type TM6B.

TYPE TM6A
$£ 85$
Complete with
battery and in. put lead. OPTIONAL EXTRAS

Leather Case
A.C. $14 / 10 /-$
A.C. Power Unit

67/10/-.

TYPE TM6B $£ 99$
Complete with battery and in. pue lead.

OPTIONAL
EXTRAS
Leather Case A.C. Power Unil 67/10/-.
H.F. VOLTAGE RANGES

ImV, $3 \mathrm{mV}, 10 \mathrm{mV}$. . . . 3 V f.s.d. Square law scaies. Accuracy ${ }^{ \pm}$. $\%$ of reading
$\pm 1 \%$ of I, s. at 30 MHz . of.s.d. at jomHz.
H.F. dB RANGES
$-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$
Scate -10 dB to +3 dB . OdB $=1 \mathrm{~mW}$ into 508.

H.F. RESPONSE

$\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz
$\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz $\pm 6 \mathrm{~dB}$ from 400 MHz to 450 MHz
L.F. RANGES

As TM3A and TM3B except for the omls sion of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$.

POWER SUPPLY

One type PP9 battery. life 1000 hours on L.F. ranges and 400 hours on H.F. ranges; is fisced.

Sounds exactly what
 you want

Here's a professional tape recorder that you can use in the studio and in outside broadcast vans. Philips Pro' 12 meets a long standing requirement of studio sound engineers. This portable two-channel recorder is designed to meet the high standards of sound quality and versatility expected of professional equipment, yet it is small and competitively priced. Recording and playback quality of the Pro' 12 is of a very high standard. Tapes prepared on a Pro' 12 are sui, table for immediate broadcasting. Even at the lowest tape speed of $33 / 4$ in / s, the sound quality is at least equal to the DIN 45511 studio equipment specification.
It features: - Twin-track stereo, twintrack mono and dual-track mono operation on $6.25 \mathrm{~mm}(1 / 4 \mathrm{in})$ wide tape (standard version). . Extra quartertrack stereo (special version). - Tape speeds of 9.5 and $19 \mathrm{~cm} / \mathrm{s}(33 / 4$ and $71 / 2 \mathrm{in} / \mathrm{s}$). Unique "constant load" tape transport. - Microphone, diode and line inputs for each channel.

- Facilities for mixing input signals of both channels. - Multiplay, sound on sound and echo effect. - Fade in and out and dubbing facilities. - Cueing and pause keys. - Line and monitoring outputs for each channel. - Monitoring with stereo headset or built-in loudspeaker, before or after tape. - VU-control of either channel. - End-of-tape switch. . Remote control connection. - Horizontal or vertical operation.

Technical data

Tape speeds
$33 / 4$ and $71 / 2 \mathrm{in} / \mathrm{s}$ (9.5 and $19 \mathrm{~cm} / \mathrm{s}$)
Tape
longplay ($1800 \mathrm{ft}-540 \mathrm{~m}$) or
doubleplay ($2400 \mathrm{ft}-720 \mathrm{~m}$)
Reels
Ciné type, max. 7 in (180 mm) Playing time
for longplay tape on 7 -inch reel: at $7 \frac{1}{2} \mathrm{in} / \mathrm{s}: 45 \mathrm{~min}$
for doubleplay tape on 7 -inch reel:
at $71 / 2 \mathrm{in} / \mathrm{s}: 60 \mathrm{~min}$
Deviation on absolute tape speed
less than 0.8%
Wow and flutter
measured acc. to DIN 45507 with EMT 420, at $71 / 2 \mathrm{in} / \mathrm{s}: 0.08 \%$
at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}: 0.1 \%$
Frequency response
acc. to DIN 4551 , playback
at $71 / 2 \mathrm{in} / \mathrm{s}: 60 \ldots 12000 \mathrm{~Hz}, 0-1.5 \mathrm{~dB}$

at $71 / 2 \mathrm{in} / \mathrm{s}: 40 \ldots 18000 \mathrm{~Hz}, 0-2.5 \mathrm{~dB}$ at $33 / 4 \mathrm{in} / \mathrm{s}: 60 \ldots 10000 \mathrm{~Hz}, 0-1.5 \mathrm{~dB}$ at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}: 40 \ldots 15000 \mathrm{~Hz}, 0-2.5 \mathrm{~dB}$ overall at $7 \mathrm{1} / 2 \mathrm{in} / \mathrm{s}$:
$60 \ldots 12000 \mathrm{~Hz}, 0-3 \mathrm{~dB}$
overall at $71 / 2 \mathrm{in} / \mathrm{s}$:
$40 \ldots 18000 \mathrm{~Hz}, 0-5 \mathrm{~dB}$.
overall at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}$:
$60 \ldots 10000 \mathrm{~Hz}, 0-3 \mathrm{~dB}$
overall at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}$:
$40 \ldots 15000 \mathrm{~Hz}, 0-5 \mathrm{~dB}$
Signal-to-noise ratio
acc. to DIN 45405, weighted,
at $7 \frac{1}{2} \mathrm{in} / \mathrm{s}:-56 \mathrm{~dB}$
at $33 / 4 \mathrm{in} / \mathrm{s}:-52 \mathrm{~dB}$

Inputs

a. line: $100 \mathrm{mV}, 100 \mathrm{k} \Omega$
b. microphone: $\leq 1 \mathrm{mV}$ (unbalanced), suitable for microphones from 50 to 2000Ω
c. diode: $2-40 \mathrm{mV}, 20 \mathrm{k} \Omega$

Other inputs are av-ilable of conally

Outputs

a. line:
nom. 0.775 V , max. $4 \mathrm{~V}, 10000 \Omega$
b. monitor (stereo):
nom. $0.775 \mathrm{~V}, \max .4 \mathrm{~V}, 10000 \Omega$
c. diode: $0.5-2 \mathrm{~V}, 100 \mathrm{k} \Omega$

Other outputs available optionally.

Power supply

$110-117-127-220-245 \mathrm{~V}, 50$ or 60 Hz
Power consumption: 80 W
Dimensions and weight
$52 \times 34 \times 24 \mathrm{~cm}$
$\left(20^{5 / 8} \times 133 / 4 \times 93 / 8 \mathrm{in}\right)$;
$23 \mathrm{~kg}(50.6 \mathrm{lb})$
For detailed information please write for our 8 page Pro' 12 brochure.

Electro-acoustics Division of
Philips Industries,
N.V. Philips' Gloeilampenfabrieken. Eirdhoven, the Netherlands

Faithful Reproduction

with the

Grampian TC12 loudspeaker
The Grampian TC12 loudspeaker is a high quality twin cone unit at a reasonable price. The loudspeaker is built of high quality materials to a rigid specification and is eminently suitable for good quality sound reproduction. Let us send you full details or better still go and hear one at your local dealers now.

Design for suitable cabinet available.

Grampian manufacture high grade microphones, parabolic reflectors, windshields and accessories, also mixers and amplifiers.

Send for leaflet giving full details

Hanworth Trading Estate, Feltham, Middlesex Tel: 01-894-9141/3 Cables REAMP. FELTHAM

SOLDERING INSTRUMENTS

Have a look at your present soldering irons. Are they really giving you the performance and service you're paying for? Is there really a model suitable for your size of work? Or are you making do with a tiny bit in a big iron? Or vice versa? Do they have the cool, comfortable feel, the elegance, of a LITESOLD? Drop one on a concrete floor-does it survive? Can you easily and cheaply replace the bits? Can you service it yourself? Are the models you want available for any voltage? Are they listed at 32 shillings or so each, with discounts for quantity?
Yes? Then we must be preaching to the converted, for you are surely a LITESOLD user already.

Well, if you are, or even if you're not, you may be interested in the new PHILIPS ELECTROLYTICALLYIRON COATED BITS. They last up to 75 times longer than copper, and are a big advance of all previous iron coatings.

Please ask for colour cotalogue L5.

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL
Telephone 01-688 8589 and 4559 WW-028 FOR FURTHER DETALLS

prepare now for tomprow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I., Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best
No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

Member of the
 Association of British

Correspondence
Colleges
C.R.E.I. (London), Walpole House,

173-176 Sloane Street, London S.W.1.

POST THIS COUPON TODAY FOR A BETTER FUTURE

To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1.
Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.
My interest is City and Guilds \square please tick General \square
NAME
ADDRESS

EDUCATIONAL BACKGROUND

ELECTRONICS EXPERIENCE
WW115

Write to SME Limited • Steyning • Sussex • England
WW- 030 FOR FURTHER DETALLS

PINNACLE ELECTRONICS LIMITED achiLLES STREET • NEW CROSS•LONDON S.E. 14

Telephone: All departments-01-692 7285 Direct orders - 01-692 7714

PHILIPS
Every aspect of microphone manufacture is covered by the makers of ten million of them-Philips. Presentation and directivity are made to suit requirements. In fact, whatever your needs, there's one in ten million for you. Please ask for full information.

PYE TVT LIMITED

PHILIPS SOUND
Addlestone Road, Weybridge
Tel: Weybridge (97) 45511. Telex: London 262319

Armstrong the high fidelity sound

A STEREO

 TUNER-AMPLIFIER
for the

BUDGET SYSTEM

127 STEREO TUNER-AMPLIFIER $£ 43$-13-9 OPTIONAL CASE As illustrated〔3-17-0

If you want high fidelity in the highest class don't buy the 127 Tuner-Amplifier; it isn't meant for you. But if you want a good quality system that is a great deal better than the average radiogram, and your power requirements, as well as your budget, are of modest proportions, then this is meant for you.
The 10 watts power output, 5 from each channel, won't fill a hall, but it is more than adequate for most domestic purposes. The AM-FM Tuner incorporated is doubly attractive because, as well as covering the medium waveband, it has a performance on FM which is good enough to give excellent results on stereo radio once you add the optional M5 stereo radio decoder.

There are of course the usual facilities; pickup and tape inputs, tape recording outputs, bass and treble tone controls.

As we said at the outset, if you are after top-class hi-fi you don't want the 127, what you want is the Armstrong series 400 or series 500 models.

For details and technical specifications of all models, plus list of stockists, post coupon or write, mentioning 2WW69.

ARMSTRONG AUDIOLTD., WARLTERS ROAD N. 7
Telephone 01-607 3213
\qquad
address ...

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

The Goldring caress.... we call it transduction seduction
 Smooth, breathing, open and graceful
 stylus assembly. It is as light as the

 that's the sound of Goldring True Transduction. The ability of a cartridge to track properly at low forces is only the first stage of design, and from that point Goldring engineers continued development through to achieve their True Transduction. A micro-element of tubular permeable material lies in a 'Free-Field' generated from a fixed source away from the removable cantilever itself - no massy magnets or coils to move! This design approach provides a texture of sound transparency previously associated with direct-coupled pickups. Excessive de-coupling techniques are rendered unnecessary and tight coupling is employed to ensure that every motion of the sensing element is identical to that of the stylus - at all frequencies.

Full technical details of these new era cartridges from
Desk HF, Goldring Manufacturing Co. (Great Britain) Ltd.,
486-488 High Road, Leytonstone, London, E.11,
or from your nearest dealer.
WW- 036 FOR FURTHER DETAILS

Already in use in eighteen countries, the Dolby system is making master recordings which will withstand the test of time.

The system provides a full 10 dB reduction of print-through and a 10-15 dB reduction of hiss. These improvements, of breakthrough magnitude, are valid at any time-even after years of tape storage. This is why record companies with an eye to the future are now adopting this new revolutionary recording technique.

A301 features: Easy, plug-in installation . solld state circuitry . modular, printed circuit construction . high reliability, hands-off operation. Performance parameters such as distortion, frequency response, transient response, and nolse level meet highest quality professional standards.

NEW Remote Changeover option cuts costs. enables one A301 unit to do the work of two.

NEW NAB and DIN level selting meters simplify recorder gain calibration.

333 Avenue of the Americas. New York N.Y. 10014 (212) 243-2525 Cables: Dolbylabs New York

DO YOU NEED
 MN ACCURAMT CUBRENT
 SOUBCE FOR SEMII-CONDUCTOR

TESMMINT:

The Bradley D.C. Current Calibrator 132 provides an extremely stable D.C. current source up to 100 milliamperes at an accuracy of 0.05%. An add-on unit, the Current Multiplier 144, extends the range to 10 amperes.
The 132 is used extensively by meter manufacturers because of its high accuracy and ease of use-just dial up the current required-and also because of its unique percentage deviation measuring device. Semi-conductor and thin film component manufacturers have found it invaluable for the evolution and production line testing of their products . . . Further the 132-144 combination with its unrivalled output of 10 amperes covers the testing of most types of meters.

We shall be pleased to send further details.

J. Beam telecommunication aerial equipment is backed by a quarter of a century of design leadership in many aspects of aerial technology. From our superbly equipped laboratories many important advances in aerial design have been achieved, and we are able to undertake the design and development of all types of VHF and UHF arrays to customer's specifications in our new factory, which is equipped with the latest techniques for specialised aerial manufacture. Stringent inspection at all points of manufacture guarantee the superb quality of our aerials and accessories, which are produced at highly competitive prices.
These new Telecommunication Aerials incorporate ADVANCED DESIGNS WITH COMPLETELY NEW

The new J. Beam Engineering Factory is situated opposite J . Beam Aerials and is 5 minutes from the M.1. intersection

[^1]

AHUJA P. A. SYSTEM are manufactured in India's largest and most well equipped Plant. These are highly popular in over 25 countries on account of high quality and rugged construction and most competitive international prices.

ARIUJAERDIOS, 13 - DARYA GANJ

 DELHI-6. (INDIA)Issued by Engineering Export Promotion Council Calcutta (India)

TIMERS MICRO SWITCHES IMMEDIATE DESPATCH

sYs MINI-TIMER

SYNCHRONOUS MOTOR \& CLUTCH

* 10 MILLION OPERATIONS
* Instantaneous \& Timed out 3 AMP contacts.
\star Repeat Accuracy $\pm \frac{1}{2} \%$. 10 secs to 28 Hrs . May also be used as impulse start and automatic reset.
£11.0.0 approx. dependent on quantity.

TEMPERATURE CONTROLLER TYPE THP - thermistor operated octal base plugin COMPACT
Temperature ranges up to $280^{\circ} \mathrm{Z}$ Output contacts 4 mmp Repeat Accuracy 3\% full scale Complete with Thermistor
Approximately ह15 dependent on quantity

VV-15-1A

\star 15/10 AMPS. c/o $\star \quad 100,000$ ops.
1/11 each per 1,000 Single Throw $1 / 6$ each

FLOATLESS LIQUID LEVEL CONTROL

* 5 amp. OUTPut COntrol contacts \star Solid State
* Octal Base plug-in

The most compact unit avallable, measures onily $2 \frac{1}{2}^{-} \times 2 \frac{1}{}^{-} \times 3^{*}$.

Approx. £4.0.0.
dependent on quantity.
SINGLE AND TREBLE STAINLESS ELECTRODES AVAILABLE.

STP Sub-Mini Process Timer SYNCHRONOUS MOTOR \& CLUTCH
 Matchbox size Irontal area. Automatic re-set. \star PLUG-IN OCTAL + INSTANTANEOUS AND TIMED OUT 2 AMP CONTACTS \star RANGES: 10 SECS. TO 36 MINS. ap prox. $£ 5.0 .0$ each.

PROXIMITY SWITCH

YL2 GPA

* For Batching, Conveyors, Machine Tool Control, Packaging, Sorting, etc. \star Senses ferrous objects. ※ Needs no mechanical force or pressure to operate. \star Solid state sensing head includes constant voltage circuit.
\star Mains operated.
approx. 12.10 .0 dependent on quantity.
OTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE

S5G

* 5 amp. c/o Sub-miniature Micro-switch. 2/6 each per 1,000
LIMIT SWITCH WL 10 FNJ $\star 10$ AMP 2 CIRCUIT $\star 5$ InCh flexible actuator as illustrated as low as $53 / 9$ EACH. five other standard types ayailable

Suitable for
CONVEYOR SYSTEMS PACKING MACHINERY PRESS GUARDS

SLB CAPACITY PROXIMITY SWITCH
 SLB CAPACITY PROXIMITY SWITCH

Senses any object : PACKETS BOTTLES CARTONS BOXES CANS
empty or full, ferrous and non-ferrous

STAINLESS PROBE

remote from 240v AC Power Pack which
Incorporates own 5 amp relay.
and level control of GRANULES POWDERS LIQUIDS
Approximately $\mathbf{E 2 0 . 0 . 0}$ complete dependent on quantity.
v-10-1B
\star IMILLION
OPERATIONS

* 10 amp.c/o.
\& COMPARE OUR SPEC.
TYPES PRICES WITH
Screw Terms. 3/1 each per 1,000
V-10-IA Solder Tags $2 / 3$ each per 1,000 vv-15 IC2 187 Amp Tags $2 / 6$ each per 1,000

PUSH-BUTTON SWITCHES
Chrome rimmed flush square and flush round. Up to 4 switch blocks can be firted. Slow break and make. 10 amps. Latest addition-Illuminated version.
U.L. APPROVED (Appr. No. 32667)
U.S. MILITARY SPECIFICATION

Stockists: B.P.G. Ltd., Leicester 61460; Edmundsons Electronics Ltd., London, New X 9731; A. C. Farnell Ltd., Leeds 35111 ; Gordon Wilson Ltd., Blackburn 59921 ; G.D.S. Ltd., Bucks. Slough 30211

DISTRIBUTORS FOR EIRE: SOUTHERN ELECTRONICS LTD. CORK 26488

DIVISION OF I.M.O. PRECISION CONTROLS LTD.

The Microphone with a Message

EV 635A

... a simple message. If you're looking for professional results, use a professional microphone.
Radio and TV media, film units and recording studios throughout the world demand the best and get it - in an EV 635A Omnidirectional dynamic microphone. It can be used on a stand, hand-held or as a lavalier and is practically indestructible under normal conditions of use. An internal shock absorber greatly reduces the pick-up of cable or other noises generated by external contact, and the steel casing provides excellent magnetic shielding. Used outdoors, the 635A withstands the effects of high humidity and temperature extremes, salt air and severe mechanical shocks. A four-stage pop and dust filter eliminates the need for an external windscreen.

Specifications

Element:
Dynamic
Frequency respanse: $80-13.000 \mathrm{~Hz}$
Polar Pattern: Omnidirectional
Impedance: Low (150 ohms)
Output level:
$55 \mathrm{~dB}\left(0 \mathrm{~dB}=1 \mathrm{mw} / 10 \mathrm{dynes} / \mathrm{cm}^{2}\right)$
EIA sensitivity rating: $\quad 149 \mathrm{~dB}$ Diaphram: EV Acoustalloy
Case material: Steel
Dimensions: $\quad 6^{\prime \prime} \times 17^{\prime \prime}$ dia

Finish:
Non-reflecting matt satin nickel Net weight: 6 ounces without cable Cable connector

Cannon XLR-3-12 complete with 18'2-conductor shielded broadcast type cable
Accessories, neck cord assembly and model 310 clamp

For more information about the EV 635A, write the sole U.K. distributors.

KEF
KEF Electronics Ltd.
Tovil - Maidstone - Kent
Telephone Maidstone 57258

Accurate and direct measurement of speed without coupling to moving

 parts

ResonantReedTACHOMETERS

for hand use or permanent mounting.
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive literature on FRAHM Tachometers and Frequency Meters is freely available from the Sole U.K. distributors:
ANDERS METER SERVICE
ANDERS ELECTRONICS LTD. 48/56 BAYHAM PLACE, BAYHAM STREET LONDON NWI TEL: 01-3879092.

WW-046 FOR FURTHER DETAILS

Claude

From Claude Lyons-leaders in voltage control for over 30 years - an extensive new range of variable transformers employing the latest design techniques and providing unit ratings from 0.5 to 40 amperes.
The Regulac range of hundreds of models includes ganged assemblies for parallel and three-phase operation, dual-output, portable and oil-immersed models plus many high-frequency and special types, for manual operation or with motor drive.

Rapid delivery from Southern or Northern works. Send now for comprehensive new catalogue and rating guide to Publicity Department, Hoddesdon.
R. Registered Trade Mark of Claude Lyons Limited

Choose HEATHKIT instrumentation

(Heathkit models available Ready-to-use, as well as in easy-to-build kit form)

KIT K/IM-25
£48.10.0 p.p. $10 / 6$

Ready-to-use A/IM-25 f59.0.0 P.P. $10 / 6$

KIT K/IP-I7
£37.4.0
Ready-to-use A/IP-17
£46.0.0 P.P. $10 / 6$

KIT K/IP-27
£46.12.0 P.P. $10 / 6$

Ready-to-use A/IP-27
£55.0.O P.P. 10/6

The Latest and most practical innovation in electronic instrumentation is the exciting ultra-functional styling format from Heath. The instruments feoture a unique cabinet frame consisting of the front and rear panels and side rails which completely supparts the component chassis independently from the top and bottom cabinet shells. This allows complete freedom from assembly, check-out, and calibration. The sturdy side rails conceal retractable carrying handles. The die-cast front panel bezel styled in chrome and black, the black side rails, and the beige front panels and cabinet shells give the instruments an appearance as up-to-date as their functional performance.

Latest Solid - State High - Impedance Volt - Ohm Milliammeter . . . IM-25

- 9 A.C. and 9 D.C. voltage ranges from 150 millivolts to 1500 volts full scale $\quad 7$ resistance ranges, 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1$ meg... measures from one ohm to 1000 megohms - Il current ranges from 15μ A full scale to $I .5 A$ full scale - II megohm input impedance on D.C. - 10 megohm Input impedance on A.C. - A.C. response to 100 kHz - $6 \mathrm{in} .200 \mu \mathrm{~A}$ meter with zero-centre scales for positive and negative voltage measurements without switching - Internal battery power or $120 / 240$ volt A.C., 50 Hz - Clrcuit board construction for extra-rugged durability.

Latest Solid-State Volt-Ohm Meter, IM-16

- 8 A.C. and 8 D.C. ranges from 0.5 volts to 1500 volts full scale - 7 ohm-meter ranges with 10 ohms at centre scale and multipllers of $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1 \mathrm{megohm} \cdot 11 \mathrm{meg}-$ ohm input on D.C. ranges, I megohm on A.C. ranges - Operates on either built-in battery power or $120 / 240$ volt A.C., 50 Hz - Circuit-board construction.

Latest Variable Control Regulated High Voltage Power Supply ... IP-I7

- Furnishes 0 to 400 volts D.C. @ 100 mA maximum with better than 1% regulation for 0 to full load and ± 10 volt line variation - Furnishes 6 volt A.C. @ 4 amperes and 12 volt A.C. @ 2 amperes for tube filaments - Provides 0 to - 100 volts D.C. bias@ 1 milliampere maximum - Features separate panel meters for continuous monitor for output current and voltage - Terminals are isolated from chassis for safety - High voltage and bias may be switched "off" while filament voltage is "on " - Modern circuit board and wiring harness construction $120 / 240$ volt A.C., 50 Hz operátion.

Latest Improved Version of the famous Heathkit Solid-State, Voltage-Regulated, Current-Limited Power Supply . . . IP-27

- Zener reference - Improved circuitry is virtually immune to overload due to exotlc transients - 0.5 to 50 volts D.C. with better than ± 15 millivolts regulation - Four current ranges $50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}$ and 1.5 amperes - Adjustable current limiter: 30 to 100% on all ranges - Panel meter shows output volcage or current " "Pin-ball" lights, indicate " voltage" or "current" meter reading - Up-to-date construction - Unequalled performance in a laboratory power supply.

> Many other instruments in range SERVO CHART RECORDERS SINE-SQUARE GENERATORS DECADE R and C BOXES, etc.

SEND FOR FREE 36-page CATALOGUE

The latest catalogue contains details of models for the Hi-fi and Audio Enthusiast, the music Lover, the Tape recordist and the Hobbyist. Models for communications, Amateur radio and short-wave listening. Models for education. Test and Service Dept. There is something for everyone in this catalogue.

"THERMOSTAIC SOLDERING IRONS

Two new and unique thermostatic soldering irons with closely controlled bit temperatures to suit all types of soldering. WG thermostatically controlled soldering irons cannot overheat enabling high wattage elements to be used and making soldering infinitely more efficient than ever before. Inexpensively priced these irons represent a major advance in heat controlled soldering

MODEL WG50. For use on very small to medium size electronic circuits. Power rating 50 watts.
Voltages available 12 v ., 24 v ., $100 / 120 \mathrm{v}$., $210 / 250 \mathrm{v}$. Five bit sizes from $\frac{1}{16}$ " to $\frac{1}{4}^{\prime \prime}$

THE NEW WHITELEY tentorian INTEGRATED AMPLIFIER SYSTEM

A fully transistorized integrated amplifier designed for use with all types of pickup cartridges, it has facilities for tape and microphone inputs and the bass, treble, volume and balance controls are included. Input selection and mode of operation is by push-button switches. Available in its own specially designed teak veneered cabinet for shelf or bookcase mounting or in the new compact equipment cabinet illustrated. Come and see the full range of Whiteley Stentorian speakers and cabinets and discuss your particular hi-fi problems with our technical representatives.

LOUDSPEAKER SYSTEMS

LC93

A $19^{\prime \prime} \times 12 \frac{1}{2}^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded Melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1}{2}^{\prime \prime} \times 23 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} \times 6 \frac{1}{8}{ }^{\prime \prime}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient 9 " speaker unit used in the LC93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1}{2}^{\prime \prime} \times 20 \frac{3^{\prime \prime}}{4} \times 13 \frac{1}{2}^{\prime \prime}$. fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ Ioudspeaker having a Melamine treated paper ribbed cone and surround.

Get across loud and clear with AKG microphones!

Find out more about AKG mikes from

Model SR2

- Now with Safe Loatirg Mechanism which does not recoil on release.
- Adjustable Suctioa Control.
- Re-positioned Ralease Button for better handling of tool.
Instantly removes unwanted solder from prirted circuits and all other solder joints without damege to unit or component. Saves valuable time resulting in increased production.

How do you measure the extraquality of EMI speakers?

Listen!

EMTHEOTHT

EMI are famous throughout the world for High Quality sound reproduction. Now our audio design engineers have developed loudspeaker systems suitable for home use.

These EMI Loudspeaker Systems, specially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening Ievels.

They have many exclusive features. The range includes the unique 950 system with a 19 inches x 14 inches bass unit, power output 50 watts R.M.S.

Printed Circuits Plate holes in Printed Circuits

Plating through holes is just one of the many facilities offered by Printed Circuits Ltd.

The production of all types of printed circuits to customers' exact requirements is covered by a fast, efficient design or prototype service.

Short runs present no problem, but capacity is available for fast quantity production, and the assembly of components. If your project demands quality, quantity, speed and price control - ring Coventry 24155 today.

Printed Circuits Ltd.,

Spon Street Coventry CV1 3BR
Tel : Coventry 24155
A subsidiary of The General Electric Co. Ltd. of England
WW-059 FOR FURTHER DETAILS

STRONGHOLD steel shelving that adjusts every inch of its height!

 Inimensely strong- completely adjustable, every inch. Delivered free, mainland, with spanner provided for erection in minutes. Buy it by the hayl (cash with order)$73^{\prime \prime}$ high $\times 3^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep unit with six shelves in heavy-gauge steel, stove enamelled grey or green 1 ť3.15s.-Brand Newl See the rest of the N.C. Brown range!

볾모오 N.C. BRONNLTD.
 pacesetters in storage equipment

CHC Yew FREE BRO.
CHURE or Send (how minny) bilys stt:al shelving " E3.15s. in green $\mathrm{j}_{\mathrm{t}}{ }^{1}$ griv (tick which)

Aldress

Dept.WW Eagle Steelworks, Heywood, Lancs Tel: 69018. London: 25-27 Newton St W.C. 2 Tut: 01-4057931

Send for literature and price lists to

THE
 MESSAGE IS
 PERFECTRY
 CLEAN: T-R-I-O

Model JR-500SE
 CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER

- Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2 nd oscillator.
- Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
- Hi-Sensitivity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
- Hi-Selectivity: $\pm 2 \mathrm{KHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB
"Dimensions: Width 13", Height 7", Depth 10"

Model 9R-59DE

BUILT IN MECHANICAL FILTER 8 TUBES COMMUNICATION RECEIVER

- Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands
- A mechanical filter enabling superb selectivity with ordinary IF transformers.
- Frequency Range: 550 KHz to 30 MHz (4 Bands)
- Sensitivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz)
- Selectivity: $\pm 5 \mathrm{KHz}$ at $-60 \mathrm{~dB}(\neq 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$

When use the Mechanical Filter
"Dimensions: Width 15", Height 7", Depth 10".

Sole Agent for the U.K.
B. H. MORRIS a CO., (RADIO) LTD.

84/88 Nelson Street, Tower Hamlets, London E, 1. Phone: 01.7904824
TRIO KENWOOD ELECTRONICS S.A.
160 AVE., Brugmann, Bruxelles 6, Belgium
TO: B.H. Morris \& Co.. (Radio) Lid. WW
Send me information on TRIO COMMUNICATION
RECEIVERS \& name of nearest TRIO retailer.
NAME: \quad AGE:
ADDRESS:

at work and at home!

Jack Peters knows the quality and reliability of the Weller soldering equipment he uses during the dayso he naturally chooses Weller for all the soldering jobs around the house. The same technical know-how and perfection go into both.
The world's widest range of quality soldering tools offers :
TEMPERATURE CONTROLLED IRONS with iron plated tips which control temperature without limiting

Jack Peters uses a WELLER

performance. For mains or low voltage.
RAPID SOLDERING GUNS. Instant heat models. Just reach for the solder ... 4 seconds and the job's done
LOW INITIAL COST. The range of Marksman Irons25, 40, 80, 120 \& 175 watt,-all have pretinned nickel plated tips.
There's a Weller soldering tool for every job and every pocket. Send for full details of our range.

Weller Flectric Limited

REDKILN WAY. HORSHAM . SUSSEX. Telephone : 040361747 ww- 062 FOR FURTHER DETAILS

Dependable can solve it! Price or delivery are better through Dependable. Dependable relays are produced to G.P.O. and Government specifications.
MICRO-SWITCH • TRANSISTORISED . HEAVY-DUTY . A/C LATCHING • 'SPECIALS' MADE TO YOUR OWN DRAWINGS No order is too small or too large for Dependable; the only thing we worry about is you, the customer. Send for a free quotation now and compare our prices - our delivery. Prototypes within seven days.

DEPENDABLE RELAY COMPANY LTD
157 REGENTS PARK RDAD LONDON N.W.1. 01-722 8161

INsiant silletion ATTENUATION

Providing precise. Swliched attenuation from 1 to 100 dB in steps of 1 dB over the range
0.300 MHz . this new Hatfield RF Attenuator is exceptionally neat and compact and is housed in a die-cast aluminium box fitted with nine switches. nine altenuator pads and two BNC coswitches. nine altenuator pads and two 2 fic is small enough to be used in multiples. If required. without occupying excessive bench space, and offers a versatile and accurate tool space, and offers a versatile and accurate tool
for the engineer and laboratory. Type $687 / \mathrm{A}$ (50 ohms impedance). Type 687/8 (75 ohms impedancel. Type 687/E (600 ohms impedance. unbalanced). Type 687/G 600 ohms impedance. balanced).
Write or phone for turther details and ask for a copy of the new Hartield Shont form Caralogue.

BRIEF SPECIFICATION: Attenuation: 0 to 100 dB in steps of 1 dB Swirch Sequence: 1.2.2.5 Step Accuracy: 2,5 , and 10 dB acy: $1,2,5$ and 300 MHz above residual 20 dB steps: $\pm 0.2 \mathrm{~dB}$ a 300 MHz above residual. Insertion Loas: 0.15 dB at 50 $\mathrm{MHz}, 0.25 \mathrm{~dB}$ at 100 MHz
0.4 dB at 250 MHz Frequency Renge
Frequency Range: D.C. to 300 MHz Max input 0.5 W (Type E D.C. to 1 MHz .)

HATFIELD.INSTRUMENTS LTD.,

Dept. W.W., Burrington Way, Plymouth, Devon.
Telephone: Plymouth (0752) 72773/4.
Grams: Slojen, Plymouth

- Vortexion

STEREO MIXERS

$2+2$
Mixer

These electronic Stereo Mixers range from $2+2$ to $5+5$ input channels, with left and right outputs at 500 millivolts into 20 K ohms up to infinity.

Separate control knobs are provided for L \& R signals on each stereo channel so that a Mono/Stereo changeover switch provided can give from four to ten channels for monaural operation, in which state the L and R outputs provide identical signals.

A single knob ganged Master Volume control is fitted, plus a pilot indicator.

The units are mains powered and have the same overall dimensions as monaural mixers.

Also available Monaural Electronic Mixers:-

4 Way Monaural Mixers					\cdots	.	Price	$£ 50$
6 Way Monaural Mixers	$\cdots \quad$.			.	.	\cdots	Price	£71
8 Way Monaural Mixers				.	.		Price	£92
10 Way Monaural Mixers				.	.		Price	£112
12 Way Monaural Mixers							Price	£124
3 Way Monaural Mixers wit	h P.P.M.			..	.		Price	£75
4 Way Monaural Mixers	h P.P.M.						Price	$£ 86$
6 Way Monaural Mixers	h P.P.M.			.			Price	£107
8 Way Monaural Mixers wit	h P.P.M.	\cdots	Price	£128

VORTEXION LIMITED

257-263 The Broadway, Wimbledon, London, S.W. 19

WELWYN TOOLS

167-KIT-CN
For Inner Core
Ejection and Heated
Wirestripping
Miniature Soldering and Electronic
Instrument Work
USE W.T.C. Wire Ejectors. LUCO Electrically Heated Wire Strippers (see illustration), Finest Soldering Needles, Box Joins Miniature Cutters and Pllers including Tip Cutting Pliers, Printed Circuit Crimping and Cutting Pliers, Torque Wrenches and Piercing Punches. If you require quality tools If you require quality
ask for Catalogue $W W / 69$.

STONEHILLS HOUSE WELWYN GARDEN CITY
WELWYN GARDEN 25403
WW-067 FOR FURTHER DETAILS

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Mercury/Pepasus. Elliot 803, Binery and special purpose Codes.

2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MDDEM CONVERTERS, TELEPRINTER SWITCHBDARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectlfiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specia-
 lised relays and Bases; Terminals V.F. and F.M. Equpment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Racks and ConNoise Suppressors; Racks and Con-
soles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044282 TELEX 82362

TELCON METALS LTD. . Manor Royal. Crawley. Sussex
Telephone: Crawley 28800 Mumber of thes BICC Group of Companiss. WW-066 FOR FURTHER DETAILS

revised 2nd, Edition now available (including 250 types added since original publication)

The widest ranging and most
comprehensive valve catalogue
available from any independent
supplier.
PINNACLE ELECTRONICS LTD ACHILLES STREET • NEW CROSS • LONDON S.E. 14
Telephone: All Departments—01-692 7285 Direct orders—01-692 7714

PARK ROYAL PORCELAIN CO LTD incorporating v.G. Porcelain co ltd

GORST ROAD
PARK ROYAL
LONDON, N.W. 10

Telephones: ELGAR 1411/7 Telex: London 25589

IRWIN
 ELECTRONIC ENGINEERS

POWER SUPPLY E.J. 32
For low voltage high current sources. from 200-250 volt $50 \cdot 60 \mathrm{~Hz}$. Mains input.
Output voltages 0-18 O.C. and 0.12 A.C. are and A.C., calibrated at 230 volts input.
and A.C.. calibrated at 230 volts input. or A.C. With A.C output there is no effective reduction in voltage as curremt demand increases. With D.C. outputs normal requlation exists and there is some voltage reduction.
The ripple content for currents used in most iransistor circuitry is effectively nil. A graph showing regulation and ripple content is mounted on the side.
The robust attractive metal case is $9^{\prime \prime} \times 6^{\prime \prime} \times 4^{\prime \prime}$
The unit and apparatus connected to it a re protected
by internal fuses.

£19.10.0

SIGNAL GENERATOR E.A. 30

A general pupose, mains operated. solid state frequency generator with a frequency range of less than 1 Hz to 150 KHz in six swltched ranges. Maximum output voltage is $2.2 \mathrm{~V} \mathrm{r.m.s}$. ohms. Protection is by an internal 60 mA fuse.. On the tront are a frequency range switch. ON/OFF output controt, sweep frequency control with a lhe clear scale. mm output sockets and a three-way socket to supply a sep
amplifierfloudspeaker (E.A. 34 below).
£23.10.0
CURRENT AMPLIFIER E.A. 34
£7.6.0

Plugs into the above Signal Generator. It has a current amplifier output stage and ± 3-do from $18 \mathrm{~Hz} 150 \mathrm{~K} . \mathrm{Hz}^{2}$. The cable and plug ste to connect to E.A. 30 .

IRWIN \& PARTNERS LTD.

294 PURLEY WAY, CROYDON, CR9, 4QL 01-686 6441 WW- 071 FOR FURTHER DETAILS

SPECIFICATION TO DIN 45500. ANTI-SKATING. BIAS COMPENSATION. BUILT-IN CUEING DEVICE. ELAC AUTOMATIC CHANGING MAGIC SPINDLE NO TORSIONAL RESONANCES. FOOL-PROOF PUSH BUTTON FEATHERWEIGHT OPERATION TRACKING FORCE 0-6 GRAMME VARIABLE.

BRITISH INDUSTRIAL AGENTS:
 MITCHELL ENTERPRISES LTD

7 CUMBERLAND PLACE
SOUTHAMPTON - HANTS - Phone 21225

Switch to the biggest single switching source in Britain！

Whatever your switching needs，Elliotts can supply them－from the biggest centre of switching technology in Britain．Under one roof，we produce a comprehensive range of switches and relays for every purpose－proximity and stepping switches，relays far all communication and control purposes， from D．C．to R．F．，from dry circuits to 250 VA．Plus Britain＇s outstanding applications engineering service to help you make the choice you need． One enquiry on／y－for all your relay needs．So－ask Elliott－Automation I

1．Mercury Wetted Relays bounce－rree relays for low－noise and low－level to 250 VA swliching．
2．Dry Reed Relays hermetically－sealed switches，in both miniature and standard sizes；packaged to give 1 to 12 pole relays． 3．Proximity Switches a range of prox－ imity switches for both industrial and aero－ nautical applications．

4．Stepping switches up to 25 ways， 8 banks，homing or non－homing．
5．Hermetically Sealed Relays 5A to 10A switching， 2 and 4 pole，available in a wide range of mounting styles．
6．Telephone／Telegraph Relays a range of low－noise conventional relays，specially designed for telephone／telegraph and data－ switching applications．

7° RADFORD

In an article in the Journal of the Audio Engineering Society for July 1967，Bart N．Locanthi，Vice－President，J．B．Lansing Sound Inc．describes the development of an ultra low dis－ tortion direct current audio amplifier．In it he says＂．．．to get the highest accuracy possible，an English made RADFORD Low Distortion Oscillator was used which has less than 0.01% harmonic distortion at 20 kHz ．＂

LOW DISTORTION OSCILLATOR（Series 2）
An instrument of high stability providing very pure sine waves，and square waves，in the range of 5 Hz to 500 kHz ． Hybrid design using valves and semiconductors．

$5 \mathrm{~Hz}-500 \mathrm{kHz}$（ 5 ranges）．
600 Ohms．
10 Volts r．m．s．max．
$0-110 \mathrm{~dB}$ continuously variable．
0.005% from 200 Hz to 20 kHz increasing to
0.015% at 10 Hz and 100 kHz ．
Scaled $0-3$ ， $0-10$ microseconds．
Scaled 0－3，0－10，and dBm
$100 \mathrm{~V} .250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$ ．
$17 \frac{1}{5} \times 11 \times 8 \mathrm{in}$ ．
25 lb
f 150.

DISTORTION MEASURING SET（Series 2）
A sensitive instrument for the measurement of total har－ monic distortion，designed for speedy and accurate use． Capable of measuring distortion products as low as 0.002% ．
Direct reading from calibrated meter scale．

Specification
 Frequency Range：

Distortion Range：
Sensitivity：
Meter：
Input Resistance： High Pass filter：

Frequency Response：
$20 \mathrm{~Hz}-20 \mathrm{kHz}$（6 ranges）．

Power Requirements：
Size：
Weight：
Price： $0.01 \%-100 \%$ fis．d．（ 9 ranges）．
100 mv .100 v．（ 3 ranges）． 100 mV ． 100 V ．（ 3 ranges）． 100 kOhms．
3 dB down at 350 Hz
30 dB down at 45 Hz ．
± 1 dB from second harmonic of rejection Included bato 250 kHz ．
$174 \times 11 \times 8 i n$.
1516.

Descriptive technical leaflets are available on request．

RADFORD LABORATORY INSTRUMENTS LTD． ASHTON VALE ROAD，BRISTOL 3
 Telephone：662301／3

EDDYSTONE COMMUNICATION RECEIVERS

For the Professional or Amateur user who llkes the Best．

ECIO £64；EB35 〔66．13．4；EB36 £56．5．0；840C 〔70； 940 〔 143 ； EA12 $£ 195 ; 830 / 7$ f275．

FREE GIFT OFFER

Lightweight Telephone Headset value $£ 4.6 .6$ to all Cash Buyers．
（Note．All these receivers have internal Loud Speakers， but Telephone Headset is very useful for private operation．）

H．P．Terms gladly arranged．Quick Delivery． Carriage Paid．
Used models occasionally available

Telephone：AINTREE 1445
SEND Gd STAMP FOR LITERATURE TO
The Eddystone Specialists

SERVICES LTD．
51 COUNTY ROAD， LIVERPOOL， 4 ESTAB． 1935

WW－079 FOR FURTHER DETAILS

STOCKISTS

MODEL 8 MK ． 11 I

REPAIR SERVICE 7－14 DAYS

We specialise in repair， calibration and conversion of all types of instruments， industrial and precision grade to BSS． 89 ．

Release notes and certifi－ cates of accuracy on request．

Suppliers of Elliott，Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76－78 DEPTFORD HIGH STREET，LONDON，S．E． 8
Tel．：O1－692 2689

E．I．D．\＆．P．O．APPROVED
CONTRACTOR TO H．M．GOVT．

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research evelopment and quality control really do keep in touch with tomorrow. So what more do you want?

rely on

 the vital contact

PYE TELECOMMUNICATIONS LTD. Cambridge England Telephone: Cambridge (0223) 61222 Telegrams: Pyetelecom Cambridge Telex: 81166

WEYRAD

COILS AND I.F. TRANSFORMERS IN
 LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS

Abstract

P. 9 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $6 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils. P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils. T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

M. R. SUPPLIES, LTD.,

(Established 1935)
Univeraally recognined as ouppliers of UP-TO-DATE
Instant delivery. Bat infaction assured. Pricen nett.
FAN PLOW EXTRACTOR PANS. Undoubledly todare greatert hergein for domentic or industral Hak. For $200 / 250$ volts A.C. 7,500 cu. ft. per hour. Easily listalled, atted wentherproof louvree which open when motor is ewitched on and cksee when oft. Only 61 ins dia. Our netl price only $87 / 5 / 0$. (despateh $5 / \%$).
miniature runnina time meters (rangamo). We have great demands for thin remarkable
 induatrial and domeatic applications to indicate the running time of any electrical apparatue, easy to inotall. $83 /$ - (des. $1 / 6$).
 sccurate preset awitching operatione, Rangamo 8.25 t , providing up to 3 on-on operationg per 24 hours at any chosen times, with day-omitiligg device (use optional). Capaclity 20-amps. Comas pectly housed 4 in . dia., 31 in . deep, $£ 6 / 4 / 6$ (dea, $4 / 0)$. Also satme excellent make new domestio

ELECTRIC FANS (Papat), for extracting or blowing. The mont exceptional ofler we have yet made. $200 / 250$ v. A.C. Induction motor -lifent runaing. 2,800 r.p.m. duty 100 C.F.M. Only tinn. square and 2 in . deep. Ideal for domeatic or induatrial use. Finsy mounting, 23/5/- (dea. 3/6). gMALL GEARED Motors. In addition to our well-known range (List GM, 564), we ofler small open type 8.P. Unfts 200,250 . A.C.. project50/6 (des. $3 / \mathrm{m}$).
MIMATURE COOLIHG FAM8, 200/250 V . A.C. With open type Induction molor (no interterence), Overall $4 \ln$. $\times 3 \nmid \ln$. $\times 21 \operatorname{in}$. Fitted 6 -bladed metal impeller. Ideal for projection lamp cooing, 1 g ht duty extractors, etc., atul only $28 / 6$ (des. 4/6).
AIR BLOWERS. Highiy emelent units atted induction totally enclosed motor $230 / 260 \mathrm{v} .50 \mathrm{c}$.
 2 2hin, equare, $88 / 10 /$ (des. $0 / /$). Model SD27, 120 CFM (free sis) to 40 CFM at 1.2 WG, 8×7

SYKCERONOOS ELECTEIC CLOCK MOVEMENTS (An mentioned and recommended in many
 back duat cover, $35 /$ (des. $1 / 6$). Set of three bram haids in good plain style. For $5 / 7 / \mathrm{in}$. dia. 2/6 For $8 / 10$ dia. $3 / 6$ set.
SYKCHPONOUS TIMER MOTORS (Sangamo). $200 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{m}$. Self-btarting 2 in . din. $\times 11 \mathrm{in}$.
 (des. $1 / 6$).
SMALL BENCE GRINDERS. 200/250 Y. A.C./D.C. With two 3 in . dhmeter wheels (coarse and tine surinces). Bench mount, very useful hounebold or industrial units. $87 / 17 / 6$ (des. $6 / \mathrm{F}$). EXTRACTOR FANs. Ring mounted all metal conatruction. T/E induction motor, ilient opera. tioa, 8 in . blade, 10 in , maz. dia. $400 \mathrm{CFM}, £ 5 / 15 /-$ (der, $\mathrm{B}(\cdot)$. Bame model 10in. blade, 12 in . max. dia., 500 CFM. $86 / 6 /-$ (deas. $6 / \cdot$)
DMEDLATE DELIVERE of Stuart Centrifugal Pamps, ficluding stainless ateel (most models).
M. R. SUPPLIES, Ltd., 68 New Oxiord Street, London, W.C. 1 (Telephone: 01-636 2958)

TECHNICAL TRAINING by ICS IN RADO, TEEEVSON AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the 1 C S-trained man. Let J C Strain YOU for a well-paid post in this expanding field. IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to suecess.
Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIAN8' CERT8.
* C. \& G. ELECTRONIC 8ERYICING.
- R.T.E.B. RADIO AND TV 8ERVICING CERTIFICATE.
- RADIO AMATEUR'8 EXAMINATION.
- P.m.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until'Successful.
NEW SELF-BUILD RADIO COURSES
Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver. eransistor portable, signal generator, multi-test meter, and valve vole meterall under expert guidance. Transistor Portable available as separate course.

POST THIS COUPON TODAY and find out how ICS can help YOU in your sareer. Full details of I C S courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL CORRESPONDENC:
 ScHOOLS

A WHOLE WORLD OF KNOWLEDGE

off-the-shelf-delivery for designers

Ring Muriel for off-the-shelf delivery of Fiimet Resistors in development quantities. You'll get them - and fast.

The new standard Filmet range meets all the requirements of DEF 5115-I Style RFG7-0.5 ... and at a price that's below standard for above standard stability.

Resistance range: Power Rating:
Temperature range :
100Ω to $360 \mathrm{~K} \Omega$ E 24 series $\frac{1}{6} w, ~ t w, \frac{1}{2} w$ Multi-Rating. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Ring Muriel to get yourself in the book for fast delivery.

ORADIONIC

RADIO \& ELECTRONIC CONSTRUCTION SYSTEM

Simple versatile

 exciting to use

A No. 4 SET and 6-TRANSISTOR SUPERHET
Clear. simple and rugged this unique system can build almost any electronic circuit. It is used by two thousand academic and industrial teaching establishments throughout the U.K. and by hundreds on the Continent and world-wide. Selected by the Council of Industrial design for all British Design Centres

RADIO SETS NOS. 1 to 4.

Provide a continuous course from simple diode detector through audio amplifiers to 6-transistor Superhet.

ELECTRONICS SET: (4 STUDENTS)

For practical study, demonstration or experiment over a wide range of the basic electronic circuits.

E/106 V.L.F. DSCILLATOR FOR METER OEMONSTRATION OF A.C. PRINCIPALS

RADIO SETS	No. 1	£7	10	0	POST FREE
	No. 2	f9	0	0	
	No. 3	£13	10	0	
	No. 4	£18	10	0	
Electronics	Set	£19	7	0	

FULL DETAILS FROM

RADIONIC PRODUCTS LTD., (ww91)
ST. LAWRENCE HOUSE, 29/31 BROAD ST., BRISTOL BS1 2HF

WW-087 FOR FURTHER DETAILS

Jack Socket accessiries

All these products are moulded in thermoplastic. They may be used with any of the standard range of Rendar Jack Sockets.

Further information available.

RENDAR INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-3 CABLES: RENDAR, BURGESS HILL

is a dead one of these

Morganite killed it

The deceased would have become one of Morganite's Cermet Trimming Potentiometers - one, in fact. of the popular type 80 with a power rating of 0.75 W at $70^{\circ} \mathrm{C}$.
But it never made it. The crunch came when we examined all its tiny component parts at 500 times life size. That's quite a test. Imagine. for instance, the imperfections
you might find in a 40 yard cigarette. So it's not surprising that every once in a while we detect a spanner in the ointment. And the penalty is death. The survivors are the most reliable trimming potentiometers you can find - and finding them couldn't be easier. Samples for evaluation or for development projects are waiting in stock, ready for your "phone call.

We are the only British company which offers ohmic values from 10 ohms to 1 M ohms in the E6 range as well as the MIL-R-22097C series.
Put our Cermet trimming potentiometers through your test routine and watch how they stand up to it. Any that couldn't are long since dead

THE WELBROOK ALL-SILICON INTEGRATED STEREO AMPLIFIER

PRICE $£ 48$

COMPLETELY ENCLOSED PANEL MOUNTING. TEAK CABINET £4 EXTRA.
ALSO AVAILABLE
AMPLIFIER P.C.B. MODULES AS USED IN THE ABOVE AMPLIFIER. BUILT AND TESTED.
MONO AMP 103 £8-0-0.
STEREO AMP 103 f15-0-0.

INTRODUCING A NEW ALL SILICON TRANSISTORISED HI-FI AMPLIFIER INCORPORATING TWO INDEPENDENT POWER SUPPLIES TO GIVE VERY LOW CROSSTALK AND A UNIQUE DESIGNED CIRCUIT WHICH ELIMINATES DISTORTION RISE AT LOW LEVELS. POWER-OUTPUT IS 15 WATTS R.M.S. INTO A 8Ω LOAD AND 10 WATTS R.M.S. INTO A 15Ω LOAD. INPUT FACILITIES TO COVER ALL TYPES OF PICKUP, TUNER AND TAPE.
SPECIFICATION AND PERFORMANCE FAR IN EXCESS OF PRICE RANGE. detailed illustrated literature AVAILABLE ON REQUEST.
TRADE ENQUIRIES INVITED.

WELBROOK Encineanne ELECTRONICS

BROOKS STREET, HIGHER HILLGATE, STOCKPORT, CHESHIRE. 061-480 4268.

FERRANTI HI-FI AUDIO DESIGN BOOKLET AVAILABLE 5/- EACH. COMPLETE WITH WELBROOK PRICE-LIST.

WW- 090 FOR FURTHER DETAILS

-

SPECIALIST SWITCHES

 are again giving the fastest switch service in the worldFROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types $\mathrm{H}, \mathrm{DH}, \mathrm{HC}$, and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.
Please note our address:
SPECIALIST SWITCHES P.O. Box 3,

CHARD, SOMERSET
Write for design charts and prices or TELEPHONE-CHARD 3439

Take nine modules and Solartron's CD 1400 main frames. Build any scope you need. It's that simple. And that versatile. The first oscilloscope with planned anti-obsolescence.

The modules at present available give you a choice of 3 amplifiers. Three time bases. And an X-Y plotter.

You can have wide band width
differential input. Ultra-high gain, sweep delay or single shot.

And there are more transistorised modules in the pipeline. Modules that will keep your CD 1400 scope up to dateright into the 70's.

If you need any more information, drop us a line. We'll send you literature. Answer your questions.

There's no limit to what we'll do for a customer.

The Solartron Electronic Group Ltd. Farriborough Hampshire England Telephone 44433

REGORD MAIWTENANGE TAKES ANOTHER BIG STEP FORWARD! With these latest advanced products

HOWELLS RADIO LTD. MINISTRY OF AVIATION INSPECTION APPROVED

TRANSFORMERS

STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION
0-50KVA, "C" CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS, ETC.
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).
Driver 22/6 Carr. 2/-

Mains 29/6 Carr. 4/6
L.P. Filter, Chassis Mounting 11/6. Carr. 1/-.
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-.

*MAINS TRANSFORMERS

$350-0-350$ v. $60 \mathrm{~mA} ., 6.3$ v. 2 A. £1/15/-. Carr. $4 / 6$.
500 v. 300 mA .6 .3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. 5/6.
$500-0-500$ v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A. \$4/10/6. Carr. 6/6.
525-0-525 v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. £5/5/-. Carr. 6/6.

*LOW VOLTAGE

$30-0-30$ v. 4 A. £2/12/6. Carr. 5/6.
28 v. 1 A., 28 v. 1 A., 28 v. 1 A., 28 v. 1 A., 30 v. 250 m A., £4/5/6. Carr. 5/6.
*PRIMARIES 10-0-200-220-240 v
70V LINE MATCHING TRANSFORMERS
Fitted with terminal panel, taps at $0.5,2,4$ and 8 W into 15 ohms 17/-. Carr. 2/-
Flying leads, taps at $\frac{1}{4}, \frac{1}{2}, 1,2$ and 4 W into 3 ohms $14 / 6 \mathrm{~d}$. Carr. 2/-
CHASSIS, CABINETS \& PRECISION METALWORK
ELECTRONICS - DEVELOPMENT \& ASSEMBLY
CASH WITH ORDERS PLEASE
Cariton Street, Manchester 14, Lancashire
TEL. (STD 061) 226-3411
WW-095 FOR FURTHER DETAILS

6 mm tubular midget
flange $\$ 6 / 8$ cap
over-all length 14.5 mm .

It is one of the many Vitality Instrument. and Indiçator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.
*Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST.EDMUNDS. SUFFOLK. TEL. BURY 2071.S.T.D. 02842071

QUARNDON

HOLD

LARGE STOCKS

OF

SILECT TRANSISTORS

NPN PNP TRANSISTORS, UNIJUNCTIONS \& F.E.T.'s SN 7400N SERIES TTL

INCLUDING THE NEW SN74121N MONOSTABLE

FOR

QUICKEST DELIVERY

 CONTACT
QUARNDON ELECTRONICS

 (SEMICONDUCTORS) LTD.SLACK LANE, DERBY. Telephone (0332) 43492-46695 SEND FOR TECHNICAL DATA AND PRICES

Be amongst the many who are experiencing

 the Decce C4E

TACHOMETERS

\star High linear output
\star Low driving torque
ネ Bidirectional output to $\frac{1}{4}$ of 1% tolerance
\star Brush life $100,000 \mathrm{hrs}$. or 10 years continuous operation
\star Temperature compensated
\star Ideal as speed transducers
Send for fult details of these and other electronies products including speed control, speed indicators, etč., to:

NECO ELECTRONICS (EUROPE) LTD

WALTON RD., EASTERN RD., LONDON OFFICE: NORTH ST. COSHAM, HANTS.
COSHAM 71711/5
CLAPHAM, LONDON, S.W. 4
TEL: $01-6220141 / 3$ \& $3211 / 5$
WW-099 FOR FURTHER DETAILS

WW- 100 FOR FURTHER DETANS
DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Charing Cross Road, London, W.C. 2 Tel: 01-930-3070

WW-101 FOR FURTHER DETAILS

LONDON microphones

Quality sound-at low cost
The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little
cost. Made in Britain cost. Made in Britain.

NEW to the range: LM300 dynamic cardioid microphone Incorporating top-quality movingcoil capsule. Gives maximum front-to-back ratio
over a frequency range of $50-15,000 \mathrm{~Hz}$. Elegant over a frequency range of $50-15,000 \mathrm{~Hz}$. Elegant
styling, robust metal case, natural anodised finish.

	Low imp.		Dual imp.	
LM 300 (Cardioid)	£1110	0	\&12 10	
LM 200 S	¢5 19	6	£6 15	0
LM 200	£419	6	£5 15	0
LM 100 (Omni)	¢ 3	0		

Home or overseas trade enquiries welcome. Write or ring for details LONDON MICROPHONE CO. LTD.
182/4 Campden Hill Road, London, W.8.
Tel: 01-727 0711. 24 Hr. Answering Service. Telex 23894

Marconi puts Q-Measurement onthe Gold Standard

The new Marconi TF 1245A gives gilt-edged confidence in Q-measurement! By gold-plating the complete test-circuit and tuning capacitor, Marconi have cut inherent loss, increased long-term stability - factors which have always reduced the certainty of Q-measurement, especially at high frequencies.
TF 1245 A covers the frequency-range, 1 kHz 300 MHz , providing direct measurement of Q-factors from 5 to 1,000 . Capacitance range is 7.5 to 500 pF . Delta-Q and Q multiplier facilities. Two specially designed oscillator units, TF 1246 and TF 1247 , cover the ranges, $40 \mathrm{kHz}-50 \mathrm{MHz}$ and $20 \mathrm{MHz}-300 \mathrm{MHz}$, respectively. You may select either or both, according to your individual needs.

MARCONI INSTRUMENTS LTD
Longacres, St. Albans, Herts., England
Telephone: St. Albans 59292 Telex: 23350

Plug-in potential

The 43 Series of
wide bandwidth (DC 25 MHz) and high sensitivity
oscilloscopes offer both
($100 \mu \mathrm{~V} / \mathrm{cm}$) for general oscmoscope applications.
With a choice of 7 plug-ins (5 amplifiers and 2 time bases)
it is possible to assemble an oscilloscope capable of meeting almost any measurement requirement. Combining such versatility with excellent tube geometry and high
writing speeds makes the D. 43 illustrated
outstanding value for money.
Write for full details Now ! ! !

TELEQUIPMENT < © >

Wireless World

Electronics, Television, Radio, Audio

WirelessWorld

The front cover design introduces a short series of articles on operational amplifiers, beginning in this issue. Combined with the familiar triangular graphical symbol for an operational amplifier is a magnified photograph of the semiconductor chip of an integrated-circuit type of op.amp.-actually the ZLD 709 made by Ferranti. This d.c. linear amplifier has differential inputs and a Class B output stage.

Iliffe Technical Publications L.d., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1

February 1969
Volume 75 Number 1400

Contents

53 R \& D and £ s. d.

54 Operational Amplifiers-1 by G. B. Clayton
59 The Notions of "State" by f. Franklin
62 Some other Measuring Rectifiers by "Cathode Ray"
64 News of the Month
Giant electronics merger
Watt output convention?
Domestic monochrome-to-colour converter
67 High-impedance Multimeter by V. R. Krause
71 Faster Mask-making for i.cs
72 Electronics and Apollo-8
74 Letters to the Editor
76 Electronic Speech Recognition-2 by W. D. Gilmour
80 Announcements
81 Circuit Ideas
82 Wireless World Colour Television Receiver-9
85 Point-to-Point Review, 1968 by D. Wilkinson
86 Personalities
87 World of Amateur Radio
88 New Products
90 A Folded Exponential Horn Loudspeaker
91 February Meetings
92 Literature Received
92 H. F. Predictions
93 Test Your Knowledge questions and answers by L. Ibbotson
94 Letter from America
COMPONENT BRIDGE SURVEY
i D.C. and A.C. Bridges by T. D. Towers
vii Recent Products

[^2]

Why we decided to make eyery part in this PAL delay line

The PAL delay line is a precision item. But it also has to be inexpensive, and therefore mass-produced. The problems involved in getting the delay time of $63.94 \mu \mathrm{~s}$-an adjustment to a few thousandths of a microsecond-for just one, are quite formidable. To achieve it on an assembly line is practically impossible, unless you have everything under your own control.
When the PAL system was being developed, we found ourselves in an excellent position to develop the special glass delay line needed for the chrominance decoder. Delay lines weren't new to us. For the previous five years we'd been producing them for the computer industry. We therefore had considerable experience. Experience which few others in the television industry had and which enabled us to develop our delay line in parallel with the development of colour television itself.

Critical factors. The set designer's demands pose problems in design and in production (remember we're concerned with price too!). Our considerable experience gained in the computing industry made the design problems
relatively easy to overcome. But marrying them to mass-production was something quite new. Again we were fortunate in having vast experience in mass producing complex items for other areas of the electronics industry.
Any old glass? The Mullard delay line is made of glass and works on an electromechanical principle.

The glass is specially compounded to ensure consistent behaviour propagation velocities and good stability with changes in temperature. The blocks are cast to ensure complete uniformity and an absence of any internal stressing. One end is ground with two optically flat faces which are at a slight angle to each other and to which two transducers are connected. The electrical television colour signal enters one transducer and is converted into vibrations. These vibrations travel through the glass until they are reflected back from the end face to the second transducer. This converts them back into an electrical signal. In this way we halve the size of the delay line and help save space within the set.

Ground away. The end of the glass block opposite the transducers is then ground away under automatic control until the response is exactly right. We have found that this constructionapart from saving space-greatly simplifies the problem of delay time. adjustment to 63.943μ s at 4.433619 MHz .

Insertion loss. While the glass has some effect on the insertion loss, the major loss is in the transducer and the coupling to the glass. The transducers themselves have been developed from
ceramics selected for their long term stability as well as good mechanical properties. We have further reduced insertion loss by developing a new metal deposition technique and adhesives which create an intimate bond. As a result the overall insertion loss is only about 13 dB over the bandwidth 3.43 to $5 \cdot 23 \mathrm{MHz}$.

The final step is the assembly of the delay line on its mounting plate with the associated input and output coils before final testing and inspection.

Worth it? Right from the beginning we've had everything under our control. So we can be sure that the product will give consistent service. And that we're producing it at the best possible price.

Consistently achieving these two aims with all our products has helped us build our reputation. A reputation which stretches across the electronics industry. Before we embark on any new project we can draw on the insight and experience we have gained-sometimes from unusual areas. We can employ our resources to provide the technically excellent products our customers demand.

Mullard components for consumer electronics

[^3]
Wireless World

$R \& D$ and $£ \mathrm{~s} \mathbf{d}$

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Editorial Assistant

J. GREENBANK, B.A.

Drawing Office:

H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROW'ELL (Manager)
J. R. EYTON-JONES
R. LAMBERT (Classified Advertisement Manager) Telephone: 01-928 3333 Ext. 538

Closer collaboration between the three "components" trade associations (R.E.C.M.F., V.A.S.C.A. and B.V.A.) is foreseen by the announcement elsewhere in this issue that they are now together under one roof (even if not the same ceiling!). With the Electronics Components Board overlord, Sir Alan Dudley, in the role of matchmaker it augers well for an eventual marriage. With the increasing use of integrated circuits and therefore a gradual decline in the number of discreet components used in equipment it would seem a logical step. Otherwise we can foresee a situation arising calling for a judicial pronouncement on "what is a component?"

It is not without significance that Dr. F. E. Jones is the current chairman of three of the four bodies mentioned, i.e. E.C.B., R.E.C.M.F. and V.A.S.C.A. He certainly has some strong views on many of the problems which beset our industry (and indeed the whole country) and, since the publication of the report on the manpower committee, of which he was chairman, his knowledge and advice is much sought after.

He recently had some trenchant things to say about the reasons for the "technological gap" which exists between this country (and indeed the whole of Europe) and the U.S.A. This gap is not, in fact, due to our inability to create new and worthwhile technical advances in the various fields of technology, but because of our apparent inability to make full use of them industrially. This, says F.E.J., is why the average output of, or wealth created by, each employee in this country in 1967 was only $£ 1,300$ whereas in the United States it was four times this figure.

An instance of our tardiness to make capital out of new ideas is mentioned by one of our contributors in this issue (p. 85) who comments on the fact that although Piccolo-the refined teleprinter transmitting system-was developed by the Diplomatic Wireless Service ten years ago it is only just being exploited commercially.

To get back to the title we have given to this month's leader. One of the major factors affecting our industry today, and not ours only, is the vast expenditure on R \& D which in many instances appears to bear little relationship to the eventual profitability of the end product. It is interesting to note that the cost of R \& D in both the U.K. and the U.S.A. over the past ten years or so has increased threefold, but, the overall figure in America is in fact some six times the U.K. total of $£ 1,000 \mathrm{M}$. However, the wealth created per employee in America makes the return on this expenditure considerably higher than in this country. What then is the answer? Dr. Jones has stressed that the only way of obtaining effective correlation between the cost of $R \& D$ and the creation of wealth, is to ensure that research is "conducted under pressure from the market". This problem has already been explored by the Central Advisory Council for Science and Technology of which Dr. Jones is a member. In the Council's report "Technological Innovation in Britain" it recommends "the direct linkage of $R \& D$, production and marketing into a single interacting operation, and, planned programmes of innovation related to market opportunities".

No longer is it practicable, as in the past, to have one or two backroom boys "on the strength" in the hope that one day they will come up with a bright idea. R \& D must be geared to production. Over the past few years the curve for R \& D has risen sharply in this country but that for the gross national product is fairly flat.

Device characteristics and what they mean: Methods of testing commercial units

by G. B. Clayton,* B.Sc., A.Inst.P.

An operational amplifier is basically a very high gain d.c. coupled amplifier which makes use of feedback to control its response characteristics. The term 'operational amplifier' was in fact originally introduced by workers in the analogue computer field to denote an amplifier circuit which performed various mathematical operations such as integration, differentiation, summation and subtraction. Operational amplifiers are still widely used for analogue computation but their range of applications has now been vastly extended to include a great number of other fields, for example in the many branches of instrumentation and control. Non-linear applications of operational amplifiers are also now quite common; voltage comparators, non-linear function generators, and ultra linear rectifiers are but a few examples of their use in this last category.
Early operational amplifiers used thermionic valve circuitry, but these have now largely been replaced by solid state circuits. A wide range of solid state amplifier modules is commercially available, including f.e.t., chopper stabilized, and parametric amplifiers in discrete-component, thinfilm hybrid integrated circuit, thick-film hybrid integrated circuit and monolithic integrated circuit forms.
Discrete-component amplifiers are assembled on printed circuit boards and are often supplied in epoxy encapsulated modules which may be either soldered directly to a printed circuit board or plugged into a suitable mating socket. They can be economically produced in small quantities. In general thin-film hybrid integrated circuits are used for highly complex, close tolerance analogue applications requiring extreme resistor stability. Thick-film hybrid integrated circuits are widely used for high production requirements where a large number of circuit types is needed but where the quantity of circuits produced per type may be small.

Semiconductor integrated circuits find most applications where highly repetitive requirements exist and where relatively few circuit types are involved.

The manufacture of electronic systems in integrated form dates from about 1959 and attention was initially focused on digital

[^4]systems; it is only comparatively recently that a variety of linear integrated circuits have become available at moderate prices. An important characteristic of the i.c. manufacturing process is that the tooling cost for each individual circuit is high and circuits can only be produced economically if large numbers of the same circuit are made. The electronic designer accustomed to selecting individual components that exactly meet his requirements must now adopt rather a different approach if he is to make use of i.cs. He must accept the available massproduced circuits and modify them as necessary to fulfil his requirements by connecting external discrete components to them.

One may well ask the advantages of making this change over to i.cs and the reasons that may be put forward are those of reliability, cost, performance, size and weight-all quite formidable reasons. The improved reliability results from factors such as fewer connections of dissimilar materials, therefore less connection failure, and less handling of individual component parts and therefore more uniformity of product. The cost advantage is not always immediately apparent. The actual cost of an i.c. may be more than the cost of the discrete components that would be required to make a similar circuit; however, if one takes into account the reduction in design and construction time the i.c. usually turns out to be the more economical. The superior performance characteristics of i.cs result from the close matching of components and the very short interconnections between components that are possible in these circuits. Size and weight reductions that are obtained are obvious although not always necessary.

The actual silicon chip on which an integrated-circuit operational amplifier is formed (see front cover) is very little bigger than a single transistor chip, one millimetre square being fairly typical. There are several different methods of packaging the chip. Mounting in a transistor-type metal can is one method (Fig. I(a)), a nother is the ten-lead flat pack (Fig. $\mathbf{I}(\mathrm{b})$), and more recently the dual-in-line plastics package has been introduced (Fig. I(c)). Many manufacturers produce economy versions of their amplifiers in the last style of package. The dual-in-line plastics pack has fourteen pin-like connections arranged to mate up
conveniently with a printed circuit board although once these pins are soldered into position it is somewhat difficult to remove the amplifier. To overcome this difficulty it is often convenient to use one of the dual-in-line sockets that are available, and these eliminate the need for soldering the i.c. leads. The sockets themselves may be printed-circuit or chassis mounted; they are made with solder or wire wrap terminations.

It is not essential that the user of i.c. op. amps be familiar with the intricacies of the internal circuit details of the amplifier (he can't get at them!), but he must understand the function of the external connections provided by the manufacturer and he must understand the terms used to specify the amplifier's performance if he is to be able to select the best device for a particular application. The desired response of an op. amp. is normally obtained by connecting feedback components externally to the input terminals of the amplifier. An amplifier with a differential input allows a greater flexibility in the choice of feedback configuration and most i.c. op. amps are made with differential input and single-ended output. In fact most direct coupled amplifiers invariably use the differential configuration because of the superior drift performance that can be obtained by the matching of characteristics. Op. amps are generally designed to operate from symmetrical positive and negative power supplies to permit an output voltage which may be positive or negative with respect to earth and a frequency response extending down to zero. The functions mentioned require five external connections to the amplifier. Most amplifiers are provided with several other external connections, the purpose of which will be discussed later. It is possible to operate the amplifiers with a single power supply if the particular application does not require a d.c. response ${ }^{1}$.

I.C. op. amp. characteristics

The graphical symbol commonly used for an op a amp. is a triangle indicating the direction of signal flow (Fig. 2(a)). Ignoring certain important errors which will be discussed later the output of the amplifier is related to its inputs by the transfer curve shown in

[^5]Fig. 2(b), and with open loop gains greater than 10^{3} being quite typical only a very small voltage between the two input terminals is needed to cause saturation of the amplifier output.

The open loop voltage gain, $A_{V o L}$, is defined as the ratio of the change in output voltage Δe_{o} to the change in voltage Δe_{ϵ} between the two input terminals; it is nor.nally specified for d.c. and may be determined from the slope of the nonsaturated portion of the transfer curve.
Op. amps are in fact seldom used open loop, but are used with negative feedback to improve accuracy. The significance of the open loop gain is that it determines the accuracy limits in such applications. The two basic feedback configurations are the inverting (Fig. 3) and non inverting (Fig. 4) circuits.

The closed-loop voltage gain, $A_{V C L}$, of the inverting amplifier is defined as the ratio of the change in output voltage to the change in the input voltage applied to the input resistor R_{1}. If the amplifier is considered to be ideal, i.e. infinite input impedance, zero output impedance, infinite open-loop gain and bandwidth; feedback maintains the error voltage e_{ϵ} between the two input terminals zero at all times and a simple analysis shows that the closed-loop gain $A_{V C L}=-\frac{R_{2}}{R_{1}}$

If the amplifier is ideal except for finite open-loop gain, the closed-loop gain,
$A_{V C L}=-\frac{R_{2}}{R_{1}}\left\{\frac{1}{1+\frac{1}{\beta A_{\text {VOL }}}}\right\}$
(see Appendix 1)
where

$$
\beta=\frac{R_{1}}{R_{1}+R_{2}}
$$

The quantity $\beta A_{V O L}$ is called the loop gain, and it is a most important factor in determining closed-loop performance. The error in closed-loop gain due to finite open-loop gain may be expressed by the error factor

$$
\frac{1}{1+\frac{1}{\beta A_{V O L}}}
$$

which is approximately

$$
1-\frac{1}{\beta A V O L}
$$

for β Avol much greater than 1. The percentage error due to finite open-loop gain thus $\frac{100}{\beta A_{\text {VOL }}} \%$, which is a direct function of loop gain. The error in closed-loop gain is not in itself very significant since the ratio R_{2} / R_{1} can always be adjusted to compensate for this error, but the closed-loop gain stability, the closed-loop output impedance and closed-loop distortion are all directly related to loop gain.

Closed-loop gain stability:

$$
\frac{\Delta A_{V C L}}{A_{C L L}}=\frac{\Delta A_{V O L}}{A_{V O L}} \cdot \frac{1}{\beta A_{V O L}}
$$

Closed-loop output impedance :

$$
Z_{O C L}=\frac{Z_{0 O L}}{\beta A_{V O L}}
$$

Closed-loop distortion;

$$
D_{C L}=\frac{D_{O L}}{\beta A_{V O L}}
$$

The closed-loop gain of the non-inverting amplifier assuming ideal amplifier performance, is

$$
A_{\text {VCL }}=1+\frac{R_{2}}{R_{1}}
$$

If the amplifier is ideal except for finite open-loop gain

AVC $_{L_{0}}=\left\{1+\frac{R_{2}}{R_{1}}\right\}\left\{\frac{1}{1+\frac{1}{\beta A_{V O L}}}\right\}$.
(see Appendix 2)
where again

$$
\beta=\frac{R_{1}}{R_{1}+R_{2}}
$$

and as in the case of the inverting amplifier the loop gain β Avol plays an important part in determining closed-loop characteristics.
In the case of both amplifier configurations if the closed-loop gain is greater than

Fig. I. Types of encapsulation for integrated-circuit operational amplifiers:
(a) "transistor outline", (b) "fat-pack", (c) "dual-in-line".

$$
\beta A V O L \approx \frac{A_{V O L}}{A_{V C L}}
$$

If as is usual gains are measured in dB we have the relationship: loop gain $(\mathrm{dB})=$ open-loop gain (dB)-closed-loop gain (dB).

The maximum output voltage swing, Vomax. This is the maximum output voltage swing (positive and negative) measured with respect to earth that can be achieved without clipping of the signal waveform.

An ideal differential amplifier with equal voltages applied to its input terminals would give zero output voltage, but under these circumstances real amplifiers are found to give a non-zero output voltage called an 'offset voltage'. In many amplifiers provision is made for zeroing the amplifier output voltage with an external trim potentiometer.

Input offset voltage, $V_{i o}$. This is the difference in the d.c. voltages which must be applied to the input terminals to obtain a zero quiescent output. It is indicative of the degree of matching in the differential amplifier stages of thȩ integrated circuit, and in general represents the main source of offset error when the amplifier is used with low source impedances. Integrated-circuit op. amps with the smallest input offset voltages in general exhibit the smallest output drift with temperature variations.

All i.c. op. amps require some small and relatively constant current at each input.
(a)

$$
1-e_{0} \text { positive }
$$

Fig. 2. (a) Graphical symbol for an operational amplifier; (b) ideal transfer curve for an op. amp.

Fig. 3. Inverting amplifier feedback
configuration.

Fig. 4. Non-inverting amplifier feedback configuration.
one, i.e. if $R_{2} / R_{1}>1$ then β is approximately equal to R_{1} / R_{2} and the loop gain

Input bias current, I_{b}, is defined as the average value (half the sum) of the currents at the two input terminals with the quiescent output voltage zero. It constitutes the bias currents drawn by the transistors in the differential input stage of the i.c. and if these were perfectly matched the two currents would be equal. It is normal practice to use balanced impedances at each input so that offset due to bias current is cancelled at the output. In practice some degree of mismatch always exists.

Input offset current, $I_{i 0}$, is defined as the difference in the input bias currents into the two input terminals. With equal source impedances connected to the two inputs it is only this mismatch or difference current which causes an offset error. The effects of $I_{i n}$ tend to overshadow the effects of input offset voltage when the input source impedances are high.

Temperature drift. The output voltage of all d.c. coupled solid-state amplifiers changes or 'drifts' from its initial value if the temperature changes. The temperature drift of i.c. op. amps is specified by the temperature coefficients of input offset voltage, input bias current and input offset current.

Supply voltage sensitivity. The output voltage of an i.c. op. amp changes if the supply voltages are changed. The effect is usually specified by the effect of supply voltages on input offset voltage, input bias current, and input offset current. With well regulated power supplies offset errors due to this effect are usually negligible compared to temperature drift.

It is very instructive for the new user of i.c. op. amps to gain an initial familiarity with the devices by wherever possible setting up test circuits to measure their characteristics. A simple test circuit for measuring the transfer curve of an op. amp. is shown in Fig. 5.

An oscilloscope with d.c. coupled X and Y channels is used to obtain a visual display of the transfer curve. The same signal is used to drive both the input of the amplifier and the horizontal sweep. Op. amps will normally be found to have gains in excess of 1000 and a resistive divider is placed at the input of the amplifier in order that the amplitudes of the X and Y inputs presented to the oscilloscope shall be of the same order. A low frequency sinusoid ($f<20 \mathrm{~Hz}$) may be used as the drive signal. If a low frequency signal generator is not available or if the amplifier under test shows appreciable hysteresis effects it may be found convenient to use a low frequency ramp as the drive signal. A circuit that has been found quite suitable for producing a ramp drive is shown in Fig. 6. If this ramp drive is used it will be found that the retrace sweep rate is so much faster than the trace rate that the retrace is effectively blanked off from visual presentation.

In order to obtain the display the oscilloscope inputs are initially earthed and the spot centred in order to establish the vertical and horizontal references. The oscilloscope is then connected into circuit and the

Fig. 5. Test circuit for obtaining a transfer curve; significant parameters of the transfer curve.

Fig. 6. Circuit for generating a ramp function for test purposes.
amplitude of the input drive is turned up until the amplifier is in saturation. The maximum positive and negative output voltage swing $\left(V_{o \text { max }}^{--}\right)$is read directly from the trace; Arol is calculated from the slope of the transfer curve. The horizontal displacement from the horizontal zero reference to the point where the curve crosses the vertical zero reference gives the input offset voltage $V_{i o}$. Any departure from linearity shown by the device is also readily apparent from the display. If supply voltages are changed the dependence of these parameters on supply voltages can be measured. The oscillograms (Fig. 7) were obtained using the test circuit and show the transfer curve of R.C.A. type CA3029 amplifier for different values of supply voltage.

A circuit suitable for the measurement of input bias current I_{b}, and input offset current $I_{\text {in }}$ is shown in Fig. 8. The effects of input offset voltage are swamped by the use of the large input source resistors ($100 \mathrm{k} \Omega$). The measurement procedure consists of adjusting the voltage V_{b} to bring the output voltage of the amplifier to zero and then measuring the voltages $V_{i n_{1}}$ and V_{b} with a high input resistance d.c. voltmeter. The bias current is calculated from $I_{b}=\frac{V_{i n_{1}}}{\operatorname{Lok} \Omega}$ amperes; the input offset current is calculated from $I_{i o}=\frac{V_{b}}{100 \mathrm{k} \Omega}$ amperes.

Maximum voltage between inputs. The voltage between the input terminals of an op. amp. is maintained at a very small value under most operating conditions by the feedback circuit in which the amplifier is used. If the application is such that the voltage between the input terminals might be appreciable care must be taken to ensure that it does not exceed the maximum allowable value for the particular amplifier, otherwise permanent damage may be caused. The connection of parallel back-to-back diodes across the input terminals is one way of protecting the circuit.

Maximum common mode voltage. The voltage at both inputs of a differential amplifier can be raised above earth potential. The input common mode voltage ($e_{c m}$) is defined as the voltage above earth at each input when both inputs are at the same voltage. The maximum common mode voltage $E_{c m}$ is the maximum value of this voltage which can be applied without producing clipping or excessive non-linearity at the output.

If an amplifier is to be used under conditions in which excessive common mode voltage might cause permanent damage, protection can be provided by the use of a suitable pair of zener diodes. The circuit of Fig. 9 illustrates protection both against excessive voltage between inputs and excessive common mode voltage.

Common mode rejection. An ideal differential amplifier responds only to the difference in the voltages applied to its input terminals and produces no output for a common mode voltage. In practical amplifiers, because of slightly different gains between the inverting and non-inverting inputs, common mode input voltages are not entirely subtracted at the output. The gain of an amplifier for common mode voltages is known as the common mode response and the ratio of the gain with the signal applied differentially to the common mode response is called the common mode rejection ratio (c.m.r.r.). It is often expressed in dB by taking 20 times \log (base 10) of the ratio. An alternative way of defining c.m.r.r. is as the ratio of input common mode voltage $e_{c m}$ to the output common mode error voltage referred to the input $e_{\text {cem }}$ (divided by the differential gain). A dittle consideration will show that the two definitions are of course identical.

Common mode rejection presents no problems in the case of amplifiers used in the inverting configuration (Fig. 3), for with one input earthed the input common mode voltage $e_{c m}$ must be zero. In the case of the non-inverting circuit (Fig. 4) feedback causes the voltage at the inverting input to follow that at the non-inverting input. The input common mode voltage thus varies directly with the input signal. This introduces a basic error which affects the overall circuit accuracy. For example, consider an amplifier with c.m.r.r. of 1000, used in the non-inverting configuration. With an input signal of say I V , the input common mode voltage $e_{c m}$ would also be

Fig. 7. Illustrating supply voltage sensitivity: transfer curves of CA3029 i.c. amplifier with different supply volrages. Left: positive supply $+4 V$, negative supply $-4 V$. Middle: $+4 V,-5 V$. Right: $+3 V,-4 V$. (Vertical scales: $I V / d i v i s i o n$. Horizontal scales: ImV/division).

I V and the common mode error voltage (referred to the input) would be $e_{\text {ecm }}=$ $e_{c m} / \mathrm{c} . \mathrm{m} . \mathrm{r} . \mathrm{r}$. equals ImV and representing a 0.1% measuring error. If common mode error voltage efem varies linearly with common mode voltage this error is not very important, since it can be compensated for by adjustment of closed-loop gain (adjustment of R_{2} / R_{1}). Linearity of common mode error voltage with common mode voltage is thus in many applications more important than the value of c.m.r.r., and a graph of the type shown in Fig. Io is particularly useful in specifying the common mode behaviour of an amplifier.

A suitable test circuit for practically obtaining such a graph is shown in Fig. I I. An oscilloscope with d.c. coupled X and Y channels is used for the visual display; the

Fig. 8. Test circuit for determining input bias current and input offset current.

Fig. 9. Method for protection against excessive common mode voltage and excessive input voltage

Fig. 1o. Graph of input common mode input voltage vs. input common mode voltage.
oscilloscope may be single-ended provided, as shown in the diagram, the power supply is floated. A low frequency signal generator is used to provide both the input common mode voltage and the oscilloscope horizontal sweep. The amplifier output, which is equal to the closed loop gain multiplied by the equivalent input common mode error voltage

$$
\left[1+\frac{R_{2}}{R_{1}}\right] \cdot e_{\varepsilon c m}
$$

provides the oscilloscope vertical sweep. A variable d.c. bias is included in addition to the signal generator to provide the common mode input voltage $e_{c m}$ for amplifiers in which the positive and negative values of maximum common mode voltage differ appreciably. To allow a measurement of this parameter to be made directly from the trace the horizontal zero reference is established by earthing the oscilloscope horizontal input and aligning the trace with the central vertical graticule line. The vertical position of the trace is not of significance in the measurements. The oscillogram shows a result obtained with the test circuit; the polarity of the horizontal scale has the opposite sense to that of the graph in Fig. 10. For the particular amplifier tested, positive and negative values of maximum common mode voltage are seen to be +1 V and -2.5 V respectively. The trace is fairly linear between these limits; its average slope is used to give the c.m.r.r. from the relationship

$$
\text { c.m.r.r. }=\frac{X}{Y} \cdot\left(1+\frac{R_{2}}{R_{1}}\right)
$$

The effects of power supply voltage on c.m.r.r. and maximum common mode voltage can easily be measured by changing the power supply voltages and observing any changes in the trace.

Open loop bandwidth and frequency response. The importance of open-loop gain $A_{V O L}$, and loop gain $\beta A_{V O L}$ in determining the closed-loop performance of an op. amp. has already been discussed, but the assumption was made that the amplifier had an infinite bandwidth. Practical amplifiers have, of course, a finite bandwidth, and the effect of this on closed-loop performance must be taken into account. The open loop bandwidth is defined as the frequency at which the open-loop gain

Fig. 11. (a) Test circuit for determining common mode rejection ratio. (b) Oscillogram showing result obtained with test circuit. Vertical scale(0.IV/division) represents rooesem. Horizontal scale (IV/division) represents $\boldsymbol{e}_{\text {cin }}$.

is 3 dB down on its value at low frequencies. Many applications of op. amps require closed-loop gains over bandwidths of only a few hundred hertz, nevertheless the openloop gain characteristics at much higher frequencies are of great importance. Amplifier gain attenuation with frequency is always accompanied by phase shift and because of this phase shift a negative feedback circuit may in fact provide positive feedback at high frequencies resulting in peaking of closed-loop gain or in high frequency oscillations.

A typical operational amplifier open-loop frequency response rogether with a closed loop response for a gain of 40 dB is shown in Fig. 12. A response of this type can be represented mathematically by the equation:

$$
\begin{equation*}
A_{V O L(\omega)}=\frac{A_{V O L}}{1+j \frac{\omega}{\omega_{0}}} \tag{3}
\end{equation*}
$$

This equation describes what is known as a first order high frequency response; ω_{0}
is called the break frequency. The function is conveniently approximated by its asymptotes (see Appendix 3) and this approximation has been made in Fig. 12. An amplifier having an open-loop response of this form with a 6 dB per octave (20 dB per decade) roll off will be stable (will not oscillate) for all values of resistive feedback, for the amplifier phase shift never exceeds 90 and the feedback is negative at all frequencies. An expression showing the effect of the frequency dependence of open-loop gain on closed-loop gain is obtained by inserting equation (3) into the equation for closed loop gain (eq. 1), thus
$A_{\operatorname{VCl}}^{\Delta(\omega)}=-\frac{R_{2}}{R_{1}}\left\{\frac{1}{1+\frac{1}{\beta \operatorname{AvoL}(\omega)}}\right\}$
$\operatorname{AvC}^{\prime} L(\omega)=-\frac{R_{2}}{R_{1}}\left(\frac{1}{1+\begin{array}{c}1+i\left(\omega / \omega_{0}\right) \\ \beta \text { AVOL }\end{array}}\right) \ldots$
The closed loop 3 dB frequency is obtained by equating real and imaginary parts of the denominator, giving

$$
\omega_{o C L}=\left(1+\beta A_{\text {VOL }}\right) \omega_{0} \ldots(
$$

The closed-loop bandwidth is greater than the open-loop bandwidth by the amount β. Avol. wo At frequencies higher than $\omega_{0} \subset L$, closed-loop and open-loop gains become equal. This may be seen from inspection of eq. (4) remembering that $\beta こ R_{1} / R_{2}$. These points are illustrated in Fig. 12 and also the fact that loop gain in dB is the difference between open-loop gain and closed-loop gain. Loop gain decreases with increase in frequency because of the attenuation of open-loop gain, and consequently closed-loop gain stability, linearity and other parameters that depend on loop gain are degraded at higher frequencies.

Not all op. amps are designed with a 6 dB per octave attenuation. Some are designed with a much faster roll-off, and these fast roll-off amplifiers allow an improved closed-loop performance at the higher frequencies, but without compensation they are not stable under all conditions of resistive feedoack. Consider an amplifier having an open-loop response of the form shown in Eig. 13, with a 6 dB per octave roll-off breaking at $\omega_{o_{1}}$, and a second break at $\omega_{o_{2}}$ followed by a 12 dB per octave roll-off. Mathematically this is represented by a combination of two first-order high frequency response functions with break frequencies $\omega_{o_{1}}$ and $\omega_{o_{2}}$; where the slope reaches 12 dB per octave the amplifier phase shift approaches 180°. With resistive feedback this amplifier would give stable closedloop operation for closed-loop gains in excess of 60 dB , and at frequencies above the closed-loop bandwidth open-loop and closed-loop gains would become equal as before. If feedback components were changed in order to obtain a closed-loop gain less than 60 dB instability would occur. The criterion for stable closed-loop operation is simply that the rate of closure between the open-loop and closed-loop response curves should be less than 12 dB per octave.

Fig. 12. Amplifier with 6 dBloctave of open-loop gain.

Fig. 13. Amplifier with attenuation of open-loop gain greater than 6dB/octave.

Appendices

I. Inverting amplifier

With ideal amplifier, i.e., infinite input impedance, infinite open loop gain, infinite bandwith, zero output impedance

$$
e_{ह}=-\frac{e_{o}}{A v O L}=0
$$

and

$$
i_{i}=i_{f}
$$

But $\quad i_{i}=\frac{e_{i}}{R_{1}} \quad$ and $\quad i_{f}=-\frac{e_{o}}{R_{2}}$,
which gives

$$
A_{V O L}=\frac{e_{0}}{e_{i}}=-\frac{R_{2}}{R_{1}}
$$

With ideal amplifier except for finite open loop gain

$$
\begin{aligned}
i_{i} & =\frac{e_{i}-e_{G}}{R_{1}}=\frac{e_{i}+\frac{e_{O}}{A_{V O L}}}{R_{1}} \\
i_{f} & =\frac{e_{\epsilon}-e_{O}}{R_{2}}=-\frac{\frac{e_{O}}{A_{V O L}}-e_{O}}{R_{2}} \\
& =-\frac{e_{O}\left\{\frac{1}{A_{\text {loL }}}+1\right\}}{R_{2}}
\end{aligned}
$$

As before $i_{i}=i_{f}$, and substitution and rearrangement gives,

$$
\begin{equation*}
A_{\text {VOL }}=\frac{e_{0}}{e_{i}}=-\frac{R_{2}}{R_{1}}\left\{\frac{1}{1+\frac{R_{1}+R_{2}}{A_{\text {VOL }} R_{1}}}\right\} \tag{A1}
\end{equation*}
$$

2. Non inverting amplifier

With ideal amplifier, $e_{\varepsilon}=0$ and

$$
e_{\ell}=e_{o} \frac{R_{1}}{R_{1}+R_{2}}
$$

which gives

$$
A_{V O L}=\frac{e_{0}}{e_{i}}=1+\frac{R_{2}}{R_{1}}
$$

With ideal amplifier except for finite open loop gain

$$
e_{i}-e_{e}=e_{o} \frac{R_{1}}{R_{1}+R_{2}}
$$

but

$$
e_{\epsilon}=\frac{e_{0}}{A V O L}
$$

Substitution and rearrangement gives

$$
\begin{gather*}
\text { AVCI }=\frac{e_{o}}{e_{i}} \\
=\left\{1+\frac{R_{2}}{R_{1}}\right\}\left\{\frac{1}{1+\frac{R_{1}+R_{2}}{A \text { vOI }_{1} R_{1}}}\right\} \tag{A2}
\end{gather*}
$$

3. First order systems

Consider the function

$$
A v(\omega)=A_{V}(O) \frac{1}{1+j \frac{\omega}{\omega_{c}}}
$$

At low frequencies the straight line given by $\left|A v^{\prime}(\omega)\right|=A v^{\prime}(0$; is an asymptote and at high frequencies the curve is asymptotic to

$$
\left|A_{V(\omega)}\right|=A_{V(0)} \frac{\omega_{c}}{\omega}
$$

The high frequency asymptote has a slope of 20 dB per decade, i.e. if the frequency is increased ten times $\left|A v_{(\omega)}\right|$ is reduced by 20 dB . (If the frequency is doubled $\left|A_{V(\omega)}\right|$ is reduced by 6 dB , i.e. 6 dB per octave.)
The asymptotes intersect at ω equals ω_{c} and here

$$
\left|A_{V^{\prime}(\omega c)}\right|=\frac{A_{V(0)}}{1+j 1}
$$

which gives

$$
\left|A_{V(\omega c)}\right|=A_{(v o)} \cdot \frac{1}{\sqrt{2}}
$$

$\left|A_{V(\omega)}\right|$ is 3 dB down on $A V(0)$ The angle (phase) as well as the magnitude of $A V(\omega)$ is of importance. It may be sketched as a function of ω by noting the following: I. As $\omega \rightarrow 0$, $A_{V^{\prime}(\omega)} \rightarrow A_{V^{\prime \prime}(O),}$ which is real, therefore the phase shift produced by the amplifier is zero at low frequencies 2. As $\omega \rightarrow \infty, A V^{\prime}(\omega)$ becomes imaginary corresponding to a 90° phase lag.
3. At $\omega=\omega_{c}, A V(\omega c)$ has real and imaginary parts equal, and the phase shift is thus 45°.

The two plots of magnitude and angle of $A V(\omega)$ are referred to as the Bode plot. The magnitude of $A_{V^{r}(\omega)}$ is usually expressed in dB and is plotted against a \log (base 10) scale of frequency.

The Notion of "State"

A unifying concept in the diverse world of electronics

by James Franklin

Some of the older readers of Wireless World tend to be worried by the fact that the contents of a typical 1960s issue do not seem to reflect a well-defined area of technology-say "radio" as it was in the '2os and 'zos. To them, and perhaps some younger people too, it is disturbing to find articles on computers and switching circuits cheek-by-jowl with articles on receivers and audio amplifiers. It is not enough to say "well, all these things are embraced by electronics" and explain that there is now one body of engineering theory which is equally relevant to television sets and industrial process-control systems. Within electronics the techniques, and the languages used by their practitioners, often seem worlds apart, and it may certainly be difficult for a particular reader to understand two adjacent articles in Wireless World.*

One of the fundamental divisions in electronics is, of course, between what we call continuous or analogue techniques and digital techniques, and this has arisen largely because analysis and design is done mainly in the frequency domain for the first and in the time domain for the second. In reality, of course, all events take place in the time domain, and the frequency approach, depending on the convention that all signals are made up of pure sine waves, is a specialized, blinkered view which avoids the direct handling of time relationships because it is convenient to do so. At the basis of the frequency approach, however, are differential equations which express the behaviour of circuits and systems with respect to time. It is these differential equations which enable us to predict what will happen after a specified interval of time in, say, an $L C R$ circuit with the same sort of certainty that we can predict what will happen after a specified interval of time in, say, a shift register of a digital computer (given the initial conditions and input signals in both cases, of course).

In Fig. I this common dimension of time is used to compare the action of an analogue circuit with that of a digital circuit. This diagram may be rather obvious and elementary, but it is intended to bring out the fact that both the behaviour of the analogue circuit and the behaviour of the digital circuit can be considered in terms of
their having a state which changes from instant to instant (indicated on the two graphs by the dots at $t_{1} t_{2} \ldots \ldots t_{n}$). As another example imagine the mechanical "system" of a ball being propelled through the air by the foot of a small boy (see Fig. 2). The state of the system can be defined as the position of the ball with respect to a threedimensional frame of reference, and the x, y and z distances giving this position are a set of variables-the state variables-which, of course, change from instant to instant during the flight of the ball.

In an electrical system the principal variables which define its state are, of course, the charges, voltages and currents at various points. Again, the values of these variables change from instant to instant during the operation of the system. In Fig. $\mathrm{I}(\mathrm{a})$ we have selected for examination one state variable which tells us practically everything we want to know about the behaviour of the circuit-the voltage across the capacitor, V_{c}. This variable has a sequence of values, each of which is different from the previous ones. In Fig. $1(b)$ a significant state variable is the voltage V_{B} representing the binary condition at the output of the register. Here again the state variable has a sequence of values at t_{0}, $t_{1} \ldots \ldots t_{n}$ but at each instant it can be only one or the other of two possible values

In more complex dynamical systems the number of state variables necessary to describe behaviour will obviously be greater. For example, in an $L C R$ circuit one must know about the movement of charge through the inductor (e.g. current through
it) and the accumulation of charge in the capacitor (e.g. voltage across it). It is not necessary, however, to know anything about any variable associated with the resistance because R is non-reactive and has no memory and does not itself produce any change with time in the flow of charge through it. What are significant as state variables in systems, then, are variables associated with elements producing operations in the time domain-stores or delays in digital systems, reactive or energy-storing elements in continuous systems.
This view of system behaviour as a state which changes from moment to moment is by no means new. For example, Newton talks about the state of rest or state of uniform motion of a body in the laws of motion he propounded in the 17 th century. A more conscious use of state, in analysing dynamical systems, was made in the 19th century by the French mathematician and philosopher Henri Poincaré who introduced the whole mathematical basis of what are now called state space techniques in his three-volume work "Les Méthodes Nouvelles de la Mécanique Céleste". Also in the 19th century the Russian mathematician Liapunov (well known to students of control theory) used the concept of state in analysing the conditions for stability in a dynamical system. During the past decade there have emerged various methods for applying these ideas to engineering systems. The remainder of this article is intended to provide no more than an introduction to the many learned works that have been written on the subject.

Fig. I. Illustrating the idea that any system-here an analogue one in (a) and a digital one in (b)can be considered as having a state, which changes with successive instants of time, t_{0}, t_{1}, $t_{2} \ldots$. etc.

Fig. 3 is a block diagram of an electrical or mechanical system. As already explained its state can be represented by a set of variables, which here we shall call x_{1}, x_{2}, $x_{3} \ldots \ldots x_{n}$. Similarly, its input will consist of another set of variables which we shall call $u_{1}, u_{2}, u_{3} \ldots \ldots u_{n}$ and its output yet another set of variables $y_{1}, y_{2}, y_{3} \ldots y_{n}$. (In many electronic systems, of course, there is only one input variable, u_{1}, and one output variable, y_{1}.) For convenience these sets of variables are represented by single symbols in heavy type, \mathbf{x}, \mathbf{u} and \mathbf{y}, on the diagram.
Now if Fig. 3 is an analogue system we are interested in its state (and input and output) continuously, and in graphical representations we use a continuous time scale t as in Fig. 4(a). But if Fig. 3 is a digital system, although time is still a continuum we are only interested in what happens at particular instants on the Fig. 4(a) scale, t_{0}, t_{1}, $t_{2} \ldots$. etc. We will call these discrete instants of time t, where k ranges over the integers. In most digital systems the interval between the discrete instants t_{k} is constant, and here we will call it T. Thus the actual time at which an event takes place in the digital system is given by a value $k T$ (with respect to t_{0}). But since T is a constant it is k which is the significant factor and we can then use a discrete-time scale as in Fig. 4(b). Of course, the scale in Fig. 4(b) could also be used for a continuous system if it is assumed that T is infinitesimally small.

We can now use the symbology of Figs. 3 and + to write down generalized equations for the two types of system. In the case of the continuous or analogue system we can say first that the state \mathbf{x} is a function of time, which is expressed formally as $\mathbf{x}(t)$. At any instant the state of a system depends on its initial condition when switched on or otherwise started-an instant we shall define as t_{0}-and on the input during the period between t_{0} and the present instant, t. This can be written in algebraic form as

$$
\begin{equation*}
\mathbf{x}(t)=f\left[\mathbf{x}\left(t_{0}\right): \mathbf{u}\left(t_{0} . t\right)\right] \tag{1}
\end{equation*}
$$

where f is some function.
The output of the system can be considered as one or more of the internal state variables which have been made available externally for observation, measurement or further use in some way. Thus $y(t)$, the present output, depends on $\mathbf{x}(t)$ the present state, and algebraically we can write

$$
\begin{equation*}
\mathbf{y}(t)=g[\mathbf{x}(t)] \tag{2}
\end{equation*}
$$

where g is some function.
Equations (1) and (2) are what are called the "state equations" for a continuous system.

With a digital or discrete-time system we are concerned with the state \mathbf{x} in Fig. 3 at particular instants of time, so using the symbology of Fig. 4(b) the present state is represented by $\mathbf{x}(k)$. Consider, for example, a simple digital system such as a bistable, with an input consisting of a triggering voltage and an output consisting of a voltage taken from one side of the circuit. It has two possible states, expressible in binary symbols as " $\circ 1$ " and

Fig. 2. The state of this mechanical "system" is the position of the ball within the frame of reference-given here by the distances $x_{t n}, y_{t n}$ and $z_{t n}$ which fix it at the instant t_{n} "frozen" in the picture.

Fig. 3. Block schematic of any system. Each of the symbols \mathbf{u}, \mathbf{x} and \mathbf{y} represents a complete set of variables. In many electronic systems there is only one input variable and one output variable.

Fig. 4. Two scales for representing events in the time domain graphically: (a) for a continuous system; (b) for a "discrete-time" system, where we are only interested in what happens at particular instants.

"I o". Which state it occupies at any given instant depends on (a) its state at a previous time and (b) the presence or absence of a triggering voltage at that instant. Thus $\mathbf{x}(k)$ depends on $\mathbf{x}(k-1)$ and $\mathbf{u}(k)$. This can be expressed algebraically as

$$
\begin{equation*}
\mathbf{x}(k)=q[\mathbf{x}(k-1) ; \mathbf{u}(k)] \tag{3}
\end{equation*}
$$

where q is some function. And since the present output $y(k)$ is an observable part of the present state

$$
\begin{equation*}
\mathbf{y}(k)=r[\mathbf{x}(k)] \tag{4}
\end{equation*}
$$

where r is some function.
Equations (3) and (4) are the corresponding state equations for the discrete-time system.
At this point the reader may have become rather lost in the abstractness and generality of this form of system representation, so a look at some concrete examples may be helpful. Let us, for an example, consider the simple $L C R$ system in Fig. 5 in terms of the state concept. Here the input is a single variable, a voltage e_{1}. The output is also a single variable, the voltage e_{2} developed across R. We must now decide how the state of the system is to be represented and what are the state variables. Earlier it was stated that the state variables are those variables associated with the elements which cause changes in the time domain-in particular energy-storage elements in continuous systems. Here, then, the state variables are clearly linked with L and C. In an inductance the energy stored is given by $\frac{1}{2} L i^{2}$, so an obvious variable to choose as a state variable is the current i flowing through the inductance. Similarly with the capacitance, the energy stored is given by $\frac{1}{2} C v^{2}$ and the most obvious state variable is the voltage v across the capacitor. A further, practical, reason for choosing these two particular variables is that when the differential equations for such circuits are being solved the initial conditions necessary
for solution are usually most readily obtainable in terms of inductor current or capacitor voltage. But in practice other variables can be chosen, provided that they are linearly related to the basic state variables, the i and v in this case. For example, another possible pair of state variables in Fig. 5 would be e_{2}, which is obviously derivable from i, and $\mathrm{d} e_{2} / \mathrm{d} t$ which is related to v.

Since we wish to examine the state of the Fig. 5 system in the time domain, we must use differential equations to represent the rates of change of the variables concerned. In fact the general rule for expressing the behaviour of continuous dynamic systems in "state" form, developed from Poincaré's work, is to derive from the system equation a set of first-order differential equations which express the behaviour of the energystorage elements. In this case we have chosen i and v as the state variables, so the relevant rates of change to be used in the differential equations are

$$
\frac{\mathrm{d} i}{\mathrm{~d} t} \text { and } \frac{\mathrm{d} v}{\mathrm{~d} t}
$$

The system equation for Fig. 4, set up from Kirchhoff's voltage law, is

Fig. 5. A continuous system consisting of a simple LCR circuit. Considering it in terms of the "state" concept, one set of state variables can be the current through the inductance and the voltage across the capacitance.

Fig. 6. Diode "pump" circuit used as an example of a discrete-time system. The input is a sequence of pulses of amplitude V_{i}.

From which

$$
\begin{equation*}
\frac{\mathrm{d} i}{\mathrm{~d} t}=-\frac{R}{L} i-\frac{1}{L} t+\frac{1}{L} e_{1} \tag{5}
\end{equation*}
$$

The charge on the capacitor $q=C v$, so $v=q / C$

$$
\begin{equation*}
\therefore \frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}(q / C)}{\mathrm{d} t}=\frac{1}{C} i \tag{6}
\end{equation*}
$$

(Since rate of change of charge, q, is current, i).

Equations (5) and (6), then, are the required first-order differential equations. It will be noted that these have been obtained from what can be considered as a second-order differential equation if the system relationships are expressed in terms of charge:

$$
e_{1}=L \frac{\mathrm{~d}^{2} q}{\mathrm{~d} t^{2}}+R \frac{\mathrm{~d} q}{\mathrm{~d} t}+\frac{1}{C} q
$$

The same principle could be applied to third, fourth or higher order differential equations-all can be reduced to sets of first-order equations.

It is now possible to bring the particular state equations (5) and (6) into a form corresponding with the generalized state equations (1) and (2). For this purpose we can present the set of first-order differential equations (only two in this case) in matrix algebra form, thus

Reverting to the original terminology of expressing state variables as x_{1}, x_{2}, $x_{3} \ldots$ etc. and input variables as u_{1}, u_{2}, $u_{3} \ldots$. etc., this becomes:

$$
\left[\begin{array}{c}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t} \\
\frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}
\end{array}\right]=\left[\begin{array}{rr}
-\frac{R}{L} & \frac{1}{L} \\
\frac{1}{C} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right] \mathbf{u}_{1}
$$

And if we label the two matrices containing the $L C R$ constants as A and B, we can express this in generalized matrix form as

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=A \mathbf{x}+B \mathbf{u}
$$

or

$$
\begin{equation*}
\mathbf{x}=\int[A \mathbf{x}+B \mathbf{u}] \mathrm{d} t \tag{7}
\end{equation*}
$$

which is the particular version of equation (1) for the particular system Fig. 5 .

As a concrete example of a digital or discrete-time system, consider a situation where a capacitor is not charged continuously, as in Fig. I(a), but only at particular instants of time. This occurs in the familiar diode pump circuit, an example of which is shown in Fig. 6. There is no need to describe the action of this circuit in detail here, \ddagger suffice to say that when pulses are applied to the input the capacitor C_{2} becomes charged in steps, the actual voltage across C_{2} being determined by the number of pulses that have already occurred (assuming the pulse amplitude to be constant). To be more precise the C_{2} voltage after' the nth pulse will depend partly on the amplitude of the nth pulse and partly on the number of previous pulses (of the same amplitude) that have occurred, $n-1$. The electrical formula expressing this condition is:**

$$
\begin{equation*}
V_{n}=V_{1} A\left(1+B+B^{2}+\ldots+B^{n-1}\right) \tag{8}
\end{equation*}
$$

where V_{n} is the voltage across C_{2} after n input pulses, V_{i} is the amplitude of the input pulses, and A and B are the following constants:

$$
A=C_{1} /\left(C_{1}+C_{2}\right) ; B=C_{2} /\left(C_{1}+C_{2}\right)
$$

Looking at this system in terms of its state, we can see that the state variables will be associated with the energy (and information) storage elements C_{1} and C_{2}. The state variable which is of greatest interest to us (because it is used as the output) is V_{n}, so this will be called $x(k)$-remembering that k is an integer. Similarly the exponent $n-1$ in equation (8) will be called $k-1$, The input pulse amplitude V_{i}, again in accordance with the earlier terminology, becomes u, and because the voltage is not a function of continuous time but of particular instants (see Fig. $4(\mathrm{~b})$) it becomes $u(k)$. Thus from this "state" point of view equation (8) would be expressed as
$x(k)=u(k) A\left[1+B+B^{2}+\ldots B^{k-1}\right]$
which is a particular version of the generalized expression for a discrete-time system given in equation (3).

This, then is the kind of symbolical language that is being used for describing systems in a precise manner in terms of the "state" concept. As such it does no more than sharpen and solidify the concept, just as verbalizing a vague idea in speech or writing sharpens and solidifies it. Are there any practical ends to served by analysing systems in this manner? It seems there may be, although it is too early yet to be certain. The process of breaking down the mathematical descriptions of complicated continuous systems into sets of first-order

[^6]differential equations is particularly useful when one realizes that computers, both analogue and digital, can be used to solve these sets of first-order equations quite easily, whereas the original equations would be relatively difficult to handle. So there may be some applications in computeraided design of electronic circuits. In addition state variable analysis avoids the problems which arise when one tries to apply classical linear theory to non-linear systems -the point being of course, that it is a form of analysis based on the time domain instead of the frequency domain. The method may also be particularly useful in dealing with complicated control systems with a multiplicity of inter-related inputs and outputs, as occur in process control and flight control. Some idea of these more practical aspects can be gathered from references 4 and 5. For the average Wireless World reader, however, the state concept must be at present little more than a way of looking at things. But, because it is a fresh view through another window, it may be helpful to the understanding.

Acknowledgement. I would like to thank Dr. A. G. J. MacFarlane, of the University of Manchester Institute of Science and Technology, for his kind help in the preparation of this article.

REFERENCES

1. "Les Méthodes Nouvelles de la Mécanique Celeste" by H. Poincaré. Gauthier-Villars et Fils, Paris (1892 vol. 1; 1893 vol. 2; 1899 vol. 3).
2. "State Variables for Engineers" by P. M. DeRusso, R. J. Roy and C. M. Close. John Wiley \& Sons Inc., New York (1965). 3. "Discrete-Time Systems" by Herbert Freeman. John Wiley \& Sons Inc., New York (1965).
3. "Analyzing networks with state variables" by Louis dePian. Electronics, 26 th December, 1966.
4. "Introduction to dynamic analysis in the rime domain using state variables" by M. Healey. Electronic Engineering, February 1968.
5. "Dynamics and the Designer" by A. G. J. MacFarlane. Paper read at the 1968 meeting of the British Association for the Advancerr. nt of Science, Dundee, 21 st-28th August.

Corrections

"Test Your Knowledge-8"': As a result of a printing error, question No. 1 in the set on Electromagnetic Radiation (January, p.47) was presented incorrectly. The first two possible answers should read: (a) α radiation, (b) X radiation.
"Digital Exposure Timer": The following corrections should be made to three diagrams published in the January issue. The pulse outputs B and C in Fig. 6 should be relabelled A and B to key them with Fig. 3. (The related text on page 25 should also be amended.) In Fig. 5 the collector of $T r_{2}$ should be marked V as this is the input for the output of NAND gate G_{3} shown in Fig. 3. Switch S_{8} drawn at the top left of Fig. 3 should be labelled stari, not stop. The diode between point C and switch $\mathrm{S}_{4 b}$ in Fig. 3 should be marked D_{23}.

Some other Measuring Rectifiers

by 'Cathode Ray'

Last month we considered the very simplelooking rectifier circuit shown here as Fig. I, as used for measuring alternating voltages. TQ recap., C charges up through D to very nearly the positive input peak voltage, and R allows it to discharge slowly enough not to lose voltage significantly between one cycle and the next, but fast enough to make the voltmeter ready for another reading. The unidirectional output voltage, which is thus a close approximation to the peak input, can be indiçated either by a microammeter in series with R or by a less delicate meter via a stable amplifier. There is a more often used variety of this rectifier in which D and C in Fig. I change places.
What we found was that the behaviour of these circuits is a good deal less simple than their appearance, or than it is represented to be in some of the specifications of electronic a.v. voltmeters in which such a rectifier comes at the front end. In particular, the quoted input resistance is valid only when applied to resonant circuits and is seriously misleading when applied to resistive circuits. What might look like an instrument suitable for measurements in quite high-impedance circuits could in fact be worse for that purpose than an ordinary metal-rectifier voltmeter, with the additional disadvantage of causing an unpleasant form of distortion.

Most ordinary a.v. voltmeters for power and audio frequencies use a bridge rectifier as shown in Fig. 2 in which R is the rangesetting resistance. During positive halfcycles, current flows through the moving coil milliammeter M via D_{1} and D_{4}, and during negative half-cyles in the same direction through M via D_{3} and D_{2}. The forward resistances of the diodes are normally negligible compared with R, so the behaviour of the instrument conforms to the simple pattern in Fig. 3, which shows that the defiection will be proportional to the mean (average) value of the input voltage, regardless of polarity. Almost always such instruments are calibrated in I•II \times mean value, which directly indicates r.m.s. values so long as the waveform is either sine or square. Unless the Fig. I type is specifically called a peak-reading voltmeter, it too is usually calibrated in what are correctly r.m.s. volts with the same proviso. Both types are misleading when used on other waveforms.
There is no doubt about input resistance with the Fig. 2 type-except perhaps on the

Fig. 1. One variety of the simple peak rectifier circuit considered last month.

Fig. 2. Bridge type of rectifier circuit used in many multirange a.v. voltmeters.

Fig. 3. Voltage and current waveforms for the Fig. a circuit.
lowest range-because the diode and meter resistance is, normally made small compared with R. On any ranges, and whatever kind of circuit one is measuring, one can be sure that the resistance of the instrument is at least R. And it remains practically constant throughout the cycle, so there is not the distortion one gets with the Fig. I type as a result of its drawing a sharp pulse of current at each positive (or negative) peak. But Fig. 2 is limited, as I said, more or less to power and audio frequencies and perhaps the lower radio frequencies, owing mainly to the shunting effect of unwanted capacitances.

Another circuit that hás been coming into use is usually drawn as in Fig. 4, which suggests that it is akin to Fig. 2. Sometimes it is even called a half-bridge rectifier circuit. But really it is a pair of Fig. I type, with diodes connected oppositely so as to give outputs of opposite polarity. It is therefore a voltage-doubling rectifier, which Fig. 2 is not. In fact, because its output is nearly peak-to-peak whereas Fig. 2 yields the mean value, with a sine wave it gives π times as much.

Instead of having two separate leak or load resistors, we can connect them in series between the output terminals to make one. The potential of their junction or centre point varies only slightly with respect to that of the bottom 'terminal ('earthy'), so the behaviour is practically the same as that of two separate Fig. I rectifiers, without the necessity for connecting the half-loads across C_{1} and C_{2}, so one gets the advantage of the modified Fig. I (R across D) without its disadvantage (a.v. in the output as well as d.v.). Because C_{1} and C_{2} can be large, the output device is all nearly at earth potential so far as the a.v. is concerned. All the same, if this circuit is used for high radio frequencies (and at least one commercial example is rated up to 1.5 GHz) it would be asking for trouble to connect a microammeter quite so near the input terminal, and for this and other reasons a high-input-impedance amplifier is used. The fact that it has to be a balanced one is no real disadvantage, because that would be preferred anyway for stability and interference rejection.
But there is still the same complaint that we had about its single-phase prototype, Fig. I-unless you think the fact that both peaks equally have to provide capacitor-

Fig. 5. If voltage-operated, the Fig. 4 circuit behaves as a pair of Fig. I type rectifiers, giving voltage and current waveforms like these.
charging current pulses is any mitigation. Some might regard it as an aggravation!

However, although we cannot be particularly enthusiastic about this kind of rectifier at the front end, it is interestingly different in the class of electronic volimeter in which the amplification comes first. Here the amplifier must not only be very constant -that goes without saying in a measuring instrument-it must also be so over the full frequency range of the voltages to be measured. That rules out the hertz to gigahertz specification that is possible with the front-end rectifier, and concentrates design skill on the amplifier. Negative feedback is essential, of course. Usually one doesn't think of including a rectifier in a feedback system, because rectification is a drastic kind of distortion, which negative feedback would do its best to iron out. However, this is not necessarily so with a full-wave rectifier such as Fig. 2 or Fig. 4. The current through R in Fig. 2, and therefore the voltage across it, has the same waveform as the input, except to the extent that the non-linear diode forward resistance is appreciable compared with R. So if this rectifier circuit were fed from an amplifier, the voltage across R could be used for negative feedback. It would be current feedback, because that voltage is proportional to the amplifier output current. One effect of negative current feedback is to increase the apparent output resistance of the amplifier, making it more like a constantcurrent source. So the non-linearity of the diodes is made even less significant than it was, and the rectifier more nearly ideal.

The same technique works with Fig. 4. However, making the diodes more like perfect on-off switches is not the most significant or interesting effect of current
feedback in this case. Without feedback, the voltage and current diagram is something like Fig. 5, which is the full-wave voltagedoubling counterpart of the one we studied last month in connection with Fig. I. Here the current waveform is obviously drastically distorted. If however Fig. 4 is worked from a source impedance which, owing to the use of current feedback or otherwise, is very large compared with the load resistance connected to its + and - terminals, and also linear, the current waveform is forced to be that of the source. The impedance of the rectifier as a whole is too relatively small to distort it. Clearly the operation of the rectifier must be quite different from that represented in Fig. 5, which applies to a more or less constant-voltage source.

Let us continue to assume that the applied waveform is sinusoidal, but we must begin again on the basis of current instead of voltage. In Fig. 6, then, we draw a sine wave for current; 1 . The corresponding equivalent circuit diagram is shown as Fig. 7, where the diodes are represented by a twoway switch, S. Let us suppose that the capacitances of C_{1} and C_{2} are equal to one another and large enough to maintain their charges almost constant between switch movements (half cycles). Then point a will be at an almost constant positive voltage which we can represent approximately in Fig. 6 by the horizontal line marked V_{a}, and b is at an equal but negative voltage represented by the line marked V_{b}. The nearly constant voltage between a and b drives a nearly constant current, i_{L}, through the load resistance R, and this current is approximately represented by the horizontal line i_{L}. During the first half-cycle, when the switch is to the left, i_{L} and i_{b} are necessarily identical. During the same period $i_{a}=I-i_{L}$. So we can draw i_{a} as a positive half-cycle, lower than I by the amount i_{L}. During the other half-cycle everything is reversed: i_{a} is constant and negative, and i_{b} has the same form as I but is more positive by i_{L}. Because the current through (more correctly, into and out of) a good capacitor can have no d.c. component, the i_{a} and i_{b} waveforms must enclose equal areas above and below the zero-current line. That fact fixes i_{L}. And if you use any of the various methods for equalizing the areas, you should arrive at the result that $i_{L}=I_{\text {(peaki) }} / \pi$. (Students of duality will note with pleasure that this corresponds to the voltage relationship, already mentioned, between the voltage output in Fig. 5 and that in Fig. 3.)

We can now get a better approximation to the voltages at a and b. At the start of the cycle I is zero, so the current i_{L} is kept going by the discharge of C_{1}, i_{a} being negative. This phase lasts only a short time and soon i_{a} goes positive and remains so for most of the remainder of the half-cycle, positive current being a charging current. These charges and discharges cause the voltage at a to vary in the manner shown rather exaggeratedly by the dotted line marked $v_{a} ; V_{a}$ is now the mean voltage at a. The v_{b} waveform is arrived at in the same way, and we now see that the voltage across the load, v_{L}, varies even less than v_{a} and vo separately. Except near the low-frequency end of the range, v_{a} and v_{b} should
be hardly distinguishable from V_{a} and V_{b}. And the voltage, V, of the top terminal, being $v_{"}$ during the first half-cycle and v_{0} during the second, is a near-square wave.

As the Fig. 4 circuit used in this way as a current instrument produces readings proportional to mean values, that fact must be kept in mind if it has an r.m.s. calibration and is used to measure non-sinusoidal and non-square waveforms. An example of this type of instrument was described by D.E.O'N. Waddington in the March 1966 issue.

There is another variety in which resistors are used in place of the capacitors C_{1} and C_{2}, but it seems to lack any advantages.

Fig. 6. If Fig. 4 is current-operated, its voltage and current waveforms are like this. The overall voltage V, not shown, is a near-square wave, the first half-cycle being like v_{a} and the second like v_{b}.

Fig. 7. Equivalent circuit diagram corresponding to Fig, 4, the diodes being simulated by a switch. The symbols correspond to those in Fig. 6.

News of the Month

Giant electronics merger

A company with an electronics turnover in excess of $f, 100 \mathrm{M}$ has resulted from the move to bring together the electronics interests of G.E.C.-A.E.I., English Electric and Elliott Automation. The new company, called G.E.C. Marconi Electronics Ltd will have Robert Telford as managing director. Robert Telford also continues as managing director of the-Marconi Company.

The new company has interests in defence and broadcasting equipment and communications and navigational equipment for land, sea, air and space.
G.E.C.-Marconi Electronics Limited will be responsible for the management of the following units:-
from Marconi Company:
The Marconi Company Limited (Chelmsford and district, Basildon, Billericay, Gateshead, Hackbridge and Wembley); including Marconi Instruments Lid. (St. Albans and Stevenage). Marconi-Elliott Microelectronics Ltd. (Witham and Glenrothes).
Eddystone Radio Ltd. (Birmingham). and including all Marconi subsidiary companies overseas;
from G.E.C.-A.E.I.:
G.E.C.-A.E.I. (Electronics) Ltd. Radar, Aerospace and Defence Division (Stanmore, Portsmouth, Leicester and Watford).
G.E.C.-A.E.I. (Electronics) Limited, Communications Division, (Coventry);
from Elliott-Automation:
Elliott Flight Automation Limited (Rochester).
Elliott-Automation Radar Systems Lid. (Borehamwood, Hillend).
Elliott Space and Weapon Automation Limited (Frimley, Borehamwood, and Hillend).
E.-A. Space and Advanced Military Systems Limited (Camberley).

Domestic monochrome-tocolour converter

A converter that enables colour pictures to be viewed on a standard monochrome receiver has been built by A. Becker of Scottish Television. The operating principles of the converter are not new, in fact they can be traced back to Baird's experiments.

The electronics of the converter consist of about a dozen transistors mounted on a small board that in most cases would fit into the cabinet of the monochrome receiver. The unit converts a chroma signal from the receiver's video stage into a sequential $R-Y$, $\mathrm{B}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ signal which is fed to the grid of the receiver c.r.t. The picture on the screen is viewed through a rotating optical filter which, in its simplest form consists of two tri-colour filter groups rotating at 500 r.p.m. in synchronism in phase and frequency with
frame drive. A block diagram of the system is shown in the accompanying drawing.
Mr. Becker tells us that in the kit form the system would cost less than $£ 30$ and he is seeking commercial exploitation of the idea.

Watt output convention?

It would appear that manufacturers of amplifiers are going to have to watch the watts they claim that their products will produce. The Association of Public Address Engineers point out that the figures used to express the output power of amplifiers would seem to be covered by the new Trade Description Act.

The correct method of expressing the power output of audio amplifiers is given in BS 3860:65. This states that two power ratings should be given, these are rated and maximum. The rated power is the output an amplifier will provide continuously at some value of harmonic distortion lower than is claimed for the amplifier. The maximum power output is the power developed across the load when the level of harmonic distortion equals that specified for the amplifier. In both cases the input is a 1 kHz sine-wave.

It is difficult to see why some amplifiers are rated using the American I.H.F.M. convention. Is it because this figure is about 50% higher than the continuous rating and that the less informed members of the public may be deceived?

U.K. Audio Engineering Society?

As a result of a meeting of some 70 former members of the defunct British Sound Recording Association an approach is being made to the American Audio Engineering Society with a view to forming an affiliated society in the U.K. The meeting, held at the Hotel Russell on December 10th, set up a small working committee, comprising R. E. Cooke, J. C. G. Gilbert, J. Maunder, R. Baldock and N. Leevers, all members of the A.E.S. John Gilbert, who convened the meeting, has been assured of the financial support of some 20 audio manufacturers. Readers interested in this proposal may obtain further information from 10 Museum Street, London W.C.1. Letters should be marked "Audio Engineering Society".

Hospital computer system

The Department of Health \& Social Security, the Birmingham Regional Hospital Board and International Computers Limited are co-operating in the development of a large hospital information system and communication network. The system will employ remote access terminals connected to a central system 4-50 computer and will be installed at the North Staffordshire Hospital Centre. Initially the equipment will handle out-patients' bookings and clinical records and will be followed by the development of similar facilities for in-patients. In addition to the computer, 12 video terminals and 4 teleprinters, will be installed in a new building in Stoke-on-Trent in April 1970. Further
remote terminals will be added to the system as the project develops.

Video terminals located in the outpatient clinic areas will be used for making appointments, requesting tests, displaying test results, entering patients on hospital bed waiting lists, and also to book patients for examination in other clinics.

In addition summary clinical information on patients, such as diseases diagnosed, test results, operations performed and drugs prescribed, will be printed out by the computer for the doctor.
In the first instance video terminals will be installed in the admission offices of the Hospital Centre, the North Staffordshire Royal Infirmary and the City General Hospital. These terminals will be used for admission and bed allocation procedures.
The next stage will involve the extension of the system into selected wards of the two main hospitals by the installation of teletypewriter terminals at strategic points to serve groups of wards.

The terminals in wards will primarily be used to make requests and receive reports on investigations, to aid the prescription and administration of drugs and for putting patients on operating lists. They will also help to establish the existence and location of all records relating to a patient. In certain cases, for instance, the reporting of biochemical tests, the computer will detect and draw to the attention of the medical staff any abnormal results. A further use of ward teleprinters will be the recording of diagnoses.

Detecting loose articles

Foreign particles left in equipment after manufacture can be detected with the aid of a device developed by the General Electric Company of U.S.A. The presence of particles that may be too small to be seen with the naked eye can be detected.

The equipment to be tested is placed on a standard vibration machine and a very sensitive listening device enables one to hear foreign particles bouncing.

Accelerometers mounted to the vibrating

Showing the loose article detector in operation.
table feed signals into the electronic listening device so that unwanted sounds are cancelled.

The signals detected by the listening system can be monitored over a loudspeaker system or on an oscilloscope. It is asserted that different articles can be identified by the nature of the bounce or by their "sound signature" to use the jargon coined by G.E.

Racal expands

The 88.9 M bid made by Racal Electronics for Controls and Communications has been favourably received. At the time of going to press a spokesman for Racal said that his company had succeeded in obtaining more than 50% of C and C's shares. Racal's offer follows the breakdown of talks between Plessey and C and C. Subsidiaries of C and C are Airmec, British Communications Corporation; Modern Aerials, Thermionic Products and Vectron Electronics.

British sensing equipment in HEOS-A

ESRO's highly eccentric orbit satellite (HEOS-A) which was successfully launched on December Sth, from the Kennedy Space Centre has an apogee of about $225,000 \mathrm{~km}$ (two-thirds of the distance to the moon) and an orbital period of 4.5 days. Because of the vast distance from the earth during orbit it was necessary to employ two methods of attitude measurement to ensure that the satellite is aligned correctly to the earth. The first, for close-range alignment, depends on infrared sensors which use the earth's horizon as a reference. The second, for longrange alignment, uses a unique sensor to measure the reflection of sunlight from the face of the earth. A solar aspect sensor measures the attitude of sunlight striking the satellite enabling it to be aligned correctly with respect to the sun. The scientific mission of HEOS-A is to study interplanetary physics, particularly magnetic fields, cosmic radiation and solar winds outside of the earth's atmosphere. The attitude sensing and control system was designed by British Aircraft Corporation.

U.S.A. to have Pay-TV

America's Federal Communications Commission has recently authorized subscription television operations on a national scale, the rules governing this type of operation to become effective on June 12th, 1969. This announcement is in direct contrast to the state of affairs in this country. After the Government's decision to refuse the British Pay-TV experiment to expand the company was run-down as rapidly as possible, as reported in Wireless World, December 1968, page 444.

Canada's own satellite

Canada could have its own communications satellite by 1971 if proposals resulting from a study are accepted by the Department of Industry. The study was carried out under a six-month contract by the Northern Electric Company Lid, with Canadair and the

A mock-up of the proposed Canadian communications satellite.

Hughes Aircraft Company as sub-contractors.

The proposed six-channel satellite would be placed in a high synchronous orbit and would have a total capacity of 6,000 one-way voice circuits or six colour television channels. Primary power source would be formed by 18,780 solar cells. During times when the satellite is in eclipse power would be provided by a battery of nickel-cadmium cells.

Component Associations, more co-operation

Closer integration between the various trade associations concerned with active and passive components has been achieved since Sir Alan Dudley was appointed director of the Electric Components Board last year. In January, 1969, the Radio and Electronic Manufacturer's Association moved into premises at Mappin House, 4 Winsley Street, London, WIN ODT., where the British Radio Valve Manufacturers Association, the Electronic Valve and Semiconductor Manufacturers Association and the Electronic Components Board are already accommodated.
Although each Association will continue to deal separately with matters of specialist interest, matters concerning the electronic components industry as a whole will be handled by the Board.

Radio and space research report

In the recently published first triennial report of the Radio and Space Research Station (H.M.S.O. 7s 6 d) some details are given of studies being carried out on investigating the mechanism of solar flares. It is thought that it may be possible to predict their occurrence. This would be of great value to operators of supersonic aircraft, such as the Concorde, who would be able to predetermine whether or not dangerous levels of radiation are likely to exist at high altitudes.

Studies of the physics of the ionosphere have continued using data obtained from the

Canadian satellites Alouette 1 and 2 received by telemerry at the Radio and Space Research Stations situated at Winkfield, Berks, and Singapore. Work done in this connection, derived from satellite drag data, has indicated that it is atmospheric winds at heights between 100 and 700 km that are responsible for the many ionospheric anomalies.

More work has been done on relating meteorological data to the characteristics of u.h.f. signals propagated in the troposphere. This work will be extended with the aid of the Chilbolton Tracking station.

In anticipation of the commercial use of millimetre waves for communications investigations of their transmission characteristics have begun. The scintillation of signals arising from variations in atmospheric refractive index has been studied and measurements made of attenuation caused by rain on 2.9 mm waves propagated over a path of 300 m .

Research at 0.793 mm has been concerned with generation and detection and absorption by water vapour.

The Station's experiment to measure high-frequency radio noise distribution over the world, started in May 1967 in Ariel 3, has progressed well. Noise intensities above major storm areas are in broad agreement with expectations and much new information has been obtained from areas not covered by ground stations.

Libyan television

The television service of Libya was inaugurated on December 24th 1968 by the Crown Prince. The B.B.C., which was represented at the opening ceremony by a twelve-man outside broadcast team, has been associated with the project since 1964 and will have seventeen engineers seconded to the service for a year.

The service is operating on 625 -line standard G^{*} which differs very slightly from the U.K. standard. For colour the PAL system is employed and we understand that experimental colour broadcasts have already begun using a 16 mm telecine machine as the source of programme material.

* Standard G: 625 lines; channel width 8 MHz ; vision bandwidth 5 MHz ; sound separation +5.5 MHz ; vision modulation negative going; sound f.m.

Powerful ion laser

A powerful gas laser system which emits beams of the three primary colours has been
developed by the Japanese Hitachi Company. Coherence and power of the beams are of sufficiently good quality to enable the system to be used to produce full-colour holograms or to project coloured images on to a screen. The system comprises a krypton laser which emits red light and an argon laser which emits blue and green light, a single blue or green line being selected by a mirror in the optical resonator. Outputs are of the order of 5-6W.

"WIRELESS WORLD" INDEX

The Index to Volume 74 (March-December 1968) is now available price 2 s . 6 d . (postage 4 d .) Cloth binding cases with index cost 11 s .6 d ., including postage and packing. Our publishers will undertake the binding of readers' issues, the cost being 40 s . per volume including binding case, index and return postage. Copies should be sent to Associated lliffe Press Lid., Binding Department, c/o 4 lliffe Yard, London, S.E.17, with a note of the sender's name and address. A separate note confirming despatch, and enclosing the remittance, should be sent to the Publishing Department, Dorset House, , Stamford Street, London, S.E. 1 .

Colour TV in Sweden

When Sweden's colour television service starts in 1970 a major role will be played by a British equipment manufacturer. Twentythree of the existing black and white v.h.f. television stations in Sweden incorporate Marconi transmitters and these will all be modified to enable them to transmit colour pictures as part of that country's first colour TV service.

DX listeners' award

The B.B.C. is offering a certificate award (called World Radio Club Award) to listeners who correctly report on a number of B.B.C. transmissions received from different locations. It applies to one frequency schedule period only, from March 2nd to May 3rd. To qualify for the award, listeners must be members of the World Radio Club run by the B.B.C. and must give evidence of reception of three B.B.C. transmissions from each of the following areas: Great Britain and the Atlantic, east Mediterranean and Far Eastern relay stations. Membership of World Radio Club can be obtained by writing to B.B.C., Bush House, London W.C.2.

Gas laser developed by Hitachi of Japan emits beams of the three primary colours.

U.H.F. transmitters

The following table gives, alphabetically, B.B.C. and I.T.A. u.h.f. television stations with the channels allocated for the three proposed programmes. Those transmitters already in operation (to date BBC-2 only) are shown in heavy type. Relay stations are shown after the main station of the group. For extended coverage, further relay stations are, of course, planned. It is intended that individual BBC-1 and I.T.A. stations will "come on the air" simultaneously, using the 625 -line standard, and they will transmit programmes in colour from the start. This list is provisional and the information it contains is subject to alteration.

Angus (H)
BELMONT (H)
Bilsdale West Moor (H)
BLACK HILL (H)
Caradon Hill (H)
Craigkelly (H)
CRYSTAL PALACE (H)
Guildford (V)
Hemel Hempstead (V)
Hertford (V)
High Wycombe (V)
Reigate (V)
Tunbridge Wells (V)
DIVIS (H)
Larne (V)
DOVER (H)
DURRIS (H)
EMLEY MOOR (H)
Chesterfield (V)
Halifax (V)
Keighley (V)
Sheffield (V)
Hannington (H)
Heathfield (H)
Newhaven (V)
Limavady (H)
Londonderry (V)
LLANDDONA (H)
Betws-y-Coed (V)
Mendip (H)
Bath (V)
Bristol (V)
West Sussex (H)
Moel-y-Parc (H)
OXFORD (H)
PONTOP PIKE (H)
Fenham (V)
Newton (V)
Weardale (V)
ROWRIDGE (H)
Brighton (V)
Salisbury (V)
Ventnor (V)
Sandy Heath (H)
SUDBURY (H)
SUTTON COLDFIELD (H)
Brierley Hill (V)
Bromsgrove (V)
Fenton (V)
Kidderminster (V)
Lark Stoke (V)
Malvern (V)
TACOLNESTON (H)
Aldeburgh (V)
West Runton (V)
WALTHAM (H)
WENVOE (H)
Aberdare (V)
Kilvey Hill (V)
Merthyr Tydfil (V)
Mynydd Machen (V)
Pontypridd (V)
Rhondda (V)
WINTER HILL (H)
Darwen (V)
Haslingden (V)
Pendle Forest (V)
Saddleworth (V)
Skipton (V)
Todmorden (V)
$\mathrm{H}=$ Horizontal polarization
$\mathrm{V}=$ Vertical polarization

The new EMITAPE AHITONIC range of low noise tape

don't buy any tape buy Z~UTAAPE

Model G-18 watts. Fitted with $\frac{3}{32}{ }^{2}$ bit. Interchangeable spare bits $\frac{1}{\frac{1}{2}}, 0^{\frac{3}{16}}{ }^{\prime \prime}$ and $\frac{1}{4}$ ". For 240, 220 or 110 volts. 32/6

Model E-20 watts. Fitted with $\frac{1}{4}$ " bit. Interchangeable spare bits $\frac{3}{32}{ }^{\circ}$. $\frac{1}{8}$ " and $\frac{3}{16}$ ". For 240,220 or 110 volts. FROM 35/-

Model ES- 25 watts. Fitted with $\frac{1}{4}$ " bit. Interchangeable spare bits $\frac{3}{32}$. $\frac{3}{7^{\prime \prime}}{ }^{\circ}$ and $\frac{1^{\circ}}{4}$. For 240, 220, 110, 24 and 12 volts. FROM 35/-

Model F- 40 watts. Fitted with ${ }^{5}{ }^{56}{ }^{" 1}$ bit. interchangeable spare bits $\frac{1^{* *}}{4}$. $\frac{3}{188^{\circ}}, \frac{1}{8}{ }^{\prime \prime}$, $\frac{3}{32}$. For $240,220,110,24$ and 20 volts. FROM 42/6.

COMPLETE PRECISION SOLDERING KIT

Supplied in its own compact, rigid plastic container and includes all of these items:
CN 15 watts 240 volts miniature model ($\frac{3}{16}{ }^{\prime \prime}$) bit- 2 interchangeable spare bits ($\frac{5}{32}{ }^{\prime \prime}$ and $\frac{3}{32}{ }^{\prime \prime}$) - reel of resin-cored solder \bullet heat sink for soldering transistors ${ }^{\text {a felt }}$ cleaning pad - soldering iron stand - storage 49/6 space for lead and plug.

DE-SOLDERING KIT

Efficient de-soldering is assured with this high speed method from Antex. Soldered joints soon dissolve leaving a clean finish, thanks to the exclusive Antex-designed suction nozzle. Operation is by compressed air from an airline or foot-pump. No vacuum supply is needed. Two models are available, complete with 6 ft . nylon airline, 6 ft .3 core flexible lead and $\frac{1}{8}$ "BSP Male and $\frac{3}{8}{ }^{*} 26$ T.P.I. Male Adaptors. Or complete with foot-pump

84-
(Nett Trade)
99/6
(Nett Trade)

32'6

ACTUAL SIZE
CN 15 watts, fitted $\frac{3}{32}$ " Ferraclad bit. The leading iron for miniature and micro miniature assemblies: 18 interchangeable bits from . 040 (1 mm) up to $\frac{3}{16}$ " for $240,220,110,50$ or 24 volts.

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can order direct from us. A free colour catalogue will be supplied on request.

PRECISION MINIATURE SOLDERING IRONS Made in England
Antex, Mayflower House. Plymouth, Devon.
Telephone: Plymouth 67377/8 Telex: 45296
Giro No. 2581000
transient conditions. These outputs operate the printer or other mechanism, and at the same time set stage C, which then is set again on every cycle, thus inhibiting the striking of, say, B. As soon as the glide finishes this inhibition is automatically removed and normal operation resumed. The other actions can be followed easily.

Recognition of words

The main grouper (Fig. 4) discussed above can, by itself, and without the VC-L circuits act as a recogniser for words carefully chosen $t 0$ match its capabilities. For instance consider the words of command shown in Table 5 , where they have been broken down into their basic constituents. At first sight it might appear a reasonably satisfactory selection, but closer inspection shows some defects. For instance, apart from the beginnings, 'not' and 'right' are identical and both ' r ' and ' n ' tend to be somewhat illdefined phonemes; moreover if an attempt were made to add 'left' as another control action, the difficulties would be increased to an impossible extent. The solution here would be to replace 'right' and 'left' by, for instance, 'starboard' and 'port'. Alter-
natively manufactured words of well defined photenic content could be used. Table 6 lists suitable phonemes for constructing strong words from.

However, with the equipment in the form described, values for A, B, C, and G are available, and the next step is to use them. Thus instead of saying that a phoneme was a vowel, it could be specified as a vowelA1; or in further detail as VC-V: $\mathbf{A}_{1}: \mathbf{B}_{1}$: C_{3}-thus identifying itself as ' a ' from Table 1 in Part 1. This approach will be considered in more detail below, but meanwhile the digits $0-9$ may be examined using the main groupings and A values only (Table 7). It will be seen that separation appears to be quite good, except for ' 2 ' and ' 3 ', which can however be very easily separated on the value of B. However the position is not as simple as this, because the weak phonemes, show in brackets, may or may not be detected. Thus '5' can easily be confused with '9', and perhaps also with ' 1 '. However, in spite of troubles such as these, a recogniser for the spoken digits can be built along these lines and will give some 90% correct responses for well enunciated speech.

Fig. 7 Delay, burst frequency, and amplitude for unvoiced stops

It is perhaps unfortunate that it seems to be a feature of languages generally that opposites are very often phonetically or actually similar. Thus is Latin 'altus' means both high and low. In English we have 'left' and 'right' which are phonetically close, or 'starboard' and 'larboard' which are even closer. The tendency is however for separation to occur: thus 'larboard' has become 'port' and 'yea' and 'nay' have become 'yes' and 'no', and later 'affirmative' or 'negative'.

Recognition of phrases

In a machine for identifying words, the gaps between the words are marked and are unlikely to be confused with other gaps, as those in stopped utterances. Moreover, if a single word is missed, the machine can demand an immediate repetition. In a machine designed to recognise phrases, however, doubtful gaps and missed phonemes can very quickly ruin the most perfect identification scheme. Under these conditions the machine is best arranged to operate as the brain is believed to-that is to compare the incoming message with the most likely of the repetoire of possible messages, on the basis of what has gone before, and to mark off points of resemblance as they occur. The problem is made more difficult by the inclusion in any worthwhile practical situation (such as air traffic control) of variable data, the position of which in the message is known, but not the content, and which must be detected accurately for the message to be effective. There are clearly many more problems here than those of phonetics only.

Recognition of phonemes

The recognition of phonemes is a useful study in itself, for it could lead to a machine producing a phonetic script from a spoken input, and possibly ultimately to an orthographically correct script. It also has other uses, such as determining which phonemes can be most reliably detected. Using the coder of Fig. 1 and the main grouper of Fig. 4 to supply inputs as before, about half the phone-
mes can be identified with accuracies of $\mathbf{8 0 \%}$ or above in carefully enunciated connected speech, and of the remaining phonemes many of the errors are near misses. So far the resulting script has proved barely intelligible if the subject matter is unknown, but moderately intelligible if the subject is familiar. Much further work is needed before a commercial machine can be made, but the remainder of the article will be devoted to a description of the method used in one system. The same nomenclature as that used above is employed.

The first piece of additional equipment is a circuit designed to select the appropriate A value at the start of a vowel or diphthong. In Fig. 5, as soon as bistable B (Fig. 4) is set, the four bistables 10-13 (Fig. 5) are primed, and whichever output from the averaging A stages is effective fires the appropriate bistable which is reset only on the resetting of bistable B. Once one of the group is set, all are inhibited. The output from this group are labelled $A_{1} I, A_{2} I$, etc.
As an example of the subsequent processing the coding for Group A_{1} vowels and diphthongs (Fig. 6) may be considered. All the bistables shown are reset when the printer or other display apparatus receives a command to print. All the outlets are scanned in the order given in square brackets after the symbol, and the first one found energized is printed, the remainder being reset. This enables subsequent characters to be selected whilst a relatively slow display is acting. The command to print is given whenever the main grouper (Fig. 4) changes state, or on the receipt of a valid ending to a diphthong, indicated by an asterisk(*) on the diagram. In the latter case the print command on the next change of state of the main grouper is inhibited. In Fig. 6, the setting of $A_{1} I$ (Fig. 5) primes bistables $46,42,36$, and 47 , which can thereafter be set by $\mathrm{B}_{1}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$, and A_{3} or A_{5} (uninhibited). Assume that B_{1} is firing: then 46 will set-this represents ' a ' or the first stage of the diphthong 'ie'. If the former condition, then ' a ' will be printed when the main grouper changes state. If the input is the diphthong, though, as soon as the first formant period increases to energize A_{3}, then 44 and 45 will be primed, and in the case quoted, 45 will set, thus energizing the 'ie' print line, and immediately executing the print command, as described above.
Similar groups of bistable elements deal with the other vowel groups. Fricatives are handled similarly. Stops require a more complex arrangement as several features need to be taken into consideration. As a fully satisfactory coding arrangement has not yet been found, a full description will not be given. The factors involved are:
(a) The amplitude of the fricative burst formed on the release of pressure. This is greatest for ' k '.
(b) The high frequency content of the burst.
(c) The duration of the silent period.

Fig. 7 shows the relationship between the length of silent period and the peak high frequency (C channel) response for the voiced and unvoiced stops. Using the additional parameter of high energy, ' k ' can be separated from ' t ' and ' p ', which can be separated between themselves by high frequency level. With the voiced stops
(' b ', ' d ', and ' g ') however, separation is much more difficult, and is perhaps impossible to achieve except on a syllabic basis which would take account of the context.

In conclusion it may be said that the field of speech recognition is only just beginning to be explored. It is of the greatest interest and is not so complicated that an individual worker cannot make useful progress. What are needed at present are more good ideas to make for simpler and more direct precoding. The remaining operations are then perhaps better done on a general purpose computer.

References

1. N. Lindgren, 'Machine recognition of human language', I.E.E.E. Specirum, Vol. 2, pp. 114-136 (March) and 45-59 (April 1965).
2. S. Inomata, 'Speech recognition and generation by computer', Researches Electrotechnical Lab. (Japan), No. 645, pp. 182 (1963).
3. T. Sakai and S. Doshita, 'The automatic speech recognition system', I.E.E.E. Trans. Vol. EC-12, pp. 835-846 (Dec. 1963).
4. H. Dudley and S. Balashek, "Automatic recognition of phonetic patterns', 才. Acoust. Soc. Amer., Vol. 30, No. 8, pp. 721-732 (Aug. 1958).
5. J. Dreyfuss-Graf, 'Sonograph and sound mechanics', f. Acoust. Soc. Amer., Vol. 22, pp. 731739 (Nov. 1950).
6. H. F. Olson and H. Belar, 'Phonetic typewriter III', J. Acoust. Soc. Amer., Vol. 33, pp.1610-1615 (Nov. 1961).
7. W. D. Gilmour, 'A general purpose phonemic transcriptor', I.E.E. Conf. Pub. No. 42, pp. 154 167 (1968).
8. L. R. Focht, 'The single equivalent formant', I.E.E.E. Internat. Communications Conf. Digest, pp. 108 and 285 (1966).
9. C. F. Teacher, H. Kellet1, and L. R. Focht, 'Experimental limited vocabulary speech recogniser', I.E.E.E. Internat. Corvo. Rec., Vol. 15, No. 2, pp. 169-173 (1967).
10. B. Gold, 'Note on buzz-hiss detection', J. Acoust. Soc. Amer., Vol. 36, No. 9, pp 1659-1661 (Sep. 1964).
11. Sir Richard l'aget, 'Human Speech', London, Harcourt (1930).

Announcements

"Advances in microwave applications of semiconductors" is the title of a course of ten lectures to be given on Wednesday afternoons commencing January 15 th at the Borough Polytechnic, Borough Road, London S.E.L. There is also a course of nine lectures entitled "Transistors in communication circuits" to be held on Tuesday evenings commencing January 21 st Fees are 3 gns and $\ell, 210$ s respectively.

A course of eight laboratory sessions for students who have attended a course on transistor theory and wish to gain practical experience will be held at Hendon College of Technology, The Burroughs, Hendon, London N.W.4, on Thursday evenings commencing February 27 th . There is also a nine-lecture course on hi-fi sound reproduction on Wednesday evenings from January 291h.

The Electronics Division of the I.E.E. is organizing a vacation school on aerials to be held at the University of Birmingham from July 7ih to 19 th .

A lecture course entitled "Semiconductor devices and circuit techniques" will be held at Bournemouth College of Technology commencing February 4th for eight weeks.

Show cancelled. The Electronic I'roduction Equipment Exhibition arranged for March 10th-14th at Earls Court (see list of 1969 Conferences and Exhibitions in our January issue) will not now be held.

Welwyn-Berco agreement. British Electric Resistance Company and Welwyn Electric have agreed to exchange know-how and commercial interests in the areas of fixed and variable power vitreous enamelled urits. By 1 st April this year Welwyn will stop making theostats (Berco taking responsibility for any of Welwyn's outstanding commitments) and Berco will stop manufacturing fixed vitreous enamelled resistors (Welwyn taking over their outstanding commitments)

The Westinghouse Electric International Company of New York, and Ferranti Lid., jointly announced a technical exchange agreement involving Westinghouse electro optical systems and Ferranti air-to-surface radar systems. For the past three years both companies have been working on avionics and navigation systems for the Phantom F-4 aircraft purchased by the United Kingdom.

Audio equipment hire. Carston Electronics have formed a new division to provide long- or short-term hire for a range of tape recorders, microphones, and other studio sound equipment as well as audio test equipment. Hire periods may be from a week up to three years or longer and equipment will be maintained throughout the hire period at no extra charge. Carston Electronics Lid, 71 Oakley Road, Chinnor, Oxon (Tel. Kingston Blount 8561)

SGS-Fairchild have changed the name of the company to "SGS (United Kingdom) Lid".

Honeywell Controls Lid of Brentford, Middlesex, have changed the name of the company to Honeywell Lid.
R.E.C.M.F. move. The Radio \& Electronic Component Manufacturers' Federation have moved from 6 Hanover Street, W.I, to Mappin House, 4 Winsley Streel, Oxford Street, London, WIN ODT. (Tel: 01-580 8562.)

The address of Muliard's Order Department (Disributor Sales), is now New Road, Mitcham, Surrey, CR4 4SR. (Tel: 01-648 3471.)

The southern sales and export offices of F. C. Robinson \& Partners Lid are now at Rilton House, Uxbridge Road, London W.S. (Tel: 01-579 2041.)
E.M.I. Lid, have completed an agreement with B. \& F. Instruments Inc., an electronic instrument company of Philadelphia, U.S.A, in which they are taking an equity investment, with the option to acquire a majority interest, to direct the marketing of their own instrument range, particularly the products of their subsidiary S.I). Laboratories

Guest Electronics L.td., Nicholas House, Brigstock Road, Thornton Heath, Surrey CR4 7JA, have acquired the exclusive marketing rights within the U.K. of Luft Instruments Inc., U.S.A

Rastra Electronics I.td., 275 King Street, Hammersmith, L.ondon W. 6 , have been appointed official agents for part of the Redpoint range of small heat sinks.

A contract valued at $£ 125,349$ has been placed with Marconi Instruments, for the supply of 127 signal generators, Type TF 2002AS, by the Canadian Department of Transport. This instrument covers the carrier frequency range 10 kHz to 72 MHz with provision for a.m. up to 100% at modulating frequencies from 20 Hz to 20 kHz .

Orders worth over $f, \frac{1}{2}$ million have been placed by the G.P.O. with S.T.C's Microwave and Line Division, Basildon, for 6 GHz equipment to provide up to seven broadband radio links between Carlisle and Belfast, Carlisle and Manchester, and L.eeds and Newcastle.

The Indonesian Government have placed an order valued at $£ 55,000$ with Racal for a large quantity of the "Squadeal" Manpack h.f. transmitter-receiver together with other mobile radio and ancillary equipment.

The Industrial Products Group of British Aircraft Corporation's Guided Weapons Division have been awarded a product on contract valued at almost $\mathcal{L} 200,000$ by the G.P.O. The contract is for semiautomatic test set equipment, known as TRT 116.

Labgear L.td, a member of the Pye of Cambridge group, have received an order valued at $\{60,000$ from the Iraq mobile police force for s.s.b. packset transceivers.

The price is special, too!

Not quite, but the only rectangular $3^{\prime \prime}$ tube on the market...

Another example of Thorn-AEl's renowned production engineering techniques - a top-quality oscilloscope tube at a minimum price.
The Brimar D7-200GH is the only rectangular tube available in the 3 inch size. The tube has a relatively flat screen and employs a mono-accelerator for reduced power requirements. With an overall length of only 18 cm , it provides a $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ display of waveforms or TV pictures.
Features include electrostatic deflection and focusing. Good geometry is ensured by specially developed production control techniques. Small spot size and focus uniformity over the entire screen give good resolution at all points of the useful screen area. High-deflection sensitivities permit the use of inexpensive transistor circuits.

Applications include:

alpha-numerical readout devices.
waveform monitors,
data processing equipment,
voltage and power output indicators.
educational equipment, etc.-
and of course, popularly-priced oscilloscopes.

$V_{a l}+$ a3 + a 4	800	1200	V
$\mathrm{~V}_{\mathrm{a} 2}$	50 to 150	75 to 225	V
$\mathrm{~V}_{\mathrm{g}}$ (for cut-off) -20 to -40	-30 to -60	V	

thorn Thorn-AEl Radio Valves \& Tubes Limited
7 Soho Square, London, W1V 6DN Telephone 01-4375233

The importance of buying momurdo

The McMurdo Range:McMurdo make plugs, sockets, audio connectors, strip connectors, standarci connectors, miniature and sub-miniature connectors. connectors with shrouds, covers and latches, printed circuit edge connectors, film-strip cable connectors, plug-in bases and covers, plug-in modules, relay sockets, crystal sockets, voltage selectors, valve holders.

All our own work. That's the McMurdo range. It may not be the biggest range, but when we say we make them all we mean it. When you specify McMurdo components there's no waiting while we ship them in. You want reliability? We've got it. Reliable, quality-manufactured components that are exhaustively tested, keenest, competitive prices and reliable delivery.

McMurdo Instrument Co. Ltd., Rodney Road, Portsmouth, Hampshire. Telephone: Portsmouth 35361 Telex: 86112 R

Authorised Stockists:- Lugton \& Co. Ltd., 209/210 Tottenham Court Road, London W.1. Tel: Museum 3261 Sasco, P.O. Box No.20. Gatwick Road, Crawley Sussex. Tel: Crawley 28700 (also Chipping Sodbury 2641, Cumbernauld 25601 and Hitchin 2242) and agents in principal overseas countries.

Circuit Ideas

Readers' tricks and trifles

Fig. 1. Circuit for rumble suppression.

Fig.2. Output voltage with respect to frequency for 1 signal level to each channel.
circuit which effectively gives mono at low frequencies and allows for signal separation at frequencies above say 200 Hz .

The circuit given (Fig.1) allows for such action and also boosts the bass frequencies. The $2 \mathrm{M} \Omega$ potentiometer across the two outputs allows balance to be controlled. The main filtering action of the circuit is slightly disturbed when the balance control is offcentre. The potentiometer can be replaced by fixed resistors if the two inputs are equal. The effect of the filter is shown in Fig. 2.
David Ralph,
Northfleet,
Kent.

Switching decades of capacitance

In order to switch decades of capacitance with a single control it might seem that the alternatives are either a single wafer specially made, or a rather buiky 4 -wafer switch (Radio Lab. Handbook 7th edition, pp.188-190). However, the following solution presented itself using two dissimilar Oak wafers. The 2 -pole 5 -way wafer repeats its pattern twice in a revolution. Similar results can be obtained using a 3 -pole 3 -way switch to repeat the $0,1,2,3$ pattern (switching 1 and 2 units) and a 1-pole 11-way switch to bring in 4 and 8 units as required. R. Massey,

Planet Instrument Co. Ltd., Leeds.

Wiring diagram of wafer-swich assembly.

Wireless World Colour Television Receiver

9. Miscellaneous

Except for a few matters, which will be dealt with in this article, details of the receiver have now been given with but one important omission, the colour decoding circuits. To most people these circuits are probably the most interesting of all for there is nothing like them in an ordinary monochrome receiver. The rest of the apparatus bears a superficial likeness to a black-and-white set, the differences being chiefly those dictated by the use of a colour tube.

It was pointed out at the beginning of these articles that the first essential to the attainment of a good colour picture is a good monochrome one. It is quite hopeless to attempt to get the colour circuits working until the receiver, as so far described, is working well and reliably. The picture obtained should compare well with that given by an ordinary black-and-white set. In a comparison between the two, the monochrome picture of the colour set will normally have a somewhat lower maximum brightness and the horizontal definition may not be quite as good as that of the best black-and-white sets, but may be better than that of the poorer ones. In addition, there may be some colour fringing towards the corners of the picture, due to the impossibility of obtaining perfect convergence.

Delay line

So far no details have been given of the $0.6 \mu \mathrm{sec}$ delay line in the luminance channel which is shown in Fig. 1, Part 7. The purpose of this is to equalize the transit times of the monochrome and colour components of the complete signal. What may be variously termed the luminance signal, the Y signal, or the monochrome signal passes through equipment with an overall bandwidth of some 4.5 MHz . The chrominance components are picked out of the first video stage and pass to the tube through a separate chrominance channel which has a bandwidth of about 1.2 MHz only. Because of this narrower bandwidth, the chrominance components of the signal take longer to pass through the circuits and reach the tube than do the luminance components. Therefore, a delay line must be inserted in the luminance amplifier to make up for the difference in transit times. Without it, the colour would appear on the tube displaced to the right relative to the picture detail.

Since it is included in the i.f. unit, it would be logical to deal with the construction of the line at this point. However, it is not necessary for a good monochrome picture, and we are regarding it as a special colour part, and shall deal with it in the colour section of these articles.

So far little or nothing has been said about grey-scale adjustments. These are important for a good colour picture; they are also important for a good monochrome picture, but the effect of poor adjustment is usually less noticeable.

We normally think of grey as a kind of colour in its own right. In reality, however, it is not; it is merely white of a low brightness. This is easily seen if we consider a normal mono-

This photograph shows the video and i.f. amplifier boards mounted side by side. Both are hinged for ready access to their other sides and also to permit the convergence magnets to be reached from the front.
chrome tube and gradually increase the grid bias so that a blank raster passes from peak white to black through all depths of grey. There is clearly no change of colour involved (except possibly and undesirably for small changes in the spectral efficiency of the phosphor with excitation). This same result is required with a colour tube, but here white is obtained by combining the effect of three guns exciting red, green, and blue phosphor dots on the screen.

The characteristics of the three guns are unlikely to be identical nor are the relative efficiencies of the three phosphors. As a result, if adjustments are made to produce white at maximum brightness then as the tube bias is increased to give grey the balance between the three colour components may alter and give a colour cast to the grey. Typically, the grey may become brownish, but it might equally well become greenish or bluish. The result on a colour picture, of course, is to make the hue dependent on brightness.

There are five controls which affect grey-scale tracking.

These are the three potentiometers R_{17}, R_{18} and R_{19} (Fig. 1, Part 5) mounted in the convergence unit which control the first-anode voltages of the three guns, and the two potentiometers R_{1} and R_{2} (Fig. 2, Part 2) which control the signal drive to the green and blue cathodes. The first three are adjusted to give a pure grey at a very low brightness level; the second two are then adjusted for a pure white at maximum brightness.

A signal is needed for proper adjustment. If possible this should be from a colour signal generator which provides a set of standard colour bars. In monochrome these reproduce as a set of vertical bars varying in steps from black to white. These bars are broadcast by BBC-2 during the trade test transmissions only and have the drawback that they are not always there when one wants them or for as long as one wants. There is also a grey scale in the Test Card D which is also broadcast and more frequently than the colour bars.

First of all set the brightness and contrast controls so that all steps of the grey scale are clearly visible, but without defocusing on peak white. The red anode voltage control R_{17} should normally be set at little below maximum. Then adjust the green and blue controls R_{18} and R_{98} for a pure grey in the darkest tone value for which changes of colour can be observed. If it happens that either of these comes to its maximum setting, turn down the red control a bit and start again.

Having done this leave these controls alone and adjust \boldsymbol{R}_{1} and R_{2} on the tube base for a pure white on the brightest tone step. The proper white is one which is much less blue than that of the ordinary monochrome tube, one which may appear brownish by comparison but which should not really be brownish at all.

Provided that the anode voltages are adjusted first, adjustment of the drive to the cathodes does not affect the first set of adjustments.

These adjustments provide two-point tracking and some errors may still exist away from these points. These are quite unimportant at very low brightness levels, for the eye there loses its sensitivity to colour, and levels above peak white should never occur. If examination of the grey scale between the levels used for adjustment of the grey scale shows any appreciable colouration, it probably means that the characteristics of the guns of that particular tube differ from each other more than usual. There is not much that can be done about it, but it may prove better to adopt one grey tone brighter for adjustments of the anode voltages. This will reduce the error between the tracking points at the expense of increasing it on the darker tones. As the eye is there less sensitive the net result may be better.

The drive potentiometers R_{1} and R_{2} (Fig. 2, Part 2) have

Line-Scan Transformer			
Terminals	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{mH}) \end{aligned}$	Q	$\begin{aligned} & \mathrm{R} \\ & (s) \end{aligned}$
3-4	5.6	50	0.3
4-5	1.42	41.5	0.25
6-7	12.5	64	0.6
8-9	3.4	44	0.8
9-10	265	49	6.5
10-13	45.1	68	3.2
13-12	69	64	4
3-5	12.5	68	0.8
3-7	50	74	1.4
(5 \& 6 joined)			
6-12	1350	60	14.9
(7 \& 8 joined)			

on $\div 100$ range.

Fig. 1. Circuit diagram of simple a.f. amplifier. Screened leads for the triode grid and input connections are essential. The transformer ratio must be chosen to give a load of $5.6 k \Omega$ on the pentode
capacitors C_{1} and C_{2} associated with them. These are for the purpose of equalizing the frequency responses of the green and blue drives with the red. If they are not properly adjusted some slight colouration of a vertical edge may appear because the step responses of the three cathode inputs will not be alike. For this to be observable it is, of course, necessary that the vertical edge be in a part of the picture at which the convergence is perfect.

In practice, the effect of these capacitors is quite small and on an ordinary moving picture may not be detectable.

A.F. amplifier

Turning now to the sound channel, as so far described this terminates in an audio output from a ratio detector in the i.f. unit. An a.f. amplifier and loudspeaker are naturally required additionally. Compared with colour television this is very much bread and butter stuff? It seems unnecessary to give much detail but a suitable circuit is shown in Fig. 1. This can be tucked away in any convenient place, but the loudspeaker magnet must, of course, be kept away from the tube.

In view of past correspondence in Wireless World many readers will doubtless deplore the fact that so little attention is being paid to the sound side and would expect that, at the least, provision would be made for feeding an external highquality sound system. This is, however, a very difficult thing to do and, because we feel that there is this expectation, we shall go into the matter in some detail.

The difficulty arises because, in common with almost all modern television receivers, colour or not, no isolating mains transformer is used. Series-connected heaters must be used for the valves because there are no suitable types available for parallel connection. This in itself does not preclude the use of a mains transformer, of course, but the heater supply is 72 watts. The h.t. supply is of the order of 200 watts, so that the transformer would have a rating approaching 300 watts. This would not be cheap and it would be quite heavy. Much more important, however, is the fact that it would not be at all easy to dispose without its stray field affecting the picture tube. This can be very troublesome with a black-and-white tube; it will obviously be more so with a colour tube, where screening against the effect of the earth's magnetic field is needed!

When there is no isolating transformer the circuits of the receiver are live to the mains. This at once raises difficulties in connecting an external audio amplifier. A high-quality audio amplifier will normally have a mains transformer and so be itself isolated from the mains. It is, therefore, really only practicable to connect an audio output from a set which is not

so isolated via a double-wound audio transformer which is insulated to withstand the full mains voltage.

We have not investigated this, but it is quite likely that there is no suitable component commercially available. In any case, the purist will object to the use of an a.f. transformer in high-quality equipment; we shall not argue whether this is a valid objection.

The use of isolating capacitors will doubtless be suggested. This is not so easy as it sounds because they must pass 50 Hz from the quality point of view and if they do they will hardly be isolating at mains frequency! In addition, there would almost certainly be serious hum problems.

We can, in fact, think of only one way in which an external quality amplifier can be used safely and successfully with a television receiver which is live to the mains. This is to take the output, not at audio, but at the sound i.f. To do this, the sound i.f. amplifier would have to be split at its middle, only the first stage remaining in the receiver, with the second stage and the ratio detector forming an external unit which is mounted close to the a.f. amplifier and which is fed either from this amplifier's h.t. supply or from its own separate supply through a mains transformer.

The problem of insulation is now transferred to an r.f. transformer at 6 MHz and is relatively easy. In fact, the transformer installation could be supplemented by capacitors since these need now pass only radio-frequency.

These are our ideas on the subject. Quite a lot of development would be needed, no doubt, to produce a practicable scheme and we do not intend to do this unless there is a considerable demand for it. This is because we do not think that the use of a separate sound system is usually right for television. We agree entirely that it is desirable to have high-quality sound, but there is a factor which most critics of television sound quality overlook. This is the fact that for natural results the sound must appear to originate at the picture. If the sound comes from a loudspeaker which is separated some distance from the picture the effect is quite unpleasant. In our view high-quality sound from a loudspeaker which is appreciably distant from the picture is far less pleasing than ordinary television sound which seems to come straight from the picture.

It is normally impracticable to build high-quality audio equipment into a television set; the size of the loudspeaker alone prevents that. The nearest that one can get to it is to have the loudspeaker mounted behind the television set to minimize the effect of its displacement from the set. In a normal living room this may well be impracticable.

Some measurements

Before concluding this article, we give some miscellaneous notes on the complete equipment as so far described. First, we give some measurements made on a Marconi Instruments Universal Bridge type TF868B at 10 kHz for inductance and Q between various terminals of the line output transformer. These refer to a particular sample but they at least give an indication of the order of magnitude which may be useful if one suspects a defective component. Short-circuited turns, for instance, would reduce inductance and particularly Q, but because of the tight coupling between the sections, probably all the figures would be considerably affected. Such a fault could happen but is not likely. More probable is a high-voltage flash over between parts of the windings which does not show up at all on such a test but which makes itself very evident in operation.

It can happen that the anode of the PL509 gets red hot. This is a sign of greatly excessive anode dissipation and the valve will be damaged if it is operated for any length of time in this condition. It means that the anode current and/or voltage is
much too high. One cause may be the wrong grid drive waveform. It should be a negative pulse of some 200 V amplitude and some $20 \mu \mathrm{sec}$ duration with a fairly slow exponential recovery.

The dissipation will be too great if for any reason the scan amplitude is much too small; in this case the back e.m.f. on the anode will be too small, so that the anode voltage during the scan will be too high.

Measurements on the line output stage are difficult because there are so few earthy points. Referring to Fig. 1, Part 3, it is useful to disconnect C_{19} and R_{26} from the chassis, together with which ever of L_{1} or terminal 6 of the transformer is normally connected to the chassis. Connect all three to chassis through a 1Ω resistor. This should be wire-wound and adjusted to 1Ω within 1%. If desired it can be included permanently. The total mean cathode current can be checked by measuring the voltage across this resistor and is normally 390 mA . The waveform can be checked with an oscilloscope and the peak cathode current measured; this should be 880 mA .

Some indication of the deflector-coil current can be obtained by connecting a 1Ω resistor between terminal 5 and chassis, the line convergence circuit being disconnected. An oscilloscope connected across it indicates the current in the transformer, which is not necessarily exactly that in the deflector coils, but the two are not very different.

In the field timebase it has been found desirable to connect a capacitor of $0.01+\mathrm{F}$ between chassis and the junction of R_{13} with the output transformer primary. This reduces the linefrequency voltages fed into this circuit and improves interlacing.

Point-to-Point Review (see opposite)

Monthly figures and smoothed values of the ionosphere index (IF_{2}) and of the number of sunspots for the past 12 years.

Point-to-Point Review, 1968

by David Wilkinson,* B.Sc., M.I.E.E.

On the whole, 1968 was a good year for h.f. radio communications. Solar activity was sufficient to ensure maximum usable frequencies (MUFs) high enough for all practical purposes and yet conditions remained fairly stable. The efficiency of most h.f. circuits remained good, a monthly average commercial time of 99.1% being maintained on three representative circuits received in the U.K.

For a year of peak solar activity, however, 1968 was remarkably uneventful, due to comparatively low values of sunspot number and ionospheric index (IF2). There seems to be some justification in relating the present solar cycle to that of $1878 / 1882$ (minimum /maximum), both of which have been very quiet and followed by a maximum of enhanced activity.

In order to align their figures with those of Zurich Observatory, the Royal Observatory, Greenwich, twice adjusted their sunspot ' k ' factor; from 0.8 to 0.7 in September 1967 and from 0.7 to 0.75 in November 1968. (The Zurich sunspot number is given by $k(f+10 g)$, where g is the number of sunspot groups and f is the number of spots within those groups. k is a factor to allow for variations between observers and telescopes.) These alterations have not been taken into consideration when calculating smoothed values, which has resulted in the peak of solar activity being slightly masked and offset. They do account, however, for the apparent drop in the Greenwich provisional monthly mean sunspot number for the first eleven months of the year from 103.2 in 1967 to 94.8 in 1968. The peak of solar activity is represented more accurately by the smoothed IF2 curve ${ }^{\dagger}$ which indicates that the maximum probably occurred early in 1968. It is interesting to note from the latest figures available at the time of writing, however, that a second upsurge took place during more recent months, resulting in a plateau effect from the end of 1967 to June 1968.

Forty-five sunspot groups of area greater than 500 millionths of the visible solar hemisphere were reported. Seven were over 1000 millionths, the largest of which grew to 3100 millionths (approximately 3600 million square miles) before splitting in two. It was the largest group since 1947, but caused only partial Dellinger fade-outs and little magnetic disturbance during its passage from June 24th to July 6th. One of the most active sunspots was only 400 millionths in area, flares from which resulted in several Dellinger fade-outs and a magnetic disturbance from October 29th to November 4th, which was more severe than any since May 1967.

Dellinger fade-outs totalled 27 and were evenly distributed throughout the year although it is worth noting that none occurred during March, April or May.

Magnetic activity remained at a comparatively low level during the year, the monthly mean " C " value of readings recorded every three hours at Hartland, Devon, being 0.75, which represents a small increase on the 1967 figure of 0.62 .

[^7]The activity was fairly evenly spread and, apart from the above-mentioned storm, those magnetic disturbances which did occur were not severe and had little effect on h.f. circuit performance.

Satellite communications

There was considerable activity in the field of satellite communications during the year. The first of the Intelsat III satellites was scheduled to be put into orbit on September 18th but, due to a launcher failure, the spacecraft had to be destroyed a few minutes after launch. The subsequent enquiry disclosed that one of the rate gyros on the launch vehicle had failed; there was every reason to expect that the Intelsat III spacecraft was itself perfectly satisfactory. It was fortunately possible to provide coverage of the Mexico Olympic games by employing the NASA experimental satellite ATS III. (The replacement for Intelsat III was successfully launched over the Atlantic Ocean on December 18th). It is intended that additional satellites be launched in 1969, to cover the Pacific and Indian Oceans and also a second over the Atlantic, to cater for the rapidly increasing traffic.

In September, the contract for the Intelsat IV satellites was placed with the Hughes Aircraft Corporation. The satellites should be ready for launch in 1970. A significant part of the later satellites will be built by the British Aircraft Corporation, under a contract worth $£ 2.8$ million. This new generation of satellites will have some twelve times the capacity of Intelsat III.

More earth stations were completed during the year, including those in Moree (Australia), Chile, Mexico, Panama, Spain, Etam and Jamesburg (U.S.A.), Puerto Rico, Thailand and the Philippines. The second paraboloid at Goonhilly was completed; this is now the first earth station to have two large aerials, though second aerials are under construction in Germany and France. The stations in Hong Kong and Bahrain are expected to be complete in mid-1969.

The Piccolo system seems, at last, to have achieved some measure of success, having been commercially produced and installed in the QE2. This system is designed to carry teleprinter channels over noisy h.f. circuits and employs a different tone frequency for each character (32 in all). The first patents of this system were taken out, by members of the Diplomatic Wireless Service, in 1957 and, other than a mention in an I.E.E. Convention in 1963, little interest seems to have been shown until the 1968 R.S.G.B. Exhibition \ddagger. This seems to be another example of the much-publicised British inability to see the commercial possibilities of an invention.

The year seems to have been relatively quiet in the fields of trunk waveguides and optical communications though those working in these fields might not agree.

The author wishes to thank Mr. B. Priestley for collecting all the data on h.f. performance.

[^8]
Personalities

Alan L. Gray, B.Sc., A.Inst.I', for the past 20 years with the Plessey organization, has joined Allied Research Laboratories Ltd., of Luton, as chiefengineer. After graduating in physics at Kings College, London, in 1941, Mr. Gray, who is 45, gained a commission in the R.A.F.V.R. and specialized in radar, serving in 60 Group. He joined Plessey's Braxted Research Laboratory in 1948 and later transferred to the Caswell Research Laboratory where he was concerned with the development of ceramic piezoelectric materials and semiconductors. From 1956 until joining Allied Rescarch Laboratories he was with Plessey Nucleonics, latterly as technical manager.

Roderick Mclnnes, Grad.Inst.P., aged 30 , is appointed applications manager of Philbrick-Nexus Research, the Chichester, Sussex, subsidiary of Teledyne Inc., of Los Angeles. He spent twelve years at the Royal Aircraft Establishment, Farnborough, working on the design and construction of instrumentation and control systems for aircraft and missiles. He was latterly, for one year, with Elliott Automation's Space and Guided Weapons Division working on guidance systems.
The City and Guilds of London Institute has recently presented its Insignia Award (C.G.I.A.) to P. Beckley, B.Sc., A.M.I.E.E., A.M.I.E.R.E., aged 32 , a senior physicist with the Steel Company of Wales Lid., Newport, for his thesis "Sensors for automation"; 10 J . Hel szajn, M.I.E.R.E., aged 34, who is reading for a PhD. degree at the University of Leeds, for his thesis " A general characterisation of the three port ferrite junction circulator"; and to E. G. Jarvis, aged 48, an executive engineer with the Post Office Research Laboratory, Backwell, Bristol, for his thesis "Multiaccess satellite repeaters".
P. J. Smith has joined the staff of Anglia Transformers Lid., of Farnham, Surrey, as technical manager. Mr. Smith served his apprenticeship at Foster Transformers with whom he remained for thirteen years before joining Gardners Transformers, where be became chief designer and latterly technical sales engineer.

John Matchett, B.Sc., who is 24 and joined Honeywell Controls Lid. in 1960 as a craft apprentice, has been selected as the company's "apprentice of the year" and his prize is a three-month trip to the United States to Honeywell's industrial division at Fort Washington. He studied for his degree which he gained with first class honours from Glasgow University, under the company's training scheme. He is now an applications engineer in the industrial products group.

The appointment of two new assistant superintendent engineers in the Transmitter Group was recently announced by the B.B.C. G.I.F. Tupper, M.I.E.E., A.M.I.E.R.E., is appointed to the post in Transmitter I department, dealing with v.h.f. and u.h.f. stations and M. Clough, M.I.E.E., in Transmitter II Department, which is concerned with 1.f., m.f. and h.f. stations in the United Kingdom and overseas. Mr. Tupper joined the B.B.C. in 1943 at Droitwich. In 1960 he transferred to the headquarters staff of Transmitter Department where he has latterly been concerned with the general development of the v.h.f. and u.h.f. transmitter network and the extension of colour television. Mr. Clough also joined the Corporation in 1943 and after service at several transmitting stations joined the headquarters staff of Transmitter Department in 1959. Since 1961 Mr. Clough has been head of the site acquisition section.

Kenneth L. Smith, B.Sc., who is well known in British amateur transmitting circles (his call is G3JIX), has been appointed to a senior research associateship in the department of electronics in the University of Kent at Canterbury. He graduated in physics at London University in 1962 and then did three years' research in infrared spectroscopy at the Northern Polytechnic, London. Since 1965 until his recent appointment he was head of the physics department at Holloway School, North London.
E. Trevor Thomas, formerly managing director of Sound Coverage Lid., has joined Leevers-Rich Equipment Lid., of Wandsworth, London, as general manager.

William Logan, a director of Baird and Tatlock (London) Lid., is the new chairman of the Instruments, Electronics and Automation Exhibition, held biennially in London. Mr. Logan retired, with the rank of major, from R.E.M.E. after fifteen years' service (during which he work ed for some time at the Radar Research Establishment at Malvern) and spent 16 years with Avo Lid., latterly as sales director, before joining Baird and Tatlock two years ago. He was president of the Scientific Instrument Manufacturers' Association from 1964 to 1965 and is a member of the Court of the Worshipful Company of Scientific Instrument Makers.

Maurice Cufflin, B.Sc., has inined English Electric Valve Co. Lid., at Chelmsford, as sales engineer. He graduated from Queen Mary College, University of London, with an honours degree in physics in 1935 and joined Marconi, working on communications and navigational equipment for aircraft. In 1949 Mr . Cufflin went to the Marconi Research Laboratories at Great Baddow where he was appointed chief of the measurements research group in 1957, in which work ranged from d.c. to millimetric waves. In 1965 he became engineering manager of Marconi's Automation Division.

John Locke, who has been with Marconi Instruments Lid. since I950, is appointed service representative and will be particularly concerned with customer liaison with the company's repair and calibration service. Before joining M. I. he was for eight years with E. K. Cole Lid., working on the test and calibration of airborne telecommunication and direction-finding equipment.
J. H. W. Costin, B.Sc., A.M.I.E.E., recently ioined Emihus Microcomponents L.id., of Glenrothes, Fifeshire, Scotland, as product sales manager (welding and special assemblies). He graduated in electrical engineering from Kings College, London University, in 1959. He then spent two years with Associated Electrical Industries as a graduate apprentice. From 1962 to 1965 he was with Standard Telephones and Cables at Footscray as a senior process engineer concerned with the manufacture of semiconductors. Mr. Costin was latterly with Mullard as a specialist semiconductor sales engineer.
V. G. Oastler, London area manager of the Marconi International Marine Co., has retired after nearly 40 years' service with the company. He began his career as a sea-going radio officer and then served on the technical staff of several of the company's depots. In 1966 he was appointed manager, London area, with responsibility for co-ordinating the company's installation and maintenance activities, not only in the vast Port of London, but in all the other ports of south east England from Clacton 10 Shoreham.

New Year Honours

Among the recipients of life peerages conferred by the Queen in the New Year Honours were Professor P. M. S. Blackett, O.M., C.H., president of the Royal Society.

New Knights Bachelor include Morien Bedford Morgan, C.B., controller of guided weapons and electronics, Ministry of Technology, and F. Neil Sutherland, C.B.E., M.A., F.I.E.E., chairman of the Marconi Company and of the Conference of the Electronics Industry.

C.B.

J. V. Dunworth, C.B.E., M.A., Ph.D., F.I.E.E., director, National Physical Laboratory.
W. Millward, C.B.E., superintending director, Government Communications Headquarters.
C.B.E.
J. Howlett, director, Atlas Computer Laboratory, Science Res. Council.
Col. R. Knowles, F.I.E.R.E., late R.E.M.E.
D. B. Weigall, deputy director of engineering, B.B.C.
O.B.E.

Lt. Col. A. C. Bate, M.B.E., Royal Corps of Signals.
Lt. Col. P. H. Flear, Royal Corps of Signals.
R. M. Billington, T.D., M.Sc.(Eng.), F.I.E.E., inspector of wireless telegraphy, G.P.O.
R. H. W. Burkett, B.Sc., F.I.E.E., managing director, Welwyn Electric Lid.
B. R. Greenhead, director of studio and engineering, Thames Television.
A. C. Heathcote, director, Posts and Telecommunications, Lesotho.
M. D. Mason, M.B.E., superintending electronic/communications engineer, Government Communications Headquarters.
Lt. Col. F. P. Nurdin, sales director, British Communications Corporation.
F. D. Outridge, director, Scientific Instrument Manufacturers Association.
Lt. Col. J. L. Purdon, F.I.E.R.E., Royal Corps of Signals.
Lt. Col. J. J. H. Swallow, B.Sc.(Eng.), F.I.E.E., Royal Corps of Signals.
J. M. J. Whellens, B.Sc., M.I.E.E., principal engineer, G.E.C.-A.E.I. (Electronics).
R. C. G. Williams, Ph.D., B.Sc.(Eng.), F.I.E.E., chief engineer, Philips' Electronic and Associated Industries I.td.

M.B.E.

G. F. Budden, M.I.E.R.E., assistant engineer-in-charge, operations, North Region B.B.C.

Royal Victorian Medal
Chief Radio Supervisor L. L. Fuller, Royal Navy.

World of Amateur Radio

Big Increase in "B" Licences

During recent months the rate of increase in the number of current U.K. Amateur (Sound) "B" licences-which do not require the passing of any Morse test but which restrict operation to frequencies above 144 MHz -has risen very rapidly when compared with the issue of new " A " licences. The " A " licences permit operation on all amateur bands after passing a 12 -word-per-minute Morse test. Both " A " and " B " licences require that applicants should have passed the written Radio Amateurs' Examination. Callsigns in the sequence G8 plus three letters are issued to " B " licensees. In the three months, August 31 to November 30, 1968, "B" licences increased from 1058 to 1327 , a rise of 269 or about 25%. This compared with an increase of 155 in the "A" licences, from 12903 to 13058 or roughly 1.2%. Sound mobile " B " licences are similarly increasing at a rapid rate, the total having risen by almost six times in a year, from 22 to 128. U.K. licences at November 30, 1968, were: Sound "A" 13058; Sound "B" 1327; Sound "A" mobile 2578; Sound "B" mobile 128; Amateur television 186. The position twelve months earlier was: 12597; 693; 2396; 22; and 176. During this period model radio control licences have risen from 12016 to 14978. The marked rise in popularity of the " B " licence follows the concession in spring 1968 when the licence was extended to include operation in the 144 MHz band; it is also similar to the experience of a number of other European countries where it has been shown that non-Morse v.h.f. licences tend to attract a substantial proportion of total applicants. " B " licences thus seem certain to have important repercussions on the future pattern of amateur activity.

Security Risk ?

British amateurs have been disturbed at what they believe to have been unduly adverse publicity directed at the hobby following the publication of the official Security Commission report (HMSO, Cmnd 3856) on the circumstances surrounding the case of D. R. Britten, the R.A.F. chief technician who pleaded guilty to offences under the Official Secrets Acts. Britten had held the amateur licence G3KFL since the early 1950 s , and admitted to supplying secret
information over a long period to Russian intelligence during personal meetings. In view of the opportunities which amateur radio affords for a hostile intelligence service to talent-spot potential agents and to communicate with them, the Commission suggested that the case justifies a reassessment of security risks attaching to amateur radio activities by members of the armed forces and public service. At the same time, although this received far less press and broadcast comment, the report made it clear that the R.A.F. "see great merit in amateur radio clubs, which have a high interest and training value for many on signals work". The report also shows that the widely reported story of Britten being initially hailed by his amateur callsign by a Russian short-wave listener at the Science Museum is not accepted as true by the Commission. Amateur radio circles believe that most enthusiasts have long appreciated the need for reasonable prudence in communicating with overseas stations, and are alert to any possible attempt to use their privileges for purposes of covert communication. Furthermore they can point to the role of amateur operators in assisting military and special communications during World War II.

Open Weekend

An "Open Weekend" at the new R.S.G.B. headquarters at 35 Doughty Street, recently attracted some hundreds of amateurs and friends. Three stations, specially installed for the occasion, made nearly 400 contacts. The R.S.G.B. state that consideration is being given to setting up a permanent headquarters station.

ARRL DX Contest

The 35th ARRL International DX Com-petition-the doyen of the big amateur longdistance contests-is being held this year, as usual, over four weekends, two for telephony operation and two for c.w. Dates and times are: Telephony, February 1, 00.01 g.m.t. to February 2, 23.59 g.m.t. March 1, 00.01 g.m.t. to March 2, 23.59 g.m.t. C.W. February 15, 00.01 g.m.t. to February $16,23.59$ g.m.t.; March $15,00.01$ g.m.t. to March 16, 23.59 g.m.t.

New Moonbounce Record

A new earth-moon-earth (EME) record for the $1296 \mathrm{MHz}(23 \mathrm{~cm})$ band has been estab-
lished by Peter Blair, G3LTF of Chelmsford who successfully contacted on this mode the Californian amateur station WB6IOM. Blair was using a $15-\mathrm{ft}$ dish aerial and 150 -watt transmitter. WB6IOM had 500 watts of power and a $10-\mathrm{ft}$ dish aerial. Both stations used parametric amplifiers and bandwidth was about 75 Hz with signals just audible above the noise level.

"Radio News of 1968"

A new R.S.G.B. $16-\mathrm{mm}$ sound film "Radio News of $1968^{\prime \prime}$ was well received at its first showing at the society's a.g.m. in December. This magazine-style film runs for 29 minutes and includes items on amateur radio astronomy, reception of cloud-cover maps from weather satellites on homeconstructed equipment, the GB2LO station at the 1968 City of London Festival, glimpses of amateur-operating during National Field Day, moonbounce equipment used by station G3LTF, and the 1968 R.S.G.B. exhibition. A similar film venture, including shots of British radio amateurs and stations, is currently being undertaken by the American Radio Relay League.

Australian Youth Radio Clubs' Scheme

The first national conference of the Youth Radio Clubs' scheme of Australia took place recently at the headquarters of the Victorian Division of the Wireless Institute of Australia, Melbourne. The purpose of the conference was to organise the state groups on a national basis, and to ensure uniformity of syllabuses, certificates and examinations throughout Australia. This was successfully achieved and the scheme has been adopted by the Wireless Institute of Australia (national amateur radio society for that country), as part of its educational activities.

Jamboree-on-the-air

L. F. Jarrell (VE3EWE/G3UXZ / HB9AMS), director of administration at the Boy Scout World Bureau now established at 72 Bd. St. Georges, Geneva, is anxious that amateur radio societies throughout the world shall avoid arranging international contests to clash with future Jamborees-on-the-air. The 1969 event-the 12th-has been fixed for the weekend October 18-19, and it is planned that future J.O.T.A. shall be held during the third full weekend in October each year.

Amateur Radio in Hungary

The Hungarian Amateur Radio Society (M.R.S.) has made application to join the International Amateur Radio Union. Amateur radio in Hungary is organized on lines similar to those in force elsewhere in Europe, licences are issued by the Ministry of Posts and Transport who also arrange Morse code tests and technical examinations. There are 750 licensed amateurs in the country and the address of the society is Magyar Radio-amator Szovetseg, Budapest VI, Gorkij Fasor 6, Hungary.

New Products

Signal Recovery Equipment

The third generation of Brookdeal Instruments signal recovery systems, based on the principle of correlation detection, are devised around their phase-sensitive detector type 411. This instrument has a specified zero stability, linearity and frequency response which are claimed to lead this particular field. Complementary instruments are the type 451 nanovolt pre-amplifiet and type 450 low-noise amplifier. A different type of signal recovery system has recently been introduced by this company for plotting the waveform of signals buried in noise such as are found in experiments on fluorescent decay, radar signals and spin-lattice relaxation time. The system is designated Boxcar Detector type $415 / 425$. It is able to plot waveforms with a resolution of 10 ns . The range of repetition rate is 0.2 Hz to 1 MHz and sampling pulse width 0.5 s to 10 ns . Scan time is $1-2000 \mathrm{~s}$ and zero drift less than 0.01% deg C^{-1}. Financial backing for expansion has recently been secured by Brookdeal by an agreement with Fulcra Finance Ltd. which has acquired a 33% interest in the company. Brookdeal Electronics Lid., 2 Myron Place, Lewisham, London, S.E.13.
ww $\mathbf{3 0 5}$ for further details

I.C. Logics Circuits Check

The presence of " O " or " 1 " logic states and the occurrence of single pulses as short as 30 ns are indicated when checking the performance of logic circuits with a new hand-held probe by Hewlett Packard. Designed for use with i.c. circuits, the probe, type 10525 A , is compatible with t.t.l. and d.t.l. 5 V logic systems. Threshold level is +1.4 V . Above this level an indicator light near the tip of the probe is on; below +1.4 V the light is off. No triggering or threshold adjustments are required and protection against accidental overlead up to 200 V is provided. Input impedance is $10 \mathrm{k} \Omega$ Power for the probe can be obtained from an independent supply or from the power line of the circuit under test via a cable

with adaptors. Consumption is 75 mA at 5 V and operating temperature range $0-55^{\circ} \mathrm{C}$. Price: $£ 43$ 12s. Hewlett Packard Lid., 224 Bath Road, Slough, Bucks.
Ww 312 for further details

Die-cast Boxes

Four new die-cast boxes by Electronic Services extend their range to nine sizes from $100 \times 75 \times$ 25 mm to $280 \times 180 \times 150 \mathrm{~mm}$. The new larger sizes incorporate the slot guide system used on

the original range. The die-cast construction offers ruggedness with lightness and the screening properties may be valuable in some applications. Electronic Services, Edinburgh Way, Harlow, Essex.
WW 313 for further details

Thermally Stable Soldering Irons and Long-life Bits

Two temperature-controlled soldering irons, Litestat 50 and Litestat 70 have been introduced to the range of irons manufactured by Light Soldering Developments Lid. Of 50 and 70W loading respectively, they have handles moulded of translucent plastics through which an internal indicator lamp shows when the elements are energized, Temperature stability is within $\pm 2 \frac{1}{2}^{\circ} \mathrm{C}$ during idling and is achieved by a mechanical system operating a micro-switch inside the handle, via a push rod, in response to thermal expansion of the copper element core unit. Close thermal coupling ensures rapid response will.,ut temperature overshoot. Operating temper ir. e is continuously variable, without dismantlins, between approximately 200 and $420 \mathrm{deg} \mathrm{C}. \mathrm{Screw-on}$ copper bits are available in four sizes for each model. Basic prices are: $£ 416 \mathrm{~s}(50 \mathrm{~W})$ and $£ 5$ (70W). A range of Philips iron-coated bits are now

available for Litesold soldering irons giving an estimated life up to 75 times that of copper bits. These new long-life bits are coated with iron to a radial thickness of up to $250 \mu \mathrm{~m}$, covered with a protective coating of nickel, then chromium plated. The coating extends for the full length of the bit but it is not so thick as to impair the heat flow. The bits can be supplied in three standard shapes: chisel (single face), screwdriver and conical. They are not cheap; the price varies from 14 s 6 d for a 10 W version through to $£ 112 \mathrm{~s} 3 \mathrm{~d}$ for a 60W version but this cost is likely to represent a saving in the long term. Light Soldering Developments L.td., 28 Sydenham Road, Croydon, Surrey, CR9 2LL.
WW 306 for further details

Step Recovery Diode

Reverse recovery transients of diodes, occurring during the brief time following forward conduction, can be used to generate significant amounts of power at microwave frequencies. This is because the very abrupt transient is a strong source of high order harmonics and because high conversion efficiencies can be achieved. The augmented reverse conductivity results from the presence of minority carriers, injected and stored during forward conduction. Diodes which are specially designed to enhance storage and to achieve an abrupt transition from reverse stor-age-conduction to cut-off are called step recovery diodes. A new step recovery microwave diode announced by Mullard has a cut-off frequency of 150 GHz and has been developed for use in high-order frequency multipliers with outputs up to 13 GHz . It will provide output powers in the region of 20 mW at 13 GHz when multiplying by a factor of 8 . When tested, with 500 mW 1 GHz input in a "muluiply by ten circuit", the output power at 10 GHz is 15 mW . The diode, type BXY32, is encapsulated in the standard varactor pill package. Other details are: junction capacitance $\left(V_{R}=6 \mathrm{~V}\right) 0.75 \mathrm{pF}$; transition time (max) 150 ps , life time 50 ns and $V_{R} \max .20 \mathrm{~V}$. Mullard Lid., Torrington Place, London, W.C. 1.
ww 323 for further details

"Boxcar" Integrator

Recovery of repetitive waveforms with pulses as short as 10 ns from random noise is the function of a signal averaging instrument announced by Nuclear Measurements of Luton. Known as the PAR model 160 Boxcar Integrator, the instrument's applications could be in all areas where repetitive complex signals must be recovered from noise including pulsed laser studies, evoked response in physical and biological research, and absorption and emission spectrophotometry. The Boxcar Integrator recovers repetitive waveforms or any incremental waveform portion by time averaging a small portion of a coherent waveform over a large number of repetitions. This results in an average value of noise which approaches zero,

Decca solid-stute amplifiers

Frequency in MHz

m Volts
RMS into 50 ohm load

- Frequency range $10-400 \mathrm{MHz}$
- Gain greater than 30 dB
- P.N.P. Epitaxial Planar Transistors Decca Radar

- Robust and Rugged

Or if your need is narrow-band I.F., why not ask for details of the Decca range of low-noise pre-amplifiers backed up by an extensive range of main amplifiers? Over 20 different types kept in stock.

For full details contact -
Decca Radar Limited, Instrument Division, Lyon Road, Walton-on-Thames, Surrey.
Telephone: Walton-on-Thames 28851 (Ext. 145)

YOU Want PARTS URGENTLY
 -almost immediately!

So what do you do?

You reach for the 'phone and dial ONO 2398072 , if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require. Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072

WW-112 FOR FURTHER DETAILS

Know the latest from C.I.

No. 1

ELAPSED TIME METER SERIES 36

Here is a new Elapsed Time Indicator from C.I. which, although made to their usual high standards, offers considerable price reductions and higher efficiency through the use of injection moulded components and a very high standard of quality control. A small attractive frontal area combines with large figures which can be read at over ten feet. Motors are self starting and fuily protected for dust filled atmospheres and an exceptionally long life, similar to that of an electric clock may be expected.
They will record the time in hours and tenths of hours that an electric circuit or machine has been in use and are invaluable for providing data on servicing and plant maintenance. Further sophistications of Series 36 will shortly be available.

ELECTRO-MAGNETIC AND MECHANICAL COUNTERS IN-LINE DIGITAL DISPLAYS

C.I.'s wide range of counters and Digital Displays is continually being augmented. May we bring your catalogue up to date?

COUNTING INSTRUMENTS LIMITED

Elstree Way, Boreham Wood, Herts. Tel. 01-953 4151

Please send details of series 36 Elapsed Time Meter

Name \qquad Position

Company

Address
yielding only the output from the coherent content of the sampled portion. The entire waveform is recovered by scanning the interval of interest. The range of aperture times available is 10 ns to 0.55 s , and variable averaging time constants are from 3 ns to 100 s . A variable bandwidth prefilter and $\mathbf{a} . \mathrm{m}$. limiting circuit are provided. Nuclear Measurements, Dalroad Industrial Estate, Dallow Road, Luton, Bedfordshire.
WW 310 for further details

Miniature Capacitors

A tubular capacitor for mounting on printed boards has been introduced by Oxley Developments. This capacitor employs polytetra-

fluoroethylene (p.t.f.e.) as the dielectric medium. Uniformly smooth adjustment and linear reversalfree tuning is claimed. Capacitance value is 2 pF minimum, swing is 5 pF and power factor is better than 0.0005 at 10 kHz . Temperature coefficient is 50 p.p.m. per deg C and insulation resistance $>16^{6} \mathrm{M} \Omega$. Oxley Developments Co. Lad., Priory Park, Ulverston, North Lancashire.
WW 307 for further details

Mains Fuseholders

The irritation of Fuseholders which turn in the panel, twisting the connecting leads, or fuses which defy all attempts to dislodge them from the holder for replacement, has been remedied by Bulgin in three versions of a new panel mounting design to accept $\frac{1}{4} \mathrm{in}$. diameter fuses. A lug prevents the unit turning in the panel, and the fuse is withdrawn with the fuse cap; which is screw fitting. When the fuse is withdrawn the rear (live) contact cannot be reached by the B.S. test finger. Maximum ratings are 15 A at 250 V or 20 A at 32 V and the panel hole required is 15.9 mm plus a keyway, 2.4 mm wide and 1.2 mm deep.

Maximum panel thickness is 5.5 mm . A. F. Bulgin \& Co. Ltd., Bye-pass Road, Barking, Essex.
WW 311 for further details

Radiation Thermometer

Temperature measurements of sea surface, clouds, terrain or any large-scale subjects are made possible by an American radiation thermometer which employs non-contact infrared techniques. The instrument takes the form of a light-weight battery-powered infrared radiometer, type PRT-5, which can be used from aircraft, ships or other platforms. Temperature measurements can be made in any selected range between $-50^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$. The standard model comprises an optical head and a separate solid-state control unit. The optical head may be hand-held or tripod-mounted. It has a 2° field of view
restricted to the $8-14 \mu \mathrm{~m}$ spectral region. Measurements from $-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ are made on three overlapping meter scales. Wavelength region, meter scale and field of view can be modified to suit special measurement requirements. Measurements are independent of distance, provided the target fills the instrument's field of view. Temperature sensitivity is $0.05^{\circ} \mathrm{C}$ above zero and $0.1^{\circ} \mathrm{C}$ below zero, and accuracy is $\pm 0.5^{\circ} \mathrm{C}$. A recorder output is available, of 1 V d.c. at $10 \mathrm{k} \Omega$ or 50 mV d.c. at 500Ω impedance. The internal batteries can be re-charged from 115 V or 230 V $50-400 \mathrm{~Hz}$ mains supplies. Barnes Engineering Co., Stamford, Connecticut, U.S.A. U.K. enquiries to: B \& K Publicity Division, 59 Union Street, London, S.E. 1 .
WW 316 for further details

Voltage Regulators

Three silicon monolithic voltage regulators designed for a regulated output at -15 V contain their own voltage reference element for voltage regulation to 0.1%. They are types 2103, 2104 and 2105 by Philbrick-Nexus. Internal shortcircuit protection is provided and a thermal feedback circuit prevents excessive operating temperature. Type 2103 features an electrical zero adjustment for output voltage in the range -13 to
-17 V and remote sensing is optional for regulation with respect to voltage at the load instead of at the regulator output pin. Type 2104 provides voltage sensing at the output pin with a preset regulator output. The 2103 and 2104 are housed in a TO-99 case and have a power dissipation of 300 mW in free air; one watt with heat sink. Type 2105 also dissipates 300 mW and, with only three terminal leads, provides easy installation. It is housed in a TO-105 non-conductive case. Vol-tage-divider resistors are built into all three regulators and need not be provided by the user. Prices for small quantities are: $2103 £ 6$ 2s 6d, $2104 £ 4$ 15s and 2105 \& 10 s . Philbrick-Nexus Research, 81 a North Street, Chichester, Sussex.
WW 315 for further details

Portable R/T

Compact and light-weight is the claim made by Interplanetric for a new $450-490 \mathrm{MHz}$ band transmitter/receiver designed to be worn by the user. The complete unit weighs 2 kg and comprises a transmitter, receiver, switchblock, microphone, earphone, batteries and either a quarter-wave or half-wave aerial. It is suspended on the person by an adjustable harness. The system is crystal-controlled and provides good line-of-sight short-range communication. Transmitter power output is 100 mW and receiver audio output power 5 mW . Modulation is $\mathrm{f} . \mathrm{m}$., single channel working, with spurious radiation 25 dB down from the power output level. A carrier-operated squelch circuit mutes the audio output during "no signal" periods. The equìpment is powered by mercury cell batteries located in the transmitter and receiver casings. Interplanetric, 39-49 Cowleaze Road, Kingston on Thames, Surrey.
WW 343 for further details

Motor-potentiometer

A motor-potentiometer with principal applications in the automatic adjustment of potentiometer circuits and the production of very long time constants for feedback in control loops has been announced by U.C.E. The unit comprises a motor driving a low torque potentiometer through a compact gear train. Motors are of three types, a measuring motor, a stepping motor and a reversible synchronous motor. Gear ratios available are up to $1: 500,000$ and units with six-speed gearboxes with ratios of up to $1: 500$ for use with low

torque potentiometers can be supplied. Special features include wiper reset, limit switches, wired self-balancing potentiometer systems and wired servo systems for position transmission or computing circuits. Universal Control Equipment Lid., 38 London Road, Stroud, Gloucestershire.
WW 308 for further details

X-band 2W Varactor

The upper frequency limit of Bimode diodes by the Bomac division of Varian has been extended from 8 GHz to 10 GHz by the introduction of a new type, the VAB-824A. Output power is quoted as being typically 2.5 W in a 50% efficient tripler circuit with measurements being taken in the mid-point of the $7-10 \mathrm{GHz}$ range. Varian Associates Lid., Russell House, Molesey Road, Walton-on-Thames, Surrey.
WW 314 for further details

70W Amplifier

A new solid-state power amplifier from Bradmatic provides 70 W output into 4Ω with total harmonic distortion of 0.25% at full output. Input sensitivity is 850 mV into $10 \mathrm{k} \Omega$ for 70 W output and frequency response is $20 \mathrm{~Hz}-20 \mathrm{kHz}$. The amplifier, type SSP2, will operate from $220-250 \mathrm{~V} 50 \mathrm{~Hz}$ or $105-115 \mathrm{~V} 6 \mathrm{~Hz}$ mains input and has a power consumption of 130 VA at full output. A 28 V 100 mA unsmoothed output is available to power auxiliary equipment. The output stage is openand short-circuit proof. Bradmatic Lid., 338 Aldridge Road, Streetly, Sutton Coldfield, W'arwickshire.
WW 326 for further details

A Folded Exponential Horn Loudspeaker

A design for a bass speaker, and details for building a full-range system

Abstract of an article by J. Jecklin*

Fig. 1. Side view of half the horn.

Fig. 2. Perspective view of half the horn.

If a horn with a low frequency cut off of $40-50 \mathrm{~Hz}$ is to be used in a normal room it must, for aesthetic and space-requirement reasons, be folded. Unfortunately, when a horn is folded, its high frequency response deteriorates, but this can be overcome by a properly chosen combination of bass and medium/high frequency loudspeakers. Moreover, the radiation resistance of a folded horn is not independent of frequency, but rises as the latter is increased. This again is obviated in the system described here* by inserting a flared matching section between the hom proper and an acoustic low-pass chamber situated immediately in front of the loudspeaker unit.

The construction of the horn is based on an ingenious suggestion made by Klipsch in 1941. It is divided throughout its entire length into two symmetrical halves. The outer sides of the final section are constituted by the walls forming the rectangular corner of the room in which the horn is installed. The detailed construction is shown, with dimensions in mm, in Figs. 1-4, it being assumed that $\frac{1}{2}$ in. thick plywood or blockboard is used throughout. The dimensions are determined as explained by the author in Funk-technik No. 16 (1967) pp. 591-2.

An even low frequency response is obtained if the stiffness of the air mass in the horn is compensated by the stiffness of the air cushion in the closed housing and a loudspeaker with a very freely suspended diaphragm and low self-resonant frequency is employed.

Among various makes of loudspeakers available, the author has found as a result of listening tests that the Wharfedale W15RS, which proved highly reliable by virtue of its rigid construction, was particularly suitable for the bass section of the system. It is mounted within the front end of the horn assembly behind the rear wall of the closed housing as shown in Figs. 1-4.

For the medium and high frequency section, electrostatic, pressure chamber and cone-type loudspeakers were considered in turn. The first type was rejected owing to its low conversion efficiency and its relatively high bass cut off frequency, the second on the score of its high cost and not detectably superior performance to the cone type. Of

[^9]

Fig. 3. Section E-H of Fig. 1.

Fig. 4. Section I-J of Fig. 1.

Fig. 5. Crossover circuit for full-range loudspeaker system.

Fig. 6. Frequency response of the full-range system.
the various makes available the author found the Goodman's Axiom 80, which has a double cone and a frequency range of 20 $\mathrm{Hz}-20 \mathrm{kHz} \pm 4 \mathrm{~dB}$ the most suitable, mainly on account of its unusual cone suspension system. Owing to the narrowing of the radiated beam at frequencies above about 8 kHz , two such loudspeakers must be used in order to fill the 90° angle formed by the walls in the corner of the room. Many tests were made to ascertain the optimal position for these loudspeakers. It was found that for stereo reproduction in normal rooms they are best mounted in the saddle of the horn, radiating at an angle of 20° upwards and 30° outwards, whereas for mono in small rooms angles of 20° upwards and 15° outwards are preferable.

For the combined system, the calculated cross-over frequency comes out at 350 Hz , the network and its method of connection being shown, with numerical values of the components, in Fig. 5. The overall frequency response of the complete system was measured in a low-reverberation resonancefree room using a narrow-band noise source and a previously calibrated condenser microphone placed in various positions. The mean of eight measurements is shown in Fig. 6.

Although the response curve is not absolutely level at very low frequencies, the unevenness is due to the horn being folded, and not to any artificial resonances which are virtually unavoidable with cabinets and bass reflex housings, and moreover, as compared with the latter, variations in the furnishings of the room have very litule effect on the effective frequency response of the horn system.

The efficiency of conversion of electrical into acoustic energy of the horn described is about 20%, about ten times better than that of a compact box system. The maximum permissable loading is 12 W .

Although exponential horns are now out of fashion, both theoretical considerations and the practical results obtained with the system described here clearly show that they can offer unsurpassable performance, particularly in the bass range. The combination described is eminently suitable for the most exacting professional requirements.

'High Performance A.G.C.'

It has been pointed out that the collector of $T r_{1}$ in Fig. 6 (page 18, Jan. 1969) should go to the base of Tr_{2} as shown in Fig. 2.

February Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

4th. Inst. Electronics-"Practical aspects of acoustic insulation" by R. G. Monk at 18.45 at London School of Hygiene, Keppel St., W.C. 1.
Sth. Inst. Railway Sig. Eng.-"Radar for the railways" by Prof. H. M. Barlow at 18.00 at the I.E.E., Savoy Pl., W.C. 2.

Sth. B.K.S.T.S.-"The importance of colour separation accuracy for films and TV" by B. J. Rogers at 19.30 at Royal Overseas League, St. James's St., S.W. 1.

6th. I.E.R.E.-"Radar echo signatures from birds, insects and bats" by Dr. Glen W. Schaefer at 19.00 at 9 Bedford Sq., W.C. 1 .

7th. R. Instn.-"The hologram" by Dr. D. Gabor at 21.00 at 21 Albemarle St., W. 1 .

13th. I.P.P.S.-Symposium on "The preparation of thin films by the method of sputtering" at 10.00 at the I.E.E., Savoy PI., W.C. 2.

13th. I.E.R.E.-"M.O.S.T. arrays" by Dr. R. C. Foss at 18.00 at 9 Bedford Sq., W.C. 1 .

18th. I.E.R.E.-"Instrumentation and control in float glass manufacture" by G. P. Rigby and M. Hilton at 18.00 at 9 Bedford Sq., W.C. 1 .

18th. Radar \& Electronics Assoc.-"The use of radar in meteorology" at 19.00 at B.I.C.C. Lid., 21 Bloomsbury St., W.C. 1 .

19th. I.E.R.E.-"New approach to h.f. receiver design" by E. T. Wilson at 18.00 at 9 Bedford Sq., w.C. 1 .

20th. R.T.S.-"The process of learning-the future role of educational technology in highet education" by D. E. P. Jenkins at 19.00 at the I.T.A., 70 Brompton Rd., S.W. 3.
26th. I.E.R.E. \& I.E.E.-Colloquium on "Fail-safe techniques for high reliability computer equipment" at 10.30 at the Middx. Hospital Medical School, Cleveland St., W.1.
27th. R.T.S.-"The Yorkshire Television Centre at Leeds" by P. G. Parker and D. J. Whittle at 19.00 at the I.T.A., 70 Brompton Rd., S.W'3.
28th. R. Instn.-"Physics and music" by Prof. C. A. Taylor at 21.00 at 21 Albemarle St., W: 1

BASINGSTOKE

13th. I.E.R.E.-"Management for engineers" by T. G. Clark at 19.30 at the Technical College.

BELFAST

25th. I.E.R.E.-"Engineers must learn to manage" by Harley R. Sykes at 18.30 at the Ashby Inst., Queen's University, Stranmillis Rd.

BIRMINGHAM

11th. Soc. Environmental Engrs.-"Application of random signal analysis to engineering problems" by Dr. C. Ashley at 19.30 at the University.

BOURNEMOUTH

Sth. I.E.E.-"Post Office Tower" by D. C. Jones at 18.30 at the College of Technology.

BRIGHTON

18th. I.E.R.E.-"Electronic organs and associated equipment" by L. F. Hawkes at 18.30 at the College of Technology.

BRISTOL

19th. I.E.R.E. \& I.E.E.-"Active filters" by F. E. J. Girling and E. F. Good at 19.00 at the University.

CAMBRIDGE

4th. I.E.R.E. \& I.E.E.-"Ergonomics in electronic equipment and system design" by B. Shackel at 20.00 at the University Eng'g Labs., Trumpington St.

CARDIFF

12th. I.E.R.E.-"Long-range radio communication" by Dr. G. L. Grisdale at 18.30 at the University of W'ales Inst. of Science \& Technology
14th. R.T.S.-"Stcreophonic broadcasting" by R. S. C. Gundry at 19.00 at Broadcasting House, Llandaff.

CHELTENHAM

18th. I.E.R.E.- "Computer aided circuit design" by E. Wolfendale at 19.00 at the Government Communications Headquarters, Oakley.

EDINBURGH

11th. I.E.R.E. \& I.E.E.-"Electronic signal processing in hospitals" by Dr. J. M. M. Neilson at 18.00 at the Carlton Hotel, North Bridge.

GLASGOW

10th. I.E.R.E. \& I.E.E.-"Electronic signal processing in hospitals" by Dr. J. M. M. Neilson at 18.00 at the University of Strathclyde.

LIVERPOOL

19th. I.E.R.E.-"Electrical and electronic devices associated with railway signalling" by F. Bowyer at 19.00 at the University.

LOUGHBOROUGH

11th I.E.R.E. \& I.E.E.-"A, flexible modular data handling system for satellite use, with particular refer ence to the Black Arrow programme" by E. K. Crampton at 18.30 at the University of Technology.

NEWCASTLE-UPON-TYNE

12th. I.E.R.E.- "Moire fringe digitization of linear and circular movement" by C. N. 'W'. Reece at 18.00 at the Inst. of Mining \& Mech. Engrs., Westgate Rd.

NEWPORT, ISLE OF WIGHT

7th. I.E.R.E_- "Yacht electronics" by Major R. N. B. Gatehouse at 19.00 at the Technical College.

PLYMOUTH

18th. I.E.R.E. \& I.E.E.-"Application of microelectronics" by Dr. S. S. Forte at 19.00 at the College of Technology.

READING

18th. I.E.R.E.-"Positional transducers and precision electronic measurement" by P. Wolfendale at 19.30 at the J. J. Thomson Physical Lab., the University.

RUGELEY

6th. I.E.R.E., I.E.E. \& I.P.O.E.E.-"The design of high-quality transistor power amplifiers" by Dr. A. R. Bailey at 19.00 at Shrewsbury Arms, Market St.

SHRTVENHAM

4th. I.E.R.E. \& I.E.E.-"Modern methods of traffic control" by D. G. Hornby at 18.15 at the Royal Military College of Science.

SWANSEA

12th. I.E.E.T.E.-"Medical electronics" by R. G. Wood at 19.30 at the Applied Sciences Bldg., University College, Singleton Park.

Literature Received

"Catalogue of Electronic Components and Equipment" (2nd edition) from G. W. Smith is now available at 7s 6 d . About half of the 190 pages are devoted to audio and "Ham" equipment. The rest of the catalogue lists a wide range of electronic components including some that are not to be found easily elsewhere. G. W. Smith \& Co. (Radio) Lid, $3 / 34$ Lisle St, L.ondon W.C. 2 .

Brief details of a range of relays are given in a pocket guide we have received from B \& R Relays Lid, Temple Fields, Harlow, Essex. Small conventional relays, heavy contactors and reed relays are included.

WW 401 for further details

Industrial sound equipment, amplifiers, record players, tape recorders, microphones and loudspeakers manufactured by Magneta (B.V.C.). I.td, Ackmar Works, Parsons Green Lane, Fulham, London S.W.6, are described in a series of leaflets.
WW 402 for further details
A bulletin describing a high-speed transistor tester (type T217) for classifying semiconductors on the production line or for incoming component testing has just been released. The instrument is an improved version of the T207 with increased range. Teradyne Lid, 12 Swallow St, London W. 1.
WW403 for further details
"Concise catalogue of Industrial Instrumentation" contains details of a wide variety of tachometers, counters, electronic relays, frequency sensitive switches, position indicators, temperature measuring equipment and hours-gone indicators. It is produced by Smiths Industries Lid, Industrial Instrument Division, Kelvin House, Wembley Park, Middlesex.
WW 404 for further details
"Colour Television Training Courses by E.C.T.T." contains 12-pages which are devoted to details of courses covering various aspects of colour television training from servicing to sales. E.C.T.T. Lid., 45 Walton Rd, East Molesey, Surrey.
WW 405 for further details
The range of lasers and associated equipment available from Laser Associates Lid, 172 Bradford Kd, Slough, Bucks, is briefly outlined in a leaflet. A description of the company is also given.
WW 406 for further details
Switching circuits using a combination of Triacs and gas discharge tubes are presented in a leaflet from Cerberus Lid, CH-8708 Mannedof, Switzerland.
WW 407 for further details
The latest catalogue from Ariel Pressings pictures a range of pressed components, switches and connectors. Ariel Pressings Lid, Wollaton Rd, Beeston, Nollingham.
WW 408 for further details
A folding chart, for pocket or wall use, listing a range of Motorola semiconductors held in stock by Celdis Lid, $43 / 45$ Mifford Rd, Reading, Berks, is now available.
WW 409 for further details
Two new pamphlets from Mullard are (1) "Introducing Silicon Planar Transistors" and (2) "Simple Mptor Speed Control using a Thyristor". Both pamphlets orginate from the Mullard Educational Service, Mullard House, Torrington Place, London W.C. 1
(1) WW 417 for further details
(2) WW 418 for further details

A good deal of information on the types of microphone available and advise on their use is contained in a seven-and-half page quarto typescript we have received from Allbeury Coombs \& Partners. The report, which is called "Microphone Techniques and Applications", is "written round" Beyer microphones. Allbeury Coombs \& Partners, 29 Adam \& Eve Mews, London W. 8.

WW $\mathbf{4 1 1}$ for further details

"Aerosol Aids to Industry" is the title of a small booklet listing such items as anti-oxidant, anti-corrosion, de-greasants, insulants, coolants, anti-static and colloidal graphite compounds in aerosol cans. These items are distributed by Special Products Distributors Lid, 81 Piccadilly, London W.1.

WW $\mathbf{4 1 2}$ for further details

Modular power supplies for digital integrated circuits are described in a brochure received from Oltronix. A typical unit, type MB5-10, provides outputs at up to 10 A from 4.5 to 5.5 V . A 10% change in mains voltage results in about a 0.01% change in output. Oltronix, 99 Bancroft, Hitchin, Herts.
WW 413 for further details
A picoammeter that carries out measurements in the range of $10-2$ to 3 x $10^{-14} \mathrm{~A}$ is described in a leaflet from Keithley Instruments Inc., 28775 Aurora Rd, Cleveland Road, Ohio, U.S.A.
WW 414 for further details

H. F. Predictions-February

MUFs are forecast by the two control point method. Thus, as regards reception in the U.K. from stations beyond about 60° longitude and in the same general direction, MUFs will be the same after sunset for westerly, before sunrise for easterly, routes, duration of the effect increasing with distance. This means that the Montreal and Buenos Aires charts are a good guide to evening reception from the whole of North and South America. An ionospheric index IF2 of 104 has been used to calculate MUFs and a sunspot number of 97 for the LUFs. There is a similarity between recent solar cycles and those of 169 years previously which suggests that the smoothed sunspot number will not exceed 100 for the next 30 years and will be below 50 for two thirds of this period. There is no theoretical support to this observation, so its empirical nature must be borne in mind when considering such long-term predictions.


```
MMedian standard MUF
----- Optimum traffic frequency
-.--- Lowest usable HF
```


Test Your Knowledge

Series devised by L. Ibbotson*, B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

9. Aerials

1. An aerial which will radiate a coherent electromagnetic wave with the same power flux in all directions (an isotropic radiator) is
(a) theoretically impossible
(b) theoretically possible but has never been made
(c) available but never used because of its low gain
(d) used in space communications.
2. A transmitting aerial has a gain of 3 dB . This means that:
(a) it radiates twice as much power as is fed into it from the transmitter
(b) it produces in all directions twice the power flux that would be produced by a reference aerial fed with the same transmitter power at the same distance
(c) in some direction it produces twice the power flux that would be produced by a reference aerial fed with the same transmitter power at the same distance
(d) it radiates all its energy towards the receiver thus causing the received power to have twice the value it would have if energy were radiated equally in all directions.
3. The equivalent absorbing area (effective aperture) of a receiving aerial when compared to the physical area presented by the aerial perpendicular to the direction of propagation of the received wave:
(a) is the same
(b) is always greater
(c) is always less
(d) is in some cases greater, in others less.
4. An aerial when used to transmit has a highly directive polar diagram. When used to receive its polar diagram is:
(a) the same
(b) more directive
(c) less directive
(d) shows no directivity.
5. The radiation resistance of a centre-fed halfwave dipole is of the order of:
(a) 130 hms
(b) 70 ohms
(c) 600 ohms
(d) 1 megohm.
6. From four properties of a half-wave dipole given below select one which does not depend on its thickness:
(a) the radiation resistance
(b) the resonant length
(c) the bandwidth
(d) the gain.
7. A centre-fed dipole which is very much shorter than half a wavelength at the frequency to be radiated has an input impedance which is:
(a) purely resistive with a value much less than that at half-wave resonance
(b) purely resistive with a value much greater than that at half-wave resonance
(c) highly capacitive
(d) highly inductive.
8. A narrow rectangular slot in an infinite conducting sheet when fed between the centres of opposite sides of the slot forms an aerial with similar radiating properties to those of a centre-fed dipole which would just fill the slot. The two differ, however, in certain respects. Select from the four properties below one in which they differ:
(a) the half-wave resonant frequency
(b) the gain
(c) the polar diagram
(d) the plane of polarization.
9. A broadside array of dipoles, fed in phase, is to be built to produce a narrow beam of radiation in a direction perpendicular to the array, the aperture being given. The optimum separation between dipoles is:
(a) as close together as possible
(b) a quarter wavelength
(c) a half wavelength
(d) a wavelength.
10. The driven element of a Yagi array is frequently a folded half-wave dipole. The advantage of using a folded dipole rather than a simple dipole for this purpose is that
(a) it has an input impedance which is four times as great, so that it is much easier to match to the feeder
(b) it is much shorter and requires much shorter parasitic elements thus producing a smaller aerial
(c) it has better directional properties which improve the gain of the array
(d) the amplitude of side-lobes is reduced.
11. A vertical unipole, used to transmit a low frequency signal, usually has a network of buried wires connected to the earth terminal
beneath it so as to improve the conductivity of the earth. This is necessary
(a) to reduce the reactive component of the input impedance
(b) to increase the effective height
(c) to reduce the dissipation of transmitter energy in heat
(d) to increase the proportion of the radiated energy radiated in the ground wave.
12. A common aerial for receiving long-wave and medium-wave (vertically polarized) signals consists of a vertical wire a few metres high with a horizontal wire connected to the upper end. The purpose of the horizontal wire is:
(a) to give capacitance to earth thus increasing the effective height of the vertical section
(b) to receive any incoming signal which may have become horizontally polarized
(c) to make the aerial terminal impedance resistive
(d) to increase the gain of the aerial by making it directive.
13. At high frequencies directional aerial arrays, consisting of a number of coplanar half-wave dipoles mounted in front of a reflecting screen, are used. The elements are generally end-fed. They are fed in this way because:
(a) the input impedance is high so that many elements can be connected in parallel with the same feeder
(b) connecting the feeders to the ends of the dipoles causes least disturbance to the polar diagram
(c) this form of feeding reduces the effect of earth reflections on the radiation pattern (d) end-feeding reduces the effect of mutual impedance between the elements.
14. A rhombic aerial used for transmission is mounted with the plane containing its conductors horizontal. The radiation which it produces is:
(a) entirely horizontally polarized
(b) entirely vertically polarized
(c) horizontally polarized in the main lobe but not in all the side lobes (d) vertically polarized in the main lobe but not in all the side lobes.
15. Which of the following is normally used to transmit a circularly polarized wave?
(a) a dielectric rod aerial
(b) a helical aerial
(c) a lens-corrected horn aerial
(d) a Franklin aerial.
16. A uniformly illuminated aperture (an ideal radiator to which a number of high frequency aerial systems approximate) can produce a narrow beam of radiation. Under conditions in which it does so the beam width of the main lobe in a given plane containing the axis of the main lobe is:
(a) directly proportional to the width of the aperture in that plane
(b) inversely proportional to the width of the aperture in that plane
(c) directly proportional to the area of the aperture
(d) inversely proportional to the area of the aperture.
Answers and Comments page 95

Letter from America

A recent press conference in a small office at Troy, Michigan, not only stirred up electronic circles but created a flurry of interest in Wall Street. The office in question belonged to one Stamford Ovshinsky of Energy Conversion Devices. The meeting was called to announce the publication of an article by the American Physical Society entitled "A description of an a.c. switch made of homogenous film containing no rectifying elements". Reporters were told about a new glassy compound which could supersede transistors in many areas and there was much talk of flat TV sets that could be. hung on the wall and so on. All this was very exciting to the non-technical press and the New York Times had large headlines saying "Glassy Electronic Device May Surpass Transistors" and the solemn Wall Street Journal devoted several columns to the Ovshinsky devices saying "Electron microcircuits using semiconductors are the basis of modern computers and the miniatured circuits used in transistorised radios, TV sets and other electronic machines. Mr Ovshinsky has developed an electronic switch with new materials. A microscopically thin layer of the material separates two electrodes which otherwise carry a current. The material blocks off the current until the force of the current hits a specific voltage. Then, in less than 50 trillionths of a second the material becomes a conductor . . . the material continues to conduct the current until the voltage drops. . . . What is exciting the physicists is that Mr. Ovshinsky's materials aren't crystalline in the atomic structure as all other semiconductors are. In a crystal the atoms are in an extremely evenly spaced geometric orderly arrangement. The Ovshinsky materials, however, consist of a variety of different atoms linked together in a disorderly fashion, a structure known to scientists as an 'amorphous' material. They are actually glasses composed of a mixture of tellurium, arsenic, silicon, germanium and other elements. By contrast, conventional semiconductors are crystalline forms of elements such as silicon and germanium. Ovshinsky materials are made fairly cheaply and easily. Common chemicals are weighed on a simple scale, mixed and then placed in a small furnace. There they are heated to 1000 deg for 24 hours until they fuse into a chunk of gray opaque glass . . . a small chip of this glass can be evaporated in a vacuum and laid down as a microscopic film.

Or the material can be simply painted on. One advantage of the Ovshinsky devices is that they can operate on alternating current. Conventional semiconductors can pass an electric current in only one direction but the new semiconductors work regardless of which direction the current is flowing. Reporters were shown a memory switch made of the new materials. This memory switch, as with the threshold switch, is a non-conductor until the current flowing through hits a certain voltage; it then becomes a conductor. However, if the current is suddenly turned off the device doesn't revert to a nonconductor. Instead, it will stay in its conducting state indefinitely until it is hit with an electric pulse. An array of these devices, they explained, could permanently store the on-off pattern as long as needed. . . . Thus, they suggested, computer memories could be mailed across the country for example.
Mr. Ovshinsky envisioned a picture frame sized TV set. Essentially, it would consist of an array of tiny dots of the new semiconductor behind a coating of phosphors that coat conventional TV screens. These would be sandwiched between a grid of strips of conducting materials in the rear and transparent conductors in the front. As the electronic TV signals swept through the grid of the conductors in the rear it would cause the tiny semiconductors either to block or pass the current. Where it would pass the current the phosphors would glow creating the TV image. . . . Non-exclusive licences for the new materials have already been granted to International Telephone \& Telegraph, L. M. Ericsson of Sweden and Danfoss of Denmark."

Publicity of this kind caused a tremendous rise in E.C.D. shares, but, the reaction from the industry was, to say the least, a little cautious. It was pointed out that these devices were not really new and that the first article appeared in Control as far back as April 1964. This was entitled "The threshold switch, a new component for a.c. control". Another article was published by Electronics in September 1966 and at that time Mr. Ovshinsky said his invention would shake the industry. At the moment the industry is still unshaken. RCA say they have tested the devices and Dr. Webster of the Princeton laboratories says "we have found no significant use for them", Raytheon are said to have found them erratic and Texas Instruments reported some instability problems and expressed doubt that they could be
produced in quantities. Dr. Sparks of Bell Telephone said "There are relatively few applications for two-terminal devices, also the materials are more complex than crystalline structures and are less understood". He went on to say "they are not easily controlled and in our experience have exhibited considerable jitter in switching characteristics". Bell have patents for amorphous devices dating back to 1961, but, they stated recently that these devices do not warrant a major development programme. On the other hand, Sir Neville Mott, director of the Cavendish Laboratories, said "the discovery of the Ov shinsky effect is the newest, biggest and most exciting discovery in solid state physics at the moment". Mr. Ovshinsky himself said he is delighted by all the publicity and, undeterred by all the controversy, his company is busily making some 150,000 devices a day.

At the recent Audio Engineering Society Convention (held in the Park-Sheraton Hotel, Washington, instead of the Barbizon Plaza because of the heavy demand for space in the exhibition section) Ampex were demonstrating a new high-speed cassette stereo tape duplicating unit which featured remote control operation, plug-in heads, separate recording of each instrument and up to 24 channels. Tape-Athon Corporation were showing their new tape recorder intended for station monitoring. At a tape speed of $11 / 32 \mathrm{in}$. per second it will operate over 400 hours using a $10 \frac{1}{2} \mathrm{in}$. reel of tripleplay tape! Signal to noise is given as 38 dB and a response of $\pm 3 \mathrm{~dB}$ from 200 to 3000 Hz . Not hi-fi, of course, but adequate for its purpose. Ray Dolby was demonstrating his system (this time he was using Lansing speakers); and again I was impressed with the remarkable improvement in signal-noise. One of the most interesting items was the Model 1925 Multifilter by General Radio. This new unit contains 30 channels of parallel octave band or one-third octave band filters in the frequency range from 3.15 Hz to 80 kHz . There are several options of frequency range and bandwidth; it can also be supplied without attenuators. It was demonstrated as a spectrum shaper showing an indication of the curve on the scale which is calibrated at 5 in per decade. Vertical range is 10 dB per inch and each attenuator has a 1 dB per step resolution with a control of 50 dB .
America is a country of contrasts, a land of extremes where you can see great wealth next to appalling poverty and the most selfish money grabbing side by side with incredible generosity. Huge corporations can be soul destroying, yet many have a higher regard for individual freedom and civic responsibitity than similar concerns almost anywhere ir the world. I am used to these contradictions so I was not surprised when I read about Lockheed Project LEND. The letters stanc for Lockheed Engineers for National Deploy ment and it is a programme which estab lishes a reserve of experienced engineers who are lent for specific periods to other com panies who have need of their particula talents. So far the company has lent ou more than 100 engineers to companies sucl as Philco, Chrysler, LTV and Genera Dynamics.
G. W. TILLETT

Answers to "Test Your Knowledge" -9

Questions on page 93

1. (a)

2. (c). The reference aerial is usually an isotropic radiator for which the power flux can be calculated even though it cannot physically exist. A Hertzian dipole, or a half-- wave dipole, radiating in the direction giving maximum power flux, sometimes used as reference.
3. (d). The effective aperture of a half-wave dipole is much greater than its physical area; that of a microwave horn aerial is less.
4. (a). This follows from the Reciprocity Theorem.
5. (b).
6. (d). If the thickness is increased the radiation resistance falls, the resonant length becomes shorter, the bandwidth increases, but the polar diagram, and hence the gain, remains the same.
7. (c). The resistive component, which accounts for radiated energy (so long as Joulean losses are small enough to be neglected) is much smaller than the radiation resistance at half-wave resonance.
8. (d). The dipole produces waves with electric vectors in planes containing the dipole, the slot produces waves with electric vectors in planes perpendicular to the length of the slot
9. (c). If the elements are spaced wider than half a wavelength "end-fire" lobes occur, causing energy to be radiated along the axis of the array. For spacing less than half a wavelength mutual impedance between the elements causes undesirable effects.
10. (a). Mutual impedance between the driven element and the parasitic elements reduces the input impedance of the driven element-typically to such an extent that the input impedance of a folded dipole in this application is a good match to 70 ohm coax.
11. (c). The functioning of a unipole aerial involves the flow of radial currents in the earth around it. Since the unipole must be short compared to a quarter wavelength at such a frequency the radiation resistance is only two or three ohms or less. Hence dissipative resistance has a marked effect on the aerial efficiency.
12. (a).
13. (a). Two adjacent dipoles fed from adjacent ends in antiphase so that they radiate in phase are equivalent to a centre-fed full-wave dipole. This typically has an impedance of several thousand ohms so that a number can be conveniently fed in parallel from a twin-wire feeder of characteristic resistance in the region of 600 ohms.
14. (c).
15. (b).
16. (b). Provided the aperture is many wavelengths across, the angle of the main lobe between half-power points is approximately λ / a radians, where λ is the wavelength and a is the aperture width in the plane concerned.

BULGIN
 PLUGS AND SOCKETS

List No. P. 552 Socker

List No. P. 551 Plug List No. P. 550 Plug \& Socket together
This Unique and Versatile Polarised 8 -pole ($7+$ Earth) Inlet or Outlet Connector has a maximum rating of $6 \mathrm{~A} .250 \mathrm{~V} . \& /$ or 10 A .2 .5 V . at $50 \sim$ and is so designed as to provide comprehensive safety when un-mated being fully shrouded and as entirely safe to handle as when mated. Polarised and Keyed, mis-mating is impossible, consequently the poles can be connected as wanted and a single connector can provide up 10:-Mains-in, Mains-out after switching with choices and Auxiliary Voltage out with choices. The advantages of this connector are obvious and the extra safety conferred will appeal to all users.

A SMALL SELECTION FROM OUR RANGE OF OVER 150 VARIETIES

Screw-locking single-pole con nector, panel mounting socket. solder connections. 5A. 250V.~ rating.

List No. P. 360
Miniature three pole general purpose connector. panel mounting plug. 1.5 A . $250 \mathrm{~V} \cong$ rating.

Three pole facility outlet for mains to sub-unit connections. 5A. $250 \mathrm{~V} . \sim$ rating.

Flex-lead two pin models suitable for extension uses, terminal connections. 5A. 250V.~ rating.

List No. P. 561

Four pole miniature connector. panel mounting socket, shrouded pins on plug. 2 A . 250 V . \cong rating.

List No. P.73/SE
General purpose three pin connector, side cable entry to socket. terminal connections. 5A. $250 \mathrm{~V} \sim$ rating.

Two-pole 'Domina' connectors designed for multiple stacking. solder connections. 5A. 250V.~ rating.

List No. P. 438
Three pole miniature facility outlet. panel mounting socket. soldered connections. 1.5 A . 250V.~ rating

List No. P. 545
Version of P.73/SE left, with push-on-connector tags to panel mounting socket 5A. 250V.~ rating.

OUR FULL RANGE IS LISTED IN FREE BROCHURE NO. 150G/C
A. F. BULGIN \& CO. LTD.,

MANUFACTURERS OF ELECTRICALAND ELECTRONIC COMPONENTS BYE-PASS ROAD : BARKING : ESSEX : ENGLAND

TEL: 01-594 5588 (12 LINES) Private Branch Exchange

COMPONENT BRIDGE SURVEY

D.C. and A.C. Bridges

by T. D. Towers,* M.B.E., M.A., M.I.E.E.

How the electrical characteristics of components can be measured accurately by balancing them exactly against a known-value standard

Nearly one hundred and fifty years ago S. H. Christie first suggesped the bridge principle of measuring component characteristics in "Experimental Determination of the Laws of Magneto-electric Induction", Phil. Trans. Roy. Soc., 1833, Vol. 123, pp. 95-142. In essence the method was to insert the component being measured in a network of known components, two points in the network being connected to a current source and two others "bridged" by an instrument capable of detecting a potential difference. The values of the known network components were then adjusted until a zero reading on the detector showed the bridge points to be at the same potential. The characteristics of the one unknown component could then be calculated from the known components' values. Christie's paper is fascinating. Couched in elegant early Victorian style and with delightful illustrations, it discusses in detail the measurement of resistance for wires of different diameters, lengths and metals for nearly fifty pages without once using the word "resistance" (which had not yet been invented!)

Christie's ideas were neglected for ten years until Sir Charles Wheatstone gave them practical point in "An Account of Several New Instruments and Processes for Determining the Constants of a Voltaic Circuit', Phil. Trans. Roy. Soc. 1843, Vol. 133, pp. 303-327. This paper makes more comfortable reading as it uses the new term "resistance". The result was the original equal-ratio-arms "Wheatstone" bridge of Fig. I (a). In this, when R_{v} is adjusted to give zero deflection in the detector, I, (a d.c. galvanometer or what we now call a centre-reading microammeter), then the unknown resistance R_{X} is equal to the known R_{V}.

In this original Wheatstone arrangement, the calibrated variable resistance, R_{V}, had to be such that it could be set equal to the unknown, R_{X}, the ratio arms, $R-R$, being equal. In 1848 Siemens introduced the unequal ratio arms, $P-Q$, of Fig. I (b). The balance condition becomes $R_{x}=P R V Q$.

[^10]By selecting different ratios of P to Q, it was possible to use one standard variable, R_{V}, to cover a much wider range of unknown resistances, R_{X}. This is the form in which the Wheatstone bridge has been known ever since.

The next basic development took place about 1865, when Clerk Maxwell used the Wheatstone bridge principle to measure inductance values in his "Inductance Ballistic Bridge", shown in basic form in Fig. I (c). In this, L_{X}, R_{X} represents an unknown inductance L_{X} of resistance R_{X}. The bridge is first adjusted for d.c. balance by means of R_{V}. Then the switch $S W$ is opened and the galvanometer, I, allowed to re-settle to zero. When the switch was closed again, the galvanometer needle kicked over before returning to zero. Knowing the ballistic properties of the galvanometer, you could measure the inductance value from the peak needle displacement. (Engineers who use an Avo in its resistance range for a rough estimate of a capacitanct from the kick of the meter needle are using the same sort of process.)

Maxwell then followed up with the "Inductance Null Ballistic Balance" shown in Fig. I (d). In this the switch was first closed, and, after the detector had settled, R_{V} was adjusted for zero deflection. This gave R_{X} in terms of R_{V}, P and Q, all known. Next the switch was opened and closed repetitively, and the inductance L_{V} varied in value until no deflection could be observed on the detector. This gave L_{X} in terms of L_{V}, P and Q.
Between 1870 and 1890 many different versions of the ballistic bridge were dreamedup both for inductance and capacitance measurements. The simple manually-operated on-off switch was soon replaced by a mechanical interruptor or commutator. The telephone (invented by Graham Bell in 1875) often replaced the galvanometer. But in 1891, Max Wien in Ann. der Phys., Vol. 44, pp. 681-712 (1891) introduced the modern a.c. bridge. He abandoned the interruptor method of energising the bridge, and fed the network, as in Fig. I (e), with alternating current of a definite frequency produced by an induction coil in which the primary current was made and broken at a fixed rate by a vibrating wire. He also designed a more sensitive detector in his "optical telephone", This was a magnetic telephone with its diaphragm tunable to
resonance with the a.c. in the bridge, anc with its output displayed by reflecting : beam of light from a mirror attached to th diaphragm. Wien adapted most of the ols ballistic methods to his new a.c. bridg Since Wien, much work has gone in developing more and more refined version of a.c. bridges.
The next big step forward was th "Wagner" earthing arrangement described in IgII by K. W. Wagner, "Zur Messunt dielektrischer Verluste mit der Wechselstrombrucke", Elekt. Zeits., 1911, Vol. 32, pp. 1001-2. This was designed primarily to get rid of what was known as the "head effect" by which the parasitic capacitances from the headphone detector could vitiate at a.c. bridge balance. Fig. I (f) illustrates the basic arrangement of the Wagner earth. Firs the bridge is balanced conventionally with th switch $S W$ in position one by adjusting $Z v$ Then the switch is changed to position tws and R_{E} across the signal source is adjustet again for a null. By continually changin! between position one and two and re adjusting R_{E} and Z_{V} for a null, a fina position is reached where both points b anc d are at earth potential, so that the "heas effect" is eliminated.

Over the years many different a.c bridges have been produced as variants or the Wheatstone arrangement, all essen tially working with arm elements that do no have any cross coupling between them. Then in 1928, Alan Blumlein proposed in Britis! Patent No. 323037 a scheme for replacin the usual fixed isolated ratio arms with pair of tightly coupled inductors as shown i basic form in Fig. I (g). When the bridg is balanced $Z_{X}=Z_{V}$ and equal current flow from c to d and from c to b. Hence ther is no magnetisation of the inductor cort Thus, except for a small effect from th resistance of the windings, there is n potential difference between c and d, between c and a, and thus between b and This produces greater sensitivity in th bridge because the whole of the applie voltage appears across Z_{V} and Z_{X}. Als if the point c is earthed as shown in th diagram, strays from b and d to earth at innocuous, because these points are vi. tually at earth potential. Finally, stra! from a to earth merely load the signal sours and do not affect the bridge balance.
The idea of the inductively-coupled rat arms bridge was not generally exploite
(a)

(C)
e)

(f)

(b)

(d)

(h)

Fig. I: The development of component bridges (a) 1843 Wheatstone: Resistance balance, equal ratio arms, $R-R$; adjusiable standard R_{V}; unknown, R_{x}; (b) 1848 Siemens; resistance balance; unequal ratio arms, $P-Q$. (c) 1865 Maxwell: inductance ballistic bridge.
(d) 1873 Maxwell: inductance null ballistic bridge. (e) 189I W'ien: a.c. bridge. (f) 1911 Wagner: "Wagner earth" bridge. (g) I928 Blumlein: inductively-coupled ratio arms bridge. (h) 1960 Short: two-signal bridge.
until just before and during World War II. Then in 1946 commercial development began and in 1949 a practical design was fully described by H. A. M. Clark and P. B. Vanderlyn in "Double-ratio A.C. Bridges with Inductively-coupled Ratio Arms", Proc. I.E.E., Part III, Vol. 96, 1949, pp. 189-202. Part I of that paper was taken almost verbatim from notes made by Blumlein before his death. C. G. Mayo (B.B.C.), quite independently, designed a similar bridge to Blumlein and was granted patents. Following these events, a whole family of inductively-coupled ratio arms bridges became commercially available. J. F. Golding in Wireless World, June 1961 gave a useful review of the practical constructional problems as well as of the principles of this kind of bridge.

All the Wheatstone-derived bridges described so far have the inconvenience that the bridge oscillator and the detector cannot have a common terminal. The connections of one diagonal of the bridge must be
floating. However, an interesting development was announced in 1960 by G. W. Short in "Two-signal Bridge", Electronic Technology, 1960, p. 452. This used two oscillators of different frequencies in a simple modification of the usual bridge arrangement as in Fig. $I(h)$, and made it possible for the input signal source and the output detector to have a common terminal without shorting one arm. The two input frequencies f_{1} and $f_{2} \mathrm{mix}$ in the diode across the bridge and the bridge unbalance across the diode is sensed by the one-side-earthed detector across the $L C$ circuit tuned to the sum or difference frequency. The tuned circuit offers an effective short circuit to the two separate input frequencies. I am not aware that the system has been exploited commercially.

We have seen how component impedance characteristics can be measured by balancing them against known passive components in a bridge. Voltages can also be measured with great accuracy in a special type of "bridge".

Fig. 2. Voliage measurement by potentio-meter-type balanced bridge.

This is the so-called "potentiometer" circuit given in Fig. 2. Here a potentialdivider network across the known reference supply voltage, V_{K} is adjusted until the indicator, l, shows zero current flow. Then points a and b are at the same potential. Since in balance no current passes through the indicator, there is no load on the potential divider and the unknown voltage at a is given accurately by:

$$
R_{1} V_{K} /\left(R_{1}+R_{2}\right)
$$

With R_{V} accurately calibrated, R_{1} and R_{2} are known and the unknown voltage can be computed. From Fig. 2 it can be seen that the potentiometer is really a three-arm

(b)

(c)

Fig. 3. Some basic arrangements used for d.c. resistance bridges (a) Wheatstone bridge for medium and high resistances as exemplified in internal connections of the P.O. box type of bridge. (b) Carey-Foster slide-wire bridge: for high accuracy midresistance measurements. (c) Kelvin Double-bridge : for low resistances, typically IS downwards.
bridge circuit, and like the full four-arm bridge works on null balance against a known standard.

Classification of component bridges

Component bridges can be arranged to measure resistance (or conductance), capacitance, inductance, incremental inductance (in the presence of a standing current), mutual inductance, incremental mutual inductance, quality factor, phase angle, complex impedance (or admittance). In addition, bridges have been developed to measure active device characteristics such as transistor current gain, and valve or f.e.t. transconductance.
One way of classifying these diverse bridges is into "balanced" and "unbalanced". So far we have considered only balanced bridges, but it can be shown that near balance the reading of the null meter can be correlated closely with the deviation of the component characteristic from the centre value.
Nowadays the balancing of the bridge can be manual, semi-automatic or fully automatic. In semi-automatic bridges, near-balance is achieved manually by switches or push buttons bringing in fixed standards and the final small unbalance is read on a meter. Recently there has been a trend, however, to fully automatic self-balancing bridges. Analogue versions of these incorporate a feedback servo-mechanism and display the measurement as a displacement on a scale. Digital versions, using monolithic integrated circuits, switch themseives to the correct range, display the measured values in some form of digital readout (usually a row of figures) and normally also provide digital outputs for data logging, etc.
Bridges can also be classified by the degree of accuracy to which they can be read. Instruments fall into three main categories: general purpose, semi-precision and precision. Measurements in the first category ordinarily can be made from 0.3 to 3.0% accuracy, in the second 0.03 to 0.3% and in the last better than 0.03%.
The tendency in commercial bridges is to make them capable of measuring as many different characteristics as possible, and the
so-called "universal" bridge has become a lab. commonplace, able to measure at least R, C and L. For very refined measurement of a particular single characteristic, however you will usually find a specialist bridge devoted solely to that characteristic.'

Nowadays the bridge instrument often includes the signal source and detector internally in the equipment, but there may still be facilities for attaching a separate signal source or separate high-precision standards when required. Suitable standards are readily available. These range from an inexpensive $\frac{1}{2}$ to 1% decade capacitane or resistance box to expensive high-precision lab. standards supplied by specialist firms.

The student who is tempted to delve deeper into the vast literature on component bridges should find useful guidelines into the subject in standard references such as Radio and Electronic Laboratory Handbook by M. G. Scroggie (Iliffe Books Ltd.), The Principles of Electrical Measurements by H. Buckingham and E. M. Price (E.U.P.), Alternating Current Bridge Methods by B. Hague (Pitman), Electrical Measurements by F. K. Harris (Chapman and Hall), Electrical Measurements and Measuring Instruments by E. W. Golding and F. C. Widdis (Pitman), and Electronic Measurements by F. E. Terman and J. M. Pettit McGrawHill). At a more popular level you can consult such references as Bridges and Other Null Devices by R. P. Turner (Foulsham) or Electronic Lab. Instrument Practice by T. D. Towers (Iliffe Books).

If you do any reading into bridges, you will immediately be shaken by the vast number of different variants produced over the years. The first classified collection of a.c. bridge networks was published by Max Wien in 1891, following a collection of old ballistic methods by W. E. Sumpner in 1888. Subsequent collections were produced by Rowland (1898), Campbell (1908), Hay (1912), Cone (1920) and others. But the definitive classification was that of J. C. Ferguson in "Classification of Bridge Methods of Measuring Impedances", Trans. Am. I.E.E., 1933, Vol. 52, pp. 861-868. My own private "collection" of bridges now runs close on three hundred.
In the remainder of this article we will look only at the more common bridge

Fig. 4. Well-known bridges that used to be common around laboratories: (on left) P.O. Box d.c. Wheatstone, (on right) Mullard l.f. C-R bridge.

Fig. 5. Basic bridge types other than resistive-Wheatstone commonly used in l.f. bridges. (a) De Sauty: used for measuring C (in combination with a.c. resistive Wheatstone for R) in commercial $C-R$ tester.
(b) Maxwell : for low- Q inductance.
(c) Hay: for high-Q inductance.
circuits widely used commercially, dividing them into three main groups: d.c., l.f., and h.f.

D.C. bridges

Except for very special use, you will not nowadays find in the ordinary lab. singlepurpose d.c. bridges of the Wheatstone type, because so many universal bridges have adequate facilities for resistance measurements. However, where you do come across d.c. bridges, you will usually find that for medium and high resistance values the "straight" Wheatstone circuit of Fig. I(b) given earlier is used. A venerable example of this is the old P.O. box type for which the internal connections are shown in Fig. 3(a). The resistances are non-inductively wound coils connected between brass strips on top of the instrument. Tapered brass plugs, indicated as solid dots in the diagram, are inserted between the strips to short-circuit the resistances as desired. All the s / c plugs are shown inserted in the diagram. If any one is withdrawn, it introduces into circuit a resistance of the value noted beside it in ohms. The arms P and Q are known as "ratio arms" and the plugs can be arrangedto produce resistance ratios of $100: 1,10: 1$ $I: I, I: 10$ and $I: 100$. The variable resistance arm R can be adjusted by 1Ω steps from I to $11,110 \Omega$. Thus by using the ratic arms in conjunction with R it is possible tc balance against an unknown resistance from 0 ol to 1, III, 000Ω. A P.O. box Wheat-
 Measuring in will Measuring inductance with any certainty is difficult; and hit-or-miss methods not only waste time, but lead to expensive complications; which is why M.I. have designed the most comprehensive yet straightforward instrument available for complete inductance analysis.
The TF 2702 Inductor Analyser measures inductance at all frequencies from 20 Hz to 20 kHz , with currents up to $1,000 \mathrm{amps}-\mathrm{DC}, \mathrm{AC}$ or mixed! And it is sensitive enough for measurements at low current levels and for low- Q inductances at high accuracy.

There is no interaction between balance controls, and operation is even further simplified by a
c.r.t. detector, which rapidly indicates the direction of unbalance. A tunable voltmeter gives final balance. A full range of accessories is available.

- Measurement range: $0.3 \mu \mathrm{H}$ to $20,000 \mathrm{H}$
- Internal or external excitation frequencies
- Variable a.c. current and d.c. bias facilities

MARCONI INSTRUMENTS LTD
Longacres, St. Albans, Hertfordshire, England
Telephone: St. Albans 59292 Telex: 23350

it's clear to see. . .

$\begin{array}{ll}81 r^{8} \\ 0 & D \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$

DERRITRON ELECTRONICS LIMITED Instrument division

Sedlescombe Road North, Hastings, Sussex
Telephone Hastings 51372 Telex 95111
stone still stometimes in use in the author's lab. to select meter shunts can be seen on the left in Fig. 4.

Where higher accuracy of resistance measurement is required, the simple Wheatstone is replaced by the Carey-Foster slide-wire modification of Fig. 3(b). This is balariced in three steps. First arms P and Q are selected for an approximate null. Then the null is sharpened by moving the slider over the length l_{1} of the slide-wire, L, which has a resistance of r ohms per unit length. Next R_{Y} and S are interchanged and the slide-wire readjusted to l_{2} to give null again. Then R_{x} is given by:

$$
R_{X}=S+\left(I_{1}-l_{2}\right) r
$$

It should be noted that P and Q do not appear in the final equation. This bridge is specially suited to accurate comparison of an unknown resistance with a standard close to it in value.

When we come to measure low resistances, where contact resistances begin to make up a significant part of the total, we usually find the Kelvin Double-bridge of Fig. 3 (c) used. Here R_{X} is the low resistance to be measured and S is a standard of the same order of magnitude. P, p, Q, q are four known ratio resistances, one pair of which (Q, q) is variable. Q and q are variable in step together so that P / p always equals Q / q. Q and q are varied until the galvanometer deflection becomes zero, when:

$$
R_{X}=S P / Q
$$

In wide-range precision commercial d.c. bridges, accuracies around 0.03% are typical, and the internal bridge arrangement used is switched from a Wheatstone in, say, the 10Ω to $10 \mathrm{M} \Omega$ range to a Kelvin for $10 \mu \Omega$ to 10Ω range. Usually neither a source nor a detector is included internally.

If you want to build your own precision d.c. resistance bridge, you will find a convenient design at p. 124 of R.P. Turner's Basic Electronic Test Instruments (Holt, Rinehart and Winstone).

L.F. bridges

L.F. bridges fall into three main categories: fairly simple $C-R$ bridges, universal $L-C-R$ bridges, and special single-characteristic bridges for inductance for example.

Many relatively cheap commercial bridges are available for measuring C and R over a wide range at medium accuracy. One "old-timer" known to many is pictured on the right side of Fig. 4. Virtually all of these use the De-Sauty bridge circuit shown in Fig. 5(a) for the capacitance measurement, switching to a simple Wheatstone for resistance. M. G. Scroggie in his Radio and Electronic Laboratory Handbook (Iliffe) gives a useful practical design for a simple mainsfrequency 1% bridge for 10 pF to $10 \mu \mathrm{~F}$ and 10Ω to $10 M \Omega$, typical of these.
"Universal" l.f. bridges capable of measuring L, C and R with accuracies of 0.3% or better are widely available. Typically for R and C they use Wheatstone and

(b)

(c)

(d)

Fig. 6. Basic circuits commonly used in commercial h.f. impedance measuring bridges (a) Transformer inductive ratio arms bridge. (b) Adjusiable inducrivelycoupled ratio arms mutual admittance bridge. (c) Schering series-substitution capacitance ratio bridge. (d) Schering parallel-substitution capacitance rutio bridge.

De-Sauty respectively. For L they generally use a "Maxwell" bridge-Fig. 5(b)-for low values and a "Hay" bridge-Fig. 5(c)-for high values.

Inductively-coupled ratio arms techniques described earlier are used in some commercial "in situ" l.f. bridges to measure components in conditions beyond the scope of conventional universal bridges, particularly in the presence of heavy shunting or with components wired in circuit.

Over the years many designs of universal $L C R$ l.f. bridges have been published. A useful complete construction was described recently by L. Nelson-Jones in "Universal Component Bridge", Wireless World, Dec. 1968. p. 434, covering with 1% accuracy the ranges $10 \mu \mathrm{H}$ to $100 \mathrm{H}, 10 \mathrm{pF}$ to $100 \mu \mathrm{~F}$, and

I \& to M』. This included a miniature c.r.t. output display.

Of single-function l.f. bridges quite a number have been on the market in the past, but they tend to be less common nowadays because freely-available widerange multi-function universal bridges make them unnecessary. Even so, such specialised instruments as an "inductor analyser" capable of measuring inductances up to $21,000 \mathrm{H}$ with standing current up to 10 A are on the market. Single-function bridges normally use one of the standard bridge circuits described earlier.

H.F. bridges

Bridges to measure component characteristics above audio frequency become progressively more difficult to design, as the measurement frequency rises. Strays ultimately become of the same order of magnitude as some characteristics being measured. Bridge layout tends to become the main design problem. The basic type of h.f. bridge used tends to be either transformer ratio arms or the "Schering" capacitanceratio Wheatstone-derivative described below.

In practical instruments, the basic induc-tively-coupled ratio arms bridge illustrated earlier in Fig. $I(g)$ is usually the tappedtransformer driven as in Fig. 6(a), where the tappings x, y and z, on the input transformer enable either an inductive or capacitive unknown to be measured. For inductance, tapping x is moved to the right of z. To widen the bridge coverage with given variable standards C_{8} and R_{s}, selective tapping of the inductive ratio arms can be used as shown in Fig. 6(b), thus introducing scale factors of $10: 1,1: 1,1: 10$, and 1 : 100 into the results. The unknown admittance is usually expressed in terms of parallel conductance and capacitance, with negative capacitance corresponding to an inductive unknown.

The other basic bridge common in h.f. measurements is the Schering-derived type of Fig. 6(c) and (d), whose balance equations do not involve the measurement frequency. In the series-substitution version of Fig. 6(c), the bridge is balanced with the test terminals, $T-T$, short circuited. The short circuit is removed and the unknown impedance, $R_{U}+$ $j X_{U}$, connected across the terminals and the bridge rebalanced. R_{U} is then proportional to the change in C_{R} and X_{V} to the change in C_{X} (capacitive if positive and inductive if negative). In the parallel substitution version, Fig. 6(d), balance is first set with nothing connected to the test terminals, $T-T$. The unknown admittance $Y_{U}=$ $G_{U}+\mathrm{j} B_{U}$ is then connected in and the bridge re-balanced. Then G_{U} is inversely proportional to the change in C_{2}, and B_{U} to the change in C_{4} (positive for capacitance and negative for inductance).

Transformer ratio arms and Schering bridges are available commercially for measurements up to 250 MHz . Above this we move firmly into the realm of nonlumped characteristics, and generally find only very specialised admittance bridges using coaxial-line techniques measuring up to around 1500 MHz .

Recent Products

Sullivan decade inductance bridge is a trans-former-ratio arm instrument using a modified Maxwell circuit and it measures inductance and resistance in terms of internal capacitance and conductance. It enables one side of the unknown and one side of the standard to be earthed. Accessories include a signal generator and detector. The bridge will measure up to 11.11 H with a discrimination of $0.002 \mu \mathrm{H}$ and this range can be extended by the use of external capacitance standards. Resistance can be measured up to $100 \mathrm{k} \Omega$ in five decades. H. W. Sullivan Ltd., Murray Road, Orpington, Kent, BR 5 3QU.
WW 371 for further details

Avo universal bridge type B. 150 is batteryoperated and features a digital in-line display. Units of measurement and the decimal position are displayed automatically along with the relevant figures. Capacitance may be measured up to $1199 \mu \mathrm{~F}$, inductance up to 119.9 H and resistance up to $11.99 \mathrm{M} \Omega$ An internal oscillator allows measurements to be made at 1 kHz , but other audio frequencies may be supplied from an external source. A polarizing voltage of up to 500 V can be applied externally in testing electrolytic capacitors.

An inductance adaptor, type A151, is available to allow iron-clad inductors to be measured directly on the bridge with varying d.c. bias current and at different a.c. signals superimposed via the bridge. Avo Lid., Avocet House, Dover, Kent.
WW354 for further details

Startronic resistance measuring bridge type 100.2 is designed for the measurement of lower value resistors. The ranges are -0.05 to 5Ω with an accuracy of 1.5% and 0.5Ω to $50 \mathrm{k} \Omega \Omega$ with an accuracy of 0.5%, in four switched ranges. Type 108.2 is designed for the measurement of resistance in the milliohm range and is powered by internally fitted dry cells. A special feature of this instrument is the ability to vary the resistance measuring current. Range is $0-160 \mathrm{~m} \Omega$

with accuracy $\pm 2 \%$ above 50 m !) and $\pm 1 \mathrm{~m}$ § below 50 m (). The measuring current can be set at $600,300,200,100$ or 50 mA , as required. Both instruments are priced \{39. Startronic Division, Stow Electronics Ltd., Ponswood Industrial Estate, St. Leonards on Sea, Sussex. WW352 for further details

Bruel and Kjaer 100 kHz deviation bridge type 1519, allows for measurements to be made over the following ranges:
$R: 10 \Omega-100 \mathrm{k} \Omega$
C: $12 \mathrm{pF}-1 \mu \mathrm{~F}$
L: $5, \mathrm{dH}-20 \mathrm{mH}$
The bridge voltage is 0.35 volt for all ranges and the voltage appearing across the test component is 0.175 V . The centre point of the bridge can be grounded. B. \& K. Laboratories, Lid., Cross Lances Road, Hounslow, Middx.
WW363 for further details

Advance BR1, is a bridge for the measurement of inductance, capacitance and resistance to an accuracy of at least 1%. An internal transistor oscillator of $1 \mathrm{kHz} \pm 1 \%$ provides the bridge energizing source for the measurement of L, C, and R together with Q of an inductor and loss factor D of a capacitor. Alternatively, an external signal generator of frequency between 20 Hz and 20 kHz may be substituted. A high sensitivity, low noise, bridge amplifier detector precedes the meter circuit and facilitates an accurate and rapid balance condition. The range of measurement for L, C and R is respectively $0.2 \mu \mathrm{H}$ to $110 \mathrm{H}, 0.5 \mathrm{pF}$ to $1100 \mu^{+}$ and $10 \mathrm{~m} \Omega$ tol1M Ω each range being covered in eight decades. Resistance measurements may be achieved using the internal d.c. supply source, a

9-V dry battery, or any externally applied potential not exceeding 500 V d.c. The BR1 is fitted with an isolating transformer enabling it to be used with a wide range of signal generators for measurements at frequencies other than 1 kHz . Advance Electronics Ltd., Roebuck Road, Hainault, Essex. WW366 for further details
'Logohm' (Baldwin) wide-range resistance bridge is a direct-reading Wheatstone portable instrument. It is accurate to within 1%. A galvanometer and dry batteries are contained in the instrument. Balance is obtained by rotating a dial carrying a wire-wound logarithmic potentiometer, thus ensuring smooth and continuous adjustment. The dial carries a logarithmic scale calibrated from 5 to 500Ω. A four-position switch marked XO.01, X1, X100, X 10,000 covers an overall resistance range from 0.05Ω to $5 \mathrm{M} \Omega$. Due to its logarithmic scale, the percentage accuracy is substantially uniform throughout the range of the bridge, and is, within 1%, a degree of accuracy adequate for most practical requirements. A feature of the galvanometer is that its pole-pieces are specially shaped to ensure very high sensitivity at zero for accurate balancing, and low sensitivity on maximum deflection, to prevent damage to the movement when the bridge is well out of balance. The range switch is so connected in the bridge arrangement that its contact resistance does not enter into the bridge equation for balance. P.S.B. Instruments Lid., Palmerston Road, Wealdstone, Harrow, Middx.
WW364 for further details

Sprague Transfarad capacitor analyser measures capacitance between 1 pF and $2000 \mu \mathrm{~F}$ in five overlapping ranges. Normally, 25 V d.c. is applied, but for ceramic capacitors rated below 25 V , insulation resistance may be calculated from leakage current measurements at the exact rated voltage. Power factors between 0 and 50% can be measured by a Wien bridge. Leakage current can be measured between 0.6 and $600 \mu \mathrm{~A}$ in seven ranges, and is read off the meter at the exact rated d.c. voltage of the capacitor. In the a.c. bridge, only 0.5 V is distributed, and less than this appears across the capacitor under test. An electronic indicator simplifies bridge balancing for capacitance and power factor measurements. In testing electrolytics, a polarizing voltage is available continuously adjustable from 0 to 150 V . Sprague Electric (U.K.) Ltd., Trident House, Station Road, Hayes, Middx. WW 350 for further details

British Physical Laboratories' 1 kHz component comparator, model CZ $457 \mathrm{Mk} . \mathrm{V}$, is capable of fast tolerance testing of R, C and L components under mass production conditions. Percentage deviation, covering tolerances from 0.1% upwards, is directly read off multi-coloured scales. Semiconductors are used throughout. The measurement ranges are:
$L 10 \Omega-5 \mathrm{M} \Omega$ and $0.01 \Omega-2.2 \mathrm{M} \Omega$
$C 20 \mathrm{pF}-10 \mu \mathrm{~F}$ and $0.02 \mathrm{pF}-1.8 \mu \mathrm{~F}$
$L 2 \mathrm{mH}-100 \mathrm{H}$ and $2 \mathrm{pH}-18 \mathrm{H}$.
The bridge voltage is less than 500 mV r.m.s.

measure

The Culton 167
Automatic Component Bridge

log

The Culton 267
Digital Comparator/Serialiser
control

The Culton 367 Programmed Limit detector
goods inwards inspection
quality control
research
development

The Culton 167 is ready within five seconds of switch-on, makes measurements to 0.1% without preliminary set-up or manual intervention, measures to as close as $0,01 \%$ with minimum of manual operation.

The Culton 167A Guarded Component Jig takes all sizes of components. even with cropped or mutilated leads, has stray capacity less than 0.01 pF ., triggers the bridge automatically when closed.
component evaluation
production test
quality control
environmental test

Log results for statistical analysis. spot trends and deviations in production processes.
Set nominal value and percentage tolerance on the Culton 267 (20, 10. 5.2 , etc. to $0,05 \%)$, and measure the batch. Numbered entries on typewriter are printed in red if out of tolerance.
The Culton 267 will drive an IBM typewriter or Addo printer. If limit detection is not needed, use the Culton 167 direct into a Kienzle printer.
advanced production techniques
component trimming processes
computer-controlled test systems

The Culton 167 can be addressed with a limit value (by simple contact closure to ground) and gives High/ Low signal within 40 milliseconds to a discrimination of 1 part in ten thousand. Set upper and lower limits on the Culton 367 and get Pass/Fail signal in less than 100 ms . Or, instead of setting switches, use plug-in programme board or tape reader.

TINSLEY HIGH PRECISION RESISTANCE BRIDGES TYPE 5577

A Modern Resistance Bridge in which the variable arm consists of conductance decades, built up in binary increments covering a million steps. Six resistors per decade. lowest resistor 50 ohms therefore switch contact resistance negligible. All resistors in circuit when maximum current is flowing. Built-in lead compensator.
Total range 0.0001 ohms to 100 M ohms in seven ranges. Limit of error at mid-range 0.001%
For full details of this and other instruments in the
 Tinsley range, write to:-

H.TINSLEY \& CO LTD
 Pacemakers in Precision Measurement WERNDEE HALL. SOUTH NORWOOD. LONDON. S.E.25. Tel: 01-654 6046

Accuracy is $\pm 2 \%$ of indicated deviation or 1% of F.s.d. whichever is the greater. British Physical Laboratories, Radlett, Herts.
WW 356 for further details.

General Radio impedance bridge, type 1608-A, measures C, R, L and G with digital readout to an accuracy of $\pm 0.1 \%$. Six bridge circuits cover all possible phase angles so that any network can be measured, even filters, transducers and equalizers. The ranges are as follows:
$C: 0.05 \mathrm{pF}$ to $1100 \mu \mathrm{~F}$ in 7 decades
$L: 0.05 \mu \mathrm{H}$ to 1100 H in 7 decades
$R: 0.05 \mathrm{~m} \Omega$ to $1.1 \mathrm{M} \Omega$ a.c. or d.c.
$G: 0.05$ nanomho to 1.1 mhos a.c. or d.c. Also D and Q. In a.c. resistance and conductance measurements a Q adjustment for precise balancing gives phase information useful in predicting high-frequency behaviour. For production testing of components, a test jig is available. An internal $1 \mathrm{kHz} \pm 1 \%$ generator module is normally supplied but plug-in modules for other frequencies are available. The detector can be external or internal, flat response or selective at the frequency of the plug-in module. Three d.c. supplies are

included for maximum sensitivity over a wide range of frequencies. Operation is from mains supply and consumption is 10 W . General Radio Co. (U.K.) Lid., Bourne End, Bucks.
WW 372 for further details

Capacitance bridge B541C Mk. II by Wayne Kerr allows for rapid capacitor checks, and provides continuous readings of changing values. It has comprehensive faciltites built-in for comparative measurements, for off-selting any deflection (enabling the desired nominal value to be adjusted to mid-scale) and for backing-off the first digit of any reading to give increased meter resolution. The power unit incorporates a rechargeable battery giving long periods of operation independently of 110 or 240 V supplies. Seven ranges cover $0-10 \mathrm{pF}$ to $0-10 \mu \mathrm{~F}$ in decade steps. Voltage and current out puts are provided for recorders, pass/reject systems or control circuits, with a response time of only 60 milliseconds. Bridge circuits of the B541 are constantly maintained in the "balance" condition by a system of feedback. A third terminal is available for screening connections when required. On all ranges accuracy is $\pm \mathbf{0 . 2 5 \%}$ of maximum. Wayne Kerr Co. Ltd., New Malden, Surrey. WW $\mathbf{3 6 7}$ for further details

Culton automatic component bridge, type 167,

 is a transformer-ratio arm bridge with an accuracy of better than 0.1% when measuring L, C or R. Accuracy is controlled by transformer ratios used and by an internal standardized 10 nF capacitor and $10 \mathrm{k} \Omega$ resistor which have been aged and calibrated. The instrument is suitable for checking thick film circuits which contain a number of resistors or capacitors of differemt values on the same substrate, and an input unit can be supplied which enables the bridge to be programmed to give "pass or fail" information. Range selection and balance is auto-
matic. Alternatively, the bridge can be connected to a unit which incorporates a detector and a circuit for driving a printer. Component values can then be logged and compared against values set into the detector; any components outside the set values can be rejected. The bridge measures inductance from 1 mH to 1099.9 H , capacitance from 0.01 pF to 10.999 uF and resistance from 10Ω to $10.999 \mathrm{M} \Omega$. The component to be measured is held in a springoperated Y-shaped clamp. Transistors are used throughout and the bridge power source is a 1 kHz oscillator which becomes 1592 Hz when measuring inductance. Culton Instruments Ltd., Dorking, Surrey.
WW 370 for further details

Siemens universal bridge type M565-A1 operates over the following ranges:

$R: 0.1 \Omega$ to $110 \mathrm{M} \Omega$ in 9 decades

L: $10 \mu \mathrm{H}$ to 1100 H in 8 decades and using a 1000 Hz signal
C: $10 \mu \mathrm{~F}$ to $1100 \mu \mathrm{~F}$ in 9 decades using a 50 Hz signal
A comparison circuit is provided for impedance measurements using an external standard in the range 0.1Ω to $1 \mathrm{M} \Omega$. The scale division is -20% to 0 to $+20 \%$. Error is less than 1.5% of full-scale value, less than 3% of the nominal value in the ranges 10^{1} to 10^{7}, less than 5% of the nominal value in the ranges 10 and 10^{8}, and less than 5% of full scale value (20%) for comparison measurements. A protection circuit is provided for the meter. An auxilliary voltage source of 9 V can be employed from either dry batteries or accumulators. Distributed by Cole Electronics Lid., Lansdowne Road, Croydon CR 9 2HB.
WW 358 for further details

Derritron digital Wheatstone bridge, is balanced in the usual way, null balance being detecred with a sensitive taut suspension galvanometer. The "unknown" resistance value is then given directly by an illuminated display. The display consists of four figures approximately 16 mm high, a decimal point and the correct unit symbol, i.e. $\Omega, \mathrm{k} \Omega$, or $\mathrm{M} \Omega$. The resistance value is given without ambiguity, the operator merely reads in a straight line without having to note pointer positions or to work out the ratio in use. The total range is $0-9.999 \Omega$ in seven sub-ranges. Resistance coils are wound in Constantan and adjusted to an accuracy of better than $\pm 0.1 \%$. The 2.5 -volt test source is from sealed nickel-cadmium cells which are continuously trickle charged whenever the instrument is switched on. These cells require no maimtenance. The 100 -volt test potential is derived from a fullwave rectifier with smoothing circuit. Regulation of this supply is such that it may be short-circuited without damage. This feature also limits the power dissipated in the unknown resistor and means that the test voltage is highest for high resistance values,
giving maximum sensitivity. Derritron Electronics Lid., Instruments Division, Sedlescombe Road North, Hastings, Sussex.
WW 365 for further details

Muirhead type D-30-A is a portable, multipurpose measuring set suitable for general resistance testing and for applications in the field, particularly in the communications industry. It embodies a Wheatstone network of resistors comprising a pair of variable ratios controlled by a single switch and a 11110Ω four-decade resistance variable in steps of 1Ω. An internal battery is provided and balance is detected on a pointer-type galvanometer. Multiplying powers for the ratios provided are: $\times 0.001, \times 0.01, \times 0.1, \times 1, \times 10$, $\times 100$, and $\times 1000$ and accuracy between 1Ω and $1 \mathrm{M} \Omega$ is $\pm 0.15 \%$, above $1 \mathrm{M} \Omega \pm 1 \%$ at $10 \mathrm{M} \Omega$. and below $1 \Omega \pm 10 \mathrm{~m} \Omega$; Non-reactive card-wound resistors are used adjusted to within 0.1%. The galvanometer is a centre-zero moving-coil instrument calibrated $50-0-50 \mu \mathrm{~A}$. Power is provided by two leakproof dry batteries. Muirhead \& Co. Ltd., Beckenham, Kent.
WW 369 for further details

Heathkit capacitor checker, model IT28, provides complete analysis of all capacitor types, with direct reading scales. It features a low bridge voltage for safe testing of miniature electrolytics. There are 16 leakage-testing voltages. The unit measures capacitance from 10 pF to $1,000 \mathrm{t} \mathbf{F}$, and resistance from 5Ω to $50 \mathrm{M} \Omega \Omega$. A comparator circuit measures L, C or R with an external standard. There is a calibrated power factor control and an electronic null and leakage indicator. it measures leakage in three sensitivity ranges: 2 mA for electrolytics; $15 u A$ for miniature transistor type electrolytics and $2 u A$ for paper, mica, ceramic,

etc., with 18 switch-selected leakage voltagesfrom 3 to 600 V d.c. External generator provisions are included to allow measurements at frequencies up to 10 kHz . Daystrom Lid., Bristol Road, Gloucester.
WW 351 for further details

Marconi Instruments' universal bridge model TF2700 uses the conventional bridge configurations but provision has been made for the connection of a large number of external facilities, so that a wide-range general-purpose instrument can be rapidly converted for a specialized measurement, without need of modification or special accessories. The internal battery-powered transistor oscillator provides a bridge source for measurements of L, C, and R at 1 kHz , or an external source can be used between 20 Hz and 20 kHz . The internal aperiodic detector also uses battery-powered transistors, and may be used with both the internal and external bridge drive: an external detector can be used instead with either source. Resistance can also be measured with d.c. using the internal battery and galvanometer, or with either item replaced by external equivalents. Finally, mixed a.c. and d.c. can be applied to the bridge when

measuring components that require polarization, or for the determination of incremental properties. The measurement ranges are $0.1 \mu \mathrm{H}$ to 110 H , and 0.5 pF to 1.100 uF , each in eight decades, with phase defect value, at 1 kHz from internal source, or 20 Hz to 20 kHz from external source: 0.01Ω to 11 M !) in eight decades, at d.c. or 1 kHz from internal sources, or at d.c. or 20 Hz to 20 kHz from external sources. Accuracy is within ± 1 or 2% depending on range. The bridge sources are 1 kHz $(\pm 5 \%$) from internal oscillator (or 20 Hz to 20 kHz from external source, for L, C or R measurement) and 9 volts from internal battery, or an external supply for greater discrimination. Power is supplied from an internal 9-volt battery (consumption approx. 7 mA). Price 285. Marconi Instruments Lid., Long Acre, St. Albans, Herts.
WW 349 for further details

Philips type PM6300 universal measuring bridge features a large scale display, an electronic indicator, and facilities for $\tan S$ and Q compensation. The bridge is balanced by means of a range selector (coarse control) and a high precision wire-wound reostat (fine control). During measurement one pole of the component being measured is at earth potential, making it possible to measure components already mounted on a chassis. For resistance measurements the measuring range is $5 \Omega-10.5 \mathrm{M} \Omega$ in six sub-ranges. The error is less than 1% of the measured value $\pm 0.5 \%$ of full scale. Loading is 0.05 W maximum. For capacitance measurements the measuring range is $5 \mathrm{pF}-105 \mu \mathrm{~F}$ in seven sub-ranges. The error here is less than 1.2% of the measured value $\pm 0.5 \%$ of full scale, and the measuring frequency is 50 Hz . Inductance measurements are possible over the range 0.5 mH 105 H in five sub-ranges. The measuring frequency is 50 Hz and the error the same as that for capaci-
tance measurements. Factor Q can be compensated between 1 and 65. Pye Unicam Ltd., York Street, Cambridge.
WW 361 for further details

Tinsley general utility bridge, type 4551, is capable of measuring inductance, time constant L / R, capacitance, power factor, and effective resistance. The addition of a galvanometer and an accumulator enables it to be used as a Wheatstone bridge. The a.c. source is a battery-operated 800 Hz oscillator fixed in the case. Detection is by headphones. Accuracy is 1% over the following ranges: $L(5 \mathrm{mH}$ to 10 H$), C\left(10\left(31^{*}\right.\right.$ to $\left.111^{\circ} \mu 1^{\circ}\right)$, a.c. resistance $(0.1 \Omega$ to $100 \mathrm{~K} \Omega$, and d.c. resistance $(0.1 \Omega$ to $100 \mathrm{k} \Omega$. L and C measurement is also possible trom 1 mH to 100 H and from 10 pF to $10 \mu \mathrm{~J}$, but the accuracy of the measurement is reduced at the extremities of the ranges. A portable galvanometer and accumulator are available as accessories for Wheatstone bridge operation. H. Tinsley \& Co. Ltd., Werndee Hall, South Norwood, London, S.E. 25 .

WW 373 for further details
T.I.A. model LCR20 universal bridge is designed to measure inductance, capacitance and resistance, generally to an accuracy of $\pm 1 \%$. It is self-contained, and transistorized, being powered by internal batteries. Provision is made to excite the bridge from its internal oscillator at $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz . For the measurement of resistance of reactive components (for instance, iron cored transformers), the bridge may be excited at d.c. from internal batteries. The detector is a moving coil meter movement, preceded by a high gain amplifier. Automatic gain control is incorporated to facilitate balancing the bridge with inductors and capacitors of low power factor. At d.c. a transistor chopper is switched into the circuit to convert the amplifier to a sensitive d.c. detector. The bridge operates over the following ranges:-
$R: 1.9 \Omega$ to $1.9 \mathrm{M} \Omega$ for d.c. (to $19 \mathrm{M} \Omega$ for 100 Hz a.c.)

C: 19 pF to $190 \mu \mathrm{~F}$
L: 190 cH to 1900 H
Q indication is: $0.01-1$ at 100 Hz
$0.1-10$ at 1 kHz
$1-100$ at 10 kHz
Tans indication is: $0.001-0.1$ at 1 kHz $0.01-1$ at 10 kHz
An internal 4.5 volt polarizing voltage may be applied to electrolytic capacitors during testing. Thomas Industrial Automation Lid., Electronic Centre, Deansgate Lane, Altrincham, Cheshire. WW 360 for further details

Inductance meter type LRT from Rohde \& Schwarz measures inductances between $0.1 \mathrm{\mu H}$ and 1 H in seven ranges to an accuracy of $\pm 1 \%$ $\pm 0.01 \mu \mathrm{H}$. The test voltage of this transistor instrument never exceeds 80 mV , not even in the case of very high- Q coils. Thus, the field strength is kept to within 5 and $20 \mathrm{~mA} / \mathrm{cm}$ permitting measurements to be made also on highly permeable ferrite or laminated core coils without introducing an additional measuring error. Moreover. direct readings of the coil Q from 2 to $1000(L>1 \mu \mathrm{H})$ can be obtained with the LRT. It provides also a simple means for measuring self-capacitances of coils between 0 and $200 \mathrm{pF}(Q>20, L>42 \mu \mathrm{H})$ and the resonant frequency of parallel-resonant circuits, and to make very precise L comparison measurements. Capacitance meter type KRT, is fully transistored and measures capacitance between 1 pF and $100 \mu \mathrm{~F}$ in seven ranges. The maximum test voltage is less than 25 mV permitting accurate measurements on voltage-sensitive, high-dielectric constant, and semiconductor capacitors. With this new instrument it is possible to determine capacitances at an adjustable polarizing voltage. Moreover, a built-in bias-voltage source is provided to investigate the voltage-dependence of the capacitance of varactors. Distributed by Aveley Electric Lid., South Ockendon, Essex.
WW $\mathbf{3 6 2}$ for further details

Nombrex transistor capacitance-resistance bridge, model 32, measures a wide range of resistance and capacitance, and has provision for indication of leakage and power factor in the larger values of capacitors. The ranges are: 5Ω $10 \mathrm{k} \Omega, \quad 100 \Omega-1 \mathrm{M} \Omega, \quad 10 \mathrm{k} \Omega-100 \mathrm{M} \Omega, \quad 5 \mathrm{pF}-$ $0.01 \mu \mathrm{~F}, \quad 100 \mathrm{pF}-1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}-100 \mu \mathrm{~F}$. Accuracy at centre scale is $2 \frac{1}{2} \%$, maintained to within 5% except on extreme high and low values of R and C. The instrument employs an electronic indicator to observe the measurement balance point. Separate scales are provided for resistance and capacitance, clearly marked for accurate read-off. Visual discrimination is generally within $2-4 \%$ of indicated value but as both C and R ranges overlap considerably, a read-off within $2 \frac{1}{2} \%$ (\pm accuracy tolerance factor) can usually be achieved by choice of suitable range. Power factor measurements up to 70% can be made. A sensitivity control permits rapid initial assessment of component value, adjustable to attain optimum critical balance indications. Nominal indications of capacitor leakage are provided by a neon indicator circuit, for capacitors of any value or voltage rating. Price 10 gn . Nombrex Ltd., Instruments Division, Exmouth, Devon.
WW 357 for further details

Radiometer R,L,C component comparator, type TRB11, is a solid-state, line-operated precision measuring instrument. It is primarily intended for use at the end of production lines to provide a rapid and accurate comparison with, or a deviation from, a selected standard component. Measurements can be performed at 1 kHz on
resistors (10!? to 10M !), capacitors (20 pF to 20 HF), and inductors (1 mH to 10 H) by means of two sets of terminals: one pair plus guard for the unknown, and one pair plus guard for the standard. Magnitude deviation is indicated directly in percentage within the four ranges: -1.5 to $+1.5,-6$ to $+6,-25$ to +35 , and $-5010+100$. The phase-angle deviation is indicated directly in radians within the four ranges: -0.015 to $+0.015,-0.06$ to +0.06 , -0.3 to +0.3 , and -0.6 to +0.6 . The comparator is well suited for high-speed production testing, since one measurement can be performed every second by using an optional component jig, and since no balancing is required during operation. There are output terminals for connection to limit sensing devices such as the limit sensor, type LMS1, which can operate sorting-machines, control mechanisms, etc. Instrument marketed by Omega Laboratories Lid., 57 Union Sireet, London S.E.1.
WW353 for further details

Hewlett Packard universal bridge, model 4260A, is designed for case of operation, and measures C, L, R, D (dissipation of capacitors), and Q. The readout for C, R and L is digital with the decimal point automatically positioned. Units of measurement (e.g., pF and $\mu \mathrm{F}$) and the equivalent circuit automatically "pop up" with a twist of the function switch. There are no multipliers and no dials that need interpolation. Operation is simple. Set the function knob for the parameter to be measured, adjust the range switch for an on-scale indication, and obtain a null with the $C R L$ control. There are no interacting controls to adjust and readjust. Components with low or high Q are claimed to be as easy to measure as those without loss. Five bridge circuits are incorporated in the 4260A. An internal 1 kHz oscillator drives the bridge for C, L, D, Q measurements; an internal d.c. supply is used for R measurements. Components may be biased by connecting a battery to the rear terminals.

The measurement range is:
C: 1 pF to $1000 \mu^{+}$
L: $1 \mu \mathrm{~A}$ to 1000 H
$R: 10 \mathrm{~m} \Omega$ to $10 \mathrm{M} \Omega$
Error is within ± 1 or 2% for these measurements. Hewlett Packard L.td., 224 Bath Road, Slough, Bucks.
WW368 for further details
Danbridge Denmark universal bridge type UB1 may be used in conjunction with a number of accessories for most of the usual d.c. and a.c. measurements. By means of the various switches. and shorting straps provided the bridge circuit may be adjusted for the measurement of resistance, capacitance and power factor, self inductance and effective resistance, mutual inductance, Q factor, frequency, turns ratio, resonant resistance, etc.

Measurement ranges are:-
R: $1 \mathrm{~m} \Omega-10 \mathrm{M} \Omega$
L: $1 \mu \mathrm{H}-1 \mathrm{H}$
C: $1 \mathrm{pF}-100 \mu \mathrm{~F}$
The frequency range of operation is $0-20 \mathrm{kHz}$. The basic error is within 1%, but the actual accuracy obtained on a.c. measurements will depend on the various earth-admittances of the generator, detector, measuring object and the bridge circuit itself. Thus it is not possible to give exact figures for the total accuracy. The ratio resistors are adjustable: 0-1-10-100-1000-1000 ohms, accuracy 0.2%. Maximum dissipation is 1 watt. The 4 -decade resistor $(10 \times 0.1-10 \times 100$ ohms) has an accuracy of 0.2% except the 10×0.1 ohms decade with an accuracy of 3%. Maximum dissipation is 1 watt per resistor. The standard capacitor has a value of $0.1 \mu \mathrm{~F}$, accuracy 0.2%, dissipation factor about 10^{-4}. Price $\{69$. Distributed by Dawe Instruments Lid., Concord Road, Western Avenue, London, W. 3.
WW359 for further details

You could buy 5 bridges

The B421
 will measure...

RESISTORS
from 0.01 ohm to 100 megohms, direct reading. Accuracy 0.25%.

CAPACITORS

from 0.01 pF to 10 microfarads. Accuracy 0.25%. Pushbutton for instant reading of loss (shunt) resistance.

INDUCTORS

from 1 microhenry to 100 henrys. Accuracy 2\%. Pushbutton for measurement of series resistance.

ELECTROLYTICS

10 microfarads to 10000 microfarads with d.c. applied.
Also leakage from 1 micro-amp to 10 milliamps.
TOLERANCE
from -25% to $+25 \%$, for L. C and R.

THE WAYNE KERR COMPANY LIMITED

SINCLAIR 0.14

The most challenging hi-fi speaker development in years

It is more than a matter of saving money when you choose the 0.14 . This is the loudspeaker that delights experts and critics alike for its fine forward quality. its clarity and exceptional adaptability. Designed on original lines and from unusual materials, the 0.14 will carry up to 14 watts and has very smooth response from 60 to $16,000 \mathrm{~Hz}$. Size- $9 \frac{3}{4}$ in square $\times 4 \frac{3}{4}$ in deep, with matt black finish and solid aluminium bar embellishment. Input impedance-8 ohms. A pair used with IC.10s or Z.12s and the Stereo 25 will give you superb high fidelity to stand comparison with far costlier equipment. Try the 0.14 in your own home. If it does not delight you, send it back and your money including cost of postage will be refunded in full.
£7.19.6

SINCLAIR $\mathrm{Z.12}$

12 watt hi-fi amplifier/pre-amp

This eight transistor amplifier is the most successful of its kind ever designed and is easily adapted to a wide variety of applications. The $Z .12$ is supplied ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the $Z .12$ to your precise requirements. Two may be used for stereo. Size- 3 in $\times 1 \frac{3}{4}$ in $\times 1 \frac{1}{4} \mathrm{in}$. Class B Ultralinear Output: Frequency response from 15 to $50.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$: Suitable for 3 to 15 ohm loudspeakers. Two 3 ohm speakers may be used in parallel: Input 2 mV into $2 \mathrm{k} \Omega$ Output 12 watts R.M.S. continuous sine wave (24 watts peak): 15 watts music power (30 watts peak). Power requirements 6-20V d.c. from battery or PZ. 4 Mains Supply Unit.

89/6

SINCLAIR STEREO 25

Pre-amp/Control Unit for Z.12. IC. 10 and other good Stereo assemblies. Switched inputs for P.U. (equalised to R.I.A.A. curve from 50 to $20.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$). Radio and auxiliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/Treble/Volume/Balance/ Input are solid aluminium. Size- $6 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in x $2 \frac{1}{2}$ in plus knobs. Built, tested and guaranteed.
£9.19.6
SINCLAIR PZ. 4 STABILISED MAINS POWER SUPPLY UNIT
Heavy duty transistorised power supply unit to deliver 18 V d.c. at 1.5 A . Designed specially for use with two 2.12 or IC. 10 Amplifiers together with Siereo 25. Built, tested and guaranteed.

99/6

SINCLAIR MICROMATIC

This fantastic little British pocket receiver is available in kit form or ready built, tested and guaranteed. Its range, power and selectivity must be experienced to be believed; its quality everything you could wish for. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier. The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modern appearance.

Kit in fitted pack with earpiece. solder and instructions

49/6
Built, tested and guaranteed

59/6
Mallory Mercury Cells RM 675 (2 required)
each 2/9

SINCLAIR RADIONICS LIMITED 22 NEWMARKET ROAD, CAMBRIDGE

Telephone OCA-3 52731

Leadership is not the easiest course to take. From being a very small adventurous minded group in 1963, determined to bring fresh thinking to electronics design, the Company has succeeded to the extent that today, it occupies a position of pre-eminence due entirely to the unremitting pursuit of this policy.

But design is only the beginning. Sinclair Radionics maintains a design and research department worthy of an organisation many times larger, and through this, has been able to introduce many original designs. However, even we cannot make everything involved in the manufacture of the products we design and should a totally unforeseen hold-up occur in supplies to us, our most carefully timed schedules can go adrift. Such has been the case with the IC. 10 and we can only thank the many thousands of purchasers for their patience in waiting. From the efforts of our suppliers to meet our carefully stipulated requirements, it should only be a matter of days from the time this announcement appears until the much sought after Sinclair IC. 10 is available. Our advertisements have to be planned months before they appear, which explains how difficult it can become if a hold-up does occur.

Meanwhile there is full availability of all our other products and, despite the totally unforeseen delay in getting the IC. 10 out on time, we promise that 1969 will be the best year yet for Sinclair users.

MICROMATIC POCKET RADIO
STEREO 25 PRE-AMP
Z.12 AMPLIFIER

PZ. 4 STABILISED POWER PACK
0.14 LOUDSPEAKER

SYSTEM 2000 HI-FI EQUIPMENT
NEOTERIC 60 DE LUXE HI-FI AMPLIFIER and any day now-the IC. 10

TRANSFORMERS

H.T. TRANSFORMER (Parmeko 'Neptune') Pilm. 200/ 250v. Sec. 350-0-350v 150 ma . 5.3 v .@ $1 / 2 / 6 \mathrm{mpl} 35 /$ P.P. 5/.. Matching Choke $10 \mathrm{~h} 180 \mathrm{~m} . \mathrm{a} .12 / 6$. E.H.T. TRANSFORMER (Parmeko 'Neptune') $3,000 \mathrm{~V}$. $280 \mathrm{~m} . \mathrm{a}$. £12/10/0. P.P. 50/-.
L.T. TRANSFORMERS Prim. 200/250v. Sec. $0.1 / 0$. 3/0-9/0-27v. 30 amp. £7.10. 15 amp . £5. P.P. 15/. L.T. TRANSFORMER Pfim. 200/250v. Sec. 0/25/35v. 30 amp . £7.10. P.P. 20/-STEP-DOWN TRANSFORMERS Prim. 200/250v. Sec. 115v. 1.25 amps, 25/- ea. P.P. 5/.
L.T. TRANSFORMERS Pilm. 240v. Sec. 8/12/20/25v. 3.5 amp models 20/-; 5 amp model 25/-. P.P. $5 / 6$.
L.T. TRANSFORMERS Prim. 240v. Sec. 14v. 1 amp 10/. ea. P.P. $2 / 6$.
ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240 v . A.C. QUARTERLY ELECTRIC CHECK METERS, 40 amp.

SPEAKER SYSTEM ($20 \times 10 \times 10 \mathrm{in}$.). Made to spec. from $\frac{z}{3} \mathrm{in}$. board. Finished in black leathercloth. $13 \times 8 \mathrm{in}$. speaker with iwin tweeters complete with cross-ovef. PHOTOMULTIPLIERS 6262 and 6262b. £15 ea. RELAYS H.D. 2 pole 3 way 10 amp. Contacts. $12 \mathrm{v} . \mathrm{w} .7 / 6$ ea. LIGHTWEIGHT RELAYS (with dust-proof Covers)

COPPER LAMINATE PRINTEO CIRCUIT BOARD ($8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{16}$ in.), $2 / 6$ sheat, 5 for 10/Also 11×9 in., $4 /-$ ea., 3 for 10%

BULK COMPONENT OFFERS

100 Capacitors (latest types) 50pF $10.5 \mu \mathrm{~F}$
250 Resistors $\frac{t}{6}$ and $\frac{1}{2}$ watt.
250 Resistors $\frac{1}{2}$ and 1 watt.
150 Hi -Stab Resistors, $\frac{1}{2}, \frac{1}{2}$ and 1 wath
12 Preous W/W Resistors. 5\%.
12 Precisio
included). included)
12 Elect. 12 Electrolytics (miniature and standard sizes). ANY ITEM 12/6. ANY 5 ITEMS 50/.,

TELEPHONE DIALS (New) 20/- ea.

 Amplified TELEPHONE HANDSET (706) 27/6. P.P. 2/6.EXTENSION TELEPHONE (TyDE 706) Black or 2 tone Grey, 65/*. P.P. 5/-. UNISELECTORS (Brand new) 25 -way 75 ohm .8 bank $\frac{1}{\frac{1}{2}}$ wipe $65 /-.10$ bank

REED RELAYS 4 make $9 / 12 \mathrm{v}$. (1,000 ohm.) 12/6 es. 2 make 7/6 ea. 1 make 5/• ea. Reed Switches (1年 in.) 2/ea. £1 per doz.
CONTINUOUS LEVEL MONITORS (Burndept BE307) complete with Sensing Probe. £25.
Transistorised PROXIMITY SWITCHES (Burndept
BE315) sensing speed 120 per min. £16.
LIGHT SWITCH. COUNTER. (Burndept BE290) 750 interruption per min.. comprises: Light Source, Sensing Head, Control Unit. f15.
S.A.E. Literature.

COLD CATHODE TUBES (Hivac XC25) 2/-ea,
Quantity quolations on sequest.

PATTRICK \& KINNIE
81 PARK LANE •ROMFORD \cdot ESSEX ROMFORD 44473

Burgess instant heat solder gun

Only the tip heats-but fast! About 7 seconds! Pre-focused lamp lights the job up. Exclusive fulllength trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chisel tip, $6^{\prime \prime}$ extension barrel, doubleended probe, gun and solder. £4 126 . Full details and nearest stockist from:

Burgess Products Co Ltd,
Sapcote, Leicester LE9 6JW
 Send cash with ordey
CYBERNAUT CONTRO CYBERNAUT CONTROLS P.P. extra CYBERNAUT CONTROLS LTD. (ref. W.W.14). 28-30 Rlvingion Streef, London, E.C. 2 WW-124 FOR FURTHER DETAIIS

Tо: NOMBREX LTD

Exmouth. Devon. England
Please forward leaflets of your full range to:
NAME

Please enclose 6 d . stamps

NOMBREX

R. F. SIGNAL GEIVERATOR MODEL 31 £12.10.0 Postage and packing-6s. 6d. extra

BRIEF SPECIFICATION

- WIDE-RANGE $150 \mathrm{KHz}-350 \mathrm{MHz}$ - full frequency coverage- 8 ranges
- ACCURACY 2%. AVERAGE $0.5 \%-1.5 \%$
- R. F. OUTPUT, OR MODULATEO 400 Hz - A. F. SIGNAL AVAILABLE EXTERNALLY - OUtPUT AVERAGE 100 mV OVERALL - continuously variable attenuator - FULLY TRANSISTORISEO CIRCUITRY - PROVISION FOR EXTERNAL SUPPLY

Trade and Export enquiries please attach letterhead or Trade Card.

Send coupon for full technical leaflets of this and other Nombrex transistorised instruments

Synchronous motor CAM TIMERS

* Quicker deliveries
* 1-12 ADJUSTABLE CAMS
$\star 10$ amp. CHANGEOVER MICRO.SWITCHES \star DESIGNED FOR CONTINUOUS OPERALIO \star DESIGNED FOR CONTINUOUS OPERATION Special Coms and Programming
Customers' requirements
Quotation for 50 and upwards

COMPLETE
PHOTO-ELECTRIC
SENSOR in one unit
\star REFLECTIVE TYPE WITH built-in light source

* WILL ALSO OPERATE FROM remote light source
* MATCHBOX SIZE
\star SEnses any object-
COLOURS, THICK SMOKE
Operates from 12 V. A.C. Output signal 0.2 mmp .100 V
Approximesely $£ 5.10 .0$
 dependent
on quantiey.

LATEST SOLID STATE VARIABLE VOLTAGE CONTROL * COMPLETELY SEALED * COMPACT

* PANEL MOUNTING

230 v. A.C. input $25-230$ voles outpue. 5 amp. model $68 / 7 / 6$
10 amp. model $\epsilon 13 / 15 /$ P. P. Extra
CONSTANT VOLTAGE TRANSFORMERS AUTOMATIC MAINS STABILISER * No attention * No attention - No Maintenance * No Moving Parts

* Corrected Wave Input: 195-250v. Output: $240 \mathrm{~A} . \mathrm{C}$. Accuracy:
Capacity
2 models a vailable
Maintain or 225 wares
Firted signat spon" test-gear readings at all times. Weight: 21 lb Weight: 21 lb .
Size: $10 \times 6 \times 4 \mathrm{in}$. high.

20 Amp. LT. SUPPLY UNIT
As supplied to Min. of Defence and Crown Agents for overseas Gove. LATEST DESIGN HEAVY
DUTY $12 / 44$ VOLT D.C.
Ourput: Adjustable up to $\mathbf{2 0}$ AMPS. CONTINUOUS at $12 / 24$ volts. FULLY FUSED, Neon indicator, $0-20 \mathrm{amp}$. meter. Size $16 \times 12 \times 20 \mathrm{in}$. high, in heavy gauge steel cabinet. Grey Hammer finish-Weight 50 lb . input: $220 / 230 / 240$ v. A.C. 50 cycles. ONLY £32.10.0 Plus $\begin{gathered}\text { G.B. (Inland) } \\ \text { \& }\end{gathered}$

30 Amp. LT. SUPPLY UNIT

UP TO 24 v. D.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading \star Fitted voltmeter and ammeter. \star Instantaneous overload cut-out.
Input: Mains A.C. Robust construction, 2 tone finish, steel case. Input: Mains A.C. Robust construction, 2 cone finish, steel case.

$$
\text { 255.0.0 } \begin{aligned}
& \text { C. \& P. 40/-G.B. (Inland). } \\
& \text { Entirely suitable for plating plants, } \\
& \text { Laboratory supolies, ece. }
\end{aligned}
$$

5 AMP. A.C. \& D.C. VARIABLE SUPPLY UNIT Specification $\{$ Inpue: $240 \mathrm{v}, \mathrm{A} . \mathrm{C}$.
\star Smooth stepless voltage. A.C. 0-240 v. D.C.
\star Smooth stepless vollage variation from 0-Max. \star Current consistent throughout the controlled range. \& Ammeter and voltmeter fitted, and neon indicator. Kully fused input and output
£30.0.0 C. \& M P. $40 /-$ Gc. Eritain (Inland).
CURRENT PRODUCTION-BUY DIRECT FROM MANUFACTURER

APEAK SOUND

 aids to economical hi-fi
ES/10-15 BAXANDALL SPEAKER

AS DESCRIBED IN WIRELESS WORLD

'Rolls-Royce standards

SAYS RALPH WESt
Hi-Fi News
OCTOBER, 1968

The immediate impression was of a thoroughbred
speaker, smooth and effortess... voices both speaking and singing were uncannily real Once again we see the possibility of Rolis-Royce standards from comparatively cheap omponents . . . when you know how. Hi-FiNews Test Report. Oct. 1968

A REVOLUTIONARY ADVANCE IN DESIGN LOGIC

THE PEAK SOUND ES/10-15 is the designer-approved kit of the sensational loudspeaker designed and described by P. J. extends from $60-14,000 \mathrm{~Hz} .(100-10,000 \mathrm{~Hz} \pm 3 \mathrm{~dB})$. Everything is supplied to specification-the $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$ afrormosia teakfinished cabinet is cut and drilled for simple assembly: the equalising circultry is ready for immediate installation. The finished product is completely protessional. It will astonish and delight you beyond words. See what Hi-Fi News says in full in its detailed report in its October issue. It is hard to believe so modestly priced a speaker could get so glowing a report

 12-15 is a new power ampHfier of excellent design and performance. Features include Class B output of 12 watts R.M.S. into 15 ohms: 43 dB neg. feedback frequency response from 10 Hz to $45 \mathrm{~Hz} \pm$ Bult and tested 0.5 dB : dlstortion at max. output less than 0.1%; input sensitivity400 mV : power requirement 45 V D.C. which can be obtained from the Peak Sound heavy duty power unit (price €5 5 0) Size 5 " $\times 3$ " P.P. 2/6d.) 13.. Salected high gain closely mached ransistors a hroughout. Full instructions are provided. This sensibly designed unit will appeal to all for whom reliability and good design are import

Kit. less heat sink and base boa £3.19.6 £3.19.6

From dealers or sent direct in case of difficulty, POST FREE

PEAK SOUND (HARROW) LTD.
 32 St. JUOES RDAO, ENGLEFIELD GREEN. EGHAM, SURREY. EGHAM 5316

TO PEAK SOUND

Please send
for which I enclose $\mathbf{£}$
NAME
ADDRESS

R.S.T. Valve mail order co.

blackwood hall, 16a wellfield road
STREATHAM, S.W. 16

Falses teated and released to AB.B. apecification if required

Express postage 9d. per valve.
Ordinary postage 6d. per valve.
Over 65 postage free.
Tel. 01-769 0199/1649
Monday through to Saturday 9 a.m. $5.30 \mathrm{p} . \mathrm{m}$.
Complete range of TV Tubes available from $\mathbf{4 4 . 5 , 0}$.

SEND S.A.E. FOR LIST of 6,000 TYPES

	Acclaimed by everyone
AUDIO EQUIPMENT	mayfair electronic organ
Nors	
	为
MPLETE SYStems	Nomme
£15.5.0	
	der
SEND FOR	

	INTEGRATED SOLID STATE TRANSISTOR POWER AMPLIFIERS Complete with full Bass Treble. Volume and Selector Controls MA66 12 WATTIS STEREO We are pleased to offer two new designs with the chore of ether mono or stereo systems These BRITISH DESIGNED UNITS favour the user in so many ways, being suitable for use with all types of PICK-UPS. TUNERS. DECKS and MICROPMONES-with fantastic power and quality/with far greater adaptability, with freedom for battery or mains operation. Output is from 3-16 OHMS Whether you require a home or portable MI.FI installation. electronic guitar. P.A. System. Intercomm A 66 will FILL TME BILL f8.10.0 post. packing 5 tme stereo f16.10.0 OPTIONAL leaflets 12 and 14 FREE on request. Demonstrations Dally at our 309 Edgware Rd. Branch.		(7) SINCLAIR EQUIPMENT
GEIGER COUNTERS OA HIABUREMETOP	NEW MODELS NOM		MULLARD 1 WATT AMPLIFIER PORTABLE TRANSISTOR UNIT with volume control Telephone or Record Player Aruptifeet. Ophonal Remine covered Wood cabine! 12 $7 \times 4 \mathrm{in}$. speather. $17 / 6$. Uses PP9 ballery.
BUILD A QUALITY TAPE RECORDER To gut the best out of yout MAGNAVOX OECK you need a MARTIN RECORDAKIT This comprses a special high quality 6 valve amplifer and pre-amplitied which comes to thing needed down to the last scrow FOA MAKING A SUPERB TAPE RECORDER, wh ch, when buitt will com pare favourably with instruments sosting iwice as much, yet you need no mperience or lechnizal skili to Uring this dboul TME INSTRUCTIONS MANUAL MAKES BUILONG EASY AND SUCCESS ASSURED	VHF FM SUPERHET TUNER MKII BANOWIOTH, PRAINTED CIRCUIS CONSTRUCTION BATM high fidelity reproduction mono and stereo	EW-MALLORY LONG LIFE MERCURY BATTERIES 50° OFF LIST PRICES m/aM OUR PRICE $\$ /-$ each - RM625 10.35 wols $350 \mathrm{~m} / \mathrm{aH}$ OUR PRICE 10/, ench Easily spht into eight 9.35 v . celle. appictanion where sMAll SIzE HIGH CAPACITY and LONG OUANTITIES AVAILABLE.	DECKS
ALL UNITS AVAILABLE SEPARATELY. Toder's ASKFOR BROCHURE 6 . Value f 60 .	MANUFACTURERS-DISTRIBUTORS We pubish GUANTITY. SEMI-CONDUCTOR FROM STOCK in medium to large quinture an KEEN PRICES EOUDIEd with PROMPT DECIVEAIES. TO OBTAIN YOUR COPY. WAITE TO US Lo Company PHONE (01) 723 1008/9 Exti. 4 (01) 7230401 Exth. 4. We purchase medium to large quantities of Transistors and Devices axcess to Manulacturers and Distributors requirements.	TRANSISTORSSEMICONDUCTORS COMPLETELY NEW 1969 LIST OF 1000 types. Send for your FREE COPY TODAY. (list 36) S.C.R.'s from 5/- Field Effect Transistors from 9/6 Power Transistors from 5/- Diodes and Rectifiers from 1/6	

HIFF equigment to suit EVEKTFOCKII

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE RD.

Fullystrated CATALOCUE

COMPLETELY NEW 9th EDITION (1969)
The most COMPREHENSIVE-
CONCISE-CLEAR COMPONENTS CATALOGUE
Complete with 10/- worth discoulit vouchers FREE WITH EVERY COPY

* 32 pages of transistors and semi-conductor devices, valves and crystals.
210 pages of components and equipment 70 pages of microphones, decks and $\mathrm{Hi}-\mathrm{Fi}$ equipment

6,500 ITEMS 320 BIG PAGES

GEW PANEL METERS

CLEAR PLASTIC METERS

$50-0.50$,

$100 \mu \mathrm{~A}$
$100-0.10$
$100-0 \cdot 10$
$200 \mu \mathrm{~A}$
$200 \mu \mathrm{~A}$
$500 \mu \mathrm{~A}$
$500-0.50$

$500-0-500 \mu \mathrm{~A}$
1 mA
0.1 mA

5 mA
10 mA
20 mA

$37 / 6$ $37 / 6$ $37 / 6$ $37 / 6$ $37 / 6$ $37 / 6$ 3816 $59 / 8$ $37 / 6$ $37 / 6$ $37 / 6$ $37 / 6$ $37 / 8$

Type M.R.85P. 4 lin. $\times 4$ in. fronts.
$50 \mu \mathrm{~A}$

		15
$50.0-50 \mu \mathrm{~A}$	59/6	30 amp .
$100 \mu \mathrm{~A}$	59/6	20 V . D.C
100-0.100 2 A	59/6	sov. D.C
200μ A	55/.	150 V . D.C
$500 \mu \mathrm{~A}$	52/6	300 V . D.C
$500-0.500 \mu \mathrm{~A}$	49/6	15 V . A.C.
1 mA	49/8	300 V . A.C
1-0.1mA	498	8 Meter 1m
5 mA	4918	VU meter
10 mA	49/6	1 mmp A.C.
50 ma	49/6	s amp. A.C.*
100 mA	48/6	10 amp . A.C.
500 mA	$49 / 8$	20 amp . A.C
1 amp	4818	30 amp . A.C.

Type MR.65P.

$50 \mu \mathrm{~A}$
$50.0-50 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$.
$100-0-10$
$500 \mu \mathrm{~A}$

BAKELITE PANEL METERS

ECHO HS-606 STEREO

Wonderfully com-
$\begin{aligned} & \text { cortable. } \\ & \text { Light- } \\ & \text { weight }\end{aligned}$
adjustable weight adjustable vingl headhand, 6 ft.
cable and stereo fack pluk. 25-17,000 jace pluk. $25-17,00$
eps., 80 imp. $87 / 8$. еря., 80 imp. $67 / 8$.
P. \& P. $2 / 6$.

AVOMETERS Supplied in excellent
condition fully tested and checked. Com-
plete with prods leads and instrucModel $7 \quad$ \&13/10/0 P. \& P. $7 / 6$.
B.F.O. Aerial trimmer, internal speaker and

SINCLAIR EQUIPMENT

[^11]

MODEL TE-90 50.000 OP. M . Mirror scale overload protec-

 LAFAYETTE DE-LUXE
100 XBFOLT "LAB

MODEL TE-12. 20,000 O.P.V. $0 / 0.6 / 6 / 30 / 120 / 600 / 1.200 /$
$3.000 / 6,000 /$
r. D.C. $0 / 6 / 30 / 120 /$ $3,000 / 6,006 \mathrm{~V} . \mathrm{D.C.0/6/30/129}$
$600 / 1,200 \mathrm{v} . \mathrm{AC} .0 / 60 \mu \mathrm{~A} / 8$
$60 / 600 \mathrm{~mA} 0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$. $60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 60 \mathrm{~K} / \mathrm{fMeg}$.
$60 \mathrm{Meg}. \mathrm{\Omega} .50 \mathrm{PP} .2 \mathrm{MFI}$ $60 \mathrm{Meg}. \Omega$
$25 / 18 / 6$.

TE-900 20.000 $/$ /VOLT
GLANT MULTMETER
 Mirror scale and over full prow meter. ${ }^{6} \mathrm{ln}$ colour scale. 0/2.5/1.2
$250 / 1,000 / 5,000$ v. A.C. $25011,000 / 5.000 \mathrm{~V} .4 . \mathrm{C}$ $250 / 1.000 / 5,000$ v. D.C 10 mmp D.C. $02 \mathrm{~K} /$
$200 \mathrm{~K} / 20 \mathrm{MEG}$.
OHM
 $0 / 10 \mu \mathrm{~A} / 6 / 60 / 300 \mathrm{MA} / 12$
$0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{M} \mathrm{M}$.
to $\operatorname{to}_{3 / 6}+17 \mathrm{~dB} . £ 12 / 10 / \mathrm{m} . \mathrm{P}$. \&
 MODEL TE-70, 30,100 D.C. $0 / 6 / 30 / 120 / 800 / 1,200$ A.C. $0 / 30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA}$
$0 / 16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 \mathrm{M} / 16 \mathrm{Meg} \mathrm{Q}$ $\mathbf{~} 5 / 10 /=$ F. Δ P. $3 /-$.

TE-51. NEW $20,000 \mathrm{n} /$ VOLT MULTMETER, with
overloal protection and mirror scale. of/6/60/120.
1.200 v. A.C. $0 / 3 / 30 / 80 / 300 /$ (i00//3,000v. D.C. $0 / 60 \mu \mathrm{~A} / 12$

MODEL TE-10A. $200 \mathrm{k} \Omega$ Volc $5 / 25 / 50 / 250 / 500 / 2,500$ w.
D.C. $10 / 50 / 100 / 500 / 4,000 \quad$ v.

 69/8. P. \& P. $2 / 6$

POWER RHEOSTATS

High quality ceramice conat ructlon. Windinge embedded In witreous enamel.
Heavy duty bruah wiper. Continuous rating. Wide range a a ailable ex-alock.

 TE-20D RF SIGNAL GENERATOR

$\begin{aligned} & \text { Accurate wide range sig- } \\ & \text { nal kenerator coveritog } \\ & 120 \mathrm{Kc} / \mathrm{s}-500 \mathrm{Mc}\end{aligned}$
$\begin{aligned} & 120 \mathrm{Kc} / \mathrm{s} \text { - } 500 \mathrm{Mc} / \mathrm{Mron} \text { on } \\ & 6 \text { 1mands. Directly call. }\end{aligned}$
$\begin{aligned} & \text { brated. Variable RF. } \\ & \text { atcenuator, audo output. }\end{aligned}$
$\begin{aligned} & \text { atlenuator, audio output. } \\ & \text { Xtal mocket for callora. } \\ & \text { tion. } 220 / 240 \mathrm{~V} \text {. A.C. }\end{aligned}$
$\begin{aligned} & \text { iion. } 22 w / 20 \mathrm{~V} \text {. A.C. } \\ & \text { Brand new with inatruc- } \\ & \text { tions. } \mathbf{£ 1 5 . ~ C u r r . ~ 7 / 6 . ~}\end{aligned}$
8ire $140 \times 215 \times 170 \mathrm{~mm}$.

TRANSISTORISED L.C.R. A.C MEASURING
 2% C. 10 MFYt $\pm 2 \%$ TURNS RATIO $1: 1 / 1000-1: 11100$ Opanted fom 9 volts. $100 \mu \mathrm{~A}$. Meter indication. Attractive 2 tone metal case. Size 71°

ARF-100 COMBINED AF-RF SIGNAL GENERATOR
 AF. SINE WAVE
$20.200,000$ cpp. Square $20 \cdot 200,000 \mathrm{cps} .8 q u a r e$
wave $20-30.000 \mathrm{cps} . \mathrm{O} / \mathrm{P}$
$\mathrm{HIOH} \mathrm{IMP} .21 \mathrm{v}, \mathrm{P} / \mathrm{P}$
 aniable R.F. attenua:
tlon. Int./Ext. Modulas Aton. Incorporates dual purpose meter to monilar.
At out put and $\%$ mod. on R.F. $220 / 240$ v. A.C.

Full current range offered brand new

 1023 stereo 87.19 .6 AT60 MKI1 813.10.
$2025 \mathrm{~T} / \mathrm{C}$ Monol 88.17 .8

Carriage/insurance $7 / 6$ extra any model.

- Special ofter hase and enver avaliable for theee

Full range of Garrand nccessories avalable

COMMUNICATION RECEIVER

Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates variable BFO for CW/SSB reception. Built-in speaker and phone jack. Metal cabinet. Operation $220 / 240 \mathrm{v}$ A.C. Supplied brand new, guaranteed with
\qquad

BAND AM/CW/SSB AMATEUR AND SHORT WAVE

NEW STAR SR-200 SSB AMATEUR RECEIVER
An exciting new recelver covering 6 armateur bands $160180 /$
$40,20 / 15 / 10$ metres. Lluminated alide rule dilal 8 , 40,20/15/10 metres. Lluminated alide rule dial. 8 meter. Crystal
calibratur. Product detector. Autoratic notse limiter. RF calibratur. Product detector. Autornatic nolse limiler. RF
tuning and asin controls. Speaker or phone outputa. 8 vaives, 2 trannistory, 2 dinden $220 / 240$ V. A.C. Bupplled bravid new

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

19 transistors, 8 diodes, 1 HF music power 30 watt tion 1% or less. Inpute 3 mF and 250 mV . Ontput 3.16 ohmas. Beparate L and \mathbb{R} volume controls.
Treble and thass controls. Btereo phone lack. Treble and tass controls. Stereo phone lack.
Brushed aluminium. gold anodised extruded front
 Operation 115/230 rolt A.C. £28. Carr. i/6

TO-3 PORTABLE OSCILLOSCOPE. 3^{*} TUBE p-p/CMP. Band Senitidthlty. 1.5 cp
 1.5 MHz . Input fmp
meg $\Omega .25 \mathrm{PF}, \mathrm{Xamp}$ 2 meg R. $25 \mathrm{PF}, \mathrm{X}$ amp
sensitivity. 1 yv p.p/CM
bandwidth $1.5 \quad \mathrm{cpm}-800$ bundw. Input limp. 2 meg 0
KHZ 20 PFF . Time base. 5 range
$10 \mathrm{cpa-} 300 \mathrm{KHZ}$. Byn chronization. Internal/ex $40 \times 213 \times 330 \mathrm{MM}$
Weight $15 \mu \mathrm{Ba}, 220 / 240 \mathrm{~V}$
C.
output to feed mod
anpliters. Operates
on 9 volt battery. Cowerage $8 \mathrm{~s}-108 \mathrm{Mc}$. Retads
bullt ready for une. alue for mone
LAFAYETTE TE-46 RESISTANCE

 $2000+1$ meg. Supplled complete with hastruce
thons. battery and leads. E5/18/6. P. \& P. 2/6.

on 9 volt battery. Coverag bullt ready for use. Fant £ $8 / 7 / 6$. P. \& P. $2 / 6$.	$8 \mathrm{~s}-108 \mathrm{Mc} / \mathrm{s}$. Ready tic value for mone\%, DAPTORS 5 Ges.

OXIFIF Bm TRIMMER

A new sub-miniature air dielectric trimmer capacitor consisting of a solid rotor and stator assembled on an 8 mm square base. Details of the full range of trimmers upon request.

OXLEY DEVELOPMENTS COMPANY LTD Priory Park. Ulverston. North Lancs. England.
Tel: Ulversion 2621. Telex: 6541. Cables: Oxley. Ulverston
OXIEY ${ }^{\circ}$ D
WW-127 FOR FURTHER DETAILS

Sole Distributors
Super Electronics Ltd.
5 YOLET HML, LONDON N.W. 8
TELEPHONE: MAIDA VALE 8281

ron all your subplos equipment direct from ac mains
olts 50 c/a AC mains, Output to run ans of the sets isted below. The units are brand new and contained
in an attractive louvered ateel case, with full conecting leads, plugs \& sockets.
No. 10 Recelver $£ 3.10 .0$, carriage $10 /$ -
 R.115s Recelver $£ 3.15 .0$, carriage $10 /$. R.1 1475 Receiver $£ 3.15 .0$, carriage 10 P.C.B. Recelver $£ 3.10 .0$, carriage $10 /$.

Enquiries invited for fower sup
any type of equipment not listed.
No, 19 SET TRANBMITTER AND RECEIVER.
Mains input power supply unit to run this popuis ready to plug in. On!y $\mathbf{8 6 . 1 0 . 0}$. carriage $10 /$ -

ATR/EEATRANS/REC.

Compact V.H.F. Trams/Rec. Fits in the pocket. Consiats of Mre/speaker, hmpmer ω operate up to 100 miles depending on terrain. Operates from dry hatteries. Completely nelf-contained. Coat Govt. over $\mathrm{EJ0}$ in UK so please mention Dismantling purposea only" ordering. Price $£ 2.10 .0$ emeh, p. \& p.
$10 /-$ Two sets tor $£ 5.0 .0$, post

MINIATURE MOVING C OIL SPEAKERS 11 ln. diameter. Only $3 / 6$ each, p. A p. 1/6. Two for

HANDI MAINS POWER SUPPLY UNIT noput 240 volte AC. Output 250 volts 80 mIT . DC.
6.3 V . mit 2 amps plus 12 volts at 2 amps. Buile on a robuat compact chasais. Containing douible Iteolated ranilormern, stnoothing chokes, cappacitors and SCOOPPURCHASE RASEFEMERTB]

DEPT. WW10. CAWOODS YARD.

LINEAR INTEGRATED CIRCUITS

GENERAL ELECTRIC I WATT AUDIO AMPLIFIER PA234
This monolithic integrated circuit will deliver I watt of continuous power to a 22 Ohm load. The device functions from a single power supply between 9 and 25 volts and is compatible with 8 and 160 hm loads; an 8 -lead dual-in-line package is used with a heat transfer tab. Applications: Record Players, Tape Recorders, TV, AM \& FM Receivers and general amplifier projects. Complete with data and
applications notes. 24/- Data Sheet only

I/6 post free
RCA MULTIPURPOSE WIDE-BAND POWER

AMPLIFIER

CA3020
This very popular multistage direct coupled amplifier will provide 0.5 Watts power output from a single 9 Volts supply with a typical power gain of 75 db . The amplifier is contained in a multilead TOS package. Applications include AF Power Amplifiers, Video power Amplifiers, Power Switches and Multivibrators, Motor Control Amplifiers, Wide-Band Linear Mixers etc. Supplied complete with free lead spreader, data and applications notes. 37/6 Data Sheet only. I/6 post free

MULLARD AF AMPLIFIER
TAA263
This Linear AF amplifier requires a single 8 Volts (max.) supply and has a typical power gain of 77 db . It is housed in a TO- 72 case (4-lead has a typical power gatn of 77 db . It is housed in a TO-72 case (4-lead
TO-I8) and is intended for use from DC to $600 \mathrm{kHz}16 / 9$

GENERAL ELECTRIC PROGRAMMABLE UNIJUNCTION TRANSISTOR (PUT)

DI3TI
This PUT enables the $\eta, R B B, I p$, and I_{v} characteristics of a normal unijunction to be programmed by selecting two external resistors. Applications: Timers, Relaxation oscillators, High Gain Phase Control etc. TO-98 package. Supplied complete with data and applications
\qquad
We are an International Rectifier Semiconductor Centre
Terms, CWO. Post \& packing 1/6. Mail Order only, please.

KINVER ELECTRONICS LTD., STONE LANE, KINVER, STOURBRIDGE, WORCS.

A.C. SOLENOID TYPE SAM/T

Continuous Rating

 14oz. at ${ }_{4}^{3} \mathrm{in}$ Instantaneous up to $5^{\frac{1}{2}} \mathrm{l}$ b.

Fitted with stainless steel guides-6 times the life. Larger and smaller sizes available-also transformers to 8 kVA 3-phase.

 KNAPPS LANE, CLAY HILL, BRISTOL 5. TELEPHONE 65-7228/9

WW-130 FOR FURTHER DETAILS

Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up to 6 sockets from one power oullet. Portable or permanent fixing. compact units
with safety neon. Over I.000 socket with satety neon. All types of fittings and finishes. brochure from
LEXOR DIS-BOARDS LIMITED,
Allesley Old Road, Coventry.
Telephone 72614 or 72207

PIDAM (Plug-in Digital and Analogue Modules) perform allshe usual logic functions, but, unlike other units, can be
plugged in, using zheir 89 A bases and can be quiekly connected to the required configuration. To help learning, the module covers are easily removable for circuis exam, instion and sets of componenes are available.
The 22 modules have an enormous range of use, from a single MONO for a tachometer, to over 300 units in a computer interface; nevertheless, their greatest asset is extreme simplicity. Design time is cut and elaborate
breadboards superseded and any reader of .. Wireless Worid "could with PIDAM, build up a low cost system for his own could wis

ACCESSORIES

 A full range of accessories areavailable for PIDAM. Shown are the meter, scaled 0.9 , at
$35 / 6$. Test prods insulated and 35/6. Test prods insulated and
flexible with fine steel clips at the tip, red or black at $13 /$-. High speed resetting counter including bezel and socker. with speed of over 40 operaions per sec. 165/\%. Plug-in changeover at $17 / 6$. No hown, is range test meter, 45/-

NEW
PIDAM PLUG-IN MODULES,
PRICES
per module range from 8/- to 28/- and all necessary accessories 6 NEW modules - send for free information.

are supplied. A complete starting kit is only C20/19/0 (normally 623/12/6).

BI (Bistable) module shows B9A base for ease of connection. Pins 7,8,9 are always power con-
nections.

PIDEC
(Plug-in Digital Educational Circuis). This Pidec unit allows seven modules to be interconnected for demonstration or mosk-up without soldering. Including
internal power supplies, $\mathbf{3 8 0 \%}$. internal power supplies, 380

PRINTED
CIRCUIT CHASSIS
Printed circuit chassis type " P " which
fits into 1277 or 16127 case, or type "Q" which can be mounted on an aluminium chassis. Both types take up to 20
boards and connecboards and connec-
tors on tin. centres. prices from 42/6 down to 37/- for

CONTIL CASES

now available with aluminium and NEW "Contilcote" panels.

10, $12,15,18,24$ and 15-0-15. The second I $1 \mathrm{amp} .6,10$, 18 y . taps. rice $37 / 6$ and $26 /$-. Additional type avail ble, providing 2 amps as above and in addition supplies 100 mA at 150 $80,0,80$, 150 volts to supply indicator cubes
etc. Price 50/-.

REED SWITCH The West Hyde Reed Switch work at up to 2,000 times a second for more than fifty thousand million
operations. Ideal for: over and under operations. Ideal for: over and under
speed monitors, counting, timing, sweetching, rev counting, etc. Hermetically sealed and moulded. Prices from $14 /$ each to $8 /$ each per thousand.
We now supply Q-Max sheer metal punches in tin. sizes up to $1 \frac{1}{2} \mathrm{in}$. and tim. sizes up to izin.

CONTIL LOW COST PRINTED CIRCUIT BOARDS
Standard ONE TEN FIFTY

Standard tr
Half board.
Connectors, 20 -way

Princed circuit kit: including case, normally $614 / 4 / 6$ for only

NEW
BRIGHTLIFE NEONS
now available with alphanumeric caps.
$25,000 \mathrm{hr}$. average quantity down to life with high in- $1 / 8$ each. Neon tensity and resistor only, down to std. tin. or tin. dia. Stanin. or tin. dia. Stan250 v , with 6 in. lead 250 v , with 6 in . lead We supply our $2 / 6$ variants. 10 off at standard neons in different waps. 10 in 110 volt nominal at

W(1) WIEST HIVE

WEST HYDE DEVELOPMENTS LTD.
30 HIGH STREET, NORTHWOOD, MIDDLESEX
Tel: Northwood 24941

PARMEKO TRANSFORMERS AND

CHOKES

SPECIAL OFFER
Neptune Potted Type Transformers
Pri. 230 v. Sec. 70 v. 5 amps. 85/-. Carr. 8/6 Pri. Tapped $200-250 \mathrm{v}$. Sec. $200 \mathrm{v} .50 \mathrm{~m} / \mathrm{amps} .20 \mathrm{kr}$.
D.C. Wkg. $95 /-$ Prarr. $^{\text {Pri. Tapped } 200-250 \text { y. Sec. } 450-400-0-400-450}$ $180 \mathrm{~m} / \mathrm{amps} .6 .3 \mathrm{v} .4 \mathrm{amps} .6 .3 \mathrm{v} .4$ amps. 6.3 3 amps. $5 \mathrm{v} .3 \mathrm{amps} .75 /$ /. Carr. $8 / 6$.
Pri. Tapped $200-250 \mathrm{v} . \mathrm{Sec} .500-0-500 \mathrm{v} .180 \mathrm{~m} / \mathrm{amps}$. 6.3 v. 6 amps. 6.3 v. 3 amps. 5 v. 3 amps. $85 / \%$. Carr. 10/6.
Pri. Tapped $200-250 \mathrm{v}$. Sec. $500-0-500 \mathrm{v} .120 \mathrm{~m} / \mathrm{amps}$. 6.3 v .5 amps .6 .3 v .3 amps .5 v .3 amps. $55 /$. Carr. $7 / 6$. Pri. Tapped $200-250 \mathrm{v}$. Sec. $250-0-250$ v. 60 mpamps. 6.3v. 3 amps. 6.3 v .3 amps. 5 v. 3 amps. $45 /$-. Carr. $6 / 6$. 5 amps. 6.5 v. 4.5 amps. $49 / 6$. Carr. $6 /$. $50-260-270$ Pri. Tapped 200-240 v. Sec. Tapped 250-260-270 $150 \mathrm{~m} / \mathrm{amps}$. $35 /-$. Carr. $6 /$.
All transformers very conservatively rated and supplied new and guaranteed.
Jupiter Series Swinging Chokes, Potted $34 \mathrm{H} .60 \mathrm{~m} / \mathrm{amps} .70 \mathrm{H} .35 \mathrm{~m} / \mathrm{mps} .2 .8 \mathrm{Kv}$. D.C. Wkg. 29/6. Carr. 6/6.
Neptune Serles
$50 \mathrm{H} .25 \mathrm{~m} / \mathrm{a} .10 / 6 . \mathrm{Carr} .4 / 6.10 \mathrm{H} .120 \mathrm{~m} / \mathrm{a} .12 / 6$. Carr. $4 / 6$. 10 H. $75 \mathrm{~m} / \mathrm{a} .10 / 6$. Carr. 3/6. 5 H . $150 \mathrm{~m} / \mathrm{a}$ 12/6. Carr. $4 / 6.5 \mathrm{H} .60 \mathrm{~m} / \mathrm{a} .8 / 6$. Carr. $3 / 6.7 \mathrm{H}$. 450

GARDNERS POTTED CHOKES

$30 \mathrm{H} .50 \mathrm{~m} / \mathrm{a} .15 / \mathrm{-}$. Carr. $4 / 6.20 \mathrm{H} .40 \mathrm{~m} / \mathrm{a}$. 8/6. Carr. $3 / 6.12 \mathrm{H} .200 \mathrm{~m} / \mathrm{a} .29 / 6$. Carr. $6 / 6.10 \mathrm{H} .150 \mathrm{~m} / \mathrm{a}$. 12/6. Carr. $4 / 6$.

PARTRIDGE CHOKES

5 H. $250 \mathrm{~m} / \mathrm{a}$. 22/6. Carr. 6/6.

CONSTANT VOLTAGE TRANSFORMERS

By Advance. Input 190-260 v. 50 cycles. Outpue
230 v . at 60 watts. Type M.T. 161 A. \&4//5/-. P.P. $7 / 6$. DIGITAL HOUR METERS 6 figs inc. $1 / 10$ chs, $1 / 100 \mathrm{chs}$ 40v. A.C. but complete with eransiormer for 240 v . A.C 5 ize $61 \times 6+1 \times 3$ in. Condision as new $45 /$. P\& P $5 /$.

Samsor's TELECTRONINS LONDON, N.W.I $\underset{\text { O1-723-7851 }}{9 \text { \& } 10}$ CHAPEL ST., LONDON, N.W. ${ }_{01}$
american oil filled capacitors

10
10
\mathbf{L}^{2}

BRITISH TYPES

T.C.C.		MFD	300 V	AC	Wkg	25/-	5/.
"	10	"	350 V		Wkg	7/6	$2 / 6$
"	8	"	500 V	.,		6/6	2/6
",	4	"	600 V	,	,"Sub chassis mtg.	5/-	2\%-
"	1	"	600 V	${ }^{\circ}$	"	2/-	1/-
".	0.5	"	600 V	.	"	1/6	9d.
-	8	\because	250 V	.	"	3/6	$1 / 6$
-	4	"	800 V	,	.	8/6	3/-
"	2	"	4000 V	"	"	35/-	5/-
-		"	5000 V	"	".	35/-	5/6
,	0.25	.	7500 V	,	-	17/6	4/6
.	0.1	"	7500 V	"	-	15/-	3/-
	0.1		5000 V			8/6	2/-
Philips	60 M	MFD	275 V	AC	Wkg	45/-	7/6

SPECIAL OFFER

G.E.C. 8 MFD 600 V DC Wkg. 6 FOR $29 / 6$ CARR. $7 / 6$. DUBILIER I MFO 600 V Wkg. 6 FOR 9/. P.P. 3/6. STC 5 MFD 400 V AC Wkg. 3 FOR $15 /=$ CARR. $7 / 6$

REDCLIFFE \& GARDNER TRANSFORMERS

 Redcliffe 'C' Core PRI 200-240 SEC 26-27-28-28-27 26V 0.3A DC and 27-0-27V 0.3 ADC 35/- P.P. 5/ Redcliffe PRI 200-240 SEC $2000 \mathrm{~V} 7 \mathrm{M} / \mathrm{A}$ sealed type. 6.3 V Very conservatively rated, 85/-CARR. 10/-

SCOTCH MAGNETIC TAPE. TYpe 3M 459. fin. 3,600 feet.

ex computer low voltage STABILISED POWER SUPPLIES

BRAND NEW L.T. TRANSFORMERS All by Famous Makers
Twickenham. Pri. Tapped 110-220-235-255V. Sec. 55V 24 amps, $14 \mathrm{~V} 10 \mathrm{amps}, 60 \mathrm{~V} 2 \mathrm{amps}$. All windings very connections $89 / 19 / 6$. carr. 15/-. Woden' Pri, 240 V . Sec. $50 \mathrm{~V} 5 \mathrm{amps}, 18-0-18 \mathrm{~V} \mid \mathrm{amp}$. E.S. Tropically finished. 65/- carr. 7/6

Others. Pri. 230 V Sec. Tapped $70-75-80 \mathrm{~V} 4$ amps. Sealed type. 89/6 carr. $10 /=$
Pri. 200-240V. Sec. $12.8 \mathrm{~V} 12 \mathrm{amps} .50 /$ carr. $7 / 6$
Pri. 240 V . Scc. $45 \mathrm{~V} 25 \mathrm{~m} / \mathrm{mps}$, IV : amp. "C' core.
Pri. 230V. Sec. Tapped $130.65 \mathrm{~V} 85 \mathrm{~m} / \mathrm{amps}, 6.3 \mathrm{~V} 5 \mathrm{amps}$, $6 \mathrm{v} .1 \mathrm{amp} .17 / 6$. carr. 5/-
Pri. 6.3V. Sec. 2-0-2V 4 amps. 5 kv . Wkg. Pocted 17/6 carr. 3/6.
Pri. 220-240V. Sec. 12 V 90 amps. Flying lead connestions. Size $7 \times 6 / \times 6$ ins. $\{13 / 19 / 6$ carr. $17 / 6$.

DRY JOINT TESTER
The nost rellable way of teating for a dry joint in to meanure circult boart. Our klt for doing this comprises a large-scale (3in.) moving-coll meter, a gariabie resirtatice for adjusting
zero setting, and a wiring diagram with instructions. The only additional itema you will need are a battery, mone wire, suair of test roda. Price 18/6. Postage and lnsuratice $2 / 0$ REED-SWITCH
suftable for dozens of diflesent applichtiona, such as burglar alamas, conveyor-bell switching. These ure cimply glakg-
encaned wwitchen which can be operated by a pasaing permanent magnet coll. A special buy enablea no to offer these at $2 / 6$ each, or $24 /-$-a dozen. 'Sultable uaghets

BLANKET SIMMERSTAT
Although looking like, and fltted an an ordinary blunket ewitch, this it in fact a device for switiching the blanket on
or varying time periode, thurk giving a complete control rom of to full heat. Also auitable for controlling the
cemperature of any other applances uming up to 1 amp. temperature of any other applianceg uning up to 1 amp.
Linted at $27 / 6$ each, we offer these while our stock lasts at ouly $18 / 6$ each.
ade If R.P.M. GEARED MOTOR
ut are very powerfiche. thene are almost silent runalng māius a nd the final-shaft speeds 16 R.P.M. 15/-. P. \& 1 ln . $2 / 9$ THERMOSTATS
Type "A" 15 anap. for controlling room heaters, kreenhouke. aring cupboard. Has apladle for poslnter lyob. Quickly
adjuatable from $30-80$ deg. F. $8 / 6$ plus $1 /$ jost. Buitable box for wall mounting $5 /-$ P. P. P. 1/-.
 the famous Bunvic Co. 8pladle salduats thly from 50 to 350 deg. F. Internal acrew alter the setting so thls could be adjustable over 30 deg. to 1000 dex. F 30 deg. to 1060 der. F .
8uitable for controling immersion heater or to furnace, oven klhn . immertion heater or make flame-start or flre alarm. 8/6 plus $2 / 6$ post and
insurance.; We cell thin the tee-stat as it cuts in and out
Type " D ". When taround treezing point. $2 / 3$ amps. Rat many unes, one of wlich would be to keep the loft pipes from treezing. If
 djustments cos nor reingerstor temperature $7 / 6$. plus $1 /$ post.
Type
ur". Glank encased
for controlling the temp. of ilquid-particularly those tin glata cuakk, vatse or sitiks. Chermontar in held (hoalf nubmerged) by rubber aucker or wre clip deal for hin tanks -developers and chemical 150 deg. F. Price $18 / \mathrm{F}$, plus $2 /$ post and insurance.

ELECTRIC CLOCK WITH 25 AMP, SWITCH Made by Smith's these unitsare as tited to many top quallity cookers tr control the oven. The clock is mains driven and frequency conon and off times to be accurately get. Ideal for awitching on cape
recorders. Ofered at only a fraction of the regular price-new and recorders. Offered a only a faction of the regular price-new and
unumed only 39/6. leas than the calue of the clock alone-pust and insurance $2 / 9$.

INFRA-RED
 HEATERS

Make up one of these lateat type heaters.

Ideal for bathroom. etc. They are simple

to make from nur easy-h-follow instructions ins indered wave length (3 microns)
useb slites enclosed elememts denigned mor the concet inlustrated. 18/6. plus $4 / 6$ post and Pricè for 850 watts elemb
ins. Pull switch $3 /$ extri.

THIS MONTH'S SNIP

DEAC RECHARGEABLE BATTERIES
$6 \mathrm{v}, 500 \mathrm{~mA} / \mathrm{hr}$. size $2 \frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{}$ dia. Really powerful, will deliver 1 amp for $\frac{1}{2}$ hour. Regular price $65 /$-our price 29/6. New and unissued.

ELECTRIC CLOCK whi 3 amp switch mavie by truiths for Dreamland. These are mains driven and frequency controlled so are extremely accurate. The dial
enablen ""witch-on" time to be accuratels set. 8 witch on in 3 hours hater or by manual control. Intended for switching electric blankets thie needn only oue setting for the weamon. In neat plantle case with maine lead and two outlet pluge In new and unused, $30 / 6$, post and hasurance $3 /(\theta$.

VARYLITE

Will dim fivoreacent or tacandeacent lighting up to 000 W . from full briliance to out. Fitted on M.K. Fluah plate, same size and flixing an standard wali withe be ilted in place of thise, or mount on surface. Price complete switch so may be tited in place of that, or mount
in heavy plastic box with control knob. $£ 3.19 .6$.

These infre red binoculars when fed from a high voltage source will enable objects to be seen in the dark, provided the objects are in the rayn of an infa-red beam. Each ere infra-red ceil. Theseoptical systems can be used an lensea for TV cameras-light celis. etc. (detnils mapplied). The equipment). They are unued and belleved to be in good working order but eold without a guarantee. Price $£ 3 / 17 / 6_{\text {. }}$ MINIATURE WAFER SWITCHES

4 pole, 2 way-3 pole, 3 way- 4 pole, 3 way
-2 pole, 4 way- 3 pole. 4 way- 2 pole -2 pole, 4 way- 3 pole. \& was-2 pole
6 way -1 pole, 12 way. All at $3 / 6$ each, $36 /-$ dozen, your asoortment.

BLANKET SWITCH Double pole with neon let into side so lumse with waterproof element-new plastic ame. $5 / 6$ each. 3 hent model $7 / 8$.
THERMOSTAT WITH
 PROBE

This has a sensor attached to a 15 AA s witch by a 141 m . tubiag-control range is 2odeg. F. to 150 leg.P. F o it is suituhle to control soll eapecially when in buckets enpectatly when in bucketo
or portabe veusels the the
sensor can be raised out and lowered into the ressel. This sound a bell or otber alarm When critical temp. is reached in stack or heap subject to pontaneous combuation or if liguld la being heated by gas of other means not controllable by the switch. Made by
tamous Teddingtun Co., we offer these at $12 / 6$ each.

Where postage is not scated then orders
over \mathbb{C} are post free. Below 63 add $2 / 9$.
over 63 are post Iree. Below 63 add $2 / 9$.
Semi-conducrors add $1 /$ post. Over Ei
Semi-conductors, add $1 /$ post, over E ,
post free. S.A.E. with enquiries please.

NOOPTDELECTRONICS from PROOPS

prorra
New Science Projects combine fascination of Optics with Electronics.

INFRA-RED TRANSMITTERS \& RECEIVERS

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Miniaturized construction and solid state circuit design is combined with outstanding modulation and switching cepabilities to provide infinite possibilities as short distónce speech and data links, remote relay controls, safety devices. burglar alarms, batch counters, level detectors, etc., etc

INFRA-RED PHOTO RECEIVER - MSP3
Ulira sensitive detector/amplifier for infra-red (Gallium Arsenide) or visible light optical links eception. Spectral response 9500 A. Robust. Cylindrical package is coaxial with incident light to facilitate optical alignment and heat sinking.

85/-

MAX RATINGS
Total dissipation (in tree air, Tamb $=25^{\circ} \mathrm{C}$.) $\quad . \quad 100 \mathrm{~mW}$. Derating factor......... $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Suppled complete with suitable lenses, full Technical Data and Application Sheets.

GALLIUM ARSENIDE LIGHT SOURCE-MGA 100 alignment and heat stnking
 35/-

MAX RATINGS
Forward current If max.* D.C._.... 400 mA . Forward peak current if max. (pk) 6A Power dissipation
Reverse voltage Va max 1.0 V .
Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

MICRO-MINIATURE INFRA-RED DETECTOR - 31 F2 Silicon NPN photo-dioded of passivized planar construction, suitable for punched cay
counters. fim sound track. elc.
Infra-red devices (except 31F2) are supplied complete with
suitable lenses, technicaldata and typical application information.

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)
inexpensive light sensitive resistors which require only simple circuitry to work as ight riggering units in a wide range of devices. such as: llashing or breakdown conscious - use with A.C. or D.C. Spectral response covers whole visible light range.

MKY251

Epoxy seated $1 \frac{1}{2}$ in. diam. $x \frac{1}{2}$ in. thick. Resistance at 100 Lux -700 to 3.000 ohms. Maximum voliage 200 A.C. or D.C. Maximum curren MKY101-C
Epoxy sealed. $\frac{8}{\text { in in. diam. } x}$ in. thick. Resistance at 100 Lux -500 to 150 mW . Maxmum voltage 150 A.C. or D.C. Maximum curren
$10 / 6$ post free

MKY71

Glass sealed with M.E.S. base, Glass envelope th in diam overall length 1 in. Resistance at $100 \mathrm{Lux}-50$ Kohms to $150 \mathrm{Kohms}$. Maximum
voltage 150 A.C. or D.C. Maximum current 75 mW . $8 / 6$ post free
CADMIUM SELENIDÊ CELLS (Cdse)
These have a higher dark resistance in a given period than Cadmium Sulphide Cells. indicating much faster response. Surtable for all Cds applications plus applications in Time response showní in megohms is dark resistance measured 10 secs. after 400 Lux light intensity is intercepted.

MKB5H

Hermerically metal sealed. \mathbb{t} in: diam. x in. thick. Time response Resistance at 10 Lux -50 Kohms to 1 megohm. Maximum voltage 50 A.C. or D.C. Maximum current 10 mW . Continuous current 5 mW . 16/6 post free

MKB12H
Hermetically metal sealed 8 in. diam. x $\frac{7}{1} \mathrm{in}$. thick. Time response 100 megohms. Resistance at 1,000 Lux - 100 ohms to 1,000 ohms Resistance at 10 Lux - 1 Kohm to 10 Kohms. Maximum voltage $16 / 6$ post free

PHOTOGENERATIVE CELLS

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible places as easily as electricity is conducted by copper wires. Fibre opties make it possible to control. miniaturize. split, reflect or transfer light from one source to many places at once sible. Proops offer both glass fibre optics or inexpensive Crofon plastic fibres for hundreds of experiments or serious applications in a fascinating new science.

RANK TAYLOR-HOBSON ENGINEERS KITS

All the basic components needed to demonstrate new ways to use light in serious applications With glass fibre optics consisting of housands ferruled, optically polished ends. Kit includes 12 18, and 24 inch standard light guides in 1.5 and 6 mm widths. 24 inch iwin exit guide yith $2 \times 1 \mathrm{~mm}$. outputs. Non-random ' Y gulde wit $2 \times 3 \mathrm{~mm}$. outputs, adaptors and battery operated liaht source Supplied complete with card illustrated applications.

LOW-COST CROFON FLEXIBLE LIGHT GUIDE
Newly developed plastic light transmitting media made by Ou Pont and consisting of 64 special plastic fibres, each sheath. diam. and bundied logether in a lough, fiexible pensive prototype work Ends sern be pround to and mexcapped with Epoxy resin. Temp, range - 40° to dyed or No loss of light through bending. 12-page data and polications booklet supplied

$$
\begin{aligned}
& \text { Minimum order-2 t!. } \quad 8 / 6
\end{aligned}
$$

Other advanced Solid-State devices

RCA INTEGRATED CIRCUIT - CA3020
Complete Audio or Servo Ampllfier in one tiny package!
Preamp, phase invertor, driver and power output function in a single package gives maximum. and $\frac{2}{2}$ in. high. Operates from single D.C. supply of 3 to 9 volts high gain is coupled with built-in temperature compensation (-55 $10123^{\circ} \mathrm{C}$) and wideband operation. Complete with data and clrcuit applications.

421-post free

RCA TRIAC - CA40432
Suitable for light dimming and motor control circuits
Gate-controlled, full-wave, A.C. silicon switch with integral trigger that blocks or conducts instanily by applying reverse polarity voltage. Scitable for A diam. x 훙 in. high. Complete with heat sink, data and applications information. 45/-post free

45/-post free

Wilkinsons FOR RELAYS

 P.O. TYPE 3000 AND 600 BUILT TO YOUR REQUIREMENTS-QUICK DELIVERY COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS - QUOTATIONS BY RETURN Large stocks held of miniature sealed relays

PHOTOGRAPHIC EQUIPMENT
Dullmeyer Prolection Lens $\mathbf{F}=65 \mathrm{mmi}, 35 \mathrm{~mm}$ mount $70 /=$ each, post $2 / 8$. Condenser Lenses Plano-Convex optically ground and notished 14° dia. 21° focus $7 / 6$ each. nost $2 / 6$ $21^{\prime \prime}$ dia $3^{\prime \prime}$ focus $10 /$ each. post $2 / 6.6^{\circ}$ dia. $10^{\prime \prime}$ focus $35 / 6$ post 4
LAMP HOUSES 230 volts 1,000 watls $10 /$ - ea., Thost $7 / 6$. 9 * square case. Ideal spotlight $70 /$ - each. 1post $10 /$. HIGH SPEED COUNTERS
31×1 in.. 10
counts second with 4 flures. The
following DC following D.C.
voltaces
are voltages are
avallable. 6 ar
v..

SUB-MINIATURE Microswltch Honeywell S.P.D.T type 11 SM1 TN 13 size $8^{\circ} \times 1^{\circ} \times 1^{\circ} 6 / 6$ ea. or mounted in fives for $22 / 6$ post free.
DIGITAL INDICATOR. KGMM5 28 vt. 0 to $9,50 /-\mathrm{ea}$ SPEAKERS ELAC Sin. ROUND. 9700 Gauss. 3Ω JACK PLUGS. screw-on cover, $2 / 6$, point with Po 201 on head phone cord $3 /=$, most $1 / 6$. PLUG-IN RELAYS. Jondex 4 change-over HD contacta 28 V. D.C. or $240 V$. A.C. with base and cover, $35 /$ eea RELAYS, 24 voit DC, 4 make, of break heavy duty TRANSISTORS DIODES SCR'S ZENNERS VALVES ${ }^{\text {A82 } 200} 4 / 6 \quad 2 N 6985 /-\quad$ SX68 4/6 $181312 /-$

 LOWGLEY HOUSE LONGLEY RD. CROYDON SURREY

ROBUST AIRCRAFT PUSH 5C/898 of bakelite barrel tyne construction, With 18^{*} square 4 hole
fixing top with actual push below the level of a 1 " hakelite circle to prevent it being used accidentally Samples $5 / 6$ each lange nuantities available.
MAGNETIC COUNTERS Veeder Root with zero reset. 800 counts ner minute. counting to 099.999 zero METERS Volts AC or 110 volts DC. $65 /-$ each. prost $3 /$.
 Microamps $0 / 10024 \mathrm{in}$. MC $40 /-$ $\begin{array}{lll}\text { Microamps } & 0 / 500 & 2 \mathrm{in} . \text { MC } \\ \text { Microamps } 0 / 500 & 25 /- \\ 37 / 6\end{array}$ Milliamps $0 / 5002$ in. MC $37 / 6$ Millamps $0 / 5024 \mathrm{in}, \mathrm{MC}$. $35 /-$ Milliamps $0 / 500$ 3 4 in . MC Amps $5000-502 \operatorname{in}$.
Volts $5 / 0 / 521$ in. M Volts $0 / 202 \operatorname{in}$. MC 25/6 MICROAMPS Volts MICROAMPS $0 / 50$ gcaled in Rontgens 21 in . MC $45 /$ LEAK DETECTOR A.E.I, malns powered 635 er. PORTABLE YOLTMETERS 0/250 Moving Iron AC

ONE HOLE FIXING SWITCHES SINGLE POLE. Double Throw, 3 amp. 250 v. A.C. can be used as on/ OFF or CHANGE-OVER switch.
$18 /-$ per dozen, $130 / \mathrm{L}$ per 100 .

$$
\text { post } 2 /-. \quad \text { nost } 5 /-
$$

$$
\text { posit } 5 /-
$$

Precision made Contacta making and breaking twice per second in soundproof case with thermostat controlled heating. 12 or 24 v 8/6 post 6/
VISCONOL-CATHODRAY" CONDENSERS. $001 \mathrm{mfd} .10 \mathrm{kV}, 5 /-.002 \mathrm{mf}, 15 \mathrm{kV}, 9 /-: .02 \mathrm{mf}$. 10 kV . $1-; 6 \mathrm{kV}, 17 / 6: 0.5 \mathrm{mf} .2 .5 \mathrm{kV} .17 / 6: 1 \mathrm{mfd} .2 \mathrm{kV}$. $17 / 6$. RESISTORS, wire wound or carbon, yotentiometers, condensers, quantities ex-stock at low prices. BRIDGE MEGGERS SERIES I. With resistance

LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $£ 87 / 10 /-$ each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
SET OF VALVES: new, $£ 3 / 10 /-$ a set, post $7 / 6$; available with Receiver only. SPEAKER: new, £3 each, post 10/-. HEADPHONES: new, $£ 1 / 5 /$ - a pair, 600 ohms impedance. Post $5 /-$. AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/-each, post 2/6. RF Coils 13 \& 14 ; $17 \& 18 ; 23 \& 24$; and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.1 \mathrm{mfd}$., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of 3, 10/-, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., £2 each, 4/- post. Output transformers 901666-501 27/6 each, 4/- post.

MARCONI SIGNAL GENERATORS

TYPE TF-I44G

Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $+/-1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements: $19 \ddagger \times 12 \ddagger \times 10 \mathrm{in}$. The above come complete with Mains Leads, Dummy Aerial with screened lead, and plugs. As New, in Manufacturer's cases, $£ 40$ each. Carr. $30 /$. DISCOUNT OF 10% FOR SCHOOLS, TECHNICAL COLLEGES, etc.
HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$. with set of nine coils. Complete HRO 5 T SET (Receiver, Coils and Power Unit) for $\mathbf{~} \mathbf{3 0}$, plus $\mathbf{3 0 / -}$ - carr.
COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $£ 5 / 10 / \cdot \mathrm{cach}$, post 5/-.
COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s, approx. 25 W output, directly calibrated. Valves 2×1625 PA; 1×1626 osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $\mathrm{E} 3 / 10 /-$ each, $10 /$ post. (Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)
BC-433G COMPASS RECEIVER; Freq. $200-1,750 \mathrm{Kc} / \mathrm{s}$. in 3 bands, suitable for aircraft, boats, etc. Complete with 15 valves, power supply input 24 v. D.C. at 2 amps. Receiver only $\& 5$ each, carr. 15/-.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C.@ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $\mathbf{6} / 10 / \mathrm{e}$ each, $8 /=$ post. Converter 12 v D.C. input, 110 v A.C., $60 \mathrm{c} / \mathrm{s} 92.73 \mathrm{amps} .0 .300 \mathrm{Kva}, £ 15$ each, carr. £1. Converter 230 V D.C. input,
115 v output $60 \mathrm{c} / \mathrm{s}$ @ $2.73 \mathrm{amps} .0 .300 \mathrm{Kva}, £ 15$ each, carr. $£ 1.24 \mathrm{v}$ D.C. input, 115 v . output $60 \mathrm{c} / \mathrm{s} @ 2.73 \mathrm{amps} .0 .300 \mathrm{Kva}$, 15 ca
175 v D.C. @ 40 mA output, $25 /-$ each, post $2 / \mathrm{l}$.
CONDENSERS: $150 \mathrm{mfd}, 300 \mathrm{v}$ A.C., £7/10/- each, carr. $15 /-40 \mathrm{mfd}, 440 \mathrm{y}$ A.C. wkg., £5 each, $10 /-$ post. $30 \mathrm{mfd}, 600 \mathrm{v} w \mathrm{~kg}$. D.C., $£ 3 / 10 /-$ each, post $10 /-$ $15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. wkg., $15 /-$ cach, post $5 /-.10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6 \mathrm{each}$, post $2 / 6$. $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-.8 \mathrm{mfd}, 600 \mathrm{v}$,
$8 / 6$ each, post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., 33 each, post $7 / 6$. $2 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., f2 each, post $7 / 6.0 .25 \mathrm{mfd}, 32,000 \mathrm{v}, 87 / 10 /-$ each, carr. $15 / \mathrm{-} .0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /$ each, $1 / 6$ post.
AER1AL MASTS: 40 ft., complete with base, $£ 10$ each. Carr. £2.
RACK CABINETS: 6 ft . by 19 in ., and 16 in . depth, with rear door and safety switch, $\mathbf{~ 5}$, cars. £2.
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: £25 each, carr. £1. AVOMETERS : Model 47A, £9/19/6 each, $10 /$-post. Model $7 x, £ 13 / 10 /$ - each, 10/-post. Excellent secondhand cond. (Meters only). (Batteries and Leads extraat cost).
OSCILLOSCOPE Type 13A, $100 / 250 \mathrm{v}$. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /$ - each, $30 /$ - carr.
COSSAR 1035 OSCILLOSCOPE, £ 30 each, $30 /$ - carr. RELAYS: Relay Unit (with 9 American relays) 24 v. D.C., 250 ohm coils.
heavy duty, M. \& B. $30 /-$ each, $4 /$ post. GPO Type 600,10 relays (a) 300 heavy duty, M. \& B. $30 /$ - each, 51 - post. GPO with 2 M and 10 relays @ 50 ohms with 1 M ., 22 each, $6 /-$ post. 12 Small American Relays, mixed types £2, post $4 /=$.

CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869 25 each, £. 2 carr
ROTAX VARIAC \& METER UNIT: Type 5G.3281. Reading 0-40 v., 0-40 mA and 0.5 amps., all on 275 deg. scales, $£ 30$ each, $£ 2$ carr.
HEWLETT PACKARD TYPE $400 \mathrm{C}: 115 \mathrm{v} \cdot 230 \mathrm{v}$. input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$. in 12 ranges. Input impedance 10 megohms. Designed for rack mounting, $£ 30$ each, carr. $15 /-$.
TCS MODUI.ATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, relays, magnetic clutches,
price $£ 7 / 10 /-$, $£ 1$ carriage.

FOR EXPORT ONLY: B. 44 Trans-ceiver Mk. IIl. Crystal control, 60$95 \mathrm{Mc} / \mathrm{s}$. AMERICAN EQUIPMENT: 5C-640 Transmitter, 100 , 156 Mc / s., 50 watt output. For 110 or 230 v . operation. ARC 27 trans-ceivers,
28 v , D. input. Also have associated equipment. BC-375 Transmitter. 28 v. D.C. input. Also have associated equipment. BC-375 Transmitter.
BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893 BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893/
GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical
CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Erection Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unit, CM.23; Directional Control CRD.6, $567 / \mathrm{CRD}$ and $568 / \mathrm{CRD}$; Azimuth TS.622/U.

VARIABLE POWER UNIT: complete with Zenith variac 0-230 v.9 9 amps.;
2 tin. scale meter reading $0-250 \mathrm{v}$. Unit is mounted in 19in, rack, £16/10/- each, 2 tin .8 scal
$30 / \mathrm{carr}$.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post $6 /$-.
CONTROLPANEL: 230 v. A.C., 24 v. D.C. @ $2 \mathrm{amps} .$, £ $2 / 10 /=$ cach, carr. $12 / 6$. AUTO TRANSFORMER: 230-115 v.; 1,000 w. \&5 each, carr. 12/6. 230-115 v.; 300VA, \&3 each, carr. 10/-
OHMITE VARIABLE RESISTOR: $5 \mathrm{ohms}, 5 \frac{1}{2} \mathrm{amps}$; or 2.6 ohms at 4 amps . Price (either type) $\& 2$ each, $4 / 6$ post each.
POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output @ 300 mA . Complete with two $\times 9 \mathrm{H}$ chokes and 10 mfd . oil filled capacitors. Mounted in 19 in . panel, $£ 6 / 10 /-$ each, $£ 1$ carr.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete wit filament transformer 230 v . A.C. Mounted in 19 in . pantl, £4/10/- ea $: \mathrm{h}, 15 /$ - carr POWER UNIT: 110 v . or 230 v . input switched; 28 v . @ 45 amps . D.C. output. Wt. approx. 100 lbs , $£ 17 / 10 /$ - each, $30 /$-carr. SMOOTHING UNITS suitable

Signal generators:

MARCONI TF-144G : freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, internal and external modulation, power supplies $200 / 250 \mathrm{v}$. A.C. (secondhand cond), price $£ 25$ ea.; carr. 30/-.
CT53. Freq, range 8.9-300 Mc/s. with Calibration chart. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. internal square wave and sinewave modulation at $100 \mathrm{c} / \mathrm{s}$., external modulation $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$, , 230 v . A.C. Complete with chart, etc., price $£ 27 / 10 /$ - ea., carr. £1.

MARCONI CT. 480 and 478: 1.3-4.2 Mc/s., F.M. or A.M., price £75 each, carr. 30/-.

NIFE BATTERIES: 6 v .75 amps ., new, in cases, £15 each, £1 carr.; 4 v .160 amps, new, in cases, $£ 20$ each, $£ 110 /$ carr. L.R. 7 Cells, only 1.2 v .75 amps. new, $£ 3$ each, $12 /=$ carr. The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.

FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price 0-9999, with locking a
$30 /-$ each, postage $5 /-$.

UNISELECTORS (ex equipment): 5 Bank, $50 \mathrm{Way}, 75 \mathrm{ohm}$ Coil, alternate wipe, £2/5/- each, post 4/

FREQUENCY METERS: LM13 or BC-221; $125-20,000 \mathrm{Kc} / \mathrm{s}$., £25 each., carr. 15/-. TS.175/U, £75 each, carr. £1. TS323/UR, 20-450 Mic/s., £75 each, carr. 15/-. FR-67/U: This instrument is direct reading and the results are presented directly in digital form. Counting rate: $20-100,000$ events per sec. Time Base
Crystal Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: 115 v ., $50 / 60 \mathrm{c} / \mathrm{s}$., $\mathbf{i} 100$ each, Crystal
carr E 1.
CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v} . \mathrm{D} . \mathrm{C} . \mathrm{£} 12 / 10 /-\mathrm{cach}$, carr. 15/-.
CATHODE RAY TUBE UNIT: With 3 in. qube, colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 /-$ each, post $7 / 6$.

APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$, complete with all valves 28 v. D.C. 3 relays, 11 valves, price $£ 3$ each, carr. $10 /-$.

GEARED MOTORS : 24 v. D.C., current 150 mA , output 1 r.p.m., 30/- each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., \&2 each, 5/-post.
MOTORISED ACTUATOR: 115 v. A.C. $400 \mathrm{c} / \mathrm{s}$. single phase, reversible, thrust approx. 3 inches complete with limit switches, etc. Price £2/10/- each, postage $5 /$ - (ex equipment).
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs ., rating intermittent, price £3 each, post 5/-.
SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.

Model PM-4: 28 v.D.C. © 2 amps., 4,500 r.p.m., output 40 watts continuous Muty complete with magnetic brake. Price $\Sigma 2$ each, postage $4 / \mathrm{m}$
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts, price $25 /-$ each, postage $4 /$ -
A.C. Motor $115 \mathrm{v} .50 \mathrm{c} / \mathrm{s} .1 / 300$ H.P., 3,000 r.p.m. Capacitor 1 mfd ., 25/- post 3/-. Dalmotor SC5, 28 v. D.C. at 45 amps ; 12,000 r.p.m. output 750 W. (approx. 1 h.p.), brand new, $£ 2 / 10 /$ each, post $7 / 6$.

MARCONI NOISE GENERATOR TF-987/1; Used to determine noise factor of a.m. and f.m. receivers. Designed for 230 v . a.c. operation. In uscit condition, of a.m. and f.m. ${ }^{\text {rem }} 20$ each, carr. E 1 .

MARCONI TF-956 (CT.44) AUDIO FREQUENCY ABSORPTION WATTMETER; Large clear 6 in . scalc. 1 microw. 106 W . £25 each. Carr, 15/-. MARCONI DIVERSITY RECEIVERS; Consisting of $2 \times C R .150$'s and associated equipment. \&175 each. Cars. £5.

CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator 'tc., power inpul 12V. D.C., new cond., complete set $£ 50$. Used condition working order £25. Carr. on both types $£ 2 / 10 /-$ -
Transmitter only $£ 7 / 10 \%$ (few only) Carr. $15 /$. Power Unit for Rec., new $£ 3 / 5 /-$. Transmitter only $£ 7 / 10 /$. (few only) Carr. 15/-. Power U
Used power units in working order $£ 2 / 5 /-$. Carr 10/-.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N female connectors firted to receive UG-21/U series plugs. New in ctns., $66 / 10 /-$ each, post 7/6. CO-AXIAL SWITCh-Mnftrs. Transco Products Inc., 1 ype Type M1460-4. (New) £6/10/- each, $4 / 6$ post.
TERMALINE RESISTOR UNITS: type 82A/U, 5000 W , freq. $0-3.3 \mathrm{KMC}$ Max VSWR 1.2 Type "N" female connectors, etc. Brand new', $\mathbf{~} 30$ each, carr. 15/-.
PRD Electronic Inc. Equipment: STANDING WAVE DETECTOR: Type $219,100-1,000 \mathrm{Mc} / \mathrm{s}$. (New) $£ 65$ each, post $12 / 6$. FREQUENCY
 FIXED ATTENUATOR: Type 130c, $2.0-10.0 \mathrm{KMC/SEC}$.
post $4 /-$. FIXED ATTENUATOR: Type $1157 \mathrm{~S}-1$, (new) $\mathbf{6}$ each, post $5 / \mathrm{l}$.

The DORSET (600 mW Output)
7-transistor fully tunable M.W.-L.W. superhet portable-
with baby alarm facility. Set of parts. The latest modulized with baby alarm facility. Set of parts. The latest modulized Sizes: $12^{2} \times 8^{\circ} \times 3^{\prime \prime}$.
MAINS POWER PACK KIT: $9 / 6$ extra.
Price $\mathbf{E} 5.5 .0$ plus $7 / 6$ p. \& p. Circuit $2 / 6$. FREE WITH PARTS The ELEGANT SEVEN MK. III (350mW Output)
7-transistor fully tunable M.W.-L.W. portable. Set of parts. Complete with all components, including ready for foolproof construction.
MAINS POWER PACK KIT: $9 / 6$ extra.
Price £4.9.6 plus $7 / 6 \mathrm{p}$. \& p
Circuit 2/6. FREE WITH PARTS

50 WATT AMPLIFIER AC MAINS 200-250V

An excremely reliable general purpose valve Amplifier-with six elecrenically mixed inputs. Suitable for use with: mics, guitars, gram, tuner, organs etc. Separate bass and ereble controls.

Price 27 gns. plus 20/ p. \& p.

XIOI

 IOw. SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP.Specifications: RMS Power Ourpur (into 3 ohms speaker) 10 watts.
Sensitivity (for rated output): ImV into 3 Kohms $(0.33$ At rated output 1.5%. Frequency Response: Minus 3 db At rated output 1.5%. Frequency Response: Minus
points 20 Hz and 40 Khz . Speaker: 3.4 ohms. $(3.15 \mathrm{hms}$ may be used). Supply voltage: 24 v D.C. at 800 mA . $(6-24 \mathrm{~V}$ may be used).

Price $49 / 5$ plus $2 / 6$ p. \& p CONTROL ASSEMBLY: (including resistors and capacitors). I. Volume: Price 5/-. 2. Treble: Price 5/., 3. Comprehensive bass and treble: Price 10/, FOR THE XIOI: PIOI M (for mono) 35/-p. \& p. 4/6: Plol S (for stereo) $42 / 6$ p. \& p. $4 / 6$.

The CLASSIC

CONTROLS: Selector Switch. Tape
Speed Equalisation Switeh ($3 \frac{3}{2}$ and $7 \frac{1}{2}$ i.p.s.) filter and 2 position rumble filter.
SPECIFICATION : Sensitivities for 10

at 1 KHz . Tape Head: 3 mV (as $3 \frac{1}{2}$ i.p.s.). Mag. P.U.: 2 mV . Cer.P.U
80 mV . Radio: 100 mV . Aux. 100 mV . Tape/Rec. Ourpur: 100 mV . Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone
Control Range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Total Distortion: (for 10 matt output) $<1.5 \%$. Signal Noise: $<-60 \mathrm{~dB}$. AC Mains 200-250v. tion: $12 t^{\prime \prime}$ long, $44^{\prime \prime}$ deep, $2 t^{\prime \prime}$ high. Price 8 gis. plus $7 / 6$ p. \& p.
Teak finished case.
The RELIANT IOW SOLID-STATE HIGH QUALITY AMPIIFIER
Specifications: Outpur: 10 warts. Ourpur
 Impedance: 3 to 4 ohms. Inputs: 1. xtal mic 10 mV . 2. gram/ radio 250 mV . Tone Controls: Treble control range $\pm 12 \mathrm{~dB}$ at 10 KHz Bass control range 20 Hz and 40 KHz . Siznal to Noise Ratio bency response: Minus 3 dB points 4 silicon Planar type and 3 Germanium type. Mains input: $\mathbf{2 2 0 - 2 5 0 V}$. A.C. Size of chassis: $10^{\circ} \times 3^{3 *} \times 2^{\text {m }}$. A.C. Mains, $200-250$ V. For use with Std. or L.P. records, musical instruments, all makes of pick-ups and mikes. Two inpues with control for gram. and mike. Built and rested. $8^{\prime \prime} \times 5^{\circ}$ speaker to suit. Price $14 / 6$ plus 1/6 p. \& p. Crystal mike to suit $12 / 6$ plus
1/6 p. \& p
Price $\mathbf{£ 5 . 5 . 0}$ plus $5 / \mathrm{p}$ \& \& p .

THE VISCOUNT

Integrated High Fidelity Transistor Stereo Amplifier
SPECIFICATIONS: OUEDUE: 10 watts per channel into 3 to 4 ohms speakers (20 watts monoral). Input: 6 position rotary selecteo switch (3 pos. mono and 3 pos. stereo). P.U.U.Tuner, Tape and Tape Rec. Sensitivivies: All inputs 100 mV . into 1.8 MM ohm. Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}$. Tone controis: Separate bass and treble controls. Treble 13 db lift and cut at 15 KHz . Bass 15 db lift and 25dy cut as 60 Hz . Volume controls: Separate for each channel. AC Mains input
$200-240 v .50-60 \mathrm{~Hz}$.
Size $121^{\prime \prime} \times 6^{\prime \prime} \times 22^{\prime \prime}$ in teak-finished case. Built and tested.

THREE-IN-ONE HI-FI 10 WATT SPEAKER A complete Loud speaker oystem on one irame, combining three matched ceramic magnet apeakers with a low loas crons:
over network. Peak handing power 10 watte. Impedance 15 ohms. Flux density 11,000 gause. Resonance $40.60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{a}$ to $20 \mathrm{ko} / \mathrm{c}$. Size $13!\mathrm{x} 8$ 合 $\times 4\}$ inchen. By lanious manutacturer. List price 87 . Our price $69 / 6$ plus $5 /-$ p. \& p. Almilar apeaker to the above without tweeters in 3 and
15 ohma. \quad Price $39 / 6$ plus $5 /$. p. \& p.

MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7 in spool. Incorporating 3 motors. A.C. mains, 240 voles listed at $£ 21.0 .0$
Our Price £9.19.6 plus 10% p. \& p.
Goods not despatched outside U.K. Terms C.W.O. All enquiries SAE.

RADIO \& TV COMPONENTS (ACTON) LTD.

 21A High Street, Acton, London, W. 3Orders by post to our Acton address please. Also at 323 Edgware Road, London, W. 2 Personal callers only at our Edgware address.

SILICON N.P.N. TRANSISTORS. Similar to 2N2926. All individually tested. Fold plated leads for easy soldering. Unbeatable value at 1/6 each or $£ 5$ per 100 .
*TRANSISTORISED FLUORESCENT LIGHT. 8 WATT 12in. TUBE. Current drain only 700 mA ! Complete and tested $£ 2 / 19 / 6$ only Or in kit form:

TRANSISTORS
OC200, OC203, OC204, all at $2 /-$ each
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A, 2G378A, all at $1 / 6$ each.
Unmarked, untested transistors, $7 / 6$ for 50 .
LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each
30 watt transistors (ASZ17), 10/- each.
ORP 12 Cadmium sulphide light sensitive resistors $9 / \%$
RECTIFIERS
BY100, 800 p.i.v., $2 / 6$ each, $24 /-$ per doz., $£ 7 / 10 /-$ per 100 , $£ 50$ per $1,000$. BYZ13, 6 -amp, 400° p.i.v., available on same terms.

> MULLARD POLYESTER CAPACITORS
$0.001 \mu \mathrm{~F} 400$ volts FAR BELOW COST PRICE. $0.02 \mu 200$ volt
$0.0015 \mu \mathrm{~F} 400$ volts $\quad \therefore \quad \therefore \quad$ 3d $\quad 0.15 \mu \mathrm{~F} 160$ volts
$0 \cdot 0018 \mu \mathrm{~F} 400$ volts
$0.0022 \mu \mathrm{~F} 400$ volts
.. $\quad .3 \mathrm{~d} \quad 0.27 \mu \mathrm{~F} 160$ volts 6d

VERY SPECIAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values, $10 /$-per 100
PAPER CONDENSERS, MIXED BAGS, 0.0001 to $0.5 \mu \mathrm{~F} .12 / 6$ per 100.
RESISTORS ! Give-away offer! Mixed types and values, $\frac{1}{6}$ to $\frac{1}{2}$ watt, $6 / 6$ per $100,55 /-$ per 1,000 . Individual resistors 3 d each. Also to to 3 watt close tolerance. Mixed values. $7 / 6100,55 /-1,000$.
WIRE-WOUND RESISTORS. 1 watt to 10 watts. Mixed bags only. 16 for 10 -.

RECORD PLAYER CARTRIDGES

UNREPEATABLE OFFER!
 GIANT SELENIUM PHOTO-CELLS. OUTPUT UPWARDS OF 5 ma AT $\cdot 6 \mathrm{~V}$ FEW ONLY 10'- EACH

TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F. 10/- only TRANSISTORISED SIGNAL TRACER KIT $10 /-$ only.
TRANSISTORISED REV. COUNTER KIT 10/.
VEROBOARD
2 lin. $\times 1 \mathrm{in} 0 \cdot 15$ in matrix $1 / 1$
$17 \mathrm{in} \times 2 \mathrm{in}$. 0.15 in . matrix $11 /-$
3 in $\times 2 \operatorname{lin} 0.15 \mathrm{in}$. matrix $3 / 3$
$\begin{aligned} 3 \operatorname{in} \\ 5 \text { in }\end{aligned} \times 3$ inin 0.15 in. matrix $3 / 11$
5 in $\times 3$ in 0.15 in matrix $5 / 6$
3in x an 01 matrix 14/8
3 in $\times 3$ in 0.1 in matrix
Spot Face Cutter 7/6 Pin Insert Tool 9/6.
PECIAL OFFER!
Five $2 \hbar$ in $\times 1$ in. Boards and a cutter $9 / 9$.
MULTIMETERS. 20,000 ohms per volt.
Ranges: a.c. $1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}$
d.c. $250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50 \mu \mathrm{~A}$.
d.c. $2,500 \mathrm{~V}, 500 \mathrm{~V}, 250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}$.

Resistance: $0 / 60 \mathrm{k} \Omega$ and $0 / 6 \mathrm{M} \Omega$.
Special price $\mathrm{\varepsilon}^{4} / \mathrm{/} /-$ only.
ELECTROLYTIC CONDENSERS

$0 \cdot 25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	12 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	10 volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	12 volt	$400 \mu \mathrm{~F}$	$6 \cdot 4$ volt
$1 \mu \mathrm{~F}$	20 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt		
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$6 \mu \mathrm{~F}$	6 volt	$30 \mu \mathrm{~F}$	6 volt		
$2 \mu \mathrm{~F}$	3 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	10 volt		
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	12 volt	$50 \mu \mathrm{~F}$	6 volt	All at $1 /-$ each.	
$25 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	50 volt	$64 \mu \mathrm{~F}$	2.5 volt		
$3 \mu \mathrm{~F}$	25 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	9 volt	20 assorted	
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	25 volt	$100 \mu \mathrm{~F}$	9 volt	(our	selection)
$4 \mu \mathrm{~F}$	4 volt	$20 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt	$2 /-$	

SKELETON PRE-SET POTENTIOMETERS 100Ω

$$
\begin{array}{ll}
100 \Omega & \\
100 \mathrm{~K} \Omega & \\
200 \mathrm{~K} \Omega & \text { 6d. each. } \\
500 \mathrm{~K} \Omega & \\
680 \mathrm{~K} &
\end{array}
$$

PRE-SET SLIDERS
SMALL TRANSISTOR OUTPUT TRANSFORMERS $2 / 6$ each. SMALL TRANSISTOR DRIVER TRANSFORMERS $2 / 6$ each. CRYSTAL OR MAGNETIC LAPEL MIKES. 10/- each.
CRYSTAL TAPE RECORDER MIKES. 12/- each.
Orders by post to:

G. F. MILLWARD

dRayton bassett, near tamworth, staffs.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock For customers in Birmingham, Birmingham 8.

DUXFORD ELECTRONICS (W.W.) 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (0223) 63687
(Visit us-at our new Mail Order, Wholesale \& Retail Premises)
MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing $1 / 6$

$$
\begin{array}{ll}
\text { DISCOUNT } & \mathbf{1 0 \%} \text { over } £ 3 \\
15 \% \text { over } £ 10
\end{array}
$$

CERAMIC DISC CAPACITORS (Hunts.). $500 \mathrm{~V} \pm \mathbf{2 0 \%} ; 100,220,330 \mathrm{pF}$. $-20 \%+80 \%: 470,680,1,000$ pF. $5 d$. each

ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$

POLYESTER CAPACITORS (Mullard)
Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mathrm{RF}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$, $0.1 \mu \mathrm{~F}$, 9 d . $0.15 \mu \mathrm{~F}$, IId. $0.22 \mu \mathrm{~F}$, $\mathrm{i} / .=0.33 \mu \mathrm{~F}, 1 / 3.0 .47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}, 2 / 3$.
$1 \mu \mathrm{~F}, 2 / 8$.
$400 \mathrm{~V}=1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d}$.
$0,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.047 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.068,0.1 \mu \mathrm{~F}$, $11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}$. 2/3. 0.47μ F, $2 / 8$.
Modular, metallised, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}$, 7d. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.15 \mu \mathrm{~F}$, $11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, \mathrm{I} / 5$. .47 $\mathrm{F}, 1 / 8.0 .68 \mu \mathrm{~F}, 2 / 3$. $\mathrm{I}_{\mu \mathrm{F}, 2 / 9,}$

POLYSTYRENE CAPACITORS: 5%, 160 V (unencapsulazed): $10,12,15$. 18, 22, 27, 33, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220, 270, 330, 390, 470, 560, $680,820 \mathrm{pF}$, 5 d . $1,000,1,500,2,200 \mathrm{pF}$, $6 \mathrm{~d} .3,300,4,700,5,600 \mathrm{pF}, 7 \mathrm{~d} .6,800$ $8,200,10,000 \mathrm{pF}$, $8 \mathrm{~d} .15,000,22,000 \mathrm{pF}$, 9 d .
1%. 100 V (encapsulaced): $100,120,150,180,220,270,330,390,470,500,560$, $680,820 \mathrm{pF}$. $1 /$, $1,000,1.200,1,500,1,800,2,200,2,700,3,300,3,900 \mathrm{pF}, 1 / 3$. $4.700,5,000,5,600,6.800,8,200,10,000,12,000,15,000 \mathrm{pF}$. $1 / 6.18,000,22.000$ $27,000,33,000,39,000 \mathrm{pF}, 1 / 9.0 .047,5,000,0.056 \mu \mathrm{~F}, 21.00 .068,0.082,0.1 \mu \mathrm{~F}$, $2 / 3.0 .12 \mu \mathrm{~F}, 2 / \mathrm{i}, 0.15,0.18 \mu \mathrm{~F}, 3 /=0.22 \mu \mathrm{~F}, 4 /=0.27,0.33 \mu \mathrm{~F}, 5 /-0.39 \mu \mathrm{~F}, 5 / 9$.

JACK PLUGS (Screened): Heavily chromed, fin. Standard: 2/9 each
Side-entry: $3 / 3$ each.) $2 / 3$ each.
JACK, SOCKETS (lin . Plug): With chrome insers, $2 / 9$ each. Avallable with: Break/Break, Make/Break, Break/Make, Make/Make contacts.
POTENTIOMETERS (Carbon): Long life, low noise, ?W at $70^{\circ} \mathrm{C}$ $20 \% \leqq 1 M_{1} \pm 30 \%>\$ M$. Body dia., lin. Spindle, lin. x tin. $2 / 3$ each. Linear: 100 , 2500.500 ohms, etc., per decade 5010 M . Logarithmic: $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, etc. per decade to 5 M .
SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100 , 250, 500 ohms, etc.., per decade to 5 M
Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \% \leqq\left\{\mathrm{M}_{\mathrm{l}} \pm 30 \%>\{\mathrm{M}\right.$. Horizontal $(0.7 \mathrm{mn} . \times$
 UCMin. , M. mounting. Hod. each.
RESISTORS (Carbon film), very low noise. Range: $5 \%, 4.7 \Omega$ to IM Ω (E24 Series) 10% i 10Ω to IOM Ω (EI2 Series)
$\mathrm{W}(10 \%)$. i:d. 100 off per value $12 / \mathrm{l}$. in (5%). 2d. 100 off per value $13 / 9$. iW (10%), 2 d . 100 off per value $13 / 9$. IW (5%), 2 td. 100 off per value, $15 / 6$.
SEMICONDUCTORS: OA5, OAB1, 1/9. OC44, OC45, OC71, OC81, OC810, OC82D, $2 /-\mathrm{OC70,OC72,2/3} ACl 107,$. OC75, OC170, OCI71, $2 / 6$

SILICON RECTIFIERS (0.5 A) : 170 P.I.V., 2/9. 400 P.I.V., 3/. 800 P.I.V., 3/3.
 800 P.IIV., 3/3. (6A): 200 P.I.V., 3/-, 400 P.I.V., 4/-. 600 P.I.V., 5/-. 800 P.I.V.. $6 /-$. THYRISTORS (5A): 100 P.I.V., 8/-. 200 P.I.V., $10 /-, 400$ P.IVV., is/-.
SWITCHES (Chrome finish, silver contacts: 3A 250V, 6A 125V., Push Bustons: Push-on or Push-off $5 /$.0 Togzle Switches: SP/5T, 3/6, SP/DT, $3 / 9$. SP/DT (with cencre position) 4/\%. DP/ST, 4/6. DP/DT, $5 /$..

PRINTEO CIRCUIT BOARD (Vero).

 5/3.
RECORDING TAPE (Finest quality MYLAR-almost unbreakable).

 18/-. (Add 9d. poscage and packing per reel).

Send S.A.E. for January, 1969 Cafalogue

All overseas enquiries \& orders please address to:
 COLOMOR (ELECTONMCS) LTD.

BOONTONSTANDARD SIGNAL GENERATOR MODEL Bo. Frequency ${ }^{2}$ $400 \mathrm{Mc} / \mathrm{s}$. in 6 ranges. AM. 400 and $1,000 \mathrm{c} / \mathrm{s}$. and external modulation. Provision for pype atrenuzer $0.1,-100 \mathrm{mV}$ separate meter for modu separate meter for modu Precision flywheel tuning 117 v. A.C. input. With in. seruction manual, E95. Car riage 30/-.

OOLARAD UHF SIGNAL GENERATOR. Frequency $950 \mathrm{mc} / \mathrm{s} /$ $2.400 \mathrm{mc} / \mathrm{s}$ in one range. Acsenuator 0.1 $\mathrm{mV}-200 \mathrm{mV}$. Sync. selector internal square wave, sin $\ddot{\text { pos }}$ positive and negative race mulsiplyer
$30-420 \mathrm{c} / \mathrm{s}$. Pulse delay $2.5-350 \mathrm{u} / \mathrm{sec}$. Pulse width 5 microsec (incorporating square wave switch). Modulation: positive and negative, fllo. Carriage posit
As above but frequency $3,830-11,050$ mc / s, counser read our, pulse delay XI , $\times 10$ and $X 100$ at 2.20 microsecs. Pulse rate $\times 10, \times 100, \times 1,000$ at $1-10 \mathrm{c} / \mathrm{s}$. Cl65. Carriage 30/.

MARCONI SIGNAL GENERATOR TYPE TF $144 \mathrm{G} .85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}$. Excellent laboratory tested condition. with all necessary accessories with instruction manual, \&45. P. \& P. $15 / \%$.

MARCONI SIGNAL GENERATOR TF 801/A/I. $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at $400 \mathrm{c} / \mathrm{s}$. I ke/s. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Output $0-100 \mathrm{db}$ below 200 mV from 75 ohms source. C85. P. \& P. 20/-, including necessary connectors, plugs, and in. scruccion manual.

BROADBENT MICROWAVE SIGNAL GENERATOR TYPE 903. Frequency range $6.800-11,000 \mathrm{mc} / \mathrm{s}$, c / s and $\times 10$ multiplyer, delay $3-300$ $\mathrm{U} / \mathrm{sec}$. Width .05 to $10 \mathrm{U} / \mathrm{sec}$. Input for external syncronisation and modulation. Output delayed and undelayed syncronised directly calbraced attenuator. C85. Carraige 30/

DAWE VALVE VOLT METER TYPE 613B. Range $0.03 v$ to 300 v in nine ranges. Frequency $20 \mathrm{c} / \mathrm{s}$ to 2 $50 \mathrm{c} / \mathrm{s}$ i $17 / 10 /$ - Carriage $30 /$

SOLATRON LABORATORY REGULATED POWER UNIT MODEL SRS 15I A. Variable voltage, positive output: 20-250v; 250/500v $0-170 \mathrm{y}$ (metered). Nogative output $0-170 \mathrm{y}$
(unmetered). Fixed negative ourput 170 v . Two separate 6.3 v and 5 amp outputs. Volts -mA meter switch. H.T. Safety cutout. 200/250v A.C. 50 c/s. 645, Carriage 30/.

MARCONI VIDEO OSCILLATOR TF 885A. Sine wave output $25 \mathrm{c} / \mathrm{s}$ co $5 \mathrm{Mc} / \mathrm{s}$ in 2 bands. Squarewave output $50 \mathrm{c} / \mathrm{s}$ to $150 \mathrm{c} / \mathrm{s}$ in 2 bands. Freq. accur. $\pm 2 \% \pm 2 \mathrm{c} / \mathrm{s}$. Power supply $100 / 125 /$ 200/250 v. A.C. 655. (Ditto but 25/12 me/s in 3 bands/885A/I). C85. Carriage

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s wish wath accuracy 0.3%. Additional band on harmonics $5.0 .6 .25 \mathrm{Mc} / \mathrm{s}$ with accuracy $+-2 \times 10^{-4}$. Incorporating calibrating quarta $100 \mathrm{kc} / \mathrm{s}+-5 \times$
$10-120 / 220$ v. A.C. mains.
C85. 10- ${ }^{-120 / 220}$
Carriage $E 2$.

AIRMEC FREQUENCY STAND. ARD METER TYPE 761. 10c. 100c, lokc, lookc. IMc. E80. Carriage 30\%

COSSOR OSCILLOSCOPE TYPE 1049. 645. Carrlage 30\%

Fuller descriptions of the following upon request.

SIGNAL GENERATOR TYPE 62
COMPLETE WITH P.S.U. HEWLETT-PACKARD ELEC. TRONIC COUNTING UNIT.

MICROWAVE SPECTRUM ANA LYZER TYPE SA 18 MANUFAC. TURED BY RACAL.

OAWE STORAGE OSCILLO. SCOPE TOGETHER WITH TRACE SHIFTER.

SIGNAL GENERATOR CT 218 (FM/AM) MARCONI TF 937. $85 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{s}$ in 8 ranges. Output level variable in I db steps from $1 \mu \mathrm{~V}$ to 100 mV into 75 ohms. Also 1 vole outputs down to $0.1 \mu \mathrm{~V}$ into 7.5 ohms. and $3 \mathrm{kc} / \mathrm{s}$. Varlable mod. depths and andiation. Crystal calibrator $200 \mathrm{kc} / \mathrm{s}$ and $2 \mathrm{mc} / \mathrm{s}$. F.M. at frequencies above $394 \mathrm{ke} / \mathrm{s}$. Monitor speaker for beat detection. Panclimatic. 100 to 150,200 to 250 V A.C. 45 to $100 \mathrm{e} / \mathrm{s}$. Weight $117^{\prime \prime} \mathrm{lbs}$. Measurements $17^{\prime \prime} \times 201^{\circ} \times$ 171". E85. Carriage 30/.

WINOSOR MODEL I50A OUT. PUT POWER METER. 5 mW to 5 W F.S.D., 2.5 to 20.000 ohms. $\mathrm{C} 15 / 10 / \mathrm{l}$ Fost and packing i5/.

BOONTON " Q " METER TYPE 150 A . Frequency range $50 \mathrm{kc} / \mathrm{s}$ so $50 \mathrm{me} / \mathrm{s} . "$ Q" range $0-250$ with mulciplier of 2.5 . Main tuning capacitor
$30-500 \mathrm{pF}$ with separate $\pm 3 \mathrm{pF}$ incer. polating capacitor. Power supply $220 / 250 \mathrm{vAC}$, 675 . Carrlage 30%.

AVO VALVE TESTER MODEL 3. Measurement of mutual conductance $0-100 \mathrm{~mA} / \mathrm{V}$ in four ranges. Screen $0-300 \mathrm{v}$., panelled $0-400 \mathrm{v}$., grid $0 /-100 \mathrm{v}$, filament 0/126v. Insulation 0/10m ohms. Rectifying valves and signal diodes can be tested under load con disions, short circuiting of electrode and cachode insulation can also be measured. Complete with data book (aty. Carrize 301.

FURZEHILL SENSITIVE VALVE VOLTMETERTYPE 378 B/2. Accurate measuring AF and MF voltazes up to to 100 v . (full scale). Logarithmetically divided. A db scale provided for $0-20$ $\mathrm{db}, 0 \mathrm{db}$ being 1 mV . Automatically set zero for every range. A jack is provided for monitoring the input signal If required. 220/250v. A.C. $627 / 10 /$. Post and packing 10/.

END OF RANGE: VOLTMETER Type T.F.428. E9. Carriage 10/.

SIGNAL GENERATOR. Type C.T.53. Without chart 610 , with chart C.T.53. Without ch

P. C. RADIO LTD. 170 GOLDHAWK ROAD, W. 12

SHEpherd's Bush 4946

VALVES

$8 / 6$
$7 /-$
$9 /-$
$9 /-$
$3 \cdot 10$
$19 /-$
$6-40$
$85 /-$
$18 \cdot 40 \mathrm{~A}$
$100 /-$
$0-15$
$7 / 6$
$108 /-$
$010 /-$
$8 /-$
$8 /-$
$4-16$
$57 / 6$
$17 / 6$
$8 / 6$
$7 / 8$

$|$| U |
| :--- |
| \mathbf{U} |
| \mathbf{U} |

TRANSISTORS, ZENER

ర006すర

 $6 A$
$6 A$
$6 A$
$6 A$
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

tee valve with a GUARANTEE
 0 -

D.C. MOVING COIL METERS
$100 \mu \mathrm{~A}$. 3 in. square panel colib $0-2 w \ldots$ $200 \mu \mathrm{~A}$. 2 in . round panel, sealed calibro-30 22/6 $200 \mu \mathrm{~A}$. $2 \frac{1}{\mathrm{f}} \mathrm{in}$. round panel.
$500, \perp$ A. 2 in. round proi.
$500 \mu \mathrm{~A}$. 2 in . round panel
$750-0-750 \mu \mathrm{~A} .2 \mathrm{in}$. round plug-in
$1 \mathrm{~mA} .2 \frac{1}{\mathrm{in}}$. round panel.
1 mA .2 in . round panel sealed
5 mA .2 in . round clip-fix panel or proj.
$10-0-10 \mathrm{~mA}$. 2 l in . round panel
0 $-30 \mathrm{~mA} .2 \frac{1}{\mathrm{in}}$. round panel
$75 \mathrm{~mA} .2 \frac{1}{1} \mathrm{in}$. plug in
100 mA . Itin. proj.
100 mA . $1 \frac{1}{2} \mathrm{in}$. round panel
$100 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$. round panel 500 mA .21 in . round panel
2 amp .2 in . round panel
$25 \mathrm{amp} .3 \frac{1}{2} \mathrm{in}$. round proj.
$50 \mathrm{amp} .2 \frac{1}{2} \mathrm{in}$. round panel
$0-1.5 \mathrm{~V} \& 0-150 \mathrm{~V} 3$ eerminals round panel
20 VDC $2 i n$. square panel
100 V 4 in . round panel
150 VDC 4 in . round panel
150-0-1500 mA. $3 \frac{1}{2} \mathrm{in}$. round panel
1.5 KV with res. 2 in . round panel.

MOVING IRON METERS

15 VAC 2 itin. round panel
500 VAC $2 \frac{1}{2}$ in. round clip fix
miniature meters.
-

$$
\begin{aligned}
& 65 \mathrm{~mA} . \text { D.C. } 18 / \mathrm{l} .3 \% \\
& 150 \mathrm{~mA} \text {. D.C., } 15 /=
\end{aligned}
$$

"S" METER FOR H.R.O. RE-
PURE. MINIATURE SUB - MINIATURE "PENNY SIZE" METERS. lin. round, flush ring nut mounted $500 \mu \mathrm{~A}$ FSD, cal NULL METER (unscaled 25-0-25 micro-amps $3!n$ square panel. 45/-.
NAGARD OSCILLOSCOPE TYPE DE 103, E85. Carriage 10/-
LOSCOPE 2 isin. tube $220 / 250$ CIL-
E22 l0s. Carriage 30/*
HEWLETT-PACKARD VTVM
MODEL 410B. A compact instrument for A.C., D.C. and resistance measure-
ments with A.C. meas. in excess of ments with A.C. meas. in excess of
$100 \mathrm{mc} / \mathrm{s}$; D.C. polarity reverse facility and 7 resistance ranges. Large easily and 7 resistance ranges. Large easily
readable meter. A.C. range $1-300 \mathrm{~V}$ in 6 ranges. D.C. range $1,1,000 \mathrm{~V}$ in 7 ranges. Resistant 0-50 Mohms. E22/10/-. Carriage 15/
RF WATT METER PMI6. Frequency $0.2-500 \mathrm{mc} / \mathrm{s}, 3$ ranges $0.150,0-600$, $0-1,500 \mathrm{w}$. Impedance 51.5 ohms. "N
type connector. $£ 75$. Carriage $40 / \mathrm{F}$ PHASE MONITOR ME- $63 / \mathrm{U}$. Man ufactured recently by Control Electronics Inc. Measures directy and disbetween two applied audio frequency signals within the range from 2020,000 c.p.s. to an accuracy of $\pm 1.0^{\circ}$. Input signals can be sinusoidal or non-
sinusoidal between 2 and 30 r. peak. In excellent condition together with hand-25/- Carriage 30/-.

SPARES FOR AR.88D. RECEIVERS. Ask for your needs from our huge selection. MICROPHONE for tele-
INSET phone handset, 2/6. P. \& P. 2/-. FIELD TELEPHONES TYPE "F" Housed in portable wooden cases
Excellent for communication in- and out-doors for up to 10 milles. For pair including batteries and $1 / 6 \mathrm{th}$ mile field
 10/-.
FIELD TELEPHONES TYPE "L" Per pair including batceries and cases. Per pair including batteries and $1 / 6 \mathrm{ch}$
mile field cable on drum. $65 / 0 / \%$ HARNESS "A" \& "B" conerol units, junction boxes, headphones, miero29/41FT. A
cen 3 ft . AERIALS each consisting of sections. Ilf. (6-section) whip aerial with adaptor co fit the 7in. rod, insulated base, stay plate and stay assemblies. pegs, reamer, hammer, etc. Absolutely in canvas bag, £3/9/6. P. \& P. $10 / 6$. 300 W 15 V JAP Petrol Generator (Charging set). ©35. Carriage 15/-
1260 W 35 CHARGING 1260W 35V CHARGING SET. Complete with switchboard. New 445 . L.T. SUPPLY UNIT RECTIFIER No. 19. Consists of two separate 12 V may be used independently, giving two separate outpurs of 12 V at 3 amps . connected in parallel giving 12 V 6 amps or connected in series giving 24 V at 3 amps. Ideal for battery charging. DC power supply, etc. $100 / 250 \mathrm{~V}$ AC input. Brand new, complete with con-
nectors. E6/19/-. Carriage $9 /$.

SMALL 28V MOTORS. $150 / 200 \mathrm{~mA}$ approx. 4,000 r.p.m. Ideat for small
fans, running models, miniature drills, lans, running models, miniature drills, MECHANICAL TIMED DELAY RELAYS. Coil resiscance 150 ohms, delay within range of few seconds. $17 /$-. P. \& P. 3/-.

HIGH SPEED ULTRA SENSITIVE separate windings each of 1685 ohms. LOW \& \& P. 2\%.
LOW INERTIA 24V D.C. MOTOR, UNIVERSAL GALVANOMETER SHUNTS. 25/-. P. \&. P. 3/-

FOR EXPORT ONLY

Installation Kits for CII/R210 Sete 53 TRANSMITTER made up to " as COLLINS TCS. Complete installacions and spare parts.
POWER SUPPLY UNITS FOR C42 8 C45. $12 v$ and $24 v$.
R.C.A. TRANSMITTER TYPE ET 4336. 2-20 Mc/s., complere with M.O., Fully tested and guaranceed. All spares available.
MCTTERS \& BC 6101 TRANSamplifier BC 614E. Aerial tuning unit BC 939 A, exciter units, tank coils, ect.
Fully tested and guaranteed. All spares Fully test
available.
No. 19 HIGH POWER SETS. By introducing RF Amplifier the output lacreased to 25 watts. Complete installations supplied.

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12 $01-7434946$

SEMICONDUGTORS DISTRIBUTED Exclusivety by

BI-PRE-PAK LTD. DEPT. B
222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX PHONE: SOUTHEND (OSO2) 46344

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAY
GAPAK PNP type translitora,
Geruanium
equalents to A large part of the $\mathbf{O C}$ range, l.e. 44, 45,
PRICE 25 per 1000

IB PAK
NPN/PNP TO-18 CAN type transistory
 to
B8Y $27-29.20$. $\begin{array}{ll}\text { PRICE } & \text { E5/5/- per } 500 \\ \text { PRICE } & \text { \&10 } \\ \text { per } 1000\end{array}$

XC PAE Billicon diodea mininture glamen types,
 39, DK 10.
PRICE
\& 5
etc.
1.000

All the above untented packs have an average of 75% or more good semlcondnctors. Free packs suspended with these orders.
Order

Vamarked Trans. Datented

 4 Photo Calls Ine. Book of 1 7 Red Spot AF Transistors 7 White spot RP Transisto

SPECIAL OFFER

Stock Clearance of Manufacturers Rejects. Limited Number. UHF/VHF Tuner Units. Consisting of: 2 AFI86, 2 AFI78, Tuning Condensors. All Coils and Comps etc.: Price 10/- each. Post \& packing U.K. 2/6d.

> FREE' t t Packs of your own thoice ro she value of $10 /$ with all orders over $\mathrm{E4}$.

FIRET EVER LOGIC KITs, Learn for yoursell how com pukery work. even make one for yourself. Pull instructiont 'Norkit Junior es \& 'Norkit Senior' $£ 16$, Deitalls Fres.

GREAT NEWS $\star \star$ We now give a writcen gested semi-conductors

MAKE A REV. COUNTRR FOR YOUR CAR. THE 'TACEO Block." This encapaulated block will turn any 0.1 mA meter into a linear and accurate rev. counter $\mathbf{2 0} /$ - each
for uny car. State 4 or 6 -cylinder

NO CONNECTION WITE ANY OTEER FIRM. MINIMUM ORDER 10%, CABH WITH ORDER PLEASE. Add 1 - post and pecking per order. OVERBEAB ADD EXTRA FOR airmail.
NO EXCUSES! NO DELAYS! FROM STOCK! taniable voltage tiansfonimens

50 AMPS

INPUT 230 V. A.C. $50 / 60$ the country. All Trpes (and spares)
from to 50 amp available from stock.
$0-260 \mathrm{v}$. at I amp. $0-260 \mathrm{v}$. at 2.5 amps . $0-260 \mathrm{v}$ at 4 mps. $0-260 \mathrm{v}$. at 5 amps . $0-260 \mathrm{v}$. at 8 amps . $0-260 \mathrm{v}$. at 10 amps . $0-260 \mathrm{v}$. at 12 amps .
$0-260 \mathrm{v}$. at 15 amps. $0-260 \mathrm{v}$. at 20 amps $0-260$ v. at 37.5 amps . © $£ 7200$ $0-260$ v. at 50 amps 6920 20 DIFFERENT TYPES AVAILABLE FOR IMMEDIATE DELIVERY.

5 Amp. AC/DC VARIABLE VOLTAGE OUTPUT UNIT Inpur 230 v. A.C.
Ourpur $0-260$ v. A.C.
Ontper Ouepue $0-240$ v. A.C. Fitted large scale ammeter and volemeter. Neon indicator, fully five metal case aterac8 tin. $\times 6$ in. Weight 24
 smooth stepless vole. age variacion over range.

7 Amp. A.G./D.C. Mk. II Variable Output Power Unit input 230 v. A.C. Output continuously VARIABLE from 0 to 260 v. A.C. OR 0 to 230 v. D.C. as 7 a. Robustly constructed in metal ease, complete with safety fuse, neon indicator, voltmeter

LATEST TYPE SOLID STATE

 variable controllercoal for lighting and heating cir-
cuits, compace panel mounting. Builc in fuse protection. CONTINUOUSLY VARIABLE.

 \}

SERVICE TRADING CO

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transiscor and Circuit. Now supplied with new Siemens aigh speed Relay for 6 or 12 vole oper-
ations. Price 25%, plus $2 / 6 \mathrm{P}$. \& P . ORP 12 and Circuit 10% post paid. 220/240 A.C. MAINS MODEL. incorporates mains transformer rectifier and special
 PHOTO ELECTRONIC COUNTER Can be set for counts of up co 500 per minute. $210-250 v$ cell. high speed non-resettable counter, eransformer relay, etc., together with clear circuit diagram, $63 / 2 / 6$
plus $3 / 6 \mathrm{P}$. \& P. With resetrable counter, $64 / 2 / 6, P$. \& P.
3/6. LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light source
에N H三 with adjustable lamp housing to take MBC bulb. Separate photo cell mounting assembly for

ORP. 12 or similar cell with optic window. Both unit are single hole fixing. | are \sin |
| :--- |
| P. $\&$ P. |

VAN DE GRAAF ELECTROSTATIC GENERATOR, fitted with motor drive for 230 v. A.C. giving a potential of approx.
50,000 volts. Supplied absolutely complete including accessories for carrying out a including accessories for carrying out a

number of incerescing experiments, and full | instructions. This inserument is |
| :--- | completely safe, and ideally suited for School demonstrations. Price $\mathrm{Cy} / 7 / \mathrm{F}$, plus $4 /-\mathrm{P}$. \& P. L't. on req.

200/250 v. AC HORSTMAN 20AMP TIME SWITCH

2 on/off every 24 hrs . at any pre-set cime
Fitced in metal case 36 hr . \$pring reserve Used bue fully tested. Fraction of maker' price. $\mathbf{6 3 . 1 9 . 6}$ plus 4/6d. post and pack.
 COPPER LAMINATE PRINTED CIRCUIT BOARD. Large sheet $151 \times 51 \mathrm{in}$. Price $3 / 9,3$ for $10 /$ post paid.

UNIVERSAL DEMONSTRATION

A complete comcomprising a robustly built Transformer and electro-magnet and pole pieces, coil and pole pieces, coil
sapped for 230 rapped for 230 v
220 v ., $110 \mathrm{v} ., 115 \mathrm{v}$. $220 \mathrm{v.},, 10 \mathrm{v},. 115 \mathrm{v}$.
6 . 12,36 , 110 v
A.C. These coils are also used for D.C. \& 19 plus 15/-carr. Leaflet on request.

INSULATED TERMINALS Available in black, red, whise yellow, blue and green. New IV/-per doz. P. \& P. 2/-.
AUTO TRANSFORMERS. Step up, step down. $110-200-220-240 \mathrm{~F}$. Fully shrouded. New. 300 wat P. \& P. 6/6. 1,000 watt type, $65 / 5 / \mathrm{e}$ each. P. \& P. $7 / 6$. LEVER MICRO SWITCH Brand new lever operated micro switch. 5 for $\& 1$ post paid.

$\overline{\text { DRY REED }} \overline{\text { SWITCHES }}$

New special offer of Dry Reed Switches, tamp, contact,

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY 7 adjustments, precision cooled, speed adjustable 10 W.p.m. to as high as desired. Weight 2 fib. $64 / 12 / 6$ post paid.

A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$) 15 amp contaces. 230/240

————̄NDENSERS

220/240v. A.C. COOLING UNIT
2,300 r.p.m. Gin. blade size. Smooth powerful motor. All metal constructested. Offered at fraction of maker's price, 2/15/-. P. \& P. 7/6.
 (NEW) Ceramic construction, windEnamel, heavy duty brush assembly designed for continuous duty. THE FOLLOWING II VALUES I ohm loa., 5 ohm 4.7 a ., 10 ohm 3 a . 25 ohm 2a., 50 ohm l.4a., 100 ohm la., 250 ohm a., 500 ohm 45 a ., 1,000 ohm 280 mA ., $1,500 \mathrm{ohm}$ 230 mA . 2,500 ohm .2a. Diameter 3 fin . Shaft length tin. dia. dyin., 27/6. P. \& P. 1/6. 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 /$ 2,500 ohm, $21 /$ P. \& P. 1/6.
25 WATT
O/25/50/100/250/500/1,000/1,500/2,500 ohm, 14/6, P. \& P. $1 / 6$.
Black Silver Skirted knob calibrated in Nos. 1-9. 1/ $\frac{1}{4}$
in. dia. brass bush. Ideal for above Rheostats, $3 / 6$ each.

STROESTRODELSTROEEL

Type 2. 28 r.p.m. corque 20 lb . In rever-
sible $1 / 80$ th h.p. 50 cycle $\cdot 28$

$$
\begin{aligned}
& 28 \text { r.p.m. corque } 20 \mathrm{lb} \text {. in rever- } \\
& \text { sible } 1 / 80 \text { th h.p. } 50 \text { cycle } 28
\end{aligned}
$$

The above two precision made U.S.A. motors are offered in 'as new' condition. Input voltage of motor 115 v A.C. Supplied
$230 / 240 \mathrm{v}$ A.C. input
Price, either type $£ 2.17 .6$ plus $6 / 6$ P. \& P. or less crans ormer $\mathbf{£ 2 . 2 . 6}$ plus $4 / 6 \mathrm{~d}$. P. \& P.
$230 / 250$ V. A.C. SOLENOID Heavy ducy eype. Approx. 31b. pull $7 / 6$ plus $2 / 6$ P. \& POLENOID
Approx. 8 ox. push, $8 / 6$ plus 1/6 P. \& P.
 34R SILICON SOLAR CELL

$4 \times .5$ volt unit series con at 20 mA . in sunlight,
30 eimes the efficiency of selenium. As used in pow of
Earch Sacellites, 451-. P. \& P. P. $1 / 60$
PRECISION INTERVAL TIMER From 0-30 seconds (repecitive). Jewelled
balanced movement.
Lever balanced movement.

Latest American. New. Plastic THYRISTOR LATEST TYPE SELENIUM BRIDGE RECTIFIERS | 30 vole 3 amp. $11 / /$, plus $2 / 1 / \mathrm{P}$. \& P |
| :--- |
| 30 volt 5 amp ., |

- NICKEL CADMIUM BATTERY

Sintered Cadmium Type 1.2 v . 7AH. Size: height . Weight: approx 13 ozs. A.C. AMMETERS 0.1, 0-5, 0.10, 0-15, 0-20 amp. F.R 2 in . dia. All at 21 each. \quad. C . 0 - 50 v., $0-150 \mathrm{v}$. M. 2 in . Flush round all at $21 /-$ each. P. \& P. extram

MINIATURE UNISELECTOR 3 banks of 11 positions, plu $24-36 \mathrm{v}$. D.C. operation. Carefully removed from equipment and
tested. $22 / 6$, plus $2 / 6 \mathrm{P}$. \& \mathbf{P}.

UNISELECTOR SWITCHES
NEW 4 BANK 25 WAY

> 25 ohm coil, 24 v. D.C. $E 5 / 17 / 6$, plus $2 / 6$. P. \&.

8-BANK 25-WAY FULL WIPER

v. D.C. operation, E/12/6, Pus +/0P. \& P.

RELAYS

BULK PURCHASE ENABLES US NEW SIEMENS PLESSEY MINIATURE PLUG IN RELAAYS COMPLETE WITH BASE, AT A FRACTION OF MAKER'S PRICE COIL WORKING

COIL	WORKING		
0	VOLTAGE	CONTACTS	PRICE
280	$6-12$	2 co	$14 / 6$
280	9-18	4 co	15/6
700	12-24	$2 \mathrm{c} / 0$	12/6
700	16-24	$4 \mathrm{c} / \mathrm{O}$	15/6
700	16-24	4M 2B	12/6
1250	20-40	2 c/o Heavy Duty	12/6
2500	30-50	2 c/o Heavy Dury	12/6
5800	50-70	$4 \mathrm{c} / \mathrm{o}$	10\%
9000	$40-70$	$2 \mathrm{clo}$	10/-

SEALED RELAY

230 VOLT AC COIL

Two c/o 5 amp contacts. Plug-in 1.0 . Base. Price $14 / 6 \mathrm{~d}$. incl, base. Post Paid. Post Paid.

SANGAMO WESTON

Dual range voltmeter. $0-5$ and $0-100 \mathrm{v}$. D.C. FSD 1 mA . In carrying case with

GALYANOMETER

300-0-300 microamp. Calibrated
30-0.30. Mounted in sloping front case 62/10... \& \& P. 3/6 D.C. Voltmeter $0-3 \mathrm{~V}$ and $0-15 . V \in 2$ plus $3 / 6 \mathrm{P}$. \& P. D.C. Ammeter. -6 amp. and 03 amp. 22, $3 / 6$. \& . The set of 3 mas ,

SANWA muit range meters

Acknowledged throughout the world as NEW MODEL U-50D MULTI TESTER, 20,000 O.P.V. MIRROR SCALED WITH OVERLOAD PRO. TECTION. Ranges: D.C. volts: 100 mV .,

 0.5 mA .5 mA . Complete with batteries $\mathbf{~} 7.5 .0 \quad$ Post paid.
and test prods. Three other models available from stock. Descriptive leaflet "A request. For E.T.M. Complete with leads. New and boxed, 21/ P. \& P. 6/6.

L.T. TRANSFORME $\overline{R S}$

All primaries $220-240$ volt

Type No. $34,3 \mathrm{Sec}$. Taps
$130,32,34,36 \mathrm{v}$ at 5 mps
$30,40,50 \mathrm{v}$. at 5 a mps.
$17,18,20 \mathrm{v}$. at 20 amps
6 , $12,20 \mathrm{v}$. at 20 amps .
24 v . at 10 amps.

BH-PAK Gunamile smichatiow in MONEY BACK

Satisfaction GUARANTEED in Every Pak, or money baek.

$\begin{aligned} & \text { PA1 } \\ & \text { U1 } \end{aligned}$	NO. 120 Glass Sub-min. General Purpose Germanium Diodes	10/-
U2	80 Mixed Germanium Transistors AF/RF	10/=
U3	75 Germanium Gold Bonded Diodes sim. OA5, OA47	10/=
U4	40 Germanium Transistors like OC81, AC128 . .	10/=
U5	60200 mA Submin. Sil. Diodes	10/=
U6	40 Silicon Planar Transistors NPN sim. BSY05A, 2N706	10/-
U7	16 Silicon Rectifiers Top-Hat 750 mA up to 1000 V .	10/-
U8	50 Sil. Planar Diodes 250mA OA/200/202	10\%
U9	20 Mixed Volts 1 Watt Zener Diodes	0/-
U11	30 PNP Silicon Planar Transistors TO-5 sim. 2N1132	10/-
012	12 Silicon Rectifiers EPOXY BY128/127	0/-
U13	30 PNP-NPN Sil. Transistors OC200 \& 2S104	10/-
U14	150 Mixed Silicon and Germanium Diodes	10/-
U15	30 NPN Silicon Planar Transistors TO-5 sim. 2 N 807	10/-
U16	10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV	10/-
U17	30 Germanium PNP AF Transistors TO-5 like ACY 17-22	10/-
U18	8 6-Amp Silicon Rectifiers BYZ13 Type up to 000 PIV	10/=
U10	30 Silicon NPN Transistors like BC108	10/-
U20	12 1.5 Amp Silicon Rectifiers Top Hat up to 1000 PIV. .	10/-
U21	$30 \mathrm{~A} . \mathrm{F}$. Germanium alloy Transistors 2G300 Series \& OC71	10/-
U22	10 1-Amp Glass Min. Silicon Rectifiers High Volts......	10/-
U23	30 Madt's like MAT Series PNP Transistors	10/-
U24	20 Germanium 1-Amp Rectifiers GJM up to 300 PIV. .	10/=
U25	$25300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Transistors 2N708, BSY27 ..	10/=
U28	30 Fast Switching Silicon Diodes like IN914 Micro-min	10/-
U28	Experimenters' Assortment of Integrated Circuits, untested. Gates, Flip-Flops, Registers, etc. 8 Assorted Pieces	20/-
U29	101 AmpSCR's TO-5 can up to 600 PIV CRSI/25-600	201-
U30	15 Plastic Silicon Planar trans. NPN 2N2924-2N2926	10/-
U31	20 Silicon Planar plastic NPN trans. low noise Amp 2N3707	10/-
U32	25 Zener diodes 400 mW DO-7 case mixed Vits. 3.18 Vlts.	10/-
U33	15 Plastic case 1 Amp silicon rectifiers in 4000	10\%

15 Plastic case 1 Amp silicon rectifiers in 4000 series. . 10/-
Code Nos. mentioned above are given as a guide to the type of
device in the Pak. The devices themselves are normally unmarked

QUALITY-TESTED VALUE PAKS

 2 Drift T Matched. Tr...........10/- AC125 Germ. PNP Tranarked 20 Red Bpot A P Trana. PNP 16 Whit 5 silleon Recta. 3 A 100400 PI 210 A sulecon Recta 100 PIV 2 OC1 140 Trana, NPN 8 whteching 3 Bil. Trana. 28303 PNP 4 Zeper Diodes 250 mW 3 3-1 3200 Mc/e 811. Trant. NPN BgY $28 / 27$ 4 High Gurrent Trans, OCA2 Equt. 4 High Current Trans. OCA2 Eqvt. 5 sillicon Tracta. 400 P1V 250 mA 40075 T ranaistore 10 OA202 s11. Dlodea Bub-min 2 Low Nolee Trand NPN 2N9291301 Sil. Trann. NPN VCB 100 ZTB6 80481 Dioden.
4 OC72 Transistors
Metal Allomintrantinion Mat. Type Bis. Hecla. 400 PIV 500 mA
GET884 Trans. Eqvt. OCA ${ }_{5} 5$ OETR84 Trans. Equt. OC4 2 2N708 8is. Trans. 300 Me/s. NPN
5 OT41/45 Germ. Trans. PNP OT31 LP Low Nolse Germ Tran PNP 10 Sil Diodea 75 PIV 75mA. 8 OA95 Germ, Diodes Bub-min. IN69. NPN Germ. Trans. NKT773 Eq AC130 2 OC20 Power Trann. Oerm. ${ }_{2}$ ACl27/128 Comp. Hair PNP/ 2N1307 PNP 8witehing Trath CG62H Germ. Diodes Eqvt. OA71.

1 AC126 Germ. PNP Trass.
1 ORPP 1 Pholo-conductive cell 1 ORP61 Photo-conductive cell $\$$ Allicon Rects. 100 $\begin{array}{ll}7 & 0 \\ 3 & 0 C 171 \text { Type Tran } \\ 3 & 0 C 171 \text { Trans. }\end{array}$
3 OC171 Trans.....
8 2N2926 su. Epozy
7 Oc71 Type Trany Tralla. . 25
2
2
3
28701
2 2
3
2
10 16 Volt Zenera 600 FIV W
210 A 600 PIV SU. Rech. is 45 R
3 BC108 gil. NPN HIgh 3 BC108 gid. NPN High Gain Trans....
1 2NO10 NPN Bij. Trans. VCB 100 2 2N010 PIV BLI. Rect. 1.5 A R53310 AF 3 B8Y95A 8il. Tralia. NPN $200 \mathrm{Mc} / \mathrm{s}$ 3 Oc200 sil. Trana. 2 SUL. Power Rects. BYZ13 Bil Power Trans. NPN $100 \mathrm{mc} / \mathrm{i}$
TK201A......... 6 Zener Dlodes $3-15 \mathrm{~V}$ sub-min.
 3 2N697 Epltax ina Planas Trans. $81 .$. 1 Germ. Power Tranas. Eqvi. OC16 2 Sil Trans, $200 \mathrm{Mc} / \mathrm{E}$. 60 Vcb 7T83/84.. 1 8il. Plamar Trana. NPN $100 \mathrm{mc} / \mathrm{ca}$.
BgY2s BgY2s
1 Unilunct 1 Unilunction Trans. 2N2180 TO. 5 2 Bil. Recta. 5 A 500 PIV 8tud Type.
2
2 Germ Power Trans. Oc $28 / 28$..... Germ Piowe Trans. OC28/28
10 A Bu. Stud Rect. 800 PIV 1 Tunnel Diode AEVIl 1050 Mc/a.
2 2N2712 84. Epory Planar HPER2 82 BY 100 Type sus. Rects..... ${ }_{25}^{8}$ BYY and Germ. Trann. Mixed, all

500 Chesham House 150 Regent Street London, W. 1

FRULT LOCATION

KONTAKT "Cold Spray 75"
For rapid and effective fault location
Non-toxic, non-inflammable, Cold Spray 75 is a chemically inert coolant capable of producing temperatures of down to - 42 centigrade. It can also be used to prevent heat damage during soldering processes, for the rapid freezing of small articles for biological and technical purposes and the prompt location of hairline cracks and other faults in temperature dependent components.

Other Kontakt products:
Kontakt 60 and Kontakt 61 for relay contact cleaning. Plastic Spray 70 , transparent protective lacquer. Insulating Spray 72.
Kontake WL. Spray Wash.
Antistatic Spray 100. Antistatic agent for plastics. Politur 80. Polish and cleaner
Fluld 101. Dehydrating Fluid.

SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 Piccadilly, London, W. 1
Tel: 01-629 9556
WW-133 FOR FURTHER DETAILS

NEW 48 FOLDING MACHINES SHEET MeTAL bench Mode by Parker

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.
$48^{\prime \prime} \times 18$ gаиде capacity $£ 400^{0} 0$ $36^{\circ} \times 18$ gauge capacity................ $62710 \quad 10$ $24^{*} \times 16$ gauge capacity $\ldots \ldots \ldots$
Carriage Free

Also the well-known vice models of
$36^{\prime \prime} \times 18$ gauge capacity. $24^{*} \times 18$ gauge capacity

Carriage Free
WW-134 FOR FURTHER DETALS

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $£ \mathbf{£ 0 . 0} 0$

Si 452 £25.0.0. Distortion Measuring Unit.

Si 453 £ 35.0 .0 .
Low distortion Oscillator
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE.

MORE TO CHOOSE FROM-LESS TO PAY

TRS STEREO 4-4
INTEGRATED AMPLIFIER
A T.R.S. deiign based on newly developed Mullard

 metal chassis and T.R.S. simplex teak-ended cabinet

A SUPERB NEW TRS MONO - STEREO F.M TUNER

Complete kit ine cabinet

 for instant

The fincos materralas are used by TRS in

 plugs and sockecs as
full technical details.

PLAYING UNITS BY GARRARD AND E.M.I. GARRARD LM 3000 Record Player with GY.A. Stereo Cartridge. 110.15 .0 . changer, diecase turntable. Less cartridge. SP. 13.17 .6 Sp.25 De-lume single record playor, die-case turntable. Less careridge. C12 10.0 . Brand new in maker's cartons. Packing and carrlage on any one of above 7/6. WB.I. In fine Teak for any of above units. (Packing and carriago for any of $\$ /-)$. $67 / 6$.
 \qquad cover (earriage 4/6), 65/.
 CARTRIDGE OFFER TO PURSTEREO Sonotone PTA/HC Ceramic with diamond s2/6: Decca Deram wirh diamond 95/.; MONO: Acos GP91.1 22/6; Goldring MX2M 27/6. EMI spead single player, 10 lin. T/eable with separate arm and $7 / O$ carzridge $69 / 6$ (p. \& p. S/F). arm and 10 cartridge $6 \uparrow / 6$

TO MAKE A BOOXSHELF SPEAKER

A real bargain this-Matched speaker assembly comprising Sin. bass unit with magnet system, cross-over and 2 zin . tweeter. Loads easily up to 6 watts. Response $80-20,000 \mathrm{~Hz}$. Ideal for today's small "bookshelf" cabinets or installation where maximum quality is $\mathbf{1 3} 196$
required from a small space.

TRS FM DECODER

This is a very efficient FM stereo decoder based on Mullard design and produced by T.R.S. Ie is quite easity added to existing tuners. Built-in indicator. 6-transistor model, readily adaptable for use with valve suners as well. For 9-15 v. operation. Complete kit 5550 aligned. (p. \& p. 2/6).

TRS HEAVY DUTY MAINS SUPPLY UNIT

A heavy duty unit for A.C. mains operation supplied ready buils. Very compact, measuring only $31 \times 2 \times 2 \mathrm{in}$. Avallable in t wo models-PU. 12 giving 12 V . D.C. at I.SA. PU. 24 giving 24V. D.C. at 0.75A. Recommended for latest TRS
F.M. described in this adve. as well as ocher equipment. PU/VFM to give $200 \mathrm{~V} / 25 \mathrm{~mA}$
1.5 A , any model $6.3 \mathrm{~V} / \mathrm{45} / \mathrm{F}$

PRE-AMPS

$5-10$ MONO

One oft she mose sucessulviver valve valves. $10 \frac{1}{2}$ gns. 613
$\underset{\text { Buile }}{ } \mathbf{K} 13$ (carr. $7 / 6$ either).
 Buile 15 gns. (carr. $7 / 6$ either). PRE-AMP 2 VALVE erc. $£ 9100$ Kit $£ 6196$ BASIC 5-10 AMPLIFIER \& 2 VALVE PRE-AMP

A deservedily popular unit for domentic use. This to a superbly

 brinse full details.

TRS PRE-AMP GP. 1

 KIT $22 / 6$
bult $29 / 6$
TRANSISTOR COMPONENTS Fult miniaturised rangea of all you want for transistor

 Spocime Electrolytice for Tranditor Mand Unitt
 VOLUME CONTROLS Midet trannizt trpo

STEREO 10-10

A top-aiqhe valve instrument with Clerainear kit wientur and papiter bult $£ 22100$
$2+2$ VALVE PRE-AMP Push-button selectors for P.U. and
radio stereo/mono switching. itc. Buile complese with valves, dial, etc. £13196 (corr. 7/6).
EXCLUSIVE TRS TAPE OFFER

With each reel of thls
fine tepe by
no nationally famous manu-
facturer we give you a strongly made library
wallet in simulated leather wleh space for a
reel esch side. This is
\qquad ary wallots solve once and for all 2216: B. \& D. $1 / 6$ per reel

6 VALVE AM/FM TUNER

Med. and V.H.F.-o valves meta
reckifier
Self-contained
 unit. Magic-eye, ${ }^{3}$ push-button
consrons. Oiode and sockets. $1 l l u m i n a t e d ~ 2-c o l o u r ~ d i l l . ~$ A.C. 200/250 ${ }^{2}$ Unbestable value. Compleet kit, inc. Power
Pack as illustrazed, $\mathrm{C} \mid 2,10.0$. Carr. Pack as illustrated. $/ 12.10 .0$. Carr.
$7 / 6$. Circuit and Const. detals $4 / 6$. Free with kit.

SPEAKER OFFERS

We carry comprehensive stocks of loudspeakers by Goodman's, W.B., Wharfodale, Fane, etc., as wall as many detailed in our latest lists. All sizes and impedances.

SINCLAIR

 PRODUCTS We stock all Sinclair products as avallable, including Micromatic, Q.14, etc.WIRE WOUND RESISTORS COATED TYPES
Stand values 25 ohms- 10000 ohms, 5 w . $1 / 6$, $10 \mathrm{~m} .1 / 9$. 15 w . $2 / 3 \mathrm{~B}$. SPECIAL VALUES $15 \mathrm{SK}-35 \mathrm{Kohms}$ 5w. 2/6.
PRE-SET WIRE WOUND POTS. Sloted Knurled Knob T.V. Type 25 ohms-30Konms 3/3.
 -SK 2/6.
SKELETON PRESETS for P/circuit use. 100 ohms -2.5 Mes. 2/-.
STANDARD W/WOUND POTS. Long Spindle. 100 ohms- 50000 ohms each $6 / \mathrm{F} .100,000$ ohms each 6/9.
VOLUME CONTROLS Ifin. dia. Long Spindles. Famous make. All values 5000 ohms- 2 Megohms. Guaranteed 12 months. Log or Linear tracks. Less Tapped \ddagger Megohm Log, i Megohm less Sw. $5 / \mathrm{h}$. Tapped Megohm Log, Megohm linged Seereo 1i: dia., Long Splndles. All Twines 5000 ohms to 2 Megohms less Sw., eac. $\mathrm{g} / 6$. All values 100 K to 2 Megohms with DP Sw., ea. $10 / 6$. STEREO BALANCE CONTROLS Log/Ansi-Log SK, $\frac{1}{2}$ Meg., 1 Meg.n 2 Meg., ea. 9/6. $21 \times 5 \operatorname{lin}, 21 \times$ standard izes including
 and tools in stock.
"CIR-KIT' Adhesive copper strip for circuit building. 60 in . spool, it in., $2 /-$.
RESISTORS-Modern ratings, full range 10 ohms to 10 megohms, 10%, t-1 w., ${ }^{\text {dd. ea.; } 5 \%}$ Hi-Stab, d. w., 6d. ea. (below 1% Hi-Stab, 1 w., all values $2 /-$ ea.

CONDENSERS Silver Mica. All values 2 pf. to 1,000 pf. 6d. ea. Ditto ceramics 9d. Tub. 450 V . T.C.C., ate. .001 mid to $0.1 \mathrm{mf} /$.350 V. 10 d.
 500 pf. $9 \mathrm{~d} .600-5,000$ pf. $1 /-1 \% 2$ pf.-100 pf. Ild. 500 pf. $9 \mathrm{~d} .600-5,000$ pf. 1/0. $80{ }^{2}$ pf. $1 / 4$. 800 pf.5.000 pf. 2/-.

ALUM. CHASSIS. I8g. Plain undrilled folded 4 sides, 21 n . deep. $6 \times 4 \mathrm{in}$ 5/-i $8 \times 6 \mathrm{in}$. 6/6; . $8 / 6$.
EXPANDED ANODISEO METAL-Ateractive Gilt Finish fin. X tin. diamond mesh or finer mesh 5/- per sq. fe.
YINAIR-Latest I.C.I. speaker covering. Mottied Light Grey. Off-White, Fawn, Black, etc. 2/- per sq.ft. BONDACOUST-Speaker Cabinet Acoustic Wadding. IBin. wide, $2 / 3$ per ft. $6 /-$ per yard.

Phone:
$01-68+2189$

TRICKETT

70 PARK ROAD, CONGRESBURY, BRISTOL
Schools 15% off. Goods over 10s. P/P free except where shown.

 DINISTURE HO HR METERS. SANGAMO WESTON. $380 / 450 \mathrm{~V}$., $50 \mathrm{c} / \mathrm{s}$.

calibration, etry. 2 .i. Ei.
 9d. ea., $\overline{1 / 6}$ doz. 2 mid. 150 V . Tube, 9 d . ea. I mid. 20 V . 0.1 mid. 150 V . metal lubes,

TREMENDOUS CLOSING DOWN SALE

WHOLESALE STOCKIST SHORTLY EMIGRATING HAS VAST STOCKS OF THE FOLLOWING FOR BULK OR OUTRIGHT SALE: AMPHENOL, BENDIX, BELLING LEE, BURNDEPT, BIIC.C.-BURNDY, CANNON, CONTINENTAL CONNECTORS, ETHER, HELLERMAN-DEUTSCH, MCMURDO, PAINTON, P.E.TESTER PLUG'S \& SOCKETS OF ALL TYPES, PRINTED EDGE CONNECCHESTER PLUGS \& SOCKETS OF ALL TYPES, PRINTED EDGE CONNECTORS by CONTINENTAL CONNECTORS \& U.E.C.L. L.P.A. Wazertighe Connectors, CINCH \& Sub-miniature type TOS trimming potentiometers, CLARE-PENDAR Computer Switches. Condensers, Capacitors, Resistors, Transformers, American Headsets, Ball-Races, Servo, Syncro, Drag-Cup Motors, Magslips, Tachometer Generators, Fuses \& Fuse-holders, V.H.F. \& Transmitting Units in G.P.O. type Racks, Oxley \& Harwin Components and hundreds of other miscellaneous and varled components and spares. Would also consider selling complete manufacturers \& M.O.A. literature, Sales \& Buying Contacts, Furniture, Stationery \& Effects. Book value in excess of $\mathbf{C 1 0 0 , 0 0 0 \text { . Only Firms or Individuals interested in bulk }}$ buying can be entertained. Would accepr ourright offer for complete business buying can be entertained. Would accept outright offer for complete business
if convenient. Full Lists ready by February 1969. Please write in first instance if convenient. Full Lists ready by February 1969. Please write in first instance
to: BOX No. 5051 .

WW-136 FOR FURTHER DETAILS

Solve your communication problems with this new 4-station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

Same as 4-Station Intercom for two-way instant con versation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

7-STATION INTERCOM

(I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \frac{1}{2} \mathrm{in}$. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Price 27 gns. P. \& P. 14/6 in U.K.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . operate. P. \& P. 3/6 in U.K. Add $2 / 6$ for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

TRANSFORMERS

coils

LARGE OR SMALL QUANTITIES

CHOKES
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
VACUUM IMPREGNATION TO APPROVED STANDARDS
ELECTRO-WIMDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC. 123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.6532261

TRADE ENQUIRIES WELCOMED
\qquad

261

SURPLUS HANDBOOKS

19 set Circuit and Notes
1155 set Circuit and Notes
6/6 p/p 6d.
H.R.O. Technical Instructions

6/6 p/p 6d.
38 set Technical Instructions
46 set Working Instructions
88 set Technical Instructions
BC. 221 Circule and Notes
18 set Cireuit and Notes
18 set Circuit and Notes
BC. 1000 (31 set) Circuit and Notes
CR. $100 /$ B. 28 Circuir and Notes $5 / 6$ p/p 6d.
R. 107 Circuit and Notes

AR.88D Instruction Manual
$5 / 6 \mathrm{p} / \mathrm{p}$ 6d.
$5 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.
$5 / 6 p / p$
$5 / 6$
$5 / p$ 6d.
$5 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.
$5 / 6 \mathrm{p} / \mathrm{p}$ 6d.
5/6 P/P 6d.

62 set Circuit and Notes
10/- p/p 6d.

Circuit Diagram 5/- each post free. R.III6/A, R.1224/A, R.1355, R.F. 24, 25 and 26, A. 1134 , T. 1154, CR. 300 , B.C. 312 , BC. 342, BC. 3481, BC. 348 (E.M.P.), BC.624, 22 set.
52 set Sender and Receiver circuits $7 / 6$ post free.
Resistor Colour Code Indicator 2/6, p/p 6 d .

> S.A.E. with all enquiries please. Postage rates apply to U.K. only.

Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES
Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

ELECTRONIC BROKERS LIMITED

KELVIN HUGHES FIVE-PEN RECORDER COMPLETE WITH AMPLIFIERS, and offered complete in free

standing consul. Fully overhauled and in excellent | condition |
| :--- |
| $\mathbf{£ 4 5 0 .}$ |

 MAGNETIC FLUX MEASURING SET
TS 13A. Range 1,200-9,600
Gunb-Bold. Pole face dimet-
 $550 \ln .1 .51 \mathrm{ln}$. Powered by U2
1.5 V cell. Oar price $£ 18 / 10 /$ -

KENT STRIP.CHART

 INDICATING RECORDER

TRANSISTROL 2 POSITION INDI. CATING TEMPERATURE CON-
TROLLER BY ETHER, TYPE $甲 90$
aelf-contained direct de-aelf-contained direct deIng and controlling
temperature accurately over a wide range.
Suitable where a Ragnal
cer D.C. Aensivity 10 ohms per M.V. Mintmum F.s.D. couple break protection. Coppe compensstion. Callbrated acale length, $6.6 \quad$ in... (0-800 degrees
centigrade accuracy $\pm 1 \%$. Pront panel size 10×54 la.., weirhe 11 lb . Mains supply 100 260 . Control witching , and Thermocouple List price \&4g New condition
EAC DIGIVISOR Mk. II DIGITAL Ideally suitahle for use In conjunction with Iraneisiorised decade counting derices. need for amplifiera
relayn an only a relayn as only a fow
milliwhtt of power are required to charge the
digita. The DIOIVIsor digits. The DIOIVI8OR
 through an optical syntem nond the resultant single plane trage is projected on a screen. The trans-

LOW COST ELECTRONIC \& SCIENTIFIC EQUIPMENT \& COMPONENTS

ELECTRONIC BROKERS LTD., 8, BROADFIELDS AVENUE, EDGWARE, MIDDX.
DIGITAL MAGNETIC DATA STORAGE DECK Seven traek record replay beads
These machines originality ex-computers, but lead ideally
for use as audio atereo multi-track recording units or data storage. Record and Playback Heads encased in one
common unit. Thin unique clowe apacing of Recond and Plaminonck Hilt. Thia unique cloue apacing of Recond and

 Lo $50 \mathrm{Kc} / \mathrm{A}$. Deck drivets by one symehronous cmpatan anotor and two varinble-speed rewind motors. Wow and Atuiter-delect It it you can. Electro-preutnatic caphtan
takeoup mechanism. Speed 37 i i.p.nec. (Note: Capatan Head can be caslly removed and any diameter Capatan
Head correspondtag to any apeed can be atted. All deck function push buttons are illuminated and are brought Plathhed in brush aluminium and matt-black. Size: $27 \times 26 \times 8$ in fortion or anriliary equipment capecan motor speed 1,500 p.p.m. Munt have cont $\mathrm{g} 1,000$. Our price $£ 65$. New condition but ex.

"V" SCAN DIGITAL SHAFT ENCODER BY MOORE REED TYPE 18 DV-19-EP 1163 discs. 8 ize 18. Counta $52 \mathrm{t288}$ in 1024 revolutions of ahart in V Scan. Brand price £22/10/-

TEST EQUIPMENT EVERSHED BRIDGE MEGGER 250 rolt. 50 meg,
lasulation tester with
built-in built-in four decarde
bridges with rationrmg bridget with rationrms
giving ratios of $100-10$
$-1-0.1+0.01$ and selector switch for
innulation, resintance innulation, resintance
and variety mamure
ments. £29/10/.
 FEW ONLY TYPE 67008 EVERSHED BRIDGE MEGGER
 List price $£ 120+$. Our price $£ 68 / 10$ EVERSHED VIGNOLES MEGGER CIRCUIT TESTER (Iow reading Ohrnmeter) Two ranges $0-3 \mathbf{3}-30$ ohms, Complete with leathe
case. Our price $£ 8 / 10 /=$.

$\pm 2 \%$ or

ADVANCE TRANSISTORISED DC
STABILISED
POWER
UNITS

HYBRID
 UNIT MI. 7182
 The liyhrid Unit is
 Inverter where fit is

desirable to operate the output of a receiving
clrcult and the input of a tranamituing circilt clrcult and the input of a transmitting clrcuit from
a single pair of telephone wires whose electrical a single patir of telephone wirer whose electrical
charach ristics are casentinally conntant. When the Hybld Unit to properly connected and halanced
to the line bigh atteniation to the line. high attenistion will be provided
between the recelver output circuit and the transmitter laput elrcuit.

"MINICUBE" BLOWER

 2.2 c.f.n. at free air wt. 1 it on. Brand new. Made manulucturer'a price \&12.10.0.

PHOTOMULTIPLIER VMPII/44 (CV 2317) by 20eh Century Electronics
 E12.10.0.

20 AMP VARIAC TYPE 20 AMP by Zenith
 12 lach Vernier prate magrieti-
cally.

UNISELECTORS

25 way, 4 hank, 75 ohman coll. $35 /-1$
25 was, 8 bank, 75 ohme coil, 65 -

CONSTANT YOLTAGE TRANSFORMER by Sola

SLYDLOK FUSES 15 amp ., $1 / 6$ ea., 15/- per doz. HEADPHONES. Carbon H/Mics., 5/-ca. P. \& P. 2/6. DLR5 Bal. Armature, 8//. P. \& P P, 2/6. M/Coil 2ith ear muffs and wired M/C mic, iz/. 10 Assembly M/Coil with M/Coil Mic. 12/6. P. \& P. 2/6.
TRUVOX LOUDSPEAKERS. Re-entrant type, ideal for public address, enclosed in waterproof wooden case, complete with steel baffle designed to produce directional reproduction at 5 watts. 7.5Ω 27/6 each. Carr. 5/-
SMALL MOTORS. 12-24 v. D.C., reve sible, with gears attached, $10 / \mathrm{-}$ ea.; with blower attechment, $10 /-$ ea.; with fan assembly, 10/- ea.; each item post $2 / 6$.
TRANSMITTER. BC 625, part of T/R. SCR522. For spares only. Chassis only. Complete with valves except 832s and Relay. $21 / \%$ ea. Carr. $4 /$
SIEMENS HIGH SPEED RELAYS. H96B type, $50+50$ ohms. 6/- ea.; Type H69D, $500+500$ ohms, $5 /-$ ea.; Type $\mathbf{H} 96 \mathrm{E}, 1,700+1,700$ ohms, $5 /-$ ea. Carr. i/-.
"TELE L" TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete with Hand Gen. for calling each station. Supplied in

POST OFFICE TYPE RELAYS. 3,000 sers. $2 \mathrm{c} / \mathrm{O}$ slugged coil only; $2 \mathrm{c} / \mathrm{o}$, slugged coil 500 ohms. 6/- ea. Carr. 1/-
MORSE KEYS. No. 8 assembly complete with leads, terminals and cover, $6 / 6$ ea. Carr. 2/-.
VIBRATORS. 12 v. 4 pin, 12 v. Plessey Type 12SR7. Syn. $7 / 6$ ea. Carr. $1 /-$.
ELLECTRO MAGNETIC COUNTERS. Register up to 9999 , coil res. 300Ω.
MODULATION TRANSFORMERS. 150 watts, suitable for pair 813 s , driving 313 s . Size $6 \mathrm{in} . \times 5 \mathrm{in}$. $\times 31 \mathrm{in}$. Brand new, boxed. Price 27/6. Carr. 4/6 LIGHTWEIGHT HEADSET (part of "88" W. Set Equipt.) complete with Boom mic., carbon made to highest Ministry Spec. Moving coil earpieces. Our price $20 /-\mathrm{ca}$ Carr. $3 /$-. Also Super Light weight hand set, $10 /-$ ea. Carr. $2 /$-.
200 AMP. 24 v. D.C. GENERATORS. Type P3 ex-Air Ministry, $£ 9$ ea. Carr. 10/6.
Generators. Type $02.3,000$ watts, 30 v. D.C. $\ell_{6} 6$ ea. Carr. 10/-
Rotary Convertors. Type 8. D.C. Input 24 v ., A.C. Output $115 \mathrm{v} .400 \mathrm{c} / \mathrm{s}, 3$ phase, 1.8 amps . ¢5 ea. Carr. 10/-
Invertors. Type 201A (5UB6300). D.C. 25/28 v. r.p.m. 8,000, A.C. $115 \mathrm{v} .1600 \mathrm{c} / \mathrm{s}$, single phase All above items P.C.R. 12 v. VIBRATOR POWER PACKS. Brand new, 22/6 ca. P. \& P. 5/-.
CONDENSERS. 1 mfd. $1,500 \mathrm{v}$. Sprague, paper. 9d. ea., 7/6 doz.
HEAVY DUTY TERMINALS. Ex-equipt. Black only, will take spade terminals and wander plug. 1/6 pr, $15 /$ - doz. pairs. P. \& P. $1 / 6 \mathrm{ca}$. doz
FATIGUE METERS. 24 v . D.C. Consisting of $6 \times 469 \mathrm{D}$ Relays. 500×500. 6×300 R Electro Mag. counters, etc. $£ 3 / 10 /-\mathrm{ea}$. Carr. 4/6.
AMERICAN AUTOPULSE 24 v . PUMPS for mounting between carb. and main fuel tanks as auxiliary pump. New
Telephone Hand Generators. No. 26 A.N. In wooden case. 7/6 ea. P. \& P. 4/6.
Air Spaced Condensers. American, top quality, large. 60 p.f. Only 10/- ea. P. \& P. 1/6.
W/S REMOTE CONTROL UNIT "E," Mk. 2. As supplied with " 19 " W.S. \&1. P. \& P. $7 / 6$. W.S. 19 VARIOMETERS, 17/6. P. \& P. 4/6. S.T.C. MINIATURE SEALED RELAYS, TYPE $4184 \mathrm{GD}, 700 \Omega 24 \mathrm{v}$. (will work efficiently on 12 V . D.C.) (ex-equipment). 2 C/overs. 7/6. P. \& P. 1/6 or more post paid.
SMALL D.C. MOTORS. $2 \mathrm{in} \times 1 \mathrm{in} . \times 1 \mathrm{in}$. Rated 24 v., will work on 12 v. tin. length drive shaft. Ideal' for model makers, etc. $10 / 6 \mathrm{ea}$.
CONDENSERS. 8 mfd. 600 ₹. Brand New. Cornell Dubilier Paper Condensers, $4 \mathrm{in} \times 3 \mathrm{j} \mathrm{in} . \times$ 1 ifin. with fixing clips. 7/6 ea. P. \&f P. 2/-.

AMATRONIX LTD (WW)

 (Comp pair) ${ }^{12 / 4}$ BFYSI $_{1}$
-2N3707
F239
3 O121
$8 C 107 \mathrm{~B}$
$\begin{array}{ll}\text { C169C } & 2 /- \text { T1561M } \\ \text { F224 } & 2 / 3 \text { N706 } \\ & 4 /-2 N 2920\end{array}$
HIGH SLOPE R.C.A MOSFE
Best buys in FETs. N-chan., insulated gate, depletion mode. Useful d.c. to v.h.i., Triode 40468 ; 7.5 mAN . $\mathrm{N} . \mathrm{F}$. ${ }^{4} \mathrm{~dB}$ (a) 100 MHz , Cras 0.12 pFF , Igss 0.2 nA (all trp.).
All this for only $7 / 6$. Tetrode $3 N 140,18 \mathrm{~dB}$ gain, 3.5 dB N.F. O 200MHz. 10 mAN . Acts as cascode r.f. amp. or mixer. I7I-. (Like Mullard BF528).
AMPLIFIER PACKAGES (Component Kits)
Low standby current. high efficiency, simplicity

A
A
3
3

RECEIVER PACKAGE AX9
Complete component kit (everything except case and
9 V battery) for a sensitive tr.f. receiver. You don's know how well a simple t.r.f. can work until you've bullt this one. Two r.f. stases, amplified a.s.c., all silieon
circuitry. Tinned and drilled printed cet. board, wound circuitry. Tinned and drilleģ printed cet. board, wound new top-grade miniature componenes. The ideal set for the young constructor, easy to make but much more than Loud earphone reception, but a $3-8$ ohm speaker can also be used. Only $45 /-$ -
LOW-COST LINICS
AUDIO POWER AMPS: PA234, IW. 22V, 22 ohms, 24/CA $1020,550 \mathrm{~mW}$, QV, high gain, wide band (needs o.p.
 28 dB Q 100 MHz , 1016 . IMPEDANCE CONVERTER MINIATURE
MINIATURE POWER PACK COMPONENTS If"sq., with data shees siving regulation eurves for pushSUlt, bridge and voltage doubler rectifiers, $11 /$ - TINY

TRANSFILTERS (BRUSH CLEVITE) couplecs, TO-02 EYpe $9 /-$ Series tuned. for emitter
by-pass, etc., TF- 9 , $7 / 6.465 \& 470 \mathrm{kz}$.

Cash with order. Mall order only.
396 SELSDON ROAD, SOUTH CROYDON SURREY. CR2 ODE

SOURCEBOOK OF ELECTRONIC CIRCUITS

Over 3,000 modern electronic circuits complete with values of all parts, organized in 100 logical chapters for quick reference and convenient browsing. by John Markus

Postage FREE
WORLD RADIO-TV HANDBOOK 1969. 35/-. Postage I/-.

THE INTEGRATED CIRCUIT DATA BOOK. 50/-. By Motorola.

 Postage $2 / 6$HI-FI YEAR BOOK 1968/69. 15/Postage I/-
AUDIO AMPLIFIERS. I0/6. Postage 1/-.

RCA SOLID-STATE HOBBY CIRCUITS MANUAL. $17 / 6$. Postage $1 /$-.
COLOUR TELEVISION by G. N. Patchett. $40 /$-, Postage $1 /$ -

LOGICAL DESIGN OF SWITCHING CIRCUITS by Douglas Lewin. 70/-. Postage $2 / 6$.
GEC TRANSISTOR MANUAL. $21 /$-. Postage 2/-

THE MODERN BOOK CO.

britain's Largest stockist
of British and American Technical Books 19-2I PRAED STREET, LONDON, W. 2
Phone PADdington 418 .
Closed Sat. I D.m.
WW-139 FOR FURTHER DETAILS

SWANCO PRODUCTSLTD.

G3aAp AMATEUR RADIO SPECIALISTS gapqu

NEW EQULPMENT

Sommerkamp P-Seriei Equipment:

wan Line Equipment:

Eddystone Radio Ltd.
Eddyotone EAL2 Amsteur band recelver $160 \cdot 10$
Eddyotone 940 Communications recelver
Eddyatone 840C shorwave recelver
Eddystone EC10 iransistorised Communleationa

Trio Commanications Equipment:
Trio TS-500 SSB Tranecelver with a.c. PSU \& with
Bpit frequency V.P.O...................
Trio JR 500 DB Amateur Rand Beceiver 80 - 10 metre $\begin{array}{ccc}231 & 0 & 0 \\ 38 \\ 88 & 10 & 0\end{array}$
Lafarette Roceivers:
Latisyette HA500 Amateur Band Receiver 80-0
Latayette HA 600 solld state recelver
Lafayette RA350 amateur band receiver
Hallicrafter Equipment:
${ }_{\text {SX1 }}^{\text {SX1 }}$
SX122 Communicationa receiver
X148 Amateur hand receiver
ET48 88B tranmmitter (worki in trancelve with $\begin{array}{rrr}86 & 15 & 0 \\ 148 & 5 & 0 \\ 137 & 5 & 0\end{array}$

Toneley Electronics (Benms):
TA-33Jr. Tri-band three-element bearn
TA-32Jr. Tri-hand two-ele
TA-31Jr. Trithand dipole
V-3It. Wire trap dipole.
Channelmater Rotator
Automatic Tenn-A- Lhiner
Botator Allgament Bearing
Ball Bearing Guy Ring.
Park Atr Electronies:
2-Metre Transmitter (complete with Mic., etc.)
receiver.
oncorde Alrcraft receiver
8wanco/CSE Equipment:
2-A10 Trammitler
Typ 2 A.T M.A. Aerial
O-WHIP Antenna
G-Whip Moblle Antenna Range. Lagbt weightdeaign.
Helicai wound. Buperior pertonmance. B,A.E. Illus. rated Brochare and Prices.
Codar Radlo Company:

Joyttiok Standard
Joyntick De-luxe
Type 3 Tuner.
ype it Tuner.
$4 \begin{array}{llll}4 & 8 & 4 \\ 8\end{array}$
B1/44 Metre Tx.
1/44 Metre Tx. ... 3000
Full Range of KW Equipment a nallo ho order
Pull Range of Drake Equipment available to order.
Full Range of Henthldt Equipmeat available to order
SECOND-HAND EQTIPMENT
Many itema in atock, including: Eddystone 870/A, 840C, EA12. AR88D, AR88LF, HRO, R209, SR550, 9R59, DX $40 \mathrm{U}, \mathrm{VFO}-1 \mathrm{U}$, Dxionu. Laso0, Laso, Panda Cub, KW Yanguant, lalayette tartite. etc. Your enquiries. please.
ull service
SWANCO PRODUCTSLTD.
Dept. W 247 Humber Avenue COVENTRY

Telophone:
Coventry 22714 Hours : Mon.-Sat. 9a.m.-6p.m.

WHEATSTONE BRIDGE
£15.15.0

Battery Powered Portable Reablance Brige. Range 0.5 to
50 ohma with mutitpilier setting of $0.1-1-100 \cdot 1000$. providling - mensuring range of 0.05 to 50.000 obmn. Accuracy in the middie 3 ranges -0.5% appros. PRICE
£15 150

INTEGRATED CIRCUIT AMPLIFIERS B.C.A. TYPE CA3020 TO-5 encapaulated 12 lead Audio Amplifer equivalent to seven N-P.-N Transinhors, three diodre and eleren resintore. Maximum Power Output 550 maW . Band width $8 \mathrm{me} / \mathrm{e}$
 reguired 3 to $9 V_{\text {. PRICE }} 30 /-$, P. and P. $2 /$
GENERAL ELECTRIC TYPE PA\&28 Epoxy moulded four-in-line 8 pin package plus beat sink lead, equaralent to six N-P-N transintors, one diode and six resietors. Max. power output
watt, toto 15 ohma. No tradiformer required. Full wignal current
 Supplied complete with application data.
SILICON MICROALLOY JUNCTION DIODES
WIRE ENDED. FOR UBE UP TO $20 \mathrm{MC/S}$ D223, 50 p.i.v. 80 mA
1223BB, 150 p.i.v. B0mA

Leno eurrent

Blue spot; 200 plv 5 Amps. Gate Voltage 3.25 V at 12
120 mA
Hioh current
CR 80-021 A. 80 Ampr. 25 plo
CR 100-151A
CR 100-151A 100 Ampr. 200 piv
CR $100-2215 \mathrm{~A}$. 100 Anppr. 250 piv
OR $100-301 \mathrm{~A} .100 \mathrm{Amps} .300 \mathrm{plv}$
CR
$100-351 \mathrm{~A}$.
$100 \mathrm{Amps}$.
350 piv
CR $100-101 \mathrm{~A} .100 \mathrm{Amps} .400 \mathrm{plv}$
CR 100-501A. 100 Amps. 500 piv
or
R.C.A. TRIACS TYPE 40432 Gste controlled bi-directional Blilicos ThyTithore in TOS package, Sultable for controlling A.C. loads up to 1440 watte. at 240 V matis voltage. No siditional triggering components needed Supplied complete with heataink
aheets. Each 37/6. \mathbf{P}, and $\mathbf{P}^{2 / 2 / 8 \text {. }}$

MULTIMETERS TYPE IOB-IT
24.ranke precislon portable moter. S.000 o.p.r. D.C. Volta
2.5 . $10-50-250-500-2500 \mathrm{~V}$. A.C. Volth: $10-50-100-250$
$500-2500$ V. 2.5. 10-50-250-500-2500V. A.C. Volth: $10 \cdot 50-100-250500-2500 \mathrm{~V}$

TYPE MFI6
D.C. Vortage Ranger: $.5-10-50-250-510$
A.C. Voltage Ranges: $10-50-200-500 \mathrm{~V}$.
A.C. Voltage Ranges: $10-50-200-500 \mathrm{~V}$.

Reaistance rangea: $10 \mathrm{~K} \mathrm{D}-1 \mathrm{MD}$. The meter in almo callibrated for Resistance ranger: 10k 2000 OV . Accuracy $\pm 2.6 \%$ for D . C , and $\pm 4 \%$ for $\mathrm{A} . \mathrm{C}$
menta. Dimenalong: $44 \times 60 \times 115 \mathrm{~mm}$. Price $\mathrm{gA} / 5 \cdot$

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN f FOR HANDLING AND POSTAGE.
ALL MAIL ORDERS MUST BE SENT TO HEAD OFL MAIL ORE AND NOT TO RETAIL SHOP.

P, Fi RALFE
 Please Note our New Address is Now
 10 Chapel St London N.W.I Phone 01-723-8753

LEDEX rotary solenoid switches suitable for all types of remote clicuit selection and a variety of switching operations-brand new slocks-no walting-off the shelf dellveries of the following type
(1) Minature type- 1 pole 12 positions 3 banks wafer dia. 1 inn., 3 position foot mounting operating voltage.
(3) Miniature type- 1 pole 12 position 1 bank plus 1 pole 6 position 1 bank ceramic insulation. Operating voltage. $36-48$ volis D.C
(5) Standard type as above, 1 pole 2 positions with long shaf to enable user to butd up waters to suit requirements voltage 48 volts D.C.. $40 /$.
(2) Miniature type- 1 pole 7 position 5 banks 1 tin. dila. wafers for flange mounting. Operating voltage. 12 volis D.C...50/
(4) Standard type with $1 \frac{1}{4} \mathrm{Im}$. waters, 2 pole 12 position 6 banks plus 2 pole 12 position 2 bank in ceramic insulation....80/-
(6) Standard type 1 pole 12 position 3 banks wide spaced wafers. Mounting flange operating voltage 24 Volts.

50/

Modern late type Rotary stud switches by Cinema (1) 2 poles 9 positions on each pole, heavy duty 5 amps (2) size $1 \frac{1}{\mathrm{i}} \mathrm{m}$
(2) 2 poles 5 positions on each pole 3 banks rating as above. Both switches have heavy duty silver contacts, regula panel mounting with standard spindle, size 1 ish squate $\times 3 \frac{1}{2} \mathrm{in}$. spindle length 1 in . Prices are $25 /$ - and 45/- each, brand new
We have in stock a good selection of high quality ceramic wafer rotary switches, 12 position 1 pole to 12 position
2 pole in a veriety of build-ups from 1 bank to 8 banks Let us know your requitements, all at large discounis. Honeywell Foot Switches. Cat. No. 1AF24. These switches are of the very latest design and are suitable for mo machine operators with a lazy fool pressure requited, for make is only 2 lb .1202 . (micro switch action) brand new stock, and the price is only $75 /-$. C/W cable and termination and basic switch.

Measuring Equipment. Beckman/Berkeley FR67/U Electronic frequency meter five digits to $1 \mathrm{Mc} / \mathrm{s}$ with input level meter, built to rigid military standards these units are brand new and oniy want seelng, they will accept any good quality divider unit to extend fiequency coverage to suit. Our price, $\mathbf{£ 1 2 5 .}$

Advence Tc2A
Frequency Meter type BC22, these tamous $125 \mathrm{Kc} / \mathrm{s}$ to $20 \mathrm{Mc} / \mathrm{s}$ have enjoyed popularity for a long time. We offer several types with or without modutation. New or used models from $\mathbf{£ 2 5}$ each.

We have in stock a large and varied range of test instruments including Bridges Lc and rof all types, Muirhead wave analysers, Hewlett Packard and Solartron Pulse Generators. D.C. voltage calibrators variable, for meter calibration etc. Audio Generators Marconi. Hewlett Packard, Ultra Low Band Pass Filters by Krohn-white, transistorised mill used and of used and of current manufacture, all instruments are guaranteed for three months. Let us know your requirements and really save money.

AEI Miniature

 Uniselector Switches No waiting straight off the shelf and into your equip. ment the Catalogue Nos are 2202A, 4/33A63/1 coil resistance is 250 ohms. These switches are new and completewith base, and the pric is £4.19.6. quantity only available. Good quality switching relays sultable for many applications such as mode control circults, alarm systems, eic. We ers + 1 make; also $38-54$ $6-9$ volt 300 ohm coll 2 pole chang $\begin{aligned} & \text { delas are complete with orey }\end{aligned}$ enamel dust cover and the size is only $1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{1}{3} i n$., weight 30 grms. The price is $9 / 6$ each, post free
We have a very comprehensive stock of relays and special purpose switches of U.S.A. and U.K. manufacture; most types have type approval. We may be able to help you so don't get stuck ud for a swlich. Ring 01-723/8753.
POWER PORTABLE. POWER TRANSISTORISED. STABILISED. Anyway you want ht, FROM INDIVIDUAL MINIATURE NIFE CELLS TO GIANT 3 PHASE CV TRANSFORMERS. Thi monit's special offer-AEl 2-30 Volts D.C. highly stabilised power Supply Units, the output is fuliy adjustable by coarse and bulit of high quality materials and were made to keep on going. hence the list price of $\mathbf{E 7 3}$. A long drive which nearly came to disaster, and two hours of bargaining enabtes us to olfer these unlts at only $£ 22.10 .0$ and $10 /-$ for carriage. Send S.A.E. fot ull detalls but rush, they won't last long. ABSOLUTELY BRAND NEW AND GUARANTEED (sorry i nearly forgot they are fully transistorised).
Having spent $£ 22.10 .0$ you might be tooking round for a power supply to dellver $0-500$ volts at 500 voits MA wlth full curren controt, from a few milli amps to full toad. Messis. APT Lid. buit over $£ 100$ on this one. AT ONLY $£ 45$ plus $\mathbf{3 0} /-$ for carriage again brand new. Here's another money saver to add to stabilised PSU, the input is D.C. Serles translstorised and stabilised PSU, the input is $200 / 240$ plus or minus 15% and the output is 24 volts D.C. at amps; these units are en added attraction being special equipment
models specially designed for 19in. rack mounting containing models specially designed for 19 in . rack mounting containing fused protected and neon indicator chrome handles/relay over load/and several other novel mods. Our price is only $\mathbf{f} 25$ each plus carriage and packing. Yes, brand new.
This may be of interest to any one searching for a heavy duty PSU. Variable of static between 15 amps to 100 amps , if you can't find it we will bulld one for you.
Portable Non Spiliable 12 volt 4 amp hour lead acid batteries These are a very modern type battery fully sealed but not dry charged, they are terminated with screw terminals, brand new and guaranteed, with full instructions the size is about the same as the Perdio portable TV ivpe batteries and you know how much they were. Our price is $45 /-$. If you are still guessing. the size
is roughly 4 in. square.

OSCILLOSCOPES DOUBLE BEAM SINGLE BEAM FROM DC 25 MHz

We have a large range of scopes by famous manufacturers from Mini Sontranic service scopes to Tektronix. Solartron CD523, £55. CD711S/2, £80. CD643/2, £145. Cossor 1049 Mk 2 and Mk 3 from £30. with type 5 differential pie-amp D.C. $-12 \mathrm{mc} / \mathrm{s}$, £75. Roband RÓ50A whith 5 L plug in D.C. $-32 \mathrm{Mc} / \mathrm{s}$, £165. CRC Type OC342 of French manufacture, $\mathbf{£ 4 5}$. CRC Type OC503 of French manufacture, $\mathbf{£ 3 0}$. Cossor Portable Scope DB 1052, £40. Cossor Portable Scope type 1042A, £45.
All the above oscilloscopes have been overhauled and calibrated and are in excellent working conditlon Communications Receivers. Search Receivers. UHF and VHF always in stock. Hallicrafter Sky Challenger SX18 $550 \mathrm{Kc} / \mathrm{s}$ to $38.1 \mathrm{Mc} / \mathrm{s}$, as new, £35. Hallicratter $\mathrm{S} \times 28550 \mathrm{Kc} / \mathrm{s}$ to $43 \mathrm{Mc} / \mathrm{s}, £ 55$
 Marconi CR100 $50 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$, $£ 25$. Redifon R50M $13.5 \mathrm{Kc} / \mathrm{s} 1032 \mathrm{Mc} / \mathrm{s}$ whit PSU and Book, f105 $\begin{array}{ll}\text { Marconi CR } 100 & 50 \mathrm{Kc} / \mathrm{s} \text { to } 30 \mathrm{Mc} / \mathrm{s} \text {, £25. Rediron R50 M } 13.5 \mathrm{Kc} / \mathrm{s} \text { to } 32 \mathrm{Mc} / \mathrm{s} \text { with PSU and Book, £ } 105 \\ \text { Murphy B40 } 500 \mathrm{Kc} / \mathrm{s} \text { to } 32 \mathrm{Mc} / \mathrm{s} \text { with Mini Series Valves In RF Section, } \mathbf{£ 2 5} \text {. Murohy B41 } 15 \mathrm{Kc} / \mathrm{s} \text { to } 650\end{array}$
 $\mathrm{Kc} / \mathrm{s}, ~ £ 15$. STAR SR550 Amateur Bands only, as new, f34. RCA AN/A
head, $£ 95$. All Receivers overhauled and realigned. GUARANTEED.

SELSYNS SERYOS SELSYNS

OPPORTUNITY KNOCKS BUT ONCE. WE HAVE TO
 MOTORS IDEAL FOR SERIOUS RESEARCH OR ENDLESS hours of fun these HIGH TOROUE SELSYNS are sutiable may be powered directly from mains voltage, i.e. 1 pair in series, up to 10 units may be used as slaves, and will faithfully copy the exact orientation of the transmitter These selsyn units offer a fantastic range of uses for only $85 /-$ per pair plus $7 / 6$ postage. Model No. 2J5HA1 by 85/- per
G.E. Co.

RF Signal generators by A.T.E. Specially designed for operators of VHF mobile equipment, these units are of very small size and are completely portable, the Interior circuit and assoclated parts are gold plated and bulld to a very high standard. There are two models with altenuated Type MIG Range $45-92 \mathrm{Mc} / \mathrm{s}$; both models are powered by U2 dry cell directly calibrated and butl into arey powmed by alloy case, brand new. Our price is only $£ 10$, $£ 9.19 .6$, plus $5 / 6$ p.p. for both models.

Thorne Electronlcs Batch counter Model CB22, complete with head amplifier, these are dlscontinued models fully transis torised, will accept sine or square wave pulses, these units will totalise from 9999 to 1, settable within this range. List price $\mathbf{£ 1 2 0}$, our price completé $£ 22$, and $10 /$ - for packing and cartiage

CLASSIFIED ADVERTISEMENTS
 DISPLAYED STTUATIONS VACANT AND WANTED: $£ 6$ per single col. inch
 LINE advertisements (run-on): 7/- per line (approx. 7 words), minimum two lines.
 Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /-$.
 SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
 BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wircless World, Dorset House, Stamford Street, London, S.E.1.
 No responsibility accepted for errors.

SCIENCE RESEARCH COUNCIL

The Radio and Space Research Station require Electrical and Electronic Engineers and Electrical and Electronic Engineers and Physicists as Experimental Officers and Assis-
tant Experimental Officers to work on the tant Experimental Officers to work on the
propagation of radio waves through the propagation of radio waves
troposphere and ionosphere.

Duties will include the development of electronic and other apparatus, performance of experiments and the processing and analysis of the results. Current work includes expanding programmes of investigation on the propagation of V.H.F. and U.H.F. waves through the troposphere using an 82 -foot steerable aerial and also on the propagation of millimetre waves.

The upper atmosphere and ionosphere is also being studied with apparatus in rockets.

QUALIFICATIONS

University or C.N.A.A. degree, H.N.C. or equivalent qualification. If under age 22 years, five G.C.E. passes including two science or mathematical subjects at ' A ' level (or equivalent).

SALARIES

A.E.O. between $£ 650$ and $£ 1,385$.
E.O. between $\mathbb{£ 1 , 5 1 4}$ and $£ 1,910$.

Non-contributary superannuation scheme. Please write or telephone SLOUGH 24411 for an application form.
The Secretary, Radio and Space Research Station, Ditton Park, SLOUGH, Bucks.

Radiomobile
 BRITAIN'S CAR RADIO SPECIALISTS
 Have a vacancy for a fully experienced
 SERVICE ENGINEER
 The successful applicant will be employed in our Main Service Workshop repairing :-
 Transistorised \& Valve Operated Car Radios. Car Tape Recorders.
 Coach Radio \& P.A. Equipment
 and also in our Service Garage on installation work and the servicing of equipment already fitted to vehicles.
 After gaining considerable knowledge of our products. it is possible that an opportunity might arise in the future for duties to be extended to include Field Service Work.
 Applications should be made in writing 10: The Personnel Manager,
 Radiomobile Limited,
 Goodwood Works,
 North Circular Road,
 London, N.W 2.
 GLA 0171. Ext. 4335
 A Subsidiary of SMITHS INDUSTRIES LTO.

HAWKER SIDDELEY

 AVIATION LIMITED
at DUNSFOLD AERODROME TECHNICIANS

are required for the testing and maintenance of aircraft navigation equipment.
Experience of electronic/electro-mechanical servo mechanisms essential.
Contributory Pension and Life Assurance Scheme, Sports and Social Club, Staff Canteen.
Please telephone or write quoting P7MW/05 to:-
Personnel Officer,
Hawker Siddeley Aviation Limited,
Dunsfold Aerodrome,
Nr. Godalming, Surrey.
Telephone Cranleigh 2121
BBO Transmitter Engineers
30 engineers are required for appointment between December, 1968 and April, 1969, at transmitting stations in various parts of the country. Their duties will mainly be concerned with UHF television transmission in colour and the VHF/FM radio services. Training in transmitter engineering techniques will be provided and previous experience in this field is, therefore, not essential.

ESSENTIAL QUALIFICATIONS:

Higher National Certificate in Electrical Engineering (Light Current) or
City and Guilds Full Technological Certificate (Telecommunication)
and the ability to demonstrate a good practical knowledge of electronic principles. Applicants must be British subjects, and have normal colour vision. Starting salary $£ 1,130-£ 1,475$ p.a. depending upon experience. These posts are permanent and pensionable. The transfer of pension rights from another scheme can usually be arranged.

For further details and application form write to:
The Engineering Recruitment Officer, BRITISH BROADCASTING CORPORATION, Broadcasting House, London, W1A 1AA.

enjoy exciting new scope now in Air Traffic Control

There are opportunities in the National Air Traffic Control Service, a Department of the Board of Trade, for you to play a vital part in the safety of Civil Aviation. You'll work on the latest equipment including Computers, Radar and DataExtraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments, including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be £869 (at 19) to £1,130 (at 25 or over); scale maximum $£ 1,304$ (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career Prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.

The Division designs, manufactures and installs cables to meet expanding worldwide demands for telephone systems. New types of cable and associated manufacturing techniques are under constant development for local distribution networks and trunk circuits at home and overseas. There are immediate vacancies in the Engineering organisation at Prescot, Lancs.

SYSTEMS ENGINEERS

Experienced Telecommunications Engineers are required for the Systems Engineering Department. Systems Engineers are responsible for the interpretation of customers' system requirements and the preparation of engineering submissions for tenders. The posts are of senior status and require a high standard of individual responsibility and initiative. Some travelling in the U.K. and abroad is involved.

Dur Systems Engineers must possess the qualifications of a chartered engineer. In addition we are looking for people who are really interested in tele. communication engineering, are personable in their relations with others and can write clear technical reports. Previous experience of the cable aspects of telecomm. systems is not necessary, as long as a sound basic knowledge exists. Training in our own field can be given after appointment, if necessary.

These posts provide a good route into management level appointments on the engineering or commercial sides of the Company at large.

INSTRUMENT DEVELOPMDNT GNGINEER

An engineer is required by the Instrumentation and Control Department to join a small team engaged on the design and development of instrumentation for monitoring cable quality in its production and test stages. The work also involves the design of plant control equipment embodying closed loop control techniques, and offers plenty of scope for imaginative thinking and purposeful application.

We should prefer this engineer to be a graduate in electrical engineering but shall be glad to consider anyone with H.N.C. Previous experience of plant instrumentation design would be valuable, especially in the field of closed loop control systems.

Telephone Cables Division is located in modern factory premises with its own laboratories at Prescot, Lancs. As part of the BICC Group we provide the conditions of service of a large progressive Company. including a Profits Participation Scheme.

Please write, giving a usefully broad outline of your career to date, to:-
G. F. Turner (Ref. 38/86)

Telephone Cables Division
British Insulated Callender's Cables Ltd.,
PRESCOT, Lancs. L34 5WO.

APPOINTMENTS

SOUTHERN
require a SENIOR ENGINEER (VIDEO TAPE RECORDING)

The successful applicant will be based at the Southampton Studios and will be required to work shift duties

Applicants must have conisiderable experience with Ampex VR-2000 video tape equipment and have proved operational ability. Technical qualifications of at least Higher National Certificate are required and candidates must be in good health and have normal colour vision.

The post commands a salary of $£ 2.166$ per annum (A.C.T.T. Grade B) and the Company operates a first class contributory pension scheme.

Applications in writing to:

The Personnel Officer, Southern Independent Television, Northam, Southampton, SO9 4Y0

SVSTEMS TEST ENGINEERS RADAR and TV

THE JOB
Systems Test Engineering on advanced training aids for aircraft including simulation of Radar and using Closed Circuit Colour Television.

THE MEN
Electronic Engineers preferably with O.N.C. or H.N.C. having had practical experience of Radar or Television equipment who have a keen desire to learn new techniques and applications.

THE REWARDS

Competitive salaries will be paid. High job interest. The opportunity to work on complex systems incorporating digital and analogue computers and associated peripherals, as a member of a team.
Opportunity to fly and operate simulated aircraft and other equipments. High quality training will be given.

OTHER BENEFITS

Our terms and conditions of employment are good and include contributory Pension Scheme and free Life Assurance. Good welfare benefits. We offer long term careers, not short term jobs. Opportunities for limited travel since we export 80% of our products.

Apply, quoting reference $W W / 269$, to:
Personnel Manager. REDIFON LIMITED,
FLIGHT SIMULATOR DIVISION.
Gatwick Road, Crawley, Sussex.
Telephone: Crawley 28811

SERVICE TECHNICIANS

Experienced electronic engineers, minimum qualifications ONC/City \& Guilds, to service and repair a wide range of electro-acoustic instruments. Driving experience essential.
Excellent salary and opportunities for advancement. Write or telephone for immediate interview.
Personnel Department, Amplivox Ltd., Beresford Avenue, Wembley. Tel.: 01-902 8991

UNIVERSITY INSTITUTE OF TECHNOLOGY
A constituent college of the University of Wales DEPARTMENT OF APPLIED PHYSICS
M.Sc./DIPLOMA COURSE
IN ELECTRONICS

Applications are invited for places in the full-time one-year M.Sc./Diploma course in Electronics, commencing 29th Seplember, 1969.

Application forms (together with further details) can be oblained from, and must be returned to the Registrar, University Institute of Technology, Cardiff, CFI 3 NU as soon as possible.

ENTHUSIASTS

Have you considered a career in Technical Authorship? If you have sound experience in electronics or communications and ability to write clear concise English we would train applicants as Technical Authors. The commencing saláries range from $£ 1,450$ to £1,800 depending on experience with the prospects of high future rewards and earnings. Box No. 5052.

TECHNICIANS

The Margaret McMillan College of Education require the following:
Audio Visual Aids Technician-Grade 2 -to be responsible for the maintainance and repair of audio visual aids equipment. An interest in general craftwork and model making would be an advantage.
Junior Technician Grade I-to assist in the maintainance of equipment and making of teaching aids. An interest in craft, e.g. woodwork, would be an advantage and candidates should preferably have 3 G.C.E. ('O' level) passes in appropriate subjects.

Salaries are in accordance with the N.J.C. Technicians Grades namely:

Grade 2- $\mathbf{E 7 6 5}$ to $£ 895$
Grade I-£330 to $£ 765$
Plus a qualification allowance of either $£ 30$ or $£ 50$ per annum where appropriate.

Application forms and further details of the posts may be obtained from the Principal, Margaret McMillan College of Education, Trinity Road, Bradford 5, and should be returned within 14 days of the appearance of the advertisement.

KODE LTD.

Data Processing Equipment
KODE LTD. require
ELECTRONIC SERVICE ENGINEERS
for the Greater London Area.
The applicants with semiconductor and/or valve experience, capable of organising and fulfilling service loading independently, will secure excellent salaries, company vehicles (for business and private use), together with very real opportunities for advancement.

Apply with summary of career to :-
The Service Manager
Kode Limited, Calne, Wiltshire.
Tel. Calne 3771

Computer Engineering

NCR requires additional ELECTRONIC, ELECTRO-MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of $£ 900 / £ 1150$ per annum, plus bonus. Shift allowances are payable, after training, where
applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road, London, N.W.2, quoting publication and month of issue.

Electronic Technicians

Abstract

Ampex Quality Control Department now has vacancies for electronics technicians. Successful applicants will be responsible for fault finding and testing a complete range of sophisticated magnetic recording equipment.

Experience gained in the electronic industry or radio or television servicing would be an advantage or a qualification of O.N.C. standard.
Attractive salary based on qualifications and experience will be paid and the company operates an excellent range of Life Assurance and Pension Schemes, etc.

Please write or telephone for application form to the Personnel Officer, Ampex Electronics Limited, Acre Road, Reading,
(Tel.: Reading 84411).
AMPEX

0.1

 We have vacancies for

 We have vacancies for}
FOUR EXPERIENCED TEST ENGINEERS

in our Production Test Department. Applicants are preferred who have experience of Fault Finding and Testing of VHF and UHF Mobile Equipment. Excellent opportunities for promotion due to expansion programme.

Please apply to Personnel Manager
PYE TELECOMMUNICATIONS LTD., Cambridge Works, Haig Rd., Cambridge. Tel: Cambridge 5135:, ext. 355

IRELAND RADIO TELEFIS ÉREANN ENGINEERS

Opportunities exist in Ireland's national broadcasting service for Engineers with initiative and Imagination.

Experience in broadcasting, telecommunications or related fields is desirable but not essential. Of equal importance is the ability to relate specific technologies to the wide range of problems that occur in radio and television.

Applicants should have a Degree or equivalent qualification in Electrical Engineering or Experimental Physics.

The salary scale extends to $\mathbf{2 2 , 0 7 0}$ per annum and excellent promotional opportunities exist. The commencing salary will depend on experlence.

Age limit- 35 years.
Applications, giving particulars of age, qualifications and experience should reach the
Personnel Administration Manager, Radio Telefis Eireann, Donnybrook, Dublin, 4. IRELAND, not later than 7th February, 1969.

Envelopes should be marked "ENGINEER (W.W.)."

SYSTEMS ENGINEER

Racal Communications is now producing new sophisticated systems which embrace Radar and Communications techniques. It requires a man possessing sound knowledge of basic communications biased towards U.H.F. and Radar applications.
He will establish, control and guide a team of Test Engineers performing comprehensive Test and Inspection duties to rigid engineering specifications.
Opportunities in the Test Engineering field are excellent throughout the RACAL Group and the successful candidate will join a dynamic team:
Salary will be attractive and location at Bracknell. possessing plenty of private building plus facilities for rented accommodation in the New Town, which is adjacent to open country.
Please submit details of experience and present salary to
Mr. P. Cousins,

Group Personnel Manager, Racal Electronics Limited, Western Road, Bracknell,
Berks. Tel: Bracknell 3244

ELECTRONC ENGNEERS

Are you interested in applying your knowledge? Our high powered electronic flash units and light sources with associated measuring accessories are being used in many fields ranging from photography to heavy industry. If you are qualified to construct and service such equipment, we can offer you interesting opportunities. Send details of experience and qualifications to Strobe Equipment Limited, 56 Turnmill Street, London E.C.1. CLERKENWELL 9268.

THE GENERAL POST OFFICE has vacancies for
RADIO OPERATORS II at its COAST RADIO STATIONS
Applications are invited from men between 21 and 35 years of age who must hold either the Postmaster General's First or Second Class Certificate of Competence in Radiotelegraphy or an equivalent certificate issued by a Commonwealth'Administration or the Irish Republic.

The posts which will be temporary in the first instance, carry a salary scale of $£ 765-£ 1,129$, depending on age at entry, but successful applicants will be eligible to enter the open competitive selection for permanent appointment to be held in the spring and autumn of 1969.

Applicants should write to: The Inspector of Wireless Telegraphy, Union House, St. Martin's-le-Grand, London E.C.1, or telephone 01-432 5628 for further information.

THE UNVERSTITY OF ASTON IN BIRMINEHAM Electrical engineering dept.
 M.Sc. COURSES October 1969 to September 1970

Graduate courses, of one year duration, leading to
a Master's Degree are offered in Electrical Engineer-
ing and in Precision Measurement and Inserumentation.

M.Sc. in ELECTRICAL ENGINEERING (Ref. M.Sc.8)

One-third of the lecture work will cover mathematics and electrical engineering materials. The remaining sime will be devored to one specialise option selected from the following:
(d) Control and System
b) Power Systems
(d) Communication Systems
(d) Design and Pulse and Digital Circuits and Systems
The Science Research Council has accepted this course as suitable for tenure of its advanced course studentships.
M.Sc. in PRECISION MEASUREMENT AND INSTRUMENTATION (Ref. M.Sc.27)
This course is un by an interdepartmental group comprising Electrical Engineering, Mathematics, Mechanical Engineering, Physics and Production Engineering departments.
Both courses are open to applicants who have graduated in science or engineering or who hold equivalent professional qualifications.
Suitably qualified persons who wish to attend for part of either course (without examination) may do so by arrangement.
Application forms and further particulars (quoting ref. no.) may be obtained from:
THE HEAD OF THE DEPARTMENT OF ELECTRICAL ENGINEERING。
THE UNIVERSITY OF ASTON IN BIRMINGHAM,
GOSTA GREEN.
BIRMINGHAM 4.

EEECTROMC TCEHMCAMIS

Marconi

Can offer you
NON-TIED HOUSING IN A NEW TOWN ATTRACTIVE SALARY ANNUAL SALARY REVIEWS GOOD WORKING CONDITIONS 37-HOUR WORKING WEEK
At Basildon we have a number of vacancies for technical test staff to work on advanced aeronautical electronic systems, maintenance and building of test equipment and other major projects. These positions will be of particular interest to men with experience of transmitters, receivers, aerials, closed circuit T.V. or digital systems.

Please telephone or write for an application form to :-
Mrs. B. Bridgen, Personnel Officer, The Personnel Dept., The Marconi Company Limited, Christopher Martin Road, Basildon, Essex. Phone: Basildon 22822.

INSTRUMENT SYSTEMS ENGINEER

The Job

Designing and commissioning electronic aircraft simulator instrument systems in association with analogue and digital computer equipment.

The Man

Qualified and/or experienced engineer who has a knowledge of aircraft instrument design theory and a sound understanding of servo and synchro techniques. Applicant should also have a knowledge of analogue and digital computing techniques.

The Rewards

Long term career. High job interest in association with the airline industry. Good working conditions. Contributory pension scheme coupled with free Life Assurance. Good welfare benefits. Excellent salary.

Apply giving brfef detalls of experience and qualifications, quoting reference W.W. 2269, to
\qquad

EXPERIENCED IN INSTRUMENTATION? LOOKING FOR A CHANGE? WITHIN REACH OF SLOUGH? OR POOLE?

We require a number of first-class engineers for the repair and calibration of a wide range of instrumentation.
If you are experienced in the maintenance of C.R.Os, D.V.Ms, V.Vs, Sig. Gens., etc., we would like to hear from you. Please write or phone.

G. R. QUIRK, Chief of Test
TECHNIVISION SERVICES
812/813 Weston Road, Slough, Bucks
Telephone No. Slough 29091

ASSISTANT ENGINEER
 (Radio Communication/Broadcasting) Required by THE CROWN AGENTS
 for their London Office

Candidates should preferably have a Degree and/or be Corporate Members of the Institution of Electrical Engineers. Applications will, however, be considered from those holding an HNC (Telecommunications) or equivalent qualification. The latter would be appointed as Technical Officers, the grade depending on age and experience.

Candidates should have received their training with an established manufacturer of Broadcasting or Radio Communications equipment or with a Broadcasting or Radio Communications Authority, and have had subsequent experience in one or other of these fields. Television experience, including telecine, would be an advantage, as would previous contract experience.

Candidates must be resident in the U.K., or anticipate being so in the near future, and be prepared to undertake short assignments overseas.

The Crown Agents is not a Department of the British Government; nor are its staff Civil Servants, although their salaries and conditions of service are based on those of the United Kingdom Civil Service.

SALARIES

Assistant Engineer: $£ 1,429$ (age 25)- $£ 2,114$
Technical Officers: Grade I-£1,690-£2,059
Grade II-£1,472-£1,690
Further details of the post and an application form may be obtained by writing to: Crown Agents, "M" Department, 4 Millbank, London, S.W.1. Please quote reference M2S/OFFICE/VI and title of the post.

```
    UNIVERSITY OF BRISTOL
        Dept. of Entra-Mural Studies
Weekend Courses in Colour
    Television-Spring 1969
        Feb. 28th, Mar. 1st, 2nd
        Lecturer:H. V. Sims (B.B.C.)
            Mar. 28th, 29th, 30th
        Lecturers: Dr. G. B. Townsend
            (Thames Television)
    M. H. Cox (M.H. Cox Electronics Ltd.)
        Both courses will be held in Bristol
Full details from D. S. Wilde, 20A Berkeley
        Square, Bristol BS8 1HR
```


Electro-Medical Service Department requires

ENGINEERS

for testing and servicing electronic apparatus. Applicants should be aged 23-30, and should be of H.N.C. standard. Apply in first instance in writing to:

SIEREX LTD.,

Electro-Medical Dept., Heron House, Wembley Hill Road, Wembley, Middx.

Technical Authors

for important new projects
Applications are invited from authors with established ability and experience for positions in the following fields:-

Data processing

Servo systems
Navigational aids
Sonar systems
Solid state radar
Radio communications
Electronic instrumentation
Electro-mechanical systems
These are positions of responsibility with an expanding company. Opportunities exist at the Company's London and Portsmouth offices. Also, on-site authors are required in counties to the north and south of London, and on the south coast. Formal qualifications to H.N.C. standard, and a minimum of five years in the engineering industry, will be an advantage.

Generous salaries according to experience and qualifications.
Please apply in writing to:-
The Technical Publications Manager (A.D.R. Houchin),

Irwin Technical Limited,
109/123, Clifton Street,
London, E.C. 2.

ELECTRONIC TEST ENGINEERS AND TECHNICIANS

As a result of expansion, additional opportunities are offered to work on a full range of professional T.V. equipment for a world wide market.

Engineers and Technicians are required for the testing to specification, setting up, fault finding, etc., of T.V. transmitters, outside broadcast vehicles, colour cameras and monitors, sync. pulse generators, video tape recorders, and associated broadcast studio equipment.

Previous experience of professional T.V. equipment is not essential but applicants must have a
sound functional understanding of transistorised pulse circuitry and experience of equipment testing. Possession of H.N.C. or H.N.D. will be a definite advantage.

These vacancies will also be of special interest to members of H.M. forces shorly leaving with experience of transmitters, radar or communication equipment.

Appointments are at Cambridge and Weybridge and offer a career opportunity of exceptional value together with a continuing demand within the company for technical staff with a thorough grasp of the company's products.

Conditions of employment and working environment are attractive. A good starting salary depending on previous experience will be offered.

REת

This company is currently setting up a new division to manufacture and market its gramophone records in the United Kingdom for the first time. The Technical Recording Department will be situated in West London and we are currently seeking the services of experienced men for the two positions outlined below:

TECHNICIAN
 (Disc Cutting)

Applicants should be fully experienced in the operation of Neumann
 half speed. We shall require the successful applicant to work to high standards of quality and to show from his past record that he is capable of doing so. A general background in audio engineering would be an asset.

MAINTENANCE ENGINEER

(Sound Recording Equipment)
Applicants should be experienced in the electro-mechanical and electronic maintenance of studio tape recording and disc cutting equipment. Familiarity with up-to-date testing techniques and equipment will also be required. Academic qualifications in electrical and electronic engineering are desirable, but experience will be considered to be of primary importance.

First-class salaries will be offered in both cases and prospects of advancement are excellent. All applications will be treated as confidential.

Please write or telephone for an Application Form to Mr. A. Fremantle,

[^12]
GLOBE TROTTERS

> We need Engineers with a yen for travel to commission our HF Communications Equipment which is selling in ever expanding world markets.
> If you have experience on high power HF Equipment and would like to see the world at our expense, then we want to hear from you. You will be responsible for carrying out trials, and handing equipment over to the customer in good working order. You may also be required to instruct the customers' engineers and take charge of teams of local labour.
> You should be between the ages of 25 and 45, highly mobile and preferably single (most jobs are unaccompanied).
> An HNC in electronics is desirable, but practical experience combined with a comprehensive understanding of modern circuit theory will not be discounted.
> In return you will receive an excellent salary with generous allowances for overseas travel.
> Please write or phone:
> Tom Anderson, Personnel Officer,
> Standard Telephones and Cables Ltd.,
> STC
> Oakleigh Road, New Southgate, N. 11

01-368 1234. Ext. 2578.

B/ACALD
 Communications

Applications are invited for the following positions:

TEST EQUIPMENT REPAIR \& CALIBRATION ENGINEERS

To carry out repair and calibration of high quality proprietary test equipment including spectrum analysers, oscilloscopes. signal generators. etc. Previous experience essential and it is expected that the successful applicants will be qualified to at least ONC level. Attractive salaries will be discussed at interviews.

ELECTRONICS TEST PERSONNEL

Progressive position for electronic Test Engineers and Testers engaged on a wide range of communications equipment, including transmitters and receivers. Applicants should have technical knowledge equivalent to City \& Guilds with previous experience of testing commercial equipment. Attractive salaries plus productivity payment.
Applications in writing, please, to:
Mr. P. Cousins, Group Personnel Manager,
Racal Electronics Ltd.,
Western Road, Bracknell, Berkshire.

OPPORTUNITIES exist for Radio Technicians to undertake interesting work involved with the maintenance and installation of equipment at airfields, Inland and marine mobile networks and on North Sea Drilling Rigs.
APPLICANTS should have experience in one or more of the following classes of equipment. VHF and UHF base station and mobile equipment employing both AM and FM techniques. HF Receivers and Transmitters up to 1 kw with SSB. ISB and FSK techniques.
Remote control systems for Transmitters and Receivers operating over GPO landlines.
Teleprinters and Telegraph error correction equipment.
City and Guilds Certificate or equivalent level qualification is desirable.
Applicants must have a valid U. K. driving licence and be willing to work outside normal working hours on a call-out roster basis.
THE POSTS offer starting salaries in the range $£ 1.200-£ 1.500$ commensurate with experience and excellent career prospects and will be based at the Company's Head Office between Hayes and Heston which is situated in close access to the M4 Motorway. Benefits include membership of an excellent Contributory Pension and Life Assurance Scheme and concessions on holiday air fares. IAL are a fast expanding company engaged in the field of communications. aviation services and engineering.
Please write stating brief details of age and career to date 10 :
Personnel Officer (R)
InTERNATIONAL AERADIO LIMITED
aeradio house - hayes road - southall - middlesex

5

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

TECHNICAL BOOKS EDITOR (ELECTRONICS)

Large book publishing company based in London requires an experienced EDITOR to head a section producing books on electronics subjects, including radio and television servicing. Applicants (age 28-40) should have a recognised technical qualification in this field and experience in technical publishing. Industrial experience also will be an advantage.

Apply in writing giving full details of experience and qualifications to: The Staff Appointments Officer, Butterworth \& Co. (Publishers) Ltd., 88 Kingsway, London, W.C.2.

CIVILIAN RADIO TECHNICIANS AIR FORCE DEPARTMENT

Are you

* INTERESTED IN doing vital work on raf radar and wireless equipment ?
* Aged 19 and over, of good educational standard with at least 3 years training and practical experience in radio/radar servicing.
If so, we offer
* Good pay. Salaries start at up to $£ 1130$ pa (according to age) and rise to £1304 by annual increments.
* Good prospects of promotion (top posts in excess of $£ 2000 \mathrm{pa}$).
* Excellent prospects of a good pension or a gratuity after 5 years service.
$\star 5$ day week. 3 weeks 3 days annual leave rising to 6 weeks, plus public holidays.
Vacancies exist at
RAF Sealand near Chester, RAF Henlow in Bedfordshire and periodically at other RAF stations.
Write to : MINISTRY OF DEFENCE, CE $3(H)$ (AIR), SENTINEL HOUSE SOUTHAMPTON ROW, LONDON, W.C. 1
or call at No. $30 \mathrm{MU}, \mathrm{RAF}$ SEALAND, between the following times :
Monday-Friday 8.30-4, Saturday 8.30-12.30

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd.,
Fullers Way South,
Chessington, Surrey (near Ace of Spades).
Phone: 01-397 54II

SITUATIONS VACANT

A full-TIME technical experienced salesman reprevious experience. salary required to-The Manager. Henry's Radio, Ltd., 303 Edgware Rd., London, W.2.
DESIGN DEVELOPMENT ENGINEER for laboratory 1 work in the design of audlo amplifiers, V.H.F. tuners and quality tape recorders. Only persons holding a stmilar position מeed apply. Salary according to
experience. Apply to Elizabethan Electrontcs Ltd., Ref: W.W.1. Crow Lane, Romford, Fssex. Tel. Romford 64101 .
[2108

ELECTRONIC ENGINEER required for development/ and professional recording equipment. Qualifications ONC/HNC Electronics or C. \& G. Saiary £ 1,000 £1.500, according to age, quailfications and experience. -Apply with details of qualifications and experience to Box werirnced TV Engine
EXPERIENCED TV Engineer required. Permanent quired. This is an addition to staff to cope with expanding TV service. REM RADIO, 79 Church Road, Ashford.
Tel. Ashford 5336 (Middlesex).
[79
CuATEMALA: Small radio station requires volunteer Oradio technician to assist in establishing relay stations and radlo schools. Interesting post concerning the development of remote areas. Volunteer terms: board, lodging, pocket-money, fares, allowances.-
Write: CIIR/OV, 38 King St., London, W.C.2. PRODUCTION TEST ENGINEER wanted to join our senior staff with experience of valve and transistor
audio equipments. 40 hour week. Salary E 1.200 per audio equipments. ${ }^{40-h o u r}$ week. Salary $\mathrm{E}^{1,200 \text { per }}$
annum. North West London grea. Box W.W. 2124 Wireless World.
R ADIO AND TAPE RECORDER TESTERS AND R ADIO AND TAPE RECORDER THOOTERS required Excellent rates of pay; $8 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$. Five-day week. Ellzabethan Electronits Ltd., Crow Lane. Romford, Essex. Tel.: Romford 64101.
$\mathbf{R}^{\text {EDIFON LTD. require fully experienced TELE- }}$ R COMMUNICATIONS TEST ENGINEERS, Good commencling salaries. We would particularly welcome
enguiries from ex-Service personnel or personnel enquiries from the Services. Please write giving fult details to-The Personnel Manager, Redifon Lid.. Broomhlll Rd., Wandsworth, S.W.18.
TESTERS and Trouble-Shooters required by manufactarers of car radios. tape recorders, record players, etc. Good rates of pay. Apply to Elizabethan Electrontes Lid. Ref: W.W.2, Crow Lane, Romford,
Essex. Tel. Romford 64101 .
THE Liverpool Clinic. 1 Myrtle Street, Liverpool. 7. Applications are invited for the post of MEDICAL
PHYSICS TECHNICIAN in the Department of Nuclear Medtine. Persons appointed will be required to maintain nucieonic and electronic equipment and would be expected to assist in the design and building of new equipment and modification of existing apparatus. Duties are principally in the Llverpool Clinic, but at
times extend to other hospitals in the region. Grade III. IV, or V according to qualifications and experience. Salary according to grade within the scale $£ 747$ per annum Grade V to $£ 1,365$ Grade III.-Application forms from the Hospttal Secretary to be returned not later than 10 days (3452)
UNIVERSITY College of London. Chemistry DepartMent. Electronics Engineer required to lead group maintenance of wide variety of electronic Instrumentation. Post provildes opportunity for well-quallfed man to take part in expanding application of electronics to chemical research. Salary at present under revtew'. Generous leave allowance. Application forms from Establishment Officer (Chem/9), University College
London, Gower Street, WC.1. URGENTLY REQUIRED. Messenger Boy for sound Gilpin, World Wide Pictures Ltdi, 34 Cursitor Street, London, E.C.4, stating age, Interests and experience.
[314
We Have Vacancies for Four Experienced Test Applicants are preferred who have Experience of Fault Finding and Testing of Mobile VHF and UHF Mobil Equipment. Excellent Opportunitles for promotion due to Expansion Programme. Please apply to Personnel
Manager, Pye Telecommunications Ltd., Cambridge Works, Halg Road, Cambrldge. Tel. Cambridge 51351 , Extn. 327
WEST London Aero Club tavite "A" and "B" W Icensed engineers with capital and/or necessary equipment to commence Radio Workshop. Alter-
native propositions may be considered. Write full native propositions may be considered. Write full
detalls to-White Waltham Alrfeld, near Maldenhead,
Berks. Berks.

MAN 60. Long experience industrial electronics, Mo instruments, etc, Good radio-TV repalrs. Seeks works Huddersfleld-Holme Valley area.-Box WW321
Wireless World. Wanted. A Young Man seeks seml-permanent Trained HF. SSB/AM, VHF. AM/FM Tx and Rx. Marker beacons. intercom systems, moblle equipment, radioTV repair.-Box WW319 Wireless World.
ARTICLESEOR SALE B ACK COPIES of "Wireless World" 1950-1968 com-
plete. Offers? Some earlier coples.-Cave, 16
Gordon Road. Newport, Isle of Wight.
$\mathbf{B}^{\mathrm{BC}} \mathrm{KITS}$ and T.V. SERVICE SPARES. Suitable B for Colour:-Leading British makers dual 405/625 six position pish bution transistorised
$405 / 625$ transistorised sound $\&$ vision $I F$ panels $£ 2.15 .0$, incl. clrcuits and data, P/P 4/6. Basic dual purpose 405/625 transistorised tuners incl. circult $£ 2.10 .0$, P / P $4 / 6$. New UHF tuners incl. valves, slow motion drive assy, knobs, leads, fittings $\Sigma 5.12 .6 \mathrm{P} / \mathrm{P} 4 / 6$. Sobell/GEC
$405 / 625 \mathrm{IF}$ \& output chassis incl circult $45 /-\mathrm{P} / \mathrm{P} 4 / 6$. $\begin{array}{llll}405 / 625 \text { IF } \& & \text { output chassis incl circult } & 45 /-\quad \text { P/P } & \text { 4/6. } \\ \text { Ferguson } 625 & \text { IF amplifter chassis incl. ctrcuit } & 19 / 6 \text {. }\end{array}$ Ferguson $\begin{array}{llll}635 & \text { IF amplifter chassis incl. ctrcuit } & \text { 19/6, } \\ \text { Ultra } & 625 & \text { IF } & \text { amplifter plus } 405 / 625 \\ \text { switch assy incl }\end{array}$ circuit $25 /-\mathrm{P} / \mathrm{P}$ 4/6. New VHF turret tuners:Cylon C 20/-, Pye CTM 13 ch. Incremental $27 / 6$. P/P
$4 / 6$. Many others available incl. large selection
channet colls. New frebalt tuners $58 / 6$, used good condition 30/-, salvaged $15 / \mathrm{F}$, P/P $4 / 6$. LOPTs, Scan coils. Frame output transformers, Mains droppers etc. available for most popular makes. TV signal boosters transistorised Pye/Labgear B1/B3, or UHF battery operated 75/-. UHF mains operated $97 / 6$ UHF masthaad able. post free. Enquiries invied, COD despatch MANOR SUPPLIES, ${ }^{64}$ GOLDERS MANOR DRIVE,
LONDON N.W.11. CALLERS 589 B
HIGH RD., LONDON N.W.11. CALLERS 589B HIGH RD. MEL FINCHLEY N.12. (near GRANVLE $\mathbf{B}_{2}^{\text {UiLD }}$ in. $\mathrm{x}_{23}^{\text {in a }}$ in. x any length. D.E.W. Led. (W), B_{2} in. $x{ }^{21}$ in. x any length. D.E.W. Led. (W),
Ringwood Rd.. FERNDOWN, Dorset. S.A.E. for leaflet. Ringwood Rd. FERNDOWN, Dorset. S.A.E. for leaflet.
Write now-Right now.
[76
CAPACITORS, oll filled, new. Westinghouse. 0.25 mid , Cox WW KV DC working. Price 88 each, plus carrlage D. . ans Wireless Woric.
D. I.Y. All materigls and components for construction of high fidellty loudspeaker systems (empty enclosures, BAF waduing, rygan, vynair fabric. crosskits. S .a.e. for llsts: P. R. \&s A. F. F. Helme, Dept. WW,
[318
Summerbridge, Harrogate, Yorks.
FOR Sale. New american Equipment. Qty. LORAIN Sub-Cycle Frequency Converters Input 125 v 50/60 cycle; Output 86-110y 16 $2 / 3-20$ cycle. Rectifiers. Power Supplites, etc.-For details write Box WW 2126 Wireless worid.
HEATHKIT $5^{\prime \prime}$ general-purpose Oscllloscope with Couble-beam generator. New model. Excellent value.
Cost $£ 67, £ 35$ o.n.o.-Tippet, 4 Norfolk Street, BarrowCost £67, £ $350 . n .0 .-T i p p e t, 4$ Norfolk Street, Barrow-
in-Furness. Tel. 3005 .
LARGE QUANTITIES and huge range of RF connecat huge discounts, or will consider bids for entire stock -approximately 60,000 items. Large quantity " $\times 3,600$ ft . tape and $t^{\prime \prime} \times 2,400 \mathrm{ft}$. tape on N.A.B. centre reels and in plastic contalners. 9 Edwardes high vacuum T.I.
H.F. Insulation Flashover Testers. 60 Pouer Supplies H.F. Insulation Flashover Testers, 60 Power Supplles
115 v. a.c. input $50-60$ cycles. Output $7-15$ v. d.c. at 115 v. a.c. input $50-60$ cycles. Output $7-15$ V. d.c. at
20 amps. Variac controlled fully transistorised and stabilised. of American origin, $19^{\prime \prime}$ rack mounting. We also buy redundant stocks in bulk.-Alt enquilries to Connectors $\&$ Electronics, Ltd.. 20 College Drive, Ruislip, Middx. (Ruislip 35953). Ask for Mr. G. Drake. $\begin{aligned} & \text { [} 320\end{aligned}$
ONE 12-channel Osclllograph Type 1200 A , manufactured by Southern Instruments Lid. Price £ 250 .
(Sultable for vibration Investimation.) Black. 44 Green Lane. Hendon. N.W.4. Tel. 2031855 or 2033033. Hendon. N.W.4. Tel. 2031855 or
[2114
STOPWATCHES? Before you buy send 8d. In stamps and prisms catalogue also avallable. Lind-Air (Optronics) Ltd.. Dept. CWW, 18 and 53 Tottenham Court Road. London, W.1. Tel. 01-580 1116.
[2107
THE IDEAL PANEL Mounting Meter Movement for F any Sensitive Test Meter. etc. 200 Micro Amp F.S.D. $41^{\prime \prime} \times 4{ }^{4 \prime \prime}$ In clear plastic case. Our special price
only $39 / 6$. P. \& P. Free. Limited number only. Walton's only $39 / 6$. P. \& P. Free. Limited number only. Waiton's
Wireless Stores, 55 A Worcester Street, Wolverhampton Stafls. [71] 500 -volT Bridge Megger, Signal Generators and 46 Headley Road, Woodley, Reading, RG5 4JE. [316 VORTEXION full track ($7 \frac{1}{2}$, 15) sertes 5 recorder \checkmark used for play-back only, superb condition. $£ 92$ (London). Box W.W. 2128.

TEST EQUIPMENT SURPLUS ANDSECONDHAND

SIGNAL generators, oscllloscopes, output meters; wave Noltmeters, frequency meters, multi-range meters, ville Old Hall, Ashvile Rd., London. E.11. Ley. 4986

Closed circuit TELEVISION equipment at very requirements all in first-class working order. Video Tape Recorders: Shibaden SV 700E £298. Video Monltors: 12" Shibaden TU 12 U £40; $19^{\prime \prime}$ Shibaden TU 19E £ 55; $19^{\prime \prime}$ Thorn type VM 857 six channel £ 46:
$23^{\prime \prime}$ Thorn type VM 859 six channel $£ 50$ All Monitors have audio facllities.-Full specificatlons on request from RADIO RENTALS WIRED SYSTEMS Lequest Shrlvenham Road, Swindon, Wilts. Hetc., etc., in stock.-R. T, \& I. Electronics, Ltd., Ashville Old Hall. Ashville Rd., London, E.11. Ley 4986.

NEW QRAM ANO SOUND EQUIPMENT

Consult first our 70-page illustrated equipment
catalogue on $\mathrm{HI}-\mathrm{Fl}(5 / 6)$. Advlsory service, generous terms to members. Membership $7 / 6$ p.a.-Audio Supply Association. 18 Blenhelm Road, London, W. 4 01-995 1661.
GLASGOW.-Recorders bought, sold, exchanged; cameras, etc., exchanged for recorders or vice-versa.-Victor Morris, 343 Argyle St., Glasgow, C. 2

TAPE RECORDINE ETO

IF quality, durability matter, consult Britain's oldest 1 transfer service. Quallty records from your suitable tapes. (Excellent tax-free fund raisers for schools, churches.) Modern studio facilities with Steinway 01-995-1661, TAPE to disc transfer, using latest feedback disc High Bank, Hawk St., Carniorth, Lancs.
[70

PRODUCTION UNIT ENGINEER

Miniature electro-acoustic products

Engineer with mechanical production training required to manage production of high quality hearing aids. Some electronic experience desirable, successful applicant will be responsible for production methods, coordinating all departments including inspection, tests, services and for quality of final product.
Previous experience on hearing aids not essential.
Position could be of great interest; working conditions are excellent.
Please apply: Personnel Officer, Amplivox Ltd., Beresford Avenue, Wembley, Middx.

CTIVILSERVICE

RADIO AND ELECTRONIC ENGINEERS
 Board of Trade (Civil Aviation)

Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and installation of advanced electronic equipment-including the latest type of radar, telecommunications, navigational aids, etc.
Qualifications: Degree with 1st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ae.S.
Age: 23 and normally under 35 on 31 st December, 1969 (extension for Forces or Overseas Civil Service).

Salary (Inner London): On the scale $£ 1,212-£ 2,190$ depending on age and qualifications. Pensionable appointments. Good prospects of promotion.
Application Forms are obtainable by writing to the Secretary, Civil Service Commission, 23 Savile Row, London, WIX 2AA, or by telephoning 01-734 6010 Ext. 229 (after 4.30 p.m. 01-734 6464 "Ansafone" Service). Please quote S/85/ASO.

ELECTRONIC SERVICE ENGINEERS

The Installation and Maintenance Division of E.M.I. Electronics Lid, urgently requires engineers with drive and ability to assist with the division's rapidly expanding work programme.

The successful candidates will be engaged on work in one of the following areas:-
*Servicing and calibration of a wide range of electronic instruments.
*Installation and Maintenance of automation. numerical, digital and multiplex systems.

Applicants should have had several years' experience of the maintenance of electronic equipment. These vacancies would appeal to engineers with industrial experience or a services background. Some travelling will be necessary for certain positions.

Excellent commencing salaries and staff benefits.

FRTOCAREERS

Applications giving concise career and personal details to:-
M. L. WATERS GROUP PERSONNEL DEPT E.M.I. LTO BLYTH ROAD HAYES MIDOX

米
 SOUTHERN
 INDEPENDENT TELEVISION
 require a
 SENIOR ENGINEER (ELECTRONIC MAINTENANCE SECTION)

The successful applicant will be based at the Southampton studios and will be required to work shift duties.

Applicants must have had considerable experience in the Electronic Maintenance Section of a broadcasting organisation and be conversant with modern solid state circuitry and the PAL system of colour television.

Technical qualifications of at least Higher National Certificate are required and candidate must be in good health and have normal colour vision. The post commands a salary of $£ 2.166$ per annum (A.C.T.T. Grade B) and the Company operates a first-class contributory pension scheme.

Applications in writing to:

The Personnel Officer,

Southern Independent Television,

Northam,
Southampton, SO9 4YQ

EAST SUFFOLK EDUCATION COMMITTEE LOWESTOFT COLLEGE OF FURTHER EDUCATION

St. Peter's Street, Lowestoft, Suffolk Principàl: A. E. Body, B.Sc. (Econ), F.R.G.S.

ENGINEERING and SCIENCE DEPARTMENT

Applications are Invited for the following post:
Lecturer Grade I to teach basically Electrical, Radio and Electronics mainly in the Radio Officers Course for the P.M.G. Certificate, and the Radar Maintenance Course for the Board of Trade Certificate, with ability to assist in one or more of the following: Radio and Television Servicing Craft Course, Electrical Craft Course or Electrical Technicians.

Applicants for the above post should have suitable Industrial and Teaching experience, together with appropriate qualificatlons, Salary in accordance with the Burnham Technical scale $£ 1,035$ to $£ 1,735$ with additions for recognised qualifications and Industrial experience where appropriate.

Application forms together with further information, are available from The Principal at the College, on receipt of a stamped and addressed envelope, and should be returned within fourteen days of the publication of this advertisement.

R with the latest test equipment including a wow and futter meter and multiplex stereo signal generator is able to repait Hi Fl and tape recording equipment

CAPACITY, AVAILABLE"
ARTRONICS, Ltd., for coll winding, assembly an
IR IRTRONICS, Ltd., for coll winding, assembly and
wirlng of electronic equlpment, translstorised subunit sheet metal work,- Ja Walerand Rd., London,
S.E.13. Tel. 01-852 1706.
$[61$ S.E.13. Tel. 01-852 1706.

METALWORK, al! types cablnets, chassis, racks, M etc. to your own specification, capactiy avallable for smail miling and capstan work up to lin bar.-
PHILPOTT*8 METALWORKS, Ltd., Chapman St,
Loughboroukh.
ON YOUR STAPF, but not on your payroll; comN YOUR STAFF, but not on your payroll; com-
missioned technical writing of all types to your
prequirements. Box W.W. 308 Wireless World.
precise reguirements, Box W.W. 308 Wireless Worla.

TECHNICAL TRAINANG

$\mathrm{B}^{\text {ECOME }}$ "Technicaily Qualified" in your spare time. in radio. TV, servicing and maintenance. R.T.E.B. in radio. Gulids. etc.; highly informative 120 -page Gulde-free.-Chambers College (Dept. 837K), 148 Holborn, London, E.C.1.
CITY \& GUILDS (Electrical, ete.), on "Satisfaction Cor Refund of Fee" terms. Thousands of passes. For detalls of modern courses in all branches of etectrtcal engineering, electronics, radio, T. ir aut-B.I.E.T etc.; send for ${ }^{\text {(Dept. } 132 \mathrm{~K} \text {), Aldermaston Court. Aldermaston, Berks. }}$

GEARED MOTORS

Microswitches, Timers, Meters. Potentiometers, Capacitors, all new. 6d. stamp for catalogue.
F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

ELECTRICAL MEASURING INSTRUMENT REPAIRERS

EXPRESS METER SERVICE

131 acton lane, london, w. 4 TEL: 01 -995 0725

BAILEY 30 WATT AMPLIFIER

An audibly unbeatable kit as supplied by us to Industry and Govt. Send for free details. 10 Transistors as speciffed \& Pcb $£ 6.10 .0$ 20 Transistors as specified \& 2 Pcb \&12.10.0 R1-R27 \& Pot $11 / 6$ CI-C6 (Mullard) $9 / 6$ Mullard Capacitors $2500 \mathrm{mFd} / 64 \mathrm{vw} \quad 15 / 6$ each Finned solid Ali Heatsinks $4 \times 43 \mathrm{in}$. $12 / 6$ each Texas IB20K20 Bridge Rects 200piv/2a 25/Photostats of May and Nov, articles $8 / 6$ set MOTOROLA IC STEREO PREAMP (0.1% THD) £3 (As described on page 332 September WW) A. 1 FACTORS, 72 BLAKE RD..STAPLEFORD. NOTTS.
D.M.G. Certificates, and City \& Gullds Examinations. Also many non-examination courses in Radio. TV Vrite for ins. Study at home with world iamous tcs. House, London. S.W.11.
R ADIO officers see the world. Sea-golng and shore R appointments. Tralnee vacancies during 1969. Grants avallable. Day and boarding students. Stamp CERVICE ENGINEERS-uD-date your technical knowSERVICE ENGINESRS-up-date your technical knowD ledge of Radio. TV \& Electronics thro' proven
home-study courses. Detalls from ICS, Dept. 442. Inter-home-study courses. Details from ICS, Dept. 442, Inter-
text House, London. SW11.
TV and radio A.M.I.E.R.E., City \& Gullds, R.T.E.B.; certs., etc., on satisfaction or refund of fee terms; training courses (including practical equipment) in all branches of radio. TV. electranics, etc., write for 132page handbook-iree; please state subject.-British
Institute of Engincering Technology (Dept. 150K) Institute of Engineering Technology (Dept. 150K),
Aldermaston Court, Aldermaston, Berks.

CNGINEERS, -A Technical Certificate or qualificaCtion will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng.,
A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), Clty \& A.M.I.E.R.E. A.M.S.E. (Mech. \& Elec.), Clty \&
Gullds. A.M.I.I. A.I.O.B., and G.C.E. Exams. Gullds, A.M.I.M.1.i A.I.O.B. and G.C.E. Exams.
Diploma courses in afl branches of EngineeringDiploma courses In ail branches of Engineering-
Mech., Elec., Auto, Electronlcs, Radio, Computers, Draughts, Building, etc.-For full details write for FREE 132 -page guide: British Institute of EngineerIng Technology (Dept. 1518). Aldermaston Court, Aldermaston. Berks.
KINGSTON-UPON-HOLL Education Committee. K College of Technology. Prlnclpal: E. Jopes, M.Sc.
F.R.I.C. ${ }^{\text {FULLME }}$ courses for P.M.G. certifcates and the Radar Maintenance certificate.-Information from College of Technology, Queen's Gardens, Kingston upon
[18
Eull.

BOOKS, INSTRUCTIONS, ETC.

MANUALS, circults of all British ex-w.D. 1939-45 D wireless equipment and instruments from original R.E.M.E. Instructions; s.a.e. for list, over 70 types.W. H. Bailey, 167a, Moffat Road, Thornton Heath.
Surrey, CR4-8Pz.

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc.

Good prices paid J. BLACK

44 Green Lanc, Hendon, N.W. 4 Green Lane, Hendon, N.W.
Tel. $01-2031855$ and 3033

lve an audio amplitier and power output atage. Impedance ohms. Output approx. 3.5 watta. Volume and tone antrols. Chassis aize only 7in. whe $\times 3$ in. deep $\times 6 \mathrm{in}$. ight overall. A.C. mains 200/240v. Supplied absolutely and New, completely wired and tested with valven and od quality output transformer, LIMITED NUMBER BARGAIN PRICE: 61.

TRANSISTOR STEREO $8+8 \mathrm{Mk}$. II Now uning sillcon Trunsistors in first Ave stages on each channel
reaniting in even lower noise level with improved senitivity

 Sultable for use with Ceramle or Cryntal cartridges. Output ktuge for any appakers from 3 to 15 ohma, Compact design, ai parto supplied includink drilled metal work. Cir-Kit board,
attractive iront lianel knobs, wire, woider, putso bolts-no attractive Iront lianel knobs, Wire, Eolder, nuts, bolts-no
extras to buy. Bimple gtep by atep inatructiona enabie any constructor to build in ampilner to be proud of. Brief Specificatlon: Freq. reaponne $\pm 3 \mathrm{~dB}, 20-20,000 \mathrm{c} / \mathrm{B}$. Base boost
sppron, to +12 dB . Treble cut approx, to -16 dB . Negative approx. to +12 dB . Treble cut approx. to -16 dB . Negative
feedbeck 18 dB . over main inhp. Power requirementa 28 V . at
${ }^{6}$ PRICICES: Amplifier Kit $210 / 10 / 0$; Power Pack Kit $83 / 0 / 0$; Cabinet $83 / 0 / 0$. ALL POST FREE.

```
Circuit diagrann.
kit) \(1 / 6\) (8.A.E.).
```


R ROGE PURCRASE!
Heavy 8in. metal turntable. Low
flutter performance $200 / 250$ v, flutuer (00 v. tap). Complete wlth Intent type lightwelght plek-up art and mono cartridge with t/o styli for LPIM8
LIMTED
G/G

LATEST GAIR RARD MODELS All typer available 1000, SP25 3000, AT60 etc. send S.A.E. for latent Bargain Prrice.

QUALITY RECORD PLAYER AMPLIFIER ME. I A top-Giallty recoord player amplifier employing heavy duty
double wound tnains traniformer. ECC83, ELBt, Ez80 valves.
 6in. h. Remdy built and tented. PRICE $75 /$. P. of. $8 /$ -
ALSO AVAILABLE mounted on board with output tranaforane ALSO AVAILABLE mounted on board with output transformer
and apeaker realy to at linto cablat below. PRICE $97 / 8$. and apeaker realy to at into cablant below. PRICE 97/6
P. \& P. 7/6. DE LOXE QUALITY PORTABLE R-PLAYER CABINET MK. 2. Uncut motor boand taze $141 \times$ 12ina, ciearance 2 in . below
Silin. above. Will take amplifier nbove and any B.S.R. of GARRARD Autochanger or uingle Pisver Unit (except AT60 or 8P26). 8ize $18 \times 15 \times 8 \mathrm{in}$. PRICE 78/6. Carr. 9/6.

AMPLIFIER MODEL HA34
 Designed for Hi-Fi reproduction of
record. A.C. malna operation. Ready bullt on plated heavy gauge metal chasin, size 7/hn. W: x in.
d. x tiln. h. Incorporatoo EOC83,
 double wound mains transformaer
and output tranaformer matched for and output transformer matched for
3 obm apeaker, peparate bass, treble and volume controls. Negasive feedbeck line. Output 4\} मatte. Front panel can be detached and leadn extended for remote mounting of controls. The BA34 ha
been specially deasigned for us and our quantity order emablea un been spectally designed for us and our quantlty order enablea un
to offer them complete with knobs, ralves, etc., wired and teated for only E4/5/- PPL "P. ©/"; A MPLIFER EIT
gimilar la appearance to HA 34 shove but employe entlrely difierent and adranced circultry. Complete set of parte etc. 79/6 P. \& P. 6/-.

BIGH GAIM 4-TRANBISTOR PRIMTED CIRCUTT

- Peak output in excese of 1 i watts. All standard British components. Bullt on printed circuit panel, size $6 \times 3 \mathrm{in}$. - Generous alze driver and output tranalormers, Output tranaformer tapped for 3 ohm and 16 ohm apeakers. Tranais-
tora (OET 114 or 81 Mullird OC81D and matched pair of OC81, tors (OET Mot or 81 Muliard OC81D and matched pair of Oc81,
 tilons and circuit diagram $2 / 8$ (Free with Kit). All parta sold
separately. sPECIAL PRICE 45/-. P. \& P. $3 /-$. Also ready separately. 8PEC1AL PRICE 45/-
bullt and teated $52 / 6$. P. \& P. $3 /-$

10/14 WATT HI-FI AMPLIFIEA EIT

A styliwhly fintahed monsural smplitier with an
output of 14 wath from 2 EL-84s in puah-pull
Super reproduction of Super reproduction of
both maic sad apeech.
with meat With neellyible hum. Beparate inputs for mike
and gram allow recorde and announcementa to follow each other, Fully
shrouded sect ion wound shrouded section wound match 3-150 apeaker and 2 independent vol ume controla, and separate base and treble controla are provided
giving good Hit and cut. Valve linevup: 2 ELSts, ECC83 EFse and EZ80 recther. Simple instruction booklet $1 / 6$ (Free with parts). All parta sold reparately. ONLI \&7/8/6. P. \& P. $8 / 6$. Also arailable ready built and tested complete with standard
loput bockets. $£ 9 / 5 /=$ P. A P. $8 / 6$. 4-SPEED RECORD PLAYER BARGAINS
Maini modek. All brand nem in maker's orikinal packing

HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985 S.A.E. all enquiries. Open all day Soturday (Wednesday 1 p.m.)
please note: P. \& p. CHARGES QUOTED APPLY TO U.K. ONLY.P. \& P.
OR OVERSEAS ORDERS CHARGED EXTRA.

WE PURCHASE

COMPUTORS TAPE READERS AND ANY SCIENTIFIC TEST EQGS AND SOCKETS, MOTORS, TRANSISTORS, VALVES AND KLYSTRONS, RESISTORS, CAPACITORS, POTENTIOMETERS. TEST EQUIPMENT, RELAYS TRANSFORMERS, METERS, CABLES, ETC. PROMPT PAYMENT \& COLLECTION TURN YOUR CAPITAL INTO CASH

ELECTRONIC BROKERS LIMITED
8, BROADFIELDS AVENUE, EDGWARE,
MIDDLESEX.
TEL. $01-9589842$

DAMAGED METER?

Have it repaired by Glaser
Reduce overheads by having your damased Electrical measuring nastruments repaired by L. Glaser \& Co. Ltd. Wo

IISTRUMENT

 REPAIRS Detectors, Temp. Controllers, all types Bridges \& Insulation Testers, etc.As contractors to various Government Departments we are the leading Electrical Instrument Repairers in the Industry. For prompt estimate and speedy delivery send defective instruments by registered post, or write
Depl. un
L. GLASER \& CO. LTD.

1-3 Berry Street, London, E.C. 1

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also " C " \& " E " cores. Case and Frame assemblies.
MULTICORE CABLES screened and unscreened from 2 way to 25 way.
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc

J. Black

44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033

EXCLUSIVE OFFERS

LATEST TYPE, HIGHEST QUALITY 78 INCHES HIGH x 30 INCH DEEP TOTALLY ENCLOSED 19 INCH RACK MOUNTING
DOUBLE SIDED CABINETS
having the following unique features

- All edkes and cornera rounded.
\star All interior attings, tropicalised and rast prooted and \star passivated.
\star Built-in Cable Ductu-removable.
\star Buils-la Blower Ducts-removable.
*Ventilated and ineect prooled topa.
- Detachable side panels.
\& Full length instanty detachable doors atted eapaguoletta boits araila ble it ordered with cabinets.
* Made in California, U.S.A.. coat the American Govern-
ment 8107 belore develuation.
Fintshed in arey primer and in new condition.

OUR PRICE £26 10 0

(Carriage extra).

(Full length doors e5 each extra).
You do not require doora if you are zoink to mount panela front and back and do not wish to enclose them
40-pake list of over 1,000 different itema in atock
available-keep one by jous.

Computer Tape Recorder Reproducers of hishent qualitr
Computer Tape Recorder Reproducers of highent qu
in th . Cabincts-full detaile and price on request.
\star Collin's 500 . m . Telephone Radio Trase minturs new

* 8 Track Data Hizh Spoed Tape Readera $\mathbf{8} 60$ \star Manon Illuminated Drawing Tables $36^{\circ} \times 84^{\circ} \quad 21710$ \star Ampheriol Convector Assemblina Machines 8810 *Teletype Model 28 Page Printers LP \star Teletype Model 28 Tape Punches LXD. 2850 * Stelma Telerrapb Distortion Monitors * 5 Sh. Motorola encloned Cabinets 19°. *Times Facsimile Trassmitter Receivera \star Teletype Model 14 Tape Punchen. £55 0 \star TS-497/URE Sirnal Generators $2 / 400 \mathrm{~m} / \mathrm{cs}$ \star OS-8 Oncilloscopes.
\star Jet Aireraft Joystick Handies with 5 *S.A.R.a.B. Aerialy 48° hich tSirma 12000 ohm. DPDT Bealed Relayi \star ATM Type TRR-2 Regenerative Repeatera 9550

\star Preis Airport "Wenther Man" Masth.

* 75 Hoot bigh Lattice Triangular wiad up

Prection \&1 15 Mrelsion mains Fitter Uaits............... 110 KR. 22 SSB Receiver 2.32 e75 0 \star Avo Geizer Connters new. £ 710
*Telecrapl Code-Decode Mach
21710
Carriage ertra at cont on all above
We have a large quantity of "bits and plecee"
we canot lint-plesue rend an your requirementu
we can probably help-all enquiries anwered.
P. HARRIS ORGANFORD - DORSET

WEATBOURNE G5051

ELECTROVALUE

RAPID MAIL DRIDER SERVICE

ALI GOODS BRAND NEW • ATTRACTIVE DISCOUNTS NO SURPLUS OR SECONDS

> t Unbeatable Value in New Semiconductors 30 watt BAILEY AMPLIFIER complementMJ481 NPN 子 matched pair output £2. $19.0 \quad 40361$ 12/6; 40362 16/9; BC125 12/-; BC126 12/-; 40361 NPN 4 matched pair drivers $£ 1.10 .3$ BC107 2/9; BC109 $2 / 9$.
> 40362 for one channel $£ 7.8 .0$ list; with 10% discount only $\mathbf{£ 6} .13 .3$
> Total for two channels $£ 14.16 .0$ list; with 15% discount only $£ 12.11 .8$. Power Supply Kit (single rail) $£ 4.10 .0$
> G.E. 2 N 2926 plastic range: 18 V 200 mW
> Red spot $\beta=55$ to $1102 / 3 \quad$ Yellow spot $\beta=150$ to $3002 / 9$ Orange spot $\beta=90$ to $1802 / 6$ Green spot $\beta=235$ to $4703 /=$ 2N2926, our choice of colour $2 / 2$ each, 10 for 21/-.
> High reliability ceramic types available
> CS2926 red $3 / 9$; orange $4 /-$; yellow $4 / 3 ; \operatorname{CS} 292525 \mathrm{~V} \beta=235$ to $4705 /-$
> FOR FURTHER DATA on the above semiconductors and many orhers, our catalogue price $1 /-$ only, posi free.

ZENER DIODES
3 V to $27 \mathrm{~V} 5 \% 400 \mathrm{~mW}$ all preferred voltages, $4 / 6$ each.
\star PEAK SOUND PRODUCTS
CIR-KIT No. 3 Rack, 12/6: adhesive copper strip, $5 \mathrm{ft} . \times \frac{1}{4}$ or $\frac{1}{1} \mathrm{in} ., 2 / \mathrm{m}$
$100 \mathrm{ft} \times$ t or it in, $30 / \mathrm{F}$. Perforated board 0.1 in . matrix 5 in . $\times 3 \mathrm{in}$., $4 /$
$23 \mathrm{in} . \times 3$ in., $2 / 6$: $2 \mathrm{in} . \times 3$ in., $1 / 9$.
ALL PEAK SOUND PRODUCTS AS ADVERTISED
\star SUPER QUALITY NEW RESISTORS
Carbon film high stab, low noise:
$\left.\begin{array}{llll}1 / 8 W & 10 \% & 1 \Omega \text { to } 3 \cdot 3 \Omega \\ 5 \% & 3.9 \Omega \text { to } 1 \mathrm{M} \Omega\end{array}\right\} 1 / 10 \mathrm{doz} ., 14 / 6$ per 100 .
$1 / 4 W 10 \% 4 \cdot 7 \Omega$ to $10 \mathrm{M} \Omega 1 / 9$ doz., $13 / 6$ per 100 .
$1 / 2 \mathrm{~W} 5 \% 4 \cdot 7 \Omega$ to $10 \mathrm{M} \Omega 2 / 2$ doz.s $17 /-$ per 100 .
1W $10 \% 4 \cdot 7 \Omega$ to $10 \mathrm{M} \Omega 4 \mathrm{~d}$. each, $3 / 3 \mathrm{doz}, 25 / 10$ per 100 .
$1 / 6$ less per 100 if ordered in complete 100's of one ohmic value.
Please state resistance values required.
QUALITY CARBON SKELETON PRE-SETS: $100 \Omega, 250 \Omega, 500 \Omega$, $1 \mathrm{~K} \Omega, 2 \mathrm{~K} \Omega, 2 \cdot 5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 20 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega, 200 \mathrm{~K} \Omega$, $250 \mathrm{~K} \Omega, 500 \mathrm{~K} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega, 2 \cdot 5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$.
Available in horizontal or vertical mounting $1 /$ e each.

\star ELECTROLYTICS,

SUB-MIN., C426 RANGE ($\mu \mathrm{F} / \mathrm{V}$): $0.64 / 64,1 / 40,1.6 / 25,2.5 / 16,2.5 / 64$, $4 / 10,4 / 40,5 / 64,6.4 / 6.4,6.4 / 25,8 / 4,8 / 40,10 / 2.5,10 / 16,10 / 64,12.5 / 25,16 / 10$, $16 / 40,20 / 16,20 / 64,25 / 6.4,25 / 25,32 / 4,32 / 10,32 / 40,32 / 64,40 / 2.5,40 / 16$, $50 / 6.4,50 / 25,50 / 40,64 / 4,64 / 10,80 / 2.5,80 / 16,80 / 25,100 / 6.4,125 / 4,125 / 10$,
$125 / 16,160 / 2.5,200 / 6.4,200 / 10,250 / 4,320 / 2.5,320 / 6.4,400 / 4,500 / 2.5$. 1/4 each.
MINIATURE $(\mu \mathrm{F} / \mathrm{V}): 5 / 10,10 / 10,10 / 25,25 / 10,50 / 109 \mathrm{~d}$, each. $25 / 25$, $50 / 25,100 / 10,200 / 10,1 /-$ each. $50 / 50,2 /-.100 / 50,2 / 6.250 \mu \mathrm{~F} 25 \mathrm{~V}$ 2/6. - POTENTIOMETERS (short spindle): 100Ω to $10 \mathrm{M} \Omega \mathrm{lin}, 5 \mathrm{~K} \Omega$ to $5 \mathrm{M} \Omega \log 2 / 3$ each. Dual, long spindle; $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$ lín or \log, 10/6d. each

ELECTROVALUE SERVICES INCLUDE

COMPONENT DISCOUNTS: 10% for total order value exceeding $£ 3$ list. 15% for total order value exceeding £10 list. Post and Packing: Up to $£ 1-1 /$-. Free on orders over $£ 1$
OVERSEAS ORDERS WELCOMED-Carriage a cost.
CATALOGUE-SEND $1 /-$ for our latest catalogue containing data on 200 up-to-date semiconductors available from stock as well as many other components, also transistor equivalents table. Invaluable to every serious experimenter and designer. Everything at best possible prices.
ELECTIROVALUE
Dept. WW.1, 32A St. Judes Road, Englefield Green, Egham, Surrey

BAILEY 30W AMPLIFIER

All parts are now available for the 60 -volt single supply rall version of this unit. We have also designed a new Printed Circuit intended for edge connector mounting. This has the component locations marked and is roller tinned for ease of assembly. Size is also smaller at $4 \frac{1}{i n}$. by 2 in. Price in SRBP material II/6d. In Fibreglass $14 / 6 d$. Original Radford design. SRBP
$12 /$. Fibreglass $16 /-$. This does not have component locations marked.

BAILEY 20W AMPLIFIER.
All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Mains Transiormer for mono or stereo primary for wound secondary and special., post $5 i=$
Trifilar wound Driver Transformer, 22/6d., post $1 /$ Miniature Choke for treble filter, 7/6d., post 6 d P.C. Board Pre-Amp 15/-., post 9d. Power Amp. 12/6d.
post 9d
Reprint of "Wireless World " articles, 5/6d. post free

DINSDALE IOW AMPLIFIER

All parts still available for this design including our new power amp. P.C. Board with power transistor for stereo cost approximately 624
Reprint of articles $5 / 6 \mathrm{~d}$., pose free.

HART ELECTRONICS,

32I Great Western St., Manchester 14
The firm for "quality".

Personal callers welcome, but please note we are closed all day Saturday.

OSMABET LTD.

WE MAKE TRANBFORMERB AMONGBT OTEER THINOB
 $100 \mathrm{w} 37 /$.6 : $150 \mathrm{w} .47 / 6 ; 200 \mathrm{w} .60 / \mathrm{F} 3300 \mathrm{w} .80 / \cdot ; 400$

MAINS ISOLATION TRANSFORMERS. Input 200-
MAINS TRANSFORMERS. Input $200-240$ Y.a.c. TK1, $425-0-425$ z

 $65 \mathrm{Ma}, 6.3$ v. $1.5 \mathrm{a} ., 22 / 6$; MT2. 230 т. $45 \mathrm{Ma}_{6} 6.3$ v. 1.5 a ., $2 \mathrm{~N}-$ INSTRUMENT TRANSFORMER. Prim 200/200 v , a.o., OMT/4. $10.0-10,20.0-20,30-0.30 \mathrm{v}, 0.1 \mathrm{amp} 35 /-2 \mathrm{amp} 50$ $0 \mathrm{mT} / 5$. Tapped sec., $40-50-60-80-90-100-110 \mathrm{v}$. giving, $10-20-30$ $40-50-60-70-80-90-100-110,10-0-10,20-0-20,10-0-30,40-0-40$, 52/6
HEATER TRANSFORMERS. Prim 200/250 \%. a.c. 8.3 F. 1.5 a

midget mans transformer. F.W. rectification, size

COLOUR TELEVIBION WW; as apeclfed, choke $\mathrm{LL}, \mathrm{B0} / \mathrm{F}$
OUTPUT TRANSPORMERS, Mullard $\$ / 10$. UL, $60 /-{ }^{7}{ }^{7}$ watt

CEOKES. Inductance $10 \mathrm{H}, 65 \mathrm{Ma}, 10 /-; 85 \mathrm{Ma}, 12 / 6 ; 150 \mathrm{Ma}_{\text {, }}$ 2 V -: flying leads, clangp construction.
Carriage extran tranformern from
BATTERY ELIMINATORS, PP9, $200 / 250$ v. a.c., 9 r.d.c. 150 Ma ,
$45 /-$. PP3, ditto, i5 Ma. $17 / 6$, p. \mathbf{p} p. $2 / 6$ d.
fluorescent le ligeting. Input. 6, 12, 24 v. d.c., range attling, in verters. 8.A.E. 1 isth.
BULE TAPR ERASER. 200/250 v. a.c., sultable any size spool, 42/6. P. \& P. 3/-.
LOUDAPEAKERS. New otock, famous make, 3 or 15 ohma, LOUDSPEAKERS. Ex equipment, perfect. Elac, Goodmans, lespey, etc., 3 olms, only, 5 ln . 7/6: 6 lo . 10/-; 7×4 in., $7 / 6$; in., $15 /-8 \times 5 \mathrm{ln}$., 15/-. P. \& P. $3 / \mathrm{B}$ each.
TEST METERS. Wide variety, all reduced, brand now. 8.A.E
S.A.E. all enquirtes please. Mall Order only.
46 KENILWORTH ROAD, EDGWARE, MIDDLESEX Tel:01.9589314

SEMICONDUCTORS BRAND NEW AND FULLY GUARANTEED

INTEGRATED CIRCUITS

CA305, $3013,3014,3018,3019,3020$	CA3021 $42 /-$
CA3011, $3012,22 /-$	$2 /-$ per type

Fairchild. L944 $11 /$ - $L 923$ 14/-
L900 $11 /-\quad$ Presets sed., horiz. or vere. Potentiometers, Log/Lin
Silvered Micas. up to 820 pf.
Mup to 2000 p.f.
Min. Electrolytics, MFD/VOLTS.
$3 / 3$ each
 $125 / 4 \quad 40 / 16 \quad 64 / 25 \quad 250 / 12 \quad 25 / 2550 / 25 \quad 25 / 50$ 1/0 $1 / 6$ each. $\begin{array}{cccc}200 / 6 \% 2 /- & 6.4 / 6.4=1 / 9 & 12.5 / 25=1 / 9 & 125 / 16=2 /- \\ 100 / 25 \% \% 2 /- & 4 / 40=1 / 9 & 1000 / 25=5 /- & 100 / 50=2 / 6 \\ 50 / 50 \% / 2 /- & 1000 / 12=1 / 9 & 500 / 6=2 / 6 & 500 / 50=4 / 9\end{array}$ $\begin{array}{lll}550 / 25 \% 2 / 9 & 500 / 25=1 / 9 & 250 / 50=3 / 9 .\end{array}$

VEROBOARD	RESISTOR
$31^{\circ} \times 21^{\circ} \times 3 / 6$	t wate 10\%
$31^{\circ} \times 31^{\circ}, 4 / 3$	Ware 5\%, 5d
Cutrer 9/-	$\frac{1}{1}$ and 1 wart, 60
17. $\times 1{ }^{\circ} \times 1 \%^{5 / 8} 16$	5 watt, 2/-
$5^{\circ} \times 21^{2}, 4 / 3$	5 watt, 2/-

SEND 6d. STAMP FOR CATALOGUE

A. MARSHALL \& SON 28 CRICKLEWOOD BROADWAY. LONDON, N.W. 2
 01-4520161/2/3 CALLERS WELCOME

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:

- RADIO/TV ENG. \& SERVICING

AUDIO FREQUENCY
CLOSED CIRCUIT TV
ELECTRONICS—many new courses
ELECTRONIC MAINTENANCE

- INSTRUMENTATION AND SERVOMECHANISMS
COMPUTERS
- PRACTICAL RADIO (with kits)
- PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS

Guaranteed Coaching for:
C. \& G. Telecom. Techns' Certs.
C. \& G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Cert.
Radio Amateur's Examination
P.M.G. Certs. in Radiotelegraphy
General Certificate of Education

WW-142 FOR FURTHER DETALLS

WW-i43 FOR FURTHER DETALLS

GODLEYS

SHUDEHILL, MANCHESTER 4 Telephone: BLAckfriars 9432

Agents for Ampex, Akai, Ferrograph, Tandberg, Bryan, Brenell, B. \& O. Vortexion, Truvox, Sony, Leak, Quad, Armstrong, Clarke \& Smith, Lowther, Fisher Goodmans, Whariedale, Garrard, Goldring, Dual Decca, Record Housing, Fitrobe, G.K.D., ete. Any combination of leading amplifiers and speakers demonstrated without the slightest obligation

ALL GOODS GUARANTEED

CONVERTOR/BATTERY CHARGER. Input 12 v . D.C. Outpue $240 \mathrm{v} 50 \mathrm{c} /$.s . 170 watt max. Input 240 v .
 An extremely compact unit that will give many years reliable service. supplied with plug and lead. Onty 4/ $10 /=$. P. \& P. (15)-extra. As above fully serviceable perfect interior but DISTRIBUTED WIDE BAND AMPLIFIERS Various eypes, c.g. E.M.I. type 2 C complete with gain of 12 . $88 / 10 \%$ P. \& P. Cl extra.
DEKATRON SCALERS/TIMERS
models from $66-$ - 12 .
RATEMETERS. Various types available with or
without E.H.T. Dower supplies.
DEKATRON COUNTER tubes type GCIOB, 4-OIGIT RESETTABLE HIGH SPEED COUN. TERS. 10 counts per second. $1,000 \mathrm{ohm}$ coil $36 / 48 \mathrm{v}$. D.C., 1716 each.

SOLARTRON stab. P.U. eype AS5 $16300 \mathrm{v}$.50 mA ., 63/10/-iAS5 $17300 \mathrm{v} .100 \mathrm{~mA} ., 66$. P. \& P. $10 /$ - extra. TRANSISTOR OSCILLATOR. Variable f́requency
 Brand new. Boxed. $11 / 6$ each VENER encapsulated "flip-flop" eype TS 24 Com plete with base $21 /$ - or 4 for $£ 3 / 15 /$..
boxed).
eransfor UNIT consisting of scandard mains inpus (consermer $200 / 240 \mathrm{v}$. 50 cycle; output 18 v .4 amp rate I sec. timer bridge rectinier; detachable accu TS2, $2 \times 12 \mathrm{AU7}$; cacts 2 make; lamps, fuse. switch etc., etc... in case size $10 \times 10 \times 5 \mathrm{in}$. Ideal for battery charger, one second timer, transistor power supply, etc.
Tested and guaranteed working 63/10/-, P. \& P. 15/FAST NEUTRON MONITORS Burnd 12628). Complete with new set of Mallory eclls and carrying harness. $\leqslant 10$ only. P. \& P. 10/-

OSCILLOSCOPES. COSSOP GEAR
OSCILLOSCOPES. Cossor DB 1035 E20; 1049 \&30 Hartley $13 A$ DB $£ 20$.
MARCONISIg. Gen. $144 \mathrm{G} 85 \mathrm{ke} / \mathrm{s} ., 25 \mathrm{mc} / \mathrm{s}$. 620 carr. L1. MARCONI U.H.F. Gen TFSi7 $150-300 \mathrm{mc} / \mathrm{s}$ AIRMEC Carr. Cl.
200 micro amp. mesivoltmeter 784. Gin. pectangular and $0-10 \mathrm{mv}$: range $-40 \mathrm{db} / \mathrm{x} / ;-20 \mathrm{db} / \times 10 ; 0 \mathrm{db} / \times 100$ C10. Carriage 15\%.
CT49 A UDIO FREQUENCY METER fre. range $450 \mathrm{c} / \mathrm{s}$. $t \mathrm{O} 22 \mathrm{kc} / \mathrm{s} ., \mathrm{directly}$ calibrated. Power supply
$1.5-22 \mathrm{~V} . \mathrm{D} . \mathrm{C} . \mathrm{E} / 10 / \mathrm{C}$, Carr. 15/- (in original carton).

One only SOLARTRON PRECISION A.C. MILLIVOLTMETER VF252. 1 \% accuracy. all ranges. 1.5 mV . -150 v . fas.d. 6 in . Linear scale calibrated in volts \& dBs. 30 M . ohm input resist-
ance. AS NEW only $£ 85$.
VOX SPEAKER CABINETS. Brand new. All
black with gold trim. Very attractive. Size $21 x$
Size $18 \times 18 \times$ 9in. deep requires I i 10 in. speaker
65/10/
Very special-heavier gauge eabinet $24 \times 18 \times$ gin
deep requiring 210 in . speakers $\mathrm{f} \mid 1$
Stereo enthusiasts-any pair fl reduction

Brooks Crystals $2 \mathrm{mc} / \mathrm{s}$. $7 / 6$ each
RELAYS
3,000 Series $5 \mathrm{k} / \mathrm{ohms}, 2$ pole make H.D. contacts, 2/6 each.
Siemens sealed HS 48 v . speo type H96E, 3/- each. Siemens min. With dust cover, 6 pole make or break 1,250 ohms, brand new, boxed, $4 / 6$ each. Bases $2 /$-. S.T.C. sealed 2 pole co. $24 \mathrm{~V} / 48 \mathrm{~V}$. State which. Com-
plete with base $8 /-$ each.

SELENIUM RECTIFIERS
Double bridge 12 V. 6 amps continuous rating. Size Quad bridge 12 v . 12 amps continuous rating, $21 / \mathrm{m}$ DIODES new CV448/425, $1 /$ each.
TRANSFORMERS. All 200250 inputs $18 \mathrm{v}$.6 amp
continuous rating tapped $9-0.9$ at $18 / 6$ each. 18 v continuous rating
12 amps at 63 each.
H.T. TRANSFORMERS. Gardners 250-0-250. $50 \mathrm{~mA} .6 .3 \mathrm{v} .1 \mathrm{mmp} ; 6.3 \mathrm{v} .2 \mathrm{amp}$, size $24 \times 4 \times 4 \frac{1}{1} \mathrm{in}$. Matching choke 7/- each $110-0-410-435-460,230 \mathrm{~mA} .600-570-540-0-540-570-600$.250 mA . Two separate windings. $63 / 10 /$ FRACTIONAL H.P. MOTORS. 240 v. $50 \mathrm{c} / \mathrm{s}$. Brand new, Ideal models, fans, etc. $6 / 6$ each. METROSILS. Ideal puise suppression, $2 / *$ each. E.H.T. CONDENSORS. 7.5 kV . working. 0.1 mfd ELIING LEE 10
CELLING \& LEE 10 pin plug/socket, $3 / 6$ each CALLERS WELCOME

CHILTMEAD LTD.

22, Sun Street, Reading Berks
Tel. No. Reading 65916 (9 a.m. so 10 p.m.

LAWSON BRAND NEW TELEVISION TUBES

Complete fitting instructions
12" Types £4.10.0 14* Types £4.19.0 $17^{\prime \prime}$ Types 65.19 .0 19' Types £6.19.0 Carriage and insurance 12 19" Twin Panel E9.17.6
$21^{\prime \prime}$ Types ti7.15.0 $23^{\prime \prime}$ Types $£ 9.10 .0$ 19" Panorama £8.10.0 23" Panorama €II.10.0
Corriage and insurance 15/-

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.s.
"Century 99 " are absolutely brand new tubes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp defintion screens of the very latest type giving maxinium Contrast and Light output; together with high reliability and very long life.
"Century 99 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1968.

2 YEARS FULL REPLACEMENT GUARANTEE WW-144 FOR FURTHER DETAILS

LAWSON TUBES

18 churchdown road MALVERN, WORCS. Tel. MAL 2100

SALES

P.O. BOX 5 WARE. HERTS
Nowhere in the world can you buy
semiconductors cheaper than from us W. are the larkest porchasers of We are the larrest porchasers of
manufacturers surplusuitocks, nnd
can fulfil any requirements at Wo will also buy your surplus stock lists.

$$
\text { TEL. WARE } 344
$$

OVER 3 MILLION SILICON ALLOY \& GERM. TRANSIS TORS AVAILABLE FOR IMMEDIATE DELIVERY

MAN UFACTURE

```
Type and Consirs AI. Germ. Audio. N.P.N. TO. A2. Germ. A.F. Germ. A.F. . Germ. R.F. A5. Germ. R.F. \(\quad\) T0.1 A5. Germ. R.F. TO-5 A6. Germ. V.H.F. TO-I A8. Germ. A.F. 2G300 A9. Sil. Alloy
```

Si. Alloy

to Al Guaranteed 80% Good Trans. A8 \& A9 Guar
NO OPEN OR SHORTS-ALL GOOD TRANS.

1/- TESTED TRANSISTORS I/each ONEPRICEONLTPNP. NPN each				
${ }^{\text {BC }}$ C108				
	${ }_{2}$ NTO6	${ }_{2}{ }^{2}$	2 N 3	
	${ }_{2}^{2 N 029}$			
	2N0	$\xrightarrow{2}$	${ }_{25}^{25}$	
${ }^{\text {ACLI27 }}$				
${ }_{\text {ACliz }}{ }^{\text {Ald }}$				
${ }^{\text {A Cry }}$ ACY2i ${ }^{\text {anc }}$				

TO- 18 METAL CAN SILICON PLANAR TRANSISTORS. VERY
HIGH OUALITY 99% 俭

HIGH QUALITY SILICON PLANAR DIODESY SUBMMNAA.
PURE DO-7 Glass Type, suirable
 ae C^{4} per 1,000 pieces. GUARAN-
TEED $8 \% \%$.
GOOD.

THYRISTORS (S.C.R'S) TESTEDBRA
TO- 5 CASE

FULLY TESTED DEVICES AND QUALITYGGARANTEED-SURPLUS o A 202 silicon Dlode. Fully Coded Iso PlV 250 mA Qty, Price $\mathbf{y 3 0}$ per 1,000 pieces. ORP12 Cadmium Sulphide Cell. 1,00 up $5 / 6$ aach. Made in Holland.
aY 100 SIL. RECT'S 800 PIV 550 mA .
1-49 2/6 each; $50-99$ 2/3 each; $100-999$ 2/- each:
1,000 up $1 / 10$ each. Fully Coded. Ist Q1ey

Vast mixed lot of subminizture slass diodes. Comprising of sliceon, Germ, Point Contact and Gold Bonded typers pluze some Zeners. 500,000 available at
Lowest of Low Price. 2.500 cross references of eransistors-British, European, Exclusively distributed by DIOTRAN SALES. I5/- EACH. Post and Packing costs are continually rising. Please add $1 /$ towards same. CASH WITH ORDER PLEASE QUANTITY QUOTATIONS FOR ANY DEVICE LISTED BY RETURN.
OVERSEAS QUOTATIONS BY RETURN SHIPMENTS TOANYWHEREINTHEWORLD AT COST

SELLE CASH

THE LARGEST AND BEST BUYERS IN THE COUNTRY UNITED

ELECTRONIGS LTO

* Best Prices * Prompt Settlement * Immediate Spot Offers * Fast Collection

We buy PLUGS AND SOCKETS-MOTORS-TRANSISTORS-VALVES-RESISTORS-CAPACITORS POTENTIOMETERS - METERS - RELAYS - TRANSFORMERS - TEST EQUIPMENT - ETC. Any quantities considered. Send lists of goods available. DON'T DELAY - contact Mr. Astor or Mr. Kahn-

UNITED ELECTRONICS LTD

 12-14 WHITFIELD ST. LONDON. W.1. Tel: 01-580 4532, 01-580 1116. 01-636 5151. Telex: 27931
COMMUNICATIO RECNTV 5 8 8 T.R. G.D.X./20.C.

Brand new fully tramaintorised and fully portable Communications Recelver. Speciflcations: 4 complete ranges $550 \mathrm{~K} / \mathrm{cs}$. to $30 \mathrm{M} / \mathrm{cs}$, covering all amateur hands, shipping and trawler bunds, and broadcast band. A highly efficient double tuned superhet, comprising R / \mathbf{F} aerial tuning section. A.V.C. and bulte th B.F.O. for C.W. or ssB reception. Ideal for fixed or mobile reception. With mpenker and headphone output. Hammer Anlshed robuat ateel care of plearing modern deaign Bla approz. $9 \times 7 \times 6$ in. British manufacture. Due to bulk purchastog we can offer these excellent receivera at less than half their nornal worth. Complete with handbook $\& 16-10.0$. carrisge and insurance $15 /$. Head phonen if required $17 / 6$ extra $2 / 6$ p.p.

DEPT. W.W.. 24 CAWOODS YARD

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES ETC GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETER5, OVENS, r. f. heaters. free catalogue.

V. N. BARRETT \& CO. LTD.

 286 Lower Addiscombe Road, Croydon.CRO70H. Tel. $01-6546470$, $01-6543972$.

PRINTED CIRCUITS
LARGE AND SMALL QUANTITIES.
FULL DESIGN AND PROTOTYPE FACILITIES AT REASONABLE PRICES. ASSEMBLY SERVICE ALSO AVAILABLE K. J. BENTLEY \& PARTNERS,

18, GREENACRES ROAD,
OLDHAM: LANCS.
Tel. 061-624 0939

DEIMOS ${ }_{\text {tid }}$

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO
single and multichannel

8 CORWELLLANE, HILLINGDON, MDX.

$$
\text { Hares } 356^{\prime}
$$

Hares 3561
HIGH GLOSS METALLIC HAMMERED ENAMEL MAKES FANTASTIC DIFFERENCE TO PANELS

- "rack bundeeds of enthushatictic users.
metal. No undercoat. Air driel 15 MIN. To hard and
 send $3 / 9$ (+ Pd. pone/pk'g.)
FINNIGAN SPCIALITY, PAINTS, Dept. W. STOCKSFIELD. Tel. 2280 Northumberland. \qquad OR BRUSH

凸ONOOW CENFRAR TMADO STORES

MODERN DESK PHONES, red, green, bue or topaz, 2 tone
grey or black. with internal bell and handset with $0-1$ dia. grey or bleck. "it
e4/10/-. P.P. 7/6.
10-WAY PRESS-BUTTON INTER-COM TELEPBONES in Bakeitte case with junction bor handset. Thoroughly overhauled. GO-WAY PRESS-BUTTON INTER-COM TELEPHONES LI Bake-20-WAY PRESS-BUTTON INTER-COM TELEPHONES LG Bake-
itte case with function boz. Thoroughly overhauled. Guaranitte case with Junction
feed. £7/15/- per Unit.
TELEPHONE COLLED HAND SET LEADS, 3 core. 5/6. P.P. 1/ELECTEICITY SLOT METER (1/- in niot) for A.C. madns. Fixed tarifin to your requirement. Sultable for botely etc. $200 / 200$. $10 \mathrm{~A} .80 /-15 \mathrm{~A} .901-20 \mathrm{~A}, 100 /-\mathrm{P}$. P.P. $9 / 6$. Other QUARTERLY ELECTRIC OHECK METERS. Reconditioned as new, $200 / 250 \mathrm{v} .10 \mathrm{~A}, 42 / 6$; 15 A. $52 / 6 ; 20$ A. $57 / 6$. Other amperagea svallable. 2 s eara' guarantee. P.P. B/
8-BANK UNISELECTOR SWITCHES. 25 contacte. alternate wiping $£ 2 / 15 /-; 8$ bank balt
25 contacte $47 / 6$. P.P. $3 / 6$.
WIRELESS SET No. 38 A.F.V. Preq. range 7.3 to $9.0 \mathrm{Me} / \mathrm{s}$. Work-
 Includes power supply sib.- and apare Valves and vibrator also tank merial with babe. ef per palsora FINAL END SELECTORS. Relays.
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

Stella Nine Range Cases

Manufactured in Black, Grey, Lagoon or Blue Stelvetite and finished in Plastic-coated Steel, Morocco Finish with Aluminium end plates. Rubber feet are attached and there is a removable back plate. There
also a removable front panel in 18 s.w.8. Alloy
Now all Aluminium surfaces are coated with a stripable plastic for protection during manufacture and
transit. All edges are polished. transit. All edges are polished.

LIST OF PRICES AND SIZES
which are made to fit Standard Alloy Chassis Width Depth Height $4^{\prime \prime}$ Height 6° Height 71°

		$f 3$.	d.	f s.			3. d.
$67^{\prime \prime}$	$3{ }^{\text {\% }}$	12	6	15	0		180
$6{ }^{\prime \prime}$	$4{ }^{1 /}$	13	6	18	0	1	00
$80^{\prime \prime}$	$3{ }^{\circ}$	15	0	10	0	,	10
	$6{ }^{\circ}$	11	0	16	6	1	113
10.	$7{ }^{\prime \prime}$	18	6	115	6	1	189
121"	$3{ }^{\circ}$	11	0	16	6	1	110
121*	$5{ }^{\circ}$	18	0	114	0	1	176
12.	80°	116	0	23	0	2	73
14"	$3{ }^{1 /}$	15	0	111	6	1	140
14**	97°	23	0	215	9	2	186
161*	66°	118	6	26	3	2	116
16\%	$10^{\circ}{ }^{\circ}$	210	0	35	0	3	119

CHASSIS in Aluminium, Standard Sizes, with Gusser Plates
Sizes to fit Cases All

s. d.		s.			
56	$10^{\prime \prime} \times 7^{\prime \prime}$	8	6	$14^{\prime \prime} \times 3^{\prime \prime}$	7
59	$12^{*} \times 3^{\prime \prime}$	6	9	$14^{*} \times 9$ -	14
6	$12^{\circ} \times 5^{\prime \prime}$	7	6	$16^{\prime \prime} \times 6^{\prime \prime}$	10
9	$12^{*} \times 8^{\prime \prime}$	10	9	$16^{\prime \prime} \times 10^{\prime \prime}$	16

Chassis-Post 3s. Od. per Order.
E. R. NICHOLLS

MANUFACTURER OF
ELECTRONIC INSTRUMENT CASES
Dept. W.W., 46 LOWFIELD ROAD, STOCXPORT CHESHIRE

Tel. : 061-480 2179

BAKER I2in. DE-LUXE

MKII LOUDSPEAKER

Suitable for any Hi-Fi system. Provides truly rich sound recreating the musical spectrum virtually flat from $25-16,000 \mathrm{cpss}$. Latest double cone with special Flux density 14,000 gauss. Bass resonance 32 - 38 cps . 15 watts British rating. voice coils available 3 or 8 or 15 ohms.
Price $£ 9$ Post Free

MINETTE AMPLIFIER For $\mathrm{Hi}-\mathrm{Fi}$ Record Players Chassis size 7 ransiormer. high. Valves ECL82, EL80. Two high. Valves ECL82, ELBO. Two
stage negative feedback Quality output 3 ohm matching. Bargain offer complete with engraved control panel, valves, knobs, $69 / 6$ TRANSISTOR AMPLIFIER Dlus DYNAMIC MICROPHONE A selfrecontained fully portablemini p.a. aystem. Many uset-Partion, Baby Alarm,
Intercom, Telephone or Record player. Amplifier, tte. Attractive raxina covered cabinet size $12 \times 9 \times$
4 in. with powerful 7×4 in. 4 in. with powerful 7×4 in. speaker and four transistor
one watt power amplifir plus ultra sensitive micror phone. Uses PP9 battery. Makert carto

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER $\underset{\text { Leaffet S.A.E. }}{200 / 250} \mathbf{~ A . C . ~} \quad 35 /=\begin{gathered}\text { Post } \\ 2 / 6\end{gathered}$

EXTENSION SPEAKER
Black plastic cabinet speaker with 20 ft. lead for transistor radio, intercom, mains radio, tape recorder.
Size: $7 \mathrm{tin} . \times 5 \mathrm{tin}. \times \mathrm{3in} . \quad 30 /=\begin{aligned} & \text { Post } \\ & 2 / 6\end{aligned}$

RADIO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD. CROYDON. Tel: 01-684 1665

Thanks to a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manulactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitced leaders, etc. Their quality is as good as any other on the markec, in no way are mported, used or sub-standard eapes. 24-hour despatch service.

Should goods not meet with full approval, purchase price and postage will be refunded.
S.P. \{3in. 1601t. 2/- 5in. 6001t. 6/L.P. $\left\{\begin{array}{lllll}3 \mathrm{in} . & 225 \mathrm{fc} . & 2 / 6 & 5 \mathrm{in} . & 5001 \mathrm{t} . \\ 5 / \mathrm{in} & 8 / 6\end{array}\right.$ D.P $\left\{\begin{array}{llll}3 \mathrm{sin} . & 350 \mathrm{ft} . & 4 / 6 & 5 \mathrm{in} . \\ \text { Sin. } & 1,200 \mathrm{ft} . & 2 /=\end{array}\right.$ $5 \frac{1}{2} \mathrm{in}$. $1,800 \mathrm{ft}$. $16 / \mathrm{F} 7 \mathrm{in}$. 2,400it. 20/=

Postage on all orders 1/6
Each course consists of 26 step-by-step lestohs recorded at 3 ? i.p.s. sultable for ewo- and fourrack machines and supplied complete with handbook Normal recail price 59/6.

Our price $19 / 6$ per course.

STARMAN TAPES

28 LINKSCROFT AVENUE ASHFORD, MIDDX.

Ashford 53020

FOR YOUR..
 SYNCHRO \& SERVO REQUIREMENTS:

SERVO \& ELECTRONIC SALES LTD. 43 HIGH ST., ORPINGTON, KENT. TeI: 31066,33976 Also at CROYDON. Tel: 01-688 1512 and LYDD, KENT. Tel: LYDD 252

AMERICAN

TEST AND COMMUNICATIONS EQUIPMENT * General Catalogue an/103 $1 /-\quad \star$ Manuals offered for most U.S. equipments
SUTTON ELECTRONICS Salthouse. Nr. Moit, Norfolk. Cley 289

PRINTED CIRCUITS

Small quantities are not expensive, we have full artwork and assembly facilities.

Let us quote you for any quantity.
OFRECT ELECTRONIC SYSTEMS LTD. Hookstone Park
Harrogate 85258

WE ARE BREAKING UP COMPUTERS COMPUTER PANELS (as
Bhown) $2 / \mathrm{In} . \mathrm{x}$ (n. 8 for $10 / \mathrm{s}$. shown) $2 \mathrm{in} .{ }^{x} \times 4 \mathrm{in} .8$ for $10 /=$.
Post free with min. 30 transistors. Post free with min. 30 transistors.
100 for $65 \%+\mathbf{P} . \& \mathbb{P}, 6 / 6$: 1.000 for $E 30+$ carr. EXTRACTER/ELOWER FANS (TAPST) 100 C.F.M. ${ }^{\text {F }} \mathrm{X}$ (Tn. 2800 R.P.M. $200 / 250$ volt A.C. $35 /=$ each. \dot{P}. is P. $\bar{B} / \%$. POWER TRANSISTORS sim. to $2 N 174$ ex. eqph. 4 for 10%. P. \& P. 1/6.

OVERLOAD CUT OUTS. Panel mounting in the following values $5 /-$ each: 1,1 i, $2,3,4,5,7,8 \mathrm{amp}$ TRANSISTOR COOLERS TOS. 7/6 doz MINIATURE REP. Od.
NEW MIXED GLASS NEONS. 12/6 doz
NEW MIXED DISC CERAMICS. 150 for $10 /-$
LONG ARM TOGGLE SWITCHES, ex eqpt SPGT $13 / 6$ doz. DP8T 17/ doz. DPDT 22/6 doz P. \& P. All Types $2 /=$ doz.

LARGE CAPACITY ELECTROLYTICS
4if.. 2 in. diam. screw terminals.
All at $6 /-$ each $+1 / 6$ each P. \&
$\begin{array}{ll}5,000 \mathrm{mFF} & 55 \text { d.c. }{ }^{1} \mathrm{~kg} . \\ 1.500 \mathrm{mF} & 150 \text { d.c. wikg. }\end{array}$
$4.000 \mathrm{mF} \quad 72 \mathrm{~V}$ d.c. wkg.
$8.300 \mathrm{mF} \quad 72 \mathrm{~V}$ d.c. $\mathbf{W k g}$.
16.000 mF 25V d.c. $W \mathrm{kkg}$. \quad Send $1 /$ stamps

12V d.c. wkg. for liat
KEYTRONICS, 52 Earls Court Road
London. W.s. 52 Earls Court Road,

ADJUSTABLE HOLE \& WASHER CUTTERS
 The right tool for trepanning holes $l^{\prime \prime}-12 \frac{1}{2}^{\prime \prime}$ in diameter
 In our range of 17 In our rols Models

Write for illustrated brochure of our full range with straight or Morse taper $1-4$ or Birstock shank.
AKURATE ENGINEERING CO. LTD. Cross Lane, Hornsey, London, N. 8 TEL. O1-348 2670

WW-146 FOR FURTHER DETAILS

WW-147 FOR FURTHER DETAILS

WORLD RADIO \& T.V. HANDBOOK

By JOHANSEN

1969 ED.
42/-
P. \& P. $1 / 3$

Radio Communications Handbook by R.S.G.B. New ed. 63/-. P. \& P. $4 / 6$.
Transistor Substitution Handbook. New Ith ed. 16/. P. \& P. $1 / 3$.
Hi-Fi Year Book 1969. 15/.. P. \& P. I/9.
Mullard Colour TV. Colour tube adjustments or the Service Engineer. 17/6. P. \& P. 1/3.
Designers Guide to British Transistors by Kampel. 25/-. P. \& P. 1/6.
Amateur Radio Call Book 1969. Ed, by R.S.G.B 6/6. P. \& P. 1/-
R.C.A. Hebby Circuits Manual. 17/-. Postage I/3.

TV Fault Finding by Data, 405 and 625 lines. $8 / 6$. P. \& P. I/-.

Electronic Novelty Designs by Kampel. 8/6
UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2
(Leicester Square Tube Station)
WW-148 FOR FURTHER DETAILS

INIDEX TD ADVEIRTISERS

Appointments Vacant Advertisements appear on pages 103-116

[^13]
 at a price in ozceas of the recomumended unasimum price ahown on the cover; and that it shall no

ADCOLA HOUSE, GAUDEN ROAD LONDON, S.W. 4 Tel. 01-622 0291/3
Telegrams: SOLJOINT LONDON S.W. 4
WW-002 FOR FURTHER DETAILS

ExtruSol_a new concept in solder for solder machines, baths and pots used in the electronics industry.
EXTRUSOL is a very high purity solder which is also substantially free of oxides and other undesirable elements. The percentages of impurities in EXTRUSOL are considerably lower than those quoted in national or company specifications, thus providing a solder more suitable for use in the electronics industry. EXTRUSOL can be released under AID authority and conforms with USA QQ-S-571d. Advantages of Extrusol
1 Less drossoninitial nelting 4 Improved wetting of elec 2 More soldered joints per tronic components and pound of solder purchased printed circuit boards
3 Less reject joints
5 More uniform results
All EXTRUSOL is completely protected by plastic film from the moment of manufacture until it is used
EXTRUSOL is supplied in $1-\mathrm{lb}$. and $2-\mathrm{lb}$. Trapezium Bars and Pellets in different alloys with strictly controlled tin contents to suit the appropriate soldering machines, baths and pots. Bars are available for automatic solder feed

special products for the soldering of printed circuits

A complete range of products for the soldering of printed circuits including:
P.C. 2 Dip Cleaner P.C. 10A Activated Surface Preservative P.C. 21A Printed Circuit Liquid Flux P.C. 51 Finishing Enamel Solid Solder Wire, and Ersin Multicore 5-core Solder Wire for direct application to panels.

liquid fluxes and soldering chemicals

7 standard non-corrosive Ersin Liquid Fluxes, all comply with D.T.D. and Mil specifications.
Arax Acidic Liquid Flux, the residue is easily removed, is faster than zinc chloride types but much less corrosive. In 1 -gallon or 5 -gallon non-returnable containers.

Mark 2 solderability test machine

Incorporates many new features, including semi-automatic electrical timing, proportional temperature control, remote controlled specimen lowering system and a
 temperature meter calibrated to an accuracy of 0.25% full scale deflection at the test temperature.
The machine can reduce production costs by instantly checking the solderability of components with wire terminations.
It complies with B.S.I. and proposed M. of D. and International Solderability Test Specifications.

solder tape, rings, preforms, washers, discs, and pellets Made in a wide range of solid or cored alloys. Tape, rings and pellets are the most economical to use.

Arax 4-core acid cored solder

Used in 38 industries it has replaced tinman's and blowpipe solders, fluid and paste fluxes and killed spirits for rapid and precision soldering in metal fabrication processes.
Arax Flux-exclusive to Multicore-has the fastest speed of flux in any cored solders. Flux residue is easily removable with water or, where flame heating is employed, is entirely volatilised. Residue will not contaminate plating baths. No pre-cleaning is necessary and the speed ensures that the solder will flow between the laps by capillary action, thus using the minimum amount of solder. Not recommended for wire to tag joints in radio or electrical equipment

BHb accessories can be supplied in bulk packings at very competitive prices

Fitted with automatic opening spring for quick repetitive flex and cable stripping. Screw adjusts stripper for usual wire sizes. Easy grip plastic covered handles and handle-locking ring.

recording tape

 splicer

Precision made M10uel 20 complete with e, chrome plated vides quick and accurate. Pro vides quick and accurate tape NEW eding. Standard modelfor $\frac{1}{2}$ tape. NEW $\frac{1}{2}$ " type is available for computer and video tape.ModelZ1

instrument cleaner

tape head

 maintenance kit size E

For further information please apply on your Company's note paper mentioning the product references Dept. WW, Mulficore Solders Limited, Hemel Hempstead, Herts. Telephone : Hemel Hempstead 3636

[^0]: Revolutionary heating element design $-1^{\prime \prime}$ long, fitting into $1 / 10^{\prime \prime}$ dia. hole. Long life. High efficiency.

 - Easily interchangeable bits.
 - Bit tips down to $1 / 32^{\prime \prime}$ diameter.
 - Develops power up to 20 watts.
 - Inputs up to 240 V .
 - Outstanding performance-will solder up to 14 swg .

 Copper conductors.

 - Weight, less than $3 / 4$ ozs.
 - Low cost.

[^1]: -

 New literature and full details of Aerial Advisory Services available from

 ## J BEAM ENGINEERING LTD

 ROTHERSTHORPE CRESCENT NORTHAMPTON
 Telephone: NORTHAMPTON 62147 (STD ON04) A member of the J. BEAM Group of Companies

[^2]: PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworid, London, S.E.1." Annual Subscriphions: Home; $215 s$ Od. Overseas; 1 year $\{215 s$ Od. Canada and U.S.A.; $\$ 6.75 ; 3$ years $\not \subset 7$ Os Od. Canada and U.S.A.; S17.50 Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRM/NGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11 Marsh Street, 1. Telephone: 0272 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: 0203 25210. GLASGOW: 3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: 260, Deansgate, 3. Telephone: $061-834$ 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Sireet, New York 10017. Telephone: 867-3900.

[^3]: Mullard Limited
 Consumer Electronics Division
 Mullard House, Torrington Place London W.C.1.

[^4]: * Liverpool College of Technology

[^5]: 1. Motorola Information Note AN-403.
[^6]: \ddagger See "The Diode-transistor Pump" by D. E. O'N. Waddington. Wireless W'orld, July 1966 for a full explanation.
 ** Adapted from a formula given in the above article.

[^7]: * Cable and Wireless Lid.
 + See graphs opposite

[^8]: \pm See our report on the exhibition, November 1968, p.405-ED.

[^9]: * The original article appeared in Funk-technik No. 20 (1967) pp. 783-786

[^10]: * Newmarket Transistors Lid

[^11]: MARCONI TEST EQUIPMENT EX-MILITARY RECONDITIONED. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, 225 . Carr. $30 /$
 TF 885 VIDEOOSCILLATOR $0-5 \mathrm{~m} / \mathrm{cs} 845$ Carr 30/T.F. 195 M , BEAT FREQUENCY OSCILLATOR.
 $0.40 \mathrm{kc} / \mathrm{s}, 200 / 250 \mathrm{v}$. A.C. $£ 20$. Carr. 30%.
 TF 142E DISTORTION FACTOR METER E20. Carr. 20/All above offered in excellent condition, fully tested and checked. SET, Brand New, £75. TF1371 WIDE BAND MILLIVOLTMETER, Brand New, $£ 50$.

[^12]: RCA Great Britain Limited,
 Record Division,
 50 Curzon Street.
 LONDON W. 1.
 Telephone: 01-4993901.

[^13]:

