NOWKeyswitch is proud to announce five new miniature relays that cleanly sweep the field. British designed, British developed, and British made, 5 SBIT the KMK range features high contact capacity, moulded 1 - 를 springs, 99.9% silver or silver cadmium oxide contacts, Swedish iron magnetic circuit, international contact clearance 1. 4 E 4 mm , life in excess of 5 million operations, connection by solder or push-on type '110' connectors, open relays mounting in any E6 : $2=A$ position, and plug-in relays for international plugability. Unit prices are as low as $9 / 4 \mathrm{~d}$ (1,000 rate), substantially less 108^{y} for larger quantities.

These versatile new midgets are available with one, two or three : C E C changeover contacts rated up to 10 A at $250 \mathrm{Vac} / 6 \mathrm{Vdc}$, and with coils for $6-230 \mathrm{Vac} / 2 \cdot 5 \mathrm{VA}$ and for $6-200 \mathrm{Vdc} / 1 \mathrm{~W}$. Contact RELAYS NEWS Keyswitch for complete price and technical details of these exciting new all-British KMK's.
Keyswitch Relays L.td, Cricklewood Lane, London NW2; telephone: 01-452 3344; telex: 262754.

```
KEYSWITCH
RELAYS
```


KEYSWITCH RELAYS - WHERE THE ACTION IS-KEYSWITCH RELAYS

Wireless World
 Electronics, Television, Radio, Audio

Fifty-eighth year of publication

This month's cover. A development engineer at Mullard's Mitcham works adjusts a cooled two-stage parametric amplifier designed for use as a low-noise r.f. input stage in communications satellite earth stations. The amplifier operates at 4 GHz with a bandwidth of 500 MHz , and has a gain of 40 dB and an overall noise temperature of $20^{\circ} \mathrm{K}$.

[^0](C) Iiffe Technical Publications Ltd., 1968

Permission is writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

June 1968
Volume 74 Number 1392

Contents

143 Constructional Projects

144 Wireless World Colour Television Receiver
147 Space Communication and Travel
148 Loudness Control for a Stereo System by R. T. Lovelock
151 Colour TV Development Continues in Europe
153 Conferences and Exhibitions
154 Output Transistor Protection in A.F. Amplifiers by A. R. Bailey
156 Interference and Microwave Systems
157 News of the Month
Applying "Bosworth" in Semiconductors
G.A.D.-The Printed Transistor
B.O.A.C. Flight Booking System

160 Personalities

161 Test Your Knowledge questions \mathcal{E} answers by L. Ibbotson
162 Letters to the Editor
165 Decade Frequency Standard by K.-V. Weisberg
166 Hybrid Cascode Amplification by B. Alvesten \mathcal{E} L. Bergsten
168 Announcements
169 Audio Fair Review
176 Television Camera Tubes by I. R. Sinclair
179 Demonstrating A. C. Theory by 7. A. Assenheim
180 Manufacturing Colour Tubes
181 Series Voltage Stabilization by 7.-E. Sigdell
182 Hanover Fair Grows Internationally
183 New Products
186 High-frequency Analogue Multiplier by M. E. Whatton \& G. Crisp
188 World of Amateur Radio
190 Literature Received
190 H.F. Predictions

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $£ 2$ 6s 0d. Overseas; $\AA^{2} 15 \mathrm{~s} 0 \mathrm{~d}$. Canada and U.S.A.; $\$ 8.00$. Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: Birchfields 4838. BRISTOL: 11 Marsh Street, 1. Telephone: Bristol 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.

Lock-fit transistors stay where they're put

Putting transistor leads through boards, cropping them and hoping they'll stay put until soldered is out of date. Now just push a Lock-fit transistor in and it stays there. The leads are shaped to grip.

And they won't bend or break. They're designed to pop straight into standard printed circuit grids and p.c. boards of both standard thicknesses.
The transistor itself-many of the
wide range of Mullard silicon types -is protected in an epoxy encapsulation which gives good heat conduction. The special epoxy used by Mullard maintains the low spreads of the silicon chip.The shape ensures that operators or machines put the transistor into equipment the right way round. So Lock-fit is easy to mount, gives better solderability and simplifies handling. Lock-fit will save you assembly time and costs. For the full Lock-fit range story manufacturers should tick the coupon.

You may think capacitors inexpensive. But have you worked out the cost of a dud on your line?

We're not going to start the old price v . quality argument again. We'd just like to make sure that you're getting the whole picture. It's up to you to judge what's right for your particular job. But Mullard will help you as much as possible.
So bear in mind that, as well as price and technical information, Mullard can also give you the most detailed life/performance data.

This information is fundamental to us if our AQL* is to be maintainedhow else could we improve our products? And this information is available to you. Take electrolytics for example. We found that they represent about 70\% of all capacitor failures in the life of a TV set. So we produced a detailed report and recommendations on the best way to use electrolytics. You're welcome
to a copy-it covers polyester capacitors too. Just tick the coupon. By getting all the information before you select you can be really sure that you are going to make savings by choosing the particular component to meet your design parameters.
*AOL=Acceptable Quality Level.
development--and thereby provide modern, technically excellent products ready for the demands of tomorrow. We have co-operated in
so many consumer electronics projects that it's quite likely we are working along similar lines to yours. So why not get in touch? advantage. Our past experience guides our future plans; provides us with an insight into the industry we serve; allows us to anticipate needs and deploy our resources over the most fruitful areas of research and

CONSUMER ELECTRONICS DIVISION

Time well spent

There can't be many firms who've been in business as long as we have who have used the time to such
Lock-fit transistor information $\square \quad$ Capacitor report \square
Name

Cosition
\qquad
Address \qquad
Mullard Limited, Consumer Electronics Division, Mullard House, Torrington Place, London W.C. 1. WW 5

CED55

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Drawing Office:

H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)

J. R. EYTON-JONES

Constructional Projects

Although the final analysis of our recent reader interest survey is not yet available-it was essential to await replies from overseas readers who, incidentally, number one in five-one thing is very obvious from the comments and accompanying letters received: there is still a tremendous interest in constructional projects. It is, however, necessary to qualify this interest as readers made it blatantly plain that they do not want gimmicky electronic gadgets but worthwhile projects. Wireless World has for more than 40 years had a very strong following of 'do-it-yourself' enthusiasts, and as older readers will remember there were few issues, even when weekly, that did not include details of a receiver, or some item for home construction. In those far-away days, of course, it was cheaper to make than to buy a ready made receiver. Although this is, in general, no longer true the interest in constructional projects has continued and is by no means confined to those of our readers who have a purely amateur interest. This is amply borne out by the fact that professional readers frequently make use-of W. W. designs in professional equipment -and sometimes they appear on the market as commercial products!

While readers have applauded the inclusion of such designs as the Dinsdale and Bailey amplifiers, some have complained of the paucity of designs 'with the hall mark of the Wireless World laboratory'. In self defence we must point out that, whereas in industry a whole team of engineers will devote months or even years to the development of a project, we with a small editorial team (whose prime function is to produce a journal every month) are also expected to develop sophisticated pieces of equipment and then to describe them in sufficient detail to enable readers to build them. It will be obvious therefore, that the number of W.W. designs must inevitably be very limited.

For many months past W. T. Cocking, who was responsible for the design of the Wireless World monochrome television receiver published in 1947, has been perfecting constructional details of a colour receiver, and the first of a series of articles will be found elsewhere in this issue. However, we would stress that this project 'is not by any to be enterprised or taken in hand, unadvisedly, lightly or wantonly' (to quote from the Church of England marriage service). Having said that we believe that there will be very many readers who will enjoy the exercise. We would especially commend it to the heads of science departments of schools and colleges who would, we feel sure, find in it a worthwhile project which should have more than academic interest for the students.

In saying this about $W . W$. designs we would not wish it to be thought that we belittle, in any way, the admirable designs submitted by contributors and we are in fact collaborating with some of them to bring to fruition more speedily ideas which we feel would be of particular interest.

One other aspect of circuit design must be mentioned. Although comparatively few articles are published in which full constructional details are given we know that the design data given in many others is used by readers to produce their own equipment (see note on p. 182). It would be true to say that rarely is there an issue in which there is not something for the engineer who wants to 'have a go' at constructing a piece of equipment for some particular aspect of the fragmentary technology we call electronics.

Wireless World Colour Television Receiver

1. General considerations

This article is the first of a series describing a colour television receiver in detail. The receiver is one which has been developed by W. T. Cocking in the Wireless World Laboratory and is based upon Mullard design data. It is naturally much more complicated and expensive than a purely monochrome set, and its proper adjustment is not only more difficult but demands the use of more elaborate test equipment.

It must be emphasised at the start that the construction of a colour television receiver is no easy task. Apart altogether from the magnitude of the constructional work, a good deal of practical experience with black-and-white equipment is essential. The constructor must also possess, or have access to, quite a lot of measuring and test equipment. He must also, of course, understand the principles of colour television. In this connection, the series of articles by T. D. Towers in the January to December 1967 issues of Wireless World must be regarded as compulsory prior reading.

The final anode of the cathode-ray tube of a colour set normally operates at 25 kV . High-voltage insulation problems arise, therefore, and certain safety precautions must be taken. Because of the high voltage, X-rays are generated in one valve and, to a smaller degree, in the c.r.t. itself. Since Xrays can be a danger to health, it is necessary to include proper screening against them. It must be strongly emphasised that the constructor must exercise proper care in the construction and use of the equipment and must never take short cuts by omitting safety precautions.

No danger arises in the normal use of the receiver. It is in initial setting up and in fault-finding that the possibility of danger arises, simply because one is then very close to the apparatus.

A further difficulty which may confront the intending constructor is that of obtaining some of the components. It is not possible to construct a colour receiver using only parts which are readily available on the retail market. Apart from the colour tube itself, the scanning coils and transformers, the convergence coils and some control coils for them are very definitely 'special to colour'. They are primarily manufactured for, and supplied to, the manufacturers of colour television receivers and their makers do not normally supply them direct to the public. It is hoped that some retailers will make supplies available, but it must be made clear that Wireless World can do little or nothing to help any individual who finds difficulty in obtaining parts. Details of suppliers will, of
course, be given where possible. Before purchasing any components, therefore, it is wise to make sure that one can obtain all special parts.

The purpose of describing the construction of a colour receiver is primarily educational. It is envisaged that those who build it will be mainly people who in one way or another are engaged in the electronics industry and wish to gain experience with colour television. There is no reason why the amateur who is knowledgeable in television and who has already successfully constructed black-and-white receivers should not attempt it, although he will be doing something more difficult than he has previously tackled. Most definitely, however, it is not for the complete beginner in television.

All this preamble may sound rather discouraging. In fact, it is deliberately intended to discourage those who have not sufficient technical knowledge and proper facilities from attempting it. The total cost of the parts on the retail market is likely to be more than that of a commercial colour set and so the cost of failure to an individual is likely to be important. There are so many parts involved that there is a high probability of finding at least several faulty ones, and of making several wrong connections in the wiring! When one first switches on the completed set, therefore, it will be with the knowledge that there are quite likely to be half a dozen definite faults which will have to be traced before anything approaching good results can be obtained. This is very good educationally, for there is nothing like fault-finding to learn about equipment!

A general block diagram of the colour receiver is shown in Fig. 1. Without the block marked Chrominance Circuits, the equipment will produce a monochrome picture of any colour. Up to the video detector the circuits are conventional, but one has to be rather more fussy about bandwidth than in the ordinary black-andwhite set. The video amplifier is more complicated, partly because a $0.6-\mu \mathrm{sec}$ delay line must be included to equalize the transmission times of the luminance and chrominance channels. In the main, however,
it is more complex because it must provide a greater signal output than the ordinary video amplifier. The colour tube needs a video signal drive at the cathode of some 140 volts peak white to sync pulse. This signal is applied directly to the cathode of the red gun and through frequency-compensated potentiometers to the green and blue cathodes, since it is necessary to adjust the drives to the three guns to compensate for variations in individual tubes.

Fundamentally the timebases are the same as those of a black-and-white set, but they operate at higher power because they have to provide much larger scanning currents. This comes about because of the $25-\mathrm{kV}$ final anode voltage of the tube and, in its turn, this is needed because of a basic inefficiency in a shadow-mask tube. The shadow mask intercepts a large part of the beam current of all three guns, current which in a normal tube would be focused on the screen to excite it. As it is, with a maximum beam current of 1.2 mA at 25 kV the e.h.t. power reaches no less than 30 W ! It is essential, too, that the voltage be stabilized and the usual practice is to employ a valve connected in shunt with the tube to absorb any current not needed by the tube. When the picture is black and the tube draws no current, the stabilizer takes the full 1.2 mA and so dissipates 30 W .

Because the tube operates at 25 kV , the deflection volt-amperes needed are large. In one sense this is fortunate, since it enables the e.h.t. supply to be generated in the usual way as a by-product of the line scanning; it does mean, however, a high-power line-scan stage. The output valve, for instance, has to pass a peak current of 0.9 A at an h.t. supply line of 285 V . The mean current is 0.36 A so the power input to the line-scan output stage is over 100W. Ventilation problems arise, therefore.
A common commercial practice is to obtain the e.h.t. supply from a valve rectifier fed from an overwind on the line-scan transformer. One disadvantage of this is that it provides another source of X-rays. These are produced whenever electrons strike a target, such as the anode of a valve, with sufficient velocity. X-ray production is usually considered to start at around $15-16 \mathrm{kV}$, so it may occur in some degree even in monochrome sets. It rises rapidly with voltage, however, $\varepsilon \mathrm{nd}$ at 25 kV is quite considerable.

A valve rectifier is not used for the e.h.t. supply in the Wireless World receiver, but instead a voltage-multiplier with selenium rectifiers. This completely eliminates X-ray production at this stage. It is still present in the voltage stabilizer, however, and so it is necessary to screen this valve against X-rays. The colour tube itself can generate X-rays because it operates at 25 kV . Lead glass is used in its construction and there is an external metal screen covering a large part of the bulb, and these cut down the radiation considerably. In the normal operational use of a colour set there is believed to be no health risk from X-rays at all. There may be some slight risk when one is very close to a set, as one must be in fault-finding, and, to a lesser extent, in adjusting it. The danger lies in total dosage which depends on the product of X-ray intensity and time. The writer considers it would be unwise to work all day

Fig. 1. Block diagram of the colour television receiver. The blocks do not necessarily correspond to physical units. Usually several blocks are contained in a constructional unit.
and every day close to the 'works' of a colour set of this type. This is not necessary, however. Provision is made in the design for the ready disconnection of the h.t. supply to the line timebase. Most fault-finding in circuits other than the line timebase and e.h.t. supply can thus take place with the X-ray producing stages inoperative. Provision is also made for operating the line timebase at reduced output at which the e.h.t. supply is 15 kV only and X-ray production is negligible. Under this condition much fault-finding on the line timebase itself can take place in complete safety even if it takes a long time.

To revert to the block diagram of Fig. 1, the main difference from a black-and-white receiver lies in the convergence circuitry. This is necessary to obtain proper superposition of the three pictures produced by the three guns of the tube. The three guns in the tube cannot be situated physically at the same place and it is necessary to deflect their beams in such a way that their deflection by the scanning coils appears to take place from a common centre. Mounted on the tube neck between the deflector coils and the guns is the convergence assembly which comprises six coils and five permanent magnets. Three of the latter are static convergence magnets, the other two are 'purity' magnets. In addition, a further coil and magnet are mounted behind the main convergence assembly; this is usually called the blue-lateral assembly.

The purity magnets are two metal rings transversely magnetized to produce a field across the neck of the tube. The strength of the field can be controlled by rotating one magnet relative to the other; in this way, their fields can oppose or assist each other in any required degree. The direction of the field across the tube neck can be varied by rotating both magnets together.

The purity magnets are normally adjusted with the red gun operative only, and the deflector coil assembly pushed back on the tube neck, to obtain the most pure red in the centre of the screen. The deflector coils are then moved forwards to obtain a uniform red over the whole screen. The purity is then checked for the other colours by putting the other guns on by themselves one at a time.

Convergence

The other four permanent magnets are next adjusted to secure convergence at the centre of the screen. A cross-hatch pattern generator is almost essential tor this. The blue gun is turned off and two magnets are adjusted to superimpose the red and green bars of the pattern at the centre of the screen to produce a yellow pattern. The blue gun is then turned on and the remaining two magnets adjusted to superimpose the blue and yellow patterns in the centre to produce white.

These static convergence adjustments are quite easy to carry out, but they give proper convergence only at the centre of the screen. Away from the centre the red, green and blue patterns produced by the three guns become more and more displaced from each other and it is necessary to carry out dynamic convergence to superimpose them to give a single white pattern.
This is done by feeding currents of special waveforms at line and field frequencies, and derived from the line and field timebases, to the six coils of the convergence assembly and the blue lateral coil. In all there are 14 controls to be adjusted to secure dynamic convergence and during the process some readjustment of static convergence may be
needed. Unfortunately, the settings of many of the controls are interdependent and the newcomer to convergence does not find their adjustment at all easy. The main thing is never to attempt to correct any particular fault completely by one control. Convergence can only be achieved gradually. It is necessary to correct each fault in turn only partially and to keep going over the whole set of controls time after time.

In addition to convergence grey-scale tracking is needed. This is something else which is absent in a black-and-white receiver. The three guns in the tube cannot be identical and adjustments are needed to the relative amplitudes of the video signals applied to their cathodes and to the voltages applied to their first anodes to compensate for their discrepancies. If adjustments are made merely to produce a white raster at full brightness, then instead of dimming off through all shades of grey as the brightness is turned down, the raster will acquire a colour cast. The relative cathode drives and the anode voltages have to be adjusted so that as the raster passes between black and white it does so through all shades of grey.

Before any attempt is made to obtain a colour picture it is essential to obtain a really good black-and-white picture. This may not be quite as good as that given by an ordinary black-and-white receiver; it will almost certainly be less bright and there may be a little colour fringing towards the edges, for perfect convergence is not always obtainable. Apart from this, however, unless thr receiver is working perfectly stably and reliably in monochrome, it is a waste of time to try to introduce the chrominance circuits.

We shall not, therefore, discuss the chrominance circuits here, even in outline, and their detailed description will be deferred

A rear view of the receiver without the power unit and the colour circuits. The i.f. and video amplifiers are on the left in the photograph with the timebase unit on the right and the convergence controls above the tube.
until one of the later articles of the series The Wireless World receiver has been built around a 19 -inch colour tube. This was chosen in preference to the 25 -inch because of its smaller size and weight which made it much more convenient in view of the large amount of handling needed during development. Anyone who wishes to use a larger tube can readily do so, however, for the operating conditions are identical; only two things are different, a larger tube screen and larger degaussing coils are needed. The units containing the circuitry, being made to fit around the smaller tube, can readily be disposed around the larger. One difference in performance may be noted, the larger tube is likely to give a somewhat less bright picture because the same beam power is distributed over a larger area of screen.
A unit construction has been adopted and, apart from the chrominance circuits, the main units are power pack, timebase, convergence, luminance amplifier, i.f. amplifier and tuner. In addition to the deflecting and converging assemblies on the tube neck, there are a few parts mounted on the tube base and degaussing coils are mounted on the tube screen.

It was stated in the announcement in last month's issue that no provision is made for 405 -line reception. This has been done chiefly for simplicity, since the switching needed for a dual-standard colour receiver poses severe mechanical difficulties. The real trouble is not so much the amount of switching needed, for it is surprisingly little, but in the many different parts of the equipment where it is needed. The mechanical difficulties arise because the different switches must all be linked together for operation by one control.

Switches are needed between tuners, in the sound and vision i.f. amplifiers, in the video amplifier, in the line timebase and in the convergence circuits, where most con-
trols must be duplicated. The switches tend to occur physically in places where they are very awkward to link together and where it is almost impossible to do so using standard components. Provision for dual-standard operation is, of course, a commercial necessity and it is relatively easy to do under commercial conditions where special parts and linkages can be fabricated.
In any case, it does seem rather wasteful to use a colour tube for monochrome pictures. An expensive tube is having its useful life wasted when a black-and-white picture could be produced at least as well, if not better, by an ordinary tube.

Transistors

So far nothing has been said about transistors. They are in fact used in considerable numbers in the i.f. amplifiers, the early video stages and the chrominance circuits. Valves are used, however, in the timebases and the final luminance and chrominance stages. It is possible to use transistors in all these places and at least one commercial receiver does so. One of the main practical difficulties lies in the-fact that a colour tube is subject to occasional internal flash-overs which do no harm to the tube but which can easily kill any transistor connected to it. If transistors are used, therefore, it is necessary to adopt a great many protective devices. At the present time it is simpler to use valves which themselves buffer the earlier transistor stages.

The fact that valves are used does entail one disadvantage. The available valves have heaters designed for series connection and this means that the chassis is necessarily live to the mains. It is hardly practicable to build an isolating transformer into the receiver. The live-chassis receiver is, of course, safe enough when it is enclosed in a cabinet and
it is quite normal in commercial practice. If it is not so enclosed, however, and it can hardly be enclosed when fault-finding, it is potentially dangerous. This, of course, is nothing to do with colour. It applies to all mains equipment which does not include an isolating transformer and that is probably the majority of commercial equipment.

However, in the interests of safety the constructor is very strongly advised to use an external $1: 1$ ratio isolating transformer external to the receiver when working on it. If there are any earthed objects in the vicinity this must be regarded as an essential safety precaution, and it must not be forgotten that an electric soldering iron may very well be an earthed object in the vicinity! If for any reason a transformer cannot be used make quite sure that the chassis is joined to the neutral side of the mains, that there are no earthed objects within reach and that the mains plug of the receiver is completely withdrawn from its socket before using a soldering iron.
Before concluding this first general ε rticle, it may be well to give a little more detailed picture of the form of circuitry employed. The tuner itself is a commercial product and it feeds the i.f. amplifier through a short length of coaxial cable in the usual way. The i.f. amplifier has three stages with transistors, using stagger-tuned single circuits as inter-stage couplings and wave traps to provide the necessary out-of-band attenuation.

The vision carrier is placed at 39.5 MHz and the sound carrier at 33.5 MHz . Those accustomed to 405 -line television must remember that standards are different with the 625 -line system. Negative modulation is used on the vision carrier which means that the tips of the sync pulses correspond to peak carrier power. Frequency modulation is used on the sound carrier, and this permits the use of what is often called 'intercarrier sound'. With this a common i.f. amplifier is used for vision and sound, but in it the sound carrier is attenuated by about 26 dB relative to the vision carrier.

In the vision transmission the amplitude is never allowed to fall below some 5 per cent of its maximum; this occurs during colour bar waveforms. By attenuating the sound carrier by 26 dB one enst res that it is always weaker than the vision signal; and, in fact, it must be attenuated more than this.

At the vision detector the vision carrier acts, in effect, as a local oscillator to heterodyne the sound carrier and produce a fre-quency-modulated sound signal at the difference frequency of 6 MHz . This is picked out from the vision detector and passed to a $6-\mathrm{MHz}$ amplifier which has two transistor stages and a ratio detector.

The video signal from the detector is fed to a transistor phase-splitter of about unity gain. The video signal is taken in one phase from the collector to feed the video amplifier proper, and in the other phase from the emitter to feed the chrominance circuits and also a two-stage d.c. amplifier which provides automatic gain control to the i.f. amplifier and the tuner.

The first stage of the video amplifier proper is another transistor phase splitter. Its emitter circuit contains a low-resistance potentiometer for contrast control from which the video signal is taken to the grid of
the video output valve. The sync separator is fed from its collector.

Substantially the whole of the video gain is provided by the valve output stage, the valve being of a special high- g_{m} type. The anode is directly coupled to the tube cathodes, d.c. restoration being effected in the grid circuit.
The bandwidth of the video amplifier approaches 5 MHz . The chrominance circuits, which we shall not discuss here, have a much narrower bandwidth. Because of this the time of transit of a signal through the chrominance circuits is about $0.6 \mu \mathrm{sec}$ greater than through the video circuits. If something were not done about this the colour on the picture would be displaced sideways from the picture detail. What is done is to include in the video amplifier a delay line to equalize the transit times of a signal through the two paths. This is quite a separate and distinct thing from the PAL delay line, which is used in the chrominance circuits for an entirely different purpose.

As stated above, the video or luminance output stage feeds the tube cathodes. This is with the luminance or Y signal. The chrominance circuits conclude with three valve output stages which feed the three grids of the tube with $\mathrm{R}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals, so that with Y on the cathodes, the grid-tocathode signals become R, G and B .
When first setting up the equipment, the chrominance circuits are omitted and the three grids of the tube are then returned temporarily to a common fixed potential, so that the tube is fed with the Y signal only at its cathodes. The picture is then monochrome.
The field timebase is fairly conventional and has two valves. One is the output pentode and the other is a triode, the two forming a multivibrator type of sawtooth generator, which is locked by the field sync pulses in the usual way. Outputs are taken from the pentode cathode and from a winding on the output transformer to the convergence circuits.
The line output stage is also basically corventional. It is driven, however, by a $L C$ oscillator running at line frequency which is kept at the correct frequency by the output of a phase detector which compares the line sync pulses with pulses from the line output stage. This is, of course, flywheel sync. While this is usually considered desirable when the signal is subject to interference, it is not usually necessary in areas of high field strength. In this case, however, it is necessary, and for a rather interesting reason.
A timebase which is directly locked by sync pulses is normally set to run at a basically lower frequency so that it can be tripped by the sync pulses line by line before it would trip of its own accord. This means that if the sync pulses fail for any reason, for instance if the transmitter breaks down, the timebase continues in operation at a frequency lower than the proper one. This normally causes no harm, but in this case it results in the anode dissipation of the line output valve becoming excessive. At the lower frequency the interval between successive flybacks is greater and the current has time to build up to a greater value.

Flywheel sync is needed to prevent this, for the free-running frequency with it is very close indeed to the locked frequency.

Space Communication and Travel

Arthur Clarke, who proposed the concept of synchronous communication satellites in his article "Extra-terrestrial Relays" published in Wireless World in October 1945, collaborated with Stanley Kubrick, the film director, to produce "2001-a space Odyssey" which had its gala premiere at the Casino Cinerama Theatre, London, on May 1 st. This spectacular space travel film centres around a megalomaniac talking computer which takes over an inter-planetary expedition with disastrous results. The film is both technically interesting and photographically breathtaking as one travels through a galaxy of colours into"space".

Several months ago Mr. Clarke addressed the British Interplanetary Society on "Voices from the Sky-the past, present and future of communication satellites". This paper, which was reproduced in the March issue of the Socity's journal Spaceflight, made reference
to his prophetic Wireless World article. Commenting on the article he said "I must confess I . . . thought in terms of manned space stations, because in 1945 there was no alternative in the available technology. It was a good day on our unit [R.A.F.] if only one tube blew in the day's operations. The idea that you could have complex electronic equipment, without hoards of servicemen and spare parts to replace the burnt out components then seemed almost as fantastic as space travel itself. As far as I can remember the immediate reaction to the appearance of the Wireless World article was precisely zero".

The copper plaque reproduced below was recently presented to Mr . Clarke by Dr. Anthony Michaelis, science correspondent of the Daily Telegraph. Among the signatures are those of H. F. Smith and F. L. Devereux (respectively, Editor and editorial assistant of W.W. in 1945).

Loudness Control for a Stereo System

Circuit for automatic balance and tone compensation at all listening levels

by R. T. Lovelock, C.Eng, F.I.E.E.

It is customary to control the volume of a reproduction system by varying the gain of the audio amplifier while the signal is still at a low level. The standard method of doing this is to apply the signal across the track of a variable resistor, and to tap-off the desired fraction of it between a slider and the low-potential end of the track. In a practical system it is desirable to have an adequate range of controllable variation so that all tastes may be met, and all classes of music catered for. On the other hand it is equally desirable that the range shall not be too great, otherwise a sufficiently precise setting of the level cannot be obtained. A good range for which to design a system is 40 dB .

Very early in the development of electronic reproducing systems it was found that a linear variable resistance was not adequate for the purpose because the ear has a logarithmic response, and the majority of the desired range was crowded into the initial 10% of the rotation. To obviate this trouble the carbon-track resistor with a pseudo-logarithmic law was produced. The required response is approximated by constructing two nearly linear portions of track, of differing, slopes, joined at an overlap by a deep curve. Although the response is far from the true logarithmic law and due to variation of the location of the curve joining the two end portions no two resistors have exactly the same law, every resistor gives a

Fig. 1. Typical envelopes for the three types of variable resistor indicated.

satisfactory spread of voltage levels for the purpose of gaincontrol. One difficult problem in stereo systems is that of ganging two gain controls together. To cater for differences in the overall gain of the two amplifiers a balance control is provided but once having balanced the system at an intermediate output level, it is desirable that it remains balanced at all other usable outputs. This can only occur if the two gain controls ganged together have a very similar law. Unless the system does remain balanced it will be necessary, for good stereo effect, that the balance control be carefully adjusted at each re-adjustment of the output level, and this is an exasperation for the expert, and an insufferable nuisance for all others.

The root of the problem lies in the fact that no two log-law carbon-track resistors have nearly identical laws, and if they are ganged together their outputs will not remain in balance over more than a very limited portion of their usable range. A linear-law resistor would remain much more closely balanced but unfortunately it would not cover an adequate range of gain. The commercial items which the constructor is normally able to purchase are manufactured and supplied to a specification which defines the allowable departures from the theoretical law. Fig. 1 shows the extreme envelopes within which the resistance may fall for \log carbon, linear carbon, and linear wire-wound

Fig. 2. Curves showing maximum difference between channels (lower channel as a percentage of higher channel).

types. It is very unlikely, of course, that any two resistors will differ by as much as this maximum permitted amount but it is equally unlikely that they will be very close to one another.

When these resistors are used in the conventional circuit for gain control and two of them are ganged together, it is possible to calculate the difference between levels in the two channels which may arise from this cause. Near the two ends there will be little difference, of course, and it is over the central portion of the range that they will differ most. On the other hand, it is this central portion which is most used in practice and which is representative of the performance to be expected. Fig. 2 plots the extreme difference which may be obtained over the central portion of the range, the lower channel being expressed as a percentage of the higher one. Again it is emphasized that it is very unlikely that this maximum difference will ever be experienced but a large difference will be met sufficiently frequently to make it a serious problem. It is evident from this figure that if a linear law is used to avoid the great differences in the \log law, then a wire-wound resistor will be very much better than a carbon one.

In an endeavour to gain the advantages of closer matching in wire-wound variable resistors, an attempt was made to develop a circuit which would give a range of gain approximately linear over 40 dB using a single variable resistor in each channel. It was obvious that to attain this end it would be necessary that the resistor controlled the gain by two independent means simultaneously, and this was achieved by causing it to attenuate the signal directly, and also to reduce the gain of the stage by increasing the degree of negative feedback. A schematic of the circuit employed is shown in Fig. 3. The variable resistor has its slider connected to earth thus dividing the track into two separate resistors, each variable in value and connected to earth. One of these portions forms the lower arm of a signal attenuating circuit, while the other forms an impedance in the emitter circuit résulting in negative feedback in the amplifier.

In Fig. 4 the overall variation of gain with rotation of the control is plotted for a nominal law which is linear from zero to $1 \mathrm{k} \Omega$. The departure of this law from the ideal linear characteristic, linear over a range of 40 dB , is also plotted. The ideal law is followed so closely that no apparent departure from it is evident when operating the equipment. In Fig. 5 is shown the maximum possible difference of levels between the two channels when a maximum possible difference exists between the two resistors. This is seen to be less than 5 dB for the worst case and is likely to be no more than 2.5 dB for all practical cases. For comparison, the departure between two channels for a log-law carbon resistor is shown for the same maximum difference between resistors. This reveals that the normal circuit using ganged carbon controls can have an error which is 5 times greater than that given by the linear circuit.

It is well known that the sensitivity of the ear does not vary in a linear manner over the whole of the frequency range. The

R. T. Lovelock has been technical director of Belling \& Lee Ltd., since 1965. During his career on electronics circuit design he has been involved in work connected with the British Common Standard system since the inception of the second Burghard Committee, and has also been a U.K. delegate to the International Electro-technical Commission Committee meetings on environmental testing for a number of years.

Fig. 3. Schematic diagram of the gain control circuit.

Fig. 4. Curves showing the overall gain /attenuator characteristic.

Fig. 5. Difference of level between channels for maximum spread of variable resistors.

Switch shown with automatic compensation off

Fig. 6. Circuit diagram of the loudness control. The $3.3 k \Omega$ resistor marked $*$ is replaced in the amplifier by a tone control network with an effective resistance of $3.3 k \Omega$ at 1 kHz .
difference in levels between the threshold of audibility and that of pain is much less at very low and very high frequencies than it is in the middle of the audio spectrum. If the frequency response is adjusted to sound correct when the reproduction level is high, it will sound thin and attenuated when the level is turned down to a soft effect. Since some people desire a high level, while others cannot endure it, if the response is maintained constant while the level is altered, the reproduction will be correct at only one of the many preferred levels. If quality is to be maintained at all levels it will be necessary to readjust the tone controls for each setting of the gain control. This is a requirement which is as inadmissible for all but skilled users, as would be the need to readjust the balance control, and in the interests of simple operation it is desirable that operation of the gain control should automatically vary the frequency response of the amplifier so that the optimum condition is maintained. Fortunately, the ear is not excessively critical, and it is possible

to design a simple circuit that will be sufficiently approximate to the optimum condition, to be acceptable over the whole of the 40 dB range.

This circuit is shown in Fig. 6. Included is a switch which will allow the automatic correction to be cut-out, leaving the response constant with adjustment of the gain. If this switch is not required, then the additional two resistors and one capacitor associated with it can also be omitted. Two stages of amplification are shown, but the second is not needed if only the gain control is required; in the amplifier from which this circuit was taken, the $3,300 \Omega$ resistor was replaced by a tone-control network by which means the overall frequency response could be adjusted. As the gain is reduced, both low and high frequencies are reduced less than the central band. The $3 \mu \mathrm{~F}$ capacitor boosts the low frequencies by increasing the impedance of the lower arm of the attenuator with decreasing frequency. The $0.1 \mu \mathrm{~F}$ capacitor boosts the high frequencies by decreasing the impedance of the negative feedback network with increasing frequency. The maximum value of bass-boost is limited by the $1,000 \Omega$ resistor shunting the capacitor, and the maximum value of treble-boost by the 100 Ω resistor in series with the other capacitor. The undesired bass-boost given at maximum gain is offset by two other corrections; by attenuation due to the $0.47 \mu \mathrm{~F}$ capacitor, and by increase of impedance in the $200 \mu \mathrm{~F}$ feed-back capacitor which limits amplification at frequencies lower than 10 Hz .

The frequency response of the system at the extreme positions of the control, and also in the middle position, is shown in Fig. 7. The full line is the response with the automatic correction operating, and the dotted line is that with it switched out. The fall in gain above 20 kHz is given by the 4.7 nF capacitor, and contributes to the stability of the system. The fall below 20 Hz is of assistance in the removal of transient surges and of rumble; this would be assisted, of course, by the inclusion of a rumble-filter, but it is a wise precaution to back-up such a filter with a falling response in each separate section of the amplifier. If the tone-control of the amplifier is adjusted for acceptable quality at the mid-position of the gain-control, the response will be acceptable to the ear over the whole range of the control. To achieve this end it will be necessary that all inputs to the amplifier have a magnitude which gives maximum amplifier output at maximum gain control setting. In the amplifier from which this circuit was taken, each input channel was fitted with an individual preset attenuator to allow this condition to be obtained.

Wire-wound variable resistors.-Variable resistors normally available through retail channels are the commercial equivalents of models which in slightly different form meet the requirements of a military specification. Although they are not specifically sold to this specification, because so many of the parts used are common to both models, the resistance law will be approximately the same. The military specifications currently applicable are DEF 5122 for composition type, and DEF 5121 A for wirewound type. The laws and limits assumed in the article are derived from these two specifications, from the preceding RCS series, and from drafts now under discussion in the International Electro-technical Committee and in the British Common Standard. The resistors used were Colvern pattern CLR, chosen for their small size, approximately one inch diameter. The use of a larger type would have given very slightly better performance.

Fig. 7. Gain characteristics of loudness control.

Colour TV Development Continues in Europe

Techniques described at Paris colloquium

Abstract

Although Europe now has several colour television broadcasting services in operation, and the technology and hardware are beginning to look much the same wherever you go, colour television as a subject for research and development is by no means dead. A few years back there was great technical excitement over the systems battle. That field is certainly pretty well closed, but there is still much to be done in the improvement of electro-optical devices and information processing equipment within the framework of the established systems. Some idea of what fields are being considered worthwhile exploring could be gathered from the Colloque International sur la Télévision en Couleur held in the UNESCO building in Paris from 25th to 29th March. Over three hundred delegates and contributors from all over the world attended this conference, including a sizeable group from the communist-bloc European countries. (Details of Russian colour television sets, presented by Professor S. Novakovsky of the U.S.S.R., were published in the May issue, p. 113).

Display devices. The single-beam colour c.r.t. still holds a good deal of promise as a competitor to the shadow-mask tube, although a great deal of early research seems to have sunk without trace. Philips Research Laboratories, Eindhoven, consider the beam index version a worthwhile project and M. Lubben and P. M. v.d. Avoort described some aspects of their work on this device. As is well known, the beam index tube has a single electron beam scanning a tri-colour screen made up of vertical'stripes of red, green and blue phosphors separated by black 'guard' stripes. In the Philips version all these stripes are 0.2 mm wide and there are $400 R G B$ triplets across the width of a 23 -inch tube. When the beam (spot size $0.4 \mathrm{~mm} \times 2.4 \mathrm{~mm}$) is activating a particular colour phosphor stripe it must be modulated with the colour signal, R, G, or B, appropriate to that stripe, so the tube includes an 'indexing' system to give
information on the position of the beam. This uses an associated stripe pattern on the screen: deposited over every other black guard stripe is an additional phosphor stripe which emits ultra-violet radiation when energized by the beam. This u.v. energy is picked up by a photomultiplier mounted on the outside of the tube envelope, and the output from this-the 'index' signal-indicates the position of the beam and is used for sequentially selecting the R, G, B colour signals.

A block diagram of the selecting system is shown in Fig. 1. The index signal from the photomultiplier is first filtered and limited to remove frequency and amplitude components due to the video modulation of the beam. It is then frequencydivided by 1.5 to make it equal to the triplet scanning frequency needed for switching in each of the colour signals. (The two frequencies cannot initially be made the same, by using one index stripe per colour triplet, because crosstalk would occur and cause phasing problem.) The output of the frequency divider, of angular frequency ω, is then fed into a phase splitter which produces two carrier frequencies displaced in .phase, $\sin \left(\omega t-21^{\circ}\right)$ and $\cos \left(\omega t-19^{\circ}\right)$. On these are sup-pressed-carrier-modulated the $R-Y$ and $B-Y$ signals from the colour receiver. The two modulator outputs are then added to produce a chrominance signal, C. This is added to a monochrome signal, M, which is obtained from the luminance signal Y and a colour-difference signal $M-Y$ (derived from matrixing $R-Y$, and $B-Y$). In the absence of colour information, say on a monochrome transmission, $R-Y$, $B-Y$ and C are zero, and $M=Y$.

The final signal applied as modulation to the grid of the beam index tube is the equivalent of three band-limited amplitudemodulated pulse trains in t.d.m., one giving R samples, one G samples and the third B samples, and it contains a d.c. component, the monochrome information, plus an a.c. component,

Fig. 1. Circuitry necessary for operation of the beam index single-beam colour c.r.t. The photomultiplier provides information on the position of the beam which is used for switching the colour signals.

Fig. 2. Principle of operation of light-valve tube for projection television using the Pockels effect.

Fig. 3. Time-division multiplexing scheme in colour camera channel, allowing R, G and B signals to pass through a common processing unit.
the sequential R, G, B information. The stripe phosphor efficiencies are adjusted so that equal beam current for R, G and B results in a white screen: thus when a monochrome signal is transmitted only the d.c. component is present, and this produces intensity-modulated white; but when colour information is transmitted in addition, the presence of the a.c. component causes this equal-energization balance to be changed so that colour is produced on the screen.

Many of the operations in Fig. 1 are performed digitally, so that, although the circuitry is complex, the number of components required can be reduced by the use of integrated circuits. The main problems with the tube at present seem to be that the vertical stripe pattern is more visible than the dot pattern in a shadow-mask tube (although this can be mitigated by a lenticular screen placed in front of the tube); the saturation of primary colours is slightly lower than the correct value; and there are small errors of hue. But the big fundamental advantages of this single-beam tube-no mask or grid required, lower e.h.t. than the shadow-mask tube for a given brightness, no convergence system needed, no colour or grey-scale tracking problems-must provide a big incentive for continued development of the device.

A tube for projection television, performing a function similar to that of the Eidophor system but using a different physical principle, was described by G. Marie of Laboratoire d'Electronique et de Physique Appliquée (France). It modulates the intensity of light from an external source and can be used either for monochrome picture projection or, in a group of three tubes with an optical colour separation system, for colour television projection. The physical principle used is the Pockels effect, which is similar to the Kerr effect but taking place in a solid instead of a liquid. When certain crystalline materials
are subjected to an electric field they cease to be optically isotropic and the refractive index of the material becomes dependent on the direction of propagation and plane of polarization of the light passing through it. The plane of polarization of the transmitted light can be altered by changing the applied electric field and so, by inserting polarizers in the incident and emergent light beams, it becomes possible to modulate the intensity of the light by varying the voltage producing the electric field.

How this principle is applied in the L.E.P. tube is shown in Fig. 2. A beam of polarized light is directed at a monocrystal of $\mathrm{KD}_{2} \mathrm{PO}_{4}$ mounted inside the evacuated envelope of the tube, and is returned from a reflecting surface on the rear of the crystal, finally passing through a second polarizer. The polarizers are crossed so that when the electric field applied to the crystal is zero no light is transmitted through the system. The video signal voltage is applied between a transparent conducting layer on the front face of the crystal and a grid spaced about $20 \mu \mathrm{~m}$ behind the crystal. This structure is scanned by a constant-current electron beam in the normal television manner, and at each point where it impinges on the crystal the beam forms almost a short-circuit between the crystal and the grid. If this point on the crystal is at a potential lower than that of the grid, the crystal loses electrons by secondary emission and its potential tends to rise. Conversely if the crystal potential is higher than that of the grid, the electronics cannot escape and the potential tends to fall. An equilibrium condition is reached, leaving the point on the crystal a few volts more positive than the grid. When the video signal is applied, at each point "touched" by the electron beam the grid-crystal capacitance at that point becomes charged to the voltage of the signal at the corresponding instant. There is consequently an electric field at this point and the Pockels effect occurs. Thus the light transmitted through the system is spatially modulated according to the pattern of electric field "cells" written by the electron beam.

The device is constructed in the form of a 3-inch image orthicon camera tube and uses conventional deflection and focusing coils. Examples of projection pictures it produces were shown. Definition and contrast were described as "satisfactory".
M. T. Inamiya described a Japanese portable colour receiver, intended for the American market, which has been designed around a 12 -inch shadow-mask tube developed by Toshiba. This rectangular tube is 35 cm long, has a 90° deflection angle and weighs 3.6 kg (81 b). The electron guns are smaller than normal (8 mm in diameter) but the tube neck diameter is standard- -36.5 mm . Unipotential focusing is used in the guns. Average anode current is $400 \mu \mathrm{~A}$. The shadow mask contains 117,000 holes of 0.24 mm diameter, with a pitch of 0.65 mm . Phosphor dots on the screen are 0.41 mm in diameter and have a pitch of 0.67 mm . The faceplate glass is tinted, giving 65% light transmission.

Cameras. A miniature Plumbicon pick-up tube with a diameter of 1.6 cm -half that of a standard Plumbicon-has been developed by Philips Research Laboratories. At the colloquium its possibilities were strikingly demonstrated by a Philips man who produced a portable colour television camera, using three of the tubes, which was comparable in size and weight with a 16 mm film camera without lenses. Despite the small size, the definition is said to be "not much different" from that of a large camera, while sensitivity is "comparable". The camera itself weighs 3 kg , while an associated electronics unit connected to it weighs 4 kg . Applications in television news broadcasting and closed-circuit systems are envisaged. The miniature tube, which is 13 cm long, has an image diagonal of 10.5 mm and uses a modified version of the photoconductive layer of the standard Plumbicon. The mesh screen behind the layer-part of the anode -has an extremely fine structure of 1500 meshes per inch.

Focusing is electrostatic. Tube definition is given as a modulation depth of 40% at 3 MHz with a maximum "white" signal current of $0.2 \mu \mathrm{~A}$.

An interesting innovation in a four-tube Plumbicon camera recently introduced by C.S.F. (France), and described by R. Cahen, was the use of a single electronic processing unit in the camera channel for all three colour-tube signals, red, green and blue. Normally cameras have a separate processing unit for each of these signals, but where the signals undergo simultaneous non-linear operations (e.g. gamma correction) in these units it is difficult to avoid discrepancies between them and there is consequently a danger of colorimetric distortions occurring. In the C.S.F. camera this problem is averted by multiplexing the separate R, G and B signals into a composite signal which then passes through the single processing unit so that all three colour components receive identical treatment. The combining and eventual separation of the R, G and B signals is done by time division multiplexing, as shown in Fig. 3. Each colour signal is sampled at a p.r.f. of 5 MHz , and the three pulse trains, each carrying its colour information by pulse amplitude modulation, are displaced in phase relative to each other and combined so that the resulting composite signal has a p.r.f. of 15 MHz . This then passes through the processing unit and is finally de-multiplexed by a reverse operation to recover the separate R, G and B signals.

Home video recording. A technique designed to allow colour television signals to be satisfactorily recorded by and played back from domestic video tape recorders was outlined by M. F. Koubek of the Technical University of Vienna. Present domestic v.t.rs can cope with monochrome signals but cannot handle signals including a colour subcarrier (at, say, 6 MHz) because of their restricted bandwidth-typically about 2 MHz . Shifting the colour subcarrier for recording purposes down to about 1.5 MHz would, of course, result in a very visible dot pattern on the picture. Koubek's solution is to encode the narrow-band colour information-actually three colour difference signals -on a line sequential basis, à la SECAM, to produce a chrominance signal which is combined with a luminance signal at the lower end of the video frequency band. The sum of the three colour-difference signals is zero, so the average value of the chrominance signal is zero, and consequently the composite signal, to be recorded and played back, is compatible. Since the chrominance information is at the lower end of the video band, the composite colour signal is not seriously impaired by bandwidth limitations in the recording equipment.

Fig. 4 shows the principle of the encoding system. The R, G and B input signals, obtained from a receiver, are transformed by matrixing into a Y (luminance) signal, a colour difference signal $U=0.19(B-Y)$ and a colour-difference signal $V=0.51(R-Y)$. The third colour difference signal, $W=(G-Y)$, is obtained from the other two, by addition and polarity inversion, in order to ensure that $U+V+W=0$. Thus, while hue and

Fig. 4. Encoding scheme for producing a narrow band composite colour signal suitable for home video recorders.

New C.S.F. four-tube Plumbicon colour camera utilizing the multiplexing principle shown in Fig. 3.
saturation are conveyed by U and V, the signal W makes the system compatible. The three colour-difference signals are then selected in turn, on a line sequential basis, and added to the Y information to form the final composite signal. Koubek explained that the frequency spectrum of the chrominance signal does not contain frequency components at multiples of the line scanning frequency, so that the chrominance spectrum can be frequency intercalated with the luminance spectrum. The decoding equipment, for recovering the R, G and B signals from the played-back information, utilizes two delay lines. Apart fröm domestic recording, Koubek suggested that the technique could also be used for narrow-band industrial television systems.

June conferences and Exhibitions

Further details are obtainable from the addresses in parentheses LONDON

June $5 \& 6$
Northern Polytechnic
Space Communications
(Dept. of Electronic \& Communications Engg, Northern Polytechnic, London N.7) June 10-14

Savoy Pl.
Industrial Measurement Techniques for on-line Computers
(I.E.E., Savoy Pi., London W.C.2)

June 27 \& 28
Imperial College
Better Management Through Standards
(B.S.I., 2 Park St., London W.1)

overseas

June 3-8
Stresa
Electromagnetic Wave Theory
(Int'l Scientific Radio Union, 7 Pl. Emile Danco, Brussels 18)
June 10-14 Engineering Exhibition Copenhagen
British Eng
British Engineering Exhibition
(S. Black, London Chamber of Commerce, 69 Cannon St., London E.C.4)

June 12-14
Philadelphia
Communications Conference
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

June 17-19
St. Louis
Microelectronics Symposium
(I.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)

June $20-22$
Optimal Systems Planning
Prof Williams, Lab
(Prof. T. J. Williams, Laboratory for Applied Industrial Control, Purdue
University, Lafayette, Indiana 47907)
June 23-26
New York
Impact of Microelectronics
(Electronic Industries Asso̧c., 2001 Eye St., N.W., Washington, D.C. 20006)

Output Transistor Protection in A.F. Amplifiers

A description of protection methods, outlining their limitations, and a practical circuit providing a linear load-line characteristic

by Arthur R. Bailey,* M.Sc.(Eng.), Ph.D., M.I.E.E.

THE sensitivity of transistors to overload has been one of the major factors restricting their use in power amplifiers. Indeed many amplifiers have warnings stating that damage can result from accidental short-circuit of the output connections. In fact, failure of the output transistors may be due to one of two major causes, and it is important to distinguish between them.

The most obvious cause of failure is due to overheating by excessive collector dissipation. This usually occurs in class B output stages, when the collector dissipation can rise to excessive values if the load is accidentally shortcircuited.

In class A operation, the collector dissipation in a transistor amplifier is the same under quiescent conditions as when driving into a short-circuit load. If severe overdrive occurs, the stages normally back-bias automatically and limit the output current to a safe value.

Unfortunately class A operation necessitates very large heat sinks to absorb the high continuous power dissipation of the output transistors. To reduce this dissipation to more reasonable proportions the so-called pi-mode
*University of Bradford

Fig.1. Normal positions for mean overcurrent protection devices.

Fig.2. Peak overcurrent protection using diverting diodes.

method of operation has been used. ${ }^{1}$ In this case the output transistors operate in pure class A for small input signals but progressively back-bias with increased signal. Ultimately full sine-wave drive causes the operating point to be that of pure class B. The quiescent class A current is approximately the same as the mean current under class B conditions so the mean transistor current is approximately constant. This therefore protects the transistors from overload so far as mean dissipation is concerned as overload has little effect on the mean transistor current. Unfortunately the dissipation in the transistors is still quite high and there is also the possibility of the circuit biasing back into class C for full drive on waveforms other than pure sine-wave.

Class B is the obvious choice so far as dissipation is concerned and nearly all commercial amplifiers run in or near to pure class B operation. Unfortunately in class B there is no protection of mean transistor dissipation by the biasing circuits and the system is wideopen to catastrophic failure.

Mean overcurrent protection

The most commonly used protection system is that of circuit disconnection if the mean output current exceeds the correct full-drive value. Such disconnection can be in the powersupply, output transistor circuits or the output lead of the amplifier. The mode of operation may be a fuse, thermal trip, electronic trip or other device. Such protection may be satisfactory if the power transistors have a large reserve of dissipation, but for many transistors the mode of operation is too slow and the output transistors may fail before the protection operates. Even if failure does not take place, the transistor junctions may have been damaged and the device may therefore fail at a later date. Such protection is therefore inherently unsafe.

Peak overcurrent protection

This is less common than the previous type, but it has been used commercially by Grundig and also by the author. ${ }^{2}$ In this mode of protection, diodes are used to prevent the peak output current exceeding a pre-determined safe value. This prevents high peak currents flowing in the output transistors, and materi-
ally assists in their protection. Unfortunately the mean output current is then higher than the normal full sine-wave drive value and the transistors may fail due to excessive dissipation if the overload is prolonged. Backing-up fuses are therefore desirable to prevent breakdown on prolonged faults. Basic circuits for mean and peak overcurrent protection are shown in Figs. 1 and 2. It should be noted that there are really two classes of operation under the heading of "mean protection", mean d.c. supply current being true mean protection, whereas fuses are really r.m.s. protection. They have however been grouped together as in neither case is there any attempt to limit the peak transistor current on overloads.

It might be expected that peak current protection with backing-up mean protection would be sufficient for any power transistor. Unfortunately this is not so, and the reason cannot be found in mean collector dissipation. There is, therefore, a second effect tending to cause failure and this is the phenomenon known as secondary breakdown.

Secondary-breakdown in power transistors

In transistors having a considerable junction area mean collector dissipation is no longer a complete guide to safety. It is possible to have different parts of the wafer at differing temperatures forming local "hot-spots". Also at high working voltages the effective base-width of the transistor is reduced by "Early-effect". ${ }^{3}$ This increases the nonuniformity of current distribution across the transistor wafer; such irregularities occuring naturally due to imperfections in base width and doping levels, etc. The non-uniform current distribution tends to generate local hot-spots and the localized heating increases the current gain and the tendency to avalanche breakdown at these points. The increased localized current gain increases the current density in the hot-spots and thermal runaway may ensue giving failure at the hot-spot. This localized thermal avalanche breakdown can occur at mean power levels far below the power that the transistor can dissipate at low values of collector voltage.

Curves of Safe Operating Area Ratings (SOAR) are therefore given for many output transistors, the worst case for breakdown being at d.c. and low frequencies. This is

Fig.3. Safe operating areas and maximum dissipation line for typical output transistor (2N 3791).

Fig.4. Resistive and reactive load-lines for class B output stage showing breakdown risk with pure reactive load.
because short pulses do not give the hotspots time to establish fully, and the consequence is that failure is more likely in low frequency operation. Audio-frequency amplifiers come within the worst area of operation so it is essential that output transistors are kept within the worst SOAR characteristic. Typical values are shown in Fig. 3. It will be seen that the maximum allowable d.c. dissipation at high collector voltages is far less than the normally quoted 'maximum dissipation". Fixed current-limit transistor protection will therefore be unable to protect adequately under reactive load conditions, where large currents may be drawn at the time when the collector voltage is a maximum.

Reactive load conditions

Under resistive load conditions in a class B stage conduction takes place when the transistor collector is above half the rail-to-rail voltage. Secondary breakdown is therefore extremely unlikely. Reactive loads however draw maximum current when the voltage across the transistor is a maximum and this is the worst case for secondary breakdown. Unfortunately all loudspeakers and most laboratory dummy loads are not resistive and therefore an amplifier may test safely on a
resistive load but blow-up on a loudspeaker. Anyone doubting the reactive properties of loudspeakers should consult Briggs' book on loudspeakers ${ }^{4}$ where some very alarming degrees of load reactance are shown with normal types of loudspeaker.

Fig. 4 shows the operation load lines for one half of a class B output stage under conditions of equal load impedance; in one case pure resistive and the other pure reactive. The conduction at high collector voltages is very apparent in the reactive load case and could obviously cause failure. For foolproof protection it is therefore essential to limit the operation of the output transistors to within the d.c. safe operating area, irrespective of the load impedance presented to the amplifier.

Load-line protection

Plain overcurrent limiting has shown to be inadequate at high values of collector voltage, so some method of reducing the limiting current value at high voltages must be used for complete protection. Ideally the limit to output current would be along the limiting line of the SOAR characteristic, but unfortunately this is normally non-linear. In practice, however, a straight line will enable sufficient output power to be developed; this limiting load-line is shown in Fig. 5. Provided that a circuit will limit the output transistor current to this load-line, then there is no possibility of transistor failure due to overload.

The simplest way of attaining such protection is' to use a transistor as a shunt across the drive to the output transistors. If the base of this transistor is fed with voltage signals proportional to both output transistor voltages and current, then the transistor will start to conduct at a point which follows a linear load line. A suitable circuit ${ }^{5}$ is shown in Fig. 6. The emitter-base conduction voltage of approximătely 0.6 volt (for a silicon transistor) determines the point where protection starts. The base of the protection transistor is driven nearer to conduction by either increased collector current or collector voltage of the output transistor. The current sensing is done by utilizing the voltage drop across the emitter resistor of the output transistor, this being proportional to the emitter current (and therefore approximately collector current) of the output transistor. By a suitable choice of component values the protection line can be arranged to be of any desired slope. To prevent the driver stage overdriving into the protection transistor, a current limiting resistor may be required in the feed to the base of the output transistor.

Practical protection circuits

It must be understood that no universal values can be given that will protect all amplifiers, owing to the widely differing voltage and current levels involved. It is possible however to calculate the ends of the limiting load-line as follows:-
$I_{\max }=\frac{0.6\left(R_{2}+R_{3}\right)}{R_{2} R_{e}}$
$V_{\max }=\frac{0.6\left(R_{2}+R_{3}\right) R_{1}}{R_{2} R_{3}}$
Assuming the value for R_{e} that is given for the amplifier design and using a value of 47 ohms for R_{3}, then the value of R_{2} can be evaluated knowing the maximum allowable d.c. collector current. Inserting the value of $V_{\max }$ then enables the value of R_{1} to be determined.

Often the SOAR ratings are not known, and then one has to resort to a certain degree of guesswork. To allow for driving into fairly reactive loads $I_{\max }$ must be greater than the peak current output into a resistive loadsay 50% greater. $I_{\max }$ is therefore approximately:
$I_{\max } \approx 2.25 \sqrt{\frac{\text { output power }}{\text { load resistance }}}$ amperes
e.g. 2.25 amperes with an amplifier rated for 16 watts output into 16 ohms load. Equally $V_{\max }$ can be allowed to be about 20% greater than the rail-to-rail h.t. voltage (e.g. 60 volts for a 50 -volt h.t. rail difference). These values appear to be quite safe in practice and no failures have been obtained.

In the circuit design described by the author ${ }^{2}$ this method of protection can be applied instead of the current limiting diodes originally specified. A suitable circuit is shown in Fig. 7. This operates very satisfactorily and is certainly safer than the original protection which has not always protected on gross overload.

Under conditions of full drive into shortcircuit or reactive loads the transistor dissipation will be high. The value will be greater

Fig.5. Use of linear limiting load line to give safe operation.

Fig.6. Linear load-line protection circuit using clamping transistor across input.

Fig.7. Practical protection circuit for trans-former-driven amplifier. Thick lines indicate added components.

Fig.8. Load-line protection for quasi-complementary output stage.

Thick lines indicate added protection circuits
than the maximum obtained with sine-wave drive into resistive load, so the heat-sink area must be adequate if continuous drive into short-circuits is envisaged. This dissipation will depend on the values of current and voltage limit used, but will normally be about 12 watts for each output transistor in a nominal 16 -watt amplifier. Heat-sink size is therefore dependent on the duration of any possible overload. For normal service there does not appear to be the need to cater for such sustained overloads, but laboratory amplifiers will obviously need this reserve.

All the tests conducted by the author have shown the protection to be absolutely safe, even though sparks can be drawn by shorting the amplifier output! The system will operate up to very high frequencies if planar transistors are used for clamping the drive. Equally very sharp spikes fed to the amplifier are limited safely without any breakthrough. The circuit therefore appears to afford the complete solution to output transistor protection.
For complementary and quasi-complementary output stages it is necessary to use complementary clamping transistors. These are readily obtained at reasonable cost and can be used to protect the driver transistors as well as the power transistors. A suitable circuit arrangement is shown in Fig. 8. This has been used very successfully by the author.

In conclusion the author would like to acknowledge the use of the facilities of the University of Bradford where much of the testing was done. Thanks are also due to Mr. Arthur Radford for his encouragement and his many transistors sacrificed in the search for an adequate system of protection.

References.

1. R. Osborne and P. Tharma "Transistor Highquality Amplifiers" Wireless World, June 1963 Vol. 69 No. 6. pp. 300-304.
2. A. R. Bailey "High-performance Transistor Amplifier" Wireless World, November 1966, Vol. 72 No. 11. pp.542-546.
3. M. J. Morant "Introduction to Semi-conductor Devices" (Harrap 1964) p. 92
4. G. A. Briggs "Loudspeakers" Fifth Edition, (Wharfedale Wireless Works) pp.78-85.
5. S. G. S. Fairchild Ltd., Design Note 16-20 Watt High-Fidelity Amplifier using Silicon Planar Transistors. June 1966.

Interference and Microwave Systems

The congestion of the frequency spectrum presents an ever increasing problem to the microwave transmission engineer because of the risks of interference. Such interference may be within a single system, or between differing systems and, in this respect, interference between terrestrial line-of-sight systems, and between terrestrial and satellite systems warrants particular attention because of the ever increasing need for communication capacity. For example, the current Intelsat satellites receive transmissions radiated by earth stations, in the $5925-6425-\mathrm{MHz}$ band, and re-radiate the transmissions in the $3700-4200-\mathrm{MHz}$ band. However both these bands are allocated on a shared basis to terrestrial services and are already extensively used throughout the world. This means that there is a considerable risk that terrestrial systems, in the $4-\mathrm{GHz}$ band, may (if their aerials are pointing towards the satellite) cause interference to the satellite. Similarly, earth stations radiating several kilowatts of power in the $6-\mathrm{GHz}$ band may well interfere with nearby $6-\mathrm{GHz}$ terrestrial systems. A conference was held in London at the I.E.E., on April 23rd and 24th, to discuss some of these problems.

In many cases it is possible to optimize aerial design in order to reduce interference, and the first session of the conference was devoted to these designs. A paper by Dr. M. S. Affif (Technological University of Delft) discussed the problems of scattering from microwave aerials, particularly in relation to a design employing a paraboloid and a plane reflector. Although the superior sidelobe performance of such "folded" types has been accepted for some time, the cost would probably be prohibitive when applied to a satellite earth station. G.F.S. Swann and M. Flack (G.P.O.) reported the results of measurements, made with the Goonhilly aerial, on two transmitters at 167 and 230
km distance. In each case the aerial was tracked over a square grid and locii of percentage of time, for which a specified signal level was exceeded, were plotted. There was marked evidence of reflections from a $1000-\mathrm{ft}$ television mast some 1.2° off the direct bearing.

Two papers by A. E. Baker (G.P.O.) discussed the problems of planning terrestrial radio relay systems so as to avoid interference from within, and outside, the system. Potential sources of interference within the system include the effects of local oscillator harmonics, feeder mismatches and image and adjacent channel crosstalk. Again, extensive re-use of the same frequency is aided by good aerial discrimination.
The Intelsat II and III satellites employ the multi-destination carrier principle, i.e. a transmitting station assembles a composite baseband, consisting of channels for a number of destinations; each of the distant stations receives this composite baseband and selects those channels that are destined for it. This arrangement presents a number of frequency planning problems, since it is often difficult to select a frequency which is acceptable to all those who have to receive it (because of the risk of local interference from other terrestrial systems sharing the same band). The procedure adopted for the Intelsat system was described by J. B. Potts and J. F. Arnaud, of COMSAT.
Interference between satellite systems is possible should two satellites lie within the beamwidth of the earth station aerial. This fact will ultimately place a limit on the number of satellites that can be usefully placed in the synchronous orbit, and this subject was discussed in a paper by J. K. S. Jowett, of the G.P.O. It was shown that from $2-4$ satellites could be placed in a 10° arc, of the synchronous orbit, and that these could carry some $10,000-20,000$ circuits.

A factor of considerable importance to the multichannel telephony systems engineer is the relation between wanted to unwanted r.f. carrier ratio, and the interference level produced in a telephone channel. This is frequently called the "interference reduction transfer factor", and an analysis of the factor for interference to, and from, wideband and narrowband f.m. and s.s.b. systems, was given by P. B. Johns (University of Nottingham).
A session was devoted to the siting of earth stations. In the U.S., for example, where there are some 5,000 and 2,500 terrestrial radio-relay systems already operating in the 4 and $6-\mathrm{GHz}$ bands respectively, co-ordination raises considerable problems. The difficulties of siting military stations, which may have to operate in close proximity to h.f. stations, radars and other navigational aids, were described by representatives of H.Q. Signals Command, R.A.F. A paper by D. E. Cridlan (G.P.O.) described the results of measurements on the spurious outputs of radar systems. Those employing magnetrons can be particularly troublesome as many of the unwanted products bear no harmonic relation to the fundamental frequency.

In general, it was apparent that microwave system planners are fully aware of the potential risks of interference, but one wonders whether some of the system designs have not, perhaps, too many built-in safety factors.

News of the Month

B.O.A.C. Flight Booking System

It would appear incredible an airline could consider that spending $£ 42 \mathrm{M}$ on an automated flight booking system was an economically viable undertaking. B.O.A.C. obviously do as it is costing them this to have BOADICEA (British Overseas Airways Digital Information Computer for Electronic Automation) installed. This computer complex will link all major B.O.A.C. flight reservation centres in North America and Europe with a central computer terminal at Heathrow Airport London.

Three I.B.M. computers in London will communicate over voice quality telephone lines with Ferranti Argus 400 computers at the main flight booking terminals. Each Argus, in turn, will drive a number of Ferranti c.r.t. display systems and provide the computing capacity necessary for the keyboards associated with these displays and for organizing the information into blocks for transmission to the central computer.

In use, a booking clerk interrogates the system using the keyboards, perhaps in answer to a customers enquiry for a flight between two points on a given day. Within three seconds the c.r.t. will show details of all suitable flights and the number and types of seat available. When the customer selects a particular flight the clerk types in other details together with any special requirements (diet, etc.,) the disc files of the central computer are updated and a flight booking confirmation is immediately sent off to the relevant display equipment. The computer operates in a "conversational mode" that is, it "asks" the clerk for the next piece of information; this greatly helps in any complicated multi-flight journey bookings.

At Heathrow "computer central", three I.B.M. computers are being installed with a comprehensive disc storage system of 1,400 million byte capacity (1 byte $=8$ bits). The disc stores will hold details of B.O.A.C. flight schedules for almost a year in advance together with a record of the number of seats booked on each flight and other relevant information.

Information is exchanged between computer central and the Argus satellite computers at the rate of 2,400 bauds, corresponding to 400 characters or about seven messages, a second; it is expected that this will be increased to 4,800 bauds later.

The difference between this and other
flight booking systems that have been built in the past can be summed up in two words, speed and flexibility. The main parameters of the system are set entirely by the software, modifications being performed by a programme alteration. This policy is reflected right through to the keyboard/display units. All that these store in the way of characters are sixteen lines of different length at 52 different angles, therefore any drawing, shape of character can be built up from these lines as a programme on the Argus 400.

The flexibility is illustrated in the method used for training booking clerks. Here an Argus 400, driving a number of displays, has been programmed as a teaching machine. Booking clerks are presented with a series of typical booking situations and are asked to go through the correct procedure. In the event of a mistake being made the clerk is informed of his error by the Argus which will not proceed with the programme until the error has been corrected.

Incidentally, B.O.A.C. intend to extend the use of the system to flight planning, cargo control and other day-to-day problems sometime in the future.

A Ferranti c.r.t. display unit which has been installed as part of the terminal equipment for Boadicea. The equipment consists of some 30 Ferranti Argus 400 computers and 700 c.r.t. display units.

Applying ''Bosworth'’ in

Semiconductors

Starting in September in Southampton is the first course to be run by a newly formed training organization called the Semiconductor Technology Centre. Operated jointly by Southampton University and Associated Semiconductor Manufacturers Ltd., this centre is an attempt to put into practice the recommendations of the Bosworth Report*' on getting graduate engineers and scientists into industry. The Report said the most pressing problem was to devise some kind of effective "matching" between the output of university and the input of industry, and this is what the new centre hopes to provide. No actual building has been put up for the purpose but the 16 -month M.Sc. course will use facilities provided by the University's Department of Electronics and by the Southampton factory of A.S.M. Ltd. (Joint directors of the project are Professor G. D. Sims, of the University, and Dr. E. A. O. Roberts, of A.S.M.) The industrial and university work done by the students will, however, be integrated at all stages: lectures will be given by people from both sides and the whole course will be under joint supervision. The organizers stress that it is not a sandwich course.

Financial support, to meet the capital and running costs of the scheme, is being provided by the Ministries of Technology and Labour, the Department of Education and Science (University Grants Committee and Science Research Council), the Engineering Industry Training Board, and the Conference of the Electronics Industry. Running expenditure will be recouped from the fees charged to students, which will be $£ 1,800$ per student ($£ 500$ at the University, $£ 1,300$ at A.S.M.). Most of the students will be graduates just about to be recruited into the semiconductor industry, and will be sponsored by the various firms who will be employing them. Technically, therefore, the fees will be paid by their employers (in addition to their salaries), but in practice the fees will be largely offset by a number of grants for which most students are expected to qualify (e.g., $£ 500$ from the S.R.C. to pay the University fee; a $£ 500$ Industrial Studentship grant and a $£ 540$ grant from the E.I.T.B.).
*Under the chairmanship of Mr. G. S. Bosworth a Working Group set up to examine the education and training requirements of industry issued two reports: an introductory one, "A review of the scope and problems of scientific and technological manpower policy", H.M.S.O. Oct. 1965, and "Education and training requirements for the electrical and mechanical manufacturing industries", H.M.S.O. 1966.

GAD-The Printed Transistor

Thick film circuits incorporating both passive and active thick film devices have become a distinct possibility. This fact emerged at the well attended joint I.E.R.E., I.E.E., conference on thick film technology held recently at Imperial College, London. In a paper prepared by G. A. Wilkin and R. J. Mytton of the International Research and Development Co. Ltd., and G. H. Elson of Rutherford College of Technology, work
being carried out at I.R.D. on thick film transistors was described.
In a similar project, being carried out at Texas Instruments, U.S.A., the acronym GAD (Graphic Active Device) was suggested as being suitable for transistors produced in this manner as the initials t.f.t. have already been reserved for thin film transistors. The aim of the I.R.D. project is to produce an insulated gate field effect transistor with a gain bandwith product of 10 MHz when operated in the enhancement mode.

The semiconductor material chosen for producing these devices must be capable of being formed into an organic based ink for screen printing on to a ceramic substrate. The screened layer, after firing, should yield a sintered polycrystalline layer with good semiconductor properties. Although the bulk material may possess such properties it does not follow that they will remain after the printing and firing process. At I.R.D. the substances being used are cadmium sulphide and associated chalcogenide materials.
Three approaches are being made to the problem of forming a suitable dielectric layer. The first of these entails printing a relatively thick dielectric layer using a normal ferro-electric ink. The second method consists of passing a mixture of silane and nitrogen over the semiconductor printed substrate at a temperature of $400^{\circ} \mathrm{C}$ forming a layer of silicate on the semiconductor surface. The third possibility is to form a layer of cadmium fluoride by treating the printed substrate with hydrofluoric acid.

The source and drain connections will probably be formed from a gold paste, the chief problem here being to form a short source-drain channel without any short circuits.

The material for the gate electrode is not critical the chief requirement being for accurate dimensions and close registration.

With the technology at its present state it would appear that devices having a transconductance of $0.5 \mathrm{~mA} / \mathrm{V}$ and a gain bandwidth
product of 1 MHz could be produced, further development being needed to bring all the variables in the process under control.

British Compact Computer Introduced

Dr. Jeremy Bray, Joint Parliamentary Secretary to the Ministry of Technology, opened the new Computer Technology factory on the industrial estate at Hemel Hempstead on May 1st. At the same time Computer Technology's first product, the computer Modular One, made its debut. Computer Technology was formed when a small group of computer engineers got together, under the leadership of I. M. Barron, and formed their own company. The project was supported financially in Britain by Technical Development Backers and on the Continent by European Enterprises Development; in addition there was also a number of private backers. It is surprising when the current trend is towards larger and larger computer firms that such a small organization managed to obtain this necessary backing in their attempt at going it alone. Executives of the Company say that because the computer industry relies on innovation rather than on research and that because a smaller company can have a faster response to new ideas they consider they have a definite advantage.

Modular One was designed for multiaccess operation and to be competitive with American compact computers. With its smallest store, 8 k bits, a central processor and a tele-typewriter it costs $£, 13,000$. It is built entirely using Motorola MECL 2 integrated circuits. In order to cut down costs multilayer printed boards have been avoided and double-sided boards with printed through holes have been employed. Also, by careful design the need for interboard back wiring has been reduced to a minimum and is carried out on more double-sided printed boards or by flexible printed wiring that

One of the more complex configurations of Modular One. The desk arrangement houses a processor and three $8 k$ store modules plus a high-speed tape reader. A high-speed tape punch and a second processor are at the rear.

results in reduced production costs and increased reliability.

Modular One has a store cycle time of 750 ns , an addition time of $1.5 \mu \mathrm{~s}$, it will multiply in 2 to $3 \mu \mathrm{~s}$ and divide in 3 to $4 \mu \mathrm{~s}$. Data is transferred at a rate of $22 \mathrm{M} \mathrm{bits} / \mathrm{sec}$ and an infinite number of programme interrupts can be accommodated. A sixteen bit word is used. Programmes are written in SYMBOL or FORTRAN and run under executive control with communication via the terminal. Any number of independent programmes can operate concurrently and the system changes context in 4μ s on interrupt.

Extra storage units, peripheral and central processors can be added as desired to expand the machine. Each unit is supplied complete with individual power supply and integral interface unit so that expansion may be carried out with the minimum of trouble.

Droitwich Frequency Stability

The signals from the B.B.C.'s 200 kHz transmitter at Droitwich have long been used as a reference frequency standard. Since 1965 the long-term stability has been within ± 5 parts in 10^{10} and with the use of automatic frequency correction the excursion from nominal has not exceeded 1 part in 10^{10}.

The frequency stability has again been improved by using a rubidium gas cell standard provided by the National Physical Laboratory. This has a day-to-day stability better than 1 part in 10^{11} and the frequency will be maintained within ± 2 parts in 10^{11} of nominal referred to the caesium beam standard at N.P.L.

The phase of the received signal is monitored at N.P.L. and the value of mean daily frequency is available on application to The Director, National Physical Laboratory, Teddington, Middlesex.

Yachtsman's Electronic Gadgets

One of the contenders in the third singlehanded transatlantic race which starts from Plymouth on June 1 is a 49-year-old electronics engineer, Noel Bevan, of Hartley Wintney, Hants. His boat Myth of Malham is equipped with a number of home-made electronic aids one of the most interesting being an audible warning device, that rings a bell if the boat goes off course. Such a thing is not new but to produce it as cheaply as Bevan has-using neither of the established principles, i.e., concentrating the earth's magnetic flux in a soft iron bar or using a compass controlled device-is noteworthy. He made the device, which he calls an offcourse indicator magnetic field sensor, for under $£ 10$ and it includes a unit which dedecides whether the swing off course is merely momentary before waking the skipper.

There is no engine aboard, and Noel Bevan has designed a device for charging his batteries by converting the heat from his pressurized paraffin heating stove to current, based on "back-to-front" connected Frigistors.

There are seven radio receivers in the

Home-made equipment that will assist Noel Bevan in his bid to win the transatlantic yacht race. Top, thermo-electric battery charger. Left-hand column starting at top; directional radar receiver, omni-directional radar receiver with alarm, broadcast receiver, v.l.f. receiver, d.f. receiver. Other items shown are; communications receiver, electronic thermometer (water temperature), frequency standard, anemometer, and offcourse indicator.
boat. One gives audible warning if a ship carrying radar comes within 10 miles and another gives a bearing on that ship. The radar warning receiver uses a horn aerial and employs a reflex type circuit; when a signal is received the horn doubles as a "loud-speaker", the audio transducer being mounted in its base.

Another low-frequency receiver is for the reception of naval and other station broadcasts on weather conditions.

For iceberg warning, he has underwater acoustic apparatus similar to the sonar "ping" acoustic set-up in submarine chasers, only looking forward instead of downward. There are two quartz crystal chronometers, one homemade. Wireless World hopes to be able to give constructional details of some of these devices sometime after the race.

New Zealand in Satellite Link New Zealand will probably decide next month to open a satellite communications link with the world. The Post Office in Wellington has recommended a start on a satellite ground station and ancillary equipment rather than a second Trans-Tasman undersea cable. Grounds for the decision are that there will be a slight economic advantage. Australian telecommunications engineers visited Wellington about two months ago and discussed with the N.Z. Post Office officials, who had earlier despatched two of their own engineers to Britain to study satellite systems, the possibility of a satellite link. Three years ago New Zealand became a member of Intelsat and undertook a commitment to pay about $\$$ A 640,000 over four
years into the "club" without any immediate benefit. The move, however, safeguarded national interests in future satellite transmissions, and rights can be exercised at any time. It could be three or four years before satellite transmissions can be commercially exploited in N.Z. The link envisaged will be primarily for burgeoning telephone and telegraph traffic, although it will have a capacity for television, including colour television. So far the N.Z. television system lacks even a network hookup between its four channels. It has to be decided between the Post Office and the Broadcasting Corporation who will be responsible for the necessary local landline or microwave links, which would relay any satellite-borne programmes.

Now its Plug-in to Expertise

We are all very familiar with the concept of building up complex systems with electronic building blocks, plugging in, or wiring in, modules to achieve our aims. The technique has spread into other fields; soon, if the educationalists have their way, we will be building up our knowledge by "reading in" clearly defined small blocks of knowledge and each budding specialist will receive his training from a selection of such standard educational modules. This became clear at a recent I.E.E.T.E. conference on modular education at Loughborough University of Technology.

Discussions at the first session ranged over the problems of the present course structure; was it satisfactory; is the present selection system good enough; how long should an educational module be and whether a single course structure could be provided for the wide spectrum of activity covered by technicians.

Later discussion hinged around the problems related to training engineers for particular branches of industry and as to whether a single formula could be produced, within the modular scheme, to cover all aspects of training, retraining and continuing training.

Two facts that emerged were that modular education had a vital part to play in the future and that educational establishments should concentrate on educating, and industry on training.

Missile Defence Contract

The British Aircraft Corporation have won a $f_{6} 150 \mathrm{M}$ contract that entails supplying a mobile and flexible air defence system to the government of Libya. The system consists of Thunderbird and Rapier anti-aircraft missiles controlled by dual-purpose radars which, together with a comprehensive telecommunications system, provide early warning and tactical control for missiles and fighter aircraft. Sub-contractors to B.A.C. are Marconi, Elliott Automation, and Plessey Radar. They will be responsible for the radar, communication and computer controlled display equipments. Ferranti are involved in the production of Thunderbird, and Decca Radar, Barr and Stroud, and Cossor have an interest in Rapier.

The Royal Television Society invites applications for the 1968/69 John Logie Baird Travelling Award. This award, value $£ 200$,
is open to post-graduate students (in United Kingdom educational establishments) who are concerned with some scientific aspect or aspects of electronic engineering, television or allied technology. It is expected that the award will be made to someone in the age group of 21-30 years of age. The Award is intended to assist the successful applicant in undertaking a period of investigation abroad of approximately $6-8$ weeks during 1968. During this period some aspect of electronic engineering, television or allied technology will be studied or surveyed. Application forms for the Award are available from the Royal Television Society at 166 Shaftesbury Avenue, London W.C.2. All applications must be submitted not later than 31st May.

The possibility of low-priced television receivers from Hong Kong competing in our already over-competitive market has now become a certainty. A company called Promotors Ltd., officially opened last November in Hong Kong, is now producing dual standard monochrome receivers with 9,19 and 23 inch screens under the brand name Peacock with a target output of 1,500 receivers per month. The Company intends to exploit the estimated $£ 1.5 \mathrm{M}$ Hong Kong home market and to export to other Asian countries before launching its assault on the American and U.K. markets. At the present time, in Hong Kong, the small nine-inch portable sells for $£ 38$ as against $£ 58$ for an equivalent Japanese model and the 23 -inch dual standard set costs $£ 68$ compared with $£ 82$ for the Japanese equivalent.
"Electronics in the 1970s" is the title of an I.O.R.E. convention to be held at Cambridge University between July 2nd and 5th. The convention will consist of a number of whole and half-day symposia devoted to: computers and automation, electronic engineering education, automatic test equipment, communications and future materials and components. In addition, survey papers will be presented on lasers, underwater acoustics, high-power ultrasonics and oceanography. Registration forms are obtainable from the Conference Registrar, $8 / 9$ Bedford Square, London W.C.1.

Users of Mullard educational films should note that a new distributor has been appoin-ted-Educational Systems Ltd, ESC House, Imperial Drive, North Harrow, Middlesex, and that several new titles are available. These are: Principles of Magnetism, Colour Television and Semi-conductor Physics-a five part film. Educational establishments undertaking computer projects will be interested to know that Mullard are offering ferrite core stacks with a capacity of 4 k words of 41 bits at reduced prices. The stores are surplus to requirements and are of obsolescent design, interested parties should contact Mr. N. F. Thompson, Mullard Ltd, New Road, Mitcham, Surrey.

In the article a Sensitive F.E.T. Voltmeter, by D. E. O'N. Waddington, published last month type TIS67 transistors were specified for $T r_{1}$ and $T r_{2}$ This was in error, the type that should be employed is TIS68. Also, note that the wiper of $S 1_{b}$ should be connected to Tr_{3} collector.

Personalities

Douglas C. Birkinshaw, M.B.E., M.A.(Hons.), F.I.E.E., who is retiring from the B.B.C. on June 7th, has been closely associated with British television since the B.B.C. launched the experimental transmissions using the Baird 30 -line system from a studio in Broadcasting House in August 1932 when he was in charge of the project. In preparation for the start of a regular television service, Mr. Birkinshaw joined the team responsible for planning the Alexandra Palace station. He was appointed engineer-in-charge in March 1936, and supervised the start of the service in November of that year. During the war he was engineer-incharge at Daventry. In 1945 Mr . Birkinshaw returned to Alexandra Palace as superintendent engineer, television, to supervise the engineering arrangements for the reopening of the television service in June 1946. He relinquished his activities in television in 1963 on his appointment as general assistant to the Director of Engineering.
G. T. Waters, B.E., M.I.E.E., is appointed director of engineering of Radio Telefis Eireann, the Irish broadcasting organization. After graduating from University College, Dublin, in mechanical and electrical engineering, he spent a short time in the Department of Posts and Telegraphs before joining Radio Eireann as transmitters engineer in 1957. In 1961 he transferred to the television

G. T. Waters

service and in 1965 became manager of the Television Production Planning and Control Department. He has been head of production facilities since last August.
J. M. Westhead, B.A., Ph.D., until recently general manager of the Distribution Equipment Division of A.E.I. Cables Ltd., has joined Pye Telecommunications Ltd. as general manager with a seat on the board. Dr. Westhead studied at Oxford University and in 1950 graduated with first class honours in physics. Two years later, while a University demonstrator in electronics, he gained his doctorate in nuclear physics. In 1956 he joined B.T.H. which became part of A.E.I. C. A. W. Harmer, O.B.E., who has been acting managing director of Pye Telecommunications (now part of the Philips organization) has retired. Mr. Harmer has been a director of several of the Pye companies for some years.
H. J. Jones, B.Sc., production manager of the Plessey Components Group's Semiconductor Division at Swindon for the past five years, has been appointed works manager of the division and is now responsible for its overall administrative functioning, as well as for production. Mr. Jones joined the company 23 years ago at its Allen Clark Research Centre at Caswell. A chemistry graduate of Hull and London Universities. Mr. Jones, who is 38 , is also a Fellow of the Chemical Society, and an Associate of the Royal Institute of Chemistry.
Eric Tyler, M.I.E.R.E., who began his industrial career with Decca in 1947 after demobilization from the Royal Navy and joined Plessey in 1965, has been appointed group commercial and marketing executive of Plessey Electronics Group. He became commercial manager of the Decca Navigator Company in 1948 and was at one time executive vice-president of Decca Radar in the United States. From 1961 to 1965 he was manager of the New Products Division of Decca Radar as well as international sales manager of the company.

Jack Dinsdale, B.A., M.I.E.E., well known to readers of Wireless

World for his amplifier designs, has joined the staff at the College of Aeronautics, Cranfield. He is a senior research engineer with the Industrial Unit in Precision Engineering and will be concerned with electronics, automation and data processing in relation to precision mechanical engineering. After graduating at Trinity College, Cambridge, in 1959 Mr . Dinsdale joined the Weapons Division of Elliott Brothers where he was latterly project leader in the Military Data Systems Division. Soon after joining Elliotts he did a year's postgraduate study on magnetic tape recording at the College of Aeronautics.
D. E. Todd, B.Sc., M.I.E.E., has succeeded J. Redmond as B.B.C. assistant director of engineering. (Mr. Redmond became director of engineering on the retirement of Sir Francis McLean.) Mr. Todd, who is 52, obtained his degree at London University and joined the B.B.C. in 1946 after eleven years on the development of high-power transmitters with Standard Telephones \& Cables Ltd. Since joining the B.B.C., he has been concerned with the planning and installation of the Corporation's network of television and

D. E. Todd
radio transmitters, and since 1965 has been head of the Transmitter Planning \& Installation Department.
W. Peter Dean, who went to the U.S.A. in 1959, has joined the Philco-Ford Corporation's Microelectronics Division as manager of the hybrid circuit department. Since being in America he has been with several semiconductor manufacturers and was, until joining PhilcoFord, product manager of hybrid integrated circuits with the National Semiconductor Corporation.

Waldo Thorn, M.I.E.E., has been appointed managing director of Celdis Ltd., Reading, Berks, in succession to Clifford G. Bailey, who is to devote himself fully to the activities of the parent company, Unitech Ltd. Mr. Thorn, aged 36, became general manager of International Rectifier Company (G.B.) in 1963 and a year later manager of International Rectifier Corporation

W. Thorn

Italiana SpA., Turin, Italy. He left International Rectifier in 1967 and returned to the U.K., and prior to joining Celdis, was responsible for setting up a new micro-joining equipment division in the $\mathrm{K} . \& \mathrm{~N}$. Electronics Group.

George W. Tillett, who contributes our bi-monthly "Letter from America", has been appointed executive vice-president of Audio Dynamics Corporation, New Milford, Connecticut. He joins Audio Dynamics from the Fisher Radio Corporation where he was director of engineering at their Pennsylvania plant. Prior to going to the U.S.A. he had been technical director of Wharfedale, and also chief engineer of Heathkit in Great Britain.

Arthur C. Edwards has retired from his post as commercial director of Eddystone Radio Ltd. A wellknown amateur transmitter (G6XT), Mr. Edwards, who is 62, has been with Eddystone since 1927. He has been commercial director since his return from service in the Fleet Air Arm during the second World War. Eddystone has been a subsidiary of the Marconi Company since 1965.
A. D. Horn, who joined the Radar Division of the Marconi Company in 1952, has been appointed commercial manager. In 1954 he transferred to the Export Department and spent four years in Iraq as a representative of the Company. Since 1963 he has been manager of the Commercial Sales Division. Mr. Horn, who is 44, served in the Radar Branch of the Royal Navy after which he spent five years with B.O.A.C. and International Aeradio before joining Marconi.

Cable and Wireless Ltd., have announced the secondment of E. P. Eades, F.I.E.E., to the International System Management Division of COMSAT in Washington, D.C. Mr. Eades, who is 52, has been with Cable and Wireless since 1933. He has served at many overseas stations, was appointed manager in Singapore in 1964 and since April 1965 has been special representative, Far East, based in Hong Kong.

Test Your Knowledge

Series devised by L. Ibbotson*

1. Transistor theory: bipolar and field-effect

1. A bipolar (junction) transistor when used as an amplifier has:
(a) both junctions forward biased
(b) both junctions reverse biased
(c) the emitter-base junction
forward biased and the base-collector junction reverse biased
(d) the emitter-base junction reverse biased and the base-collector junction forward biased.
2. In a bipolar transistor the amount of doping in the base is much less than in the emitter. This is:
(a) so that the base will have a high resistance
(b) to give the transistor a high breakdown voltage
(c) so that the current crossing the emitter junction will consist mainly of carriers injected into the base
(d) so that there will be plenty of minority carriers in the base.
3. To obtain efficient transistor action the base width must be small. This is:
(a) to keep the overall resistance of the device low
(b) to keep the overall dimensions of the device small
(c) so that most of the injected carriers will reach the collector without recombining
(d) to keep the input and output capacitances small.
4. Three of the following together determine the value of the current amplification factor of a transistor (α). Select the "odd man out".
(a) The fraction of the emitter current carried by carriers entering the base from the emitter.
(b) The fraction of injected carriers which reach the collector without recombining.
(c) The equilibrium density of minority carriers in the base.
(d) The number of carriers produced in the collector junction by the avalanche effect (impact ionization).
5. If the reverse bias voltage between the

[^1]collector and base of a transistor is increased in magnitude, the effective base width
(a) is unaffected
(b) increases
(c) decreases
(d) in some transistors increases, in others decreases.
6. In a drift transistor the base doping is graded, the number of impurity atoms per unit volume being greatest at the emitter junction and least at the collector junction. The purpose of this is:
(a) to give a low input capacitance
(b) to produce a "built-in" electric field which speeds the carriers through the base
(c) to make the maximum voltage which can be applied to the collector high
(d) to give a low bulk resistance to the base with a high injection efficiency.
7. Silicon planar transistors are made by diffusing impurities into the silicon. As a result of this method of construction, all silicon planar transistors
(a) must be n-p-n
(b) are drift transistors
(c) have uniform base doping
(d) are symmetrical (collector and emitter roles can be reversed).
8. In a p-n-p transistor carrying a steady emitter current the hole concentration in the base is increased above its equilibrium value. As a result of this, the electron concentration in the base
(a) increases
(b) remains constant
(c) decreases
(d) drops to zero.
9. In a junction field effect transistor in normal use the junction between gate and channel
(a) is unbiased
(b) is forward biased
(c) is reverse biased
(d) may be forward or reverse biased.
10. A junction f.e.t. has the gate correctly biased and a current flowing in the channel. The channel width
(c) is least half way between source and drain
(d) is least near the drain.
11. In a junction f.e.t. "pinch-off" occurs when:
(a) the gate-channel junction breaks down
(b) the number of carriers in the channel drops to zero
(c) the depletion layer extends completely across the channel at one point
(d) the depletion layer fills the whole channel.
12. In an insulated-gate f.e.t. (an m.o.s.t.) which is of the n-channel enhancement type the bulk material is:
(a) n-type silicon
(b) p-type silicon
(c) intrinsic silicon
(d) silicon oxide.
13. In an enhancement insulated-gate f.e.t. the "turn-on voltage" (or "offset voltage") is:
(a) the least drain voltage which must be applied before a current will flow
(b) the least gate voltage required to form a channel
(c) the gate voltage required to produce "pinch off"
(d) the gate voltage required to break down the gate insulation.
14. A depletion insulated-gate f.e.t. differs from an enhancement insulated-gate f.e.t. in that:
(a) in the depletion type a channel exists when the gate bias voltage is zero
(b) in the depletion type pinch-off does not occur
(c) in the depletion type a current can flow between gate and channel
(d) the enhancement type can only be made with an n-channel, the depletion type with a p-channel.
15. Insulated-gate f.e.ts are very easily destroyed when being handled, and when being connected into a circuit. This is because:
(a) they are mechanically very frail
(b) they are easily damaged by heat
(c) the wires are joined to the device in such a way that they break off very easily
(d) a small charge accumulating on the gate electrode can produce an electric field large enough to destroy the insulating layer.
16. The main advantage of f.e.ts over bipolar transistors is that
(a) they have a better high frequency performance
(b) they have a very high input impedance
(c) they are less sensitive to temperature changes
(d) they are more reliable.
(a) is uniform
(b) is least near the source

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Audio Myths, Maths \& Measurements

With respect to your editorial in the April issue, the following observations may be of interest. A worthwhile subjective improvement was made to a Tobey-Dinsdale amplifier by the use of selected special OC 28 s with an $h_{\mathrm{FE}} \approx 90$ in place of the original AD149s. Tests were then made to ascertain if any instrumental measurement could correlate with this improvement, and it was found that the response was maintained to 70 kHz within trace thickness with the selected transistors and to only 50 kHz with the originals. Square-wave performance at 25 kHz was similarly improved.

It is of interest to note that the preamplifier had the customary 20 kHz roll off and that the improvement between the two amplifiers was confirmed by listeners whose hearing cut off as low as 12 kHz and also with programme material cutting off at 5 kHz .

Miss Barbara Hayes (of C.B.S. records) suggested that the perfect amplifier would have infinite bandwidth and hence any improvement giving increased bandwidth was a step towards the ideal.

It may only be concluded that a bandwidth far beyond the audio passband is of subjective value in improving the naturalness of the sound of musical instruments, and the clearness with which they may be heard.
IVor Abelson,
Fidelity Radio Ltd.,
London, W.11.
As Mr. Abelson refers to the Tobey-Dinsdale amplifier we asked Mr. Dinsdale for his comments. He replied:-

I was interested to read Mr. Abelson's letter, which in many ways confirms my own observations.

First, I have always preferred the 'sound' of OC29s in my own power amplifier, as giving a subjective audible improvement over the more commonly used OC35s and AD140s. I have also been impressed with the RCA drift-field transistors type 2 N 2147 , the excellent high-frequency response of which gives a noticeable 'cleanness of sound' to my design, although a few minor alterations to certain component values are necessary for optimum results with these devices.

I would therefore agree that a bandwidth
beyond the audio passband appears to give more natural sound to music. However I believe that this is mainly due to the fact that the higher open loop gain at the upper audio frequencies makes for less distortion. Although the power content of music at frequencies above 5 kHz is only a few per cent of the total, the human ear seems to be very sensitive to harmonic distortion at these high frequencies. This applies especially to crossover distortion, which incidentally the use of high-frequency output transistors helps to minimize.

With regard to amplifiers of infinite bandwidth, I agree that in the ideal situation amplifiers should have an infinite bandwidth and no controls whatsoever (not even volume). However, in our imperfect world, where electro-mechanical transducers have resonances at the upper end of the spectrum, and where motors rumble at the lower end, some form of limit is desirable. Furthermore, when imperfections in the original programme material, in the recording itself, and in the playback conditions are considered, some method of curtailing the frequency response is not only desirable but essential. It is an interesting thought that if the 'ideal' system response extended to d.c., then the displacement of the pickup element as it is lowered onto the groove would be accompanied by a corresponding linear displacement of the loudspeaker speech coil away from its equilibrium position.

No, Sir, by all means let us have wider bandwidths in the power amplifier to minimize high-frequency distortion, but let us maintain in the pre-amplifier (where distortion is negligible) a realistic control over the frequency bandwidth to compensate for the imperfect conditions in which we live and listen.
Jack Dinsdale
Farnborough, Hants.

'Doctoring' Recorded Sound

The item under this heading in the March issue made absorbing reading for all technically interested record users. I recognize that in a short article it is impossible to deal with all the technical tricks adopted by professional recording engineers-even if one could penetrate the secrecy barrier still prevalent in many studios-but I think the omission of
any reference to the important Dolby A. 301 Signal/Noise "Stretching" System cannot go unmentioned, as the EMT "NoisEx" system is referred to.
Dr. Ray Dolby's audio noise reduction system is now employed extensively in the Decca studios, London, and by many European and U.S.A. recording, broadcasting and film companies for master recording, dubbing, transfer to discs, etc. This elegant system-with its overall 10 dB reduction of noise, hiss, etc., in the mid-range, rising to 15 dB at 15 kHz -results in a much cleaner, more transparent recording, with unaltered frequency response and signal dynamics, as listeners to many recent Decca operatic and orchestral LPs will testify. Details of the technique have appeared in the BKSTS Fournal, Audio Engineering Society fournal, and elsewhere.*
Skilful" "doctoring" has been very successfully employed recently by the big recording companies in transferring historic 78 r.p.m. discs to composite LPs, and I have found that practical suggestions for the best pickups, styli sizes, filtering circuits, have a tremendous fascination today for collectors of old-style discs. But the major companies are loath to publish any technical information on methods!
Donald aldous
Audio Record Review,
London, W.C.2.
*See W.W. Dec. 1966, p. 632.--ED.

Dry-joint Locator

Now that printed circuits are so commonly used in all fields of electronics, the 'dry joint' fault is even more prevalent than before. This is mainly due to the fact that printed circuits are usually soldered by the solder-bath technique, and unless the print, the component leads, and the solder temperature and cleanness are perfect, invisible dry joints occur.

Field service technicians often find it easier to locate dry joints by checking the continuity of joints and print after the approximate location of the fault has been determined. This is bearing in mind that, apart from transistors, components have a very low defect rate nowadays.

It was therefore necessary to build a continuity measuring device with the following specification:-

1) Low voltage on the test points (to protect in-circuit transistors)
2) High current (to persuade possible dry joints)
3) No set zero
4) Portable
5) Inexpensive

In the accompanying circuit a simple voltage regulator, a resistive bridge, and a $100-0$ $100 \mu \mathrm{~A}$ meter are used. The whole circuit draws app. 250 mA from a 1.5 V cell. In the prototype, the bridge supply remains stable with the cell down to 0.9 V .

The bridge balances with 1Ω on the test points A \& B With a short circuit on $A \& B$, R_{1} (app. 0.5Ω) was selected to give + f.s.d. on the meter. With A \& B open circuit, due to a slight rise in the bridge supply voltage, a

shunt of app. 4Ω was fitted between $A \& B$ to obtain a -f.s.d. The voltage and current at $A \& B$ are app. 0.2 V and 100 mA .

The exact values of all the components are not marked on this circuit because they depend on the transistor and Zener diode used.

This circuit has shown many would-be dry joints by indicating fluctuations up to 1 or 2Ω thus indicating them before they give trouble.
D. GOodman,

Tel-Aviv, Israel.

How important is detection?

Dr. R. C. V. Macario compares the diode detector with other systems and is critical of the performance of the diode. His diode detectors in Figs. 2 and 3 do, of course, fail to follow the modulation envelope at high modulation depths and high modulation frequencies. This, as he says, is due to the choice of the capacitor across the load resistor. This capacitor is not essential. Without it the detector output is áverage instead of peak, resulting in a slight loss of audio output but completely eliminating the envelope following problem.
Dr. Macario gives a formula for the optimum value of this capacitor. It shows that the detector time constant should be about $7 \mu \mathrm{sec}$ for an audio frequency of 1 kHz . His detector has a time constant of $75 \mu \mathrm{sec}$ in Fig. 3 and $27 \mu \mathrm{sec}$ in Fig. 2. Why so large when $7 \mu \mathrm{sec}$ is about optimum?

The mathematics is difficult to follow because the symbols are not clearly explained.* This is not important because the mathematics is not relevant when comparing the homodyne and the linear diode. Both are zero crossing detectors and the mathematics of one applies exactly to the other. The only practical difference which does not show in the mathematics is that the diode needs several volts to make it linear and will distort on small signals whereas the homodyne will distort on large signals, because the diodes in the shunt detector will be driven into conduction by the signal. Thus the maximum linear signal handling will be determined by the size of the square wave driving the diode bridge as stated at the top of page 56 , not by R_{1} and R_{2} as stated in the caption to Fig. 8.

The comment (page 56) that a.g.c. is made more accurate is not clear. There is approximately a $20: 1$ loss of. signal due to the $4.7 \mathrm{k} \Omega$ and $2.2 \mathrm{k} \Omega$ resistors and the 600Ω filter. Combined with half-wave rectification this gives an a.g.c. of about 2.5 mV for the nominal carrier voltage of 100 mV and, of course, less for a smaller signal. This is far too small to work the a.g.c. directly and so a high-gain,

[^2]high-stability d.c. amplifier will be needed in the a.g.c. loop, a further complication. This small signal is partly a result of the use of a shunt modulator. A larger output could be obtained from a two transformer balanced modulator.

The main criticism of the article is that the analysis and waveforms in Fig. 7 show that the behaviour of the homodyne circuit of Fig. 8 is exactly the same as a half-wave rectifier and that it should suffer from distortion during selective fading exactly as would any other envelope detector, e.g. a linear diode detector. To test this I constructed the circuit of Fig. 8 and tested it during simulated selective fading. To simulate fading, a very narrow rejection filter was placed between the signal generator and the detector. The filter was slowly tuned through the signal causing phase shift and then rejection of each component in turn. The second oscilloscope beam was used to show the envelope or diode detector output.

As was expected the homodyne output was exactly the same as the diode output. Both suffered the same severe distortion, both showed modulation frequency doubling when the carrier dropped out.

Can Dr. Macario explain why his homodyne circuit gave "an extra sharpness and greater degree of intelligibility" and why he claims that there is "more faithful following of the signal during carrier fade" when analysis and my experiments indicate that there is no difference?

M. D. SAMAIN

University of Salford, Lancs.

I feel that Dr. Macario may be interested in my own analysis of the operation of the homodyne demodulator. This, I think shows more exactly the similarity between the homodyne and the envelope detector, and leaves me with some doubt as to the credence to be placed on the results of the listening tests.

The basis of my analysis is that the zero crossing signal derived in the homodyne is the carrier on which the received envelope information can be considered to be modulated. The zero crossing signal can therefore be represented as $\frac{e_{a}(t)}{E(t)}$ where $e_{\alpha}(t)$ is the received signal and $E(t)$ is the resultant of envelope detection. The output of the homodyne, after the product detector, is thus given by. $\frac{e_{\alpha}(t)^{2}}{E(t)}$ which can be evaluated using the product form for $e_{o}(t)$:

$$
\begin{gathered}
\mathrm{e}_{a}(t)=a \cos \left(\omega_{c} t+\phi_{c}\right) \\
1+\frac{m_{u}}{2} \cos \left(\omega_{m} t+\phi_{u}-\phi_{c}\right)+\frac{m_{l}}{2} \\
\cos \left(\omega_{m} t-\phi_{l}+\phi_{c}\right)-a \sin \left(\omega_{c} t+\phi_{c}\right) \\
\frac{m_{u}}{2} \sin \left(\omega_{m} t+\phi_{u}-\phi_{d}\right)-\frac{m_{l}}{2} \\
\sin \left(\omega_{m} t-\phi_{l}+\phi_{c}\right)
\end{gathered}
$$

This is seen to be $E(t)$, as given by Dr. Macario, in the section of his article dealing with envelope detection, and there are no additional terms which might be attributable
to the term ψ which was invoked in his analysis of the homodyne's action.

My own view is that there may have been some other mechanism involved in the listening tests. This would seem to involve an oscillatory condition in the zero crossing detector, caused by feedback of the out-of-balance component in the diode bridge circuit. Isolation of this component from the input to the zero crossing detector is dependent on the source impedance, and in the arrangement shown in Fig. 8 of the article would be about 40 dB . Assuming, in the listening tests, a direct connection to an i.f. transformer, it can be seen that this isolation is drastically reduced, and in this instance a tuned circuit is also included. This reduction of the stability margin need not be sufficient for a completely self maintaining oscillatory circuit to be established; as indicated by G. Wareham in his comments in the May issue, this does not seem to be a necessary condition for the operation of the circuit to be modified.

It would seem, therefore, that further evidence is required to support Dr. Macario's claims for the operation of the homodyne under selective fading conditions. This evidence should be objective, and it should be supported by a more convincing theoretical treatment than that originally presented. Without this, I, for one, will remain unconvinced of the homodyne's value in broadcast reception, except where the highest possible standards of reproduction are considered to be essential.
E. A. Harman

Bolton, Lancs.

The author replies:

A good description of the operation of amplitude detectors is given by W. R. Bennett in the book, 'Communication Systems and Techniques' (McGraw-Hill 1966). In the envelope detector in order that the diode can build up the proper reverse bias on the capacitance C the source impedance should be low whilst the load impedance R_{L} should be such that C is a short circuit to r.f. signals, but open circuit to a.f. Since the choice of C can at best only be pitched between the conditions

$$
\frac{1}{\omega_{c} C} \ll R_{L} \quad \frac{1}{\omega_{n} C} \gg R_{L}
$$

it seemed reasonable to suggest the reactance of C is equal to R_{L} at the geometric mean frequency $\sqrt{\omega_{m} \omega_{c}}$, leading to the formula given in the article. It does appear however that some discrepancy has arisen over the values shown in the circuits.

On the other hand the difficulty with the straightforward diode rectifier, as Mr . Samain admits, is the volt or two to make it appear linear as well as the low source impedance just mentioned. In contrast the zero-crossing circuit as described works from a high input impedance and a low voltage swing. (The dotted circuits in my Fig. 8 were for measuring purposes only and one would normally allow much of the $4.7-\mathrm{k} \Omega$ resistor to appear as source impedance.) As a result it becomes much easier to organize a.g.c. in the previous stages and keep them linear since the voltage swing is low, and the impedance is high.

The question of overload of the diodes in
the actual circuit was mentioned in the article. Why the linearity of the detector depends on R_{1} and R_{2} is because at large signal inputs the $\mu \mathrm{L} 900$ amplifier limits onesidedly, whilst at low signal levels the $\mu \mathrm{A} 710$ switches late in one direction. In both instances the zero-crossing signal mark/space ratio changes and so the diodes are not on (or off) for as long. Since R_{1} and R_{2} fix the circuit gain, the two limits mentioned can be moved up or down accordingly.

Regarding the main contention concerning the similarity of the envelope, linear and homodyne detector, it is well known that the linear diode and homodyne detector are exactly equivalent ${ }^{1}$ (at reasonable signal-to-noise ratios), because, as mentioned, the signal reinforcement makes the diode(s) appear linear. It is not true to say, however, that the envelope detector is equivalent to a linear detector when transmission impairment exists. The reason is that the linear detector takes note of both the instantaneous signal frequency and the magnitude (envelope). The instantaneous signal frequency, when phase distortion exists, is phase modulated by the term $\psi(t)$. This term is discussed in Professor Cherry's book ${ }^{2}$ which I referred to, and whose symbolism I adhered to closely.

The actual carrier deviation due to $\psi(t)$ is quite small though, and is difficult to observe on an oscilloscope. Using, for example, the figure of $\pm 25^{\circ}$ given in Fig. 5 of the article, one can work out the frequency deviation using an analogous f.m. signal equation,
$e(t)=\cos \left(\omega_{c} t+\beta \cos \omega_{m t}\right)$
where $\beta=\Delta f / f_{m}$. Using the value of 25° makes $\quad \vec{f}=0.43$, and with $f_{m}=1 \mathrm{kHz}$, gives $\Delta f=430 \mathrm{~Hz}$, i.e. 0.1% deviation. What is perhaps more interesting about the small deviation of 430 Hz , at 470 kHz , is that to phase detect this information the discriminator requires as demanding performance as does a carrier selection filter, and so was not discussed further at the time. Nevertheless, as shown in Fig. 1, a difference between

Fig. 1. Relative output for envelope and zerocrossing detector for a 50% modulated a.m. signal when the phase of the upper sideband is advanced by 90° relative to the carrier and the lower sideband.
$E_{v}(t)$ (envelope) and $E_{z}(t)$ (zero-crossing). according to calculation, for the case when one sideband is rotated 90° relative to the other two components, exists. Similar differences also occur in other cases of distortion. Referring to the example given in Fig. 1, however, shows that the apparent depth of modulation (to the listener), which should be 50%, is only 35% in the case of E_{v}, but is 45% in the case of E_{z}. Such analysis only applies, of course, provided overmodulation does not occur. The equations given in the article do not take into account the discontinuity if the phase of the signal reverses,
as it can at the onset of overmodulation. The main interest was phase distortion which is something synchronous reception is unable to correct. In fact, calculation of the synchrodyne response E_{s} corresponding to Fig. 1 almost coincides with E_{v} and $m_{\text {apparent }}=30 \%$.

I feel it is the concern with overmodulation which has caused much of the difficulty. This may well be due to my unfortunate use of the word 'carrier' instead of 'signal' in the last sentence of the article. As far as the detector is concerned, the all important thing is that the 'carrier' continues to switch the diodes. I should add that when the article was submitted, it included a section headed 'conclusions', but this was subsequently used by the Editor as an introduction; if this 'summary' is read at the end, then some of the difficulties are eased.

I am entirely sympathetic to Mr. Harman's last paragraph. I have spent some time looking for reports with objective evaluations of the homodyne system, but it is perhaps worth drawing attention to a review paper on broadcast receivers ${ }^{3}$ where a number of receiver systems were compared. To quote, '. . . all receivers . . . had approximately the same audio response range. The only noticeable difference was that the quality of the homodyne receiver was superior to that of the others'.

R. C. V. Macario

1. 'Telecommunications', J. Brown and E. V. Glazier, Chapman and Hall, 1964.
2. 'Pulses and Transients in Communication Circuits', C. Cherry, Chapman and Hall, 1949. 3. 'Broadcast Receivers: A Review', N. M. Rust, O. E. Keall, J. F. Ramsey and K. R. Sturley, f.I.E.E., 88 Pt III, 1941, p. 59.

Component Supplies

Your reader's letter in the April issue (p.83) regarding the supply of experimental parts highlights an attitude of mind prevalant in this country and is typified by my recent experience.

I recently purchased an expensive piece of domestic electronic equipment containing transistors from a number of manufacturers. In order to trace a replacement supply of transistors, I wrote to each in turn requesting information and prices.

Of the three firms contacted to date the British transistor firm, a subsidiary of the one from whom I purchased the equipment, ignored my letter. The firm controlled from the Continent sent all the information but ignored a request for prices, probably assuming that I would eventually find a retail supplier. The firm controlled from the States sent me the prices, information and subsequently the spares requested.
J. F. Cannell,

Mudeford, Hants.

Shortage of Technologists

I was very surprised on reading your February editorial that there is a shortage of scientists and technologists in the electronics industry.

In view of the fact that I have in the past year, applied for six posts with electronics companies and have not been offered a posi-
tion, I am led to believe that there must be a surfeit of applicants. Now, since it appears that my services will not be required by electronics firms, I have decided to embark upon an alternative career as a lecturer.
I wonder how many other well-qualified applicants receive this sort of treatment and decide to give it up as a bad job.
D. G. Page

Sheffield.

Portable Frequency Standard

As a final comment regarding Mr. NelsonJones' "Frequency Standard" may I make the following two points:
(a) Limiting is not a particularly useful method for the removal of amplitude modulation as earlier shown; a quartz resonator should be used in such a way as to allow its intrinsic stability to dominate the application; a "frequency standard" is normally regarded as a monotonic source with a spectral bandwidth less than that obtained by, say, an $L C$ oscillator (capable of 1 p.p.m. stability over a period of one second with sound engineering design).
(b) A single quartz resonator at a nominal resonant frequency of 200 kHz and with a (typical) Q of 20,000 has a bandwidth of $\pm 5 \mathrm{~Hz}$, and hence is effective when used to eliminate modulation sidebands of the nature found on the Droitwich transmissions; this use takes advantage of the intrinsic stability of the component. The signal obtained in this way, when used as the controlling source in a phase-locked loop containing an oscillator (which need not be one which is stabilized by a quartz resonator) would provide an output signal with a stability at least two orders of magnitude better than the output from the Nelson-Jones device.

The result, for the same price, is a much better performance: This is the essence of my complaint.

Concluding, it should be said that at least three manufacturers, in fact, use the techniques I have outlined to provide an "off-theair frequency standard"; I, therefore, cannot lay claim to any particular originality in my analyses.
Lewis E. Schnurr
Mid-Essex Technical College, Chelmsford.

London Meetings

May 22nd. I.E.R.E.-"An adaptive self-phasing array and some applications to radio communication systems" by R. H. Apperley, Dr. D. E. N. Davies and M. J. Withers at 18.00 at 9 Bedford Sq., W.C.1.
May 29th. I.E.R.E. \& R.T.S.-"The E.M.I. colour television camera" at 18.00 at London School of Hygiene and Tropical Medicine, Keppel St., W.C.1.
May 29th. I.E.R.E.-_"Identifying system dynamics by test signals" by N. Ream at 18.00 at 9 Bedford Sq., W.C.1.

June 14th. I.P.P.S.--Symposium on the various physical aspects of cavitation at 14.15 , the Physics Dept., Imperial College, S.W.7.

Decade Frequency Standard

Essential information on a low-cost instrument providing square wave outputs at $100 \mathrm{kHz}, 10 \mathrm{kHz}, 1 \mathrm{kHz}, 100 \mathrm{~Hz}$ and 10 Hz

by Knod-V Weisberg

When making measurements on a.f. amplifiers and the like it is extremely useful to have at hand some reliable means of calibrating oscillators, providing oscilloscope marker pips etc. The instrument to be described fulfils this need at relatively low cost with the minimum of components and provides a useful source of square waves for amplifier testing as a bonus.

The generator consists of a 100 kHz crystal oscillator synchronizing four emitter coupled multivibrators each adjusted to divide by a factor of ten. An output amplifier can be connected to any frequency divider or the crystal oscillator by means of a switch thereby enabling any frequency available in the unit to be selected for use. The performance of the instrument is shown in the specification table.

Circuit details

The crystal oscillator (Fig. 1) consists of an emitter-coupled multivibrator with the crystal as the timing element. This has the advantage over some other forms of crystal oscillator in that the positive feedback loop is isolated from the load. The bandwidth of the feedback loop is limited by the 220 pF collector decoupling capacitor.
The four frequency divider multivibrators employed (Fig. 2) are all of conventional design and each employs the same circuit, only differing in the values of C_{1} and C_{2}. The natural frequency of the multivibrators is some 5% lower than that of the synchro-
nizing pulses fed to them, the half period ratios in the region of $47: 53 \%$. The synchronizing input signal is arranged to be some 20% of the emitter swing. The output amplifier (Fig. 3) is of conventional design and provides output pulses almost equal to the supply rail voltage.

Construction

The prototype generator was built on two 4 $\times 6$ inch printed boards, the power supply and oscillator being on one of these and the divider chain and output amplifier on the other. The layout of the components is non-critical; however, the emitter connection of the output transistor should be grounded at the output connector and not to the circuit board because of the high current in this transistor.
Point A on the first multivibrator is connected to the output of the crystal oscillator and to the 100 kHz position of $S_{1} ;$ point B on each multivibrator is connected to point A on the next multivibrator in the chain and also to S_{1}.

Calibration

This entails setting each multivibrator to the correct division ratio by adjusting the variable $4.7 \mathrm{k} \Omega$ resistor in each multivibrator while monitoring the output on an oscilloscope. The first step is to check the crystal output against a known accurate frequency

Fig. 1. The pozver supply and crystal oscillator circuit. Point A on the drazoing is connected to the input of the first frequency divider.

Hybrid Cascode Amplification

High voltage gain from transistor-valve circuit: Application to power supply stabilization

by B. Alvsten and L. Bergsten

Fig. 2. Hybrid cascode stage.

Symbols used in Text

A_{h}	Amplification of the cascode stage.
$g_{m l}$	Mutual conductance of valve V_{1}
$g_{m t}$	Mutual conductance of transistor $\operatorname{Tr}_{\text {, }}$
$g_{m h}$	Mutual conductance of V_{1} combined with Tr_{1}.
$h_{i e}, h_{r e}$ hfe, $h_{\text {oe }}$	Hybrid parameters of Tr_{1}.
Ic	Collector current of Tr_{1}.
$i b$	Base signal current of $T r_{1}$.
ic	Collector signal current of Tr_{1}.
R	Anode load of V_{2}.
R^{\prime}	Bypass resistance.
r_{0}	Collector impedance of $T r_{1}$.
$r_{\text {in }}$	Cathode impedance of V_{2} corresponding to emitter impedance of Tr_{2}.
r_{a}	Anode impedance of V_{1}.
$v g$	Input signal.
z_{k}	Output impedance of V_{1} as cathode follower.

Among the advantages of a cascode stage is its high gain. A conventional double-triode cascode stage, modified according to Attree ${ }^{1}$, is shown in Fig. 1. The approximate gain of the stage is often stated to be proportional to the mutual conductance of the lower valve and the load R, but this only holds within a certain range of circuit components as will be shown. (For a list of symbols used in the text see table.)

With the values of components given in Fig. 1, the anode current of V_{1} is $2-3 \mathrm{~mA}$, its mutual conductance $1 \mathrm{~mA} / \mathrm{V}$, and its internal resistance r_{a} is about $50 \mathrm{k} \Omega$. The input impedance at the cathode end of V_{2}, which is a function of the valve parameters and the load resistance R, is here about $12 \mathrm{k} \Omega$. A rough calculation shows that $\frac{3}{4}$ of the signal current from V_{1} is usefully working on R, the rest being lost through r_{a} and R^{\prime}. The amplification of the cascode stage is about 360 as compared to 470 under the idealized assumption that it should be equal to $g_{m l} \times R$. If anode current of V_{1} is raised to 10 mA by a reduction of R^{\prime} to $10 \mathrm{k} \Omega$, the mutual conductance of the valve rises to 5 mA , and r_{a} is lowered to about $10 \mathrm{k} \Omega$. Now less than $\frac{1}{3}$ of the signal current usefully enters through R, and in spite of the much larger mutual conductance, the amplification will be only doubled to about 700. To get a higher figure it is necessary to raise the value of R. But this increases the input impedance of V_{2}, which means that still more of the signal current is lost in r_{a} and R^{\prime}. By circuit adjustments like these, one can achieve an amplification of about 1,500 in practical cases, but not much more. One negative effect of an increased value of R will be a smaller bandwidth. On the other hand, by the addition of a single transistor, which replaces valve V_{1}, the amplification is easily made one order of magnitude greater, while still keeping R relatively small, and by the addition of one further transistor, added to give a "triplecascode" stage, an amplification of 100,000 times becomes within reach. This is possible because the mutual conductance of a transistor is easily made say 50 times greater than that of a valve.

The new stage is shown in Fig. 2, with the transistor fed from a cathode follower. The measured mutual conductance of a transistor BC 107 as a function of the collector current is shown in Fig. 3, the upper curve, and in the same diagram the
smaller mutual conductance of the combination transistor cathode-follower is also shown. Current through the cathode-follower is 1 mA . A collector current of 2 mA for the transistor, with $R^{\prime}=100 \mathrm{k} \Omega$, gives a combined mutual conductance of $50 \mathrm{~mA} / \mathrm{V}$ resulting in a correspondingly large collector signal current in the transistor. But, as we have already seen, the impedance relationships in the stage are important too. Therefore, the output impedance of the transistor is also plotted as a function of collector current in the same figure, Fig. 3. It is about $45 \mathrm{k} \Omega$ at 2 mA , and is a somewhat smaller figure than the corresponding figure

Fig. 3. Showing transistor output impedance r_{0} and mutual conductance $g_{\text {mir }}$ also the mutual conductance of a transistor and valve combination $g_{m k}$ as functions of collector current.

Fig. 4. The two lower curves show the amplification of the hybrid stage $V_{1}, T r_{1}$ and V_{2} with two values of R, and the upper curve the amplification of the hybrid stage with the impedance changer Tr_{2} included.

Fig. 5. Circuit diagram of the amplification stage with $T r_{2}$ as an impedance changer, cathode follower omitted.
for \vec{V}_{1} of Fig. 1. The hybrid cascode stage as shown in Fig. 2 has a voltage amplification of 12,000 , i.e. one order of magnitude greater than the valve cascode. There is practically no change in frequency response, since this depends in the first place on the anode circuit of V_{2}. Let us now look at the possibilities of still higher amplification by adjustments or refinements of the hybrid stage. The important parameters are still the load resistance R and the mutual conductance of the lower active device, here $T r_{1}$ and V_{1} taken together.

The two lower traces in Fig. 4 show the change in voltage amplification by the variation of collector current for two values of $R: 330 \mathrm{k} \Omega$ and $680 \mathrm{~K} \Omega$. Nothing is gained by a collector current greater than 4 mA , and the reason for this is the reduction of the transistor output impedance and the external resistance R^{\prime}, whereby an increasing amount of signal current passes through these resistances and is lost as useful current through R.

If a second transistor is inserted as an impedance changer, Tr_{2} of Fig. 5, the high mutual conductance of $T r_{1}$ at higher collector currents can, however, be used to advantage in spite of the accompanying low output impedance. $T r_{2}$ has a sufficiently low input impedance to give roughly short-circuit conditions to $T r_{1}$, and it has, since it is driven by a current source on the emitter side, a high output impedance, of the order of $1 \mathrm{M} \Omega$. Totally, only a small proportion of the signal current is now lost, so that the voltage amplification is again to a good approximation equal to R multiplied by the mutual conductance $g_{m h}$ of Fig. 3. This has been confirmed by measurements, the results of which are given as the top curve of Fig. 4. The curve agrees in growth fairly well with the curve for $g_{m h}$ of Fig. 3. The amplification was measured for $R=680 \mathrm{k} \Omega$.

These results have been applied to a small power supply. The power supply was originally built with an ordinary cascode stage. Relevant parts of the circuit are shown in Fig. 6. The modified power supply is shown in detail in Fig. 7. It is seen that the valve V_{1} of Fig. 6 has been replaced by
the transistor $T r_{1}$, and it has been changed to a cathode-follower preceding the transistor. Thereby the voltage-setting potentiometer remains unloaded. It should be emphasized that in the voltage stabilizer of Fig. 7 the high amplification of the hybrid cascode stage is not utilized to full advantage. There is still a considerable percentage change in output voltage for changes in supply voltage, and also for changes in load resistance, and for the same reason in both cases, namely a change in the grid-to-cathode potential of V_{1} on account of changing filament voltage, i.e. cathode temperature. A long-tailed pair arrangement would give better results, but probably the best way would be to replace V_{1} by a solid-state device, for instance an f.e.t. transistor, adjusted for minimum temperature drift. However,
with or without these refinements the result is a very low output resistance of the power supply, and this has been achieved with very little work and at low cost.

Acknowledgement is due to Professor S . Berglund, who suggested this investigation.

REFERENCES

1. "A Cascade Amplifier Degenerative Stabilizer", by V. H. Attree, Electronic Engineering, April 1955, page 174.

APPENDIX

The mutual conductance of a combination cathodefollower and emitter-grounded transistor.

If h parameters are used for the transistor, the equivalent circuit for a cathode follower driving a transistor in common emitter coupling

Fig. 6 (Right). Circuit diagram of the original power supply.

Fig. 7 (Below).
Circuit of power supply with hybrid cascode stage.

Fig. 8. Equivalent circuit of a cathode follower and transistor.

Fig. 9. Constant current generator with interna! resistance r, loaded by bypass resistance R^{\prime} and input impedance rin of following device.

becomes that of Fig. 8, where the voltage source v_{g} and the impedance z_{k} form the Thévenin equivalent of the cathode follower. Note that v_{g} also is the input voltage on the grid of the valve. In the derivation of the mutual conductance $g_{m h}$ of the combination, the load resistance is regarded as zero, which means that the influence of $h_{r e}$ is omitted.

Thus $i_{c}=h_{f e} i_{b}$
and from the base circuit we get

$$
\begin{equation*}
i_{b}=\frac{v_{g}}{z_{k}+h_{i c}} \tag{2}
\end{equation*}
$$

Eq. (1) and (2) combined give

$$
i_{c}=\frac{h_{f c} v_{k}}{z_{k}+h_{i c}}
$$

and from the definition of mutual conductance we now have for the hybrid combination

$$
\begin{equation*}
g_{m h}=\frac{i_{c}}{\bar{v}_{s}}=\frac{h_{f c}}{2 k+h_{i c}} \tag{3}
\end{equation*}
$$

The variation of $h_{f e}$ with collector current is small in the current interval in which the transistor is assumed to operate. Therefore $h_{f e}$ may be treated as a constant. The parameter $h_{i e}$ is roughly proportional to $1 / I c$. With these approximations we get

$$
\begin{equation*}
g_{m h} \propto \frac{1}{a+\frac{1}{I_{c}}} \tag{4}
\end{equation*}
$$

where a is a constant. This is in good agreement with the curve $g_{m h}$ of Fig. 3.

The voltage amplification of a hybrid cascode stage.
We are now ready to derive an expression for the amplification of our cascode stage, when the lower triode section of Fig, 1 is replaced by a combination according to the above.

Assuming that no grid current is drawn in V_{2}, all the current that is fed in to this valve at the cathode, also goes through the anode load resistance R of that valve.

The same is, to a very close approximation, true about the emitter input current of the second transistor, inserted as shown in Fig. 5, if this transistor has a high current gain.

The main interest is now in the collector circuit of transistor $T r_{1}$, the equivalent circuit of which is shown in Fig. 9. The current generator is $v_{g} . g_{m h}$ and the input impedance at the cathode of V_{2} at the emitter of $T r_{2}$, in both cases denoted by $r_{i n}$, is seen to be in parallel with the transistor output impedance r_{o}, and the bypass resistance R^{\prime}.

If the parallel combination of r_{0} and R^{\prime} is called R_{p}, it is easily found by the law of current division, that

$$
\begin{equation*}
i_{L}=v_{g} g_{n k h} \frac{R_{p}}{R_{p}+r_{i n}} \tag{5}
\end{equation*}
$$

$$
\text { where } \quad R_{p}=\frac{r_{0} R^{\prime}}{r_{1}+R^{\prime}}
$$

Dividing by v_{g} we get a transfer conductance for the whole combination $V_{1}-T r_{1}$, to the input of V_{2} which is denoted by $g_{m a}$

Thus $g_{m o}=g_{m h} \frac{R_{p}}{R_{p}+r_{i n}}$
The voltage amplification A_{h} is now simply given as $A_{h}=g_{m o} . R$
. (7)
since the current it through $r_{i n}$ also passes through R, as has already been stated. For a comparison of the above expression for A_{k} with the measurements presented in Fig. 4, we have to give A_{h} in detail.

$$
\begin{equation*}
A_{h}=R g g_{m h} \frac{\frac{r_{o} R^{\prime}}{r_{o}+R^{\prime}}}{\frac{r_{o} R^{\prime}}{r_{o}+R^{\prime}}+r_{\text {in }}} \tag{8}
\end{equation*}
$$

Within certain limits $r_{o} \propto 1 / I_{x}$ and also $R^{\prime} \propto 1 / I_{c}$. In view of this we get an approximate relationship between A_{h} and Ic.

$$
\begin{equation*}
A_{h} \propto \frac{1}{I_{c}+b+c / I_{c}} b \text { and } c \text { constants } \tag{9}
\end{equation*}
$$

Eq. (9) states that A_{h} goes towards zero when $I_{c} \rightarrow 0$ as well as when $I_{c} \rightarrow \infty$. This indicates that A_{h} has a maximum, which is in agreement with the measurements presented in Fig. 4.

Both authors are at the University of Lund, Sweden. Bengt Erik Alvesten graduated in physics in 1960 and in electronics in 1964 and is now an assistant in electronics research and education. Lasse O. Bergsten graduated in physics in 1965 and is now doing post graduate research.

Announcements

The 6th International Power Sources Symposium, organized by the Joint Services Electrical Power Sources Committee, will be held at the Hotel Metropole, Brighton, Sussex, from 24th to 26th September. Papers presented will cover a wide range of subjects concerned with research, development and application of primary and secondary battery systems, fuel cells, solar cells etc. Further information and registration forms from J.S.E.P.S.C., P.O. Box 136, Croydon, CR9 2EG, Surrey.

Signal Processing, with emphasis on underwater acoustics, is the subject to be covered at the Advanced Study Institute being sponsored by N.A.T.O., the Raytheon Company of America and the Dutch National Defence Research Organization, to be held in Holland from 12 th to 23 rd August. The programme includes 35 papers presented by scientists from the U.S.A., Canada and Europe. Application forms and information bulletins can be obtained from the Organizing Committee, c / o Holland Organizing Centre, 16 Lange Voorhout, The Hague, Netherlands.

A vacation school on "Statistical methods, of system identification", arranged by the professional group on control theory of the I.E.E. Control and Automation Division, is to be held at the University of Warwick from 16th to 20 th September. Further details and application forms may be obtained from the Divisional Secretary, (Control and Automation), I.E.E., Savoy Place, London W'.C.2.
A residential vacation school on electrical measurement practice is to be held at the University of Manchester Institute of Science and Technology from 14th to 26th July. Further details can be obtained from The Secretary, I.E.E., Savoy Place, London, W.C.2.

The British Amateur Television Club will be holding its 1968 Amateur Television Convention on September 14 th in the I.T.A. Conference Suite, 70 Brompton Road, London, S.W.3.

Australia's 12th national radio and electronics engineering convention and exhibition will be held at the W'entworth Hotel, Sydney, in May 1969.

At the 23 rd Annual General Meeting of the British Radio Equipment Manufacturers' Association on May 2nd the following Member firms were appointed to the Council: A. J. Balcombe, General Electric Co., Hacker Radio, Philips Electronic and Associated Industries, Pye of Cambridge, Radio Rentaset Products (Baird Television Division), Rank-Bush-Murphy, Standard Telephones \& Cables, and Thorn Electrical Industries. Lord Thornycroft, chairman of Pye of Cambridge, was elected president of the Association.

The Muirhead Group, of Beckenham, Kent, have won an order worth approximately $£ 100,000$ from the Soviet Union for their latest type of newspaper page facsimile equipment and some wire photo products. Publications will be trarismitted on this equipment by radio from Moscow to towns hundreds of miles away.

Aircraft navigational beacon transmitters worth more than $\$$ A 50,000 have been delivered to the Australian Department of Civil Aviation by Commonwealth Electronics Pty Ltd. The transmitters are non-directional beacons designed to operate in the frequency range of 200 to 415 kHz .
A range of tantalum electrolytic capacitors, manufactured by Ero-Tantal GmbH, of West Germany, are now available from G. A. Stanley Palmer Ltd., Island Farm Avenue, West Molesey Trading Estate, Surrey.
Mullard Ltd is to undertake the manufacture of cathode-ray tubes on behalf of Pye; both companies are subsidiaries of Philips Industries. Mullard have acquired the major part of the assets of Cathodeon Electronic Ltd who have ceased to manufacture c.r.ts.

Plans have been made to merge W. G. Pye \& Company Ltd and Unicam Instruments Ltd, as part of a policy of rationalization by Pye Holdings Ltd. The new company will be known as Pye Unicam Limited.
Tokyo Shibaura Electric, of Japan, manufacturers of Toshiba products, have opened an office at Premier House, 12 Hatton Garden, London E.C.1.
Racal Communications Ltd, of Western Road, Bracknell, Berks, have been awarded a contract worth $£ 100,000$ by the British Army for the military version of a solid-state h.f. receiver.
Aircraft Supplies Ltd, of 506 Wallisdown Road, Bournemouth, Hants, have taken over the production, repair, maintenance and information play-back of the Midas CMM3 / RB accident data recording system.

Teleng Ltd are exhibiting a range of v.h.f. communal aerial equipment at a two-day show to be held on August 28th and 29th at the Kensington Close Hotel, London W. 8.
Racal Instruments Ltd have signed an agreement to market in the U.K. the programmable voltage sources, known as "Codavolt", and programmable frequency synthesizers, known as "Codasyn", manufactured by the French company Adret Electronique.

Antex Ltd, of Croydon, Surrey, have moved to Mayflower House, Armada Way, Plymouth, Devon.

The Kenya Ministry of Tourism and Wildlife have placed a $£ 30,000$ order for s.s.b. radiotelephones with the Communications Division of Redifon Ltd. These will link field offices in park and lake areas with the Ministry's headquarters in Nairobi.

The M-O Valve Company Ltd, a subsidiary of G.E.C., have announced the appointment of Metropolitan Supply Company, of 468 Park Ave. South, N.Y. 10016, as American distributors for their range of products.
Tectonic Industrial Printers Ltd, of Cirtec Works, Oxford Road, Wokingham, Berks, have changed the company name to Tectonic (Electronics) Ltd. The company are mainly concerned with the manufacture of printed circuits.
The electronic research laboratories of Louvain University, Belgium, are organizing a Summer course on "Logic circuits and systems". Commencing 2nd September, the course will be held in Dutch and French. Further details from Prof. H. P. Debruyn, Electronic Research Laboratories, Section: Circuits and Systems, 94 Kardinaal Mercierlaan, Heverlee, Belgium.

The Audio Fair at a Turning Point

General and technical trends

The possession of good quality sound reproducing equipment is no longer restricted to an exclusive band of enthusiasts with plenty of time, money and that kind of technical expertise which comes from relentless pursuit of an ideal. Anybody who can afford to put down about $£ 100$ on a counter can immediately own a quite respectable stereo reproducing chain, as a recent issue of Which? made clear (although a somewhat larger sum of money-about $£ 200$-is needed for real hi-fi). This spreading of the benefits of good reproduction to a larger public is, of course, a good thing. It is reflected in the changing character of the annual London Audio Festival and Fair, which from being a small event intended for specialists and run by an engineering society (the old British Sound Recording Association) has now become a large commercial affair open to the general public. (Total attendance over the four days of the 1968 Fair is estimated as 40,000 people.)

This situation is ir. general deplored by engineers and audiophiles, who tend to see the work they have fostered with love and enthusiasm over the years being gobbled up by big business interests which are concerned only with its profit potential. Of course, this attitude can be criticized as unrealistic. Money must be obtained from selling commercial products to support future technical development. Probably the most important thing is to maintain a good balance between the purely technical and the purely commercial interests. Fortunately, there are still a few audio manufacturing firms in existence which have achieved this balance. The engineers who run them seem to have discovered the secret of being commercially successful without losing their original enthusiasm for technical exploration. Consequently the audio industry still has an engine driving it forward: it has not yet reached the stage of merely free-wheeling downhill under its own dead weight.

As far as the Audio Fair itself is concerned it seems possible that organizational changes are about to take place. C. RexHassan, the director, has hinted that it may be necessary to link up with some established trade - though he has not said what sort of trade he has in mind. He has also complained of the considerable cost of hiring a large hotel such as the Hotel Russell for the event. If this means that the principle of providing rooms for live demonstrations of equipment
is to be abandoned, it will be disastrous: without demonstrations the Audio Fair will lose its whole point and degenerate into just another exhibition.

The 1968 Festival and Fair did not reveal any startling technical developments. Equipment is evolving on fairly predictable lines, with continuing emphasis on domestic convenience. The bookcase-size loudspeaker, for example, is now well established, and considerable design effort has gone into making it produce acceptable sounds. Here, stereophony helps considerably because the effect of spaciousness seems somehow to make the lack of bass less important. Nevertheless some manufacturers were brave enough to put on comparative demonstrations of bookcase and larger loudspeakers, and no doubt this could be regarded as a respectable form of "switch selling" for the larger models.

The electronics part of the hi-fi chain can be divided into two main categories of hardware. First there are the systems which use "separates", that is, individual tuners, control units and amplifiers which can be selected separately and assembled into a chain according to the user's requirements. At one time this was the only basis on which the audiophile could build up his equipment, and one which required a good deal of technical knowledge in addition to a desire for high-quality reproduction.

Latterly, from about the time when transistor circuits began to be incorporated in equipment designs, there has been a growing trend towards a second category which combines the tuning, control and amplifier functions in one "integrated" unit, in some cases even including the record player, leaving the user only the task of selecting a suitable loudspeaker or pair of loudspeakers. Both categories are among the new items described on the following pages, which in all but one instance use semiconductors exclusively. Incidentally, some f.m. tuner units favour the use of f.e.ts for r.f. amplifier and mixer stages because these allow large signal handling capacity without introducing crosstalk distortion.

A very large category of equipment at the Fair was tape recorders. Drive belts are at last falling in popularity and we are seeing more three-motor tape transport systems, some with outside rotor motors in all three positions. The resulting reduction in the number of mechanical components leads to quieter machines-a fact that is not revealed
in specification sheets as mechanical noise level is still not given in manufacturers' literature. One company has gone a step further and eliminated the wheels needed for speed change, an all-electronic system being employed. Standardization of equalization characteristics seems to be very much a thing of the future, C.C.I.R., DIN, I.E.C. and N.A.B. standards all being used in the machines seen at the Fair. In at least one case a machine could be switched between two of the standards and in another variable equalization was used. It was disappointing to find no sign of the integrated circuit in tape recorders. However, a few manufacturers are using f.e.ts in low-level amplifier circuits.

Some of the selected items dealt with in the following pages were seen at small individual exbibitions held in other London hotels at the same time as the Audio Fair.

Electronic Speed Control Tape Recorder

The motor speed control system employed in the latest tape recorder from Revox, the 77 A , uses no fewer than nine transistors and eight diodes. Full details on how the circuit operates have not been released, but it would appear that the system consists essentially of a closed loop servo controlling the speed of an outside rotor capstan motor. This motor has a number of grooves, or slots, machined in its periphery that rotate in close proximity to a "tachometer type" magnetic head. Pulses appearing at the output of this head have a frequency directly proportional to capstan motor and therefore tape speed. The pulses are applied to a high gain amplifier with a complementary symmetry output stage which is stabilized with a hefty amount of negative feedback. The output of the amplifier drives a frequency discriminator with a d.c. output determined by the difference between the frequency of the signal from the magnetic head and that of the discriminator tuned circuit. This difference, or error, voltage is again amplified and applied to a transistor whose collector and emitter terminals are connected to the + and
"outputs" of a rectifier full-wave bridge in much the same way as an s.c.r. is sometimes connected in control circuits. The capstan motor is connected in series with the a.c. terminals of the bridge and the a.c. supply line. The bridge effectively connects the motor in series with the output transistor which then controls the amplitude of the voltage applied to the motor. Speed changes are accomplished by electronically switching, using diodes, a capacitor
into the discriminator circuit which alters the resonant frequency of the tuning element. Two speeds are available, 9.5 and $19 \mathrm{~cm} / \mathrm{sec}$ that are maintained within $\pm 0.2 \%$ by the control system; wow and flutter (weighted) is 0.1%.

A variety of two- and four-track models are available that can be supplied with or without power amplifiers and with a choice of cabinets. The power amplifiers provide 8 W per channel (r.m.s.) into $4-16 \Omega$ at less than 1% distortion. Equalization is switchable and may be to N.A.B. or I.E.C. standards, the frequency response at $9.5 \mathrm{~cm} / \mathrm{sec}$ being from 30 Hz to $20 \mathrm{kHz}+2 \mathrm{~dB} /-3 \mathrm{~dB}$. Signal-to-noise ratio, weighted (filter C.C.I.F.), is better than 58 dB at $19 \mathrm{~cm} / \mathrm{sec}$
Three inputs per channel are provided these being, microphone (switchable $\mathrm{Hi}-50 \Omega-150 \mu \mathrm{~V}$ and $L o-100 \mathrm{k} \Omega-2 \mathrm{mV}$), radio ($33 \mathrm{k} \Omega 2 \mathrm{mV}$) and auxilliary ($1 \mathrm{M} \Omega 40 \mathrm{mV}$). In addition to the loudspeaker outputs, available if the power amplifiers are fitted, two other outputs are provided- 600Ω 2.5 V and $2.5 \mathrm{k} \Omega 1.2 \mathrm{~V}$.

The recorder will accommodate up to 27 cm diameter tape spools and is handled in this country by C. E. Hammond \& Co. Ltd., 90 High Street, Eton, Windsor, Berks.
W.W. 341 for further details

Richardson Valve Amplifier

One manufacturer who believes that the potentialities of valves have not been fully exploited and that valve circuit designs should not be too hastily discarded is Richardson Electronics. This company, a newcomer to the domestic hi-fi market, was demonstrating a stereo system based on their MA135 valve power amplifier, the circuit diagram of which is shown. They claim that valves offer the advantages of minimal distortion at all levels and the ability to drive all types of loads without risk of damage or instability. Loudspeaker systems, they say, may have an impedance at 50 kHz which is many times that of the rating and to provide optimum performance when driving this type of load, a special network is incorporated in the output stage to compensate for this. The first stage of the amplifier comprises a high gain cascode stage which feeds the pentode section of an ECF82 phase splitter. Balanced drive to the output valves is ensured by the setting of a pre-set control in the anode circuits and balanced drive at high frequencies is obtained by an $R C$ network incorporated in the cathode circuit. Stability with any type of load is achieved by limiting the high and low frequency gain by means of an $R C$ network in the anode of the cascode stage. The amplifier, model SA170, has an output of 30 W r.m.s. for 0.1% distortion and a sensitivity of 250 mV . Frequency response is 20 Hz to $20 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$. Outputs are provided for loudspeakers of 4,8 or $16-\Omega$ impedance.

A complementary control unit for the SA170 amplifier is the all-transistor SCP1 which has a sensitivity on disc of 2 mV with a noise figure better than 70 dB . Inputs are provided for disc, tape, microphone and two auxiliary (one 50 mV at

Richardson SA170 stereo power amplifier.

Circuit of the Richardson SA170 showing the method of balancing the output valves.
$2 \mathrm{M} \Omega$ and the other 250 mV at $100 \mathrm{k} \Omega)$. The unit contains its own power pack and has two switched mains outlet sockets for feeding a turntable and the power amplifier. The front panel features a phase-reversing switch which operates on the left-hand channel only to simplify speaker phasing and compensate for recording errors. Price of the SA170 amplifier is $£ 60$ and of the SCP1 control unit 245 . J. Richardson Electronics Ltd., 43B Hereford Road, London W. 2 .
W.W. 334 for further details.

Slot Stereo

An American tape transport mechanism employing eight-track endless loop recorded cassettes forms the basis of a tape player system new to the British domestic scene, introduced by Slot Stereo. The cassettes employ quarter-inch tape that is pulled past the playback heads from the centre of a reel and re-wound on the outside of the same reel as is standard practice in endless loop cassette systems. To reduce friction the back of the tape is coated with a thin lubricating film of graphite. Track changing is achieved by moving the heads with a solenoid and cam system actuated by a length of aluminium foil spliced into the tape. In this way the track is changed once every revolution of the tape loop so that each of the four stereo tracks is played in turn before being automatically repeated. Tracks can also be switched manually. The player employs a $12-\mathrm{V}$ d.c. motor that is governed electronically by measureing the back e.m.f., which is a function of speed, and comparing this with a reference voltage. Any difference between these voltages results in an error signal which is used to control motor speed.

Three versions of the tape player are available differing in application and cost but employing the same basic tape mechanism.

The car unit measures $8 \frac{1}{2} \times 3 \times 7 \frac{1}{2}$ inches $(21.5 \times 7.6 \times 19 \mathrm{~cm})$, requires a $12-\mathrm{V}$ positive earth supply at 1.5 A , uses 14 transistors, delivers 4W r,m.s. output per channel with a 40 dB signal-to-noise ratio and costs 47 gn .

The 'satellite' unit for home use in conjunction with an existing amplifier system has a performance similar to that of the car unit except that it uses a mains supply and has a low level output only. It costs 47 gn .

The home unit incorporates twin 8 W r.m.s. output amplifiers but except for the case is the same as the 'satellite' unit, and costs 85 gn .

A large variety of recorded music is available in the eight-track cassettes. Incidentally, the R.I.A.A track pairing standard is employed, i.e. 1 with 5,2 with 6,3 with 7 , and 4 with 8 . We understand

The domestic Slot Stereo casette tape player with (above) the 'satellite' unit.
that Slot Stereo intend to introduce a radio tuner that will slot into the tape players in place of the tape cassettes! Slot Stereo Ltd., 36 Hertford Street, London W1.
W.W. 314 for further details.

Grundig Stereo Tuner/ Amplifier

Five wavebands and 40 W of output power (continuous rating) are provided by a new Grundig stereo tuner/amplifier model RTV600 which is fully 'integrated' with pre-amplifiers and control unit. A total of 53 transistors and 31 diodes are used with f.e.ts featured in the front end. On the f.m. range $(87-108 \mathrm{MHz})$, six separately tuned programme selectors allow five v.h.f. stations to be pre-set, the sixth selector being for manual tuning. On a.m., the waveband coverage is 145 $350 \mathrm{kHz}, 510-1,620 \mathrm{kHz}$, and $3.15-22.5 \mathrm{MHz}$ in two bands. A s.w. fine-tuning control has a range

Grundig RTV600 stereo tuner-amplifier. Channel separation is better than 40dB at 2 kHz .
of $\pm 60 \mathrm{kHz}$. Sensitivities are $1.5 \mu \mathrm{~V}$ for 15 kHz deviation (f.m.) and $6.5-10 \mu \mathrm{~V}$ through the a.m. ranges. Frequency drift is $1 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$ which is compensated by a.f.c. with a capture range of $\pm 250 \mathrm{kHz}$. Signal-to-noise ratio is 68 dB at 21 W , output deviation at linear frequency response measured from aerial to mono loudspeaker output. Pilot tone suppression is 40 dB at 19 kHz (55 dB at 38 kHz). A mono/stereo selector is incorporated in the integral decoder controlled by the input level, and stereo channel separation is better than 40 dB at 2 kHz measured from the gerial input to the loudspeaker output.
In the amplifier section frequency response is $50 \mathrm{~Hz}-16 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Switchable inputs are provided for magnetic or crystal pickups, with preamplifier and correction networks. The output may be connected to loudspeakers with impedances between 4 and 16Ω, the full rated power is available for impedances between 4 and 7Ω. The output transistors are protected against overload by an automatic circuit which disconnects the amplifier channel if the load exceeds the maximum permissible figure. In addition, an excess temperature switch disconnects the amplifier if the maximum permissible temperature is exceeded. In both cases, the tuner will revert to correct operation when the source of the excess load or the excess temperature has been removed. Controls include a mono/stereo pressbutton selector, stereo balance control, scratch filter and treble and bass controls. The tone controls have a range of -20 dB to +15 dB at 20 kHz and 20 Hz respectively. When they are set at zero, the response is linear. Dimensions are approximately $60 \times 15 \times 30 \mathrm{~cm}$. Price: 198 gn . Grundig (GB) Ltd., Newlands Park, Sydenham, London S.E.26.
W.W. 333 for further details.

2 cu.ft Loudspeaker System

The Model DM3 loudspeaker system shown by Bowers \& Wilkins is characterized by having an enclosure of moderate size- $0.057 \mathrm{~m}^{3}$ ($2 \mathrm{cu} . \mathrm{ft}$) -and by a new design of bass unit which has an elliptical cone of laminated structure. This bass unit, developed by E.M.I.: measures $34 \times$

Laminated cone material used in the Bowers \mathcal{E} Wilkins loudspeaker.

$20.5 \mathrm{~cm}\left(13 \frac{1}{2} \times 8 \frac{1}{8} \mathrm{in}\right)$ and the laminated cone material consists of a mesh of fibre glass sandwiched between two layers of other fibrous material (see photo). Middle frequencies are handled by a pressure unit operating from 3 kHz to 14 kHz and the remainder of the range, 14 kHz to 25 kHz , by a high-frequency unit. Frequency response is better than $\pm 2 \mathrm{~dB}$ from 60 Hz to 14 kHz and better than $\pm 5 \mathrm{~dB}$ from 40 Hz to 25 kHz . The cabinet, measuring $72.5 \times 40.3 \times$ 29.5 cm , is a vented type and contains a membrane absorber and wool fibre. Power handling capacity is 15 watts continuous (25 watts music power). Distortion, with 10 watts continuous input, is: $60 \mathrm{~Hz}, 3 \% ; 200 \mathrm{~Hz}, 2.5 \% ; 1 \mathrm{kHz}, 1.2 \% ; 5 \mathrm{kHz}$, $1.0 \% ; 10 \mathrm{kHz}, 2 \%$. Bowers \& Wilkins Electronics Ltd., Worthing, Sus sex. W.W. 326 for further details.

Ferrograph Series Seven

The gleaming extruded aluminium trim and polished teak cases of the new Ferrograph range of tape recorders is a welcome change after the austere black and grey that has characterized this company's products for the past eighteen years. The models making up the new range, known as series seven, consist of a number of options based on the same design. Facilities available are mono half-track, stereo half track, stereo quarter track, three tape speeds, 19 to $4.75 \mathrm{~cm} / \mathrm{sec}$ or 38 to $9.5 \mathrm{~cm} /$ sec , with or without output stages and choice of cabinet-portable or natural wood or, if desired, the machine will be supplied uncased for inclusion in an existing cabinet. The basic models are made up from various compatible combinations of these options and range in price from about $£ 135$ to $£ 185$. The new deck has a nominal speed accuracy of 1% and a wow and flutter figure varying from 0.08% at $38 \mathrm{~cm} / \mathrm{sec}$ to 0.2% at $4.75 \mathrm{~cm} / \mathrm{sec}$.

To reduce intermodulation distortion, f.e.ts have been used in all low-level amplifier input stages resulting in a total distortion figure of 0.25% r.m.s. at output levels up to 10W. At the lowest tape speed the frequency response is 50 Hz to $7 \mathrm{kHz} \pm 3 \mathrm{~dB}$, this improves to 30 Hz to 20 kHz $\pm 2 \mathrm{~dB}$ at the highest tape speed. The signal-tonoise ratio, unweighted and including hum, is better than 55 dB and track separation on stereo models is approximately 45 dB . To fully modulate the tape a signal at the microphone input should be greater than $150 \mu \mathrm{~V}$ but less than 15 mV into $10 \mathrm{k} \Omega$ or more, the recommended source impedance lies between the limits 250 to 2000Ω. The line input is $2 \mathrm{M} \Omega$ and requires an input of between 75 mV and 10 V , in this case the source impedance is non-critical. The two 6×4-inch (15 $\times 10 \mathrm{~cm}$) elliptical speakers incorporated are of course intended purely for monitoring purposes and the loudspeaker output socket provides up to 10 W r.m.s. into speakers of $8-16 \Omega$. A low-level
output per.channel is also provided and will deliver 300 mV into a load of not less than $10 \mathrm{k} \Omega$

Other features include variable speed rewind (max $1 \mathrm{~min} . / 1200 \mathrm{ft}$), recording level meters switchable to read bias with an easily accessible bias adjustment, tape/original switching through to output stages, three motors, remote control facilities, provision for fitting signal operated switching units etc. Ferrograph Co. Ltd., 84 Blackfriars Road, London S.E.1.
W.W. 328 for further details.

"Free field" magnetic cartridge

By using a fixed magnet and a moving lightweight tube of magnetic material in their ' 800 ' stereomono pickup cartridge, Goldring have reduced the mechanical impedance of the moving system and so raised the resonance point to a frequency above 20 kHz . Recommended tracking force is $1-3$ grammes, but in a version with greater reduction of mechanical impedance, the ' $800 / E$ ', it can be down to $\frac{3}{4}$ gramme. In the ' 800 ', which has a diamond stylus with a conical point, the effective tip mass is 1 mg and the static compliance $2 \mathrm{~cm} / \mathrm{N}$ ($20 \times 10^{-6} \mathrm{~cm} /$ dyne). Sensitivity is $1 \mathrm{mV} / \mathrm{cm} / \mathrm{s}$ and frequency range 20 Hz to 20 kHz . Separation does not fall below 15 dB and averages over 20 dB at

middle frequencies. Performance of the ' $800 / \mathrm{E}$ ', which has an elliptical diamond stylus, is somewhat higher. Both cartridges have Mumetal magnetic shields and removable styli. Goldring Manufacturing Co. (Great Britain) Ltd., 486-488 High Road, Leytonstone, London E. 11 .
W.W. 321 for further details.

Semi-professional Recorder

The Philips semi-professional recorder PRO12 arrived in this country just in time to be shown at the Audio Festival. Unfortunately, full technical details of some of the more novel features did not. However, sufficient information has been gleaned to make a description worthwhile. The machine has two speeds, 19 and $9.5 \mathrm{~cm} / \mathrm{sec}$, which can be adjusted within 0.8% by the eddy current speed control system employed. This is used in conjunction with a built-in stroboscope. In order to achieve a smooth fast wind and to ensure the minimum of wow and flutter and mechanical noise during record and playback the left hand tape guide rotates during fast wind but is locked during other functions. To assist in maintenance the complete head block is removable. Wow and flutter depends on the speed selected but does not exceed 0.13% peak, fast wind time is less than 75 seconds per 1600 m of long-play tape and the maximum spool diameter the machine will accommodate is 7 inches (18 cm)

Normally the machine is supplied for two-track stereo or mono operation but four-track heads

Philips semi-professional recorder PRO12.

can be supplied as an optional extra if required. The frequency response is to DIN45511 standard and is within 2.5 dB from 60 Hz to $18 \mathrm{kHz}(1.5 \mathrm{~dB}$ from 60 Hz to 12 kHz) at $19 \mathrm{~cm} / \mathrm{sec}$ in the playback mode only. The overall record/playback response increases the limits to 5 and 3 dB . Signal-to-noise ratio, weighted and measured according to DIN45405 at $19 \mathrm{~cm} / \mathrm{sec}$ is -56 dB and cross talk rejection is better than 52 dB . Crosstalk was measured at 1 kHz (3% harmonic distortion) by recording one track at full level and h.f. bias on the second track. The second track is then replayed and measured. The record and playback amplifiers introduce less than 0.5% harmonic distortion. Three inputs per channel are provided as standard and two others may be included if required. They are (1) line, $100 \mathrm{mV}, 100 \mathrm{k} \Omega$, (2) microphones, 1 mV (unbalanced) suitable for microphones from 50 to 200Ω, (3) diode, 2 mV , $20 \mathrm{k} \Omega$. The optional inputs are (4) microphone input with transformer (balanced) for $0.2 \mathrm{mV}-50 \Omega$ and $0.4 \mathrm{mV}-200 / 500 \Omega$, and (5) transformer line input $0.775 \mathrm{~V}, 10 \mathrm{k} \Omega$. Each channel has a $10 \mathrm{k} \Omega$ line output with a nominal output voltage of $775 \mathrm{mV}, 4 \mathrm{~V}$ max., in addition a line output transformer can be supplied providing a nominal 0 dBm (6 dBm peak) output. A stereo monitor output socket is also fitted and has the same characteristics as the standard line output. The single monitor amplifier provides 500 mW into the internal speaker at 1% distortion. Twin Vu meters are employed and together with their associated amplifiers are within 2 dB . These operate with a $0-10 \mathrm{~dB}$ switch which is used for setting up purposes. Philips Electrical Ltd., Century House, Shaftesbury Avenue, London W.C.2.
W.W. 317 for further details.

Philips Audio Plan

Three new units which now form part of the "Philips Audio Plan", the method by which a selection of basic units can be formed into a combination according to price or other requirements, are the stereo a.m./f.m. tuner GH944 and two stereo amplifiers GH943 ($2 \times 7 \mathrm{~W}$ output) and GH949 ($2 \times 20 \mathrm{~W}$ output). The GH944 covers the v.h.f., long-, medium-wave bands and short-wave bands from $16.48-50.8 \mathrm{~m}$. It has a built-in stereo decoder with automatic switching and stereo indicator. Audio response on f.m. is from 20 Hz to $15 \mathrm{kHz} \pm 1.5 \mathrm{~dB}$ with standard de-emphasis applied. Sensitivities are $6 \mu \mathrm{~V}$ f.m. mono ($60 \mu \mathrm{~V}$ stereo) and $100 \mu \mathrm{~V}$ on a.m.

Stereo amplifiers GH943 and GH949 are both designed to work into an $8-\Omega$ load. The GH943 7W (continuous) model employs 10 transistors and diodes while the higher output model GH949 employs 22 transistors and diodes. Both are equipped with rumble and scratch filters, treble and bass tone controls, and inputs for pickup, tuner and tape. All units are for $110-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$, mains operation. Dimensions: $38 \times 22 \times 13 \mathrm{~cm}$ (GH944), $34 \times 21 \times 14 \mathrm{~cm}$ (GH943), and $34 \times$
$27 \times 14 \mathrm{~cm}$ (GH949). Prices have not yet been announced. Philips Electrical Ltd., Century House, Shaftesbury Avenue, London W.C.2. W.W. 336 for further details.

Five-unit Loudspeaker

Five drive units are used in the Ditton 25 loudspeaker system, introduced by Celestion, which is stated to be of studio monitoring quality. For the bass there is a 12 -inch ($30-\mathrm{cm}$) unit plus an auxiliary bass radiator of the type used in other Celestion speakers. For the higher ranges there are two mid-frequency pressure units and one high-frequency pressure unit. Frequency range is 20 Hz to 40 kHz and power handling capacity is 25 watts continuous (50 watts peak). Impedance is $4-8$ ohms. Priced at $£ 5513 \mathrm{~s}$, the loudspeaker has an enclosure measuring 81×36

Ditton 25 loudspeaker showing the five units.
$\dot{\times} 28 \mathrm{~cm}$ with either teak or walnut finish. Rola Celestion Ltd., Thames Ditton, Surrey.
W.W. 327 for further details.

Sinclair System 2000

A complete audio system was introduced and demonstrated at the Festival by Sinclair Radionics, comprising an f.m. tuner, a 35-W integrated stereo amplifier and a plinth-mounted circular loudspeaker. Measuring $30 \times 15 \times 5 \mathrm{~cm}$ the f.m. tuner employs silicon transistors and features inter-station muting, fine tuning, a.f.c. and a pulse-counting discriminator. This type of discriminator has been found by the makers to provide better linearity and freedom from distortion than the ratio and Foster-Seeley discriminators. The tuner is available with or without stereo-decoder which can be plugged in to the mono version to convert to stereo when

Sinclair cylindrical loudspeaker.
required. Stereo/mono switching is automatic and a stereo neon indicator is incorporated. The use of a variable capacitance diode makes remote tuning possible by means of a plug-in variable resistor, and a switched tuning module designed to fit the same socket will shortly become available. Frequency coverage is $86-108 \mathrm{MHz}$ and output 0.5 V low impedance. Frequency response is quoted as 10 Hz to $20 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Built-in power supplies enable the tuner to operate from $200-250 \mathrm{~V}$, $50-60 \mathrm{~Hz}$ a.c. The entire case and all controls are constructed from solid aluminium. Price 29 gn . (25 gn mono).

System 2000 amplifier also measures 30×15 $\times 5 \mathrm{~cm}$ and is specified as having an output of 35 W r.m.s. into a load of 3 to 15Ω. The specification also includes total harmonic distortion $<0.5 \%$ at 1 kHz and full output power, frequency response 15 Hz to $30 \mathrm{kHz} \pm 1 \mathrm{~dB}$ at 1 W and a damping factor of 50 at 1 kHz . A transformerless circuit is used employing 12 silicon and 6 germanium transistors with 40 dB negative feedback applied to the power amplifiers. Input facilities are fitted for the connection of pickups (magnetic and ceramic), tape (19 and $9.5 \mathrm{~cm} / \mathrm{s}$), radio, microphone and auxiliary, with input selection by press-button. Price 29 gn.
Housed in an aluminium cylinder and priced 12 gn . the System 2000 louds peaker introduced by Sinclair Radionics has a frequency response of $\pm 2 \mathrm{~dB}$ from 100 Hz to 15 kHz and $\pm 5 \mathrm{~dB}, 50 \mathrm{~Hz}$ to 18 kHz . Its power handling capacity is 10 watts continuous (20 watts music). The impedance is 8 ohms at 1 kHz . The cylindrical enclosure has a diameter of $216 \mathrm{~mm}\left(8 \frac{1}{2} \mathrm{in}\right)$ and depth of 102 mm ($4 \frac{1}{2} \mathrm{in}$). Overall height of the speaker on its stand is 380 mm (11 in). Sinclair Radionics Ltd., 22 Newmarket Road, Cambridge.
W.W. 320 for further details.

The f.m. tuner of the Sinclair 2000 system.

Recorder with F.E.T. Input Stages

Just introduced, the CBL/7T retains a distinct similarity, appearance wise, to earlier Vortexion recorders. The black case is retained and the amplifiers for each.channel are mounted either side of the tape deck as was the previous practice. The mechanical performance is identical to that of the Ferrograph as both employ the same model seven tape transport by Wright and Weaire, wow and flutter less than $0.1 \%, 8.25$ inch spools (with lid closed), spool height and adjustment, three speeds and provision for remote control.

Eight f.e.ts are employed in amplifier input stages operating under "starved input" conditions in order to reduce intermodulation distortion to a minimum (0.1% at 10 W). These input stages are individually mumetal shielded and are then further shielded by a steel screen to achieve the 58 dB signal noise ratio. The f.e.ts employed are SGS-Fairchild types with 0.1 dB noise figure.

The complementary symmetry power amplifiers provide 10W r.m.s. per channel output and employ a similar overload protection circuit to that described by Dr. Bailey elsewhere in this issue. The amplifiers are not new, however, as they have been used in other Vortexion equipment over the past two years and are therefore proven from the reliability point of view. The tone control circuit employed is a modified Baxandall arrangement which provides up to 13 dB bass and treble lift and cut. This allows for reasonable tonal balancing at the lower output levels.

The low impedance microphone inputs are matched to the high input impedance of the f.e.t. first amplifier stages in mumetal screened transformers, $40-50 \mu \mathrm{~V}$ is required at this input to fully modulate the tape. The line input has an impedance of $100 \mathrm{k} \Omega$ and requires 40 mV running into overload at about the 1 V input level.

At a tape speed of $19 \mathrm{~cm} / \mathrm{sec}$ the overall fre-

Vortexion CBL/7T tape recorder.
quency response is within $\pm 2 \mathrm{~dB}$ from 30 Hz to 18 kHz , however, the makers say that this is conservative and would typically be within $\pm 1 \mathrm{~dB}$.

Other features of the recorder, which costs f189, include separate speaker volume control so that the monitoring level can be adjusted independently of record level, "before and after" monitoring, bias measuring facility, cross mixing of channels and an echo facility. Vortexion Ltd., 257 /263 The Broadway, London S.W.19.
W.W. 329 for further details

Kirksaeter Products

Although this German company has been exporting to Common Market countries for a number of years it is a new name in the British hi-fi market and one which appeared at the Audio Festival for the first time this year. Their demonstrations highlighted in particular various versions of integrated tuner/amplifiers. In these the collectors of the Class B output transistors are connected in a bridge circuit which results in a very low internal resistance so that the output is not significantly affected by different speaker impedances. The units are fitted with one loudspeaker

Kirksaeter RTX400 stereo f.m. receiver-amplifier.
output only to which it is permissible to connect a speaker of any impedance between 4Ω and 6Ω. The RTX400 employs 44 silicon transistors and 16 diodes and provides a sine wave output of 65 W . Radio covers the f.m. (87.5-108.5MHz) band only with automatic mono/stereo switching. Inputs are provided for both German (DIN) and U.S.-type sockets and a rumble filter or scratch filter can be switched-in by press-buttons. Model RTX700 has a similar specification to the RTX400 except that the power output is higher at 100 W sine wave. U.K. Agents: A.C. Farnell Ltd., 81 Kirkstall Road, Leeds 3, Yorkshire.
W.W. 338 for further details.

Two-unit microphone

A narrow, cylindrical moving-coil microphone which looks more like a capacitor microphone is the D224 from A.K.G. (shown by Politechna). This microphone, which has a cardioid characteristic, contains two capsules, one for the highfrequency part of the range and one for the low-frequency part, and a cross-over network. In this respect it is similar to the earlier D202 which was introduced last year (see W.W. April 1968, p. 59, for explanation of principle). It has a frequency range of 20 Hz to 18 kHz , a sensitivity of -77 dB relative to $10 \mathrm{~V} / \mathrm{N} / \mathrm{m}^{2}(0.15 \mathrm{~V} / \mu \mathrm{b})$ and an impedance of 200 ohms at 1 kHz . Politechna (London) Ltd., Eardly House, 182/4 Campden Hill Road, Kensington, London W.8.
W.W. 322 for further details.

Record Reproducer Plinth

For housing their pickup arms, and various makes of turntables, S.M.E. have introduced a record reproducer plinth constructed in rosewood with a one-piece acrylic lid. It features a four-point spring suspension system with adjustable damping which carries the motor board and protects it from acoustic feedback and external vibration. A range of interchangeable motor boards will be available, ready cut and drilled to accept various combinations of arms and turntables. Price is $£_{25} 4 \mathrm{~s}$. S.M.E. Ltd., Steyning, Sussex.
W.W. 325 for further details.
S.M.E. record reproducer plinth with acrylic lid.

Belt-driven turntable

A flexible belt-driven system is used to reduce vibration and transmission noise in the Connoisseur BD1 turntable, which is intended for high-quality sound reproduction but has a relatively low price ($£ 1319 \mathrm{~s} 2 \mathrm{~d}$). The turntable proper is a 26 cm ($10 \frac{1}{4} \mathrm{in}$) diameter lathe-turned aluminium casting with a phosphor bronze bearing. Drive is from a slow speed synchronous

Connoisseur turntable and pickup.
motor. The speed required ($33 \frac{1}{3}$ or 45 r.p.m.) is selected by lifting a hinged metal cover and moving the ground rubber cord drive belt. Rumble is -60 dB and hum -80 dB relative to $7 \mathrm{~cm} / \mathrm{s}$ at 1 kHz . Wow and flutter are approximately 0.1 of 1%. The turntable is available in chassis form or on a plinth with a pickup mounted. A. R. Sugden \& Co. (Engineers) Ltd., Market Street, Brighouse, Yorks.
W.W. 340 for further details.

Kit Tape Recorder

Designed to satisfy the needs of those who prefer to build their own equipment this particular member of the Daystrom kit-family has three speeds, four tracks and incorporates a total of eighteen transistors. The BSR TD10 tape deck supplied with the kit will accommodate up to seven-inch spools, incorporates a digital tape position counter and at the highest speed ($19 \mathrm{~cm} / \mathrm{sec}$) the wow and flutter figure is 0.15%. Power amplifiers provide 4 W r.m.s. per channel into the two internal 8×5 inch ($20 \times 13 \mathrm{~cm}$) lotdspeakers; unweighted signal-to-noise ratio is better than 40 dB . Again at the highest speed, the frequency response is within $\pm 3 \mathrm{~dB}$ from 40 Hz to 18 kHz and at the lowest speed ($4.5 \mathrm{~cm} / \mathrm{sec}$) the upper 3 dB limit falls to 7.5 kHz . Two inputs are provided per channel and are: microphone, requiring $350 \mu \mathrm{~V}$ into $50 \mathrm{k} \Omega$, and auxiliary, needing 50 mV into $80 \mathrm{k} \Omega$. Likewise two outputs per channel are provided, 4 W into 15Ω and 250 mV from $4 \mathrm{k} \Omega$. The recorder, which costs $£_{58 \text { in kit }}$ form or $\AA 70$ assembled, comes complete with a moving coil microphone, 5.75 inch (15 cm) reel of
tape and the sort of comprehensive instruction manual for which Heathkit have become wellknown. Daystrom Ltd., Bristol Road, Gloucester. W.W. 315 for further details.

Truvox Series 200

The six models that comprise the 200 range of tape recorders consist of two- and four-track stereo and monc machines available in a choice of p.v.c. or teak cases.

The tape deck used is the same on all machines and has seven-inch (18 cm) reel capacity, three speeds, $19,9.5$ and $4.75 \mathrm{~cm} / \mathrm{s}$ with a wow and flutter content of 0.25% for the lowest speed and 0.1% for the highest. It incorporates three motors, has a rewind time for 1200 ft of 2 min and has an outside rotor capstan motor. All four-track models have an unweighted signal-to-noise ratio of 48 dB and the two-track models 50 dB . The frequency response is the same in each model and is 30 Hz to $18 \mathrm{kHz} \pm 3 \mathrm{~dB}$ at $19 \mathrm{~cm} / \mathrm{sec}$ and 40 Hz to $7 \mathrm{kHz} \pm 3 \mathrm{~dB}$ at $4.75 \mathrm{~cm} / \mathrm{sec}$. Two inputs per channel are provided, the low-level microphone input requires not less than 1 mV into $50 \mathrm{k} \Omega$ and the line input needs 50 mV into $200 \mathrm{k} \Omega$.

Mono versions cost in the region of $£ 125$ and include a $10-\mathrm{W}$ output stage and an 8×5 inch ($20 \times 13 \mathrm{~cm}$) hyperbolic cone loudspeaker. A semi-cardioid moving-coil microphone is also sup-

One of the Truvox " 200 " tape recorders.
plied. Stereo versions are intended for building into a system so do not incorporate output stages or loudspeakers. These cost about $£ 150$. Truvox Ltd., Shore Road, Hythe, Southampton.
W.W. 313 for further details.

Braun Stereo Amplifiers

Two new Braun stereo amplifiers were demonstrated by Fi-Cord International, both types being fully transistored. The CVS250 is a 2 x 15 W (continuous) amplifier which is matched in design and colour scheme to the Braun CE500 tuner. It is equipped with a volume control with push-pull switch for by-passing loudness compensation, separate bass and treble controls for each channel and a stereo/mono switch. Frequency response is said to be 30 Hz to 30 kHz and distortion $<0.5 \%$ at 12 W . Inputs are provided for radio, gram, tape and reserve, and outputs for two $4-\Omega$ impedance loudspeakers. Dimensions: $26 \times 11 \times 32 \mathrm{~cm}$. Model CSV500 is a combined pre-amplifier and power amplifier with switchable rumble filters, treble filters and presence boosting. It has a power output of $2 \times 45 \mathrm{~W}$ (continuous) for $4-\Omega$ loudspeakers and slightly less power when connected to 8Ω loudspeakers. Distortion is given as $\Omega 0.5 \%(4 \Omega)$ or $0.3 \%(8 \Omega)$. Separate bass and treble controls are provided for each channel. Frequency response is quoted as 10 Hz to 35 kHz . Five inputs are provided for gram,

Braun CSV500 stereo amplifier and pre-amplifier.
tape, radio, microphone and reserve, and outputs for loudspeakers of $4-16 \Omega 2$ and headphones of 400Ω impedance. Dimensions: $40 \times 11 \times 32 \mathrm{~cm}$. Prices: CSV250, £103.5s.; CSV500, £203 10s. U.K. agents Fi-Cord International, Charlwoods Road, East Grinstead, Sussex.
W.W. 331 for further details.

Loudspeaker kit

At a price of $£ 1010$ s Rank Wharfedale have introduced a high-fidelity loudspeaker kit containing an 8 -inch ($20-\mathrm{cm}$) bass /middle-range unit, a pressure unit for the treble, a cross-over network, connecting wire, mounting bolts and acoustic wadding. The 8 -inch unit has a magnet with a field strength of $9.6 \times 10^{5} \mathrm{~A} / \mathrm{m}(12,000$ oersteds), flux of 4.8×10^{-4} weber (48,000 maxwells), a die-cast chassis and a flexible roll surround. Its free air resonance is 35 Hz . The pressure unit has a magnet field strength of 8.4 $\times 10^{5} \mathrm{~A} / \mathrm{m}(10,500$ oersteds) and has a dome diaphragm with a diffuser cap. Frequency range is $40 \mathrm{~Hz}-17 \mathrm{kHz}$ and the cross-over frequency is $1,750 \mathrm{~Hz}$. Power handling capacity of the whole system is 15 watts and impedance 4-8 ohms. Cabinets (parts not supplied) can be any size between a minimum $356 \times 248 \times 223 \mathrm{~mm}$ (bass restricted to 65 Hz) and a maximum 293×560 $\times 242 \mathrm{~mm}$. Rank Wharfedale Ltd., Idle, Bradford, Yorks.
W.W. 319 for further details.

Record Cleaning Machine

Intended for use by public libraries, record dealers, broadcasting organizations etc., a disc record cleaning machine introduced by Audio \& Design comprises a turntable, a liquid application system and a suction cleaning mechanism. The turntable carrying the record revolves at high speed and a liquid solvent is applied by swinging a brush over and down onto the record. Considerable pressure can be applied since the disc is well lubricated by the liquid. This action dissolves grease and loosens grit on the record. Next a suction arm is moved to the centre of the disc. It is held by suction to the surface, and a tracking mechanism moves it outwards towards the periphery of the revolving record. This removes the liquid with its dissolved and suspended foreign matter and leaves the record dry and free of chemicals. The whole process takes about two minutes per side. Audio \& Design (Recordings) Ltd., Special Products Division, 40 Queen Street, Maidenhead, Berks.
W.W. 324 for further details.

Fisher Hi-Fi F.M. Receivers

A new item added to the well-known American Fisher range seen at the Audio Fair was a high-quality f.m. receiver with pre-set press button tuning. This tuning arrangement is one which has appeared for some time on a number of German f.m. tuners and a Fisher representative explained that a German-made tuning device was, in fact, incorporated in the design. Fisher call
their device "Tune-O-Matic" and it comprises five tuning knobs, each knob having its associated vertical frequency scale and a cursor on the receiver facia. Each knob can be tuned to a different f.m. station and pre-set, so that subsequent changing from one station to another only requires the appropriate tuning button to be depressed. Stations can also be tuned manually if desired. The receiver, model $160-\mathrm{T}$, provides r.m.s. power of 15 W per channel at 1 kHz with 0.5% harmonic distortion. Audio bandwidth is 25 Hz to 25 kHz . Usable sensitivity of the tuner section is $2.2 \mu \mathrm{~V}$ and signal-to-noise ratio at 100% modulation and 1 mV input is 60 dB . The design incorporates i.cs, f.e.ts and a silicon-transistor complementary output stage

Fisher 160-T 40-watt f.m. stereo receiver.
with short circuit protection. The presence of a stereo broadcast automatically switches the decoder to stereo and operates the indicator lamp. Tone controls are of the Baxandall design. Dimensions are $39 \times 8 \times 29 \mathrm{~cm}$; weight 6.8 kg and power consumption 65W. Price: 129 gn . U.K. Distributors: Getz Bros. \& Co. Inc., 2 Harewood Place, London W.1.
W.W. 332 for further details.

Noise cancelling microphone

The type 4-70 noise cancelling ribbon microphone just introduced by Lustraphone uses two ribbons, inclined towards each other like the sides of a ' V ' and connected in antiphase. When the direction of the sound waves is such that they enter symmetrically between the two ribbons (into the top of the ' V ') the ribbons move in opposite directions, and because they are connected in antiphase their signals are additiye. Sound waves arriving at either side of the ' V ', however, cause both ribbons to move in the same direction, and in this case the two electrical signals are subtractive.

This results in an acceptance angle of about 50° for wanted sounds, while unwanted soundsthose arriving from all other directions outside this acceptance angle-produce very weak signals. Price of the $4-70$ microphone is $£ 265 \mathrm{~s}$. Lustraphone Ltd., St. George's Works, Regents Park Road, London N.W.1.
W.W. 323 for further details.

Sansui Control Amplifier

One of the exhibits from Japan was a solid-state combined stereo control and power amplifier, model AU-777 by Sansui. This unit has a continuous power output rating of $2 \times 30 \mathrm{~W}$ and a sensitivity of 2 mV for rated output. Harmonic distortion is $<0.5 \%$ and power bandwidth (i.h.f.)

Sansui AU-777 control amplifier with a continuous output of 25 W per channel.
is 20 Hz to 50 kHz . Frequency response of the main amplifier is given as 20 Hz to $100 \mathrm{kHz} \pm 1 \mathrm{~dB}$ at normal listening level. Dual concentric negative feedback type tone controls give treble and bass lift and attenuation of 15 dB . The pre-amplifier and main amplifier sections are designed so that they can be used separately in conjunction with other equipment. A total complement of 26 transistors and 13 diodes is used in a transformerless circuit with protection against accidental shortcircuits. Four outputs and seven inputs provide the AU-777 with all the necessary inputs and outputs for an amplifier: pre-amp, tape, and two centre channel outputs, two gram inputs, tape and auxiliary inputs. The centre channel outputs are two terminals for connection to a third mono amplifier which is said to give a three-dimensional effect. The full control range includes a loudness control and presence switch, also a speaker selection switch. Price 105 gn . U.K. Agents: Technical Ceramics Ltd., Cheney Manor Industrial Estate, Swindon, Wiltshire.
W.W. 337 for further details.

Rogers F.M. Tuner

Provisional details were available at the Audio Fair of a new f.m. tuner unit being displayed by Rogers Developments which they call the Ravensbourne 2. Although designed for use with the Ravensbourne stereo amplifier, it is suitable for use with many other amplifiers. The Ravensbourne 2 is an example of a product designed primarily for export, but which is recommended for use in this country where reception conditions are particularly difficult. It has high sensitivity ($3 \mu \mathrm{~V}$ for full limiting) and high selectivity, but adequate bandwidth for stereo reception. Three f.e.ts are featured in a four-gang front end followed by six silicon and one germanium type. An optional decoder contains a further seven silicon transistors. Audio output is 150 mV r.m.s. average (mono) and 200 mV r.m.s. average (stereo). Four different prices are quoted for the tuner according to whether it is supplied with or without decoder and case. The top price for a complete stereo model with case is $£ 6310 \mathrm{~s}$ and its dimensions are $32 \times 29 \times 13 \mathrm{~cm}$. Rogers Developments (Electronics) Ltd., 4-14 Barneston Road, Catford, London S.E.6.
W.W. 339 for further details.

Ravensbourne 2 f.m. tuner (Rogers).

Arena Tuner/Amplifier

Made by Hede-Nielsen Fabriker, of Denmark, the Arena products stand included tuner/amplifier model T1500F which became available in May. This is a stereo a.m./f.m. tuner combined with power amplifiers which provide 6 W output per channel. $87-104 \mathrm{MHz}$ is covered on the f.m. range, and on a.m. a s.w. band covers $40-51 \mathrm{~m}$ plus the usual medium- and long-wave broadcast bands. Sensitivity on f.m. is $1 \mu \mathrm{~V}$ and on a.m. $10 \mu \mathrm{~V}$. Socket facilities provide for up to four $4-\Omega$ impedance loudspeakers, magnetic $(6.5 \mathrm{mV}$ at $50 \mathrm{k} \Omega$) and crystal (450 mV at $5 \mathrm{M} \Omega$) pickups, and tape recorder input and output. Separate bass and treble combined tone controls give $\pm 15 \mathrm{~dB}$ and $\pm 10 \mathrm{~dB}$ variation respectively. Frequency response is claimed to be $20 \mathrm{~Hz}-18 \mathrm{kHz}$ and harmonic distortion 0.15% at 5 W . The T1500F measures $15 \times 42 \times 21 \mathrm{~cm}$ and employs 20 transistors and 20 diodes. Special features include an automatic f.m. scanning system and preselection of five f.m. stations. Price 61 gn . Arena products are distributed in the U.K. by Highgate Acoustics, 184-188 Great Portland Street, London W.1. W.W. 330 for further details

Books Received

F.E.T. Applications Handbook edited by Jerome Eimbinder. Introductory chapters look at the various types of f.e.t. that are available, discussing their electrical characteristics and applications. Two chapters are devoted to biasing problems and techniques and a further chapter concentrates on the device as a constant current source. Oscillators, noise, audio amplifiers and pre-amplifiers, v.h.f pre-amplifiers, source followers, phase splitters and drive circuits occupy a further seven chapters. The f.e.t. as a switch forms the subject heading under which the majority of the remainder of the book falls and the f.e.t's use in chopper, integrated and commutating circuits is described as are serial logic arrays. The final chapter is concerned with the photo-f.e.t. Pp 286. Price $\$ 12.95$. Tab Books, Blue Ridge Summit, Pal7214, U.S.A.
F.E.T. Circuits by Rufus P. Turner contains a wide range of practical circuits. Some difficulty may be experienced by the English reader because of the American terminology used, however, as with other books from this publisher, a section is included to assist the English, and this together with a little common sense should surmount any problems which may occur. The first chapter is devoted to the construction, operation and performance of the f.e.t. Constructional projects are under six headings: amplifiers, oscillators, receivers, transmitters, control and instrument circuits. The amplifier section includes circuits for a variety of audio amplifiers, and an audio notch filter, and proceeds up the frequency spectrum through i.f. to video amplifiers. The oscillators described simi-
larly cover the frequency range from audio to r.f. The transmitter section includes a number of designs but the English reader should tread with caution in view of the difference in licence regulations between here and America, a subject which is discussed in the advice to English readers' section. Control circuits cover the usual range of devices in the electronic novelty category: timers, sound operated relay, etc. The instrument section describes about twenty assorted electronic test instruments. Pp 160. Price 26s. W. Foulsham \& Co. Ltd., Slough, Bucks.
Transistor Audio Amplifiers by S. J. Hellings, from the Philips Technical Library, is roughly split into two sections; the first covering transistor theory and the second amplifier design. The transistor theory starts with the necessary basic description of the structure of matter and proceeds to the relationships between the h-parameters and transistor properties. The remainder of the book (21 chapters) is devoted to amplifier design problems -feedback, temperature, frequency limitations, interstage coupling, tone control, equalization, noise, etc. Several complete amplifier circuits are given together with complete design information. Pp 333. Price 104s. Macmillan \& Co. Ltd., Little Essex Street, London W.C.2.
Practical Television Circuits by R. E. F. Street. There are enough circuits in this book to keep the most industrious constructor going for years. Constructional information is given on five aerial pre-amplifiers, the Olympic II transistor 14-inch television receiver (405 lines only), a TV hearing aid and a baby alarm, interference suppression circuits, TV and converter and test equipmentoscilloscope, wobbulator, Q-meter, e.h.t. voltmeter, signal strength meter, etc. Pp 375. Price 30s. Newnes Books, Hamlyn House, 42 The Centre, Feltham, Middlesex.

Fundamentals of Digital Magnetic Tape Units

 by the Field Engineering Department, Univac Data Processing Division, of the Sperry Rand Corporation. The book should be of value to those schools and individuals who are at the present time employed on a computer project and wish to extend this to embrace magnetic tape storage. Two early chapters look at the various aspects of electricity and magnetism as they apply to tape recording in general and digital tape recording in particular. Twenty pages are devoted to tape transport mechanisms which discuss the various pinch roller, plus vacuum, tape handling methods in use. The recording techniques chapter describes the various ways that are employed to record binary information together with data recovery and error detecting techniques. The last chapter deals with circuits, both read and write, but they are not complete in that head impedances and semiconductor types are not given. Pp 96. Price 21s. W. Foulsham \& Co. Ltd., Slough, Bucks.Semiconductors Vol III-Non-linear circuits by E. J. Cassignol (from the Philips Technical Library). The first part of this volume deals with oscillators, the initial chapter outlining the study methods involved. The oscillator section is split into two, one part covering the harmonic oscillators (phaseshift, tuned circuit, resonator-crystal-tuning fork, etc., bridge oscillators) and the second part relaxation oscillators (various types of multivibrators). Sandwiched between these two is a chapter on various aspects of $R C$ circuits. Thirty pages are devoted to scanning circuits with detailed discussions on the various integration methods that may be employed. The digital circuits chapter includes a summary of Boolean algebra and elementary logic functions and discusses transistor and diode logic circuits, magnetic circuits and binary elements. The remainder of this book concentrates on power supplies. Pp 265. Price 108s. Macmillan \& Co. Ltd., Little Essex Street, London, W.C. 2.

Television Camera Tubes

Recent developments in the image orthicon

by I. R. Sinclair, B.Sc., M.I.E.E.

In the years after the war, the image orthicon became firmly established as the only television camera tube suitable for a wide range of high-quality transmissions. The hope that the small and comparatively inexpensive vidicon, using a photoconductive layer of antimony trisulphide, would replace the image orthicon, has not been realized. The improved form of vidicon known as the Plumbicon* (devised by the Philips Company, and using a lead oxide layer formed by evaporation of lead oxide in argon gas) has proved a much more likely successor. Its smaller size, its comparative simplicity from the user's point of view, and its good performance make it preferable to the i.o. in many respects, and in colour cameras the problems of obtaining registration from three Plumbicons are much less than the corresponding problems with image orthicons. Nevertheless, to utilize the full resolution capabilities of a colour signal on 625 lines (remembering that the monochrome signal has a much greater bandwidth than the chrominance signals, and is responsible for the impression of resolution seen by the eye) it is preferable to use a $4 \frac{1}{2}$ inch i.o. to provide the monochrome signal, and Plumbicons (two or three) for the chrominance signals.

Eventually, the lead oxide tube will probably replace the i.o. completely, but, at the moment its development seems to have slowed down somewhat, while recent work indicates that the full performance of the i.o. has not yet been realized. Economic considerations may also delay the displacement of the i.o. by the Plumbicon; neither form of

* Registered trade mark of N. V. Philips' Glocilampenfabrieken of Eindhoven, Holland.

After graduating from
 St. Andrews University I. R. Sinclair joined English Electric Valve Co. in 1956 as a junior engineer working on direct-view storage tubes. He later transferred to the television camera tube department where he stayed until 1966 when he joined the staff at the Hornchurch College of Further Education. He is now a lecturer in physics and physical chemistry at the Braintree (Essex) College of Further Education.
tube is inexpensive, but the replacement of large numbers of cameras and lenses is not a process which is likely to be hurried. When the $4 \frac{1}{2}$-inch i.o. was introduced, it was intended that this technical advance on the 3 -inch tube would eventually make the latter obsolete. This has not happened; the lower price of the 3 -inch i.o. and its associated equipment has, in fact, until recently caused a steady expansion in the sales of this tube size.

In North America, of course, many commercial stations are run on a budget which allows very little for maintenance or replacement of equipment; similar economic considerations also apply to several European countries. Another factor which has prolonged the life of the 3-inch i.o. in America is the alleged low quality of the picture on domestic receivers; one engineer once remarked that they could get away with a thirty-line system if the wording on the commercials were made slightly bigger!

Operation of the Tube

The tube can be divided, for the sake of understanding its operation, into three sections (see Fig. 1); the image section, dealing with the conversion of the light image into an electron image and the storage of that image in the form of a charge pattern on a dielectric; the scanning section, forming the electron beam which scans the charge pattern and forms a modulated return beam; and the multiplier section, which noiselessly amplifies the modulated return beam to the usable proportions of an output signal at the final anode.

The image section comprises the photocathode (a thin layer of photo-emissive material prepared in situ during the evacuation of the tube), the image accelerator electrode, and the target cup, to which is attached the target and target mesh assembly. When the photocathode, to which an electrical contact is made, is illuminated and made a few hundred volts negative to the other electrodes, electrons leave it in quantities proportional to the strength of the light. The light image formed by the lens on the photocathode has now become an 'electron flow' image, and must be focused by the image accelerator electrode and by an externally applied solenoidal magnetic field to prevent deterioration and to ensure that the size of
the electron image matches the size of the target. In the older 3 -inch tube, a reduction in size was necessary; in the later $4 \frac{1}{2}$-inch version the image is magnified; in each case this is accomplished by grading the strength of the applied magnetic fields. Modern cameras use additional faceplate coils to improve the geometry of the image section, high (negative) photocathode voltages are also used to minimize chromatic abberration caused by the different initial speeds of electron emission.

The electron flow image is converted to a stored charge image at the target-a thin sheet of dielectric material with a small but important amount of conductivity from front to back. Electrons landing on this target, conventionally made of 0.0001 -inch thick soda-glass, charge the surface facing the photocathode positively by secondary emission (each landing electron knocks off more than one existing electron, so the net result is loss of electrons which amounts to a positive charge) as long as the secondary electrons released by this process can be collected at a surface more positive than that of the target face. This more positive surface is provided by the metal target mesh, located about 0.001 -inch in front of the target Besides acting as a collector of secondary electrons, the target mesh serves two other functions. There exists a capacitance between the mesh and the surface of the target (the assembly is in effect a parallel plate capacitor) and it is this capacitance which is used to store charge. The presence of the target mesh also helps to ensure that electrons arriving from the photocathode arrive normal to the target, and not at random oblique angles.

Due to the conductivity of the target, an image of potential appears also on the side facing away from the photocathode, and it is this image which is scanned by the electron beam in the scanning section. The beam, derived from a cathode and grid similar to those used in a c.r.t., is limited in diameter by passing through an aperture of diameter $0.001-0.0025$-inch, and is focused electros tatically and magnetically. Electromagnetic scanning is used, and bucking coils are employed in modern cameras to ensure that the scanning field does not extend into the region of the target. In addition, two sets of coils (the alignment coils) whose axes are perpendicular to each other and to the tube's axis, are used to ensure that the beam
approaches the target along lines perpendicular to the target surface. The operating characteristics of the image orthicon are greatly improved if another mesh, the field mesh, is placed between the target and the electron gun at a distance of about 0.25 -inch from the target. This kas the effect of altering the decelerating field at the target (the mesh is run some ten volts positive to the G4 of the electron gun) and the visible effect is a considerable improvement in black-white transitions, which are very much sharper when a tube incorporating a field-mesh is used.

The target potential at any point is set by the stored charge which in turn is derived from the photocurrent at the corresponding point on the photocathode. The maximum positive excursion of the target potential is set by the voltage applied to the target mesh because secondary electrons can leave the target only if a more positive potential exists in a region which is not co-planar; when a region of the target has the same potential as the target mesh there is no tendency for electrons to travel from one to the other. The minimum potential of the target is set by the beam striking the target-this is equivalent to connecting the target to cathode, and so the minimum target potential is cathode potential. For the best rendering of grey tones by the image orthicon, the target mesh is usually set at 3 volts positive to cathode potential.

As the beam scans the target, varying fractions of the beam current land on the target according to the potential pattern on it. The remaining fraction of the beam is reflected specularly to form a return beam moving back down the scanning section; this return beam is a larger fraction of the incident beam while a portion of target at cathode potential is being scanned, and a smaller fraction of the incident beam during the scan of a region of maximum positive potential. The return beam current is therefore the inverse of the original photocurrent. The forward beam current and the time constant of the target (the product of the through resistance of a unit area and its capacitance to the target mesh) together determine the fraction of the charge at each scan and hence the storage time-the time for which an image is visible after photocurrent to the target has ceased. Since the conductivity of the target varies with tempe-
rature, the storage time of an image orthicon is very long when the tube is cold (a phonomenon known as sticking) and short when the tube is hot (causing some loss of sensitivity). In modern cameras, the temperature of the target section of the tube is thermostatically controlled.

The function of the multiplier section is to amplify the return beam signal by a series of secondary emitting stages, or dynodes. As in the case of every amplifier, the first stage is the most important. If the forward beam always travelled exactly perpendicular to the target, the return beam should be the exact inverse of the forward beam. As the angle of incidence varies slightly during scanning, the angle of return also varies, and the effect is that the return beam scans the first dynode. Because of this, any variation of the secondary emission ratio of the first dynode over its scanned area must cause variations in the output signal which superimpose a 'picture' of the first dynode surface on the received picture.

Modern Developments

The Target.-Since the target is the processing element which converts the weak continuous signal from the photocathode into a stronger intermittent (scanned) signal, it is not surprising that a considerable amount of development work has been carried out on this section. Conventionally, the target is made of soda-glass blown into a bubble. A suitable portion of the bubble is selected and sealed onto a metal ring, the rest of the bubble being broken off. A later development is to use two semicircular loops of wire which are electrically heated, coated with glass, and then separated by rotating one loop about the common axis. In this way: a circular film of glass is produced, and can be sealed to a metal ring in the same way as before. This method is particularly useful in making the types of glass target referred to later which must be prepared in a non-oxidizing atmosphere.

General Electric of the U.S.A. has pioneered the use of targets of magnesium oxide. This material has a high secondary emission ratio, which has the effect of increasing the sensitivity of the tube, but the resistivity is also very high, which makes it necessary to use very thin films of the material. Although the technology of prepar-

Fig. 1. Sectional diagram showing the disposition of the image, scanning and multiplier sections of an image orthicon

ing thin films of refractory materials is adequate, means of supporting such films are not, and target vibration is even more of a problem than it is with glass targets. Despite this, the life of tubes using magnesium oxide targets is claimed to be very long, the response is linear, and the warm-up time negligible.

These benefits derive from the different conduction mechanisms of glass and magnesium oxide, the former conducting by the movement of sodium ions (since glass is a 'fossilized' liquid, not a solid) and the latter by movement of electrons. Ions are large particles, and their movement in one direction through a glass target depletes one side and enriches the other; there is no mechanism for reversing this process short of melting the glass to permit the ions to move back freely. The consequences of this process are that the resistivity of the target rises steadily during the life of the tube, increasing the time constant of the tube until it is unsuitable for anything but still pictures. The transfer of ions can also take place to such an extent when the camera is left on a stationary scene that the charge image of the scene is permanently 'printed' on the target. These effects limit the life of a tube using the conventional glass target, and the use of electronically-conducting magnesium oxide has shown that image orthicons with very long working lives can be made once this barrier is removed.

Another approach to the desired electronic conduction exists by making glass containing a high proportion of titanium oxide, along with other oxides of the same chemical group. Because these oxides can exist in either of two stable chemical conditions, one being electron deficient, electronic conduction can take place in a glass made of such oxides. This approach preserves the traditional type of material, but imposes severe manufacturing problems, since the glass cannot be worked in the presence of even a minute quantity of air. Targets made from this electronically conducting glass exhibit the same desirable long-life properties as those made from magnesium oxide; and are mechanically more robust.

A third form of target material which is under intensive investigation is the secondary electron conduction (s.e.c.) target. Secondary emitting targets made from aluminium oxide coated with aluminium and with potassium chloride have been known for some time, and are used in light amplifiers as transmission multipliers, that is, multipliers where the secondary electrons emerge travelling in the same direction as the primary electrons causing them. Research by the Westinghouse Co. of the U.S.A. has shown that a small modification to the process of depositing the potassium chloride layer (evaporation in an atmosphere of dry argon) results in a spongy layer with an extremely high secondary emission ratio. Secondary emission ratios of $50-400$ seem likely if production difficulties can be overcome; the main difficulty in the use of such targets is that moisture must be totally excluded during their handling. To comply with such a requirement means that the design of an image orthicon must be considerably changed, no conventional glass seal-

Wireless World, June 1968

Electrode assembly of a $4 \frac{1}{2}$-inch E.M.I. image orthicon television camera tube showing the multiplier and dynodes.
ing operation must, for example, be carried out after target insertion, limiting constructional methods to solder-glass joints or argon-arc welding. With the tube filled with dry argon, the former is unsatisfactory because it requires heating the whole tube; the latter requires considerable redesign of the tube in the target region, though such a redesign would offer an excellent opportunity for rationalizing the design of the target mountings and incorporating improvements in the image section geometry.

Apart from the use of new target materials, the growing problem of target microphony has promoted a large amount of research on the mechanical nature of the processes at the target. Two types of target microphony have been identified; shock microphony, caused by vibration, whether mechanical (in tracking or handling) or acoustical (especially with percussive sounds); and electrical microphony, caused by magnetostriction in the material in which the target is mounted, which starts and stops in random fashion irrespective of the presence or absence of vibration. Any form of microphony is most undesirable in a camera tube, since it is readily visible on domestic receivers, whereas most other forms of signal degeneration (with the exception of sticking) are not.

Both forms of microphony are greatly aggravated by the use of high (3 V or more) target mesh voltages, and the increased trouble caused by microphony has followed directly on the adoption of 3 V as a standard target potential by major camera tube users because of the better tonal gradation afforded. Shock microphony is in every way similar to the microphony encountered in high-gain amplifier valves, and is dealt with in a similar manner. Movement of the target is equivalent to moving one plate of a charged capacitor, causing a variation in potential at each point of the target. When this occurs during scanning, the potential variations are visible on the monitor picture as horizontal
bands of light and shade moving up or down the picture. The effect is very similar to sound on vision and can easily be confused with it, since the movement and number of the bands varies with the pitch of the sound. One distinguishing feature is that sound-onvision occurs over all the audio frequencies, but shock microphony tends to be confined to the frequencies around the resonant frequency of the target, usually between 350 and 500 Hz .

A cure may be effected by using soft spacing strips between target and mesh, but this causes practical difficulties, since the thickness of the strips must be of the order of 0.001 inch or less, and no projections are permissible. A compromise may be reached where normally constructed tubes are used for the older types of cameras, and specially non-microphonic tubes for cameras which use motor driven lens turrets or motor-operated zoom lenses.

Electrical or "spontaneous" microphony is due to the combined effect of the electrostatic forces due to the charge on the target and the magnetostrictive forces caused by the action of the scanning fields on the metal ring holding the target. The magnetostrictive effect slackens the target so that the magnetic field increases, and the electrostatic field increases the attractive force between target and target-mesh as the target is discharged to cathode potential. The combination of the two causes the target to vibrate at its resonant frequency; the vibration is erratic, however, since the forces on the target vary with the over-all charge and the degree to which the target is discharged.

Factors favourable to spontaneous microphony include high target voltage, low light levels and high scanning field strengths at the target. It is unfortunate that the metal most suitable for sealing to soda-glass, a 50% nickel iron alloy, is also the Nl Fe alloy with maximum magnetostrictive effect. The substitution of titanium for nickel-iron in the E.M.I. $4 \frac{1}{2}$-inch camera tubes in 1964 effected a complete cure of the spontaneous microphony problem, and no difficulty is presented by the electronically-conducting glasses, since they generally use rings of molybdenum, which also exhibit negligible magnetostriction.

The First Dynode.-The problem of the scanned surface of the first dynode has been tackled electrically and chemically. If the whole gun is tilted (the beam being straightened by a correcting coil) only a part of the surface is in focus for the return beam. A more elegant method is to use a tilted or curved dynode surface, though this causes fabrication and assembly problems. The surface finish and material used for the dynode are both of considerable importance; a smooth matt finish is desirable, and materials include silver-magnesium alloy, chromium and nickel. At present materials may be chosen for long life or for minimum visibility but not both although much was hoped for the nickel dynode at one time.

With the new electronically conducting targets offering very much longer target life-times, the need for a long dynode life to match this has intensified the work being
done on the production of new dynode surfaces.

Beam Noise.-The limiting factor in the signal-to-noise ratio of the camera tube is the beam noise. This limitation is aggravated by the tube operating conditions, which cause maximum beam current to return in black areas where beam noise is very visible. The change to 625 lines has made this more obvious, since the signal-to-noise ratio is some 3 to 5 dB lower at the higher scan rate compared with that of 405 lines.

The obvious thing is to reduce the noise of the beam leaving the cathode and this may be done to some extent by using a cathode surface of better finish or of better geometry. A similar problem is encountered with travelling wave tubes, and smooth concave cathodes have materially assisted in reducing beam noise.

A more radical approach is to redesign the tube for Isocon operation. The Isocon principle known for some considerable time but never used commercially until very recently, reduces beam noise by separating off the unmodulated portion of the return beam current and allowing only the modulated portion to reach the first dynode. The modulated portion of the return beam is that portion which is elastically reflected by the target voltage, the remainder of the return beam being electrons which have been scattered at the target, and which, because of their random velocities, constitute a noise signal. In principle, these two components of the return beam can be separated on the basis of their differing lateral velocities by means of deflecting fields and a partition. Working Isocons have been produced, and have a marked superiority in signal-to-noise ratio over conventional image orthicons, but it is doubtful if their very high cost could be justified in broadcast television use, even on 625 lines where the higher scan rate has the effect of reducing the signal-to-noise ratio obtainable from the tube.

There is much work to be done on the image orthicon. The $4 \frac{1}{2}$ inch tube does not have the resolution superiority over the 3 -inch which theory would indicate. Some of this lost resolution is due to the image section (more elaborate than that of the 3 -inch tube) which suffers from the inevitable lens distortions. Some improvement in resolution (3 dB increase in signal at 5 MHz) can be obtained by quite small changes in electrode shapes in this section. A further loss of resolution arises from the difficulties of maintaining focus and orthogonal target landing over the larger area of the $4 \frac{1}{2}$-inch target; this problem should be tackled by designing the tube and its scanning yokes together. As far as the target region is concerned, the processes of electron distribution which take place at the target are certainly not well understood, yet these processes are fundamental to the operation of the tube. Some of the problems may never be tackled now that all the manufacturers of image orthicons are also making lead-oxide vidicons.

The writer wishes to acknowledge gratefully the help of E.M.I. Ltd. in the provision of information and photographs.

Demonstrating A.C. Theory

Sampling method using a strobing meter

by J. G. Assenheim, M.Sc., B.Sc., M.I.E.E.

That current should exist in a circuit when the voltage is at zero and vice-versa may be accepted by many students as a theoretical proposition, but it is regarded with scepticism as far as practical circuits are concerned. On first acquaintance, the beginner finds difficulty in appreciating the phase relationships which exist in an a.c. circuit with reactive components. Many lecturers feel that a practical demonstration, to show that these phase relationships do indeed exist, helps to clear up any doubt in the student's mind.

Unfortunately, demonstrations of this type are not easily performed, except on a double beam oscilloscope and, as many second-year students are not familiar with the function of these instruments, they remain unconvinced. Most students approaching a.c. theory for the first time have had experience with, and have learned to trust, the simple moving coil meter. A demonstration showing voltages and currents displayed on centrezero meters placed at various points in a circuit which is energized with a very lowfrequency sinusoidal voltage appears to be the most instructive form of demonstration. A number of colleges provide this type of exercise and typical examples have appeared in Wireless World in the past few years. ${ }^{1,2,3}$

If the frequency of the source is to be sufficiently low to enable the waveforms to be examined on a number of meters simultaneously, then the component values required are inconveniently large. If the display is not to confuse students, and the lecturer is to be given sufficient time to describe what is happening, the frequency should not be higher than about 0.2 Hz , i.e. one cycle in 5 seconds, and if several meters are used it should be even lower. Unfortunately, at this frequency the component values for a typical demonstration turn out to be about $20,000 \mu \mathrm{~F}$ and about $10,000 \mathrm{H}$.

If one is prepared to allow the added complication of an additional d.c. polarizing voltage to be present in the circuit, the necessary capacitance can be obtained using electrolytic capacitors but an inductor of the required value is necessarily very large and expensive. Moreover, inductors as large as this tend to have very low Q values and saturate easily making some demonstrations, such as, for instance, log-
arithmic decrement of a ringing tuned circuit, impracticable.
A compromise is to simulate a large inductance with a "black box" utilizing some thermal device such as a thermistor or using other electronic circuitry. An example of this approach has been given in $W . W .{ }^{1}$ In the writer's experience, however, students find such a black box unconvincing and the whole point of the exercise fails when it is necessary to resort to this technique, especially as in many cases the reactance of the device decreases with increasing frequency and it often needs a d.c. polarizing voltage before it will work at all.

Use of a strobing meter

A much more elegant approach is to use one of the new strobing meters which are now available and which do not require low frequencies or large components to allow complete investigation of an a.c. circuit. This
type of instrument works by sampling any input waveform for a very short period once per cycle and integrating all of the sampled pulses to build up an exact copy of the waveform, but at a much lower frequency. The frequency of the sampling action is adjustable and by setting the sampling rate to be nearly that of the input frequency, a very low frequency representation of the input waveform is obtained in the same way as an optical stroboscope provides a slow motion representation of a periodic mechanical motion. The strobing meter provides a slow motion copy of an a.c. waveform on a centre-zero meter and the demonstration appears similar to the v.l.f. demonstration described previously.

The manner in which the instrument operates is illustrated in Fig. 1. As an example, a simple a.c. circuit containing resistance and inductance is shown and the waveforms of voltage and current are shown alongside.

A simple experiment used to demonstrate the phase of voltages developed across a resistance and inductance in series, in relation to the current phase.

The P.E.L. strobing multimeter which, as described in the text, can be used to investigate an a.c. circuit for demonstration.

The readings on the meters resulting from the sampling pulses are indicated, and these would be steady readings if the sampling rate was made equal to the supply frequency. In practice, for demonstration purposes, the sampling rate would be slightly different from the supply frequency and the sampling pulses which occur once per cycle would appear at a slightly different position in each successive cycle. The difference between the sampling rate and the supply frequency is the apparent display frequency and this can be as low as required. It would normally be adjusted to a convenient speed for the particular demonstration being given. The real frequency can be any suitable frequency available such as 50 Hz or higher. Component values required are quite small and for a typical demonstration at 1 kHz suitable values would be around $0.01 \mu \mathrm{~F}$ and 100 mH . Several meters may be used' together in this way and, providing the sampling pulses all occur together, each instrument indicates the voltage or current and its phase in the same way as the simple centre-zero meters indicate these values in the v.l.f. circuit described previously.

A good example of an instrument of this type is the Strobe Multimeter D40* shown in Fig. 2. This contains two independent multimeters in one case, permanently synchronized together so that relative phase as shown on the centre-zero meters is always correct. Each multimeter has eleven current ranges from $1.0 \mu \mathrm{~A}$ full scale to 500 mA full scale, and tèn voltage ranges from 0.5 V full scale to 500 V full scale. As the input resistance on the voltage ranges is $1 \mathrm{M} \Omega / \mathrm{V}$ the instrument does not affect the working of the circuit to which it is connected.

The writer has found that this method of demonstrating the action of a.c. circuits is readily accepted by students as they are often familiar with the way in which a stroboscope works.

REFERENCES

1. "Demonstrating a.c. theory," by T. Palmer. Wireless World Oct. 1963.
2. "Demonstrations at v.l.f.," by T. Palmer. Wireless World June 1966.
3. "Demonstrating rectifier action in slow motion," by T. Palmer. Wireless World Feb. 1968.
[^3]
Manufacturing Colour Tubes

Mass production of shadow-mask colour television tubes is well under way at the Mullard cathode-ray tube factory at Simonstone, between Preston and Burnley, Lancs. This plant, which started up in 1955 and has a production capacity of $1 \frac{1}{2}$ million monochrome tubes a year, manufactures everything for the colour tubes except the shadow mask and the components for the electron guns. Covering 44 acres and employing 2,000 people, it has two distinct parts-a glass factory (incidentally one of the largest in the U.K.) and a tube assembly and screen laying plant. Assembly and screen-laying processes are basically similar to those outlined in a Wireless World article last year* but there is a greater proportion of automatic machinery than in the small plant operating. The production rate at Simonstone depends, of course, on the demand for colour television receivers, but Mullard say that by the end of 1968 the works will be capable of manufacturing 150,000 shadow-mask tubes a year. The two sizes of colour tubes, 25 -inch and 19 -inch, are made in alternate runs (of several weeks or months

[^4] issue.
each) as parts of the machines have to be changed to handle the different sizes of components.

The glass factory, which produces the cones and faceplates, comprises three main parts: a weighing, dispensing and mixing area for raw materials; an oil fired furnace, operating at $1,550^{\circ} \mathrm{C}$; and two automatic glass forming presses. The cone and faceplate of the colour tube require different types of glass, so the plant only produces one of these components at a time (one of the two presses acting as a standby). To change from one type of glass to the other takes about ten days. The furnace operates continuously and can handle 100 tons of glass a day.

What does all this mean to the customer? There does not seem to be any established retail price at which a shadow-mask tube can be bought over the counter. Last September Thorn-AEI Radio Valves and Tubes Ltd. said that the retail price for a 25 -inch tube was "in the region of $£ 90-£ 100$ ". (Receiver manufacturers, however, can buy 25 inch tubes for about $£ 55$ each and 19-inch tubes for about $£ 45$ each.)

Performance testing completed tubes. In this five-position test bay checks are made for blemishes in each colour and in white, for convergence, linearity, cathode quality and other characteristics. The work is speeded up by measuring aids such as digital read-out for colour purity tests, and the whole bay has a throughput of up to 30 tubes an hour.

Series Voltage Stabilization

A review of the properties of conventional voltage stabilizers and a practical circuit incorporating automatic overload protection without employing extra transistors

by Jan-Erik Sigdell*

Fig. 1 Conventional voltage stabilizer.

Fig. 2 Illustrating the resistive path from input to output. The ripple in the base current modulates the collector current.

Fig. 3- Employing a current generator to eliminate resistive and capacitive paths from input to output.

Fig. 4 This circuit is bistable and tends to trigger into the cut-off state if the load is rapidly changed between two values.

Most transistor circuits for series voltage stabilization used today are of the type shown in Fig. 1—or of a similar type (the lower transistor is often replaced by a differential pair). This circuitry has the following two disadvantages. '(1) There exist resistive or capacitive paths from input to output, which tend to raise the hum at the output and (2) there is no inherent protection against overload, either for the stabilizer or for the load itself. The first of these two disadvantages is especially serious when a path passes through an active component in such a way that its humraising influence is amplified (e.g. through the base-emitter diode of a transistor). This disadvantage is often overcome by more amplification in the feedback loop or e.g. by dividing resistor R, in Fig. 1, into two resistors and
*Chalmers University of Technology, Göteborg S, Sweden."

Fig. 5 A circuit that can be made to behave in a monostable fashion, the current cut-off state only being reached in the event of overload.
decoupling their interconnection with a capacitor or a Zener diode. The second disadvantage is often overcome with an extra circuit for current limiting or current cut-off.

Concerning the first disadvantage, it must be kept in mind that a configuration such as the one in Fig. 2 shall be regarded as having a resistive path from input to output (grounded side), as the ripple in the base current modulates the collector current: Concerning the second disadvantage the series transistor (transistors) should, at a determined current level, change over from being a part of a voltage stabilizer to being a part of a current stabilizer or a current cut-off circuit.

The first requirement can be fulfilled with the Zener diode decoupling method previously mentioned or by employing a current generator ${ }^{1}$ as in Fig. 3 (if Zener diodes are regarded as ideal). Two other solutions that fulfil both requirements are shown in Figs. 4 and 5. Clearly stabilizers using these designs may become bistable and the only way to ensure monostability in the voltage stabilizing mode is to provide 'on' leakage currents. This is not unrealistic for the circuit of Fig. 5 as will be seen. On the other hand one may introduce extra current sources through reversely polarized diodes with sufficient leakage currents. Also the new field-effect current limiting diodes are of interest for this purpose, although as yet expensive. Another possibility is to put a zener diode across transistor Tr_{3}, Figs. 4 and 5, which conducts when the output voltage is low but cuts off when it reaches its stabilized value. However, this requires a sufficient value of resistance in series with

Fig. 6 A practical circuit utilizing the properties discussed.

Fig. 7 The current cut-off characteristic of the circuit of Fig. 6.
the Zener diode in order to limit the short circuit current at the output.

Bistability may also be an advantage, but only if the circuit automatically triggers itself into the voltage stabilizing state when the input voltage is applied and the output loading is not excessive. Furthermore, it should not trigger to the cut-off state if the load is suddenly changed between two permitted values. The circuit of Fig. 4 has both of these undesirable properties.

The circuit in Fig. 5, however, can be monostable, so that the cut-off state can be achieved only when an overload exists. This is due to the leakage current in transistor $T r_{1}$ which is amplified twice in transistors Tr_{2} and $T r_{3}$ and drives the circuit from the cut-off state when the output loading is within limits.

A practical realization is shown in Fig. 6. The author has used this in a transistor communications receiver for almost a year. The diode D is included for temperature stabilization (it tends to cancel the change with temperature in the base-emitter voltage of $T r_{1}$). The capacitor C reduces the hum further. The resistor R raises the collector current of tran sistor Tr_{1} to a more suitable working point (with a more constant input resistance). The circuit has the current cut-off characteristic shown sketched in Fig. 7. Its output resistance, measured statically from the change in output voltage at application of a 300 mA load, is 0.13Ω. The hum is less than 10 mV peak-topeak at a load of 300 mA .

Hanover Fair Grows Internationally

When considering exhibitions on a grand scale, the Hanover Fair ("Hannover Messe"), which began in 1947 as an exhibition of German manufactured products, must now surely rank among the biggest and most international in the world. It is a large self-contained entity situated in the rural outskirts of this West German city, with its own airport with light aircraft running a shuttle service to and from the main Hanover airport. An internal electric bus service gives visitors a free ride from one section to another and there are even travelling "pavements" from which visitors can admire the pleasant surroundings in which the exhibition is set, as they are glided slowly to their next point of call.
The Fair, held this year from April 27th to May 5th, comprises some 28 pavilions set in close proximity to each other as well as a large area of outdoor exhibitions, mostly of heavy machinery. Most of the pavilions would each be capable of absorbing the total area of, for instance, London's Earls Court pavilion, and it took three of these to house the electronics section alone. This section embraced electrical installation equipment, control gear, radio and television, aerials, business machines, computers and test and measuring equipment. In the television section the accent was, naturally, on colour, and a few of
the more outstanding items of interest will be reviewed in the July issue of Wireless World. The majority of receivers demonstrating colour were operating on the PAL system but some were being shown which were intended for the French SECAM market. The Association of French Exporters of radio and TV sets had several stands showing SECAM colour pictures on 58 cm receivers. They were using their own generating equipment which provided six channels of colour stills. On some of the screens a horizontal pattern could be seen but this was explained as being due to direct pick-up of interference from a nearby mains feed to the building. At any rate, even in this location SECAM could not suffer from the simple PAL defect-"Hanover blind"!

Some 5,500 exhibitors from Europe and overseas countries were at the Fair, which has come to be regarded as the shop window for world technology, and in passing it should be mentioned that products from Japan in particular were much in evidence. Sony were demonstrating a miniature television receiver measuring about $4 \times 7 \times 20 \mathrm{~cm}$ long with a 2.5 cm c.r.t. at one end. The circuit is designed around i.cs and it covers the full v.h.f. and u.h.f. bands. The receiver can operate from the mains or as a portable using a battery-pack. It costs in the U.S.A. about $£ 100$.

REFERENCE

1: "Taschenbuch der Hochfrequenztechnik", Meinke/ Grundlach: p. 1626.

Circuit Ideas

A regular feature on original ideas incircuitry which have been found practical is to be started in Wireless World. Presented in the form of short notes, the items will be essentially functional "bricks" which somebody has found useful at some time. Performance, originality of realization and economy of components will be the most important criteria. Readers are invited to contribute to this series: the more ideas we get the better will be our selection.

New Products

Low-cost Counter

A development of their $12.5-\mathrm{MHz}$ frequency meter/counter/timer incorporating both i.cs and a memory store has been introduced by Venner at $£ 245$. Each counter board ccmprises three modules; a decade, a store and a display tube drive module. The instrument, type TSA $6636 / 2 \mathrm{M}$, is designed for general purpose applications in indusury and gives a 6 -digit readout, including decimal point, with a figure size of 0.6 in . An optional extra is a 1248 b.c.d. printer output. Because this output is available from the memory, the printer can operate while the next result is being measured, thus increasing the cycling rate over previous models. For frequency measurement $(10 \mathrm{~Hz}$ to 12.5 MHz$)$, gating times are $1 \mu \mathrm{~s}$ to 10 s in decade steps. Input sensitivity is 75 mV into $250 \mathrm{k} \Omega$. Single and multi-period measurement covers a 10 Hz to 1 MHz range with periods from 1 to 10^{7}. As a timer the TSA $6636 / 2 \mathrm{M}$ covers 1μ s to 10 s in decade steps, single and two-line start/stop facilities being provided. Provision is also made for

gated counting. Display time is variable from 0.5 to 5 seconds or infinite, and accuracy is ± 1 count \pm crystal stability $\left(\pm 1 \times 10^{-6}\right)$. Venner Electronics Ltd., Kingston By-Pass, New Malden, Surrey.
WW 304 for further details

New Tracking Filters

Two new tracking filters which are based on the AIM voltage programmable filter (PFO 166) instead of the conventional heterodyne systems using mixers and oscillators, have been announced by AIM Electronics. Analogue computing techniques are employed to simulate a perfect $L C$ filter in which the centre frequency may be varied by an external programming voltage. An application for tracking filters is in vibration studies where resonant frequencies are formed by applying vibrations of increasing frequency to an object under test. The tracking filter is required to eliminate noise and harmonic effects from the resonance detector output signal by following the

increasing vibration frequency. The System 5.18 tracking filter has a frequency range of 0.1 Hz to 50 kHz and is capable of sweeping at up to 50 kHz over frequencies of $300: 1$ without changing switched ranges. System 5.19 is similar but includes an idependent swept oscillator which provides signals suitable for driving vibrators. AIM Electronics Ltd., 71 Fitzroy Street, Cambridge. Ww 307 for further details

A.M./F.M. Signal Generator

Amplitude and frequency modulation facilities are combined in a new m.f./h.f. solid state signal generator TF 2002AS announced by Marconi Instruments. Based on the a.m. signal generator TF 2002, this new instrument incorporates several supplementary features which considerably extend its scope. TF 2002AS is suitable for all types of measurement on a.m. and f.m. receivers, i.f. amplifiers and demodulators within its frequency range-including dynamic measurements normally outside the scope of most signal generators below 30 MHz . It covers the carrier frequency range 10 kHz to 72 MHz with provision for a.m. up to 100% at modulating frequencies from 20 Hz to 20 kHz . The internal modulating oscillator is tunable to any frequency in this range, An incremental tuning control is calibrated directly in frequency with symmetrical scales for positive and negative changes. Although provision has been retained for standardizing its accuracy against the internal crystal calibrator, the direct calibration remains valid within 15% for all main

tuning ranges above 100 kHz without trimming. External frequency shift and remote carrier levelling facilities are both fully symmetrical. A d.c. control voltage variation of $\pm 1 \mathrm{~V}$ produces frequency shift ranging from $\pm 0.5 \mathrm{kHz}$ at 100 kHz to $\pm 50 \mathrm{kHz}$ on the highest frequency ranges. At the lower carrier frequencies, the shift range has been increased more than three times so that the swept-frequency bandwidth display facility has been usefully extended into the m.f. band. High control sensitivity permits utilization of the low voltage sawtooth ouput of transistor oscilloscopes. Carrier levelling, up to $1 \pm 100 \%$ variation on the initial output voltage, is obtained by application of up to ± 6 volts d.c. input. Price £987. Marconi Instruments Ltd., St. Albans, Hertfordshire.
WW 305 for further details

Linear I.Cs

Four new linear integrated circuits available from Mullard are enclosed in multi-lead TO-5 encapsulations. Operational amplifier TAA241 is designed for general purpose applications in instrumentation and control. It is a special version of the TAA243. Nominal supply voltages +12 V and -6 V , and operating temperature range is 0 to $7^{\circ} \mathrm{C}$. Input and output impedances are $32 \mathrm{k} \Omega$ and 200Ω respectively. Offset voltage is 1.5 mV and offset current $0.5 \mu \mathrm{~A}$. Large signal voltage gain is 3,400 . The TAA300 is an a.f. amplifier which, with 10 mW input will give an output of 1 W . It is designed for 9 -volt operation. Input impedance is 8Ω. Low-noise a.f. pre-amplifier TAA310 is designed for use in record/playback units. With a supply of 7 V the voltage gain is greater than 95 dB and input impedance exceeds $10 \mathrm{k} \Omega$. Operating temperature range is -20 to

$+75^{\circ} \mathrm{C}$. Amplifier TAA350 is a wideband, differential, limiting amplifier for use with an f.m. carrier at about 6 MHz and is particularly suitable for television intercarrier sound amplifiers. Nominal supply voltage is 6 V and input limiting voltage is $100 \mu \mathrm{~V}$. Input resistance is $2.5 \mathrm{k} \Omega$ and output resistance 80Ω. Typical voltage gain is 65 dB . Mullard Ltd., Torrington Place, London, W.C.1.

WW 302 for further details

New Frequency Standard

Output signals in decades from 10 kHz to 10 MHz , with extremely close limits of frequency accuracy and stability, are provided by a new frequency standard, the FS3, from Advance Instruments. This instrument is particularly suitable as an external standard frequency where digital frequency meters and timer counters are required to measure to high accuracy, or for use as a precision laboratory standard to which other equipment may be referred, the aging rate being

as low as 2 parts in 10^{9} per day after 30 days' operation. It incorporates an integral charger and rechargeable battery. Should the mains supply fail the instrument automatically continues to operate at full accuracy on the batteries for up to four hours. When the mains supply is reinstated, the battery is automatically recharged. The FS3 utilizes as its master oscillator an oven-controlled 5 MHz crystal. The oven current is monitored for correct operation by a front panel meter. Extensive use of integrated circuits has been made in the design of this instrument. Price $£ 325$. Advance Electronics Ltd., Hainault, Essex.
WW 303 for further details

Switching Programmer

A switching programmer measuring $8 \times 8 \mathrm{~cm}$ in cross section and 25.5 cm long, including the motor, is designed to replace 32 d.p.d.t. relays and related control devices which may be currently employed in conventional switching systems making it possible to greatly reduce wiring and space requirements. It also permits greater flexibility in

setting up and changing required switching patterns. Now available from Sealectro this model 96 D programmer can control 96 s.p.d.t. contacts each of which is electrically isolated to control independent circuits. Contacts are rated to make and break 2 A at 230 V a.c. or 24 V d.c. (resistive load) and the unit's memory drum can be programmed to actuate any number of contacts in groups of three at any of the 60 drum positions. Standard operating voltage is $230-240 \mathrm{~V}$ a.c. Sealectro Ltd., Walton Road, Farlington, Portsmouth, Hampshire.
WW 310 for further details

New T.T.L. I.Cs

Transitron Electronic, has announced three additions to its Series III range of t.t.l. integrated circuits. They are two 4 -bit ripple counters and a 4-bit shift register. Both ripple counters are monolithic and have been designed for high speed, high noise immunity, high output capacitive and current drive capabilities. Both consist of four flip-flops which have been arranged to give a
one-way binary ripple counter (TRC 2521-2524) or a binary code decimal ripple counter (TRC 2525-2528). Temperature range of both types is -55 to $+125^{\circ} \mathrm{C}$ and other significant parameters include power consumption of 18 mW at 5 V ; count frequency 25 MHz ; output current drive 20 mA . Other features include low current loading, complete t.t.l. compatibility, and saturated "HLTTL" circuitry. Both counters find application in a wide range of multiplexing, data logging, and flight data recording situations. The new shift register (TSR 2511-2514) is also a monolithic 4-bit device, designed for high speed, high noise immunity, and a high output capacitive and current drive capabilities. Input and output from the four flip-flops are arranged in four different combinations to provide serial in-serial out, serial in-parallel out, parallel in-parallel out, parallel in-serial out operating modes. Enable/disable outpats do the mode selection and no external connections have to be made to switch from one mode to another. The new register can also be converted into left/right shift by simple external connections. Temperature range is -55 to $+125^{\circ} \mathrm{C}$; power consumption 195 mW at 5 V ; shift frequency 25 MHz ; output drive 20 mA ; and power supply, single 5 V . All three circuits are ave ilable in either 14-lead flat pack, or 14-lead dual-in-line package. Transitron Electronic Ltd., Gardner Road, Maidenhead, Berkshire.
WW 301 for further details

Radio Communications Equipment

The first items in a new range of h.f. equipment introduced by Redifon Communications Division are the $G 4501 \mathrm{~kW}$ h.f. general purpose transmitter; the R499 10-channel m.f./h.f. s.s.b./d.s.b. receiver, and MCU6 aerial distribution amplifier. Particulars have also been given of the TT20 telegraph terminal unit which, although specially designed for the Royal Navy, is now available to other naval, military and commercial users. Type G450 is a self-contained s.s.b./d.s.b./c.w. transmitter without the need for external drive units. It operates on up to ten crystal-controlled channels in the 1.5 to 30 Mhz frequency range with provision for an external frequency source such as a frequency synthesizer. The transmitter comprises a driver/p.a. unit, an exciter unit and a power unit, employing transistors in all but the drives and p.a. stages. The exciter unit can be used independently as a drive unit for other linear amplifiers. Type R499 is a fully transistorized receiver which is available in a number of versions to suit individual service and system requirements. Crystal filters are fitted internally according to the modes of signal to be received, and these are available for c.w., s.s.b., d.s.b. and i.s.b. The receiver operates on up to 10 channels in the h.f. band and, with the addition of filters, also on the $255-525 \mathrm{kHz}$ band. Noise factor is generally better than 7 dB and front end protection is provided against e.m.fs of up to 30 V r.m.s. The a.g.c. system employed ensures that the gain of the i.f. stages is reduced before that of the r.f. stages,
and precautions are taken to prevent large signals from introducing intermodulation distortion. Remote control facilities (in conjunction with a remote control unit type RC116) include channel selection, service and on/off switching, fine tuning, a.f. monitoring and channel-in-use indication.

Type MCU6 aerial distribution amplifier has a dynamic range of 135 dB extending from below $1 \mu \mathrm{~V}$ to 5 V total input e.m.f., over a working frequency of 95 kHz to 30 MHz . Using silicon planar transistors throughout, the circuit comprises a push-pull amplifier with an associated wide-band a.g.c. system controlling a front-end attenuator. The a.g.c. begins to operate at an aerial input e.m.f. of approximately 500 mV and limits the output to about 500 mV , thus protecting associated receivers and permitting continued reception of a wanted signal in the presence of strong signals which would normally block the system. Two versions of the MCU6 are available: type A accepts a single input and provides ten outputs; type B contains two independent amplifiers each with one input and five outputs. Constructed for standard 19 -in. rack mounting with a $3 \frac{1}{2}$ in. front panel, the MCU6 normally operates from

$100-125 \mathrm{~V}$ or $200-250 \mathrm{~V} 45-65 \mathrm{~Hz}$, or can be made to special order to operate from 24 V or greater d.c. supplies, with positive or negative earth.

Type TT20 telegraph terminal unit comprises twin v.f. receivers for independent simultaneous operation, and common power supply unit. As part of a modern communications system, each receiver forms part of a single teleprinter channel and accepts either a two-tone frequency exchanged keyed, or a frequency shift keyed telegraph signal, which it converts to a 1 kHz tone or to a low-level d.c. signal.

WW 316 for further details

I.C. Patchboard

A rapid means of interconnecting integrated circuits and discrete components is provided by a new patchboard system by Circuit Integration Ltd. All types of i.c. configurations are catered for and special carriers are available for mounting other electronic components. In use, the components are mounted on the carriers permitting them to be plugged-in to any one of the patchboard range. Power supply connections are automatically applied to each carrier, and interconnection between devices is carried out by means of plug-in links. Five sizes of patchboard are avail-

able, offering $12,18,24,30$ or 48 pin circuits. Circuit Integration Ltd., 99 Bancroft, Hitchin, Hertfordshire.
WW 312 for further details

High-Frequency F.E.T.

A low-cost high-frequency n-channel field effect transistor suitable for r.f. mixers, amplifier front ends, switching and general purpose applications is available from Union Carbide UK Limited. The new f.e.t., type UC734, has a minimum mutual conductance of $3 \mathrm{~mA} / \mathrm{V}$ at 200 MHz and a pinchoff voltage between -1 and -8 V . The reverse transfer capacitance is 0.8 pF . Price of the UC734, for quantities of $25-99$, is 9 s 8 d each. Special selections are available to customer specifications for a nominal charge. Union Carbide U.K. Ltd,, Electronics Division, 8 Grafton Street, London, W.1.

WW 308 for further details

Two-way Telephone Amplifier

Telephone conversations up to a distance of 25 ft from the telephone are possible using the Magnafone Mark 10, say the makers of this two-way telephone amplifier. There is no electrical connection with the telephone, a hearing-aid type microphone picks up the speaker's voice which is amplified and conveyed via the telephone to the caller. The caller's voice is received through a loudspeaker. A number of persons can participate in the conversation. The instrument is batteryoperated and is contained in a case about the size of a telephone. In operation the handset is placed on top of the case. The microphone and loud-

speaker volume controls regulate between the maximum and medium gain, so that when they are set $\varepsilon \mathrm{t}$ zero the instrument is still operative. Price of the Magnafone Mark 10 is 29 gn . The Magnetic Broadcasting Co. Ltd., Paragon Works, Ruvigny Gardens, Lower Richmond Road, Putney, London, S.W. 15.
WW309 for further details

Stabilized Power Supplies

Fully variable output with a choice of current ratings from 1 to 10 A are the facilities offered by a new range of modular power supplies types PM1619 announced by the Volstat division of Advance Electronics. They have been specifically designed to meet the requirements of integrated circuit technology, with particular reference to reliability, and they incorporate a new protection circuit to safeguard both the power supply and the load. Stability of 10,000 to 1 is claimed, and under the

worst conditions of maximum temperature output voltage and current, the estimated m.t.b.f. is given as not less than 30,000 hours. Advance Electronics Ltd., Hainault, Essex.
WW 318 for further details

I.C. Operational Amplifiers

Extremely high input impedance with very low offset current and input bias current are features claimed by Transitron for two new integrated circuit operational amplifiers, type TOA7709 (for the military temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) and type TOA8709 (commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range). These devices are compatible with the TOA1709 and TOA2709, both in pin configuration and compensating circuitry. The exceptional input characteristics effectively eliminate bias current and offset current as an error source, and allow the use of high impedance levels in circuit designs. The TOA7709 features $3 \mathrm{MS} \Omega \mathrm{mini}$ mum input impedance (typically $10 \mathrm{M} \Omega$), input bias current of 10 nA maximum, and the TOA8709 a minimum input impedance of $1 \mathrm{M} \Omega(3 \mathrm{M} \Omega$ typical); input bias current of 60 nA and input offset current of 20 nA maximum. Both are available in dual in-line packs, flat packs and TO99 cans. Transitron Electronic Ltd, Gardner Road, Maidenhead, Berks.
WW 342 for further details

Polycarbonate Film Capacitors

Mullard has recently added a range of polycarbonate film capacitors to its 344 series. The new additions are 100 V type capacitors with pin connections designed for direct insertion into the 0.1 in grid of a printed circuit board. The regular rectangular outline of the capacitors permits high packing densities. With capacitance values of 0.68 to $6.8 \mu \mathrm{~F}$, the new range complements the 0.01 to $2.2 \mu \mathrm{~F}$ coverage provided by the popular 250 V range. Because of their lower working voltage the new types are physically smaller; for example a $0.1 \mu \mathrm{~F}$ in the 100 V range is the same size as a $250 \mathrm{~V} 0.01 \mu \mathrm{~F}$. Special features of the 100 V range are: low loss $\left(\tan \delta \approx 30 \times 10^{-4}\right)$ and long term stability with a d.c. load (change of capacitance is less than 1.5% at $2.5^{\circ} \mathrm{C}$). Mullard Ltd, Mullard House, Torrington Place, London, W.C.1. WW 343 for further details

Integrating Millivoltmeter

Suitable for both instantaneous and time-integrated (averaged) voltage measurement, a dual purpose millivoltmeter by Time Electronics, a new company, uses an f.e.t. chopper stabilized amplifier operated in a negative feedback mode. An input resistance of $1 \mathrm{M} \Omega$ is maintained throughout the entire range of 1 mV to 30 V . The integrator section employs the amplifier in an error-correcting feedback integrator circuit and the time integral is displayed on a $180^{\circ}, 5^{\prime \prime}$ mirror scale meter, zero to f.s.d. representing $36 \mathrm{mV} / \mathrm{sec}(1 / 100 \mathrm{mV} / \mathrm{hr})$ for the $\mathrm{mV} / \mathrm{hr}$ range, and $36 \mathrm{~V} / \mathrm{sec}(1 / 100 \mathrm{~V} / \mathrm{hr})$ for the V / hr range. A 6 -digit magnetic counter is used to total these units of integral by advancing one count each time the meter reaches f.s.d. The mean value of the input voltage over a given period is then determined by dividing the number of counts during the period by $100 \times$ period in hours, the result being in $m V$ or V depending on the selected range. The integrator output and count

command are available at the rear of the instrument for driving external equipment. Dimensions $20 \times 13 \times 13 \mathrm{~cm}$; price $£^{98}$. Time Electronics, 10B High Street, Swanley, Kent.
WW344 for further details

Video Tape Splicer

Increased use of video tape recorders using $\frac{1}{2}$ in. magnetic tape has led to the introduction of a new $\frac{1}{2}$ in. splicer ty Multicore Solders, based on the well-known Bib splicer for $\frac{1}{4}$ in. tapes. Model 21 splicer enables diagonal or butt joints to be made. The recommended retail price of the splicer which

1s packed in a kit with six razor cutters, a reel of splicing tape and a Bib size E tape head maintenance kit, is $\AA^{9} 10 \mathrm{~s}$. Multicore Solders Ltd., Maylands Avenue, Hemel Hempstead, Herts.
WW 311 for further details

Linear Microcircuit

A fully integrated low-cost differential amplifier is the latest linear microcircuit, the $\mu \mathrm{A} 730$, from SGS-Fairchild. It is designed to replace two discrete dual-transistors as a gain block in general purpose a.c. and d.c. applications. Encased in a low profile 8-lead TO-5 can, the new device has an input offset voltage of 2.5 mV maximum and an inputoffset current of 500 nA . Common mode rejection ratio is 70 dB minimum, differential voltage gain is 145 . Any combination of single-ended or differential configurations can be employed at its input and output, making the $\mu \mathrm{A} 730$ suitable for use as a voltage comparator, a phase splittėr, level detector, voltage regulator or a push-pull amplifier. Other uses include preamplifiers for sensing; magnetic tape, audio summing and instrument amplifiers; voltmeters and transducers. SGSFairchild Ltd., Planar House, Walton Street, Aylesbury, Bucks.
WW 345 for further details

High-frequency Analogue Multiplier

Quarter-square Circuit Operates at Megahertz

by M. E. Whatton, A.M.I.E.E., and G. Crisp

DURING an investigation into a colour television system ${ }^{12}$ it was necessary, as part of the process of decoding, to devise a method of multiplying together the two received colour subcarrier signals. A known technique for achieving this is the use of a balanced or ring modulator, and successful multipliers were built using this technique.

Circuits for multiplication are, however, well known in the analogue computer field, and it was thought that an investigation into the possibilities of using such circuits would prove useful. This article shows the techniques used and describes a suitable multiplier. The colour subcarrier frequency was 4.43 MHz and the unit constructed had a bandwidth of about $\pm 1.5 \mathrm{MHz}$. The multiplier was based on the "quarter-square" multiplier which has been successfully used in analogue computer techniques ${ }^{3}$.

The reason for the name "quarter-square" multiplier is as follows. If it is desired to multiply together two voltages V_{1} and V_{2}, then this may be carried out as shown below:-
$\left(V_{1}+V_{2}\right)^{2}=V_{1}{ }^{2}+2 V_{1} V_{2}+V_{2}{ }^{2}$
$\left(V_{1}-V_{2}\right)^{2}=V_{1}{ }^{2}-2 V_{1} V_{2}+V_{2}{ }^{2}$
$\therefore\left(V_{1}+V_{2}\right)^{2}-\left(V_{1}-V_{2}\right)^{2}=4 V_{1} V_{2} \ldots \ldots$ (1)
Thus to obtain the required term $\dddot{V}_{1} \dddot{V}_{2}$, it is necessary to perform the squaring and other operations on V_{1} and V_{2} as shown on the left-hand side of equation (1) and then divide the resultant answer by four. Hence the term "quarter-square".

The component parts of the multiplier are therefore:
(a) An adder to produce $\left(V_{1}+V_{2}\right)$ and $\left(V_{1}-V_{2}\right)$
(b) Two square-law devices
(c) A difference amplifier

A block schematic of the multiplier is shown in Fig. 1. As the particular square-law device used requires "push-pull" input signals these are also provided by the adding network.
M. E. Whatton joined the B.B.C. operations and maintenance department from Cinema-Television Ltd. in 1947 after qualifying at the South East London Technical College. In 1952 he transferred to the designs department and is now in the television studio section.
Graham Crisp, who is 23, joined the B.B.C. in 1963 as a technical assistant in the transmitter operations and maintenance department. He went to the designs department in 1965 and is now in the television measurements section.

Fig. 2. Circuit for obtaining square-law function of input, $V_{\text {in }}$.

The Square-law Unit

A simple square-law device ${ }^{4}$ was developed which consisted of two transistors feeding a common collector load as shown in Fig. 2.

The collector current/base voltage curve of either transistor may be represented by the following equation:
$I_{\mathrm{c}}=a+b V_{\mathrm{bc}}+c V_{\mathrm{bc}}{ }^{2}+d V_{\mathrm{bc}}{ }^{3}$
where a, b, c and d are constants.
Therefore
$I_{c_{1}}=a+b V_{\mathrm{in}}+c V_{\mathrm{in}^{2}}+d V_{\mathrm{in}^{3}}$
$I_{c_{2}}=a-b V_{\mathrm{in}}+c V_{\mathrm{in}}{ }^{2}-d V_{\mathrm{in}}{ }^{3}$
Then the total current
$I_{\mathrm{cc}}=2 a+2 c V_{\mathrm{in}^{2}}$
The first term is a constant and the remaining term is proportional to the square of the input voltage. Therefore the change in output voltage is proportional to the square of the change in input voltage.

Circuit description

The circuit of the multiplier is shown in Fig. 5. The two high-frequency signals V_{1} and V_{2} are applied to two broadband r.f: transformers T_{1} and T_{2}. These transformers have a centre-tapped secondary winding which is bifilar wound. Transformer T_{1} produces two signals V_{1} and $-V_{1}$ across its secondary winding and transformer T_{2}
produces V_{2} and $-V_{2}$ across its output. These signals are combined in simple resistive adders R_{1} to R_{8} to produce the four signals, $\left(V_{1}+V_{2}\right),-\left(V_{1}+V_{2}\right),\left(V_{1}-V_{2}\right)$ and - $\left(V_{1}-V_{2}\right)$. These four signals are phased by the split-stator capacitors C_{5} and C_{6}.

As the square-law transistors are voltage operated it is necessary for these to be driven from low impedance sources. These are provided by the emitter followers $T r_{1}, T r_{4}$, $T r_{5}$ and $T r_{8}$. The square-law transistors $T r_{2}$ and Tr_{3} are balanced by the network R_{13}, R_{15} and R_{16}. In a similar way transistors $T r_{6}$ and $T r_{7}$ are balanced by the network R_{25}, R_{27} and R_{28}.

The signal at the collectors of $T r_{2}, T r_{3}$ is then $\left(V_{1}+V_{2}\right)^{2}$ and at the collectors of $T r_{6}, T r_{7}$ is $\left(V_{1}-V_{2}\right)^{2}$. These two signals are applied through emitter followers $T r_{9}$, $T r_{10}$ to a simple difference amplifier $T r_{11}$.

Fig. 3 Frequency response of the multiplier.

Fig. 4. Input/output characteristic of the multiplier.

The common mode rejection of this amplifier is adjusted at low frequencies by R_{40} and R_{38} and at high frequencies by C_{9} and C_{10}.

The output signal from $T r_{11}$ consists of two parts: the first is the required output signal and the second is a high frequency
component at approximately twice input frequency. This high frequency component is removed from the output by the networks R_{44}, C_{11}, L_{2} and the network R_{46}, C_{12}. The signal is then fed to the output through the emitter follower $T r_{12}$.

Fig. 6. Output waveforms for output frequencies 200 kHz and 1 MHz above and below 4.43 MHz .

Fig. 3 shows the frequency response of the unit, and this is about 1.5 dB down at 1 MHz . Fig. 4 shows the input/output characteristics for V_{1} and V_{2}. This is linear over a range of 23 dB for each input. Fig. 6 shows the output waveforms for output frequencies of 200 kHz and 1 MHz both above and below 4.43 MHz .

Conclusion

The investigation showed that a quartersquare multiplier could be built and used at colour sub-carrier frequencies. In such a multiplier, the input/output characteristics were very linear for a wide range of inputs and the frequency response adequate.

In the circuit as described no attempt has been made to design an economical unit and the circuit was built only to investigate the techniques required. As over half of the transistors were used as emitter followers it seems that some of these could be eliminated in any practical application.
The authors would like to thank the Director of Engineering of the B.B.C. for permission to publish this article and also many of their colleagues in Designs Department for their assistance.

References

1. The NIR system. Sce "From Russia with Love", Wireless World, February 1966, p. 73.
2. ibid. "B.B.C. Man Anticipates Russian Colour TV System?", p. 75.
3. "Waveforms" by Chance, Hughes, MacNichol, Sayre and Williams. McGraw-Hill Book Company, New York (1949), Section 19.2, p. 668.
4. ibid. Section 19.7, p. 683.

World of Amateur Radio

R.A.F. Golden Jubilee Year

A celebration dinner organized by the R.A.F. Amateur Radio Society to mark the 50th Anniversary Year of the Royal Air Force will be held at No. 1 Radio School, R.A.F. Locking, near Weston-super-Mare, on Saturday, July 6th. Activities will commence at 13.30 hours. Provisional plans for the day include a display of historical wireless equipment and visits to the Headquarters station and to selected training laboratories at the Radio School. There will also be a mobile frequency measuring contest and a mobile field strength contest. Talk-in stations will operate on 160 and 2 metres. Entertainment will be provided for the ladies and children.
The celebration dinner will be held in the Grand Atlantic Hotel, Weston-super-Mare. Dress will be informal and the charge for the dinner will be $£ 1.11 .6$. Applications should be sent to reach the Treasurer, R.A.F.A.R.S., Royal Air Force, Locking, Weston-superMare, Somerset, by mid-June.

England-France on 13 cm

For the first time, on February 18th, French and British radio amateurs succeeded in establishing communication across the English Channel on 13 cm (2350 MHz). The distance covered was 35 km the stations being located at Cap Blanc-Nez (15 km west of Calais) and on cliffs near Dover Castle. At the French station (F2F0/P) a 2C39 was pulse-modulated at 200 Hz delivering 1 kW peak output at 2350 MHz to a one-foot dish 400 feet above sea level. The English station (G3RPE/P) used two transmitters. One had a DET22 self-excited oscillator with transistor modulator (input 8 watts and A3 output of 300 mW at 2320 MHz). The other had a self-excited oscillator/amplifier using specially-made experimental transistors. The output was chopped 1 kHz , the input was 2.5 watts and the mean output power was 400 mW . On the receiving side a crystalcontrolled convertor ($2350-2352 \mathrm{MHz}$) fed a narrow-band (4 kHz) tunable transistor i.f. strip. The aerial was a 4 ft dish, mounted 8 ft above ground on a site about 350 ft above sea level.

This amateur "first" came 37 years after the first public demonstration of what was then called "micro-ray" communication between Dover and Calais on 17 cm and 35 years after a commercial radio link on 17 cm was established between Lympne, Kent, and St. Inglevert, France.

International Mobile Meeting. The annual international meeting organized by the Amateur Radio Mobile Society will take place on Sunday, June 30th, at the United States Air Force Base, R.A.F. Mildenhall, Suffolk. Camping and caravanning will be permitted from the Friday evening. The Trade Show (a feature of A.R.M.S. Mobile Meetings) is to be accommodated in an aircraft hangar and the organizer (F. J. Barns, G3AGP, 60 Alverstone Avenue, New Barnet, Herts) will be pleased to receive enquiries from firms or organizations who wish to participate. The secretary of A.R.M.S. is Norman Fitch, G3FPK, 79 Murchison Road, Leyton, London, E.10.

Echo of the Q.M. At an informal ceremony at the U.S. Embassy in London, Mr. Eric Godsmark of the Radio and Broadcasting Department of the Post Office recently received a certificate and plaque from the radio amateurs of Long Beach, California in appreciation of the services he rendered to those U.S, amateurs who were authorized by the U.K. Postmaster-General to operate a station on the Queen Mary during her last transatlantic voyage. Mr. Godsmark organized arrangements for a special amateur licence and call-sign (GB5QM/MM) which enabled American radio amateurs from California to contact, from the Q.M., other licensed amateurs throughout the world.

Morse Proficiency Transmissions. The Royal Naval Amateur Radio Society located at H.M.S. Mercury, Leydene, Petersfield, Hampshire, transmits morse code proficiency runs on 3520 kHz at 19.00 G.M.T. on the first Tuesday in each month at speeds of 20, $25,30,35$ and 40 words per minute. A proficiency certificate is issued for 100% copy of a particular speed. The transmissions are made from the Headquarters' station G3BZU which also operates daily on 7010 $\mathrm{kHz} \pm 5 \mathrm{kHz}$ between 11.00 and 12.00 G.M.T. Claims for code proficiency certificates should be sent to the above address enclosing an I.R.C.

Swedish V.H.F. Beacon. A new v.h.f. beacon is now operating on 145.960 MHz from Spansberget, near Borlange, in Central Sweden. The main purpose of the beacon is to produce a signal for the aurora back-scatter investigations which are being carried out at the Max-Planck Institute, Lindau,

Germany, by Dr. G. Lange-Hesse, DJ2BC. The establishment of the beacon station was made possible by close co-operation between the Swedish Telecommunication Authorities and the Swedish national amateur radio society (S.S.A.). The call-sign of the beacon is SM4MPI transmitted once a minute followed by a 50 -second dash. The aerial consists of four 5 -element arrays and has a gain of about 12 dB . The beam is directed through 325°. Power output is around 100 watts and although the array is only 12 metres (40 ft) high the base of the mast is almost 500 metres (1650 ft) above sea level. The exact location of the beacon is $\mathrm{N} 60^{\circ} 22^{\prime}$, $58^{\prime \prime}$, E $15^{\circ} 08^{\prime} 30^{\prime \prime}$. Reports on signals from the beacon will be appreciated by G. Eriksson, Box 12, Falun 1, or by the S.S.A., Fack, Enskede 7, Sweden. One of the most important items of information to be included in a report is whether or not the signal was received via aurora back-scatter or by direct path.
U.H.F. Call-sign Directory. The first edition of a new directory of amateur radio stations active on 220 MHz and higher frequency bands is now available from the headquarters of the American Radio Relay League, 225 Main Street, Newington, Connecticut, 06111, J.S.A. The directory lists the name and address of each operator together with information about his interests in such diverse fields as meteor scatter, moonbounce and OSCAR reporting. Information is also given on aerial systems in use. A copy of the directory may be obtained from the above address by sending a large selfaddressed envelope and four I.R.Cs.

German Training Courses. The outstanding success of the intensive training courses for prospective radio amateurs organized last year by the German national amateur radio society (D.A.R.C.) has prompted that organization to offer a more extensive programme for 1968 and at the same time to invite participation from foreign students who can speak or read German. The following is a list of the dates of this year's summer holiday courses:
July 21-August 7 South Bavaria.
July 25-August 14 Wurtemberg.
July 28-August 13 Lower Saxony.
August 1-21 Silesia-Holstein.
August 4-21 Hessia.
Further details of the training courses can be obtained from H. J. Henske (DL1JH), 605 Offenbach/Main, Wiesenstrasse 21.

Knokke Convention. The 4th International Amateur Radio Convention organized by a group of Belgium Channel-coast amateurs is to be held in the Casino, Knokke, during the weekend September 13th-15th. Details of the programme can be obtained from Lucien Vervarcke (ON4LV), Lippenslaan 284, Knokke 1, Belgium.
R.N.A.R.S. During the Lee-on-Solent Air Day on June 15th, the Royal Naval Amateur Radio Society will be providing talk-in facilities on $1910 \mathrm{kHz}, 70.26 \mathrm{MHz}$ and 145.3 MHz . Callsign GB3RN.

Answers to "Test Your Knowledge"-1

Questions on page 161

1. (c). Both junctions may become forward biased when a transistor is used in a switching circuit.
2. (c). Only carriers injected from emitter into base take part in transistor action. Hence the emitter current must consist as largely as possible of carriers moving in that direction. In a forward biased p-n junction, currents carried by holes moving from p to n and electrons from n to p depend upon the relative doping of the two sides. The carriers when injected into the base become minority carriers. The relatively large equilibrium population of minority carriers in the base (because of low doping) has no effect on the action.
3. (c). The transit time of the injected carriers from emitter to collector must be short compared to the minority carrier lifetime in the base material.
4. (c). α is the product of "injection ratio", "base transport factor" and "collector multiplication factor".
5. (c). The collector-base junction depletion layer increases in width, thus reducing the distance through which the carriers musi move before they are swept into the collector.
6. (b). The purpose is to make the transit time of carriers in the base short, to produce a device with good high frequency performance.
7. (b). The diffusion method of doping must leave doping gradients in the material. Silicon planar transistors of $\mathrm{p}-\mathrm{n}-\mathrm{p}$ type are made; $\mathrm{n}-\mathrm{p}-\mathrm{n}$ are more common. A silicon planar transistor cannot be symmetrical.
8. (a) The net charge in the base must remain zero, so that extra electrons will be drawn in through the base lead, when the current starts, to compensate for the extra holes injected.
9. (c). If the junction were forward biased a current would flow between gate and channel and the input impedance would be lowered.
10. (d). In normal use the polarity of the drain voltage is such that the gate-channel voltage is greatest near the drain. Hence at this point the depletion layer is widest and the channel narrowest
11. (c). It extends completely across the channel at the drain end. If the drain voltage is increased above the value at which this occurs an increasing length of the channel is blocked in this way.
12. (b). In an enchancement m.o.s.t. the channel is formed by applying a voltage to the gate that attracts minority carriers to the surface under the insulation and thus induces a channel of the opposite type to that of the bulk material.

13. (b).

14. (a). A depletion m.o.s.t. has very similar properties to those of a junction f.e.t. Its input impedance, however, is higher.
15. (d). In regard to factors (a), (b) and (c), m.o.s.ts are no worse than other transistors.
16. (b). In regard to factors (a), (c) and (d), f.e.ts are at least no better than bipolar transistors.

THE HOUSE OF BULGIN

AT YOUR SBRVICE

UNIQUE NEW DEVELOPMENTS

AS SHOWN AT THE I.E.A. EXHIBITION

8-POLE MAINS CONNECTOR

List No. P. 550
A versatile 7 pole + earth connector rated 6A. 250 V . A.C. with both members designed so that when un-mated live parts are shrouded and safe to handle thus enabling use for both mains inlet and outlet applications. Of rugged all moulded plastic construction with positive keying which prevents reversed insertion. The Plug has Screw Terminal connections, and the Socket tags. accepting 187 series push-on tabs.

PANEL MOUNTING BATTERY HOLDERS
List Nos. B. 16 (one cell), B. 17 (two celis)
A pair of Battery Holders accepting one (List No. B.16) or two (List No. B.17) U. 2 cells. Both models have polished black front of panel parts with the front cap legended BATTERY which fixes by a push and twist action with Key Slot removal. Four 6BA. bolts fix the units to the panel and the cable connection is by tags accepting solder or 187 series push-on connectors. This range is to be extended later this year by models accepting three and four U. 2 cellsenquiries invited.

SWITCHED ILLUMINATED INDICATORS Devt. No. 1037
An attractive legended button unit of moulded construction lit by two low voltage L.E.S. lamps in combination with mains rated switching which can be either D.P.C.O. Push/Push (Successional) action or from 1 to 4 pole Make and Break or Change Over biased action. Legending to customers own requirements which can be carried out over the full Filter area or split into two independently lit sections. left and right. with light separation barrier between.

RANGE OF MOULDED SWITCHES

List No. S.270/2 (Toggle operated)

A new range of D.P.C.O. panel mounting Switches of moulded construction with Quick Make \& Break action and self-cleaning silver contacts. Equally suitable for 'mains' or 'low voltage' uses. The range which is to be extended later this year will include various forms of actuation, i.e. Toggle. Biased Toggle, Push Button. Push On/Push Off (Successional Action), Semi-Rotary, \& Key.

FOR DETAILS OF THESE AND MANY OTHER NEW LINES SEND FOR I.E.A. PRESS RELEASE

> A. F. BULGIN \& CO. LTD. Bye Pass Rd., Barking, Dssex. Tel: RIPpleway 5588 (12 lines)

Literature Received

Second editions of the numbers one and two handbooks, 'Services for British Exporters" and "ECGD Credit Insurance and Financial Support Services" are now available from any Board of Trade regional office or the U.K. Publicity Section, Information Division, Board of Trade, 1 Victoria St., London, S.W.1. "Services for British Exporters" presents comprehensive information on the whole range of Government and other export services and explains, in 180 pages, how exporters can best benefit from them. The "ECGD Credit Insurance and Financial Support Services" handbook describes the facilities provided by the Exports Credit Guarantee Department. WW401 for further details

Display Devices. The display department of Ferranti Ltd, Gem Mill, Chadderton, Oldham, Lancs., have produced an eighteen-page brochure describing some of their products. Included are the essential electrical characteristics of the Microspot range of cathode-ray tubes with suggested applications, the types, and properties of the various phosphors available are also outlined. Details of other devices from custom built display equipments, including coils, flash tubes, trigger tubes (are discharge and thyratron) to pulse transformers are included.
WW402 for further details
Now available from SASCO, P.O. Box 20, Gatwick Rd., Crawley, Sussex, the latest edition of their components catalogue.
WW403 for further details
"Don't Trip Up" is the title of a leaflet describing rubber conduit strip which is designed to protect loose cables and wires, and staff from injury. Vulcascot Ltd., Acorn House, Victoria Road, London W.3.
WW415 for further details
An adaptor that converts a standard b.n.c. input terminal on test equipment to a twin 4 mm outlet, and also cylindrical coaxial terminated metal cases for packaging test circuits (voltage dividers, attenuators etc.) are described in a leaflet from Radiall Microwave Components Ltd., Station Approach, Grove Park Road, Chiswick, London W.4.

WW416 for further details

"What to Look for When You Buy a Car Radio" is the rather misleading title of a new booklet from Philips. It does not give technical advice to those about to choose a car radio as the title suggests, but describes the range of Philips car radios and gives details of which accessory kit is required for particular types of car, together with a full price list. Philips Electrical Ltd., Century House, Shaftesbury Avenue, London W.C.2.
WW417 for further details
The "Abridged Valve Data Book" summarizes the range of valves available from the English Electric Valve Company, Chelmsford, Essex. The book incorporates a thumb indexing system and is divided into three major groups. These are power, microwave and light conversion applications, with a final subsidiary group listing such products as lasers, cold-cathode tubes and vacuum capacitors.
WW418 for further details
"A Comprehensive Catalog and Guide to Operational Amplifiers" contains 36 pages of advice, data and product information relating to equipment manufactured by Analog Devices, Inc., 221 Fifth St., Cambridge, Mass. 02142, U.S.A.
WW419 for further information
Rather belatedly we bring readers' attention to the new components catalogue produced by Home Radio Ltd., 187 London Road, Mitcham, Surrey, costing 7s 6 d plus 2 s postage. The catalogue has 256 pages and lists over 7,000 items, 1,300 of them being illustrated. As is their usual practice the catalogue includes five vouchers worth is each.
BS 3363:1968, which is concerned with letter symbols for semiconductor devices, is now available and can be obtained from the British Standards Institution, 2 Park St., London W.1, price 12s.

We have received a copy of the British Amateur Electronics Club Newsletter. This describes in some detail the logic of a noughts and crosses computer being produced as a B.A.E.C. project. Among the other items incorporated is a description of a unit capable of demonstrating the operation of a colour TV tube. The chairman of the club and editor of the newsletter is Mr. C. Bogod, "Diebeus", 26 Forest Road, Penarth, Glam.

WW413 for further details

Waveguide switches are described in a 15 -page brochure available from Silvers Lab., Stockholm 42, Sweden.
WW407 for further details
"A Pocket Guide to Semiconductors" is the title of a pocket book produced by Quarndon Electronics (Semiconductors) Ltd., Slack Lane, Derby, which gives prices and data on a variety of transistors, diodes and integrated circuits available from them. Quarndon are distributors for Texas Instruments, SGS-Fairchild, Transistor A.G., Emihus, Tadican, and Sprague.
WW 404 for further details
A 15 A a.c. constant voltage regulator with an accuracy of 0.3% and introducing only 3.5% distortion is described in a leaflet from Claude Lyons Ltd., Valley Works, Hoddesdon, Herts. The regulator, weighing 181 l , has a time constant of 0.1 sec and does not employ any form of filtering to achieve the low distortion level.
WW405 for further details

H.F. Predictions-June

The curves, drawn by Cable \& Wireless Ltd., show median standard MUF, optimum traffic frequency (FOT) and lowest usable frequency (LUF), the latter being for reception in the U.K. of medium-power commercial telegraphy transmitters using high-gain aerials. The LUFs by their relative proximity to FOTs, are a guide for all types of service.
Predictions are based on an Ionospheric Index (IF2) of 134 which is expected to be the current cycle maximum. Ionospheric and magnetic disturbances of the type which can last for several days reach peak intensity in the few years following sunspot maximum. As such disturbances have been at low level for some time serious interruptions are not expected.

When is an Avo meter not an Avometer?

When irsan Ano Digital System

That's new! Yes, and it has full multimeter and print-out facilities and other plug-in capabilities.

Please write for full specs.

Avo Limited
Avocet House • Dover : Kent Telephone Dover 2626 Telex 96283, THORN

what has changed?

Well, loudspeakers for one thing. Practically all loudspeakers designed in the last few years have (rightly) followed the trend towards lower efficiency and therefore require more power to drive them.

And pickups, too. The trend here is towards smaller and lighter moving parts producing lower outputs, requiring greater sensitivity and improved signal to noise ratio in the pre-amplifier.
QUAD has changed to accommodate both, and has also taken the opportunity of introducing other significant improvements in performance and facilities.

QUAD 33

QUAD 303

QUAD
 for the closest approach to the original sound

Complete the coupon below and post today for full details of the new QUAD

CRTs off the shelf

(Specials take a little longer)

EEV is probably the best source of specialised CRTs. The standard range is wide and deliveries 'off the shelf'. 'Specials' take a little (but not much!) longer. Use this service in CRTs. It's the most flexible on hand.
ENGLISH ELECTRIC VALVE COMPANY LIMITED

CHELMSFORD, ESSEX. TELEPHONE: 61777

Here's Headset progress.
'Astrolite' combines all that's good in performance with reliability and a world beating design. Light in weight (6.5 oz approx). New high level phones (1 mW gives comfortable listening level). Partial noise exclusion. Communications or high fidelity versions - magnetic, carbon or moving coil. 'Personal tension adjustment' gives fingertip control of microphone boom arm. Nylon and stainless steel unbreakability. Tropicalised. New design cable minimises crosstalk. Gét details in full, today, from

To catch a thief...

Closed circuit television is proving very sleuthful in keeping an eye on things. But when it comes to watching Rembrandts and Goyas it has to be reliable. This is where EEV high sensitivity vidicons should be used. These tubes can give up to 8000 hours viewing without dropping off in performance. They also provide unusually high resolution, high sensitivity and short lag. EEV vidicons are available with two different values of heater current, $6.3 \mathrm{~V} / 600 \mathrm{~mA}$ and $6.3 \mathrm{~V} / 95 \mathrm{~mA}$, and with either separate mesh or integral mesh construction. For further information and the name and address of your nearest stockist write to:

Specifying electronic components made in the U.S.A. is your business.

All over the world, designers and manu facturers of commer. cial, industrial and military electronic equipment frequently find it necessary to specify American-made components. Too often, however, the technical details and complex paperwork of international commerce have been thought of as costly, time-consuming obstacles in getting the components delivered promptly and accurately.

To help overcome those obstacles, Milo International offers its specialized facilities and years of experience as a leading world-wide supplier of electronic components. Whether you need only a few pieces of one component, or large quantities of many items, your order will receive our complete all-inclusive service - from immediate price and delivery quotations to processing of all certificates, licenses and declarations to special export packaging and delivery expediting.

Delivering them to you is ours.

The next time your business needs electronic components from the U.S.A., let us show you how our business can get them delivered to you-quickly and efficiently, at direct factory prices, from our huge in-stock inventory of thousands of components made by the leading American manufacturers including this partial listing:

Amperex	Eimac	R.C.A.
Amphenol	Electrons, Inc.	Raytheon
Arrow-Hart \&	Erie	Simpson
Hegeman	General Electric	Sola
Bourns	Hardwick Hindle	Solitron
Burgess	Hickok	Sprague
Cannon	I.T.T.	Stancor
Centralab	J.F.D.	Superior
Cinch-Jones	Kings	Sylvania
Clarostat	Littelfuse	Texas Instruments
Cornell-Dubilier	Mallory	Transitron
Corning	Oak	United Transformer
Dale Electronics	Ohmite-Allen Bradley	Vector
Delco Radio	Potter \& Brumfield	Xcelite

Erie
General Electric
Hardwick Hindle
Hickok
J.F.D.

Littelfuse
Oak
Potter \& Brumfield
R.C.A.

Raytheon
Sola
Solitron
Sprague
Stancor
Superior
Texas Instruments
ransitron

Vector
Xcelite

For immediate price and delivery quotations, contact Milo by mail, phone, cable or International Telex.

Throw those hoods away

No viewing hood is necessary with the EEV high brightness storage tubes. They give a brightness 50 to 100 times greater than normal long persistence cathode ray tubes. Used for air traffic control and other radar applications, they permit observation of a large area display in broad daylight; even direct sunlight on the faceplate calls for only a simple filter. The high brightness display, unrestricted by a viewing hood, increases operator efficiency and minimises fatigue. Full information on high brightness storage tubes, and on conventional CRTs, will be sent on request.

Custom built amplifier installations from standard modules

Philips introduce versatile audio system.

Philips make it very easy for you to realise your own ideas for an audio system, by introducing an exclusive new formula based on two principles: modular construction and stacking ability.
Our modules are designed with common dimensions, styling and controls and are easily stacked.
The resulting high quality system can be extended when the need arises by stacking additional items.
Philips modules enable you to meet your plans exactly, without compromise - efficiently and economically. Use them individually or stacked; free standing or wall mounted and where required, in 19 inch racks. Cases are finished in dark grey which. combined with the lighter grey of the panels, achieve a pleasant two-tone effect.
The modular range includes: $25 \mathrm{~W}, 50 \mathrm{~W}$ and 100 W power amplifiers (stackable to provide higher outputs if required); preset, mixing, and push button pre-amplifiers (with remote control facilities) which fit into each of the power amplifiers; an AM/FM radio tuner; a record player and an automatic tape recorder. The range is completed by a series of complementary accessory units, including 19 inch rackmounting panels.
Intermatching and other problems common to conventional equipment are completely eliminated. Choose your input, control and output requirements, then make the combination.
Installations are ready for immediate use, suitable for continuous operation, reliable.
Use the Philips stacking system and obtain the exact audio system required for any indoor or outdoor application.

Equipment survey of the Philips stackable audio module system

The basic components of the system are housed in attractively styled standardised modular cabinets, finished in dark grey with light grey fronts. Cabinet width is 400 mm , depth 350 mm . The high quality equipment is suitable for all audio applications and for continuous operation. Reliable solid state circuitry throughout. Complete coverage of the audible spectrum at extremely low distortion.

Power amplifiers

Fully transistorised high quality power
amplifiers for use in all audio installations. Mains powered. Easy selection of output voltage by means of movable sockets at the rear of the cabinet. Built-in limiter with pushbutton control on front panel. Input from various interchangeable preamplifiers which fit into the housing. Up to five power amplifiers may be fed from one pre-amplifier.
Mains voltages: $110,127,220,245 \mathrm{~V}$.
Distortion: 1.5% at nominal output. Output voltage: loudspeaker output 100 , $70,50,35,25,10 \mathrm{~V}$; line output 4 V . Sensitivity: 100 mV adjustable.
DC supply: a $D C$ voltage is supplied by the power amplifier to feed the pre-amplifier.
Height: 115 mm , stacked 105 mm . 25 W power amplifier LBB 1001 output power: 25 W .
power consumption: no load 16 W , full load 75 W .
25 W mixing amplifier LBB 1021
as LBB 1001 with mixing pre-amplifier LBB 1020.
50 W power amplifier LBB 1002 output power: 50 W .
power consumption: no load 41 W , full load 153 W .
50 W mixing amplifier LBB 1022
as LBB 1002 with mixing pre-amplifier LBB 1020.
100 W power amplifier LBB 1003 output power: 100 W .
power consumption: no load 33 W , full load 283 W .
100 W mixing amplifier LBB 1023
as LBB 1003 with mixing pre-amplifier LBB 1020.

Pre-amplifiers

Pre-amplifiers are special units which fit into each of the basic power amplifiers. Controls are grouped on a panel, which replaces a blind section of the power amplifiers front. Supply voltages are obtained from the power amplifier. Distortion: 0.5\% (40 . . . 20000 Hz).
preset pre-amplifier LBB 1010
Inputs: 4 microphone channels, sensitivity 0.3 mV .
1 channel, sensitivity 100 mV for use with a crystal pick-up, radiotuner or tape recorder. Presettings: separate gain adjustments per input channel.
Front control: common gain control fader type - for the overall programme level.

LBB 1020 mixing pre-amplifier Inputs: 2 microphone channels, 2 channels adaptable as microphone channels or as input channels for crystal or dynamic pick up, by using microphone insert LBB 1025 or gramophone insert LBB 1026. Presettings: separate gain control per microphone input channel.
Front controls: 4 separate gain controls - fader type - for each of the input channels,
1 common bass control - fader type
1 common treble control - fader type
2 separate bass cut switches for each of the microphone channels.
Screw-in microphone insert LBB 1025 to extend the input possibilities of mixing pre-amplifier LBB 1020. Screw-in gramophone insert LBB 1026 to extend the input possibilities of mixing pre-amplifier LBB 1020.
Push-button pre-amplifier LBB 1030 Inputs: 4 universal channels, one of which has priority function, max. sensitivity 0.3 mV . Presettings: sensitivity per channel, bass cut per channel, gain per channel, common bass and treble adjustments. Front controls: 4 independent pushbuttons for channel selection and 1 common cancellation push-button; selection buttons are illuminated when operated; channel I has priority e.g. for emergency; 1 common gain control' - fader type - for channels 2, 3 and 4. Remote control: The pre-amplifier has connections for remote control and signalling on all channels.

Power amplifier

. . with mixing pre-ąmplifier

with push-button pre-amplifier

Tuner

Record player

Recorder

Tuner, record player and recorder equipment
radio tuner LBB 1037
Consisting of the high quality radio tuning unit GH 924, built into a standard stackable cabinet.
Frequency bands: $150 \ldots 400 \mathrm{KHz}$ (long wave)
$517 \ldots 1622 \mathrm{KHz}$ (medium wave) 5.9 . . 18.2 MHz (short wave) $87.5 \ldots 108 \mathrm{MHz}$ (FM band) (the FM section is equipped with stereo facilities)
Height: 150 mm , stacked 140 mm . record player LBB 1038
Consisting of the high quality record player GC 030 built into a stackable cabinet. Drawer type chassis and tinted methacrylate front. The module cabinet is also available separately with a blank chassis, suitable for mounting any other record player Chassis is self-locking when pushed into the cabinet.
Height: 220 mm , stacked 210 mm . tape recorder LBB 1039
Consisting of the high quality tape recorder EL 3572, built into a stackable cabinet. The recorder is
mounted on a drawer type chassis which is self locking when pushed into the cabinet.
Height: 220 mm , stacked 210 mm .

Accessories

cable transformers $L B C 1100$
Completely mu-metal screened 500 s /
500Ω high quality microphone
transformers for isolating or balancing purposes.
Mounting sets LBB 1045
Two threaded rods of 140 cm length,
two strips, four nuts and four washers.
Rods can be cut to length after mounting.
19 inch rack mounting panels LBB 1035 and LBB 1036
For mounting stackable modules in existing 19 inch systems.
Mounting hinges LBB 1046
For mounting a complete stack to a wall

Electro-acoustics Division of Philips Industries. N. V. Philips' Gloeilampenfabrieken, Eindhoven, The Netherlands.

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

VALVES FOR:
Radio and Television Manufacturers.
Radio and Television Service Departments.
Radio Relay Companies.
Audio Equipment.
Electronic Equipment.
Instrumentation.

HALTRON RADIO VALVES \& TUBES

Computers.

Marine Radar.
Communication Equipment.
Research and Development.
Government Departments.
Aircraft Milltary and Civil.
Ministry of Aviation Approved Inspection.
Air Registration Board Approved
inspection.
All enquiries to:
Hall Electric Ltd., Haltron House, Anglers Lane, London, N.W. 5.
Telephone: 01-485 8531 (10 lines). Telex: 2-2573. Cables: Hallectric, London, N.W.5.

If your production processes call for fine precision soldering, then you must have the new Antex Precision Soldering Equipment Catalogue. This details the range of Antex irons, with complete performance specifications, full details of spare bits etc., as well as information on de-soldering tools, iron stands etc. In fact its 16 pages (in colour!) deal with every aspect of Precision Soldering. And its free-just send off the coupon.

The "New Look" In Instrumentation is
 From Heathkit
 The newest and most practical innovation in electronic instrumentation

KIT IM-25
£48.10.0 Р.Р. $7 / 6$
Ready to use prices on request of all models.

KIT IM-16
$£ 28.8 .0$ p.p. 6/-

KIT IP-I7
£37.4.0 P.P. $10 / 6$

KIT IP-27
£46.12.0
P.P. 9/- is the exciting new ultra-functiond styling format from Heath. New instruments feature a unique cabinet frame consisting of the front and rear panels and side rails which completely supports the component chassis independently from the top and bottom cabinet shells. This allows complete freedom from assembly, check-out, and calibration. The sturdy side rails conceal retractable carrying handles. The die-cast fromt panel bezel styled in chrome and black, the black side rails, and the beige front panels and cabinet shells give the new instruments an appearance as up-to-date as their functional performance.

New Solid-State High - Impedance Volt - Ohm Milliammeter . . IM- 25

-9 A.C and 9 D.C. voltage ranges from 150 millivolts to 1500 volts full scale 7 resistance ranges, 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1 \mathrm{meg}$. measures from one ohm to 1000 megohms - I| current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale - II megohm input impedance on D.C. - 10 megohm input impedance on A.C. A.C. response to 100 kHz - $6 \mathrm{in} .200 \mu \mathrm{~A}$ meter with zero-centre scales for positive and negative voltage measurements without switching - Internal battery power or $120 / 240$ volt A.C., $50-60 \mathrm{~Hz}$ - Circuit board construction for extra-rugged durability.

New Solid-State Volt-Ohm Meter, IM-I6

- 8 A.C. and 8 D.C. ranges from 0.5 volts to 1500 volts full scale - 7 ohm-meter ranges with 10 ohms at centre scale and multipliers of $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1$ megohm - 11 meg. ohm input on D.C. ranges, 1 megohm on A.C. ranges © Operates on either bullt-in battery power or $120 / 240$ volt A.C., $50-60 \mathrm{~Hz}$ - Circuit-board construction.

New Variable Control Regulated High Voltage Power Supply . . . IP-17

- Furnishes 0 to 400 volts D.C. @ 100 mA maximum with better than 1% regulation for 0 to full load and ± 10 volt line variation - Furnishes 6 volt A.C. @ 4 amperes and 12 volt A.C. @ 2 amperes for tube filaments - Provides 0 to - 100 volts D.C. bias @ 1 milliampere maximum - Features separate panel meters for continuous monitor for output current and voltage - Terminals are isolated from chassis for safety - High voltage and bias may be switched "off" while filament voltage is "on" - Modern circuit board and wiring harness construction - $120 / 240$ volt A.C., $50-60 \mathrm{~Hz}$ operation.

New Improved Version of the famous Heathkit Solid-State, Voltage-Regulated, Current-Limited Power Supply . . . IP-27

- New zener reference - New improved circuitry is virtually immune to overload due to exotic transients - 0.5 to 50 volts D.C. with better than ± 15 millivolts regulation - Four current ranges $50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}$ and 1.5 amperes. Adjustable current limiter: 30 to 100% on all ranges Panel meter shows output voltage or current " Pin-ball" lights, indicate "voltage" or "current" meter reading - Up-to-date construction - Unequalled performance in a laboratory power supply.

Many other instruments in range
why not send for the
FREE CATALOGUE and
INSTRUMENT BROCHURE
Full specification sheet available on any HEATHKIT model from DAYSTROM LTD.

DEPT. WW-5, GLOUCESTER, ENGLAND Member of the Schlumburger Group including the Heath Company

The 'World's Best Buys' in Electronics come from Heathkit

All models are available in ready-to-use or kit form.

Latest Portable Stereo Record Player

 SRP-IThis stereo, fully transistorised, mains operated player offers Automatic playing of $16,33,45$ and 78 r.p.m. records. All and eransistor-cool instane opera. tion. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8 in . $\times 5 \mathrm{in}$. special loudspeakers. For 220. 250 V . a.c. mains operation. Overall cabinet size $15 \frac{9}{10} \times 3 \frac{3}{8} \times$ $10 \frac{1}{2}$ in. Choice of handsome twotone blue and grey or red and economical stereo and mono reco from the Beatles to Bartok. All solaying for the whole family-plays anything Kit $£ 28.6 .0$ incl. P.T. p.p. $10 / 6$ Ready-to-Use $\mathbb{3} 35.4 .0$ p.p. $10 / 6$

UXR-I-Portable Radio

Strong, robust construction with reliable perfor mance. 6 transistor, 1 diode circuit provides the power and range you can't get from miniatures. finished in beauriful real leather or in the areracrive colours Navy Blue, Coral Pink, Lime Green (please state second choice).

Kit $\{12.8 .0$ colour case Ready-to-use $\subset 14.8 .0$,"
Kit f13.8.0 leather Ready-to-use $\{15.10 .0$ "
p.p. 4/6 p.p. $4 / 6$ p.p. $4 / 6$ P.p. 4/6

UXR-2—Portable Radio
A De-luxe 7 transiscor, 3 diode circuit offers big-set sound. Battery saving circuitry-batteries last for months. Push buttons for Long and
Medium wave coverage and tone control. Easy. tune slide-rule dial. Double tuned I.F. stage. Output for phone or tape recorder. Choice of real brown or black leather case and handle.

Kit 115.00 p.p. 6/-
Ready-to-use f 17.10 .0 p.p. 6/-

Latest Portable Stereo Tape Recorder STR.I

No other British model offers this specification for this price. Not only a tape recorder but a complete stereo sound system in one compact unit detrack stereo or mono record and is eransistor circuit. Recording level indicator. Well known British deck with digital counter. Stèreophonic mic. and aux. inputs Speaker/headphone outputs. Built-in audio amplifiers give 4 watts output (rms)
per channel. Two high efficiency per channel. Two high efficieney
gin. $\times 5$ in. loudspeakers. Versatilerecording facitities. So easy to build. Ateractive black Rexine cabinet with pastel grey matching panels.

Kit $£ 58.0 .0$ incl. P.T. p.p. 10/6. Ready-to-use 870.6 .0 p.p. $10 / 6$

LUXURY Class Car Radio, CR-I

A small, compact, high output unit. Superb long and medium wave entertain. ment whenever you drive. For 12 v . positive or $12 v$. negative car earth system. 8 latest semi-conductors (6 transistors, 2 diode circuit). Powerful output (4 watts) will drive two speakers. colour schemes. Supplied in two units preassembled and alizned RF unit kit. CI/I3/6 inc. P.T. IF/AF amplifier kit
 CII/3/6, both models required.
Kit el2.18.6 incl. P.T. p.p. 4/6

$$
\text { Loudspeaker } \mathbb{L 1} .2 .3 \text { extra. }
$$

Ready-to-use $\mathbf{f 1 9 . 1 2 . 6 \text { p.p. 4/6 }}$

AVON Mini SPEAKER

Excellent performance from small size $6 \frac{1}{2} \mathrm{in}$. Bass, 3 mid/high frequency unit. Inducror/capacisor cross over network. Supplied in two units, both required.

Total Kit $\mathbb{1} \$ 4.0 .0$ incl. P.T. p.p. $10 / 6$ Ready-to-use $\subset 18.18 .0$ p.p. $10 / 6$

Many other models, SEND FOR THE FREE CATALOGUE

NEW Portable Solid-State Volt Ohm Meter

Just right for the home owner, boater, model builder, hams ...sophisticated enough for even radio and T.V. servicing. Solid-state circuit - FET input, 4 silicon transistor. I diode, voltage ranges, 4 ohm ranges. voltage ranges, 4 ohm ranges.
II megohm input on D.C. I Megohm input on A.C., $4 \frac{1}{2}$ in. $200 \mu \mathrm{~A}$ meter. Battery powered. Rugged polypropylene case with self cover and handle. Storage space for sest leads. PCB construction.

Kit 1 12.12.0 p.p. $4 / 6$ Ready to use, price on request.

Transistorised $12+12 \mathbf{w}$. Stereo Amplifier, TSA-12

This luxury-quality amplifier utilises transformerless output circuitry giving superior performance, lower phase shift, wider response and lower distortion. It delivers 12 wates R.M.S. per channel into 8 ohms over an extremely wide frequency range of 16 to $50,000 \mathrm{c} / \mathrm{s}$. A six-position source
 swich easily handles your records, radio or auxillary inpurs-stereo or mono. Baxendall eype sone conerols for Bass and Treble boost and cut. Its high class performance is matched only by its sleek and ateractive low silhouette styling

Kit $£ 30.10 .0$ Ready-to-use $\mathbf{〔 3 8 . 0 . 0}$ p.p. $10 / 6$ (cabinet. 2.5 .0 extra.)

DAYSTROM LTD., Dept. WW6 Gloucester, England. Tel.: 29451 \square Please send further details of model(s)
\square
\square Please send FREE British Heathkit Catalogue.

NAME
ADDRESS

Prices and specifications subject to changes without notices

Our filters give higher attenuation in a fraction of the space

Broadband Filters offer:

1. Highest attenuation at the lowest frequencies in the smallest package.
2. Typical cut-off frequency of 2 kHz in less than $\frac{1}{4}$ size of a conventional filter.
3. Excellent performance to beyond 10 GHz .
4. Hermetically-sealed, robust metal housing providing protection against the most stringent environments over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
5. Internal construction incorporating unique Erie rolled ceramic capacitor elements in an L network with ferrite or monolithic elements in a Pi or T network with toroids.
6. Selected styles approved for military and aerospace applications.

Filtercons offer:

1. Highest attenuation in smallest size at lowest cost.
2. Typical cut-off frequency of 2 MHz in a wide range of styles.
3. Excellent performance to beyond 10 GHz .
4. Wide range of robust configurations for soldermounting, bush-mounting and multi-assemblies, for reliable operation over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
5. Internal construction incorporating ceramic capacitor elements and ferrites in a Pi network.
6. Selected for major military and aerospace applications. ww-018 FOR FURTHER DEtails

Erie Broadband Filters and Filtercons eliminate interference caused by switches, relays, motor commutators, SCR's and transistor switching. These filter devices are exceptional in that in a volume less than 1 cubic centimetre they offer typically an insertion loss of 80 dB minimum in the range 150 kHz to over 10 GHz .
The components on the graph are illustrated life size.

Contact us for fuller details. Technical Sales,
Erie Electronics Limited,* South Denes,
Great Yarmouth, Norfolk.
Phone: 04934911.
Telex: 97421.
Filtercon is a registered trade mark

* Formerly Erie Resistor Limited

prepare now for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I. Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best

No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation* Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering
City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London S.W.1. A subsidiary of McGraw-Hill Inc.

POST THIS COUPON TODAY FOR A BETTER FUTURE
To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1.
Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.

My interest is City and Guilds \square
please tick General \square
NAME
ADDRESS

EDUCATIONAL BACKGROUND
ELECTRONICS EXPERIENCE

bREAK THE SOUND BARRIER

model ase sono.aar

SHURE MICROPHONES-
WORLD STANDARD WHEREVER RELIABILITY AND
SOUND QUALITY ARE PARAMOUNT

WITH PROVED σ -

SETTING THE WORLD'S STANDARD IN SOUND

NOISE CANCELLING MICROPHONES

When the chips are down, and noise levels are high, Shure Noise Cancelling microphones with their exclusive Controlled Magnetic cartridges, distancediscrimination design, and specially tailored response get the message through even when noise level is so high the operator cannot hear himself! They have been field-tested and proved in such ear-shattering environments as: drop forges, helicopters, police power boats, "hard surface" gyms among cheering crowds, motorcycles, jets revving up, fire engines, etc.

SHURE MODEL 488 SONO-BAR
Rugged, impact resistant "Armo-Dur" case. Four types: High or low impedance; transistorized for direct replacement of carbon microphone; and FAA Certified Transistorized Aircraft version.

SHURE MODEL 419 RANGER II

New small size. Only about half the size and weight of conventional mobile communications microphones. Unsurpassed for use with portable or miniaturized equipment.

[^5]
The new 'WESTMINSTER' solid-state radiotelephone ...from PYE

designed for world markets

The new range of 'Westminster' solid-state radiotelephones is ready for operation anywhere in the world. Pre-production models successfully endured every possible combination of adverse climatic, regional, shock and vibration extremes for over a year. This exacting field-test programme has proved the 'Westminster' range of radiotelephones suitable for global operation.
The 'Westminster' range is type-approved in many countries; dash, universal or motorcycle versions are available.

9

OSCILIOSCOPE USERS
 here is the answer to your calibration problems!

A new instrument, the BRADLEY Oscilloscope Calibrator 156 provides all the facilities required for the calibration of modern precision oscilloscopes. Simple to use, it is designed to calibrate vertical amplitude and sweep speeds, and to check risetime. A unique feature is the direct reading of percentage deviation from true values.

NOW
 design engineers can have
 $50 \mathrm{ppmTC} \pm 0.5 \%$ tolerance

-off the shelf!

Give us a ring, and you can have new Filmet ${ }^{\circledR}$ resistors in development quantities as soon as the postman can get them to you.

The new standard Filmet range meets all the requirements of DEF 5115-I Style RFG7 and at a price that certainly isn't standard for the kind of stability it offers. But this you'll find out for yourself. When you ring, or write.

Resistance range: $\quad 100 \Omega$ to $360 \mathrm{~K} \Omega, \mathrm{E}_{24}$ series
Power rating: $\quad \frac{1}{8} \mathrm{w}, \frac{1}{4} \mathrm{w}, \frac{1}{2} \mathrm{w}$ Multi-Rating Temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 metal film resistors,

Morgan

The same safeguards in manufacture and control that have won government contracts for TEONEX in over forty different countries apply equally to ensure top quality for private users too. When you require valves to comply with E.V.S. or M.I.L. standards - choose TEONEX. The TEONEX range (for use outside the U.K. only) incorporates the entire series of Britishproduced valves or their Continental equivalents, including a wide range of colour T.V. valves. Price list and technical specifications may be obtained from:-

Export Enquiries Only Please! TEIIEM ITM|IEI

TEONEX

High Fidelity -the name is Goodmans

and these publications tell you all about Goodmans High Fidelity
 The High Fidelity Manual
 The Audio Suite Booklet

Explains all about High Fidelity and the "mysteries " of Stereo and, of course, gives fullest information on all Goodmans High Fidelity equipment. Enclosure drawings are included for all single and multiple unit loudspeaker systems, so the D.I.Y. enthusiast can make his own, or they can be bought ready-made from manufacturers we recommend
Goodmans amplifier, tuner, record player and range of complete loudspeaker systems are there in detail. If you're interested-or are becoming interested - in High Fidelity, you'll find the Goodmans Manual 28 pages of interesting and informative reading. Send for your free copy.

Goodmans Loudspeakers Limited

Features in full colour the most compact, adaptable, handsome and the most technically advanced audio system in the world. Easily installed-in minutes-to suit your home ; Simplicity itself to operate-Goodmans Audio Suite is the High Fidelity system. If this is what you want, just send for the Audio Suite booklet.

[^6]Name
Address

New from Garrard-the AP 75 a high-fidelity single record-playing

You get all these advanced features with this elegant unit:

- Diecast aluminium pick-up arm.
- Manual or automatic playing of single records.
- Single lever selects both record size and turntable speed.
- Slide-in cartridge carrier.
- Non-magnetic turntable.
- Calibrated, fine stylus-force adjustment.
- Calibrated pick-up arm bias compensation.
- Cue and pause facility.

As well as manual control, this unit offers the additional facility of automatic play of single records. A single operation starts the turntable, lifts the pick-up arm and lowers it on to the record, and when playing is finished, returns the pick-up arm to rest and stops the turntable. A single control lever selects both record size and turntable speed for $12^{\prime \prime}$ records (78 rpm), $7^{\prime \prime}$ (45 rpm) and 12", $10^{\prime \prime}$ and $7^{\prime \prime}\left(33 \frac{1}{3} \mathrm{rpm}\right) .{ }^{*} £ 19.3 .0 \mathrm{~d}$ +P.T. 68/6d. Optional extras : teak-finish base WB4; rigid, clear plastic cover SPC4.
and just for the record

Garrard 401 is the ultimate in transcription turntables - magnetically shielded 4 -pole induction motor: gear-cut stroboscopic markings illuminated by an integral, highintensity neon lamp; variable speed control: heavy non-magnetic diecast turntable; antistatic mat; functional styling. ${ }^{-} £ 25.9 .7 \mathrm{~d} .+\mathrm{P} . \mathrm{T} .91 / 2 \mathrm{~d}$.
extras: teak-finish
plastic cover SPC2.

Garrard LAB $\mathbf{8 0} \mathbf{~ M k ~ I I ~ i s ~ a ~ t r a n s c r i p t i o n ~}$ turntable with the facilities of an automatic record changer when desired - low resonance wood pick-up arm ; pick-up arm bias compensator: calibrated, fine stylus-force adjustment; record-repeat adaptor: automatic play of single records, cue and pause facility. " $25.15 .1 \mathrm{~d} .+P . T .92 / 1 \mathrm{~d}$. Optional facility. teak-finish base WB2; rigid, clear
looks after your records Ask for illustrated leaflets on the complete Garrard range.

When specifications are all important !

Broadcast standard magnetic tape recorders

Developed over a period of 15 years to meet the requirements of the Broadcaster, Recording Studios, Governmental Departments, the Services and other professional users the range of magnetic tape recorder equipment includes professional console and transportable tape recorders, reel-to-reel replay units, endless loop cartridge tape recorders, hi-speed tape copiers and automatic tape programming equipment.
Unexcelled professional facilitles are offered for master recording and editing. High performance and maximum reliability under heavy duty conditions is assured with silicon solid state electronics and modular construction techniques allowing fast change-over of complete, pre-aligned modules for maintenance purposes. Ask for operating details and specifications.

Telecommunication grade magnetic drum announcement equipment

This heavy duty equipment is designed to provide telephone subscribers with a wide range of advice and information services. The equipment includes multi-channel Exchange Interceptors for automatic interception and advice to callers when changed numbers or non-working lines are dialled. Variable Message Repeaters for news, weather, sporting results and other information services of up to 3 minutes' duration-with immediate recycling at the end of the message, and economical short duration Auto Announcers for location or fault identification. The completely automatic equipment relieves telephonists of routine enquiry calls, yet provides subscribers with continuous, up-to-the-minute information services operating 24 hours a day. Complete details are available.

PLESSEY

Sales and Service - Technical Ceramics Limited Cheney Manor Trading Estate Swindon Wiltshire Telephone Swindon (OSW3)6251 Telex 44375 Cable PIEZO Swindon or the manufacturer Plessey Components Australia Rola Unit The Boulevard Richmond Australla 3121 Telex 30383 Cables ROLA Melbourne

"Tecminicians Marvel Duver The campleite Parfection

Model JR-500SE

CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER

* Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2nd oscillator. * Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
* Hi-Sensitivity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
* Hi-Selectivity: $\pm 2 \mathrm{kHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB
* Dimensions: Width $13^{\prime \prime}$, Height $7^{\prime \prime}$, Depth 10°.

TRIO
 a product of TRIO Corporatlon, Tokyo;Japan.

Sole Agent for the U.K.
B. H. MORRIS \& CO., (RADIO) LTD.

84/88, Nelson Street, Tower Hamlets, London E, I. Phone: 01-790 4824

Model 9R-59DE

built in mechanical filter 8 tubes
COMMUNICATION RECEIVER

* Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
* A mechanical filter enabling superb selectivity with ordinary if transformer s.
* Frequency Range: 550 KHz to 30 MHz (4 Bands)
* Sensitivity: $2 \mu \mathrm{~V}$ for 10 dB S/N Ratio (at 10 MHz)
* Selectivity: $\pm 5 \mathrm{KHz}$ at $-60 \mathrm{~dB}(\pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$ when use the Mechanical Filter
* Dimensions: Width $\mathbf{1 5}^{*}$, Meight 7°, Depth 10^{*}.

[^7]
Pinnacle the largest single valve independent

THIS IS WHAT WE DO

Make available the widest range of valves for commercial and industrial use. Give a personalised service based on intelligence and speed.

Ensure that we only Supply valves made by the world's foremost manufacturers.
Provide valves selected for your special needs.
Help out rapidly with that "awkward" valve that nobody else seems to have heard of.

IF I'D ONLY TRIED PINNACLE FIRST. . .

Every valve in either widespread or special. ised use in the fields of Entertainment, Industry, Education and Research will be found in our catalogue, together with its main equivalents, classification, and the Pinnacle " P " number under which it may be ordered.

Specialise in European or American types which are not normally easily obtainable.

Rush you a small order, or quote for a bulk require-ment-1's or 1,000's are all
the same to us.

PINNACLE ELECTRONICS LIMITED ACHILLES STREET • NEW CROSS • LONDON S.E. 14
Telephone: All Departments-01-692 7285 Direct orders-01-692 7714

wedon't believe injob selection for resistors

We make them the way we want them to be first time! The Electrosil automated process produces the resistors we want - to the specified tolerance and value, off the line. We don't have to test and sort. The process is continuous and accurate. This way, you save. Because we are not manufacturing 'rejects'. production costs are less, so is our selling price. You'll also find that the reliability we build in, saves you complicated test procedures and consequent costs. Glass-tin-oxide resistor reliability stems from better thinking in both materials and production techniques. Follow the leader in resistor design, it will pay off! All Electrosil resistors are triple-rated - this means you can have the resistor you want for the job, without worrying about job selection either. Data sheets quickly available from Electrosil tell you all, but briefly, right down to 50 parts per million temperature coefficient, you couldn't do better. This is no filmy philosophy, but hard (oxide hard) fact which we can back.

youneed

oxide reliability

Electrosil Limited, P.O. Box № 37,
Pallion, Sunderland, Co. Durham.
Electrosil
l.IMITED

 LINEAR MONOLITHIC INTEGRATED CIRCUIT

TAA 320

Input Resistance $10^{10} \Omega$
Transconductance 40 mmhos
Input Transients 100 V
Applications:
Audio-amplifier (preamp and driver)
Impedance-Converter

- Timing Circuits

Prices in quantities of 100 and up PRICES:

$$
\begin{array}{r}
1-248 / 10 \\
25 \text { up } 8 / 11 \\
100 \text { up } 8 /-
\end{array}
$$

Please ask for detailed datasheets

RaSTRE ELECTRONICS LTD.

275 KINGSTREET • HAMMERSMITH - LONDON • W. 6. • RIVerside 3143 - TELEX 24443

rCA COLOUR TUBES two totally unique advantages

New Rare Earth Red Phosphor

These new red phosphors-exclusive to RCA-combined with efficient sulphide blue and green phosphors produce pictures at their brightest and most dependable. They completely overcome the imbalance of the three guns which cause red blooming, colour fringing and failure of the red gun due to overwork. RCA's New Rare Earth Red Phosphor achieves UNITY CURRENT RATIOS -equal beam current from each electron gun; higher brightness, picture contrast and highlight; much longer tube life.

Perma-Chrome

This is a four-point, temperature-compensated shadow mask assembly which accurately adjusts and sets the shadow mask position relative to the screen. Shadow mask expansion limits the performance of a rectangular colour-tube-Perma-Chrome renders this problem negligible. Perma-Chrome produces full-colour fidelity and temperature equilibrium throughout normal operation. It maintains excellent field purity and uniformity.

RCA 'HI-LITE’ COLOUR PICTURE TUBES . .. THE BRIGHTEST IN THE INDUSTRY

Instead of illustrating a lot of meters you may not need let's just say Anders carry the largest stocks in the U.K.

And you can say that again! We have just compiled a catalogue* and even we are surprised at the variety of standard and non-standard meters we offer for off-the-shelf delivery. Among them there is almost certain to be that meter you need in a hurry. It would be interesting (for both of us) to find out. It won't take a moment when you've got through to 01-387 9092 (By the way, for 'meter' read 'meters'. . . whenever the occasion demands).

New TELEFRONT Series with clear plastic bezels
*We'll gladly send one to any manufacturer or bona-fide engineer. Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries. Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.

ANDERS METER SERVICE

Eddystone

BRITISH MADE

Amateur communications receivers

EA12
An amateur bands double-conversion superheterodyne receiver, for a.m, c.w, and s.s.b reception. For all amateur channels between 1.8 MHz and 30 MHz in nine 600 kHz bands with 28 MHz to 30 MHz in four bands.
Primary features: Crystal-controlled 1st oscillator, 2nd oscillator with continuously variable selectivity to 50 Hz , muting switched or by external relay, twin noise limiters, for a.m/c.w, and s.s.b, shortterm drift better than 20 Hz and less than 100 Hz in any one hour, 'S' meter calibrated in nine levels of 6 dB and dB levels beyond 'S9', two a.g.c time constants, deep slot filter, independent r.f, i.f, and audio gain controls with outputs for f.s.k and panoramic adaptor.

EC10 communications receiver

The fully transistorized EC10 communications receiver, supreme in its class, covers both mediumwave broadcasting and all shortwave service to 30 MHz . Incorporating the famous Eddystone tuning drive, with logging scale and auxiliary vernier, shortwave reception is particularly simple. Battery-operated or from optional a.c mains unit.

940 H.F communications receiver

An outstanding 13 -valve receiver with two r.f and two i.f stages, silicon diode noise limiter circuit and high quality push-pull output. Built to a professional specification, facilities include provision for c.w, a.m, and s.s.b reception over the range of 480 kHz to 30 MHz in five bands. Suitable for $110 / 125 \mathrm{~V}$ and $200 / 250$ V. $40-60 \mathrm{~Hz}$ a.c mains.

[^8]
"Where else can you buy a counter like this for £242?"

C242. Price in U.R. only

Nowhere else. The Racal type 835 Universal Counter/Timer provides Frequency. Period, Period Average, Ratio, Time Interval, Pulse Width and Mark/Space. Totalise and Scaling in one compact instrument.
PlusIntegrated circuit construction
DC to 12.5 MHz (125 MHz with Type 810 Divider)Sensitivity 75 mV r.m.s.Gate Times $1 \mu \mathrm{~S}$ to 10 Sec . (with push-button selection)
Exceptionally easy to drive

- tabular control information

Built to Racal 800 series standards, and occupying precisely half standard-rack width, the 835 has a companion Type 810 Frequency Divider which extends the frequency range to 125 MHz .

RACAI
INSTRUMENTS
CUT COSTS
нот
PERFORMANGE

Racal Instruments Ltd., Crowthorne, Berkshire, England.
Tel: Crowthorne 5652. Telex 84166 Cables/Grams Racal Bracknell.
B/A/C/ALL

Performance. Reliability.Value.

The latest AS1410.2 Series power suppliesfrom Solartron.

Rugged and almost indestructible in use the AS1410.2 series power supplies have a more advanced specification than any other power supply unit available, and a performance approaching that of calibration standards.

In no other supply unit can you have all these facilities:

- Automatic constant voltage or constant current with stability ratio of 10,000:1.
- Remote programming and remote control of all functions with pinpoint remote resetting accuracy.
- 1% digital voltage setting with smooth control. Long-term stability of 0.05% in 1,000 hours.
- Ripple and noise less than $200 \mu \mathrm{Vrms}$. Temperature co-efficient less than 0.01% per degree C.

If you don't need such facilities just remember you certainly want reliability and value against that precious appropriation.

ASK SOLARTRON

d	France Societe D'Instrumentation, Schlumberger, Diffusion Commerciale, 241 Avenue Gambetta, Paris 20 eme.
11111	West Germany Schlumberger (Overseas), Mesageratebau und Vertrieb Gmbh, 8000 Muchen 15, Bayerstrasse 13.
	Sweden Schlumberger Svenska AB, Vesslevagen 2-4, Lidingo 1 .

	Italy Schlumberger Italiana Spa, Divisione Strumentazione, via Veniero 7, Milano.
	Switzerland Schlumberger Messgerate AG, Badenersirasse 333, 8040 Zurich.
	Austria Schlumberger Overseas GES.M.B.H. A 1120 Vienna, Twoligasse 74/8.

Australia The Solartron Electronic Group Ltd., P.O. Box 138, Kew, Victoria
In addition there are 68 agents in territories throughout the world.

The Solartron Electronic Group Limited, Farnborough. Hampshire, England Telephone: 44433 A member of the Schlumberger Group

JACKSON

the big rame in PRECISION COMPONENTS

STAND-OFF INSULATORS

Jackson stand-off insulators are designed to perform well in rigorous environments. Their insulation resistance exceeds 20 million megohms even when atmospheric humidity is high. (They meet British Services teat specification DEF5334.) They will withstand high ateady voltages and intense r.f. fields. Forty different types: ask for catalogue.
Working voltages up to lokV.
Stoved-on silicone treatment: water rapellent.
Ceramic bodies.

* Silver-plated ciags.
* No solder. No plastic. No edhesives.

NEW FLEXIBLE SHAFT COUPLING

This new shaft coupling embodies the same well tried principles used in our Couplings. Only ${ }^{2}$ tin. diameter, ilin. long, permits constant velocity coupling and mis-alignment of .005 in. and 15°. Robust too. Can take 151bs in. torque.

CORD DRIVE TYPE "D"

The Type D slow-motion drive finds many uses, as two-speed Cord Drive and, nowadays, as direct/slow driva for panel mounting.

It's reliable if it's made by Jackson!

Write for literature

Phone: Croydon 2754-5 (01-688) 'Grams: Walfilco, Croydon

ENQUIRY SERVICE FOR

PROFESSIONAL READERS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

PLEASE USE CAPITAL LETTERS

Pour obtenir tout renseignement complémentaire sur les produits mentionnés dans les articles ou dans les pages publicitaires de ce numéros nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le ou les numeros de référence. Vos demandes de renseignement seront transmises aux fabricants intéréssés qui, en temps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées à l'érranger. Ces cartes de service sont valides pendant six mois a partir de la date de publication.
priere d'ecrire en lettres majuscules

Weitere Einzelheiten über irgendwelche Artikel, die aul Radaktion-oder Anzeigen-seiten erscheinen, erhalten Sie, indem Sie eine oder mehrere der beigelegten Karten ausfüllen und die Kenn-nummer(n) angeben, Ihre Anfrage wird an den Hersteller weitergeleitet, und Sie werden dann direkt von ihm hören. Karten die im Ausland aufgegeben werden, müssn frankiert werden. Diese Service-Karten sind sechs Monate vom Ausgabetag gultig.

BITTE IN BLOCKSChRIFT AUSFULLEN

Per ulteriori particolari in merito agli articoli menzionati nel testo o neile pagine pubblicitarie di questo numero Vi preghiamo di completare una o più delle schede allegate citando il numero ol numeri di riferimento. La Vostra richiesta sarà inolerata ai fabbricanti interessati che Vi risponderanno direttamente. Le schede dall'estero devono essere regolarmente affrancate. Questo scontrino di servizio é valido per sei mesi dalla data di pubblicazione.

SI PREGA DI COMPILARE LE SCHEDE
STAMPATELLO

Con objeto de obtener más detalles de cualquiera de los articulos mencionados en las páginas editoriales o de anuncios de este número sirvase rellenar una o más de las unidas tarjetas citando el número o números de referencia. Sus consultas serán transmitidas a los fabricantes interesados de quines tendrán noticias directamente a su debido tiempo. Las tarjetas enviadas desde el extranjero requieren franqueo. Estas tarjetas de servicio son validas durante 6 meses a parir de la fecha de publicacion.
sirvase escribir con letras mayusculas

The Audix range of audio control consoles has been designed to meet every requirement for sound reproduction in control rooms, theatres, lecture halls and public buildings. Each console is purpose built and can incorporate any of the wide range of specialised sound equipment manufactured by Audix. The quality of the cabinet work, superbly constructed and finished in solid hardwood, matches the high standard of workmanship found throughout our extensive range of standard and specially designed sound systems -the result of 21 years' experience in this highly specialised field.
We shall be pleased to advise you on your particular requirements without obligation.

A specialised Discotheque console providing full fading, cueing and mixing facilities. The front panel can be either flush fitting in solid mattfinished timber or recessed in stylish illuminated gold panelling.

TIMERS
 MICRO SWITCHES IMMEDIATE DESPATCH

NEW
Solid State
Process
Timer type
TDS
LATEST CIIRCUIT
PROLONGED
accuracy
- 1% repeat accuracy
- octal base plug.in
- circuit contains built-in voltage stabliser
- contacts
Timed out 5 amp $\mathrm{C} / 0$
Instantaneous - 15 Imp armally open 30 sec and 60 sec Linear dials
110 and 240 VAC operated
Approximately 110 dependent on quantiy

SYS MINI-TIMER

SYNCHRONOUS MOTOR \& CLUTCH

* 10 MILLION OPERATIONS
\star Instantaneous \& Timed out 3 AMP contacts.
- Repeat Accuracy $\pm \frac{1}{2} \%$. 10 secs to 28 Hrs . May also be used as impulse start and automatic reset.
£11.0.0 approx. dependent on quantity.

FLOATLESS LIQUID LEVEL CONTROL

+5 amp . OUtput COntrol contacts $*$ Solid State

* Octal-Base plug-in

The most compact unit avallable, measures only $2 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 3^{\prime \prime}$.

Approx. £4.0.0.
dependent on quantity.
SINGLE AND TREBIE STAINLESS ELECTRODES AVAILABLE.

TEMPERATURE CONTROLLER TYPE THP - THERMISTOR OPERATED OCTALBASE PLUGIM - COMPACT

Temperature ranges up to $240^{\circ} \mathrm{C}$
Output contacts. 4 amp
Accuracy 2% full scale
Complete with Thermistor
Approximately $E 15$ dependent on quantity
STP Sub-Minl Process Timer SYNCHRONOUS MOTOR \& CLUTCH Matchbox size frontal area. Automatic re-set. +PLUG-IN OCTAL BASE
*instantaneous AND TIMED OUT 2 AMP CONTACTS \star RANGES: 10 SECS TO 36 MINS. approx. £5.0.0 each.

NEW

PROXIMITY SWITCH

* FOR BATCHING, CONVEYORS, MACHINE TOOL CONTROL, PACKAGING, SORTING, etc.
- SENSES FERROUS OBJECTS
* needs no mechanical force or pressure to operate
^ SOLID STATE SENSING HEAD INCLUDES CONSTANT VOLTAGE CIRCUIT
\star mains operated
approx. £12.10.0 dependent on quantity.

YL2 GPB
 OTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE

S5G MILLION OPS. amp. c/o Sub-minia-Micro-switch.

2/6 each per 1,000

LIMIT SWITCH

WL 10 FNJ

$\star 10$ AMP 2 CIRCUIT $\star 5 \mathrm{INCH}$ FLEXIBLE actuator as illustrated as LOW AS $53 / 9$ EACH. five other standard types availlable

HEAVY DUTY PUSH-BUTTON SWITCHES 7 different panel mounting actuators including; knob, key, and lever, as well as push on/push off. Up to 4 switch blocks can be fitted. Dust and splash proof, D/P slow make and break, 5 amp rating. Full literature on request.

V-10-18

+ I MILLION
OpERATIONS
* COMPARE OUR SPEC. * COMPAREOURSPEC. OTHER SIMILAR TYPES.

$$
\text { Screw Terms. 3/1 each per } 1,000
$$

V-10-IA Solder Tags $2 / 3$ each per 1,000 VV-15 IC2 187 Amp Tags $2 / 6$ each per 1,000

NEW : Approx. 3/3 each per 1,000.

> CCR-5

Light force wire operated Micro-switch Designed for even more economical coin operation mechanisms.
U.L. APPROVED (Appr. No. 32667)
U.S. MILITARY SPECIFICATION

List of Distributors: B.P.G. Ltd., Leicester 61460; Edmundsons Electronics Ltd., London, New X 9731; A. C. Farnell Ltd., Leeds 35111 ; Gordon Wilson Ltd., Blackburn 59921; G.D.S. Ltd., Bucks. Orchard Grove 694.

Photograph by courtesy of Bristol Siddeley Engines Ltd.

Silentbloc Delta Mountings designed to safeguard precious cargoes

Coaxial Cables

from $3 / 8^{\prime \prime}$ to $3^{\prime \prime}$
foam or air dielectric

with Connectors

 available from stock. Larger sizes to order.

ANOREW ANTENNA SYSTITMS

LOCHGELLY • FIFE

Tel. Lochgelly (059-278) 561
Telex 72491

θ
 Armstrong the high fidelity sound

Compare an Armstrong with any tuner, amplifier or tuner-amplifier of even remotely comparable price and you will find the Armstrong is not only the best value but the best.

Start your comparison by sending the coupon for our complete catalogue or write mentioning 6WW68.

Armstrong Audio Limited
Warlters Road
London N7
telephone 01-607 3213

You

could buy 5 bridges

or one

 autobalance component bridge

The B42l will measure．．．

RESISTORS
from 0.01 ohm to 100 megohms，direct reading．Ac－ curacy 0．25\％

CAPACITORS

from 0.01 pF to 10 microfarads．Accuracy 0．25\％．Push－ button for instant reading of loss（shunt）resistance．

INDUCTORS

from 1 microhenry to 100 henrys．Accuracy 2% ．Push－ button for measurement of series resistance．

ELECTROLYTICS
10 microfarads to 10000 microfarads with d．c．applied．
Also leakage from 1 micro－amp to 10 milliamps．
TOLERANCE
from -25% to $+25 \%$ ，for L，C and R．
．．．in seconds

NE
THE WAYNE KERR COMPANY LIMITED WW－ 042 FOR FURTHER DETAILS

WW－043 FOR FURTHER DETAILS

Only S.M.E. Precision Pick-up Arms offer all these features. Choice of arm length Model 3009 (9 in .) or Model 3012 (12 in .) for still lower tracking error-of special importance with elliptical styli - low inertia. High precision ball races and knife-edge bearings for minimum pivot friction. Linear offset chosen for lowest distortion. Automatic slow-descent with hydraulic control. Bias adjuster calibrated for tracking force. Exact overhang adjustment with alignment protractor. Precise tracking force from $\frac{1}{4}-5$ grams applied without a gauge. Shielded output socket . Low capacity 4 ft . connecting cable with quality plugs . Light-weight shell . Camera finish in satin chrome, gun-black and anodised alloy . Comprehensive instructions • Rational development-all improvements can be incorporated in any existing Series II arm.

For sales and service ring Steyning 2228
SME LIMITED• STEYNING• SUSSEX•ENGLAND
WW-044 FOR FURTHER DETAILS

PERFORMANCE

 FROM

 FROM GARDNERS

Exceptionally wide band microphone and audio line matching transformers

FREQUENCY RANGE
100 K. ohm models $\pm 1 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. All other models $\pm 0.5 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. MAXIMUM AUDIO LEVEL +12 dBm (16 mW).
INPUT IMPEDANCE maintained to within $\pm 10 \%(\pm 20 \% \mathrm{j})$ at all frequencies within the range $50 \mathrm{c} / \mathrm{s}$ to $8 \mathrm{kc} / \mathrm{s}$ (to $5 \mathrm{kc} / \mathrm{s}$ only for 100 K.ohm models).
MAGNETICALLY SCREENED
-50 dB reduction in hum pick up.

For professional recording and broadcast transmission equipment, these Octal-based plug-in transformers have a frequency response extending well beyond the audio range. The design achieves dynamic performance with minimum distortionat all levels

Type No.	Input Z Ohms	Pin Nos. \dagger	Output Z Ohms	Pin Nos.	Sec./Pri. Turns Ratio	Applications
MU. 7521	3.75/15*	个-3, 2-4	600 (C.T.)	6-7-8	6•32:1/12-64:1	Low Z. Mic/Line
M U. 7522	3.75/15*	1-3, 2-4	100K.	6-8	82:1/164:1	Low Z. Mic/Grid
MU. 7523	75/300*	1-3, 2-4	600 (C.T.)	6-7-8	$1 \cdot 41: 1 / 2 \cdot 82: 1$	Line/Line
MU. 7524	150/600*	1-3, 2-4	600 (C.T.)	6-7-8	$1: 1 / 2: 1$	Mixing : Bal./Unbal.
MU. 7525	600 (C.T.)	6-7-8	300/1.2K*	1-3, 2-4	$1+1: 1 \cdot 41$ (C.T.)	Mixing: Hybrid \ddagger
MU. 7526	600 (C.T.)	6-7-8	2.5k/10k.*	1-3, 2-4	2.04:1/4-08:1	Line/Grid
MU. 7527	150/600*	1-3, 2-4	100K.	6-8	13:1/26:1	Line/Grid
MU. 7528	7.5/30*	1-3, 2-4	600 (C.T.)	6-7-8	4-47:1/8.94:1	Low Z. Mic./Line
MU. 7529	50/200*	1-3, 2-4	600 (C.T.)	6-7-8	1-73:1/3-46:1	Mic. or Line/Line
MU. 7530	10K. (C.T.)	6-7-8	10K.	$1-4$	1 (C.T.) :1	600 Line Bridging
M U. 7532	7.5/30*	1-3, 2-4	100K.	6-8	58:1/116:1	Low Z. Mic./Grid
MU. 7534	50/200*	1-3, 2-4	100K.	6-8	22-4:1/44.8:1	Mic. or Line/Grid

Type MU. 7525 may be used in "Hybrid" circuits, as shown, to establish 2 to 4 wire operation in telephony. Accurate balancing of the windings enable guaranteed rejection of better than -55 dB from $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Up to $-75 d B$ may be expected for normal rejection levels.

WRITE FOR A.F. BROCHURE GT. 4
giving full details of these and other types of A.F. transformers

GARDNERS TRANSFORMERS LIMITED Christchurch, Hampshire. Tel. Christchurch 1734*

Telex 341276 A.B Gardners Xch. When changed to Automatic approx. June 1968 - Christchurch 2284

THE Otalorios DE-SOLDERING TOOL

Self-contained-does NOT require the use of air-lines or pumps

- Simple, light and inexpensive

PERMABIT nozzle will not wear or become eroded by the solder
Standard nozzle $\frac{{ }_{6}^{6}}{6}$ in. bore. Alternative, $\frac{3}{64}$ in. bore
Mains or low voltages
Please ask for colour catalogue A/S
LIGHT SOLDERING DEVELOPMENTS LTD
28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01 -688 8589 \& 4559

WW-047 FOR FURTHER DETAILS

Accurate and direct measurement of speed without coupling to moving parts
 FRRHM

 ResonantReedTACHOMETERS

for hand use or permanent mounting.
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive literature on FRAHM Tachometers and Frequency Meters is freely available from the Sole U:K. distributors:
ANDERS METER SERVICE
ANDERS ELECTRDNICS LTO. $48 / 56$ BAYHAM PLACE. BAYHAM STREET LONDON NWI TEL: 01-387 9092. MINISTRY OF AVIATION APPROVED

6 mm tubular midget
flange S6/8 cap
over-all length
14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are
made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.
*Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST.EDMUNDS, SUFFOLK. TEL. BURY 2071.S.T.D. 02842071

HUNTS give designers the best of both worlds...

. . . all the advantages of a metallised polyethelene terephthalate film capacitor

New
 Hunts Type IM314

gives high standards of reliability in a new range specifically designed for printed circuitry.
. humidity resistant housing of tough, clean epoxy resin neatly styled to eliminate any moisture trap between terminations.

Hunts Type M314 Standard Capacitance Range

Capacitance Microfarads	160V. d.c. List Number	250V. d.c. List Number	400V. d.c. List Number
0.022			
0.033			
0.047		TMD 552	
0.068		TMD 502	
0.1	TMD 556		
0.15	TMD 452		
0.22	TMD 456 560		
0.9		TMP 540*	
1.8		TMQ 541*	

Temperature -55° to $+100^{\circ} \mathrm{C}$
Humidity Classification 21 days (H5 DEF 5011)

* These units are approved to Post Office Specification D2283

	Dimensions mm			
	L	W	T	C
TMD	18	10	5	15
TMP	31.75	22.23	7.94	27.5
TMQ	31.75	22.23	10.72	27.5

Please use the Reader Enquiry Service to obtain full technical information or contact us direct *

*ERIE ELECTRONICS LTD.
SOUTH DENES
GREAT YARMOUTH, NORFOLK
Telephone: Great Yarmouth 4911

- $\mathrm{B}=$ TO AMBITIOUS ENGINEERS

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 132 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our SpecialistElectronics Training Divisionexplains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than $£ 30$ a week, send for your copy of "ENGINEERING OPPORTUNITIES" today-FREE.

WHICH IS YOUR

 PET SUBJECT?Radio Television Electronics Electrical Mechanical Civil Production Automobile Aeronautical Plastics Building Draughtsmanship B.sc.

City \& Guilds
Gen. Cert. of Education etc., etc.

BRITISH INSTITUTE

 OF ENGINEERING TECHNOLOGY(Dept. 303B), Aldermaston Court, Aldermaston, Berkshire

PRACTICAL INCLUDING EQUIPMENT

8 asic Practical and Theor-
etic Gourses for beginners in A.M.I.E.R.E.E Gity \& Guild Radio Amateur's Exam. R.T.E.B. Certificate P.M.G. Certificate Practical Radio
Radio \& Telovision Servicing Prattical Electronics Eloctronics Engine ering Automation

The specialist Electronics Division of B.I.E.T. NOW offers you a real laboratory training at home with practical equipment. Ask for details.

POST COUPON NOW?

Please send me your FREE 132-page "ENGINEERING OPPORTUNITIES"
(Write if you prefer not to cut page)
NAME
ADDRESS

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD
WW-051 FOR FURTHER DETAILS

Nobuadio TRANSVERTORS

(TRANSISTORISED D.C. CONVERTERS/INVERTORS)

TYPE: B12/150T
PRICE: 124.3 .0
OTHER TYPES AVAILABLE from 10w up to $1,000 \mathrm{w}$ FOR 12-24-50-110v DC inputs. PRICES: 64,10.0. up to 89.15.
THE "T" RANGE of units are economical, efficient and provide an output with a squarewave form. Suitable for oper-ating:-VHF R/T-Radar-Echo Sounders-Ultra-violet Re-corders-Fluorescent Lighting-Refrigeration in Boats and Caravans, etc. and are designed to provide the starting loads of F.H.P. motors and the high initial power in rectifier circuits. SINEWAVE AND SQUAREWAVE, stable frequency ($\pm \frac{1}{4} \mathrm{~Hz}$) outputs are available in the " S " and " Q " ranges. WE SHALL BE HAPPY TO ASSIST WITH YOUR POWER CONVERSION PROBLEM.
CALL, WRITE OR TEL: 01-890 4837
EXPORT ENQUIRIES INVITED-Demandes concernant l'exportation solicités-Se invitan consultas sobre exportación-Exportanfragen erbeten.

VALRADIO LIMITED, Dept. CIO
BROWELLS LANE • FELTHAM • MIDDLESEX - ENGLAND Tel: 01-890 4242

WELWYN TOOLS

For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Ejectors, LUCO Electrically Heated Wire Strippers (see illustra. tion), Finest Soldering Needles, Box Joint Minlature Cutters and Pliers including Tip Cutting Pliers, Printed Circuit Crimping and Cutting Pliers, Torque Wrenches and Piercing Punches. If you require quality tools ask for Catalogue WW/68.

STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403

there is a standard Claude Lyons voltage stabiliser already built to
 your specification
 * and that includes price

Claude Lyons make the most comprehensive range of voltage stabilisers available today. You will almost certainly find the stabiliser to suit your application in the Claude Lyons standard catalogue range. Distortionless servomechanical types from 1 to 120 kVA (and 360 kVA 3 -phase). Solid-state types from 400 VA to 10 kVA . Simple tap-changing types from 600 VA to $2 \cdot 4 \mathrm{kVA}$. All very high quality. All very reasonably priced. Full facts and figures from Publicity Department, Hoddesdon.

Claude Lyons Ltd ■ Valley Works, Hoddesdon, Herts Hoddesdon 6716! Telex 22724 - 76 Old Hall Street, Liverpool 3. MARitime 1761 Telex 62181

Buallers ceramics
 for the ELECTRONIC INDUSTRY
 (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent London Office: 6 Laurence Pountney Hill, E.C. 4 Phone: MANsion House 9971

타우오울

N.C. BROWN LTD.
pacesetters in storage equipment

Send your free broch. Name
URE \square or Send \square (how ADDRESS
many) Budget Storage Units
|" 15.19 s . in green

Dept. W W Eagle Steelworks, Heywood, Lanct. Tel: 69018
Londn: 25.27 Newton St., W.C.2. Tel: $01-4057931$

TELEPRINTERS •PERFORATORS REPPRFORATORS • TAPEREADERS EDTING \& REPRODUCIMG SETS

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803, Binery and special purpose Codes.

2-5-6-7-8-TRACKAND MULTIWIRE EQUIPMENT

TELEGRAPE AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES
Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Multiplex Transmitters; Diversity, Frequency Shift, Keying Equipment; Line, Mains Transformers and Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches Cords, Wires, Cables and Switchboard Accessories; Tele printer Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Oscilloscopes; Miscel$l_{\text {aneous Accessories and Spares. }}$

W. BATEY \& COMPANY
 Gaiety Works, Akeman Street, Tring, Herts.
 Tel.: Tring 3476 (3 lines) Cables: RAhno tring STD: 044282 TELEX 82362

WW-0S9 FOR FURTHER DETAILS

DIFFERENTIAL DC AMPLIFIERS
 for use with dc energised transducers

Extremely versatile high performance dc amplifiers with choice of output stage to drive a wide range of indicating, recording and control devices Also Bridge Supplies and Bridge Balance Units.
> -V 1F Electronic Laboratories Ltd. Oakham Court, PRESTON PRI3XP Telephone Preston 57560

EDDYSTONE COMMUNICATION RECEIVERS

For the Professional or Amateur user who likes the Best.

H.P. Terms gladly arranged. Quick Delivery. Carriage Paid.

Telephone: AINTREE 1445

SEND od STAMP FOR LITERATURE TO
The Eddystone Specialists SERVICES LTD. 51 COUNTY ROÁD, LIVERPOOL, 4 ESTAB. 1935

Just what is this ABR, that makes such a vital difference to the 'DITTON 15’?

To achieve really impressive bass reproduction a speaker must move a large volume of air at the lower frequencies. In the usual "infinite baffle" compact system this is achieved by large excursions of the diaphragm-with good results if the designers and engineers have done their homework (listen to the 'Ditton 10'). But with the 'Ditton 15^{\prime} Celestion have come up with something even better. They have given a dramatic further improvement in the bass response by a novel design idea called the ABR (Auxiliary Bass Radiator).
The $A B R$ is a rigid diaphragm with a linear suspension capable of large excursions, pressure driven by the rear radiation from the $8^{\prime \prime}$ bass unit. The acoustic mass of the $A B R$ and the response of the $8^{\prime \prime}$ bass unit are so matched that from 80 Hz down to 30 the ABR moves in phase with the bass loudspeaker cone. It progressively radiates more of the bass frequencies as the bass loudspeaker's own power output falls away. This sharing of the load results in a clarity of sound in the bass frequencies and permits a full 15 Watt power down to 30 Hz . Above 80 Hz the ABR is stationary leaving the enclosure to act as a pure infinite baffle.
And what about the high notes? They are in the care of the famous HF1300 Mk. 2. Enough said I

But don't take our technical word for it. Hearing is believing! Ask your local Hi Fi dealer to demonstrate the 'Ditton 15' and compare it for yourself. Or send in the coupon now, and we will let you have full details and technical specification-not only of the 'Ditton 15', but also of the famous 'Ditton 10', the inexpensive but most sophisticated mini-speaker on the market.

Celestion

Studio Series
loudspeakers for the perfectionist

1. Studio quality high frequency unit HF1300
2. Anechoic cellular foam wedge and lining ellminates standing waves.
3. High hysteresis panel loading materlal to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR)-plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz ; double roll suspension allowing excursions up to $\frac{3^{\prime \prime}}{4}$ with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically. transparent grille cloth for maximum presence.
7. Full L-C Crossover network.

Rola Celestion Ltd Ferry Works,
Tel 01-398 3402

TECHNICAL TRAINING by
 ICS
 IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S-trained man. Let ICS train YOU for a well-paid post in this expanding field.
IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success.
Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers etc. Expert coaching for:

* INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
* C. \& G. TELECOMMUNICATION TECHNICIAN\& CERT8.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVIGING CERTIFICATE.
* RADIO AMATEURS EXAMINATION.
* P.m.g. GERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.

NEW SELF-BUILD RADIO COURSES

Build your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition.

POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937

quality equipment

TAPE RECORDER

Here is a versatile stereophonic recorder which has no equal in its price group.
The C.B.L.|7T solid state version uses 8 low noise Field Effects Transistors on its twin channel Mic. P.U. and Playback imputs to give low intermodulation distortion, and the 10 watts sine wave 15 watt speech and music amplifiers each have less than 0.05% harmonic distortion and less than 0.1% intermodulation distortion at 10 watts output.
"Before and After" monitoring on phones and by internal or external speakers is catered for, and separate power amplifier volume controls allow the speakers to be independently controlled from the headphones. $30 / 50 \Omega$ balanced line Microphone and P.U. inputs can be mixed with the other channel via a crossmix and an echo control.

All the facilities of the valve model C.B.L. are provided, plus a few extras... The series 7 deck has variable speed wind in either direction, solenoid operation, provision for an external switch for remote run or voice operated accessory, and still lower wow and flutter figures.

Mono and full track versions of this will also be available.

VORTEXION LIMITED, 257-263 The Broadway, Wimbledon, S.W. 19

Trend cards make IC

 mounting easierTwo standard sizes of IC mounting cards are now in stock, $6^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ to take 20 IC's and $12^{\prime \prime} \times 4^{\prime \prime}$ to take 40 IC's. These are suitable for APT 'Lektrokit' racking. Other sizes are available to order for Imhof and other makes of chassis.
Each IC lead is attached to a terminal pin and connections can be either soldered or wire wrapped. Interconnections can be made using PTFE-covered wire. A 23-way varicon or edge connector is incorporated.

Electronic System Engineers • Manufacturers of: Core Stores • I C Cards • Numerical Display Cards Data Transmission Equipment

VARIABLE-HIGH CURRENT SMOOTHED POWER SUPPLIES WITH ACCUMULATOR PERFORMANCE DIRECT FROM A.C. MAINS

TYPE 250 VRU/30/20 provides outputs of $0-30$ v. D.C. continuously variable, up to 20A. Overload capacity $\mathbf{2 0 0 \%}$ for short periods Ripple Content, impedance and regulation equivalent to accumulator performance. Output protected. INCORPORATES HEAVY DUTY SILICON RECTIFIERS. Complete with volt and amp meters, free standing, but suitable for 19 in . racking.
USED BY MINISTRY OF TECHNOLOGY: Aircraft operators, for servicing 28 v . aireraft instruments, radio; within B.C.A.R.'s.
FIXED OUTPUTS ALSO AVAILABLE. Smoothed 12 or 24 v . up to 24 amps Applications. operating and servicing transistorised equipments, e.g. 12-24 v . mobile r/telephone; production testing D.C. motors; heaters, wipers ignition systems, etc., etc. Direct from A.C. without accumulators.
Avoid the extra expense of super regulation you may never need.
PRICES: from $£ 31 / 4 /=$ up to $£ 88 / 4 /$ -
We shall be happy to assist with your power conversion problems. Call, write, or Tel.: 01-890 4837.

EXPORT ENQUIRIES INVITED**
DEPT. PUI3
BROWELLS LANE,
FELTHAM, MIDDLESEX,
ENGLAND.

TEL: O1-890 4242
LIMITED
**DEMANDES CONCERNANT L'EXPORTATION SOLICITES. SE INVITAN CONSULTAS SOBRE EXPORTACIÓN. EXPORTANFRAGEN ERBETEN.

EAGLE ANNOUNCE AN IMPORTANT NEW POWER SUPPLY

MODEL RP. 215 all transistor regulated 2 Amp DC power supply. In relation to cost the RP. 215 offers unequalled performance, reliability, advanced design and engineering techniques. A truly miniature laboratory or bench variable DC voltage power supply for use in electronic areas such as component evaluation, circuit development, educational experiment, test facility or production line. Output Voltage: $0-15$ volts DC continuous variable. Output current $0-2 \mathrm{Amps}$ DC. Line Regulation: Better than 0.05%. Ripple: 3 mV peak-to-peak full load. Input voltage: 220/240 volts AC. Protection Circuit: Constant current shifting, aut omatic retum. Operating Temperature: $0-50^{\circ} \mathrm{C}$. Meters: 2 meters for voltage and current. simultaneous monitoring, guaranteed 12 months. Size: $7 \frac{1 \frac{1}{2}^{\prime \prime}}{} \times \frac{3^{\prime \prime}}{}{ }^{\prime \prime} \times 3 \frac{77^{\prime \prime}}{}$

Distributed by B. Adler \& Sons (Radio) Lt Instruments Division

ElCOM sound equipments

ranging from 6

 channel modular mixers to meet the budget conscious markets> to multi channel
> consoles of broadcast quality

Elcom manufacture a full range of modules including input modules, output units, level amplifiers, equalisation units and p.p.m. units. Full details available on request.

ELCOM
(NORTHAMPTON)
LIMITED

ELCOM (NORTHAMPTON) LTD WEEDON ROAD INDUSTRIAL ESTATE
NORTHAMPTON
Tel: 51873

Do you find that your leads are always getting in the way? Then use the LUSTRAPHONE
"Radiomic" System and then you'll have no lead at all. Capable of providing a microphone link over distances of $\frac{1}{4}$ mile, the "Radiomic" in no way limits the performance of even the finest microphones. The perfect mates for the "Radiomic" are the LUSTRAPHONE 10 watt and 50 watt Amplifiers. By employing brilliantly simple and advanced circuitry, these amplifiers combine performance and reliability to a greater degree than ever before. Brief Specification:- Frequency Response $20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Distortion 0.5% at full power. Send for free illustrated leaflets giving full details of "Radiomic" Systems and 10 watt and 50 watt Amplifiers.

lustraphone

THE FOREMOST NAME IN MICROPHONES
Lustraphone Ltd., Regents Park Road, London N.W. 1 01-722 8844 WW-072 FOR FURTHER DETAILS

HOWELLS RADIO LTD.
 MINISTAY OF AVIATION INSPECTION APPROVED

TRANSFORMERS

STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION.
$0-50 \mathrm{KVA}$, "C" CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS, ETC.
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).

Driver	$22 / 6$	Carr.	$2 /-$
Mains	$29 / 6$	Carr.	$4 / 6$

L.P. Filter, Chassis Mounting 11/6. Carr. 1/-.
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-

*MAINS TRANSFORMERS

350-0-350 v. $60 \mathrm{~mA} ., 6.3$ v. 2 A. £1/15/-. Carr. $4 / 6$.
500 v. 300 mA. 6.3 v. 4 A., 6.3 v. 1 A. $£ 3 / 12 / 6$. Carr. 5/6.
$500-0-500$ v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A.
£4/10/6. Carr. 6/6.
$525-0-525$ v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. £5/5/=. Carr. 6/6.
*LOW VOLTAGE

$$
\begin{array}{ll}
30-0-30 \text { v. } 4 \text { A. } & £ 2 / 5 / 6 . \text { Carr. } 5 / 6 . \\
15 \text { v. } 2 \mathrm{~A} . & £ 1 / 12 / 6 . \text { Carr. } 3 /-. \\
15 \text { v. } 6 \mathrm{~A} . & £ 2 / 1 / . . \text { Carr. } 4 / 6 . \\
15 \mathrm{v} .10 \mathrm{~A} . & £ 2 / 15 /=. \quad \text { Carr. } 5 / 6 .
\end{array}
$$

TRANSISTOR POWER SUPPLY TRANSFORMER
0-2-4-6-8-10-20-30-40-50 v. 2 A. £4/10/-. Carr. 6/-.
*PRIMARIES 10-0-200-220-240 v.
CHASSIS, CABINETS \& PRECISION METALWORK
ELECTRONICS - DEVELOPMENT \& ASSEMBLY
CASH WITH ORDERS PLEASE
Carlton Street, Manchester 14, Lancashire TEL. (STD 061) 226-3411

International Rectifier
semiconductors lead the world when it comes to slicing current waveforms-into just the right shape to solve your own particular problems.

TOA PUBLIC ADDRESS EQUIPMENT IS HERE

THERE'S MORE TO

THAN MEETS THE EYE

Tough compact construction utilising the latest advancements in printed circuitry mean that TOA stationary or mobile P.A. system gives clear powerful
amplification plus maximum adaptability and convenience with minimal maintenance.

TOA specialists in SOUND.

For full details:

AUDIO \& DESIGNS (SALES).LTD.

40 QUEEN STREET, MAIDENHEAD, BERKS
Tel. Nos. 25630 or 25204.

TRANSISTOR \& VALVE AMPLIFIERS, MIXERS, MEGAPHONES, SPEAKERS, HORNS ww- 075 for further details
checking dynamic range?

GENERATOR Enfrator

Yes? Then you"ll be interested in this application for Hatfield Type Q Attenuators. Since this type is available with spindle at both ends, two units can be mechanically coupled so that increasing attenuation by one unit is accompanied by decreasing attenuation by the other. Thus, overall attenuation remalns constant, but the level at the instrument under test can be varied over the full range of the attenuators.
Typical applications include determination of input/output linearley characteristics of an amplifier (figure of merit) or of transfer characteristics of modulators and passive couplers.

HATFIELD BALUN

NOMBREX

NEW STYLE IMPROVED INSTRUMENTS OTHER MODELS AVAILABLE -R.F. GENERATOR 31 £I2 10 o
C.R. BRIDGE 32.................... \& 10100

- INDUCT. BRIDGE 33............ $£ 2000$

SEE PREVIOUS ISSUES FOR DETAILS
POWER SUPPLY 22 E14 0 TRANSISTORISED

ALL I.N FULL PRODUCTION
POST \& PKG. $6 / 6$ EACH EXTRA

A.F.GENERATOR $30 £ 19100$ TRANSISTORISED

The widest ranging and most comprehensive valve catalogue available from any independent supplier.
PINNaCLE ELECTRONICS LTD achlles street - hew cross • london s.e. 14
Telephone: All Departments-01-692 7285 Direci orders-01-692 7714

Linstead instruments are designed for accurate yet continuous hard work. Here are shown just three in the range which are receiving such glowing comments as ". . . does everything that instruments costing several times its price can do" (letter available for inspection). These are products which can be relied upon time and time again. Below we give a brief specification of three.

S.I. Twin stabilised Power Supply

Controlled by silicon transistors. Two supplies each. 0 te 20V, 0 to 0.5A. Full overload and short circuit protection. \&45 nett U.K.
G.2. L.F. Signal Generator

10 Hz to $100 \mathrm{kHz} \pm 2 \% \pm 1 \mathrm{c} / \mathrm{s}$. Sine wave. $0-6 \mathrm{~V}$ low distortion. Square wave $0-9 \mathrm{~V}$. No droop H.F. rise time I uS. I Watt into 3 ohms. $f 24$ nett U.K.
M.I. Electronic Voltmeter

15 A.C. ranges. 1 mV to 500 V . 10 Hz to $100 \mathrm{kHz}, 3$ D.C. ranges. $0-400 \mathrm{~V}$. Input Impedance. 10 Mohms on A.C. and D.C. 26 nett U.K.

VARI-STAT

thermostatic

 SOLDERING IRON
HIGH PRODUCTION MINIATURE

 MODEL D. 50 WATTWeight .. 2 oz .
Heating time 50 secs.
Bit Sizes .. $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$
Nickel or Iron Plated
Voltage ., 250 to 12 volts
Price
60/6

HIGH PRODUCTION INSTRUMENT MODEL H. 150 WATT
Weight .. 6 oz .
Heating time 1 min .45 sec .
Bit Sizes .. $3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}, 3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$
Nickel or Iron Plated
Voltage .. 250 to 24 volts
Price

OTHER VARI-STAT IRONS:-

Miniature Model M 50 watt Push-in Bits $1 / 32^{\prime \prime}$, 1/16", 3/32"
Instrument Model B 70 watt Bit Size 11/64"
Industrial Model I 500 watt Bit Size 5/8"
CARDROSS ENGINEERING CO., LTD.
Woodyard Road, Dumbarton
Phone: Dumbarton 2655

WW-080 FOR FURTHER DETAILS

MODEL 8 MK. III

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS.89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT

Designers and project engineers,
reduce your power unit selection problems, with the unique A.P.T. SERIES 30 SLIDE RULE.
Specially designed to show at a glance, voltage, current, dimensions, model number and prices. Withdraw the slide from the sleeve for ordering details, specifications including performance, remote sensing, overload protection, temperature, input etc. Write today for your FREE slide rule.

A.P.T. Electronic Industries Limited,

Chertsey Road, Byfleet, Surrey

Telephone: Byfleet 41131 Grams: Aptran, Byfleet.

power supply selerfor

WE ARE INTRODUCING FIRST CLASS（1．5\％ACCURACY）MOVING COIL METERS OF CURRENT MANUFACTURE．THESE STURDILY BUILT INSTRUMENTS HAVE HIGH TORQUE MOVEMENTS AND ARE

The Meters are calibrated for use on anti－magnetic panels，in vertical position．
At present only the sizes listed below are available ex－stock．We hope to increase the range in the near future to include further sizes and types．

RANOE	70DA	85DA	120DA
$40 \mu \mathrm{~A}$	1		
$60 \mu \mathrm{~A}$	681－	$53 /-$	$781-$
${ }_{150 \mu \mathrm{~A}}^{100 \mu}$	621－	49／－	
$250 \mu \mathrm{~A}$	$54 /$	42\％－	65／－
$400 \mu \mathrm{~A}$	$52 /-$	－	\cdots
$600 \mu \mathrm{~A}$	48%	36／－	60／－
$\mathrm{lma}_{2.5 \mathrm{~mA}}$	46\％－	－	58／－
25 mA	－	－	58\％－
40 mA	461－	34／－	
60 mA	二		58／－
100 mA 160 mA	$4 \overline{61 /-}$	34i－	－
$\underline{250 m A}$	$48 /-$	341－	二
400 ma	46%	－	－
600 ma	481 －	34／－	
1.4	46／－		58／－ $58 /-$
2.51	48／－	－	58\％
41		$35 /-$	－
10 A 40 A	－	$\begin{aligned} & 35 /- \\ & 39 /- \end{aligned}$	$\begin{aligned} & 60 /= \\ & 84 /- \end{aligned}$

Type 70 DA and 70 DV .80 mm ．aquare flange．Flush mounted
68 mm ．dia．body． 40 mm ．depth from the panel． B8mm．dia．body． 40 mm ．depth from the panel． Type 85 DA and $85 \mathrm{DV}, 85 \mathrm{~mm}$ ．dis．flange．Flush mounted． 87 mm ．
dia．body． 48 mm ．depth 1 Irom the panel． dia，body． 48 mm ，depth from the panel．

$$
\begin{aligned}
& \text { Type 120DA and } 120 \mathrm{DV} \text {. } 120 \mathrm{~mm} \text {, equare flange. Finsh mounted. } \\
& \text { 68mm. dis, body. } 40 \mathrm{~mm} \text {, depth from the panel. }
\end{aligned}
$$

	RANGE	700V	85DV	120DA
6 V		82／－	－	－
10 V			40／－	
15 V 25			40／－	62／－
40 V		82／－	40\％	
60V		$821-$	二	82：－
100 V		－	－	62\％
150 V		82／－	46\％	
${ }_{400 \mathrm{~V}}^{250 \mathrm{~V}}$		53／－	$46 /-$	$65 /-$
000 V		58／－	501－	7\％／－

Z \＆I AERO SERVICES LTD．

 44A WESTBOURNE GROVE，LONDON，W． 2Tel：PARK 5641／2／3
Cables：ZAERO LONDON
Telex： 261306

WW－083 FOR FURTHER DETAILS

AVONCEL EQUIPMENT TROLLEYS

 Medium Duty from 617 ．Heavy Duty from $£ 35$ ．Wide range of Standard Models．Quick Dellvery Special Models made to order．
＂AVONCEL＂

AVON COMMUNICATIONS \＆ELECTRONICS LTD 318 BOURNEMOUTH（HURN）AIRPORT CHRISTCHURCH，HANTS．TEI，NORTHBOURME 3774 （P．B．X．）

SOUTH－EAST ASIA－for promipt service and deliverles contact
HATFIELD INSTRUMENTS（NZ）LTD．，P．O．Box 717，Napier，New Zealand．

[^9]

4

New free booklet describes the complete range of Enthoven Solder products. Ask now for your copy of 'Soldering with Enthoven.'

Tools, materials and knowledge. Two of the neatest irons ever made. The finest, most reliable materials-backed by over 150 years' experience of smelting and refining non-ferrous metals. And intimate knowledge of modern soldering techniques, the product of special experience built up over the years confirmed when necessary in one of Europe's most advanced metallurgical laboratories. This is what Enthoven offer you. I Washers and preforms, cored and solid, standard and special. 2 Microscope soldering iron for fine work. 3 Superspeed six-second heat soldering iron. 4 Preservative, metal, Tricene-de-oxidant, lacquer, flux, and thinners for printed circuits. 5 Super-speed solder . . . stellate cored, wide range of alloys, gauges and packings.

Dominion Buildings South Place London EC2

Telephone: 01-628 8030
WW-087 FOR FURTHER DETAILS

THE REMANENCE RELAY

This is a 3000 type relay capable of latching in the energised position after the
supply is removed until a suitable releasing current is applied in the opposite direction. This releasing current is controlled with a single coil, by reducing the operating current in reverse or with a double coll, via a pair of contacts employed on the relay to energise the second coil

MECHANICAL RELAY LATCH

Enables the P.O. 3000 type relay to be held in the closed position when the coil is de-energlsed and until manually released. Does not impair the versatility of the contact arrangements, nor affect the normal mounting position.

ELECTRO-MAGNETIC COUNTERS

MAJOR TYPE $6^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2} \times 1 \frac{3^{\prime \prime}}{16^{\prime}}$. Counts when coil is energised. 3V DC-220V DC. Speed approx. 8 per second.

MINOR TYPE $4 \frac{3^{\prime \prime}}{8} \times \mathbf{I}^{\prime \prime} \times 1^{\prime \prime}$. Counts when coil Is de-energised 3V DC IIOV DC. Speed approx. 10 per second.

JACK DAVIS (RELAYS) LTD.
 9/10, Mallow Street, London.E.C. 1 Telephone: CLErkenwell 3661-2

WW-088 FOR FURTHER DETAILS

GLABK

AIR OPERATED TELESCOPIC MASTS

A.N. CLARK (ENGINEERS) LTD. BINSTEAD. ISLE OF WIGHT. ENGLAND.

Abstract

But if you DO want to raise an aerial of 200 lbs . or to heights in excess of 100° CLARK Air Operated Telescopic Masts can help you do the job. The photograph on the left shows a nine pound TV camera supported by a CLARK QT series mast looking in on a fruit bat's night life. Should you have a telescopic mast requirement CLARK offer you the world's most versatile range of vehicle born. freestanding or trailer mounted masts. Thirty countries use our masts and users range from aiport authorities, police and armed forces to . . . fruit bat watchers.

Whatever the occasion a CLARK mast will rise to it. Write for further details.

Auper E OT 4 mast extended. mounted on a Ford Cortina Estate.

With DIGITAL or ANALOGUE

frequency calibration

LEVELL ELECTBONICS LTD., Park Road, High Barnet,Herts. Phone $01-4495028$

minulamps MAKE LIGHT WORK OF IT!

Are you using Minilamps? You should be! These low voltage indicator lamps are inexpensive to buy and install and do a wonderfully efficient job. That's why they're in use throughout the world, from ships to computers. See how Minilamps save you time and costs. In all these ways:

MINILAMPS ARE FRONT MOUNTED
No more mounting problems! No need for access to rear of mounting panel.

THEY'RE SO EASY TO INSTALL
Wired in seconds, using standard $A-M P$ connectors. Just a push and a Minilamp is mounted. And firmly held by a special nylon grommet. Replacement is just as easy.

NYLON ENCAPSULATED TO LAST AND LAST
Minilamps have a life equal to standard filaments.
They don't discolour or deteriorate in use.
AND THEY'RE APPROVED FOR SAFETY
Approved by the Home Office for security alarms and by the National Coal Board for use in mine salety equipment and other hazardous applications
THERE'S A CHOICE OF COLOURS
White, red, yellow, blue or green. Others to special order. Voltages are 6, 12 and 24.
Get the facts about Minilamps, used by the thousand in the electrical and electronics industries.

MNIILAMP WMEIIITIT WOXKOFITI

For full technical data,samples \& quotations, write to:

WW-091 FOR FURTHER DETALLS

with the

Grampian TC12 loudspeaker
The Grampian TC12 loudspeaker is a high quality twin cone unit at a reasonable price. The l.oudspeaker is built of high quality materials to a rigid specification and is eminently suitable for good quality sound reproduction. Let us send you full details or better still go and hear one at your local dealers now.

Design for suitable cabinet available

Grampian manufacture high grade microphones, parabolic reflectors, windshields and accessories, also mixers and amplifiers.

Grampian sound Equipment

Integrity that you hear
Send for leaflet giving full details
GRAMPIAN REPRODUCERS LTD
Hanworth Trading Estate, Feltham, Middlesex Tel: 01-894 9141/3 Cables REAMP. FELTHAM

ONE....

品moveramt

...OR A THOUSAND

To your specification.... with quick delivery

AND fomes Chaner RELIABILITY

Whether your need is for a single instrument or a thousand (or even more) the Ernest Turner organisation is geared to give the same renowned service. From a very wide choice of movements and case styles we can provide precisely the instrument for your application, including the manufacture of special dials and provision of built-in or external units to permit indication of any electrical quantity.

We invite your specific enquiry for any number of instruments from one upward, and we should be pleased to send you a copy of our general catalogue $86 / 2 \dot{5}$ on request.

ERNEST TURNER ELECTRICAL INSTRUMENTS LTD.

 HIGH WYCOMBE - BUCKINGHAMSHIRE - ENGLAND. Tel: High Wycombe 30931
RE-CREATES THE FINER SHADES OF ORIGINAL SOUND

To re-create faithfully the finer shades of original sound, stored as complex mechanical patterns in the micro-grooves of modern records, calls for a cartridge in the precision instrument class. Goldring engineers have spent two years developing such a cartridge... the Goldring " 800 E" Free Field Cartrid ge with elliptical diamond stylus. At a comparatively modest cost this cartridge rivals the finest in the world, whilst at the same time

GOLDRING 800 E' FREE FELD STEREO CARTRIDGE

 guaranteeing the complete reliability for which the name "Goldring" has stood for sixty years in record reproduction.
GOLDRING "800E" FREE FIELD

strefo carraiog $£ 18.10 .6$
:-x 0.10

SPECIFICATION

Type	Magnetic-(Free Field)
Frequency Response	$10 \mathrm{~Hz}-25 \mathrm{kHz}$
Sensitivity	1 mv. per $\mathrm{cm} / \mathrm{sec}$.
Separation	25 dB at 1 kHz
Load	$100 \mathrm{k}-47 \mathrm{k} / 0 \mathrm{hms}$
Compliance	$30 \times 10-6 \mathrm{~cm} / \mathrm{dyne}$
Stylus	$0.0008^{\prime \prime} \times 0.0003^{\prime \prime}$ diamond
	replaceable
Effective Tip Mass	Less than 1 mg.
Tracking Weight	$0.75-2 \mathrm{gm}$.
Head Weight	8 grms.
Vertical Tracking Angle	15°
Mu Metal Shield for hum protection.	

GOLDRING MANUFACTURING CO. (GREAT BRITAIN) LIMITED 486-488 High Road, Leytonstone, London, E.11. Tel: Leytonstone 8343 WW-094 FOR FURTHER DETALLS

No. 1

New Radiomicrophones

> S.N.S. are proud to announce the first British made G.P.O. approved Radiomicrophone to sell complete, Transmitter, Receiver, Carrying Case and microphone, at under $£ 100$.
> This unit known as the Type 12 Mk 11 joins the range of systems which have proved their worth over the past 4 years, including both wide and narrow band systems, special studio systems developed for Broadcasting and T.V.Authorities and used extensively in the Film Industry.
> Because of this wide range and our ability to meet customer "specials" at a reasonable cost we have been increasingly successful in this field, quite apart from the other aspects of S.N.S. and are now able to offer this new system, designed for both good looks and optimum performance, at a really reasonable cost.
> We are always pleased to arrange demonstrations and provide quotations against your requirements and would ask you to note the wide range of our products noted below, which enable us to engineer complete sound systems of any size and complexity.
> For further details on the new Type 12 Mk II, or any other of our products please write, phone or telex.
> J.V.H. ROBINS, Marketing Director S.N.S. Communications Limited,
> Tropical Works, 851 Ringwood Road, West Howe, Bournemouth, Hants, England.
> Telex 41224 . Tel: Northbourne 4845 .
> Manufacturers of: Transistor Amplifiers, Crystal AM and FM tuners, cabinet and line source loudspeakers, Loudspeaking Intercom Systems, Hotel Radio and Intercom Systems.

TOWNHEY

$\rightarrow-\infty$

INTERNATIONAL

 RECTIFIERQuality Semi-Conductors.
Complete Rectifier Assemblies up to thousands of Amps, Diodes, Thyristors, Zeners, Encapsulated Bridges, Photocells, Klipsel Surge Protectors.

For experiment and teaching:ZENER KITS, THYRISTOR KITS.

Bulletins and prices on request.

BRADM

PRINTED CIRCUIT DRAFTING AIDS

Save drafting time and costs. Selfadhesive shapes and tapes. Terminal circles - fillets - tees -elbows - universal corners and mounting holes.

ENGLISH ELECTRIC

for the protection of rectifiers and thyristors.

Rail Mounted Terminals and Terminal Blocks 0.5-250 Amps.

Bulletins and prices on request.
AND ASK FOR EXTENSION 1
WW-096 FOR FURTHER DETAILS TO COMPONENTS DEPT ONLY
HARMSWORTH. TOWNLEY \& CO TODMORDEN LANCS

TRANSFORMERS
0.25 kVA to 300 kVA

1 phase and 3 phase

EQUIPMENT
DEPARTMENT

LOW VOLTAGE HIGH CURRENT TRANSFORMERS
with output currents of hundreds, thousands and tens of thousands of amps.
1 phase and 3 phase.

DC POWER SUPPLIES

For Magnets, Accelerators, Plating, Anodisíng, Spectroscopy, Plasma Arc, Toronto Arc, Electron Beams, Electrolysis, Welding, Quartz Lamps, Mercury Vapour Lamps. From 100 W to 200 kW .

VOLTMOBILES

64 steps on load switching AutoTransformers. I phase and 3 phase. 200-400 Amps.
Zero to 100% Volts or 125% of Input Volts.
Voltmobiles are low-cost controllers, for furnaces, rectifier sets and other loads.

LET US HAVE YOUR SPECIFIC REQUIREMENTS

a complete range of OSCILLOSCOPES for the test engineer

A 'scope for every purpose - from the Serviscope* Minor at only

A copy of the Telequipment Short Form Catalogue is all ready to be posted to you-just let us have your name and address diract
via the Reader Enquiry Card.
$£ 23.10 .0$. to the sophisticated double-beam D53 for laboratory use. A comprehensive range of accessories is available, and certain Telequipment oscilloscopes can also be supplied for rack mounting.

TELEQUIPMENT LIMITED

Wireless World

Electronics, Television, Radio, Audio

Fifty-eighth year of publication

This month's cover. A development engineer at Mullard's Mitcham works adjusts a cooled two-stage parametric amplifier designed for use as a low-noise r.f. input stage in communications satellite earth stations. The amplifier operates at 4 GHz with a bandwidth of 500 MHz , and has a gain of 40 dB and an overall noise temperature of $20^{\circ} \mathrm{K}$.

Illffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Dorset House, Stamford Street, London, SE1
© Miffe Technical Publications Ltd., 1968 Permission is writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

June 1968
Volume 74 Number 1392

Contents

143 Constructional Projects

144 Wireless World Colour Television Receiver
147 Space Communication and Travel
148 Loudness Control for a Stereo System by R. T. Lovelock
151 Colour TV Development Continues in Europe
153 Conferences and Exhibitions
154 Output Transistor Protection in A.F. Amplifiers by.A. R. Bailey
156 Interference and Microwave Systems
157 News of the Month
Applying "Bosworth" in Semiconductors
G.A.D.-The Printed Transistor
B.O.A.C. Flight Booking System

160 Personalities
161 Test Your Knowledge questions \mathcal{E} answers by L. Ibbotson
162 Letters to the Editor
165 Decade Frequency Standard by K.-V. Weisberg
166 Hybrid Cascode Amplification by B. Alvesten \mathcal{E} L. Bergsten
168 Announcements
169 Audio Fair Review
176 Television Camera Tubes by I. R. Sinclair
179 Demonstrating A. C. Theory by 7. A. Assenheim
180 Manufacturing Colour Tubes
181 Series Voltage Stabilization by f.-E. Sigdell
182 Hanover Fair Grows Internationally
183 New Products
186 High-frequency Analogue Multiplier by M. E. Whatton \& G. Crisp
188 World of Amateur Radio
190 Literature Received
190 H.F. Predictions

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $£^{2}$ 6s 0d. Overseas; $£_{2}^{2} 15 \mathrm{~s} 0 \mathrm{~d}$. Canada and U.S.A.; $\$ 8.00$. Second-Class mail privileges authorised at New York N.Y. Subscribers are zequested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: Birchfields 4838. BRISTOL: 11 Marsh Street, 1. Telephone: Bristol 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.

Lock-fit transistors stay where they're put

Putting transistor leads through boards, cropping them and hoping they'll stay put until soldered is out of date. Now just push a Lock -fit transistor in and it stays there. The leads are shaped to grip.

And they won't bend or break. They're designed to pop straight into standard printed circuit grids and p.c. boards of both standard thicknesses.
The transistor itself-many of the
wide range of Mullard silicon types -is protected in an epoxy encapsulation which gives good heat conduction. The special epoxy used by Mullard maintains the low spreads of the silicon chip. The shape ensures that operators or machines put the transistor into equipment the right way round. So Lock-fit is easy to mount, gives better solderability and simplifies handling. Lock-fit will save you assembly time and costs. For the full Lock - fit range story manufacturers should tick the coupon.

You may think capacitors inexpensive. But have you worked out the cost of a dud on your line?

We're not going to start the old price v. quality argument again. We'd just like to make sure that you're getting the whole picture. It's up to you to judge what's right for your particular job. But Mullard will help you as much as possible.
So bear in mind that, as well as price and technical information, Mullard can also give you the most detailed life/performance data.

This information is fundamental to us if our AQL* is to be maintainedhow else could we improve our products? And this information is available to you. Take electrolytics for example. We found that they represent about 70\% of all capacitor failures in the life of a TV set. So we produced a detailed report and recommendations on the best way to use electrolytics. You're welcome
to a copy-it covers polyester capacitors too. Just tick the coupon. By getting all the information before you select you can be réally sure that you are going to make savings by choosing the particular component to meet your design parameters.
*AQL=Acceptable Quality Level.

Time well spent

There can't be many firms who've, been in business as long as we have who have used the time to such advantage. Our past experience guides our future plans; provides us with an insight into the industry we serve ; allows us to anticipate needs and deploy our resources over the most fruitful areas of research and
development—and thereby provide modern, technically excellent products ready for the demands of tomorrow. We have co-operated in
so many consumer electronics projects that it's quite likely we are working along similar lines to yours. So why not get in touch?

MAROOI
 high performance 90 BARHE SN:MOH

Complete system service Modular construction Exceptional reliability

- Integration and over-all station design meet full INTELSAT standard.
- Figure of merit G/T: Better than 40.7 dB at 5° elevation.
- Cassegrain type feeds-monopulse or conical scan available.
- Unique quasi-paraboloid reflector for high efficiency-aluminium or stainless steel surfaces.
- Mounts: Fully steerable-elevation over azimuth. Hour angle declination - covers equatorial satellites.
- Transmitters: Either T.W.T or Klystron type - wide and narrow instantaneous bandwidth.
- Receivers: Helium-cooled parametric amplifier. Threshold demodulators.

How Pye record

Pye Records Limited make all their recordings today, whether in the studio or, as in the photograph, on location, exclusively on 'Scotch' Dynarange magnetic tape. It is one of the most important means by which Pye can give the public the high quality they expect from discs bearing the Pye name.
Dynarange has a unique low-noise oxide that gives a signal-to-noise ratio 3 to 5 db better than any conventional tape. This reduction in background noise means improved frequency response, particularly in the higher frequency range, and considerably increased dynamic
range. At the same time the exclusive 'Super-life' coating reduces magnetic oxide 'rub-off' to a negligible amount, so the life of the tape is extended, while recording heads last much longer and require far less frequent cleaning.
All these features make 'Scotch' Dynarange magnetic tape today's most advanced recording tape, and the first choice of the majority of recording studios. If Dynarange tape can be of assistance to you, please post the coupon below for technical literature and 'Scotch' magnetic tape data sheets.

3 M
 minnesota mining and mANUFACTURING CD. LTD.

Manufacturers of 'Scotch' Professional Quality Magnetic Tape, Instrumentation Tape, Quadrature and Helical Scan Video Tape, Computer Tape.

TO: MR.G.C.WRIDE, 3M HOUSE, WIGMORE STREET,LONDON W1

 Please send me technical detalls and specifications on 'Scotch'Dynarange TapeNAME

ADDRESS..

 cheap heartless repulsivive unfediling

Lots of people love McMurdo 8 and 11 pin plug-in modules - because they're made to the highest standards for the lowest, most competitive cost. No guts . . . which means you can build your own, and all your interchangeable circuitry will be well protected because the strong, polycarbonate covers repel knocks. and bangs without being damaged. McMurdo modules have no feelings when it comes to temperature either - they work as well at $-50^{\circ} \mathrm{C}$ as they do at $+90^{\circ} \mathrm{C}$! No wonder they're so popular . . . can you provide a good home for some? Write or 'phone now to:

THE MGMURDO INSTRUMENT CO LTD, RDDNEY ROAD PORTSMOUTH, ENGLAND, TEL 35361. TELEX 86112

and very popular

\qquad
 \square \square

\square

It all points to the new BSR UA75

Check the features on the remarkable new BSR UA75 automatic/manual unit. For£17.11.5 (inc. £3.1.11 P.T.-cartridge and plinth extra) it gives you a die-cast turntable, switch 'pop' filter, changer muting switch and many other sophisticated ideas usually found only on much more expensive units. BSR have done it again-and it's their best ever.

CALIBRATED STYLUS
PRESSURE SELECTOR
gets best performance from any cartridge

Also available, the UA65 at $£ 11.10 .1$ (inc. £2.0.7 P.T.) and the UA70 at £14.10.9 (inc. £2.11.3 P.T.).

for better sound reproduction

BSR Limited, Monarch Works, Cradley Heath, Worley, Worcs.

(N(1) bovinl Ind PIDAM SYITEINS

ACCESSORIES A full range of accessories are
available for PIDAM. Shown are the meter, scaled $0-9$, at
$35 / 6$. Test prods insulated and $35 / 6$. Test prods insulated and
flexible with fine steel lelips at the tip, red or black at $13 /$ /-.
the
High speed resetting counter High speed resetting counter with speed of over 40 operations per sec. 165/-. Plug-in Octal relay 24 v with two
changeover at $17 / 6$. Not changeover at $17 / 6$. Not
shown. 8 range test meter, shown. 8 range test meter,
$45 /-$. Oscilloscope made for us

pidam

 brochure
 thiled shampzs oi
 Kimem of sill modnes. Examples and
circuils Eiven in-
ciude solce-0 inemed ciude voice-operated switch
fashorn, $\left.\begin{array}{c}\text { alarms, } \\ \text { tacho- }\end{array}\right]$ Hashors, tacho-
moter.
timars
batch batch counters, to
$3 / 6$ Dost Iree.
PIDAM (Plug-in Digital and Analogue Modules) perform all the usual logic functions, but, unlike other units, can be plugged in, using their B9A bases and can be quickly the module covers are easily removable for circuit exam, ination and sets of components are available. The 16 modules have an enormous range of use, from single MONO for a tachometer, to over 300 units in a computer interface; nevertheless, their greatest asset is extreme simplicity. Design time is cut and elaborate breadboards superseded and any reader, of "Wireless World " could with PIDAM, build up a low cost system or his own needs.

PRINTED CIRCUIT

Printed circuit chas

 sis type " P " which fits into 1277 or 16127 case, or type "Q" which can be mounted on an alu-minium chassis. Both minium chassis. Both
types take up to 20 types take up to 20 tors on tin. centres. tors on $\frac{1}{2}$ in. centres.
Prices from $45 / 6$ Prices from $47 /$ for quantitles.

CONTIL CASES

\qquad
chromium. plated and Delrin handles available with match-

PIDAM PLUG-IN MODULES,
PRICES
per module range from $9 / 6$ to $28 /$ and all necessary accessories are supplied. A complete starting kit is only ¢20/19/6 (normally £23/12/6).

pidec
(Plug-in Digital Educational Circuit). This Pidec unit allows seven modules to be interconnected without soldering. Including internal power supplles, 370/-.

BI (Bistable) module shows B9A base for ease of connection. Pins 7, 8, 9 are always power connecelons.
ternal power supplies, $370 /$-.

Contil cases are mass-produced to give the lowest prices yet. In 21-gauge steel. Finished hammer blue, with 18 gauge front panel supplied with easy-to-strip protective covering for easy marking out. For ease of ordering Contil cases are described by their dimensions, i.e. 755 is $7 \times 5 \times 5 \mathrm{in}$. Individually packed, inc. feet and screws. ing chassis, spare Panels, etc.

DIGITAL COMPUTER MODULES Digital computer modules
are available including bi-
stables flip flops compara-
tors (coincidence gate) neon
driver 5NOR 2NOR 22
$5 N A N D, ~ a n d ~ R E S E T . ~ A l s o ~$
available are neons for drive
by transistors, display boards,
divide boards, together with
escutcheons that only re-
quire round holes.

REED SWITCH
REED SWITCH
The Wese Hyde Reed Switch works at up to 2,000 times a second for
more than fifty thousand million more than fifty thousand million
perations. Ideal for: over and under speed monitors. counting, timing, speitching, rev counting, etc. Hermetically sealed and moulded. Prices from 14/- each to 8/- each per thousand.
We now supply Q-Max sheet metal punches in tin. sizes up to 1 in. and $\ddagger \mathrm{in}$. sizes up to 2 in .

DIVIDE BOARD

 The Contil divide board can be used istables giving bistables givingcount
to
a ${ }^{2}$. ncludes resetting and decoding diodes and s witches. Type " R " at $78 /$ - each.

"BRIGHTLIFE" NEONS
$25,000 \mathrm{hr}$. average
ife with high intensity and resistor in housing: either $\frac{7}{i n}$. or $\frac{1}{2} \mathrm{in}$. dia. Standard units 160 250y. with 6 in. lead $2 / 6$ each with 10 different caps. In quantity down to 1/8 each. Neon only, down to $5 \frac{1}{\mathrm{~d}}$. each.
We now supply our standard neons in 110 vole nominal at the same prices.

CONTIL LOW COST PRINTED CIRCUIT BOARDS $\begin{array}{llll} \\ \text { Standard transistor board } \ldots & \text { ONE } & \text { TEN } & \text { FIFTY } \\ 7 / 6 & 7 /-\end{array}$ $\begin{array}{llllll}\text { Standard transistor board } \ldots & 8 / 6 & 7 / 6 & 7 /- \\ \text { Half board B9A } & 7 /- & 5 / 6 & 4 / 6\end{array}$ B7G or B9A respective bases Connectors, 20-way
 Printed circuit kit: including case, normally $£ 14 / 8 / 6$ for only \& $11 / 19 / 6$.

We now supply Brightife Fluorescent Starter Switches direc In minimum quantities of 50 off for $50 /-$ C.W.O. only. Quantity prices down to 7d. As supplied to leading manufacturers in large quantities.

SUB. MINIATURE NEON

The smallest yet. PLEASE NOTE Type "Q" overall All products ex-stock for dia. $\frac{5}{68} i n$., body normal quantities. Relength TJ in. with turn of post service. No
resistor for mains, S.A.E. Minimum order CI $3 / 6$ each. Minimum Fully detailed leaflets availquantity 10 . Down able. All prices include to $2 / 9$ each. postage and packing.

(W) (1) WIEST HOE

WEST HYDE DEVELOPMENTS LTD.

30 HIGH STREET, NORTHWOOD, MIDDLESEX
Tel: Northwood 24941

The new V51 helical range of Sealed construction, proof MEC miniature wirewound potentiometers offers high resolution in very small size. 3,5 \& 10-turn units are available, Resistance values range from 220s 3 -turn, resolution 0.262%, to 220 K 10-turn, resolution 0.017%. 3-turn units have continuous power rating $0.25 \mathrm{~W}, 5$-turn 0.5 W and $10-\mathrm{turn} 1 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$.
against humidity, vibration, shock, alttude and acceleration to meef Def 501 ! severities.
Prices from 28/- depending on quantity.

Miniature Electronic

Components Ltd. St. Johns Woking Surrey elephone Woking 63621

RTS are the officially appointed distributors for the following Waycom products.

In addition, the 150-page.RTS Catalogue provides easy reference to a comprehensive selection of electronic camponents. Allare available 'by return' and we will gladly send you a copy of the latest edítion on request.

A DIVIIION OF
COMBINED ELECTRONIC SERVICES LTD.
P.O. Box 11 - Gloucester Street - Cambridge.

Tel: Cambridge (OCA3) 51471 - for orders
Cambridge (OCA3) 59101 - other business

SIICLAIR MIBROMATIC

Indispensable

The ultimate in personal listening, the Sinclair Micromatic is as easy to have with you as your wrist-watch and you will quickly find it as and range, and the magnetic earpiece supplied with it assures quality. Hear how stations simply pour in on the M.W. band. Build it vourself or buy your Micromatic ready built. This is the set you will never be without once you hear it for yourself.

IN KIT FORM OR COMPLETE Complete kit Complete kit including magnetic
ear-pieceand instructions.
Mallory Mercury Cell R.M. 675 (2 needed) each 2/9.

The small versatile amplifier with the enormous output

When the Sinclair Q. 14 was demonstrated at this year's Audio Fair, it delighted some of the world's keenest and most critical listeners. It more than held its own against far more expensive loudspeakers and proved beyond all question that research and carefu! design could produce a loudcareful design could produce a loudspeaker for remarkably low price.
The Q. 14 measures 9 in. square on its face and finished in black matt with natural aluminium bar embellishment.

ATTHE 1968 AUDIO FAIR

ACCLAIMED BY USERS TOO

P.G. of Newry, N. Ireland writes :

I have always been cynical about letters written to manufacturers praising their goods, but 1 am so delighted with the (two) Q. 14 speakers that I feel I must write this for it sounds that you have given me a new collection of records. I congratulate you on a marvellous speaker at very reasonable cost.

oacoustically
 CONTOURED SOUND CHAMBER. LOADING UP TO 14 WATTS. QBRILLIANT TRANSIENT RESPONSE OREMARKABLY

Its unique shape allows the Q .14 to be used in a far wider choice of positions than conventionally shaped speakers. A pair in stereo give true " in-depth" performance with complete freedom performance with complete freedom the Audio Fair, why not hear this the Audio Fair, why not hear this speaker in your own home? Should cost of return post to this office will be refunded in full if purchased direct from Sincalair.

SINCLAIR

 Q. 14SMOOTH RESPONSE FROM 60 to $16,000 \mathrm{~Hz}$. 15 OHMS IMPEDANCE. OF COMPACTAND ORIGINAL DESIGN. AN ALLBRITISH PRODUCT.

SINCLAIR RADIONICS LIMITED

 22 NEWMARKET ROAD, CAMBRIDGETel.: OCA3 52996

No constructor's transistor amplifier has ever achieved such success as the Sinclair Z.12. It favours the user in so many ways-with fantastic power-to-size ratio, with far greater adaptability, power-to-size ratio, with far greater adaptability,
with freedom to operate it from batteries or mains wower supply unit (the PZ. 4 stabilised is ideal power supply unit (the PZ.4 stabilised is ideal
for this) with the opportunity to obtain superb stereo reproduction for very little oullay. Countless thousands of Z .12 s are in use throughout the world-in hi-fi installations, laboratories and industry, electronic music instruments, P.A. installations, intercom systems, etc. This true 12 watt amplifier is supplied ready built, tested
and guaranteed together with the 2.12 manual which details control circuits enabling you to match the Z.12 to your precise requirements. 15 to $50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$, using ultralinear Class B output. Input sensitivity -2 mV into $2 \mathrm{k} \Omega$. output. Input sensitivity $-\frac{2}{2}$ mV into $2 \mathrm{k} \Omega$. SINE WAVE (24 w. PEAK), 15 WATTS SINE WAVE (24 w. PEAK), 15 WATTS
MUSIC POWER (15 w . PEAK). Suitable for MUSIC POWER (15 w . PEAK). Suitable for
$3-15 \Omega$ loudspeakers. Two 3Ω speakers may be used in parallel.
For complete listening satisfaction, use your Z. 12 system with Q. 14 loudspeakers.
TESTED AND GUARANTEED

BULLT, TESTED AND

SINCLAIR PZ. 4 STABILISED POWER SUPPLY UNIT

A heavy duty A.C. mains power supply unit delivering 18 v . D.C. at 1.5 A . Designed specially for Z. 12 assemblies. Ready built and tested.

SINCLAIR STEREO 25

Control/Pre-amp for 2.12 atereo syatem Sensitivity Mic. 2 mV into $50 \mathrm{k} \Omega: P . \mathrm{U},-3 \mathrm{mV}$ into $50 \mathrm{k} \Omega$ Radio -20 mV into 4.78. Equalisation correct to within ± 1 dB on RIAA curve from 50 to $20,000 \mathrm{c} / \mathrm{s}$ with brushed and polished aluminium front panel with knobs to match.
BUILT, TESTED

99/6 ∇ GUARANTEED, £9/19/6.

GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question FULL SERVICE FA CIBLEE T O AVALL
PURCHASERS.

WHITELEY for cocustichoods

All noisy environments such as factories, workshops, department stores and hotels require the facility of an acoustic hood which permits telephone conversations to be held without the interference of annoying background noises. Whiteley acoustic hoods are strongly made from resin bonded ply and finished in a cellulose enamel which makes these suitable for indoor or outdoor use.

Fitted with doors for outdoor use
d/or a storage shelf below hood

\& directory holders

These attractive, and extremely functional directory holders will hold five directories neatly and securely, in individual swivel holders permitting easy identification and reference. The lower shelf provides additional storage space. The units are of cast alloy and are finished in an attractive grey epoxy resin enamel and constructed to strict G.P.O. design specifications.
Directory Holder Dimensions $17 \frac{1}{4}$ " high $\times 13 \frac{1}{2}$ " wide $\times 133^{\frac{5}{8}}$ " deep

For further details please write or telephone

[^10]
ILIFFE

 BOOKS
ELEMENTS AND CIRCUITS FOR AUTOMATIC CONTROL

By T. PUCHALKA and A. WOZNIAK. English translation edited by N. G. Meadows, Ph.D., B،Sc., C. Eng., M.I.E.E.

Abstract

This book gives examples of typical elements of control systems and discusses their applications in systems for automatic control. It opens with a chapter dealing with fundamentals of control theory, which is of interest in its own right and also gives a fundamental basis for subsequent work. This is followed by an extended treatment of the dynamic behaviour of electrical circuits and electrical machines as elements in control loops, together with various aspects of non-linear behaviour. The third chapter is devoted to a discussion of selected elements of electrical control systems, classified on the basis of single-loop block diagrams. Finally, the book deals with stability criteria, stability synthesis and the general dynamical analysis of selected systems. 221 pp. 146 illus. 50 s net. Is $6 d$ postage.

obtainable from leading booksellers
ILIFFE BOOKS LTD.
42 RUSSELL SQUARE, LONDON, W.C.I

IGNITROHS FOR RESISTANCE WELDING
 Immediate delivery of the following types:
 5551 (without thermostat platform) $£ 14$
 5551A (with thermostat platform) $£ 15$
 5552 (without thermostat platform) £19
 5552 A (with thermostat platform) £21
 Write, Phone, Cable or Telex:
 Z \& I AERO SERVICES LTD.,
 44A, WESTBOURNE GROVE, LONDON, W. 2

Tel: PARK 5641/2/3 Cables: ZAERO LONDON Telex 261306

WW-109 FOR FURTHER DETAILS

LONDON microphones
 Quality sound-at low cost

The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little cost. Made in Britain.

LM 100 Dynamic Omni-directional microphone.
available in a range of impedances to suit many different input requirements including transistorised tape recorders. U.K. retail price range £3/3/0-

U.K. prices £4/19/6 £5/15/0
Eliminates unwanted background noise. Gives good recordings even under difficult conditions. £3/18/6
Home and overseas trade enquiries zvelcome. Write or ring for details: LONDON MICROPHONE CO. LTD.
182/4 Campden Hill Road, London. W. 8 Tel: Park 0711. Telex 23894 WW-110 FOR FURTHER DETAILS

LOW NOISE AMPLIFIER

TYPE

Price $\{50$

This unit is a solid state A.C. differential pre-amplifier, featuring a parametric input stage making it suitable for all types of work, for example, electrophysiology, involving high signal source impedances.

Power is either from an internal mercury battery, or a separate stabilised mains unit, P101, supplying up to ten amplifiers. The units may be used separately or up to three mounted on a standard 19 inch rack panel, $5 \$$ high.

Noise-less than 10 microvolts peak to peak input short circuit, bandwidth $2 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$.
Input impedance- 10 megohms minimum.
Common mode rejection-1 million to one (120 db) at $50 \mathrm{c} / \mathrm{s}$. Gain-switched, 100 or 1000 .
Bandwidth $2 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. with L.F. cuts at $2 \mathrm{c} / \mathrm{s}, 20 \mathrm{c} / \mathrm{s}, 200 \mathrm{c} / \mathrm{s}$. H.C. cuts at $20 \mathrm{kc} / \mathrm{s} ., 5 \mathrm{kc} / \mathrm{s} ., 1000 \mathrm{c} / \mathrm{s} ., 200 \mathrm{c} / \mathrm{s} ., 50 \mathrm{c} / \mathrm{s}$.

ISLEWORTH ELECTRONICS
FREDERICK STREET, WADDESDON, BUCKS. Tel.: WADDESDON 220

WW- 120 FOR FURTHER DETAILS

Ask for latest catalogues on our NEW RANGES ! OLSON ELECTRONICS LTD., 5-7 Long St., London, E.2. Tel 01-739 2343 WW-121 FOR FURTHER DETAILS

DISTRIBUTION PANELS

Complete with fixing brackets and 4 plastic feet, 6ft. cable 13A. plug and spare luse

4646	SOCKETS	134.		- \cdot	\&4. 19.6
	SOCKETS	13 A .	\cdots	£5. 17.6
	SOCKETS	54. \quad.	25. 10.0
	SOCKETS	5A.		.. \cdot.	£6.15.0
	PLUS	postage	AND	PACKING	6/6

AUDIO LABORATORYYNTTRUMENTS

LOW DISTORTION OSCILLATOR (Series 2)
An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Specification
Frequency Coverage: $\quad 5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges).
Output Impedance:
Output Voltage:
Output Attenuation:
Sine Wave Distortion:
600 Ohms.
10 Volts r.m.s. max.
$0-110 \mathrm{~dB}$ continuously variable.
0.005% from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz .
Square Wave Rise Time: Less than 0.1 microseconds.
Monitor Output Meter: Scaled $0-3,0-10$, and dBm.
Mains Input:
Size:
Weight:
$100 \mathrm{~V} .-250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$
$17 \frac{1}{6} \times 11 \times 8 \mathrm{in}$.
25 lb .
Price: El 50 .
Rack mounting version available.

DISTORTION MEASURING SET (Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specification

Frequency Range:
Distortion Range:
Sensitivity:
Meter:
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Weight:
Price
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges). $0.01 \%-100 \%$ f.s.d. (9 ranges). 100 mV . -100 V . (3 ranges). Square law r.m.s. reading. 100 kOhms .
3 dB down to 350 Hz .
3 dB down to 35 Hz .
$\pm I \mathrm{~dB}$ from second harmonic of
rejection frequency to 250 kHz Included battery.
$17+\times 11 \times 8 \mathrm{in}$.
15 lb .
4120.

Rack mounting version available.

VOLTMETER (new item)
A transistor operated voltmeter satisfying the requirements for audio frequency measurement.

Specification
Sensltivity:
Calibration Accuracy:
Frequency Response:
Input Impedance:
Meter Scaled:
Power Requirements:
Size:
Weight:
I mV.-300 V. f.s.d. (12 ranges). 2\% f.s.d. $\pm 1 \mathrm{~dB} .10 \mathrm{~Hz}-500 \mathrm{kHz}$.
I MOhm. I mV. 300 mV .
$10 \mathrm{MOhm} .1 \mathrm{~V} .-300 \mathrm{~V}$.
$0-3,0-10$, and dBm .
Included battery.
$11 \frac{1}{2} \times 6 \frac{1}{2} \times 6 \mathrm{in}$.
7 lb .
Price:

Ashton Vale Road Bristol 3

ELECTROVALUE

RAPID MAIL DRDER SUPPLYSERVICE

+ MINI TRANSISTORS WITH MIGHTY SPECIFICATIONS LOW COST PLASTIC ENCAPSULATED SILICON TRANSISTORS 2N4285 pnp high reverse base-emitter voltage rating. BVcbo, BVce @ Ic $=10 \mathrm{~mA}$. Vce (sat) 0.5 y max. @ $\mathrm{c}=10 \mathrm{~mA}, 1 \mathrm{Ib}=1 \mathrm{~mA}$

2N4286 Ip high gain $\mathrm{hFE}=100 \mathrm{~min}$. © Ic $=10 \mu \mathrm{~A}, 150 t 0600$ © $\operatorname{typ} @ \mathrm{Ic}=1 \mathrm{~mA}$.
2N4289 pnp high gain hFE $=100 \mathrm{~min}$.@ Ic $=100 \mu \mathrm{~A}, 160 \mathrm{~min}$. @ typ@Ic = 2mA
2N4291 pnp large signal high gain. hFE $=100$ to $300 @ 1 \mathrm{c}=100 \mathrm{~mA}$, 1.5 V max. @ $\mathrm{Ic}=100 \mathrm{~mA}, \mathrm{Ib}=10 \mathrm{~mA}$

2 N 4292 npn UHF, low noise. fT $=570 \mathrm{MHz}$ typ $@ 1 \mathrm{cc}=2 \mathrm{~mA}$, Vce $=$ 5 V . $\mathrm{hFE}=50$ typ. BVcbo over 30 V , BVceo over 15 V . N.F. $6 \mathrm{~dB} \max . @ 1 \mathrm{c}=1 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$.
2N3794 npn large signal high gain (complementary to 2N4291). BVcbo over 40 V , BVceo over $20 \mathrm{~V} ; \mathrm{hFE}=100 \mathrm{mln}$. @ $\mathrm{Ic}=100 \mathrm{~mA}$.
All the above are rated at 500 mA max. 1c; 200 m max. as
0.175
$B 5001$

POWER type on T066 size base, npm high galn. Collector isolated from mounting surface (500 V insulation). Dissipates 14.3 W $\max _{\mathrm{m}} \mathrm{A} ; \mathrm{Ib}$ max. $=1 \mathrm{~A} ; \mathrm{Tj}$ max. $=150^{\circ} \mathrm{C} . \mathrm{hFE}=100 t 0175$ @ Ic $=0.5 \mathrm{~A}$ (yellow selection). Vce (sat) $=1.2 \mathrm{~V}$ max. @ Ic $=$ $1 \mathrm{~A}, \mathrm{Ib}=50 \mathrm{~mA}$
The seven types above are offered at the following low prices:

* PEAK SOUND PRODUCTS

TRANSISTORISED STEREO AMPLIFIER AMD PRE-AMP SA8-8

MINIATURE LOUDSPEAKER TYPE MS8-5

Really outclasses other speakers of lts type Handles high power efficiently and with purity throughout the audio spectrum. ceramic magnet Power handling
Power handling over 8 true watts. Cabinet: Natural Afromosa. 9^{*} High Wide $\times 10^{*}$ Deep. Supplied in kit form to achieve the incredibly low price of $£ 8 / 1 / 6$ net. No discount is available on speaker kit.

* UNBEATABLE VALUE IN NEW SEMICONDUCTORS SILICON: small selection from 2/9, BC167 2/6, BC168 2/-, BC169 2/3. BC109 and BC169 low noise; BC167, BC168 and BC169 plastic. 2N3055 16/6, 2N3054 (Transitron planar) $\mathrm{I}_{1}, 4046521 / 9$.
Field effect: MPF105, gm 2 to $6 \mathrm{mAN} 8102 \mathrm{~N} 381913 / \mathrm{L}$
VHF and fast switching: BSX20 fT $600 \mathrm{MHz} 4 / 6$.
Low noise: $2 \mathrm{~N} 37074 / 6,2 \mathrm{~N} 3391 \mathrm{~A} 5 / 6,2 \mathrm{~N} 4058 \mathrm{pnp} 5 / \mathrm{c}$
Sub-miniature: $\mathrm{BC122} 1 \times 1.5 \times 2 \mathrm{~mm}$. $6 / 6$.
Bargain: 2 N 2926 red $2 / 3$, orange $2 / 6$, yellow $2 / 9$, green $3 /-.2 \mathrm{~N} 37024 / \mathrm{c}$,

BAILEY AMPLIFIER SPECIAL TYPES

40361 12/6, 40362 16/9, BC125 12/-, BC126 12/-, MJ481 27/-, MJ491 31/.

SUBSTANTIAL DISCOUNTS AVAILABLE-See below.
GERMANIUM selection from stock list
POWER: NKT 403 14/10: 2N2147 16/9: matching 1/- pais.
COMPLEMENTARY OUTPUT: AD161 9/-, AD162 9/-. Matched pair 18\%.
All power types complete with mounting washers and bushes.
Complementary general purpose: $2 \mathrm{~N} 1304 \mathrm{npn} 4 / \mathrm{l}, 2 \mathrm{~N} 1305 \mathrm{pnp} 4 /-8$
ZENER DIODES: 5% tolerance, 400 mW 3 V to $27 \mathrm{~V},(\mathrm{E} 24$ values) $4 / 6$ each only.

* SUPER QUALITY NEW RESISTORS

Carbon film high stabs, low noise:
$1 / 8 \mathrm{~W} 5 \% 1 \Omega$ to $1 \mathrm{M} \Omega 1 / 10$ doz., $14 / 6$ per 100 .
$1 / 4 W 10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega 1 / 9$ doz., $13 / 6$ per 100
$1 / 2 \mathrm{~W} 5 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega 2 / 2$ doz., $17 /$-per 100 .
$1 / 610 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega 3 / 3$ doz., $25 / 10$ per 100 .
$1 / 6$ less per 100 if ordered in complete $100^{\prime \prime}$ s of one ohmic value.
QUALITY CARBON SKELETON PRE-SETS, 100Ω, 250 2 , 500Ω, $500 \mathrm{~K} \Omega \mathrm{~K} \Omega, 2.5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 20 \mathrm{~K} \Omega, 25 \mathrm{~K}$
Available in horizontal or vertical mounting $1 /-$ each
ELECTROLYTICS, SUB-MIN. C426 RANGE ($\mu \mathrm{F} / \mathrm{V}$): $0.64 / 64$, $1 / 40,1.6 / 25,2.5 / 16,4 / 10,6.4 / 6.4,8 / 4,10 / 2.5,1 / 8$ each. $2.5 / 64,4 / 40$, $12.5 / 25,16 / 40,20 / 16,25 / 25,32 / 64,32 / 40,32 / 10,40 / 16,50 / 6.4,50 / 25$, $50 / 40,64 / 4,64 / 10,80 / 2.5,80 / 16,80 / 25,100 / 6.4,125 / 4,125 / 10,125 / 16$ 160/2.5, 200/6.4,200/10, 250/4, 320/2.5, $320 / 6.4,400 / 4,500 / 2.5,1 / 4$ each.
ALL GOODS BRAND NEW . NO SURPLUS FAST DELIVERY DISCOUNTS: 10% over $£ 3 ; 15 \%$ over $£ 10$. P. \& P. 1/-, FREE over £1. CATALOGUE: Send $1 /-$ stamps-includes data on all types in stock.

LIND-AIR COMPONENT

LONDON'S LOWEST PRICES!

LNo.

ALL POST ORDERS TO Dept. WW668 25 Tottenham Court Road, London, W. 1

ELECTRIC MOTOR

FEW ONLY LEFT! Made by Crompton Parklason. Slingle phase ${ }^{\text {th }}$ th
H.P. moter. $230 / 250 \mathrm{v}$. 80 cycles. 1.3 amps. $1.425 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Continuous rating. Spindie 1 in. x in. dia. Overall aize lens apindle approx. 8 in. X Perfect condition. A bs
ONLY 70/8. Carr. 20

SELECTOR DRIVE
 Numeroun appli-
catione. Electro-
magnet and brese magnet and brays
tooth wheel. A woitch wheel. contacts to are and arranged to
and
be on tor be on for 10
pulses and off for puises and orior
is. An auriliary
contact is norcontact is nor-
mally y on but oft Complete with suppressor, renistors, plus series displays, switching lamps, models, etc. 12v. or
24v. D.C. Brand new and hoxed 12/6. P. \& P. 2/6. SYNCHRONOUS CLOCK MOTORS

Geared for 40 revolutions per hour. with mounting flangea. slze approx. 1 j in . deep $\times 2 \frac{1}{4} \mathrm{in}$. lijn.
dia.
only

ONLY $22 / 6$

 Mains and Output Transformer Llate available on request

SEE OPPOSITE

Fane 301 3in. TWEETERS. Imp 3.5 ohms . 17.000 gaus. 12 watt Brand new and guaranteed. List
IND-AIR PRICE 59/6. P. \& P. $3 / 6$
 3 in 3 ohn. $15 / 6 ; 6 \mathrm{in} .3$ ohmo $29 / 6 ; 8 \mathrm{in} .3$ ohm
 AERIALS. TVIUMF, VHFISTEAEO

NEW J-BEAM F.M. Aerial for stereo Reception -element outdoor Band 11 VHF/FM
Aerial (as llum.). With Mant Clamp 87/. GRESTA Room Aerial Band I/II/III. Cream or black. $28 / 6$.
VEEMASTER Table Top VHF/UHF Tunable Aerial. Chrome or grey, 7e/6.
TV/VHF Channel Table Top Aerisl. BBC1/2
gL523 LOFT AERIAL. HLLO $V \times 5$ for vertice Band $1 / 111$. With arin and brackec, $53 /-$ NEW MAJOR, 10-element BBCZ serial for up to 2 in . dia. maxt, $45 / 9$. VANTENA Table Top V Aerial, BBC/ITV. 26/6 H1 HUNTER 13-element BBC2, 57/--
G1 EXPLORER. $18 \cdot e l e m e n t$ BBC2 Aerial, $68 /-$ LOFT SIX. 6 -element BBC2 Aerial for loft or Please add $4 /$-poatage

MULTIMETERS

MODEL TTCL001 20,000 O.P. V. with over
 $2,500 \mathrm{~V}$, A.C. volta 10,50 $250,100 \mathrm{~V}$. D.C. mA
250 mA . 50 A . With prode and carrying case.
ONLY $85 /=$. F. $\&$ P. $3 / 8$.

MODEL TTC. 1030 50,000 O.P.V.D.C. Volte $0.3,12,60,120,300$, $600,1,200 \mathrm{v}$. A.O. Volts. 6, 30, 120, 600, 1,200v.
D.C. mA. $03 \cdot 300$. With prods and carrying case. ONLY £11/19/6. P. \& P. $\$ /$.

Sioy sure before. EIODEL TTC, G1111 so illutrated Soft padded earphones.
Impedance 8 ohms per phone. Frequency range $26-13.000$ cps. With
Sft. lead. Price $60 / 6$. sit. lead. Price 68/6.
AKA, ABE8s, 8 ohms.
 $21 \mathrm{mbs} 25 / 19 / 6$. EAGLE
$\$ \mathrm{EL} 16 \mathrm{olms} .84 /-$ T. SE1 16 ohms. 84/-.T.T.C.
8tethoscope
8 $49 / 6$. P. \& P. $4 / 6$ each.

 Realy bullt for use with moat aniplifters.
Complete
with
batiers Complete whin instructions. Lis
price 9 gns. LIND-AIR PRICE 7 gns. P. \& P. 4t.

MAGNAYOX-COLLARO $\begin{gathered}363 \text { TAPE } \\ \text { DECKS }\end{gathered}$

The very latest 3 -apeed model- 18,3 , 71 1.p.A, available
with elther 2 track or 4 track head. Fcatures include with elther 2 track or track head. Fcatures include new 4 pole fully screened Induction motor; interlocking kess. size of top plate $135 \times 11 \times 51 \mathrm{ln}$. deep below unft plate. For $200 / 250$ y. A.C. insins 50 c.p.s. operation.

MARTIN TAPE AMPLIFIERS

FOR USE WTTH ABOVE TAPE DECKS. 2 track model £14/A18: 4 track model, $815 / 19 / 6$. Carriage

Secially designed to repley the well-known and popular Musicassettes-prerecorded tape cassette offering a wide choice of all typee of music from pop to classical. Up to $t 0$ minutes of quality reproduction through built-in apeaker simple off/play and volume controls. Fully tranalatorisei operating on 6 penlight batteries. Modern compuct atyling with earpiece socket and wrint atrap. size $8 \frac{1}{6} \times 4 \leqslant \times 2 \mathrm{ln}$ LIND-AIR PRICE e9/19/6. Curr. Pkg. \& Ins, $5 /$
 no mechanical knowledge required. Build as Electrontc Massager, W/T Transmitter, Radio Telephone, One transistor Radio, Two.transistor Radio, Electronlc Muslc Kit. Completely safe. operated on ste step by thep instructions. ONLY 89/6.
s. \& P. $5 /-$.
BARGAIN OFFER! FANTAVOX CASSETTE TAPE PLAYER

Complete with leai, sutomatic dial numbered 1-10 and internal bell. Gusranteed perfect working order. Made by famous manufactures to G.P.O. specification.

0
PP3 Eliminator. Play your pocket radlo from the malnal Save \&a. Complete component kit somprisen \& rectiflers-mains dropper resin talces, smoothing condenser and instruction Only $6 / 6$ phus $1 /$-poet.

DRILL CONTROLLER

Electronically changen speed from approxtnutely 10 reva. to maximut Pull power at all speedn by anger case, everything and full instruc. tions, 19/6. plun $2 / 6$ post and insurance. Or a vall
$32 / 6$. Plun $2 / 6$ post.
Timed switch \& thermostatic switch For control of oll.fired boillers and process ovens in fact any equipment where parts of th have to operate
for short stating periods-but which will be switched off immediately should a high enough temperature be reached.
The clock work mechanism with jewelled escapment 15 amp be set for up to mins. and operses. patrs of 3 minp. renpectively. The bermatat cain be set 200°. $500^{\circ} \mathrm{C}$. and cuts on ant switchen directly the prenet temperature is reached. Made by Smiths Electrics,
brand new and perfect, 29/B each. plus $2 / 9$ post and

THERMOSTATS

Type "A" is anip. for controlling room heatern, green-
house, airlng cupboanl. Has spindle for polkter knob. houne, siring cupboari. Has spind le for pohter knob
Qulekly aijuntable from $30.80^{\circ} \mathrm{F}$. $9 / 6$. plua $1 /$. post suitable box for wall mounting, $5 /-$. $9 / 8$., \mathbb{P}. $1 / \%^{\circ}$.

Type "g" 15 amp . Thin is a 17 in . long rod type made by the tamour sunvic Co. Spindle adjusts this from $50-550^{\circ} \mathrm{F}$. Internal screw alters the settlag so this could be adjust. able over 30° to $1000^{\circ} \mathrm{F}$ suituble for controlling furnace, oven kila, immeraion heater or to make liame-start or fire alarm. 8/6, plus 2/6 post and insurance

Type "D". We call this the Ice-atal as It cuts In and out at around freezlng point, $2 / 3$ smps. Has niany iaes, one of which would be to keep the loft plops from freezing, if a length of our blanket wire 116 yds. 10/) is wound
round the ptpes. 7/6. P. © P. 1%. Type "E". Thic la standard reirlgerator thernostat. Apindle ailjustments cover normal refrigerater temper 1. pratat.

Type "P". Glaws encsed for controiling the temp. of
liquid-warticularly thoe in glase tanks, vats or sinks-liquid-part icularly thome in glass tankn, vats or sinke-
thermotat is held (half pubnerged) by rubber sucker or wire clip-idea! for firh tanky-ilevelopers and chemica bathe of ail typea. Adjurtable over range 60° to $150^{\circ} \mathrm{F}$ Price $18 / \mathrm{/}$, pluy $2 /$. powt and ingurerme.

GARRARD

Model 3000
This is one of the latent products of the World's most experienced
maker of fine record reproducers. It superlor features lnclude-sutomatle superior features include-sutomatle
piaying of up to 8 mived slze recordsstopping and starting without rejecting low stylus preasure-large dismeter turntable for max. atabllity adjustments faclude pleck-up helght-pick-up dropplag position and atylus prensure. $81 z 1813 \mathrm{~d} \times 11$ lin., clearance $4 \frac{3}{\mathrm{in}} \mathrm{in}$.

ELECTRONICS (CROYDON) LIMITED

(Dept. W.W.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.)

CASSETTE LOADED DICTATING

In sind out for easy loading-all normal functinns-a
accessories
include:
stethoscoplc earplece-crystal microphone has on/off switch-telephone plek-up-
tape reference pad-DON'T MIBS THIS UNREPEAT. tape reference pad-DON'T MIBS THIS UNREPEAT.
ABLE OFFER-8END TODAY, \&6/19/6 plus $7 / 6$
post and inaurance. Footawlith 18/6 extra. Spare Cassettes at $7 / 6$ each, three for $£ 1$.
MAINS TRANSISTOR POWER PACK
Designed to operate transistor sets and ampllfiers. Adjust working). Takes the place of any of the following hatterien PP1, PP3. PP4, PP6, PP7, PP9, and others. Kit comprises mains transformer rectifer. smoothing and loid resistor condus $3 / 6$ and Instructlons. Real snlp at only $18 / 6$ plus 3/6 pontage.

RADIO STETHOSCOPE

 Easiest way to lault find-tracen algnal from aeriai to speaker-when signalstops you've found the fault. Use it on Radio. TV, amplifier, anything-complete kit comprises two special tralitube and crystal earplece. 29/6-twin plece. $7 / 6$ extra- post plece. $7 / 6$

TAPE BARGAINS

American made P.V.C. base 2501t. tape in measage boxea
(space provlded for name and address of reclplent) each, 4 for $14 / 8$ post paid. Other P.V.c. tape bargal

 $32 / 6,7 \mathrm{In} .1200 \mathrm{ft} ., 11 / 8,7 \mathrm{in}$. 1800 ft ., $18 / 6.7 \mathrm{fn} .2400 \mathrm{ft}$
$35 /=, 7 \mathrm{~m} .3600 \mathrm{ft}$., $42 / 6$.
A.E.I. FRACTIONAL H.P. MOTOR 200/250 ∇. $30 / 60$ c.p.E enclosed, contlnuous rating $1 / 40$ h.p., ex. equipt. Perfec .

When postage is not definitely atated as an extra then
ordery over 23 are pnst free. Below $\$ 3$ add $2 / 9$. Sem! conductors ald 1\% pont. Over 11 pont free. S.A.E conductors and
with enquirien pleave

BARGAIN OF THE YEAR

olse of 266 LONDON ROAD, CROYDON SURREY.
S.A.E. WITH ENQUIRIES PLEASE

"BARGAIN OF THE MONTH"

"One Micovac Valve Voltmeter for one eighth of original price." Will measure $0-480 \mathrm{v}$. A.C. at frequencies up to $200 \mathrm{Mc} / \mathrm{s} ., 0.480 \mathrm{v}$. D.C. with centre zero facilities $0-10$ Megohms resistance in 5 ranges. This extremely accurate meter was made to services specification and comes complete with R.F. Probe, full instructions in guaranteed working order. Battery powered $=$ (not supplied) price is only $£ 9 / 19 / 6+10 / 6$ P.P. Excellent condition.

MURPHY COMMUNICATIONS RECEIVERS TYPE B40

These well-known receivers are offered fully realigned. with miniature valves fitted in R.F. section to greatly increase sensitivity. Each receiver has been carefully checked for performance and selectivity, etc., we do not offer a receiver that is not capable of resolving a low power S.S.B. station from the U.S.A. on the higher frequencies 20-3 Mcis. "Specification" range $650 \mathrm{Kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. in 5 Bands, crystal calibration on all bands.
2 R.F. stages, 3 IF stages, noise limiter/band pass filter/BFO/Monitor speaker, provision for ' S ' meter, for A.C. Mains operation. Condition excellent. Price £35. P.P. 20/-

Marconi TF340 power output meter 0-5 w. only
Marconi TF1102 amplitude modu- 0
lator $£ 2500$
Marconi TF1041 vacuum tube voltmeter
Marconi TF1106 white noise gener ator. As new
$£ 1510 \quad 0$

Marconi TF912A transmitter output $£ 1710$ 0
Marconi CT44 A.F. absorption
watt meter TF956 1 microwatt to
6 watt
£25 $0 \quad 0$

Marconi TF890A RF Test Set.
Marconi TF329G circuit magnification meter
Marconi TF936 impedance bridge . . $£ 6500$
Marconi TF762 UHF signal generator $200 / 400 \mathrm{Mc} / \mathrm{s}$.
Marconi TF801A/1 VHF signal generator $8 / 330 \mathrm{Mc} / \mathrm{s}$.
Audio Oscillator TS382 F/U $10 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{Kc} / \mathrm{s}$. New.
B.P.L. electrolytic capacitance bridge range 0.2 to 2,200 mfds..........
Pye galvanometer modulator and amplifier indicator. Cat. No.
11351 and 1134 11351 and 1134 generator, perfect condition P.U.R. P.U.R
Solartron oscilloscope 711s.3D.C. to $9 \mathrm{Mc} / \mathrm{s}$ double beam, guaranteed/ condition excellent
Solartron AT203 calibrat
Solartron CD518 Radar oscilloscope $£ 2500$
Solartron OPS100 Pulse generator $£ 15 \quad 100$
Solartron AWSS51A laboratory amplifier
Solartron TFA carrier convertor, Type JX641
$£ 6500$

Electronic Instruments Vibron electrometer Type 33B $0.2-1,000$

Relay test set, complete checkout facilities for Carpenter Relays.... $£ 25$ 0. 0
Frequency meter Type BC-221, C/W
correct charts, new $£ 35$; used $\ldots £ 27000$
Frequency meter, Type TS-74 20 to $280 \mathrm{Mc} / \mathrm{s}$, as new
$£ 50 \quad 0$

P. F. RALFE

Radio \& Electrical Supplies
423 GREEN LANES, HARRINGAY,
LONDON, N. 4.
MOUNTVIEW 6939

Frequency meter B.P.L. direct read-
ing $1 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{Kc} / \mathrm{s}$. as new $£ 20 \quad 0 \quad 0$
Frequency meter TS186/UP 100 to $10,000 \mathrm{Mc} / \mathrm{s}$.
$£ 50 \quad 0 \quad 0$
Advance Constant Voltage Trans-
formers. I.P. $190-260 \mathrm{v}$. O.P.
230 v . 6 kW . £75. 3 kW . £60. Both units $50 \mathrm{c} / \mathrm{s} 1 \varnothing$ also 150W. £5 00
Furzhill sensitive valve voltmeter, Model 200a
£35 00
Solartron stabilised P.S.U. 250 v, 300 v. 6.3 v. 100 mA $£ 12100$
English Electric Insulation Testers. Type TD $5443 / 2.0-10 \mathrm{kV}$. with variable current control and ionisation amplifier. Small portable unit for A.C. mains operation. Price., £30 0
Cintell square wave and pulse generator Model 1873
Foster potent
A.P.T. stabilised P.S.U., Model 515/s will regulate from $0-500 \mathrm{v}$. at 500 mA also current regulated from 10 mA to 350 mA in 17 ranges, these units are in as new condition and perfect working order.
Advance RF signal generators, Type
E2 $100 \mathrm{kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s} .+10 /$-P.P. $£ 1600$
Advance DI 8-300 Mc/s., 10/- P.P. $£ 1500$
Advance Q1 $7.5-250 \mathrm{Mc} / \mathrm{s}$. . . $£ 25 \quad 0$
Muirhead decade oscillators, Type D-638A also D-650B.

We stock a good range of BFO Audio oscillators, Marconi, etc. from $£ 20$.
Mullard high speed valve testers with approx 500 current cards, £35.
Cossor 1049 oscilloscope D.C. coupled Mk. 1, £30; Mk. II, £35; Mk. III, £40, P.P. 25/-
Miniature A.E.I. Uniselectors, Type 2202A 250Ω coil, these very popular switches are offered brand new in makers' cartons @ 80/-ea

A new science project combining the fascination of optics with electronics . . . the new field of
-OPTOELECTRONICS

Demonstrations of these devices operating as

SPEECH LINK and ON/OFF LINK are being given daily at our only address,
52 TOTTENHAM COURT ROAD, LONDON, W.1.

These new devices offer features which can be exploited in an extremely wide field of applications. Their outstanding modulation and switching capabilities, coupled with completely solid state circuit design and small physical size make them ideally suited to such purposes as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc.

MGA100

 Post Free

 $2_{c \times 4}^{28}$TYPE MQA 100 Ceneral Purpose Gallium Arsenide Light Source A filamentless, Gallium Arsenide infra-red emitter, only 5.54 mm . dia. and 8.1 mm . long. Features a robust cylindrical package coaxial with the beam, facilitating optical alignment and heatsinking.

MAX RATINGS
Forward current I_{F} max." D.C....... 400 mA . Forward peak current I_{F} max.* (pk).....6A Power dissipation ${ }^{*} \ldots . .600 \mathrm{~mW}$. Derating factar for $T_{\text {amb }}$ greater thon $25^{\circ} \mathrm{C}$. ... $7.5 \mathrm{~mW} \mathrm{i}^{\circ} \mathrm{C}$. Reverse voltage V_{R} max. l-oV.
When mounted on an aluminium heot sink lin. $\times \frac{1}{1}$ in. $\times \frac{1}{1}$ in.
Supplied complete with suitable Ienses, full Technical Data and Application Sheots,inoludling Line of Sight Speech Link.

TYPE MSP3 Solid State Photo Receiving Device
An ultra-sensitive infra-red and visible light detector, this device is a complete silicon photo-electric receiver with a peak spectral response at 9500 A . Size only 6.4 mm . dia. and 25.4 mm . Iong, yet absolutely complete, the device will generate sufficient power to drive an external relay. Chiefly intended for use in optical links based on Gallium Arsenide Light Sources, they are equally suitable for systems based on visible light. Features a robust cylindrical package coaxial with the incident light facilitating optical alignment and heat-sinking.

MAX RATINGS

Total dissipation (in free air, $\boldsymbol{T}_{a m b}=25^{\circ} \mathrm{C} \ldots \ldots .100 \mathrm{~mW}$. Derating Factor........ $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output Current Intensity. 100 mA . Voltage. 25 V . Operating Temperature......... from -30° to $+125^{\circ} \mathrm{C}$.
Supplied complete with suitable lenses, full Technleal Data and Application Sheets, including Line of Sighe Speoch Link.

31F2 2
 Type 31F2 Miero-minlature Infra-Red Detector
 Extremely small photo diodes of silicon NPN passivated planar construction and suitable for Punched Card Readers, Counters, Film Sound Track, etc.

Supplied complete with suitable lenses, full Technical Data and Application Shoets, Including Line of Sight Speech LInk.

PROOPS

52 Tottenham Court Road, London, W. 1. Telephone: LANgham 0141. (01-580 0141)

TRANSISTOR STEREO $8+8$

resilly first-class Hi-FiStereo Amplifter Kit. Uses 14 transistor Giving 8 watts push pull output per channel (16 W . mono), sultable for use with Ceramic or Crystal cariridges. Output stage for any speakers from 3 to 15 ohms. Compact design, all parta supplied including drilled nietal work. Cir- Kit board, attractive front panel knobs, wire, molder, nuts, bois-no
extras to buy. Simple step by step inatruetions enable any extras to buy. suimple step by step instructions enable any constructor to build in ampiner to be proud of. Brier speep.
lestion: Freq. response $\pm 3 \mathrm{~dB}, 20-20,000 \mathrm{c} / \mathrm{s}$. Bass Doont approx. to +12 dB . Treble cut approx. to -16dB. Negative

feedback 18 dB . over main amp. Power requirements 25 V . at | feed back |
| :--- |
| .6 amp. |

Amplifer Kit, $99 / 10 /$-(Built and Tested $£ 12 / 10 /-)$ P. \& P. $4 / 6$ Power Paek Kit, E2/101- (Bulit and Tested E3) P. \& P. 4/ Special Offer- $214 / 10 /$ - post free it all above kilt ordered at same time or built and tested for $£ 18$ post free).
ircuit diagram. construction detalis and parts list (free with it) 1
3.VALVE 4 WATL "FOUR" AMPLIFIER KIT .VALVE 4 WATT OSING ECC83, EL84, EZ80 VALVES for A.C. mains $200 / 240$. A Heavy duty double-wound hermer with electrostatie sereen. Separate bass, treble and volume controls, glving fully variabie boost and cut with minimum insertion loss. A Heavy negative feedback loop over 2 stages ensure high output at excellent quality with very low or record player. © Puitable for use with gustar, microphtrols or record player. Thect on chassis. All this builds on to a chassts size only $7 \frac{1}{2}$. wide $x 4 \mathrm{in}$. deep. Overall height $4 t \mathrm{in}$. \star All comporents and valves are brand aew. . Very clear and concise instructions suceess. + Bupplied complete with valves, output transtormer (3 ohnus only), sereened lead, wire, nuts, boita, solder, etc. (No extres to buy). PRICE 79/6. P. \& P. $6 / \%$. $2 / 6$ (free with kit).
VIBRATORS. Large aelection of $2,4,6$ and 32 volt. on sync. 8/6; Sync. 10/. P. SPECIAL OFFER: PLESSEY TYPE 29 TWIN TUNING GANG. $400 \mathrm{pf}+146 \mathrm{pf}$. Fitted with trimmers and $5: 1$ integral slow
 Gold plated contacts. size approx. 1$\} \mathrm{in} . \times 1 / \mathrm{n} . \times 1 \neq 1 \mathrm{n} .6 \mathrm{iv}$ at 30 mA . ONLY $15 /-$ P P \& P. $1 / 6 . C$.C. for Mullard 3 valve Tape Amplifer. Special offer 7/6. P. AP. $1 /{ }^{2}$.
PARMEKO $7-10$ watt OUTPUT TRANSFORMERS to match

ETUGE PORCEASE! Heavy $8 \frac{1}{i} \mathrm{in}$. metal turntable. Low futter performance $200 / 250 \mathrm{v}$. shaded
motor $(90 \mathrm{\nabla}$. tap). Complete with latest type lightweight pick-up arm and mono cartridge with t/o styll for LP/78.
LIMITED NUMBER ONLY 63/-
P. \& P. $6 / 6$. $10 / 14$ W ATT

A stylishiy Anished monaural amplifier with an ${ }_{2}$ output of 14 watts from Super reproduction of super reproduction of with negllgible hum. Separate in puts for mike and grami allow records follow announchements other. Fully shrouded seetlon wound | output | |
| :--- | :--- |
| match | $3-15 \Omega$ | and 2 independent voi-

 ume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up: 2 EL84s, ECCA3, FFF86 parts). All parto sold separately. ONLY \&7/9/6. P. \& P. 8/6 Also a avallable ready built and tested complete with standard
input sockets. $£ 9 / 5 /-$ P. $\& P .8 / 6$. $\frac{\text { input sockets. £9/5/-. P. \& P. } 8 / 6 \text {. }}{3 \text {-VALVE AUDIO AMPLIFIER MODES HA } 34}$
 Designed for HI•Fi reproduction of ready built on plated henvy gauge metai chassia, wize 7 in in. w . $\times 4 \mathrm{in}$. d. X 4tin. h. Incorporatea ECC83, double wound mains transformer and output traniformer matched for 3 ohm ppeaker, separate bass, treble and volume contros. Negatied eed back line. Output $4 \frac{1}{\text { watts. Front panel can be detached and }}$ eads extended for remote mounting of controls. The HA34 has been apecially designed for us and our quantity order enables us offer them complete with knobs, valves, etc., wired and teate or only E4/5/- P \& P 6/-

BRAND NEW 3 OHM LOUDSPEAKER
$5 \mathrm{in} .14 /-; 6 \mathrm{jin.m} 18 / 6 ; 8 \mathrm{in} .27 /-; 7 \times 4 \mathrm{ln} .18 / 6 ; 10 \times 6 \mathrm{in}$.
$27 / 8 ;$ E.M. $8 \times 5 \mathrm{in}$. with high flux magnet $21 /-;$ E.M.I.
 BRAKD NEW 12in. 15w. H/D Sperkern, 3 or 15 ohm Current production by well-known British maker. Offered below hat price at 89/6. P. \& P. 5/. Guitar models: 25 w . $25 / 5 /-$ -

HARVERSON SURPLUS CO. LTD.

 170 HIGH ST., MERTON, LONDON, S.W. 19Tel: 01-540 3985
S.A.E. all enquiries. Open all day Saturday (Wednesday 1 p.m.)

PLEASE ROTE. P CHARGES QUOTED AP. PLX OU.K. ONLY.P. \&P. OHARGEDEAS ORD

TRANSISTORS EX STOCK

AC 107 . . . 14/6	BTY 87-500 R	OC $82 \ldots . .4 / 8$
AC 127.... 6 6/	BY 10047	${ }^{\text {OC } 820 \mathrm{D}}$.. $4 / 3$
ACY $17 \ldots 5{ }^{\circ}$	BYZ $10.111 /-$	OC $123 .$.
	${ }_{\text {BYZ }}{ }^{\text {B }}$ 12 \ldots.. $7 / 6$	
${ }_{\text {ACY }}{ }_{22} \cdots{ }^{\text {a/6 }}$	BZY 93. ${ }^{\text {a }}$, 12%	OC 169
AD $140 \cdots 12 / 8$	GET102 .. 8/-	OC 17
AD 149 ...11	GET103 .. 4/6	OC 171
AD 161 ... $7 / 6$	GET111 .. 10	$\bigcirc \mathrm{C} 200$
AD 162	GET573	OC 201
ADT 140 . $12 / 6$	OA 5	${ }^{\circ} \mathrm{OC} 202$
AF 10218/-	OA 10	OC 20
AF 14.... 4 /9	OA 47 16	${ }^{\text {OC } 20411 /-~}$
${ }_{\text {AF }} 1118 . . .{ }^{4 / 9}$		${ }_{\text {OCP }} \mathrm{OCP}^{205} \ldots 1016$
		ORP 12
AF 186… 12%	$\mathrm{OA}_{41} \ldots \ldots .{ }_{1 / 8}$	ORP 60
AF 238 …12/-	04^{85} … $1 / 8$	ORP 63
AFZ 11 ...10/.	OA $90 . . .{ }^{1 / 6}$	ORP 93
AFZ $12 . .11 / 9$	OA $91 . . .1 / 6$	ORP 90 ..19/6
	OA 98	mat100
	Ox 200	MAT101 -. $8 / 6$
A8Z $21 . . .8$ 4.	Oc 19.	MAT121
BA 115 ... $2 / 6$	OC 20 ..	8T 140
BC 107.... 4/3	OC 22	gT 141
BC 108 ... 4/-	OC 23	TAA263 ..29/6
BC 109.... 4/3		${ }_{2} 1840 \mathrm{~K} 10$
BCY $31 .$.	OC $26 . . .12$.	${ }_{2} \mathrm{NN}^{13} 303$
BCY $32 \ldots 8 \%$	oc 28 …12.	$2 \mathrm{N1} 304$
вCY $33 . . .8$ 8-	OC 2915	2N1 305
BCY 94	OC $35 \ldots . . .{ }^{\text {9/6 }}$	2N1306
BCY $38 . .181-$	OC $38 . . .13 /-$	2 N 1307
BCY 40 ...18/-	${ }^{\circ} \mathrm{C} 41 . . .3$ 3/6	${ }_{2}^{2 N 1308} \ldots$..10/6
BCZ $11 . .10$ -	$\mathrm{Oc}_{\text {Of } 42} \mathrm{CO}$	${ }_{2}^{2 N 1309} \cdots 10 / 6$
		${ }_{2}^{2 N 2147}$
BFY $52 \ldots . . .81$ -	Oc $45 . . .3$ /-	${ }_{2 \mathrm{~N} 2646} \ldots 101 /$
B8X $78.10{ }^{3 /-}$	oc $71, \ldots 3$ 3/-	${ }_{2}^{2 N} 2928$
BTY 79.400 R		
BTY 87.150 R	OC75 … 5 5/-	2N3926
23	${ }^{0} 786$	${ }^{4} \mathrm{~L} 9000 . .11 /-$
Y $91-150 \mathrm{R}$,		

GUARANTEE: All the above-listed semi-conducted devices re Brand New, first Grade, and guaranteed. We will eplace at no charge any device found to befaulty. Further: devices carry the Manufacturer's name or Trade Mark, devices often described as "new and tested "or bearing re-marked type numbers, these often have a short and unreliable life. L.S.T. COMPONENTS.

WE ALSO STOCK:

20 Watt Solid State Amplifier KitAF11 @	£8
Solid State Pre-Amp for above. Complete	£6 10
Send now for detalls.	
" S-Dec " Breadboards	29/6 each
f $\frac{8}{2} \frac{1}{\text { Resistors }}$ Watt 5% Carbon film Sub-Min	4 d each
Skeleton Presets	1/6 each
Mullard Sub-Min Electrolytics \& Poly ester Capacitors. Heat Sink for $2 \times$ OC35, etc.	6/- each

Veroboard-All standard sizes.
Aluminium Chassis and Panels.
ion Rectifier.
SEMICONDUCTOR CENTRE Stockists. Mullard \& FAIRCHILD Integrated Circuits. Mandook or all types.
$40 \mathrm{kc} / \mathrm{s}$ Transducers @ $£ 5 / 18 /-$ pair with free circuits. "X"-Line Modules-Solld State-ready built and rested circuits.
ALL THE ABOVE AND MUCH MORE IN OUR
1968 CATALOGUE

PLEASE SEND TO ME YOUR CATALOGUE.
I enclose $1 / 6 \mathrm{~d}$. stamps.
NAME

ADDRESS

20 Amp. LT. SUPPLY UNIT

As supplied to Min. of Defence and Crown Agents for overseas Gove. LATEST DESIGN HEAVY DUTY $12 / 24$ VOLT D.C. Output: Adjustable up to 20 AMPS. CONTINUOUS at $12 / 24$ volts FULLY FUSED, Neon indicator $0-20 \mathrm{amp}$. meter. Size $16 \times 12 \times 20 \mathrm{in}$ high, in heavy gauge steel cabinet Grey Hammer finish-Weight 50 lb input: 220/230/240 v. A.C. 50 cycles. ONLY £32.10.0 Plus $\begin{gathered}\text { 40/- C. \& } P \text { (Inland) }\end{gathered}$

30 Amp. LT. SUPPLY UNIT

UP TO 18 v . D.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading * Fitted voltmeter and ammeter. * Instantaneous overload cut-out. Inpur: Mains A.C. Robust construction, 2 tone finish, steel case.

$$
\text { 555.0.0 } \begin{aligned}
& \text { C. \& P. 40/-. G.B. (Inland). } \\
& \text { Entirely suitable for plating plants, } \\
& \text { Laboratory supplies, ete. }
\end{aligned}
$$

5 AMP. A.C. \& D.C. VARIABLE SUPPLY UNIT Specification Input: 240 VAC

- 5 mooth stepless voltage A.C. 2 rion D.C.
* Current consistent throushout the an Max
range.
* Ammeter and voltmeter fitted, and neon ndicator.
* Fully fused input and outpue.

Strong steel case, with carrying handle a

$\$ 30$. 0.0 C. \& P. 40%. Ge. Britain (Inland).
CURRENT PRODUCTION - BUY DIRECT FROM MANUFACTURER

VARIABLE VOLTAGE TRANSFORMERS

Modern styling for modern equipment 'SLIDE-TRANS' \& 'SLIDUP'MODELS

Fully rated current consistent at all points along the winding

AVAILABLE ONLY FROM I.M.O.

* SMOOTH CONTINUOUS ADJUSTMENT
* ALL MODELS SHROUDED FOR SAFETY (IDEAL FOR EDUCATIONAL AUTHORITIES)
- BENCH OR PANEL MOUNTING
* UP TO 260v. AVAILABLE FROM ALL MODELS

All models $230 v$, A.C, $50 / 60$ e.p.s, input

Amp.	55.15
2.5 Amp.	¢6
5 Amp.	69.
8 Amp	¢14. 15
10 Amp.	¢18. 10
12 Amp.	E21. 10
20 Am	¢38. 10

C. \& P. EXTRA

TRANSISTORISED MEGOHMETER

* PUSH BUTTON TO READ

500 v. - 1,000 Megohms. Superb portable instrument. Supplied e/w batteries, probes and carrying
case.
ONLY $£ 25.0 .0$ c. \& P. 7/6

36 FT. AERIAL MAST
NEW turest patien mast
Check these vital points:
$*$ Made from $6 \times 1 \neq \mathrm{in}$. Sheradized steel sections,
durability and strength.

* Extra strong locating base.
* Top cap with fitted pulley and halyard.
$\star 2$ sets (8) Retproof Guys.
\star Rustproofed Steel Picketing Stakes.
onlr $£ 15.0 .0$ ex works
Carr. 20/-. Returnable wood
Carr. 40%.

VARIABLE HIGH VOLTAGE SAMPLING TESTER

DIELECTRIC BREAKDOWN TESTER

* Range: Infinitely variable up to 3,000 voles 0.1 amp.
\star Entirely suitable for continuous testing.
\star Automatic safety cut-out. Input: Mains voltage. Inpue and tese leads with elips. 15 Model T30

(ELECTRONICS) LTD.
(Dept. W.W.7), 313 Edgware Road, London, W. 2.
$01-7232233 / 4$

AVO CT. 38 ELECTRONIC MULTIMETERS

High quality 97 range instrument which measures A.C. and D.C. Voltage. Current, Resistance and Power output. Ranges D.C. volts $250 \mathrm{mV}-10,000 \quad$ v. $(10 \mathrm{meg} \Omega-110 \mathrm{mpeg} \Omega$? input). D.C. current $10 \mu \mathrm{~A} 25 \mathrm{amps}$. Ohms: $0 \cdot 1,000 \mathrm{meg} \Omega$. A.C. volt $100 \mathrm{mV} \cdot 250 \mathrm{~V}$. (with R.F. measuring head up to
current $10 \mu \mathrm{~A}-25$ amps. Power output 50 micro-watts-5 watts. Operation 0/110/200/250 v. A.C. circuit lead and R.F. probe, £25., Carr. 15/.

MARCONI TEST EQUIPMENT

 EX-MILITARY RECONDITIONED. TF 144G STANDARD SIGNAL GENERATORS, $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, $£ 25$. Carr. $30 /$ TF 885 IDEO OSCILLATOR $0-5 \mathrm{~m} / \mathrm{cs}$ £ 45 Cart 30% $0.40 \mathrm{kc} / \mathrm{s}$, $200 / 250 \mathrm{v}$. A.C. $£ 20$. Carr. $30 /$All above offered in excellent condition, fully tested and checked TF, 1100 VALVE VOLTMETER, Brand New, 450 . TF. 1267 TRANSMISSION TEST SET, Brand New, £\%5.

AM/FM SIGNAL GENERATORS

 Oscillator Test No. 2. A hisk quaility precision
instrument made instrument made
for the Ministry for the Ministry
by Airmec. Freby Airnec. Frequency coverage
$20-80 \mathrm{Mc} / \mathrm{s}. \mathrm{AM/}$
CW/FM. Incor. CW/FM. Incor dial, level meter, precislon atcenuator $1 \mu v \cdot 100 \mathrm{Mv}$. Operation from 12 volt D.C. or $0 / 110 / 200 / 250 \mathrm{v}$. A.C. Size $12 \times 8 \mathrm{x} \times \mathrm{in}$. Supplied in hrand new condition complete with all connectorn, fully

Variable Voltage ThaNBfonMIfi

Brand new, guaranteed and carriage paid,
High quality construction. Input $230 \mathrm{v} .50-60$ cycles
Output full variable from $0-200$ volts. Bulk quantities availahle
1 amp. - £5/10/-; $2.5 \mathrm{amp} .-£ 6 / 15 \mathrm{~m}$-; $5 \mathrm{amp} .-£ 9 / \mathbf{1 5 / -}$

4 band receiver covering $550 \mathrm{Kc} / \mathrm{m}$ to $30 \mathrm{Mc} / \mathrm{s}$. $15,20,40$ and 80 metres. 8 valve plus 7 diode
 dep. band spread dial IF $455 \mathrm{Kc} / \mathrm{s}$. gain cnntrols.
tifully deaigned.
115/250
$8 i z e$
7 Hfully designed. size $7 \times 15 \times 10 \mathrm{in}$. With inramiage $12 / 6$.
AUTO TRANSFORMERS $0 / 115 / 230 v$. Step up or step down. Fully shrouded.
$500 \mathrm{~W} . \& 3 / 100, \mathrm{P} . \& \mathrm{P} .8 / 6$ $1,000 \mathrm{~W} . \& 5 / 10 / 0, \mathrm{P} . \&$ P. $7 / 6$ $1,500 \mathrm{~W}, ~ f 6 / 10 / 0, \mathrm{P} . \&$ P. $8 / 6$ 3,000 W. $877 / 10 / 0$, P. \& P. $12 / 6$
7,500 W. \& $1510 / 0$, P. \& P. $20^{\prime} /$

SOLARTRON MONITOR

An extremely high quality oscilloscope With time hase of $10 \mathrm{Q} / \mathrm{sec}$, to $20 \mathrm{~m} / \mathrm{sec}$. Internal Y amplifier. Separate mains power supply $200 / 250$. Supplied in excel received from Ministry, $88 / 19 / 6$. Carriage recei
$30 /-$.

HANSEN SWR BRIDGES
52 ohm. 69/6. p. \& p. 3/6

$$
-\quad-1
$$

of oma. osfo. p. oc p. о/o

TYPE 13A DOUBLE BEAM OSCILLOSCOPES

BARGAIN

D/B oscill general purpone 750 K Senstitur Band width $5.5 \mathrm{Mo} / \mathrm{L}$ ating voltage $0 / \mathrm{Mr} / \mathrm{cm}$. Oper A.C. Supplied in excellent working condition, $£ 2 \mathrm{~L} / 10 /$ Or complefe with all acce ories, probe, leads, lid, etc. £25. Carriage $30 /$

HOSIDEN DH04S 2. WAY STEREO HEADPHONES
 Each headphone contains $2 \frac{1}{2}$. wooferand a tin. tweeter. Built in individual level controls. $25-18,000$ e.p.s. 80 imp. with cable and
stereo plug. $£ 5 / 19 / 6$. P. \& \mathbf{P} stereo plug. £5/19/6. P. \&
$2 / 6$.

SINCLAIR EQUIPMENT

$\begin{array}{lll}\text { Z12. } & \text { watt ampliferer } & 89 / 6 \\ \text { PZ4. Power supply Unit } & 98 / 6\end{array}$ STEREO 25, Pre Q. 14 Spliferkers $£ 9 / 19 / 6$ Mileromalic Radio
Kit
Q.......
$49 / 6$
 Kit
ALL Post
£5/19/6
PAID.
SPECLAL PACKAGE DEAL Z12 amps. PZ4 Power Supply, Stereo 25, Preamplitier
Fith two Q14 Speakera

LAFAYETTE TE-46 RESISTANCE

 CAPACITY ANALYSER

E VOLTMETER

$\underset{\substack{\text { High } \\ \text { with } \\ \text { wiality } \\ \text { ranges. }}}{ }$
with 28 ranges.
D.C. Yolts $1.5-1.50$
A.C. volts A.C. volts $1.5 .1,500$
Resintance up to 1,00 megnhnis.
$220 / 240$ v. A.c. operation 220/240 V. A.C. operation.
Complete with probe and
instructions $£ 1 \% / 10 /$ P. instrict ions $£ 1 \% / 10 / 0$. P
P. $8 /$. Addiflonal Probes avail
able: R.F. $\quad 35 /$ H.V. 48/6.

NOMBREX TRANSISTORISED
TEST EQUIPMENT All Post Paid with Battery

Model 22. Power Suppiy 0.15V D.C. $£ 14 / 10 /$ -
Model 30. Aud to Gcnerator.
Model 31. R.F. Bignal Generator
Model 32. Inductance Bridg
Model 32. Inductance Bridge . .
Model 66. Inductance Bridge. ..
\&18/0/:

COSSOR DOUBLE BEAM
OSCILLOSCOPES
$\begin{array}{ll}\text { Type 1035. General purpose. A.C. Coupled. } \\ \text { Type 1049. } & \text { L.F. D.C. Coupled. } \\ \text { C35 each. }\end{array}$
LELAND MODEL 27 BEAT
FREQUENCY OSCILLATORS
FREQUENCY OSCILLATORS $0-20 \mathrm{Kc} / \mathrm{s}$. Output 5 K of 500 ohms. $200 / 250 \mathrm{y}$
A.C. Oficred in excelleat condition, $812 / 10 /-$ Carriage $10 /$.

ARF-100 COMBINED AF-RF SIGNAL GENERATOR
 AF, SINE WAPE $20-200,000$ cps. Square
wave $20-30,000$ cps. $0 / P$
 $600 \mathrm{n} 3.8 \mathrm{~V} . \mathrm{P} / \mathrm{P}$.
$\mathrm{R} . \mathrm{F} .100 \mathrm{kc} / \mathrm{s}-300 \mathrm{Mc} / \mathrm{s}$. Variable R.F. attenua. ion. Incorporates dual purpone meter to monitor. AF output and \% mod. on R.F. $220 / 240$ r. A.C
£2\%/10/-. Carr. $7 / 6$. TE-2ORF SIGNAL GENERATOR

TE- 22 SINE SQUARE WAVE AUDIO GENERATORS
Sine: 20 cps to $200 \mathrm{kc} / \mathrm{s}$. on 4 bande . Square:

Output impedance 3.000 ohms, $200 /$ tlon. \&upplled brand new and Ruaran-
teed with instruclean manual and
les. Carr.

AVOMETERS
Supplied in excellent
condition fully tested condition fully tested
and checked. Complete with prods,
leads and instruclions.

 | Model 7 | $\begin{array}{l}\text { £18/10/0 } \\ \text { Model } \\ \text { P. \& P. } \\ \text { \& } 7 / 6 / 0 / 0\end{array}$ |
| :--- | ---: | AMERICAN RECORDING TAPES First grade quality Amerlcan

tapes, Brand new and guar tapes. Brand new and guar
minteed. Discounts for quantitilea $3 \mathrm{in}$. . 226 tt. L.P. Acetate
$3 £ \mathrm{in}$.600 ft . T.P. Myiar. 6 in . 600 ft . Std. plastic. 81 n .900 ft .
$51 \mathrm{l} .1,200$
\qquad 5 in. 1,2001

51 in.
7 in.

7in. 3,600 fe. T.P. Mylar 45/-
EVERSHED VIGNOLES SERIES II 500 VOLT CT. 53 SIGNAL GENERATORS. 8.9-15.5 and 20 $300 \mathrm{Mc} / \mathrm{s}$. Output $1 \mu \mathrm{~V} \cdot 100 \mathrm{MV}$. 3/ann operated.
Perfect condition less charts, $\mathrm{f} 12 / 10 \mathrm{f}$. Cart.

WS. 88 TRANS/RECEIVERS. A and B aets available Complete with valves,
Accessories n valiable.

No. 10 MICROPEONE AND HEADSET. Movina
coll Accesaory for 19 aet. Un used. $15 / \mathrm{F}$. P. \&P. coil Accessory for 19 net. Un used. 15/-, P. AP.
4/.. R.C.A. AR88 SPEAKERS $8^{\circ}, 3 \mathrm{ohm}$ speakers in metal case. Black crackie finish to match our 88 Receivers. 59/6. Carr. 7/6.

DUBILIER NITROGEL CONDENSERS Brand new. 8 mfd .800 v. $8 / 6$. P. \& P.
$2 / . .2 \mathrm{mfd} 5,000$ v. $42 / 6 . \quad$ P. \& P. $5 /$. LDCAS $20 / 0 / 20$ AMMETERS. Brand mew boxed.
Suitable car/motorecycle. MODEL ZAM TRANSISTOR TRANSISTOR
CHECKER It has the fullest capacity for checking on A, B and Ico. Equally adaptable for checking diodes, etc.
Spec.

$$
\begin{aligned}
& \text { Spec.: A: } 0.7-0.9967 . \\
& \text { B: } 5 \cdot 200,
\end{aligned}
$$

 micro-amps. 0.5 mA . Resistance for diode $200 \Omega+$ I MEG. Supplled complete with £5/19/6. P. \& P. 2/6
£5/19/6. P. \& P. 2/6
G. W. SMITH
\& Co. (Radio) Ltd.
3-34, Lisle St., W.C.2.
ALSO SEE OPPOSITE PAGE

E=W
 PAMEL MEITR

Send S.A.E. for full lists. Other ranges available. Please include postage.
CLEAR PLASTIC METERS

Type MR.38P. 1 21/32in. square fronts

$50 \mu \mathrm{~A}$.	37/6	750 mA
$50.0 .50 \mu \mathrm{~S}$.	35/=	1 amp
$100 \mu \mathrm{~A}$	35/-	2 amp
$100 \cdot 0 \cdot 100 \mu \mathrm{~A}$	32/6	$\mathbf{3 V}$. D.C.
200μ A	32/6	10v, D.C
$500 \mu \mathrm{~A} \ldots .$ $500-0-500 \mu \mathrm{~A}$	$27 / 6$	20
1 mA …	$25 /$	100 V . D.C.
1-0-1mA	251-	150V. D.C.
2 mA	25/-	300V. D.C.
0 ma	251-	500 V . D.C.
10 mA	251-	750 V . D.C.
20 mA	25/-	$15 \mathrm{~V} . \mathrm{A} . \mathrm{C}$.
30 mA	25/-	$50 \mathrm{~V}, \mathrm{~A} . \mathrm{C}$.
100 mA	251-	150 V . A.C.
180 mA	25\%	300 V A.C.
200 nL A	251-	500 V . A.C.
300 mA	251-	8 meter 1m
beomA	25/-	vut meter .
Type MR.45P. 2in. square fronts.		
		10V. D.C
$50-0-50 \mu \mathrm{~A}$	$39 / 6$	20 V . D.C.
100μ A	39/6	50 V. D.C.
$100-0-100 \mu \mathrm{~A}$	351-	300 V . D.C.
$500 \mu \mathrm{~A}$	29/6	15 V . A.c.
1 mA	27/6	300 V . A.C.
5 mA	$27 / 6$	8 meter 1mA
10 mA	$27 / 8$	VU meter
50 mA	$27 / 6$	1 amp . A.C.*
100 mA	$27 / 1$	5 mmp . A.C.
500 mA	$27 / 6$	10 mmp. A.C.-
1 mmp	$27 / 6$	20 amp A.C.
5 amp	27/8	30 mmp . A.

Type MR.52P. $2{ }^{7} \mathrm{in}$, square fronts.

MULTIMETERS for GVERY purpose/

NEW MODEL 500. $\mathbf{3 0 , 0 0 0}$ O.P.V. with overloarl protec
tion Mirror acale. $0 / .5 / 2.5 / 10$ tion Mirror Hcale. 0/.5/2.5/10
$25 / 100 / 250 / 500 / 1,000 \mathrm{v} . \mathrm{D} . \mathrm{C}$ $0 / 2.5 / 10 / 25 / 100 / 250 / 500 / 1,000$

 $37 / 6$
$37 / 6$
$37 / 6$
$37 / 6$
$37 / 8$
$37 / 6$
$37 / 8$
3916
$59 / 8$
$37 / 8$
$37 / 8$
$37 / 8$
$37 / 8$
$37 / 6$

$49 / 6$
$49 / 6$
$49 / 8$
$49 / 6$
$49 / 6$
4916
$49 / 6$
$49 / 6$
$.55 / 1$
$69 / 6$
4916
$49 / 6$
$49 / 6$
$48 / 6$
$49 / 6$

MODEL AF-105, 50K@ Volt. Mirror scale, built-:n
meter protection. $0 / .3 / 3 / 12 /$ meter protection. $01.3 / 3 / 12 / 2$
$60 / 120 / 300 / 60011,200 \mathrm{v} . \mathrm{D} . \mathrm{C}$. $6 / 6 / 30 / 120 / 300 / 600 / 1,200 \%$
A.C. $0 / 30 \mu \mathrm{~A} / 6 / 60 / 300 \mathrm{MA}$ A.C. $0 / 30 \mu \mathrm{~A} / 6 / 60 / 300 \mathrm{MA}$
$12 \mathrm{Amp} .0 / 10 \mathrm{~K} / 1 \mathrm{M} / 10 \mathrm{M}$ $12 \mathrm{Amp} .0 / 10 \mathrm{~K} / 1 \mathrm{M} / 10 \mathrm{M}$
$100 \mathrm{M} \Omega$
$-20 \mathrm{to}+17 \mathrm{~dB}$. $\mathbf{8 8 / 1 0}$-. P. \& P. $3 / 6$
 MODEL PT-34. 1,000
O.P.V. $0 / 10 / 50 / 250 /$ $500 / 1,000 \mathrm{~F}$. A.C. and
D.C. $0 / 1 / 100 / 500 \mathrm{~mA}$. D.C. $0 / 1 / 100 / 500 \mathrm{~mA}$
D.C. $0 / 100 \mathrm{~K} \Omega 39 / 6$
P. \&P. $1 / 6$.

20,0000

MODEL TE-70. 30,000 0 M/3/15/60/300/600/1,200 v.
D.C. $0 / 6 / 30 / 20 / 6001200$ A.C. $0 / 30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{mAA}$
$0 / 16 \mathrm{~K} / 160 \mathrm{~K} / \mathrm{L} .6 \mathrm{M} / 16 \mathrm{Meg}$. Ω 25/10/-

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIEIER

19 transistors, 8 diodes, IHF music powe 30 watts at 8 ohms. Resporise $30-20,000 \pm 2$ 8 mV and 250 mV . Qutput $3-16$ ohms Separate L and R volume controls. Treble and bass controls. Stereo phone jack Brushed aluminium, gold anodised ex truded front panel with complementary metal case. Size $10 \frac{1}{2} \mathrm{in} . \times 3$, in. $\times 7 \frac{18}{2} \mathrm{in}$. Operation
$115 / 230$ volt A.C.

LAFAYETTE LR-500T 60 Watt Solid Tuner Amplifier

LAFAYETTE LA-85T WATT, SOLID STATE AMPLIFIER

 Latest 1998
model 4 Stereo In
puts. Speak er outputs ohms plus convenient output for direct stereo taping, 9 versatile controls. Re sponse $22-22,000 \mathrm{cps} \pm 1 \mathrm{~dB}$. H.D. less than 1%. Brushed aluminium, gild anodised extruded front panel. Simulated walnut $\begin{array}{lll}\text { wood grain case. } & 115 / 230 \\ \text { operation. } & 447 / 10 /- & \text { Carr. } \\ 10 /\end{array}$

UNR-30 4 BAND

COMMUNICATION RECEIVER

Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates variable BFO for CW/SSB reception. Built-in speaker and phone jack. Metal cabinet. Operation 220/240 v A.C. Supplied brand new, guaranteed with instructions. $812 / 10 /=$. Carr. 7/6.

NEW LAFAYETTE MODEL HA700 AM/CWSSB AMATEUR COMMUNICATION RECEIVER

8 valves, 5 bands incorporating 2 MECHANICAL ivity. Frequency coverage on selectivity and sensi $550-1,600 \mathrm{Kc} / \mathrm{s}$. $1.6-4.0 \mathrm{Mc} / \mathrm{s}$. $4.8-14.5 \mathrm{Mc} / \mathrm{s}$., $10-5-30$ Mc / s. Circuit incorporates R.F. stage, aerial trimmer noise limiter, B.F.O. product detector, electrical bandspread, S meter, slide rule dial. Output for phones low to $2 \mathrm{~K} \Omega$ or speaker 4 or 8 ohms. Operation $220 / 240$
volt A.C. Size 7 i in. $\times 15 \mathrm{in}$. $\times 10 \mathrm{in}$. Supplied brand new and guaranteed with handbooks. 38 GNS. Carr. 10/-S.A.E. for leaflet.

LAFAYETTE MODEL HA-500 SSB/AM/CW

 80 THROUGH 6 METER RECEIVERNew outstanding Ham Bands only receiver covering 10 valves, product detector, two mechanical filters S Meter, dual conversion on all bands, crystal calibrator, V.F.O. noise limiter, aerial trimmer, I.F.S $2,608 \mathrm{Mc} / \mathrm{s}$. and $455 \mathrm{Kc} / \mathrm{s}$. Output 8 ohms and 500 ohms. Operaion $220 / 240$ volts A.C. Supplied brand new and guaranteed with handbook 42 Gng . Carr. 10/. $100 \mathrm{Kc} / \mathrm{s}$. crystal, 35/

TRANSISTOR FM TUNER

TRANBIETOR HIC
 stages. Double tuned dis: feed most amplifiers. Operates on 9 rolt battery. Cover-
age $88-108 \mathrm{Mc} / \mathrm{s}$. Ready built, age 88-108 Mc/a. Ready built,
ready for use. Fantatlic value for money. $£ 6 / 7 / 8 /$.
ADAPTORE, 5 Gns.

GARRARD DECKS SPECIAL OFFERS:
Hrand new and guaranteed 1035 with cartridge 87/10:A70 Mk. II less cart., \&12/12/-. LAB 80 Mk. II less cart., $£ 23 / 10 /$ LAB 80 Mk. II, with base, 227/10 401 Transcription less cart., $827 / 6$ Carriage 7/6.

RADON 404 STEREO SYSTEM

Comprising Hi-Fi Solid State integrated ereo amplifier, 8 watts per channel, two SP25 transcription record unit with stereo cartridge in cabinet. Blond oak satin finish. All necessary plugs and Nothing more to buy!

PRICE 48 GNS. Carr. 15/-
(Also a vailable in teak 12/-extra.)

NEW RANGE OF "SEW" EDGEWISE METERS

MODEL PE70. Dimensions 8 17/32× $111 / 32 \times 2{ }^{4} \mathrm{in}$. deep. overall. Available as
 100 microamp $55 /-\quad$ VU meter $\ldots . .62 / 6$ microamp .. 52/6 Post extra

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS
 BRAND NEW—UNTESTED SEMICONDUCTORS

$\begin{aligned} & \text { PAI } \\ & \text { U1 } \end{aligned}$		Glass Sub-min. General Purpose Germanium Diodes
U2	60	Mixed Germanium Transistors AF/RF
Us	75	Germanium Gold Bonded Diodes sim. OA5, OA47
U4	40	Germanium Transistors like OC81, AC128
U5	60	200 mA Submin. Sil. Diodes
U6	40	Silicon Planar Transistors NPN sim. BSY95A,
U7		Silicon Rectifiers Top-Hat 750 mA up to 1000
U8	50	Sil. Planar Diodes 250mA OA/200/202
U9	20	Mixed Volts 1 Watt Zener Diodes
U11		PNP Silicon Planar Transistors TO-5
U12		Silicon Rectifiers EPOXY 500 mA up to 800 PIV
U13		PNP-NPN Sil. Transistors OC200 \& 2S104
14	150	Mixed Silicon and Germanium Diodes
U15	30	NPN Silicon Planar Transistors TO-5 sim. 2N6
U16		3-Amp Silicon Rectifiers Stud Type up to 1000 PIV
U17	30	Germanium PNP AF Transistors TO-5 like ACY 1
U118		6-Amp Silicon Rectifiers BYZ13 Typ
U19	30	Silicon NPN Transistors like BC108
U20		1.5 Amp Silicon Rectifiers Top Hat up to 1000 PIV
U21		A. F. Germanium alloy Transistors SG300 Series \& 0071
U22	10	1-Amp Glass Min. Silicon Rectifiers High Volts
U23	30	Madt's like MAT Series PNP Transistors
U24		Germanium 1-Amp Rectifiers GJM up to 300
U25		$300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Transistors 2N708, BSY27
		ast Switching Silicon Diodes like IN014 M

Code No's mentioned above are given as a guide to the type of device in the Pack. The devices themselves are normally unmarked

U28 Experimenters* Assortment of Integrated Circuits, untested Consisting of Gates, Flip-Flops, Buffers, Registers, etc 10 SCR's 1 Amp to 5 cm . up to 400 PIV

QUALITY-TESTED VALUE PAKS

Drift Trans. 2N1225 Germ. PN

 $100 \mathrm{Me} / \mathrm{s}$. 6 Matched Trans. Oc44/45/81/81D 16 Red Spot AF Trans. PNP.16 White 8 pot R P Trans. PN 5 Shite 8pot RF Trans. PNP 10 A Sillicon Rects. 100 PIV 12 A 8 CR 100 PIV 3 Sil. Tranu. 25309 PN Zener Dlodes 250 mW 3-12 V $3200 \mathrm{Mc} / \mathrm{s}$ 8il. Trans. NPN B8 Y $26 / 27$ Hener Diodes 400 mW 33V 5% To Power Transistors 10 OC26 1 OC3s Silicon Rects. 400 PIV 250 mA OC75 Transistors Mullard Type
Power Trans. OC20 100 OAz02 sil. Diodes sub-mi 2 Low Nolse Trans. NPN 2N $299 / 30$ su. Trans. NPN VCB 100 ZT86 Diodes.
OC77 Tranistors Mullard Type Metal Alloy Tranbiutors Mat. Typ 81. Recta. 400 PIV 500 mA 5 GET883 Trans. Equt. OC45 2 2N708 Sil. Trans. $300 \mathrm{Mc} / \mathrm{k}$, NPN
5 GT41/45 Germ. Trans. PNP EqV GT31 ㄷF Low Noise Cerm Trans PNP IN914 Sil Diodes 76 PIV 75 mA .. NPN Germ. Tranm. NKT7T3 Equt. AC130
OC22 Power Trans. Germ. 0025 Power Trans. Germ AC128 Trans. PNP High Gain AC127/128 Comp. pair PNP/NP 2N1307 PNP Switching Trans. Ca62H Germ. Diodes Eqvt. Assorted Germ. Dlodes Marked AC126 Germ. PNP Trans...
 Lonidon, W.

Marconi "Q" Meter. Type TF329G. New, boxed with manual, £60.
Cintel Square Wave \& Pulse Generator. Type No. 1873, £50.
Wayne Kerr Decade Potentiometer. Type K112,£30. Airmec Signal Generator. Type 701. $30 \mathrm{Kc} / \mathrm{s}-$ $30 \mathrm{Mc} / \mathrm{s}$, £25.
Analogue-Digital Converter. By Mullard, £50.
Voltage Standing Wave Ratio Indicator.
Type CA512, £40.
Precision A.C. Millivoltmeter. By Solartron. Model VF252, £30.
Calibration Unit. By Solartron. Model AT203, £20. Pulse Generator. By Solartron. Model ODS-100C,£45. Muirhead Decade Oscillator. Type D-650-B, £40. Video Oscillator. By Marconi. TF885A, £20.
Avo Valve Tester. No. 3, £18.
Avo Electronic Testmeter. CT.38, £20.
Philips Valve Voltmeters. Tyes GM6010 and GM6014 and others. From £12.
R209 Receivers. As new. 12 volt. $1-20 \mathrm{Mc} / \mathrm{s} .4$ bands. Internal speaker. Complete with headphones and spare valve kit, £15. A.R.88L.F., £30. A.R.88D, £45.
H.R.O. Receivers. Complete. $£ 25$ and $£ 30$.

Aerials \& Masts. Various sizes up to 3 in. diameter and 50 ft ., complete with guys and pegs.
G.P.O. Type Extension Phones. New, boxed, 35/-. Gallenkamp Laboratory Centrifuges, £18.
Gallenkamp Lab. Ovens. Various. Vacuum Ovens, complete with Edwards I.S. 50 pump, internal size 2 ft .3 in . x 18 in . diameter
Edwards Oil Diffusion Pumps. 1 in. and 2 in .
Oscilloscopes. By Cossor, Philips, Furzehill, Solartron, etc.

M.A.C. LTD.,
SHOP: 38, MEADOW LANE, LEEDS
WORKS: TROY ROAD, MORLEY
Tel.: 26026 Tel.: 2334

M. R. SUPPLIES, LTD., (Established 1935)

Universally recognised as auppliers of UP-TO-DATE MATERIAL, which does the job properly Universally recognised as auppliers or UP-Tilivery. Satisfaction asmured. Prices nett.
FANFLOW EXTRACTOR FANS. Undoubtedly to-day's greateat bargain for domentic or industria use. For $200 / 200$ volts A.C. $7,500 \mathrm{cu}$. ft, per hour. Easily Instailed, atted weatherproof louvre Which open when motor is sw
only $£ 6 / 15 /$ - (despatch ($4 / 6$).
ELECTRIC FANS (Papst), for extracting or blowing. The moat exceptional offer we have ye made. $200 / 250$ v. A.C. Induction motor-allent rumning. 2.800 r.p.pa. duty 100 C.F.M. Only
$4 / 1 \mathrm{in}$. square and 2in. deep. Ideal for domestic or induatrial use. Easy mounting, $23 / 5 /$ (des. $3 / 8$). BMALL GEARED MOTORS. In addition to our well-known rauge (List GM. 564), we ofter smal pen type S.P. Unitas 200/250 V. A.C., 1, 6, 12, 24, 60 r.p.m., approx. 5in. long., with lin, ahaf Only $69 / 6$ (des. $3 /$-).
SYNCERONOUS TIME SWITCEES. (Our very popular speciallty). 200/250 v. 50 c. for accurate pre-set switching operations. Sangamo 8.254 providing up to 3 on-off operations per 24 hours housed 4 in . dia., $3 \frac{1}{2} \mathrm{Im}$. deep, $25 / 18 / 8$ (des. $4 / 8$). Also same excellent make new Domestic Model,

MINIATUBECOOLIHG FAYS. 2001250 v AC With open type induction motor
 llght duty extractorn, etc., still only $28 / 6$ (des. $4 / 6$).
MINIATURE RUNNNG TIME METERS (8angamo). We have great demands for this remarkable 0 9,999 hours, with $1 / 10$ th indicator. Only 1 if in. square, with cyclometer dial, depth $2 \ln$. Many ndustrial and domestic applications to indicate the running time of any ele din easy to instan, 60/- (past pald).
AIR BLOWERS. Highly efficient units fitted induction totally enclosed motor 230/260 v. 50 c .

 1. Wh, x x x,

GYMCHRONOUS ELECTRIC CLOCK MOVEMENTS (as mentloned and recommended in many hational journals). $200 / 250$ v. 50 c. 8elf-etartimg, Fitted spindles for hours, minutes and central weep second hands. Central one-hole fixing. Dia. 2 in . Depth behind dial only 1 in . With Fork dust cover, $8 / 10$ dia. $3 / 6$ eet.
SYNCHRONOUS TIMER MOTORS (Sangamo). $200 / 250 \mathrm{v} .30 \mathrm{c} / \mathrm{m} . \operatorname{Self-\mathrm {starting}2\mathrm {in}.~dia.~} \times 1$ ifin. deep. Choice of following speeds: 1 r.p.m., 12 r.p.h., 1 r.p.h.i. 1 rev. 12 hours, 1 rev. per day.
Any one $39 / 6$ (des. $1 / 6$). Also high-torque model (G.E.C.), $2 f$ in. $\times 2$ in. $\times 1$ 8in. 6 r.p.m., $57 / 6$ des. 1/6).
SMALL BENCH GRMDERS. $200 / 250$ v. A.C./D.C. Wlth two 3 in. diameter wheels (coarse and XTRACTOR FAYS RIE ion, 8 in . blade, 10 in . max. dia., $400 \mathrm{CFM}, 25 / 15 /-($ des. $/ 5 /-$). Same model 10 in . blade, 12 in . max. dia., 00 CF
IMMEDIATE DELIVERY of stuart Centrifugal Pumps, including stalnless ateel (most models).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

SLIDEWIRE WHEATSTONE
£15.15.0

Battery Powered Portable Resistance Bridge. Range 0.8 to 3 ureavuring range of 0.05 to 50.000 ohmu. Accuracy in the
middin 3 ranges- 0.5% approx. PRICE...... $£ 1515$ 0 THYRISTORS
 Blue Spot, 200 p.1,v, 5 amps., stud mounted; Gate
voltage 3.250 a. at 120 mA.
Oreen Spot, 400 p.j.v., otherwise as above............................ $18 / 6$ Green Spot, 400 p.j.v., otherwise as above...
DRY REED INSERTS
Gians dry reed Inserta approx. tiin, dia. x lin. long with axial
leauls. One "make "contact of 100 mA capaclty \&t 30 , Can
be operated by permanent nagnet or $30 \cdot 30$ Atnp-turns relay be operated by permanent nagnet or 30.50 Atmp-turns relay
colls, PRICE $18 /-$ per doz., pamt free. colls, PRICE 18/-per doz., puwt tree.

TRANSISTORS
A NEW GEPARATE LIST OF TRANBIBTORS IS NOW READY GIVING PRICES, SHORT CHARACTERIBTICS
AND BASE CONNECTIONS AND OUTLINES OF OVER 200 TYPES WE KEEP IN STOCK.
CURRENT PRODUCTION CATHODE RAY TUBES
The following Cathode Ray Tuben for General Oncilloscope Appilcations are a vailable from stock 2AP1-2in. screen tube requiring s00 to 1,000 v. E.H.T. Sensi-
tivity 100 to 200 v. D.C./in. UBM11 Base. Overgil lengin . 3BP1-3in. sereen tube requiring $1,500-2,000$ V. E.H.T. Bensi-
tivity 100 io 200 v . D.C./in. BliA Bse. Overall length 10 in. SCPLA-din. screen tube. This is an improved version of " 5 mald-of-ail-work" ${ }^{\text {o }}$ CP1, with tighter performance toierances and exceptionally low Bearn current for high brilliance. Post Deflection Accelerator. E.H.T. required 2,000 and 4,000 v. or 1.500 and
$3,000 \mathrm{w}$. Sensituvity 70 to 90 v, D.C./in. B14A Hase. Overali 3,000 vis Sensitivity 70 to 90 v. D.C./in. B14A Base. Overali
length is jn . WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN ℓ FOR HANDLING AND POSTAGE.

NO C.O.D. ORDERS ACCEPTED.
ALL MAIL ORDERS MUST BE SENT TO HEAD
OFFICE AND NOT TO RETAL SHOP.

MOVING COIL METERS

1.5% aecuracy top quality panel meters. Avallable from stock

 Leaflet on request. see page 60 .
PEN RECORDERS

Head Office:

44a WESTBOURNE GROVE, LONDON, W.2.

Tel: PARK 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.,
LONDON W.2. Tel: LANgham 8403

WE WANT TO BUY

723A/B; 2K25: 4C35-40/- paid subject id test. Please offer us your special valves and eubes surplus co requirements.
 bozes in Grade I condition singly at $45 / \mathrm{F}$, post $5 /$ - with circuit. New batteries if available $7 / 6 \mathrm{each}$.

FAMOUS ARMY SHORT-WAVE TRANSRECEIVER

This get is made up of 3 geprarate units: (1 a two valve
amplifier uning 6 6V6 out put valve: amplifier uning a 6V6 output valve; (2) (some only, not
built in the very lateat models) a V. It. F. transreceiver covering $229-241 \mathrm{Mc} / \mathrm{m}$ using 4 valve: (3) the mainehort wave transmitter/receiver covering in two switched bands, just below $2 \mathrm{Mc} / \mathrm{s}-4 \mathrm{H}$ Mc/m, and $4 \frac{\mathrm{Mc}}{\mathrm{M}} / \mathrm{s}-8 \mathrm{Mc} / \mathrm{s}$ andM.C.W.The receiver is superhetrod yne having in. R
 detector, A.V.C. and output stage. A B.F.O. ineluded tor C.W, or eingle side-band reception. T.X. output
valve 807, other valves octal bases. Many exiras rave 807, other valves octal bases. Many extras, e.g. Power requirementa LTT 12 volts, HT receiver 275 volts D.C. HT transmitter 500 rolte D.C. size approx
 E $\$ 10 /$ - or Grade 2 allghtly useil 50% - or Grade 3 used but complete, $35 /$ - Carr. ALL $151 / \mathrm{O}^{\circ}$ WE MAKE A MAINS $200 / 250$ VOLT POWER UNIT in lourred
metal case to plug direct into set power socket to run (1)
 post 7/6. (3) 12 volt D.C. P.U. (original) Rair condition $40 /-$ - Carr. $\mathrm{s} /$ - A charge of $10 /$ - to unpack and teat the receiver of these nets is made only if requested. Head
phones of Mike, $15 /-$ new and bozed.

This is a modern self contained tunable V.H.F. low powered frequency modulated transreceiver for R.T. miles Made for up Ministry of Supply at an extremely hish cost by well - known British makers, using 15 midget B.G. 7 valves, receiver incorporating R.F. amplifier Double superhet and A.F.C.

Slow motion tuning with the dial calibrated in 41 channels each $200 \mathrm{kc} / \mathrm{s}$ apart. The frequency covered is $39 \mathrm{mc} / \mathrm{s}-48 \mathrm{mc} / \mathrm{s}$. Also has buils-in Crystal calibrator which gives pips to coincide with marks on the tuning dial. Power required L.T. $4 \frac{1}{2}$ volts, H.T. 150 voles, tapped at 90 volts for receiver. Every set supplied complete with valves and crystals. New in carton, complete with adjustable whip aerial, and circuit. Price $£ 410 s$ Od
carriage 10 s.

BUILD YOURSELF A QUALITY TRANSISTOR RADIO!

TRANSONA FIVE MED.

RADIO EXCHANGE CO. LTD

61 High Street, Bedford.
POCKET FIVE. MED. \& LONG WAVES \& EXTENDED MED. WAVE BAND. F transistors and 2 diodes,ferrite rod merial, tuning condenser. 21 in , apeaker, etc. $5 \geqslant \times 1 \$ x$ 3 tin. Total Building Coste Hole P A 39/6. P. a P. d/b. Pian and

SUPER SEVER. MED

 LONG \& TRAWLER BAND 7 traneistors and 2 diodes 3 in. apeaker, 2 R.F. atages purh- pull output, tc. $71 \times$ 5×1 B9/B P P 69/6. P. \& P. $4 / 6$. Plany andparta liat $2 /$. (free with parts).

ROAMER SEVEN MK. 4, 7 wave SW2, BW3 And Trander BW1 7 transistors snd 2 diodea. Ferrite rod aerial and teleacopic aerial, Socket for car aerial. $7 x$
4in. tuning condenser, etc. size $9 \times 7 \times$ 4 in . Total Building Coste $£ 5 / 19 / 6$ P. \& P. 7/6. Plane and parta list $3 / \%$. (Free with parts.

'Phone: 52367

ROAMER SIX. 6 wavebandsMW1, MW2, sWi, sw 2 , LW \mathbf{L} and Trawler Band. 6 tranaistors and 2
diodes. Ferrite rod and telescopic
 ponents. 8ize $7 \% \times 51 \times 1 /$ in. Total

ande ontrance Stylo Shoe Shop Open 95 p.m. (Sat. $9-12.30$ p.m.)

Solve your communication problems with this new 4-Station Transistor Intorcom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

Same as 4-Station Intercom for two-way instant con versation. Ideal as Baby Alarm and Door Phone Complete with 66 ft . connecting wire. Battery $2 / 6$. P. \& P. $3 / 6$.

7-STATION INTERCOM

(I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \frac{1}{2}$ in. Speakers, Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory Price 27 gns. P. \& P. I2/6 in U.K.

WW115-FOR FURTHER DETAILS

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one v battery which lasts for months. Ready to operate. P. \& P. 2/6 in U.K. Add $2 / 6$ for Battery. Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.). 169 Kensington High Street, London, W. 8

RCA TE-149 HETERODYNE Employs V-cut I Mc/s crystal (0.005%). Overall accuracy better than 0.02%. Dial DIRECTLY calibrated every $1 \mathrm{Kc} / \mathrm{s}$ from $2.5-5 \mathrm{Mc} / \mathrm{s}$. Useful harmonics up to $20 \mathrm{Me} / \mathrm{s}$. Provision for fitting internal dry batteries. BRANO NEW \& BOXED and complete with Manual and Spares. 414. Carr. 10/-.

FILTER VARIABLE BAND PASS No, I.
Dual channel unit, each channel has variable
slot frequency of $500-900 \mathrm{c} / \mathrm{s}$., $1,200-1,600 \mathrm{c} / \mathrm{s}$.,
and band pass facility. 600 ohms input and out-
put, monitor input and high impedance out-
put jacks, Standard rack mounting $3 \frac{1}{2}$ in, deep
panel. Mains operation $200 / 250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$.
BRAND NEW. $\mathrm{E} / 19 / 6$. Carr. $10 /$.

HRO TUNING METER. O-I ma, New and boxed 25/-. Post 2/-.

BC-22I FREQUENCY METERS Complete with crystal and valves. In perfect working order but WITHOUT calibration
charts. $£ 9 / 19 / 6$. Carr. $10 / 6$.

X'TALS
$100 / 1,000 \mathrm{Kc} / \mathrm{s}$. 10 X size 3 -pin, as used in Class 0 Wavemeter. Brand New, boxed 21/- each. Pose $1 /$-.
$200 \mathrm{kc} / \mathrm{s}$ American G.E.C. $\frac{1}{2} \mathrm{in}$, pins suitable for crystai calibrators, etc. Brand new, boxed,
V.H.F. SIGNAL GENERATOR MARCONI TF-BOIALI. Covers 10 to 310 Mc / s. (4 bands). DIRECTLY calibraced. Int. Mod, at $400,1,000$ and $5,000 \mathrm{c} / \mathrm{s}$. Atcenuated or force output. Guaranteed overhauled, accurate and
E35. Carr.

> BEAT FREQUENCY OSCILLATORS. MARCONI TF-195M. Covers 10 cps . to $40 \mathrm{kc} / \mathrm{s}$. in two sweeps. 0 to $20 \mathrm{ke} / \mathrm{s}$. and $20 \mathrm{to} 40 \mathrm{kc} / \mathrm{s}$. Output 2 wates into 600 or $2,500 \mathrm{ohms}$. Panel meter indicates output voltage. A.C. mains operation 100 to 250 voles. First class condition. Fully tested. c20. Carr. $30 /$.

AMERICAN HEADSET TYPE HS-30-U 600 impedance, BRAND NEW and boxed, 15/-. postage $2 / 6$

DISTORTION FACTORMETER

 MARCONI TF-I42E. This instrument measures the percentage of total harmonicdistortion in the fundamental frequency range 100 to $8,000 \mathrm{c} / \mathrm{s}$. The lowest scale engraving is 0.05%, Will handle 2 watts (continuous) and wiligive satisfactory readings with only I mW input. Mains operated. Ourput impedance 600 ohms. Very good condition. E29. Carr. 20/

MICROAMMETERS

R.C.A. $0-500$ microamps. 2 tin. circular flush panel mounting. Dials are engraved $0-15,0-600$ voles. As used in the American version of the No. 19 set. BRAND NEW
and boxed $15 / \%$. P. \& P. $1 / 6$.

AR-88 SPARES
Knobs, Medium size, Set of B
Knobs, Large size
Condenser (3×4 mid.). Post $4 / 6$
Mains Trans. (L.F.) (postag'e 9/-)

MINIATURE RELAYS

240 v. A.C. coils. Contact assembly " makes" and IC.O. 5 amps. Size $2 \times 171 \times$ lin. Unused and removed from brand new equipment $8 / 6$ post paid

MOVING COIL PHONES.

 qualicy Canadian with chamois ear-muffs and leacher-covered headband. Noise excluding and supremely comfortable. Complete with moving coil microphone 25/-. DLR-5 Low impedance headphones with atcached throat microphone. $12 / 6$. All these itemsBRAND NEW. Postage extra $2 / 6$.

CINTEL NUCLEONIC SCALERS Nos. 36402 and 36411 . Unused with hand-
book. List Price $£ 300 / £ 320$. Our Price $£ 65$.

> PACKARD-BELL PRE-AMPLIFIER Fited with $65 L 7 G T$ and 2807 Valves, Brand new and boxed with manual. $12 / 6$. Postage $4 / 6$.

CRT Trpe 89D as used in the Cossor 1035 Oscilloscope. Brand New 59/6. P. \& P, $4 / 6$.

ADVANCE TEST EQUIPMENT

H1B Audio Signal Generator	£30	0
J1B Audio Slgnal Generator	£30	0
J2B Audio Signal Generator	¢35	0
TT1S Transistor Tester	£37	0
Vm76 AC/DC Valve Voltmeter	£72	0
VM77C AC Milivoltmeter	£40	
V M78 AC Millivoltmeter (transistorised)	£55	0
VM79 UHF Millivoltmeter		
(transistorised)	125	0

These are current production, manufactured in U.K. by Advance Electronics Ltd. (not discontInued models). Showing a saving of approximately $33 \frac{1}{3} \%$ on nett trade price. BRAND NE W, all in original sealed carton. Carr. 10/- extra per item. Special offer of 10% discount for schools and technical colleges, etc.

COSSOR OSCILLOSCOPE TYPE XT476
 Detailed specification sent upon request. Offered in first class condition at $£ 350$. List price approximately $\mathbf{C 8 0 0}$.

WIRELESS SET No. 76

Abstract

A compact CW only crystal controlled transmitter. Consists of a Pierce crystal oscillator (807) and a Power Amplifier (807). Both are cathode keyed by means of a relay. Six switched crystal channels are available in the Irequency range of 2 co $12 \mathrm{Mc} / \mathrm{s}$. channels are available in the frequency range of 2 to $12 \mathrm{Mc} / \mathrm{s}$. (Crystals not included.) Aerial current is indicated on a panel Crystals not included.) Aerial current is indicated on a panel meter and ewo spare valves are supplied. Operates from 12 v . meter and ewo spare valves are supplied. Operates from 12 v . car battery via internal rotary transformer, Contained in steel case $12 \times 12 \times 81 \mathrm{n}$. Weight 30 Ibs. Ideal for 80 or 40 meters or cheap enough for breakdown. Condition as new. or Circuit included. E4/5/-. Carr. $10 /$-.

PRICES NOW REDUCED. CINTEL EQUIPMENT. ELECTROLYTIC CAPACITANCE AND INCREMENTAL INDUCTANCE BRIDGE No. 36601
A modern instrument, all solid state, which accurately measures the capacity of electrolytic condensers from $0.1 \mu \mathrm{~F}$ to $1,000 \mu \mathrm{~F}$ under operating conditions. Leakage current and polarizing voltage are separately metered. Inductances from 100 mH to 100 H can also be measured with current up to 100 mA . A.C. mains operation. Unused with handbook. List price $\mathbf{1 2 2 0}$. Our
Price $£ 70$. Price $£ 70$.
WIDE
WIDE RANGE CAPACITANCE BRIDGE. No. 1864. A matching instrument to the above, All solid state. Mains
operation. Measures from 0.002 pF to $100 \mu \mathrm{~F}$. Unused with handoperation. Measures from 0.002 pF to $100 \mu \mathrm{~F}$. Unused with hand-
book. Lise Price $£ 250$. Our Price $£ 75$.

MARCONI TEST EQUIPMENT

PORTABLE FREQUENCY METER TYPE TF. 1026 SERIES
$\begin{array}{lll}\text { PORTABLE FREQUENCY METER TYPE TF. } 1026 \text { SE } \\ \text { TF. } 1026 / 4 & 2,000 / 4,000 \mathrm{Mc} / \mathrm{s} . \text { TF. } 1026 / 5 \quad 1,800 / 2,200 \mathrm{Mc} / \mathrm{s} . \\ \text { TF. }\end{array}$ TF. $1026 / 6 \quad 3,800 / 4,200 \mathrm{Mc} / \mathrm{s}$. . TF. $1026 / 7$

WIDE BAND MILLIVOLTMETER TYPE TF.I37I $100 \mu \mathrm{v}$ to 300 mv in five ranges. $30 \mathrm{c} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$. 445. A.C. measurement 0.05 to 100 V., $20 \mathrm{e} / \mathrm{s}$. to $300 \mathrm{Me} / \mathrm{s}$. D.C. measurement 0.1 to 300 v . Each over 5 ranges. Will also measure ohms, 50Ω to $5 \mathrm{~m} \Omega$ in 2 ranges, $f 45$.

SENSITIVE VALVE VOLTMETER TYPE TF.II 100 $100 \mu \mathrm{v}$ to 300 V . A.C. in 12 ranges. $10 \mathrm{c} / \mathrm{s}$. $5010 \mathrm{Mc} / \mathrm{s}$. Can also be used as a wide-band amplifier. $\mathbf{£ 5 0}$.
Provides DELAY GENERATOR TYPE TF. 1415
Provides sweep-delaying facilities when used in conjunction with the TF. 1330 (series) or similar oscilloscope. Alternatively, it may be used independently as a general purpose delay generator.
©35.
TF.867.A Standard Signal Generator
6200
TF. 874 A Moisture Merer.
TF. 1067 Heterodyne Frequency Meter.
TF. 1102 Amplitude Modulato
TF, 1235 U.H.F. Signal Generato
TF. 1264 Slotted Line
TF. 1274 V.H.F, Bridge Oscillator.
TF. 275 A.H.F. Bridge Detector.................
TF. 1343 A X-Band Signal Generator Set $\mathbb{C} 125$
TM 5683 Attenuator for TF.1346/1
TM 6156 Attenuator
TM. 6629 A.F. Signal Compressor
Detailed technical speclfications supplied upon request.
Offered BRAND NEW at fraction of original cost.
Carriage and Postal Charges to N. Ireland and Eire extra.
Charles britain (Radio) LTD.
II UPPER saint martin's lane LONDON, W.C.2.

01-836 0545
Near Leicester Sq. Station.
Shop hours $9-6$ p.m. (9-1 Thursdoy).

Covers 860-2080 metres, $190-570$ metres, $5.6-18 \mathrm{Mc} / \mathrm{s}$. I R.F. and 2 i.F. stages, 6 valves. Internal speaker, requires external Power supply. Circuir supplied. Fully tested prior to despatch. $87 / 19 / 6$. Carr. 10/6. Fuller details upon request. Brand new external Power Supply Units, Vibracor Unit for operation from 12v. car bactery, for caravans or
boats $15 / 6$ or A.C. Mains Unies $\mathbf{2 2}$. Carr. $5 / 6$.

AR. 88 VIBRATOR POWER SUPPLY UNIT. Operates from 6-8 volt D.C. supply. complete with leads. $15 /$. prastage $7 / 6$.

ADVANCE POWER UNIT TYPE DC4.

 12 volts D.C. 4 amps output. A.C Mains Boxed, 220 . Carriage $10 / 6$.```
INDUSTRIAL METER, tron clad. \(0-300\) voles A.C. \(50 \mathrm{c} / \mathrm{s}\). Moving iron, 6 in . scale
F1. mtg. Brand new, boxed, \(59 / 6\), postage \(7 / 6\).
```

RUTHERFORD PULSE GENERATORS MODEL B7B. Produces trains of 50 vole pulses having reperition rates to $2 \mathrm{Mc} / \mathrm{s}$., pulse delays of $15 \mu$ millisecs, and a permissible ducy factor of up to $30 \%$ at full amplitude.
Mrains of 50 volt pulses (positive produces two trains of so volt pulses (positive and negative
polarity) having repetition rates from $20 \mathrm{c} / \mathrm{s}$ per sec. to $2 \mathrm{Mc} / \mathrm{s}$ per sec., pulse delays and widths to $10,000 \mu$ secs., rise and fall times which are separately and independenely controllable at the front panel from is nanoseconds'to approximately one (I) $\mu \mathrm{sec}$ and a permissible duty factor of up to $30 \%$ at full amplitude. Offered as New at a fraction of A.C. operation. 655 each.
T.C.C. METALPACK CONDENSERS. 0.1 mid. 500 v. D.C. wkg, at $70^{\circ} \mathrm{C}$. Brand new polychene wrapped, $7 / 6$ doz., or $\mathbb{E 2}$ per 100
T.C.C. METALMITE 350 v. D.C. wk. 0. mid. (CP37N); 0.05 mfd . (CP35N); . 01 mid (CP.32N) all at $5 / 6$ doz. or $32 / 6$ per 100 . SPRAGUE METAL CASED CONDEN. SERS 0.01 mafd. 1,000 v. D.C. wkg., S/s doz. or $32 / 6$ per 100 .

## T.C.C. VISCONAL CONDENSERS.

$8 \mathrm{mfd} .800 \mathrm{v} . \mathrm{O} . \mathrm{C}_{5}$ wkg. at $71^{\circ} \mathrm{C}$. CP 152 v size $3 \times$ li $\times$ Sin. high, BRAND NEW (boxed), $8 / 6$ each. 6 m id. $600 \mathrm{v} . \mathrm{D} . \mathrm{C}$. wkg. a $71^{\circ} \mathrm{C}$. CP 127 T . Size $3 \times 1 \frac{1}{x} \times 5$ in. high.
BRAND NEW. S/6 each. DUBILIER. 4 mfd . BRANO NEW. $5 / 6$ each. DUBILIER. 4 mid.
600 v . Wkg. CP 130 T or similar If $\times$ If $x$ 600 v wkg. CP 130 T or similar it x it x
$4 \frac{7}{4} \mathrm{in}$. high. BRAND NEW (boxed), $4 / 6$ each Postage $1 / 6$.

## WESTINGHOUSE PULSE TRANSFORMER CAT. NO. 4P43 L421741 Primary 5.5 kV . Secondary 22 kV . 0.5 to Postage $7 / 6$.

## THOMSON-VARLEY TYPE POTEN-

 TIAL DIVIDERNon induccive. 4 decades- 70,000 ohms resistance. Accuracy $0.01 \%$. 350 v . maximum voltage. Brand new and boxed. $\$ 30$ Carr. 10/-.

MORSE REPERFORATOR.
200/240 vole D.C. motor. BRAND NEW, in original crate. \&15. Carr. 30/-

MODULATOR UNIT BC.456A (Component of Radio Set SCR.274.N) Fireed with 1215GT, 1625 ( 12 volt version of 807) and VR.I50 valves. BRAND NEW.
E3/19/8 carriage paid. ©3/19/6 carriage paid.

## MARCONI TF.I44.G OUTPUT ATTENMARCONITF.14.G THERMOCOUPLE. In original packing. E5, postage 6/-.

## L.F. OSCILLOSCOPE MARCONI

 Fiteed with high-resolution 17 inch cube Permits the most detailed investigation of voltage waveforms in the frequency range of $15 \mathrm{c} / \mathrm{s}$. to $20 \mathrm{kc} / \mathrm{s}$. Sensitivity $4 \mathrm{mv} / \mathrm{cm}$. New and unused, available for collection only. Detalled specification supplied upon requese.¿ $£ 100$.
TAPE RECORDERS
NOTE
WE HAVE EXTENSIVE STOCKS OF ALMOST EVERY TYPE OF RECORDER AT PRE－BUDGET PRICES SEND DETAILS OF YOUR REQUIREMENTS NOW！

## RECORD PLAYERS


sinale players
Auto start and stop．Complete with pick－up arma Garrard spas mk．I ．．．．．．．．．．£10／19／6 Garrard ${ }^{\text {Pr25 Mk．II Heavy }} \mathbf{t / t a b l e}$ £11／19／6 GARRARD $\operatorname{sRP1} 2$ GARRARD sRPIo mains model ．．．．24／19／6 Garrard srplo batt．model ．．．．24／19／6

## GARRARD AUTOCHANGERS


ALAB．A Monoistere
Lab．A．on plinth
${ }^{A} 120000^{\circ}$
TRANSCRIPTION MOTORS GARRARD Gul ion ion
GARRARD bASES
CLEARVIEW PERSPEX $\underset{\text { WB1 }}{\text { COTERS }}$
WB1 … 23／1710 WB2
Potsge on all above 51 －extra．


287／19／0
ع251010
25／5／0
25／7／11

## CONSTRUCTORS BARGAINS

THE SKYROVER DE LUXE


7 transistor plus 2 diode superbet， 6 waveband portable receiver covering the full Medium wavebind and short Waveband
$31-94 \mathrm{M}$ and ato 4 separate owitched band spread rangee，13M 16M，19M，3nd 25 M ，with Band Spread Tuning for accurate
Station Selection．The coll pack and tuning heart la factory Station Selection．The coll pack and tuning heart la factory
assembled，wlred and tested．Superhet $470 \mathrm{Kc} / \mathrm{s}$ ．Mullard Tran－ sistors．Use日 4 U2 batteries．Sin．Ceramic Magnet P．M．Speaker，
500 MW Output．Teleacopic Aerial and Ferrite Rod Aerial， Tone Circuith in wood cabinet，gize $11 \frac{1}{2} \times 6+\times 3 \mathrm{in}$ ．covered with wanhable material，plastic trim and handle．Car aerial socket Cated．
con now
be buill for
$\left.28.19 .6 \quad \begin{array}{l}\text { Post } \\ 5 / \cdot \text { extra }\end{array}\right)$
E．P．Terms
\＆10／0／3．
Total H．P．P
Data 2／6．Refunded if you purchase parcel．Four U2 bstts，3／4 extra．All components avall，separately． A simple additional circuit provides coverage of the $1100 / 300 \mathrm{M}$ ．Long Waveband．All necessary com－ palready conntructed．

## LASKY＇S PRECISION PANEL METERS <br> Precition mado in Japan by HiOKI．Each meter bozed and tully guaran－

 P．on each．Special quotation for quantities．| Type MK－38A | Type Kr－52 | Type KR－52 |  | $\cdots=$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 lin ． Bq ． | $3 \times 21 \mathrm{in}$ ． | $\begin{aligned} & 3: \times 31 \mathrm{n}, \\ & 1 \mathrm{mADC} \cdot 38 /- \end{aligned}$ |  |  |
| 1 mA DC ．． $29 / 6$ | $1 \mathrm{~mA} \mathrm{DC} \mathrm{}. \mathrm{}. \mathrm{47/6}$ |  | Type MK－45A | Type MX 65A |
| 5ma DC ．．22／6 | $5 \mathrm{~mA} \mathrm{DC} \mathrm{}. \mathrm{}. \mathrm{32/6}$ | $5 \mathrm{~mA} \mathrm{DC.}. \mathrm{35/-}$ | 2 in ．sq． | 3 in .8 gq ． |
| 300 V DC．． $22 / 6$ | 300 V DC．． $32 / 6$ | 300 V DC．．35／－ | $1 \mathrm{~mA} \mathrm{DC} . .25 / 0$ | 1 mA DC |
| $50 \mu \mathrm{~A}$ ．．．36／－ | $\begin{aligned} & 50 \mu \mathrm{~A} \\ & 100 \mu \mathrm{~A}\end{aligned} . . . .587 / 6$ |  | $\mathrm{SmA} \mathrm{DC}_{300 \mathrm{D}} \mathrm{DC}. . .25 \%$ | 3 mAA DC $\ldots 35$ |
| $500 \mu \mathrm{~A}$ ．．． $27 / 6$ |  | $500 \mu \mathrm{~A}$ ．．． $42 / 6$ | $500 \mu \mathrm{~A}$ ．．．． $25 \%$ | $500 \mu \mathrm{~A}$ |
| $1 \mathrm{~mA} 8 \mathrm{mtr} 29 / 6$ | $1 \mathrm{~mA} 8 \mathrm{mtr} 39 / 6$ | 1 mA B mtr．39／6 | $1 \mathrm{mAs} \mathrm{mtr} .35 /-$ | 1 mA \＆mir． 37 |

## TRANSISTOR FM TUNER CHASSIS

Fully tunable－range 88 to $108 \mathrm{Mc} / \mathrm{s}$ ．Completely wired

 LASKY＇S PRICE £6．10．0 Post 51－extra．

## MULTIPLEX ADAPTOR

Now you can enjoy，stereo sound with the FM Tuner above．Brief spec．；MPX input sensitiv ity 100 m Output 150 mV ．Seli powered by a 9 v ．battery． 4 tranaistor and 6 diode circuit．size $51 \mathrm{in} \times 2 \mathrm{in}, \times 8$ in LASKY＇S PRICE 99／6 Post $5 / 6$.
package priee if bouaht together \＆11／11／－，Post $5 /$ ．

## DON＇T MISS THIS！

HAVE YOU GOT YOUR LASKY＇S CATALOGUE


 are alan suitable for higher output cryatal cartridgen）；output 1 mp． $8 \cdot 16 \Omega$ ：bass，treble and balance controls
with switching for Mono or stereo and tape monitor；outlet aocket for tape recorder．For $115 / 250$ w．A．C．

Lasky＇s Bargain Price £16．19．6．Post \＆Pack，10t－

## SPECIAL INTEREST ITEMS！

## PHOTO ELECTRIC RELAY

## model q4001

A new and inexpenaive Photo Relay System－compris ing＂exciter＂lamp and relay unit．Any interception of will operate light，alarm bell or buzzer，electronic counter，heavy duty relay or electric motor．There are in the horme，office，shop，factory，etc．，f．e．people or object countling，alarm systems，door opening for garge
or shop．Operates on 240 V ．A．C．；exclter lamp 12 V ． 20W．effective up to 15 tt ．in daylight or soft．at night or
in low light．Very simple to install．In strong metal in low light．Very simple to install．In strong metal
casea size（each） $6 \mathrm{in} . \times 4 \mathrm{tin}, \times 3 \mathrm{sin}$ ．Complete with
mounting brackets wire and full instructions．


Lasky＇s Price Only £7．19．6．Pout bl－

Branches

| 207 EDGWARE ROAD，LONDON，W． 2 Tel．：01－723 <br> 33 TOTIENHAM CI．RD．．LONDON．W． 1 Tel．：01－636 <br> Open all day． $9 \mathrm{am}-6 \mathrm{pm}$ Monday 10 Saturdin |
| :---: |
|  |  |
|  |  |
|  |  | 152／3 FLEET STREET，LONDON，E．C． 4

Tel．：FLEet St． 2833

High Fidelity Audio Centres
42 TOTENHAM CT．RD．，LONDON，W． 1 Tel．：01－580 2573 Open all day Thursday，early closing 1 pm ．Salurday

118 EDGWARE ROAD，LONDON，W． $2 \quad$ Tel．： $01-7239789$ Open all day Salurray．early closing $1 \mathrm{pm}$. ．Thursday
 closed-circuit system made by Britain's largest manufacturer of electronic equipment. The basic system comprises two units-camera and control monitor. The units are fully transistorised with a wide use of printed circuitry making for compact size, simple installation and high reliability (both in and out of doors). High sensitivity and 625 line resolution ensure excellent picture quality under normal lighting conditions. Closed circuit television provides the penetrating, all-seeing eye that scans, inspects, controls and directs-that is today accepted as invaluable in almost every aspect of industry, commerce, transport and education. A wide range of accessories are available which further increase the system's

## ALMOST LIMITLESS APPLICATIONS



SYSTEM SPECIFICATION Scanning standards: 625 line, 50 fields, $2: 1$ interlace. Horizontal resolution: 600 lines. Bandwidth $8 \mathrm{Mc} / \mathrm{s}$ over complete system. Linearity: $\pm 2 \%$ positional error. Geometry: $\pm 2 \%$ of rectangle averaged over picture. Auto Sensitivity: over the range $60: 1$ in light value-normal picture obtained with illumination of only 2 ft . candles ( $50 \%$ subject reflectance) at lens aperture of $\mathrm{f} / 2$. Spectral Response: Panchromatic. Ambient Temperature: Max. temperature for all units -30 C . to +55 C . Power requirements $90 / 130 \mathrm{v}$. and $200 / 240 \mathrm{v}$. A.C., $50-60 \mathrm{c} / \mathrm{s}$. Consumption: 45 watts including camera. Camera Lenses: Standard 16 mm . cine lenses with "C" mounts are normally used. Accessories: See under Camera and Control Manitor.


## CAMERA

Totally enclosed dustproof unit only $3 \frac{7}{2} \times 4 \times 10 \frac{1}{2}$ in., weighing 4 lb . Finished in twotone bluelgrey. Vidicon tube. Automatic sensitivity control enables the camera to maintain full picture quality over a brightness range of 60:1. 625 line scanning All supplies are obtained from the control monitor (consumption 5 watts).

## CAMERA ACCESSORIES

Lenses: Superb quality 25 mm . ( 1 in. ) f/I.8, "C" mount lenses made especially for this system are available, also a limited quantity of motorised zoom lenses.
Remotely Controlled Weatherproof Pan and Tilt Heads: Pan $340^{\circ}$ at $6^{\circ}$ per sec., Tilt $\pm 50^{\circ}$ at $4^{\circ}$ per sec. $230 / 250 \mathrm{r} ., 50 \mathrm{c} / \mathrm{s}$ operated.
Remotely Controlled Pan and Tilt for Indoor Use Only: Details as above.
Weatherproof Camera Housing: Windscreen Wiper, 75 w . heater, internal circulation fan, mounting bracket for camera housing (the latter items are extras for the Weatherproof Housing).

## CONTROL MONITOR

14 in . screen, overall size $16 \times 14 \times 18 \mathrm{in}$. (excluding Remote Control Unit on which Monitor is shown), welght 30 lb . Panel controls provided: Mains on/off, Contrast, Brightness, Remote Focus. Preset controls (under side panels) include: Frequency lock. Monitor height. Frame linearity, Camera height, Camera width, Auto sensitivity, Camera linearity, Cable correction Video gain, Beam current, $Y$ shift, Electroseatic focusing for camera and monitor. Additional input: Video - 100 mV peak white positive into 50 ohms; Synch. -2 v . peak/peak negative. Output: 100 mV peak white positive; 2 v . peak/peak negative* Ambient temperature range $-30^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$.

## ACCESSORIES

Remote Control SwitchIng Unit (shown under Control Monitor): Controls auxiliary functions at the camera. i.e. pan/tilt zoom, windscreen wiper, etc. Size $18 \times 14 \times 3$ in., weight 8 lb .
Distribution Unit: Used for selecting the required picture from those available on the control monitors and distributing it to the appropriate viewing monitor. Size $19 \frac{1}{2} \times 13 \frac{1}{2} \times 8 \frac{3}{3} \mathrm{in}$., weight 30 lb .
Viewing Monitors: These are conventional domestic type receivers- 19 in . and 23 in . models available.
\{owing to the complexity and limited quantity of units \{available this equipment is a vailable to CALLERS ONLY. \}


LOOK - TRANSISTORS $1 /-$ EACH SILICON $\star$ PLANAR $\star$ N.P.N. $\star$ P.N.P.

| 2 N 299 | 2 2 131 | 2N696 | 2N2906 |
| :---: | :---: | :---: | :---: |
| 2R501 | 28512 | 2N697 | 2N743 |
| 2N2411 | 28102 | 2N1507 | 25731 |
| 2N726 | 28103 | 2N1613 | 28732 |
| 2N706 | 28104 | 2N1711 | 28733 |
| 2N706A | 2N2220 | 2N1893 | BFY10 |
| 2N3011 | 2N2483 | 2N2484 | 2N2194 |

ALL TESTED AND OUARANTEED TRANGIBTORSNMARKED. Manulacturers over•runs for the new PRF PAK range.

BRAND NEW PRE-PAKS FOR BETTER VALUE

Selection from our lists


FEW LEFT 70 AMP/400 P.I.V. SCRs, at

SEMICONDUCTORC DISTRIBUTED Bi•PRE-PAK LTD. DEPT. B
ECLUSIVEIY BY 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX EXCLUSIVELY By PHONE: SOUTHEND (0S02) 4634

EXCITING NEW PAKS FOR AMATEURS, PROFESSIONALS, FACTORIES, ORGAN BUILDERS AND THOSE PEOPLE THAT JUST USE LARGE QUANTITIES OF TRANSISTORS.

XA PAK
Germanium PNP type tranalistors.
equivalents to a large part of the OC
range, te. 44, 45, 71, 72,81 , etc. range, $1 . e$. $4,46,0$
PRICE 5 per 1000
XB PAE
GAlicon TO-18 CAN type transistors NPN/PNP mixed lots. with equivalents to OC200-1. 2N706a, BSY95a, and BSY27.29. PRICE
PRICE
\&10
P10
per 1000

20 PAE
Silicon diodes miniature glags types nished black with polarity marked
equivalents to OA200, OA202, BAY 31 39, DK10, etc. PRICE \& 5 1,000

All the above untested packs have an avarage of $75 \%$ or more good semiconductors. Free packs
Orders must not be less than the minlmum amounts quoted per pack. $\mathbb{P} / \mathbf{P} 2 / 6$ Per Pack (U.K.)

 Packs of your own choice a the value of 10/- with for nougtts and crosfes machine, binary counters, thmers, etc. L1 $5 \mathrm{gns}, \mathrm{L} 210 \mathrm{gns}$., No need to purchase both kits, you can
gtart with L 2 which incorporates Lil. DETALL FREE.

We now give a written guarantee with all our

MAKE A REV. COUNTER FOR YOUR CAR. TAE "TACHO BLOCK." Thir encapsulated block will turn any 0.1 mA meter Into a pertectly linear and accurate
rev counter for any car. State 4 or 6 -cyllinder

NO CONNECTION WITH ANY OTHER FIRM. MINIMUM ORDER 10/-, CAsH WITH ORDFR PLEAsE. Add $1 /$ - post and packing per order. OVEREEAS ADD EXTRA FOP AIRMAIL.

## NO EXCUSES! NO DELAYS! FROM STOCK! UARIABLE VOLTAGE TRAHSFORMERS





## 5 Amp. AC/DC VARIABLE VOLTAGE

 OUTPUT UNIT Ourpur $0-260$ r. A.C. Output $0-240$ v. D.C.
Fitted Fitted large seale am-
meter and volitmeter. Neon indicator, fully fused. 5trang attrace tive metal case 15 in. $x$ 8zin. $\times$ Gin. Weight 24
 smooth stepless volt-
age variation over range.
 260 vi V. A.C. Output continuously VARIABLE from 0 to metal case, complo and cme, and ammeter. Size $17 \mathrm{in} . \times 12 \mathrm{in} . \times 7 \mathrm{in}$. Weight 36 lb .

## OPEN TYPES

Desime Mounting. Panel Input 230 r. A.C. $50 / 60$ Output variable.
 1
$\begin{aligned} & 1 \\ & \text { amp } \\ & 1 \\ & \text { amp. }\end{aligned}$. 1 amp.
$2 \frac{1}{2} \mathrm{amp}$

| PORTABLE <br> Input 230 v. A.C. Out- <br> A.C. at 1.5 amp. Fitted in <br> beautifully finished stee meter, pilot lamp, fuse $\$ 9 / 5 /=\quad$ P. \& C. $10 / \%$. Also 2.5 amp. as above $\{11 / 7 / 6$. P. \& C. $10 /$. | CONSTANT VOLTAGE TRAHSFORMER |
| :---: | :---: |

## L.T. TRANSFORMERS

All primaries $220-240$ volt

$$
\begin{aligned}
& \text { Type No. } 5 \mathrm{ec} \text {. Taps } \\
& \text { Ty0, } 32,34,36 \mathrm{v} \text { at } 5 \text { an }
\end{aligned}
$$

$$
\begin{array}{lll}
\frac{2}{2} & 30,50 \mathrm{v} \text {. at } 5 \mathrm{amps} \\
3 & 10.17 .18 \mathrm{v} \text {. at } 10 \mathrm{amo}
\end{array}
$$

$$
\begin{aligned}
& 10,17,18 \mathrm{v} \cdot \text { at } 10 \text { amp } \\
& 4 \\
& 4,12 \mathrm{v} \text {, } 20 \text { amps. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 612 \mathrm{v}, \text { at } 20 \mathrm{amps} . \\
& 5 \\
& 17.18,20 \mathrm{v} \text { at } 20 \mathrm{amps} . \\
& 66,12,20 \mathrm{v} . \text { at } 20 \mathrm{amps} .
\end{aligned}
$$

$\qquad$
INSULATION TESTERS (NEW) Test to I.E.E. 5pec. Rugged metal construction, suitable for bench or field work, constan
speed clutch. 5ize L. 8in., W speed clutch. 5ize
4in., H. 6 in.
Weight
61b 500 volts, 500 megohms. Price 500 volts, 500 megohms. Price
622 carriage paid. 1,000 volts,
1,000 megohms, $£ 28$ carriage

36 volt 30 amp . A.C. or D.C. Variable L.T. Supply Unit INPUT 220/240 v. A.C. OUTPUT CONTINUOUSLY VARIABLE 0-36
Fully isolated, fitted in robust metal case with Voltmeter, Ammeter, Panel Indicator and chrome
handles. Input and Output fully handles. Input and Output fully Industrial use. $\$ 55$ plus $40 / \cdot p$. \& $c$. Industrial use. $£ 55$ plus $40 /-\mathrm{p}$. \& c.
Similar in appearance to above Similar in

## SERVICE TRADING CO

## LIGHT SENSITIVE SWITCHES

 Kit and pares including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 volt oper-ations. Price $25 \%$ plus $2 / 6$ P \& P. ations, Price $25 /-$, plus $2 / 6 \mathrm{P}$, \& P
ORP 12 and Circuit $10 /$ - post paid

220/240 A.C. MAINS MODEL
incorporates mains transformet rectifier and special relay with $3 \times 5$ a mp. ma
circuit $47 / 6$, plus $2 / 6$ P. \& $P$

PHOTO EIECTRONIC COUNTER Can be set for counts of up to 500 per minute. $210-250$ v cell, high speed non-resettable counter, transformer relay, etc., together with clear circuit diagram, $\Theta 3 / 2 / 6_{\text {, }}$ plus $3 / 6$ P. \& P. With resettable counter, $44 / 2 / 6$, P. \& P. plus
$3 / 6$.
LIGHT SOURCE AND PHOTO CELL MOUNTING
Precisionengineered light souree
with adjustable lens assembly and
ventilated lamp housing to take

MBC bulb. Separate photo cell mounting assembly for ORP. 12 or slmilar cell with optic window. Both units | are single hole fixing. Price per pair $£ 2 / 15 / 0$ plus $3 / 6$ |
| :--- | P. \& P.

## UNIVERSAL DEMONSTRATION TRANSFORMERS



A complete composite apparatus,
comprising a robustcomprising a robustand electro-magnet and electro-magnet

with removable coils and pole pieces, coil tapped for 230 v., | 220 | v, | 110 v. 115 v. |
| :--- | :--- | :--- |
| 6, | 12, | 36 , | 10 v . A.C. These colls are also used for D.C. experiments. Complete with all accessories as shown

4 19 plus $15 /-$ carr. Leaflet on request.

## A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$ ) 15 amp . concacts. $230 / 240$ y. A.C. operation. Brand new. 22/6 plus 1/-P. \& P.

230/250 v. A.C. SOLENOID
Heavy duty type. Approx. 31b. pul
12/24v. D.C. SOLENOID
Approx. 8 oz, push. $8 / 6$ plus $1 / 6$ P. \& P.


SLIDER RESISTANCES
$200 \mathrm{ohm} 1.25 \mathrm{amp} .37 / 6$, P. \& P. 3/6.
5 ohm $10 \mathrm{amp} .37 / 6$. P. \& P. 3/6
RESETTABLE HIGH SPEED COUNTERS 3 figure, $0 / 999$ 24.v. D.C. operation (illus- -6 trated). Similar, but may be pre-set to Either type 32/6, P. \& P. $2 / 6$.
4 figure, 1,000 ohm coil, $36-48$ v. D.C. operation, $\mathbf{6} 3 / 10 /$. P. \& P. I/6.

-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         - 

LATEST HIGH.SPEED MAGNETIC
4 figure, 10 impulses per second. Type 100A, 500 ohm coil. Type $100 \mathrm{~B}, 2,300 \mathrm{ohm}$ coil. Either $15 / \mathrm{e}$ each, plus $1 / 6$ P. \& P.

## SUPER POWER ALLOY

MAGNET
These fantastic ex WD magnets weighing only 41 lbs . Will life well
over 100 lbs . Fitted with swivelled over 100 lbs . Fitted with swivelled
handle and keeper. Size 4 in handle and keeper. Size 4 in ,
$\times 3 \frac{\mathrm{in}}{\mathrm{in}} . \times$ la in. Packed in original makers cases of two. Price 30/-per pair, plus $7 / 6$ P. \& $P$.

TRANSISTORISED MORSE OSCILLATOR. Fitted TRANSISTORISED MORSE OSCILLATOR. Fitted
$2 \frac{1}{2}$ in. Moving Coil Speaker. Uses type PP3 or equiv. 2 F . battery. Complete with latest design Morse key. -2, plus

34R silicon


## SOLAR CELL

$4 \times .5$ volt unit series con-
nected, output up to 2 v . at 20 mA . in sunlight, 30 times the efficiency of Earth Satellites, 39/6. P. \& P. $1 / 6 \mathrm{~d}$.

> "SOLAR CELL AND PHOTO.CELL EXPERIMENTERS" GUIDE"

Teaches the princlples of light sensitive devices and
their application. $26 \%$ post paid.

GENUINE NEW MULLARD GAM SILICON DIODES. Not Rejects or Seconds.

| BYZ13 200 PIV... | $7 /-$ |
| :--- | :--- |
| BYZ11 600 PIV | BYZ12 400 PIV |
| 日/ | BYZ10 800 PIV | NICKEL CADMIUM BATTERY Sintered Cadmium Type 7 7AH Siz Sintered Cadmium Type 1.2 v. 7AH. Size: height六in, width 2 inin. $X$ Thin. Weight: approx. 13 ozs Ex-R.A.F. Tested 12/6. P. A P. 2/6.

## 100 WATT POWER RHEOSTATS

(NEW) Ceramic construction, windEnamel, heavy duty brush assembly designed for continuous duty. THE FOLLOWING II VALUES I ohm l0a, 5 ohm 4.7a., 10 ohm 3a., 25 ohm 2a., 50 ohm l.4a., 100 ohm la. 250 ohm 7a., 500 ohm 45a., 1,000 ohm 280 mA ., 1,500 ohm 230 mA ., 2,500 ohm. 2a. Diameter 3tin. Shaft length tin. dia. $\frac{18}{18} \mathrm{in}, 27 / 6$. P. \& P. 1/6.
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 /$ 25 WATT ${ }^{21}$ O/ P. \& P. I/6. ohm, 14/6, P. \& P. I/6.

VENNER ELECTRIC TIME
$200-250$ v. A.C. 20 amp. contacts twice on, twice off, at any manually pre-set time. Spring reserve (in case of power Or complete in weather-proof metal case (illustrated). $£ 3 / 19 / 6$, Plus $4 / 6$ P. \& P. Can be supplied with solar dial. on at dusk-off as dawn. Prices as above.
RADIO ALTIMETER
This precision Instrument,
buile to highest Ministry
built to highest Ministry
specification, is based on
24 v. D.C. LOW INERTIA
(Integrating) Motor. The

(Integrating) Motor. The ${ }^{2}$, It 100 Motor, fited with gold brushes and drawing only 800
microamp at 24 v . D.C. drives two precision pots with microamp at 24 v . D.C. drives two precision pots with
platinum wipers through close colerance gear-trains, including miniature slipping clutch, combined with two sub-miniature pots for calibrasing the electrical bridge circuit. The 3in. calibrated dial, with a number aperture indicating one rev. per revolution of pointer with maximum of 5 revs., gives an effective seale length of approx. 30 in . Offered at fraction of Manulacturer's price: $32 / 6$, plus $6 /-$ P, \& P

## SANWA <br> mULTI RANGE METERS

Acknowledged throughout the world as the ultimate in test meters. TESTER, 20,000 O.P.V. MIRROR SCALED WITH OVERLOAD PRO. TECTION. Ranges: D.C. volts: 100 mV ., 2.5 v., 10 ४, 50 v., 250 ४, 1000 v. volts. $0.5 \mathrm{~mA}, 5 \mathrm{~mA} 50 \mathrm{~mA}$. 50 mA . Complete with batteries . Size: $5 t \times 3 \frac{1}{2} \times$ itin Complete with batteries $\mathbf{~} 7.5 .0 \quad$ Post paid.
and test prods. Three other models available from stock. Descriptive leaflet on request.

220/240v, A.G, COOLING UNIT 2,300 r.p.m. 6in. blade size. Smooth powerful motor. All metal construction. Continuously rated, Individually price, $2 / 15 /-$. P. \& P. $7 / 6$.


THYRISTOR 400 piv, $5 \mathrm{amp.} 14 /$,6 post paid. THYRISTOR 400 piv, 8 amp., $28 / 6$ pose paid

- HRISR 400 piv, 8 amp., $20 / 6$
volemerer 0-5 and 0-100 D.C. FSD 1 mA . In carrying case wleh cests prods and leads. $32 / 6$. P. \& P. 3/6.


AUTO TRANSFORMERS. Step up, seep down $110-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 watt cype, $\frac{0}{}$ each. P. a P. 4/6. 500 watt type, $4 / 2 / 6$ each. P. \& P. 6/6, 1,000 watt type, $6 / 5 /=$ each. P. \& P. $7 / 6$.

## PREGISION INTERVAL TIMER

 From 0-30 seconds (repetitive). Jewelled Operates 230 v. A.C. 5 amp. c/o micro switch. Brand New 17/6 plus 2/6 P. \& P.
## 20 amp . LEVER MICRO SWITCH Brand new lever operated micro switch.

 20 amp. A.C. c/o contacts. Price 450K 45 TURN PRECISION WIREWOUND CONTROL Fly leads. $1 t \times f \times 1 \mathrm{in}$, made by M.E.C. Ltd. $10 /$-post pai LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp ., $11 /$, plus $2 / 6 \mathrm{P}$.
30 volt 5 amp ., $16 /-$, plus $2 / 6 \mathrm{P}$.
MOVING COIL HEADPMONE AND MIKE Soft rubber ear-pieces with M/C Mike fitted 5-wa plug as on No. 19 see. New, in maker's packing. 16/6, plus $3 / 6 \mathrm{C}$. \& $P$.
A.C. AMMETERS $0-1,0-5,0-10,0-15,0-20$ amp. F.R. $2 \frac{1}{2}$. dia. All at $21 /-$ each.

Atin. Flush round ans $0-25$ v., $0-50$ v44 0.150 v. M.I $0-300$ v. A.C. Rect. M-Coil $2 \frac{t}{2} \ln$. ................... 29/| $0-300$ |  |
| :--- | :--- |
| $v$ | A.C. Rect. M.Coil $\frac{21}{3}$ in. Type W23........ $29 /-$ | Latest type VARLEY MINIATURE

RELAY in Transparent Case. 4 clo RELA Y in Transparent Case. $4 \mathrm{c} / \mathrm{o}$
700 ohm , $15 / \mathrm{l}$. Base $4 /-.2 \mathrm{c} / \mathrm{o} 700$
 inc. base. VARLEY TYPE VP4 (similar to illus.), 5,800 ohm $4 \mathrm{c} / \mathrm{o}$. Similar to above, Mid, by GRUNER
$4 \mathrm{c} / \mathrm{o}, 2,400 \mathrm{ohm}$ coil. New, $10 / \mathrm{m}$ es/o, 2,400
less base.

230v. A.C. RELAY 2 c/o one make by Magnetic Devices

## UNISELECTOR SWITCHES

 NEW 4 BANK 25 WAY
## 25 ohm coil, 24 V. D.C. C $/ 17 / 6$, plus $2 / 6$. P. \& P.

8-BANK 25-WAY FULL WIPER
24 v. D.C. operation, C6/10/-, Plus 4/-P. \& P.
UNISELECTOR SWITCHES USED 75 ohm coil, 24 v. D.C., 6 bank 25 position, 5 non-
bridging, 1 bridging wiper. 6 bank arranged to wive 3
ment, $35 /$-each. P. \& P, bank, 50 positions ex-equipment, 35/-each. P. \& P. 2/6.

## MINIATURE UNISELECTOR

 SWITCH3 banks of 11 positions, plus $24-36 \mathrm{v}$. D.C. operation. Carefully removed from equipment and
tested. $22 / 6$, plus $2 / 6 \mathrm{P}$. \& P .


## INSULATED TERMINALS

 Available in black, red, white, yellow, blue and green. New$7 /=$ per doz, P, \& P, $2!=$.

## CONDENSERS

New at a fraction of makers price. \& \& P. $1 / 6$ | $2,500 \mathrm{mid}$. | $100 \mathrm{v} .12 / 6 \mathrm{P} . \& \mathrm{P} .1 / 6$. |
| :--- | :--- | :--- |
| $4,000 \mathrm{mfd}$. | $25 \mathrm{v} .10 /-\mathrm{P} . \&$ |



SOLAR OIL-FILLED CONDENSER
240 mid . for 230 V.A.C. or 600 volt D.C. . Overall size $141 \mathrm{in} \times 9 \mathrm{in}$. 5 t in. plus feet Weight 46 b. Guaranteed periect. Manufac
230 VOLT A.C. GEARED MOTORS Type DI5G 5 r.p.m. I.71b. inch, C2/9/6, P. A. P. 3 Type B16G 80 r.p.m. 26/b. inch, $6 / 12 / \mathrm{G}$. P. P. P. P. 3/-

## GALVANOMETER

300-0-300 microamp. Calibrated
30-0-30. Mounted in sloping front case
C2/10/. P. \& P. 3/6. D.C. Volemeter $0.3 V$ and $0.15 . \vee \in 2$ plus $3 / 6$ P. \& $P$ $0-6$ amp and 0.3 amp. 22 , $3 / 6$ P. \& P. D.C. Ammeter ching instruments $\& 6, P$. \& $P$. $6 / 6$.

## DRY REED SWITCHES

New special offer of Dry Reed Switches, $\frac{1}{2}$ amp. contact, it $\times$ Itin., 4 for $10 /$ o, post paid. NEW SOUNDPOWER OPERA. TEDEX-ADMIRALTY HEAD AND BREAST SETS
Two such sets connected up will provide perfect intercom. No batteries required
Price $17 / 6$ each, plus $P$. \& ${ }^{2}$ P. $4 / 6$, or Price
$32 / 6$ per pair. P.

## S.T.C. SILICON POWER RECTIFIERS

 RS300 Series. All types 1.5 amp. wire ended. $\begin{array}{llllll}\text { RS310, } & 100 & \text { V. P.I.V. } \\ \text { RS330, } & 300 & \text { v. P.I.V. } & \text { RS350, } & 500 & \text { v. P.I.V. } \\ \text { RS360, } & 600 & \text { v. P.I.v. }\end{array}$ $\begin{array}{ll}\text { RS330, } \\ \text { RS340, } 400 \text { V. P.I.V. } 7 / \% & \text { RS380, } 800 \text { v. P.I.V. } 10 /- \\ 4\end{array}$ Brand New Stock. Post paid.ORGAN BULLDERS; N.P.N. Sil. Planar Transistors. All Tested, $1 / 6$ each, or $£ 5.0 .0$ TRANSISTOR BARGAIN SAIE; NEW STOCX AT UNBEATABLE PRICES:
OC44, OC45, OC81D now only $\quad 1 / 6$ each! 86.0 per 100 OC71, OC72 equivalent $\quad 1 /$ each! $£ 3.0 .0$ per 100 ASY22 Switching Transistors $2 / 6$ each! 810.0 .0 per 100 $2 N 753$ N.P.N. Silicon Planar, 300 nW . $250 \mathrm{Mc} / \mathrm{s}$. High speed switching BSY28 N.P.N. Silicon Planar, Epitaxial, 300 mW . $300 \mathrm{Mc} / \mathrm{s}$
BSY 65 N.P.N. Silicon Planar, Epitaxial, $800 \mathrm{~mW} .100 \mathrm{Mc} / \mathrm{s}$ $2 / 6$ each! AFZ12 P.N.P. Germanium Alloy Diff low noise $\backslash V . H . F$ amplifier ... $2 / 6$ each! Complete sets of transistors for radio
2G344A/2G345A/2G345B/2G371A/2G378A + diode ... ... 10/-each
GET120, 2 watts. Heat sink included .. .. .. .. .. 2/6 each! Transistor Driver Transformers (suitable for our kits above) ${ }^{\circ} \quad . \quad 2 / 6$ each! OC28 Output Transformers (N. ... ... $\quad$ each! BYZ13, 6 amp rectifiers SPECLAL REDUCED PRICO! ONLY $2 / 6$ each; 24/doz.; 87.10 .0 per 100 ; $£ 50.0 .0$ per 1,000. Light sensitivity transformers similar to
OCP71
21-each! Silicon diodes. Make excellent detectors. Also suitable for keying electronic organs, 1/- each; 20 for $10 /-$.
BY100 type rectifiers. SPECIAL REDUCED PRICE! ONLY $2 / 6$ each; 24/- doz.; £7.10.0 per 100 ; $\& 50.0 .0$ per 1,000 .
ELECTROLYTIC CONDENSER FANTASTIC SELECTION


Acos GP67/29 Mono. 15/-; Acos GP91/35C Stereo compatible, 20/-; Acos ap94/1 stereo, $25 /$
All with needies.
TRANSISTORISED SIGNAL INJECTOR KIT, 10/-. SIGNAL TRACER EIT, 10/-
VEROBOARD, All sizes in stock.


SPECLAL OFFER:
Cutter and 8 Boards 21 in . $\times 1 \ln$ :, 8/8. Cutter only, 7/6. Pin Insert Tool, $9 / 8$. Terminal Pins. Packet or 36, $8 / 6$.

BARGAIN OFFER:
Few only Multimeters, $1,000 \mathrm{G}$ per volt, 45/-; $20,000 \mathrm{G}$ per volt. $80 /$ -
Orders by post to:-

## G. F. MLLWARD, 17 PEEL CLOSE, DRAYTON BASSET, Staffs.

Please include suitable amount to cover postage. Stamped addressed envelope must be included with any enquiries. Regret unable to accept orders below $10 /-$ by post. For customers in the Birmingham area goods may be obtained from Rock Exchanges
231 Alum Rock Road, Birmingham, 8. (All POST orders to Drayton.)

## SURPLUS SEMICONDUCTORS

Manufacturers Over-Runs and Surplus Devices at a Fraction of Manufacturing Cost. We are QUANTITY DISPOSAL AGENTS for the Manufacturer. and offer the Largest and Cheapest Range of Transistors, Diodes, etc. or use in Industry, Teaching, and Amateur Electronict.
HIGH QUALITY SILICON PLANAR DIODES. SUB-MINIATURE DO-7 Glass Type, suitable replacements for OA200, OA202, BAY38, I $\$ 130$, I $\$ 940.200,000$ to clear at $£ 4$ per 1,000 pieces. GUARANTEED $80 \%$ GOOD.
SUPERB QUALITY TESTED SILICON PLANAR DIODES (Surplus Govt project). $250 \mathrm{~mA} 150-200$ p.i.v. DO-7 sub-min glass, finished black eqvt. OA202 IS923, MS $4 \mathrm{H}, \mathrm{H} / 10 /-52.75,000$ only available at:-
100 pieces, $£ 2 / 15$. 500 pieces, $£ 9 ; 1,000$ pieces, $£ 15$.
MICRO-MINIATURE SILICONFAST-SWITCHING DIODES. Type IN914. QUALITY TESTED. 75 p.i.v. $75 \mathrm{~mA} .100,000$ available. 100 pieces, $\mathbf{〔 2}$ : 500 pieces, $£ 7 / 10 /-1,000$ pieces, $£ 12 / 10 /-$.
GERM. GOLD BONDED DIODES. High quality subminiatures D0-7 Glass $80 \%$ good devices guaranteed. Substitutes for OA5, OA47, LG80H, CG $90 H$ $80 \%$ good devices guaranteed. Subs.
150,000 to clear at $£ 4$ per 1,000 pieces.
VAST MIXED LOT OF SUBMINIATURE GLASS DIODES. COMPRISING OF SILICON GERM. POINT CONTACT AND GOLD BONDED TYPES PLUS SOME ZENERS. 500,000 available at
pieces, $\mathbf{\epsilon 1 3 / 1 0 / - ; ~} 10,000$ pieces, $€ 23$.
pieces, $13 / 10 /-; 10,000$ pieces, 623 . SISTORS. Type similar to TIS43 and BEN3000 and replacement for 2N2646 Full date available. LOWEST PRICE AVAILABLE ANYWHERE. 100 off $4 /$ each ... C20; 500 off $3 / 6$ each $=\mathbf{6 8 7} / 10 /-$; 1,000 off $3 /$ - each $=6150$. Sample devices $7 /$ each on request.

TEXAS SILICON ALLOY TRANSISTORS.
25302 Eqve. OC200 VcB40 Hfe $15-50$
25303 .. OC201 VcB25 Hfe 25-75
25304 OC202 VcB15 Hfe $45-120$
ALL BRÄND NEW FULLY GUARANTEED AND MARKED.
PRICE
$1-49$ off $3 / 6$ each
$1-49$ of $3 / 6$ each
$5-99$ off $3 /-$ each
100 off $2 / 6$ each
GERM ALLOY AF TRANSISTORS PNP. Manufacturers fall out, ideal OC7IOC75 OC81 type from 2G300 Series untested, approximately $80 \%$ good. 500 off, E7/10/-; 1,000 off, $\epsilon 12 / 10 /$.
MIXED LOT OF TRANSISTORS ALL GERM. MAINLY PNP. AF/RF $50 \%$ good. Further $35 \%$ good for diodes, only 50,000 left out of $2,000,000$. Ridiculous price of $\mathrm{E3}$. Per 1,000
MIXED SILICON PLANER TRANSISTORS NPN TO-18 CASE. Transistors to fill a number of requirements like 2N706, 2N708, BSY27, BSY95A, etc. 500 off, $65 ; 1,000$ off $£ 8 / 10 /=$.
Terms. CASH WITH ORDER, all goods sent by return. Please add $2 / 6$ towards post and packing. Monthly accounts for educational authoriţies, etc. on receipt of an official Order.

EXPORT ORDERS AND ENQUIRIES RECEIVE IMMEDIATE ACTION.
All correspondence, cheques, postal orders, etc., to:-
DIOTRAN SALES,
P.O. BOX 5, 63 HIGH STREET, WARE, HERTS. Tel.: WARE 3442

## A.C. SOLENOID TYPE SRM

Continuous Rating 7lb. at $1 \frac{1}{2}$ in Instantaneous up to 14 lb .


Smaller sizes available-also transformers to 8 kVA 3-phase.

KNAPPS LANE, CLAY HILL, BRISTOL 5. TELEPHONE 65-7228/9
WW-113 FOR FURTHER DETAILS

## Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up to 6 or permanent fixing, compact units, with safety neon. Over 1,000 socket All rypes of fittings and finishes. brochure from brochure from
LEXOR DIS-BOARDS LIMITED, Allesley Old Road, Coventry
Telephone 73614 or 72207
sockets from one power outlet, Portable


WW-114 FOR FURTHER DETAILS

## SOLID STATE HIGH FIDELITY AUDIO EQUIPMENT POWER AMPLIFIERS - PRE-AMPLIFIERS/CONTROL UNITS - POWER SUPPLIES - BRITISH MADE



16 PAGE BROCHURE ON REQUEST No. 21 All units sold separately.
€6.19.6 p.p. 3

- SP4-A mono-stereo version of MP3 fll.19.6 p.p. $4 / 6$
- SPB8 monofatereo (takes mag. plek-up as well). fi5. 10.0 p.p. © $/-$ - MPA12/3 12 watt amplifier. 3 to 5 outpu. $£ 4.10 .0$ p.p. $2 / 6$
 - MPA25 $26-30$ watt amplifler for 78 10 ohms speaker. €7. 10.0 p.p. $3 / 6$
- PsR2440 power supply for MPA12/3
and MPA12/15. $£ 3.12 .6$ p.p. $3 /$
- M $24 / 40$ choke version. $E 4.10 .0$ p.p. $3 / 6$
- muso power supply for mpazs

All systeme complete with grey/silver panels and matching silver knobs. Audio Equipment developed from Dinsdale Mk. II-each unit or syatem will compare favourably with other prolessional equipment selling at much higher prices. Brief
details are below:

| Complete auggested systemx |  | Price |
| :---: | :---: | :---: |
| 1 A | MP3 + MPA12/3 + MU2 4 | £15.5.0 p.p. $\mathrm{5} /$ |
| 2 A | $\mathrm{MP} 3+\mathrm{MPA12/15}+\mathrm{MU} 40$ | \&18.0.0 p.p. 5/- |
| 4 | MP3 + (2) MPA12/15 + MU40 | £21.2.6 p. p. 7/- |
| 8 | MP3 + MPA 25 + MU60 | £18.15.0 p.p. 7/- |
| 8 A | SP4-A + (2) MPA12/15 + MU40 | \$26.0.0 p.p. 8/6 |
| 10 | SP6-2+(2) MPA12/15 + MU40 | £29.5.0 p.p. 8/6 |
| 124 | SP4-A + (2) MPA25 + (2) MU60 | £35.10.0 p.p. 10\% |
| 13 | SP6-2 + (2) MPA25 + (2) MU60 | £38.17.6 p.p. 10/- |

THE FINEST VALUE IN HIGM FIDELITY-CHDDSE A SYSTEM TD SUIT YDUR NEEDS AND SAVE POUNDS

- COMPLETE RANGE OF SUITABLE PLAYER DECKS, SPEAKERS AND TUNERS IN STOCK.-ASK FOR LATEST LIST I6


## NEW I INTEGRATED 7 WATT AMPLIFIER



New design for 3 to 10 ohm apeakers. Input for mag. zeal/ceramio pu's, Tape, tuner, mic., ete. Battery operated or malns unit Full Treble/Bass controls. $\$$ transittor deulgn.
price £8.IO.0 P.P. 4/-
Laafet on request. (Mains int PS20 62/G. P.P. 3/-)
BUILD A QUALITY TAPE RECORDER WITH MARTIN RECORDAKITS

* two-track Deck Amplifer. Cabinet and speaker. Complete kits with MICROPRONE and 7to. $1,2001 \mathrm{t}$. tape, apare ApoolToday's
Value
$£ 55$.$\quad 36$ gns. p.p. $24 / 6$ $\star$ Four-track Deck. Amplifer. CabInet and speaker. Complete kits with MICROPRoNe and 7in. 1,200it. tape, spare spool. Today's

39 gns. P.P. $22 / 6$

GARRARD DECKS
all the LaTEST MODELS


COMPLETE RANGE IN STOCK
FROM $£ 6.10 .0$

SERVICES TYPE 4185 SOUND RECORDING APPARATUS (Boosey and Hawkes Model 49)
Complete wire recorders primarily designed for aircraft use but suitable for any 21 or 29 voŕ and Instruction Leaflet.
Brand New 89/6. Carriage 5/Send for Illuutrated Brochure $18 \$ 17$

TRANSISTORS -SEMICONDUCTORS COMPLETELY NEW 1988 LIST OF 1000
typea available from atock. Send for your
 $\star$ S.C.R.'s, rrom 5 FIELD EFFECTTRANBISTORS, from 9/6
 24 page illustrated Brochure as above including CIRCUITS \&DATA LISTING 2000 DEvices, 1/\% poft paid.

## NEW LIST OF

VALVES or CRYSTALS 24 PAGE BOOKLET //MARTIN FM TUNER


8
Mullard 6-Transistor desien. Tuning range 88 to 108 Mc Response $30 \mathrm{c} / \mathrm{s}$ to $15,000 \mathrm{c} / \mathrm{s}$. Automatic frequeney counter Factory built and aligned units9 Just interconnect.

Total cost El4/14/\%. P.P. FOR USE WITH ANY VALVE O TRANSISTOR AMPLIFIER
BUILD A:-
INTEGRATED CIRCUIT
F.M. TUNER

Using the R.C.A. CA3014 Module utilising 15 transistors and diodes. Total cost of al parts E5.2.6, pose 2/6. Circuit and layout diagrams $1 /$ Iree with parts)

PRECISION WIREWOUND PRECISIO PRESET CONTROL GEARED PRESET CONTROLS Gearing approximately screw to cover full track. Low noise.
Full sealed with 3 -lead out wires or tags and two hole fixing. Overall size $1 \nmid \times 木 \times$ 各in. Made by M.E.C. Led 10, 20, 50, 100, 200, 250, 500 ohm $1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}$, 100 K ohm. $10 /$ each.

SALFDRD 193A XTAL CHECKER 10/250y A.C. In new condition 10/250y A.C.
Elarriage 10 .

new models NOMBREX
transistorised Test Equipment
MODEL PRICE $\stackrel{\text { Leaflet }}{\text { No. }}$
${ }_{30}^{22}$ Power Supply ${ }_{30}^{30}$ Audio Genperator 31
32
C.F. R . Gridge
Bridor 33 Inductance Bridge ${ }_{87}$ Signal Generator

Send for dencriptive illo
All units POST PAID inclualing Battery



Ank for Brochure 5


TRANSISTOR RADIO TUNER Fully tuna ble superhet with erceellent
sensitivity and selectivity. Output up sensitivity sind selectivity. Output up
to volt peak. Complete with tront panel, etc. 8 volt operated. For use with any a mplifer or tape recorder.
 VHF FM TUNER
87/10ā Mc/a
Greared $87 / 10 \overline{0}$ Mc/s Transiator Superhet.
Geared tunlng. Terific quallity and sensitivity. For valve or tranmistor
 with dial plate. 5 Mullari Transiators.
plus 4 Diodes. Ask for Brochure 3 . TOTAL $\operatorname{cost}$
TO BULD
£6.19.6


7 Mullard Transis. tors, Printed Circuit Design with Stereo Indicator. For use with any FM. Uses pot cores to Mullard design and ger, and COMPLETE KIT
Ask for Brochure 4
PORTABLE GEIGER COUNTERS
FOR MEASUREMENT OF RADIO-ACTIVITY. Supplied complete with instructions, haversack, cables and probe. Lise price $\not \subset 70$. OUR PRICE, NEW, TESTED
 -CLEAR - COMPONENTS CATALOGUE Complete with $10 /$ worth discount vouchers FREE WITH EVERY COPY.
$\star 30$ pages of transistors and semiconductor devices, valves and crystals.
$\star 200$ pages of components and
65 pages of microphones, decks and Hi-fi equipment.

## Send today $8 / 6{ }^{\text {posid }}$

SPARE BATTERIES 15/- PAIR. POST 5/.
COMPLETELY NEW 1968 BABABE 9th EDITION 280 pages The most COMPREHENSIVE - CDNCISE $\begin{aligned} & 6500 \text { items } \\ & 1200 \text { illustrations }\end{aligned}$


WE CAN SUPPLY FROM STOCK MOST OF TEE PARTS SPECIFIED ON CLRCUITS In tiris magazine. SEND LIST FOR QUOTATION.
PEONE 01-783 1008/8
OPEN MON.-SAT, 9 s.m.- 6 p.m,

TOTAL COST TO BUILD 99 GNS VALVE FRETE PBABB
designs. Brochure 10. * A fruly portable inutrument for all enthusiasts. Fully TRANSISTORISED POLYPEONIC. Brikigh design. ON APPLICATION

##  <br> speat inimit pros rulls $79 \frac{1}{2}$ Gns.

Extremely
Antiractive cablinets in satin Teak Veneer. Anished In Satin Teak Veneer.
Tinted Perspex hinged lid with Tinted Perspex hinged
satin chrome handle.
'Plan 2' 30 Watt System \# Garrard SP25 Mk, II Turntable. * Super 30 Amplifer.

* Eq Equipment Cabinet
* Palr Stanton Mk. MIIS L/Speaker Units Special inclusive price. Fully,
wired unfte readv to
to mired units ready to "pl.


Stion heavy cast (with
table) mounted on table) mounted on
plinth with leads
and plugs and fitted and plugs and fited
Goldring Cisen hlyh
compliance ceramic mond st ylus. Assembled TA12 Stereo Amplifer in cabinet and pair
of Dorset Speaker Unita. Special inclusive price Saving \&12 on total eost. Carriage 35/-- 47 Gns. Or Dep. £7/6/-andl 9 mithly, payments $£ 5 / 3 /$-(Total $£ 53 / 13 /$ ).

## HIGH FIDELITY LOUDSPEAKER UNITS

Cabinets of latest styling satin Teak or Wallutt, acounticalify lined (and ported whero


 GLOUCESTER





R.S.C AIIT I5 WATT HIGH FIDELITY AMPLIFIER DUAL PURPOSE P.A. or HI-FI

 $\times 5 \mathrm{idin}$. Complete Kit of parts wilth comprehendve wiring diagrams 9 Gins. Carr.
and instructions.

## TA6 6-7 WATT HIGH FIDELITY AMPLIFIER Solid State Circuitry


 Frequency Response 30.20 .000 c.p... $=2$ dB Harmonic
Distortion $0.3 \%$ at 1,0000 e.p.s. Beparate Bane and Treble
 "lift" and "cut" controls. 3 input sockets for Mike.
Gram, Radio or Tape Input Selector $\$$ Fitch. Output
3.15 Onman

 Complete kit of parts with full wiring diagrams and
instructions, or factory built with 12 mths . 6 Gis
Carr. $7 / 6$.
HI-FI LOUDSPEAKER ENCLOSURES All typas of pleasing modern derign, woustionlls linea


4 Gns.


SES. For optimum cr. ${ }^{\text {per }}$ 5 Gns.
SE10. For 10in. Hi-FI Speak.
6 Gns.


ALL LEADING MAKES HI-FI EQUIPMENT IN STOCK
INTEREST CHARGES REFUNDED
LINEAR LP/I TAPE PREAMPLIFIER

L.S.C. TAIR 18 WATT STEREO AMPUIFIFR FULLY TRANSISTORISED, SOLID STATE CONSTRUCTION, HIGH FIDELITY

$1.000 \mathrm{c} . \mathrm{p.s}$. Hum and Noise -70 dB . © Sensititity (1) 300 mV (2) B0 mV (3) kit of parts with full wiring diagramas and instructions. || Gns. Car. 7/9. Factory bullt with 12 months guarantee. 15 Gns. 17 gns.) Teak finilhed cabinet as Mustrated $£ 3 / 13 / 6$ oxtra.
Or larger size ass used in Stereo Byatem 4 Gns.

0R.S.C. HIGH FIDELITY SPEAKER SYSTEMS
 reponese shd extended frequency range ensure surprost ngly real-




FR3b $\quad \begin{gathered}3 \text { speaker System consiating of if Fig2L } \\ \text { with roll rubber cone surround to obtain extremely low fundamental }\end{gathered}$ resonance, 5 in 10.000 Ilne middle range speaker, high flux cone type twecter, and appropriate choke/capacitor cras-overs. Impedance 16 ohma. Frequency response
$20-20,000$ e.p.a. Wal provide sound quallity to sutisfy the most diseriminating $20-20,000$ e.p.s. Wal provide sound quality to satisfy the most diseriminat
llstener. Circuit and recommended cablnet gize auppited. Only ||Gns.

## R.S.C. STEREO/20 HIGH FIDELITY AMPLIFIER

 Distortion (each channel): $0.2 \%$. $t$ Four-position
tone compensation and Input Seleotor Switch.
t Stereo/Mono ywitch. $\&$ Reon panel indieator.
 and Troble controls, Output transformer Hlgh-
quality sectionally wound. Outputs for 3 and 15 ohm speakers. pointigig diagrama
wind

speak and liaten with both hands ard battery operation. $59 / 9$
Excellent value at

## R.SC. TFMI TRANSISTORISED VHF/FM RADIO TUNER

## R.S.G.SUPGR AS WIFI AMPLIFISR



## FULLY TRANSISTORISED $200 / 250$ v. A.C. Mains. OUTPUT 10 WATTS R.M.S. cont. Into 15 ohms.

 LATEST MULLATTS R.M.S. cont. into $3-4$ ohms.MRASSIORS. AD149, AD149, OC127Z, OC81Z, OC44, OC44; OC81Z, OC44, AC107.
5 POSTION IPPUT SELECTOR SWITCH' dard R.I.A. FUaracteriatics for Gram and Tape Heads. SENSITIVITIES: Magnetc P.U. 4 mV . Crystal or Ceramic P.U. 400 mV FREQUENCY RESPONSE. 4 TadB 2.5 mV . Redlo/Aux, or Ceramle P. U. 110 mV TREBLE CONTROL: +16 dB to -14 dB at $10 \mathrm{~K} / \mathrm{K}_{\mathrm{s}} \mathrm{s}$. NEG. FEEDBACK: 52 dB . BASS CONTROL: +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$. HUM LEVEL: -75 dB.
HARMONIC DISTORTION at 10 watts R.M.8. 1,000 c.p.s. 0.10


FOR USE WITM ANY MAKE OF PICK-UP OR MICROPMONE (Crystal, Ceramic, Magnetic, Dynamic or Ribbon) CURRENTLY AVAIL

Rigid 18 s.w.e. Chassis. Size approx. $12 \times 3 \times 8 \mathrm{in}$. Neon Panel Indicator. Autractive Facia Plate and spun siver Matching Knobs. Above facilities, except for Ganging
and Balance Control, apply also to Super 15. SUPERB SOUND OUTPUT CAN BE OBTAINED BY OSING THESE UNITS WITH FIRST RATE ANCILLARY EQUIPMENT. All required parts, point to point, wiring dia- 19 Gns. Grams and detalled Instructions. Send S.A.E. for leafien. Or fars. Carr. $15 /$ Unit factory bullt with 12 monthe full guarantee 27 gns . Or deposit $£ 6 / 2 /-$ and
monthy payments $58 / 3$ (Total $£ 318 / 3$ ). Fitted cabinet as Super 15 , 30 Gns
Corr. $15 /-$ or Deposit $£ 6 / 2 / 6$ and 9 monthly payments 84/- (Total $£ 34 / 18 / 6$ ).

BRADFORD 10 North Parade (Half-day Wed.) Tel. 25349 BRISTOL 14 Lower Castle St. (Halli-day Wed.) Tel. 22904 BIRMINGHAM ${ }^{30 / 3 I}$ Gt. Western Arcade opp. Snow Hill Station DERBY 26 Osmaston Rd., The Spot (Half-day Wed.) Tel. 41361 DARLINGTON 18 Priestgate (Half-day Wed.) Tel. 68043. EDINBURGH ${ }_{5766}^{133}$ Leith Sereet (Hall-day Wed.) Tel. Waverley GLASGOW ${ }_{403}{ }^{326}$ Argyle St (No Hall-day) Tel. CITy 4158 HULL ${ }^{91}$ Paragon Street (Hall-day Thursday) Tel. 20505

MAIL ORDERS TO: 102-106 Henconner Lane, Bramley Terms C.W.O. or C.O.D. Poseage $4 / 6$ extra under $£ 2,5 / 9$ ex tra under 45 . Trade supplied .E. with enquiries please. Ell-FI CATALOGUE $4 / 9$
with coloured supplements Open all day Saturdays escept High
Bolborn Branch.

32 High Street (Half-day Thurs.) Tel. 56420 LEICESTER s-7 County (Mecca) Arcade Briggate (No Hall-day) Tel. 28252LEEDS 73 Dale Se. (No Half-day) Tel. CENeral 3573 LIVERPOOL 238 Edsware Rd., W2 (Hall-day Thurs.) Tel. PAD 1629 LONDON
36 High Holbori, WC) Tel HO 9874 (Hal-day Sac.) 60A-60B Oldham St. (No Hallf-day) Tel. CENtral MANCHESTER 106 Newport Rd (Half-day Wed) Tel. 47096 MIDDLESBROUGH
 13 Exchange Street, Castle Market Bldgs., SHEFFIELD

HI-FI TAPE RECORDER KIT
 Tape emptry in. spool Highquality dsnamic miern phone. $7 \times 4$ in. Loudspeakerand circuit. Full record and playback facilities, Magic eye level indicator Equalization for each speed. Twin track. Only patirs of soddered joints plus mains. Saye approx III (ins. oll package deal. + track version, 27 Gns. R.S.C. COLUMN SPEAKERS

 $42 \times 10 \times$ Bin. Or Deppa.
9 monthly payments $34 / 9$.


 5ol-\{TMAI
12 in . HIGH QUALITY LOUDSPEAKERS




 Branh new. glaranteed. Ternix a vailhth. $\quad \leq 5.15 .0$
12 in .20 WATT DUAL CONE


R.S.C. AlO 30 WATT HIGH FIDELITY AMPLIFIER Highly




 Mo 1latit any kind of Microphone or Pick-up is sultable. Ihexignell



 guaratitee for 15 nns. Terms: Deposit $£ 4 / 13 / \sim$ aint 9 monthis

R.S.C. GRAM AMPLIFIER KIT

R.S.C. BATTERY/MAINS CONVERSION UNITS Tylle BM1. A11 all dry lattery


POWER PACK KIT

 26/11. Or assembled 39/11.
SELENIUM RECTIFIERS F.W. (Bridged)

R.S.C. MAINS TRANSFORMERS FULLY GUARANTEED. Interleaved and Impregnated. Primaries 200-250 r . 5 c ofs. Screened.
MIDGET CLAMPED TYPE
250 . H0011. A 13.3 r . 2 a .
FULY SHROUDED UPRIGHT MOUNTING


510 Aupilfer



TOP SAROUDED DROP-THROUGB





Mullant 510 ampliaer

FILAMENT Or TRANSISTOR POWER PACK Types

OHARGER TRANSPORMERS 0.9.1öv. 11a, 13/11. 2!a.,18/11.


 Puslh. Pull 8 watte $E L 84$ to $3 \Omega$ or $15 \Omega$.
Puah- Pull 10 watto 616 ECLBE to A, 5.8 or $15 \Omega$

Push-Pull 13 -18 watts, seetlonally wounl fLif, K T66,
Plst. For 3 or 15 nat high quality sectionaily woini
SMOOTEINGG CHOKES
$550 \mathrm{~mA}, 710 \mathrm{H}, 200 \mathrm{n}$
$100 \mathrm{~mA}, 10 \mathrm{H}, 200 \mathrm{n}$
$100 \mathrm{~mA}, 10 \mathrm{H}, 200 \mathrm{n}$
(12/9
WW-119 FOR FURTHER DETAILS

# Circuits \& Diagrams plus full repair data for 

 800 POPULAR

Circuit diagrams


Printed panel diagrams


Component layout diagrams


Drive-cord diagrams


Block diagrams
IT'S SENT TO Your home carriage-paid to EXamine on 7 DAYS' FREE TRIAL

## RADIO \& TV SERVICING

## Big 3 Volume fime-saving repair library to sfep up your earnings

Here is a great new edition of RADIO \& TV SERVICING, to save your time, to boost your earning power. Packed with CIRCUITS, REPAIR DATA and vital information it covers all the popular 1965-1968 TVs, Radios, 'Grams, Record Players and Tape Recorders-including latest data on COLOUR TV. Thousands of sets of previous editions sold. Now you can examine this big NEW edition free for a week. Three handsome volumesover 1,500 pages written by a team of research engineersthere's no other publication like it. Speeds up repair work for year after year. Hurry-send no moneysimply post coupon today... There can be no reprint once stocks are sold and there's absolutely no obligation to buy under this free trial offer.
Full Data and Circuits for repair of Televisions including COLOUR TV

- Radios•Radiograms • Car Radios
- Record Players•Tape Recorders


## SERVICING DATA FOR ALL THESE MAKES

Aiwa, Alba, Baird (including colour TV), Beogram, Beolit, Bush, Carousel, Cossor, Dansette, Decca, Defiant, Dynaport, Dynatron, Eddystone, Ekeo, Elizabethan, Ever Ready, Ferguson, Ferranti, Fidelity. G.E.C. (including colour TV), Grundig. H.M.V. Kolster-Brandes, Hitachi, Invicta, McMichael, Marconiphone, Masteradio, Motorola, Murphy, National, Newmatic, Pam, Perdio, Peto-Scott, Philips (including colour TV), Portadyne, Pye. Radiomobite, R.G.D., Regentone, Roberts Radio, Standyo, Sharp, Radio

## PLUS latest developments in Radio and Television

Including-Integrated Tuners, Stereo Multiplex Broadcasting-The Zenith-G.E System, Receiver, Decoder and adjustments. Aerial, etc. Colour TV Receivers Colour TV Test Card F, Servicing Transistor Equipment, Chemical Aids to Servicing Batteries and Rechargeable Óver 1,500 pages, nearly 1,700 circuits, component layout diagrams, printed panel diagrams, tables and wave form graphs. Handsome binding. POST COUPON TODAY-absolutely no obligation to buy.
To: Buckingham Press Led, $18-19$ Warren Street, London, W.I.
Please send RADIO \& TV SERVICING- 3 Volumes, without obligation to buy if you accept my application. | will return the books in 8 days or postTick ( 1 ) Full cash price of E 12 , or

$$
\text { If you are under } 21 \text { your father must fill in coupon. }
$$

Full Name
 My lour property $\square$ Rented unfuished accenTemporary 3 Idress $\square$ IThane olthe abowe Mr .
Mrs
Mis

WW-124 FOR FURTHER DETAILS


## LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88


BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2.5-600$ ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. $£ 2$.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
SET OF VALVES: new, $£ 3 / 10 /-$ a set, post $7 / 6$; available with Receiver only. SPEAKER: new, £3 each, post 10/-. HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-. AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price $10 /-$ each, post $2 / 6$. RF Coils $13 \& 14$; $17 \& 18 ; 23 \& 24$; and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.1 \mathrm{mfd}$., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 /-$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., £2 each, 4/-post.

## ADVANCE TEST EQUIPMENT

VM76: Valve Voltmeter: R:F. measurements in excess of 100 mHz and D.C. measurements up to $1,000 \mathrm{~V}$ with accuracy of $\pm 2 \%$. D.C. range $-300 \mathrm{mV}-1 \mathrm{kV}$ f.s.d. A.C. range $300 \mathrm{mV}-300 \mathrm{~V}$ r.m.s. Resistance in 8 ranges, $0.02-500$ Megohms. OUR PRICE, only $£ 72$.
VM78: A.C. Millivoltmeter: Transistorised. $1 \mathrm{mV}-300 \mathrm{~V}$ in 12 ranges. Freq. $1 \mathrm{C} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$. Input impedance $2 \mathrm{Meg}-$ ohms 60 p.f. Calibrated in r.m.s. for sine wave and input dB. OUR PRICE, only £55.
VM79: UHF Millivoltmeter: Transistorised. A.C. range 10 $\mathrm{mV}-3 V \mathrm{f}, \mathrm{s} . \mathrm{d} .10$ ranges. D.C. current range $0.01 \mu \mathrm{~A}-0.3 \mathrm{~mA}$ f.s.d. 10 ranges. Resistance 1 Ohm- 10 Megohms in 7 decade ranges. Complete with probe. OUR PRICE, only £125.
H1B: Audio Signal Generator: $15 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}$ in 3 ranges. Sine wave $200 \mu \mathrm{~V}-20 \mathrm{~V}$ r.m.s. Square wave $1.4 \mathrm{mV}-140 \mathrm{~V}$. peak to peak (approx.). 100-250V A.C. OUR PRICE, only £30.
J1B: Audio Signal Generator: $15 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}$ in 3 ranges. Output 600 ohms, $0.1 \mathrm{~mW}-1 \mathrm{~W}(0.25-24 \mathrm{~V})$, variable. Attenuation $20 \mathrm{~dB}-600$ ohms (attenuator is incorporated), output 10 mW ( 2.5 V ). 100-250V a.c. OUR PRICE, only £30.
J2B: Audio Signal Generator: Same specification as for the J1B except that this model has an additional 2 in. meter calibrated 0-40V A.C. OUR PRICE, only $£ 35$.
TT1S: Transistor Tester (CT472): Suitable for measuring medium and low powered transistors. Current gain (B) can be measured in range 10 to 500 for p.n.p. and n.p.n. types, either in circuit using clip-on probes provided. OUR PRICE, only $£ 37 / 10 /$-.

Special offer of $10 \%$ discount for schools and Technical Colleges, etc. These goods were manufactured in U.K. by Advance Electronics, Ltd. BRAND NEW, all in original sealed carton. CARR. 10/- EXTRA PER ITEM

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for $C W$, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range $50 \mathrm{kc} / \mathrm{s}$, to $30 \mathrm{mc} / \mathrm{s}$., with set of nine coils. Receiver only in working order, $£ 18 / \mathbf{1 0} /-$, carr. $15 /$, each. Set of nine coils, £12/10/-; available only with set. Power unit for HRO $100 / 240 \mathrm{v}$. A.C., $£ 2!15 / \mathrm{c}$, carr. $10!$ -
SPECIAL OFFER; Complete HRO 5T SET (Receiver, Coils and Power Unit) for £30, plus $30 /$ - carr
HRO-M-SETS available with UX type valves; secondhand cond., with 5 coil and power unit, 820 each, carr. $30 /$-.

COMMAND RECEIVERS; Model $3-6 \mathrm{Mc} / \mathrm{s}$. and $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price £5/10/- cach, post 5/-

COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25 W $\begin{array}{ll}\text { output, directly calibrated. Valves } 2 & \times 1625 \mathrm{PA} ; 1 \times 1626 \text { osc.; } 1 \times 1629 \\ \text { Tuning Indicator: Crystal } 6,200 \mathrm{Kc} / \mathrm{s} \text {. New condition }-\mathrm{s} 3 / 10 /- \text { each, } 10 /-1\end{array}$ Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $83 / 10 /-$ each, $10 /$ post.
(Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

BC-433G COMPASS RECEIVER; Freq. $200-1,750 \mathrm{Kc} / \mathrm{s}$. in 3 bands, suitable for aircraft, boats, etc. Complete with 15 valves, power supply input 24 v. D.C. at 2 amps. Receiver only $\& 5$ each, carr. 15/-

ROTARY TRANSFORMERS: 24 v . input, 175 v . at 40 mA output, $25 /-$ plus $2 /$-post. 12 v . input, 225 v . at 100 mA output, $25 /$-. plus $3 /$-post (All the above are D.C. only).

ROTARY CONVERTERS: Type 8a, 24 v. D.C., 115 v. A.C. © 1.8 amps $400 \mathrm{c} / \mathrm{s} 3$-phase, $86 / 10 /$-each, $8 /$-post. Converter 12 v . D.C. input, 110 v. A.C $60 \mathrm{c} / \mathrm{s}$ output, £15 each, £1 carr.

AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: \&25 each, carr. \&1.
AVOMETERS: Model 47A, £9/19/6 each, 10/- post. Model $7 \mathrm{x}, \mathrm{£} 13 / 10 /$ - each, 10/-post. Excellent secondhand cond. (Meters only). (Batteries and Leads extraat $\cos t$ ).

OSCILLOSCOPE Type 13A, $100 / 250 \mathrm{v}$. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $222 / 10 /$ - each, 30/- cart.
COSSAR 1035 OSCILLOSCOPE, $\{30$ each, $30 /$ - carr

RELAYS: Relay Unit (with 9 American relays) 24 v. D.C., 250 ohm coils. heavy duty, M. \& B. 30/- each, 4/-post. GPO Type 600, 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., $£ 2$ each, $6 /$ - post.

CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869, £25 each, $£ 2$ carr.

ROTAX VARIAC \& METER UNIT: Type 5G.3281. Reading 0-40 v., 0-40 mA and 0.5 amps ., all on 275 deg. scales, $£ 30$ each, $£ 2$ carr.
MARCONI IMPEDANCE BRIDGE, TF-373: inductance $5 \mu \mathrm{~h}-100 \mathrm{H}$ in 5 ranges capacity $5 \mathrm{pF}-100 \mu \mathrm{~F}$ in 5 ranges, resistance .05 meg. -1 meg., power supply 250 v . A.C., $\{37 / 10 /-$ each, carr. 15,-

HEWLETT PACKARD TYPE $400 \mathrm{C}: 115 \mathrm{v} .230 \mathrm{v}$. input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: 1 mV - 300 v . in 12 ranges. Input impedance 10 megohms. Designed for rack mounting, £30 each, carr. 15/-.
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post'5/-.
CONDENSERS. 10 mfd . $1,000 \mathrm{v}$ :, $12 / 6$, post $2 / 6.8 \mathrm{mfd}$., $1.200 \mathrm{volts}, 12 / 6$, post $3 /-.8$ mid. 600 volts., $8 / 6$ post $2 / 6$. 0.25 mid., $2 \mathrm{kv.} 4 /$,- post $1 / 6$.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $£ 7 / 10 /-$, £1 carriage.

FOR EXPORT ONLY: B.44 Trans-ceiver Mk. III. Crystal control, $60-$ 95 Mc s. AMERICAN EQUIPMENT: 5C-640 Transmitter, 100 - 156 $\mathrm{Mc} / \mathrm{s}$. , 50 watt output. For 110 or 230 v . operation. ARC 27 trans-ceivers,
28 v D.C. input. Also have assoclated equipment. BC- 375 Transmirter. BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893/ GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical Erection Kits, 1186/GRC; Directional Antenna CRD. ${ }^{\text {; }}$. Comparator Mat Erection Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unit, Control Units, $260 /$ CRD. Test Set URM. 44, complete with Signal Generator TS.622/U.

VARIABLE POWER UNIT: complete with Zenith variac $0-230 \mathrm{v} . \mathrm{g} 9 \mathrm{mps}$.; 2 iin . scale meter reading $0-250 \mathrm{v}$. Unit is mounted in 19 in . rack, $£ 16 / 10 /-$ each, 30/-carr.

BC. 640 MODULATOR UNIT: approx. 50 w . output. Complete with modulation transformer; mike and drive transformer; filament transformer
Valves: two 811 's. Unit mounted in 19 in . panel, $\& 6 / 10 /-$ each, $£ 1$ carr.

SOLENOID UNIT: 230 v . A.C. input, 4 pole, 15 amp contacts, $£ 2 / 10 /$ each, post 6 ;-
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., $£ 2 / 10 /-$ each, carr. $12 / 6$.
AUTO TRANSFORMER: $230 \mathrm{v} .-115 \mathrm{v} . ; 1,000 \mathrm{w} ., \mathrm{£} 2$ each, carr. $12 / 6$

## SIGNAL GENERATORS:

MARCONI TF-144G: freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, internal and external modulation, power supplies $200 / 250$ v. A.C. (secondhand cond), price $£ 25$ ea.; or available in transit case, complete with spares, in first class condition, $£ 30$ ea., carr. on both 30/- ea.
TS155c/UP (as new): price $£ 75$ each, carr. \&1
CT53. Freq. range $8.9-300 \mathrm{Mc} / \mathrm{s}$. with Calibration chart. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. nternal square wave and sinewave modulation at $100 \mathrm{c} / \mathrm{s}$., external modulation $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$., 230 v . A.C. Complete with chart, etc., price $£ 27 / 10 /$-ea.,

MARCONI TF517-F/1; Covering $10-18 \mathrm{Mc} / \mathrm{s} ., 33-58 \mathrm{Mc} / \mathrm{s} ., 150-300 \mathrm{Mc} / \mathrm{s}$. :12/10/-each, carr. \&1.

MARCONI CT218 : price $\$ 65$ each, carr. 30/-
CT. 480 and $478: 1.3-4.2 \mathrm{Mc} / \mathrm{s} .$, F.M. or A.M., price $£ 75$ each, carr. $30 /$ -

POWER SUPPLY UNIT PN-128: 230 v. A.C. input, 395-0-395 v. output @ 300 mA . Complete with two $\times 9 \mathrm{H}$ chokes and 10 mfd oil filled capacitors. Mounted in 19 in . panel, \&6/10/- each, fil carr

SCR-522 TRANSMITTER/RECEIVER: This model is a VHF unit consisting of the BC-625 and the BC-624. These units are ideally suited for conversion o two meters. The set is automatically runed; 4 channels; crystal controlled. The transmitter unit consists of $2 \times 832$ 's; $3 \times 12 \mathrm{~A} 6^{\prime}$ 's and $1 \times 6 \mathrm{G} 6$ together with modulation transformer. The Receiver consists of $3 \times 9003$ 's; $1 \times 9002$; $3 \times 12$ SG7's ; $1 \times 12 \mathrm{C} 8 ; 1 \times 12 \mathrm{~J} 5$; and $1 \times 12 \mathrm{AH} 7$. 55 each, \&1 carr. (Conversion as per "Surplus Radio Conversion Manual," Vols. 1 \& 2, by R. C. Evenson and O. R. Beach.)
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$ 's ; complete with flament transformer 230 v. A.C. Mounted in 19 in . panel, $\mathbf{4} / 10 /$-each, $15 /$ - carr. POWER UNIT: 110 v . or 230 v . input switched; 28 v . @ 45 amps . D.C. output. Wt. approx. 100 lbs., $£ 17 / 10 /$ - each, $30 /$-carr. SMOOTHING UNITS suitable for above £7/10!-e each, 15/-carr.

NIFE BATTERIES: 6 v. 75 amps , new, in cases, $£ 15$ each, £1 carr.; 6 v. 160 amps., new in cases, $£ 25$ each, $£ 1 / 10 /-$ carr.; $4 \mathrm{v}, 160 \mathrm{amps}$, new, in cases, $£ 20$ amps., new in cases
L.R. 7 Cells, only 1.5 v. 75 amps., new, $£ 3$ each, $12 /$ - carr

The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.

FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price $30 /$ - each, postage 5 /-

UNISELECTORS (ex equipment): 10 Bank 50 Way, alternate wipe, $£ 2 / 5 /-$ ea. 6 Bank, 25 W ay, alternate wipe, $22 / 2 / 6$ ca. 8 Bank, 25 way, $2 / 5 /$-ea. 6 Bank, 4/- per uniselector.

FREQUENCY METERS: LM13 or BC-221; $\mathbf{1 2 5 - 2 0 , 0 0 0 ~ K c / s . , ~ £ 2 5 ~ e a c h . , ~}$ carr. 15/-. TS. $175 / \mathrm{U}, £ 75 \mathrm{each}$, carr. £1. TS323/UR; 20-450 Mc/s., £75 each, carr. 15/-. FR-67/U: This instrument is direct reading and the results are presented in dital form. Counting rate: $20-100,000$ events per sec. crystal.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v} . \mathrm{D} . \mathrm{C} . \S 12 / 10 /$ - each, carr. 15/-.

CATHODE RAY TUBE UNIT: With 3 in. tube, colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 /$-each, post $7 / 6$.

APNI ALTLMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s} .$, complete with all valves 28 v. D.C. Dynamotor and 3 relays, 11 valves, price £3 each, plete with
carr. $10 \%-$

GEARED MOTORS : 24 v . D.C., current 150 mA , output 1 r.p.m., 30/- each 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., $£ 2$ each, 5/-post.
MOTORISED ACTUATOR: 115 v. A.C. $400 \mathrm{c} / \mathrm{s}$. single phase, reversible thrust approx. 3 inches complete with limit switches, etc. Price £2/10/- cach, postage $5 /$ - (ex equipment).
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. $25 \mathrm{lbs} .$, rating intermittent, price $£ 3$ each, post $5 /$ -

FRACTIONAL MOTORS \& FANS: Low inertia Motor 5UD/5361, Type 903, 24 v. input D.C., £2/10/-each, 5/-post.

Model PM84: 28 v. D.C. @ 2 amps., 4,500 r.p.m., output 40 watts continuous duty complete with magnetic brakel Price $£ 2$ each, postage $4 / \mathrm{F}$.
Model SR-2 : 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts, price $25 /-$ each, postage $4 /$-.
A.C. Motor $115 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. $1 / 300$ H.P., 3,000 r.p.m. Capacitor 1 mfd ., 25/- post 3/-. Dalmotor SC5, 28 v. D.C. at $45 \mathrm{amps} ; 12,000 \mathrm{r} . \mathrm{p.m}$. output 750 W . (approx. $1 \mathrm{h.p}$. ), brand new, $\{2 / 10 / \mathrm{e}$ each, post $7 / 6$.

TELEPHONES (PORTABLE) TYPE "F." Suitable for all outdoor activities up to a range of 5 miles. Price $£ 7 / 10 /$ - each, as new, complete with carrying case. Carr. 10\%.
TELEPHONE WÍRE; 220 yds., $£ 1$ a roll, post $6 /-$.

HALAN STABILISED POWER SUPPLY

Type C270 0-30 Volts 0-2A


Built to last.
Full protection of instrument and load.
Instant suppression of current following overload.
Two voltage Ranges.
Five current Ranges.
Independent meeting of current and voltage.

## CALAN ELEGTRONICS LTD

## 6 CROFT ST, DALKEITH, SCOTLAND. Phone DAIKEITH 2344

WW-125 FOR FURTHER DETAILS

## ILIFFE BOOKS

## THE TAPE RECORDER

Second Edition
by C. G. NIJSEN

This book has been specially written in clear, simple nontechnical language for the rapidly growing band of enthusiasts for whom the tape recorder is as indispensable as a radio, a record player or a camera. It shows how the best possible results can be obtalned from a recorder, whether it is used for pleasure or education purposes.
In this second edition a chapter on cassette recorders has been added explaining the principles and the advantages of this system for the user who above all wants " simplicity of operation."

Because of its practical approach, this book, by an author with many years of experience in all branches of sound recording, will be easily understood even by those new to the subject, and will assist all those reading it to improve the standard of their recording.
172 pp-, illustrated, 18s. net, 18s. IId. by post.
obtainable from leading booksellers
ILIFFE BOOKS LTD
42, RUSSELL SQUARE, LONDON, W.C.I.

## All overseas enquiries \& orders please address to <br> COLOMOR (ELECTRONICS) LTD.

170 Goldhawk Rd., London, W.I2.
Tel. (01) 7430899

BOONTON STANDARD SIGNAL GENERATOR MODEL 80. Frequency ${ }^{2-}$ $400 \mathrm{Mc} / \mathrm{s}$. in 6 ranges. AM.,
400 and $1.000 \mathrm{c} / \mathrm{s}$. and external modulation. Provision for pulse modulation. Piston type attenuator $0.1 \mu-100 \mathrm{mv}$ separate meter for modulation level and carrier level. Precision flywheel tuning. 117 v. A.C. input. With instruction manual, 695. Carriage $30 /$ -


MARCONI SIGNAL GENERA TOR TYPE TF 144G. $85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}$. Excellent laboratory tested condition,
with all necessary ancessories with instruction manual, E45. P. \& P. 15/-

BC 22I FREQUENCY METERS $125-20,000 \mathrm{ke} / \mathrm{s}$. Accuracy $0.01 \%$. Complete with individual Calibration book. In brand new condition with headphones and instruction book E45. P. \& P. 20/-. Mains P.S.U. for above, $\mathbf{E 1 1 / 1 0 / - \text { Carriage } 5 / \text { - Stabilised }}$ PSU for a bove fl6 Carriage 51 -.

MARCONI SIGNAL GENERA. TOR TF 801/A/I. $10-300 \mathrm{Mc} / \mathrm{s}$, in 4 bands. Internal at $400 \mathrm{c} / \mathrm{s}$. I $\mathrm{kc} / \mathrm{s}$. External below 200 mV from 75 ohms
$0-100 \mathrm{db}$ below source. \&85. P. \& P. 20/-, including necessary connectors, plugs, and instruction manual.
R.F. METERS. 300 mA . 2 in . clip fix $19 \%-300 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$. flush. $27 / 6$.

SIGNAL GENERATOR TYPE TS 418. Signal frequency $400-1,000 \mathrm{Mc} / \mathrm{s}$ direct calibration. Pulse rate 40-400 ( $X$ | or $X(0)$, pulse delay variable. les Pulse width variable less than lusec to more than lousec. Polarity-interna or external sources, positive or negaor external sources, posieive or negaattenuator $0.2 \mu \mathrm{~V}$ to 200 mV continu ously variable. In fully tested condition, ©150. Carriage paid.

ENGLISH ELECTRIC INSULA TION TESTER. IOkV D.C. with buile in ionisation amplifier. $£ 35$ V.\& \& P. $15 /-$

Variable Condenser 200pF., 1.000 v 12/6. P. \& P. 5/-

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s with accuracy $0.03 \%$ and $300-1,000 \mathrm{Mc} / \mathrm{s}$ with accuracy $0.3 \%$. Additional band on harmonics $5.0-6.25 \mathrm{Mc} / \mathrm{s}$ with ascuracy $+-2 \times 10-1$. Incorporating calibrating quartz $100 \mathrm{kc} / \mathrm{s}+5 \times$ $10-120 / 220$ v. A.C. mains. $£ 85$ Carriage $£ 2$.

PHASE MONITOR ME-63/U. Manufactured recently by Control Elecufactured recently by Control Elec plays on a panel meter the phase angle between two applied audio frequency signals within the range from 20 20,000 e.p.s. to an accuracy of $1.0^{\circ}$ Input signals can be sinusoidal or non sinusoidal between 2 and 30 v . peak. In excellent condition together with handbook and necessary connector. $£ 45$. Carriage $30 /$ -

AIRMEC FREQUENCY STAND. AIRMEC FREQUENCY STAND.
ARD METER TYPE 761. $10 \mathrm{c}, 100 \mathrm{c}$. $10 \mathrm{kc}, 100 \mathrm{kc}$. IMc. 880 . Carriage $30 /$.

COSSOR OSCILLOSCOPE TYPE 1049. E45. Carriage $30 /$

MINIATURE PLUG-IN MOVING COIL RELAYS, Windings: 110 ohm 2 mA and 47 ohms. 45 mA . Norks like a moving coil meter, deflection of the coil causing the make and brake of the relay contacts. Ultra sensitive, ideal or transistor circuits, etc. The different energising currents enable two separate functions to be carried out by the one relay. Complete with base $13 / 6$ Post and Packing $2 /$ -

BOONTON " Q " METER TYPE 160A. Frequency range $50 \mathrm{kc} / \mathrm{s}$ to $50 \mathrm{me} / \mathrm{s}$. "Q" range $0-250$ with mul tiplyer of 2.5 . Main tuning capacitor $30-500 \mathrm{pF}$ with separate $\pm 3 \mathrm{pF}$ interpolating capacitor. Power supply $220 / 250 \mathrm{vAC}$, $£ 75$. Carriage $30!$-.

AVO VALVE TESTER MODEL 3 Measurement of mutual conductance $0-100 \mathrm{~mA} / \mathrm{V}$ in four ranges. Screen $0-300 \mathrm{v} .$, panelled $0-400 \mathrm{v} .$, grid $0 /-100 \mathrm{v}$ ohms. Rectifying valves and signal diodes can be tested under load con diades can be tested under lad con-
ditions, short circuiting of electrodes and cathode insulation can also be measured. Complete with data book (I) 845 . Carriage $30 /$ -

SOLARTRON OSCILLOSCOPE TYPE CD 643.2. Laboratory rype SCI2 diameter sin., Band width sec Sensitivity approx $100 \mathrm{mv} / \mathrm{cm}$ $65 \mathrm{v} / \mathrm{cm}$ with $\times 1 \times 10 \times 100$ multiplica tion and fine expansion control Controlled bright-up. $Z$ modulation fl30. Carriage 40 -.

MUIRHEAD - WIGAN DECADE OSCILLATOR D650B. Frequency -111, 100 c/s in two ranges con tinuously variable above $2 \mathrm{c} / \mathrm{s}$. Accuracy $\pm 0.2 \%$ or $0.5 \%$ or $0.5 \mathrm{c} / \mathrm{s}$ whichever is greater. Hourly stability $\% 0.02 \%$ Maxim ( 110120 v ) above $20 \mathrm{c} / 50 \mathrm{~mW}$ ohms (110/120v.) above 20 c,s. 20 mw nto $6,000 / 8,000$ ohms below $20 \mathrm{c} / \mathrm{s}$

AIRMAC TYPE 726 AUDIO FRE
QUENCYMETERS. A veryaccurate QUENCY METERS. A very accurate compact instrument for measuring and checking audio frequencies which are ead of directly on a $100 \mu \mathrm{~A}$ bin. meter A the ringe oscillator enables the instru ment to be callibrated when the accuracy is then $1 \%$ of FSD. The instrument may be used as a tachometer (up to 12,000 r.p.m.) in conjunction with photocell equipment for measuring the speed of rotation apparatus. $£ 30$. Carriage 301 -

TEST SET RADIO CTS-3/PRC Portable test set for complete measure ment of performance of FM trans mitters and Receivers measuring battery voltages on and off load. If imiter, alignments AFC, transmitters and RF output. Can be adapted for use with transmitters other than the designed wrand new including con designed. Bland and spare valves necting cables and spare valves.
$66 / 10 /-$. Carriage $7 / 6$.

## P. C. RADIO LTD. <br> 170 GOLDHAWK ROAD, W. 12

SHEpherd's Bush 4946





FW4/500




$9895 / 1$
$981: 20$
481202 पQzot-1
R 10
$\mathrm{H}: 1.2$
SPGI
STV

8U:150 A






3A14R3






## 

TR

2
$2 N$
$2 Y$
$2 X$
2
2
2
$A$
$A C$
$A C$
$A C$
$A C$
$A C$
$A$
$A 1$
$A 1$
$A$
$A$
$A$
$A 1$
$A$
$A$
$A 1$
$A$
$A 1$
$A 1$
$A$



 -
nem

| lablitr | $6 /-$ |
| :--- | :--- |





D.C. MOVING COIL METERS
$50 \mu \mathrm{~A} .2 \mathrm{in}$. round proj.
$200 \mu \mathrm{~A}$. 2 in . round panel, sealed calibro- 30 $750-0-750 \mu \mathrm{~A} .2 \mathrm{in}$, round plug-in
mA. $2 \frac{1}{2}$ in. square pane
I mA. 2 in . round panel sealed
5 mA .2 in . round slip-fix panel or proj.
-0-5 mA. Itin. round panel
0-0-10 mA. $2 \frac{1}{\frac{1}{2}} \mathrm{in}$. round panel
0-30 mA. $2 \frac{1}{2} \mathrm{in}$. round panel
$50 \mathrm{~mA} .2 \frac{3}{4} \mathrm{in}$. sq. panel
$75 \mathrm{~mA} .2 \frac{1}{2}$ in. plug in 00 mA . $1 \frac{1}{4}$ in. proj.
100 mA . $1 \frac{1}{2}$ in. round panel
$100 \mathrm{~mA} .2 \frac{1}{\frac{1}{2}} \mathrm{in}$. round pane
250 mA . 2 in , round panel
2 amp .2 in . round panel
$5 \cdot 0-5 \mathrm{amp} .2 \frac{1}{2} \mathrm{in}$. round panel
amp. $2 \frac{1}{2}$ in. round panel
$25 \mathrm{amp} .3 \frac{1}{2} \mathrm{in}$. round proi.
50 amp . $2 \frac{1}{\mathrm{i}} \mathrm{in}$. round panel
$0-1.5 \mathrm{~V}$ \& 0.150 V 3 terminals round panel 2 VDC $2 i n$. square panel
BOVDC $2 \frac{3}{2}$ in. round panel
100 V 4 in. round panel
50 VDC 4 in . round panel
.5 KV with res. 2 in . round panel
$0-1500$ v. $2 \frac{1}{2}$ in. elects. plug in, round panel

## MOVING'IRON METERS

15 VAC $2 \frac{1}{2}$ in. round panel.
500 VAC 2 in. round clip fix

LABORATORY TYPE VOLT .
51$22 / 6$ scale in wooden boxes, $9 \frac{1}{2} \mathrm{in} . \times 82 \mathrm{in}$ $x \frac{\frac{1}{2} i n}{}$. with carrying handle, brand new 32/. P. \& P. 3).
MINIATURE METERS. General Electric $1 \frac{1}{2}$ in. round flush, clip mounted
ar

25 mA
25 mA D.C., $20 /-$. P. \&
65 mA. D.C. $18 /-3 /=$
150 mA . D.C., $15 /-$
"S" METER FOR H.R.O. RE. CEIVERS. Brand new, £2/10/-. Carriage paid
SUB - MINIATURE "PENNY SIZE" METERS.. lin. round, flush brated $0-1 \mathrm{mA} 20 \$.$% P. \& P. 3\%.$
COMPLETE V.F.O. UNIT from TX53. Freg. range in 4 switched bands from 1.2-17.5 Mc/s. osciliator and buffer. 807 as driver, two sijus as volcage stabilizers. Oucpu slow mocion drive directly calibrated in $\mathrm{Mc} / \mathrm{s}$. Provision for crystal concrol metering of buffer and driver stage. Power requiremencs 400 v . and 6.3 v . D.C. Can also be used as low power cransmitter. in excellene condition with valves and
CR150 RECEIVER, $2 \mathrm{Mc} / \mathrm{s}-60 \mathrm{Mc} / \mathrm{s}$. with sp

SPARES FOR AR.88D. RECEIVERS Ask for
selection.
27/6
25/- P. \& P. 3/

TELEPHONE HANDSETS. 5 tanINSET MICROPHONE for cele phone handset 2/6 P \& $P$ 2/-

LIGHTWEIGHT, LOW RESIST ANCE, HEADPHONES. Type H.S 33. Largely used by pilots. Brand new

FIELD TELEPHONES TYPE "F" Housed in portable wooden cases Excellent for communication in- and including batteries and $1 / 6 \mathrm{th}$ mile field cable on drum. Completely new,
$\epsilon 6 / 10 \%$. 5 lightly used, $65 / 10 /$. Carriage 10/-
FIELD TELEPHONES TYPE "L" As above but in portable metal cases mile field cable on drum. $64 / 10 \%$ Carriage 10\%.
FIELD 10 LINE MAGNETO TELE
6733).

Withstanding all climati
ARNESS Price on application.
HARNESS \& " $A$ " " $B$ " control units phones, etc.
29/4IFT. AERIALS each consisting of cen Jit., in. dia. eubular screw-in ections. lated base, stay plate and stay assemblies pegs, reamer, hammer, ctc. Absolutely hrand new and complece ready co erect in canvas bag, $£ 3 / 9 / 6$. P. \& P. $10 / 6$.

FOR EXPORT ONLY
Installation Kits for CII/R2IO Sets
53 TRANSMITTER made up to "' as

COLLINS TCS. Complete installaFIELD TELEPHONE SETS TYPE "J" YA 7815. Poriable. Ideal for ropical climazes.
R.C.A. TRANSMITTER TYPE ET 4336. 2-20 Mc/s., complete with M.O. Fully tested and guaranceed. All spares available
BC 610E \& BC 6101 TRANS Mififier. Complece with speech BC 939A BC 6lar. Aerial euning unit Fully tested and guaranteed. All spares available.
No. 19 HIGH POWER SETS By introducing RF Amplifier the output increased to 25 watts. Complete instal. ations supplied.
30W 15V PETROL GENERATOR (CHARGING SET). Very compact. 1260W 35V CHARGIN
plete with switchboard. New 645 , HAMMERLUND SP 600. COne only left.) f 110 including Carriage. DESK TELEPHONES WITH DHALS. Black, Red or lvory, $65 / 10 /$ - per pair, carriage $7 / 6$.
L.T. SUPPLY UNIT RECTIFIER No. 19. Consists of two separate 12 V DC circuits each rated at 3 amp , which may be used independently, giving two eparate ourputs of 12 V at 3 amps, connected in parallel giving 12 V 6 amps or connected in series giving 24 V at 3 amps. Ideal for battery charging, input. Brand new, complete with coninput. Brand new, complete wis.
ALLTEST \& COMMUNICATION EQUIP. MENT has been thoroughly prepared in our Laborator
Engineers.

COLOMOR (ELECTRONICS)
170 Goldhawk Rd., London, W. 12 Tel. (01) 7430899

## WEYRAD

## COILS AND I.F. TRANSFORMERS IN

## LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS

P. 9 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $6 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

## OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

## TRANSFORMERS

COILS CHOKES

LARGE OR SMALL QUANTITIES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
vacuum impregnation to approved standards
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.653 .2261 CR4.8LZ EST. 1933 WW-127 FOR FURTHER DETAILS

NEW 48" FOLDING MACHINES SHEET METAL bench model by parker


Forms channels and angles down to 4 S degrees which can be flattened to give safe edge. Depth of fold according to height of bench.
$48^{\prime \prime} \times 18$ gauge capacity $36^{\prime \prime} \times 18$ gauge capacity
$24^{\prime \prime} \times 16^{\text {gauge capacity }}$
$\begin{array}{lll}£ 40 & 0 & 0 \\ £ 25 & 0 & 0 \\ £ 24 & 0 & 0\end{array}$
One year's zuarancee. Money back if not satisfied. Send for details:
A. B. PARKER

Also the well-known viee models of $36^{\prime \prime} \times 18$ gauge capacity $24^{\prime \prime} \times 18$ gauge capacity $18^{\prime *} \times 16$ gauge capacity

Carriage Free
$\measuredangle 12100$ FOLDING MACHINE WORKS, £7 50 UPPER GEORGE STREET, ET 5 0 HECKMONDWIKE, YORKS. Telephone: 3997

WW-128 FOR FURTHER DETAIIS

M.S.E. FOR QUALITY COMPONENTS AT COMPETITIVE PRICES . . . ALL GOODS NEW \& UNUSED
PLESSEY "MULTIWAY" CONNECTORS

80-WAY PLUG \& SOCKET. For Teleprinter \& V.F. Rooms-Railway Signalling Systems-Television Equipment-Radio \& Radar assembliesTelephone \& Line Equipment.
SOCK. Pe. No.: 2CZ10860s. S.R.D.E. No.: YA 11030.
CoCket. Pr. No.: 2CZ108602. S.R.D.E. No.: YA llo3s. Contacts
reversed.

## WORKING DATA

Flash Test Voleage: 1,500 Voles D.C
Vorking Voleage: 250 Voles D.C. or 180 Voles A.C. insulation Resistance: 100 megohms at 500 Volts D.C. Gurrent carrying capacity: Up to 2 amps.
Contace resistance: Less than I milliohm
PRICE PER PAIR: $150{ }^{\prime}$ - Post free.
Plugs can be supplied separately at $100 /$ - each. No spare Sockers available. Both units supplied complete with high grade Polythene protective caps.
PLUG dimensions: Length 4.120 in . Depth 2.740 in . SOCKET dimensions: Length 4.840 in . Widrh l. 440 in .
Special quotations for quantities of 10 pairs and over. For multicore cable to S.R.D.E. spec. TS/834A and can also accept smaller mulsicore and unicore cables.
Miscellaneous PLESSEY Components :-
S08/1/00111 26-way Socket assy. Series $220,5 / 6 \mathrm{~d}$
S08/1/08808 Plug 2-way G.P.O. Type SI, 10/-doz. plus 1/6 P. \& P.

## CANNON CONNECTORS

RSK-19-31SL. 19-pole Socket, wall mounsing receptacle 25/- each RFK-37-22C-7". 37-pole Straight Plug with pin inserts, 45/- each RLK-ASO-22C-I". S0-pole Straight Plug with pin inseres, 55/- each GK-S3-21C-1". 3-pole Straight Plug with Socket inserts, 20/- each M.S.3106E-16-11.S. 2-pole free plug socket inserts $\} \quad 22 / 6$ pair M.S.3102.E-16-11.P. 2-pole fix receptacle pininserts post free PAINTON CONNECTORS, "Muleicon" series 31118624 -way Plug with Panel Mouncing flange? $15 / 6$ pair'plus 311463 24-way Socket End entry cover $\quad 1 / 6$ post \& pkg. 310070 12-way Plug Top enery cover End Fixing Panel 8/6 pair plus /6 post \& pkg.
We also hold stocks of HEAVY DUTY MULTICONS \& STANDARD SERIES Connector
MANUFACTURERS .. Any surplus to requirement or Redundane STOCKS? WE PAY' TOP PRICES. Kindly forward Tenders dundant
or Lises.

M S 36 WINCANTON ROAD, NOAK HILL, ROMFORD, ESSEX Telephone: INGREBOURNE (IL) 43810

## VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

SETS 1R5, 185, 1T4, 3S4, 3V4, DAF91, DF91, DK91, DL9ㅇ. DL9t. 1R5, 185, 1T4, 3S4, 3V4, DAF91, DF91, DK91, DL99, DI
Sct of 4 for 17/8. DAF66, DF9G, DK90, DL06 4 for $26 /$.

| 024 | /6 | 10 Pl 3 | $15 / 8$ | DH\% | 4/- | EF91 | $3 / 6$ | PCL85 | 8/3 | Uccas | 8/6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1ASGT | $5 \%$ | 12.AT7 | 3/9 | DH81 | 12/6 | EF97 | 7/6 | PCLAB | 8/8 | UCP80 | 8/3 |
| 1 A GT | $7 / 8$ | 12 AUG | 4/9 | DK32 | $7 / 9$ | EF183 | 8/6 | P ENA 4 | 8/9 | UCH42 | 9/9 |
| 1H5GT | 7/3 | 12.407 | 4/9 | DK91 | 5/8 | EF184 | 8/6 | PENS6C | 125/- | UCH81 | 0/6 |
| INSGT | 719 | $12 \mathrm{AX7}$ | 4/9 | DK92 | $9 / 3$ | EH\% | 6/6 | Pr'L200 | 13/- | UCLs 82 | 7/6 |
| 145 | 516 | 12 K 8 GT | 7 76 | DK96 | 7/ | EL33 | $8 / 9$ | PLa36 | 9/8 | UCL83 | 9/3 |
| 184 | $4 / 8$ | 20 F 2 | 10/8 | DL33 | $6 / 9$ | EL34 | 9/6 | PL81 | 7/3 | UF41 | 10/6 |
| 185 | $3 / 9$ | 20 Ll | 18/8 | DL35 | 5/- | ELA1 | $9 / 6$ | PL82 | 6/8 | UF80 | $7 /$ |
| 1T4 | $2 / 9$ | 20 Pa | $14 / 9$ | DL92 | 5/6 | EL84 | 4/9 | PL83 | 71 | UF89 | 8/8 |
| 3.45 | 8/6 | 20 P 4 | 18/6 | DL94 | 5/9 | EL40 | 5/- | PL84 | 6/3 | UL41 | $9 / 3$ |
| 384 | 5/6 | 25U46T | 11/8 | DL96 | $7 /$ | EL95 | 5/- | PLas0 | 13/- | Ulat | 20/- |
| 3 V 4 | 5/9 | 30 Cl | 71. | DY88 | 5/9 | EM80 | $5 / 9$ | PL504 | 13/6 | UL84 | 6/8 |
| 5 U 46 | 4/6 | 30 Cl 5 | 11/8 | DY87 | 5/9 | EM81 | $8 / 9$ | PL820 | 15/- | UY41 | $7 /$ |
| 5V4G | $8 /$ | 30 C 17 | 12/6 | Eabces | 0/8 | EM84 | $8 / 3$ | PX25 | $10 / 6$ | UY85 | 5/9 |
| SY3GT | 5/9 | 30 Cl 18 | 81/ | EAF42 | $8 / 6$ | EM87 | 7/8 | PY32 | 10\% | VPiB | 1016 |
| 5\%49 | 7/8 | 30 F 5 | 12\% | EB91 | 2/3 | EY51 | $81 /$ | PY33 | 10\% | VP132 |  |
| 1)/301.2 | 12/8 | $30 \mathrm{FL1}$ | 12/6 | EbC33 | $7 / 6$ | EY86 | $8 / 3$ | PY80 | 518 | 277 | 3/6 |
| 6ald | $2 / 3$ | 30FL14 | 12/6 | EBC4 | 81 | EZ40 | $7 / 6$ | PY81 | $5 / 3$ |  |  |
| damb | 3/6 | 30 LI | 6/- | EBF80 | 8/- | EZ41 | 716 | PY82 | 5/- | Transi |  |
| 6AQ5 | $4 / 9$ | $30 \mathrm{L15}$ | 14/- | EBF89 | 6/3 | EZ80 | 4/8 | PY83 | 5/9 | AC107 | ${ }^{3 / 6}$ |
| 6ATt | $4 /-$ | $30 \mathrm{L17}$ | 13/- | EC90 | 2/3 | E281 | 4/9 | PY88 | 7/3 | ACl27 | 2/ |
| fave | 5/6 | 30P4 | 12/- | ECL81 | $3 / 9$ | KT61 | $8 / 9$ | PY800 | 8/9 | ADP10 | $7 / 6$ |
| $6 \mathrm{BA6}$ | 4/8 | 30 P 12 | 11/* | ECC82 | $4 / 9$ | KT81 | 15/ | PY801 | $6 / 9$ | AF102 | 18/ |
| 6BE6 | 4/3 | $30 \mathrm{P19}$ | 12/- | ECC83 | 71 | N78 | 14/9 | R19 | 6/6 | AF115 | 3/- |
| $6 \mathrm{BG6G}$ | 15/- | 30PL1 | 12/6 | ECC84 | 5/6 | PC88 | $8 / 6$ | R20 | 12/9 | AF116 | $3 /$ |
| $6 \mathrm{BJ6}$ | 8/9 | $30 \mathrm{PL13}$ | 14/8 | ECCOs | 4/9 | PC88 | $9 / 6$ | 125 | 11/8 | AF117 | $3 / 3$ |
| 6 F 13 | 3/6 | $30 \mathrm{PL14}$ | 14/6 | ECC804 | 12/8 | PC97 | 8/8 | U26 | $11 / 8$ | AF118 | $3 / 1$ |
| 8 F 14 | $9 /-$ | 35L6GT | 8/- | ECFF9 | 71 | PC900 | 8/3 | U47 | 13/8 | AF124 | 716 |
| $\mathrm{HF}^{2} 2$ | 12/6 | 3 JW 4 | 4/6 | ECFP2 | $8 / 9$ | PCC84 | 8/- | U49 | 13/6 | AFl25 | ${ }^{3 / 6}$ |
| 6 K 7 a | 2/6 | 3574GT | 5/, | ECF88 | 9/- | PCCXS | 10/8 | U52 | 4/6 | ${ }_{\text {AFP126 }}$ | 7/8 |
| 6K8G | 4/3 | 85 A : | 7/3 | 18CR35 | 8/- | PCC180 | $9 / 9$ | U78 | 3/6 | ${ }^{\text {AFl27 }}$ | ${ }^{3 / 6}$ |
| 6 L18 | 8/- | 6063 | 12/6 | ECH42 | 10/8 | PCFP80 | $7 /$ | U101 | 11/- | $\mathrm{OCP2}^{2}$ | 5. |
| avge | 3/6 | A831 | 9/- | ECH81 | 5/9 | PCF82 | ${ }^{6 /-}$ | U301 | 13/6 | OC2\% | 5. |
| riveor | 6/8 | 836 | 4/9 | ECH84 | $7 / 3$, | PCF86 | 9/9 | U801 | $18 / 9$ | OC44 | $2 / 3$ |
| 0x4 | 3/6 | 8729 | 12/6 | ECL80 | $6 / 9$ | PCFP00 | 11/6 | UABC80 |  | $0 \mathrm{OC45}$ | 2/3 |
| ${ }_{805}$ | $5 / 9$ | CCH35 | 10/- | ECL82 | $8 / 9$ | PCCP801 | $7 / 8$ $9 / 8$ | UAF42 | $7 / 9$ $8 / 6$ |  | 2/8 |
| 786 | 10/9 | DAC32 | 7/3 | ECL39 | $8 / 3$ $3 / 9$ | ${ }^{\text {PCCFP0 }}$ | $9 / 6$ $9 /-$ | UB41 | 8/8 $7 / 9$ | $0{ }^{0675}$ | 88 |
| $3^{87}$ | 71 | DAF41 | 3/9 | EF39 | $3 / 9$ $9 / 8$ | ${ }_{\text {PCF80 }}$ |  | UBF80 | \%19 | Oc\%1 | 8/3 |
| 705 | 15/9. | Dap96 | 8/8. | EF480 | $9 / 8$ $4 / 9$ | PCPFSO8 | 12/6 | UBF89 | 6/9 | OCs1D | 2/3 |
| $7 x_{i}$ | 8/9 | ${ }_{\text {Dr33 }}$ | $7 / 9$ | PFPS | 5/6 | PCL ${ }^{\text {d2 }}$ | 718 | UBLel | 9/- | 0682 | $2 / 8$ |
| \% ${ }^{4}$ | 6/6 | DF91 | $2 / 9$ | EFP6 | $8 / 3$ | PCLs3 | $9 /$ | UC92 | 310 | $0 \mathrm{OC82D}$ | $2 / 6$ |
| 10 Fl | 15\% | DFPG | 6/- | EF89 | 5/3 | PCLA | 7/6 | coces | 7/8 | $0 \mathrm{Cl} \mathrm{\%}$ | $2 / 6$ |

85 Torquay Gardens, Redbridge, IIford, Essex. | $01-550$ |
| :---: |
| 7441 |

Postage on 1 valve $\mathfrak{o d}$. extra: On 2 valves or more, postage 6d. per valve extra. Any parcel Insured against Damage In Transit od, extra.

## SEMICONDUCTOR DEVICES

| IN914 | $3 / 6$ | N3011 |  | BCy | 5/ | BSX | 10/6 | NKT212 |  | OA81 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 N 916 | 1 | 2N3053 | 81. | BCY12 | 5/8 | Bsx 27 | 10/6 | NKT213 | 6/. | OA:200 |  |
| 2 N 404 | $6 / 6$ | 2N3055 | 23/6 | BCY30 | $7 / 6$ | BS×28 | $8 / 6$ | NKT214 | 4/6 | OA20 |  |
| 2N691i | 51. | 2N3702 | $5 / 6$ | BCY31 | 716 | BSX76 | 716 | NKT215 | 4/8 | OC22 |  |
| 2N697 | 5/- | 2N3703 | $5 / 6$ | BCY 32 | 718 | B8× 77 | 81. | N KT217 | 10/6 | OC23 |  |
| 2N698 | 4/6 | 2N3704 | $5 / 6$ | BCY33 | 5/6 | B8×78 | 81 - | NKT219 | 61. | OC24 |  |
| 2N703 |  | 2N3705 |  | BCY34 | 5/6 | B8740 | 8/- | NKT223 | 81. | OC25 | $8 / 6$ |
| 2N706 |  | 2N3704 | 51. | BCY38 | 5/8 | B8741 | $8 /$ | NKT224 | 5- | Oces | 8/6 |
| 2N708 | 4/- | 2N3707 | 61- | BCY3\% | 5/6 | 88Y10 | $5 / 6$ | NKT225 | 5\% | OC28 |  |
| 2N726 |  | 2N3708 | 4/- | BCY40 | $7 / 6$ | B8Y11 | $5 / 6$ | NKT229 | 61 | OC29 | 16 |
| 2N727 | 5/- | 2N3709 | 4/- | BCY54 | 716 | BSY26 | 4/8 | N KT238 | 6/- | OC30 |  |
| 2 N 743 | $4 / 6$ | 2 N 3710 | 5/6 | BCY70 | 8/6 | BSY27 | 4/6 | N KT2:39 | 6)- | OC35 | 6 |
| 2N74 | $4 / 6$ | 2N 3711 |  | BCY71 | $10 / 6$ | BsY28 | 4/6 | N KT240 | 61. | OC8\% |  |
| 2 N 753 |  | 2N4058 |  | BCY72 | $8 / 6$ | B8Y29 | 416 | NKT241 | $6 / 6$ | $0 \mathrm{CA1}$ |  |
| 2N914 | 4/6 | 2N 4059 | 8/8 | BCZ10 | 4/6 | BSY38 | $4 / 6$ | N KT242 |  | OC44 |  |
| 2N916 | 4/6 | 2 N 4040 | 8/6 | BCZ11 | 4/6 | B8Y39 | $4 / 8$ | N KT244 | $5 / 6$ | OC45 | $8 / 6$ |
| 2N929 |  | 2N 4061 | 6/6 | BF115 | $4 / 8$ | B8Y95A | 4/6 | N K T24E | 5/6 | OC4 6 |  |
| 2N930 | 6/6 | 2N4062 | 616 | BF224 | $6 / 6$ | BY100 | 4/6 | NKT261 | $4 / 6$ | 0C70 |  |
| 2N1131 |  | 2N+254 | $8 / 6$ | BF 225 | 8/6 | BYZ10 | $81-$ | NKT262 | $4 / 6$ | $0 \mathrm{C71}$ |  |
| 2N1132 | 9/6 | 2 N 4265 | 6 | BF237 | $6 / 6$ | BYZ11 | $7 / 8$ | NK T284 | $4 / 6$ | OC72 |  |
| 2 N 1302 |  | 28102 | 816 | E1238 | 6/6 | BYZ12 | 6.1 | NKT271 | 416 | OC74 |  |
| 2 N 1303 | $4 / 6$ | 28103 | $6 / 6$ | BFX12 | 6/8 | BYZ13 | 5/- | NKT272 | $4 / 6$ | OC75 | / |
| 2 N 1304 | 516 | 28104 | 816 | BFX13 | 6/8 | $\mathrm{GETLO}^{\text {a }}$ | 4. | NKT274 | $4 / 6$ | ${ }^{0} \mathrm{CF} 8$ |  |
| 2N1305 |  | 28131 |  | BEX29 | 15/- | GET103 | $4 /$ | NKT275 | $4 / 6$ | OC7 | 16 |
| 2N1306 | 616 | 28501 | $5 / 6$ | Brx30 | 15/- | GfrT13 | 4/- | NKT281 | 5/6 | OC78 |  |
| 2N1307 | $8 / 6$ | 28502 | 5 | BFX84 | $81-$ | GET116 | $8 / 6$ | NKT402 | 17/6 | OC78D | 3/- |
| ${ }^{2} \mathrm{~N} 1308$ | 81. | 28503 | 516 | ${ }_{\text {BFX }}{ }^{\text {BFS }}$ | 101- | GET128 | 4/- | NKT408 | 1/2 | $0 \mathrm{C81}$ |  |
| 2N1309 |  | AA129 | 21 | BFXB6 | $8 /$ | GET119 |  | N K T 404 | 11/- | 0C81D |  |
| 2N1507 |  | AAZ13 | $2 /=$ | BFX87 | 101- | GET120 | $6 / 6$ | NKT405 | 15/8 | OCs2 |  |
| 2N1613 | 6 | $\mathrm{ACl}^{\text {a }} 7$ | A/6 | BFX88 |  | GET873 | 3/- | NK T603 | $6 / 6$ | OC82D | 3/- |
| 2N1711 | 6/6 | ACl26 | 41. | BFPX10 | $4 / 6$ | GET881 | $4 / 6$ | NK T613 | 6/6 | 0 O 83 |  |
| $2 \mathrm{N1843}$ |  | AC123 | $31-$ | BFY11 | 4/6 | GET887 | $4 / 8$ | NK T674 |  | OC84 |  |
| 2N1889 |  | AC128 | 4. | BrY17 | 4 | ${ }_{\text {GET }}$ CE898 |  | NKT677 |  | ${ }^{\text {OCl23 }}$ |  |
| 2193. |  | ACY1: | 4/. | BFY18 |  | ${ }_{\text {GET }}^{\text {GEP89 }}$ | $4 / 6$ | NKT713 |  | OClizi |  |
| 194 |  | ACY18 | 4/\% | BF |  | GET847 |  | NKT ${ }^{\text {N }}$ |  | -0can |  |
| ${ }_{2}^{2 N} 2 \mathrm{~N}_{2218}$ |  | ACY19 | $4 /$ - | BFY51 | $5 / 8$ | QET898 | $4 / 18$ | NKT\% |  | OC201 |  |
| 2N2219 | 1318 | ACY20 |  | BFY52 | $5 / 6$ | NKT125 | 8) | NK |  |  |  |
| 2N2220 |  | ACY21 |  | BFY53 | 5/6 | NKT126 | 8 | OA5 |  | OC203 |  |
| 2 N 2221 |  | A |  | BFY90 | 12/6 | NKT135 | $5 / 6$ | 0.18 |  | OC204 |  |
| 2N2222 |  | ACY 40 |  | B8x19 | 6 | NKT2 | $8 /$ | OA47 |  |  |  |
| 2297 |  |  |  | B8X 20 | $5 / 8$ | NKT211 | $6 / 6$ | 0A79 | $1 / 6$ | OC2 |  |
| 2N2368 |  | AD149 | - | ZENERS: 3-30 Volt |  |  |  |  |  |  |  |
| 2N2369 |  | ADIH1 | - |  |  |  |  |  |  |  |  |
| 2N2411 | 6;6 | AD102 | 81 | $\text { If watt, } 5 / 6 \text {. }$ |  |  |  |  |  |  |  |
| 2N2432 |  | AF114 |  | Unmarked, untested transistors 60 for 10/-. |  |  |  |  |  |  |  |
| 2N2483 | 516 | AF115 | 41. | EROBOARD: |  |  |  |  |  |  |  |
| 2 N 2484 2 N 2538 | $5 / 6$ $4 / 6$ | $\begin{aligned} & \text { AF116 } \\ & \text { AF117 } \end{aligned}$ | 4/- |  |  |  |  |  |  |  |  |
| 2 N 2538 2 N 2540 |  | $\begin{aligned} & \text { AF117 } \\ & \text { AF118 } \end{aligned}$ |  | ELECTROLYTICS: 15 volt |  |  |  |  |  |  |  |
| 2N2698 | $6 /$ | AFZ12 |  | ELECTROLYTICS: 15 volt 1 MFD. 100 MFD ., $1 / 6$ eac |  |  |  |  |  |  |  |
| 2 N 2904 |  | A8281 |  |  |  |  |  |  |  |  |  |
| 2N2904, |  | ${ }_{8 C 107}$ | $4 / 8$ | RESISTORS: |  |  |  |  |  |  |  |
| 2N2908 | 81 | BClo | 4/8 |  |  |  |  |  |  |  |  |
| 2 N 2905 A | 81- | BC10 | 4/8 | SPEAKERS: 3 OHM <br>  |  |  |  |  |  |  |  |
| $\left.\right\|_{2 N 2908} ^{2 N} 2908$ | 81. | ${ }^{\text {BC18 }}$ B 183 | $4 / 6$ $4 / 6$ |  |  |  |  |  |  |  |  |
| 2N2907 | 81. | BC184 | $4 / 6$ | Post and Packing. 1/. per orier |  |  |  |  |  |  |  |
| 2N2907A | - | BC742 | $5 / 8$ | all devices are fuliy quaranteed |  |  |  |  |  |  |  |
| 4N2026 | 3/- | BC | 6 |  |  |  |  |  |  |  |  |

A. MARSHALL \& SON (LONDON) LTD., 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 Tel. 01-452 0161

Retail premises Mon.-Sat. 9-5.30 p.m.

## ELECTRONIC BROKERS LIMITED

SYNCHRONOUSTIMINGMOTORSBY HAYDON (illu ${ }_{2}{ }_{2}$ que at ${ }^{3}$ r.p.m. ${ }^{3}$ r.p.m. 12 v . 2 r.p.m. $6 \mathrm{v}, \mathrm{I}$ r.p.m. 28 v, 1/12 r.p.m.
$12 \mathrm{v}, 1 / 12$ r.p.m. $30 \mathrm{v}, 1 / 15 \mathrm{r.p.m} .24 \mathrm{v}$, $1 / 60$ r.p.m. $28 \mathrm{v}, 1 / 120$ r.p.m. 28 v

HYSTERESIS CLUTCH MOTOR with integral clutch allowing the motor to drop out of engagement with the gear train, thereby facilitating easy resetting when used in timers or in conjunction with a $R=$ right. 15 r.p.m. 8 at 1 r.p.m. $240 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$. $=$ left r.p.m., $\frac{1}{2}, \frac{1}{\frac{1}{2}, \frac{1}{t} \text { r.p.m. } \mathrm{L}, 1 / 5 \text { r.p.m.m. R \& L, } 6 \text { r.p.m., R \& L, } 1 / 10}$ r.p.m. $1 / 1 / 12,1 / 15 \mathrm{r} . \mathrm{p} . \mathrm{m}$. L. Also $120 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}, 2,1 / 6,1 / 12$, 5/12. 4/11, 1/10 r.p.m. 25/
HIGH TORQUE IND
HIGH TORQUE INDUCTION MOTOR MP 10. Useful for eycle timers. Motorised valves advertising display unit. $30 \mathrm{oz} / \mathrm{in}$. at 1 r.p.m. 2.5 watts. 240 voles 50 cycles. 60 r.p.m., 30 r.p.m., 20 r.p.m. Right; 6 r.p.m., 4 r.p.m. $\frac{1}{2}$ r.p.m. $1 / 10$ r.p.m., 120 r.p.m., $1 / 60$ r.p.m. also 20 V , Sy cycles 20 r.p.m.
LOW TORQUE HYSTERESIS MOTOR MA 23 (illus.). Ideal for instrument chart drives, extremely quiet; useful low. Having a high starting torque a relatively high intertia load can be driven. $6 \mathrm{oz} / \mathrm{in}$, at I r.p.m. 240 volts
dial 50 cycles. 10 r.p.m. R I r.p.m. R \& L $\frac{1}{4}$ r.p.m. L, $\frac{1}{4}$ r.p.m. R, 1/5 r.p.m.R, 1/10 r.p.m. R; $1 / 12$ r.p.m., $1 / 20$ r.p.m., 1/40 r.p.m., $/ / 60$ r.p.m. r.p.h.; 1 r.p.m., $1 \frac{1}{2}$ r.p.m., $2-2$ way frictlon, $25 /$..

HYSTERESIS REVERSIBLE MOTOR. Incorporating two coits. Each coil when energized will produce
opposite rotacion of the output shaft, 240 volt 50 cycle, opposite rotation of the output shaft. 240 volt 50 cycle.
15 r.p.m., 6 r.p.m., $\frac{1}{2}$ r.p.m., t r.p.m., $1 / 6$ r.p.m., $1 / 10$ r.p.m., 120 vole 60 eycles $1 / 10$ r.p.m. 80/r, reduced to $30 /=$

DP II RESET TIMERS (illus.)
 240 v. 50 cycles, 6 sec. $45 /$. .
DELAY TIMER BN 42 consisting of D.P.D.T. Relay, a pilor dury swirch, $\begin{array}{ll}\text { a clutch motor and an actuator, } & 240 \\ \text { volt } 50 \mathrm{c} / \mathrm{s} & 10 \mathrm{mins} ., \\ \end{array}$ volt $50 \mathrm{c} / \mathrm{s}$
$\mathrm{sec} . ~$
$\mathrm{E} 4 / 4 / \mathrm{m}$
CYCLE TIMER (illus.). Repeats a set cycle or sequence of switching sircuit is energised. $1 \mathrm{~min}, 2 \mathrm{mins}$ 3 mins, 4 mins., 5 mins. $35 /$.

REPEAT CYCLE TIMERS VJCB. Incorporating a timing motor which rives one or more cams to actuate for set periods of time. 8 microswitches. One minute
 E4/4/-.
 HAYDON ELAPSED TIME INDICATOR. Type D22543.P4.
$40 \mathrm{~V} ., 50$ cycles. E4/4/.. PULLIN D.C. MOTOR PM/J, 24 v., 45/-.

SPERRY LI695I A.C. Tacho., with 600: I gearbox.
SPERRY L18477 A.C. Tacho., $£ 12 / 10 /=$
MUIRHEAD SYNCHRO, 11 CT46-26 volt, $66 / 10 /-$ MUIRHEAD SYNCHRO II CX $4 \mathrm{~b}-26$ volt, $£ 6 / 10 \%$
EAC DIGIVISOR Mk. II DIGITAL EAC DIGIVISOR Mk. II DIGITAL
READOUT DISPLAY. Ideally suit. READOUT DISPLAY. Ideally suit.
able for use in conjunction with tran. able for use in conjunction with tran.
sistorised decade councing devices. sistorised decade counting devices. only ${ }^{2}$ few milliwatts of power are VISOR incorporates dits. The DIGI

scale through an optical system and the resultant single plane image is projected on a screen. The translucent scale is made to represent Digits $0-9$. Speciflcations: 6.3 vole,
500 microamp. Image height 7 in . Size $4 \frac{9}{18} \times 2 \mathrm{~g} \frac{8}{8} \times 1 \frac{5}{8} \mathrm{in}$. 500 microamp. Image he
5 Gns. List price $8 \frac{1}{2}$ gns.


SOLARTRON PRESSURE SCAN.
NING VALVE NT 999 3-This enables a single pressure transducer to be used to measure up to 24 separate pressures in one second. For inlet pressure range of 0.1 p.s.i. to 40 p.s.i. depending on which transducer is used. valve and is exposed to the unknown pressures in order. This unit is offered with Vactric synchronous motor 400 cycle $30 / 60$. 8,000 r.p.m., with gear. in manufacturer's original packing Offered at a fraction of the original cose. \&49/10/-. A variety of Size If motors and gear this will have to be undertaken by the intended purchaser.
SELENIUM "KLIP-SEL" TRANSIENT VOLTAGE SUPPRESSOR. Type KLGDBF 234 V 15 amp . Size 2in. sq., 25/-.

PORTABLE SINGLE PEN RECORDER BY RECORD ELECTRICAL vity 500 mA . Coil res. 1.53 k . Fully interchangeable gears available to make wide range of chart speeds. 250 y Brand new-comp. with chart and ink. List over
 ELLIOTT PORTABLE SINGLE PEN RECORDER $3 \frac{1}{2}$ in, chart. Sensitivity 500 mA . I and 6 in . per hr .

EVERSHED \& VIGNOLE SINGLE PEN REEVERSHEO \& VIGNOLE SINGLE PEN RE
CORDING AMMETER. "Murday system." No 440972 . I5-0-15 M/A 620 .
EVERETT EDCCUM.
EVERETT \& EDGCUMBE " Inkwell Dwarf" Recor der, 0.1 \& 0.2 seconds F.S.D. $500 \mu \mathrm{~A} \frac{1}{2}$ in,-12 $i n$. per hour or $\frac{1}{2}$ in. $6 \frac{12 i n . ~ p e r ~ m i n u t e . ~ S i n . ~ c h a r t . ~ B r a n d ~ n e w ~}{\text { Sing }}$
EVERETT \&
Single Pen \& EDGCUMBE "' Inkwell Minor " Grapher Single Pen F.S.D. 185 Mv. D.C. Sin. chart. 220 v. D.C. ELII
5 mA complete with Sweep \& Ringle Pen Recorder. 1168 A . Voltage range $0.5 \vee 0-10 \mathrm{~V}, 0-25 \mathrm{~V}$., $227 / 19 /-$
EVERSHED \& VIGNOLE 12 Pen Recorder TD6804/2 EVER
£ 45.
SOUTHERN INSTRUMENTS TWO PEN RE CORDER M942C. Speeds $5,25,100 \mathrm{~m} . \mathrm{m}$. per sec D.C., I ke/s. Complete with Amplifier and 4 -speed gearbox. 889.
KELVIN \& HUGHES Two Pen Recorder, with amplifier, $£ 89$
TWO PEN RECORDER
Two pens activated mecha-
nically by $6 \mathrm{~K} \Omega$
Relay Deviation O.lin
Chart width 1.3in. Driven
by Sangamo Western 57 $\frac{1}{2}$ rev. per hr.* $87 / 10 /$-。


It should be noted a wide range of chart speeds can b achieved by the replacement of the Motor.
PRECISION HELICAL \& CONTINUOUS IN. STRUMENT POTENTIOMETERS BY COLVERN CLR 7304- 5 k . Continuous, 30/. CLR 6505-1 k., look. 35/-. C.C.L. 301-5 k. Plastic Film, 45/= 5 k. +5 k., 22 k. + $22 \mathrm{k}, 50 \%$. CLR $2402 \pm 10 \frac{1}{4}$ Turn, 2 watts 30 k ., $1 \times \frac{3}{4} \mathrm{in}$. dia., 30/0. CLR 2501/3-10 Turn, 5 wates. Tropically seal ed. 500 ohms, $5 \mathrm{k}, 30 \mathrm{k} ., 50 \mathrm{k}, 100 \mathrm{k} ., 45 \%$. $2601-10$ Turn, 0.4 watts perturn. Res. $+2 \% \mathrm{lin} .+0.1 \%$ । k., 3 k. 30 k., 100 k., $50 \%$. 1.5 k.-5 Turn, 45/
BECKMAN MODEL A- 10 Turn, 100 ohms, $100 \mathrm{k.}$, 50/-. BECKMAN MODEL A- 10 Turn, 25 ohms + 25 ohms, 100 ohms +100 ohms, 5 Turn, $80 /$, BECK MAN 7216-10 Turn $\frac{7}{\frac{7}{6} i n . ~ d i a, ~} 2 \mathrm{k} ., 60 /=$ Beckman Miniature Multi-Turn Dial, adj. up to 15 turn with sep-
arate brake locking lever, $\frac{7}{\bar{z}}$ in. dial, tin. spindle, $45 /$. SINEICOINE POTENTIOMETER By Kl, SINE/COSINE POTENTIOMETER. By Kelvin \& Hughes, SCP4 32 k . Brand new, £12/10/-. Ferranti Precision Conpe Type P4A. Size 15 , Seven Sections. Ganged, giving
seven different preodetermined values, $£ 25$. Colvern 10-Turn Instrument Dials, 10/6.
MINIATURE PRECISION SAM-
PLING SWITCHES, $100 \cdot \mathrm{CHAN}$.
NEL. Consisting of 4 tracks of
r.p.m. Driven by 2 Vactric P. 238 6.3V.D.C. @ 5,000 r.p.m. through a Vactric gearbox 11 H7-1, Gear ratio
80.2 : 1. Max, torque 2ib, inch, 615 .


48-CHANNEL. Consisting of 2 tracks of 24 contaces driven by E.M.I. precision motor and gearbox, 6.3 V D.C. through an E.M.I. S. 31 gearbox. E $6 / 10 /$.

HIGH TEMPERATURE PRESSURE TRANS-DUCER-Type NT4-317, by Solartron. Highly accurate and stable performance. Suitable for uses in explosives and mining reasearch, moulding, pressing and extrusion research. High temperature environmental instrumen* tation, ete. Available in the following pressures only:
$0-75$ p.s.i. $100,150,160,250,500$ absolure. $1,000,1,500$, $0-75$ p.s.i., $100,150,160,250,500$ absolure. $1,000,1,500$,
5,000 p.s.i. Gauge $0 \pm 150$ p.s.i. differential, $£ 19 / 10 /$. 5,000 p.s.i. Gauge $0 \pm 150$
SE LAB LINEAR ACCELERATION TRANS DUCER. Type SE 55/A $\pm$ IG. E19/10/- Brand new SE $150 / 8 / 5945 \pm 5$ p.s.i. with Demodulator amplifier, E29/10/-
EDISWAN stabilised and regulated power supply 200-400 V.H.T.@ $200 \mathrm{M} / \mathrm{A} .6 .3,6.3,6.3$ L.T. $£ 9 / \mathrm{l} 9 / 6$. Power pack 800 V. $250 \mathrm{M} / \mathrm{A}, \mathrm{E} 4 / 10 /-$. AlRMEC N310 High speed Data Punch, 6120.
BC 221 FREQUENCY METER. $125-20 \mathrm{~m} / \mathrm{cs}$. Complete with calibration charts. E29/10\%.
MUIRHEAD WIGAN DECADE OSCILLATOR D638A. $659 / 10$
SOLARTRON CD 7II S.2. Double beam oscilloscope 669/10\%.
SOLARTRON CD 523 S. D.C. to $10 \mathrm{~m} / \mathrm{c}$. 655 COSSOR $1049 \mathrm{Mk}, ~ I I \mathrm{~L} . \mathrm{E} 39 / 10 \%$
COSSOR 1035. E27/10/
MARCONI VALVE VOLTMETER TF 428B/1. Frequency response on probe $10 \mathrm{kc} / \mathrm{s} / 3.100 \mathrm{Mc} / \mathrm{s}$. Five A.C. I.P. Input IMS Acc. $亡 2 \%$ or 00.2 V . Size $10 \times 16 \frac{1}{3}$ $\times 9$ in. $-151 \mathrm{bs} . \mathrm{c} 9 / 10 / \mathrm{A}$. $2 \%$ or 20.2 V . Size $10 \times 16 \frac{1}{2}$

ELECTRONIC BROKERS LTD., 8 BROADFIELDS AV., EDGWARE, MIDDX. 01.989892

SWANCO PRODUCTS LTD.
gamap AMATEUR RADIO SPECIALISTS Q3PQQ NEW Equipment


Mang items in stocond includine EqUIPMENT

 Your etaquirle
Full Service Facilties-recejery renaligned, trausumitters nervicerl.
Illustraied Catalogu* 7/6 post paid.

## SWANCO PRODUCTS LTD.

Dept. W 247 Humber Avenue COVENTRY

[^11]Coventry 22714 Hours: Mon.-Sat. 9a.m.-6p.m

## CLASSIFIED ADVERTISEMENTS

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 6$ per single col, inch.
LINE adverilsements (run-on): $7 /$ - per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /$ SERIES DISCOUNT: $15 \%$ is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, $c / 0$ Wireless World Dorset House, Stamford Street, London, S.E. 1
No responsibility accepted for errors.

## SITUATIONS VECCANT

 ions.- sorvice and imstallation, good salary and condiGeampian reprodocers, Ltd. Hanworth Trading ngineers for development
子uipment. ${ }^{\text {work }}$ Apply Dept. RB. zuipment.-Apply Dept. RB.
$\mathbf{M}_{\text {testing. or }}^{\text {EN experienced in industrial electronic equipment }}$ testing. or radio and television servicing, are,
equired as testers: West Midlands area. - Box WW2015, Mireless World.
 a.m. to 5 p.m.: 5-day week- EIIzabethan Electronics:
td. Crow Lane, Rompord, Essex. Tel. Romford 64101 $\mathrm{E}^{\text {LECTRONIC engineer required }}$ for development impliffers: housing may be arranged for applicants rom ihe G.L.C. area.-Apply Harvey Hall, Thetiord.
[240
vorrolk. oriolk.
A FULL-TIME technical experienced salesman reA quired for retall sales; write giving detalls of age,
Brevious experience, salary required tc- The Manaser,
Henry's Radio. Ltd.。 303 , Edgware Rd., London. W.
WEST London Aero Club invite "A" and "B Iicensed enginers uith capita and/or neces-
iary equipment to commence Radio Workshop. Alterary equipment to commence Radio Workshop. Alter-
a ative propositions may be considered. Write full pative propositions may be considered. Write full
petalis to-White. Waltham Airfleld, near Maidenhead. serks.
A VACANCY will arise in September next for an paration of students for thare of the technical pre-
plicants must possess a P.M.G. Certificates; applicants must possess a P.M.G. Certincate and a sound or teaching experience desirable but not essential.-
applicat:ons should. in the first instance, te made Applicat:ons should. In the first instance, te made
in writine to Principal. Wireless College. Colwyn Bav. in writine to Principal. Wireless College. Colwyn Bav.
north Wales.
[2014
TNSTALLATION and Service Engineers, Ekco ElecEiectronic Systems for Hospitals. Alrfields and Industrlal Establishments. Expertence in any of the following fields is desirable. microwave equipments transis-
torised pulse circuiting communication/Navigational torised pulse circuiting communication Navigational meclianical engineering. The base location is at Rochtord. Essex, a pleasant district to live. Write to Pel'sonnel Manager. Ekco Electronlcs Ltd.. Southend-onELECTRO interesting a nollaboration with members of the academic staff. The work will provide ideal experience for a keen electronics developer. The post is tenable for one year in first instance. is desirable but not essentlal. Salary up to $£ 1.335$ p.a. depending on qualifications
and expertence. Application forms from Establishment Officer. University College London, Gower St,
W.C.1. quoting Chem, 4 .
[2016 EDITORIAL assistant.-Assistant to the Secretary of quired primarily as an editorial assistant for the Societr's Journal; an interest in and an ability for
teclinical writing in the radio and electronics field teclinical writing in the radio and electronics feld
eisentlal but experience in publishing is not required: e:sential but experience in publishing is not required:
the position will also involve committee administration and correspondence initlal salary $£ 1.000-£ 1.200$ p.a.;
minimum age 21 . Write, givlng details of age, qualiminimum age 21 .-Write. giving details of age, quali-
fications and experience, to A. J. Kenward, 33 , Bedficatlons and experience, to A. J. Kenward, 33, Bed-
fold St.. London. W.C.2. marking the envelope
[2027

## SITUATIONS WANTED

 sewers and underwater structures. desires similar rostBOOKS, INSTRUCTIONS, ETC:
MANUALS. circuits of all British ex-W.D. 1939-45 R.E.M.E. instructions: s.a.e. for list. over 70 types-
W. H. Bailey. 167 a . Moffat Road. Thornton Heath. Surrey. CR4-8PZ.
TAPE to disc transfer, using latest feedback disc Hioh cutters; Eank. Hawk St., Carnforth. Lancs.

SERVICE \& REPAIRS
R ADIOGRAMS, transistors and amplifiers repalred: where in Greater London. Tel. Hemel Hempstead 3915. Gregg Radio. Ltd.. Hemel Hempstead. [243 REPAIRS.- Our modern service department equipped and fiutter meter and multiplex stereo signal generatol.
is able to repair Hi Fi and tape recording equipment to manufacturers" standard.-Telesonic Ltd . 92 . Tot-

FOR SALE AND WANTED ADVERTISEMENT FORM TURN TO PAGE No. 129

## LLCCTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic electronics with experience in electronics, Radar, Radio and TV or similar field. Position is permanent and pensionable. Comprehensive training, on full pay, will be given to successful applicants. Please send full details of experience to
the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

## Civilservice

## RADIO AND ELECTRONIC ENGINEERS

BOARD OF TRADE (CIVIL AVIATION)
Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and installation of advanced electronic equipment-including the latest type of radar, telecommunications, navigational aids, etc
QUALIFICATIONS: Degree with 1st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ae.S.
AGE: 23 and normally under 35 on 31st December 1968 (extension for Forces and Overseas Civil Service).
SALARY (Inner London): On the scale $£ 1,160-£ 2,092$ depending on age and qualifications. Pensionable appointments. Good prospects of promotion.
APPLICATION FORMS from Civil Service Commission, Savile Row, London, W.I. $X 2 A A$, quoting S/85/ASO.

## Vacancies in the SCIENTIFIC CIVIL SERVICE include: <br> COMMUNICATIONS-ELECTRONIC SECURITY DEPARTMENT,

Eastcote, Middx.
PHYSICISTS and ELECTRONIC ENGINEERS (graded E.O./A.E.O.) to be members of teams engaged on telecommunications research and development. Duties would be allocated where possible to suit the interests and aptitudes of individuals and might include development of communications equipment, exploitation of new techniques such as M.O.S. integrated circuits, designs of digital circuits, conducting and interpreting complex measurements of both audio and radio frequency signals, and the use of computers to aid various research tasks. Relevant experience essential.
QUALIFICATIONS: Degree, H.N.C., or equivalent in appropriate subject. Under 22, minimum quatification is G.C.E. in five subjects, including two Scientific/Mathematical subjects at "A" level or equivalent level.
SALARY (Outer London): E.O. (minimum age 26) £1,440- £1,809; A.E.O. ¢659 (at 18)£878 (at 22)- $£ 1,092$ (at 26 or over)- $£ 1,318$.
Prospects of permanent pensionable appointments.
APPLICATION FORMS from the Recruiting Officer, Communications-Electronic Security Department, 8 Palmer Street, London, S.W.I.

## PROOF AND EXPERIMENTAL ESTABLISHMENT

Eskmeals, Bootle Station, Cumberland.
ELECTRONICS ENGINEER (graded E.O./A.E.O.) as Instrumentation Officer to assist in the supervision of the Instrumentation Group at Eakmeals, which is responsible for operational and data-processing techniques associated with a missile tracking radar and on-line digital computer system; velocity measurement by doppler radar and optical screen methods; various recording tasks using kinetheodolite, camera, UV and magnetic tape techniques; and timing of a variety of high speed events, e.g. fuse functioning and rocket firings. A knowledge of electronics and previous experience of instrumentation of field trials desirable. Minimum age of A.E.O. is 22.
Unfurnished married accommodation or furnished single accommodation will be available.
QUALIFICATIONS: Degree, H.N.C., or equivalent in appropriate subject.
SAIARY: E.O. (minimum age 26) $£ 1,365-£ 1,734$; A.E.O. $£ 803$ (at 22)- $£ 1,017$ (at 26 or over)- $£ 1,243$.
Prospect of permanent pensionable appointment.
APPLICATIONS to Ministry of Defence, CE2 $(f)(A D)$, Northumberland House, Northumberland Avenue, London, W.C. 2.

# Goveromment oi tambia REQUIRES TELECOMMUNICATIONS TECHNICIANS 

for the General Post Office, on contract for one tour of 36 months in the first instance. Commencing salary according to experience in scale Kwacha 2292 rising to Kwacha 3216 -a year (EStg.1337-£Stg.1876) plus Inducement Allowance of £Stg. 506 rising to $£$ Sig. 615 a year. Gratuity $25 \%$ of total salary drawn. A supplement of $£ \mathrm{Stg} .175 / 215$ a year is also payable direct to an officer's home bank account. Both gratuity and supplement are normally tax free. Free passages. Quarters at low rental. Children's education allowances. Liberal leave on full salary or terminal payment in lieu. Contributory pension scheme available in certain circumstances. Special terms of service apply to serving civil servants including employees of the General Post Office whose applications must be sub-
mitted through their own Establishment Division/Head of Department.

Candidates should have had a sound technical education and possess City and Guilds Certificates or equivalent in telecommunications. They should preferably have ten or more years training and practical experience in one or more of the following branches Carrier Systems; HF and VHF Radio; Telegraph Machines; Mixed duties covering these branches.
Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.I., for application form and further particulars, stating name, age, brief details of qualifications and experience, and quoting reference M2K/62gr6/ WF

# CHAILENGING OPPORTUNTIIES in CANADA 

Radio and Electronic Technicians with desire to see more of the world can find rich rewards by joining Canadian Marconi Company. Technicians are required for maintenance duties on Northern installations.

Successful applicants will enjoy minimum salaries of $\$ 7,704$ plus first-class prospects for rapid advancement and further substantial rises during the first year. There are also genuine opportunities for promotion to supervisory grades with salary ranges of over $\$ 13,500$ per annum.

Food and accommodation is provided free for the employee (no family accommodation) in additlon to heavy duty clothing. Assistance with air passage is available.

A chance of a lifetime is offered to accrue substantial savings.
CAN YOU QUALIFY?

Formal training and experience in maintenance of communications type equipment is required with special emphasis on:

Microwave<br>Tropospheric Scatter<br>Communications Systems<br>Telephone and Carrier (Multiplex)

If you have three or more years' experience in installation or maintenance on this type of equipment together with recog. nized qualifications, l.e. City and Guilds, Higher National, the answer is Yes! Interviews will shortly be held in London and possibly in the provinces. Please send brief career details, quoting WW 2988F to Mr. D. S. Howell, c/o Directorate of Personnel, English Electric Company Limited, Strand, London, W.C. 2.

## CANADIAN MARCONI COMPANY

# Technical Authors 

We require qualified and experienced Technical Authors to work on the documentation of a variety of new projects covering a wide range of advanced Avionic Systems including Automatic Flight and Navigation Control systems, digital controlled electronic displays, and associated Test Equipment.
The essential requirement is experience in writing to ATP, ATA specifications and the ability to produce work of a high calibre. Educational requirements up to H.N.C. standard.

Please write or telephone for application form to:-
The Personnel Manager,
Elliot Flight Automation Limited,
Airport Works,
Rochester, Kent.
Telephone Medway 44400, Extension 64.

## ELIIOTI-AUTOMATION <br> AN ENGLISH ELECTRIC COMPANY

## Power Unit Type PP.3911/FLR-9


 type voltage regulators uning 152 Nl 1022 transist ora in the 100 v . supply and 3 In the 26 v . suyply. silicon diodes are used in the rectifer circs. The A.C. supply employn a servo driven variac in the pria circ. of the L.T. tran. This can be adjuated over the range 5.5 to 10 v., all supplles
 pull-out drawers. supplled in very good coulltion, teated. Full specifeationk available on request.
Price: £26. plus $\mathbf{3 0} /$ - carr.


## Power Unit Type 3614/FLR-9

I/P $120 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. O/P 10 v . D.C. at 20 amps the $0 / \mathrm{P}$ ts highly stabilised and can be ailjurtel over the range 9 to 12 v . at 20 amps, ripple at full loadl lens than 10 mil. $/ \mathrm{r} .2$ meters are fitted to
read $\mathrm{O} / \mathrm{P}$ volts and current and $\mathrm{A} . \mathrm{C}$. and $\mathrm{D} . \mathrm{C}$. circ. trips are fitted. The $0 / \mathrm{P}$ can be ailjustel read $0 / P$ volts and current and A.C. and D.C. circ. trips are fitted. The $0 / P$ can be ailfustell from front panel by means of combined pot and varisc, urew nerien type regulator with $72 \mathrm{~N}^{2} 14$ for USAF. In good condition and tented.
Price: \&16, pius 15/- carr.
IND. UNIT 1207/FLR-9
This la a digital diaplay unit bultt intn a 19 in . rack panei $3!\mathrm{in}$. high by 17 h . deep. There are on the front panel, giving number 0 to 9 , thin, high mand work on \& $\%$. Each number tube hax
 trausistors to control it 2 N 404 and 2 N 1184 . Thene are mounted on plug-in boards, ouse buarcl to each tube with 20 transintors on a board, he. each unit has 4 plug.in boarids with at total of Price: £8, plus 10/- carr.
Single tubch with transistor hoaril and pluga, price $50 /$ each, phun $4 / 8$ poutage.
R.F. AMP NO. 4

This is the V.F.O. and P.A. section of the Army No. 53 Tx and covers the freq. range 1.2 to
 current, Ac. c/o relay is fitted and unit in intended to work into a djpole Ach. Ext. Anpplles of $1.5 \mathrm{Kv} .0400 \mathrm{r} ., 230 \mathrm{~V}$. A.C. and 12 ri. D.C. are required. Unit ean be operated whith trie 813 removed to bring $1 / P$ power down to $150, w a t t s$, supplied new and crated with eire.

20/-cart.
MINIATURE UNISELFCTORS
Coil 600 oh in 50 v.. contacts 1 pole 11 way 3 bank; maile by Clare \& Co. U.8.A. ex egutipment. Price: 18/6, plus 3/- post.

## POLARISED RELAYS

They have 2 coils of 1.8 K ohm each. contacts 1 pole $\mathrm{c} / \mathrm{o}$ with dist cover. Both contacts and magnets can be adjusted and moving contact wilh ntay in elither pualition. These call be put to
use in the construction of a scope callbrator and $50 \mathrm{c} / \mathrm{s}$ mpuare wave generator, ctre. and ittdise in the construction of a Bcope callbrator and $50 \mathrm{c} / \mathrm{x}$ whare wave generatno, chrc. and ittPrice: 10/- plus $1 / 6$ post.

## P.C.R.RX

These are a 6 valve plus rectifier Long, Med. and S.W. Rx covering S.W. fitn $18 \mathrm{Mc} / \mathrm{A}$. They have internal speaker socket for phonen, tone contrul. Ae trimimer, slow motion drive. Supplled fitted with $200 / 250$ x. P.U. ready
Price: £8/10/-, |li us $12 / 6$ carr.

SEND HOR FREF LIST:
B. SLATER, Esq., 55 Handsworth Road, SHEFFIELD \$9 4AA

required now for vital work in

## Air Traffic Control

Join the National Air Traffic Control Service, a Department of the Board of Trade, and play a vital part in the safety of Civil Aviation. Work on the latest equipment in Computers, Radar and Data Extraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments in the South of England, including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be $£ 828$ (at 19) to $£ 1,076$ (at 25 or over); scale maximum $£ 1,242$ (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career Prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.


## Field <br> Engineering Division

## Instructors

to teach computer service engineering to trainees. Previous computer engineering and instruction experience would be an advantage.

## Installation Planning Engineers

to advise customers on site preparation. Mobility essential and liaison experience useful.

Ref: B

## Technical Authors

to prepare technical documentation for maintenance purposes. Ability to write clear, concise English essential. Ref: C

## Commissioning Engineers

to install and commission System 4 machines. Mobility essential and high technical standards are required. Ref: D

## Maintenance Development Engineers

to devise and develop maintenance aids for System 4 machines. Qualified engineers with experience on large scale electronic projects preferred.

[^12]RESEARCH \& DEVELOPMENT

## Electronic Engineers

( $£ 1.300$ to $£ 2,000$ p.a.)

## THE WORK

needs electronic development engineers for application of latest computing techniques and design of digital and analogue circuits and systems, also for ElectroOptical system, Servo system. Weapon and radar simulation system design and development, and feasibility studies.

## YOUR QUALIFICATIONS

should include a degree or H.N.C. or equivalent, experience coupled with enthusiasm, ability and willingness to take responsibility in the development of new products, and a practical and creative mind.

## YOUR REWARDS

will be a salary and promotion commensurate with ability, a wide range of interesting work, an opportunity to gain exceptional experience, and stability of employment in an expanding company.

## THE COMPANY

designs and manufactures complex flight simulators and electronic teaching aids for world-wide markets and is the largest company of its type in Europe. It is situated in pleasant rural surroundings at Crawley convenient for London and the South Coast. If you are interested in a worth-while career, apply to:
H. C. Hall, Personnel Manager,

REDIFON LIMITED, Flight Simulator Division,

## Gatwick Road, Crawley, Sussex. <br> Telephone: Crawley 28811

## REDIFON 娄

A Member Company of, the Rediffusion Organisation

# British Solomon Islands REQUIRE TELECOMMUNICATIONS ENGINEER 


#### Abstract

for the Posts and Telecommunications Department, on contract for one tour of two years in the first instance. Commencing basic salary in scale equivalent to $£$ Stg. 1042 rising to $£$ Stg. 1993 a year, liable to British Solomon Islands Income Tax. In addition an allowance ranging from $£$ Stg. 716 to $£$ Stg. 1160 , normally tax free, will be paid direct by the British Government to an officer's bank account in the United Kingdom. Gratuity $25 \%$ of total salary drawn. Free passages. Terminal payment in lieu of leave. Generous Education Allowances. Contributory pension scheme available in certain circumstances. Candidates should possess the Final City and


Guilds Certificate in Telecommunications and have a good knowledge of the operation and expansion of Strowger telephone exchange equipment. Membership of the Institute of Technician Engineers and broad experience of the installation and maintenance of H F Cornmunications equipment, associated receivers and test equipment in a supervisory capacity will be an advantage.
Apply to CROWN AGENTS, M. Dept., 4, Millbank, London, S.W.I., for application form and further particulars, stating name, age, brief details of qualifications and experience, and quoting reference $\mathrm{M}_{2} \mathrm{~K} / 6 \mathrm{r} 637 / \mathrm{WF}$

## Computer Engineering

NCR requires additional ELECTRONIC, ELECTRO-MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of $£ 900 / £ 1150$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday; pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, N.W.2. quoting publication and month of issue.

Plan your future with

## COMMUNICATION ENGINEERS

We are expanding our Broad Band laboratories again because of the world-wide success of our new range of Solid State U.H.F. and Microwave equipments. This provides excellent opportunities not only for the specialist but also for ambitious, young engineers with some experience in this field.
Please apply to:

## Personnel Manager,

Pye Telecommunications Ltd., Newmarket Road, Cambridge.
Phone: Cambridge (OCA3) 61222.

## LECTURER IN ENGINEERING

## GOVERNMENT OF KENYA

Qualificasions: Degree in Engineering or Science or City and Guilds Telecommunications Technician's Certificate Final Level, with membership of a recognised professional Institute or an equivalent engineering certificate. Also experience in Television and Sound equipmene including Cameras Lighe Distribution Systems, Video Tape, Telecine and Film equipment.

Duties: To lecture to operational and engineering staff up so she standard of the Ordinary Diploma or City and Guilds Final Certificate.

Terms of Appointment: Age limit SO years, on contract for one tour of 24 months. Basic salary scale (caxable) \& Kenya 1,299 co 1,671 (E Sterling 1,SIS to 1,948). Directly paid Inducement Allowance (noneaxable) (Sterling 848 . 50 9S6 which will be paid by British Government direct to officer's bank account outside East Africa. Terminal gratuity $\mathbf{2 5} \%$. Free family passages, etc.

Candidates, who must be nationals of she United Kingdom or the Republic of Ireland, should apply, quoting RC 237/95/04 giving full names, age, quali-
ficacions and experience.

## MINISTRY OF OVERSEAS DEVELOPMENT

Room 301,
Eland House,
Stag Place
Victoria,
London, S.W.

We are looking for young Irishmen with a knowledge of electro-mechanics to train as Data Processing Customer Engineers - a career which calls for a good deal of ambition and confidence. Is this what you're looking for? Here are the facts:
As a DPCE you will eventually work on some of the world's most advanced computer systems.
Your salary will be very good, with plenty of opportunity for promotion to senior posts. It is IBM policy always to promote on merit.

There are valuable benefits including a non-contributory pension scheme, free life assurance and sickness benefit.
You will get a really thorough training on modern computers, and this will include opportunities for advanced computer training in Europe or the U.S.A. To qualify you need to be between 21 and 27 and have some radio/radar or telecommunications experience. (A radar course with one of the armed forces would be ideal).
In short, this is an exciting opportunity to start on a really go-ahead career in a new environment: IBM Ireland is expanding fast so your chances of promotion in a short time are excellent.
Please write giving details of age, education and experience to: The Personnel Officer, IBM Ireland Limited, 28 Fitzwilliam Place, Dublin 2, quoting ref: DP/WW/033.

IBM

## Engineer: we need your kind of know-how in Ireland.

DAMAGED instruments, local repairs cheaper: location Midlands; multi meters, insulation etc.. Speedily, expertly, repaired; quotations by return: send instrument to: Beeston Instrument Services, Ltd. 7., City Rd., Beeston, Nottingham. Tel. Nottm.
250273.

Metalwork all ypes cabinets chassis racks M etc. to your own specifcation. capacity avallable for small milling and capstan work up to 1 in bar. PHILPOTT'S METALWORKS. Ltd.. Chapman St.. Loughborough

## ARTICLES FOR SALE

COLOUR. Colour TV components, scans, delays, p.c. Wymondham, Nfk. Lists.-Forgestowe, Ketteringham. FERROGRAPH record/playback amplifiers, \& 15 : power units tor above, £5; extra carr. 12/6.Bancroft, 71. Leysholme Cres.. Leeds, 12. 1237 SCHOMANDL frequency meter FD1, with FDM1 conbest offer.-Box WW238, WIreless world.

## COUNTY BOROUGH OF LUTON TELECOMMUNICATIONS TECHNICIAN

Applications are invited for the post of a Telecommunications Technician in the Borough Architect's Department for servicing ground to air equipment at Luton Airport. Applicants experienced in the servicing of Decca 424 Radar, Marconi AD 210C Direction Finder, Mufax facsimile reproduction equipment and I.L.S. equipment and holders of appropriate H.N.C. certificate preferred. The duties will involve shift working.
Commencing salary within Technicians Grades 4/5/6 ( $11020-$ C 1665 per annum) according to qualifications and experience. Housing accommodation considered. Reasonable removal expenses paid.
Forms of application may be obtained from the Chief Executive Officer and Town Clerk, Town Hall, Luton, Beds, to whom applications should be submitted as soon as possible.

## HIETRRNIC MAINTENAMCE ENGINEFRS

Due to expansion, the Installatlon and Maintenance Division of E.M.I. Electronics Limited has a number of vacancies for Engineers. They will be engaged on the maintenance of a wide range of electronlc instruments, closed circuit and broadcast studio television systems, and automation equipment.
Applicants should have had several years' experience of the maintenance of electronic equipment, and these vacancies would appeal to engineers with industrial experience or a services background. Some travelling will be necessary for certain positions.
Excellent commencing salaries and staff benefits.

## Fanduchiteris

Applications giving concise career and personal details to:-
M. Waters. group personnel deparment E.M.I. LIMITED - BLYTH ROAD • HAYES - MIDOX

## EMI

W.W./6./68.
$V_{\text {acuen }}^{\text {ACcientific }}$ pumps, gauges, etc. recorders, general V. N. Barrett \& Co., Ltd., 01-654 6470 . ${ }^{\text {scientifc }}$ and laborator World's smatlest wireless mlerophones (bugs). £5/10, rifle bost free.-Billex w.W.233, Wireless World. VACUUM impregnation or casting equipment; 6 -galdon. complete with pump, gauges, etc., brand nex. \&120.-V.N. Barrett \& Co., Ltd. O1-654 3972. 12020 EDDYSTONE 770 R V.H.F. receivers, $20 \mathrm{mc} / \mathrm{s}$ to $165-$ ea.-Coal-Salt, Marine Radio Diviston. Fish Dock Rd.
Grimis. Tel. Grimsby 5346 . Grimisis. Tel. Grimsby 5346 .
EDDYSTONE EB36, 3 months old, with maker's Chtianantee, plus joystlck and tuner: unwanted Christmas giift. bargain: 853 .-Write Stiles, 2. Dale-
garth Gardens. Purley, TWO Pye U450L U.H.F fixed $T$ Py Pye U450L U.H.F. fixed stations, as new: two used condition: Pye Scalamp electrostatic voltmeter. unused; offers.-Box WW2023. Wireless World. $240^{\circ}$ taut band 1 mA meters, English. Electric type


Graduate or HNC Electronics Engineer to develop circuits for Electronic Instruments.
High and low voltage techniques involved. Bags of scope for enthusiasm and initiative. Experience of Electron Optics an advantage.
Work in our Laboratory in serene rural setting 30 rail minutes from Central London.
Write or phone.
JOHN HADLAND (PI) LTD.
New House Laboratories, Bovington, Herts.
Tel: Hemel Hempstead 2303/4/5

## ELECTRONICS INSTRUCTOR

Due to our expanding interests in electronic calculating machines and small computers, we have a vacancy for an additional instructor to join our team based in Central London. After a comprehensive training period, he will assist in the progressive training of service engineers, both from the U.K. and overseas, on the digital techniques used in our equipment. He must also be prepared to carry out training courses abroad at a later date.

The successful applicant will not necessarily have had experience with electronic calculating machines, but he will have a sound knowledge of basic electronic principles and practical experience in electronics, radio, television, radar, or similar fields.

Previous experience as an instructor is not considered to be absolutely essential, but might well be an advantage. We are most anxious to find someone who has the ability and a real desire to teach fellow technicians.

Anyone interested in this vacancy is invited to send full details of his qualifications and relevant experience to Mr. D. D. Davies, Sumlock Comptometer Ltd., The Island, Uxbridge, Middlesex.

## NORTH THAMES GAS

## TECHNICAL ASSISTANTS

## TO THE

 COMMUNICATIONS OFFICERare required in the Building and Property Maintenance Department at Fulham, S.W. 6

Two vacancies are in the general field of telecommunications and a wide knowledge of G.P.O. and subscriber-owned private exchanges and equipment is necessary. Candidates must be able to plan, specify and see through to completion P.A.B.X., P.M.B.X. and P.A.X. installations, and private circuit networks for both speech and telemetry.

Applicants should have at least five years general experience and some knowledge of telecommunications traffic is desirable.

The third vacancy is in the general field of radio communication, of which applicants should have at least three years experience.

Knowledge of operation of fixed to mobile, short range hand held, and fixed to fixed for telemetry and data transmission systems on both V.H.F. and U.H.F. is necessary. The ability to analyse and give detailed assessment of circuitry and components and to prepare specifications for complete schemes and to supervise contracts is essential.

Applicants should be prepared to travel throughout the Board's area, and a car allowance will be paid in appropriate cases.

The salary will be within the range $£ 1,295-£ 1,535$ per annum.

Applications stating age, qualifications and experience, should be addressed to:

```
Appointments Officer, North Thames Gas,
30 Kensington Church Street, London, W. 8 quoting reference WW/3820.
```


# RADIO INSTRUCTORS 

## Aircraft Systems

## OVERHAUL/MAINTENANCE/OPERATION

If you have thorough experience in the Radio/Radar engineering field you can use your knowledge to advantage as an Instructor in the technical training of ground and flying staff at BOAC's Training Centre.
The Radio/Radar systems used in modern commercial aircraft employ the latest techniques and for these interesting and responsible appointments you must be skilled in one or more of the following areas: Radio Communications (MF to UHF), Radar Systems, Radio/Radar Navigational Aids.
You should preferably also have proved your teaching ability-but if not we are prepared to train you if you can express yourself well.
It would also be an advantage to hold the City \& Guilds Final in Telecommunications or HNC (Elect) or better
The salary range is from $£ 1,592$ to $£ 2,008$ per annum with additional payment for suitable academic qualifications.

There is an excellent pension scheme together with opportunities holiday air travel.

If you are interested in a first-class career'in training with one
of the world's great airlines write at once to:-
Manager Selection Services (WW25)
8UAC, RO. Box 10, Heathrow Airport-London, Hounslow. Middillesex.


COUND in attic, collector's item or ancient modern GOUND in atcic, 60 year vintage, commercially mad recejver V $\mathbf{Y a}$, superb condition, ancillary equip.; best recer over \&io.--Box WW 236 , Wireless World.
TINSLEY Drysdale potentlometer with phase-splitting K. unit type 4337, galvanometer type MS2 1618, £240 the lot: B.P. L. megometer model RM $160 / 2$, £49; all RANSISTORS, Siemens BC109Cs for sale, guaranteed to specifacations. HFE 290-900 $1000 \mathrm{FF} 2 /$ a.w.o. Gd., c.o.d. $\mathbf{1} / 6$. P . Pinnock, 114 , Keslake Rd


FOR sale, cathode ray tubes; we have 606 tested For sathode ray tubes of G.E.C., Mazda, 20th Century and Mullard manufacture; $£ 150$ or near offer for the lot, or if desired a detailed list can be obtained from the following: D. W. H. Jackson, 25, Victorian Grove,
Stoke Newington, London, N.16.
[2022 $W$ ELL-KNOWN units by leading makers! Oscillo-WeLL-KNOWN units by leading makers! Oscillofrom $£ 20$ to $£ 195$; second-hand but in good condition; a.c. mains operated; $31 / 2$ in screens, twin beams, long persistence C.R.T.s on some models: few only not 25 \& missed.-(Dept. PRM), Lottenham Court Rd. Wir Optronics, Ltd. 25
$\&$
$\&$

## WESTREX COMPANY LIMITED

have vacancies for the following skilled personnel:
ELECTRONICS ENGINEER conversant with solid state audio amplifier and logic circuit design to co-ordinate development including construction and testing of prototypes.

TESTER/INSPECTORS for audio frequency type of work for Q.R. \& C. Department.

ELECTRO MECHANICAL TESTER/INSPECTORS of teleprinters and high speed tape punches for Q.R. \& C. Department. We also require applications of same calibre for field maintenance and installation work; vacancies exist in many major towns.

Please apply in writing stating the vacancy which interests you, giving full details of experience and career to date, to :

> Secretary, Westrex Co., Ltd.,
> 152 Coles Green Road,
> London, N.W.2.

## DAMAGE AND DEFECTS

 RESEARCHSOLID STATE PHYSICS DIVISION, atomic energy research establishment, harwell

A vacancy exists for an Assistant Experimental or Experimental Officer, who will be required to set up and carry out a wide range of experiments involving both irradiation by high energy particles of samples in order to produce radiation damage and study of by optical absorption. He will be required to make use of cryogenic techniques and io service as d mainain an e.pr. spectrometer with its associated elecronic equipment
The minimum qualification for the post is five G.C.E. passes including English language at "O" Level and two scientific or mathematical subjects at " $A$ " Level, but preference will be given to those with degree (or equivalent). In addition candiaates suniques involving vacuum ronic and optical equipment. ppperience of elec ron spin resonance apparatus is desirable but not essential.
Starting salary will be at a point on the scales £625- $£ 1,335$ or $£ 1,465-£ 1,860$ depending upon age and experience. The successful candidate may be eligible for Authority Housing or Assisted House Purchase.

Application forms and further details may be obtained from:

Appointments Section 'A,' A. 5240/45, A.E.R.E., Harwell, DIDCOT, Berks.

## SEMICONDUCTORS - SAVE fff's

Do you spend hours seeking your best buy or that hard-to-find device? COMPLIST shows at a glance comparative prices of all 600,ypes of semiconductor isted in this issue of WIRELESS W ORLD and IC's etc. Send $2 / 6$ (post free) for this month's COM PLIST or $£ 1$ for a year's issue Specimen copy and detailsfree - send 6d. S.A.E. to:-

COMPLIST (W) P.O. BOX. CHELTENHAM, GLOS

## STICK TO YOUR CUSTOMERS!

Self-Adhesive Service Labels with your NAME and PHONE NUMBER
On all your Sales, Servicing, Repairs, etc.
Size $2^{\prime \prime} \times 1^{\prime \prime}$. Two colour. 3 day delivery. 35/- per 1,000.
Samples: PERMARK (W), Station Grove, Wembley, Middx.

## ASSISTANT ENGINEER

for CLOSED
CIRCUIT TELEVISION
Assistant engineer required to maintain and operate 1" helical scan machines in Recording Centre of rapidly expanding C.C.T.V Company. Salary to commence at $£ 1,350$ p.a and rising after six months satisfactory service to $£ 1,500$ plus pension scheme.

## Apply to.

The Technical Director,
Television Applications Limited,
9-11 Windmill Street,
London, W.1.
Tel: Mus 3521.

## LECTURER IN WORKSHOP PRACTICE

## GOVERNMENT OF KENYA

Qualifications: Ordinary diploma in Mechanical/Electrical Engineering or its equivalent and a minimum of three years' experience teaching use of hand tools, lathes, machinery soldering, etc.
Duties: To instruct at engineering and tradesmen's levels all forms of workshop practice.
Age Limit: Up to 50 years.
Terms of Appointment: On contract for one term of 24 months at salary (subject to local income tax) in the scale £Kenya 1,1281,440 (£Sterling 1,316-1,680). In addition directly paid Inducement Allowance (nontaxable) £Sterling 800-909 will be paid by British Government direct to officer's bank account outside East Africa. Terminal Gratuity $25 \%$. Free family passages, etc.
Candidates, who must be nationals of the
United Kingdom or the Republic of Ireland, should apply quoting RC 237/95/06 and giving full names, age, qualifications and experience, to:-

## MINISTRY OF OVERSEAS <br> DEVELOPMENT,

Room 301,
Eland House, Stag Place,
Victoria, London, S.W.I.

## REDIFFUSION (EAST MIDLANDS) LIMITED CASTLE BOULEVARD, NOTTINGHAM.

Senior Equipment Engineers are urgently required to be responsible for the maintenance of high quality sound and vision receiving site equipment; control equipment; high power audio amplifiers; and vision repeater equipment etc. associated with extensive H.F. Wired Vision Networks. Applicants should have a good knowledge of the principles and practice, of the transmission of vision and sound signals along cables; R.T.E.B. or City and Guilds examination qualifications are desirable but not essential. The salaries offered are from $£ 1,100$ and upwards depending upon the applicant's age, experience and qualifications and the Company may assist towards removal expenses etc. Please write to the Chief Engineer for application forms.

## ULSTER:

the new university SCHOOL OF HUMANITIES

## LANGUAGE LABORATORY TECHNICIAM

To service, maintain and operate three 12 booth laboratories and associated equipment.
Applicants should have knowledge of solid state circuitry, radio/tape servicing and ability to use frequency test and measuring equipment.

## Salary: £722-£1,007 or $£ 987$ - £1,225

Applications with details of training and experience, and the names and addresses of two referees should reach the Registrar, New University of Ulster, Coleraine, Northern Ireland, by 31st May, 1968.

## REDIFFUSION

# TELEVISION FAULTFINDERS 

We have vacancies for experienced television faultfinders in our Production Test Departments. R.T.E.B. Final Certificate or equivalent qualifications or experience are required, a knowledge of transistor circuitry will be an advantage. These positions will be staff appointments with all the expected benefits.
Applications to

Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades). Phone: 01-397-54|I

VIDEO and audio tape $1 / \operatorname{lin}$ and $1 \ln \times 2,400 \mathrm{ft}$, huke please write for details; aiso $10 y / 2$ in video precision spools for $1 / 1 \mathrm{in}$ or 1 in tape, $17 / 6$ and $20 /=$ respectively: Mullard Ferrox cores LA1, LA2509, 7/6; LA5 LA6, La7, 12/6; Plessey vibrators. type 1214, 10/-; Plesses Plessey ganged potenilometers $20 \mathrm{~K}+20 \mathrm{~K}$ Linear, $7 / 6$ : valves N78 10/- EM84 $5 /-$ Hivac mains neons ibullt: in resistor) with 6 in length $t w i n$ lead, Ideal for elec. each or $12 / 6$ dozen (also available 110V) i transistors.
Mullard OCz05 5/-, R.C.A. 2N410 2/6, Cv2389 (OC71) Mulard OCE05 5/-, R.C.A. 2N410 $2 / 6$, CV2389 (OC71) 100 for $10 /-;$ electrolytic capacitors, 125 MFD .500 V
$4 \ln \times 13 / 9 / 2000 \mathrm{MFD} .50 \mathrm{~V} 2 \ln \times 1 / 4 \ln 7 / 6.50+50+$
 electrolytics, very wide selection, discount on quanti-
ties. Introducing a new rotary wafer switch which is ties. Introducing a new rotary wafer switch which is fitted with sprung nylon locator, 1 pole- 12 way, 3 pole4 way. 4 pole-3 way, 2 pole- 6 way, etc-, $3 / 6$ each, or our prices are reasonable, our service is good and we are world-wlde exporters and oversas agents, etc. a vallable.-Elekon Enterprises, 34, Baker St., London, avalable.- Elekon Enterprises, 34, Baker St., London,
W.1. $01-4865553$.

## AIR FORCE DEPARTMENT

## ARE YOU:

## * INTERESTED IN DOING VITAL WORK ON R.A.F. RADAR AND WIRELESS EQUIPMENT?

* Aged 19 and over and of good educational standard (G.C.E. " O " level passes in English language, Maths and Physics. City and Guilds Telecommunications Technicians Certificate or equivalent qualifications are-desirable though not essential).
* Experienced in radio/radar servicing.


## IF SO, WE OFFER:

* A first class opening as a Civilian Radio Technician. Present salary starting at up to $£ 1,076$ p.a. (according to age) and rising to $£ 1,242$, and good prospects of promotion (top posts in excess of $£ 2,000$ p.a.).
* Five-day week. Three weeks 3 days annual leave at the start rising to 6 weeks, plus public holidays.
* Excellent prospects of a good pension. If you do not qualify for a pension, then you receive a gratuity if you leave after at least 5 years service.
Vacancies exist at R.A.F. Sealand, near Chester, but also arise from time to time at other R.A.F. Stations throughout the country.
Applicants should apply for further information and trade test to :-


## MINISTRY OF DEFENCE (CE3h(Air)) <br> SENTINEL HOUSE, <br> SOUTHAMPTON ROW, <br> LONDON, W.C. 1

or call at No. 30 MU Sealand between the following times:-
Monday-Friday 8.30 a.m. to 4 p.m.
Saturday $\quad 8,30 \mathrm{a} . \mathrm{m}$. to $12.30 \mathrm{p} . \mathrm{m}$.

## MICROWAVE SYSTEMS TEST ENGINEERS

Pye Telecommunications Ltd. require at their factory at Haverhill, Suffolk, an Engineer to take charge of an expanding systems' engineering team. There are also vacancies for Senior Engineers to become members of this team for work on production test of Broad Band Solid State Link equipment.
Experience of video and/or multi-channel telephony is desirable, preferably with knowledge of semi-conductor work. Preference will be given to applicants holding a good academic qualification.
Attractive salaries will be offered and some assistance with housing in this expanding town may be possible.
All applications will be treated in the strictest-confidence.
Apply in writing giving details to:
The Works Manager
PYE TELECOMMUNICATIONS LTD.
Colne Valley Road, Haverhill, Suffolk.

## Radiomobile

BRITAIN'S CAR RADIO SPECIALISTS
have a vacancy for a fully experienced

# SERVICE ENGINEER 

The successful applicant will be employed in our Main Service Workshop repairing:-

Transistorised \& Valve operated Car Radios,
Car Tape Recorders,
Coach Radio \& P.A. Equipment,
and also in our Service Garage on installation work and the servicing of equipment al ready fitted to vehicles.
After gaining considerable knowledge of our products, duties, in the future, may be extended to include mobile Field Service work.
This position carries a good commencing salary together with above average fringe benefits.
Applications should be made in writing to:
The Personnel Manager,
RADIOMOBILE LIMITED,
Goodwood Works,
North Circular Road,
London, N.W.2. GLA 017।
A subsidiary of SMITHS INDUSTRIES LTD.

## SCIENCE RESEARCH COUNCIL

 RADIO \& SPACE RESEARCH STATION DITTON PARK, SLOUGH, BUCKS.Experimental Officers/Assistant Experimental Officers are required to assist in work on the propagation of radio waves through the lower atmosphere. Duties will include the design and development of apparatus, its use in carrying out experiments and the analysis of the results obtained. Successful applicants may be required to work either on experiments using an 82 foot steerable aerial for studying VHF and UHF propagation or on the propagation of millimetre and sub-millimetre waves.

## Qualifications:

University or C.N.A.A. degree, H.N.C. or equivalent qualification. If under age 22 , five G.C.E. passes including two science or mathematical subjects at " $A$ " level (or equivalent).

## Salaries

A.E.O. between $£ 584$ and $£ 1,243$.
E.O. between $£ 1,365$ and $£ 1,734$.

Send for details to:-
The Secretary, S.R.C. Radio and Space Research Station, Ditton Park, Slough, Bucks.


## MINISTRY OF TECHNOLOGY CAREER OPPORTUNITIES FOR GRADE I CRAFTSMEN

Opportunities exist for Craftsmen in the Inspection Division on work involving inspection of electronic equipment.

PAY for Grade I Craftsmen is $£ 20.18 .0$ (London), $£ 20.5 .0$ (Provincial) fora 40-hour, 5 -day week.
PROSPECTS: Promotion to higher grade posts with salaries up to $£ 2352$ for men who possess or obtain the necessary qualifications e.g. O.N.C.
QUALIFICATIONS: A recognised appren-
ticeship or equivalent experience and training.
HOLIDAYS: 2 weeks ( 80 hours) rising to 3 weeks ( 120 hours) after 5 years' service in the grade, plus $8 \frac{1}{2}$ days' public and privilege holidays.
Applications, giving brief details of apprenticeship and/or experience,,should be sent to:
Industrial Personnel Officer, Ministry of Technology, Room 217, Baynards House, I-13 Chepstow Place, London W.2.

## Inner London Education Authority

Norwood Technical College
Telecommunication \& Electronics Department

Required for September for duties in the Department of Telecommunication and Electronics:

2 SENIOR LECTURERS
2 LECTURERS GRADE II
1 LECTURER GRADE I
Applicants, who would be concerned mainly with the work of the full-time Diploma and Certificate Courses, should have good general academic qualifications in Radio and Electronic Engineering and allied subjects. Recent high-level teaching and/or appropriate industrial experience is expected, particularly for the Senior Lecturer and Lecturer Grade II positions. Additionally, specialist knowledge of, and familiarity with modern techniques in, for instance, Computer Engineering, Microwave and U.H.F. techniques, Radio Transmission and Reception, Television Broadcasting, Radar and Radio Navigational Aids, would be an advantuge. Participation in research and development project Assistance tow.
Assistance towards removal expenses may be given.
Salary Scales:
Senior Lecturer; $£ 2,280-£ 2,595$.
Lecturer Grade II; £1,725-£2,280
Lecturer Grade I; £1,035-£1,735, with additions for qualifications; starting point depends on qualifications, training and experience.
The London Allowance of $\mathbf{£ 7 0}$ should be added to all the above scales.

Application forms, returnable within 14 days of the appearance of this advertisement, are obtainable from the College Secretary.

## ULTRA ELECTRONICS LTD.,

## Urgently Require

## TEST ENGINEERS

must be experienced in the testing and fault finding of complex electronic equipment.

## PROTOTYPE WIREMEN

Applicants must be able to work from circuit diagrams and verbal instructions.
Both vacancies offer a high rate of pay, good conditions, canteen social and sports club.

Write or phone:-<br>Personnel Officer, Ref. WWI, Ultra Electronics Ltd.,<br>Western Avenue,<br>Acton,<br>London W. 3<br>Telephone: 01-992 3434.

ENGINEERS Have you considered a career in Technical Authorship? If you have sound experience in electronics or communications and ability to write clear concise English we would train applicants as Technical Authors. The commencing salaries range from $£ 1,300$ to $£ 1 ; 700$ depending on experience with the prospects of high future rewards and earnings.
Box No. 5039, c/o Wireless World

## SENIOR STATION ENGINEER <br> Education Department Government of Hong Kong

Duties; To advise on the detailed planning of the engineering requirements of the Hong Kong Government Television Studio complex, and 10 Supervise the day to day organisation of the Service
and co-ordinate the transmitting of the television programmes. In addition to liase and advise on the programmes. In addition to liase and adise on the operations Staff and a local successor to take over the duties of the post.
Qualifications; Preferably under 45 years with either (a) B.Sc. (electrical enginecring) or equivalent degree or (b) A.M.I.E.E. or (c) H.N.C. At least 10 years post qualification experience covering rechnical design, development and organisation operation and maintenance of a television broadcast complex and the operation and maintenance of videotape recording equipment and studio cameras (preferably Pilumbicon).
Terms of Appointment; On contract for three years. Salary scale, $\$ 4,580$ per month rising by annual increments of $\$ 140$ per month to $\$ 5,000$ per month ( $£ 3,778, £ 3,894, £ 4,009$, $£ 4,125$ p.a.).
subiect to local income tax. Terminal grutuity $17 \%$ free family passages, generous leave and education allowance.

Candidates should apply quoting RC 237/81/01 giving full names, age, qualifications and experience to:-

The Appointments Officer,
MINISTRY OF OVERSEAS DEVELOPMENT.
Room 301, Eland House,
Stag Place, Victoria,
London, S.W.1.


## MARCONI

 INSTRUMENTS LIMITED ELECTRONIC TECHNICIAN ENGINEERSare required to fill a number of vacancies at our Works in St. Albans and in Luton. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them.into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to U.F.F.

The work involves calibration, testing and fault-Anding on telecommunications measuring instruments.

Entrants may be graded as Testers. Test Technicians or Senior Testers according to experience and qualifications. Our expanding production programme geared to our recognised export achievement provides security of employment combined with good prospects of advancement not only within these grades but.into other technical and supervisory posts within the Company.

Salaries are attractive and conditions excellent. The Company Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with re-location may also be given in appropriate cases.

Please apply in writing to:


The Personnel Manager,
Marconi Instruments Limited, c/o Directorate of Personnel(WW2890G). English Electric House, Strand, London, W.C.2.

## ELECTRONIC INSTRUMENT TECHNICIAN

We require a technician for the Instrument Section of our Engineering Group. Duties will include the design, construction and maintenance of specialised instruments for pilot scale food processing plant and our research laboratories. Location is Colworth House, near Bedford, which is a large food research centre supporting Unilever's food industries. Candidates should have HNC or equivalent. Starting salary will be determined by experience. The Company has a Superannuation Scheme which includes life insurance. We offer generous help towards relocation expenses for married men including removal expenses, legal and survey fees and help in obtaining house purchase loans.
Please write for an application form to the Assistant Staff Officer, UNILEVER RESEARCH LABORATORY, Colworth House, Sharnbrook, Bedford.

## 9 有 TELECOMMUNICATIONS

We have vacancies for Fault Finders, Testers, and Inspectors to work on interesting and advanced equipment includteresting and advanced equipment includ-
ing H.F. SINGLE SIDEBAND, V.H.F. ing Hir TELEPHONES, U.H.F. MINIRADIO TELEPHONES,
ATURE EQUIPMENT.
Transistor experience is essential. Vacancies exist at all levels and training will be given where necessary.
Apply: Personnel Manager,
CAMBRIDGE WORKS LTD. Haig Road, Cambridge.

## CITY OF BIRMINGHAM EDUCATION COMMITTEE

MATTHEW BOULTON TECHNICAL COLLEGE DEPARTMENT OF ENGINEERING, Sherlock Street, Birmingham, 5.
FULL-TIME COURSE IN RADIO, TELEVISION AND ELECTRONICS
The proposed course is intended for young men who are employed in or are intent on making a career in the Radio/Television Electronic Industries, particularly in the field of servicing.
The course will be of 9 months' duration, starting in September 1968, and will lead to examinations held by the C.G.L.I. and R.T.E.B.

Further details and application forms may be obtained from the Head of Department. E. L. Russell, Chief Education Officer

## SCIENCE RESEARCH COUNCIL

RADIO \& SPACE RESEARCH STATION DITTON PARK, SLOUGH, BUCKS

## MALE ASSISTANT <br> EXPERIMENTAL OFFICERS

are required for a three-year tour of duty at Stanlay, Falkland Islands, for operating and maintaining advanced apparatus for recording scientific information transmitted by telemetry from satellites (shift work). Married staff live in rent-free accommodation in modern well-furnished bungalows. Furnished bedsitting rooms are available for single staff

## Qualifications:

University or C.N.A.A. degree, H.N.C. or equivalent qualification. If under age 22, five G.C.E. passes including two science or mathematical subjects at 'A' level (or equivalent).

## Salary:

Salary whilst overseas on scale $£ 690$ per annum rising to $£ 1,368$; starting salary at age 21 years $£ 869$; at age 26 years or over, $£ 1,142$. Additional overseas allowances and shift pay.

Apply :-
The Secretary, S.R.C. Radio and Space Research Station, Ditton Park, Slough, Bucks


WANTED, televisions, tape recorders, radiograms, High St, West Bromwich. Staffs. Tel. Wes. 0186. 172 WanTED, Eddystone communication recelvers. pool, 4.P: Radio Services, Lel. Aintree 1445. 51. County Rd. Liver-
$[73$ WANTED, all types of communications recelvers Electrondics. Ltd.. Ashville Old Hall, Ashville Rd. Lon. Electronics. Ltd. Ashville Old Hall. Ashville Rd.. Lon.
don. E.11. Ley. 4986 .

EUSINESS OPPORTUNITIES
CENTRALLY situated in Portsmouth: modern wareCENTRALLY situated in Portsmouth: modern waresq feet plus a workshop of 700 sq feet whici long lease at £i.500 per annum exclusive: modern living accommodation is also available if required.Please apply by, watter to the Secretary, 3. Victoria
Crescent. Portsmouth.

## REDITOME

We have vacancies for.
Engineers experienced in the Maintenance and Operation of PROFESSIONAL TAPE RECORDING EQUIPMENT. A thorough knowledge of up-to-date audio techniques is essential
Also vacancy for Instrument Maker/ Mechanic.

Salary according to qualifications, age and experience

> Apply: Chief Engineer, REDITUNE LTD., Cray Avenue, Orpington, Kent.
> Tel: Orpington 32121

## TEST EQUIPMENT ENGINEERS

Applications are invited from experienced engineers to fill these vacancies which arise in our Industrial Products Group located at NEWHOUSE，Scotland．

As a Test Equipment Engineer you will－
$\star$ Develop，commission and install new test equipment．
＊Check，calibrate and test simple and complex electrical and mechanical equipment．
＊Consult with and advise engineers and production personnel in use of equipment．
＊Assist in design of new test equipment and techniques．
$\star$ Report and recommend on design and components．

Applicants should preferably be qualified to H．N．C．Standard with 2 years related experience or have had 5 years experi－ ence of special purpose production test equipment．

Assistance will be given with housing and removal costs where necessary．

Applications should be made，in writing， to：－

Personnel Manager HONEYWELL CONTROLS LIMITED

Newhouse Industrial Estate MOTHERWELL，Lanarkshire，Scotland

## English Electric Computers

## Computer Test Technicians

Continuing expansion of our new factory at Winsford，Cheshire，enables us to offer interesting and varied work to test technicians at all levels．The work involves the testing of electronic devices and the servicing and cali－ bration of test equipment．
If you have related experience in electronics， telecommunications or television，possibly acquired in H．M．Forces，we should like to hear from you．

Please write or telephone for application form：
Assistant Personnel \＆Training Manager， English Electric Computers（Ref．WW．5181）， Winsford，Cheshire．
Tel：Winsford 3456.

## B⿴囗十

## YOUR HOBBY COULD BE

## YOUR PROFESSION

BBC Television employs many Film Re－ cordists and Assistant Film Recordists in its Film Operations Department．
For young men between eighteen and twenty－eight，who are interested in imaginative，high－quality tape recording and are dedicated enthusiasts in the art of sound recording，there is a compre－ hensive training scheme which leads to a challenging and worthwhile career． Conditions of employment are generous and congenial and there are opportunities for travèl at home and abroad．

For further details and application form，write to Head of Appointments Department，P．O．Box IAA，London， W．I．（quoting reference 68．G．662．W．W．）．

## UNVEESSTY OF SOUTHAMPTON

Department of Chemistry
Applications invited for the post of Technician in the Instrument Section to assist In the servicing of electronic instruments and in the development of new equipment. While training will be given in the hand-
ling of specialised equipment, previous electronics and ling ortical experience is essential. Qualifications to electrical experience is essential. Qualifications to
O.N.C. level or equivalent desirable but consideration O.N.C. level or equivalent desirable but consideration
will be given to those with a suitable background in practicalelectronics. Salary on scale $£ 692$ rising to $£ 977$. Pension scheme.

## Deputy Secretary,

The University,
Southampton, S09 5NH.
Giving t
employers

## TECHNICAL AUTHORS

Contracts exist for the following authors: HAMPSHIRE: Electronic authors with digital and analogue experience. and solid state circuit experience, also Electro/Mechanical author with aircraft experience.
Please reply stating qualifications, experience and remuneration required to:

CALTHORPE ASSOCIATES,
Tabors Hill
Th Beddow,
Chelmsford, Essex
Tel.: Chelmsford 72872
$\mathrm{F}^{\mathrm{OR} \text { sale, }} \begin{gathered}\text { rebuilt television tubes, } \\ \text { complete }\end{gathered}$ business plant or
World.


## CAPACITY AVAILABLE <br> A IRTRONICS, Ltd., for coll winding, assembly and A wiring of electronic equipment, transistorised sub$\mathbf{S H E T}_{\text {HEE }}^{\text {metal }}$ work, chassis. cabinets, engraving  TRANSFORMERS, chokes and all types of coill wind-  <br> 

K INGSTON-UPON-HULL Education Committee. F.R.I.C.
FULL-TIME courses for P.M.G. certificates and the
Radian Radar Maintenance certificate-Information from
College of Coles
$\mathbf{R}^{\text {ADIO officers see the world. Sea-golng and shore }}$ September. Griments. Traine vacancies available. And April and
students. students. Stamp for prospectus. Wireless College.
Colwyn Bay. S TUDY radio, television and electronics with the City \& Gullds. R.T.E.B., etc. Also practical courses pectus to ICS (Dept. 442), Intertext House, London, 124
$\boldsymbol{T}$ and radio, A.M.I.E.R.E., City \& Guilds. R.T.E.B. thousand of passes; for full details of exams and home training courses (including practical equipment) in all
branches of radio. TV, electronics, etc.. write for 132 -
 Aldermaston Court, Aidermaston, Berks.
$\mathrm{E}^{\text {NGINEERS }}$ - A Tlon will bring you security and much better pay Elem. thon will bring you security and much better pay.
 Diploma courses in ail bronches of.C.E. Exams.
Mech.. Elec. Auto, Electronics. Radio. Comping Mech Eiec. Auto, Electronics, Radio Computers, FREE 132 -page guide: British Institute of Engineering Technology (Dept. 151K), Aldermaston Court.

## RECEIVERS AND AMPLIFIERS SURPLUS AND SECONDHAND

HRO Rx5s, etc., AR88, CR100, BRT400. G209, S640, | Ashville Old Hall, Ashille Rd.. London, E.11. Lev. |
| :--- |
| 4986. |

## TEST EQUIFMIENT - SURPLUS

SIGNAL generators, oscilloscopes, output meters, wave
voltmeters, irequency neters, multi-range meters,


## TECHNICAL TRAINING

CITY \& GUILDS (Electrical, etc.), on . Satisfaction For detalls of modern courses in Thousands of passes.


$\mathrm{B}^{\text {ECOME "' Technically Qualifed ". in your spare time, }}$
 City \& Guilds, etc.; highly informative 120 -page
Guide-iree.-Chambers
Colliege
(Depl. 837 K ), 148 . Holborn, Lur
P.M.G. Certificates, City \& Guilds and T.E.R.E. in Examinations. Also many non-examination courses in readio, TV and Ejectronics. Study at home witht subject ro-International Correspondence Schools (Dept.
443), Intertext House, Parkkate Rd., London, S.w.11.


#### Abstract

WiRELESS $\begin{gathered}\text { Servicing Manual." } \\ \text { M.I.E.E. } \\ \text { This is the tenth edition of acking, book }\end{gathered}$ Which M.I.E.E. This is the tenth edition of a book gulde to solving most of the problems that arise in the repair. maintenarice and adjustment of the modern radio receiver. In the present edition a major addi- tion is a chapter deyoted to transistors and trainsistor ton is a chapter devoted to transistors and trainsistor sets. The The author of Wideless servicing Manual is well known to is well known to a wide clrcle of readers as former editor of Electronic Technology and now of $!\mathrm{In}$ dustrial Electronics,"' His crisp, Iucid style makes this handbook of utmost value to the service man and a mateur allke. $25 /-$ net, $26 /-$ by post from Iliffe Books Lid.. Dorset House, Stamford st., London, Books S.E.1.


#### Abstract

BENTLEY ACOUSTIC CORPORATION LTD. 38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS Telephone PRIMROSE 9090 47 NORFOLK ROAD, LITTLEHAMPTOM, SUSSEX. Litelehampton 2043 Please forward all mail orders to Littlehampton




WW-129 FOR FURTHER DETAILS

## ADJUSTABLE HOLE \& WASHER CUTTERS The right tool for trepanning holes $\mathrm{I}^{\prime \prime}-12 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ in diameter <br> In our range of 17 In our rond Models <br> 

Write for illustrated brochure of our full range with straight or Morse taper $1-4$ or Bitstock shank.
AKURATE ENGINEERING CO. LTD. Cross Lane, Hornsey, London, N. 8 TEL. O1-348 2670

WW-130 FOR FURTHER DETAILS

## RESISTANCE WIRES

EUREKA.CONSTANTAN most Gauges Available

## NICKEL-CHROME

MANGANIN
NICKEL-SILVER

## COPPER WIRE

ENAMELLED. TINNED, LITX, COTTON AND SILK COVERED

SMALL ORDERS PROMPTLY DESPATCHED B.A. SCREWS, NUTS, WASHERS, SOLDERING TAGS, EYELETS and RIVETS TUFNOL and EBONITE ROD AND TUBES, BAKELITE PANELS. paxolin type tubes
send stamp for list. trade supplied
POST RADIO SUPPLIES
33 Bourne Gardens, London, E. 4 Telephone 01-254-4688

WW-131 FOR FURTHER DETAILS

## LAWSON BRAND NEW TELEVISION TUBES

Complete fitting instructions are supplied with every tube.
Terms: ĆW.O. Carriage and ingurance $10 /$.

## LAWSON TUBES

18 CHURCHDOWN ROAD MALVERN, WORCS.

Tel. MAL 2100

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.s.
"Century 99 " are absolutely brand new tubes throughout manufacrured by Britain's largest C.R.T manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Light output; logether with high reliability and very long life.
"Century 99 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1967.

2 YEARB FULL REPLACEMENT GUARANTEE WW-132 FOR FURTHER DETAILS


12"- $44: 10: 0$ 14 "- $5: 10: 0$ $17^{\prime \prime}-65: 19: 0$ $19^{\prime \prime}-16: 19: 0$ $21^{\prime \prime}-67: 15: 0$

## EXCLUSIVE OFFERS

LATEST TYPE, HIGHEST QUALITY 7 FOOT HIGH $x$ 24 INCH DEEP TOTALLY ENCLOSED 19 INCH RACK MOUNTING
DOUBLE SIDED CABINETS
having the following unique features

$\star$ Double aided the cabineta will lake rack panels
both aden, that is back and front and they are
drilled and bapped drilled and tapped
all the way down eqery tin. for thil purpose.

* Pitted "Inatantit" (World Patentu)
fully aduatable rack panel mounts both rertically and hotizontally reck paralla to be reconsed it donired Ther inutance, if The panela are
fitted with pro fited with pro-
jecting componenta and it it
detired to
it denired to enclo
then by doore
- All edger sad cornerin rounded.
$\star$ All interior attingo, tropicalised and suat proofed and
$\star$ Builh-in Cable Ducts-removable.
* Bailt-in Blower Ducto-remorable

Weatilated end innect prooled topn.

- Detachable aide panela.
- Full length instantif detachable doors Atted ea paguolette Fir
- Made in Cailformia, D. S. A., cont the American Government $£ 107$ belore devalamion.
Finlshed in aray primar and in new condition.


## OUR PRICE 226100

 (Carriart aztra).(Full lengh doora e5 mech axtra).
You do not reguire doorn if you are going to mount pancle front and back and do not with to enclose them.

| 40 -page list of over 1,000 diferant iteme in atock evalleble-keap one by you. |  |
| :---: | :---: |
| $\star 7$ Track Teletypawritori |  |
| $\star 7$ Track Tape Punchat |  |
| - X Xeinachuridt Light woikht typiag reperforators 5 track | $£ 350$ |
| * Philco CLR Microwave Kultiglex Radiophone | 22500 |
| *Rectifiers, 3-phare input 28 \%, 200 A. out | $£ 350$ |
| * Stelma Teleprinter Monitore | ¢3 0 |
| *Stelma Logic Units, octal baen | E1 10 |
| *Coline 748 Hol Tent Seta | P.U.R. |
| $\star$ Digital Indicatope $0-967$. | ¢2 0 |
| $\star$ Clicult Breakera, 25 ampr | 10 |
| *Hammarlund SP-600 receivera table model | 8850 |
| ¢ Oniselectora 10 bank 85 way ax anw | £1 15 |
| - Precision Maine Filler Unita | 10 |
| $\star$ Avo Geirer Counters | 8710 |
| * Illamiasted 4 rection Switchen | $\varepsilon 20$ |
| *Teletyde Model 28 Power Supply Unith | ¢5 10 |
| 4 Telotype Model 28 Function Bozar | ¢50 |
| * Pen Type Perional Donemeters 0/50R. |  |
| tR.C.A, $420 \mathrm{me} / \mathrm{s}$ B el. Yagi Beamert | ¢2 10 |
| * Motro-Vicheri Vacrum Pumpe 230 v. A. ©... | 82210 |
| * Beekman Reliopota 30Y and 50K |  |
| - R.C.A. 25 watt Projector sjeakeri, rance 1 mile | 81410 |
| *T. 200 Panadaptori $450 / 470 \mathrm{kc} / \mathrm{s}$. | $£ 300$ |
| * Marconi H.R. 22 SSE Receivert $2 / 32 \mathrm{mc} / \mathrm{m}$ | $¢ 80$ |
| $\star$ Marconi Hr, 22 ssB Receivera | $£ 750$ |
| t AN/UPM-17 Spectram Araly $10 / 16.000$ me/s | P.U.R. |
|  | P.ర.R. |
| $\dagger$ Mapda 500 w. Ultrazonic Cleasera | ¢85 0 |
| * Moaitor Type 58 and Power Uaiti $\qquad$ <br> Carriage axtra at cost on all above. | 8.710 |
| We have a large quantity of "bita and giecms" We cannot list-please send as your requirement we can probably help-all enguirien snswered. |  |
| - A - - ! |  |
| -RGANFORD - ORSET |  |
| WESTBOURHE 65051 |  |

## TELFORD авяhluseapt G:MTHIS

 Conilivile HEI

TYPE C

## WITH FIVE STAR FEATURES

$\star 35 \mathrm{~mm}$ film or paper $\star$ Continuous feed: $\frac{1}{2}{ }^{\prime \prime}$ to $75^{\prime \prime}$ per sec.
$\star$ Single shot mode: electrically operated
$\star$ Wide range of adaptors
$\star$ Choice of viewing systems

Type C is a camera in its own right and yet another building block in the Type A range. It is interchangeable with the POLAROID ir Film Back for 10 second prints.
ab Registered Trade Mark of Polaroid Corp. USA
Full details gladly supplied on request.

## TELFORD PRODUCTS LTD

## PRACTICAL TELEVISION CIRCUITS

The contents of this. New Edition cover Pre-Amplifiers, Receivers, Aerials, Test Gear, TV Baby Alarms, Deaf Aids for TV Viewers \& several novel \& useful items.
by R. E. F. Street
30/-
Postage 1/6
RADIO YEARBOOK 1968. I5/-.
Postage $/$.
Postage 1/.
RADIO AMATEUR'S HANDBOOK by A.R.R.L. 1968 ed. 45/. Postage $4 /=$.
RADIO AND ELECTRONIC MATERIALS by N. P. Bogoroditskii \& V. V. Pasynkov $63 /=$. Postage $1 / 6$.

RADIO \& ELECTRONIC HANDBOOK by G. R. Wilding. 17/6. Postage $1 /$.
COLOUR TELEVISION PAL SYSTEM bY G. N. Patchett. 40/\%. Postage $1 /$.

STRAIN GAUGES by H. K. P. Neubert 35/-0 Postage 1/.
MOTOROLA SWITCHING TRANSISTOR HANDBOOK 20/.. Postage $1 /$-.

MOTOROLA ZENER DIODE HANDBOOK 16/-. Postage 1/.

## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS
British and American Technical Books
19-21 PRAED STREET
LONDON, W. 2
Phone: PADdington 4185
WW-134 FOR FURTHER DETAILS

## AMERICAN

TEST \& COMMUNICATIONS EQUIPMENT
AN/APN-9 Loran Receiver Indicators, suitable for navigation or Scope conversion, price from £5. S.A.E. for details.
AN/ARC-33 Transceivers $225 / 399.9 \mathrm{Mc} / \mathrm{s}$. AN/VRC-19 F.M. Transceivers. $152 / 174$
AN/URC-4 \& MN/S. £10. $\begin{gathered}\text { ANC-11 } \\ \text { ies." }\end{gathered}$ AN/ARN-6 \& AN/ARN-44 Compass Re-
AN/TRC-8 U.E U.H.F. Radio Relay Sets.
AN/FPN-13 X band Radar Beacons.
CU-168/FRR 2/32 Mc/s Antenna Couplers. AN/URM-30 Test Set for AN/URC-4s. AN/PSM-6 Multimeters $1 \mathrm{~K}-20 \mathrm{k} \Omega / \mathrm{PV}$. AN/URM-61 Signal Generator $1.8 / 4 \mathrm{Gc} / \mathrm{s}$. T-216/GR Xtl Synthesizer Signal GenerXtor Synthesizer Signa
ato
$225 / 399-9 ~ M c / s . ~$
AN/UPM-11A X Band Range Calibrators.
AN-USM-24A Measuring Oscilloscopes.
TS-413C/U Signal Generators $75 \mathrm{Kc} / 40$ $\mathrm{Mc} / \mathrm{s}$.
TS-497B/UUR Signal Generator $2 / 400 \mathrm{Mc} / \mathrm{s}$.
TS-147A/UP Radar Test Sets.
TS-917A/CG (Stelma TDA-2) Telegraph Distortion Analysers.
ME-22/PCM Decibel Meters-45/+25 DBM
Tektronix 541, 543 \& 545 spare Tubes Type 5BHP2A. Price £14.
AN/UPM-19B Test Set for AN/APW-11.
I-177B Valve Tester.
I-193C Relay Test Sets.
LA-239 Measuring Oscilloscope.
BC-614( ) Speech Amplifier.
Manuals offered for most U.S. equipments (regret no list or U.K. pubs. available).

GENERAL CATALOGUE
$\star$
AN/103 1/-
$\star$
SUTTON ELECTRONICS
Salthouse, Nr. Holt, Norfolk. CLEY 289

## ALL GOODS GUARANTEED

CONVERTOR/BATTERY CHARGER. InPut 12 V DC. Output $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s} 170$ watt max. Input 240 V 50 c/s, outpur $12 V 5$ amp DC. Fully fused with indi-
cator lamps. Size $9 \frac{1}{2} \times 10 \times 4$ tin. Weight 19 lb .
 An extremely compact unit that will give many years
reliable service, supplied with plug and leads. Only reliable service, supplied with plug and leads.
f 4110 . $P$ \& $P$. $15 /$ extra. E4/10/-. P. \& P. 15/-extra.
As above-fully serviceable-perfect interior but soiled exterior case, \&3. P. \& P. 15/- extra.
DISTRIBUTED WIDE BAND AMPLIFIERS Various types, e.g. E.M.I. Type 2 C complete with power unit. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s}$ gain of 12. E8/10/- P. \& P. LI extra. RCA (British)
Type $1276 A 20 \mathrm{c} / \mathrm{s}$ to $500 \mathrm{kc} / \mathrm{s}$ internal stab. PU Type $1276 \mathrm{~A} 20 \mathrm{c} / \mathrm{s}$ to $500 \mathrm{kc} / \mathrm{s}$ internal stab. PU. \& $4 / 10 \%$ P. \& P. $\{1$ extra.
DYNATRON Type $100820 \mathrm{c} / \mathrm{s}$ to $500 \mathrm{kc} / \mathrm{s}$ gain of 16,000 . Internal stab. PU. E9. P. \& P. ©I extra. DEKATRON SCALERS/TIMERS. Various models, from $E 6-E / 2$.
BINARY/DECIMAL SCALER-99 scaled on neons followed by 4-digit resettable counter, $£ 9$. RATEMETERS. Various types available with or without EHT power supplies.
SCINTALLATION EQUIPMENT available PHOTOMULTIPLIERS EMI Type 6097 C , £I5. EMI Type 9530B New, boxed, $£ 30$.
E.T.T. stabilised power supplies from $£ 4$.
E.H.T. stabilised power supplies, from $£ 3$.

WRITE FOR DETAILS.
NUMERATORS, Type GRIOG, 2 tin , high figures requires 180 volts HT-base connections supplied and 4-DIGIT RESETTABLE hish seed $5 / 6$ each 4-DIGIT RESETTABLE high speed counters- 10 COIARTRON .000 Ohm col 10 DC, $22 / 6$ ea SOLARTRON stab. PU Type AS516 300 V 50 MA ,
E5/10/-. AS 517300 V 100 MA , ET/10/-. P. \& P. $10 /$ extra. TRANSISTOR OSCILLATOR-variable frequenTRANSISTOR OSCILLATOR-variable frequen-
cy $300 \mathrm{c} / \mathrm{s}$ to $1.5 \mathrm{kc} / \mathrm{s} 3 \mathrm{~V}$ output for 6 V DC operation. cy $300 \mathrm{e} / \mathrm{s}$ to $1.5 \mathrm{ke} / \mathrm{s} 3 \mathrm{~V}$ output for 6 V DC operation
Size 1 音 $\times 1 \pm \times 1$ in. Not encapsulated. Brand new Size $12 \times 1 \pm \times 1 \pm$
boxed, $11 / 6 \mathrm{ea}$.

| TRANSISTORS-Note remarks. |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{AFZ2}^{\text {a }}$ Mul | 4- ea. | BC711 | . |
| ABZ21 Mul. | 218 es. | 28301 Te | 81 ea. |
| OET885 M | 4-ea. | ${ }^{3} 8701 \mathrm{~T}_{\text {Tex }}$ |  |
| 0 C 44 Mul . | 1/- ea. | V30/201P | 48 ca . |
| ${ }^{0} \mathrm{C} 71$ |  | v6 |  |
| valves |  |  |  |
|  |  |  |  |
| 2021. | $3 / 6 \mathrm{ca}$. | CV236 |  |
| 6АК3 | 3-er. | CV287 | 5/6ea. |
| 6BR7 | 8/- en. | CV345 | 10/ |
| 60H6 | $3 / 6 \mathrm{ea}$. |  |  |
| 68N7 | 2/6 en. | CV448 | 4/6ea. |
| 128N7/B36 | 2/- ea. | CV858 |  |
| DL92/94 | 3/- ea. | $\mathrm{CV}^{2235}$ |  |
| E180F | 8/8 ea. | ${ }^{\text {CVF4007 }}$ | $8{ }^{8}-\mathrm{em}$ |
| EFP |  | CV4024 |  |
| R17 | 5/6 са. | CV4024 | 3/-ea. |
| R18 | 8/8 еа. | CV4064 | 12/6 еа. |

OSCILLOSCOPES-COSSOR DB1035, E20; 1049 £30; Hartley 13A DB, $£ 20$; Furzehill 0.100 , $£ 16 / 10 /-$. Carr. 30/. MARCONI Sig. Gen. $144 \mathrm{G} 85 \mathrm{kc} / \mathrm{s}-25 \mathrm{mc} / \mathrm{s}$, $£ 20$. Carr. El .
MARCON1 UHF Gew. TF5 $17150-300 \mathrm{mc} / \mathrm{s}$, $45 / 10 /$. Carr. Cl .
MARCONI valve millivaltmeter TF899, $£ 9 / 10 /$. P. \& P. 10/.

ARMEC valve millivolemeter 7846 in . rectangular 200 micro amp meter calibrated - 10 dB to +10 dB : +0-10MV; range: $-40 \mathrm{~dB} / \mathrm{XI} ;-20 \mathrm{~dB} / \times 10$; $0 \mathrm{~dB} /$ X100, E15. Carr.
AVO CT38 Electronic multimeter, leads and probe, E20. Carr, 15/-:
AVO Electronic rest meter, $E 12 / 10 / \ldots$ P. \& P. $10 /-$ (Hawker Siddeley) Type BIE 2114 By BLACKBURN. Auto decimal change. Extremely good condition. Complete with manual, 655 .
BROOKS CRYSTALS $500 \mathrm{kc} / \mathrm{s} 2,5,10 \mathrm{mc} / \mathrm{s}, 10 /$ - ea. RELAYS
Carpenters Type 5IA1/50.200T 0.75 ohm 200T 0.75 ohm, brand new, boxed 6/5 ea.
3,000 Series $5 \mathrm{k} / \mathrm{ohms}$, 2 -pole make HD contacts, $2 / 6 \mathrm{ea}$. Siemens sealed HS 48V spco type H96E, 3/- ea. Siemens miniature with dust cover, 6 -pole make or break 1,250 ohms. Brand new, boxed, $4 / 6$ ea. Bases, 2/-ea.
TRANSFORMERS. All 200/250 inputs. I8V 6 amps continuous rating tapped $9-0-9$ at $22 / 6 \mathrm{ea}$. I8V 12 amps at $£ 3$ ea.

## SELENIUM RECTIFIERS

Double bridge 12 V 6 amps continuous rating. Size $3 \frac{1}{2} \times 3 \frac{3}{4} \times 2 t$ in 9 plate, $8 / 6 \mathrm{ea}$.
Quad bridge 12 V 12 amps continuous rating 21/- ea. DIBES New CV448/CV425, 1/- ea.
4/6.
Cash with Order. Post paid over 10/-
CALLERS WELCOME

## CHILTMEAD LTD.

22, Sun Street, Reading, Berks.
No. Reading $65916(9 \mathrm{a} . \mathrm{m}$, to 10 p.m.)

Miniature key switches. (P.O. Lever Type 1000), centre off. $2 \mathrm{c} / \mathrm{o}$ each way. $7 / 6 \mathrm{ea}$.
RE-SETTABLE HIGH SPEED COUNTER ( $3 \times 1 \times \frac{3}{3} \mathrm{in}$ ) 3 digit. 12/24/48 v. (state which); $32 / 6$ ea. P.P. $2 / 6$. HIGH SPEED MAGNETIC COUNTERS $(4 \times 1 \times$ lin. $) 4$ digit. $6 / 12 \mathrm{v}, 24 / 48 \mathrm{v}$. (seate which), $6 / 6$ ea., P.P. $1 / \%$.
SOLARTRON OSCILLOSCOPES. CD7115, 650 carr. 70/CD643 £50, carr. 70/-; QD910 £75, carr. E5. Al units in first class condition Complete with R.F. AMMETERS 3 in . Rnd. $0 / 6 \mathrm{amp}$. $10 / \mathrm{ea}$. P.P. $2 / 6$ COPPER LAMINATE PRINTED CIRCUIT BOARD $\left(8 \frac{1}{2} \times 5 \frac{1}{2} \times\right.$ $\frac{1}{16}$ in.), $2 / 6$ sheet, 5 for $10 /$.
Also $11 \frac{1}{2} \times 6 \frac{1}{2}$ in. $4 /$ - ea., 3 for $10 /-$

```
BULK COMPONENT OFFERS
I00 Capacitors (latest types) 50pF to . 5 / F .
250 Resistors \frac{1}{4}\mathrm{ and }\frac{1}{4}\mathrm{ watt.}
250 Resistors \frac{1}{2}
I50 Hi-Stab Resistors, t. t and I watt.
 25 Vitreous W/W Resistors, 5%.
 12 Precision Resistors . 1% (several standards
 included).
 1 2 \text { Precision Capacitors 1 and 2\% (several}
 standards included).
 12 Electrolytics (miniature and standard sizes).
 ANY ITEM 10%,., ANY 5 ITEM5 E2
```

VENNER LIGHTWEIGHT ACCUMULATORS (I oz. Iz $x$ $13 x \operatorname{lin}$.) 2 v. $1.5 \mathrm{a} . \mathrm{h} ., 12 / 6 \mathrm{ea}$. (with electrolyte and charging inst.).
CARPENTER POLARISED RELAY 18,000 turns at $4000 \Omega$ IS/- (with base). ALL Types of G.E.C./5IEMEN5/ 5.t.C. Sealed relays stocked.

MAINS RELAY ( 240 v. A.C.) 12 H.D. make contacts, 20/. ea., P.P. $2 / 6$.
REED RELAYS (2 Herkons) 5.T.C. 2426-582-15, 2 make. $10-15$ vole coil, $15 /-$ ea
" 3000 " TYPE RELAYS (Ex. New Equip.) 10 for 25/ (our choice), p.p. 5\%.
COMPUTER LOGIC BOARDS containing 14 BCZII, 2 OCI22, 2 trimpots 20/- ea.; board containing 9 BCZII, tantelum caps. etc. $10 /$ ea.
TELEPHONE HANDSET (Type 706) $17 / 6$ ea., P.P. $2 / 6$.
ZENER DIODES 3 to 50 vole. $5 \%$. 1.5 watt. $3 / 6$; 10 wate, $5 / 6$ eá.
TELEVISION TUBES (Brand New) 19in. M47/IOW É eas: 23 in . A59/10W $£ 8$ ea. Carr. \& ins. 20/-. These tubes are B.B.C. monitor quality.
THYRISTOR LIGHT DIMMER/SPEED CONTROL modules and kits. 200 watt kit $27 / 6$, module $35 / 5 ; 500$ watt kit $37 / 6$, module $45 / \%$; 1000 watt kit $52 / 6$, module kit
$60 /$. P.P. $2 / 6$.
SILICON CONTROLLED RECTIFIERS (Thyristors) BTY87 (100r) 100 p.i.v. 12 amp., 15/- ea.i TBY91 (150r) 30/-: CR525/40 400 p.i.v. 25 amp., $60 /$; 25 CR5//20 200 p.i.v. I amp., 5/6; CR51/40 400 p.i.v. I amp., 7/6; CR53/40 400 p.i.v. $3 \mathrm{amp} ., 10 / \mathrm{ea}$.
SILICON DIODES R5220af 2/- ea., \&I doz.; R5240 3/- ea., 30/- doz: R5280 4/- ea. 40/- doz: $15103 / \mathrm{BY} 100$ $60 /-$ doz.; 15413 5 /- ea., $50 /$ doz.; R 5610 , $10 /{ }^{\text {4/ea., }}$ R5640 20\%- ea., R5812 40/- ea.; R5845 60/- ea.
CAR RADIO SPEAKER $7 \times 4 \mathrm{in} .3 / 5 \mathrm{ohm} .15 / \mathrm{ea}$. P.P. $2 / 6$. OSCILLOSCOPES Cossor 1035, EI7/10/; 1049, E20; OSCILLOSCOPES Cossor 1035 , $£ 17 / 10 / \mathrm{i}$. 1049 .
5 olartron D $300, ~ £ 20$, P.P. any unit $£ 2 / 10 /$.
E.M.I. MINIATURE RELAYS ( $24 \mathrm{v} .1 \mathrm{c} / 0$ ) $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \mathrm{in}$. Wt. $\frac{1}{2}$ oz. $7 / 6$ ea.
RECORD LEVEL METERS (by Smiths) $1 \frac{1}{2} \times \frac{1}{\frac{1}{2}}$. $15 / \mathrm{ea}$. P.P. 2/6.

SILICON BRIDGE UNITS. GEX541 80 p.i.v. 10 a. . $37 / 6$; EIIBD-RC 100 p.i.v. 10 a., 37/6; GA3I-A (Germ). 200 p.i.v., 2a., 20/-.
SORENSON VOLTAGE REGULATORS. TYPE LT-IO00-25. $\ell 25 \mathrm{ea}$.
P.C. CONNECTORS ( 13 way in-line), $4 / 6$ pair.

LARGE CAPACITY ELECTHOLYTICS. $2,000 \mu \mathrm{~F} .150 \mathrm{v}$. $4,000 \mu \mathrm{~F} .90 \mathrm{v}$. $7 / 6 \mathrm{ea} .6,300 \mu \mathrm{~F}, 63 \mathrm{v}$.; $10,000 \mu \mathrm{~F} 30 \mathrm{v}$.; $16,000 \mu \mathrm{~F} 15 \mathrm{v}$.; $25,000 \mu \mathrm{~F} 15 \mathrm{v}, 10 \%$ ea. All $4 \frac{1}{2} \times 2 \mathrm{in}$.
SPEAKER BARGAINS. EMI
SPEAKER BARGAINS. E.M.I. $13 \times 8 \mathrm{in}$. with double Tweeters 15 ohm, $65 /$. P.P. $5 /$.. As above less ohm, 45/- ea., P.P. 5/-
FANE I2in. 20 wate (Dual Cone), 95/s, P.P. 5/-.
TRANSFORMERS L.T. 50v. at 5 amp . 19-0-19v. $\frac{1}{2}$ amp. 25/F, P.P. 5/-.
TRANSFORMERS H.T. $625-0-625 \mathrm{v}$, at $110 \mathrm{~m} . \mathrm{a}, 6.3 \mathrm{v}$, at 2a.i. 6.3 v .
P. P.
$5 / \mathrm{h}$
ELECTRIC SLOTMETERS ( $1 /-$ ) 25 amp . L.R. 240v. A.C., 85/- ea.; P.P. 5/-
QUARTERLY ELECTRIC CHECK METERS, 40 amp. 240 v . A.C., 20/- ea., P.P. 5/-

STEP-DOWN TRANSFORMERS. PRI. 200/250v. 5ec. I. 115 v . at 1.25 amps ; 5ec. 2. 25v. at $5 \mathrm{amp} ., 25 /$ ea., P.P. 5/-.

## PATTRICK \& KINNIE

81 PARK LANE, HORNCHURCH, ESSEX
Tel.: ROMFORD 44473.

## "SKANDIA" VHFIUHF AM/FM

Handy / Portable / Mobile / Stationary Transceivers

"Mariner", 6 Ch. VHF FM, RF Output power 1 W . Portable Transceiver other items offered!

* Cassette stereo tape recorders, w/AM/ FM Stereo recelver, Portable \& Home
* Stereo 8 player w/FM Stereo receiver, Automotive \& Home


## Tomura Bussan Kaisha, Limited

 C.P.O. Box No. 118 Nagoya, Japan Cablo add.: "SKANDIA" NagoyaWW-13S FOR FURTHER DETALLS

## NEW PRICES ON NEW COMPONENTS

DISCOUNT:-10\% over ©2. 15\% over $\mathbf{E 5}$. ELECTROLYTIC CAPACITORS (Mullard) $8 \mu \mathrm{~F} / 4 \mathrm{~V}, 6.4 \mu \mathrm{~F} / 6.4 \mathrm{~V}, 4 \mu \mathrm{~F} / \mathrm{IOV}, 2.5 \mu \mathrm{~F} / 16 \mathrm{~V}, 1.6 \mu \mathrm{~F} / 25 \mathrm{~V}, 1 \mu \mathrm{FH}$ $40 \mathrm{~V}, 0.64 \mu \mathrm{~F} / 64 \mathrm{~V}$, $1 / 6 \mathrm{~d}$.
$32 \mu \mathrm{~F} / 2 \mathrm{~V}, 25 \mu \mathrm{~F} / 6.4 \mathrm{~V}, 16 \mu \mathrm{~F} / 10 \mathrm{~V}, 10 \mu \mathrm{~F} / 16 \mathrm{~V}, 6.4 \mu \mathrm{~F} / 25 \mathrm{~V}, 4 \mu \mathrm{~F} /$ $40 \mathrm{~V}, 2.5 \mu \mathrm{~F} / 6 \mathrm{FV}, 1 / 3 \mathrm{~d}$.
$64 \mu \mathrm{~F} / 4 \mathrm{~V}$. $50 \mu \mathrm{~F} / 6.4 \mathrm{~V}, 32 \mu \mathrm{~F} / 10 \mathrm{~V}, 20 \mu \mathrm{~F} / 16 \mathrm{~V}, 12.5 \mu \mathrm{~F} / 25 \mathrm{~V}$, $8 \mu \mathrm{~F} / 40 \mathrm{~V}, 5 \mu \mathrm{~F} / 64 \mathrm{~V}, 1 / 2 \mathrm{~d}$.
$125 \mu \mathrm{~F} / 4 \mathrm{~V}, 100 \mu \mathrm{~F} / 6.4 \mathrm{~V}, 64 \mu \mathrm{~F} / 10 \mathrm{~V}, 40 \mu \mathrm{~F} / 16 \mathrm{~V}, 25 \mu \mathrm{~F} / 25 \mathrm{~V}$, $16 \mu \mathrm{~F} / 40 \mathrm{~V}, 10 \mu \mathrm{~F} / 64 \mathrm{~V}, 1 \mathrm{j}$ -
$250 \mu \mathrm{~F} / 4 \mathrm{~V}, 200 \mu \mathrm{~F} / 6.4 \mathrm{~V}, 125 \mu \mathrm{~F} / 10 \mathrm{~V}, 80 \mu \mathrm{~F} / 16 \mathrm{~V}, 50 \mu \mathrm{~F} / 25 \mathrm{~V}$, $32 \mu \mathrm{~F} / 40 \mathrm{~V}, 20 \mu \mathrm{~F} / 64 \mathrm{~V}, 1 / 1 \mathrm{~d}$.
$400 \mu \mathrm{~F} / 4 \mathrm{~V}, 320 \mu \mathrm{~F} / 6.4 \mathrm{~V}, 200 \mu \mathrm{~F} / 1 \mathrm{~V}, 125 \mu \mathrm{~F} / 16 \mathrm{~V}, 80 \mu \mathrm{~F} / 25 \mathrm{~V}$ 。 $50 \mu \mathrm{~F} / 40 \mathrm{~V}, 32 \mu \mathrm{~F} / 64 \mathrm{~V}, 1 / 2 \mathrm{~d}$.
POLYESTER CAPACITORS (Mullard)
TUBULAR: $10 \%, 160 \mathrm{~V} ; 9.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033$,
 $400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}$, 6 d . ${ }^{\text {MF }} 6,800 \mathrm{pF}$ $0.01,0.015,0.022 \mu \mathrm{~F}$, 7 dd . $0.033 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.068 \mu \mathrm{~F}$. 10 d . $0.1 \mu \mathrm{~F}$, $11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2 \mathrm{~d}, 0.22 \mu \mathrm{~F}, 1 / 6 \mathrm{~d}, 0.33 \mu \mathrm{~F}, 2 / 3 \mathrm{~d}$. ${ }_{0.47} \mu$ F, $2 / 8 \mathrm{sd}$.
MODULAR, METALLISED: P.C. mounting, 250V; $0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}$, 8d. 0.068 , $0.1 \mu \mathrm{~F}$, $9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}, 1 / 5 \mathrm{~d} .0 .47 \mu \mathrm{~F}, 1 / 8 \mathrm{~d}$. $0.68 \mu \mathrm{~F}, 2 / 3 \mathrm{~d}$. $1 \mu \mathrm{~F}, 2 / 9 \mathrm{~d}$.
POLYSTYRENE CAPACITORS: $5 \%$, 160 V ; 10,12 , $270,330,390,470,560,680,820 \mathrm{pF}$, Sd . $1,000,1,500$, $2,200 \mathrm{pF}$, 6 d . $3,300,4,700,5,600 \mathrm{pF}$, 7d.' $8,200,10,000 \mathrm{pF}$, 8 d . $15,000,22,000 \mathrm{pF}$, 9 d .
POTENTIOMETERS (Carbon), miniature, lin. $x$ tin. spindle. Lin.; $100 \Omega$ to 10M. Log: 5 k to. 5 M ., $2 / 3 \mathrm{~d}$. SKELETON PREESET POTENTIOMETERS (Carbon): Lin. $100 \Omega$ to 5 M
Mounting. $(0.3 W), 1 /$-. Submin. ( 0.1 W ), IOd.
RESISTORS (Carbon film): $5 \% 4.7 \Omega$ to $1 \mathrm{M} .10 \%$, I.2M to IOM. E24 series.
tW, 2d. ea. (over 99 , I ld . ea.) 100 off per value, $13 / 9 \mathrm{~d}$ W, 2 td. ea. (over 99 2d. ea.), 100 off per value, $15 / 6 \mathrm{~d}$. W. Min. order value $5 /$-.

SEND S.A.E. FOR MAY 1968 CATALOGUE
DUXFORD ELECTRONICS (WW)
DUXFORD, CAMBS. (SAWSTON 3031)


Presenting part of a wide range of components used throughout the world by the electronics engineer in search of quality and reliability.
Further information available.


## RENDAR

INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-3 CABLES: RENDAR, BURGESS HILL

SLYDLOK FUSES 15 amp .230 r. D.C. 4v 04A.C., 1/6 ea., 15/- per doz.
HEADPHONES. Carbon H/Mics.. 5/- ea. P. \& P 2/6. DLRS Bal. Ar mature, 9/6, P. \& P. $2 / 6$. M/Coil
with ear muffs and wired M/C mic., $15 /(\%$ P. \& P. $3 / 6$. with ear muffs and wired M/C mic...15/-il P. \& P. $3 / 6$.
No. 10 Assembly M/Coil with M/Coil Mic., $15 / \%$ P. \& P. 4/6.

TANNOY LOUDSPEAKERS, Re-entrant type, ideal for public address, enclosed in waterproof wooden case, complete with steel baffe designed to, wroduce
directiomal reproduction at 5 watts. $7.5 \Omega$ 27/6 each. directiona
SMALL GEARED MOTORS. $12-24 \mathrm{v}$. D.C., reversible, with gears attached, $15 /-$ ea, i with blo
attachment, $12 / 6$ ea. , with fan assembly, $12 / 6$ each.
TRANSMITTER. BC 625, part of T/R. SCR 522 For spares only. Chassis only. Complete with valves SIEMENS HIGH SPEED RELAYS. H96B type, 50 +50 ohms. $6 /$ ea.. Type H69D. $500+500$ ohms, $6 /$ ea.: Type H96E, $1,700+1.700$ ohms, $7 / 6$ ea.

TELE L" TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete with Hand Gen. for calling each station. Supplied in new condition and tested. $70 /=$ per pr. Carr. $7 / 6$.
POST OFFICE TYPE RELAYS. $3,000 \mathrm{sers} .2$ c/o. 2 m . slugged coil 140 ohms; $2 \mathrm{c} / \mathrm{o}$. slugged coil 500 ohms. All at $6 /-$ each. Carr. $1 /-$-enhones, 2
3,000 Type, by Ericsson Telephon $1 \mathrm{br}, 2 \mathrm{mc}$. c/o plus $3 \mathrm{c} / \mathrm{os} 12 / 6$ ea, $2,000 \Omega 4$ c/overs
$10 /$ - ea, $500 \Omega 4$ c/overs, $10 /-$ ea. P. \& P. $1 /$ ea. MORSE KEYS. No. 8 assembly complete with leads terminals and cover, $6 / 6$ each. Carr. $2 /$
VIBRATORS. 12 v. 4 pin: 12 v. 7 pin. Syn. All 6/- each. Carr.
ELECTRO MAGNETIC COUNTERS. Register up to 9999 .
MODULATION TRANSFORMERS. 150 watts, suitable for pair 813 so driving 313 s . Size $6 \mathrm{in} . \times 5 \mathrm{in}$.
$\times 34$ in. Brand new, boxed. Price $27 / 6$. Carr. $4 / 6$. MEGGER INSULATION TESTER 500 v . with Con test range from 0.1 ohm to infinity. Bakelite case with hand gen. $£ 9$ ea. Carr. 5/6. 2 ranges, ex-Hoover

CUT OUT. 12 v. or 24 v. operation. Heavy duty silver contacts (5c 849), 7/6 ea. Carr. 1/6.
LIGHTWEIGHT HEADSET (part of " 88 " $W$. Set Equipt.) complete with Boom mic., carbon made to highest Ministry Spec. Moving coil earpieces. Our price $35 /$-set. Carr. 3/-. Also Super Lightweight hand
set, $17 / 6 \mathrm{ea}$. Carr. 2/-. 200 AMP. 24 v. D.C. GENERATORS. Type P3 ex-Air Ministry, £9/10/- ea. Carr. 10/6.
P.C.R. 12 V. VIBRATOR POWER PACKS. Brand new, 22/6 ea. P. \& P. 5/
CONDENSERS. Paper, Sprague I mfd. 500 v., $5 /-$ doz. . 1 mid. 1,500 v., 7/-doz. (incl. P. \& P.).
HEAVY DUTY TERMINALS. Ex-equipt. Black only, will take spade ter minals and wander plug. $1 / 6 \mathrm{pr}$. 15/- doz. pairs. P. \& P. 1/6 ea. doz.
FATIGUE METERS. 24 v. D.C. Consisting of $6 \times$ 496D Relays $500 \times 500 \Omega 2$. $6 \times 300 \Omega 2$ Electro Mag. RELAYS. 3,000 Series $2 \mathrm{C} / \mathrm{O} 2 \mathrm{M} .140 \Omega 2$ slugged coil, 6/2
$500 s 22 \mathrm{C} / \mathrm{O}$ slugged coil, 6/-. P. \& P. 1/- ea. item Also a few Ericsson Telephone 3,000 types in stock, AMERICAN AUTOPULSE 24 V PUMPS for mounting between carb. and main fuel tank as auxiliary
pump. New-30/- ea. P. \& P. 5/-. 7 g.p.h. Size pump. New-
$7 \mathrm{in}, \times 2 \mathrm{in} . \times 2$ in.
W. SETS, No. 19 Ml. III. New. £5/10/-, incl. carr. POWER SUPPLY UNITS, 12 v. for " 19 " Sets. $35 /$-, incl. carriage.
Complete Units, 19 Set, Variometer, 12 v. B.S. Control Complete Units, 19 Set, Variometer, 2 v. B.S. Control
Box. H/Phones and Leads. 10 GNS. incl. carr. W/S REMOTE CONTROL UNIT "E," Mk. 2. W.S. 19 VARIOMETERS. 17/6. P. \& P. $4 / 6$. S.T.C. MINIATURE SEALED RELAYS, TYPE 4184 G D, $700 \Omega 24 \mathrm{v}$. (will work efficiently on 12 v . D.C.) (ex equipment).
more post paid.
SMALL D.C. MOTORS. $2 \mathrm{in} \times 1 \mathrm{in} . \times 1 \mathrm{in}$. Rated 24 v ., will work on 12 v . $\frac{1}{2} \mathrm{in}$. length drive shaft. Idea! for model makers, etc $10 / 6$ ea.
POCKET TRANSISTOR SETS - 6 Transistor Med. Wave. Complete with earpiece and plastic carrying
case. Boxed, brand new. \&2 ea. P. \& P. 5/-.
S.A.E. all enquiries.


108CHESTER ST..BIRKENHEAD. CHESHIRE
Tel. BIRKENHEAD 6067
Terms Cash with Order

ELECTRONIC BROKERS LIMITED
IBM SEVENTRACK STEREO RECORD
REPLAY PROFESSIONAL TAPE DECK
These machines originally ex-computers, but lend ideally for use as audio stereo mult:track recording units or data storage. Record and Playback Heads encased in one common unit and terminated with Amphenol spacing of Record and Plase
 spacing of Record and Playhack Head will enable the operator to monitor instantly while racording, crosstalk between $4: 0$ ohms and 7 ohms. Freq. Response Approx. $300 \mathrm{c.p.s} .-30 \mathrm{Kc} / \mathrm{s}$ with a good response to 50 Kc :s. Deck driven by one synchronous capstan motor and two variable speed rewind motors. Wow and flutter-detect it if you can Electro-pneumatic capstan take-up mechanism Speed 30 i.p. sec. Note: Capstan Head can be easily removed and any diameter Capstan Head corresponding to any speed can be fitted.) All deck function push buttons are illuminated and are brought out to separate multi-core leads which can be wired to any deck function or auxiliary equipment. Finished in brush 8 in . Wt. 901 lb . 230 v . or 380 v . A.C. Capstan motor speed $1,500^{\circ}$ r.p.m. Must have cost £1,000. Our Price £65. New condition but ex-equipment.
Electronic Brokers Limited, B, Broadfields Avenue, Edgware, Middlesex. Tel. 01-9589842

## COMPUTER PANELS



8 assorted printed circuit panels with transistors, diodes, resistors, capacitators, etc. Guaranteed minimum 30 tran sistors 8 boards 10/-, 100 boards 65/-

Post Free
10,000 Mfd $35 v$ Electrolytics 6/- each p \& p 1/6 ea Keytronics, 52 Earls Court Road, London, W.8. MAIL ORDER ONLY
WW-137 FOR FURTHER DETAILS

35 watt Ultrasonic Amplifiers contain-2-EL 34, 1-ECC, 87, 2-8Y100
Mains Trans. $200 / 250 \mathrm{v}-230 \mathrm{v} .85 \mathrm{amp}$. O.P Trans. etc. Price $£ 3-10-0$ each including car riage in U.K
UNISTORS large quantities available $\ell 12$ per 1,000 types Q3/2. Q3/5 and Q8/5. Full details and samples on request. TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.CR., also "C" \& "E" cores. Case and Frame assemblies.

## J. Black

44, GREEN LANE, HENDON, N.W.4. Tel:-01-203-1855 01-203-3033


Thanks to a bulk purchase

## we can offer

## BRAND NEW <br> P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.

Should goods not meet with full approval, purchase price and postage will be refunded.

| S.P. | S 3 in. | 160 ft . | 2/- | 5 in . | 600ft. | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 53 3 in. | 900 ft . | $8 /-$ | 7in. | 1,200ft. | $9 /-$ |
| L.P. | 3 in . | 225f. | 2/6 | 5 in . | 500 ft . | $8 / 6$ |
|  | $5 \frac{2}{3} \mathrm{in}$. | 1,200ft. | 10\% | 7in. | 1,800ft. | 13/- |
| D.P. | 3 in . | 350 ft . | 4/6 | Sin. | 1,200ft. | 12/- |
|  | S $\frac{1}{4} \mathrm{in}$ | , 800ft. | 161. | 7 in . | 2,400fs. | 20/ |

We can also offer, BRAND NEW PRE-RECORDER LANGUAGES COURSES in GERMAN, FRENCH, SPANISH AND ITALIAN.

Each course consists of 26 step-by-step lessons recorded at $3 \frac{2}{4}$ i.p.s. suitable for two- and fourtrack machines and supplied complete with
handbook. Normal retail price $59 / 6$.

```
Our price \(19 / 6\) per course.
```


## STARMAN TAPES

28, LINKSCROFT AVENUE, ASHFORD, MIDDX. Ashford 53020

## T.R.S. BARGAIN GUIDE for keen summer buyers

## GARRARD UNITS and PLINTHS

See latest TRS List (Bd, past free) for fulter detaith yivices,
LM3000 Record Player vilh $9 T$.A Stereo Cartrlage. A70 Auto non-Serrous t/2able etc. Leess carrtridge.
SP. 25 De-luxa
Deluxe SP. 25 Defluxe
Leere cart ridge.
Brand new In makern' cartona. Packing and carriage on


 Ceramic with dianond and Decca Deram with diamond, MONO Aco GP91-1, 19/6; Goldring MX2M, $24 / 6$.
T.R.S.—MULLARD AMPLIFIERS

STEREO $10+10$ Valve model kit. $\mathbf{2 1 7 / 1 0 / -}$. Built, $\mathbf{E 2 1}$. P. P. on either of above, 12/6.
$2+2$ Yalte preamp/control unt, Built, 13 gns. (P.P. 7/6). 5-10 MONO with passive controlk, £11/10/6 Complete Kit S-10 MONO Complete Kit (P.P. 5/6), E9/10/6.
2 Valve Pre-amp Kit (P.P. $5 / 6$ ), £6/12/6.
$3-3$ MONO amp. Complete Kit, £7/12/6 (P.P. 7/6),
T.R.S. SPEAKER ENCLOSURE

Now offered ax an even better bargain as a "; Pack Filat" kit which easily aqsembies to a fine professional looking
enclosure, size $21 \mathrm{in} . \times 15 \mathrm{in} . \times \mathrm{Hin}$. Af1 wood accurately
 lacluded. Now $75 /-$, (Part P. A P. $7 / 61$ ). A wide range of unita by Goodmang, W.B., etc. available atractive prices.

FOR ONLY 6d.
We will send yoil our lat est 8 page
properly printed list, packed with
barg proverly printed list, packed with Send 6d: now.



We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

Please send for List W9/65 (WW)
WALKER-SPENCER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14.

Telephone: 021-4443155 (Sales) and 5278
WW-138 FOR FURTHER DETALLS

## R.S.T. VALVE MAIL ORDER CO. 146 WELLFIELD ROAD, STREATHAM, S.W. 16

| A61 | $7 / 9$ | ELs20 | QQVOA/40 | ¢Y30T 5/8 | 50CDfa | 0 Cl 6 | 20/- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A281 | $9 / 6$ | EL821 6/- | 901- | 5240 8/9 | 31/- | 0 Cl 9 | 17/8 |
| ClC | 12/- | EL822 16/- | QQF5]10 | 6/30L2 13- | 80 5/- | OC20 | 15/- |
| CBL31 | 151- | ELL80 20/- | 701- | 8АКб 4/8 | 85A1 25j- | 0024 | 15/- |
| сСН35 | 21/- | EM34 201- | Q870/20 $5 / 6$ | 6AK6 6/8 | $85427 / 3$ | 0czs | 11/- |
| CY30 | 10/3 | EM80 7/8 | Q875/20 5/6 | 6alis 3/- | 9016 45/- | 0 Cz 5 | 716 |
| DAF91 | 4/- | EM81 7/6 | Q875/60 | 6 639 3/8 | soav 45/- | $\mathrm{OCO}_{2}$ | 18/- |
| DAF96 | 6/9 | EM84 7/8 | 20/- | 6AN8 10/- | 90Cl 124 . | $0 \mathrm{OCz}^{29}$ | 151- |
| DCC90 | 71- | EN322 25/- | Qs83/3 7/3 | 6.aQ4 //- | yoct 251- | 0 C 35 | 11/6 |
| DF91 | 3/- | EY51 7/8 | Q892/10 4/- | 6 AQS 6- | 90CV 25- | OCld | $1 / 6$ |
| DF96 | 8/9 | EY81 71- | Q895/10 \$/6 | 6ABd 6/- | 150B2 9/8 | $0 \mathrm{CH5}$ | /- |
| DH3/91 |  | EY83 8/8 | Q810/45 | 6A87 15/- | 15083 8/6 | 0071 | 4/8 |
|  | 801- | EY84 7/6 | 13/- | 6ATE 1/6 | 801 81- | $0 \mathrm{C72}$ | 8/- |
| DH77 | 4/6 | EY86 7/- | Q8150/158/- | $6 \mathrm{B4} \mathrm{C}^{16 /-}$ | 803 35/- | OC74 | 6/- |
| DK91 | 3/6 | E240 81- | Q8150/30 | 68A6 5/- | 807 71- | $0 \mathrm{C75}$ | 8i- |
| DK92 | 8/- | ER41 10/- | \% | 68E6 5/- | 811 35/- | OC76 | 61- |
| DK 96 | $7 / 9$ | Ez80 5/6 | Q8150/36 | 6886 7/6 | 813 751- | 0077 | 81- |
| DL66 | 15/- | E281 3/6 | 201- | 6836 9/- | 866 A 12/8 | 0078 | 81- |
| DL92 | 4/9 | OT1C $17 / 6$ | Q8150/45 | 6BK4 27/6 | $872 \mathrm{~A} \quad 37 / 8$ | $0 \mathrm{C81}$ | 4/- |
| DLS4 | 5/9 | az30 10- | 201- | 6BN6 7/8 | 5651 .7/6 | OC81D | 4/- |
| DL96 | 7/6 | 0232 9/6 | Q8150/80 | 6BQ7A 7/- | 5654 8/- | OC81M | 5/6 |
| DLS10 | 12/8 | az34 11- | 20/6 | 6BR7 8/6 | 5672 71- | 0C81D |  |
| DLs16 | 301- | G237 12/6 | Q81209 $7 / 3$ | $6 \mathrm{B87}$ 16/9 | 5687 101- |  | 8- |
| DL819 | 30/- | $\mathrm{H}^{63} \mathrm{c}^{\text {8/- }}$ | Qvos-12 | $6 \mathrm{BW6}$ 14/- | 5691 25/- | $0 \mathrm{OC82}$ | - |
| DY86 | 8/- | HL41DD | -vos.7 ${ }^{10 / 7}$ | ${ }_{6067}^{681 /-}$ | $\begin{array}{lll}5749 & 10 /- \\ 5763 & 10 /-\end{array}$ | OC82D | 8i- |
| DY887 | 8/- | KT61 ${ }_{\text {12/6 }}$ | Qvos. ${ }^{\text {Q }}$ (25 $71-$ | ${ }_{6}^{684} 58$ | $\begin{array}{ll}5763 & 10 /- \\ 5842 & 65 /-\end{array}$ | ${ }_{0}^{0} 001689$ | 8i- |
| E88CC | 12/- | KT66 16/- | Qvo6.20 | 6CD6G 2\%- | 5963 10/- | OClifo | 7- |
| E182CC | 198/8 | KT67 45/- | $251-$ | $6 \mathrm{CH} 6 \quad 5 / 9$ | 6057 10/- | 0 C 171 | 81- |
| EABC80 |  | $\mathrm{KTB1}^{\text {c }}$ 15/- | R10 15/- | $6^{6 C L D} 816$ | 6058 10/- | Oc200 | $7 / 6$ |
|  | 7/- | (7C6) | 817 | 6CW4 12/- | ${ }_{6059}^{6050} 18 /-$ | ${ }_{5} 8642$ | ${ }_{3 / 6}^{3 / 6}$ |
| EAF42 | 101- | K T81 | $\mathrm{M18}$ 7/8 | 6104 26/- | 6060 8/- | XA101 | 3/6 |
| EB91 | 3/- | (GEC) 351- | R19 7/9 | ${ }^{\text {ADK }}$ | 6061 12/- | XAlli | $3 / 6$ |
| EBC33 | 7- | KT88 27/6 | RG5/500 | $6 \mathrm{~F}^{23} 13 / 8$ | 6062 14/- | X A112 | /8 |
| EBCAl | 9/9 | KTW6110/- | 8 801 | $63502 / 8$ | 6063 71- | XA125 | \%- |
| EBC90 | 4/6. | KTW62 | 8130 40\% | ${ }^{615}$ | 6064 7/- | X A141 | ${ }^{7-}$ |
| EBF80 | 71 | 101- | 8130P 40/- |  | 6065 9/- | X ${ }^{\text {P142 }}$ | 81 |
| EBF83 | 8/3 | ML4 ${ }^{1718}$ | 8P41 ${ }_{\text {8P61 }}$ | ${ }_{6}^{6 K 76}$ \% $2 /-$ | 6067 10/- | X A143 |  |
| EBF89 | 8/8 | ${ }^{* 37}$ 17/8 | $8^{8 P 61}{ }^{3 / 6}$ |  | $\begin{array}{ll}6080 \\ 6146 & 250 \\ 250\end{array}$ |  |  |
| EBL21 | 11/- | N7868 <br> $121 / 6$ | 8TV280/40/- | 6079 \%/- | 9003 9/- |  |  |
| EBL31 | ${ }^{27 / 8}$ | PC88 11/6 | \%/80- | 6897 |  | tube |  |
|  | $301-$ | PC97 8/8 | 85/- | 6817 M 7/- |  | $1 \mathrm{CP3} 1$ | 801- |
| ECC33 | 151- | PC900 | 8U2150 12/6 | 68 L 70 T 4/9 | Silicon | 2 API | 80\% |
| ECC40 | 9/6 | $9 / 6$ | SU2150A | 68N7GT 4/8 | Rectitars | 38P1 | 501- |
| ECC81 | 3/9 | $\mathrm{PCCB4}^{\text {PCC89 }}$ | U19 ${ }^{12 / 6}$ | ${ }_{\text {BV6 }}^{6 \times 4}$ | BY100 $8 / 6$ | 3DP1 | 40/- |
| ECC82 | 4/9 | PCC189 11/6 | $\mathrm{Ul}^{\text {U24 }}$ 34/- | $\begin{array}{ll}6 \times 4 & 3 / 6 \\ 6 \times 50 & 4 / 6\end{array}$ |  | 3EG1 | 301- |
| ECC83 | $8 / 8$ | PCF80 7- | U25 13/6 | 7378 |  | $3 \mathrm{OP1}$ | $401-$ |
| ECC85 | 51 | PCF86 9 /- | U26 13/6 | 7 C 5151 | Diodes | $5 \mathrm{BP1}$ | 801- |
| ECC88 ECFP0 | 7/8 | PCF801 10/- | U191 13/- | $7 \mathrm{C6}$ 8/6 | Tranaiators | ${ }^{5} \mathrm{CP} 1$ | 351- |
| ECFF82 | 7/- | PCF802 | U404 $11 / 9$ | $7177 \quad 6 / 8$ | 18131 1/8 | 5FP7 | $35 /-$ |
| ECH35 | 11/- | PCFBos ${ }^{10 / 1 / 8}$ | U801 UABC806/6 | $\begin{array}{cc}787 & 201- \\ 784\end{array}$ | ${ }_{26210}^{2152} \times 12 / 8$ | ${ }_{88 \mathrm{~L}}^{88 \mathrm{~L}}$ | $801-$ |
| ECH42 | 11/- | ${ }^{\text {PCFE }}$ PCL82 719 | UABC80 ${ }^{\text {U }}$ /- | $\begin{array}{ll}7 Y 4 & 8 / 8 \\ 11 \mathrm{E} 3 & 42 /-\end{array}$ | $\begin{array}{ll}26210 & 12 / 8 \\ 26381 \\ 5 /-\end{array}$ | ${ }^{\text {88D }}$ ACR22 8 | 88018 |
| ECH81 | 8/9 | PCL83 9/3 | UCH42 $10 / 8$ | 12 ACB 10/- | $2 \mathrm{G382}$ 8/- | C27A 18 | 1801- |
| ECH83 | 8/- | PCL84 719 | UCH81 $0 / 9$ | 12AD6 11/- | 20401 5/- | cv960 | 781- |
| ECL82 | 7\%- | PCLAS 8/3 | UCL82 ${ }^{8 /}$ | 12AE6 9/8 | $2 \mathrm{C402} 81-$ | CV866 | 35/- |
| ECL83 | 10/3 | ${ }_{\text {PCLE }}$ P6480/- | UCL83 10/- | ${ }_{\text {12ATt }}{ }^{\text {12/6 }}$ |  | CV1587 | 501- |
| ECL86 | 9 | PEN45DD | UL84 7\%- | 12 ATV 12/9 | ${ }_{2 G 416}^{26415} \quad 8 / 6$ | CV1588 <br> DG7/32 |  |
| EF97 ${ }_{\text {EF }}$ | 201- | 12/- | UY41 7- | $12 \mathrm{AX7}$ 6/3 | 29417 6/- |  | 901- |
| EF39 | ${ }_{6}^{7-}$ | PFL200 | UY85 ${ }^{6 / 6}$ | 12Bas $81-$ | 2N247 918 | DH3/91 |  |
| EF41 | 10/- | 14/- | VP4B 25/- | $12 \mathrm{BE6} 5 / 9$ | 2N565 12/6 |  | 801- |
| EF80 | 107- | PL36 10/- | VR105/30 | $12 \mathrm{E1} 1^{17 / 8}$ | AC107 9/- | E450*/B | B/16 |
| EF86 | $8 / 9$ | PL81.  <br> PL82  <br>  $7 / 3$ | VR160/30 ${ }^{\text {S/- }}$ | 12K7GT 6 8/- | ACl27 <br> $\mathbf{A C l 2 8}$ <br> $1 / 6$ |  | 78/- |
| EF89 | 5/- | PL84 8/9 | \$/- | 12976T 4/8 | ACY19 ${ }^{1 / 9}$ | ECR35 | 50\%- |
| EF91 | 3/6 | P1500 15/- | W81 6/- | 20P4 19/- | ACY20 4/9 | MW6.2 | 601- |
| EF92 | 2/6 | PX4 14- | 26615 | $25 \% 4$ 6/3 | ACY21 4/9 | 09D | 80/- |
| EF98 | 10/- | PX25 12/6 | 2319 25/- | 25250 T 7- | AD140 13/8 | 096 | 801- |
| EF183 | $6 / 6$ | PY32 9/6 | 2759 23/- | 252600 T 8/8 | AF114 7/- | O9L | $801-$ |
| EFF804 | 6/6 | PY33 9/6 | 2803 ${ }^{\text {U }}$ 251- | $30 \mathrm{Cl5}$ 13/8 | AF115 7- | VCR97 | 35/- |
| EFP960 | 21/- | PY81 8/8 | 0 A 2 B | 30 Cl 7 14/- | $\mathrm{AFL16}^{7 /-}$ | VCR138 |  |
| EFP60 | 101- | PY82 0 | OB2 8/- | 30F5 14/- | GET571 \%- |  | 50/- |
| EH90 | 7/6 | PY83 8/6 | 0Z4 1/6 | 30 FL1 10/- | OET875 6- | CR138 |  |
| EL33 | 12/6 | PY800 10/- | $1 \mathrm{1B3GT} 8 /-$ | 30 LIS 15/8 | NKT211 S/- |  | 501- |
| EL34 | 10/6 | PY801 10/- | $2_{2} \mathrm{D}_{21}{ }^{51}$ | $30 \mathrm{L17}$ 11/- | NKT214 ${ }^{\text {d/- }}$ | 39 |  |
| EL41 | 101- | PZ30 10/- | ${ }^{2 \mathrm{E} 26}$ 20/- | 3 30P19 30 | NKT216 7/8 |  | 35/ |
| ELA2 | 10/- | QQVO2/6 | $3 \mathrm{AL5}$ 71- | 30 PLL 18/- | NKT2178/- | VCR51 |  |
| EL81 | 7/9 | QQvos/10 | $\begin{array}{ll} 3 \mathrm{~B} 28 & 401- \\ 3 \mathrm{C} 45 & 471- \end{array}$ | 30 PL13 15/- 30 PL14 15/- | NKT218 8/- |  |  |
| ELS5 | 7/8 | QQV 30/- | +X150A | $35 \mathrm{L6GT}$ 5/9 | NKT404 |  | 48 |
| EL86 | $7 / 8$ | QQVo3/20 | 95/- | 35W4 1/8 | 12/6 | CR517 | 78 |
| EL90 | 8/- | 105/- | 8R4GY 8/9 | 35W4 1/8 | NKT675 8/- |  | 46/- |
| EL95 | 5/6 | QQVo4/15 | 3U40 4/- | $35 \mathrm{Z4GT}$ 5/6 | NKT677 3/- | VCR517 |  |
| EL360 | 22/- | 105/- | 8V4G 8/- | 50C5 6/3 | N KT713 7/8 |  | 40/- |
| All valven brand new and boxed <br> Special 24 Hour Express Mall Order Service Postage 6d. per Valve |  |  |  | Mon.-Sat. 9 2.m.- 5.45 p.m. Closed Sat. 1.30-2.30 p.m. |  |  |  |
|  |  |  |  | pen Dally so Callers |  |  |  |
|  |  |  |  | el. 01-769 0199/1649 |  |  |  |

SEMD S.A.E. FOR LIST of 2,000 TYPES

# ILIFFE воокs 

## Radio Designers' Handbook

Editor: F. Langrord-Smith, b.SC., b.e., Sr. member I.R.E.(U.S.A.), A.M.I.E.(AUST.) fourth edition, with addenda.

A comprehensive reference book, the work of 10 authors and 23 collaborating engineers, containing a vast amount of data in a readily accessible form. The book is intended for those interested in radio receivers and audio amplifiers. Television, radio transmission and industrial electronics have been excluded in order to limit the work to a reasonable size. $1,498 \mathrm{pp} .65 \mathrm{~s}$ net 68 s by post.

## Radio Valve Data

Characteristics of 7,000 valves, transistors, semiconductors, rectifiers and cathode ray tubes. Eighth edition.
Gives in tabular form the characteristics of approximately 7,000 types of British valves, transistors, semiconductor diodes and rectifiers for radio, television, telecommunications and electronic circuits, together with particulars of 300 cathode ray tubes for television applications. Drawings of valve base and transistor connections are given. 229 pp . 9s 6d net 10s 3d by post.
obtainable from leading booksellers or direct from:

# ILIFFE BOOKS LTD. <br> 42 RUSSELL SQUARE, LONDON, W.C. 1 

## PROBLEMS SOLVED

BY
NYLON SCREWS, NUTS, ETC.
THEY DO NOT WORK LOOSE • NOR CORRODE • NOR ARC NOR REQUIRE PLATING
GRICE \& YOUNG LTD.PRECISION ENGINEERS - CHRISTCHURCH • HANTS.

WW-140 FOR FURTHER DETAILS

## TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get,a higher paid job. Why not fill in the coupon below and find out how?

## Courses include:

## - RADIO/TV ENG. \& SERVICING <br> AUDIO FREQUENCY <br> CLOSED CIRCUIT TV <br> ELECTRONICS-many new courses ELECTRONIC MAINTENANCE INSTRUMENTATION AND SERVOMECHANISMS <br> - computers <br> - PRACTICAL RADIO (with kits) <br> PROGRAMMED COURSE ON

 ELECTRONIC FUNDAMENTALSGuaranteed Coaching for:

- Inst. Electronic \& Radio Engs.
C. \& G. Telecom. Techns' Certs.
C. \& G. Electronic Servicing R.T.E.B. Radio/T.V. Servicing Cert. Radio Amateur's Examination
P.M.G. Certs. in Radiotelegraphy General Certificate of Education


## CURSONS TRANSISTORS

ALL GUARANTEED
1/. each. BAY3I, BAY5O, DKIO. OA70. OABI 2/. each. XA101, XA102, OC71, OC72, OC81 OC8ID, OC44, OC45, GET 16, FST3/I, AČY22.
 BY100, RAS310AF, 2N914. BSY26. BSY27, BSY95A, AFZ 12 , BFY18, BFY19, BFY26.
$7 / 6$ each. RAS508AF, CRS3 40, BLYIO. BLYII, BUYIO, BUYII. ADY22, ADY23, ADY24, OC26. ZENER DIODES
3.9 v. to 26 v... $\ddagger$ w. 3/- each; 1.5 w. $4!\cdot ; 7$ w. $5 / \mathrm{e} \mathrm{ea}$. CURSONS,
78 BROAD STREET,
CANTERBURY, KENT
S.A.E. LATEST NEW LIST

## GODLEYS

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriars 9432
Agents for Ampex, Akai, Ferrograph, Tandberg, Brenell, B \& O, Vortexion, Truvox, Sony, Leak, Quad, Armstrong, Clarke \& Smith, Lowther, Fisher, Goodmans, Wharfedale, Garrard, Goldring, Dual, Decea, Record Housing. Fitrobe, G.K.D., etc.
Any combination of leading amplifiers and speakers demonstrated without the slightest obligation.

WW-142 FOR FURTHER DETAILS

## WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves, and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624
9589842

## PRINTED CIRCUITS

LARGE AND SMALL QUANTITIES.
facilities at reasonable prices. ASSEMBLY SERVICE ALSO AVAILABLE
K. J. BENTLEY \& PARTNERS,

18, GREENACRESROAD,
OLDHAM. LANCS.
WW-143 FOR FURTHER DETAILS

## Quartz Grystal Units

## For

ACCURACY
RELIABILITY
PRICE ECONOMY
you can
DEPEND
Write for
Brochure \&
Price List
on
THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works. Wellington Crescent,

New Maiden, Surrey (01.942 0334 \& 2988)
WW-144 FOR FURTHER DETAILS


## BaMDON CENTRAL iando STMREE

## 10-WAY PRESS-BUTTON INTER-COM TELEPRONES In Bake

 lite case vith junctlun box hamdset. Thwroughly overliauleil ouaranteed. $£ 6 / 10 /$ - per unit. 20-WAY PRESS-BUTTON INTER-COM TELEPHONES ill BakeIlte case with junction los. Tliorouglaly overhanleel. Guaral MODERN HAND SET 22/6. P.P. 3/-.TELEPHONE COILED HAND SET LEADS, a core. 5/6. P.P. 1/MODERN DESK PHONES, 2 tone grey or black. with lizternal bell and handset with 0.1 dla. $£ 4 / 10 /=$ P.P. $7 / 6$. ELECTRICITY SLOT METER (1/- In slot) for A.C. malus. Fixed
 available. Recondítioned as new, \& y year* guarantee, QUARTERLY ELECTRIC CHECK METERS. Reconthinned as new. $200 / 250$ r. 10 A. $42 / 6 ; 15$ A. $52 / 6 ; 200$ A. $5 \% / 6$. Other
atnperagee a sailabie. 2 years a-BANK UNISELECTOR SWITCHES
wiping $£ 2 / 15 /-88$ bank half wipe $£ 2 / 15 /-; 418$ bank half wipe wiping $£ 2 / 15 /-8$ bank half
$\because 5$ contact 47/6. P.R. $\$ / 6$.
DESK PHONES. Black Bakelite caves, complete with bund wet
and internal bell with 0.1 llat. unt internal bell with 0.1 hlal. $42 / 6$. P.1P. 31
HIGH-SPEED ELECTRO-MAGNETIC COUNTERS. Fx. (fort
4 digit. Slugle coil 500 8 8/6. P.P. $3 / 0$. EX. GOYT. BALANCED ARMATURE THROAT MIKES COM plete with pling, new; 7/6. P.P. 3/i.
DESK PHONES from 35/-. Various typee in stack, Final
Gind selectors, Relays, varlous callerw, also 19 Recelvere in whek. All for callers only.

23 LISLE ST. (GER 2969) LONDON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

TECHNICAL
$\star$ LONDON-10 Tottenham Court Rd. * PORTSMOUTH-350-352 Fratton Rd. $\star$ SOUTHAMPTON- 72 East St. * WORTHING- 132 Montague 5 t * BRIGHTON-Devonian Court, Park Crescent Place All Mail Order and 24 -hour Robophone service Brighton 68072 8ULK STEREO DECODERS (Arena \& transistor eonylete), \%Gns. BUY - AM/FMERERE RADIOGRAM CHASSIS (Sormaly 16 Gns.), 17 Gas
 F.M. tuithoul delay as we amicipate a very heavy demand. This beantifully compact 6 Transistor machine (size bin. $\times 4$ in. $\times 2$ Ifin.), consists three IF Stakes terminating in a double tuned discriminator and LF Stage giving ample output lor all quality amplifiers. Operates with negligible drain for moath of use from a P.P. 3 or any 9 volt battery.
Vore: A Adio Amplifier of very

## OSMABET LTD.

We make transformerg amonast other things


 .
 OUTP UT TRANSFORMERS. Mullart 5110 UL 80/-: 7 watt atereo 50 - each. PPS 25-, heater transformers. Prim 20n/250

INSTRUMENT TRANSFORMER. Prim $200 / 250$ : a.e., OMT/4


 50.0. 50, a.c. $1 \mathrm{amp} 45 /-$,

Comprehensive ranke tranuformers and clinken stockent. Carriage extra all transformers from $4 /$ /fil, each
TRANSFORMERS WOUND TO YOUR SPECIFIOATION BATTERYELIMINATORS. PP9, $200 / 250$ v. ac., 9 v.l.c. 150 Ma 45/-. PP3, ditto, 10 Ma. $17 / 6$. p. A p. 2//tid.
AUTOCHANGERS, New' UA25, 200/250 r., a.c.. moun cart thlye £6/7/8. P. \& P. $7 / 61$
RENDAR SWITCHES. Mhiature. puil to treak. 2 ant r. a.c. 1 amp, $5 /-$
STEREO. Jackn aurl plugg. 1uıgin, $3 / 6$ each. Nin. p. \& p. $1 / 6 \mathrm{hl}$.
 RADIOGRAM CHASSIS. Continental PRS7, VHF/PM: AM,

22.

FLUORESCENT LT LIGHTING
BULK TAPE ERASER. 200/2ön
35/-, P. w P. 3/
LOUDSPEAKERS.
 $131 \times \mathrm{x}$ 8111, $42 / 6$.

COUDSPEAKERS SPECIAL OFFER

 $3 / 6$ each.
*.A.K. all enquiries glease.
Mall Oriler ouly.
46 KENILWORTH ROAD, EDGWARE, MIDDLESEX Tel: 01-958 9314

WW-145 FOR FURTHER DETAILS

## SURPLUS HANDBOOKS

19 set Clircuit \& Noten
1155 set Circuit \&o Noles
H.R.O. Techaical Instructions

38 set Technical Instructions
46 set Working Instructions
88 set Technical Instruction
BC. 221 Circuit \& Notes.
Wavemeter Class D Tech
18 set Oircuit \& Notes
BC. 1000 (31 set) Circult \& Notes
CR. $100 / \mathrm{BR8}$ Circuit \& N
R. 107 Clrcuit \& Notes
A.R. 88 D Instruction Manu

62 set Circuit \& Noter
52 set Sender and Rec
52 set Sender and Receiver Circuits

 Pumterte rrites apply to C. li. ouly
Mrail order ouly 1
INSTRUCTIONAL HANDBOOK SUPPLIES. Dept. W.W. GALBOT HOUSE. 28 TALBOT GARDENS. LEEDS, 8 .

SERVO AND ELECTRONIC SALES LTD.
RECONDITIONING SERVICE FOR INDUSTRIAL INSTROMERTS Morsing Coil Multi-range Metera. Blectrical atht Eleetrmile Test 67 London Road. Croydon: Surrey WE ARE SPECIALISTS SUPPMERS IN ELECTRONICS. AND ELHETRONEE

WW-146 FOR FURTHER DETAILS

MAINS TRANSFORMERS
IVA TO 2.5 KVA
AUTO TRANSFORMERS
20 watts to 5,000 wates Trade and Professional Enquiries Only OLYMPIC TRANSFORMERS LTD 224 HORNSEY ROAD LONDON, N. 7
NOR 2914

## BAILEY 30W AMPLIFIER

Parts are now available for this new unit. Printed Circuit Board fully drilled and roller cinned $11 / 6 \mathrm{~d}$. postage 9d. Pre-Amp and power supplies are as for 20W Bailey design.

## BAILEY 20W AMPLIFIER.

All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp: Mains Transformer for mono or stereo
with bifilar wound secondary and special 218 V
primary for use with CZ Thermistor, $35 / 6 \mathrm{~d}$, post primary for use with CZ 6 Thermistor, $35 / 6 \mathrm{~d}$., post $\stackrel{5 /-}{ }$
Trifilar wound Driver Transformer, 22/6d., post 1/-
Miniature Choke for treble filer Miniature Choke for treble filter, $7 / 6 \mathrm{~d}$., post 6 d P.C. Board Pre-Amp 15/ .., post 9d. Power Amp. $12 / 6 \mathrm{~d}$. post 9d.

## DINSDALE IOW AMPLIFIER

All parts still avallable for this design including our new power amp. P.C. Board with power transistor and heat sinks mounted directly to P.C. All part for stereo cost approximately $\mathbf{2 4 4}$. We also supply a made-up version in chassis form with attractive
etched and anodised front plate, fully assembled etched and anodised front plate, fully assembled
tested and guaranteed for two years. Price $£ 35$ tested and ${ }^{\text {Tase } £ 3 / 10 / 0 . ~ P . ~ \& ~ P . ~} 10 /$
Reprint of articles $5 / 6 \mathrm{~d}$., post free.

MULLARD PI-MODE IOW AMPLIFIER
P.C. Boards for power amp and later preamp using Mains Transformer Mono ......... 25/-. post $5 /$ Mains Transformer Stereo 47/6d. post $5 /$ All other parts in stock. S.A.E. please for all lists which are free. Separate S.A.E. for colour T.V. Kit parts

## HART ELECTRONICS,

32I Great Western St., Manchester 14
The firm for "quality".
Personal callers welcome, but please note we are
closed all day Saturday.

WW-147 FOR FURTHER DETAILS

## ANNOUNCING OUR NEW STANDARD RANGE OF BRAND NEW MULTITAPPED TRANSFORMERS, MOST TYPES FULLY SHROUDED AND TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES 220-240 VOLTS.

| No. | SEC. TAPS | AMPS. | PRICE | CARR. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \|A | 25-33-40-50 | 15 |  | 0 | 10/6 |
| 1 B | 25-33-40-50 | 10 | [619 | 6 | 8/6 |
| IC | 25-33-40-50. | 6 | 4519 | 6 | 8/6 |
| 10 | 25-33-40-50 | 3 | 4312 | 6 | 7/6 |
| 2 A | 4-16-24-32 | 12 | \&610 | 0 | 7/6 |
| 2B | 4-16-24-32 | 8 | 4417 | 6 | $7 / 6$ |
| 2 C | 4-16-24.32 | 4 | E3 5 | 0 | 61- |
| 2D | 4-16-24-32 | 2 | 12 L |  | 5/- |
| 3A* | 25-30-35 | 40 | ¢14 17 | 6 | 15/- |
| $3 B^{*}$ | 25-30-35 | 20 | 497 | 6 | $9 / 6$ |
| 3 C | 25-30-35 | 10 | 1610 | 0 | $7 / 6$ |
| 3 D | 25-30-35 | 5 | [315 | 0 | 6/6 |
| 3 E | 25-30-35 | 2 | 1215 | 0 | 6/6 |
| 4A* | 12-20-24 | 30 | [11 15 | 0 | 10/- |
| 4B | 12-20-24 | 20 | 6710 | 0 | 8/6 |
| 4 C | 12-20-24 | 10 | ¢4 15 | 0 | 7/6 |
| 4D | 12-20-24 | 5 | [3 5 | 0 | 6/6 |
| 5A | 3-12-18 | 30 | 4815 | 0 | 7/6 |
| 5B. | 3-12-18 | 20 | ¢6 10 | 0 | 7/6 |
| 5 C | 3-12-18 | 10 | 6317 | 6 | 6/6 |
| 5D | 3-12-18 | 5 | 4212 | 6 | 6/6 |
| 6 A | 48-56-60 | 2 | E3 5 | 0 | $5 / 6$ |
| 6B. | 48-56-60 | 1 | $E 27$ | 6 | 5/6 |
| 7A* | 6-12 | 50 | 697 | 6 | $9 / 6$ |
| 7 B | 6-12 | 20 | 6510 | - | 7/6 |
| 7 C | $6-12$ | 10 | 6310 | 0 | $6 / 6$ |
| 7D | 6-12 | 5 | E2 10 | 0 | $5 / 6$ |
| 8 A | 12-24 |  | E19 | 6 | $5 / 6$ |
| 9 A | 17-32 | 8 | 6512 | 6 | 5/6 |
| 10A | 9.15 | 2 | E 5 | 0 | 5/6 |
| IIA | 6.3 | 15 | ¢2 | 0 | 5/6 |

Note: By using the intermediate taps many other voltages can be obtained.
Example: Range one 7-8-10-15-17-25-33-40-50V Range two 4-8-12-16-20-24-32 Range two 4-8-12-1-20-24-32V.
Range three $3-6-9-12-15-18 \mathrm{~V}$.

## ISOLATION TRANSFORMERS

Fully shrouded. Terminal block connections. Pri. tapped $220-240 \mathrm{~V}$. Sec. tapped $220-240 \mathrm{~V}$. 1 amp. 88/19/6, carr. $10 / 6$. 4 amps. Elio/19/6, carr. $10 / 6$. Open chal block connections 15 kVA . E17/10/-, carr. $15 /-$. 2 kVA E21/10/-, carr. $15 /$

## Samson's Electronics Ltd. g \& 10 Chapel St., LONDON, N.W. 1 Tel. PAD 7851 <br> AMB 5125

## COMPUTER EXTRACTOR FANS

Manufactured by Papst. A.C. 220-240 V. Complete with fibre glass filter. Ex equipment. Guaran reed in perfect order. Size $28 \times 5 \times 5$ inches. $59 / 6$, carr. $8 / 6$. Fans only mounted on metal plate size
$13 \times 5 \times 3$ inches, $45 \%$, carr. $5 /$.

h.p. motor 2,850 r.p.m

Manufactured by famous makers for compurer equipment, in perfect condition. Completely enelosed. Size $24 \times 8 \times 8 \mathrm{in}$. Seal 10 venti lating and cooling.
Carr. 10/.
£6.19.6

## AIRFLO A.C. 220-240

 BLOWERSCapacity 80 cu . ft. 2 din . dia ourlet. Overall size $6 \times 6 \times 7$ in


## RODENE ELECTRIC TIMERS

 A.C. $200-220 \mathrm{~V} .50$ cycles. $1-15$ seconds. Synchro-nous one rev. per 18 sec. Motor operates 250 v ,
5 5 amp. C.O. micro switec. Housed in metal case,

## BRAND NEW TWICKENHAM HEAVY

 PRI tapped $110-220-235-255$ volts 5 ec No I 55 volts, 24 amps Sec . No. 2,14 volts 10 amps. Sec No. 3,60 voles, 2 amps. All winding very conservatively rased. Tropically finished. Terminal connection. Size H9. W. $7 \frac{1}{2}$ D. 7in., weight 65 lbs , Fraction of maker's price, $£ 9 / 19 / 6$, Carr. $15 /$. Brand new L.T. 5 moothing.
## HEAVY DUTY L.T. TRANSFORMERS PRI $190,210,230,250$ volts. Sec. 55 volts. 50 amps. Size $10 \times 8 \times 8 \mathrm{in}$. $£ 18 / 10 \%$, ex. warehouse. PRI $220-240 \mathrm{v} . \mathrm{sec} .12$ volus 90 amps . Flying lead connections. Size $7 \times 6 \frac{1}{2} \times 6 \mathrm{in}$. $E 13 / 19 / 6$. Carr. $15 /$ /-

## BRAND NEW PARMEKO H.T. TRANSFORMERS

 Pri rapped $200-250 \mathrm{~V}$. 5 ec . $500-0-500 \mathrm{~V}$., 250 mA $6.3 \mathrm{~V}, 4 \mathrm{~A}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.5 \mathrm{~V} 3.5 \mathrm{~A}$. Metal cased table top connections. Fraction of maker's $54 / 15 /$ Carr. 101 -ADVANCE COMPONENTS LTD. Stabilised low voltage power supply units. Type
DC3. Input $200-215-230-245 \mathrm{~V}$. Output 12V., 1.25A at $55^{\circ} \mathrm{C}$. stabilised within $1 \%$ at full load with sup ply voltage variazion up to I $15 \%$. Ripple less than $1.5 \%$ R.M.S. of toral ourpur. Supplied brand new 45/10\%-. Carr. 10 /.
TWICKENHAM HEAVY
DUTY L.T. SMOOTHING CHOKES
6MH 24 amps conservatively rated 0.2 ohm, tropically
finished. Terminal block connection, $75 /-$ P.P. $7 / 6$.

## STEEL CABINETS

Designed to house rocket count down equipment size H. 5 fr . 5 in .W. 2 fe . 2 in . D. 2 ft . 2 in . Full length hinged doors back and one side. Threequarter length door in front. Asbestos lined inside, and firted air cooling channels. These cabinets cost over
6300 . Our price $£ 25$, new and unused. Caller only.

[^13]
## STELLA NINE RANGE CASES

Manufactured in Black. Grey, Lagoon or Blue Stelverite and finished in Plastic-coated Steel, Moroceo Finish with Aluminium end plates. Rubber feet are attached and there panel in 18 s.w.g. Alloy

LIST OF PRICES AND SIZES
which are made to fit Standard Alloy Chassis Width Depth $4^{\prime \prime}$ Height $6^{\prime \prime}$ Height $7 \frac{1^{\prime \prime}}{4}$ Helght


Cases-Post 4s. 6d.

CHASSIS in Aluminium, Standard Sizes with Gusset
Sizes to fit Cases. All $2 \frac{1}{3}^{\circ} \mathrm{Walls}$


CHASSIS. Made up to your size. lin., $1 \frac{1}{2}$ in., or $2 \frac{1}{2}$ in walls up to 16 in . wide $\times 10 \mathrm{in}$. deep. 18 s.w.g. half hard aluminium at $7 / 6$ per $3 q$. fe., total area. This price include gusset corners fitted. Add $3 /$ postage.
ALUMINIUM PANELS. Cut to size 5/- s. q . ft ., 18 s.w.g. $5 / 9$ I 16 s.w.g. $6 / 914$ s.w.g. Add
Surplus refunded or send for postal rates.

## E. R. NICHOLLS

manufacturer of electronic instrument cases 46 LOWFIELD ROAD STOCKPORT - CHESHIRE

Tel.: sTOckport 2179

## WORLD RADIO \& T.V. HANDBOOK <br> BY JOHANSEN <br> 1968 ED. 42/- P. \& P. 1/-

The Practical Aerial Handbook, by King, radio and T.V. 35/न. P. \& P. $1 / 3$.

Sillicon Controlled Rectifiers, by Lytel, 21/. P. \& P. 1/-

Circuits for Audio and Tape Recording, by Judd
Computers for the Amateur Constructor, by Warring, 20/-. P. \& P. Amateur Constructor, by Colour T.V. Pai System, by Patchete, 40/-. P. \& P 1/3.
New Radio Year Book 1968 by Miles Henslow 15
P. \& P. I/\&.

Aerial Handbook, New 2nd Ed. by Briggs, 15 P. \& P. $1 /$ -

Tape Recording for the Hobbyist, by Zuckerman 26/\%. P. \& P. 1/.

## Where possible 24 -hour service guaranteed

UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Stotion)

WW-148 FOR FURTHER DETAILS

## REDUNDANT OR SURPLUS RADIO - ELECTRONIC STOCKS WANTED OSMABET LTD. <br> 46 KENILWORTH ROAD, EDGWARE, MIDDX.

 TEL: STONEGROVE 9314

ON/OFF TWICE every 24 bours at any ON/OFF TWICE every ${ }^{24}$ hours at any manualy pre-set times, or alternatively
with SOLAR DIAL ON at duak OFF at dawn. By-pass nverride. 36 hour aprine reserve, overcomes stopping in case of
ut perfect guarianteed. siate fial regulred. power cut Used but perfect guaranteed. Siate dial requireil AKERS PRICE OVER \&12 OUR PRICE 69/6 p.p 410 MAKERS PRICE OVER \&12 OUR PRICE $69 / 6$ p.p. $4 / 9$ Waterproof mefal case approx. $6 \mathrm{in} . \times 3 \mathrm{ln}$. $\times 31 \mathrm{~h}, 10 /-\mathrm{extr}$
HORSTMANN 15 DAY CLOCKWORK TIME SWITCH Jewelled movement. Once ON/OFF every 24 hourn at any manuslly greset times. Key and mount ing bracket. Uned but perfect. 5 amp model. Fully guaranteed. $\quad 35 /-\quad$ P. \& P.4/6. VENNER 200/250 v. FLASHER UNITS contioning mains geared motar. ON/OFF every necond. 200W
contacts. Suppressed. Recunditioned. $39 / 6$

BoX 36S, KINGSWOOD SUPPLIES (w.w. 13)
4, SALE PLACE, LONDON, W.2. Tel:01-723 8189.


## THE ONLY

COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send stamps value 9d. for 16 page booklet and supplementary data sheets Nos. 1 and 4 giving the fullest and latest information.
CEGIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Middx.

WW-149 FOR FURTHER DETAILS

## GENUINE ARTICLES ONLY!

NOT " seconds ", NOT "re-marks", but BRAND NEW, PERFECT and GUARANTEED to spec. DISCOUNT prices (in brackets) for 5 OR MORE SAME TYPE.

| AD161 | 7/9 (6/4) |  |  |
| :---: | :---: | :---: | :---: |
| AD162 | $7 / 9$ (6/4) | 2N706 | 3/4 (2/7) |
| , | 1- (8/6) | 2N29 | - (2/6) |
| BC107 | 3/11 (3/1) | 2N3707 |  |
| BC109 | $3 / 6$ (3/-) | 2N4058 | $5 / 6$ (4/7) |
| BC168 ... $2 / 6$ (2/-) IS44   <br> Rectifier IS557 800piv $0.5 A$. $3 / 6(3 /-)$ $1 / 9(1 / 4)$ |  |  |  |
|  |  |  |  |
| CWO. Mail order only . Orders over 10/- U.K. post paid. |  |  |  |
| AMATRONIX LTD. (Dept WW6), 396 Selsdon Road, Croydon, Surrey, CR2 ODE |  |  |  |

396 Selsdon Road, Croydon, Surrey, CR2 ODE

## HEM ELOSS METALLC HAMMERED ENAMEL

GAKES FANTASTIC DIFFERENGE TO
Crackle pistern appears like magic
metal. No unslercoat. Air dries 15 MIN. to hard, git
finwh. Heat, liquid \& weritch-proof. Lt. \& D
Bronze; SHler: Green; Blawk. Send 10/- NOW
for trial Ipt. Tin. Col. simp
FINNIGAN SPECIALITY,
PAINTS, Dept. W.,
STOCKSFIELD. Tel. 2280
BRUSH Northumberland

OR SPRAY-ON
ww-150 FOR FURTHER DETAILS

## DAMAGED METER?

 Have it repaired by GlaserReduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd We specialise in the repair of all types and makes of INSTRUMENT ammeters, Multirange Test -ค月|ロS $\quad$ Recording Instruments, Leak Detectors, Temp. Controllers, all Testers, etc.
As contractors to various Government Departments we are the leading Electrical Instrument Repairers in the Industry. For prompt estimate and speedy delivery send defective instruments by registered post, or write to Dept. W.W.:-
L. GLASER \& CO. LTD.

1-3 Berry Street, London, E.C. 1 Tel.: Clerkenwell 5481-2

## Surplus Bartains



COLLIMS (U.S.A.) RECEIVER. 7 valve superhet (Int. Octal valves)
Exceptionally stable for SBB Prequency coverage 1.5.12 Mc/4. Power requirel. $250 \%$ D.C. 80 mA . $12 \mathrm{v}$. A.C. 1.25.
famous No. 19 SET TRANS/RECEIVER.
Covers 2-8 Mc/s. in 2 bands. 11 valwe superhet transelver lncluding 807 P.A. Power requ. LT. 12 v. H.T. rec. 275 v. EI. T ransmit 300 V. D.C. 8lightly used, $55 /$.. Selected condition No. S1 TRANSCEIVER VHF, $40 / 48 \mathrm{Me} / \mathrm{s}$. Tunable. $90 / 60 / 41$ Nolts battery operation, 70/.
No. 88. TWO-WAY RADIO. $40 / 42 \mathrm{Mc} / \mathrm{s}$. Cryatal controlled. B44. VHF RADIO TELEPHONE. $60.95 \mathrm{Mc} / \mathrm{s}$. Cryatal con trolled. 12 V. D.C. operation. E\%/10/-;
No. 62 . TRANSMTTTER RECEIVER, $1.6 .10 ~$
$\mathrm{Mc} / \mathrm{s}$. Tunable or crystal controlled. 12 v . D.C. operation. $\$ 18 / 10 /$ Me/s. Complete station. Brand new. 12 or 24 v. D.C. operatlon. E18/10/-.
No. 52 RECEIVERS. Few left. Vised (serviceable).
 section, 70/\%. 32ft., as above with 12 ft . whip. $80 /=34 \mathrm{ft}$.. B MAKE YOUR OWN AERIAL MAST!
$51 \mathrm{t} .8 \mathrm{in} ., 2 \mathrm{in}$. dis. interlocking ateel tectiont ( 7 sectiont make 35 tt mast). $80 /$ - per wection.
mbatomatic tenyioner. 38 ft .
ROTARY TRANSFORMERS BY HOOVER. 12 v. D.C. input,
 REJECTOR ONIT. For rejecting unwanted signals. Switehed i ranges, $1.2 .10 \mathrm{Mc} / \mathrm{s} .30 / \mathrm{e}$
R.F. ANTENNA TUNER (A.T.U.). $160 / 80 / 40$ metres. $25 /-$. MOVING COIL MRADPHONES. SOft rubber eatualo. $19 / 6$. D.L.R. BALANCED ARMATURE HEADPHONES. $12 / 8$. 22/6. MOVG COI HEADPHONES AND MICROPHONES. 21/6 TRANSMITTER. $1.76-16 \mathrm{Mc} / \mathrm{A} .3$ waveband tunesble. $813 P$. Complete with alt val res, and clrcult. $87 / 10 /-$
POWER SUPPLY.
12 300 mA output. Incorporates 240 E . D.C. 80 mA ylbrator D.C

## ALL ITEMS CARRIAGE EXTRA

 Lists giving fuller detoils of these and many other surplus bargains, $2 /=$. S.A.E. all enquirles (PleaseA.J. THOMPSON (Dept. WW) "Eiling Lodge." Codicote, Hitchin, Herts. Tel.: Codicote 242 Hours of Business: Monday to Friday 8-5 Saturday 8-12. Prices correct al eime of press, but are subject to increase.

```
FOR THE BEST
 Hi-Fi Equipment
Tape Recorder "BITS and PIECES"
```



25, High Holborn, London, W.C. I (opp. Chancery Lane)

WW-152 FOR FURTHER DETAILS

## WE PURCHASE

PLUGS AND SOCKETS, MOTORS, TRAN. SISTORS, VALVES AND KLYSTRONS, RESISTORS, CAPACITORS, POTENTIO: METERS, TEST EQUIPMENT, RELAYS TRANSFORMERS, METERS, CABLES, ETC. PROMPT PAYMENT \& COLLECTION TURN YOUR CAPITAL INTO CASH

ELECTRONIC BROKERS LIMITED
8, BROADFIELDS AVENUE, EDGWARE,
MIDDLESEX.
TEL. 01-958 9842

4subseribe to the Magazine with the Magazine with the
ZEBRA stripes! ZEBRA stripes!
25/. (U.S.A.) \$3.75) yrly. incl. postage. - FREE SPECIMEN COPY ON REQUEST PRESTIGE HOUSE, 14-18 HOLBORN, LONDON, E.C.I. 01-242 4851

WW-153 FOR FURTHER DETAILS

# TO INSERT AN ADVERTISEMENT 

IN THE CLASSIFIED SECTION

TELEPHONE-<br>WIRELESS WORLD<br>WATERLOO 3333 EXT. 210

AMAZINGLY SENSITIVE AIRCRAFT FREQUENCY TWOWAVEBAND TRANSISTOR PORTABLE RADIO

1. V. H.F. $115-130 \mathrm{Mc} / \mathrm{s}$. 2. Medium $540-1600 \mathrm{kc} / \mathrm{c}$. Easily adjustable to receive normal V.H.F./F.M. stations, Give aray price. £13/20/- plus of-P. \& P.
peaker and fitingg. car circull. \& 89 plues $5 /-\mathrm{P}$. \& P . 2 WAVEBAND TRANSISTOR PORTABLE RADIO £3/10/pluas $5 /$ P. \& $P$.
plus $\delta /-\mathrm{P}$. \& $\mathbf{P}$.
3 WAVEBAND BAND SPREAD TRANSISTOR PORTABLE £7 plus 5/- P. \& $\mathbf{P}$.
SINGLE WAVEBAND TRANSISTOR RADIO 2\&/5/- plus 5/-P. \& P.
B.B.C. 2 U. H.R. TUNER, sult. Pye (with valven), Ferguron. mont makes. EL/15/- plus 5/- $\mathbf{P}$. \& $\mathbb{P}$.
Trast sets to B.B.C.2. £2/19/6 plus $5 / / \mathrm{P}$. \& P.
ALL GOODS ARE BRAND NEW AND GUARANTEED
Enquiries and portal orders to RADIO-T.V. MINI-MART,

SELCOL guitar practice AMPLIFIER
ONE WATT OUTPUT. ONE WATT OUTPUT.
Portable cabinet $12 \times 4$
$\times 9$ in $\times$ in. all transistor, fit-
ted $\times 4 i n$. speaker. ted $7 \times 4 i n . ~ s p e a k e r . ~$
Volume control. Jack socket. Uses PP9 battery
 SMITHS PRECISION six minute delay ACTION SWITCH Clockwork actuated 6 EACH (3 or more Separate switching up to 6 mins. 15 amps. 250 voles Ideal photographic timer, sequence switching operation Ideal photographic timer, sequence switching operation

## BATTERY <br> RECORD DECKS

2 speeds $33 \frac{1}{f}$ and 45 r.p.m. 6v. operated. Complete with pick-up, fitted crystal cart-
 ridge. Plays $7,10,12 \mathrm{in}$. start, Ideal for use with miniature transistor amps. Post $2 / 6$. Our Price $59 / 64$-speed model, 9 volt, 10/- extra. Limited Quantity only - Export models.
"SONOCOLOR" CINE RECORDING TAPE Superior quality 5 in. reel, 900 ft . L. P. with strobe markings, also cine light deflector-mirror. Suit-
able all tape recordersand OUR able all tape recordersand OUR
cine projectors. List $28 /-$ PRICE $\mathbf{4 / E \text { EACH }}$
 ERASER AND RECORDING HEAD DEMAGNETISER $\begin{gathered}\text { 2000 } 250 \text { A.C. } \\ \text { Leanget S.A.E. }\end{gathered} \quad 35 /-\underset{2 / 6}{\substack{\text { Pose } \\ 2 / 6}}$

## TRANSISTOR BOOSTER-

DOUBLE YOUR VOLUME Black plastic cabinet speaker with $20 f t$. lead for transistor radio, intercom, mains

radio component specialists 337 WHITEHORSE RD., CROYDON. Tel.: O1-684-1665

## PROGRESS IN DIELECTRICS Series

Edited by J. B. Birks, B.A., Ph.D., D.Sc., F. inst. P., A.M.I.E.E. (General Editor) and J. H. Schulman, Ph.D. (American Editor. Vols. 1 \& 2) and Professor J. Hart (American Editor, Vol. 3)

The aim of this six volume series is to provide a common meeting point for all interested in dielectrics-the electrical engineer, the physicist, the electronics engineer, the molecular chemist, the biologist and the technologist in the whole range of the newer dielectric materials. It will seek to co-ordinate current knowledge of dielectric phenomena, materials and techniques and to review recent progress.

Please send for full details
ILIFFE BOOKS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.1.

## CLASSIFIED ADVERTISEMENTS

## Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

## PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 6/- PER LINE. Average seven words per line.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus $1 /$.
- Charges etc., payable to "Wireless World" and crossed " \& Co."
- Press Day 10 May for June 1968 issue.

NAME
ADDRESS


[^14]NUMBER OF INSERTIONS.


## WW-154 FOR FURTHER DETANS

## INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 107-120

| Page | page | page |
| :---: | :---: | :---: |
| Acoustical Mig. Co. Ltd. ....................... ${ }^{2}$ | Hall Electric, Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 | Parker, A. B. .............................. 104 |
| Adcola Products, Lid. ... A................. Cover iif | Harmsworth, Townley \& C0. ..................... 67 | Park Royal Porcelain Co., Ltd. . . . . . . . . . . . . . . 50 |
| A.D.S. Relays, Ltd. , ............. . . . . . . . . . . . . 70 | Harris Electronics (London). Ltd. .................. . 50 | Pattrick \& Kinnie . .............................. $102{ }^{103}$ |
|  | Harrls. P. ................. ......................... . 121 |  |
|  | Hart Electronics ................................ 127 | Pinnacle Electronics, Ltd. ......................... 25.57 |
| Amplivox, Ltd., Indusirial Division .............. ${ }^{4}$ | Harversọn Surplus Co., Ltd. . . . . . . . . . . . . . . . . . 84 | Plessey Components Australia .-.................. ${ }_{1}{ }^{23}$ |
| Ancers Electronics, Ltd. . . . . . . . . . . . . . . . . . . 29. 42 | Hatfeld Instruments. Lid. . . . . . . . . . . . . . . . . . 56. 60 |  |
|  | Henry's Radio. Ltd. ................................. 97 | Proops Bros., Ltd. ............................ 83 |
| Andrew Antenna Systems .................... ${ }^{37}$ | Howell's Radio, Ltd. ............................ 54 | Pye Telecommunications, Ltd. .................... 17 |
| A.P.T. Electronic Industries, Ltd. ................. ${ }_{\text {Armstrong Audio }}{ }^{\text {a }}$ | H.P. Radlo Services, Ltd. ..................... 48 |  |
| Audac. Ltd. $130$ | Hunt, A. H. (Capacitors), Lid. . . . . . . . . . . . . . . . 43 | Quartz.Crystal. Co.. Ltd. ........................ 126 |
| Audlo \& Design ${ }^{\text {a }}$. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 |  |  |
| Audix. B. B. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 |  |  |
| Avo, Ltd. .inicarions \& Electronics, Lid. ...... ${ }_{60}^{1}$ | Iliffe Books Ltd. . . . . . . . . . . . . . . . . . . . . . . . 78, 102. 125 | Racal Instruments, Ltd. . . . . . . . . . . . . . . . . . . . . . . 31 |
| Avon Communications \& Electronics. Ltd. ...... 60 | I.M.O. (Electrontes). Ltd. .................... 85 |  |
|  | Industrial Instruments, Ltd. ..................... 52 | Radio \& T.V. Services. Ltd. |
|  | Instructional Handbooks Supplies .................. 127 |  |
| Batey, Wm.. \& Co. ................................ . 46 | International Correspondence Schools ........ 50, 126 | Radiospares, Ltd. .......................................... 126. |
| Bentley Acoustic Corpn., Lid. ............ ....... 120 | Isleworth Electronics .............................. . . 79 |  |
| Bentley. K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 | International Rectifer Co., Ltd. ................. 55 | Rank-Wharfedale, Ltd. . . . . . . . . . . . . . . . . . . . . . 47 |
| Berry's Radio ..................................... 128 | Internatlonal Recther Co., Ltd. ................... | Rastra Electronics, Ltd. . . . . . . . . . . . . . . . . . . . ${ }_{28}^{27}$ |
| Bi-Pak Semiconductors ............................ 88 |  | R.C.A. |
| Bi-Pre-Pak, Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . ${ }^{\text {Bid }} 9$ |  | Readers Radio ........................................ ${ }^{105}$ |
| Black, J. . . . . . . . . .1. . . . . . . . . . . . . . . . . . . 124, 126 | Jackson Bros. (London). Ltd. . . . . . . . . . . . . . . . . 33 | Rendar-Instruments ............................. 123 |
| Bradley, G. \& E., Ltd. | John's Radio $\because$. ..................................... 90 | Rola Ceiestion, Ltd. |
| Britaln, Clias. (Radio). Ltd. <br> Britec. Ltd. |  | R.S.T. Valve Mail Order Co. ....................................... ${ }_{125}^{99}$ |
| British Institute of Enkineering Technology .... 44 |  |  |
| Brown. N. C., Ltd. ............................. 46 | Keyswitch Relays, Ltd. ......................... Cover if |  |
| B.S. Radio and Electrical Stores .......... ...... 124 | Keytronics .......................................... 124 | Samsons (Electronics), Ltd. ..................... 127 |
|  | Kingswond Supplies .............................. 128 | Service Trading Co. .......................... . 94. 95 |
| Buckingham Press. Ltd. ......................... 99 |  | Servo \& Electronic Sales .......... ................ 127 |
| Bulkin, A. F.. \& Co.. Ltd. ............... Edit. 189. |  | Shure Electronics. Ltd. ................................. 16 |
| Bullers. Ltd. ................ . . . . . . . . . . . . . . . . . . 46 | Lasky's Radio. Ltd. . . . . . . . . . . . . . . . . . . . . . . . . 92.93 | Silentbloc. Ltd. ...................................... 36 |
|  | Lawson Tubes ...................................... 121 | Sinclair Radionics, Litd. ............................... ${ }^{\mathbf{7 7}}$ |
|  | Ledon Instruments, Ltd. .......................... 58 | S.M.E., Ltd. |
| Calan Electronics. Ltd. . ... ......................... 102 | Levell Electronics. Ltd. . . . . . . . ................... 63 | Smith, G. W. (Radio) Litd. Lid. ..................... $86 .{ }_{32}^{87}$ |
| Cardross Eng.. Ltd. . . . . . . . . . . . . 58 | Lewis Radio ......................................... 121 | Superior Electronlcs Inc. ........................... . 48 |
| Chiltmead. Ltd, ................................. 122 | Lexor Electronics. Ltd. :........................ 96 | Sutton Electrontes . ................................. 122 |
|  | Light-Soldering Developments, Ltd. . . . . . . . . . . . . . 42 | Swanco ........................................... 106 |
| C.R.E.I. (London) ................., |  |  |
| Cursons, B. W. . . . . . . . . . . . . . . . . . . . . . . . . . . $126{ }^{\text {' }}$ | Linstead Electronics. Ltd. |  |
|  | London Central Radio Stores ................... 126 | Tape Recording Magazine . . . . . . . . . . . . . . . . . . . . . 129 |
|  | London Microphone Ca., Ltd. . . . . . . . . . . . . 78 | 2echnical Trading Co. ................................. ${ }^{126}{ }_{68}$ |
| Davis, Jack (Relays).. Ltd. .. . . . . . . . . . . . . . . . . ${ }^{6}$ in | L:S.T. Components ....... ......................... 84 | Tellord Electronics ....................................... 122 |
|  | Lustraphone. Led. : ............................ . . . 54 | Teonex. Ltd. .j........... . . . . . . . . . . . . . . . . . . . ${ }_{12} 20$ |
|  | Lyons. Claude. Ltd. ............ . . . . . . . . . . . . . . . . 45 | Thompsor, A. J. ............................. 128 |
| -Duxford Electrontcs ............................. 123 |  | Tomura Bussan Kiesha. Ltd. ........................ ${ }_{\text {Trend }}^{123} 5$ |
|  |  | Trio Corporation Ltd. ......................................... ${ }^{\text {a }}$. ${ }^{\text {a }}$ |
|  | M.A.C. Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 | T.R.S. Radio ....................................... 124 |
| Eddystone Radio. Lté. | Marconi Co.. Ltd. ............................... ${ }^{71}$ | Turner Ernest. Elec. Insts., Ltd. .............. 65 |
| Elcom, Ltd. | Marshall. A. .................................... 105. | T.V. Mini Mart ................................. 129 |
| Electronic Brokers. Ltd. ................ 106. 124, 128 | Mayco Products. Ltd. . . . . . . . . . . . . . . . . . . . . . . . $126^{\text {. }}$ |  |
| Electronics (Croydort). Ltd. . . . . . . . . . . . . . . . . . . 82 | McMurdo Instrument Co: Ltd. ................ ${ }^{\mathbf{7 3}}$ | - |
| Electrosi1 Led. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ${ }_{\text {Electrovalue }}^{26}$ | Mills. W. ...................... . . . . . . . . . . 100. 10 . | Universal Book Co. ......................c.......... 128 |
| Electrovalue ${ }_{\text {Electro-Winds }}$ | Milo Internationai .............................. ${ }_{6}$ |  |
| Electro-Winds, Lid. | Mitward. G. F. ......................... 96 |  |
| English Electric Valve Cu.. Ltd. Enthove: Solders. Led. | Mintature Electrunic Components. Ltu. ......... 76 |  |
| Erie Resistors. Ltid. ....i .... ...................... $1 / 1$ | Minnesota Minug \& Mtr. Cos., Ltd. ............. 72 | Vitallty Bulbs, Ltd. ......................... 42 |
|  | Modern Book Co. ............................. 122 . | Vortexiou, Ltd. .................................... 51 |
|  | Morganite Resistors. Leta. . . . . . . . . . . . . . . . . . . 19 |  |
| Fieldtech. Ltd. ..................... ............. . 54 | M.R. Supplies. Led.. ......... . . . . . . . . . . . . . . . 88 |  |
| Fiunlgan Speciality Pailts ........................... 128 | M.S.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 |  |
| Foxlde Electric ..................................... . . . 48 | Mullard. Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 | Warne Kerr, The., Co., Ltd. . . . . . . . . . . . . . . . . . . . . . . . . 12.129 |
|  | Multicore Solders. Lid. ...................... Cover iv |  |
|  |  | Welwyn Tool Ca., Ltd. . . . . . . . . . . . . . . . . . . . . . . . 44 |
| Gardners Transformers, Ltc. . . ................... . 41 |  | West Hyde Developments, Ltd. $\quad .$. ............... 75 |
|  | Nicholls, E. R. . . . . . . . . . . . . . . . . . . . . . . . . . . 128 | West London Direct Supplies .................... ${ }^{\text {a }} 9$ |
| Glaser, L.. Co., Ltd. ........................... 128 | Nombrex, Ltd. ..................................... . . 56 | Whiteley Electrical Radio Co.. Litd. ................. 104 |
| Globe Scientific. Ltd. . . . . . . . . . . . . . . . . . . . . . . . 104 |  | Wifkinson, L. (Crordon). Lid. Lid. ..................... 100 |
| Godlers . 1 ..................................... 126 |  |  |
| Coldring Mig. Co.. Ltd. | Olympic Transformers ........................... 127 |  |
|  | Olson Electronics, Ltd. ............................. 79 | Yukan Products .................................. . . 124 |
| Greenwood. W. (London). Ltd. ................. 37. 39 | Omron. Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 |  |
| Grice \& Young. Ltd. . . . . . . . . . . . . . . . . . . . . . . . 125 | Osmabet. Ltd. .................. ............... . 127. 128 | Z. \& I. Aero Services. Ltd. . . . . . . . . . . . . . 60. 78. 89 |

 LONDON，S．W． 4 Tel．01－622 0291／3
Telegrams：SOLJOINT LONDON S．W． 4

## In addition to Ersin Multicore 5 Core Solder we make these products to help industry and laboratories

## special ,products for the soldering of printed circuits

A complete range of products for the soldering of printed circuits, including:
P.C. 2 Dip Cleaner P.C. 10A Activated Surface Preservative P.C. 21A Printed Circuit Liquid Flux P.C. 51 Finishing Enamel. Solid Solder Wire, Solder Sticks, Solder Ingots and Ersin Multicore 5 -core Solder Wire for direct application to panels.

1

## Mark 2 solderability test machine

Incorporates many new features, including semi-automatic electrical timing, proportional temperature control, remote controlled specimen
 lowering system and a temperature meter calibrated to an accuracy of $0.25 \%$ full scale deflection at the test temperature.
The machine can reduce production costs by instantly checking the solderability of components with wire terminations.
It complies with B.S.I. and proposed M. of D. and International Solderability Test Specifications.

solder tape, rings, preforms, washers, discs, and pellets
Made in a wide range of solid or cored alloys. Tape, rings and pellets are the most economical to use.

## 3a automatic soldering machine

Specially designed for manufacturing processes involving repetitive soldering operations. An exact quantity of
 Ersin Multicore Solder is automatically fed at each downward stroke. It can be operated by foot treadle or compressed air system, or may be connected to form part of an automatic assembly sequence 5

## liquid fluxes

7. standard non-corrosive Ersin Liquid Fluxes, all comply with D.T.D: and Mil specifications.
Arax Acidic Liquid Flux, the residue is easily removed, is faster than zinc chloride types but much less corrosive. In 1 -gallon or 5 -gallon non-returnable containers.


## Arax 4-core acid cored solder

Used in 38 industries it has replaced tinman's and blowpipe solders, fluid and paste fluxes and killed spirits for rapid and precision soldering in metal fabrication processes.
Arax Flux-exclusive to Multicore-has the fastest speed of flux in any'cored solders. Flux residue is easily removable with water or, where flame heating is employed, is entirely volatilised. Residue will not contaminate plating baths. No pre-cleaning is necessary and the speed ensures that the solder will flow between the laps by capillary action, thus using the minimum amount of solder. Not recommended for wire to tag joints in radio or electrical equipment.

## Bib accessories can be supplied in bulk packings at very competitive prices

wire stripper and cutter model 8
Strips insulation without nicking wires, cuts wires and cables cleanly. Model 3 is semi-permanently adjusted. Model 8 incorporates a unique 8 gauge selector.


Precision made, chrome plated complete with razor cutter. Provides quick and accurate tape editing. Standard model for $\frac{1^{\prime \prime}}{4}$ tape. NEW $\frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}$ type is available for computer and video tape.

## instrument cleaner

Anti-static. Specially formulated for cleaning delicate instrument panels, plastic, chrome, glass and printed surfaces. Antiseptic, nontoxic, non-flammable, does not smear. Used and recommended by leading electronicmanufacturers.
in 1 -gallon and 5-gallon containers and 4 fl . oz. bottles.

tape head maintenance kit size E

Cleans tape heads and all parts of the tape path of magnetic tape
 magnetic tape
decks. Applicator and Polisher Tools and Sticks are available separately.

For further information please apply on your Company's note paper mentioning the product references Dept. WW, Multicore Solders Limited, Hemel Hempstead, Herts. Telephone : Hemel Hempstead 3636


[^0]:    Ilffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Dorset House, Stamford Street, London, SE 1

[^1]:    * Mr. Ibbotson is a senior lecturer in electrical engineering at West Ham College of Technology, London E. 15 .

[^2]:    * We apologize for lack of clarity in the printing in some parts of this article, especially with subscripts.-ED.

[^3]:    * Manufactured by Physical \& Electronic Laboratories Ltd., 28 Athenaeum Rd., Whetstone, London, N.20, of which the author is chief engineer.

[^4]:    *"Colour Tube Production", September 1967

[^5]:    Please send me details of Shure microphones. Please recommend the best model for use with my equipment
    NAME.
    ADDRESS
    TO SHURE ELECTRONICS LTD • 84 BLACKFRIARS ROAD. LONDON • SE1 Tel : 01.9286361

[^6]:    Please send me a free copy of :
    > $\square$ Goodmans High Fidelity Manual Goodmans Audio Suite Booklet (tick which required)

[^7]:    TO: B.H. Morris \& Co., (Radio) Ltd.
    Send me information on TRIO COMMUNICATION
    RECEIVERS \& name of nearest TRIO retailer.
    NAME :
    ADDRESS :

[^8]:    Comprehensive information from your Eddystone distributor or: Eddystone Radio Limited, Eddystone Works, Alvechurch Road, Birmingham 31. Telephone: 021-475 2231. Telex: 33708.
    A MARCONI COMPANY

[^9]:    HATFIELD INSTRUMENTS LTD．， Dept．WW，Burrington Way，Plymouth，Devon． Telephone：Plymouth（0752）72773／4．
    Telegrams：Sigien Plymouth．

[^10]:    WHITELEY ELECTRICAL RADIO CO. LTD
    MANSFIELD - NOTTS • ENGLAND
    Tel: Mansfield 24762
    London Office: 109 KINGSWAY, W.C. 2
    Tel: HOLborn 3074

[^11]:    Telephone:

[^12]:    Vacancies listed above are located at Newcastle, Staffs., but !nstructors will also be required in Borehamwood, Herts. and London. Commissioning Engineers are also required in London.
    Please write for further details quoting the appropriate reference number to:
    Personnel Services (Ref. WW.5548),
    English Electric Computers Limited,
    Field Engineering Division,
    Copthall House, Nelson Place,
    Newcastle, Staffs.

[^13]:    BRAND NEW W.D. TELEPHONE CABLE Single D3. $\frac{1}{}$ of a mile drums, ideal for outside tele phone systems. Fraction of maker's price. 50/ phone $7 / 6$.

[^14]:    Please write in block letters with ball pen or pencil.

