

PRECISION MINIATURE SOLDERING IRONS

Antex, Grosvenor House, Croydon, CR9 10E.

Telephone 01-686 2774

Editor-in-chief:
W. T. COCKING, FIIE.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Editorial:
B. S. CRANK

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)
J. R. EYTON-JONES

Iliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Dorset House, Stamford Street, London, SE1

CONTENTS

1 Trade Balance or Imbalance?

New B.B.C. Monitoring Loudspeaker
Books Received
Towards Large-Scale Integration
'"Doctoring’' Recorded Sound
Electronics in Concorde
News of the Month
Personalities

An Evening of Sonic Effects

Kelvin Cables
Letters to the Editor
Transistor is Twenty Years Old
Letter from America
Time-Controlled Combination Lock
Literature Received
Technical Notebook
World of Amateur Radio
Electronics in Typesetting
South Africa-Europe Submarine Cable
Smaller D.C. Converters and Inverters
H.F. Predictions

Forthcoming Events
March Meetings
Real and Imaginary
New Products
by H. D. Harwood

Announcement : March Conferences and Exhibitions

Power Supply Stabilization Module by P. R. Adby
by G. W. Short
by 7. F. C. Johnson
by R.F. Southall
by 7. R. Nowicki

[^0]PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; f^{2} 6s 0d. Overseas; $\not \AA^{2} 15 \mathrm{~s} 0 \mathrm{~d}$. Canada and U.S.A.; $\$ 8.00$. Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM; 401, Lynton House, Walsall Road, 22b. Telephone: Birchfields 4838. BRISTOL: 11 Marsh Street, 1. Telephone: Bristol 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.

AM/FM modules give you design flexibility

Mullard now offer you in a single can any major circuit function found in a portable or mains radiogram. Take the LP1169 AM/FM tuner for example. It covers 87.5 to 108 MHz on FM, short, medium and long
wavebands on $A M$, operates on 9 V , is fully screened and has a.f.c. All in one module.
The Mullard module approach gives you design flexibility and the best overall performance-we make the
components, we assemble them into the modules. And on such a scale that price and quality are the best.
Our range is the widest available. We've simplified external and inter-stage circuitry as far as possible without sacrificing design flexibility. The range includes modules to cover the requirements of $A M$ and $A M / F M$ receivers plus audio output modules up to 10 W . A special publication on the LP1169 and other Mullard modules which also gives full application information, is available to manufacturers.
Tick the coupon for a copy.

Everyone knows we make tubes, but did you know we make scanning coils too?

It makes good sense. You get a better match if they are both from the same source. We go to great lengths to get an optimum match between tubes and coils. We produce scanning coils for all our many Panorama and Pushthrough monochrome picture tubes. Manufacture is strictly controlled to
ensure consistent quality. Setting up is therefore greatly simplified. Compensation for frame shrinkage, due to rises in temperature, is incorporated. If any horizontal pin-cushion distortion or mis-shape at the corners of the raster should occur, this can be corrected with
extra magnets fitted to the coil housing. Of course our scanning coils for colour TV are produced to the same high standard. Technical information on the monochrome scanning coil AT1030is availabletomanufacturers. Tick the coupon for a copy.

Time well spent

There can't be many firms who've been in business as long as we have, who have used the time to such advantage. Our past experience guides our future plans; provides us with an insight into the industry we serve ; allows us to anticipate needs and deploy our resources over the most fruitful areas of research and
development-and thereby provide modern, technically excellent products ready for the demands of tomorrow. We have co-operated in
so many consumer electronics projects that it's quite likely we are working along similar lines to yours. So why not get in touch ?

Wireless World

ELECTRONICS, TELEVISION, RADIO, AUDIO

Trade Balance or Imbalance?

"IF these three requirements [quality, price and delivery dates] are not met the Post Office will be forced to look at the alternatives of procurement abroad and the creation of additional manufacturing capacity by the Post Office itself." This was the tough warning given to the industry by Mr. Edward Short, the Postmaster-General, at the annual dinner of the Telecommunication Engineering and Manufacturing Association in London on February 6th. He had said earlier in his strongly worded speech, "I should like to assure you also that we will do all we can to buy British provided we can get itin time". This clarion call to buy British is all very well, but how much, or how little, of some products is British? Be that as it may, there certainly seems little justification for many of the imports in the field of radio and electronics.

Although in certain sections of our industry the export record is extremely high the curve for imports tends to rise more steeply. Take for instance the capital equipment side. The total given in the Board of Trade "Overseas Trade Accounts" for telecommunications equipment exported in 1967 is $£ 83.3 \mathrm{M}$ compared with the previous year's $£ 79.9 \mathrm{M}$. On the debit side, however, we find the figure of $£ 20.2 \mathrm{M}$, and moreover, this represented a $33 \frac{1}{3} \%$ increase, whereas exports rose by only 4%. It is to be hoped that the telecoms industry will rise to the challenge presented by the P.M.G. to avert a still steeper rise in the imports curve. Incidentally, last year's exports included $£ 13 \mathrm{M}$ worth of radio communications equipment, an increase of nearly 50% on the previous year.

The balance of trade in this sector of the industry is still healthy, but this cannot be said of, for instance, the domestic equipment side. Again quoting from B.o.T. figures, exports of radio and television receivers, chassis and parts, declined from $£ 7.6 \mathrm{M}$ to $£ 6 \mathrm{M}$, whereas imports increased from $£ 6.8 \mathrm{M}$ to $£ 9.3 \mathrm{M}$. Incidentally, the total number of transistor receivers and chassis imported last year was 2,452,000 as against 1,718,000 in 1966. A similar picture can be painted of the active component section; the value of semiconductors imported last year rose 10% to $£ 11.37 \mathrm{M}$ and exports fell 4% to $£ 2.7 \mathrm{M}$.

The picture is no brighter for valves, tubes, etc., of which last year $£ 7.3 \mathrm{M}$ worth were imported ($\mathcal{L} 5.3$ in 1966) and $£ 5.1 \mathrm{M}$ exported ($£ 5.6$ in 1966); nor for the test and measuring instruments-imports rose by $£ 5.2 \mathrm{M}$ and exports by $£ 1 \mathrm{M}$.

One is tempted to ask why should there be this general imbalance in our importexport trade? Is it because so many of the "British" companies are in fact subsidiaries or associates of overseas concerns and are therefore dependent on importing the parent company's output for their own "production"? Certainly, by far the highest volume of imports of electrical and electronic equipment comes from the U.S.A. whose share increased by 14% to over $£ 65 \mathrm{M}$ last year. Germany's exports to this country stood at $£ 21 \mathrm{M}$ last year (a slight decrease), and although the Netherlands came third her share went up by some 60% to over $£ 20 \mathrm{M}$. Although much lower in value it is significant that both Italy and Japan increased their supplies to this country by nearly 50% to $£ 9.3 \mathrm{M}$ and $£ 6.3 \mathrm{M}$, respectively.

To go back to our question "why?". Is it our industry's inability to compete in the home market with imported foreign products which are often cheaper and better than the equivalents produced in the U.K.? One reason for this often put forward by economists is the inefficient structure of British industry: too many small manufacturing units making it impossible to achieve economies of scale.

Whatever the cause, we must not only think in terms of the Buy British campaign we must also sell British.

New B.B.C. Monitoring Loudspeaker

1. Design of the low frequency unit

by H. D. Harwood, b.Sc.

Abstract

An outstanding feature of the B.B.C.'s latest studio monitoring loudspeaker is the 12 -inch low frequency unit, which has a performance believed to be superior to that of any known commercial product.

THE studio monitoring loudspeaker at present being used by the B.B.C., type LS $5 / 1 \mathrm{~A}$, was developed in 1959 and employs a special 380 mm low-frequency unit and two 58 mm high-frequency units. Although some 250 of these have been built, considerable difficulty has been experienced in securing adequate supplies of low-frequency units which meet the tolerances applied. Yet, in spite of the tightness of these tolerances, comments have been made that the sound quality varies from specimen to specimen. Criticism has also been made of the reproduction, although it is conceded to be better than that of any commercially available loudspeaker.

In view of the difficulty in obtaining low-frequency units of adequate quality and reproducibility, an investigation was started in the B.B.C. Research Department into the possibility of producing a thermoplastic cone and these experiments led to the production of the 305 mm unit described in this article (also in a B.B.C. Monograph ${ }^{1}$). The listening tests were so successful that in November 1965 it was decided to commission a new loudspeaker incorporating this unit. It was clear that by employing a 305 mm unit an appreciably smaller cabinet than that of the LS5/1A would suffice, and it was intended that the new loudspeaker should serve both for studios and outside broadcasts.

LIMITATIONS OF EXISTING UNITS

Wide-range loudspeakers, such as are employed for quality monitoring, generally consist of low- and high-frequency units mounted in a cabinet together with a crossover network. In the past colouration \dagger has been so prominent in the reproduction from low-frequency units

+ By colouration is meant a characteristic timbre imparted to the reproduced sound by the loudspeaker; it is believed to arise from excitation of mechanical resonances.

H. D. Harwood, who obtained a physics degree at London University in 1941, started his career in 1938 in electro-acoustics at the N.P.L. There he helped on the first Medresco hearing aid and worked on microphone and loudspeaker calibration. Joining the B.B.C. Research Department in 1947, he has since been engaged on loudspeaker development. microphone calibrations, stereophonv requirements and the design of a free field room. He has a number of patents and is author of various B.B.C. Engineering Monographs.
that the choice of unit has been made on the basis of comparative freedom from this effect rather than on that of power-handling capacity. As an example, a 15 in . (380 mm) unit is employed in the type LS3/1A \ddagger loudspeaker when a unit of smaller diameter would have been chosen if one of the necessary quality could have been found. In addition, owing to the restricted working frequency range of the high-frequency units available, it has been necessary to use low-frequency units beyond the frequency range in which the cone and surround behave as a simple piston, i.e. up to about 500 Hz , and into the region in which the amplitude/frequency response is irregular and dependent on the modes of cone resonance and their degree of damping. Furthermore, in existing loudspeaker units the frequency range over which the response is smooth appears, for reasons not fully understood, to be almost independent of cone diameter and from this aspect there is therefore no advantage to be obtained from employing units of smaller diameter.

Cones have generally been made of a paper felt material, but in practice the characteristics of this material, especially the damping coefficient, are not accurately reproducible in large-scale manufacture, and therefore the frequency characteristics are variable in the region of resonance modes. In an effort to improve matters some manufacturers have turned to materials having a higher stiffness to weight ratio than is obtainable with felted paper, the idea being to make the cone so stiff and light that the inevitable resonances lie outside the frequency range of interest. For this purpose expanded polystyrene has been employed, generally with a reinforcing skin of some other material such as aluminium. The results are rather disappointing as resonances are found to occur within the middle-frequency band and by its very construction the cone is of such a high mechanical impedance that it is very difficult to secure adequate damping.

In the B.B.C. the monitoring loudspeakers LS5/1A, LS5/2A,** and LS3/1A all use a special commercial 15 in . (380 mm) diameter low-frequency unit, and have a crossover frequency of about 1,600 Hz , and some difficulty has been found in obtaining units which will meet the B.B.C. test specification in the 500 to $1,600 \mathrm{~Hz}$ region where various resonances occur; furthermore, the axial frequency characteristic in this region is not as smooth as could be desired. It was therefore decided to see whether it would be possible to make, for future designs, loudspeaker units which would have more uniform and more reproducible characteristics than those of the type at present in use.

One of the difficulties restricting the development of paper cones has been the fact that the cost of a new mould has been in the region of $£ 200$, making experimental procedure very expensive. It was therefore decided to investigate the use of thermoplastic materials which can easily be made into cones by vacuum forming. For this process changes in mould shape and even new moulds can be made quite cheaply and easily; furthermore, as the raw cone material is made in the form of flat sheets, it should be very uniform and repeatable.

It was explained earlier that the existing low-frequency units were chosen on the basis that they were relatively free from colouration
\ddagger The LS3 $/ 1 \mathrm{~A}$ is used for outside broadcast monitoring and has a small lightweight cabinet. The design is intended to provide the best compromise between quality and portability.
**The LSS/1A is the normal floor-standing version, while the LS5/2A is designed to hang above picture monitors in teluvision control rooms.

The complete studio monitoring loudspeaker (free-standing version) with and without front cover. It is a three-unit design.
although in fact they were unnecessarily large. It was therefore decided that the new units should be of 12 in . (305 mm) diameter as this size should afford adequate power-handling capacity to meet all requirements. In order to restrict the investigation as much as possible, it was decided to use commercially available chassis and magnet systems, leaving open the choice of voice coil diameter and length, spider constants, and the design of the cone and surround; for the last-mentioned two items, the influence of shape, thickness, and material were to be examined.

CONE MATERIAL

During the period of roughly forty years in which moving-coil loudspeakers have been under development, very little has been published on the various factors which influence the frequency characteristics. One factor which is known, ${ }^{2}$ however, is that cones with straight sides are much more likely to generate subharmonics than those which have curved sides and it was therefore decided to start with a cone shape having slightly curved sides, as shown in Fig. 1 (a); the voice coil diameter was 2 in . $(50.8 \mathrm{~mm})$.

The primary criterion which was applied to the choice of material was that it should possess a high degree of mechanical damping, for it was argued that since resonance modes were almost certain to occur in the frequency range of interest it was essential that they should be well damped if a uniform frequency characteristic was to be obtained.

The first material to be tried was expanded polythene, which is available in sheet form in various thicknesses from $\frac{1}{16} \mathrm{in}$. $(1.6 \mathrm{~mm}$) upwards. This material is very light and is characterized by an extremely high damping coefficient. The first experimental models showed axial frequency characteristics which fell off above 500 Hz owing to insufficient stiffness of the material; this result was not altogether unexpected and steps were taken to stiffen the cone. A coat of polyurethane varnish was applied to each side of the material and as a result the frequency characteristic was extended to about 1 kHz . It will be noted from Fig. 1(a) that there is a sharp bend in the cone shape near the voice coil, and it was thought likely that flexure was taking place at this point. A further mould was therefore made, Fig. $1(b)$, in which the sharp bend was replaced by a gradual curve, and this resulted in a wider frequency range but the frequency characteristic was rather irregular. Coating the cone again with polyurethane would have improved matters, but as more promising results had in the meantime been obtained with other materials further experiments with this material were abandoned.

Concurrently with the experiments described above, tests were carried out on cones made of $0.02 \mathrm{in} .(0.6 \mathrm{~mm})$ thick unplasticized polyvinylchloride (p.v.c.), which is a horny type of material and also with a polystyrene material (Bextrene) of the same thickness which had been toughened by the addition of a synthetic rubber and possessed a higher degree of damping than did the p.v.c. Cones were made with the mould shown in Fig. 1(a), and the frequency characteristics were measured with the units mounted in an enclosed cabinet similar in volume to that of the type LS5/1A loudspeaker. These characteristics are shown in Figs. 2 and 3 respectively. It is evident that the high-frequency range covered was in both cases adequate for the purpose in hand and that the additional damping in the polystyrene was advantageous; further experiments were therefore confined to this material.

All the experiments so far described were made on cones having a surround made of the same material as that of the cone and the irregularities which are seen in Fig. 3 above 500 Hz are due to the presence of resonance modes. The cone can be regarded as a transmission line and resonance modes can occur with the wave motion either in a radial or circumferential direction if it not properly terminated in a resistive surround. As the required impedance for these two directions is different and the termination must occupy a distance small compared with a wavelength, it will be seen that the problem of designing a good termination is difficult.

Fig. 1. (a) Shape of first mould; (b) shape of second mould.

Fig. 2. Axial frequency characteristic of unplasticized p.v.c. cone from first mould.

Fig. 3. Axial frequency characteristic of Bextrene cone from first mould.
Fig. 4. Shape of first

Fig. 5. Axial frequency characteristic of Bextrene cone from first mould. Fig. 1 (a). fitted with p.v.c. surround of shape shown in Fig. 4.

Fig. 6. Axial frequency characteristic of Bextrene cone from second mould, fitted with p.v.c. surround of shape shown in Fig. 4.

Fig. 7. Shape of second p.v.c. surround showing flat region.

Flat region
0.1875 in .

The first surround tried was of plasticized p.v.c. 0.02 in (0.5 mm) thick of the shape shown in Fig. 4, this profile being chosen to allow for fairly large excursions of the cone at low frequencies. The surround was substituted for the integral surround on the polystyrene cone previously used to obtain the curve in Fig. 3 and the resulting axial frequency characteristic is shown in Fig. 5. It will be seen that the curve is considerably smoother than that of Fig. 3 but that the high-frequency response is reduced, probably due to the surround damping out resonance modes; on the other hand, as would be expected, the bass range is extended to lower frequencies. The fact that the axial characteristic rises with frequency is largely due to the directivity increasing with frequency and the concentration of more of the sound energy on the axis. Experiments with a cone material of twice the thickness, i.e. 0.04 in . 1.0 mm), showed that it was possible to recover the high frequency response, but the response was more irregular and the sensitivity lower owing to the greater mass. Cones were then made with $0.02 \mathrm{in} .(0.5 \mathrm{~mm})$ material to the second shape mould, Fig. 1(b). As with the polythene material, the change in shape resulted in an increase in the high frequency response, as shown in Fig. 6. The dip in the curve at 250 Hz was thought to be partly due to a circumferential mode and this was checked by stroboscopic examination. Further evidence was obtained by making a cone with a small turnover at the edge; this had the effect of stiffening the cone edge, thereby increasing the Q and producing an increase in the depth of the dip.

The effects of small changes in the shape of the cone and in the diameter of the voice coil were investigated and it was found that neither of these two factors was critical.

A large number of experiments were then carried out, using surrounds of differing materials, thickness, and profile in an attempt to damp out the mode at 250 Hz . It was finally discovered that with a suitable surround material better damping could be obtained if, as shown in Fig. 7, a small flat region was left before the turnover of the surround commenced. This flat region has the effect of introducing a shunt arm, as indicated in Fig. 8, consisting of a resistance and compliance, in parallel with the mass, compliance and resistance of the surround proper. The axial characteristic with this surround, shown in Fig. 9, is appreciably smoother than that obtained from commercial $12 \mathrm{in} .(305 \mathrm{~mm})$ units, especially in the region above 500 Hz ; the sensitivity is about the same as that of the 15 in . (380 mm) unit referred to earlier. The power-handling capacity and transient response were then tested. Mounted in a closed cabinet, the unit was able to take the full output of a 25 -watt amplifier down to 70 Hz without obvious amplitude distortion when the waveform was observed on an oscilloscope. Chopped-tone transient response tests ${ }^{3}$ showed the unit to be free from serious resonances below 3 kHz

Four units were then made to check the reproducibility of this form of construction; the axial frequency characteristics did not differ from one another by more than $\pm \frac{1}{2} \mathrm{~dB}$ from 75 Hz to $1,250 \mathrm{~Hz}$ and $\pm 1 \mathrm{~dB}$ from 30 Hz to 2 kHz . It was therefore decided to design a complete loudspeaker employing a unit of this type for the low frequencies and to carry out listening tests.

The cost of materials for the cone and surround is only a few shillings, while the cost of production of these parts is only a small fraction of that of the magnet system. The price of the complete low-frequency unit should be no greater than that of corresponding commercial products.

TESTS

LS5 /1A (studio-type loudspeaker). -The 15 in . (380 mm) unit in an LS $5 / 1 \mathrm{~A}$ loudspeaker was replaced directly by the new 12 in . (305 mm) unit. A slight excess of output in the middle frequencies was corrected by means of a resistor which was originally designed to be adjustable for this purpose. A small dip in the axial response at 1,750 Hz was traced to the effect of the 7 in . (178 mm) wide slot in front of the unit.
LS3/1A (outside-broadcast loudspeaker).-When the 15 in . (380 mm) unit in an LS3/1A loudspeaker was replaced by the new 12 in . (305 mm) unit, the response in the region 400 Hz to 800 Hz was found to be somewhat excessive as with the LS5/1A cabinet. To overcome this, it was found necessary to change the values of several components in the crossover network.

The two loudspeakers described were given listening tests in a listening room at the B.B.C. Research Department using recordings of

Fig. 8. Mechanical circuit diagram of surround.

Fig. 9. Axial frequency characteristic of Bextrene cone fitted with p.v.c. surround of the type shown in Fig. 7.
speech from dead surroundings and recorded orchestral items. They were judged to be significantly superior to their LS5 /1A and LS3/1A counterparts and were therefore offered for an extended field trial. Reports have been very favourable and in particular comments have been made regarding the freedom from colouration of the bass response compared with the corresponding loudspeakers employing the 15 in . (380 mm) unit.
(Next month: bass equalization and the cabinet).

REFERENCES

1. "The design of a low-frequency unit for monitoring loudspeakers" by H. D. Harwood. B.B.C. Engineering Division Monograph, No. 68, July 1967.
2. "Speaker Design" by J. Q. Tiedje. Radio Engineering, N.Y., 16, No. 1, p. 11, 1936.
3. "A Survey of Performance Criteria and Design Considerations for High Quality Monitoring Loudspeakers" by D. E. L. Shorter. Proc. IEEE., 105, Pt. B, No. 24, Nov. 1958, pp. 607-625.

We understand that KEF Electronics Ltd., who have made B.B.C. monitoring speakers under licence for several years, are arranging to manufacture the new model when field trials are completed and various technical details have been setted. The company say that production of earlier models will also continue.-Ed.

Books Received

Principles of Television Reception by W. Wharton and D. Howorth. A step-by-step tour through a television set in which basic principles are expanded into block diagrams and these into circuit diagrams that are discussed in detail. After dealing with black and white, colour television is then discussed in its various forms (N.T.S.C., PAL, SECAM). This book should be of value to anyone with some knowledge of electronics who wishes to know some more about this particular branch. Pp. 296. Price 40s. Sir Isaac Pitman \& Sons Ltd., Pitman House, Parker Street, London, W.C.2.
Measuring Hi-Fi Amplifiers by M. Horowitz. Explains the basic principles of high-fidelity amplification and the meanings behind manufacturers' data. A comparison of the various instruments available for measuring performance is made and test set-ups for determining various circuit parameters are described. Pp. 159. Price 25s. W. Foulsham \& Co. Lid., Slough, Bucks.

Rapid Servicing of Transistor Equipment by Gordon J. King. Intended for service technicians, students and amateurs, this book provides a guide to the servicing of domestic equipment employing transistors. Initial chapters include theoretical and practical discussions on transistors, how they are biased, operating characteristics and circuitry, signal conditions and testing. The rest of the book is devoted to practical advice on servicing and includes both electrical and mechanical information. Pp. 151. Price 30s. George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.
Mathematics for Electrical Circuit Analysis by D. P. Howson. This book has been written as an introduction to the mathematics required for circuit analysis. Although not complete the material given is thought to be sufficient to cover the needs of second and third year undergraduates taking a light current electrical engineering course. Determinants, matrices and topology to assist in the evaluation of multimesh circuits and the solution of basic differential equations for linear circuits are discussed. Fourier series, Fourier integrals and Laplace transforms are also dealt with. Pp. 170. Price 17s 6d. Pergammon Press, Headington Hill Hall, Oxford.
Sound and Vision by P. E. M. Sharp. This Design Centre Publication is intended for the uninitiated who are about to purchase a radio or television receiver or a high-fidelity system and wish to know something about the subject and what is available. The book commences with a description of the technicalities of radio, television and sound and then proceeds to discuss turntables, pick-ups, pre-amplifiers, amplifiers, tuners, loudspeakers, tape recorders and accessories. Following this radio receivers, radiogramophones and television receivers are discussed. During the course of the descriptions, equipment from a large number of manufacturers is introduced. This however, is not exhaustive. Pp. 64. Price 7s 6d. MacDonald and Co. (Publishers) Ltd., Gulf House, 2 Portman Street, London, W.1.
Semiconductors-Vol. II. Linear Circuits by E. J. Cassignol. This book, from the Philips Technical Library, is divided into two sections. The first deals with the methods of studying linear circuits and discusses the properties of the semiconductors employed in this application. The second section concerns itself in detail with the practical use of linear circuits employing semiconductors. Separate chapters discuss the l.f. amplifier, the video amplifier, the h.f. amplifier, the power amplifier and the d.c. amplifier. The feedback problem is dealt with and a section is included containing a number of practical exercises. Pp. 337. Price 104s. Macmillan \& Co. Ltd., Little Essex Street, London, W.C.2.
Understanding u.h.f. Equipment by John D. Lenk. The first chapter contains answers to a series of questions that, in the author's opinion, is most often asked of instructors in the u.h.f. field. Other chapters contain information on specific items of u.h.f. equipment, circuits and components, the emphasis being placed on fundamentals and basic features. In addition comparisons between this equipment and equipment for lower frequencies is made. In the last chapter test equipment and various techniques that are unique to the u.h.f. and microwave field are described and illustrated. Pp. 144. Price 25s. W. Foulsham \& Co. Ltd., Slough, Bucks.

This illustration originally appeared in an article by Arthur Mee on the future of "the pleasure telephone" in the Strand Magazine in 1898 and is reproduced in Leslie Baily's "B.B.C. Scrapbooks, Vol. 1, 1896-1914" published by Allen \& Unwin. price 40s. In the course of his article Arthur Mee prophetically stated "Patti and Paderewski may yet entertain us in our own drawing-rooms, and the luxuries of princes may be at the command of us all. Who knows but that in time we may sit in our armchairs listening of Her Majesty's Ministers".

Towards Large-Scale Integration

Design and manufacturing techniques in the U.K.

Digital integrated circuits now commercially available include packages which are one stage higher in functional complexity than the first i.es to appear -complete sub-systems rather than individual logic elements.

A
COMPLETE arithmetic unit of a computer on a single chip of silicon a few millimetres square is one of the projects under way at Marconi's, with whom Elliott-Automation Microelectronics Ltd. are now associated*. Performing addition, subtraction, shifting and other operations on 4 -bit binary numbers, the unit will consist of 226 inter-connected field-effect devices formed by the m.o.s. (metal-oxide-silicon) integrated-circuit technology on a chip of silicon measuring approximately $3 \mathrm{~mm} \times 2.5 \mathrm{~mm}$. Some of the field-effect devices will operate as transistors and the remainder as resistors. At the time of going to press the project has reached the stage where a prototype arithmetic unit (using smaller integrated circuits) has been built and proved and the masks for making the m.o.s. chip have been designed.

* See note on D.G. Smee in "Personalities", January 1968 issue, p. 640. This new British organization has a total investment of $£^{5-6 \mathrm{M}}$ in microelectronics and employs about 800 people.

This example of a digital sub-system on a single chip is what might reasonably be called "m.s.i."-medium-scale integration, a step on the way to large-scale integration. As yet there is no fixed definition of 1.s.i. Some authorities consider it as anything above 1,000 devices (for example m.o.s.ts) on a single chip. Others say that the actual number of devices is not as important a criterion as the functional complexity-the two are not necessarily in proportion-and that you cannot attach a numerical value to it. Yet others apply the description 1.s.i. to a hybrid assembly of relatively simple integrated circuits mounted on a film circuit. It all seems to depend on what people mean by "integration".

For the present it is perhaps reasonable to think of the more complex i.c. packages now commercially available-containing the equivalent of, say, fifty to several hundred discrete components-as a stage in our progress towards 1.s.i. For example, there is the SGS-Fairchild C μ L9989 binary counter, comprising four cascaded flip-flops, which has 32 bipolar transistors and 23 resistors and is presented in a 14 -pin dual in-line package. Slightly larger is a Marconi 8-bit static register (using one flip-flop for each bit) which is formed by $88 \mathrm{~m} .0 . \mathrm{s}$. field-effect devices and is encapsulated in a 40 -lead flat-pack. Considerably larger is the

MEM5014 10-bit analogue-to-digital (and digital-to-analogue) converter supplied in a 40-lead package by General Instrument (U.K.), which contains 360 m.o.s. field-effect devices.

It can be seen that such products are really digital sub-systems-one step up in functional complexity from the gates and bistables that were the first elements to appear in integrated circuit form. As with the simpler i.cs, the main benefits to be gained from m.s.i. are greater economy and reliability in the manufacture of electronic equipment. The size reduction is generally an incidental, but may be a positive end in some applications.
While the smaller integrated circuits are being manufactured predominantly in bipolar form, with increasing complexity of circuit the m.o.s. field-effect technology becomes more and more attractive and may eventually be the natural choice for m.s.i. and l.s.i. The two main advantages of m.o.s. over bipolar are: (1) no isolation is needed between adjacent active devices (to prevent the formation of spurious transistors), so that the device packing density on a semiconductor chip can be greater; and (2) manufacturing is simpler, in that fewer masks are required (e.g. four as against eight) and there are fewer handling operations and high temperature processes. Among

How far we have come in 20 years. On the left is the first transistor, geranium point-contact, invented at Bell Telephone Laboratories, U.S.A., and patented in 1948. On the right a Marconi integrated circuit (24-bit dynamic shift register) carrying 150 field-effect devices on a chip of silicon 1.5 mm square.

An 8 -bit static register in m.o.s. integrated-circuit form. showing (left) the semiconductor chip and (right) two of the registers mounted in a flat pack.

the incidental advantages of using m.o.s. field-effect devices is the fact that the gate electrode-oxide insulation-semiconductor structure (see Fig 1) can be used as a capacitance for temporary storage of binary states. Furthermore, not only is isolation between adjacent devices unnecessary but adjacent devices can be economically connected in series (as may be required for a multiple-input gate) by making the drain of one m.o.s.t. serve also as the source of the next m.o.s.t., as shown in Fig. 1. This is possible, of course, because the f.e.t. is electrically a symmetrical device and it doesn't matter which of the two terminal regions in the semiconductor channel is used as the source and which is used as the drain.

Two major problems in making and using the m.o.s. technique are: (a) the manufacturing difficulty of achieving uniformity of threshold voltage (the Vos at which I_{B} is at a specified low value) in the production of a given i.c.; and (b) the susceptibility of the thin layer of gate-insulation oxide to breakdown by spurious voltage pulses. Marconi say that problem (a) has now been largely overcome. Problem (b) is mitigated in some i.cs by building in special protection diodes or, in others, by forming a thick layer of oxide over the gate contact.
(Left) Using a coordinatograph to produce a mask for an m.o.s. integrated circuit.

1st.t.e.t.
2nd f.e.t.

Fig. 1. Basic structure of a field-effect device in an m.o.s. integrated circuit (not to scale), showing how two of the devices can be easily connected in series by making one p -type region common to both.

The accompanying photographs show some of the manufacturing processes used by the Marconi and Elliott organizations in the production of m.s.i. circuits-which are little different from those used in the production of smaller integrated circuits. With the m.o.s. technology the first stage is to grow a $1 \mu \mathrm{~m}$ layer of silicon oxide (precise chemical name, silicon dioxide- SiO_{2}) on the slices of n-type silicon, which are approximately $230 \mu \mathrm{~m}$ thick. This is done by passing oxygen over the slices while they are being heated to $1,200^{\circ} \mathrm{C}$ in an electric furnace.

To obtain the type of structure shown in Fig. 1 it is necessary selectively to etch away areas of the oxide coating, diffuse an impurity (boron) into exposed parts of the n-type silicon to form the p-type source and drain, and, finally, evaporate areas of metal film on to the upper surface to form the source, gate and drain contacts and the interconnections between devices. The selective etching is done by a photo-lithographic process. A photo-resist lacquer is applied to the oxide surface, and when this is dry it is exposed through an optical mask to ultra-violet radiation. Where the u.v. passes through the transparent spaces in the mask the photoresist is hardened-these are the areas not to
be etched. Where the u.v. is stopped by the opaque parts of the mask the photo-resist remains in its original soft state-and these are the areas that are to be etched. Thus, when the coated slice is immersed in a liquid developer, the soft, unexposed areas are etched and the remainder are left unaffected.

As can be seen from Fig. 1, in some places the oxide is etched away completely to form "windows" through to the silicon, whereas in other places the oxide layer is simply reduced in thickness. This is achieved partly by etching down to different levels, applying the process described above each time, and partly by forming fresh SiO_{2} on the silicon exposed by etching. After the necessary "windows" have been etched through to the n-type silicon, the p-type drain and source are introduced by diffusing boron into the surface of the silicon through these "windows". For this purpose the slices are placed in a furnace and a carrier gas containing the boron is passed over them. Finally, the metal contacts, and some of the interconnections, are applied by evaporating a film of aluminium over the entire i.c. and then using the photo-lithography process to etch away the unwanted areas.

Other interconnections between the field-effect devices are provided by "cross-

Diffusion furnaces in laboratories at Glenrothes. Scotland.

Bonding machine used for making connections to the mounted semiconductor chips.

Testing completed integrated circuits with probes.

unders" formed within the main body of the silicon and passing beneath the devices. These are channels of high conductivity made by diffusing an impurity into selected parts of the n-type material.

The mask patterns are, of course, designed from the required electronic circuit. Each mask starts in the form of a pattern drawn on paper about 300 times the actual i.c. size. This is then cut into a Mylar sheet, using a co-ordinatograph to transfer co-ordinates of key points from the drawing. From this the final mask is formed, by photoreduction and photo-lithographic techniques, as a pattern of chromium metal film on a thin glass substrate. Photographic emulsion masks are also used, but the etched chromium film has been found to give better definition.

The manufacturing method outlined above is an example of what is called the "hundred per cent yield" approach. This means that for economical production every device on a chip should be functioning correctly, so that all the chips in a manufactured batch can be used. In practice this ideal is not attained. If only one device on a chip fails to work the whole chip-a complete sub-system-must be scrapped. Of course, the more complex the i.c. the greater the amount of material and processing work that has to be thrown away because of a single device failure. One attempt to combat this problem, called the "discretionary wiring" approach, recognizes at the outset that some non-functioning devices are bound to emerge from the manufacturing processes. A large number of simple circuits-many more than are needed-are produced on a semiconductor wafer, which is then tested. On the basis of the test results, patterns of interconnections are designed which will include only those simple circuits shown to be functioning correctly. Another manufacturing approach is to limit the functional complexity of individual chips but assemble a number of them together to make a hybrid 1.s.i. circuit.

London Physics Exhibition

FOR the first time foreign concerns are being allowed to participate in the annual Physics Exhibition which opens in the Great Hall of Alexandra Palace, London, N.2, on March 11 th for four days. There will be six overseas companies among the 147 exhibitor:-two each from the U.S.A. and the Netherlands and one each from Germany and Denmark.

The exhibition, organized by the Institute of Physics \& Physical Society, is again of instruments and apparatus mainly at the stages of research or development, rather than commercially available. It will be open each day at 10.00 and will close at 18.00 except on the 13 th when it will remain open until 19.30. On the opening day adnaission prior to 13.00 will be limited to members of the Institute \& Society and specially invited guests. Tickets are available free from exhibitors or from the Exhibitions Officer, I.P. \& P.S., 47 Belgrave Sq., London, W.1. Applicants are asked to send a stamped addressed envelope ($3 \frac{1}{2} \times 5$ in.).

The Exhibition Handbook (which is more than a catalogue of the exhibits; it is a valuable reference book on scientific instruments and apparatus) can be obtained from the I.P. \& P.S. for 10 s , including postage.

As is usual lectures have been arranged for three afternoons at 15.30. The exhibition organizing committee negotiated with the Soviet Academy of Sciences for a Russian lecturer to speak on the Soviet Space Programme and in particular the successful landing of a probe on Venus. Unfortunately, this was not able to be arranged and therefore Professor R. C. Jennison, of the Department of Physical Electronics, Kert University, will lecture on "The detection of micro-meteorites in space" on the opening day. On the 12th Professor R. L. F. Boyd, of the Department of Physics, University College, London, will lecture on astronomy in space and on the 13 th G. E. Perry will talk on "A school satellite tracking station as an aid to the teaching of physics". It may be recalled that Mr. Perry described in Wireless World of March last year the Kettering Grammar Schools' activities in tracking Soviet satellites. The lecture will be illustrated with tape recordings made at the station.

At 11.30 each day, except on the 11 th, there will be a programme of films in the Alexandra Room. On the 12 th will be a $1 \frac{1}{2}$-hour educational programme including a film on positron-electron annihilation. General interest films, including one on NINA the 4 GeV electron synchrotron at Daresbury, will be shown on the 13 th, and on the 14 th the programme comprises five new Mullard films on semiconductors.

"Doctoring' Recorded Sound

Some Techniques Employed in Recording Studios

During the past decade the equipment found in recording studios has increased in both quantity and complexity. The most obvious cause is the advent of stereophonic techniques, but there are other facets of the recording operation which may not be so familiar, and some of these are described here.

Most early stereophonic recordings were on 2-track $\frac{1}{4}$ inch tape. This is still popular in orthodox work where there are no subsequent operations on the signal. The technique involves the use of two microphones, either laterally spaced or mounted one above the other with their major axes at 90°. It was soon found that while this approach gave excellent results on symphonic and chamber music, it was not really suited to light or popular music, where separate close "miking" of instruments or sections of the orchestra was already established for mono work. If on stereophonic recording sessions a multi-microphone arrangement was used, with some microphones disposed to the left and some to the right, the natural spread of stereo was lost. In fact, the recording was not stereo at all, but a mixture of two mono tracks having no sonic relation to each other. To overcome this "hole in the middle" defect, artificial placing of individual microphone outputs was introduced. This is accomplished by feeding varying percentages of the output of a given microphone channel to the two recording tracks: when the division is $50: 50$ the sound image appears central between the two loudspeakers. In order to avoid loss of separation between the two tracks, this splitting of a given channel has to be done by separate amplifiers. These became known as cross feed or "pan" amplifiers. This was the beginning of the end for the straightforward simple mixer, for if microphone No 1 was (electronically) positioned midway between left and centre, and echo was added to microphone No. 1, where should the echo go?

Of the two orthodox stereo microphone techniques, the spaced system was more popular in U.S.A., while the 90° pair was favoured in Europe. With the spaced system, difficulty was sometimes found in getting a good centre image, so the Americans decided to fix it firmly in place by putting a third microphone in the middle and giving that microphone a separate track on the tape. For reasons of signal/noise ratio, the tape was enlarged to $\frac{1}{2}$ in. to carry the three tracks. It was not long before the "pop" people saw in the 3 -track machine a means of obtaining additional flexibility, as the soloist could be placed alone on the third track and fine adjustments could be made on the subsequent reduction from 3- to 2-track or mono. Nowadays, 4-track working on $\frac{1}{2} \mathrm{in}$. or 1 in . tape is gaining popularity, while some small studios accommodate large numbers of musicians by recording successively on tracks 1-4, or even up to 8 tracks in some cases.

Such multiple work inevitably worsens the overall signal/noise ratio, while in the classical field the noise levels of microphones, amplifiers etc. have dropped below that of the tape itself. An ingenious method of overcoming this, patented and marketed by Elektromesstechnik (Studer), is known as the "NoisEx" system. Briefly, the dynamic range of the signal going on to the tape is compressed so as to utilize the optimum recording level for signal /noise ratio. On playback, the output from the tape machine is fed into an expander unit whose characteristics are a mirror image of those of the compressor. It is claimed that the distortions previously inherent in such a system have been overcome so that it is impossible to detect that the units are operating.

The limiter has come in for a lot of criticism (as has also the compressor), mainly because of unpleasant effects produced by its misuse. A limiter may be used to prevent overloading of the tape or
disc, such as may occur with "pop" singers given to sudden violent shouts, or when recording a public performance or outdoor event where there may be unexpected jumps in level. Alternatively, it may be used as a "ducking" limiter. Some producers of "pop" records want everything (e.g. backing instruments, backing voices, solo voices) "up at the front". This can be accomplished by using a limiter in the "backing" channel with means for controlling it from a separate "solo voice" sound channel. With no solo voice, the backing is set to record at full level. When the solo voice comes in, it feeds directly to the tape and also to the limiter control circuit. As a result the backing is automatically attenuated below the voice level by a predetermined amount, but the solo voice is not injected into the backing channel at this point. There may, of course, be an additional limiter in the solo voice channel, as mentioned above.

Most modern studio mixers incorporate variable bass and top controls in each channel prior to mixing. These often take the form of the well known Baxandall circuit*. Provision is made for the insertion of more complex filter and equalizer units (generally known as "cookers") into any channel between the output of the microphone amplifier and the mixing control. Apart from "step" circuits and highor low-pass filters, provision is often made for holes, or peaks, of varying width, depth (or height) and frequency.

When additional reverberation (or echo) was first introduced it was provided by feeding a portion of the signal into a loudspeaker placed in an empty, hard-walled, room where a microphone picked up the resultant sound and fed it back to the mixer. Cellars and other small rooms were used for this, but the method required a lot of space. A highly satisfactory artificial means is the echo plate-a sheet of tinned steel which is excited acoustically and which yields the closest approach to the random decay pattern of the ideal echo chamber. In addition, the period of reverberation may be altered by proximity dampers, motor driven and controlled from the mixing desk.

The disc record is still the eventual form of most work done in the studio. The moving-iron cutter head, apart from the B.B.C. design, has largely been displaced by the moving-coil type. A notable advance was made by Fonofilm Industri (Ortofon) when they built a movingcoil head with a second winding delivering 40 dB of feedback voltage derived directly from the motion of the cutter (as opposed to flux linkage from the drive coil). It is not at all difficult to achieve a signal / noise ratio of 60 dB on a disc, which is beyond the capability of most tape systems (but see "NoisEx" above); in fact, a saying frequently heard in disc cutting rooms is: "I can put it on: can you get it off?" Only a few very expensive pickups can reproduce the highest cuttable level without severe distortion. Trouble usually begins with the high accelerations produced by the top lift of the recording characteristic, aggravated by close microphone positions and /or cymbal clashes, etc. Some of these extremely high levels can damage a stereo cutting head, although not usually a mono head. This is because in most mono heads the coil movement is pivotal, while the coils in a stereo head are displaced en masse, thereby consuming more current.

The answer here is a form of occasional and selective top cut, preferably inaudible in action. One unit which meets these demands is the Ortofon "dynamic filter". In this the signal is fed to a frequency weighting network, the output of which is rectified and fed to the primary of a transformer. The permeability of the transformer core is affected by the d.c. field produced by the primary, and this, in turn, varies the inductance of the secondary winding. The secondary is connected in a passive low-pass filter network, the response of which varies with the inductance. The limiter is set to operate at a predetermined point (e.g. the overload point of the cutterhead) and any excessive top levels are reduced to the safe level, the remainder of the programme being passed through "flat". An extension of this principle is used in the Fairchild "Dynaliser" unit and the R.C.A. "Dynagroove" process, in which our old friends the FletcherMunson curves play a prominent part.

It is perhaps worth emphasizing that the various techniques described above do not render the engineer superfluous: on the contrary, the opportunities for mis-use are greater than ever and all the skill of the engineer is needed to prevent a diabolical mess.-D.W.S

[^1]
Electronics in Concorde

U.K. Contribution to the Navigation, Communication, Flight Control and Other Electronic Systems

AIRCRAFT less modern than the Concorde can be considered to be divided into a large number of clearly defined subsystems, in which computations of drift, track, attitude, airspeed and the like are carried out many times over to differing degrees of accuracy. The penalty for this approach is felt in terms of weight and cost, although, from the servicing point of view, there is the advantage that each equipment is virtually self-contained. In Concorde all major computations are carried out centrally, the results being electrically signalled to the various systems, and no really clear demarcation line exists between the different equipments.

Concorde is described as a low-wing monoplane with a slender delta wing planform. The airframe is largely constructed from a high temperature aluminium alloy although localized use is made of steel and titanium alloys at isolated "hot spots". Incidentally the nose cone reaches a temperature of $153^{\circ} \mathrm{C}$ and the main bulk of the fuselage $117^{\circ} \mathrm{C}$
during supersonic flight. Highly stressed mechanical components in the structure have been milled from solid blocks of alloy using numerically controlled machine tools. Concorde has a wing-span of 83 ft 10 in ., a length of 184 ft 6 in . and the height to the top of the fin is 38 ft . The maximum cruising speed depends on ambient temperature and has a limit of mach 2.2 at around $55,000 \mathrm{ft}$. All-up weight is $326,000 \mathrm{lb}$.

DESIGN APPROACH

Aircraft system designers of today are, in the main, presented with four possible approa-ches-simplex, duplex, duplicate monitored and triplex. Each method has its advantages and disadvantages in terms of safety (including reliability, weight and cost. The simplex approach consists of having only one set of equipment. Any failure results in either the equipment ceasing to function or in an erroneous output. It is up to the crew to

Not really an electrician's nightmare but the flight deck wiring of Concorde prototype 002 being built at B.A.C.'s Filton Division. A large proportion of the cables have been supplied by British Insulated Callenders Cables Ltd.

correct the effect on the aircraft of the faulty information and to take over manually from the failed equipment. Two complete sets of equipment, operating in unison, are used in a duplex system. A failure in either set will result in conflicting outputs, causing, by means of a comparator, both equipments to switch off before the incorrect output has any effect on the aircraft. It is once again left to the crew to take over the function of the failed equipment. In the duplicate monitored system two sets of equipment are again employed but a series of monitors and comparators is fitted to each set. Although both equipments are operating continuously, at any given time only one has any authority over the aircraft. Should a fault occur in a particular channel this is detected by the monitor/comparator complex and results in the serviceable equipment being given authority. In the event of the second channel failing as well it is automatically switched cut before any effect is felt on the aircraft. Such a system is said to be "fail-operative" and "fail-soft". The triplex system ernploys three sets of equipments operating on a majority vote basis: a different answer from one equipment results in its being switched out. From then on the system operates as described for the duplex method. It must be stated that the above is a gross oversimplification, considerable differences arising in equipments from the various manufacturers.

The main contractors in the Concorde project, British Aircraft Corporation and the French company Sud-Aviation, decided to employ the duplicate monitored principle for the majority of Concorde's control systems. Using this technique results in the aircraft carrying about two-and-a-half times more equipment than a simplex equipped aircraft.

NAVIGATION

The degree of automation of the navigational equipment is such that Concorde does not carry a navigator, this function being performed by the pilots. Because of the long periods of acceleration and deceleration and other factors peculiar to this type of aircraft, conventional vertical gyroscopes are unsuitable as a basis for flight control and driving of instrument displays. Inertial platforms coupled to digital computers are therefore used as the central navigational element. An inertial platform can best be
described as a platform with three degrees of spatial freedom gyroscopically stabilized relative to space but tied to the earth (as will be explained). Such a platform is said to be operating in a Schuler tuned mode. Schuler stated that a pendulum with a length equal to one earth's radius suspended with its mass at the exact centre of the earth could not be set into motion by accelerating one end. An inertial platform is stabilized relative to space using three extremely accurate, low drift, flotation gyroscopes. Digital computers calculate the corrections that have to be applied to the platform to modify the space stabilization in such a way as to keep the Z axis (vertical) pointing directly at the earth's centre and the X and Y axes pointing east /west and north/south respectively. The correction terms applied to the platform are complex and must take into account the aircraft's position over the earth's surface, the relative movements of the earth and the aircraft, the earth's curvature, centripetal force etc. The platform operating in this mode can be considered to be similar to Schuler's imaginary pendulum and is therefore unaffected by acceleration and deceleration forces.

Because the platform is stabilized in this way any movement of the aircraft is relative to the platform; this is detected by sensors and the resulting electrical signals are a measure of the aircraft's attitude relative to the earth's surface.

Newton's laws of motion are exploited in an inertial platform by fitting three accelerometers with electrical sensors to it. These accelerometers are orthogonally mounted (one in each axis) and their outputs can be integrated to give velocity and integrated again to provide distance flown in a given direction. From the foregoing it can be seen that an inertial platform provides a great deal of the information that is vital to navigation.

The prototype Concordes will carry two inertial platforms, although it is thought that three may be fitted to the first production aircraft. The navigation system to be described here is as used in the prototypes and has been developed by a consortium formed by Ferranti (U.K.) and SAGEM of France. The navigation system provides the pilot with the following information: the position of the aircraft in terms of latitude and longitude; the position of the aircraft relative to the desired route (this route is decided upon before take-off and can be modified at any time by the crew); and the estimated time of arrival at a number of reference points along this route.

The major components in the navigation system are the two previously discussed inertial platforms with associated digital computing facilities, an automatic chart display and control panel. The automatic chart display has been entirely developed by Ferranti and provides an interface allowing two-way man/machine communication. It contains a 35 mm colour film 30 feet long that can store charts covering an area 8,000 $\times 2,000$ nautical miles at a scale of $1: 2,000,000$, plus two areas of $1,000 \times$ 2,000 nautical miles at a scale of $1: 500,000$ for airport terminal areas. The charts are back projected on to a screen eight inches in diameter. If required, up to 100 data sheets (approach charts, tables of frequencies,

Inertial platform, control panel and associated equipment supplied by Ferranti for the prototype.

The automatic flight system control panel fitted to pre-production aircraft. The prototype aircraft are being equipped with a more conventional selector switch type of control panel.
procedures, check lists, etc.) can be displayed on this screen. The present aircraft position is superimposed on the projected chart and can be in the centre of the screen or near the bottom to give a greater view ahead. The pilot can select either track or north orientation; with track orientation selected the aircraft's track always points to the top of the screen and as the aircraft turns the chart rotates. When north orientation is selected north always appears uppermost; in this case, as the aircraft turns the display's track pointer rotates.

Typically, in terminal areas, the chart will be north orientated, with the present position indicated centrally; in en route areas track orientation would be used with the present position marker offset. In the event of it being necessary to change the flight plan while airborne, because of weather conditions or some other factor, the chart is driven to bring the new destination to the centre of the screen using a joy-stick control, a button is pressed and the co-ordinates of the new destination will have been entered in the computer. The position outputs of both inertial navigators can be displayed simultaneously and in the event of a discrepancy the erring system can be corrected. V.O.R./D.M.E. (V.h.f. Omni-directional

Range /Distance Measuring Equipment) outputs also may be superimposed on the display face, among other things enabling the internal navigation equipments to be checked against them. The navigation computers also provide outputs for the automatic pilot to enable the aircraft to automatically fly along the predetermined flight path or along the flight path as modified by the pilot's manipulation of the automatic chart display. The inertial platforms, via servo-repeater systems, provide outputs of heading, attitude, velocity and vertical acceleration for use by other equipments in the aircraft. The charts for the display are being produced by International Aeradio Ltd. and some are sixteen feet long and twenty inches wide. A big problem is going to be keeping them up to date with changing air traffic control requirements.

RADIO AND RADAR AIDS

In the Marconi doppler radar system used in Concorde four beams are employed with a time sharing technique. The doppler shift of each beam is measured by comparing it with a sample of the transmitted signal and the aerial is servo driven in both vertical and

The prototype flight deck mockup. The Ferranti automatic chart display can be seen in the lower left of the centre instrument panel next to the weather radar. Just below these, on the control console, is the automatic flight control panel, and just above the windscreen is the combined automatic stabilizer/artificial feed control panel. The large instrument containing a white semicircle in the centre of the side panels is the fight director,
horizontal planes until all four beams are experiencing the same amount of doppler shift. In this way the aerial is aligned with the velocity vector of the aircraft. Ground speed is obtained by measuring the amount of doppler shift, and the drift angle is obtained by comparing the fore and aft axis of the aerial with that of the aircraft. A major difficulty with a pure c.w. doppler system is caused by cross-coupling between the transmitting and receiving sections of the aerial array. Mechanical vibration also causes spurious modulation of the transmitted signal, making discrimination between this unwanted modulation and the doppler signal a difficult task. Frequency modulation is used in the Concorde, enabling the receiver to be made insensitive to cross-coupling and near echoes from the radome and airframe. Because the signal path from the transmitter aerial to the receiver aerial is very short the phase of the modulation on the cross-coupled signal will be practically identical to that of the transmitted signal. By mixing a sample of the transmitter signal with the received signal the receiver output can be made zero. Returns from the ground will reach the receiver after some delay, with a consequent phase difference relative to the transmitted signal. The product of mixing these signals will result in a spectrum centred on zero and sidebands on either side with a spacing equal to the modulation frequency, all sidebands being subjected to doppler shift.

The sideband power falls to zero whenever the delay between transmitting and receiving the signal is equal to one cycle of the modulation frequency, these delays corresponding to critical altitudes. If a fan-shaped aerial beam is used, returns from the ground will be subjected to a wide range of different delays and the signal strength will
seldom fall below a working level. However, signals received at near critical altitudes will have their spectra distorted, giving a false centre frequency and inaccurate speed information. To overcome this effect the modulation frequency is swept at 8 Hz between 340 and 460 kHz , causing the positions of the critical altitudes to vary and the error to average out.

In use the control unit indicates the mileage flown along the required track and an associated counter indicates the miles flown across this track, away from the required course. This information is obtained from a computer that receives aircraft heading from the navigation system, adds it to the "doppler" drift to obtain aircraft track and compares this with the required track to arrive at a track error signal. This signal together with "doppler" ground speed is fed into a mechanical ball resolver which provides outputs in terms of distance flown along and across the desired track. A signal proportional to the position of the acrosstrack counter is available for feeding to the automatic flight control system or the navigation system if required.

The d.m.e. interrogator continuously measures the slant range distance between the aircraft and a selected ground beacon within a range of 197 nautical miles. This information is combined with aircraft heading to accurately fix the aircraft's position. The interrogator operates in conjunction with VORTAC (V.h.f. Omni-directional Range TACtical) and TACAN (TACtical Air Navigation) ground stations. Once the desired frequency has been set up on the v.h.f./navigation controller, pairs of interrogating pulses are automatically transmitted to the assigned radio beacon. The ground station, on receiving the pulse pair, replies
with a return pulse pair which is in turn received by the aircraft. By measuring the time elapsing between transmitting and receiving a reply, the aircraft equipment can compute the distance of the beacon. Should the signal be lost the equipment will continue to function in a memory mode for ten seconds, after which the interrogator initiates a "search" procedure. The transmitler provides a pulse of 1.24 kW and operates in 1 MHz steps between 1025 and 115 C MHz , and the receiver has 252 channels between 962 to 1213 MHz ; the 6 dB bandwidth is 340 kHz . This equipment is being manufactured under licence from the Radio Corporation of America by Marconi's.

The weather radar for Concorde, manufactured by Ekco Electronics Ltd., will be used to detect stormy weather conditions in the aircraft's flight path. When such conditions are detected a new course is lecided upon, the details of which are read into the navigation system via the automatic chart display. If the aircraft is being flown by automatic pilot, the navigation system will supply the automatic pilot with this information and the storm will be safely bypassed. This radar operates in the X-band at 9345 MHz ; the transmitted pulse length is 6 $\mu \mathrm{s}$ (65 kW peak) and the repetition frequency is 200 Hz ; the range is 360 nautical miles (pre-production aircraft only). Each channel of the dual system carries its own transmitter-receiver, indicator and aerial stabilization system although there is a common waveguide run from the waveguide switch to the aerial.

The weather radar is one of the large number of instruments in the cockpit that can command only a small portion of the pilots' attention. When negotiating a storm this presents no problem as it becomes a prime instrument and is continuously monitored. In flight phases where the crew work load is high and weather problems are not expected, the weather radar would tend to become neglected. To overcome this problem the weather radar is arranged to continuously scan a 20 degree sector 200 miles in front of the aircraft irrespective of the setting of the indicator range scale. In the event of a target being spotted the pilot's attention is drawn to the weather radar by an "alert" indicator.

AUTOMATIC FLYING CONTROLS

After take-off Concorde will climb subsonically to some $40,000 \mathrm{ft}$ under the control of a flight director that computes the optimum climb-out path for existing conditions and air traffic control requirements. Preparation would then be made to accelerate to supersonic speed, continuing the climb until cruising altitude is reached. At supersonic speeds the aerodynamic centre of pressure moves back along the airframe, causing the aircraft to adopt a nose down attitude. To help compensate for this a computed amount of fuel is transferred from the main tanks to a rear trim tank. However, the amount of nose down tendency is a function of mach number, which is not a constant, so, clearly, a further correction is required. This could be left to the automatic pilot but
this is inadvisable for two reasons; first, the autopilot would be called upon to make a "useless" constant correction, and secondly, in the event of the automatic pilot failing the amount of correction applied would suddenly be removed, resulting in a violent change in pitch attitude. To overcome this difficulty a system has been developed known as electric trim that has three functions: it allows the pilots to electrically signal pitch trim changes; it alters trim as a function of mach number; and it relieves any pressure on the automatic pilot by sensing any constant trim being applied in pitch and correcting for it.
Aircraft tend to oscillate in all three axes by an amount determined by the aerodynamic design, air speed, altitude, etc., and it would be very tiring for the pilot, or unnecessary work for the automatic pilot, if these oscillations were allowed to go undamped. The automatic flight stabilization system employed to make these corrections uses a total of six rate gyroscopes actuating the flying controls via servo systems. A rate gyroscope is either electrically or mechanically spring restrained and has an output proportional to the rate, as opposed to the amount, of displacement. It will be realized that such a system will try to oppose any deliberate manoeuvres. However, the system has only limited authority and acts as an efficient damping mechanism.

The lateral and longitudinal control channels of the automatic pilots are completely separated and each automatic pilot is supplied with information from independent sources. A single control panel is employed for the automatic pilots, the automatic throttle systems and the flight director system. The required function is selected and a choice is made between automatic pilot and flight director. If the last-mentioned is chosen the pilot controls the aircraft in response to visual guidance information presented by the flight director. In the former case the function is carried out automatically. This would seem to imply that the functions available using the automatic pilot or the flight director system are identical. This is the case, with one exception which occurs when the automatic pilot is switched to "manual". Under these conditions the aircraft will maintain the attitude existing at the time of engagement, the attitude references being supplied by the inertial platforms. Other functions provided by the flight system in the longitudinal axis are: altitude hold, mach and airspeed hold, vertical speed hold and altitude capture. For the first three functions, if selected, the aircraft will hold each condition as it existed at the time of engagement. Altitude, mach and airspeed references are obtained from an air data computer. The altitude capture facility allows the pilot to preselect any required altitude; when the aircraft reaches this height the flight system reverts to the altitude hold mode. Automatic vertical navigation is also possible, and in this case the automatic pilot/flight director follows information provided by a vertical navigation computer.

In the lateral axis the manual and heading functions of the flight system are self-explanatory in the light of what has already been said. Lateral navigation may be selected and in this case the flight system responds to
information received from the navigational computer. The signals used are track error and rate of change of error with respect to the programme stored in the navigational computer.

A VOR/LOC mode is available that captures and holds a VOR or localizer beam, the capture angle being selected by the pilot.

The automatic pilot is capable of carrying out landings in Category 3a conditions (visibility insufficient to land manually but good enough to steer the aircraft on the runway). The autopilot will hold the aircraft on the localizer and glide path beams and will initiate the flare and land sequence as indicated by the radio altimeter. Should it be decided to abort the landing, pushing the throttle forward will put the flight system into the "go around" mode. This disengages the automatic throttle system and causes the take-off director computer and the flight director computer to provide guidance information that ensures that a safe overshoot path is followed.

The automatic throttle system controls engine r.p.m. so that the mach number or airspeed existing on engagement is maintained, or alternatively, the desired airspeed can be pre-selected. The system obtains reference airspeed and mach number from the air data computers and a longitudinal term from the inertial platforms.

The control panel for the automatic flight control system represents a departure from standard aeronautical techniques in that push-button selector switches have been employed for mode selection; this practice has been frowned upon in the past on the grounds of reliability. Integrated circuit protection logic has been designed to work in conjunction with the push-buttons that will lock out a faulty mode even if the associated selector button is jammed in the "on" position.

The automatic flight system described has been designed by a consortium including Société Francaise D'Equipment pour la Navigation Aérienne (S.F.E.N.A.) and the Navigation and Control Division of the Bendix Corporation of America headed by Elliott Brothers as prime contractors.

COMMUNICATIONS

Airborne selective calling units, known as Selcal, are used to relieve the crew of the continuous and tiresome task of aurally monitoring the radio communications channels. To this end each aircraft is given a four-letter code, each letter corresponding to one of twelve audio tones. This code is set in on the front of the Selcal unit using two pairs of knobs which select tuned reeds. The ground station transmits a two-pulse code signal, each pulse containing two audio frequency tones in the band 312.6 to 977.2 Hz . The aircraft receives these tones and applies them to the Selcal unit, where, after amplification they are applied to the tuned reeds. In the called aircraft all four reeds will vibrate and the appropriate warning will be given to the crew.

Collins Radio Company are supplying the h.f. transceivers. These are s.s.b. equipments for long range voice, c.w., data or compatible a.m. communications in the 2.0 to 29.999 MHz frequency range. Tuning is automatic in 1 kHz steps by means of an operator's remote control box, the operating frequency being displayed digitally. Nominal transmitter power is 400 watts p.e.p. in s.s.b. or 125 watts in compatible a.m. All injections to both the transmitter and receiver are phase locked to an internal frequency standard with a stability of 0.8 parts per million per month. Channel selection time is eight seconds. The receiver sensitivity on s.s.b. is 1

One of the prototype versions of the engine control computer undergoing final test at Ultra Electronics, Western Avenue factory, prior to delivery to Bristol Siddeley Engines.

High density precision tape recording head used in the Concorde prototype accident recording system being produced by Elliott Automation. The system records 300 parameters and is protected for crash loads and is automatically ejected if submerged.
$\mu \mathrm{V}$ for a 10 dB (signal + noise)/noise ratio and for a.m. it is $3 \mu \mathrm{~V}$ modulated 30 per cent at 1 kHz for a 6 dB (signal + noise)/ noise ratio.

OTHER ELECTRONIC SYSTEMS

The engine control system has been designed as an electrical link between the crew and the engines. Normal control actions such as throttle opening and fuel flow are under direct crew control, but many other parameters are altered automatically by computers designed by Ultra Electronics Ltd. These include controlling fuel flow during start-up and in-flight re-lighting, control of high pressure spool speed, adjustment of idling fuel flow to prevent flame out, maintaining acceleration and deceleration throttle inputs to safe levels, limiting jet pipe temperature, correcting nozzle area, air intake control and controlling many other parameters. The variable geometry air intakes controlled by the system decelerate the supersonic free air stream to a fairly low subsonic value before allowing it to enter the engine.

The Concorde prototype 001 will have two E.M.I. television cameras fitted, one of which will be mounted on the nose wheel to give an improved forward view whilst taxying. This camera has a 90° wide angle lens. The second will face the rear, enabling the landing gear and the underside of the aircraft to be viewed. In addition, for the prototype 002 , E.M.I. are supplying three half-inch cameras for mounting in the engine nacelles and two one-inch cameras for viewing the wings and tailplane. During periods of high sunspot activity, solar radiation could become a problem at the altitudes at which Concorde will be flying. A radiation detector is being built by A.W.R.E. to enable the amount of radiation to be measured. Should this ever exceed a safe level, Concorde will be forced to fly subsonically at a
lower altitude. It is understood that the fuel penalty resulting from this is not high.

Aircraft instruments of the past that required inputs of height, rate of climb, air speed and mach number had to rely on a jungle of pipes relaying pitot and static air pressures to them to derive the necessary information. These pipes were very vulnerable and a good deal of servicing effort had to be spent in tracing microscopic leaks, often in inaccessible parts of the aircraft. In Concorde a simple pipe system carries the air pressures to two central air data computers that are being manufactured in France by Crouzet. These computers then provide electrical outputs for other equipments proportional to: altitude, airspeed, mach number, vertical speed, total temperature, static temperature, true airspeed, angle of attack and side slip angle.

An Elliott flight recording system is incorporated which collects speech, analogue and digital information from more than 300 points during a flight of up to twelve hours. This information is "conditioned" in integrated circuit computers before being recorded on magnetic tape. The crash-proof capsule containing the recording mechanism is ejected if submerged, whereupon it floats to the surface and a radio beacon emits a homing signal.

A good deal of the engine instrumentation is also being manufactured by Elliott's. These take the form of miniature indicators with, in many cases, a certain amount of the computing circuitry built into them. These instruments are mounted on the flight engineer's control panel with "essential service" indications duplicated on the pilot's panel.

The fuel flow system comprises a transmitter and complementary indication for measuring the quantity of fuel consumed, rate of fuel flow, and the amount of fuel remaining. The flow sensor measures the mass flow rate of fuel passing in the line, determining the heat content and thus the propulsive content. The transmitter has an accuracy better than 1% over a $9: 1$ flow rate range at $20^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ whilst the flow rate indicator has an accuracy of $\pm 0.5 \%$.

The electrical installation serves all other
systems and has to supply a load of up to 61 kVA. As has already been stated, all aircraft essential systems are at least duplicated, and to preserve this safety margin each equipment of a duplicated system is fed from an independent power source. The four: 8,000 r.p.m. brushless alternators each have a nominal continuous rating of 40 kVA at 400 $\mathrm{Hz} 200 / 115$ V. They automatically self excite and synchronize to deliver their outputs in parallel pairs. The d.c. busbars are supplied via transformer-rectifier units and charge two standby nickel-cadmium batteries. A 1.8 kHz supply for the flying control signalling circuits is derived from two $26-\mathrm{V}$ single phase static inverters supplied from the essential services battery busbar. Loss of one generation channel leaves all services fully operational by employing transfer techniques. Loss of two channels leaves general services unimpaired but the electrical de-icing equipment becomes inoperable. In the unlikely event of a complete four engine flame out the battery capacity permits a gas turbine driving a generator to be started which will maintain essential services.

To speed up communications between Britain and France on matters dealing with Concorde a private wire circuit between London and Paris has been installed. The new link has been set up in co-operation with both the British and French Post Office authorities. It will carry a wide variety of communications traffic including teleprinter messages, telephone conservations, highspeed transmission of punched and magnetic tape data, and facsimile transmission of drawings or messages. The circuit was primarily installed to facilitate radio contact with Concorde flight test crews when prototype testing begins in the spring. It will enable ground engineers in Toulouse to operate a remote control radio-relay station at Filton, providing a three-way link between Filton, Toulouse and the aircraft. This is necessary since the range of the v.h.f. radio equipment in Concorde is limited to about 600 miles and contact with the aircraft may be lost on the proposed test flights over Northern Europe.

An example of the engine instruments used on Concorde. The photograph shows a section of the flight eqgineer's panel. Some of the more important instruments are duplicated on the pilot's instrument panel.

News of the Month

Employing Intelsat III

NEXT year a number of synchronous communications satellites are to be launched as part of the Intelsat III programme. Preparations are currently in hand in many parts of the world to make use of this new facility and to provide a truly global round-theclock communications system.

In Britain a second aerial is being built at Goonhilly at a cost of $£ 1.5 \mathrm{~m}$ to work the Atlantic Ocean satellite. When this aerial is operational and can take over the duties of the existing aerial, the first one will be modified to enable it to communicate with the Indian Ocean satellite in 1969. Goonhilly will then be able to communicate directly with other earth stations situated over twothirds of the earth's surface.

Post Office engineers report encouraging progress on the construction of the second aerial. The larger part of the civil engineering works has been completed and the $75.5-\mathrm{ft}$ radius azimuth track has been laid and levelled; this runs from 066° to 326°. Some 200 tons of steel have so far been used in the construction of the aerial base structure which is mounted on a large central pivot and a pair of bogies which run around the azimuth track.

The dish profile is quasi-paraboloidal and is Cassegrain fed by a one-piece aluminium sub-reflector 7 ft in diameter; the main dish is 90 ft in diameter. The width of the radio beam between $3-\mathrm{dB}$ points will be approximately 10.5 minutes of arc at 4 GHz and 7.5
minutes of arc at 6 GHz . The new installation, with exception of the modulating and demodulating equipment, which is being supplied by G.E.C., is being built by the Marconi Company.

Preliminary tests of the wideband transmitters indicate that their performance will meet all the requirements for multi-carrier operation. A first production model of the parametric amplifier, to be used in the first stage of the receiver, has been demonstrated and has met the essential parameters specified, but a fully-engineered version has not yet been completed. The parametric amplifier will be cooled by a closed-cycle cryogenic system, using helium, to a temperature of $-257^{\circ} \mathrm{C}$. The amplifier will consist of three identical GaAs varactor diode stages connected in cascade. Each of the three stages will be fed from a klystron pump source through a three-way passive splitter. Incidentally, the klystrons are the only part of the receiver that is not solid-state. The amplifiers are mounted behind the aerial vertex and will provide 30 mW of pump power at 34 GHz .

A low-noise tunnel diode amplifier forms the second main amplifying stage in the receiver and will also be mounted on the aerial backing structure. The signal from this is converted to an i.f. of 70 MHz in a balanced diode mixer with a crystal local oscillator. The output of this system will be passed into a waveguide branching network which will separate the received channels and

The control room of the experimental station at Carnarvon.

pass them to separate frequency downconverters and on to further i.f. stages.

The transmitter will use wideband travell-ing-wave tubes to provide a final peak saturation power of 10 kW . A t.w.t. has been chosen in preference to klystrons since each individual carrier would require a complete klystron transmitter whereas the complete $500-\mathrm{MHz}$ band can be covered by a simple t.w.t. amplifier. A single varactor diode upconverter will be used to change each of the $70-\mathrm{MHz}$ carriers to the output frequency. The transmitting facilities available will be adequate for over 500 telephone channels and one television channel simultaneously, using a multi-access satellite of the Intelsat III type.

In the middle and far east two earth stations are being built at an estimated total cost of $£ 3.5 \mathrm{~m}$ for Cable and Wireless, one on Stanley Peninsula on Hong Kong Island and the other at Abu Jarjur, Bahrain. The Hong Kong station will be capable of operating in gales of up to $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., above which the dish is pointed vertically and will then withstand winds of up to 210 m.p.h. The Marconi Company are undertaking the construction of the two stations which will consist of steerable $90-\mathrm{ft}$ diameter aerials mounted on $60-\mathrm{ft}$ towers.

The Bahrain station situated at a longitude of about 62.5° east will be in continuous contact with the Indian Ocean satellite and through it communicate with four other stations. The station will be connected via a radio link with Sitra where traffic will be distributed. Bahrain will not initially have the capability of processing television signals, however, this facility can be added at a later date.

The Hong Kong station will use the Pacific Ocean satellite and will be in continuous contact with eight other stations. Information will be transmitted to Victoria for distribution.

Each station will have facilities for the transmission of up to four carriers and the reception of 32 . Each of these carriers may have a capacity of 24,60 or 132 separate communications channels. Initially Hong Kong will be equipped for the reception of eight carriers, each with a standby and Bahrain for four, also with standbys. The electronic equipment is of similar design to that used in the Goonhilly No. 2 aerial project but the aerials differ considerably in mechanical design.

In Australia the site for the Australian Overseas Telecommunications Commission's (O.T.C.) west coast satellite ground station is expected to be announced shortly. O.T.C. is currently using an experimental quasi-operational station at Carnarvon, 600 miles north of Perth. This station has provided live TV links with Britain, but it is primarily engaged in meeting communication needs of N.A.S.A. which operates a tracking station in the immediate vicinity. The west coast station will provide voice, video and data links with Africa, Asia and Europe via the Indian Ocean Intelsat III satellite.

In Sweden the four Scandinavian telecommunications administrations agreed that a proposed ground station for satellite communication with North and South America be built near Strömstad on the Swedish West coast. The station, which would increase the
number of transatlantic channels from 38 to 100 , would be equipped with an aerial with a diameter of about 90 ft for reception and transmission via the Atlantic Ocean satellite. The Swedish West coast area was chosen as the site as it was considered comparatively free from interference from existing radio transmissions. Goonhilly has so far handled the satellite communications of the Scandinavian countries, who have ten channels at their disposal at this station. The Scandinavian ground station project is subject to approval by the four governments involved. It is hoped however that the new station will be ready for operation in 1970-71.

Telephone System for the Deaf

INDIVIDUALS suffering from total deafness will be able to communicate by telephone if development work at present being carried out by Bell Telephone Laboratories, U.S.A. reaches fruition. The system, known as touch-tone dialling, enables the letters and numbers printed on the buttons of a push-button dial telephone to be represented visually at the receiving end. In touch-tone dialling areas push-buttons generate pairs of tones to control dialling and switching functions. When two telephones are connected over the telephone network, the buttons still generate tones but do not interfere with normal switching functions. In the proposed system the code utilizes the arrangement of letters and numbers as they appear on the push-button dial e.g. A, B and C are sent using the " 2 " button. Pushing this button once transmits A, twice B and three times C. A readout circuit stores the signals until the required letter is fully encoded as indicated by pushing the zero button, thus to transmit A the code is 20, B is 220 and C is 2220 . Letters of the alphabet not used in dialling, namely Q and Z , are encoded using the " 1 " button, Q being expressed as 10 and Z as 110. In addition the " 1 " button is used as a word separator, 111 signals end of word and 111,111 end of sentence.
Tests with a prototype have indicated that with a little training a user may attain a coding rate of 8 words per minute and with practice this rate can be doubled. At the receiving end the characters are displayed one at a time for approximately 400 ms and it has been found, at the higher sending rates, that the display is very tiring on the eyes. Three off-the-shelf indicators are used

to display the 36 digits required and two small windows show that coding is in process and the end of word and end of sentence periods.

Instrumentation Project

THE Ministry of Technology has announced the setting up of an Advanced Instrumentation Project which will foster the development and use of industrial instruments. It is hoped that this will assist process industries to improve productivity and help instrument manufacturers to transform promising new ideas into working equipment with the minimum of delay. To this end the Ministry of Technology will be providing up to $£ 250,000$ per year for three years to be spent in sharing the cost of projects with industry. There will be an arrangement for the recovery of the investment from sales. In deciding which projects to back, the Ministry will satisfy itself as to the competence of prospective firms to carry out the necessary work and to exploit its results both technically and commercially.

Australia's First Satellite

WRESAT-1, Australia's first satellite, stopped sending signals from space after five days in orbit. The Minister for Supply, Senator D Henty, said this was the planned programme for the satellite which re-entered the earth's atmosphere after a few weeks. WRESAT-1 was launched from Woomera on November 29th from a United States Redstone rocket. The 100 lb satellite was developed jointly by the Weapons Research Establishment and the University of Adelaide. The purpose of its mission was to investigate the effects of the upper atmosphere on the weather. Senator Henty said "It appears that most of the experiments were successful and will yield valuable scientific data related to the sun's effect on the earth's atmosphere".

A 19 ft two-stage high-altitude density probe was launched from Woomera as WRE-SAT-1 was on its 29th orbit, approaching the low point of 106 miles in its elliptical polar orbit. The experiment was to gather data on the interaction of solar radiation and the ionosphere at an altitude lower than that being investigated by WRESAT.

S.T.C. enter C.C.T.V. Market

"TOTAL system service" is the claim of Standard Telephone and Cables Ltd as they enter the closed circuit television systems market. The Test Apparatus and Special Systems Division which is marketing the equipment will be able to draw, from other divisions, information on video and audio transmission, cabling technology and microwave and line transmission to build up C.C.T.V. systems of any required complexity. The display monitors follow conventional techniques and are available with 11 - or 19 -inch tubes.

The camera is of modular design that can be supplied in up to seven different configurations or if desired the basic camera can be extended to provide additional facilities by using plug-in modules. Power unit, remote focus, power-operated zoom and a $4 \frac{1}{2}$-inch

monitor viewfinder can be added in this way. The camera employs 625 lines scanning at 50 fields per second and incorporates an E.M.I. 9677C one-inch vidicon tube as standard; infra-red, high resolution and extra robust tubes are available as options. In most applications the camera will be fully automatic; a wide sensitivity range providing a constant video output over all normal variations in ambient illumination level. However, a remote, or on the camera, sensitivity control can be fitted if required. The camera may be powered from a 16 V d.c. supply or alternatively direct from the mains via an add-on power unit.

Polar Region Study

A "MASS ASSAULT" on the little understood Northern Lights aurorae and polar cap airglow is to be carried out by the American National Aeronautics and Space Administration. The investigation will entail the simultaneous use of aircraft, sounding rockets and satellites in a co-ordinated effort to study some of these phenomena. Scientists will have the opportunity to observe from four different levels ranging from the ground to an altitude of 250 miles. They hope to find causes, possible physical and chemical changes, which may fit into the theories and other observations made previously. It has been noted that electrons and protons from space follow the earth's magnetic field lines into the polar regions. It is believed that these are important in precipitating aurorae and the polar cap airglow. Another factor is probably cosmic radiation from the sun which is known to enter the atmosphere at the poles.

Victoria Line Television System

ONE of the largest supervisory closedcircuit television systems to be built in the U.K. is to be installed on London Transport's new Victoria Line by Peto-Scott Ltd, of Weybridge. The system consists of 74 television cameras, 42 monitors and a comprehensive switching network. The installation will perform three major functions: a monitor mounted at the end of each platform working in conjunction with a camera will allow the train driver to see along the whole length of the train; outputs of the platform cameras and other strategically placed cameras viewing escalators, sabways and the like will be fed to a station supervisor's office-the switching network allowing any camera on the station to be selected; and
finally, the outputs of all the cameras at all the stations will be fed into a line supervisor's office who again can select any camera he chooses. The transmission from the stations to the line supervisor's office is carried out at r.f.,

Shipboard Satellite Terminal

A MILITARY shipboard satellite communications system is to be installed on H.M.S. Intrepid by the Plessey Electronics Group. This will operate in conjunction with the British military synchronous satellite Skynet due to be launched this year. The aerial will have three axes of spatial freedom with the ability to remain locked-on to the satellite when the ship is rolling at angles of up to 30°. This is achieved by sensing monopulse misalignment signals in conjunction with signals derived from a gyro stabilized platform. Error signals obtained in this way are used to control the aerial's three drive motors. Signals received by the $6-\mathrm{ft}$ diameter Cassegrain aerial are amplified in an uncooled amplifier before being downconverted, amplified and fed to subsequent demodulation and demultiplexing equipment.

2LO Again

TO celebrate the 1968 City of London Festival (July 8th-20th), the Radio Society of Great Britain is to operate an amateur radio station with the call sign GB2LO from somewhere in the City. The location has not been decided upon but when operating the station will be open to visitors. GB2LO will work on the $10,15,20,40$ and 80 metre bands on s.s.b. only.

The British Calibration Service was set up about a year ago by the Ministry of Technology to provide authenticated calibration facilities for all kinds of measuring instruments. To date four laboratories have received B.C.S. approval and these may now provide their customers with a B.C.S. Certificate of Calibration for each instrument calibration carried out under their approval. This approval relates only to specified types of measurement to given levels of accuracy as stated in the laboratory's approval certificate. Laboratories seeking to operate within the service must satisfy the B.C.S. that they are capable of meeting its criteria. So far the B.C.S. have invited applications from laboratories in four fields of measurements: d.c. and l.f., h.f., mechanical and fluid. Preparations are being made to extend the service to optical and thermal measurements. The laboratories to receive approval are: Coventry Gauge and Tool Co. Ltd. P.O. Box 39, Fletchamstead Highway, Coventry; Pitter Gauge and Tool Co. Ltd., Market Street, Woolwich, London S.E.18; The English Electric Co. Ltd., Stafford Works (Electrical Products Group), Lichfield Road, Stafford; Ferranti Ltd (Wythenshawe Calibration Laboratories), Simonsway, Wythenshawe, Manchester 22. The first three laboratories listed have received approval for a range of mechanical measurements, while the fourth has received approval for a range of d.c. and l.f. measurements including resistance, inductance, capacitance a.c. and d.c. - voltage current and power - and frequency.

Production of their computer 'Modular One' is to commence at the Hemel Hempstead factory of Computer Technology Ltd in May and will result
in the building of 30 systems by the end of the year. Computer Technology hope to be able to supply 20 per cent of the British market and export in quantity by the end of 1969 . Computer Technology was set up at the end of 1965 by an independent group of computer engineers after a critical analysis of the computer industry in Britain and America. The capability to build small high performance computers at low cost is creating new markets and Computer Technology believe that it is in this field that the major growth in the computer market will take place during the course of the next five years. The design of Modular One is based on the need for a general purpose digital computer that can be integrated into any information complex. It provides a range of modules that can be used by the scientist or engineer to build up a computer system to match his requirements exactly. Modular One can perform a million instructions a second and a simple system costs in the region of $£ 10,000$.

As a result of a cost sharing project on computer aided design carried out by the Ministry of Technology and Racal Research Ltd. a new service known as Racal Electronic Design and Analysis by Computer (REDAC) is available to industry. The computer programmes (REDAPs) are backed by a team of 25 engineers with development, production and computer aided design experience. Examples of REDAPs currently available are, a general circuit analysis programme, calculation of stray inductance, mutual inductance and capacitance (e.g. for printed circuit board), small signal modelling of a device such as a transistor, design of a video amplifier, manipulation of four-pole matrices, harmonic analyses of a complex waveform, filter analysis and the solution of a set of simultaneous linear equations with complex coefficients. Data for the REDAC service may be sent by telephone, telex or post and the service is completely confidential. A free brochure describing the service can be obtained from REDAC, Racal Group Publicity Dept., 26 Broad Street, Wokingham, Berks. A Users Manual is available from Racal Research Ltd., Newtown, Tewkesbury, Gloucestershire at a cost of $£ 2$.

One of the tasks of the American space craft Surveyor VII, recently soft-landed on the moon, will be to evaluate techniques for directing laser beams at objects in space. These tests are a prelude to a projected Apollo experiment in which an optical retro-reflector array will be landed on the moon to enable the distance from various points on the earth surface to the reflector to be measured. The television camera aboard Surveyor will be used in an attempt to photograph laser beams which can be directed from any one of six earth stations through various types of telescopes.

The photograph shows the surface sampler on Surveyor VII digging a twelve inch trench on the moon's surface. Surveyor VII was launched on January 7 th by N.A.S.A. from Cape Kennedy. The camera that took the picture had a 6° field of view.

The green argon ion laser beams will be several miles wide by the time they have travelled the quarter of a million or so miles to the moon. Factors beyond the control of scientists which may make the detection of the beam difficult are glare from the sun entering the camera and twinkling caused by atmospheric turbulence on earth.

In order to co-ordinate traffic movement in West London the Plessey Automation Group have supplied a computer complex under a $£ 200,000$ Ministry of Transport contract. Inductive loop traffic counters spread over an area of 6.5 square miles feed information into two Plessey XL9 computers. These in turn control traffic lights in accordance with the current traffic situation and a programme prepared by Ministry of Transport and Plessey engineers. Traffic density is displayed and stored for future analysis which could result in programme modifications in the future. If desired engineers can take over manual control of given sets of traffic lights should the situation demand it.

The problem facing many users of electronic components is who makes what and where can one obtain, for instance, a capacitor of x value with a y working voltage. To assist in this, Technical Indexes Ltd, Index House, Ascot, Berks have produced an Electronic Engineering Index that lists about 1,000 suppliers and gives detailed information on about 20,000 products. The Index consists of 60 cross referenced volumes contained in a five-shelf rack $6 \times 3 \times 1 \mathrm{ft}$. The information contained in the index is brought up to date and added to once a month by a team of girls. Also included in the service which costs 50 gn a year, is a product data book that is reprinted three times a year.

A merger within the Philips-Pye Group has been announced. Pye T.V.T. Ltd and Peto Scott Ltd are to join forces; the new organization will be known as Pye T.V.T. and will be active in the professional market for broadcast transmitter equipment, studio cameras and monitors, industrial c.c.t.v. and audio systems, and large screen Eidophor projection.

What is thought to be the largest order for U.K. produced integrated circuits has been received by Mullard Ltd. The order is for 100,000 t.t.1. FJ series integrated circuits to be used on the new I.C.T. 1906A computer (described in "News from Industry" December 1967). Significant features from the performance of the range are a noise immunity of 1 V , power consumption of about 10 mW per gate and a typical propagation delay time of 13 ns .
The first British company to exhibit at the world's largest scientific exhibition, the American Physics Show, to be held in Chicago, will be Scientifica and Cook Electronics Ltd. Products to be shown by the company include electromagnets, a range of lasers, spectrometers and a number of highfield permanent magnets.

The setting up of a Device Development Laboratory to operate in parallel with the existing applications Laboratory has resulted in the reorganization of the research facilities at SGS-Fairchild Lid, Aylesbury, Bucks. The new department will be responsible for developing discrete devices and integrated circuits for special applications where suitable standard components are not available. Diffusion of sample batches of new. devices, built to meet customer specifications.

Since the advertisement pages went to press an error has been noticed in the announcement of W. Greenwood (London) Lid. on p. 31. The temperature range of the 070 wirewound potentiometer is $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

Personalities

This year's I.E.E. Faraday Medalist is L. H. Bedford, C.B.E., M.A., B.Sc.(Eng.), F.I.E.E., F.I.E.R.E., who receives it "for his outstanding contributions to the advancement of electronics engineering, and for his inspiring leadership, both in war and peace, of the industrial design and development teams by which these and other advances have been consolidated and effectively applied." After obtaining a B.Sc. degree in

L. H. Bedford
both engineering and physics in London and a B.A. degree at King's College, Cambridge, Mr. Bedford joined the Western Electric Company (now Standard Telephones and Cables Ltd.). In 1931 he took up an appointment with A. C. Cossor Ltd. to initiate the development and manufacture of cathode-ray tubes and in 1937 a new department was formed under his control when R. A. Watson-Watt brought the radar receiver proposition to Cossor's. Mr. Bedford's own activities were then transferred full-time to radar projects including the development and manufacture of the first radar receivers for the "C.H." stations. He was appointed director of research at Cossor's and his name is associated with the elevation attachment which he produced for the early gun-laying radar equipment. In 1947 he joined the English Electric Company, being posted to the Marconi Company as chief television engineer. A year later he took charge of a guided weapons study
project and this led to the formation of a new division which eventually became the British Aircraft Corporation (G.W.) Ltd., of which Mr. Bedford is director of engineering.

Lord Jackson of Burnley, D.Sc., D.Phil., F.R.S., has been elected an honorary fellow of the I.E.E. "for his outstanding contributions to science and technology in the fields of research and education and in recognition of his services to the nation as an adviser to Government on these matters and on the related aspects of manpower and its deployment". After graduating at Manchester University in 1925 and lecturing at Bradford Technical College (now Bradford University) he joined Metro-Vick as a college apprentice in 1929. In 1936 Sir Willis (as he is still affectionately known) received his D.Sc from Manchester and his D.Phil. from Oxford University. Two years later he was appointed professor of electrotechnics at Manchester University. During the war Lord Jackson served on a number of Government scientific and technical committees and worked at the Signals and Radar Research Establishments of the Ministry of Supply, but he continued his teaching work at Manchester University and was responsible for a Ministry of Supply research team engaged there on v.h.f. and dielectric investigations. In 1946 he became professor and head

Lord Jackson

of the Department of Electrical Engineering at the Imperial College of Science \& Technology, London, where he remained until 1953 when he accepted an appointment as director of research and education of the Metropolitan-Vickers Electrical Company-now part of A.E.I. In 1961 he returned to his previous position at Imperial College where, in 1967, he was appointed Pro-Rector. Lord Jackson, who is 63 , was knighted in 1958 and was made a life peer last year.

Reg H. Hammans, director of engineering, Granada Television, Manchester, since April 1955, has retired from active participation in day-to-day work at the Granada Television Centre but will continue as consultant on technical and engineering matters, and as the company's representative on the technical committees of the Independent Television Authority and Indepen-

R. H. Hammans
dent Television Companies Association. Mr. Hammans was with the B.B.C. for 20 years before joining Granada previously spending four years with the International Marine Radio Company. Mr. Hammans, who operates an amateur radio station with the call G2IG, was president of the Radio Society of Great Britain in 1956/57 and also presided over the conference of the International Amateur Radio Union in Stresa, Italy, in 1956.

Wing Commander Dennis Abraham, B.Sc., M.I.E.E., head of the Electrical Engineering Department of the R.A.F. College, Cranwell, was to have taken up the post of head of the Department of Electrical and Electronic Engineering at the Borough Polytechnic last September (see April issue, p. 172) but the Ministry of Defence would not release him. He has now been appointed to a similar post at the Sheffield College of Technology from next September. Wing Commander Abraham, who graduated at the University of Wales (Swansea), served as a radar officer in the R.A.F. during World War II. He then spent some time in industry and later joined the staff of the University of Aberdeen.

The Medal of Honour-tie principal award of the Institute of Electrical and Electronics Engineers Inc. -is being given to Gordon K. Teal, M.Sc., Ph.D., assistant vicepresident in charge of technical development in the equipment group of Texas Instruments Inc., Dallas, "for his contributions :o single crystal germanium and silicon technology and the single crystal growth junction transistor". Dr. Teal, who is 61, was for 23 years with Bell Telephone Laboratories where he worked with Dr. Shockley on the development of the junction transistor. He has been with Texas since 1953. Dr. Teal, who originated the grown junction single crystal technique, recently served for two years as director of the Inst tute for Materials Research of the American National Bureau of Standards.

The Council of the Royal Society has appointed Professor J. M. Ziman, F.R.S., (professor of theoretical physics in the University of Bristol), to be Rutherford Memorial Lecturer for 1968 in India and Pakistan, and to deliver lectures in these two countries during a visit of about three weeks in Ncvember/ December this year. He was elected a Fellow of the Royal Society last year "for his theoretical contributions to solid state physics, especially the study of transport phenomena, and for his work on the electronic properties of metals".
D. L. Grundy, A.M.I.E.E., recently appointed head of application engineering, integrated circuits, in the Electronics Dept. of Ferranti Ltd., at Oldham, Lancs, joined the company's Application Laboratory in 1955 and worked on the applications of industrial valves. In 1957 he commenced work on the applications of silicon rectifiers with particular emphasis on the transient behaviour of high-voltage assemblies,

D. L. Grundy

and the design of units for highpower pulse duty in such devices as magnetron modulators. When Ferranti commenced the manufacture of transistors Mr. Grundy's activities turned to their application. He was co-author of the article describing a silicon transistor tape recorder in our July and August, 1965, issues.

J. A. Walker
J. A. Walker, has become head of application engineering, discrete components, in Ferranti's Electronics Dept, at Oldham. He joined the Radio and Television Dept. of Ferranti Ltd. in 1949. In 1959, after a short period on missile circuit design with the Guided Weapons Division, he joined the semiconductor applications laboratory and became concerned with the applications of solid state devices, with particular emphasis on the investigation of four-layer diodes, reference diodes, silicon rectifiers and r.f. transistors. Mr. Walker's current activities cover the applications of a large range of semiconductors including high- and low-frequency transistors, small signal and power diodes and rectifiers, photocells, and hybrid networks using solid state devices and thin film circuits.

Ferrant's also announce the appointment of Brian Taylor as chief inspector, and Graham Latham as project and product assurance manager, in the Oldham Electronics Dept. Mr. Taylor has been with the company eight years during which time he has specialized on quality control, and Mr. Latham was formerly the chief inspector of the Semiconductor Division.

Dr. J. A. Saxton, director of the Radio and Space Research Station of the Science Research Council at Slough for the past two years, has accepted a visiting professorship in physics at University College London. Dr. Saxton was on the staff of Imperial College, London, for a short time after graduating and he then joined the Radio Division of the National Physical Laboratory (in 1938). Immediately, prior to assuming the directorship at Slough, he was director of the U.K. Scientific Mission in Washington, D.C., and a scientific counsellor at the British Embassy there.
W. T. Deuchrass has retired after 35 years' service with the Bush organization, in fact he was a founder member of Bush Radio in 1932. He was personally responsible for the production of the first batch cf 30 -line mirror-drum television receivers designed by Baird Televi-
sion Ltd. Mr. Deuchrass was appointed a director of Bush in 1952 and has been a director of the joint Rank Bush Murphy board.
W. H. O. Sweeny, chief engineer to Independent Television News Ltd., retired at the end of January. After five years with the B.B.C. as assistant maintenance engineer, he entered the film industry in 1929, where, with the exception of the war period (during which he was in the civilian service on the East Coast Radar Chain and later commissioned with the R.A.F. Film Production Unit), he remained until 1949. He subsequently served as chief engineer of the Near East Arab Broadcasting Station and on returning to this country in 1955 joined I.T.N. as senior sound engineer.
G. D. Gokarn, B.Sc.(Hons.), was recently appointed by the Government of India as its representative on the Commonwealth Telecommunications Board, London. Mr. Gokarn relinquished the post of director of the Overseas Communications

G. D. Gokarn

Service in New Delhi to take up the new assignment. He is also communications adviser to the India High Commission in London. He was in the U.S.A. in 1951-52 under the visitor exchange programme and studied the international communication system in the States.

Each year the Institute of Electrical and Electronics Engineers elects a few of its 160,000 members to the grade of Fellow. Among the 125 recently elected for their "outstanding professional contributions" are the following engineers in the U.K.: E. A. Ash, B.Sc.(Eng.), Ph.D., M.I.E.E., Professor of Electrical Engineering, University College, London, "for significant contributions to microwave tubes, solid state microwave devices and electron optics"; P. J. B. Clarricoats, B.Sc.(Eng.), Ph.D., F.I.E.E., Professor of Electronic Engineering, University of Leeds, "for contributions in the field of guided electromagnetic wave propagation"; J. F. Coales, O.B.E., M.A. F.I.E.E., Professor of Engineering, (Control), University of Cambridge, "for his outstanding contributions in the field of elec-
tronics and control engineering, and particularly for major contributions to the development of automation and computer interests in the United Kingdom"; G. W. A. Dummer, M.B.E., F.I.E.E., until recently superintendent of the Applied Physics and Technical Services Division, Royal Radar Establishment, "for contributions to microelectronics and component reliability"; J. Greig, M.Sc., Ph.D., F.I.E.E., William Siemens Professor of Electrical Engineering, King's College, London, "for his contributions in the educational field, and research on the behaviour of magnetic materials, computers and automatic control processes"; E. M. Lee, B.Sc., F.I.E.E. chairman, Belling and Lee L.td., "for contributions to design, specification and safety of electronic equipment and components and co-ordination of industry and government in electronic development, production and inspection"; C. W. Oatley, O.B.E., M.A., M.Sc., F.I.E.E., Professor of Electrical Engineering, University of Cambridge, "for contributions to research in radar and electron optics, especially for development of the scanning electron microscope"; N. H. Searby, C.B.E., B.Sc., F.I.E.E., a director of Ferranti Ltd., "for his contributions to research and development in the application of electronics to guided missile projects"; and P. H. Spagnoletti, O.B.E., B.A., F.I.E.E., director of business development, Standard Telephones and Cables Ltd., "for contributions to the design of shortwave broadcasting equipment and single sideband telecommunications".
A. J. Martin, B.Sc., A.R.C.S., and J. C. Mitchell, B.Sc., have been appointed divisional directors of Advance Controls, Cheitenham, the industrial control division of Advance Electronics Ltd. Before joining Advance early in 1967 as applications managers, Mr. Martin was a lecturer in control engineering at the College of Aeronautics, Cranfield, and Mr. Mitchell was a senior engineer with S.T.C. The manufacture and marketing of the company's range of integrated circuit logic cards and operational amplifiers has also been transferred to the
A. J. Martin

J. C. Mitchell

Cheltenham division where Mr . Martin and Mr. Mitchell will be responsible for the application of these devices in industry.

Professor Sidney W. Wilsox, who is a specialist in technical communication in the School of Engineering at the Arizona State University, Phoenix, is on a six-months' visiting lectureship at the University of Wales Institute of Science \& Technology, Cardiff. Before taking up a university appointment 12 years ago he was with the Boeing Corporation.
T. G. Clark, F.I.E.R.E., until recently technical director of Asta-ron-Bird Ltd., has joined the Plessey Electronics Group. While with Astaron he was also concerned with the technical direction of Coastal Radio Ltd. Before joining Astaron Mr. Clark was for some years with the Decca organization where he was concerned with the design and development of various marine and meteorological equipments.
J. H. Court, who joined Marconi's in 1950 as a graduate apprentice in the Aeronautical Division, has been appointed marketing manager of the division. Following his appointment there has been a major reorganization of the division. Four sales managers have been appointed:Air Commodore J. A. Holmes takes charge of military sales and G. N. Thornton civil sales in Europe (which includes the U.K.); K. H. Watkins becomes sales manager overseas region dealing with both civil and military sales in Asia, Australasia, Africa and the Middle and Far East; and J. D. McColl will cover administration and planning.
J. W. M. Child, B.Sc.(Eng.), has been appointed sales director of Teknis Ltd., Slough, responsible for the marketing of semiconductor and integrated circuit pieceparts and production equipment.
R. M. Mitchell has joined Plessey as marketing manager of the Semiconductor Division. Mr. Mitchell, who is 35 , has for the past seven years been with Texas Instruments Ltd., latterly as field sales manager.

Announcements

A vacation school on microwave solid state devices will be held a Bodington Hall, University of Leeds, from 8th to 19th July. Registration forms may be obtained from the I.E.E., Savoy Place, London, W.C.2. (Fee £65.)
The University of Aston in Birmingham are holding a research exhibition"Aston Research 68"-between 3rd and 5th April. Detailed programmes are available from The Research Exhibition Secretary, The University of Aston, Gosta Green, Birmingham 4.
The next conference to be organized by Varian Associates Ltd, on electron spin resonance and nuclear magnetic resonance, will take place from 1st to 3rd April. The first two days will be spent at the Royal Holloway College, Egham, Surrey, and the third at Varian's laboratory at Walton-on-Thames. Applications to the Workshop Secretary, Varian Associates Ltd, Russell House, Molesey Road, Walton-on-Thames, Surrey.
East African External Telecommunications Company Ltd are inviting tenders for the construction of an earth satellite station to be situated a Mount Margaret, in the Rift Valley, Kenya. The estimated total cost of this project is $£ 1.75 \mathrm{M}$. Operational in early 1970 , the earth station will cater for the expanding requirements of international telecommunications and will increase the capacity and range of existing services.
Pye TVT Ltd of Cambridge have been awarded a contract, worth approximately $£ 80,000$, by the Swedish Telecommunications Administration for a number of transposers for use in the expansion of the television network. Racal Communications Ltd have won a $£ 500,000$ contract for the supply of radio-communication equipment for a new meteorological telecommunication network to be built in Saudi Arabia.
Electric \& Musical Industries have made an offer to acquire the assets of Precision Electronic Terminations Ltd and Nickols Automatics Ltd both wholly owned subsidiaries of Royston Industries Ltd, which is in the hands of a receiver. Nickols Automatics are active in the machine tool control field and Precision Terminations manufacture high-power, low-loss, r.f. connectors and a range of e.h.t. connectors.
A new company has been formed from within the structure of Debenhams Electrical \& Radio Distribution Co. Ltd which is known as Technomark Ltd. It will market equipment produced by Sony; Bang \& Olufsen; and Radford Ltd (of Bristol).
A new holding company, Planned Precision Ltd, has been formed to integrate the electrical and engineering activities of the News of the World Organization. The companies concerned are Vactric Control Equipment, Vactric Precision Tools, A. P. Besson \& Partner, and Renown Engineering. Plessey Components Group has made five licensing agreements with Industrialimport, for the production of resistors and capacitors in a Romanian factory, to be equipped with British machinery. It is hoped this will increase Plessey's trade with Eastern Europe by over 10.5 M .
Spectra-Physics have announced a trade-in offer for gas lasers valid until 31st March. Through their U.K. distributors, Claude Lyons, they offer $£ 80$ for an old laser as a trade-in against the new Model 130 C costing $£ 356$. Further information is obtainable from Claude Lyons Ltd, Instruments Division, Hoddesdon, Herts. (Hoddesdon 67161.)
A link-up has been announced between B.M.B. (Sales) Ltd, of Crawley, and Cosmocord Ltd, of Waltham Cross, for the manufacture and marketing of styli, pick-up cartridges, microphones, etc.
The internal Plessey microelectronics custom design service is to be extended and will now be available for the design of integrated circuits to the whole of industry.
Full British military approval has been granted by the Ministry of Technology to the Elliott D930 range of integrated circuits.
Litton Precision Products, of Hayes, Middlesex, have been appointed sales and service representatives in the U.K. to the following American electronics companies: Cohu Electronics; Curry, McLaughlin \& Len; Digital Devices; and Astrosystems Inc.
B \& T Designs (Richmond) Ltd, High ${ }_{\mathbf{v}}$ Street, Tring, Herts, have changed the name of the company to Circuitape Limited.

Cossor Instruments Ltd and Cossor Communications Co. Ltd will in future operate under the title of Cossor Electronics Ltd. The object is to have one main company for the Harlow activities.
Derritron Electronic Vibrators, of Sedlescombe Road North, Hastings, have changed the name of the company to Derritron Electronics Ltd.

March Conferences

Further details can be obtained from the addresses in parentheses

LONDON

Mar. 11-14 Alexandra Palace
Physics Exhibition
(I.P.P.S., 47 Belgrave Sq., London, S.W.1)

BIRMINGHAM

Mar. 28 \& 29
Aston University
Technology, Industry, Education
(C. Fleetwood-Walker, Birmingham \& Midland Inst., Margaret St., Birmingham 3)

CRANFIELD
Mar. 25-28
College of Aeronautics
Aerospace Instrumentation Symposium
(N. O. Matthews, Dept. of Flight, College of Aeronautics, Cranfield, Beds.)

GLASGOW

Mar. 8-16
Kelvin Hall
NORBEX-North British Engineering Exhibition
(Lintex Ltd., 226 Grand Bldgs, Trafalgar Sq., London, W.C.2)

HARROW

Mar. 12-14
King's Head Hotel
Public Address Show
(Assoc. of Public Address Engrs, 394 Northolt Rd., South Harrow, Middx.)

OVERSEAS

Mar. 5-8
Toulouse
Nuclear Electronics and Radioprotection Symposium
(Faculte des Sciences, Universite, 118 route de Narbonne, Toulouse)
Mar. 7-12
Paris
Festival du Son
(Fédération Nationale des Industries Electroniques, 16 rue de Presles, Paris 15 e)
Mar. 21-23
Boston
Microwave Power
(International Microwave Power Inst., Box 342, Weston, Mass. 02193)
Mar. 25-29
Paris
Colour Television Conference
(Colloque sur la Télévision en Couleur, 16 rue de Presles, Paris $15 e$)
Mar. 27-Apr. 7
Electronics, Television \& Radio Show \& Convention
(Rassegna Internazionale Elettronica, via Crescenzio 9, Rome)

An Evening of Sonic Effects

Concert of Electronic Music in the Elizabeth Hall Attracts Big Audience

ON 15th January in the Queen Elizabeth Hall, London, a thousand people sat down to face an empty platform, except for a computer and two loudspeakers, and listen to two and a half hours of electronic music by British composers. Considering that London has become the most musical capital in the world, it is surprising that this was in fact the first London concert of its kind. So far we have had only one or two isolated electronic works in concerts of conventional music, and have heard a few B.B.C. broadcasts of pieces by the better known Continental composers. However, to judge from the full house at the Elizabeth Hall (a small queue of disappointed people was left outside) and the rapt attention given to the performances, the dearth of electronic music does not seem to have been due to any indifference or excessive musical conservatism on the part of the British public.

The eleven works in the programme, which was organized by Redcliffe Concerts, illustrated the great variety of techniques by which electronic music can be made. The basic sounds are produced by natural sources of any kind, musical or unmusical, living or mechanical, and by synthetic sources such as electronic oscillators and noise generators. They are then electronically processed-mixed, inter-modulated, filtered etc.-and recorded. Magnetic tape is used extensively, not only for final recording but for processing operations such as changing pitch and producing choral effects from single sources. Computers are being brought in, partly to automate some of the more tedious procedures in composition and partly to introduce an aleatory element into the music. Some pieces are written as concerti, for live participation by singers or instrumentalists, while others are really compositions for conventional orchestras including live electronic effects.

In Ernest Berk's Diversed Mind, a five-section piece abstractly related to states of mind, the natural sound sources were metal strip, a bamboo stick and a tambour, while the electronic sources included sine, square and sawtooth wave generators. Processing was mainly by amplitude and frequency modulation, filtering and artificial reverberation. Some of the sonic effects, though probably intended to be abstract, were evocative (the booming of huge bells) and for this reason were exciting to listen to; others (whistling noises) seemed somehow comic-a characteristic of many synthesized sounds.

Tristram Cary's 345 was the result of a deliberate restriction of material-on the principle, perhaps, that limited means provide a stimulus for real artistry. The basic sources were electronic oscillations of 3 Hz , 4 Hz and 5 Hz and multiples of these by 10 , $10^{2}, 10^{3}$ and 10^{4}. This resulted in three subsonic tones (heard either as clicks or modulants), nine sonic tones and three supersonic tones (which produced audible sounds by intermodulation with others). The duration elements, and hence the rhythmic possibilities, were also limited-to 3,4 or 5 inches of tape at $15 \mathrm{in} / \mathrm{sec}$ speed, plus the first few numbers resulting from adding and /or multiplying these figures. More emotive was the same composer's Birth is life is power is death is God is. The basis of this piece, which used a large variety of sources, was the sound track for a multi-screen film shown in the British pavilion at EXPO '67, and, in so far as it was illustrative, might not have been considered a good example of the genre by the purists. Also highly allusive was Silent Spring by George Newson (inspired by Rachel Carson's book of the same name about the despoilation of nature). Here the basic sound sources were recordings of wild-life and machinery.

A live piano part was used in Contrasts Essconic by Daphne Oram and Ivor Walsworth, introducing a touch of aural fami- Computer Week/y.)
liarity and drawing attention to the difference between pitched (notes in a scale) and unpitched sounds. A frankly direct appeal was made by Delia Derbyshire's Potpourri, realized in the B.B.C. Radiophonic Workshop, which served as a short opener for the concert. Traditional rhythms and time-signatures were utilized in Syntheses 8, 9 and 12 by Jacob Meyerowitz and in Partita for Unattended Computer by Peter Zinovieff. Also composed by Zinovieff were December Quartet, Agnus Dei and March Probabilistic. In the last-mentioned the overall form of the piece had been specified by a programme written for an ICT 1900 computer, which had punched a paper tape giving the timing, pitch, loudness, attack or delay, and basic waveform of each note. This tape was read by a PDP-8/S computer on stage at the concert (see picture) which, using random numbers, selected during the performance the exact values to be used to control the electronic sound generators. Thus individual performances could vary slightly.

The two Lockwood monitoring loudspeakers, one on each side of the platform, performed extremely well on the demanding material, and the acoustics of the hall seemed very sympathetic to it.

For people whose musical appreciation is conditioned by the melodic and rhythmic conventions of the 19th century-and that means most of us-electronic music does not have a very direct appeal. It provides technical interest for the professional musi-cian-the Royal College of Music is starting a pilot course in the subject-and probably has real impact for people who have progressed to modern composers such as Webern and Boulez. The writer found some .parts of the concert boring, but this was probably due to his own limitations or those of the composers rather than to any inherent characteristic of electronic music. As with abstract painting, it becomes more and more difficult to distinguish the work of the genuine artist from that of the clever technician, but only a philistine would condemn the whole art-form on this count.
T.E.I.

Performance of Partita for Unattended Computer by Peter Zinovieff, After a programme on punched tape had been read into its store, a PDP-8/S digital computer (near the middle of the rack) calculated the exact details of the sounds to be produced and, through an interface, operated electronic generating and processing equipment-oscillators, filters, envelope shapers, reverberation units and mixing and timing units. (Courtesy

Power Supply Stabilization Module

Outputs of 6-50 V at 50 mA ; provision for currents up to 5 A

By P. R. Adby, B.Sc.

A^{1}FTER designing numerous simple power supply circuits for transistor equipment, it became obvious that the same basic stabilizing circuit is employed each time with only slight modification. A survey of past power supply requirements in the University laboratory revealed that in general, most supplies were covered by the following specification; an output voltage of 6 to 50 V and an output current of up to 5 A. Adequate stabilization was normally obtained by a simple long-tailed pair error amplifier with a Zener diode reference

Fig. 1. A typical power supply for use with the stabilization module.
but, since the supplies were internal in equipment, overload protection was not usually incorporated.
With these requirements in mind, a small plug-in module was designed for stabilization of output voltages in the above range. Cost was considered an important factor since, in most cases, at least two supplies are required for each unit. For economy, it is essential that we use (a) only one transformer winding, (b) the smallest number of subsidiary supply rails, and (c) low cost transistors, silicon for preference.
The required output voltage range being from 6 to 50 V it is assumed that the reservoir capacitor voltage lies in the range +9 V to +60 V . This range is wide, and a subsidiary h.t. rail derived from it, for the stabilizer circuit, would be limited to about +6 V maximum. Also, as the comparator is to be a long-tailed pair, an additional negative rail of at least 6 V is required. If a centre tapped transformer winding is used, the negative supply can be derived from the main output winding using two low-current rectifiers and a small smoothing capacitor. The positive and negative $6-\mathrm{V}$ rails for the stabilizer are obtained from the reservoir capacitors via series resistors and Zener diode regulators. The output voltage from the long-tailed pair is limited to the range 0 to +6 V . An output amplifier and emitter follower operating from the unregulated positive supply gives the required output (+6 to +50 V) from the available drive. Output currents of up to 50 mA may be obtained either for use directly as the stabilized supply or for driving one or two emitter followers, giving 1 A or 5 A maximum respectively. A circuit of a typical power supply for use with the module is given in Fig. 1.

Paul R. Adby is an experimental officer at the University of Sussex, Falmer, Brighton, where he is responsible for the electronics laboratory which designs equipment for research in experimental physics. After graduating at Leicester University in 1960 he spent four years in industry before joining the University staff.

Fig. 3 The prototype module

Fig. 4. Power supply giving an output of 24 V at 5 A . Output is taken from pins 1 and 5 .

Fig. 5. Power supply giving an output from terminals 1 and 5 of 40 V at 1 A .

The circuit diagram of the module given in Fig. 2 shows a number of different supply rails which may be related to Fig. 1 as detailed below:

Unstabilized positive d.c.

Stabilized positive output
Derived +6 V
Derived -6 V
Output drive
Unstabilized negative d.c.

> main supply from the reservoir capacitor
> stabilized output voltage
> supply for comparator
> supply for comparator
> drive to series stabilizer
> from which -6 V is derived

Also shown in Fig. 2 are two essential external resistors which are adjusted in value, dependent on the unstabilized positive and negative voltages available.

$$
\begin{aligned}
& R_{1}=\frac{\text { unstabilized positive voltage }-7}{10} \mathrm{k} \Omega \\
& R_{2}=\frac{\text { unstabilized negative voltage }-7}{10} \mathrm{k} \Omega
\end{aligned}
$$

A current of 10 mA is therefore set up through R_{1} and R_{2}. The stabilized output voltage is preset by a 16 -turn trimming potentiometer giving fine adjustment over the complete range of output voltage. Limits for the module are:-
maximum output drive current
50 mA
maximum unstabilized positive d.c.
64 V
maximum difference between unstabilized positive d.c. and stabilized output

15 V
Fig. 2 shows a typical circuit for a 1 A output. For outputs between 50 mA and 1 A , one transistor emitter follower external to the module is required. For currents up to 5 A two emitter followers are necessary. Since these are power transistors mounted on a heatsink, they were not included within the module.

Figures 1, 4, and 5 give the circuit diagrams of three power supplies which illustrate the use of the module for various output voltages and currents. The performance obtained from each circuit is given below:-

	Fig. 1	Fig 4	Fig. 5
Output voltage	6	24	40
Output current (A)	1	5	1
D.C. output impedance (Ω)	0.2	0.06	0.12
Ripple peak to peak (mV)	4	2	2
Stability for 10% mains change (mV)	50	100	50

For currents below 50 mA an external emitter follower is not necessary and the output drive pin 4 is connected to pin 1 and becomes the stabilized output. The output current is not limited to 5 A by the control circuit. Further emitter followers could be added but the lack of short-circuit protection could make the circuit impractical.

Further methods of connection suggest themselves but these have not yet been tried in test circuits:-
(a) Elimination of the negative supply for higher output voltages by setting the -6 V line at zero. R_{2} and the existing zero line would not be used.
(b) Stabilization of higher output voltages by setting the -6 V line at, for example, +50 V . This would be achieved by connecting the $2.7 \mathrm{k} \Omega$ resistor in the potential divider to a spare output on the plug. In normal operation an external link to the -6 V line would be necessary. For high-voltage operation a resistor would be connected from the $2.7 \mathrm{k} \Omega$ resistor to the supply zero in order to adjust the divider. A Zener diode working at a current of 10 mA would be inserted between the -6 V line and supply zero. The existing zero line and resistor R_{2} would not be used. This method may be limited by variations of the unstabilized positive d.c. and by possible breakdown of the module output transistor due to switching surges.
(c) Pre-stabilization circuits inserted between the unregulated d.c. and the series transistor would improve the performance.

No specific performance advantages are claimed for this stabilization module since it is intended for general purpose work covered by other similar simple stabilizing circuits. The advantages of using a plug-in module do however include interchangeability for ease of servicing, standardization of components and construction, and well-defined performance characteristics.

Kelvin Cables

RC Transmission Line Applications

by G. W. Short*

Abstract

An artificial $R C$ transmission line can be made in a few seconds by wrapping metal foil round a resistor. These lines can be used in filters and phase shift oscillators at audio and radio frequencies.

THE distributed-constant $R C$ transmission line (Fig. 1) has a long history. In the early days of telegraph cables, communication engineers discovered that it takes a finite time for an impulse to pass along a cable, and that the initial sharp edge becomes transformed into a sloping edge in the process. When trans-Atlantic submarine cables were proposed, this transmission distortion was seen to be a serious difficulty. The cable companies asked William Thomson (later Lord Kelvin) to advise them how to overcome the defect. Kelvin assumed that the distortion and delay were caused by the cable behaving like a distributed series R, shunt C network, and proposed a solution accordingly. (It was, first, to reduce R by using high-conductivity copper, and secondly to use sensitive instruments to detect the rising edges of incoming pulses.) Because of Kelvin's cable-model, distributed $R C$ transmission lines are sometimes called Kelvin cables. Incidentally, Kelvin's associate, Varley, used a lumped-constant $R C$ model to predict the signalling speed which would be possible with trans-Atlantic cables. This must have been one of the earliest examples of electrical analogue computation.

The $R C$ transmission lines which are the subject of this article are millimetres rather than miles long. They are made from the type of high-stability resistor in which the resistive track consists of a layer of carbon, deposited on the surface of a glass or ceramic rod, and protected only by a thin film of paint or lacquer. The resistive track provides the series R, and the dielectric properties of the paint or lacquer provide the shunt C. The lines are unbalanced, the earthy leg consisting of a piece of aluminium foil wrapped closely round the body of the resistor. This does several jobs at once: it provides one

[^2]

Fig. 2. Low-pass filter responses. The insertion loss at low frequencies depends on the total series resistance and the terminating resistance.

plate of the shunt C, an earth connection, and in some applications an electrostatic screen as well. (Since aluminium is not readily soldered, a piece of tinned copper wire is wrapped round and the earth connection made to it.)

Obviously, a line made like this is likely to be very different from the ideal uniform $R C$ line. The capacitance per unit length is likely to vary both from one resistor to another and even along one resistor, as the paint thickness varies. The dielectric is likely to be lossy. These imperfections may cause the characteristics of a practical $R C$ line to be quantitatively different from those of a perfectly uniform line, but the general behaviour of a practical $R C$ line is what would be expected. Signals passing along it are retarded, and the amount of phase delay increases with frequency. Attenuation also increases with frequency. Input impedance decreases with frequency, and at frequencies at which the line behaves as a line and not just as a resistance it is much lower than the total series resistance.

FREQUENCY RANGE

The $R C$ line is a low-pass filter, but the useful pass-band can be moved upwards indefinitely by reducing the ratio of R to C. In practice, this means using a lower resistance to begin with, so as to reduce R. In theory it is possible to reduce C by putting an extra dielectric layer between the body and the foil, but this makes the device less like a transmission line and more like an ordinary resistor, so can only be exploited to a limited extent.

The highest frequency in my experiments was the 5 MHz generated by an $R C$-line phase-shift oscillator, but no attempt was made to establish an upper limit. For some purposes, such as decoupling, where the low-pass character of the $R C$ line can be used to keep h.f. signals out of h.t. lines, etc., much higher useful frequency ranges are obviously possible.

FREQUENCY RESPONSE

The $R C$ line can be connected between a signal source and a load in several ways, each of which provides a different frequency response.

The simple low-pass filter connection, of interest in audio work and decoupling, has a response which is shown in Fig. 2.

As would be expected of an RC filter with an infinite number of sections, the droop in the h.f. response becomes ever more steep as the frequency is increased. There is no "ultimate slope" of so many decibels per octave as there is with lumped-constant filters. It is this characteristic which makes the $R C$ line attractive for h.f. decoupling.

Changing the termination has a marked effect on the attenuation and pass-band-the lower the termination resistance the higher the attenuation and cut-off frequency-but obviously it can have little effect at relatively high frequencies, since these vanish before they get anywhere near the end of the line. By the same token, changing the termination has little effect on the input impedance if the line attenuation is high. One result is that a quarter-wave $R C$ line shows none of the transformer-like properties of a lumped $L C$ line with the same phase shift.

INPUT IMPEDANCE AND INSERTION LOSS

The input impedance falls as the frequency rises. The phase angle of impedance has the curious property of being the same at all frequencies, namely -45°, or midway between a resistance and a capacitance. For an infinite ideal uniform line, the input impedance is
 unit length. The impedance is therefore a function of $\sqrt{(1 / f)}$, that is, it falls relatively slowly as the frequency rises.

The 45° phase angle seems potentially useful for single-sideband generation but unfortunately the fall of impedance as the frequency rises makes application difficult, since any attempt to correct the frequency response produces an additional phase shift.

At frequencies far below cut-off, the line behaves as a resistor, and the insertion loss is exactly the same as is obtained without an earth connection.

Inserting resistance into the earth lead produces a dip in the frequency response. One critical combination of frequency and resistance produces a complete null (Fig. 3). Beyond the "null" the

Fig. 3. Notch filter. A complete null is obtained only for one combination of frequency and earth-lead resistance.
response rises again and eventually exceeds the l.f. response. By cascading a normal network and a null network, low-pass filters with sharper cut-off are obtainable, but unless buffer stages are used there is a marked interaction between the two "sections".

If the "earth plane" is left disconnected (equivalent to a "null" configuration with infinite resistance in the earth lead), the attenuation is reduced at high frequencies (Fig. 4). Thus, by changing the earth-lead arrangements by means of a 3-position switch (Fig. 5), three different responses are made available: low-pass, null, and top lift.

OSCILLATORS

At one frequency the phase shift through the line is 180°. It is therefore possible to use the line as the feedback element in a phase-shift oscillator (Fig. 6). A transistor with a high gain is required, especially at low frequencies, where the low terminating impedance at the base end of the line introduces an additional loss. (Measurements in a working low-frequency circuit showed Vin7/Vout $7 \approx 100$).

The graph (Fig. 7), which plots frequency of oscillation for a given style of resistor ($50 \times 8 \mathrm{~mm}$ high stability carbon) against (frequency x resistance) suggests that the frequency of oscillation may be predictable by "rule of thumb" except for high-resistance lines (over 2 megohms).

The frequency stability of these oscillators is not good, but they possess some virtues. The first, which is obvious from Fig. 6(a), is extreme economy of components. At low frequencies (high line resistance) the power drain is very low. At high frequencies, the oscillator is very tolerant of stray capacitance across the line terminations. Tests on a 1.3 MHz oscillator made from a $4.7 \mathrm{k} \Omega(50 \times 8 \mathrm{~mm})$ resistor showed that in order to stop oscillation it was necessary to load the line with 450 pF at the collector end or 1000 pF at the base end. As the loading capacitance was increased from zero the frequency first increased then decreased, which indicates that there is one capacitance for which the frequency stability is highest.

ACCIDENTAL KELVIN CABLES?

The optimum conditions for oscillation seem to favour the resistance range of roughly a kilohm to a megohm. This embraces commonly used base-bias resistances. In micro-circuits, resistances made by thin-film or surface-modification techniques seem likely to act as Kelvin cables, since there is usually an earthed screen near at hand. One wonders if designers of integrated circuits have had trouble with amplifiers which turn out to be oscillators.

By the same token, the $R C$ line, which is obviously easy to make in integrated-circuit form, seems a possible solution to the problem of making tuned circuits without inductors. A "null network" connected in a negative feedback path would produce a peaked frequency response, and so would a "low-pass" network in a positive feedback loop. If the dielectric layer were in the form of a voltage-variable capacitance, external tuning would be possible.
"Kelvin cables" are easy to make, and the associated circuits can be very simple. There are many more ways of using them than are described here. Treatment in "the literature" tends to be rich in highbrow mathematics and poor in practical circuits. They are therefore an attractive subject for amateur experimentation.

Fig. 4. Top-lift connection. When the "earth" is left off the response rises with frequency. The l.f. insertion loss depends on the resistance values.

Fig. 5. Practical circuit giving low-pass, notch, and top-lift responses. Any good high-gain low level planar transistors (2N3707, BC109, BC168B. etc.) may be used.

Fig. 6 Phase shift oscillators: (a) low-frequency, for R up to $5 \mathrm{M} \Omega$; (b) highfrequency, for R down to $1 \mathrm{k} \Omega$.

Fig. 7. Resistance-frequency product for oscillators plotted against frequency of oscillation for one size of resistor ($50 \times 8 \mathrm{~mm}$).

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Stereophonic Transmissions

STEREOPHONIC transmissions to the extent of about 25 hours weekly are now put out by the B.B.C. and the whole of this new service is devoted to minority interests of serious music listeners. Already no minority interest is so generously catered for as that of the serious music listener.

I believe the B.B.C. to be confusing the serious music listener with the highfidelity enthusiast. High-fidelity enthusiasts are found from all musical interests but the greatest potential audience is without doubt the lighter music listener.

I cannot protest strongly enough at his flagrant misuse of licence money to satisfy such minority interests at the expense of all other high-fidelity enthusiasts.

Stereophonic time should now be divided proportionately between the various musical interests and a due proportion of time at weekends and in the evenings should be given to the more popular light music tastes and to the whole audience who are interested in stereo transmissions.

David Bailey
Longfield, Kent.

Future of European 1.w. and m.w. Broadcasting

WITH the spread of v.h.f. broadcasting in many European countries and its obvious advantages of excellent audio quality and relative freedom from inter-station interference, it is to be hoped that eventually, the long- and medium-wave bands may become less chaotically congested than at present. The B.B.C.'s services in this country are merely one example of deterioration to an almost unacceptable level after nightfall and the l.w. band is now dominated by high power French-speaking "pop" stations that have "helped themselves" to these valuable channels.

Many of the unique characteristics of these bands, and especially the l.w. band, not possessed by v.h.f. are at present impossible to realize. Among the most valuable of these are:-

1. Generally reliable propagation over paths of $800-1,000$ miles or more especially after darkness, providing an often excellent service for listeners outside the country of origin.
2. Relatively small effect of unfavourable geographical features on propagation.
3. Suitability for reception in moving vehicles.
4. Relative simplicity of circuitry and aerial required for reception.

In addition to these features, it is perhaps not generally recognized that very much better audio quality is available even with the present 9 kHz channel spacing than at present available in a situation where most transmitters use very high levels of modulation and automatic compression in efforts to blast their way through the background.
The following factors might be considered in the reorganization of the l.f. and m.f. bands:

1. In highly populated countries with v.h.f. services, only a small number of highpower stations, situated near the centres of the populations they serve, would be necessary in the l.f. and m.f. bands. The services of these stations could be improved in isolated areas of high population if desired by synchronized medium-power stations at the h.f. end of the m.f. band.
2. These l.f. and m.f. services offer overwhelming advantages in: (a) large areas of low population where stable but low signal strength is adequate; (b) mountainous areas; and (c) less developed countries where v.h.f. has not yet spread widely.

Consideration of the numbers of transmitters required to provide two and often three separate networks for each country show that there are adequate channels in the bands concerned given an acceptable amount of sharing by geographically distant stations.

Even without v.h.f., which of course would continue to develop alongside the new services in most areas, reorganization such as outlined would certainly provide a better service for most countries and with a smaller number of stations because of decreased interference problems.
J. G. Silcock

Totnes,
S. Devon.

British-American Business Methods

MAY an American, who is as reluctant to admit an imperfection of the United States, as Mr. Ness, in his letter printed in the February issue, is loath "to be able to paint
the U.S.A. in a better light", remark that it was not the practice at least until late 1965 for the American mail-order houses to pay postage on parts ordered. In light of the ever rising mailing fees in the United States, it is most doubtful that this since has been changed.

Perhaps Mr. Ness was the recipient of the generosity of an American firm that wished to be particularly kind to an Englishman! If this indeed be the case, might not Mr. Ness paint with a less grudging brush?

Ronald Klett
Loerrach,
W. Germany.

"Semiconductor Type Numbering"

IN the January edition of Wireless World, the article "Semiconductor Type Numbering" by Mr. T. D. Towers contained references to sources of information on semiconductor outlines.

I would like to point out that there is a British Standard on the outlines and dimensions of semiconductor devices (BS.3934) published in 1965, which Mr. Towers did not unfortunately mention. This standard includes outlines agreed by all the principal interested trade associations, the Post Office, and the Services, as well as those agreed by VASCA and mentioned in the article.

The scope of this Standard has been further increased by the recent publication of an addendum (No. 1: 1967).

Paul Spink
British Standards Institution,
London, W.1.

Home-constructed Colour Receiver

YOU may be interested in the accompanying photograph of my home-constructed colour television receiver based on a Mullard delayline PAL circuit. It employs 15 valves, 26 transistors, 45 diodes and an R.C.A. $25-\mathrm{in}$. tube. The only sections not home-made are the u.h.f. tuner and the sound and vision i.f. strip from a monochrome set. Plessey scanning and convergence units, line output transformer and voltage multiplier unit are

Mr. Berney's colour television set

used. With a 21 -element Belling \& Lee aerial, mast-head amplifier and two other transistor boosters the receiver is giving good results 54 miles from the Wenvoe transmitter which radiates on Channel 51.

Malmesbury, Wilts.

'Demonstrating Rectifier Action"

IN my article "Demonstrating rectifier action in slow motion" (February 1968) two words were omitted from the fourth paragraph, which may cause some confusion. The third sentence should read:-"Eventually the circuit will reach a state of equilibrium where in each cycle the charge flowing into C_{1} through D_{1} is equal to that flowing out of C_{1} through $R_{1}{ }^{\prime}$.

Readers may be interested in another application of the circuit. In stage three, after the steady-state has been reached, switch off the oscillator and observe that it takes some considerable time for the 2000 $\mu \mathrm{F}$ capacitor to discharge through R_{1}. Now switch on the oscillator and set the output control of the oscillator to give, say, a peak value of 0.5 V . Wait for the steady-state to be reached. Now adjust the output control of the oscillator, above and below the 0.5 V setting, making the adjustment very slowly: the mean value of current through R_{1} should be seen to vary in sympathy with the peak value shown on the voltmeter V_{1}. If the rate of adjustment is too high, it can be seen that the capacitor cannot discharge rapidly enough to enable the mean current through R_{1} to follow the variation of the peak voltage shown on V_{1}, when the peak value is decreasing. This illustrates "negative peak clipping" in detector circuits when a modulated wave is being rectified.

Thomas Palmer
Kew, Surrey.

Semi-stabilized D.C. Supply

MR. G. W. SHORT goes astray in his philosophy as expressed in his letter in the February issue. The Darlington compound pair, $T r_{2}$ and $T r_{3}$, will compare quite effectively the output voltage at the emitter of Tr_{3} with the secondary reference voltage at the base of $T r_{2}$ and apply correction for a fall (say) in output voltage by increasing the current supplied to load. The "dead reckoning" part of the circuit compensates for the imperfections left by this very simple and rather low-gain closed-loop stabilizer.

The performance of the closed-loop part of the stabilizer will be improved if the effective internal gain is increased. This can be done at little or no expense by using instead of a Darlington pair the "enhanced" emitterfollower arrangement, Fig. (a). Briefly the advantage is that the error voltage is now only the $\Delta V_{B E}$ required by $T r_{2}$ instead of the sum of the voltages required by $T r_{2}$ and $T r_{3}$. Further improvement could be had by using a triple, Fig. (b). This gives increased internal

(a)

(b)

Mr. Good's suggested improvements
gain because a smaller fractional change in I_{c} is needed in Tr_{2} for a given change in load current.

The advantage of improving the closedloop part of the stabilizer should be that the dead-reckoning part will have less work to do, and so will need less accurate adjustment.

In Mr. Short's revised circuit the currentsensing resistors for overload protection are placed between the secondary reference voltage (across C_{1}) and the load voltage (across C_{2}). It seems likely, therefore, that the deadreckoning action effected by R_{4} will have to do more work in compensating for voltage drop across R_{10} and R_{11} than in compensating for non-infinite gain in $\boldsymbol{T r}_{2}, \boldsymbol{T r}_{3}$. It would probably be better, therefore, to put R_{10} and R_{11} in the position of the lamp in Mr. Short's original circuit (W.W. October 1967, p.482) and arrange the associated transistor to shut down the voltage across D_{1} and R_{4} when overload occurs.
E. F. GOOD

Malvern,
Worcs.

I SHOULD like to suggest an alternative current-limiting circuit for Mr. Short's 'semistabilized" d.c. supply (October 1967, p. 482 and February 1968, p. 691).

The current-sensing resistor is placed in series with the collector supply of Tr_{2} and Tr_{3}, and a small junction diode, D_{3}, is connected from the lower end of this resistor to the emitter of $T r_{1}$. The diode is normally reverse-biased, but conducts when the p.d. across R_{4} and the sensing resistor exceeds that across R_{1}. When this happens, the voltage on $T r_{1}$ emitter reduces, causing a reduction in collector current and hence a fall in output voltage. The load current is therefore limited

to that value which will produce this p.d. across R_{4} and the sensing resistor.

The value of the sensing resistor is given approximately by the Zener voltage divided by the required current limit. Values obtained empirically were 25 ohms for a useful limit of 300 mA and 12.5 ohms for a useful limit of 600 mA .

A worthwhile precaution when using this method of current-limiting is the inclusion of another diode, D_{4}, connected as shown. In the event of a short circuit suddenly applied to the output terminals, there will be a slight delay in the operation of the limiting circuit, due to the charge on C_{1}, which has to leak away before the output can fall to zero. The extra diode prevents reverse-biasing of $T r_{1}$ base-emitter junction. Alternatively, reversebiasing may be allowed to occur, and any consequent Zener current may be limited by a resistor in the base lead of Tr_{1}.

Mr. Short's circuit has the advantage of a slightly faster limiting action at higher output voltage settings (when the slider of R_{2} is at the top end) due to the additional discharge path for C_{1} provided by the transistor.
K. R. SMITH

Kingston College of
Further Education,
Kingston,
Surrey.

IT is gratifying to see so many ideas for improving the performance of my simple stabilizer, and without over-complicating the circuitry.

Mr. Good is, of course, quite right; I should have made it clear, when referring to "dead reckoning", that the part of the circuit involved here is the load-current compensating system, not the compound emitterfollower, which does indeed compare the secondary reference voltage with the output voltage.

In an emitter-follower circuit, the output voltage is the input voltage (the secondary reference voltage in the present case) less the base-emitter voltage drop. (In a Darlington pair, the sum of the two base-emitter drops.) These V_{BE} drops vary with load current, spoiling the regulation. In a high-current stabilizer, with an output of an ampere or more, the V_{BE} variation from no load to full load can easily be as much as 1 V . Hence the need for load-current compensation. My simple method is essentially an attempt to compensate a non-linear effect by a linear one and so cannot do more than achieve a good compromise. It is conceivable that by involving a diode in the determination of the compensation a more accurate form of dead reckoning may be obtained. However, now that Mr. Good has shown how one of the $V_{\text {BE }}$ variations may be removed from the scene of action and the loop gain increased the simple resistance method should be good enough for most purposes.

Mr. Smith's neat and economical currentlimiting arrangement takes care of Mr . Good's other point by putting the currentsensing resistance in the positive line out of harm's way.
G. W. Short Croydon.

Microvolt-Nanoammeter

A RECENT letter from a reader has brought to light an error in the components list of my microvolt-nanoammeter article, which appeared in the May 1967 issue of Wireless World. The mistake is mine, and I apologize for any inconvenience it may have caused. In the list, R_{20} should be given as 4.7 kilohms, not 10 kilohms.
D. Bollen

Devon.

Model Motor Speed Control

IN his article entitled "Speed Control for D.C. Model Motors" (September issue) Mr. Butterworth uses a fuse for short-circuit protection. As this fuse is expected to rupture at each overload, and as the controller might be used by a child, it is foreseeable that replacing fuses could become expensive, if not just inconvenient.

For these reasons I devised a circuit to provide automatic overload protection and, with a little elaboration, visible indication of the overload. In the circuit shown here, when

Mr. Hubbard's overload protection circuit
the maximum current is reached the potential developed across R_{3} (in Mr. Butterworth's circuit) causes the OC71 and the Zener diode to conduct. In turn, the OA81 conducts and via Tr_{3} and Tr_{4} the drive to the bridge circuit is reduced. The factor which decides the maximum current is the Zener voltage of the diode. It would seem that a silicon transistor would be better for the lamp driver as it is more easily turned off and has low leakage. The transistor types are otherwise uncritical. The operation of the indicator drive circuit is too simple for words.
R. P. Hubbard

Guildford,
Surrey.

"Pin-board Construction"

IN case readers were puzzled by an unheralded reference to "terminal blocks" in the first paragraph of my article (February, p.699), it should perhaps be explained that the original text contained an earlier passage which described how, as a first attempt at making a breadboard type of construction for beginners, bits of "chocolate block" screwdown terminal strip were screwed to a wooden baseboard. This avoids the need for soldering, but it was soon abandoned because of its inflexibility: the straight lines of terminals on
the blocks force one to rearrange the circuit layout, which then moves further and further from any correspondence with the circuit diagram. This psychological difficulty, in addition to the physical limitations mentioned in the article, make it unsuitable for a beginner.

I do not yet know what is the ideal base material. Softwood has the advantage that pins can be inserted with the help of pliers, without hammering. (Special tools for pushing small carpentry pins or nails into wood can now be bought at do-it-yourself shops.) The main disadvantage of wood is its finite resistance, which can lead to mains hum in some types of circuit. Hardboard is cheaper, but unless the pins are inserted firmly they tend to work loose. (Particle board is even worse; soldering the pins melts the resin which binds the particles together.) What is needed is some uniform non-hygroscopic board soft enough to enable pins to be inserted without hammering but still able to hold them firmly. It should also be cheap! Perhaps some reader knows the answer.

There is an error in Fig. 5. The 22k resistor should not be connected to the negative rail. In constructing the receiver, the ME101 transistors should be placed upside down on the breadboard; this makes their leads conform to the theoretical diagram (Fig. 1). Incidentally, this transistor has now been renamed HK 101.
G. W. Short

Croydon

Transistor is Twenty Years Old

TWENTY years ago the transistor was invented at Bell Telephone Laboratories, U.S.A. Wireless World reported the event in the October 1948 issue ("Amplifying Crystal'), stating that John Bardeen, Walter Brattain and William Shockley had demonstrated that a small piece of germanium could be utilized to obtain power amplification of about 20 dB . In 1956, these three scientists were awarded a Nobel Prize for the discovery of the effect.

Not only is the transistor one of the great inventions of the twentieth century, but it has led to a host of advances in other scientific fields. For instance, zone refining, invented to purify transistor materials, has made available ultra-pure materials for all kinds of technical and scientific purposes. The increased interest in the properties of solids has led to other quantum electronic devices, such as lasers, light amplifiers and light modulators. The study of surface properties of materials, extremely important to transistor technology, has progressed to a point where active atoms can be detected in single layers in 1 p.p.m. concentrations.

At Bell Labs basic research on materials and on fundamental physical phenomena had been encouraged in the hope of obtaining new
knowledge that might be useful for better communications equipment. One promising field was research into semi-conductor materials. In 1940, a modest research effort was begun, but it was interrupted by the second world war. After the war, Bardeen, Brattain, and Shockley were among many scientists who turned to full-time work on semiconductor research.

Investigations were centred on the two simplest semiconductors, germanium and silicon. Experiments led to new theories. For example, Shockley proposed an idea for a semiconductor amplifier that would critically test a particular theory. The actual device proved to have far less amplification than had been predicted. Bardeen then suggested a revision of the theory that would explain why the device would not work and why previous experiments had not been accurately foretold by the older theory. In fresh experiments designed to test the new theory, Bardeen and Brattain discovered an entirely new physical phenomenon-the transistor effect.

The initial patent on the transistor was held by Brattain and Bardeen. The device described was a point-contact type, the transistor effect being produced by two pointed metal contacts on the surface of the germanium semiconductor material. When a small positive potential was applied to one of the contacts, holes flowed into the germanium surface, greatly increasing the flow of current from the germanium to the other point, which was negatively biased. Shockley patented the junction transistor in 1948.
Through the years, there were developed new types of junction transistors that performed better and were easier to construct. In the early 1950s work in the U.S.A. led to a commercial process for making germanium transistors by alloying techniques. Further impetus to the growing transistor industry was given in 1954 by the development of diffusion and oxide masking techniques for making $\mathrm{p}-\mathrm{n}$ junctions. The immediate product of this and the zone refining technique mentioned above was the diffused-base, high frequency transistor-a device that could be mass produced at low cost. In the same year, 1954, Texas was the first company to devise a method of making silicon transistors on a commercial scale.

Another important innovation, made by the Fairchild Semiconductor Company in 1960, was the planar geometry for the junction transistor, which was based on the earlier oxide masking and diffusion techniques. During the same year the epitaxial transistor was developed at Bell, further improving performance and lowering costs. Many other devices have been derived from the transistor, each having its special capabilities. Among them are devices for handling high power, generating microwaves, and detecting extremely weak signals at optical and microwave frequencies.
It was the basic transistor technology, of course, that led eventually to the development of integrated circuits and to their latest manifestation, large-scale integration. On page 6 of this issue there is a picture comparing the first transistor with a recent integrated circuit, and this shows just how far the technology has come in 20 years.

Letter from America

0^{N}NE of the most influential magazines catering for the American teenager is Seventeen and this magazine recently took a poll of the home entertainment habits of its readers. The results show that more than 12 million girls between the ages of 13 and 19 spend a quarter of their time listening to radio, TV, discs or tape. Not surprising perhaps-but here is a startling fact; no less than 22% own their own tape recorders-three times the national average! One reason is that tape recorders (and video systems too for that matter) are commonly used in the schools so children get used to them. As the editor of a trade journal put it, "Mother may be uninterested in the tape recorder-or even slightly afraid of it-but daughter has no such fear." These days tape recorders of one kind or another are used for all sorts of things but I must confess I would not have thought of sending in my tax returns on tape! But 450 business taxpayers did send their returns to Washington this way and it is perfectly legal! Let's hope there are no print-through problems!

ACCORDING to another poll-a national one -more than 35% of American homes have at least two television sets. Of course, one of the reasons is that the old faithful black-and-white set is relegated to the kitchen or children's room when the new colour set is installed. Incidentally, the last available figures indicate that 23% of all TV homes had colour sets. By the time this "Letter" appears in print the figure will be in the region of 30%, or a total of $16,000,000$. One of the problems of colour television is the possibility of X-ray radiation and this has caused a lot of controversy during the past year or so. The maximum safe figure generally accepted is 0.5 millirontgen per hour (mR / h). According to a recent report by a consumers' organization two of 12 different makes tested exceeded this figure when the a.c. mains input voltage was increased to 125 volts-which could be encountered in some circumstances. One set had twice the limit from the top and the other four times the limit from the back. Measurements were taken at a distance of 2 inches and it was pointed out that the radiation would decrease rapidly with distance and even at four times the stipulated maximum the radiation at 6 feet would be negligible. However, the offending sets ended up in the "not acceptable" class at the bottom of the page! The truth is, not enough is really known about the effects of radiation and the official position is a little obscure at the present time. The Federal Government has a committee examining the current standards and at the same time another agency, the U.S. Public Health Service in conjunction with the Electronic Industries Association is also conducting an investigation. As a matter of interest, one Public Health test found that a shunt regulator valve in a GE television set could produce downward radiations. This was promptly corrected by GE, but similar valves are
used by other manufacturers. If the above mentioned authorities come up with new official standards they will have to be applied to microwave ovens, klystrons, linear accelerators and laser equipment-all potentially more harmful than TV receivers. In my opinion, the programmes themselves-or, at least, some of them -are infinitely more harmful than possible X-ray radiation! But that is another story. . . . To be honest, American television can be extremely good in terms of programme content, presentation and sheer technical brilliance. But the bad programmes are almost unbelievable; they are banal, trivial, rubbishy to the nth degree. As one TV executive said "the purpose of TV is to sell", so I suppose the moronic offerings must do just that!

ONE of the most notable advances in magnetic tape recording is the invention of chromium oxide coated tapes by Du Pont of Wilmington, Delaware. These tapes, named Crolyn, use conventional Mylar polyester base with specially de-

Fig. 1. Picture recorded on an iron oxide tape.

Fig. 2. Improved picture from a chromium oxide tape
veloped binders. Chromium dioxide is the only known ferromagnetic oxide and it has a much higher magnetic moment per unit than iron oxide so the signal output is higher for the same degree of resolution. Alternatively, the resolution is better for a given level of output. So in practice, slower operating speeds can be used without loss of signal quality and a greater bandwidth can be achieved at normal recording speeds. Spectacular increases in signal-to-noise ratios (up to 20 dB) are claimed. In video recorders the picture quality is really determined by the tape itself and the improvement with Crolyn is dramatic. A picture (Fig. 1) from an iron oxide tape played through a video recorder at half speed ($3 \frac{3}{4}$ i.p.s.) shows the effects of inadequate h.f. response and poor signal to noise. Fig. 2 shows a picture played through the same recorder at half speed using Crolyn. In the computer and instrumentation fields Crolyn can also offer worthwhile advantages such as better efficiency, improved linearity and so on. How about audio applications? Well, Du Pont say that the standard tape is not suitable for ordinary recorders and they have no immediate plans to market a modified type. On the other hand, there are firm reports of an agreement with Sony which could involve audio tape; moreover a small firm, Gauss Electrophysics, demonstrated a tape recorder using Crolyn at the Audio Engineering Society's show last October. Another significant advance comes from a Professor Meyers of Madison College who has invented a process for using both sides of the tape. This involves placing a ferrite material between the two sides to act as a barrier.

THE latest figures indicate that production of i.cs is going up by leaps and bounds. As an example, sales of digital i.cs have increased by 123% over last year's and prices have come tumbling down. Some months ago, Texas Instruments introduced a line of hybrid i.cs including a complete television f.m. sound system module equivalent to 30 components all packed in a unit smaller than a sixpence. Similar systems are now marketed by RCA, Motorola and others using different techniques and various kinds of package. Motorola have just introduced a range of miniature plastic transistors so small that 144 could fit on a $2 \frac{1}{2}$ inch printed circuit board. They are actually one-tenth the size of ordinary transistors and naturally they are ideal for hearing aids or possibly for preamplifiers that could be mounted in pickup arms or cartridges.

A NEW development by Intelectron called "neural hearing" may bring new hope to the deaf. What is neural hearing? As its name implies, it is a method of activating the nerves directly; in other words bypassing the ears. It works like this: a modulated r.f. generator is coupled to the head via electrodes so that the head becomes in effect the dielectric of a capacitor. Signals are picked up by the cochlea which converts electrical signals into mechanical ones. It is not certain just how it does this because it is a reversal of its normal function. However, the fact remains the signals are demodulated and the efficiency is quite high. The frequencies used are in the 30 to 100 kHz band. The device is the outcome of government pressure to evolve communication systems that will function under conditions of extreme ambient noise; i.e., in helicopters and tanks. Very little is known about the long-term effects on the nerves and much work has to be done before neural hearing moves out of the lab.

ANOTHER audio magazine, called $d B$, has just made its appearance here. The editor is Larry Zide, who was formerly associated with Audio, and he tells me that any British engineer who is professionally engaged in the audio field can have a free copy. The address is $d B$, Sagamore Publishing Co., Inc., 980 Old Country Road, Plainview, L.I., New York 11803, America.
G. W. Tillett

Time-Controlled Combination Lock

By J. F. C. Johnson, A.M.I.E.R.E., A.M.I.R.E.E.(Aust.)

Fig 1. A simplified circuit diagram illustrating the principle involved.

Fig 2. Complete circuit diagram. The relay would normally be employed to actuate a solenoid operated bolt.

J. F. C. Johnson attended an
 officers' electronic engineering course at the R.E.M.E. Training Centre, Arborfield, Berks, in 1956 after completing his studies in New Zealand. On his return in 1959 he served in various New Zealand Army technical appointments with the rank of captain. In 1965 he joined the staff of the Central Institute of Technology in Petone, North Island, where he is a tutor in radio technology. Mr. Johnson operates an amateur station with the call sign ZL2AMJ.

\mathbf{S}EVERAL designs for electrically operated locks have already been published, all have used more than one switch and in some cases more than one relay. The design presented here requires one switch (triple-bank) resulting in only one knob being visible and accessible. The original model employed an eleven-position switch with the end stops removed allowing 360 degrees of rotation and a total of 12 possible positions. Only four of these are used for the actual switching, some being used more than once. The knob must be moved a total of eleven times before the relay controlling the lock will operate. To release the relay the knob is simply moved off this eleventh position and the complete operating sequence must then be repeated again if the relay is to be re-energized.

Not only must the switch be set to eleven different settings in the correct sequence but the timing of the switching is important. The switch must rest in each position for about four seconds before moving to the next. Any longer delay in switching and the relay will not operate. Faster switching and the relay will not operate. As there are .12 switch positions available, the number of combinations possible must reach astronomical figures. The possibility of its operation by those who do not know the combination seems remote indeed. The number of settings, the sequence, and the timing can all be adjusted to suit individual requirements, the model described here is only one of many possible variations.

A simplified diagram to explain the principle of operation is shown in Fig 1. If S_{1} is closed, C_{1} will charge to a voltage equal to the supply voltage in a time determined by the value of R_{1} and C_{1}. If S_{1} is released, C_{1} will retain its charge. Closing S_{2} will cause the charge on C_{1} to distribute between C_{1} and $C_{2} . C_{2}$ will charge to some voltage determined by the relative capacities of C_{1} and C_{2}, and the time taken to reach this voltage will be determined by the value of R_{2}. If S_{2} is now released, C_{2} will retain its charge. If S_{3} is now closed, C_{2} win discharge through the relay causing it to operate. Once the relay contacts close, the relay will hold in the operated position, the d.c. supply now being fed to the relay via the relay contact and S_{3}. The relay can be released by opening S_{3}. The practical lock is produced by making S_{1}, S_{2} and S_{3} separate banks on a wafer switch and by carefully choosing the supply voltage so that repeated operations of S_{1} and S_{2} are necessary to build up sufficient charge on C_{2} to operate the relay.

Fig 2. shows the complete practical circuit, only six of the twelve switch positions are shown in the interest of clarity. S_{1}, S_{2} and S_{3} are ganged together and form the only control. V is the supply voltage which is chosen to be about 1.5 times the minimum operating voltage of the relay. C_{1} is the first capacitor in the chain and it charges to full supply voltage when S_{1} is in position 3 . The time taken to reach full charge is approximately $5 C_{1} R_{1}$ or 3.5 seconds. Part of the charge on C_{1} is transferred to C_{2} (about half the supply voltage in a few seconds) when S_{1} is placed in position 4. By repeating this complete operation immediately, the charge on C_{2} can be increased to three-quarters of the supply voltage. Neglect R_{3} for the moment.

If S_{2} is now put in position 2, part of the charge on C_{2} is transferred to C_{3} which charges to approximately three-eighths of the supply voltage. As this is insufficient to operate the relay, the entire sequence so far must be repeated, the charge on C_{3} being finally raised to about three-quarters of the supply voltage. Neglect R_{5} for the moment.

The final step is to switch S_{3} to position 5. C_{3} now discharges through the relay which closes and is held closed by the hold-on contact.

To release the relay move S_{3} off position $5 . C_{3}$ has been charged to full supply voltage via the hold-on contacts and it now discharges via R_{5}. Without R_{5}, C_{3} would retain its charge and could operate the relay if S_{3} was moved back to position 5 without the switching sequence having to be followed.
R_{3} is added to discharge C_{2} to ensure that the switching sequence must be made allowing only four seconds on each switch position. Any longer delay and the charge on C_{2} cannot be built up to a high enough value to ensure eventual relay operation.

TABLE 1

Sequence No.	Switeh Position No.	Circuit action	Approx. waiting time
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array}$	$\left.\begin{array}{ll} 3 & \\ 4 \\ 3 & \\ 4 & \\ 2 & \\ 3 \\ 4 \\ 3 & \\ 4 \\ 2 \\ 5 \end{array}\right\}$	C_{3} charges C_{1} discharges, C_{2} charges C_{1} charges C_{1} discharges, C_{2} charges C_{1} discharges. C_{2} discharges, C_{3} charges A repeat of sequences 1 to 5 inclusive. $C_{1} \& C_{2}$ shorted, C_{3} discharges through relay. Relay operates.	4 Secs. 4 .. 2 2 4 4 4 2 2 4 -
		Total time required	32 Secs.

The complete sequence of events is shown in Table 1. Slight changes in sequence are possible (e.g. positions $3,4,2,3,4,2$, etc. instead of $3,4,3,4,2$, etc.) but from measurements taken it was found that these do not give such a fast charge build-up on C_{3} as the sequence quoted.

Moving the switch from position 2 to position 5 must be done in an anticlockwise direction otherwise C_{3} discharges via S_{3} position 1. Similar safeguards exist on other banks to prevent possible "round and round" switch operation from operating the relay. Note too that in position $2, C_{1}$ is completely discharged, ensuring that the full foursecond charging time is required on position 3.

When the lock is not in use, the only drain on the supply that can occur is when the switch is in position 3. The current flow is the leakage current of C_{1} which should be negligible. The supply voltage can be obtained from a battery or from mains supply via a transformer and a single diode rectifier. The supply voltage terminals should be connected to two inconspicuous "screws" or other accessible devices so that if the internal battery or the mains supply should fail, the lock can still be operated from an external source.

REFERENCES

1. A Combination Lock, V. J. Phillips. Wireless World, September 1962, P. 441.
2. Letters to the Editor, K. G. Harland. Wireless World, November 1962, P. 544.
3. The Electrolock, Murray E. Coultes. Popular Electronics, January 1966, P. 60.
4. A Sequence-operated Lock, Gordon L. Anderson. Popular Electronics, January 1967, P. 73.

Literature Received

A 14-page handbook on time codes has been made available by the Marketing Dept., Timing and Special Products Group, Systron-Donner Corporation, 888 Galindo Street, Concord, California, 94520. Called "Handbook on Precision Time Code Generation, Synchronisation and Tape Search Systems", it describes the four principal areas of a time code system: the time code generation, time code synchronization, tape search and editing, and code formats. It illustrates various systems with block diagrams and gives complete pictorial description of eight different IRIG and NASA time codes.
W.W. 330 for further details

The Gastometer is an instrument for medical applications and is described in a leaflet received from Beaumaris Electronics Ltd., Beaumaris, Anglesey. The instrument is of value in the differential diagnosis of the origin of facial palsies. It can be used to recognize damage of the chorda tympani following operations on the internal auditory canal. Several other applications are also possible.
W.W. 331 for further details

The biasing of field effect transistors for zero temperature coefficient is discussed in Ferranti application note No. 33 from Ferranti Ltd., Gem Mill, Chadderton, Oldham.
W.W. 332 for further details

A leaflet describing a range of loose-wound precision resistors is available from Alma Components Ltd., Park Road, Diss, Norfolk. The loose-winding technique allows the wire to expand and contract freely during heating and cooling, providing better long-term stability.

W.W. 333 for further details

Improved versions of the series BTR voltage stabilizers from Claude Lyons with lower distortion and higher stabilization accuracy without a price increase are described in a brochure which is now available. Claude Lyons Ltd., Valley Works, Hoddesdon, Herts.

W.W. 334 for further details

Received from Wallis Hursant Electrotech Ltd., Central Way, Feltham, Middlesex, a brochure describing their range of high voltage power supplies and e.h.t. voltmeters. Power supplies are available with outputs variable between 0 and 150 kV and meters with f.s.ds of up to 100 kV .
W.W. 335 for further details

Application note No. 32 from Ferranti describes a d.c. amplifier capable of providing 1 kW into a $10-\Omega$ load. The amplifier operates on the class D principle and has a power gain of approximately 54 dB . Ferranti, Gem Mill, Chadderton, Oldham.
W.W. 336 for further details

A solid state variable a.c. power controller is the subject of the Claude Lyons leaflet QA-15M. A brief technical description includes applications, construction, and specification. Claude Lyons Ltd., Valley Works, Hoddesdon, Herts.
W.W. 337 for further details

Simple Optical Experiments with Ferranti GP Series Laser includes a demonstration of Doppler shift using a Michelson interferometer, a demonstration of Fresnel diffraction patterns, and determination of wavelength using an engineer's rule. This 22-page handbook is, in fact, intended as a guide to simple experiments using a laser for the demonstration and explanation of optical principles and phenomena. The experiments will be of interest to teachers instructing classes in A level physics. Ferranti Ltd., Kings Cross Road, Dundee.
W.W. 338 for further details

The Electronic Services Division of S.T.C., Edinburgh Way, Harlow, Essex, have produced a 230-page "new stock lines supplement" to their 1966/67 catalogue.
W.W. 339 for further details

A two-page leafiet on sound control and associated systems has been published by Rank Audio Visual Ltd. It explains in detail the use of Rank sound control systems in schools, public halls, clubs, lecture theatres and hotels. Leaflet No. is Sfb (64), Rank Audio Visual Ltd., Woodger Road, Shepherd's Bush, London, W.12.
W.W. 340 for further details

Micronotes for Sept./Oct. 1967, No. 3, Vol. 5, discusses the design of high-power microwave windows. Described colloquially as "poker chip" or "pill box" windows, they usually consist of a single thin disc of alumina, sapphire, beryllium oxide or quartz mounted in a short section of circular waveguide. Microwave Associates Inc., Burlington, Massachusetts.

W.W. 341 for further details

A data sheet on the Spectra-Physics (U.S.A.) 130C gas laser has been received from Claude Lyons Ltd., Valley Works, Hoddesdon, Herts. It gives a full technical specification on this self-contained continuous-wave, heliumneon laser, which is intended for applications requiring a moderate amount of power (optical test and alignment polarity, demonstrations of coherent light properties).
W.W. 342 for further details

The R.C.A. Select-A-Lesson teaching machine is described in a brochure from R.C.A. Instructional Electronics. The publication entitled R.C.A. Select-A-Lesson is available from R.C.A. International Marketing, S.A., 118 Rue du Rhone, Geneva, Switzerland.
W.W. 343 for further details

Duplexer devices from the English Electric Valve Co. Ltd., Chelmsford, Essex, are described in a new booklet issued by them. S \& X band TR cells, protector cells, waveguide switches, TR limiters, TB cells and pre-TR cells are covered. Unusually the products are photographed against a scale grid background. A list of U.K. stockists and overseas agents is also given.
W.W. 344 for further details

Technical Notebook

Holographic Memory Process

THE idea that memory in humans and animals might function in a manner analogous to the storage of optical information on holograms was one of the subjects discussed at a Royal Society meeting on the logical analysis of cerebral functions held in London in February. In conventional photography there is a one-to-one correspondence between points on the object and grains on the plate. As a result, the object can be recalled by illuminating the plate in an arbitrary fashion, but loss of part of the plate results in complete loss of information about part of the object. In holography, on the other hand, the correspondence is many-to-many, so that each piece of the plate contains information about the appearance of the whole object, but this information can only be recovered by-illuminating the plate in a very special way. It has already been suggested that certain types of composite stimulus may be memorized in a holographic rather than a photographic manner. Professor H. C. Lon-guet-Higgins pointed out that not only spatial but temporal patterns could be stored and retrieved in a many-to-many fashion -frequency analysis being a simple special case. If the memorization of temporal sequences did involve "holophonic" as opposed to "gramophonic" principles, then not only would some familiar perceptual phenomena be naturally explained, but those parts of the brain which held the memories in question should exhibit periodic behavioural properties, and these might be directly accessible to study by neurophysiologists.
the blood flow. It is thought that it may be particularly useful in treating babies because of its small size. The transducers cells are made in several sizes; for instance, a cell 1.4 mm in diameter consists of a cell diaphragm 1.4 mm across and 0.0026 mm thick separated by an air gap of 0.005 mm from a film of platinum deposited on to a glass core. A central metal tube in the cell provides an electrical connection to the platinum film and allows the passage of reference air to the capacitor air space. This air reaches the device via a small diameter plastic tube contained in the centre of the interconnecting cable. The cell is linear within 1 per cent from 0 to $26.7 \mathrm{kN} / \mathrm{m}^{2}(200 \mathrm{mmHg})$. The electronic system connected to the transducer via the catheter consists of a capacitance bridge excited by a 100 kHz oscillator, a low noise amplifier and appropriate demodulator producing an analogue signal for a recorder or an oscilloscope. It is hoped to connect the transducer directly to a miniature radio transmitter so that the patient under observation can have complete freedom of movement.

Integrated Microwave Circuits

FOR operation at microwave frequencies, active semiconductor devices must have extremely small junctions, and a typical junction area would be of the order of 10-100 $\mu \mathrm{m}^{2}$. Until recently junctions of this size could only be made by chemical etching or whisker contacting techniques (as in point-

Transducer for Cardiac Research

ORIGINALLY developed for measuring pressures on flight model wind tunnel tests by N.A.S.A., Washington, U.S.A., a diaphragm type capacitive transducer has been produced that shows promise of being extremely useful in cardiac research. The smallest of the transducer probes is less than 1.27 mm (0.05 inch) in diameter, can easily be introduced into an artery using a standard 17 gauge thin-wall hypodermic needle and then manoeuvred into the heart on the end of a thin flexible tube. Measurements can then be made inside the heart without disturbing
contact diodes). Such methods, although providing suitable electrical characteristics, cannot, of course, be used in the manufacture of monolithic or hybrid integrated circuits. At an I.E.E. colloquium on microwave integrated circuits, C.A.P. Foxell of Associated Semiconductor Manufacturers, said that progress in planar technology had now advanced sufficiently to allow small enough active areas to be produced directly in the semiconductor. It was now possible to produce a large range of microwave devices in monolithic form or in chip form for hybrid circuits.

An example of A.S.M.'s experimental work on planar integrated microwave circuits, due to be shown at the forthcoming Physics Exhibition (Alexandra Palace, London, 11-14 March), is an X-band microwave receiver. The box shown in the photograph contains an r.f. front end using a Schottky diode balanced mixer driven by a Gunn-effect oscillator. It also contains a head amplifier for the $50-\mathrm{MHz}$ i.f. The waveguide circuit is constructed in microstrip lines, formed by $0.5-\mathrm{mm}$ wide gold film conductors on an insulating substrate 0.5 mm thick. The mixer and the oscillator, both gallium arsenide, are separate devices, and are bonded to the microstrip conductors in the manner of semiconductor chips in hybrid i.cs. The mixer is encapsulated in ceramic in li.i.d. (leadless inverted device) form, while the oscillator is in a standard diode package. (A.S.M. say that the two devices could be integrated on a single substrate measuring $27 \mathrm{~mm} \times 15 \mathrm{~mm}$.) The noise figure for the front end is approximately 9 dB .

Error Computation in Colour TV

THE addition of colour to television increases the number of signal parameters* that can go wrong and the number of subsystems in the television chain where they can go wrong. There are overall tole ances which must not be exceeded too often if colour picture quality is not to fall below a given subjective criterion.

Dr. R. D. A. Maurice (B.B.C. Research Department) has pointed out the advantages of using the mathematical process of convolution to obtain a meaningful and unambiguous value for the overall error that can occur in a parameter throughout the television chain. This is a matter of combining statistically the error probability distributions of the individual parts of the 'chain (and Maurice suggests the temporary use of rectangular, rather than Gaussian, distributions until television engineers are able to produce statistically valid performance figures for their equipments). The result can be used to produce a curve showing the cumulative probability of occurrence of overall errors from the whole television chain. From this it shouid be possible for a receiver manufacturer to decide, for example, whether a particular design of television set was a commercial proposition or not.

[^3]
Australis OSCARs

A TAPE recording of the telemetry information to be transmitted by the Australian amateur radio satellite AO-A has been received from Melbourne University by Mr. W. Browning, G2AOX, who is looking after the European interests of the project organizers. In view of the complexity of the transmissions and the fact that the parameter is specified by the audio frequency of the signal, it is considered to be desirable that project collaborators should receive practice in resolving the information before the satellite is launched. To that end copies of the tape have been made available by the R.S.G.B. to national amateur radio societies in I.A.R.U. Region I who, in turn, are arranging for the tape to be copied locally and distributed to members.

Plans are being made to produce, later this year, a second Australian OSCAR, to be known as AO-B. This will carry a linear translator with an input in the 144 MHz band. Powered by solar cells the new satellite will operate for at least one year in either a low orbit (about 500 miles) or a near-stationary orbit (about 20,000 miles) depending on the type of launch-vehicle available at the time.
I.A.R.U. Region I Conference.-Proposals have been put forward by the Belgian national amateur radio society (U.B.A.) to hold the next triennial conference of the societies which, together, form I.A.R.U. Region I Division, at the Hotel Metropole, Brussels, during the period May 4th-10th, 1969.

Reciprocal Licensing Agreements have recently been signed by the United Kingdom with the Danish and Swedish administrations. Similar agreements have recently been signed between Canada and Luxembourg and between the United States of America and Austria.
Moonbounce Activities.-The January 1968 issue of the V.E.R.O.N. (Netherlands) v.h.f. Bulletin (English edition) features the activities of and equipment used by most of the world's leading moonbounce experimenters. After a series of nearmisses the Australian amateur VK3ATN succeeded on December 20th, 1967 in once again effecting two-way contact via the moon with the Californian amateur K6MYC on 2 metres. Signals at both ends were 3 to 6 dB above the noise level in a 100 Hz bandwidth but were somewhat patchy.

Malta Beacon Station 9H1MB is operational 24 hours a day on 70.1 MHz . Reception reports will be welcomed by the Scientific Studies Committee, R.S.G.B., 28 Little Russell Street, London, W.C.1.

The Canadian Amateur Radio Federation was formed recently in Winnipeg by delegates of provincial societies in Alberta, Manitoba and Ontario. The acting president is J. Rock (VE4UX) and the acting secretary/treasurer is J. Cowprie (VE4CS).

The purpose of the new organization is "to promote the welfare of the Canadian radio amateur in the national field'".
I.A.R.U. Region III.-Plans are being made to inaugurate a Region III Division of the International Amateur Radio Union at a meeting to be held in Sydney, Australia, during Easter this year. Organized by the New South Wales Division of the Wireless Institute of Australia the ultimate aim of the new organization will be to establish and maintain continuous liaison between societies in I.T.U. Region III with a view to presenting a united front at future I.T.U. Conferences and to provide a programme of assistance to developing countries. The immediate short-term aims of the Conference will be to establish an administrative and organization framework. National amateur radio societies throughout the world are being invited to appoint delegates to attend the Conference, as guests of the Federal Executive of W.I.A. who will provide accommodation and hospitality for the four-day period. All correspondence in connection with the Conference should be addressed to John Battrick (VK3OR), Federal Secretary, W.I.A., P.O. Box 365, Frankston, Victoria 3199, Australia.

Welcome to Belgium. -The annual assembly of U.B.A. (the Belgium National Amateur Radio Society) will be held at Gerval, an attractive town 15 miles south of Brussels, during the weekend May 11th $/ 12$ th. The programme will include a Fox Hunting competition on 2 metres and a rally for mobile stations on 80 metres and 2 metres. U.B.A. invite amateurs from other countries to participate in the programme. Visitors will be able to obtain a mobile licence free of charge for the period May 1st-31st, by applying not later than April 10th, to the Director of Radiocommunication, 42 Rue des Palais, Brussels 3, enclosing a photostat copy of the station licence. Further information, including details of hotel accommodation, can be obtained from Rene Vanmuysen (ON4VY), 81 rue J. Baus, Wezembeek-Oppem (Brabant).

Northern Radio Societies' Convention.-The Kent Suite at Belle Vue Gardens, Manchester, will again be the venue for the Annual Convention of the Northern Radio Societies' Association on Sunday, May 19th. The Association consists of radio societies drawn from the North of England, who will be exhibiting at the Convention, together with a number of commercial concerns. Further information can be obtained from R. M. Clarke (G8AYD), "Hillside", Quickedge Road, Mossley, Ashton-under-Lyne, Lancashire.
International Meeting in Germany.-In the past the German national amateur radio society (D.A.R.C.) has held a national meeting biennially. This year, for the first time, the meeting is to be
organized on international lines and is to be held in the West German town of Wolfsburg, near Hanover, during the Whitsuntide holiday (June 1 st-3rd).
QRA or GEOREF Locator System? -The location of the other man's station has, from the earliest days, been a matter of interest to amateurs although the question of the distance between stations becomes important only in certain contests where it is used as a points' "yardstick". For many years v.h.f./u.h.f. contest enthusiasts have sought a simple device which will enable them to measure distances accurately. Such a device is the well-known QRA Locator, which although popular on the Continent has failed to attract full support in the United Kingdom. Now a new system, known as GEOREF, which has a military background, looks set fair to replace the QRA Locator system Full details of the system have been sent to the v.h.f. managers of all European national amateur radio societies who will be asked to decide on the merits and demerits of the system, for amateur radio purposes, at the I.A.R.U. Region I Conference in 1969.

BERU Contest, the most popular contest in the R.S.G.B. Calendar, will commence at 00.01 on Saturday, March 9th and end at 23.59 on Sunday, March 10 th. Competitors may use any band from 3.5 to 28 MHz and operation will be restricted to telegraphy. The contest is confined to R.S.G.B. members resident in the United Kingdom and British Commonwealth.

Faroes Activity.-Using several transmitters and a number of operators, the headquarters station (OY6FRA) of the Faroes amateur radio society (F.R.A.) made 1435 contacts and scored 410,000 points during the recent $C Q$ World Wide DX Contest. The Society's v.h.f. beacon station (OY7VHF), now on the air continuously on $145.26 \mathrm{MHz} \pm 50 \mathrm{~Hz}$, has been heard in the Netherlands and Denmark but there have been no two-way contacts yet with the Faroes.

Equatorial Field Day.-Radio Society of East Africa held its first national field day event at Rumurati a few miles north of the Equator by courtesy of the Laikipia Country Club, but heavy rains (3.1 inches in one hour!) made travelling to the site difficult. The station operated with the special call 5Z4RS and although several hundreds of contacts were established better results would have been achieved if the weather had been more favourable.

Polish Amateur on 6 Metres.-Eng. Wiejlaw Wysocki, SP2DX, has received permission from the Polish telecommunication authorities to transmit in the band $50-54 \mathrm{MHz}$, a band not normally available to amateurs in Europe. The permission is valid until the end of 1968.
"The FIRAC Bulletin".-The Federation Internationale des Radio Amateurs Cheminots has published the first issue of what promises to become a regular bulletin for the rapidly increasing number of radio amateurs who are directly or indirectly associated with the railways. An international call book is in course of preparation. British representative (Mr. R. Hooper, Station Masters' House, Tavistock North Station, Devon) will be pleased to hear from interested readers.

Zaragoza Convention.-An International Amateur Radio Convention is to be held in Zaragoza during the Spanish Spring Festival (May 22nd-26th) to which amateurs from all parts of the world are invited. An extensive programme of visits, business meetings, lectures and social functions has been arranged by the organizing committee (Delegation U.R.E., Apartment 86, $\mathrm{Za}-$ ragoza) from whom full details can be obtained. Enrolments will be accepted up to April 15th.

Electronics in Typesetting

Photo-composing machines used for Wireless World

by R. F. Southall, B.A.(Cantab.)

Abstract

As well as having a new format, Wireless World is now being printed by a more modern process called offset lithography. The author describes the electronic system used with this process for controlling the photo-typesetting machines that form and assemble the characters in the text you are reading.

THE increasing demand for good-quality print, and particularly for good-quality print in colour, has led to the development and to the now widespread use of the printing process known as offset lithography. This process, with its requirement that the material to be printed be presented to the maker of the printing plates as a photographic negative or positive, has led to the development of machines which photograph the letters of text directly on to film and eliminate the slow and complicated process of casting the letters in metal, proofing them and photographing the proofs. These machines are called photo-typesetters, photo-composing machines or film-setters.

The photo-typesetters on which Wireless World is from now on to be set come from the Photon-Lumitype family of machines, the first member of which was developed in America between 1946 and 1954 by two Frenchmen, Louis Moyroud and R. A.

Higonnet. Wireless World will be set on two machines of the family: the Model 540, which works at eight operations a second and is electromechanical, doing its calculations with relays; and the Model 713, much faster, which photographs about 30 characters a second and whose calculation and control circuits are transistorized

If photo-typesetting machines are to be economical in use they must be very productive (since they are expensive in first cost) and they must offer a wide choice of characters (so that jobs of different kinds may be run successively without the machines having to be stopped to change the character "matrices" which carry the characters in the manner of stencils). All the machines in productive use today (with the exception of one special-purpose machine which stores its characters in digital form in a magnetic core store) use character matrices produced by photographic processes, carrying clear images on an opaque ground. The distinguishing feature of the Photon-Lumitype machines we are discussing is that the matrices they use are in continuous motion, and the letters on them are illuminated for photography by a xenon flash tube. The duration of the flash from the tubes used is less than three microseconds, and the flash starts and stops with sufficient abruptness to give sharp character images in spite of the fairly

The photographic unit of the Lumitype 540. At the upper left are three of the eight solenoids of the variable
escapement; below them and to the right is the prism carriage. To the right of this are the lens turret and the matrix disc. The film magazine is not in place in this picture.

high linear speed of the matrix (the matrix in the 540 machine is a disc about nine inches in diameter rotating at $8 \mathrm{rev} / \mathrm{sec}$; the matrix in the 713 is a drum about eight inches in diameter rotating at $30 \mathrm{rev} / \mathrm{sec}$). The 540 disc carries eight circles of 180 characters each, and all of these can be reproduced, by means of magnifying lenses mounted in a turret, in any of twelve sizes. The drum used on the 713 carries eight rows of 96 characters each, which can be reproduced in any of eight sizes. Thus the Model 540 can produce a total of 17,280 different characters (1,440 characters $\times 12$ sizes) and the Model 713 a total of 6,144 (768 characters $\times 8$ sizes).

The 540 disc rotates in the vertical plane, with the flash tube and its condenser optics on one side of the disc and the rest of the optical system on the other; the 713 drum has two flash tubes inside it, each of which illuminates four rows of characters, and there is an arrangement of half-silvered mirrors and a vertically moving collimating lens which presents the correct row of characters to the optical system for photography.

Printers have been very well served almost since the invention of their craft ty the people who designed and cast their types for them. The factors in the design of a typeface which make the difference between effortless legibility and eye-straining indecipherability are entirely unappreciated by nearly all readers: chief among them are the qualities which the typographer calls colour and rhythm.

In reading, the eye travels along the line not steadily from word to word but in iumps between "fixations", where it momentarily rests. To be easy to read, a line of type, no matter what the sequence of the letters in it, must present to the reader's eye the impression of an even line of grey; if there are dark spots or patches in the line the eye will tend to fixate on them at the expense of the rest of the line. To be easy to read also, the typeface must be designed so that the reader's eye is

Richard Southall graduated from Cambridge University with a B.A. in natural sciences in 1960. After four years as a book designer and a short period as a scientific information officer, he joined Crosfield Electronics Ltd. in 1965. This company, makers of electronic machinery for printers, manufuctures the Lumitype 540 and sells under licence the Photon 713 phototypesetting equipments described in the article. Mr. Southall's work is concerned with customer liaison in the typographic field.

The matrix disc of the Lumitype 540 in position in the photographic unit. The cylindrical object overlapping the left-hand edge of the disc is the housing for the photocell which generates impulses from the slits at the periphery of the disc; these impulses trigger the firing of the flash and ensure exact lateral positioning of the characters. The arrangement directly beneath the boss of the disc is a window which limits the area of the disc seen by the optical system. In the foreground is part of the lens turret.
carried from fixation to fixation forward along the line; in crude terms, it must be obvious that the type in which the line is composed is designed to be read from left to right. At least since the time of the early Venetian printers these qualities have been so much a part of the design of most text typefaces that both printers and readers have tended to take them for granted. It was not until the development of composing machines, and particularly of photo-composition (the first entirely new method of producing type-matter since Gutenberg) that it was realized by anybody other than the minute community of typeface designers and punch-cutters* what enormous technical demands the production of well-composed type makes on the producer.

The principal problem in producing lines of type of an even colour is keeping the "weight" (broadly speaking, the thickness of line) of each character the same as the designer intended; and the principal problem in retaining the designed rhythm of a typeface is maintaining the designed intercharacter spacing. This is because both the colour and the rhythm of the line are strongly affected by the relation between the white spaces inside the character shapes and those outside, and this relation is affected in turn both by the thickness of the lines making up the character and by the inter-character spacing.

In photo-composing terms, and generally speaking, the weight of the characters in a line will be consistent if the intensity of the exposing light-source remains constant. This is not too difficult (though not entirely
*The artist-craftsmen who engraved the steel punches used for striking the matrices from which metal type was cast.
simple) to achieve with electronic flash tubes, though flash variations causing density variations in the exposed parts of the film which are almost too small to measure may, with certain typefaces, have a most marked effect on the look of the end-product. It is the extraordinary high standards required in the vertical and lateral positioning of characters (standards to which, it must be said, printers have been educated by the superb performance of the best hot-metal composing machines) which are largely responsible for making the design of photo-typesetting machines both difficult and interesting. In a line of sans serif capital " I "s set close together, variations in inter-character spacing of the order of $10^{-3} \mathrm{in}$. are quite easily perceptible to the naked eye (which picks up the small alterations in the colour of the line). The clean appearance of a film of photo-typeset characters, free from the interfering effects of inking and ink squash which are present in even the best proofs from metal type, makes it necessary to achieve and maintain accuracies of positioning of this order, or better, during the whole of the time the machine is operating. Doing this with a moving matrix and other moving parts at repetition frequencies of up to 40 per second is no small achievement.

In most photo-typesetting systems the widths of characters are expressed on a "unit system" in which the body size of the type-which would be its depth from front to back if it were cast in metal-is divided into 18 "relative units" ("relative" because they change in absolute size with changes in the body size of the type). The basic unit of
the system is one-eighteenth of one printer's point ($7.685 \times 10^{-4} \mathrm{in}$. approximately) and the actual width of a character is found by multiplying its width in relative units by the body size and by the basic unit.

The Lumitype 540 control unit does its calculations in "machine units" of two basic units, since one basic unit is too small a distance for an arrangement of friction clutches and differential gears to move reproducibly. The width of each character in machine units is calculated by the 540 keyboard and is punched into a paper tape in a "frame" following the character identity code. This punched paper tape is used to actuate the control unit of the machine. (In the 540 system each character is represented by a group of three eightchannel code "frames".) At the end of each line of text the 540 keyboard also punches into the tape the "deficit" (the difference between the totalled widths of the characters and spaces in the line and the line length set up on the keyboard) and the number of inter-word spaces in the line. The machine control unit divides the one by the other and adjusts the width of each inter-word space to bring the length of the photographed line to the length set up on the keyboard-the process known as justification which ensures that the column of type has an even righthand edge. The fact that the keyboard and control unit of the 540 do all their calculations in basic units means that the operator can mix different sizes of type in the line without upsetting the justification: this is a great help in setting complicated copy.

The Lumitype 540 keyboard. In the 540 system this keyboard carries out the part of the justifying cycle which involves calculating the deficit in the line and counting the inter-word spaces. The banks of keys to right and left of the typewriter allow the operator to select typeface, size, inter-line spacing and line length:

Photographic unit of the Photon 713 machine. On the right is the matrix drum, with. leading down into it, the connections to the two flash tubes. The light-coloured oval on the extreme right is part of the magnetic pick-up for the sonic wheel on the matrix drum. Behind it is a printed circuit card carrying the character identity pulse amplifier and shaper. To the left of the matrix drum are the typeface row selection optics with their actuating solenoids, the lens turret, and the film magazine. On the extreme left is the film feed stepping motor.

The characters are imaged on the sensitive material (which may be film or paper) by a travelling lens and prism; these move along the optical axis of the machine and place the letters side by side across the film as they are flashed. The 540 reads the tape punched by its keyboard "backwards", that is, from the end to the beginning of the line, so that a character's width is read before its identity, and the first codes of a line that are read are the end-of-line group which allow the control unit to set up the value of the interword space for that line. Before each letter is photographed, the travelling prism moves by a distance equal to the width of the letter: this is achieved by the "variable escapement", an arrangement of differential gears and a rack and pinion actuated by relays set up by the codes in the tape frame containing the character's width. The variable escape-
ment is a mechanism of very high precision, but its maximum rate of operation is limited by the mass of its moving parts to $8-10$ operations a second. For the much higher repetition rates achieved by the Model 713 a quite different system of character positioning is necessary.

The 713 control unit reads its tape in the same sense as it is written; that is, from the beginning of the line. The tape is punched (or, if it is magnetic tape, written) in Teletypesetter ${ }^{\dagger}$ or TTS † code; this is a simple code, long used for the remote control of hot-metal line-casting machines, in which all the characters and certain functions of the machine are indicated by single 6 -channel code frames. The tape does not contain any width information, so the 713 must store for
\dagger "Teletypesetter" and "TTS" are the registered trade marks of Fairchild Graphic Equipment Inc.

Fig. 1. Simplified schematic of the electronic flash timing system in the Photon 713 machine.

itself the widths of all the characters on its matrix drum. It does this in part of the magnetic core memory in its control unit. Into another part of this memory each line of data is loaded as it is read from the tape. While the line is being read, a justification process similar in principle to that performed in the 540 control unit is carried out.

Instead of moving the prism carriage for every character photographed, the 713 moves it in steps of 48 relative units (so that the actual length of the step varies with the size of the type being photographed). The problem of carriage bounce is surmounted by slowing the carriage down as it reaches the end of its step and by inhibiting the flashing of characters for about 65 ms after the end of each step to give the carriage time to settle down.

Since the average width of a character in a normal typeface is about eight relative units, six or so characters have to be flashed within each carriage step, and since the successive characters in a step are generally not of equal widths it is not sufficient simply to position them uniformly across the width of the step. However, the matrix drum rotates at a constant speed and the characters are equally spaced around it, so that if the correct instant is chosen to fire the flash tube the character can be correctly positioned within the carriage step.

Associated with each group of eight characters (one above the other) on the matrix drum of the 713 is a timing slit, and on the base of the drum is a "sonic wheel" which, in conjunction with a magnet and a pick-up coil, provides a pulse at each complete revolution of the drum (Fig. 1). When a character is read out of the buffer part of the memory during the "expose" cycle of the machine, two look-up operations take place. One, from the width tables stored in the lution of the drum (Fig. 1). When a character is read out of the buffer part of the all its calculations in half relative units). This width information is transferred into an accumulator which adds up the widths of all the characters and spaces in the line. The excess of the accumulator content over a multiple of 96 half-units is transferred to what is called the " M " register. The number of multiples of 96 half-units already in the accumulator is equal to the number of carriage steps that have already occurred in the line.

The other look-up operation gives, from the position table in the memory, the position of the character on the drum relative to the zero position defined by the pulse from the sonic wheel. This is transferred to the position register, the value in which is compared with the count of character identity pulses derived from the timing slits on the drum. When equality is reached, the drum is in the correct position to flash the character at the left-hand end (seen from the point of view of the character, which is in fact photographed inverted on the film) of the carriage step.

At this moment, pulses from a crystalcontrolled clock are gated out to count down the contents of the " M " register. The frequency of these pulses is such that during each one the image of the character moves a distance of half a relative unit on the film. When the contents of the " M " register reach zero the flash tube is fired and the character
exposed on the film; its position has been determined only by its width and the widths of the characters preceding it in the line, and is thus typographically correct.

This method of character positioning, which reduces as far as possible the intervention in the process of pieces of machinery which have to start and stop abruptly, is capable of much higher repetition rates than the escape-and-flash mechanism of the 540 . By restricting the character content of a 713 drum and repeating common characters on it so that they can be flashed more than once in each drum revolution, production speeds on normal text setting of greater than 10^{5} characters an hour can be reached.

The Photon-Lumitype family of moving matrix machines seem to have pushed the technique of direct photography on to film from a photographically prepared matrix as far as it will go in terms of speed consistent with the large repertoire of characters which printers demand, and with the excellent typographical quality which has always been the primary objective in the machines' development. What little is published on other organizations' current research efforts suggests that a great deal of work is being done on machines which use cathode-ray tube display devices; but it must be said that none of the machines of this sort, in production or announced, have yet achieved standards of typography that even approach those of the Photon-Lumitype family. It is only with good typography that true legibility, the transmission of the author's thoughts to the reader's mind without the obtrusion of the printed word itself, can be achieved.

Our Next Issue

THE April issue of Wireless World, which will be current during the London Audio Fair, will contain several features of interest to people concerned with sound reproduction: Microphone Survey: a tabular presentation of pe-formance data of microphones available in the U.K., enabling comparisons to be made easily between the different types and makes. There will also be a technical review of recent developments in microphone design. Better Detection: an article pointing out that the detector in receivers doesn't get the attention it deserves, and presenting a new type of circuit using digital techniques and integrated circuits.
High-Quality Monitoring Loudspeaker: the second part of H. D. Harwood's article on the latest B.B.C. design is concerned with bass equalization, the cabinet, and the midrange and high-frequency units.

For constructors there will be a practical design for a Wide-Range R.F. Signal Generator. It covers the range 150 kHz to 120 MHz in six bands. Wireless World April issue will be on sale on Monday 18th March.

The South Africa-Europe Submarine cable

A NEW 3-MHz cable is to be laid linking South Africa and Europe, a distance of some 6,000 nautical miles. This cable, which is of joint G.P.O./S.T.C. design, will start at Cape Town and will "land" at Ascension, Cape Verde and the Canary Islands where it will link with a recently laid cable to Cadiz on the Spanish mainland. It will carry 360 independent two-way telephone conversations simultaneously.

In all therefore, 720 channels are required 360 for each direction. This is achieved by using separate $1-\mathrm{MHz}$ wide bands of frequencies; $312-1428 \mathrm{kHz}$ for one direction and $1848-2964 \mathrm{kHz}$ in the other. Each band accommodates 360 channels 3 kHz wide. Groups of channels are assembled into blocks, each block being "stacked" side by side in the transmission spectra. This technique allows a particular block of channels to be selected at some intermediate point for transmission down a branch cable.

Groups of sixteen channels form the starting point for the translation. A separate carrier is applied to each of the sixteen channels in each group so that by choosing the appropriate sideband resulting from each modulation process $22 \frac{1}{2}$ translated groups of 16 channels reappear each spanning the range $60-108$ kHz . The $22 \frac{1}{2}$ groups, so obtained, are again split up into $4 \frac{1}{2}$ further groups each of these undergoing a similar translation process to place them in the band $312-552 \mathrm{kHz}$. A further carrier is applied to bring the combined signal into either the $312-1428 \mathrm{kHz}$ for one direction of transmission or $1848-2964 \mathrm{kHz}$ for the reverse direction.

The cable to be used is being manufactured at Southampton by Standard Telephones and Cables Ltd. The centre core consists of 41 strands of high tensile steel wire twisted together, providing the cable's strength. Keyed to this is a tube of copper which forms the inner conductor. The overall diameter is maintained within very fine dimensional tolerances. High molecular weight polythene is used for the dielectric and is extruded round the inner core. The outer conductor is next formed by folding a copper tape round the cable in a tubing mill, the cable being completed by the application of a further plastic sheath. In shallow water the cable is protected by heavy armouring to prevent damage by ships' anchors, etc.

Every $9 \frac{1}{2}$ miles a repeater amplifier is inserted into the cable to compensate for cable losses. These amplifiers utilize a system of high- and low-pass filters to enable amplificatiog to take place in both directions. Power
for all the repeater amplifiers is fed down the same coaxial cable as the signal and in practice power will be fed from both ends of the cable simultaneously, a positive voltage from one end and a negative one from the other. This prevents the repeater from having to withstand the very high voltages that would be necessary if the cable was fed from one end only. Two amplifiers are used in parallel each one being able to take over in the event of the other one failing. If a valve heater goes open circuit a fusible element shorts out the heater chain for that amplifier maintaining the d.c. path.

It is essential in such a system that the gain/ frequency curve of the amplifier must exactly match the loss/frequency characteristic of the preceding length of cable. If at some given frequency this was not so the resultant error would be amplified in each successive repeater rendering the system useless, the signal either falling into the noise or driving the amplifiers into overload. It is the task of the equalizer together with heavy frequency selective negative feedback to match these two characteristics. In addition to the individual equalizers fitted in the repeaters the cable lengths in between repeaters are carefully selected to provide optimum response. Even so with a system of this size and complexity errors are bound to creep in, so, after a certain number of repeaters, typically ten, a demountable equalizer is fitted to the cable. This is divided into two sections, a fixed section and a "variable" section. The cable section and repeaters between two demountable equalizers are known as an ocean block.

As an ocean block is being laid continuous measurements are carried out from the cable ship. These would be taken at several carefully selected spot frequencies in the pass band and include a detailed "fine grain" response measurement. These measurements, taken to very small fractions of a dB , have to be completed by the time about half the ocean block is laid. The response of the unlaid section being predicted in the light of results so far obtained. The circuit of the "variable" section of the equalizer is now designed, built and tested. It is fitted into the demountable repeater, the repeater is sealed and a cable joint made. All this is carried out under shipboard conditions to a very high order of accuracy. The repeaters and cable for this $3-\mathrm{MHz}$ equipment is manufactured under clinical conditions.

A $5-\mathrm{MHz}$ transistor repeater cable system is now in production and the G.P.O. is carrying out development work on a $12-\mathrm{MHz}$ transistor system that will carry in excess of 1000 channels.

Smaller D.C. Converters and Inverters

Operating Frequencies up to 50 MHz

by J. R. Nowicki,*M.I.E.R.E., M.I.E.E.E.

Abstract

With silicon planar transistors, it is possible to design d.c. converters and inverters that will operate at high switching frequencies-typically $\mathbf{2 0 - 5 0} \mathbf{~ M H z}$-allowing small and light output transformers to be used. Supplies between 40 V and 400 V , or higher voltages for cathode-ray and other tubes, are feasible by this technique.

PORTABLE and mobile electronic equipment is usually required to operate from some readily available battery (shown on the left in Fig. 1) but the supply voltages which are needed for the equipment (on the right) may be from a few volts to several kilovolts. It is therefore necessary to use some device which will convert the available voltage to the required value. Such a device, in this case a d.c. converter or inverter, is shown in the middle.
The recent introduction of silicon planar transistors has made it possible to design d.c. inverters and converters with switching frequencies between 20 and 50 kHz . The high switching frequency greatly reduces the size and weight of the output transformer and therefore reduces the overall size and weight of the equipment. The main application is for d.c. supplies for airborne and mobile equipment where either 12 or 24 V batteries are available. The output voltages required may be anything between 40 and 400 V or even higher voltages, as, for example, in the d.c. supplies for cathode-ray tubes, geiger counters, and image converters.

TRANSISTOR RATING

Because of the inductive nature of the collector load, the collector voltage of the transistor during the switch off period may rise appreciably before the collector current has decreased much from its maximum value. Therefore, before commencing a design, it is necessary to consider the breakdown voltage of the transistor at high currents.

When the normal collector current collector voltage characteristics of the transistor shown in Fig. 2 are plotted beyond the published limits the curves shown in Fig. 3 are obtained. At higher collector voltages, around V_{X}, there is a rapid increase in the collector current due to avalanche multiplication in the collector depletion layer. The level at which the collector breakdown occurs depends on the base drive conditions. Under forward base bias conditions, the collector breakdown voltage becomes lower as the base current increases.

The reverse base bias very much improves the collector breakdown voltage at low collector currents. At high collector currents the breakdown voltages are very much the same. It may be seen from the curves that, although the reverse base bias very much improves the collector breakdown voltage, the collector voltage curves exhibit the negative resistance characteristics. This, combined with the very fast switching times obtained with silicon planar transistors, may lead to a secondary breakdown. Therefore power transistors which are intended for use with inductive loads require a high energy capability before secondary breakdown occurs in the transistor when operated with reverse bias.

[^4]

Fig. 1. Arrangement for operating equipment from batteries.

Fig. 2. Collector current vs. collector voltage characteristic of a transistor.

Fig. 3. Transistor characteristics of Fig. 2 taken beyond published limits.

Fig. 4 shows a typical circuit of a transistor working into an inductive load. Such a condition is found in an inverter circuit. The transistor is driven by a feedback voltage derived from the collector winding, which is equivalent to a low impedance generator. If the base bias is reversed suddenly when a high collector current is flowing, permanent damage may occur in the transistor. The damage usually appears in the form of a collector-to-emitter short-circuit.
If the path taken by the operating point of the transistor is considered as shown in Fig. 5, it will be seen that, for normal loading, most of the collector current will be due to normal loading, R_{t}, shown as the continuous line. The resistive load current will normally decrease to zero by the time the collector voltage rises to $V_{C O}$, and the voltage across the load will then be zero.

For low loading conditions, however, most of the collector current will be due to magnetizing current, so that the path taken by the operating point will be that as shown by the broken line. The problem is even worse under no-load or an open-circuit load condition, as shown in Fig. 6. The current through the inductance cannot change instantaneously and remains very nearly at its maximum value while the voltage rises to twice the supply value.

If the supply voltage is too high then the operating point during switch-off may intersect the breakdown characteristic before twice the supply value is reached.
The transistor becomes a low impedance, and tie switch-off ime is governed mainly by the inductive time-constant. The transistor remains in a high dissipation region for a comparatively long tume and may be destroyed. Therefore the choice of the supply-voltage is very important.

INVERTER AND CONVERTER TYPES

There are many possible circuits in which transistors may be used to convert voltages from one value to another. All transistor circuits, however, are either ringing choke or transformer coupled arrangements
D.C. converters are circuits which convert a d.c. voltage of one value to a d.c. voltage of a different value. Ringing-choke circuits, being followed by a rectified output, are all classed as d.c. converters. Transformer-coupled circuits, however, are basically d.c. to a.c. inverters. An a.c. output voltage, whether it is sine-wave or square-wave, is often used. The transformer-coupled circuits become converters only if they are followed by a stage of rectification before the outpat is applied to a load.
Ringing Choke Converter-The simplest of the transistor d.c. converter circuits is one using a ringing choke principle ${ }^{1}$ shown in Fig. 7. In this circuit the energy is stored in the transformer during the " on " period of the transistor and is then delivered to the output during the " off" period.

During the input stroke of the cycle the transistor is bottomed and a linearly rising current flows in the primary winding according to the expression $V_{C C}=L \frac{d i}{d t}$. The collector current rises until it reaches its maximum value of $h_{F E} I_{B}$. The transistor then comes out of bottoming and the collector voltage rises, lowering the primary voltage, thus producing a fall in the base current and switching the transistor off. At this point, the inductance of the transformer primary contains stored energy equal to $\frac{1}{2} L_{p} I_{C M}{ }^{2}$.

During the output stroke, when the transistor is cut off, the reverse voltage rises rapidly until the secondary voltage reaches the value V_{0}. This is the voltage developed across the capacitor C during the previous cycle of operation. At this point the diode D_{2} starts to conduct and delivers the stored energy to the capacitor C and the load. When the secondary current has decayed to zero, the reverse voltage developed across the base emitter junction disappears and the transistor switches on again.
Push-pull Transformer-Coupled Inverters-All push-pull inverters are basically transformer-coupled circuits. For high efficiency, square wave oscillating systems are used of which there are three well known configurations: (a) common base, (b) common emitter and (c) common collector. Since the commonemitter arrangement is most efficient and most commonly used, the discussion will be limited to various forms of this type of circuit. The basic principles, nevertheless apply to all three.

The conventional single-transformer d.c. inverter is shown in

Fig. 5. Path of transistor operating point for normal and low loading.

Fig. 6. For a no-load condition the path of the operating point is shown by the right-hand curve.

Fig. 7. Simple d.c. converter circuit using ringing choke principle.

Fig. 8. Conventional single-transfor mer d.c. inverter circuit.

Fig. 9. Two-transformer inverter. One transformer controls switching while the other provides the correct voltage to the load.

Fig. 10. Collector current for (a) single saturating transformer circuit, (b) twotransformer circuit.

Fig. 12. Voltage and current waveforms in the inverter with CR timing

Fig. 13. (a) Equivalent base circuit of Fig. 11, and (b) its simplified version.
(a)

(b)

Fig. 8^{2}. The transformer can either be of a non-saturable type, or of a saturable type. In the case of the non-saturable transformer circuit, a considerable variation of frequency with load will be experienced and the transformer size required to handle the same power will be three to four times as big as one using a saturable transformer. The circuit with single non-saturable transformer is therefore regarded as not suitable for practical purposes.
The inverter with a saturable transformer, although widely used, suffers from three main disadvantages: (a) the design is affected by spreads in transistor characteristics because the peak collector current is determined by the gain and the base-emitter voltage; (b) for a given power delivered to the load, the ratio of the peak current to the load current is high; and (c) the transformer uses large amounts of an expensive core material.
If frequency is not important or a d.c. output is required, some of the disadvantages may be overcome by operating at frequencies in the range of 20 to 50 kHz , for which silicon planar transistors are most suitable.
In this single-transformer circuit, the transformer performs two separate functions. First, it acts as the frequency control device and, by saturation, governs the drive to the bases of the transistors. Secondly, it acts as the output transformer and handles the power from the collector to the load.
Further improvements in operation can be obtained by using a two-transformer circuit ${ }^{3}$. The two functions then are separated and handled by separate transformers, each designed for its own purpose. This circuit is shown in Fig. 9. A small saturable transformer T_{1} is used to control the switching, and a larger output type of transformer, T_{2}, working linearly, is used to provide the correct voltage to the load R_{I}.

This circuit is very much less dependent on the transistor characteristics and therefore will provide at least twice the power obtained with single-saturable transformer circuits. Provided that the transformer T_{2} is designed to reach only a small magnetizing current during the time determined by saturation of the transformer T_{1}, then the total collector current will be small even under no-load conditions.

The collector currents for the two circuits, for no-load and full-load conditions, are shown in Fig. 10.

It will be seen that in the case of a single saturable transformer circuit the peak collector current $I_{C M}$ depends on the drive conditions and is always $h_{F E} I_{B}$, whereas, in the case of the twotransformer circuits, the peak collector current, $I_{C M}$, depends on the actual load conditions.

These circuits are shown in their basic forms only. In order to make them oscillate it is necessary to provide sufficient forward bias to make the loop gain equal to or greater than one.
Although the two-transformer inverter circuit could be used at frequencies of 20 to 50 kHz , it is more suited for lower frequencies, below 5 kHz . To take full advantage of high frequencies a more elegant and more economical circuit is shown in Fig. $11 .{ }^{4}$ Here the saturable transformer of the previous circuit is replaced by a capacitor C which, in conjunction with one of the base starting resistors R_{1} or R_{3}, provides the required timing. The transformer T_{1} again is working linearly, so that the peak collector current is independent of the drive conditions and is small for no load.

The new circuit is probably one of the best arrangements known to date which can be operated at frequencies well above 50 kHz

Silicon planar transistors with fast switching times lend themselves to high-frequency inverter applications. These transistors, when used in the inverter circuit with $C R$ timing, provide one of the simplest and most economical arrangements.

With planar transistors, additional components are necessary to make the basic circuit of Fig. 11 work reliably. This, however, does not invalidate the above statement. The circuit will provide maximum output power using planar transistors, accepting their full production spreads when designed for operation with the same supply voltage, and at the same time be equally efficient.

The operation of the circuit is discussed next, and two practical examples are given.
Circuit Operation.-In the basic circuit shown in Fig. 11 it is assumed that transistor $T r_{1}$ is cut off and transistor $T r_{2}$ is on, and that the capacitor C is charged. The base current of the transistor $T r_{2}$, which is approximately equal to the discharging current of the capacitor C, will decrease exponentially until it will no longer support the collector load current. At this stage, the

Fig. 14. Circuit of 13 -watt fluorescent lamp inverter.
collector current will start to fall, causing the polarities of the voltages developed across the transformer windings to reverse. This will switch transistor $T r_{1}$ rapidly on and the transistor $T r_{2}$ off. The timing is thus controlied by the exponential decrease of the base current. The voltage and current waveforms are shown in Fig. 12.
Transformer Design.-The transformer is designed around the value of the inductance required for each half of the primary winding for a given magnetizing current. The value of the inductance is given by

$$
\begin{equation*}
L=\frac{\left(V_{C C}-V_{C E(S A T}\right) t_{p}}{I_{M}} \tag{1}
\end{equation*}
$$

where $V_{C C}$ is the supply voltage, $V_{C E(S A T)}$ is the collector-toemitter saturation voltage, I_{M} is the peak magnetizing current, and t_{p} is the time of half a cycle.

To minimize losses, Ferroxcube cup cores are used. The cores offer higher values of inductance for a given number of turns than may be achieved with E-cores, resulting in lower copper loss and higher overall efficiency. Since the efficiency of the transformer depends on the value of the magnetizing current, the copper loss and the core loss, the transformer is designed using the thickest wire gauge possible and the lowest magnetizing current for minimum total loss.

The number of turns for each half of the primary winding is found from

$$
\begin{equation*}
N_{p}=\alpha \sqrt{ } L \tag{2}
\end{equation*}
$$

where α is the number of turns for 1 mH for a given size of core, and L is the inductance in mH .

The number of turns needed for the secondary winding will
depend on the output voltage required, and can be found from

$$
\begin{equation*}
N_{s}=N_{p} \frac{V_{\text {out }}}{\left(V_{c C}-V_{C}\right)} \tag{3}
\end{equation*}
$$

It remains now to find the feedback voltage required for satisfactory operation and the number of turns for the feedback winding. The equations required for the design ${ }^{4}$ can be found with reference to the base equivalent circuit shown in Fig. 13, but first the minimum base current, I_{B}, required to support the peak collector current, $I_{C M}$, is

$$
\begin{align*}
& I_{B}=\frac{I_{C M}}{h_{F E}} \tag{4}\\
& I_{1}(\mathrm{~min})=I_{B}+\frac{I_{B} R_{0}+V_{0}}{R_{2}} \tag{5}
\end{align*}
$$

If R_{1} is made equal to R_{2}, which is usually the case, then

$$
\begin{equation*}
V_{f}=\frac{1}{2} I_{1(p k)}+I_{1(\text { min })} \quad\left[R_{2}+\frac{R_{2} R_{0}}{R_{2}+R_{0}}\right]+\frac{V_{0} R_{2}}{R_{2}+R_{0}} \tag{8}
\end{equation*}
$$

and the number of turns for the feedback winding

$$
\begin{equation*}
N_{f}=N_{p} \frac{V_{f}}{V_{C C}-V_{C E(S A T)}} \tag{9}
\end{equation*}
$$

The value of the timing capacitor, taking into account the exponential decay, is given by

$$
\begin{equation*}
C=\frac{1}{3 \cdot 2 f R_{2}\left[1+\frac{R_{0}}{R_{2}+R_{0}}\right]} \tag{10}
\end{equation*}
$$

Circuit Modifications for Silicon Planar Transistors. There are, however, two basic limitations of silicon planar transistors. These are (i) a lower energy capability in the avalanche region and (ii) a lower base-emitter reverse voltage rating.

The energy dissipation in the avalanche will be dealt with first. It calls for the reduction of the energy available at the time of switch-off of the collector current, especially due to the leakage inductance of the transformer. This is brought about by designing a transformer with low voltage inductance achieved by (a) bifilar winding of the primaries, (b) using the highest possible frequency so that the inductance required for the primary for certain magnetizing currents is low, (c) reduction of the number of turns and the length of wire.

A compromise is necessary in choosing the value of the magnetizing current because it will affect the overall efficiency of the circuit. The minimum number of turns has already been assured by using Ferroxcube transformer cup cores.

It has been proved that the energy capability of planar transistors is higher under forward-bias than it is under reverse-bias conditions. The reverse-bias condition should therefore be avoided as the damage to a transistor in the low-resistance region is more

Fig. 15. Circuit of d.c. to d.c. converter capable of delivering 60 W of output power from a 24 V supply.

likely to occur when the base-emitter voltage is high. The reverse base-emitter voltage could be limited by a shunt diode placed across the base-emitter junction. The diode, however, would not eliminate the reverse base current. Series diodes are therefore used in each transistor base lead together with the shunt resistor to provide a path for leakage current.

It must be noted that diodes used for this purpose must be as fast as the transistors if they are to have any effect on the operation of the circuit. They must be fast recovery types

Because of energy return to the supply due to inductive nature of the load, especially when the inverter is lightly loaded, it is necessary to decouple the supply by connecting a large value of electrolytic capacitor close to the transistors to avoid long lead lengths which introduce appreciable inductance at high frequencies. Because of the fast switching times, additional paper capacitors may be needed to bypass the high-frequency current.

Practical Circuits-The benefit of the planar transistors, apart from the small size and reduction of weight resulting from high frequency operation, is also realized in the elimination of audible noise.

Two circuits which illustrate these advantages are an inverter for fluorescent lamps shown in Fig. 14 and a d.c. to d.c. converter shown in Fig. 15.

The inverter circuit for 13 W fluorescent lamps operates from a nominal 12 V battery. The output transformer, in addition to the secondary winding, has the two heater windings required for the lamp. A choke ballast L is used to limit the lamp current. The frequency of operation is approximately 25 kHz .

The d.c. to d.c. converter is capable of delivering 60 W of output power from a 24 V d.c. supply. The same comment applies to the rectifiers used for the bridge circuit; they must be a fast recovery type. The recovery time of the rectifiers must be approximately equal to the switching times of the transistors, otherwise the efficiency will be reduced and the operation of the circuit may be affected.

TRANSFORMER DETAILS

Fluorescent Lamp Inverter

Core	Ferroxcube FX2242
Bobbin	DT180
Primary winding, N_{p}	$12+12$ turns, 23 s.w.g enamel copper wire
Secondary winding, N	228 turns 32 s.w.g enamel copper wire
Feedback winding, N_{f}	10 turns 30 s.w.g enamel copper wire
Heater windings, N_{h}	9 turns each, 30 s.w.g enamel copper wire
Choke Core	Ferroxcube FX2240 with 0.09 mm gap
Bobbin	DT2179
Winding	64 turns enamel coppe

60W D.C. to D.C. Converter

Core	Ferroxcube FX2243.
Bobbin	DT2206
Primary winding, N_{p}	$12+12$ turns, 21 s.w.g. enamel copper wire
Secondary winding, N_{s}	68 turns, 28 s.w.g. enamel copper wire
Feedback winding, N_{f}	11 turns, 26 s.w.g. enamel copper

REFERENCES

1. "Transistor D.C. Converter", by H. Light and P. M. Hooker. Proc.I.E.E., Nov. 1955 (102B), pp. 775 to 786.
2. "The Design of Transistor Push-Pull D.C. Converters", by W. L. Stephenson et al. Electronic Engineering, Vol. 31, No. 380, Oct. 1959, pp. 585 to 589.
3. "Improved High Power D.C. Converters", by J. R. Nowicki. Electronic Engineering, Vol. 33, No. 404, Oct. 1961, pp. 637 to 641. 4. "A D.C. Inverter with CR Timing", by J. R. Nowicki. Electronic Engineering, Vol. 34, No. 413, July 1962, pp. 464 to 468.

H.F. Predictions-March

Maximum usable frequency curves are based on a predicted value for the Ionospheric Index (IF2) of 130 . This is much lower than the corresponding period of the last cycle which reached a maximum of 208 in December 1958. Daytime peaks continue around 30 MHz but these will diminish over the next few months as summer conditions approach.

Although Sporadic-E may be evident on all routes between 10.00 and 18.00 G.M.T., it is unlikely to affect circuit operation.

The curves for the lowest usable frequencies were drawn by Cable \& Wireless L.t. for reception in the U.K. of point-to-point telegraph circuits using several kilowatts of power and rhombic aerials. Curves for domestic reception of high-power broadcasts would be similar.

-
--- Median standard MUF
$-\cdots$ Optimum traffic frequency

Public Address Exhibition

THE annual exhibition of public address equipment organized by the Association of Public Address Engineers will again be held at the King's Head Hotel, Harrow, Middx., but will, this year, run for three days-March 12th to 14th. Some 40 exhibitors will be participating in the show which will be open daily from 10.00 to 18.30 . The theme is outdoor p.a. and there will be a "working display" of microphones and also a display of loudspeakers for outdoor use.
Admission will be by ticket obtainable free from the headquarters of the Association, 394 Northolt Rd, South Harrow, Middx.

Forthcoming Events

Further details are obtainable from the addresses in parenthesis

LONDON

Sept. 9-12
Queen Mary College, E. 1
Elementary Particles
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Sept. 9-13
(I.B.C., c/o I.E.E., Savoy Pl., London W.C.2)

Sept. 30-Oct. 2
I.E.E. Savoy Pl.

Tropospheric Wave Progagation
(I.E.E., Savoy Pl., London W.C.2)

Oct. 2-5
R.S.G.B. Radio Communications Exhibition
(P. Thorogood, 6 Museum Hse., Museum St., London W.C.2)

BELFAST

Apr. 1-3 Queen's University
Heavy Particle Collisions
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

BIRMINGHAM

Sept. 16-20
The University
Machine Tool Design and Research Conference
(Dept. of Mechanical Engineer, The University, P.O. Box 363, Edgbaston, Birmingham 15)

BRIGHTON

Oct. 8-10
Hotel Metropole
National Electronics Packaging Conference \& Exhibition
(Gordon Savill Exhibitions, 21 Victoria Rd., Surbiton, Surrey)

CAMBRIDGE

Sept. 23-27
The University
Electronics Design
(I.E.E., Savoy Pl., London W.C.2)

CARDIFF

Cathays Park

Apr. $18 \& 19$

Audio-Visual Aids Conference and Exhibition
(National Committee for Audio \& Visual Aids in Education, 33 Queen Anne St., London W. 1)

DURHAM

Apr. 2 \& 3
The University
Semimetals and Narrow Gap Semiconductors
(I.P.P.S., 47 Belgraye Sq., London S.W.1)

EDINBURGH

I.F.I.P. Data Processing Congress \& Exhibition
(I.F.I.P. Congress, 23 Dorest Sq., London N.W.1)

FARNBOROUGH

Sept. 16-22
R.A.E.

Electronics and Air Show
(S.B.A.C., 29 King St., St. James's, London S.W.1)

HARWELL

```
May 9 \& 10
A.E.R.E.
Low Energy Electron Diffraction
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
```


LOUGHBOROUGH

Apr. 16-19
University of Technology
(I.E.E.T.E. Ltd., 26 Bloomsbury Sq., London W.C.1)

MANCHESTER

Sept. 3-6
Inst. of Science and Technology
Solid State Devices
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Sept. 24-28
Belle Vue
Electronics, Instruments, Control and Components Exhibition
(Inst. of Electronics, 78 Shaw Rd., Rochdale, Lancs.)
Nov. 4-6 Hotel Piccadilly
Electronic Instruments Exhibition
(Industrial Exhibitions, 9 Argyll St., London W.1)

NOTTINGHAM

Sept. 11-13 The University
Physical Aspects of Noise in Electronic Devices
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

OXFORD
Apr. 1-4
Playhouse Theatre
Properties and Metrology of Surfaces
(Inst. of Mechanical Engineers, 1 Birdcage Walk, London S.W.1)

SWANSEA

July 15-18
University College
Electrical Contact Phenomena
(I.P.P.S. 47 Belgrave Sq., London S.W.1)

WARWICK

Aug. 29-31 The University
AC Properties of Superconductors and their Applications
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

OVERSEAS
Apr. 1-6
Paris
Components Exhibition \& Colloquium also Electroacoustic Exhibition (Fédération Nationale des Industries Electroniques, 16 rue de Presles, Paris 15e)

Apr. 9-11 Houston
Telemetering Conference .
(R.H.D. Hardy, Serck Controls, Queensway, Leamington Spa, Warwick)

Apr. 22-24
Atlantic City
Frequency Control Symposium
(Mr. F. Timm, Electronic Components Lab., U.S. Army Electronics Cmnd., Fort Monmouth, N.J.)
May 8-10 Washington
Electronic Components Conference
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

May 14-17
Miami
Quantum Electronics Conference
(W.W. Rigrod, Bell Telephone Labs., Murray Hill, N.J.)

May 20-22
Detroit
International Microwave Symposium
(Dr. G. I. Haddad, Electrical Engineering Dept. University of Michigan, Ann Arbor, Michigan 48104)
June 10-1 ${ }^{\frac{1}{4}}$
Copenhagen
British Engineering Exhibition
(S. Black, London Chamber of Commerce, 69 Cannon St., London E.C.4)

June 12-14
Philadelphia
Conference on Communication
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

June 17-19
St. Louis
Microelectronics Symposium
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

June 20-22
Cleveland
Optimal Systems Planning
(Prof. T. J. Williams, Laboratory for Applied Industrial Control, Purdue University, Lafayette, Indiana 47907)

March Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned.

LONDON

4th. I.E.E.-Colloquium on "Pulsed code modulation' at 10.00 at Savoy Pl., W.C.2.

5th. I.E.E. \& I.E.R.E.-Colloquium on "Large scale integration" at 10.00 at Savoy Pl., W.C. 2 .

6th. B.K.S.T.S.-"A new loudness analyser" by H. Blässer at 19.30 at the Royal Overseas League, Park Pl., St. James's St., S.W.1.

7th. Inst. Electronics.-"Reed switches and their applications" by B. F. Pamplin at 18.45 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C. 1 .

7th. R.T.S.-Discussion on "Cost versus quality in television receiver design" at 19.00 at the I.T.A., 70 Brompton Rd., S.W. 3

8th. I.E.E.-"British contributions to telecommunication" by R. J. Halsey at 17.30 at Savoy Pl., W.C.2.

11th. I.Mech.E. \& I.E.E.-Discussion on "Roll stabilisation and auto pilots in marine engineering application" at 18.00 at 1 Birdcage Walk, S.W.1.

12th. Radar \& Electronics Assoc.-"The influence of integrated circuits on equipment design" by K. H. Brinkman at 19.00 Mullard House, Torrington Pl, W.C.1.

12th. S.E.R.T.-"Colour television receiver de-sign-current and future trends" by P. Mothersole at 19.00 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C.1.

14th. I.E.R.E.-"Engineers must manage or be managed" by H. R. Sykes at 18.00 at 9 Bedford Sq., W.C.1.

18th. I.E.E.-Colloquium on "Threshold extension techniques" at 10.00 at Savoy Pl., W.C.2.

18th. I.E.R.E.-"Control: past, present and future" by Prof. H. H. Rosenbrock at 18.00 at the London School of Hygiene, Keppel St., W.C.1.

19th. I.E.E. \& I.Mech.E.-Colloquium on "Engineering aspects of satellite design' at 10.30 at Savoy P1., W.C. 2.

19th. I.E.R.E.-"Integrated circuits for radio receivers" by W. D. Benson and B. Buckingham at 18.00 at the London School of Hygiene, Keppel St., W.C.1.

20th. I.E.E.-"Satellite communications" by W. J. Quill at 17.30 at Savoy Pl., W.C. 2 .

21st. I.E.E.-Colloquium on "The role of the computer in device, circuit and equipment design" at 14.30 at Savoy Pl., W.C.2.

22nd. R.T.S.-"Comparison of u.h.f. and v.h.f. coverage" by R. S. Sandell at 19.00 at the I.T.A., 70 Brompton Rd., S.W.3.

22nd. B.K.S.T.S.-"An electron-beam television film recorder'' by John W. Overton at 19.30 at the Royal Overseas League, Park Pl., St. James's St., S.W.1.

25th. I.E.E. \& I.Mech.E.-Discussion on "Fluidics and integrated circuits" at 17.30 at Savoy P1., W.C.2

27th. I.E.E.-"Waves in semiconductors-possibilities for new solid state devices" by Prof. G. Kino at 17.30 at Savoy P1., W.C.2.

28th. I.E.E.-Discussion on "The engineer in society'’ at 17.30 at Savoy Pl., W.C.2.

28th. I.E.R.E.-"Cost effectiveness and systems analysis in defence" by T. H. Kerr at 18.00 at 9 Bedford Sq., W.C.1.

BANGOR

11th. I.E.E.-"Training the electrical engineer" by Prof. Emrys Williams at 18.30 at the School of Engineering Science, Dean St.

BATH

20th. I.E.R.E. \& I.E.E.--"Microelectronics" by Dr. S. S. Forte at 19.00 at the Technical College, Avon St.

BIRMINGHAM

20th. R.T.S.-"The fully transistorised colour receiver" by S. C. Jones at 19.00 at the Medical Institute, Harborne Rd., Edgbaston.
25th. I.E.E. Grads.-"Waveguides" by Prof. E. M. Barlow at 19.00 at the University of Aston.
27th. S.E.R.T.-"Colour television" by B. J. Rogers at 19.30 at the Electrical Engineering Dept., the University, Edgbaston.

BRISTOL

6th. I.E.R.E. \& B.C.S.--"Design of circuits using a digital computer" by E. Wolfendale at 19.00 at the University.
12th. R.T.S.-"Colour TV receivers-the PAL decoder" by B. J. Rogers at 19.30 at the Reception Rooms BBC, Whiteladies' Rd.

13th. S. Inst. Tech.--"Instrumentation of inertial navigation systems" by Prof. E. B. Pearson at 19.30 at the Dept. of Physics, the University, Royal Fort.

CAMBOURNE

14th. I.E.R.E. \& R.T.S.-"Thyristors: modern applications in control systems" by G. Grimsdell at 19.00 at the Cornwall Technical College.

CAMBRIDGE

14th. I.E.E.- "The early history of radio" by G. M. Garratt at 20.00 the University Engineering Labs.

CARDIFF

4th. I.E.R.E. \& I.E.E.-"Integrated circuits" by R. Smith at 18.00 at the University of Wales Institute of Science and Technology.
20th. R.T.S.-"Colour receiver design" by G. D. Barnes at 19.30 at the Llandaff Technical College.

CHELMSFORD

12th. I.E.R.E.-"Vision, television, colour television" by N. N. Parker-Smith at 18.30 at the Technical High School, Patching Hall Lane.

DERBY

6th. I.E.E.-"Changing patterns in communication" by J. H. H. Merriman at 18.30 at E.M.E.B. Showrooms, Irongate.

DUMFRIES

19th. I.E.E.-"Radio astronomy" by I. W. Sheffield at 19.30 at the Kings Arms Hotel.

EDINBURGH

5th. I.E.E. Grads.-"Waveguides" by Prof H. E. M. Barlow at 18.15 at the Carlton Hotel.

13th. I.E.R.E. \& I.E.E.--"Gas lasers" by G. M. Clark at 19.00 at the Dept., of Natural Philosophy, The University, Drummond St.
26th. I.E.E.-"Medical electronics" by D. W. Hill at 19.00 at Usher Hall.

GLASGOW

14th. I.E.R.E. \& I.E.E.-"Gas lasers" by G. M. Clark at 19.00 at the Inst. of Engineers and Shipbuilders, 39 Elmbank Cres., C.2.

GRIMSBY

19th. I.E.E.-"Waves, waveguides and radar" by Prof. P. J. B. Clarricoats at 19.00 at the Yarborough Hotel.

HUDDERSFIELD

7th. I.E.R.E.-"Computer aided design" by J. G. Davies at 19.00 at the Dept. of Electrical Engineering, the College of Technology, Queens St.

LEICESTER

6th. I.E.R.E.--"Numerical control of machine tools" by D. Walker at 18.30 in the Physics Dept., the University.

LIVERPOOL

20th. I.E.R.E.-"Educational closed-circuit television" by E. T. Blakeman and H. Barrington at 19.00 at the Regional College of Technology, Byrom St.
27th. I.E.E. Grads.-"The design of high-quality audio amplifiers" by J. Dinsdale at 18.30 at the University.

MALVERN

25th. I.E.R.E.-"An introduction to acoustics" by F. H. Brittain at 19.00 at the Abbey Ballroom.

MANCHESTER

21st. I.E.R.E.-"Microelectronics" by I. M. Breingan at 19.15 at Renold Bldg, the University Institute of Science \& Technology, Altrincham St.

MIDDLESBROUGH

26th. S.E.R.T.-"Development of electronic circuits for industry" by L. English at 19.15 at the Cleveland Scientific Inst., Corporation Rd.

NEWCASTLE-UPON-TYNE

1st. I.E.E.- "Thin film microelectronics" by R. S. Pinder at 18.30 at the University.

13th. I.E.R.E.-"Circuit design using digital computers" by E. Wolfendale at 18.00 at the Inst. of Mining and Mechanical Engineers, Neville Hall, Westgate Rd.
20th. S.E.R.T.-"Electronic remote control" by N. S Richardson at 1915 at the Charles Trevelyan Technical College, Maple Terrace.
28th. I.E.E.--"Medical electronics" by D. W'. Hill at 19.30 at the City Hall.

NEWPORT, I.O.W.

1st. I.E.R.E.-"Optical communications using glass fibres" by Prof. W. A. Gambling at 19.00 at the Technical College.

PLYMOUTH

6th. R.T.S.--"Fleming Memorial Lecture "The strange journey from retina to brain" by Dr. R. W. G. Hunt at 19.30 at the Studios of Westward Television.

14th. I.E.R.E. \& R.T.S.-"Thyristors-modern applications in control systems" by G. Grimsdell at 19.30 at Camborne Technical College.

PORTSMOUTH

13th. I.E.R.E.--"High-order idlerless multipliers" by S. V. Judd at 19.00 at the Highbury Technical College.

READING

12th. I.E.R.E.-."Transistor noise" by Dr. E. A. Faulkner at 19.00 at the J. J. Thomson Physical Labs., the University.

RUGBY

5th. I.E.E. Grads.-"Laser holography" by J. M. Burch at 18.15 at the College of Engineering Technology.

SHEFFIELD

12th. I.E.E.-"Medical electronics" by D. W. Hill at 19.30 at the City Hall.

SHRIVENHAM

12th. I.E.E.T.E.-"The laser beam and its applications" by C. S. Grace and L. G. Penhale at 19.30 at the Royal Military College of Science.

SOUTHAMPTON

5th. I.E.R.E. \& Brit. Assoc.-"Modern methods of traffic control" by D. G. Hornby at 18.30 at the Lanchester Theatre, the University.

TENTERBANKS

6th. I.E.R.E.--"An approach to transistor reliability" by A. J. Melia at 19.15 at the Stafford College of Further Education.

WARRINGTON

7th. S.E.R.T.--"Electronics in nuclear power" at 20.00 at the White Hart Hotel, Sankey St.
the electronics industry benefit from a pin under its chair?

TAILPIECE

If you will pardon the expression, which is not, I think, inapposite. After the above was written and (as I fondly imagined) put safely to bed, I came across a news item in the business section of The Times for February 2nd which seems to suggest that the sooner someone inserts a pin under the seat of British industry the better.

You probably noticed it yourself, but in case not, it was to the effect that ten chairmen of various big British companies (including at least two identifiable with electronics) were setting sail on a luxury cruise to South Africa. The outward voyage will have taken $11 \frac{1}{2}$ days and Old Thunderer rather let itself go in its conjectures concerning lavish junketings in project aboard and dropped divers dark hints as to the mergers which might arise from the incarceration of ten business tycoons in one ship for nearly a fortnight. It also remarked that the basic cost of a suite on this particular excursion was a mere $£ 2,566$. I suppose it was mentioned just in case any of you other Top Readers might want to rough it for the summer hols.

Now, the readership of The Times is not, as Mr. Bumble, the beadle, would say, parochial. It is obligatory reading at top government levels all over the world. Let's suppose some old acquaintance of yours has bitten your ear for a fiver on the strength of a hard-luck story and that same evening you find him whooping it up with a bunch of the boys in the malamuk saloon . . . see what I mean? What must have those foreign government readers thought on reading The Times report? It seems to me that all those who have lent this country money or backed its devaluation policy have every right to be doing some pretty serious thinking-not to mention the few typists who set the trend for extra work without pay and all those who followed their example to "Back Britain". For here, according to report we have ten captains of industry absent from their respective helms and indulging in assorted Bacchanalia when they should be steering the ship of commerce across the green fields of Old England (as a politician once said).

There are, of course various ways of looking at a situation like this. It can be argued (and no doubt will be) that the money expended on this fiesta is fiddling and small compared with the business which may accrue. "May" is, of course, the operative word here and in any event the sums involved would pay a tidy few weeks' salaries of those who are putting in overtime for nothing. But perhaps chairmen have never heard of that new-fangled device, the heavier-than-air machine which gets one to South Africa in hours and would have taken the whole lot for approximately the price of one stateroom?

Although it is not implicitly stated in the report the reader is left with the impression that the whole enterprise is on an expense-account basis. This may not be so. We may have eleven hard-working chairmen taking their annual holidays at their private expense and, by a beautiful coincidence, electing to go to the same country on the same date and by the same ship. If that is so, then it is surely nobody's affair but their own.

Not exactly. For these are public figures and as such should pay due regard to the corporate image they project. It was surely a bad piece of public relations to have travelled in a body in such apparent ostentation with industry in such a parlous state as it is at present. It is too reminiscent of Nero fiddling while Rome was burning and, regrettably, not nearly so fictional. Or is the new slogan "I'm backing Britain-over a precipice"?

I still think we need pins, not air cushions, for the boardroom seats.

New Products

Electrolytic Capacitors

A NEW series of high value electrolytic capacitors, in which several new techniques have been used to increase capacitance, ripple current rating and working temperature without increasing can size, has been announced by Mullard. These capacitors, type 106 and 107, are suitable for use in applications where small physical size is required. Capacitance has been increased by using deeper etched foil electrodes of a new material and high permissible ripple current rating has been achieved by using a new electrolyte and a new construction method. In this method of construction, multiple connections to the anode and cathode make the capacitor immune to damage by rapid charge and discharge cycles. Heat is transferred from the capacitor windings by means of a metal spring that also holds the winding in place. A self-sealing vent acts as a safety valve and prevents pressure building up inside the can.

Compared with Mullard capacitors type C432, these in the 106/107 series have twice as much capacitance for a given can size, and at $70^{\circ} \mathrm{C}$ their ripple current ratings are three times as high. The capacitance range extends from $1,500 \mu \mathrm{~F}$ to 0.15 F . Type 106 is for working voltages of 63 V and less, and type 107 for 100 V working. Mullard Ltd, Mullard House, Torrington Place, London, W.C.1.
W.W. 301 for further details

Multipulser

A COMPATIBLE series of modules forming a wide-range flexible pulse generator, known as the multipulser, is the first proprietary instrument to be developed and produced commercially by Nuclear Measurements. The modules are side-by-side rack mounted and may be interconnected by means of front panel connectors to provide a wide variety of timing and pulse width sequences with either single or multiple outputs. The three types of module currently available will provide repetition rates from 1 Hz to 50 MHz ; pulse width and delay from 20 ns to 200 ms ; positive or negative pulses up to 5 V in amplitude into 50Ω with a rise and fall time of $2 \mathrm{~ns} ; 100 \%$ duty cycle at all

repetition rates; and stable burst operation with a constant input to output delay. The system is d.c. coupled and all modules have true current source outputs enabling signals to be easily mixed at module inputs. Module interconnecting logic levels for a zero and a one are nominally 0 and -16 mA , respectively $(0 \mathrm{mV}$ and 800 mV into 50Ω). A standard 19 -inch rack or bench crate will house up to six modules, the power supply connections being made up by a rear connector. Nuclear Measurements, Dalroad Industrial Estate, Dallow Road, Luton, Bedfordshire.
W.W. $\mathbf{3 0 2}$ for further details

Helical Potentiometers

EXTENSIONS to their range of helical potentiometers have been announced by Reliance Controls Ltd, of Swindon. A five-turn version of the standard ten-turn helical potentiometer known as Type HEL 05-B05 retains all the advantages of the ten-turn unit including an end torque in excess of 100 ounce inches $(7,200 \mathrm{gm} \mathrm{cm})$. This has been achieved by incorporating the end stop mechanism as an integral part of the spindle and not relying upon the impact of the wiper upon a stop. Resistance values of up to $50 \mathrm{k} \Omega$ are available with a standard linearity of $\pm 1 \%$ or better to $\pm 0.25 \%$ if required. With a body diameter of 0.5 inches this unit is suitable for the designer who has space problems. A three-turn version of the Reliance HEL 07-05 and HEL $07-10$ helical potentiometers is now available. Designated the HEL 07-03 this potentiometer has a diameter of 0.770 inches and a length of only 1.625 inches. This new version offers a resistance range of 25Ω to $45 \mathrm{k} \Omega$ The standard resistance tolerance is $\pm 5 \%$ with a linearity of $\pm 1 \%$ or better if required. Reliance Controls Ltd, Drakes Way, Swindon, Wiltshire.
W.W. 303 for further details

Bone Conduction Headset

A LIGHTWEIGHT headset has been introduced that has been designed for use in applications where normal conversation is required in addition to communication with the equipment to which the headset is connected. The bone transducer microphone is of the variable reluctance type with an essentially inductive impedance of 300Ω at 1 kHz . It has an open-circuit output of $400 \mu \mathrm{~V}$ peak at normal conversation levels. The transducer should be terminated in a load impedance of 600Ω for optimum performance over the telphony frequency band of $300 \mathrm{~Hz}-3 \mathrm{kHz}$. The loudspeaker is of conventional construction and can be supplied with impedances of $30,120,150$
or 600Ω and requires a maximum drive power of 35 mW . The headset may be worn under a variety of protective helmets. It is comfortable and weighs only 144 grammes. Spembley Electronics, Enham Arch, Newbury Road, Andover, Hants.
W.W. 304 for further details

Group Delay Measuring Equipment

AN instrument is now available from STC for assessing the suitability of circuits for data transmission. Known as the 74257 Group Delay Measuring Equipment, the instrument may be used on audio, broadcast, and multicircuit telephone systems. The test signal may be obtained either from an internal oscillator covering the range $200 \mathrm{~Hz}-29.99 \mathrm{kHz}$, or from an external oscillator with a frequency range of 200 Hz to 120 kHz . A feature of the instrument is that both the delay time measurement and the internal oscillator frequency are displayed in digital form by cold cathode indicator tubes. The frequency of the internal oscillator is set by four switches which operate the display directly. Loop measure-

ments can be made on either a relative or an absolute basis, and end-to-end measurements may be made by using two equipments which can be many miles apart. The group delay measuring range is 0 ± 20 milliseconds in 0.01 ms steps. The instrument is portable and uses solid state circuits operating from a.c. mains. Its dimensions are $22 \frac{1}{4} \times 9 \frac{1}{2} \times 16$ in ($565 \times 241 \times 406 \mathrm{~mm}$) and its weight is $60 \mathrm{lb}(27.3 \mathrm{~kg}$). Standard Telephones and Cables Ltd, Testing Apparatus and Special Systems Division, Corporation Road, Newport.
W.W. 305 for further details

H.F. Receiver

BY eliminating the r.f. stage, and the overloading and noise associated with it, Granger Associates in their Model 351 h.f. communications receiver have made possible a dynamic range as wide as 100 dB , an intermodulation distortion figure of better than 40 dB and an image rejection of better than 100 dB . The r.f. end is a single pre-selection tuned circuit followed immediately by an f.e.t. mixer which, with a v.h.f. local oscillator, provides up-conversion and places the image 130 MHz above the received frequency. The noise figure is 10 dB . Following the first mixer is a 65 MHz crystal filter and i.f. stage and a second f.e.t. mixer.

The receiver provides eight crystal-controlled channels in a frequency range of 1.65 to 40 MHz . Additional frequency coverage from 200 to 500 kHz is possible by substituting an optional set of coils for the standard ones fitted. Possible modes of reception, selected by a four-position switch are: upper sideband, lower sideband, a.m. and c.w. In addition, f.s.k. and i.s.b. reception can be provided by adaptors.

Two crystal-controlled local oscillators-the v.h.f. one already mentioned (range 66.5-
wavelengths when filled with argon are 0.4880 , $0.5145,0.4965,0.4579$ and $0.5017 \mu \mathrm{~m}$; devices producing $0.4727,0.4658$ and $0.4545 \mu \mathrm{~m}$ are available using an alternative mirror system. Delivery is from stock, 60 days maximum. Nutronic Lasers, Solid State Nutronics Ltd, 5A Voltaire Road, London S.W.4.
W.W. 310 for further details

105 MHz) and an h.f. oscillator (range 4.6543 MHz)-are used in a double frequency conversion that cancels out the drift of the v.h.f. oscillator. A fine frequency control is provided for each crystal. Frequency stability is $\pm 20 \mathrm{~Hz}$ up to 20 MHz , and 1 p.p.m. above 20 MHz .

Audio outputs provided are 10 mW into 600Ω and 10 mW into 150Ω. A VU meter is fitted. The receiver is designed for rack mounting and has a 19-in. panel. U.K. address of Granger Associates is: Russell House, Molesey Road, Walton-onThames, Surrey.
W.W. 306 for further details

Thermoplastic
 Adhesive

A NON-STICKY adhesive that is available in thermoplastic and thermosetting forms, supplied unsupported or applied to one or both sides of a plastic film, has been introduced by G. T. Schjedahl Co. It will bond plastic and plastic films, metals and metal foils, ferrites, natural and synthetic fabrics and rubber and wood. Visible evidence of setting is given as unsealed SchjelBond is milky-white and on setting the adhesive becomes clear. It is of high resistance and dielectric strength and is suitable for overlayirg printed circuits. Rolls may be obtained in widths from 0.5 to 22 inches with thickness from 0.5 mil to 12 mil . G. T. Schjeldahl Co., Eastern Road, Bracknell, Berks.
W.W. $\mathbf{3 0 7}$ for further details

Storage Display Unit

THE Tektronix type 611 storage display unit permits stored, non-fading, displays of alphanumeric and graphic information from digital computers and other data transmission systems. The Tektronix bistable storage c.r.t. is used eliminating the need for memory devices for refreshing the display and providing high information density without flicker. A write-through feature allows the operator to visually position the writing beam at any point on the c.r.t. without disturbing the previously stored information. The erase, nonstore, write-through and view operating functions are remotely programmable through contacts at the rear of the instrument. An erase interval signal connector is also provided. Manual control

of erase and view is carried out from the front panel. The initial beam position can be set at any one of nine positions by means of internal switches, each of these positions being adjustable $\pm 10 \%$ of full scale both horizontally and vertically. The time taken for the beam to settle within one spot diameter of the final position is 6μ s or 4 $\mu \mathrm{s} / \mathrm{cm}$ whichever is the greater. Spot positional stability is quoted as being 0.1% or less of full scale/hour with a 75Ω source impedance at between 20 to $30^{\circ} \mathrm{C}$ ambient temperature. Spot drift will not exceed 0.4, of full scale at the specified source impedance throughout the temperature operating range of the instrument (0 to $50^{\circ} \mathrm{C}$). Resolution in the vertical axis is 500 stored line pairs and 400 stored line pairs in the horizontal axis (screen size $21 \mathrm{~cm} \times 16.3 \mathrm{~cm}$). Tektronix U.K. Ltd., Beaverton House, Station Approach, Harpenden, Herts.
W.W. 308 for further details

A. F. Millivoltmeter

THE Si451 a.f. millivoltmeter is the first of a new range of equipment to be produced by J. E. Sugden \& Co. Ltd, Bradford Rd, Cleckheaton, Yorkshire. The four position range switch (1-$10-100-1000 \mathrm{mV}$) operates in conjunction with a

scale switch that multuplies the setting of the range by a factor of $1,2,5,10$ or 20 . The calibration of the instrument can be varied so that it indicates r.m.s. through to peak-to-peak by means of a front panel mounted potentiometer. Using the three controls mentioned so far, the pointer can be positioned at any convenient point on the scale-a useful feature when making relative measurements. $\mathbf{A} \mathrm{dB}$ scale is incorporated in which $0 \mathrm{~dB}=1 \mathrm{~mW}$ into $600 \Omega \Omega$. The input impedance is $1.1 \mathrm{M} \Omega$ and the frequency response is within 0.5 dB between 20 Hz and 20 kHz . The 3.5 inch meter movement carries four scales- 1 , 2,5 , and decibels and an auxiliary socket provides an output of up to 3 V at f.s.d. for feeding an oscilloscope. All internal ferrous material is cadmium plated and passivated and outer surfaces are p.v.c. clad with the exception of the front panel. The cost of the instrument is $£ 30$.
W.W. 309 for further details

Laser Range

A RANGE of argon ion and krypton ion lasers have been introduced by Nutronic Lasers, a division of Solid State Nutronics Ltd. Operating in the blue-green region of the spectrum, these lasers will supply outputs of 25 mW and 200 mW when operated in the fundamental transverse mode. When filled with Krypton the output power is less than stated above. The lasers have been designed to offer a stable 1,000 hour operational life (or 1 year) and employ a water cooled discharge tube, d.c. excitation and variable output. The output

Log Plotting Unit for X-Y Recorders

LOGARITHMIC or a.c. plotting facilities can be added to any x-y recorder by means of an accessory available from Electronic Associates Ltd. The model 5.46 .0001 is a self-contained unit which accepts two plug-in modules and provides power for their operation in an $x-y$ plotter. Accurate logarithmic plots of linear a.c. or d.c. functions are provided when the $12.1384 \log$ module is plugged in, and automatic presentations of high-frequency sine-wave signals are provided when the 12.1134 a.c. module is used. The 12.1384 generates logarithmic plots of an input a.c. or d.c. voltage function in either the arm or pen axis, and when used in the accessory unit provides d.c.-log, a.c.-log, or $\log -\log$ recording. The 12.1134 a.c. module enables the user to record sine-wave signals generated by a.c. amplifiers, transducers, audio-measuring devices and analogue computers. It can also be used in either the arm or pen axis. Electronic Associates Ltd., Victoria Road, Burgess Hill, Sussex.
W.W. 311 for further details

Cartridge Tape Recorder

A CARTRIDGE tape recorder that was inspired by the EXPO '67 "talking chair" equipment developed by the Rola Division of Plessey Components (Australia) has now been placed on the market. The recorder, known as the CT80, is supplied in rack mounted, desk-top mounted, recessed, and flush mounted versions. Each version operates with either three, five or seven-inch cartridge containers and all are available as either record-and-play or playback-only models. An optional "trip cue" attachment is available that allows cue tones of different frequencies to be recorded at various intervals along the tapeeither while making the recording or at a later date. On subsequent replay, these "trip cues" are used to operate associated relays performing such functions as operating a slide projector, starting a film projector or separate tape unit, or activating warning lights. The desk-top and recessed versions are intended primarily for radio stations and dimen-

sions of the desk-top model are 7.375 inches high, 12.5 inches wide, and 11.5 inches deep. The rackmounted CT80 unit is designed to fit into a standard 19 inch equipment rack and occupies 8.75 inches of vertical space. The Liaison Office Plessey Australia, The Plessey Company Ltd., Ilford, Essex.
W.W. 312 for furter details

Plug-in Programmer

THE LATEST addition to the Sealectro range is a plug-in programme board for use with a 28×50 hole matrix. Programme pins are held in a single plug-in unit enabling a complete programme to be changed in one operation without the need to manipulate individual pins. With this arrangement programmes are semi-permanent although

individual pin positions in the plug-in unit can be altered if desired. The new unit is drawer mounted and requires just under 5.25 inches of vertical space in a standard 19 inch rack. Sealectro Ltd, Walton Rd, Farlington, Portsmouth, Hampshire.
W.W. 313 for further details

Rotary Stud Switch

TYPE 01 subminiature rotary stud switch with a fully adjustable stop mechanism is made by Radiatron, 7 Sheen Park, Richmond, Surrey. There are up to 12 positions and four poles per wafer. The diameter is 0.6 in . Wafer material is ceramic and it has an insulation in terms of resistance of $10^{12} \Omega$ (between wafer and earth), while contact resistance is $4 \mathrm{M} \Omega$. Maximum static load per contact is 3 A , and the switching rating is 200 V at 0.1 A . Life expectancy is said to be up to 10^{6} rotations.
W.W. 314 for further details

Pulsed Carrier Generator

THE RADA-Pulser 5071B performs three functions. It will operate as a conventional r.f. signal generator providing c.w. signal between 10 and 250 MHz in five overlapping bands with a setting accuracy of 1 per cent. It contains a video generator

that will supply pulses that can be varied from 100 ns to $100 \mu \mathrm{~s}$ in width at a repetition rate of between 50 and 5,000 pulses per second with rise and decay times of less than 20 ns . The third mode of operation entails combining the former two functions using an internal diode switch and buffer stage, the output now taking the form of a pulsed r.f. carrier of variable frequency and repetition rate with a fast risetime (10 ns). The output attenuator allows 102.5 dB of control in 0.5 dB steps. A 2.5 V (into 50Ω) sync pulse is available, preceding the output pulse by 40 ns . Kay Electric Company, Maple Avenue, Pine Brook, New Jersey 07058. U.S.A. W.W. 315 for further details

Wire-wound Resistors

RESISTORS wound to customers requirements for industrial or amateur use are available from the Planet Instrument Co., 25 Dominion Avenue, Leeds 7. Present facilities allow any value from 1 Ω to $20 \mathrm{k} \Omega$ to be wound. Fourilead meter shunts in the range 0.1 to 20Ω are also available Tolerances can be 0.5% or 1% with a maximum power handling of 1 W . Orders for individual components are handled.
W.W. 316 for further details

Transient Voltage Protected Rectifier

THE rectifier type A14D announced by the General Electric Company (USA) is a 1 amp device intended for general purpose, domestic and light

industrial applications. The large transient voltages associated with such applications can be safely dissipated within the device, the reverse avalanche rating being $1,000 \mathrm{~W}$ for $20 \mu \mathrm{~s}$. This surge capability together with the 400 V rating make this device suitable for 250 r.m.s. applications. Higher and lower voltage units are available. The 1 amp rating holds good at up to $75^{\circ} \mathrm{C}$ ambient temperature, the maximum surge current being 100 A . Other features include a miniature glass encapsulation and dual heatsink construction. The devices are available from Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

[^5]

Speaker Enclosure

THE "Standard" loudspeaker system introduced with the Ravensbourne stereo amplifier earlier this year by Rogers Developments Ltd has been joined by a new, lower cost, enclosure called the Compact. The main drive unit is 8 inches in diameter with a 15 tesla (15,000 gauss) magnet and with a 25 Hz resonance. The tweeter is the type HF1300 by Rola Celestion. A crossover unit operating at 2.5 kHz employs air cored inductors and paper foil capacitors. The cabinet finish is in teak veneer with gold Tygan fret material. Frequency response is stated as being $50-14,000 \mathrm{~Hz}$, the impedance $8-16 \Omega$ and power handling capacity 10-15 W. Overall dimensions are 22 x 11.5×8.625 inches and the price is about $\{30$. Rogers Developments Ltd, Rodevco Works, 4/14 Barmeston Road, Catford, London S.E.6.
W.W. 318 for further details

Press-fit Terminal

A NEW press-fit feed-through terminal is now available from Sealectro Ltd, Farlington, Portsmouth, Hants. Designated press-fit part no. FT-SM-56-L1 the component is manufactured from Teflon and has a gold plated brass lug which extends 0.370 inches above the 0.172 inch shoulder. The terminal is 0.0625 inches in diameter and has a central hole 0.040 inches in diameter.
W.W. 319 for further details

X-Band Hot Carrier Diodes

HOT carrier diodes are silicon epitaxial surfacepassivated devices that use a metal-semiconductor junction rather than a p-n semiconductor junction. With a metal-semiconductor junction (Schottky barrier) the diode has no minority carriers and hence charge storage effects are virtually eliminated. The response, therefore, to a change in bias is much faster than with p-n junctions. A series of such diodes is being produced by Hewlett-Packard Ltd. One of these devices, type HP 2511, is encapsulated in a hermatically sealed metal-ceramic package designed for use with stripline techniques and is suitable for coaxial mixer and detector applications. Package inductance and capacitance are typically 0.35 nH and 0.21 pF respectively-low values that render the diode suitable in broadband applications. The noise figure, when the device is used in a conventional s.s.b. mixer, is less than 6 dB at a carrier fre-
quency of 3 GHz . The HP 2511 can withstand 15×10^{-7} Joules and the peak power dissipation (1μ s pulses with a 1% duty factor) is 4 W . Power dissipation on c.w. is 200 mW . Mounted in a symmetrical microminiature ceramic package for waveguide, coaxial and stripline applications the diodes in the HP 2700 series are intended for use at frequencies both above and below and X-band. The package size is less than 0.06 inch in diameter and 0.05 inch in height, package inductance and capacitance are in the region of 0.3 nH and 0.13 pF . The symmetrical design allows the diodes to be inserted with either polarity into the circuit, meeting the need for forward or reverse pairs in balanced mixer configurations. The s.s.b. noise figure of the HP 2701 is less than 6 dB with a carrier frequency of 9.375 GHz . Allowable c.w. power dissipation is 100 mW . Hewlett Packard Ltd, 224 Bath Road, Slough, Bucks.
W.W. 320 for further details

Digital Test Meter

POWER FOR this instrument may be obtained from one of three separate sources; from the mains- $100 / 140 \mathrm{~V}$ or $200 / 270 \mathrm{~V}, 50-60 \mathrm{~Hz}$; from an internal 12 V accumulator which will give five hours of continuous operation on one charge (charging unit built in); or from ten U2 dry cell batteries giving 25 hours of intermittent operation. Weight without dry cells is 6.5 lb and the instrument measures $9 \times 8 \times 5$ inches. The display con-

sists of three cold-cathode type digital indicators and neons to show polarity of input and permissible over-ranging. The instrument is protected against incorrect use and overloads by a system of diodes, fuses and warning lamps. The Digitest will measure 100 mV to $1,000 \mathrm{~V}$ d.c. in 5 ranges; 300 mV to 300 V a.c. (r.m.s.) in 4 ranges; $100 \mu \mathrm{~A}$ to 1 A d.c. in 5 ranges; $300 \mu \mathrm{~A}$ to 300 mA a.c. (r.m.s.) in 4 ranges; 100Ω to $1 \mathrm{M} \Omega$ in 5 ranges. Accuracy is between 0.5 per cent and 2 per cent depending on range and function selected. The price is $f_{1} 158$. Kynmore Engineering, 19 Buckingham Street, London W.C.2.
W.W. 321 for further details

Tape Reader

THE DDR40 tape reader has been designed by Data Dynamics to provide a low-cost unit for a wide range of applications in the business machine, data processing and industrial fields. The DDR40 is constructed on a modular basis and operates asynchronously at speeds up to 40 characters per second. Back spacing is available as a standard feature and the equipment will handle all standard grades and widths of paper tape. Reading is by means of a moulded brush system feeding into a set of gated amplifiers. Bi-directional drive is achieved by the use of a high torque stepping motor operating from a solid-state drive package. The DDR40 is fully compatible with the Data Dynamics range of Teletype page printers. Prices Wireless World, March 1968

THE HOUSE OF BULGIN

AT YOUR SERVICE

L.E.S. AND NEON MINIATURE SIGNAL LAMPS

Bulgin Miniature Signal Lamps, whether L.E.S. or Neon, conform to the highest electrical standards and are manufactured from approved grades of material, that guarantee long and useful life. Here we show only a small selection from our extensive range all of which are only slightly larger than the lamps they hold.

Send for Leaflet I502/C
A. F. BULGin \& Co. LTD.,
Bye Pass Rd., Barking, Essex.
Tel: RIPpleway 5588 (12 lines)

WW-099 FOR FURTHER DETAILS

for the DDR40 range from $£ 50$ for a basic reader to $£ 120$ for a free-standing unit complete with electronics and power supply unit. Data Dynamics Ltd, Data House, Arundel Road, Uxbridge, Middlesex.
W.W. 322 for further details

Sealed Push-Button Microswitch

A SERIES of panel-mounted sealed push-button microswitches has been introduced by the Plessey Components Group's Microswitch Unit at Titchfield, Hants. Known as the 76.2510 Series, the microswitches incorporate an " O " ring panel seal and an oil-proof diaphragm actuator seal which protects the component from pressures of up to $3.46 \mathrm{~kg} / \mathrm{cm}^{2}(15 \mathrm{lb} / \mathrm{sq}$. in). A one- or two-pole or changeover switch is fitted as a detachable assembly. Compression of the actuator tabs enables the basic switch assembly to be removed, thereby facilitating easy installation and wiring. W.W. $\mathbf{3 2 3}$ for further details

Low Drift
 Electrometer

ZERO DRIFT on the model 602 electrometer from Keithley Instruments of America is less than 1 mV per day and the input impedance is $10^{14} \Omega$ As a voltmeter the instrument has nine ranges with f.s.ds of 1 mV to 10 V at an accuracy of $\pm 1 \%$ f.s.d. excluding noise and drift; zero offset is less than $300 \mu \mathrm{~V} /$ degree F after a 30 minute warm up period has elapsed. As an ammeter there are 28 ranges with f.s.ds of 10^{-14} to 0.3 A (accuracy varies between $\pm 2 \%$ and $\pm 4 \%$ of f.s.d. depending on range selected), offset current is less than $5 \times 10^{-15} \mathrm{~A}$. As an ohmeter 23 ranges are available from $100-10^{13} \Omega$, accuracy

is between $\pm 3 \%$ and $\pm 5 \%$ depending on range. As a coulombmeter 13 ranges are included from 10^{-13} to 10^{-6} coulombs, accuracy $\pm 5 \%$ of f.s.d., drift due to offset current is not greater than 5 x 10^{-15} coulomb $/ \mathrm{sec}$. The instrument can also be used as a variable input resistance unity-gain amplifier with an accuracy of 50 parts per million or $100 \mu \mathrm{~V}$ exclusive of zero offset. In addition voltage and current recorder outputs are provided. Keithley Instruments Inc., 28775 Aurora Rd., Cleveland, Ohio 44139.
W.W. 324 for further details

Transient Measuring Voltmeter

TRANSIENTS of the order of $1 \mu \mathrm{~s}$ may be detected and measured on the Peak Lok model 440A voltmeter manufactured by the La Jolla division of Control Data Corporation, situated in California, U.S.A. The voltmeter reads positive, negative or bipolar (highest of either positive or negative) peaks, holding the reading indefinitely or until reset by a push button or electrical signal. Nine input ranges from 0.1 V to 1000 V are

provided and the response is d.c. to 1 MHz . There is no limitation on the input risetime and no recovery period is required. Accuracy on the taut-band meter is 1.5% of f.s.d. while an electronic output of 0 to +5 V (at up to 2 mA) is accurate to 1%. Applications of this instrument include the detection of momentary overloads; in product control, the determination of maximum weight or other parameter during a production run; in quality control reading peak strain of a sample during a vibration test. For those who require a portable instrument a battery operated option is available. The equipment is distributed in the U.K. by Claude Lyons Ltd, Instruments Division, Hoddesdon, Herts.
W.W. $\mathbf{3 2 5}$ for further details

Crosshatch and Dot Generator

THE TPG55 generator will provide (1) a dot pattern for static convergence tests; (2) a grid pattern for dynamic convergence tests; (3) a grey scale for tracking checks; and (4) a raster for purity adjustments. It provides either an r.f. output of several millivolts tunable over bands III, IV and V or a video signal of about 1 V into 75Ω (negative sync). The signal characteristics are as

specified by the B.B.C. except that there are no equalizing pulses before and after the field pulse sync. group. The TPG55 measures 12×7.75 x 8.5 inches; weight with battery is under 9lb; and the price is $£ 8810$ s. The power supply needed for mains operations is extra costing $£^{4} 5$ s. Rank Bush Murphy Ltd, Welwyn Garden City, Herts. W.W. 326 for further details

Parametric Amplifiers

TWO parametric amplifiers have been announced by Mullard for use at S- and X-band frequencies. Neither of the amplifiers requires cooling and both have a noise figure of 3 dB . Type CL. 9010 is for use at S-band frequencies in the range 2.7 to 3.3 GHz with a bandwidth of 15 MHz ; type CL9060 is an X-band amplifier that operates in the range 7 to 12.4 GHz with a bandwidth of 50 MHz . Because of their compact size- 15×9 x 9 inches-the amplifiers can be mounted directly behind a radar aerial. Mullard Ltd., Mullard House, Torrington Place, London W.C.1.
W.W. 327 for further details

PIN Diode Modulator
 THIS variable r.f. reflection type attenuator

 (Sanders Type 6503/1) consists of a length of coaxial line containing a shunt p -i-n diode assembly to which negative bias is applied in order to increase the attenuation of the line. In this way attenuation of up to 35 dB can be achieved with a bias of 100 mA . Insertion loss is 2 dB and the specification is guaranteed to within the frequency limits 0.5 to 12.4 GHz . However, the makers state that the device is useful down to 100 MHz . The unit is fitted with one male and one female 50Ω type N stainless steel connector and bias is applied via a silver-plated brass b.n.c. connector. Typical applications include
sweep or signal generator levelling, as a chopper for low-level signal detection, as a pulse or squarewave modulator for laboratory or system use, or as a protection device for wideband receivers. Musto \& Steele Ltd, c/o Marconi Instruments-Sanders Division, Gunnels Wood Road, Stevenage.
W.W. 328 for further details

OK, so you're a knob-twiddler

After all, you're only human, and those two big knobs on the Model 8 Avometer are terribly tempting. Just by twiddling them, you can have over 30 calibrated ranges at your command-11 current, 15 voltage, 5 resistance, and a 30 dB power scale. Twiddle yourself a good combination of accuracy ($1 \% \mathrm{fsd} / \mathrm{dcA}, 2 \% \mathrm{fsd} / \mathrm{dcV}, 2 \frac{1}{4} \% \mathrm{fsd} / \mathrm{ac}$) and sensitivity ($20 \mathrm{k} \Omega / \mathrm{Vdc}$, $1 \mathrm{k} \Omega / \mathrm{Vac}$, except 2.5 Vac scale $100 \Omega / \mathrm{V}$). Plus automatic cut-out,fused ohms circuit, trio of ohms zero-adjustments, reverse-polarity button and antiparallax mirror. No wonder the Model 8 is the first choice of electronic, radio and TV engineers everywhere. Get yours from your local dealer or direct from Avo Ltd, Avocet House, Dover, Kent. Telephone Dover 2626. Telex 96283.

BREAK THE SOUND BARRIER

MODEL 488 SONO-BAR

SHURE MICROPHONES-
WORLD STANDARD WHEREVER
RELIABILITY AND
SOUND QUALITY ARE PARAMDUNT

WITH PROVED SゆしصE

setting the worlo's STANDARD IN SDUND

NOISE CANCELLING MICROPHONES

When the chips are down, and noise levels are high, Shure Noise Cancelling microphones with their exclusive Controlled Magnetic cartridges, distancediscrimination design, and specially tailored response get the message through ... even when noise level is so high the operator cannot hear himself! They have been field-tested and proved in such ear-shattering environments as: drop forges, helicopters, police power boats, "hard surface" gyms among cheering crowds, motorcycles, jets revving up, fire engines, etc.

SHURE MODEL 488 SONO-BAR

Rugged, impact resistant "Armo-Dur" case. Four types: High or low impedance; transistorized for direct replacement of carbon microphone; and FAA Certified Transistorized Aircraft version.

SHURE MODEL 419 RANGER II

New small size. Only about half the size and weight of conventional mobile communications microphones. Unsurpassed for use with portable or miniaturized equipment.

[^6]

Safe Journey

... when your radar is fitted with EEV magnetrons

Navigators feel all the safer for having an EEV magnetron on board. It's because they know that EEV specifically designs for a longer, more reliable life. As well as being prominent in the airborne and marine field EEV is also the only British manufacturer of magnetrons for heavy radars. The range available is wide enough for practically every requirement but if you have something special in mind EEV's long and unique experience in magnetrons shows that this is the company to make it. In the meantime details of the standard range are available on request.

If it's worth 3 minutes of your time to learn the state-of-the-art in Thyristors,

start here: Exclusive Multi-

 Gate Thyristors When thyristors are to be operated with steeply rising current pulses and/or high repetition rates, great care must be exercised in establishing the operating conditions and selecting the device to be utilized. A self-saturating reactor may be introduced into the circuit to limit the rate-of-rise of current (d / dt); this will permit a conventional high-power thyristor to carry heavy load currents which exhibit high $\mathrm{d} / / \mathrm{dt}$. Where it is not practical to use such a reactor, which is often bulky and expensive, a thyristor with enhanced turn-on action must be used. Such action can be obtained by providing the thyristor with multiple gates.IR multi-gate thyristors exhibit reduced turn-on voltage at any given instant during the turn-on period and shorter time for equalization of current flow throughout the entire semiconductor wafer. The consequent reduction in turnon power losses will permit increased load current to be carried and the device will exhibit faster turn-off time. It will also be able to withstand greater rates of rise of reapplied off-state voltages because of the lower junction temperature at the instant of current commutation.

MIM-Protection IR's epitaxial thyristors offer the exclusive feature of metalion migration (MIM) protection.

During manufacture, the silicon wafer for epitaxial thyristors is contoured to improve the high-voltage characteristics of the device. This illustration shows the cross-section of a typical contoured silicon wafer.
Metal-ion migration can occur because of the electrical potential that exists at the junction interfaces at the edge of the wafer. When the device is energised, metal-ions are attracted from the metal moúnting surface towards the junction interfaces. Migration may occur even though the wafer has been cleaned by etching and sealed with inert sealers or varnishers. When the minute metallic particles reach the interfaces, they can cause degradation or failure of the device. IR's epitaxial devices employ an exclusive groove etching technique which provides needed contouring and, in addition, builds a guard-shield against metal-ion migration.
Bulk Avalanche Thyristors These devices exhibit true avalanche behaviour in the bulk of the crystal, thus avalanching at approximately the same voltage in both forward and reverse avalanche modes. Bulk avalanche devices are characterised by extremely low leakage current, which is mostly bulk leakage and which does not show any drift or instability under long-term, high-voltage blocking operation. In addition, IR's epitaxial thyristors can be repeatedly broken over into the conduction mode without detrimental effects as long as the power ratings and the rate-of-rise of turn-off current (dI/dt) are kept within the listed specifications.
As a result of the epitaxial construction, there is a substantial decrease in the for-

WW-008 FOR FURTHER DETAILS
ward voltage drop during turn-on. This reduces the total power loss during the turn-on action, which in turn reduces the temperature of the device. Therefore IR epitaxial thyristors are well adapted for inclusion in inverter and switching applications.
Ultra Fast Turn-Off Thyristors Early last year IR implemented a major technological breakthrough by going into quantity production at Oxted of thyristors exhibiting turn-off times below 3 microseconds, faster than those yet produced by any other semiconductor manufacturer. To date this claim remains undisputed. The devices designated "RCU" are offered in two current ranges of 8 and 10 amperes (full-cycle-average) with voltage ratings of $50-800$ volts PRV/PFV. The turn-off times of all IR "RCU" thyristors are measured at maximum base temperature. The maximum operating frequency of a thyristor circuit is obviously dependent on turn-off time, and introduction of "RCU" thyristors means that high-power inverter circuits may be operated at frequencies in excess of 30 kHz . By utilizing "RCU" thyristors, the inverter designer may subsequently reduce the size and cost of the inverter components used in commutating circuits.
The principal applications for the "RCU" thyristors also include high-frequency induction heating, ultrasonic equipment and d.c.-d.c. converters. Detailed information about the world's leading range of thyristors and how they can solve your specific problems is yours on request from International Rectifier. Just ask.

International Rectifier • Hurst Green Oxted - Surrey • Telephone: Oxted 3215 Telex: 95219 (rectafier oxted)

Mercury Vapour Rectifiers

DATA

Type	Service type	Peak inverse voltage max. (kV)	Peak anode current max. (A)	Mean anode current \max. (A)	3-phase full wave	
					Voltage (kv)	Current (A)
869B	-	20.0	10.0	2.5	19.0	7.5
AH200	-	20.0	10.0	2.5	19.0	7.5
$\begin{aligned} & \text { AH205/ } \\ & 857 \mathrm{~B} \end{aligned}$	CV2673	22.0	40.0	10.0	21.0	30.0
AH211A	CV532	16.0	8.0	2.0	15.2	6.0
AH221	CV5 CV1435	20.0	5.0	1.25	19.0	3.75
AH238	CV1629	13.0	5.0	1.25	12.4	3.75
BD10	-	1.0	25.0	8.0	0.95	24.0
BD12*	-	1.0	2×50	2×16.5	0.95	49.5

-Full wave rectlfer

This range of Mercury Vapour Rectifiers is available from your local EEV stockist. English Electric Valves production methods ensure the reliability and performance you are looking for and prices are competitive.

Coventry Factors Lid. Coronet House, Upper Well Street	Coventry Tel: Coventry 21051
Downes \& Davies Ltd, G.P.O. Box 555, 72 Chapeltown Street	Manchester 1 Tel: Ardwick 5292
Edmundson Electronics Lid, 60-74 Market Parade, Rye Lane, Peckham	London SE15 Tel: New Cross 9731
Gothic Electrical Supplies Lid, Gothic House. Henrietta Street	Birmingham 19 Tel: Central 5060
Harper Robertson Electronics Ltd, 97 St George's Road	Glasgow C3 Tel: Douglas 2711
Smith \& Cookson Ltd, 49/57 Bridgewater Street	Liverpool 1 Tel: Royal 3154-7
The Needham Engineering Co. Ltd, P.O. Box 23, Townhead Street	Sheifield 1 Tel: Shelfield 27161
Wireless Electric Lid. Wirelect House. St Thomas Street	Bristol 1 Tel: Bristol 294313

We make our monolithic capacitors in Britain

Monobloc ; an advanced product for sophisticated applications. A tiny component that has become the most exciting prodigy this side of the Atlantic. Its capacitance is vast, its size minute - up to 1 uf in $0.3 \times 0.3 \times 0.1 \mathrm{in}$. (nine times smaller than a postage stamp). This capacitance-to-volume ratio is achieved by the unique monolithic construction. Wafer-thin ceramic dielectrics and platinum electrodes are fused into a solid, layered structure, to give a volumetric efficiency 10 to

100 times that of conventional capacitors. It's a rugged little device. The layered construction gives excellent stability and resistance to every form of shock and environmental stress.
We manufacture a preferred range, concentrated on the individual requirements of the British designer. There are other configurations available for more complicated designs: glass-encased, precision moulded, phenolic coated, and unencapsulated chips for hybrid integrated circuits.

The monolithic capacitor is already a pretty important contribution to the progress of modern electronics - our Monobloc Ceramicon design caters for projects of the future.
Contact us for the full details. Technical Sales,
Erie Electronics Limited,* South Denes, Great Yarmouth, Norfolk. Phone: 04934911 Telex: 97421
Monoblocs are to be featured in the 1968 edition 6 catalogue of S.T.C. Electronic Services. Monobloc and Ceramicon are registered trade marks. - Formerly Erie Resistor Limited

Doctors needed a battery they could trust inside you while it worked to save your life!

Mallory made it.

What can we do for you?

Medical science needed a battery. A battery that literally could keep your heart beating. A battery to power a heart pacemakerthe electronic device that "shocks" sluggish hearts into a normal beat. A battery that would last three years or more in the surgicallyimplanted device, even in the high temperature environment of the body. Mallory made it. Mallory leads the way in miniature power sources for all needs. The high-energy of the Mallory mercury battery and its extraordinary reliability have found many uses in medical electronics. Mercury batteries can be made so small they will fit into "radio capsules" that transmit from within your stomach. The Electronic Larynx is used to transmit sound waves into the throat cavity of people whose larynx has been removed.

If you're considering a battery system for a new product, think of what Mallory can do for you. If you have portable power problems our sales and application engineers are at your service. Contact our Manager, U.K. Sales, at Mallory Batteries Limited, Gatwick Road, Crawley, Sussex-Crawley 26041 -or get in touch with our nearest industrial distributor.

BIRMINGHAM Messrs. Hawnt \& Co., $112 / 114$ Pritchett Street, BIrmingham, 6. A ston Cross 4301 BRISTOL WIreless-Electrle Ltd.,"WIrelect House", St. Thomas Street, Bristot, 1. BrIstol 294313 BURNHAM-BUCKS Gawt Olstributor Services Ltd., The Red House, Hlgh Street, Burnham, ueks. Orehard Grove 694
CARDIFF South Wales WIreless Installatlon Co. Ltd., 121 City Road, C̦ardIff. Cardif 23636 CO VENTRY Coventry Factors Lid., Upper Well Street, Coventry. Coventry 21051
CRA WLEY S.A.S.C.O.,P.O. Box 20, Gatwlek Road, Crawley, Sussex. Crawley 28700
GLA SGOW Britlsh Electrical \& Mfg. Co. Ltd., 183 St. VIncent Street, Glascow, C. 2, City 4131 S.A.S.C.O., Factory 138, Carbraln Industrlal Estate, Cumbernauld, Glasgow. Cumbernauld 410 HARLOW Standard Telephones \& Cables Ltd., Electronic Services Sub-Oivision, Edinburgh Way, Harlow, Essex. Harlow 26811
Hoberts Electronlcs.
Roberts Electronics Ltd., 17 Hermitage Road, Hitchin, Heris. HItchin $50551 /$
EEDS A. C. Farnell Limited, 81 Kirkstall Road, Leeds, 3. Leeds 35111
LONDON British Ele etrleal \& Mfg. Co. Ltd., 10 Rushworth Street, London S.E.1. W A Terloo 7731 Edmundsons Electronics, 60 - 74 Market Parade, Rye Lane, London S.E.15. New Cross 9731 Lugton \& Co. Lid., Mr. Lun, Radio House, 209-212 Tottenham Court Rd., London W.1. Museum 3261 NEWCASTLE British Electrical \& Mig. Co. Ltd., Clavering Place, Newcastle-upon-Tyne, 1. Newcastie 2246
J. Gledson \& Co. Ltd. NewblggIn Lane, Westerhope, Newcastle-upon-Tyne, 5, Newcastle 869033 NORTHAMPTON E.M.F. (Electrical) Lid., Ounster Street, Northampton. North ampton 37316 POYNTON Selentific Furnishings Lid., Electronies Olvision, Poynton, Cheshire. Poynton 2215 SHEFFIELD Needham EngIneering Co. Ltd., P.O, Box 23, Townhead Street, Sheffeld, 1 SUNDERL A
Sunderland 70567 Britlsh Electrical \& Mfg. Co, Ltd., $16 / 17$ Bridge Street, Sunderland

Heathkit world-Leader in INSTRUMENTS • HI-FI • RADIO . Electronic kits

The construction manual provided with the kit ensures successful assembly

5 in . GENERAL-PURPOSE OSCILLOSCOPE, $10-12 \mathrm{U}$

- " Y " sensitivity 10 mV . r.m.s. per cm . at $1 \mathrm{kc} / \mathrm{s}$. Baildwidth $3 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Frequency compensared input attenuator $\mathrm{X} 1, \times 10, \times 100 \mathrm{~T} / \mathrm{B}, 10 \mathrm{c} / \mathrm{s}-500 \mathrm{kc} / \mathrm{s}$, in 5 steps. T/B range. T T/B output approx. 10 v. peak to peak. Builtin IV calibrator *Facility ior " Z " axis modulation Electronically stabilised power supply - Power req. 260-250 v. A.C., $40-60 \mathrm{c} / \mathrm{s}, 80$ watts - Fused - Front panel, silver and charcoal grey - Cabinet, charcoal grey, size $81 \times 14 \times 17 \mathrm{in}$. deep. Net weight 231b. 56-page construction and operation manual.
Kit $£ 35.17 .6$. Ready-to-use $£ 45.15 .0$
Attenuator and demodulator probes available as optional extras.

Gin. VALVE VOLTMETER, IM-I3U - Modern styling - Extra features The ideal VVM for the Electronic Engineer 6in. Ernest - Unique gimbal bracket allows bench, shelf or wall mounting Measures A.C. (r.m.s.), D.C. volts $0-1.5,5,15,50,150,500,1,500 \bullet$ Resistance range 0.1 to $1,000 \mathrm{M} \Omega$ with int. battery - Vernier action zero and ohms adjustment - Roller-tinned printed circuit - High input resistance ($11 \mathrm{M} \Omega$) © Comprehensive assembly and operation manual - Size $5 \times 12 H \times 4 \frac{3}{8}$ in. Complete with test prod and leads.

Kit $£ 18.18 .0$. Ready-to-use $£ 26.18 .0$
$4 \frac{1}{2}$ in. Valve Voltmeter-V-7A (not illustrated). Kit $£ 13.18 .6$. Ready-to-use $£ 19.18 .6$

Abstract

3in. PORTABLE GENERAL-PURPOSE SERVICE OSCILLOSCOPE, OS-2 - Modarn styling lightweight and compace size, make this the ideal scope for service man, laboratory technician, amateur radio enthusiast or hobbyist "Y" bandwidth $2 \mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{~dB}$. Sensitivity $100 \mathrm{mV} /$ cm - Push-pull vertical and horizontal 3 mplifiers . Wide range cime-base generator $20 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$ in four ranges. - Automatic lock-in synchronisation Mu-metal c.r. shield - Printed circuit board construction - Fower rea, $200-250 \mathrm{v}, \mathbf{5 0 - 6 0} \mathrm{c} / \mathrm{s}$ A.C. 40 watts Fused Front panel silver and charcoal grey. Size 5 in . w. $\times 7 \mathrm{zin}$. h. $\times 12 \mathrm{in}$ deep. Weigh:: 9 zib.

Kit £23.18.0. Ready-to-use $£ 31.18 .0$

GENERAL-PURPOSE SERVICE RF SIGNAL GENERATOR, RF-IU

- deal for the alignment and trouble shooting of RF, If and audio circuits Large easy-to-read dial Pre-aligned coil and bandswitch assembly Mc/s. fundamentals up to $200 \mathrm{Mc} / \mathrm{s}$ kermonics - 400 eycle audio signal with 4 v output

Kit $£ 13$ 18.0. Ready-to-use $£ 20.8 .0$
AUDIO SIGNAL GENERATOR, AG-9U (not illustrated) Kit E23.15.0. Ready-to-use $\mathbb{E} 31.15 .0$

See these and other Heathkit models in the FREE catalogue

NEW! PORTABLE STEREO TAPE RECORDER, STR-1
$\frac{1}{4}$ track seereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{7}{2}$ and $1 \frac{1}{6}$ i.p.s. 18 transistor circuit Record level indicator Digital counter with zero reset Stereo mic and aux. inputs. Speaker/headphone outputs. - Built-in audio amplifier gives 4 watts rms output per channel. Two high efficiency 8in. \times sin. speakers
Versatile Recording facilities. So-easy-to-
 build. Outstanding performance for price.

Kit £45.18.0. Ready-to-use $£ 59.15 .0$

THE CAR RADIO TO COMPLETE YOUR MOTORING

PLEASURE CR-I

Complete your motoring pleasure with this small, compact, high outpue unit. Superb long and medium wave entertainment whenever you drive. For 12 v , positive or 12 v negative car earth systems.

- 8 latest semi-conductors (6 transistors, 2 diode circuit) - Powerful output (4 watts) will drive two speakers. - Styled to harmonise with most car colour chemes Suppled in two units, pre-assembled and aligned RF unit kit. ¢1.13.6 inc. P.T. IF/AF amplifier kit $£ 1$ I. 3.6

Total price kit (excl. LS). . . $\{12.17 .0$ inc. P.T.
L/speakers and accessories available as extras.

NEW! PORTABLE STEREO RECORD PLAYER, SRP-I

- Compact, economical stereo and mono record playing for the whole family circuitry. Modern compact styling - Detachable second loudspeaker gives optimum stereo effect Automatic playing of $16,33,45$ and 78 rpm records - Suizcase portability Two 8in. $\times 5$ in . speakers - Controls: Volume, Balance and Tone. Dimensions: overall 27 in .
wide $\times 14 \frac{3}{3} \mathrm{in}$. $\mathrm{hig} \mathrm{g} \times 7 \frac{1}{2} \mathrm{in}$. deep.

Kit $\mathbf{£ 2 7 . 1 5 . 0}$. Ready-to-use price on request.

"OXFORD" LUXURY TRANSISTOR PORTABLE; UXR-2

This superb transistor radio is the ideal domestic or personal portable Medium and Long Wave receiver Solid leather case and handle Easy-to read runing scale Extra large loudspeaker. Push button L, MW and tone 10 semi-conductors (7 transistors plus 3 diodes) - Sockets for personal earphones, tape recorder, car aerial months -volt battery (not supplied) lasts for Comprehensive, easy-to-follow, fully illustrated Instruction Manual.

Kit $\mathbf{f 1 4 . 1 8 . 0 \text { inc. P.T. Ready-to-use price on request }}$

DEPT. WW.3, GLOUCESTER, ENGLAND

Heathkit World-famous Easy-to-build

INSTRUMENTS • HI-FI • RADIO • ELECTRONIC KITS

(Deferred terms available on all orders over $£ 10$, U.K. only)

NEW! $12+12 W$ TRANSISTOR STEREO

AMPLIFIER
 Model TSA- 12

Luxury performance

at lowest cost

- 17 eransistors, 6 diode circuit $\pm 1 \mathrm{~dB} ., 16$ eo $50,000 \mathrm{c} / \mathrm{s}$ at 12 watts per channel into 8 ohms - Output suitable for 8 or 15 ohm loudspeakers - 3 stereo inputs for Grams., Radio and Aux. - Modern low silhouette styling Handsome assemmium, golden anodised front panel inet available - Mactses Heathit models TFM-I and AFM-2 transistor tuners.
Kit $\mathbf{E 3 0 . 1 0 . 0}$ (less cabinet)
Ready to use $£ 42.10 .0$
Beautiful Walnut cabinet $\mathbb{£ 2 . 5 . 0}$ extra.

$20+20 \mathrm{~W}$ TRANSISTOR STEREO
 AMPLIFIER

Model AA-22U

An international Class amplifier which offers superb realism and beauty of petitive price. Professional, elegant, compact, slim-line styfing. The best of American transistor techinques low high output with low distortion,
5 stereo inputs (five each channel) for pick-up, radio tuner, tape and two other sources. 20 transistor, 10 diode circuit. Beautiful, fully finished walnut veneered cabinet (optional extra).
Kit $\mathbf{\& 3 9 . 1 0 . 0}$ (less cabinet)
Walnut cabinet $\mathbf{E 2 . 5 . 0}$ extra.
Ready to use E59.15.0 (inc. cabinet)

5 W HI-FI MONO AMPLIFIER KIT Model MA-5

A low-priced general purpose Hi Fidelity amplifier based on the popular S-33 for those who do not require a and treble controls. Gophon system. Separaitable for most crystal pick-ups. A printed circuit simplifies construction.
Kit $\in 11.9 .6$
Ready to use $\mathbf{E} \mid 5.15 .0$

STEREO CONTROL UNIT KIT

Model USC-I
Incorporates all worthwhile features for Hi-fidelity stereo and mono. Push-button selection, accurately matched ganged controls to $\pm 1 \mathrm{~dB}$. Negative feedback rumble and variable low-pass filters. Printed circuit boards. Accepts inputs from most tape-heads and any tereo or mono pick-up.
Kit © 19.19 .0
Ready to use $\mathbf{E 2 7 . 5} .0$

LW/MW TRANSISTOR PORTABLE RADIO KIT Model UXR-I

Beautiful leather case. Easy-to-read scale. 7 semi-conductors. Printed circuit board
loudspeaker.
Pre-aligned if $\begin{gathered}\text { special } \\ \text { erans- }\end{gathered}$ formers. 9-volt battery operated. Easy to construct, excellent in performance and value.

Kit $£ 12.11 .0$ (inc. P.T.)
"MOHICAN"
GENERAL COVERAGE
RECEIVER KIT Model GC-IU
This fully transistorised receiver which includes 4 piezo-elestric transfilters, is in the design. It is an excel-
 lent portable or fixed station receiver. The R.F. "front-end" is supplied as a preassembled and pre-aligned unit. Its many features include a 10 -transistor cireuit, printed circuit board, telescopic whip antenna tuning meter, and a large slide-rule dial giving a cotal length of approximately 70 inches. Housed in a steel cabinet and powered by two 6 volt dry batteries (not supplied). mounted internally it gives frequency coverage from $580 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ in five bands; thus enabling world-wide reception. Electrical bandspread covers the amateur bands from 80 to 10 metres-each band
having a scale length of approximately 8 having a scale length of approximately 8 inches, BFO tuning and
Size 6 in $\times 12$ in $\times 10^{2}$ in.
Slease write for specification leaflet.
Kit $£ 37.17 .6$ Ready to use $£ 45.17 .6$

STABILISED POWER PACK

Models MSP-IM and MSP-IW
Specially-recommended for industrial and laboratory use, meeting the need for reliable and versatile stabilised power pack formance. Input 200-250 v
$40-60 \mathrm{c} / \mathrm{s}$., A.C., fully fused. Output: H.T. 200-410 v. D.C. at $0-225 \mathrm{~mA}$. in 3 switched ranges. Unstabilised A.C., 6.3 v. at 4.5 A. centre-tapped. Two 3in. "easy-to-read" meters for reading voltage and current simultaneously. Separate L.T. and H.T. supply transiormers. All output circuits are isolated. Size 13 in. $\times 8 \frac{1}{1}$ in. $\times 9$ ilin.
Kit E36.12.6 Ready to use £43.12.6 MSP-IW (less meters)
Kit $\mathbf{2 9 . 1 7 . 6}$ Ready to use $£ 36.17 .6$

BALUN COIL UNIT KIT

 Model B-IU. Will match unbalanced co-axial lines to balanced lines of either 5 or 300Ω impedance. Freduency range Kit £5.5.6 Ready to use $\mathbf{E 5} \mathbf{1 8 . 0}$
TAPE PRE-AMPLIFIER KITS

 Models TA-IM and TA-ISThe Combined Tape Record/Replay Ampl ifier is available in both
phonic model. Model TA-IM can be modified o the stereo version with modification kit TA-IC.
TA-IM Kit $£ 19.18 .0$.
Ready to use $£ 28.18 .0$
TA-IS Kit $£ 25.10 .0$
Ready to use $£ 35.18 .0$
TA-IC Kit .. 66.15 .0
All prices are mail order and include free delivery in the U.K.

Deferred Terms ~
are available on all orders above $£ 10$ \}

AMATEUR TRANSMITTER KIT

Model DX-I00U

The World's most popular
Amateur TX Kit

Completely self-contained. 150 W. D.C. input.
Buitt-in highly stable VFO and all Power Supplie
The KT88 high-level anode and screen modulator stage gives over 100 watts of audio from less than 1.5 mv input.
Keying on CW is via the VFO and buffer amplifier cathodes: the other RF valves are biased beyond cut-off.
Provision has been made for remote control operation. phone or CW . Kit E81.10.0

Ready to use £106.15.0

AMATEUR BANDS RECEIVER KIT

Model RA-I The ideat economically portable or priced fixed station, portable or mobile receiver covering
the Amateur bands from $160-10 \mathrm{~m}$ each band separately
large illuminated slide-rale dated on a meter, tuned RF meter. tuned RF amplifier stage, half-lattice filter, adjustable noise limiter. Freq. coverage $160,80,40,20,15$
Kit $£ 39.6 .6$
Ready to use $\mathbf{£ 5 2} .10 .0$

HEATHKIT

SINGLE SIDE BAND EQUIPMENT Transmitters, Receivers, Transceivers. Send for details of models. Fully illustrated American post-paid Or see selection of models in British catalogue.

REFLECTED POWER METER KIT

Model HM-IIU Indicates relizbly but inexpensively, whether the R.F. power output of your transmitter is the radiating antennz Kit $£ 8.10 .0 \quad$ Ready to use £10.15.0

VARIABLE FREQUENCY

OSCILLATOR KIT. Model VF-IU
Specially designed to meet the demand for the maximum possible flexibility from an amateur Trans mitter which would otherwise be subject to certain limi ations imposed by crystal control. Calibrated for al Amateur bands 160-10 metres Ind 40 m . Ideal for Heathkit $D \times 40 \mathrm{U}$ mitters.
Kit $\{10,17.6$
Ready to use £15.19.6
Q MULTIPLIER KIT. Model QPM-I
A reasonably priced Q Amplifier for the amateur and short-wave enthusiast. This self-powered unit (200-250 v. 50/60 c/s.) may be used with communications receivers to provide both additional selectivity
 and signal rejectior.
Models QPM-I for $470 \mathrm{kc} / \mathrm{s}$. IF. QPM-16 for $1.6 \mathrm{Mc} / \mathrm{s}$. IF. Kit, either model $£ 8.10 .0$ Ready to use...................... $£ 12.14 .0$

AERIAL TOWER KITS. Model HT-I, HT-IG
Height 32 ft . sq. section 3 ft . $\times 3 \mathrm{ft}$. at base (no stays required). Accessories available as extras :
HT-IG Kit (galvanised) £43.15.0
HT-I Kit (red oxide) $£ 37.15 .0$

DAYSTROM LTD.

DEPT. WW.3, GLOUCESTER, ENGLAND
Member of the Schlumberger Group including the Heath Company
MANUFACTURERS OF THE WORLD'S LARGEST-SELLING ELECTRONIC KIT-SETS

Outstanding British Equipment by

(All models available as easy-to-build kits or Ready-to-use).

FM TUNER KIT, Model FM-4U

Tuning range 88-108 Mc/s Flywheel tuning. Actractive pers pex front panel in two tone grey
with golden trim. Thermameter type tuning indicator, prealigned I.F. transformers. Own built-in power supply. Tuning heart model FMT-4U $£ 2 / I 5 /$ - incl. P.T.
I.F. amplifier and power supply, Model FMA-4U. Complete with case and valves total K 16.8 .0 .
separately.

STEREO DECODER SD-I

Ideal for use with valve FM Tuners.
Kit $\mathbf{£ 8 . 1 0 . 0}$
Ready-to-use $£ 12.5 .0$
$3+3 \mathrm{~W}$ HI-FI STEREO AMPLIFIER Kit Model S-33H

An inexpensive fier with the high sensitivity necesteo-mono ampliminiature ceramic pick-ups (e.g., Decca Deram). De luxe version of the $\$-33$ with attractive two-tone grey Perspex panel.
Kit £I5.17.6
Ready-to-use $£ 21.7 .6$

MONO CONTROL UNIT KIT Mode! UMC-I
deal for use with MA-12 or similar amplifier. Ourpu 0.25 v . Send for full detalls.

Kit £9.2.6
Ready-to-use £|4.2.6

AMATEUR TRANSMITTER KIT
 Model DX-40U
Covers all amateur bands from 80 to 10 metres, crystal controlled. Power input 75 wates C.W. 60 watts peak controlled carrier phone. Output 40 watts to aerial. Provision for VFO. Filters minimise T.V. interference. Modulator and power supplies are built-in. Single knob band switching is combined with a pi-network output circuit for complete operating convenience. A high-grade moving-coil meter indicates the final grid or anode current. Provision is made for the use of 3 crystals.
Prices now reduced so:-
Kit $£ 29.19 .0$
Ready-to-use $\& 41.8 .0$

GENERAL COVERAGE RECEIVER

 KIT RG-IAn inexpensive communications type receiver specially designed for the short wave listener with many refinements found only in receivers costing much more. Freq. coverage $32 \mathrm{Mc} / \mathrm{s} .-1.7 \mathrm{Mc} / \mathrm{s}$. in 5 ranges also
$\mathrm{M} . \mathrm{W}$. band. Kit $£ 39.16 .0$

Ready-to-use 53.0 .0
Optional extras available.
GRIP-DIP METER KIT. Model GD-IU

functions as oscillator or absorption wavemeter. With plug-in coils for continuous frequency coverage from $1.8 \mathrm{Me} / \mathrm{s}$. to $230 \mathrm{Mc} / \mathrm{s}$.
Kit $\& \| .9 .6$ Ready-to-use $\{\mid 4.9 .6$ Additional Plug-in Coils Model 341.U extend Additional Plug-in Coils Model $341-\mathrm{U}$ extend
coverage down to $350 \mathrm{ke} / \mathrm{s}$. With dial correlation coverage down

TRANSISTOR INTERCOM KITS

 Models XI-IU and XIR-IUv. battery operated. Up to five remote stations can be operated with each Master. The Master unit can call any one, a combination, or all five Remote stations and any Remote station can call the Master.

Model XIllU (Master)
Kit fll.9.6
Ready-to-use $£ 17.9 .6$
Kit £4.9.6
Model XIR-IU (Remote)
Ready-to-use $\mathbf{6 5 . 1 8 . 0}$

HI-FI STEREO AMPLIFIER
KIT Model S-99 18 w . output (9 per channel with $+8$ 0.2 per cent. distortion at 9 w . per channel). It has ganged controls Stereo/Mono gram, radio and tape recorder inpurs and pushbutrons ilection Ultratinear push-pull output. P.C. boards. Attractive Pers pex front panel with golden surround and grey metal cabinet. Kit E28.9.6 Ready-to-use $£ 38.9 .6$

HI-FI SPEAKER SYSTEM KIT

Model SSU-I
Ducted-port bass reflex cabinet in the white. Fre-
auency response is $40-16,000$ c / s. Power rating 10 watt Marched speaker units 8 in high flux (12,000 lines) with hyperbolic cone and 4 in. wide angle dispersion typ for higher frequencies. Kit (with legs) $£ 12.12 .0$

(less legs) $\mathcal{f} 1$ I. 17.6 (inc. P.T.)

A.M./F.M. TUNER KIT

Tuning range 88-108 M. (FM)
16-50, 200-550, 900-2,000 m
Flywheel tuning. Attractive
Perspex front panel in twotone
Perspex with golden trim. Thermometer grey with golden trim. i.F hermometer type tuning
indicator, pre-aligned. i.F. transformers. Switched wide and narrow A.M. bandwldths.
TUNING HEART Model AFM-TI $64 / 13 / 6$ (ine. P.T.) I.F. AMPLIFIER and Power Unit Model AFM-I. Complete with metal cabinet and valves arately
Kit Total $£ 27.5 .0$

ELECTRONIC WORKSHOP KIT

 EW-I20 exclting experiments can be made with this one kit. Kit $\mathbf{£ 7 . 1 3 . 6}$ (incl. P.T.)

SINE/SQUARE GENERATOR Model IG-82U

Covers $20 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$. in

5 bands. Simultaneous
5ine and Square Wave outputs. Less than $0.15 \mu \mathrm{~S}$ rise time on Square Wave. Less than 0.5% distortion on the wave. Up to volts designed for maximum operating convenience. designed for maximum operating convenience.
Kit $\mathbf{£ 2 5 . 1 5 . 0}$ Ready-to-use $£ 37.15 .0$

OSCILLOSCOPE TRACE DOUBLER

Kit $£ 13.10 .0$
OSCILLOSCOPE ACCESSORY KITS
Demodulation Probe kit 337-C £2.17.6 Low-cap Attenuator Probe kit Pk-I
£3.12.6
See also Oscilloscope page

- Deferred Terms available on all orders above $£ 10$.

HI-FI MONO POWER AMPLIFIER KIT Model MA-I2

A compact Hi-Fidelity power amplifier (including auxiliary power supply). 12 watts output. Wide frequency range and low distortion. A variable sensitivity control is
fitted enabling it to be used with an existing amplifier in a stereoan existing amplifier in a stereophonic system. Other applications
reinforcement systems, transmitter modulators, for use with rape recorders.
Kit E I2.18.0
Ready-to-use fl6.18.0

" COTSWOLD" SPEAKER

 SYSTEM KITThis acoustically designed enclosure measures $26 \times 23 \times$ $14 \frac{1}{2}$ in., and houses a special 12 in . base speaker with 2 in . speech coil, elliptical middie speaker, together with a pressure unit to
cover the full frequency range of $30-20,000 \mathrm{c} / \mathrm{s}$. Its polar-distribu
 tion makes it ideal for really Hi-Fi Stereo. Delivered complete with speakers, cross-over unit, level control, grille cloth, etc. Left in the white for finish to personal taste.
Kit £25.12.0
Also available Ready-to-use $£ 33.4 .0$

4i in. VALVE VOLTMETER KIT

 Model V-7AUThe world's most popular valve voltmeter with printed circuit and I per cent. precision resistors to ensure consistent laboratory performance. It has 7 voltage
ranges measuring respectively D.C. volts ranges measuring respectively D.C. volts
to 1,500 and A.C. to 1,500 r.m.s. and 4,000 peak to peak. Resistance measurements from 0.1 ohm to 1,000 megohms, with internal battery. D.C. input resistance is 11 megohms and d8 measurement has a centre-zero scale. Complete with test prod, leads and standardising battery. Power requirements, $200-250 \mathrm{v}$. $40-60 \mathrm{c} / \mathrm{s}$. A.C. 10 watts.
H.V. and R.F. Probes available as optional extras.

Kit $£ 13.18 .6$ Ready-to-use $\mathbb{C} 19.18 .6$

DECADE RESISTANCE BOX KIT

Model DR-IU. Range $1-99,999 \Omega$ in 1Ω Steps. Ceramic switches throughout. Current rating from 500 mA . to 5 mA . according to decades in circuit. Polished wooden cabinet supplied complete.
Kit £10.18.0 Ready-to-use £14.18.0 - Prices include Postage U.K.

DECADE CAPACITOR KIT

Model DC.IU

Capacity values $100 \mu \mu \mathrm{~F}$ to $0.11 \mu \mathrm{~F}$ in $100 \mu \mu \mathrm{~F}$ steps. Precision silver-mica capacitors and minimum loss ceramic wafer switches ensure high accuracy.
Kit $\mathbf{\text { E7.15.0 }} \quad$ Ready-to-use $\mathbf{£ 1 0 . 1 8 . 0}$

TELEVISION ALIGNMENT GENERATOR KIT Model HFW-I

Offers the maximum in performance, flexibility and utility at the lowest possible cost. Several outstanding features have been incorporated in this model which quency coverage $3.6 \mathrm{Mc} / \mathrm{s}$, to $220 \mathrm{Mc} / \mathrm{s}$. on fundamentals. Unique non-mechanical sweep oscillatar system. High level output on all ranges. Sweep deviations up to $42 \mathrm{Mc} / \mathrm{s}$. Built-in fixed and variable marker generator ($5 \mathrm{Mc} / \mathrm{s}$. erystal supplied).
Kit £38.18.0 Ready-to-use £49.15.0
Prices quoted are Mail Order Prices; retail prices slightly higher.

DAYSIROM LTD.

DEPT. WW.3, GLOUCESTER, ENGLAND Member of the Schlumburger Group including the Heath Company MANUFACTURERS OF THE WORLD'S LARGEST-SELLING ELECTRONIC KIT-SETS

See all these models, and many more...

in the latest HEATHKIT Catalogue

LOW-COST TRANSISTOR STEREO AMPLIFIER, TS-23

Incorporates all the essential features for good quality sound reproduction from record, radio and other sources Good frequen=y response 3 watts r.m.s. (15 ohms) each channel 6 position selector switch easily handles your record, radio or tape inputs-stereo or mono - Separate controls provide bass boost, treble cut, amplifier balance and volume - Printed circuit board construction - Compact, slimline styling . Measures $3_{6} \mathrm{ln}$. high $\times 13 \mathrm{in}$, wide $\times 8 \mathrm{in}$. deep Beautiful walnut veneered cabinet (optiona extra) - Attractive Perspex front panel
KIT fl7.15.0 (less cabinet) KIT 618.19 .0 (with cabinet) Walnut veneered cabinet $£ 2 / 5 /-$ extra. Ready to-use price on request

THE AVON COMPACT MINI SPEAKER SYSTEM

The ideal compact system for bookshelf or other small spaces $6 \frac{1}{2}$ in. bass speaker $3 \frac{3}{1} i n$. totally enclosed treble unit Speakers rigidly mounted to $\frac{J}{10}$ in. thick aluminium alloy plate Inductorfully finished walnut verieered cabinet Cabinet resonances are minimised by stout internal bracing and special acoustic absorbent filling - Suitable or use with amplifiers having an output impedance of $8-16$ ohms, and power output of 5 to 15 watts. - Fast, easy assembly - Gives best possible performance relative to smallest possible size Frequency response $50 \mathrm{c} / \mathrm{s}-19,000 \mathrm{c} / \mathrm{s}$. Size: $7 \frac{3}{3} \mathrm{in}$. Wide $\times 13 \frac{1}{\mathrm{t}} \mathrm{in}$. high $\times 8 \frac{1}{3}$ in. deep. Comprising: Walnut veneered cabinet kit $£ 8 / 18 /-$. Loud-
speakers and cross-over network kit $£ 4 / 18 /-$ incl. P.T.

TOTAL PRICE KIT EI3.16.0 incl. P.T,
Ready to-use price on request

TRANSISTOR AM-FM STEREO TUNER, AFM-2

 - 18 Transistor 7 diode circuit - AM-LW/MW, FM Stereo and FM Mono tuning Automatic stereo indicator light Stereo phase control for maximumseparation, minimum distortion Automatic freseparation, minimum distortion "Automatic frematic gain control for even, steady volume - Preassembled and aligned "front end" FM unit Separate AM and FM printed circuit boards - Selfpowered - Low-silhouette styling--inatches AA-22U amplifier - Handsome fully finished walnut veneered cabinet, available as optional extra. Comprising: AFM-2T RF Tuning Heart kit $£ 7 / 17 / \mathbb{c}^{\circ}$ incl. P.T., AFM-2A IF Amplifier and power supply kit $£ 24 / 9 / 6$.

TOTAL PRICE KIT $\{32.7 .0$ incl. P.T.
Optional extra: Walnut veneered cabinet $£ 2 / 5 /$ - extra

TRANSISTOR FM STEREO TUNER, TFM-IS

 (Mono version TFM-IM available)- 14 transistor, 5 diode circuit for cool instant operation - Mono TFM-IM and Stereo TFM-IS models available Automatic frequency control - Stereo phase control to maximise stereo separation, minimise distortion - 4-stage IF :ection ensures high sensitivity and selectivity = Filtered outputs for direct "beatfree " stereo recording. Automatic stereo indicator
light - Prealigned, preassembled "front-end" "uner 151 ent TFM-TIRFT TH TFM-TIRFTuning Heart Kit, E5/16/-incl. P. Tö TFMA-IM (Mono) If Amplifier, Power TOTAL PRICE KIT (Stereo) $\mathbf{E 2 0 . 1 9 . 0}$ incl. P.T. TOTAL PRICE KIT (Mono) 24.18 .0 incl. P.T.
Optional extra: Walnut veneered cabinet $£ 2 / 5 /$ - extra.

All models must perform to published specification when assembled in accordance with the instruction manual. ALL MODELS COVERED BY MONEY BACK GUARANTEE.

BERKELEY SLIM-LINE SPEAKER SYSTEM

- Specially designed io obtai: optimum performance from the slim elegant cabine: Beautiful walnut veneered, fully finished cabinet Makes attractive addition to any room Stood on end uses only $17 \mathrm{in} . \times 7 \frac{7}{2} \mathrm{in}$. of floor space. Two specially designed loudspeakers give adequate power handling for most applications 12 in . Iow resonance unit and 4 in . Mid/High frequency unit covers $30-17,000 \mathrm{c} / \mathrm{s}$. Build it in an evening - Proiessional attractive styling - Use one for mono and a pair for stereo Outstanding performance at a low price . Shelf or floor standing - Use vertical or horizontal Designed to harmonize with modern or traditional decor.
KIT $\mathbf{I} 19.10 .0$ Ready-to-Use $\mathbf{1 2 4 . 0 . 0}$

LOW-COST SPEAKER SYSTEM SSU-1 (not illustrated)

- Build it yourself in an evening All wooden parts accurately pre-cut, drilled and sanded Wide frequency response. Two specially designed loudspeakers - Hi-Fi on a budget Glue, sandpaper, etc, are included in kit Use one for mono. two for stereo . Finish it to match your own furnishing 16 page instruction manual 7 in . or 15 in . legs optional extra, $14 / 6$. Use vertical or horizontal.

KIT \&il.I7.6 (less legs)
Ready to-use price on request

LOW-COST SHORTWAVE RECEIVER, GR-64E

- 4 bands- 3 short wave bands cover $1 \mathrm{Mc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$, plus $550 \mathrm{kc} / \mathrm{s}$ to $1,620 \mathrm{kc} / \mathrm{s}$ AM broadcast band Built-in Sin. permanent magnet speaker for a big, bold sound olluminated 7 in. slide-rule dial with extra logging scale - Easy co read lighted bandspread tuning
dial for preciss station selection Relative dial for precise station selection - Relative signal strength indicator aids pin-point station
 tuning ${ }^{4-v a l v e}$ superhet circuit plus two
silicon diode rectifiers Variable BFO control for code and SSB transmissions - Built-in external antenna connections - Built-in AM rod antenna Fast. - Built-in external antenna connections Bbilt-in AM rod antenna " Fast.
simple circuit board construction assures stabilit, Handsome "low-boy" styling simple circuit board construction assures stabilit, Handsome low-boy styling - charcoal grey cabinet, black iront panel, wer green and white band marking
- Headphone iack for private listening. Power requirements: $115,230 \mathrm{v}, 50-60 \mathrm{c} / \mathrm{s}$ A.C. 30 watts. Dimensions: $13 \frac{1}{2}$ in. wide $\times 6$ in. high $\times 9$ in. deep. KIT $£ 22.8 .0$ Ready-to-Use $\mathbf{2 2 7 . 8}$. 0

GENERAL COVERAGE RECEIVER, GR-54E

Powerful 6 valve- 6 diode circuit. 3 SW bands cover $2 \mathrm{Mc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ plus $550 \mathrm{ke} / \mathrm{s}$ to $1550 \mathrm{kc} / \mathrm{s} A M$ broadcast band and $180 \mathrm{kc} / \mathrm{s}$ to $420 \mathrm{kc} / \mathrm{s}$ aeronautical and radio navigation band. Tuned RF stage. $\frac{1}{2}$ lattice crystal filter. Switchable USB LSW mode position. Built-in 4 in . x 6 in. PM speaker. Power req.: $120 / 240 \mathrm{v} .50-60 \mathrm{c} / \mathrm{s}$ AC.

KIT $\mathbf{4 5 0 . 1 . 0}$ Ready-to-Use $\mathbf{£ 6 3 . 6 . 0}$
 Send for the Latest free catalogue
Now with more Kits more colour. Fully describes these models along with over 150 models for Stereo/ $\mathrm{Hi}-\mathrm{Fi}$, test and laboratory instruments, amateur radio gear, intercom, radio educational kits. Includes helpful in formation on $\mathrm{Hi}-\mathrm{Fi}$ in your home and planning your Hi-Fi system. Mail coupon or write
Daystrom Led., Dept. WW3 Gloucester.

VISIT THE HEATHKIT CENTRES
233 TOTTENHAM COURT ROAD, LONDON, W.I Open Mon.-Fri. 9 a.m. $5.30 \mathrm{p} . \mathrm{m}$. Sat. $9 \mathrm{a} . \mathrm{m} .-1 \mathrm{p} . \mathrm{m}$. AND
17-18 ST. MARTINS HOUSE, BULL RING, BIRMINGHAM
Open Tues.-Sat. 9 a.m. -6 p.m. inclusive.

HEATHKIT

All mail orders and correspondence
To: DAYSTROM LTD., Dept. WW.3, Gloucester. Tel.: 29451
\square Enclosed is $£ \ldots \ldots \ldots \ldots \ldots \ldots$. post paid U.K. only
Please send model(s).
\square Please send me FREE Heathkit Catalogue
NAME.
ADDRESS
CITY
Prices and specifications subject to change without notice.

SANSUlisn't just a pretty face (aithoush evey unitis supetby, styeed) and the vital statistics prove it!

MODEL 1000A

AM/FM Multiplex Stereo Tuner Amplifier

This is a high-quality, tubed unit that uses the latest Nuvistor devices and power tubes. Other features include High-cut and Low-cut Filters for virtually interference-free enjoyment, a Muting switch that further reduces noise, and an Automatic Frequency Control switch to eliminate 'drift'.
RMS power: 40/40 W.
Music power: 100 W (IHFM).
Harmonic distortion: 1.0% at 1000 Hz RMS rated power output.
Overall frequency response: $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
FM sensitivity: $1.8 \mu \mathrm{~V}$ (IHFM).

MODEL 500A

AM/FM Multiplex Stereo Tuner Amplifier

A tubed unit with a similar performance to the 1000 A , but giving a lower power output.
RMS power: 23/23 W.
Music power: 50 W (IHFM)
Harmonic distortion: 1.0% at 1000 Hz RMS rated power output.
Frequency response : $20-20,000 \mathrm{~Hz} \pm 1.5 \mathrm{~dB}$ at
normal listening level.
FM sensitivity: $2.0 \mu \mathrm{~V} \pm 3 \mathrm{~dB}$ (IHFM).

Sole U.K. Distributors:
Technical Ceramics Limited
Cheney Manor, Swindon, Wiltshire. Telephone: Swindon 6251.

[^7]

MODEL 250

AM/FM Multiplex Stereo Tuner Amplifier
A high-performance, tubed unit with many studio-equipment features. And at a modest price
RMS power: 10/10 W.
Music power: 22 W (IHFM).
Harmonic distortion: 1.5% 'RMS rated power output.
Frequency response: $30-20,000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$ at normal listening level.
FM sensitivity: $4.0 \mu \mathrm{~V}$ (IHFM).
AM sensitivity: $30 \mu \mathrm{~V}$ (IHFM).
MODEL 220-AM/FM Stereo Tuner Amplifier
A similar model to the 250 , but without multiplex.

Other equipment in the superbly styled Sansui range

MODEL 3000A - Solid-state AM/FM Multiplex Stereo Tuner Amplifier. RMS power: $48 / 48 \mathrm{~W} . \pm 1 \mathrm{~dB}$.
MODEL 2000-Solid-state AM/FM Multiplex Stereo Tuner Amplifier. RMS power: $32 / 32 \mathrm{~W}$.
MODEL AU-777 - Solid-state Stereo Control Amplifier. RMS power: 30/30 W.
MODEL AU-70 - Stereo Control Amplifier.
RMS power: 12/12 W.
MODEL TU-70-AM/FM Multiplex Tuner. FM: 88 to 108 MHz . AM: 535 to 1605 kHz .
Stereo Headphone SS-2 -
Hi-Fi Speaker Systems -
SP-50 - 2-way, 2-speaker system, 25 W.
SP-100-3-way, 3-speaker system, 25 W .
SP-200 - 3-way, 5-speaker system, 40 W .
SP-300 - 3-way, 4-speaker system, 50 W .

For complete details and fully illustrated colour leaflets, please send the coupon below, indicating the equipment in which you are interested, to:

Technical Ceramics Limited, Cheney Manor, Swindon, Wilts. Please send me fully illustrated leaflets, and advise me of the nearest Sansui Hi-Fi dealer.

Name
Address

Model

Valuable new handoook Fhe To ABBIIIOUS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE, terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT ?

ELECTRONIC ENG.

Advanced Electronic Eng. Gen. Electronic Eng.-Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.

Advanced Electrical Eng. Gen. Electrical Eng. -
Installations - Draughtsmanship - Illuminating Eng. Refrigeration - Elem. Elecrrical Science - Electrical rrical Science
Supply $\begin{aligned} & \text { Electrical }\end{aligned}$ Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - Hydraulics - Mining - Water Supply - Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio Radio © TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio - Radio Amateurs' Exam.

MECHANICAL ENG. Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work - Welding - Eng. Pattern Making Inspection - Draughtsmanship Eng. Metallurgy - Production
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. -
Automobile Maintenance Repair - Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc. (Engo.) A.M.S.E., YR R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.M.R.R.I.B.A., A.M.I.Mun.E., C.ENG., C.ITY \& GU.'. GUILDS, GEN. CERT. OF EDUCZATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job. \star HOW to qualify for rapid promotion.
* HOW to put some letters ofter your name and become a key man . . . quickly and easily.
\star HOW to benaft from our free Advisory and Appointments Depts,
* HOW you can take advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, yOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL

 EQUIPMENTBasic Practical and Theo retic Courses for begin ners in Radio, T.Y., Elec tronics, etc. A.M.I.E.R.E. City Guilds Radio Amateurs' Exam., R.T.E.B. Certificate, P.M.G. Cer
tificate, Practical, Radio
Radlo \& Television Servicing, Practical Elec tronics, Electronics Engineering, Automation.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," Send for your copy now-FREE and without obligation.

INCLUDING TOOLS
The specialist Electronics Division of NOWW of
real laborazory you a real laboratory training at home with Ask for details. B.I.E.T.

POST COUPON NOW!

to b.I.E.T. 446A ALDERMASTON COURT, 3d. stamp if posted in aldermaston, berkshire.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME.
ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGGE
THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

TODMORDEN LANCS
 Todmorden 2601 extension 1

INTERNATIONAL

 RECTIFIERQuality Semi-Conductors.
Complete Rectifier Assemblies up to thousands of Amps, Diodes, Thyristors, Zeners, Encapsulated Bridges, Photocells, Klipsel Surge Protectors.

For experiment and teaching:ZENER KITS, THYRISTOR KITS.

BRADI

PRINTED CIRCUIT DRAFTING AIDS

Save drafting time and costs. Selfadhesive shapes and tapes. Terminal circles - fillets - tees - elbows - universal corners and mounting holes.

english electric

GS FUSES
or the protection of rectifiers and thyristors.
Bulletins and prices on request.

Rail Mounted Terminals and Terminal Blocks 0.5-250 Amps.

Bulletins and prices on request.

Bulletins and prices on request.
Bulletins and prices on request.
AND ASK FOR EXTENSION 1

TRANSFORMERS
0.25 kVA to 300 kVA I phase and 3 phase

LOW VOLTAGE HIGH CURRENT TRANSFORMERS
with output currents of hundreds, thousands and tens of thousands of amps.
1 phase and 3 phase.

DC POWER SUPPLIES

For Magnets, Accelerators, Plating, Anodising, Spectroscopy, Plasma Arc, Toronto Arc, Electron Beams, Electrolysis, Welding, Quartz Lamps, Mercury Vapour Lamps. From 100 W to 200 kW .

VOLTMOBILES

64 steps on load switching AutoTransformers. I phase and 3 phase. 200-400 Amps.

Zero to 100% Volts or 125% of Input Volts.

Voltmobiles are low-cost controllers, for furnaces, rectifier sets and other loads.

LET US HAVE YOUR SPECIFIC REQUIREMENTS

Equipment Dept. ask for Todmorden 2601 extension 3

Has red tape been complicating your procurement of electronic components from the U.S.A.?

Let us help you

 cut through it!Procurement of
American-made elec
tronic components used to be thought of as a complex, timeconsuming procedure with a myriad of red tape details and problems. Not anymore - now you can join the growing list of companies that rely on the technical skills and services of Milo International, world-wide distributors of electronic components. Our team of experienced specialists will process your order with speed and efficiency from start to finish - immediate price and availability quotations, product information, application data, import certificates, export licenses, declarations, export packaging, delivery expediting, etc. And this all-inclusive service is provided for each order, no matter how small or large.

For whatever you may need in electronic components from the U:S.A., Milo International can satisfy your requirements with prompt delivery, at direct factory prices, from a huge in-stock inventory of thousands of components made by the leading American manufacturers including this partial listing:

Amperex	Elmac	R.C.A.
Amphenol	Electrons, Inc.	Raytheon
Arrow.Hart \&	Erie	Simpson
Hegeman	General Electric	Sola
Bourns	Hardwick Hindle	Solitron
Burgess	Hickok	Sprague
Cannon	I.T.T.	Stancor
Centralab	J.F.D.	Superior
Cinch-Jones	Kings	Sylvania
Clarostat	Littelfuse	Texas Instruments
Cornell-Dubilier	Mallory	Transitron
Corning	Oak	United Transformer
Dale Electronics	Ohmite.Allen Bradley	Vector
Delco Radio	Potter \& Brumfield	Xcelite

For immediate price and delivery quotations, contact Milo by mail, phone, cable or International Telex.
1 I LO Irternational
World-Wide Electronic Component Suppliers
530 Canal Street, New York, N.Y. 10013 / Tel 212-233-2980 / Cable MILOLECTRO, N.Y. / Int'1. Telex 62528

MAGNETIC

TYPE "A"

Standard $1 / 2$ track, Record/Playback and Erase. Many special versions can be made to customers' requirements such as narrow track-raised trackor cut-away for cine use. Ideal head for dictating machines, etc. Size $\frac{3}{8} \mathrm{in}$. dia. by $\frac{5}{8} \mathrm{in}$. long. The round body makes for easy azimuth adjustment and takes up a minimum of space. Head has internal screen and fly leads for easy wiring.

SINGLE TRACK COMBO TYPE "X"
 in. tape. Record/Playback and Erase Heads for high quality tape recorders. Size only $\frac{1}{2}$ in. cube and available in a whole range of impedances. Excellent HF performance, efficient screening and very low crosstalk are features of the R / P head, Mounting brackets are available

Built into a deep drawn mumetal case ensures complete shielding. Type T is the protruding pole type with special narrow track (as narrow as . 002 in .) and can be made as a Record/Playback or Erase Head, or combined Record / Playback / Erase Head, or even Record/Playback and self-oscillatory Erase Head. The

Exactly as Type R except body is $\frac{7}{16}$ in. square along its length providing simple mounting arrangements. The Erase versions of R and DR types are double field heads. These are not just double gaps but two Erase heads in one, giving better than 60 dB erasure of a saturation $(+6 \mathrm{~dB}$ on full record level), $1 \mathrm{k} / \mathrm{c}$ recording at $3 \frac{3}{8} \mathrm{i}$.p.s.
for twin or triple head assemblies.

TYPE "T"
 Erase track can be made wider than the R/P track on the Combo Head, a fully screened lead is incorporated as part of the head.
TYPE "X"

Designed as a combined Record/ Playback/Erase Head for the commercial market. such as telephone answering machines. Built into $\frac{1}{2}$ in. cube deep drawn mumetal case it incorporates the R/P features of R Type head. The Erase track is made wider than the R/P track to ensure complete erasure and to, overcome machine to machine alignment tolerances.

TYPE "Z"

A brand new concept in combination head design incorporating all the best features of the X-Type Head combined with integral erase facilities. Accurate gap alignment between tracks makes this head eminently suitable for high quality stereo use. The one-piece deep drawn mumetal case (only $\frac{1}{2}$ in. cube) ensures complete screening across the front as well as the sides.

MULTITRACK

Available to special order in Two-Four-Eight or Sixteen tracks, or to specification. These tracks are located by precision machined slots and track dimensions and positions remain consistent. The track to fixing base dimensions are held to tight limits and any tolerances are non-cumulative as each track is indexed from the base. Special purpose optical equipment ensures a high order of accuracy in the alignment of the head halves. Erase heads, identically sized to the R / P head are available to special order.

TYPE "W" ERASE

Designed especially for the Cassette Type Recorder using . I 5 in . wide tape. Built-in tape guides are a feature of this head. The Standard type now in production is $\frac{1}{2}$-track but a compatible Stereo version will soon be
avallable. The high Q factor of Type
 W Erase gives maximum economy in battery applications.

TYPE "W" R/P.

The Record/Playback Head for Cassette Recorder incorporated in a deep drawn mumetal case ensuring complete screening. As an integral part of the head the mounting plate is of tempered Beryllium copper to provide a simple azimuth adjustment.
 The winding is centre tapped to give the option of presenting a lower impedance to bias and signal soyrces.during recording.

MARRIOTT MAGNETICS LTD.

WATERSIDE WORKS

PONSHARDEN

PENRYN
CORNWALL
Telephone: Penryn 359/-3363
SPECIALISTS IN ALL TYPES OF HEADS FROM THE ECONOMY MASS-PRODUCED ARTICLE TO THE VERY HIGH QUALITY PROFESSIONAL HEAD FOR SOUND RECORDERS AND COMPUTERS. OUR TECHNICAL KNOWLEDGE MAKES IT POSSIBLE TO DEVISE, PLAN AND PRODUCE THE MOST VERSATILE RANGE OF HEADS IN BRITAIN—FOR EITHER TAILOR-MADE OR MASS-PRODUCED DEVICES IN ALL DIVISIONS OF RECORDING.

Dial Euston 1639. Specify your meter . . . type, shape, size, F.S.D.
It's almost certainly on our premises right now. It will almost certainly be on yours tomorrow (G.P.O. and/or B.R. willing). If by chance we haven't got precisely what you want, we'll tell you when you can have it. Or which stock alternative, plus or minus a few ohms, will do the job. Or how long by our stopwatch it will take us to modify a stock meter for you. You'll always get a straight answer from Anders . . . and 99 times out of 100 the answer will delight you.
Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries.
Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.
New comprehensive catalogue available free to manufacturers and bona-fide engineers.

ANDERS METER SERVICE

"Where else can you buy a counter like this for £242?"

Nowhere else. The Racal type 835 Universal Counter/Timer provides Frequency, Period, Period Average, Ratio, Time Interval,
Pulse Width and Mark/Space, Totalise and Scaling in one compact instrument.
PlusIntegrated circuit constructionDC to 12.5 MHz (125 MHz with Type 810 Divider)
Sensitivity 75 mV r.m.s.Gate Times $1 \mu \mathrm{~S}$ to 10 Sec . (with push-button selection)
Exceptionally easy to drive
-tabular control information

Built to Racal 800 series standards, and occupying precisely half standard-rack width, the 835 has a companion Type 810 Frequency Divider which extends the frequency range to 125 MHz .

RACAL INSTRUMENTS CUT COSTS

HOT
PERFORMANCE

Racal Instruments Ltd., Crowthorne, Berkshire, England.
Tel: Crowthorne 5652. Telex 84166 Cables/Grams Racal Bracknell.

VORTEXION

C.B.L. TAPE RECORDER.

Stereo/Mono $\frac{1}{2}$ track recorder. Speeds $1 \frac{7}{8} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s. or $3 \frac{3}{4} / 7 \frac{1}{2} / 15 \mathrm{i}$. p.s. Wow and Flutter $7 \frac{1}{2} \mathrm{i} / \mathrm{s} 0.16 \%$. $3 \frac{3}{4} \mathrm{i} / \mathrm{s} .0 .2 \%$. $\mathrm{H} \& \mathrm{~N}$ (after erasure)-50db. F. R. $15 \mathrm{i} / \mathrm{s} 40 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$. $7 \frac{1}{2} \mathrm{i} / \mathrm{s}, 40 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s} .3 \frac{3}{4} \mathrm{i} / \mathrm{s}, 40 \mathrm{c} / \mathrm{s}-12 \mathrm{Kc} / \mathrm{s} .1 \frac{7}{8} \mathrm{i} / \mathrm{s}, 40 \mathrm{c} / \mathrm{s}-$ $6 \mathrm{Kc} / \mathrm{s}$. All $\pm 3 \mathrm{db}$. Replay char. CCIR. Inputs: mic. 10 microvolt on 30Ω, gram/radio 60 mV on $300 \mathrm{~K} \Omega$. (mixable on each amplifier). Output 15Ω at $3 \frac{1}{2} \mathrm{~W}$ each amplifier. Three motors. $8 \frac{1}{4}$ " spools. Less than I minute rewind for 1750 ft . tape. Level meter. Pause control, monitoring, mixing, echo, superimpose.
Size, $16 \frac{3^{\prime \prime}}{8} \times 27 \frac{1^{\prime \prime}}{} \times 8 \frac{5^{\prime \prime}}{}{ }^{\prime \prime}$.
Weight 69 lb .
Speeds $1 \frac{7}{8} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s.
Price Cl 72 Os. Od.
Speeds $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s.
Price Cl 80 Os. Od.

W.V.B. TAPE RECORDER. Similar to above but mono only. Professional quality recordings, checked by after record monitor during recording. Echo and superimpose facilities, 600Ω balanced or unbalanced output and $3 \frac{1}{2}$ watts output to internal or external speaker.
Size $8 \frac{1_{2}^{\prime \prime}}{} \times 16 \frac{1^{\prime \prime}}{} \times 22 \frac{5^{\prime \prime}}{}$. Weight 50 lb .
Speeds $1 \frac{7}{8} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s.
Price flls 10s. Od.
Speeds $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s.
Price Cl28 Os. Od.
W.V.A. TAPE RECORDERS.

This may be 2 track (FPI6) or 4 track (FP28).
Same as W.V.B. but no superimposing. An extra head for stereo playback can easily be plugged in. Size and weight as W.V.B.
Speeds $1 \frac{7}{8} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s. Price 696 7s. Od. Speeds $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s. Price $\mathbb{L} 107$ 3s. Od.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within Idb Peak Programme Meter. 4-6-8-10 and 12 way Mixers. Twin 2-3-4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600Ω, balanced, unbalanced or floating. Prices on application.

200 WATT AMPLIFIER.

 $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input $1 \mathrm{~mW} 600 \Omega$. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15 \Omega$ and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for $8 \Omega-15 \Omega$ and 100 volt line. Bass and treble controls fitted.
1 gram and 2 low mic. inputs. Price $£ 84$ Os. Od.
1 gram and 3 low mic. inputs. Price 890 Os. Od.
4 low mic. inputs.
Price C 92 Os. Od.
100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with $8 \Omega-15 \Omega$ and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on $100 \mathrm{~K} \Omega$. Price $\mathbf{£ 7 0} \mathbf{0 s} \mathbf{0 d}$.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level.
Standard model I-low mic. balanced input and $\mathrm{Hi} Z \mathrm{Zram}$. Price $£ 35$ Os. Od.
VORTEXION LIMITED. 257/263 The Broadway, Wimbledon, S. W. 19.
Telephone: 01-542-2814 and 01-542-6242/3/4.
Telegrams: "Vortexion London S. W. I9."

The same safeguards in manufacture and control that have won government contracts for TEONEX in over forty different countries apply equally to ensure top quality for private users too When you require valves to comply with E.V.S. or M.I.L. standards - choose TEONEX. The TEONEX range (for use outside the U.K. only) incorporates the entire series of Britishproduced valves or their Continental equivalents, including a wide range of colour T.V. valves. Price list and technical specifications may be obtained from:-

Export Enquiries Only Please! TEDIEK LIIIITEI

TEONEX

2a, Westbourne Grove Mews, London, W. 11 England.

Just what is this $A B R$, that makes such a vital difference to the ' DITTON 15'?

To achieve really impressive bass reproduction a speaker must move a large volume of air at the lower frequencies. In the usual "infinite baffle" compact system this is achieved by large excursions of the diaphragm-with good results if the designers and engineers have done their homework (listen to the 'Ditton 10^{\prime}). But with the 'Ditton 15^{\prime} Celestion have come up with something even better. They have given a dramatic further improvement in the bass response by a novel design idea called the ABR (Auxiliary Bass Radiator).
The ABR is a rigid diaphragm with a linear suspension capable of large excursions, pressure driven by the rear radiation from the 8 " bass unit. The acoustic mass of the ABR and the response of the $8^{\prime \prime}$ bass unit are so matched that from 80 Hz down to 30 the ABR moves in phase with the bass loudspeaker cone. It progressively radiates more of the bass frequencies as the bass loudspeaker's own power output falls away. This sharing of the load results in a clarity of sound in the bass frequencies and permits a full 15 Watt power down to 30 Hz . Above 80 Hz the ABR is stationary leaving the enclosure to act as a pure infinite baffle.
And what about the high notes? They are in the care of the famous HF1300 Mk. 2. Enough said!

But don't take our technical word for it. Hearing is believing! Ask your local Hi Fi dealer to demonstrate the 'Ditton 15 ' and compare it for yourself. Or send in the coupon now, and we will let you have full details and technical specification-not only of the 'Ditton 15', but also of the famous 'Ditton 10 ', the inexpensive but most. sophisticated mini-speaker on the market.

Studio Series
loudspeakers for the perfectionist
Rola Celestion Ltd. Ferry Works, Thames Ditton, Surrey.
Please send details of the Ditton ' 10^{\prime} and ${ }^{\prime} 15^{\prime}$
NAME-
ADDRESS
WW.
GD 996

1. Studio quallty high frequency unit HF1300
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR)-plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz ; double roll suspension allowing excursions up to $\frac{3^{\prime \prime}}{4}$ with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network.

Rola Celestion Ltd Ferry Works,

Thames Ditton, Surrey

Tel 01-398 3402

IF THIS
 IS NOT THE
 ONE YOU
 WANT WE STILL HAVE A FEW MILLION OTHERS

Ministry of Aviation Approved Inspection. Air Registration Board Approved Inspection.

For quality, reliability and world-wide availability, rely on Hall Electric's speed, intelligence and reputation.

Hall Electric Ltd., Haltron House, Anglers Lane, London, N.W.5.
Telephone: 01-485 8531 (IO lines). Telex: 2-2573. Cables: Hallectric, London, N.W.5.

villincigen

a unique sound mixing system...

Head office and plant: Kongsberg, Norway
Tel.: Kongsberg 37, telex: 1491, cable: Våpenfabrikken, Kongsberg
Oslo office: Drammensveien 40, VII
Tel.: Oslo 5667 70, telex: 1114, cable: Konsern, Oslo
Central European office: Kongsberg Väpenfabrikk, Bonn
Walter Flex Strasse 1, West Germany
Tel.: Bonn 27 422; telex: 886505 , cable: Korakontor, Bonn

A new science project combining the fascination of optics with electronics . . . the new field of

Demonstrations of these devices operating as

SPEECH LINK ON/OFF LINK

are being given daily at our only address,
52 TOTTENHAM COURT ROAD, LONDON, W.1.

from

These new devices offer features which can be exploited in an extremely wide field of applications. Their outstanding modulation and switching capabilities, coupled with completely solid state circuit design and small physical size make them ideally suited to such purposes as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc.

MGA100

 106EACH

TYPE MGA 100 General Purpose Gallium Arsenide Light Source A filamentless, Gallium Arsenide infra-red emitter, only 5.54 mm dia. and 8.1 mm . Iong. Features a robust cylindrical package coaxial with the beam, facilitating optical alignment and heatsinking.

MAX RATINGS

Forword current IF max** D.C....... 400 mA . Forward peak current I_{F} max.* (pk)......6.6A Power dissipation* $\ldots . .600 \mathrm{~mW}$. Derating factor for $T_{\text {amb }}$ greater than $25^{\circ} \mathrm{C}$. $. .7 .5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Reverse voitage $V_{R} \max . . .$. . I-OV.
*When mounted an an aluminium heat sink $\operatorname{lin} \times \frac{1}{4} i n . \times \frac{1}{4} \mathrm{in}$.
Supplied complete with suitable lenses, full Technical Data and Application Sheets,including Line of Sight Speech Link.

TYPE MSP3 Solid State Photo Receiving Device
An ultra-sensitive infra-red and visible light detector, this device is a complete silicon photo-electric receiver with a peak spectral response at 9500 A . Size only 6.4 mm . dia. and 25.4 mm . long, yet absolutely complete, the device will generate sufficient power to drive an external relay. Chiefly intended for use in optical links based on Gallium Arsenide Light Sources, they are equally suitable for systems based on visible light. Features a robust cylindrical package coaxial with the incident light facilitating optical alignment and heat-sinking.

MAX RATINGS
Total dissipation (in free air, $T_{a m b}=25^{\circ} \mathrm{C}$) 100 mW . Derating Factor....... $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output Current intensity 100 mA . Valtage......25V. Operating Temperature
....from
-30° to $+125^{\circ} \mathrm{C}$.
Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

Type 31F2 Micro-miniature Infra-Red Detector
Extremely small photo diodes of silicon NPN passivated planar construction and suitable for Punched Card Readers, Counters, Fllm Sound Track, etc.
Supplied complete with suitable Ienses, fuli Technical Data and Application Sheets,

PROOPS ${ }^{\text {siorturss }}$ LIMITED

52 Tottenham Court Road, London, W.1. Telephone: LANgham 0141 (01-580 0141)
 including Line of Sight Speech Link.
Sint
\rightarrow.

and these new solid state devices

RCA TRIACS Type 40432
Intended primarily for phase control of A.C. loads in light dimming, universal and induction motor control, heater control, etc., these gate controlled full-wave A.C. silicon switches with integral trigger, switch from a blocking state to a conducting state for either polarity of applied voltage with positive or negative gate triggering.
Supplied complete with full Data and Application Sheets.

INTEGRATED CIRCUIT RCA-CA 3020 AF POWER AMPIIFIER \& PRE-AMPIIFIER (or sorvo-amplifier)
The RCA-CA 3020 is an integrated-circuit Multistage, Multi-Purpose AF Power Amplifier on a single monolithic silicon chip, providing a stabilized oirect-coupled amplifier, performing pre-amp., phase inverter, driver and power with one power supply suitable for sound communications and control systems.
Supplled complete with full Data and Application Sheots.

45° - EACH Past Free

$47^{\prime \prime}-E A C H$
Past free

Pinnacle the largest single valve independent

THIS IS WHAT
 WE DO

Make available the widest range of valves for commercial and industrial use. Give a personalised service based on intelligence and speed.

Ensure that we only supply valves made by the world's foremost manufacturers.
Provide valves selected for your special needs.
Help out rapidly with that "awkward" valve that nobody else seems to have
heard of.

IF I'D ONLY TRIED PINNACLE FIRST. . .

Every valve in either widespread or specialised use in the fields of Entertainment, Industry, Education and Research will be found in our catalogue, together with its main equivalents, classification, and the Pinnacle " P "' number under which it may be ordered.

Specialise in European or American types which are not normally easily obtainable.

Rush you a small order, or quote for a bulk require-ment-1's or 1,000's are all the same to us.

Pinnacle

PINNACLE ELECTRONICS LIMITED achiles street • new cross • LoNDON S.E. 14

Telephone: All Departments-01-692 7285 Direct orders-01-692 7714

mechanized handling can halve your

Are you hit by rising production costs and shrinking profit margins? Is competition getting steadily tougher? Sales prospects bleaker? If these are your problems, can you ignore the productivity improvements resulting from systemized mechanization? There will be a multitude of new ideas and methods at the International Mechanical Handling Exhibition for boosting profits and Increasing efficiency. It will be much more than just the world's biggest display of mechanical handling equipment - 500,000
square feet and 300 exhibitors - it will be a unique presentation of handing technology; new systems, equipment and practical ideas. An unrivalled opportunity for evaluating the latest developments in receiving goods and materials; storage inventory control; in-processing; packaging; transport; distribution; and ancillary services and equipment. Whether your company is large or small, you will find much of interest and value at this important event. Mail the enquiry now and note the date in your diary.

INTERNATIONAL
 MECHAN CAL HANDLING
 ExHIBIIION

14-24 MAY '68 EARLS COURT LONDON

operating costs!

- Herteley HIGH FIDELITY SPEAKERS

Whiteley Stentorian Speakers incorporate 40 years of development in acoustic technology. Their frequency response is exceptionally wide, and their overall performance is outstanding.

Stentoriann

MODEL H.F. 1016 MAJOR
$10^{\prime \prime}$ Die-Cast Unit, incorporatıng 16,000 gauss magnet system and has a 15 ohms impedance speech coil. Handling capacity 10 watts. Frequency response 30-16,000 c.p.s. Bass resonance $39 \mathrm{c} . \mathrm{p} . \mathrm{s}$.

PRICE: £11.11.7 (inc. P. Tax)

Stentorian MODEL H.F. 1012
$10^{\prime \prime}$ Die-Cast Unit, incorporating 12,000 gauss magnet. Handling capacity 10 watts. Frequency response 30 c.p.s. to 14,000 c.p.s. Bass resonance 35 c.p.s. Fitted with cambric cone and universal impedance speech coil providing instantaneous matching at $3,7 \cdot 5$ and 15 ohms. PRICE: £5.13.1 (inc. P. Tax)

Stentorian

MODEL H.F. 816
$8^{\prime \prime}$ P.M. Unit, 16,000 gauss magnet. Handling capacity 6 watts. Frequency response 50 c.p.s. to 15,000 c.p.s. Bass resonance 63 c.p.s. Fitted with cambric cone, die-cast chassis and universal impedance speech coil providing instantaneous matching at 3, 7.5 and 15 ohms.

PRICE: £7.14.8 (inc. P. Tax)

Ask your dealer for full details of the Stentorion range or write to
WHITELEY ELECTRICAL RADIO CO. LTD
MANSFIELD NOTTS ENGLAND
Tel: Mansfield 24762
London Office: 109 KINGSWAY, W.C. 2
Tel: HOLborn 3074

VARIABLE-HIGH CURRENT SMOOTHED POWER SUPPLIES WITH ACCUMULATOR PERFORMANCE DIRECT FROM A.C. MAINS

TYPES
$250 \mathrm{VRU} / 30 / 20$ 250 VRU/60/10 250VRU/120/5 250 VRU/240/2.5

PRICE:
f131.5.0
TYPE 250VRU/30/20 provides outputs of 0-30 v. D.C. continuously variz.ble, up to 20A. Overload capacity 200% for short periods Ripple Content, impedance and regulation equivalent to accumulator performance. Output protected. INCORPORATES HEAVY DUTY SILICON RECTIFIERS. Complete with volt and amp meters, free standing, but suitable for 19 in. racking.
USED BY MINISTRY OF TECH NOLOGY: Aircraft operators, for servicing 28 v . aircraft instruments, radio; within B.C.A.R.'s.
FIXED OUTPUTS ALSO AVAILABLE. Smoothed 12 or 24 v . up to 24 amps Applications. operating and servicing transistorised equipments, e.g. 12-24 y. mobile r/telephone; production testing D.C. motors; heaters, wipers ignition systems, etc., etc. Direct from A.C. without accumulators.
Avoid the extra expense of super regulation you may never need.

We shall be happy to assist with your power conversion problem's. Call, write, or Tel.: 01-890 4837

EXPORT ENQUIRIES INVITED**:

DEPT. PUI3
BROWELLS LANE FELTHAM,
MIDDLESEX,
ENGLAND.
TEL: 01-890 4242

LIMITED
**DEMANDES CONCERNANT • L'EXPORTATION SOLICITÉS. 'SE INVITAN CONSULTAS SOBRE EXPORTACIÓN. EXPORTANFRAGEN ERBETEN.

WW-033 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days delivery.

Full Information from:
HARRIS ELECTRONICS (London) LTD
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

HOWELLS RADIO LTD. MINISTRY OF AVIATION IMSPECTION APPROVED

TRANSFORMERS

STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION
$0-50 \mathrm{KVA}, ~ " C "$ CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS, ETC. \qquad Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).

Driver	$22 / 6$	Carr.	$2 /-$
Mains	$29 / 6$	Carr.	$4 / 6$

L.P. Filter, Chassis Mounting 11/6. Carr. 1/-
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-.

*MAINS TRANSFORMERS

$350-0-350$ v. $60 \mathrm{~mA} ., 6.3$ v. 2 A. $£ 1 / 15 /$-. Carr. $4 / 6$.
500 v. 300 mA. 6.3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. 5/6.
$500-0-500$ v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A. £4/10/6. Carr. 6/6.
525-0-525 v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. £5/5/-. Carr. 6/6.

*LOW VOLTAGE

$30-0-30$ v. 4 A.	$£ 2 / 5 / 6$.	Carr. $5 / 6$.
15 v. 2 A.	$£ 1 / 12 / 6$.	Carr. $3 /-$
15 v. 6 A.	$£ 2 / 1 /=$	Carr. $4 / 6$.
15 v. 10 A.	$£ 2 / 15 /-$	Carr. $5 / 6$.

TRANSISTOR POWER SUPPLY TRANSFORMER 0-2-4-6-8-10-20-30-40-50 v. 2 A. £4/10/-. Carr 6/-
*PRIMARIES 10-0-200-220-240 v.
CHASSIS, CABINETS \& PRECISION METALWORK
ELECTRONICS - DEVELOPMENT \& ASSEMBLY
CASH WITH ORDERS PLEASE
Carlton Street, Manchester 14, Lancashire
TEL. (STD 061) 226-3411

WW-035 FOR FURTHER DETAILS

M. R. SUPPLIES, LTD.,

(Established 1935)
Unlversally recognised an suppliers of UP-TO-DATE MATERIAL, which does the fob properiy. Instant delivery. satisfaction assured. Prices nett.
FANFLOW EXTRACTOR FANs. Undoubtedly to day's greatent bargain for domestic or Industrial une- For $200 / 250$ volts A.C. $7,500 \mathrm{cu}$. ft. per hour. Easily Instalied, fitter wratherproof louvres
which open when motor is switched on and closed when off. Oniy 6 jin . dia. Our nett price only e8/15/- (denpatch 4/6).
ELECTRIC FANS (Papst), for extracting or blowing. The most exceptional offer we have yet niade. $200 / 250$ v. A.C. Induction motor-silent running. 2,800 r.p.m. duty 10 C C.F.M. Only $4 / \mathrm{in}$. square and 2 in . deep. Ideal for domentic or industrial une. Easy mounting, $£ 3 / 5 /$-(des, $3 / 6$).
 open type 8.P. Units, $200 / 250$ ₹. A.C., 1, $6,12,24,60$ r.p.m., approx. Sin. long, with 1 in , shaft
prolection each side and enclosed gearbox. Suitable for display work and namy industrial uses. projection each side and enclosed gearbox. Suitable for display work and nany industrial uses.
Only $69 / 6$ (des. $3 /$-).
SYNCHRONOUS TIME SWITCHEs. (Our very popular spectality), 200/250 ₹. 50 c . for accurate pre-set switching operations. Sengamio 8.254 providing up to 3 on-out operations per 24 hours
at any chosen time. with day-omittiog device (use optional). Capacity 20 ampa Compactly boused 4 ln . dia., 3 iln . deep. $E 5 / 18 / 6$ (des. $4 / 6$). Aloo same excellent make new Domestle Model, no wiring and easy setting and Instaliation. Portable with lead and $13-\mathrm{amp}$. plug name duty
as above (lesa Day=omiting), $84 / 8 / 6$ (fles, $4 / 6$). Full instructions sent with each.

MIMIATURE COOLIMG FANS. $200 / 250$ v. A.C. WIth open type induction motor (no interference). Overail 4 in . $\times 31 \mathrm{in} . \times 24 \mathrm{ln}$. Fitted 6 -biaded metal impelier. Ideal for projection lamp cooling,
light duty extrectors, etc., still only $88 / 6$ (des, $4 / 6$). MINTATURE BUNHIRG TIME METERS (Mangamo)
 industrial and domestic applications to indicate the running time of any electrical apparatus, to
AIR BLOWERS. Highly efficient units fitted induction totally enclosed motor 230/260 v. 50 c.

 1.5 WG, $11 \times 8 \times 9$ in., outlet 3 in. sq." $£ 13 / 17 / 6$ (des. V.K. 7/6).

SYNORRONOUS ELECTRIC CLOCE MOVEMERTS (as mentioned and recommended in many national Journals.s. $200 / 250$ v. 50 c . Self-starting. Fitted apindles for hours, minuten and central sweep second hands. Central one-hole fixing. Dias. 2.2 in . Depth behind dial only lin. With
back duat cover $35 /-($ des, $1 / 6)$. Bet of three brans hands in good plain style. For $5 / 7 \mathrm{in}$. dia. $2 / 6$. bsck duat cover, $351-2$
For $8 / 10$ dia. $8 / 8$ set.
SYMCHRONOUS TIMER MOTORS (Sangamo) $200 / 250 \mathrm{~V}$. $50 \mathrm{c} / \mathrm{s}$. Self-starting 2 in . dia. $\times 1 \mathrm{ilh}$.

 COUNTERS (Veeder-Root) Electromagnefic, 24 i. D.C. 4 digit (9999) with puah-button reset, ministure 2$\} \times 1 \times 1$ inn. Very limited quantity available at $£ 3 / 15 /-$ each (des, $1 / 6$).
RECTIFIERS, full-wave bridges elenfum, D.C., delivery $250 v .0 .5 \mathrm{amp}$, miniature $21 \times 1 \times j \mathrm{~m}$. Ideal for operating sniall ahunt wound motors from A.C. $8 / 6$ (des. 1/6).
IMMEDIATE DELIVERY of 8tuart Centrifugal Pumps, Including atalnless atcel (most modele). Philips Variable Tranaformers (all models).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

WW-036 FOR FURTHER DETAILS

S-DeC

$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{C}$
$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$
$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$
$0-0-0-0-0$
$0-0-0-0-0$
$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$
$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

The diagram shows the layout of the contacts on S-DeC. Each S-DeC. contains two separate panels, permitting most electronic building blocks to be accommodated. DeCs may be joined using the keying method provided to form a stable area of any size. The connection points are on a $\frac{3}{8} i n$. matrix. Components are simply pushed into the contacts and may be withdrawn at will.
Insertion/Withdrawal Force 90 gm. wt.
Capacitance between adjacent rows of contacts...3pF Resistance between adjacent contacts ben...................... $10 \mathrm{~m} \Omega$ contacts.. $10^{10} \Omega$

SINGLE DeCs. One S-DeC with Control Panel, Jig and Accessories for solderless connections to controls, etc., with booklet "Projects on S-DeC" giving construction details for a variety of interesting circuits $29 / 6$ retail.

4-DeC KIT. Four S-DeCs with two Control Panels, Jigs and Accessories and the booklet "Projects on S-DeC" all contained in a strong attractive plastic case. Ideal for the professional user, $65 / 17 / 6$ retail. Discounts to Industry and Education.

For further information
S. D. C. PRODUCTS (Electronics) LTD., Corn Exchange . Chelmsford . Essex

Valradio TRANSVERTORS

(TRANSISTORISED D.C. CONVERTERSIINVERTERS)

TYPE B12/200S.
PRICE E67.12.0
OTHER SINEWAVE UNITS ranging from 30w up to 200 w are available from $12-24-50-1.10 \mathrm{v}$ D.C. input, prices £48.0.0 up to $\mathrm{E75.0.0}$.
THE "S" RANGE have been specially designed for operating frequency and waveform sensitive equipment such as video tape recorders, $\mathrm{Hi}-\mathrm{Fi}$ amplifiers, precision instruments etc.
FREQUENCY STABILITY ($\pm \frac{1}{4} \cdot \mathrm{HZ}$) with low distortion and good voltage regulation by the ferro-resonant method. WE SHALL BE HAPPY TO DISCUSS YOUR POWER CONVERSION PROBLEM:
CALL, WRITE, OR TEL: 01-890 4837
EXPORT ENQUIRIES INVITED:-Demandes concernant l'exportation solicités- Se invitan consultas sobre exportación-Exportanfragen erbeten.

VALRADIO LIMITED, Dept. CIO BROWELLS LANE • FELTHAM • MIDDLESEX • ENGLAND Tel: 01-890 4242

WW-038 FOR FURTHER DETAILS

If you were born under

 ARIESremember there's an RTS in the month!
your pioneering spirit and qualities of leadership come in for special recognition but check that subordinates have not let some of your innovations lapse. A winner they won't forget is the use of RTS 'by-return' service.
Lucky numbers: Cambridge (OCA3) 51471-for orders
Cambridge (OCA3) 59101 -other business
Send for comprehensive catalogue today to see what RTS holds in store for you.
RTS for all your components, by return, even overseas!

RADIO AND TELEVISION SERVICES LIMITED P.O. Box 11. Gloucester Street, Cambridge a member of the DD group of companies

TYPE 070 WIREWOUND ADJUSTMENT POTENTIOMETERS

NOW AVAILABLE AT g'G EACH
 FOR LARGE QUANTITIES and still ex-stock!

A high quality subminiature, trimming potentiometer.
Resistance Range 10Ω to $20 \mathrm{~K} \Omega$. Temperature Range$55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

Full details of these and other types from

21 GERMAIN STREET, CHESHAM, BUCKS

Chesham

 4808/9
rCA COLOUR TUBES two totally unique advantages

New Rare Earth Red Phosphor

These new red phosphors-exclusive to RCA-combined with efficient sulphide blue and green phosphors produce pictures at their brightest and most dependable. They completely overcome the imbalance of the three guns which cause red blooming, colour fringing and failure of the red gun due to overwork. RCA's New Rare Earth Red Phosphor achieves UNITY CURRENT RATIOS -equal beam current from each electron gun; higher brightness, picture contrast and highlight; much longer tube life.

Perma-Chrome

This is a four-point, temperature-compensated shadow mask assembly which accurately adjusts and sets the shadow mask position relative to the screen. Shadow mask expansion limits the performance of a rectangular colour-tube-Perma-Chrome renders this problem negligible. Perma-Chrome produces full-colour fidelity and temperature equilibrium throughout normal operation. It maintains excellent field purity and uniformity.

RCA 'HI-LITE’ COLOUR PICTURE TUBES ... THE BRIGHTEST IN THE INDUSTRY

For full technical specification and application information, write to:

WIRELESS WORLD

ENQUIRY SERVICE FOR
PROFESSIONAL READERS

Weitere Einzelheiten über irgendwelche Artikel, die au Radaktion-oder Anzelgen-seiten erscheinen, erhalte। Sie, indem Sie eine oder mehrere der beigelegten Karte ausfüllen und die Kenn•nummer(n) angeben, thre Anfrag: wird an den Hersteller weitergeleitet, und Sie werden dani direkt von ihm hören. Karten die im Ausland aufgegebe werden, müssn frankiert werden. Diese Service-Karter sind sechs Monate vom Ausgabetag gultig. Bitte in blockschrift a usfullen

Per ulteriori particolari in merito agli articoli menzionat nel, testo o nelle pagine pubblicitarie di questo numer Vi preghiamo di completare una o più delle schede allegate citando il numero o i numeri di riterimento. La Vostri richiesta sarà inoltrata ai fabbicanti interesati che V risponderanno direttamente. Le schede dall'estero devonc essere regolarmente affrancate. Questo scontrino d servizio é valido per sei mesi dalla data di pubbli cazione.

Con objeto de obtener más detalles de cualquiera de lo articulos mencionados en las páginas editoriales o de anun clos de este número sirvase rellenar una o más de las unida tarjetas citando el número o números de referencia. Su consultas serán transmitidas a los fabricantes interesado de quines tendrán noticias directamente a su debido tiempo Las tarjetas enviadas desde el extranjero requieren fran queo. Estas tarjetas de servicio son validas durant 6 meses a parir de la fecha de publicacion.
sirvase escribir con letras mayusculas

Pour obtenir tout renseignement complémentaire sur les produits mentionnés dans les articles ou dans les pages publicitaires de ce numéros nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le ou les numeros de rếférence. Vos demandes de renseignement seront transmises aux fabricants intéréssés qui, en temps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées à l'étranger. Ces cartes de service sont valides pendant six mois à partir de la date de publication.

PRIERE D'ECRIRE EN LETTRES MAJUSCULES

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

PLEASE USE CAPITAL LETTERS

SI PREGA DI COMPILARE LE SCHEDE SPAMPATELLO

DRAKE TRANSFORMERS

INCORPORATING

Mains Transformers
Chokes
Audio Output Transformers
Audio Input Transformers
Saturable Reactors
Coils
Current Transformers

Transistor Transformers

Inverter Transformers
Screened Microphone Transformers
Wide Band R.F. Transformers

DRAKE TRANSFORMERS LTD., BILLERICAY, ESSEX Billericay 51155

As a Storage Oscilloscope

Single traces at low and medium speeds are stored for at least one hour, and erased in $\frac{1}{4}$ second. A unique split screen permits storage or conventional operation over the whole screen, or storage on either half with conventional operation on the other half.

As a general-purpose Oscilloscope

When you don't need stored displays, the Type 564 operates for you as a conventional oscilloscope, with all the versatility afforded by interchangeable vertical. deflection amplifiers and time-base generators.

Amplifier Plug-In Units Offer:

	£62.15.0
DC to $300 \mathrm{kc} / \mathrm{s}$ at $1 \mathrm{mv} / \mathrm{cm}$ - differential input -- Type 2A63	$£ 95$
DC to $4 \mathrm{Mc} / \mathrm{s}$ at $50 \mathrm{mv} / \mathrm{cm}$ - Type 3A75	£109.11
Dual. Trace, DC to $650 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{mv} / \mathrm{cm}$ - Type 3 A72	$£ 169.17$
0.06 cps to $300 \mathrm{kc} / \mathrm{s}$ at $10 \mu \mathrm{v} / \mathrm{cm}$ - differential input - Type 2A61	£226. 13
DC to $5 \mathrm{kc} / \mathrm{s}$ at 10μ strain/cm - carrier amplifier - Type 3C66	243
Dual-Trace, DC to $10 \mathrm{Mc} / \mathrm{s}$ at $10 \mathrm{mv} / \mathrm{cm}$ - Type 3A1	215
Four Trace, DC to $2 \mathrm{Mc} / \mathrm{s}$ at $20 \mathrm{mv} / \mathrm{cm}$ - Type 3A74	355
$0.4-\mathrm{nsec}$ risetime at $2 \mathrm{mv} / \mathrm{cm}$, sampling - Type 3 S 76	
, $5 \mathrm{-nsec}$ risetime at $5 \mathrm{mv} / \mathrm{cm}$, sampling with $100 \mathrm{k} \Omega$	
pf input - Type 3S3	

Time-Base Plug-In Units Offer:

$1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$, $5 \times$ magnifier, single sweep - Type 2B67 ... £97 . 0.0* Same as Type 3B3 (below) except delay not continuously
calibrated and no single sweep - Type 3B1 £335.10.0
Normal and Delayed Sweeps, $0.5 \mu \mathrm{sec} / \mathrm{cm}$ to $1 \mathrm{sec} / \mathrm{cm}$, calibrated delay
from $0.5 \mu \mathrm{sec}$ to 10 sec , single sweep - Type 3B3 £269. 0.0* $0.2-\mathrm{nsec} / \mathrm{cm}$ to $10 \mu \mathrm{sec} / \mathrm{cm}$ equivalent, for sampling — Type 3 T77 $\ldots \ldots$... £296. 0.0* Type 564 (without plug-in units)
... £394. 0.0*
Rack Mount Model also available
*These instruments are British Made

For detailed information on any of our products, please fill in reader reply card or write, telephone or telex.

e
 Tektronix U.K. Ltd.

Beaverton House - Station Approach • Harpenden • Herts Telephone: Harpenden 61251 - Telex: 25559

For overseas enquiries:
AUSTRALIA: Tektronix Australia Pty. Ltd., 4-14 Foster Street, Sydney, N.S.W.

CANADA: Tektronix Canada Ltd., Montreal, Toronto \& Vancouver.
FRANCE: Relations Techniques Intercontinentales, S.A., 134 Avenue de Malakoff, Paris XVI.
SWITZERLAND: Tektronix International A.G., P.O. Box 57, Zug, Switzerland.
REST OF EUROPE AND THE MIDDLE EAST: Tektronix Ltd. P.O. Box 36, St. Peter Port, Guernsey, C.I.

All other territories: Tektronix Inc., P.O. Box 500, Beaverton, Oregon, U.S.A.

TIMERS MICRO SWITCHES IMMEDIATE DESPATCH

PROCFSS TIIIERS

611-T Delay Relay

40/- each,
$\star 2,5,15 \& 25$ secs. Delay. \& 15 amp. c/o micro-switch fitted

+ LARGE RANGE OF A.C. © D.C. COILS.
dependent on quantity.
AT-10 PNEUMATIC TIMER delay relay

SYS MINI-TIMER
SYNCHRONOUS MOTOR \& CLUTCH
+10 million operations

* Instantaneous \& Timed out 3 AMP contacts.
\star Repeat Accuracy $\pm \frac{1}{2} \%$. 10 secs. to 28 Hrs. May also be used as impulse start and automatic reset.
£9.15.0 approx. dependent
£9.15.0 $\begin{aligned} & \text { on quantity. }\end{aligned}$

mans ofemine
STP Sub-Mini Process Timer SYNCHRONOUS MOTOR \& CLUTCH Matchbox size frontal area. Automatic re-set. \star PLUG-IN OCTAL BASE \star InSTANTANEOUS AND TIMED OUT 2 AMP CONTACTS \star RANGES: 10 SECS. approx. £5.0.0 each. YL 2 GPA

\star Fully adjustable up to 200 seconds. Fitted with 15 amp . S.P.D.T. switch.
\star One model provides delay after energise or delay after de-energise.
approx. £6.0.0
dependent on quantity.

PROXIMITY SWITCH

+ FOR BATCHIMG, CONYEYORS,
MACHINE TOOL CONTROL, PACK AGING, SORTING, etc.
+SENSES FERROUS OBJECTS
©NEEDS NO MECHANICAL TORCE
ORPRESSURE TO OPERATE * SOLID STATE SENSING HEAD INCLUDES CONSTANT VOLTAGE CIRCUIT
approx. 11.0 .0 dependent on quantity ${ }^{\circ}$
OTHER INDUCTIVE AND CAPACITY TYPES AYAILABLE

U.L. APPROVED (Appr. No. 32667) U.S. MIL. SPEC. ALWAYS AVAILABLE FROM STOCK

AS USUAL WE WILL BE EXHIBITING AT THE "INSTRUMENTS ELECTRONICS AND AUTOMATION EXHIBITION"' AT OLYMPIA DURING MAY

Bunlleros ceramics

for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent London Office: 6 Laurence Pountney Hill, E.C. 4

Phone: MANsion House 9971

Those transistors cost money! Protect them!!

36A SPACESAVER

DRAWER UNIT 42 " high, $24 \frac{1}{2}$ "
wide, $12^{\prime \prime}$ deep. 36 drawers each $3^{\prime \prime}$ high, $5 \frac{1}{4}$ wide, $10 \frac{7}{\frac{7}{8}}$ deep, with identification cards.
$\left.\begin{array}{c}\text { (CARRIAGE FREE } \\ \text { ONMANLANO }\end{array}\right) \mathbf{£} \mathbf{1 2 . 0 . 0}$ brand NEW

12A POPULAR DRAWER

 UNIT 9 " high, $35^{\prime \prime}$ wide, $12^{\prime \prime}$ deep. 12 drawers each $3^{\prime \prime}$ high, $5 \frac{1}{4}$ " wide, $10 \frac{7^{-1}}{}$ deep, with identification cards. Ideal for shelf or table-top.£4.15.0 brand new

ORDER NOW
Send for FREE catalogue of our complete range of storage equip. ment.

N.C.BROWN LTD

INDUSTRIAL
SALES DIVISION

Eagle Steelworks, Heywood, Lancs. Tel: 69018 London: 25/27 Newton St. WC2. Tel: 01-405-7931
Please send [] 36 A Spacesaver Drawer Unit
[] 12A Popular Drawer Unit
Tick where appiicable and send cash with orders under $£ 5$ NAME ADDAESS

WW-044 FOR FURTHER DETAILS

FR11 P Plug-in and printed-circuit version

FR11L
for solder connections

STAND G373.|EAOLYMPVA 13-18MAY WW-046 FOR FURTHER DETAILS

GEC

 takes you years ahead in HF communications..... with their new RC/410/R Synthesised H.F. Receiver. Intended for the professional user its advanced features include \square Built-in full synthesis control over the complete frequency range in 100 Hz steps \square Frequency range from 2 HMz to 30 MHz \square Continuously tuneable without "see-saw" at band edges \square Quick setting to frequency with pre-set controls \square Accurate digital display with 100 Hz resolution \square Receives $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 3 \mathrm{~A}$ and A3J transmission models \square Fully transistorised for reliability \square Exceptional R.F. performance \square Low cost \square Single selfcontaining unit available as either table model or for 19 inch rack mounting. Technical literature is available. Demonstrations can be arranged.

Information Centre

G.E.C. - A.E.I. (Electronics) Ltd. Communications Division, Spon St, Coventry CV1 3BR. Telephone: Coventry 24155 A subsidiary of The General Electric Company Lid. of England

THE COMPLETE PORTABLE P.A. SYSTEM
15 watt, 12 volt Amplifier complete with dynamic microphone and 10 watt horn. Runs off 12 volt car battery or 8 U2's in special pack.

Package deal £30 post free
Separately £33-5-5

TOA
THE TRENDSETTERS IN PUBLIC ADDRESS will be exhibiting at the International Public Address Exhibition from 12-14th March 1968 at Harrow

Comprehensive literature and price lists from Audio \& Design the leaders in sound equipment.

\square

 AUDIO \& DESIGN LIMITED 40,QUEEN STREET MAIDENHEAD BERKS. TEL. 25204

AVONCEL

EQUIPMENT TROLLEYS Medium Duty from f 17 . Heavy Duty from 635 . Wide range of Standard Models. Quick Delivery Special Models made to order.
"AVONCEL"

AVON COMMUNICATIONS \& ELECTRONICS LTD 318 BOURNEMOUTH (HURN) AIRPORT ChRISTCHURCH, HANTS. TEI, NORTHBOURNE 3774 (P.B.X.)

TRANSFORMERS

COILS
CHOKES
LARGE OR SMALL QUANTITIES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY
01.653 .2261 CR4.8LZ

EST. 1933
WW-050 FOR FURTHER DETAILS

We can't

 show them all!The Partridge range of Transformers for
 $\mathrm{Hi}-\mathrm{Fi}$ circuits covers most leading published designs. Write now for Data Sheets, or let us have your specific enquiry-there's bound to be a model to suit your needs.

PARTRIDGE TRANSFORMERS LTD.,
Roebuck Road, Chessington, Surrey.
Roebuck Road, Chessington, Surrey.
01-397 4353/4/5

putting quarts

Vero are electronic packaging specialists. A wide range of standard Veroboards, Card Frames, Module Racks and Cases are available from stock. In addition we are always prepared to discuss special designs and requirements, but prefer to be consulted early so that our designers can work closely with yours. Our design experience and know-how is invaluable in electronic problems where maximum space utilization is important.
 driver. Lightweight: excellent cooling: simple identification. multiple connector mounting.

Send now for full details to:-

VERO ELECTRONICS LTD

INDUSTRIAL ESTATE, CHANDLERS FORD, EASTLEIGH, HANTS,
Telephone: Chandlers Ford 2921/4.
Telex 47551
BRANCHES AND AGENTS THROUGHOUT THE WORLD

...you can say that again!

The new RC/460/S is an H.F. Frequency Synthesiser. Advanced in design and easy to operate, its advanced features include \square High stability source for transmitters and receiver local oscillators \square Full synthesis control in 100 Hz steps \square Frequency range of 1 MHz to $29.999 \mathrm{MHz} \square$ Internal frequency standard stability 1 part in $10 \square$ Provision for external drive standards \square Receiver local oscillator frequency offset can be provided \square Remote control \square High purity output \square Clear in-line digital display with 100 Hz resolution \square Fully transistorised for reliability \square Low cost \square Single self-contained unit available as either table model or for 19 inch rack mounting. Technical literature is available.
Damonstrations can be arranged.

Electronics

Information Centre
G.E.C. - A.E.I. (Electronics) Ltd. Communications Division, Spon St, Coventry CV1 3BR. Telephone: Coventry 24155 A subsidiary of The General Electric Company Lid. of England

Employing only high grade components and transistors

LT55 6 WATT AMPLIFIER

A High Fidelity unit providing excellent results at modest output levels.
Frequency Response 30-20,000 cps -2dB.
Sensitivity 5 mv (max)
Harmonic Distortion 0.5% at 1,000 cps.
Output for 3-8-I5 ohm Loudspeakers.
Input Sockets for 'Mike' Gram and Radio Tuner/Tape Recorder

LTA15 15 WATT AMPLIFIER

High Fidelity Output switched inputs for Gram, 'Mike,' Tape, and Radio. Frequency Response 10-40,000 cps3dB.
Bass Control +18 dB to -16 dB at 40 cps .
Troble Control +17 dB to -14 dB at 14 Kcs.
Hum and Noise - BodB

Harmonic Distortion 0.2% at rated output.
Please send a stamped add-essed envelope for full descriptive details of above units, also TUNER/AMPLIFIERS STEREO and MONO.

Recommended

Retail price
16 GNS Size $9 \frac{1}{2} \times 3 \frac{3}{4} \times 5 \frac{1}{4} \mathrm{in}$. Output for 3-8-15 ohm Loudspeakers.

If required an attractive wood cabinet with Satin Teak reneer

Anish can be supplied for any | Anlish can be supplied $\begin{array}{l}\text { for any } \\ \text { model. Prices from } \\ \text { E3-10-0 }\end{array}$ |
| :--- |

Recommended Retail price Retail price8 GNS

Size $9 \frac{1}{4} \times 2 \frac{3}{4} \times 5 \frac{1}{4} \mathrm{in}$.
Controls (5) Volume, Bass, Treble, Mains Switch, Input Selector Switch.

LT66 12 WATT STEREO AMPLIFIER

A twin channel version of the LT55 providing up to 6 watts High Fidelity output on each channel.
 Switched Input Facilities
Socket (1) Tape or crystal PU (2) Radio Tuner (3) Ceramic PU Microphone.
Controls (6) Volume, Bass, Treble, Balance, Mains Switch, Input Selector Switch. Stereo/Mono Switch.
Facia Plate Rigid Perspex with black/silver background and matching black edged knobs with spun silver centres.

PTA30 HI-FI PUBLIC ADDRESS AMPLIFIER

A successor to our popular Conchord 30 watt unit.
Input Sensitivity 2 mv (max.) \star Output 30 watts.
\star Output Terminals or Loudspeaker or combination of Speakers with total impedance between 3 ohms and 30 ohms.
\star Three individually controlled Jack Inputs for mixing purposes.

Recommended
Retail price
20 GNS
Size $12 \times 3 \frac{1}{2} \times 6 i n$
Housed in fully enclosed stove enamelled steel case. Controls Vol (1) Vol (2) Vol (3) with mains switch, Treble 'lift' and 'cut.' Bass 'lift and 'cut.

AN IDEAL UNIT FOR VOCAL AND INSTRUMENTAL GROUPS SUITABLE FOR ANY KIND OF 'MIKE' AND INSTRUMENT PICK-UP, ALSO FOR RADIO, TAPE, OR GRAM.

WW-054 FOR FURTHER DETAILS

Only S.M.E. Precision Pick-up Arms offer all these features. Cholce of arm length Model 3009 (9in.) or Model 3012 (I2in.) for still lower tracking error-of special Importance with elliptical styli - low inertia. High precision ball races and knife-edge bearings for minimum pivot friction' Linear offset chosen for lowest distortion. Automatic slow-descent with hydraulic control. Bias adjuster calibrated for tracking force. Exact overhang adjustment with alignment protractor. Precise tracking force from $\frac{1}{4}-5$ grams applied without a gauge. Shielded output socket. Low capacity 4 ft . connecting cable with quality plugs . Light-weight shell. Camera finish in satin chrome, gun-black and anodised alloy . Comprehensive instructions . Rational development-all improvements can be incorporated in any existing Series II arm.

For sales and service ring Steyning 2228

S ME LIMITED•STEYNING•SUSSEX•ENGLAND
 ww-oss for further details

STUMPI a new connector for the weight-andspace race

- a new connector specifically designed for a new Military project and for the race toward ever lighter, smaller equipment. It uses the very latest materials to achieve brand new standards in compact, efficient design. Just look at these features :

1. Glass filled Nylon housings and insulators for extreme light weight, high insulation properties and minimal fire risk.
2. Compact design and positive coupling with the tip of one finger - low height feature making it ideal for use on portable equipment or as low voltage, medium power connectors.
3. "Split shell" construction of cable unit housing for ease of wiring. Elimination of strain on cable joint by means of right-angle contacts.
4. Crimp type contacts in cable unit, with full width cable clamp and sealing grommet.

The Stumpi range is a new conception in design, fully sealed, meeting the requirements of DEF.5325, and is initially available in three shell sizes with nominal contact ratings of 5 , 20,40 and 60 amps .

THERE IS A THORN CONNECTOR FOR EVERY PURPOSE!

THORN SPECIAL PRODUCTS LTD, Great Cambridge Road, Enfield, Middlesex. Tel: 01-363 5353 Telex: 263201-2-3.
A subsidiary company of THORN BENDIX LIMITED

A NEW RANGE OF SINGLE-FUNCTION PORTABLE METERS AT REALISTIC PRICES

Produced to Anders' specification, by a leading overseas manufacturer. D.C. accuracies within 1.5% F.S.D.
A.C. accuracies within 2.5% F.S.D. Mirror scale approx. $3.5^{\prime \prime}$ Case dimensions $7 \frac{1}{4}^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{4} \times 3^{\prime \prime}$. Dual connection terminals. Supplied complete with robust leads. Models marked with an asterisk have varis-
 tor protection against 50% overload.

ANDERS ELECTRONICS LIMITED • 48/56 Bayham Place • Bayham Street • London NW1 Telephone:01-3879092

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S.trained man. Let ICS traln YOU for a well-paid post in thls expanding field.
IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success.
iplomacourses in Radio/TV Engineering and Servicing, Electronics, Computers etc. Expert coaching for:

* INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
* C. \& G. TELECOMMUNICATION TECHNICIANS CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS EXAMINATION.
* P.M.G. CERTIFIGATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF.BUILD RADIO COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition.

POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics wlll be sent to you by return mail.
member of the association
OF BRITISH CORRESPONDENCE COLLEGES.

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS EDITING \& REPRODUCING SETS

Codes: Lnt. No. 2 Mercurf/Pegasus, Elliot 803, Binery and special purpose Codes.

2-5-6-7-8-TRACK AND
MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES
Picture Telegraph, Desk-Fax, Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter. Morse, Teledots Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone, Carriers and Repeaters; Multiplex Transmitters; Diversity Frequency Shift, Keying Equipment; Line, Mains Transporters and Suppressors; Racks and Consoles; Plugs, Sockets; Key, Push, Miniature and other Switches soles; Plugs, Sockets; Key, Push, Miniature and other Switches
Cords, Wires, Cables and Switchboard Accessories; TeleCords, Wires, Cables and Switchboard Accessories; Tele-
printer Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Oscilloscopes; Miscellaneous Accessories and Spares.

W. BATEY \& COMPANY

Gaiety Works, Ackerman 8treet, Tring, Herts.
Tel.: Tring. 3476 (3 lines) Gables: RAHNO TRING STD:044-282 TELEX 82362

Photo reproduced by kind permission of Women's Journal

A well paid job, security and everything that goes with it can be yours. Look at the situations vacant columns in the newspapers; notice the huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. There are many senior positions requiring just the up-to-date, advanced technical education which CREI Home Study Courses can provide.

CREI Programmes are specialised and job-related. Time spent on a CREI Technical Course pays immediate dividends in greater effectiveness and productivity on the job.

Take the first step to a better job now - enrol with CREI, the specialists in Technical Home Study Courses.

$\overline{\text { CREI }})$ PROGRAMMES ARE AVAILABLE IN:-

 Electronic Engineering Technology Industrial Electronics for Automation - Computer Systems Technology Nuclear Engineering - Mathematics for Electronics Engineers - Television Engineering - Radar and Servo Engineering © City and Guilds of London Institute: Subject No. 49 and Advanced Subject No. 300.C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London SW1

A Division of Mc Graw-Hill Inc

The next full time 16 month College Diploma Course which gives a thorough fund amental training for radio and television engineers, starts on 24th April 1968.
The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept.WW2), 34a Hereford Road, London,W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

SPECIFICATIONS

	TYPE TA401	TYPE TA601	TYPE TA605
GAIN	$40 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$	$60 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$	20,30, 40,50 and $60 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$:
BANDWIDTH $\pm 3 \mathrm{~dB}$	$1 \mathrm{~Hz}-3 \mathrm{MHz}$	$3 \mathrm{~Hz}-1.2 \mathrm{MHz}$	$20-40 \mathrm{~dB}, 1 \mathrm{~Hz}-3 \mathrm{MHz} ; 50 \mathrm{~dB}, 2 \mathrm{~Hz}-2 \mathrm{MHz} ; 60 \mathrm{~dB}$, $4 \mathrm{~Hz}-1.5 \mathrm{MHz}$.
BANDWIDTH $\pm 0.3 \mathrm{~dB}$	$4 \mathrm{~Hz}-1 \mathrm{MHz}$	$10 \mathrm{~Hz}-300 \mathrm{kHz}$	$20-40 \mathrm{~dB}, 4 \mathrm{~Hz}-1 \mathrm{MHz} ; 60 \mathrm{~dB}, 10 \mathrm{~Hz}-300 \mathrm{kHz}$.
INPUT IMPEDANCE	$\begin{aligned} & >5 \mathrm{M} \Omega,<40 \mathrm{pF} \\ & \text { from } 100 \mathrm{~Hz} \text { to } \mathrm{MHz} \end{aligned}$	$\begin{aligned} & >1 \mathrm{M} \Omega,<50 \mathrm{pF} \\ & \text { from } 100 \mathrm{~Hz} \text { to } 300 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & >5 \mathrm{M} \Omega,<40 \mathrm{pF} \\ & \text { from } 100 \mathrm{~Hz} \text { to } 300 \mathrm{kHz} \text {. } \end{aligned}$
INPUT NOISE	$<15 \mu \mathrm{~V}$, zero source; $<50 \mu \mathrm{~V}, 100 \mathrm{k} \Omega$ source	$<15 \mu \mathrm{~V}$, zero source; $<40 \mu \mathrm{~V}, 100 \mathrm{k} \Omega$ source	As TA40I and TA601 at 40 dB and 60 dB .
POWER SUPPLY	PP3 battery,	ife 100 hours	PP9 battery, life 1,000 hours, or A.C. Power Unit.
AVAILABLE OUTPUT	IV up to $1 \mathrm{MHz}, 300 \mathrm{~m}$ $100 \mathrm{k} \Omega$ and 50 pF	at 3 MHz , into load of	1.5 V up to 2 MHz , IV at 3 MHz , into $100 \mathrm{k} \Omega$ and 50pF.
OUTPUT IMPEDANCE	100Ω in series with $6.4 \mu \mathrm{~F}$		
SIZE \& WEIGHT			$2 \frac{1}{2}{ }^{\prime \prime} \times 4^{\prime \prime} \times 5 \frac{1}{2}{ }^{\prime \prime} 2 \frac{1}{2} \mathrm{lb}$.
PRICE with Battery and input lead	$¢ 17.0 .0$	¢17.0.0	427.0 .0 (Optional A.C. Power Unit $\mathbb{E 7} .10 .0$ extra)

PORTABLE INSTRUMENTS

Fully detoiled leoflets are available on our complete range of portable instruments
LEVELL ELECTRONICS LIMITED
Park Road, High Barnet, Herts. Telephone: 01-449 5028 WW-064 FOR FURTHER DETAILS

Mr. Harold J. Leak wishes to engage, as his personal technical assistant, an engineer of high vitality, competence and ambition.

The applicant must be capable of designing transistor amplifiers and stereo FM tuners, along guide lines given by Mr. Leak. He must also be capable of carrying out original work, again as guided, on loudspeaker transducers.

Salary $£ 3,000$ p.a. plus share of profits.
If you are certain that you are technically capable of the job and have the personality to get things done, write to Mr. Leak; please do not waste his time if you are unsure of yourself.
H. J. Leak \& Co. Ltd., Brunel Road, London, W.3.

THE Qdaronis DE-SOLDERING TOOL

Self-contained-does NOT require the use of air-lines or pumps

- Simple, light and inexpensive

PERMABIT nozzle will not wear or become eroded by the solder

- Standard nozzle ${ }_{6 i}^{5}$ in. bore. Alternative inf $_{3}^{3}$ in. bore
- Mains or low voltages

Please ask for colour cotologue $A / 5$
LIGHT SOLDERING DEVELOPMENTS LTD $2 a$ sydenham Road, croydon, cap $2 u$

Solid State U.H.F. Fixed Station

for $\mathbf{4 5 0}$ to $\mathbf{4 7 0} \mathbf{~ M c} / \mathrm{s}$

The Pye F450T u,h.f. base station has a fully transistorised transmitter and receiver, for maximum reliability and minimum size.
The equipment is frequency-modulated, operates from 450 to $470 \mathrm{Mc} / \mathrm{s}$, with 40 to $60 \mathrm{kc} / \mathrm{s}$ channel spacing, and is suitable for use with mobile and Pocketfone radiotelephones.

* Choice of control systems.
* Elimination of relays in transmitter with the exception of aerial changeover.
*Output stage protected against 'no-load' conditions.
* High-stability receiver squelch
circuit eliminates background noise in
the absence of a signal.
*4W nominal r.f. output.
* Remote control facilities.

Type 351 Rack Mounting Units, each £18.10.0.

$5 \frac{1}{4} \times 3 \frac{1}{2} \times 10$ ins., $13.5 \times 9 \times 25 \mathrm{~cm}$.
 WNE
 Weir Electronics

Type 361 Bench Unit, £21.10.0. $5 \frac{1}{2} \times 3 \frac{1}{2} \times 10 \frac{1}{2} \mathrm{ins}_{\mathrm{s}}, 14 \times 9 \times 27 \mathrm{~cm}$.

Type 341 Inbuilt Unit, £17.10.0. $4 \frac{1}{2} \times 3 \times 9$ ins., $11 \times 8 \times 23 \mathrm{~cm}$.

Weir Electronics Ltd Durban Rd Bognor Regis Sussex

Bognor Regis 3606
Telegrams Electron Bognor Regis
WW- 068 FOR FURTHER DETAILS

CHASSIS by
 H. L. SMITH \& CO. LTD.
 Electronic Components - Audio Equipment 287/289 EDGWARE ROAD, LONDON, W.2. Tel: 01.7235891
 We sholl be pleased to quote for all your component requirements:
 BLANK CHASSIS
 SAME DAY SERVICE

Of wer 20 different forms made up to YOUR SIZE. (Maximum length 35 in ., depth 4 in .) SEND FOR ILLUSTRATED LEAFLETS or .rder straight away, working out total area of material req, ired and referring to table below, which is for four-sided chassis in 16 s.w.g. aluminium.
48 sq. in. $4 / 6 \quad 176$ sq. in. 9/10 304 sq. in. 15/2
80 sq. in $5 / 10 \quad 208$ sq. in $11 / 2$ 112 sq. in. $\quad 7 / 2 \quad 240$ sq. in. $\quad 12 / 6 \quad 368$ sq. in. $17 / 10$ 144 sq. in. $8 / 6 \quad 272$ sq. in. $13 / 10$ and pro rata. P. \& P. 2/6. P. \& P. 3/- P. \& P. 4/6.

Discounts for quantities. More than 20 sizes kept in stock for callers.
FLANGES ($\frac{1}{4} \mathrm{in} ., \frac{3}{1} \mathrm{in}$.), 6d. per bend.
STRENGTHENED CORNERS I/- each corner.
PANELS: Any size up to 3 ft . at 6/- sq. ft. 16 s.w.g. (18 s.w.g.
$5 / 3$). Plus post and packing.
and CASES

CASES

ALUMINIUM, SILVER HAMMERED FINISH

Type	e Size	Price		Type Size	Price
U	$4 \times 4 \times 4^{*}$	10/-	Y	$8 \times 6 \times 6 \%$	26/6
\cup	$5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}$	15/6	Y	$12 \times 7 \times 7$	41/-
U	$8 \times 6 \times 6$	21/-	Y	$13 \times 7 \times 9$	46/-
\cup	$9 \frac{1}{4} \times 7 \frac{1}{2} \times 3 \frac{1}{2}$	22/-	Y	$15 \times 9 \times 7$	48/6
U	$15 \times 9 \times 9$	44/6	Z	$17 \times 10 \times 9$	66/-
W	$8 \times 6 \times 6$	21/-	z	$19 \times 10 \times 8 \frac{1}{2}$	71/-
w	$12 \times 7 \times 7$	34/-		Height	
W	$15 \times 9 \times 8$	44/-		Plus post and	

Type U has removable bottom or back, Type W removable front, Type Y all-screwed construction, Type Z removable back and front.

what has changed?

Well, loudspeakers for one thing. Practically all loudspeakers designed in the last few years have (rightly) followed the trend towards lower efficiency and therefore require more power to drive them.
And pickups, too. The trend here is towards smaller and lighter moving parts producing lower outputs, requiring greater sensitivity and improved signal to noise ratio in the pre-amplifier.
QUAD has changed to accommodate both, and has also taken the opportunity of introducing other significant improvements in performance and facilities.

QUAD 33

QUAD 303

() A D for the closest approach to the original sound

Complete the coupon below and post today for full details of the new QUAD

E3Bcheckmate

$10-100,000 \mathrm{~Hz}$ (4 ranges; scale length $8 \frac{1}{2}$ inches each range).\square
Maximum outputs: 25 V rms sinewave, $50 \mathrm{Vp}-\mathrm{p}$ squarewave (continuously variable from 1 mV).

The new Taylor 192A L.F. Oscillator is designed to meet the requirements of engineers checking the performance of amplifiers, transformers, loudspeakers and other devices. Its low distortion (less than 0.5% at 1 kHz) enables you to test both steady-state and transient responses through the audio band and well beyond. Its UK list price is £36.10.0. Trade prices on application.

Complete technical information available from Taylor Electrical Instruments Ltd., Montrose Avenue, Slough, Bucks. Telephone: Slough 21381. Telex 84429.

On show the finest of the world's sound reproduction equipment.

Hear continuous demonstrations of the newest equipment to keep you abreast of all that is latest and best in Pick-ups, Amplifiers, Speakers, Microphones, Stylii, Turntables, Tapes, Tape Recorders . . . plus a huge variety of accessories.

NOT ONLY SUPERIOR SOUND BUT SUPERIOR MANUFACTURE

MOM른 \& SOSEL
Russell Square, London, W.C.1.

ASK FOR COMPLIMENTARY TICKETS

at your nearest AUDIO, RECORD, RADIO or
MUSIC Shop, or send stamped addressed envelope to:
AUDIO HOUSE, 42 Manchester Street, London, W.1.

Pinnacle

The widest ranging and most
comprehensive valve catalogue available from any independent supplier.
PINNACLE ELECTRONICS LTD achilles street - new cross - london s.e. 14
Telephone: All Departments—01-692 7285 Direct orders—01-692 7714

A.D.S. P.O. 3000
SERIES

Through 30 years ${ }^{\text { }}$ I to 4 coils in limitless permutations from $\frac{1}{2}$ milliamp to 20 amps (0.1 to 400 volts) ; Fast, slow, and A.C.
versions; I to 16 contact units (36 springs max.); Standard contacts 0.3 to I amp; Alternatives for switching Dry-state, Inductive, and 10 amp circuits. Insulation from 100 to 4,000 volts; Life up to 100 million operations; Plain or tropical finishes; Approx. dimensions $1 \frac{1}{32}{ }^{\prime \prime} \times 3 \frac{3{ }^{\prime \prime}}{4} \times$ $2 \frac{1}{2}^{\prime \prime}$ max. An A.D.S. 3000 Type to meet all specifications-G.P.O., E.I.D., C.E.G.B., ADMIRALTY, U.K.A.E.A., ALL COMMERCIAL, ETC.

A.D.S. P.I. PLUG-IN 3000 TYPE

Plug-in version, enabling relays to be changed in seconds. Coils and contacts to G.P.O./R.C.S. and varlations: Standard contact insulation is 250 V working: $400 / 750 \mathrm{~V}$ also provided: Bases available ex-stock for immediate production: Fully approved.

A.D.S. P.O. 600 SERIES

Miniaturised 3000 with similar, but restricted specification; only $\frac{3}{4}$ in. chassis space (twelve $=$ nine 3000 Type): 1 or 2 coils: 1 to 6 contact units (14 springs max.). Approx. $\frac{13}{15} \mathrm{in}, \times 3 \frac{5}{6} \mathrm{in}, \times 1 \frac{3}{4} \mathrm{in}$.

A.D.S. LITTLE KING (at right)

Screw-Fix sype 1, 2, 3 and 4 pole. QuickChange (Plug-in Type) 2 and 3 pole 12 and 24 v. D.C. 100 and 240 v. A.C. Ex-stock. Little space required: Screw-Fix 1.7 sq, in. Quick-Change 2.0 sq. in. King size switehing: Screw-Fix 2 kVA , Quick change $1.5-$ kVA, 10 million operations (proof sested to 27 million). Power transter $=1,500$. Max. current gain $=1,400$ (coil to all contaets). LK2C (2 pole screw-fix sype)- 10 amps. 400 volts (1,000 VA max.) per pole. Special ADS minlaturised 600 Type: Single or double windings: 1 to 8 contact units (24 springs max.); Ideally suited to printed circuit and general purpose uses; A sensitive miniature Relay built to suit each specific requirement; Minimum operation below 50 milliwatts (3 mA in $5,000 \Omega$ coll). A.C. colls available. Approximate dimensions: $\frac{3}{4} \mathrm{in} . \times 1 \frac{1}{4} \ln . \times$ $2 \frac{1}{4} \mathrm{in}$. (plus tags).

- HIGH PERFORMANCE OCOMPACT MODULAR CONSTRUCTION ORACK OR CONSOLE MOUNTING

MODULAR AUDIO MIXERS

Model MXT/6 Assemblies offer a combination that wir fulfil every requirement for pre-amplifiers and mixing. From 4 to 22 channels can be utilised each with its own independent Gain control and with overall Master Gain, Treble and Bass controls.

MODULAR AUDIO AMPLIFIERS

Audio Power Amplifiers having outputs of from 10 to 80 watts and to operate in conjunction with MXT/6 Mixing Assemblies. Silicon Transistorised throughout-stable high performance-overload and output protectiondistortion better than $.5 \% 20 \mathrm{~Hz}$ to 15.000 Hz -output 15 ohm and 100 volt to line

For mounting in Cabinet Rack or Console on 19 standard panels-finished gun metal two tone blue or to requirements-Microphone. Tape, Gramophone. Radio and Priority Tone Signal Modules.

Mtegrated Mixer/Amplifiers Models A25-30 watts, and A80-60 watts, having inputs for two Microphone Channels balanced at 30 ohm. Auxiliary inputs for Microphone, Gramophone and Tape. each channel independently controlled. Overall Master Gain Control. Treble and Bass tone controls giving $\pm 12 \mathrm{db}$ lift and cut.

1 RADFORD

AUDIO LABORATORY INSTRUMENTS

LOW DISTORTION OSCILLATOR (Series 2)

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Specification

Frequency Coverage:
Output Impedance: Output Voltage:
Output Attenuation:
Sine Wave Distortion
$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges) 600 Ohms.
10 Volts r.m.s. max. 0.110 dB continuously variable. 0.005% from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz .
Square Wave Rise Time: Monitor Output Meter: Mains Input:
Size:
Weight:
Price: Less than 0.1 microseconds.
Scaled 0-3, 0-10, and dBm.
$100 \mathrm{~V} .-250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$.
$17 \downarrow \times 11 \times 8$ in.
25 lb.
\& 125 .

Rack mounting version available.

DISTORTION MEASURING SET (Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specification

Frequency Range:
Distortion Range:
Sensitivity:
Meter:
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Weight:
Price
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges). $0.01 \%-100 \%$ f.s.d. (9 ranges). 100 mV . -100 V . (3 ranges). Square law r.m.s. reading. 100 kOhms.
3 dB down to 350 Hz . 3 dB down to 35 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonic of rejection frequency to 250 kHz Included battery.
$17+\times 11 \times 8 \mathrm{in}$.
15 lb.
$\ell 90$

Rack mounting version available.

VOLTMETER (new item)
A transistor operated voltmeter satisfying the requirements for audio frequency measurement.

Specification

Sensitivity:
Calibration Accuracy:
Frequency Response:
Input Impedance:
Meter Scaled:
Power Requirements:
Slze:
Weight:
1 mV .300 V. f.s.d. (12 ranges). 2\% f.s.d.
$\pm 1 \mathrm{~dB} .10 \mathrm{~Hz}-500 \mathrm{kHz}$.
I MOhm. I mV.-300 mV.
10 MOhm . I V.-300 V.
$0-3,0-10$, and dBm .
Included battery.
$11 \frac{1}{2} \times 6 \frac{1}{2} \times 6 \mathrm{in}$.

Price:
I

RADFORD LABORATORY INSTRUMENTS LTD

Ashton Vale Road Bristol 3

The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the polishing of the contacts is achieved by a gentle brushing motion. With coloured nylon handle for complete insulation and easy size identification.

Manufactured in France British Patents applied for

Grain size 200, thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial relays and switching equipment, etc.
Grain size 300 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like telephone relays, computer relays, etc.

- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$,, one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive.

Sole Distributors for the United Kingdom

SPECIAL PRODUCTS (DISTRIBUTORS) LTD

 81 Piccadilly, Londoñ, W.l. Phone: 01-629 9556.

WW-079 FOR FURTHER DETAILS

MINIMUM SPACE DECADE BOXES

Small enough to put in your pocket (but too useful to keep there) the new Hatfield Capacitor Decade Boxes Type 688A has been developed for use by design engineers for circuit tolerancing and similar applications. The unit is exceptionally compact, measuring only $5 \frac{1}{2} \mathrm{in} . \times 1 \frac{5}{8} \mathrm{in}, \times 2 \frac{1}{2} \mathrm{in}$, and provides a rapid means of capacitor selection over the range 100 pF to $1 \mu \mathrm{~F}$. Accuracy is better than 5% at any setting.

Aiso now avallable in identical size cases to the above, are the new Hatfield Miniature Resistance Decade and Switched Attenuators Types 687A, 687B and 687E. WRITE NOW FOR ILLUSTRATED LITERATURE AND FOR YOUR COPY OF THE NEW HATFIELD SHORT FORM CATALOGUE.
HATFIELD INSTRUMENTS LTD.,
Dept. WW, Burrington Way, Plymouth, Devon. Telephone: Plymouth (0752) 72773/4 Grams: Sigjen Plymouth.

Some of the many TR and TB Cells available from EEV

TR CELLS

TYPE no.	SERVICE TYPE	bano	freouency RANGE (MH2)	PEAK POWER (kW)	$\begin{aligned} & \text { MAXIMUM } \\ & \text { V.S.W.R. } \end{aligned}$	MAXIMUN INSERTION LOSS \{da\}	maximum RECOVERY TIME TO 6dh ($\mu \mathrm{s}$)
BS390	CV9442	S	2925-3075	1250	1.33	1.0	15
BS800	-	S	2840-3100	1250	1.2	0.8	15
BS824*	-	S	2700-3100	250	1.25	0.4	15 to 3db
BS156	CV2306	X	9000-9600	200	1.2	0.8	4.0
BS452	-	X	9310-9510	100	1.3	0.8	4.0
BS810 \dagger	-	X	9250-9550	75	1.4	0.8	4.0
BS850	-	X	9300-9500	50	1.2	0.7	4.0

* For protection of travelling wave lube amplifiers
\dagger Tunable
TB CELLS

TYPE NO.	SERVICE TYPE	BAND	RESONANT FREOENCY (MHz)	OPERATING POWER (KW)	MAXIMUM LOADE 0	MAXIMUM V.S.W.R.
BS310	CV6070	X	9375	$5-200$	6.5	1.1

SOLID STATE WAVEGUIDE SWITCHES
(a suitable 'drive unif' BS402 is available from EEV)

TYPE NO.	BAND	freouency RANGE (MH2)	bano WIOTH (MH2)	ATtENuATION AT CENTRE freouency (db)	MAXIMUM PEAK PULSED LINE POWER (kW)	TYPICAL OPERATING VOLTAGE (V)	MAXIMUM OPERATING CURRENT (mA)
BS392	S	$\begin{aligned} & 2925 . \\ & 3075 \end{aligned}$	150	0.25-25.0	0.5	0.85	30
BS460	X	$\begin{aligned} & 8500 \text { to } \\ & 12000^{\circ} \end{aligned}$	100	1.0-25.0	0.5	0.85	30

* Set to customers' requirements within this range

TR LIMITER CELL

TYPE NO.	SERVICE TYPE	BAND	fREOUENCY Range (MHL)	PEAK POWER (W W)	MAXIMUM V.S.W.A.	MaxImum INSERTION LOSS (db)	MAXIMUM RECOVERY TIME TO 3db (/as)	MAXIMUM LEAKAGE, HIGH POWER SPIKE (erg/pulse)
BS814	CV6192	X	9000-9700	200	1.3	0.8	3.0	0.02

EEV can provide you with any type of TR \& TB cell you want, whether your radars are marine, airborne or high power. The standard range, which also includes microwave switches for use in S- and X-band duplexer systems, covers narrowband, broadband and tunable types. If, however, you have something special in mind EEV can probably make that too. Details of the standard range are available on request.

YOU WANT PARTS URGENTLY -almost immediately!

So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business

We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require. Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072

EDDYSTONE COMMUNICATION RECEIVERS

For the Professional or Amateur user who llikes the Best.

hire purchase terms

Model	Cash			Deposit		$12 \mathrm{~m}$	nthl of		$\begin{aligned} & \text { Tot } \\ & \text { H.P. } \end{aligned}$	F					$\text { H. }{ }^{\text {To }}$	ota	
EC10	£53			$\mathbf{\$ 1 5}$		£3	8	2	¢55	18	0	\&1	19	2	\&62	0	0
840 C	\&66			$\$ 1610$	0	¢4	8	9	£69	15	0	\&2	7	6	£73	10	0
EB35	£60	6	3	E15 6	3	44	0	7	863	13	3	£2	3	0	¢66	18	3
940	£133			E34			17	3	£140	7	0	\& 4	14	9	8147	14	0
EA12	¢185			¢47		\&12	7	3	£195	7	0	86	12	3	£205	14	0
Payments over 30 months if desired.																	
CARRIAGE PAID																	

SRNDCISTAMPFOR LITERATERE The Eddystone Specialists
SERVICES LTD.
51 COUNTY ROAD LIVERPOOL, 4

ESTAB. 1935

WW-083 FOR FURTHER DETAILS

The "MIRACLE" Range of Soldering Irons fitted with the Bi-Metal, Steel held Solid Silver Bit.

> 8 Models-Any Voltage.
> Over 150 type bits.
> 6 v . to 240 v.
> 10 W. to 500 W.

LONG LIFE BITS.
EASY BIT/ELEMENT INTERCHANGE. NO MAINTENANCE IN USE. PERMANENT BIT SHAPE AND SIZE.

One Customer writes: ". . . This iron has been in continuous use for about EIGHT MONTHS and it would appear that it now needs a new bit."

We claim long life
Our customers PROVE it.
Now new formula Multigrade Solders.

LONDTRA LTD. Kelway Works,
Kelway Place, London, W.I4. Tel: (01) 3857606.

Continuous Rating 140z. at ${ }_{4}^{3}$ in Instantaneous up to $5^{\frac{1}{2}} \mathrm{l}$ b.

Fitted with stainless steel guides-6 tımes the life. Larger and smaller sizes available-also transformers to 8 kVA 3-phase.

KNAPPS LANE, CLAY HILL. BRISTOL 5. TELEPHONE 65-7228/9 WW-085 FOR FURTHER DETAILS

3A MINIATURE AXIAL RECTIFIERS
 IN4I39-IN4143
 NEW TO RASTRA'S RANGE

Meet all MIL S-19500 environmental specs.
Average D.C. Forward current 3.0A@50 ${ }^{\circ} \mathrm{C}$.
Leakage Max.@D.C. Reverse Voltage $25 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
$500 \mu \mathrm{~A} @ 100^{\circ} \mathrm{C}$.
Forward Drop@3.0A
$1.2 \mathrm{~V} @ 25^{\circ} \mathrm{C}$.
1.0 V @ $100^{\circ} \mathrm{C}$.

IN4I39 (50V) IN4|42 (400V.)
IN4140 (l00V.) IN4143 (600V.)
IN4I4I (200V.) Prices and data available on request, as also our Short Form Catalogue/Price List.

IMPORTANT TITLES

the tape recorder
C. G. NIJSEN. Second edition.

Written for the growing number of enthusiasts, it shows how the best possible results can be obtained from a recorder, whether it is used for pleasure or business or educational purposes-at home or in a school. Includes chapters on sound recording and reproduction, basic principles and theory of the tape recorder, acoustics, stereophony, choice of recorder and applications. The second edition has been updated and expanded. 172 pp . Illustrated. 15 s net 15 s IId by post.

the electron in electronics

Modern Scientific Concepts for Electronic EngIneers.

> ILIFFE BOOKS LTD.

The author, as an electronic engineer has related the modern concepts to the things a student of electronics is likely to know already, and expresses them in familiar terms and symbols. The standard of mathematics and general physics assumed is at most.G.C.E. A' level. The book is intended to be an introduction and perhaps a supplement to more formal and mathematical treatments, and particular attention has 42 RUSSELL SQUARE, been given to questions and difficulties that may arise. In The Electron in Electronics, M. G. Scroggie, LONDON, W.C.1. whose books on radio and electronics have sold over a quarter of a million copies, and whose Foundations of Wireless has helped generations of students in their first steps, shows his ability to present this intrinsically difficult subject vividly and clearly. 276 pp. 132 Illustrations. 45 s net 46 s Id by post.
 ww-088 FOR FURTHER DETAILS

WW-089 FOR FURTHER DETAILS

DEANSWOOD SHOPPING CENTRE, RAINHAM, KENT

comprising

SUPERMARKET-Let to Pricerite Ltd., and 25 SHOPS

Reservations include multiple retailers and banks

ONLY 6 SHOPS REMAIN

Frontages 18 ft . Depths 40ft.
RENTS $£ 1,000$ p.a. excl.

Apply Joint Letting Agents

WEATHERALL, GREEN \& SMITH

22 Chancery Lane, London W.C.2.
$01-4056944$
and
HILLIER PARKER MAY \& ROWDEN
77 Grosvenor Street, London W.1.
01-629 7666

MODEL 50 - ATR 50 - watts AC/Bat. Transistorised amplifier

TRANSISTORISED P.A.AMPLIFIERS

Ahuja manufactures 6 models to cover complete range with power outputs from 10 -watts. to 50 -watts. 3 models work from A.C mains and 12 Volt Battery. All are provided with protective circuit to ensure absolute reliability.

MODEL A - 80 HF 100 -watts professional amplifier

PROFESSIONAL P. A. AMPLIFIERS

4 Models are available with outputs from 18 - watts to 100 - watts for professional standard performance and all types of indoor \& out door installations.

WIDE CHOICE IN MICROPHONES

Ahuja offers a microphone for every P.A application. 2 unidyne models and 2 Dynamic omnidirectional models are available.

AHUJA LOUDSPEAKER SYSTEMS

Ahuja's high quality breakdown - proof loudspeakers are availible to suit every P. A.installation

Ahuja Sound Equipments are built to international stondards. These are most competitively priced and are morketted in over 20 countries. Ask for latest export catologue \& prices

with plug-in amplifiers

D43 is a double-beam laboratory oscilloscope with a 4 in . doublegun aluminised PDA tube, operating at 4 kv . Alternative time bases are available: T41, calibrated 18 speeds, and T42, calibrated 22 speeds with singleshot facility and a DC coupled X amplifier. Both have comprehensive triggering systems. Six plug-in Y amplifiers are already available-General Purpose, Differential, Ultra High Gain, Envelope Monitor, General Purpose Differential, and Wide Band. With General Purpose (type A) Y amplifiers and T41 time base, D43 weighs
only 36 lbs., costs only £125. This versatile 'scope is part of a still more versatile system, which also includes the S43, a single-beam version, and the D53, an advanced instrument with rectangular double beam mesh tube and sweep and signal delay facilities. The D53 accepts all six Y amplifiers, plus two special signal delay models. The entire $43 / 53$ system is set out in our short form catalogue-together with nine other portable 'scopes, priced from £23 10s. All prices quoted apply to the U.K. only.

TelequipmenT

Telequipment Ltd. Southgate . London N14. Phone: 01-822 1166

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL

Editorial:

B. S. CRANK

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
J. R. EYTON-JONES

Iliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Dorset House, Stamford Street, London, SE1

CIliffe Technical Publications Ltd., 1968. Per

 mission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this iournal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.
CONTENTS

1 Trade Balance or Imbalance?
2 New B.B.C. Monitoring Loudspeaker by H. D. Harwood
5 Books Received
6
9 "Doctoring" Recorded Sound
10 Electronics in Concorde
15 News of the Month
18 Personalities
20 Announcement : March Conferences and Exhibitions
21 An Evening of Sonic Effects
22 Power Supply Stabilization Module by P. R. Adby
24 Kelvin Cables by G. W. Short
26 Letters to the Editor
28 Transistor is Twenty Years Old
29 Letter from America
30 Time-Controlled Combination Lock by J. F. C. Johnson
31 Literature Received
32 Technical Notebook
33 World of Amateur Radio
34 Electronics in Typesetting by R. F. Southall
37 South Africa-Europe Submarine Cable
38 Smaller D.C. Converters and Inverters
by 7. R. Nowicki
42 H.F. Predictions
43 Forthcoming Events
44 March Meetings
45 'Real and Imaginary by "Vector"

[^8]

AM/FM modules give you design flexibility

Mullard now offer you in a single can any major circuit function found in a portable or mains radiogram. Take the LP1169 AM/FM tuner for example. It covers 87.5 to 108 MHz on FM, short, medium and long
wavebands on $A M$, operates on 9 V , is fully screened and has a.f.c. All in one module.
The Mullard module approach gives you design flexibility and the best overall performance-we make the
components, we assemble them into the modules. And on such a scale that price and quality are the best.
Our range is the widest available. We've simplified external and inter-stage circuitry as far as possible without sacrificing design flexibility. The range includes modules to cover the requirements of $A M$ and $A M / F M$ receivers plus audio output modules up to 10 W . A special publication on the LP1169 and other Mullard modules which also gives full application information, is available to manufacturers.
Tick the coupon for a copy.

Everyone knows we make tubes, but did you know we make scanning coils too?

It makes good sense. You get a better match if they are both from the same source. We go to great lengths to get an optimum match between tubes and coils. We produce scanning coils for all our many Panorama and Pushthrough monochrome picture tubes. Manufacture is strictly controlled to
ensure consistent quality. Setting up is therefore greatly simplified. Compensation for frame shrinkage, due to rises in temperature, is incorporated. If any horizontal pin-cushion distortion or mis-shape at the corners of the raster should occur, this can be corrected with
extra magnets fitted to the coil housing. Of course our scanning coils for colour TV are produced to the same high standard. Technical information on the monochrome scanning coil AT1030is availableto manufacturers. Tick the coupon for a copy.

Time well spent

There can't be many firms who've been in business as long as we have, who have used the time to such advantage. Our past experience guides our future plans; provides us with an insight into the industry we serve ; allows us to anticipate needs and deploy our resources over the most fruitful areas of research and
development-and thereby provide modern, technically excellent products ready for the demands of tomorrow. We have co-operated in
so many consumer electronics projects that it's quite likely we are working along similar lines to yours. So why not get in touch?

This is the size of the big development in connectors!

This miniaturised version of the famous McMurdo Red range provides 26 connections - two more than any other connector of comparable size - plus improved rellability. Only a quarter the size of the Red range, the entire REDETTE range has $16,26,38$ and 52 way versions. Now available. Moulded in D.A.P., with hard gold-plated contacts. Current rating 3 amps per contact, contact resistance under 10 milli-ohms, minimum proof voltage 1,500 volts peak.

THE MCMURDO INSTRUMENT CO. LTD., RODNEY ROAD. PORTSMOUTH, ENGLAND TELEPHONE PORTSMOUTH 35361. TELEX 86112
LUGTON \& CO. LTD., 209/210 Tottenham Court Road, London. W. 1 Telephone Museum 3261
SASCO, P.O. Box No. 20. Gatwick Road, Crawley, Sussex
(also Chipping Sodbury 2641, Cumbernauld 25601. Hitchin 2242)
THAILAND Charray International Inc., Ltd., 28-30 New Road, (Siyek Phya Sri.), Bangkok
U.S.A. Trans Atlantic Electronics Ltd., 1789 Cardinal Avenue, Dorval, Quebec

WW- 095 FOR FURTHER DETAILS

Werrethe firm withallthebest connections

So doesn't it make sense to go a bundle on them?

Wrap up all electronic assembly problems in one swift operation.

We've done our best to make it easy for you by devising some 5,000 connecting devices of one sort or another. And backing them with an endless amount of ingenuity.

So whether you're connecting a printed circuit, fastening a chassis, or simply linking a plug and socket we'll show you the quickest and simplest way of doing it.

And that goes for all your connecting problems - not just electronic, but mechanical and electrical as well. Our sort of ingenuity knows no bounds and accordingly, our range stops at nothing I

Go a bundle on it and you'll be helping yourself to the best connections in the business.

You can't do better than that now, can you?
the firm with the best connections

UNITEO.CARR GROUP
Stapleford, Nottingham. Telephone: Sandiacre 2661 Sales Offices: Wembley, Birmingham, Sale, Glasgow

SALES NOW EXCEED £10,000,000

More and more countries are buying Marconi Self-Tuning h.f systems...

and one good reason is:

ECONOMY IN SKILLED MANPOWER

- Centralized station control by one man who need not be technically skilled.
- Full remote control of transmitting and receiving complex extends this concept to allow complete stations to be unmanned on a routine basis.
- Built-in MST reliability means that only a nucleus of high grade technicians required to service a full h.f complex.
- Reduction of manpower requirements can be of the order of 5 to 1 .

and other good reasons are:

Reduced capital outlay

MST designs reduce demands for space, and need for standby equipment. Installation costs are decreased.

Increased reliability

Maximum use of solid state techniques plus the use of wideband amplifiers reduces number of moving parts, gives higher reliability and longer equipment life.

Traffic interruption reduced

Frequency changes and retuning accomplished in less than one minute without loss of traffic.

World-wide acceptance

30 countries throughout the world have ordered more than $£ 10,000,000$ worth of MST equipment to improve their communications services.

Marconi telecommunications systems

There's a BRIMAR tube to meet the needs of every oscilloscope designer-ranging from general purpose tubes of medium bandwidth to tubes designed specifically for exacting applications requiring features such as short length, wide bandwidth or dual phosphors. Face plates range from $8 \frac{1}{2}$ " large displays to $1^{\prime \prime}$ types for numerical and indicator presentations including the latest $7 \times 5 \mathrm{~cm}$ rectangular size.

PIIRSONALISIID TMECHNICAL SERVICDE

Every BRIMAR oscilloscope tube is backed by a firstclass technical service and assistance on any type of problem involving it-from special characteristics to circuit design. BRIMAR engineers are always available - contact is on a personal level. Just phone or write.

The BRIMAR D13-51GH is a modern Mesh P.D.A. $6 \times 10 \mathrm{~cm}^{2}$-area tube, which gives improved brightness, higher deflection sensitivities and higher ratios of screen to deflector voltage with no shrinkage of raster area. The D13-51 GH displays single phenomena up to 30 MHz bandwidth and is suitable for use with transistorised circuits. It needs fewer control voltages than other mesh tubes. Length is only $13 \frac{1}{4}{ }^{\prime \prime}$.

We shall be pleased to let you have full details of the BRIMAR D13-51GH and the rest of the interesting range of BRIMAR industrial cathode ray tubes.

Thorn-A.E.I. Radio Valves \& Tubes Ltd.
7 Soho Square, London W1. Telephone: 01-4375233

69 F Tantalum Capacitors are now made in Britain by EMIHUS Microcomponents Limited at their Glenrothes factory.
What does this mean to you? Plenty!
You are now assured of a regular and reliable source of supply-no import problems.
Then, the EMIHUS 69 F Tantalum Capacitors are smaller and less expensive than similar capacitors obtainable in Britain. And these EMIHUS 69 F Capacitors glve the lowest leakage current of all and are manufactured under the
 strictest quality control conditions. Approval to DEF 5134 A-4 is pending. For full details write or 'phone to:
EMIHUS MICROCOMPONENTS LIMITED
Sales Office:
Heathrow House, Bath Road, Cranford, Hounslow, Middx.

WW-100 FOR FURTHER DETAILS

RECEPTION SETS R220/R220 These comprise two crystal controlled AM each other on one spot frequency in the band $60-100 \mathrm{Mc} / \mathrm{s}$., with built-in monitor speaker. They are housed in one metal cabinet, size $21 \frac{1}{2} \times 12 \frac{1}{\frac{1}{2}} \times 18$ tin, and ready for immediate mains operation ($200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$.). Supplied BRAND NEW in original crate, complete with spares and manual, E20, Carr. 50/-: POWER UNIT TYPE 24 FOR R. 216 RECEIVER. A.C. operated 100-125 or 200-250 volts $50 \mathrm{c} / \mathrm{s}$. BRAND NEW AND BOXED. C9/I9/6. Carr. $10 / 6$.
FILTER VARIABLE BAND PASS No. I, Dual channel unit, each channel has variable slor frequency of $500-900 \mathrm{c} / \mathrm{s} ., 1,200-1,600 \mathrm{c} / \mathrm{s}$., and band pass facility. monitor input and high impedance output jacks. Standard rack mounting 3 tin. deep panel. Mains operatlon $200 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. BRAND
 boxed 25/-. Post $2 /$.

BC-22I FREQUENCY METERS Complete with crystal and valves. In perfect
working order but WITHOUT calibration working order bue WITHOUT calibration
charts. $£ 9 / 19 / 6$. Carr. $10 / 6$. charts. $t 9 / 19 / 6$. Carr. $10 / 6$

X'TALS
100/1,000 K K / s. 10 X size 3-pin, as used in Class D Wavemeter. Brand New, boxed 21/- each. Post 1/-.
$200 \mathrm{kc} / \mathrm{s}$ American G.E.C. $\frac{1}{2} \mathrm{in}$. pins suitable $7 / 6$ each. Post $1 /$.
V.H.F. SIGNAL GENERATOR MARCONI TF-80IA/I. Covers 10 to 310 Mc / s. (4 bands). DIRECTLY calibrated. Int. Mod, at $400,1,000$ and $5,000 \mathrm{c} / \mathrm{s}$. Attenuated or force output. Guaranteed overhauled, accurate and in perfect working order. 635. Carr. El .
BEAT, FREQUENCY OSCILLATORS.
MARCONI TF-195M. Covers 10 cps . to
$40 \mathrm{kc} / \mathrm{s}$. in two sweeps. 0 to $20 \mathrm{kc} / \mathrm{s}$. and
20 to $40 \mathrm{kc} / \mathrm{s}$. Output 2 wates into 600
or 2,500 ohms. Panel meter indicates output
voltage. A.C, mains operation 100 to 250
$\begin{aligned} & \text { volts. First class } \\ & \text { £20. Carr. 30/-. }\end{aligned}$

AMERICAN HEADSET TYPE HS-30-U 600 impedance. BRAND NEW and boxed 5/., postage $2 / 6$.

DISTORTION FACTORMETER

 MARCONI TF.142E. This instrument measures the percentage of total harmonic distortion in the fundamental frequency range 100 to $8,000 \mathrm{c} / \mathrm{s}$. The lowest scaleengraving is 0.05% Will handle 2 watts engraving is 0.05%. Will handle 2 watts
(continuous) and willgive satisfactory readings (continuous) and wiligive satisfactory readings with only I mW input. Mains operated: Output impedance 600 ohms. Very good condition. 229. Carr, 20/-

CA MICROAMMETERS

R.C.A. 0.500 microamps. 2 in. circular Tlush panel mounting. Dials are engraved
$0-15,0-600$ volts. As used in the Amerizan version of the No. 19 set. BRAND NEW and boxed $15 /-$. P. \& P. $1 / 6$

AR- 88 SPARES
Knobs, Medium size, Set of $8 \ldots$
Knobs, Medium si
Knobs, Large size
Mains Trans. (L.F.) (postage $9 /-$)
Escutcheons (Windows)

10/-

```
240 v. A.C.NIATURE RELAYS
240 V. A.C. coils. Contace assembly
"makes" and I C.O. 5 amps. Size 2 }\times17\frac{1}{2}
```



```
equipment 8/6 post paid.
```


MOVING COIL PHONES

 quality Canadian with and leather-covered headband. With lead and jack plug. Noise excluding and supremely comfortable, 22/6. As above but complete with moving coil microphones 25/.. DLR-5 Low impedance headphones with attached throat microphone. $12 / 6$. All these items BRAND NEW. Postage extra $2 / 6$.```
CINTEL NUCLEONIC SCALERS Nos, 36402 and 36411 . Unused with handbook. List Price \(£ 300 / £ 320\). Our Price \(£ 65\).
```

CRT Type 89D as used in the Cossor 1035 Oscilloscope. Brand New 59/6. P. \& P, 4/6.

## ADVANCE TEST EQUIPMENT

H1B Audio Signal Generator J1B Audio Signal Generator J18 Audio Signal Generator
J2B Audio Signal Generator TT1S Transistor Tester.
TT1S Transistor Jester........
VM76 AC/DC Valve Voltmeter VM77C AC Millivoltmeter VM78 AC Millivoltmeter (transistorised) VM79 UHF Millivoltmeter (transistorised)

830 These are current production, manuractured in U.K by Advance Electronics Ltd. (not discontinued models) Showing a saving of approximately $33 \frac{1}{2} \%$ on nett trade price. BRAND NEW, all in original sealed carton Carr. 10/- extra per item. Special offer of $10 \%$ discount for schools and technical colleges, etc. UNIT. Operates from 6-8 volt D.C. supply Output 300 volts, 90 ma. Brand new, boxed complete with leads. $15 /$, postage $7 / 6$.

ADVANCE POWER UNIT TYPE DCA 12 volts D.C. 4 amps output. A.C Main peration $200-245$ voits $50 \mathrm{c} / \mathrm{s}$. Brand new Boxed, 820 . Carriage $10 / 6$.

INDUSTRIAL METER, Iron clad. 0-300 volts A.C. $50 \mathrm{c} / \mathrm{s}$. Moving iron, 6 in . scale FI. mtg. Brand new, boxed, 59/6, postage 7/6.

SIGNAL GENERATOR CT- 218 (FM/ AM). MARCONI TF 937.
Covers $85 \mathrm{Kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. in 8 switched ranges. Effective length of film scale is 50 ft. Outpur level variable in I dB steps from $1 \mu V$ to $100 \mathrm{mV}(75 \Omega)$. Also IV Outputs down to $0.1 \mu \mathrm{~V}$ from an outlet at $7.5 \Omega$. Int. mod, at $400 \mathrm{c} / \mathrm{s}$. . I Kc/s., $1.6 \mathrm{Kc} / \mathrm{s}$. and $3 \mathrm{Kc} / \mathrm{s}$. FM at frequencies above $394 \mathrm{Kc} / \mathrm{s}$. Variable mod. depth and deviation. Crystal calibrator 200 $\mathrm{Kc} / \mathrm{s}$ and $2 \mathrm{Mc} / \mathrm{s}$. Monitor speaker for beat detection. Fully metered, blower cooted, to 250 volts, 45 to $100 \mathrm{c} / \mathrm{s}$. $17 \times 20 \frac{1}{5} \times$ $17 \frac{1}{2}$. Weight 117 lbs . Fully tested and guaranteed. Fraction of original cost. 865 . Carr. 50\%.
T.C.C. METALPACK CONDENSERS. 0.1 mid. 500 v. D.C. wkg. at $70^{\circ} \mathrm{C}$. Brand new, polythene wrapped, $7 / 6$ doz., or EZ per 100
T.C.C. METALMITE 350 v. D.C. wkg. 0 . mfd. (CP37N); 0.05 mfd . (CP35N); 0.91 mfd (CP.32N) all at $5 / 6 \mathrm{doz}$. or $32 / 6$ per 100 . SPRAGUE METAL CASED CONDEN SERS 0.01 mid . $1,000 \mathrm{v}$. D.C. wkg., 5/6 doz or $32 / 6$ per 100
T.C.C. VISCONAL CONDENSERS. 8 mfd .800 v . D.C. wkg. at $71^{\circ} \mathrm{C}$. CP 152 v
Size $3 \times 17 \times 5 i n$, high. BRAND NEW Size $3 \times 1 \frac{13}{} \times 5 \mathrm{in}$. high. BRAND NEW
(boxed), $8 / 6$ each. DUBILIER. 4 mfd (boxed), 8/6 each. DUBILIER. 4 mfd
600 v . Wkg. CP 130 T or similar $1 \frac{3}{2} \times \frac{3}{2} \times$ 600 V . wkg. CP 130 T or similar $1 \frac{3}{2} \times 1 \frac{3}{x} \times$
$4 \frac{1}{2}$ in. high. BRAND NEW (boxed), $4 / 6$ each 4atin. high. BRA
All post paid.
STANDARD TRANSFORMERS
Vacuum impregnated, interleaved. E.S
screen, universal mounting. Size $4 \times 3 \frac{1}{x} \times$
$\begin{aligned} & 2 \frac{1}{2} \text { in. ALL BRAND NEW. 24/-each. Post } 4 / 6 \\ & \text { Type 1. } 250-0-250 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{y}, 3.5\end{aligned}$
$\begin{aligned} & \text { Type } 1 . \\ & 6.3 \mathrm{v} .1 \text { a., tapped at } 2 \mathrm{k} \text { a. }\end{aligned}$
$\begin{aligned} & \text { 6.3 v. a., tapped at } 2 \mathrm{a} \text {. } \\ & \text { Type 2. As above but } 350-0.350 \mathrm{v} .80 \mathrm{~mA} \text {. } \\ & \text { Type 3. } 30 \text { y. } 2 \text { a. tapped at } 12,15,20 \text { and }\end{aligned}$
$\begin{aligned} & \text { Type 3. } 30 \text { v. } 2 \text { a., tapped at } 12, \\ & 24 \mathrm{v} \text {. } 0 \text { give } 3-4-5-6-8-9-10 \text { v.. etc }\end{aligned}$
Type 5. 0-6-9-15 v. 4 a. Ideal for chargers.


LOW CAPACITANCE BRIDGE
MARCONI TF. 1342 . Range 0.002 pF . to $1,111 \mathrm{pF}$. Accuracy $0.2 \%$. Three terminal transformer ratio arm bridge allows "in situ" measurements. Internal oscillator frequency $1.000 \mathrm{c} / \mathrm{s} .12 \times 17 \times 8 \frac{1}{2} \mathrm{in}$. Weight $15 \frac{3}{2} \mathrm{lbs}$. A.C. mains 200 to 250 and 100 to 150 V. $40-100 \mathrm{c} / \mathrm{s}$. BRAND NEW. List Price f 120 . Our Price $£ 45$

## VIKING AMPLIFIER

50 WATT AMPLIFIER An extremely reliable general purpose valve a mplifier. construction yet space age styling and design makes it by far the best TECHNICAL SPECIFICATIONS 4 electronically mixed channels, the use of 8 separate instruments at the same time. The volume controls
 for each channel are located directly above the sorresponding input sockets. SENSITIVITIES AND INPUT IMPEDENCES
CHANNEL 4 mV . AT 470 K . . These 2 Channels ( 4 inputs) are suitable for CHANNEL 3200 mV . AT 1 m . Suitable for guitars. CHANNEL 420 cmV . AT m . INPUT SENSITIVITY RELATIVE TO IOW OW OUTPUT.
TONE CONTROLS ARE COMMON TO ALL INPUTS.
BASS BOOST + 12 dB AT $60 \mathrm{Hz/s}$. BASS CUT - 13 dB AT $60 \mathrm{~Hz} / \mathrm{s}$. TREBLE BOOST +11 dB AT $15 \mathrm{kHz} / \mathrm{s}$. TREBLE CUT -12 dB AT $15 \mathrm{KHz} / \mathrm{s}$. WITH BASS AND TREBLE CONTROLS CENTRAL - 3 dB POINTS ARE $30 \mathrm{~Hz} / \mathrm{s}$. AND $20 \mathrm{KHz} / \mathrm{s}$.
POWER OUTPUT
FOR SPEECH AND MUSIC 50 WATTS RMS. 100 WATTS PEAK,
FOR SUSTAINED MUSIC 45 WATTS RMS. 90 WATTS PEAK,
FOR SINE WAVE 38.5 WATTS RMS. NEARLY 80 WATTS PEAK,
 TOTAL DISTORTION AT 20 WATTS $0.15 \%$ SPE SPER SYSTEM.

> NEGATIVEFEED BACK 20 dB AT I $\mathrm{KHz} / \mathrm{s}$. SIGNAL TO NOISE RATIO 60 dB .

SIGNAL TO NOISE RATITble from $200-250 \mathrm{~V}$ A.C. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located at the rear of
UALIVE LINE UP: Double purpose ECC8 $\times 3$ EL34 $\times 2$ and GZ 34 .

## STAR SR 150 COMMUNICATIONS RECEIVER

Frequency range $535 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ four wave bands, four valve plus metal rectifier superhe circuit incorporates B.F.O. band spread tuning, " $S$ " meter external telescopic aerial-ferrite aerial, built-in 4 in . speaker, easy to read dial. For 240 v . A.C. operation, complete brand new with full instruction manual. $\subset 17 / 17 /=+10 /-$
 p. \& p.

## NEW! The DORSET TRANSISTOR PORTABLE RADIO with BABY ALARM Facilities

Special offer-Power Supply Kit to purchasers of Dorset Portable Radio parts incorporating mains tarnsformer, rectifier and smoothing condenser, AC
mains $200 / 250 \mathrm{v}$. output 9 v . $100 \mathrm{~mA} \ldots . .9 / 6$ extra. PRICE
85.5.0 $\begin{aligned} & \text { Plus } 7 / 6 \\ & \text { P. \& P. }\end{aligned}$ Circuit and parts list 2/6, free with parts. 600 mi:lt-watt solid state 7 transistor plus diode and thermistor. Completely modulised high quality portable radio eaturing complementary N.P.N. and P.N.P. output stage. The comprehensive easy-to-follow the following supplied

* Simple connections to only 6 tags on the R.F./I.F. module, 3. I.F stages, ose coil and 3 transistors which, with heir associated components are completely wired.
* Only 4 connections on the A.F. 600 milli-watt solid state amplifier
* Pre-aligned R.F.II.F. module built $*$ and tested.
* A.F. module built and tested.
* Fully cunable over M.W. and L.W. 183 metres). L.W. $150-275 \mathrm{Kc} / \mathrm{s}$ ( $2,000-1,100$ metres).
* Intermediate Frequency $470 \mathrm{Kc} / \mathrm{s}$. * Sensitivity: M.W. at $1 \mathrm{Me} / \mathrm{s} 10$ L.W. at $200 \mathrm{Kc} / \mathrm{s}$. 40 mieroval plus ar minus 4 dB microvol
* High $Q$ internal ferrite rod aerial on both wavebands.
* Class " B " modulised output stage with thermistor controlled heat stabilization. Class "B " output stage ensures long battery life. output level. Total current drain of output level. Total current drain of ditions is $10-12 \mathrm{~mA}$. At reasonable listening level $20-30 \mathrm{~mA}$.
* Extension sockets for car aerial input, zape recorder output (independent of volume control) and Ext. Speaker.
* All components (except speaker) mount on the printed circuit Slize of cabinet 12 in lons Size of cabinet 12 in . long, 8 in . high Fingertip controls.


## BRESGES Geared Motor

240 V. A.C. Mains $50 \mathrm{~Hz} .0 .49 \mathrm{amp}(65$ watt). Ungeared speed 2,750 R.P.M. Geared speed 80 R.P.M. Constant Gear ratio 35 : I. Reversible. Spindle dia. 12 mm . ( 0.473 in .). Spindle length $1 \frac{1}{\mathrm{in}}$. $7 \frac{1}{2} \mathrm{in}$. long $\times 4 \frac{1}{\mathrm{t}} \mathrm{in}$. wide $\times 4 \frac{\mathrm{in}}{} \mathrm{in}$. deep. Cost E 20 , our price $57 / 19 / 6.7 / 6$ P. \& P.

## RADIO AND T.V. COMPONENTS (ACTON) LTD

2IA HIGH STREET, ACTON, LONDON, W. 3 .
SHOP HOURS 9 a.m. to 6 p.m. EARLY CLOSING WEDNESDAY
Terms C.W.O. Goods not despatched outside U.K. All enquiries stamped add. envelope. 323 EDGWARE ROAD, LONDON, W.2. Early closing Thursday. PERSONAL SHOPPERS ONLY.
All orders by post must be sent to our Acton address.

# 'ELEGANT SEVEN’ MK III SPECIAL OFFER 

De luxe wooden cabinet size $12 \frac{1}{2} \times 8 \frac{1}{\frac{1}{2}} \times 3 \frac{1}{2} \mathrm{in}$.

* Horizontal easy to read cuning scale printed grey with black letters, size $1 \frac{1}{2} \times 2 \mathrm{in}$.
$\star$ High "Q" ferrite rod aerial.
太 I.F. neutralization on each separate stage.
$\star$ D.C. coupled push pulf output stage with
separate A.C negative feedback
- Room filling output 350 mW

Ready etched and drilled printed circuit board
back printed for foolproof construction.
point wiring diagram.
t Car aerial socket
خ Fully tunable over medium and long wave. 168-535 metres and 1,250-2000 metres.

* All components, ferrite rod and tuning assembly mount on printed board.
* 5 in. P.M. Speaker
- Parts list and circuit diagrams $2 / 6$ free with parts.
Power supply kit to purchasers of "Elegant Seven " parts, incorporating mains transformer, $200 / 250$ volts. Output $9 \mathrm{v}, 100 \mathrm{~mA} .9 / 6$ extra.


Buy yourself an easy to build 7 eransistor radio and save at least $\{10$. Now you can build this supero transistor superhet radio for under e $4 / 10 /-$ No one else can offer such a fantastic radio with so many
de luxe star features.


## FIRST QUALITY PVC TAPE

POST \& PKG.

| 57in. | Std. | 850 ft . | 91- | 5 in. | L.P. | 850 ft . | $10 / 6$ | ON EACH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 in . | Std. | 1,2001t. | $11 / 6$ | 3 in . | T.P. | 600 ft . | $10 / 6$ | 1/6 |
| ${ }_{3}^{3} \mathrm{in}$. in . | L.P. | 12400f. | 11/6 | 5in. 57 | T.P. | 1,800ft. | 25/6 | OR MORE |
| 51in. | D.P. | 1,800ft. | 18/6 | 7 in . | T.P. | 3,600ft. | 42/6 | POST |
| 7in. | L.P. | 1,800ft. | 18/6 | 4 in . | T.P. | 900 ft . | 15/- | post free. |

## FOUR PLUS FOUR Stereo Amplifier

A superb High Quality, yet inexpensive stereo amplifier. Due to great demand we are now able to offer this precision made instrument at a fantastically low price. Its quality, reliability and styling has in no way been marred by its low price.
SPECIFICATIONS. Elegant styled cabinet (sizes 16 in , wide, 5 in . high grain. deep) in black rexine and wood graial with contrasting black/silver pane with CONTROLS. Stereo/Mono switch Gram/Aux. switch. Volume left Volume right. Treble (cut and lift) Bass (eut and lift).. Separate on/of switeh. Neon pilot indicator. INPUTS AND OUTPUTS (per channel). Gram, Aux., Tape out and Speaker out. A switched mains socke is also provided at the rear of unit.

Employs Mullard valves throughout. CC83 and $2 \times E C L$ 86. With a metal bridge rectification. Gram sensitivity 40 mV . at KHz Aux, sensitivity 50 mV . at 1 KHz . (sensitivities are given for rated output). 4 watts R.M.S. per channel ( 8 watts R.M.S. in monoral position). Output matches into standard ${ }^{3}$ ohms
speaker system. Suitable 10 in . $\times 6 \mathrm{in}$. speakers are available at $29 / 6$ each + speakers are available at $29 / 6$ each +
5/- P. \& P. Bass control at 100 Hz lift +9 dB , cut -10 dB . Treble control at 10 KHz . Lift +BdB , cut -13 dB .
otal harmonie distortion $0.35 \%$ at 3 watts and $2 \%$ for rated output at I KHz . Negative feedback 13 dB at 1 KHz . Mains supply $220-250 \mathrm{~V}$. A.C. $50-60 \mathrm{~Hz}$.
PRICE 13 gns. P. \& P. $15 /-$.

600 mW SOLID STATE

## 4-TRAMSISTOR AMPLIFIER

Features NPN and PNP Complementary Symmetrical Output Stage. $2 t \times i \times$ in.
Speaker
output 12 ohms.

Frequency response -3 dB points $90 \mathrm{c} / \mathrm{s}$. and 12 kc $7 \times 4$ speaker to suit, $13 / 6$, plus $2 /-$ P. \& P .

## $2 \frac{1}{2}$ WATT ALL TRANSISTOR AMPLIFIER

A.C. mains 240 v . Size 7 in. $\times 4$ tin. $\times$ lain.

Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$.
Semi conductors, two OC 75's, two AC 128's and two stabilizers AAI29. Tone and volume controls on flying leads. E2/10/- + P. \& P. $3 / 6$.
Suitable 8 in. $\times 5$ in. 10,000 line high flux speaker. $18 / 6$ plus $2 /-$ P. \& P.

## BSR TAPE DECKS 200/250 v. A.C. mains

Type TD2. Tape speed $3 \ddagger$ tw in track, $66 / 19 / 6$
Type TDIO, 2 -track, 3 speed, plus rev, counter, $67 / 19 / 6$.
Type TDIO, 4-track, 3 speed, plus rev, counter, $69 / 5 /$., P. \& P. on each type $7 / 6$.

## 3 TO 4 WATT AMPLIFIER

3 watt Amplifier, bullt and tested. Chassis size $7 \times 3 \frac{1}{4} \times$ lin. Separate bass, treble and volume control. Double wound main transformer, metal rectifier and output transformer for 3 ohm speaker. Valves ECC8I and 6V6, 62/5/-plus 5/6 P. \& P.


## M.I. P. PYROMETER <br> Temperature Range

$50^{\circ} \mathrm{F}-230^{\circ} \mathrm{F}$ and $10^{\circ} \mathrm{C}-110^{\circ} \mathrm{C}$ Builtin a robust case, ( $\left.5 \frac{3}{4} \mathrm{in} . \times 4 \mathrm{in} . \times 1 \frac{7}{6} \mathrm{in}.\right)$ Complete with probe and batteries. Only 65.0 .0 . Plus $5 /-\mathrm{P} . \& \mathrm{P}$.

A very useful instrument, directly calibrated in centigrade and Fahrenheit on an easy to read moving coil meter.
Particularly suitable where heatrise plays an mportant part in the functlons of:- Instruments, Cars, Cooling or Heating Systems, etc.


1400 R.P.M.
$230 / 250$ V.

#  $\sum$ LONDON'S LEADING COMPONENT SHOPS $<$ 

25 \& 53 TOTTENHAM COURT ROAD, LONDON, W. 1 Tel: 01-580 4534/7679
Open 9-6 p.m. Monday to Saturday Inclusive. Open Thursday until 7 p.m.

## ALL POST ORDERS TO DEPT. WW368, 25 TOTTENHAM CT. ROAD, LONDON, W.I A

## COMPLETE HI-FI STEREO SYSTEM

ALL TRANBIBTOR WATTS PER CHANNEL ETEREO HI. FI GYBTEM OFFERING A PERTHE PRICE. Modern atyling piua advanced circuitry using lateat allicon tranaistora throughout. The
 r.p.m.) Wui play up to 9 records automaticaliy, aliso provinion for manual play. Amplifera and controis Gramp/Redlo. Mono/Stereo slide switches. TWO IDENTICAL LOUDSPEAKER BYSTEMS each incorporating separate basaspeakera and high frequency units with crosso ver network provide full frequency
reproduction and are complete with 10 ft, leada and plugs for connection to amplifier. Will fit eanily on to reproduction and are complete with 10 ft , lead and plugs for connectlon to amplifer. Wil fit eanily on to
bookshalvea, room dividers or existling furniture. BRIFF GPFC. Pisyer/Ampliner unit, Teak finish, size $161 \times 14 \times 8 t \mathrm{in}, 200 / 250 \mathrm{v}$. A.C. operation. Inputs for Redio Tuner/Tape Recorder also outputa for Tape Recorder, Loudspeasker Bystems. Teak finish. Size (each) $13 \times 7 \times 8 i n$. Supplied complete with instruction booklet. Ready to plug ta and play. BEND YOUR ORDER NOW OR CALL AND HEAR
THIS MARVELLOUB HI-FI BTEREO BYBTEM. Only 59 ERI. Dlus 20/- Camiage and Inaurance.


## GARRARD DECKS

| Model 3000 with Bonotone 9TAHC Stereo Cartridge |  | 6 | Mono Cartridge |
| :---: | :---: | :---: | :---: |
|  | 21019 | 8 | 17/6 extrs. |
| AT60 Ek. II less cartidge | 21818 | 8 | Stereo Cartridge |
| $8 \mathrm{Pra5}$ MK. IF less cartridge | 21019 | 6 | 22/6 extrs. |
| LaBso lik. II less cartridge | 22419 | 8 |  |




6 Tranaigtor, FM euner Frequency
range $88-108 \mathrm{Mc} / \mathrm{s}$. Bize $8 \times 4 \times 2 \mathrm{la}$. Ready bult for use with most ampliflers
9


## instruction. ONLY FROM LIND-AIRI

LINEAR AMPLIFIERS Lateat A.C. Mains Models offering highest quality at modest costLT86, All Tranaistor 12 watts Stereo. Inputa fo
Tuner, Gram., Mike. Beparate Bass, Treble, Balanc
and Voiume Controls, $815 / 15 /$. Carr. 7/6. Teal and Volume Controlo, $£ 15 / 15 /-$. Carr. $7 / 6$. Teak
case
$\varepsilon 3 / 10 /$ /extra.
 Tor Tuner, Gram, Mike, Guitar Baas, Treble and Two
volume controly, $215 / 15 / \mathrm{C}$. Carr. $7 / 6$. Teak case £3/10/- extra.
LTAS. YALVE 8 wath Mono. Inputa for Tuner, Arani., Bass, Trebie and Volume controls, 28/19/6


MOTOR
GARGAINS

 Bhait tin. Iong $x$
$3 / 64$ dia., $9 / 8$. P. \& $3 / 64$ dia., 9/8. P. \&
P. $2 / 6$. D.C. Oram.
\%. do D.C. Gram.
repiscomit
motor. $2 \mathrm{in} . \times 1$ inin.


## AERIALS. TVIUMF VHFSTEREO

CRESTA Room Aerial Band I/II/III. Cream or black, 25/
VEEMABTER Table Top VHF/UHF. Tunable Aeria!. Chrome or grey, 70/-.
Yagal, AllChannel Table Top Aerial, BBCl/2/
HLbss LOFT AERIAL, MILO $v$
vertical. Band I/III. With mounting arni and
vertical. Rand I/III. With mounting arni and
HEW YAJOR. 10 -element BBCZ Aerial for
oft or outdoor faxing. With roller bracket for loft or outhoor fxing, With
up to 2 tn . dis. mast, $42 / 6$.
पAMTEMA Table Top V Aerial, BBC/ITV, $25 /$ H1 HOMTER, 13 element BBC2 Aeria! as E1 EXPLORER, 18 element BBC 2 Aerial, 29 sbove, 84/6.
LOFT sIX, 6 element BBC2 Aerial for loft or
outdoor axing. With arm and bracket, 34/6. J-BEAM. 4-element outdoor Band II VEF/FM Stereo Aerial. With mast 87/
PROFESSIONAL ELECTRIC PAOFESSIONAL ELECTAIC
INSTANT HEAT SOLDER GUN Ideal for
model mak.
ers, home ers, home
repairs, electronics, radio, TV,
,
 interchangeable tips, exten-
sion barrela, comsortable grip ${ }_{\text {with }}^{\text {sion brrige }}$, comsortable grip shaped 3 in . bit to minimise
wear. Light beam it automatically directed on to end matically directed on to end is in use. 85 wal
of bit when ON/OFF trigger is in of bit when ON/OFF trigger is in use. 85 watt
elemant with special ventilation. Complete
with 2-pin, 5 smp. plug $230-250$ volt with 2 -pin, 5 amp. plug $230-250$ volte. Spare
$49 / 6 \underset{2 / 6^{\text {Plus.P. }}}{ }$



## SINCLAIR PRODUCTS

MICROMATIC RADIO. KIT ONLY 49/8. P. \& P. $2 / 6$. MIGROMATIC RADIO BUILT. ONLY $59 / 6$. $P$. $P$. MICRO FM. KIT-E5/19/6 complete. P. \& P. 2/6
ZI2 Hi-FiAMPLFIER
\&/8/8. P. \& P. $2 / 6$.

MAGNAYOX-COLLARO 363 TAPE
DECKS

Carriage and Packing 7/8,
MARTIN TAPE AMPLIFIERS
FOR UEE WITH ABOVE ARE DECKS.


An ideal basia for buidding your own portabie record An ideal basia for buiding your own portabie record
player, Jut add apeaker and turnsble and you
Will have an above-average model for a mere fraction of the cost. $2-3$ wate printed circuit, with control
panel on fiying lead. On, OFF, TONE CONTROL AND YOLUME, colourful escutcheon. Brimar valven: EZ80, ECL82 and composite inatallation booklet. Price $\{3 / 17 / 6$

## 

STEREO HEADPHONES
 STC G1110, 16 ohms
 P. \& P. $4 / 6$
Aiso stockisis
Beyer, elc.



are widely used as standards in many industries because:-

1) They are accurate (to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power.
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM VIbrating Reed Frequency Meters are available in miniature switchboard and portable forms, in ranges from 10 to 1700 cps . Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

## ANDERS METER SERVICE

ANDERS ELECTRONICS LTD. 48/56 BAYHAM PLACE, BAYHAM STREET LONDON NW1 TEL: 01-387 9092. MINISTRY OF AVIATION APPROVEO

WW-101 FOR FURTHER DETAILS

## TELETON <br> COMES TO THE U.K.

Already highly successful in Belgium, Germany, Switzerland, Holland, France, and Italy, we now proudly present the finest integrated Solid-State Hi-Fidelity Equipment for your approval. Ultra-modern designs have been created according to European technical standards and popular requirements. These outstanding products are supplied exclusively to us by MITSUBISHI Shoji Kaisha of Japan.

Superbly styled in oiled walnut, TELETON Tuner/Amplifiers include AM/FM Multiplex facilities, comprehensive filtres, four inputs and up to fifty watts RMS output, at prices to suit even the most modest pocket.
As an example of unsurpassed value, the TELETON SRQ 302X Solid-State AM/FM Multiplex Stereo Tuner with integrated Amplifier ( 20 watts RMS) is available in a matt oiled-walnut case-price only 64 gns . retail!

There are over fifty TELETON products from which to choose, and these include Stereo Tape Recorders, Radios, Cassette Recorders, Transceivers, Memopacks and Stereo Loudspeaker Systems. Centralised bulk purchasing power enables us to compete most favourably with any Company in the U.K. and our home-based Service Department implements a full 12 months Warranty.

TELETON home-entertainment units are obtainable from most high-class specialist dealers, or from selected wholesalers. Representative brochures and price lists are available to bona-fide trade enquirers, and a comprehensive display of the products may be seen in our Showroom by arrangement.

> Telephone or write for further details to:-
> TELETON ELEKTRO (U.K.) CO., LTD., 66-68 Margaret Street, London, W.1. Telephone: 01-636 6491

## Space problems



Especially designed for tight spaces; three compact silicon modules, developed from the successful TSU-0500 Series.

| Model 13027 | $10-12 \mathrm{~V}$ at 1 A | $£ 25$ |
| :--- | :---: | :--- |
| Model 13028 | $10-12 \mathrm{~V}$ at $1 \frac{1}{2} \mathrm{~A}$ | $£ 30$ |
| Model 13028 A | $4-6 \mathrm{~V}$ at $1 \frac{1}{2} \mathrm{~A}$ | $£ 30$ | Measures only $55^{\frac{5}{8}}{ }^{\prime \prime} \times 3 \frac{1}{16^{\prime \prime}} \times 2 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$

Full details on request from

A.P.T

ELECTRONIC INDUSTRIES LTD.
Chertsey Road,
Byfleet, Surrey
Telephone: 41131
ww- $\mathbf{1 0 3}$ FOR FURTHER DETAILS


## WE SUPPORT Evervilling <br> We are the TOWER PEOPLE



Floodlights, aerial arrays, flue stacks:
we support them all cheaply,
handsomely and efficiently.
We are accredited manufacturers of the 'Tubewrights' range of tubular steel tripoles, towers and headframes. Heights from 20 ft . to 155 ft . Alternatively we will design towers for any special requirement. Warning / We are habit-forming, Customers tend to standardise on our towers.
Unifab Structures - the Tower People - provide uplift, easy on £.s.d.

## Unifab Structures L.td

Gale Road,
Kirkby Industrial Estate,
Liverpool.
Phone: 051-546 3401.


6 mm tubular midget flange $\mathrm{S} 6 / 8$ cap over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are
made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of Vitality types and ratings may well be. Catalogue 66 , free and post-free, details them all.
*Many a product owes its success to the intelligent addition of an indicator light.

## VITALITY BULBS

VITALITY BULBS LTO MINIATURE AND SUB.MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TEL. BURY 2071. S.T.D. 02842071

#  A COMPLETE PROGRAMMED COURSE FOR YOU TO LEARN $B A S C$ ELECTRICITY ( 5 vols.) ELECTRONICS ( 6 vols.) <br> You'll find it easyto learn with this outstandingly successful NEW PICTORIAL METHOD <br> into simplified learning techniques. This has proved that the PICTORIAL APPROACH 

-the essential facts are explained in the simplest language, one at a time, and each is illustrated byanaccurate, cartoon-type drawing. The books are based on the latest research
to learning is the quickest and soundest way of gaining mastery over these subjects. Each Chapter has a unique PROGRAMMED supplement for you to test and check your knowledge before proceeding.

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics. WHAT READERS SAY
"After reading section on Filter Circuits once, I understood more about them than in a whole year from the obscurities of other manuals." L. G. West Wickham. "I must say they are the best books on the subject as they explain in simple language what other books make hard going of." C. B. Hartlepools. "They have a wonderful system of imparting the subject to the beginner." H. C. L. Leicester. "What a contrast to the many text books I have attempted so struggle through." J. G. Rugby

A TECH-PRESS PUBLICATION.

To The SELRAY BOOK CO. 60 Hayes Hill, Hayes, Bromley, Kent. Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets, on 7 DAYS FREE TRIAL. I will cither return set, earriage paid in good condition within 7 days or send Ball prices include $P$ \& $P$
$\dot{\text { Deferred }}$ Terms readily available. This offer applies to UNITED KINGDOM ONL.Y Overseas customers Cash with order.
Tick Set required (Only one set allowed on free trial.)
BASIC ELECTRICITY $\square$ BASIC ELECTRONICS
Signature ........................................................................ 21 signature required of parent)
NAME
BLOCK LETTERE
FULL POSTAL
ADDRESS

POSTNOWFOR THITS OFFFR!
WW-106 FOR FURTHER DETAILS

BI-PAK
ONCE ONLY OFFER 2N2926 GREEN \& 5 for 10/IN914 $\begin{gathered}\text { TESTED } \\ \text { DIODES } \\ 12 \\ \text { for } \\ \text { 10/- }\end{gathered}$ OA202 SILICON DIODES I50P IV 200 mA 15 for $10 /-$ AF RED SPOTS 20 for $10 /$ FULLY TEANTASTIC VALU
BI-PAK'S FAMOUS BYIOO $100 \% 800$ PIV 550 mA BRAND NEW 3/- EACH

UNIJUNCTION TRANS. 7/6 UT46 EQVT. 2N2646 BC107-8-9 4/6 Each BSY95A 3/- Each or 4 for 10/-
ORPI2-60 8/- Each
SET OF 4 TRANS.
COMPLETE WITH CIRCUIT AND UILDING INST. FOR RADIO ALL BOXED 5/- BOX
6 VHF T'RANS. 667 EQVT. AFII6/17 10/-

| BRAND NEW ALL |  | MARKED * |
| :---: | :---: | :---: |
| 20 GERM DIODES | 25 PNP | OA182 SOLD |
| AA70-79-81 | GERM TRANS. | BONDED DIODE |
| AEI CG64H 10/- SUB-MIN. | Top Value 20/- | ERV5. 8 for 10/- |



```
TRANSISTOR BARGAIN SALE! NEW STOCX AT UNBEATABLE PRICES
lll
AsY22 Swltching Translotory 2/0 each! & % %/0/0-per 100.
N753 N.P.N.Silicon Planar, 300mW. 250 Me/s, High upeed
B8Y65 N.P.N. silicon Planar, Epitaxial, 800mW. 100 Mc/s
AFZ12 P.N.P. Germanium Alloy Diff. low noise V.H.F. amplifier
Complete sets of transistors for radio:-
OC44/OC45/OC45/OC81D/OC81/OC81+ diode
Light sensltive transistors slmilar to OCP71
UNMARKED, UNTESTED TRANBISTORS MO
```



```
80 for 10/-
```

ELECTROLYTIC CONDENSERS! FANTASTIC SELECTION:

mULLARD POLYESTER CAPACITORS. ALL HALF PRICE

$0.01 \mu \mathrm{~F} \quad 400$ volts
68pP Tubular pulae ceramic
120 pF Disc pulse ceramic
6d. each
VERY APEClal Value! Sllver Mica, Ceramic, Polystyrene Condenser
Well assorted Mixed types and valuea. $10 /$ per 100.
RESISTOBS. Give-away offer! Mixed typee and values. $\ddagger$ to $\frac{1}{\text { watt. }}$
$8 / 6$ per 100 or $55 /$-per 1,000 .
Also it to 3 watt close tolerance. Mixed values, $7 / 8$ per 100 . $55 /-$ per 1,000

CONNECTIMG WIRE THII, P.V.C. INSULATED $1,000 \mathrm{yd} 40 /-$ (post B/-)

VALVES. BRAND-NEW AND BOXED, ROCE-BOTTOM PRICES

| DY87 |  | 5/10 | EY86 | . | 5110 | PCL8 ${ }^{\text {d }}$ |  | 714 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EABC80 |  | $6 / 1$ | EY87 |  | 5110 | PFL200 |  | 1012 |
| ECC82 | -. | 615 | PABC80 |  | $6 / 2$ | PL39 |  | $8 / 8$ |
| ECC83 | $\cdots$ | 615 | PC97 | $\cdots$ | $5 / 10$ | PL81 | $\cdots$ | $7 / 4$ |
| ECL 80 | - | 812 | PCC84 | . | 615 | PL83 | -. | $7 / 4$ |
| ECL86 | .. | 7/4 | PCF80 | $\ldots$ | $7 / 4$ | PL84 | $\cdots$ | $51-$ |
| EF80 | . | 812 | PCF86 | $\cdots$ | $8 / 9$ | PL500 | - | $10 / 7$ |
| EF85 | .. | 812 | PCLA2 | - | $7 / 4$ | PY32 | . | $7 / 10$ |
| EF183 | : | 812 | PCL83 | . | 8/6 | PY81 | .. | 5110 |
| EF184 | .. | 812 | PCL84 |  | 714 | PY82 | . | $4 / 2$ |
| EY51 | . | $5 / 10$ | PCLAs | . | 714 | PY800 | $\ldots$ | 5/10 |

[^9]MEEDLES FOR RECORD PLAYERS. HALF PRICE\}
All types below at 3/8 each GARTRIDGES $\quad$ SONOTONE MONO, $10 / \%$, ACOS 15/\%, ACOS ETEREOSAPPHIRE 20/., DIAMOND 25/. All complete with needles!
 Terminal Plos. 36 for $3 /-\mathrm{i}$ Spot Face Cutter, $7 / 3$. Special Offer-Cutter

ORDERS BY POST-TO G. F. MILLWARD, 17 PEEL CLOSE. DRAYTON BASSETT, STAFFS.

PLEASE INCLUDE APPROPRIATE POSTAGE COSTS
No Enquiries without stamped addressed envelope please For customers in the Birmingham area, goods may be obtained from: Rock Fxchanges,
231 Alunz Rock Road, Birmingham 8 (Post Orders to Drayton).
lisAmpex. lis9l gns

The new Ampex 753 Tape Deck (complete with pre-amplifiers) gives you these important new features:
$\square$ off-tape monitoring $\square$ sound-on-sound $\square$ sound-with-sound $\square$ echo control
Plus $\square$ rigid block construction-tapes align with heads to one thousandth of an inch, and the 753 finds every sound on the tape. $\square$ deep-gap heads give three years' peak performance - few other makes give more than one year. $\square$ stereo 4-track $\square$ dual-capstan drive $\square 3$ speeds $\square$ digital counter $\square$ fast wind $\square$ solid state throughout $\square$ vertical or horizontal operation $\square$ available in teak case.


For further information and list of UK dealers send coupon below, or write to Ampex Great Britain Ltd., (Dept. WW3), Acre Road, Reading, Berks.

Please send me 753 details and dealer list.
Name
Address

## AMPEX

CA-9 WW3
WW-107 FOR FURTHER DETAILS

## SUPERIOR QUALITY NEW RESISTORS

High Stability
Carbon Fílm
Low Noise
WW $5 \%$ E 24 series $5.1 \Omega$ to $330 \mathrm{k} \Omega 1 / 10$ doz. mixed: $14 / 6$ per 100 mixed.
WW $10 \%$ E12 series $1 \Omega$ to $4,7 \Omega$ only, as above but $\frac{1}{2} d$. extra per resistor IW $5 \%$ E 24 series $4.7 \Omega$ to $10 \mathrm{M} \Omega 2 / 2$ doz. mixed; $17 /$. per 100 mixed. iW $5 \%$ E24 series $4.7 \Omega$ to $10 \mathrm{M} \Omega 2 / 2$ doz, mixed; $17 /$ - per 100 mixed.
IW $10 \% \mathrm{E} / 2$ series $10 \Omega$ to $10 \mathrm{M} \Omega 4$ d. each; $3 / 3$ doz. mixed. $1 / 6$ per 100 less when ordered in 100 's of one ohmic value. PLEASE state your choice of values in mixed quantities:
Quality carbon Skeleton Pre-gets, fit 0.1 in . matrix: $100,250.5001 \mathrm{k}, 2 \mathrm{k}$ All values available in horizontal or vertical mounting, //-each.
Volume Controls: $100,250,500 \Omega$ and series to $10 \mathrm{M} \Omega$ linear, $2 / 3$ each. $5 k, 10 \mathrm{k}, 25 \mathrm{k} \Omega$ and series to $5 \mathrm{M} \Omega$ log., $2 / 3$ each.
Electrolytics: $5,10,25,50 \mu \mathrm{~F}$ loV 9 d . 50 V Ceramics: $.01, .02, .05 \mu \mathrm{~F}, 5 \mathrm{~d}$. Mullard electrolytics, sub-min. C426, whole series stocked

PICK OF THE NEW SEMICONDUCTORS
Silicon, many types including :

BC167 50V B125-500,3/BC 10820 V B125-900, 3/1I

BC168 20V B125-900 $2 / 6$ BCI 0920 V B240-900 4/-

BC169 20V $8240-9002 / 9$ $\mathrm{BC109}$ and $\mathrm{BC1} 69$ are low noise types. $\mathrm{BC167},-8,-9$ are plastic.
Best value in High Power: $2 \mathrm{~N} 3055117 \mathrm{~W} 100 \mathrm{~V}, 16 / 6$. Best value in High Power: 2NF155 1172 to $6 \mathrm{~mA} / \mathrm{V}, 10 \%$
Also: $2 \mathrm{~N} 3702,-3,-4,-5,4 /-$ each. $2 \mathrm{~N} 3707,5 /-$. 262926 from $2 / 6$.
Germanium, many types including:
Low noise: 2G308, 6/9; 2G309, 7/9; NKT275, 3/8.
Gest in High Power. NKT403, 16/3. 2N2 147, 2 N1305 (PNP), 4/\% each.
Bost in High Power: NKT403, 16/3; 2N2 I47, $16 / 9$.
Miniature Silicon Diodes: $15940,30 \mathrm{~V} 75 \mathrm{~mA}$., $1 / 3$.
Other Diodes: OA47 (gold bonded), 1/9; OA91 (115V 50 mA ), 1/3.
PEAK SOUND PRODUCTS
CIR-KIT No. 3 Pack, $12 / 6$; adhesive copper: 5 ft . $\times$ tin. or $\frac{1}{1 / \mathrm{in} ., 2 /-i} 100 \mathrm{ft}$., 30/Perforated board 0.1 in . matrix, 5in, x 3 zin., $4 /=; 2 \frac{i}{2} \mathrm{in}, x$ 3in., $2 / 6$. Transistorised Stereo Amplifier Kit type SA8-8, $£ 10 / 10 /$ -

ALL GOODS BRAND NEW NO SURPLUS FAST DELIVERY
DISCOUNTS: $10 \%$ over $\mathbf{6 3} ; 15 \%$ over $£ 10$. P. \& P. $1 /$; free over Cl . Send 1/- for 1968 Catalogue. Contains data and equivalents.


CONVECTOR HEATER
Just screw it together. Usen 1,250 watt copper clad element last a lifetime. Ideal for bedroom It's so safe. Complete in store

MINIATURE WAFER SWITCHES

P
4 pole, 2 way- 3 pole, 3 way- 4 pole,
3 way 2 pole, 4 way-3 pole, 4 way
2 pole, 2 pole, 6 way -1 pole, 12 way. Al
each, $36 /$-dozen, your sssortment.

Waterproof heating element as yards length 70 W . Sels-regulating
temperature control, temperative control, $10 /$ posi free.

See in the Dark INFRA-RED BINOCULARS


These infra-red blnoculars when fed from a high voltage source will enable objects to be seen in the dark, provided
the objects are in the rays of an Infra-red beam. Each eye tube contalne a complete optical fena system as well as the Intra-red cell. These opt ical systems can be used as lenses
for T.V. cameras-light cells, etc. (details supplied). The binocularr form part of the Army night driving (Tabby equipment). They are unused and bellieved to be in good working order but aold without a guarante
plus 10 -carr. and ins. Handbook $2 / 6$.

## SPECIAL BARGAINS

50 OHM 50 WATT WIRE WOUND POT-METER. 8/6 1 meg miniature. Pot-meter Morganite standaril. in. spindie $1 /-$ each, $9 /-$ per dozen.
1 MEG MINIATURE
driver controi. PRE-SET 100 K by Welwyn with intrical bakelle knob, $1 /$ each, $9 /$ - per dozen.
100 X POT-METER. Miniature type wht double pole
switch and standard $\ddagger$ in. spindle, by Morganite. $2 /$ - each. Ewitch and standard ind spindien been. GLASS. Enclosed, normally elosed circult, will open should blanket overheat. $4 / 6$ each.
THERMAL RELAY. Can be used to delay the supply of HT while heatera warm up, or will enable 15 amp. Ioads
to be controlled by miniature awitches or relays, Regular list price over $\mathcal{C 2} 2$, price $7 / 6$ each.
SIEMENB EIGE SPEED RELAY. Twin 1000 ohm coils. Platinum points changeover contacts-Ex equipment-
$8 / 6$ each.
TOGGLE SWITCH BARGAIN, 10 ansp. 250 vornal one hole fitting, $2 / 8$ each, or $30 /-$ per doz. coltages. $4 / 6$ each. PRECISION WHEATSTONE BRIDGE. Opportunity to build cheaply, 100 K wire wound pot. 15 w . rating, only $5 / \mathrm{l}$.
SHEET PAXOLIN. Ideal for transistor projects. 12 panela esch $5 \mathrm{in} . \times 8 \mathrm{in}$. $5 /-$ -
3 im . PMER LOUDSPEAKER, 3 ohni. 12/6. 80 ohm . $13 / 6$ TRANSISTOR FEARITE SLAB AERIAL with mediura and long wave coils, $7 / 8$ each.
SLDEE SWITCH. Sub minia
Vacuam Cleanor Fles $18 /$ - er dozen. pliabie but vers' tough, $24 / 36$ Cores. Normally $1 / 9$ per yard. offered at $£ 9$ per 100 yard coll, post and Insurance $8 / 6$. gold-plated leadis, $1 /-$ each or $7 / 6$ per dozen,
IESSAGE TAPES. 226ft. Tape on 31 n . spools, normally $4 / 6$ each, we offer 4 tepes for $12 / 6$.
WHITE CIRCOLAR FLEXK. Ideal for Jighting drops,
twin niade by BICC. Usually 8d. yd, 100 yd. coil for $30 /=$ plus $6 / \cdot$ postage.
EDGEWISE
CONTROL Morganlte, as fitted many $24 /-$ per dozen. 20 . Full transistorised for operating 20 -watt Guorescent tube, size 6 in . long $\times 1 \mathbf{1} \times 1 \mathrm{f}$. $\mathbf{£ 3 / 1 0 / - , ~}$ Post and insurance $3 /{ }^{\circ}$ -
SILICON RECTITERE
equiv, BY $100 ~$
$750 \mathrm{~mA} .400 \mathrm{~V}, 10$ Ror $20 /$ OURE PICEOP for 7 in . records made by Cosmocode, cryetal cart ridge with yapphire atylue only. $3 / 8$ or $36 /$ - doz. eq did section extends from 7 iln . to $47 \mathrm{ln}, 7 / 6$ each 12/-doz. $1 \mathrm{ln} \times 1 \mathrm{in}$. 4 pairs change-over contacts. $7 / 18$ each. 3in, $\times 2 i n . \times$ Im, 4 pairs changeover contects, $8 / 6$ each,
PRINTED CIRCUTT BOARD, EDGE CONNECTOR, Bolder etc. 6 in . long but easily cut. $7 / 8$ each. $80 /-$ doz.
$1,000 \mathrm{~W}$. FIRE BPIRAL, replacement for most fires. $1 / 3$ each, $12 /$ - doz

$\pi$
PP3 Eliminator. Play your pocket radio from the mainal save \&a. Complete component kit comprises 4 rectifers-mains dropper resistances, smoothing condenser and instructions. Only 8/6 plus 1/- post.

## PHOTO-ELECTRIC KIT

All parta to make ligat operated awikilourglar alarny counter, etc. Kit comprises printed clrcult. Lamalnated Photocell and Hood, 2 Transistors, cond., Terminal block Plastic case- Essentiai data, clrcuits and P.O. chassio plans of 10 photo-electric device Including auto. car parking light, modulated light alarm. Nimple invinible ray awitch alarn-projector lamp stabliser, etc., etc. Only $39 / 6$. plus $2 \%$ post and insurance.

## INFRA-RED

## HEATERS

Make up one of thear latest type heaters.
Ideal for bathroom, etc. They are simple
to make from our easy-to-follow instructions




CASSETTE LOADED DICTATING MACHINE ade E31 outht
 functlons-accessorles Include-stethoscople ear-
plece-crystal microphone has on/ofl awitchtelephone pick-up-tape relerence psd-DON'T
MESB THIS UNREPEATABLE OFFER-SEND ToDAY $£ 0 / 19 / 6$ plus $7 / 6$ pont und insurance,
Footswitch $18 / 6$ extra. Apare Casettes at $7 / 6$ Footswith $18 / 6$ extra. Apare Cassettes at $7 / 68$
each, three for $\& 1$.


## TUBULAR HEATERS

New and unused masle by G.E.C.-rated at 60 watts per ft.-theseare ideal in airing cupboards bedrooms, offices, stores, greenhouses, etc., curtains or papers can touch then without fear
 $12 \mathrm{ft} .42 /-$

## CIRCULAR FLUORESCENT

Bring sunshine into your home, 150 watts of light but
ses oniy 40 W . Beautiful fittings with glass, non plastic centre, fluoreacent tube and choke control. Regular price $84 / 15 /$-. 8 pecial budget price 85/- pius 10/- carr. and Ins. Please state colour of glass centre white, pink, blue, red, black, yellow or cream. Ala whether plug into lamp holder or celling mounting
 mrdel 80 watt model $99 / 6$, $10 /$-carr, and lns,


SOLID STATE IGNITION
Big thinga are claimed of Electronic ignition asatems and li you would ilke to try for your-
self a circult was deacribed in " Practical Electronica " (Sept, 1906). This requires a sillicon controlled rectifer, four transistors and other componentn avallable as a kit. Price 26/15/- poat free.

## BATTERY OPERATED TAPE DECK

Wilth Capstan control. This unit is extremely well made and mesaurea approx, $6 \leq \times 2$ in. deep. Has three piano key
type controls for Record, Playback and Rewind. Motor is a special heavy duty type intended for oparation on $4 / 5$
volts. supplied complete with 2 poltis. 8upplied complete with 2 spools ready to install.
Record, Replay head de the sensitive ma type intended for use with transitor, ampliner, Price $\mathrm{gA/15} / \mathrm{l}$, Pont and insurance $4 / 6$.

FLUORESCENT CONTROL KITS
Esch kit Comprises seven liems-Choke, 2 tube ends, starter, starter holder and 2 tube elips, with
wiring instructions. Suitable for normal fluorescent tubes or the new "Grolux" tubes for fuchescent and indoor plants. Chokes are super-silent, mostly
 miniature tubea. 19/6. Postage on Kita $\boldsymbol{A}$ and B $4 / 6$ for one or two klts then $4 / 8$ for each two kits
ordered. Kita C, D and E $4 / 6$ on flrat kit then ordered. Kita C, D and E $4 / 6$ on first kit then $3 / 6$
for each kit ordered. Kit MF1 $3 / 6$ on firat kit then for each kIt ordered. Kit MP
$3 / 6$ on each two kits ordered.

MAINS TRANSISTOR POWER PACK
Designed to operate transistor sets and amplifters, Adjunt-
ablo output A v., 8 v., 12 volte for up to $B 00 \mathrm{~mA}$. (class $B$ working). Takes the place of any of the following batteres: firaing tranaformer rectifier, moothing and load comprisen condensers and Instructions. Real snlp at only $16 / 6$.

## DOOR INTERCOM

## know who is calling and speak to them

without leaving bed or chalr. Outfit comprises microphone with call push button connectors and master intercom. Simply plugs together. Originaily old at c10. 8pecial silp price 7016 plus $3 / 6$ postage.


GEARED MOTOR HALF REV. PER MINUTE
Mate by famous Smith Electric malns operated and quite powerful. slize $3 t \times 2\} \times 1 \| \mathrm{in}$. deep. Secondary use as process timer. Internal witch can be made to brea circuit withln perlod up to 2 mins. $17 / 8$. P. \& P. 2


RELAY SWITCHES, These enable nicro switches, delicate RELAY 8WITCHES, These enable nicro swiches, delicate
thermontats or other low current deviles to control up to
30 amps.-ldeal to switch thermal atorage heaters30 amps.- dieal to switch thermal atorage heaters-
motore, etc., made by the fanious A. E. I. group these are hated at 225 each-you can buy If you hurry at a very keen Mounted on panel size approximately $6 \times 7 \times 2 \mathrm{~m}$. deep.

| Type |  | Type |  | Type |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Price | No. | Price | No. | Price |
| 2N 1727 | 15/- | OA5 | 5/- | OC75 | - 3/0 |
| 2N1728 | 10\% | OAlO | 6/- | OC76 | 9/0 |
| 2N1742 | $25 /$ | 0 OA 7 | 3/- | OC77 | 71 |
| 2N1747 | $25 /-$ | 0 OA70 | 2/- | OC78 | \%/0 |
| 2N1748 | 10\% | OA79 | $2 / 6$ | 0C78D | $8 /$ |
| AC107 | 9/- | 0 O81 | $2 / 6$ | OC81 | 8/0 |
| AC127 | 4/- | 0 A 85 | 2/6 | OC81D | 3/- |
| ACY17 | $8 / 6$ | OA90 | $2 / 8$ | 0 C 82 | 8/- |
| ACY18 | 3/6 | OA91 | \&/B | OCB2D | 8/0 |
| ACY19 | ${ }^{8 / 6}$ | O A200 | 3/3 | $0 \mathrm{C83}$ | //. |
| ACY20 | 5/8 | OA202 | 4/3 | OC84 | 4/6 |
| ACY21 | 81. | OC20 | 18/6 | OC139 | 8/6 |
| ACY22 | 4/6 | OC22 | 10\% | OC140 | 18/6 |
| AF114 | 4/0 | OC23 | 8/- | OC170 | S/- |
| AF115 | 4/0. | OC34 | 15/- | OC171 | 4/0. |
| AF118 | $4 \%$ | 0 O 25 | 81- | OC200 | 9/- |
| AF117 | 4/0 | OC26 | $7 / 8$ | OC201 | 12/6 |
| AF118 | $4 /$ | OC28 | $8 /$ | OC202 | $18 / 8$ |
| AF139 | 12/6 | OC29 | 17/2 | OC203 | 12/6 |
| AP185 | $17 / 6$ | OC35 | 10\% | OCP71 | 15/- |
| APZ12 | 15/. | $0 \mathrm{OC3}$ | 16/ | ORP12 | 8/6 |
| A\$221 | 15/. | 00638 | 12/8 | ORP60 | 101- |
| BC107 | 14/6 | $0 \mathrm{C4} 4$ | 8/8 | 8B078 | 6/8 |
| BY100 | 4/6 | OC44 | 8/- | 88305 | 8/8 |
| BYZ13 | $7 / 8$ | $0 \mathrm{CA5}$ | 3\% | 8B251 | 10/- |
| MAT100 | 8/8 | $0 \mathrm{CH8}$ | 81 | ST140 | 3/- |
| Matiol | $7 / 6$ | 0 C 70 | 31. | ST141 | 4/6 |
| MAT120 | 6/8 | $0 \mathrm{OC71}$ | 8/0 |  |  |

## SIMMERSTAT HEATER

 REGULATORBuitabie to control elements, heater, boldering frons and
 normal price
$2 /$ - post and ins,

## GANGED POTS

8tandand type and bize with good lensth of spindle - nade by Morganlte.
List price $18.10 /$ each buit is you act

 on lst doz. then $1 /$-per doz, 6 doz . or more post free.

When poatage to not definttely stated as an ertra then orders over $\& 3$ are post free. Below \&3 add $2 / 9$.
Semi-conductors add $1 /$ - post. Over 21 post free. G.A.E, with enquirlea please.

[^10]

TRANSISTOR STEREO $8+8$


A really ifrsteciass Hi-Fi Bteren Ampliher Kit. Uaeb 14 transistora glving 8 watts push puli output per channel (16W W. mono).
Integrated pre-amp. with Bass, Treble and Volume controls Integrated pre-amp. With Bans, Treble and Volume controls. stage for any speakers from 3 to 15 ohms. Compact design, all parts suppleed lacluding drilled metal work. Cir- Kit board, attractive tront panel, knobs, wire, solder, nuts, bolts-no
extras to buy. gimple step by step instructions enable any constructor to bulld an smplifer to be prout of. Brief 8pecl-
fication: Freq. response $\pm 3 \mathrm{~d}$ B. $20-20,00 \mathrm{c} / \mathrm{s}$. fication: Freq. response $\pm 3 \mathrm{~dB}$. $20-20,00 \mathrm{C} / \mathrm{s}$. Rass boost
approx. to +12 dB . Treble cut approx. to 1 ind B . Negative feedback ${ }^{18}$.
PRIDES:


(Special Oller- $£ 14 / 10 / \mathrm{o}$, pont free if all above kits ordered at (or e18/-/- post (free)
Clrcuit diagram, construction detaifs and parts list (free with

## HSL "FOUR" AMPLIFIER KIT

3-vaLVE 4 WATT UBINO EOC83, EL84, EZ80 VALVFE for A.C. matins $200 / 240$ v. \# Heavy duty douhle-wound mains and volume controls, giving fully variable boost and cut with in inimum insertion losi. \& Heavy negsitive feedback loop over 2 stages ensure high output at excellent quality with very low distortion factor. 太 Suitable for use with guttar, microphone
or record player. or direct on chassis. All this builds on to a chassis size only 7 i in . wide $\times 4 \mathrm{in}$. deep. Overall height 4 fin . $\star$ All component and valves are brand new. A Very clear and concise instructlonas enable even the inexperienced amateur to construct wht $100 \%$
success. former ( 3 ohme only), screened lead, wire, nuts, bolts, solder. etc. (No extras to buy). PRICE $79 / 6$. P. \& $P$. $6 / \circ$.
Comprehensive circuit diagram. practical layout and parts list Comprehengive circu
$2 / 6$ (free with
kdt).

VIBRATORS Large section of 2, 4, 6, 12, and 32 volt. Non sync. 8/6; sync. $10 /-$ P. \& P. $1 / 6$ per vibrator. B.A.E. with
S.T.C. SILICON AVALANCHE HALF. WAVE RECTIFIERS
Type RAs, 608 AF, 8 amps. ${ }^{960}$ P.I.V. lin. long $\times$ in. dla.
approan. List $50 /{ }^{\circ}$. OUR PRICE $8 / 6$. Post free.

10/14 WATT HI-FI AMPLIFIER KIT


3-VALVE AUDIO AMPLIFIER MODEL HA34


Designed tos Hi FI reproluction of
recoris recoris. built on plated heaperation.
 ELsA, EZso valves. Heavy duty, double wound mains transformer
and output transformer matched for and output transformer mateched for
$\mathbf{8}$ ohm separate bass, treble back line. Output $4 f$ watts. Front panel can be detached and leade extended for remote mounting of controls. The HA34 has
been specially deslened for us and our quantity ordel enahles us been specially deslgned for us and our quantity order enahles us
to offer them complete with knobs, valver, etc., wired and tested

BRAND NEW 3 OHM LOUDSPEAKERS



BRAND NEW
12 in .15 w H/D speakere or or Curreat production oy well-known Britinh maker. Oflered below ist price at
$35 \mathrm{~m} .818 \%$.
E.M.I. $3 \frac{1}{2}$ in. HEAVY DUTY TWEETERS Powerful ceramic magnet. Available in 3,8 or $150 \mathrm{hm}, 15 /-$

## HARVERSON SURPLUS CO. LTD.

 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985S.A.E. all enquiries. Open all day Saturday (Wednesday I p.m.)

HIGH GAIN 4-TRANSISTOR PRINTED CIRCUIT AMPLIFIER KIT Type TAI

- Peak output ha excess of 11 watts. A All standard Britiag
 $\rightarrow$ Generus , wize driver and output transformers. OOutput
 o/p). © 9 rolt operation. © Everything supplied wire, battery
cllp, solder, ete. Conmprehenalve easy
io follow instruc-
 thone and circuit diagran $2 / 8$ (Free with Klt). All part eold
separately. SPECLI PRE sepratately. SPECLAL PRICE 45/
built and iested 5R/6. P. \& P. $3 /$ -


## FM/AM TUNER HEAD

Beautifully designed and prection engineered by Dormer and
Wadsworth Ltd. Supplied reall fitted with twin . 0003 tunimg condenser for AM connection. Prealigned FM sectlon cover 88.102. Mc/a. I.F. output 10.7 Mc/e. Complete with ECCB specisil bulk purchase enables us to offer thene at $27 / 8$ eacl P. \& P. 3/-. Order quickly! Limitted number also a avaliable $\approx \mathrm{Mb}$


4-SPEED RECORD PLAYER BARGAINS Mainu models. Ah brand new in makerts original packing.
LATEST B.S.R. MODELS
TJ/12 Single Player with mono Cart.......
Told Singlo Player with mono Ca
GOT Single Player with mono Cart.
OA25 Che nger with mono Cart.

All typen avallable $1000,2000,3000$, AT80, etc. Send S.A.E. Ior Altent bargalin price liat.

QUALITY RECORD PLAYER AMPLIFLER MK. II
A top-qualty record player amplifer employing heavy duty
double wound maine translormer. ECC83, EL84. EZ80 valves double wound maine transormer. ECC83, EL84, E280 valves
Separate bsas, treble and volume controls. Complete with outpui transiormer matched for 3 ohm speaker. 812 ze 7 ln . w. $\times 3 \mathrm{in}$. d. $x$
 and rpeaker ready to fut into cabinet on right. PRICE $97 / 6$.
P. \& $P .7 / 6$.

## DE LUXE QUALITY PORTABLE

 RECORD PLAYER CABINETUncut motor board size $144 \times 12 \mathrm{in}$., clearance 2 in. below, 3/in. above. Will take ampliaer above and any B.8.R. or
GARRARD Autochanger or single Player Unit (except AT60

please note: P. \& charges quoted ap. PLY TO J.K. OKLY, P, \&P. on overseas orders charged extra.

ANNOUNCING OUR NEW STANDARD RANGE OF BRAND NEW MULTITAPPED TRANSFORMERS. MOST TYPES FULLY SHROUDED AND TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES 220-240 VOLTS.

|  | *Denotes Unshrouded Types. |  |  | CARR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | 5EC. TAP5 | AMP5. | PRICE |  |  |
| IA | 25-33-40-50 |  | ¢8 15 |  |  |
| 1 B | 25-33-40-50 | 10 | 1612 | 6 | $8 / 6$ |
|  | 25-33-40-50. |  | 6510 |  | 816 |
| 1 D | 25-33-40-50. | 3 | 63 | 6 | 716 |
| 2A | 4-16-24-32 | 12 | 6519 | 6 | 716 |
| 2 B | 4-16-24-32 | 8 | 6410 | 6 | 716 |
| 2 C | 4-16-24-32 | 4 | ¢2 19 | 6 | 61- |
| 2 D | 4-16-24-32 |  |  | 6 | 51 |
| 3A* | 25-30-35 | 40 | 614 | 0 | 151- |
| 38* | 25-30-35 | 20 |  |  |  |
| 3 C | 25-30-35 | 10 | 6519 | 6 | $7 / 6$ |
| 3 D | 25-30-35 |  |  | 6 | 6/6 |
| 3 E | 25-30-35 |  |  |  | 6/6 |
| 4A* | 12-20-24 | 30 | 11015 | 0 | $101-$ |
| 48 | 12-20-24 | 20 | 8615 |  |  |
| 4 C | 12-20-24 | 10 |  | 6 | $7 / 6$ |
| 4 D | 12-20-24 |  |  |  | 6 |
| 5 A | 3-12-18 | 30 | 6719 |  |  |
| 58 | 3-12-18 | 20 | 4519 | 6 | $7 / 6$ |
| 5 C | 3-12-18 |  |  |  |  |
| 50 | 3-12-18 |  | 62 | 6 | $6 / 6$ |
| 6A | 48-56-60 |  | 63 | 6 | $5 / 6$ |
| 6B | 48-56-60 | 1 | 62 | 0 | 5/6 |
| 7A* | 6-12 | 50 | ¢ 10 | 0 |  |
| 78 | 6-12 |  | 4419 |  | $7 / 6$ |
| 7 C | 6-12 |  | E3 | 0 | $6 / 6$ |
| 70 | 6-12 |  | 62 | 8 | $5 / 6$ |
| 8A | 12-24 |  | fl | 6 | 5/6 |
| 9 A | 15.30 |  | ¢ |  | $5 / 6$ |
| 10A | 9-15 |  | ¢ | 6 | 5/6 |
| A |  |  |  |  |  |

Note: By using the intermediate taps many other voltages can be obtained
Example: Range one 7-8-10-15-17-25-33-40-50V
Range three 3-6-9-12-15-18V

Send 6d. stamp for out latest price list giving full details of our range of L.T. transformers, L.T. and units, rectlfiers, instrumeters, electric motors.

## Samson's Electronics Ltd.

9 \& 10 CHAPEL STREET, LONDON, N.W.1.

01-723 7851
01-262 5125

LATEST PURCHASE. BRAND NEW TWICKENHAM HEAVY DUTY L.T. TRANS FORMERS.
PRI tapped $110-220-235-25 S$ volts. 5 ec . No. I, 55 voles, 24 a mps. $5 e c$. No. 2, 14 volts 10 amps.
5 ec . No. 3,60 volts, 2 amps. All winding very conservatively rated. Tropically finished. Terminal connections. size H9. W. 7t D 7 inches, weisht 65 lbs . Fracrion of maker's price, $69 / 19 / 6$, carr. 15/Brand New L.T. 5 moothing Chokes.
6 MH. 24 amps, tropically finjshed, 5ize H6 W $4 \frac{1}{2}$ D5 inches. Weight 18 lbs . $75 /$., carr. $7 / 6$.
2 MH .24 amps, tropically finished. 5ize H 5 $\frac{1}{2}, \mathrm{~W}$ 4, D $3 \frac{1}{2}$ ins. Weight 9 lbs. $45 /-$, carr. $5 /-$.

## ZENITH HIGH VOLTAGE TRANSFORMER

 Oil Filled.PRI 240 volts. 5 ec . 20,000 volts. 75 mA . Size, H 24 in . plus 8in. insulated terminals. W. 23 in .,
$\mathrm{D}, 15 \mathrm{in}$. One only $\mathbf{£ 2 9 / 1 0 / \% ~ e x ~ w a r e h o u s e . ~}$

## HEAVY DUTY ISOLATION

PRI 220-240 volts. Sec. tapped 70, 140, 210, 280 voles. $7 \frac{1}{5} \mathrm{kVa}$. 5 ize $17 \times 13 \times 10$ inches, $\$ 35$ ex warehouse. One Only.

## SPECIAL OFFER OF WODEN TRANSFORMERS BRAND NEW

No. I. PRI tapped 200-250 v. E.5. Sec. Tapped 8-15-25-28-30-33-35 v. 15 amps. Tropically finished table top connects. $45 / 17 / 6$. Carr. $10 /-$ No. 2 PRI 240 v. E.5. 5ec. No. I. 50 v
2. $18-0-18$ v. I A. 55 $\%$ P.P. $7 / 6$. No. 3. PRI tapped 200-250 V.P. E/S. Sec. I. 315-0No. 3. PRI tapped $200-250 \mathrm{v}$. E.S. Sec. I. $315-0$.
$315 \mathrm{v} .110 \mathrm{~mA} .5 \mathrm{ec} .2 .175-0-175$
25 mA . Sec. 3.
 Core table top connectlons. $50 /$. P.P. $7 / 6$.

BERCO REGAVOLT VARIABLE
TRANSFORMERS TYPE JIA
Input max. 250 v.. output $0-250 \mathrm{v}$. Current rating. 0.75 amp. 5ize 3 in . diamp. max. Unmounted


PARYALUX GEARED MOTORS Shunt wound $220-240$ volts D.C. rating. Cont. Ibs./ins. 8, r.p.m. 150 , overall size $6 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / \operatorname{lins}$.
C $3 / 15 /-$ P.P. $7 / 6$. F.W. bridge. 5 enlum Rectifier direct mains in 220 D C , out $750 \mathrm{~mA} .8 / 6$.

AIRFLO A.C. 220-240 v. BLOWERS Capacity 80 cu . ft. 2 tin . dia. outlet. Overall size $6 \times 6 \times 7$ ins. Brand new. 65/-. Carr. 5/

| SPECIAL OFFER OF BRAND NEW H.T. <br> TRANSFORMERS <br> Fraction of maker's price. All tapped primaries 200-250 v. Table top connectlons. Enclosed type. GARDNERS <br> No. 1. Sec. $500-0-500$ v. 200 mA .6 .3 v. 4 A. 6.3 v. 3 A. 6.3 v. 2 A. 5 v. 2 A. $85 /$-. P.P. $7 / 6$. <br> No. 2. 5 ec. $450-0-450$ v. 180 mA .6 .3 v. 3 A. 6.3 V. 3 A. 6.3 v. 3 A. 5 v. 3 A. $75 /$-. P.P. $7 / 6$. <br> No. 3. $5 \mathrm{ec} .350-0-350 \mathrm{v} .180 \mathrm{~mA} .6 .3 \mathrm{v} .3 \mathrm{~A} .6 .3 \mathrm{v}$. 2.5 A. 6.3 v. 2.5 A. 6.3 v. 2 A. 6.3 v. 0.5 A . 5 v. 2.8A. $75 /=$ P.P. $7 / 6$. <br> No. 4. $5 \mathrm{ec} .450-0-450 \mathrm{v} .95 \mathrm{~mA} .6 .3 \mathrm{v} .3 \mathrm{~A} .6 .3 \mathrm{v}$. 3 A. 6.3 v. 2 A. 5 v. 3 A. $65 /$. P.P. $7 / 6$. <br> No. 5. 5ec. $400-0-400$ v. 85 mA .250 v. 50 mA . 6.3 v. 5 A 6.3 v. 4.75 A. 6.3 v. 0.5 A. 6.3 v. 0.2 A. $75 /$. P.P. $7 / 6$. <br> No. 6. Sec. $250-0-250$ v. 50 mA .6 .3 v. 2 A. 6.3 v . 2 A. 5 v. 2.5 A. $37 / 6$. P.P. 5/-. <br> No. 7. Sec. 300 v. 37.5 mA .300 v. $37.5 \mathrm{~mA} .47 / 6$. P.P. 5/-. 4 kV D.C. wkg. 4 v. I A. 4 kV . D.C. wkg. 4 v. 0.3 A. <br> No. 8. Sec. 225 v. 100 mA .6 .3 v. 2.5 A. 6.3 v . I A. 37/6. P.P. 5/-. <br> No. 9. 5 ec. 45 v. 87 mA .6 .3 v. 4.5 A 6.3 v. 1.5 A . 6.3 v. I A. 6.3 V .0 .2 A. 29/6. P.P. 4/e. <br> No. 10. Sec. tapped $450-470$ v. 275 mA . $42 / 6$. P.P. 5/-. |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

GARDNERS LOW TENSION ISOLATION PRI 63 TRANSFORMERS
PRI 6.3 v. 5 ec .2 2-0-2 v. $4 \mathrm{amps}, 5,000$ v. wkg. Potted type, 17/6. P.P. 3/6.

## MARCONI AUDIO TESTER, TYPE TF89

This directly calibrated AF oscillator from $50 \mathrm{c} / \mathrm{s}$ to $12 \mathrm{kc} / \mathrm{s}$ has a maximum output of 300 mW into 600 600 ohm ladder attenuator of $0-50 \mathrm{~dB}$. An alternative $5,000 \mathrm{ohm}$ outlet is provided and the level in each case is continually variable. AF measurements: the voltmeter may be used for AF inputs (external) over the ranges of 0 to 80 V in 4 ranges, providing a very useful facility. Supplied in excellent condition and working order for only $\mathbf{1 1 8 . 1 0 . 0}$. Power supply 240 V a.c. (internal).

## COSSOR DOUBLE BEAM OSCILLOSCOPES TYPE 1035

An attractive end of contract run enables us to offer these fine professional scopes in perfect working order at only $£ 25$ each plus $25 / \%$ P. \& P. Brief technical spec. base repetitive, triggered or single stroke 15 sisec to base repetitive, triggered or single stroke $15 \mu \mathrm{sec}$ to
150 msec size 16 in . XIlin. X 19 in . Also Cossor 1049 C. Coupled DB Scope same size and appearance as 1035. Prise $£ 30$ plus 25/- P. \& P.

## DIGITAL VOLTMETER

For the first time ever, we proudly present a three digit a.c./d.c. voltmeter for less than f 100 !
Manufactured by the world-famous Hawker Siddeley Group at its Gloucester Works, the Digimeter Type B.I.E. 2123 is a fully transistorised multiorange in strument possessing the following distinctive features:
Electrica! Characteristics: D.C. ranges: 10 mV to 400 V in four ranges ( $1,000 \mathrm{~V}$ for positive voltages). Accuracy: the greater of $\pm 0.1 \%$ of $\pm 1$ digit. A.C. ranges: 100 mV to 250 V r.m.s. in three ranges. Accuracy the greater of $\pm 0.5 \%$ or $\pm$ I digit over the frequency range $30 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{ke} / \mathrm{s}$.
Range change is manual
Input impedance: D.C.-I5M $\Omega$ on two lower ranges. $1 M \Omega$ on two higher ranges.
A.c.-a.c. coupled, approximately equivalent to a shunt impedance of $8 \mathrm{~K} \Omega$ in series with the parallel impedances $180 \mathrm{~K} \Omega$ and 550 pF
Input characteristics: Single ended, floating. The potential between terminal connected to OV and earth should filter: 55 dB attenuation at $50 \mathrm{c} / \mathrm{s}$.
Conversion time: 300 msec.

Sampling rate: 1 reading per 2 sec . or manually controlled.
Power Supply: $100 / 120 \mathrm{~V} ; \mathbf{2 0 0 / 2 5 0 \mathrm { V } 5 0 \mathrm { c } / \mathrm { s } .}$
Mechanical Characteristics:
Dimensions: $10 \frac{3}{4} \mathrm{i}$. high $\times 7 \mathrm{in}$. wide $\times 13 \mathrm{in}$. deep. Weight: I5Ibs.
Display details: Three digit with decimal point indication Character height lin.
At the price we can offer these instruments no laboratory can afford to be without one! They are ideally suited to production and inspection application.
Brand new in manufac-
E92.10.0
Handbook.
IMMEDIATE DELIVERY!

## SOLARTRON LABORATORY OSCILLOSCOPE TYPE 711/S2

This magnificent scope will take pride of place in any service dept, college or university, offered at one-fifth of manufacturer's price, in perfect working order and excellent condition, $£ 80$ plus carriage. Brief specification: bandwidth DC-7Mc/s; sensitivity $3 \mathrm{mV} / \mathrm{cm}$ to
$100 \mathrm{~V} / \mathrm{cm}$; sweep velocity $0.33 \mathrm{~cm} / \mathrm{sec}$ to $3.3 \mathrm{~cm} / \mathrm{\mu sec}$; $100 \mathrm{~V} / \mathrm{cm}$; sweep velocity $0.33 \mathrm{~cm} / \mathrm{sec}$ to $3.3 \mathrm{~cm} / \mathrm{ssec}$; $X$ expansion variable up to $X 10$; size $16 \mathrm{in} . \times 13 \mathrm{in}$. $x$ 27 in . deep.

## MARCONI AF ABSORPTION <br> WATTMETER TYPE TF938/CT44

Designed to measure the power output of all audio equipment in the range of 10 micro wates to 6 watts in 3 ranges. Impedance 2.5 to $20 \Omega$ switehed in 11 ranges. indication to large 5 in . meter, a small portable moder instrument. Price $\$ 25$ plus P. \& P. $12 / 6$.

## SOLARTRON CALIBRATING UNIT

 AT203Providing an output range $10 \mu \mathrm{~V}$ to 10 V , in the frequency range of DC ram $300 \mathrm{ke} / \mathrm{s}$. An excremely useful instru ment of high accuracy for calibrating meters, and research work where the voltage output must be class condition, fully tested, for 240 V a.c. supply at $£ 50$.

## P. F. RALFE

Radio \& Electrical Supplies
423 GREN LANES, HARRINGAY

SPECIAL OFFER OF COLVERN 10 TURN HELIPOTS TYPES CLR26/1001/9 Values: $1000 S 2$ and $100 \mathrm{k} \Omega$. Brand new stock Price 30/-. P. \& P. $1 / 6$

## POWER RHEOSTATS

3 ohms $8.5 \mathrm{~A}, 35 / \mathrm{F}$ P. \& P. 3/6.
7.5 ohms $5.5 \mathrm{~A}, 35 /-$ P. \& \& P. 3/6

50 ohms $1.5 A, 12 / 6$, P. \& P.
$3 \mathrm{k} \Omega 75 \mathrm{~W}, 12 / 6, \mathrm{P} . \& \mathrm{P} .1 / 6$.
All heavy duty types Torodial wound on ceramic formers.

## COMMUNICATIONS RECEIVERS

## Marconi CR150/3. $2-60 \mathrm{Mc} / \mathrm{s}$. Double-conversion

 crystal calibrator, etc. C/w ease in as new condition. Only E35. Mains P.5.U. ©5.AR88D, like new, $540 \mathrm{kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{t}$ £55
Murphy B40 $640 \mathrm{kc} / \mathrm{s}-30.5 \mathrm{Mc} / \mathrm{s}$. Recond. to maker's specification, $£ 37$.
Redifon RSOM $94 \mathrm{Ke} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$ in 8 bands, perfect con
dition, E 75 .

## INDUSTRIAL POWER AMPLIFIER

Output 175 wates can be supplied with variable frequency oscillator $10 \mathrm{c} / \mathrm{s}$ to $14 \mathrm{kc} / \mathrm{s}$. C/w with all usual
facilities for, 19 in . rack mounting supply volts 250 V acc. facilities for, $19 \mathrm{in}$. rack
Price $£ 75$ plus carriage.

## CAPACITANCE BRIDGE

## ELECTROLYTIC

B.P.L. Cat. No. ZD00506. Measures capacitance under full working loads (variable voltage selection), easy to operate. C/W voltmeter, leakage current meter, balance indicator, discharge switch, ecc. Range 2 mid . and guaranteed accurate. Price ©35, P. \& P. 20/-.

## STC MOVING COIL STUDIO

MICROPHONES TYPE 4035A
A limited quantity of these superb low impedance microphones for sale 2 a approx. One-third of maker's price.

WESTON RF AMP METERS 0.3A Two inch flush round panel mounting, black scale, white pointer. These
new at $25 /=$ P. \& P. $2 / 6$.

## AUDIOTRIME HIGH FIDELITY 

 high efficiency ceramic magnets. Treated co urround glying low fundamental resonance. "D"indicates Tweeter Cone providing extended Irequency range. Impedance 3 or 15 ohms. Re. models capable of outstanding results. Exceptional value

 RECORD PLAYING UNITS All typasat



 RP3M Mithe Nomatis perox: 39 sult $35 \frac{1}{2}$ Gns. AUDIOTRINE PLINTHS


 uitable for Buper 15 and 30 . $£ 6 / 19 / 11$ inc, cover. Carriage $8 / 6$. Perspex cover ald saparateiy at 3 omis, Limited number, silghtly
damaged but repaired by manufacturer. $39 / 9$ to clear.
HIGH FIDELITY LOUDSPEAKER UNITS Cabinots of latest btyling satip Teak or Wainat, acoustically DORSET

 | g.10 wath. Fitted Audibtriee HF810D speaker, |
| :--- |
| 3 or 15 olmas. |
| $£ 8.19 .9$ |

 DORCHESTER ${ }^{\text {site }} 24 \times 15 \times 1$ ioin. Filted


 STANTON Mk. III. Size $18 \times 11 \times 10 \mathrm{in}$.
Rathing 10 ratte. Trocrporating Audititne HF815 speaker with rolled
 ohms. The deep oxaurthons of the cone produee powertul hase note.

 TA6 6 WATT HIGH FIDELITY SOLID STATE AMPLIFIER


 tirtity bmy Pully enclosed enameliled case, $9 t \times 21 \times 5$ tin. Attractive

R.S.C. A11T 15 WATT HIGH FIDELITY AMPLIFIER dual punpose
 suitable for Gram, Radio. Tape, MlcroTnstrumental groups, Frequency response $20.40,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. $-3 \mathrm{~d} . \mathrm{b}$. Hun



SENSATIONAL VALUE IN HIGH FIDELITY STEREO SYSTEMS
 ${ }^{6} 69 \frac{1}{2}$ ans. O sinting of (1) The
Garrird SP25 Mk, II PLAYER UNIT 4 appeed with heavy turntable. HYDRAULIC LOWERING device, etc., etc.
Fitted Goldring CS 90 P.U. Cartridge. Ready wired on Pinth (baseboard). Fitted plugs for instant use. (2)
AMPLIFIER
fully wired and Atted
ha cabinet above. (3) PAIR OF STANTON MK. III
LOUDSPEAKER UNITS. Perlornance compar
able with equipment at twice the cont and saving over $\& 18$ on above unitn. H.P. Terms

HI-FI LOUDSPEAKER ENCLOSURES All types of pleasing modofn design, acoustically Touk or Walnut veneer,
JE8, size $20 \times 11$
plesaing result
with
8in. Gives
any 4 ClS .




LINEAR LP/I TAPE PRE-AMPLIFIER Switched Equalisation. Positions for Recording at 17 in , $3 \frac{172 \mathrm{in}, \text {, } 7 \mathrm{i} \text { in. per sec. }}{\text { and Playback. EM84 Recording Level In- }}$ and Playback. EM84 Recording Level In-
dicator. Designed primarily as the link dicator. Designed primarily as the link
between a Magnavox Tape Deck and Hi-Fi between a Magnavox Tape Deck and Hi-Fi
amplifier suitable most Tape Decks. amplifier suitable
Terms available.
INTEREST CHARGES
REFUNDED
on $H . P$. and Credt sale Accounte


Inc. Garrard GP2 Mk. II 4nit speed table mounted on plinth wien lead
and plugs and fitted and plugs and Btted
Goldring C890 high
compliance ceramic compliance ceram
cartidge with d mond stylus. Assembied TA12 Btereo Amplifier in cabinet arid pait inclusive price 46 Gns
C. Carriage 25
£7/6/0 and 9 mthly. payments $85 / 3 / 0$ (Total $\& 53 / 13 / 0$ ) R.SGTAI2 IS WATT STEREO AMPLITIIR FULEX TRANSISTORISED, SOLD STATE CONSTR DCTION, RIGH FIDELITY
 1,000 c.p. Harmanic Distortion $0.3 \%$ an Nowe 70 dB . Senaltivities (1) 300 mv (2) 100 mV (3 100 mV (4) 2 mV . AHandsome brushed silver finhsh facta and knobe. Comple 11 CIS. Carr. $7 / 9$. Factory built with 12 tronths
11 GIS. Carr. 7/9. Factory bullt with 12 tronths guarantee. 15 Ons 17 Gns.). Teak finithed cabinet as llustrated $89 / 13 / 6$ extra
Or larger size as uaed $\ln$ Blereo Syatem 86/6.
 R.S.C. HIGH FIDELITY SPEAKER SYSTEMS Consinting of matched 121 in . 12.000 line , 1 J ohm high qualty speaker, crossover unit and Tweeter. Smioth responee and
extended frequency
range encure surprising realisite reproduc-

FR3 3 SPEAKER SYSTEM Inc. Audiotrine HF128, 12in. Base nait. with 15.000 line nuggnet. 5 in . 10 wati 11,000 iine mid-range speaker HF circuit. Housed in suliable cablnet will provide quality comparable with very ex pennive units, Rating 15 wath. Impedance 18 ohms. 9 Gns . Carr, $7 / 8$ Or ready wired on baffe board $171 \times 12 \mathrm{in}$. 10 Gns.
AUDIOTRINE HIGH FIDELITY MODULES
Model MT 54
 £5.15.0

## HI-FI TAPE

 RECORDER KIT Deck, Matched 4-5 watt Tape Amplifier. Reel of high quality recording Tape, empty 7in. spool. High quality dynamic microphone, $7 \times 4$ in. Loudspeaker and circuit. Full record and playback facilities.
Magic eye level indicator. Magic eye level indicator. Equalization for each speed,
Twin track.
Only 4 pairs of Twin track. Only ${ }^{4}$ pairs of
soldered joints plus mains. soldered joints plus mains
Save approx, 10 Gins, on pack. age deal. 4 track version, 27 gns R.SC. TFMI TRANSISTORISED VHE/FM RADIO TUNER

| tal ${ }^{\text {cost }}$ det ${ }^{\text {ata }}$ |  |  |
| :---: | :---: | :---: |
| grams al |  | $\star$ Sha |
| 2 |  | Dut amp pio for soy amplifer (approx. S $00 \mathrm{~m}, \mathrm{~F}$ ). ) \$ Stm |
| tactory buil |  | nlignment inatructions. * Ontput |
| 181 Gni. Or in Teak |  | tnning moter. $\star$ Output for feeding Sterso M |
|  |  | Tuner head uring silicon Planer Tr |
| ${ }_{\text {Depoatit }}^{181}$ GNS. |  | ndard bo ohm co-axial input. Vis |
|  |  | high standard of performance |
|  |  |  |
| tal |  |  |

## R.S.C.SUPGR AFHIFI AMPLIFIR R.S.C.SUPER 3 OSTEREO AMPLIFIER


 SPOSITION INPOT SELECTOR SWITCH
EQUALISATION to Standard R.I.A.A.
EQUALISATION to Standard R.I.A.A. and C.C.I.R. Characteristica for Gram and Tape Reada.
FULL TAPE MONITORING FACILITIES

CRCUITRY

THESE UNITS ARE EMINENTLY SUIT-
ABLE FOR USE WITH ANY MAKE OF PICK-UP OR MICROPHONE (Crystal, Ceramic Magnotic, Doyamic or Reribton'
CURRE MTLY AVAILABLE. SPECIFICA CURRENTLY AVAILABLE SPECIFICA-
TIONS COMPARABLE WITH UNITS AT TIONS COMPARABLE WITH UNITS AT

A DUAL CEANNEL VERSION OF TEE SUPER 15 Employing ponents. OROSS TAL' CO : -52 dB at $1,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$.
CONTROLS: $\delta$ position Input Selector, Bas. Cont rol, Treble Control,
Volume Control, Balance Control, Btereo/Mono Switch, Tape Monitor Switch, Malns swith.
INPOT SOCKETS (Mat
INPOT SOCKETS (Matched Palrs). (1) Magnetic P.U. (2) Ceramic or
Crystal P.U. (3) Radio/Aux. (4) Tape Head/Mier Crystal P.U. (3) Radio/Aux. (4) Tape Head/Microphoze. Operation

 point wiring diagrame and detailed instruotions. Send S.A.E. for leaffet.
Unit factory built with 12 months full guarantee k 7 Garr. 151.19 CIS. and 9 monthly payments E6 3 (Total $£ 31 / 8 / 3$ ). Fritted cabinet as Super 10 30 Oni.
/18/6).
32 High Street (Hall-diz
-7 County (Mecca) Arcade Briggate (No hall-day) Tel LEICESTER 73 Dale St., (No hali-day) Tel., CENtral 3573 238 Edgware Rd W2 LIVERPOOL 96 High Holborn, WCI Tel. HOL, 9874 (Hall-day Sat.) 60A-60B Oldham se. (No half-day) Tel. CENtral MANCHESTER 106 New port Rd (Hall-day Wed) Tel. 47096 MIDDLESBROUGH ${ }^{41}$ Blackett se. Opp. Fenwicks store NEWCASTLE UPON 13 Exchange Street, Castle Markee Bldgs. SHEFFIELD

 Terms available. Rexine covered, 10/-extra.
80 Watt Model. LOUDSPEAKERS Limited number at frac. LOUDSPEAKERS tion of list price. 15 ohme I2in. 20 WATT DUAL CONE
£5.11.9
12in. 30 WATT DUAL CONE
Normally $£ 13$ mpprox. C'arr. 10/.
£6.19.9
Sin. 40 WATT Carr. 15/.
Massive units. Usually 18 gns.
12 Gns.


## R.S.C. AIO 30 WATT

 HIGH FIDELITYAMPLIFIER

senaltive. Push-Pill hish out put with Pre-amp./Tone Control atages. Performance figures equal to most expensive amplifiera avaliable. Humlevel -70 dB ultra linear output transformer with 807 output valves. All first grade components. Valvee, EF86, EF86, ECC83, 807, 807, GZ344. Eeparate Bass and Treble Controls. Bensitivity 12 millivolts for Clabs, Schools, Thestres, Dance Halls or Dutdoor Functione. etc. For use with Electronic Organ, Guitar, String Bass, etc., Gram., Redio or Tape. Two inputs with sasociated volume | controls. $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. A.C. mains. For 3 and |
| :--- |
| 15 ohms speakers. Complete kit of parts with | point-to-point wiring diagrams and instructions. Carr. 12/h Supplied factory built with EL34 output valves. 12 months

guarantee for 15 gas. Terms: Depoitt $4 / 13 / /$ and 9 monthly guarantee for 15 gng . Terms: Deponit $£ 4 / 13 /$ and 9 monthly
paymenta of $28 / 9$ (Total g17/11/9). Twin handled perforated payment of $28 / 9$ (Total $217 / 11 / 9$. Twinhandled perlorated
cover can be supplited for $25 /-$. Send sa.a.e. for leaflet.
R.S.C. GRAM AMPLIFIER KIT 4 watts ontput Negative feedback. Controls: Vol., Bres, Treble and Maine 8 witch. For $200.250 \mathrm{vA.C}$. maina. Fully lsolated chaseis.
Circult etc. supplled.
POWER PACK KIT Consisting of malns transformer Metal Rectifier. Electrolytics, smoothing choke, chassis and
circult. $200 / 250$ v. A.C. mains. Output 250 v. $60 \mathrm{~mA} .6^{\circ} 3 \mathrm{v} .2 \mathrm{a}$. supplied with case in lieu of chassis $28 / 11$. Or $\quad$. $22 / \|$
sasembled $39 / 11$.
R.S.C. BATTERY/MAINS CONVERSION
UNITS Type BMM. An all dry battery
eliminator. size $5 / \times$ it $\times 2$ in.
R.S.C. 6/12v CAR BATTERY CHARGER KITS For $200-250$ v. A.C. malus with variable
charge rate selector. Complete kit with Ammeter and $4 \mathrm{amp} 49 / 9$
elircuit. circuit.
6 amp Heavy Duty 69/9
R.S.C. MAINSTRANSFORMERS FULLY gUARANTEED. Interleaved and Impregnated. Primarie $200-2507.50 \mathrm{c} / \mathrm{s}$. Screened.
MIDGET CLAMPED TYPE $28 \times 2 \$ \times 2 \neq \mathrm{in}$
$250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{v} \cdot 2 \mathrm{a}$.
$250-0-250 \mathrm{v} .60 \mathrm{~mA}, 8$.

$250-0.250 \mathrm{v}, 80 \mathrm{~mA} ., 6.3 \mathrm{v} .2 \mathrm{~s} .0-5-6.3 \mathrm{v} .2 \mathrm{R}$.
$250 \cdot 0.250 \mathrm{v} .100 \mathrm{muA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6.3 \mathrm{v}, 3 \mathrm{a}$.
 510 Amplisfer..
$50-0-950 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v}, 3 \mathrm{a}$.
$425-0-425 \mathrm{v} .200 \mathrm{ma}, ~ 8.3 \mathrm{v} .4 \mathrm{a}$, c.l., $5 \mathrm{v}, 3 \mathrm{~m}$.
$425-0-425 \mathrm{v} .200 \mathrm{~mA}, 8.3 \mathrm{v} .4 \mathrm{a}, 8.3 \mathrm{v} .4 \mathrm{a}, 5 \mathrm{v} .3 \mathrm{z}$
$450 \cdot 0.450 \mathrm{v}$. $250 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}$, e.t. br, 3a.
TOP SHROUDED DROP-THROUGH TYPE
$250-0-250 \mathrm{v}, 70 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 0-5-6.3 \mathrm{v}$. 2 a .
$2200-0.250 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{v}, 3.5 \mathrm{a}$.
$250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 2 \mathrm{a}, 6.3 \mathrm{v} .1 \mathrm{a}$.
$350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v}, ~$
$350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 0-5-6.3 \mathrm{v}, 2 \mathrm{a}$.
$250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, \mathrm{o}, 5-6.3 \mathrm{v}, 3 \mathrm{a}$.
$300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{~A}, 0.5-6.3 \mathrm{v}$. 3 A .
$300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-6-6.3 \mathrm{v}$. 1 a . Euitable to
Mullard 510 amplifer
$19 / 9$
$33 / 8$
3319
$350-0350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{~s}, 4 \mathrm{a}, 0-6.3 \mathrm{v} .3 \mathrm{~s}$,
FILAMENT or TRANSESTOR POWER PACE TyDes

 3a., $18 / 11$. 5a. $21 / 11.6 \mathrm{a}, 25 / 11$. 8a. 3
AUTO (Step UPiStep DOWN) TRAITFORME
ATO (Step UP/Step DO NN) TRALA
$0-110 / 120 \mathrm{v} .200-230-200 \mathrm{v} .50-80$ watts
150 wattv. 29/11. 250 watte, $49 / 9$. 500 watts
$14 / 9$
$99 / 8$
OUTPDT TRANSFORMERS
Standard Pentode $5.000 \Omega$ or $7,000 \Omega$ to $3 \Omega$
Push-Pull 10 watte 6 V6 ECL 86 to 3, 5, 8 or 15
Push-Pull EL84 to 3 or $15 \cap 10-12$ watts.
Push-Pull Vltra Linear for Mullard 510, et
Push.Pull $15 \cdot 18$ watts, sectionally wound BLA, K T68,
Push-Pull 20 watt high quaitity sectionaliy wound
EL34. 6L6. KT66, ete., to 3 or 150 fully shrcuded. .
SMOOTHING OROKES

| 150 mA. |
| :--- |
| $100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega$ |

$80 \mathrm{~mA} .10 \mathrm{H}, 350 \mathrm{~B}$
$60 \mathrm{~mA}, 10 \mathrm{H}, 400 \mathrm{a}$
$12 / 9$
911
$7 / 9$
$4 / 11$
HI-FI CENTRES LTO.

## AMERICAN <br> TEST \& COMMUNICATIONS EQUIPMENT

suitable for navigation or Scope conversion, price from £5. S.A.E. for details.
AN/ARC-33 Transceivers $225 / 399.9 \mathrm{Mc} / \mathrm{s}$. AN/VRC-19 F.M. Transceivers. 152/174 AN/URC-4 \& AN/URC-11 "Handy-Talk-AN/ARN-44 Compass Re AN/ARN-6 ceivers AN/TRC-8 U.H.F. Radio Relay Sets AN/FPN-13 X band Radar Beacons.
CU-168/FRR $2 / 32 \mathrm{Mc} / \mathrm{s}$ Antenna Couplers AN/PSM-2A "Megger" Insulation Testers $500 \mathrm{~V} 0-1,000 \mathrm{Meg}$
AN/URM-30 Test Set for AN/URC-4s AN/PSM-6 Multimeters $1 \mathrm{~K}-20 \mathrm{k} \Omega / \mathrm{PV}$. AN-URM-61 Signal Generator $1.8 / 4 \mathrm{Gc} / \mathrm{s}$. TS-47 Test Oscillator $40 / 500 \mathrm{Mc} / \mathrm{s}$. T-216/GR Xtl Synthesizer Signal Generator $225 / 399.9 \mathrm{Mc} / \mathrm{s}$.
AN/UPM-11A X Band Range Calibrators. AN/USM-24A Measuring Oscilloscopes. TS-413C/U Signal Generators $75 \mathrm{Kc} / 40$ Mc/s.
TS-497B/UUR Signal Generator $2 / 400 \mathrm{Mc} / \mathrm{s}$. TS-147A/UP Radar Test Sets.
TS-917A/CG (Stelma TDA-2) Telegraph Distortion Analysers.
ME-22/PCM Decibel Meters-45/ +25 DBM Tektronix 541, $543 \& 545$ spare Tubes Type 5BHP2A. Price 114
AN/APN-9 Loran Receiver Indicators, AN/UPM-19B Test Set for AN/APW-11
1-177B Valve Tester,
I-193C Relay Test Sets.
LA-239 Measuring Oscilloscope,
BC-614() Speech Amplifier.
NEW GENERAL CATALOGUE $+\quad$ AN/103 1/-
SUTTON ELECTRONICS
Salthouse, Nr. Holt, Norfolk. CLEY 289.

## Learn at home. First Class Radio and TV Courses



After brief, intensely interesting studyundertaken at home in your spare timeYOU can secure a recognised qualification or extend your knowledge of Radio and TV. Let us show you how. FREE GUIDE
The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry. Chambers College provides first-rate postal courses for Radio Amateurs Exam., R.T.E.B. Servicing Cert., C. \& C. Telecoms., A.M.I.E.R.E. Guide also gives details of range of certificate courses in Radio/TV Servicing, Electronics and other branches of engineering, together with particulars of our remarkable terms of
"Satisfaction or Refund of Fee "
Write now for your copy of this valuable publication. It may well prove to be the turning point in your career.

## Founded 1885 -Over 150.000 successes

## CHAMBERS COLLEGE

(heorp NaBl
(Dopt. 855 F), 148 Holborn, London, E.C. 1

## JANUARY

Controlled Guidance Systems
35/
by Hal Hellman
Tape Recording for the Hobbyist 26/by Arthur Zuckerman

Know Your Sweep Generators
26/
by Robert G. Middleton

## FEBRUARY

Bridges and Other Null Devices 26/-
by Rufus $P$. Turner

## ABC's of Vacuum Tubes

by Donald A. Smith

## ABC's of Transistors

20/-
by George B. Mann
Fet Circuits
25/-
by Rufus P. Turner

## MARCH

Transistorized Amateur Radio
Projects 25/-
by Charles Caringella

## ABC's of Radio and TV

Broadcasting 20/-
by Farl J. Waters

## Fundamentals of Digital

Magnetic Tape Units 21;by the Field Engineering Department, UNIVAC Data Processing Division, Sperry Rand Corporation

Radio and TV Trouble Clues 16/-
by the Howard W. Sams
Engineering Staff

Please send for a complete catalogue of over 100 titles dealing with Electronics and allied subjects.

FOULSHAM-SAMS TECHNICAL BOOKS
(W. FOULSHAM \& CO. LTD.)

YEOVIL RD., SLOUGH, BUCKS, ENGLAND

SENICONDUCTORS DISTRIBuTED
BI-PRE-PAK LTD. DEPT. B.
SEMICONDUCTORS EXCLUSIVELY BY 222-2NE WEST RAAD, WESTCLIFF-ON-SEA, ESSEX
BRAND NEW SAVE £'s WE TELL YOU DON'T TAKE
UNTESTED $\star$ TEST THEM $\star$ WHAT TYPES $\star$ CHANCES ON
TRANSISTORS YOURSELF THEY ARE UNKNOWN LOTS

25 RPY 95ACOM TRANSISTORS 10/-

| 10 | M000 Pry. 1 Amp. | DIODES |  |
| :---: | :---: | :---: | :---: |
| 25 |  | TRANSISTORS | 10\% |
| 10 | 10 WATT HLLCOM | ZENERS |  |
| 25 |  | TRANSISTORS |  |



| 10 | ${ }_{\text {Slump }}^{4.1}$ | REC | 101 |
| :---: | :---: | :---: | :---: |
| 25 | вс107.8.9 <br> NPN BTLICon | Tras | 10 |
| 40 | IN914-6 <br> SUB. MIN. SILICON | DIOD | 10/- |
| 50 | min. germanidm high quality | DIODES | 0/- |
| 25 |  | TRANSISTORS |  |


|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## 'FREE' $\star \star$

 Packs of your own choiceto the value of $101-$ with to the value of $10 \%$ with
all orders over 44 .

LARGE RANGE
LOW PRICE FILCON CONTROLLED RECTIFIERS SEND
FOR FULL RANGE AND CIRCUIT DIAGRAMS. free of charge.

GREAT NEWS $\boldsymbol{\star} \star$ We now give a writen
guarantee with all our semi-conductors.

> FIRST EVER LOGIC KITS. Learn for yourself how computers work, even make one for sourseif. Full instructions tor noughts and crosses rachline, blarry counters, timers, etc. L1 5 gns, , L2 10 gns. No need to purchase both kits, you can start with L. 2 which incorporates L.1. DETAILS FREE

MAEE A REV. COUNTER FOR YOUR CAR. THE TACHO. BLOCK.' This encapsulated block will turn any 0.1 mA meter into a perfectly linear and accurate $20 /$ - each

> NO CONNECTION WITH ANY OTHER FIRM. MINIMUM ORDER 10/. CASH WITH ORDER PLEASE. Add $1 /$ post end packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

# NO EXCUSES! NO DELAYS! FROM STOCK! UARIIABLE YOLTAGE TRAHSFORTEERS 




5 Amp. AC/DC VARIABLE VOLTAGE OUTPUT UNIT Input 230
Output $0-260$ v. A.C.
O.C. Output $0-260$ v. A.C.
Output $0-240$ v. D.C. Output 0-240 v. D.C.
Fitted large scale ammeter and voltmeter. Neon indicator, fully fused. Strong aterac-
tive metal case $15 \mathrm{in} . X$ $8 \frac{3}{4}$ in. $\times 6$ in. Weight 24
 smooth stepless volt-
age variation over range
7 Amp. A.C.D. Mk II Var nput 230 A.C. 260 v . A.C. OR 0 to $230 v$ continuously VARIABLE from 0 to metal case, complete with safety fuse, neon indicator, voltmeter and ammeter. Size $17 \mathrm{in} . \times 12 \mathrm{in} . \times 7 \mathrm{in}$. Weight 36 lb .



36 volt 30 amp. A.C. or D.C. Variable L.T. Supply Unit

INPUT 220/240 v. A.C. OUTPUT CONTINUOUSLY VARIABLE 0-36 v.

Fully isolated. Fitted In robust metal case with Voltmeter, Ammeter, Panel Indicator and chrome
handles. input and Output fully handles. Input and Output fully
fused. Ideally suited for Lab. or fused. Ideally suited for Lab. or
Industrial use. $£ 55$ plus $40 /-\mathrm{p}$. \& C . Industrial use. 65 plus $40 /-$ p. ar c.
Similar in appearance to above
illustration.

SERVICE TRADING COMPANY

3/6.

## SERVICE TRADING CO

IGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and Migh 5ped Relay for 6 or 12 volt oper High 5 peed Relay for 6 or 12 volt oper ORP 12 and Circuit $10 \%$ pose paid

## A.C. MAINS MODEL

incorporates mains transiormer rectlfier and special relay with $3 \times 5 \mathrm{amp}$. mains c/o contacts. Price inc circuit 47/6, plus 2/6 P. \& P.

## PHOTO ELECTRONIC COUNTER

Can be set for counts of up to 500 per minute. $210-250 \mathrm{v}$ A.C. powered. Kit of Companents, including photo celf, high speed non-resettable counter, cransformer. relay etc., together with clear circult diagram, \&3/2/6,
plus $3 / 6 \mathrm{P}$. \& P. With resectable counter, $\& 4 / 2 / 6, \mathrm{P}$ \& P.

## - - - - - - - - -

 UNIVERSAL DEMONSTRATIONA complete com
 posite apparatus, comprising a robustly buile Transformer with removable coils and pole pleces, coil and pole forces, 230 v , $220 \mathrm{v} .110 \mathrm{v.} 115 v.$, A.C. These coils are also used for D.C. wh all accessories as shown. cis plus $15 /-$ carr. Leaflet on request.

## PHOTO MULTIPLIER

Type CV337, this supersedes Type 931 , complete with special P.T.F.E. base and divider network, $57 / 6$ inct $P$ \& $P$.

RESETTABLE HIGH SPEED COUNTERS 3 ngure, 24 V. D.C. operation (illustrated).
Similar to above, but may be pre-set to any number up to type 32/6, P. \& P. 2/6.
4 figure, 1,000 ohm coil, 36-48 v. D.C. operation 63/10\%.P. \& P. $1 / 6$.

## LATEST HIGM-SPEED MAGNETIC

COUNTERS (NON-RESETTABLE)
4 figure, 10 impulses per second. Type $100 \mathrm{~A}, 500$ ohm coil. Type $100 \mathrm{~B}, 2,300 \mathrm{ohm}$ coil. Either $15 / \mathrm{m}$ each, plus $1 / 6$ P. \& P

230 VOLT A.C. GEARED MOTORS Trpe DisG 5 r.p.m. 1.71b. inch, $2 / / 9 / 6$, P Type B16G 80 r.p.m. 26lb. inch, $12 / 2 / \mathrm{F}$,

> PRECISION FLATPOT

Manufactured by M.E.C. 50 k., 45 turn. Fly leads. all metal sealed construction. io/b. Plus $1 / 6$ P. \& P .

SEMI - AUTOMATIC "BUG"
SUPER SPEED MORSE KEY
7 adjustments, precision tooled, speed adjustable 10 w.p.m. to as high as desired. Weight $21 / \mathrm{lb}$. $2 / / \mathbf{2} / \mathbf{5}$, post paid TRANSISTORISED MORSE OSCILLATOR. Fitted $2 \frac{1}{2}$ in. Moving Coil 5peaker. Uses type PP3 or equiv. 2 $2 / 6$, plus $1 / 6$ P. \& P.

## SUPER POWER ALLOY

These fantastic ex WD magnets waighing only tlbs. will lift wel over 100 Ibs. Fitted with swivelled handle and keeper. Size 4 in $\times 3$ Hin, $X 1 \frac{1}{2}$. Packed in origina makers cases of two


34R SILICON SOLAR CELL $4 \times .5$ volt unit series connected, output up to 20 V . at 20 mA . in sunlighe,
30 times the efficiency of selenium. As used in power Earth 5atellites, 39/6. P. \& P. I/6d.
$\rightarrow$ - - OLAR CELL AND PHOTO.CELL
Teaches the principles of light sensitive devices and their application. 26/0 post paid.

BYZ13 200 PIV .... 7/BYZ10 800 PIV..... 10/NICKEL CAOMIUM BATTERY Sintered Cadmium Type 1.2 v. 7AM. Size: height $3 \frac{1}{1} \mathrm{in}$., width 2fin. $\times$ Ifin. Weight: approx. 13 ozs . Ex-R.A.F. Teited 12/6. P. A P. 2/6.

100 WATT POWER RHEOSTATS

(NEW) Ceramic constructlon, winding heavy duty brush assembly designed for continuous duty. THE FOLLOWING II VALUES $t$ ohm 10a., 5 ohm 4.72., 10 ohm 3a. 25 ohm 2a., 50 ohm 1.4a., 100 ohm la., 250 ohm 7a., 500 ohm 45a., 1,000 ohm 280 mA ., 1,500 ohm 230 mA ., $2,500 \mathrm{ohm}, 2 \mathrm{a}$. Diameter 3 tin. 5 haft length $\frac{1}{2} \mathrm{in}$ ia. $\frac{85}{3} \mathrm{im} ., 27 /$
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm, 21/=, P. \& P. 1/6.
25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm, 14/6. P. \& P. I/6

## DRY REED SWITCHES

New special offer of Dry Reed 5 witehes, $\$$ amp. contact, $1 \frac{1}{2}$ tiin., 4 for $10 \%$ post paid.


Mozraing) Motor. The icor, fitted with gold brushes and drawing only 800 latramp at 24 v. D.C. drives two precision pots with platinum wipers through close tolerance gear-trains, including miniature slipping elutch, combined with two sub-miniature pots for calibrating the electrical bridge circuit. The 3in. callbrated dial, with a number pertur indicating one rev. per revolution of poince of approx. 30 in. Offered at fraction of Manufacturer' rice: 32/6, plus 6/-P. \&

## SANWA hulti range meters

Acknowledged throughout the world as the HEW MOOEL U.50D MULTITESTER 20000 OFY MIRROR SCALED WITH OYERLOAD PRO. TECTION. Ranges: D.C. volts: 100 mV .,
 2.5 v., 10 v., 50 v., 250 v., 1,000 v. D.C. currant: $5 \mu \mathrm{~A}$ $0.5 \mathrm{~mA}+5 \mathrm{~mA}$. $50 \mathrm{~mA}, 250 \mathrm{~mA}$. Size: $5 \frac{1}{2} \times 31 \times 1 / \mathrm{in}$ Complete with batteries 56.10 .0 Complete with batteries $10,0 \quad$ Post paid.
Three other models avallable from stock. Descriptive leaflet on request.

## GEARED MOTORS

nput 230/250 A.C. Output 135 r.p.m. $8 \mathrm{lb} . / \mathrm{in}$. Reversible. British made 20 B55 170 . Used but individually tested and
guaranteed. $85 \%$. P. \& $\mathrm{P} .6 / 6$


## YAN DE GRAAF ELECTROSTATIC

 GENERATOR, fitted with motor drive for 230 V. A.C. giving a potential of approx. including accessories for earrying complete number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited $\mathrm{c} / \mathrm{L} / \mathrm{L}$, plus $4 / \mathrm{F}, \mathrm{P} . \& \mathrm{P} .4 \mathrm{f}$. on req.

## SANGAMO WESTON

 Dual range voltmeter. $0-5$ and $0-100 \mathrm{v}$. .C. F50 mA . In carrying case withAUTO TRANSFORMERS. 5tep up, step down. $110-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 watt type, t3 each. P. \& P. $4 / 6$. 500 watt type, $\epsilon 4 / 2 / 6$ each

SLIDERRESISTANCES
200 ohm $1.25 \mathrm{amp} .37 / 6 . P_{\dot{\prime}}$ \& P. 3/6.
$5 \mathrm{ohm} 10 \mathrm{amp} .37 / 6$. P. \& P. 3/6.
230 v. A.C. RELAY. 2 c/0 2 amp . contacts., $9 / 6$ ex new equip. P. \& P. $1 / 6$.
THYRISTOR 400 ply, 5 amp ., $14 / 6$ post paid
THYRISTOR 400 piv, 8 amp., $28 / 6$ pose pald
Condenser $5,000 \mathrm{~m} / \mathrm{d} 50 \mathrm{v} .1 \frac{1}{6} \times 4 \frac{\mathrm{in}}{} \mathrm{n}, 12 / 6$. New. LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp ., I1/=, plus $2 / 6 \mathrm{P}$. \& P .
MOVING COIL HEADPHONE AND MIKE Soft rubber ear-pieces with M/C Mike fitted 5 -way
plug as on No. 19 set. New, in maker's packing, $16 / 6$ plus $3 / 6 \mathrm{C}$. \& P .
A.c. AMMETERS $0-1,0-5,0-10,0-15,0-20$ amp. F.R

2tin. dia. AOLTMETERS $0-25$ v., 0.50 v., 0.150 v. M.I $2 \frac{1}{2} \mathrm{in}$. Flush round all at $21 /-$ each. P. \& P. extra. Q-300 v. A.C. Rect. M-Coil $2 \$$ ln.
Q-300 v. A.C. Rect. M-Coil $3+$ in. Type W $\mathbf{W} 23 . . . . . .$. Latest typ VARLEY MINIATURE
 RELAY in Transparent Case. $4 \mathrm{c} / 0$ 700 ohm, 14/6. Base 4/-. $2 \mathrm{c} / 0700$ ohm coil. Size $\bar{\prime} \times \frac{7}{7} \times$ Ifin. $15 / \mathrm{F}$
inc. base. VARLEY TYPE VP4 (similar to illus.), $5,800 \mathrm{ohm} 4 \mathrm{c} / \mathrm{o}$. 5 imilar to above. Mid. by GRUNER $4 \mathrm{c} / \mathrm{o}, 2,400 \mathrm{ohm}$ coil. New. $10 / \mathrm{m}$ c/o, 2,400 ohm coil. New, Nol:
less base.
UNISELECTOR SWITCHES
NEW 4 BANK 20 WAY
25 ohm cail, 24 v. D.C.
C4/17/6, plus $2 / 6$, P. \& P.

8-BANK 25-WAY FULL WIPER
24 v. D.C. operation, 66/10/\%, Plus $4 /-$ P. \& P
STANOARO SIZE UNISELECTOR SWITCHES USED
75 ohm coil, 24 v. D.C., 6 bank 25 position, 5 non6 bank arranged to give 3 bank, 50 positions ex-equipment, $35 /-$ each.

MINIATURE UNISELECTOR SWITCH


3 banks of II positions, plus
homing bank. 40 ohm cuil. homing bank. 40 ohm cuil.
24.36 v.D.C. Operation. Carefully $24-36$ v. O.C. operation. Carefully
removed from equipment and removed from equipment and
tested. $22 / 6$, plus $2 / 6 \mathrm{P}$. \& $P$.

## AIR BLOWER

Highly efficient blower unit fitted with totally enclosed $200 / 250 \mathrm{v}$. A.C. 50 cycles. so h.p. motor,
producing 2,800 r.p.m. outer producing 2,800 r.p.m. outlet condition and test

$\square$ ULTRA VIOLET BULBS
Easy to use source of U.Y. for dozens of practical and experimental uses.
$\begin{array}{ll}12 \text { vole } 36 \text { watt A.C./D.C. } 5 B C, 6 / 6 . & \text { P. \& P. } 1 /- \\ 12 \text { vole } 60 \text { watt A.C./D.C. } 5 \text { BC, } / 6 / 6 & \text { P. \& P. }\end{array}$ 12 volt 60 watt A.C./D.C. 5 BC, 8/6. 200-240 P. \& P. $1 /-$ Transformer to suit the above. Input 200-240 v. A.C. 12
volt 36 watt, $21 /=$ P. \& P. $2 / 6$. Input 200-240 v. A.C volt 36 watt, $21 / /$. P. \& P. $2 / 6$. Input $200-240$ v. A.C.
12 volt 60 watt, $27 / \%$, P. \& P. $3 / 6$. See of 4 Colours FLUORESCENT PAINT. Red, yellow, green and cerise. In I oz. jars. Ideal for use with the above Ultra Violet Bulbs, $1 / /-$ plus $2 / 6$ P. \& P.
NEW SOUNDPOWER OPERA. TEDEX-ADMIRALTY MEADAND BREAST SETS
Two such sets connected up will provide perfect intercom. No batteries required, Will operate up to $\frac{1}{3}$ mile.
Price $17 / 6$ each, plus P. \& P. $4 / 6$, or $32 / 6$ per pair. P. \& P. $6 / \mathrm{m}$.

SPECIAL OFFER OF FIRST GRADE GUARAN TEED TRANSISTORS. OC83-3 for $12 / 6$. OC81-
4 for $10 /$ OC. OCBID- 4 for $10 \%$ OC $45-3$ for $10 /$. OC4-3 for $10 \%$. Post paid.
20-WAY STRIP containing standard Post Office telephone Jack 5ockets. Overall size $l l i n . \times 3 \frac{1}{2} i n . \times \frac{1}{2} i n$. NEW PRICE $15 /$ each. P. \& P. $2 / 6$.
S.T.C. SILICON POWER RECTIFIERS R5300 5eries. All eypes 1.5 amp, wire ended. R5310, 100 v. P.I.V. 4/= R5350, 500 v. P.I:V. $8 /-$
 R5340, 400 V. P.I.V. T/-. R5380, 800 V. P.I.V. I0/-
4 can be used to make 3 amp. bridge. Not Seconds. 4 can be used to make 3 amp
Brand New Stock. Post paid.

# SERVICE TRADING CO. SHOWROOMS NOW OPEN Many Bargoins for the caller. AMPLE PARKING 



REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

# LEDON INSTRUMENTS LTD <br> 76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 

Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRAGTOR TO H.M. GOVT
 WW-109 FOR FURTHER DETAILS

WW-108 FOR FURTEER DETAILS

## ADVANCE TEST EQUIPMENT

VM76

## Valve Voltmeter

R.F. measurements in excess of 100 mHz and d.c. measurements up to $1,000 \mathrm{~V}$ with accuracy of $\pm 2 \%$. D.c. range- $300 \mathrm{mV}-1 \mathrm{kV}$ f.s.d. A.c. range- $300 \mathrm{mV}-300 \mathrm{~V}$ r.m.s. Resistance in 8 ranges, 0.02-500 Megohms.
Manufacturer's price £90: Our price £72
VM77C: A.C. Millivoltmeter
$1 \mathrm{mV}-300 \mathrm{~V}$ full scale in 12 ranges. Freq. range $15 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Input impedance 10 Megohms 20 pf . Calibrated in r.m.s. volts for sine wave input and dB. 100-250 V a.c. input.
Manufacturer's price £55: Our price £40
VM78: A.C. Millivoltmeter
Transistorised. $1 \mathrm{mV}-300 \mathrm{~V}$ in 12 ranges. Freq. $1 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$. Input impedance 2 Megohms 60 pf . Calibrated in r.m.s. for sine wave and input dB.
Manufacturer's price £70: Our price $£ 55$
TT1S: Transistor Tester (CT472)
Suitable for measuring medium and low powered transistors. Current gain (B) can be measured in range 10 to 500 for p.n.p. and n.p.n. types, either in circuit using the clip-on probes provided. Small, compact instrument.
Manufacturer's price £57: Our price £37/10/-

VM79: UHF Millivoltmeter
Transistorised. A.c. range $10 \mathrm{mV}-3 \mathrm{~V}$ f.s.d., 10 ranges. D.c. current range $0.01 \mu \mathrm{~A}-0.3 \mathrm{~mA}$ f.s.d. 10 ranges. Resistance $1 \mathrm{Ohm}-10$ Megohms in 7 decade ranges. Complete with probe.
Manufacturer's price £180: Our price £125
J1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Output 600 Ohms , $0.1 \mathrm{~mW}-1 \mathrm{~W}(0.25-24 \mathrm{~V})$, variable. Attenuation $20 \mathrm{~dB}-600$ Ohms (Attenuator is incorporated), output $10 \mathrm{~mW}(2.5 \mathrm{~V})$. $100-250 \mathrm{~V}$ a.c.
Manufacturer's price £46: Our price $£ 30$
J2B: Audio Signal Generator
Same specification as for the J1B except that this model has an additional 2 in . meter calibrated $0-40 \mathrm{~V}$ a.c.
Manufacturer's price £50: Our price £35
H1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Sine wave $200 \mu \mathrm{~V}$ 20 V r.m.s. Square wave $1.4 \mathrm{mV}-140 \mathrm{~V}$ peak to peak (approx.). 100-250 V a.c.
Manufacturer's price £42:
Our price £30
Special offer of $10 \%$ discount for schools and Technical Colleges, etc. These were manufactured in U.K. by Advance Electronics Ltd. BRAND NEW, all in original sealed carton. Carr. 10 /- extra per item.

## SIGNAL GENERATORS:

MARCONI TF-144G: freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, internal and external modulation, power supplies $200 / 250$ v. A.C. (secondhand cond), price $£ 25$ ea.; or available in transit case, complete with spares, in first class condition, £30 ea., carr. on both 30/- ea.

TS155c/UP (as new) : price $£ 75$ each, carr. £1.
CT53. Freq. range $8.9-300 \mathrm{Mc} / \mathrm{s}$. with Calibration chart. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. internal square wave and sinewave modulation at $100 \mathrm{c} / \mathrm{s}$., external modulation $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s} ., 230$ v. A.C. Complete with chart, etc., price $\$ 27 / 10 /-$ ea., carr. £!.

MARCONI TF801A/1 Freq. 10-300 Mc/s., 4 bands, output 200 mV , Attenuator 0-110dB. Input 75 ohms, £65 each, carr. £1.
MARCONI TF516-F/1: Covering $10-18 \mathrm{Mc} / \mathrm{s} ., 33-58 \mathrm{Mc} / \mathrm{s} ., 150-300 \mathrm{Mc} / \mathrm{s}$. £12/10/-each, carr. £1.
MARCONI CT218: price \&65 each, carr. 30/-
CT. 480 and $478: 1.3-4.2 \mathrm{Mc} / \mathrm{s} .$, F.M. or A.M., price $£ 75$ each, carr. $30 / \mathrm{m}$

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW., reception crystal filter, with phasing contrcl. AVC and signal strength meter. Freq. range $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$., each. Set of nine coils, $£ 12 / 10 /-$, available only with set. Power unit for HRO each. Set of nine coils, $£ 12 / 10 /-$, ava
$100 / 240$ v. A.C., $£ 2 / 15 /-$, carr. $10 /-$

SPECIAL OFFER: Complete HRO SET (Receiver, Coils and Power Unit) for $£ 30$, plus $30 /$ - carr.

HRO-M-SETS available with UX type valves; secondhand cond., with 5 coil and power unit, £20 each, carr. 30)-.

COMMAND RECEIVERS: Model $3-6 \mathrm{Mc} / \mathrm{s}$. and $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price \$5/10/- each, post 5/-.
BC-433G COMPASS RECEIVER: Freq. 200-1,750 Kc/s. in 3 bands, suitable for aireraft; boats, etc. Complete with 15 valves, power supply input 24 v. D.C. at 2 amps. Receiver only $£ 5$ each. Cars. 15/-.
RECEIVER TYPE S.27: UHF: freq. 35-143 tunable Mc/s., AM/FM $100 / 250$ A.C. $£ 25$ secondhand cond., $£ 50$ as new, $30 /$-carr.
AIRCRAFT RECEIVER TYPE 1392: freq. $100-150 \mathrm{Mc} / \mathrm{s}$. tunable, with power unit for $200 / 250 \mathrm{v}$. A.C. mains. In serviceable cond., $\& 10$ each, carr. 25/-

ROTARY TRANSFORMERS: 24 v . input, 175 v. at 40 mA output, $25 / \mathrm{m}$ plus $2 /$ post. 12 v . input, 225 v . at 100 mA output, $25 /-$. plus $3 /$-post (All the above are D.C. only).
ROTARY CONVERTERS: Type $8 \mathrm{a}, 24 \mathrm{v}$. D.C., 115 v. A.C. © 1.8 amps. $400 \mathrm{c} / \mathrm{s} 3$-phase, $£ 6 / 10 /-$ each, $8 /-$ post. Converter 12 v. D.C. input, 110 v. A.C. $60 \mathrm{c} / \mathrm{s}$ output, $£ 15 \mathrm{each}$, £1 carr.

AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: £25 each, carr. £1.
AVOMETERS: Model 47A, $£ 9 / 19 / 6$ each, 10/-post. Model 7x, £13/10/- each, 10/-post. Excellent secondhand cond. (Meters only). (Batteries and Leads extraat cost).

OSCILLOSCOPE Type 13A, $100 / 250$ v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam rube. Reliable general purpose scope, $£ 22 / 10 /-$ each, $30 /$ - carr.
COSSAR 1035 OSCILLOSCOPE, £30 each, $30 /$ carr.
COSSAR 339 OSCILLOSCOPE, double beam, £10 each, 30/- carr.

RELAYS: Relay Unit (with 9 American relays) 24 v. D.C., 250 ohm coils, heavy duty, M. \& B. 30/- each, 4/-post. GPO Type 600, 10 relays @ 300 heavy duty, M. \& B. $30 /$ - each, $4 /$-post. GPO Type 600 , $/ 0$ rela.

CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869, £25 each, £2 carr.
ROTAX VARIAC \& METER UNIT: Type 5G.3281. Reading 0-40 v., 0-40 mA and 0.5 amps., all on 275 deg. scales, $£ 30$ each, $£ 2$ carr.
MARCONI IMPEDANCE BRIDGE, TF-373: inductance $5 \mu \mathrm{~h}-100 \mathrm{H}$ in 5 ranges capacity $5 \mathrm{pF}-100 \mu \mathrm{~F}$ in 5 ranges, resistance .05 meg. 1 meg., power supply 250 v . A.C., $£ 37 / 10 /=$ each, carr. $15 /-$

HEWLETT PACKARD TYPE $400 \mathrm{C}: 115 \mathrm{v} \cdot / 230 \mathrm{v}$. input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$. in 12 ranges. Input impedance 10 megohms . Designed for rack mounting, $£ 30$ each, carr. $15 /-$.
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /-$, post $5 /$ -

AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mrd}$. and M. 98034 4 , $3 \times 0.01 \mathrm{mfd}$. 3 for $10 /$-, post $2 / 6$. Trimmers, $95534-502,2-20$ p.f. Box of 3, $10 / \mathrm{F}$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., $600 \mathrm{v} ., \mathrm{s} 2$ each, $4 /$-post. Filter Choke, L45 and 50, K901433-501, 25/- each, $4 /$-post.
CONDENSERS. 10 mfd . 1,000 v., $12 / 6$, post $2 / 6.8 \mathrm{mfd} ., 1.200$ volts, $12 / 6$, post $3 /-.8$ mfd, 600 volts., $8 / 6$ post $2 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{kv} ., 4 /-$ post $1 / 6$.
AUTOMATIC PLLOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $£ 7 / 10 /-$, $£ 1$ carriage.

## TELEPHONE EQUIPMENT:

DESK TELEPHONES with dial, in excellent secondhand cond. £2/10/a pair, $10 /$-post.

TELEPHONE WIRE: 220 yds., £1 a roll, post 6/-.
GPO TERMINAL BLOCKS, $7 / 6$ each, FUSE AND PROTECTOR, 7/6 each. Post on both 2/6.

TELEPHONES (PORTABLE) TYPE "F". Suitable for all outdoor activities up to a range of 5 miles. Price $87 / 10 /-$ each, as new, complete with carrying case. Price $\mathbf{5} / 10 /$ each, secondhand. Carr. 10/-.

TELEPHONE EXTENSYON CORD. Brown, 3-way; come in lenghts of 6 ft . and 14 ft ., $7 / 6$ and $15 /$ - respectively. Post 2/6.

NIFE BATTERIES: 6 v .75 amps, new, in cases, £15 each, £1 carr. 6 v. 160 amps, new in cases, $£ 25$ each, $£ 1 / 10 /-$ carr. $; 4 \mathrm{v} .160 \mathrm{amps}$, new, in cases, $£ 20$
each, $£ 1 / 10 /-$ carr.
L.R. 7 Cells, only 1.5 v. 75 amps., new, \&3 each, $12 /$ - carr.

The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.

WAVE GUIDES FLEXIBLE CG-182/APM40. Length 18 inches. Price $\mathbf{5} \mathbf{2}$ each, post 4/-.
MACHMETERS : Range $0: 1$ and $0: 1.2,6 \mathrm{~A} / 3384$ and 5325 respectively, price 30/- each, postage 5/-.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price
$30 /=$ each, postage $5 /-$.

DRY BATTERIES, No. 1. HT 90 v. and $7 \frac{1}{2}$ v. size $2 \frac{1}{2} \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in} . \times 5 \mathrm{in}$, 5/- each, or 5 for E 1 , post $4 /-$ and $7 / 6$ respectively.

BATTERY NO. 4 (suitable for bells, etc.). $4 \frac{1}{2} \mathrm{~V}$., size $4 \frac{1}{2} \mathrm{in} . \times 6 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$., 5/- each, post 3/-.
UNISELECTORS (ex equipment): 10 Bank 50 Way, alternate wipe, $\mathrm{s} 2 / 5 /-$ ea. 6 Bank, 25 Way, alternate wipe, $£ 2 / 2 / 6$ ea. 8 Bank, 25 Way, £2/5/- ea. 6 Bank, 25 Way, £2 ea. 4 Bank, 25 Way, 35/-ea. All the above are 75 ohm coil. Postage 4/-per uniselector.
FREQUENCY METERS : 1 M 13 or $\mathrm{BC}-221 ; 125-20,000 \mathrm{Kc} / \mathrm{s}$., 225 each., carr. $15 /=$ TS.175/U, \&75 each, carr. £1. TS323/UR; 20-450 Mc/s., £75 each, carr. 15/-. FR-67/U: This instrument is direct reading and the results are presented directly in digital form. Counting rate: $20-100,000$ events per sec. Time Base carr. £1.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply 1.5 v.-22 v. D.C. £12/10/- each, carr. 15/-.
AMERICAN EQUIPMENT: Power supply, PP893/GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Erection Kits, 1186/GRC; Receive type 27 8B; Directional Antenna CRD.6: Comparator Unit, CM.23; Directional Control CRD.6, 567/CRD and 568/CRD; Azimuth Control Units, 260/CRD Test Set URM.44, complete with Signal Generator TS.622/U, £100 each, £2 carr.
CATHODE RAY TUBE UNIT: With 3 in. tube, colour green, medium persistence complete with nu-metal screen, £3/10/- each, post $7 / 6$.

TRANSMITTER/RECEIVER TCS-12: Freq. $1.5 \mathrm{Mc} / \mathrm{s}-12 \mathrm{Mc} / \mathrm{s}$., output 25 W , complete stations available with antenna equipment, mast, and petrol generator. Trans-receiver, complete with 12 V. D.C. Power Unit and A.T.U., £25 each, carr. £2/10/-. Petrol Generator Unit for the above £20 each, carr. £3. Complete aerial systems, £10 each, carr. £2.
TACAN. Trans./Receiver, same as ARN21, British made, STC, TR9171 complete with five 2C39As with associated valve-holders. As new price, £25. Used condition, £15, carriage £1.
APNI ALTTMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. Dynamotor and 3 relayz, 11 valves, price £3 each carr. 10/-.

GEARED MOTORS : 24 v. D.C., current 150 mA , output $1 \mathrm{r} . \mathrm{p} . \mathrm{m}, 30 /$ each 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., 22 each, 5/- post.
MOTORISED ACTUATOR: 115 v . A.C. $400 \mathrm{c} / \mathrm{s}$. single phase, reversible, thrust approx. 3 inches complete with limit switches, etc. Price $2 / 10 /-$ each, postage 5/-(ex equipment).
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch Actuator
screw thrust, reversible, torque approx. $25 \mathrm{lbs} .$, rating intermittent, price $£ 3$ each, post $5 /$-.
28 v. D.C. 200 r.p.m. current consumption approximately 6 amps . Price 28/10/-, post 7/6.
FRACTIONAL MOTORS \& FANS: Low inertia Motor 5UD/5361, Type 903,24 v. input D.C., $£ 2 / 10 /$ - each, $5 /$ - post.
Model PM84 : 28 v. D.C. @ 2 amps., 4,500 r.p.m., output 40 watts continuous dury complete with magnetic brake. Price $\mathbf{8 2}$ each, postage 4/-
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts, price $25 /$ - each, postage 4/-
A.C. Motor 115 v. $50 \mathrm{c} / \mathrm{s}$. $1 / 300$ H.P., 3,000 r.p.m. Capacitor 1 mfd , $25 /$ - post (approx. 1 h.p.), brand new, £2!10/- each, post $7 / 6$.



#  Tur sits til sidmbin 

Used and acclaimed by:SCIENTISTS ENGINEERS TECHNICIANS TEACHERS \& STUDENTS

This new, better-thanever edition of the famous Home Radio Catalogue is the result of ten years of most careful selecting, compiling and indexing.


Of course, no catalogue is ever really finalised. As soon as we have one edition off the press, our researchers get busy finding out what is the latest and best.in the world of Radio and Electronicsready for the next printing.

This new edition is without doubt the finest, most comprehensive we have ever produced-it has 256 pages. over 7.000 items listed, over 1,300 illustrations. It really is a must for anyone interested in radio and electronics. With each catalogue we supply our unique Bargain List, a Book Mark giving Electronic Abbreviations, an Order Form and an addressed envelope. All this for only $7 / 6$ plus $2 /-$ post and packing. By the way, every catalogue contains 5 vouchers, each worth $1 /-$ when used as directed. Send the attached coupon today, with your cheque or P.O. for 9/-. You'll be glad you did!

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER
 30 watts at 8 ohms. Response $30-20,000+2$ ${ }_{3} \mathrm{~B}$ at 1 w Distortion $1 \%$ or less. Inputs Separate L. and R. volume controls. Treble and bass controls. Stereo phone jack Brushed aluminium, gold a nodised extruded front panel with complementary meta



E VOLTMETER High quality instrum
with 28 ranges.
D.C. volts $1.5 \cdot 1,500$
 megnhms. 2. Complete with npobe and Ad.iltional Probes arail. Additional Proben avail.
able: R.F. $35 /-\quad$ H.V.


## AVOMETERS

 Supplied in excellent condition fully tested plete with prods plete with prods,leads and instruc. $\begin{array}{lll}\text { Model } & \text { 47A } & \text { £9,18/6 }\end{array}$ $\begin{array}{lcr}\text { Model } & 7 & £ 13 / 10 / 0 \\ \text { Model } & 8 & £ 18 / 0 / 0\end{array}$ $\begin{array}{lll}\text { Model } & 8 & \text { £18010 } \\ \text { Model } & 1 & \text { e20/010 }\end{array}$ Model
$P . \& ~ P . i / 6 ~ e a c h . ~$

SINCLAIR EQUIPMENT
$\begin{array}{ll}\text { Z12. } 12 \text { watt amplifier } & 89 / 6 \\ \text { PZA. Power supply Unit } & 89 / 6\end{array}$ STEREO
amplifer
25. Pre-
C9/19/6 Q. 14 Speakera $\begin{array}{ll}\text { Kit } \\ \text { Built } \\ \text { B.......... } & 49 / 6 \\ 59 / 6\end{array}$ Mero FM Radio Kit
ALL POST PAID. SPECIAL OFFER

NOMBREX Transistorised Equipment
ALL Post Paid With Battery
 $\begin{array}{lll}\text { Model } & \text { 22 } & \text { P.S.U. } \\ 0.16 v . & \text { D.C. } & \text { E14. } \\ \text { Model } & 30 & \text { Audio }\end{array}$ Model 30
Generator 10
Audio

erator $150 \mathrm{Kc} / \mathrm{s},-$
$350 \mathrm{Mc} / \mathrm{s}$. $812 / 20-\mathrm{l}$
Model 27 Blgnal

 Bridge $£ 9$. Model 66 Inductance Brid
Model 61 P.S.U. $0.5-15 \mathrm{v}$. D.C. $£ 6 / 20 /$.

## AMERICAN RECORDING

 TAPES

4 band receiver covering $550 \mathrm{Ke} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. continuous and electrical band spread on 10 , $15,20,40$ and 80 metres. 8 valve plus 7 diode circult. $4 / 8$ ohm output and phone jack. - Sep. band spread dial $1 F 455 \mathrm{Kc} / \mathrm{a}$ audio output 1.5 W . Variable RF and AF gein controls. $115 / 250$ V. A.C. Matns. Beautifully deaigned. Size: $7 \times 15 \times 10$ in. With instruction manual and service data. $£ 3 / 10 / 0$.


* TRANSISTORISÉD FM TUNER $\star$

 HIGH QUALITY ONLY $6 \ln , x \operatorname{lin}, x$ $2 \operatorname{lin}^{2} 3$ I.F. ataget
Double tuned din criminator, ample criminator, ample
output to feed most
amplifers amplifiers, Operate on 9 volt battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$. Read bulit ready for use. Fantastic value for money
$26 / 7 / 6$. P . $\mathrm{P} .2 / \mathrm{B}$. STEREO MULTIPLEXX
ADAPTORS. ADAPTORS, 5 Gns


## SILICON RECTIFIERS



THYRISTOR
SILICON CONTROL RECTIFIERS
100 P.I. V. 3 mmp .
200 P.I.V. 5 amp .
400 P.1.V. 5 amp.
S.T.C. I WATT ZENER DIODES
BRAND NEW, LIST $17 / 6$ each
NE $5 /$ - each type. P. \& P. extra.

LAFAYETTE HI-FI STEREO HEADPHONES

$\star$ Air cushioned headband A Sott rubber ear pada
 nennit ivity. Impedance 8 ohms per phone. Supplied complete with all cables, wires,
box and 3 econnection plug



## PRINTED CIRCUITS

Five
circult
assorted
Imards
Irinted
with tranalitors, diodea, resistors, condensers, etc. Guaranteed mintmunl 20 transistors.



SOLATRON
CD7IIS.2.


DOUBLE BEAM OSCILLOSCOPE
An extremely high quallify osecillosicope originally cooting $8: 400$.
Switched beam. Iden.





 extra.)

ADMIRALTY B. 40 RECEIVERS

F.M. WIRELESS MICROPHONE

94-104 Mc/fa. Transistorised Operates from 9 v . battery Complete wilh alditiona secret tie-cllp microphone. List $£ 12 / 10 /$ ONL £6/15/-, P. \& P. 2/6.

## 

AVO CT. 38 ELECTRONIC MULTIMETERS High quality 07 range instrument which measures A.C. and D.C. Voltage. Current, volts $250 \mathrm{mV}-10,000 \mathrm{v}$. 10 R Ranges D.C. input). D.C. current $10 \mu \mathrm{~A} 25 \mathrm{amps}$. Ohms $0.1,000$ meg2. A.C. volt $100 \mathrm{niV}-250$ yhm R.F. measuring head up to $2: 50 \mathrm{Mc} / \mathrm{s}$ ). (with current $10 \mu \mathrm{~A}-25 \mathrm{amps}$. Power output 50 micr watts-5 watts. Operation 0/110/200/250 v. C circuit lead and R.F. probe complete with circuit ead and R.F. probe £25. Carr. 15/
AVO CALIBRATION TEST UNIT TYPE CT. 155 . For use with CT. 38 Multimeter. Gives 7 standard voltages $250 \mathrm{mV} . / 1 \mathrm{v} . / 2.5 \mathrm{v} . / 10 / 25$ 3ne v. A.C. and 250 mill ivolts D.C. from internal standard cell. Operation $0 / 110 / 200$ 250 v. A.C. Brand new $£ \% / 10 /=$. P. \& P. 10/6.

## MARCONI TEST EQUIPMENT

EX-MILITARY RECONDITIONED. ${ }^{85} \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, $£ 25$. carr. $30 /$ - . TF. 329 G . "Q" METER. BRAND NEW, PLETE WITH ALL ACCESSORIES, £75, carr, 30/T.F.195M. BEAT FRE $0.40 \mathrm{kc} / \mathrm{s}$, 200/250 v. A.C. $£ 20$, carr. $30 /-$.

All above offered in excellent condition fully tested and checked TF. 1100 VALVE VOLTMETER. Brand New, £50. TF, 1267 TRANSMISSION TEST SET, Brand New, 875 . TF. B75F/1 PULSE GENERATOR, Brand New, $£ 45$.

## Variable Voltage TRANSFORMEIR

High quality construction. Input $230 \mathrm{v} .50-60$ cycles.
Output full variable from $0-260$ volts. Bulk quantities available
1 amp . $85 / 10 /-; 2.5 \mathrm{anp} .-28 / 15 /-; 5 \mathrm{amp}$. $49 / 15 /-$;
8 amp. - $214 / 10 /-; 10 \mathrm{amp} .-818 / 10 /-; 12$ amp. $£ 21$; 20 amp . $-£ 3 \%$

## POWER RHEOSTATS

High quality ceramle constructlon. Windings embedded in vitreoun enamel Heavy duty brush wiper. Continuous rating. Wide range available ex-stock.
single hole fring, itin. dia, shaftsa Bulk quant ${ }^{25}$ P. WATT. $1 / 6$. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohms, $14 / 6$.
50 WATT. $10 / 23 / 50 / 100 / 250 / 500 / 1000 / 2500$ or 5000 ohms, \&1/-. P. \& P. 1/6


SIGNAL GENERATOR
 af. SINE WAVE 20-200,000 cps. Square HIOH IMP, 21 Y. P/P $600 \mathrm{C} 3.8 \mathrm{v} . \mathrm{P} / \mathrm{P}$ R/F. $100 \mathrm{kc} / \mathrm{s}-300 \mathrm{Mc} / \mathrm{s}$. Variahle R.F. attenua tion. Incorporates dusi purpose meter to monitor. AF output and \% mod. on R.F. $220 / 240$ v. A.C. $£ 27 / 10 /-, \quad$ Carr, $7 / 6$.
TE22 SINE SQUARE WAVE AUDIO GENERATORS
 20 cpps to $30 \mathrm{ke} / \mathrm{s}$ 5.000 Impedance ${ }_{250} .000$ v. A.C. operatlon Supplied brand new and guaranteed with and leads manual and
$7 / 6$.

LAFAYETTE TE-46 RESIST. ANCE CAPACITY
ANALYSER



## checked. 1267 TRANSMISSION TEST OR, Bnd New, £45.


$\qquad$


LELAND MODEL 27 BEAT FREQUENCY

## OSCILLATORS

$0.20 \mathrm{Kc} / \mathrm{s}$. Output 5 K or 500 ohms. $200 / 250 \mathrm{y}$
A.C.
Ofered in excellent condition, $812 / 10 /$. Carriage $10 \%$.
T.M.C. 1000 SERIES KEY SWITCHES
$\xrightarrow[\substack{\text { Brand } \\ \text { follows. }}]{ }$



## G. W. SMITH

$\&$ Co. (Radio) Ltd.
3-34, Lisle St., W.C.2.
also see opposite page


MODEL TE-10A. $200 \mathrm{k} \Omega /$ Volt, $5 / 25 / 50 / 250 / 500 / 2,500$ v. D.C. $10 / 50 / 100 / 500 / 1,000$
$0 / 50 \mu \mathrm{~A} / 2.5 \mathrm{~mA} / 250 \mathrm{~mA}$. D.C. $0 / 6 \mathrm{~K} / 8$ meg. ohm. D.C. $0 / 6 \mathrm{~K} / 6 \mathrm{me}$ m.
-20 to +22 dB .
$10-0,100 \mathrm{mfd} .0 .100-0.1$ mfd. 69/6. P. \& P. 2/6.


MODEL
ZRM.
SISTOR CHECKER It has the fulles capacity for checking on A $B$ and Ico. Equally adapt able for checking
diodes, etc
Spec. : A: 0.7
0.9997 . $\quad 5$
200. Ico: $0 / 50$ micro-amps, 0.5 mA Resistance for diode $200 \Omega+1$ MEG Supplied complete with instructions battery and leads. $55 / 19 / 6$. P. \& P. 2/6.

## SOLARTRON MONITOR

OSCILLOSCOPE
TYPE 101.
An extremely high quality oscilloscope with time base of $100 / \mathrm{sec}$. to $20 \mathrm{~m} / \mathrm{sec}$. Internal $Y$ amplifier. Separate mains power supply 200 250 V . Supplied in excellent condition with cables, probe, etc., as received from Ministry. £8/19/6. Carriage 30/-

## R.C.A. ARB8 SPEAKERS

$8^{\prime \prime}, 3$ ohm speakers in metal case. Black crackle finith to match our 88 Receivera. Available Brand New and

HOSIDEN HS.606 2-WAY STEREO HEADSETS
Each headphone contains a $2 \frac{1}{1}$ in. wooler and a fin. tweecer. Bullt-in individual level controls. $25-18,000$
c.p.s. $8 \Omega \mathrm{mp}$. with cable and stereo plug. $\$ 5 / 19 / 6$, P. \& P. $2 / 6$.


NEW MODEL 500. 30,000 O.P.V. with overioad protection Mirror scale ( 5 / $2.5 / 10 / 25 / 100$ 250 $500 / 1,000$ v. D.C | $0 / 2.5 / 10 / 25 / 100$ |
| :--- | :--- | :--- | :--- | :--- |
| $250 / 500 / 1,000$ v. A.C | $0 / 50 \mu \mathrm{~A} / 5 / 50 / 500 \mathrm{~mA}$ 12 amp. D.C. $0 / 60 / \mathrm{K}$ Meg./60 Meg. $\Omega$. £817 $7^{\prime 6}$ Post paid.

MODEL TE-12. $\quad 20,000$
O.P.V. $0 / 0.6 / 30 / 120 / 600 /$ O.P.V. $0 / 0.6 / 30 / 120 / 600 /$
$1,200 / 3,000 / 6,000$ v. D.C. 1/6/30/120/600/1,200 A.C. $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600$ MA. $0 / 6 / \mathrm{K} / 600 \mathrm{~K} / 6$ Meg. 60 MFD Meg. $\Omega 50 \mathrm{PF}$. 2 MFD. £5/19/6. P. \& P.


MODEH TE $80.20,000$ O.P. $0 / 10 / 50 / 100 / 500$ $250 / 500 / 1,000$ v D.C $0-50 \mu \mathrm{~A}$. $5 / 50 / 500 \mathrm{~mA}$ $0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$. £4/17/6, P.P. 3/

PROFESSIONAL 20,000 o.p.v LAB. TYPE MULTITESTER With automatic overload
 protection.
Mirror scale. $\begin{array}{ll}\text { Mirror } & \text { scale. } \\ \text { Ranges } & 0 / 10 \text { l }\end{array}$ $50 / 200 / 500$; 1,000 V.C. D.C $\$ 00 \mu \mathrm{~A} .10 \mathrm{~mA}$ rent $0 / 20 \mathrm{~K}, 200 \mathrm{~K}$, a megohm. Decibels $-2010+22 \mathrm{~dB}$. £5/10\% P. \& P. 2/B.

TE-51. HEW 20,000 21 YOLT MULTMETER $0 / 6 / 60 / 120,1,200$ v. A.C $0 / 3 / 30 / 60 / 300 / 600 / 3,000 \mathrm{v}$ D.C. $0 / 60 \mu A / 12 / 300 \mathrm{~mA}$ OHM 85/-. P. \& P. 2/0


MODHR 250J. 2,000 O.P.V. $0 / 10 / 50 / 500 /$ 2,500 v. D.C. $0 / 10 / 50 /$ 500/2,000
$0 / 2$ Meg. $\Omega$. $0 / 2 \mathrm{Meg} . \Omega$.
$-20 \mathrm{~mA}+30 \mathrm{~dB}$. $\begin{array}{llll}-20 & \text { to }+36 & \mathrm{~dB} . \\ 49 / 6 \text {. P. \& P. } & 2 / 6 \text {. }\end{array}$

## A UTO TRANSFORMERS

$0 / 115 / 230 v$. Step up or step down. fully shrouded.
$500 \mathrm{~W} .83 / 10 / 0$, P. \& P. $6 / 6$ $1,000 \mathrm{~W}$.
$1,500 \mathrm{~W}$.
$15 / 10 / 10$, P. \& P. $7 / 6$

\& | $1,500 \mathrm{~W} . \quad$ £6/10/0, P. \& P. 8/6 |
| :--- |
| $3000 \mathrm{~W} . ~$ |
| $7 / 10 / 0$ |
| P. \& P. $12 / 6$ | | 3.000 W. $67 / 10 / 0$ P. \& P. $12 / 6$ |
| :--- |
| $7.500 \mathrm{~W} . ~$ |
| $15 / 10 / 0$, P. \& P. $20 / \mathrm{l}$ |

DUBILIER NITROGEL CON. DENSERS. Brand new. 8 mid. 800 v . $8 / \mathrm{S}$. P. \& $P, 2 /-; 2 \mathrm{mfd} .5,000 \mathrm{v}$ 42/6. P. \& P. 5/-

## GARRARD DECKS TWO SPECIAL OFFERS Brand new and guaranteed. A70 Mk. It less cartridge $\quad \mathbb{1}$ ( 12 Carr. $7 / 6$ LAB 80 Mk. II less cartridge. E23 10 0 Carr. $7 / 6$



## GATALDEUE

## $\star$ ELECTRONIC COMPONENTS $\star$ TEST EQUIPMENT $\star$ COMMUNICATION EQUIPMENT $\star$ HI-FI EQUIPMENT

We are proud to incroduce our first comprehen sive catalogue of Electronic Components and Equipment. Over 150 pages. fully lllustrated isting thousands of items, many at bargain prices free discount coupons with every catalogue. Everyone in electronics should have a copy Send for your copy now.


LAFAYETTE MODEL HA-500 SSB/AM/CW 80 THROUGH 6 METER RECEIVER


New outstanding Ham Bands only receiver covering the $80 / 40 / 20 / 15 / 10 / 6$ metre bands. Incorporates 10 valves, product detector, two mechanical filters, SMeter, dual conversion on all bands, crystal calibrator and $455 \mathrm{Kc} / \mathrm{s}$. Output 8 ohms and 500 ohms . Opera tions $220 / 240$ volts A.C. Supplied brand new and guaranteed with handbook 42 Gns. Carr. $10 /$ $100 \mathrm{Kc} / \mathrm{s}$. crystal, $35 /-$

## TWO-WAY RADIOS

SUPERB QUALITY, BRAND NEW \& GUARANTEED

3 TRANSISTORS $56 / 18 /-$ PAIR. 4 TRANSISTORS £6/19/6 PAI 6 TRANSISTOR £8/12/6

18 TRANSISTOR 500 MW 6 TRANSISTOR DE-LUXF
LAFA YETTE $£ 12 / 10 /-\quad$ PAIR.
10 TRANSISTOR $822 / 10 /-$ PAIR.
2-channel 30 Gis PAIR

UNR-30 4 BAND

## COMMUNICATION RECEIVER

Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates variable BFO for CW/SSB reception. Built in speaker and phone jack. Metal cabinet. Operation 220/240v. A.C. Supplied brand new, guaranteed with ininstructions. $812 / 10 /-$. Carr. $7 / 6$.

NEW LAFAYETTE MODEL HA700 AM/CWSSB AMATEUR COMMUNICATION RECEIVER
8 valves, 5 bands incorporating 2 MECHANICAL FILTERS for exceptional selectivity and sensitivity. Frequency coverage on 5 bands $150-$
$400 \mathrm{Kc} / \mathrm{s}$., $550 \cdot 1,600 \mathrm{Kc} / \mathrm{s}$. $1.6-4.0 \mathrm{Mc} / \mathrm{s}$. $4.8-$ 14.5 Mc/s., $\quad 10-5-30 \mathrm{Mc} / \mathrm{s}$. Circuit incorporates R.F. stage, aerial trimmer, nojse limiter, B.F.O. product detector, electrical bandspread, S meter, slide rule dial. Output for phones, low to $2 \mathrm{~K} \Omega$ or speaker 4 or 8 ohms. Operation $220 / 240$ volt new and suaranteed with handbook. 36 GNS. Carr, 10/-, S.A.E. for leaflet


NEW SOLID STATE HIGH FIDELITY EQUIPMENT POWER AMPLIFIERS - PRE-AMPLIFIERS POWER SUPPLIES-BRITISH MADE


We PROUDLY PRESENT THIS RANGE OF AUDIO EQUSPMENT developed from DINSDALE Mk. Il-each unit or system will compare favourably with other professional equipment selling at much higher prices.
Brief details are below:-

| SYSTEM | COMPRISING | SYSTEM PRICE |
| :---: | :---: | :---: |
| A | 5 watt mono for 3 to 5 ohm speakers | §10.3.0 |
| I | 12 watt mono for 3 to 5 ohm speakers. | \&13.17.6 |
| 2 | 12 watt mono for 12 to 16 ohm speakers. | \{14.12.6 |
| 4 | 24 watt mono two channel for 12 to 16 ohm speakers. | ¢20.15.0 |
| 8 | 20 watt mono/stereo for 12 to 16 ohm speakers. | ¢24.0.0 |
| 9 | 24 watt monolstereo for 3 to 5 ohm speakers. | 126.15.0 |
| -14 | 40 watt mono/stereo for $7 \frac{1}{2}$ to 16 ohm speakers. | \$29.10.0 |


$87 / 105 \mathrm{Mc} / \mathrm{s}$ Transistor Superhet. Geared tuning. Terrifie quality and sensitivity. For valve or transistor amplifiers. $4 \times 3 \frac{1}{2} \times 2$ in. Complete with dial plate. 5 Mullard Transistors, Plus 4 Diodes. (Cabinet Assembly 20/- extra). TOTAL COST

〔6. 19.6 P.P. $2 / 6$


7 Mullard Transistors. Printed Circuit Design with Stereo Indicator. For use with any valve or transistor FM. Uses pot cores to Mullard design and ger. and silicon transistors. As used by B.B.C. and G.P.O. Complete Kit Price $\$ 5.19 .6$ P.P. $2 / 6$

BUILD A QUALITY TAPE RECORDER

## using

MARTIN RECORDAKITS

* TWO-TRACK. Deck §I0/10/0. Martin Amplifier, fl4/19/6. Cabinet Martin Amplifer, cid $/ 19 / 6$. Cabinet microphone, 7 in . $1,200 \mathrm{ft}$. tape, spare spool.
Today's Value e45. 29 gns. P.P. 15/-
* FOUR-TRACK. Deck $£ 13 / 10 / 0$. Martin Amplifier $£ 15 / 19 / 6$. Cabinet and speaker 7 gns. Complete kits with microphone, 7in. 1,200ft. tape, spare spool.
Today's Value $\mathrm{E}^{50} .32 \mathrm{gns} . \mathrm{P} . \mathrm{P} .15 /=$


Fully tunable superhet with excellent sensitivity and selectivity. Complete with front pane, with any amplifier or with any amplifier or tape recorder.
TO BUILD $\{3.19 .6$

MANUFACTURERS We wish to Purchase large quantities of NEW TRANSISTORS \& DEVICES - Please write or phone (01) 723-1008/9, EXTN. 4.


* Fully TRANSISTORISED POLYPHONIC British design.

A Build this superb Inserument STAGE BY STAGE in your own home. * A Truly portable instrument for all enthusiases.
\& Call in for a DEMONTRATION
ORGAN COMPONENTS
We carry a comprehensive stock of organ components for TRANSISTOR AND VALVE FREE PHASE designs: complete details on request.

## AUTO-BAN TRANSISTOR CAR RADIO British Made


6.Tranaistor MW/LW Car Radio. il volt operated, 3 watt output. Push-bution wavechange. Bupplied built. boxed, ready to use with speaker and Baffle.
Car fixing ktt and manufacturers
current guarantee. Car fixing kit and manufacturers
current guaratite
margain Offer. Ponitive or Negative Earth. LIST PRICE 12 aNs. Send for details $\begin{aligned} & \text { De-luxe } \\ & \text { Push.bution version } \\ & \text { El1/19/6. P.P. } 4 / 6 .\end{aligned} \mathbf{£ 9 . 1 9 . 6}$


## SALFORD I93A XTAL CHECKER

$110 / 250 \mathrm{v}$ A.C. In new condition. \&12.10.0 plus carriage $10 / \mathrm{C}$

TRANSISTORS SEMICONDUCTORS
SEND FOR MEW 1988 TREE LIST
耳o. 36 OF 1,000 TRANSISTOR DEVICES
We have the
Largest ranae-over 1000 types
lam Getitive prices
FULIX GEARANTEED
24-PAGE ILLUSTRATED BROCHURE LST-
ING 2.000 DEVICES, Date end cirenits noluding Valve and Quartz Cryatal liats.
$1 /=$ post paid.

BUILD THESE PW/PE DESION
1.C. F.M. TUNER (with CA3n14) .. 99 ANTI-DAZZLE MIRROR ......... 79/6 EXPLORER 84/5/ith drilled chassis and cabinet STABLLIBED POWER BUPPLY. 49/6 PHOTO FLABH SLAVE UNIT .. $42 / 6$ SOLID STATE IGNITION ...... £6/19/6 SWITCHED F.M. TUNER........ 77/6 THYRIBTOR POWER CONTROLLER• Parts LIBT and PRICES ON REQUEBT*

## CATALOGUE <br> LATEST EDITION 240 PAGES. 6,000 ITEM 1,000 ILLUSTRATIONS.

* 20 pages of transistors and semi-conductors devices, Valves and Crystals.
* 150 pages of components and equipment.
* 50 pages of microphones, decks and Hi-Fi equipment.


The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE in GT. BRITAIN. Complete with $10 /$ warth DISCOUNT VOUCHERS.
FREE WITH EVERY COPY.
Send today $8 / 6$

WE OAN SUPPLY FROM STOCK MOST OF THE PARTS SPECIFIRD ON ORGCOITS
THIB MAGAZIEE. SEND LIBT FOR quotation.
PHENE 01-723 $1008 / 9$
9PER MON.-8AT. 9 \&.m.-6 p.m, TEURs.
LOWDON, W. 2
9 s.m.-1 p.m.

## IMWEDIATE DESPATOH



## 20 Amp. LT. SUPPLY UNIT

As supplied to Min. of Defence and Crown Agents for overseas Gove. LATEST DESIGN HEAVY DUTY $12 / 24$ VOLT D.C.
Output: Adjustable up to $\mathbf{2 0}$ AMPS CONTINUOUS at $12 / 24$ volts. FULLY FUSED, Neon indicator, $0-20 \mathrm{amp}$. meter. Size $16 \times 12 \times 20$ in high, in heavy gauge steel cabinet. Grey Hammer finish-Welght 50 tb input: 220/230/240 v. A.C. 50 cycles. ONLY $£ 32$.10.0 Plus $401-\mathrm{c}$. \& P G.B. (Inland)

## VARIABLE VOLTAGE TRANSFORMERS



Modern styling for modern equipment 'SLIDE-TRANS' \& 'SLIDUP' MODELS

Fully rated current consistent at all points along the winding AVAILABLE ONLY FROM I.M.O.

* SMOOTH CONTINUOUS ADJUSTMENT
* ALL MODELS SHROUDED FOR SAFETY (IDEAL FOR EDUCATIONAL AUTHORITIES)
* BENCH OR PANEL MOUNTING
* UP TO 260v. AVAILABLE FROM ALL MODELS

All models $230 v$. A.C. $50 / 60$ c.p.s. input

| I Amp. | $£ 5 \cdot 15.0$ |
| :--- | ---: |
| 2.5 Amp. | $£ 6 \cdot 17 \cdot 6$ |
| 5 Amp. | $£ 9 \cdot 19 \cdot 0$ |
| 8 Amp. | $£ 14 \cdot 15 \cdot 0$ |
| 10 Amp. | $£ 18 \cdot 10 \cdot 0$ |
| 12 Amp. | $£ 21 \cdot 10.0$ |
| 20 Amp. | $£ 38 \cdot 10.0$ |

C. \& P. EXTRA


## LATEST SOLID STATE VARIABLE VOLTAGE CONTROLS <br> CONSTANT VOLTAGE TRANSFORMERS <br> BEAT WINTER! <br> AUTOMATIC MAINS STABILISER

* COMPLETELY SEALED * COMPACT AND COMPLETE
* PANEL MOUNTING

230 A.C. Input $25-230$ volts output 5 amp. model $\mathbb{E} 8$ 10 amp. model $\boldsymbol{f} 13 / 5 /-$

PORTABLE TRANSISTOR TESTER SUITABLE FOR PRODUCTION \& LABORATORY USE SPECIFICATION
Alpha 0.7 to 0.997
Beta 5-300
ICO $0-50 \mu \mathrm{~A}$. 5 mA .
Capable of measuring GERMANIUM AND SILICON DIODES.
DESIGNED WITH RESISTANCE SCALE 200 ohms to 1 Megohm as an ADDED FEATURE. Housed in heavy duty plastic case, c/w internal battery.

* Range: Infinitely variable up to 3,000 voles 0 . amp
* Encirely suitablefor continuous testing. * Automatic salety cut-ous. Input: Mains voltage. | Input and test leads with clips, |
| :--- |
| $\begin{array}{ll}\text { Model T30 } & \text { C. } \mathrm{A} .2 \text { Si- }\end{array}$ |
| 15 |



ONCE AGAIN WE CAN EXPECT THE USUAL VOLTAGEDROPS DUE TO THE COLD WEATHER

* No attention VARIABLE HIGH * No Maintenance VOLTAGE SAMPLING * Corrected Warts

Input: 190-2SO v. A.C. Output: 240 v. A.C. Accuracy: $\pm 1 \%$. A.C. Capactey: 250 wate. Maintain " spot-on" test-gear readings at all times Weight: 21 lb . Fitted signal lamp and switch. Size: $11 \times 6 \frac{1}{2} \times 6$ in. high.

\& P.
20/-

## VARIABLE HIGH VOLTAGE

 SAMPLING TESTER $0-260 \mathrm{v} .1 \frac{1}{2} \mathrm{amps}$.INPUT:
230 v. A.C. SO/60 c.p.s. Fitted with fuse, voltmeter, safety indicator on-off switch and lead.
Size $8 \times S \times$ Sin high PRICE $\$ 9: 2.6$. c. \&p. $12 / 6$


## LINEAR INTEGRATED CIRCUITS

CA 3000 Differential amplifier, TO-5. Bandwidth $0-30 \mathrm{Mhz}$. Gain $37 \mathrm{~dB} / 10 \mathrm{Mhz}$. Max. Output 6, 4 volt peak-peak. Price $£ 3 / 18 /-$.
CA 3012 High Frequency Amplifier, TO-5. Bandwidth $100 \mathrm{Khz}-20 \mathrm{Mhz}$. Gain $55-61 \mathrm{~dB} / 10,7 \mathrm{Mhz}$.
CA 3018 Includes: 2 single transistors, TO-5 I cascade pair Application = High Frequency Amplifier/Mixer/Oscillator GaIn cascade palr $=1500-3500$ Gain single transistor $=30-67$.

Price $41 / 18 /$-.

Price $\mathbf{1} 1 / 19 /-$
CA 3020 Low frequency amplifier Bandwidth 6 Mhz, TO-5. Gain max. 52-58 dB. Sensitivity 35 mV . Output max. 700 mW . Input Impedance 40 Kohm . Output impedance $65+65$ ohm (push pull).

Price $\mathbf{E} / 6 / 6$.
PA 222 Low Frequency Amplifier. Bandwidth 20 Khz (dual in line). Gain typ. 50 dB . Sensitivity 65 mV . Output max I Watt. Input impedance $40-55 \mathrm{Kohm}$. Output impedance 22 ohm (single ended push pull).

Price 12/19/-.
MC 1429 G Differential amplifier TO-5. Bandwidth $0-250 \mathrm{Khz}$. Differential gain $45-75 \mathrm{~dB}$. Max. Output swing 5 Volt pp. Price $\mathbf{C 3} / \mathrm{l} 3 /-$ MC 1430 P (dual in line) Differential input, single ended output. Bandwidth $1,3 \mathrm{Mhz}$. Gain 75 dB max. Offset Voltage $2 \cdot 10 \mathrm{mV}$. Input impedance 5-15 Kohm. Output Impedance $25-50 \mathrm{ohm}$. Output voltage max. $\mathbf{2 . 5}$ Volt pp. Price $\mathbf{~} \mathbf{4} / 13 /-$.
uA 702 c TO-5 Differential input, single ended output gain max. 2000-6000. Bandwidth $0-30 \mathrm{Mhz}$. Price $\mathbf{£ 3 / 4 / 3}$.
uA 703 TO-5 High Frequency Amplifier, bandwidth 150 Mhz . Gain $36 \mathrm{~dB} / 10,7 \mathrm{Mhz}$. Gain $20 \mathrm{~dB} / 100 \mathrm{Mhz}$. Price $£ 2 / 16 /-$.
MIC 709 c TO-5 Differential amplifier, bandwidth $0-500 \mathrm{Khz}$. Voltage gain 45,000 typ. Output voltage max. I 3 V pp. Price $\mathbf{4} / 6 /-$.
DIGITAL INTEGRATED CIRCUITS. (All circuits dual-in-line)
RTL-series (resistor-transistor-logic)


## SPECIAL OFFERS:

Kit: Complete Decade Counter. Max. counting frequency 10 Mhz . Noise Immunity I Volt or better. Required input: square wave 3.5 Volt. Output 3, 5 Voit. Including Printed Circuit, Integrated Circuits. Diode Matrix, Nixie drivers, Nixie tube with socket. Circuit diagram, mounting schematic, etc. Price $\AA 11 / 2 /-$.

Sillcon Transistors: BC $17 / \mathrm{b}$ Vee 45 Volt. Ic 100 mA . Pc 200 mW . Hfe $250-500 \mathrm{Ft} .300 \mathrm{Mhz}$. Price $2 / 6$
BC 172 c same items except Hfe 470-900. Vee 20 Volt. Price $2 / 6$. Both types pro 100 pieces. Price $\mathbf{4} 10 / 15 /-$.
The noted prices include all taxes etc.

## Inemstay's IBealio

## DON'T MISS THIS!

## HAVE YOU GOT YOUR COPY OF OUR GREAT "35th Birthday" CATALOGUE? FREE!

Printed in large $16 \times 11$ in, modera magazine format he Birthday Pictorial contains thousands o TV, Test Gear, Components, Communications and other equipment.
PLUS many bargain offers and prices exclusive AMD in addition every copy of the "Birth matically enters you in our great "Birthday Draw" with over d 100 in Gift Vouchers to be von.
All goods shown in the "Birthday Pictorial" are available over the counter from any of our branches bringing the benefits of shopping at Lasky's to you in bringing the
SECOND REPRINT ISSUE NOW AVAILABLE
 A Must send your name, address and 6d stamp for postage only.
COMMUNICATION RECEIVERS
TWO GREAT NEW TRIO RECEIVERS
MODEL JR-500SE
 Lasky's Price £61.19.0


Lasky's Price $\mathbf{£ 3 6} \mathbf{1 5 . 0}$

## CONSTRUCTORS BARGAINS

## THE SKYROVER DE LUXE


revering the full Medlum Woveband and ghort were recelver 1-94M and also 4 separate awitched band spread ranges, 13M $6 \mathrm{M}, 19 \mathrm{M}$, and 25 M , with Band 8preal Tuning for accurato Station Belection. The coil pack and tuning heart la factory istors. Dies \& U2 batteries, Sin. Ceranicic Magnet P.M. Speake Tone Circuit in wood cebinet, size $11, \times 63 \times 3$ and $\times$. Covered Aeriai itted.
Ge bullt for $£ 8.19 .6$
11 mths. at $18 / 8$. Total H.P.P
a.P. Termi: 60/- dop, 11 mith. At 12/g. Total H.P.P.

Dat 2/6. Refunded if you purchave parcel. Four U2 batts. 3/4 extra. All components svan. separately Ath construction data. Only 10/-extra. Post Pree. Thia conversion is suitable for receivera already construeted.

## LASKY'S PRECISION PANEL METERS



## TEST EQUIPMENT

TMK Model 500
A compact and reliable instrument designed for use in the proequipment. Measures a wide range of voltages, currents, resistance and audio power. Specification: Movemen sensitivity $30 \mu \mathrm{~A}$. D.C. volts range: $0-0.25,1,2.5,10,25,100$ $10,25,100,250,500$, 15000 . OPV ranges : $0-2.5$ 10, 25, 100 , 500 , 000 volss at 15 C . 50 scale. 12 A Resistance ranges. $0-60 \mathrm{~K}, 60 \mathrm{M} / \mathrm{cA}$, T , 5 , 500 mA continuity testing. Size $6 \frac{1}{\frac{1}{2} i n} \times 3 \frac{3}{6} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$.
Lasky's Price £8.17.6 $\begin{aligned} & \text { Poot } \\ & \text { Free }\end{aligned}$

## Model C-1000 Mili Tester

A really tiny meter with " big" meter performance, Brief Specification: Movement sensitivity $400 \mu \mathrm{~A}$ : DC volts ranges: $0-10,50,250$, 1,000 volts, $+3 \%$ fsd at 1 K OPV. AC volts ranges: $0-10,50,250$
1,000 volts $+4 \%$ fsd at 1 K OPV. DC current: $0-1,100 \mathrm{~mA}$. Resist ance range: $0-150 \mathrm{~K}$ ohms. Size $2 \mathrm{fin} . \times 3 \mathrm{kin} . \times$ in.
Lasky's Price 39/6 Post 2/6
TRANSISTOR SIGNAL INJECTOR MODEL C. 3003

Self-contained $1 \frac{1}{2} \mathrm{in}$. dia Sin. long, with light and est probe. For faul finding in radios, ampli fiers, etc. Complete with batteries and extensio Lasky's Price $29 / 6 \underset{\text { Pree }}{\text { Post }}$

FIELD STRENGTH METER Designed for checking the
radiation from adjacent
 metal shelf, car body, et Lasky's Price transmitter. A sensitive NEW SPECIALISED TEST GEAR
 RF SIGNAL GENERATOR Model TE-20
A new high quality factory teated and callibrated RF Signal Generator offering a full frequency range cover Dual High/Low RF output terminals provided and separate mariable Audio output. Etched circular scmle-mceuracy
$\pm 2 \%$ read against hair-line on perspex cursor. Power t. $2 \%$-read againat hair-lhee on pergex cursor. Power range ( 6 fundamental bands) A. $120-320 \mathrm{Kc} / \mathrm{s}, \mathrm{B}, 320-1,000$
$\mathrm{Kc} / \mathrm{s}, \mathrm{C} .1-3,4 \mathrm{Mc} / \mathrm{s}, \mathrm{D} .3 .2-11 \mathrm{Mc} / \mathrm{s}, \mathrm{E} .11-38 \mathrm{Mc} / \mathrm{s}, \mathrm{F}, 38-130$

 able). Fower requirements $10 \mathrm{~S} / 125 \mathrm{~V}, 50 / 60 \mathrm{c} / \mathrm{s}$ A.C. Valve line-up: $12 \mathrm{BH} 7 \mathrm{~A}, 6 \mathrm{ARF}$ snd selenium rectifer. strong meral came size: $7 \times 10 \times \mathrm{m} / \mathrm{in}$., finished Lasky's Price $£ 12.10 .0$ Post 5/
AUDIO GENERATOR Model TE-22
A new factory tested and califbrated low diatortion sine whith mast osclloscopes. Briet Speelfcation: Frequency range-8ine wave $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{Kc} / \mathrm{s}$ in 4 switched ranges
$20-200 \mathrm{c} / \mathrm{s}, 200-2 \mathrm{Kc} / \mathrm{s}, 2 \mathrm{Kc} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{A} .20 \mathrm{Kc} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{A}$. (Two scales 10-90 and 20-200 on etcbed clrcular dial with (read on same scalea as 8 ine weven). Frequency response
 load impedasee 10 K/ohm- F . (max.). Variable output
amplitude control. Valve line-up: GBM8, 12AT7, 6 Xt , Power requisements $105 / 12 \mathrm{~V}$, or $220 / 240 \mathrm{~V}$., $50 / 60 \mathrm{c} / \mathrm{s}$ A. Btrong metal cabinet size $7 \times 101 \times 5 \|$ in ., innished in grey
crackle with leather carying hisndle. Power "on" pllo

Lasky's Price $£ 15.0 .0$
Post 5/-


## VALVE VOLT METER - Model TE-65

An essential Item for all service workshops and laboratories. An extreniely sophisticated instrument permulting a far more accurate degree of measurement than normal text metera and also compared to any other Peak-Peak

 Lasky's Price $£ 15.0 .0$ Port $5 /$ -

## BARGAIN OPPORTUNITIES FROM

## Amplifiers

IN KIT FORM AND COMPLETE MULLARD
10-10

## STEREO

Valve amplifier to
exact Mulfard spec.
With pre-amp, tapped
if ${ }^{1} \Omega$ all controls, H.T. and L.T. outlet, mono. stereo and speaker phase switching. Complete with escutcheon, knobs, plugs, ete. Ready
built. $\mathbf{C 2 0} .0 .0$ (p. \& p. 12/6)
£17 . 10.0
knobs, plugs, etc.
(p. \& p. 12/6)
5 valve 10 MULLARD 5-10 MONO
valves and instructions.
( $\mathrm{p} . \& \mathrm{p} .7 / 6$ )
E9.19.6
With passive network and control
panel
 kit with valves and instructionss
(p. \& p. 6/-) $\quad \mathbf{8 . 1 2 . 6}$

## SPECIAL MULLARD $2+2$ PRE-AMP

 Stereo pre-amp and control unit. Completewith valves and inseructions. S.A.E. brings details. with valves and inseructions. S.A.E. brings details.
BUILT- 13 gns. (P. \& P. $7 / 6$ ).

SHOPPING BY POST
Please send cash with Order or pay C.O.D. Please mention "Wireless World."
POSTAGE. Unless stated add $1 /$ on $\frac{1}{2} \mathrm{lb}$. orders, $1 / 9$ on lib., $3 / 6$ on $21 \mathrm{~b} ., 5 / \mathrm{on}$ on $6 \mathrm{lb} ., 6 / 6$ on 10 lb ., $8 /$ on 141 b . Over, $10 / 6$.

## SAVE ON THIS FINE 'PEAK-SOUND' STEREO AMP.



14 Transistor Kit builds into superb hi-h amp. 8W per channel ( 16 W mono) with integrated pre-amp to take high quality cerarnic p.u. Unusually easy to bufd by follow. funded when kit is bought). This inakes one of the best and most economical stereo transistor amps., we have ever offered. When built the SA 8.8 equals the best in modern styling.
AMPLIPIER KIT, $£ 9 / 10 /-$ POWER PACK EIT, $£ 2 / 10 /-1$ (P. \&P. $4 / \cdot$ )
(

NEW "CIR-KIT"
Now incorporates 0.1 in . matrix boand with improved "Clr Kit" otrip. Fasier than ever to uase. No drilling necessary. 5ft. spool of "Cir-Kit", "Cli Kit" Matrix Board,


## free tape wallets

With each reel of tape we give you FREE a
beautifully made wallet in simulated leather with beautifully made wallet in almulated leather with space for two reels of tape. Protessional quality
 7in. reel 1800ft., $2 / 8 / 6$. $\mathbf{P}$. \& $\mathbf{P} .1 / 6$ per reel, inc. free wallet
ALL SINCLAIR LINES AS ADVERTISED

## FOR ONLY $6 d$.

Tou can obtain the latest TRS 8-page printed list of genuine hargaing, including man
to find items. Send $8 d$. today to TRE.

7 VALVE AM/FM RG CHASSIS Powerful high performance instrument for keen
enthusiasts. Long, med. and F.M. Permesbility enthusiasts. Long, med. and F.M. Permesbility
tuning on F.M. Large clear dial, A.V.C. good tuning on F.M. Large clear dial, A.V.C. good
neg. feedback. Magle eye 3 W output. A.C. tested and ready for use (Carr. and ins. 7/6). teated and resy for use (carr. and
B.A.E. brings full details. $213 / 19 / 6$.

MODERN SLIMLINE WOOD
CABINET (p. \& p. $5 /$-)
COMPLETE ASSEMBLY, £14/10 post free it ondered at mame time.

SPECIAL SPEAKERS AND ENCLOSURE OFFER
Owing to demand for our previously advertised $£ 4 / 15 / 6$ d enclosure, it is now offered as an even better bargain as a "Pack flat" kit which easily assembles to a fine professional looking enclosure. All wood accurately machined. State if for 10 in ., or 8 in . unit. Holes for bass unit and tweeter included.
Now (Part P. \& P. $5 /-$ )

## 15 OHM UNITS

## Suitable for above

Goodmans 8 in. Axiette Goodmans 8 in. Twin Axiette Goodmans Axiom 10 WB HF1012 E.M.I. 3in. Tweeter 3 or $15 \Omega$ X-oversfrom $16 / 9$ At the above prizes while stocks last

TRS RADIO

Telephone:
THO 2188
Established 1946

72/6

COMPONENT
SPECIALISTS
HEATH, SUREY.
COMPONENT
SPECIALISTS
HEATH, SUREY.
70 BRIGSTOCK RD., THORNTON HEATH, SURREY.
GARRARD UNITS AND PLINTHS

## AT KEENEST PRICES-SEE

 LATEST TRS LIST 9T. A Record Player with new as from factory. AT. 60 Mk. II De-Iuxe Auto changer, diecast turntable spe 0 lu $\underset{\text { player. }}{\text { SP } 25}$ diecast single record Less cartridge.Packing and carriage on any Packing and carriage on any
$0_{4}$ above, $7 / 6$ extra. Garrard Plinth. Ideal mounting for the Garrard Unit
offered here. Will readily suti any hl- he set-up. In fine Teak Complete with useful soft and pack, $5 /-\quad 75 /-$ cartiage and pack, $5 /-\quad 75 /-$. Garrard clear-vlew rigid per spex cover, $57 / 6$
(carriage $3 / 6^{\prime}$

## CARTRIDGES

mono
TC8.
TC8/M eryatal, 25/-
Acos GP 91-1, 18/6.
STEREO
Ronette 105s, 32/.
Ronette 105s, 32/. DECCA DERAM - dith diamond, 47/6. bectus. List 94/6. Our price 8tylus. List 94/6. Our price
$79 / 6$.

## VALVES <br> SAME DAY SERVICE NEW! TESTED! GUARANTEED!







 F


## READERS RADIO

85 Torquay Gardens, Redbridge, Ilford, Essex. ${ }_{7}^{01-5450}$
Postage on 1 valve 9d. extra. On 2 valves or more, postage 6d. per valve extra. Any parcel Insured against Damage in Transit 6d. extra.

## KEYSWITCH RELAYS

## vive la differencevive le keyswitch

It's just a little difference, but It means a lotl With Keyswitch relays, the exira atiention glven to detalls, the stringeni testing at every stage of manufacture means you can be that little bit more sure of the outcome. Relays to BPO 3000 specificationminiature or sub-miniature relays (all from stock)it's the same difference. Get to know Keyswitch relays, you'll find you can trust them.

always to price $\triangle \square$ always to specification $D \triangleleft$ always on time KEYSWITCH RELAYS LTD CRICKLEWOOD LANE LONDON NW2 Telephone: 01-452 3344 Telex 262754 WW-111 FOR FURTHER DETAILS

# OUTSTANDING SINCLAIR DESIGNS FOR THE ECONOMY MINDED 

 wear. The Micromatic is amazingly powerful and better than ever in quality now that its output feeds to the hi-fi quality magnetic earpiece supplied with it. It tunes over the medium wave band to bring in RADIO I and many other stations to make it the best of all personal radios ever. This smaller-than-a-matchbox radio is in a tiny black case with aluminium front panel and matching slow-motion tuning control. Very easy to build, or available ready built.
 MALLORY MERCURY CELL RM. 675 (2 required) each $2 / 9$.

## YOUR SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR PURCHASERS.
If you prefer not to cut this page, please quote WW368 when writing your order.

## SINCLAIR RADIONICS LIMITED

22 NEWMARKET RD., CAMBRIDGE Tel: OCA3 52996


## A BRILLIANTLY EFFICIENT LOUDSPEAKER

When Sinclair Radionics decided to design and manufacture a new loudspeaker, it was required from the start that its performance should be worthy of to-day's best high fidelity standards and be so reasonably priced that the greatest numbers could afford it. By using ultra-low resonant materials to form its acoustically contoured housing, outstandingly brilliant performance resulted. Furthermore, the unusual form of the Q. 14 meant it could be used as a free-standing shelf speaker, as a wall-corner sound radiator or flush mounted singly or in multiple units on a flat surface such as a wall. The correctness of the design of the Q .14 has amply proven itselfsince within a few months of its introduction, it is already amongst the four most demanded loudspeakers irrespective of price. Independent laboratory tests have already shown that the Q .14 has amazingly good performance characteristics. As a judge of good sound yourself, your ear will confirm this instantly. At its price, there is nothing to stop you changing to Sinclair at once.

- RESPONSE-Exceptionally smooth from 60 to 16,000 - MAXIMUM LOADING-In excess of 14 watts. IMPEDANCE- 15 ohms.
SIZE AND FINISH-9?in. square $\times 4 \frac{2}{2} i n$. deep. Matt black with solid aluminium bar embeillishment.
- ALL-BRITISH MANUFACTURE

Tested and guaranteed in fitted carton. (Your money and postage refunded if not sotisfied).
£6.19.6

IDEAL FOR BATTERY operation

## SINCLAIR

## COMBINED 12 WATT HI-FI AMP \& PRE-AMP

No contructor's transistor amplifier has ever achieved such success as the Sinclair Z.12. It favours the user in so many ways-with fantastic power-tosize ratio, with far greater adaptabllity, with freedom to operate it from batteries or mains power supply unit (the new PZ. 4 is ideal for this) and with the opportunity to obtain superb stereo reproduction for very little outlay. Countless thousands of Z .12 s are in use throughourt the world in hi-fi installations, electronic guitars and organs, P.A. installations, intercom, systems etc. This true 12 -watt amplifier is supplied ready built, tested and guaranteed together with the $\mathbf{Z} .12$ manual which details a number of control circuits enabling you to match the $Z .12$ to your precise requirements. For complete listening satisfaction, use your $\mathbf{Z} .12$ system with Q. 14 loudspeakers. It assures superb quality with substantial saving in outlay.


SINCLAIR STEREO 25
De luxe pre-amp/control unit for 2.12 or other stereo systems. front panel $6 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. Ready built.
$£ 9.19 .6$

PZ4 stablised heavy duty POWER UNIT

Designed specially for 2.12 assemblies. 18 V. $89 / 6$
D.C. at 1.5 amps. A.C. mains.

TO: SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE Please send POST FREE

## NAME

AOORESS


WE ALSO PROVIDE ADDITIONAL SERVICE FOR THE ELECTRONIC INDUSTRY WITH SHEETMETAL WORK ENGRAVING COIL WINDING, ASSEMBLY AND WIRING OF ELECTRONIC EQUIPMENT PROTOTYPES OR PRODUCTION RUNS.

OLSON ELECTRONICS LTD., FACTORY NO. 8
5-7 LONG ST. LONDON E2.
TEL: 01-739-2343

## WW-113 FOR FURTHER DETAILS

## transistor television receivers

T. D. Towers: M.B.E., M.A., B.Sc., M.I.E.E. A.M.I.E.R.E.

This book covers virtually every aspect of transistors in television receivers, with examples drawn from the United Kingdom, U.S.A., France, Germany, Russia and Japan. Although transistor sets may never entirely displace valve operated, mains-driven, large screen sets, for personalportable sets the transistor has no rival.

194 pp. 188 illustrations. 55s net 56 s 3 d by post.

- For the designer, and the interested serviceman, this is a book packed with information.'
radio and electrical retalling
- He (the author) has done the iob so thoroughly that his book-the first in the field-is likely to remain first in the field for quite a while.' music trades review
gives the reader a clear perspective of the subject and provides an important chapter on servicing methods.' ELECTRICAL AND RADIO TRADING


## ILIFFE BOOKS LTD

Dorset House, Stamford St., London, S.E.I.

## All overseas enquiries \& örders please address to

COLOMOR (ELECTRONICS) LTD.
170 Goldhawk Rd., London, W.I2.
Tel. (01) 7430899


OR TYPE TF 8013/3/S
Frequency range $12-485 \mathrm{Me} / \mathrm{s}$ in five ranges. Directly calibrated C.W.W. sine wave A.M., pulse A.M. (from ext. source only). Internal modulation frequency $1,000 \mathrm{c} / \mathrm{s}$. Output: a, normal-continuously variable directly calibrated from $0.1 \mu v-0.5$ r-i b, high-up to 1 v . modulated for 2 v. unmodulated,
output impedznce 50 ohms. Fine output impedznce 50 ohms. Fine frequency tuning control, carrier onforion for $2 \mathrm{Mc} / \mathrm{s}$ and $10 \mathrm{Mc} / \mathrm{s}$ Stabilised voltage supply. In excel lent "as new" condition. Laboratory checked and guaranteed. fll5. Carr. 30/Ineluding necessary connectors, plugs and instruction manual.

MARCONI SIGNAL GENERATOR TF 801/A/I. $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at $400 \mathrm{c} / \mathrm{s}$. $1 \mathrm{kc} / \mathrm{s}$. 0.100 db below 200 mV from 75 chms source. Complecely new wish ohms sories and instruction book. 685 . P. \& P. 20/.

MARCONI SIGNAL GENERA. TOR TYPE TF $144 \mathrm{G} .85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}$. Excellent laboratory tested condition. with all necessary accessories with in struction manual, ©45. P. \& P. 15/-.

SIGNAL GENERATOR PORTABLE TS 13/AP, with self-contained wavemeter and power monitor. Freq. $930 \mathrm{~S}-944 \mathrm{~s} \mathrm{Mc/s}$. Peak power output, T-2 pulsed $50 \mu$ per ${ }^{2} 200$. see PR


BC 221 FREQUENCY METERS. $125-20,000 \mathrm{kc} / \mathrm{s}$. Accuracy $0.01 \%$. Complete with individual Calibration book. In brand new condition with E45. P. \& P. 20/-. Mains P.S.U. for above, © $11 / 10$ /-. Carriage 5/-

TEST SET TS I2AP STANDING WAVE INDICATOR EQUIPMENT. Used for testing 3 cm . circuit components. Should be used with described TS 13 Signal Generator E25. P. \& P. 10/-.

MARCONI YIDEO OSCILLATOR TF 885A. Sine wave output $25 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Me} / \mathrm{s}$ in 2 bands, Squarewave output $50 \mathrm{c} / \mathrm{s}$ to $\mathrm{soc/s}$ in 2 bands. Freq. aceur. $\pm 20 / 5 \pm 2 \mathrm{C} / \mathrm{s}$. Power supply

SIGNAL GENERATOR TYPE TS 418. Signal frequency $400-1,000 \mathrm{Mc} / \mathrm{s}$. direct calibration. Pulse rate $40-400 \mathrm{c}$ than 3 usec. to more than 300 than $3 \mu s e c$. to more than $300 \mu \mathrm{sec}$.
Pulse width variable less than lusec. to more than $10 \mu \mathrm{sec}$. Polarity-internal more than susec. Polarity-internal tive pulses. AM \& CW. Output attenuator $0.2 \mu \mathrm{~V}$ to 200 mV continuously variable. In fully rested condition, E150. Carriage paid.

PRECISION VHF FREQUENCY

METER TYPE 183. 20-300 Me/s with accuracy $0.03 \%$ and $300-1,000 \mathrm{Mc} / \mathrm{s}$ with accuracy 5.30 .25 Mcls with 3 c | on harmonics |  |
| :--- | :--- |
| curacy |  |
| $5.0-6.25$ | $\mathrm{Mc} / \mathrm{s}$ with ac- |
| $2 \times 10-4$. |  | curacy $+-2 \times 10-1$ incorporating

 Carriage $\subset 2$.
UHF OSCILLATOR TF 924/! TOGETHER WITH P.S.U. TM 4230. $2,100-3,750 \mathrm{mc} / \mathrm{s}$. $(14.28-8.00$ e/ms.) Klystron Oscillator with automatic tracking. Output power $10-50$ mw Refilector modulation can be applied. E210. Carrlage paid.

PHASEMONITOR ME-63/U. Manufactured recently by Control Electronies Inc. Measures directly and displays on a panel meter the phase angle signals within the range from 20 20,000 c.p.s. to an accuracy of $\pm 1.0^{\circ}$. Input signals can be sinusoidal or nonsinusoidal between 2 and 30 v. peak. In excellent condition together with handbook and necessary connector. $£ 45$.
Carriage $30 /$. Carriage 30/-
V.H.F. CIRCUIT MAGNIFICATION METER TYPE TF 886 Bi Apart from directly reading $O$ in the Apart from directly reading $Q$ in the
range $20-260 \mathrm{me} / \mathrm{s}$ (in 4 bands) this instrument may be used for indirectly measuring induction of coils, phase defects of capacitors, dielectric losses, etc. by resonance methods. Magnification ranges 5-50; 50-500; 200-1.200. Test Circuit Capacitor 7.5 to 100 pF calibrated in IPF divisions, with 2 pF interpolating dial calibrated in 0.2 pF divisions. Power supply 200 to 250 v . and 100 to 150 r. 690 . Carriage $30 /$ -
NOISE GENERATOR MARCONI TYPE TF 1106 . The TF 1106 provides standard noise outputs for determining at any frequency from I to $200 \mathrm{mc} / \mathrm{s}$. It is calibrated directly in noise factor. making measurements a routine operarion. Noise output calibration $0-30$ in four ranges. Accuracy $\pm 0.5 \mathrm{~dB}$. Frequency range $1-200 \mathrm{mc} / \mathrm{s}$. . Output impedance 52 or 71 ohms. Power supply $100-125 \mathrm{v}$. or 200-250 v. E55.
AVO VALVE TESTER, with instruetion book, 635 . Carriage $30 /$ -

## END OF RANGE ITEMS

 Offered at special low prices as only a few left, all are in fully tested guaranteed condition.YALVE VOLTMETER TS 4288/I. E10/101-.


BOONTONSTANDARD SIGNAL GENERATOR MODEL 80. Frequency 2 $400 \mathrm{Mc} / \mathrm{s}$. in 6 ranges. AM., 400 and $1,000 \mathrm{c} / \mathrm{s}$. and external modulation. Provision for pulse modulation. Piston type attenuator $0.1 \mu-100 \mathrm{mv}$ separate meter for modulation level and carrier level. Precision flywheel euning.
117 v. A.C. input. With inif v. A.C. input. 695 ith in struction
riage 30 -

# P. C. RADIO LTD. <br> 170 GOLDHAWK ROAD, W. 12 

SHEpherd's Bush 4946

whog
TT1
TTR3
TZ40
TZOS
TZ20
U12
U18
U25
U26
U52
U82
U181
U404
U801
UAB
UAF
UBC
UBF
UCF
UCH

 TRANSISTORS, ZENER DIODES,




|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  | $\cdots \rightarrow \rightarrow$ M








RADIO FREQ. THERMO-COUPLE METER METERS. $4 \frac{1}{\mathrm{i}} \mathrm{in} . \times 4 \frac{1}{\mathrm{i}} \mathrm{in}$. 4 in . long, CRI50 RECEIVER, $2 \mathrm{Mc} / \mathrm{s}-60 \mathrm{Mc} / \mathrm{s}$.
350 mA 2 in . round plug-in
I amp. $2 t \mathrm{in}$, round proj.
1 amp. $2 \frac{t i n}{}$ sq. panel
5 amp. 2in. round panel
P. \& P. $3 /$ each
D.C. MOVING COIL METERS
$50 \mu \mathrm{~A}$. 2 in , round proj
$200 \mu \mathrm{~A}$. 2 in . round panel, sealed calibro-30 $750-0-750 \mu \mathrm{~A} .2 \mathrm{in}$. round plug-in
I mA. $2 \frac{1}{2}$ in. square panel
1 mA .2 in . round panel sealed ........
5 mA .2 in , round cllp-fix panel or proi.
$5-0-5 \mathrm{~mA}$. $1 \frac{1}{2}$ in. round panel
$10-0-10 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$, round panel
0 -30 mA . $2 \frac{1}{2} \mathrm{in}$. round panel
$10 \mathrm{~mA} .2 \frac{3}{4}$ in. sq. panel
2.5 mA .2 in. sq. panel
$50 \mathrm{~mA} .2 \neq \mathrm{in}$, sq. panel
100 mA . I $\frac{1}{\frac{1}{2} \text { in. proj. }}$
100 mA . It inin. round panel
$100 \mathrm{~mA} .2 \frac{1}{\mathrm{t}} \mathrm{in}$. round panel
2 amp. $2 \frac{1}{2}$ in. round panel
$5-0-5 \mathrm{amp} .2 \frac{1}{2} \mathrm{in}$, round panel
$8 \mathrm{amp} .2 \frac{1}{2} \mathrm{in}$. round panel
25 amp . $3 \frac{1}{2} \mathrm{in}$. round proj
$50 \mathrm{amp} .2 \frac{1}{2} \mathrm{in}$. round panel
20 VDC 2 in. square pane
80VDC $2 \frac{i}{i n}$. round panel
150 VDC 4 in , round panel
a -1500 v. $2 \frac{1}{2} \mathrm{in}$. elects. plug in, round pane
MOVING IRON METERS
15 VAC $2 \ddagger \mathrm{in}$. round panel
$14 / 6$ mirror scale panel mounted, calibrated
$17 / 6$ 0-1 mA. $55 /$-. P. \& P. 3/
22/6
LABORATORY TYPE VOLT METERS. 160 v. A.C./D.C. 8 in. mirror scale in wooden boxes, $9 \frac{1}{2} \mathrm{in} . \times 8 \frac{1}{4}$ in $\times 3 \frac{1}{2} \mathrm{in}$. with carrying handle, brand new
$32 /-$ P. \& P, $3 /-$. $25 /-$
$22 / 6$
2/- Miniature meters. General Eleceric $\frac{1}{2} \mathrm{in}$. round flush, clip mounted: 1 mA D.C., $22 / 6$

$$
150 \mathrm{~mA} . \text { D.C., } 15 /-
$$

$17 / 6$ "S" METER FOR H.R.O. RE.
25/- CEIVERS. Brand new, E2/10/-. Carrage 25/- paid U.K.
14/- SUB - MINIATURE "PENNY
17/6 SIZE" METERS.. lin, round, flush
$17 / 6$ ring nut mounted $500 \mu$ A FSD, cali-
19/- brated 0-I mA. 20/-. P. \& P. 3/-
22/6 COMPLETE V.F.O. UNIT from 25/- TX53. Freq, range in 4 swirched bands 25/- from 1.2-17.5 Mc/s. Two Y.T. 501/5 as $27 / 6$ oscillator and buffer. 807 as driver. $27 / 6$ two 130 as voltage seabilzers. Outpur 19/- sulficient to drive two 813 s in parallel. 22/- Slow motion drive directly calibrated in 25/- Mc/s. Provision for crystal control,
$27 / 6$ metering of buffer and driver stage. $27 / 6$ metering of buffer and driver seage.
$30 /-$ Power requirements 400 v , and 6.3 v . Power requirements 400 v , and 6.3 v .
D.C. Can also be used as low power transmitter. In excellent condition $27 / 6$ with valves and circult diagram.

CRI50 RECEIVER, 2 Mc/s-60 Mc/s.. E49/10/=

SPARES FOR AR.88D. RECEIVERS. Ask for your needs from our huge selection.
VARIOMETER for No. 19 sets, $17 / 6$. P. \& P. 3/-

TELEPHONE HANDSETS. Stane
INSET MICROPHONE for ele phone handset, 2/6. P. \& P. 2/-

LIGHTWEIGHT, LOW RESISTANCE, HEADPHONES. Type H.S. 27/6. P. \& P. 3/..
FIELD TELEPHONES TYPE "F"
Excellene for communication in- and
Excellent for communication in- and
out-doors for up to 10 miles. For pair including batteries and $1 / 6 \mathrm{th}$ mile field cable on drum. Completely new, 10/.
FIELD TELEPHONES TYPE "L"
As above but in portable metal cases.
Per pair including batteries and $1 / 6 \mathrm{th}$ mile field cable on drum. $£ 4 / 10 /=$ Carriage 10/-
FIELD 10 LINE MAGNETO TELE. 6733). Withstanding all climatic condicions. Price on application

HARNESS :"A" "B" conerol units, function boxes, headphones, mierophones, etc.

29/41FT. AERIALS each consisting of ten 3 ft ., $\ddagger \mathrm{in}$. dia. tubular screw-in wections. Ilft. ( $6-5$ ection) whip aerial lated base, pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erece, in canvas bag, 63/9/6. P. \& P. $10 / 6$.

## FOR EXPORT ONLY

Installation Kits for CII/R210 Sets 53 TRANSMITTER made up to " a new standard. All spares available.

COLLINS TCS. Complete installans and spare parts

FIELD TELEPHONE SETS TYPE "J" YA 7815. Portable. Ideal for tropical climates.
R.C.A. TRANSMITTER TYPE ET
4336. $2-20 \mathrm{Mc} / \mathrm{s}$., complete with M.O. Cryst. mult. and speech ampl.
Fully tested and guaranteed. All spares Fully tested and guaranteed. All spares

BC $610 E$ TRANSMITTER. Complete with speech amplifier BC 614E units, tank coils, etc. Fully tested and guaranteed. All spares available.

No. 19 HP SETS. Amp outpu installations supplied.

RONTGENS/HOUR MICRO X lin. widrh with switching dials, $32 / 6$. P. \& P. $3 /=$

## P. C. RADIO LTD. 170, GOLDHAWK RD., W. 12

 $01-7434946$ALLTEST \& COMMUNICATION EQUIP. MENT has been thoroughlyprepared in our Engineers.

Tel. (01) 7430899
Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.
PERSONAL CALLERS WELCOME

## AERO SERVICES LTD

## PEN RECORDERS

Ellot portable recording milliammeters． As D．C．recorder： 1 mA ．FgD．Movenient reaistance 1200 n
Ag A．c．current or voltage recorder： Senslitivity 1 mA ．A．C．FSD．
As decibel meter：source impedance reaponse $50 \mathrm{c} / \mathrm{s}$ ．to $15 \mathrm{kc} / \mathrm{s}$ ．
Chart drive： 230 r．A．C．at lin．and 6 in ． per hour．Movement is fitted with high＂and＂low＂alarm contacts which can be set for any value of the current． pRICE
Packink and carriage 15 ．
RECORD PORTABLE RECORDING
MILLIAMMETERS
These are similar to the above but are somewhat smaller and lighter， and D．C．renistance of the movement is $400 \Omega$ ．Other details as Packlig and uarriage 151 These are also avallable as decibel meters．Type 19A／C．T．A． Range $+3 / 0 /-3 \mathrm{~dB} 6+$ with current of $500 \mu \mathrm{~A}$ at 0 dB ．Movenent resistance 1900 §

845
MICROWAVE DIODES
$3000 \mathrm{mc} / \mathrm{s}: 1 \mathrm{~N} 21.4 /-\mathrm{F}$ Cartridge Type $1 \mathrm{~N} 21 \mathrm{~B}, 8 /-; 1 \mathrm{~N} 28,20 /-$
0，000 me／s．：C82A．5／－；CV101，5／－；CV102．5／－；CV291 12／－ 9，375 me／2．： $1 \mathrm{~N} 23.4 /-\mathrm{F} 1 \mathrm{~N} 23 \mathrm{~A} .4$
$0.000 \mathrm{me} / \mathrm{s} .: \mathrm{CS3A}(\mathrm{CV} 233)$ ）， 20
$12.000 \mathrm{me} / \mathrm{s} .: \mathrm{CS3B} .27 / 6$ ； $\mathrm{CS} 4 \mathrm{~B}, 37 / 6$ ；C89B． $30 / \mathrm{c} \cdot \mathrm{CS} 10 \mathrm{BR}$
 $34.860 \mathrm{mc} / \mathrm{s}$ ．： VX 136 （CV2391）， $65 /=$.

## AVALANCHE SILICON RECTIFIERS

Type RAs508AF． 960 p．i．w．at 6 amps ．max．，stud mounted

## HEADPHONES No． 10 ASSY．

（OR CANADIAN No．I ASSY）
Moving Coil Healphones with movhig coll Hand Mierophone fitted with preas－to－talk switch．Rubber earpads．Cord terminated with army type 5 －point moulded connector．Low limpedance Brand new．20／－ea

## THYRISTORS

Type $3 / 40.400$ p．i．r．． 3 ampa．athd mounted；Gate voltage Blue spot， 200 p．i．r．，s amps．，stud monited；Gate
 Green spot， 400 p．i．v．，otherwise as above

## TEXAS SILICON FULL－WAVE

 BRIDGE RECTIFIERS1B20K10 100 p．i．v． 2 amps．，dimensions $1.4 \times 1.4 \times$ ．Bin 1B40K10 100 p．i．v． 4 amps ．，dimensions $1.4 \times 1.4 \times .6 \mathrm{in}$ ． 1 B100M10， 100 p．i．v． 10 amps．．dimensions $\left.2 \frac{1}{6} \times 2\right\} \times \mathrm{lin}$ ． 25／－ Poatage $1 / \beta$ per rectifier．

24－WATTS 210－240V．SOLDERING IRONS Recently imported extremely attractive and aturdily built soldering irons，with angle bits．Chromium－plated steel body and polished
vooden handle．No Bakelite or breakable plavtics used in con－ Yoooden hand
struction．
struction．
Price
Bpare blits
Spare heating element
Handing and postage 2

## CATHODE RAY TUBES

2AP1－2in．screen，Green Trace Medium Persistence Oncillogcope Tube．EHT required 500 to 1.000 Y ．Sensitivity approx． 100 F ， length 7 tin． lengice． 3AFP31 $=$ DH $7-91-24 \mathrm{in}$ ．screen Flat Face Gireen Trace Medium
Persilstence Oscilloscope Tube．EHT required $700-1.000$ r． Suitable for symmetrical and asymmetrical operation．Bensitivity $\mathrm{Y}=30 \mathrm{v} . \mathrm{DC} / \mathrm{hn}_{i} \mathrm{X}=50 \mathrm{v} . \mathrm{DC} / \mathrm{in} .6 .3 \mathrm{~F}$ ，heaters．B9G Base．
Overall iength $0 \ln$ ． PRICE
$110 /$.
3AP1－3in．gcreen，Green Trace Medium Persintence Oseilloscope Tube．EHT required 600 v．，senaltivity approx． 45 to 47 v ．DC／lin．
2．5v．heaters．USM 7 Base．Overall length 11 in $\ldots \ldots . . \quad 40 /-$ $2.5 v$ ．heaters．USM 7 Base．Overall length $11 \frac{i n}{}$ ． 3BP1－ 3 in ．screen Green Trace Medium Persistence Oscilloscope Tube．EHT required 1500 to 2000 v ．Sensitivity approx． $100 \cdot 150 \mathrm{v}$ ．
DC／in．at 150 v ．and $150-200 \mathrm{v}$ ．DC／in at 2000 v ． 6.3 v ．heaters． B14A base．Overall length 10 tin． PRICE
48P31－4in．screem Flat Face Green Trace Medium Persistence TWIN GUN Oscilloscope Tube．EHT required 1000 to 1800 v ． Sensitivity $Y=26 v$ ．DC／In；$X=40 v$ ．DC／in．6．3v．heaters PRICE
$200 /$
Pleage consult our Catalogue for full rauge of Cathode Ray Tubes Tube holders：B9G，2／－；B12F，7／6；B14A．6／6；USM7．2／6；
U8M11，6／6．

ZENER DIODES

$5 \%$ IO－WATT STUD MOUNTED
Z4．7v．；25．1v．；Z5． $6 v . ; 26.2 v . ; 26.8 v . ;$ Z7．5v．；Z8．2v．；79．1v．
 727v．；Z30r．；Z33v．；Z36v．；Z43r．；Z47v．－all at 7／6．

## DRY REED INSERTS

Giase dry reed inserts approx．$\frac{1}{6} \mathrm{in}$ ．dia．$\times$ lin．long with axial leads One＂make＂contact of 100 mA capacity at 50 v ．Can be operated by permanent magnet or $30-50$ Amp－turns relay coils．PRICE $18 /-$ ．
per doz．post free． per doz．post free．

## BEEHIVE TRIMMERS

30 pF and $50 \mathrm{pF}, 15 /$ per dozen，in any combination．2／－P．P．
SLIDEWIRE WHEATSTONE BRIDGE


Battery powered Portable Resistance Bridge．Range 0.5 to 50 ohms with multiplier settings of $0.1-1-100-1000$ ，proriding a meas uring range of 0.05 to 50.000 ohme．Accuracy on the middle ranges－$-0.5 \%$ approx
PRICE
$£ 1515$

## COUNTER TUBES

GR10A－ 10 －way register－indicator tube 45／－
GR10A－10－way register－indicator tube 45／－．
GC10 B－acale of ten counter．35／－．
GC10D－scale－of－ten counter for single puise operation，55／－ GS10H－BS GS10D but physically small．40／．

WE ARE INTRODUCING FIRST CLASS（1．5\％ACCURACY）MOVING COIL METERS OF CURRENT MANUFACTURE．THESE STURDILY BUILT INSTRUMENTS HAVE HIGH TORQUE MOVEMENTS AND ARE CAREFULLY ADJUSTED FOR CORRECT AMOUNT OF DAMPING
The Meters are calibrated for use on anti－magnetic panels，in vertical position．
At present only the sizes listed below are available ex－stock．We hope to increase the range in the near future to include further sizes and types．

| range | 700A | 85DA | 120DA |
| :---: | :---: | :---: | :---: |
| $40 \mu \mathrm{~A}$ |  | 58／－ | 821－ |
| ${ }^{60 \mu \mathrm{~A}}$ | ${ }_{8}^{68 /-}$ | 531－ | 78／－9 |
| $150 \mu \mathrm{~A}$ |  | 44／－ |  |
| ${ }_{4}^{2500 \mu \mathrm{~A}}$ | 54／－ | 42I－ | 65／－ |
| $600 \mu$ A | 49／－ | 36／－ | 60／－ |
| $\mathrm{l}_{2.5 \mathrm{ma}}$ | 46／－ | 二 |  |
| 25 mA |  |  | 58i－ |
| 40 ma | 46／－ | 34／－ |  |
| 100 mA |  | 34／－ | 58／－ |
| 150 ma |  |  | 二 |
| 250 mA 400 ma | 48／－ | 34／－ |  |
| 600 mA | 46／\％ | 34／－ |  |
| 1． | 48／－ |  | 58／－ |
| ${ }_{2.5 \text { A }}^{1.5 A}$ | 48／－ | 二 | 58／－ |
| ${ }_{10}^{4}$ |  | 35／－ |  |
| ${ }_{40 \mathrm{~A}}^{10 \mathrm{~A}}$ | 二 | 38／－ | 88 |

 Type 85DA and $85 \mathrm{DV}, 85 \mathrm{~mm}$ ．dia，flange．Flush mounted． 67 mm
Type 120 DA and 120 DV ． 120 mm ，square fange．Flush mounted．
68 mm ，dia，body． 40 mm ，dopth from the panel． 68 mm ．dia body． 40 mm ．depth trom the panel．

|  | mange | 70DV | 85DV | 120DA |
| :---: | :---: | :---: | :---: | :---: |
| 6 V |  | 82／－ |  |  |
| 10 V |  |  | 40\％ | $\overline{-1}$ |
| ${ }_{20}^{15 V}$ |  |  | 40／－ | 62／－ |
| 40 V |  | 82／－ | 40－ |  |
| 60 V |  | 82／－ | － | 62／－ |
| 100 V |  |  |  | 62／－ |
| 150 V |  | 82／－ | 461－ |  |
| 250 V 400 V |  | 53／－ | $46 / 1$ $47 / 6$ | 65／－ |
| 600 V |  | 58／－ | $50 /-$ | 7\％－ |



WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN $\&$ FOR HANDLING AND POSTAGE. NO C.O.D. ORDERS ACCEPTED. IN ORDER TO AVOID DELAYS PLEASE SEND ALL MAIL ORDERS AND CORRESPONDENCE TO OUR HEAD OFFICE AT 44A WESTBOURNE GROVE, W.2, AND NOT TO THE RETAIL SHOP

R．S．T．Valve mail order co．
146 WELLFIELD ROAD，STREATHAM，S．W． 16

|  |  |
| :---: | :---: |
|  |  |

$$
\begin{array}{cc|c}
\text { EL820 } & 6 /- & \text { QQVO6/40 } \\
\text { EL821 } & 6 /- & 90 /- \\
\text { EL822 } & 18 /- & \text { QQV } 180 \\
\text { ELL80 } & 20 /- & 70 /- \\
\text { EM34 } & 15 /- & \text { Q870/20 } 5 / 8
\end{array}
$$

$$
\begin{aligned}
& 2870 / 205 / 8 \\
& 2875 / 20 \\
& 58 / 8
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q883/3 } \\
& \text { Q88/ } \\
& \text { Q892/10 } \\
& 7 / 3
\end{aligned}
$$

$$
\mathrm{Q} 810 / 45 \mathrm{k} / \mathrm{k}
$$

$$
\begin{aligned}
& \frac{1}{0} \frac{1}{00} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\frac{0}{6}
$$

$$
\begin{aligned}
& \text { Q81209 } 7 / 3 \\
& \text { QVOS.12 }^{2010}
\end{aligned}
$$

All valves brand new and
All valves brand new and
boxed
boxed
Special }24\mathrm{ Hour Express Mail
Special }24\mathrm{ Hour Express Mail
Order Service
Order Service
Postage 6d. per Valve
Postage 6d. per Valve

## 

5Y3GT $5 / 6$
5／8 50 CD

## ${ }^{50 C D 6 G} 31 /-$ <br> 为 <br> すOTN

 $20 /-$178
$15 /-$
151 111
718
181蒙苗雷

 | $4 / 6$ |
| :---: |
| $4 /-$ |
| $4 / 6$ |
| $8 /-$ |

# ENGINEERS AND TECHNICIANS <br> U．K．AND OVERSEAS 

for installation and maintenance of
TELEPHONESWITCHING \＆TRANSMISSION SYSTEMS
and the maintenance of COMPUTER \＆RADAR INSTALLATIONS

If you have experience in step－by－step crossbar，
airfield radar maintenance，computer maintenance or transmission（particularly P．C．M．）you can well be the person we are seeking．Why not find out by contacting

Stan Yates，
STC，Chester Hall Lane， Basildon，Essex．
Tel．Basildon 3040
Interviews can be arranged outside normal office hours．

# SEMICONDUCTOR THERMOELECTRIC DEVICES 

## A．I．Burshteyn

Translated from the Russian by A．Tybulewicz

This book is a graduate level textbook designed to acquaint the applied physicist and engineer with the physical theory and limitations of thermoelectric devices based on semi－conductors．It assumes that the reader has had graduate training in mathe－ matics and thermodynamics． $8 \frac{3^{\prime \prime}}{4} \times 5 \frac{1^{\prime \prime}}{}$ 131 pp .35 s ．net． 35 s .11 d ．by post．

## ILIFFE BOOKS LTD

DORSET HOUSE，STAMFORD，STREET，LONDON，S．E．I

## CLASSIFIED <br> ADVERTISEMENTS

[^11]
## Advertisements accepted up to MARCH 8 for th being available.

## SITUATIONS VACANT

 A N OVETO meet (areer with Intemational Aeradlo pansion, we requirements of constant growth and exEast Afric for an overseas career in North, West and Last Africa, the Mediterranean area and the Arabian
Gulf. If you have recently completed service in a
trade such as Ground Wireless Fitter in the trade such as Ground Wireless Fitter in the R.A.F., R.E.M E., Army, or have other experience in the main-
tenance of H.F. and V.H.F. communications, R.T.T. tenance of H.F., and V.H.F. communications, R.T.T. from you. Successful candidates would normally spend six weeks at our Radio Engineering School, Southal,
Middlesex, before proceeding overseas, but, in some cases staft with suitable qualifications and experience
may be offertd immediate posting. Overseas staff remay be offertd immediate posting. Overseas staff re-
celve a tax-free salary with married and child ailow-
ances if apprapriate and accommodation bachelor or married is provided free; other benefts include generous U.K leave and membership of an excellent penSion and life assurance schemes.
WRITIEN applications please
WRITIEN applications please, to Personnel Manager, International Aeradio Limited. Aeradio House, Hayes
Rd.. Southall, Middlesex.
19 A quill-TIME technical experienced salesman reprevious experience, salary required to- The Manager, R ADIO and tape recorder testers and trouble 8 a.m. to 5 p.m. 5 -day week, Elizabethan Electronics,
Lid., Crow Lane, Romford. Essex. Tel. Romford 64101. WEST London Aero Club invite "A" and "B" sary equipment to commence Radio Workshop. Alter-
native propositions may be considered. Write full Betains.
Be--White, Waltham Airfeld, near Maidenhead.
[68 E LECTRONIC service engineers required for work in navigational equipment; past aircraft maintenance experience an advantage. Apply: The Decca Navigator
Co., Ltd., Spur Rd., Feltham. Middiesex. Tel. 890
a CUATEMALA: Small radio station requires volunteer stations and radio schools. Interesting post concerned with development of remote areas, Volunteer terms:
board and lodglng. pocket-money, fares. allowances.
Write CIIR/OV, 38 . King St., London, W.C.2. 11981 TMPERIAL COLLEGE. Senlor Experimental Officer or of experimental high pressure equipment used in metal Working, to supervise manufacture and use, and to
ensure maintenance. Qualifications: H.N.C. or Corporensure maintenance. Qualifications: H.N.C. or Corpor-
ate Membershlp. Salary range $£ 1,335-£ 2,040$. Super-
annuation Scheme. Application to Mr. R. W, Wells, Mechanical Engineering Department, Imperial College, DAN American require Radio Technician for project U.H.F. and VHF systems. Based at London Airport but some travel in European area $C$. \& $G$. Certificates in radio or equivalent, plus minimum of two years £1,300 p.a. Reduced fase hollday travel privileges. Pupersonnel Middiesex. Lupervisor. London Airport. Hounslow, EXPERIMENTAL OFFICER required to assist in elecD tronic techniques associated with development of of mechanical engineering equipment. Experience of destrable; good working conditions, superannuation scheme, 4 weeks, holiday, salary in the range £1,335tor, Department of Mechanical Engineering. Imperial
College. London, S.w.7. A Pplications are invited for 2 technicians posts will be responsible for the maintenance of electronic They will asso take part in a development programme In association with the Department of Medical Electronics, St. Bartholomew's Hospital, where the initlal
traning will be carried out. Experience in the mainand qualifeations in accordance with P.T.B. Circular 217- £711-.£1.004+ £75 London Weighting. Applications to Dr. B. W. Watson, Department of Medical VACANCY for an electronic technician to particiinvolving both animal and human subjects. Drojects, will include the maintenance of E.E.G. and polygraph recorders, a irequency analyser, assisting with the
taking of E.E.G. recordings in an animal laboratory and the setting
version equipment and maintenance of $A / D$ con-
to the computer analysis of the human electroencephalogram. Salary scale: $£ 400-£ 847$ or $£ 900-£ 1.130$ accordIng to experience or qualifications. - Apply, with full
details (and qouting Ref. GWF) to The Secretary, Institute of Psychiatry. De Crespigny Park, Denmark
Hill, London, S.E.5.

FOR SALE AND WANTED ADVERTISEMENT FORM
TURN TO PAGE No. 119

## 

$\mathbf{R}^{\text {ADIO }}$ ENGINEERS required by the National Guard R of Saudi Arabla. Intial contracts for one year, including six weeks pald leave in United Kingom.
 approximately s3. 500 per annum net. Candidates
snould have good knowledge ot modern HF SSB com-
municatlons equipment and VHF techniques. Previous munications equipment and VHF techniques. Previous
experience of petrol engines and teleprinters an experience of petrol engines and teleprinters an
advantage. Duties invole repair and mantenance of static, mobile and portable radio equipment throughout Saudia Arubia, and training of local personnel as radio mechanics and operators. F'requent air and
road travel is involved. Initial applicatlons, giving road travel is involved. Intial applicatlons, giving
brief detalls of qualifications, experience and past employment, should be made to Brigadier H. E. R.
Watson, c/o H.Q.. National Guard, P.O. Box 182 , Riyadh, Saldi Arabla, by civil air mail at full postage
rates.
[1961

TECHNICAL OFFICER. Home Office Police Research Techid Planning Branch. Unestabilished vacancy for a Technical Omcer, Grade III, with knowledge and
experience of workshop practice and electronic equip experience of workshop practice and electronic equip-
ment; the successlul candidate will work in the equipment, group, which is concerned with assessment. trials and development of a wide range of equipment cation and test work in co-operation with police omodifers. dence of ilions: Ordinary National Certificate or evitogether with equivalent standard of technical education, three years ${ }^{*}$ practical experience. Salary: £895-£1,149
(age 28 or (age 28 or over)- £l.283. phus £125 Inner London Principal Establishment Officer, Room 326 , Home Office, Principal Establishment Officer, Room 326, Home Office,
Whitehall, London. S.W.1, by 29th March, 1968 , 1969

The Civil Service
(Professional and other appointments)

## RADIO AND ELECTRONIC ENGINEERS <br> BOARD OF TRADE (CIVIL AVIATION)

Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and installation of advanced electronic equipment-including the latest type of radar, telecommunications, navigational aids, etc.
QUALIFICATIONS: Degree with 1 st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ae.S.
AGE: 23 and normally under 35 on 31st December 1968 (extension for Forces and Overseas Civil Service). SALARY (Inner London): On the scale $£ 1,160-£ 2,092$ depending on age and qualifications. Pensionable appointments. Good prospects of promotion.
(Reference: S/85/ASO)

## EXECUTIVE ENGINEERS <br> AND ASSISTANT EXECUTIVE ENGINEERS <br> POST OFFICE

EXECUTIVE ENGINEERS are required for research, development and design work for electronic tele phone exchanges, satelite communications, submarine telephony, novel hine and radio transmission systems, electro acoustics, mechanical aids and postal mechanisation. Most of these posts are in London.

There are also posts in engineering management to direct and control the provision and maintenance of communications installations and plant. These posts are available in London and in a number of provincial centres.
ASSISTANT EXECUTIVE ENGINEERS are required in London and provinces for work on the development and design of communications systems and postal service equipment
QUALIFICATIONS: Executive Engineer: Degree or Dip. Tech. in Mechanical or Electrical Engineering, or Physics or Applied Physics, or have achieved Corporate Membership of the I.E.E., I.Mech.E., or I.E.R.E. Final year students may apply. Assistant Executive Engineer: G.C.E. (or equivalent) pass in English language, and one of the following: H.N.D., in Electrical or Mechanical Engineering or Applied Physics; a pass in (or exemption from) Parts 1, 2 and 3 of the examinations of I. E.E., or I.Mech. E.; a pass in (or exemption 2 of the Institutions named above
SALARIES (national): Executive Engineer: £906 (at 21) - £1,677 (at 34 or over) - £1,884. Assistant Executive Englneer: £734 (at 18 or under)- $£ 1,097$ (at 25 or over)- $£ 1,631$.
Salaries increased for officers serving in London: £125 Inner London, £75 Outer London. Non-contributory pension. Promotion prospects to higher grades with maxima of $£ 2,484$ and $£ 3,105$.
AGE. Executive Engineer: At least 21 and under 35 on 31st December 1968. (Some extensions for service in H.M. Forces or Overseas Civil Service.
Assistant Executive Englneer: At least $17 \frac{1}{2}$ and under 27 on 31st December 1968. Applications for both posts from well qualified older candidates will be considered
Reference: $\mathrm{S} / 353$ )
APPLICATION FORMS are obtainable from the Secretary, Civil Service Commission, Savile Row, London, W.1. Please quote appropriate reference.

## RADAR SIMULATION

Resulting from continued expansion, the following vacancies now exist at Crawley.

## PROJECT MANAGER

Applicants should have a minimum of five years' experience in control of projects involving digitalised equipment. They must understand applications of network theory to project control.

## DESICN ENGINEERS

Preferably with experience of radar systems or simulators and analogue computers. Experience of digital techniques and design of computer interface systems would be an advantage.

## DHEATAL PROGRAMMER

Applicants must have a sound background in engineering and/or physics, and have a logical mind. Some experience of digital computers and software would be an advantage. Training on the solution of real time problems will be given.

Our products have an assured future in an expanding market. We offer good conditions of service, including contributory pension scheme, coupled with free life assurance.

## Apply to: General Manager,

## REDIFON LIMITED

 RADAR SIMULATOR DIVISION Kelvin Way, Crawley, Sussex. Tel: Crawley 23422A Member Company of the REDIFFUSION Group

A CAREER IN THE SUNSHINE
RADIO TECHNICIAN TRAINING in the


Vacancies exist in the Royal Australian Air Force for men who are interested in being trained in the Technical Radio fields. Applicants should be United Kingdom citizens residing in the U.K. and aged between 18 and 33 years. Qualified personnel up to the age of 43 years are also invited to apply.

Free passage to Australia is provided for families and pay commences from date of enlistment in London.

Further information can be provided by writing or phoning:
RAAF CAREERS OFFICER Dept. (wwI) AUSTRALIA HOUSE STRAND, LONDON W.C.2. Telephone No: 01-836 2435


## VICKERS <br> ENGINEERING GROUP

## TECHNICIANS

required by the Radiation and Nuclear Engineering Division at South Marston Works, Swindon, Wiltshire, for the installation, commissioning maintenance and service of Electron Accelerators. The work is mainly connected with Electron Linear Accelerators for medical research and industrial applications, and with Cobalt Radiation Units and Nuclear Reactor with Cobalt Radiation Units and Nuclear Reactor
equipment. Applicants must have a minimum of equipment. Applicants must have a minimum of Technical Sergeant standard in H.M. Forces. Experience with this type of equipment or in radar is desirable but not essential. Applicants must be prepared to travel anywhere in the world. These positions provide for Life Assurance, Pension and sickness benefit with excellent career prospects. The Works are pleasantly sited on the outskirts of Swindon with first-class sports and social amenities.
Please reply giving a resumé of career and experience to:

Mr. J. Barber (Ref. 4054), Vickers Limited Engineering Group, South Marston Works, SWINDON, Wiltshire.

## CAMBRIDGE

## PYE T V T LIMITED

Can offer the following opportunities:-

## INSTALLATION ENGINEERS

Senior and Assistant Engineers to install and commission Colour T.V. Transmitting equipment at home and abroad. The posts offer opportunities for travel.
Applicants for the SENIOR ENGINEER posts should have an H.N.C. or equivalent, but candidates without such qualifications who have considerable experience of installation of T.V. broadcasting or other transmitting equipment will be considered.
Applicants for the ASSISTANT ENGINEER posts should have an O.N.C. or equivalent trade or services qualification in electronic engineering. Some experience of installation work on electronic equipment would be an advantage.
Attractive salaries will be paid, according to experience and qualifications. Travelling expenses are paid in addition.

## ELECTRONIC DEVELOPMENT ENGINEERS

Engineers for development of Colour Television Transmitters and associated equipment. The vacancies fall into two categories:-
Applicants for the first category are expected to be aged between 24 and 34 , with H.N.C. or equivalent qualifications and design experience in at least one of the following activities:-

1. Vidè and radiofrequency amplifiers up to 1 GHz using solid state and microwave tube techniques.
2. Amplitude and phase equalising networks.
3. High power coaxial networks and feeders.
4. Other work connected with television transmitters.

Applicants for the second category will be aged between 20 and 26 , with O.N.C. or equivalent, with some experience in the electronics industry.
Attractive salaries will be paid to Engineers able to provide immediate contribution to a comprehensive work programme.

## TRANSMITTER TEST ENGINEERS

Senior and Assistant Engineers to test Colour T.V. Transmitting equipment. This includes a wide range of U.H.F. Transmitters of powers up to 40 kW .
Applicants for the SENIOR ENGINEER posts should have an H.N.C. or equivalent, but candidates without such qualifications who have considerable experience of T.V. Broadcasting or other Transmitting equipment will be considered.
Applicants for the ASSISTANT ENGINEER posts should have an O.N.C. or equivalent trade or services qualification in electronic engineering. Some experience of test work on electronic equipment would be an advantage.

Attractive salaries will be paid, according to experience and qualifications.

Enquiries should be addressed to the Personnel Officer, Pye T V T Limited, Coldham's Lane, Cherry Hinton, Cambridge. Write or telephone Cambridge 45115.

# Careers for VIDEO ENGINEERS 

## Service and Commissioning Engineers CROYDON AREA

Additional engineers are required with thorough knowledge of professional television equipment for studio and industrial applıcations, Video recording and some knowledge of colour television techniques. Training in the last two fields can be arranged.

## Electronic <br> Tests Engineers WEYBRIDGE AREA

For work on colour equipment we seek services of experienced Video Engineers. An understanding of transistorised pulse circuitry is desirable.

Conditions of employment are attractive.
Apply in confidence to Plant Personnel Officer, Peto Scott Limited, Addlestone Road, Weybridge, Surrey. Tel: Weybridge 455II.


Another member is needed for the editorial team of

## WIRELESS WORLD

Readers (25/35) with a flair for writing and an interest in the presentation of technical information are invited to send details of education and experience to the:

> Editor-in-Chief,
> Wireless World, Dorset House, Stamford Street, London, S.E.1.

$$
\begin{aligned}
& \text { - INDUSTRIAL ELECTRONICS', a } \\
& \text { leading monthly journal for users of } \\
& \text { electronics, require an editorial } \\
& \text { assistant to fill a vacancy in their team. } \\
& \text { The work is interesting and stimulat- } \\
& \text { ing; it involves a combination of desk } \\
& \text { work and visits to industrial plants. } \\
& \text { Applicants should be able to write } \\
& \text { clearly and should preferably have } \\
& \text { had some formal training in elec- } \\
& \text { tronics. } \\
& \text { Applications should be made to } \\
& \text { The Editor, } \\
& \text { 'INDUSTRIAL ELECTRONICS', } \\
& \text { Dorset House, Stamford St., } \\
& \text { London, S.E:I. } \\
& \text { (Phone OI-928 } 3333 \text { Ext. 178) }
\end{aligned}
$$

EDITORIAL ASSISTANT

## PROUCCTIO IEST EVMMEERS

Our activities in the field of telecommunications are substantially increasing, and as a result we have a need for a number of Production Test Engineers capable of fault finding on V.H.F. and U.H.F. mobile equipment involving both transistorised and valve circuitry.
There are also a limited number of vacancies for Systems and Microwave Engineers.
Selected applicants will be based either in Cambridge or Haverhill (Suffolk), and realistic salaries will be offered for these positions.

All enquirles initially should be made to:
THE PERSONNEL MANAGER, PYE TELECOMMUNICATIONS LTD., NEWMARKET ROAD, CAMBRIDGE. Telephone: Cambridge (OCA3) 61222

## RADIO ENGINEER GRADE II <br> GOVERNMENT OF TANTANIA

Qualifications: A.M.I.E.R.E., or M.I.E.E. (new regulations) and at least two years' qualified experience in the operation and maintenance of broadcasting studios and transmitting stations.
Duties: To be responsible to Radio Tanzania for the running of Studios and transmitter stations. This includes small installations and modifications to the general layout of equipment.
Age: preferably under 35 years.
Terms of Appointment: On contract for one tour of 21-27 months; Basic salary is in the scale £ Tanzania 918-1,314 p.a. (£ Sterling $1,071-1,533$ ) p.a. subject to local income tax and in addition an allowance, normally tax free, ranging, from $£ 768$ to C 936 will be paid by the British Government direct to the Officer's bank account outside East Africa. Entry point according to experience. Terminal gratuity also payable. Free family passages, educational allowances. Generous leave.

Applicants, who must be nationals of the United Kingdom or the Irish Republic, should apply quoting RC 237/173/04 for further details giving full names, qualifications, age and experience to:-

The Appointments Officer,
Ministry of Overseas Development, Room 301, Eland House,

Stag Place,
Victoria,
London, S.W.1.


## GATESHEAD AND DISTRICT HOSPITAL MANAGEMENT COMMITTEE

## SENIOR ELECTRONIC TECHNICIAN

Applications are invited for the above post, to carry out duties in the Gateshead district, N.W. Durham, Hexham district and Prudhoe groups of Hospitals. Qualifications should preferably include the H. N.C. (Electronics or Light Current Electrical
Engineering) or City and Guild Telecommunications Engineering) or City and Guild Telecommunications Engineering Certificate, or of similar academic level. The person to be appointed should have wide experience in the electronic field including relecom-
munication radio frequency tion, audio frequency systems, domestic and public tion, audio requency systems, domestic and public systems and electro-medical apparatus. Hospital experience would be an advantage.
The Technician will be based at Gateshead and be responsible to the Group Engineer, Gateshead and District H.M.C. for organising a system of routine mainment. National Health Service conditions of service. Salary within the scale $£ 980-£ 1,300$ p.a.
Applications giving full details of age, education, experience, qualifications and present salary, together with names and addresses or three referees. should be sent to the a Queen Elizabeth Hospital, Sheriff Hill, Gareshead Co. Durham, NE9 6 SU

The 5 GeV Electron Synchrotron (NINA) is operational and is being used for research into high energy physics by University and resident groups. The Synchrotron is housed at Daresbury in north-west Cheshire

## EXPERIMENTALISTS

who have experience of radio frequency techniques at U.H.F. and S. Band or of high voltage pulse forming systems, or alternatively a strong interest and experience in electronics or accelerator physics, are required for the Machine Group.

For part of the time they will provide specialist advice as members of the operating crew of the synchrotron and some three shift working will be involved in this aspect of the work.

For the remainder of the time they will carry out research and development aimed at maintaining the linear accelerator and synchrotron in a high state of efficiency, and as a leader in the field of nuclear physics.

Appointments will be made on the following salary scales and starting salaries will be assessed according to age, experience and qualifications:-

Senior Experimental Officer $£ 1,977-£ 2,411$;
Experimental Officer $£ 1,365-£ 1,734$;
Assistant Experimental Officer $£ 803$ (age 22)- $£ 862$ (age 23), £916 (age 24)- 1970 (age 25) £1,017 (age 26 and above), rising to $£ 1,243$.
Additional payments are made for shift working.
Applicants should have a pass degree or H.N.C. in electrical engineering or applied physics or possess equivalent qualifications.

The superannuation scheme is non-contributory. Advice and assistance to obtain $100 \%$ house loans is available.

Write for application form, quoting reference number $\mathrm{DL} / 210 / \mathrm{M}$, to Personnel Officer,
Science Research Coumcil,
Daresbury Nuclear Physics Laboratory,
Daresbury, Nr. Warrington.
Closing date:-28th February, 1968.


## Trained in electronics? Interested in aircraft?

Combine both these interests at the Marconi London Airport Service Depot

Technicians at the depot undertake major servicing of all types of Marconi airborne electronics equipment including navigational aids and V.H.F and U.H.F communication systems. During 1968 there will be an expansion into a new building giving excellent opportunities for rapid promotion

Applicants should possess a City and Guilds Certificate in telecommunications, equivalent qualification or experience.

## Marconi 类图

Please write quoting reference WW/AV/7, giving details of age, qualifications and relevant experience to: Mr B K Overy, Divisional Personnel Officer, c/o Directorate of Personnel, English Electric House; Strand, London WC2.

AN 'ENGLISH ELECTRIC' COMPANY

## DEVELOPMENT

## ENGINEERS

We are a Public Company in the Radio Industry and require Development Engineers for our planned expansion programme. We have a ycung enthusiastic management team and the successful candidate will be expected to play a full part in furthering the progress of the company by being involved in the preparation of the new models on which the company's expansion will be based.

Applicants must be qualified in radio and/or telecommunication engineering with at least five years experience of RF, IF, FM and audio layout design.

Realistic salaries will be offered to suitable candidates.

Please apply to:-
Personnel Manager,
DANSETTE PRODUCTS LTD.,
Dansette House,
Honeypot Lane,
Stanmore, Middx.
Telephone: 01-907 0021


An electronic or electrical engineer with H.N.C. qualifications is required by BISRA to work in the Automatic Control Section of the Plant Engineering Division at our Battersea Laboratories.

The emphasis will be on the practical nature of the work; the ability to construct electronic equipment being particularly important.

Salary will be according to age and qualifications. Conditions of employment in our well-equipped laboratories are good and include a subsidised canteen. There is a contributory pension scheme.

Applications, briefly outlining career history and present salary, should be sent in confidence to:

Mr. A. B. Driver,
Personnel Officer,
BISRA-The INter-Group Laboratories of the British Steel Corporation,
24, Buckingham Gate, London, S.W.I.
Please quote reference $P E / A C / I$ in your reply.

## NEWCASTLE REGIONAL HOSPITAL BOARD

## ELECTRONIC ENGINEER

in Regional Engineer's Department. He will be responsible to Regional Engineer for advice and guidance on the selection, use and maintenance of all electronic equipment in hospitals in the North East and in Cumberland. There are two electronic technicians in a small, well equipped laboratory under his control and he will supervise electronic technicians employed by hospital management committees employed by hospital management committees
in eight outstations. He will advise the in eight outstations. He will advise the
Regional Engineer on choice, design and Regional Engineer on choice, design and
development of electronic equipment and controls needed in mechanical and electrical projects, as part of the Board's capital programme of f 6 million per annum. This is a new section of the Board's staff and the work may grow.
Applicants must be Chartered Electronic Engineers with wide practical and administrative experience. Work will demand breadth of vision, initiative, energy and tact. Hospital experience not essential.

Salary within the scale $£ 1,640$ to $£ 2,300$ according to age and experience.

Applications, giving details of age, qualifications, experience, present salary and three referees to the Secretary of the Board, Benfield Road, Walker Gate, Newcastle upon Tyne, NE6 4PY, by 29th February 1968.
enthusiasts Have you considered a career in Technical Authorship ? If you have sound experience in electronics or communications and ability to write clear concise English we would train applicants as Technical Authors. The commencing salaries range from $£ 1,300$ to $£ 1,700$ depending on experience with the prospects of high future rewards and earnings.
Box No. 5039, c/o Wireless World


## RADIO TECHNICIANS

A number of suitably qualifed candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the U. K. includin Applicants must be 19 or over and be familiar with the us Test Gear. and have had practical Radto/Electronic workshop experience. Preference will be given to candidates who can offer "O" level and GCE passes in English language, Maths and/or nical Intermedlate Certificate or equivalent technical qualilea technical quazita

Pay according to age, e.g. at 19-8828, at 25-61,076 (higheat age pay on entry).
Prospects of promotion to grades in salary range \&1,15981,941. There are \& few posts carry ing higher salaries.
Annual leave allowance of 3 weeks 3 days rising to 4 weeks 2
days. Normal Civil Service sick ieave regulations apply. days. Normal Civil Service sick ieave regulations apply.
Application forms available from:-
Recrnitment Offcer (RT),
Government Communication
Government Communications Hesdquarters,
Cheltenham, Glon.

## IBM will train you for aresponsible career in data processing

To become a successful IBM Data Processing Customer Engineer, you need more than engineering qualifications. You need to be able to talk confidently and well to any level of customer management, and to have a pleasing personality in your work. As a DPCE, you work in direct contact with your customers, on some of the world's most advanced data processing equipment.

You must have a sound electronic and electromechanical background, such as ONC/HNC Electronic or Electrical, or Radar/Radio/Instrument Fitters course in the Armed Services.

You will get thorough training on data processing equipment throughout your career. Starting salaries depend on experience and aptitude, but will not be less than $£ 1,100$ a year. Salary increases are on merityou could be earning $£_{1}, 900$ within 3 - 5 years. Drive and initiative are always well rewarded at IBM; promotions are made on merit and from within the company.

If you are between 21 and 31 and would like this chance to become part of a rapidly expanding and exciting computer industry, write to IBM.

However, if you are between 18 and 21, IBM can offer you the chance of a challenging career as a Junior Customer Engineer.

You need five G.C.E. 'O' levels, an aptitude for mechanics, a good understanding of electrics, a clear logical mind, and the ability to get on well with people.

Send details of training, experience and age to Mr - D. J. Dennis, IBM United Kingdom Limited, 389 Chiswick High Road, London W4, quoting reference E/WW/262.

IBM

# Electronic/instrumentation technician engineers 

The Atomic Energy Research Establishment at Harwell has vacancies for Technician Engineers in several sections giving instrumentation support to the scientific work of the establishment.

The posts are in the following fieids:
(1) Assistance in applied research, development, design, commissioning and diagnostics of instrumentation, data processing and control as applied to scientific research.
(ii) Assistance in design, development diagnostic work and commissioning of electronic control equlpment associated with particle accelerator machines or research reactors.
(iii) Assistance in experimental and development work concerned with research on semiconductor radiation detectors, special semiconductor devices and microelectronic techniques for nucleonic and other applications.
(iv) Design and development of electromagnetic devices and the application of these to a variety of equipment: e.g. solid state DC to DC converters.

For this stimulating and interesting range of work we are looking for technicians who possess qualifications in Electronics or a related subject at least equivalent to
O.N.C. and who preferably either hold, or is dependent on the shift system being are currently studying for, a higher qualification. In addition applicants should have served a recognised apprenticeship or have had equivalent training. Appointments will be made in the Technical Class Grades and III depending on age and experience. Salary scales are shown below.

PARTICLE ACCELERATOR OPERATORS are also required to join small teams engaged in the control and fault rectification of these machines. The work is novel and interesting and calls for sound technical judgment. Applicants should have served a recognised electrical engineering apprenticeship or have had equivalent training and possess an appropriate Ordinary National Certificate or equivalent qualification. The work involves the use of.

High voltage equipment;
vacuum systems and
electronics and control circuitry. Some specialised training will be given.

Appointments will be made in the Technical Class Grade II and after initial training, shift working will be required. Details of the shlft system, which is based on an average 40 -hour week will be available
at interview. The shift allowance payable
worked and varies between $12 \frac{1}{2} \%$ and $20 \%$ of salary.

SALARY Technical Class Grade II; $£ 1,375$ to $\{1,595$ per annum.
Technical Class Grade III; $£ 1,040$ (at age 23)to $\{1,230$ (at age 28 or over on entry) to $\{1,375$ per annum.

HOUSING to rent, or assistance with house purchase, will be available for successful married candidates from outside the Harwell transport area.
HOLIDAYS. 22 working days a year for Grade II, 18 days for Grade III, rising with service, plus public and privilege holidays. Also good sick leave scheme.
CONTRIBUTORY SUPERANNUATIONEXCELLENT HOME TO WORK TRANSPORT SERVICE.
For further detalls of the above posts and other information please send a postcard, quoting reference E.3442/4S, for the Technical Engineer or E.3428/4S for Operations posts, to Appointments Section 'E' United. Kingdom Atomic Energy Authority, A.E.R.E., Harwell, Didcot, Berkshire or telephone Abingdon 4141, Extension 2408 or 2482.

COLLEEGE OF I.M.R. COMMNS., Brooks' Bar, Manchester 16, invite applications. from suitably qualified persons for the following:
ASSISTANT LECTURER IN MARINE RADIO. P.M.G. Cert., and up-to-date knowledge of the technical syllabus essential. Radar and other
qualifications and/or teaching experience an advanqualifications and/or teaching experience an advan-
tage, taken into account when fixing salary, based tage, taken into account
on the Burnham Scale.
ASSISTANT LECTURER IN MARINE RADAR. Applicants must hold the B.O.T. Radar Maintenance Certificate, and should also have had Radar experience as a marine Radio Officer and/or
service engineer.
Both positions available September 1968 or earlier by arrangement.
Write Principal, giving in confidence full details of experience, education, present salary, etc.

## BERRY'S RADIO

Require
COUNTER SALES STAFF AND
STENORETTE ENGINEERS
(fully experiènced applicants only)
5 day week, LVs., PERMANENCY
25 HIGH HOLBORN, LONDON, W.C. 1

THE NATIONAL INSTITUTE OF AGRICULTURAL ENGINEERING.
TW 111 required to assist a small team investigating problems associated with the measurement of light and control of temperature and carbon dioxide concentration in greenhouses. Practical experience in electronics necessary and some knowledge of modern recording equipment desirable.
Qualifications: O.N.C. or equivalent.
Salary Scale: $£ 895$ p.a. at age 21 rising to $£ 1,149$ p.a. at age 28 or over with a maximum of $£ 1,283$ p.a.

Ref.: 68/ECD/22.
FIVE-DAY WEEK SUPERANNUATION CANTEEN
Application forms from: The Secretary, N.I.A.E., Wrest Park, Silsoe, Bedford.

## Computer Engineers

Due to continued expansion NCR require additional ELECTRONIC and ELECTRO-MECHANICAL ENGINEERS for Computer Maintenance. Posts are available for men wishing to become Site Engineers.
Training Courses are arranged for suitably qualified men. H.N.C. Electronics, City \& Guilds Final or equivalent standard required. Men from Forces with radar experience welcome.
Knowledge of electronic or electro-mechanical equipment necessary. Good Pension and Bonus Plan in operation. Please write for Application Form to The Personnel Officer.
NCR, 1000 North Circular Road, London, NW2, quoting Publication and month of issue.
Plan your future with
NCR

## TELEVISION ENGINEER

Rapidly expanding Company in CCTV requires an engineer to control its Sales/ Servicing operations in the London area. Ability to maintain one inch helical scan video VR 7003 recording machines, T/V monitors and vidicon cameras essential. In addition to servicing CCTV installations, he will be required to promote new business in his area. Estate car will be provided and there is a pension scheme. Write giving full details to:-

Technical Director, Television Applications Ltd., 9/11 Windmill St., London, W1

## ELECTRONIC ORGANBUILDERS REQUIRE

 DRAUGHTSMEN with at least 5 years' Electromechanical and Electronic experience, minimum qualification ONC or equivalent.These positions carry good salaries and prospects.
Applications, giving age and career details to Mr. J. Meredith, COMPTON ORGANS LTD., CHASE ROAD, London, N.W.10.

[^12]
## TELEVISION ENGINEERS

A number of suitably qualified candidates are required for field television servicing by Radio Rentals at many branches. The positions are permanent and colour training will be given to suitable candidates. Car allowance or Van supplied. Noncontributory pension scheme. Good salary plus commission, etc. Apply in first instance to:

```
Personnel Manager,
 RADIO RENTALS,
 Empire House
 414, Chiswick High Road,
 London, W.4.
 01-994 6411.
```


## MICROWAVE SYSTEMS ENGINEERS

As a result of continuing expansion of this company's business, we are looking for leading Installation, Commissioning and Testing Engineers who are experienced in the field of high capacity telephony and television microwave links.
We want the best engineers who can show evidence of their successful management of projects overseas or in the U.K. and we are prepared to pay attractive salaries to the right men.

目For further detalls 'phone or write in strict confidence to: David A. D. Smith,
PYE TELECOMMUNICATIONS LTD.,
Newmarket Road, Cambridge.
Phone: Cambridge (OCA3) 61222
If you are currently earning less than $£ 1,600$ p.a. you might not yet have the experlence we are seeking for these posts, but we should still like to hear from you.

## ELECTRONIC ENGINELRS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic electronics with experience in electronics, Radar, Radio and TV or similar field. Position is permanent and pensionable. Comprehensive training, on full pay, will be given to successful applicants. Please send full details of experienice to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

## W ELLL W ORTHY

A founder-member of the Associated EngIneering Group is the foremost manufacturer of Diesel Engine Piston Equipment in the world, and employs 5,000 people in sixfactories in the South of England-and offer the following career opportunities at their modern, up-so-date Research and Development Laboratories in Lymington.

## SENIOR ELECTRONICS ENGINEER

Responsibilities would include full responsibility of the Electronics Laboratory, which is concerned with a wide range of activities in engineering, metallurgy, chemistry and plastics.
Preference given to person with previous experience in the field of General Electronics, as applied to diesel engine testing, instrumentation, strain gauge applications, or the application of electronics to automatic machine tools.
Minimum academic qualifications would be H.N.C. in Electrical Engineering or Electronies. This is a permanent pensionable career appointment, assistance with housing may be available.

Please write to:

> The Employment Manager Wellworthy Limited, Radial Works,
> LYMINGTON, Hampshire.

RADIO \& TELEVISION SEKVICING RADAR THEORY \& MAINTENANCE RADIO TELEGRAPHY

## International Publishing Corporation Ltd. require a

TECHNICIAN to work on electronics in their Development Division located at Feltham, Middlesex. The work is applied to advanced electronics in the printing industry. Applicants should have, or be near to attaining, ONC (Electronics) and further time for studies will be available for the right candidate. Salary according to age and experience.

Write in confidence to: Director of Research \& Development, IPC (Group Management) Ltd., Astronaut House, Hounslow Road, Feltham, Middlesex.

## OUTSTANDING OPPORTUNITIES FOR ABOVE AVERAGE DESIGN AND DEVELOPMENT ENGINEERS

To earn not less than $£ 2,500$ p.a.
Qualified Engineers are urgently required to work on advanced engineering contracts in the Home Counties and Provinces, with experience in one or more of the following fields:-
(1) Analogue and Digital Equipments
(3) Radar and Navigational Aids
(2) Microwave and Communications
(4) Instrumentation

This is a first-class opportunity to work on exciting projects at exceptional salary levels.
STRAND TECHNICAL CONTRACTORS LIMITED
NORMAN HOUSE, 105 -109 STRAND, LONDON, W.C. 2
OI-836 5557
Please quote: EW

ESTMINSTER 10 spindle fully automatic transformer winding machine automatic paper interleavng and provision or parting off colls by rotating bade, exceptonal condition;
Parsswood Rd., Manchester 20. Tel. Reasonable.- 102 .
Rusholme
35 MARCONI a.m./f.m. slgnal generators TF995/A2,

 mes, a.m. only, £12; 1052 Cossor Scope, £15: A.V.O. Model D, £5; carriage extras.-Box WW211, W1reless ULTRASONIC amplifiers by British maker, 35 ments include: 2 -EL34 and 1-ECC81 valves 2 by 100 mentes 1 madns transformer topped valves 2 by 100
$200 / 220 / 240 / 250$ /ind $230 v_{1} 0.85 \mathrm{amp}, 1$ mains transformer $220 / 240 \mathrm{v}-450 \mathrm{v}$ also O.P. trans., 6 ft mains lead $\mathrm{c} / \mathrm{w}^{w}$ Buigin connector. 44, Green Lane, Hendon, N.W.4. $[1984$

OTAX rotary converters, input 24 V d.c.; output R 115 V , 3 ph., 400 cycles, 1.8 amps. $£ 6$; carbon plle pack tubulars, $0.05 \mathrm{mfd} . / 500 \mathrm{v}, 0.1 \mathrm{mfd} / 350 \mathrm{v}, ~ £ 2$ per
100 . TCC base mounting $0.02 \mathrm{mfd} / 11 \mathrm{KV} 27 / 6 ;$ Ditto 0.1mfd., £2; Redifon transmitter inductances, \&4; capacitors, U.S.A. make, $0.5 \mathrm{mfd} .$,
chokes in stock; carrlage paid.-Box
WW World.
TNSTRUMENTS Por sale:-Solartron laboratory amplifler Model AWS-51-A, bandwidth $5 \mathrm{c} / \mathrm{s}-800 \mathrm{Kc} / \mathrm{s}$,
gain 94 d.b., $15 \mathrm{c} / \mathrm{s}-350 \mathrm{Kc} / \mathrm{s}$. $£ 30$; Mulrhead Wigan gain 94 d.b.i. $15 \mathrm{c} / \mathrm{s}-350 \mathrm{Kc} / \mathrm{s}$, £ 30 , Mulrhead Wigan
Decade Oscillator, Type D-105-A, $1 \mathrm{c} / \mathrm{s}-111 \mathrm{Kc} / \mathrm{s} 1 \mathrm{n} 1$ Decade Oscillator, Type D-105-A, $1 \mathrm{c} / \mathrm{s}-111 \mathrm{Kc} / \mathrm{s}$ in 1
c/s steps, $£ 40$; Dawe wide range ascillator, Type 400 B , cis steps, $£ 40$; Dawe wide range asclllator, Type 400 B,
$20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ with output V.V., $£ 25$ : Dawe wide range $20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ with output V.V., £25: Dawe wide range
oscillator, Type $400 \mathrm{C}, 1 \mathrm{c} / \mathrm{s}-1 \mathrm{Kc} / \mathrm{s}$ with output monitor scope, 20 ; Muirhead volt ratio box. Type A-202-A, resistance 50 Kn , max. voltage 1 kv , 5 ; order, from private laboratory; postage not included.order from private laboratory;

## BBG ty film recordists

BBC Television requires fully qualified and experienced technicians as Holiday Relief Film Recordists (E29 14s. per week) and Assistant Film Recordists ( $£ 21$ 18s. per week) for the summer months.
Initial appointment for two months. Possbiility of extension for further four months.
Based in London.
Write, giving age and full particulars of relevant experience, to General Manager, Film Operations and Services, Television Film Studios, Ealing Green, London, W.5.

## TELEPRINTER MECHANIC

Responsibility will initially be for the installation and maintenance of - sophisticated teleprinter systems involving some logic switching.
This position will appeal to a man with a sound knowledge of Telegraphic and logic switching who seeks the opportunity to commence a career with a fast expanding company. Driving licence desirable.
Our business is telecommunications.
A good salary will be offered commensurate with experience. The Company has an excellent pension and life assurance scheme. Substantially reduced holiday air fares are available to most parts of the world.
Please apply in writing stating details of age and experience to-

General Manager, Personnel (WW/TM),
INTERNATIONAL AERADIO LTD.,
Aeradio House,
Hayes Road,
Southall, Middlesex.

# PROGRESS IN DIELECTRICS Series 

Edited by J. B. Birks, B.A., Ph.D., D.Sc., F. inst. P., A.M.I.E.E. (General Editor) and J. H. Schulman, Ph.D. (American Editor. Vols. 1 \& 2) and Professor J. Hart (American Editor, Vol. 3)

The aim of this six volume series is to provide a common meeting point for all interested in dielectrics - the electrical engineer, the physicist, the electronics engineer, the molecular chemist, the biologist and the technologist in the whole range of the newer dielectric materials. It will seek to coordinate current knowledge of dielectric phenomena, materials and techniques and to review recent progress.

Please send for full details

ILIFFE BOOKS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.1.

## UNIVERSITY OF BIRMINGHAM <br> Department of Physiology

Senior Technician for expanding electronic workshop. This intercsting work is concerned with development and maintenance of equipment used in physiological research, and for teaching medical and dental students. Experience of similar equipment and/or H.N.C.
Salary scale $£ 942$ - $£ 1,230$ per annum. Applications quoting reference PH/ST/108 to Personnel Adviser, P.O. Box 363, University of Birmingham, Edgbaston, Birmingham 15.


#### Abstract

A Better deal for cash customers. We do not provide of $15 \%$ for cash, Equipment despatched brand new in sealed cartons on recelpt of remittance with order. Agents for all leading makes. Demonstratlons, service. guidance.-Write or phone. Callers welcome. Open guidance. Write or 'phone. Callers welcome. Open Ltd.. 82. East Barnet Rd., New Barnet, Herts. Tel. Barnet 6605 . A. L. STAMFORD, Ltd., Clearance Lines, Enclosure A fitted Axiom 201 \&22/10. Corner enclosure fitted Wharfedale three speaker system: Super 121n.--8in.- 31 n . $29 / 15$. Column fitted Wharfedale 81 . $£ 12$. Leak 31 n . £29/15. Column fitted Wharfedale 8in. \&12 Leak 20/stereo varislope-new. £45. Rogers Cadet Mk. II 20/stereo varislope-new. £45. Rogers Cadet Mk. II and varlable tuner £34. Australlan walnut cabinet fitted Lenco $88 /$ Deram fitted Lenco 88/Deram. Leak $20 /$ Point One, Trough Line $£ 60$. Chapman S5E/FM 4 band tuner $£ 20$. Arm- strong A20/PCU $25 £ 20$ GL $58 /$ Deram $£ 15 / 15$. Dulci strong amplifer, and control $£ 15 / 15$. Rogers. Junitor control, new. £7. Rogers Junior tuner and power pack £9.-A, L. Stainford, Ltd., 98, Weymouth Terrace, London, E.2. Tels.: 01-739 5003 , 01-363 0042 . ${ }^{\text {[1990 }}$


## THE LONDON HOSPITAL MEDICAL COLLEGE

(University of London)

## ELECTRONICS TECHNICIAN

Applications are invited for the post of ELEC. Applications are invited for the post of ELEC. LOGY DEPARTMENT. Duties include construction and maintenance of electronic equipment in the College. H.N.C. or equivalent qualification desirable but a student technician could be considered for training provided he had A level Physics. Initial salary will be according to age, qualifications and experience and based on Whitley Council Scale for Medical Laboratory Technicians. Applications, in duplicate, to the Secretary, The London Hospital Medical College,
Turner Street, London, E.1, within fourteen days.

## IS EDISON YOUR MIDDLE NAME ?

If so, we need you to work on development of microcircuit input-output devices for the printing industry, mainly as personal assistant to designer/director.
Industrial experience not essential. We are looking for an original mind and practical competence as a breadboard engineer Location: N.W.9.
The job is an exceptional opportunity for a determined young man who wants to get somewhere. (Gcod pay, tco.)
Ring: H. V. Purdy 01-673 0691.

## CRYPTON EQUIPMENT LIMITED BRIDGWATER, SOMERSET.

We invite applications from suitably qualified technicians to fill a vacancy for a Field Service Engineer in the Surrey/Middlesex area. Candidates should have a good electronics background and be familiar with servicing equipment which incorporates a Cathode Ray Tube An experienced Television Engineer may be suitable for this position, which is a Staff appointment and a vehicle will be provided. Letters of application should be forwarded to the above address and marked for the attention the above address and $m$
of the Service Manager.

## MOBIIE RADIO TELEPHONES

 can you say wholed the world with?...The first high-power solid-state FM mobile to meet the GPO type test specification-at 25 watts.
The first high-power solid-state AM mobile to meet the GPO type test specification-at 12.5 kHz channel spacing.
The first AM base station to meet GPO type test specification for 12.5 kHz channel spacing, at 50 watts.
If you can say who won these "firsts," you are deeply interested in VHF development. But are you closely enough concerned to merit a place in our development labs at Croydon, and help us produce more "firsts"?
Send relevant details in strict confidence to:-
Pat Webster, Ref. WW 4106
Hudson Electronics Itd., 34
Peall Road, Croydon. CR9 34X.
A division of Stondord Telephones \& Cables Limited.

## SIMULATOR ENGINEER

This leading Independent Airline has a vacancy for a qualified and experienced Engineer to work on its Britannia Simulator at London (Heathrow) Airport. He should have Civil or Service Simulator experience, and will have undergone training with a Manufacturer. He should have qualified in two of the following subjects: Theory of Flight, Control Loading, Radio Aids, Engines Jet or Turbine. And have a good background in Amplifier Theory, Motors, Generators and Power Supplies, and practical experience of Control Diagrams and Servo mechanisms would be helpful. The work is interesting, and the Company can offer excellent conditions of employment and generous travel concessions.

Please apply in writing to the Personnel Manager, British Eagle International Airlines Limited, London (Heathrow) Airport, Hounslow, Middlesex.

## You get a good deal from

## Marconi MARINE...

## ...There is a vacancy for a <br> COMMUNICATIONS ENGINEER

for the maintenance of communications equipment which is located mainly on North Sea oil drilling rigs. The Engineer will be based at Chelmsford and will be required to travel at short notice to remote sites.
Experience of H.F. I.S.B. communications equipment, teleprinters and automatic error-correction systems, together with experience in V.H.F. maintenance work, is essential.
Hours 8.30 a.m.-4.54 p.m., five day week. Facilities available include social club, staff restaurant and pension scheme.
Applications in writing to:
Personnel Officer (Shore Staff),
The Marconi International Marine Co. Ltd.,
Elettra House, Westway, Chelmsford, Essex.

## You get a good deal from Marconi MARINE...

## ... There is a vacancy for an EXPERIENCED RADAR SERVICE ENGINEER

with initiative and ability, to define methods of installation and maintenance of modern marine radar equipment, and conduct post-development investigations.
Ex-Service Radar Engineers would be considered for this position. Please write giving details of experience and qualifications to: Personnel Manager (Shore Staff),
The Marconi International Marine Co. Ltd., Elettra House, Westway, Chelmsford, Essex.

## DESIGN STANDARDS ENGINEER

This post is for an engineer to assist in the formulating of Engineering Standarde relating to electronic and eiectro-mechanical equipment.
Considerable detall work in analysing the requirements of existing National Standards will be required.
Preferably applicants should have had 1 or 2 years experience In a similar position although consideration will be given to other applicants with suitable background. Our Company is well known for its personnel policy on working conditions, hours. holidays, pension and slck pay arrangements.

NCR
Please apply to: Personnel Officer.
NCR, 1,000 North Circular Rd., London NW2

## ARTICLES WANTED

 $\mathrm{F}^{\text {LEMING diode }}$ \& magnetic detector.--Rasmussen, WANTED, all types of communications receivers


Valve cartons by return at keen prices: send $1 /$ Godwin St., Bradford, 1 .

To meet the eeghnical requirements of our production programme, and to provide for a situation arising
during the next $12-18$ months consequent on the retirement of long service staff, we are seeking the services of

## ELECTRICAL INSPECTION PERSONNEL

In Supervisory and Technical grades
We are looking for specific experience in the use of sophisticated measuring instruments, the inserpretation of eest specifications and good theoretical knowledge and training in telecommunications or similar allied branches of electronics (e.g. Radio and T.V. test, fault finding etc.)

## DTI

Salaries will recognise experience and ability.

Please write briefly with request for form of application to
Personnel Manager,
PHOENIX TELEPHONES LIMITED
Grove Park, London, N.W. 9

## CAPACITY AVAILABLE

A IRTRONICS Ltd., for coll winding, assembly and unit sheet metal work.-3a, Walerand Rd. London unit sheet metal work.-33, Walerand Rd., London
S.E.13. Tel. $01-852$ 1706.


#### Abstract

\section*{TUITION}

KINGSTON-UPON-HULL Education Committee, F.R.I.C. POLL-TIME courses for P.M.G. certlifates and the radar maintenance certificate, also in electrical and Technology, Queen's Gardens, Kingston-upon-Hull. 118

R aDIO officers see the world. Sea-going and shore Grants available. Drainee vacancies during 1968 . for prospectus.-Wireless College. Colwyn Bay. ${ }^{2}$ STUDY radio, television and elpcironics with the City $\&$ Gorld's largest home study orkanisation, I.E.R.E.. with equipment. No books to buy. Write for free prospectus to ICS (Dept. 442), Intertext House, London, SW11. - REE to ambitious engineers! ${ }^{132}$-page Guide to B.SC. (Eng.), A.M.I.E.R.E... A.M.S.E.C A.M.I.M.I., City \& Gullds. A.I.O.B.. A.R.I.C.S. G.C.E., etc., on Satisfaction or Refund -over 600 Hame Study Courses in all branches of Engineering. Building, Radlo, Electronics, etc.-Write: ton. Berks. TV and radio, A.M.I.E.R.E.. City \& Guilds, R.T.E.B.: thousand of passes; for full details of exams and home training courses (fincluding practical equipment) in all branches of radio. TV, electronics, etc., Write for $132-$ page handbook-free; piease state subject.- British page handbook-free: p.ease state subject.- British Institute of Engineering Technology (Dept. 150K), Aldermaston Court. Aldermaston, Berks. (Dept. 150k),


## TEST EQUIPMENT - SURPLUS <br> AND SECONDHAND

HALLICRAFTERE SX62 Amerlcan Communications HReceiver with R46 Speaker; all wave coverage, crystal oscillator, high fidelity sound; $£ 60$--Rowe, 23 ,
Tangier Rd., Guildford, Surrey.
[1986 SIGNAL generators, oscilloscopes, output meters. wave voltmeters, frequency meters, multi-range meters, etc., etc. in stock.-R. T. \& I. Electronics. Ltd., Ash-
WELL known units by leading makers! Osclloscopes to for sale, at bargain prices, various types from £20 operated, $31 / 2$ in screens, twin beams, long persistance C.R.T.s on some models; few only, not to be missed. (Dept. WRM), Lind-Air (Electronics), Ltol. 53 , Totten-

## RECEIVERS AND AMPLIFIERS는

SURPLUS AND SECONDHAND
HRRORx5s, etc, AR88, CR100, BRT400, G209. S640. Ashville Old Hall. Ashiville Rd, London, E.ll. Ley. 4986.


## PATENTS

THE proprietors of Patent No. 950,830 for " Improvetion meats in Antennae desire to commercial explowtaReplies to:-Sydney E. M'Caw \& Co., Saxone House.
[1985


#### Abstract

\section*{BOOKS} "UTRASONIC delay Lines,", C. F. Brockelsby. R. W. Gibson. B.Sc, (Eng.). Grad. I. Mech. E. The authors are members of a team which has been work- ung on ultrasonic delay lines, since the early days. at the Mullard Research Isaboratories. This is the grst book to be written specifically on the subject Which has important applications in radar. radio and television, electronic computers, pulse-forming net- works. correlation techniques and multi-channel communication systems. The early chapters discuss basic principles and the various type of delay lines are then covered. The chapter on electronics for delay fers, oscillators. etc., either with transistors or valves The last two chapters are devoted to the delay line measurements and the many applications of delay Ines. Among the five appendices there is one conlines. Among the five appendices there is one conof many delay line materials. The final appendix discusses one of the latest developments. ceramic transducers. $65 /-$ net. $66 / 3$ by post.


## BUCKS WATER BOARD

## ENGIMEERING ASSISTANT (Electrical \& Control)

Applications are invited from preferablyqualified Electrical Engineers for the above post in the Mechanical and Electrical Section of the Engineer and Manager's Department to assist with all electrical work and the supervision of automatic and centralised production control.

The salary will be within scale $£ 1,560$ to $£ 1,980$ per annum (Grades V/VI of the Water Supply Industry Staff Conditions). The appointment will be subject to a medical examination and two references. Full details and application forms can be obtained from the undersigned to be returned not later than 1st April, 1968.
R. Pownall, Esq.

Engineer and Manager,
Bucks Water Board,
Byron Road,
Aylesbury, Bucks.

Ideal opportunity to further your experience and be associated with Aeronautical Research and Development

## ELECTRONIC CRAFTSMEN roYal alrcraft establishment BEDFORD

Electronic Craftsmen are required to work in a wide range of new and interesting fields in electronic engineering, covering instrumentation associated with model aircraft, digital data measurements and recording, digital computer techniques, radio telemerry systems coupled to research flying, aircraft simulation involving servo systems and analogue computing, closed circuit television systems, aircraft radio! radar systems with particular reference to automatic blind landing of aircraft and also ground radio/radar systems associated with Air Traffic Control. In all these fields Craftsmen work very closely with research scientists and engineers, and are given every opportunity to expand their experience. Craftsmen are mainly employed in the construction, testing and maintenance of equipments. Encouragement is given to craftsmen to further their technical education. Men who have had an approved apprenticeship or training in electronics, telecommunications, light current electrical engineering or H.M. Forces training in radio, radar and wishing to further their experience should apply. Radio/T.V. service experience would be an advantage. R.A.E. can offer excellent working conditions with good prospects for promotion. Ministry housing scheme available for married candidates from outside the area.

Applications should be made to:-

## The Labour Manager

Royal Aircraft Establishment Bedford
Tel. No. BEDford 55241. Ext. 7594



Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.


Same as 4-Station Intercom for two-way instant conversation. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery $2 / 6$. P. \& P. 3/6.

## 7-STATION INTERCOM

( 1 MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \frac{1}{2}$ in. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory Conis plete with 50 yards cable and batteries. Price 21 gns . P. \& P. $12 / 6$ in U.K.


Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 V . battery which lasts for months. Ready to operate. P. \& P. $2 / 6$ in U.K. Add $2 / 6$ for Battery. Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.). 169 Kensington High Street, London, W. 8

#  

## LAWSON BRAND NEW TELEVISION TUBES

Complete fitting instructions are supplied with every tube. Terms: C.W.O. Carrizge and insurance $10 \%$.

## LAWSON TUBES

18 ChURCHDOWN ROAD MALVERN, WORCS.

Tel. MAL $210{ }^{\circ}$

The contimually increasing demand for tubes of the very h:ghesz performance and reliability is now being met by
the nezo Lawson "Century 99" range of C.R.T.s. "Century 99" are absolutely brand new̄ tubes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Light out
long life.
" Century 99 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1967.

2 Years full replacement guarantee.

12"-64: 10:0
14"-65:10:0
$17^{\prime \prime}-65: 19: 0$
19"—66:19:0
$21^{\prime \prime}-67: 15: 0$

## TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:
RADIO/TV ENG. \& SERVICING
AUDIO FREQUENCY

- CLOSED CIRCUIT TV

ELECTRONICS-many new courses
ELECTRONIC MAINTENANCE

- INSTRUMENTATION AND SERVOMECHANISMS


## COMPUTERS

- PRACTICAL RADIO (with kits)
- NEW PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS
Guaranteed Coaching for:
Inst. Electronic \& Radio Engs.
C. \& G. Telecom. Techns' Certs.
C. \& G. Electronic Servicing
R.T.E.B. Radio/T.V. Servicing Cert:

Radio Amateur's Examination
P.M.G. Certs. in Radlotelegraphy

General Certificate of Education
$\left.\begin{array}{|r|}\hline \text { Start today - the ICS way } \\ \text { INTERNATIONAL } \\ \text { CORRESPONDENCE SCHOOLS } \\ \text { Dept. 230 Parkgate Rd., London, S.W.II. } \\ \text { Please send FREE.book on }\end{array}\right\}$.

Archaeologist requires a modern Mine Detector capable of detecting Non-Ferrous and Ferrous metals. Will collect suitable instrument anywhere in Britain and pay cash.
Phone or write:-
D. G. Cotton. Cotton T.V. Service,

63-65, Oundle Road, Peterborough.
Phone: Peterborough 2888.

## LINEAR I.Cs, M.O.S.F.E.Ts

RCA: CA3020, push-pull amp, d.c. to 8 MHz , up to 550 mW output. With data, 33/-. CA3011, high-gain i.f. amp/limiter for f.m. receivers, $25 /$-. MULLARD: TAA263, 75 dB amp. in small transistor can, $27 /$; ; 320TAA, unity gain impedance converter, m.o.s.f.e.t. input, $18 / 9$; 101 TAB, transistor quad for ring modulators, $21 /$-. 100 MHz M.O.S. F.E.T. High slope ( $7.5 \mathrm{~mA} / \mathrm{V}$ min.), low noise, leakage, crossJAN, p. 135 for OTHER TRANSISTORS. Mail order only. Orders over 10/-, U.K., Mal order
post paid.
AMATRONIX LTD. (Dept. WW3),
396 SELSDON ROAD, CROYDON, SURREY, CR2 ODE.

## DAMAGED METER?

Have it repaired by Glaser
Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd. We specialise in the repair of all types and makes of INSTRUMENT $\begin{aligned} & \text { Voltmeters, Ammeters, Micro- } \\ & \text { ammeters, Multirange } \\ & \text { Test }\end{aligned}$ OR Recording Instruments, Leak REPAIRS Detectors, Temp. Controllers, all types Bridges \& Insulation
Testers, etc.
As contractors to various Government Departments we are the leading Electrical Instrument Repairers in the Industry. For prompt estimate and speedy delivery send defective inst
to Dept. W.W.:-
L. GLASER \& CO. LTD.

1-3 Berry Street, London, I.C.1. Tel.: Clerkenwell 5481-2

W M.IEESS Servicing Manual," W. T. Cocking, which since. 1936 has heen the tewn to dition of a beile seman everywhere as a rellable, thorough and comprehensive repair. malntenance and adjustment of the modern radio reciver. In the present edition a major addition is a chapter devoted to transistors and trainsistor
sets. The author of " Wireless Servicing Manual is well known to a wide clrcle of readers as former editor of "Electronic Technology" and now of "In-
dustrial Electronics," His crisp, lucid style makes this dustrial Electronics," His crisp, lucid style makes this
handbook of utmost value to the service man and
amateur alike. $25 /-$ net. $26 /$. by post from rliffe mooks Lid., Dorset House, Stamiord St. Lrom Lliffe
Bondon. S.E.1.
'RADIO Designer's Handbook." Editor. F. Lang(U.S.A.), A.M.I.E. (Aust.), a comprehensive reference gineers, containing a vast amount of data in a readily accessible form; the book is intended especially for those interested in the design and application of radio
receivers or audio amplifers. Television. radio trans mission and industrial electronics have been excluded in order to limit the work to a reasonable size. $65 /$ net from all booksellers. By post 67/9 from Iliffe

## GENUINE BRAND NEW PRODUCTS AT LESS THAN HALF PRICE

BRAND MEW BRITISH RECORDING TAPES-P.V.C. POLYESTER AND MYLAR, wlth bitted leaderg In poly:
thene and boxed, manufactured by reputable Brit an firm thene and boxed, manutactured by reputable Britigh firm,

all $100 \%$ tested, not to be confusell will stiv-standard, | Imported or usual tape ${ }^{\circ}$. |
| :--- |
| $3^{\circ}$ |
| $160^{\circ}$ |
| . |



Brand new pre-reconded beginners and brish-up courscs
on tape, in FRENCH, GERMAN, ITALIAN, SPANISH.
 E.M.I. Course lasts 1 hr , and is complete with manual, $100 \%$ TESTED TR


ANBI-
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$4 /-$
$8 /-$
$8 /-$
$8 /-$
$12 / 6$
$4 /-$
$4 /-$
$4 / 6$
$8 /-$
$8 /-$
$8 / 6$
$6 / 6$
$6 / 6$
$6 / 6$
$6 / 6$
$5 / 6$
$5 / 6$
$5 / 6$
$4 /-$
$4 / 6$
$10 /$.
$5 / 6$
$5 /$.
$5 /-$
$5 /-$
$4 / 6$
$4 / 6$
$4 / 6$
$4 / 6$
$4 / 6$
$4 /-$
TRABSISTORS, MATCHED SETS
1 GET874P sleeved Yellow OC44, per det. $10 /$
1 OET873P sleeved White OC45 1st I.F., per set. 10/-. 1 OC81D +2 OC81, per set. $9 / 6$.
$10 \mathrm{OC82D} 2+0 \mathrm{OC82}$, per set. $9 / 6$.
OC83 GET118/119, set of $3,9 / 6$.
DIODES. OA81 $4 /=0.1984 /=$, OA182 4/-, OA202 $4 /-$. SILICON DIODES

ELAC SPEAKERS, $7 \times 4 \mathrm{in}$. Price $12 / 6$.
4 TRANSISTOR PUSH/PULL ULTRA. Lin amplifier, 1 watt output, battery operated, designed for electronic Instru-
ments, microphones and public addiress. Manr other uses Price 15/6.
Cabinet to match above, 10/-
VOLUME CONTROLS, with switch, price $3 / 6$.
TRANSISTORISED CAR RADIOS, normally 212/10\%.
Our prive £6/19/6.
telescoric Car Aerials, 3 ertenslons, price $17 / 6$ SATISEACTION GUARANTEE
Postage on all orders $1 /$ -
STARMAN, 28, Linkscrolt Avenuc, Ashford, Middeser.

Quartz Grystal Units

## For

## ACCURACY

RELIABILITY

## PRICE ECONOMY

you can<br>DEPEND<br>on<br>Write for<br>Write for<br>Brochure \& Price List<br>THE QUARTZ CRYSTAL CO. LTD<br>New Malden, Surrey (01-942 0334 \& 2988)

WW-119 FOR FURTHER DETAILS

A BACS of Nomograms." By A. Giet. Translated from the French by $K$. D. Phippen and J. W fead. Most some time in their careers, and are fully alive to the same formula has to be solved repeatedly for several sets of varlables. It is fair to say, however, that only a small proportion of even those who habitually employ nomograms know how to construct them for their own use. Most of the comparatively small literature on the subject is written for mathematicians and is extremely difficult for the practical engineer to comprehend. This book is essentially practical and not only demonstrates the many and varied arplications of the abac of nomogram, but shows how even those without highly specialized mathematical knowledge may construct their own charts. 35/- net from all booksellers. By post 36/- from Iliffe Books Ltd.
Dorset House. Stamford St, London, S.E.1.


LATEET ELECTRONIC BREAKTHROUGH. CUT YOUR EOLECTR OFTY BILLS BY HALF. FINGRRUP TO 3000 WATTS. HEAT. Vary the hest of your ELECTRIC FIRES, and save electricity, Ideal for ELECTRIC BLANKETS, household IRONQ, simmer your ELECTRIC KETTLE, Excellent for SUN•RAY LAMPS. LGGHT. Control the brightness of all household LAMPS, from a glimmer to full brightness. Ideal for 8ROT LAMPS, Controls the speed of ANY ELECTRIC DRILI, for any application. Buper for LATHES, GRINDER8, FOOD GPIN DRIERS, HEDGE CUTTERS WILL CONTROL ALL UNIVERSAL MOTORS UP TO 2 H.P. These units must not be confused with ordinary resistances and rbeo in black or grey, size now $6 \times 51 \times 2 \downarrow$ inches. SIMPLE TO USE. No specialised knowledge required. A unique electronic achlevement, contains 7 transistors and thyristors and soores of micro miniature electronic components
COMPLETELY BAFE AND APPROVED. Brand new and ready to use improved de-luxe model. Price 10 GNS, carriage and insurance 10/-. C.O.D. $3 / 6$ extra. Trade


A Superbly designed POWER CONVERTER (de luxe Enables you to run up to 220 watt AC/DC TELEVISION ighting and equlpment. Thousands of uses. Indiapensable to caravanners, Workshops and Garages. The unlt is contained in a compsact louvred steel case. Complete with to conneet up and use.
Frice $£ 6 / 19 / 6$. Canfused with Heavy Du/y Dynamotorn, $12 / 6$. O.W.O. C.O.D. $3 / 6$ All orders to: Dept. P.W. 6

## 

24 CAWOODS YARD, MILL STREET, MARSH LANE, LEEDS 9.

WW-121 FOR FURTHER DETATLS


## 'TRANSCONTINENTAL'

 FULLY TRANSISTORISED STEREOPHONIC RADIOGRAM CHASSISComplete with $2-10^{\prime \prime} \times 6^{\prime \prime}$ speakers and the latest BSR Mono/Stereo Record Changer-a complete radiogram at half normal price ONLY

10 Watts Total output
17 Transistors \& 10 diodes 34. 2 GNS $17 / 6$ EASILY FITTED NO TECHNICAL KNOWLEDGE NECESSARY H.P. available $\mathbf{£ 9} 9: 2: 6 \mathrm{~d}$ deposit plus 18 monthly payments of $£ 1: 15: 9 \mathrm{~d}$ (Total H.P. $£ 41: 6: 0$ ).
 POST PLEASE SENO ME FREE DETALIS OF YOUR RANGE
THIS COUPON NOW! LEWIS radio OO CHASE SIDE, SOUTHGATE LONDON, N.14. TEL: 01-886 $3733 / 9686$

WW-120 FOR FURTHER DETAILS
M.S.E. FOR QUALITY COMPONENTS AT COMPETITIVE PRICES . . . ALL GOODS NEW \& UNUSEO PLESSEY "MULTIWAY" CONNECTORS


3-POLE NON-REVERSING PLUG
\& SOCKET
and Combined 3-way Terminal Block. Suitable for Ignition Cut-our or Thief proof Break connections.
STURDY \& EASY MOUNTING:
Overall dimensions: $1 t^{\prime \prime} \times 1 t^{\prime \prime} \times 2 \frac{1}{2}$


PRICE:
716
PER PAIR P.f.

BO-WAY PLUG \& SOCKET. For Teleprinter \& V.F. Rooms-Railway Signalling Systems-Television Equipment-Radio \& RadarassembliesTelephone \& Line Equipment. S.R.D.E. No. YA 11030 SOCKET. Pt. No.: 2 CZ 108602 . S.R.D.E. NO.: YA 11035 Contacts Silver-Plated. Spigotting ensures that connections cannot be reversed.

## WORKING DATA:

Flash Test Voltage: 1.500 Volts D.C
Working Voltage: 250 Volts D.C. or 180 Volts A.C. insulation Resistance: 100 mezohms at 500 Volts D.C Current carrying capacity: Up to 2 amps.
Contact resistance: Less than 1 milliohm
PRICE PER PAIR: 1501
Plugs can be supplied separately at 100 - each. No spare Sockets available. Both units supplied complete with high grade Poly-
PLUG dimensions: Length 4.120 in . Depth 2.740 in .
SOCKET dimensions: Length 4.840 in . Width 1.440 in . Special quotations for quantities of 10 pairs and over. Designed primarily to accommodate cables to S.R.D.E. Spec.: TS/834A,
Miscellaneous PLESSEY Components:-
CZ49229 25-way. Fixed Socket, Mk. 4A, 10/6d.
508/J/001 I | 26-way Socket assy. Serles 220, 5/6d
508/1/08808 Plug 2-way G.P.O. Type 51, 10/-doz. plus 1/6 P. \& P Smallquantities of Mark 6 connecrors available. Please apply for decails.

## CANNON CONNECTORS

RSK-19-3ISL. 19-pole Socket, wall mounting receptacle 25/- each RFK-37-22C-7in, 37-pole Straight Plug with pin inserts, 45/0 each RLK-A50-22C-1". 50 -pole Seraight Plug with pin inserts, $55 /$ each GK-S3-21C-1/2. 3-pole Straight Plug with Socket inserts, 20/- each M.S. $3106 \mathrm{E}-16$-1I.S. 2-pole free plug socket inserts.
M.S.3102.E-16-11.P. 2-pole fix receptacle pin inserts 22/6 pair

PAINTON CONNECTORS, "Multicon " serie
311186 24-way Plug with Panel flange $15 / 6$ pair plis 31146324 .way Socket End entry cover $1 / 6$ post \& pk\& We also hold scocks of HEAVY DUTY MULTICONS \& STANDARD SERIES Connectors

MANUFACTURERS ... Any surplus to requirement or Redundant STOCKS? WEPAY TOP PRICES. Kindly forward Tenders or Lists.
M.S.E.

36 WINCANTON ROAD, NOAK HILLL, ROMFORD, ESSEX Telephone: INGREBOURNE (IL) 43810

## ELECTRONIC BROKERS LIMITED

PRECISION HELICAL POTENTIOMETERS
BECXMAN MODEL J. Continuous Instrument Potentiometer, 2 in . dia., $10 \mathrm{k} ., 35 \mathrm{f}$-. Brand new. Res. tol. $+5 \%$. Lin. sol. $+0.15 \%$.
BECKMAN MODEL A. 10 turn Precision Wirewound Potentiometers, available in the following values: $50 \Omega 100$ ohms, 100 k . Offered at $50 / \mathrm{m}$. Well below list price. Also Colvern types 50 k , $30 \mathrm{k}, 10 \mathrm{k}, 3 \mathrm{k}$, and 1.5 k at 5 turn

BECKMAN MODEL 7216. TO turn Precision Potentiometer, dia., 2 k., 60/-. Brand new. Miniature Beckman Multi-turn Continuous Dial, adjustable up to 15 turn, with separate brakelocking lever, $\frac{7}{}$ dial. Will fit most pots.
SINEICOSINE POTENTIOMETER. By Kelvin \& Hughes, SCP4 33 k . Offered at a sixth of manufacturer's price, $\mathrm{E} 12 / 10 / \mathrm{F}$.
PLUG-IN PRECISION DUAL SPEED DRIVE D.S.D. 7
$0.1^{\circ}$ accuracy (dial calibration). Readings one from $0^{\circ}$ to $360^{\circ}$ on two concentric dials, coarse increments of This precision drive permits rapid positioning and extremely accurate repositioning of sotational components such as synchros and resolvers, which can be mouneed directly to the frame of the drive, also available DSD 40 Gear ratio $10: 1$, $\mathbf{E} 19 / 10 /$.

"MINICUBE" BLOWER. Sub-miniature, only lin. square. Operates on $26 \cdot \mathrm{~V}$ 400 c.p.s. input power, 1 or 2 pH . Output 2.2 c.f.n. at free air wt. $1 \frac{1}{4} \mathrm{oz}$. Brand new. Made by Saunders Associates. Offered at third of manufacturer's price $£ 19 / 10 /$.
GEAR BOXES. By Vactric. Size $11.149 .1: 2$ and $300.2: 1$ £ $4 / 10 / \mathrm{l}$.
INSTRUMENTS FOR DYNAMIC ANALYSIS.


LOW FREQUENCY RESOLVED COMPONENT INDICATOR BY SOLAR. TRON-Type VP 253.2A for the analysis of Dynamic Response of systems and components to the highest accuracy with rejection of harmonics and noise over the requency range. Used for the measurement of transformer magnetising and core Also design and testing of Feedback Amplifier, Filsers, etc
This instrument will indicate by means of two centre zero 6 im . scale meters the resolved components of a signal voltage with respect to the applied reference energisation. Frequency Range: $0.5 \mathrm{c} / \mathrm{s}-1 \mathrm{Kc} / \mathrm{s}$.
Signal Voltage Ranges: $50 \mathrm{MV}, 150 \mathrm{MV}, 500 \mathrm{MV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$ and 150 V with either balanced or unbalanced Ipput. Signal Input Resistance: $10 \mathrm{M} \Omega$ unbalanced. $20 \mathrm{M} \Omega$ balanced. Reference Inputt.
Four-phase reference energisation is required, each phase having a level of $10 \mathrm{Vr.m.s}$. with respect to virtual earth. Reference Input Resistance: $6.2 \mathrm{M} \Omega$ per Phase.
Harmonie and Unrelated Frequency Discrimination better than 40 dB . Mains voleage $90 / 130$ or 230/240 V. Standard Rack Panel, 19 in $\times 12 \frac{1}{i n}$ high, $\mathbf{f} 175$ new condition, complete with manual.
T.F.A. A.C. CARRIER CONVERTOR JX67IA by SOLARTRON-For direct use with resolved component indicator VP 253.2 for the testing of A.C. servo systems, demodulation of the output from Synchros and other forms of pick-off.

Modulation of Carrier to provide signals for Magnetic Amplifier, Synchros, etc. Carrier Input Frequency: $50 \mathrm{c} / \mathrm{s}, 60 \mathrm{c} / \mathrm{s}$, $200 \mathrm{c} / \mathrm{s}, 400 \mathrm{c} / \mathrm{s}$. Carrier Input Level: $20,26,90,115,200$ or $230 \mathrm{r} . \mathrm{m} . \mathrm{s}$. Size 22 in . X 12 fin . $\times 12 \mathrm{in}$. Wt. $60 \mathrm{lb} ., \mathrm{E} 95$. T.F.A. REFERENCE RESOLVER JX 746 by SOLARTRON-For use with resolved component indicator A.C. carrier convertor JX 746 for A.C. carrier amplifier design, calibration and test of Synchros, etc., Ell 25 .

MINIATURE PRECISION SAMPLING SWITCHES, 100-CHANNEL. Consisting of 4 tracks of 25 contacts, each running at 80.2 r.p.m. Driven by a Vaceric P. 23863 V.D.C. @ 5,000 r.p.m. through a Vactric gearbox 11 H 7 - J. Gear ratio 80.2 : 1 . Max. torque 2 ib. inch, fisifol.
48-CHANNEL. Consisting of 2 tracks of 24 contacts driven by E.M.I. precision motor and gearbox, 6.3 V.C. through a E.M.I.S.31 gearbox, $£ 12 / 10 /$.

HIGH TEMPERATURE PRESSURE TRANS. DUCER-Type NT4-317, by Solartron. Highly accurate and stable performance. Suitable for uses in explosives and mining, research, moulding, pressing and extrusion research. High temperature environmental instrumentation, etc. Available in the following pressures only:
$0-75$ p.s.i. $100,150,160,250,500$ absolure. $1,000,1500$ 500 p.i. 1 Size in. dia. lin. length. It should be noted that although these transducers are offered new condition, in manu facturer's packing, they do require individual calibration.

SOLARTRON PRESSURE SCANNING VALVE NT.999.3-This unit enables a single pressure cransducer to pressures in one second. For inlet pressure range of 0.1 p.s.i. to 40 p.s.i. depending on which eransducer is used. The transducer is housed inside the valve and is exposed to the unknown pressures in order. This unit is offered with Vactrie synchronous motor 400 cycle $30 / 60$ V. 8,000 r.p.m., with gearin manufacturer's original packing. Offered at a fraction of the original cost € $49 / 10 /=$
A variety of Size 11 motors and gear heads can be fitted instead but we regret this will have to be undertaken by the intended purchaser
SE LAB. LINEAR ACCELERATION TRANSDUCER. Type SE 55/A $\ddagger$ IG. E19/10/-. Brand new $\mathrm{SE} 150 / 8 / 594 \mathrm{~S}_{ \pm} \mathrm{p}$ p.s.i. with Demodulator amplifier
E29/10/\%.
J. LANGHAM THOMPSON T10370. Pressure Inductive Transducer $0-2500$ p.s.i. $£ 9 / 10 /$. Also SB4/0-30 p.s.i. $£ 12 / 10 /=$. Accelerometer Type ITI-4F-5 to +30 G \& $4 / 10 /$
SOLARTRON PLATINUM RESISTANCE THERMOMETER PROBES. NT4-103911 Probes in a stainless steel case <tin. dia. Resistance at $0^{\circ} \mathrm{C}$. is $130.0+0.3$ $-42^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$. Length of Probe tin. New condition. List price $\mathbf{2} 25$. Our price $£ 4 / 10 / \%$

FIVE DIGIT COUNTER, complete with Sangamo 57 synchronous motor 200/250-1/10th rev per hr. and I rev per hr. 55/:, only New
PEN RECORDER. Two pens activated mechanically by $6 K \Omega$ S.P.S.T. Relay Deviation O.1in. Chart width I.3in. Driven by Synchronour Motor Sangamo Weston $\$ 7$ Motor $\frac{1}{s}$ rev. per hr.
*le should be noted a wide range of chart speeds can be achieved by the replacement of the Motor $£ 7 / 10 /$. MARCONI VALVE VOLTMETER TF 428B/l. Frequency response on probe $10 \mathrm{Ke} / \mathrm{s} / 3 \cdot 100 \cdot \mathrm{Me} / \mathrm{s}$. Five separate Voltage Ranges Overload Projection loo-250
A.C. I.P. Input $1 \mathrm{M} \Omega$ Acc. $\pm 2 \%$ or 0.02 V. Size $10 \times 161$ $\times 9 \mathrm{in}$.- 151 bs . $f 14 / 110 / \mathrm{c}$.
TF329C. MARCONI Q METER CIRCUIT MAGNIFICATION. Freq. range $1.5-50 \mathrm{Mc} / \mathrm{s} .50-1500 \mathrm{Kc} / \mathrm{s}$. Magnification $\mu \mu \mathrm{F}$ E39/10/-
SELENIUM "KLIP-SEL" TRANSIENT VOLTAGE SUPPRESSOR. Type KLGDBF 234 V 15 amp .


GRAPHICORDER by a high resolution Minivonometer oscillograph trace recorder. Two ranges of five speeds $0.15, .3, .6,1.2,2.4$ or $\frac{1}{\text { a }}$, $1 \frac{1}{5}, 3,6,12 \mathrm{in} . / \mathrm{sec}$. Sensitivity from 20 microamps/cm at a natural frequency response of 80 cep.s.
Frequency response D.C. to I, 000 c.p.s. nat. freq. $24-28 \mathrm{~V}$ D.C. 300 mA .

Size 4.12 in . high $\times 9.8$ length, 2.75 width, weight 8 lbs . Our price for this

PLUGS AND SOCWE PURCHASE
PLUGS AND SOCKETS, MOTORS, TRANSISTORS, VALVES AND KLYSTRONS, RESISTORS, CAPACITORS, POTENTIOMETERS, TEST EQUIPMENT, RELAYS TRANSFORMERS, MEEERS, CABLES, ETC.
PROMPT PAYMENT AND COLLECION TURN YOUR CAPITAL INTO CASH

ELECTRONIC BROKERS LIMITED 8, BROADFIELDS AVENUE, EDGWARE, MIDDX.

Callers by appointment only please


A Boon to Aircraft, Motor, Elect-Power, E.-Medical, R. \& D. and Production units. From Sole Patentees and makers,
A.A. TOOLS, 197A, Whiteacre Road, ASHTON-U-LYNE.

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logi modules. CONTIL and BRIGHTLIFE produces are all ex-stock. For details see February and April 1968 service card. New prices on new leaflet. All customer on mailing list will receive these automatically. WEST HYDE DEVELOPMENTS LIMITED 30 HIGH STREET, NORTHWOOD, MIDDX

Telephone: Northwood 24941
WW- 123 FOR FURTHER DETAILS

## ADJUSTABLE HOLE \& WASHER CUTTERS

The right tool for trepanning holes I"- $12 \frac{1^{\prime \prime}}{2}$ in diameter ha our range of 17 MoJels

Adjustable hole and washer cutters $18 \%$ Tungsten High Speed Tool bits


Write for illustrated brochure of our full range with straight or Morse taper $1-4$ or Bitstock shank AK URATE ENGINEERING
AKURATE ENGINEERING CO. LTD
Cross Lane, Hornsey, London, N. 8
TEL. FITZROY 2670
WW-124 FOR FURTHER DETAILS

## RESISTANCE WIRES

EUREKA-CONSTANTAN most Gauges Available

## NICKEL-CHROME MANGANIN

NICKEL-SILVER

## COPPER WIRE

ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED
SMALL ORDERS PROMPTLY DESPATCHEDB.A. SCREWS, NUTS, WASHERS, SOLDERING TAGS, EYELETS and RIVETS
EBONITE and BAKELITE PANELS,
TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES, ALL DIAMETERS
send stamp for list. trade supplied
POST RADIO SUPPLIES
33 Bourne Gardens, London, E. 4 Telephone 01-254-4688

## SWANCO PRODUCTSLTD.

gamap amateur radio specialists
G3PQQ
NEW EOUIPMENT

 Type 4 BF tuner

SECOND-HAND EQUTPMENT
 K.W.77, RA-1, Mohican, B-44MKII's, ECi0 ${ }^{\circ}$ s, 840 A , $840 \mathrm{C}^{\circ} \mathrm{B}$, etc. Your enquiries pleaure.
Fall Service Facillitos-pecelvers re-allgned, transmitters serviced,
Inluutrated Catslogue $7 / 6$ poat paid.

## SWANCO PRODCCTSLTD.

Dept. W 247 Humber Avenue COVENTRY

[^13]Coventry 22714 Hours: Mon.-Sat. 9a.m.-6p.m.

## NEW 1968 EDITION WORLD RADIO/TV HANDBOOK

 42-COLOUR TELEVISION. PAL SYSTEM by G. N. Patchett. 40/-. Postage I/-.
SILICON ZENER DIODE \& RECTIFIER H'BOOK—Motorola. 16/-. Postage $1 /$ -
Inter. GEC S.C.R. MANUAL 4th ed. 25/-. Postage $2 /$-.

TRANSISTOR POCKET BOOK by R. G. Hibberd. 25/-. Postage 1/-.
T.V. FAULT FINDING 405/625 Lines Data Pub. 8/6. Postage 6d.

COLOUR TELEVISION SERVICING H'BOOK. Vol I by W. Hartwich. 50/-. Postage $1 / 6$

RAPID SERVICING OF TRANSISTOR EQUIPMENT by G. J. King. 30/-. Postage I/-.

RADIO VALVE DATA 8th ed. Compiled by "WW." 9/6. Postage I/-.

## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON, W. 2

Phone PADdington 4185 Closed Sat. 1 p.m.
WW-125 FOR FURTHER DETAILS

## "SKANDIA" VHFIUHF AM/FM

Handy / Portable / Mobile / Stationary Transceivers

"Mariner", 6 Ch. VHF FM, RF Output power 1 W, Portable Transceiver
other items offered !

* Cassette stereo tape recorders, w/AM/ FM Stereo receiver, Portable \& Home
* Stereo 8 player w/FM Stereo receiver, Automotive \& Home
Tomura Bussan Kaisha, Limited
C.P.O. Box No. 118 Nagoya, Japan Cable add.: "SKANDIA" Nagoya


## EXCLUSIVE OFFER

PERMANENT OR TRANSPORTABLE STEEL 60-FOOT AERIAL TOWERS

## As supplied to

 British and other Governments$\star$ Unique design<br>$\star$ Scientific Construction

having the following remarkable features.

$\star$ Entirely self supporting, re-
quiring
dition quiring no guys, stays, foun-
dations, pickets or gives or any attachment to the ground. * Fitted with stop ladder to the
top and balcony with railinge all round (yon can walk right round thon can walk right
roued the top with both hands

12 feet square at bate tapering
to 8 feef square at top, thoy are guite mafe when subject to gale lorce winds and will accept 50
square leet supertcial area on
 require ground area of ro qeet $\star$ Whil support up to 2 tons of
equipment on top, the whole tower can be completely lowered to the grongd
by 2 men in 20 minutes by 2 men in 20 minutes and raised in the same
time. -Can be completely
eracted and dismantled by 3 men.
$\star$ Breaks down for traninto parts easily handled by 2 mport by 2 there are no smant loose parts. no nuts or bolts to ket lost or damaged; all
screws and adjuatments are fulis protected from rast and so deaigned to be free from damage whon traniported or left loose on the ground.

* Foolprool- the Tower cannot be erected it not assembled correctig. No skilled labour is required and no special
tools are necesary. tools are necestary.
$\star$ Can be raised and lowered, erected and dirmantled and Eversthing necessary lor the complot
into use and raised and lowered is provided; full drawings and instructions.
These fine Towers were made in England by B.L.C., and coss the Government $£ 2.200$ each. They are BRAND NEW
and in maker's original packing. You can vee one erected and in maker's
at our premises.

Cost $£ 2,200$
Price Brand New £345

| * Uniselectors 10 Bank 25 Wry |  |
| :---: | :---: |
| $\star{ }^{+}$Track Tape Readers |  |
| * 7 Track Tape Puncher | 812 |
| $\pm 816$. Enclosed Rack Cabinets | $\underline{255}$ |
| *T-200 Panadadaptors $450 / 470 \mathrm{Kc} / \mathrm{s}$. | £30 |
|  | 840 |
| $\star$ Narda 500 w. Ultranonic Cleaner | £85 |
| * Sliding Shelves rack mountiak |  |
| WMagnotic Recording Wire, --br. reel | ¢2 |
| $\star 3 \mathrm{M}$ Video Recording Tape, yin. | ¢5 |
| W Marconi S.S.B. Receivers HR-22 $2 / 32 \mathrm{mo} / \mathrm{s}$. | £80 |
| *R.C.A. $420 \mathrm{Mc} / \mathrm{s}$. Yagi 5 el. Beams | £2 |
| ¢ Model 15 Teletype Pake Printers | $\underline{299}$ |
| 1 mile | £14 |
| ¢ Metro-Vickera Vacuum Pompa 230 v. A.C. | 122 |
| $\star$ Precinion Mains Filter Units |  |
| $\star$ E.MI Recording Rridgea | 812 |
| + Avo Geiger Counters | £7 |
| *Philco W.S. No. 43 Transmitters 850W | £75 |
| $\star$ E.M.I. 3794 Wavelorm Mouitors on trolleys | 845 |
| *Motoroia 6 v. Mobile Tranamitters $30 / 40 \mathrm{Mc} / \mathrm{m}$. | ¢12 |
| $\star$ Pen-type Personal Dosemeters |  |
| $\star$ Monitor Type 56 and Power Unils |  |
| * Marconi tr 1053 Noise Metera |  |
| *AN/UPM 17 spectrum Analyseri 10/10000 Me/s. |  |
| *AN/URM-33, 34, 35 Sirnal Generators $1000{ }^{4}$ $8000 \mathrm{Mc} / \mathrm{s}$. |  |
| Carriage extra st cont on all above. |  |
| Wo have a large quantity of "bits and we cannot lint-please send us your require we can probably help-all enquiries | nts vered. |

## P. HARRIS

## ORGANFORD <br> DORSET

TESTBOURNE 85051


## DINSDALE MK II AMPLIFIERS

Printed circuits and parts for mono and stereo versions. Special new power amp. printed board
BAILEY 20 WATT AMPI
BAILEY 20 WATT AMPLIFIER. All parts available for this unit including Radiometal-core Driver Transformer and recom MUIIARD IOW A B TR
SPECIAL CIEARANCE TRANSISTOR AMPLIFIER PECIAL
Printed Circuit Boards to Mullard specification fully drilled and fluxed. Price $4 /$ - each or $7 /$-for two post free.
Layout Diagrams 9d. eacht All other parts
available. Please send S. A. for all.Lists. available. Please send S.A.E. for all-Lists.

## HART ELECTRONICS

32I Great Weatern Street, MANCHESTER 14

## GODLEYS

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriars 9432
Sole Manchester Distributors for world famous BRYAN AMPLIFIERS
Agents for Ampex, Akai, Ferrograph, Tandberg, Brenell, B \& O, Vortexion, Truvox, Sony, Leak, Quad, Armstrong, Clarke \&mith, Lowther, Fisher, Goodmans, Wharfedale, Garrard, Goldring, Dual, Decea, Record Housing, Fitrobe, G.K.D., etc.
Any combination of leading amplifiers and speakers demonstrated without the slightest obligation

## BUILDING A "SCOPE"

Indicator unit type 10Q53. One of the finest units to appear on the surplus market, modern built in E.H.T. unit producing 3 kV valves, modern version of the 5 in. V.C.R. 517 tube, brilliance, focus, $X$ and $Y$ shift. Controls on front panel, circuit diagram supplied. Ideal for conversion to an oscilloscope. Size of unit $7 \mathrm{in} . \times 7 \frac{1}{2} \mathrm{n} . \times 19 \mathrm{in}$. long. Used but good condition $60 /-$, carriage $19 / \%$. Circuit diagram
sold separately, $3 / 9$, Post Free.

Now Catalogue No. 17. Government and manufacturers surplus. Also new components, 3- post free.


Miniature key switches. (P.O. Lever Type 1000), centre off. 2 e/o each way. $7 / 6$ ea.
RE-SETTABLE HIGH SPEED COUNTER ( $3 \times 1 \times \frac{3}{3} \mathrm{in}$.) MIGH SPEED MAGNETIC COUNTERS $(4 \times I \times$ lin. 4 digit. $6 / 12 \mathrm{v}, 24 / 48 \mathrm{v}$. (state which), $6 / 6$ ea., P.P. I/
SOLARTRON OSCILLOSCOPES. CD7IIS. 650 carr. 70/CD643 650, carr. 70/-; QD910 675, carr. £5. All units in first class condition. Complete with manuals.
R.F. AMMETERS 3 in . Rnd. $0 / 6 \mathrm{amp}$. IO/- ea. P.P. $2 / 6$. COPPER LAMINATE PRINTED CIRCUIT BOARD $\left(8 \frac{1}{2} \times 5 \frac{1}{2} \times\right.$ $\frac{1}{16}$ in.), $2 / 6$ sheet, 5 for $10 /$.

## BULK COMPONENT OFFERS

100 Capacitors (latest types) 50 pF to $.5 \mu \mathrm{~F}$.
250 Resistors $\frac{1}{1}$ and watt.
250 Resistors $\frac{1}{2}$ and I watt.
150 Hi Stab Resistors, $\frac{1}{4}$, $\frac{1}{2}$ and 1 watt.
25 Vitreous W/W Resist $5 \%$
25 Vitreous W/W Resistors, 5\%.
12 Precision Resistors . $1 \%$ (several standards included).
12 Precision Capacitors 1 and $2 \%$ (several
12 Electrolytics (miniature and standard sizes) ANY ITEM 10/., ANY 5 ITEMS 22

VENNER LIGHTWEIGHT ACCUMULATORS ( 1 oz. I $\frac{3}{4} \times$
$13 \times \frac{1}{2}$ in.) $2 \mathrm{v} .1 .5 \mathrm{a}, \mathrm{h} ., 12 / 6 \mathrm{ea}$. (with electrolyte and $1 \frac{2}{3} \times \frac{1}{\left.\frac{1}{2} i n .\right)} 2 \mathrm{v} .1$.
charging inst.).
CARPENTER POLARISED RELAY 18,000 turns at $4000 \Omega$ 15/- (with base). ALL Types of G.E.C./SIEMENS/ S.T.C. Sealed relays stocked.

MAINS RELAY ( 240 v. A.C.) 12 H.D. make contacts, 20/- ea., P.P. $2 / 6$.
REED RELAYS (2 Herkons) S.T.C. 2426-582-15, 2 make. 10-15 volt coil, 15/- ea.

- 3000" TYPE RELAYS (Ex. New Equip.) 10 for 25/(our choice), p.p. 5/.
RESOLVED COMPONENT INDICATOR (Solartron VP253-2A Condition new, 635 (with manual), carr. $50 /$-.
TELEPHONE HANDSET (Type 706) $17 / 6$ ea., P.P. $2 / 6$.
ZENER DIODES 3 to 50 volt. $5 \%$. 1.5 watt, $3 / 6 ; 10$ watt, 5/6 ea.
BLOWER/EXTRACTOR FANS (By PAPST Motors) $4 \frac{1}{2} \times$ $4 \frac{1}{2} \times 2 \mathrm{in}$. cast moulding. 450 C.F.M. Engineered to THYRISTOR LAMP DIMMER/SPEED COMTROL KITS. 200 watt kit, 27/6, P.P. 2/6; 500 watt kit, $37 / 6$,
P.P. $2 / 6$. P.P. 2/6.

ILICON CONTROLLED RECTIFIERS (Thyristors) BTY87
(I00r) 100 p.i.v. 12 amp. 15 /(100r) 100 p.i.v. 12 amp . $15 /$ e ea.; TBY91 (150r) 150 p.i.v. 16 a mp., $20 /-;$ CRS25/10 100 p.i.v. 25 amp .
$30 /-$ CRS25/40 400 p.i.v. $25 \mathrm{amp}, 60 /-;$ CRSI/20 30/-; CRS25/40 400 p.i.v. 25 amp., $60 /-$; CRSI/20
200 p.i.v. I amp., 5/6; CRSI/40 400 p.i.v, I amp., 200 p.i.v. 1 amp., 5/6; CRSI/40 400 p.i.v.
$7 / 6$; CRS $3 / 40400$ p.i.v. 3 amp., $10 /-\mathrm{ea}$.
SILICON DIODES RS220af $2 /-$ ea., $\subset 1$ doz.; RS240 $3 /-\mathrm{eaz}$ 30/- doz. : RS280 4/- ea., 40/- doz.; IS103/BYIO
 RS640 20/- ea., RS812 40/- ea.; RS845 60/- ea.
PRODUCTION BATCH COUNTER (BURNDEPT) BE403, Condition: New Cl ea., P.P. 20\%.
OSCILLOSCOPES Cossor 1035, C17/10/-; 1049, C20; Solartron D300, 620, P.P. any unit $£ 2 / 10 /$.
E.M.l. MINIATURE RELAYS ( 24 v . I c/o) $\frac{1}{2} \times \frac{1}{2} \times \frac{3}{3}$ in. Wt. $\frac{1}{2}$ or. $7 / 6$ ea.
TELEPHONE DESK SETS (type 706), Brand new, 95/P.P. 5/.

SILICON BRIDGE UNITS. GEX541. 80 p.i.v. IOa., 37/6: EllBD-RC 100 p.iv. 10a., 37/6; GA3I-A (Germ). 200 p.i.v., 2a., $20 \%$.
SORENSON VOLTAGE REGULATORS. TYpe LT-1000-25. \$25 ea.
P.C. CONNECTORS ( 13 way in-line), $4 / 6$ pair.

LARGE CAPACITY ELECTROLYTICS. $2,000 \mu \mathrm{~F} .150 \mathrm{v}$.; $4,000 \mu \mathrm{~F} .90 \mathrm{v} .7 / 6$ ea. $6,300 \mu \mathrm{~F}, 63 \mathrm{v} . ; 10,000 \mu \mathrm{~F} 30 \mathrm{v}$.;
$16,000 \mu \mathrm{~F} 15 \mathrm{v} . ; 25,000 \mu \mathrm{~F} 15 \mathrm{v}$. $10 /$ - ea. All $4 \frac{1}{2} \times 2 \mathrm{in}$. $16,000 \mu \mathrm{~F} 15 \mathrm{v}$. $\mathrm{i} 25,000 \mu \mathrm{~F} / 5 \mathrm{v}$.
serew terminals. P.P. I/- ea.
SPEAKER BARGAINS. E.M.I. $13 \times 8 \mathrm{in}$. with double Tweeters 15 ohm, $65 /$. P.P. $5 /$. . As above less
FANE 12 in .20 watt (Dual Cone), $95 / \mathrm{F}$, P.P. $5 /-$
PHASE SENSITIVE VOLTMETERS (Solartron UP250/253) ©65.
TRANSFORMERS L.T. 50v. at 5 amp . 19-0-19v. $\frac{1}{2}$ amp. 25/-, P.P. 5/-
TRAMSFORMERS M.T. $625-0-625 \mathrm{v}$, at $110 \mathrm{~m} . \mathrm{a},, 6.3 \mathrm{v}$. at 2a., 6.3 v . at 3a. c.t. Parmeko Neptune series, 35/ELECTRIC SLOTMETERS ( $1 /-125 \mathrm{amp}$. L.R. 240v. A.C.
QUARTERIY ELECTRIC CHECK METERS, 40 amp. 240 v , A.C., 20/- ea., P.P. 5

TRANSISTOR POWER SUPPLY. $2 \times 12 \mathrm{v}$. at $250 \mathrm{~m} . \mathrm{a}$.
$240 \mathrm{v} .50 \mathrm{e} / \mathrm{s}$. input, $25 /-$ ea., P.P. $5 / \mathrm{m}(\mathrm{made}$ by E.M.I.). STEP-DOWN TRANSFORMERS. PRI. 200/250v. Sec. I. 115 v. at $1.25 \mathrm{amps.;} \mathrm{Sec}. \mathrm{2}$.25 v . at $5 \mathrm{amp} ., 25 / \mathrm{e} \mathrm{ea}$.,
P.P. $5 /$.

PATTRICK \& KINNIE
81 PARK LANE, HORNCHURCH, ESSEX Tel.: ROMFORD 44473


## ALL GOODS <br> GUARANTEED

AIRMEC OSCLLLOSCOPES 3 in . tube TB $40 \mathrm{c} / \mathrm{s} 40 \mathrm{kc} / \mathrm{s} 50-0-50 \mathrm{Micro} / \mathrm{amp}$ meter calibrated for $\mathbf{Y}$ deffection. Y amplifier DC ${ }_{250}^{\text {to }} 2 \mathrm{~m} / \mathrm{cs}$. Size 19 m . wide $50 \mathrm{c} / \mathrm{s}$ input. Mint condition. Only 250 volt 50 c/s input. M.
\&12/10/.. P. \& P. \& extra.
CONVERTOR/BATTERY CHARGER
Input 12 V DC-output $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s} 170$ watt max Input $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$-output 12 V 5 amp . D.C. Fully fused with indicator lamps. Size $9 \frac{1}{2} \times 10 \times 4 \mathrm{~d}$ Weight 19 lbs. An extremely compact unit that wiug
give many years reliable service. supplied with plug give many years reliable service. supplied wit
and leads. Only $\& 4 / 10 /-. \quad$ P. \& P. 15/- extra.

DISTRIBUTED WIDE BAND AMPLIFIERS available. Various types, e.g. EMI type 2 C complete with power unit $\mathrm{range} 50 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s}$ gain of 12 . $\mathrm{f} 8 / 10 / \mathrm{l}$., DEKATRON SCALER/TIMERS various models from 6 - ${ }^{\text {El }}$
BINARY / DECIMAL SCALERS 99 scaled
on neons followed by 4 digit resettable counter
RATEMETERS. Various types available with or without EHT Power supplies.
SCINTILLATION equipment available. Units or complete assemblies.

WRITE FOR DETAILS.


## TRANSISTORS-Not remarks.



BROOKS CRYSTALS $500 \mathrm{kc} / \mathrm{s} 2,5,10 \mathrm{mc} / \mathrm{s}$ -10/- ea.

## RELAYS

American miniature gold contacts, 4 pole co 48 V brand new, boxed, $6 / 6$ ea.
Carpenters type $51 \mathrm{Al} / 50$. 200 T 0.75 ohm 200 T. Carpenters type siA1/bo. 0.75 ohm, brand new, boxed, $8 /-$ ea
3000 Series 5 K /ohms, 2 pole make HD contacts, $3 / 6$ ea. 3000 Series 1000 ohms, ail multi bank, state min. requirement, $2 /$ - ea.
Siemens sealed HS 48 V spco type $\mathrm{H} 96 \mathrm{E}, 3 /-\mathrm{ea}$ Siemens miniature with dust cover, 6 pole make o break 1,250 ohms. Brand new, boxed, $4 / 6$ ea.
American miniature 4 pole co $12 / 24 \mathrm{~V}$. 200 ohms, sealed, 5/6 ea.
FRACTIONAL H.P. MOTORS 240 V. $50 \mathrm{c} / \mathrm{s}$. TRANSFORMERS. All $200 / 250$ inputs, tapped 0-6-12-18, $3 \mathrm{amp}, 15$;- ea.; $7 \mathrm{amp} .30 /-$ ea.
INVERTOR TRANSFORMERS. CT primary High and low impedance feed back windings fo use with OC35/36 transistors with $0-200-250$ volt isolated output windings 200 W . rating, $£ 2 / 5 /-$;
400 W . rating, $\mathrm{E} 3 / 10 / \mathrm{l}$.
H.T. TRANSFORMERS. e.g. $450-400-0-400-450$ 250 ma . $3 \mathrm{x} 6.3-3 \mathrm{amp} .1 \times 5 \mathrm{~V} .3 \mathrm{amp}$. Potted Parmeko/Gardiners, as new, 50/-. Potted EHT also available.
SELENIUM
Double bridge 12 V .6 amps. continuous rating, Quad bridge 12 V .12 amps . continuous rating, 21/- ea.
NEW DIODES Mullard genuine OA81, 1/6 ea. CV448/425, 1 /- ea
METROSILS. Ideal pulse suppression, $2 /$ ea. EHT CONDENSORS. 7.5 KV working, with clips. $0.1 \mathrm{mfd}, 5 / 6 \mathrm{ea}$; $0.25 \mathrm{mfd}, 8 / 6 \mathrm{ea}$.

Cash with order. Post paid over 10/-

## CHILTMEAD LTD.,

22 Sun Street, Reading, Berks.
Tel. No.: Radlng 65916 (9 a.m. to $10 \mathrm{p} . \mathrm{m}$. )

## SURPLUS BaBtains


collins (0.s.A.) RECEIEER. 7 valve super. het (Int. Octal Malves)
Exceptionaly stable for B8B Frequency eoverage
Me/f. Power required.
$2.5 \cdot 12$
vx D.C. 80 mA . 12 V. A.C. 1.25 A.
famods No. 19 set trans/receiver.


 volts battery operation, 70/-.
No. 88. TWO-W AY RADIO.
40/42 Me/G. Crystal eontrolled. 4 ehannel. $50 /$ each.
B44. $V E R$ RADIO TELEPHONE. $60-95 ~ M c / s . ~ C r y s t a l ~ c o n-~$

 statlon. Brand new. 12 or 24 . . D.C. operatlon. Complet

 Mection, 最侯: OWN AERIAL MABTI
5 5tt. 8 in ., 2in. dia. Interlocking ateel sections ( 7 sections make 35ft. mast), $20 /$ - per section.
YYKON GUY ROPES, with semfantomatle tensioner. $33 t \mathrm{t}$,
 Output $250 \mathrm{\nabla}$. D.C. at 125 mA ., $25 /-012$ r. D.C. Input, Output

 MOVING COIL HEADPRONE. Boft rubber earpadi. $19 / 6$. D.L.R. BALANCED ARMATURE HEADPRONES. $12 / \mathrm{B}$.
GEADSET WITY BOOM MICROPHONE. As Used with Bg Get.
 TRANSMTTER. $1.75 \cdot 16 \mathrm{Mc} / \mathrm{s}$. 3 waveband tuneable. 813 PA.
 300 mA output. Incorporates 240 v. D.C. 80 mA ylbrator pack circuit. $\mathbf{2 7 / 1 0 / -}$.
ALL ITEMS CARRIAGE PAID MAINLAND ONLY Lists giving fuller details of these and many other surplus bargains, 2/-. S.A.E. all enquiries (Please print clearly)
A.J.THOMPSON (Dept. WW)
"Eillug Lodge," Codicota, Hitchin, Herts. Tel.: Codioote 242
Hours of Business: Monday to Friday 8-5 Saturday 8-12.

## - HAMMERTE Hammer

AIR DRYING - JUST BRUSH ON
 Blue, silver, black. bronze (and others)
NO PRIMERS NEEDED. Juat try it Brushed stonple, interestion list FREF


TRIAL TIN

ARD exees's (2 plate will do a Mal) | ouvert 5 ro. it.) |
| :---: |
| $3 / 9$ |
| 90. post. | FINNIGAN SPEGIALITY PAINTS (W) Mickley Square, Stocksfield, Northumberland. Tel: Stocksfield 2280



SLYDLOK FUSES 15 amp .230 v. D.C. 440 v. A.C 1/6 ea., 15/-per doz
HEADPHONES. Carbon H/Mics., 5/- ea. P. \& P 2/6. DLR5 Bal. Armature, $/ 6$. P. \&P. 2/6. M/Coil with ear muffs and wired M/C mic. $15 / \sim . P_{\text {. }}$ \& P. $3 / 6$.
No. 10 Assembly M/Coil with M/Coil Mic. . $15 / m$. No. 10 Ass
P. \& P. $4 / 6$.
TANNOY LOUDSPEAKERS. Re-entrant type, ideal for public address, enclosed in waterproof wooden case, complete with steel baffle designed to produce
directional reproduction at 5 watts. $7.5 \Omega \quad 27 / 6$ each directiona
SMALL GEARED MOTORS. 12-24 v. D.C., reversible, with gears attached, $15 / \mathrm{m}$ ea.; with blow.
attachment, $12 / 6$ ea.; with fan assembly, $12 / 6$ each.
TRANSMITTER. BC 625, part of T/R. SCR522. For spares only. Chassis only. Complete with valve For spares only. Chassis on y. Complete with valve
except 832 s and Relay. 21/- ea. Carr. U.K. $4!$-. SIEMENS HIGH SPEED RELAYS. H96B type, 50 +50 ohms. $6 / \mathrm{ma}$. Type H69D, $500+500$ ohms,
$6 / \mathrm{m}$. T . Type H96E, $1,700+1,700$ ohms: $7 / 6 \mathrm{ea}$. 6/- ear.;
"TELE L" TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete' with Hand Gen. for calling each station. Supplied in new condition and tested. 70/- per pr. Carr. 7/6.
POST OFFICE TYPE RELAYS.
2 m . slugged coil 140 ohms; $2 \mathrm{c} / \mathrm{o}$, slugged coil $2 \mathrm{cc} / \mathrm{o}$
500 2 m . slugged coil $140 \mathrm{ohms} ; 2$ c/o, slugged coil 500 3,000 Type, by Ericsson Telephones, 2 1,000 $1 \mathrm{br}, 2 \mathrm{mc}$. c/o plus $3 \mathrm{c} / \mathrm{os} 12 / 6$ ea., $2,000 \Omega 4$ c/over 10/~ ca.; $500 \Omega 4$ e/overs, $10 / \mathrm{m}$ ea. P. \& P. $1 /$ ea.
MORSE KEYS. No. 8 assembly complete with leads terminals and cover, 6/6 each. Carr, 2/-
VIBRATORS. 12 v. 4 pin; 12 v. 7 pin. Syn. Al! 6/- each. Carr.
ELECTRO MAGNETIC COUNTERS. Register up to 9999 , coil res. $300 \Omega 5 / \mathrm{m}$ each. Carr. $/ /-$. Exequipment.
MODULATION TRANSFORMERS. 150 watts suitable for pair 813 s , driving 313 s . Size $6 \mathrm{in} . \times 5 \mathrm{in}$.
$\times 3 \frac{1}{2}$ in. Brand new, boxed. Price 27/6. Carr. $4 / 6$. MEGGER INSULATION TESTER 500 v . with Con test range from 0.1 ohm to infinity. Bakelite case with stock.
CUT OUT. 12 v . or 24 v . operation. Heavy duty silver contacts ( 5 c 849 ), 7/6 ea. Carr. 1/6
LIGHTWEIGHT HEADSET (part of " 88 " W. Set Equipt.) complete with Boom mic., carbon made to highest Ministry Spec. Moving coil earpieces. Our price 35/- set. Carr. 3/-
200 AMP. 24 v. D.C. GENERATORS. Type P3. ex-Air Ministry, £9/10/- ea, Carr. 10/6.
P.C.R. 12 V. VIBRATOR POWER PACKS. Brand new, 22/6 ea. P. \& P. 5
CONDENSERS. Paper, Sprague . 1 mid .500 v., 5/=
doz. . 1 mid. 1,500 v., 7/-doz. (incl. P. \& P) doz. 1 mid. 1,500 v., 7/-doz. (incl. P. \& P.).
HEAVY DUTY TERMINALS, Ex-equipt. Black only, will take spade terminals and wander plus. $1 / 6 \mathrm{pr}$. P. 1/6 ea. doz.

FATIGUE METERS. 24 v . D.C. Consisting of $6 \times$ 496 D Relays, $500 \times 500 \Omega$. $6 \times 300 \Omega$ Electro Mag ounters, $13 / 10 / \mathrm{m}$ ea. Carr. $4 / 6$
RELAYS. 3,000 Series $2 \mathrm{C} / \mathrm{O} 2 \mathrm{M} .140 \Omega$ slugged coil, $6 /-\mathrm{C}$
$500 \Omega$
$\mathrm{C} / \mathrm{O}$ s slugged coil, $6 / \mathrm{m} . \mathrm{P}, \& \mathrm{P} .1 /-$ ea. item Also a few Ericsson Telephone 3,000 types in stock
$10 / \mathrm{mea}$. Brand new. P. \& P $1 /$. AMERICAN AUTOPULSE 24V PUMPS for mounting between carb, and main fuel tank as auxiliary pump. New 7 30/- ea. P. \& P. 5/-. 7 g.p.h. Size in. $\times 2 \frac{1}{i n}$. $\times 2 \frac{1}{\mathrm{i}} \mathrm{in}$
W. SETS, No. 19 Mk. III. New. £5/10/m, incl. carr. POWER SUPPLY UNITS, 12 v. for " 19 " Sets $35 /-$, incl. carriage. Complete Units, 19 Set, Variometer, 12 v. B.S. Contro W/S REMOTE CONTROL UNIT "E," Mk, 2. W.S. 19 VARIOMETERS. 17/6. P. \& P. 4/6
S.T.C. MINIATURE SEALED RELAYS, TYPE 4184 G D, $700 \Omega 24 \mathrm{v}$. (will work efficiently on 12 v . D.C.) (ex equipment). 2 C/overs. 7/6. P. \& P. 1/-, 6 or ore post paid.
SMALL D.C. MOTORS: $2 \mathrm{in} \times 1 \frac{1}{2} \mathrm{in} . \times 1 \frac{1}{\frac{1}{2}} \mathrm{in}$. Rated 24 v ., will work on 12 v . $\frac{4}{3} \mathrm{in}$. length drive shaft. Ideal for model makers, etc. $10 / 6$ ea.
POCKET TRANSISTOR SETS-6 Transistor Med Wave. Complete with earpiece and plastic carryin S.A.E. all enquiries


# J 

108 CHESTER ST..BIRKENHEAD, CHESHIRE
Tel. BIRKENHEAD 6067
Terms Cash with Order.

TRANSFORMERS
MAINS TRANSFORMERS IVA TO 2.5 KVA
A UTO TRANSFORMERS 20 watts to 5,000 watts
Trade and Professional Enquiries Only OLYMPIC TRANSFORMERS LTD 224 HORNSEY ROAD
LONDON LONDON, N. 7 NOR 2914 WW-133 FOR FURTHER DETAILS R, C \& L BOXES (.)

CAPACITY 15 pf to $111 \mu \mathrm{~F}$
RESISTANCE $0.1 \Omega$ to $100 \mathrm{~K} \Omega$
INDUCTANCE 1 mH to 10 H
VOLTAGE DIVIDERS and
WHEATSTONE BRIDGES
LIONMOUNT \& CO. LTD. BELLEVUEROAD, NEW SOUTHGATE, LONDON, N.II, ENGLAND Tel: Enterprise 7047,
WW-134 FOR FURTKER DETAILS
SERVO AND ELECTRONIC SALES LTD. RECONDITIONING SERVIOE FOR INDUSTRIAL INSTR UMENTS

Moving Coll Multi-range Metern, Electical and Electronic Tent Rquipment of all kinds. Fstinuates glven for all repairs. 37 London Rosd. Croydon, Surrey | (Inntrument Repairs and Cunter Aeles) : 01-688 15 |
| :---: | WE ARE SPECIALISTS \&OPPLTERS IN ELECTRONICS.

AND ELECTROMECHA

WW-135 FOR FURTHER DETAILS
REDUNDANT OR SURPLUS RADIO - ELECTRONIC STOCKS WANTED OSMABET LTD.
46 KENILWORTH ROAD, EDGWARE, MIDDX. TEL: STONEGROVE 9314
WW-136 FOR FURTHER DETAILS

## WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc.

## Good prices paid

J. BLACK

44 Green Lane, Headon, N.W. 4 Tel. 01-203 1855 and 3033
RESISTORS
$\frac{1}{4}$ watt carbon film $5 \%$
All preferred values in stock from 10 ohms to
10 megohms, 2d. each.
Send S.A.E. for free sample.
Mullard Miniature Metallised Polyester P.C.
Mountiag, all 250 V . D.C. working. 0.01 mf .,
0.022 mf , 0.047 mf ., $0.1 \mathrm{mf}, 0.22 \mathrm{mf}$., all at 6 d . each.
Hunts tubular 0.1 mf . 200 V . working at 3d. each.
Electronic Components, Insirumenis \& Equipmed
Please include $1 /$ - postage \& packing on all orders
under $£ 1$.
Dept. WW9.
BRENSAL ELECTRONICS LIMITED,
CHARLES STREET, BRISTOL, 1.

WW-137 FOR FURTHER DETAILS

## LANCASHIRE COUNTY COUNCIL

Tenders are invited for the supply of the following 20 No. Hudson F.M. 660 Radiomobile Sets.

Tender documents are obtainable from the County Surveyor and Bridgemaster, County Hall (P.O. Box 9), Preston, on payment of a deposit of £5 0s. Od. (refunded on receipt of a tender not subsequently withdrawn). Cheques must be made payable to "Lancashire County Council."

Tenders to be received by the Clerk of the County Council, County Hall, Preston, by 10.00 a.m. on Tuesday, 9th April, 1968.

423/97 Wireless World.
WW-138 FOR FURTBER DETAILS

## CLASSIFIED ADVERTISEMENTS

## Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 6/- PER LINE. Average seven words per line.

- Name and address to be incuded in charge if used in advertisement.
- Box No. Allow two words plus I/-

Charges etc., payable to "Wlreless Worid" and crossed " Co."

- Press Day 4 March for April 1968 issu*.

NAME

ADDRESS


Please write in block letters with ball pen or pencil.
NUMBER OF INSERTIONS

## 'Hike-Mike’ really started something... ... the finest range of radio microphone systems in the world <br> From the very successful general purpose unit Hike-Mike has developed a whole range of special purpose microphone transmitters each one precision made for precision performance. Suitable for both hand -held and Lavalier operation. Write now for descriptive literature of these and the full range of Audac Audio Equipmient. Demonstrations with pleasure. <br> AUDAC radio microphone and sound reinforcement systems audac marketing company limite I carey raad / wareham / dodset I telephone wabeham 2245 . <br> 

## INIDEX TO ADVERTISERS

## Appointments Vacant Advertisements appear on pages 99-110



[^14]

THE ANCIENT GREEKS LEARNT THE ART OF SOLDERING AND CREATED BEAUTIFUL THINGS BUT LACKED THE ADVANTAGE OF USING ADCOLA SOLDERING EQUIPMENT. ADCOLA NOW PRODUCES THE FINEST AND MOST COMPREHENSIVE RANGE OF SOLDERING EQUIPMENT IN THE WORLD TODAY WITH OVER 250 VARIATIONS FROM WHICH TO CHOOSE, WRITE FOR OUR FULLY DESCRIPTIVE CATALOGUE FOR MODERN SOLDERING EQUIPMENT.

ADCOLA PRODUCTS LTD ADCOLA HOUSE, GAUDEN ROAD, LONDON, S.W. 4.

# In addition to Ersin Multicore 5 Core Solder we make these products to help industry and laboratories 

## special products for the soldering of printed circuits

A complete range of products for the soldering of printed circuits, including:
P.C. 2 Dip Cleaner P.C. 10A Activated Surface Preservative P.C. 21 A Printed Circuit Liquid Flux P.C. 51 Finishing Enamel. Solid Solder Wire, Solder Sticks, Solder Ingots and Ersin Multicore 5 -core Solder Wire for direct application to panels.

## Mark 2 solderability test machine

Incorporates many new features, including semi-automatic electrical timing, proportional temperature control, remote controlled specimen
 lowering system and a temperature meter calibrated to an accuracy of $0.25 \%$ full scale deflection at the test temperature.
The machine can reduce production costs by instantly checking the solderability of components with wire terminations.
It complies with B.S.I. and proposed M. of D. and International Solderability Test Specifications.

solder tape, rings, preforms, washers, discs, and pellets
Made in a wide range of solid or cored alloys. Tape, rings and pellets are the most economical to use.


## 3a automatic soldering machine

Specially designed for manufacturing processes involving repetitive soldering operations. An exact quantity of
 Ersin Multicore Solder is automatically fed at each downward stroke. It can be operated by foot treadle or compressed air system, or may be connected to form part of an automatic assembly sequence 5

## liquid fluxes

7 standard non-corrosive Ersin Liquid Fluxes, all comply with D.T.D. and Mil specifications.
Arax Acidic Liquid Flux, the residue is easily removed, is faster than zinc chloride types but much less corrosive. In 1-gallon or 5-gallon non-returnable containers.

## Arax 4-core acid cored solder

Used in 38 industries it has replaced tinman's and blowpipe solders, fluid and paste fluxes and killed spirits for rapid and precision soldering in metal fabrication processes.
Arax Flux-exclusive to Multicore-has the fastest speed of flux in any'cored solders. Flux residue is easily removable with water or, where flame heating is employed, is entirely volatilised. Residue will not contaminate plating baths. No pre-cleaning is necessary and the speed ensures that the solder will flow between the laps by capillary action, thus using the minimum amount of solder. Not recommended for wire to tag joints in radio or electrical equipment.

## BHe accessories can be supplied in bulk packings at very competitive prices

## wire stripper

 and cutterStrips insulation without nicking wires, cuts wires and cables cleanly. Model 3 is semi-permanently adjusted. Model 8 incorporates a unique 8 gauge salector.
recording tape

splicer

Precision made, chrome plated complete with razor cutter. Provides quick and accurate tape editing. Standard model for $\frac{1}{d}$ " tape. NEW $\frac{1}{2}{ }^{\prime \prime}$ type is available for computer and video tape.


## instrument cleaner

Anti-static. Specially formulated for cleaning delicate instrument panels, plastic, chrome, glass and printed surlaces. Antiseptic, nontoxic, non-flammable, does not smear. Used and recommended by leadingelectronicmanufacturers.
In 1-gatlon and 5-gallon containers and 4 fl . oz. bottles.
tape head maintenance kit size E

Cleans tape heads and all parts of the tape path of magnetic tape

decks. Applicator and Polisher Tools and Sticks are available separately.


[^0]:    C Iliffe Technical Publications Ltd., 1968. Rermission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the iournal is given.

[^1]:    * "Negative Feedback Tone Control" by P. J. Baxandall Wireless World, October 1952, pp 402-405

[^2]:    *Amatronix Ltd.

[^3]:    *For example, chrominance signal differential phase and differential gain; chrominance-to-luminance amolitude ratio; chrominance-to-luminance timing errors.

[^4]:    * Mullard Ltd.

[^5]:    W.W. 317 for further details

[^6]:    Please send me details of Shure microphones. Please recommend the best model for use with my equipment....
    | NAME

    ## | ADDRESS

    TO SHURE ELECTRONICS L.TD • 84 BLACKFRIARS ROAD •LONDON •SE1 Tel: 01.9286361

[^7]:    Accredited Midland \& Northern Distributors to the retail trade Audio Distributors Limited
    4 Lion Street, KIdderminster, Worcestershire
    Telephone: Kidderminster 3293

[^8]:    PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: $01-9283333$ (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworid, London, S.E.1." Annual Subscripions: Home; $\AA^{2}$ 6s Od. Overseas; $\mathfrak{C}_{2} 15 \mathrm{~s}$ Od. Canada and U.S.A.; $\$ 8.00$. Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: Birchfields 4838. BRISTOL: 11 Marsh Street, 1. Telephome: Bristol 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.

[^9]:    Signal Infector Kit. 10/-. Signal Tracer Kit, 10/-

[^10]:    ELECTRONICS (CROYDON) LIMITED
    (Dept. W.W.), I02/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) also at 266 LONDON ROAD, CROYDON, SURREY.
    S.A.E. WITH ENQUIRIES PLEASE

[^11]:    DISPLAYED SITUATIONS VACANT AND WANTED: $\mathbf{~} 6$ per single col, inch LINE advertisements (run-on): 7/- per line (approx. 7 words), minimum two lines
    Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /-$ SERIES DISCOUNT: $15 \%$ is allowed on orders for twelve monthly insertions provided a contract is placed in adyance
    BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E. 1 No responsibility accepted for errors

[^12]:    D EMONSTRATION cabinet to house four decks and glass top, £45.-A. L. Stamford, Ltd., 98 , Weymouth
     Heathkit Mohican communications RX GC-1U old, with power unit; total cost 6 months' guarantee and is in brand new old, still has 6 months guarantee and is in brand new
    condition; a bargain at $£ 30 .-G . \quad H e a d r i d g e, ~$
    a Crescent ist.. Dundee. scotland.
    MARCONI signal generator, type $995 \mathrm{~A}, 1.5-220 \mathrm{MHz}$, FM/AM, little used, perfect, now surplus to re-
    quirements; cost 825 in 1964 manual, \&lio. Westrex Co. Ltd. Service Dlyision, Coles Green Rd., London,
    N.W.2. Tel. 01-452 5401. QUANTITIES of Barretter valves, CL33, CY31 and new 6 CIC, wanted, new and boxed, have for exchange new 6AQ5 EL84, 6BR7 and ECC8 Valves, or will
    buy for cash.-Harringay Photographic, 435, Green
    Lanes, London, N.4. $01-340$ 5241.
    [1910 DLANAR transistors $2 N 2369650 \mathrm{MHZ}$ 6/6; PEP5
     Valves, $\delta 4$ o.n.o.; F.M. tuner less crystals, $£ 3$ pre-
    cision resistors; details and lists, s.a.e.-Box WW210, Wireless World.
    B.B.C. 2 TV. RADIO, TAPE REC. SERVICE SPARES. turers conversion kits your set to Bers, ilst available. Phatips turers conversion kits \& tuners, ilst available. Philips
    625 conversion kit, newincluding 7 valves \& circuit
    $£ 4 / 18 / 6$ (less valves $39 / 6$ ), p/p $6 /-$ GEC/Sobell Dual 405/625 IF amp and output chassis, new incl.
    
     or transistorised $70 /=1$ p/p. 4/6. New Valves tuners,
    GEC transistorised $70 /$ A.B., Philips, Dual standard GEC transistorised 70/. A.B., Philips, Dual standard,
    Brayhead $300330 /-$, Cyldon C $20 /=, \mathrm{K}-\mathrm{B} .16 \mathrm{Mc} / \mathrm{s}$ or $\begin{array}{ll}\text { Brayhead } 3003 \\ 38 \mathrm{Mc/s} & 10 / \mathrm{p} \\ \mathrm{p} \\ 4 / 6 \text {. Many others available. Fire- }\end{array}$ ball tuners, push button tuners, used, $17 / 6$, p/p $4 / 6$. TV Slgnal Boosters, transistorised, Pye/Labgear B1/B3 and UHF battery 75/-, UHF mains 97/6, UHF mast-
    head $105 /-$ post free. LiO.P.Ts., scan colls, frame output transi., mains droppers. étc., for alt popular makes. CRTs 14 . 17,19 inch 1 rom $19 / 5$ (callers only). Tape recorder belts, heads, motors, etc.
    Salvageed components, largee selection transformers. Scan colls. turrets, etc. Enquiries invited, C.O.D. despatch available.-MANOR SUPPLIES, 64, Golders
    Manor Drive, London, N.W.11; callers, 589 b , Elgh Manor Drive, London, N.W.11; callers, 589 b , Eigh Rosd, North Finchley, N. 12 (near Granville Road). Thurscay 1 p.m.

[^13]:    Tolephone:

[^14]:    Printed in Great Britain by Southwark Offet, 25 Lavington Street, London, 8.E.1. and Publighed by the Proprietort, ILifpe Tecumiont Publications Ird., Dorset House, Stamford Bt., London, S.E.1, telephone
     SUPPLY: This periodical la sold subject to the followigg conditions, namely that it shall pot, without the wilten consent of the pubiligers first given, be lent, re-sold, hired out or otherwige disposed of of sale AND at a price in excess of the recommended mazimum price shown on the corer: and that it thall not be lent, re-sold, hired out or otherwise dieposed of in a mutilated condlion or in any unauthorised cover by way of Trade.

