RELAYS
 ex stock in 7 days

*C.S.A. APPROVED IN CANADA AND GREAT BRITAIN

		MHP Plug-in relay 2 pole 81 - each per 100)		1051 t Snap action ricroswitch relay * 7.5 amp. 1 million operations Also available in plug-in version + 715 each per 1000
Single pole 9/7 each per 1000 * 2 pole 5 amp * 5 million ops. min. * $14 / 8$ each per 1000	*MKP Plug-in relay			
made to measure APPROVALS: C.E.G.B. No. 131 \& 92 • B.R. POST OFFICE KRL•U.K.A.E.A.				

* Manulactured to full G.P.O. specification. also to
Industrial Standards
* Contacis up to 30 amp

P33

PLUG-IN RELAY

* Plug-in version to BPO 3000 relay made to measure for Industrial Applications
* Contact ratings up to 10A/750V
* Positive-lock retaining clip
* 30 million operations minimum

CONTACTOR K700 RELAY

\star High-current/highvoltage 3000 -type relay

* Contact up to 30 A 240 V a.c.
* Sensitivivies down 1045 mW
\star PTFE armature
bar/llfting rods

Editor-in-chief:
W. T. COCKING, F.I.E.E.
Editor:
H. W. BARNARD
Technical Editor:
T. E. IVALL
Editorial:
B. S. CRANK
F. MILLS
Drowing Office:
H. J. COOKE
Production:
D. R. BRAY
Advertisements:
G. BENTON ROWELL
(Manager)
J. R, EYTON-JONES
lliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H . Mansell
Dorset House, Stamford Street, London, S.E. 1

Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address
(C) Iliffe Technical Publications Ltd., 1968. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Wireless World

ELECTRONICS, TELEVISION, RADIO, AUDIO

JANUARY 1968

619 A Genuine Reject?
620 Radio Signals from the Heart of Matter
by D. A. Tong
625 R.F. Measurements and Standards
626 B.B.C. Colour Service
628 The PAL Colour TV System
by S. C. Ryder-Smith
634 Emitter-coupled. Emitter-timed Multivibrators by G. B. Clayton
641 Semiconductor Type Numbering
by T. D. Towers
by K. C. Johnson
645 The Design of a Class D Circuit
651 Sub-surface Propagation

SHORT ITEMS

624 A Logical Bassoon
638 P.O. Receiving Station Refurbished
638 Changes in Maritime Radio Regulations
644 Units and their Abbreviations
655 Letter from America

REGULAR FEATURES

619	Editorial Comment	654	Books Received
638	World of Wireless	654	H.F. Predictions
640	Personalities	656	World of Amateur Radio
650	Letters to the Editor		
652	News from Industry		
653	1968 Conferences and Exhibitions	657	January Meetings
	658 New Products		
	Real and Imaginary "Vector"		

[^0]
BEHIND EVERY BRIM OSCILLOSCOPE TUBE ...AN UNRIVALLED PERSONALISED SERVICE
 ov

There's a BRIMAR tube to meet the needs of every oscilloscope designer-ranging from general purpose tubes of medium bandwidth to tubes designed specifically for exacting applications requiring features such as short length, wide bandwidth or dual phosphors. Face plates range from $8 \frac{1^{\prime \prime}}{}$ large displays to $1^{\prime \prime}$ types for numerical and indicator presentations including the latest $7 \times 5 \mathrm{~cm}$ rectangular size.

PIRISONALISEI) 'TECHNICAL SERVICE

Every BRIMAR oscilloscope tube is backed by a firstclass technical service and assistance on any type of problem involving it-from special characteristics to circuit design. BRIMAR engineers are always available - contact is on a personal level. Just phone or write.

The BRIMAR D13-51GH is a modern Mesh P.D.A. $6 \times 10 \mathrm{~cm}^{2}$-area tube, which gives improved brightness, higher deflection sensitivities and higher ratios of screen to deflector voltage with no shrinkage of raster area. The D13-51 GH displays single phenomena up to 30 MHz bandwidth and is suitable for use with transistorised circuits. It needs fewer control voltages than other mesh tubes. Length is only $13 \frac{1}{4}$ ".
We shall be pleased to let you have full details of the BRIMAR D13-51GH and the rest of the interesting range of BRIMAR industrial cathode ray tubes.

Thorn-A.E.I. Radio Valves \& Tubes Ltd. 7 Soho Square, London W1. Telephone:01-4375233

Wireless World

ELECTRONICS, TELEVISION, RADIO, AUDIO

A Genuine Reject?

WHILE the article by T. D. Towers in this issue on transistor type numbers should assist readers in identifying a particular device and tracking down the manufacturers, one is tempted to ask how much faith can be placed in a type number? Large users of semiconductors buy direct from the manufacturers and can have every confidence in the devices they receive. The situation is rather different, however, for the home constructor who requires only a couple of AC 107s. It has become apparent that unscrupulous dealers are stamping reject transistors with well-known type numbers and selling them as genuine items. Type numbers have also bsen altered when a particular device is in short supply; an example of this would be so remove the D from OC 81D. Restamped devices often do not resemble the transistors they replace, electrically or mechanically or both. It is a well-known fact that many transistors will operate, to the detriment of the circuit, under conditions for which they were not intended, thereby facilitating the deception. The deceit is not limited to individual sales of semiconductors; complete equipments and sometimes kits are being marketed that use reject semiconductors, although no mention is made of this in the literature.
The home constructor would blame his own workmanship, lack of knowledge or the circuit he was making when it failed to operate satisfactorily rather than suspect that the semiconductors were not what they claimed to be. We do not deprecate the use of reject transistors; we only object when they masquerade as "on spec" devices.
How can the home constructor recognize these devices? The deception is not easily detected although the print used on restamped devices is usually large and untidy or the new markings are sometimes placed on a plastic sleeve slipped over the transistor. Genuine transistors nearly always carry the manufacturer's name or emblem and usually also a batch number-re-marks have neither of these. Another point to watch for is the case and lead-out configuration; sometimes the re-marks are not even in the correct encapsulation. Because the range using the old European coding "OC" is probably the most common and best known as far as the home constructor is concerned it is these devices that appear to be most often misrepresented.
Our advice is, deal only with a reputable supplier, return any devices that are not what they are claimed to be and beware of the isolated term "guaranteed." Guaranteed for what?

By Numbers

ANOTHER aspect of numbering is raised by a correspondent whose letter is published in this issue. He pleads for a common identification or part-numbering system for components. Instead of each user of a component giving his own part-number to itdepending upon the particular piece of equipment in which it is to be used-there should be, the writer suggests, a British Standard part number that all could use. If this were done it would certainly simplify the specification of components but it would, of course, mean that every variant of the physical and electrical specification of a particular resistor, capacitor, or what have you, would have to bear a different number. Only those most closely concerned with the supply of components will fully appreciate the difficulties experienced in the present jungle, but is the correspondent's suggestion practicable? Perhaps the introduction of i.cs provides a golden opportunity for starting such a scheme.

JANUARY

1968

Radio Signals from the Heart of Matter

An old circuit-the superregenerative receiver-put to a new use in analysis of materials by nuclear quadrupole resonance spectrometry

By D. A. TONG, b.sc., Ph.D.

Abstract

Only too often research into atomic scale phenomena involves large and costly electronic apparatus. Presented here is a technique that can provide useful information about the actual electron distribution within a molecule but which only costs a few pounds to set up. The article should provide enough information to enable the interested electronics experimenter or student to experience for himself the thrill of picking up radio signals from the very heart of matter, the atomic nucleus.

T'HE superregenerative receiver' was widely used by radio amateurs in the early days of v.h.f. because it combines very high sensitivity with great simplicity. Later on as v.h.f. techniques advanced, its disadvantages, i.e., poor selectivity, poor frequency stability and radiation of interference, resulted in its virtual elimination as a serious rival to the superheterodyne receiver for communications work. Since the early 1950s, however, the superregenerative detector has embarked on a new career in a totally different field, that of the branch of nuclear magnetic resonance (n.m.r.) spectrometry known as nuclear quadrupole resonance (n.q.r.)2 spectrometry. Later in this article we will describe simple circuitry with which it is possible to detect n.q.r. in suitable solids, but first it will be useful to discuss briefly the physical basis of the phenomenon itself.

THEORY OF N.Q.R.

A spinning atomic nucleus has a magnetic moment which is colinear with the axis of spin, and therefore can be regard-

Dr. David Tong, who is 26, graduated in chemistry at Leeds University and" received his Ph.D. for research into chemical applications of N.Q.R. He has been a research fellow at the University of Warwick and has recently joined the staff in the Department of Chemistry, University of Glasgow. Dr. Tong has developed an improved superregenerative N.Q.R. spectrometer which is to be produced by Decca Radar Ltd. to which he is a consultant.
ed as a minute spinning bar magnet. Because of its submicroscopic size, however, the motion of such a magnet in a magnetic field can only be described adequately by means of quantum mechanics, and, in fact, differs somewhat from that of a spinning magnet of ordinary size.

When an ordinary bar magnet is placed in a magnetic field, it tends to take up a position of minimum potential energy; that is, with its magnetic moment aligned along the field direction as shown in Fig. 1(a). Any small displacement from this position makes the magnet oscillate as shown in (b), until its potential energy has been dissipated by friction, when it again comes to rest. If, instead of being stationary, the magnet is continually spinning about an axis coincident with its magnetic moment (c), it still tends to align along the field (shown by H_{0}), except that any displacement now results in a precession about the field direction (d), instead of a vibration. The behaviour is entirely analagous to that of a spinning gyroscope in the earth's gravitational field, and the angular frequency of the precession is proportional to both the magnetic moment, M, and the applied field strength, H_{0}. Fig. 1 (e) is a vector diagram representation of the precession.
When, on the other hand, one considers the motion of a spinning magnet of nuclear dimensions in a magnetic field, one finds that, unlike the classical magner, it can never align itself completely along the field, to do so would be to violate the Heisenberg Uncertainty Principle. In fact, the angle that the spin axis makes with the field is restricted to one of a limited number of " allowed " values and the spin axis therefore precesses continually about the field direction.

In practice one is not concerned with the nucleus of a single atom but usually with specimens containing exiremely large numbers of atoms. Under such conditions the individual nuclear magnetic moment of one atom cannot be observed and one can only detect the resultant of all the microscopic moments. Not surprisingly, perhaps, this resultant, or " macroscopic", magnetic moment behaves in many ways as if it belonged to a spinning bar magnet as shown in Fig. 1. In particular, it tends to align itself completely along the direction of an applied magnetic field. Then, if the spin-system is suddenly disturbed by suitably applying energy to the sample, the macroscopic moment temporarily begins to precess around the field direction at some particular angle and at a frequency, the "Larmor" frequency, which depends on the nuclear magnetic moment and the applied field strength.

The method usually adopted for transferring energy to the sample is to introduce a second magnetic field at rightangles to the first, but one which is oscillating at a radio

(d)

(b)

SPIN AXIS

(d)

Fig. 1. (o) Equilibrium position of a bar magnet in a uniform magnetic field. (b) shows the oscillations of the bar magnet about the equilibrium position resulting from a small displacement therefrom. Assuming the bar magnet is spinning about its long axis, (c) shows it in its equilibrium position in the uniform magnetic field. (d) shows the precession about H_{0} which results from displacing the spinning magnet from its equilibrium position. In a real system the precession dies away as shown as the potential energy of the displaced magnet is dissipated Finally (e) shows in vector form the precessing magnet in the absence of frictional forces; M represents the magnetic moment of the magnet.
frequency. Such a field is equivalent to two separate fields rotating in opposite directions, and if the rotation frequency is much different from the Larmor frequency, neither has any appreciable effect on the spin system. In contrast, when the two frequencies are identical the effect is considerable, because, no matter how the macroscopic moment precesses, the resultant of the steady field, H_{0}, and the component of the oscillating field which rotates in the same direction as the precession, H_{1}, will always act so as to pull it away from the H_{0} direction. The system is then said to be in resonance, and energy is absorbed from the rotating field. This effect is shown in Fig. 2. In the case of the hydrogen nucleus, for example, the Larmor frequency is 42.577 MHz in a field of 1.0 tesla (10,000 gauss), and is therefore well within the radio-frequency range. All other nuclei have lower frequencies than this.

So far we have only discussed the phenomenon of n.m.r., but it is now only a small step to extend the discussion to explain n.q.r. (Fig. 3). Atomic nuclei with the property of spin fall into two groups according to whether the distribution of their positive charge is spherical or non-spherical. Nuclei in the latter category, in addition to having a magnetic moment also possess an electric quadrupole moment. Such a moment is equivalent to two electric dipoles placed back-to-back, and if a quadrupolar nucleus is present in a non-uniform electric field, it experiences a torque and will tend to align itself with its quadrupole moment (which is co-linear with the axis of spin and the magnetic moment) along the direction of maximum electric field gradient (e.f.g.). Morcover, as the nucleus is spinning, precession at certain " allowed" angles will again occur, but in this case it will be about the e.f.g. direction.

Notice, however, that such precession still involves a precessing magnetic moment and the resultant of a large number of such moments can still couple with a rotating magnetic field. In short, in n.q.r. the interaction energy, and hence the resonance frequency, is determined by an electrostatic field gradient acting on the nuclear quadrupole moment, whereas in n.m.r. the important interaction is that of the nuclear magnetic moment with an external magnetic field. Both effects can be detected by interaction between the macroscopic magnetic moment and a rotating magnetic field.

(a)

(b)

Fig. 2. Interaction of the macroscopic nuclear magnetic moment M with a steady magnetic freld H_{0} and a rotating magnetic field H_{1}. (a) When the frequency of rototion ω is different from the Larmor frequency ω_{0}, M remains aligned along H_{0} and is unaffected by H_{1}. (b) When H_{1} rotates at W_{0}, M experiences a force which pulls it away from the H_{0} direction, about which it precesses.

Fig. 3. (a) In the case of n.m.r., the component M^{\prime} of M rototing in a plane perpendicular to the steady field direction induces an alternating voltage in the sample coil. (b) The case of n.q.r. in powdered somples is similar, except that H_{0} is not present and M, which is now the resultant of a large number of macroscopic moments each precessing about a different direction, is accompanied by an equal and opposite moment rotating in the opposite direction.

The main difference between the two techniqu s in practice is that a large external magnetic field must be applied to the sample to detect n.m.r., and by varying the field strength the resonance frequency can be brought into a suitable range. The e.f.g. necessary for n.q.r., on the other hand, is already present in most crystaline solids and the resonance frequencies are fixed. The e.f.g. arises from the detailed electron distribution within chemical bonds, and since the n.q.r. frequency depends directly on the e.f.g. important information about these distributions can be obtained. Typical n.q.r. frequencies range from as low as 5 MHz right up to several thousand, depending on the properties of the particular nucleus and the type of compound.

THE SUPERREGENERATIVE DETECTOR

Having looked at the magnetic resonance phenomenon, we can now return to what is probably more familiar ground and see where the superregencrative receiver enters the picture. We have mentioned that to excite a resonance it is necessary to place the sample of material in a coil which is supplied with r.f. current. This can be done very conveniently by making the coil part of the tank circuit of an oscillator. The system can then be easily tuned over the necessary wide frequency range. If the level of oscillation is arranged to be critically dependent on the tank circuit Q, as in the so-called marginal oscillator, the sudden absorption of energy by the sample as the oscillator passes through the resonance frequency causes a drop in r.f. level and provides a means of detecting the resonance. Such oscillators, many of them very simple, are widely used for studying n.m.r. For n.q.r., however, considerably greater values of H_{1} are required, and this is where the superregenerative oscillator (s.r.o.) comes into its own, for even when a superregenerative receiver is adjusted for maximum sensitivity, the average r.f. level may be several volts. In fact, it behaves also as a low-power transmitter-as anyone knows who has tried to operate two such receivers within half a mile of each other.
The s.r.o. can successfully combine high sensitivity with high r.f. levels because it is sensitive only during a very short interval between pulses, and at this point in the quench cycle the valve anode current, and hence the gencrated shot-noise, is low. During the bursts of r.f. oscillation, however, large peak voltages can be attained without affecting the detection process. There is, though, one important difference between a s.r.o. used for n.q.r. and one used as a communications receiver. In the lastmentioned case the circuit is adjusted to operate in a com-
pletely incoherent condition because then the gain of the circuit is a maximum, whereas a certain degree of coherence is essential for resonance excitation.

The term " incoherent" refers to the random phase relationships which exist between successive bursts of oscillation when each one builds up from noise voltages only, i.e., when each burst is completely damped before the next pulse starts to build up. When the r.f. output of such an oscillator is monitored on a receiver one finds that there is no definite oscillation frequency present but only a band of noise spread over several hundred kHz . Such a signal is useless for exciting nuclear resonances because negligible power is present in the relatively narrow width (a few kHz) of the resonance line. The situation changes, however, if the oscillations are less severcly damped berween pulses, because then the starting phase of each pulse is determined partly by the tail of the previous pulse and partly by noise. In other words the coherence is increased. The effect on the monitor receiver is to cause discrete frequencies to appear, and since the oscillator is pulsed, they are spaced at integral multiples of the quench frequency on cither side of the oscillator's fundamental frequency.

The available power is now concentrated into narrow frequency bands and many of them are sufficiently strong to excite a resonance in a sample of material placed in the s.r.o. tank coil. Such resonances are then simultancously detected by the circuit because the precessing macroscopic magnetic moment induces an r.f. voltage in the coil, and this voltage provides an input signal for the s.r.o., now acting in its role as a receiver (Fig. 3). The operation might be crudely pictured as that of a radar system: the s.r.o. sends out a pulse which excites the spin-system in the sample, making it ring like a high-Q tuned circuit, and the ringing signal is then picked up as the "response."

In practice, the " ringing" time, or to use its correct name, the "spin-phase relaxation time", is of the order of milliseconds and is considerably longer than typical quench periods (10 to 100 microseconds). This is why the nuclei " see" the r.f. waveform as its Fourier components (or sidebands) rather than as individual

bursts of oscillation, as it appears on a wide-bandwidth oscilloscope.

SUITABLE APPARATUS

A very simple circuit which has been widely used to detect n.q.r. in the 15 to 50 MHz range is shown in Fig. 4. The circuit is a self-quenched Colpitts oscillator, the quench frequency and coherence depending on the grid time-constant, which can be varied by VR_{1}. It is also self-detecting because when a signal is present the quench rate increases slightly, and this results in an increased voltage drop across the anode load resistor. After filtering out the quench frequency components the audio output signal is amplified in a conventional lownoise preamplifier, such as that of Fig. 5.

A suitable setting for VR_{1} can be arrived at by monitoring the r.f. output on a receiver, the correct adjustment being half-way between that giving a very sharp series of sidebands and that which results in a broad band of noise. Since the gain of the derector depends on the coherence, VR_{1} can also be adjusted by observing the noise level at the output of the preamplifier. In this case the correct setting is somewhere between the ones giving maximum and minimum noise amplitudes.

In order to observe a resonance line directly, some method is required of repetitively sweeping the oscillator frequency back and forth over a range of up to several hundred kHz , while simultaneously observing the output on an oscilloscope. Many oscilloscopes have a terminal which allows a connection to be made to the timebase output, and if this is the case, it is only necessary to connect this output in such a way as to always reversebias the variable capacitance diode D1. Care must be taken, however, not to exceed the maximum rated reverse voltage for the diode (30 V for the BA110), or to drive it into forward conduction. The depth of modulation can be adjusted by both VR_{2} and C_{2}. If a sweep output is not available from the oscilloscope, a sinusoidal sweep can be obtained from a mains transformer giving say 20 V output, together with a suitable battery connected so that the diode is never forward-biased. Finally, if an oscilloscope is not available, it is still possible to detect a resonance by listening to the output on a pair of headphones or a loudspeaker.

The construction of the circuit should follow good v.h.f. wiring practice, keeping all r.f.-carrying wires as short and direct as possible. Beehive trimmers are suitable for $\mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}, but a good quality tuning capacitor is essential for C_{1}, together with a good slowmotion drive. Since the resonances to be detected are likely to be only two or three times larger than the noise level at first, careful tuning is required, and the

Decca prototype n.q.r. spectrometer. (An automatic frequency marker unit is missing from this particular example and would normally occupy the blank panel space.)

Fig. 5. A suitable audio frequency preamplifier for use with the Fig. 4 circuit.

Fig. 6. Photographically recorded c.r.o. trace showing the ${ }^{35} \mathrm{Cl}$ n.q.r. line in potassium chlorate at room temperature, obtained with a circuit similar to that of Fig. 4, The position of the centre of the resonance line was slightly different on each of the five sweeps recorded because of jitter on the sawtooth generator used for the frequency sweep. Slightly higher signal-to-noise ratios can be expected for ${ }^{35} \mathrm{Cl}$ in para-dichlorobenzene.
h.t. supply should be well smoothed to eliminate hum. The r.f. choke in the cathode circuit is a rather critical component and if the oscillator exhibits dead-spots, i.e., ranges over which oscillations cease, it is likely that the particular choke has a series resonance in the range. The solution is to try a different choke.

A suitable substance which at room temperature gives a strong signal at about 34.27 MHz and another weaker one at 27.01 MHz is para-dichlorobenzene. The signals are due to the n.q.r. of the ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ nuclei, respectively, and the two frequencies are in the ratio of 1.2688 to 1 , which is the ratio of the quadrupole moments of the two nuclei. In nature, the two isotopes occur with relative abundances of approximately three to one and this accounts for the different intensities of the two resonance lines. To observe the stronger, ${ }^{35} \mathrm{Cl}$, line the oscillator should be set to sweep around the 34 MHz region by monitoring on a receiver, or by temporarily injecting a signal at 34.27 MHz into the s.r.o. from a signal generator. Carcful tuning of C_{1} should then enable the resonance signal to be seen (or heard). Final adjustments to $\mathrm{C}_{3}, \mathrm{C}_{4}$ and VR_{1} should then be made in order to obtain best signal-to-noise ratios. With the para-dichlorobenzene sample contained in a glass tube of half-inch internal diameter and packed tightly to a depth of about one inch, a signal-to-noise ratio of at least ten should be attainable with a good oscillator valve. It is important to have as much sample material as possible within the coil volume and therefore the sample tube should have thin walls
and the coil should be wound tightly on the sample tube itsclf.

Because of the sidebands present in the oscillator power specirum, several responses are seen for each true resonance line, and for serious work some way of eliminating all but the fundamental is required. Usually this requires the use of the slightly more complicated externally-quenched s.r.o., but the methods used generally rely on the fact that if the quench frequency is altered, only the fundamental response will be unmoved. Unfortunately, with the self-quenched circuit the coherence, and hence the gain, varies as the quench rate is altered (using VR ${ }_{1}$), but the effect should still be ohservable.

Sometimes the circuit will display apparent resonances which are in fact not due to the sample. These may be recognized by removing the sample, when of course a true n.q.r. signal would disappear. A neater method, however, is to place a small magnet near to the sample, whereat any n.q.r. line will be broadened so much that it will be effectively erased. This effect arises because of the interaction between the individual nuclear magnetic moments and the field, which results in a splitting of the resonance line into several components. The extent of the splitting is dependent on the orientation of the magnetic field with respect to the internal reference axes of the crystal and, in a powdered sample with its random distribution of angles, the effect is to broaden the line. Any line which does not show this behaviour cannot be attributed to n.q.r.

Another effect which can be casily demonstrated is that of temperature. If the sample is heated, the resulting expansion causes small changes in the internal electron distributions of individual molecules and leads to a change in the n.q.r. frequency. If the sample is subject to a non-uniform temperature, caused, for example, by body heat during handling, or by a nearby soldering iron, different parts of the sample have different resonance
frequencies and the line is broadened. It is always advisable, for this reason, to wait five or ten minutes after handling the sample before tryirg to detect a resonarce. Since the n.q.r. frequency depends only on the nuclear quadrupole moment, a constant of nature, and the e.f.g., a property of the particular chemical compound, it has been suggested that n.q.r. be used as a thermometer ${ }^{3}$. Such a thermometer would be useful in situations where frequent calibration is impossible, c.g., remote weather stations or space probes. A suitable sample in such applications is potassium chlorate, whose ${ }^{35} \mathrm{Cl}$ resonance is at 28.2133 MHz at $0^{\circ} \mathrm{C}$. Its advantage lies in its low natural line-width of about 500 Hz , which means that more accurate frequency measurements are possible, and in its fairly large temperature coefficient of about -4.8 kHz per degree.

Other nuclei whose n.q.r. frequencies fall in the frequency range of the circuit of Fig. 4 are ${ }^{69} \mathrm{Ga},{ }^{[1} \mathrm{Ga}$, ${ }^{63} \mathrm{Cu},{ }^{65} \mathrm{Cu}$, and ${ }^{59} \mathrm{Co}$. Cobalt and gallium compounds are not readily available but a suitable copper compound is cupric oxide. This shows two broad resonance lines at 25.955 MHz and 24.028 MHz , at $28^{\circ} \mathrm{C}$, corresponding to the ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ nuclei respectively. Finaily, to give the reader an idea of the results 10 expect with the apparatus described, a photograph of the ${ }^{35} \mathrm{Cl}$ n.q.r. line in potassium chlorate at room temperature is shown in Fig. 6.

In conclusion the writer would like to point out that apparatus basically identical to that described above is being used in laboratories throughout the worll for serious research in n.q.r.

REFERENCES

1. "Superregenerative Reseivers," by J. R. W"hitchead. Cambridge University Press, Cambridge (1950).
2. H. G. Dehmelt. American Tournal of Physics, 22, 110 (1954). 3. J. Vanier. Metrologia, 1, 135 (1965).

A Logical Bassoon

THE bassoon is notorious for the difficulty of its fingering (the pattern of raised and lowered fingers necessary to produce a particular note), and certain orchestral passages such as in Stravinsky's Rite of Spring, can daunt the most accomplished player. Dr. G. S. Brindley, F.R.S., a physiologist at Cambridge University, has attempted to ease the player's task by designing a new iype of bassoon which uses electronic logic circuits to simplify the fingering. He gave a demonstration of the new instrument, which is based on a German bassoon, at a meeting of the British Acoustical Society held at the B.B.C. Research Department on 5th December.

Acoustically the Brindley bassoon is similar to a conventional instrument except that the acoustic column, constructed from Sapele wood, is of rectangular crosssection instead of circular. The player's fingers operate a set of keys incorporating micro-switches, and the on-off signals from these are fed to diode-transistor logic circuits which control solenoids powered from a 24 V supply. The solenoids raise and lower pads over the holes in the acoustic column. "The logic circuits are arranged to separate the "holing" (patterns of open and closed holes) from the fingering, so that for each note it has become possible to choose the holing that is best acoustically and the fingering that is best for facility. (It would
be possible to use a fingering system as for the piano.) First the microswitch signals are fed into "recognition" logic circuits-a series of AND gates-where each pattern of raised and lowered fingers causes a particular "note output " terminal to be activated. The signals from these terminals then pass into "programming" logic, comprising a series of OR gates, the outputs of which directly operate the holing solenoids. All the electronic circuitry, except the solenoid power supply, is mounted on the outside of the acoustic column.

Another helpful innovation in the bassoon is a $15-\mathrm{W}$ electric heater, which is used not only to get rid of condensation but to tune the instrument. When being played the bassoun stands on the floor between the player's legs and causes no obstruction to his line of sight. Ordinary bassoon reeds are used. The timbre has a slight suggestion of saxophone quality.

Also at the B.A.S. meeting H. D. Harwood (B.B.C. Research Department) described and demonstrated a new B.B.C. monitoring loudspeaker which is outstanding in both its freedom from colouration and its repeatability of frequency characteristic. This has been achieved mainly by the use of a new cone material, a type of sheet polystyrene called Bextrene, which is shaped by a vacuum forming technique.

R.F. Measurements and Standards

SINCE July the British Calibration Service has been in operation and is seeking to establish centres of expertise in r.f. measurements on a larger scale than has been possible hitherto. An indication of the interest in r.f. measurements and standards, which until recently suffered from lack of official support and recognition, was provided by the attendance of about 150 at a conference on the subject held at the National Physical Laboratory from November 14th to 16 th. Organized by the Institution of Electronic and Radio Engineers in collaboration with the Institution of Electrical Engineers, the conference was formally opened by Sir Leonard Atkinson, president-elect of the I.E.R.E., and a total of 18 papers was presented.
There is nothing comparable in this country to the strong central facility in the United States at the Radio Standards Laboratory of the National Bureau of Standards, although a new Division of Electrical Science has recently been formed at the National Physical Laboratory and one of its first tasks will be to establish a laboratory for r.f. mealsurements. Close co-operation with other European countries is also desirable and it might be a sensible plan to arrange some division of the work between countries if we are to attempt to reach the same standards of accuracy as the N.B.S. over the whole field of measurement.

COMPARISON WITH ABROAD

At the conference a review of the present position in measurement capability presented the state of the art in the U.K. in comparison with the range of standards developed in Europe and the United States. The fields covered in the range 100 kHz to 3 GHz were frequency, power, impedance and reflection co-efficient, current and voltage, attenuation, noise, field strength and power density. It was clear that further effort was required in several fields to match the best of foreign standards but at least one speaker made the point that small teams in this country had achieved results in their selected areas quite as good as those, for example, of the N.B.S. The Electrical Inspection Directorate of the Ministry of Technology, has played a leading part in improving our r.f. standards and measuring procedures and standards of impedance, power, attenuation and bridge and reflectometer methods were described. Developments are in progress to extend the accuracy of impedance standardization to 0.1% over the range 200 MHz to 3 GHz and with a new piston attenuator it is hoped to achieve an accuracy of $\pm 0.01 \mathrm{~dB}$ in 100 dB . The present accuracy of power measurement is $\pm 1 \%$ between 2 and 80 mW but a new form of dry load calorimeter is under construction. This makes use of a sensitive thermal convertor of the multi-junction type developed by Wilkins at N.P.L. to detect the temperature rise in the metal-film load resistor. The frequency range is from audio frequencies to about 5 GHz and the expected accuracy is $\pm 0.2 \%$ for powers of 40 mW to 4 W .
Another approach to power measurement was described by Marconi Instruments in developing a range of commercial power meters extending from 100 mW to 1 kW . Unlike the E.I.D. instrument the thermo-element is here incorporated in the r.f. circuit, the heater of the junction forming part of the connection to the load resistor. By adopting a thin-film form of construction for the heater and by changing from co-axial to slab-line
geometry the insertion of the thernal element can be arranged without causing appreciable discontinuity. The e.m.f. generated by the thermo-junction is very nearly proportional to the (current) ${ }^{2}$ passing to the load resistor and is read on a millivoltmeter calibrated directly in total incident power to an accuracy of $\pm 5 \%$.
Thin films form the load resistors in both the E.I.D. and Marconi instruments: they also find application at the other end of the system in the source resistor of the thermal noise standard developed by Ferranti. The resistor, an alumina tube coated with pyrolitic carbon, is maintained at a temperature of $1,000^{\circ} \mathrm{C}$ in a vacuum enclosure. It is matched to a 50Ω coaxial line at the operating temperature. There are indications that the present temperature co-efficient of resistance, amounting to several parts in 10,000 , can be reduced and this will enable the standard to be used over a range of temperature, indicated by a platinum/rhodium thermo-couple, without appreciable mis-match. These sources have been examined on the noise comparator designed by the Services Valve Test Laboratory and the mean value at 300 MHz agrees closely with two different types of noise diode, giving confidence that an absolute accuracy of $\pm 0.1 \mathrm{~dB}$ has been achieved. Comparison with other sources suggests that this holds up to 1 GHz .

The measurement of attenuation is central to many r.f. procedures and several papers described methods for the comparison of attenuators. The arrangement favoured by both Marconi Instruments and E.I.D. was parallel i.f. substitution with the standard attenuator operating at a fixed frequency, usually 30 or 60 MHz . This method imposes severe requirements on the linearity of the first mixer stage and in the E.I.D. equipment the thermionic diode used is linear to better than 0.01 dB over the range -7 to -107 dBm , from a frequency of 108 MHz to more than 1 GHz . The sensitivity and stability of the equipment enables a change of 0.001 dB to be detected under good signal-to-noise conditions. The Post Office Research Station has also under development equipment which it is hoped will enable insertion gain and loss to be measured to an accuracy of ± 0.01 dB in 60 dB at frequencies in the range $0-50 \mathrm{MHz}$, the accuracy falling progressively to $\pm 2 \mathrm{~dB}$ at frequencies of $1-2 \mathrm{GHz}$ (see p. 599, December issue).

An interesting paper from the University of Southampton described the problems arising in measurements on very small thin-film and monolithic circuit components, in the frequency range $100-1,000 \mathrm{MHz}$. For thin films it is permissible to scale-up the measurement and the resistance and capacitance per unit area are obtained from test pieces evaporated in concentric form which then provide convenient terminations for the coaxial lines of the admittance/impedance measuring equipment. For monolithic components the measurement must be conducted in situ and it is necessary to reduce the dimensions of the standard 50Ω coaxial lines to an area of about 0.01×0.01 inch while remaining well shielded from each other. The transition is made by the use of a micro-stripline formed by laying a gold ribbon between two layers of dielectric sheet and clamping between thick brass plates. The connection to the chip is made by a gold wire or by extending the gold ribbon but a significant reduction in the residual inductance of about 1 nH can be achieved by making the final link in the form of a uniline.

A view from the audience seating in colour studia 8 at the B.B.C. Television Centre during a rehearsal.

B.B.C. COLOUR SERVICE

FOR the past ten months or so the B.B.C. has been gradually installing colour equipment at the Television Centre, in West London, so that when its colour service was officially inaugurated on December 2nd two production studios, a continuity studio and two mobile control rooms were fully operational. As a result, up to 25 hours of the 30 or so hours of programmes on BBC-2 each week are now in colour.

Each of the two production studios is equipped with four Marconi Mk. VII four-tube cameras and the continuity studio with three Peto-Scott three-tube Philips plumbicon cameras. Peto-Scott cameras are also used in the mobile control rooms. A third production studio, which will be brought into service in the Spring, will have four E.M.I. four-tube cameras. The new studio, which is at Alexandra Palace, is being equipped with three Marconi cameras and will be brought into service in colour in January; until then the news will be in monochrome.

All the cameras are equipped with zoom lenses and not fixed-focus lenses in a turret. The main reason for this being that it is extremely difficult to maintain in a matched condition the colour characteristics of different lenses. Cameras have to be warmed up for two hours before line-up can

Sound controller's position with tape and disc backing facilities, in the sound control room associated with one of the two colour studios.

The vision and lighing control room studio one. It is equipped with what is called a "Q-file " lighting control, made by Thorn, by means of which up to 100 lighting combinations and levels can be pre-set and brought into operation sequentially.

be undertaken and the line-up itself takes a further hour and a half. Care is neccessary to keep the colour temperature of the lighting constant. Colour studios are operating on a level of 1615 lux (150 ft . candles). To provide the extra and more evenly distributed illumination necessary for colour the B.B.C. has developed a dual-purpose lantern one end of which produces a spot source and the other a soft-light.

Cameras are, of course, only partalbeit a crucial part-of the colour installation. The backing-up facilities already in use at the Television Centre include four Ampex 2000 videotape colour recorders (a further two will be installed early in the new year); one mobile Ampex 2000 (a second is planned for next Spring); and one R.C.A. TR70 vision tape recorder for news at Alexandra Palace where a Pye 16 mm telecine unit using a four-tube camera will also be brought into service in January. Telecine equipment at the Television Centre includes four 16 mm and five 35 mm Cintel twin-lens units and a further three will be added in the Spring. Then, of course, one must not forget the field store convertor, developed by Rainger for the conversion of American 60 -field colour signals to 50 fields and vice-versa (described in our October 1967 issue). There is also a SECAM/PAL transcoder.

The PAL system: next page

Service areas of the 14 stations which transmitted colour television on the opening of the service on December $2 n d$ are shown with a line tint. The other stations shown are scheduled to be in operation by early 1969, in foct the first six (Nos. 15-20) are expected to be ready for use in 1968. The key to the stations gives in parentheses the chonnels for BBC-2

General view of the control desk and monitors, only two of which are for colour, in the production control room of studio 8.

1	Crystal Palace Sutton Coldfield		.	,	\cdots	(33)
2				.	.	(40)
3	Wenvoe		.	.	,	(51)
4	Winter Hill		(62)
5	Rowridge			.	.	(24)
6	Emley Moor		\cdots	.	-	(51)
7	Belmont .	\ldots	(28)
8	Tacolneston	(55)
9	Dover	(56)
10	Llanddona	(63)
11	Black Hıll	(46)
12	Pontop Pike	(64)
13	Divis .	.,	,	.	.	(27)
14	Durris .	.	.,	.	\cdots	(28)
15	Walcham	.	-	..	\cdots	(64)
16	Sudbury	\cdots	-	.	.	(44)
17	Oxford	-	(63)
18	Bilsdale	(26)
19	Moel-y-Parc	(45)
20	Balcalk ..		.	\cdots	..	(63)
21	Mendip Forest	.	.	\cdots	.	(64)
22	Sandy Heath	.		.	.	(27)
23	Caradon Hill	(28)
24	Craigkelly			\cdots	.	(27)
25	Londonderry			.	.	(55)
26	Heathfield				.	(52)
27	Staffordshire			.	,	
28	North Hampsh			\cdots	-	(45)

THE PAL COLOUR TV SYSTEM

A simplified explanation of how it works

By S. C. RYDER-SMITH, b.Sc.

1TEIEVISION set giving a black-and-white picture is a fairly complex piece of equipment. With colour the complexities obviously multiply, and a host of fresh terminology is introduced into the subject. What follows is an attempt to explain, in fairly simple terms, how the PAL system operates. The explanation offered goes no further than outlining the background theory, and building on this to the point where a PAL receiver block diagram can be understood.

The first question to be considered is: how can we set about analysing the colour content of any scene, and then reproduce the scene so that the full range of colours is preserved? Fortunately, the solution to this problem has already been discovered in colour photography, and is fairly familiar. A colour may be analysed into its red, green and blue components, and then reconstructed by adding red, green and blue light in the same proportions as discovered in the original. This is illustrated in the simple colour television system shown in Fig. 1.

In this system three television cameras view a scene simultaneously. One, by looking through a red filter, transmits the red component only, the next, with a green filter, the green component only, and the last with a blue filter, the blue component only. Each camera output drives a cathode ray tube monitor. The monitor receiving the " red " camera output has a red filter in front of it, and therefore gives a red image, which is focused by a lens on to a viewing screen. The monitors receiving the "green" and "blue" outputs similarly give green and blue images on the viewing screen, and so the original scene is reconstructed in full colour.

The major difficulty with this scheme is the impossibility of aligning the three separate colour-component pictures, red, green and blue, as each is taken from a slightly different viewpoint. The answer, at the camera end, is to use a single camera lens system, and, with suitable mirrors and filters behind the lens, separate out the red, green and blue parts of the image, and project each on to a separate camera tube. (See front cover.)

S. C. Ryder-Smith graduated from Queen Mary College, University of London, with a degree in Electrical Engineering in 1956. After initial training as a graduate apprentice with S.T.C. he joined the staff of their transistor division applications laboratory. Here, besides general circuit design work, he made a special study of voltage breakdown in transistors, and published various works on this subject. He now heads the market developments group in the S.T.C. component marketing division.

At the receiver end of the chain, there is also the problem of aligning the three scparate colour pictures, and presenting them on a single screen. This may be overcome by depositing three different phosphors, in some pre-determined pattern, on the screen of a c.r.t. which is equipped with three separate electron guns. One phosphor emits red light when excited, another green, and the last blue. It is arranged that the three electron beams coming from the guns scan together under the influence of a single set of scan coils, but that the beam from one gun can excite only the red phosphor, the beam from the next gun only the green, and the beam from the last gun only the blue. The way in which this is achieved in the shadowmask tube has been described in detail in the March 1967 Wireless World but a diagram from this article is repeated here as Fig. 2 to show the basic principle. A tube of this sort is capable of producing three superimposed pictures, one red, one green and one blue, in which the strengths of the red, green or blue components can be independently varied by changing the grid voltages on the appropriate electron guns.

A more practical form of the colour system shown in Fig. 1 can now be devised. This is shown in Fig. 3.
The system arrived at in Fig. 3 would make an excellent basis for a colour service, if it weren't for two drawbacks. In the first place, three separate transmission paths are needed, and hence three times the bandwidth. Secondly, any normal black-and-white receiver could receive only one of these colour signals, and would get a picture with grossly distorted tonal values (equivalent to looking at a scene through a strong red, green or blue filter).

The problem, then, is to find a way of transmitting the R (red,) G (green) and B (bluc) information in such a way that a black-and-white set, with no modifications, will display a good picture with no tonal distortion. In addition, the total bandwidth used for the transmission must be no greater than that allocared for normal black and white, and yet a colour receiver must be able to recover from this signal the R, G and B information.

The way in which the R, G and B signals are coded to form a single combined signal for transmission is ingenious. First, a new signal, Y, is formed, by adding portions of the R, G and B signals:

$$
Y=0.30 R+0.59 G+0.11 B
$$

In this equation, it is assumed that a maximum red output is represented by $R=1$, and a zero red output by $R=0$. A similar assumption is made for G and B.

By adding together the red, green and blue picture signals in this way, what results is a signal representing the blaek-and-white view of the scene. A normal monochrome set can therefore receive the Y signal and reproduce the correct black-and-white picture. The reason why only 0.11 of the blue signal is used, whereas 0.59 of the green is used, is a matter of human physiology. The human eye is much less sensitive to blue than to green. A bright green appears to the human eye lighter

Fig. 1. Simple colour television system.
> (Below) Fig. 2. Principle of shadow mask c.r.t. : (a) beams converging on mask and diverging on to screen; (b) close-up of mask and screen.
than a bright bluc. Therefore, when a brilliant green is being televised, $G=1, R=B=0$, and $Y=0.59$ (a light grey). When a brilliant blue is being televised, $B=1$, $R=G=0$, and $Y=0.11$ (a darker grey). Producing Y according to the equation given above therefore results in a black-and-white picture with a tonal range acceptable to the human eye.

So far, the encoding described has merely reduced the colour signals to a black-and-white signal. How does a colour set separate out the original R, G and B signals?

First, for the sake of compatibility with black-and-white sets, it has been necessary to produce the Y signal. Further independent signals must now be provided so that a colour set can use them in conjunction with the Y signal to produce the original R, G and B information. There are, in fact, two additional signals:

$$
(R-Y) \text { and }(B-Y)
$$

and these are called colour-difference signals because, as can be seen, they result from subtracting the Y signal from colour component signals.

Adding the Y signal to the two colour difference signals gives

$$
\begin{aligned}
& (R-Y)+Y=R \\
& (B-Y)+Y=B
\end{aligned}
$$

Therefore a colour receiver can use the incoming Y, ($R-Y$) and ($B-Y$) signals to produce the original R and B signals. There is still the problem of obtaining the G signal in the receiver. This can be done by making use of the following mathematical relationship.
$0.30(R-Y)+0.59(G-Y)+0.11(B-Y)$

$$
\begin{aligned}
& =0.30 R+0.59 G-0.11 B \\
& \quad-0.30 Y-0.59 Y-0.11 Y \\
& =0.30 R+0.59 G+0.11 B \\
& -Y(0.30+0.59+0.11) \\
& =0.30 R+0.59 G-0.11 B-Y
\end{aligned}
$$

But $Y=0.30 R+0.59 G+0.11 B$
$\therefore 0.30(R-Y)+0.59(G-Y)+0.11(B-Y)=0$
It follows from this that

$$
-(G-Y)=\frac{0.30}{0.59}(R-Y)+\frac{0.11}{0.59}(B-Y)
$$

In other words, if the two incoming colour difference signals $(R-Y)$ and $(B-Y)$ are added together in the correct proportion, and the sign of the resulting signal is changed, a signal equal to ($G-Y$) can be produced.

A simplified schematic of the decoding in the receiver is shown in Fig. 4.

Fig. 3. More practical form of Fig. 1 system.
Note that the final comparison between the colour difference signals and Y is achieved by feeding a negativegoing voltage proportional to Y (indicated as $-Y$) to the cathodes of all three electron guns, while voltages proportional to the colour difference signals are fed to the grids of the appropriate guns. The beam current in any gun is determined by the difference between the cathode and grid voltages. Thus, in the red gun the beam

SUPPRESSED CARRIER MODULATION

NORMAL AMPLITUDE MODULATED SIGNAL
Fig. 5. Suppressed corrier modulation compared with a.m.
oulated signal

CHANGE-OVER SWITCH POSITIONS

MODULATED IMPUT

Fig. 6. Suppressed corrier demodulation in the receiver.

Fig. 7. Demodulator oscillator 90° out of phase.
current and hence the amount of excitation of the red phosphor, is proportional to:-

$$
R-\bar{Y})-(-Y)=R
$$

Similariy, for the green and blue guns:

$$
\begin{aligned}
& (G-Y)-(-Y)=G \\
& (B-Y)-(-Y)=B
\end{aligned}
$$

The same effect could be produced by adding the colour difference signals to the Y signal before reaching the colour tube.
It has already been noted that the Y signal gives a good black-and-white representation of the scene being televised. What do the colour difference signals represent? First, assume that a scene containing no colouronly black, white, and the intermediate greys-is being televised. Pure white may simply be defined as having equal quantitics of red, green and bluc. Thercfore $R=G=B=n$, where $n=1$ for full white, intermediate values for greys, and zero for black.

$$
\begin{aligned}
Y & =0.30 n+0.59 n+0.11 n
\end{aligned}
$$

The colour difference signals become

$$
\begin{aligned}
& R-Y=n-n=0 \\
& G-Y=n-n=0 \\
& B-Y=n-n=0
\end{aligned}
$$

Therefore, when a black and white picture is being transmitted, Y continues to have a valuc representing the tonal value, or luminance of the scene, but the colour difference signals disappear. The colour difference signals only have a value once colour is introduced into the scene. It becomes obvious therefore, that the function of the colour difference signals is simply to provide information as to the colour of a scene, while the brilliance, or luminance, of the scene is conveyed in the Y signal. For this reason, the Y signal is called the luminance signal and the $(R-Y),(G-Y),(B-Y)$ signals are called the chrominance signals.

Experiment has shown that while the human eye is sensitive to detail arising from differences in luminosity, it is relatively insensitive to details arising from colour changes only. A benefit of this is that while the Y signal must be transmitted at full bandwidth to get good definition, the chrominance signals can be transmitted with a considerably reduced bandwidth.
The remaining problem in constructing a practical colour television system is how to transmit the ($R-Y$) and ($B-Y$) signals without (a) increasing the overall bandwidth of the system, and (b) interfering significantly with the operation of a norınal black-and-white set displaying the picture due to the Y signal.
The methods described so far are common to all colour systems. Where
N.T.S.C., PAL, and SECAM differ is in the methods adopted in transmitting the $(R-Y)$ and $(B-Y)$ signals.

Most of the credit for making colour television possible must go to the developers of the N.T.S.C. system. PAL is basically N.T.S.C. with modifications based on the now extensive experience of the problems and operation of N.T.S.C. in the U.S.A.

N.T.S.C. TRANSMISSION SYSTEM

The basic problem has been outlined above: How to transmit the $(R-Y)$ and ($B-Y$) signals in addition to the Y signal without increasing the transmission bandwidth, or interfering unduly with the reception of the Y signal by a normal black-and-white receiver. The problem is complicated by the fact that the $(R-Y)$ and $(B-Y)$ signals can have either a positive or a negative value. Normal methods of modulation deal only in magnitude and not with sign.

The solution adopted in N.T.S.C. has been to use suppressed carrier modulation. A simple way of looking at this type of modulation is to assume that the modulating waveform is chopped by the carrier. The waveforms resulting from this operation are shown in Fig. 5. For comparison, a normal a.m. signal is also shown.

Note that when the modulating signal is zero, with suppressed carrier modulation the output is also zero. With amplitude modulation, on the other hand, a zero modulating signal is represented by a carrier of constart amplitude. Demodulating an amplitude modulated signal is simple: a normal diode detector will do the job. With suppressed carrier modulation, however, demodulation is a major difficulty. The method normally employed is to make use of a second electronic change-over switch operated in exact synch ronism with the modulating switch. The demodulation process is illustrated in Fig. 6.

For this sort of demodulation to work successfully, there must exist within the receiver an oscillator which is not only precisely locked in frequency to the carrier oscillator at the transmitter, but is also closely in phase with the transmitter oscillator. Fig. 7 shows what happens when the demodulating oscillator is 90° out of phase with the incoming signals.

In this case, when the high trequency elements of the output are filtered out, the net output is zero.

Although there is obviously a drawback in the fact that the local oscillator in the receiver must be phase as well as frequency locked to the carrier oscillator in the transmitter, advantage can be taken of this phase sensitivity. It has been shown that if the carrier modulating the signal is 90° out of the phase with the receiver oscillator, then demodulation produces zero output (after filtering the high frequency components). Take the case where the modulated signal and the local demodulating oscillator are exactly in phase, and a correctly demodulated output is being obtained. If a second signal is added to the original modulated signal, having an identical carrier frequency but being 90° out of phase, then this second signal will not produce any changes in the demodulated output, just because it is 90° out of phase. However, if a second demodulator is used, driven from the same local carrier oscillator, but with a 90 phase change infroduced, then this demodulator will produce an output

Fig. 8. Technique for conveying two independent sets of information.
from the second signal, and the original signal will give a zero output. This is illustrated in Fig. 8.

Thus it is possible for a single signal to carry two independent channels of information.
In the N.T.S.C. colour system advantage is taken of this by using a single suppressed carrier modulated signal to convey both the $(R-Y)$ and ($B-Y$) information. The carrier frequency selected is in the region of 4.4 MHz . The Y signal is, of course, transmitted in the normal amplitude modulation mode used for black-and-white transmissions. The suppressed carrier chrominance signal, centred on 4.4 MHz , and containing both the $(R-Y)$ and $(B-Y)$ signals, is then added to the Y waveform, and treated as normal video information.

Although this method neatly solves the problem of transmitted $(R-Y)$ and $(B-Y)$ information with no increase in the overall bandwidth, two questions immediately spring to mind. Surely the chrominance signal will appear on the screen as normal high frequency video? Secondly, will high frequency video arising from the picture content be interpreted as chrominance information, and affect the colour? In other words, the luminance, or Y, signal can interfere with the chrominance signals $(R-Y)$ and $(B-Y)$ and vice-versa.

This cross coupling does in fact occur. But by a careful choice of chrominance carrier frequency-in PAL it is 4.43361875 MHz - the effects can be minimised. The chrominance signal produces a fine and unobtrusive pattern of dots across the screen, and fine detail in the picture content can produce a small distortion in the colour. However, both of these effects are small.

There still remains the problem of ensuring that the local carrier oscillator in the receiver is in frequency and phase lock with the transmitted carrier. This is done by

choosing a part of the transmitted waveform where video information is not present-i.e., during the sync pulse and tly-back period, and transmitting a short burst of carrier. A gate in the receiver separates this from the rest of the video wave-form, and feeds it to the local oscillator to synchronize it.

Although there are, of course, a number of sophistications to the N.T.S.C. system not described here, the main outline of the method has been covered.

PAL

The major shortcoming of the N.T.S.C. system has proved to be its sensitivity to phase errors in the chrominance channel. Fairly exact phase relationships must be kept if proper separation between the $(R-Y)$ and $(B-Y)$ channels is to be achieved. Once phase errors do occur, then false $(R-Y)$ and $(B-Y)$ information is given, and colour reproduction deteriorates. A particularly sensitive area for phase errors to occur is, of course, the transmission path between the transmitter and receiver. N.T.S.C. receivers must therefore be equipped with a " hue" control to correct for these phase errors, and under adverse conditions fairly frequent adjustments to this control are necessary.

The purpose of PAL is to take the N.T.S.C. system, and modify it to make it less sensitive to phase errors in the chrominance channel. This is donc by inverting the carrier phase of the $(R-Y)$ signal on alternate lines. This is why the system is called PAL-Phase Alternation Line. Fig. 9 shows how the phase inversion is obtained at the transmitter by an electronic switch. In the receiver,
a corresponding switch is operated on alternate lines, which restores the $(R-Y)$ signal to its correct phase. The consequence of this phase alternation is that any phase error which occurs during one line is balanced by an equal phase error in the opposite sense in the following line. (Originally, of course, the phase error is always in the same sense on each line. But alternate lines are phase reversed in the receiver to correct the phase alternation of the $(R-Y)$ signal. The phase error is therefore also inverted on alternate lines, and the average phase error is reduced to approaching zero).

It is of course necessary for the receiver to identify what line is being transmitted-one with $(R-Y)$ normal or phase inverted. This is done by phase inverving the burst of colour carrier on aliernate lines in synchronism with the phase inversion of the $(R-Y)$ signal.

In PAL, phase errors in one line are balanced by equal and opposite phase errors in the following line. In a simple PAL receiver, PAL-S, averaging of these crrors is left to the human eye. Where the errors are small, this can be quite satisfactory. However, large errors lead to a coarse line structure, sometimes referred to as the Hanover blind effect. A more satisfactory solution is to perform the averaging electronically. This is done in a PAL-D receiver by means of a delay line which delays the chrominance signal for the exact duration of one line. Each sine of chrominance information, as well as being directly fed to the c.r.t., is also fed into the delay line, and added to the following line, where the phase errors cancel.
The block diagram of a complete PAL-D receiver is shown in Fig. 12. This looks at first rather terrifying.

Fig. 10. Schematic of PAL-D colour receiver.

Taken bit by bit, and in the right. order, however, it turns out to be relatively harmless.

The signal from the aerial is fed into a normal tuner, identical with the tuner used in a b!ack-and-white set. Tlee output of the tuner, at i.f., is fed to the vision i.f. amplifier, from which it goes into the vision detector. The sound signal is picked off from the vision i.f. amplifier, or alternatively, the vision detector, and goes through a normal sound charnel to the loudspeaker.

The video output from the vision detector is fed through a video pre amplifier, a delay line giving a delay of approximately $0.6 \mu \mathrm{~s}$ and the luminance amplifier (basically a normal video output stage). The output signal consists of the luminance signal Y, plus the unwanted, but unavoidable, encoded chrominance information. This output is fed to the cathodes of the three c.r.t. guns. The delay circuit of $0.6 \mu \mathrm{~s}$ is not the main PAL delay line. Its function is to compensate for the short delay which the chrominance signals undergo in passing through the decoding circuits.

Before going through the $0.6 \mu \mathrm{~s}$ delay line, the video signal is also fed to two other circuits. The first is the a.g.c. sync separator. This circuit provides (a) the required sync pulses, which are taken to the line and irame timebases, and (b) an a.g.c. signal which is used to control the gains of the tuner and vision i.f. amplifier. The second circuit to receive the video signal is the chrominance amplifier. Here, that part of the video signal which contains the chrominance information is filtered out and amplified prior to demodulation.

PHASE LOCKING SYSTEM

At this point it is as well to leave the direct chrominance signal path, and follow the parts of the circuit used to provide a correct phase locked carrier for the chrominance demodulation. The burst gate is connected to the output of the first chrominance amplifier. This gate is opened for a short period during the start of each line scan by a signal derived from the line timebase. The colour burst, transmitted to phase lock the local oscillator of the receiver, occurs during the period when the burst gate is open. The burst amplifier therefore receives the colour burst, but no other part of the video waveform. The output of the burst amplifier is compared in phase with the output of the local oscillator, which is crystal controlled.

It will be remembered that the phase of the colour burst alternates from line to line, and that the phase of the colour burst on any one line provides information on whether the $(R-Y)$ signal has its normal phase, or is phase inverted. In fact it is arranged that the colour burst phase changes back and forth by 90°. On one line it leads the required local oscillator phase by 45°, and on the following line it lags the required phase by 45°. The output of the phase detector is, therefore, a signal varying positive and negative at half line frequency. It is arranged that the circuit containing a reactance (variable capacitance) diode used to control the phase of the crystal oscillator is much ton slow to follow the line to line variations in the output of the phase detector. Instead, it takes up a mean position, which is, of course, the required phase.

Meanwhile, the 7.5 kHz (half line frequency) signal at the phase detector is used for two purposes. A bistable circuit is driven from the output of the line oscillator and changes state at the start of each line. Its output is used to phase invert the drive to the ($R-Y$) demodulator on each alternate line, in order to correct for the phase inversion given to the $(R-Y)$ signal on alternate
lines at the transmitter. However, it is obviously necessary to phase invert the $(R-Y)$ demodulator drive on the same lines as which the $(R \sim Y)$ signal is phase inverted. Information on which lines have the phase inverted $\left(R-Y^{\prime}\right)$ signal is contained, as already explained, in the phase of the colour burst. As the alternation in phase of the colour burst from line to line gives rise to the 7.5 kHz signal at the phase detector, this 7.5 kHz signal can be used to identify the line with $(R-Y)$ phase inverted. For this reason, this signal is referred to as the "ident " signal. It is fed to the bistable which is constrained to operate in phase with the ident signal. In this way, the phase inversion of the drive to the $(R-Y)$ demodulator is made to occur always on the alternate lines on which the $(R-Y)$ signal is phase inverted.

A second function of the ident signal is this. When a black-and-white picture only is being transmitted, it is important that no luminance information gets through the chrominance chamnel. If it did, parts of the picture where fine detail were present might appear coloured, and this is obviously very undesirable in a black-andwhite transmission. This problem is solved quite simply. When a black-and-white picture is being transmitted, no colour bursts are included in the video waveform. The 7.5 kHz signal therefore does not appear at the phase detector. In its absence, the colour killer circuit comes into operation, and turns the second chrominance amplifier off. It follows that when the colour bursts are absent, no information at all can get through the chrominance channel.

Let us return now to the chrominance signal at the output of the chrominance amplifier. This is fed into the PAL delay line, and also into a circuit which adds it to the output of the delay line, and another which subtracts the output of the delay line. Remembering that the output of the delay line represents information from the preceding line, in which the $(R-Y)$ information will have an opposite phase, the result of adding and subtracting adjacent lines of information can readily be calculated.

If the signal emerging from the delay line is $\pm(R-Y)$ $+(B-Y)$ then the signal coming from the chrominance amplifier output, representing the following line of information, will be

$$
\mp(R-Y)+(B-Y)
$$

Adding these two lines gives

$$
\pm(R-Y) \mp(R-Y)+2(B-Y)=2\left(B-Y^{\prime}\right)
$$

Subtracting gives

$$
\begin{aligned}
& \pm(\mathrm{R}-\mathrm{Y}) \frac{ \pm}{2(R-Y}(R-\mathrm{Y})+(\mathrm{B}-\mathrm{Y})-(\mathrm{B}-\mathrm{Y}) \\
&= \pm \frac{1}{2(R-}
\end{aligned}
$$

This part of the circuit, the delay line, adder and subtractor, therefore carries out two functions: it provides the phase error correction by averaging between succeeding lines, which is a basic feature of PAL, and it also separates the $(R-Y)$ and $(B-Y)$ signals. Both signals are fed into synchronous detectors (these are the demodulators described earlier). The ($B-Y$) demodulator is driven direct from the phase locked crystal oscillator: The $(R-Y)$ demodulator derives its drive from the crystat oscillator, after it has first passed through (a) a 90 phase shift circuit, and (b) the phase inverter switch described above.

The two demodutators produce at their outputs the original $(B-Y)$ and $(R-Y)$ signals. These then go to a matrix where they are added in the correct proportions to produce the $(G-Y)$ signal. Finally, all the colour difference signals are taken to the grids of the appropriate guns in the shadow-mask colour cathode-ray tube.

Emitter-coupled, Emittertimed Multivibrators

1: Astable Circuits

ASTABLE and monostable multivibrators are well known and widely used pulse circuits. The astable multivibrator switches repetitively between two quasi-stable states generating a series of rectangular pulses. The monostable circuit has one stabie state in which it remains until a suitable trigger pulse is applied, causing it to switch rapidly to a quasi-stable state, in which it remains for a period of time, before returning to its original state; thereby generating a single rectangular pulse for each trigger pulse. The characteristics of these circuits that are normally considered to be of importance are: stability of pulse amplitude and width with respect to changes in supply voltages, temperature, spread in transistor parameters and switching time between states.

The most common forms of the multivibrator circuits are the collector base coupled versions shown in Figs 1 and 2 , in which the timing function is performed in the base circuit. The transistors are normally saturated in order to stabilize pulse amplitude against changes in transistor parameters, but the pulse amplitude is still dependent on supply voltage and pulse durations are affected by changes in temperature. The less well known emitter-coupled, emitter-timed forms of the circuits possess definite advantages in that the timing operation is performed in the emitter circuit resulting in a pulse

Fig. 1. (left) A conventional collector-base coupled astable multivibrator.

Fig. 2. (right) A conventionalbase coupled monostable multivibrator.

Fig. 3. (left) Basic emitter coupled, emitter timed, multivibrotor.

By G. B. CLAYTON b.Sc., A. Inst. P.

Fig. 4. Waveforms of an emitter timed multivibrator.

Fig. 5. Equivalent circuit of Fig. 4. (c) Trl on-Tr2 off; (b) Tr2 onTrl off.
duration which is far less dependent on transistor parameters and, therefore, orr temperature variations. In addition the pulse duration and amplitude can be made less dependent on power supply variations and the minimum switching times for a particular transistor type can be realized. Also a square waveform can be produced and the circuits have a completely " free " collector.

The circuit of an emitter-timed astable multivibrator is given in Fig. 3 and its idealised waveforms in Fig. 4. The circuit loop between the emitter of Tr1collector Tr1-base Tr2-emitter Tr2 and the emitter of Trl is regenerative, so that both transistors conduct together only during the rapid switching between states. As Trl switches on the potential at its collector, and at the base of $\operatorname{Tr} 2$, falls rapidly causing $\operatorname{Tr} 2$ to cut off. The emitter current of $\operatorname{Tr} 1$ is then made up of two components (Fig. 5a), I_{1} flows through R_{3} and I_{2} charges capacitor C causing the porential at the emitter of $\operatorname{Tr} 2$ to fall. After a time $t_{1}, \mathrm{Tr} 2$ comes into conduction again and a regenerative action takes place causing the emitter

Fig. 6. Practical emitter timed astable requiring only a single power supply.

of $\operatorname{Tr} 2$ to be driven suddenly positive. This change is communicated by capacitor C to the emitter of Tr, cutting it off. The emitter current of Tr 2 is then also made up of two components (Fig. 5b), I_{4} through R_{1} and I_{3} charging capacitor C and causing the potential at the
cmitter of Trl to run down for a period t_{2}. Then Trl comes into conduction again and the cycle repeats.
An approximate analysis of the circuit may be carried out if it is assumed that the negative step at the collector of Trl is small compared with the negative supply, the charging currents will then be taken as being constant during the timing periods. The effect of lakage currents will be ignored for silicon transistors.

The negative step at the base of $\operatorname{Tr} 2$ is $x_{r b}\left(I_{1}+I_{2}\right) R_{3}$ which is approximately equal to $\left(I_{1}+I_{2}\right) R_{1}$ since $\alpha_{\alpha b} \approx$ to unity.

Capacitor C must charge by an amount :
$J V=\left(I_{1}+I_{2}\right) R_{1}-\left(\delta V_{B}+V_{b e 2}\right)$
Where δV_{e} is the step at the emitter of $\operatorname{Tr} 2$ and $V_{\text {be } 2}$ is the difference between the base emitter voltage of $\operatorname{Tr} 2$ when switching occurs and the base emitter voltage when the current I_{4} is flowing.
Current $I_{3} \approx I_{1}=\frac{V_{c e}-V_{b e 2}}{R_{3}} \quad \ldots \quad . \quad$.
Continued on page 636

Fig. 7. Woveforms present in the circuit of Fig. 6. (o) taken at the collector of Trl; (b) emitter Trl; (c) the collector at Tr2; (d) emitter of Tr2; all taken with R_{2} at 220Ω. The slope at the top and battom of the waveforms is due to the charging currents not remaining constant. (e) Waveform at the emitter and (f) at the collector of Trl where the timing copacitor $=1,000 \mathrm{pF}$. (g) Collector of Tr 2 when the timing capacitor is reduced to 100 pF , the smallest rise time for o particular tronsistor type is realized. (h) Ubper-collector and lower-emitter of Trl (i) Tr 2 when the timing capacitor $=0.01 \mu \mathrm{~F}$ and $\mathrm{R}: \mathrm{g}=470$ §. The effect of allowing $\operatorname{Tr} 2$ to saturate can be clearly observed.

Fig. 8. Variation of frequency plotted against supply voltage for the circuit shown in Fig. 6 with $C=0.1 \mu F, R_{2}=470 \Omega$.

Fig. 9. Improved astable multivibrotor.

Fig. 10. Showing charging paths in the circuit of Fig. 9: (a) Tr2 onTrl off; (b) Tri on-Tr 2 off.
and

$$
\begin{equation*}
I_{4} \approx I_{2}=\frac{V_{c 1}+V_{e e}-V_{b e 2}}{R_{1}} \tag{3}
\end{equation*}
$$

The time period $t_{1} \approx \frac{\Delta V C}{I_{2}} \approx \frac{\left(I_{1}+I_{2}\right)}{I_{2}} R_{1} C$

$$
t_{2} \approx \frac{\Delta V C}{I_{3}} \approx \frac{\left(I_{1}+I_{2}\right)}{I_{1}} R_{1} C
$$

The term ($\delta V+\delta V_{b e 2}$) is neglected. Substituting for I_{1} and I_{2} gives:
$t_{1} \approx\left[1+\frac{R_{4}}{R_{3}} \frac{1}{\left.1+\frac{V_{c 1}}{V_{e e}-V_{\text {ee1 }}}\right)}\right] C R_{1}$
$\boldsymbol{t}_{2} \approx\left[1+\frac{R_{3}}{R_{4}}\left(1+\frac{V_{c 1}}{V_{e e}-V_{b e 1}}\right)\right] C R_{1}$
$V_{b e 1}$ is assumed equal to $V_{b e 2}$.
If the currents I_{1} and I_{2} are made equal, $t_{1}=t_{2}$, and the frequency is approximately equal to $1 /\left(4 C R_{1}\right)$
Both timing periods are seen to depend on the ratio $V_{c 1} /\left(V_{e e}-V_{b e 1}\right)$ which indicates the possibility of obtaining a multivibrator with very good frequency stability against changes in supply voltage. Increasing the supply voltages, with this ratio held constant, causes an increase in the charging currents, but it also causes the same fractional increase in the voltage step through which the capacitor has to charge. The constancy of the ratio can be assured by using only one power supply and a resistive divider (R_{6}, R_{7}). The need for the second positive supply may be removed by including the resistor R_{3}; the circuit is shown in Fig. 6.

In the above equations we can now replace $V_{c 1}$ by:

$$
V_{c}^{\prime}=V_{c c} \frac{R_{5}}{R_{1}+R_{5}} \quad \text { and } R_{1} \text { by } R_{1}^{\prime}=\frac{R_{1} R_{5}}{R_{1}+R_{5}}
$$

An emitter-coupled emitter-timed multivibrator is required, operating frequency around $100 \mathrm{kc} / \mathrm{s}$ and a markspace ratio not far from unity. The design procedure is as follows. Using $f=1 /\left(4 C R_{1}{ }^{\prime}\right)$, if C is made $0.01 \mu F$ then R_{1}^{\prime} must be 250Ω.
But $R_{1}^{\prime}=R_{1} R_{5} /\left(R_{1}+R_{5}\right)$ so we make $R_{1}=R_{5}$ $=470 \Omega$.
With a nominal supply voltage of 20 V the resistive divider was chosen to give an effective emitter supply of -15 V . This makes $V_{c}^{\prime}=2.5 \mathrm{~V}$. The approximate values of the charging currents are determined from equations (2) and (3). $R_{3}=3.3 \mathrm{k} \Omega . R_{4}=4.7 \mathrm{k} \Omega$. makes $I_{1} \approx I_{2}=3.5 \mathrm{~mA}$. The value of R_{2} determines the amplitude of the signal at the collector of $\operatorname{Tr} 2$. Two different values were tried, 220Ω and 470Ω. It was found that the 470Ω resistor caused Tr2 to saturate. The transistors employed were inexpensive plastic encapsulated general purpose silicon planar type made by Texas Instruments.

Fig. 7 shows the oscillographs taken from the circuit of Fig 6 and demonstrates clearly the effects of altering the values of R_{2} and the timing capacitor.

The frequency dependence of the circuit on supply voltage was measured with $R_{2}=220 \Omega$ and $R_{2}=470 \Omega$. In the former case a supply change from 15 to 25 V caused the frequency to change from 132 to $124 \mathrm{kc} / \mathrm{s}$, whilst in the latter case a change from 15 to 30 V caused a much smaller change in frequency from 126 to $123 \mathrm{kc} / \mathrm{s}$. The frequency dependence of the saturating circuit was also measured with a timing capacitor of $0.1 \mu F$. The results are indicated graphically in Fig. 8. A change of

Fig. 11. Oscillograms taken in the circuit of Fig. 9. (a) collector Tr1; (b) emitter Trl; (c) collector Tr2; (d) emitter Tr2. It can be seen that the mark-space ratio is very close to unity and the top and bottom of the waveforms are flatter thon those of the circuit of Fig. 3. (e) The rise time and (f) the foll time of the waveforms at the collector of Tr2 showing the ropid switching time.
supply from 15 to 30 V changed the frequency by less than 1% overall. The difference in behaviour between the saturating and the non-saturating circuits are considered to be largely due to the terms δV_{e} and $V_{b e z}$ as these alter with changes in charging currents. However, these changes are smaller when Tr 2 is allowed to saturate.

A modified circuit was designed which has the rapid switching and sharply defined waveforms associated with non-saturating operation but whose frequency stability against changes in power supply voltage is superior to the saturating circuit discussed above. The mark space ratio of the waveforms is very close to unity and the pulse height varies little with changes in supply voltage. The circuit is shown in Fig. 9; the emitter resistors are replaced by Tr 4 which acts as a constant current source. Diodes D1, D2 and transistor $\operatorname{Tr} 3$ cause the whole of this current to charge capacitor C during the timing periods.

Assume that a regenerative action has just resulted in Trl being driven into cut off. The constant current supplied by Tr 4 charges capacitor C, the charging path being through Tr2 and D1 (Fig. 10a). D2 and the emitter base junction of $\operatorname{Tr} 3$ are reverse biased. The potential at the emitter of Trl falls at a uniform rate, and, after a period of time t_{2}, Trl comes into conduction and a regenerative action switches off Tr 2 . The forward bias across the emitter base junction of Trl and the voltage drop across R^{*}, prevents D1 from conducting and the constant current charges C through $\operatorname{Tr} 1, \mathrm{Tr} 3$ and D2 (Fig. 10b). The emitter of 'Tr2 falls at the same uniform rate at which the emitter of Trl fell (assuming the $\alpha_{c o}$ of transistor $\operatorname{Tr} 3$ is close to unity), for a time t_{1} until $\operatorname{Tr} 2$ comes into conduction again and the regenerative action switches off Trl repeating the cycle. If we neglect the step in the emitter voltage of $\operatorname{Tr} 2, \delta V$ and the small term $\delta V_{b c 2}$ (eq. 1) capacitor C has to charge through a voltage $\Delta V=I_{c} R_{1}^{\prime}$. Where I_{s} is the constant current

Fig. 12. Variation of frequency with supply voltage for the circuit of Fig. 9. $\mathrm{C}=1,000 \mathrm{pF}$.
supplied by $\operatorname{Tr} 4, R_{1}{ }^{\prime}$ is the effective collector load resistance of Trl. The rate of charging is the same in both
cases $\frac{I_{c}}{C} V /$ sec.
so: $t_{1}=t_{2}=\frac{\Delta V \cdot C}{I_{c}}=C \cdot R^{\prime}$
The frequency of oscillation, $f=1 /\left(2 C \cdot R^{\prime}\right)$. The performance of the modified multivibrator is illustrated by the oscillograms of Fig. 11. The frequency dependence on the supply voltage was measured, a change of supply from 15 to 30 V caused a change of frequency of 0.5%. With a timing capacitor of 1000 pF stability was good and is illustrated in Fig. 12. A change in supply from 15 to 30 V altered the frequency by 0.14% ard the pulse height, at the collector of $\operatorname{Tr} 2$, by less than 10%.
(Next month: monostable circuits)

REFERENCES

1. Mullard Technical Communications. July '61.
2. Mullard Technical Communications. April' '62.

Post Office Receiving Station Refurbished

THE TRANSITION from Nissen huts and manually operated equipment to brick buildings and automatically tuned radio receivers is now complete at the G.P.O. high-frequency (4 to 27 MHz) radio receiving station at Bearley in Warwicks. The new installations cost about $£ 0.5 \mathrm{M}$. This station will combine efficient and reliable reception of long-distance radiotelephone and radiotelegraph communications with the maximum possible economy. Atthough much of the future transoceanic signal traffic will be carried by submarine cables and Earth satellites, h.f. radio can still play a useful role in world communications in lightly loaded routes for communicating with ships and for auxiliary and standby purposes alongside cable and satellite systems.

An outstanding feature of Bearley is the frequency generating equipment which controls the accuracy of the receiver synthesizers. It consists of three 100 kHz crystal controlled oscillators sunk into 30 feet deep boreholes where the temperature remains within about $0.5^{\circ} \mathrm{C}$ of $10^{\circ} \mathrm{C}$ without any artificial control. The accuracy of this master frequency can be maintained to within one part in ten million, with adjustment at about yearly intervals, or, if required, to 1 in 10^{8} with adjustments about once a month. This central master frequency source provides, by synthesis, the extremely accurate beat oscillator frequencies. The majority of the 60 receivers at this station are solid-state i.s.b. types suitable for the reception of telephony or multi-channel telegraphy and were designed by Plessey Electronics Group to a Post

Office specification. The PVR 800 , as it is called, is a quadruple superheterodyne receiver capable of remote control for tuning either to any one of the six predetermined frequencies or by fully synthesized control selecting any one of the 200,000 discrete channels available (in increments of 125 Hz). Because of the accuracy of the synthesized frequencics the receiver can carry out an automatic carrier search process for, and identify, a wanted carrier signal. When the wanted transmission is found, the receiver can automatically maintan correct tuning, providing the transmitter frequency variations do not exceed internationally agreed limits.
The original aerial system has been retained more or less unchanged. A ring of rhombics (70 ft high), efficient over the important band of frequencies above 8 MHz , combines global coverage with facilities for special aerial diversity reception.. Diversity operation is necessary to achieve efficient reception of telegraph transmissions. In this case, two similar aerials spaced several wavelengths apart feed two separate receivers whose outputs are combined. This method of space-diversity reception (compared with single aerial reception) is said to be equivalent to increasing the power of the distant transmitter by upwards of 30 times. All rhombics at Bearley are bi-directional, each rhombic end being terminated at the internal aerial distribution board, where, by means of a wideband passive hybrid network, it can serve up to four receivers simultancously

New Earlh Satellite Station in Australia

WITH work well up to schedule, the new Earth station being built at Morec, in northwest New South Wales, by the Australian Overseas Telecommunications Commission, is expected to be in service by the beginning of the year. The total cost of the project is more than \$A4 million. It is the eighth space communications establishment built or in the planning stage in Australia. The Moree satellite communications station will be employed to link Australia into the Intelsat II satellite system, providing commercial communications and television transmission and reception with North America and major points in the Pacific. Countries which will be served will include the U.S., Canada, Japan, the Philippines, Hong Kong and other countries of Eastern Asia. It will supplement the $\$ A 250$ million broad band coaxial cable system which Australia and other Commonweath partners have built across the Pacific and Atlantic Oceans. The new station will send and reccive signals via the Intelsat satellite positioned directly over Fiji. Intelsat II was launched
from Cape Kennedy for the International Satellite Consortium of which Australia is a foundation.

A high degree of accuracy was required in siting the structure of the Moree Earth station. It had to run precisely due north and south. Margin for error was only 0.000008% or 10 ft in 23,000 miles. The station has been built on a 257 -acre site and it includes a 90 ft parabolic antenna weighing 200 tons, mounted on a four-storey operations building. Australia's other space communications establishments are at Cooby Creek, Queensland, three stations near Canberra, in the Australian Capital Territory, two stations associated with the Woomera Rocket Range installations, and two in Western Australia, at Muchea and Carnarvon. NASA is reported to be considering establishment of a further station in the Canberra area, but no official announcement has yet been made about this project. Altogether more than \$A100 million has been spent in Australia on these projects in the past six years.

Changes in Marilime Radio Regulations

SUBSTANTIAL amendments have been made to those parts of the 1959 Radio Regulations and Additional Radio Regulations which apply to the maritime mobile service. This is a result of the World Administrative Radio Conference which was convened in Geneva on the 18th September by the International Telecommunication Union and which completed its work on 3rd November with the signing of the Final Acts. These will come into force on the 1st April 1969. The amendments have been determined substantially by the fact that since the last revision of the regulations in 1959, there has been a significant drop in the number of passenger ships owing to the growth of air travel, and a notable increase in the number of cargo ships. There has also been a rapid expansion in fishing fleets and other craft.

Thus requirements for radiotelephone and radiotelegraph channels have increased considerably

Among the decisions of the Conference are the following: the gradual introduction up to 1st January 1982 of s.s.b. radiotelephony in the bands allocated to the maritime service between 1605 and 4000 kHz ; the gradual introduction up to Ist January 1978 of s.s.b. radiotelephony in the bands between 4 and 23 MHz ; allocation of frequencies for narrowband direct printing telegraph systems (teleprinters) and data transmission systems; assignment of frequencies for the transmission of oceanographic data; and in general measures to increase safety at sea (signal code, watch on distress signals, etc.), including conditions governing the use of emergency position-indicating radio beacons.

Subscriplion Television

IT APPEARS from American press reports that a decision authorizing subscription television on a regular basis has been delayed for yet another year by Congress. Ever since the Zenith Radio Corporation first demonstrated the technical feasibility of this form of television viewing twenty years ago there has been controversy. The Federal Communications Commission is faced with the problem of putting pay television into operation while providing adequate protection for existing commercial stations who, with theatre owners, strongly oppose such a system, which they say, would ruin "free" television and the theatre. At the same time the F.C.C. has to consider the right of the public to choose a system where they were willing to pay for programmes uninterrupted by commercials.
Here in Great Britain a subscription television system has been operating experimentally in London and Sheffield by Pay-TV and during the past year the programmes have included feature films which were screened six months after general release. An indication of the prospects for subscription television in this country is expected soon from the Postmaster-General.

Communicalions Experiments

THE THIRD in a series of five applications technology satellites, ATS-C, was launched from Cape Kennedy on 3rd November. Among the nine experiments carried on board is one concerned with communications. This will be conducted using two microwave repeaters (receiver/transmitter) which constitute the spacecraft's s.h.f. communications subsystem. Both repeaters operate in three modes, the first two (multiple access and frequency translation) are used in a microwave communications test, and the third mode, wideband data, is used for transmitting television pictures from the spacecraft's spin scan cloud cover camera to the ground. The basic objective of operating the repeaters in the first mode is to evaluate the s.s.b. technique for muitiple access communications. This technique is a promising approach to the development of a multiple access system where two or more ground stations use the spacecraft simultancously, since it affords a maximum number of voice channels in the minimum bandwidth of the overcrowded radio frequencies. The repeaters are operated in the third mode for evaluating a high quality f.m. system for relaying wideband data such as colour television, digital and facsimile signals. The f.m. system used for these tests is a refinement of those installed in the Telstar and Syncom communications satellites.

Sophisticated Surplus

A NEW generation of surplus electronic equipment is now becoming generally available on the open market as computer after computer ends its days at the breaker's yard. For instance, at the recent R.S.G.B. exhibition one could buy a bank of 26 unused thermionic digital indicators neatly mounted on a paxolin printed circuit strip and marked with all power supply voltages for the princely sum of 10 s (less than the cost of one of the indicators). Clearly there are many bargains about provided the reader is prepared to search for them and separate the wheat from the chaff. Some boards are coated with a thin layer of epoxy resin rendering it extremely difficult, though not impossible, to salvage any usable components. A range of boards, ex I.B.M. computers, do not suffer from this defect and in many cases are usable more or less as they stand for the original purpose they were intended. These boards contain gates, bistables, differential amplifiers, etc,, and cost in the region of a couple of shillings each. One example contained four two-input NAND gates that operated quite happily from a $6-\mathrm{V}$
supply; such boards should prove very useful to schools and colleges. Buying these items is semething of a lucky dip and a good deal of time mast be syent in tracing out individual circuits to discover what one actually has. The I.B.M. boards mav be obtained from Pattrick \& Kinnic or L.S.T. Components.

Information Services provided by the I.E.E. in the fields of physics, electrorechnology, and control are known collectively as INSPEC. Exploitation and development of this facility is to be assisted by a grarit from the Office for Scientific and Technical Irformation, and by collaboration with the Institute of Electrical and Electronics Engineers, and the American Institute of Physics. The object of this expansion programme in 1968 is to extend the present service (limited to publication of Science Abstructs and Current Papers) to include a service of selective dissemination of information S.D.I. The above facilities will be changed to a computerbased service, and the present publications will be produced by computer methods from the January issues in 1969. From the same date S.D.I. will come into operation, and magnetic tapes containing data concerning all literature processed by INSPEC will be available.

The possibility of a nationally recognized qualification and title for technician engineers was discussed by 31 engineering institutions and societies and members of the Council of Engincering Institutions on the lst December. The result was that those organizations who are outside the C.E.I. would group into like interests, and each group prepare and submit recommendations for a joint meeting with C.E.I. in February nest.

ANvoUVCEMENTS

Ten weekly lectures on studio audio control equipment begin at the Northern Polytechnic, Holloway, London N.7, on January 11th. The fee is 21 s and application forms can be obtained from the Head of Department of Electronic and Communications Enginecring.

A series of 12 weckly lectures on piezo-electric devices and their applications will be held at Southall College of Technology, Beaconsficld Road, Southall, Middx., commencing January 17th. The course fee is 6 gn .

A course of six lectures on u.h.f./s.h.f. techniques will be held at Nor wood Teclinical College, Knight's Hill, London, S.E.27, commencing 20th February. The lectures will take place each Tuesday evening. Fee is 15 s .

Mr. E. W. Weaver, Director of the London Telecommunications Region of the G.P.O., formally opened London's first p.c.m. telephone link (between Sunbury, Middlesex and Central London) on November 27 th.

A new company, Electronic Brokers Lid., has been formed to collect and offer prompt payment for electronic couinment and components at present lying unused in many British companies. The head office of this company is at $8 \mathrm{Broad}-$ fields Avenue, Edgware, Middx.

A series of one-week courses on vacnum te hnology will be held during 1968 at Edwarde. High Vacuum Ltd., Vanor Royal, Crawley, Sussex. Details are available from the Customer Training Officer.

AEI-Thorn Semiconductors, Lincoln, are providing a maskmaking service for industrial, a ademic and research establishments. Sample masks within ten days are offered. Plates of up to two-inches square can have a registration to within 40 in.

Film strips and slide sets produced by Mullard will now be distributed by Educational Systems Lid., ESL Heuce, Imperial Drive, North Harrow, Middlesex. (Tel: 01-868 4400.)

PERSONALITIES

R. I. Walker has been appointed chief engineer of the Semiconductor Division of the Ferranti Electronics Department at Gem Mill, Oldham, Lancs. Mr. Walker, who has been with the company for seven years, occupying the position of deputy chief engineer, was formerly with the Services Electronics Research Laboratory, at Baldock, where he was responsible in the late 1950s for much of the early development work on silicon mesa transistors. Ferranti also announce the appointment of Alan Williamson as product marketing manager, discrete components, and Brian Down as product marketing manager, intergrated circuits. Mr. Williamson has been with the company for seven years latterly as senior field sales support engineer, and Mr. Down, who was formerly in the application group of the Ferranti Semiconductor Division, has rejoined the company after two years with Texas Instruments.

John S. Walker, M.Sc., F.I.E.E., who recently joined De La Rue Instruments Ltd., as managing director, has for the past 10 years been with Texa Instruments Ltd. where he was latterly manager of the Research and Development Department. From 1949 to 1953 Mr . Walker was at Manchester University where he took a course in physics, which

J. S. Walker
he followed by an M.Sc. course in electrical engineering in 1952/53. He then spent two years with Standard Telephones and Cables. In 1955 Mr. Walker joined International Computers and Tabulators and then the British Tabulating Machine Co. before going to Texas Instruments. Mr. Walker is a member of the I.E.E. Panels on Semiconductor Devices and Integrated Circuits.
G. H. Stearman, B.Sc.(Eng.), M.I.E.E., for the past ten years lecturer at the Col-
lege of Aeronautics, Cranfield, where he specialized in electronics and digital techniques, has joined Feedback Ltd., of Crowborough, Sussex, as development department manager. He obtained his degree at Brighton Technical College and was with Cable \& Wircless Ltd., for

G. H. Stearman
two years before joining Southern Instruments Ltd. in 1951 where he stayed for six years. In 1964 Mr. Stearman was seconded for a year to the National Aeronautical Laboratory at Bangalore.
D. G. Smee, M.B.E., A.M.I.E.E., commercial director of the Marconi Company since 1965, has been appointed chairman of the board of directors of Elliott-Automation Microelectronics Ltd., which forms part of the ElliottAutomation group of companies recently acquired by English Electric (parent company of Marconi). In this new position he will be responsible for coordinating the activities of Marconi and E.A.M. in the field of microelectronics. Mr. Smee, who is 50 , joined the Marconi Company in 1933, working at the Research Laboratories until the outbreak of war in 1939, when he joined the Royal Signals. He returned to Marconi in 1946, and in 1950 became assistant commercial manager. Six years later he was appointed manager of the Company's Broadcasting Division.
D. H. Roberts, B.Sc., M.I.E.E., F.Inst.P., for some time head of solidstate research at Plessey's Allen Clark Research Centre at Caswell, Northants, has become general manager of the company's Semiconductor Division at Swindon in succession to Brigadier J. D. Haig who is appointed general manager of overseas plant operations. Mr. Roberts joined the Plessey laboratories at Caswell in 1953 after graduating in physics at Manchester University. Also transferred from Caswell to the Swindon
production team are: W. Holt, B.Sc., A.R.C.S., aged 34, who joined Plessey in 1961 from Marconi's Research Laboratories, and has been chief development engineer at the Allen Clark Research Centre; R. C. Foss, B.Sc., Ph.D., M.I.E.E., aged 31, principal engineer, integrated circuit development, at the Centre, who joined Plessey in 1964 from E.M.I. Electronics; and M. J. G. Gay, A.M.I.E.E., aged 30, who joined Plessey from the Mullard Thin Film Unit in 1964 and has been in charge of circuit techniques research at the Caswell Rescarch Centre.
S. N. Ray, M.Sc., B.Sc.(Eng.), M.I.E.E., F.Inst.P., acting head of the Department of Electrical and Electronic Engineering, Borough Polytechnic, London, for the past year, has retired. Born in Calcutta in 1902, Mr. Ray came to this country after receiving his M.Sc. degree from Calcutta University in 1925 and continued his studies for his B.Sc. (London) and the Diploma of Faraday House. For 11 years he was in the radio industry and joined the staff at the Polytechnic in 1939. He was senior lecturer in radio engineering until he was appointed principal lecturer in applied electronics in 1961. He has been acting head of the Department of Electrical and Electronic Engineering since V. Pereira-Mendoza, M.Sc.Tech., F.I.E.E., became principal in 1966. The new head of the Department is Kenneth W. E. Gravett, M.Sc.(Eng.), M.I.E.E., A.M.I.E.R.E., who has been senior lecturer in electrical measurements at

K. W. E. Gravett
the Brighton College of Technology. After graduating at King's College, University of London (where he also obtained his master's degree), he served an apprenticeship with the British Thomson-Houston Company at Rugby. He subsequently held appointments at the Post Office Research Station and on the staff of the Battersea College of Technology.

Semiconductor Type Numbering

Some guidelines through the chaos of type code numbers that face you nowadays

By T. D. TOWERS,*

M.B.E., M.A., C.Eng.

THERE is a lovely old proverb that runs: " Who buys has need of a hundred eyes." How true this is when you set out to select a transistor or a diode nowadays from the host of different kinds of type numbers used, either from one of several "standard" sytems in operation, or from the non-standard systems used by individual manufacturers. In Great Britain you can come across transistors or diodes of almost any nationality. If you are going to find your way confidently among them, you have to know something of the basic numbering systems used, and these are discussed individually below.

JEDEC system.-Probably the oldest standard numbering system in current common use is the American " JEDEC." \dagger In this, the Electronic Industries Association (E.I.A.), in the United States, registers devices from specifications put up by manufacturers. It uses a numbering system in which the first numeral shows how many diode junctions the device has, with a " 1 " for a diode, a " 2 " for a triode transistor and a " 3 " for a tetrode. After this initial numeral comes an "N," and then the number in serial order under which the device was registered with the authority. As an example, the " 2 N 914 " is the 914 th triode transistor registered.

By the end of 1967, both 1N (diode) and 2N (triode) numbers registered had passed the 5,000 mark.

Any manufacturer, provided he meets the specification as registered by the original manufacturer with E.I.A., can supply devices to JEDEC numbers. The full details of any individual registered device can be obtained from E.I.A., 2001 Eye St., N.W., Washington, D.C., 20006. Unfortunately, they do not publish an easily available comprehensive authoritative list of JEDEC devices and their characteristics.

PRO ELECTRON system.-Although the JEDEC standard numbering has come into fairly common use in Europe, there is a European standard system, known as "PRO ELECTRON," which is also widely used here in parallel with JEDEC. The organizing authority is the Association Internationale PRO ELECTRON, of 10, Avenue Hamoir, Brussels.

As with the JEDEC system, the manufacturer registers with PRO ELECTRON a device he has developed. Any other manufacturer can then supply devices marked with the same registered number, provided his version also meets the electrical and mechanical specification registered with PRO ELECTRON.

The PRO ELECTRON system has one big advantage over JEDEC. All you can tell from a JEDEC number is whether the device is a diode, triode, etc., and some indication of the time of registration, since low numbers mean the device was registered years ago. With PRO ELECTRON, the letters and numbers used are much more significant.

The PRO ELECTRON type number always has five places: cither two letters and three numerals (as in $\mathrm{BC107)}$ or three letters and two numerals (as in BCY72). The first letter indicates the bulk semiconductor material used: $\mathrm{A}=$ germanium; $\mathrm{B}=$ silicon; $\mathrm{C}=$ gallium arsenide; and $\mathbf{R}=$ compound photo-conductive material.
The second letter indicates the circuit type of the device: $\mathrm{A}=$ signal diode, non-power; $\mathrm{B}=$ variable capacitance diode; $\mathrm{C}=$ transistor, 1.f., non-power; $\mathrm{D}=$ transistor, l.f., power; $\mathrm{E}=$ tunnel diode; $\mathrm{F}=$ transistor, h.f., nonpower; $\mathrm{G}=$ multiple device; $\mathrm{H}=$ field probe; $\mathrm{K}=$ Hall generator; $L=$ transistor, h.f., power; $M=$ Hall modulator or multiplier; $\mathrm{P}=$ radiation sensitive device (photodiode, photo-transistor or photo-conductive device); $\mathrm{Q}=$ radiation generating device; $\mathrm{R}=$ specialized breakdown device; $\mathrm{S}=$ transistor, switching, non-power; $\mathrm{T}=$ controlling and switching device with breakdown characteristics, power (s.c.r. or thyristor, etc.); $\mathbf{U}=$ transistor, switching, power; $\mathrm{X}=$ multiple diode; $\mathrm{Y}=$ rectifier, power; and $Z=Z e n e r$ diode (voltage reference or regulator).
The final three places of the PRO ELECTRON five-place registration number give an indication of the general area of use and a serial number. Where three numerals are used (e.g., BC107) this indicates a device for "entertainment" or "consumer" use; i.e., for radio or television receivers, audio amplifiers, tape recorders, etc. The three numbers run from 100 to 999 . Where a letter and two numerals are in the last three places (c.g., BCY72), this indicates a device for use in industrial and professional equipment. The letters (which bear no significance) in this case start from Z back through Y, X , etc. The accompanying serial numbers run from 10 to 99 only.
Sub-classifications are permitted in certain devices such as Zener diodes, power diodes and thyristors (s.c.rs) in the PRO ELECTRON system. These are indicated by further codings added after a hyphen at the end of the five-place basic number according to a significant system.

For Zeners, the code addition gives information on the nominal voltage and its tolerance. The tolerance appears first as a single letter: $\mathrm{A}=1 ; \mathrm{B}=2 ; \mathrm{C}=5 \%$; $\mathrm{D}=10 \%$; and $\mathrm{E}=15 \%$. The nominal voltage follows as a numeral plus the letter V in the position of the decimal point where necessary. Thus BZY88-C9V1 represents a silicon Zener for industrial use, with registration number Y88, tolerance 5% and nominal voltage 9.1 V

For rectifiers and thyristors, the additional FRO ELECTRON code numbers signify the repetitive peak reverse voltage in volts. Thus BYX35-100 indizares a silicon rectifier for industrial use with registration number X36 and a $100-\mathrm{V}$ rating, while the BTY99-100 represents a silicon thyristor for industrial use with registration number Y99 and a $100-\mathrm{V}$ rating. With

[^1]power rectifiers and thyristors, the cathode is normally connected to the stud mounting. Where the anode is connected to the stud ("reverse polarity"), a final letter R is added. By this a BTY99-100R signifies a reverse-polarity BTY99-100.

Recently supplementary codings have arisen for ordinary transistors, too. You may come across the well-known BC108 in versions coded BC108A, B and C. The final letter suffix in this case denotes a narrowspread selection of current gain within the wider spread limits of the basic BCl 08 device.
Old European coding system.-The PRO ELECTRON system has become widely accepted in Europe during the 1960 s , and is often referred to as the "new" European system. It has replaced the old European system under which semiconductors were indicated by an initial " O " (standing for zero heater volts in the then existing valve coding). After the initial O came a letter in the coding with $\mathrm{A}=$ diode, $\mathrm{C}=$ triode, etc., and a registration number. Many readers will remember with nostalgia such codings as the OC71 transistor and the OA81diode. Devices are still being marketed under this old system, but it is to be expected that they will ultimately disappear.
Japanese system.-Japanese transistors appearing for sale and in equipment in Britain over the last decade have faced engineers with a new set of numbers according to a standard widely used in Japan. The first two symbols of the code are " $2 S$ " for triode transistor, and the third gives an indication of the general characteristics of the transistor according to the following code: $A=p-n-p$, r.f.; $B=p-n-p$, a.f.; $C=n-p-n$, r.f.; and $\mathrm{D}=\mathrm{n}-\mathrm{p}-\mathrm{n}$, a.f. As an illustration, the 2 SA 49 is a $\mathrm{p}-\mathrm{n}-\mathrm{p}$, r.f. transistor with registration number 49.
"Services" standard systems.-On the British market, the user will occasionally come across devices bearing type numbers according to some Government standard.

The commonest of these are the "CV" types, where the type designation consists of the letters CV followed by a four- (and recently five-) digit number. In the future this is likely to be supplemented by a separate British Standard (BS9000) series arising out of the work of the celebrated Burghard Committee.

The British Post Office, too, has in the past issued its own series of semiconductor specifications and users may come across these in a self-evident numbering series, $\mathrm{PO} 1, \mathrm{PO} 2$, ctc.

The only other Government numbering system the

ordinary user is likely to meet is the American "Mil. Spec." series corresponding to the British "CV" system. Under this coding, devices are normally specified as the corresponding commercial JEDEC number with the preficx "JAN" added; e.g., JAN 2N3093 is the Mil. Spec. version of the 2N3093. This is the current procedure, but Mil. Spec. devices may also be found coded under the previous system, where the prefix indicated the branch of the services sponsoring the device. The single JAN prefix now used replaces the separate prefixes USA, USAF and USN formerly used. The "Mil. Spec." jargon name for these devices arose because they were related to a specification document numbered Mil-S19500, where the individual devices were distinguished by a suffix number; for example, the 2 N 914 has the designation Mil-S-19500/373 in its military version.

House Codes.-Most manufacturers sell semiconductor devices under their own special serics of "house" numbers, as well as under numbers according to one of the standard systems. Some of these house codes have woven themselves firmly into the structure of the British market, and it will be long before they disappear

Some guide to the transistor house codings is given in Table I, which shows the more common initial letters used by semiconductor manufacturers in the U.K. Diode house codes tend to be much more numerous and less distinctive than transistor codes and are not therefore included.

Apart from the house numbers put out in published data, semiconductor manufacturers sell a considerable portion of their output under special or "private" house numbers. Little guidance can be given on this to the general user, but, if he comes across a device the characteristics of which he cannot trace, he can always write to the manufacturer (whose name should appear on the device along with the type number).

A final mystifying feature of transistor numbers is that large users frequently lay down their own "in-house" specifications with their own code numbers, and manufacturers mark the devices they supply with these "inhouse" numbers. When you come across one of these, it is, I fear, not easy to find out details of its specification.

INFORMATION ON SEMICONDUCTOR DEVICE TYPES

Having discussed the many different methods of coding a semiconductor device which may be met with in practice, the reader can be forgiven if he thinks: "That is all very well, but where can I go to find out the characteristics of any particular device?" In the case of a device in a standard numbering system such as JEDEC or PRO ELECTRON, he could write direct to the registration authority, but this can be a long and expensive procedure. The ordinary engineer-in-the-street usually turns to one of the commercial publications described below.

The most complete current commercial tabulations of data on semiconductor device types are published by Derivation and Tabulation Associates, Inc., of 32 Lincoln Avenue, Orange, New Jersey, 17050, U.S.A. Three of their publications circulate world wide among semiconductor users.

Transistor D.A.T.A. Book.-This is a characteristics tabulation for virtually every transisior (about 13,000 types at the time of writing) commercially available in the world. It is completely revised biennially in Spring and Autumn, with separate updating supplements in

Summer and Winter. The annual subscription is currently $\$ 30.50$ in the U.K. It does not include obsolete transistors, but there is a separate publication for these.

Discontinued Transistor Yearbook and Replacement D.A.T.A. Book.-This is an annual edition issued each Summer and is a compilation of all discontinued types since 1956. Each edition costs $\$ 15.25$ in the U.K. Diodes are covered by a third publication.

Semiconductor Diode and SCR D.A.T.A. Book.-This covers virtually every type of available diodes and already runs to some 66,000 entries. It is issued in complete revisions in Spring and Autumn and the annual subscription is $\$ 39.50$ in the U.K. These three "D.A.T.A." books give sufficiently detailed tabulation of characteristics for most uses of the devices, and in addition give mechanical outlines. For the user of many semiconductor types, they have become almost "bibles." But they are expensive, and less ambitious students have to turn to more modest publications.

Iliffe's Radio Valve Data.-This data tabulation (covering transistors and diodes as well as thermionic valves) is the successor to the well-known Wireless World Valve Data Manual and still costs only a modest 9s 6 d . Even so, it is probably the best easily available data tabulation for British semiconductor devices, and it has the useful feature of being brought up-to-date regularly

Avo's International Transistor Data Manual.-This rransistor tabulation, issued by Avo Ltd. for use with their commercial transistor tester, is also marketed separately at 45 s . It, too, is a most useful general data tabulation, with many features not commonly found. For example, it contains listings of CV and Russian transistors.

Other commercial tabulations.-There are a number of other commercial listings of transistors published, but they are generally less useful than those described above, either because they tend to go out of date or are aimed primarily at a non-British market. For completeness, however, some of the more easily available are listed helow:
(i) "Techpress" Transistor Specifications and Substitution Handbook, 1967, by Techpress Inc., Brownsburg, Indiana 46112.
(ii) Transistor Specifications Manual, by Foulsham-Sams Technical Books, W. Foulsham and Co., Ltd., Slough, Bucks.
(iii) "Datadex" Transistor Reference Book by M. W'.
table I
INITIALS OF TRANSISTOR HOUSE CODES IN COMMON USE BY MANUFACTURERS IN THE U.K.

C,CP	SGS-Fairchild
DT	Lucas Semiconductors
FI, FK, FM,	SGS-Fairchild
FSP, FT, FV	
GET	Mulfard-G.E.C. (Assoc. Semiconductors)
GM	Texas Instruments
HT	Emihus
M	Motorola
NKT	Newmarket Transistors
P	SGS-Fairchild
PEP	A.E.I. Semiconductors
V	Newmarket Transistors
SE	SGS-Fairchild
TH. TM	Texas Instruments
TK	S.T.C.
ZDT, ZT, ZTX	Ferranti Semiconductors
2G, $2 S$	Texas Instruments

Fig. 1. Simplified mechanical details of the moie common standard JEDEC "TO" transistor ouilines (Typical dimensions only).

Lads Publishing Co., Philadelphia, P.A.
(iv) British Transisior Directory, by E. N. Bradley, Norman Price (Publishers) Ltd., London.
(v) Guide Mondialc des Transistors, by Société des Editions Radio, 9 rue Jacob, 75, Paris, 6.

In all this, it should not be overlooked that if you write to any semiconductor manufacturer he will be pleased to send you information on his devices.

INFORMATION ON SEMICONDUCTOR OUTLINES

In the early days of transistors, fifteen years ago, manufacturers invented their own device shapes and lead configurations, but of recent years there has been considerable standardization.

JEDEC outlines.-As in device numbering, the E.I.A. in the U.S.A. led the way in outlines. It registered the dimensions of certain preferred cases or encapsulations for semiconductor devices under "TO" (transistor) and "DO" (diode) outline standard numbers. Full details of the outlines so registered can be found in the JEDEC publication 12E, "Registered Outhines and Gauges for Semiconductor Devices." You can also find the JEDEC ourlines at the end of the D.A.T.A. publications described earlier.

Some of the registered JEDEC outlines have virtually dropped out of use with time, but certain "standard" ones have been adopied by most manufacturers. In transistors, the commoner outlines in use are TO1, TO3, TO5, TO8, TO18, TO46, TO66, and TO72. Simplified drawings of these are given in Fig. 1.

VASCA outlines.-Over here some moves towards outline standardization have been made. A "Record of Semiconductor Outlines" from the Electronic Valve and Semiconductor Manufacturers' Association, Mappin House, 156/162 Oxford Street, London, W.1, gives details of the VASCA system, in which outlines are registered under an "SO" (semiconductor outline) number related to the American "TO" JEDEC numbers. VASCA also registers semiconductor lead configurations under an "SB" (semiconductor base) series.
I.E.C. outlines.-A separate standard numbering system for registered outlines has been developed by the International Electrotechnical Commission (I.E.C.), 1 Rue de Varembe, Geneva, Switzerland, and issued in their Publication 191-2, "Mechanical Standardizataion of Semiconductor Devices." Both this and the VASCA publication relate their standard outline numbers to JEDEC and to other standards.

CV outlines.-In the numbering of semiconductor outlines, you may come across the British Government CV system which typifies various outlines according to an appendix number to a semiconductor code popularly known as K1007. Thus probably the commonest encapsulation for silicon small-signal transistors appears as K1007/A1-D14, as well as JEDEC TO18, I.E.C. 2-106, and VASCA SO12A.

CONCLUSION

Although we have examined most of the multifarious type and outline coding systems used by manufacturers, it would seem at long last standardization is beginning to take hold. The bulk of semiconductor devices used in the British market in the future are likely to be coded on either the PRO ELECTRON or the JEDEC numbering systems (with a few house codes sprinkled around), and outlines will generally be described by the JEDEC "TO" system.

Units and their Abbreviations

READERS may have noticed that we have been gradually introducing the hertz (Hz) as the name for the unit of frequency in place of c / s over the past few months. Much' was said in support of both of these names in the course of an argument in our correspondence columns early in 1967, but there is no question that the hertz is now being widely adopted and is here to stay. Wireless World therefore intends to standardize on Hz , together with its multiples, $\mathrm{kHz}, \mathrm{MHz}, \mathrm{GHz}$ and THz.

Since the hertz is an internationally recommended name for one of the derived SI (Systeme Internationalc) units,* this seems an appropriate time for $W . W$. to standardize on SI units generally. In practice this means that there are no changes to the most common electrical units and their symbols (V, A, Ω, W, C, J, F, H, etc.). Since, however, SI is really a development of the m.k.s. (metre-kilogramme-second) system and therefore brings in metric units for length and mass in place of British measures, some of the other SI units appropriate to electronics and communications may be rather unfamiliar. A selection of these is listed (right) with comments. With frequency it has only been necessary to change the name of the unit -its value has not been affected. The SI unit names in the table, however, represent units of different size from the older-established units, and so one has to use conversion factors to change the older units into SI units or vice versa.
Although the basic unit of length in the SI system is the metre, it would obviously be impracticable, at the present juncture, to abandon the British inch, foot, yard and other units of length completely. These will still be widely used in physical dimensions, for example chassis and cabinet sizes. We shall therefore adopt a policy of introducing the metric units of length gradually,

[^2]| Quantity | Unit and Abbreviati | on Remarks \dagger |
| :---: | :---: | :---: |
| Short wavelengths (as in light) | micron ($\mu \mathrm{m}$) | Replacing angstrom unit (A) |
| Forse (as in transducers) | newton (N) | $=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$. Replacing pound-force (lbf), poundal (pdl), dyne (dyn). |
| Pressure (e.g. acoustics, transducers) | newton per square metre ($\mathrm{N} / \mathrm{m}^{2}$) | Replacing $\mathrm{lb} / / \mathrm{in}^{2}$, dyn/ cm^{2}, in $\mathrm{H}_{2} \mathrm{O}, \mathrm{mmHg}$, torr, bar, atm. etc. |
| Magnetic flux | weber (Wb) | $=\mathrm{V}$ 5. Replacing lines, Maxwell. |
| Magneric flux density | tesla (T) | $=\mathrm{Wb} / \mathrm{m}^{2}$. Replacing gauss, lines $/ \mathrm{cm}^{\text {b }}$, Maxwells $/ \mathrm{cm}^{2}$. |
| Magnetic field strength | ampere permetre (A / m) | Replacing oersted. |
| Illumination (e.g. selevision, opto-electronics) | lux (lx) | $=1 \mathrm{~m} / \mathrm{m}^{2}$. Replasing footcandle, lumen per square foot ($1 \mathrm{~m} / \mathrm{ft}^{2}$). |
| Luminance | candela persquare metre ($\mathrm{cd} / \mathrm{m}^{2}$) | Replacing foot-lambert, $\mathrm{cd} / \mathrm{ft}{ }^{*}, \mathrm{~cd} / \mathrm{in}^{2}$ |

Conversion factors between SI and other units are given in the N.P.L. booklet "Changing to the Metric System
in some cases using them alone, in others printing them alongside the British units. A similar method of gradual introduction will be adopted with other physical quantities for which the present, non-SI, units are widely used and familiar to our readers.

OUR COVER

THE theme of colour television is portrayed by the dichroic prismatic separation system employed in the Philips three-Plumbicon camera. Several of these cameras, which are marketed in the United Kingdom by Peto Scott, are being used by the B.B.C. for its colour service which opened on December 2nd.

A Critique of Class D Amplifiers for A.F.

2: THE DESIGN OF A CIRCUIT

By K. C. JOHNSON, M.A.

THE first article in this series considered the advantages and disadvantages of the class D principle of operation for power amplifiers in general and for transistor audio circuits in particular. The conclusion formed was that the class D principle does not lead to any overwhelming advantages and that such circuits are not likely to displace the conventional class \mathbf{B} type on any large scale. Nevertheless, they do have considerable intrinsic interest and readers may like to see a circuit that the author has developed which attempts to exploit as many of the special features of the class D principle as possible. This circuit uses the simple feedback form of modulator for generating the switching wave form, despite its comparatively poor distortion characteristics, since any improvement requires unjustifiable extra complexity. The last two stages work in class D; three might have been so employed to give a lower standing current in exchange for a. lower maximum output amplitude and lower efficiency at the larger output levels. The top-cut filter at the output is a simple choke, although some small improvement in performance could be gained by using a more complicated network.

OUTPUT STAGE DESIGN

The circuit diagram of the complete amplifier appears in Fig. 4. It will be seen that the two final transistors Tr6 and $\operatorname{Tr} 7$ are employed as switches to provide a powerful square-wave voltage source from which current is drawn through an audio band filter to the loudspeaker; essentially as shown in Fig. 2 last month. The diodes D2 and D3 are included because the relatively low frequency current required for the loudspeaker in such an arrangement will often be flowing "backwards" with respect to the voltage being generated by the switching action and this backwards current is carried by these diodes. It cannot be carried by the transistors unless they are made to meet severe "symmetrical" ratings in addition to the other difficult requirements, since the currents involved are substantially equal to the peak currents that the devices must be able to carry in the forward direction. Notice that this reverse current is carrying power back from the reactive components in the filter network to the power supply, and that it is directly because of this returning of unwanted power that the class D system is potentially so highly efficient.

The two transistors thus work in conjunction with the diodes opposite to them, as is indicated in the drawing; when large amplitudes are being handled only one such pair is switching the real current at any one time while the other carries little or nothing. Because the variations in the audio signal are comparatively slow it is possible to connect the centre-tapped inductor L_{1} as shown on the diagram without any significant effect on the basic switching action. When, however, real transistors are
being switched at a speed approaching the limit of their capabilities it will always in practice be found difficult to ensure that a perfect "break-before-make" action is obtained, and this inductor helps to prevent any serious build-up of unwanted current due to this transient overlap of transistor conduction. In this circuit the strapping of the bases of the drive stage, $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$, ensures that such overlaps will never be very serious, but the extra inductor costs little and enables the transistors to be switched that tiny bit faster with better standing current. The detailed design of this stage, and indeed of the whole circuit depends on the characteristics of the transistors selected for the positions Tr6 and Tr7. As has been said already this choice is difficult; it it were not so, a complementary pair of devices would be employed and several advantages realized, but at present it is difficult to find a single adequate type and hence an arrangement of the form familiar in conventional circuits is used, where only the drivers Tr4 and Tr5 need be complementary. Accordingly a single transistor type serves for both positions, so that reasonable matching is easily achieved. The device chosen is the Fairchild BC 119 , this allows a maximum current of 1 A , with guaranteed saturation to 1.5 V when the base drive is 100 mA , it has a cut-off frequency of at least $40 \mathrm{Mc} / \mathrm{s}$ and a maximum voltage, at any allowable current level, of 30 V without avalanche breakdown. It is an $n-p-n$ silicon planar epitaxial transistor in a TOS case.

The use of this device, to within its ratangs, fixes the power supply voltage at a maximum value of 30 V . If, as proposed last month, the modulation level is restricted to 60% of the ultimate value on account of the sideband distortion effects, then the available output amplitude at the loudspeaker cannot possibly be guaranteed to exceed $\pm 7.5 \mathrm{~V}$ because of the allowances that must be made for ohmic losses in both the transistors and the filter network. If, moreover, the current is also held within the allowable limit then the maximum useful value will be about $\pm 0.8 \mathrm{~A}$ after taking into account the ripple in the filter. Therefore, the maximum output power that can be guaranteed is 3 W average into a loudspeaker system that has been adjusted to present a load of exactly 9.5Ω. Into a speaker of different impedance the power limit will be lowered, since either the voltage or the current will be unable to reach its full value.

Needless to say any pair of transistors of this type will almost certainly be found to function perfectly well at twice this current and at larger voltages as well, so that more power will in fact be obtainable, but there can be no guarantee of this and neither the manufacturers nor the author can be blamed if devices fail. In a conventional circuit these same transistors can be used up to 60 V where they are always cut off before voltages above 30 are applied. Since the full 1 A current can also be used the power limit for a pair in class B working
is about 14 W into a load of 28 !? over four times more than with class D! For this output to be maintained for any length of time heat-sinks are mandatory, but this presents no real difficulty, while the very high frequency cut-off allows a large factor of feedback to be applied without any serious stabilization problem.

The diodes for the positions of D2 and D3 must be able to carry the same peak voliages and currents as the power transistors and here the selection of a suitable type is even more difficult since the forward voltage drop must be small to avoid unnecessary turning on of the opposite transistor ${ }^{5}$ and the switching speed has to be fast. The Fairchild type EB 383 can stand the reverse voltage, but the published limit values of stored charge and capacitance are barely adequate while the forward characteristic is not specified at all for currents exceeding 50 mA . To be able to guarantee the performance of the circuit a more exotic diode type ought have been employed; unfortunately none are readily available. However, the specimens of EB 383 that the author tested have proved to be entirely satisfactory. The diodes for use with these transistors should really be able to carry a forward current of 1 A at less than 1.5 V , a capacitance of not more than 10 pF and a charge-storage characteristic equivalent to a time of perhaps 10 ns .

The driver stage, comprising Tr 4 and Tr5, requires a pair of complementary devices each capable of delivering a peak current of 100 mA or more to the final transistors, with approximately matched speed and saturation characteristics. Notice that in this form of circuit the drive current is not delivered unless the load demands it, and that the final transistors are not turned on at all unless the output current exceeds perhaps 25 mA in the appropriate direction (due to the low value used for the resistors R_{18} and R_{18}). This low value for the base resistors also ensures that the final transistors are switched off rapidly when required. The driver transistors must be able to stand the full supply voltage without breakdown and have adequate speed, but the current levels
are so much lower that the selection of suitable types is comparatively casy. From the Fairchild range type BC 125 will serve in $n-p-n$ position while BC 126 is the matching p-ri-p device. Both these types are TO5 size but are encapsulated in plastic. The bases of the drive transistors are connected directly together sinçe there is no critical adjustment of cross-over current needed and a bit of "slack" is indeed desirable to reduce the effects of both the top and bottom devices being turned on at the same time.

The centre-tap of the inductor L_{1} provides a symmetrical output for the switching stage and it is from here that the "bootstrap" capacitor C_{s}, the feedback network R_{3}, and the main filter inductor L_{2} are all driven. The value of L_{2} is chosen to be $250 \mu \mathrm{H}$ and represents a compromise between the need to keep down the ripple current at the switching frequency, which causes inefficiency and reduces the available output current, and the requirement that the high audio frequencies must not be restricted. Clearly a more complicated filter network with a sharper cut-off could have been used, but the design of such an arrangement would involve nothing new and, moreover, it is rather doubtful whether the improvement would justify the trouble. Remember that these inductors must be able to carry the full loudspeaker current without magnetic saturation effects being significant, while the resistance of the windings is a major contribution to inefficiency at high power levels and must be kept low. Thus these components must inevitably be comparatively expensive and bulky.

Fig. 5 shows how both of the inductors L_{1} and L_{2} can be made as a single unit using two pieces of standard ferrite aerial rod for the magnetic circuit. If the reader can obtain properly designed ferrite "pot" cores then a conventional winding for each inductor can of course be used, but remember that an adequate air-gap is essential and that the capacitance between the ends of L_{2} must be kept particularly small to avoid high frequencies reaching the loudspeaker leads.

Fig. 4. The circuit diagram of the amplifier.

To construct the coils wind a layer of thin insulating tape round two pieces of ferrite rod 0.3 inches in diameter and 1.5 inches long. $L_{\text {is }}$ is made up of 50 complete figure-of-eight turns of 32 s.w.g. enamel covered copper wire, care being taken to ensure tight packing at the cross-over point. L_{1} consists of $10+10$ turns wound in a single layer, round both rods, using the same wire. The assembly is completed by winding with a layer of insulating tape to hold the turns in place. Using this form of construction the measured values of the coils were: $L_{1}=5.6 \mu \mathrm{H}$. 0.16 ! (each half). $L_{2}=$ $250 \mu \mathrm{H} . \quad 0.8 \Omega$. The 50 or so complete turns required are not difficult to wind by hand and form an inductor with a not too inefficient arrangement of copper, ferrite and air-gap which has a very low capacitance and doesn't require a specially made core assembly. Notice that the mutual inductance of the two coils wound in this way is comparatively negligible so that there is no question of having to connect L_{1} the proper way round, and also that no exact balance between the two halves is necessary.

The loudspeaker is connected directly to this inductor while the d.c. blocking capacitors, C_{9} and C_{19}, in parallel are between the loudspeaker and the power supply. This is a transposition of the arrangement shown in Fig. 2 last month, but there is of course no difference in the method of operation. The change is made partly to avoid the appearance of signal voltages on components which will inevitably be large, but mainly so that the "bootstrap" circuit can draw its current from these capacitors and so get it for "half price." This rather surprising possibility comes from the fact that the voltage on C_{0} remains substantially constant at about half the supply voltage and that the switching circuit maintains this value by an efficient transformation action. If a current averaging 10 mA is drawn from C_{9} then a current of this magnitude will flow in the inductor L_{2}, but the transistors $\operatorname{Tr} 5$ and $\operatorname{Tr} 7$ will carry this current, on average, for only half the time, so that the steady drain at the power supply is only 5 mA or thereabouts instead of 10 . A further power saving in the "bootstrap" action is obtained by using a diode DI, rather than the usual resistor, to draw the current for charging the capacitor C_{8}. This becomes possible in the class D circuit since the regular switching action ensures that this capacitor is fully recharged every cycle of the carrier frequency. The capacitor C_{*} is, therefore, maintained at almost half the voltage of the power supply, when the circuit is in operation, and provides a source of extra voltage to ensure that $\operatorname{Tr} 5$ is adequately saturated when $\operatorname{Tr} 3$ is cut off, in the usual way.
It will be noticed that C_{0} and C_{11} are shown to be connected in parallel on the circuit diagram and also that C_{10} and C_{12} are similarly arranged. This is done simply to emphasize the point that return capacitors for the fast switching currents must be mounted within one inch or two of the transistors to reduce radiation. It will not be practical to mount the whole of the large canacitor that is required at this position. Accordingly it is suggested that a relatively small bart of the capacitance (even $100 \mu \mathrm{~F}$ is only 0.5% of the total) should be mounted close to the transistors while the remainder may perhaps be a few feet away as convenient. It will be seen that these capacitors are not connected as a bridge, but that C_{10} and C_{12} are across the whole voltage while the half-way rail is only bypassed downwards. This is done to reduce the effect on the signal of ripple on the supply due to the use of a simple cheap rectification circuit. If a good smooth power source is available then the capacitors can be used more economically if C_{12}

Fig. 5. Showing how to wind the inductors.
has its negative end transferred to the half-way rail, smaller values will then serve for the same low frequency performance. With this circuit the switching action may start appreciably sooner after switching on if the capacitors are connected as a bridge, but this is not a very important consideration for most applications.

INTERMEDIATE STAGES

The two stages comprising $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ together form the hysteresis circuit shown in Fig. 3 last month. Complementary transistors are used in these positions but the requirements are not as severe as for the more powerful stages, except that $\operatorname{Tr} 3$ has to be able to carry a slightly greater peak voltage due to the "bootstrap" circuit arrangement. The current level is so very much lower that the same types can be used as in the driver stage without any worry about the ratings being exceeded.

It has already been described how the capacitor C_{w} carries a " bootstrap" voltage generated from the switching square-wave by the action of the diode D1. The resistor $R_{1,5}$ is included solely to limit the diode current to a safe value during transients; note that R_{14}, below it, is the main load resistor for $\operatorname{Tr} 3$. The drive voltage developed by this resistor is transmitted to $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$ through the capacitor C_{i}, and the a.c. coupling action of this capacitor ensures that the drive is substantially balanced in the two directions. Thus both $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$ receive adequate currents to make certain that they saturate properly and that the minimum voltage is dropped in the final transistors so as to give both high efficiency and to avoid the generation of second and other even harmonics that would result from unbalance in the action. Once the proper operation of the circuit is established the few microamps carried by R_{16} and R_{1}. become negligible in comparison with the base currents that the driver stage receives through \boldsymbol{C}_{7}. These resistors must be included, however to ensure that there is a sufficient amount of d.c. coupling between these stages to give a satisfactory "self starter" action. If at any time the circuit is not self-oscillating, there is a feedback action which automatically brings the various voltages towards their correct values, since with these resistors in circuit there is a d.c. coupling at every stage round the loop. If, for example, the voltage on the capacitor C_{11} is too low, then this feedback cuts off $\operatorname{Tr} 1$, so that $\operatorname{Tr} 2$ and

Tr3 are also cut off. R_{17} causes $\operatorname{Tr} 5$ to conduct, and the voltage across C_{11} is made to increase. Conversely, if C_{1}, has too high a voltage it is "pulled down" by both $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$. This action may be expected to take a few seconds whenever the amplifier is turned on. As it comes to an end the trigger circuit, $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$, will switch, and when this happens a relatively large current flows through C_{7} so that a powerful action occurs and the correct voltages for the proper working of the amplifier are set up within a few milliseconds.

The coupling from the collector of Tr 2 to the base of Tr 3 is designed to transmit switching edges as effectively as possible. When $\operatorname{Tr} 2$ is turned on the small capacitor C. injects a "shot" of charge into the base of Tr3 so that is comes on very quickly. When turning off is required, the relatively large capacitor C_{6} is available to provide a reverse bias equai to the maximum permitted base-emitter voltage and the comparatively low value of R_{11} allows a considerable reverse current to flow, so that again the action is very rapid. R_{10} fixes the steady base current in the on condition while R_{12} is used to set the voltage on C_{6}. The changes of mark-space ratio that are an essential feature of the action cause small variations in the voltage on the capacitor C_{i}, but these have no serious effect on the working.

The reverse coupling through $R_{\text {, }}$ and C_{6} causes the required trigger effect by contributing a positive feedback current to the base of $\operatorname{Tr} 2$. Again there is a small capacitor to deliver a "shot" of charge to the base, it works both ways this time, and a resistor to give a d.c. action. It will be noticed that this feedback is taken directly from the collector of $\operatorname{Tr} 3$ whereas the resistor R_{1} is included in series with the capacitor C_{3} which transmits the main current to the output stages. This resistor serves two purposes. First, it evens out the quantity of current sent to $\operatorname{Tr} 4$ as C_{7} discharges and its volrages gets less during loud low notes when the markspace ratio may differ from 50:50 by a considerable amount for a comparatively long time. Secondly, it ensures that each action of the trigger circuit is irrevocably started before any significant slackening of the drive to the output stages is allowed to occur.

THE INPUT STAGE

It will be remembered that in the simple feedback modulation arrangement, which was explained last month (Fig. 3) and which is used in this amplifier, the first part of the circuit serves to integrate the error of the system. Notice that this error signal is not small, as in most ordinary feedback systems, since the output from which the feedback is taken is the full size switching square wave without any smoothing from the filter choke $L_{\text {. }}$. It is an essential feature of this system that the low frequency components in this error are kept small by the operation of the circuit. They cannor, however, be made to be exactly zero in this simple arrangement, as will be seen in the final article, and it is this finite error which causes most of the distortion in this form of amplifier.

In Fig. 4 the crror is obtained as a current resulting from unbalance in the negative feedback network formed by R_{1}, R_{3}, R_{3} and R_{1}, and it is made to flow into the base of iransistor $\operatorname{Tr} 1$. The integration action comes from the familiar Miller effect, using the capacitance between collector and base within the transistor itself together with the voltage swing developed at the lower end of R. No extra capacitance is added to ensure that the contribution to this voltage from the resistor R_{3} is made as large as possible in comparison with the swing at the
base of $\operatorname{Tr} 2$. This is because the latter will contain a component due to the positive feedback current from \boldsymbol{R}_{9} and perhaps also some non-linearity which will both introduce inaccuracy into the integration action and hence possible extra distortion at the output. Observe that the value of R_{s} can be altered if an adjustment of the carrier frequency of the finished circuit is required for any reason. The current in Trl thus essentially slides smoothly up and down, with the integration of the error, between limits at which it causes the trigger pair, formed by $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$, to switch by overcoming the positive feedback current from \boldsymbol{R}_{9}.

The level of current chosen for Tr 1 is a compromise between the requirement that the transistor must carry enough to accommodate the necessary swing without serious non-linearity at the emitter, and the need for it to still have sufficient collector voltage, even when $R_{\text {s }}$ is made relatively large, for saturation to be avoided and for the collector-base capacitance to be reasonably constant. The choice of $R_{t i}$ determines this current, since this resistor must develop the right voltage to keep Tr 2 near its switching point, the average value in this circuit is made to be about $120 \mu \mathrm{~A}$. A transistor type must thus be used which has a good performance at low levels of operation, for this the Fairchild BC 114 is very suitable. It has a typical current gain of over 200 at this current as well as both low noise and adequate ratings for voltage and speed. This device again is packaged in plastic but is of the small TO 18 size.

The emitter of this stage is held at almost half the supply voltage by the resistor chain R_{7} and R_{k}, while C_{3} provides a bypass path to the negarive rail. Since the feedback through $R_{i,}$ and R_{2} is fully effective at very low frequencies, due to the inclusion of C_{1} and C_{2}, this arrangement automatically holds the average voltage at the output of the final switching pair at the centre of the available range. This also means that the markspace ratio of the switching square wave is made to have an average value of $50: 50$. Ordinary tolerance resistors will normally serve adequately for the positions $R_{;}$and R_{g}, but their values may be adjusted if more exact fixing of the average level is needed.

The use of a split attenuator for the feedback, with C_{2} at its centre returned direct to the emitter, allows Trl to draw an appreciable amount of steady base current without upsetting this d.c. action, while at the same time it permits a high value of gain to be obtained in the audio band where C_{2} has a low impedance and the attenuator has its full effect. The feedback then sets the overall voltage gain at a value which in this circuit is about 45 times. The input impedance is determined directly by the resistor R_{1}, since the base of Trl is a " virtual earth," and the value chosen, 220 k ! , is a compromise between the gain obtained in the amplifier and the distortions introduced by the inaccuracies in the feedback action due to the current and the voltage swing at the base of Trl.

FEEDBACK ERRORS

An estimate of the magnitude of these inaccuracies can be obtained by considering the working conditions of the first transistor. Its mean collector current is around $120 \mu \mathrm{~A}$ and the variations necessary to give switching of the trigger arrangement will be perhaps $\pm 20 \mu \mathrm{~A}$. Thus the voltage swing at the base-emitter junction needed by the mutual conductance, will be roughly $\pm 10 \mathrm{mV}$, while the base current changes required by the current gain will typically be $\pm 0.1 \mu \mathrm{~A}$. Now these two effects are essentially similar, and as the impedance of
the feedback network as seen by the base is about $100 \mathrm{k} \Omega$, assuming a high impedance at the amplifier input terminals, the current swing is just equivalent to a further $\pm 10 \mathrm{mV}$ so that the two effects can be combined as a single effective voltage of $\pm 20 \mathrm{mV}$ at the base. However, we can if we wish consider this voltage as if it were an extra unwanted input added to the normal input, and its effective value is then $\pm 64 \mathrm{mV}$ as we must allow for the action of R_{1} and R_{2}. The waveform of this voltage corresponds to the integral of the error of the overall feedback loop, by virtue of its derivation. That is to say that it is approximately triangular in shape with the peaks at the well defined constant levels quoted above but with the sloping parts changing with the input waveform. But since the error of the modulation system we are using is known from the theory to be given next month, its integral is also known. Each component of the error will be multiplied at the output by the factor $1-j(2 / \pi)\left(f_{c} / f_{t}\right)(64 / 300)$ where j and the frequency ratio are the direct result of the integration, f_{c} being the carrier frequency and f_{E} the frequency of the error component under consideration; $2 / \pi$ is a constant and the $64 / 300$ is a measure of the magnitude of this effect compared with the input required to give a fully modulated square wave at the output. It will be noticed that this distortion effect appears to be most serious at low frequencies, but as we shall see next month this is just where the basic modulation distortion is least, so that the results are not necessarily so catastrophic as they seem.

A further inaccuracy in the action of the feedback arises from the fact that when the trigger circuit, Tr2 $\operatorname{Tr} 3$, switches there is a small step in the voltage at the base of $\operatorname{Tr} 2$, apart from the quick kick due to the action of C_{3}. This causes a corresponding step in the current through Tr1, due to the action of the integration capacitance in holding a constant voltage at the collector. It has already been pointed out that the use of a relatively large resistor for R_{5} reduces this effect, but even with this circuit the voltage step will be perhaps 200 mV , so that the current will jump about $\pm 5 \mu \mathrm{~A}$. This means that in addition to its smooth integration current change the transistor is carrying a further $\pm 5 \mu \mathrm{~A}$ of current swing which follows the square wave switching action. In exactly the same way as before this can be represented as an additional signal at the input terminals, and its effective value is then +16 mV . There is no integration involved here and the effect is to increase not only all the distortion components by a uniform factor of $1+16 / 300$ but the main signal as well, so that there is no practical effect on the distortion at all. The ratio $16 / 300$ comes from the effective amplitude at the input due to this effect and the input required to fully modulate the square wave as before.

Notice that both these imperfections only introduce distortion in proportion to that which has already been generated by the failing of the basic modulation process itself. If this could be reduced these effects could become less important. Clearly, however, the design of this stage could be altered fairly easily so as to reduce them directly at the expense either of a loss of overall amplifier gain or a need for additional transistors. In this circuit the gain and economy have been preferred to the relatively small advantage that would result from their reduction. It is interesting to observe that it is the second of these two effects, the one that increases the gain by a more or less constant factor, that governs the success of the feedback in eliminating the distortions caused by errors in the edge timings and the amplitude of the square wave at the output. The factor $16 / 300$
indeed also represents the amount to which these effects are reduced by the feedback action. An apparently dramatic improvement might perhaps be gained here by the simple addition of a resistor of about 3 MO 2 directly between the collectors of Tr 2 and Tr 1 . This could be adjusted so as to exactly compensate the effect of the voltage step, but the author has not investigated this.

CONSTRUCTION AND TESTING

In constructing this circuit it must not be forgoten that switching edges of duration shorter than $1 \mu \mathrm{~s}$ are essential in its working, so that the layout must be neat and compact with no signal leads more than an inch or so in length. All the components, except the two large capacitors, can easily be mounted on a plastic board about 4 in $\times 3$ in, and there are no special heat sink arrangements required for the final transistors. The power supply must be able to provide about 300 mA maximum current at 30 V , usual input and loudspeaker arrangements being made.

When switched on a circuit of this type should begin to function within a few seconds, but a brief pause must be expected as the voltages on the capacitors are brought to the correct values and then a faint "tick" will be heard as the self-oscillation commences. When switching on for the first time it may save needless expense if resistors of about 100 ? are put in series with both the loudspeaker and the power supply. This form of circuit is not worse than class B in this respect, indeed it is rather better, but these resistors may prevent serious damage to the expensive semiconductors in the event of faulty components or wiring errors. With them included in the circuit low amplitude signals should be reproduced reasonably well and the various voltages and currents may be checked before they are removed.

If the circuit is not functioning correctly then a fault has to be found, and as the reader may be perhaps unfamiliar with this type of circuit some guidance will be given. If the circuit is not oscillating then each stage round the loop must have its d.c. state examined until a point is found where the output is not as would be expected bearing in mind the present d.c. input conditions (regardless of the a.c. input). When this is done the fault is usually found quickly and correct functioning obtained. If on the other hand, the circuit is already oscillating then there is little difficulty in finding a break in the signal path in the usual way.

The circuit as shown in Fig. 4 has more than enough sensitivity to give a good output when driven directly from a normal crystal pickup or microphone, but there is, of course, no objection to the use of any of the usual forms of pre-amplifier if more gain or tone control facilities are required. As explained already, no claims for outstanding quality of reproduction can be made for this circuit, but it is hoped that some contributions have been made towards the exploration of the possibilities. To obtain more bass response simply increase the value of all the electrolytic capacitors; but for almost any other improvement, more power, less distortion, more gain or higher efficiency, it will almost certainly be necessary to find a superior type of transistor for the final stage and modify the design along lines that have been suggested.

Next month's article will discuss in more detail just what the errors introduced by pulse width modulation are, and how they could in principle be reduced.

REFERENCE

5. Letters to the Editor, M. D. Salmain, Wireless World, June 1965.

LETTERS TO THE EDITOR

The Editor does not necessarily endorse the opinions expressed by his correspondents

Burghard Committee and Common Standards for Components

WITH great enthusiasm many are engaged in preparing or awaiting the publication of the new British Standards for electronic parts in the B.S 9000 series-the common standards recommended by the Burghard Committee. Common standards they may be in some respects but they will be lacking in one important detail-a common system of identification or part numbering.
Very soon now tens of part makers will be busy allocating their own identification numbers and sales codes to all the many styles, values, tolerances, wattages, etc., covered by the new specifications: and early next year a hundred companies intending to use these parts will be busy preparing their schedules of part numbers for use by their drawing offices for purchasing or stock control purposes. And then later, each parts manufacturer will need to prepare a cross reference list showing the equivalence between his many customers' part numbers and his own.
The Services, too, will be allocating their N.A.T.O. stock numbers to the items they intend to purchase.

What a waste of national effort! What an opportunity missed-to have a British Standard part number that all could use.

Time is slipping by and it is now too late to grasp this nettle in the first specifications to be published: but there are more to come. Can nothing be done?
E. P. Stanton
(Quality Control Manager)
Plessey Components Group, Swindon

"Honour to whom Honour"

E. AISBERG Director of our Paris contemporary Electronique Industrielle, has written commenting on the origin of the term "class D " given by K. C. Johnson in his article last month. He writes:-

L'auteur attribue l'invention de ce montage et l'appellation "classe D" à P. J. Baxandall. Celui-ci a en effet consacré aux amplificateurs classe D un article dans Proceedings I.E.E. on 1959.

Cependant, l'amplificateur classe D a été inventé par l'ingénieur francais Roger Charbonnier, à l'époque directeur de "Rochar Electronique". La brevet correspondant a été déposé au nom de cette maison le 6 janvier 1954. Et la première description a paru sous la signature de J. P. OEhmichen dans le numéro 1 (marsavril 1955) de notre Revue Electronique Industrielle.

J'ai tenu à préciser ce petit point d'histoire afin de rendre à César ce qui lui est dû.

Buy British

I SUPPOSE that most of your readers will agrec with your editorial in the December number of your journal, but I must say that I think that the industry must bear part of the blame for the situation. I will not use your space to recount, in detail, my attempts to get data or
products out of British firms. It may be some consolation to Mr. Thompson that I would not rate the chances of a small buyer of getting an answer as better than one in five. On the other hand, my only letter to an American firm was answered by return, and the goods were despatched on receipt of my firm order and cheque.

I would be only to happy to buy British i.cs if I knew that they were available. So far, I can recall seeing only American i.cs offered on the retail market, and I have had some of them. I expect to buy more i.cs, but, on their past performance, I am reluctant to spend time and money on fruitless enquiries to British firms. It therefore seems that my choice is between buying foreign, and buying nothing. While I should prefer to "Buy British," I have no intention of going without these fascinating devices. Will any British firm, perhaps by the appropriate advertisement, giving price and channels of availability, in your journal, prove me wrong?
J. B. G. Parker (G3SOL)

London, E.6.
I DOUBT very much if "any" young engineer, as you suggest in your December Editorial, would be allowed to buy American at will, if only because of import duty. Certainly this is not so in my establishment. We buy American usually when the item is not made here, or when the American article is obviously superior-one might add, there is often little difference in the price, and delivery has so far been good.

You may be interested to know that a British instrument advertised in $W . W$. at the end of 1966, and ordered by me near the beginning of this year, had still not been delivered at the end of November when I cancelled it as it was not yet in production!

British makers seem to think they get a raw dealperhaps some of them do. Undoubledly, however, there are a number who get what they deserve. And if certain foreign firms can do incomparably better, as they can in some fields, we have no right to play the hurt, misunderstood British routine. If British makers can produce, the profession will gladly buy.
"Engineer"

Bailey Amplifier Mod.

I HAVE received one or two queries regarding the cut-off frequency of the treble filter in the pre-amplifier circuit I described in the December 1966 issue. I have looked into this and have discovered that the capacitors used were about 50% greater in capacitance than their marked value. In order to obtain the correct performance this means that all the capacitors should be uprated by 50% in the treble filter. The new values will therefore be 0.015 and $0.0075 \mu \mathrm{~F}$ or as near as possible. The large tolerance on capacitors had been overlooked in this instance so it is important that capacitors of at least 10% tolerance should be used. If a slightly lower cut-off frequency is desired there is no reason why the values cannot be increased to 0.02 and $0.01 \mu \mathrm{~F}$, there being more convenient values to obtain.

Arthur R. Bailey

Sub-surface Propagation

Some points from an I.E.E./I.E.R.E. conference on m.f., I.f. and v.l.f. radio

IT has been known from the early days of radio that in round-the-world transmission the energy is confined between the earth and the ionosphere, thus overcoming the diffraction losses round the curve of the earth. On v.l.f. the height of the lower boundary of the ionosphere is no longer large compared with the wavelength and the ray method of studying the propagation characteristics, so useful at h.f., is only practicable for use at short distances. For long distances it is necessary to treat the region between the earth and the ionosphere as a waveguide and to study the propagation in terms of mode theory.

In a survey paper at the recent I.E.E./I.E.R.E. conference on propagation J. R. Wait, himself a leading expert in this field, referred to the fundamental researches of K. G. Budden giving the full wave treatment of the modes, including the effects of the curvature and of the magnetic field of the earth. He treated the problem in a severely mathematical way that many engineers must find difficult to appreciate, but the basic results emerging from this study are proving most valuable as a means of interpreting v.l.f. field-strength measurements in terms of possible electron distributions in the \mathbf{D} region of the ionosphere.

geological waveguide

A further interesting development of the waveguide concept is the proposed application to long-distance propagation in sub-surface geological strata. It is suggested that at depths of several miles there may exist extensive strata of very low conductivity between regions of much greater conductivity, constituting a waveguide with very low attenuation. While much has been written on the theoretical side, based on highly idealised models, and communication has been established over several miles, the technical and economic problems are immense and considerable doubt has been expressed about finding strata of sufficiently low conductivity of the required extent in the desired places.

There is evidence that such communication between subterranean points may sometimes be achicved by the "up-over-and-down" mode whereby energy from the transmitter travels up to the surface, escaping into the air and travelling, possibly with the help of the ionosphere, along the surface of the earth, some of it then being refracted into the earth to the receiving point below.

The attenuation of radio waves through sea water is very great, but it decreases with decreasing frequency and the use of v.l.f. for submarine communication is being actively pursued. The rigid mathematical theory is exceedingly difficult, but simple physical principles show that contact between a base above ground and submarines anywhere on the earth can be achieved by using v.l.f. The wave travelling over the earth is vertically polarised and is refracted vertically downwards and is receivable on a suitably oriented horizontal dipole on a submarine that is sufficiently near to the surface.

It follows similarly that communication between submarines, too far apart for direct propagation through the
water, must be by an "up-over-and-down" mode with the implied limitation in depth below the surface, and that using electric dipoles they should be horizontal and end-on to one another. Very little practical information is available, but the theoretical analysis makes reference to magnetic dipoles even though the available size of a loop regarded as a single turn would be very inefficient compared with an electric dipole at these frequencies.
For communication purposes the use of v.l.f. is inevitably restricted by the limited bandwidth available, but the advent of extremely accurate reference clocks and frequency-stabilized v.l.f. transmissions has prompted their use for time signals and navigational aids with a world-wide coverage. The latter application depends for its success upon the high stability of the D region of the ionosphere as a reflector of v.l.f. waves, the height of reflection by day being nearly constant at about 70 km and changing at sunset in a well-predictable way to about 85 km at night and back again at sunrise.

This stability in relation to a phase-comparison navigational aid is much greater than for the corresponding use of the E and F layers at higher frequencies, but much work is still needed to take account of sudden phase anomalies due to ionospheric disturbances, especially in the polar regions. A suggestion has been made for the automatic suppression of errors due to diurnal and seasonal variations in the ionosphere by working at two frequencies symmetrically displaced about 12 kHz .

In his opening address at the conference on m.f., l.f. and v.l.f. propagation, J. A. Ratcliffe deplored, as a scientist, the very limited use that had been made of v.l.f. transmissions for the study of the lowest regions of the ionosphere during the period when ionospheric sounding at high frequencies had been developed for the study of the E and F layers and the prediction of the propagation characteristics of high-frequency communication. In this he was perhaps over-modest in view of the work of the team that he directed for so many years at the Cavendish Laboratory using the transmissions from Rugby GBR.

SCIENTIFIC RESEARCH

It was notable that the recent conference was mainly concerned with the use of v.l.f., not as a means of communication but as a tool for scientific fesearch. The advent of rockets and satellites has given an immense impetus with the possibility of receiving signals in the ionosphere from terrestrial v.l.f. transmitters and of transmiting v.l.f. signals to earth. The study of the wave forms of atmospherics from lightning flashes is greatly advancing our knowledge of the earth-ionosphere waveguide and of resonance effects at e.l.f. The associated phenomenon of whistlers with their large frequency dispersion in the audio band has been explained in terms of the magneto-ionic theory of propagation in the ionosphere, but the observations made in the ionosphere have revealed that the v.l.f. ionograms are as complicated as those being obtained by sounding at h.f. from the original satellite Alouette I which is now in its sixth year of operation.

'ELECTRONIC CAM'-THE BEST OF BOTH WORLDS?

FILM offers teicvision companies a medium by w'Mich programme material can be interchanged between countries without regard to line standards or the colour system in usc. Producing a film using motion picture methods is an expensive and time-consuming process and it has long been considered desirable it devise a system for exposing film using television multi-camera techniques. The film camera is not "interested" in whether black and white or colour stock is being used and does not suffer from the degradation in picture quality associated with telecine machines. The basic idea of marrying a television camera to a film camera to enable the scene to be monitored remotely is not a new one, this latest system" Electronic Cam "was devised by Arnold and Richter of Munich and has been developed by engineers from Rediffusion Television Lid. over the past two years

Basically the system consists of the marriage of an Arriflex 35 mm camera and a plumbicon camera tube; light from the scene is reflected by a mirrored segment on the shutter to the plumbicon during the film pull-down period. The output of the plumbicon drives a smal! television monitor that acts as the camera view-finder and also drives other monitors throughout the studio. In the complete installation three such cameras are employed, the film motor of each
canera being cortrolled remotely by means of switches on a central production control console. Four monitors are employed on this console, one for each camera and, in addition, one for the camera that has been selected. Switching, or cutsing, between cameras can be carried out in about one-third of a second, this being the time taken for the camera mechanism to reach operating speed or, if desired, all cameras can be left running, only one being used for the "take," allowing instantancous "cutting" between cameras but wasting large amounts of film stock. Rehearsals can be carried out without film in the cameras and in this case tootage counters on the control console make it possible to predict the amount of film required in each camera for the actual take, eliminating wastage. Identification and synchronizing marks are recorded 011 both the film and the magnetic tape used for the sound track indicating which cancra it came from and facilitatin ${ }^{-}$the assembly of the film and sound track. In a pilot production film, taken to assess the performance of the system, a fifreen minute film was made in approximately one hour on the studio floor. The film was divided into three sections, each being filmed as a continuous take, the director cutting between cameras as required, achieving a film utilization ratio of 1.52:1

CODE OF PRACTICE FOR AERIAL INSTALLATION

WITH the advent of colour television the question of aerial installation has become of greater importance and it is fe't strongly botl by the Radio and Television Retailers Association (R.T.R.A.) and the Radio and Electronic Component Manufacturers Federation (R.C.E.M.F.) that high standards will have to be adhered to. To this end a code of practice for aerial installation has been agreed by the two bodies and in future ali members of the R.T.R.A. will be ex-
pected to conform to these standards. Any serious departure from them may result in disciplinary action being taken by the Association. It is also suggested that any member that does not erect his own aerials should forward a copy of the code to the company concerned in order that an undertaking may be given that installations will be made in accordance with the code. Copies of the code are available free from the R.T.R.A., 19-21 Conway St., London, W.1.

NUCLEONIC INSTRUMENT FIRM EXPANDS

THE largest company in the nucleonics field in Europe will be formed as a result of a major rationalization of the nuclear instrument industry in the U.K. Nuclear Enterprises of Edinburgh, founded as recently as 1956, has taken over the nucleonics interests of E.M.I at both Hayes, M iddlesex and Wells, Somerset, as the first stage in a triple acquisition. Nuclear Enterprises is also, subject to necessary consents, acquiring Isotope Developments Lid. and the

Baldwin Instrument Company, both members of the Elliott-Automation Group situated near Aldermaston. The Nuclear Enterprises range of radiation detecters and instruments will be supplemented with medical, physics, and data handling equipment from E.M.I., low cost laboratory and medical instrumentation from I.D.L. and indusirial nucleonics instrumentation for gauging, analysis and process control from Baldwin Instruments.

Cable and Wireless Ltd. have placed contracts with Submarine Cables Ltd (an A.E.I. company) for a deep sea submarine telephone cable that will provide a maximum of 640 telephone circuits between Canada and Bermuda. The project, which is known as CANBER, requires 800 nautical miles of cable, 81 submersible repeaters and five submersible equalizers worth a total of $£ 3.5 \mathrm{M}$. The cable will be jointly owned by the Canadian Overseas Telecommunications Corporation and Cable \& Wireless Lid. Some of the new materials needed for fabricating the cable will come from Canadian sources. CANBER is due to be laid in 1969 by the 8,960 -ton cable ship Mercury from the Cable and Wireless fleet. CANBER will land in Canada in the vicinity of Mill Village, Nova Scotia, permitting connections with the Canadian satellite earth stations

The information services of the Gcvernment of Hong Kong have announced that steps are being taken to prevent manufacturers wrongly describing radio receivers by incorporating into them non-functioning transistors. In talks with the manufacturers the Colony's Commerce and Industry Department found that the manufacturers were opposed to this practice and that the dummy transistors had been included at the request of overseas buyers! As from January 1st the Commerce and Industry Department will institute checks to determine whether any local transistor recciver factory is incorporating nonfunctioning transistors and legal action will be considered against any that are continuing with the practice.

Orders for four harbour radar systems worth a total of $£ 128,000$ to be installed at Montreal, Brisbane, Rostock (Easi Germany), and Wallasey (Cheshire), have been received by Decca Radar Litd. The installation for the port of Montreal is to be completed in two phases. The first of these consist of installing a two-channel radar and two 16 -inch displays that will provide a traffic control service. In the second phase the radar coverage will be increased by a remote scanner, controlled by a u.h.f. link relaying its information back to the control room via a microwave system. The other three systems will not have the remote scanner and differ from the Montreal system only in acrial and display sizes.

The G.P.O. has placed an order with Standard Telephones and Cables Lid., for a 6 GHz microwave system to link the Post Office tower in London with Norwich. The equipment, type RL6D, will provide six broad-band radio channels berween London and Stoke Holy Cross (Norwich), with repeater stations at Kelvedon Hatch and Sibleys in Essex and at Wickhambrook and Mendlesham in Suffolk. The RL6D provides a $10-\mathrm{W}$ power output; the aerials used will be of the cassegrain type for single or bipolar operation.

1968 CONFERENCES AND EXHIBITIONS

LONDON

Mar. 11-14 Physics Exhibitior
Apr. $8 \& 9$
Thick Film Technology
Apr. 18-21
Audio Festival \& Fair
Apr. 22-24 Systems
May 13-18
Instruments, Electronics and Automation Exhibition
May 20-31
Royal Lancaster Horel Communication-Satellite Earth Stations
July 29-Aug. 2
Olympia
Ships' Gear International Exhibition
Sept. $9-12$
Elementary Particles
Scpt. 9-13 I.E.E., Savoy PI. International Television Conference
Scpt. 20-Oct. 2
Tropospheric
Oct. 2-5 R.H.S. New Hall
R.S.G.B. Radio Communications Exhibition

BELFAST
Apr. 1-3
Queen's University
Heavy Particle Collisions
BRIGHTON
Oct. 8-10
Hotel Metropole
National Electronics Packaging Conference \& Exhibition
BRISTOL
Jan. 2-4
The University
Integrated Circuits Symposium and Exhibition
Mar. 27-29 The University
Thermodynamics and Fluid Mechanics
CARDIFF
Apr. 18 \& 19 Cathays Park Audio-Visual Aids Conference and Exhibition

CRANFIELD
Mar. 25-28
College of Acronautics Aerospace Instrumentation Symposium

DURHAM
Apr. 2 \& 3
The University
Semimetals and Narrow Gap Semiconductors
EDINBURGH
Aug. 5-10
I.F.I.P. Data Processing Congress \& Exhibition

FARNBOROUGH
Sept. 16-22
R.A.E.

Electronics and Air Show
GLASGOW
Mar. 8-16
Kelvin Hall NORBEX-North British Engineering Exhibition

HARROW

Mar. 12-14
Public Address Show
King's Head Hotel

HARWELL
May 9 \& 10
A.E.R.E.

Low Energy Electron Diffraction
LOUGHBOROUGH
Apr. 16-19 University of Technology
Modular Education for Industry
MANCHESTER
Jan. 3-6
Inst, of Science and Technology Solid State Physics Conference

Sept. 24-28
Electronics,
Exhibition

Instruments, Control and | Bellc Vuc |
| ---: |
| Components |

Electronic lnstruments Exhibition

NOTTINGHAM

Sepi. 11-13
The University
Physical Aspects of Noise in Electronic Devices
PAISLEY
Apr. 17-19
College of Technology
Automation Techniques in Industry
SOUTHAMPTON
Jan. 9 \& 10 The University Materials for Acoustic \& Vibration Damping
Apr. 22-24 The University
Nucleation, Growth and Structure of Thin Films
SWANSEA
July 15-18 University College
Electrical Contact Phenomena

TEDDINGTON

Wireless World, January 1968

BOOKS RECEIVED

Microwave Valves by C. H. Dix and W. H. Aldous, presents an account of the basic physical processes and the operation of micrewave valves. Although only the essential mathematics is included the book is intended for readers with H.N.C. or a degrec. The approach to the subject begins with a description of the the motion of electrons and the properties of the various types of r.f. circuits and transmission lines that are used in the devices. Although microwave triodes are discussed, the emphasis is on beam devices both linear and crossed field, and in describing these the spacecharge wave approach is used. Further chapters cover the formation and fecusing of electron beams, the noise properties of microwave devices, construction and applications. Pp. 269. Price 55s. Iliffe Books Lid., Dorset House, Stamford Street, London, S.E.1.

The Practical Aerial Hardbook, by Gordon J. King. The introductory chapters provide a grounding in the principles of radio propagation and acrial design. Different types of aerial are discussed and guidance is given on choosing the best acrial system for a particular need together with practical installation information. The remainder of the book covers methods of combining signals received by separate aerial systerns; methods of supplying several receivers from one acrial; improving reception using acrial booster amplifiers; shared aerial systems as used in blocks of flats, etc.; and combating interference. Appendices give information on aerials for colour television, aerials for stereo radio; the distant reception of v.h.f. and u.h.f. signals. Pp. 224. Price 35s. Odhams Books Ltd., 40 Long Acre, London, W.C.2.

Introduction to Vector Analysis by W. D. Day. Suitable for self-tuition, because of the numerous worked examples and graded exercises, this book presents the theory of vector analysis in a form suitable for the electronics engineer. Starting from basic definitions and notation, the concept of scalar and vector products of two vectors, triple products, diferentiation, line and surface integral is established. The differential equations of electron motion in uniform magnetic and electric fields at right angles are considered in some detail. The scalar point, scalar potential, divergence, curl, cartesian, cylindrical and spherical co-ordinates are all examined. The remaining chapters are devoted to more general vector fields in particular to the time varving electromagnetic field governed by Maxwell's equations. Pp. 260. Price 42s. Iliffe Books Ltd., Dorset House, Stamford Strcet, London, S.E. 1 .

Techniques of Pulse-Code Madulation in Communication Networks by G. C. Hartley, P. Mornet, F. Ralph and D. J. Tarran. This book, from the I.E.E. Monegraph series, is published at an opportune moment with the recent opening of London's first p.c.m. link. After the introduction and an historical review, the principles of p.c.m. are outlined and such topics as time sampling, signal reconstruction, quantization, companding, eic., are discussed in some detail. The remainder of the work is devoted to the application of p.c.m. communication principles, basic system clements and factors affecting system design, a glossary of terms is also included. Pp. 110. Price 30s. Cambridge University Press, Bentley House, 200 Euston Road, London, N.W.1.

H. F. PREDICTIONS - JANUARY

The maximum usable frequency is, by definition, that at which communication should be possible for over 50% of the time. Satisfactory communication will, of course, be possible above the MUF but for decreasing percentages of time as frequency is raised.

Operation below the MUF will give improved probability of communication (90% at FOT) but worsening signal/ noise ratio. LUF is the frequency at which a specified signal/noise ratio will be obtained for a given percentage of time. The curves were drawn by Cable \& Wireless Lid. for reception of point-to-point telegraph circuits in the U.K. When evaluating, an assumption is made that communication probability will be 100% at the LUF, this is not always valid as shown by the Hong Kong curve.

LETTER FROM AMERICA

SOME controversy has been caused among electronics engineers over here during the past few months by S.I.As. What are S.I.As.? Well, they are basically very small stub antennas which have built-in transistors to give extra gain. They are usually $1 / 25$ th wavelength and the inventor, Edwin Turner, of the Air Force Avionics Laboratory in Dayton, Ohio, claims that S.I.As could be built into TV sets and "would out perform aerials many times the size." However, there are doubters. Harry Greenberg, chief electronic engineer of Channelmaster Corporation, says categorically, "In our opinion, they would not perform as well as ordinary rabbit ears aerials, let alone replace ro $=$-top aerials." It is well known that the smaller the aerial length, the lower the signal strength received. Hence, the signal-to-noise ratio tends to get worse as the pick-up aerial gets shorter. However, this is offset to some extent by the fact that atmospheric noise is very high at high frequencies and so the signal-to-noise ratio is less dependent on the aerial or receiver. So a smaller aerial will not necessarily mean a small signal-tonoise ratio although the signal itself will be less. In Time magazine Turner states, "We have in effect substituted a short aerial carrying a large current for a long aerial carrying a small current." He went on to say, "A S.I.A. at $1 / 16$ th wavelength instead of $\frac{1}{4}$ is about equal in signal-tonoise ratio to a dipole aerial or tunable rabbit ears, even at $1 / 25$ th the noise characteristic is comparable with a dipole when mismatches in the dipole were considered." Turner claims that S.I.As provide a wide impedance match and quotes ratios of up to 50 to 1 . In one version the transistor d.c. current is controlled to move the optimum bandwidth matching range. Considerable work in this field has been carried out by Hans Meinke at the Munich Technical University and a circuit was published in Electronics last July. But so far from silencing the critics, it provoked more oppositien. One, Wilfred Carson, said, "It was obvious that one stage was about to break into oscillation and so the stage gain would be abnormally high." At the Canadian International Electronics Conference Dr. Flachenecker said "from v.l.f. up to 30 MHz S.I.As show field strength sensitivities nearly equal to the external noise-field
strength if the aerial height is around 1 metre." So the debate continues.

The first commercial colour television receiver was introduced back in 1954 by R.C.A. This was a $15-\mathrm{in}$ model costing about $\$ 1,000$. Some 10,000 sets were sold that year, but by January 1967, the total number of colour sets in the U.S.A. had soared to $9,750,000$. Early in 1967 experts forecast total sales of colour sets at six million and at the end of October the sales had reached $4,086,521$ for colour, compared with $4,394,857$ for monochrome. At a recent E.I.A.* merchandising seminar, a speaker caused a stir of interest when he said his firm was already campaigning for that second colour TV in every home. Support for this expression of "Gracious Living" came from R.C.A., who are now pioneering a low cost 14 -in portable. Says the Sales President, "In pioneering the new 14 -in diagonal screen size, we are counting heavily on a second set market for colour that will appear much sooner than it did in black-and-white TV. The colour set viewer who is spoiled by colour in the living room won't accept a monochrome substitute in the den or bedroom." (I could add from experience -neither will the children!) How about prices? Well, they range from about $\$ 199$ for a portable to around $\$ 500$ for a console with a 23 -in screen. Tube sizes are a little confusing as some manufacturers use diagonal measurements while others stick to the tube face area. Philco have just released a large screen portable (267 sq in) at $\$ 299.95$. They ask, "Why should the least expensive large screen colour set cost a working man a month's pay?" Why indeed! This price is certainly very reasonable but it is possible that some of the Japanese imporss will be cheaper still. The modern colour sets are very easy to operate but ingenious devices are fitted to some models to ensure accurate tuning. For instance, Motorola uses an automatically switched indicator lamp to show "on the nose" tuning and Westinghouse sets have a tuning bar. When this bar is depressed vertical black bars appear on the screen and the trick is to turn the fine tuning control until only one bar is seen. The circuit is quite complicated and it employs two multivibra-

[^3]tors with a gating valve and variable relay. Incidentally, some Motorola models use transistors throughout but most other designers prefer hybrid circuits. At the moment, integrated circuits are widely used for audio stages or i.f. sections, etc. They are also employed in f.m. tuners, receivers and amplifiers-R.C.A. even has an i.c. pre-amplifier built in a pickup cartridge. Westinghouse has just released a single i.c. audio amplifier which can replace nearly all the components in low power record players or tape recorders. The input is high impedance so a ceramic pickup can be used and the output is rated at 1 W for 5% distortion.

Amperex have an interesting i.c. called a "Bifet" which consists of a mosfet coupled to a transistor emit-ter-follower plus biasing resistors all housed in a normal three-lead TO-18 can. Input impedance is very high, being of the order of 10^{12}. Noise is exceptionally low-the total voltage measuring less than 25 microvolts! This is comparable with the best valve amplifiers and so the "Bifet" will be particularly useful for lowlevel microphone pre-amplifiers, photo-cell head amplifiers, etc.

NEW TRANSISTOR devices are appearing almost every day but one of the, most interesting is called a "Pitran" transducer. This is a silicon planar transistor that has the emitter-base junction mechanically coupled to a tiny diaphragm located at the top of the can. When a pressure is applied to the diaphragm a large reversible change is produced in the transistor characteristics. Sensitivity is quoted as 4 V per gramme point force and linearity is said to be better than 1%.

The vietnam war has given a tremendous imperus to electronic research and development-particularly in the communications field. Probably one of the most bizarre inventions concerns enemy-or rather people-detection. It consists of a pump that pipes in air to a colony of bedbugs. The presence of human beings causes the bugs to become agitated so modulating a r.f. field to give audible or visual indication. Sensitivity is said to be very high but it is not stated whether the bugs discrimate between Viet Cong and Americans!
G. W. Tillett.

WORLD OF AMATEUR RADIO

World-wide Nelwork of

 Amateur Radio Beacons?PROPOSALS for the establishment of a world-wide network of amateur radio beacon transmitters to operate on frequencies in the amateur 21 - and $28-\mathrm{MHz}$ bands have been put forward by a scientific ionospheric observation group within the German national amateur radio society. The group, which has 100 regular observers, is continuing work done in Germany during the International Geophysical Year (I.G.Y.) and in the subsequent International Quiet Sun Years (I.Q.S.Y.), and its proposals visualize the setting up of one beacon in each of the five continents to operate in the $21-\mathrm{MHz}$ band and at least two beacons in each continent to operate in the $28-\mathrm{MHz}$ band. Each beacon will use a main and a secondary frequency, the main frequency being common to all beacons in a particular band. Secondary frequencies will be spaced in an arrangement of channels of $2.5-\mathrm{kHz}$ wide below the main frequency. The secondary frequency assigned to a particular station will be transmitted when the main frequency is not being used.
Transmissions on the main frequency will be arranged in accordance with a time-shared world-wide schedule, which will enable radio amateurs and scientific institutes to monitor automatically, or by means of pen-recorders, etc., the actual world-wide propagation conditions on the band concerned. Transmissions on the secondary frequencies will supplement observations on the main frequency and will allow permanent checks on conditions for a certain general path direction and provide a means to monitor the effect of sudden solar events, and of band openings, which cannot be covered by the main frequency transmissions because of time sharing.
It is also hoped to provide a similar world service on a frequency in the $50-\mathrm{MHz}$ (six-metre) band but unfortunately this band is not generally available to amateurs in Europe and Asia. Special facilities, however, are visualized for this scientific project. The proposals for a world-wide network of amateur radio beacon transmitters are to be submitted to the International Amateur Radio Union for consideration by the 75 national societies that form the Union.

European Fox Hunting Championships.-Teams from the Soviet Union, Yugoslavia and Hungary were respectively placed 1st, 2nd and 3rd in the 80 -metre section of the European Fox Hunting Championships held recently in Czechoslovakia. The individual winner (a Russian) located the four hidden transmitters ("foxes ") in 49 mins 6 secs and the time of the winning team was 118 mins 26 secs. The 2 -metre section was won by a team from Hungary with teams from Bulgaria and the Soviet Union in the 2nd and 3rd places. The time of the winning team was 89 mins 53 secs (locating six "foxes") and the individual winner (another Russian) located three hidden transmitters in 37 mins 30 secs.
R.N.A.R.S. Code Proficiency Transmissions.-Morse code proficiency transmissions arranged by the Royal Naval Amateur Radio Society, now take place on the first Tuesday of each month at speeds of $15,20,25,30$ and 35 werds per minute. Transmissions commence at 20.00 G.M.T. on $3,520 \mathrm{kHz}$ and perfect (100%) copy at a particular speed is required to qualify for the appropriate Code Certificate. Completed logs, together with five 3 d stamps, should be sent to R.N.A.R.S., 27, Oxted Rise, Oadby, Leicester.

QSL Cards for R.A.F.A.R.S. Members.-Cards depicting six Royal Air Force aircraft spanning 25 years of R.A.F. history are now available to the 450 members of the Royal Air Force Amateur Radio Society, to confirm contacts.

Slow-Scan Television.-The United States Federal Communications Commission has recently proposed that slowscan television shall be authorized in certain parts of the amateur high-frequency bands, namely, 3.8-3.9, 7.2-7.25, 14.2-14.275 and $21.25-21.35 \mathrm{MHz}$ as well as in the telephony bands at 10, 6 and 2 metres. The bandwidth will be that of a normal single sideband signal, nominally 3 kHz . It is not yet known whether similar proposals have been put forward by any licensing authority in Europe or Asia. Slow-scan television (although permitted in the United Kingdom for those holding an amateur television licence) has not, so far, attracted a great deal of interest.

Nigerian Award.-The 5N2 Award is available to any radio amateur or short-wave listener who can produce evidence of having worked or heard five Nigerian amateur stations (5N2 calls) on two or more amateur bands. (For example, four stations can be worked or heard on 21 MHz and one on 28 MHz .) The Award will be issued in three classes: telephony (including single sideband), telegraphy and mixed. Applications, together with a certified copy of the log (or QSL cards in the case of short-wave listeners) and accompanied by five international reply coupons should be sent to the Awards Manager, N.A.R.S., P.O. Box 2873, Lagos, Nigeria.

Amateur Radio in India.-New rules for amateur radio licences, drafted by the Indian Department of Communications, came into force on September 1st, 1967. They permit the issue of licences to young people aged 14 years and upwards. For some reason, which the Amateur Radio Society of India has not been able to discover, no new licences have been issued in India since the beginning of 1967 when the membership of the society was around 350 .

Simulated Emergency Test.-In late January during a simulated emergency test, organized by the American Radio Relay League, the opportunity will present itself for all United States radio amateurs to take part in a nation-wide demonstration of amateur radio public-service facilities. The emergency test will take place during the weekend January 27 th- 28 th, and will include all Amateur Radio Public Service Corps members in local and national exercises for the Red Cross, Civil Defence and similar organizations.

Championship of France. - The annual contests organized by the French national amateur society (R.E.F.), to decide the champions of France for 1968, will be held on January 27th/28th (telegraphy) and February 24th/25th (telephony). Both contests will commence at 14.00 on the Saturday and finish at 21.00 on the Sunday.

Monaco Amateurs to join I.A.R.U.-The Association des Radios Amateurs de Monaco is seeking membership in the International Amateur Radio Union. Formed in 1953, the Association now has 18 licensed transmitting membersthe total number of licensed stations in the Principality. Licences are issued to visitors to Monaco who submit proof of being bona fide licensed amateurs in their own country.
V.H.F. Licences in Germany.-Call signs in a new series, DC6 followed by two letters, are now being issued to German amateurs who wish to operate on frequencies above 144 MHz . Holders of these calls have passed a technical examination but not a Morse code test. In the United Kingdom call signs in the series $\mathbf{G 8}$ followed by three letters are issued to amateurs who wish to operate on frequencies above 420 MHz . john Clarricoats, G6CL.

JANUARY MEETINGS

Tickets are required for some meerings: readers are advised, therefore, to communicate with the society concerned

LONDON

2nd. I.E.E.-Colloquium on "The economical collection of meteorological data" at 2.30 at Savoy Pl., W.C.2.
4th. I.E.E.-Hunter Memorial Lecture "Changing patterns in communications" by J. H. H. Merriman at 5.30 at Savoy Pl., W.C. 2.

Sth. I.E.E.-"The practical use of radar and d.f. techniques in locating earth satellites" by Dr. H. G. Hopkins and W. A. S. Murray at 5.30 at Savoy Pl., W.C.2.

8th. I.E.E.-Discussion on "Logarithmically periodic acrials" at 5.30 at Savoy Pl., W.C. 2.

8th. I.E.E.-Discussion on "Domain originated functional integrated circuits (DOFICS)" at 5.30 at Savoy Pl., W.C.2.
9th. I.E.E.-Discussion on "Electrical signals for data acquisition and transmis-sion-what form should they take?" at 5.30 at Savoy Pl., W.C. 2.

10th. I.E.R.E.-"Some aspects of electrostatic loudspeakers" by Prof. J. Merhaut at 6.0 at $8-9$ Bedford Sq., W.C. 1

10th. S.E.R.T.-"Digital voltmeters" by J. R. Pearce at 7.0 at London School of Hygiene \& Tropical Medicine, Keppel St., w.C.1.

11th. Inst. of Electronics-" Modern semiconductor devices" by D. F. Dunster at 6.45 at the School of Hygiene and Tropical Medicine, Keppel St., W.C.1.

16th. I.E.E. \& I.P.P.S.-Colloquium on "MOST devices" at 2.30 at Savoy Pl. W.C. 2.

17th. Inst. Navigation-" Sub-surface navigation" by Dr. W. P. Williams at 2.15 at the Royal Inst. of Naval Architects, 10 Upper Belgrave St., S.W.I.

17th. I.E.E.-"Colour television receiver design" by B. J. Rogers at 5.30 at Savoy P1., W.C. 2

18th. R.T.S.-"London schools television service" by W. Kemp and P. W. Lines at 7.0 at the I.T.A., 70 Brompton Rd., S.W. 3.

22nd. I.E.E.-Colloquium on "Microwave integrated circuits" and "Microwave solid state sources" at $10 \mathrm{a} . \mathrm{m}$. at Savoy P1., W.C. 2

22nd. I.E.E.-Discussion on "Alicrowave electrostatic wattmeter" at 5.30 at Sswoy P1. W.C. 2 .
2tih. I.E.R.E.-"Studio colour equipment" by G. Parker at 6.0 at 8-9 Bedford Sq., W.C. 1 .

26th. R.T.S.-"Television aids to film production" at 7.0 at the 1.T.A., 70 Brompton Rd., S.W. 3.
29th. I.E.E. \& I.E.R.E.-Discussion on "Diathermy" at 5.30 at Savoy Pl., W.C.2. 31 st. R.S.G.B. -"The development of a u.h.f. television service" by R. C. Hills at 6.30 at the I.E.E., Savoy PI., W.C.2.

ABERDEEN

10th. I.E.E.-."The engineer and the law " by H. B. Morton at 7.30 at Robert Gordon's Institute of Technology.

BIRMINGHAM

24th. R.T.S.-"The transmission of colour television signals over Post Office links" by E. Howorth at 7.0 at the Medical Institure, Harborne Rd., Edgbaston.

29th. I.E.E. \& I.P.O.E.E.-" Design considerations in microwave links" by G. Wanless and E. Jamieson at 6.0 at M.E.B., Summer Lane.

BOURNEMOUTH

31st. I.E.R.E.-" Some circuit aspects of M.O.S. transistors" by N. E. Broadberry and L. N. M. Edward at 7.30 at the College of Technology.

BRISTOL

16th. S. Inst. Tech.-" Instrumentation in medicine" by D. H. Follett at 7.30 at the Dept of Physics, the University.
18th. I.E.R.E.I.E.E. \& R.Ae.S.- Concord " by H. Hill at 7.0 ar the University. 25th. I.E.E.-" The best method of educating engineers-full time or sandwich?" by D. M. Dummer and P. L. Arlett at 6.0 at the Technical College.

CARDIFF

10th. R.T.S.-"The philosophy of colour camera design" by C. B. B. Wood at 7.30 at the Angel Hotel.

24th. I.E.R.E.-"The development of satellite communications" by J. K. S. Jowett as 6.30 at the \mathbf{X} 'elsh College of Advanced Technology.

DUNDEE

11th. I.E.E.-"The engineer and the law " by H. B. Morton at 7.0 at Robert Gordon's Institure of Technology.

EDINBURGH

10th. I.E.R.E.-" Microwave and optical communication systems of high traffic capacity" by R. W. White at 7.0 at the Dept. of Natural Philosophy, the University.

GLASGOW

11th. I.E.R.E.-" Microwave and optical communication systems of high traffic capacity " by R. W. White at 6.0 at the University of Strathclyde.

HAMBLE

17th. I.E.E. \& R.Ac.S.-" Telecommunications in aviation" by W. P. Nicol at 8.0 at the College of Air Training.

HUDDERSFIELD

30th. I.E.E- "The role of the systems engineer" by Dr. Wilson at the College of Technology.

HULL

25th. I.E.E.-"The engineer and the law" by H. B. Morton at 6.30 at Y.E.B. Offices.

ISLE OF WIGHT

26th. I.E.E.-"The work of the Engineering Institutions Training Board " at 6.30 at the Technical College.

LEEDS

23 rd . I.E.E.-" The future use of solidstate devices in the microwave field" by Dr. J. E. Carroll at 6.30 at the University.

LIVERPOOL

8th. I.E.E.-" Electromagnetic levitation" by H. R. Bolton at 6.30 at the University.
17th. I.E.R.E.-"Manufacturing aspects of the shadowmask tube" by P. T. Funnell at 7.0 at the Regional College of Technology, Byrom St.

22nd. I.E.E.-"Jodrell Bank radio telescope" by R. Lascelles at 6.30 at the University.

MALVERN

22nd. I.E.E.-" Electronic telephone exchange" by L. R. F. Harris at 7.30 at the Abbey Hotel.

MANCHESTER

22nd. I.E.E.-Faraday Lecture "Medical electronics" by Dr. D. W. Hill at 7.30 at the Free Trade Hall.

23rd. I.E.E.-Faraday Lecture "Medical Electronics" by Dr. D. W. Hill at 2.30 (Schools) and 7.30 at the Free Trade Hall.

31 st. I.E.E. Grads.-" Superconductivity" by Dr. A. C. Rose-Innes at 7.0 at U.M.I.S.T.

MIDDLESBROUGH

11th. I.E.E. \& S. Inst. T'ech.-"System reliability and safety assessment "by G. Hensley at 6.30 at the Cleveland Scientific Inst.

NEWCASTLE-UPON-TYNE

10th. I.E.R.E.-" Some applications of eiectronics to oceanographic sensors" by A. M. East at 6.0 at the Inst. of Mining and Mechanical Engrs., Westgate Rd.

15th. I.E.E.-"Microelectronics" by Dr. S. S. Forte at 6.30 at Rutherford College of Technology.

NOTTINGHAM

16th. I.E.E.-Faraday Lecture "Medical electronics" by Dr. D. W. Hill at 7.15 at the Albert Hall.

OXFORD

10th. 1.E.E.-"The future of the Institution of Electrical Engineers" by Dr. G. F. Gainsborough at 7.0 at S.E.B., 37 George St.

PLYMOUTH

3rd. R.T.S.-" Graphics in television" by Don Baker at 7.30 at the Studios of Westward Television Ltd.

PORTSMOUTH

171h. I.E.E.-" The problems of digital s.s.b. systems" by R. T. A. Standford at 6.30 at the College of Technology.

24th. I.E.E.-" Project control-critical path analysis" by E. H. Harrhy at 6.30 at the College of "rechnology.

READING

11th. I.E.R.E.-" Parametric amplifiers" by Prof. D. P. Howson at 7.30 at the J. J. Thomson Physical Lab., the University.

RUGBY

3rd. I.E.E.-"Fabrication uses of the electron beam" by H. N. G. King at 6.15 at the College of Engincering Technology.
10th. I.E.R.E. \& I.P.P.S. "Atomic measurement of time" by Dr. L. Essen at 6.30 at the Col. of Advanced Technology.

SOUTHAMPTON

16th I.E.R.E-"Microwave ultrasonics" by Dr. R. W. B. Stephens at 6.30 in the Lanchester Theatre, the University.

23 rd . I.E.E.-"The introduction of direct digital control" by Dr. V. Latham at 6.30 at the Lanchester Theatre, the University.

STEVENAGE

15th. I.E.E. "Post Office Tower" by D. G. Jones at 7.0 at the College of Further Education.

WOLVERHAMPTON

31st. I.E.R.E.-" The use of a computer tc conirol an industrial process" by D. G. Leak at 7.15 at the College of Technology, Wulfruna St.

NEW
 PRODUCTS

Stereo Tape Deck

A COMPACT stereo tape deck offering off-tape monitoring, sound-on-sound, sound-with-sound, echo and duet effects, is available from Ampex Great Britain Ltd. Smaller than previous models in the Ampex line, the model 753 measures 15 fin wide $\times 13$ in deep $\times 6 \frac{1}{2}$ in high. This deck has three heads-record, playback and crase-permitting precise monitorin ε and sound-on-sound recording and playback, eliminating the possibility of crosstalk often found on models with a single record/playback head. As with all Ampex open reel audio recorders, the magnetic heads are of the deep-gap design. Sound mixing features of Model 753 make it possible to mix narration with music tracks, add sound and musical cffects to home-produced programmes, and to conduct language pronunciation studies. The sound-onsound facility permits that while listening to recorded material, new material may be recorded on the same sound track without erasing the original material. With sound-with-sound, recorded material on one track can be played and new material recorded on the second track permitting playback in stereo. Off-tape monitoring permits material to be played back as it is recorded, allowing instant adjustment for best recording fidelity. By switching a control knob to an "echo" position material may be recorded with echo effect. With "duet effect," material being recorded on one track may also be recorded on the second track, but with slight delay, achieving a special

depth of stereo sound on playback. This is said to be especially useful in recording and playing back musical soloists. Model 753 has pre-amplifiers and offers a unique line-jack that permits the recorder to be connected to any type amplifier with consistent performance. It also features twin vu-meters, all solidstate electronics, automatic shut-off, and dual capstan drive, which reduces flutter and wow to a minimum. Overall record/ reproduce frequency response measured at the pre-amplifier output is $\pm 3 \mathrm{~dB}$ at $40 \mathrm{~Hz}-15 \mathrm{kHz}$ at $7 \frac{1}{2}$ i.p.s. and $\pm 4 \mathrm{~dB}$ at $50 \mathrm{~Hz}-7.5 \mathrm{kHz}$ at $3 \frac{3}{3}$ i.p.s. Signal-tonoise ratio from peak record level to broad band noise at the pre-amp output is 46 dB (unweighted) at $7 \frac{1}{2}$ i.p.s. and 43 dB (unweighted) at $3 \frac{1}{4}$ i.p.s. The deck model weighs 23 pounds. The price is 79 gns. Ampex Great Britain Ltd., Acre Road, Reading, Berks.
ww 301 tor further detaits

GUNN DIODE OSCLLLATOR

THE oscillators in the CL8 series by Mullard are intended primarily for experimental purposes and for performance assessment in microwave systems. They can also be used in speed checking equipment and bench-top microwave demonstration systems for schools and colleges. Each oscillator has a gallium arsenide device fitted in a small cavity which can be mechanically tuned over 1 GHz . Self-contained, a typical continuous output of 5 mW can be obtained with a supply of 7 V d.c. There are four oscillators, the CL8 $360,370,380$ and 390 , covering the range 8 to 12 GHz . Mullard Letd., Mullard House, Torrington Place, London, W.C. 1.
WW 102 for further detalis

Operational Amplifier

FLEXIBILITY of the Westinghouse WC306 operational amplifier (dual inline package) is indicated by the fact that (a) a choice of inputs is a a ailable, a high impedance $300 \mathrm{k} \Omega$ pair of differential inputs and a low impedance $3 \mathrm{k} \Omega$ pair, (b) outputs are, a differential pair of output terminals as well as the regular single-ended output, and (c) bandwidths can be selected up to the 30 MHz unity gain of this device, using the low input impedance terminals; 40 dB of gain can be achieved at 10 MHz . Most of this amplifier's 1,100 to 4,400 open loop gain can be used without exceeding 0.2% distortion. Only sufficient feedback to maintain d.c. operating point stability is necessary. With a worst case situation of $5 \mathrm{k} \Omega$ source impedance, and a 150 kHz bandwidth the noise is only $12 \mu \mathrm{~V}$ r.m.s. In many low-frequency instrumentation applications where noise is serious, lower source impedances and restricted bandpass will substantially lower this figure. Common mode rejection (83 dB) retained at high frequencies, low thermal drift ($5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$) and an output voltage swing of $\pm 7 \mathrm{~V}$ are additional features of this op-amp. Applications
include high-frequency video amplifier for driving push-pull loads such as c.r.t. deflection plates, servo motors and speaker coils. The differential outputs could also be used for driving balanced transmission lines. It can also be used as a high-fidelity pre-amplifier for audio work. Westinghouse Electric Corporation, Molecular Electronics Division, Box 7377, Elkridge, Md. 21227.
ww 303 for further detaits

Coaxial Attenuator

A Kay Electric (U.S.A.) in-line attenuator, the Series 110 has a frequency range of d.c. to 4 GHz attenuated over 132 dB in 1 dB steps. It employs a segmented intrinsic cavity switch assembly. A simple slide switch operation controls individual steps of $1,2,3,6,10,20,30$, $30,30 \mathrm{~dB}$. The overall accuracy is 2% up to a maximum of 1 dB at 1 GHz and 5% up to a maximum of 5 dB at 4 GHz . The U.K. agents are Wessex Electronics Lid., Royal London Buildings, Baldwin Street, Bristol, 1
WW 304 for further details

TRACKING FILTER

IN order to reject harmonic and rattling distortion from the control accelerometer signal of an electro-magnetic vibration system, Derritron have introduced the solid-state tracking filter TF1. This provides precise tracking at high sweep rates. Automatic bandwidth switching between five crystal filters ($3,10,30,100$ or 300 Hz bandwidth) may be selected by three separate programmes derived from the compressor functions of the Derritron vibrator control oscillator, VCO1, with which the TF1 is specifically designed to operate. A band reject output is available in addition to bandpass and d.c. analogue outputs. The tuning signal can be derived from any audio oscillator provided the amplitude variation does not exceed 40 dB . It is primarily designed for use in sine, random, sinerandom and swept-random vibration testing or for precise analysis and measurement of audio signals. Derritron Electronic Vibrators Lid., Sedlescombe Road North, St. Leonards-on-Sea, Sussex.
WW 305 for further details

Silver Bearing Solders

SOLDERING of silver-coated glass and ceramic surfaces and silver-plated components presents difficulties when using conventional tin/lead solders. Enthoven Solders Ltd. have produced a range of silver-bearing solders for such work, since the solubility of silver in tin is said to be greatly reduced by using a solder alloy already bearing a specific silver content. This does not affect the inherent solderability of the tin-rich alloys. The melting ranges of the silver bearing solders lie within the normal soft solder range. Enthoven Solders Ltd., Dominion Buildings, South Place, London, E.C. 2.
WW 306 for further detalls

Resin Disintegrator

A disintegration solvent for use with epoxy and polyester resins is available from Oxley-Developments Co. Lrd., Priory Park, Ulverston, North Lancashire. De Solv 8090, as it is called, is non-corrosive to metals (in normal use), non-inflammable and is of low toxicity. It is for use in recovering embedded electronic circuits, and for any applications where the removal of resins, paints and lacquers of the epoxy and polyester type is desirable. The disintegrator can be recovered for further use by filtering out the sediment.
wW 307 for further octails

I.C. Breadboard

AN integrated circuit breadboard for dual-in-line i.cs is manufactured by Spectrum Electronics Ltd. The first unit to be offered is the ICB. 707 which has provision for interconnecting twelve dual-in-line circuits. From the wide range of digital and linear dual-in-line circuits available, complex systems can be quickly built, demonstrated and proved. This device features solderless interconnections throughout, and reduces to a minimum the damage to i.cs. Each pin of the twelve high grade four-teen-lead i.c. sockets is brought out to a five-way socket which may be connected to any desired adjacent socket by colour coded leads. I.C. sockets and five-way sockets are coded for easy identification. Common power and earth points are available at each i.c. socket and are terminated in 2 mm binding posts. Two coaxial sockets and binding posts with interconnection sockets are available for input and output signals. Sections of prototype systems can easily be isolated and monitored for demonstration or circuit optimization. Easy insertion and removal reduces the stockholding by making the i.cs immediately available for other experimental designs. Systems

connections can be changed quickly to investigate a new design or evaluate an alternative supplier's product. The unit is ideal for prototype educational and feasibility studies. A logic handbook is provided for i.c. interconnection leads, and an i.c. extractor tool. The breadboard is $6 \frac{1}{4} \times 6 \frac{1}{4} \mathrm{in}$ and weighs $1 \frac{1}{2} \mathrm{lb}$. Spectrum Electronics Lid., Deneway House, Potters Bar, Herts.
WW 308 for further netalls

High-frequency Sampling Adaptor

IN the AIM sampling adaptor the gate is open for only 350 picoseconds. This refinement of circuit technology can be better understood if expressed in more practical terms; during the time the gate is open for each sample, a beam of light would travel only five inches. This waveform sampling adaptor type WSA114 gives a 1 GHz bandwidth to $x-y$ recorders, oscilloscopes and audio spectrum analysers. It permits the examination of complex repetitive waveforms containing frequencies up to $1,000 \mathrm{MHz}$. It has four modes of operation, each with good sensitivity and linearity. In "auto" mode it may be coupled to an $x-y$ recorder or lowfrequency oscilloscope. Both x and y inputs are provided independently. In "coherent" mode, the unit provides a very slow representation of the original waveform. This may be fed to an $x-y$ recorder, or a spectrum analyser and the original waveform can thus be recorded, analysed or recovered from noise. "Manual " mode provides the facility of scanning point by point through the original waveform. Morcover, in all these modes it is possible to magnify a single section of the waveform by a factor of up to 50 . Finally, the "in-
coherent" mode permits the measurement of peak, average or r.m.s. voltage of r.f. waveforms, without the necessity of adjusting synchronization. The technique used in the WSA114 is essentially a stroboscopic one, where samples of the high-frequency waveform are taken at successive intervals, stored for a time in an integral memory, and then assembled into a low-frequency representation of the original waveform. This technique permits recovery of signals which are obscured by up to 20 dB of noise. Moreover, the accuracy of representation of the waveform is said to be better than that of high-speed sampling oscilloscopes. In practice, the input signal is applied to an electronic gate which opens a little later in each scan of the high-frequency waveform so that over, say, 1,000 gate cycles, sufficient samples of the high-frequency trace are collected to permit faithful reconstruction at low speed. The stroboscopic sampler is locked to the incoming signal, and no delicate adjustment is needed to find and then follow a signal whose frequency is drifting. AIM Electronics Ltd., 71 Fitzroy Street, Cambridge.

WW 309 for further detalls

Counting Modules

A RANGE of plug-in integrated circuit counting modules is being marketed by Darang Electronics under the trade name DIGIC. Each counting stage is encapsulated in an anodized aluminium can, the range being originally designed fic use in Darang's Digicron digital clocks, counters and tachometers. The modules are available either with the display tube as an integrated part of the module or with a flying lead up to sis feet in length between the display tube and the module. Counting ranges between 0 and $2,3,4,5,6,7,8$ or 9 and intermediate ranges 2-4, 3-8, 1-7 are available. The module provides a n.b.c.d. (8421) output and in addition a slave display may be driven from the display tube termination point. The display tube is a standard Mullard type

(ZM 1040) giving a 30 mm digit height; the power requirements are +6 V at 50 mA and +240 V at 5 mA . The inpui pulse requirements are amplitude +1.5 to 4 V , duration 150 ns minimum and the rise time must not exceed $1 / \mathrm{s} / \mathrm{V}$. The devices will operate in the temperature range $0-60^{\circ} \mathrm{C}$. Darang Electronics Lid., Restmor W'ay, Hackbridge Road, Hackbridge, Surrey
Ww 310 for further details

Function Generators

TRIGGER, phase lock and tone burst capabilities are now available in two portable function generators by Wavetek, U.S.A. The Model 115 offers triggered or gated operation as well as phase lock capability. In the trigger mode, a manual or external voltage of $\pm 0.5 \mathrm{~V}$ will generate one cycle. In the gated mode, a discrete number of cycles can be generated by applying a $\pm 0.5 \mathrm{~V}$ gate The unit will phase lock to the fundamental of the dial frequency with specified accuracy. Model 116 has all the capabilities of the model 115 with the addition of tone burst operation, which may be generated automatically in the rrigger mode. Selectable from a front panel control the 116 will generate from 1 to 256 discrete cycles. Both models will also generate sine, square, triangle, ramp and sync pulse waveforms. Nine simultaneous outputs are available over a frequency range of $0.00015 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$. Additionally, both units are voltage controlled, allowing a $20: 1$ frequency sweep over the full dial spread.

These two portable instruments have the following common specifications: dial accuracy- 0.5% of reading, frequency response amplitude change with frequency less than 0.1 dB , amplitude stability is 0.1% of maximum peak-topeak values for 30 minutes, and d.c. offset stability is 0.1% of maximum peak-to-peak values for 30 minutes short term. Sine wave distortion is less than 0.5% Triangle and ramp linearity greater than 99% to $100 \mathrm{kc} / \mathrm{s}$. The square wave tise and fall time is less than 5 nsec . Both models use silicen semiconductors throughout and have individually calibrated dials; each is avail-
able in both a.c. and battery-powered versions. General Test Instruments, Gloucester Trading Estate, Hugglecote, Glos.
WW 311 for furfher detalls

LOGIC SYSTEMS

IN the Farnell logic system simulator, stepped progress can be made from simple logic functions to more complex logic techniques. Binary arithmetic is also introduced and the accompanying manual has a section on Boolean algebra and De Morgan's theorems. The simulator consists of a plinth unit to support the logic modules, a power supply and a range of modules including NOR, AND, nand units, lamp, switch and binary units. Additional medules available are shaper, generator, photocell and proximity units, and 150 mA and 500 mA driver units.

WW 312 for further details

Variable Delay Line

A VARIABLE delay line adjustable between 10 and $18 . \mu \mathrm{sec}$ with a dynamic signal-to-noise ratio of $7: 1 \mathrm{minimum}$ is available from Sealectro. Deltime LG14 produces 40 mV minimum output across 4.7 k !? when driven with 10 V at 60 mA peak current. This model is soldersealed for military applications.
WW 313 for further detalls

Linear Motor

AN electric actuator with linear movement is the description given to the linear motor produced by AB Lineara of Sweden. This type of motor has a stator fixed to a solid member, and a metal guide complete with two end stops. When current is applied to the stator, the guide moves at a speed of 1.2 metres (4 feet)/ sec in 20 ms with horizontal mounting and unloaded armature. Direction of movement is changed by reversing the current. Although in principle the length of the stroke is infinite, the standard motor has an armature giving a 250 mm (10in) stroke length, while the force along the stroke length is constant. For use in moving doors, valves, rejecting packages, moving items in packaging systems, this motor is said to permit a great deal of freedom in design. It can be mounted in any position, alihough minimum friction between stator and guide occurs when both are vertical. If the guide is fixed, then the stator moves and this method of operation is useful where a mounted or suspended item has to be moved over a definite length. This type of motor is intended for single phase 220 to $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$ operation, thus a phase-shift capacitor is required and is delivered as a standard accessory. The notor control and regulation can
be achieved with conventional electronic equipment. The armature is made from copper as standard, but the material cart be any electrically conductive nonmagnetic material. The length of the armature is not limited, and its movement can be slopped mechanically without causing motor damage. Motors can be mechanically coupled in series or parallel. The price is $\mathbf{2} 25$ 10s. The general agent and distributor in Great Britain is Hird-Brown Ltd., Bolton, Lancashire.
WW 314 tor lurther detalls

Portable Oscilloscope

THE Cossor CDU130 solid-state portable oscilloscope has a bandwidth of d.c. 1015 MHz . Field effect transistors are used to reduce Y amplifier drift, eliminate microphony and ensure accuracy at slow timebase sweep speeds. The sensitivity is $5 \mathrm{mV} /$ division at full bandwidth. The operation of this instrument is possible with external a.c. or d.c. supplies; it will also operate for five hours from the internal battery provided as a standard. A battery charger is contained within the 'scope and the battery is protected against reverse charging. Wright complete is $16 \frac{1}{2} \mathrm{l}$ b.
WW 315 for lurtier details

OSCILLOSCOPE CAMERA ACCESSORIES

POLAROID film pack backs are now available at no extra cost as alternatives to the present roll-film backs fitted to Telford Type A oscilloscope cameras. The 3,000 ASA eight-exposure pack film is said to be quicker and easier to load and manipulate. As each exposure is precessed away from the camera, it is no longer necessary to await for the 15 s processing time betwéen successive shots, and multiple photography is greatly simplified where banks of cameras are used. Owners of Type A cameras with roll-film backs can buy pack backs separately, for $£ 30$. The pack back, when it is used with the Telford slide plate permits the taking of up to 13 exposures on one print. Also available is a high-speed $\mathrm{f} / 1.3$ lens, whose wide aperature means that rise times in the order of $10-15 \mathrm{nsec} / \mathrm{cm}$ can be photographed, using 10,000 ASA film. Telford Products Lid., 4 Wadsworth Rd., Greenford, Middx.
WW 316 for further detalls

POWER TRANSISTORS

FOR use in radar pulse circuits as well as in high-power u.h.f. transmitters, the two transistors 2N5177-8 by TRW Semiconductors Inc. have an r.f. power output of 25 and 50 W respectively. Mounted in a grounded emitter stripline package, both devices will produce their outputs at $500 \mathrm{Mc} / \mathrm{s}$ with a $\mathrm{V}_{\text {CE }}$ of 28 V . The following parameters are common to hoth types: $\mathrm{V}_{C B O} 55 \mathrm{~V}$; $\mathrm{V}_{\text {CEO }} 35 \mathrm{~V}$, and $\mathrm{V}_{\text {EBO }} 3.5 \mathrm{~V}$. The dissipation, collector current and base current for the 2 N 5177 are $33 \mathrm{~W}, 4 \mathrm{~A}$ and 1 A respectively, and the same parameters for the 2N5177 have the following figures, $65 \mathrm{~W}, 8 \mathrm{~A}$, and 2 A respectively. M.C.P. Electronics Lid., Alperion, Wembley, Middlesex.
WW 317 tor further setalls

Thermoelectric Generators

A STEADY and reliable electric power output, at working temperatures of up to $300^{\circ} \mathrm{C}$, is claimed for the range of thermoelectric generator modules by G. V. Planer Lid. Exploiting the Seebeck effect, these modules are intended for use in marine and aircraft nawigational aids, telecommunications systems and remote weather stations. The generators are constructed from 50 thermo-elements which in turn are produced from p and n type semiconductor alloys based on bismuth telluride. Although the elements are connected electrically in seriss, in order to produce the necessary "hot" and "cold" faces, they are placed in parallel thermally. The establishment of a tempera-
ture difference between the faces produces a veltage (Seebeck effect), the magnitude of which is cetermined by the temperatare gracient and the notrix configuration. The array is encapsulated to give a monelithic, mechanically strong assembly which is capzble of operation at elevated tumperature. Both types have a maximum hot sink tempersture of $300^{\circ} \mathrm{C}$ and an open circuit voltage of 3.6 V for a temperature difference of $200^{\circ} \mathrm{C}$. Typ: TPG/205 has a matched load output of 750 to 900 mW , and Type TPG/210 has a matched liad outpat of 400 to 500 mW . G. V. Planer Ltd., Windinill Road, Sunbury-onThames, Middlesex.
ww 315 fis thriner details

Broadcast Receiver

COVERAGE of the long- and mediumwave broadcast bands and continuous coverage of the shore-wave bands down to below the popular 16 -metre band, is provided by the Eddystone EB36 solidstate broadcast receiver. It is completely self-contained, having its own audio amplifier stages and loudspeaker, but an audio output is available for an external tape recorder of hi-fi amplifier. Battery power supplies are provided within the receiver unit, to make the complete receiver independent of any external supply. In this way, it can be operated in a wide variety of portable roles, including road vehicles, small boats and even light aircraft without any additional facilities apart from an aerial. An a.c. mains power unit is available to 1eplace the battery in the receiver. The EB36 incorporates the well-known Eddystone tuning control, with a high tuning ratio to enable precise frequency settings to be obtained. The tuning control is loaded with a heavy flywheel, which makes it possible to spin the dial to cover large changes in frequency very rapidiy. Five frequency scales are pro-

vided, covering long-wave, midiumwave and three short-wave bands (from 1.5 to $22 \mathrm{Mc} / \mathrm{s}$). An additional scale, calibrated in arbitrary units, can be used in conjunction with a small vernier dial to provide a very precise definition of points on any of the five frequency scales. The price of the EB36 is £54 5s 7d. Eddystone Radio Lid., Eddystone Works, Alvechurch Road, Birmingham 31.
ww 319 tor further detalls

Component Packs

FIRST two in the new range of component packs presented by Peak Sound, designed for use with the "Cir-Kit" system, are available at 15 s each. Each pack contains full building and layout instructions. Pack No. 1 contains 15 components to build any one of a range of five different circuits; a high input impedance pre-amplifier with a gain of $\times 100$, a multiple output signal injector, a multimeter high ohms range
extender, multimeter low current range extender, and a mono pre-amplifier for moving coil microphones, giving à gain of $\times 100$. Pack two contains components to build various types of pre-amplifier and multimeter range extenders. Other packs contain components for building amplifiers, pre-amplifiers, and power packs. Peak Sound (Harrow) Ltd., 10 Asher Drive, Ascot, Berks.
WW 320 for further detalls

D.C. Amplifier

A D.C. amplifier, the 104, providing nanovolt resolution and millisecond rise time for d.c. voltage measuring systems is offered by Keithley Instruments Inc., 28775 Aurora Road, Cleveland, Ohio 44139 , U.S.A. The gain range of 100 to 100,000 has an accuracy of $\pm 0.01 \%$ and the linearity is ± 5 p.p.m. of full scale. It is particularly useful for process control and automated data handling applications where it is used with a digital voltmeter for measurement of nanovolt and microvolt signals. It has a 10 V full scale output with 10% average for all gain ranges at up to 1 mA at full scale. The peak-to-peak noise

varies from $10 \mathrm{nV}(\pm 50$ p.p.m.) at a gain setting of 10^{3} to $1 \mu \mathrm{~V}$ (± 5 p.p.m.) at a gain setting of 10^{2}. Input impedance is greater than $50 \mathrm{M} \Omega$ and the output impedance is less than one ohm. Rise times are selectable at nominal settings of $0.05,0.5$, and 5 seconds.
ww 321 for further detalls

Ceramic Capacitors

MINIATURE ceramic capacitors covering the range 10 pF to 2700 pF are available from Erg Industrial Corporation Ltd., Luton Road, Dunstable, Beds, Although the standard tolerance is $\pm 10 \%$, other tolerances are available. The standard temperature coefficient conforms to MK-C-11015C which means that the value observed at $25^{\circ} \mathrm{C}$ will be maintained within $\pm 15 \%$ over the range -55 to $+125^{\circ} \mathrm{C}$. Working voltages are from 50 to 200 V d.c., and these capacitors can withstand a d.c. potential of 400% of rated voltage applied at $25^{\circ} \mathrm{C}$ for five seconds with

current limited to 50 mA maximum. Standard leads are tinned copper and dual purpose weldable/solderable leads of gold flashed dumet are available. ww 322 for further detalls

Digital Integrated Circuits

A NEW series of digital integrated circuits have been introduced by the Raytheon Company of America. Designated RM2000, the series consists of a quad level translator, a current driver, and a lamp driver. The RN: 2000 quad level translator consists of four levelshifting inverters, each with two alternative inputs. Signal inputs are at 28 V for one input, 14 V for the other. The RM2001 is a monolithic high voltage (40 V), high current (250 mA) driver with inputs compatible with the 930 Series DTL. Because of this compatibility, the circuit offers logic flexibility in addition to its current and voltage capabilities. Intended primarily for use as a relay or lamp circuit, the RM2002 is a high voltage $(40 \mathrm{~V})$, high current $(250 \mathrm{~mA})$ unit. The inputs to the driver are compatible with 930 DTL Series circuits. A 930 DTL gate is also provided on the chip for additional logic capability.

The RM2000 Scries is guaranteed
over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The hermetic seal limits leakage to $5 \times 10^{-8} \mathrm{~cm}^{3} / \mathrm{s}$ of helium. Raytheon Overseas Lid., Lexington, Massachusetts 02173, U.S.A.
wW 323 for furtier detalls

Frequency Doubler and Phase Shifter

THE Brookdeal DP325 frequency doubler/phase shifter has been designed particularly for use in the reference channel of a phase-detection, small signal recovery system where the information frequency is twice that of the excitation or modulating waveform. The output level of 3 V r.m.s (f.s.d.) can be monitored on the output meter, and inputs from 10 mV to 100 V (f.s.d.) ca .a be accepted. Facilities are provided for phase shifting the output with or without frequency doubling, giving greater than 180° control. The frequency range is $30 \mathrm{c} / \mathrm{s}$ to $300 \mathrm{kc} / \mathrm{s}$. Input and output impedances are $100 \mathrm{k} \Omega$ and 600Ω respectively. Compensation is provided within the instrument for input sine waves of poor wave shape, and circuit stabilization is achieved through a high degree of d.c. and signal frequency feedback. Brookdeal Electronics Ltd., Myron Place, London, S.E.13.

WW 324 tor further detalls

STEREO AMPLIFIER

AVAILABLE in kit or assembled form from Daystrom, the TSA-12 Heathkit stereo amplifier has an output of 12 W r.m.s. per channel into an 8Ω load. The output is also suitable for 15Ω loudspeakers (8 W r.m.s. per channel) and there are three inputs for gram, radio, and auxiliary signals. Channel separation is 45 dB or better, and the frequency response is stated as 13 Hz to 60 kHz $\pm 1 \mathrm{~dB}$ and 7 Hz to $95 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Total harmonic distortion at 1 kHz at 0.5% or less at rated output; and at 20 Hz to 20 kHz it is 1% or less at the rated output. It possesses the usual complement of controls and employs 17 transistors and six diodes.
WW 325 for further details

Tunable Pot Cores

ENCAPSULATED tunable pot core assemblies in the Plessey Alpha range have been designed with the close requirements of telecommunications work in mind. One of these requirements is that of temperature co-efficient control and t.c. gradings in these com-

ponents fall into two broad categories arising from the intrinsic characteristics of the ferrites appropriate to the frequency bands. Generally, t.c. is linear for frequencies up to $2 \mathrm{Mc} / \mathrm{s}$ and nonlinear for frequencies between 2 and $8 \mathrm{Mc} / \mathrm{s}$. This range is suitable for t.c. performance and grading from 0 to 120 p.p.m. $/{ }^{\circ} \mathrm{C}$ over a temperature range $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. The encapsulated assemblies are housed in hot tin-dipped copper screening cases, the encapsulant being flexible silicone with good dielectric properties up to $8 \mathrm{Mc} / \mathrm{s}$
wW 326 for further details

Low-Level SCRs

A sensitive gate s.c.r. series rated at 800 mA (forward current r.m.s.) has been designed by Motorola for low-level power control circuits. The series consists of four device types-2N5060 to 2N5063 inclusive, with voltage ranges from 30 to 150 V . Gate current requirements for these units is only $200 \mu \mathrm{~A}$. The new geometry used in these devices features larger bonding areas on the die to provide better power dissipation. Additional features include low holding current (5.0 mA max at $25^{\circ} \mathrm{C}$), a 6 A peak surge for protection, a 1.7 V peak forward "on" voltage (1 A at $25^{\circ} \mathrm{C}$), and low blocking currents ($50 \mu \mathrm{~A}$ maximum at rated voltage and $125^{\circ} \mathrm{C}$). Motorola Semiconductor Products Inc., York House, Empire Way, W'embley, Middlesex
ww 327 tor turther detalls

VOLTAGE PROBE

ON the VT100 Amprobe voltage tester, voltages are shown "thermometer" style via a series of lit windows that correspond to the following voltage levels; 115, $220,277,440,550 \mathrm{~V}$ a.c. and 115,220 , $400,600,750 \mathrm{~V}$ d.c. When the probe is connected to the a.c. supply the window indicating the relevant voltage lights up and a buzz, is heard the pitch of which is determined by the supply frequency. This instrument will also indicate correct d.c. polarity. The body incorporates a sliding probe and there is another probe attached to an expanding coil cord, thus permitting measurement of points of up to three feet apart. Soss Manufacturing Company, Lynbrook, New York 11563, N.Y., U.S.A

WW 328 for further detalls

* HIGHLY POLISHED BLACK BODY MOULDINGS of SUPERB QUALITY

OTHER COLOURS BY ARRANGEMENT FOR QUANTITY ORDERS

- HEAVY BRASS INSERTS KEY- \rightarrow GBA. HARDENED STEEL GRUB LOCKED TO HIGH QUALITY SCREWS " ALLEN" IF REQUIRED MOULDINGS
List No. K. 515 \qquad
List No. K. 512
List No. K. 437
List No. K. 435

MANY WITH SPIN STYLING INSERTS HAVING DIAMOND CUT ALUMINIUM MODELS TURNED FROM SOLID ROD AND POLISHED FINISH

*
STANDARDISED BY ALL LEADING MANUFACTURERS

Send for leaflet $1500 / \mathrm{C}$ for details of our full range
In oddition to our large Standard Range, we can manufocture knobs to customers requirements ot 'Low Tool Costs.'
A. F. BULGIN \& CO. LTD.,
Bye Pass Rd., Barking, Dssex.
Tel: RIPpleway 5588 (12 lines)

The Unknown Warriors

SEEING that the time to ring out the old, ring in the new, is almost upon us, it was the intention of Old Moore Vector to gaze into his crystal ball to report upon the future of the electronics industry. One preliminary sidelong peek however, and common humanity made him desist. After all, you are going to have quite enough to put up with as it is, what with forking out for mother-in-law's present, and treading on the holly which the kiddiwinks have installed by their bedsides as a Santa auto-alarm.
So instead I thought it would be nice and seasonable if we paid tribute to the forgotten men of the radio industry. The men who, long after the factorics have closed and the labs have locked up for the Christmas, will be tootling around until the small hours of the morning on behalf of those whose sets have gone up in smoke at the last moment. I mean, of course, the chaps in the little shop around the corner; the fellows who have the privilege of repairing that television receiver you bought at cut price in the Tottenham Court Road. Those Tail End Charlies of the receiver industry, the small retailer and his serviceman (often one and the same person).

As we all know to our cost, there are dealers and dealers. There is the city shark with the flashy chromium shop front who welcomes every stranger in with gently smiling jaws (although that was a crocodile wasn't it?). He lives by the late Mr. Barnum's dictum that there is one born every minute and he has never had occasion to quarrel with the sentiment. Then we have an immense variety of chain stores, furniture emporiums, bicycle shops, ironmongers and so on, who run radio as a sideline. Some have qualified personnel; many don't. There's no telling until you've been a customer.
Another phenomenon is the man who, on the strength of having built a simple kit set or two, sets up a pin-money repair business at home. The bonafide dealers love him for his artless habit of adding or subtracting components from the circuit as the mood takes him, then washing his hands of the whole business when the set refuses to work. This chap also has a mysterious source of supply from which he can offer leading makes of receivers at a "little bit off." The dealers love him for that, too.
Finally there is the genuine article; the dealer who runs an honest business and backs it with first-class service. He may be in a big way of business; he may be found in a small village store (one of the best dealer-service engineers I know sells tobacco on the other side of the shop). The tragedy is that from a superficial pavement inspection the genuine article is quite indistinguishable from the riff-raff.
Possession of well-known receiver agencies offers no criterion, for although much lip service is offered by manufacturers to the importance of an efficient service department, a commanding position in the shopping area and a good window-frontage can work wonders in the appointment of a dealer.
One truly startling feature of the radio receiver industry is that prices are actually lower today than they were 45 years ago. You don't believe it? Neither did I, until I came across some radio magazines of 1924 vintage. The price of a reputable two valve set was then roughly $£ 20$. So you can get a 10 -transistor portable today for less than the price paid for a two valve set in 1924 (off-hand I would say
that the quality of reproduction was about comparable, too, but that's another matter). Compare the price of a television receiver of 1939 vintage with one of today's models and you will see the same downward price trend.

This is in contrast to the "times six" price increase in motor cars and most other commodities over the same period. Receiver manufacturers will argue that this is a tribute to their efficient mass production techniques; in fact, it is more of a tribute to their genius for trying to slit each others' throats and thereby killing the golden goose, if I may mix my metaphors.

The effect on the poor old dealer is all too plain. It means that he is working on the same, or perhaps even a lower, profit margin than he did in 1924. Not merely in percentage but in cash. If he made $£ 5$ profit per set in the 1920's he still makes $£ 5$ today, in spite of the huge increase in overheads. Take servicing equipment for instance. In the eariy days he could get by with little more than a buzzer and battery. Today even a modest service department houses many hundreds of pounds worth of equipment. Considering the doldrums in sales which have existed these many years it's not surprising that a lot of dealers have taken a one-way ticket to Carey Street. The wonder is that any have survived at all.

Now colour is with them, like an angry dawn portending more stormy weather; more very expensive servicing equipment and a lower mean time between failures to swallow the extra profit margin. In the cities and stockbroker belts things may not be so bad, but spare a thought for the little man in a remote farm-labouring area. He can count his colour-sales prospects on the fingers of one hand and still have plenty of digits left, but if he sells one colour set he still has to provide the means of servicing it, just as surely as if he was selling them by the hundred.

There was one man, Frank Murphy, away back in the 'thirties, who came up with some ideas which were regarded by his fellow manufacturers as completely screwball. He started making receivers which were engineered to professional standards, with price a secondary consideration (oddly enough, they were only a little higher than average). He appointed his dealers very carefully, making sure that their service departments were of a high standard, but, orce appointed, they had exclusive territories of considerable size.

He made the dealer into an external arm of his manufacturing effort by requiring him to provide a monthly return of repairs effected to his sets. If, then, a component was seen to be giving trouble, a better one was substituted, even if production had to be halted temporarily.
The customers were happy because their sets kept working year in, year out. The dealers were happy because their appointment was in effect a certificate of competence and even though their discount was rather less than average, they didn't have any significant frec servicing to do. The man who dreamed the system up was happy with a modest profit. Then, surprisingly, he got out of the business altogether, to the great loss of the industry.
Meanwhile, like any junkie, the industry has relied on periodic shots in the arm to keep it going; the latest of these is colour, over which no doubt, the suicidal pricecutting policies will continue.

Whe is an Avo meter not an Avometer?

When it gives you (a) $\pm 0.3 \%$ accuracy, (b) (c) 100% solid state, (d) (e) (f) semiconductor characteristics data, (g) valve characteristics data, or (h) digital $L / C / R$ measurements.

PRECISION AVOMETER Mearurea d.c. a voltage($1.6-1500 \mathrm{~V}$ scales, $\pm 0.3 \%$ f.a.d. ${ }^{\circ}$). d.c. current $\left(1.5 \mathrm{~mA}-15 \mathrm{~A}\right.$ scal ${ }^{\mathrm{s}}$, $\pm 0.8 \%$ f.a.d."), a.c. voltake ($3 \mathrm{~V}-1500 \mathrm{~V}$ acales, $\pm 0.75 \%$ f.s.d.), a.c. current ($3 \mathrm{~mA}-15 \mathrm{~A}$, $\pm \mathbf{0 . 7 5 \%}$ (.s.d.). - meets B.S.S. $89 / 1954$ for precision-grade instruments.

1] MULTIMETER Hilos Battery-operated O fully-transistorised. measures a.c/d.e. voltage $(100 \mathrm{mV}-1000 \mathrm{~V}$ scales, $\pm 4 \% \pm 3 \%$ f.s.d.), a.c./d.c. current (1uA-3A scales, $\pm 4 \% \pm 3 \%$ f.s.d.), resistance ($2 k \Omega \cdot 20 \mathrm{M} \Omega$ scales), power (-20 to $+60 \mathrm{db}, 9$ scales), r.f. voltage ($300 \mathrm{mV}-10 \mathrm{~V}$ scales, up to 250 MHz with external probe available separately).

c^{M}
MULTIMETER CT471A Battery-operC ated, fully-transistorised, sensitivity $100 \mathrm{M} \Omega / \mathrm{V}$, measures a.c./d.c. voltage (12 mV . 1200 V нcales, $\pm 3 \% \pm 2 \%$ f.s.d.), a.c./d.c. current ($12 \mu \mathrm{~A}-1.2 \mathrm{~A}$ scales, $\pm 3 \% / \pm 2 \%$ f.s.d.) resistance ($12 \Omega-120 \mathrm{M} \Omega$ scales, $\pm 3 \% \mathrm{~m} . \mathrm{s} . \mathrm{d}$) h.f./v.h.f./u.h.f. voltage with multiplier (4V400 V scales up to $50 \mathrm{MHz} \mathbf{4 0 \mathrm { mV } - 4 \mathrm { V } \text { up to }}$ 1000 MHz).

d IN.CIRCUIT TRANSISTOR TESTER d TT164 Direct-reading, easy to operate. accurate measurements under static and dynamic conditions. Collector voltage: continuously variable, 0.10 V . Collector current: continuously variable $0-10 \mathrm{~mA}, 20 \mathrm{~mA}$, 30 mA . Measures beta ($\mathbf{1 5 0 - 3 0 0}$ scblea. $\pm 5 \%$) and leakage current ($300 \mathrm{nA}-1 \mathrm{~mA}$

- TRANSISTOR \& DIODE TESTER C TT537 Measurea both transistor and diode characteristics. Collector voltage: continuously variable 0-12V, stabilised. Collector 11A-50mA. Mensures hre(50-1500 scales, $\leq 3 \%$ leakage current (50, 1.5 scale s). diode forward voltage drop ($1.5-5 \mathrm{~V}$ scalen, $0-500 \mathrm{~mA}$ forward current and breakdown
voltage ($100-1000 \mathrm{~V}$ scales, $3 \mathrm{~mA} \& 200 \mathrm{~mA}$ voltage $\mathbf{~} 100-1000 \mathrm{~V}$ scales, $3 \mathrm{~mA} \& 200 \mathrm{~mA}$ currents

f TRANSISTOR ANALYSER MK2 Avail1 able in both mains-powered and batterypowered versions; provides accurate measurements ingrounded-emitter configuration; acremmodates high-power and switching types. Collector voltage: $0.05-12 \mathrm{~V}$ (up to 150 V external). Base current: 1.40 mA scales. Collector current: to 1 A in 5 rankes. Measures leakage current (from $2 \mu \mathrm{~A}$), hfe ($25-250$ scales), saturation voltage, turnover voltage and noise factor.

σ° VALVE CHARACTERISTIC METER 5 VCM183 The most comprehensive instrument of its kind ever offered by Avo. Provision for testlng nuvistorn. compactrons and otherspecial types with up to 13 pin connections. No need to back off stand Ing anode current before measuring mutual conductance, which is continuously moniored under all conditions. Heater voltage: $0-119.9 \mathrm{~V}$ in 0.1 V steps. Anode and screen voltares. 12.6 V .400 V Grid voltare: $0-100 \mathrm{~V}$ continuous. Measures gm: $6 \cdot 60 \mathrm{~mA} / \mathrm{V}$ f.s.d. in 3 rangiges.

UNIVERSAL BRIDGE B150 A hatteryoperated general-purpose bridge with unique automatic disital display of meas ured component values. No multiplying factors required. Overall accuracy of inductance, capacitance and resiatance measure ments is $1 \% 1$ digit. Hesiduals 0.2 pF . $0.15 \mu \mathrm{H}$ and $2 \mathrm{~m} \Omega$. Internal 1 kHz oscillator d 9 Vhattery, provisionforexternal supplies.

Here are eight members of the Avo test equipment range that combine traditional Avo quality with some of the most advanced instrument technology available anywhere. Start your measurements with a standard Avometer, of course, but as your requirements develop and expand, remember the many other ways in which Avo can continue to help you. For full details, contact Avo Ltd, Avocet House,
 Dover, Kent. Telephone Dover 2626. Telex 96283.
AV Ω MEANS BASIC MEASUREMENTS ALL OVER THE WORLD

and when we get
the bit between our leeth
there's no letting go
until we have the solution to your transmission, shock, vibration or what-have-you problem.
There is usually more than one way to approach the answer and that is where Silentbloc mental flexibility comes in our design team will bend over backwards to make sure it's the best possible, not only functionally but cost-wise too. The spotlight is on Silentbloc mountings, couplings, bearings, ball joints, link assemblies and every kind of vibration-damping device.

DATA

Service	Peak Inverse voltage type	CV1147	Peak forward voltage max. (kV)	Peak anode current max. (A)	Mean anode current max. (A)
BT5	-	1.5	1.0	12.5	2.5
BT17	CV1144	2.5	1.0	40.0	6.0
BT19	-	2.0	2.5	2.0	0.5
BT29	-	15.0	15.0	75.0	12.5
BT69	CV5141	15.0	15.0	75.0	12.5
BT95			12.0	1.5	

This range of Mercury Vapour Thyratrons is available from the following E.E.V. stockists. Prices are highly competitive.

Coventry Factors Lid

Coronet House, Upper Well Streel,
Coveniry. Tel: Coveniry 21051
Downes a Davies Lid.,
G.P.O. Box 555, 72 Chapeltown Street, Manchester 1. Tel: Ardwick 5292

Edmundson Electronics Lid.,
60-74 Market Parade, Rye Lane, Peckham,
London SE15. Tel: New Cross 9731

Gothic Electical Supplles Lid.,
Gothic House, Henrietta Street, Blrmingham 19
Tel: Birmingham Central 5060
Harper Robertson Eiectronics Lid
97 Si. George's Road, Glasgow C3 Tel: Douglas 271 :
The Needham Engineerling Co. Lid
P.O. Box 23, Townhead Street,

Sheffleld 1. Tel: Sheffleld 27161

Smlth \& Cookson Lid.,
49/57 Bridgewater Sireet,
Liverpool 1. Tel: Royal 3154-7
Wireless Electric Lid.
Wirelect House. Si. Thomas Street,
Bristol 1. Tel: Bristol 294313

The Lilliput Series

ULTRA MINIATURE, INVERTER, WIDE BAND, CARRIER MATCHING, DRIVER AND PULSE TRANSFORMERS, A.F. AND SMOOTHING INDUCTORS

Gardners Lilliput series of Ultra Miniature transformers has been specifically developed for compatibility with other wired-in modules used on printed circuit boards.
Exceptional performance has been achieved by a unique form of construction incorporating extremely thin (down to $3: 2$ microns) high permeability core materials and a very short length of coil turn. Transformers in this new series are particularly suitable for pulse and switching circuits with rise times of 10 nanoseconds or less

GT12A. Describes the Lilliput series of Ultra Minialure trans. formers and gives useful information and data on their application in transistor converter/inverter, wide band communication and high speed pulse circuits.

The Alpha Series

FILTERS, dELAY LINES, TRANSFORMERS, MODULATORS, HIGH STABILITY INDUCTORS, TUNED CIRCUITS, OSCILLATORS

A range of custom built components from simple or hybrid transformers and modulators to highly complex multi-section filters or complete active networks of exceptional stability hermetically sealed to DEF. 5214 Humidity Class H1.

GT16. Gives a general description of the Alpha series assemblies and describes their suitability for wound components where a high degree of slability is required.

Low Voltage Isolating and Auto Transformers

A comprehensive range of conventional double wound and auto transformers for applications in industry and in the home. Nearly 200 types are available in six different styles and with outputs from 6 volts to 240 volts and from 5 VA rating to 2 kilowatts. All types are normally held in stock in reasonable quantities for immediate delivery.

Gardners Transformers Ltd., Christchurch, Hampshire
Telephone: Christchurch 1734

Voltage Stabilisers

DATA

DATA	Service type	Operating voltage approx. (V)	Striking voltage (V)		Tube current range (mA)	Regulation max.(V)	Base
Type			0	-			
OA2	CV1832	150	185	225	5-30	6.0	B7G
OA2WA \ddagger	CV4020	150	165	225	5-30	5.0	B7G
OB2	CV1833	108	133	210	5-30	3.5	B7G
OB2WA \ddagger	CV4028	108	133	210	5-30	3.0	B7G
OC2	CV8766	75	115	145	5-30	4.5	B7G
QS75/20	CV284†	75	110	160	2-20	6.0	B7G
QS75/60	CV434	75	117	-	5-60	5.0	B8G
QS92/10	CV188tt	92	140	-	1-10	5.0	Br.4-pin
QS95/10	CV286	95	110	-	$2 \cdot 10$	5.0	B7G
QS108/45	CV422	108	120	-	5.45	5.0	B8G
QS150/15	CV287	150	170	-	2-15	5.0	B7G
QS150/45	CV395	150	170	-	5.45	5.0	B8G
QS1202 \ddagger	CV4052	108	133	210	2-15	3.0	B7G/F
QS1203 \ddagger	CV4053	150	180	225	2-15	4.5	B7G/F
QS1215	CV5173	90	115	115	1-40	8.0	B7G

\neq Arugged and rellable type O In normal lighting in lotal darkness $\dagger \dagger$ Alsocv 1070 (operating voltage 100 V) \dagger Also CV 4083 (operating voltage 70 V)

This range of Voltage Stabilisers is available from the following E.E.V. stockists. Prices are highly competitive.

Coveniry Factors Lid

Coronei House. Upper Well Streel, Coventry, Tel; Coventry 2105 !

Downes \& Davies Lid.,

G.P.O. Box 555, 72 Chapellown Streel, Manchesfer 1. Tel: Ardwick 5292

Gothic Elecirlcal Supplies Lid. Gothic House, Henrietta Street, Birmingham 19
Tel: Birmingham Central 5060 Harper Robertson Electronlcs Lid 97 St. George's Road, Glasgow C3 Tel: Douglas 2711
The Needham Engineering Co. Lid
60-74 MarketParade. Rye Lane, Peckham, P.O. Box 23, Townhead Street,
London SE15. Tel: New Cross 9731 Sheffleld 1. Tel: Sheffield 27161

Smith \& Cookson Lid., 49/57 Bridgewaler Street, Liverpool 1. Tel: Royal 3154-7

Wireless Electic Lid.
Wirelect House, St. Thomas Street, Bristol 1. Tel: Erislol 294313

If it＇s worth 3 minutes of your time to learn the state－of－the－art in Thyristors，

start here：

Gate Thyristors When be operated with shempristors are to pulses andion seeply rising current care must to operating exdised mestablishing the device of condions and selecting the reactor may be ined．A sel－saturating cuit to limit the rate－of－rise of current （ $\mathrm{d} / \mathrm{d} \mathrm{d}$ ）；this will permit a conventional high－power thyristor to carry heavy load currents which exhibit high d / dt ．Where it is not practical to use such a reactor， which is often bulky and expensive，a thyristor with enhanced turn－on action must be used．Such action can be obtained by providing the thyristor with multiple gates．
IR multi－gate thyristors exhibit reduced turn－on voltage at any given instant during the turn－on period and shorter time for equalization of current flow throughout the entire semiconductor wafer．The consequent reduction in turn－ on power losses will permit increased load current to be carried and the device will exhibit faster turn－off time．It will also be able to withstand greater rates of rise of reapplied off－state voltages be－ cause of the lower junction temperature at the instant of current commutation．

MIM．Protection IR＇s epitaxial thyrist－ ors offer the exclusive feature of metal－ ion migration（M1M）protection．

During manufacture，the silicon wafer for epitaxial thyristors is contoured to improve the high－voltage characteristics of the device．This illustration shows the cross－section of a typical contoured silicon wafer．
Metal－ion migration can occut because of the electrical potential that exists at the junction interfaces at the edge of the wafer．When the device is energised， metal－ions are attracted from the metal mounting surface towards the junction interfaces．Migration may occur even though the wafer has been cleaned by etching and sealed with inert seaters or varnishers．When the minute metallic particles reach the interfaces，they can cause degradation or failure of the device． IR＇s epitaxial devices employ an exclu－ sive groove etching technique which provides needed contouring and，in addi－ tion，builds a guard－shield against metal－ion migration．
Bulk Avalanche Thyristors These de－ vices exhibit true avalanche bchaviour in the bulk of the crystal，thus avalanching at approximately the same voltage in both forward and reverse avalanche modes． Bulk avalanche devices are characterised by extremely low leakage current，which is mostly bulk leakage and which does not show any drift or instability under long－term，high－voltage blocking opera－ tion．In addition，IR＇s epitaxial thyris－ tors can be repeatedly broken over into the conduction mode without detri－ mental effects as long as the power rat－ ings and the rate－of－rise of turn－oft current（dI／dt）are kept within the listed specifications
As a result of the epitaxial construction， there is a substantial decrease in the for－ wW－008 FOR FURTHER DETAILS
ward voltage drop during turn－on．This reduces the total power loss during the turn－on action，which in turn reduces the temperature of the device．Therefore IR epitaxial thyristors are well adapted for inclusion in inverter and switching applications．
Ultra Fast Turn－Off Thyristors Early this year IR implemented a major techno－ logical breakihrough by going into quantity production at Oxted of thyristors exhibiting twn－off times below 3 micro－ seconds，fister than those yet produced by any other semiconductor manufac－ turer．To date this claim remains undis－ puted．The devices designated＂RCU＂ are offered in two current ranges of 8 and 10 amperes（full－cycle－average）with voltage ratings of $50-800$ volts PR V／PFV． The turn－olf＂times of all IR＂RCU＂ thyristors are measured at maximum． hase temperature．The maximum operat－ ing frequency of a thyristor circuit is obviously dependent on turn－off tinine， and introduction of＂RCU＂thyristors means that high－power inverter circuits may be operated at frequencies in excess of 30 kHz ．By utilizing＂RCU＂thyristors， the inverter designer may subsequently reduce the size and cost of the inverter components used in commutating circuits．
The principal applications for the ＂RCU＂hyristors also include high－fre－ quency induction heating，ultrasonic equipment and d．c．－d．c．converters． Delailed information about the world＇s leading range of thyristors and how they can solve your specific problems is yours on request from International Rectifier． Just ask．

Stop here．Now you know，thanks to工与上

International Rectifier • Hurst Green Oxted Surrey－Telephone：Oxted 3215 Telex： $9 \leq 219$（rectifier oxted）

This looks like a'B’size Ignitron

but it controls 65\% MORE POWER and saves money

The new EEV Mini 'C' Ignitron

It's well-known that ' B ' and ' C ' Ignitrons are often used for applications which call for something in between. You can either overworka ' B ' or underwork a 'C'. Whatever you do wastes money. To cut out this waste EEV have developed a new Mini ' C ' Ignitron which has a standard international ' B ' size envelope, but can handle 65% more KVA than the ' B ' size. The new tube has a number of advantages. Take-over voltage is low to minimise misfiring at low current conditions, which in turn increases ignitor life. When used in place of a standard ' B ' size ignitron, you will find that the Mini ' C ' lasts nearly twice as long. The cooling water is in direct contact with the vacuum envelope, and the inlet
has been streamlined for better water flow. This adds up to better cooling, especially at hot spots, and reduced clogging by sediment. Both water connections are of the quick release type. Plastic coatíng is optional. The Mini ' C ' fits standard ' B ' size sockets, so that you can use it to uprate existing equipment to provide new intermediate types. Makers of welding equipment will see in the Mini ' C ' a means of extending their range, as there is no need for a new socket size calling for radical design changes. Use the Mini ' C ' in place of an overworked 'B' size for longer life, or to replace an underworked ' C ' size for lower running costs. In both cases it will save you money.

EEV's new Mini ' C ' Ignitron is available from stockists throughout the country.

Harper Robertson Electronics Ltd, 97 St George's Road
Downes a Davles Lid, G.P.O. Box 555, 72 Chapeltown Street
Smith \& Cookson Ltd, $49 / 57$ Bridgewater Street
The Needham Englneering Co. Lid, P.O. Box 23, Townhead Street
Coventry Factors Ltd, Coronet House, Upper Well Street
Gothic Electrical Supplies Ltd, Gothic House, Henrietta Street
Edmundson Electronics Ltd, 60-74 Market Parade, Rye Lane, Peckham
Wireless Electric Ltd, Wirelect House, St Thomas Street

Glasgow C3 Tel: Douglas 2711 Manchester 1 Tel: Ardwick 5292
Liverpool 1 Tel: Royal 3154-7
Sheffield 1 Tei: Sheffield 27161
Coventry Tel: Coventry 21051
Blrmingham 19 Tel: Central 5060
London SE15 Tel: New Cross 9731
Bristol 1 Tel: Bristol 294313

LEVELL
 PORTABLE INSTRUMENTS

LEVELL ELECTBONICS LTD., Park Poad HighBaruet Herts. Phone 01-449 5028

Meter panel of speciallists

Here at Anders there's a panel of meter specialists
daily creating panels of special meters. And just special meters on their own.
For equipment manufacturers, research organisations, nuclear energy establishments.
For anybody, in fact, whose meter requirements are a little out of the ordinary, like non-standard calibrations. Or a lot out of the ordinary,
like non-standard calibrations plus special modifications, plus ...
well, you name it. Creating specials is an important part of Anders Meter Service.
Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries.

Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.

New comprehensive catalogue available free to manufacturers and bona-fide engineers.

ANDERS METER SERVICE

Anders Electronics London • 103 Hampstead Road London NW1 • Telephone Euston 1639
Ministry of Aviation Approved

IF THIS
 IS NOT THE
 ONE YOU
 WANT WE STILL
 HAVE A FEW MILLION OTHERS

Ministry of Aviation Approved Inspection. Alr Kegistration Boara Approved Inspection.

For quality, reliability and world-wide availability rely on Hall Electric's speed, intelligence and reputation.

Hall Electric Ltd., Haltron House, Anglers Lane, London, N.W.S.
Telephone: 01-485 8531 (10 lines). Telex: 2-2573. Cables: Hallectric, London, N.W.5

The Belling-Lee "Securex" Miniature Circuit Breaker is a precision unit which provides protection, switching plus a clear indication of the circuit condition. Two basic types are available, thermal or thermalmagnetic. Available in many ratings from 300 mA to 15 A .
FÓR FULL SPECIFICATIONS RING ENF 5393 OR WRITE FOR DATA SHEETS E17-E20
 \title{

breakers
 \title{ \section*{breakers with BIG with BIG Advantages}

 Advantages}}

Miniature circuit

 COMPONENTSconnecting research to industry

belling \& Lee limited, great cambridge road, enfield, middlesex

with the rugged PROVED reliability of the PYE 'VANGUARD' mobile radio

\square Up to 100 W r.f. output \square All-transistor receiver with

 low current consumption on stand-by \square Up to 4 W audio output \square G.P.O. approved; meets U.S., Canadian and European specifications \square Sealed I.F. block fitters \square A.M. or F.M. versions \square Dust and splash-proof \square Option of $12 \frac{1}{2} \mathrm{kc} / \mathrm{s}, 20 / 25 / 30 \mathrm{kc} / \mathrm{s}$ or $40 / 50 / 60 \mathrm{kc} / \mathrm{s}$ channel spacing $\square 1$ to 10 channels availablePye Telecommunications Limited, Cambridge, England Telephone Cambridge 61222. Telex 81166

VALUABLE NEW HANDBOOK
 TO AMBITIOUS ENGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT ?

ELECTRONIC ENG.
Advanced Electroric Eng. Gen. Electronic Eng-AD-Aphied Electronics - Practical ElecFrequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Elecrrical Eng. Gen. Electrical Eng. Installations - Draughtsmanship - Iluminating Eng. -Refrigeration-Elem. Electrical Science - Elecrrical Supply - Mining Electrical Eng.

CIVIL ENG. Advanced Civil Eng. - Gen.
Civil Eng.-Municipal Enk.Civil Eng. -Muncipal Eng. Structural Eng. Eng. Santiary Eng. - Road Eng. - Hydraupply - Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio - Radio © TV Servicing 二TV Eng. - Telecommunticarions - Sound ReCractical Radio - Radio Amateurs' Exam.

MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Ens. Maintenance Eng, Diesel Enr. - Press Tool Design-
Shet Metal Work-Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.

AUTOMOBILE ENG. Advanced Automobile Eng. Gen. Automobile Eng. Automobile Maintenance Repair - Auromobile Diesel Maintenance - Autamobile Electrical Equipment - Garage Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? A.M.I.E.R.E., A.M.I.Mech.E., A.M.S.E., A.M.I.C.E., A.B.S., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B.: A.M.I.Chem.E., A.R.I.C.S., M.R.S.H., A.M.I.E.D.: A.M.IMUn.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," Send for your copy now-FREE and without obligation.

TO B.I.E.T. 446A ALDERMASTON COURT. aloermaston, berkshire.

3d. stamp if posted in an unsealed envelope.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I an interested in (state subject, exam., or career).

NAME
\qquad ADDRESS
\qquad WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.IE.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Three turntables from the world's greatest range of record playing units designed to enable you to get closer than ever before to your ideal in sound reproduction.

Garrard 401

With its magnetically shielded 4 -pole in. duction motor, gear-cut stroboscopic marking illuminated by an integral high-intensity neon lamp, precise variable speed control, heavy non-magnetic diecast turntable, antistatic mat, and functional styling, the 401 is the ultimate in transcription turntables. It meets the most exacting requirements of radio, television and recording studios throughout the world and of Hi -Fi enthusiasts everywhere. Each unit is supplied with its own test report

Garrard LAB 80 Mk II

The LAB 80 Mk II is a transcription iurntable with facilities for changing records when desired. Among the advanced features are low-resonance wood pick-up arm, pick-up bias compensator and cueing facilities on manual. Further refinements are finger-tip tab controls, integral calibrated fine stylus force adjustment, a record-repeat adaptor and automatic play of single records.
Optional extras-attractive teak-finish base (WB2) and rigid clear plastic cover (SPC2).

Garrard SP 25 Mk II

A single record-playing unit designed to give exceptional performance at moderate cost- The SP 25 Mk II incorporates a pick-up arm bias compensator and integral calibrated stylus-force adjustment. A special feature is a cueing device which allows the pick-up to be raised or lowered at any point on the record. When a record has been played, the pick-up arm automatically lifts and returns to its rest and the motor switches off.
Optional extras-attractive teak-finish base (WB 1) and rigid clear plastic cover (SPC 1).

Your Hi-Fi dealer will be pleased to show you these superb Garrard units. Ask for leaflets on the complete Garrard range.
Garrard Engineering Limited, Newcastle Street, Swimdon, Wiltshire. Telephone: Swindon 5381
looks after your records

If your production processes call for fine precision soldering, then you must have the new Antex Precision Soldering Equipment Catalogue. This details the range of Antex irons, with complete performance specifications, full details of spare bits etc., as well as information on de-soldering tools, iron stands etc. In fact its' 16 pages (in colour!) deal with every aspect of Precision Soldering. And its free-just send off the coupon.

ANTEX LIMITED • GROSVENOR HOUSE • CROYDON CR9 1QE • Telephone: 01-686 2774 ww-017 FOR FURTHER details

QUAD for the closest approach to the original sound

*
 NEW

33 CONTROL UNIT 303 POWER AMPLIFIER

During December, most dealers will have available demonstration models, and full technical details.

QUAD

THE ACOUSTICAL MANUFACTURING COMPANY LTD. Huntingdon, England Telephone: Huntingdon (0480) 2561/2

TVE1R MICRO SWITCHES IMIMEDIATE DESPATCH

611-T Delay Relay sYs MINI-TIMER	AT-10 PNEUMATIC TIMER - delay relay Fully adjustable up to 200 seronds. Fitted with 15 amp . S.P.D.T. switch. \star One model provides delay after energise or delay after de-energise. approx. £6.0.0 dependent on quantity.	STP Sub-Mini Process Timer SYNCHRONOUS MOTOR \& CLUTCH Matchbox size frontal area. Automatic re-set. \star PLUG-IN OCTAL BASE * INSTANTANEOUS AND TIMED OUT 2 AMP CONTACTS * RANGES: 10 SECS. TO 36 MINS. approx. $£ 5.0 .0$ each.
U.L. APPROVED (Appr. No. 32667 U.S. MIL. SPEC.ALWAYS AVAILABLE FROM STOCK		
S5G * 1 MILLION OPS. 5 amp.c/o Sub-miniature Micro-switch. $2 / 5$ each per 1,000		
WL 10 FNJ $\star 10$ AMP 2 CIRCUIT $\star 5$ INCH FLEXible actuator as illustrated as low as $47 / 7$ each. five other standard typês avallable		

[^4] D/P S/T SWITCH BLOCKS. COLOURED KNOBS. ALSO PUSH-ON/PUSH-OFF TYPES. SUITABLE FOR MACHINE TOOLS, MOULDING \& PACKAGING MACHINES \& CONTROL PANELS. FULL LITERATURE \& DETAILS ON REQUEST.

(1opet, w.w.s) OMRON PRECISION CONTROLS

Tel.: 01-723 2370

RE-CREATES THE FINER SHADES OF ORIGINAL SOUND

To re-create faithfully the finer shades of original sound, stored as complex mechanical patterns in the micro-grooves of modern records, calls for a cartridge in the precision instrument class. Goldring engineers have spent two years developing such a cartridge . . . the Goldring " 800 " Free Field Cartridge. At a comparatively modest cost this cartridge rivals the finest in the world, whilst at the same time guaranteeing the complete

GOLDRING800 FREEFIED STEREO CARTRIDGE

 reliability for which the name "Goldring" has stood for sixty years in record reproduction.GOLDRING " 800 " FREE FIELD
strefo cafrinow $£ 12.7 .6$
SPECIFICATION

Type
Frequency Response
Sensitivity
Separation
Load
Compliance
Stylus
Effective Tip Mass
Tracking Weight
Head Weight
Vertical Tracking Angle
Mu Metal Shield for hum protection.

Magnetic-(Free Field)
$20 \mathrm{~Hz}-20 \mathrm{kHz}$
$\mathrm{mv} . \mathrm{per} \mathrm{cm} / \mathrm{sec}$.
25 dB at 1 kHz and nowhere
less than 15 dB
$100 \mathrm{k}-47 \mathrm{k} / \mathrm{ohms}$
$20 \times 10^{-6} \mathrm{~cm} /$ dyne
$0.0005^{\prime \prime}$ diamond replaceable
1 mg .
$1-3 \mathrm{grms}$. 8 grms. 8 grmis
15°

OLSON

instrumentcases andchassis

- ADVANCED DESIGN
- HIGH QUALITY
- RIGID CONSTRUCTION
- MADE IN VARIOUS SIZES
- LOW PRICE
write for further details to
OLSON ELECTRONICS LIMITED
FACTORY No. 8 5-7 LONG STREET LONDON, E. 2 TEL. 01-739 2343

HANDS FREE OPERATION

\star High Accuracy
\star Specially designed for Colour TV
\star Calibrated within 400 v at 24 kV .
Ł Compact, Portable, Safe

* Easy connection to CRT

Price-Complete with leads:
£30.10.0
EX WORKS
Obtainable from your service depot or direct from:

MILES 톶ㄱ HIVOLT LTD.

Riverbank Works

SHOREHAM BY SEA Sussex

E.H.T. terminal is fully shrouded and the earth and E.H.T. leads are designed to be attached to the receiver and left on. In this way the E.H.T. is continuously displayed enabling the engineer to carry out other measurements.
Quote TV/DCM/I and ask for details of this and our full range of High Voltage Measuring and Generating Equipment.

See all these models, and many more...
 in the latest HEATHKIT Catalogue

LOW-COST TRANSISTOR STEREO AMPLIFIER, TS-23

incorporates all the essential feacures for good quality sound reproduction from record, radio and other sources 0.16 transistor, 4 diode circuit - Good frequency response - 3 watts r.m.s. (15 ohms) each channel - 6 position selector witeh easily handles your record, radio or tape inputs-stereo or mono - Separate controls provide bass boost, ereble cut, amplifier balance and volume - Printed circuit board conseruction - Compact, slimlirie styling - Measures 3 ifin. high x 13 in . wide $\times 8 \mathrm{in}$. deep - Beautiful walnut veneered cabinet (oprional extra) Actracsive Perspex front panel.
KIT $\operatorname{ll} 7.15 .0$ (less cabinet)
KIT 18.19 .0 (with cabinet)
Walnut vencered cabinet $\mathbf{6 2 / 5} /$ - extra.

THE AVON COMPACT MINI SPEAKER SYSTEM

The ideal compace system for bookshelf or other small spaces $6 \frac{1}{2}$ in. bass speaker - 31 in . totally enclosed creble unit - Speakers rigidly mounted so 咅in. thick aluminium alloy plate - Inductorcapacitor cross-over unit - Strongly conseructed, iully finished walnut veneered cabinet - Cabinet resonances are minimised by stout internal bracing and special acoustic absorbent filling - Sultable for use with amplifiers having an output impedance of $8-16$ ohms, and power output of 5 to is watts.

- Fase, casy assembly - Gives best possible performance relative to smallest possible size - Frequency response $50 \mathrm{e} / \mathrm{s}-19,000 \mathrm{c} / \mathrm{s}$. - Size: 7 lain. wide $\times 13 \mathrm{kin}$.
 speakers and cross-over network kit $64 / 18 / / \mathrm{incl}$. P.T.

TOTAL PRICE KIT $\& 13.16 .0$ incl. P.T.

NEW! TRANSISTOR AM-FM STEREO TUNER, AFM-2

- 18 Transistor, 7 diode circuir - AM-LW/MW, FM Stereo and FM Mono tuning - Automatic stereo indicator lighe - Stereo phase control for maximum eparation, minimum distortion - Automatic frequency control for positive " lock-in " tuning - Automatic gain control for even, steady volume - Preassembled and aligned "front end" FM unit e Separate AM and FM printed cireuit boards - Selfpowered - Low-silhouette stylin』-matehes AA-22U amplifier - Handsome fully finished walnut veneered cabinet, available as optional extra. Comprising: AFM-2T RF Tuning Heart kit $\epsilon 7 / 17 / 6$ incl. P.T., AFM-2A IF Amplifier and power supply kit $£ 24 / 9 / 6$.

TOTAL PRICE KIT $\mathbf{6} 32.7 .0$ incl. P.T.
Optional extra: Walnut veneered cabinet $\mathbf{E 2 / 5 / \sim}$ extra

TRANSISTOR FM STEREO TUNER, TFM-IS

(Mono version TFM-IM available)

- 14 transistor, 5 diode circuit for cool instant operation Mono TFM-IM and Stereo TFM-IS models available - Automatic frequency control - Stereo phase control to maximise stereo separation, minimise distortion - 4-stage if section ensures high sensitivity and selectvity - Fileered outputs for direct "beat-
free stereo recording - Automatic stereo indicator
light - Prealigned, preassembled "front-end" tuner
and one cercuit board for fast, simple assembly. Cabinet $\mathbf{\varepsilon 2 / 5 / - \text { extra. Comprising }}$ TFM-TI RF Tuning Heart Kit, ES/16/-incl. P.T.. TFMA-IM (Mono) IF Amplifier, Power supply $615 / 3 / \%$. Kit or TFMA-IS (Stereo) If Amplifier, Power supply $£ 19 / 2 /-$ Kit. TOTAL PRICE KIT (Stereo) £20.19.0 incl. P.T. TOTAL PRICE KIT (Mono) $\mathbf{E 2 4 . 1 8 . 0}$ incl. P.T.
Optional extra: Walnut veneered cabinet $\mathbf{£ 2 / 5 / - \text { extra. }}$

All models must perform to published specification when assembled in accordance with the instruction manual. ALL MODELS COVERED BY MONEY BACK GUARANTEE.

BERKELEY SLIM-LINE SPEAKER SYSTEM

- Specially designed to obtain optimum performance from the slim elegant cabinct - Beautiful walnut veneered, fully finished cabinet - Makes attractive addition to any room Scood on end only uses 17in. x 7 ªcin. of floor space. Two spec. ially designed loudspeakers give adequate power handling for most applications 12 in . Iow resonance unit and 4 in . Mid/High frequency unit, covers $30-17,000 \mathrm{c} / \mathrm{s}$. Build it in an evening - Professional attractive styling - Use one for mono and a pair for stereo - Outstanding performance at a low price - Shelf or floor standing - Use vertical or horizontal - Designed to harmonize with modern or eraditional decor.
KIT \&19.10.0 Assembled $\mathbf{E} 24.0 .0$
LOW-COST SPEAKER SYSTEM SSU-I (not illustrated)
- Build ir yourself in an evening - All wooden parts accurately pre-cur, drilled and sanded - Wide frequency response - Two specially designed loudspeakers - Hi-Fion a budger - Glue, sandpaper, etc. are included in kit Use one for mono, two for stereo - Finish it to match your own furnishing - 16 page instruction manual 7 in . or 15 in . legs optional exera $14 / 6$ - Use vertical or horizontal.

KIT CII.17.6 (less legs)

LOW-COST SHORTWAVE RECEIVER, GR-64E

- 4 bands- 3 shore wave bands cover $1 \mathrm{Mc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. plus $550 \mathrm{kc} / \mathrm{s}$ to $1.620 \mathrm{kc} / \mathrm{s} \mathrm{AM}$ broadcast band - Built-in Sin. permanent magnet speaker for a big, bold sound - Illuminated 7 in . slide-rule dial with extra logging scale - Easy to read lighted bandspread tuning dial for precise station selection - Relative signal strength indicator aids pin-point station
 tuning of divalve superhet cireuit plus two silicon diode rectifiers - Variable BFO control for code and SSB transmissions - Builx-in external antenna connections - Built-in AM rod antenna Fast, simple circuit board construction assures stability - Handsome " low-boy " styling -charcoal grey cabinet, black front panel, and green and white band markings - Headphone jack for private listening. Power requirements: $115,230 \mathrm{v} .50-60 \mathrm{c} / \mathrm{s}$ A.C. 30 watts. Dimensions: $13 \frac{1}{2} \mathrm{in}$. wide $\times 6 \mathrm{in}$. high $\times 9 \mathrm{in}$. deep.

KIT E22.8.0 Assembled $\mathbb{2} 7.8 .0$

GENERAL COVERAGE RECEIVER, GG-IU (notillustrated)

- Poweríul 10 transistor. 5 diode circuit - Tunes 580 to $1,550 \mathrm{kc} / \mathrm{s}$ and 1.69 so 30 Mc / s in five bands - Bandspread on all bands. Fixed-aligned ceramic IF eransfilters for best selectivity - Pre-assembled and aligned "front-end "for fast, easy assembly - Built-in 6 in. x 4 in. speaker © Tuning meter for pin-point tuning Completely self-contained for portability.

KIT ©37.17.6 Assembled $\subset 45.17 .6$

Heathkit World-famous Easy-to-build

INSTRUMENTS • HI-FI • RADIO • ELECTRONIC KITS
 (Deferred terms available on all orders over $£ 10$, U.K. only)

NEW: $12+12 W$ TRANSISTOR STEREO AMPLIFIER
Model TSA-12
Luxury performance
at lowest cost

- 17 transistors, 6 diode circuit - $11 \mathrm{~dB}, 162050,000 \mathrm{c} / \mathrm{s}$ at 12 watts per channel into 8 ohms - Output sultable for 8 or 15 ohm loudspeakers - 3 stereo inputs for Grams., Radio and Aux. - Modern low silhouette styling - Actractive aluminium, golden anodised frons panel. Handsome assembled and finished walnut vencered cabinet available Matches Heathkit models TFM-I and AFM- 2 transistor tuners.
Kit $\mathbf{£ 3 0 . 1 0 . 0}$ (less cabinet) Ass'le $\mathbf{£ 4 2 . 1 0 . 0}$ Beautiful Walnut cabinet $\mathbf{\Sigma} \mathbf{2} .5 .0$ extra.
$20+20 W$ TRANSISTOR STEREO AMPLIFIER

Model AA-22U

An International Class amplifier which offers superb realism and beauty of music at a very competisive price. Professional, elegant, compace, slim-line stying. The best of American tra
alowhigh outpus with low distortion.
a'low high output with low distortion. 5 stereo inputs (five each channel) for pick-up, radio tuner, tape and ewo other sourtes. 20 transistor, 10 diode cireuit. Beautiful, fully finished walnus veneered cabinet (optional exera)
Kit .. $\mathbf{6 3 9 . 1 0 . 0}$ (less cabinet) Ass'ld. $\mathbf{6 5 9 . 1 5 . 0}$
(inc. cabinet)
Walnut cabinet $\mathbf{C 2}$.5.0 extra.

5 W HI-FI MONO AMPLIFIER

KIT Model MA-5
A low-priced general purpose Hi Fidelity amplifier based on the popular S-33 for those who do not require a
stereophonic system. Scparate bass stereophonic system. Separate bass
Gram and Radio inputs. Suitable for and treble controls. Apsithed circuit simplifies conmost crystal pick-ups. A printed circuit simpliftes con-
seruction. Kit © 11.9 .6

Assembled Cl 5.15 .0

STEREO CONTROL UNIT KIT Model USC-I

Incorporates all worthwhile features for Hi-Fidelity stereo and mono. Push-button selection, accurately matched ganged controls to 1 dB . Negative feedback rumble and variable low-pass filters. Printed circuit boards. Accepts inputs from most tape-heads and any stereo or mono pick-up.
Kit $\mathbb{C} 19.19 .0$
Assembled ©27.5.0

LW/MW TRANSISTOR PORTABLE RADIO KIT Model UXR-I

Bcautiful leather case. Easy-to-read scale, 7 semi-eonductors. Printed circuit board 7 in. \times 4in. Special
loudspeaker Prealigned loudspeaker. Pre-aligned IF transformers. 9 -vole battery operated Easy to construct.
formance and value.

Kit CI2.11.0 (inc. P.T.)

" MOHICAN"

GENERAL COVERAGE RECEIVER KIT Model GC-IU
This fulty transistorised receiver which includes 4 piezo-electric transfilters, is in the forefront of receiver design. It is an exce

lent portable or fixed station receiver. The R.F. "front-end" is supplied as a preassembled and prealigned unit. Its many features include a 10 -transistor circuit. printed circuit board, celescopic whip antenna tuning meter, and a large slide-rule dial giving a total length of approximately 70 inches Housed in a steel cabinet and powered by two 6 volt dry batteries (not supplied). mounted internally, it gives frequency coverage from $580 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ in five bands; thus enabling world-wide reception. Electrical bandspread covers the amatcur bands from 80 to 10 metres-each band having a scale length of approximately 8 inslies, BFO tuning and Zener diode stabiliser. Size $6 \mathrm{i} \mathrm{in} . \times 12 \mathrm{in} . \times 10 \mathrm{in}$.
Please write ior specification leaflee.

STABILISED POWER PACK

Models MSP.IM and MSP.IW

Specially recommended for industrial and laboratory usc, meeting the need for stabilised power pack seabilised power pack
capable oi a very high per-
 formance. Input $200-250 \mathrm{v}$. $40-50$ c/s., A.C., fully fused. Output: H.T $200-410 \mathrm{v}$. D.C. at $0-225 \mathrm{~mA}$. in 3 switched ranges. Unstabilised A.C., 6.3 v . at 4.5 A . eenere-sapped. Two 3in. "easy-to-read": meters for reading voltage and current meters for reading voltage and current supply transformers. All output circuits are isolated. Size $13 \mathrm{in} . \times 8 \mathrm{fin} \times 9 \mathrm{tin}$.
Kit. © 36.12 .6 Assmbled. .
643.12 .6

Kit. . ©29.17.6 Assmbid. . E36.17.6

BALUN COIL UNIT KIT

Model B-\{U. Will match unbalanced co-axial lines to balanced lines of either
75 or 300 ! impedance. Frequency range $10-80 \mathrm{~m}$., input up to 200 watts. Kit .. E5.5.6 Assmbld
65.18 .0

TAPE PRE-AMPLIFIER KITS Models TA-IM and TA-IS
The Combined Tape Record/Replay Amplifier is avairable in both
 monophonic and stereo phonic model. Model TA-IM can be modified to the sterco version with modification kit TA-IC.
TA-IM Kit £19.18.0 Assmbld. $£ 28.18 .0$ TA-IS Kit €25.10.0 Assmbld. $\mathbf{6 3 5}, 18.0$ TA-IC Kit . ©6.15.0
All prices are mail order and include free delivery in the U.K.
Deferred Terms Def

AMATEUR TRANSMITTER KIT Model DX-100U
The World's most popular

Amateur TX Kit

Completely self-contained. 150 w. D.C. input. Built-in highly stable VFO and all Power Supplies. The KT88 high-level anode and sereen modulator stage gives over 100 watts of audio from less than 1.5 mV input.
Keying on CW is via the VFO and buffer amplifier cathodes: the other RF valves are biased beyond cut-off.
Provision has been made for remote control operation. Covers all Amateur bands up to $30 \mathrm{Mc} / \mathrm{s}$. phone or CW . Kit . E81.10.0 Assembled . £106.15.0

AMATEUR BANDS RECEIVER KIT

Model RA-I The ideal economically priced fixed station, portable or mobile receiver covering the Amateur bands from $160-10 \mathrm{~m}$., each band separately largeinerminated shiderulic dial. Features: Signal strength meter, tuned RF amplifier stage, half-lattice filter, ad10 merre bands. IF. $1620 \mathrm{kc} / \mathrm{s}$.
Kit .. £39.6.6 Assembled .. $£ 52.10 .0$

AMERICAN HEATHKIT
 SINGLE SIDE BAND EQUIPMENT

Transmitters. Receivers, Transecivers. Send Jor details of models. Fully illuserated American Catalogue of Heathkit range sene for only $1 /-$ post-paid. Or see seleccion of models in Bricish catalogue.

REFLECTED POWER METER KIT

Model HM-IIU Indicates reliably but inexpensively, whether tha R.F. power output of your transmiteer is being eransferred efficiencly to the radiating antenna. Kit . ©8.10.0 Assembled Cl0.15.0

VARIABLE FREQUENCY
 OSCILLATOR KIT. Model VFIU

Specially designed to mect the demand for the maximum possible flexibility from an amateur Transmitter which would otherwise be subjest so certain limi ations imposed
by crystal control. Calibrated for all
 Amateur bands $160-10$ metres. fundamentals on 160 and 40 m . Ideal for Heathkit DX- 40 U
and similartransmitters.
Kit . 10.17 .6 Assembled $15.19 .6 ~$
Q MULTIPLIER KIT. Model QPM-I
A reasonably priced Q Amplifier for the amateur and short-wave for the amateur and short-wave (200-250 v. $50 / 60 \mathrm{c} / \mathrm{s}$.) may be used with communications receivers to provide both additional selectivity
 and signal rejection.
Models OPM-I for $470 \mathrm{kc} / \mathrm{s}$. IF, QPM-16 for $1.6 \mathrm{Mc} / \mathrm{s}$ IF Models QPM -1 for $470 \mathrm{kc} / \mathrm{s}$. IF. QPM-16 for 1.6 Me/s. $\mathbf{C 8 . 1 0 . 0}$
Kit, either model Assembled

C12.14.0
AERIAL TONER KITS. Model HT-I, HT-IG
Height 32it. sq. section 3ft. $\times 3 \mathrm{ft}$. at base (no stays required). Accessories available as extras
HT-1G Kit (galvanised) ©43.15.0
HT-I Kit (red oxide) ©37.15.0

DAYSTROM LTD.

DEPT. WW.I, GLOUCESTER, ENGLAND

Outstanding British Equipment by Heathkit

(All models available as easy-to-build kits or factory assembled).

FM TUNER KIT, Model FM-4U

Tuning range $88-108 \mathrm{Mc} / \mathrm{s}$ Flywheel tuning. Attractive perspexfront panel in two tone grey with golden trim. Thermometer type tuning indicator, pre aligned I.F. transformers. Own built-in power supply Tuning heart model FMT $\mathbf{4 U} \mathbf{C} \mathbf{2} / 15 /-\mathrm{incl}$. P.T.
I.F. amplifier and power supply. Model FMA-4U, Complete with case and valves $\{13 / 13 /$ - Sold separately. with case and valves Total E16.8.0.
Kit Total

STEREO DECODER SD-I

Ideal for use with valve FM Tuners.
Kit $\mathbf{E 8 / 1 0 / 0}$ Assembled
© 12.5 .0
3+3 W HI-FI STEREO AMPLIFIER Kit Model S-33H

An inexpensire An inexpensive
stereo-mono amplifier with the high sensitivity necessary for lightweight miniature ceramic pick-ups (e.g., Decca Deram) De luxe version of the $5-33$ with attractive two-tone grey Perspex panel.
Kit \&15.17.6
Assembled $\ell 21.7 .6$
MONO CONTROL UNIT KIT
Model UMC-I
Ideal for use with MA-12 or similar amplifier. Ousput
Kit $\mathbf{£ 9 . 2 . 6}$

AMATEUR TRANSMITTER KIT

 Model DX-40U
Covers all amateur bands from 80 to 10 metres, crystal controlled Power input 75 wates C.W. 60 watts peak controlled carrier phone. Output 40 watts 20 aerial. Provision for VFO. Filters minimise T.V. interference. Modulator and power supplies are built-in. Single knob band switching is combined ing convenience. A high-grade moving-coil meter indicates the final grid or anode current. Provision is made for the use of 3 crystals.
Prices now reduced to:-
Kit . . £29.19.0 Assembled 〔41.8.0
GENERAL COVERAGE RECEIVER KIT RG-I
An Inexpensive communications type receiver specially designed for the short wave listener with many refinements found only in receivers costing mush more. Freq. coverage $32 \mathrm{Mc} / \mathrm{s}-1.7 \mathrm{Mc} / \mathrm{s}$. in 5 ranges also Kit.
Kit .. $£ 39.16 .0$ Assembled . . . $£ 53.0 .0$ Optional extras available.

GRIP-DIP METER KIT. Model GD-IU

Funstions as oscillator or absorption wavemeter. With plug-in coils for continuous frequency coverage from $1.8 \mathrm{Mc} / \mathrm{s}$. to $230 \mathrm{Mc} / \mathrm{s}$.
Kit Ell.9.6 Assembled El4.9.6 Additional Plug-in Coils Model 341-U extend coverage down to $350 \mathrm{kc} / \mathrm{s}$. With dial correlation curves. 17/6.

TRANSISTOR INTERCOM KITS

 Models XI-IU and XIR-IU 9 v . battery operated. Up to five remote stations can be operated with each Master. The Master unit can call any one. a combination, or all five Remote stations and any Remote station can call the Master| Kit | \&11.9.6 | Assembled |
| :---: | :---: | :---: |
| | Mod | XIR-IU (Remote) |
| Kit | 4.9.6 | Assembl |

\& 17.9 .6
65.18 .0 See also Oscilloscope page

HI-FI MONO POWER AMPLIFIER KIT Model MA-I2

A compact Hi-fidelity power amplifier (including auxiliary power supply). 12 watts output. Wide frequency range and low distortion A variable sensitivity control is A varted enabling it to be used with an existing amplifier in a stereo phonic system. Other application includes sound reinforcement systems, transmitter modulators, for use wish tape recorders. Kit $\mathbb{C} 12.18 .0$ recorders.

"COTSWOLD" SPEAKER

 SYSTEM KITThis acoustically designed enclosure measures $26 \times 23 \times$ 14 fin.., and houses a special 12 in . base speaker with 2 in . speech coil, elliprical middle speaker, together with a pressure unit to cover the full irequency range of $30-20,000 \mathrm{c} / \mathrm{s}$. Its polar-distribucomplere with speakers, cross-over unit, level conerol grille cloth, etc. Left in the white for finish to personal taste.
Kit $\mathbb{£ 2 5}$. $\mathbf{1 2 . 0}$
Also available assembled and finished $£ 33.4 .0$
$4 \frac{1}{2} \mathrm{in}$. VALVE VOLTMETER KIT

Model V-7AU

The world's mose popular valve voltmeter with printed circuit and I per cent. precision resistors to ensure consistent laboratory performance. It has 7 , voltage tanges measuring respectively D.C. volts 400 aeak A.C. Re rist r.m.s. and ments from 0 peak. Resistance measurewith internal battery D.C megohms: weh internal battery. D.C. input resistance is 11 megohms and measurement has cenere-zero scale. Complete with test prod, leads and standardising bact 10 Pow H0-60 c/s. A.C. R. And Watts.
H.V. and R.F. Probes available as optional extras.

Kit $\mathbb{1}$ 13.18.6
Assembled f 19.18 .6
DECADE RESISTANCE BOX KIT
Model DR-IU. Range 1-99.9995 in in Secps. Ceramic switches throughout. Current rating from 500 mA . to 5 mA . according to decades in circuit. Polished wooden cabinet supplied complete.
Kit $\mathrm{flO} 18.0 \quad$ Assembled El 4.18 .0

- Prises include Postage U.K.

DECADE CAPACITOR KIT

 Model DC-ICapacity values $100 \mu \mu \mathrm{~F}$ to $0.11 \mu \mathrm{~F}$ in $100 \mu \mu \mathrm{~F}$ steps. Precision silver-mica capacitors and minimum loss ceramic wafer switches ensure high accuracy.
Kit $\mathbf{6 7}$. 15.0
Assembled $\subset 10.18 .0$

TELEVISION ALIGNMENT

 GENERATOR KIT Model HFW-IOffers the maximum in performance, flexibility and utility at the lowest possible cost. Several outstanding features have been incorporated in this model which reatures have been incorporated in this model which quency coverage $3.6 \mathrm{Mc} / \mathrm{s}$. to $220 \mathrm{Mc} / \mathrm{s}$. on fundamentals. Unique non-mechanical sweep ossillator mentals. Higique non-mechanical sweep oscillator deviations up to $42 \mathrm{Mc} / \mathrm{s}$. Built-in fixed and variable marker generator ($\$ \mathrm{Mc} / \mathrm{s}$. crystal supplied).
Kit 638.18 .0
Assembled $\mathbb{4 9}$.15.0 - Prices quosed are Mail Order Prices; retail Prices slightly higher.

WW-028 FOR FURTHER DETAILS

Heathkit INSTRUMENTS • HI-FI

 World-Leader

 World-Leader}

The construction manual provided with the kit ensures successful assembly

Sin. WIDE BAND GENERAL-PURPOSE OSCILLOSCOPE, $10-12 \mathrm{U}$

- "Y" senslicivity 10 mV . r.m.s. per cm . at $1 \mathrm{kc} / \mathrm{s}$. Bandwidth $3 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. - Frequency compensared input attenuator $\mathrm{Xl}, \times 10, \times 100$. T/B, $10 \mathrm{c} / \mathrm{s}-500 \mathrm{kc} / \mathrm{s}$, in 5 steps. - Two extra switch selected pre-ser sweep frequencies in T/B range. - T/B outpur approx. 10 v . peak ro peak. Builsin IV callbrator © Facilliey for "Z" axis modulation e Electronically stabilised power supply - Power req. 200-250 V . A.C., 40-60 c/s., 80 wates © Fused - Front panel, silver and charcoal grey - Cabinet, charcoal grey, size $81 \times 14 \times 17$ in. deep. Net weight 231b. 56-page construction and operation

Kit 635.17.6. Assembled £45.15.0
Attenuator and demodulator probes available as optional extras.

3in. PORTABLE GENERAL-PURPOSE

 SERVICE OSCILLOSCOPE, OS-2- Modern styling. lightweight and compact size, make this she ideal scope for service man, laboratory seehnician, amateur radio enthusiast or hobbyise " "Y" bandwidsh $2 \mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{~dB}$. Sensisivicy $100 \mathrm{mV} /$ cm - Push-pull vertical and horizontal amplifiers - Wide range time-base generacor $20 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$ ln four ranges. - Automatic lock-in synchronisation - Mu-meral c.r.t. shicid. Princed circule board construczion - Power req. $200-250 \mathrm{v} .50 .60 \mathrm{c} / \mathrm{s}$ A.C. 40 wates. Fused Frone panel silver and charcoal grey. Size 5 in . w. $\times 7 \mathrm{in}$. h. $\times 12 \mathrm{in}$. deep. Weight: 9alb.

Kit $\mathbf{2} 23.18 .0$ Assembled $£ 31.18 .0$

GENERAL-PURPOSE SERVICE RF SIGNAL GENERATOR, RF-IU - Ideal for the alignmene and erouble shooting of RF, IF and audio circuits - Large easy-ro-read dial - Pre-aligned coil and bandswitch assembly dial Pre-aligned coil and bandswitch assembly Mc / s. fundamentals up to $200 \mathrm{Me} / \mathrm{s}$ harmonics - 400 cycle audio signal with 4 V. outpue Dimensions $9 \frac{1}{2} \mathrm{in}$. wide $\times 6 \frac{1}{2} \mathrm{in}$. high $\times 5 \mathrm{in}$. deep.

Kit $\mathbb{L} 13.18 .0$ Assembled $£ 20.8 .0$

AUDIO SIGNAL GENERATOR, AG-9U (not illustrated) Kit E23.15.0. Assembled £31.15.0.

See these and other Heathkit models in the FREE catalogue

NEW! PORTABLE STEREO TAPE RECORDER, STR-I

- track stereo or mono record and playback at $7 \frac{1}{4}, 34$ and 13 i.p.s. 18 eransistor circuit Record level indicator Digital counter with zero resct Sterco mic and aux. inputs. Speaker/headphone outputs. - Built-in audio amplifier gives 4 watts rms outpue per channel. Two high efficiency gin. $\times 5$ in. speakers.
Versatile Recording facilities. So-easy-cobuild. Ousseanding performance for price.

Kit $\mathbb{1} 45.18 .0$ Assembled $\boldsymbol{E} 59.15 .0$
THE CAR RADIO TO COMPLETE YOUR MOTORING
 PLEASURE CR-I
Complete your motoring pleasure with this small. compact. high outpus unit. Superb long and medium wave entertainment whenever you drive. for 12 v . positive or 12 v negative car earth systems.

- 8 latese semi-conductors (6 transistors. 2 diode circuit) - Powerful output (4 watts) will drive two speakers. Styled to harmonise with mose car colour (A watts) will drive two speakers. © Styled to harmonise with most car colour schemes if inppledin two units. pr

Total price kit (excl. LS) $\mathcal{L I 2 . 1 7 . 0}$ inc. P.T.
L/speakers and accessories availabie as extras.

NEW! PORTABLE STEREO RECORD PLAYER, SRP-I

- Compace, economical stereo and mono record playing for the whole family circuiery. Modern compact seyling - Detachable second loudspeaker gives optimum stereo effect - Automatic playing of $16,33,45$ and 78 rpm records - Suirease portabiliey - Two 8 in. $\times 5$ in. speakers - Controls: Volume. Balance and Tone. Dimensions: overall 27 in . wide $\times 14 \frac{\mathrm{in}}{} \mathrm{h}$. h gh $\times 7 \frac{1}{2} \mathrm{in}$. deep.

This superb transistor radio is she ideal domestic or personal portable Medium and Long Wave receiver - Solid leazher case and handle Easy-to read suning scale - Extra large loudpseaker. Push butson L. MW and tone 10 semi-conductors (7 eransistors plus 3 diodes) - Sockers for personal earphones, tape recorder, car acrial Internal 9 -yolt battery (not supplied) lasts for months - Latest printed circuir techniques Comprehensive, easy-to-follow, fully illustrated instruction Manual.

Kit $£ 27.15 .0$ Assembled price on request.

"O XFORD" LUXURY TRANSISTOR PORTABLE, UXR-2

Kit $\leq 14.18 .0$ inc. P.T.

- Prices quated are Mail Order, and include free delivery in U.K. Resail prices sfightly higher.

ANEW RANGE OF
 SINGLE-FUNCTION PORTABLE METERS AT REALISTIC PRICES

Produced, to Anders' specification, by a leading overseas manufacturer. D.C. accuracies within 1.5\% F.S.D.
A.C. accuracies within 2.5% F.S.D. Mirror scale approx. 3.5" Case dimensions $7 \frac{1}{4}^{\prime \prime} \times 4 \frac{1}{4}^{\prime \prime} \times 3^{\prime \prime}$. Dual connection terminals. Supplied complete with robust leads. Models marked with an asterisk have varistor protection against 50\% overload.
*SM-301. DC MICROAMMETERS, with range selection by rotary switch. RANGES: 50, 100, 250, 500 and 1.000 Micfoamperes.
£9.2.6 notl selection by rotary switch.
RANGES: 1, 5, 10, 25, 100, 250
500 and 1,000 Milliamperes.
f8.0.0 nett
SM-321. DC AMMETER, with range selection by
terminals.
RANGES: 1, 2.5. 5. 10 and 25 Amperes. $\mathbf{f 8 . 0 . 0}$
SM-331. DC VOLTMETER, with range selection
by rotary switch.
RANGES: 1. 2.5, 5
500 and 1.000 Volts.
SENSITIVITY: 20,000 Ohms per Volt.
f9.15.0
*SM-351. AC MILLIAMMETER, with range selection by rotary switch. RANGES: 5, 25, 100. 250 and 1.000 Milliamperes.
$\mathbf{8} 8.10 .0$ netl
SM-361. AC AMMETER, with range selection by terminals, incorporating Current Transformer. RANGES: 1, 2.5 5, 10 and 25 Amperes. $\mathbf{~} 9.15 .0$
*SM-371. AC VOLTMETER, with range selection by rotary switch.
RANGES: 5, 10, 25, 50, 100, 250, 500 and 1,000 Volts.
SENSITIVITY. 2.000 Ohms per Volt.
£8.15.0
nett

ANDERS ELECTRONICS LIMITED • 103 Hampstead Road London NW1 Telephone: Euston 1639 ww-030 FOR FURTHER DETAILS

CHASSIS and CASES

by

H. L. SMITH \& CO. LTD.

Electronic Components - Audio Equipment
287/289 EDGWARE ROAD, LONDON, W.2. Tel: $01-7235891$
We shall be pleased to quote for all your component requirements.

BLANK CHASSIS

SAME DAY SERVICE
Of over 20 different forms made up to YOUR SIZE. (Maximum length 35 in., depth 4 in.)
SEND FOR ILLUSTRATED LEAFLETS
or order straight away, working out total area of material required and referring to table below, which is for four-sided chassis in 16 s.w.g. aluminium.
48 sq. in. $4 / 6 \quad 176$ sq. in. $9 / 10 \quad 304$ sq. in. $15 / 2$
80 sq . in. 5/10 208 sq. in. $11 / 2 \quad 336$ sq. in. 16/6
112 sq. in. $7 / 2 \quad 240$ sq. in. $12 / 6 \quad 368$ sq. in. $17 / 10$
$\begin{array}{lll}\text { P. \& P. 2/6. } & 272 \text { sq. in } & 13 / 10 \\ \text { P. \& P. 3/-. } & \text { and pro rata. } \\ \text { P. \&. } 4 / 6 \text {. }\end{array}$
Discounts for quancities. More than 20 sizes. kept in stock for callers
FLANGES (tin., fin.), 6d. per bend.
STRENGTHENED CORNERS $1 /$ e each corner
PANELS: Any size up to 3 ft . at 6/-sq. ft. 16 s.w.g. (18 s.w.g.g 5/3). Plus post and packing.

CASES

Flus post and packing.
Type U has removable bottom or back. Type W removable front, Type Y all-screwed construcsion. Type Z removable back and frone

Over 100,000 valves a year are Initially stabilised by us for International Computers and Tabulators Limited.

After seven days and nights on the process jlg illustrated, potential early failures which could destroy invaiuable computer time have been eltminated.

Then follows rigorous mechanical and electrical selection, ending with a vital simulated "user" test. Only Pinnacle agreed to tackle this job... Just another facet of this Comparry's unique valve service to the electronics industry.

PINNACLE ELECTRONICS LTE
ACHILLESST.
NEWCROSS

CONDON 5.E.24 Tel: 01-69: ${ }^{285}$
gettinga goodstartin life...

We've tied up some of the loose ends in Packaged Circuit Amplifiers ...
Now the Newmarket Transistors range is rationalised and uprated, but still gives you off-the-shelf, all the experience of our team packed into more than a dozen pre-assembled amplifiers, pre-amps and power supplies which are all pre-tested, guaranteed, economical and time-saving. (Ask our world-wide customers!) Specifically, our PC's use higher output transistors for better high-temperature ambjent operation and better overload characteristics. So why not unravel your amplifier problem by dropping a line for our revised ABC Guide to Newmarket Packaged Circuits?

E3bcheckmate

$\square 10-100,000 \mathrm{~Hz}$ (4 ranges; scale length $8 \frac{1}{2}$ inches each range).

Maximum outputs: 25 Vrms sinewave, $50 \mathrm{Vp}-\mathrm{p}$ squarewave (continuously variable from 1 mV).

The new Taylor 192A L.F. Oscillator is designed to meet the requirements of engineers checking the performance of amplifiers, transformers, loudspeakers and other devices. Its low distortion (less than 0.5% at 1 kHz) enables you to test both steady-state and transient responses through the audio band and well beyond. Its UK list price is $£ 36.10$. . Trade prices on application.

Completetechnical information available from Taylor Electrical Instruments Ltd, Montrose Avenue, Slough, Bucks. Telephone: Slough 21381. Telex 84429.

T6

RGA
 \section*{RCA COLOUR TUBES} two totally unique advantages

New Rare Earth Red Phosphor

These new red phosphors-exclusive to RCA-combined with efficient sulphide blue and green phosphors produce pictures at their brightest and most dependable. They completely overcome the imbalance of the three guns which cause red blooming, colour fringing and failure of the red gun due to overwork. RCA's New Kare Earth Red Phosphor achieves UNI'I'Y CURREN'l' RA'l’OS -cqual beam current from each electron gun; higher brightness, picture contrast and highlight; much longer tube life.

Perma-Chrome

This is a four-point, temperature-compensated shadow mask assembly which accurately adjusts and sets the shadow mask position relative to the screen. Shadow mask expansion limits the performance of a rectangular colour-tube-Perma-Chrome renters this problem negligible. Perma-Chrome produces full-colour fidelity and temperature equilibriun throughout normal operation. It maintains excellent field purity and uniformity.

RCA ‘HI-LITE’ COLOUR PICTURE TUBES ...
 THE BRIGHTEST IN THE INDUSTRY

For full technical specification and application information, write to:
RCA COLOUR TUBES LTD • PINFOLD PLACE • PIMBO - SKELMERSDALE • LANCS • TEL: TAWD VALE 4951

FULLY APPROVED TO DEF 5325-5 STANDARD FOR $9,15,25,37$ AVD 50 WAY CONNECTORS.

These connectors consist of one-piece Diallyl Phthalate moulding with hard gold plated plug pins, socket contacts, and beryllium copper contact clips. Closed entry contact design eliminates the risk of damage to the sockets by test probes. The shells are of passivated cadmium plated steel and the covers and cable clamps are of die-cast aluminium Grade LM6.
ELECTRICAL RATINGS Working voltage: 750 volts DC Current capacity: 5 amps max per contact

CARR FGISTENER CCO BTD

the firm with the best connections

Stapleford, Nottingham.
Tulephone: Sandiacre 2661. Sales offices: Wembley, Birmingham,Sale,Glasgow.

[^5]
Fully appavien

A.D.S. P.O. 3000 SERIES

Throughout 30 years' telephone service, and automation refinements, the world's most versatile relay: I to 4 coils in limitless permutations from $\frac{1}{2}$ milli-amp to 20 amps (0.1 to 400 volts); fast, slow, and A.C. versions; I to 16 contact units (36 springs max.); Standard contacts 0.3 to I amp; Alternatives for switching Dry-state, Inductive, and 10 amp circuits. Insulation from 100 to 4,000 volts; Life up to 100 million operations; Plain or troplcal finishes; approx. dimensions $1 \frac{1}{3 / 2} \times 3 \frac{1}{\prime \prime}^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{2}$ max. An A.D.S. 3000 Type to meet all specifications-G.P.O., E.I.D., C.E.G.B., ADMIRALTY, U.K.A.E.A., ALL COMMERCIAL, ETC.

A.D.S. P.I. PLUG-IN 3000 TYPE

Plug-in version of 3000 and K3000 series; Coils and contacts to G.P.O. 1 R.C.S. and variations; Standard contact insulation is 250 v working; 4001750 v also provided; bases available for immediate installations ex stock; Relays changed in seconds avoiding stoppages. Another approved Relay. Approx, dimensions $1 \frac{1}{6}{ }^{\prime \prime} \times 3^{\prime \prime} \times 4 \frac{1}{4}$ ".

A.D.S. P.O. 600 SERIES

Miniaturised 3000 Type with similar, but restricted, specification; requires only $\frac{3}{\frac{3}{4}} \mathrm{in}$. chassis space (twelve in same
 length as nine 3000 Type): 1 or 2 coils: 1 to 6 contact units (14 springs max.). Approx. dimensions $\frac{13^{\prime \prime}}{16^{\prime \prime}} \times 3 \frac{55^{n}}{} \times 1 \frac{3}{4}$ "

A.D.S. RELAYS LTD.

97 ST. JOHN STREET, LONDON, E.C.1.
Telephone: 01-253 3393
WW-037 FOR FURTHER DETAILS

CHOSEIFER UTRLCIUL RIDMILIRRY RDLES BUDUERFIRTV GOUERIIMEITS THRDICHOUT THE WORLD

The same safeguards in manufacture and control that have won government contracts for TEONEX in over forty different countries apply equally to ensure top quality for private users too. When you require valves to comply with E.V.S. or M.I.L. standards - choose TEONEX. The TEONEX range (for use outside the U.K. only) incorporates the entire series of Britishproduced valves or their Continental equivalents, including a wide range of colour T.V. valves. Price list and technical specifications may be obtained from:-

Export Enquiries Only Please! TEONEX LIIIITED

TEONEX

2a. Westbourne Grove Mews, London. W. 11
England.

Prevention is better than claim. Even your most fragile apparatus will arrive intact when packed in Foamair. A flexible urethane, Foamair gives complete protection against vibration and shock.
The illustration shows a highly successful transit pack designed for exporting brittle furnace elements to Russia. Commissioned by Morganite Electroheat Limited, the bespoke pack was repeatedly tested at the prototype stage: complete consignments survived fourfoot drop tests on to concrete.
As it can be cut or profiled to any shape, let us tailor Foamair to your product. If you cannot risk sending it, we'll arrange to have it collected. Then we'll safely consign it back to you packed in Foamair.

1
 RADFORD

AUDIO LABORATORY INSTRUMENTS

LOW DISTORTION OSCILLATOR (Series 2)

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Specification

Frequency coverage : Output Impedance: Outpur Voltage: Output Attenuation Sine Wave Distortion:

Square Wave Rise Time : Monitor Output Meter:
Mains Input:
Size:
Weight:
Price:
Price:
± 125

DISTORTION MEASURING SET (Series 2)

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002\%. Direct reading from calibrated meter scale.

Specification

Frequency Range: Distortion Range: Sensitivity: Meter:
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Weight:
Price:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges) $0.01 \%-100 \%$ f.s.d. (9 ranges) 100 mV .-100 V. (3 ranges) Square law r.m.s. reading 100 kOhms.
3 dB down to 350 Hz .
3 dB down to 35 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonic of rejection frequency to 250 kHz Included battery.
$17 \frac{1}{4} \times 11 \times 8$ in.
15 lb .
690.

Rack mounting version available.
VOLTMETER (new item)
A transistor operated voltmeter satisfying the requirements for audio frequency measurement.

Specification

Sensitivity:
Calibration Accuracy:
Frequency Response:
Input Impedance:
Meter Scaled:
Power Requirements:
Size:
Weight:
Price:

1 mV .-300 V. f.s.d. (12 ranges)
2\% f.s.d.
$\pm 1 \mathrm{~dB} .10 \mathrm{~Hz}-500 \mathrm{kHz}$.
1 MOhm. $1 \mathrm{mV} .-300 \mathrm{mV}$.
10 MOhm . I V.-300 V.
$0-3,0-10$, and dBm.
Included battery.
$11 \frac{1}{2} \times 6 \frac{1}{2} \times 6$ in.
7 Ib.
£35.

RADFORD LABORATORY INSTRUMENTS LTD

Ashton Vale Road

Bristol 3

FOR BAND III
Fully covered by:Patent No. 808818 Regd. Des. No. 933070 and others pending.

DLP7

LP5
LP7

Antiference
 Antiference Limited Aylesbury Bucks Tel:2511

Antiference are first with wide-band iv aerials using the 'logperiodic' principle. Here are aerials with incredibly even response throughout the whole of Band III-not just in respect of forward gain - the front/back ratio, beamwidth and impedance are. constant too... No other aeria/s have cleaner polar diagrams! The sophisticated technical design has been cleverly matched by uncomplicated aerial engineering. The transmission line feeding the elements is incorporated in the double boom.
Because transmission line theory is an integral part of the logperiodic design these aerials stack more efficiently than Yagi's. Vocompromisehas to bemade electrically ormechanically.
The result . . . No present reception problem is too tough for the L.P. and for the future?...No matter what changes are made to Band III channels or standards. Antiference logperiodic aerials can cope better than any other.
Naturally L.P's cost a little more than ordinary Band III aerials but they're worth it ! Send for further details.

Remember 'Antex'... 'Hilo'...'Trumatch'

"Q-MAX" sheet metal punches FOR QUICK AND CLEAN HOLES

- Simple operation
- Quick, clean holes (up to 16 gauge mild steel)
- Saves time and energy
- Burr-free holes-no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Used by all government services-Atomic, Military, Naval, Air, G.P.O. and Ministry of Works; Radio Motor and Industrial Manufacturers, Plumbing and Sheet Metal Trades, Garages, etc.
Obtainable from Radio, Electrical and Tool Dealers WHOLESALE \& EXPORT ENQUIRIES ONLY TO

"IFMA K (clectronícs) LTD. Napier House, High Holborn, London, W.c.1.

WW- 042 FOR FURTHER DETAILS

multi-range testing... mini style

A pocket size instrument with big performance. Measures A.C. and D.C. volts. D.C. current and resistance. Clear scale, knife edge pointer and tough Melamine cover. The movement is built into a pressed steel case, effectively screened from external magnetic fields. Look at these features:-
\square D.C. sensitivity 20.000 ohms per volt. \square D.C. accuracy $\pm 24 \%$ F.S.D.
\square A.C. senstitivity 2.000 ohms per volh. \square A.C. accuracy $\pm 2 \% \%$ F.S.D.
\square Small size, $53^{\prime \prime} \times 33^{-} \times 2 \mathbf{i}^{-\pi} \quad \square A . C$. accuracy maintained up to $20 \mathrm{kc} / \mathrm{s}$.

\square Weight 1802 s .
 minitest multi-range test set for only $£ 7 \cdot 17 \cdot 6$ (trade price)

[^6]
NERA TRANSISTORIZED VHF TV TRANSPOSER

$\square 100 \mathrm{~mW}$ or 500 mW output power

- Fully transistorized
- High stability
- Mains or battery operation
\square Rack or cabinet mounting
- For black and white as well as colour transmission

Manufacturers of
\square TV Transmitters and Accessories
\square FM Broadcast Transmitters
\square Microwave Systems

AKSJESELSKAPET

Pilestredet 75C, Osio 3, Norway
Representative for U.K.:

ASH ELECTRONICS LIMITED

12 Swallow Street, Piccadilly, London W. 1

WW-045 FOR FURTHER DETAILS

We can't show them all!

The Partridge range oi Transformers for Hi-Fi circuits covers most leading published designs. Write now for Data Sheets, or let us have your specific enquiry-there's bound to be a model to suit your needs.

CRESSINGTON, SURREY.

WW-046 FOR FURTHER DETAILS

With a Weller 'Expert' Dual Heat Gun in hand you can successfully tackle any soldering job-from a small printed circuit up to shee metal work! You get
INSTANT HEAT at the press of a trigger-and thp is cool within 10 seconds of releasing trigger. Completely safe for operator and components. Simple
 to use ... speedy and accurate. Dual Heat 120-140 watts Expert Dual Heat Gun ofy- (Kit 8)/6). Also available: Marksman Soldering Iron 29/- (Kit 38/-). Manulactured by the world's largest makers of Guality solderino fools.
Oblainable from hich class Irenmongers, oIy

Please send me hierature on Weller Soldering Equipment WELLER ELECTRIC LIMITED, Horsham, Sussex. Tel Horsham 61747

Name.

Address WW/1/58

WW- 047 FOR FURTHER DETAILS

are widely used as standards in many industries because:-

1) They are accurate ($10 \quad 0.3^{\prime \prime}$ or 0.1 "t as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superImposed circults
5) They need only low input power
6) They are compact and self-contained 7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available in minlature switchboard and portable forms, in ranges from 10 to 1700 cps . Descrlptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely avallable from the sole U.K. distributors:-

ANDERS METER SERVICE

ANDERS ELECTRONICS LTD. 103 HAMPSTEAD RDAD LONDON NWI TELEPHONE EUSTON 1639 MINISTAY OF AVIATION APPROVED WW-c43 FOR FURTHER DETAILS

C. R. TEST BRIDGE 32 £ 10.10 .0 TRANSISTORISED

NOMBREX

NEW STYLE IMPROVED INSTRUMENTS OTHER MODELS AVAILABLE-

- POWER SUPPLY 22
- A.F. GENERATOR 30 Cl4.0.0
* A.F. GENERATOR 30 C19.10.0
620.0 .0

SIE PREVIOUS ISSUES FOR DETAILS
ALL IN FULL PRODUCTION
POST \& PKG. 6/6 EACH EXTRA

R.F. GENERATOR 31 E12.10.0 TRANSISTORISED

6d. STAMP FOR ALL LEAFLETS
For the Professional or Amateur user who likes the Best.

HIRE PURGHASE TERMS

Model	Cas Price			Deposit		$12 \mathrm{r}$	$\operatorname{lith}_{\text {of }}$		$\begin{gathered} \text { Tol } \\ \text { H.P. } \end{gathered}$			24			$\begin{aligned} & \text { To } \\ & H . P . \end{aligned}$		
EC10	¢53			515		£3	8	2	555	18	0	E1	19	2	162	0	0
840C	£66			1610	0	84	8	9	869	15	0	E2	7	6	£73	10	0
E835	£60	6	3	¢15 6	3	¢4	0	7	¢ 63	13	3	£2	3	0	£66	18	3
940	¢133			¢34			17	3	\&140	7	0	E4	14	9	[147	14	0
EA12 £185				547		C12	7	3	¢195	7	0	£6	12	3	£205	14	0
Payments over $\mathbf{3 0}$ moriths if desired.																	
Custation on request.																	
-			Delivered Carriage paid by Passerger Train.														
			CARRIAGE PAID														

SERVICES LTD.
51 COUNTY ROAD LIVERPOOL, 4
ESTAB. 1935

WW-050 FOR FURTHER DETAILS

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS EDITING \& REPRODUCING SETS

Codes: Int. No. 2 Mercury /Pe Papus, Elliot 803.
Binery and special purpone Codes.
2-5-6.7-8TRACKAND MULTIWIRE EQUIPMENT

telegraph automation and computer peripheral Picture Telegraph, Desk-Fax, Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast windsts; Governed, Synchronous and Phonic Alotors; Telcprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter. Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relavs and Bases; Terminals V.F: Telephone, Carriers and Telephone, Carriers and
Repeaters;
Multiplex Repeaters,

Multiplex
Frequency Shiff, Keying Equipment; Line, Mains Transporters and Suppressors; Racks and Consoles; Plugs, Sockets; Key, Push Miniature and other S withes Teleprinter Tools; Sirobuscones and Electronic Forks; Cold Cathode Matries; Test Equipment; Oscilloscopes; Miscellaneous Accessories and Spares.

W. BATEY \& COMPANY

Gaiety Woris, Akeman Street, Tring, Hepts.
Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044-282 TELEX 82382

WW-052 FOR FURTHER DETAILS

OUdio $\begin{gathered}\text { sOUND SYSTEMS } \\ \& \text { ELECTRONICS }\end{gathered}$

MXT/6 Mixer Unit complete with Modules

- HIGH PERFORMANCE
- COMPACT MODULAR CONSTRUCTION
- RACK OR CONSOLE MOUNTING
- FIRST GRADE COMPONENTS AND MATERIALS

MODULAR

 AUDIO MIXERS

Assemblies. housing up to fourteen channels with combining amplifier etc., can be supplied for either Rack or Console mounting. Power supplies,
meters can be incorporated to meet individual requirements.

SPECIFICATION

Combining Pre-Amplifier $M \mathbf{X T} / 6$. Output 1 mp . 2 K ohms @ 170 mV balanced, or Zero dB in 600 ohms balanced or floating. Tone Controls: Bz.ss $+10 \mathrm{~dB}-8 \mathrm{~dB}$ a 100 Hz . MIC. Module MU/30. Input Imp. SO ohms reble: 8dB-IOdB a 10 kHz Input 1 mp . So ohms balanced. Frequency response
$50 \mathrm{~Hz}-20 \mathrm{kHz}$. Sensitivity: -80 dB $50 \mathrm{~Hz}-20 \mathrm{kHz}$. Sensitivity: 80 dB . MIC. Module MU/200. Input Imp. 200 ohms balanced, Frequency esponse MIC Mod $50 \mathrm{~Hz}-20 \mathrm{kHz}$. Sensitivity: -74 dB . MIC. Module MU/I. Input Imp. 50 K ohm unbalanced. Frequency response GRAM. Module GU/I. Input Imp. IM ohm. Frequency response $20 \mathrm{~Hz}-20 \mathrm{kHz}$. TAPE Module TU/I, Inpur Imp. 100 K ohm. Frequency Sensitivity: 16 dB . Sensitivity: 26 dB . SIGNALMOISE PATIO PER CHANNEL 20 kHz . Sensitivity: 10 dB , Write for catalogue of full range of Sound Equipment.

STANSTED, ESSEX PHONE:-
STANSTED :-3132/3437

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days delivery.

Full information from:
HARRIS ELECTRONICS (London) LTD.
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-054 FOR FURTHER DETAILS

TRANSFORMERS

LARGE OR SMALL QUANTITIES TRADE ENQUIRIES WELCOMED
SPECIALISTS IN

FINE WIRE WINDINGS

MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC
VACUUM IMPREGNATION TO APPROVED' STANDARDS

ELECTRO-WINDS LTD.

CONTRACTCRS TO G.P.O . A.W.R.E. L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.653 .2261 CR4.8LZ

WW-055 FOR FURTHER DETAILS

M. R. SUPPLIES, LTD.,
(Established 1935)

 SMALL GEARED MOTORS. TI adommt

 fistrut koos ment with vacti
MINIATURE COOLING FANS. 200/:250 \& A.C. Winh open tyme triduction mator (mo
 cinpechor tamp conllug. light uthty extrachirn, wte.. shill only 28/6 (des. 4/6).
MINIATURE RUNNING TIME METERS (wambino). We lmve groat demandily for this
 ial. depth 2 ta sany tudutrial alul domestic applienthing lo indicate the runving tine if any electrjeal applaratus, caas to install, $60 /$ (gman pradel). AIR BLOWERS. 11 ghly effletetat units fittert huluetion totally prolloged motor $230 /$

 iYNCaRONOUS ELECTRIC CLOCK MOVEMENTS (Ω memthonl and reconmemedi in

 tyle. For b/fisa. dial s/gh. Foor. $8 / 10$ dial $3 / 6$ met.
3YNCERONOUS TIMER MOTORS (Rangumo). $2001 / 250 v .50$ c/m, Sells-mearting 21n. dia. 2
 per lay. Any one 3 o/ 6 (dle
i| r.l.m., $57 / 6$ (des. $1 /(\mathrm{i})$.
rMmedtate delivery of Stuart Centrilugal Pumps. lmeluding stalmans stee) (mumb (undela). Philips Varlable Transformers (ath ment
M. R, SUPPLIES, Lid. 68 New Oxford Street, London, W.C. 1 (Telephone: OI-636 2958)

HOUSI

FREE HI-FI HOUSING ADVISORY SERVICE

Simply tell us the equipment you propose 20 house and we will be pleased to recommend the most suitable cabinet. Rememberhousing $\mathrm{Hi}-\mathrm{Fi}$ is our busines

Whatever your ses-up there's a $R E C O R D$
$H O U S I N G$ Cabinet to meet your needs. Amplifiers, tuners, turntables, loud-speakers, records, tapes, sape decks and even a complete tape recorder-you name is we'll house is! The room setting above features our Schubert Equipment Cabinet (left) 42 gns. and Hi-Flex Speaker Enclosure (centre) $\mathbf{t i 2} 19 / \%$ These are examples of the Record Housing range of equipment cabinets, speaker cabinets and record cabinets-over 7 gns. Send for free catalogue and list of over 600 stockists (U.K. only).

RECORD HOUSING

(Dept. W.W.I), Brook Road, London, N. 22.
Tel: 01-888 7487
WW-057 FOR FURTHER DETAILS

WW-058 FOR FURTHER DETAILS

alacomens

MODEL I5

MICRO

SOLDERING INSTRUMENT

- EXTREME VERSATILITY

Range of 8 interchangeable bits, from $\frac{3}{65} \mathrm{in}$. (.047 In.) to $\frac{3}{16} \mathrm{in}$., including new non-wearing PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 \frac{1}{8} \mathrm{in}$. Weight $\frac{1}{2}$ oz.
Max. handle dia. $\frac{7}{16}$ in.

- EXTRA-HIGH PERFORMANCE
Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15 watts-equals normal 30/40watt iron.

- ALL voltages

The ADAMIN range includes five other models (5, 8, 12, 18 and 24 watts), Thermal Strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue $A / 5$.

LIGHT SOLDERNG DEVELOPWENS LTD

28 Sydenham Road, Croydon, CR9 2LL Tel: $01-5338533$ \& 4353

Those transistors cost money! Protect them!!

36A SPACESAVER

DRAWER UN1T $42^{\prime \prime}$ high, $24 \frac{1}{2}{ }^{\circ}$
wide, $12^{\prime \prime}$ deep. 36 drawers each $3^{\prime \prime}$ high, $5 \frac{1}{4}$ " wide, $10^{\frac{2}{8}}{ }^{\prime \prime}$ deep, with identification cards.

12A POPULAR DRAWER UNIT 9 " high, 35^{*} wide. $12{ }^{\circ}$ deep, 12 drawers each $3^{\prime \prime}$ high, $5 \frac{1}{4}$ " wide, $10^{\frac{1}{2}}$ " deep, with identification cards. Ideal for shelf or table-top.
$\mathbf{£ 4 . 1 5 . 0}$ brand new

ORDER NOW
Send for FREE casa logue of our complete range of storage equipment.

INDUSTRIAL SALES DIVISION	
	pacesetters in storage equipment
	Eagle Steelworks. Heywood, Lancs. Tel: 69018 London: 25/27 Newton St. WC2. Tel: 01-405-7931
	$\begin{gathered} \text { Please send } \square \text { 36A Spacesaver Drawer Unit } \\ \square 12 A \text { Popular Drawer Unit } \end{gathered}$
	Tick where applicable and send cash with orders under E5
	NAME
	ADDRESS E29

The ever-increasing application of digital techniques to data acquisition has prompted Marriott Magnetics to investigate track density in $\frac{1}{4}$ inch wide magnetic tape. The possibility of using readily available and comparatively cheap tape and tape transport mechanisms opens up new and attractive avenues of approach to many applications which hitherto have been dismissed on cost grounds. This $8 / 8$ head is a valuable newcomer to our standard range which now includes $4 / 8$ and $2 / 8$ in addition to the $4 / 4-2 / 4$ and $1 / 4$ configuration.
Combination Record/Playback/Erase heads to the above configuration are available for some of the above types.
Marriott Magnetics were the very first company in the world to mass-produce miniature heads, and in 1959 Marriotts scooped the world by mass-producing a four-track head. Well over 5 million heads have been sold since then, and it is the company's firm intention to continue leading the world in the design and manufacture of Magnetic Recording Heads.

RESEARCH AND DEVELOPMENT

Marriott Magnetics' research and development activities are directed rowards continuously improving the mechanical and electrical characteristics of their heads through the use of many new ideas, engineering approaches and manufacturing techniques.
Much research and development effort is applied to the development of heads with unique configurations for many special and unusual instrumentation appllcations. A highly efficient pre-production group works closely with research and development to provide a fast service of prototypes, small quantity production and special heads.

MANUFACTURING

Marriott Magnetics maintain a complete facility; fully equipped with the machines, tools, optical equipment and electronic test instruments for mass production of preclsion heads. Machinery, assembly, test and inspection operations are performed by operators experienced in close tolerance and precision assembly work.
Material handling methods are used to permit cost reduction and quick delivery of Standard Heads. Assembly, test and inspection procedures are carried out under most controlled conditions.

ENGINEERING

Marriott Magnetics' engineering staff has extensive experience in application of design, manufacturing and test techniques to head production problems, and taking a new design through the prototype stage to quantity manufacture. The ability to analyse and to provide answers quickly to engineering problems peculiar to precision heads results in a quality product with superior operational characteristics and very uniform production runs.

QUALITY CONTROL

Continuous piece part inspection and evaluation of each Sub-Assembly are the two basic points of Marriott Magnetics' quality control system. Incoming materlals and parts are closely inspected to ensure that mechanical and electrical specifications are met. All completed heads are vigorously inspected and performance tested to ensure complete customer satisfaction.

We make our monolithic capacitors in Britain

Monobloc; an advanced product for sophisticated applications. A tiny componerit that has become the most exciting prodigy this side of the Atlantic Its capacitance is vast, its size minute - up to 1 uf in $0.3 \times 0.3 \times 0.1 \mathrm{in}$. (nine times smaller than a postage stamp). This capacitance-to-volume ratio is achieved by the unique monolithic construction. Wafer-thin ceramic dielectrics and platinum electrodes are fused into a solid, layered structure, to give a volumetric efficiency 10 to

100 times that of conventional capacitors. li's a rugged little device. The layered construction gives excellent stability and resistance to every form of shock and environmental stress.
We manufacture a preferred range, concentrated on the individual requirements of the British designer. There are other configurations available for more complicated desions: glass-encased, precision moulded, phenolic coated, and unencapsulated chips for hybrid integrated circuits.

The monolithic capacitor is already a pretty important contribution to the progress of modern electronics - our Monobloc Ceramicon design caters for projects of the future.
Contact us for the full details.
Technical Sales,

Erie Resistor Limited,

South Denes,
Great Yarmouth, Norfolk.
Phone: 04934911
Telex:97421
Monoblocs are featured in the 1968 edition 6 catalogue of S.T.C. Electronic Services.

Monobioc and Ceramicon are registered trade marks.

GD974

Celestion $\begin{aligned} & \text { slucio } \\ & \text { seres }\end{aligned}$ loudspeakers for Series
the perfectionist

-for high fidelity

Write for Catalogue No: RCS 2002

Rola Celestion Ltd.

Ferry Works, Thames Ditton, Surrey, England. Telephone: 01-398 3402

Telex: 266135

NEW
 \star LOW COST
 \star HIGH QUALITY
 * ALL SILICON TRANSISTORISED AUDIO KITS PLANAR

Silicon transistors fabricated by Planar techniques are charaeterised by low leakage. low noise and high stability of parameters.

The low noise performance obtained by operating the transistors at extremely low sollector currents is of particular interest to high fidelity enthusiases.

The use of Planar devices in audio equipment has a number of other advantages and these are

* Very low distortion figures can be obtained since the current gain does not vary appreciably with collector current.
*The low leakage currents of Planar eransistors make it possible to design simple biasing circuits of high stability:
changes in operating point due to leakage current are so small that they ean usually be neglected.
*Transistors manufactured by epitaxial techniques have very low saturation voleages and high collettor breakdown voltages, consequently, distortion can be kept low and the early stager of the equipment ean tolerate large overload signals.
*PRE-AMPLIFIERS
P.A. 20
$\star 8$ transistor with Zener diode decoupling. \star Rumble filter.
*6 inputs.
\star Equalisation $\pm 1 \mathrm{~dB}$. of B.S.
$\star<0.1 \%$ total harmonic distortion.
< 0.3% for $10: 1$ input overload.
tSignal to noise 60 dB .
\star Bass +12 dB to -15 dB at $30 \mathrm{c} / \mathrm{s}$.
\star Tieble +12 dB to -12 dB at $15 \mathrm{kc} / \mathrm{s}$.
KIT $£ 10 / 12 /$. BUILT $£ 14 / 5 / 6$. P.P. 3/-.
I5W R.M.S. AMPLIFIER
$\star 7$ transistors with 2 diodes.
\star Stabilised bias for drivers to eliminate crossover distortion.
*Sensitivity $20 \mathrm{~m} / \mathrm{v}$ R.M.S. lor rated output.
\star Total harmonic distorsion $<0.25 \%$ (IKc)
*Freq. response with $1 \mathrm{~dB}(20 \mathrm{c} / \mathrm{s}-20 \mathrm{~K} / \mathrm{s})$
KIT 18 15/~. BUILT $£ 10 / 10 /-$ P.P. 3/-.
7W AMP.: To same circuit and spec.
KIT E7/16/6. BUILT E9/1/6. P.P. 3/-.
P.A. 30
* ${ }^{3}$ transistor: 2 diodes $\star 5$ inpurs.
$\star<0.1 \%$ harmonic distor tion.
*Signal to noise 60dB.
\star Bass +15 dB to -15 dB at $30 \mathrm{c} / \mathrm{s}$.
\star Treble $\pm 15 \mathrm{~dB}$ at $15 \mathrm{k} / \mathrm{c}$.
KIT \&8/2/.
BUILT $£ 10 / 2: 0$
P.P. 3/-.

30W R.M.S. AMP.
*9 eransiseors. 4 diodes. $\star 100 \mathrm{kc} / \mathrm{s}$ multivibrator
circuit to eliminate cross-
over distortion.
*Sensitivity $20 \mathrm{~m} / \mathrm{v}$.
\star Total Harm:dis: < 0.4% * (IK/c)

* Freq. resp.: within IdB
($20 \mathrm{c} / \mathrm{s}-20 \mathrm{ke} / \mathrm{s}$)
KIT $£ 14 / 5 /-$
BUILTE16/5/.
P.P. 3/*.

All kies are supplied with firse elass components Including fibreglass P.C.B. Ferranti devices are used and the circuits are to their specificazions. Further details and information lor power supplies and tape kits are available on application.

WELBROOK
ENG. ELECTRONICS LTD. BROOKS STREET, STOCKPORT.

Tel. STO 4268
WV-66\% FOR FURTHER DETAILS

loudspeakers for the perfectionist

- for guitars and organs

Write for Catalogue No: RCS 162

Rola Celestion Ltd.

Ferry Works, Thames Ditton, Surrey, England. Telephone: 01-398 3402

Telex: 266135

howells radio ltd. MINISTRY OF AVIATION IHSPECTION APPROVED TRANSIFORMERS
 STANDAKI RANGE OR DESIGNED TO YOUR SPECIFICATION
 $0-50 \mathrm{KVA}$, " C" CORE, PULSE, 3 PHASE, 6 PHASE, TOKOIDS ETC
 Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).
 Driver
 Mains

L.P. Filter, Chassis Mounting 11/6. Carr. 1/-
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-
*MAINS TRANSFORMERS
350-0-350 v. $60 \mathrm{~mA} ., 6.3$ v. 2 A. £1/15/-. Carr. $4 / 6$.
500 v. 300 mA .6 .3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. $5 / 6$ $500-0-500$ v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A. \$4/10/6. Carr. 6/6
$525-0-525$ v 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. 55/5/-. Carr. 6/6.
*LOW VOLTAGE

$$
\begin{array}{lll}
30-0-30 \text { v. } 4 \mathrm{~A} . & £ 2 / 5 / 6 . & \text { Carr. } 5 / 6 . \\
15 \text { v. } 2 \mathrm{~A} & £ 1 / 126 . & \text { Carr. } 3 /-. \\
15 \text { v. } . \mathrm{A} & £ 2 / 1 /-. & \text { Carr. } 4 / 6 . \\
15 \text { v. } 10 . & £ 2 / 15 /-. & \text { Carr. } 5 / 6 .
\end{array}
$$

STEP DOWN TRANSFORMER

Primary 0-415-440 v. Sec. 250 v. 1.5 A. £5/5/-. Carr. 6/6. *PRIMARIES 10-0-200-220-240 v.
CHASSIS, CABINETS \& PRECISION METALWORK ELECTRONICS—DEVELOPMENT \& ASSEMBLY

CASH WITH ORDERS PLEASE
Carlton Street, Manchester 14, Lancashire
TEL. (STD 061) 226-341।
WW-069 FOR FURTHER DETAILS

V rable-high current SMOOTHED POWER SUPPLIES with accumulator performance FROM A.C. MAINS

TYPES 250VRU/30/20 250 RU/60/10 250VRU/120/5 250VRU/240/2.5

PRICE: $\{131.5 .0$

FEATURES. Type 250vRU 30/20 0 -30 v. Continuously Variable up to 20 A RIPPLE CONTENT. Negligible. IMPEDANCE and REGULATION equivalent to atcumulator periormance. SILICON RECTIFIERS. Inadverient SHORT" protection.
OVERLOAD CAPACITY. $\mathbf{2 0 0 \%}$ ior short periods. Supplied to M. O. Tech for servieing 28 v . airerafe instrumentatio. within B.C.A.R.s. Ref. IOK CA303s. Suizable for " 19 " RACKMOUNTING.
FIXED OUTPUTS ALSO AVAILABLE. Smoothed 12 or 24 v . up to 24 A APPLICATION equipment e.g. 12-24 y Mobile Radio Telephone. D.C. motors, ete., direct from AC-WITHOUT THE USE OF ACCUMULATORS.
AVOID THE EXTRA EXPENSE OF SUPER REGULATION YOU MAY NEVER NEED.
PRICES:
414.16.0 to E88.4.0.

Please writeta
DeDartment C3b
for current literature.

BROWELLSLANE. FELTHAM, MIDDLESEX, ENGLAND.

Just what is this ABR, that makes such a vital difference to the
 'DITTON 15'?

massive Ferroba II magne structure for optimum magnet damping and cone treated with viscous damping layer to suppress resonances.
6. Unlts mounted flush to eliminate diffraction effects and tunnel resonances; covered by acous ically transparent grille cloth or naximum presence
Full L-C half-section Crossover network.

It's an interesting story and worth enquiring about. Fill in the coupon

Celestion

Studio
 Series

loudspeakers for the perfectionist

```
ROLA CELESTION LTD.
Ferry Works, Thames Ditton, Surrey
    Tel: 01-398 3402
Please send me the full story on the Ditton 15'
NAME
ADDRESS
```


These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers throughout the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

LC93

A $19^{\prime \prime} \times 12 \frac{1^{\prime \prime}}{} \times 8 \frac{1}{2}$ " completely enclosed acoustically loaded cabinet housing a $9 "$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1}{2}{ }^{\prime \prime}$ - $23 \frac{3}{4}{ }^{\prime \prime} \times 6 \frac{1}{1^{\prime \prime}}$ acoustic Labyrinth enclosure firted with acoustic resistance in the pipe, using the sama highly efficient 9 " speaker unit used in the LC 93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1^{\prime \prime}}{2} \times 20 \frac{3^{\prime \prime}}{4} \times 13 \frac{1^{\prime \prime}}{}$ fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed 12in. unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new 8 in. loudspeaker having a Melamine treated paper ribbed cone and surround.
Send for full Technical Specifications on these outstanding new additions to the famous Stentorian Range.

WHITELEY ELEGTRIGAL RADIO GOMPANY LTD

MANSFIELD - NOTTS ENGLAND
Tel: Mansfield 24762
London Ofice: 109 Kingsway, W.C.?
Tel: HOL born 3074
WW-072 FOR FURTHER DETAILS

YOU WANT PARTS URGENTLY -almost immediately!

So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components: We're geared to speedy handling and dispatch.

But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stocknearly everything of the kind that you are likely to require.
Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham Sandiacre 8072 STD ONO 2398072

Gineth

(F) STOCKISTS

WW-073 FOR FURTHER DETAILS

Only S.M.E. Precision Pick-up Arms offer all these features. Choice of arm length Model 3009 (9in.) or Mocel 3012 (12in.) ior still lower tracking error-of special Importance with elliptical styli . low inertia . High precision ball races and knife-edge bearings for minimum pivot friction. Linear offset chosen for lowest distortion. Automatic slow-descent with hydraulic control - Bias adjuster calibrated for tracking force . Exact overhang adjustment with alignment protractor. Precise tracking force írom $\frac{1}{4}-5$ grams applied without a gauge . Shielded output socket . Low capacity 4 ft connecting cable with quality plugs . Light-weight shell. Camera finish in satin chrome, gun-black and anodised alloy . Comprehensive instructions . Rational development-all improvements can be incorporated in any existing Series II arm.

SME LIMITED• STEYNING • SUSSEX • ENGLAND wW-076 FOR FURTHER DETAILS.

ACE HOUSE, FERRY, ROAD, CARDIFF. TEL. 41456

Nathedit TRANSVERTORS
(TRANSISTORI! ED D.C. CONVERTERS/INVERTERS)

INTRODUCING THE VALRADIO "B" SERIES
SINEWAVE outpur 200W (120 W a'so available)
FREQUENCY:50 $/ \mathrm{s}+1 \mathrm{c} / \mathrm{s}(60 \mathrm{c} / \mathrm{s}$ to order).
INPUTV: 12 v. $-10 \%+25 \%$ ($24-50 \mathrm{v}$. also available).
\star FREQUENCY REGULATION OF $\pm 605 \%$ WITH ADDITIONAL "RESONATOR
t INFINITE LIFE.
\# WILL OPERATE ALMOST ANY ELECTRONIC OR ELECTRICAL EQUIPMENT

* SUITABLEFOR SUPER-SENSITIVERADIO \& AUDIO EQUIPMENT.
OTHER MODELS from f 10 to $\mathrm{E} 179 / 12 /$-. 12 v . to 110 v . D.C. up riolkW
VALRADIO LTD., Dept. Cl0
BROWELLS LANE FELTHAM MIDDLEEEX ENGLAND Telephone: FELTHAM 4837-4242 $\operatorname{il-890}$ 4837/4242
VALRADIO and STEREOSONOSCOPES are the registe, ed trade marks of VALRADIO LTD

IVW-077 FOR FURTHER DETAILS

- Model CN240 15W Precision Iron with $\frac{3}{8}$ " bit, - Two spare Interchangeable Bits ($\frac{5}{32}{ }^{\prime \prime}$ and $\frac{3^{\prime \prime}}{3^{\prime \prime}}$) - Reel of Solder - Heat Sink Cleaning Pad - PLUS 36-page booklet on "How-to-Solder"

British made. From The Army \& Navy Stores. Harrods, and Radio Shops, ol if
ANTEX LTD
GROSVENOR HSE CROYDON CRAILE
WW-078 FOR FURTHER DETAILS
A.C. SOLENOID TYPE SAM

Now fitted with stainless steel guides-six times the life.
Continuous 14 oz. at 3 in .
Instantancous to $5 \frac{1}{2} \mathrm{lb}$.
Larger and smaller sizes available.
Also Transformers to 8kVA 3-phase. WW-079 FOR FURTHER DETAILS

Out Now! Wireless World Diary for 1968

Contains a week-at-view Diary and 80 pages of reference material giving a large selection of formulae, charts, Circuit Diagrams etc.

contents

Abbreviations
Acronyms
Addresses of Organiza tions
Aerials
Amateur Tran
Binary Scales
Coll Winding Data Colour TV Standards Component Coding Comporsion Table Decibel Table Formulae
Frequency Allocations
Greek Alphabet
Licence Regulations
Logic Symbols

Mathematical Signs
Mathematical Sign Microwave Bands
Monochrome TV Standards
Morse Code
Phonetic Alphabet
Resistor Preferred Valuee
Resistors in Parallel Resistors in Parallel Square. Wave Testing Television Channels Television Channel Television S
Transmission Types
Unit Abbrevlations
Unit Abbreviations Wire Tables
World TV Standards

Prices: Leather 9s. post 5d.
Rexine 6s. 6d. post 5d
available from your bookseller
ILFFE BOOKS LTD Dorset House, Stamford St. London, S.E.

Vitality

Ainiature and Sub-Miniature dicator Bulbs in sizes from 4.5 mm

Calalogue from
VITALITY BULBS LTD
MINIATURE LAMP SPECIALISTS
beeton's way, bury st. edmunds, SUFFOLK. TEL: 2071 SID 0284/2071 WW-084 FOR FURTHER DETAILS

EIECTRONICS
 cience wiph graduates, in Dairving, Foud

ty Control required for of four years' indechnologs.
Manager.
RONIC ENGINEER

CREI CAN BE YOUR EDUCATIONAL LADDER.
to an exacting, exciting and rewarding career. Why? Because CREI offer the most up-to-date homestudy programmes closely related to the problems of industry and including the latest technological develop. ments and advanced ideas.
No standard text books are used-these are often 2 years outsof-date when printed.
CREI Lesson material contains certain information not published elsewhere-is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.) Step-by-step progress is assured by the concise, simply written and easity understood lessons.
Each programme of study is based on the practical applications to and specific needs of the Electronics Industry.

N:

Electronic Engineering Technology Industrial Electronics for Automation Computer Systems Technology Nuclear Engineering
Mathematics for Electronic Engineers
Television Engineering
Radar \& Servo Engineering
City \& Guilds of London Institute: Subject 49 and Advanced Studies Subject No. 300. Over 40 years of experience- $\mathbf{2 0 , 0 0 0}$ students now taking CREI courses throughout the World.

CREI THEEDUCATIONALLADDER TO SUCCESS
C.R.E.I. (London) Walpole House,

173-176 Sloane Street, London, S.W. 1

POST THIS COUPON TODAY

PLease send me (for my information and emtirely WITHOUI DBLIGATION) FULL DETAILS OF THE EDUCATIOHAL phogrammes offered by your institute
mame
ADDRESS

ELECTRONICS EXPERIENCE
C.R.E.I. (LOMOOH) (OEPT. WWIOI

WALPOLE HOUSE, 173/178 SLOAME STREET, S.W.I.

- Betfer performance

- Wider range

- New sifles

The Hatfield range of Modulators, Fixed Attenuators, Signal Dividers and Hybrids has been re-styled and extended.
The compact V.H.F. Double Balanced Modulator Type MD4 (2 above) uses: "Hot Carrier" Diodes and is capable of very good performance as an amplitude modulator, mixer, phase detector or current controlled V.H.F. Attenuator. Input and output frequency range is $0.5-500 \mathrm{MHz}$ modulation frequency range $D C-500 \mathrm{MHz}$. The newly developed Type MD6 (1 above) has the same general features as Type MD6, but is fully encapsulated and is suitable for direct mounting on printed circuit boards. Large scale production of this type makes possible an extremely competitive price.
The new Hybrids, Types N81 (3 above) and N82 are passive couplers having a very wide operational bandwidth. A significant feature of these new types is that all outputs are in phase, making the units particularly suitable for coupling multiple antennae.
All the new units are fitted with B.N.C. Connectors. Write now for full sperifications and for details of new U.H.F. Fixed Attenuators and Signal Dividers.

HATFIELD INSTRUIVENTS LTD.
Dept. WW., Burrington Way, Plymouth, Devon.
Tel: Plymouth (0752) 72773/4.
Grams: Sigjen Plymouth.

HATFIEMDEAMUN

Quality, quantity and speed ... they all add up to Harwin precision turned-parts service!

Quality first. Pins, lugs, inserts - in fact any turned part for electronics must be precision-made. Harwin do it to order - any size, any shape.
Now quantity. Thousands? Millions? Harwin can do it at speed . . with quick delivery and low costs.

It all adds up to Harwin service. Let us have your turned parts problemwe know three ways we can solve it better!

Harwin do you a good turn! Turned parts - indicator units lugs - stand-offs - brackets - insulators - resistors terminal boards . . . and more.

HARWIN ENGINEERS LTD FITZHERBERT ROAD FARLINGTON, HANTS. Tel: Cosham 70451/2/3
Excellent zero stability: less than 4 mV deflection at full scale on all ranges for changes in mains supply voltage of as much as 10%
Seven a.c. ranges: 301 ml to 300 V f.s. 20 Hz to 1.5 GHiz Eight d.c. ranges: 300 V to 1000 V f.s.Seven resistance ranges: 500Ω to $500 \mathrm{M} \Omega$ Input resistance: $100 \mathrm{M} \Omega$ Input capacitance: $1.5 \mu \mathrm{~F}$
Multipliers available: extend range to 2 kV a.c. and 30 kV d.c.
£90-U.K. f.o.b. Price. Full technical details on request. MARCONI INSTRUMENTS LIMITED

A new science project combining the fascination of optics with electronics ... the new field of OPTOELENTRONICS
 Demonstrations of these devices operating as
 from PROOPS

\section*{SPEECH LINK

SPEECH LINK $\stackrel{\text { and }}{\text { and }}$ LINK

 are being given daily at our only address,52 TOTTENHAM COURT ROAD, LONDON, W.1.

These new devices offer features which can be exploited in an extremely wide field of applications. Their outstanding modulation and switching capabilities, coupled with completely solid state circuit design and small physical size make them ideally suited to such purposes as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc.

MGA100
 Post Free $20^{\circ} 6$

TYPE MGA 100 General Purpose Gallium Arsenlde Light Source A filamentless, Gallium Arsenide infra-red emitter, only 5.54 mm . dia. and 8.1 mm . long. Features a robust cylindrical package coaxial with the beam, facilitating optical alignment and heatsinking.

MAX RATINGS
Forword current IF max.*. D.C..... 400mA. Forward peak current if max.* (pk).......6A Power dissipation ${ }^{*} \ldots . .600 \mathrm{~mW}$. Derating foctor for Tamb greoter than $25^{\circ} \mathrm{C} * \ldots .7 .5 \mathrm{~mW} /^{\circ} \mathrm{C}$
Reverse voltage $V_{\mathrm{R}} \max \mathrm{OV}$. Reverse voltage V_{R} max. \qquad m heat sink lin. $\times \frac{\operatorname{tin} .}{} \times \frac{1}{4}$ in.
Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.
TYPE MSP3 Solid State Photo Receiving Device
An ultra-sensitive infra-red and visible light detector, this device is a complete silicon photo-electric receiver with a peak spectral response at 9500 A . Size only 6.4 mm . dia. and 25.4 mm . long, yet absolutely complete, the device will generate sufficient power to drive an external relay. Chiefly intended for use in optical links based on Gallium Arsenide Light Sources, they are equally suitable for systems based on visible light. Features a robust cylindrical package coaxial with the incident light facilitating optical alignment and heat-sinking.

MAX RATINGS

Total dissipation (in free air, Tamb $25^{\circ} \mathrm{C}$) $\ldots . .100 \mathrm{~mW}$. Derating Factor...... $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Output Current Intensity 100 mA . Voltage......25V. Operating Temperature. from Supplied
hnical Data and Application Sheets, Supplied complete with suitable lense
including Line of Sight Speech Link.

ค 느 (x) \longrightarrow Type 31 F2 Micro-miniature Infra-Red Detector Extremely small photo diodes of silicon NPN passivated planar construction and suitable for Punched Card Readers, Counters, Film Sound Track, etc

Supplied complete with suitable fenses, full Technical Data and Application Sheets including Line of Sight Speech Link.

PROOPS ${ }^{\text {EROTHERS }}$ LIMITED

52 Tottenham Court Road, London, W.1. Telephone: LANgham 0141 ($01-5800141$)

And these new solid state devices RCA TRIACS Type 40432
Intended primarily for phase control of A.C. loads in IIght dimming, universal and induction motor control, heater control, etc., these gate controlled full. wave A.C. silicon switches, with integral rigger, switch from a blocking state to a conducting state for either polarity of applied voltage with positlve or nega. lve gate triggering.
Supplied complete with full Data and Application Sheets.

INTEGRATED CIRCUIT RCA—CA 3020 AF POWER AMPLIFIER \& PREAMPLIFIER (or servo-amplifier) The RCA-CA 3020 is an integrated-circuit, Multistage, Multi-Purpose AF Power Amplifier on a single monolithic silicon chip, providing a stabilized direct-coupled amplifier, performing pre-amp., phase inverter, driver and power output functions without transformers, and with one power supply suitable for sound, communications and
control systems.
Supplied complete with full Data and Application Sheets.

Dot and Cross Hatch Generator SG73

for speedy convergence alignment of Colour T.V.

The Advance solid state dot and cross hatch generator provides instant operation and is smaller, neater and half the weight of other similar instruments * All-silicon transistors and glass fibre printed circuit board * Front panel controls vary the number of horizontal and vertical bars * Switches select Grey scale or Pattern, Dots or Cross Hatch, 405/625, VHF/UHF. Stabilised Power Supply $200-260$ V. 50 Hz . Nett trade price $£ 60$.

WW- 088 FOR FURTHER DETAILS
 i\|f reeres a
 WW-090 FOR FURTHER DETAILS

JOHN SMITH LTD.

209 SPON LANE WEST BRON:WIEH-STAFFS. TEL. 021.5532516 (3 LINES) WOODS LANE CRADLEY HLATH WARLEY WORCS. TEL. CR 69283 (3LINES)

WW-089 FOR FURTHER DETAILS
 LONDON microphones

Quality sound-at low cost The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little cost. Made in Britain.

LM 100 Dynamic Omni-directional

 microphone,available in a range of impedances to suit many different input requirements including transistorised tape recorders. U.K. retail
E. LM 200 Dynamic cardioid microphone. Balanced output.
Eliminates únwanted back ground noise. Gives good recordings even price range £3/3/0-£3/18/6. under difficult
 Home and overseas trade enquiries welcome. W'rite or ring for details: LONDON MICROPHONE CO. LTD 182/4 Campden Hill Road London, W.8. Tel. Park 0711. Telex 23894 WW-091 FOR FURTHER DETAILS

there is a standard Claude Lyons voltage stabiliser already built to your specification * and that includes price

Claude Lyons make the most comprehensive range of voltage stabilisers available today. You will almost certainly find the stabiliser to suit your application in the Claude Lyons standard catalogue range. Distortionless servomechanical types from 1 to 120 kVA (and 360 kVA 3 -phase). Solid-state types from 400 VA to 10 kVA . Simple tap-changing types from 600 VA to 2.4 kVA . All very high quality. All very reasonably priced. Full facts and figures from Publicity Department, Hoddesdon.

Claude Lyons Litd Valley Works, Hoddesdon, Herts. Hoddesdon 67161. Telex 22724. 图 7h Old Hall Street, Liverpool 3. MARitime 1761. Telex 62181

CLAUDE LYONS

LEADER IN VOLTAGE CONTROL

Oscillator SG67

$10 \mathrm{~Hz}-1 \mathrm{MHz}$ Frequency Range

Sine wave or square wave Frequency is continuously variable in five switched ranges covering 10 Hz to 1 MHz . Sine wave or square wave output selected by a switch.
Amplitude is controlled by a variable level control in conjunction with a four-position push-button attenuator giving an output up to 2.5 Vr.m.s.
TheSG67 iscompact and portable, can be run from internal batteries or mains. Send for full specification now.

58 -
 Why does this Inductance Bridge have 27 controls, a meter, and a cathode-ray tube?

Because we've thought of everything.

Our new TF 2702 answers any inductance analysis problem you are ever likely to meet ; it does more than any other bridge at any price-and yet it costs only £490. A remarkably low price for the first true inductor analyser-both a self-contained low and medium current inductance bridge and the nucleus of a complete high-power inductor test assembly.
Its inductance range ($0.3 \mu \mathrm{H}$ to 21,000 henries) is twenty-one tirres wider than its nearest competitor's. It can be used at any frequency from 20 Hz to 20 kHz -internal frequencies: 10 kHz , 1 kHz , and 50 Hz . And it switches to Maxwell or Hay configuration for equivalent series or parallel inductance, with loss resistance indicated directiy in ohms.
The a.c. can be monitored, and d.c. bias applied directly into the bridge up to 0.5 amps -or up to 10 amps using our mixer unit TM 8339.

Easy to Ealance. Although its versatility is unequalled. TF 2702 is easier to balance than any inductance bridge ever marketed. It has two detector systems-a cathode-ray tube display for search, and a tuned detector for final balance. The c.r.t. gives a positive indication of the direction of inductance unbalance, shows up iron distortion, and even tells you if the inductor is capacitive at the test frequency. Furthermore, the use of the reactance standard as the inductance-balance variable completely eliminates the interdependence between the L and R balance controls that can make inductance measurement so tedious. There's no "chasing the balance" with this bridge.
If you've grown to enjoy the suspense of hit-or-miss methods of inductor analysis, TF 2702 will spoil your fun but it will give you the right answer first go-with precisely controllable measuring conditions. Ask now for technical data.

An English Electric Company

MARCONI INSTRUMENTS LIMITED

LONGACFESS, ST. ALBANS, HERTFORDSHIRE, ENGLAND. TELEPHONE ST. ALBANS 59292, TELEX 23350

TODMORDEN LANCS

工年

INTERNATIONAL RECTIFIER

Quality Semi-Conductors.
Complete Rectifier Assemblies up to thousands of Amps, Diodes, Thyristors, Zeners, Encapsulated Bridges, Photocells, Klipsel Surge Protectors.
For experiment and teaching:ZENER KITS, THYRISTOR KITS, bulletins and prices on request.

BRADE

PRINTED CIRCUIT DRAFTING AIDS

drafting time and costs. Selfadhesive shapes and tapes. Terminal circles-fillets-tees-elbows-universall corners and mounting holes. Bulletins and prices on request.

ENCLISH ELECTRIC

GS FUSES
or the protection of rectifiers and thyristors.
Bulletins and prices on request.

Rail Mounted Terminals and Terminal Blocks 0.5-250 Amps. Bulletins and prices on request.

WW-097 FOR FURTHER DETAILS

TRANSFORMERS
0.25 kVA to 300 kVA 1 phase and 3 phase

LOW VOLTAGE HIGH CURRENT TRANSFORMERS
with output currents of hundreds, thousands and tens of thousands of amps.
1 phase and 3 phase.

DC POWER SUPPLIES

For Magnets, Accelerators, Plating, Anodising, Spectorscopy, Plasma Arc, Toronto Arc, Electron Beams, Electrolysis. Welding, Quartz Lamps, Mercury Vapour Lamps. From 100 W to 200 KW .

VOLTMOBILES

64 steps on load 5 witching AutoTransformers. I plase and 3 phase. 20.400 Amps.

Zero to 100% Volts or 125% of Input Volts.
Voltmobiles are low-cost controllers, for furnaces, re:tifier sets and other loads.

Be
present

at the

INTERNATIONAL EXHIBIIIONS OF ELECTRONIC COMPONENS AND OF AUDIO-EQUIPMENT

FROM APRIL 1st TO 6th 1968 - PARIS PORTE DE VERSAILLES

scientific and technical considerations FROM MARCH $25^{\text {th }}$ TO $29^{\text {th }} 1968$ - PARIS

Programme and registration conditions on request

DUAL-IN-LINE SOCKETS

Suitable for 14 and 16 pin D-I-L Integrated Circuits.
Large contoured entry holes for easy, damage-free I.C. insertion.
Body: Diallyl phthalate, type SDG.
Contacts: Spring temper beryllium copper, gold plated over dull nickel plate. Mounting Saddle. Stainless Steel.

314-AG3A (14 pins) 8/10 7/9
316-AG3A (16 pins)
$9 / 2+12 \frac{8}{8} \%$
i ASABA Elecrronics Lrd., 275/281 King Street, London,W.6. Tel:Riv 2960 WW- 125 FOR FURTHER DETAILS

A New delivery of the famous COWL GILL

 MOTOR for Beam Rotation

 MOTOR for Beam Rotation}Magnificent fully enclosed motor incorporating 600-1 epicyclic gear box, final speed II r.p.m. on 12 V., 15 r.p.m. on 24 V . Limit switches can be removed to provide continuous running in either direction. Size 12 in . $\times 3 \frac{1}{2} i n$. , $\frac{1}{\frac{1}{n}}$. dia. splined drive shaft $\frac{2}{4} \mathrm{in}$. Iong. 4 A at 12 V . Condition as new. Instructions supplied for running on A.C. 55'oltages.

PROOPS BROTHERS

WW-126 FOR FURTHER DETAILS

STOCKISTS

MODEL 8 MK, 111

MULTIMINOR MK. 1 V
REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: TIDeway 2689
E.I.D. \& G.P.O. APPROVED CONTRACTOR TO H M. GOVT WW-100 FOR FURTHER DETAILS

LABORATORY CAPACITOR BOXES

Triple range precision. Air spaced capacitor with slow motion dial and minimum capacitance setting of only 5 pf (including strays)

Compact $140 \mu \mathrm{f}$ paper capacitor box designed for stacking in units of up to six. Tolerance $\pm 5 \%$. Rated at 300 V . AC or DC. Each capacitor individually fused.

For further details and information on our extensive range of decade boxes, write to:

J. J. LLOYD INSTRUMENTS LTD.
 brook avenue, warsash, SOUTHAMPTON TELEPHONE: LOCKS HEATH 84221

One Wharfedale Super Speaker does the job of bass and treble

If a frequency range of 40 Hz to $20,000 \mathrm{~Hz}$ is wide enough to suit your needs, - forget about buying a separate bass and treble. The Speaker you need is a Wharfedale Super 8. In a 2 cu.ft. enclosure this speaker gives superb results. The 14,500 oersted magnet gives increased sensitivity and excellent transient performance. Max. input 6 watts rms or 12 watts peak. Impedance $10 / 15$ ohms. The Super 8/RS/DD (Roll Surround, Double Diaphragm) costs only $£ 7,2.0$. (inc. P.T.)

WHARFEDALE SUPER 10/RS/DD Gives even better bass results. and greater sensitivity. A range of $30 \mathrm{~Hz}-20,000 \mathrm{~Hz}$. Flux density 16,000 oersteds. Max. input 10 watts rms or 20 watts peak. Impedance 10/15 ohms.
Price £11.13.4. (inc. P.T.)
Ask at your local dealer

RANK WHARFEDALE LTD. IDLE, BRADFORD, YORKS.

WW-102 FOR FURTHER DETAILS

THE DIOTESTOR detects faulty diodes and transistors when stlll in circuit withoul nead for unsoldering.

ERITEC LIMITED

17. Charing Cross Road, London, W.C. 2 Tel: 01.930-3070

WW-103 FCR FURTHER DETAILS

CAPACITY 15pf to $111 \mu \mathrm{~F}$ RESISTANCE 0.1Ω to $100 \mathrm{~K} \Omega$ INDUCTANCE 1 mH to 10 H VOLTAGE DIVIDERS and WHEATSTONE BRIDGES LIONMOUNT \& CO. LTD.
BELLEVUE ROAD, NEW SOUTHGATE, LONDON, N.II, ENGLAND Tel: Enterprise 7047.
WW-104 FOR FURTHER DETAILS

Grampian SOUND EQUIPMENT

GRAMPIAN REPRODUCERS LTD Panwortt, Trading Esiate, Feitham, Middlesex

WW-105 FOR FURTHER DETAILS

You are interested in Radio and T.V.?-Why not

PUT SOME LETTER AFTER YOUR NAM

You can rapidly qualify in your spare tin by means of an absorbingly interestir Chambers Postal Course. We offer expe and highly personal training backed by " SATISFACTION-OR-MONEY-BACK Agreement. Over 75 years' experience . thousands of successes.

FREE 100-PAGE GUIDE

Choose from hundreds of CoursesPractical Radio (apparatus supplicd Radio \& T.V. Servicing, Applic Electronics, P.M.G. Cert., City Guilds, R.T.E.B., A.M.I.E.R.E Radio Amateurs Exam., etc. Sen today for the informative $100-\mathrm{Pa}$ Chambers Guide To SuccessFREE. (Please state Career, exan or subject of interest).

Chambers College

(Dept. E55F) 149 Holborn, London, E.C. WW-106 FOR FURTHER DETAILS

6 mm tubular midget flange $56 / 8 \mathrm{cap}$ over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are
made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not. another from the hundreds of Vitality types and ratings may well be. Catalogue 66. free and post-free, details them all.

* Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST. EDMUNDS. SUFFOLK. TEL. BURY 2071. S.T.0. 02842071

WW-107 FOR FURTHER DETAILS
 TECHNICAL TRAINING by

ICSIN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunitics in Radio and Electronics await the ICS tralned man. Let ICS train YOU for a well-paid post in thls expanding field. CS courses offer the keen, ambitious man the opportunity to aequire, quickly and easily. the specialized eraining so essential to success.
Diploma courses in Radio/TV Engineering and Servicing, Eleceronics,
Computers, etc. Expert coaching for:

- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
- C. \& G. TELECONIMUNICATION TECHNICIANS CERTS.
- C. \& G. TELECONMMNICATION
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS EXAMINATION.
- P.m.g. CERTIFICATES IN RADIOTELEGRAFHY.

Examination Students Coached unsil Successful.
NEW SELF-BUILD RADIO COURSES Build your own 5-valve receiver, transistor po
and multi-test meter-all under expert tuition. . Signal generzio
POST THIS COUPON TODAY and find out how. 1 CS can help YOU in your career. Full details of ICS courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.

Armstrong

 high fidelity sound series 27 TUNER-AMPLIFIERS for the BUDGET SYSTEM

127 STEREO TUNER-AMPLIFIER (illustrated) £40.1.6

127M MONO TUNER-AMPLIFIER
£29.18.9

227 M MONO TUNER-AMPLIFIER

£40.1.6
OPTIONAL CASE, teak and vinyI hide
£3.15.9
Three tuner-amplifiers, identical in size and similar in styling, each with the same high performance AM-FM Tuner incorporated. The 227 M provides 10 watts power output whilst the 127 M , with 5 watts output, is designed for those whose power requirements are more modest. The 127 is the stereo version of 127 M , having two amplifiers, each of 5 watts output. All three have similar facilities; pick-up and tape inputs, tape recording output, bass and treble tone controls.
For full details and technical specifications of all models, including the new series 400 , plus list of stockists, post coupon or write mentioning 1 WW68.

ARMSTRONG AUDIO LTD., WARLTERS ROAD,N. 7
Telephone 01.607 3213

Name

Address.

IWW68

Technicians \& Engineers

requred for test alignment and servicing of television transmission equipment; applicants should be competent and experienced in the use of standard test instruments. There are good opportunities for promotion to laboratory work.

Apply to:-
Personnel Manager,
British Relay (Electronics) Lid., 1-7 Croft Strcet,
Deptford, London, S.E.s
(Near Surrey Docks Underground Station)

ELECTRONIC TROUBLESHDOTERS

Required by a leading telephone answering machine manufacturer for magnetic recording and transistor pulse circuitry. H.N.C. standard an advantage but a logical approach to fault finding is the main requirement.

Commencing salary $£ 800-£ 1,250$ p.a., dependent upon qualifications and experience. Non-contributory sick scheme, overtime available.

Apply: Robophone Limited,
Unit " D,"
Menin Works,
Bond Road,
Mitcham, Surrey.
Telephone: 01-648 6278.

Science Research Council

RADIO AND SPACE RESEARCH STATION
Ditton Park, Slough, Bucks.
MALE ASSISTANT EXPERIMENTAL
OFFICERS are required for a three-year tour of OFFLLERS are required for a three-year tour of
duty at Sanley, Falkland Islands, for operating and maint ining advanced apparatus for recording frienlific information transmitted by telemerry from sat-llit s. (Shift work.) Married staff live in rint-free accommodation in modern wellfurnished bungalows.

QUALIFICATIONS

University o C.N.A.A. degree, H.N.C. or equivalent qual. fic tion. If under age 22, five G.C.E. passes incluting two science or mathematical subjects at " A " level (or equivalent).

SALARY

Salary whilst overseas on scale $£ 690$ per annum rising to $£ 1,318$; start ing salary at age 21 years $£ 809$; at age 26 years or over, $£ 1,092$. Additiona! overseas allowances and shift pay

Apply:-The Secretary, S.R.C. Radio and Space Research Station, Ditton Park, Slough, Researc
Bucks.

(1714)

TECHNICAL ASSISTANTS

WITH THE INDEPENDENT TELEVISION AUTHORITY

In addition to its present service, Independent Television will soon be entering the field of colour T.V. and U.H.F. Engineering; the future is therefore one of interest and development. The Authority requires young men with some experience in electronics to join its engineering staff; they will be based at Transmitting Stations throughout the United Kingdom and be engaged in the operation and maintenance of television transmitting and ancillary equipment.

SALARY-Commencing salary is in the range $\mathbf{6 9 5 0 - £ 1 , 2 2 5}$ per annum; subject to qualifications and satisfactory work, salary will progress to $£ 1,650$.
There are PROMOTION PROSPECTS to posts above this level; the Authority's policy is to promote its existing staff whenever possible.

HOURS-Duties are on a shift basis (day and evening) averaging 8 hours with a weekly average of 42 hours inclusive of meal breaks. The evening shifts finish shortly after programme close down at about midnight.

QUALIFICATIONS--Normally a Higher National Certificate or its equivalent would be required but as excellent residential training courses are provided, young men who have not reached this standard will be considered provided their background and experience is suitable.

If you would like to enter this interesting and developing field of engineering, please apply to :-

PERSONNEL OFFICER

THE INDEPENDENT TELEVISION AUTHORITY
70, Brompton Road, London, S.W. 3 Quoting Reference WW/583

SCIENCE RESEARCH COUNCIL
 RADIO AND SPACE RESEARCH STATION DITTON PARK, SLOUGH, BUCKS.

Electrical Engineers or Physicists are required for the following posis:-
(1) Scientific Officers/Senior Scientific Officers and

Assistant ExperimentaI Officers/Experimental Officers for research and development work on electronic and other apparatus for use in experiments to be made in rockets and artificial satellites for investigating the characteristics of the upper atmosphere and ionosphere.

Experiments now in active preparation are to be made as part of the U.K. National and European space research programmes. Opportunities for foreign travel exist.
Qualifications required:-
S.O. S.S.O. 1st or 2nd Class Honours degrees (or equivalent) in appropriate subject plus (for S.S.O.) at least three years posi-graduate experience. A.E.O./E.O. University or C.N.A.A. degree, H.N.C. or equivalent qualification. If under age 22, five G.C.E. passes including two science or mathernatical subjeçts at "A" level (or equivalent).
Salaries
S.O.S.S.O. Between $£ 926$ and $£ 2,155$.
A.E.O./E.O. Between £568 and 11,734 .

Apply:-The Secretary,
Science Research Council, Radio and Space Research Station, Ditton Park, SLOUGH, Bucks. Telephone: SLOUGH 24411

BRITAIN＇S CAR RADIO SPECIALISTS
require an experienced

RADIOcomplete range of products（both valve and transistorised），the successful applicant will have a good working knowledge of radio theory，together with a number of years of practical experience，preferably，but rot essen－ tially，in the Car Radio Industry．
Please write in the first instance，giving personal information and brief details of work history to：

5
The Personnel Department， RADIOMOBILE LIMITED， Goodwood Works． North Circular Road， London，N．W．2． GLAdstone 0171

A LOT OF 'SCOPE FOR £221

D53
by Telequipment sets
the pace for a new generation of low cost oscillcscopes. By adding this new 'scope to the established S \& D43 system, the potentialities of the system have been uplifted. D53 accepts the standard range of amplifiers developed for the Telequipment 43 series plus two additional units types CD \& HD which utilise the $25 \mu \mathrm{sec}$. signal delay facilities in the 53.
Type A DC- $15 \mathrm{Mc} / \mathrm{s}, 100 \mathrm{mV} / \mathrm{cm}$; DC- $800 \mathrm{Kc} / \mathrm{s}, 10 \mathrm{mV} / \mathrm{cm}$.
Type B Differential, DC-75 Kc/s, $1 \mathrm{mV} / \mathrm{cm}$; Rejection 10,000:1.
Type CD As type A plus $3 \mathrm{c} / \mathrm{s}-75 \mathrm{Kc} / \mathrm{s}$, $100 \mu \mathrm{~V} / \mathrm{cm}$.
Type D Envelope Monitor.
Type G Differential, DC- $10 \mathrm{Mc} / \mathrm{s}$, $20 \mathrm{mV} / \mathrm{cm} ; \mathrm{DC}-500 \mathrm{Kc} / \mathrm{s}, 2 \mathrm{mV} / \mathrm{cm}$.
Type HD DC- $25 \mathrm{Mc} / \mathrm{s}, 100 \mathrm{mV} / \mathrm{cm}$; $D C-5 \mathrm{Mc} / \mathrm{s}, 10 \mathrm{mV} / \mathrm{cm}$.
D53 anticipates the demands of the electronics industry for a general purpose oscilloscope for years to come.

Prices in U.K. £207-£235, depending on choice of amplifiers.
Send for a detailed description of the new D53, and for a copy of the current Telequipment short form catalogue.

Telequipment

Telequipment Limited - Southgate • London N14 • Tel: 01-882 1166
Editor-in-chief:
W. T. COCKING, F.I.E.E.
Editor:
H. W. BARNARD
Technical Editor:
T. E. IVALL
Editorial:
B. S. CRANK
F. MILLS
Drowing Office:
H. J. COOKE
Production:
D. R. BRAY
Advertisements:
G. BENTON ROWELL
(Manager)
J. R, EYTON-JONES
lliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H . Mansell
Dorset House, Stamford Street, London, S.E. 1

Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address
(C) Iliffe Technical Publications Ltd., 1968. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Wireless World

ELECTRONICS, TELEVISION, RADIO, AUDIO

JANUARY 1968

619 A Genuine Reject?
620 Radio Signals from the Heart of Matter
by D. A. Tong
625 R.F. Measurements and Standards
626 B.B.C. Colour Service
628 The PAL Colour TV System
by S. C. Ryder-Smith
634 Emitter-coupled. Emitter-timed Multivibrators by G. B. Clayton
641 Semiconductor Type Numbering
by T. D. Towers
by K. C. Johnson
645 The Design of a Class D Circuit
651 Sub-surface Propagation

SHORT ITEMS

624 A Logical Bassoon
638 P.O. Receiving Station Refurbished
638 Changes in Maritime Radio Regulations
644 Units and their Abbreviations
655 Letter from America

REGULAR FEATURES

619	Editorial Comment	654	Books Received
638	World of Wireless	654	H.F. Predictions
640	Personalities	656	World of Amateur Radio
650	Letters to the Editor		
652	News from Industry		
653	1968 Conferences and Exhibitions	657	January Meetings
	658 New Products		
	Real and Imaginary "Vector"		

[^7]
BEHIND EVERY BRIM OSCILLOSCOPE TUBE ...AN UNRIVALLED PERSONALISED SERVICE
 ov

There's a BRIMAR tube to meet the needs of every oscilloscope designer-ranging from general purpose tubes of medium bandwidth to tubes designed specifically for exacting applications requiring features such as short length, wide bandwidth or dual phosphors. Face plates range from $8 \frac{1^{\prime \prime}}{}$ large displays to $1^{\prime \prime}$ types for numerical and indicator presentations including the latest $7 \times 5 \mathrm{~cm}$ rectangular size.

PIRISONALISEI) 'TECHNICAL SERVICE

Every BRIMAR oscilloscope tube is backed by a firstclass technical service and assistance on any type of problem involving it-from special characteristics to circuit design. BRIMAR engineers are always available - contact is on a personal level. Just phone or write.

The BRIMAR D13-51GH is a modern Mesh P.D.A. $6 \times 10 \mathrm{~cm}^{2}$-area tube, which gives improved brightness, higher deflection sensitivities and higher ratios of screen to deflector voltage with no shrinkage of raster area. The D13-51 GH displays single phenomena up to 30 MHz bandwidth and is suitable for use with transistorised circuits. It needs fewer control voltages than other mesh tubes. Length is only $13 \frac{1}{4}$ ".
We shall be pleased to let you have full details of the BRIMAR D13-51GH and the rest of the interesting range of BRIMAR industrial cathode ray tubes.

Thorn-A.E.I. Radio Valves \& Tubes Ltd. 7 Soho Square, London W1. Telephone:01-4375233

SALES NOW EXCEED £10,000,000

More and more countries are buying Marconi Self-Tuning h.f systems...

and one good reason is:
 GREATLY INCREASED TRAFFICCARRYING EFFICIENCY

- Great reduction in 'outage' time.
- Earlier generation equipment in use today can take up to 30 minutes to complete a routine frequency change.
- MST takes less than 1 minute for the same operation.
\# Increased revenue results from this very significant improvement.
- A.F.C can be entirely dispensed with when operating with other systems of comparable stability.

and other good reasons include:

Reduced capital outlay

MST designs reduce demands for space, and need for standby equipment. Installation costs are decreased.

Increased reliability
Maximum use of solid state techniques plus the use of wideband amplifiers reduces number of moving parts, gives higher reliability and longer equipment life.

Economy of manpower
High equipment reliability together with full remote control facilities permit unmanned station working. Complete h.f systems can be controlled by one man.
World-wide acceptance
30 countries throughout the world have ordered more than $£ 10,000,000$ worth of MST equipment to improve their communications services.

Marconi telecommunications systems

 AN 'ENGLISH ELECTRIC' COMPANYThe Marconi Company Limited, Radio Communications Division, Chelmsford, Essex, England

BRIMAR offers the most comprehensive range of monitor tubes in the country, together with the widest selection of phosphors.
The tubes range in size from $5^{\prime \prime}$ to $23^{\prime \prime}$. They can be used for television camera viewfinders, studio quality monitors, data displays and closed circuit television - twenty tubes in ali! They have been designed to give maximum resolution under high ambient lighting conditions.
A variety of mounting and implosion protection methods, including self protection bonded glass faces are available from BRIMAR who are Britain's leaders in implosion protection.
Common features include magnetic deflection, electrostatic focus and aluminised screens.
The phosphors. In addition to the standard type for television, a wide selection of others is available offering varying degrees of persistence and colour.

()R A MOPRE IPRRSONALISHID SIRIRVICE!

Every BRIMAR tube is backed by a first-class technical service and assistance on any type of problem involving its use in monitors - from special characteristics to circuit design. BRIMAR engineers are always available - contact is on a personal basis. Please telephone or write for full details.

Thorn-A.E.I. Radio Valves \& Tubes Ltd. 7 Soho Square, London W1. Telephone : 01-4375233

quality equipment

The 12-way electronic mixer has facilities for mixing 12 balanced line microphones. Each of the 12 lines has its own potted mumetal shielded microphone transformer and input valve, each control is hermetically sealed. Muting switches are normally fitted on each channel and the unit is fed from its own mumetal shielded mains transformer and metal rectifier.

FOUR-WAY ELECTRONIC MIXER

This unit provides for 4 independent channels electronically mixed without "spurious break through," microphony hum and background noise have been reduced to a minimum by careful selection of components. The standard $15-50 \mathrm{ohm}$ shielded transformers on each input are arranged for balanced line, and have screened primaries to prevent H.F. transfer when used on long lines.
The standard 5 valve unit consumes only 18.5 watts, H.T. is provided by a selenium rectifier fed by low loss, low field, transformer in screening box. The ventilated case gives negligible temperature rise with this low consumption assuring continuance of low noise figures.
20,000 ohms is the standard output impedance, but the noise pick-up on the output lines is equivalent to approximately 2,000 ohms due to the large amount of negative feedback used.
For any output impedance between 20,000 ohms and infinity half a volt output is available. Special models can be supplied for 600 ohms at equivalent voltage by an additional transformer or 1 milliwatt 600 ohms by additional transformer and valve.
The white engraved front pane! permits of temporary pencil notes being made, and these may be easily erascd when required. The standard input is balanced line by means of 3 point jack sockets at the front, or to order at the rear.

THREE-WAY MIXER and peak programme meter, for recording and large sound installations etc.

This is similar in dimension to the 4 -Way Mixer but has an output meter indicating transient peaks by means of a valve voltmeter with a 1 second time constant in its grid circuit.
The meter is calibrated in dBs , zero dB being 1 milliwatt $-600 \mathrm{ohm}(.775 \mathrm{~V})$ and markings are provided for +10 dB and -26 dB . A switch is provided for checking the calibration. A valve is used for stabilising the gain of this unit. The output is 1 milliwatt on 600 ohms for zero level up to +12 dB maximum. An internal switch connects the outpur for balance, unbalance, or float. This output is given for an input of 40 microvolts on 15 ohms.
An additional input marked "Ext. Mxr." will accept the output of the 4 -Way Mixer converting the unit into a 7-W ay
controlled unit. This input will also accept the output of a crystal pick-up but no control of volume is available.
The standard input is balanced line by means of 3 point jack sockets at rear but alternative 2 point connectors may be obtained to order at the front or rear as desired.
The 8 valves and selenium rectifier draw a total of 25 watts.

$$
\text { P.P.M. for } 200-250 \mathrm{~V} \text { AC Mains Price on application }
$$

Size $18 \frac{1}{\mathrm{t}} \mathrm{in}$. wide $\times 11 \mathrm{i} \mathrm{in}$. front to back (excluding plugs) $\times 6$ tin. high.
Weight 231b.
10/15 watt Amplifier with built-in mixers.
30/50 watt Amplifier with built-in mixers.
2×5-way stereo mixers with outputs for echo chambers, etc.
Full details and prices on request.
VORTEXION LIMITED, 257-263 The Broadway, Wimbledon, S.W. 19
Telephone: LIBerry 01-S42-2814. 01-542-6242/3/4. Telegrams: "Vortexion L.ondon S.w.19."

Depicted here are typical examples of a range of Waterproof Connectors of unique design enabling electrical circuits to be connected or disconnected even when under water. The range caters for electrical loads of 440 volts a.c. 175 amps. down to the signal current levels associated with instrumentation and similar arrangements.

The basic design incorporates a patented principle referred to as "Watermate". Both plug and socket are moulded of a specially compounded neoprene rubber with unusually high insulation resistance and non-wetting surface. As mating occurs water, salt deposits, sand and other foreign matter are wiped from the sockets and ejected from a duct in the socket to form a leak-proof seal. The wiping action assures a dry connection at the moment of contact resulting in a leakage resistance of not less than 100 megohms WHEN MATED UNDER WATER.
They are pressure balanced and will not block up under high pressures. There are no glands or threads to seize up in water and the method of moulding to the associated neoprene jacketed cable provides an extremely robust and simple connector for both Military and Civil applications.
For full details of these Connectors and a new Underwater Reed Switch Assembly, please write or telephone to the Technical Sales Department.

MODEL 633
 Guaranteed for 3 years

The 633 is the latest addition to the Ferrograph range and is intended for the serious home recordist as well as the professional user. Each instrument is supplied with an abstract of actual performance in the form of a test certificate.
Aninstrument for specification performance in the form all Ferrograph instrumentsare guaranteed available for at least 10 years. Designed to a strict specification Built to endure
*Three operational speeds:
$633-1 \frac{7}{8}, 3 \frac{3}{4}$ and $7 \frac{1}{2}$.

$633 \mathrm{H}-3 \frac{3}{4} .7 \frac{1}{2}$ and 15 i.p.s
$6 \frac{3}{2}$ and $7 \frac{1}{2}$ i.p.s.

* Monitoring of recorded programme.
* Comparison by " $A-B$ " switching.
* Switched bias control.
* Level meter reads on both record and playback. interested? Then complete and post this coupon to: * Mixing facilities with separate gaincon * Modular construction to provide maxinum service accessibility.
* Separate record and replay heads. * Separate record and replay amplifiers. * Fully compensated input socket for magnetic pick-up.
米Spot erase. THE FERROGRAPH CO. London, S.E. 1

米 3 watts undistorted output.

Model 633
 120 gns .
 Model 633H
 125 gns.

Ferrograph

SINCLAIR

ACOUSTICALLY CONTOURED SOUND CHAMBERMAXIMUM LOADING IN EXCESS OF 14 WATTSBRILLIANT TRANSIENT RESPONSE

15 OHMS IMPEDANCEOF COMPACT AND ORIGINAL DESIGNAN ALL-BRITISH PRODUCT

a truly superb loudspeaker

Price need no longer stop you enjoying first - class high - fidelity loudspeaker reproduction nor is size any longer a problem. (These considerations are of utmost importance to every enthusiast for stereo.) In the Sinclair Q. 14 you will find a loudspeaker of such remarkable quality and so compactly and attraccively styled that you will want to change over to Sinclair as soon as you hear it. This is no ordinary loudspeaker. Indeed, at a recent trade demonstration experts were greatly impressed on hearing the Q. 14 against speakers costing many times as much. It proves beyond question that good reproduction need not be expensive.
When tested in an independent laboratory a Q. 14 from stock showed exceptionally smooth response between 60 and $16,000 \mathrm{c} / \mathrm{s}$ with well sustained output both below and above these readings. lts remarkable transient response ensures clean-cut separation between instruments, voices, etc. Much
sent post free to any part ùi U.K.
of its success results from the use of materials different from those found in conventional speaker manufacture. The unusual shape of the sealed, seamless pressure chamber allows the Q .14 to be conveniently positioned on shelves, in wall corners, or flush mounted in assemblles of one or more units.

"More than delighted"

"I have tested them (two Q. 14 's) side by side with two first class speakers in large reflex cabinets coupled to a very good Hi-Fi stereo set up and can honestly say the Q. 14 is superior to the speakers I have been using. Every note came through perfectly. I am more than delighted. I would like to congrotulate you on producing such a fine unit." -J.R.H., Blackpool.
Try the Q. 14 in your own home by sending the order form off today. If you are not satisfied your money plus the cost of returning the Q .14 tous will be refunded in full.

£6.19.6

COMBINED 12 WATT HI-FI AMP AND PRE-AMP

Fantastic power \& versatility

12 Watts R.M.S. continuous sine wave linuous sine
(24 w . peak.)

- 15 watts music power (30 w. pcak.)
- Ulitrallinear class B output
- Input $-2 m \mathrm{~V}$ into $2 \mathrm{k} / \mathrm{hhm}$
Output suitable for 15. 7.5 and 3 ohm speakers. Two 3 ohm speakers may be used in paralle!
15-50,000 c/s IdB
- Ideal for battery operation
- $3^{\prime \prime} \times 17^{\prime \prime} \times 1 \neq 1$ BUILT, TESTED AND guaranteed

89/6

A NEW
SINCLAIR POWER UNIT

The Z. 12 proves beyond all question that high-fidelity can be combined with very low price. No other integrated amplifier system so successfully meets such a wide range of requirements. The Z .12 will operate from any power supply between 6 and 20 v . D.C. The output is suitable for any impedance between 1.5 and 15 ohms, and consequently for any loudspeaker including, of course, the Sinclair Q.14. This remarkable amplifier has facilities for matching to any types of conventional inputs, details of which are given in the $Z .12$ manual supplied. Included amongst popular applications for the $\mathbf{Z .} 12$ are mono and stereo high fidelity systems (two are needed for stereo). guitars, electric organs, car radios and P.A. and intercom systems, ett. It is also of great value in experimental work where dependable standards are required.
"All you clalm for it"
"The Sinclair Z.12 is all and more that you claim for it. Its performance is outstanding. Thank you for your prompt service."-S/Sgt. R. B.A.O.R.
"Performance excels that of many systems"
"I have built a stereogram employing $2 Z .12$ amplifiers and a PZ.3. I am delighted with the reproduction which is better than some I have heard costing over double the price. Is has also silenced some of the old brigade who stubbornly believe that nothing
can beat valves."

SINCLAIR STEREO 25 PRE-AMP/CONTROL UNIT For use with two Z.12s or any hi-fi stereo system. Frequency response $25 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}+1 \mathrm{~dB}$. Switched inputs for P.U., Radio, Microphone, etc. Equalisation correct to within I dB on RIAA curve from 50 to $20,000 \mathrm{c} / \mathrm{s}$. $6 \frac{1}{\mathrm{tin} .} \times 2 \frac{1}{2 i n} \times 2$ in. plus knobs. 9.19 .6
BUILT, TESTED ANO GUARANTEED

SINCLAIR

 MICPOMATICThe world's smallest radio now includes marnetic earpiece, yet costs less.

Prices of the Micromatic have been substantially reduced. Performance has been improved by the inclusion of a new magnetic type earpiece. These two facts mean that still more enthusiasts can enjoy even better performance from this fabulous lictle set-and it's all British, too. Keep a Micromatic to hand always-is plays anywhere. Size $1 \frac{1}{3}$ in $\times 1$ if $x \frac{1}{\frac{1}{2}}$. Formerly $59 / 6$ in kit form ond $79 / 6$ buile and tested. $\begin{array}{ll}\text { KIT } \\ \text { NOW } & \text { Built and } \\ \text { tested }\end{array} 59 / 6$ Two mercury cells for Micromatic-each 1/11.

MICRO FM

Less shan $3 \operatorname{in} . \times 1 \frac{1}{6} \mathrm{in} . \times \frac{1}{3}$ in. 7 Cransistor F.M. Superhet using pulse counting discriminunnecessary. Tunes $88-108 \mathrm{Mc} / \mathrm{s}$. unnecessary. Tunes $88-108 \mathrm{Mc} / \mathrm{s}$. for good reception in all but poorest areas. Signal to noise ratio- 30 dB at 30 microvolts. One outlet for amplifier or recorder, one for use as a pocket portable. Complete Kit inc. earpiece.
£5.19.6

PZ.4. Heavy duty, stabilized power pack to mect requirements $\begin{array}{ll}\text { of } 2.12 & \text { assemblies in } \\ \text { stereo. etc. } \\ \text { eter } \\ \text { Output }\end{array} \mathbf{9 9}$ 18 ste. etc. at 1.5A Output

HIGH TORQUE BATTERY MOTOR
Exceptional speed regulation over a wide Load/Voltage range. 8 -12 Volts. High Efficiency. Low electrical interference. Many other high quality motors both A.C. and D.C. available in the small F.H.P. range.

EMICOMPONENTS are designed by professionals and used in professional applications ranging from rockets to hi-fi. They are used by EMI themselves in the design and development of systems and equipment where no compromise is permissible - in quality performance or value. This is the reason for their constant reliability. The EMICOMPONENTS range includes A.C. and D.C. Motors, PET Capacitors, Miniature Rotary and Illuminated Push Button Switches and Miniature Transformers with outputs up to 20 VA .
Send coupon for literature giving performance and dimensional details.

EMI
 EMI SOUND PRODUCTS LIMITED COMPONENT DIVISION.HAYES-MIDDX TELEPHONE: 01-573 3888• EXT: 667

Please send me details of the following EMICOMPONENTS:
A.C. \& D.C. MOTORS \square PET CAPACITORS \square MINIATURE ROTARY SWITCHES PUSH BUTTON SWITCHES \square miniature transformers \square

Tick appropriste.square
Name
Company
Address

COLOMOR (ELECTRONICS) LTD.
 170 Goldhawk Rd., London, W. 12 . Tel. (01) 7430899

MARCONI SIGNAL GENERATOR TYPE TFBOIB/3/S
 Frequency range $12-485 \mathrm{Mc} / \mathrm{s}$ in five ranges. Directly Calibraced requency dial. sinewave A.M., pulse A.M. (from ext, source only). internal modulation frequency $1.000 \mathrm{c} / \mathrm{s}$. Output: a. normal -continuously variable directly calibrated from $0.1 \mu \mathrm{v}$ 0.5 v . b, high, up to I v. modulaced for 2 v . unmodulated, ourput impedance 50 ohms. Fine frequency tuning built-in crystal calibration for $2 \mathrm{Mc} / \mathrm{s}$ and $10 \mathrm{Mc} / \mathrm{s}$. Stabilised voltage supply. In excellent "as new" condition. Laboratory checked and Ruaranteed. © 115 . Carr. 30\%. Including necessary connectors, plugs and instruction manual.
MARCONI SIGNAL GENERATOR TF 801/A/1. $10.300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at $400 \mathrm{c} / \mathrm{s}$ kc/s. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$.
Ourput $0-100 \mathrm{db}$ below 200 mV Ourput 75 -100 db below 250 mV from 75 ohms source. Completely BC 221 FREQUENCY METERS BC 221 FREQUENCY METERS $125-20,000 \mathrm{kc} / \mathrm{s}$. Accuracy 0.01% Complete with individual Calibration headphones. 45 condition with Mains p SU for bove $11 / 10 /$ Mains P.S.U. for above, $\mathrm{El} / 10 / \mathrm{m}$ SIGNAL
SIGNAL GENERATOR PORT ABLE TS 13/AP, with self-contained wavemeter and power monitor. req. $9305.9445 \mathrm{Mc} / \mathrm{s}$. Peak power output. C W pulsed $50 \mu W$ per 5,200 . Pec PRR $350.4 .000 \mathrm{c} / \mathrm{s}$, delay $5,200 \mathrm{jsec}$. PRR $350-4,000 \mathrm{c} / \mathrm{s} . \quad \$ 50$. P. \& P. 20/.

TEST SET TS I2AP STANDING WAVE INDICATOR EQUIP. MENT. Used for testing 3 cm circuit componencs. Should be used with a suitable signal source such as ator. E25. P. \& P. 10%
MARCONI VIDEO OSCIIIA MARCONI VIDEO OSCILLA $25 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ in 2 bands output $25 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ in 2 bands, Square2 bands. Freq. accur. $t 2 \%$ c/s in $2 \mathrm{c} / \mathrm{s}$. Power supply $100 / 125 / 200$ 250 v. A.C. $£ 75$. Carriage $40 / \mathrm{m}$. DEVIATION TEST SET TF934 2.5 to $100 \mathrm{Mc} / \mathrm{s}$. on Fundamentals. 2.5 to $100 \mathrm{Mc} / \mathrm{s}$. on Fundamentals. harmonics. A.C. mains operation, ES5. Carriage $30 /=$ TYPE "F' FIELD TELEPHONES TYPE "F' Housed in portable woojen cases. Excellent for communication in- and pair including batteries and " $/ 6 \mathrm{ch}$ mile field cable on drum and 101 mile field cable on drum. $\mathbf{6 5 / 1 0 / .}$ FIELD TEL
IELD TELEPHONES TYPE "L" As above but in portable metal cases. 1/6th mile field cable on drum 16 th mile field cable on drum IEID Carriage 10/
TELEPHONE SWITCHBOETO (YA6733). Withstanding all climatic (YA6733). Withstanding all cimatic Conditions. "Price on application HARNESS control units, junction boxes, headphones.
microphones, etc. SUB - MINIATURE "PENNY SIZE" METERS. lin. round, flush. SIZE" METERS.
ring nut mouned $500 \mu \mathrm{~A}$ FSD, caliring nut mounted $500 \mu A$ FSD, cali-
brated $0-1 \mathrm{~mA} .20 /$. P. \& P. $3 / \%$

END OF RANGE ITEMS

Offered at special low prices as only few left, all are in fully tested guaranteed condition.
GALVE VOLTMETER TS 428B/1 610/10\%.
WHEATSTONEBRIDGE American made. Measures $0.001-0 h m$ co IOM ohms with internal galvanometer. E27/10/-

CR 150 RECEIVER, $2 \mathrm{Mc} / \mathrm{s}-60 \mathrm{Mc} / \mathrm{s}$ with specially built PSU for mains. 499/10/
METERS. $4 \frac{1}{4} \mathrm{in}, \times 4 \frac{1}{4} \mathrm{in}, 4 \mathrm{in}$. long, mirror scale panel mounted, calibrat. ed 0.1 mA E55/m. P. \& P. 3/= LABORATORY TYPE VOLTMETERS. 160 v. A.C./D.C. Bin. mirror scale in wooden boxes, $9 \frac{1}{\frac{1}{2}} \mathrm{in}$. $\times 8 \frac{3}{\mathrm{l} i n} . \times 3 \frac{1}{2} \mathrm{in}$. with carrying handle, brand new, 32\%. P. \& P. 3/SPARES FOR A.R.88D. RECEIVERS. Ask for your needs from our huge selection.
VARIOMETER for No. 19 sets, 17/6. P. \& P. 3/-
TELEPHONE HANDSETS. Standard G.P.O. type; new $12 /-$ P. \& P. INSE phone MICROPHONE for celeLIGHTWET, 2/6. P. \& P. 2/-. ANCE, HEIGHT, LOW RESISTHSCE, HEADPHONES. Type Brand. Largely used by pilots. MINIAT, 27/6. P. \& P. 3/-. Electicture MeTERS. General Electric
mounced:

1 mA. D.C. $22 / 6$.
$\begin{array}{lll}25 \mathrm{~mA} . \text { D.C. } & 20 / \mathrm{m} & \text { P. \& P } \\ 65 \mathrm{~mA} . D . C & 18 \% & 3 /\end{array}$ $\begin{array}{ll}65 \mathrm{~mA} . \text { D.C. } & 18 /-. \\ 150 \mathrm{~mA} . \mathrm{D} . \mathrm{C} & 15 /-\end{array}$
"S" METER FOR HRO RE CEIVERS. Brand new $6 / 10 /$ Carriage paid U.K. CRYSTALS for H.R.O. in original National Union Housing. $25 /-$. P. \& P. 2/. PRECISION VHF FREQUENCY METER TYPE 183 20 300 MENC METER TYPE183. 20-300 MC/s with with accuracy 0.3% and $300-1.000 \mathrm{Mc}$ on harmonics $50.5 .25 \mathrm{Mc} / \mathrm{s}$ with aecuracy $+2 \times 10-$ - 1 Mc/s with calibrating quart $2 \times 100^{-}$Incorporating $10-{ }^{-1} 120,220$ v. A.C. mains. 685. Carriage 62

FOR EXPORT ONLY 53 TRANSMITTER made up to available.
COLLINS TCS. Complere installations and spare parts.
FIELD TELEPHONESETS TYPE 'J" YA 7815. Portable. Ideal for ropical elimares.
R.C.A. TRANSMITTER TYPE ET 4336. 2-20 Mc/s., complete with M.O. Cryst. mult. and speech ampl. Fully tested and guaranteed. All spares available.
BC $G I O$ E TRANSMITTER. Complete with speech amplifier $B C 614 E$ Aerial tuning unit BC 939A, exciter units, tank coils, etc. Fully tested and guaranteed. All spares available. No. 19 SETS. HP output increased co 25 watts. Complete installations supplied.
RONTGENS/HOUR MICRO. AMMETERS. FSD 100μ даmp 3 in. $\times 3$ in. \times lin. width

P. C. RADIO LTD.

170 GOLDHAWK ROAD, W. 12 SHEpherd's Bush 4946

VALVES

225/-

 NTN

BOONTON STANDARD SIGNAL GENE. RATOR MODEL 80. Frequency $2-40 \mathrm{C}$ Me/s. in 6 ranges. AM.: Aovision for pulse mudulation. modulation. Provision for puise muduaton type attenuator $0,1 \mu-100 \mathrm{mV}$. Separate meter for modulation level and carrier level. Precision flywheel tuning. 117 V. A.C. input With instruction manual, 695 . Carriage $30 /$.

MARCONI SIGNAL GENERATOR TYPE TF 144G. $85 \mathrm{ke} / \mathrm{s},-25 \mathrm{ric} / \mathrm{s}$. Excellent laboratory rested condition, with all necessary actessories
with instruction manual, $\mathbf{E 4 5}$. P. \& P, IS/. UHF FREQUENCY METERS TS $175 / \mathrm{s}$. $85-$ $1,000 \mathrm{mc} / \mathrm{s}$. Accuracy 0.05% other details and appear ince as BC 221, rogether with power pack for 230 V .
mains. 695. P. \& P. 20\%.

COMPLETE K.F.O. UNIT from $T \times 53$. Freq. ange in 4 switched bands from $1.2-17.5 \mathrm{Mc} / \mathrm{s}$. Two V.T. 501 s as oscillasor and buffer. 807 as driver, two 5130 s as voleage stabilizers. Output sufficient directly calibrated in Mc / s. Provision for crystal control, metering of buffer and driver stage. Power requirements 400 v. and 6.3 v. D.C. Can also be used as low power transmitter. In excellent
condition with valves and circuit diagram. $\mathbf{6 5 / 1 9 / 6}$. P. \& P. P. 15/-

29/4IFT. AERIALS each consisting of ten 3 ft., fin, dia. subular serew-in sections, Ilf. (6-section) Whip aerial with adaptor to fir the 7 in . rod, insulated base, stay plate and stay assemblies, pegs, reamer. hammer, etc. Absolutely brand new and complete

SIGNAL GENERATOR TYPE TS 4I8. Signal irequency $400-1,000 \mathrm{Mc} / \mathrm{s}$. direce calibration. Pulse rate 40-400 6 ($X 1$ or $\times 10$). puise delay variable. less than $3_{\text {unsec }}$ to more than 300 ,usec. Pulse widrt variable less than ousec. to more than 10 usec. Polarity-internal or external sources, positive or negative pulses, AM \& a cenuator 0.2 kV to 200 mV consinuously variabte. In fully tested condition. 6150 . Carriage paid.
UHF OSCILLATOR TF 924/1 TOGETHER WITH P.S.U. TM 4230. 2, $100-3,750 \mathrm{me} / \mathrm{s}$. (14.28 .ing e/ms.) Klystron Oscillator withaucomaierracka can Ouplid MULLARD VALVE TESTER TYPE CTA 20. Complete with charts (CT 80/3/3), 635 . Carriage 30/-

> COLOMOR (EEECRoNLCs)
> 170 Goldhawk Rd., London, W. 12

Tel. (01) 7430899

P. C. RADIO LTD
 170, GOLDHAWK RD., W. 12

$01-7434946$

R.S.C. STEREO/TEN HIGH OUALITY AMPLIFIER	ASGOW - LONOON
5 watth high quality output on each chaunel, Senamisity 50 mithivolen. Suitable all crymal or seramic stereo heals. Ganged Band and Treble Controls. Vatve Ine-up Ficess, EOC83. ELLS4,	R.S.C. COLUMN SPEAKERS Covered in twotome RexinelVynalr Hical for vocalints and Publice
Complete kit, with full wiring diagranus and inteructions. Carr. 10f. 88.15 .0 Or supplied factory amsmbled with 12 monthe guarantee for 11 gns. Terms: Dep. 36/- and 9 monthly paymenta $25 / 5$ (Tolal £13/4/8). Carr. 11/6.	
LOUDSPEAKER CORNER CONSOLE CABINETS. Atractive design 	
BASS REFLEX CABINETS FITTED HI-FI 8in. LOUDSPEAKER 	
R.S.C.STEREO/20 HIGHFIDELITY AMPLIFIER	L'SPEAKERS cabinets.
providing $10 / 14$ watt dltra linear pushPULL OUTPOT ON EACH CHAMREL. SUITABLF: VOR "MIKE" GRAM. RADIU OR TAPF	10 Watt Model. Gaum 12,000 linen, 3 or 15 olifiks. 5 Gns.
	Min. Gaus 12,000
BJd 13 down. Senitivity: 20 millivolth max. Harmonic Distortion: (rach chasnnel): 0.2%. \star Fourposition tone compensation and Inpat Selector Switch. 太Stereo/Mono switch. \#Neon panel inds-	
calor. \star Randsome Perspez Froniplate. \star Separate Complete kit with $/ 4$ Gns. High-qualiky neet hoially wound. Outpura for 3 and 10 olm spks. 	LOUDSPEAKERS ${ }^{\text {Limited number an frut hen }}$ 12in. 20 WATM' DUAL CONE $£ 5.11 .9$
R.S.C. A10 HIGH FIDELITY 30 WATT AMPLIFIER	I2in. 30 WATT DUAL CONE $\leq 6.19 .9$ 15 in .40 WATH carr. $15 / \mathrm{F} / 2 \mathrm{Gns}$. Maxyic unte. Usually 18 gns.
Highty menvitie. Puwh. Pull hish output, with Preamp. FTone Control Ktaken. Performance thgurem equal to most expenslve amplitern available. Hum level -70 cin . Irequency response $\pm 31 \mathrm{~B} 30-20,000$ e/m. Apechilly desistied sectiohatly wound uliria inear output tratuformer with 807 output valsea. All time grate componenth. Vulved	FANE I8in. 100 WATT SPEAKER Bpecially contwtructerl for tremendous power handling. I'eak y00 watin. tlunranted "y years.
EP88, EF88, EUC83, 807, 807, G7,34. Beparate Baks and 'Treble Controle. Benstitvity 12 millivolte to that any hind of Microphone or Piek-up is snlable. Dealgneal for	
for Radio Tuner. Two inputa with assordated volutio 	FM DIAL \& DRIVE ASSEMBLIES $13 / 9$ Jacknal Bris. BLild. Braled 0.100 with eocutchror
Terms : Deposft 48/-and 9 monthly paytuchts of 33/7 (Total £17/10/3). Twin-handeed perforated cover can be mapplied for $25 /$. . thend s.a.e. for liatiet	T.Y. ELECTROLYTICS ${ }_{2 \theta 0 \text { mfd. } 150-150 \mathrm{mfd}}$ $100 \cdot 200 \mathrm{mfd} .100-100 \mathrm{mfl} .350 \mathrm{v}, 100-200-60-25 \mathrm{mdd}$, $30 \mathrm{H} w$ s. $30 /$ doz. mixed. Mail onlor onls:
	STAAR 9v. GRAM TURNTABLES
	HEAVY DUTY SELENIUM RECTIFIERS 12v. 15 ampa, P.W. (llridged) Only 19/9
	R.S.C. MAINS TRANSFORMERS
	leaved and 1 mprer-
	FULLY SHRODDED UPRIGAT MOUNTIM
	Ferr Mullarl 510 Anppliter 418
TERM8: Deposit 36/8 and 9 nuonthy phyments of $25 / 8$	
TWO-WAY TELEPHONE AMPLIFIERS on	
bry batt. operated. biveten and talk fack widh buth batide free. A handmone, highly eftictent Japanee fimoduct. INTEREST	$250-0.30) \mathrm{v}, 10 \mathrm{mu}$, 11.3 v. 2a, b.3p. 1a... $22 / 8$
R.S.C. 4 watt GRAM AMPLIFIER KIT CHARGES	
SELENIUM RECTIFIERS F.W. (Bridged) 	ARGER TRANSFORMERS $0.9-15 v, 1 / 4,13 / 11$. 16. 11. 3i. 18/11. उa, 2111. 6a. 25/11. Na,
POWER PACK KIT Convistligg of matina tranwormer. Metal Ree tither. 	AU10 (Step UP/SLep DOWN) TRANSFORMERS. OUTPUT TRANSFORMERS
AT	$\begin{array}{ll} 863 ? 2 \\ 150 & 119 \\ 8.860 & 0 \end{array}$
	158.15
approx. Cimplatily replacer batteritas supulying 1.3 v , and 90 where A.C'. nains $200 / 250$ r. $60 \mathrm{c} / \mathrm{s}$ is avaliable. Complete Lie whith diagram $47 / 9$ of ready for une B9/11.	
AR BATTERY CHARGER KITS punins with variable charge rate selector	Puslioptul 20 watt hixl quality seethnally 1.00 filly shmouleal
	SMOOTHING CHOKES
4 amp 49/9. 6 amp Heavy Duty 69/9 Alt typen fatory buite $10 /$ - extra.	

Magnificens "Continental" stereophonic Radiogram chassis with piano key switches, built-in ferrite rod aerial. Comes complete with two IOin. elliprical loudspeakers, plus a mono/stereo 4-speed automatic record changer. Complete 29 g gns. (Units available separately í required. Chassis only 2 ! gns.) Special terms available of $\{7 / 15 / 0$ deposit lollowed by 18 monthly payments of
(1/10/8 (total H.P. of $635 / 7 / 0)$ olus $17 / 6$ P.P. E1/10/8 (total H.P. of $635 / 7 / 0$) plus $17 / 6$ P.P. end $\{8 / 12 / 6$ now. STEREOPHONIC RADIOGRAM CHASSIS

The Imperial stereophonic 4 -waveband chassis has the most advanced specifications yet offered in this country. There is a buittin ierrite rod aertal, seven piano key buttons, controlling mono/stereaselection. Gram Long-Medium-short-FM-ON/OF. The unit comes complete with two 10 in . elliptical loudspeakers plus a mono/stereo 4 speed automatic record changer. Complete $£ 41 / 9 / 6$. Chassis only $29 \frac{1}{3}$ Gres-
Special terms available of $£ 10 / 7 / 6$ deposit followed by 24 monthly payments of £1/12/6 (cotal H.P. $£ 49 / 7 / 6$) plus 17/6 P.P.

Emptiess HI-FI
AM/FM STEREOPHONIC 'CHASSIS

This mose advanced Radiogram chassis with automatic push button selection covers V.H.F./F.M. Offered complete with 210×6 V.H.F./F.M. Offered complete with 210×6 only $\mathbf{3 5} / 19 / 6$. Chassis only $25 \frac{1}{2} \mathrm{gns}$. Special eerms available of 69 deposit followed (eotal H P E41 210) plus 1716 P of C1/15/8 (total H.P. $641 / 2 / 0$) plus 17/6 P. \& P. Send
All Lewis Radio equlpment including valves is fully guaranteed for one year. free of charge. Send your cheque or P.O. today while stocks last to Dept. W.lif.

LEWIS radio

LEWIS RADIO, 100.CHASE SIDE, SOUTHGATE
LONDON, N.14. Telephone: PAL 3733/9666

Inastiv's tuanio

DON'T MISS THISI GREAT NEWS!

THIS YEAR LASKY'S CELEBRATE THEIR 35th ANNIVERSARY

35 Great Years of service to you based on fair prices and value.

To celebrate our success and your satisfaction we are publishing a l2-page, fully

" 35th Birthday Pictorial " Catalogue

 Printed in large $16^{\circ} \times 11 \mathrm{in}$, modern magazine format different items from our vast stocks of Radio, Hi-Fi, different items from our vast stocks of Radio, Hi-Fi, ouher equipment.PLUS many bargain offers and prices exclusive
AND in addition every copy of the "Birth. AND day Plectorial" is numbered and automatically enters you in our preat "Birthday Draw " with over £100 in Gift Vouchers to be won.
All goods shown in the "Birthday Pictorial" are available over the counter from any of our branches bringy post to any address in the U.K. or overscasbringing the
PUBLICATION DATE NOVEMBER.

copy NOW-just send your address and $4 d$ stamp for postage. A MUST FOR EVERY ELECTRONICS \& HI-FI ENTHUSIAST!

RECORD PLAYERS

B.S.R.

AUTOCHANGERS NEW LOW PRICES
Fully guaranteed complete with cartridge and Blylus OAl6 ov. battery tumelel £5 196 UA: 40 -spreed mains model \&5 196
NEW-B.S.R. UA70 (Inlustrated
i speed unatns antucizanger superb modern styling at
amazingly low price. LASKY"s PIALCE £9/18/6 (ex cartrleme)

GARRARD AUTOCHANGERS

```
AT60 Mk.
ATE0 Mk. ATED Mk. II A70.
IAb. Lab. A Mono/Ster
Lab. A on plintb
```

TRANSCRIPTION MOTORS GARRARD 401 darrard lab. yo, sk. II OONNOISAEUR Craftuman II. Model B.
Lenco O^{2}
LENCO OLE
LENCO O8s
LENCO GLTO
THOKKNA TDISS
THORENB TVI35 I TIIORENB TV124 I
$\begin{array}{rrr}£ 9 & 19 & 6 \\ \text { £12 } & 19 & 8 \\ £ 17 & 19 & 6 \\ £ 17 & 0 \\ 814 & 19 & 6 \\ £ 15 & 19 & 6 \\ 87 & 7 & 0\end{array}$

garrard bases

GARRARD BASES 16 WBy \&5 5
 SINGLE PLAYERS Auto, start and Elop.
ESH with 8tereo cartridge COLLAAItO Juntor A-apeed Caknalid \&RP12 GARRARD SHPLO mains model OARRALD SRI'10 batt. model GARRARD 8pes bight t/table OAlSHALD A1m25 Heavy t/table PHILIPS AG/L016 …..... $£ 12120$ 88196
All other current models available. Postage on all above 5/- extra.

SPEAKERS

FOSTER FCS 104 SYSTEM

the latest develounients in speaker raniaturisution and han th

 LASKY'S PRICE £9.19.6

HUGE PURCHASE OFFER

DEFINITELY THE MOST AMAZING BARGAIN OF THE YEAR!

SHAUBLORENZ

MUSIC CENTRE MODEL 5001 COMBINED 126 TRACK TAPE RECORDER AND VHF/MW/LW/SW RADIO

IDEAL FOR CLUBS, DISCOTHEQUES, RESTAU. RANTS AND ESPECIALLY HI-FI ENTHUSIASTS.

An incomparable piece of equipment-mombining 136 track tape recorder and 4 band radio tro one anit of outntinding modern design. The recorder section of the Music Centre gives an almort unbeliev-
 tracks of 22 minutes each Every track in abie to record/replay instantly and runs from track one recond/repias time. Rewlind time for each you need not touch the machine for the total th hourn sec. Frequency reaponac $14-40000 \mathrm{HZ}$. Ioputh for direct recurding for V. H. \mathcal{F}, external microphone, reord player. Pause control Aitted. Radio/Amplitter Section: 7 transistors and 6 diode circult, 4 banda VHF/Medium/Long/8hort with excusive Aukn Control thich takem over the precise turaing into the ntation required. Bam spakers. Beautfully fin ivhed dark polished wood cabinet aize $31 \times 13 \times 11$ and Brand New. Boxed and fully guaranteed. Complete with witched audio input adaptor. Lasky's huge purchese enables us to offer this amazing equipmont at a fantastic saving. Value over
c200. £200.
LASKY'S PRICE £61.19.0 \qquad
ANOTHER BULK PURCHASE SCOOP STEREO AM/FM RADIOGRAM CHASSIS BY FAMOUS GERMAN MANUFACTURER corerage, plus VHF FM multiplex Piano key wave change. seprarate ty
Theed tunlag on AM aud FB. bawn Wheel tunlag on AM and FM, bawn,
ireble and balance controls, and magio bee turing tudicator. Fertue Rod Cerrul

5) ifven. Une-up: EOC85, BCH801, HOCB3, ELL80, EAF801. Full rivion tuning seale size: 21×610

AVAILABLE WITHOUT MULTIPLEX, \&33.12.0
SOLID STATE MULTIPLEX STEREO AM/FM TUNER AMPLIFIER CHASSIS

Model TlOE made for U.K. use
famons North American manu-
 geveral bundred pounds. The chasale is of outstanding appearance and puality and othery many unitu prebeusive apec

Poatures - Beparate transhatorined AM and FPM tuncre - 3 AM wavelands-LW, MW and Conth
 mutic switchang from mono to stereo when mikneo nignai ha received aud rice verse unigue split inputs for tape and auxiliaries (sep. nocketa for tape in and out) source channel reverne owtchech thertual nafety trip eocket for ntereo beactphones. TECE, spec: Output 10 watt RMMS per channel output Imp. 0 p p.c.; sensitivity 50 my tor 8 W output at $1 \mathrm{Kc.i}$ input tmp, 100 K a p.c.; 12 unique tumbler type function controbs, 8 puabhbution wavechange and ntat fon melection controls, vol., hass.
 AM ranges: MW $520-1840$ he/a, $1, W 140 \cdot 296 \mathrm{kc} / \mathrm{s}$. . Continental TR $170-345 \mathrm{kc} / \mathrm{m}$. : FM ratige $88-108$ LASKY'S PRICE $£ 61.19 .0$ FEW ONLY

SANSUI MODEL MP-2 STEREO MULTIPLEX DECODER

Amplifier without uultiplex or with a sterco anoplitier and sep. Fish tuner without multiplez. The init is hotwed th a free etataling hatsmer enataci metal cabinet with bruwhed alumindum control
 wigmal is recevived. Brief Spec.: 3 valven whth Qermanlum and siticon Dhodea; F'requency reaponme:

LASKY'S PRICE NOW £8.19.6

THast-ars Izuaciio

OUTSTANDING VALUE-THE 'TELETON' 701 7-TRANSISTOR TWO-SPEED
CAPSTAN DRIVE MAINS/BATTERY RECORDER
 Amparaleled fur vixhy. Perfintuance is ennal on recouler.
\qquad

Inplics tor mieruphone, teleplione anapor

 nuaine foral
ghavanteel.
LASKY'S PRICE £22 rou fnel

SPECIAL INTEREST ITEMSI

TWO BAND TRANSISTOR CAR RADIO BARGAIN! MODEL CR-62
superthet car radio that really breaks the tuanlty price lowrier. Unique features of this net care the which you yuumelf set to your own four favourite

 Inrger fill round-Analshed in modived aluminiumb uith black pish buttons. Complete with twounting brackets,' full inntallation inst ruefinh and 2 hathe boards (for rousd or elliptical
sjoraker). Fidly guaranteed. LASKY'S PRICE $\$ 9.19 .6$ Pont $\$ / \quad 6 \times 4 \mathrm{in}$ elliptcal 8Ω dyamic apeaker. SPECIAL OFFER-LOCKING CAR AERIAL

LASKY'S SPECIAL PRICE 39/6

NEWFOR THE RECORDING ENTHUSIAST VOICE ACTUATED MICROPHONE MODEL B 5001

 LASKY'S PRICE $£ 6.19 .6$

EXPORT TTC B4002 FM WIRELESS MIC.
 LASKY'S EXPORT PRICE £6.19.6

MICROPHONE BARGAIN STC MODEL 414

LASKY'S PANEL METERS
Precision inado in clear plastic HIOKl ol Japan. Euch meter bosed and fulth yuaranteed with all faxing nuts and wathers. Sizeer are of
Iroul pael. Spec. quotes lor quatities. Sidal

$\begin{array}{ccc}\text { E2 } 19 & 6 & \text { PZ-3.POWER PACK } \\ \text { 23 } 19 & 6 & \text { STEREO 25 pres } \\ 26 & 19 & 6\end{array}$

296 226	TYPE MK-45A 2in. square	
226	1 lIIA ICS	25/-
$28 / 6$	6 ma D C	25\%
$27 / 6$	31090	25
$28 / 6$	- 10 ¢	25
	1 mbl S Meter	35/-
36/-	TYPE MK-65A, 3in. square	
35 -	1 ma BC	36/-
35-	5 mA DC	35:
496	30) V IC	$351-$
426		3816
39.6	1 ma m Mater	$37 / 6$

CONSTRUCTORS BARGAINS

COMMUNICATION RECEIVERS

 NOW AVAILABLE FOR THE FIRST TIME IN GREAT BRITAIN. TWO NEW TRIO RECEIVERS MODEL JR-500SE Data 2/6. Refunded if you purchase paroel. Four U2 batte. $3 / 4$ extra. All components avait. sep A siraple addrional circuit providee coverage of the 110011050 . Long Waveband. All beceskay recelvers already conatructed data. Only 10/-ertra. Posi Free. 2ais conversion is suitabie toTRANSISTOR FM TUNER CHASSIS

 LASKY'S PRICE $£ 6.10 .0$ Pott of extrn.
 MULTIPLEX ADAPTOR
 gize 51 in . $\times 2 \mathrm{ita} . \times \mathrm{jin}$. Also euitable for use with other FM tuners whil MPX input.
LASKY'S PRICE 99/6 poat $5 / 6$.
PACKAGE PRICE LP BODGHT TOGETHER £11.11.0. Post $5 / \%$

TELEVISION IF AMPLIFIERS

Famous Maker's surplus. 38 Mc/a, Containu a large number

 of conponents: IF transformers, resistons, capacitor, etco. and EF184. Overall alze 11) $\times 34 \times 4$ in. decp. Idcal for servicernen and UFH Tuner provides sultable conversion for B.B.C.2. No circuit avalLASKY'S PRICE 29/6 Foot and Packion 2/6.

BARGAIN-UHF TV TUNERS

Well known British maker's eurplas atocks. Now available for the Brat time to the Roms Constractor Add $2 / 6$ Poit and Packing. VALVE UHF MODEL. In metal case, size $4 \times 6 \times 14$ th. Pully tuagble
PC88 valves. LASKY's PRICE with valver, $89 / 6$. Whthout ralves $7 / 6$.

LASKY'S MINIATURE TRANSISTOR AMPLIFIER MODULES

Incorporating the very latest circultry to provide bigh
sensitivity and good qualty to conjunction with extremely amall alze and oompactreas. High quallty Newmarket transistors umed throughout. All designed

PRICE 27/6 TYPE LBPC 4.5 transistor. Input sens. 100 mV , output d30tuW, output imp. 15

 any' of the mudio amp. modulen listed above. Bize $21 \times 1 f \times \operatorname{lin}$. PRIOE 10/6
 Price of $7 / 8$ if bought with the LRPC
Sjnectal function modules-all one stze $14 \times 1 \times 11 \mathrm{in}$. Complete pith detabed function and hatal-

TYPE PA-1. Public siddress anip. for use with curboa, crsstal or Dynamic

 TYPE MT-L. Mistronome module-provkles audible and wisual beat from

LASKY'S PRICE 30/LASKY'S PRICE 30/* ASKY'S PRICE ROHASKY'S PRICE $22 / 6$

Thas bigh berloramone fueciref tiond

 STStal contuluct ocilithor of Yur

kH 2 F . Remote control socket for connection to a transmitter. Audio output 1 watt. For 13se on $118 / 250 \mathrm{~V}$ A.C. Mains. Superb modern styling and control tayout-finlshed th dark grey. Cabinet LASKY'S PRICE £61.19.0

MODEL 9R-59DE

 phone dack. Special leatures: BBBmeter ONL Sep. Vand preary dial IF trequency $450 \mathrm{KC} / \mathrm{K}$. and AF galn controls. For uase on $115 / 250$ A.C. Malns, Beautifully designed control inyout bulshed in Hght grey
with dark grey case. size: $7 \times 15 \times$ with. Weight Ig ibse. Fuiliy $7 \times 15 \times$
guaranand service duta.

LASKY'S PRICE $£ 36.15 .0$
Carriage and Packing 12/6,
FANTAVOX MODEL HE 50

 concrols include: B.F.O. Sensitivity. C.W.A.N.L.
recetrerjatand-by. g ineter, Easy to read
 A.O. it ralve plus rectifer. Fltted with Iaterval speaker and socket for phones or external speaker. Cabinet size $13 \nmid \times 81 \times 6 / \mathrm{hn}$. Complete with full
inntruction mannal.
LASKY'S PRICE £16.16.0

NOW AVAILABLE—JOYSTICK AERIALS

Revolutionars Vartable Frequeacy Antenna for tranemisaion and receptlon. Witb a variable matithing unit these astenna perlorm as a bigh "Q " device at any selected Medium or \$hort waveband. VFA Btandard \&A/15/- Matching units A.T.V.BA
${ }^{£ 3 / 12 / 6}$ Send S.A.E. for

DEMONSTRATION STUDIOS

Lasky's High Fidelity Sound Centres

42 Tottenham Court Road. W. 1 and 118 Edrware Road. W. 2 are Lonulon's nuowt com
prehensive Hgh Fidelity Sound Centres, designed to prowis. a real Home-Irom-Home prehensive Hgh Fidelity Sound Centres, designed to prowide a real Home-from-Home tion of the flnest quality equipinent; our er perlenced stanf are on hand to help you pisn a addition we are often able to ofter considerable eash savings when your chuome a compiete system.
syantion If you erwnot call at any of our branchrs ploane nend detalls of your ieynirements to orir head oflice ana

PACKAGE DEALS

 of equipment of your own chokce. Setrd us detals of your requirements. H.P. Ead Easy Credit Tertn an be arranged on "Package Deais."

Branches
207 EOGWARE ROAD, LONDON, W. 2 Tel.. 01-723 3271 Open all day Saturday, early closing 1 p.m. Thursday 33 TOTTENHAM CT. RD., LONDON, W. 1 Open all day. 9 a.m. -6 p.m. Monday to Saturday
152/3 FLEET STREET, LONDON, E.C. 4
Tel: 01-636 2605
Tel.: FLEet St. 2833
Open all day Thursday, early closing 9 p.m. Saturday

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3.15 CAVELL ST.. TOWER HAMLETS, LONDON. E. 1 Tel.: 01-790 4821

MINIATURE

WAFER

SWITCHES

WATERPROOFHEATING ELEMENT

26 yarlm engoli, fow.

G.E.C. 13 AMP. SWITCHED SOCKETS An exvelient opporturby to re-exump your houme or

 type lixtell at $6 / 6$ wach. You cat have a box of 12 for
30 - only-301-

THERMOSTATS

THERMOATATM
Type "A" 15 , whp. for controlling rown hatern,

 thite coulit be iuljumtithe over 30° to $1.0010^{\circ} \mathrm{F}$. Suitable

 of lquid-parieularly thome in glan talak onath or

See in the Dark INFRA-RED BINOCULARS

Theme linfrareel bineculars irlirn fed from a high
 dark, provinteil the objects are th the mys of an
infra-red beam. Each eye tube wrotains a complete

 opthal cellis. etc. (detallas milppliedi). The bingeulary formi part of the Arniy night drivlng (Tably equipment).
 plus $10 /$ esers. and line. Handbook $2 / 6$.

AUTOARRARD
AUTO RECORD Model 2000
Thit wh othe of the tatent brimfucen the Word x rume exprotenced miperier feal uren inclute antomiat ie mlaying of ub en 8 mixed nize reetrix-

 £6/19/6 phui T/8 cartiage athe insurance

ADMIRALTY MOTOR ALTERNATOR

 wast to Coverninemt. Ciarti

750 mW TRANSISTOR AMPLIFIER

DOOR INTERCOM

Know who in calling and sleach to thert will. int leaving bell, of chair. Outie comprine mikroyhowe, with call pushi-buttron, twine gether, Orixinally wold at $E 10$. \&pectial wall price $98 / 6$ plus $3 / 4$ paratage.

BATTERY OPERATED TAPE DECK

TUBULAR HEATERS

 ean toueh them w whout fear of piver livice
-PILOT' CAPSTAN DRIVEN TAPE RECORDER
Castan Driven. ${ }^{4}$ Transimors
408 IITW, oulput-derbte truyk-tir
 atandard tape. Complete willi hasiterbers. micruphune-lape upooll and finstruet thin mamual. Nothing to go wrowe if jou ne - gromitape and keep hamat thear. Uenimi Mpecial Golp Price. This Wouth $59 / 10 \%$

GEARED MOTOR half rev. per minute Made by fanons Bmith Eleco thics, mainy mproated and quite
 Amer. Interial wwiteh can he made to loreak circuit within a perient up to 2 mine. $\mathbf{1 \%} / 6$.

PHOTO-ELECTRIC KIT

parta to Hahe hight operaterl su fteli/burglar alarms

 ommar, els, Kit comibrisen printed ctrcuit, lamimatey Tive Pluotocerl abit llowd, 2 Transistors. cond. Terminal
 itsplathle way switch-evunter-otray IIght alarnawarblugg tone elortronic alarim-projector lamp stahil-

Multi Purpose Neon Test Unit Rebluve. Uweful and instructior-tembe innulation-

 gram only 916. plu* $2 /$ - post and bunta

PP3 Eliminalor. Piny sour puckel ratlio froms hie mains! Rave cs. Couplete unimm ulropurer comprances, sraoothing cubelenser and luntructions. Only 6/6 pid
1/. phat.

Where powtane is hat defintlely ktated an an extra

BENTLEY ACOUSTIC CORPORATION LTD． 38 CHALCOT ROAD，CHALK FARM，LONDON，N．W． 1 THE VALVE SPECIALISTS Telephone PRIMROSE 9090 47 NORFOLK ROAD，LITTLEHAMPTON，SUSSEX．Littlehampton 2043 Please forward all mail orders to Littlehampton
 ALL GOODS LISTED BELOW IN STOCK

0 A 3	3／－	12BA6	ELCu3 29／1	MHLDD12／8	［1F4＊8／－	CET103 4／9
OB3	$81-$	12BE6 $5 / 3$	ECC34 29／6	MU14 4／－	17\％8／8	GET103 4－
dA5	5／－	128日7 8／－	EuC40 9／6	N78 38／4	IJFRS 7／3	GET113 4－－
JA7GT	$7 / 6$	12Et 17／6	RCus 3／6	N339 25／－	UF＇si 9／－	QET116 7／6
1 C 5	4／9	12J7GT 6／6	EOcsz 4／6	PABCM0 7／6	UF89 5／8	OET118 4／6
$1150 T$	$7{ }^{1}$	12K5 8／－	ELC83 1／8	PL94 $8 / 6$	UL41 8／9	OETIIS 4／8
114	$2 / 6$	12K7GT 3／8	ECu84 5／6	$1 \mathrm{C88} 88$	t11／6 9／6	GET573 8／6
1 N 50	719	12K8at $7 / 9$	ECC85 5／－	$\mathrm{PCos}_{5}^{8 / 9}$	ULA4 $5 / 6$	OFT587 8／6
184	4／8	12976T 3／6	ECCR8 \％－	Pし97 5／9	U1180 5／－	OLT873 4／－
174	2／6	128970T8／－	ECC189 9／－	$1{ }^{17 c y c}$	UR1C 8／6	GRT887 4／6
$1 \mathrm{U}_{4}$	$5 / 6$	19AQS 5／－	ECx807 19／9	PCuM $5 / 6$	Ul＇g $18 / 6$	OET889 4／6
1 U5	5／3	20D1 13／－	ECP80 7／－	FCOBS 819	UY1N 10／3	CET890 4／8
20．s1	$5 / 6$	20D4 20／5	ECP8： 819	PCCs8 10／6	1：Y01 8／－	OET898 4／6
314	3／6	20 Fy 11／6	ECP86 8／6	PCCs， $9 / 9$	1Y4 ${ }^{1 / 6}$	（1ET807 4／6
313	$8 /-$	20 Ll 15／6	ECF80424／－	PCuis9 $8 / 3$	1188 4／8	GRT888 4／6
394	8／3	$20 \mathrm{P1}$ 17／6	HCF805 12／6	PCP80 6／3	VP！14／6	MAT104 7／9
305GT	8／6	$20 \mathrm{P3}$ 17／－	2CH21 9／6	PCP8：6／－	Villos 5／－	M 1 T1018
884	4／9	2014176	ECH35 6\％－	PCFP4 8／－	V1150 5／－	MAT120 \％／9
5 StOY	8／9	20P6 17／－	［CH $928 / 9$	PCFA6 8／－	W76 3／6	MAT121 8／6
5140	4／9	202868 8／8	NCH81 5／－	PCF801 8／6	W61M 8／－	OAS
5 F 40	$8 /-$	$30 \mathrm{C15}$ 12／－	8CH63 \％／－	PCF802 9／6	W107 10／6	OA10 8／6
5Y80T	5／－	s0C17 13／－	ECH84 8／6	PCF805 $9 / 6$	W720 10／－	OA47 2／－
${ }_{6} \mathbf{8} 73$	716	$30 \mathrm{Cl18}$ 9／6	ECLAO 6／－	PCFR06 11／8	$\times 61{ }^{8 /-}$	OA70 3／－
5746	$7 / 6$	30 PS 11／6	ECLa2 613	PCL81 9／－	Xblmet 12－	OA73 3／－
6 697	$6 / 9$	30 FLl 15／－	ECL83 9／－	PCL82 613	$\times 65 \quad 5 / 6$	OA79 1／9
BAKS	4／9	$30 \mathrm{FLl2} 15 /-$	ECLAS 12－	PCLA3 8／8	$\times 66$	0．481 1／9
6AM4	18／8	30 FL 13 6／－	FCLAs 11／－	PCLx $41-$	$\times 76 \mathrm{M} \quad 7 / 9$	0485 1／8
6AQS	4／9	30PL14 12／6	ECLA 7／9	PCLS5 83	Y03 5／－	0486 4／－
6AT6	3／9	$30 \mathrm{LLS} 141-$	ECLLE00	FCLE6 8／－		OA90
faug	5／6	$30 \mathrm{L17}$ 13／－	23／9	PFN45 7／－	TRAN－	OA91 1／9
6AV6	51－	30P4 11／6	Er22 8／6	PKN45DD	SISTORS	OA95 1／9
6HA6	4／8	30P4MR	E．F36 3／－	19／6	\＆DIODES	OA182 2／－
6BE6	4／3	13／－	EF37A 7／－	PEN383 0／6	202225 10／6	OA200 3／－
6BH6	6／6	$30 \mathrm{P12}$ 11／－	EF39 B／－	Pr Lex00 13／6	AA129 3／－	OA202 2／－
$6 \mathrm{BJ6}$	71－	$30 \mathrm{P19}$ 11／－	EF40 8／9	PL33 9／－	2Y404 6／－	OA210 8／6
6BQ7A	7－	30PL1 15／－	EF41 9／－	PLidi $01-$	AA120 3／－	Os ${ }^{\text {a }}$（13／8
61387	9／－	30PL13 15／－	F．F4\％ $3 / 6$	PLs9 19／9	AC107 3／6	0．AZ20012－
$6 \mathrm{BH8}$	$81-$	30PL14 15／－	Er＇50 2／8	PLu！8／9	$\mathrm{ACl13} 5$ 5－	OAZ20110／6
6887	1816	30PLi5 15／－	EF54 8／－	PLAS $5 / 9$	AC120 2／	0AZ202 9／－
68W6	7 －	35LAGT 8／3	Erio 4／6	PL83 6／－	ACl27 2／－	OAZ203 9／6
6BW7	5／－	35W4 4／6	EP83 9／9	PL84 6／3	$\mathrm{ACL28} 21-$	OAzzos 9／－
61828	B／－	$3573101-$	FFR5 4／8	PLu（M）13／6	AClist 5／－	012205 9／－
609	1018	35740T 4／8	EPR8 6／3	Pl504 15／－	AC1505 4／－	のAZ20710／6
6CD6 6	19／6	85750T 5／6	EFP9 4／9	PM84 9／3	AC157 5／－	0 OZ210 71－
6CH\％	8／－	$50 \mathrm{~B} 5 \quad 6 / 3$	EF91 3／3	PX4 14－	AC165 5／－	OAZ2－413／－
60w 4	18／－	500859	Erge 2／6	PY31 8／6	ACl6f $61-$	OC19 25／－
6 Fl	918	50L6GT 6／－	\＆F9\％8／－	PY80 5／－	AC168 $7 / 6$	OC22
8F6G	4／－	72 8／6	EP98 8／－	PY81 5／－	AC177 5／6	0 C 23 7－
6 F13	$3 / 6$	$85428 / 6$	EF183 6／3	PY8：5／－	AD140 8／－	OC24 14／6
6 F 18	$8 / 6$	150132 14／6	EF184 $5 / 9$	JY83 5／6	AD149 8／－	OC25 3／－
$6 \mathrm{~F}^{2} 3$	11／6	807 11／9	EPP04 20／5	PY88 7／3	AF102 18／－	O 226
6F－24	10／－	5703 10／－	ER90 7／6	PY800 6／－	AFll4 4／－	$0 \mathrm{OC28}$ 3／－
$6 \mathrm{~F}_{2} 25$	101－	AC／VP211／－	EL32 3／－	PY801 8／－	AFlis 3／－	OC29 16／6
6F28	10／6	ACTHH10／－	ELa3 12／－	QQv03／10	AFli6 3／－	$0 \mathrm{C30}$ 71－
${ }_{6}^{6.56 G}$	3／8	A 211 8／－	EL34 9／8	301－	AFlli $3 / 4$	OC35 10／－
6.18	3／－	Az31 $7 / 9$	ELa6 8／9	Qv04／7 7／－	AFl18 3／－	Ocs ${ }^{7 / 6}$
6.76	4／8	A741 6／6	EL41 8／－	R10 15／－	Arily 3／－	OC38 11／6
6K76	1／3	Cr31 6／6	ELA2 7／8	R16 34／11	AFl24 768	$0 \mathrm{CH1} 101-$
6 K 8 O	3／－	DAF91 3／3	ELAI 8／－	R18 0／6	AF125 3／6	OC4\％8／9
6K8GT	7／6	DAP93 6／－	EL83 8／9	R19 8／9	AFleg 7／－	OC43 12／6
	$7 / 8$	DDA 10／6	ELR4 4／6	TYARH11／10	AF127 3／6	OC44 2／－
6L7GTM	$15 / 8$	Dr9\％6／－	EL85 7／6	U1214 718	AY139 11／－	OC44PM $8 / 3$
6L18	$7 / 6$	DF97 10／－	ELSA 8／－	U16 15／－	AF゙178 10／－	OC45 1／9
6 L 19	19／－	DH76 3／6	ELat 2／6	U18／20 8／8	AF180 9／6	OC45M 8／－
6 LD 20	8／6	DK40 10／6	EL95 5／－	U10 40／－	AF186 10／－	OC4A 3／－
681	12／－	DK91 4／9	ELLbo 13／－	U22 5／9	AFZ12 5／－	OU33 22／6
$6 \mathrm{CP}^{28}$	25／－	DK92 7／6	EM71 14／－	U25 12／6	BA115 8／8	0 Onf 25／－
6 676	5／－	DK96 6／8	EM80 5／9	U26 11／－	BA129 2／6	OC70 2／3
$6 \mathrm{C7GT}$	$8 / 9$	DL94 $8 / 6$	Em81 8／9	U31 6／3	131130 2／－	0071 2／－
6876	5／6	DL9\％6 6／－	E．3184 6／－	U33 13／6	BLIO7 4／－	0072 2／－
6 U 6T	9／6	DM70 6／－	EMM5 11／－	U 25 16／6	13C10 3 3／9	$00^{3} 3161-$
6U56	$51-$	DM71 9／9	EMa7 6／6	U38 34／11	BCl09 4／6	$0 \mathrm{C74} 81$
6 VGG	3／6	DY86 \＄／9	EYB1 5／8	U45 15／6	$13 \mathrm{Cl13}$ 5／－	$0 \mathrm{C75}$ 2／－
${ }_{6}^{6 \times 4}$	$3 / 6$	$\mathrm{DY87}^{5 / 9}$	E．Y81 7－	U76 4／6	$\mathrm{BCl}^{\text {B }}$ 3／－	$00763 /-$
6X50T	5／3	［280F $24 /-$	EY83 9／－	U191 12／－	RClis 5／－	0077 3／4
6Y69	10／6	E80CC 33／－	EY84 9／6	U281 8／9	HC118 4／8	0078 3／－
6／301．2	12／6	ERSP 84／－	EY8G 5／9	U282 12／8	RCY10 5／－	OC78D 3／－
746	$10 / 9$	H880C 12\％	EY87 5／8	U301 12／8	BCY12 5／－	$0 \mathrm{C79}$ 8／－
$7 \mathrm{B7}$	71－	E1800C 8／－	EY88 7／6	U329 12／6	BCY33 5／－	$0 \mathrm{Cs1}$ 2／－
708	8／－	P180\％17／6	HY91 3／－	U403 6／6	HCY34 5／－	OC81D 2／－
$7 \mathrm{H7}$	3／－	FAbO 1／6	E2\％40 6／－	U404 61－	BC＇Y38 5／－	Ocsim 5／－
787	$19 / 6$	EAFG 13／－	R2741 8／8	U801 18／－	BCY39 5／－	$0 \mathrm{CaO}^{2 / 3}$
734	6／6	FA BCs $5 / 8$	EZ80 3／9	U4030 6／－	BCZ11 a／b	0C82D 2／6
98W6	976	Racsl $3 / 3$	EZZ1 4／3	UABCso 5／3	BD119 9／－	$0 \mathrm{Cos8}$ 2／－
907	7／6	FAF42 7／6	0733 12／6	UAP42 7／9	BrY50 5／－	0 O84 3／－
10 Cl	8／－	KB41 4／9	6zs4 101＝	U B41 10／6	BPY\＄1 46	$0 \mathrm{Cl23}$ 4／6
100\％	121－	EB91 2／3	GZ37 14／6	UBCA1 6／8	BrY 52 5／－	OC139 12／－
10122	11／8	FBCA3 8／－	HABCAO $9 / 3$	UBCX1 8／6	$1 \mathrm{BF} 115 \quad 2 / 8$	OCl 40 19／－
10 PI	15／－	EBC41 7／3	HIALDD	U $\mathrm{BF}^{\text {coso }}$ 5／6	BF＇154 3／－	$0 \mathrm{C169} 3 / 9$
$10 \% 3$	81－	EHP81 $6 / 3$	18／6	118F89 5 5／9	Br＇109 5／－	$0 \mathrm{OCl70} \quad 2 / 6$
10F9	9／－	EBPR0 $5 / 9$	HTA2DI88／－	UB1．21 9／－	13 F1a3 4／－	$0 \mathrm{Cl71} 3 / 4$
10 F 18	－	EBF83 71－	HN304，26／6	UCQ2 5／6	13F167 2／6	$0 \mathrm{C172}$ 4／－
10 PI 13	14／8	EBP89 5／9	KT36 29／1	17004 8／－	13 F 173 2／8	00200 5／－
10 P 14	15／6	EBL21 10／3	KT41 19／6	U¢C＂\％ 616	HFF18 2／－	0 C 201 23／－
12 A 6	51－	HC52 4／3	KT61 12／－	UCPRO 8／3	B1100 3／6	0C202 5／6
12AC8	81－	HC54 8／－	KT63 4／－	UCH21 9／－	BYe34 4／－	OC203 5／6
12adis	$9 /-$	BC88 11／6	Ктв6 18／6	UCH42 $8 / 6$	BY：238 4／－	OC205 $7 / 6$
12AEs	7／8	EC88 10／6	KT88 2\％／6	UCHE1 8／－	AY238 4／－	OCP71 ${ }^{\text {27／6 }}$
12AT6	4／8	HC91 4／－	KTW615 ${ }^{19}$	UCLA2 7－	BYZ12 5／－	ORP12 15／－
12AU6	4／8	H／C92 6／6	KTW 62 12／6	UCL83 819	BYZ13 5／－	P346A 2／－
12AVB	5／9	EOC32 4／6	KTW63 5	U1541 7／9	COI2E	ZES12V7 1／9
Type LP16（AC113．AC154，AC167．AAl20）． $13 \mathrm{H}^{2} \mathrm{~d}$ ．Pint 6 l ．						

Terma of business：Cash with order only．Post／packing 6d．per Item．Orders over \＆5 pnat／ packing iree．All orders eleared on day of recelpt．Any parcel insared against datuage in

Microwave Valves

C．H．Dix，B．Sc．，F．I．E．E．and W．H．Aldous，B．Sc．，A．R．C．S．， D．I．C．，F．I．E．E．

This book is for the technically educated reader（graduate or H．N．C．level）who wants to understand the physical processes and operation of microwave valves．These processes are described from a fundamental viewpoint with some appropriate mathe－ matical treatment．The treatment is based on the motion of electrons in electric and magnetic fields and the properties of the various types of r．f．circuits and transmission lines that are used in the devices．Microwave triodes are discussed，but the emphasis is on beam devices，both linear and crossed field，and in describing these the space charge wave approach is used con－ sistently．Further chapters cover the formation and focusing of electron beams，the noise properties of devices，construction and applications． 275 pp ． 185 illustrations incl． 8 plates． 55 s net， 56 s Id by post．

Short－Wave Listening

J．Vastenhoud

This easily understood book is intended as a guide for the benefit of the increasingly large numbers of regular listeners to short－wave transmitting stations and also for radio amateurs who are interested in short－wave listening，and fully covers the many problems and possibilities of the subject，ranging from interference to DX clubs． 112 pp． 33 illustrations and 4 plates． 12 s 6 d net， 13 s 5 d by post．

Foundations of Wireless

M．G．Scroggie，B．Sc．，F．I．E．E．

Seventh Edition
This standard work covers the whole basic theory and，starting from the most elementary principles and assuming no previous knowledge on the reader＇s part，deals with receivers，transmitters， amplification，valves，transistors，aerials，power supplies and transmission lines．The treatment of frequency changers has been brought into line with modern practice，while common－grid and cascode v．h．f．amplifiers，e．h．t．generators and transistor d．c．voltage raisers are also covered． 388 pp .278 diagrams． 21 s net， 22 s 5 d by post．
obtainable from all booksellers

ILIFFE BOOKS LTD DORSET HOUSE STAMFORD STREET

NEW SOLID STATE HIGH FIDELITY EQUIPMENT POWER AMPLIFIERS - PRE-AMPLIFIERS POWER SUPPLIES-BRITISH MADE

VHF FM TUNER 87/105 Me/s Transistor Superhct. Geared cuning. Terrific
 quality and sensitivisy. For valve or transistor amplifiers. $4 \times 3 \frac{1}{1} \times 2$ inn. Complete with diat plate. 5 Mullard Transistors, Plus 4 Diodes. (Cabines Assembly 201- extra). TOTAL COST 16.19 .6 P.P. $2 / 6$

MAYFAIR PORTABLE

* Build ehis superb Instrument STAGE BY STAGE in your own home.
* A Truly portable instrument for all enthusiasts.
* Call in for a DEMONSTRATION

ORGAN COMPONENTS
ORGAN COMPONENTS We carry a comprehensive stock of organ components for
VALVE FREE PHASE designs: complete detalls on request.

We PROUDLY PRESENT THIS RANGE OF AUDIO EQUIPMENT developed from DINSDALE Mk. Il-each unit or system will compare favourably with other professional equipment selling at much higher prices.
Brief details are below:-

SYSTEM	COMPRISING	SYSTEM PRICE
A	5 watt mono for 3 to 5 ohm speakers	$£ 10.3 .0$
1	12 watt mono for 3 to 5 ohm speakers.	\&13.17.6
2	12 watt mono for 12 to 16 ohm speakers.	¢14.12.6
4	24 watt mono two channel for 12 to 16 ohm speakers.	$\leq 20.15 .0$
8	20 watt mono/stereo for 12 to 16 ohm speakers.	¢24.0.0
9	24 watt monolstereo for 3 to 5 ohm speakers.	126.15.0
14	40 watt mono/stereo for $7 \frac{1}{2}$ to 16 ohm speakers.	E29.10.0

AUTO-BAN TRANSISTOR CAR RADIO British Made

BuY NOW:

6. Tranuktur Mw/Jow Car lianlio. ly volt operastel a watt uutput. Push-buttont wavechatage supplite Car ibxing kith and noanufncturers current guarante Bimelad Jargain Oher. Jobllive or Niegetlve karth. LIST PRICE 12 GNS. Fash-butlan vernion

PORTABLE GEIGER COUNTERS

FOR MEASUREMENT OF RADIO-ACTIVITY
Supplied complete with instructions, haversack, cables and probe.

E4.19.6 P.P. 10
\star Ever Ready Batteries for above
15/- pair.

£9.9.0
Benth for iletailk on
our trange of Chir our ratits
Kadies.

COMPLETE RANGE FROM
£4.19.6 SEND FOR BROCHURE

Full details on Full details on advertised product free on request

The mose COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE in GT. BRITAIN. Complete with $10 /$ worth-DISCOUNT VOUCHERS.
FREE WITH EVERY COPY

IUMEDIATE DESPATGT

fULL SPARES AND SERVICE AVAILABLE

20 Amp. LT. SUPPLY UNIT

As supplied to Min. of Defence and Crown Agens stor vererseas Govet LATEST DESIGN HEAVY DUTY 1224 VOLT D.C. Output: Adiustable up to $\mathbf{2 0}$ Amps. CONTINUOUS at $12 / 24$ volts. FULLY FUSED, Neon indicator, $0-20$ amp. meter. Size $16 \times 12 \times 20$ in high, in heavy gauge steel cabinet. Grey Hammer finish-Weight 50 lbs. Input: 220/230/240 v. A.C. 50 cycles.

G.B. (Inland)

30 Amp. LT. SUPPLY UNIT
UP TO 18 v.ID.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading \star Firted volemeter and ammeer. Anstantan eous overload cut-out. Input: Mzins A.C. Robust construction, 2 zone finish, steel case.

 Entirely suitable for plating plants,

Laboratory supplies, etc.
5 AMP. A.C. \& D.C. VARIABLE SUPPLY UNIT Specificotion: Output: $0-260$ v. A.C. 0-240 v. D.C.
\star Smooth stepless voltage variation from 0 -Max.
\# Current consistent throughout the controlled
range. Ammeter and voltmeter fitted, and neon indicator.

* Fully fused input and output.

Strong steel case, with carrying handle and rubber feet. $11 \times 7 \times 14$ in. high. Made in England. E30.0.0 C. \& P. 40/ Gr. Britain (Inland).
 CURRENT PRODUCTION - BUY DIRECT FROM MANUFACTURER

VARIABLE VOLTAGE TRANSFORMERS

Modern styling for modern equipment 'SLIDE-TRANS' \& 'SLIDUP' MODELS

Fully rated current consistent at all points along the winding
available only from i.m.o.

* SMOOTH CONTINUOUS ADJUSTMENT
* ALL MODELS SHROUDED FOR SAFETY (IDEAL FOR EDUCATIONAL AUTHORITIES)
* BENCH OR PANEL MOUNTING
t UP TO 260v. AVAILABLE FROM ALL MODELS
All models 230 v . A.C. $50 / 60$ c.p.s. input
I Amp. 14.10 .0
2.5 Amp. $£ 5.17$. 6
$5 \mathrm{Amp} \quad$ 19. 0.0
8 Amp. $£ 13.10 .0$
10 Amp. £18.5. 0
12 Amp. $£ 19$. 10 . 0
20 Amp. $£ 32$. 10 . 0
C. \& P. EXTRA

TRANSISTORISED MEGOHMMETER
\star PUSH BUTTON TO READ
500 v. 1,000 Megohms. Superb. portable instrument. Supplied
e/w batecries, probes and carrying ${ }^{\text {case. }}$
ONLY £25.0.0 C. 8. $7 / 6$.

36 FT. AERIAL MAST

new latest patiern tubular mast
Check these vital points:
\# Made from $6 \times$ Ifin. Sheradized steel sections, for durability and strength.

* Exera strong locating base. $\lambda^{\text {Top }}$ Tap fited with pulley
2 sets (8) Rotproof Guys.
离 Rustrprooled steel Picketing Stakes.
ONLY £15.0.0 $\underset{\substack{\text { ex } \\ \text { works }}}{\text { Case }}$

CONSTANT VOLTAGE TRANSFORMERS

BEAT WINTER!

AUTOMATIC MAINS STABILISER

ONCE AGAIN WE CAN EXPECT THE USUAL VOLTAGE DROPS DUE TO THE COLD WEATHER

* No attention
* No Maintenance * No Moving Parts * Corrected Wave

Input: $190-250$ v. A.C. Output: 240 v. A.C. Accuracy: 士'l\% Capacity: 250 watts. Maintain " spot-on " test-gear readings at all cimes Weight: 21 lb . Fitted signal lamp and switch. Size: $11 \times 6 \frac{1}{2} \times$ bin. high.
£12. 10.0
C. 8 P .
$8 P$
20%

LATEST SOLID STATE VARIABLE VOLTAGE CONTROLS
\star COMPLETELY SEALED
\star COMPACT AND COM. PLETE
\star PANEL MOUNTING
230 A.C. Input $25-230$ volts output 5 amp . model t 8
10 amp model $\mathrm{E} / 3 / 5 / \mathrm{C}$

PORTABLE TRANSISTOR TESTER SUITABLE FOR PRODUCTION \& LABORATORY USE SPECIFICATION:
Alpha 0.7 to 0.997
Beta S-300
ICO $0.50 \mu \mathrm{~A}$. 5 mA
Capable of measuring GERMANIUM AND SILICON DIODES.
DESIGNED WITH RESISTANCE SCALE 200 ohms to 1 Megohm as an ADDED FEA. TURE. Housed in heavy duty plastic case, c/w internal bactery.

Onty
£6.19.6 Plus $7 / 6$ C. \& P.
(Dept. W.W.7), 313 Edgware Road, London, W.2.

RECEPTION SETS R220/R220
These comprise two crystal controlled AM receivers and can be operated independent of each other, on one spot frequency in the band $60-100 \mathrm{Mc} / \mathrm{s}$., with buike in monitor speaker. They are housed in one metal cabinet, size $21 \frac{1}{2} \times 12 \frac{1}{2} \times 18 t$ in. and ready for immediate mains operation ($200.250 \mathrm{v}, 50 \mathrm{e} / \mathrm{s}$). Supplied BRAND NEW in original crate, complete with spares and manual. E20. Carr. 50/POWER UNHT TYPE 24 FOR R. 216 RECEIVER. A.C. operaled $100-125$ or 200.250 voles $50 \mathrm{c} / \mathrm{s}$. BRAND NEW AND BOXED. 69'19/6. Carr. $10 / 6$
FILTER VARIABLE BAND PASS No. I. Dual channel unit, each channel has variable slot frequency of $500.900 \mathrm{c} / \mathrm{s} ., 1,200-1,600 \mathrm{c} / \mathrm{s}$., and band pass facility. 600 ohms input and output, monitor input and high impedance deep panel. Mains operation $200 / 250$ v. $50 \mathrm{c} / \mathrm{s}$. BRAND NEW. C5/19/6. Carr. IO/-
HRO TUNING METER. O-1 ma. New and boxed 25/-

BC221
frequency meter 125 Mes. $1020 \mathrm{Mc} / \mathrm{s}$

This erystal controlled heterodyne frequency meter is too well-known to need further description. Those we offer are complete with correct individual calibration book and are carefully reseed and guar-
$\$ 30$ anteed. New condition

Laboratory Standard
Also some less cafibration book, in working order. 69/19/6. Carr. 10-

V.H.F. SIGNAL GENERATOR

 MARCONI TF-80IAI Mc / s. (4 bands). DIRECTLY calibrated. In Mod. at $400,1,000$ and $5,000 \mathrm{c} / \mathrm{s}$. Attenuated or force output. Guaranteed overhauled. accurate and in perfect working order. 635. Carr. 11.BEAT FREQUENCY OSCILLATORS MARCONI TF-195M. Covers 10 cps . to $40 \mathrm{ke} / \mathrm{s}$. in two swecps. 0 to $20 \mathrm{kc} / \mathrm{s}$. and
$20 \mathrm{to} 40 \mathrm{kc} / \mathrm{s}$. Output 2 wates into 600 or 2,500 ohms. Panel meter indicates output voltage. A.C. mains operation 100 to 250 volts. First class condition. Fully

AMERICAN HEADSET TYPE HS-30.U 600 impedance. BRAND NEW and boxed, 15/-, postage $2 / 6$.

DISTORTION FACTOR METER MARCONI TF-I42E. This instrument measures the percentage of cotal harmonic distortion in the fundamental frequency range 100 to $8,000 \mathrm{c} / \mathrm{s}$. The lowest scale engraving is 0.05%. Will handle 2 watts (continuous) and will give satisfactory readings with only I mW input. Mains operated. Outpur impedance 600 ohms. Very good condition. ©20. Carr. 20/-.
MICROAMMETERS R.C.A. 0-500 microamps. 2'in. circular flush panel mounting. Dials are engraved $0-15,0-600$ volts. As used in the American version of the No. 19 set. BRAND NEW and boxed 15/-. P. \& P. 1/6.
AR-88 SPARES Knobs. Medlum size, Sct of 8 Knobs, Large size Condenser ($3 \times 4 \mathrm{mfd}$). Pose $4 / 6$ Mains Trans. (L.F.) (postage 9/-)

MINIATURE RELAYS

 240 V . A.C. coils. Contace assembly 2 makes and C.O. Samps. Size $2 \times 1 \frac{1}{2} \times$ equipment $8 / 6$ post paid.
MOVING COIL PHONES.

 quality Canadian with chamois and leakercovered Noadband Wish lead and jack plug. Noise excluding and supremely comfortable. 22/b. As above but Complete win DLR-5 Low impedance headphones with items BRAND NEW. Poseage extra $2 / 6$.CINTEL NUCLEONIC SCALERS Nos. 36402 and 36411 . Unused with hand book. List Price $£ 300 / \$ 320$. Our Price $\mathbf{C 6 5}$.

Type 89D as used in the Cossor 1035 Oscilloscope. Brand New 59/6. P. \& P. 4/6

ADVANCE TEST EQUIPMENT

H18 Audio Signal Generator J1B Audio Signal Generator J1B Audio Signal Generator
J2B Audio Signal Generator TT1S Transistor Tester
VM76 AC/DC Valve Voltmeter
VM78 AC Millivoltmeter (lransistorised)
VM79 UHF Millivoltmeter (transistorised)
8300 These are current production, manufactured in U.K. by Advance Electronics Lid. (not discontinued models). Showing a saving of approximately $33 \frac{y}{*}^{*}$ on nett trade price. BRAND NEW, all in original sealed carton. Carr. 10/- extra per item. Special offer of 10% discount for schools and technical colleges, etc.

OSCILLOSCOPE TYPE 13A

Double beam. Time base $2 \mathrm{c} / \mathrm{s}$. to $750 \mathrm{kc} / \mathrm{s}$. Band width up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers at $100 \mathrm{ke} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Operates from A.C. mains 100 to 250 volts. A completely reliable quality instrument. Supplied fully checked with circuit
$622 / 10 /=$. Carr. $30 / \mathrm{m}$.

HRO MODEL 5T $£ 30$

The octal valve version. In mint condition. Complete with all nine general coverage coil sets covering $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$ Instruction Booklet and circuit. but less external power supply Carriage 30/-. Complete manual avallable at $30 /$ - extra.

PRICES NOW REDUCED CINTEL EQUIPMENT ELECTROLYTIC CAPACITANCE AND INCREMEN TAL INDUCTANCE BRIDGE No. 36601
A modern instrument, all solid state, which accurately measures the capacity of electrolytic condensers from 0.17 F to $1,000 \mathrm{hf}$ under operating conditions. Leakage current and polarizing voltage are separately metered. Inductances from 100 mH to 100 H can also be measured with current up to 100 mA .
A.C. mains operation. Unused with handbook. Lise Price A.C. mains operation.
K220. Our Price $£ 70$.

〔220. Our Price £70.
WIDE RANGE CAPACITANCE BRIDGE. No. I864.
A matching instrument to the above. All solid state. Mains A matching instrument to the above. All solid state. Mains
operation. Measures from 0.002 pF to $100 /$ F. Unused with operation. Measures from 0.002 pF to $100 / \mathrm{F}$. Unused with
handbook. List Price $\mathbf{2 5 0}$. Our Price $£ 75$.

MARCONI TEST EQUIPMENT

PORTABLE FREQUENCY METER TYPE TF. 1026

 SERIES $\begin{array}{llllll}\text { TF. } 1026 / 4 & 2,000 / 4.000 & \mathrm{Mc} / \mathrm{s} .1 & \text { TF. } 1026 / 5 & 1,800 / 2.200 & \mathrm{Mc} / \mathrm{s} . \\ \text { TF. } 1026 / 6 & 3,800 / 4,200 & \mathrm{Mc} / \mathrm{s} . & \text { TF. } 1026 / 7 & 1,700 / 2.100 & \mathrm{Mc} / \mathrm{s} .\end{array}$ TF. $1026 / 9$ 2,425/2.525 Mc/s. $£ 40$ each.WIDE BAND MILLIVOLTMETER TYPE TF.I37I 100 $\mu \mathrm{v}$ to 300 mv in five ranges. $30 \mathrm{c} / \mathrm{s}$, to $30 \mathrm{mc} / \mathrm{s}$. E45. VACUUM TUBE VOLTMETER TYPE TF.1300 A.C. measurement 0.05 to $100 \mathrm{v} ., 20 \mathrm{c} / \mathrm{s}$. to $300 \mathrm{Mc} / \mathrm{s}$. D.C measurement 0.1 to 300 v . Each over 5 ranges. Will also measure ohms, $50!$! to 5 ml) in 2 ranges. 445
SENSITIVE VALVE VOLTMETER TYPE TF. 1100 100uv to $300 \mathrm{v}$. A.C. in 12 ranges. $10 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$. Can also be used as a wide-band amplifier. $\mathbf{6 5 0}$. DELAY GENERATOR TYPE TF.I4I5. Provides sweep-delaying facilities when used in conjunction with the TF. 1330 (series) or similar oscilloscope. Alternasively, is may be used independencly as a general purpose delay generator. 635 .

FF.867.A Standard Signal Generator
TF. 890. A/I R.F. Test Set
TF. 1020.A/2 R.F. Power Meter
T.F. 1066 B/2 U.H.F. F.M. Signal Generator

TF. 1067 Hetrodyne Frequency Meter.
TF. 1102 Amplitude Modulator
TF. 1221 Hetrodyne Unit
TF. 1274 V.H.F. Bridge Oscillator
TF. $1350 / 1$ Power Unit for TF.I346
TF. 1400 Double Pulse Generator
Detailed technical specifications supplied upon request 6100
Offered BRAND NEW at fraction of original cost.

charles britain

(Radio) LTD.
II UPPER SAINT MARTIN'S LANE LONDON, W.C.2.

01-836 0545
Near Leicester Sq. Station
Shop hours 9-6 p.m. (9-1 Thursdays)

PORTABLE OSCILLOSCOPE CT. 52. A compact general purpose instrument with wide, $6 \frac{1}{3} \mathrm{in}$. deep. Time base $10 \mathrm{c} / \mathrm{s}$. to $40 \mathrm{kc} / \mathrm{s}$. Y plate sensitivity 40 v . per cm Tube 2 i in. Frequency conspensated amplifier up to 38 d 8 gain. Bandwidth up to $1 \mathrm{Mc} / \mathrm{s}$ Single sweep facilities. Operates from A.C mains $100-250$ volts, $50 \mathrm{c} / \mathrm{s}$. Complece with all test leads. metal transit case, inseruction book and circuis diagram. 8RAND NEW Tested and guaranteed. $\mathbf{6 2 2 / 1 0 \%}$. Carr. 10/\%
SIGNAL GENERATOR CT- 218 (FM) AM). MARCONI TF 937
Covers $85 \mathrm{Kc} / \mathrm{s}$. so $30 \mathrm{Mc} / \mathrm{s}$. in 8 switched
ranges. Effecrive length of film scalo is 50 lt Ourpur to 100 mV (75R). Also IV Outputs down to 0 I $\mathrm{I} V$ from an ourlet at 7.5Ω. Ine. mod. at $400 \mathrm{c} / \mathrm{s}$., I Ke/s., $1.6 \mathrm{Kc} / \mathrm{s}$. and $3 \mathrm{Kc} / \mathrm{s}$. FM at frequencies above $394 \mathrm{Kc} / \mathrm{s}$. Variable mod. depth and deviation. Crystal calibrator 200 Kc / s and $2 \mathrm{Mc} / \mathrm{s}$. Monitor speaker for beat detection. Fully metered, blower cooled, Panclimatic. A.C. mains 100 to 150 and 200
to 250 volts. 45 to $100 \mathrm{c} / \mathrm{s}$. $17 \times 20 \frac{1}{2} \times$ to 250 volts, 45 to $100 \mathrm{c} / \mathrm{s}$. $17 \times 20 \frac{1}{2} \times$
17 in. Weight 117 lbs. Fully tested and guaranteed. Fraction of original cost. $\mathbf{C 6 5}$.
T.C.C. METALPACK CONDENSERS 0.1 mfd. 500 v. D.C. wkg. at 70 C. Brand new. polythene wrapped, $7 / 6$ doz., or $\mathbb{2}$ per 100.
T.C.C. METALMITE 350 v. D.C. wkg. 0.1 mid. (CP37N); 0.05 mifd. (CP35N); 0.91 mid. (CP. 32N) all at $5 / 6$ doz. or $32 / 6$ per 100 . SPRAGUE METAL CASED CONDENSERS 0.01 mfd . 1,000 v. D.C. wkg., $5 / 6$ doz., or $32 / 6$ per 100

STANDARD TRANSFORMERS Vacuum impregnated, incerleaved, E.S sereen, universal mouneing. ALL BRAND NEW. 24/. each. $2 \frac{1}{2}$ in. AL
Post $4 / 6$. Type 1. Type 1. $250-0-250$ v. 80 mA .6 .3 v. 3.5 a Type 2. As above but 350-0-350 80 mA
Type 3. 30 v . 2 a.. tapped at 12, 15 20 and 24 v . 0 give $3-4-5-6-8-9-10 \mathrm{v}$.. etc.
Type 5. 0-6-9-15 v. 4 a. Ideal for chargers.

LOW CAPACITANCE BRIDGE
MARCONI TF. 1342 . Range 0.002 of to $1,11!\mathrm{pF}$. Accuracy 0.2%. Three cerminal transformer ratio arm bridge allows "in situ measurements. Internal oscillator requency $1.000 \mathrm{c} / \mathrm{s}$. $12 \times 17 \times 8 \frac{1}{2} \mathrm{in}$. Weight $15 \frac{7}{}$ lbs. A.C. mains 200 co 250 and 100 to ABSOLUTELY BRAND NEW Price 1120 . Our Price $£ 45$.

VIKING TRANSISTOR

40-50 WATT AMPLIFIER OPERATING INSTRUCTIONS, GENERAL. An extremely reliable lightweight amplifier capable of giving 40.50 wats of undistorted sound, made possible by the use of the latest semi-conductors (transistors) and techniques which ensure space-age reliability under the most rugged purpose amplifier particularly suic purpose amplifier particularly suitable for use with musical instruments that require exceptionally high creble response (not recommended for Bass Guitar). Tremolo facilicies are available on Channel I only. INPUTS-CONTROLSCHANNEL (Tremolo). This contains two high gain input jack sockets controlled by Volume Control I which is mounted directly above the two sockets marked Tremolo. BASS I. Gives a controlled boost to the lower frequencies on Channel I only. TREBLE I. Gives a controlled boost to the high frequencies on Channel I only. TREMOLO. This operaces on Channel I only and the variations of intensity and speed of the Tremolo beat is adjusted by the controls DEPTH and SPEED. A socket is provided in the rear of the amplifier so that the Tremolo may be switched on and off by the use of a foorswitch plugged into the socket. If you wish the Tremolo to be used without the footswitch, this is possible as the footSwitch is only used to short out the effect. INPUTS AND CONTROLSCHANNEL 2 (Normal). This contains two high gain input jack sockets controlled by Volume Conerol 2 which is mounted directly above the sockets marked Normal. TREBLE. Gives a conerolled boost to the treble frequencies on Channel 2
only. MAINS VOLTAGE. Fully adjustable. $200-250$ volts A.C., 50 cycles. only, MAINS VOLTAGE. Fully adjustable. $200-250$ volts A.C. 50 cycles.
POWER OUTPUT $40-50$ wates sine wave British rating. Very little distortion. OUTPUT IMPEDANCE 3 ohms. Price 21 gns ., plus $£ 1$ postage and packing
VALVE VERSION OF THE ABOVE AMPLIFIER $40-50$ wate, A.C. Mains 200/250 volts for 3 and 15 ohm speakers. Price 27 gns. plus 61 postage and packing (No Tremolo facilities on this amplifier.)

STAR SR 150 COMMUNICATION RECEIVER

Frequency range: $535 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. 4 wavebands. 5 valve superhet. Incorporates BFO, bandspread tuning. " S " meter, external tele scopic aerial and ferrite aerial. Built-in 4 in . speaker. Easy-ro-read dial. For 240 v. A.C. operation. Complete, brand new, with full instruction manual. 15 gns. P. \& P. Io/-

PRICE
£5.5.0 $0 \begin{gathered}\text { plus } 7 / 6 \\ \text { p. \& P. }\end{gathered}$
Circuit and parts lise 2/6,
free with parts.

* Simple connections to only 6 tags on the R.F. II.F. module, 3 l.F stages, ose. coil and 3 cransistors which, with their associatd components are Oompletely wired.
\star Only 4 connections on the A.F. module to complete the 4 transistor 600 milli-watt solid state amplifier. Pre-atigned R.F./I.F. module buils and tested.
A.F. module built and tested.

Fully tunable over M.W. and L.W bands. M.W. $540-1,640 \mathrm{Kc/s}(557-$ 183 metres). L.W. $150-275 \mathrm{Kc} / \mathrm{s}$. (2.000-1, 100 metres)
\star Intermediate Frequency $470 \mathrm{kc} / \mathrm{s}$.
Sensitivity: Sensitivity: $\mathrm{M} . \mathrm{W}$. at $1 \mathrm{Mc} / \mathrm{s} \quad 10$
microvoles plus or minus 3 dB. microvales plus or minus ${ }^{3} \mathrm{~dB}$.
L.W. at $200 \mathrm{Kc} / \mathrm{s}$. 40 microvole plus or minus 4 dB .

* Migh Q internal ferrite rod aerial and thermisto put stage.

NEW! The DORSET

transistor portable radio with BABY ALARM Facilities
600 milli-wate solid state 7 transistor plus diode
Completely modulised high quality portable radio featuring complementary N.P.N. and P.N.P. out-

The comprehensive easy-to-follow drawings supplied make this the easist-ever transistor radio
on both wavebands.
\star Class " B^{2} " modulised ourput stage with thermistor controlled heat stabilization. Class "B" output stage ensures long batcery life. Current drain is proportional to the outpue level. Total current drain of the receiver under no signal conditions is $10-12 \mathrm{~mA}$. At reasonable listening level $20-30 \mathrm{~mA}$.
\star Extension sockets for car aerial input, tape recorder outpur (independent of volume control) and Ext. Speaker.
औ All components (except speaker) mount on the printed circuit board. Easy to follow instructions. Size of cabinet 12 in . long, Bin. high and 3 in. deep.

* Fingertip controls.

NEW Transistorised SIGNAL GENERATOR

Size $5 \frac{1}{2} \times 3 \frac{1}{3} \times 1 \mathrm{in}$. For $1 . F$. and R.F. alignment and A.F. output. $700 \mathrm{c} / \mathrm{s}$ frequency

coverage $460 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{Mc} / \mathrm{s}$, in swizched frequencies. Ideal for	Elegane Seven and Musette. Built and tested.
$\mathbf{3 9 / 6}$ P. \& P. 3/6	

RADIO AND T.V. COMPONENTS (ACTON) LTD

2IA HIGH STREET, ACTON, LONDON, W. 3
SHOP HOURS 9 a.m. 106 p.m. EARLY CLOSING WEDNESDAY. Goods not desporched outside U.K. All enquiries stamped add. envelope. Terms C.W.O.

'ELEGANT SEVEN' MK IIIA

Power supply kit to purchasers of "Elegant SPECIAL OFFER

 rectifier and smoothing condenser A.C. mains $200 / 250$ volts. Outpus condenser. A.C. mains De luxe wooden cabinet size $12 \frac{1}{2} \times 8 \frac{1}{2} \times 3 \frac{1}{1}$ in.* De luxe wooden cabinet size $12 \frac{1}{2} \times 8 \frac{1}{2} \times 3 \frac{1}{2}$ in. grey with black letcers, size $11 \frac{1}{2} \times 2 \mathrm{in}$.
* High "Q Q " ferrite rod aerial.
* I.F. neutralization on each separate stage.
* D.C. coupled push pull output stage with separate A.C. negative feedback.
* Room filling output 350 mW
* Ready etched and drilled printed circuis boad back printed for foolproof conseruction.
* Fully comprehensive îmseructions and point-to. point wiring diagram.
* Car aerial sockes.
* Fully runable over medium and long wave.
$168-535$ metres and $1,250-2000$ metres
* All components, ferrite rod and cuning assembly mount on printed board.
- Sin. P.M. Speaker.
* Parts list and sircuit diagrams 2/6 free with

£4.4.0

Buy yourself an easy to build 7 transistor radio and save at least $£ 10$. Now you can build this superb 7 eransistor superhet radio for under $£ 4 / 10 /=$. No one else can offer such a fantastic radio with so many de luxe star features.

ANTI-THIEF CAR BURGLAR ALARM

The Melguard Safermatic consists of an electrical device housed in small mecal box $4 \times 2 \times 1 \frac{1}{2} i n$, which has been designed and developed to provide prosection required by the average motorist at an economic cose. Using this system, an alarm and the immobilised condition is set automatically as soon as you park the car. Should you leave the key in the ignition, no one but you can drive the car away. Upon entering the vehicle the method of starting the car is by switching on the ignition, depressing two hidden switches and simultaneously operating the starter. Location of the switches is known only to you. Should the alarm be set off it can be stopped OY following the normal starting procedure. For 12 v operation. List price $79 / 6$. OUR PRICE $29 / 6$ plus $2 / 6$ P. \& P. Full easy-co-follow instructions supplied.

R 4 TV	FIRST QUALITY PVC TAPE							POST \& PKG.
	51	Std.	850it.	9/-	5 in .	L.P.		
	7 in .	Sed.	1,200ft.	11/6	3 in .	T.P.	600it. 10/6	ON EACH
	3 in .	L.P.	240 ft .	4/-	5 in .	T.P.	1,800fe $25 / 6$	1/6.
	5tin	L.P.	1.200 ft .	11/6	53in.	T.P.	2,4001t. 32/6	4 OR MORE
	57in. 7	D.P.	1.8001t.		7 in .	T.P.	3,600rt. 42/6	POST FREE
	7 in .	L.P.	1,800ft.	18/6	4 in .	T.P.	9001t. 15/-	POSTFREE

600 mW SOLID STATE
 4-TRANSISTOR AMPLIFIER

Features NPN and PNP Com-
plementary Symmetrical Output stage. The elimination of cransiormers ensures maxi. response. Automatic heat compensation. Combined A.C.jDC. feedback. Class B output stage, i.e. output power is proportional to total current consumption, this ensures long battery life. Under no signal condition (IQ) eurrent drain is approx. 12 mA at 9 volts (4 mA in the output pair). Printed circuit construction. Size: $2 \frac{1}{2} \times \frac{7}{1} \times \mathrm{in}$. Speaker output impedance 12 ohms. Output power 600 mW at 5% distortion, 400 mW at 2.5% distortion, 750 mW at 10% distortion. Supply 9 volts. Total current consumption at a reasonable listening level approx. $35-40 \mathrm{~mA}$ at fuli power (speech and music) average 65 mA . Sensitivity for 50 mW output is 10 mW . Frequency response 3 dB points $90 \mathrm{c} / \mathrm{s}$. and $12 \mathrm{kc} / \mathrm{s}$. Price $15 / \mathrm{oplus} 1 /-\mathrm{P}$. \& P . 7×4 speaker to suit, $13 / 6$, plus $2 /-\mathrm{P} . \& / \mathrm{P}$.

Fairchild Decade Counter, 9 silicon transistors, 17 diodes, divide-by-ten unit Can be coupled to digitron tube type GRIOK. Can be directly coupled to form an efficient digital counter. Zero pulse line incorporated so that all readings can be instantly reduced to zero. Power input+ 150 v . at $4.5 \mathrm{~mA} .-70 \mathrm{v}$. at 150 miA . including digitron feed.
Maximum frequency $1 \mathrm{Mc} / \mathrm{s}$. pulse width. Input pulse amplitude not less than 100 mV .

EXTRACTOR FAN

A.C. mains 2301 250 v , complete with pull switch. Size $6 \times 6 \times 4$ in.
Price $27 / 6$, plus Price $27 /$ P. 8 .

3 TO 4 WATT AMPLIFIER

3-4 watt Amplifier built and cested. Chassis size $7 \times 3 \frac{1}{4} \times \mathrm{lin}$. Separate bass, treble and volume control. Double wound mains cransormer.metal receilier and outpue transiormer for 3 ohm speaker. Valves ECC8I and $6 \mathrm{~V} 6,2 / 5 /-$ plus $5 / 6 \mathrm{P} .8 \mathrm{P}$.

323 EDGWARE ROAD, LONDON, W. 2.
PERSONAL SHOPPERS ONLY.
All orders by post must be sent to our Acton address. Early closing Thurs

BFAK SEDCONOUCTORS Hin

W.W. DIGITAL COMPUTER	TRANSISTORS and
Trans. 2G-371/D1476	8d, each
Trans. Sil. 2S301C	2/- each
Diodes Sil. ISI30	4d. each
Prices for all qty's. All	evices wlll meet
W.W. specifications reqd.	AND NEW.

ORPI2 ORP60 BC10 IBC108 BC109	$8 / 6$

NEW TESTED SUPER-PAKS No Duds-Uncoded Devices

120 Glass Sub-Min. 50 Mixed Germ. 10 Mixed Voles 30 NPN,PNP, MIXED 60200 mA Sub-Min. 20 Germ. I Amp. 40 Like OC8I, ACI 28 102 Amp. Seud 25 Sil . NPN, $200 \mathrm{Mc} / \mathrm{s}$. 16 Top-Hac 750 mA 75 GERM. DIODES 20 Like BAY 50 charge stora
$1050-400$ PIV : Amp.

GERM. DIODES $10 /$ TRANSISTORS 10/ZENERS 10/. SIL. TRANS. $10 /$ SIL. DIODES $10 /-$ RECTIFIERS $10 /$ TRANSISTORS $10 /$ 5IL. RECT. 10/ TRANSISTORS 10 SIL. RECT. 10/. GOLD BONDED IO/ DIODES $10 /$ SCR's

* QUALITY-TESTE

 2. 10 A gilimon Recta. 100 PIV.... 1 IU A BCR 100 PIV 3 sill. Tran. 24303 PN
 $3200 \mathrm{Mc} / \times \mathrm{BH}$. Trame. NPN Is Y Yiti/2 3 Zenur Dlader 400 inW 33 y 5% To
4 Ulik Curnit Tians. OCa
 5) sluwn Hecte. 100 PIV 250 nLA 4 Octic Trasuintorn M1uhat Type 1 Power Trans, Ovzo 100 V
 1 Gitl. Trans. NPN Ye:B 100 ZTRE 8 OA81 Diodes (CV 448).
4 OC7: Tranaktors Mullard Type
${ }_{5}$ OC7\% Trannistum Mullard Tyye 5 Metal Alloy Transiuhong Mat. Type
\& Bil. Hecta. 400 PIY 50 mit.
 5 "16T88: Trana. Figt. OCA5
 2 2N708 sil Trains. $300 \mathrm{Mc} / \mathrm{F} \mathbf{N} P \mathrm{~N}$. ${ }_{3}$ (GT41/45 Gorin. Trame. PNP Fiqui. OC7I 3 (ITS1 L/: Lave Nolme Germ, Trank.
6 INSI4 Sil. Dlotes 75 PIV 75 mA . 8 NOL4 Sil. Dlowes 75 PIV 75 mA . 3 NPN Qerm. Traun, NKTİ3 Equt. ACiso 2 Octer Power Trans. Gerin. 2 OLes Power Trans. Ger 4 ACles Trave. PNI' High Gain
 10 Ansorted Gobly luandrad Dundes 3 2N130í PNP 8 witching Trans. 0 Gierm. Dioien Gieneral Purpowe 7 Coestr Gerin. Dimea rult. O. 2 Avorted (lerin. Dinder Marhed (otmi. PNP Trans.

FREE One 10 Pate or zow own cholee

VALVE PAKS \star BARGAINS (10)

ols Plit llute-cond uctive gell

unijunction UTAH. Val.

SIL. RECTS TESTED

 3 AFl1\% Tram, Nullawl Type ${ }_{3}$ OCX1 Type Trans. 0 O171 Trans. Mutari Type 30 Cl 171 Tranm. Mutharl Ty
3 \&Nagz 811 . Epory Trand 7 0c7 Type Tratus.
2 afts Power Trans. 60 Vcls. 8 A
5^{5} Trans. Heatainks hit TU18, so12, el 1 TK400A Puwer Germ. Traum. ADY
 Zepern zialkop. 15 V I wall 2 10 A 600 PIV Bil. Recta. iticissh 3 BClos \&il. NPN Hhgh Gain Trau Tener Diodes 25 W 18 aud 22 Y 1) 2N910 NPN Sil. Trana, CB100 80Mc 3 Hlyh Yoll. AF Trams. PNP ACYII 3 BSY 95 A Sil. Tratain. NPN $200 \mathrm{Mc} / \mathrm{m}$ 3 Ocroon Bid. Trane. Mullard
$\%$ Sil. Power Rects. BYZ13
1 Sil. Pouer Tras. NPN100 Mc/4 TK20i (i) Zener Dioden 3-16 F Sub-min. 3 2NG07 Epltaxial Planar Trans. sil 4 Germ. Power Trana. Equt. OC18 Muilian Unifunction Tranas. 2 Ne2646 Eqrt, D6E29 8ill Trans. $200 \mathrm{Mc} / \mathrm{g} 60 \mathrm{Veb} \mathrm{ZT} / 83 / 8 \mathrm{~S}$ SII. Planar Trama. NPN $100 \mathrm{Me} / \mathrm{L}$ H8Y 2 StI. Trans. $18104150 \mathrm{Mc} / \mathrm{A}$ HFE 200 NP Tunnel Diode INB720 (TDS 1 CaiJunction Tranm, 2N216 0TO-Б can A1L. Hect. 6 A 400 P1V stud Type 2 Alertin. Power Trans. OC28/29. 10 A 811 Stud Reet. 800 PIV.
Tunnel Diode AEY11 1050 Mc/s BTC.

6 Bil and Germ. Trans. Mix
10 New ……...............................
10 Nevip
1 ze024 Eil. Power Trang. NPN 100 vi..
Si. Putted hrase leet. soo piv 2 A .

300	$3 /-$	$4 / 9$	$8 /-$	$22 /-$
400	$3 / 6$	$6 /-$	$9 /-$	$25 /$

SCR'S LOWGEST PRICE JIV IAMP 7A 1HA 30 A
 $\begin{array}{lllll}25 & - & 7 / 6 & - & 30 /- \\ 50 & 7 / 6 & 8 / 6 & 10 / 6 & 35 /\end{array}$ $100 \quad 8 / 610 /-15 /-45$ $\begin{array}{lll}200 & 12 / 6 & 15 /-20 /-55\end{array}$ $30015 /-201-25 /-$ $400 \quad 17 / 625 /-35 /-80 /$ $00030 /-40-451-80$ 00 30/- 40j-45j-

Our vast stocks change daily whth hundreds of
Semi-conductor bargaing Semi-condactor bargains
becoming available. Just gend $2 / 6$ to cover 3 month mailing of our latest stock limis. eqve. charts, elicults Mialmum Orde CASH WITH ORDER PLEASE. Add $1 /-$ pontaze and packing per Order.
OUARANTEED by relura add exira lor Air Mall

PROFESSIONAL FULL IO-STATION COMPLEMENT COMPRISING:-
"EXECUTIVE" 10 -station Master Selector AND 10 Remote Extensions. Excellent Tonal Quality and Performance. Robust-yet attractive enough to grace the finest desk.
We offer these superb equipments,
all fully guaranteed, at only
35 gns.
AT LEAST C9O ELSEWHERE
5-Station version also available at only 15 Gns. Easily worth treble.
"JET SET"
Aircraft Band/Medium Wave Portable Radio
Conversations between control towers and aircraft heard clearly
ONLY 13 Gns.

BARGAIN OFFER!

Wireless 2-Way Intercom
Wireless 2-Way Intercom
No wiring. Just plug each unit into mains plug wherever required. Up to Our Price $7 \frac{1}{2}$ Gns. plus 6/6 p. \& p.
PORCH DOOR/OFFICE RECEPTION
Intercom System
Perlect also for flats. Metal construction. Fully guaranteed. List 8 gns. Our price $99 / 6$ plus $6 / 6$ p. \& p

FROM STANDARD
The Tiniest 2-Band (V.H.F./M.W.) Radio in the World
"Size of a Matchbox." Highly selective through efficient built-in miniature speaker. Comes in delightful presentation case. Our price $17 \frac{1}{2}$ Gns. plus $5 / 6 \mathrm{p}$. \& p .

SPECIAL OFFER?

Dokorder" Battery/Mains Tape Aecorder
Capstan drive. 2 speeds, 2 track. Sin, spools. A real robust machine Fully guaranceed. List 25 gns. Our price $18 \frac{1}{\frac{1}{2}}$ Gns. plus $8 / 6 \mathrm{p}$. \& p.

FROM "CROWN" RADIO
Very Latest Portable " Radio-Corder "
A delightful V.H.F./M.W. radio with built-in capstan drive Tape Recorder instant radio programmes can be made. Complete with mike, tape, batts and mains adaptor. Only 36 Gns.

"FOR THE EXECUTIVE'S SON"

A " Radio-Conerolled model Buick car
Complete with miniature pocket transmitter. Range up to 35 ft. Full control
Seeering, reversc, etc., etc. Terrific fun only 15 Gins.
Very latese " 2.Way Telephone Amplifier
"BURGLAR ALARMS"
Miniature size $3^{*} 2^{*} \quad 1$ for Car, Office \& Home
Will wake the whale street!" Ou, price only $8 / 11$ plus 26 p. \& p.
incorporating mereury switeh

VARIABLE D.C. SUPPLY UNITS TYPE SE.4.

 -48 vole 10 amps. continuous fion, isolated cransformer with Variac controlled primary 3 inch scale voltmeter and ammeter. Neon indicator. Housed in strong metal case. Size $17 \times 7 \times 6 \frac{3}{3} \mathrm{in}$. $£ 29 / 10 / \%$, Carr. 15/-
L.T. SUPPLY UNITS TYPE S.E. 5

A.C. input 220-240 v. D.C. Output 12 or 24 v. 10 amps continuous rating. Sclenium full wave bridge reccification. 3 inch scale ammeser. ncon indieator.
housed in strong metal case. Size $17 \times 7 \times 6$ in. housed in strong metal case. Size $17 \times 7 \times 6 \mathrm{in}$. f14/10/-. Carr. 15/-.

ADVANCE COMPONENTS, LTD.

Stabilised low voleage power supply units, Type DC3. Inpue 200-215-230-245 \%. Output 12 v 1.25 A at $55^{\circ} \mathrm{C}$. stabilised within $\pm 1 \%$ at full load with supply voltage variation up to $\pm 15 \%$.
Ripple less than 1.5% R.M.S. of cotal output. Ripple less than 1.5% R.M.S. of cotal output.
Supplied brand new. $E 5 / 10 /$., ig $/-$ Carr.

WONDERFUL OFFER!!

SCOTCH MAGNETIC TAPE. Type 3 M 459 fin. 3,600 reet. Suitable for video. Brand new in maker's sealed cartons. List Price $\{18 / 10 /-$
Our Price $53 / 19 / 6$. P. P. 5%

A.C. SYNCHRONOUS GEARED MOTORS
 200-250 V . . very powerlul. 40 R.P.M. Size $2 \frac{1}{2}$) $2 \pm \times 1 \mathrm{lin}$. Easily adapted to oscillate up to half revolution. 12/6. P.P. 2/6.

REFRIGERATION THERMOSTAT SWITCHES
 Suitable for up to $\frac{1}{2}$ h.p. mains motors. Brand new, $15 /-$, P, \& P. 2/6.

BRAND NEW SURPLUS L.T. TRANS FORMERS. ALL BY FAMOUS MAKERS LATEST ARRIVALS VRI 240 Vec. 6.5 V . 46 amps. Conservacively
rated. Table top connections. Open type construction. 75/.. Carr, 7/6. PRI 240 v . Sec. 24 v .12 .5 amps. As above 75 Carr. $7 / 6$.
PRI 200-250 v. 5ec. tapped $13-13 \frac{1}{\frac{5}{5}} 14$ CT $13-13 \frac{1}{2}-14$ v. 2 amps . and 8 v. $\frac{1}{5}$ amp. 27/6, open type table top connections. 27/6, P.P. $5 / \%$.
PR1 $200-240$ y Sec 6.2 y 12.5 amps. Open type PRI 200-240 v. Sec, 6.2 v. 12.5 amps. Open sype terminal block conneccions, $35 / \mathrm{/}$. P. P. $6 / 6$. PRI 200-240 v. 5 ec. (1) tapped $38-40$ v. 10 amps
Sec. (2) $6.2,6.8,7.3,7.9,8.5,9,9.5,10,10.6$ Sec. (2) $6.2,6.8,7.3,7.9,8.5,9,9.5,10,10.6$
18 amps., open cype T.B. connections, £7/10 18 amps., open cype T.8. PRI 240 v. Sec. tapped 53.655 .2 v. 10 amps. $\begin{array}{ll}\cdots \text { C.1 core T.B. connections, } 75 /-. & \text { Carr. } 7 / 6 \\ \text { PRI } 220-240 \mathrm{v} \text { Sec. tapped } 75,80 \quad v ., 2.4 \text { amps }\end{array}$ and 6 v . IA. "C" core table top connection 75/w, carr. 7/6.
8. PRI $230-240 \mathrm{v} . \mathrm{sec}$. (1) $4.5 \mathrm{v}, 30 \mathrm{~A} .5 \mathrm{ec} .8 \mathrm{v} . \mid \mathrm{A}$. Sec. (3) 4.5 . IA sable rop connections. Fully shrouded, 85/-, carr. $7 / 6$.
. PRI $240 \mathrm{v} . \mathrm{Sec}$. (1) $45 \times .25 \mathrm{~mA}$. Sec. (2) $\left\lvert\, v \cdot \frac{1}{2} A\right.$.
"C'" core, I5/-, P.P. 3/6.
. PRI 240 v . Sec. (1) 22.3 v .0 .9 A . Sec. (2) 21 v
60mA "C" core, $15 /$. P.P. 3/6.
PRI $230 \mathrm{v}. \mathrm{Sec}$.70 v. 15 amps. Open cype T.B.
connections. One only, $67 / 10 /$. Carr. $12 / 6$.

SPECIAL OFFER OF WODEN
IAL OFFER OF W
TRANSFORMERS
TRANSFORMER
BRAND NEW
No. 1. PRI capped $200-250$ V.E.S. Sec. Tapped 8-15-25-28-30-33-35 v 15 amps. Tropically finished table top connects. $65 / 17 / 6$. Carr. 10/-
No. PR, 240 , E.S. Sec. No. 50 v. 4 A Sec. No. 2. $18-0.18$ v. । A $55 /$. P.P. $7 / 6$. Sec. No. $2.18-0-18$ y. A $55 / \%$ P.P. $7 / 6$.
No. 3. PRI tapped $200-250$ v. E.S. Sce. I No. 3. PRI tapped 200-250 v. E.S. Sce. I. 315-0315 v .110 mA . Sec. $2,175-0.17525 \mathrm{~mA}$. Sec. ${ }^{2}$
5 v .1 .9 A . Sec. $4.6 .3 \mathrm{v}, 3.1 \mathrm{~A}$. Sec. 5.6 .3 v. 5 v .1 .9 A . Sec. ${ }^{4}$, $6.3 \mathrm{v} .3 .1 \mathrm{~A} . \mathrm{Sec} .5$. Core table rop connections, $50 /$. . P.P. $7 / 6$.

PARMEKO POTTED SMOOTHING CHOKES $10 \mathrm{H} .250 \mathrm{~mA} .17 / 6$, P.P. $4 / 6.1 \mathrm{H} .300 \mathrm{~mA} .10 / 6$, P.P. 3/6. $1 \mathrm{H} .300 \mathrm{~mA} 8 / 6$, P.P. $3 / 6.10 \mathrm{H} .120 \mathrm{~mA} .12 / 6$. P.P. 3/5. $10 \mathrm{H} .75 \mathrm{~mA}, 10 / 6$. P.P. $2 / 6.5 \mathrm{H} .150 \mathrm{~mA} .12 / 6$, P.P. $3 / 6$. $15 \mathrm{H} .75 \mathrm{~mA} .12 / 6$. P.P. $2 / 6,5 \mathrm{H} .60 \mathrm{~mA} .8 / 6$, P.P. $2 / 6$. $0.7 \mathrm{H} .450 \mathrm{~mA} .17 / 6$, P.P. $3 / 6$. Jupiter Series Swinging Choke 34 H .60 mA .70 H .34 mA .2 .5 kVd.c. wkg. 25/-, P.P. 5/-.

SUNVIC TYPE T.Q.P.
Range 70° F. -190° F. Lengsh of rod $11 \frac{1}{2}$ in. Complete
with sleve. 15 amp. demand switch. Changing to
5 amp. satisfied position. Supplied new and guar
anteed. 29/6. P.P. $3 / 6$.

SPECIAL OFFER G.E.C. 8 MFD. BLOCK

 CAPACITORS600 v. D.C. Wkg, at $71^{\circ} \mathrm{C}$. Brand new in maker's
cartons, six for $29 / 6$. Carr, $7 / 6$. S.T.C. 5 mid cartons, six for $29 / 6$. Carr. $7 / 6$.
400 v . A.C. wkg. $7 / 6$ each. P.P. $2 / 6$.

HORSTMANN CLOCKWORK TIME

 SWITCHES14 -day jewelled movemens. 250 v. A.C. 5 amp .
switeh contacts. Once on/off every 24 hours.
Complete with key and mounting brackes ex-
equipment. Bue periect condition. $37 / 6$, P.P. $4 / 6$.

COLOUR TELEVISION

With particular reference to the

PAL SYSTEM

There are 157 diagrams and photographs and 83 Illustrations in colour.

by G. N. Patchett

40.

Postage I/-
HI FI YEARBOOK, 1967/68. 15/-. Postage I AN INTRODUCTION TO MASERS \& LASERS, by T. P. Melia. $35 /$-. Postage $1 /$.
TRANSISTOR SUBSTITUTION HAND BOOK, 7 thed. Pub..F-Sams. 15/-, Postage 1/INTRODUCTION TO COMPUTER EN GINEERING, by B. S. Walker. 32/6. Possage

ELECTRONIC ENGINEER'S REFERENCE BOOK, by L. E. C. Hughes and F. W. Holland 126/-. Postage free
TAPE RECORDER SERVICING MECHA NICS, by H. Schroder. 21-- Postage I/ Inter.: GEC S.C.R. MANUAL, 4̧̧h ed. 25/Postage 2/

THE MODERN BOOKCO.

BRITAIN'S LARGEST STOCKIST
of British and American Teshnical Books
19-21 PRAED STREET LONDON, W. 2
'Phone: PADdington 4185
Closed Sat. I p.m.

TGMOON CENTRAB Rando sidexis

10-WAY PRESS-BUTYON INTER-COM TELEPHONES 20-WAY PRESS-BUTTON INTER-COM TELEPHONES
 MODERN HARD SETS with cuiled learl. trev. white and black 22/6. P.
 TELEPHONE COLLED HAND SET LEADS. :I care 5/6. P.P. I/MODERN DESK PHONES, thine ures or blark, wlen internal
 WIRELESS SET No. 38 A.F.V. Freat range 7.320 9.0 Mc/8. ELECTRICITY SLOT METERS (1/, fon wlut) for A.C. mains $240 / 250 \approx 10 \mathrm{~A} .80 /-15 \mathrm{~A} .80-201 \mathrm{~A} .100 \%$. P.P. 7 It. Other QUARTERLY ELECTRIC CHECK METERS. lieoondillimed ta

TWIN GONG TELEPHONE. extension lnellw. 21 -
8-BANK UNISELECTOR SWITCHES. 25 sontweln, alternate
 Cox Pu 4
 and liternal bell with (1) l das. 42/6. I'.1".6/\% HIGH-SPEED ELECTRO-MAGNETIC COUNTERS EX-GOVR sinule coll 500 n . $8 / 6$. F.I', $3 / 6$, 1 m . Alagle coil, 2.300Ω. EX. GOVT. BALANCED ARMATURE THROAT MIKES complete EX. GOVT. BALANCED ARMA

23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday $1 \mathrm{p}, \mathrm{m}$. Open all day Saturday

Hurnus

AMOUS KO. 19 SET TRANS/RECEIVER.
overs $2-8 \mathrm{Mc} / \mathrm{m}$. in 2 batudv. 11 ralve superhet transcelvet

 No. 31. TRANSCEIVER VHF, $+0 / 4$ 年 Mc / s. Tunalble. 90
 4 chanmel, 50 - each.
No. 38 TWO-WAY RADIO, $7.0 \mathrm{Mc} / \mathrm{m}$. Tuable. 40 l - each. B44. VIF RADIO TELEPHONE, No, 62 TRANSMITTER RECEIVER R.C.A.C29 TRANSMITTER RECETVER, $2-8$ Mc/n. Complete
 TUBULAR STEEL TELESCOPIC AERIAL MASTS 4 sevilun. $701-$. 32 ft . Ws above with 1 :fft. whip, 80%, 3.fit MAKE YOUR OWN AERIAL MAST:
5it. Bin., sill. dia. interlowikligh steel seclions (7 sectionn mathe NYLON GUY ROPES. willh semi-atolnatic tensioner. 3301 . G/6. 50Mt. 7/6. 6OH. 9/-
ROTARY TRANSFORMERS BY HOOVER. 12 V. D.C. Input.
 REJECTOR UNIT. FOT rejentinp unwanted mignals. Syplechen 4 ranges. $1.2-10$ Mc $\quad 30-$. 3 . R.F. ANTENNA TUNER (A.T.U.
 MOVING COIL HEADPHONES. Rult Thbler empmels, $19 / 6$. D.L.R. BALANCED ARMATURE HEADPHONES. $12 / 6$. Get. 2o/6. MOVING COIL FIST TYPE MICROPHONE. $17 / 6$.
 ALL ITEMS CARRIAGE PAID MAINLAND ONLY Lists giving fuller details of these and many ather surplus bargains, 2\%. S.A.E. all enquiries (Please print clearly).
A. J. THOMPSON (Dept. WW)
"Eiling Lodge" Codicote, Hitchin, Berts. Tel,: Codicote 242

ADVANCE TEST EQUIPMENT

VM76 Valve Voltmeter

R.F. Measurements in excess of 100 mHz and d.c. measurements up to $1,000 \mathrm{~V}$ with accuracy of
2% D.c. range- $300 \mathrm{mV}-1 \mathrm{kV}$ f.s.d. A.c. range- $300 \mathrm{mV}-300 \mathrm{~V}$ r.m.s. Resistance in 8 ranges, 0.02-500 Megohms.
Manufacturer's price $\mathbf{~} 90$: Our price $\$ 72$
VM77C: A.C. Millivoltmeter
$1 \mathrm{mV}-300 \mathrm{~V}$ full scale in 12 ranges. Freq. range $15 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Input impedance 10 Megohms 20 pf . Calibrated in r.m.s. volts for sine wave input and dB. $100-250 \mathrm{~V}$ a.c. input. Manufacturer's price $\mathbf{\Sigma 5 5 : ~ O u r ~ p r i c e ~} £ 40$
VM78: A.C. Millivoltmeter
Transistorised. $1 \mathrm{mV}-300 \mathrm{~V}$ in 12 ranges. Freq. $1 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$. Input impedance 2 Megohms 60 pf . Calibrated in r.m.s. for sine wave and input dB .
Manufacturer's price £70: Our price $£ 55$
TT1S: Transistor Tester (CT472)
Suitable for measuring medium and low powered transistors. Current gain (B) can be measured in range 10 to 500 for p.n.p. and n.p.n. types, either in circuit using the clip on probes provided. Small compact instrument.
Manufacturer's price £57: Our price £37/10/-

VM79: UHF Millivoltmeter
Transistorised. A.c. range $10 \mathrm{mV}-3 \mathrm{~V}$ f.s.d., 10 ranges. D.c. current range $0.01 \mu \mathrm{~A}-0.3 \mathrm{~mA}$ f.s.d., 10 ranges. Resistance 1 Ohm-10 Megohms in 7 decade ranges. Complete with probe. Manufacturer's price £180: Our price £ 125
J1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Output 600 Ohms, $0.1 \mathrm{~mW}-1 \mathrm{~W}(0.25-24 \mathrm{~V})$, variable. Attenuation $20 \mathrm{~dB}-600$ Ohms (Attenuator is incorporated), output $10 \mathrm{~mW}(2.5 \mathrm{~V})$. $\quad 100-250 \mathrm{~V}$ a.c.
Manufacturer's price £46: Our price $£ 30$
J2B: Audio Signal Generator
Same specification as for the JIB except that this model has an additional 2 in . meter calibrated $0-40 \mathrm{~V}$ a.c.
Manufacturer's price 150 : Our price $£ 35$
H1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Sine wave $200 \mu \mathrm{~V}$ 20 V r.m.s. Square wave $1.4 \mathrm{mV}-140 \mathrm{~V}$ peak to peak (approx.). $100-250 \mathrm{~V}$ a.c.
Manufacturer's price £42: Our price $£ 30$
Special offer of 10% discount for schools and Technical Colleges, etc. These were manufactured in U.K. by Advance Electronics Lid. BRAND NEW, all in original sealed carton. Carr. 10/-extra peritem.
S.A.E. for all enquiries. If wishing to call ot Stores, please telephone for oppointment.

CONDENSERS. $10 \mathrm{mfd} .1,000 v, 12 / 6$, post $2 / 6.8 \mathrm{mfd}, 1,290$ volts, $12 / 6$, post $3 /-.8$ mfd. 600 volts, $8 / 6$, post $2 / 6.0 .25 \mathrm{mfd} ., 2 \mathrm{kv}, 4 / \mathrm{F}$, post 16.

AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and AUTOMATIC PLLOT UNIT Mk. , valves, relays, magnetic clutches, motor
other items, price $£ 7 ; 10 / \bullet$. £1 carriage.
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{mc} / \mathrm{s}$ complete with all valves 28% D.C. Dynamotor and 3 relays, 11 valves, price $£ 3$ each, carr. 10/-.
ROTARY TRANSFORMERS. 24 v . input, 175 v , at 40 mA output, 25 -, plus $2 /$-post. $12 v$ input, 225% at 100 mA . output, 25 . plus $3 /$, post. (All the above are D.C. only.
AVO MURTIRANGE No. 1 ELECTRONIC TEST SET: \&25 cach, carr. El.
HRO RECEIVER. Model 5T. This is a famous Amcrican High Frequency
 superhet, suitable for CW, and MCW., reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range So ke s. to $30 \mathrm{mc} / \mathrm{s}$, with set of nine coils Receiver only in working order, c18/10/, carr. 15/- each. Set of nine coils, £12/10/-, available only with set Power unit for HRO

SPECIAL OFFER: Complete HRO SET (Receiver, Coils \& Power Unit) for £ 30, plus 30/- carr
HRO-M-SETS available with UX type valves; secondhand cond., with 5 coil and power unit, $\mathbf{£} 20$ each, carr. 30-

CONVERTERS, Type $8 \mathrm{ar}, 24 \mathrm{v}:$ D.C., 115 v. A.C. at 1.8 amps 400 cycles' 3-phase, $86 / 10 /$ e each, post $8 /-$.

MARCON1 DEVIATION TEST SET, TF934: freq. 2.5-100 Mc / s Can be extended to $500 \mathrm{Mc} / \mathrm{s}$. Deviation range $0-5,0-25$ and $0-75 \mathrm{Kc} / \mathrm{s}$. 835 each, carr. El .
MARCONI IMPEDANCE BRIDGE, TF-373: inductance $5 \mu h-100 \mathrm{H}$ in 5 ranges, capacity $5 \mathrm{pF}-100_{\mu} \mathrm{F}$ in 5 ranges, resistance $.05 \mathrm{meg} .-1 \mathrm{meg}$. power supply 250 v. A.C. $£ 37 / 10$ - cach, carr. 15%
CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-22 \mathrm{Kc} / \mathrm{s}$., dircctly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v} . \mathrm{D} . \mathrm{C}$. 812 10/- each, carr. 15-.
TICAN. Trans. /Receiver, same as ARN21, British made, STC, TR9171 complete with five 2C39As with associated valve-holders. As new price £25. Used condiion, $£ 15$, carriage $£ 1$.

RELAY UNITS. 2 high speed reluys $\mathrm{H} 96 \mathrm{E}, 1700+1700$ ohms, 1 changeover relay $14,000 \mathrm{ohms}, 1 \mathrm{CV} 455,100 \mathrm{ohms}$ and 1 meg . pot., etc. Mounted in box, 4 in . $\times 6 \mathrm{in}$. $\times 30 \mathrm{in}$., 30 - cach, 41 -post.

RECEIVERS. Type AR88D: freq. $540 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc}$ s. \&45 each, carr. £2. AR88 SPEAKERS. New in cartons, metal case with black crackle finish $59 / 6 \mathrm{ca}$, post $7 / 6$.

AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L.55. Price 10 - e each, post 26. By-pass Capacitor K.98034-1, 3×0.05 mfd. and M.98034-4, $3 \times 0.01 \mathrm{mfd} .3$ tor $10 /$, post $2 / 6$. Trimmers, 95534 -$502,2-20$ p.f. Box of $3,10^{\prime}$., post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v., £2 each, 4/-post. Filter Choke, L45 and 50, K901433-501, 25 - cach, 4-post.
AIRCRAFT RECEIVEK ARR2. $235-258 \mathrm{Mc} / \mathrm{s}$. tunable, 24 v . D.C. inpur, £3 ca. 7/6 carr
HEWLETY P.ACKARD TYIE 400C: $115 \mathrm{v} . / 230 \mathrm{v}$. , input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. range $20 \mathrm{c} / \mathrm{s}-2$ Mcs. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$. in 12 ranges. Input impedar.ce 10 megohms. Designed for rack mounting, £30 each, carr. 15
COMMAND RECEIVERS: Model 3-6 Mc/s. and $6-9 \mathrm{Mc} / \mathrm{s}$. , as new, price 510 - each, posi 5

SIGNAL GENERATORS:

MARCONI TF-144G: freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, internal and external modulation, power supplies $200 / 250$ V. A.C. (secondhand cond.), price £25 ea.; or available in transit case, complete with spares, in first class condition $\mathbf{£} 30$ ea., carr. on both 30 - ea.
TS155c/UP (as new) : price $\mathbf{\$ 7 5}$ each, carr. \&1
CT53. Freq. range $8.9-300 \mathrm{Mc} / \mathrm{s}$. with Calibration chart. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. inicrnal square wave and sinewave modulation at $100 \mathrm{c} / \mathrm{s}$. external modulation $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}, 230 \mathrm{v}$. A.C. Complete with chart, cte., price £27/10/• ea., carr. £1.
MARCONE TF801A 1 Freq. $10-300 \mathrm{Mc} / \mathrm{s}$, 4 binds, output 200 mV , ittenuator $0-110 \mathrm{~dB}$. Input 75 ohms. \&65 each, carr. £1.
MARCONI TF516-F/I: Covering $10-18 \mathrm{Mc} / \mathrm{s}, 33-58 \mathrm{Mc} / \mathrm{s}$. , $150-300$ Mc/s. £12/10/- each, carr. £1.
MARCONI CT218: price $\mathbf{8} 65$ each, cart. 30 /
CT. 480 and $478: 1.3-4.2 \mathrm{Mc} / \mathrm{s}, \mathrm{F} . \mathrm{M}$. or A.M., price, 875 cach, carr. $30 /$

TELEPHONE EQUIPMENT:

GPO CANDLESTICK* TYPE TELEPHONE. Upright model with receiver, ideal novelty for converting to lampshade. Available any colour, $£ 5$, 10 - ea., post $7 / 6$. $^{\circ}$
TELEPHONE WIRE: 220 y ds., fi a roll, post $6 / \mathrm{F}$.
GPO TERMINAL BLOCKS, $7 / 6 \mathrm{cach}$, FUSE AND PROTECTOR, $7 / 6$ each. Post on both $2 / 6$.
TELEPHONES (PORTABLE) TYPE "F." Suitable for all outdoor activities up to a range of 5 miles. Price $\mathbf{£ / 1 0}$ /-cach, as new, complete whth cerrying casc. Price, $£ 5,10$ - each, secondhand. Carr. 10/-
TELEPHONE EXTENSION CORD. Brown, 3 -way; come in lengths of 6 ft . and $14 \mathrm{ft} ., 7 / 6$ and $15 /$ - respectively. Post $2 / 6$

BC-433-G COMPASS RECEIVER: Freq. $200-1,750 \mathrm{kc} / \mathrm{s}$. in 3 bands, suitable for aircraft, boats, etc. Complete with 15 valves, power supply input 24 v. D.C. at 2 amps. Receiver only $£ 5$ each. Carr. 15/-.
TCS MODULATION TRANSFORMERS, 20 watts, pr, 6,000 C. T., sec. 6,000 ohms. Price 25 - post $5 /$ -

NIFE BATTERIES: 6 v .75 amps., new, in cases, $£ 15$ each, \&1 carr.; 6 v. 160 amps., new in cases, $£ 25$ each, £1/10/-cars.; 4 v. 160 amps., new, in cases, $£ 20$ each, $£ 1 / 10 /-$ carr.
L.R. 7 Cells, only 1.5 v. 75 amps., new, $\& 3$ cach, $12 /$ - cars

The above batteries are low resistance designed to give heavy surge for starting and can be stored for long periods without any effect to their performance.
WAVE GUIDES FLEXIBLE CG-182/APM40. Length 18 inches. Price 22 each, post 4/-
MACHMETERS: Range 0:1 and 0:1.2,6A/3384 \&e 5325 respectively, price $30 /$ - each, postage $5 /$.

FUEL INDICATOR Type II3R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in. diameter casePrice $30 /-$ each, postage $5 /-$.
DRY BATTERIES, NO. I. HT 90 v. and $7 \frac{1}{\mathrm{t}} \mathrm{F}_{\text {, }}$ size 2 i in . $\times 3 \frac{2}{2} \mathrm{in}$. $\times 5 \mathrm{in}$, $5 /$ - each, or 5 for $£ 1$, post $4 /$ - and $7 / 6$ respectively.
BATTERY NO. 4 (suitable for bells, etc.). $4 \frac{1}{2} \mathrm{~V}$., size $4 \frac{1}{2} \mathrm{in} . \times 6 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$, 5/- each. Post 3/-.
UNISELECTORS (ex equipment): 10 Bank, 50 Way, alternate wipe, £2/5/-ea. 6 Bank, 25 Way, alternate wipe, £2/2/6 ea. 8 Bank, 25 Way, £2/5/- ea. 6 Bank, 25 W ay, 22 ea. 4 Bank, $25 \mathrm{Way}, 35 /$ - ea. All the above

FREQUENCY METERS: IM-13 or BC-221; $125-20,000 \mathrm{Kc} / \mathrm{s} . ; £ 25$ each, carr. 15/-: TS174/U; 20-250 Mc/s. modulated, £45 each, carr. 15/-. TS323/UR; 20-450 Mc/s., £75 each, carr. 15/-. FR-67/U: This instrument is direct reading and the resuits are presented directly in digitalrorm. $100 \mathrm{Kc} / \mathrm{s}$. ing rate: Power Supply: $115 \mathrm{v}, 50 / 60 \mathrm{c} / \mathrm{s} ., \mathrm{E} 100 \mathrm{each}$, carr, \&1.
AMERICAN EQUIPMENT: Power supply, PP893/GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A. Antenna Box Base \& Cables CY 728/GRC, Mast Erection Kits, $1186 /$ GRC; Receiver type 278B; Directional Antenna CRD.6: Comparator Unit, CM.23; Directional Control CRD.6, 567/CRD and 568/CRD; Azimuth Control Units, 260/CRD

GEARED MOTORS: 24 v. D.C., current 150 Ma , Output 1 s.p.m. $30 /$ - cach, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., $£ 2$ each, $5 /-$ posi
MOTORISED ACTUATOR: 115 v. A.C. $400 \mathrm{c} / \mathrm{s}$. single phase, reversible, thrust approx. 3 inches complete with limit switches, etc. Price \&2/10/-each, postage 5/-(ex equipment).
D.C. MOTOR: 27 v. D.C. with gear box, 4 r.p.m. Price $25 /-$, postage 3-(cx equipment)
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. $25 \mathrm{lbs.}$, rating intermittent, price \&3 each, post. 5
28 v. D.C. 200 r.p.m. current consumption approximately 6 amps. Price £3 10 -, post $7 / 6$
FRACTIONAL MOTORS \&FANS: Low Inertia Motor 5UD/5361, Type 903, 24 v. input D.C., £2 10 - each, $5 /$ - post.
Model PM84: 28 v. D.C. (it 2 amps,, 4,500 r.p.m., output 40 watts continuous duty complete with magnetic brake. Price $\mathbf{L 2}$ each, postage 4 -
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts, price $25 /-$ each, postage 4 A.C. Motor 115 v. $50 \mathrm{c} / \mathrm{s}$. 1/300 H.P., 3,000 r.p.m. Capacitor 1 mfd , 25/ post $3 /^{-}$. Dulmotor SC5, 28 氏. D.C. at 45 amps; 12,000 r.p.m. output 750 W. (approx. 1 h.p.), brand new, £2 10 - each, post $7 / 6$

CATHODE RAY TUBE UNIT: With $3 i n$, tube, colour green, medium persistence complete with nu-metal screen, £310-each, post $7 / 6$.

TRANSMITTER/RECEIVER TCS-12: Freq. $1.5 \mathrm{Mc} / \mathrm{s}-12 \mathrm{Mc} / \mathrm{s}$, output 25 W., complete stations available with antenna equipment, mast, and petrol generator, erans-receiver, complete with 12 . Und for ther above £20 each, carr. £3. Complete aerial system £10 each, carr. £2.
S.A.E. for all enquiries. List avallable 6d. W. MILLS

3-B TRULOCK ROAD TOTIENHAM, N. 17 Phone: Tottenham 9213

HARVERSON SURPLUSCO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985

Open all day Saturday (Wednesday I p.m.)

PLEASE NOTE; P. \& P Charges quoted ap PLY TO D.K. ONLY.P. \&P OH OVERSEAS ORDER charaed extra
PORTABLE

SERVICE TRADING CO

 Postage and Carriage shown below are thailand anis. Fop quotation We do notissue a catalogue or hist.
LIGHT SENSITIVE SWITCHES Kit and pares including ORP. 12 Cadmum Sulphide Photocell. Relay
Transistor and Circuit. Now supTransistor and Circuit. Now sup-
plied with new Siemens High Speed Relay for 6 or 12 volt operations Price $25 /-$, plus $2 / 6$ P. \& P.
ORT. 12 and Circuit $10 \%-$
ORA. 12 and Circuit 10/- past paid.

> A.C. MAINS MODEL
incorporates mains transformer reetifice and special relay with 3×5 amp. mains
Price inc. circuit $47 / 6$, plus $2 / 6$ P. \& P.
\qquad
LIGHT SOURCE AND PHOTO CELL

\Longrightarrow E
rate photo cell
Separate photo cell mounting assembly for ORP. 12 or similar cell with
optic window. Both units are single hole fixing.

UNIVERSAL DEMONSTRATION
A complete con:-
posite apparatus, comprising a proformer and elec-tro-magnet with removable and pole pieces,
coil tapped for $\begin{array}{lll}230 \mathrm{v} . & 220 & \mathrm{v} . . \\ 110 \mathrm{v} . . & 115 \mathrm{v} & 6\end{array}$
A.C. These coils are also used for D.C. experiments. Complete with all accessories
shown. 617 plus
sheriments. Complete with all accessories

PHOTO MULTIPLIER

Type CV 337, this supersedes type 931A, complete with special P.T.F.E. base and divider network

RESETTABLE HIGH SPEED COUNTERS 3 figure. 24 к. D. avion (illustrated).
Similar to above, buy Similar to above, but may
be preset to any number Up 10999 reducing to zero.
 Either
$2 / 6 d$.

NICKEL CADMIUM BATTERY
Sintered Cadmium Type 1.2 v. 7 AH. Size height 3 in., width $2 / \mathrm{in}$. x tron. Weight:
approx. 13 ozs. Ex-R.A.F., Tested, 12/6. P. \& P. Tested, 12

230 VOLT A.C., GEARED MOTORS Type DISG 5 r.p.m. 1.71 b , inch, 62/96, P. \& P. 3. Type B16G 80 r.p.m. 261 b . inch, $62 / 2 / \mathrm{g}$ P. \& P. $3 /$
Type D16G 13 r.p.m. $1.45 / \mathrm{b}$. inch. $62 / 17 / 6$. Type D1
P. \& P. 3/.

PRECISION FLATPOT

Manufactured by M.E.C. 50 k., 45 turn. fly leads.
all metal sealed construction. 10/6d. Plus $1 / 6$ P. \& P 6 AMP SILICON DIODES
NOT Rejects or Seconds $\begin{array}{lll}\text { BYZ 13 } 200 \text { PIV 7/- } & \text { BYZ 12 } 400 \text { PIV 8/- } \\ \text { BYZ II } 600 \text { PIV 9/- } & \text { BYZ 10 } 800 \text { RIV } 101\end{array}$

100 WATT POWER RHEOSTATS

(NEW) Ceramic construction, windEnamel. heavy duty brush assembly designed for continuous dur AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES ohm 10a., 5 ohm 4.7a.. 10 ohm Ba 25 ohm 2a: 50 ohm 1.4a; 100 ohm la; 250 ohm $7 \mathrm{a}: 500$ ohm 45 a ; 1,000 ohm 280 mA : 1,500 ohm 230 mA . 2,500 ohm ${ }^{2}$ a. Diameter
Shaft length
ain. da.

50 WATT POWER RHEOSTATS

 Aa: 50 ohm la: $100 \mathrm{ohm} .7 \mathrm{a}: 250 \mathrm{ohm}$. 45 a : $500 \mathrm{ohm} .3 \mathrm{a}: 1,000$ ohm .22a: 2.500 ohm . 14225 WATT POWER RHEOSTATS

 15a: 1,500 ohm

SWING ARM RHEOSTAT
Especially designed for educational use. $0-10$ ohm in precision 1 ohm steps. Max. current 5 amp. Size: Height 19 in. Width lin. Depth 6tin. Price 64/19/6. P. \& P. $7 / 6$.

DRY REED SWITCHES
4 figure, 1,000 ohm
$6.3 / 10 /-\quad$ P. \& P. $1 / 6$
PHOTO ELECTRONIC COUNTER
Can be set for counts of up to 500 per minute. $210-250$ r. A.C. powered. Kier of Components. including photo cell, high speed non-resettable counter, transformer, relay ese, rogester with clear circuit diagram, 63/2/6, plus $3 / 6$ P \& $\&$. With
c. resettable counter, $64 / 2 / 6$, P. \& P. $3 / 6$.

LATEST HIGH SPEED MAGNETIC
 COUNTERS (NON-RESETTABLE)

 4 figure, 10 impulses per second. Type $100 \mathrm{~A}, 500$ a figure. Impulses per second. coil. Either 15/each, plus 1/6 P. \& P.COAX CABLE
Approximately 100 -yard reels, $30 /$ a reel, plus $7 / 6 \mathrm{~d}$ carriage.

INSULATED TERMINALS Available in black, red white, yellow, blue and green. New $15 /$-per doz.

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY 7 adjustments, precision tooled, TRANSISTORISED MORSE OSCILLATOR Fitted $2 \frac{1}{2}$ in. Moving Coil Speaker. Uses type PP 3 or equiv. 9 v . battery. Complete with latest design Morse Key. 22/6, plus 1/6 P. \& P.

$$
\begin{aligned}
& \text { New special offer of Dry Reed Switches, } \frac{1}{2} \text { amp. } \\
& \text { contact, If } \times \text { in., } 4 \text { for } 10 /=\text {, post paid. }
\end{aligned}
$$

VENTER ELECTRIC TIME SWITCH

200-250

 preset time. Spring reserve (in case Of power cut) fully tested $63 / 9 / 6$.
P. P. $4 / 6 \mathrm{~d}$. Or complete in weather: P. \& P. $4 / 60$. Or complete in weather: proof metal ease (illustrated) E3/9/6, solar dit solar dial, on
Prices as above.
$\overline{\text { VENTER }} \overline{14-D A Y ~ C L O C K W O R K ~ T I M E ~}$ SWITCH. 5 amp .230 v . contact, I on/ofl every 24 hr. Fitted in metal case with key. Used but guaran-

SAN WA Multi Range Meters

Acknowledged throughout the world as The wit mixing ese meres multi. NEW N MODEL O. SOD MULTI TESTER WITH OVERLOAD PRO. TECTION. Ranges: D.C voles: 100 mV TECTION. Ranges: D.C voles: 100 mv
$0.5 \mathrm{v} ., 5 \mathrm{v} ., 250 \mathrm{v} ., 1,000 \mathrm{v}$. . C . voles. $2.5 \mathrm{v} .10 \mathrm{v} .50 \mathrm{v}, 250 \mathrm{v} ., 1,000 \mathrm{v}$. D.C. current: $5 \mu \mathrm{~A}$ Complete with batteries $\mathbf{8 5 . 1 5 . 0}$
and test prods.
and test prods.
Three other models available from-stock. Descrip

SLIDER RESISTANCE 200 ohm $1.25 \mathrm{amp} .37 / 6 . \mathrm{P}^{3}$ P. P. P. $3 / 6$

230 V. A.C. RELAY. ${ }^{2}$ echo 2 amp. contacts.
Q/6 ex new equip. P. \& P. $1 / 6$.

UNISELECTORS SWITCHES NEW 4-BANK 25-WAY UNISELECTOR
25 ohm
operation.
P. \& P.

> 8.8ANK 25-WAY FULL WIPER O.C. Operation, E6/10/, plus $4 / \mathrm{F}$ \& \& .

STANDARD SIZE UNISELECTOR SWITCHES USED 75 ohm coil, 24 v D.C., 6 bank 25 position. 5 non-bridging. 1 bridging ${ }_{6}$ wiper. bank arranged to give 3 bank, 50 positions ex-equipment. $35 /$-each. P. \& P. $2 / 6$.

MINIATURE UNISELECTOR

 SWITCH
RADIO CLEARANCE（1965）LTD．

27 TOTTENHAM COURT ROAD，LONDON，W． 1
Tol．（01）636－9188
ELECTROLYTIC CONDENSERS

${ }_{1 \mu} \mathrm{~F}$	25v		1	${ }_{6}$	50 F		12v	¢ ${ }^{\text {\％}}$ W．E．	S	d 6	2，500 ${ }^{\text {F }}$	30v		${ }_{7}$	${ }_{6}^{d}$	
$1 / \sim \mathrm{F}$	350 v	1＂× W．E．	2	0	$50,1 \mathrm{~F}$		25 v	$1^{-} \times$W．E．	1	6	2，500 2 F ．	50 v		10	${ }_{0}^{6}$	
$2 \mu \mathrm{~F}$	12 v	\times ¢＂W．E．	1	6	$50 / \mathrm{F}$		50 v	1＂x W．E．	1	9	4，000 F	25 v	$3^{\sim} \times 1^{\frac{1}{4}}$ T． 2.	9	0	
$2 \mu \mathrm{~F}$	150 v	A＂×1＂W．E．	1	6	$50 \mu \mathrm{~F}$		275v	$11^{\prime \prime} \times 1^{\prime \prime}$ T．I．	3	0	5，000 $\mu \mathrm{F}$	25v	$3^{\prime \prime} \times 1{ }^{\text {an }}$ T． 2.	10	0	
$2{ }_{14} \mathrm{~F}$	275v	\％＂xt＂W．E．	2	0	$50 / \mathrm{F}$		350 v	$21^{\prime \prime} \times 1^{\prime \prime}$ T．1．	3	6	10，000 0 F	25v	$4^{* \prime} \times 1{ }^{\text {² }}$ T． 2.	27	6	
$2 \mu \mathrm{~F}$	350 v	1＂x W W．	2	0	$64 / \mathrm{F}$		450 v	2＂$\times 1{ }^{\prime \prime}$ T．1．	4	6	$30,000 \mu \mathrm{~F}$	30 v	$4{ }^{\prime \prime} \times 2$ T． 2.	45	0	
$2 \mu \mathrm{~F}$	500v		2	6	$100{ }_{k} \mathrm{~F}$		15 v	$1^{\prime \prime} \times$ W．E．	1	6	$32 \times 32 \mu \mathrm{~F}$	350v	$2{ }^{\prime \prime} \times 1$－${ }^{\prime \prime}$	4	6	
$4 \mu \mathrm{~F}$	25v	1＂x＇WE．	1	6	10012 F		25v	$1^{\prime \prime} \times$ W．E．	1	6	$50 \times 50 \mu \mathrm{~F}$ ．	350 v	$2^{\prime \prime} \times 11^{*+}$ T． 3.	6	6	
$4 \mu \mathrm{~F}$	150v	F＂× W．E．	1	6	$100 \mu \mathrm{~F}$		50 v	1＂× W．E．	2	6	$60 \times 100 \mu \mathrm{~F}$	275v	$2^{\prime \prime} \times 1{ }^{\prime \prime}$ T． 2 ．	6	0	
$4 \mu \mathrm{~F}$	275 v	$1^{\prime \prime} \times$ W．E．	2	0	$100 \mu \mathrm{~F}$		100v	1＂×年＂T．1．	4	0	$60 \times 250 \mu \mathrm{~F}$	350 v	$4^{\prime \prime} \times 1{ }^{\prime \prime}$ T． 2.	12	6	
$4 \mu \mathrm{~F}$	350 v			6	1004 F		250v	3＂×1 T．1．	4	6	$100 \times 100 \mu \mathrm{~F}$	150v	3＂×1＂T． 3 ．	4		
$4 \\| \mathrm{F}$	500 v	1＂x＂＊W．E．	3	0	$100{ }_{\mu} \mathrm{F}$		350 v	$3^{\prime \prime} \times 1^{\prime \prime}$ T． 2.	5	0	$100 \times 200 \mu \mathrm{~F}$	275v	4＂×13＂T． 2	9	6	
${ }_{5 \mu \mathrm{~F}} \mathrm{~F} \mathrm{Rev}$	20 v		2	6	$100 / 2 \mathrm{~F}$		450 v		7	6	$150 \times 200 \mu \mathrm{~F}$	350 v	$4 " \times 1{ }^{\text {\％T } 2 .}$	12	6	
$5 \mu \mathrm{~F}$	50 v	W．E．	1	6	$125 \mu \mathrm{~F}$		500 v	$4^{\prime \prime} \times 1{ }^{\prime \prime}$ T． 2.	9	0	$250 \times 250{ }_{3} \mathrm{~F}$	$325 v$		14	0	
$5 \mu \mathrm{~F}$	70 v	H＂× ${ }^{\text {an }}$ W．E．	1	6	$200 \mu \mathrm{~F}$		275v	$2^{\prime \prime} \times 1{ }^{\text {²m }}$ T． 2.	6	0						
$6{ }^{\prime} \mathrm{F}$ Rev	50v		2	6	$200 \mu \mathrm{~F}$		350v	$3^{\prime \prime} \times 1{ }^{\text {²F }}$ T． 2 ．	7	6						
$8 \mu \mathrm{FRev}$	20v	14＂× ${ }^{\text {a }}$	2	6	$250 \mu \mathrm{~F}$		12 v	$1^{\prime \prime} \times$ W．E．	2	6	TE	MIN	TION CODING			
$8 \mu \mathrm{~F}$	150v	$1^{\prime \prime} \times \frac{1}{6}$＂W．E．	1	6	$250 \mu \mathrm{~F}$		18v	$1^{\prime \prime} \times 1{ }^{\prime \prime}$ WE．	2	6	W．E．Wire	Ended				
$8 \mu \mathrm{~F}$	275v	$1 \mathrm{~h}^{\prime \prime} \times \mathrm{t}^{\prime \prime}$ W．E．	2	0	$250 \mu \mathrm{~F}$		25v	1＂x \times W．E．	3	0	T．1．Tag e	ch en	of condenser			
$8 \mu \mathrm{~F}$	350 v	18＂× W．E．	2	6	$250 \mu \mathrm{~F}$		50w	1＊＊${ }^{3}{ }^{\text {a }}$ W．E．	4	6	T．2．Single	end	g termination			
$8 \mu \mathrm{~F}$	500 v	$1{ }^{\prime \prime} \times{ }^{\text {c／}}$ ，W．E．	3	0	$350 \mu \mathrm{~F}$	\ldots	12v	1＂x W．E．	2	6	T．3．Single	end	8 termination			
$10 \mu \mathrm{~F}$	6v	－W．E．	1	6	$350 \mu \mathrm{~F}$		25.	11＂× T．1．	3	0	Tw	pros	xing			
$10 \mu \mathrm{~F}$	50v	W．E．	1	6	$400 \mu \mathrm{~F}$		15vi	1＂x W．E．	3	0						
$10 \mu \mathrm{~F}$	150v	W．E．	1	9	$400 \mu \mathrm{~F}$		30 v		3	6	$8 \times 8 \mu \mathrm{~F}$	450v	14＂$\times 1$＂T．1．	4	0	
$10 \sim \mathrm{~F}$	300 v	1＊＊${ }^{\text {\％}}$ W．E．	2	0	$400 \mu \mathrm{~F}$		50 v	$1{ }^{\prime \prime} \times \mathbf{1}^{\prime \prime}$ W．E．	4	0	$8 \times 16 \mu \mathrm{~F} \ldots$	459v	$2^{*} \times 1{ }^{\prime \prime}$ T．t．	＋		
$16 \boldsymbol{\prime}$ F	250 v	14＂\times W＂W．E．	2	0	$400 \mu \mathrm{~F}$		$275 v$	$4^{\prime \prime} \times 1{ }^{\prime \prime}{ }^{\prime \prime}$ T． 2 ．	9	0	$16 \times 16 \mu \mathrm{~F}$	275v	$2^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}$ T．1．	4	0	
164 F	350 v	$1^{3 \prime \prime} \times 1$ W．E．	3	0	${ }_{500} \mu \mathrm{~F}$		6 v	1，W．E．	1	6	$16 \times 16 \mu \mathrm{~F}$	450 v	$2^{\prime \prime} \times 1^{\prime \prime}$ T．I．	4	6	
$16 \mu \mathrm{~F}$	500 v	13＂$\times 1$ W．E．	3	6	$500 \mu \mathrm{~F}$		15v	$1{ }^{\text {d }}$－X W．E．	2	6	$16 \times 32 \mu \mathrm{~F}$ ．	275v	13＂×1＂T．1．	4	0	
$25 \mu \mathrm{~F}$	12 v	（1＂W．E．	1	6	$500 \mu \mathrm{~F}$		25 v	14＊${ }^{3 / 3}$ W．E．	3	6	$32 \times 32 \mu \mathrm{~F}$	275v	$2^{*} \times 1^{*}$ T． 3.	4	0	
$25 \mu \mathrm{~F}$	25v	＊W．E．	1	${ }_{9}$	1，000 $\mu \mathrm{F}$		15 v	$2^{*} \times{ }^{\prime \prime}$	3	9	$50 \times 50 \mu \mathrm{~F}$ ．	300 v	$2^{\prime \prime} \times 17{ }^{\prime \prime}$ T． 2.	4	6	
2514 F 30	50 v 6 v	$1^{\prime \prime} \times 1^{\prime \prime}{ }^{\prime \prime}$ W．E．	1	9	$1,000 \mu \mathrm{~F}$		18 v	1＂\times 尔＂W．E．	3	9	$50 \times 150 \mu \mathrm{~F}$	300 v	34＂$\times 1$＂T． 2.	6	6	
$30 \mu \mathrm{~F}$	10 v	人＂WE．	1	6	$1,000 \mu \mathrm{~F}$		25 v	$1_{3^{\prime \prime}} \times 1^{\prime \prime}$ W．E．	4	6	$80 \times 250 \mu \mathrm{~F}$	275 V	4 －	9	0	
$32 \mu \mathrm{~F}$	150v		2	6	1，500 $\mu \mathrm{F}$		25 v		5	6	$100 \times 100 \mu \mathrm{~F}$	275 v	$3^{\prime \prime} \times 1 . \mathrm{M}$ T． 2.	12	6	
$32 \mu \mathrm{~F}$	350 v	$2^{\prime \prime} \times 1^{\prime \prime}$ T． 3.	3	6	1，500 $\mu \mathrm{F}$		50 v	$3^{\prime \prime} \times 1^{* \prime}$ W．E．	7	6	$100 \times 400 \mu \mathrm{~F}$	275 v	$4 \frac{1}{\prime \prime}^{\times 1} \times 1{ }^{\prime \prime}$	13	6	
32.4	450 v	17＂× ${ }^{\text {² }}$ W．E．	4	6	2，000 $\mu \mathrm{F}$		25 v	$3^{*} \times 1^{\prime \prime}$ T． 2.	6	0	$200 \times 200 \mu \mathrm{~F}$	300 v	$4^{\prime \prime} \times 1$ T． 2 ．	12	6	
$32 / \mathrm{F}$	500 v	$2^{\prime \prime} \times 1 \mathrm{~g}^{\prime \prime} \mathrm{T} .2$.	4	6	2，000 $\mu \mathrm{F}$		50 v	$23^{\prime \prime} \times 1{ }^{3 \prime \prime}$ T． 2.	9	0	$300 \times 300 \mu \mathrm{~F}$	300 v	$4^{* *} \times 1{ }^{\text {² }}$ T． 2.	14	0	

DAMAGED METER？

Have it repaired by Glaser
Reduce overheads by having your damaged Electrical Measuring Inst ruments repaired by L．Glaser \＆Co．Ltd． We specialise in the repair of all types and makes of
INSTRUMENT REPAIRS Voltmeters，Ammeters，Micro－
ammeters，Multirange Test
Meters，Flectrical Thermometers Metars．Electrical Thermometers， Recording Instruments，Leak
Detectors，Temp．Controllers，all types Bridges \＆Insulation Testers，etc．
As contractors to various Government Departments we are the leading Electrical Instrument Repairers in the Industry．For prompt estimate and speedy delivery send defective instruments by registered post，or write

L．GLASER \＆CO．LTD．
1－3 Berry Street，London，E．C．
Tel．：Clerkenwell 5481－2

THE ONLY
 COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD！

Send stamps value 9d．for 16 page bookles and supplemens ary daca sheets．Nos．I and 4 giving the fulless and lasess information
CECIL E．WATTS LIMITED
Darby House
Sunbury－on－Thames，Middx

BUILD YOURSELF A QUALITY TRANSISTOR RADIO！

RADIO EXCHANGE．

POCKET FIVE，MED
 ${ }^{\text {BAND，}}{ }^{5}$ tramisitors and ${ }^{2}$

 Aleo avalible Pokket Five
 SUPER SEVEN MED． $\underset{7}{2} 7$

 $51 \times 1 / \mathrm{in}$ ．ONLY $68 / 6$ ．P．\＆ P．3／t．Platsia
（free with kit）．

ROAMER SEVEN Mk．4．${ }^{7}$ wave．
bandy－MW1，MWy，LW，gW1 bands－MW1，MW／2，LW，gWi，
BW2，SW3 and Trawler Band 7 transistors and Trawler Band
rite rod aertal and telcecopic ritc rod aertal and telescopic
aerial．Rocket for car aerlal． $7 x$ aertal．gocket for car aerial． $7 \times$
tin．Apeaier．Airgpaned ganged tuning condenser，etc．Size $9 \times 7 \mathrm{x}$ $4 \operatorname{lin}$ ONLY $£ 5 / 18 / 6$ ．P．diP． $6 / 6$
Platha do partalint $3 / \cdots$ ．（Iree with kkt）

ROAMER SIX．${ }^{6}$ wavebanite MW1，MW2，SW1，$S W 2, \mathrm{LW}$ and Trawier Band． 6 transintors and
diodes．Fertite rod and telewcopio aerials． 3 in speaker．Top grade comb－ ponents．Size $7 t \times 5 / \times 1 / \mathrm{in}$ ．ONLI
79／6．P．P． $3 / 6$ ．Plan mad yart 79／6．P．\＆P．3／6．Plans mad parto list 2%（tree with kit）
Callera side entrance Bartalts Shoe Shop．
Phone ： 52367 Callerin side entrance Barfalks Shoe Shop．
Open $9-5$ p．m．（Sat． 9.12 .30 p．m．）

valuable books for the radio and electronic engineer!

Generation of High Magnetic Fields

D. H. Parkinson, M.A., D.Phil., F.Inst.P., and B. E. Mulhall, M.A., Ph.D.

A comprehensive study of the subject covering the whole range of the techniques which may be employed and also the whole range of possible fields up to the extreme limits.
160 pp. 81 illustrations. 70s. net, 7/s. Id. by post.

Transistor Bias Tables

Vol. II: Silicon. E. Wolfendale, B.Sc.(Eng.), F.I.E.E.

This collection of accurately computed tables has been compiled to assist anyone wishing to design or build a transistor amplifier. The tables are on similar lines to the author's previous transistor bias tables for germanium transistors but a more sophisticated computer programme has been written which enables a greater degree of optimisation to be built into the compilation of the tables. This should enable the tables to be used directly to provide the values of the three resistors required for the conventional bias circuit for silicon transistor.
82 pp . 25 s . net. 26 s . by post.

Electronics and Instrumentation

Robert L. Ramey

Provides a sound groundwork for understanding the basis of existing instruments and their applications: also of instruments which are likely to be invented in the future. A useful introduction for students of electronics, and a single course for students in other branches of science and engineering.
55s. net. By post 56s. 5d. 321 pp. 128 illustrations.
available from your bookseller
ILIFFE BOOKS LTD.
DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I

TOA PUBLIC ADDRESS EQUIPMENT IS HERE
 THERE'S MORE TO
 70.0 THAN MEETS THE EYE

Tough compact construction utilising the latest advancements in printed circuitary mean that TOA stationary or mobile P.A. system gives clear
powerful amplification plus maximum adaptabijity and convenience with minimal maintenance. TOA specialists in SOUND.

For full details:
AUDIO \& DESIGNS (SALES) LTD. 40 QUEEN STREET, MAIDENHEAD, BERKS Tel. Nos. 25630 or 25204.

TRANSISTOR \& VALVE AMPLIFIERS, MIXERS, MEGAPHONES, SPEAKERS, HORNS

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

1A7GT	76	7 Y 4 6/6	DH77	\%	EF97 7/8	PCLE4 71 -	UCFP0	$8 / 3$
1H50T	$7 / 3$	$10 \mathrm{Fl}{ }^{\text {8/9 }}$	DH81	12/6	FF183 6/8	PCL95 83	UCH42	$8 / 9$
1N3GT	719	10P13 10/6	D 632	7/9	Efris4 5/9	PCLBE 810	UCH81	6/-
185	$5 / 6$	12AT7 3/9	DK91	$5 / 6$	EH90 6/6	PENA4 $8 / 9$	UCL82	71-
184	4/9	12AU6 $4 / 8$	DK92	8/-	ELa33 8/6	PEN36C15\%	UCL83	8/8
186	$3 / 9$	12AU7 4/9	DK98	8/6	E134 9/-	PFL200 13i-	UP41	89
174	$2 / 9$	12AX7 4/9	D133	619	ELL 8 8/8	P1ヶ36 9/-	UF80	81
3 A 5	\%	12K8GT $7 / 6$	DL35	5/-	EL84 4/9	PL81 6/9	UF89	$5 / 8$
3Q4	5/8	$20 \mathrm{~F}^{2} 21016$	DL92	9/9	EL90 5/-	PL82 6/6	V1/41	8/9
884	4/8	$20 \mathrm{LI} 14 / 8$	DL94	5/6	ELS95 5/-	Plas a/3	UL44	20\%
374	5/6	20P1 9/-	DL96	6/-	EM80 5/9	PL84 8/3	UL84	
5U40	9/6	$2017319 / 9$	DY86	5/9	EM81 8/9	PL500 131-	Uxil	8/8
5040	$8 / 0$	20P4 17/-	UY87	5/9	EM84 6/3	PX25 -7/9	U Y 85	4/9
$5 Y 307$	5/-	25U40T11/8	EABC80	8/-	EM87 8/6	PY32 8/6	VP4B	10/6
5Z4G	716	$30 \mathrm{Cl} 511 / 6$	EAF42	8/6	EY51 6/3	$\begin{array}{ll}\text { PY83 } & 8 / 6\end{array}$	VP1321	21/*
8/3012	$11 / 8$	$30 \mathrm{Cl} 712 / 6$	EB91	2/3	EY86 6/*	PY80 5/3	W77	3/6
6 AL5	$2 / 3$	$80 \mathrm{Cl18} 11 / 9$	EBC33	710	E740 819	PY81 8/3	277	$3 / 8$
64M6	$3 / 6$	$30 \mathrm{~F} 6121-$	EBC41	81-	EZ41 6/9	PY82 5/-	Transisto	ars
8AQ5	4/8	$30 \mathrm{FL1}$ 13/9	EBF80	8/-	Erawa 4/6	1 Y 838 8/9	AC107	10/.
©AT6	4/-	$30 \mathrm{FL14} 12 / 6$	EBP89	5/9	E281 4/6	PY88 7/8	AC127	8/-
6BA6	4/6	30L16 12/	EOC81	$3 / 9$	K261 8/6	PY800 6/-	AD140	15/6
$6 \mathrm{BE6}$	$4 / 3$	30L17 18/	EOC82	4/9	KT81 12/*	PY801 6 /-	AP102	18/-
$6 \mathrm{BG6G}$	15/-	3014 12/-	E0C83	7/-	N18 5/6	R19 7/-	AF115	6/.
6BJA	8/8	30P12 11/-	ECCO4	6/3	N78 14/8	R20 1219	AF116	6/6
$6 \mathrm{BR7}$	$7 / 9$	30P19 12/m	E0885	5/6	N108 14/6	U25 11/8	AF117	5/-
$6 \mathrm{C86}$	8/6	30PLI 14/6	ECF80	\%/.	PC96 8/6	บ2! 11/6	AF118	8/6
6 Fl	719	30PL13 14/6	RCF82	6/9	PC88 $8 / 6$	U47 13/8	AF'124	$7 / 6$
6 F 13	3/6	30PL14 14/6	ECPF!	9/.	PC97 5/6	U49 13/6	AF125	$7 / 6$
6F14	\%-	36L60T 7/6	ECH35	e/.	PC900 7/8	U68 4/6	AF126	\%/-
OF^{23}	12/6	35 W 4 4/6	ECH42	9/5	PUC84 5/6	U78 3/6	AF127	710
6K7G	1/6	352407 4/6	ECH81	5/3	POC89 9/9	U191 11/*	0022	$9 / 8$
6 K 8 G	4/3	6083 12/6	ECH84	6/8	POC189 8/6	U801 13/*	0C25	$9 / 6$
6KGGT	$7 / 6$	Az31 8/-	ECL80	6/-	PCF80 $0 / 6$	U801 18/-	OC26	6/9
6 L 18	6/-	1336 4/8	ECLE82	8/3	PCPr8s $6 /=$	UABC80 5/9	OCA4	$3 / 8$
6V60	3/6	B729 12/6	ECL86	719	PCF86 $8 /$	UAF42 718	0 CLH	$3 / 3$
6V60T	6/8	CCH25 9/-	EF39	3/9	PCFP00 11/6	UB41 6/8	0 C 71	$3 / 6$
6X4	3/6	DAC32 713	EF41	9/6	PCF801 $7 / 9$	UBC41 6/8	0672	/8
6xbGT	5/9	DAP91 3/9	EF80	4/9	PCFP02 916	UBF80 8/-	$00^{\circ} 7$	18
7818	$10 / 9$	DAF96 6/-	EF8\%	5/-	PCFP05 $11 / 9$	UBF89	$0 \mathrm{C81}$	$3 / 6$
7B7	7/.	180090	EF86	8/3	PCP806 11/6	UBL21 \%	OC81D	$3 / 8$
7 Cb	121-	DF33 7/9	EP89	51.	PCFP08 12/6	UC92 5/-	$0 \mathrm{C82}$	$3 / 9$
708	6/8	DF91 2/9	EF91	3/6	PCLED 8/8	UCC84 719	OC82D	5/-
7H7	5/6	DF96 6/.	EF92	3/3	PCL83 8/6	UCC8s 6/6	OC170	5/-

READERS RADIO

85 Torquay Gardens, Redbridge, Ilford, Essex. ${ }_{7441}^{01-550}$

IW All valumixed $4 / 0 \mathrm{~m}$ mixed; $1 /-100$ in 100 so one ohmic value. 1/9 doz. mixed; $13 / 6100$ mixed; $12 /-100$ in $100^{\circ} s$ of one ohmic value. $\frac{1}{2} W$ doz. mixed; $16 / .100$ mixed, $14 / 6100$ in 100 's of one ohmic value. All mixtures to your specification. Large quantities stocked.
$10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$, All $25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega 250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2.5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$.
Volume controls: $100 \Omega 2,250 \Omega, 500 \Omega$, etc. to lom Ω linear, $2 / 6$
Electrolytics: $\quad 5,10,25,50 \mu \mathrm{~F} 10 \mathrm{~V}, 5,10 \mu \mathrm{~F}=25 \mathrm{~V} 1 \mathrm{Id}$. each 100 ; $200 \mu \mathrm{~F} 10 \mathrm{~V}, 25,50 \mu \mathrm{~F} 25 \mathrm{~V} 1 / 1 \mathrm{~d}$. each.
Peak Sound Products
PiR-KIFN. 3Pack, Adhesive copper serip 5fextin. or itin. 2/., Transistorised Stereo Amplifier type SAB-8.
Amplifier kit $£ 10 / 10 /=$, power supply $£ 3$, cabinet $£ 3$.
DISCOUNT ON ALL ORDERS: over $£ 3,10 \%$; over $£ 10,15 \%$

SILICON

Low noise, high gain
Gen Cl69 2/6, BC109 4/-, 2 N37075/-. PNP: 2N4058 5/6.
General purpose high gasn: 11 2N2926/yel 3/6. PNP: $2 N 40625 / 6$.
High Power:
NPN: 2N3055 f1, 40465 16/3, MJE521 18/3, PNP: MJE371 $21 / \mathrm{h}$ Field effect:
N-channel: MPFIOS 10/-, 2 N3819 14/9, P-channel: 2 N3820 $24 / 6$.
Many others including: 2N3241A 7/3, BC167, 2/9, BC107 4/a, 2N3702 4/-, GERMANIUM
Many types including: ACY22 3/6, 2G308 6/9, 2G309 7/9, 2N1304 4/-1 11/9, AD $619 /$, ADI62 $9 /$.
MINIATURE SILICON DIODES $/ /-$ each, 30 V 75 mA
Other diodes: OA47, OA70, OA81, OA90, OA91, OA95 2/-, OA202 3/ALL OOOD BRAND NEW. NO SURPLUS. FAST DELIVERY
DISCOUNTS: 10% over $\mathbb{3}, 15 \%$ over $£ 10$.
ELECTROVALUE, 6 MANSFIELD PLACE, ASCOT, BERKSHIRE

WIRELESS WORLD DIGITAL COMPUTER

Send for our complete part
list. Competitive prices for all components. Transistors, Diodes, Resistors, Capacitors, Neons, Veroboard, etc.

FAIRCHILD AF 11 2OW SOLID STATE AMPLIFIER KIT £8.8.0d Complete Includes Printed circuits
board. Semiconductors. Resistors, Capacitors, Heas sink and short sircuit protection components. S.A.E.
for details FREE CATALOGUE: Please send large S.A.E. $\left(9 \frac{1}{2} \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in}\right.$.
min.).

POST \& PACKING 9d. per order EXPORT ENQUIRIES WELCOME
transistor mandals
R.C.A. $27 / 64$

$27 / 62$	
	G.E.

retail and wholesale SUPPLIED.

LATEST
GARRARD

SRP12	£4.7.6
Spes (De Luxe Die Clas) .. $\quad \frac{E 9.19 .0}{}$	
Model 50	27.10.0
Model 2.000) $\underbrace{}_{\text {66.10.0 }}$	
Mrodei 3.0	
401 (.).......... 827.10	
ERbo Stereo Ceramic C	
PLINTHS	
Tuak de lexe tinusis cut out for grat	
Aтвій	
covero complefe $£ 5.15 .0$	
Pab N 0 . dol. ATa. sumert new linggral	
\%-.70.0	£9.19

BARGAIN PARCELS

 Iteumal we are nou pachlug thenl
\qquad
HEAVY DUTY 14/20 watt AMPLIFIER KITS

TEHTUGAL Thadine
anl Mail Orders to arighton please
$2 / 9$ 7/6
SILICON H.T. RECTIFIERS$\operatorname{cis}_{\text {ir } 6 / 6)} 2 / 9$

2639

\star LONDON- 10 Tortenham Court Rd. ネ PORTSMOUTK- 350.352 Fratton Rd. Tel: 22034 \# SOUTHAMPTOK- 72 East St.
WORTMING 132 Montague st. * BRIGHTON-

BECAUSE OF DEVALUATION AND CONSEQUENT IN. CREASE IN PURCHASE PRICE WE REGRET WE HAVE TO INTRODUCE A SURCHARGE OF 15% (Approx. 2d in Is.0d) ON ALL PRICES ON THIS PAGE.

SOME HARD-TO GET-ITEMS IN STOCK

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN $\&$ FOR HANDLING AND POSTAGE. NO CO.D. ORDERS ACCEPTED. IN ORDER TO AVOID DELAYS PLEASE SEND ALL MAIL ORDERS AND CORRESPONDENCE TO OUR HEAD OFFICE AT 44A WESTBOURNE GROVE, W.2, AND NOT TO THE RETAIL SHOP

WE REQUIRE URGENTLY; KLYSTRONS $2 K 25$ and $723 A / B ; V A L V E S ~ 4 C 35,813,5 C 22,845,810,30 \%$ EACH PAID SUBJECT TO TEST.

HEADPHONES No． 10 ASSY． （OR CANADIAN No．I ASSY）
 terminuted with army type 5 －point moulded conncetor， cowe luspedance．Grand new，20V－ea．
1．\＆1 1 ．3kj per eet

SLIDEWIRE WHEATSTONE BRIDGE

Type 70DA and 70DV． 1.5% Accuraby hange．Fliwh mounterl，
 Type 85 DA snd 85 DV ．As man，dita．Hantre．Flush nounterl

RANGE	70DA	85DA	120DA
	68／－	58\％－	82／－
	62／－	49－－	74／－
1．5upes		44 －	
$\because 354.1$	54－	42 －	651－
Stiples	52－		
limys	46．	36 －	60\％－
		－	$581-$
25 ma			581
40 mad	460－	34／－	58－
I00ma		34／－	
13 mmA	46－		－
23 mm 1	46 －	34／－	－
fommia	$46-$	34／－	
11.	48 －	34－	58
1.5 ：		－	58－
351	46 －		58 －
	－	35\％	60／－
40.3	－	391－	64／－
RANGE	300V	85DV	120DV
4．v	82\％		－
10 V		40／－	69：－
U5V	－	40.	
40 V	82.		
niov	$82 /-$	－	62.
100 C	－	48．	62 －
1501	82\％－	46.	65／－
400 V		4\％6	68－
now	584	$50{ }^{\circ}$	7%

ZENER DIODES

5\％10－WATT STUD MOUNTED

ORY REED INSERTS

 two upertited by pertaineen magruet of

BEEHIVE TRIMMERS

MICROWAVE DIODES
Cartrikse Type

 34．sec me／s．： 1×3 ：3u：（cvogsth）， 65 －

AVALANCHE SILICON RECTIFIERS

CATHODE RAY TUBES

 Hase Overall lemuth 7 （bl
Pねば…．．．40／＝

 Gi．Svi lean
VR10．

 PトにはF：．．． 55

 s12 F Jtage．Overall lerogl h lisin．
 \qquad
 Tubers．

VALVES FOR EXPORT

Herw aty a few examplew tron our whock of over 2,500 items．

OA2	$31-$	2152	$3 / 11$	6B4O 12／6	6an70T $2 / 8$ 6VGGT $2 / 2$	
0 O8	$5 / 9$	2182\％	184	$6075-13 / 11$		
OH2	$3 / 6$	3045	46%	60w $49 / 9$	210A	20.8
Oc5	$14 / 4$	3 V 4	$3 / 2$	01084 9：2	311 A	2819
0×3	47	5U4GB	3.11	6.4 61	3\％A	83．
O123	$4 / 4$	5Yage	$3 / 6$	6．J5GT 2：6	2398	2\％
18：4t	$3 / 6$	5\％40T	$4 / 4$	$6.17 \quad 512$	807	6／4
104	26	GAK5	$8 / 6$	61ARC 411	811A	$34 / 6$
1v2	$3 / 9$	－19L5	118	$6 \times 7 \mathrm{CT} 4 / 4$	813A	70／．
17：	202	6AQ5	2／8	6sL76T ${ }^{2} / 8$	8：911	\％

TH：ABOVR PRICYS AHE FOR DIHELCT EXPORT 1．F．FOR DELIVERY TO OVERKFIAN ADDR KRS，OH TO THLE RUPPLEKg，FOH VALVFA TYPF，MARKLD AND EULK PACKRD，IN L．OT\＆OF 100 PER TYPE．
FULL EXPORT PRICE LIST AVAILABLE ON REQUEST
OUR NEW 1987／b8 VALVE CATALOGUE AND PRICE LIST IS NOW READY．IT CONTUNB FULA TEFFERENCT： 1haT I ON NEMHCONDECTORS．CATHODE：IRAS TUBKS． f：TC：Plesce wend win．e．（quarto．）．

R．S．T．VALVE MAIL ORDER CO．
146 WELLFIELD ROAD，STREATHAM，S．W．I6

A731		EY51		6AQ5 5／8	85.	0ces 15／－
cle	12／－	EY81	1－	6AB6 ${ }^{\text {8／－}}$	$90 \mathrm{AO} 45 /$	002
Cblat	15／－	F．Y83 8／8	QS150／36	6AB7 15／－	90AV 45／－	OC23 7／6
clils	21／－	EYrat $7 / 6$	20	BAT6 4／－	$30 C 1$ 12／－	Ocus 16／－
D． $1.14 \% 1$	4／＝		／45	$6 \mathrm{B4O}$ 16／－	$900025-$	O＜－9 15／－
118）	813	18\％41 8／－	$20 /$	$6 \mathrm{BA6}$ 4／6	500 25 －	O4：3is 11／6
$1 \mathrm{CL} \times 10$	7／－	E：\％80 5／－	48150／80	6 6ES $\quad 4 / 6$	15018．3 9／8	OCH4 4／6
D1\％01	3／－	6\％81 5／－	$20 / 6$	6H16 7／－	15418：1 8／6	$0 \mathrm{O} 454 / \mathrm{L}$
10／4．	6／3	（ITIC 17／6	481209 $2 / 8$	filli $71-$	sut 85－	ut＇7t 4／6
D113）318	89／	1：1／30 10／－	QV03．12	6BK4 27／6	8033 35－	0078 8／－
11691	51－	1：732 9／6	10／－	6 BNB \％ $7 / 6$	807 71－	OC74 6／－
DK ${ }^{\text {che }}$	$81-$	11284 10／－	Q vol－7 12／6	6B97a 7／－	81130 ，	$0 \mathrm{Cz5}$ 6／
ПК！ $\mathrm{Mi}^{\text {c }}$	7／－	17237 12／6		6ß1／7 8／6	813 35	0 06\％
13184	25／－		$\text { Q VOK. } 20$	1888 $26 / 8$	sbiai 13／6	OC77
1）（A）${ }^{\text {a }}$	$4 / 9$			6BW6 $71-$	5651 7／6	OCN1
1 T 1.64	$6 / 8$	（1）	R10 15／－	$\mathrm{HBW}^{6} 9 / 6$		
Thast	71－	$\begin{array}{ll}\text { KT61 } & 12 / 6 \\ \text { KTai } \\ 16 /-\end{array}$	H17 8／－	6C4 $2 / 9$	56548 8／－	OCXID
131810	12／8		H 18 119	WCAt 5／－	3687	Urwish 5／6
DHSA10	301－		R19 \％／－	1Сbm6 201		OCs1 D3
LLA819	30－		RGJ／500	$\begin{array}{rr}6 \mathrm{CLH} & 5 / 9 \\ 6 \mathrm{CL} / \mathrm{i} & 8 / 8\end{array}$	$\begin{array}{ll}5691 & 25 / \\ 5749 & 10 /\end{array}$	$\begin{array}{ll}\text { OCR2 } & 6 /- \\ 8 /-\end{array}$
19374	5－	KT81(oLC)	801－			
1PVM	6		$\begin{array}{ll}\$ 130 & 25 /- \\ 8130 \mathrm{P} & 25 /-\end{array}$	6CW4 121－	376310	0 Cxib
$1 \mathrm{YPa}^{18}$	$6{ }^{1}$	35／－		6104 15／－	58422 65／	Own
Esmex	12 －	KTW\％1 10／－	\＄1P41 3／6	6DK，9／－	59463 10－	OClim
EPrer	176			6F23 13／6	Gi05\％10／	$0 \cdot 170$ \％
F18：94？	$22 / 6$	$\begin{aligned} & \text { KTW62 } 10 \\ & \text { M1/ } 17 / 6 \end{aligned}$		B．j54	13048 10／	OC＇171
E． 13×0	6／6		STVE80／40 250		＋6059 18／－	O＜2\％7／8
1：13：9	$31 /$	878 15／－			60\％0． 6	MX642 3／6
E16ss3	$1{ }^{-}$	P（ewn 8／6	901－	$\begin{aligned} & 8 J 70 \\ & 6670 \end{aligned}$	H06\％12－	X Alol
1815\％0	616	Tlas 8／6	SU2100 12／6	6 K 8 c	（1005：14／－	XA111 3／8
FBITRAS	8／6	P69\％ $7 / 6$	$8 \mathrm{SU}^{15015} 12 / 8$		81063	X A112
Brluirl	$27 / 6$	［4xom 9／6		1897048867	6084	X A125
HCLLame		$\begin{array}{cc} \text { ruxs } & 5 / \\ \text { truxs } & 10 \% \end{array}$	U19．U24／－24／－			X A141
	30／－			tig．rial f18LITIT		$\begin{array}{lll}\text { XAlat } & 8 /- \\ \text { XAlis } & 8 /-\end{array}$
HCCS3	15／－	1 Cr＇mo	$\begin{aligned} & \text { U24 } \\ & \text { U23 } \end{aligned}$		$\begin{aligned} & 6067 \\ & 60060 \end{aligned}$	
131×40	$9 / 8$	1＇crism	U125		$\begin{array}{rrr}6 r+5 & 25 /- \\ 9003 & 9 /-\end{array}$	8Al43 8／－
Hexst	$3 / 9$	Pl｜at $7 /-$	U191 13	$\begin{array}{ll} \text { 6Y/94: } & 4 / 6 \\ \text { tX4 } & 3 / 6 \end{array}$		TUBES
Fischer	$4 / 8$		U7404 11／9		\＄003 9／－	${ }^{1} 11^{11} 880 \%-$
Suxas	5／9		（1AHC＊4） $5 / 6$	387 71－	Silicon Rectifiers	
Pachs	5／－	PCLLsa 8／6				3日P＇50，－
$12 \mathrm{CO} \mathrm{S}^{8}$	7－	P6：174 8／6		$\begin{array}{ll}7 \mathrm{CS} & 15 \\ 768 & \text {／－}\end{array}$	BY1 $1600^{5 / 6}$	20P1
Ficlesal	6／6	1＇5NR420／－			Diodes	\＃EA1
Ferse	7－	PLiN45DD		$\begin{array}{lr}7117 & 6 /- \\ 787 & 17 / 9\end{array}$	${ }_{\text {Transistors }}^{18131} 4$	$318 P 8$3891
E1315	11／－		UCLAE 7／－			
16CHst	9／－		$\begin{array}{ll}\text { UGLA3 } & 8 / 9 \\ \text { UL＋1 } & 8 / 9\end{array}$	7 71	$\begin{array}{ll} 29102 & 4 / 3 \\ 20: 210 & 12 / 6 \end{array}$	5 SPl
स（＇14］	3／3					
ECLIns	7／－	PL，36 9／－	$\begin{array}{ll}\mathrm{UL}+1 & 8 / 9 \\ \mathrm{ULS} 4 & 6 \%\end{array}$	$\begin{array}{ll}111: 3 & \text { 2／－} \\ 12 A C & 101-\end{array}$	$\begin{array}{cc} 2 n 210 & 12 / 6 \\ 203881 & 5 \end{array}$	
HCLSOO	8／6	P1asl $7 / 8$	$\begin{array}{lll}\text { U184＊} & 6 /- \\ \mathrm{UY} 41 & 8 / 3\end{array}$		24338329401	$\begin{aligned} & 881, \\ & 88 \mathrm{D} \end{aligned}$
	$6 / 3$	PL84 816	$\begin{array}{ll}\text { UY45 } & 5 /- \\ \text { VP4 } & 25 /-\end{array}$	$\begin{array}{cc}\text { 12ALA } & 9 / 8 \\ 12 A H 8 & 30 /-\end{array}$		
ACLIma	$9 / 6$	1＇L500 13／6				
mitis	$8 / 9$	$1 \times 14 /-$	\checkmark R105／30 5 －	$\begin{array}{ll}12 \text { ATG } & 4 / 6 \\ 12 A T 7 & 3 / 8\end{array}$	20414	
ERO？	201－	$\begin{array}{lll}1 \times 25 & 12 / 6\end{array}$			20.145209416	
krai	7）	PYsy 8／6	VR160／30 $5 /-$	$\begin{array}{ll} 1 \because A \cup 7 & 4 / 9 \end{array}$		
EFP35	8／－	1Y33 8／6		$\begin{aligned} & \text { 12AX7 } \\ & \text { l2BAA6 } \end{aligned}$	${ }^{2} 11417$	CVISH7 504－Cvicar 35／－
Firso		L．YH1	V81 6／－			
Rivat	$6 / 3$	1－Y82 5／6	Zatis 15／－	$\begin{array}{lr} \text { I2haG } & 5 / 6 \\ 12 B E 6 & 5 / 3 \end{array}$		Datisz
EF89	5－	PY83 01－	78198754		AC107	$\text { DH3/41 }{ }^{90 /-}$
41	$3 / 6$	1Y800 7／－			$\begin{array}{ll}\text { AClo } & 7 / 6\end{array}$	
rirse	2／8	$\begin{array}{ll} \text { pysol } \\ \text { 1/230 } & 10 /- \end{array}$		12К B＇T $^{8 /-}$		$\text { D } 13 / 10180 /-$
6F98	8 －		$\begin{array}{ll}\text { zROMU } & 15 /- \\ \text { OAZ } & 5 / 9\end{array}$			E $550+/ \mathrm{B} / 16$
E1P183	61	$\begin{aligned} & 12 z 30 \\ & \text { QQvor/6 } \end{aligned}$		$\begin{array}{ll} 20 p 4 & 19 /- \\ 2084 & 8 / 3 \end{array}$	$\begin{array}{ll} \text { ACY19 } & 4 / 9 \\ \text { ACY } 20 & 4 / 9 \end{array}$	
RFF184	61－	QQvos/io			$\begin{array}{ll} \text { ACY21 } & 4 / 9 \\ \text { ADD } 140 & 13 / 6 \end{array}$	LClisio 35／－
1518404	21 －		O／4 1133 GT $8 / 6$ 18	$\begin{aligned} & 2584 \\ & 257504 \mathrm{~T} \\ & \hline 8 / 3 \\ & \hline \end{aligned}$		WCR35 50／－M Whil $60 /-$
EFFP6	$10-$	30／－	$\begin{array}{lr}2021 & 5 /- \\ 216218 & 201\end{array}$	25760T 8／6	Alild $71-$	
1：1190	76	QQvo3／：0		$30 \mathrm{Cl} \mathrm{S}^{\text {d }}$ 13／6		$\begin{aligned} & \text { M Whi•2 } 601- \\ & 090 \quad 801- \end{aligned}$
1：L， 38	12／6	QQvos/15	$\begin{array}{ll}3.35 & 7 /- \\ 31328 & 40 /-\end{array}$	$30 \mathrm{Cl} 7^{15} \quad 15$	AF゙16 71－	4 80／－
Eilat	，			$\begin{array}{ll}30 \mathrm{~F} 5 & 15 / 8 \\ 30 \mathrm{FLI} & 18 /-\end{array}$	OET571 5／－	
PISt	$8 / 6$	$\begin{aligned} & \text { QQVON/ } 15 \\ & 105 /- \end{aligned}$	31828 3045		416T875 6／－	－veriss
Plat	$8 / 6$	QQVOAi／40 90	＋X1504 ${ }_{\text {95／－}}$	$\begin{array}{ll} 30 \mathrm{L15} & 15 / 3 \\ 30 L 17 & 14 / 3 \end{array}$	VKTश115／－	
H181	79				NKT＊u4 4／－	50／－
ELAL	$4 / 3$	QQPo／10 $701-$		$\begin{array}{ll}30 L 17 & 14 / 3 \\ 301919 & 13 /-\end{array}$	NKT218 $7 / 6$	1138 A
E1s ${ }^{\text {ch }}$	$7 / 6$		5Usia 4／－	$30 \mathrm{PL4}$ 15／－	NK＇2178／－	A0
F，	$7 / 6$	Qs70／20 5／6	5V4G 8／－	30 PLI3 17－	NKT214 6／－	38 A
Alusitio	22%	0875／20 5／6	5Y3CT 5／－	$30 \mathrm{P}^{1,1 / 116 / 3}$	NKTepsish	35
	$81-$ $81-$	QSitisi ${ }_{201-}$	$\begin{array}{lr}51 / 46 & 8 / 9 \\ 4 / 301 / 2 & 13 /-\end{array}$	$\begin{aligned} & 30 \mathrm{LiUT} 5 / 9 \\ & 35 \mathrm{w}_{4} \end{aligned}$		${ }^{16} 80$
Fiasel	16／－	0883／3 ${ }^{201-}$	$\begin{array}{ll}\text { 4／30L2 } & 13 /- \\ \text { 6AK5 } & \text { 4／6 }\end{array}$	$35 W 4 \quad 9 / 8$		88517A ${ }^{80}$
6LIMO	20 －	Qs $0^{2} / 10$ 4／－	ВАКG 8／6	60C\％5／8	NKTa\％ 5 －	
1301	15	Cssas／10 3／6	6 A1，5 3／－	－0，	N1くT713 7／6	5173
Fi3so		Q $8108 / 45$	$6^{6 A 116} 3 / 6$	31／－	0CL6 20／－	46
184		151－	6AN8 10／＝	5）－	$0 \mathrm{Cl} 1917 / 6$	－
1， 3 S2	25	8150／168／－	6AQ4 4i－	）	$00 \leq 0$	46／－
All	24	brand ne boxed Hour Expr er Service 6d．per Val	and s Mail		5at． 9 a．m．$=$ \＄at．1．30－2 Daily to 01.7690199 FOR LIST of	$\begin{aligned} & 5.45 \text { p.m. } \\ & 30 \text { p.m. } \\ & \text { allers } \\ & 1649 \\ & 2,000 \text { TYPE } \end{aligned}$

RESISTANCE WIRES
 EUREKA－CONSTANTAN Most Gauges Available

NICKEL－CHROME MANGANIN NICKEL－SILVER COPPER WIRE

ENAMELLED TINNED，LITZ，COTTON AND SILK COVERED
SMALL ORDERS PROMPTLY DESPATCHED－B．A．SCREWS，NUTS． WASHERS，SOLDERING TAGS，EYELETS and RIVETS EBONITE And BAKELITE PANELS，
TUFNOL ROD，PAXOLIN TYPE COIL FORMERS AND TUBES， ALL DIAMETERS

POST RADIO SUPPLIES
33 Bourné Gardens，London，E． 4 Telephone 01－254－4688

DUXFORD ELECTRONICS（W．W．）
 \section*{DUXFORD，CAMBS}

C．W．O．P．\＆P．I／\＆．Minimum order value 5／．（Trade inquiries invired） $\leq t M$ ， $30 \%>1$ M，Body dia．$\frac{1}{4} \mathrm{in}$ ．Spindle lin．$x \neq \mathrm{in} . .2 /-$ each．Linear：Ik， 2.5 k 5 k ，etc．，per decade to 10 M ．Logarithmic： 5 k ． $10 \mathrm{k}, 25 \mathrm{k}$ ，ere．，Ler decade co 5 M ．
 5 k ，etc．，per decade to 5 M ．Miniature： 0.3 W at 70 C ． 20% ： 1 M ，$+30 \%>\frac{1}{5} \mathrm{M}$ ． Horizontal（ $0.7 \mathrm{in} . \times 0.4 \mathrm{in}$ ．P．C．M．）or Vertical（ $0.4 \mathrm{in} \times 0.2 \mathrm{in}$ ．P．C．M．）mounting $1 /-$ each． Submin． $0: 1 \mathrm{IW}$ at $70^{\circ} \mathrm{C} \quad 20 \% \leq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}$ ．Horizontal（ $0.4 \mathrm{in} . \times 0.2 \mathrm{in}$ ． P．C．M．）or Vertical（ 0.2 in ．$\times 0.1 \mathrm{in}$. P．C．M．）mounting，lod．each．
RESISTORS（Carbon film）：High stability，very low noise， 1 W at $70^{\circ} \mathrm{C}$ ． Body 1 in．x in．Values in each decade： $10,11,12,13,15,16,18,20,22,24,27$ $1.2 \mathrm{M}, 1.5 \mathrm{M}, 1.8 \mathrm{M}, 2.2 \mathrm{M}, 2.7 \mathrm{M}, 3.3 \mathrm{M}, 3.9 \mathrm{M}, 4.7 \mathrm{M}, 5.6 \mathrm{M}, 6.8 \mathrm{M}, 8.2 \mathrm{M}, 10 \mathrm{M}, 10 \%$ 2d．each． SILICON RECTIFIERS： 0.5 at $70^{\circ} \mathrm{C}$ ． 400 P．I V ，2／9． 800 P．I．V．，3／3，1，250 P．I．V． 3／9． 1500 PIV 4／．
SEMI－CONDUCTORS（AII NEW）．OAR，OA81，1／6．OC44，OC45，1／9． OC71，OC72，OC73，OC81．OC8ID，OC820，OCI7UL OCI7，2／3．O

The＂MIRACLE＂Range of Soldering Irons fitted with the Bi－Metal，Steel held Solid Silver Bit．

8 Models－Any Voltage．Over 150 type bits． 6 v ．to 240 v ． 10 W ．to 500 W ．
LONG LIFE BITS．EASY BIT／ELEMENT INTER－ CHANGE．NO MAINTENANCE IN USE．PER－ MANENT BIT SHAPE AND SIZE．
One Customer writes：＂．．．This iron has been in continuous use for about EIGHT MONTHS and it would appear that it now needs a new bit．＂
We cloim long life．Our customers PROVE it．
NOW New formula multi－grade Cored Solder
LONDTRA LTD．Kelway Works，
Kelway Place，London，W． 14 Tel：（01） 3857606

[^8]

Same as 4．Station Intercom for two－way instant conversation．
Ideal is Baby Alarm and Door Phone．Complete with 66 ft ． connecting wire．Battery 2／6．P．\＆P．3／6

7－STATION INTERCOM

[^9]Temme IEPHONEAWPIIIIER

Why not increase efficiency of Office，Shop and Varehouse with this incredable De－Luxe Portable Transistor TELEPHONE AMPLIFIER which en－ ables you to take down long telephone messages or converse without holding the handset．A userul ollice aid．A must for every telephone user． Useful for hard of hearing persons，On／ofi switch． Volume Control．Operates on one 0 v，battery which lasts K ． $2 / 3$ for Battery Full price $2 / 6$ in U．K．Add $2 / 6$ for Battery．Full price

WEST LONDON DIRECT SUPPLIES（W．W．）， 169 Kensington High Street，London，W． 8

CLASSIFIED ADVERTISEMENTS

DISPLAYED SITL'ATIONS VACANT AND WANTED: 555 s per single col inch
LINE advertisements (run-on): $6 /$. pte line (appros. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /$ SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions piovided a contract BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wircless World, Dorset House, Stamford Street, London, S.E.I
No responsibility accepted for

Abstract

A Lumited. TO hiteel tas requiremenus ot constant gruwth and expansion, We Invite applications trom techittclans and Eukiticers ior an o.erseas taiter ith Nurth, hes arablan East Arrica, the have recenty trade such as Ground Wiretes Fitter In the R.A.F. Radio Electitcal Artificers in tile Rowal the malnR.E.M.E.. Army, or nase olher experlence hn the matntand nuviation alds. ue snould be interwied to hear from you. Successtui candidaies would nurmally s.end niay be offrid immedate partise celve a lax-fiee salary ulta matried and child allow. celve a lax-free sulary and accommodation. tuchelor or ances of appropnated free: otner benefis faclude gezesous U.K. lea.e and membersin of an sion and life assurance sehenies. perconmel Manager Son and lite assirance seheme perconnel Mablager, Wrirnational Aerado iomited. Aeratlo House. Haves Rd.. Souihall. Mícilese. EXPERTENCED Cineml Sound Enetimer requited for Expervence and installation: Roud salary and cond tlons-Bux W.W. 1926. Whreless World. EXPERIENCED enthusiasts reoulred. London. W. 1 for Experientilna. moblle work. erenings. weekends state esperdence Wireless World. TRAINED engineers required tor interestis: work of H radlo radar equipments at a Hying unit ${ }^{\text {an }}$ North Llanbechr. Mertometh. N. Wales. $\mathbf{R}_{\text {ADIO Ensmeer Alechanic, first-class connunicat }}$ Rions wotk, requatred by large company encineers A puLL-TiAE techmical experienced salesman previous experience sales: write giving detatls of age previous experience. salary required io-The Manager Henry's Radio. Lid. sos. Edpwary Rd. London. W. Hearing atds etransistor) service ehigineer u ith view Teventually fo conirol smalt service and despatci dept.. Londoll area. Good shlary ahd orcasyects - wireless World

TV Servlce Envineer and Tralnee Lor London over 40 years: goad positin the hiahest standing; ested. apsollcants with good position and prospects for sultable and details of experdence.-Box w.W. w . Wiate axe World.
 sary licensea enzineers anthe to commence Radio Workshols, Alter sary equibment propositions may be considered. Wrlte tult delails to-Wnlte. Walinam Airfeld. nowr Madenhear Berks.
TEST Engineers. Micro Equipnapnt. Several posing younk. expanding company, Salary rause e750 Re searh Omicer. Flann Microwave Instrumenis. Lid, 9 WORLD-WIDE News and Newsicture arency requres ENGINEEFS for exiremely interesunk wor's ith Lincon. Europe. M!ddle East ajd Africa. qpplicants must have a sumnd knowledife of Radfo/Electiontes and gens.
 salary. languazes spoken. etc.. to Mr. D. Thll. Dtrector
of Communtcations. Untued Press Internat!onal. 8. Bouverle St.. E.C.j.
WEST Sussex County Ecucation Commitree. Worthing Worthlng, Sussex. Applleatlons are Invlied for the Past of ELECTRICAL LABORATORY TECHNICIAN to maintain and consiruci electronlc equipment. Salars Scale N.J.C. T. 3 , ER60- £1.020 pel annum. Commencink sulary according io age and expertenoe. Additonal
remuneration payable in respect of certain sbectaltst quallfications, Supprannuable post-Application form qualincatians from ine Princlizal.
NORTH.EAST ESSEX TECHNICAL COLLEGE. Electrical Enclneering. An Assistan, Lecturer. Grade
B. In either Aoplied Elecironics or Telecommunications is recuitred. Applicants should or Telecommunications teaching experience, onether have Industrial aridoi ficarions. Salary scale: c955- ©1.625 ph.appius degre sllowance.
given. Application forms and further particulars ur avatable from the Principa! to be returned withar ia

The Civil Service

Professional and Technical appointments

RADIO AND ELECTRONIC ENGINEERS BOARD OF TRADE (CIVIL AVIATION)

Qualified engincers required as Assistant Signals Officers in the field of Civil Aviation for he provision and installation of advanced electronic equipment-including the latest type of radar, telecommunications, navigational aids, etc.

QUALIFICATIONS: Degree with Ist or 2nd class honours in Electrical Engineering or Phvsics, or lave passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ae.S

AGE: 23 and normally under 35 on 31st December 1967 (extension for Forces and Overseas Civil Service)

SALARY (Inner London): £1,110- £2,052 depending on age and qualifications. Good prospects of promotion

Pensionable appointments. (Reference S 85 ASC)

EXECUTIVE ENGINEERS
 AND ASSISTANT EXECUTIVE ENGINEERS POST OFFICE

Applications are invited for posts as EXECUTIVE ENGINEERS and ASSISTANT EXECUTIVE ENGINEERS in London and provinces for work on the development and design of communications systems and postal service equipment

QUALIFICATIONS: Executive Engineers: Degree in Mechanical or Electrical Engineering, or Physics or Applied Physics, or have achieved Corporate Membership of the I.E.E., I.Mech.E., or I.E.R.E. Final year students may apply

Assistant Executive Engineers: G.C.E. (or equivalent) pass in English language, and one of the following: H.N.D., in Electrical or Mechanical Engineering or Applied Physics; pass in (or exemption from) Parts 1, 2 and 3 of the examinations of I.E.E., or I.Mech.E.; a pass in (ormprion Sections A and B of the IER.E. examinations; a pass in (or exemption from) Parts 1 and 2 of the examination of the Council of Engineering Institutions, in subjects acceptable to one of the Institutions named above

SALARIES (national): Executive Engincer: $£ 906$ (at 21)- $£ 1,677$ (at 34 or over)- $£ 1,884$.
Assistant Exccutive Enginecr: $£ 734$ (at 18 or under)- $£ 1,097$ (at 25 or over)- $£ 1,631$.
Assistaries increased for officers serving in London. Non-contributory pension. Promotion prospects

AGF: Executive Engineer: At least 21 and under 35 on 31 st December 1967. Some ex tensions for service in H.M. Forces or Overseas Civil Service. Assistant Executive Engineer At least $17 \frac{1}{4}$ and under 27 on 31st December 1967

Applications for both posts from well qualified older candidates will be considered. (Reference: S 353)

APPLICATION FORMS are obtainable from the Secretary, Civil Service Commission, Savile Row, London, W.I. Please quote appropriate reference.


```
        ELEGTRONIC TEST & SERVICE ENGINEERS (ALL GRADES SALARIES UP TO &1,600 p.a
        TECHNICAL SALES ENGINEERS (EXPERIENCED) SALARIES UP TO £2,500 p.2.
            TECHNICAL AUTHORS (ALL GRADES) SALARIES UP TO &1,800 p.3
                                    ALSO
                                    ORAUGHTSMEN, PRODUCTION ENGINEERS
```



```
    areas. If you love latl at least "years" experitut in Dbitsh ludustry and require a job which oflers frst class
    prospects, top salaries and interesting work
                                    Pronc lany fimc dup or niphr) or write lo:-
```

```
ELECTRONICS APPOINTMENTS LTD.,
Norman House
105-109, Strand, W.C. 2
TEMple Bar 5557-8
```

hatescovi hemyom fields can be arranged. circuitry is essential.

Careers for VIDEO ENGINEERS

 COLOUR AND MONOCHROME
Service and Commissioning Engineers

CROYDON AREA

Additional engineers are required with thorough knowledge of professional television equipment for studio and industrial applications, Video recording and some knowledge of colour television techniques. Training in the last two

For work on colour equipment we seek services of experienced Video Engincers. Thorough understanding of transistorised pulse

Conditions of employment are attractive.
Apply in confidence to Plant Personnel Officer,
Peto Scott Limited, Addlestone Road, Weybridge, Surrey. Tel: Weybridge 455II.

Test Engineers

WEYBRIDGE AREA
Electronic

Engineers! Join a Promotion-winning Team now

Gearing for 1968's big expansion programme of the Micro Switch and Meter Division has meant rapid promotion for many Honeywell engineers . . and has created some gold-plated opportunities for newcomers to our sales teams. Attractive positions exist in the London, Manchester and Birmingham areas, so if you are keen, qualified and looking for the rewards that match your talents read on:

Senior Outside Sales Engineers

If you have about three years selling experience, preferably in the Electro-mechanical or Electronic field, backed by an H.N.C. or equivalent you can now gain your full reward. Become an Outside Sales Engineer with our successful London or Birmingham Sales Force.

Senior Engineer

This is a key position and the successful occupant will be treated accordingly. He will be a qualified Engineer with experience in the design and/or application of Industrial Sequence Controls, including Solid State Devices. As Senior Engineer he will assist the Product manager and be responsible for planning new products with liaison between Sales and Factory from concept to manufacture. This London Head Office based position is permanent, pensionable and the successful applicant will be given assistance with relocation costs if necessary.

Outside Sales Engineers

We also need Sales Engineers in London, Birmingham, and Manchester and YOU can join one of these pro-motion-winning teams if you have around a year's selling experience plus an O.N.C. qualification or its equivalent. Honeywell recognise and reward ambition and such men whose outside experience may be limited, will still be strongly considered for these appointments.

Sales Engineers

Inside Sales Engineers are also wanted in London, Birmingham and Manchester, preferably with O.N.C. or its equivalent. These positions are ideal for the ambitious young man seeking a career in sales.
All positions offered carry attractive salaries and fringe benefits, and the promotion door at Honeywell is always open. You will also enjoy the prestige of working for one of the world's leading and pace-setting companies in the micro switch field.
Apply now, giving position, carecr details and work area preferred to:-
Employment Supervisor, Honeywell Controls Limited, Great West Road, Brentford, Middlesex.

OR TELEPHONE 01-568 9191 EXT. 352
FOR IMMEDIATE DISCUSSION ON YOUR FUTURE

Honeywell

We have vacancies in our Newcastle depot for Service Engineers. Applicants must have experience of Marine Radar and have had M.O.T. Radar Course and hold a first class P.M.G. or be able to demonstrate that they have at least equivalent knowledge and experience.

Apply to:
MR. N. M. PRESTON SERVICE MANAGER KELVIN HUGHES A DIVISION OF SMITH-IS INDUSTRIES LIMITED New North Road, Hainault, IIford, Essex

Telephone: 01-500 1020

Several vacancies arise for engineers who wish to be engaged in testing a wide range of valve and semi-conductor industrial control equipment, including digital systems. A working knowledge of electrical/electronic circuitry is essențial.

These are interesting permanent staff situations, and the salary paid will be commensurate with ability and experience.

The Company is situated in rural surroundings, and yet is close to several large towns. Housing is available at very moderate prices.

Applications for the above positions, stating age, qualifications and previous relevant experience, should be addressed to:-

Personnel Manager,
L.D.E.P. Ltd. Industrial Automation
RUGELEY, Staffs.

How to

 switchTo become a successful IBM Data Processing Customer Engineer, you need more than engineering qualifications. You need to be able to talk confidently and well to any level of customer management, and to have a pleasing personality in your work. As a D P C E, you work in direct contact with your customers, on some of the world's most advanced data processing equipment.
You must have a sound electronic and electromechanical background, such as ONC/HNC Electronic or Electrical, or Radar/Radio/Instrument Fitters course in the armed services.
You will get thorough training on data processing equipment throughout your career. Starting salaries depend on experience and aptitude, but will not be less than $£ 1,100$ a year. Salary increases are on merit-within 3 years you could be earning $£ 1,750$. Drive and initiative are always well rewarded at IBM; promotions are made on merit and from within the company.
If you are between 21 and 31, and would like this chance to become part of a rapidly expanding and exciting computer industry, write to IBM.

Send details of training, experience and age to Mr. D. Dennis, IBM United Kingdom Limited, 389 Chiswick High Road, London, W4, quoting reference DP/WW/2.9.

IBM

\mathbf{S}^{T} An ERTECTROYEW'S HOSPTAL ENGINEER OR PHDON. EC. 1 required to iake chatee of hixh voltake machinges isised pequired to iave chamge of himh voltage machines used
tor radiothering, These comprise a 15 MeV contsfor radnotherasy, These comprise a 15 MeV contsLimear Acceleraici operaing basically on solld state intts. For shs siccescul applicant there 11 il stare be an opporunjty to collabotate on research work Applicants mus: bare a degrae. The salary gill elther in on the scale $£ 855$ to $£ 1.658$ or Ct.833-c2.276 per annum acco: ank $\%$ cualdicaitons and experlence. plus f75 Lancan h eighting, Applications should be sent $t 0$ the Clevis so Governors quoting ref. no. ASC
1271 . 1936

FIELD SERVICE ENGINEER FOR PUBLIC EQUIPMENT AND AUDIO AMPLIFICATION EQUIPMENT

Covering London and Southern Counties. Experience Essential. Good Salary, Expense Allowance. Company Vehicle or Vehicle Allowance provided.

Write:
SERVICE MANAGER. MAGNETA (B.V.C.) LTD Parsons Green Lane, London, S.W. 6

A NEW YEAR WITH NEW OPPORTUNITIES

MICROWAVE ASSOCIATES LIMITED

We are a young expanding Company in the field of Microwave generation, detection and control. During the last twelve months work has been carried out on many interesting projects in the radar and communications field including the development of all solid state microwave television links and of solid state switches for use in aircraft systems as well as much progress thork on microwave sources.

Our Company continues to grow and if you are interested in joining a progressive team, we have the following vacancies:
COMMUNICATION ENGINEERS
MICROWAVE SYSTEMS ENGINEERS
TEST ENGINEERS

TECHNICIANS TECHNICAL ASSISTANTS

If you are interested in these vacancies or would like to join us in a capacity not mentioned please apply in writing, stating name, experience, qualifications, age and current salary, quoting reference A26 to:
R. R. Williams, Personnel Manager,

Microwave Associates Limited,
Cradock Road, Luton, Beds.
All applications treated in strictest confidence.

Research in Opto-Electronics

We are still building our team for work in Modern Optics, and need an experienced

Electronics Engineer

with enthusiasm for new fields of engineering. His chief duty will be to study applications of the basic research now in hand on pattern recognition and other optical information processing.
Please write to:-
The Personnel Manager (Ref. 46),
Hawker Siddeley Dynamics Ltd.,
HATFIELD,
Herts.

ROYAL HOLLOWAY COLLEGE

(University of London)
Englefield Green, Surrey.

SENIOR ELECTRONICS TECHNICIAN

required to assist with design and construction of equipment used in advanced teaching and research. This appointment offers the opportunity for a wide range of interesting and non-repetitive work. Salary on the scale $£ 912-£ 1,150$ plus qualifications allowance and London weighting. $37 \frac{1}{2}$-hour week. Four weeks holiday. Applications should be sent to the Secretary.

Ferranti in scotland PUBLICATIONS GROUP

Publications Engineers

Vacancies exist, to be filled from the beginning of February 1968 for Technical Authors (Electronic), of grades up to experienced Seniors, for the preparation of technical publications covering design, operation and maintenance of the Company's entire range of products. Our Technical Publications Group is housed in pleasing surroundings on the south bank of the River Forth and claims to be the largest Group of its kind in the Electronics Industry in Britain. The Group is backed by a comprehensive publishing section.
Anyone (male or female) with an electronic background in airborne radars, ground radars, air navigational equipments or machine tool control, with the ability to write in a simple and concise manner will be given the opportunity of training in publications technology. All posts carry attractive salaries and conditions, together with the benefit of living in one of the more pleasant cities in the U.K.
Edinburgh is a city which caters for leisure time and is ideally situated as a centre for Summer Touring and Winter Sports. It abounds in facilities for rugby, football, golf, cricket, badminton, skating, sailing, etc., and has a ski slope and racing circuits on its outskirts. Theatres, Concert Halls and Eating Houses cater for all tastes, summer and winter. Such amenities are provided at a fraction of their cost compared with other cities-AND transport is no problem.
Interviews can be arranged in Edinburgh, London and Manchester, to suit.

Apply with details of career to
Staff Appointments Officer, Ferranti Ltd.,
Ferry Road, Edinburgh 5.

Computer Engineers

Due to continued expansion NCR require additional ELECTRONIC and ELECTRO-MECHANICAL ENGINEERS
for Computer Maintenance. Posts are available for men wishing to become Site Engineers.
Training Courses are arranged for suitably qualified men. H.N.C. Electronics, City \& Guilds Final or equivalent standard required. Men from Forces with radar experience welcome.
Knowledge of electronic or electro-mechanical equipment necessary. Good Pension and Bonus Plan in operation.
Please write for Application Form to The Personnel Officer.
NCR, 1000 North Circular Road, London, NW2, quoting Publication and month of issue.

EIICTRONC MANINENANCE ENGINEERS

There are excellent opportunities in the Installation and Maintenance Division of E.M.I. Electronics Ltd., for engineers to carry out maintenance work on a wide variety of electronic equipment, including laboratory test gear, tape recorders, broadcast and studio T.V. equipment, and electronic automation equipment.
Candidates should be between 21 and 45 , have had at least three years' experience of this type of work, and be willing to travel
Good commencing salaries will be paid, and staff conditions include a contributory pension scheme and free life assurance. Grants towards re-location expenses will be made in suitable cases.

EEMICAHEERS

EMI
Applications, giving concise personal/career details to
P. JONES - GROUP PERSONAEL DEPARTMENT - E.M.I LTD BLYTH RD - HAYES - MIDDLESEX - TEL: $01-573$-3888 - EXT: 411

GATESHEAD \& DISTRICT HOSPITAL MANAGEMENT
SENIOR ELECTRONIC TECHNICIAN Applications are invited for the above post, 10 carry out dutics in the Gateshcad district, N.W. Durham, Hexham disirict and Pridhoc groups of hospitals. Qualifications should preferably include the H.N.C. (Electronics or Light Current Elecirical Engincering) or City \& Guilds Telecommunications Engineering Certificate, or of similar academic level. The person o be appointed should have wide experience in the electronic field including telecommunicaion radio frequency transmission and reception, audio frequency systems, domestic and public entertaimment, pulse generation, automatic controi systems, and electro-medical apparatus. Hospital experience would be an advantage. The Technician will be based at Gateshead and be responsible to the Group Engincer, Gateshead \& District H.M.C. for organising a system of routine maintenance covering a wide taricty of clectronic equipment. National Heath Service conditions of service. Salary within the cale £980-£1,300 p.a
Applications, giving full details of age, education, experience, qualifications and present salary, together with names and addresses of threc referees, should be sent to the Group Secretary, Gateshead \& District Hospital Management Committec, Queen Elizabeth Hospital, Sheriff Hill, Gatcshead, Co. Durham. NE9 6SU.

THE Royal Free Hospital requires an Elecironics En Rineer. The successfal candidate uill be part of a team of electromes engineers but will have special
responstbillty for the maintenance and modification of electronic diagnostic apparatus including electrnphysioloxical and data processing equibment in tie Department of Psycholosical Medicine at the Laun Road Branch. Where there are first-ciass computing frcilities including a small on-line installation. Experlence with efther blological or bulse teahniques would ment is prepared to consiter a recent araduaie op same one of comparable abilty still in crainink and inter ested in the frelds of medical attomation. computer programming or electrophysiology. Detalled applicathons stating age, qualificaitons and expertence to the Administrator. The Royal Free Hospleal. Gray's Inn Rd.. London.

UNIVERSITY OF NEWCASTLE UPON TYNE

A rechnician is required for closed circuit television maintenance work in this expanding service. The duties will include routine servicing of a variery of television cameras, monicors and associated equipment, and service with a small mobile unit. Some new construction will be involved. Applicants must have a thorough knowledge of basic electronics; an understanding of optics and audio equipment will be an advantage.

The commencing salary will, for an appointee with appropriate qualifications, be at a suitable point on the University's full scale for Technicians (1683 - £968 p.a.) and a supplementary allowance of $£ 50$ per annum will be paid to the holder of approved higher qualifications,
Applications, giving full details of age, cducation, qualifications, and experience, should be sent as soon as possible to the Director, Department of Photography, The University, Newcastle upon Tyne, 1.
Applicants should state when they will be available for interview.

BECKMAN MODEL J. Continuous Instrument Potentiometer $2^{\prime \prime}$ dia, IOK, 35/-Brand new Res, Tol $+5 \%$ Lin Tol $+0.15 \%$.
BECKMAN MODEL A. 10 Turn Precision Wirewound Potentiometer available in the folWirewound Potentiometer low look. Offered at $50 /=$, well below list price.
BECKMAN MODEL 7216. 10 Turn Precision Potentiometer $\frac{7}{6}$ dia., 60%.
MATCHING DUODIALS: Type 2606 up to is Turn, $\frac{7}{\text { I Dial, 45/- only, nearly half lise price. }}$ SINE/COSINE POTENTIOMETER by Kelvin 8. Hughes, SCP4 33 K , offered at a sixth of manufacturer's price, $\mathbf{£ 1 2 / 1 0 / \%}$
SCOOP INDUSTRIAL BUYERS OC25, £ $17 / 10 /$ - per 100 . Mullard OC8ID ET/10 per 100. VEEDER ROOT SIX DIGIT IMPULSE COUNTER with manual reset, 230 Voles A.C. $55 / \mathrm{m} .110$ voles D.C., 35/-. Finlished in two-tone grey shrivel.
SUDECO PRECISION FOUR DIGIT IMPULSE COUNTER, with pre-selection for PULSE COUnting back to zero as soon as the pre-set numcounting back to zero 23 soon as the pre-sec nume $185 \mathrm{~m} / \mathrm{A}, \mathbf{6 5} / 5 / \mathrm{m}$, black finish.
"MINICUBE" BLOWER Sub-miniature, only I" square, operites on $26 \mathrm{~V}-400$ c.p.s. input power. t or 2 pH . Output 2.2 CFM at free air We. It oz. Brand new, made by Saunders Associates, offered at chird of manufacturer's price, C19/10/-.
DUAL SPEED VERNIER DRIVE, completely enclosed for panel mouncing; accurace to 0.05 degree Input to Output ratio $36: 1$. Universal coupling to allow lor misalignment of
shafts. Size $2.2^{\prime \prime} \times 2.2^{\prime \prime} \mathrm{sq}$. by $3^{\prime \prime}$ dia. Whire on shafts. Size $2.2^{\prime \prime} \times 2.2^{\prime \prime}$ sq. by $3^{\prime \prime}$ dia. Whire on black engraved dial. Made by Acton Laboratories to the highest Ministry specification. SPERRY PRECISION DCTACHOGENERA. TOR, Type 5526 . Brand new, in manufacturer's original packing. 5V/I,000 r.p.m. Size II, Mod. 2 . ¢ $12 / 10 /=$
G-V controls. Hermetically sealed thermal ciming relays available in the following: -7.5 seconds at 28 V ., 20 sec . at 6.3 V . 30 sec . at 28 V ., 120 sec. ar 28 V ., 180 sec , at 28 V . All fll each.
LEACH. Balanced Armature Relays, 3 Pole. D.T. -10 amp $24 / 28$ V D.C., $25 /=$

CHOPPERS. S.P.D.T. 6 volt 400 cycles, occal base 7/6.
DELAY RELAY. Hermerically Sealed Thermo static Delay Impervious to Atmospheric conditions and altitudes S.P.S.T. Normally open with a 30 second delay, $7 / 6$.

ELECTRONIC BROKERS LIMITED,
8 BROADFIELDS AVE., EDGWARE, MDDX. Tel.: 01.958 9842

WE PURCHASE

PLUGS AND SOCKETS, MOTORS. TRANSISTORS, VALVES AND KLYSTRONS, RESISTORS, CAPACITORS, POTENTIOMETERS, TEST EQUIPMENT, RELAYS, TRANSFORMERS, METERS, CABLES, ETC.

PROMPT PAYMENT AND COLLECTION TURN YOUR CAPITAL INTO CASH

ELECTRONIC BROKERS LIMITED 8, BROADFIELDS AVENUE EDGWARE, MIDDLESEX.

TEL. 01-958 9842

WESTREX COMPANY LIMITED

have vacancies for the following skilled personnel:
ELECTRONICS ENGINEER conversant with solid state audio amplifier and logic circuit design to co-ordinate development including construction and testing of prototypes.
TESTER/INSPECTORS for audio frequency type of work for Q.R. \& C. Department.
ELECTRO MECHANICAL TESTER/INSPECTORS of teleprinters and high speed tape punches for Q.R. \& C. Department. We also require applications of same calibre for field maintenance and installation work; vacancies exist in many major towns.

Please apply in writing stating the vacancy which interests you, giving full details of experience and career to date, to :

Secretary, Westrex Co., Ltd.,
152 Coles Green Road,
London, N.W.2.

We are expandirg our activities in the field of television-by-wire, and need an experienced development engineer who can undertake important work on both immediate and long-term projects involving boih transmitting and recciving systems and equipment.
Good Laboratory experience and proven ability are the main requirements for the appointment, which offers very good sccurity and opportunitie for promotion $t 0$ an engineer of the right calibre All enquiries will be treated in strict confidence and should be addressed to

The Gencral Manager, British Relay (Elec. tronics) Ltd.,
1-7. Croft Street, Deptford, London, S.E.8.

THE MOTOR INDUSTRY RESEARCH ASSOCIATION

Electronic Instrument Engineer

An immediate vacancy exists for an experienced engineer capable of leading a small team engaged on the maintenance, calibration and installation of a wide range of electronic cquipment.
In addition to having experience in the maintenance of normal test equipment (e.g., oscilloscopes, signal generators, etc.), the successful candidate will be expected rapidly to familiarise himself with the maintenance of analogue computers, multi-channel F.M. taperecorders, gas analysis equipment, radio telephone and doppler radar equipment, and a wide range of specialised apparatus constructed in the Association's Laboratories.

This is a new post which calls for a man with both practical and organising ability. Salary will be commensurate with experience and qualifications

Electronic Maintenance Technicians

Vacancies also exist for technicians familiar with practical maintenance work on complex with practical apparatus, particularly analogue compuiters and their peripheral apparatus.

Appointments will be made within the grades Technician II-IV at wages ranging from £ 1610 s . to £ 2210 s . per weck.

Applications in writing to the Secretary, Motor Industry Research Association, Lindley, Near Nuneaton, Warwickshire.

(B)ST
 20 Penywern Rd., Earls Court, London, S. W. 5 Tel : 01-373 8721
 This Private School provides full \& part day training in the following professional subjects
 RADIO \& TELEVISION SEKVICING RADAR THEORY \& MAINTENANCE RADIO TELEGRAPHY

BOROUGH POLYTECHNIC

Borough Road, London, S.E.I.

The Borough Polytechnic, situated in Southwark, has been nominated as one of the colleges in London that will be designated a "Polytechnic" under the terms of the 1966 White Paper. Large building extensions, now well advanced, will completely rehouse the Department of Electrical and Electronic Erigineering.

Applications are invited for the following posts:-

A PRINCIPAL LECTURER

and
A SENIOR LECTURER in

ELECTRONIC ENGINEERING

Applicanis should hold a good honours degree in Electrical Engineering or in Physics and should be corporate members of an appropriate professional institution. They should have had relevant industrial or research experience and preferably teaching experience.

Whilst applications will be considered from candidates specialising in any branch of electronic engineering, it is particularly hoped to make one appointment in Radio Communications (Ref. E.11) and the other in Digital Systems (Ref. E.12).

Candidates with superior qualifications and experience will be considered for the Principal Lectureship, which is a post of considerable responsibility, both academically and administratively:

Present Salary Scales (currently under review) are:-

Principal Lecturer: $£ 2,150$ p.a. to $£ 2,670$ pia.
Senior Lecturer: $£ 2,210$ p.a. 10 £2,450 p.a.
It is hoped that the persons appointed to these posis will engage in research work, for which opportunities and facilities can be made available
Further particulars and application forms may be obtained from the Clerk to the Governing Bodv, with whom applications should be returned as soon as possible.

ARE YOU AN ENGINEEROR HOPING TO BE ONE?

A missile systems expert is iust one of the things you could become in today's Royal Navy.

Are you a professional engineer with a degree or Dip. Tech.? You can enter the Navy as an acting Sub-Licutenant. If you don't have a degree but have been accepted for a university place, we'll give you an allowance of about $£ 770$ p.a. While you study-and naval training too. If you have "A" levels in pure and applied maths and physics but no university place, we'll give you a full engineering training and every chance of getting a degree.

Your naval training-like that of all our officers-would begin at our college in Dartmouth, Devon. You learn to take responsibility both for your men and for complex equipment. The ships and aircraft of today-and tomorrow-call for top engineers. We make sure they get them. As an Engineer Officer you will be encouraged to keep abreast of the latest developments, and will be given every opportunity for postgraduate studies. You could also have direct responsibility for equipment design.

You'll see the world. Your ship might go anywhere, in NATO trials, or in operations such as bringing relief to a hurricane-hit area. You'll have a high professional status and the salary to match. For the right man, the way to the top lies clear ahead-ability and intelligence are the qualifications for promotion
For all details write to: Capt. J. H. F. Eberle RN, Officer Entry Section (WW/F), Old Admiralty Building, London, S.W.1.

DARLINGTON DISTRICT hOSPITAL MANAGEMENT COMMITTEE
Senior Electronics Technician
Duties are in Darlington (base Hospital), South West Durham and adjacent Groups of Hospitals.
Ownership of a car will be an advantage Wide experience in the electronic field including telecommunications, radio frequency transmission and reception, audio frequency systems, domestic and public entertainment, palse generation, automatic control systems, and electro-medical apparatus.
Hospital experience an advantage.
Responsibility 10 the Group Engineer, Darlington District H.M.C. for a system of routine maintenance, covering a wide varicty of electronic equipment.
Qualifications should preferably inctud: the H.N.C. (Electronics or Light Current Electrical Engincering), or City \& Guilds Telecommunications Enginecring Certificate, or of similar academic level.
National Health Service Conditions of Service, with car allowance as appropriate.

Salary $£ 980-£ 1,300$ p.a.
Apply, giving age, education, experience, qualifications and present salary, with three referees to Group Secretary, Darlington Distric H.M.C., Dartington Memorial Hospital, Darlington, to arrive by 17th January, 1968

PHILIPS ELECTRICAL LIMITED

(Medical Apparatus Division) HEARING AIDS

A vacancy has arisen in the Hearing Aid Service Department for a Supervisor/Teclmician. The person appointed, who must be an experienced technician will be responsible for the day-to-day administration of the department, the control of a small staff and able to deal with callers on Hearing Aid Service queries. Hours $8.45 \mathrm{a} . \mathrm{m}$. to 5 p.m. Monday to Friday.
Applications should be addressed to
The Personnel Officer
Philips Electrical Limited,
45, Nightingale Lane,
Balham, S.W. 12.
KELvin 7766.

NATIONAL INSTITUTE OF AGRICULTURAL ENGINEERING
 ASSISTANT EXPERIMENTAL OFFICER

required for interesting work in attractive conditions, situated in 280 acres of parkland 40 miles north of London. The work on the measurement and control of the environment in glasshouses will involve measurements of light, temperature and carbon dioxide concentration. Experience of modern methods of control desirable.
Qualifications : Pass Degree or H.N.C. if 22 years and over. G.C.E. in 5 subjecss with two mathematic or scientific subjects at " A " level if under 22 years of agc.
Salary: Starting at £568 p.a. at age 18 up to $£ 1,017$ p.a. at age 26 or over, rising in $£ 1,243$ p.a.
Prospects: Excellent prospects of promotion to Experimental Officer on a scale of $£ 1,365$ p.a. rising to $£ 1,734$ p.a. \quad Ref. $67 / E C D / 21$ FIVE DAY WEEK SUPERANNUATION CANTEEN
Appllcation forms from: The Secretary, N. I.A.E., WrestPark, Silsoc, Bedford.

Govermment of ZAMBIA REQUIRES
 RADIO SPECIALISTS

Abstract

or hold a Service Trade Certificate or equivalent qualification and have had at least six years post-qualification experis sce in the installation and maintenance of modern low and medium power H.F. equipment, S.S.B. and I.S.B. equipment, and of V.H.I. equipment, including multiplex links. Knowledge of maintenance of teleprinters, diesel and petrol generators preferred. Duties include travel by road and air and training Lambian officers for City and Cuildy.

Apply to CROWN AGENTS, M. Dept., \& Millbank, London, S.W.I., for application forms and further particulars, stating name, age, brief details of quallif cations and experience and quoting reference $\mathrm{M}_{3} \mathrm{D} / 61274$

PHILIPS ELECTRICAL LTD.

(Medical Apparatus Division)
45, Nightingale Lane, Balham, S.W. 12

HEARING AID DEPT.

Technician required for the service and repair of Hearing Aids. Previous experience in this field desirable. Hours 8.45 to 5 p.m. 5-day week. Pension Scheme. Apply to Personnel Officer at the above address or telephone KELvin 7766 for an appointment.

C_{E}

CELTIC ELECTRONICS

 CHRISTCHURCH, BRIDGE STREET CHRISTCHURCH, HAMPSHIREWe ore Suppliers of
TUNING FORK BASED, FILTERS, TONE GENERATORS, ENCODERS, DECODERS and SINGLE ELEMENTS in the range 200 c/s $-4000 \mathrm{c} / \mathrm{s}$.
QUARTZ CRYSTAL UNITS FROM 0.4 Mc/s - $120 \mathrm{Mc} / \mathrm{s}$
Enquiries For QUARTZ FILTER UNITS are Welcomed

Technical Assistant

A Technician is required to service and maintaln advanced communications equipment and air traffic control displays. The equipment is situated in a trailer specially designed to give operational demonstrations to prospective users. Initial training on maintenance will be given.
Recent experience in the RAF or on military electronic engineering would be an advantage. It will be necessary to undertake overseas visits and a clean driving licence is essential.
Age group 25 to 35 years but older applicants may be considered.

DECOD up

PHOTOELECTRIC KIT

Build 12 EXCITING PHOTOELECTRIC
DEVICES on a Printed Circuit Chassis CONTENTS: 2 P.C. Chassis Boards. Chemical Erching Manual. Infra-Red Sensitive Photocell. Latching
Relay. 2 Transistors. Resis., Cond., Pot., Terminal Relay, 2 transistors. Resis., Cond., Pot., Terminal Block. Elegant Case. Screws, etc. In fact. everything you need e buld a simple but efisient Photo-switch be modiनिed for modulated lizhe operation (Proieces Nos. 2 and 3)

Also Essential Data, Circuits and Plans for building 12 PHOTOELECTRIC PROJECTS. (1) Simple PhotoSwitch. (2) Modulated Light Alarm. (3) Long Range Seray-Light Alarm. (4) Relay-less Alarm. (5) Warbling Tone Alarm. (6) Closed-Loop Photoelectric Alarm. Modulator. (9) Mains Power Supply Unit (10) Modulator. (9) Mains Power Supply Unit. (l0) Sensisive Relay-less Modulated Light Alarm. (12) Car Aensive Relay-less Moduraced Light Alarm. 12) Car Automatic Headamp Dipper. Basic Kit: 39/6. Post Auroma $2 / 6$ (U.K

OPTICAL KIT
Everything needed (except plywood) for building I Folded-Beam Prolector and I Photocell Receiver to suit PHOTOELECTRIC PROJECTS. CONTENTS 2 lenses. 2 mirrors, infra-Red Filter, 2 4.s deg. Blocks Projector Lamp Holder and Bracket, Plans. etc. Op cical Kit: 19/6. Postage and Packing $1 / 6$.
Send a S.A.E. for full details. a brief description and Photographs of all 52 Radio, Electronic and Photoelectric Projects. Assembled Depi. Y E I

EXPERIMENTAL ELECTRONIC ENG
333 York Rd., LONDON, S.W.II

MODEL E 7600/4 180-260V. SOW. Mullatd Cardo matic Valve Tester complete whit cards. litule Silicon BCloyc's N.P.N. transistors, keneral pur-
 QUANTITIES of Barvetter valves, CL33, CY31 and Q CIC, wanter, new and boxed: have ton exchange年 for cash.Harkmaty Photographic. 435 . Green Luises. 1andon. N.4. 01-340 5241. SOUTHERY instruments. 12 channel oscillosraph unit needs slight aitention, with recording camera. trollev mounted. would sult techinica! college studying
vibration effects. etc.: price $£ 50$. plus carriaye J. Black. 44. Green Lane. Hendon. N.W.4. carriage 11947 ANCHESTER EDUCATION COMMITTEE TEND M ANCHESTER EDUCATION COMMITTEE. Tenders Visual alds eoulpmemt - Further detalls and forms of tender from Supplits Officer. Stores Department. New Cross. Mancheabet 4. returnable by December 22 nd. UlTR.ASONIC amplifiers by British maker. 35 and nents include: $2-2 L 31$ and 1 -ECC81 valves 2 BYion diodes. 1 mains wansformer enpped 200220240,250 $230 v .0,85 \mathrm{amp}$. 1 mains transformer 220 240v-450v also O.P irans. Sit mains lead c/W Bulain connector.
enthusiasts have you considered a career in Technical Authorship? If you have sound experience in electronics or communications and ability to write clear concise English we would train applicants as Technical Authors. The commencing salaries range from $£ 1,300$ to $£ 1,700$ depending on experience with the prospects of high future rewards and earnings.
Box No. 5039, c/o Wireless World

PHILIPS ELECTRICAL LTD.

(Medical Apparatus Division)
45 Nightingale Lane London, S.W. 12 have vacancies for

X-RAY SERVICE ENGINERS

for London and Birmingham area.
Suitable applicants of O.N.C. standard should have an electro-mechanical background with experience in electronics. A knowledge of closed circuit television would be an added advantage.

Applications in writing to the Personnel Officer at the above address or telephone KELvin 7766.

RADIO TECHNICIANS

 Londutu. There are alwo orport unit ion for ser rloe abrosal. Applieants musi be 19 or over ind be famailar with the usc of
 exp-riencr. Proftrelice will be glizen to caudidatem who can offer Phyoke or ludil the foty and Cullise Telecomanuiniatinbs Techahoal Intermeeniate eretimeite or equlvaient techatieal qualifes. tionse.
 Trisupects of promotion to brates in ssdary range $\mathrm{c}, 159$ ©4,941. There are a few powta carrying higher walarien.
 days. Normal Civil Serrice siek leuve regulat ioma appis

Applicatina forms avilable from:-
Recruitment Officer (RT).
Government Commumications Headquarters.
Onkley, Priors Road,
Cheltenhan, Glos.

ELECTRONIC ENGINEER (ARN 1)

To design test units and establish test methods for the electrical parts of control and measuring equipment, and to assist in the running of the section which develops and constructs these test units. Applicants should have practical industrial experience of D.C. and low frequency apparatus and components. O.N.C. is desirable but not essential. Salary of £1,200 p.a. or more depending on experience and qualifications

ELECTRONIC TECHNICIAN (ARN 2)

To assist in the design and construction of test units for our test rooms. He should be able to check and prove these units, keep accurate records including simple circuit diagrams and make electrical measurements precisely. Experience of similar work on D.C. and low frequency equipment is required. He will be expected to work with the minimum of supervision. Salary $£ 20$ p.w. or more depending on experience.
In both instances apply to the
Recruitment Officer
RANK PULLIN CONTROLS
GREAT WEST ROAD,
BRENTFORD, MDDX.
Tel : 01-560 1212, Ext 240

TEST ENGINEERS

Due to continued expansion vacancies exist for Test Engineers of all grades to work on a wide variety of both digital and analogue equipments from simple circuits to complete digital systems.
If you are able to work to detailed specifications using standard measuring devices and can apply yourself logically and systematically to the diagnosis of faults in modern electronic equipment, we can offer you a permanent position within a salary scale ranging from $\& 17$ per week to £1,400 per annum.

Write or telephone:
Mr. R. P. Naish,
Gresham Lion Electronics Limited, Twickenham Road,
HANWORTH, Middlesex.
Telephone: 01-894-5511 OR 01-894-9748 (Evenings) for an informal chat.

FED UP WITH YOUR PRESENT JOB?

We require a number of junior engincers with drive and initiative for:-

Circuit design-development and prototype conseruction, etc.; Elecero-mechanical draftingprinted circuit/chassis layouts, etc.; Production
line test and inspection engineers; Production line fault finders.
Excellent prospects and full training given, day release considered. Salary up to $£ 1,000$ depending on experience and qualifications
Send full details in writlng of experience to date and present salary to:-

Solid State Controls Limited
30/40 Dafling Road, London, W. 6

TECHNICAL ASSISTANT

Applications are invited from young electrical or electronic engineers with a live mind to work in the Group patents department of Pye of C.m bridge Lid.
The successful applicant will have a flair for describing technical equipment and be required to liaise between patent agents, inventors and tegal advisers.
An attractive salary taking into account age and experience will be offered.

Please apply, giving full details of age, qualifications and experience to: The Personnel Manager, Pye of Cambridge Lid., St. Andrew's Road, Cam bridge.

CROWN AGENTS

ENGINEERS

The Crown Agents' Engineering Departments, which embrace all disciplines, carry out a wide range of activities on behalf of their Oversea Principals, including the design, purchase and inspection of diverse plant, structures, machinery and equipment, in addition to providing advisory and consultancy services.

The Crown Agents is not a Department of the British Government; nor are its staff Civil Servants, although their salaries and conditions of service are based on those of the U.K. Civil Service.

The following appointment is available:

ASSISTANT ENGINEER
 (RADIO COMMUNICATION)

Candidates should be Corporate or Associate Members of the Institution of Electrical Engineers or have equivalent qualifications. Applicants who are not so qualified but who have H.N.C. or equivalent may be considered as Technical Officers.

They should have received training in Radio Communications Equipment in a reputable organization. A knowledge of Broadcasting and Television Equipment would be of advantage.

Duties, mainly those of a Purchasing Officer, will include the preparation of specifications and tenders, evaluation of tenders and preparation of advice to Crown Agents' Principals in respect of this equipment and may involve spending brief periods overseas.

Appointment will be on the following terms

1. If under 50 vears of age, on probation for 2 years for admission to the permanent and pensionable establishment.
2. If over 50, to the unestablished and non-pensionable establishment, $O R$
3. On contract for $3-5$ years, with a 25% addition to the salary scales given below.
Preferred age-limits are 25-35.
Candidates must be prepared to serve overseas.

SALARIES (Inner London)

Assistant Engineer $£ 1,238$ (age 25)£ 1,864 .

Technical Officers:
Grade 1, $£ 1,477-£ 1,812$
Grade 11, £1,303- £1,477
Grade III, £1,103- £1,303
Retrospective adjustment on $1 / 1 / 68$, to
Assistant Engineer £1,317-£1,979
Technical Officers:
Grade 1, £1,565- £1,927
Grade II, $£ 1,358-£ 1,565$
Grade 111, £1,151- £1,358
Please write for application form, quoting reference number M28/OFFICE/ VI and title of post to: CROWN AGENTS, ' M^{\prime} DEPT., 4 MILLBANK, LONDON, S.W.1. Candidates must be resident in the U:K., or anticipate being so in the near future.

EDITORS AND ENGINEERS RADIO HANDBOOK

New, 17th Edition, by W. Orr, 84/-. P. \& P. 4/6. PRACTICAL WIRELESS SERVICE MANUAL. New ed by Hellyer. 25/-, P. \& P. $1 / 3$. COMPUTERS FOR THE AMATEUR CON. STRUCTOR, by Warring, $\mathbf{2 0} / \mathrm{F}, \mathrm{P}$. \& P. $1 /$. PRACTICAL AERIAL HANDBOOK, by King. $35 /-$ P. \& P. $1 / 3$.
SURPLUS CONVERSION HANDBOOK, by C.Q. 28/-, P. \& P. 1/-
SIDEBAND HANDBOOK, by Stoner, pubby C.Q. 24/-, P. \& P. 1/
V.H.F. FOR THE RADIO AMATEUR, bY C.Q. $32 /=$ P. \& P. 1/=.

ELECTRONIQUES HOBBIES MANUAL' by Scandard Telephones. 10/6. P. \& P. 1/-
Q \& A ON TRANSISTORS, by Brown 2nd edition. 8/6. P. \& P. 9d.

Where possible 24 -hour service guoronteed

UNIVERSAL BOOK CO.

(Leicester Square Tube Stotion)

WW-132 FOR FURTHER DETAILS

FOR Sale as new. Zenith Royal 3.000-1 transistor iransoceanic portable; $£ 120 .-$ Box W.W.: 1940 , Wireless World.

A Better deal for cash customers. We do not provide A interest free credit but offer a generous discount of 15% for cash. Equipment despatched brand new in
sealed cartons on receipt of remittance with order. Agents for all leading makes. Demonstrations, service. guidance.-Write or phone. Callers welcome. Open all day Saturday Thursday hal? day,-Audio Services. Ltd.: 82. East Barnet Rd.. New Bąnet. Herts. Tel.
Barnet 6805.

HWEW GRAM AND SOUND
EQUIPMENT
GLASGOW.-Recorders bought. sold, exchanged; versa.-Victor Morris. 343 . Arsyle St. Olasgow. C.2.

EXCHANGES

```
ExCHANGE: Recording studio has a matched palr E of Tannoy 151n d.c, loudspeakers it would like to exchange for a pair of Tannoy, 12 in d.c. units.-Box W.W, 1948, "Wlreless World.
```


EXCLUSIVE OFFER
 PERMANENT OR TRANSPORTABLE STEEL 60-FOOT AERIAL TOWERS As supplied to
 British and other Governments \star Unique design
 * Scientific Construction

having the following remarkable features. \star Entirely selt supporting, requiring no gurs, stars, foumdations, pickets or spikes of
any atthehment to the any

* Filted with ritop ladder to the ton and bajcony with ralling all round Gou ean Falk right round
hands 8 ree)
12 teet ras leet aquate at base taper.
ing to 8 toet mare at top. they are gulte safe whon subject to Rale force winds and
will accept 50 quare feet will accept 50 square
 loze of
qutro sround eres of 20 feet quate.
\star Wul rupport up to 2 tons of equipment on lop. the whole tower can be completely lowered to the ground
by 2 men in 80 byinutes mend in isised to the same time. * Cas be complotely erected and dis-
inantled by 3 man * Bresks down for lorry into parts easily handled by 2 men, there are no small loose parts, no nate or bolta to get lont os damaked all screws and adjustmente are iuly prolected hom tran and sorted or left locse on the ground
\star Foolproil - the Tower cannot be erected if not assembled Folprool-the Tower cannot be erected if not assembled tools are necessary.
- Can be raised and lowered. orected
moved si many times as deaired. tnto use and raised and lowered lapoterided ; to bo pui ings and instructions.
These fine Towert were mado in England by B.I.C.C. and cost the Government $£ 2,200$ amoh. They are BRAND NEW and in maker's original packing. You cen see oue erectes at our premisen.

Cost $£ 2,200$ Price Brand New £345

40-page list of over 1,000 diferent themen in ntock available-keep one by you.
\star Uniselectors 20 Bank 25 WBy

* 7 Track Tape Render

A Btt. Enclosed Raci Cabineto
女T-200 Panadaptors $450 / 470 \mathrm{Kc} / \mathrm{a}$.
AA-1 Multi-core Cable Tetera $2 \mathbb{Z}$
Narda 500 W. Ultrasonic Cleane
\& Mannetic Recording Wire. J-hr,
t3M Video Recording Tape, bin.
त Marconl S. S.B. Receivers HR-22 $2 / 32$ me/s
\Varangle R.C.A. $420 \mathrm{Mr} / \mathrm{s} \mathbf{Y}$ Yagi 5 el. Beams

* Model 15 Toletspe Pare Prlaters

AModel 14 Teletype Reperiorators
\$R.C.A. 25 watt Projector Loud speakers. range
1 mille
\star Metro-Vlekeri Vacuum Pumps 230 vr A.C.
\$ Precision Mains Filter Unlis
*Avo Geiger Connters
\$Pbileo W.S. No. 43 Transmittera 350 W
\star E.M.I. $3: 94$ Wavelorm Monitors on trolley
त Motorola 8 v. Mobile Transmitiers $30 / 40$ Mie/s
© Pen-type Personal Doserneters
*Manior Type ss and Rower Unis
※AN/OPM-17 Spectrum Analssers $10 / 18000$
-AN/URM-33, 34. 35 Signal Gemerators 1000 $8000 \mathrm{Me} / \mathrm{s}$..... Carriare entra at cost on all above.

We have alarge quantity of to bite and pieces " we cannot list-please semd us your refuiremonts- ue can probably help-all enquifles answered.

P. HARRIS
 ORGANFORD - DORSET
 WESTBOURNE 85051

WW-134 FOR FURTHER DETAILS

OSMABET LTD.

WE MAKE TRANSFORMERS AMONGST OTBER THINGS AUTO TRANSFORMERS.
 MAIAS ISOLATIOK TRANSFORMERS. Input :

 (51)-(1)-50 \times. A.C. 1 a. 40 :-

HEATER TRAMSFORMERS.

TRANSFORMERS WOUND TO YOUR SPECIFICATION POWER PACE, mpat monfato v. A.C., nomainal outsut $12 y$ BATTERI ELIMINATORS, isput : $2 \omega 0 / 240$ r.. A.C.. Dup
 BULK TAPE ERASER. ans heml dernagnetliper. 2ov/2in LOUDSPEAKERS, now tock, lannons make, tull range nvaliable

 FLUORESCEAT LOW VOLTAGE LIGHTING, trout if. 12. 2t r.
S.A.E. all encoives pieate.
46. KEITE WORTH ROAD, EDGWARE. MIDDX.

PHOTO ELECTRIC CONTROL SYSTEM

DURHAM SUPPLIES

175E Durham Road, Bradford 8, Yorkshire

SLYDLOKEUSES 15 amp. 230 v. D.C. 440 v. A.C 1/6 ca., 15/- per doz
HEADPHONES. Balanced armature. DLRS. Brand New. $9 / 6$ pr. Moving coil type. wish ear mults lor noise excluding. $12 / 6$ pr. Same fited with moving coil mike, $17 / 6 \mathrm{pr}$. Carbon hand mike, 7/6 each. P. \& P. $2 /$
each item. No. 10 Assembly Headsets and Mic
moving coll 176 en. \&PS
TANNOY LOUDSPEAKERS
deal for public address. enclosed in waterproof wooden case. complete with steel baffle designed 10 produce
directional reproduction at 5 walls. 7.511 27/6 each Carr 5 walts
SMALL CEARED MOTORS.
versible. with years attached $15 /-$ ea. ; wilh
TRANSMITTER. BC 625. part of T/R. SCR522 For spares only. Classis only. Complete with valve SIEMENS HIGH SPEED RELAYS. H96B lype. 50 +50 ohms. $6 /=$ ca. Type $H 69 D .500+500$ ohms
$6 /$ - ea. Type $H 96 E . ~ 1.700+1.700$ ohms, $7 / 5$ each Carr. I
TELE L" TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete with Hand Cen. for calling each station. Supplied in new condition and lested. 70/= per pr. Carr. 7/6.
POST OFFICE TYPE RELAYS. 3,000 sers. 2 clo 2 m ., slugzed coil 140 ohms; 2 c/o. slugked coil 500 ohms. All at $6 /$ each. Carr. 1
3,000 Type
.000 Type, by Ericsson Telephones, 2 1.000s br. 2 mc, c/o plus 3 c/ot $12 / 6$ ea. $2,000 \Omega 4$ c/over MORSE KEYS. No. 8 assembly complete with lead MORSE KEYS. No. 8 assembly comple
terminals and cover, $6 / 6$ each. Carr. 2/-.
VIBRATORS. 6 v. 4 pin; 12 v. 4 pin
Syn. All 6/- each. Carr. 1/
ELECTRO MAGNETIC COUNTER up to 9999 , coil res. 300 2 $5 /$ - each. Carr. $1 /$. Exequipment.
ELECTRIC PRIMING PUMPS. AMERICAN SURPLUS. 24 v. D.C. Overall size $7 \times 2 \frac{2}{2} \times 2 \frac{1}{2}$ in. 7 C.P.H. Brand New. 37 G each. Carr.
P.O. TYPE DESK TELEPHONES. Type 162CB no bell or ringing dial, black only. Brand new, boxed, 27/6. Cart. 2/6 each.
P.O. TYPE TELEPHONE HAND GENERATORS. MODULATION TRANSFORMERS. 150 watts suitable for pair 813 s, driving 313 s. Size $6 i n . \times 5 i n$.
$\times 3$ in. Brand new. hoxed. Price $27 / 6$. Carr. $4 / 6$. MEGGER INSULATION TESTER $500 v$! with Contest range from 0.1 ohm to infinity. Bakelite case with stock. contacis (5 c 849). 7/6 ea. Carr. $1 / 6$. LIGHTWEIGHT HEADSET (mart of "88" W. Set Equipt.) complete with Boom nuic.. carbon made to
hishest Minisiry Spec. Moving coil earpieces. Our hishest Minisiry Spec. Moving coil earpieces. Our
price 35 - set. Carr, 3/-. Also Super Lightweight hand price 35 - set. Carr. 3/-. Also Super Lightweight hand
set. 176 ea. Carr. 2/200 AMP. 24 v. D.C. GENERATORS. Type P3. ex-Air Ministry. $£ 9 / 10 /$ ea. Carr. $10 / 6$.
YURA MINIATURE RUSSIAN TRANSISTOR RADIOS. Med. wave, complete with rechargeable merc. batteries and 2 spare batteries and charger. P.C.R. 12 V. VIBRATOR POWER PACKS. Brand new, $22 / 6$ ea. P. \& P. $5 /-$. CONDENSERS. Paper. Sprague 11 mld .500 v., $5 /-$
doz. it mid. 1.500 v. $7 /-$ doz. (inel. P. \& P.). HEAVY DUTY TERMINALS. Ex-equip. Black ouly, will lake spade termivinls and wander plug. 1/6 pr. 15/- doz. pairs. P. \& P. $1 / 6$ ea. doz.
11FT WHIP AEPIAIS
11FT. WHIP AERIALS. 6 Secion. Copprerised steel and painted. Dia. $y^{\frac{2}{n}}$-in. Complele with moulded
base $2!\times 3^{\prime}$ in. 126 complele. P. \&P. $2 / 6$. FATIGUE METERS. 24 v. D.C. Consistins of $6 \times$ 496 D Relays. $500-500!$? 6×300 ! Eleciro Mag. counters, etc. $\$ 310$ - eq. Carr. $4 / 6$. 220/110v. Hand requlator provides 7 lans . Size $12 \times 12 \mathrm{in}$ $220 / 110$ v. Hand resulator morovides 7 raps. Size $12 \times 12 \mathrm{in}$.
S.A.E. all enquiries

Tel. BIRKENHEAD 6067

[^10]
AMERICAN

TEST \& COMMUNICATIONS EQUIPMENT
AN APN-9 Loran Rcceiver Indicators, suit-
able for navigation or Scope S.A.E. for details.

AN/ARC-33 Transceivers $225 / 399.9 \mathrm{Mc} / \mathrm{s}$.
AN/VRC-19 F.M. Transceivers. 152/174 AN/URC-4 \& AN URC-11* Handy-Talkies AN/ARN-6 \& AN/ARN-44 Compass Receivers AN/TRC-8 U.H.F. Radio Relay Sets.
AN/FPN-13 X band Radar Reacons.
CU-168 FRR $2 / 32 \mathrm{Mc} / \mathrm{s}$ Antenna Couplers
AN/PSM-2A "Megger" Insulation Testers
AN/URM-30 Test Set for AN/URC-4s.
AN PSM-6 Multimeters $1 \mathrm{~K}-20 \mathrm{~kJ} / \mathrm{PV}$
AN-URM-61 Signal Generator $1.84 \mathrm{Mc} / \mathrm{s}$.
TS-47 Test Oscillator $40 / 500 \mathrm{Mc} / \mathrm{s}$. £25
T-216fGR XTL. Controlled Signal Generator
AN/UPM-11A X Band Range Calibrators.
AN/USM-24A Measuring Oscilloscopes.
TS-413C/U Signal Generators $75 \mathrm{Kc} / 40$
TS-297/UB Multimeters, $55 / 10$ -
TS-497/UR Signal Generator $2 / 400 \mathrm{Mc} / \mathrm{s}$ TS-147A/UP Radar Test Sets.
TS-917A/CG (Sielma TDA-2) Telegraph Dis*
ME-22/PCM Decibel Meters-45/+25 DBM
Tektronix $541,543 \& 545$ spare Tubes Type 5BHP2A. Price \&14.
NEW GENERAL CATALOGUE

SUTTON ELECTRONICS

Salthouse, Nr. Holt, Norfolk
Cley 286

SWANCO PRODUCTS LTD.

gзmap amateur radio specialists aspee

Full range of K.W. Equipment now in stock.
F'uli range of $\mathrm{Drake}_{\text {e }}$ Equipment available.
Fiull range of Heathicit Equipment arailable.
Swanco/CSE Equipment:
Swanco/CSE 2A10 mollid alate tranamiter
Swanco/CSE 2AE cullid state recelver
Swanco/CSE. Tyjw bl A.T.M.A. moblte/lised
Swanco/CSE mieroplione. type Mià
Halsom. Mobile antenna, new all weather ail lande
Isstras colls (when hore than one band requirel)
$\begin{array}{lll}43 & 7 & 0 \\ 44 & 0 & 0\end{array}$
9150

Echeliord Communitations 4 meire Equipment:
Echellord B1/4 trantsinither
Echelford M1/4 transmiter (imains or mobile)
Echellord C1/4 cunverter
$\begin{array}{rrr}30 & 0 & 0 \\ 40 & 0 & 0 \\ 10 & 10 & 0\end{array}$
Codar Radio Company

CR.70A recelver	$19 \frac{\varepsilon}{10}$	0	CR.45RB	${ }_{11}{ }^{\text {s }}$	${ }_{0}$
PR. 30	510	0	AT5 .	1610	0
PR.30X	74	0	200 volt PgU	80	0
R.Q. 10	615	0	12/MS P8U	115	0
R.C.10X	88	0	12/RC	27	6
CC. 40	610	0	T28	1510	
CR.45K	910	0	Mini-Clipper	119	
Partridge Electronics			Sture Microphones		
		d.		$\varepsilon \mathrm{s}$.	d.
Joystick ntd. .	415	0	Shure 201	410	0
Joystick de-lune	519	6	Shure 202	50	0
Type 3 tuner .	215	0	Sture 444	1012	6
Type 3A tuner	312	${ }^{6}$	ghure 401 A	1012	6
Type - tuner	4 6	0 0	Shure f01A	510 4	0

SECOND-HAND EQUIPMENT

Many Itenin in stuck heluding: LG-300, K.W. "o Yiceroy," K.W.
 Mohican, B-44y
enquirien please.

Full Service facilities-receivera realigned, transmitters servicel
eto

SWANCO PRODUCTS LTD.
 Dept. W.I. 247 Humber Avenue COVENTRY

Telephone

Coventry 22714 Hours: Mon.-Sat. 9a.m.-6p.m

ADJUSTABLE HOLE E WASHER CUTTERS

The right tool for trepanning holes $1 "-12 \frac{1}{2}$ in diameter In our range of 17 Models Adjustable hole and washer cutters 18\% Tungsten High Speed Tool bits

Write for illustrated brochure of our full range with straight or Morse taper 1-4 or Bitsfock shank AK URATE ENGINEERING CO. LTD. Cross Lane, Hornsey, London, N. 8

TEL. FITZROY 2670
WW-135 FOR FURTHER DETAILS

We buy new valves. transistors and clean new com
ponents, large or small quanticies. all details quotalion by return.-Walton's Wireless Stores. 55.
Worcester St., Wolverhampton.

CAPACITY AVAILABLE

A ${ }_{\text {irtring onics, }}^{\text {Ltd., for coll winding. assembly and }}$ nit sheet metal work.-3a, Walerand Rd.. London S.E.13. Tel. 01-852 1706

TRANSFORMERS
MAINS TRA NSFORMERS
IVA TO 2.5 KVA
AUTO TRANSFORMERS
20 watts to 5,000 watts
Trade and Professional Enquiries Only
OLYMPIC TRANSFORMERS LTD
224 HORNSEY ROAD
LONDON, N. 7
NOR 2914

JJ JUNIOR DECADE BOXES

FROM STOCK

WITH 12 MONTHS GUARANTEE

Resistance bxics - aclunacy

Suitable for use at high frequencies

MODEL

J1 5 Decade 0 to $1,111,100 \mathrm{ohms}$ J2.5 Decade 0 to 111,110 ohms J3 4 Decade 0 to 111,100 ohms J4 4 Decade 0 to 11,110 ohms $J 53$ Decade 0 to 11,100 ohms $J 63$ Decade 0 to 1,110 ohms
CAPACITANCE BOXES ACCURACY

MODEL

$\begin{array}{llllll}\text { MODEL } \\ \text { JC1 } 100 \text { pf to } 0.111 \mu f & \text { fio } & 8 & 0\end{array}$
JC2 30 to 10,140pf
J. J. LLOYD INSTRUMENTS LTD., Bro
Southampton

$E 13$

| \&13 |
| :--- | $£ 10$

$£ 10$
$\begin{array}{rr}£ 7 & 12 \\ £ 7 & 8\end{array}$

WW-136 FOR FURTHER DETAILS

MINIATURE KEY SWITCMES. (P.O. Lever Type 1000),
QE-SETTABLE MIGH SPEED COUNTER ($3 \times 1 \times$ tin.) 3 digir. $12 / 24 / 48$. (stare which), $32 / 6$ ea. P.P. $2 / 6$.
3 dig IH SPEED MAGNETIC COUNTERS (4 ea. P.P. 1/- $5 / 2 / 40 /-$ $\$ 12 \mathrm{v} .24 / 48 \mathrm{v}$. (seate which). CD7। 15.650 carr. 70/-;
PTRON OSCILLOSCOPES. CDI i43 \&50. carr. 70/-: QD910 675. carr. Co with R.F. Als COPPEKTERS 3 in . Rnd. $0 / 6 \mathrm{amp}$. $10 / \mathrm{e}$ e.. P.P. $2 / 6$ TGIn.) MINATE PRINTED CIRCUIT BOARD ($8 \frac{1}{2} 5$ sheer, 5 for 10%
100 Capac 3 ULK COMPONENT OFFERS
250 Resistof (latest types) 50 pF to $.5 \mu \mathrm{~F}$ 250 Resistors and $\frac{1}{4}$ watt.
$150 \mathrm{Hi}-\mathrm{Scab}^{2}$ Rad I wate.
25 Virreous Wors. $\frac{1}{t}$. $\frac{1}{1}$ and 1 watt.
12 Precision Ré Resistors. 5\%
included). -ors 1% (several scandards
12 Precision included).
standards inciers
12 Electrolytics (mind).
VENNER LIGHTWEIGHT ACCLULATORS (I oz. It charging inse.).
CARPENTER POLARISED RELAY I woon 15/. (with base). ALL Types i G.E.C. 5 SIEMENS S.T.C. Sealed relays stocked.
MAINS RELAY (240 v. A.C.) 12 H.L make contacts 20/- ea., P.P. 2/6. REED RELAYS (2 Herkons) \$.T.C. 2426-22-15, 2 make. 10-15 vole coil, $15 / \mathrm{e} \mathrm{ea}$.
" $3000^{* \prime}$ TYPE RELAYS (Ex. New Equip.) 10 for 25/RESOLVED COMPONENT INDICATOR (Solartron IP253-2A Condition new. 635 (wich manual), carr. 54 .
TELEPHONE HANDSET (Type 706) $17 / 6$ ea., P.P. 2%.
ZENER DIODES 3 to 50 volt. 5%. 1.5 watt. $3 / 6 ; 10$
BLOWER/EXTRACTOR FANS (By PAPST Motors) 4i
412 in . case moulding. 450 C.F.M. Engineered to THYRISTOR LAMP DIMMER/SPEED CONTROL KITS 200 watt kit. $27 / 6$, P.P. 2/6; 500 watt kit, 37/6, P.P. 2/6. kit. 27/6, P.P. 2/6, So0 watt kic. $37 / 6_{2}$ SILICON CONTROLLED RECTI
 30% : CRS25/40 400 . CRS25 10100 p.i.v. 25 amp.. $30 / *:$ CRS25/40 100 p.i.v. 25 amp., $60 / .:$ CRSI/20
200 p.i.v. 1 amp.. $5 / 6$; CRSI/40 400 p.i.v. 1 amp., 7/6; CRS $3 / 40400$ p.i.v. 3 amp., $10 /$ ea.
SILICON OIODES RS220ai $2 /-$ ea., Ci i doz.: RS240 3/- ea..
$30 /$ doz.: RS280 4/. ea., 40/. doz.: $15103 / \mathrm{BY} 100$ 4/- ea., 40/- doz.; RAS310才 (avalanche) 6/- ea.. 60\% doz. $154135 /$ ea., 50/. doz.: RS610, 10/. ea RS640 20\% ea., RS 12 40/- ea. : RS845 60/. ea.
PROOUCTION BATCH COUNTER (BURNDEPT) BE403. Condition. New $\ell 15$ ea... P.P. 20/-. OSCILLOSCOPES Cossor 1035, $\subset 17 / 10 /-1049,620$;
Solartron D $300,620, P$ P. any unit $62 / 10 /$. E.M.I. MINIATURE RELAYS ($24 \mathrm{v} . \quad 1 \mathrm{c} / \mathrm{o})^{\frac{j}{8}} \frac{1}{\frac{1}{2}}$ fin. WC. ${ }^{\frac{1}{3}} \mathrm{Oz}, 7 / 6$ ea.
TELEPHONE OESK SETS (type 706). Brand new, 95/.. P.P. 5/:. EIIBD-RC 100 p.i.v. 10a., 37/6; GA31-A (Germ). SORENSON VOLTAGE REGULATORS. TYPE LT-1000. 25 . C25 ea.
P.C. CONNECTORS (13 way in-line), $4 / 6$ pair LARGE CAPACITY ELECTROLYTICS. $2.000 \mu \mathrm{~F}$. 150 v
 $16,000 \mu \mathrm{~F}$ 15v.: $25,000 \mu \mathrm{~F} 15 \mathrm{v}$. $10 / \mathrm{ea}$. All $4 \frac{1}{2}$. 2 in SPEAKER BARGAINS. E.M.I. 13 in. with double Tweeters 15 ohm, $65 /$, P.P. $5 / \mathrm{p}$. As above less
tweeters 3 or $15 \mathrm{ohm}, 45 /-$ en. P. $5 /$. FANE 12 in .20 watt (Dual Cone), $95 /$-, P.P. 5/:. PHASE SENSITIVE VOLTMETERS (Solartron UP250/253) TRANSFORMERS L.T. 50 v . at 5 amp . $19-0-19 \mathrm{v}$. $\frac{1}{1}$ amp. TRANSFORMERS H.T. $625 \cdot 0-625 \mathrm{v}$, at $110 \mathrm{~m} . \mathrm{a}$. . 6.3 v . at 2a., 6.3v. at 3a. c.t. Parmeko Neptune series, $35 / \%$ ELECTRIC SLOTMETERS ($1 /-$) 25 amp. L.R. 240 v . A.C. QUARTERLY ELECTRIC CHECK METERS, 40 amp. 240 v . TRANSISTOR POWER SUPPLY, $2 \times 12 v$. as $250 \mathrm{~m} . \mathrm{a}$ STEP-DOWM TRANSFORMERS PRI 200 . 250 E.M.I. 115 v , at 1.25 amps.; Sec. 2. 25v. at 5 mmp ., 25/-ea.

PATTRICK \& KINNIE

8) PARK LANE, HORNCHURCH, ESSEX

Tel.: ROMFORD 44473

MOTO OLA INTEGRATED CIRCUITS

LATEST LOW PRICE DUAL IN LINE

Crosswire Electronics Ltd.

STAPLE HOUSE, 51-52, CHANCERY LANE, LONDON W.C.2.
ww-137 FOR FURTHER DETAILS

 ELLETHEIC \& ETTLE. Eroellent for SLIN.INY LABIPB LiGBT. Controb the hrlyhticess of all houselioled I. A317s,

 ALL UNIVEREAL BIOTOHA EP TO EH.P. Thawe anits stats that wate power. (Mmtulined in a mirong lisetal casw.
 TU LisE. No queciatiael know Indge required. A uniwne

 amil nealy to use inuphored de-luxe nomiel Price 8 GNS. simpliago and tneurance $10 / \%$. Tramle engutrion inrlited Fre dermanatratiun at our premines.

Amadrl) sibly dulyind POWER CONVERTER (de lure Finablio you to run up lighting ami equipment. Tho watt AC/LC 2ELLEVISION of nses. 1 tidieperwatic to caravazineni Workvhopm mad Garngen, The anit in
 to comnect up and ue. prife whilat afoeks dnil, £6119/6.

CIDBE SCIENTIFIC LTD
24 CAWOODS YARD, MILL STREET MARSH LANE, LEEDS 9.

WW-138 FOR FURTHER DETAILS

WW-141 FOR FURTHER DETAILS

FOR SALE-

4 Westminster Multiwinders, 10-way Automatic Interleave.
PRICE: $£ 100$ each and carriage. Can be viewed by arrangement.
Large range of
TRANSFORMER LAMINATIONS in Radiometal, Mumetal \& H.C.R. "C" and "E" cores-Case and Frame Assy's. Please send for list.

J. BLACK

44 Green Làne, Hendon, N.W. 4 Tel.: 01-203 1855 \& 3033

FAIRCHILD INTEGRATED CIRCUITS
 These industrial microcircuits are designed for a wide variety of industrial and commercial equipment operating over a temperature range of +15 to +55 deg. C. The operating voltage range is 3.6 v . $\pm 10 \%$. These 1 Cs are similar in size to TO5 can transistors and are epoxy encapsulated with 8 leads. Full detalls are sent with each order, showing

 \section*{* New lowprices}

 \section*{* New lowprices} typical applications. The 914 gate may be used to build multivibrators, Schmitt Triggers and linear amplifiers.
 THE 923 IS A FULL COUNTING FLIP-FLOP.
 L 900 BUFFER
 PRICE
 $9 / 6$
 L 914 DUAL GATE - - PRICE $9 / 6$
 L 923 JK FLIP-FLOP - - PRICE 126
 PLASTIC SPREADERS . . . $1 / 6$
 DELIVERY EX STOCK
 Terms: Cash with order. Approved Accounts Opened. Postage and Handling $2 /$ -
 \section*{CROSSWIRE ELECTRONICS LTD. STAPLE HOUSE,}
 51-52 CHANCERY LANE, LONDON, W.C. 2

WE BUY

any type of radio, television, and electronic equipment, componenfs, meters, plugs and sockets, valves, and transistors, cables electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624
9589842
V.H.F. WIDE.BAND AMPLIFIERS

Sprefferifor: Bandwith. S0-230MHz: Gain. 20DB $\pm 1.5 \mathrm{DB}$ Maz. OutDus (1 cartier) 3 voltm: Input/Output Impedance 73 chmm: 19in. Rack Mounting. Two-stage Distributed Circuit.
 Guaranted.
Fur Rate et the Reduced Prlee of $£ 30.0 .0$ Further delalin Box No. 0040 , e/w Wivjelem World.

DISCOUNT TRANSISTORS

Quantity prices (in brackets') for 5 OR MORE SAME TYPE. First grade, guaranteed.

LAWSON HRANID NEW TELEVISION

 TUBESComplete fitting instructions are supplied with every tube.

Terms: C.W.O. Carriage and insurance 10%.

LAWSON TUBEN

18 CHURCHDOWN ROAD MALVERN, WORCS.

Tel. MAL 2100

The contimually increasing demand for tubes of the very highest performance and reliability is now being met by the netu Lawson "Century 99 " range of C.R.T.s.
"Century 99" are absolutely brand new tubes throughout manufactured by Britain's largest C.R.I. manufacurers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Light output; together with high reliability and very long life.
"Century 99 "iare a complere range of rubes in all sizes for all British sers manufactured 1947-1967.

2 YEARS FULL REPLACEMENT GUARANTEE

12"-64: 10:0 $14^{\prime \prime}-65: 10: 0$ 17"-65:19:0 19"- $\mathbf{6 6}: 19: 0$ 21 "- $17: 15: 0$

HAYes 3561

GODLEYS

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriars 9432
Sole Manchester Distributors for world famous BRYAN AMPLIFIERS
Agents for Ampex, Akai, Ferrograph, Tandberg. Brenell, B \& O, Vortexion, Truvox, Sony. Leak, Quad, Armstrong, Clarke \& Smith, Lowther, Fisher. Good mans, Wharfedale, Garrard, Goldring, Dual, Decca. Record Housing, Fltrobe, G.K.D., ete.
Any combination of leading amplifiers and speakers demonstrated without the slightest obligation.
 FINNIGAN SPECIALITY PAINTS FINNIGAN SPECIALITY PAINTS (W) Mickley Square Stocksfield. Northumberland. Tel: Stocksfield 2280

WW- 144 FOR FURTHER DETAILS

BUILDING A "SCOPE"

Indicator unit type 10053 . One of the finest units to appear on the surplus market, modern manufacturer, 10.B.7.G. and 3.10, valves, built in E.H.T. unit producing 3 kV . 10 modern version of the 5 in . V.C.R. 517 tube, brilliance, focus, X and Y shift. Controls on front panel, circuit diagram supplied. Ideal for conversion to an oscilloscope. Size of unit $7 \mathrm{in} . \times 7 \mathrm{in}$. $\times 19 \mathrm{in}$. long. Used but good condition $60 /-$, carriage $19 /=$. Circuit diagram sold separately, 3/9, Post Frec.

New Catalogue No. 17. Government and manufacturers surpius. Also new components. manufacturers

$\mathbf{R}^{\text {ADIO }}$ officers see the world．Sea－king and shars
 Grants available Day and boavilng students．Stamp
for prospeotus，wireless College．Colvyn Bay． T．E T．E．R．E．City \＆Guilds and R．T．E．B exams．Spe－ For detalls of wide ranke of exam．and diploms courses in radio．TV and electronics，also new practical courses with kits．Wrik
London．SWll

STUDY radio，television and elperrontcs City \＆Guilde，R．T．E．B．．etc．Also practic．I．E．R．E． with equipment．No books to buy．Write for free pros SWil to lCS（Depl．442）．Intertext House，London

TV and Radio，Cits \＆Guilds，R．T．E．B．Certs．．Ptc ands of passes．For fuhl detalls of exams and home branches of radio TV．electronics，etc．Write for 132 pase handrook－iree：please state sublect－British Institute of Engineering Techthology（Dept．150K），
Aldermasion Cour：．Aldermaston．Berks．

FREE to ambitious engineers！132－page Gulde to
 －over 600 Home Study Courses in all branches of Engineering，Bullding；Radio．Electronics，etc．－Write ton．Berks．

WANTED－

Redundant or Surplus stocks of Transformer materials（Laminations，C．cores，Copper wire，ctc．）， Electronic Components（Transistors，Diodes，etc．） V．C．Wires and Cables，Bakelite shees，etc．，etc． Good prices paid J．BLACK
44 Green Lane，Hendon，N．W．4 Tel．01－203 1855 and 3033

REDUNDANT OR SURPLUS RADIO－ELECTRONIC STOCKS WANTED OSMABET LTD．

46 KENILWORTH ROAD，EDGWARE，MIDDX． YEL：STONEGROVE 9314

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first－class posts open to technically qualified men in the Radio and Electronics industry． ICS provide specialized training courses in all branches of Radio，Television and Elec－ tronics－one of these courses will help YOU to get a higher paid job．Why not fill in the coupon below and find out how？

Courses include：

P．V．C．Adhesive Tapes

Widths $1^{\prime \prime}-1^{\prime \prime}$ ．Cores． $1^{\prime \prime} \& 3^{\circ}$
Colours．Black，white，red，green，blue，yellow Large quantities always available．Sample 20 rolls and price list £1．Satisfaction guaranteed
R．North \＆Co．，68，Wright Street， HULL．

WW－145 FOR FURTHER DETAILS

MARSHALL＇S

 SEMICONDUCTOR CENTRE| Fully guaranteed devices at low prices | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | or 3 for 10 － | | 4／6 em．
 ur 5 for 20 ． | 6／6 ea． |
| | ACY17 | | BYi00 | andor QNiO！ |
| | ACY18 | | OET887 | 2N：2997 |
| | ${ }_{\text {ACYY }}{ }^{\text {ACY }}$ | | aET889 | HCY3 |
| | ACYz | | аET896 | BCY^{38} |
| （：E）T873 | AF114 | | ORT897 | ${ }^{\text {BCY }}$ |
| | AF116 | | | OLTas |
| \％ | AFI17 | | 81－1 | Oces |
| ${ }_{\text {OKF }}$ | | | ADlsin | |
| 788 | AF127 | | aET116 | OC500 |
| 0x＞1 | astios | | Get573 | Octus |
| W11 | ${ }_{\text {GET }}$ GET113 | | crisser | 10／－ea． |
| $\mathrm{O}_{0} \times(x+11$ | GET118 | | O\％3 | OC38 |
| uc\％3 | Getils | | $\mathrm{OCP}^{\text {O4 }}$ | |
| $\begin{aligned} & 56 \mathrm{em} \text {. } \\ & \text { or } 4 \text { for } 20 \text { - } \end{aligned}$ | | | | － |
| | NEW ADDITIONS TO OUR RANGE | | | OALVE．AAZIS |
| $\begin{array}{ll} \text { Acres } \end{array}$ | | | | Diodes at 1／6 |
| invis | | NKT814． | | OA85．OA96． |
| cisyss | | | 2－34． 275 | Mullard $\mathrm{a}^{\text {a }}$ |
| | $5 / 6$ | $5 / 6$ NKT135． | 312． 3 24．4． 945 | Rectift |
| | | | 713．734． 773 | ВYZ10 |
| | | NKT1边， | 126．${ }_{\text {219．}}$ | |
| | | NKT23s， | 238． | |
| \％ | | 616 NKT24， | | | 4008 |
| \％ | | | | 603，613． 736 | |
| 20 | newmareet sllicon SILIND RANGE 7／8 | | | $5 / 6$ |
| N（imi | ミKTlate． | | NKT10519． | |
| | NKT103 | | NKT10489．
 NKT1342 | |
| ル9\％ | 2×1305 | | | |
| 203 | －یimai | 66 | 2smor | BPY |
| － 70 Sa | ${ }_{20} \mathbf{N} 1307$ | 816 | 2ssm2 $5 / 6$ | HFYı |
| － 200 | －x1308 | $81-$ | －2M603 | |
| － 2 \％4 468 | －N13 | | －357\％ | ${ }_{8} \mathrm{Bry} 19$ |
| ${ }_{733}$ | －\times Nox | 5 | －2783 | BSY |
| 2， 914 | 2xerer | $5 /$ | 3CY70 6／6 | his |
| 2NH131 126 | 2x：2403 | 810 | BCY\％10／6 | \％reres |
| 1328 | －virum | 8 8／－ | | B8Y89 |
| 2，130303 46 | 28102 | | ${ }_{\text {BFXE }}$ | BAY38 |
| 2visias 5／ | 8 | 7／6 | BFX8s 10／－ | R8Y95A |
| Post \＆Packing 1－per order．Quantlity discounts available | | | | |
| A．MARSHALL \＆SON（LONDON）LTD．， | | | | |
| 28 Cricklewood Broadway，N．W．2． | | | | |
| Telephone：01－452．0161 | | | | ept：W．W．14 |

TEST EQUIPMENT－SURPLUS ANDSECONDHAND

IGNAL generators，oscilloscopes，output meters，Wave
voltmeters．frequency meters．multi－range meters etc．．etc．In stock．－R．T，d．Electronics，Lid．，Ash
ville Old Hall，Ashville Rd．，London，E．11．Ley． 4986.

RECEIVERS AND AMPLIFIERSE
 SURPLUS AND SECONDHAND
 HRO Rx5s，etc．，AR88．CR100，BRT400，G209．S640． etc．，etc．，in stock．－R．T．\＆I．Electronics，Lid．

TECHNHCALTRAINING

$\mathrm{C}^{\text {ITY }}$ or GUILDS（Electrical．etc．）on＂Satistaction For detalls of modern courses in all brands of passes． urical engineering．electronics．radio．$T . V$ automation． etc．．send for 132 page handook－free．－B．I．E．T：
（Dept． 152 K ），Aldermaston Court．Aldermaston．Berks．
$\mathbf{B}^{\text {ECOME＂Technically }}$ Qualified＂in your spare time， kuaranteed diploma and exam，home－study courses City \＆Gullds．etc．．hikhly informative 120 －page Holluorn，London．E．C． 1
P．M．G．Certificates Examinatlons．Aso many non－examination courses in Radio，TV and Electronics．Study at home with world famous 1．0．S．Write for free prospectus stating 443）．Intertext House．Parkgate Rd．．London，S．W． 12.

TO INSERT AN ADVERTISEMENT
 IN THE
 CLASSIFIED SECTION
 TELEPHONE WIRELESS WORLD WATERLOO 3333
 EXT. 210

"SONOCOLOR" CINE RECORDING TAPE Superior quality $5^{\prime \prime}$ reel, 900ft. L.P. with strobe markings, also cine lighe deflector-mirror. Suitablealltape recorders and OUR (4)-EACH cine projectors. List 28/-. PRICE (4/- Post 2/6

SMITHS PRECISION SIX MINUTE DELAY ACTION SWITCH Clockwork actuated
10/6
EACH
(3 or more
Separate switching up to 6 mins. 15 amps. 250 volts. MADE FOR ROLLS WASHERS. Ideal photographic timer, sequence switching operations, etc., etc. Brand new units at a fraction of their value.

> SPECIAL PURCHASE STELLA RECORD PLAYER Amplifier and Loudspeaker-al! transistor-top performance of
dises at 33 t. 45 and 78 r.p.m. LP xeal cartridge. Smart red or WORTH DOUBLE

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER
$\begin{array}{ll}200 / 250 \text { A.C. } & 35= \\ 2 / 6\end{array}$
TRANSISTOR BOOSTER-
DOUBLE YOUR VOLUME
Black plastic cabinet speaker with 20 ft.
lead for transistor radio, intercom, mains
radio, tape recorder.
Size: 7 fin. $\times 5 \mathrm{fin} . \mathrm{x}$ 3in. $\quad \mathbf{3 0 / - ~ P o s t ~}$
$2 / 6$
SPECIAL OFFERI BRAND NEW B.A.S.F. 60 min. Cassette C60 (For Philips etc.) $17 / 6$ $7 \mathrm{in}$. L.P. 1, 800 ft . (Cat. LGS35) 45/- Post 2/6-3 or
7 in D.P. $2,400 \mathrm{ft}$ (Cat. LGS26) 70/- more post free.

RADIO COMPONENT SPEGIALISTS
337 WHITEHORSE RD., CROYDON. TeI: 01-684-1665

DINSDALE MK II AMPIIFERS

Printed circuits and parts for mono and stereo versions. Special new power a
BAILEY 20 WATT AMPLIFIER. All parts available for this unit including Radiometal-cored Driver Transformer and recommended bi-filar wound Mains Transformer.
MULLARD IOW. A.B. TRANSISTOR AMPLIFIER SPECIAL CLEARANCE

Printed Circuit Boards to Múlfard specification, fully drilled and fluxed. Price 4/- each or 7/- for two post free.

Layout Diagrams 9d. each. All other pares available. Please send S.A.E. for all Lists.

HART ELECTRONICS
321 Great Western Street, MANCHESTER 14

FOR SALE

E.M.I. RE. 404 Studio Sterco Mono Mixing Console transistorised throughout. 10 Channels (5 left and right).
Complete with presence filters. Tone Controls and provision for M.S. \& A.B, working with spreader facility.
Fully isolated Monitor System incorporated. Manufactured in 1962.
Price $£ 1,250$.
Enquiries to
CALAN ELECTRONICS LTD.
6 Croft Street, DALKEITH, Scotiand. Phone: DALKEITH 2344

WW-147 FOR FURTHER DETAILS

WIRELESS Servicing Manual." W. T. Cocking, WM.E.E. This is the teath edition of a book Which since 1936 has been knowri to radio serviceman everywhere as a reliable, thorourh and comprehensye guide to solving most of the problems that arise in the
repair. maintenance and adjustment of the modern radio receiver. In the present edition a major addition is a chapier devoted to translstors and trainsistor sets. The author of Wireless Serviclng Manual is well known to a wide circle of readers as tormer
editor of Electronic Technology editor of "Electronic Technology " and now of ${ }^{\text {an }}$ In-
dustrial Electronics." His crisp. fucid style makes this dustrial Electromics, His crisp, the of service man nind handeook of utmost value to the service nian hnd
anateur alike, 25
net, $26 /$ by post from Ilffe Books Lid., Dorset House, Stamiord St.. London.

 rihle. Sa hour spring reatre, orercomen
mfoppink in came of power cut. Can the
mupplieil with. Solar dit Uupel but perfect. LIMITED QUANTITY 6916.

HORSTMANN IS DAY CLOCK WORK TIME SWITCH
 periect. 5 amp model. Fully guaranteed. 35/- p.

Box 365, KINGSWOOD SUPPLIES (w.w.9)
4, SALE PLACE, LONDON,W.2. Tel:01-7238189.

‘Hike-Mike’ really started something... ...the finest range of radio microphone systems in the world
 From the very successful general purpose unit Hike-Mike has developed a whole range of special purpose microphone transmitters each one precision made for precision performance. Suitable for both hand -held and Laralier operation. Write now for descriptive literaiure of these and the full range of Audac Audio Equipment. Demonstrations with pleasure.
 AUDAC radio microphone and sound reinforcement systems AUDAC MARKETING COMPANY LIMITEO / CAREY ROAD / WAREHAM / DORSET / TELEPHONE WAREHAM 224

WW-I49 FOR FURTHER DETAILS

INDEX T(D ADVEIRTISERS

Appointments Vacant Advertisements appear on pages 64, 65 and 103-113

MANUFACTURERS OF THE WORLD'S FINEST SOLDERNG INSTRUMENTS

CATALOGUE SURVEY No. 3

 THE L. 64.THIS IS PERHAPS THE MOST POPULAR MODEL IN THE RANGE. ITS SHARP temperature together with its GOOD HEAT RESERVOIR AND RAPID recovery time make this model THE PERFECT GENERAL PURPOSE INSTRUMENT-FITTED AS STANDARD WITH A ${ }_{10}{ }^{3}$ " BIT, ITS VERSATILITY IS FURTHER INCREASED BY A FULL RANGE OF BITS GIVING TIP SIZES FROM 琉" TO $\mathfrak{t}^{\prime \prime}$. AGAIN, SPECIAL temperatures and voltages can be supplied to order at no EXTRA CHARGE.

Send for detoils to
head office sales \& service

This page for 20 years 210 consecutive 240 issues

Wreless World

May, 1945
Advertisements

WHEN YOU BUY SOLDER

whether you buy it to repair a set
TO MESE ONE SEL OR \& TROUSFND SEIS

II WIn PFI TOU TO BUI TBE BEST-

ERSIN

MULTICORE

The cost of mabing an average joint in radio equipment when using ERSIN MULTICORE, bought in its smallest packnge, is one-tenth of a farthing. Naturally, if you bought a ton of ERSIN MULTICORE, each foint would cost you less atil. Junt one fanlty joint can, to put it mildy, canse you considerable annoyance. Isn't it worth while therefore to buy the best? Insist on getting ERSIN MULTICORE-the solder wire with 3 cores of mon-corrosive extra active Erain Flux.

After advertising inside "WIRELESS WORLD" we moved to the outside back cover in May, 1945. Here is part of that advertisement. Since January, 1948 we've occupied this space in every issue. Probably a record for any manufacturer in any journal. Although we've improved the product and made it in many different alloys, with finer gauges and different fluxes, our main claim is as sound today as it was 30 years ago. It pays to buy the best. Millions of miles of 3 and 5 core Ersin Multicore solder including non-corrosive fluxes is used in over 60 countries.
We also make solder-tape, preforms, washers, rings, pellets, discs and liquid fluxes ... and a complete range of alloys and chemicals for soldering printed circuits.
Our new Mark 2 Solderability Test Machine and Automatic Solderer make industry more efficient.
Arax Acid Core Solder assists in fabricating metals.

 roffingheers applying on zheyr Companyst nbtepaper, Ask us to help you with your soldering problèms.
Multicore Solders Ltd.; Hemel Hempstead, Herts. Telephone Hemel Hempstead 3636 Telex 82363

[^0]: PUBLSHED MONTHLY (3rd Monday of preceding month). Telephone: $01-9283333$ (70 lines) Telegrams/Telex: Wiworld lliffepres 25137 London, Cables: "Ethaworld, London, S.E. 1." Annual Subscriptions: Home; $£ 26 \mathrm{~s}$ Od. Overseas; $£ 215 \mathrm{~s}$ Od. Canada and U.S.A.; $\$ 8.00$. Second-Class mail privileges authorised at New York N.Y, BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: Birchfields 4838. BRISTOL: 11 Marsh Street, 1. Telephone: Bristol 21491/2, COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. FFICE MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412
 East 42nd Street, New York 10017. Telephone: 867-3900

[^1]: * Newmarkei Transistors Lid

[^2]: * See B.S. 3763: 1964 "The International System (SI) Units." Also "Changing to the Metric System" (N.P.L. booklet), H.M.S.O. 3s 6d The basic SI units are the metre (m), kilogramme (kg), second (s), ampere (A), degree Kelvin (${ }^{\circ}$ K), and candela (cd). Supplementary units are the radian (rad) and the is coherent in that any SI unit resulis from from these, and the system is coherent in that

[^3]: * Electronic Industries Association.

[^4]: NEW RANGE OF SLOW BREAK-\&-MAKE HEAVY DUTY PUSH-BUTION SWITCH ACTUATORS. PANEL MOUNTING, TO BE USED WITH I TO 4

[^5]: WW- 036 FOR FURTHER DETAILS

[^6]: S压I SALFORD ELECTRICAL INSTRUMENTS LIMITED

 SEC.
 Peel Works. Barton Làne. Eccles. Manchester. Tel. : ECCles 5081. Telex: 66711 Londorr Sales Office: Bropk Green. Hammersmith. W.6. Tel: 01-603 9292 A Subsidiary of the General Electric Co. Ltd of England.

[^7]: PUBLSHED MONTHLY (3rd Monday of preceding month). Telephone: $01-9283333$ (70 lines) Telegrams/Telex: Wiworld lliffepres 25137 London, Cables: "Ethaworld, London, S.E. 1." Annual Subscriptions: Home; $£ 26 \mathrm{~s}$ Od. Overseas; $£ 215 \mathrm{~s}$ Od. Canada and U.S.A.; $\$ 8.00$. Second-Class mail privileges authorised at New York N.Y, BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: Birchfields 4838. BRISTOL: 11 Marsh Street, 1. Telephone: Bristol 21491/2, COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. FFICE MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412
 East 42nd Street, New York 10017. Telephone: 867-3900

[^8]: Solve your commmincation problems with this new－Station Transistor Intercom system
 （1 master and 3 subs），in de Juxe plastic calbinets for desk or wall mounting．Call／talk／listen from Master 10 Subs and Subs to Master．Operates on one 9 v ．battery．On／off switch．Volume control． Idcally suitable to modernise Office，Factory， Workshop，Warehouse，Hospital，Shop，etc，for instant inter－departmental contacts．Completewith 3 connecting wires，each G6ft．and other acces－
 sories．Nothing else to buy；P．\＆P， $7 / 6$ in U．K．

[^9]: （1 MASTER \＆ 6 SUB－STATIONS）in strong metal cabinets． Fully transistorised． $3 \frac{1}{2}$ in．Speakers，Call on Masteridentitied by tone and Piot lamp．Ideally suitable for Omine，Hoter，Hospice 21 ＇gns．P．\＆P． $2 / 6$ in U．K．

[^10]: Terms Cash with Order

