RELAYS
 ex stock in 7 days
 *C.S.A. APPROVED IN CANADA

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL

Editorial:

B. S. CRANK
F. MILLS
G. B. SHORTER, B.sc.

Drawing Office:

H. J. COOKE

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL
(Manager)
J. R. EYTON-JONES

Iliffe Electrical Publications Ltd.,
Chairman: W. E. Miller,
M.A., M.I.E.R.E.

Managing Director:
Kenneth Tett
Dorset House, Stamford Street,
London, S.E. 1
(C) Iliffe Electrical Publications Ltd., 1967. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

ELECTRONICS, TELEVISION, RADIO, AUDIO

FEBRUARY1967

55 The Compleat Engineer
56 Principles and Practice of Holography
Dy A. Dickinson \& M. S. Dye
62 Colour Receiver Techniques-2 by T. D. Towers

71 World Satellite Communications
74 UK3—Britain's Scientific Satellite
81 Electronic Tachometer
by S. L. V. Chari \& M. R. Rao
85 An Introduction to Microwave Ferrite Devices by K. E. Hancock
by F. Butler
89 Gyrators-Using Direct-coupled Transistor Circuits
by J. W. Machin

SHORT ITEMS

68 Mobile Satcom Terminals
68 British Broadcasting White Paper
84 Silicon Transistor Bias Circuit
87 Domestic Satcom for U.S.A.
97 Electronic Telephone Exchange

REGULAR FEATURES

55	Editorial Comment	84	H.F. Predictions
68	World of Wireless	88	News from Industry
69	Personalities	98	New Products
78	Letters to the Editor	104	 Exhibitions

[^0]FIFTY-SIXTH YEAR
OF PUBLICATION

Miniature Silicon Planar Switching Diodes

$$
\begin{array}{ll}
\text { High-speed switching, low- } & \text { 1N4148 } \\
\text { capacity diodes for computer and } & 1 N 4154
\end{array}
$$ general industrial applications.

Actual size

Silicon NPN Planar Epoxy Transistors

General purpose DC and

BC150

2N3391
2N3393
2N3394
2N2923
2N2924
2N2925
2N2926
BC151
silicon planar

Brimar can offer immediate delivery of a range of Silicon Planar Devices - produced for the first time in Great Britain in their new Silicon Planar plant at Brimsdown. The range includes transistors and diodes suitable for industrial and electronics applications. Thyristors are also available. Made to uncompromising standards, they are readily available in large quantities at the keenest prices. Ask for technical details and descriptive literature.
Manufacturers' enquiries only, please - to :
Thorn-A.E.I. Radio Valves \& Tubes Limited
7 Soho Square, London W.1. Telephone: GERrard 5233
TAS604
WW-088 FOR FURTHER DETAILS.

Wireless World
 ELECTRONICS, TELEVISION, RADIO, AUDIO

The Compleat Engineer

SINCE the formation of the Council of Engineering Institutions in 1964, and more especially since the granting of its Royal Charter the following year, there has been growing concern, particularly in the electronics and electrical sections of technology, about the image of the "complete engineer being all things to all men" which the Council is seeking to project. This concern has been heightened by the introduction of a common examination for membership of all 13 constituent institutions; and the Council has now set itself up as an examining body.

Commenting on this in his presidential address to the Institution of Electronic and Radio Engineers, Professor Emrys Williams said this function was "neither specified nor precluded in its Royal Charter. In retrospect, it may seem surprising that this extension of powers from certification to examination was not clearly defined before the granting of the Royal Charter. . . . The present position is that our Institution (in common with all the others) is now expected by C.E.I. to discontinue its own graduateship examination in favour of a C.E.I. examination syllabus which bears a strong resemblance to the syllabuses of thirty years ago-those same examination syllabuses whose inadequacy for the purposes of the radio and electronic engineer led to the formation of our institution."

One of the consequences of this doctrine of the complete engineer considered by Dr. Williams was its effect on recruitment to the profession. The motivation of the schoolboy is inspirational and specialized. As Dr. Williams pointed out "electronics is the greatest intellectual 'nosey-parker' of all time; it has a finger in everybody elses business and is handmaid of all sciences" and although it has no one specific end product or public amenity (as do some of the other disciplines) the ingenuity and versatility of electronic devices have unfailing power to fire the imagination of the schoolboy.

The resulting image of the engineering profession may be immature, but to daub this with wordly wisdom "as is done by some industrialists who visit schools and give the impression that marketing, management and costing are the most important ingredients of engineering practice" and then have a "permanent recruiting poster showing the complete engineer, clad in pre-war clothing and vainly trying to be all things to all men" will make even more of the best sixth-formers opt for higher studies in pure science and arts rather than technology.
The idea of stimulating young people's enthusiasm for a particular kind of technology rather than trying to impress them with the concept of engineering in seneral has also been stressed by the Schools Council (an independent body). It launched last autumn a pilot project to explore how children can be given through design project work a keener awareness of technology as it exists in the real world.
It has been pointed out by G. L. Viles (who is a member of the Council's proiect team) that one factor contributing to the enthusiasm for electronics is that children quickly discover that they can buy components like photocells and transistors for only a shilling or two, and in fact often do so, for school projects, with their own pocket money.
No one will deny that there is a growing need for stimulating this enthusiasm and it is to be hoped that the institutions for both professional engineers and technicians will foster it, rather than stifle it as may well happen if the particular electronic

VOL 73 NO 2
FEBRUARY 1967 "marvel" which inspired the student is lost in a mass of worthy but deadening (and often irrelevant) engineering studies.

Principles and Practice of Holography
 By A. DICKINSON, B.Sc. and M. S. DYE

three-dimensional lensless wavefront reconstruction with varied application

IN 1948 Professor Gabor of Imperial College described a system of image production ${ }^{1}$ called holography, which he hoped to use for microscopy. In this, using no lenses, both the phase and the amplitude of light from an object were recorded on a photographic emulsion. This was done by placing the partially transparent object in front of a monochromatic point source of light, i.e. coherent light. The light diffracted by the object interfered with the transmitted light and the interference pattern was recorded on a photographic plate. When this plate, a hologram, was developed and viewed with coherent light an image of the original object appeared.

Progress in holography has been accelerated greatly in the last two years by the use of lasers. These give a much more powerful source of coherent light, which is needed for this process, than was previously available. This increased power allowed Lieth and Upatnieks ${ }^{2}$ to illuminate the plate with a reference beam of light at an angle to the light from the object and not directly behind it as was done by Gabor (Fig. 1). Using a reference beam at an angle to the light from the object has cnabled the spurious images, which previously degraded the reconstructions, to be removed and has also allowed holograms

A. Dickinson joined the Morconi Company in 1964 after graduating at Manchester University. He was working on gas lasers and their applications until a few months ago when he went to the British Aircraft Corporation, at Bristol, where he is now concerned with work on pattern recognition and holography.
M. S. Dye, who is 24, spent five years as a scientific assistant and two years as an experimental officer ot the Ramsden Laboratory of Ilford Ltd., before joining the Marconi Company in September 1965. He is now in the Applied Physics Group at the Marconi Research and Development Laboratories at Great Boddow, Essex.
to be made of much larger and opaque objects. The good time coherence of lasers has also made it possible to record three-dimensional objects. Because both the amplitude and phase of the light are recorded on a hologram threc-dimensional objects are reproduced in three dimensions.

When the hologram is viewed with normal incoherent daylight it bears no apparent relationship to the object which formed it. It seems to be a meaningless mass of whirls and lines (Fig. 2). However when it is illuminated with laser light, on looking through the hologram like a window, an image of the original object is reconstructed in space behind the hologram.

PRINCIPLES OF HOLOGRAPHY

A hologram consists of a very complicated pattern caused by interference between light reflected from the object and the light of the reference beam. Every point of a reflecting object acts as a point source of light radiating spherical wavefronts. At the photographic plate the phase distribution from each point will be a series of concentric circles centred on the normal from the point source to the plate. If, as in the early Gabor system, the reference beam illuminates the plate from directly behind the object, interference between the spherical waves of the object and the plane reference wave will produce concentric fringes on the plate. These fringes are very similar to a Fresnel zone plate and when they are illuminated with coherent light they will focus the light to a real and a virtual image, both on the axis of the system and at the same distance from the hologram as the original object (Fig. 3a). This means that the real image can only be viewed in the presence of an out-offocus virtual image. If however, the reference beam is not in line with the object point the zone plate produced is asymmetrical and the images produced from this are offset from the axis (Fig. 3b) and can therefore be viewed separately. Each point of an object forms its own zone plate and is reconstructed at its original distance from the hologram. Therefore a three-dimensional object gives a three-dimensional image.
The phase distribution on the photographic plate given by a point source will depend on the distance, x, from P where OP is the normal from the object to the plate (Fig. 4). The phase lag at a point X compared with P is:-

$$
\begin{aligned}
& =\frac{2 \pi}{\lambda} \cdot \mathrm{SX} \\
& =\frac{2 \pi}{\lambda} \cdot\left[\left(x^{2}+f^{2}\right)^{\frac{1}{2}}-f\right]
\end{aligned}
$$

where λ is the wavelength of the light used and f is the distance of the object from the plate. For small x this becomes $\pi x^{2} / f \lambda$. The light magnitude is a function of x, $A(x)$ and therefore the light amplitude can be written as
$A(x) \exp \left(\mathrm{j} \pi x^{2} / f \lambda\right)$. The direct or reference beam is usually a parallel beam which gives a plane waveffont at an angle θ to the plate. Its amplitude is $A_{o} \exp (-\mathrm{j} 2 \pi \theta x / \lambda)$ for small θ. The total amplitude of light on the plate is therefore:-

$$
A(x) \mathrm{e}^{\mathrm{j} x^{2} / \int \lambda}+A_{0} \mathrm{e}^{-\mathrm{j} 2 \pi \theta_{x} / \lambda}
$$

The plate responds only to light intensity:

$$
\begin{align*}
I(x) & =\mid A(x) \mathrm{e}^{\mathrm{j} \pi x^{2} / f \lambda}+A_{o} \mathrm{e}^{-\mathrm{j} 2 \pi \theta x /\left.\lambda\right|^{2}} \\
& =A_{o}{ }^{2}+A(x)^{2}+2 A(x) A_{o} \cos \left(\frac{2 \pi \theta x}{\lambda}+\frac{\pi x^{2}}{f \lambda}\right) \tag{1}
\end{align*}
$$

Provided the linear portion of the density \log of the reciprocal of transmission versus log exposure curve of the photographic emulsion is used the transmission is related to intensity by:-

$$
T(x) \propto I(x)^{y / 2}
$$

where γ is the slope of the density-log (exposure) curve. If the plate is processed to a γ of 2 the transmission is directly proportional to the intensity of the exposing light.

$$
\begin{aligned}
T(x) \propto & I(x) \\
\propto & A_{o}^{2}+A(x)^{2}+A(x) A_{o} \mathrm{e}^{\mathrm{i}(2 \pi \theta x / \lambda+\pi x 2 / f \lambda)} \\
& +A(x) A_{0} \mathrm{e}^{-\left(\mathrm{i}^{2} 2 \pi \theta x / \lambda+\pi x^{2} / f \lambda\right)} \\
= & k\left(A_{0}^{2}+A(x)^{2}+A(x) \mathrm{e}^{-j x^{2} \cdot / \lambda}\right. \\
& A_{o} \mathrm{e}^{2 \pi \theta x / \lambda}+A(x) \mathrm{e}^{-\mathrm{j} \pi x^{2} / f, 1} \cdot A_{o} \mathrm{e}^{-\mathrm{j} 2 \pi \theta x / \lambda}
\end{aligned}
$$

The first two terms of this expression are not important as they do not contain information of both the phase and amplitude of the light from the original source but only attenuate the transmitted light. The third term, however, is identical to the light from the source, $A(x) \exp \mathrm{j} \pi x^{2} / f \lambda$, multiplied by a constant term A_{0}, and diffracted through an angle θ by the phase term $\exp j 2 \pi \theta x / \lambda$. This means that looking back through the developed photographic plate, called a hologram, at an angle θ, the light appears to come from the original point source.

The image is the same distance from the hologram as the original point source so that when a three-dimensional object is used each point of it is reformed at its original distance from the hologram, i.e. the object is reconstructed in three dimensions. Looking into the hologram a threedimensional virtual image is visible, showing the properties of the original object such as parallax between near and far parts.

Similarly the fourth term produces a real image between the hologram and the viewer at an angle $-\theta$ to the illuminating light. Because each point of a threedimensional object is reconstructed at its original distance from the hologram the complete image is inverted and appears to the viewer as though he is looking from inside the object. To overcome this and give a true real image a secondary hologram can be made of the inverted real image of the first hologram. The real image of this second hologram, produced when it is illuminated with laser light, is a true reconstruction.

If the γ used is not exactly 2, extra images are formed. They do not interfere with the main images as they appear at greater diffraction angles.

This theory has been derived using only the x-axis of the photographic plate. Of course, it applies equally well along the other axis of the plate.

Because light from each part of the object covers the whole area of the photographic plate any part of the plate contains information from all of the object. If the

Fig. 2. Appearance of a hologram viewed in daylight and recorded in a set-up similar to Fig. 1.

Fig. 3. Offset image at (b) enables separate viewing of real and virtual images.

Fig. 5. Apparatus used for producing 3-D Bragg reflection holograms.

Fig. 6. An image reconstruction from a hologram. The granular appearance is due to the effect of laser illumination.
plate is broken any small piece of it will reconstruct the object completely with only a loss in detail.

EFFECTS OF THICK EMULSIONS

If the angle between the light from the object and the light in the reference beam is made large, the fringe width becomes less than the thickness of the emulsion. The 15μ-thick Kodak $649-\mathrm{F}$ emulsion usually used then acts as a three-dimensional medium and the interfering beams set up reflecting planes within the material.

Reconstruction takes place when light from these planes is reflected so that constructive interference occurs. This is exactly the same as Bragg reflection from crystal planes and obeys the same law:-

$$
2 d \sin \theta=\lambda
$$

where d is the spacing between the planes, θ is the angle of incidence of the light and λ is the wavelength of the light. This means that unless the hologram is illuminated at the same angle for reconstruction as the reference beam was on recording, no image is reconstructed, if the same wavelength light is used throughout. If light of another wavelength is used for reconstruction the angle of incidence must be changed to obey Bragg's law.

If light of two different colours is used at the same angle of incidence, the plane spacing will be different. This fact has been used to produce two-colour holograms ${ }^{3}$. The object to be photographed was illuminated with light from two different coloured lasers (red 6328 A $\mathrm{He}-\mathrm{Ne}$ and blue $4880 \AA$ argon laser) and the reference beam also consisted of light from both lasers. Each colour set up its own reflecting planes within the emulsion. When the hologram was illuminated at the Bragg angle by both colours, a two-coloured reconstruction occurred. If only one colour was used to illuminate the hologram only those parts of the object which had reflected this colour were reconstructed. There was no "cross-talk" between the colours because the spectral bandwidth of the Bragg reflection is only about 100 A .
Daylight reconstruction. A very recent advance using interference within the emulsion has enabled holograms to be reconstructed with daylight ${ }^{4}$. Because the Bragg reflection is colour selective, if multicoloured light is incident on the hologram the only colour reflected will be the colour used to produce the hologram. The method used was to cause interference in the thickness of the emulsion, between laser light reflected from the object and the reference beam which now was directed through the photographic plate from the back. When the hologram was illuminated with sunlight from the same direction as the reference beam had been directed the original laser colour was selected by Bragg reflection and the object reconstructed as usual.

This method could equally well be applied to several colours of lasers and therefore multicoloured threedimensional pictures, visible in daylight, are possible.

PRODUCING 3-D BRAGG REFLECTION HOLOGRAMS

Using the apparatus shown in Fig. 5, the coherent beam from a 6328 A c.w. laser working in single mode was passed through an iris and a photographic shutter. The iris was used to stop stray incoherent light emerging from the end of, the laser and to give a clearly defined beam, free from edge effects. The shutter was placed near the laser so that all other optical equipment was not touched during the exposure, thus avoiding vibration. The beam was then directed through an 8 mm focal length microscope objective and the diverging beam produced,
was allowed to fall onto a front-silvered convex mirror of radius 10 cm . The beam, having been further diverged by the convex mirror, was about 6 cm in diameter at the point of entering the 20 cm focal length collimating lens.

The parallel beam emerging was split into two, half the light striking a 90° prism and the other half illuminating the subject of the hologram. The light from the prism, the reference beam, was reflected directly on to the photographic plate and its intensity was approximately 10% of that in the parallel beam. The glass prism was used to direct the reference beam so that the reduced intensity produced was more comparable with the weak scattered light from the object. This gave better fringe contrast at the photographic plate. If an ordinary glass plate had been used instead of the prism, it would have introduced undesirable interference bands across the reference beam dependent on the relevant spacing of the front and back surfaces of the plate. It was found by experiment that the angle between the reference beam and the photographic plate should be about 45° for best results. It was also important to keep the object as near as possible to the edge of the reference beam, so that maximum information was recorded about the points on the object farthest from the reference beam.

The system described so far has produced a hologram, but a disadvantage was that the object was illuminated from one direction only. The system in Fig. 5 shows how this problem was overcome. The otherwise wasted light emerging from the prism, was directed by means of a front-silvered plane mirror to illuminate the object from direction (2). Similarly, light not hitting the object in the incident beam was redirected to fall on to the object from another direction (3).

The photographic plates employed were Kodak 649F Spectroscopic, having a resolving power quoted as 2,000 lines mm and further claimed to have been used at 10,000 lines $/ \mathrm{mm}$. This very good resolving power was attained at the expense of speed. The speed found by experience was about $1 / 10,000$ of Tri-X. Exposure times were consequently long and were of the order of minutes with a 1 mW laser. The exposed hologram plates were developed in total darkness in caustic hydroquinone, diluted in the ratio of two parts developer to one part water, for two minutes. The resulting hologram was arranged by varying the exposure to be of medium density, since a dense hologram merely acted as a heavy neutral density filter in front of the reconstructed image. The
long exposure times introduced problems of stability in the apparatus, since both mechanical and thermal vibration could occur and any movement destroyed the fringes.

RECONSTRUCTION FROM THE HOLOGRAM

The developed hologram was replaced at the same position as it was formed and the prism was replaced by a front-silvered plane mirror, placed at the same position and angle as the prism. This gave a reference beam of maximum brightness and area falling on the plate. Looking into the hologram at the first diffraction order the reconstructed object was visible. This reconstruction is shown in the photograph, Fig. 6. Its three-dimensional properties were shown by focusing at different planes in the image, using a short depth of focus camera. The resulting photographs are shown in Fig. 7.
The brightness of the reconstruction was increased by using multi-mode working of the laser. It was possible to use multi-mode since coherence length was no longer important. Because of this, mercury light could also be used to view holograms. Still further brightness could be obtained by partially bleaching the hologram, using the bleach from the Kodak intensifier process. However, brightness was increased at the expense of definition, until when the hologram was completely bleached serious degradation of the image occurred.

RECORDING MULTIPLE HOLOGRAMS ON ONE PLATE

This was carried out in two ways. The first method, a rather trivial one, was to obtain two views of the same object visible at the same time. This was done by taking a hologram of the subject in the normal way, with the reference beam angle at 45', but with half the usual exposure. Then, leaving everything else the same, the subject was moved to a different position and another hologram exposure taken, again with half the normal exposure time. For the purpose of the experiment the object was rotated through 180 ' so that the holograms were of the front and the back of the same object. Reconstruction was as before and showed the two clearly defined, separate images, visible at the same time.

The second method was very similar but much more important. For this a normal hologram was taken of a subject but with the reference beam angle altered to 30°.

Fig. 7. Same reconstruction as Fig. 6 but showing 3-D nature of image by focusing in front and rear planes with a camera having a small depth of focus.

Another hologram was taken on the same plate of another view of the same object in the same position or of a different object, the reference beam angle being moved to 60°. The reconstruction then gave two separately visible images at the appropriate reference beam angles. This meant that as the hologram was rotated, different images appeared as the corresponding angles were reached and were quite distinctly visible.

HOLOGRAM MICROSCOPY

Gabor originally suggested holography as a means of Xray microscopy. If a hologram is made with short wavelength radiation, such as X-rays, and then viewed with visible light, the hologram having been enlarged by the ratio of the wavelengths, the image is also magnified by the ratio of the wavelengths. No lenses are used in this process, so the magnification should be free of distortions. Lenses at X-ray wavelengths are very poor.

Further (geometrical) magnification can be obtained by viewing the hologram with divergent light using the hologram like a lens whose focal length, f, is the distance of the plate from the original object. ($M=v^{\prime} / f$, where v is the image distance.)

If the hologram is enlarged and viewed in light of a longer wavelength, λ^{\prime}, the total magnification becomes $M \lambda^{\prime} / \lambda$. Geometrical magnifications of 200 are possible and if the wavelength ratio is 6328 , corresponding to laser viewing light at $6328 \AA$ and X-rays at $1 \AA$ wavelength for creating the hologram, the total magnification is over 1 million.

It was hoped that the resolution of this process would be of the order of the X-ray wavelength, i.e. $1 \AA$. Unfortunately, Baez^{5} and more recently Stroke and Falco'ner ${ }^{6}$ have shown that for the system we have described the resolution is limited by the photographic grain size.

In Eqn. 1 the width of the information carrying fringes is given by the 3 rd term. Fringe spatial frequency is:-

$$
\frac{1}{2 \pi} \cdot \frac{d}{d x}\left(\frac{2 \pi \theta x}{\lambda}+\frac{\pi x^{2}}{f \lambda}\right)=\frac{\theta}{\lambda}+\frac{x}{f \lambda}
$$

For plates with a resolution limit of N lines $/ \mathrm{mm}$, which is the maximum resolvable fringe frequency:-

$$
N=\left|\begin{array}{c}
\theta \\
\mid \bar{\lambda}
\end{array}+\begin{array}{c}
x \\
f \lambda
\end{array}\right|
$$

This limit occurs at distances

$$
x_{1}=\left(N-\frac{\theta}{\lambda}\right) f \lambda \text { and } x_{2}=-\left(N-\frac{\theta}{\lambda}\right) f \lambda
$$

The total range of x is $x_{1}+x_{2}=2 N \lambda f$.
In the reconstruction process this is the apparent aperture of the hologram of focal length, f, for each point object. From classical optics the diameter of spot to which a lens of aperture A and focal length, f, can focus is $f \lambda / A$. Similarly the hologram will focus the light to a spot of diameter, $d=1 / 2 N$. This spot size is the resolution limit for a hologram and is equal to half the resolution of the photographic emulsion.

This limit can be overcome by using as the reference beam a point source in the plane of the object instead of the plane wave used previously. Of course, this can only be used for plane objects. In this case the total light amplitude striking the plate when making a hologram of a point source (Fig. 8) is:-

$$
A_{1}(x) \exp j \pi x^{2} / f \lambda+A_{2}(x) \exp j \pi(x-\Delta)^{2} / f \lambda
$$

The term of interest of the light transmitted by the developed hologram is now:-

$$
2 A_{1}(x) A_{2}(x) \cos \left(\frac{\pi x^{2}}{f \lambda}-\frac{\pi(x-\Delta)^{2}}{f \lambda}\right)
$$

The spatial frequency of these fringes is:-

$$
\frac{1}{2 \pi} \cdot \frac{d}{d x}\left(\frac{\pi x^{2}}{f \lambda}-\frac{\pi(x-\Delta)^{2}}{f \lambda}\right)=\frac{\Delta}{f \lambda}
$$

This is independent of x and therefore for a perfect point source reference beam the aperture of the hologram formed by a point source is unlimited. Eaglesfield ${ }^{7}$ has pointed out that the resolution is now limited by the diameter of the reference point source. This is apparent since the spatial frequency of the hologram depends onl: on the distance between the point object and the reference point. When two points on the object are closer together than the diameter of the reference point, light from these points will interfere with two parts of the reference spot and give the same spatial frequency. Two points with the same holographic record must be inseparable so that any points on the object closer together than the reference source diameter will be unresolvable.

Using a plane reference beam the resolution is limited to that of the best photographic plates which is about $5000 \AA$. When a point source is used, for perfectly coherent light the spot size can be of the order of the wavelength and so for X-rays would be about $1 \AA$.

Unfortunately, good coherent X-ray sources are not available and the smallest pinhole sources have a diameter of around $5000 \AA$. This resolution is much too low to be of much practical application for microscopes.

The resolution in the holograms reproduced here is limited by another effect. The objects used were small metal toys which were painted white. It is a well known fact that when many types of objects such as these are viewed with laser light they have a very grainy appearance. This can be seen in Fig. 9. The former is a photograph of the object viewed in daylight, while the object was illuminated with laser light for the second photograph. This granularity is due to interference on a microscopic scale between the light scattered from the many particles of the rough surface of the object.

In practice the resolution of the hologram of many types of object may be limited by this effect and not by the photographic plate. This granularity can be seen in the reconstructions shown (Figs. 6 and 9).

Fig. 9. Resolution in holograms can be limited by grainy appeorance caused by laser light. The photogrophs show the object viewed in daylight (left) and by laser light (right).

APPLICATIONS OF HOLOGRAPHY

A three-dimensional record of an object has many obvious advantages over a normal photograph. One field in which such a record is particularly useful is in the study of moving, three-dimensional objects such as gases or plasmas. If a hologram is made of such an object using a short exposure time the reconstruction can be viewed continuously and is a "frozen" view of the original object. Particle density can be measured, Schlieren photographs taken and all the other interferometric techniques can be used at leisure on the reconstruction.

High speed objects such as bullets have been recorded ${ }^{8}$ using a ruby laser with a pulse length of about 60 ns . Because of the short coherence length of ruby lasers great care had to be exercised to have equal path lengths for the reference beam and for the light from the object. This meant that large objects with appreciable depth could not easily be used. However, if better mode control and hence longer coherence length could be achieved this method shows promise for recording moving objects.

Metrology.-A further use for holography arises because of the fact that interference can be obtained between the reconstructed image and light reflected from the original object.* If a hologram is made of an object, and the hologram is replaced in exactly its original position, the object being untouched, the reconstruction and the original object will coincide. Any slight movement of the object will now cause interference fringes to appear across the object and the width of these fringes is proportional to the displacement. By this means accurate strain measurements in three dimensions could be made without disturbing the object by attaching strain gauges or other devices.

This technique might also be useful in precision manufacture of optical components. If the original object was replaced by a copy any differences between the two would be indicated by fringes.

Character recognition.-D. G. Gabor has recently suggested" that using holograms it may be possible to solve the problem of machine recognition of handwritten characters. In normal holography two coherent light waves, the reference and the illuminating beams, are combined at a photographic plate. Call these beams A and B respectively. The property of the hologram is that if it is re-illuminated with B then A also appears and vice versa. Let A be a character, typescript etc., readable by human beings and not by a machine and B be a combina-
tion of point sources which is coded so that a machine can read it. If a hologram is made of A and B together then when the character subject A is presented to it B will flash out and be recognized by the machine. In other words the hologram is a translator. A large amount of information can be stored on a hologram and it may be possible to record several variants of each letter of the alphabet on one plate so that the correct code will be reconstructed when a letter is presented to the hologram.
Coding.-Information coding can also be carried out using the method explained above. If \mathbf{A} is a three-dimensional object or any sort of information to be coded and \mathbf{B} is a complicated phase plate the object is only reconstructed when the phase plate " key" is replaced in its original position. Therefore only the person possessing this key can view the object. Several objects can be coded on the same hologram by using a different key for each object.

The future.-Much interest is being shown in holography and rapid progress is being made in the field. Holograms are likely to have many uses in interferometry and metrology and if more powerful lasers are developed they may be used for three-dimensional cinema. However, it is still too early to forecast all the possible uses, but such a technique, with many advantages over normal photography, is certain to be widely used in the future.
Acknowledgement.-The authors wish to thank the Director of Engineering, The Marconi Company Ltd., for permission to publish this article.
"See, for example, W. W'. May 1966, p. $230-\mathrm{Ed}$.

REFERENCES

(1) D. Gabor. Proc. Roy. Soc. A197 (1949).
(2) Lieth and Upatnieks. 7. Opt. Soc. America Oct. 1962 LII 1123. Dec. 1963 LIII 1311. Nov. 1964 LIV 1295.
(3) Pennington and Lin. Applied Physics Letters, 1 August 1965, Vol. 7 No. 3.
(4) Stroke and Labeyrie. Physics Letters, 1 March 1966, Vol. 20, No. 2.
(5) Baez. J. Opt. Soc. America 42, 756 (1952).
(6) "Optical Information Processing," Stroke. MIT Press 1965, Ed. Tippett.
(7) Eaglesfield. Electronics Letters, Sept. 1965, Vol. 1 No. 7.
(8) Brooks et al. Applied Physics Letters, 15 Aug. 1965.
(9) D. Gabor. Nature, 30 Oct. 1965.

Elements of the Colour Television Receiver

FINDING YOUR WAY EASILY ABOUT A COLOUR TELEVISION RECEIVER BY KNOWING THE MAIN CIRCUIT BLOCKS AND HOW THEY WORK TOGETHER

By T. D. TOWERS,* m.b.E.

ARE you one of the many electronics men who jib at colour television because it seems so difficult, particularly when you see it through a haze of forbidding strange terms like "colour killer" and " decoder matrix"? This article is written to give you a chance to grasp the main sections of a colour receiver, as a foundation for later study of individual circuits.

MAIN SECTIONS OF COLOUR RECEIVER

An illuminating way to look at a colour receiver is through the controls that you will operate as a viewer. You find all the familiar "black-and-white" set knobs for "on/off," "channel selection," "fine tuning," "field hold," "line hold," "brightness," "contrast," and "volume." The only unfamiliar knob will be marked something like "saturation," and is used to control the strength of the colouring in the picture.

In Fig. 1 you have a functional block diagram of a colour receiver which shows how the main circuit blocks are connected with the viewer-operated controls mentioned above, and now listed down the left of the diagram. It also shows the paths followed by the television signals from the aerial to the speaker and picture tube.

The tuner, with its associated channel selector and fine-tuning controls, selects the desired transmission from the aerial input, amplifies it and then converts it to a standard intermediate frequency. This i.f. signal is subsequently amplified and detected in the fixed-frequency vision i.f. "strip" or amplifier.

Up to this point, the five main components of the colour telegision signal-sound, luminance (or brightness), pict sync-have been handled together, but after this they open out in $\frac{1}{}$ o five distinct streams for separate processing. In the understanding of the colour receiver, the video detector output is therefore a key point, and Fig. 1 attemps to highlight this. Note how it shows the five signal paths leading off separately from the detector. If you master this point you are well on the way to unlocking the mysteries of the colour receiver.

The sound signal can be followed in Fig. 1 passing from the video detector, through the sound i.f. amplifier and thence, after detection, through the sound a.f. amplifier to the loudspeaker. The viewer-operated volume control adjusts the gain of the a.f. amplifier.

The luminance signal takes another path from the video detector. It passes into the luminance amplifier,

[^1]where viewer controls are available for adjusting both picture brightness and contrast. The output of the luminance amplifier is applied to the cathodes of the colour picture tube to reproduce the brightness content of the picture.
Picture sync information in the television signal is contained in a stream of line and field sync pulses which keep the receiver timebases in synchronism with the transmitter timebases. In Fig. 1 you can follow the path of these sync pulses through the receiver after the video detector.

First, in the sync separator all information other than the sync pulses is stripped off the signal. Field pulses then pass off in one direction to hold the field timebase in synchronism, with the help of the viewer-operated fieldhold control. The field timebase itself, as wall as driving the picture tube field deflection coils, also supplies vertical correcting signals to a "dynamic convergence" section.
from the sync separator also, line pulses pass on a separate path to the line timebase, where, with the help of the viewer line hold control, they keep the line timebase too in synchronism with the transmission. Secondary functions of this timebase are to power the e.h.t. supply to the picture tube anodes and supply horizontal correcting signals to the dynamic convergence circuits.

The dynamic convergence circuits thus receive waveforms from both field and line timebases, and shape these before feeding them to the convergence coils on the picture tube. This arrangement is necessary to ensure that the spots from the three electron beams in the colour picture tube remain indexed together, i.e., at the correct spacing relative to each other, as they are swept over the tube face to create the picture.

The chrominance, or colour signal, path from the video detector onwards can also be picked out in Fig. 1. It is first handled by a chrominance amplifier section, where a viewer "saturation" gain control sets the strength of the colours in the final display. The amplified signal then passes to the colour demodulator stage, which extracts the separate colour modulations. These modulations are then combined in a "colour decoder" stage to supply separate signals to drive the control grids of the picture tube corresponding to red, green, and blue, the three basic colour components of the displayed picture.

Colour sync information in the television signal is contained in a stream of "colour bursts," one close behind each line sync pulse. Fig. 1 shows how, after the video detector, the "burst amplifier" isolates these
colour sync signals from the rest of the carrier signal. The bursts then pass through a discriminator stage to synchronize the colour local oscillator precisely with the colour subcarrier frequency in the transmission signal. As a result, when the colour oscillator is used to drive the colour demodulator, the colour modulation is correctly extracted by the demodulator, and the colour hues come out accurately in the final display.
Another use of the burst discriminator output is to control the "PAL switch" section, which enables the colour demodulator to follow the alternate-line colour phase switching in the PAL system of transmission.

After this brief synoptic look at the main sections of a colour receiver, we will now take a closer look at the individual sections outlined above.

"FRONT END" (TUNER AND I.F. STRIP)

The front end of a colour receiver is not vastly different from its black-and-white counterpart. This can be seen from Fig. 2, which gives more details of this section than was possible in the general diagram of Fig. 1.

On the left of the aerial can be seen a typical signal waveform for one picture line with three distinct parts; the sync pulse, the colour burst, and the mixed signal information. The diagram shows on the right of the aerial the transmission bandwidth covered, for Channel 33 (BBC-2) as an example, and the lacation of the carrier frequencies in that channel in relation to the vision frequency of $567.25 \mathrm{Mc} / \mathrm{s}$. At the output of the cuner, the diagram shows these frequencies converted down to the standard i.f. frequencies of $39.05 \mathrm{Mc} / \mathrm{s}$ for vision, $35.07 \mathrm{Mc} / \mathrm{s}$ for colour and $33.50 \mathrm{Mc} / \mathrm{s}$ for sound.

The i.f. strip has a response somewhat like that shown below on the right in Fig. 2. Thereafter, the video detector produces three outputs comprising (1) an a.g.c. feedback to control the tuner and first if amplifier gain, (2) a $\pm 100 \mathrm{kc} / \mathrm{s}$-bandwidth intercarrier sound signal, centred on $6 \mathrm{Mc} / \mathrm{s}$ for a separate sound section, and (3) a mixed monochrome and colour, wideband, video signal complete with picture and colour sync pulses covering frequencies out to $5.5 \mathrm{Mc} / \mathrm{s}$ for the vision ontput stages.

Nowadays, the whole of the colour receiver front end is transistorized, typically using three or four transistors in

Fig. 2. How U.K. Channel 33 colour television signal appearing at aerial is amplified and frequency-converted in tuner and then fed into common sound/vision i.f. amplifier, where it is finally detected to provide inter-carrier sound and video signals to be processed in later sections.
the tuner, three in the vision i.f., and two in the a.g.c. circuit.

In the front end of a colour receiver, the main differences from a straight monochrome 625 -line receiver are that there are more stringent requirements on a.g.c., frequency stability and band response. As a result, designs are tending to use "gated" a.g.c., some form of a.f.c. in the tuner, and a design of i.f. strip that ensures minimum phase shift and a more precisely tailored response across the i.f. band. For example, a dip of 3 dB in the response at the centre of the band was acceptable with black-andwhite, but experience suggests that this must be tightened to not more than 1 dB in the colour i.f. strip, if satisfactory colour reproduction is to be achieved consistently.

SOUND SECTION

British 625-line television uses f.m. sound on a carrier spaced $6 \mathrm{Mc} / \mathrm{s}$ from the wide (luminance) carrier. Some detail of how sound is processed in the output end of the receiver is shown in Fig. 3. The sound and luminance carriers mixing in the video detector stage give rise to an "intercarrier" $6 \mathrm{Mc} / \mathrm{s}$ beat frequency signal carrier, modulated with the sound information. This is fed off into a narrow-band, $6 \mathrm{Mc} / \mathrm{s}$ tuned, sound i.f. amplifier, which rejects the amplitude-modulated video output from the detector (which is restricted to a $0-5.5 \mathrm{Mc} / \mathrm{s}$ frequency range).

From the $6 \mathrm{Mc} / \mathrm{s}$ i.f. amplifier, the sound signal can be seen in Fig. 3 passing to a normal f.m. detector (usually a ratio type). Thence it passes through a volume control and an a.f. amplifier to the loudspeaker. Some form of
a.g.c. is usually applied in the sound section as shown. This is additional to the vision a.g.c. discussed earlier.

Nowadays the whole sound section is normally transistorized. The i.f. strip uses two transistors, while the audio amplifier is often a three-stage, complementary-push-pull-output, transformerless design giving between a half and one watt output to the speaker.

PICTURE SYNC SECTION (TIMEBASES)

In Fig. 1 we dealt with the main features of the sync section. In Fig. 4 we go into some more detail.

As mentioned earlier, the sync separator takes the full output from the video detector and strips off the vision information before directing the remaining field and line sync pulse streams into two separate paths.

How the line pulses go on to control the frequency of the line timebase oscillator can be seen on the left hand side of Fig. 4. The synchronized oscillator output then feeds into the line timebase output stage, which in turn drives the line output transformer. We have already mentioned how the main purpose of this transformer is to provide drive for the e.h.t. supply, the line deflection coils and the dynamic convergence section. It also is used (as shown in Fig. 4) to provide line flyback blanking pulses for various stages of the receiver, to supply the boosted h.t. of about 500 V for the line output stage itself and to feed a section providing the 5 kV focus voltage for the colour picture itself.

The separate field sync channel after the sync separator can also be seen on the right hand side of Fig. 4. Here
(Continued on page 65)
too the field pulses keep the timebase oscillator in synchronism with the incoming signal. The synchronized oscillator then drives the timebase output and thence the field output transformer. As mentioned in connection with Fig. l, this output transformer primarily drives the field deflection coils, and supplies correction signals to the dynamic convergence circuits, but Fig. 4 shows that it also supplies field blanking pulses to suppress the light spots on the picture tube during line flyback.

At the time of writing, transistorization of the timebases in colour receivers is only partial. Different models vary. Some use transistors only in the lower level stages such as the sync separator, while others are fully transistorized with the exception of the line output stage for which no suitable transistor type is commercially available at the time of writing.

LUMINANCE SECTION

Fig. 5 (a) gives some details of the luminance section additional to the general points covered by Fig. 1. From the video detector output, the luminance signal passes to the 1st luminance wideband amplifier which passes frequencies up to $5.5 \mathrm{Mc} / \mathrm{s}$, and has traps to reject the sound and chrominance part of the video output. The luminance signal then passes on its own through a $1 \mu s$ delay line into the 2nd luminance amplifier, which is coupled to the cathodes of the three electron guns in the picture tube, Fig. 5(b). The gain of the 2nd luminance amplifier is varied by the viewer contrast control, while the d.c. level on the c.r.t. cathode is controlled at the input of this amplifier to set therequired brightness level.

The delay line in the luminance channel is not found in monochrome receivers. It is necessary in colour receivers because signals take longer to pass through the $1 \mathrm{Mc} / \mathrm{s}$-response, narrow-band chrominance amplifier than through the $5 \mathrm{Mc} / \mathrm{s}$-wide luminance amplifier. The approximately 1 us delay introduced in the luminance channel holds back the brightness component of a colour signal so that it arrives at the picture tube at the same time as the corresponding colour signals, and thus prevents misregistration of the colour with the brightness.

Because suitable high-voltage transistors for driving the cathode of the colour picture tube are not yet readily available, the 2nd luminance amplifier uses a thermionic valve at the time of writing, but the 1st luminance amplifier is sometimes a transistor.

Fig. 3. Diagram of sound section of British, $\quad 625$-line, colour television receiver, showing how the sound signal is processed from video detector to loudspeaker.

Fig. 4. Diagram of picture sync section of colour television receiver illustroting how the line and field sync pulses are extracted from the composite video signal after the video detector and used to control the timeboses.

Fig. 5. (o) Moin features of the luminance amplifier which isolates the brightness (black-and-white) information from the composite video signal ofter the video detector and drives the cothodes of the colour picture tube (British 625-line system). The graphical symbol of the picture tube ot (b).

CHROMINANCE SECTION

In Fig. 6 you will find fuller details of the chrominance section of the colour television receiver than was possible to include in the general survey of Fig. 1.
The full composite, 0-6 Mc/s output of the video detector passes into a lst chrominance amplifier where filter circuits reject the luminance and sound signals and amplify only the chrominance and colour burst signals. The colour burst signals are then taken off to a separate burst amplifier in the colour sync section.

The chrominance signals ($4.43 \mathrm{Mc} / \mathrm{s} \pm 1 \mathrm{Mc} / \mathrm{s}$) pass on from the 1st chrominance amplifier into the tuned 2nd chrominance amplifier. In this stage there is a gain control which can be used to set the amplitude of the chrominance signals and thus the "saturation" or strength of the reproduced colours. Line blanking pulses are applied to the 2 nd chrominance amplifier to shut off the amplifier during the time of the line sync pulses and the colour bursts, so that spurious colour signals do not pass through to the picture tube from these sources. Finally, a d.c. bias supplied by a "colour-killer" stage in the colour sync section hoids the 2nd chrominance amplifier cut off except when a string of colour bursts is being received and indicates that a colour transmission is coming in. The term "colour-killer" is used because the arrangement kills spurious colour on the screen when a monochrome picture is being received. Puristically, it might be more correct to call it a "colour-enabler," as it permits the colour path to open with a colour broadcast.

After the 2nd chrominance amplifier, the chrominance section becomes a little difficult for the newcomer. Up to this point we have deliberately not examined the nature of the chrominance signals too closely, but you must know a little more about them to understand the workings of the colour demodulation stages to which the $4.43 \mathrm{Mc} / \mathrm{s}$ signal passes from the 2nd chrominance amplifier.

At the transmitter, two "colour difference" signals, $R-Y$ and $B-Y$, are modulated onto a $4.43 \mathrm{Mc} / \mathrm{s}$ colour subcarrier with a bandwidth of $\pm 1 \mathrm{Mc} / \mathrm{s}$, where R and B correspond to the red and blue content of the picture, and Y to the brightness (or black-and-white) content. (Note that the colour subcarrier is suppressed before
transmission.) A green signal is not transmitted because, as can be shown, it can always be derived from a combination of R, B and Y. The transmitter applies the $R-Y$ and $B-Y$ signals as subcarrier amplitude modulations with a fixed 90° phase difference, and this enables the receiver ultimately to detect them separately by a system of two synchronous demodulators with a 90° phase difference between them.
In the PAL system, as used by the B.B.C., there are further complications. On every other picture line the phase of the $R-Y$ signal is reversed (i.e., 180° added). This is to help balance out phase errors in the path from transmitter colour camera to receiver picture tube, so that colour hues can be accurately reproduced.

To enable the receiver to reconstitute the suppressed coiour carrier exactly, the transmitter sends out at the start of each picture line a "colour burst," i.e. some ten cycles of $4.43 \mathrm{Mc} / \mathrm{s}$ unmodulated colour subcarrier. This is used to synchronise the receiver colour local oscillator for reinsertion of the exact carrier for synchronous demodulation of the $R-Y$ and $B-Y$ signals. In B.B.C. PAL these colour bursts are not exactly in phase with the original carrier, but, on alternate lines, their reference phase is $\pm 45^{\circ}$ about the mean carrier zero referencehence the term "swinging burst."

Now, when the suppressed carrier $R-Y, B-Y$ signals, which we have so far traced in Fig. 6 to the 2nd chrominance amplifier as a group of signals in the bandpass $4.43 \mathrm{Mc} / \mathrm{s} \pm 1 \mathrm{Mc} / \mathrm{s}$, leave that stage, they take two courses. First, they go direct to separate "adder" and "subtractor"' circuits. Secondly, they pass through a 64μ s $(=1$ picture line period) delay line, and are then also fed to the same adder and subtractor circuits. Thus the chrominance signals for any line are added to, or subtracted from, the corresponding signals for the previous line which have been held up in the delay line. Now the $R-Y$ signal is reversed in the transmission on every line, so the $R-Y$ signals cancel out in the adder leaving substantially only the $B-Y$ information (still $4.43 \mathrm{Mc} / \mathrm{s}$.).

Similarly in the subtractor, the $B-Y$ signals cancel out, and the alternate-line-reversed $R-Y$ signals add to give substantially $R-Y$ output on $4.43 \mathrm{Mc} / \mathrm{s}$. Thus we have so far partially separated the $R-Y$ and $B-Y$ information

Fig. 6. The chrominance or colour difference section of a British 625-line PAL-D colour television receiver, which extracts the colour information from the composite video signal after the video detector, amplifies it, demodulates it, and reconstitutes. (or decodes) the three colour-difference signals to drive the $R-Y, G-Y$ and B-Y picture tube control grids which together with the $+Y$ luminance signals on the cathodes reproduces red, green and blue components of composite picture signal.

Fig. 7. The colour-sync section of British 625-line PAL colour television receiver. In this section, the $4.43 \mathrm{Mc} / \mathrm{s}$ colour burst is extracted from the composite video signal after the video detector, demodulated and used primarily to control the phase of the colour local oscillator, to deactivate the colour killer stage and to drive the PAL alternate-line phase reversal switch.

into two streams of $4.43 \mathrm{Mc} / \mathrm{s}$ r.f. signals. These have now to be demodulated to recover the original modulation to control the picture tube.

Two separate synchronous detectors are now required, one each for $R-Y$ and $B-Y$. A synchronous detector works by feeding a $4.43 \mathrm{Mc} / \mathrm{s}$ carrier, in phase with the $4.43 \mathrm{Mc} / \mathrm{s}$ suppressed colour subcarrier, into a diode demodulator bridge. Into the same bridge goes the 4.43 Mc/s chrominance signal in the chrominance section at this point. For the $B-Y$ adder, the local oscillator signal is fed direct from the oscillator to the synchronous detector, which then gives out a demodulated, $0-1 \mathrm{Mc} / \mathrm{s}$, $B-Y$ output. For the $R-Y$ subtractor, complications arise from the 90° phase difference of the $R-Y$ modulation from the $B-Y$, and the $R-Y$ phase reversal on alternate lines. For these reasons, the local oscillator drive to the $R-Y$ synchronous detector is first of all phase shifted 90° and then passed through a PAL switch which on alternate lines reverses the phase of the resultant $4.43 \mathrm{Mc} / \mathrm{s}$ carrier reinsertion signal before feeding it to the $R-Y$ synchronous demodulator. The output of the $R-Y$ demodulator then reprduces the $0-1 \mathrm{Mc} / \mathrm{s} R-Y$ modulation as at the transmitter. (Although the colour local oscillator, the $90^{\circ} R-Y$ phase shift circuit and the PAL phase switch are discussed here in connection with the chrominance section, they really belong to the colour sync section discussed later below.)

The $R-Y$ and $B-Y$ demodulated signals now pass to output amplifiers for driving the corresponding control grids of the picture tube. A colour picture tube also requires a green difference signal for a third control grid, and this is obtained by combining certain proportions of the $R-Y$ and $B-Y$ signals to teed a third, separate $G-Y$ output amplifier.

COLOUR SYNC SECTION

Fig. 7 shows in more detail the colour sync section of the receiver that has been surveyed generally as part of Fig. 1, and has been referred to in discussing the operation of synchronous detectors in the chrominance section.
Starting at the input end of Fig. 7, you can follow the colour burst $4.43 \mathrm{Mc} / \mathrm{s}$ signal taken off from the 1 st chrominance amplifier into the burst amplifier. The burst gate amplifier which follows is held cut off, except when it is triggered open by line sync pulses to pass only the colour burst, and to suppress video information that might pass through and upset the colour synchronisation.

The next stage is the colour burst phase discriminator
which compares the phase of the $4.43 \mathrm{Mc} / \mathrm{s}$ output from the burst gate amplifier with that of the local colour oscillator, and produces a d.c. correction signal to act on a reactance control stage to bring the oscillator into phase with the burst. From the burst discriminator, we also see derived a d.c. signal proportional to the burst amplitude to provide a colour a.g.c. by controlling the gain of the lst chrominance amplifier. Finally, the burst discriminator, as a result of the $\pm 45^{\circ}$ phase reference swing on alternate lines, produces a ripple signal at half the line frequency (approx $7.8 \mathrm{kc} / \mathrm{s}$) which is amplificd in the "ident amplifier" and rectified to give a d.c. bias to hold the 2nd chrominance amplifer open when bursts are present. The term "ident" comes from the other use of the $7.8 \mathrm{kc} / \mathrm{s}$ ripple which is to control the PAL phase switch so that it identifies the line being received and switches in the right phase of the oscillator drive to the $R-Y$ demodulator for that line.

The colour oscillator is crystal controlled at approximately $4.43 \mathrm{Mc} / \mathrm{s}$, but the reactance control stage can vary this enough to keep the oscillator locked to the transmitted burst frequency and phase. The controlled output from the oscillator drives the $B-Y$ synchronous demodulator in the chrominance channel directly, and the $R-Y$ demodulator via a 90° phase shift stage and a PAL phase reversing switch controlled by the swinging burst $7.8 \mathrm{kc} / \mathrm{s}$ ripple as explained above.

SUMMING UP

This article has shown how all the circuits used in a colour receiver can be largely dissected into six main blocks for ease of understanding. If you have managed to follow the description of these six blocks of the receiver, you are well on the way to understanding how the different circuits actually work in detail.

"Wireless World" Index

The Index to Volume 72 (1966) is now available price is (postage 3d). Cloth binding cases with index cost 9 s 6 d , including postage and packing. Our publishers will undertake the binding of readers' issues, the cost being 35 s per volume including binding case, index and return postage. Copies should be sent to Associated Iliffe Press Ltd., Binding Department, c/o 4 Iliffe Yard, London, S.E.17, with a note of the sender's name and address. A separate note confirming despatch, together with remittance, should be sent to the Publishing Department, Dorset House, Stamford Street, London, S.E.1.

Mobile Satcom Terminals

ONE tends to think of satellite communications in terms of orbiting relay stations and fixed ground stations, but in fact the idea of using mobile terminals, in ships and aircraft, is now being explored and may soon become common practice. The purpose is to overcome the limitations of the h.f. and v.h.f. radio systems in use at present. In the U.K., for example, a shipborne satellite communications terminal is being built by the Royal Navy. It will be used in an interService project, the Interim Defence Communication Satellite Programme, for assessing the effectiveness of global military communications. The satellites-seven are available -are being provided by the U.S. Department of Defence.

The shipborne terminal, constructed jointly by the Admiralty Surface Weapons Establishment and Plessey Radar, has a 6 ft diameter aerial with automatic tracking facilities, a transmitter operating in the military band of microwave frequencies and two separate receivers which enable the ship to monitor its own transmitted signals as well as receive those from a distant station. It is due to be installed in H.M.S. Wakeful to undergo sea rials, which will include communication with a Ministry of Aviation ground station at Christchurch, Hants, and with U.S. Navy
ships. One of the problems peculiar to mobile terminals is that they cause movement of the aerial beam relative to the satellite, and to cope with this in the Navy equipment a specially designed stabilization system using Ferranti gyros is being installed in the ship.

The airlines are interested in air-to-ground communications via satellite as a means of achicving reliable, inter-ference-free v.h.f. communication over large areas such as the Atlantic and Pacific oceans. Tests of two-way teleprinter communication have already been conducted through the Syncom III satellite, using the spacecraft's v.h.f. telemetry equipment, and there have also been listening tests on signals from Syncom III and Early Bird. The latest. step is that seven airlines, working through Aeronautical Radio Inc. (ARINC), have started on a test programme of two-way air-to-ground v.h.f. voice and data communications over the Pacific, using NASA's Application Technology Satellite (ATS-1) which was put into equatorial orbit over Christmas Island in December 1966. Specially designed aircraft aerials are needed, and some of the tests will discover how well these perform in conditions of multi-path interference and Faraday rotation in the ionosphere.

British Broadcasting White Paper
 THE long-awaited Government White Paper on Broadcast-

ing (Cmd. 3169) was issued on December 20th. Its eight pages contain little, if anything, that was not a foregone conclusion. The main decisions are:-(1) no increase in the receiving licence fee before 1968; (2) no allocation of frequencies to a fourth television service for the next three years; (3) a supplementary licence fee of $£ 5$ from those with colour receivers; (4) the introduction by the B.B.C. of a popular music programme to be broadcast on 247 metres for 18 hours a day; (5) for local sound broadcasting the B.B.C. is to conduct an experiment with nine v.h.f.; stations "as a venture in co-operation with local interests."

On the question of colour television the Government states "It has always been recognised that the decision to provide colour television on the 625-line definition standard is closely related to the intention to change over the two

405-line services of BBC-1 and independent television to 625 lines. The Postmaster General's Television Advisory Committee has been asked to report as soon as possible on the method of changeover to be adopted. It may well be that this will involve duplicating the existing 405 -line programmes on 625 lines in u.h.f."

For each of the proposed nine experimental local broadcasting stations there will be a local broadcasting council which "will have the maximum possible voice in direction and performance of the stations." The stations will come into operation after about a year and the Government will reserve until the conclusion of the experiment of a year or so "any decision on the question whether a general and permanent service should be authorised, and, if so, how should it be constituted, organized and by whom provided, as well as how it should be.financed."

Mobile Radio Range Increased

TESTS in London by Pye Telecommunications on their new "synchronous stable relaying" system for mobile radio have proved, say the company, that the system is not upset by reflections from tall buildings nor from aircraft flying over their experimental synchronous relay station on the roof of the Hilton Hotel. (This station relays speech transmissions received from a master transmitter in the Millbank Tower.) The purpose of the s.s.r. system is to overcome the range limitation of mobile radio schemes, without using extra frequencies, by setting up as many svnchrencits, com-mon-frequency, relay stations as are required. Mobile radio telephony using s.s.r. on long trunk routes is envisaged.

Price Fixing Dropped

THE British Radio Equipment Manufacturers' Association has reluctantly decided to abandon its attempt to secure exemption for domestic equipment from the Resale P.ices Act 1964 after carefully considering the position, having been advised by its lawyers that there was virtually no pros-
pect of success. The Association's application in 1964 on behalf of its members was referred to the Restrictive Practires Court in 1965. The Association submitted its Statement of Case and the registrar of the Restrictive Trading Agreements has now delivered his answer. In the circumstances the court will shortly make an order declaring resale price maintenance unlawful in respect of radio and television sets, gramophones, tape recorders and related classes of goods.

A new chair in telecommunications systems is to be established in the University of Essex. The Post Office is to pay the costs of the chair and some supporting staff for ten years. It will be in the Department of Engineering Science and it is hoped that it will be filled by October of this year. Teaching at both undergraduate and post-graduate levels with research into telecommunications systems will be provided. A system of awards for engineering graduates on the staff of the Post Office has been established since December 1965 and a number of these will be placed with the University of Essex. Close ties are expected to develop between the University and the Post Office Research Station, which is to move from London to near Ipswich.

The first elections to the council of the British Acoustical Society since its inauguration in May 1966 were held recently. Professor R. E. D. Bishop, Kennedy Professor of Mechanical Engineering in University College, London, was elected president. Professor E. J. Richards, head of the Institute of Sound and Vibration Research, Southampton; Professor E. C. Cherry, Electrical Engineering Department, Imperial College and W. A. Allan, consulting architect were elected vice-presidents. Dr. P. Lord of the Applied Physics Department, Royal College of Advanced Technology, Salford, is hon. secretary and Dr. R. W. B. Stephens, reader in acoustics, London University, is membership secretary. Full particulars of membership can be obtained from Dr. Stephens at the Physics Department, Imperial College, London, S.W.7.
B.B.C. colour test transmissions were extended from January 2nd to include Emley Moor (Ch. 51) as well as Crystal Palace (Ch. 33) and the BBC-2 relay stations at Guildford, Hertford, Reigate and Tunbridge Wells.

Stereo Decoder.-In the article by Mr. Waddington, describing a stereo decoder, published in the January issue, it was stated on p. 4 that Tr6 limits when the input was 60 mV . This should have read 6 mV . Also, in the circuit of Fig. 9 we regret that the centre tap of T3 secondary was shown incorrectly connected to C_{1}. The centre tap should be laken to earth and C_{1}, to the emitter of Tr6.
"The Discovery of Television."-The Mullard film with this title, which was transmitted by the B.B.C. on the 30th anniversary of the opening of the British television service, is now available on loan to clubs and other organizations (Mullard, Torrington Place, London, W.C.1). The film shows indubitably that no one person discovered or invented television. The names associated with its development are many and most of them arc mentioned. Although some may feel that unduc weight is given to Baird, whose system bore little or no relation to present-day techniques, it must in all fairness be said that "he was the first to make it work."
I.T.A. Asynchronous Trade Tests.-Trade test transmissions from all the Independent Television Authority's transmitters are now being broadcast asynchronously, that is the field frequency will be locked not to the mains frequency but to a crystal. Previously, trade tests and many of the programmes were locked to the mains frequency but most of the network programmes have already been crystallocked and the European standard for 625-line transmission also specifies crystal locking.

The recently formed Industrial Reorganisation Corporation has been asked by the Government to conduct a broad study of the telecommunications industry. The evidence the I.R.C. collects will be confidential and the results will not be published.

Lord Bowden of Chesterfield, principal of the University of Manchester Institute of Science and Technology, has accepted the invitation to be president of the Royal Television Society in succession to \mathbf{F}. N. Sutherland, managing director of the Marconi Company, who completed his two-year term as president on 31st October. A graduate of Emmanuel College, Cambridge, Lord Bowden also studied at the University of Amsterdam, where he received his Ph.D. During World War II he was with the Ministry of Supply, and in May 1943 took a British research team to the Massachusetts Institute of Technology to develop a new naval radar system. In 1950 Dr. B. V. Bowden (as he was then) ioined Ferranti and three years later became principal of the Municipal College of

Technology, now the University of Manchester Institute of Science and Technology. He was made a life peer in 1963 and was appointed Minister of State for Education and Science in October 1964, but a year later he resigned from the Ministry and returned to the University from which he was granted leave of absence on his Government appointment.
M. J. L. Pulling, C.B.E., M.A., F.I.E.E., deputy director of engineering in the B.B.C. since 1963, will retire in May and will be succeeded by D. B. Weigall, M.A., F.I.E.E. Mr. Pulling was educated at Marlborough College and King's College, Cambridge, and after five years in industry, joined the B.B.C. in 1934. He became superintendent engineer, recording, in 1941;

senior superintendent engineer, television, in 1949; controller, television service engineering, in 1956, and was assistant director of engineering for a year before he was appointed to his present post. Mr. Pulling was for ten years chairman of the technical body which was responsible for the development of Eurovision. He was also 1959/60 chairman of the I.E.E. Electronics and Communications Section. Mr. Weigall, assistant director of engineering, will become deputy director of engineering, whilst retaining his present responsibilities for the work of the Engincering Specialist Departments. A graduate of Christ Church, Oxford, he joined the B.B.C. Research Department in 1933. He was seconded as chief engincer to the Malaya Broadcasting Corporation from 1940 to 1942 and as Technical Adviser on Broadcasting to the Ministry of Information from 1943 to 1946 . He was appointed B.B.C. chief engineer, external broadcasting, in 1962 and became assistant director of engincering in 1963.
J. Redmond, F.I.E.E., B.B.C. senior superintendent engineer, television, since 1963, will become assistant director of engincering and will assume Mr. Pulling's present responsibilities for the operational work of the Engineering Division. Mr. Redmond joined the B.B.C. in 1937 and served in the Merchant Navy as a Radio Officer during the war. He became assistant superintendent engineer (film) in 1956; superintendent engineer (television recording) in 1960; and superintendent engineer, television (regions and outside broadcasts) in 1962.

Bernard Marsden, F.I.E.E., M.I.E.R.E., has been appointed Group Engineering Controller to the A.T.V. group of companies. He has been with Associated Television, the London and Midlands programme contractors, since 1955. Prior to the start of independent television he spent five years in commercial broadcasting and was previously

in the radio industry-Murphy, Philips and Sugden. In 1960, Mr. Marsden became deputy technical controller and since 1953 has been technical controller.
F. W. Alexander, Ph.D., B.Sc.,
M.I.E.E.,
superintendent M.I.E.E., superintendent engineer, sound broadcasting equipment since 1963, is retiring after 31 years' service with the B.B.C. Dr. Alexander joined the Engineering Research Department from the Research Section of the Department of Physics, University of St. Andrews. His successor at the B.B.C., is J. R. Wakefield, M.I.E.E., who joined the Recording Department in 1941. Ten years later he transferred to the Planning and Installation Department where recently he has been head of the sound section.

Dr. J. M. M. Pinkerton, research manager of English Electric-LeoMarconi Computers, is the new president of the European Computer Manufacturers' Association. ECMA, formed in 1960, has some 20 members and an

Dr. J. M. M. Pinkerton
office with a permanent staff of five in Geneva; and its affairs are guided by three elected members. Dr. Pinkerton, a Cambridge double-first and Ph.D., joined Leo Computers Ltd. in 1949 and was for four years a director of the company until its merger with English Electric in 1963, he then became responsible for research in the combined computer company.
W. E. Miller, M.A.(Cantab.), M.I.E.R.E., managing director of our publishers, Iliffe Electrical Publications Ltd. since 1962, has been appointed chairman of the company. Mr. Miller,

NEW YEAR

Sir Lawrence Bragg, F.R.S., is appointed a Companion of Honour in the New Year Honours. Sir Lawrence was Cavendish Professor of Physics at Cambridge from 1938 until 1954 when he assumed the directorship of the Royal Institution from which he retired eighteen months ago. Born in Adelaide, S. Australia, in 1890 he was educated at Adelaide University and Trinity College, Cambridge. Sir Lawrence's work on X-ray crystallography is well-known and the phenomenon called Bragg reflection is becoming more significant with the use of lasers and in holography.

Sir Willis Jackson, F.R.S., who received a life peerage for services to technology, has been professor of electrical engineering at Imperial College, London, since 1960. After graduating at Manchester University and lecturing in electrical engineering at Bradford Technical College (now the University of Bradford), he joined Metro-Vick as a college apprentice in 1929. In 1938 he was appointed professor of electrotechnics at Manchester University and eight years later accepted the chair at Imperial College. Sir Willis relinquished his chair at Imperial College in 1953 to become director of research and education of Metro-Vick now part of A.E.I. but returned in 1960. His burning interest is technological education and technical training.

Francis C. McLean, C.B.E., B.Sc., F.I.E.E., who has been director of engineering at the B.B.C. since 1963, is appointed a knight bachelor. A graduate of Birmingham University he was 12 years with Standard Telephones \& Cables before joining the B.B.C. in 1937. He headed various groups within the Engineering Division prior to his appointment in 1952 as deputy chief engineer. In 1960 he became deputy director of engineering. Sir Francis, who was for several years a member of the Radio Research Board and has served on many national and international bodies concerned with radio regulations is a member of the Technical Sub-committee of the Government Television Advisory Committee.
who is a past president of the I.E.R.E., was for many years editor of our associate journal Electronic \& Electrical Trader (formerly Wireless Trader). On leaving Cambridge in 1924 he spent a short time with the Cambridge Instrument Company and joined the editorial staff of the Trader in 1925. He was technical editor from 1926, editor from 1940 and later managing editor. Mr. Miller is succeeded as managing director of I.E.P. by Kenneth Tett who in 1946 joined Wireless Press Ltd. (an associate company which publishes the Ocean Times and other newspapers for ships) as advertisement manager.

HONOURS

The following are also recipients of awards announced in the Honours List.

C.B.E.

L. W. Hayes, who recently retired from the secretariat of the International Radio Consultative Committee (C.C.I.R.) of which he was latterly vicedirector. Prior to going to Switzerland he was on the B.B.C. engineering staff.

O.B.E.

A. F. Bulgin, M.I.E.R.E., chairman and managing director of A. F. Bulgin \& Company.
L. A. W. Diamond, lately managing director, Broadcasting Company of Northern Nigeria.
A. Kravis, manager, administrative and technical services research division of the Marconi Company.
J. A. Marshall, principal signals officer, Diplomatic Wireless Service.

M.B.E.

A. W. Bailey, head of the economic and statistical department of B.E.A.M.A.
W. A. Bennett, assistant broadcasting officer, British Solomon Islands.
J. C. Curry, manager, public address hire department, S.T.C.
G. M. Evans, chief inspector, English Electric Valve Company.
E. V. Golder, experimental officer, Signals Research \& Development Establishment.
I. C. I. Lamb, A.M.I.E.R.E., engineer-in-charge of the I.T.A. station at Emley Moor, Yorks.
L. H. W. Howard-Silvester, experimental officer, Royal Radar Establishment.
D. G. Smith, deputy engineer-inchief, Cable \& Wireless.

IMPERIAL SERVICE ORDER

H. T. Mitchell, F.I.E.E., staff engineer, Post Office Research Station.

BRITISH EMPIRE MEDAL
E. V. Hatswell, assembly superintendent, aircraft navigation instruments, Smith Industries Ltd.
E. R. Patterson, leader of G.E.C. technical information services.
A. Rush, research and development craftsman, S.R.D.E.
A. M. Stark, radio overseer, officer-in-charge, G.P.O. Humber Radio Station.

World Satellite Communications -including TV, of course

INTELSAT SYSTEM WILL ENCIRCLE THE GLOBE

THE transmission of live television pictures between Britain and Australia via a communications satellite in November last year focused public attention on what is, in fact, the second phase of a global satellite communications scheme planned to be complete by 1968. Telephone, television and teleprinter signals will be carried. This global system is being set up by the International Telecommunications Satellite Consortium (Intelsat), a partnership of 55 nations, and the second phase of the scheme is now under way. The first phase of the project was the coming into service of the Early Bird synchronous satellite in 1965*. Phase II, however, will provide two additional synchronous satellites, one over the Atlantic and one over the Pacific (Fig. 1). Each

[^2]has the same channel capacity as Early Bird but gives about twice the radiated power and has a larger service area.

The satellite intended for the Pacific was launched in October 1966, but the apogee motor failed to put it into the required geo-stationary orbit 22,300 miles above the earth and the spacecraft is now travelling in an elliptical orbit. It was while this "rogue" satellite was temporarily above the Indian Ocean that it was in a suitable position to allow the Britain-Australia television relay. While it was over the Atlantic it enabled two-way telephone communication to be established between the Cable \& Wireless ground station built by Marconi on Ascersion Island and the American ground station at Andover, Maine. In the satellite, the receiver operates in the band $6.285-$ $6.405 \mathrm{Gc} / \mathrm{s}$ and the transmitter in the band $4.06-4.18 \mathrm{Gc} / \mathrm{s}$.

By the time this article appears in print a replacement for the "rogue" Pacific satellite may well have been launched-modifications having been made to the apogee motor designand it will be followed shortly by the Atlantic satellite. Meanwhile, Early Bird continues to operate, as television viewers are well aware, and will be in use up to 1968, when the third phase, using Intelsat III satellites, will come into operation. (If Early Bird fails before 1968 it will be replaced.) The combined capacity of Early Bird and the new Atlantic satellite will allow transatlantic television transmission without interruption of other communications.

Phase III will provide three new satellites, one above the Atlantic, one above the Pacific and one above the Indian Ocean. Each will have a capacity of 1,200 voice channels. Their positions are not yet known but the Atlantic satellite will probably be

Fig. 1. Estimated service areas of Intelsat II Atlantic and Pacific satellites and probable service area offuture Intelsat III Indian Ocean satellite. The Intelsat III Atlantic and Pacific satellites will have roughly similar service areas to those of the Intelsat II satellites shown but the Atlantic service area may be about 20° farther west.
farther west than the Intelsat II one shown in Fig. 1. A significant feature of this phase for the U.K. is that the Indian Ocean satellite will allow communication between Britain and Australia, using the Post Office's ground.station at Goonhilly, Cornwall, and a ground station to be constructed by the Australian Overseas Telecommunications Commission. As can be seen from Fig. 1, Goonhilly and much of Australia are within the limits of the service area. These limits are described by points on the earth's surface from which the satellite appears to be just above the horizon (see top-left sketch in Fig. 1). More precisely they are points on the globe where the angle of elevation of the ground station's aerial bowl when directed at the satellite is 5° (relative to 0°, the horizon) -an angle which Intelsat have agreed as the lowest economic one for adequate signal/ noise ratio.

The capacity of the Intelsat III satellites will be taken up during the 1970s. In general the satellite scheme will be complementary to the existing coaxial-cable long-distance telephone network-satellite communications becoming relatively more economical with increasing distance.

An important factor in the timing of the whole system is the U.S.A.'s Apollo space project for eventual landing of men on the moon. This will require global telecommunication links between the various radio stations tracking the spacecraft, and the Atlantic and Pacific satellites will be
needed by N.A.S.A. to supplement existing cables and h.f. radio systems. Ascension Island, mentioned earlier as an earth terminal station, is one of three places at which fixed Apollo tracking stations will be operating (the other two being Carnarvon and Grand Canary Island). A further six tracking stations will be mobile-on land or shipborne. About half of the capacity of the two Intelsat IIs will be used for the Apollo project and the remainder will be available for routine commercial communications.

The two Intelsat II satellites have been constructed by the American firm which built Early Bird (HS303) -Hughes Aircraft Company. These Intelsat IIs are twice as large as Early Bird, have over twice the radiated power, serve a larger geographical area and, unlike Early Bird, provide for multiple-access working (meaning that a number of ground stations can work through a satellite simultancously). The microwave relay station of the craft (see Fig. 2) consists basically of a receiver operating over the band 6.285 to $6.405 \mathrm{Gc} / \mathrm{s}$, a frequency changer which changes the received signals by $2.225 \mathrm{Gc} / \mathrm{s}$, and a transmitter radiating the frequencychanged signals in the band 4.060 to $4.180 \mathrm{Gc} / \mathrm{s}$. In the transmitter four 6-W travelling-wave tubes are provided. One, two or three of these in any combination may be turned on and operated in parallel, according to the power available from the solarcell and nickel-cadmium battery power supply (nominally 85 watts).

Normally two or three t.w.ts will be in operation, even when the Earth obscures the sun. These transmitter output tubes feed a four-element biconical horn aerial array, which has virtually constant gain across the pass-band, to give an e.r.p. from the satellite of about 25 watts for mul-tiple-carrier working or 35 watts for single-carrier working. Since the aerial array has a toroidal beam it continually illuminates the service area on the earth while the satellite is spinning on its own axis (the spacecraft being spin-stabilized).

Within the $125 \mathrm{Mc} / \mathrm{s}$ bandwidth of the relay station, 240 two-way voice channels or one television channel can be accommodated. The cost of operating one two-way voice channel is at present about $£ 14,000$ p.a., but this is likely to drop as satellite communications become established. A transmission time delay of 270 ms in each direction is inherent in the system, and this means that two such satellite "hops" used in tandem would make telephone conversations cxtremely difficult.

The craft's telemetry system, for monitoring and controlling the satellites from the ground, is similar to that of Early Bird and comprises two encoders, two v.h.f. transmitters (which are turned on and off from the ground) and a radio beacon (which radiates continuously). Control of the satellites-positional control through gas jet system and control of the radio system-is the

responsibility of the Communications Satellite Corporation (Comsat) in the U.S.A., which acts as manager of the whole scheme for Intelsat. Commands are sent from Comsat's operations centre in Washington, D.C.

The Intelsat III satellites are being constructed by the American company TRW Systems, and six are on order. These will have slightly greater transmitter power than that of Intelsat II but, because the aerial beam will not be an "allround" toroidal one but have all the radiated energy directed in a cone towards Earth, the e.r.p. will be substantially greater-about 100 W in fact. This directional beam will be achieved by an "electronically despun" aerial system which will counteract the effect of the stabilization spin of the satellite by cyclically switching the r.f. energy to the acrial elements as the satellite rotates. The greater capacity of these satellites will be provided by the wider bandwidth of the microwave relay stations$500 \mathrm{Mc} / \mathrm{s}$ instead of Intelsat II's $125 \mathrm{Mc} / \mathrm{s}$-the receiving band being 5.925 to $6.425 \mathrm{Gc} / \mathrm{s}$ and the transmitting band 3.700 to $4.200 \mathrm{Gc} / \mathrm{s}$.

On the ground a number of stations are, of course, already operating through Early Bird, but many more are under construction and projected. Those already built or in course of construction are: Andover (U.S.A.), Brewster Flat (U.S.A.), Buitrago (Spain), Fucino (Italy), Goonhilly (U.K.), Ibaraki (Japan), Mill Village (Canada), Paumalu (Hawaii), Pleumeur Bodou (France), and Raisting (Germany). Although primarily for use in the Apollo project, the following stations will also be available for commercial communications: Ascension Island (British), Grand Canary Island (Spanish) and Carnarvon (Australia). In addition, there are plans to build stations at Hong Kong, Bahrain (Arabian Gulf), Moorefield (U.S.A.), Moree (Australia), in the Caribbean, and second installations a! Goonhilly and Andover. Countries with definite plans to build stations include Thailand and the Philippines, and further possible sites are Nigeria, Ethiopia, the Middle East, Chile, and East Africa.
.It has been estimated that 80 to 100 new ground stations will be needed over the next few years. This, of course, represents considerable business for the manufacturers (each station costing £1M or more), and on the strength of it a new company, World Satellite Terminals Ltd., has been set up in Britain to specialize in

the building and installation of these stations. Formed as a consortium by A.E.I., G.E.C. and Plessey, W.S.T. have produced a standardized basic design for a ground station and have tendered for the Hong Kong and second Goonhilly terminals. One feature of their design (Fig. 3), which uses an $85-\mathrm{ft}$ Cassegrain aerial reflector system, is that the " pre-amplifier room" containing the parametric amplifier first stage of the receiver is mounted so that it does not move in elevation when the bowl is tilted. This allows the equipment in the room to be continuously accessible to the engineering staff while the station is operating. The aerial bowl, as in other designs, is made steerable to permit tracking of non-synchronous satellites, or of synchronous satellites with slight positional variation (when the orbit is not precisely over the equator), or to allow the station to operate with two different satellites at different times. Maximum rate ot movement is $1^{\circ} /$ second. The aerial has a beam width of 0.2° and can be positioned with an accuracy of 0.03°.

Most of the ground stations in use or being built have reflector bowls 85 ft in diameter. This is the minimum size necessary to satisfy a receiv-ing-performance figure of merit recommended by Intelsat:-

Aerial gain
 System noise temperature in ${ }^{\circ} \mathrm{K}$

expressed in decibels. In the W.S.T. station, for example, the figure of merit achieved is 40.7 dB with 5° aerial elevation at the reception frequency of $4 \mathrm{Gc} / \mathrm{s}$. The basic problem is, of course, the strictly limited radiated power from the satellite and the irreducible noise level of the system (sky noise plus man-made radio interference plus receiving equipment noise). In practice this means that the aerial bowl should be 85 ft in diameter to collect sufficient r.f. energy from the satellite, the station should not operate with the aerial beam lower than 5° elevation, as mentioned earlier, and the system noise temperature must be brought down to 50° to $60^{\circ} \mathrm{K}$.

UK3, Britain's Scientific Satellite

EXPERIMENTS IN RADIO PHYSICS INCLUDED IN FIRST ALL-BRITISH SPACECRAFT

PREVIOUS satellites in the joint U.S.A.-U.K. space research programme were often assumed to be British-perhaps because of the titles they were given, UK $1 \& 2$ (also Ariel $1 \& 2$)-but they were in fact American designed and built-only the experiments were British. The third spacecraft in this series is UK3 and has been designed, developed, manufactured and tested in the U.K. (although, of course, the launch vehicle will be American). The work has been co-ordinated in this country by the Science Research Council together with the Ministry of Aviation acting as the design authority. The Royal Aircraft Establishment carried out the research, development and design, and the two main contracts for the construction were given to the

British Aircraft Corporation and G.E.C. (Electronics). The spacecraft is due for launch toward the end of March. It will be spin-stabilized in a circular orbit inclined at 80° to the equatorial plane and at an altitude of $525-550 \mathrm{~km}$. Its design lifetime is one year. The design attitude is with the axis normal to the plane of the ecliptic. The satellite configuration (Fig. 1) is the logical result of considering the constraining factors. Amongst these are the need for the folded satellite to fit within the Scout (launch vehicle) payload envelope, the provision of suitable mountings for aerials and sensors, the solar cell layout, thermal balance considerations and the disposal of the various masses to achieve balance and correct moment of inertia ratio for spin

Part of the interior of UK3. Normally the spacecraft is covered with 12 panels of " solar" cells which provide electric power for the vehicle and experiments.
stabilisation about the craft's axis.
The equipment on board comprises experiment packages and electronic equipment, which includes the power supply electronics, data handling subsystems, programmer and tape recorder electronics, duplicated telemetry transmitters and a command receiver with decoder and logic circuits (supplied by G.E.C.). The five scientific experiments were the responsibility of the sponsoring bodies -Birmingham University, Manchester University, Sheffield University, the Meteorological Office and the Radio and Space Research Station.

THE EXPERIMENTS

V.L.F. phenomena. The experiment by the Space Physics Group at Sheffield University is designed primarily to study the spatial and temporal characteristics of v.l.f. radiation (1 to $20 \mathrm{kc} / \mathrm{s}$) above the ionosphere and, by means of on-bcard tape-recording, to provide a wide and uniform coverage in geographic and geomagnetic coordinates. This synoptic study of v.l.f. phenomena complements previous v.l.f. satellite studies (e.g. Alouette I, II, Injun III) where real-time observations of the more detailed dispersive and spectral characteristics of the signals have been necessarily limited to the vicinity of Minitrack stations.

One of the two main classes of v.l.f. phenomena is the whistler, generated in lightning discharges and observed mainly in medium latitudes. (This phenomenon, which has been known for 50 years, was first understood following the pioneer work of Storey at Cambridge in 1953. He showed that a small fraction of the pulse of energy at v.l.f., released during a lightning discharge, would travel along the earth's magnetic field line through the exosphere to the geomagnetic conjugate point in the opposite hemisphere. Since the higher frequencies travel faster along the field line the signal received is heard as a falling tonehence the name whistler.) Studies of the dispersion of the whistler signal, at ground stations disturbed over a wide range of latitude, have yielded a great deal of information on electron density profiles at distances up to six earth radii.

Apart from whistlers there is also natural emission at v.l.f. This is
a high latitude phenomenon occurring associated with the precipitation of charged particles (mainly electrons) principally in the auroral zones and along the earth's magnetic field lines. The two main classes of v.l.f. emission, hiss and chorus, are both closely associated with auroral phenomena. Hiss is a slowly varying noise-like signal, whereas chorus t is a complex mixture of discrete rising and falling tones hence its similarity to the sound emitted by a group of birds at dawn ("dawn chorus").

The v.l.f. observations in UK 3 will be made at three representative frequencies: $3.2,9.6$ and $16 \mathrm{kc} / \mathrm{s}$; they are harmonically related to permit calibration from a single square-wave generator operating at the lowest frequency. At the highest frequency a wide ($1 \mathrm{kc} / \mathrm{s}$) and a narrow ($100 \mathrm{c} / \mathrm{s}$) pass-band centred on the Rugby station, GBR, will make it possible to study the fie:d pattern from GBR as well as whistlers and v.l.f. emissions. On the three wide-band ($1 \mathrm{kc} / \mathrm{s}$) channels the peak, mean and minimum signals occurring in each 27 -second period ($\approx 200 \mathrm{~km}$) around the orbit will be recorded on the satellite taperecorder. On the narrow-band channel the minimum signal only will be recorded. (In order to facilitate identification of the GBR signal the Admiralty will key their transmission during stand-by periods.

The aerial is a 14 -turn screened loop, $3.0 \mathrm{~m}^{2}$ in area, mounted with its axis along the spin axis of the satellite. The magnetic field sensitivity is approximately 10^{-10} oersted on each channel and each receiver has a logarithmic response with a dynamic range of 75 dB . Power consumption of the experiment is $\frac{1}{4} \mathrm{~W}$ and the receiver (containing 183 transistors) weighs about 6 lb .

Electron density measurement. Birmingham University has two experiments, one to measure electron density and the other to measure electron temperature. The density measurement is based on the dependence of the permittivity on the presence of electrons and effectively measures the variation in reactive impedance between two rhodium plated grid-type probes (Figs 1 and 2) due to the variation in ionization density.

In this experiment, a probing freauency of $39 \mathrm{Mc} / \mathrm{s}$ from a crystalcontrolled oscillator is used, and after demodulation to extract the r.f. modulation produced by the interaction of the free electrons in

[^3]the ionosphere and a chopped ramp signal applied to the sensor electrodes, the data is fed to the highspeed telemetry system. Before this data is suitable for storage on the satellite tape recorder prior to transmission on ground command, it is processed by a data storage unit contained within the module which selects the maximum value of elecron density measured in a 27second period.

Electron temperature measurement.

 The electron temperature experiment uses two rhodium plated spherical probes (Fig. 2) and relates the ratio of currents to these probes in the electron retarding region to the electron temperature.Current to the two spherical electrodes is monitored by the circuit which automatically adjusts the potentials applied to the sensor to keep these currents in a fixed ratio. The module contains, in addition to this circuitry, some data processing amplifiers together with a waveform generator and power supply switching circuits, these last two items being common to both experiments. The function of the power supply switching is to operate each experiment alternately on and off for 5.1 seconds in order to reduce the power
consumption and reduce the number of telemetry channels required. To simplify data reduction, this switching operation is synchronized to the high-speed encoder by means of a pulse supplied from the satellite encoder.

The density and temperature experiments will yield information on many aspects of the ionosphere which are, as yet, not fully understood. One of the most interesting regions of the upper ionosphere still to be explored is the polar region and the inclination of the orbit is such that investigation of the region can be continued in detail. As well as specific investigations the experiments will yield data on the general structure and behaviour of the upper ionosphere. There is also a need to carry out ionospheric investigations over a complete sunspot cycle and the measurements will extend existing data and will themselves yield information on the period approaching sunspot maximum. The combination of such a survey of density and temperature measurements with other extensive measurements of particle streams and solar radiation, should yield new information on the production, distribution and movement of ionization in the upper ionosphere.

Fig. I. Overall view of UK3 satellite showing the three loop aerials and other external parts.

Fig. 2. Instrumentation for measuring electron temperature (spherical probes) and density (Birmingham University). To ensure good electrical connections between screened sections of the two modules, each part which is machined from Duralumin is gold plated to a thickness of 0.0001 in .

Jodrell Bank experiment. The purpose of the Manchester University radio astronomy experiment is three-fold:-to measure the general "brightness" of the sky at frequencies too low to penetrate the ionosphere; to obtain low resolution data regarding the distribution of radiation across the sky by ionospheric refraction; and to study conditions within the ionosphere and radio signals originating within the ionosphere and exosphere.

A receiver immersed in the ionosphere, above the layer of maximum density and operating a little above the local plasma frequencies "sees" only a limited region of sky immediately overhead ("ionospheric focusing ") thus providing directional information. The beamwidth is necessarily large because of the receiver bandwidth. In practice two plasma resonances occur-one for the ordinary and one for the extraordinary ray (e-ray). Only the latter will yield observations of ionospheric focusing since the former is masked by large signals belicved to be of local origin.

The receiver sweeps in frequency from $4.7 \mathrm{Mc} / \mathrm{s}$ to $2.0 \mathrm{Mc} / \mathrm{s}$. The output immediately above the e-ray "cut-off" should exhibit the focusing effect. At somewhat higher frequencies the receiver sees the whole sky.

The acrial is tuned by means of varactor diodes contained in a small matching unit at the tip of one of the booms. In order to ensure accurate tracking the aerial circuit is itself the tuned element in the local oscillator. The receiver is thus of the homodyne type, having the local oscillator in the centre of the r.f band.

Oxygen measurement.-The Metcorological Office experiment is designed to measure the amount of molecular oxygen in the earth's atmosphere at heights of around 150 km . At heights above about 100 km most of the oxygen is broken up by ultra-violet radiation from the sun into the atomic form but small amounts of O molecules persist to greater heights and by measuring these, and in particular their variation with latitude and longitude on the earth, more may be learnt about the photochemical processes and air movements at the heights concerned.

The technique, which has already been used successfully in the Ariel II satellite for the measurement of ozone $\left(\mathrm{O}_{3}\right)$, is to measure the light reaching the satellite from the sun using a detector sensitive in a region of the spectrum absorbed by the gas being studied-around 2800 . 1 for the ozone experiment in Ariel II and around 1450 ifor the oxygen experiment in UK 3. For most of each orbit, the light reaching the detector will be zero, when the satellite is in the carth's shadow, or a steady value corresponding to full sunlight, but for two short periods in each orbit when

Fig. 3. Attenuation (recorded by ionization chambers) of sunlight through the atmosphere provides a measure of absorbing gas (oxygen).
the satellite is entering or leaving the earth's shadow, the sun's rays have to pass tangentially through the atmosphere to reach the satellite (sec Fig. 3) and the attenuation of the light at these times of sunset and sunrise provides a measure of the absorbing gas in the atmosphere.

The detectors used in the UK 3 experiment are small ionization chambers, with sapphire windows about 1 cm dia. filled to a pressure of 2 mm with p-xylene. The short-wave cutoff of the window and the ionization potential of the gas combine to give these chambers a narrow band of sensitivity from about 1425 to 1475 . 1 coinciding with the region of maximum absorption by oxygen. A disadvantage of these detectors is that the gas is slowly decomposed by sunlight, so that the life of the experiment in orbit is not expected to be more than a few weeks; even this rather short period will be enough to accumulate a large number of observations. Four ion chambers are used, mounted at 90° intervals in a cylindrical unit on top of the satellite, looking out between the satellite antennas with a good field of view fore and aft.

The operating potential (-33 V) for the ion chambers is provided by separate mercury-zinc batteries (duplicated for the greater reliability) encapsulated in epoxy resin. The current drawn is only about $10^{-15} \mathrm{~A}$ so that battery life is very long. The outputs from the four chambers are connected in parallel to the input of an electrometer amplifier which delivers 5 V output for an input of $10^{-11} \mathrm{~A}$. The amplifier has an electrometer valve input followed by two transistors, with overall feedback through a resistance of $5 \times 10^{11} \Omega$. Some limitation of the open-loop gain at high frequencies is necessary to ensure stability. Individual amplifiers are temperature compensated by selection of components until the change of output over the range $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ corresponds to a change in input current of less than $10^{-13} \mathrm{~A}$. The overall frequency response is limited mainly by stray capacities in the feedback resistors; the effect is minimized by a phase-correcting network and the typical time for 100% response to a current step function is 0.15 sec , with overshoot of about 5%. Current consumption of the amplifier is 20 mA .

The complete experiment, with inn chambers, batteries, amplifier and connecting leads, is assembled in a cylindrical Dural shell 18 cm dia. and 11 cm high (see Fig. 4). Temperature is monitored by thermistors at three points in the unit, on an ion chamber, on the inside of the shell

Fig. 4. Meteorological Office experiment showing the four oxygen ionization chambers. The outside of the shell and the lid are gold plated to comply with thermal and electrical requirements of the spacecraft.
and inside the amplifier. The electrometer valve, although inherently quite rugged, has to be specially mounted in foam polythene to avoid damage under vibration.

Terrestrial noise experiment. The aims of the experiment, sponsored by the Radio and Space Research Station, are to measure highfrequency atmospheric noise received in UK 3 and to deduce the distribution of the noise sources (lightning discharges) over the surface of the Earth as a function of time of day and season. These aims may be achieved if atmospheric noise is recorded at an altitude above that ot the peak electron density of the ionosphere and at a frequency exceeding the critical frequency of the ionosphere by a known, small amount, so that the atmospherics are received only from storms near the sub-satellite point, since waves striking the ionosphere at oblique incidence do not penetrate. Because the critical frequency varies with geographical location, time of day and season, it is necessary for the measurements to be made at more than one frequency and they will be made at frequencies near 5,10 and $15 \mathrm{Mc} / \mathrm{s}$.

Operation is in the standardfrequency bands because there are few transmitters in these bands. Even so, it is possible that some interference from transmitters other than those in the standard-frequency service will be experienced. Two receivers will therefore be used in each of the bands, tuned to frequencies slightly above and below the centre frequency of the band so that any sporadic narrow-band interference, which will affect the receivers differently, may be recognized.

Satellite-borne equipment will
therefore, during successive specified periods, measure the average voltage of the envelope of the noise received in three pairs of narrowband channels in the standard-frequency bands near 5,10 and $15 \mathrm{Mc} / \mathrm{s}$ and count the number of atmospherics with amplitudes exceeding a pre-determined threshold in these channels. The two types of measurement should ensure coverage of the wide range of signals expected from the intense thunderstorm areas of the tropics and the quiet regions at higher latitudes.

From these results, the distribution of the sources will later be mapped, using the transmission properties of the ionosphere; ideally, atmospheric noise will be received only from a circular region of the Earth's surface with a radius which increases as the ratio of the frequency of reception to the critical fiequency of the F-region of the ionosphere below the satellite increase from unity.

Two orthogonal balanced screened loop aerials, each of effective area $0.12 \mathrm{~m}^{2}$, project from the upper cone section of the satellite. The plane of each loop passes through the satellite spin axis so that, as the satellite rotates, a null in reception of signals from the ground cannot occur continuously.

Noise received on these aerials is fed through filter networks to six narrow-band receivers with effective overall bandwidth of $760 \mathrm{c} / \mathrm{s}$ and at $4 \mathrm{kc} / \mathrm{s}$ the response is 60 dB down.

For each channel, the average voltage of the noise envelope is measured and the number of atmospherics with amplitudes exceeding a specified threshold is counted over integration periods of 25.3 sec synchronized with the timing of the telemetry encoders of the satellite.

POWER SUPPLY SYSTEM

Only brief details of the UK3 power supply system have been discussed previously in Wireless World and thus further details are perhaps apposite.
Power for the experiments and the spacecraft generally is provided by silicon photovoltaic cells (Ferranti), commonly known as solar cells. These provide maximum power at about $350-400 \mathrm{mV}$ and with a drain of $50-60 \mathrm{~mA}$. The load power required is 5 W , but due to various factors, the number of cells used for a design lifetime of one year is 7,400 . Some of the factors which lead to the use of this large number of cells

Fig. 5. Variation in output from battery charging cells due to spinning and change of satellite attitude in relation to sun.
are the amount of time spent in darkness (about $1 / 3 \mathrm{rd}$), the inefficiency of the battery charging process, the varying illuminated array area, the varying cell temperature and electron bombardment, degrading power output. Fig. 5 indicates the variation in output from the charging cells due to spinning and change of satellite attitude in relation to the sun. Random shadowing of the solar arrays during spinning causes power output to vary within the shaded area, so that for an attitude of 60° the available power from the array will vary between 7 and 13 W .

For the oxygen experiment, the satellite is required to maintain its design attitude ($\pm 45^{\circ}$), but the life of this experiment is only expected to be a fraction of the year, so it is required that the solar cells be capable of powering the equipment whatever the direction of sunlight. (Thus if the design attitude is not achieved, only the m.o. experiment will be affected.) To meet this requirement the cells are mounted on the cylindrical part of the body and on both sides of the four booms.

Two sets of series-parallel arrays are used, one supplying power to the load, and the other to the battery. The system is arranged to permit the battery charging cells to power the load should, for instance, the batteries fail. The battery consists of 12 sealed $\mathrm{Ni}-\mathrm{Cd}$ cells with a capacity of 3 Ah . Charge is regulated at constant current and then at constant voltage, the characteristic being modified to suit battery temperature. If the battery voltage falls below 14 V , it is disconnected and put on trickle charge. A drop to below 9 V causes permanent disconnection, giving daylightonly operation. Voltage supplies are $\pm 6 \mathrm{~V}$ and two $\pm 12 \mathrm{~V}$ rails, these being derived by way of six 1% voltage regulators.

LETTERS TO THE EDITOR

The editor does not necessarily endorse the opinions expressed by his correspondents

Television Receiver Sound Quality

I HAVE read your report on the recent B.B.C. seminar on Music on Television, and would like to comment on it.

It is certainly true that the vast majority of viewers do not seem to be greatly concerned with the audio frequency response of their television receivers. The biggest limitation in this frequency response is due to the size of loudspeaker fitted for styling reasons. However, most manufacturers have in their range either larger table models or consoles, with larger speakers and baffles, with a considerably wider acoustic frequency response. Since these receivers cost more to make, their selling price is inevitably higher and unfortunately the number of people who wish to pay this price is so limited that the production of these types is hardly justified.

I would also protest at the suggestion that I was relieved to escape from a hostile situation. I was in fact quite enjoying putting across the commercial facts of life to those who live on the licence payers' money.
M. A. E. BUTLER
(Technical Commercial Manager)
Philips Electrical Ltd.,
Croydon, Surrey.

c/s or Hz?

I WAS interested in the Editorial of your January issuc and think that it might be useful to explain the exact situation in the I.T.U. on the use of Hertz for the unil of frequency.

A long discussion on this subject took place at the I.T.U. Administrative Radio Conference which, in 1959, adopted the current Radio Regulations. As a result, it was agreed to use Hertz in documents in French, but to maintain cycles per second in English and ciclos por segundo in Spanish. This practice was also followed by the Plenipotentiary Conference-the supreme organ of the Union-in 1965.

As you mention, the Plenary Asscmbly of the C.C.I.R. recommended that in future Hertz should be used for the unit of frequency, and in fact decided that it should be introduced forthwith in documents published by the Specialized Secretariat of the C.C.I.R.

However, as regards documents published under the provisions of the Radio Regulations, we are obliged to continue to respect the decision of the 1959 Conference until such time as those Regulations are amended by an appropriate conference. We do not yet know when such a conference is likely to be convened.
C. STEAD
(Counsellor)
International Telecommunication Union, Geneva.

Graphical Symbols

I WAS astounded to read your editorial opinion of BS 3939 (in the January issue) and would like to draw attention to the attitude which you adopted to the transistor symbol. For ten years you obstinately defied the
B.S.I. and most of the world by persisting with a nonstandard symbol for the transistor, and then you suddenly and furtively changed camps. Are you now intending to repeat this cycle with the proposed resistor symbol?

There is more in this than simply one symbol. There is a great principle here which, I believe, will be upheld by all scrupulous engineers, and it is that a universal standard should be followed even if the majority are against it, because any universal standard at all is better than any other which is not universal.

Your last paragraph is particularly painful to me. If, as you suggest, the B.S.I. exists merely to give formal, unnoticed, ratification of established practices, then what possible reason can there be for its existence?

We all know that if we have two circuits before us, one in familiar and the other in strange symbols, we pick up the familiar one first, and probably don't get round to the other at all. Maybe this is partly why we export only 3% of our sound radio receivers as "Vector" reported last month and perhaps we could all do better for ourselves by becoming accustomed to European standards instead of going slowly bankrupt in splendid isolation.
R. COUVELA

Farnham, Surrey.

Speed Control of Small Motors

WHILE the electronics are impeccable in Mr. Estaugh's October 1966 article on speed control of small motors, the electrical side is open to criticism. He claims (and I suspect that he has been led astray by others in this) that the speed is independent of load in his idealized switching arrangement, and that the efficiency is of a very high order.

This error seems to arise from considering a motor to be a resistive load, whereas it is in fact a source of e.m.f., independent of the current passing (over short periods of time). Speed is by no means independent of the load (such as gradients and curves on a railway) and the efficiency (which broadly is not important for models) at say a $1: 9$ mark space ratio is, however, only 10% !

Fig. 1. Left, the control system mentioned by Mr. Estaugh ond. right, Mr. Stewart's method.

Now it is true that the conventional control (his Fig. 1a) is both inefficient and gives the very poor speed regulation he demonstrated, but a much better regulated system is simply the potentiometer as in my Fig. 1.

The potentiometer will be required to dissipate over 12 W with the usual small motor taking up to 1 A starting and about 0.5 A running.

Taking a typical model motor with an armature resistance (r) of 7Ω (Fig. 2) comparisons are as follows for a pulse lasting $1 / 10$ of a cycle. In practice this would be too short to give adequate motor power but it helps in the arithmetic!

The motor inertia must be sufficient to carry over from one pulse to another without significant drop in speed or, which is the same thing, the pulse repetition must be high enough, as stated in the original article.

Let the motor speed be $1 / 10$ of maximum then the back e.m.f. is 1.2 V and the current drawn is as follows (we must assume that this current is sufficient to maintain this speed against the load on the motor) (Fig. 3).

Current during each pulse $=$

$$
\frac{\text { Supply volts }(12) \text { less back e.m.f.(1.2) }}{\text { Armature resistance }(7 \Omega)}=\frac{10.8}{7}=1.5 \mathrm{~A}
$$

and the mean current is $1 / 10$ of this, i.e. 0.15A (Fig. 4).
(This mean current is just an arithmetic value and does not exist as such, being quoted for comparison below witl a steady current; on the other hand, the value of 1.2 V does exist and the waveform (Fig. 3) could be displayed on a c.r.o.)

Note: That the motor power (that is, the power converted to mechanical form) is $1.2 \mathrm{~V} \times 1.5 \mathrm{~A}$ for $1 / 10$ cycle or 0.18 W continuous, but input power is $12 \mathrm{~V} \times 1.5 \mathrm{~A}$ for $1 / 10$ cycle or 1.8 W continuous and hence the efficiency is 10%.

Now let an increase in load result in a reduction of speed to half its previous value. Back e.m.f. now falls to half, i.e. 0.6 V .

Current is now

$$
\frac{\text { Supply volts (12) less back e.m.f. }(0.6)}{\text { Armature resistance (7) }}=\frac{11.4}{7}=1.63 \mathrm{~A}
$$

and mean current is now 0.163 A , an increase of about 10%.

Compare the effect of supply from a low resistance (say 1 ohm) source which could be a regulated supply or the lower end of a potentiometer of high wattage.

Initial conditions:-current as before 0.15 A and back e.m.f. 1.2V.

Voltage applied to motor is back e.m.f. (1.2) plus armature resistance drop $(7 \times 0.15)=2.25 \mathrm{~V}$; and source voltage in a 1 ohm powar unit $=2.25 \mathrm{~V}+0.15 \mathrm{~V}=2.4 \mathrm{~V}$. Now let speed drop to half as before and back e.m.f. consequently
to 0.6 V . Current is now $\frac{2.4-0.6}{8}=0.22 \mathrm{~A}$ an increase of 50% which is much better than using the pulse method and will go some way to restore the speed.

It is interesting to note that to maintain truly constant speed, the output voltage of the power unit must rise with the increase in current to compensate for the armature resistance.

It might be wondered where the 90% of the energy goes since the transistor dissipation is negligible-it appears as heat in the resistance of the armature winding.
D. R. STEWART

Newport, Mon.

Semi Satellites

RECENT discussions in your columns regarding the future of broadcasting in Britain invariably acknowledge that a synchronous satellite system (costing in the region of $£ 100 \mathrm{M}$) will be the answer to all our problems. Once a quasi-optical path has been established with all its benefits, everything in the frequency spectrum garden will be rosy, and direct broadcasting of various sound and television services can easily be achieved.

A stable platform hovering at 40,000 feet would be in radio line of sight to all areas within a 250 to 300 mile radius. Positioned appropriately this could cover over 90% of the listening and viewing population. With the number of line-of-sight frequencies usable over this area the mind boggles at the many possibilities that this "radio platform" could be used for, in addition to the country's broadcasting services.

Of course, the more down-to-earth reader will want to know who is going to wave the magic wand regarding the "stable platform"? It will be recalled that in the United States an aircraft flying a figure of eight pattern over a predetermined area at the appropriate height, provides educational television programmes to schools in the midwest. However, with the recent discovery of unlimited helium supplies in Canada, an up-to-date version of an airship with station keeping capabilities would probably be more realistic. When the price of a satellite system is so high, and the possibility of failure so great, surely it would be a lot cheaper to concentrate on these "Semi-Satellites" which, incidentally, would be repairable in the event of a fault and not a write off.
J. H. KNOX

Plymouth, Devon.

Tactile Recording Level Indicator

AS an alternative to the audible warning device described by Mr. Murray Ward in the July, 1966, issue, it was thought that a description of a warning device which utilizes a blind person's sense of touch might be of interest.
The present device is built into a portable radio case 6in $\times 4 \mathrm{in} \times 1 \frac{1}{2} \mathrm{in}$; a large case is obviously cumbersome, too small a case is also awkward. Two-thirds of the case is occupied by a $4 \frac{1}{2} \mathrm{~V}$ battery which has a life of several months and also serves to weigh down the device. The space left is occupied by an electric motor and the circuitry.
The electric motor is the output element and is a "Mighty Midget" type with a reduction drive. A knob fixed to the gear shaft projects through the side of the case where a finger may be conveniently rested on it.

The circuit is a form of monostable with Trl conducting and $\operatorname{Tr} 2$ cut off. It is unusual in that the first

stage amplifies the input signal fairly linearly until switching occurs. D1 is to shorten the paralysis time on switching back. Without this diode the device remains insensitive for about two seconds after the knob has moved and fails to indicate any overloads during this time. The high sensitivity obtained by this system enables the device to be connected to low level monitor outputs of relatively high impedance.

Setting up is done by adjusting the potentiometer (possibly in conjunction with a fixed resistor) so that the knob just pulses when the tape recorder magic eye shows maximum recording level.

This method of indication is obviously of benefit when a microphone is being used, for example, when a blind person wishes to record a message to send to someone.
G. J. ANDRIESSEN

Downend, Bristol.

Electronics Amateurs

THE British Amateur Electronics Club was formed to enable all those who are interested in electronics as a
hobby to get together and communicate through our Newsletter for the furtherance of this most interesting hobby. Unfortunately, the most interesting of modern electronic devices, integrated circuits, are out of our reach with our limited funds.

I am sure that there are many readers, and also contributors to your excellent magazine, who remember the frustrations in the early days of radio when they, as amateurs, were not able to find out for themselves how the valve worked or make that particularly sophisticated radio set due to the extremely high price of newly developed devices. A considerable amount of ingenuity was shown in those days by amateurs.
As chairman of the B.A.E.C. I would like to express my appreciation of the co-operation shown to us by various integrated circuit manufacturers in giving us full details of their devices. I hope you will publish this letter and that one of them will help by allowing us to buy small quantities of their devices at, say, the 1,000 off price, so that we can experiment with them.

Penarth, Glam.

FEBRUARY MEETINGS

Tickets are required for some meetings: readers are a lvised, therefore, to communicate with the society concerned

L.ONDON

1st. B.K.S.T.S.-" The telcvision transmission of cine film" by A. B. Palmer at 7.30 at C.O.I., Hercules Rd., S.E.I.

5th. I.E.E.-"Audio in the home" by Dr. G. F. Dutton at 5.30 at Savoy Pl., W.C. 2.

8th. S.E.R.T.-"Amateur Transmitting equipment" by R, G. Shears at 7.0 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C.1.
8th. B.K.S.T.S.-" Holngraphy-thirddimensional pictures of the future" by A. E. Ennos at 7.30 at C.O.I., Hercules Rd., S.E. 1 .
ioth. R.T.S.-"PAL studio operation: a first look at the problems" by Dr. G. B. Townsend at 7.0 at 1.T.A., 70 Brompton Rd., S.W. 3.

15th. I.E.R.E.-" The remote control of lighthouses and beacons" by A. C. MacKellar \& M. J. Dilworth at 6.0 at 9 Bedford Sq., W.C.l.

15th. B., B.K.S.T.S.-"Magnetic soundtrack duplication" by N. Leevers at 730 at C.O.I., Hercules Rd., S.E.1.

22nd. I.E.R.E. - A dual standard colour television receiver" by P. L. Mothersole, D. S. Hobbs and D. J. King at 6.0 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C.1.

22nd. B.K.S.T.S-"Colour television for the layman" by H. V. Sims at 7.30 at I.T.A., 70 Brompton Rd., S.W.3.

BASINGSTOKE

9th. I.E.R.E.-" Introduction to digital computers" by E. G. Anderson at 7.30 at the Technical College.

BOURNEMOUTH

22nd. I.E.R.E.-" Development of satellite communications" by J. K. S. Jowett at 7.0 at the College of Technology.

BRADFORD

9th. I.E.R.E.-" Digital logic'" by F. Houldsworth at 7.0 at the Institutc of T'echnology.

BRIGHTON

14th. I.E.R.E.-" Flight simulation" by R. A. Marvin at 6.30 at the College of Technology.

BRISTOL

14th. I.E.R.E. \& I.E.E.-" Colour television " by H. V. Sims at 7.0 in the Small Lecture Theatre, the University, Clifton.

CAMBRIDGE

2nd. I.E.R.E. \& l.E.E.--" A simp'ified npproach to the use of transistors in video. pulse and i.f. circuits " by E. Davies at 8.0 at the University Engineeting Dept., Trumpington St.

CARDIFF

8th. I.E.R.E.-" lransmission measuring cquipment for telecommunication systems by H. M. Evans at 6.30 at the Welsh College of Advanced Technology.

10th. R.T.S.-"The colour in colour television" by M. Turner at 7.30 at Llandaff Technical College, Western Ave.

CHELMSFORD

16th. I.E.R.E. \& I.E.E.-" High-frequency guided waves in application to railway signalling and control" by Prof. H. M. Barlow at 6.30 at the Tech. High School.

EDINBURGH

14th. I.E.E. \& I.E.R.E.-" Computer aided study of character recognition" by J. A. Weaver at 6.0 at the Carlton Hotel, North Bridge.
23rd. I.E.E. \& I.E.R.E.-" Some modern advances in scintillation scanners and cameras" by W. G. Walker at 6.0 at the Carlton Hotel, North Bridge.

GLASGOW

13th. I.E.R.E.-" Computer aided study of character recognition" by J. A. Weaver at 6.0 at the University of Strathclyde.
14th. S.E.R.T.-"Video tape recording " by N. Vassic at 7.30 at STV Studios, Hope St., C.2.

LIVERPOOL

22nd. I.E.R.E.-" G.P.O. towers" by S. G. Young at 7.0 at the College of Technology.

LOUGHBOROUGH

9th. I.E.E.T.E.-" Circuits and machines" by A. Draper at 7.0 in the Assembly

Hall, Edward Herbert Building, University of Technology.

14th. I.E.R.E. \& I.E.E.-" Stereophonic sound reproduction" by J. Moir at 6.30 at the College of Technology.

MALVERN

14th. I.E.R.E.-" Speech synthesis by R.R.E.A.C. digital computer" by P. M. W'codward at 7.0 at the Abbey Ballroom.

NEWCASTLE-ON-TYNE

1:t. S.E.R.T.-"Transducers; outlines of types and applications" by G. McEwan at 7.15 at Charles Trevelyan Technical College, Maple Ferrace, 4.

Sth. I.E.R.E.-"The Stereoscan electron microscope" by I. H. Gorden at 6.30 at Inst. of Miaing \& Mechanical Engrs., Neville Hall, W'estgate Rd.

NEWPORT. I.o.W.
3rd. I.E.R.E.-" M.O.S. transistors " by G G. Bloodworth at 7.0 at the Technical College.

SALISBURY

23rd. S.E.R.T.-" Microwave techniques and applications to radar" by S. V. Judd at 7.0 at the College of Further Education.

SLOUGH

21st. I.E.R.E.-" Pulse code modulation" by J. R. Jarvis at 7.30 at the Lecture Theatre at Slough College.

SOUTHEND

28th. I.E.R.E.-"Adaptive astable/ monostable circuits in class D amplifiers" by D. C. Smith at 7.0 at the College of Technology.

STAFFORD

14th. I.E.R.E.-" Railway control and signalling" by J. H. Fews at 7.15 at the College of Further Education, Tenterbanks.

SWINDON

15th. I.E.R.E. \& I.E.E.-"Television recording" by P. Leggat at 6.15 at The College.

TORQUAY

21st. I.E.R.E. \& I.E.E.-"Automatic landing systems" by R. A. Bailey and J. Meadows at 7.0 at the South Devon Technical College.

Electronic Tachometer

transistor instrument measuring rotational speed in r.p.m.

By S. L. V. CHARI, m.sc., ph.d., and M. R. K. RAO,-b.e.

Low cost and absence of mechanical coupling are features of this electronic tachometer. Range : 0 to 12,000 r.p.m. Uses electromagnetic sensor, standardized pulse generator añd time averaging arrangement. Accuracy: not worse than 0.5%.

ROTATIONAL speed may be defined as the time rate of angular motion. A knowledge of the precise time rate of angular motion in rotating machinery is extremely important to the engineer for a variety of purposes, such as, for example, the determination of inertia forces in the reciprocating parts of an engine or the horse-power transmitted by the crankshaft.
Many mechanical and electrical instruments are available for measuring rotational speed, but usually these require positive mechanical coupling with the rotating part. Further, they become expensive if high accuracy is desired. On the other hand electronic r.p.m. indicators have several attractive features such as compa-tness, elimination of mechanical coupling and high degree of accuracy. However, these instruments also suffer from the handicap of being costly. Therefore, an attempi has been made to develop an electronic tachometer which combines all the above advantages and at the same time is less costly than similar instruments available commercially.

Measurement of frequency or r.p.m. by electronic means can be accomplished by measuring the average value of a train of standardized pulses which are triggered by incoming signals produced by a magnetic pick-up device. Since the pulses are standardized, the time average is directly proportional to the frequency of the pulses.

Dr. S. L. V. Chari, who received his M.Sc.(Wireless) at Andhra University, has for the past six years been in charge of the instruments section of the Internal Combustion Engineering Department of the Indian Institute of Science, Bangalore. He recently received his doctorate from the Indian Institute of Science for research and development of several electronic instruments for engine research. Before joining the staff of the institute he worked for 15 years in the electronics industry both in India and Europe. He is 46 .
M. R. K. Rao, who is 54 , graduated in mechanical engineering in 1934 at Mysore University, and has since worked in the fields of automobile engineering and internal combustion engines. From 1957 until a few months ago he was in charge of the internal combustion engineering department at the Indian Institute of Science, Bangalore. He is now working in the College of Engineering, Riyadh, Saudi Arabia.

For any given pulse frequency the meter reading is proportional to the standardized pulse width and amplitude as well as to the input frequency. A transistor monostable multivibrator generates standardized pulses and a milliammeter in series with the normally-"off" transistor collector provides a reading proportional to the input frequency. The amplitude of the single-shot pulse used as a standardized pulse is essentially proportional to the supply voltage and, therefore, the milliammeter reading for any given input frequency is nearly proportional to the supply voltage. Since the circuitry is symmetrical in so far as the emitter and collector circuit loads are concerned, the supply drain is independent of the duty cycle of the monostable multivibrator and hence is independent of the input frequency or pulse width of the single shot.

Fig. 1. System used to measure rotational speed of an engine.
A transistor preamplifier coupled to the electromagnetic pick-up with a Schmitt trigger circuit provides adequate sensitivity and allows operation on sinusoidal waves.
Based on the above principle, an electronic r.p.m. indicator, consisting of an electromagnetic pick-up, preamplifier, trigger circuit, monostable multivibrator and power supply unit, has been developed to indicate rotational speed directly on a milliammeter. Fig. 1 is a schematic showing the use of the tachometer to measure the rotational speed of an engine shaft.

The electromagnetic pick-up.-A ferrous pointer is fixed to the rotating part-in our case an engine shaft. A permanent magnet $\frac{1}{8}$ in diameter and 4 in long, over which 3,000 turns of 42 s.w.g. enamelled copper wire are wound, forms the pick-up device. The unit is fixed rigidly to the engine framework and close to the shaft so that the rotating pointer comes very near the tip of the magnet once in each revolution and induces an alternating e.m.f. in the pick-up coil. The resulting current in the closed circuit is in such a direction that its own field opposes the original change. The generated pulse varies according to the sharpness of flux linkage, which depends on the speed of rotation of the shaft. The pulse is affected

Fig. 2. Pre-amplifier (a) using two transistors and (b) lower-gain version with one transistor.
also by the spacing between the magnet and the rotating pointer. This induced pulse is fed to the pre-amplifier.

Pre-amplifier.-The pre-amplifier is designed to suit the signals from the low-impedance, variable reluctance type of pick-up unit described above. A two-stage amplifier as shown in Fig. 2(a) is constructed with Mullard OC72
transistors, having negative feedback to improve the linearity of the amplifier and stabilize the operating gain. Two identical grounded emitter stages are connected in cascade to operate from a collector supply potential of 22.5 volts. A substantial portion of the battery voltage is dropped in the large emitter supply resistors to ensure good d.c. stability against variations in temperature as well as a high degree of circuit immunity to varying transistor parameters. The battery voltage is limited to the output voltage swing of the amplifier of approximately 4 V r.m.s. with a maximum allowable input signal of 40 mV r.m.s. at $1 \mathrm{kc} / \mathrm{s}$. The feedback circuit can be seen in the lower part of (a).

A stage gain of 40 dB is obtained with the two transistors developing a voltage gain of 75 dB collectively, with the feedback inoperative. When the feedback loop is closed, the total gain at $1 \mathrm{kc} / \mathrm{s}$ is nearly 40 dB .

The minimum input signal required to operate the Schmitt trigger circuit (described in the next section) is of the order of 0.3 volts r.m.s. with a small resistance in the input stage of the trigger circuit. Since the high gain mentioned above is not really necessary the preamplifier can be modified as shown in Fig. 2(b) by using a single transistor to give the required output. The pre-amplifier is coupled to the trigger circuit by a $1 \mu \mathrm{~F}$ capacitor with a 10!? resistor in series.

Trigger circuit.-A Schmitt trigger circuit is used to operate the multivibrator so that an output signal is obtained whenever the input signal voltage is approximately equal to the voltage at the base of the trigger. Two OC 72 transistors are used in the trigger circuit as shown in Fig. 3.
Three series resistors of 10 k !, $27 \mathrm{k} \Omega$ and 120 k ! ! are used so that the transistor $\operatorname{Tr} 3$ is kept in the "off" state as long as there is no input signal to transistor $\operatorname{Tr} 2$ which would be in the " on " state. When the input signal reaches a value of about 0.5 V , the monostable multivibrator is triggered by the conduction of $\operatorname{Tr} 3$. The trigger circuit provides adequate sensitivity with an input signal ranging from 0.5 to 30 volts.

Monostable multivibrator.-The monostable multivibrator circuit shown in Fig. 3 generates the standardized pulse, using two OC 72 transistors. It is coupled to the trigger circuit by a 680 pF capacitor. A milliammeter in series with the normally "off" transistor collector

Fig. 3. Complete circuit of tochometar showing Schmitt trigger and standardized pulse generator.

Fig. 4. Power supply unit for the tachometer.

Fig. 5. Stabilization arrangement when power is supplied from a battery.

provides an indicating pointer deflection proportional to the input frequency.

The power supply unit, shown in Fig. 4, can be operated from a.c. mains. A full-wave bridge circuit with four SR 100 diodes and a stabilising circuit, using one OC 26 and two OC 71 transistors, with a zener diode for reference voltage, gives a stable voltage with a stabilizing ratio of 1,000 and an output impedance of 1.0 ohm . It can also be operated with a battery, in which case the current drain is less than 10 mA . Greater accuracy can be obtained by stabilizing the battery voltage, as shown in Fig. 5.

Indicating instrument.-A d.c. moving coil milliammeter of very low internal impedance (70 ohms) with a range of $0-1 \mathrm{~mA}$ is used, in series with the collector of the "off" transistor, to read r.p.m. directly. Calibration is carried out by means of a standard frequency meter. The indicator can be checked by feeding a fraction of the $50 \mathrm{c} / \mathrm{s}$ a.c. supply (0.5 volts) to the input of the instrument through a test switch as shown in Fig. 3; and this will produce a constant deflection of the pointer corresponding to the supply frequency.

Speed ranges.-The tachometer can be used for any speed range by suitably changing the value of the monostable coupling capacitor. Also, the input pulse rate can be varied by increasing or decreasing the number of ferrous pointers on the rotating shaft. Since the meter

Comparison of electronic tachometer readings with other speed indicators, using electric dynamometer up to 5,000 r.p.m. and a.f. oscillator from 5,000 to 12,000 r.p.m.

Electronic tachometer	Other tachometer	Strobotac	Frequency meter	Current $(\mu \mathbf{A})$
1,000	1,020	1,024	1,004	100
1,500	1,515	1,520	1,505	150
2,000	2,006	2,007	2,008	200
2,500	2,480	2,475	2,510	250
3,000	2,996	3,006	3,015	300
3,500	3,494	3,498	3,520	345
4,000	4,032	4,006	4,020	390
4,500	4,534	4,510	4,520	435
5,000	5,066	5,008	5,025	480
6,000	-	-	6,030	560
7,000	-	-	7,025	640
8,000	-	-	8,030	720
9,000	-	-	9,025	795
10,000	-	-	11,040	870
11,000			12,045	935
12,000				1,000

Fig. 6. Complete instrument, with 0-ImA meter calibrated in r.p.m.
reading is proportional to the input frequency, the same instrument can be used for high or low speeds and maintain high accuracy at all speeds by altering the number of ferrous pointers inversely with speed. Tests have shown that the spacing of the rotating pointers and the size of the gap between them and the pick-up unit are not critical. Calibration of the tachometer with a frequency meter shows that the maximum error is 0.5%, as indicated in the table.

The complete instrument is shown in Fig. 6; its dimensions being 6 in $\times 4 \mathrm{in} \times 4 \mathrm{in}$. It has been used for several hundred hours on an engine and has given good service.

Performance.-The electronic tachometer as described eliminates the need for mechanical coupling with the rotating shaft. The trigger circuit has adequate sensitivity and stability to respond to a wide range of input signals (0.3 to 30 volts). A reading proportional to the input frequency is given by the milliammeter. Power supply drain at 20 volts is of the order of 0.3 watt and the instrument can be worked either with a dry battery or with a transistor regulated low voltage power supply operating from 220 V a.c. mains. Maximum error is $\pm 0.5 \%$. The response to variations in speed is linear and the deviation from linearity is negligible between specified speed ranges.

SILICON TRANSISTOR BIAS CIRCUIT

TO ACCOMPANY the recently introduced range of silicon "entertainment" transistors by Thorn-AEI (Mazda brand name), a number of circuits have been developed for domestic equipment. In the receiver designs, special features are employed to minimize the collector current variation with supply voltage in the i.f. stages, necessary because the base characteristic shows a higher forward voltage drop than in germanium transistors, which gives a greater dependence on supply voltage than is the case of germanium transistors, because this voltage is a larger proportion of the supply. One possibility would be to use high value emitter resistors, but this was eliminated since, for one thing, a.g.c. performance would be degraded. A circuit which gives adequate stability against a fall in supply voltage is shown in the accompanying diagram. The circuit is part of a complete a.m. receiver design developed to give a performance equal to that from receivers designed along well-established lines and using post alloy diffused germanium transistors.
A method of stabilizing base voltage is to use a silicon diode in the lower part of the base potential divider, the diode clamping the base to earth by its forward voltage drop. If a low-value emitter resistor is used giving a base-earth potential of greater than a "diodeworth" of voltage drop, then a further bias diode may be added, either silicon or germanium, or a resistor added, depending on the degree of stabilization and the bias voltage required. Some economy can be obtained by using a diode in this position as a signal and a.g.c. rectifier and the circuit shown uses this technique. Two diodes and a resistor provide the bias for the first i.f.
amplifier and a further resistor is added for the second i.f. amplifier. For rectification a germanium diode is preferred, this necessitating the resistor in the lower part of the base potential divider. It was determined experimentally that the least distortion in the detector

was given by a rectifier diode bias of about $20 \Perp \mathrm{~A}$ and this accounts for the split in the bias chain, $30 \mu \mathrm{~A}$ passing through the 5 k ! a.f. gain control. The a.g.c. time constant is determined by the $8 \mu \mathrm{~F}$ capacitor shown.


```
-_ MEOIAN STANOARO MUF
----- optimum traffic frequency
------ LOWEST USABLE HF
```


H. F. PREDICTIONS FEBRUARY

The prediction curves show the median standard MUF, optimum traffic frequency and lowest usable frequency (LUF) for reception in this country. When atmospheric noise at a receiving site is at a high level and/or the signal traverses a region of high absorption, the LUF for a required signal-to-noise ratio increases. When it exceeds the MUF this required ratio is not obtained, the deficiency being very approximately 10 dB for each $1.5 \mathrm{Mc} / \mathrm{s}$ difference.
The LUF curves were drawn by Cable \& Wireless Ltd. for commercial telegraphy using transmitter powers of several kilowatts and rhombic type aerials, but they indicate when reception of a particular frequency would be difficult or unsatisfactory for any type of service.

An Introduction to Microwave Ferrite Devices

1.- THE DEVICES AND THEIR BASIC THEORY

By K. E. HANCOCK*

IN the face of the recent sensational advance toward higher frequency applications of transistors and specialized diodes, a "quiet revolution" downwards in frequency of another increasingly important group of semiconductors, the microwave ferrite devices, has gone on almost unheralded.

These comparatively new components, which have no real equivalent in the lumped constant, low frequency, field can now be used down to at least $30 \mathrm{Mc} / \mathrm{s}$. The application of microwave ferrites, as the name implies, had previously been restricted to the microwave frequency band, so before we go into detail of the theory and practice of these circuit elements, it might be as well to be a little more explicit as to what is meant by the term microwave ferrite device, and to give a very brief description of the function and application of the basic components.

For the purposes of this article we may define a microwave ferrite device as any component that uses the inter-action between a magnetically biased ferrite material and the incoming signal to modify in any given manner that incoming signal. To clarify that, let us see just what these devices do and how they are used.

The most common component is perhaps the isolator
(see table). Basically this may be regarded as a nonreciprocal attenuator.

Another quite commonly used device is the circulator. Again this is a non-reciprocal component and is a three or more port device. Little known in the communications field but very common in radar, where it is used to sweep electronically beamed aerials, is the ferrite phase shifter (in table). It will be shown later that these may be reciprocal or non-reciprocal, tunable or step, latching and non-latching. They are, of course, electronically actuated; this, and the speed of actuation, being the paramount advantages over the simple mechanically variable microwave phase shifter.

The fourth major ferrite device is the y.i.g. electronically tuned filter, a comparative newcomer (in table). Based on the extremely high Q of a single-crystal yttrium iron garnet sphere and the fact that, like all ferrites, the material's resonant frequency may be changed by varying an applied magnetic field, these devices are beginning to be popular in swept frequency pre-selectors and the like. They can now be considered to be out of the experimental stage, and can be reproduced in quantity.

By appropriate placing of the y.i.g. sphere in relation to the magnetic field the filter may be made reciprocal or non-reciprocal, the great advantage of the latter being that the resultant isolation makes the filter almost insensitive to input and output match.

By variation or switching of the applied magnetic field and by other methods these four basic devices can be modified to yield electronically operated ferrite switches, variable attenuators, a.m. and f.m. modulators, and limiters.

A fifth of new basic device is the ferrite delay line, which uses the phenomenon of low loss acoustic propagation through ferrite combined with spin wave propagation to provide very small and light variable delay lines.

Having briefly covered some of the functions of ferrite devices, let us consider the principles behind their operation. In the second and third parts of this series the individual devices will be dealt with in some detail.
*Canadian Marconi Company.

Fig. 3. Precession of an unpaired electron under che influence of external magnetic frelds. At (a) is shown the precession with an external steady magnetic field H_{0}. A clockwise polarized r.f. field will have no effect. At (b) is the precession under the influence of a steady field H_{0} plus an anti-clockwise polarized r.f. field he ${ }^{j w_{0} t}$.

Fig. 2. Shawing the relative energy levels of electrons in an iron atom.

Fig. 4. Microwave absorption and permeabiliy of ferrite as a function of steady magnetic field strength.

First let us go back to basics. The main interaction between the ferrite and the applied signal is magnetic, so we will consider why iron, nickel, cobalt and some other elements have strong magnetic properties.

An atom consists of a nucleus and several electrons arranged in levels or valence bands about it. Each electron can be considered as an electric charge rotating about the nucleus and spinning on its own axis. This creates a magnetic field which has a given direction, termed spin up or spin down, and the electrons will align themselves with other electrons with spins in the opposite direction, like fields repelling, unlike fields attracting, as shown in Fig. 1. The important thing to note here is that with paired electrons the magnetic field does not extend very far beyond the electrons, while that of the single electron is quite far reaching.

Now in any atom the electron population of completely filled valence bands is 2 for the first band, that is the one nearest the nucleus, 8 for the second, 18 for the third and 32 for the fourth. As in each filled band there are even numbers of electrons, they will pair off, spin up, spin down and there will be no residual magnetic field. However in certain atoms not all electrons pair. Let us look at the atomic structure of iron, Fig. 2. The 1 st and 2 nd bands are full with equal numbers of spin
up and spin down electrons; the 3rd band, however, is not full, containing only 14 electrons, and, of these, 4 are unpaired.

The 4th band is also not fully occupied, containing only 2 electrons which, however, are paired off. The four unpaired electrons produce a large net magnetism. Nickel, cobalt, etc., also have unpaired electrons in the 3rd band and thus have large magnetic moments. This is fine if we were concerned only with a magnet, but iron and most other metals are quite conductive, and therefore in any interaction, high current would flow giving high loss. What is required therefore is a compound which is highly magnetic and highly resistive.

Compounds with large magnetic moments can be classed as paramagnetic or ferromagnetic. In the former the iron or other magnetic atoms are widely spaced so the H fields have little effect on each other and are randomly aligned due to- thermal agitation (can be aligned by an external field, e.g. soft iron). In a ferromagnetic material the Fe atoms are so closely placed that adjacent atoms in a small cell or domain interact and spontaneously line up in the same direction.

Close to the ferromagnetics are the ferrimagnetics. In these materials some of the atoms are antiparallel; however, there is still a large resultant magnetic field.

Ferrites fall into this group and have in general high resistivity and high magnetism.

They are generally of the form $\mathrm{MO} \mathrm{Fe} e_{2} \mathrm{O}_{3}$ where M is a divalent metal such as iron, magnesium, zinc, nickel or manganese (sometimes small amounts of aluminum, zinc, cobalt are added for special purposes).

In addition to the true ferrites certain other crystalline ferromagnetic oxides, notably yttrium iron garnet ($\mathrm{Y}_{3} \mathrm{Fc}$, $\left.\left(\mathrm{FO}_{1}\right)_{3}\right)$ and $\mathrm{Ba} \mathrm{Fe}_{12} \mathrm{O}_{19}$, have found use as microwave ferrites.

Having discussed our material, let us consider mic̣owave ferrite interaction and the devices making use of it. When considering the iron atom it was mentioned that the electrons spin on their own axis. Consider an unpaired clectron spinning on its own axis (Fig. 3). If a steady magnetic field is applied a gyroscopic interaction takes place and the electron will precess about the axis of the H field. The frequency of this precession in Mc / s is given by $f_{\prime \prime}=\gamma H_{\prime \prime}$, where gamma is the gyromagnetic ratio of the electron, which for iron is 2.8 .

So for a magnetic field H_{1}, of 1000 oersteds, the frequency of precession would be $2.8 \mathrm{Gc} / \mathrm{s}$. If we now apply an anticlockwise, circularly polarized, alternating, magnetic field $f=f_{\text {, }}$, in other words a microwave signal, along the axis shown in Fig. 3(b), the oscillating component of the torque will be in phase with the precessional motion of the electron, increasing the amplitude of the precession and thus absorbing energy from the microwave field. If the alternating magnetic field is changed in polarization or the H_{o} field reversed in direction, the r.f. field will not increase the precession but will return it to its original level, having little effect on the r.f. field.

This effect and the associated change of permeability encountered by the clockwise and anticlockwise rotating circularly polarized magnetic fields depend on the action of all the devices to be discussed, so let us examine the effect graphically in Fig. 4. The wavelength, and thence the velocity of propagation through a material, is proportional to its permeability. The permeability curve could therefore also be called a phase shift curve. You will note that the resonance curve is fairly sharply defined. The Q of the resonance curve, or line width in ferrite parlance, is determined by the material and the detailed magnetic field therein. Basically, however, the wider the line width the smaller the resonance peak.

I have mentioned two points here that may require a little clarification; first, the statement that the wavelength of an unbounded electro-magnetic field is proportional to the permeability of the medium. This is easily cleared up when the general case of electromagnetic velocity formula is recalled, and the two parameters $\dot{\xi}$ and u which are normally left out noted.

$$
\lambda=\frac{c}{f \sqrt{\xi} \vec{\mu}}
$$

where $\lambda=$ wavelength in an unbounded medium; $c=$ velocity of electromagnetic wave in free space; $f=$ frequency; $\xi=$ dielectric constant of medium; and $\mu=$ permeability of medium.

The second point is the mention of a circularly polarized r.f. magnetic field. This is fine, you may say, but where in normal microwave work do you get a circularly polarized r.f. magnetic field? The answer briefly is that we have one in standard rectangular waveguide propagating the normal fundamental TE_{10} mode.

It is a viewpoint not normally considered, so let us look into it. Consider the magnetic field pattern shown in Fig. 5. The pattern of the H field travels down the guide at a rate proportional to the frequency. The magnetic

Fig. 5. Magnetic field of the $T E_{10}$ mode in rectangular waveguide.
vector at a point A towards the nearside of the waveguide will, at successive intervals of time, vary as shown, rotating in a clockwise direction. If the point is chosen such that the magnetic vector remains at a constant amplitude, the polarization will be circular; if the amplitude is not constant it will be elliptical. The point for circular polarization is approximately half-way between the centre and the edge of the waveguide and is given by

$$
A=\begin{aligned}
& a \\
& \pi \\
& \sin ^{-1}
\end{aligned} \begin{gathered}
\lambda \\
2 a
\end{gathered}
$$

It should be noted that there is a similar point B on the other side of the waveguide where the polarization is anticlockwise.

In the next article we will discuss how this basic theory is applied to obtain the various types of circulators and isolators.

Domestic Satcom for U.S.A.

A PROPOSAL for a domestic multi-purpose communications system that would integrate satellite and terrestrial communications in the most economical "mix" has been put before the U.S. Federal Communications Commission by the American Telephone and Telegraph Company. Based. on studies carried out by Bell Telephone Laboratories, it aims to benefit from the savings that can be achieved by using satellites for the longer distances (1,300 miles is given as an economic cross-over) and to pass these savings on to the customer. The estimated savings would be about 19 million dollars p.a. in 1969, increasing to 41 million dollars p.a. in 1980.

A feature of the scheme is the use of a small number of high-capacity synchronous satellites of advanced designinitially three in 1969-71, then a further four in the 1970s (two of which would replace the initial three). This would provide in the 1980s period 80,000 two-way voice circuits (or their equivalents), 27 television channels and 61 protection and/or occasional television channels. Ground stations would be initially two large transmitting and receiving stations near New York and Los Angeles, with 73 small television receiving-only stations, then later would follow 26 new transmitting and receiving stations in major metropolitan areas. Pulse code modulation would be used for voice circuits and p.c.m. and f.m. for television,
Various other proposals for private and domestic satcom schemes have been put to the F.C.C., and A.T. \& T. has made criticisms of some of these, pointing out that proliferation of private special-purpose satcom systems would result in "impairment of economies ${ }_{x}$ waste of the frequency spectrum and unnecessary duplication of facilities."

NEWS FROM INDUSTRY

Television Signal Translator for Jamaica

PROVIDING a television signal translator for communities that lie in propagation shadow areas is a problem in itself when the receiving communities are small, isolated and in rugged, inaccessible terrain. To cope with such conditions a television translator independent of mains supplies, capable of unmanned operation for long periods in isolated conditions has been specially designed by T.I.E. (Communications) Ltd., of 21 Sloane St., London, S.W.1, for operation over eight hours a day in Jamaica. Powered by a solar driven device, in this case silicon cells, limits applications of the B. 6402 translator to areas lying within 35° north and south of the equator. A one watt panel is made up of 49 individual cells, and a number of the panels are interconnected to provide the voltage and current necessary to maintain storage batteries at full charge. The Jamaican installation will have a minimum of 92 W in full sunlight from 68 interconnected panels. Connected in series parallel, this network will yield 2.6 A at 36 V . A 360 Ah nickel-cadmium storage battery is constructed of 28 parallel pairs of cells. A sensor included in the equipment regulates the output of the battery supply, and it senses the charge condition of the batteries, disconnecting the solar cells from the batteries when the latter are fully charged. Batteries and sensor are buried to protect them from extremes in environmental conditions and marauding animals. For areas where the television signal is severely attenuated, correct siting of the translator is critical; its propagation range must cover the entire shadow area. A site only a few hundred yards away from, or at a slightly lower altitude than the optimum site may well mean weaker signals. Optimum sites are unlikely to have access roads, for supervision and maintenance, so the elimination of this need is a major advantage. This uranslator and power supply can be transported to the required site and maintained by helicopter. Long periods of adverse weather do not prevent operation, since battery size and the number of solar panels can be adjusted for local conditions.

A new components group is being formed from A.E.I. Semiconductors and Industrial Components. This new single group will be responsible for increasing the use of solid state components in such items as domestic cookers and industrial controls. A wide range of packaged solid state modules for control in the power field are to be produced as "off the shelf" commodities.

Following an agreement with G.E. in the U.S.A., Thorn-A.E.I. have made available a range of silicon planar transistors for entertainment use, to be marketed under the brand * name Mazda. There are basically two ranges, one for r.f. applications the other for a.f. applications. At the present time, mounting, encapsulation, selection and testing only are carried out at Brimsdown, Middx., the pellets being imported from G.E., but at some later date it is planned to manufacture the complete devices in the U.K. Considerable collaboration between the two companies was necessary owing to the requirements of the British and European markets being different from those of the American market-due mainly to the popularity of receivers using low-voltage batteries on this side of the Atlantic.

Devices available, and in this range of r.f. transistors, for use in a.m. and a.m./f.m. receivers, are BF216 (Band II r.f. amplifier), BF217 (Band II mixer), BF218 (a.m. mixer-oscillator and $10.7 \mathrm{Mc} / \mathrm{s}$ amplifier), BF219 (i.f. amplifier) and BF220 (oscillator for 1.w., m.w. and s.w.). The a.f. range is BC150 (high-gain low noise pre-amplifier), BC151 (high gain preamplifier) BC152, BC175 and BC180 (drivers). A BA151 silicon biasing diode is also introduced. Other devices being produced at Brimsdown for professional equipment, include the 1N4148 and 1N4154 highspeed silicon planar switching diodes, the 2N2926 series, and the 2N3395, 2N3414, 2N3416, 2N3605, 2N3606 and 2N3607 transistors. These are intended for general purpose, small signal and switching industrial applications.

Flying spot telecine and slide scanning equipment made by the Compagnie Francaise Thomson Houston-HB is to be marketed in the U.K. and other territories exclusively by E.M.I. Electronics Ltd. Installation, maintenance, and after sales service will all be carried out by E.M.I. Arrangements for the manufacture (under licence) of this equipment in the United Kingdom are also being made.

A $27,500 \mathrm{sq}$ ft factory on the Donibristle Industrial Estate at Inverkeithing, near Edinburgh, has been leased for 20 years by Varian Associates as the first step in their plans to manufacture instruments on a large scale in this country. Initially, analytical instruments and ultra-high vacuum equipment will be produced here; including electron spinresonance spectrometers, and gas chromategraphs for chemical, biological, and medical research.

The British-Swiss Chamber of Commerce in Switzerland has announced that as from 1 st January protective tariffs on Swiss imports of British industrial goods will be removed. These goods include medical and hospital equipment, electronic components, instruments and industrial control equipment. Advice and guidance for manufacturers wishing to export to Switzerland is available from this organization at 1 , St. Peterstrasse, 8001 Zurich.

A multi-channel (sixty) radio telephone link between Kampala in Uganda, and Dodoma in Tanzania will be supplied by the Marconi Company througi a $£ 300,000$ contract from the East African Posts and Telecommunications Administration. A tropospheric scatter system with $60-\mathrm{ft}$ diameter parabolic aerials will be employed. The stations linking Kampala and Mwanza (respectively north and south of Lake Victoria), will have 1 kW power amplifiers, duplicated drive equipment, and quadruple diversity receivers. For the link from Mwanza to Dodoma the equipment will be similar except that the dower amplifiers will be rated at 10 kW .

A multi-channel (sixty) radio teleof 3,060 words per minute is to be marketed in the U.K. by Bush-Murphy Electronics. It is stated that this teleprinter is 30 times as fast as a standard machine; the high-speed printing is achieved by employing pulses to form characters on electrically sensitive paper. There are no print-out keys, and operation is almost noiseless. A compact, desk size machine, it will accept a variety of input codes, including those used in digital computers, and data processing systems. It is manufactured in the U.S.A. by Motorola Inc.

The Societe des Accumulateurs Fixes et de Traction, of Romainville (Seine), France, has acquired the whole of the capital of Cadmium Nickel Batteries Ltd., Park Royal Road, London, N.W.10, the manufacturers of Voltabloc batteries. S.A.F.T., said to be the largest manufacturer of modern type nickelcadmium batteries in the world, plans to invest $£ .05 \mathrm{M}$ next year, to gain a large proportion of the nickel-cadmium battery market in Great Britain.

High purity metals such as bismuth, cadmium, indium and tin are to be marketed in the U.K. by Enthoven Solders Ltd., of Rotherhithe Street, London, S.E.16. These metals, available in a variety of physical forms such as ingots, sticks, pellets, granules, washers, wires, ribbons, spheres and single crystals, will have specified standards of purity (in the case of indium, down to one-tenth part per million impurity). Alloys based on these metals can be supplied. The prevention of contamination during storage and dispatch is achieved by the use of specially sealed plastic packaging.

Gyrators - using direct-coupled transistor circuits

By F. BUTLER, O.B.E., B.Sc., F.I.E.E., M.I.E.R.E.

The gyrator is a circuit element with some very useful properties. It can, for example, convert capacitance into inductance, a resistance of one value into another, or a short circuit into an open circuit. Examples of how these properties can be used in practical circuits, such as oscillators, amplifiers and filters, are given in the article. In network theory the ideal gyrator is a theorist's device, an abstraction, which is not physically realizable by a single, simple component like a capacitor. In practical circuit design, however, a very good approximation to the ideal gyrator element can be constructed using transistor amplifiers.

THE ideal gyrator is a linear, passive, non-reciprocal four-terminal network. As a circuit element it is represented by the symbol in Fig. 1. When terminated by an impedance Z_{2} at one pair of terminals, the device presents an impedance Z_{1} at the other pair, these impedances being related by the expression $Z_{1} Z_{2}=R^{2}$. Here R is a constant, defined as the gyration resistance. The gyrator characteristics can also be described in terms of the gyration conductance G, the reciprocal of R. Thus $Z_{1} Z_{2}=R^{2}=1 / G^{2}$.

The gyrator has some extraordinary properties. For example, if the terminating impedance is a capacitance C such that $Z_{2}=1 / j \omega C$, it is clear that $Z_{1}=R^{2} / Z_{2}=j \omega C R^{2}$. Thus Z_{1} is equivalent to an inductance $L=C R^{2}$. In effect, the gyrator converts capacitance into inductance, the conversion factor being independent of frequency. The transformation of inductance into capacitance is equally feasible but less generally useful. Furthermore, a resistance of one value may be converted to another. As an extreme example of this, a short-circuit across the output terminals of a gyrator is transformed to an opencircuit across the input terminals. The converse is also true. More generally, it might be said that the network " gyrates" a voltage into a current, or a current into a voltage. A particularly useful property is the ability of a gyrator to simulate a high- Q inductor by means of a capacitor. Resistance-conversion could of course be accomplished in a simpler way by means of an ideal transformer but the conversion rule is different. Moreover, a real, as distinct from an ideal, transformer cannot operate down to zero frequency whereas a gyrator can.

Since a gyrator, when terminated by capacitance at its output end, looks like an inductance connected across the input terminals, it is clear that this inductance could be tuned by another capacitor in shunt with the input
terminals. We then have an extraordinary situation in which one capacitor is apparently brought into parallel resonance with another. Series resonance is equally simple to achieve, using the same two capacitors.

Gyrators may be used in the construction of sinusoidal oscillators, selective amplifiers, low-pass, high-pass, band-pass and band-stop filters. They can be used for impedance matching, as d.c. transformers and, on a much higher intellectual plane, they can be used to solve some intractable problems in network synthesis. In what follows we shall touch on some of the simpler applications.

The gyrator concept

The original concept of the gyrator as a new circuit element is due to B. D. H. Tellegen. He described it in a classic paper", published in 1948, which is "required reading " for anyone starting work in this field. Tellegen speculated whether there might exist some fifth network element to add to the four conventional elements-the ideal resistor, capacitor, inductor and transformernormally used in network synthesis. He concluded that there could be no possible two-terminal element to add to the list, but that a four-terminal element might be found provided that one did not insist on it being at once linear, passive, reciprocal and with constant coefficients in its network equations. He considered that, of all these properties, the least important was the reciprocity characteristic and by removing this constraint he was able to specify a new circuit element which he called a gyrator. The choice of name springs from a parallel which he drew between the electrical network equations and some dynamical equations describing the behaviour of certain mechanical systems containing flywheels or gyroscopes.

Tellegen's insistence on a passive element led to difficulties with the actual physical realization of a gyrator, and he was forced to specify two rather esoteric systems. For details of these the original paper must be consulted. If, however, we choose to make use of active circuits it is possible to build an almost ideal gyrator using fairly standard transistor amplifiers, suitably interconnected. We must of course modify our original definition of the gyrator to read "active" instead of "passive" if we use amplifiers in its construction.

Gyrator theory

Following Tellegen's treatment, one can draw a useful parallel between the circuit equations of an ideal transformer and an ideal gyrator.

For the transformer:-

$$
\left.\begin{array}{l}
i_{1}=-N i_{2} \tag{1}\\
v_{2}=N v_{1}
\end{array}\right\}
$$

Here i_{1} and v_{1}, i_{2} and v_{2} are respectively the primary and

(Right) Fig. 2. General 4-terminal (two-port) network.

(Left) Fig. 3. Gyrator using back-to-back paralleled ampliers.
secondary currents and voltages and N is the turns ratio.
In passing, it may be noted that $v_{1} i_{1}+v_{2} i_{2}=0$, so that the energy dissipation in the transformer is zero. The transformer also complies with the reciprocity rule.

Fig. 1, as already mentioned, shows an ideal gyrator. The circuit equations which characterize the gyrator are:-

$$
\left.\begin{array}{l}
v_{1}=-R i_{2} \tag{2}\\
v_{2}=R i_{1}
\end{array}\right\}
$$

Here again, $v_{1} i_{1}+v_{2} i_{2}=0$, so that there is no dissipation but the reciprocity relationship is violated. The resistance R is the gyration resistance previously mentioned.

Simple manipulation of equation (2) shows that the input impedance of the gyrator is given by:-

$$
\begin{equation*}
Z_{1}=\frac{v_{1}}{i_{1}}=\frac{-R^{2}}{v_{2} / i_{2}} \tag{3}
\end{equation*}
$$

If v_{2} is the voltage drop across an impedance Z_{2} connected across the output terminals then, with the polarity conventions of Fig. 1, $v_{2}=-Z_{2} i_{2}$. Thus:-

$$
\begin{equation*}
Z_{1}=R^{2} / Z_{2} \text { or } Z_{1} Z_{2}=R^{2} \tag{4}
\end{equation*}
$$

This is the basic gyrator equation.
At this point we may make passing reference to another network which has something in common with the transformer and the gyrator. It is the pi-section matching network consisting of a series inductance L with two shunt capacitors C. When operated at the frequency $f=1 /(2 \pi \sqrt{ } L C)$ and when terminated by an impedance Z_{2}, the input impedance of the section is Z_{1}, where $Z_{1} Z_{2}=L / C$. If Z_{2} is zero, Z_{1} is infinite and conversely Z_{1} is zero when Z_{2} is infinite. These properties are identical to those of the gyrator but the pi-network acts in this way only at one particular frequency whereas the gyrator is a wide-band device. In a rather loose way we could define the gyration resistance of the pi-section as $R=\sqrt{ } L / C$.

Another and more instructive theoretical approach is t) make use of elementary matrix methods to examine the gyrator, regarded as a special type of 4 -terminal network.

The advantage of this method is that it suggests a way in which one might construct an active gyrator of a more general type than that envisaged by Tellegen.

Referring to Fig. 2, let y_{11}, y_{12}, y_{21} and y_{22} be the_admittance parameters of the 4 -terminal network. Then:-

$$
\left.\begin{array}{l}
i_{1}=y_{11} v_{1}+y_{12} v_{2} \tag{5}\\
i_{2}=y_{21} v_{1}+y_{22} v_{2}
\end{array}\right\} \ldots
$$

In matrix notation, these equations may be written:-

$$
\left[\begin{array}{l}
i_{1} \tag{6}\\
i_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \ldots
$$

It may be found helpful in understanding the next step in our argument to recall in words the definitions of the four y-parameters.
$y_{11}=$ input admittance with the output short-circuited,

$$
==i_{1} / v_{1} \text { with } v_{2}=0
$$

$y_{12}=$ reverse transfer admittance with the input short-circuited,
$=i_{1} / v_{2}$ with $v_{1}=0$.
$y_{21}=$ forward transfer admittance with the output short-circuited,
$=i_{2} / v_{1}$ with $v_{2}=0$.
$y_{22}=$ output admittance with the input shortcircuited,
$=i_{2} / v_{2}$ with $v_{1}=0$.
Returning to equation (2), which defines the gyrator characteristic, and rewriting it in terms of conductance (the real component of admittance), we have:-

$$
\left.\begin{array}{l}
i_{2} / v_{1}=-1 / R=-G=y_{21} \tag{7}\\
i_{1} / v_{2}=1 / R=G=y_{12}
\end{array}\right\}
$$

The terms y_{11}, y_{22} which appear in equation (6) are both zero in this particular case and so equation (7) can be written in matrix form:-

$$
\left[\begin{array}{l}
i_{1} \tag{8}\\
i_{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & G \\
-G & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \ldots
$$

This equation, which again describes the gyrator, is now seen to be merely a degenerate form of (6), the general 4-terminal, (2-port) network equation.
Thus the gyrator admittance matrix becomes:-

$$
Y=\left[\begin{array}{cc}
0 & G \tag{9}\\
-G & 0
\end{array}\right] \quad \ldots \quad . . \quad . .
$$

It can be expanded to:-

$$
Y=\left[\begin{array}{lr}
0 & G \tag{10}\\
0 & 0
\end{array}\right]+\left[\begin{array}{rr}
0 & 0 \\
-G & 0
\end{array}\right]
$$

In physical terms, equation (10) represents the parallel back-to-back connection of two voltage-controlled current sources (two amplifiers with high input and output impedances), one of them being of the phase-inverting type and one non-inverting. An active gyrator can thus be built by paralleling two suitable amplifiers each having a prescribed mutual conductance, the reciprocal of which is the gyration resistance. The output terminals of each amplifier are connected to the input terminals of the other.

Proper gyrator action is still obtained even if the transfer conductances of the two amplifiers are unequal, but we now have a gyrator with unequal gyration resistances or conductances. When terminated by impedances Z_{1} and Z_{2}, its characteristics are described by the equation:-

$$
\begin{equation*}
Z_{1} Z_{2}=R_{1} R_{2}=1 / G_{1} G_{2} \tag{11}
\end{equation*}
$$

The schematic diagram of a gyrator embodying two back-to-back amplifiers is shown in Fig. 3. The requirement previously stated for amplifiers with high input and output impedances. is only crucial if the gyrator is being
used with purely reactive terminations. In this case the amplifier impedances act as parasitic loss resistances, spoiling the Q-factors of the terminations. With resistive terminations, the amplifier impedances can be absorbed into the loads, leaving the performance unaffected.

Practical gyrator circuits

The central problem in building a high-grade gyrator is to design amplifiers with the requisite high input and output impedances. Figures in the region of one megohm are acceptable but much larger values, say 5 megohms, are desirable. The design is simpler if a.c. coupling is admissible but some gyrator properties are useful down to zero frequency so that direct coupling is much to be preferred. Brief details of two practical circuits have been published. The first ${ }^{2}$ is extremely simple, easy to build and to set in operation. The second ${ }^{3}$ is much more claborate but its performance comes closer to the ideal.

Two different circuits will now be described, each of which owes something to the work just mentioned. In Fig. 4 each amplifier has a complementary output stage in which both transistor bases are driven, in phase, by carlier stages. The design difficulty is that there is a standing difference of d.c. potential between the bases of the complementary transistors. The problem is solved by using a special type of complementary driver stage, itself driven from an emitter follower of extremely high input impedance.

The upper amplifier in Fig. 4 is a phase-inverting type in which the base of each output transistor is driven from a tap on the emitter load of the preceding stage. The lower amplifier, non-inverting, takes the drive to the output stage from the collector loads of the earlier stage. Local series feedback in the intermediate and final stages gives a very high output impedance, of the order of half a megohm. In each amplifier the mutual conductance is about $0.6 \mathrm{~mA} / \mathrm{V}$, corresponding to a gyration resistance of 1667 ohms. The voltage gain of each amplifier is simply $g_{m} R_{l}$, exactly as for a single transistor or pentode valve amplifier, if g_{m} is the mutual conductance and R_{L} the load resistance.

Experience shows that some selection or adjustment of components must be made to ensure proper operation of the amplifiers. In each channel, two starred resistors are shown. It is suggested that variable resistors should be used in these positions, set by trial to give the maximum possible undistorted output from each amplifier, treated separately. After adjustments have been completed, the variable resistors should be measured and replaced by selected components or series/parallel combinations very close to the measured value.

The second gyrator, Fig. 5, makes use of much more claborate amplifiers. The output stage employs a complementary cascode arrangement of four transistors which is believed to be new and original. Its output impedance is of the order of 2 megohms. The intermediate amplifier, or cascode driver, uses an arrangemeat similar to that of Fig. 4. The input stage is a compound complementary emitter-follower of extremely high input impedance.

Again it is necessary to select certain components to obtain maximum possible output from each amplifier. They are marked with an asterisk on the diagram.

Each amplifier in both circuits requires a well-filtered centre-tapped power supply of 6-0-6 volts, stabilized by Zener diodes. The earthy terminals of the amplifiers (input and output) are connected to the common terminal, which is preferably earthed.

Each channel of the gyrator should be built and tested separately before connecting the amplifiers together. The setting-up process requires an audio signal source, an

Fig. 4. Simple gyrator. (Below) Fig. 5. High-grade gyrator.

oscilloscope and a valve voltmeter, assembled as in Fig. 6. The audio oscillator is coupled to the amplifier input through a blocking capacitor $\mathrm{C}(25 \mu \mathrm{~F}$ reversible electrolytic). A low-value resistor R_{1}, not exceeding $2.2 \mathrm{kS} \Omega$, is connected across the amplifier input. A low value is required so that the base current of the input transistor will not set up an unwanted bias voltage across R_{1}. A load resistance R_{l} of $10 \mathrm{k} \Omega$ is connected across the output terminals. With the remaining test equipment in position and with an audio signal of about 0.5 V across R_{1} it should be possible to observe an output across R_{I}. The waveform will probably be distorted but adjustment of one or more of the variable resistors will correct the distortion. When all the adjustments have been properly made, an undistorted output of 3.5 V r.m.s. should be available across the $10 \mathrm{k} \Omega$ load. A further increase of input signel should result in exactly symmetrical waveform clipping beyond the overload point. The overall voltage gain of one experimental amplifier was found to be 6 with a $10 \mathrm{k} \Omega$ load, rising to 60 with $100 \mathrm{k} \Omega$. This corresponds to a mutual conductance of $0.6 \mathrm{~mA} / \mathrm{V}$. Assuming an identical, but phase-reversing, amplifier in the other channel the gyration resistance is 1667 ohms.

The best transistors for use in the amplifiers are of the silicon planar epitaxial type, with gain-bandwidth products in excess of $300 \mathrm{Mc} / \mathrm{s}$. Types BSX 28 (n-p-n) and BSX 29 (p-n-p) made by SGS-Fairchild are particularly suitable. Experimental amplifiers have been built using unselected transistors of various types by different manufacturers. The most noticeable difference between them was the upper frequency limit of operation. Typically, the 3 dB point was at $300 \mathrm{kc} / \mathrm{s}$, the response being almost flat from d.c. to over $100 \mathrm{kc} / \mathrm{s}$.

Distortion is low due to the large amount of feedback.

(Left) Fig. 6. Amplifier test circuit.
(Right) Fig. 7. Selective amplifier using gyrators (R is the
 gyration resistance).

Though there is considerable phase shift through each amplifier, the differential shift is small. Accurate phase splitting is observed up to $250 \mathrm{kc} / \mathrm{s}$ with normal transistors and to well above this figure with the v.h.f. types.

When setting up the amplifiers, care must be taken not to reduce the setting of the variable resistors to a dangerously low value. It is safest to include a $1 \mathrm{k} \Omega$ fixed resistor in series with each.

Practical applications of gyrators

Fig. 7(a) shows a selective amplifier using a gyrator to convert the capacitance C_{2} into an inductance $L=$ $C_{2} R^{2}$, where R is the gyration resistance. When driven from a low-impedance signal source, the output is a maximum when C_{1} is in series resonance with L, i.e. at a frequency given by:-

$$
f=\frac{1}{2 \pi \sqrt{ } L C_{1}}=\frac{1}{2 \pi \sqrt{ } R^{2} C_{1} C_{2}}=\frac{1}{2 \pi R \sqrt{ } C_{1} C_{2}}
$$

Fig. 7(b) is a corresponding circuit exploiting parallel resonance of L and C_{1}. It must be driven from a constantcurrent generator or through a very high resistance R_{1}.

Operation at very low frequencies is possible if C_{1} and C_{2} are large (reversible) electrolytic capacitors. If $C_{1}=C_{2}=100 \mu \mathrm{~F}$ and if the gyration resistance $R=$ 2,000 ohms, the simulated inductance is 400 henries and the resonant frequency is about $0.8 \mathrm{c} / \mathrm{s}$.

The transmission characteristic of a selective amplifier of this type is exactly that of a normal $L C$ circuit and is very different from that of the usual type of $R C$ circuit using a Wien bridge or parallel-T network. The 3 dB bandwidth of the gyrator circuit is broader and the skirt selectivity is much better than in the other circuits. Another advantage is that there is no requirement for accurately matched components as in the twin-T circuit.

A gyrator oscillator is shown in Fig. 8. This too is most suitable for very low frequency operation. It is a variant of the Colpitts circuit. Again, the gyrator is used to simulate the tuning inductance. The emitterfollower is operated from the same supply as the gyrator. R_{1} is its normal emitter load, say 22 kS , while R_{2} is a regeneration control, set to give a sinusoidal output waveform.

A fairly recent communication ${ }^{4}$ gave design details of a gyrator $R C$ low-pass filter. The basic circuit is shown in Fig. 9. Its measured transmission characteristic agrees accurately with theory.

Fig. 10 shows a corresponding high-pass section which can be designed by standard image-parameter filter theory. The gyrator merely simulates the shunt inductance.

A standard T-section high-pass filter to work between 600 ohm terminations and to cut off at $1 \mathrm{kc} / \mathrm{s}$ requires two series capacitors of $0.2652 \mu \mathrm{~F}$ and a shunt inductance of 47.74 mH . Assuming a gyration resistance of 1,500 ohms, the capacitance C_{1} required to simulate this inductance is given by:-

$$
C_{1}=L / R^{2}=\frac{47.74 \times 10^{6}}{1000 \times 1500 \times 1500}=0.02122 \mu \mathrm{~F}
$$

The filter thus consists of two series-connected capacitors, each of $0.2652 \mu \mathrm{~F}$ and a shunt gyrator terminated by a capacitance of $0.02122 \mu \mathrm{~F}$. The gyrator-capacitor combination simulates an inductance of 47.74 mH .

One method of making a gyrator low-pass filter has been briefly mentioned. Another possibility is to include a high-pass filter in the negative feedback path of a wideband amplifier. A low-pass $L C$ filter section employs a series inductance of which neither side can be earthed. It is difficult to synthesize such an inductance using a single gyrator since one side of the simulated element
is necessarily earthed. However, the basic gyrator equation $Z_{1}=R^{2} / Z_{2}$ suggests a way out of the difficulty. If the gyrator is terminated, not by a single impedance Z_{2} but by a number of parallel-connected impedances Z_{2}, Z_{3}, Z_{4}, each of these is separately converted so that the input impedance of the gyrator becomes:-

$$
R_{1}=R^{2} / Z_{2}+R^{2} / Z_{3}+R^{2} / Z_{1}=Z_{a}+Z_{b}+Z_{c}
$$

Thus R_{1} becomes the sum of three series connected impedances of calculable values. In a similar way, a number of series-connected impedances across one port of the gyrator appear as a parallel group across the other port. More generally, a network across one port is transformed to another network which is the dual of the first. This idea, expressed in different terms, has been exploited by A. G. J. Holt and J. Taylor in order to replace ungrounded inductors by grounded gyrators. Low-pass filters can be synthesized by this technique.

Band-pass transmission characteristics can be secured by using cascaded selective amplifiers with staggered centre frequencies.

When synthesizing some of the more complex networks it may be helpful to note that gyrators can be used in conjunction with transformers or other gyrators. A gyrator and a transformer in cascade are equivalent to a gyrator with new characteristics. Two gyrators in cascade behave like an ideal transformer.

If a gyrator is terminated by a quartz vibrator of which the equivalent circuit is an inductance L in series with a capacitance C, the pair being shunted by a capacitance C_{1}, the reactance of the network is changed by gyrator action to an entirely different value as seen from the input terminals.

It is not difficult to show that the gyrator input impedance is given by:-

$$
\begin{equation*}
Z_{1}=j \omega C_{1} R^{2}\left\{1+\overline{C_{1}\left(\overline{1}-\omega^{2} L C\right)}\right\} . \tag{12}
\end{equation*}
$$

Here R is the gyration resistance.
Provided that the whole term in brackets is positive, Z_{1} is a pure inductance and can be tuned to resonance by a suitable value of shunt capacitance.
Experiments made with a particular $100 \mathrm{kc} / \mathrm{s}$ GT-cut plate show that controlled oscillations can be generated, using the circuit of Fig. 8, with $C=0.007 \mu \mathrm{~F}$ and $C_{1}=$ $0.001 \mu \mathrm{~F}$, and with the quartz plate substituted for C_{2}.

The frequency of oscillation involves the gyration resistance R which is not exceptionally stable. The circuit is principally of interest as a demonstration of the remarkable properties of a gyrator but it has one practical advantage over conventional circuits in that the crystal frequency can be pulled away from its nominal value. The circuit cannot be recommended where high frequency-stability is a prime requirement.

In all these applications it is essential to avoid overloading the gyrator or extremely misleading results will be obtained. The standing collector current in each gyrator output stage of Figs. 4 and 5 is about 1 mA . The maximum current which can be delivered to an external load is no more than 0.35 mA r.m.s. Thus it is unreasonable to expect more than 0.35 V output across a $1 \mathrm{k} \Omega$ load, rising to just less than 4 V on open circuit. The conditions are equally, if not more, stringent with reactive loads such as large capacitors.

Advantages in use

A gyrator built with discrete components might seem an expensive method of inductance simulation but in this connection it is worth remembering that " clockspring" toroidal ribbon-wound cores of high grade mag.etic material may cost as much as $£ 10$ each. An
(Right) Fig. 9. Gyrator low-pass filter.

(Left) Fig. 10. Gyrator high-pass filter (cutoff frequency $1 \mathrm{kc} / \mathrm{s}$).
integrated-circuit gyrator could be produced in quantity at a unit price much less than this.

In earlier articles ${ }^{6,7}$ the writer has described other active devices for inductance simulation. These, and some related devices described by other writers, all suffer from the basic defect that they first simulate a lossy inductance and subsequently improve its Q-factor by some process of resistance-cancellation. Essentially this is a positive-feedback technique which is bad practice where stable Q-factors are required. The gyrator, which employs strong negative feedback, is inherently more stable and is no more difficult to design and construct.

As regards future developments and applications of gyrators, it would seem to be fairly simple to design them with manually or electronically variable gyration resistances. Tunable filters and oscillators, phase-locked oscillators, parametric amplifiers and frequency dividers would then become practical possibilities.

Acknowledgement.-The writer is particularly indebted to J. R. Murray, I. R. Pearson, M. E. Carter and P. M. J. Webster for constructing, testing and evaluating a number of individual amplifiers and several complete gyrators of different types leading to the final versions shown in Figs. 4 and 5.

REFERENCES

1. "The Gyrator; A New Electric Network Element," by B. D. H. Tellegen. Philips Research Reports, Vol. 3, April 1948, pp. 81-101.
2. "Direct Coupled Gyrator Suitable for Integrated Circuits and Time Variation," by T. N. Rao, R. W. Newcomb. Electronics Letters (I.E.E.), Vol. 2, No. 7, July 1966, p. 250.
3. "High Quality Transistorized Gyrator," by D. F. Sheahan, H. J. Orchard. Electronics Letters (I.E.E.), Vol. 2, No. 7, July 1966, p. 274.
4. "RC Gyrator Low-Pass Filter," by S. S. Hakim. Proc. I.E.E., Vol. 113, No. 9, September 1966, p. 1504 (correspondence).
5. "Method of Replacing Ungrounded Inductors by Grounded Gyrators," by A. G. J. Holt, J. Taylor. Electronics Letters (I.E.E.), Vol. 1, No. 4, June 1965, p. 105.
6. "Active Impedance Converters," by F. Butler. Wireless World, December 1965, p. 600.
7. "Impedance Converters Using Wideband Feedback Amplifiers," by F. Butler. Electronic Engineering, October 1966, p. 639.

ELECTRONIC ORGANS-"Why do so many sound vaguely but indisputably wrong?"

By J. W. MACHIN, b.Sc., M.I.E.E., A.M.I.E.R.E.

IN every stratum of society there are certain topics upon which it is unwise to speak, and a particular instance of such folly is to comment, other than unfavourably, upon the performance of electronic organs when in the presence of a pipe organist. If he is able to speak calmly upon the subject the most that he will concede in their favour is their undoubted advantage where cost is of paramount importance. That anyone could be deceived, even for a moment, into mistaking the sound they make for that of a pipe organ is to him unthinkable.

It is true, of course, that many electronic organs make no pretence to pipe organ imitation, but claim to be musical instruments in their own right. Whether an offspring with so strong a family likeness can disclaim its parents is a question outside the scope of this article, which is a consideration of those electronic organs which claim to be, and are sold as, substitutes for pipe organs.

Before proceeding further it may be an advantage to consider a typical block diagram of an electronic organ (Fig. 1), which has been reduced to its simplest form. Most of the units shown do their bit towards the production of un-pipe-organ-like sounds, but when allocating blame and seeking remedies it is only fair to exonerate the one which is, or should be, practically innocent. This is the voicing unit comprising the various filters used to produce the three basic tones of flute, string and reed, and whose outputs often come in for a good deal of undeserved criticism inasmuch as the majority of organ sounds can be simulated with reasonable accuracy by means of quite simple circuits. It should be borne in mind that pipe organ builders themselves permit a great deal of latitude in their interpetation of the legend on the drawstop knob, and even a casual acquaintance with their instruments will show that one man's salicional is another man's gamba, and one man's trumpet is another's cornopean. To take a further example, it is often said that the reed tones of an electronic organ tend to be flutelike in the upper register; if however one examines a pipe organ it is quite usual to find

Fig. I. Block diagram of an electronic organ, A, main oscillators; B, dividers; $C_{1} C_{2} C_{3}$, keying systems; D, voicing networks; E, summing system and pre-amplifier; and F, power amplifier.
J. W. MACHIN is senior lecturer in electrical engineering at the North Staffordshire College of Technology where he has been a member of the staff for the past eight years. Aged 43, he was a radar mechanic in the R.A.F. during the war after which he studied at Manchester University where he graduated in 1949.
that the top notes of a reed stop are unashamedly flue pipes, since the builder knows that the ear is uncritical of quality at high frequencies, tending to judge merely by relative volume. It must of course be admitted that some organ stops, for example the celeste, cannot be imitated by simple filters but in the main there is no reason why a suitable harmonic mixture of the raw signals (usually sawtooth or square), may not with filtering produce a wide variety of organesque tones, sufficient for all normal purposes.

If the voicing is not to blame where then does the trouble lie, and why do so many electronic organs sound vaguely but indisputably wrong? In effect there are three main points of variance with the pipe organ which may be set down in the order in which they occur in the instrument shown in Fig. 1.

1. Chorus effect
2. Transient generation
3. Summation of voices

Let us consider these factors in some detail with a view to the possible improvement of the instrument.

THE CHORUS EFFECT

The problem here is one of coherence. Different voices at the same pitch must inevitably be in a fixed phase relationship to each other if they are to emerge from a particular output channel. If it were otherwise then there would be a time when signals of identical pitch and similar amplitude would be antiphase as regards their fundamentals, giving partial or sometimes total cancellation. This basic coherence of output contrasts with that of the pipe organ where every note is an individual and the output is incoherent, sometimes, in a very resonant building, to the point of unintelligibility.
Seeking to improve the chorus effect in the electronic instrument leads to a consideration of the method of note generation. Here one is confronted with the choice between twelve oscillators followed by a system of frequency dividers, or an entire rank (at least 61 and usually 85) of individual "free-phase" oscillators.

The advantage of the latter method is that the octaves are not phase related, and therefore a played octave sounds more like two notes and less like a fundamental and a strong second harmonic. This benefit seems how-

Fig. 2. Equivalent keying circuit.
ever to be outweighed by the following considerations:
(i) To have really good frequency stability an oscillator, specially a transistor type, should operate in class A sinusoidally, and since such an output is usually unacceptable, suitable non-linear shaping circuits have to be provided for each oscillator.
(ii) To simulate many open pipe tones it is essential that at least some second harmonic is added to the fundamental waveform. With a divider system this may be obtained from the octave above, but with the separate oscillator system this octave is not phase related to the fundamental, and the ear tends to hear two notes again. Thus the feature which is held to be an advantage can in fact turn out to be a nuisance.
(iii) The free-phase system is costly by reason of the large number of oscillators required, particularly if separate ranks are provided for the various pitches, e.g. 16 ft , $8 \mathrm{ft}, 4 \mathrm{ft}$, ctc.

Neither the divider nor the free-phase system simulates one of the most obvious characteristics of a pipe organ, namely the continuous random variation in the pitch and amplitude of a note about a mean position, which is due to slight variations in wind pressure caused by turbulence in the wind chest, and in and around the pipe itself. This random variation may be observed when the note from an organ pipe is displayed on an oscilloscope. Now there seems to be no reason why a similar effect should not be produced electronically by modulating each oscillator with a signal similar to that of wind noise, and it so happens that the internal noise signal of a transistor fits the requirements fairly well. If a noisy transistor is used as a signal source and its output amplified, the result sounds very like the low pressure wind noise associated with a pipe organ.

If a rank of dividers were driven by twelve oscillators, each frequency modulated by its own individual noisy transistor, all notes that were not octaves would have separate random phase variations and, in the case of sawtooth divider circuits, amplitude variation also. This might provide a much richer chorus effect than hitherto, even to some extent in unison playing, particularly in a reverberant building.
It seems feasible to carry this technique a stage further. Most electronic organs have a separate output channel for each manual and the pedal section, and of course if there are separate generators for each section this is essential. But where all tones are derived from a single rank of dividers the main purpose of the multiple channels is to give distinction between, say, Swell and Great sections by bringing them out through separate (and separated) speakers. Let us suppose, however, that the Swell output as a whole is phase modulated by a further transistor noise generator. The original random variations of the twelve notes will now be further modulated, giving twelve new sets of variations distinct from the original twelve. It should now be possible to distinguish aurally when the Swell output is added to the Great section without the
necessity for two channels and amplifiers, assuming that the power handling ability of the one amplifier is adcquate.

In passing it may be mentioned that a similar device is in use in some commercial organs where the output, or part of it, is phase modulated with a mild vibrato signal and then mixed with the unmodulated output producing an enhanced chorus effect.

The foregoing does not imply that a multi-channel output is not an advantage, but it may well be that the usual system of horizontal division of the organ into sections is not the best possible. This topic will be referred to again when the summation of voices is considered.

TRANSIENT EFFECTS

Both pipe and electronic organs can produce transients when keyed. Pipe organ transients vary enormously, some being mainly noise known as a "chiff," and others a faint starting note at some harmonic of the fundamental. Their formation is complex and does not yield readily to analysis. On the other hand, the transients produced in an electronic organ are of a comparatively simple type, and their nature can be analysed mathematically without much difficulty.
To illustrate the formation of a transient, let us assume that a sinusoid from a generator of low internal impedance (as is usual in transistor circuits), and having no d.c. component, is keyed by perfectly clean contacts. If the succeeding circuitry is purely resistive (apart from stray capacitances), the effect at the loudspeaker is a click coincident with the start of the signal, which is itself extremely abrupt. Purely resistive circuitry is not, however, the norm since filters of one sort or another are employed to produce the desired voices. In the case of a flute tone, for example, the key is followed by a resistive network to give correct scaling, and then by an $R C$ filter with a load resistance across its output terminals. The whole arrangement may be approximately represented by the circuit of Fig. 2.

If the input signal is given by $\nu=V \sin (\omega t+\phi)$ then it can be shown that the output signal is :

$$
\begin{aligned}
& v_{0}=\frac{V}{\sqrt{\left(1+\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right)^{2}+\omega^{2} C^{2} R_{-}^{2}}}\left[\begin{array}{c}
\operatorname{R}_{1} R_{2} \\
R_{1}:-R_{2}
\end{array} \text { and } \psi=\tan ^{-1} \omega C R\right.
\end{aligned}
$$

The transient term in this expression will be zero only when the instant of switching on is such that $\varnothing=\psi$, and it will be noted that this is never at the moment when the sinusoid passes through zero. If it is now supposed that C becomes progressively smaller, the rate of decay of the transient will increase and the term outside the square bracket will also increase; in other words as the circuit becomes resistive with residual capacitance the transient takes the form of a large amplitude spike, which is the key click previously mentioned. It can be seen from this that the $R C$ networks designated "click-filters" in some instruments in fact do nothing to remove the transient, but merely change its shape and hence its sound, giving a thud or a pop which is less objectionable to the ear than the click.

Reverting to the flute type $R C$ filter with the long time constant, the input signal is usually of square or sawtooth form containing many harmonics each of which can produce its own transient, giving in theory a very complex effect. In practice however the final output from the filter may be very close to a sine wave, the higher harmonics and their transients being very small and leaving only the transient due to the fundamental to be reckoned with. The approximate analysis above is therefore still applicable to flute tones, though not to reed tones which employ resonant circuit filters, of which the transients though more complex are less objectionable.

The flute tone transient which, as mentioned above, resembles a pop or a thud is more noticeable in the upper and lower than in the middle register. In some instances, specially in the case of stopped diapason tones, the middle register transient is not unlike that produced by some

Fig. 4. Phase shift over the normal operating frequency range of two filter circuits.
organ pipes, but there is this difference; that with a pipe the transient is over before the normal tone reaches full strength, whereas with the electronic circuit the tone and the transient start together and this destroys the illusion to some extent. A similar transient is produced when the key is released, and this can be objectionable in a more or less anechoic building being specially noticeable since there is no pipe organ effect which corresponds to it. If the building has a reasonable reverberation period however this transient is fairly well masked.
It is clearly desirable to use some means of reducing or controlling the keying transients and this implies some form of variable resistance keying. Special variable resistance contacts have ben devised by one American company, and there have been many attempts to use liquid or semi-liquid resistance elements. The most elegant method from the electronics engineer's point of view is some form of controlled static switching using semiconductors, usually diodes. The diode is caused to pass from the non-conducting to the conducting state by variation of the applied bias voltage, which may be made to occur at any desired rate both making and breaking by the use of suitable $R C$ networks. This system has the further advantage that numerous signals may be keyed simultaneously by a single pair of contacts, and both octave and inter-manual coupling is easily provided. The disadvantage of diode switching is that all waveforms other than square are distorted during switching, the effect upon a sawtooth being shown in Fig. 3. This distortion means that the voices of all the stops will be degraded during keying, and unless the time delay is very short this degradation will be audible and a slow break or "sustain" effect will be out of the question. A circuit for the controlled keying of a sawtooth without undue distortion is a more difficult proposition (if considerable complication is to be avoided) and the problem does not yet appear to have ben satisfactorily solved, though investigation is in progress.

The mention of sustain brings up the whole question of artificial reverberation, so popular with the " entertainment" type of organ and so rarely fitted to the church type. It is true that most religious or public buildings have sufficient natural reverberation of their own-some have too much-but now and again one finds a building which, by ill-luck or bad design, is very dead acoustically. In these circumstances an electronic organ might benefit from some judicious artificial reverberation, which could take the form of a slight sustain effect if it were desired to save the expense of the more sophisticated electromechanical unit. The illusion might be heightened by making the sustain progressively longer as the pitch increased, although this method would not work too happily in the case of, say, a pedal reed tone where the higher harmonics should reverberate but the fundamental should not.

SUMMATION OF VOICES

The final stages of an electronic organ, in which the stop filter outputs are summated and amplified, are often responsible for much destruction of realism. This is because in a pipe organ each stop voice has in effect its own output channel, but in the electronic instrument many voices are combined in a single circuit and this can produce curious and unwanted effects. A single example will serve to illustrate this point.

The curves of Fig. 4 show the phase shift (with sine wave input) over the normal operating frequency range of two typical filter circuits, "A" reed tone and "B"
(Continued on page 97)
flute tone. The curve of Fig. 5 shows the angular separation of the two outputs, and it can be seen that over the vital frequency range of 270 to $700 \mathrm{c} / \mathrm{s}$ (roughly from middle $C \boxminus$ to F_{1}) the two signals are more or less antiphase. It follows that if they are of similar amplitude there can be almost complete cancellation of the two fundamentals between these two frequencies. Thus the addition of reed stops to a diapason chorus, though increasing the volume, can produce a change of tonal quality giving a sound which is neither reed nor diapason though reminiscent of both. This effect has frequently been noted by musical critics of electronic organs as a telling point against them.

It would seem from the foregoing that the present practice of dividing the organ output into Swell, Great and Pedal sections, each with its individual amplifier, is in fact less satisfactory than to divide it into Flue and Reed sections with the speakers reasonably well separated. Some extra complication would be introduced by the necessity for the duplication of the expression control (and also the vibrato if this is by phase modulation), but this could be offset by the saving of a power amplifier. If cost were not of primary importance the string tone stops might be improved by being brought out through an independent channel.

A further characteristic of the summing circuits is often the production of thermal noise, due to the high impedance terminations of the filters. This noise can reach quite alarming proportions, and in some current models the fact that the organ is switched on is unpleasantly apparent, and compares unfavourably with the wind noise of the equivalent pipe organ. Some control of the noise is possible if the stops are switched off by earthing the signal rather than by open-circuiting it, but a better method is to terminate the filters by emitter followers and then to combine their outputs. This gives constant loading of the filters with true arithmetic addition of the stop voices no matter how many stops are drawn, and a low impedance output which is quiet and relatively insensitive to outside electrical disturbances. The latter point is often overlooked, and a surprising number of commercial instruments respond sympathetically-and noisily-to thunderstoms, and give a faithful rendering of the ignition systems of passing vehicles.

Of the power amplifiers there is little that needs to be said except that they should be of generous proportions and capable of handling full organ without distortion, bearing in mind the tendency of some organists to augment a composer's chording and to play octaves in the left hand.

Of loudspeakers the great deal that has already been written elsewhere applies to organ outputs also, but it is perhaps worth making the point that better results seem to come from the use of a large number lightly loaded than from two or three heavily loaded. The vibrating area in a pipe organ is after all very large, and it is advisable for the electronics engineer to use a similar technique as far as possible.

In conclusion perhaps a word should be said about reliability, as this is the aspect which appeals strongly to those who pay for the organ as well as those who play it; this is also the point at which the maximum unfairness and discrimination exist between electronic and pipe organs. It is expected that an electronic organ shall be fully operational at all times with practically no maintenance, and there is much adverse criticism if a fault develops more than once or twice a year. Yet a pipe organ normally requires quarterly maintenance and tuning, and even so it is a queston whether five per cent

Fig. 5. Angular separation of the outputs of the two filters of Fig. 4.
of the organs in this country could be said to be in perfect order with all systems going at any particular time.
It therefore behoves the manufacturer of electronic organs to pay great attention to reliability, bearing in mind that a pipe organ is expected to go for upwards of 20 years without a major overhaul. If the electronic job is ready for scrapping after this period-and many of them are-then at least the replacement cost should be no greater than the cost of rebuilding the pipe organ. It would seem however to be possible using all available modern techniques, to produce an electronic instrument which would require the re-tuning of twelve oscillators once a year, and practically no other attention for a decade or so. The life of a transistor, given fair treatment, appears to be between twenty and forty thousand hours, and this is a very long time to play an organ! It is a sad comment on the British electronics industry when a builder of pipe organs can say that he heartily approves of electronic organs, as their unreliability is responsible for a great deal of his business!

In view of the mounting cost of even small pipe organs, and the strange reluctance of modern architects to provide adequate accommodation for an organ in a new church, there ought to be a bright future for the electronic instrument with built-in reliability. It will be a pity if the industry does not rise to the occasion.

Electronic Telephone Exchange

AN electronic telephone exchange installed at Ambergate, Derbyshire, is the first of about fifty similar units to be installed during the next eighteen months, as part of the Post Office programme for modernising the telephone system. Known as the P.O. TXE II, this exchange system has been developed by Ericsson Telephones in co-operation with the Post Office Engineering Department and will be used for all new or replacement exchanges in the capacity range 200 to 2,000 lines.

The key component of this system is the miniature dry reed relay. (Absence of background noise in this system is said to be the result of using these reeds with gold plated contacts sealed in an atmosphere of inert gas.) The reed relay is used as a cross-point switch for speech path switching, and other control functions. The electronic section of the exchange is built up from silicon semiconductors, tin oxide resistors, and ferrite cores for storing the information produced by the calling number generator.

NEW PRODUCTS

equipment

systems

components

V.T.R. SYSTEMS

THE Sony BV $120 \mathrm{E} / 120$ Video Tape Recorder system is a compact design intended for applications in education, laboratories, industry, outside broadcasts, rehearsal of broadcast programmes, etc. The specifications and performance are stated to be compatible with N.A.B. or C.C.I.R. broadcasting requirements. The system consists of a portable v.t.r. (PV-120U/PV-120UE) main equipment for the system; a tv signal stabilizer (TIS-1 / TIS-1E) and a waveform monitor (WFM-1). Solid-state circuitry permits operation on normal a.c. supplies from 110 V to 240 V 50 to $60 \mathrm{c} / \mathrm{s}$. The BV-120 system is for recording/ reproducing E.I.A. ($60 \mathrm{c} / \mathrm{s}$ field frequency 525 lines) standard signals, while the $\mathrm{BV}-120 \mathrm{E}(50 \mathrm{c} / \mathrm{s}$ field frequency 625 lines) is for C.C.I.R. signals. Two audio channels are provided with audio dubbing possible on one channel. There are variable speed slow motion ($1 / 5$ to zero of normal speed) in both forward and reverse directions, and stopped picture facilities. Vertical phase lock is available to synchronize the phase of the reproduced vertical-sync with a reference signal. Operating functions-play, record, fast forward and rewind, stop, slow and still can be initiated by a remote control unit (PVR120). Normal tape

speed for the BV-120 system is $4.25 \mathrm{in} / \mathrm{s}$ ($10.79 \mathrm{~cm} / \mathrm{sec}$), and for the BV-120E system it is $4.94 \mathrm{in} / \mathrm{s}(12.56 \mathrm{~cm} / \mathrm{sec})$. Maximum recording time for the BV120 is 90 minutes and for the BV-120E is 80 minutes. Both systems use SONY video tape of $2 \mathrm{in}(50.8 \mathrm{~mm}$) width, type V-21. The following specifications are common to the two systems: video input composite signal of sync negative 0.4 to 1.4 V pk-to-pk, 75Ω unbalanced; sync input, negative sync signal or vertical drive pulse, 4 V p. to $\mathrm{p}, 75 \Omega$ unbalanced; video output, composite signal of sync negative 1 V p. to p., 75Ω unbalanced; sync output, negative composite sync signal 4 V p. to p., 75Ω unbalanced. Horizontal jitter is less than $\pm 0.15 \mu \mathrm{~s}$, and the video signal to noise ratio is better than 40 dB . Audio signal to noise ratio is better than 40 dB on channel 1 and better than 36 dB on channel 2. Wow and flutter is less than $0.3 \% \mathrm{rms}$. Audio frequency range on the BV-120 for channel 1 is $50 \mathrm{c} / \mathrm{s}$ to $8 \mathrm{kc} / \mathrm{s}$, and channel $2,50 \mathrm{c} / \mathrm{s}$ to $7 \mathrm{kc} / \mathrm{s}$; on BV-120E channel 1 it is $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$, and on channel $2,50 \mathrm{c} / \mathrm{s}$ to $8.5 \mathrm{kc} / \mathrm{s}$.

The television signal integrated stabilizer unit enables the head drum motor to synchronize to the incoming vertical sync and this sync is recorded on the control track; on replay, the head drum motor is locked to the control track. A servo system with suitable clamping minimizes jitter in the reproduced signal. A recorder without this unit operates locked to the vertical sync.

The waveform monitor is available for observing input/output, and servo signals. To be marketed in the U.K. by E.M.I. Electronics Ltd., Hayes, Middlesex.

WW 301 for further details

E.E.G. Calibration Unit

FOR fault finding and routine maintenance of electro-encephalographic (e.e.g.) appliances Triumph Electronics Ltd. have designed a low frequency, inexpensive ($£ 265 \mathrm{~s} 0 \mathrm{~d}$) oscillator with the following specifications. The balanced output gives a true bipolar signal similar to that obtained from two e.e.g. electrodes with a ground connection elsewhere on the patient. A calibrated attenuator switches down to $10 \mu \mathrm{~V}$, essential for low level checks. An unbalanced (multiplying factor 1000) output gives an instantaneous indication of the true discrimination factor at any e.e.g. frequency. It also provides a high level signal (up to 1.0 V) referred to ground, which is useful for fault finding in the later stages of an amplifier. A balanced square wave output applied to two electrode leads can be used as a continuous calibration signal to replace the continuous operation of the "Calibrate" key when setting up the gain levels of the channels. A sine wave output can be used to check the effect of the time constant and h.f. filter circuits at various frequencies. A compact, selfcontained, battery operated unit enables the operator to place the calibrator in its most convenient position (e.g. behind the pillow on the e.e.g. couch) without any fear of introducing mains frequency interference due to ground loops, etc. It can be used in series with the patient in perfect safety. The output range available (balanced) is 10 to $500 \mu \mathrm{~V}, 1 \mathrm{mV}$, and the unbalanced output is 10 to $500 \mathrm{~m}, 1 \mathrm{~V}$. The sine wave distortion is less than 5% and the square wave function has a rise time of less than $10!\mathrm{s}$. The frequency range is $1 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{c} / \mathrm{s}$-variable. Battery operated by PP6 or equivalents gives 50 hours continuous use. Triumph Electronics Lid., 118 Brighton Road, Purley, Surrey. ww 302 forf further detaits

VARACTORS

HIGH-POWER multiplier varactors from Microwave Associates Ltd., Cradock Road, Luton, Beds., are being offered in the MA4960 series, covering the frequency range 100 to $250 \mathrm{Mc} / \mathrm{s}$ at 30 W to $25 \mathrm{Gc} / \mathrm{s}$ at 0.050 W . One particular example of these silicon epitaxial diffused junction devices is the MA4964, which operates in the 2 to $3 \mathrm{Gc} / \mathrm{s}$ range. This device has an output power of 5 W and a breakdown voltage at $10 \mu \mathrm{~A}$ minimum of 70 V . The junction capacitance at $1 \mathrm{Mc} / \mathrm{s}$ is $3 \mathrm{pF}(\mathrm{min}), 5 \mathrm{pF}$ (max). The storage and operating temperature range for the MA4964 is $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$. Cut-off frequency is $50 \mathrm{Gc} / \mathrm{s}$.
WW 303 for further details

THIN FILM CIRCUITS

THE Plessey TFC thin film resistor networks are intended for passive circuirs in commercial equipments which require tolerances ranging from 1% to 10% at temperature coefficients of 50 p.p.m. $/ \mathrm{deg} \mathrm{C}$. The evaporation technique deposits the resistor and interconnection patterns on to a glass substrate. The assembly is in a container designed for mounting on printed circuit boards, with the connections arranged on the 0.1 in grid. TFC 1002 (available as resistor or resistor and capacitor networks) has, however, been designed for either passive or active circuits over a wide range of environments. With a temperature coefficient of 10 p.p.m./ deg C resistor tolerances of 0.1% are available. The complete package is a ten-lead hermetic encapsulation with glass to metal seals. Resistor Division, Plessey Components Group, Cheney Manor, Swindon, Wiltshire.
WW 304 for further details

Rationalized Transistor Range

THE Silind range of silicon transistors by Newmarket Transistors Ltd. is an attempt to rationalize the thousands of transistor types which are available with JEDEC, Pro-Electron, and house code specifications. These specifications, say Newmarket, have given rise to too many transistors, with marginal differences which often have little or no influence in a given circuit. The 12 silicon devices in the Silind range have been chosen to cover the majority of conventional circuit requirements in the low-tomedium power industrial field from d.c. to $100 \mathrm{Mc} / \mathrm{s}$. They will be supplied in 0.5 in , three-lead (v.h.f. four-lead) standard TO-18 welded metal encapsulations, gold plated for humidity requirements. TO- 5 cans are available for some power dissipation requirements. Ten of the devices are n-p-n types. Maximum and minimum samples are available. Newmarket Transistors Ltd., Exning Road, Newmarket, Suffolk.
ww 305 for further details

ALUMINIUM KNOBS

SOLID, turned aluminium knobs are available in a basic range of five sizes from A. F. Bulgin \& Co. Ltd., Bye-Pass Road, Barking, Essex. These circular knobs are 0.5 in $(12.7 \mathrm{~mm}) \mathrm{high}$, and vary in diameter from $1^{\frac{1}{6}}$ in $(36.5 \mathrm{~mm})$ to $\frac{3}{8} \mathrm{in}$ $(9.5 \mathrm{~mm})$. There are two additional knobs in matching design with a height of $\frac{7}{8}$ in $(22.2 \mathrm{~mm})$. All models have smooth polished sides, turned spin finished top faces, are fitted with Allen set-screws as standard, and have a component nut recess in the base. Two additional models possess "skirts" and finely ribbed sides for positive grip.

The integral skirts are normally supplied plain, but can be engraved to individual requirements. These knobs are intended for electrically dead or earthed shafts.

WW 306 for further details

Light Craft Radar

A THREE-UNIT radar for small craft such as tugs, fishing vessels and launches, is being manufactured by Decca Radar Ltd. and was recently seen at the International Boat Show, Earls Court. This radar equipment, the Decca 101 , is designed to meet in full the radar performance standards agreed by the 1960 Conference on the Safety of Life at Sea (SOLAS). The scanner unit has a 3 ft wide aerial, rotating at 36 revolutions per minute, and a transceiver with a peak power of 3 kW . A single cable runs from the scanner unit to the display unit, which houses a 7 -in diameter c.r.t. Range rings on the screen, spaced at equal intervals, represent $\frac{1}{2}$ or 2 miles, depending on the range in use. The display unit carries the operating controls for the system, and these are identified by a series of conventional symbols.

Multilingual explanations of each control function in operational sequence are on the back of the display cover. Mountings for buikhead, deckhead, or table top can be provided for the display unit. The power unit is a solid-state static inverter supply, with good stabilization and freedom from mains transients. Silicon transistors are used in the display unit and transceiver.

The Decca 101 has a maximum range of 15 nautical miles, and can also be set to cover $\frac{1}{2}, 1 \frac{1}{2}$, or 5 miles. It is suitable for $12,24,32,110,220 \mathrm{~V}$ d.c. and 115 or 230 V a.c. $50 / 60 \mathrm{c} / \mathrm{s}$ single-phase operation. A typical installation will cost about £830. Decca Radar Ltd., Decca House, Albert Embankment, London, S.E.1.

WW 307 for further details

MICROWAVE DIODES

FAST switching diodes for use at microwave frequencies are available from Sylvania International, 21, rue du Rhone, Geneva, Switzerland. The D5720 series of p-i-n diodes has a

Zener Diodes

ONE watt Zener diodes in the Zecon range introduced by International Rectifier Co., Hurst Green, Oxted, Surrey, are available in voltages from 3.9 V to 30 V at $\pm 10 \%$ tolerance. These are wire ended Zeners (VASCA outline SO-16, JEDEC DO3) with a hermetic glass-to-metal seal.

WW 308 for further detalls
breakdown voltage of 200 V and a switching time as low as 10 ns . An isolation of 20 dB is attainable at C band frequericies in a shunt tuned configuration. It is stated that stability over a long life is good. V_{B} at $10 \mu \mathrm{~A}$ for the 5720 is 200 V ; for the 5720 A and B it is also $200 \mathrm{~V} . \mathrm{C}_{T}$ maximum at -25 V at $1 \mathrm{Mc} / \mathrm{s}$ for the 5720 is 0.1 pF ; for the 5720 A it is 0.2 pF , and for the 5720 B it is 0.35 pF . R_{t} maximum for all three devices in this series is 400° per watts. These diodes operate as a voltage dependent variable resistance when biased in the forward direction, and as a relatively small and nearly constant capacitance when reverse biased.
WW 309 for further details

Equi-tempered Scale Generator

THE solid-state musical scale generator by R. Penny, 58, Sandalwood Avenue, Chertsey, Surrey will produce any one of a series of notes that are precisely related to one another in the form of an equi-tempered scale. The range of the instrument is from middle C to second octave B, and any note may be held indefinitely. By means of a single tune control, the whole scale may be varied in pitch, while preserving the equi-tempered relationship, thus enabling a scale to be obtained at any pitch. The generator may be used for tuning instruments, such as pianos and harpsichords, without reference to fourth, fifth or other intervals as only fundamental (unison or octave) comparison need be made. Adjustment is made until there are no beats between the instrument and the generator. The use of fundamentals only in the comparison helps tuning work in noisy environments, especially as the generator emits a continuous note of adjustable loudness, and it is of great benefit when working with harps which have little harmonic content. The equi-tempered scale generator is provided with only four controls. A combined on/off and volume control provides precise control of loudness. A twelve-position switch selects the note to be produced and a separate octave switch raises all the notes by exactly an

Digital Voltmeter

A DIGITAL voltmeter model 250 by Sapphire Research \& Electronics provides both d.c. and a.c. ranges from 1 kV and 500 V r.m.s. respectively, and in addition a.c. and d.c. current ranges. It can resolve voltage differences as small as $200 \mu \mathrm{~V}$. From $10 \mathrm{c} / \mathrm{s}$ to $60 \mathrm{kc} / \mathrm{s}$ the standard of accuracy is 0.25% full scale or the a.c. voltage ranges. The accuracy on the d.c. voltage ranges is stated to be 0.1% full scale. The Company's sales office is at Rainham, Kent.

```
WW 311 for further details
```


octave. The tune control is also used to set the base note accurately to the desired pitch. Any note may be used as a base note, and once set, a true equitempered scale is automatically obtained relative to that base note. The scale is based nominally on A440 with range of adjustment from 430 to 450 , and it is usual to set the scale to a good A440 fork if a scale at British Standard pitch is required. The scale is accurate, relative to the base note to within $\pm 0.03 \%$ which is about one beat in eight seconds at A440. The generator will function over the temperature range $40^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right)$ to $80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$ with no loss of accuracy. The base note may be easily set to a fork to within $\pm 0.02 \%$ thus giving absolute pitch to within $\pm 0.05 \%$. Another version of this generator can be set to any temperament required such as equal, just, meantone and cyclic.

WW 310 for further details

Batch Counter

AN AUTOMATIC batch counter comprising four ELMA single decade readout counters and other modules by Kadiatron, 7, Sheen Park, Richmond, Surrey, can be preset to give a relay operation at any number. Then it will either stay set or reset automatically to zero and recommencer counting-giving a relay operation at the end of each ratch. As long as there is a minimum pulse length of 28 ms and a minimum rulse interval of 12 ms this counter will operate from sources such as micro switches, etc. The contacts for external operation have a rating of 50 W .
WW 312 for further details

WIDE RANGE MICROWAVE GENERATOR

CLAIMED to be the widest range microwave signal generator, the 6459 by the Sanders Division of Marconi Instruments Ltd. has the following characteristics. Frequency range, 3.5 to $12.0 \mathrm{Gc} / \mathrm{s}$, direct reading frequency dial, direct reading attenuator, calibrated in voltage and dBm , high stability and accuracy, internally generated f.m., c.w., pulses or square wave modulation, optional conversion to rack mounting. The instrument has facilities for the application of external modulations. The pulse repetition rate is variable from 40 to 4,000 p.p.s. and the pulse width from 0.5 to $10 \mu \mathrm{~s}$. Synchronizing signals are simultaneous with the r.f. pulse, or between 3 and $300 \mu \mathrm{~s}$ in advance of the r.f. pulse. The internal pulse generators can also be synchronized by means of external signals.
The signal generator incorporates a plug-in klystron oscillator in an external coaxial line cavity. Frequency is determined by the position of a movable noncontacting piston, which is coupled to the frequency scale, and an automatic tracking network, and the output level is read in dBm and $\mu \mathrm{V}$ from the directly calibrated, internal, high precision attenuator. Temperature compensation, applied to the power meter bridge, ensures virtual freedom from the effects of ambient temperature changes. The power output is (a) direct-an insertion probe couples out power to 80 mW , max. (b) indirect-via attenuators 0.223 V to $0.1 \mu \mathrm{~V}(0$ to $-127 \mathrm{dBm})$ between $4.5 \mathrm{Gc} / \mathrm{s}$ to $11.0 \mathrm{Gc} / \mathrm{s}$ and $-6 \mathrm{dRm} \mathrm{m}-107 \mathrm{dBm}$ between 3.5 and
$4.5 \mathrm{Gc} / \mathrm{s}$. For the measurement of receiver sensitivity, selectivity or rejection signal-to-noise ratio, aerial gain and transmission line characteristics, in addition to numerous specialized applications, the 6459 is a suitable instrument for single band operation in the 3.5 to $12.0 \mathrm{Gc} / \mathrm{s}$ frequency range.

WW 313 for further details

Calibration Standard

CALIBRATION of analogue and digital voltmeters, ammeters, and wattmeters can be carried out with the Model 300 Instrument Calibration Standard by Radio Frequency Laboratories Inc., U.S.A. A precision source of a.c./d.c. voltage and current, it has an accuracy of 0.1% d.c. and 0.15% a.c. Voltages available range from 0.01 mV to 1 kV a.c. and d.c. Six-digit readout is provided for all d.c. functions and also for a.c. volts and milliamperes. There is a five-digit display for the a.c. ampere and millivolt ranges. The sinewave oscillator and power amplifier permits calibration from $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{kc} / \mathrm{s}$ to be carried out with less than 0.05% distortion. The internal reference source has a stability of better than $\pm 0.01 \%$ per year. Logic circuits protect this solid-state instrument against overloads and abuse. Sole U.K. agents are Wessex Electronics Ltd., Royal London Buildings, Baldwin Street, Bristol 1.
ww 314 ior further details

REED SWITCH

A DRY reed switch with a maximum d.c. contact rating of $3 W$ is produced by Flight Refuelling Industrial Electronics, Flight Refuelling Ltd., Wimborne, Dorset. Maximum voltage (switched) across the rhodium plated contacts is 28 V d.c. and maximum permissible current is 100 mA d.c. The overall length including leads is 2.25 in .
ww 315 for turther details

Waveform Generator

THE "Wavetek" voltage controlled generator by General Test Instruments Ltd., Gloucester Trading Estate, Hucclecote, Gloucester, produces ramp, sine, square, triangle waveforms and sync pulses simultaneously. The dial spread allows a 20:1 frequency sweep, the total frequency range being $0.0015 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$. Further claimed performance figures are : dial accuracy 0.5% of reading, amplitude change with frequency $<0.1 \mathrm{~dB}$; amplitude stability 0.1% of maximum pk-to-pk values for 30 minutes short term and sine wave distortion $<0.5 \%$.
WW 316 for further details

LASERS

RUBY lasers announced by System Computers Ltd., of Fossway, Newcastle-upon-Tyne 6, provide, in three types, R1, R5 and R10, outputs up to 80 joules. R1 gives a low output from a 2 -in dry ruby element and is capable of cutting or welding very fine wires, thus making it useful for general demonstration and research purposes. R5 and R10 give 25 and 80 joules respectively from $6 \frac{1}{2}$-in long rubies. Besides these lasers five helium-neon types are available.
WW 317 for further details

Rotary Wafer Switches

MANUFACTURED by A.B. Metal Products Ltd., 119/127, Marylebone Road, London, N.W.1, is the range of rotary wafer switches. MINI-12 (12 positions), MINI-24 (24 positions) and, PY (22 clips/12 positions). The newly designed index mechanism employs a sintered iron index wheel and hardened detent pin to give reliable performance. The indexing arm can be fitted to one or both sides of the index wheel, which, when coupled with a variety of tension springs, can provide an extremely wide range of spindle operating torques. Contact clips and rotor blades are made of good quality non-ferrous spring material and are heavily silver plated, giving the low contact resistance of 4 to 6 milliohms.

Moulded stators and rotors offer a resistance of $50,000 \mathrm{M} \Omega$. Wafers are of self spacing design with full depth castellations, which offer complete support to the clips. The proof voltage at normal temperature and pressure is 2 kV between electrical contacts and normally earthed components; between electrical contacts insulated from each other it is 1 kV . Current switching capacity (resistive loads) is 50 mA at 300 V a.c./d.c. or 500 mA at 30 V a.c./d.c. This range is intended for both military and professional applications.
WW 318 for further details

Low-resonance Speaker.

A $6 \frac{1}{2}-$ in circular cone loudspeaker is available from the Plessey Components Group. The speaker, used in conjunction with a Plessey 3 各in "tweeter" and in a suitable enclosure, is said to give a very high quality of sound reproduction. The frequency response of the unit is stated to be flat from 40 to $1 \mathrm{kc} / \mathrm{s}$ when correctly loaded. The low nominal resonance of less than $60 \mathrm{c} / \mathrm{s}$ is achieved by a flexible bellows-type cone surround of plasticised linen. The sensitivity of this speaker results from the combination of a 10,000 line ferrite magnet with an exceptionally light, stiff
cone assembly. The 1 -in voice coil, which is dustproofed, has beryllium copper flexible leads that will not fracture with large cone excursions. Output is 12 W . Standard voice coil impedances are 8Ω and 15Ω. The recommended enclosure is $14 \mathrm{in} \times 9 \mathrm{in} \times 9 \mathrm{in}$ or larger, with internal damping of longfibre wool. This $6 \frac{1}{2}$ in speaker is available from the Plessey Acoustics Division, New Lane, Havant, Hants. The same Division can also supply the matching $3 \frac{3}{3}$ in " tweeter" to extend the frequency range up to $20 \mathrm{kc} / \mathrm{s}$.
WW 319 for further detalis

Portable Wattmeter

A PORTABLE peak and average power wattmeter developed by Bird Electronic.

Corporation is designed to measure almost any type of r.f. transmission in 50Ω coaxial systems. This instrument, available from Livingston Laboratories, North Watford, Herts., makes use of an integrated circuit amplifier together with other solid state circuitry. Plug-in elements enable power ranges to be selected for given frequency bands. Average power measurements over the frequency range $450 \mathrm{kc} / \mathrm{s}$ to $2.3 \mathrm{Gc} / \mathrm{s}$ can be made from 1 W to 10 W using suitable elements. Peak power can be read over the frequency range $25 \mathrm{Mc} / \mathrm{s}$ to 1.26 Gc / s. The average power plug-in elements used in a previous instrument by Bird, the model 43 Thruline wattmeter, can be used in this new instrument.
ww 320 for further details

Decade Counter Module

DESIGNATED DCM703 a decade counter module by Quarndon Electronics Ltd., Slack Lane, Derby, utilizes four saturating binary flip-flops with feedback to provide a 1-2-4-8 binary coded decimal counter. Displayed by a numerical indicator tube the b.c.d. outputs are also available at the 32 -way 0.1 in. pitch conector. Input requirements over a frequency band of $0-1 \mathrm{Mc} / \mathrm{s}$ are $3 \mathrm{~V}-5.5 \mathrm{~V}$ negative pulse amplitude, 300 ns minimum pulse width and 200 ns maximum risetime. Noise rejection is 1.5 V . The power requirements are $+6 \mathrm{~V} \pm 10 \%, 60 \mathrm{~mA} ;-6 \mathrm{~V} \pm 10 \%$, $3 \mathrm{~mA} ;+200 \mathrm{~V} \pm 20 \%, 2 \mathrm{~mA}$. Output level voltages are +6 V and 0 V with

rise time 100 ns and propagation delay 150 ns .

WW 321 for further details

Precision Potentiometers

RESISTANCE values from 50Ω to $50 \mathrm{k} \Omega$ per quadrant over the temperature range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ are available in the Ferranti 11HL precision wire wound potentiometer. Sine/ cosine functions can be provided, on single and multi-ganged units up to six gangs. Precious metal alloys are used for all wipers, slip rings, and most windings for maximum resolution and low noise. Taps are welded to single turns. Torque is 3 gm cm per gang, and law conformity better than $\pm 10 \%$ peak to peak. Ferranti Ltd., Thornybank, Dalkeith, Midlothian.

WW 322 for further details

LOGIC MODULES

MACHINE tool and process engineering have been the subject of automatic control for many years now, and contributing to this field is the E.M.A. range of RT (resistor-transistor) plugin logic modules. Available singly or in custom designed systems, they include Emablocs (logic), Emamems (memory), fan-out multipliers, Einary units, permanent memory units, and 5A thyristors. The Emabloc functions as a basic AND, OR, NAND or NOR gate, and it has a fan-in of 5 . The alternative fan-outs can be 6 Emablocs, 6 double Emablocs, 6 Emamems, 1 fan-out multiplier, 1 power amplifier, 2 binary units, or two timers etc. The switching speed is $1 \mathrm{kc} / \mathrm{s}$. The supply is a negative 24 V d.c. $\pm 5 \%$ at 5 mA , and a positive d.c.
supply of $24 \mathrm{~V} \pm 5 \%$ at 0.25 mA . Electronic Motivated Automation Ltd., 88-90 Pall Mall, Leigh-on-Sea, Essex.
ww 323 for further details

IMPEDANCE BRIDGE

THE impedance bridge Type 250DE, weighing 12 lb , has been designed for field use. It is capable of measuring a wide range of resistance, capacitance and inductance values with accuracies of $0.1 \%, 0.2 \%$ and 0.3% respectively. A greater accuracy is claimed for comparative measurements. The solid-state circuitry, which is operated from four 1.5 V cells, consists of an a.c. generator and an a.c.-d.c. null detector. A feature of this instrument is its patented Dekadial coaxial main dial which provides easy adjustment and readability. Developed by Electro Scientific Industries of the U.S., the portable bridge is available from Livingston Electronics Ltd. of Watford, Herts.
WW 324 for further details

Semi-rigid Cable

A SEMI-RIGID coaxial cable designed for 50Ω operation uses a solid drawn tubular outer conductor. Claimed to be completely noise free at all signal levels, this cable, by the R.F. Components Division of Sealectro Ltd., has attenuation characteristics of $3.42 \mathrm{~dB} / 100 \mathrm{ft}$ at $100 \mathrm{Mc} / \mathrm{s}$ and $44.30 \mathrm{~dB} / 100 \mathrm{ft}$ at 10 Gc / s. Cable assemblies can be tailored to customers' specifications, a range of subminiature r.f. connectors being also available from the makers.
Ww 325 for further details

Matched Thermistor Pairs

THERMISTORS by Radon Industrial Electronics Co. Ltd., designated G-112, G-126 and G-128, are specifically designed for use in gas chromatographic equipment and other thermal conductivity gas analysis instruments. These thermistors are matched pairs with each head mounted on a hermetically sealed stem. For maximum sensitivity, the higher resistance units should be used
at higher ambient temperatures. The resistance characteristics for the G-112 are $23.2 \mathrm{k} \Omega$ at $0^{\circ} \mathrm{C}, 8 \mathrm{k} \Omega \pm 20 \%$ at $25^{\circ} \mathrm{C}$ and $3.2 \mathrm{k} \Omega$ at $50^{\circ} \mathrm{C}$. The temperature coefficient at $25^{\circ} \mathrm{C}$ is -3.9% per deg C; the power rating is 45 mW in air, 140 mW in helium. The maximum operating temperature is $300^{\circ} \mathrm{C}$ at a resistance of $25!2$.
WW 326 for further details

HIGH VOLTAGE TRANSISTORS

A RANGE of General Electric (U.S.A.) high-voltage silicon n-p-n transistors 2N4054-2N4057 made available in the U.K. by Jermyn Industries, Sevenoaks, Kent, have a total dissipation each, of 4 W at $70^{\circ} \mathrm{C}$. The $V_{C E n}$ values available range from 150 to 300 V and the transistors have a continuous current rating of 100 mA . At an I_{C} of 50 mA their forward current transfer ratio is $\geqslant 50$. They are intended to be used in Class A audio output stages being able to deliver I watt to a loudspeaker, although they can be used in high voltage video amplifiers. In small quantities they cost 16s 11d for the 2 N 4054 , 15 s 6 d for the $2 \mathrm{~N} 4055,10 \mathrm{~s} 6 \mathrm{~d}$ for the 2 N 4056 and 11s 8d for the 2N4057.
ww 327 for further details

Disc Capacitors

CERAMIC disc capacitors in the Erie 801 series have a finished diameter of 0.36 in . At a working voltage of 500 V d.c. the 801 series Ceramicon is available in twenty-four individual ceramic bodies for different applications. The capacitance range is 6 pF to $7,000 \mathrm{pF}$ and $10,000 \mathrm{pF}$ at 100 V d.c. working. The temperature range is -55 to $+85^{\circ} \mathrm{C}$, and the 801 series has been submitted to) a flash test of $1,500 \mathrm{~V}$ d.c. Tolerances vary from $\pm 5 \%$ to $-20+30 \%$ depending upon the dielectric employed and the value of the capacitor. The 801 series is available in conventional wire termination or "pluggable" for printed circuits.

WW 328 for further details

INFORMATION SERVICE FOR PROFESSIONAL READERS

To expedite requests for further information on products appearing in the editorial and advertisement pages of Wireless World each month, a sheet of reader service cards is included in this issue. The cards will be found between advertisement pages 16 and 19.

We invite professional readers to make use of these cards for all inquiries dealing with specific products. Many edicorial items and all advertisements are coded with a number, prefixed by WW, and it is then necessary only to enter the numbers on the card.

Postage is free in the U.K. but cards must be stamped if posted overseas. This service will enable professional readers to obtain the additional information they require quickly and easily.

THE HOUSE OF BULGIN

AT YOUR SERVICE

A SMALL SELECTION FROM OUR RANGE OF OVER 650 INSTRUMENT CONTROL KNOBS

quality is maintained by frequent testing and strict inspection.
Good desigm, sound construction and superb finish are the basic features built into all Bulgin Instrument Knobs and every model will enhance the appearance of any equipment on which it is used. Some of the knob styles and types are illustrated above but for full illustrated details send for our comprehensive leaflet number 1500/C.

OVERSEAS CONFERENCES AND EXHIBITIONS

Latest information on events abroad during the next six months, is given below. Further details are available from the addresses in parentheses.
Féb. 15-17 PhiladelphiaSolid-state Circuits Conference(L. Winner, 152 W. 42 nd St., New York, N.Y. 10036)
Mar. 1-3 Washington
Particle Accelerator Conference(I.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)
Mar. 5-14 Leipzig Spring Fair(Leipziger Messcamf, Post Box 329, Leipzig)
Mar. 9-14
Festival du Son(S.I.E.R.E., 16 rue de Presles, Paris 15e)
Mar. 20-24 New York
I.E.E.E. International Convention \& Exhibition(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)
Mar. 22-24New YorkSymposium on Modern Optics(Polytechnic Inst. of Brooklyn, 333 Jay St., Brooklyn, N.Y.11201)
Apr. 5-7Washington
International Magnetics Conference
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)
Apr. 5-10Electronic Components \& Audio Equipment Shows(F.N.I.E., 16 rue de Presles, Paris 15e)
Apr. 10-15Electronics and Space Conference(F.N.I.E., 16 rue de Presles, Paris $15 e$)
Apr. $1+-21$
Mesucora-Measurement \& Automation Exhibition (Mesucora, 40 rue du Coliséc, Paris 8)
Apr. 17-19 Bad NauhcimSemiconductors, Metals \& Magnetics(Deutsche Physikalische Gesellschaft, 645 Hanau Heraeusstr12-14)
Apr. 18-20Atlantic City
Joint Computer Conference
(I.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)
Apr. 19-22Bad Nauhcim(Dr.-Ing. H. H. Burghoff, VDE-Haus, Stresemann Allee 21,6 Frankfurt/Main 70)
Apr. 24-26Atlantic CityFrequency Control Symposium(M. F. Timm, Electronic Components Lab., U.S. ArmyElectronics Command, Fort Monmouth, N.J. 07703)
Apr. 29-May 7 Hanover
Hanover Fair
(Schenkers Ltd., 13 Finshury Sq., London, E.C.2)
May 3-5 WashingtonElectronic Components Conference(Electronic Industries Ass., 2001 Eyc St., N.W., Washington,D.C. 20006)
May 3-5Palo Alto
Hum Factors in Electronics(I.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)
May 8-11Boston
Microwave Symposium(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)
May 16-18 San Francisco
(L. Winner, 152 W. 42nd St., New York, N.Y. 10036)
May 18-19West LafayetteSymposium on Circuit Theory(I.E.E.E., 345 E. $47 \mathrm{th} \mathrm{St.} ,\mathrm{New} \mathrm{York}, \mathrm{N.Y}. \mathrm{10017)}$
May 22-25OttawaU.R.S.I. Spring Meeting(R. S. Rettle, National Res. Council, Ottawa 2, Ontario)
May 22-26MontreuxTelevision Symposium \& Exhibition(Secretariat, Casc-Box 97, 1820 Montreux)
May 29-June 2 Montreal(R. H. Tanner, Eng'g Inst. of Canada, 2050 Mansfield St.,Montreal, Que.)
June 6-9 Washington
Laser Engineering \& Applications(I.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)
June 12-14 Minncapolis
International Conference on Communications

$$
\text { (I.E.E.E., } 345 \text { E. 47th St., New York, N.Y. 10017) }
$$

June 25-28 New YorkConsumer Electronics Show 2001 Eye St., N.W., Washington,
(Electronic Industries Assoc., 200 ,D.C. 20006)June 28-30PhiladelphiaJoint Automatic Control Conference(L. Winner, 152 W. 42 nd St., New York, N.Y. 10036)
July 3-8WarsawIMEKO-International Measurement Congress(Society of Instrument Technology, 20 Peel St., London, W.8)
July 3-11 Warsaw
IMIS-International Measurements \& Instruments Show(IMIS, Muzeum 「echniki, Palac Kultury i Nauki, Warsaw)
July 10-I 4ColumbusNuclear and Space Radiation Effects(I.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)
July 18-20 Washington(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)
U.K. CONFERENCES \& EXHIBITIONSAdditions to the list published on $p .27$ of the fanuary issue.Further details can be obtained from the addresses in parentheses.
Mar. 1-2 Savoy Place, London
Colour Cameras and Colour TV Production Techniques
(I.E.E., Savoy Pl., London, W.C.2, and R
168 Shaftesbury Ave., London, W.C.2)
May 2-4 Eastbourne
Integrated Circuits Conference
(I.E.E., Savoy Pl., London, W.C.2)
Nov. 21-23 Savoy Place, London(I.E.E., Savoy Pl., London, W.C.2)

'don't monkey with success'

That's what they told us when we wanted to glamourize the Avometer's looks to match its modern-as-tomorrow internal circuitry and meter movement. 'Avometer', they told us, is the household word for a highsensitivity, accurate and super-rugged multirange meter. You, they told us, like the way Avometers handle, know you can trust their performance, have a genuine affection for them. OK, you win. Get your Model 8 Mk. III (illustrated) or Model 9 Mk . II (with International scales and
 symbols) from your local supplier or Avo Ltd., Avocet House, Dover, Kent. Telephone Dover 2626. Telex 96283.

The Perfect Combination

 AM/FM STEREOPHONIC FM TUNER

GOODMANS INDUSTRIES proudly announce the forthcoming introduction of their STEREOMAX tuner, a fitting partner for the already famous MAXAMP 30 Stereophonic Amplifier.
The STEREOMAX has been designed and built to the same exceptionally high standard as the MAXAMP 30. There is no other tuner available combining such sophistication of specification and elegant compactness. STEREOMAX will be exhibited and demonstrated at the London Audio Fair, 30th March - 2nd April, and first supplies will be available at that time.

- A.M. and F.M. and STEREOPHONIC F.M.
(Decoder optional)
- All Silicon Transistorised (18 transistors +18 diodes)
- Same size and style as Maxamp 30
($10 \frac{\frac{1}{2}^{\prime \prime}}{} \times 5 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{4}^{17}$ deep)
- Self-powered (Stabilised H.T.)
- Separate tuning controls for A.M. and F.M.
- Tuning meter for A.M. and F.M.
- Automatic Frequency Control, switched.
- Muted Tuning Facility, switched.
- Local/Distant reception switch.
- Stereo reception indicator light.
- F.M. Chassis silver plated.

SPECIFICATION

A.M. Tuning Range: $550-1650 \mathrm{kHz}(\mathrm{kc} / \mathrm{s})$

Sensitivity: 5μ volts
Distortion: Less than 1.5% for 30% modulation
Selectivity: -30 db at 9 kHz
F.M. Tuning Range: $87.5-108 \mathrm{MHz}$ (Mc/s)

Sensitivity: 2μ volts for 20 db quieting (I H.F.M.) Discriminator Bandwidth: 500 kHz (peak to peak) Distortion: Less than 1% at 75 kHz deviation A.F.C.: $\pm 100 \mathrm{kHz}$

Capture Ratio: 5 db
Stereo Separation: 30db
GENERAL Polished wood housing (Teak or Walnut finish)
"Danish Silver" control panel
Dimensions: $10 \frac{1^{\prime \prime}}{} \times 5 \frac{1}{2}{ }^{\prime \prime} \times 7 \frac{1}{4}^{\prime \prime}$ deep
Mains Supply: $110: 200-250$ V, A.C

GOODMANS HIGH FIDELITY

for High Fidelity listening

The illustrations show the effective harmony of the styling of the STEREOMAX and MAXAMP 30, which is equalled by their performance. (Naturally, either instrument can be used with other apparatus of comparable quality, if so desired).

The polished wood housings of both STEREOMAX and MAXAMP 30 are easily removed for flush panel mounting, as shown in the top right hand sketch.

The MAXAMP 30 has been acclaimed by critics all over the world and is unrivalled anywhere. Read what the critics say. Send for your free copy of the Maxamp Review leaflet and fully illustrated brochures on both the Maxamp 30 and Stereomax.
$15+15$ WATTS • SILICON SOLID STATE • INTEGRATED PRE-AMPLIFIER • NEGLIGIBLE DISTORTION • POLISHED WOOD CASE $\cdot 10 \frac{1}{2}^{\prime \prime} \times 5 \frac{1}{2}^{\prime \prime} \times 7 \frac{1}{4}^{\prime \prime}$ deep.

PRICE: £49.10.0,

TRANSISTORISED STEREOPHONIC AMPLIFIER

GOODMANS INDUSTRIES AXIOM WORKS • WEMBLEY • MIDDX • Tel: WEMbley 1200
A Division of Radio Rentaset Products Ltd.

Feathkit

Top Performance at rock-bottom prices

 with money-saving Heathkit Instrument Kits.The construction manual provided with the kit ensures successful assembly.

deep. Net weight 231 b .

Kit. $£ 35.17 .6$ Assembled $£ 45.15 .0$

5in. Flat-face GENERAL PURPOSE OSCILLOSCOPE Model 10-12U

An outstanding as cillos cope

 "Y " sensitivity 10 mV . r.m.s. per cm . as I kc/s. Bandwidth $3 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Frequency compensated input attenuator XI, X 5 steps. Two exira switch selected pre-set sweep. frequencies in T / B. range. T / B. output approx frequencies in T/B. range. T/B. output approx. for "i peak to peak. Buitr-in modulation. Electronically stabilised for " Z " axis modulation. Electronically stabilised power supply. Power req. $100-250$ v. A.C. $40-60 \mathrm{c} / \mathrm{s}$, 80 watts. Fused. Front panel, silver and charcoal grey. Cabinet, charcoal grey, size 8 否 $\times 14 \times 17 i n$.De Luxe bin. VALVE VOLTMETER Model IM-I3U
Modern styling. Extra features. The ideal VVM for the Electronic Engineer. Gin. Ernest Turner 2) 0_{μ} A. meter with multi-coloured scales. Unique ing. Measures A.C. (r.m.s.). D.C. voles 0-1.5,
$5,15,50,500,1,500$. Resistance range 0.1 to $1,000 \mathrm{M} \Omega$ with int. battery. Vernier aztion zero and ohms adjustment. Roller-tinned printed circuit. High input resjstance (IIM!). Comprehensive assembly and operation manual. Size, $5 \times$ $12 \frac{1}{16} \times 4 \frac{3}{4} \mathrm{in}$. Complete with test prod and leads.

Kit £ 18 .18.0 Assembled $£ 26.18 .0$
H.V. and R.F. Probes available as optional extras.

1

3in. PORTABLE SERVICE

 OSCILLOSCOPE Model OS-2Modern styling, lightweight and compact size, make this the ideal 'scope for service man, laboratory technician, amateur radio enthusiast or hobbyist. " \boldsymbol{Y} " bandwidth $2 \mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{~dB}$. Sensitivity $100 \mathrm{mV} / \mathrm{cm}$. TB $20 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$. in four ranges. Mumetal c.r.t. screen. Dimensions 5 in . wide $\times 7$ Zgin. high $\times 12$ in. deep. W t. $9 \frac{9}{7} \mathrm{lb}$.
Kit...... $\mathbf{£ 2 3 . 1 8 . 0 ~ A s s e m b l e d ~} £ 31.18 .0$
 Outstanding value in a low-priced 'scope.

LOW-PRICED SIGNAL

GENERATOR. Model RF-IU

Provides extended frequency coverage on 6 bands on fundamentals and harmonics. Ideal for the alignment and trouble shooting of RF, IF and audio circuits. Large, easy-to-read dial. Pre-aligned coil and bandswitch assembly. RF output of at least 100 millivolts. $100 \mathrm{kc} / \mathrm{s}-$ $100 \mathrm{Mc} / \mathrm{s}$. fundamentals, up to $200 \mathrm{Mc} / \mathrm{s}$ harmonics. 400 cycle audio signal with 4 v .

 high $\times 5$ in. deep.

Kit. . . $£ 1 \mathbf{1 3} \mathbf{1 8 . 0}$ Assembled $£ 20.8 .0$

See the full range of Heathkit models in the free catalogue

Outstanding value in a D.C. supply!
REGULATED POWER SUPPLY, Model IP-20U
(Fully transistorised)

A good example of modern advanced design in instru-
ments at a substantial saving in cost over comparable models. Its all-transistor circuitry will deliver up to 1.5 amps from 0.5 to 50 volts D.C. - with metered output voltage and current facility-adjustable current limiter protects both the supply and the circuie under test-overload relay protection against a short
circuit or heavy overload. Modern styling, compact circuit or heavy overload. Modern styling, compact
size. $9 \frac{1}{2} \times 6 \frac{1}{2} \times 1 \mathrm{lin}$. deep. A must for any laboratory. Kit..... $£ 35.8 .0 \quad$ Assembled $£ 47.8 .0$

HARMONIC DISTORTION

METER Model IM-I2U
Will give fast, accurate noise and distortion measurement in amplifiers, receivers, transmission lines, speakers, etc. Measurements are read directly on large mezer. High input impedance, precision componenes and Wien bridge circuit design assure excellent sensitivity and high accuracy in all applications. Freq. : 20 cycles to 20,000 cycles. Distortion : $1,3,10,30,100^{\%}$ f.s.d. Volemeter: $0,1,3,10,30$ volts f.s.d. Inpur resistance $300 \mathrm{k} \Omega$ Dimensions $13 \times 8 \frac{1}{2} \times 7 \mathrm{in}$. deep. Wt. 11 lb .

Kit....£26.15.0 Assembled £36.0.0.

Many other models for Hi-fi enthusiasts, Radio Amateurs etc. See other page for details.

- Prices quoted above are Mail Order price: - Prices include free delivery in U.K.

DAYSTROM LTD.
DEPT. W.W. 2, GLOUCESTER, ENGLAND
free brochure available on the british instrument range of models

BERKELEY Slim-IIne SPEAKER SYSTEM

A new concept in Heathkit loudspeaker design. The cabinet shell is assembled and finished in superb Queensland walnut veneer. Two specially designed speakers, a 12 in . bass unit and 4 in . mid/high frequency unit and an L.C. cross-over network provide the smooth $30-17,000 \mathrm{c} / \mathrm{s}$. frequency response. Its professional cabinet styling will blend with both traditional and concemporary decors. 15 ohm nominal impedance. Size 26 in . $\times 17 \mathrm{in} . \times 7 \frac{\mathrm{in}}{} \mathrm{in}$. deep. KIT............ $\mathbb{E} 19.10 .0$ Assembled-K24.

"OXFORD" LUXURY TRANSISTOR PORTABLE Model UXR-2

This superb transistor radio is the ideal domestic or personal portable Medium and Long Wave or personal portable Medium and Long Wave receiver. Solid leather case and handle. Easy-toread tuning scale. Extra large loudspeaker. Push-button L. MW and tone, 10 semi-conductors (7 transistors plus 3 diodes). Sockets for personal earphone, tape recorder, car aerial. Internal 9 volt battery (not supplied). lasts for months,

THE QUALITY KIT-SETS ANYONE CAN BUILD Latest printed circuit cechniques.

KIT. 14 .18.0, incl. P. Tax.

COMPARE ANY HEATHKIT MODEL FOR PRICE, PERFORMANCE, QUALITY

Enjoy the BBC stereo FM transmissions with the New De Luxe

TRANSISTOR STEREO FM
 TUNER (Model TFM-IS)

Mono version TFM-1M also available.
Designed to harmonise and match the "International Class" de luxe transistor amplifier, AA-22U.

* Professional, elegant, slim-line styling
* Tuning range $88-108 \mathrm{Mc} / \mathrm{s}$.
* 14 Transistor, 4-diode circuit
* Pre-assembled, pre-aligned RF Tuning heart

Optional extra. * 4 stage I.F. amplifier

* Own bullt-in power supply

Available for your convenience in separate parts and can be built for a
Total price kit Model TFM-IM (Mono) E20.19.0 incl, P.T.
Total price kit Model TFM-IS (Stereo) $£ 24.18 .0$ incl. P.T.

A Low-cost transistor stereo Amplifier $3+3$ Watt output
 Model TS-23
Breaks the price barrier in transistor amplifier cost. Incorporates all the essential ieatures for good quality reproduction from gram, radio and other sources.

* 3 watts rms (15 ohms) per channel
* Wide frequency response $15 \mathrm{c} / \mathrm{s}$ to $18 \mathrm{Kc} / \mathrm{s}-3 \mathrm{~dB}$
* New compact, professional slim-line styling
* For free-standing or cabinet mounting

Price Amplifier TS-23 (less Cab.) KIT $£ 17.15 .0$
Amplifier and Cabinet KIT $£ 18.19 .0$

The CAR RADIO you have asked For, Model CR-I

Complete your motoring pleasure with this small compact high performance unit. Superb longwave and medium wave entertainment wherever you drive. For 12 v . positive or 12 v . negative earth systems.

* 8 latest semi-conductors (6 transistors, 2 diodes)
\star Powerful output (4 watts) will drive two loudspeakers
* Extremely low battery consumption
* Pre-assembled and aligned tuning unit

خ Tastefully styled to harmonise with most car colour schemes
Supplied in two units, RF amp kit $\{1.13 .6$, incl. P.T. IF/AF amp kit fil.3.6. TOTAL PRICE KIT (excluding L.S.) £12.I7.0, incl. P.T. Quality $8 \mathrm{in} . \times 5 \mathrm{in}$. Loudspeaker f I. 18.6 , incl. P.T.

At last, Hi-FI performance from a 'MINI' Speaker with the AVON compact speaker system. Fully finished cabinet facilitates faster construction. This model offers substantial saving in price over-models of a similar size and performance.
t Mini size-only $7 \frac{3}{4}$ in. w. $\times 13 \frac{1}{4}$ in. h. $\times 3 \frac{3}{4}$ in. deep

* For use with amplifiers with $8-16 \Omega$ output impedance * Beautiful fully-finished wooden cabinet
* Two special loudspeakers, 6 in. bass, 3 in. HF unit In two separate parts, can be buile ior a total price. KIT $£ 13.16 .0$, incl. P.T. Send for full leaflet.

Mail TODAY for your FREE Copy of the Heathkit catalogue

To DAYSTFOM LTD., Gloucester, England.

WELCONE	233 Tottenham Court Rd., W.I.
TO OUR	Tel.: MUSeum 7349
LONDON	Opening times:
HEATHKIT	Mon.-Sat. 9 a.m. $-5.30 \mathrm{p.m}$.
	CENTRE

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGG GGGGGGGGGGGGGGGGGGGGGGGGGGGGGG Goldring the Hi-Fi people with the sound background... 60 years of it

The Goldring-Lenco 6.99

This is the transcription unit for the enthusiast who wants the proven features of Goldring-Lenco turntable units but prefers 10 mount an arm of his choice. Beautifully styled and proportioned, the G. 99 has the unique continuously variable speed and vertical drive features, an 8 lb . non-magnetic turntable and push-button on/off control which also disengages the idler. A neon-lit stroboscope is built into the unit to facilitate speed settings and the speed variation is less than 1% for up to 13% mains voltage change. A pilot light gives the sophisticated G. 99 an added touch of refinement.
€ 18.18.0d. + €3.1.5d. P.T.
\dagger Pickering V15AM1 and AME1
Micro Magnetic Cartridges
Weighing only 5 gm ., these high output,
high compliance stereo/mono cartridges
are perfect for low mass arms. 15° tracking
angle gives minimum distortion. Her-
metically sealed. Peplaceable push-in
diamond stylus assembly, with retracting
stylus arm for added protection to records.
($0.0007^{\prime \prime}$ tip radius for V15/AM1 and
elliptical, with even higher compliance, for
V15/AME1).
V15 AM1 £9.9.0d. $+£ 1.10 .9 \mathrm{~d}$. P.T.
V15 AME1 £13.15.0d. + £2.4.8d. P.T.
†Pickering 380A Cartridge
Moving-magnet for exceptional mono or
stereo reproduction. Features the exclusive
V-guard push-in diamond stylus unit
which prevents damage through accidental
dropping of arm on record. The Pickering
380A ensures high channel separation
and virtually eliminates needle talk, hiss
or distortion. Hermetically sealed, it
tracks at 2 gm ., faultlessly reproduces the
most exacting records.
$£ 12.12 .0 \mathrm{~d}$. + E2.0.11d. P.T.
\ddagger Goldring CS 90 \& CS 91 E Cartridges
These are stereo ceramic cartridges with
excellent frequency response and cross-
talk separation. Low tip mass, replaceable
diamond stylus (CS90-0.0005" or
0.0007^{*} tip radius; CS91E-elliptical)
coupled with high compliance enables
these cartridges to be played at light
tracking weights.
CS $90 £ 4.4 .0 \mathrm{~d} .+13.8 \mathrm{~d}$. P.T.
Cs 91 E £6.6.0d. + £1.0. 6d. P.T.

* Recommended transcription arms: Goldring-Lenco P77 and G65. †Recommended cartridges: Pickering V15AM1, V15AME1, 380A, Goldring CS90 and CS91E.

* Goldring-Lenco P77 Transcription Arm A magnificently engineered precision arm with provisions for balancing in every plane. Calibrated stylus pressure adjustment. Hydraulically damped positioning and lowering device. Removable plug-in head shelt.
£25.6.Od. $+£ 4.12 .6 \mathrm{~d}$. P.T.
* Goldring G. 65 Transcription Arm

Low mass tubular construction. Miniature ballrace bearings. Stylus pressure adjustment by
means of sliding counterweight. Full height adjustment. Interchangeable head slide with self-cleaning wiper contacts.
£6.6.0d. + £1.0.6d. P. T

Goldring Manufacturing Company (G.B.) Ltd., 486-488 High Road Leytonstone, London, E. 11.
Telephone: Leytonstone 8343

WW-008 FOR FURTHER DETAILS.

"... so simple a dog

 could use it!"An extravagant statement? Maybe. (What will the Russians do next?) But the fact is that the Hatfield LE 300/AI R.F. Bridge is extravagantly easy to use. The R.F. characteristics of inductors, transistors, varactors, diodes, resistors, transformers, etc., can be measured with outstanding facility and speed, with the great advantage that measurements, without adaptors, can be made with or without direct current or voltage polarisation of the component in question. Write or telephone now for full information.

HATFIELD LE 300/AI R.F. BRIDGE--provides a similar specification and range of measurements as Type LE 300/A. The only external difference is the provision of two additional sockets (see illustration) on the terminal board to which is connected the external. polarising supply. For most purposes, dry batteries, a milliammeter and a suitable rheostat are all that is required for passing direct current through the object being measured. For voltage polarisation, dry batteries can again be used. Where a capacitor or reversed biased diode is being measured, a voltmeter connected across the battery will indicate the voltage present
across the component. Thus, the component is free of any additional connections that could influence the measurement. Existing Bridges, Type LE 300/A may be modified to include the above feature, which does not affect the use of the Bridge with all the current Hatfield range of Transistor and Low impedance Adaptors.

In conjunction with the second Neutral Terminal, a three terminal power supply can be injected into the Bridge. This enables three terminal measurements to be made on Transistors, with collector currents up to 0.5 A or 1.0 A with only slight error.

CRYSTAL UNITS • CRYSTAL OVENS • BAND-PASS CRYSTAL FILTERS

Just for a change... LOOK AT THIS SALES CURVE

It is final proof of 'Ditton 10' quality

You've already seen the Ditton 10 response curves-at least we hope you have-they give scientific evidence that your ears have not deceived you; the Ditton 10 is the most advanced compact 10W high fidelity loudspeaker system available today.
Now you've seen the sales curve above for the first 12 months. It is perfectly genuine, we took it straight from our Sales Director's desk, omitting only the actual figures for commercial reasons. It tells its own story. It means that the word has spread quickly among critical high fidelity enthusiasts that the performance of the Ditton 10 fully lives up to its technical specification and the claims made for it. The buying public are always the final judges and in the case of the Ditton 10 there is no doubt at all

Celestion

Studio
Series

CELESTION LTD. Ferry Works, Thames Ditton, Surrey Telephone: 01-398 3402
what that judgment is. More and more people are taking the Ditton 10 into their homes because they like the sound of it, its price is right-and it takes up no more room than a few books. If you have never actually heard the Ditton-see your dealer right away. If you would like to know more about it please fill in the coupon. Size: $12 \frac{3}{4}^{\prime \prime} \times 6 \frac{3}{4}^{\prime \prime} \times 8 \frac{1}{4}^{\prime \prime}$
Power handling capacity: 10W r.m.s. Overall frequency response: $35-15,000 \mathrm{c} / \mathrm{s}$ Impedance: 3-4 ohms and 15 ohms Walnut or Teak finish (3-4 ohm model in Teak only)
Price: £19.6.0 inc. P.T. (plus 5/7 surcharge) The 'Ditton' 10 is used by international broadcasting authorities as a monitoring unit-and by leading professional sound engineers throughout the world.

ONE OF A SERIES FEATURING VETERAN CARS -presented by the makers of todays most advanced mobile communications system

1904 Humberette Two seater. Single cylinder $6 \frac{1}{2}$ H.P. Beeston Model. Owned by P. Newington, Esq.

CALLING ALL CARS-WITH BCC 811

The BCC 81 is the perfect modern VHF transmitter-receiver for patrol cars, ambulances, taxis and the like. Extensive use is made of space-saving transistors-the whole unit fits neatly under the dashboard of almost any vehicle.
ECONOMICAL The BCC 81 has an extremely low current consumption, equal to just one instrument panel lamp on 'receive'.
RELIABLE The 81 set is backed by the full resources and the long-standing reputation of the British Communications Corporation.
TOP OF ITS CLASS An advanced design with single and six channel versions available with a 6 -watt A.M. output make the BCC 81 unbeatable in its class.

ए2Fen will solve your Vibration Problem

Take a Frustex instrument mounting . . like the one featured on the left; or the bonded stud next to it. Perhaps the pedestal flange type in the centre and the ring stud mounting to its right command your interest? What do they all mean?
They, and the thousands of other components which SILENTBLOC design and manufacture, mean the end to most of those vibration troubles.
Combating vibration is SILENTBLOC'S business ... but we're not dogmatic about it, low-frequencies constitute a special challenge. But, whatever your problem, give it to us - and you can be sure of one thing: if it can be solved we'll find the correct answer to it.

ANTI-VIBRATION DEVICES BY

Increase your system output to 10 watts with the NEW Plessey transistorised RF amplifier

It's as simple as that; three connections and the range of your system is instantly boosted. There are 5 fully transistorised amplifiers covering the frequency bands between 68 and $174 \mathrm{Mc} / \mathrm{s}$. The basic amplifiers measure only $3 \times 6 \frac{1}{4} \times 3$ ins. $(7.6 \times 15.9 \times 7.6 \mathrm{~cm}$.) and are also available in a hermetically sealed case with filters for external use. Operating ambient temperatures range from -30 to $+60^{\circ} \mathrm{C}$.
Input drive is 250 mW .
For full information on these new amplifiers, and the complete range of Plessey radio telephone amplifiers providing up to 130 watts output power, write to: The Plessey Company Limited, AT \& E (Bridgnorth) Division, Bridgnorth, Shropshire, England. Telex: 33373

PLESSEY Electronics

(Photogroph by courtesy of the G.L.C.)

...and in your own armchair

Not so far-fetched with electrostatic loudspeakers and stereo broadcasts.

Properly handled, stereo radio is a vital step towards the closest approach to the original sound.

Watch the Radio Times for that "S".

For details of the QUAD range (including the multiplex decoder for stereo broadcasts) send a postcard to: The Acoustical

Manufacturing Co. Ltd., Huntingdon. Tel: Huntingdon 2561/2.
(9) (b) AD
for the closest approach to the original sound

MODEL 1076 TELEVISION ANALYST
Checks every stage of black \& white or color television receivers.

This one Instrument does the work of several pieces of test equipment and saves hours of time. Generates standard test pattern plus white dot, white line crosshatch, and color bar patterns.

Model 1076 for NTSC standModel 1076 for NTSC stand ards. Nine H H RF channels,
20.45 mHz I.F. 105.125 20.45 mHz J. F. 105.125
volts, 60 cycles. (Also available in 50 cycles).

Model 1076-ES for West Europe CCIR standards. Channets E2, E2A, E3, E4 Channels E2, E2A, E3, E4, E4A, E5, E6, E9, E10. 625 lines, 50 fields, $15,625 \mathrm{~Hz}$ horizontal requency.
mHz FM audio I.F. $115 / 230$ volts, 50 cycles.

MODEL 970 TRANSISTOR EQUIPMENT

 ANALYSTFor every transistor-type FM or AM radio, and for all transistorized TV and audio amplifiers.
Famous B\&K "In-Circuit technique injects AC or DC test signals at every important test point without unsoldering any components. Simplifies and speeds diagnosis. Covers $250 \mathrm{kHz}-2000 \mathrm{kHz}$ (AM); 10 mHz 11.4 mHz (AM or FM); $88 \mathrm{mHz}-108 \mathrm{mHz}$ (FM). Available for 105.125 volts, 60 cycles; or 115.230 volts, 50/60 cycles.

MODEL 465 CRT REJUVENATOR and CHECKER Tests and repairs color and black \& white picture tubes. Checks for leakage, shorts, open circuits and emission. Removes inter-element shorts and leakage, repairs open circuits, restores emission and brightness. Predicts remaining useful life of picture tube. 115 volts, 60 cycles. In portable carrying case. Also available in 230 volts.

MODEL 120 VOLT-OHMMILLIAMMETER
Featuring burn-out proof meter movement.
61 ranges which start lower and go higher than other instruments of its size and type. Extremely sensitive to make transistor servicing easier. Convenient polarity reversal switch. Supplied complete with batteries, test leads and technical manual.

Model TV-2C High Voltage Probe extends DC voltage range of Model 120 up to 30,000 volts.

Now Available

FAMOUS BEK QUALITY EQUIPMENT FOR RADIO, TV AID ELECTRONIC TECHNICIANS

COBRA V ALL SILICON SOLID STATE MOBILE TRANSCEIVER
5 crystal controlled CB channels, $29,965 \mathrm{mHz}$ " to $27,255 \mathrm{mHz}$.

Outstanding. selectivity sensitivity and ability to push through interference - at a low cost. Features 3.5 watt output with 100% modulation, Dyna-Boost speech compresslon, automatic noise limiting, microphone. Handsome self-contained cabinet with walnut grain panel, installs easily in car or truck. 12 -volt DC operating voltage. AC power supply avallable.

Write for FREE Catalog with Complete Specifications and Prices EMPIRE EXPORTERS INC.

123 Grand Street

New York, N.Y. 10013

VALVES FOR: Radio and T.V. Retailers T.V. Rental Groups Trade Service Radio Relay Companies Audio Equipment Electronic Equipment Instrumentation
Computer Manufacturers Aircraft, Marine and Radar Communications Equipment Public Corporations Civic Councils
Educational Authorities
Hospitals and Medical Schools
Research and Development Government Departments AIR REGISTRATION BOARD AND MINISTRY OF AVIATION APPROVED

Awars PHONE

Pinnacle

 FIRST

Ernest Turner. We have pleasure in announcing the addition of two new models to our clear-front range. They are Models 6425 and 644. The complete range is illustrated, approximately half-size, above. It was designed to meet the demand for a trans-parent-cased meter, based on our moulded rectangular series. It has the advantage of a shadow-less dial which is admirably suired to multiple and other special scaling. For full details apply for catalogue 86/25.

ERNEST TURNER ELECTRICAL INSTRUMENTS LTD. CHILTERN WORKS, HIGH WYCOMBE

BUCKS.

Tel: 30931-4
WW-018 FOR FUATMEH DETAILS.

THE BIG NAME IN PRECISION COMPONENTS

Precision built radio components are an important contribution to the radio and communications industry. Be sure of the best and buy Jackson Precision Built Components.

TEFOTRIM TRIMMER CAPACITOR
P.T.F.E. Dielectric 3 start thread for smooth, rapid adjustment. Locking device for permanent accuracy. Five types available in capacities $\ddagger-8 \mathrm{pF}$. up to $2-30 \mathrm{pF}$. Test voltages up to 2,500 . Various temperature coefficients.

Wireless World

ENQUIRY SERVICE FOR

PROFESSIONAL READERS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers Goncerned and you can expect to hear from them direct, in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from date of publication. please use capital letters

Pour obtenir tout autre renseignement sur tout article mentionné dans l'Editorial ou dans les pages publicitaires de ce numéro nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le numéro ou les numéros de référence. Vos demandes de renseignement seront transmises aux fabricants intéréssés qui, entemps voulu, vous feront parvenir une réponse. II est nécessaire d'affranchir les cartes postées l'étranger. Ces cartes de service sont valides pendant six mois à partir de Ja date du publication.

PRIERE D'UTILISER DES CARACTERES D'IMPRIMERIE

Weitere Einzelheiten über irgendwelche Artikel, die auf redaktionellen oder Anzeigenseiten erschienen erhalten Sie, indern Sie eine oder mehrere der beigefügten Karten ausfüllen und die Kennummer(n) angeben. lhre Anfrage wird an den Hersteller weittergeleitet, und Sie werden dann direkt von ihm hören. Karten, die im Ausland aufgegeben werden, müssen frankiert werden. Diese Service-Karten sind sechs Monate vom Ausgabetag gültig.

BITTE IN BLOCKSCHRIFT AUSFÜLLEN

Per ulteriori particolari in merito agli articoli menzionat nel testo o nelle pagine pubblicitarie di questo numero. Vi preghiamo di completare una o più delle schede allegate citando il numero o i numeri di riferimento. La Vostra richiesta sarà inoltrata ai fabbicanti interssati che Vi risponderanno direttamente. Le schede dall'estero dovono essere regolarmente affrancate. Questo scontrino di servizioé valido per sei mesi dalla data di pubblicazione.

Sí PREGA DI COMPILARE LE SCHEDE
STAMPATELLO

Con objeto de obtener más detalles de cualquiera de los artículos mencionados en las páginas editoriales o de anuncios de este número sírvase rellenar una o más de las unidas tarjetas citando el número o numeros de referencia. Sus consultas serán transmitidas a los fabricantes interesados de quienes tendrán noticias directamente a su deibo tiempo Las tarjetas enviadas desde el extranjero requieren franqueo. Estas tarjetas de servicio son validas durante 6 meses a partir de la fecha de publicación.

SIRYASE ESCRIBIR CON LETRAS MAYUSCULAS

an instrument for every application

The comprehensive Sifam range of moving coil instruments includes voltmeters, millivoltmeters, ammeters, milliammeters, microammeters and HF thermocouple ammeters and milliammeters, calibrated and scaled to read in any required parameter.
Sifam also lead in the production of instruments, incorporating ligament suspension units, for use where extra high sensitivity and robustness are essential.
Illustrated is a section of the Sifam range, showing the wide variety of case styling available. Technical literature covering all instruments is readily available.

THE HARMONY

Available in two sizes ($3.6^{\prime \prime}$ and $5.25^{\prime \prime}$) with scale lengths of $2.62^{\prime \prime}$ and $4.00^{\prime \prime}$, the Harmony is designed to conserve front of panel space by displaying only scale and pointer. Other features are the interchangeable bezel (in a range of styles and colours), alternative methods of mounting and lance type pointer for precise reading:

[^4]
illwis
 委 MICRO SWITCHES imimediate despatch

U.L. APPROVED (Appr. No. 32667)
always available from stock
U.S. MILL. SPEC.

PROCESS TIIERSS

		STP Sub-Mini Process Timer
PNEUMATIC TIMER - delay relay * Fully adjustable up to 200 seconds. Fitted with 15 amp. S.P.D.T. switch. * One model provides delay after App. £6.0.0 dependent on quantity.		TY SWITCH-TL 2 GNA * SENSES HERROUS AND NON.FERROUS - NEEDS. NO MECHANICAL HORCE OR + SOLID STATE SENSING HEAD, plus Power From $£ 6.14 .5$ each.

Latest development: Proximity head: Requiring NO POWER PACK: app. £11.0.0
NORTHERN STOCKISTS AND DISTRIBUTORS: GORDON WILSON (AUTOMATION) LTD. BLACKBURN 5992 SOUTHERN STOCKISTS AND DISTRIBUTORS: EDMUNDSONS ELECTRONICS LTD. NEW CROSS 9731 MIDLAND STOCKISTS AND DISTRIBUTORS: B.P.G. ELECTRO-MECHANICAL SUPPLY CO. LEICESTER 61460
(Dept. W.W.10) OMRON PRECISION CONTROLS
Tel.: Paddington 2370

MECHANICAL RELAY LATCH

FUR
 P.O. TYPE

This latching device enables the P.O. 3000 type relay to be held in the closed position when the coil is deenergised and until manually released.
Does not impair the versacility of the contact arrangements, nor affect the normal mounting position

WILL TRIF AND HOLD ON A.C. OR D.C. IMPULSE

Pleoso send for
Illustroted leaflet.

EITHER TYPE CAN BE FITTED TO YOUR EXISTING 3000 TYPE RELAYS IN A MATTER OF MINUTES.

STANDARD 3000 TYPE RELAYS BUILT TO SPECIFICATION
 Quotations by Return of Post. Prototypes within 48 hours.

THE "REMANENCE" RELAY

This is a 3000 type relay capable of latching in the

HIGH
RENTENTIVITY CORE

ORADIONIC

RADIO \& ELECTRONIC CONSTRUCTION SYSTEM

absorbing \& EXCITING!

A No. 4 SET and 6-TRANSISTOR SUPERHET

RADIONIC CIRCUIT SHEET NO. RSOT
 wo methods:-

1. With a single coil, by reducing the operating current in reverse.
2. With a double coil, via a pair of contaces employed on the relay to energise the second coil. Information on any contact arrangement to be employed can be obtained on application.

Ministry of Aviation Approved Inspection
 EID

RELAYS Type 600 Polarised AC Relays High Speed Latching Relays Magnetic Counters Miniature Sealed Relays. Available from stock or supplled tospecification.

Lert. "W," 9/10, MALLOW STREEI, OLD @) If EET. LONDON, E.C. 1 Tel. CLErkenwell $3661 / 2$

Erie take a pride in performance

in instrumentation

The Erie EDM Series are silvered mica plate capacitors with rectangular bodies dipped in mechanically stable insulating phenolic resin, available in three sizes from $0.470^{\prime \prime} \times 0.395^{\prime \prime} \times$ $0.220^{\prime \prime}$ maximum to $0.815^{\prime \prime} \times 0.880^{\prime \prime} \times 0.440^{\prime \prime}$ maximum. With an operating temperature of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and discrete capacitance values in the range 10 pf to 22,000 pf, the Erie EDM Series is well equipped to meet demands of the majority of modern instrumentation and other circuit applications.
Although standard capacitance tolerances of $\pm 5 \%$ and $\pm 10 \%$ cater for the majority of usage, closer tolerances are available down to a minimum of $\pm 1 \%$.

Erie's resourcefulness in the design of the EDM range is shown by the special method of stacking and clamping the mica films, resulting in a performance that is normally approached only by expensive sintering processes.
In instrumentation, as indeed in defence systems, communications, aerospace circuitry and the whole range of modern electronics ...
Erie take a pride in performance.
Write for the EDM Series details to: ERIE RESISTOR LIMITED,
Great Yarmouth, Norfolk, England. Telephone: Great Yarmouth 4911. Cables: Resistor Great Yarmouth.
 Telex: 97421.

WW-025 FOR FURTHER DETAILS.

Clacomitn
 Micro Soldering Instruments

HIGH PERFORMANCE. Normal temperatures $360 / 375^{\circ} \mathrm{C}$. Some models $450^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$.
(2) MINIATURE SIZE. Overall lengths $6 \frac{1}{4} \mathrm{in}$. to $7 \frac{3}{8} \mathrm{i}$ in.

LOW WEIGHT. From $\frac{1}{4}$ oz. to \mid oz., less flex.

- RAPID HEATING. 30 seconds to 2 minutes.
- ABSOLUTE SAFETY

A \& B types low voltage
C types fully earthed and
flash tested.

The ADAMIN has its element INSIDE THE BIT, so using all the heat produced, and avoiding excessive heat radiation. This means that less power is required and results in an unusually compact design.
ADAMIN instruments have a far higher performance for their size than all other types. Some ADAMIN models have the higher bit temperatures now needed to cope with POLYURETHANE COVERED WIRES and HIGH MELTINGPOINT SOLDERS.

The ADAMIN handle is injection-moulded in NYLON, and is absolutely unbreakable.
Free details in brochure SP. 5 .

[^5]

ARE YOUR INSTRUMENTS ACCURATELY CALIBRATED?

The Bradley Calibrator 130B provides D.C. voltages up to 3,000 and A.C. voltages up to 511 at an accuracy of 0.2% for the rapid and easy calibration of all types of instruments.

This Calibrator provides a wide range of A.C. and D.C. precision voltage steps for testing of avometers, meter movements, transistor and valve voltmeters, oscilloscopes etc. All outputs have $\%$ error indication and are short circuit proof.
To enable you to test the 130B Calibrator yourself, we shall be glad to provide one on loan. In addition, the Bradley range includes precision current sources and programming facilities. May we send you full details of the Bradley range of calibrators? Write for the 'Calibration Equipment' booklet, publication No. 102.

G. \& E. BRADLEY LIMITED

Electral House, Neasden Lane, London, N.W.10. Telephone: DOLlis Hill 7811
Telegrams: Bradelec London N.W.10. Telex: 25583

3,000 TYPE

Ex Stock specially manufactured to meet general purpose requirements Fitted with standard ewin silver contacts for 150 v. 10.6 A. a.c. 10.3 A. d.c. $2 \mathrm{c} / 0 ., 4 \mathrm{c} / \mathrm{o}$. and $6 \mathrm{c} / 0 .-500 \Omega, 1,000$! and $2,000 \Omega$ - 6 to 110 v . d.c.
 include: Plug-in, London Twin, Industrial 3 (10-30 A), Remanent, Latching, Solid State Timers (1 sec . to 15 mins.). Transistorised Relays.

PRINTACT

Printed Circuit Relays. 6, 12, 24 VDC. Palladium contacts. Size: $\frac{7}{8} \mathrm{in}$. cube. Weight: 0.8 oz. Dielectric test: 1,000 VRMS 6 cps. Bifurcated double-preak contacts; Balanced armature; Enclosed housing: Plug-in application; Encapsulated coil.

Events of the order of 20 milli-seconds accurately recorded under difficult conditions; information appearing on smooth high resolution pressure sensitive paper; no inks, no heated stylus, minimal maintenance; 99 chart speed combinations . . . these are some of the capabilities of Rustrak Recorders. If you have a stake in speeding production, climinating stoppages, you need the kind of sontinuous, accurate information a Rustrak autoriatically logs hour after hour. Contact us today :-

Whrustrak

Divison of Gulton Industries (Britain) Ltd.
The Hyde, Brighton 7,SUSSEX. Brighton 66271
WW-029 FOR FURTHER DETAILS.

Electrolube 2A-X is the highly efficient and completely safe electrical and mechanical lubricant which improves contact performance and inhibits tarnish and sparking. Electrolube also improves the mechanical operation of plugs and sockets, potary and sliding switches and all types of electromechanical device-giving an extra reliability factor to equipment and components wherever it is used.
ONLY
EIICTROLUBE 2A-X
Available-through wholesalers and agents all over the world-in the economical aerosol pack-compatible with all plastics, rubbers and paints.
For full technical details write to:-
U.K. Enquiries: Electrolube Ltd., Oxford Ave., Slough, Bucks Telephone: Slough 25574
Telex: Electrolube Chamcom Slough 84314
Overseas Enquiries: Electrolube Lid., 16 Berkeley Street,
London W. 1
Telephone: MAYfair 7654

* Registered Trade Mark $\stackrel{y}{3}$

TYPICAL MAGNETIC PROPERTIES

Material	Initial Permeability $\mu 5$	Maximum Permeability $\mu_{\text {max }}$	Saturation Ferric Induction $\mathrm{B}_{\mathrm{S}} \text { (gauss) }$
Supermumetal 100	100000	250000	8000
Supermumetal 60	60000	200000	8000
Mumetal 40 (CT)	50000	120000	8000
Mumetal	40000	100000	8000
Satmumetal	65000	240000	15000
Super Radiometal 50	10000	100000	16000
Radiometal 50	3500	30000	16000
Radiometal 36	3000	20000	12000
H.C.R. alloy	-	100000	15000

TYPICAL APPLICATIONS

Supermumetal 60.\& 100 - inductive potential dividers Mumetal \& Mumetal 40 (CT)-Precision current transformers Satmumetal - Small distribution transformers Super Radiometal 50 - Pulse transformers

Radiometal 50 \& 36 - Communication transformers H.C.R. Alloy

- Transductors and inverters

Piease send for iurther dietails to.
TELCON METALS LIMITED
Manor Royal, Crawley, Sussex.
Tel: Crawley 28800
Member of the BAF Group of Companies
WWW--032 FOR FURTHER DETAILS.

Kolectric present their

AUTOMATIC COIL WINDING MACHINE

Type Al/1 (25-50 S.W.G.) Type AllX (19-46 S.W.G.)

incorporating $A L L$ these refinements:
\star Dustproof construction
\star Provision for simultaneous winding of several coils
\star Micrometer traverse setting

* Wire gauge indicator engraved with various settings to wrtin machine can quickly be adjusted
* Instantaneous re-set turns counter reading up to 100,000 turns
\star Efficient wire tensioning stand supporting two reels of wire
* Cadmium- or chromium-plated steel parts

A fully illustrated leaflet quoting complete technical specifications is available. We will be pleased to send it to you on reauest.

BuIlleros ceramics

for the ELECTRONIC INDUSTRY
(and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products. Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trene 54321 (5 lines) Telegrams \& Cables: Bullers, Stoke-on-Trent London Office: 6 Laurence Pountney Hill, E.C. 4 Phone: MANsion House 9971

The KEF/BBC Monitor Speaker - manufactured by
 KEF

Now it can be heard and bought at studio 『(

You are invited to come and listen to the best loudspeaker in the world.
 The monitor loudspeaker used by the British Broadcasting Corporation to judge the quality of its radio and delevision programmes has been developed by a highly experienced team of research workers and studio engineers over many years. In fact the model in current use is the result of thirty years' consinuous experience in operational broadcasting during which period the best brains and ears in Britain have contributed to its evolution.

DESCRIPTION

A monitor speaker must reproduce the programme signal with the greatest possible accuracy without modification of tonal quality and
devoid of coloration. Broadcasting and recording organisations use high quality speakers to assess the aesthetic and technical merits of their programmes.
The BBC Monitor Speaker represeats the best possible compromise between all the various requirements in the present state of the art added to which it has been tested at every stage of its development by subjecfive comparison between the refive comparison between the reIn this regard, this loudspeaker is virtually unique since no other organisation has access to such splendid facilities for both subjecfive assessment and technical analysis.
The KEFIBBC Monitor Speaker rerails at £/93/10 including a 35 watt equalized amplifier and stand. A model for wall mounting is also available.

Studio 99 is the only showroom in the world where you can hear the BBC Monitor Speaker. STUDIO 99 LTD., 81 FAIRFAX ROAD, SWISS COTTAGE, LONDON, N.W.6. Telephone MAI 8855. HOW TO GET TEERE Nearest underground stations: 8 win Cottage and Frinehley Roast. Buses 2, 2A, 13, 113.

THE NEW STUDIO 99
OPEN 10 A.M. - 9 PM. INCLUDING SATURDAY. (Closed all day Thursday).
PARE OUTSIDE-NO METERS

studionio WW-034 FOR FURTHER DETAILS.

With Lexor DIS-BOARDS. Over 1,000 combinations in all types of fittings and finishes. Available from stock.
Brochure and price list from :
LEXOR DIS-BOARDS LIMITED, ALLESLEY OLD ROAD, COVENTRY. Telephone: 72614.or. 72207

TRANSFORMERS

 COILS CHOKESLARGE OR SMALL QUANTITIES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS. ETC VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123-5-7 PARCHMORE ROAD, THORNTON HEATH, SURREY LIVINGSTONE 2261

WW-035 FOR FURTHER DETAILS.
WW-036 FOR FURTHER DETAILS.

WW-037 FOR'FURTHER DETAILS.

INCREMENTAL D.C. MEASUREMENTS

The Dymar Type 724 Suppressed Zero Microvoltmeter is designed to measure small changes in large D.C. voltages. A ten-turn helical potentiometer and a stable Zener Reference Voltage provide the variable Offset Voltage. This allows an increase in sensitivity of the voltmeter of up to 100 times so that a change of $1 \mu \mathrm{~V}$ in 10 mV or 100 mV in 1000 Volts can be detected and measured. Other features are automatic polarity indication, range scale coupling and recorder output.

$$
\begin{array}{ll}
\text { Input Ranges: } & 10 \mathrm{mV}-1 \mathrm{kV} \\
\text { Voltmeter Ranges: } & 100 \mu \mathrm{fsd}-1 \mathrm{kV} \\
\text { Input Impedance: } & 1 \mathrm{M} \Omega \text { or } 100 \mathrm{M} \Omega \\
\text { Helipot Linearity: } & 0.25 \%
\end{array}
$$

The Dymar Meter Unit, available for either bench (illustrated on the right) or 19 " rack meunting will accept any one of the '700' series of Plug-In Instruments, without any loss of accuracy or performance. For detailed specifications on the complete range of Plug-Ins which cover A.C. and D.C. measurements, signal generators and Distortion and Wave Form
 Analysis write or phone to.

provide a

 comprehensive service for the design \& manufacture of electronic equipment \& components

Whiteley Electronic Equipment \& Components are designed and precision-built in the Company's own factories. Every operation is strictly controlled, every part is rigorousiy inspected and tested. Nothing is left to chance - hence Whiteley's enviable reputation.

PARK ROYAL PORCELAIN CO., LTD.
Incorporating V. G. Porcelain Co., Ltd.

GORST ROAD
PARK ROYAL
LONDON, N.W. 10

Telephones: ELGAR 1411/7 Telex:
London 25589

there is a standard Claude Lyons voltage stabiliser already built to your specification * and that includes price

Claude Lyons make the most comprehensive range of voltage stabilisers available today. You will almost certainly find the stabiliser to suit your application in the Claude Lyons standard catalogue range. Distortionless servomechanical types from 1 to 120 kVA (and 360 kVA 3 -phase). Solid-state types from 400 VA to 10 kVA . Simple tap-changing types from 600 VA to 2.4 kVA . All very high quality. All very reasonably priced. Full facts and figures from Publicity Department, Hoddesdon.

Claude Lyons Ltd Valley Works, Hoddesdon, Herts. Hoddeston 67161. Telex 22724. 76 Old Hall Street, Liverpool 3. MARitime 1761. Telex 62181

TECHNICAL tRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- Institution of Electronics \& Radio Engineers (Brit.I.R.E.)
- C. \& G. Telecommunication Techns. Certs.
- C. \& G. Supplementary Studies
- R.T.E.B. Radio/T,V. Servicing Certificate
- Radio Amateurs Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW
 SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

```
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 227, Intertext House, Parkgate Road, London, S.W.II
Please send me the ICS prospectus-free and without obligation
. 5%:
(state Subject or Exam.)
..............................................
NAME . .............................................................
ADDRESS

\section*{Specify FERRANTI transformers} We offer a complete range of transformers and chokes for military and industrial equipment. Your specifications will receive our prompt attention, and we think that you will find our prices reasonable.
We cast in epoxy resin


\footnotetext{
FERRANTI LTD.
FERRY ROAD, EDINBURGH 5
Telephone (031) DEAn 1211
}

\section*{Eddystone 830/7}

\section*{Professional communications receivers}

\section*{wide range receiver}
fully tunable from 300 kHz to 30 MHz in nine ranges - C.W, A.M and S.S.B modes - Overall bandwidth continuously variable within the limits of 1.3 kHz and 6 kHz and narrowed to 50 Hz with 100 kHz crystal filter • Instant changeover to crystal control with rapid selection of up to eight spot frequencies. First and second oscillator circuits can be crystal controlled for high stability operation - Incremental control allows accurate tuning to within one Hz with main tuning standardized against internal crystal calibrator. Low radiation level . Sensitivity better than \(3 \mu \mathrm{~V}\) for a 15 dB signal to noise ratio.



\section*{770 U Mark II receiver}
for coverage of A.M and F.M signals in the range of 150 MHz to 550 MHz in six bands. High sensitivity with circuitry using nineteen valves, four diodes and one transistor. The R.F section incorporates a specially designed tuner, a fully tuned groundedgrid amplifier followed by a diode mixer. Low impedance outputs available at the ist I.F output of 50 MHz and also at the 2nd I.F frequency of 5.2 MHz .


\section*{770R Mark II}
for reception of C.W, A.M, narrow and broadband F.M signals in the range of 19 MHz to 165 MHz in six bands . Selectivity automatically adjusted to suit signal mode. Twenty valves and two germanium diodes are used in circuitry giving very high sensitivity . Push-pull output with provision for speaker, line or telephone headset.


\section*{940 a superb general purpose receiver}
designed and built to professional standards - Outstanding performance and complete coverage of medium and shortwave bands from 480 kHz to 30 MHz . Two R.F and two I.F stages with phased crystal filter . A.M, C.W/S.S.B detectors • Push-pull audio output Sensitivity \(3 \mu V\) for 15 dB signal to noise ratio A.C operation.


The DP4 microphone is another win-ner-by performance alone it has achieved world wide acclaim. It is used regularly by P.A. engineers, broadcasting and television companies, film studios, etc., as well as by many professional and amateur tape recordists. Its winning qualities have been designed and produced by Grampian-specialists for over thirty years in the field of sound equipment. We shall be pleased to send you full technical details of the DP4 and other microphones, together with descriptions of various accessories.

Specially designed to use with the DP4, in order to cut down wind noise is the Windshield - as illustrated here.


There is also the "Grampian" Parabolic Reflector. Where it is not possible to place a microphone close to the source of sound such as when making recordings of bird songs, weddings, car and train noises etc. the Parabolic Reflector has been proved over and over again to be of enormous value.


Gramplan Reproducers Ltd.,
Hanworth Trading Estate, Feltham, Middiesex WW-045 FOR FURTHER DETAILS.

\section*{EDDYSTONE COMMUNICATION RECEIVERS}

For the professional or Amateur user who likes the Best.


Communication receiver at a moderate price, MANUFACTURING STANDARDS OF THE HIGHEST ORDER, 8 B8A valves Superhetero dyne circuit. FREQUENCY RANGES:
\begin{tabular}{|c|c|c|c|c|}
\hline Range 1 & 12.4-30 \(\mathrm{Mc} / \mathrm{s}\) & \multicolumn{3}{|l|}{Range \(4 . . . .1 .12-2.58 \mathrm{Mc} / \mathrm{s}\)} \\
\hline Range 2 & \multicolumn{2}{|l|}{. \(5.2-12.9 \mathrm{Mc} / \mathrm{s}\) Range 5.} & \multicolumn{2}{|l|}{,150 kc/s} \\
\hline Range 3 & \multicolumn{4}{|l|}{. \(2.5-6.1 \mathrm{Mc} / \mathrm{s}\)} \\
\hline \multicolumn{5}{|l|}{Ranges 4 and §include the International Distress Frequencies.} \\
\hline odel No. & Cash Price & Model No. & Cash & Price \\
\hline 10.... & £48 0 & EB35 & 860 & 63 \\
\hline C & £66 0 & 940 & ¢133 & 00 \\
\hline & EA12. & £185 0 & & \\
\hline
\end{tabular}

You can pay by 9 equal monthly payments without any extra charge.
Please write for current rates. A 4 d stamp will bring you these and a full range of Eddystone Literature, THE WORLD'S FINEST SETS.

Carriage pald per passenger train. SATIBFACTION GUARANTEED


SEND FOR LITERATURE TO
The Eddystone
Specialists
SERVICES LTD.
49/5I COUNTY ROAD LIVERPOOL, 4

Telephone: AINTREE 1445

WW-046 FOR FURTHER DETAILS.

\title{
YaRIABLE D.C. POWER UNIT WITH accumulator performance from \\ \\ A.C. MAINS
} \\ \\ A.C. MAINS
}

EFFECTIVE RESISTANGE LESS THAN
-1 ohm.


TYPE
250VRU/30/20
250VRU/60/10 PRICE \$131-5-0

\section*{FEATURES}
\(0-30\) VOLTS Variable up to 20 AMPS.
\(0-60\) VOLTS Variable up to 10 AMPS also available
RIPPLE CONTENT negligible, IMPEDANCE and REGULA
TION RECTIFIERS. Inadvertent "SHORT"protection OVERLOAD CAPACITY 200\% for short periods.

\section*{APPLICATIONS}

Operating and Servicing transistorised equipment. 12 v . Mobile radio/tel. operation, D.C. Motors, relays, industrial power, etc. from any point of A.C. WITHOUT THE USE OFACCUMU LATORS.

12 v . or 24 v . FIXED OUTPUTS up to 24 Amps. also available. AVOID THE EXTRA EXPENSE OF SUPER REGULA. TION YOU MAY NEVER NEED. Prices E14/16/-f131/5/-.


LIMITED
Please write to department C 3b.
BROWELLS LANE,
Please write to depart FELTHAM, MIDDX Tel.: FEL 4837-4242
VALRADIO and STEREOSONOSCOPE are the registered trade marks of VALRADIO LTD.

\section*{THERE IS A SHURE ANSWER TO EVERY SOUND PROBLEM}

\section*{COMMUNICATIONS}

Controlled magnetic hand microphone providing a clear, crisp, natural voice response of high intelligibility. Rugged and dependable, ideally suited for outdoor - indoor public address and communications. Frequency response 200 to \(4,000 \mathrm{cps}\). High impedance and high out-


\section*{PROFESSIONAL} RECORDING
Dynamic microphone for studio and location work. Cardioid directivity. Effectively rejects background noise and provides natural dialogue or vocal music pickup. Also suitable for scoring.
Perfectly balanced and dependable under all operating conditions.


\section*{AMATEUR RADIO}

Designed for radio communications, providingoptimum performance from single sideband transmitters as well as AM and FM units. Response cuts off sharply below 300 cps and above \(3,000 \mathrm{cps}\), ensuring maximum speech intelligibility and audio punch to cut through
noise and interference.


\section*{PROFESSIONAL ENTERTAINER}

Dynamic microphone with an effective filter to protect against wind and "pop". Features fine reproduction of music and voice. Ideal for use with high quality sound systems and tape recorders. Eliminates squeal caused by feedback and overcomes poor acoustic conditions, indoors or outdoors.


\section*{SHURE}

Setting the world's standard in sound.
Shure Electronics Limited, 84 Blackfriars Road, London SE1. Tel: WATerloo

\title{
Sillcan Panar ITMTHRNSIITTORS LTITO EFEIIIS
}

\section*{GENERAL PURPOSE TRANSISTORS COMBINING LOW COST AND VERSATILE PERFORMANCE}

2T191 has Qualification Approval to Specification CV8615.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline RATINGS AND CHARACTERISTICS & ZT190 & ZT191 & ZT192 & ZT193 & Unit & Test Conditions \\
\hline Max. Collectór-Base Voltage & 20 & 20 & 40 & 40 & V & \\
\hline Max. Coliector-Emitter Voltage & 15 & 20 & 20 & 20 & v & \\
\hline Max. Dissipation & 300 & 300 & 300 & 300 & mW & at \(25^{\circ} \mathrm{C}\) \\
\hline Max. Collector-Base Leakage Current & 200 & 50 & 50 & 50 & nA & at \(25^{\circ} \mathrm{C} \quad \mathrm{V}_{C B}=20 \mathrm{~V} \mathrm{I}_{\mathrm{E}}=0\) \\
\hline Max. Collector-Emitter Saturation Voliage & 350 & 200 & 200 & 200 & .mV & \(\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}\) \\
\hline D.C. Current Gain & 50.190 & 35 min . & 38.120 & 75-200 & & \(!_{C}=10 \mathrm{~mA} \quad \mathrm{CCE}=0.4 \mathrm{~V}\) \\
\hline Min. Transition Frequency & 200 & 300 & 300 & 300 & Mc/s & \({ }^{1} \mathrm{C}=10 \mathrm{~mA}, V C E=10 \mathrm{~V} . f=100 \mathrm{Mc} / \mathrm{s}\) \\
\hline Max. Storage Time & 156 & 300 & 200 & 200 & nS & \({ }_{t_{C}}={ }^{1}{ }^{\text {P }}=11_{B 2}=10 \mathrm{~mA}\) \\
\hline
\end{tabular}

\title{
HUNTS give designers the best of both worlds...
}
. . . all the advantages of a metallised polyethelene terephthalate film capacitor
. . . humidity resistant housing of tough, clean epoxy resin neatly styled to eliminate any moisture trap between terminations.

\section*{New \\ Hunts Type M314}
gives high standards of reliability in a new range specifically designed for printed circuitry.


Actual Size.


Temperature \(-55^{\circ}\) to \(+100^{\circ} \mathrm{C}\) Humidity Classification 21 days (H5 DEF 5011)

Hunts Type M314 Standard Capacitance Range
\begin{tabular}{c|c|c|c}
\begin{tabular}{c} 
Capacitance \\
Microfarads
\end{tabular} & \begin{tabular}{c}
160 V.d.c. \\
List No.
\end{tabular} & \begin{tabular}{c}
250 V.d.c. \\
List No.
\end{tabular} & \begin{tabular}{c}
400 V.d.c. \\
List No.
\end{tabular} \\
\hline 0.022 & & & TMD 552 \\
\hline 0.033 & & & TMD 556 \\
\hline 0.047 & & TMD 560 \\
\hline 0.068 & & TMD 506 & \\
\hline 0.1 & & TMD 452 & \\
\hline 0.15 & TMD 456 & & \\
\hline 0.22 & & \\
\hline
\end{tabular}

Please use the Reader Enquiry Service to obtain full technical information or contact us direct

\section*{A.H. HUNTT (Capacitors) Ltd}

Wandsworth, London SW18. Telephone VANdyke 6454, Telex 25640 Factories also in Surrey and North Wales \\ \title{
\section*{this is all the \\ \title{
\section*{this is all the sparce you meed to sparce you meed to menumt the menumt the THORN 3-COLOUR THORN 3-COLOUR INDICATOR}
} INDICATOR}
}
m

This very compact unit has an overall length of approximately \(2.230^{\prime \prime}\) and an outside diameter of approximately \(.812^{\prime \prime}\). It can be installed into a single panel hole measuring only 19/32" using a simple fixing ring and lock nut, both of which are supplied. This makes it suitable for a variety of signalling applications where space is at a premium. The Thorn Three Colour Indicator contains three internal coloured filters optically positioned to project the selected colour through an external front lens. Both lens and filters are of glass, not plastic, and there is, therefore, no discoloration.


The unit is designed for use with a variety of Atlas Midget Panel Lamps ( 6.12 or 28 V ) and is supplied with either a black anodised or bright chrome front nut, and solder or screw terminals. The standard filter colours are red, orange and green.

Please write for full details to:
ThornSpecial Products Ltd


Great Cambridge Road. Enfield. Middlesex (Howard 2477)
A member of the Thorn Electrical Industries Lid group of companies.

controlled soldering starts with an Enthoven preform


New free booklet describes the complete range of Enthoven Solder products．．． preforms among them． Ask now for your copy of＇Soldering with Enthoven＇．

The right amount of solder，in the right place，every time．The right alloy to suit the surfaces to be joined．The right flux for effective wetting．The right heat－source．Enthoven know about this kind of thing，will give advice，supply preforms－cored or solid．Controlled soldering means economical soldering．Soldering with Enthoven preforms saves solder， time and wastage．Cuts costs．Produces a stronger，cleaner job． Enthoven supply washers，rings，shims and strips in a wide variety of alloys，cored and solid，and design to meet special requirements．

\(r-\cdots\) ．Sales Office \＆Works • Rotherhithe Street • London SE16 Lーーーコ STD 01－237－7156．Head Office．Dominion Buildings South Place EC2．Monarch 0391.


100000000000000000000000000000000000000000


WW－052 FOR FURTHER DETAILS．
\[
\begin{gathered}
\text { Pat. } 110 \\
\text { mono-bloc } \\
\text { connectors } \\
\text { with } \\
\text { closed entry } \\
\text { contacts }
\end{gathered}
\]

FULLY APPROVED TO DEF 5325-5 STANDARD FOR \(9,15,25,30\) AND 50 WAY CONNECTORS.


These connectors consist of one-piece Diallyl Phthalate moulding with hard gold plated plug pins, socket contacts, and beryllium copper contact clips. Closed entry contact design eliminates the risk of damage to the sockets by test probes. The shells are of passivated carmium plated steel and the covers and cable clamps are of die-cast aluminium Grade LM6.

ELECTRICAL RATINGS Working voltage: 750 volts DC Current capacity: 5 amps max per contact

\section*{}


\section*{MULTISPEAKER SYSTEMS byWharfedale}


\(-10^{\prime \prime}\) Bronze/RS \(/ 70\)


PST/4


QS/3000
Conplete System \(£ 12.2 .11\).

the ultimate; a three speaker system with superb power handleg capacity in the baSS, THE RIDDLE, THE TREBLE AND INCORPORATIUG A THREE WAY CROSSOVER


Many home constructors and enthusiasts prefer to build multi-speaker syslems such as the ones given above. Used in recommended cabinets these will provide outstanding performance.


\section*{POST THIS COUPON}
for cabinet construction leaflets available free on request from Dept. W2.

NAME \(\qquad\)
ADDRESS \(\qquad\)
TOWN. COUNTY \(\qquad\)
才 9 RANK WHARFEDALE LTD. Idle, Bradford, Yorks.


\section*{(and personalities too)}

The variety of standard and non-standard meters we stock and supply is almost certainly the most extensive in the U.K. Even so, we are daily performing scores of delicate operations on faces to give meter users precisely what they'want. If face surgery isn't enough-and often it isn't-we've got a highly competent team of specialists in our anatomical operating theatres. There's never any need for meter users to 'make do' when-at the other end of a telephone line-the Anders Meter Service is ready to change faces and personalities to suit every kind of environment.Meters of all kinds from stockMeter calibration/Meter modification/Ancillary equipmentCustomdesigned meter circuitry and components \(\square\) Sole U.K. distributors of FRAHM vibrating reed frequency meters and tachometers and of the EKM range of portable voltmeters, ammeters and wattmeters.

\section*{ANDERS METER SERVICE}

\section*{ANDERSELECTRONICSLTD•103HAMPSTEADROAD • LONDON NW1 \\ TELEPHONE EUSTON 1639 \\ MINISTRY OF AVIATION APPROVED}


Only S.M.E. Precisión Plck-up Arms offer all these features
Choice of arm length Model 3009 (9in.) or Model 3012 (I2in.) for still lower tracking error-of special importance with elliptical styli . Low inertia. High precislon ball races and knife-edge bearings for minimum pivot friction . Linear offet chosen for lowest distortion - Automatle slow-descent with hydraulic control . Bias adjuster calibrated for tracking force . Exact overhang adjustment with alignment protractor - Precise tracking force from \(\frac{1}{4}-5\) grams applied without a gauge - Shielded output socket . Low capacity 4 ft , connecting cable with quality plugs - Light-weight shell. Camera finish in satin chrome, gun-black and anodised alloy - Comprehensive instructions . Rational development-all improvements can be incorporated in any existing Series II arm.

For soles and service ring Steyning 2228.
S.M.E. LIMITED • STEYNING • SUSSEX • ENGLAND wW-056 FOR FURTHER DETALLS.


\title{
THERE ARE NO SUBSTITUTES for SUPERIOR ELECTRON GUNS
}

SUPERIOR'S international reputation as the world's leading exclusive manufacturer of electron guns remains unchallenged in the foreign and domestic cathode ray tube markets.
Universally acclaimed, year after year, for their consistent high quality and reliable performance, SUPERIOR electron - guns continue to be specified, with confidence, by the © industry's foremost producers of cathode ray tubes, original equipment manufacturers and rebuilders alike.
. A complete line of electron guns that conform to your . specified electrical requirements and design characterm istics for COLOR, BLACK \& WHITE COMMERCIAL TV, - MILITARY, SPECIAL PURPOSE and EUROPEAN tube types are available.
Write for comprehensive catalog of types and facilities today.

\section*{57 SUPERIOR ELECTRONICS}
(DIVISION OF HOWARD AIKEN INDUSTRIES, INC.)
208-212 PIAGET AVENUE, CLIFTON, N. J. 07015, U. S. A.
CABLE ADDRESS: "SECO"
LONDON STOCKISTS:
ELECTRODE WELDING CO., LTD.
JUBILEE WORKS, COBBOLD ROAD, WILLESDEN, LONDON, N.W. 10

\section*{\(\Delta \square \mathbb{Z}_{\text {imnusx }}\)}

\section*{aLPHABETICALLY....we can list the names GEOGRAPHICALLY....we can list the countries}

All over the world students know that CREI HOME STUDY COURSES are supplying the answer to their need for advanced Technical Education in the field of Electronic Engineering Technology.

CREI PROGRAMMES ARE AVAILABLE IN:
Electronic Engineering Technology
Industrial Electionics for Automatiôn
Computer Systems Technology
Nuclear Engineering
Mathematics for Electronic Engineers
Television Engineering
Radar \& Servo Engineering
City \& Guilds of London Institute : Subject 49 and Supplementary Studies Subject No. 300

Write for free brochures to:
C.R.E.I. (London) (Dept. W.W. 76)

WALPOLE HOUSE, 173/176 SLOANE STREET, LONDON, S.W. 1 Telephone : Belgravia 8662


Complete with nine feet of three core flexible cable to give

\section*{POWER WHERE YOU WANT IT}

For use with
13 amp or 15 amp Sockets


Another QUALITY PRODUCT by
 HARVEY HJBBEL LIMITED MINEHEAD,SOMERSET

Telephone: MINEHEAD 3296-7

\footnotetext{
WW-059 FOR FURTHER DETAILS
}

porte de Versailles FROM 5 TO 10 APRIL
1967


These visitors come from all over the world to take part in the largest meetings of the year:

INTERNATIONAL EXHIBITION OF

\section*{fietipult}
and international exhibition of


The Electronic Components Exhibition, inaúgurated in 1934, reached international status in 1958, and gathers 900 manufacturers half of them coming from foreign countries.
On the same dates, and in neighbouring halls, the Audio Equipment Exhibition opens its doors to engineers and technicians of all countries.

International conference on electronics and space
Paris - from 10 to 15 April 1967 on application only

This conference aims at investigating how the new constraints imposed by space applications have led to an adaptation or a renovation in the field of electronics.
S.D.S.A. - RELATIONS EXTERIEURES
16. RUE DE PRESLES - 75 - PARIS \(155^{\circ}\) - FRANCE

WW-060 FOR FURTHER DETAILS.


\title{
WHERE THE GOING IS TOUGH, THE NEED FOR QUALITY VIIAL GOVERNMENTS AGREE ON TEONEX VALVES.
}

Governments all over the world have chosen TEONEX \(\checkmark\) Valves for vital civil and military roles requiring compliance to E.V.S. or M.I.L. standards. In spite of rising demand for these valves from government departments the world over, increased production facilities have made it possible to offer the TEONEX range (incorporating the entire range of British-produced valves or their Continental equivalents) for use outside the U.K. only.
Price list and technical specifications may be obtained from:-

\section*{TEONEX LIMITED \\ 2a Westbourne Grove Mews, London, W. 11 \\ England.}


Export Enquiries Only Please!


INTRODUCING our new air spaced series of precision, air spaced inductors, available in diameters from \(\frac{3^{\prime \prime}}{4^{\prime}}\) to \(3^{\prime \prime}\) and a wide range of inductances. CODAR are the only complete
of air-spaced precision inductors available today on short delivery. Specials to specification can be supplied and prototype samples are available to designers.

Brochure giving data of types/ind
capacity-frequency on request.


CODAR RADIO CO. Bank Hwick - Sussex Southne - Southwick 3149

WW- 062 FOR FURTHER DETAILS.

\section*{}

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 132-page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Division explains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

\section*{SATISFACTION OR REFUND OF FEE}

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than \(£ 30\) a week, send for your copy of 'ENGINEERING OPPORTUNITIES today-FREE.

WHICH IS YOUR PET SUBJECT ?
Mechanical Eng., Electrical Eng., Civil Engineering, Radio Engineering, Automobile Eng., Aeronautical Eng., Production Eng., Building, Plastics, Draughtsmanship, Television, etc. B.Sc., City \& Guilds, Gen. Cert, of Education, Etc., etc.

\section*{PRACTICAL EQUIPMENT}

Basic Practical and Theoretic Courses for beginners in Radio, T.V., Electronics, Etc., A.M.f.E.R.E. City E Guilds R.J.E.B. Certificate R.I.E.B. Certificate
P.M.G. Certificate P.M.G. Certificate Radio \& Television Servicing Practical Electronics Electronies Engineering Automation

\section*{INCLUDING TOOLS!}

The specialist Electronics Division of B,I.E.T. NOW offers you a real laboratory training a home with practical equipmert. Ask for details.


BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 303B), Aldermaston Court, Aldermaston, Berkshire


THE B.I.E.T. IS THE LEADING ORGANISATION OF ITS KIND IN THE WORLD


\title{
New...... Solid State U.H.F. Fixed Station \\ \\ for \(\mathbf{4 5 0}\) to \(\mathbf{4 7 0} \mathbf{~ M c} / \mathrm{s}\) \\ \\ for \(\mathbf{4 5 0}\) to \(\mathbf{4 7 0} \mathbf{~ M c} / \mathrm{s}\) \\ * Choice of control systems.
}

The new Pye F450T u.h.f. base station has a fully transistorised transmitter and receiver, for maximum reliability and minimum size. The equipment is frequency-modulated, operates from 450 to \(470 \mathrm{Mc} / \mathrm{s}\), with 40 to \(60 \mathrm{kc} / \mathrm{s}\) channel spacing, and is suitable for use with mobile and Pocketfone radiotelephones.

Pye Telecommunications Limited
* Elimination of relays in transmitter with the exception of aerial changeover.
* Output stage protected against 'no-load' conditions.
* High-stability receiver squelch
circuit eliminates background noise in the absence of a signal.
*4W nominal r.f. output.
*Remote control facilities.

\title{
NOW-the PLESSEY 700 radio telephone with \(19^{\prime \prime}\) rack mounting
}

\section*{(and it's even easier to install and maintain)}

A radio telephone link is cheaper, and easier to install, than a good quality copper wire circuit at 3 miles.
For emergency uses, or over difficult terrain, line systems may be impossible or too costly to install. In any situation Plessey can provide fully line integrated radio telephone systems with these benefits -
low installation costs, less maintenance, greater reliability.
And now a rack mounted version with even greater access-the front panel hinges down for routine maintenance checks. Full subscriber and exchange integration facilities are provided by
plug-in circuit cards which can easily be changed to meet different requirements. A 5 watt amplifier, party line operation, subscriber check metering and coin box operation can also be incorporated. The 700R operates in the frequency bands up to \(470 \mathrm{Mc} / \mathrm{s}\), is fully transistorised and can be powered by batteries, ac/dc converter, thermoelectric or solar converters. Plessey offers a comprehensive system planning, surveying and installation service. For further information, contact:
The Plessey Company Limited, AT\&E (Bridgnorth) Division, Bridgnorth, Shropshire, England. Telex: 33373.


PLESSEY Electronics


\section*{HOURS of work reduced to SECONDS with the new ANTEX DE-SOLDERING TOOL}

Soldered joints can now be easily, speedily and neatly unsoldered. A self-cleaning nozzle, exclusive to the ANTEX de-soldering irons, sucks up molten solder into stainless-steel catcher. Operates by compressed air from airline or standard footpump. Type ESS for 240 , 220,110 or 24 volts. Type GSS for 240,220 or 110 volts. Price complete with connecting tube, flexible lead and adaptors £4.4.0.


Grosvenor House, Croydon, Surrey, MUNicipal 2774

WW-066 FOR FURTHER DETAILS.

\section*{INSTRUMENTS FOR INDUSTRY}

One of our "up to the minute" instruments for "up to the minute" requirements available for speedydeliverance in a wide range of microammeters, milliammeters and voltmeters both DC and rectified AC.


This is an actual sizeillustration of our model "SQ 2" in black moulded case. Further information on this range, and other modern stylings, will besenton request.

\section*{HARRIS ELECTRONICS (LONDON) LIMITED}

\author{
138 Gray's Inn Road, W.C.I.
} WW-067 FOR FURTHER DETAILS.

\section*{FRACTIONAL HORSEPOWER}

ELECTRIC MOTOR MANUFACTURERS

THE HALL MARK OF QUALITY MOTORS BuMIX
PROMPT \& PERSONAL SERVICE
WRITE TODAY FOR DETAILS

\section*{COMTEXITD}
(DEPT. ww) 566 CABLE STREET, LONDON, E.1, ENGLAND
Telephone: Stepney Green 1400

\section*{Valradio}

TRANSVERTERS
(TRANSISTORISED
D.C. CONVERTERS/INVERTERS)
the D.C. conversion
specialists
since 1935
2 KW. Peak Starting.
750 W. Continuous. \(50-60-400 \mathrm{c} / \mathrm{s}\). or D.C. from 12-24-50v. Battery.


Up to \(93 \%\) Efficiency. Polarity Reversal Protection. Square or Sinewave. Up to \(300 \%\) Instant Overload Capacity. Manually Controlled Frequency. Reed Type Indicator. Remote Control Facilities.
Appllcations: Static "No-Break" Standby Power Supplies; For Vital System(s) Protection, e.g. V.H.F. Transmitters; Industrial Processes; Control-Alarm-Warning Systems; Mobile Use of Counters; Sig./Gen RecordersU/V Sound: Oscilloscopes and Lab. Gear in Marine and Aircraft (K||4).
Range of models ovailable. Please write to department with prices from \(\mathbf{E l l - E 9 4 . 1 0 . 0} \quad\) C. 10 for transverter leoflet

\section*{VALRADIO LIMITED}

BROWELLS LANE • FELTHAM. MIDDLESEX ENGLAND Telephone: FELTHAM 4837-4242
Valradio and Stereosonoscope are the registered trade marks of Valradio Led.

\section*{LEVELL VOLTMETERS}

\section*{A.C. MICROVOLTMETER TYPE TM3A}

Frequency response from IHz to 3 MHz with amplifier output available.

\section*{voltmeter ranges}
\(15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}\). ............. 500 V f.s.d. Linear scales. Aceuracy \(\pm 1.5 \% \pm 1.5 \%\) f.s.d. \(\pm 1.5 \mu \mathrm{~V}\) as 1 kHz .

IB RANGES
-100 dB to +50 dB in 10 dB steps. Scale -20 dB to +6 dB . \(0 \mathrm{~dB}=1 \mathrm{~mW}\) into \(600 \Omega\).
INPUT IMPEDANCE
Above \(50 \mathrm{mV},>4.3 \mathrm{M} \Omega\) and \(<20\) pf, from HHz to 3 MHz .
On \(150 \mu \vee\) to \(50 \mathrm{mV},>5 \mathrm{M} \Omega\) and \(<40\) pr, from 100 Hz to 100 kHz . On \(15 \mu \mathrm{~V}\) and \(50 \mu \mathrm{~V}\), \(>2 \mathrm{M} \Omega\) and \(<50 \mathrm{pF}\), from 200 Hz to 20 kHz .

\section*{FREQUENCY RESPONSE}

On'mV" and "V" ranges: \(\pm 3 d B\) from 1 Hz to 3 MHz . \(\pm 0.3 \mathrm{~dB}\) from 4 Hz to 1 MHz .
On \(500 \mu \mathrm{~V}: \pm 3 \mathrm{~dB}\) from 2 Hz to 2 MHz .
On \(150 \mu \mathrm{~V}: \pm 3 \mathrm{~dB}\) from 4 Hz to 1 MHz
On \(50 \mu \mathrm{~V}:+3 \mathrm{~dB}\) from 8 Hz to 500 kHz .
On \(15 \mu \mathrm{~V}: \pm 3 \mathrm{~dB}\) from 20 Hz to 200 kHz .
AMPLIFIER OUTPUT
150 mV at f.s.d. on all ranges. Will drive a load of \(200 \mathrm{k} \Omega\) and 50 pF with negligible loss of accuracy or frequency response.

POWER SUPPLY
One type PP9 battery, life 1000 hours; or, A.C. mains when Levell Power Unit is fieted

SIZE AND WEIGHT
\(\sin , x 7 \frac{1}{4}\). \(\times 4 \frac{1}{2}\) in. \(4 \frac{1}{4} \mathrm{lbs}\)

\section*{bRoadband voltheter type tiiga}

Similar to the TM3A plus H.F. probe to extend frequency response from 1 Hz to 450 MHz .
L.F. RANGES

As TM3A except for the omission of \(15 \mu \mathrm{~V}\) and \(150 \mu \mathrm{~V}\).
H.F. VOLTAGE RANGES
\(1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}\)
3V f.s.d. Square law scales Accuracy \(\pm 5 \%\) of reading \(\pm 2 \%\) of f.s.d. at 30 MHz .
H.F. dB RANGES
\(-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB} . . . . . .\). Scale - 10 dB ro +3 dB . OdB \(=1 \mathrm{~mW}\) inco \(50 \Omega\).
H.F. RESPONSE
\(\pm 0.7 \mathrm{~dB}\) from 1 MHz to 50 MHz .
\(\pm 3 \mathrm{~dB}\) from 300 kHz to 100 MHz .
\(\pm 6 \mathrm{~dB}\) from 100 MHz to 450 MHz .
H.F. PROBE INPUT IMPEDANCE On 100 mV to \(3 V\) ranges; 3 pF in parallel with \(600 \mathrm{k} \Omega\) approx. On 1 mV to 30 mV ranges: 10pF in parallel with \(6 \mathrm{k} \Omega\) approx.

POWER SUPPLY
One type PP9 battery, life 1000 hours on L.F. ranges and 400 hours on H.F. ranges; or, A.C. mains when Levell Power Unit fitted.


PRICE

complete with bat-
tery and input lead.

OPTIONAL EXTRAS
Leather Case
£4. 10. 0
A.C. Power Unit

\section*{- £85}
complete with bat-
tery and input lead.

£4. 10.0
A.C. Power Unit
£7. 10. 0

\section*{LEVELL}

Fully detailed leaflets are available on our complete range of portable instruments.

\section*{Portable INSTRUMENTS}

WW-070 FOR FURTHER DETAILS

LEVELL ELECTRONICS LTD., Park Road, High Barnet, Herts. Tel.: 01-4495028


THE MOSTADAPTABLE TELESCOPIC MAST IN SERVICE

SCAM Telescopic Masts are the most versatile in the World. They come as complete kits ready for immediate erection in the field. They are freestanding with easily fitted guys for the worst winds. Alternatively they are easily fitted by simple brackets to any vehicle. There are 3 models, 30,40 or 50 feet extended. Each has the same design features and the same well-tried system of extensionjust air from the handpump in the kit.

If you are in military com. munications you should know more about SCAM. Write to us now.

SCAM 40 Mast in action. NATO Stock Ref. 5820-99-105-3397.

\section*{clark}
A. N. CLARK (ENGINEERS) LIMITED
binstead - ISLE OF WIGHT
Telephone: RYDE 3691 Telegrams: TELEMAST RYDE
A COUBRO \& SCRUTTON COMPANY wW-071 FOR FURTHER DETAILS.

\section*{든ㅌ․}


THE DIOTESTOR detects faulty diodes and transistors when still in circuit without need for unsoldering

BRITEC LIMITED
17, Charing Cross Road, London, W.C. 2 WHItehall 3070

WW-072 FOR FURTHER DETAILS.

\section*{A.C. MILLIVOLTMETER By TRANSMETRIX}


> SILICON SOLID STATE DEVICES HIGH IMPEDANCE ACCURACY AND COMPACTNESS PORTABILITY (BATTERY POWER) COMPETITIVE PRICE

For further details and information write for . . .
TECHNICAL DATA SHEÉT MVI-300
TRANSMETRIX ELECTRONIC SYSTHMS LTD.

HYDE WORKS, HYDE ROAD,
SHANKLIN, !.W. Tel: 3096-3458

M.O.A. \& A,R,B. Approved Inspection

\section*{NEW OFFER FROM ALMA STOP} CHEAPER REED RELAYS EX

\section*{STOCK STOP DONT STOP STOP READ ON}

We have sold a large quantity of reed relays in the last two years. And in that time our \(R \& D\) has been far from idle.

As a result, we have now developed techniques of manufacturing less expensive reed relays-of less refined and sophisticated design, but still more than good enough to have Alma's name on them.

Designed for general-purpose commercial use, these normally open relays incorporate a demountable reed and are encapsulated in plastic for protection. They are available in a range of four coil voltages.
* PRICES VARY BETWEEN 7/6 AND I2/6 SO WHAT ARE YOU WAITING FOR? SEND FOR DATA SHEETS TODAY SPECIFICATION
\begin{tabular}{|c|c|c|c|}
\hline TYPE & \begin{tabular}{l}
COIL \\
RESISTANCE
\end{tabular} & OPERATING RANGE & OPERATING TEMPERATURE \\
\hline CR1/A & 2.6k \(几 \pm 10 \%\) & 18-30v & \(0^{\circ} \mathrm{C}-70^{\circ}\) \\
\hline CR1/B & \(560 \Omega \pm 10 \%\) & 12-18v & \(0^{\circ} \mathrm{C}-70^{\circ}\) \\
\hline CRI/C & \(400 \Omega \pm 10 \%\) & 9-12v & \(0^{\circ} \mathrm{C}-70^{\circ}\) \\
\hline cri/o & \(190 \mathrm{\Omega} \pm 10 \%\) & 6-9v & \(0^{\circ} \mathrm{C}-70^{\circ}\) \\
\hline
\end{tabular}

\title{
 \\ \\ TRANSISTOR
Sers (THYRistons)
} \\ \\ TRANSISTOR
Sers (THYRistons)
}



TAYN Series
Continuously variable twin outputs at 0.5A, 1A, 2A: \(0-30 \mathrm{~V}\)


ABM 0515
Continuously variable single output at 0.5 A ; \(0-15 \mathrm{~V}\)


ABM Series
Continuously variable single outputs at \(0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A} ; 0.30 \mathrm{~V}\)

A SMALL SELECTION FROM THE LARGEST RANGE IN EUROPE - and we make 'specials' to order

Stabilisation ratios: 10,000:1
Ripple typically: \(200 \mu \mathrm{~V} / \mathrm{p}\)
Output resistance: \(0.002 \Omega\)
66 talk variable or preset module POWER SUPPLIERS WITH ETHER 99

\section*{}

Ether Limited, General Products Division, Caxton Way, Stevenage, Herts. Telephone Stevenage 4422. Telex Ether Stevenage 82319.

\section*{1 \\ RADFORD}

\section*{AUDIO LABORATORY INSTRUMENTS}

\section*{LOW DISTORTION OSCILLATOR}

\section*{(Series 2)}

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

\section*{SPECIFICATION}

Frequency coverage:
\(5 \mathrm{~Hz}-500 \mathrm{kHz}\) (5 ranges)
Output Impedance:
Output Voltage:
Output Attenuation:
Sine Wave Distortion:
600 Ohms.
\(0-110 \mathrm{~dB}\) continuously variable. \(0.005 \% 200 \mathrm{~Hz}-20 \mathrm{kHz}\) increasing to \(0.015 \% 10 \mathrm{~Hz}-100 \mathrm{kHz}\).
Square Wave Rise Time:
Monitor Output Meter: Less than 0.1 microseconds.

Mains Input:
Size:
Weight:
Scaled 0-3, 0-10, and dBm.
100 V.-250 V. \(50 / 60 \mathrm{~Hz}\).
\(17 \frac{1}{4} \times 11 \times 8 \mathrm{in}\).
\(f 125\).
Rack mounting version available.

\section*{DISTORTION MEASURING SET}
(Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as \(0.002 \%\). Direst reading from calibrated meter scale.

\section*{SPECIFICATION}

Frequency Range:
Distortion Range:
Sensitivity:
Meter:
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Weight:
\(\begin{array}{ll}\text { Weight: } \\ \text { Price: } & 150 \text {. }\end{array}\)
Rack mounting version available.

\section*{VOLTMETER}
(new item)
A transistor operated voltmeter satisfying the requirements for audio frequency measurement.

\section*{SPECIFICATION}

Sensitivity:
Calibration Accuracy: Frequency Response: Input Impedance:

\section*{Meter Scaled}

Power Requirements:
Size:
Weight:
Price:
\(20 \mathrm{~Hz}-20 \mathrm{kHz}\) ( 6 ranges) \(0.01 \%-100 \%\) f.s.d. (9 ranges) \(100 \mathrm{mV} .-100 \mathrm{~V}\). (3 ranges) Square law r.m.s. reading.
100 kOhms .
3 dB down at 350 Hz .
30 dB down at 35 Hz .
1 dB from second harmonic of
rejection frequency to 250 kHz .
Included battery.
\(17 \frac{1}{4} \times 11 \times 8 \mathrm{in}\).
15 lbs.
f90.
\(1 \mathrm{mV} .-300 \mathrm{~V}\). f.s.d. (12 ranges) 2\% f.s.d.
\(1 \mathrm{~dB}, 10 \mathrm{~Hz}-500 \mathrm{kHz}\). IMOhm. I mV. -300 mV . 10 MOhm . I V. 300 V . \(0-3,0-10\), and dBm . Included battery.
\(11 \frac{1}{2} \times 6 \frac{1}{2} \times 6 \mathrm{in}\).
7 lbs.
E35.

\title{
RADFORD \\ ELECTRONICS \\ Ashton Vale Road Bristol 3
}

\section*{even the finest cables...}
can be stripped speedily and without damage with PLANSEL Automatic Stripping Pliers - a time and money-saving tool if ever there was one, arid a "n+ust" for every electrician. Four alternative jaws deal with all sizes of cable from 0.4 to \(4.0 \mathrm{~m} . \mathrm{m}\)., and the synchronized grip-cut action avoids damage even to the finest cables. M.O.D. approved.


Send for leaflet No. TO5/2
creators limited
Sheerwater, Woking, Surrey, England Telephone: Woking 5981 (15 lines) cE a member of the craators group of companies WW- 080 FOR FURTHER DETAILS.

\section*{M. R. SUPPLIES, Ltd.}

Known for many years as the moet reliable source of the following speclalised materialalritys right up to date. Carefui packing-imme liate delivery. Prices aett.
THERMOSTATS. Open type. Made by Bunvic Contmis tor buildiag fo equipment. Variable from 30 to 801 . 3 degree diff. 15 amps A.C. Switchiug. 6/6 ea. (des. 2/6.) EXTRACTOR FANS. Ring mpunted all metal constriaction. T/E iniluction motor
 model \(10^{*}\) Blade, \(12^{*}\) max du. sull C.F.M. £6.6.0 (des. ©/.).
ELECTRIC GRINDERS. \(200 / 250\) v. A.C. Pitted cuarse and fine 3 in . grindingwheels. Very handy for many domestio :and induntrial ures. Noot mounted, orerall lergth 7in. e7/15/-
(Les. \(3 / 6\) ). ( (Les 3/6).
MINIATURE RUNNING TIME METERS (Bangamo). We bave great dernands for this remnrkable unit and can now supply minedlately from stock, \(200 / 250\) v. 60 c . nymehronous.
 diai, depth 2in. Many induntrial and domestic applications to fodicate the runping time of any electrical apparatus-easy: to Instaili, 60/- (pust paid).
SMALL GEARED MOTORS. In auddition \(\frac{1}{}\) our well-known range (Liat GM 564), we offer suall open type S.P. unlte, \(200 / 250\) v. A.C. \(1,63,12,24,60\) r.p.un., approx. 5in. long,
with 1 in , shaft projection. Suitable for dlaplay 69/6 (des. \(3 / \rho\) ). \(69 / 6\) (des. \(3 /\) ).
SYNCHRONOUSTIME SWITCHES (Our very Roputar speciallty). 200/250 X . B0 c, for
 \(20-\mathrm{mpps}\). Compactly housed, 4 m . dla, 31 in . deep. With full inatructions, \(55 / 18 / 6 \mathrm{l} / \mathrm{cs}\). \(3 / \cdot\) ). Also same make, fame duty. Domestic Sodel atted with \(13-a m p\), plug fin easy installation, portable, \(d_{4 / 9 / 6 ~(i d e s . ~}^{3} /-\) ). Other ratings of Time Swtehes availaitle for special requirements-please enquire.
MINIATURE VARIABLE TRANSFORMERS (Philips), Remarkable and very popular offer from stock. Open type-pancl mount, only \(3 i \mathrm{in}\). dia. Input \(200 / 240 \mathrm{v}\). Output \(0 / 240\) v. 0.5 amp . continuous, \(23 / 18 / 6\) (des. 2/6).
AIR BLOWERS. Highily efficient units fitted induction totally enctosed motor 2301 260 v. 50 c. \({ }^{2}\) ph. Model SD. 26,80 CFM (Iree air) to 11.5 CFM at 15 Wa (size approx.)
 CFM (free air) to 197 CFM at 1.5 WG \(11 \times 8 \times\) yin., outlet 3 la . sq. \(\mathrm{E} 18 / 17 / 6\) (des. U.K. 7/6).
SYNOHRONOUS ELECTRIC CLOCK MOVEMENTS (as mentioned and recommended in many national journals). \(200 / 250\) v. 50 C . Beilistarting. Fitted spindles for hours, minutes and central sweep seconds hands. Central ole-hole lixing. Dia. 21 ln . Depth behind dial only lin. With back dust cover, \(29 / 8\) (titig. \(1 / 6\) ). Be
style. For \(5 / 7 \mathrm{in}\). diad \(2 / 6\). For \(8 / 10 \mathrm{n}\). dical :/6 set.
SYMERRONOUS TNGER MOTORS (Hangamo). \(200 / 25 n\) v. \(50 \mathrm{c} / \mathrm{s}\). Self-starting 2 in , dia, \(x\) 1 in. deap. Choict of following speeds: 1 r.p.m., 12 r.p.h., 1 r.p.h., 1 rev. 12 hours., 1 rev. per day. Any one \(39 / 6\) (des, \(1 / 6\) ). Alow high-torque model (G.E.C.) \(21 \times 2 \mathrm{in}\). \(\times 13 \mathrm{in}\)., IMMEDIATE DHITVET
IMMEDLATW DELITVERT of Stuart Centrifugal Pumps, Including stalniess steel (most models). Philips Variable Transiormers (all modely).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.G. 1 (Telephone: MUSeum 2958)


\section*{The new teacher}

English Electric Valves supply the vidicons for most of the closed-circuit TV cameras made in Britain, including those used in education. Their popularity with TV camera makers and users is because EEV vidicons give unusually high resolution, high sensitivity and short lag, besides being proved reliable. In many applications lives of more than 8,000 hours have been achieved. Such

reliability is essential if hundreds of school children are not to gaze at a blank screen halfway through the geometry lesson. EEV vidicons are available with two different values of heater current, \(6.3 \mathrm{~V} / 600 \mathrm{~mA}\) and \(6.3 \mathrm{~V} / 95 \mathrm{~mA}\), and with either separate mesh or integral mesh construction. For further technical information and the name and address of your nearest stockist write to:



INDUSTRIRL -INSTRUMENTS LIMITED
STANLEY ROAD - BROMLEY KENT
Telephone: RAVensbourne 9212/3.
Telegraphic Address: TRANSIPACK BROMLEY
WW-CB3 FOR FURTHER DETAILS.

\section*{NOW \\ UPGRADE YOUR TRANSMITTER CAPABILITY AT LOM COST!}

15 \& 50 KW H.F. (4-26 M8) TRANSMITTERS FOR CW, F.S. RTT, ARQ \& FACSIMILE FEATURING:
- Linear amplification. Forced air cooled EIMAC 3CX2500A3 tubes.
- Servo drive mechanisms. Vacuum variable capacitors.
- With F.S. Keyer, 10 channel crystal-controlled oscillator and variable master oscillator.
- ISB/SSB/DSB amplification with suitable exciter.
- Use on 50/60 cycle
- 600 ohm balanced transmission line output.
- Spare parts and installation engineering services available.

Complete technical details on request.
THE MEDITERRANEAN COMMUNICATIONS EQUIPMENT CO. LTD.
P.O. BOX 54, GIBRALTAR

WW-084 FOR FURTHER DETAILS:

\section*{with the NEW Antex \\ PRECISION SOLDERING KIT}

\section*{This is what the ANTEX Kit contains:}
- Model CN240 15W Precision Iron with 3/16" bit, (used in electronic workshops and factories all over the world)
- Two spare Interchangeable Bits (5/32" and 3/32")
- Reel of resin-cored Solder
- Handy Heat Sink - Cleaning Pad
pas
36-page booklet on "How-to-Solder"-a mine of information for amateur and professional.

\section*{BRING YOUR WORKSHOP UP-TODATE with the new ANTEX KIT} Obtainable from radio and electrical shops everywhere.

ANTEX LTD. GROSVENOR HOUSE, CROYDON, SURREY. MUNiçipal 2774/5

ค.



No oscilloscope is better than its tube. Build in all the circuit refinements you like, if the tube suffers from (1) pin-cushion distortion (2) barrel distortion (3) large spot size (4) low brightness, is restricted to an excessively small window (5) or suffers from (6) deflection defocussing or any of a dozen other common ailments, then your efforts are in vain. Compare a Telequipment oscilloscope side by side with any other instrument in the same price range. You'll take the point. Each oscilloscope in the Telequipment range uses a specially developed tube and is designed to exploit to the full its linearity of display and brightness and fineness of trace. No other portable oscilloscopes today offer such potentiality per pound! Illustrated is the type D43 oscilloscope, fitted with type 'A' plug-in amplifiers. This instrument costs \(£ 1250 \mathrm{~s}\). 0 d . and uses aluminized PDA double-gun tube with particularly fine geometry.

Send for literature describing Telequipment Serviscopes and portable laboratory oscilloscopes.


*Serviscope is a registered trade mark of
Telequipment Limited, 313 Chase Road, Southgate, London, N.14. Fox Lane 1166

Editor-in-chief:
W. T. COCKING, F.I.E.E.

\section*{Editor:}
H. W. BARNARD

\section*{Technical Editor:}
T. E. IVALL

Editorial:
B. S. CRÁNK
F. MILLS
G. B. SHORTER, B.Sc.

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

\section*{Advertisements:}
G. BENTON ROWELL
(Manager)
J. R. EYTON-JONES

Iliffe Electrical Publications Ltd., Chairman: W. E. Miller, M.A., M.I.E.R.E.

Managing Director:
Kenneth Tett
Dorset House, Stamford Street, London, S.E. 1
(C) Iliffe Electrical Publications Ltd., 1967. Permission In writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

ELECTRONICS, TELEVISION, RADIO, AUDLO

\section*{FEBRUARY1967}

55 The Compleat Engineer
56 Principles and Practice of Holography
by A. Dickinson \& M. S. Dye by T. D. Towers
62 Colour. Receiver Techniques-2
71 World Satellite Communications
74 UK3—Britain's Scientific Satellite
81 Electronic Tachometer by S. L. V. Chori \& M.R. Roo
85 An Introduction to Microwave Ferrite Devices by K. E. Honcock
89 Gyrators-Using Direct-coupled Transistor Circuits by F. Butler

94 Electronic Organs
by J. W. Machin

\section*{SHORT ITEMS}

68 Mobile Satcom Terminals
68 British Broadcasting White Paper
84 Silicon Transistor Bias Circuit
87 Domestic Satcom for U.S:A.
97 Electronic Telephone Exchange

\section*{REGULAR FEATURES}
\begin{tabular}{ll|rl}
55 & Editorial Comment & 84 & H.F.Predictions \\
68 & World of Wireless & 88 & News from Industry \\
69 & Personalities & 98 & New Products \\
78 & Letters to the Editor & 104 & \begin{tabular}{l} 
Overseas Conferences \& \\
Exhibitions
\end{tabular}
\end{tabular}

\footnotetext{
PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: Waterloo 3333 70 lines) Telegrams/Telex: Wiworld lliffepres 25137 London. Cables: "Ethaworld, London, S.E.1. Annual Subscriptions: Home: \(£ 26 \mathrm{~s}\) Od. Overseas: \(£ 215 \mathrm{~s}\) Od. Canada and U.S.A: \(\$ 8.00\). Second-class mail privileges authorised at New York N.Y. BRANCH OFFICES: BIRMINGHAM: 401 Lynton House, Walsall Road, 22b. Telephone: Birchfields 4838. BRISTOL: 11, Marsh Street, 1 . Telephone: Bristol 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: Coventry
25210. GLASGOW:123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER 260, Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK OFFICE U.S.A. : 300 East 42nd Street, New York 10017. Telephone: 867-3900.
}

Mininature Silicon Planar Swltching Diodes
High-speed switching, low -
1N4148
capacity diodes for computer and general industrial applications.

1N4154
actual size

Silicon NPN Planar
Epitaxial Epoxy Transistors
\begin{tabular}{ll} 
Audio and relay driver & 2 2N3402 \\
applications and & 2 N3404 \\
switching circuits. & 2 N3414 \\
\(V_{\text {cEo max }}\) from 25 to 50 V . & 2 N3416 \\
& BC152 \\
& BC175 \\
& BC180 \\
& \\
VHF/RF types suitable for & BF216 \\
entertainment and & BF217 \\
communications AM or & BF218 \\
FM receivers. & BF219 \\
& BF220
\end{tabular}

Brimar can offer immediate delivery of a range of Silicon Planar Devices - produced for the first time in Great Britain in their new Silicon Planar plant at Brimsdown. The range includes transistors and diodes suitable for industrial and electronics applications. Thyristors are also available. Made to uncompromising standards, they are readily available in larqe quantities at the keenest prices. Ask for technical details and descriptive literature.
Manufacturers' enquiries only, please - to:


Thorn-A.E.I. Radio Valves \& Tubes Limited
7 Soho Square, London W.1. Telephone: GERrard 5233


\section*{This is the size of the big development in connectors!}

This miniaturised version of the famous MciMurdo Red range provides 26 connections - two more than any other connector of comparable size - plus improved reliability. Only a quarter the size of the Red range, the entire REDETTE range has \(16,26,38\) and 52 way versions. Now available. Moulded in D.A.P., with hard gold-plated contacts. Current rating 3 amps per contact, contact resistance under 10 milli-ohms, minimum proof voltage 1,500 volts peak.


THE MCMURDO INSTRUMENT CO. LTO ROONEY ROAD PORTSMOUTH ENGLAND - TELEPHONE PORTSMOUTH 35361 • TELEX 86112



\title{
Have a good look at your Associated Aerials array before it's installed
}
(There's one up there, somewhere, but nobody's seen it for years.)

Associated Aerials make aerial arrays and associated equipment for every kind of transmission and situation from compact RT aerials (for taxis and firebrigades, for instance) to huge broadcasting networks. Omnidirectional and directional aerials for remote territories ; marine and ground-to-air; TV and communications; VHF, UHF.
Aerials that you can rely on.
Aerials for places that are so high, cold, wet or plain miserable that you don't want to see them again for a long, long time.
Get details about Associated Aerials - the most easily forgotten aerials in the world.


For example, this is what the aerial up there on the mountain looked like when it was put up in 1961. It is a yagi aerial cut to a frequency of \(165 \mathrm{Mc} / \mathrm{s}\) with excellent electrical characteristics, rugged mechanical construction to stand up to high winds and heavy ice loading, internal heating so that even severe icing cannot affect its performance.
Today, it looks the same; it works the same; it's just colder.

\section*{ASSOCIATED AERIALS LTD}

Knight Road, Strood, Kent, England. Telephone : Medway 78255 Telex: 96146
A COUBRO \& SCRUTTON COMPANY


\section*{Vortexion}

\section*{quality equipment}

The 12-way electronic mixer has facilities for mixing 12 balanced line microphones. Each of the 12 lines has its own potted mumetal shielded microphone transformer and input valve, each control is hermetically sealed. Muting switches are normally fitted on each channel and the unit is fed from its own mumetal shielded mains transformer and metal rectifier.


\section*{FOUR-WAY ELECTRONIC MIXER}

This unit provides for 4 independent channels electronically mixed without "spurious break through," microphony hum and background noise have been reduced to a minimum by careful selection of components. The standard \(15-50\) ohm shielded transformers on each input are arranged for balanced line, and have screened primaries to prevent H.F. transfer when used on long lines.
The standard 5 valve unit consumes only 18.5 watts, H.T. is provided by a selenium rectifier fed by low loss, low field, transformer in screening box. The ventilated case gives negligible temperature rise with this low consumption assuring continuance of low noise figures.
20,000 ohms is the standard output impedance, but the noise pick-up on the output lines is equivalent to approximately 2,000 ohms due to the large amount of negative feedback used.
For any output impedance between 20,000 ohms and infinity half a volt output is available. Special models can be supplied for 600 ohms at equivalent voltage by an additional transformer or 1 milliwatt 600 ohms by additional transformer and valve.
The white engraved front panel permits of temporary pencil notes being made, and these may be easily erased when required. The standard input is balanced line by means of 2 point jack sockets at the front, but alternative 3 point connectors may be obtained to order at the rear.


Size \(18 \frac{3}{4} \mathrm{in}\). wide \(\times 11 \frac{1}{\mathrm{~g}} \mathrm{in}\). front to back (excluding plugs) \(\times 6 \frac{1}{1} \mathrm{in}\). high. Weight 22 l b.

\section*{THREE-WAY MIXER and peak programme meter,}

\section*{for recording and large sound installations etc.}

This is similar in dimension to the 4 -Way Mixer but has an output meter indicating transient peaks by means of a valve voltmeter with a 1 second time constant in its grid circuit.
The meter is calibrated in dBs , zero dB being 1 milliwatt- \(600 \mathrm{ohm}(.775 \mathrm{~V}\) ) and markings are provided for \(+10 \mathrm{~dB}\) and -26 dB . A switch is provided for checking the calibration. A valve is used for stabilising the gain of this unit. The output is 1 milliwatt on 600 ohms for zero level up to +12 dB maximum. An internal switch_connects the output for balance, unbalance, or float. This output is given for an input of 40 microvolts on 15 ohm .
An additional input marked "Ext. Mxr." will accept the output of the 4 -Way Mixer converting the unit into a 7 -Way controlled unit. This input will also accept the output of a crystal pick-up but no control of volume is available. The standard input is balanced line by means of 3 point jack sockets at rear but alternative 2 point connectors may be obtained to order at the front or rear as desired.
The 8 valves and selenium rectifier draw a total of 25 watts.
P.P.M. for \(200-250 \mathrm{~V}\) AC Mains .. ... .. .. .. Price on application

Size \(18 \frac{1}{3} \mathrm{in}\). wide \(\times 11 \frac{\mathrm{in}}{}\), front to back (excluding plugs) \(\times 6 \frac{1}{1} \mathrm{in}\). high.
Weight 23Ib.
10/15 watt Amplifier with built-in mixers.
\(30 / 50\) watt Amplifier with built-in mixers.
\(2 \times 5\)-way stereo mixers with outputs for echo chambers, etc.
Full details and prices on request.

Telephone: LIBerty 2814 and 6242-3-4
Telegrams: " Vortexion London S.W. 19 "

the only screw of
it's type in captivity

L1639/B incorporates a unique pressure pad which is free to rotate and is capable of clamping the finest wires without damage. Moulded in flexible P.V.C. the block can be mounted in any position. Terminal screws are captive and vibration proof.
For full specifications ring ENField 5393 or write for data sheet 12

\section*{BELLING-LEF COMPONENTS}
connecting research to industry BELLING \& LEE LIMITED, GREAT CAMBRIDGE ROAD, ENFIELD, MIDDLESEX

Telephone: Enfield 5393 Telex: 263265
ww- 092 FOR FURTHER DETAILS.


Rosin-based protective coating to keep metallic surfaces clean and solderable.

\section*{COPPERBRITE}

Provides a safer, more satisfactory method for cleaning copper and copper alloy surfaces.

\section*{SOLDER RESISTS}

Silk screenable organic coatings for use on all types of laminates and circuit processes.

\section*{FLUX REMOVERS}

Includes Sonic Solves, a series of nonflammable azeotropic mixtures of fluorohydrocarbons and electronic grade cleaning solvents, and a further specialised Lonco range.

\section*{SOLDERING FLUXES}

A wide range of Resin, non-resinous, rosin and other fluxes for every purpose.

\section*{CHEMICAL WIRE STRIPPERS}

For the rapid stripping of wire leads for most normal insulation materials. Ideal for magnet wire coatings.

\title{
PERFECTION IN SOUND WITH Garrard
}

You're looking at three of the finest turntable units available. Any one of these Garrard models will bring you closer than ever before to your ideal in sound reproduction-and at the price you want.


\section*{Garrard SP25}

Even if your pocket won't stretch to a 401 or a LAB 80, you can still buy a single-play unit of outstanding quality-the Garrard SP25, designed to give exceptional performance at moderate cost.
A special feature is the integral cueing device, which provides the facility for raising or lowering the pick-up at any point on the record. This cueing is coupled with the switch-on control which has three positions - Off, Play and Lift. On completion of a record, the pickup arm automatically lifts and returns to its rest and the motor switches off.
The unit is supplied less cartridge.
Attractive teak finish base WB 1 avaitable with fold-away plastic cover.

LOOKS AFTER YOUR RECORDS Ask to see these superb Garrard units at your hi-fi dealer or write for illustrated leaflet covering the complete Garrard range.


\title{
there's nothing pocket-size about the performance of GEC's VHF pocket radiotelephones...
}


\section*{GEC fm Courier}

A fully transistorised 3-channel transceiver designed to be inconspicuous in use, and allow full freedom of movement. It gives full operation fifted beneath clothing - microphone and earpiece-speaker units clip behind the lapels. Silicon transistors make the Courier extremely reliable, and suitable for a wide climatic range. Standard rechargeable battery gives 8 -hour shift endurance.
An intrinsic-safety version is also available - the first pocket set to be granted an Intrinsic Safety Certificate for use in hazardous atmospheres.

The equipment meets G.P.O. Specification W. 6346.
Service: F3 Telephony. Single or two-frequency simplex. Frequency range (one, iwo or three channels) : \(71.5 \mathrm{Mc} / \mathrm{s}\) to \(100 \mathrm{Mc} / \mathrm{s}\), or \(156 \mathrm{Mc} / \mathrm{s}\) to \(174 \mathrm{Mc} / \mathrm{s}\) ( \(25 \mathrm{kc} / \mathrm{s}\) spacing). (Other ranges to special order.)
Ambient conditions: Temperature \(-20^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\). Altitude up to \(20,000 \mathrm{ft}\). a.m.s.l. Relative humidity 0 to \(90 \%\).
Dimensions of Transmitter/Receiver: \(6 \frac{7_{10}^{\prime \prime}}{16^{\prime}} \times 4 \frac{1}{8}^{\prime \prime} \times 1 \frac{3^{\prime \prime}}{}\) Weight: With battery 23 oz . Less battery 16 oz . Power Output: Nominally 500 mW or 400 mW . Modulation Capability: \(\pm 5 \mathrm{kc} / \mathrm{s}\) deviation (maximum). Sensitivity: 15 dB signal/noise ratio for \(1.5 \mu \mathrm{~V}\) e.m.f.
Selectivity: Pass Band \(\pm 7.5 \mathrm{kc} / \mathrm{s}\) at 6 dB . Stop Band \(\pm 23.5 \mathrm{kc} / \mathrm{s}\) at 65 dB min .


\section*{GEC am Courier}

A fully transistorised 3-channel transceiver for pocket or hand-held operation.
Service: A3 Telephony. Single or two frequency simplex.
Frequency Range : \(68-174 \mathrm{Mc} / \mathrm{s}\) Band.
Number of Channels: Maximum of 3 spaced within \(\pm 250 \mathrm{kc} / \mathrm{s}\) of mean carrier frequency. ( 25 or \(50 \mathrm{kc} / \mathrm{s}\) spacing.)
Dimensions: \(6 \frac{5}{16}{ }^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{16} \times 1 \frac{1}{6}^{\prime \prime}\left(7 \frac{1^{\prime \prime}}{16^{\prime}}\right.\) over controls). (Including standard battery)
Weight: 24 oz . (including standard battery).
R.F. Output Power: Adjustable 200 mW to 400 mW .

Modulation Capability: \(100 \%\) ( 250 mW carrier). \(90 \%\) ( 400 mW carrier)
Sensitivity: \(2 \mu \vee\) (e.m.f.) input modulated \(30 \%\) at \(1 \mathrm{kc} / \mathrm{s}\) for 13 dB signal to noise ratio and 150 mW output.
Selectivity: Pass band \(\pm 7.5 \mathrm{kc} / \mathrm{s}\) at 6 dB . Stop band: \(23.5 \mathrm{kc} / \mathrm{s}\) at \(75 \mathrm{~dB} \mathrm{min}. \mathrm{(2} \mathrm{signal} \mathrm{method)}\).
A.G.C. Characteristic: Rise in output less than 4 dB for signal change 2 V to 20 mV .
For full details of both Couriers, please contact us.


Spon Street, Coventry. Telephone: Coventry 24155 A subsidiary of The General Electric Company Limited of England

\title{
These 12 Newmarket devices will meet \(80 \%\) of your silicon industrial transistorneeds
}

> Give you tighter specifications, better availability and a lower price, without disturbing your circuit

Is your exotically specified and graded JEDEC or Pro-Electron type really essential ? Because of the proliferation of JEDEC, Pro-Electron and house code specifications there are thousands of transistor types, each differing only marginally from the next. Often differing only in some remote, unimportant characteristic which is immaterial in any given circuit. Yet you have to pay for this unnecessary sophistication. Newmarket have come to the rescue by producing their SILIND range: just 1.2 devices to meet \(80 \%\) of your silicon industrial transistor needs.

\section*{Try them}

Newmarket offer you maximum and minimum limit samples. Try them in your equipment. Run them down your line for rapid, effective production run pre-evaluation. Meantime we will tell you about availability and price.

\section*{Send for range data sheet and substitution guide}

\section*{Newmarket}

TRANSISTORS LIMITED
Exning Road, Newmarket, Suffolk Telephone ONE 83381

Semi-conductor device manufacturers and solid state engineers.

Newmarket Silind range General: normally supplied as \(\frac{1}{2}\) " three lead (VHF four lead) standard TO18 welded metal encapsulations, gold plated for humidity protection. TO5 cans available when dictated by power dissipation requirements. Every transistor individually inspected on a curve tracer.

NKT 10419 High-gain, NPN, general-purpose, low-level amplifier
NKT 10519 Extra-high-gain, NPN, general-purpose, low-level amplifier
NKT 10339 Medium-gain, NPN, general-purpose, mid-level amplifier
NKT 10439 High-gain, NPN, general-purpose, mid-level amplifier
NKT 12329 Medium-gain, NPN, RF, mid-level amplifier
NKT 12429 High-gain, NPN, RF, mid-level amplifier
NKT 13329 Medium-gain, NPN, fast switch
N KT 13429 High-gain, NPN, fast switch
N KT 35219 Non-epitaxial, NPN, VHF, mid-level amplifier
NKT 16229 Epitaxial, NPN, VHF, mid-level amplifier
NKT 20329 Medium-gain, PNP, general-purpose, low-level amplifier
NKT 20339 Medium-gain, PNP, general-purpose, mid-level amplifier

\section*{and these are the reasons why:}

\section*{Reduced capital outlay}

MST designs reduce demands for space, and need for standby equipment. Installation costs are decreased.

\section*{Increased reliability}

Maximum use of solid state techniques plus the use of wideband amplifiers reduces number of moving parts, gives higher reliability and longer equipment life.

\section*{Economy of manpower}

High equipment reliability together with full remote control facilities permit unmanned station working. Complete h.f systems can be controlled by one man.

\section*{Traffic interruption reduced}

Frequency changes and retuning accomplished in less than one minute without loss of traffic.

\section*{Marconi telecommunications systems}


\section*{Brilliant Valved 'QOILPAX'}
- Highly sensitive \((1 \mu \mathrm{~V}\) for \(15 \mathrm{~dB} S / \mathrm{N}\) ratio when followed by a normal IF Strip) Highsensitivity RF stage is designed around EF 183, connected in a Miller compensating circuit, followed by an ECH81 triode heptode frequency changer, using oscillator circuits. These give optimum mixing conductance on each waveband without any pulling. Each oscillator not in use is shorted out - General coverage and hamband models available both designed for an IF output of \(1620 \mathrm{Kc} / \mathrm{s}\) - Exceptionally low second

channel interference - Units are completely wired, tested and aligned.
Both Models: £12.12.0each complete. p.p. 41 -.
Today's most advanced aerial rotator - Aims within ONE DEGREE of transmitter location Twin synchronised motors No guesswork, no irritating gear clicks. Precise fine adjustment through \(365^{\circ}\) location Continuous Instant Direction Indication even when motor is not in use Accurate repeatability-aerial position can always be pinpointed Turns the heaviest arrays easily under ALL weather conditions. Price Automatic Model: £17.17.0. Compass Model: \(£ 12.12 .0+\) p.p. \(3 / 6\). Electroniques (Prop. STC Ltd.) Edinburgh Way, Harlow, Essex. Telephone: Harlow 26777.

High-grade components for amateur communications


\section*{The most satisfying volume}
on anybody's bookshelf The new LEAK MINI-SANDWICH


Sandwich Loudspeaker
Size \(26 \times 15 \times 12 \mathrm{in}\).
THE FIRST NAME IN HIGH FIDELITY SINCE 1934
H. J. LEAK \& CO. LTD., BRUNEL ROAD, WESTWAY FACTORY ESTATE, LONDON, W. 3 H. J. LEAK \& CO. LTD., BRUNEL ROAD, WESTWAY FACTORY ESTATE, LONDON, W. 3

At the heart of both-the new "Mini-Sandwich" and the "Sandwich"-are the revolutionary SANDWICH * cones of the speaker motors. Fantastically rigid, yet no heavier than conventional paper cones, these unique diaphragms are made of thick polystyrene foam, sandwiched in skin-thin aluminium. They respond with piston-like precision to the waveform of the voice coil signals. The rigidity of the Sandwich cone eliminates "cone break-up," the erratic flexing which causes distortion in other speakers.
Result: a remarkable smooth frequency response, free from violent peaks or troughs over a very broad frequency band. Transient response is excellent.
If space permits there is only one choice: the Leak "Sandwich." But if space is a problem you will find the "Mini-Sandwich" is a superlative small loudspeaker, designed and made exactly as the standard "Sandwich" and the performance is indistinguishable from the larger model except for the lowest octave.
*U.S. Pat. No. 3, III,187

Ask your dealer for a demonstration.

\section*{\&39.18.0d.}


\footnotetext{
Post coupon NOW, for fully illustrated folders on Sandwich loudspeakers, and other Leak Hi-Fi.
}


\section*{SINCLAIR \\ COMBINED 12 WATT HIGH FIDELITY AMPLIFIER AND PRE-AMP}
- 12 Watts r.m.S. output continuous sine wave - SIZE—3" \(\times 1 \frac{3}{4}{ }^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}\)

RESPONSE— \(15-50,000 \mathrm{c} / \mathrm{s} \pm 1 \mathrm{~dB}\)
For size alone, the Z. 12 marks an important advance in quality design, for its amazing compactness opens up exciting new vistas in amplifier use. Combined with this are fantastic power and superb quality which can provide an effortless output of 12 watts R.M.S. continuous sine wave from the unique eight transistor circuit used. Basically intended as the heart of any good mono or stereo hi-fi system, the size and efficiency of thls Sinclair unit make it equally useful for a car radio, a high quality radio with the Micro FM, in a guitar, P.A. or intercom system, etc. Other applications are certain to suggest themselves to constructors. The manual included with the Z .12 details mono and stereo tone and volume control circuits by which inputs can be matched (and switched in) to the pre-amp. The size, performance and price of the \(\mathbf{Z . 1 2}\) all favour the constructor seeking the finest in transistorised audio reproduction-it is in fact today's finest buy in top grade high fidelity and many thousands are now in use throughout the world.
PZ. 3 Transistorised mains power unit. Will power two Z.I2's and Stereo 25 with ease.


15 WATTS R.M.S. MUSIC POWER (30 WATTS PEAK)
* Ultra-linear ciass B output and generous neg. feed back.

BUILT, TESTED
* Output suitable for 3, 7.5 and 15 ohm loads. Two 3 ohm speakers may be used in parallel.
* Input- 2 mV into 2 K ohms.
* Signal to noise ratio-better than 60 dB .

"May I congratulate you on your Z.I.Z. amplifier. I find it excellent."-M.C., Lancing, Sussex.
" ! should like to express my very considerable satisfaction with the Micro FM. worked perfectly from the moment the battery was connected. is equolly as good os one tuner which i have also used and costs over five times as much.-L.E.H., Harrogote, Yorks.

\section*{BUILT, TESTE GUARANTEED ? 5}

\section*{GURANTE}

79'6

\section*{YOUR SINCLAIR GUARANTEE}

Snould you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full and at once without question.

\section*{SINCLAIR MICRO FM}

\section*{COMBINED FM TUNER/RECEIVER}

Less than \(3 \mathrm{in} . \times 1 \mathrm{in} . \times \frac{3}{4} \mathrm{in}\). and outstanding in every way this is a transistor F.M. Superhet which uses pulse counting diseriminator for superb audio quality, Low I.F. makes alignment unnecessary. Tunes \(88-108 \mathrm{Mc} / \mathrm{s}\). The telescopic aerial suffices for good reception in all but poorest areas. Signal to noise ratio - 30 dB as 30 microvolts. Takes standard 9 v . battery. One outlet serves for feeding to amplifier or recorder, the other allows set to be used as a pocket portabie. Brushed and polished aluminium front, spun aluminium dial. This is a fascinating set to build which gives excellent reception by any standards.

7 Transistors, 2 diodes Low J.F. obviates use of relatively large compo nents and e!iminates need for olignment ofter building. Set operates from a self-contoined standard 9y. battery. A guaranteed Sinclair design.
Complete kit inc. aeriol
case, earpiece and
instructions

Frequency response 25 cis to \(30 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{~dB}\) connected to two Z.12's. Sensitivity Mic. 2 mV into \(50 \mathrm{k} \Omega\) : P.U. -3 mV into soke: Radio -20 my into 4.7 (2. Equalisation correct to within \(\pm\) IdB on RiaA curve Irom to \(\times 2\) in \(\times 2\) size \(6 \frac{1}{2}\) in. \(\times 2 \frac{1}{2} i n . \times 2 \frac{1}{2} \mathrm{in}\). olus knobs.

FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR CUSTOMERS ALL ITEMS GUARANTEED


\title{
THE WORLD'S SMALLEST RADIO
}

\title{
SINCLAIR MICROMATIC
}

\section*{TECHNICAL}

SPECIFICATION
The Sinclair. Micromatic is housed in o neat plastic case with attractive aluminium front panel and aluminium tuning dial to match, calibrated in metres and ke/s.
Special Sinclair transistors are employed in a six-stage circuit of exceptional power and sensitivity. Two stages of powerful R.F. amplification are followed by a double diode detector from which the signal tuned in is passed to a high gain three stage audio amplifier. Automatic Gain Control counteracts fading from distant stations. The set is powered by two Mallory Mercury Cells Type ZM, 312 which are readily obtainable from radio shops, Boots Chemists, etc., and cost \(1 / 7\) each. They give approximately 70 hrs. working life. Inserting the earpiece plug switches the set on, withdrawing it swizches off.

This is a brand new design which has behind it the Sinclair world-famous tradition of specialisation in micro-radio circuitry. Performance reaches fantastically high levels in the SINCLAIR MICROMATIC. New circuitry combined with new elegance makes this remarkable set professionally right in every detail whether you build it yourself or buy it ready made complete in presentation case. It is the perfect personal radio, ready to serve wherever required. Smaller than a matchbox, this new set has an elegantly designed aluminium front panel with spun aluminium tuning control. Reception from a wide range of medium wave stations is assured with excellent selectivity and volume. The Micromatic is a set you will be proud to be seen using. It makes an ideal gift too-and it is completely British.

* ONLY ONE CONTROL
* calibrated dial

* POLISHED ALUMINIUM FRONT PANEL WITH SPUNALUMIIIUM DIAL
\(\star\) AMAZING RANGE POWER \& SENSITIVITY
* New chrcuitay
* bandspread for EASY REGEPTION OF 'POP'. Statlons
\(\star\) A.G.G.
* IN KIT FORM OR READY BUILT
+5 year guarantee WW-102 FOR FURTHER DETAILS.

WHYNOT BUILD ONE OF OUR PORTABLE TRANSISTOR RADIOS

NEW MELODY MAKER SIX \& 8 Etares. Six transistors and two diodes. Covers Mellum
and Long Wavea and Extria Band Ior EASIER tuning of LUX EM BOURGetc. Top grade 3in. Lond speaker for quilley output. Two R.F. stages for extra briost. High '\&' Bln Ferite Rod serial. Approx. 3 ion Milliwatts push pull out-
 \(1 / 6\) extrit. Thits amazing revelivet may be built fot ouly £3.9.6 P. \& P. з/9.


Parle price list and easy build planen 2\%- (Pree with kit).
TRANSONA FIVE NOW WITH 3 in . SPEAKER!
Covers M. and \(\mathbf{~} \mathrm{L}\). Wages-5 transistors and 2 diodes.
Covers M. and L. Waves and Trawler Bands, Iueorporating
ferrite rod actial, tuning condenser, volume ferrite rod actial, tuning condenser, Folume control, and new
type Ane tone super dynamic 3 in . speaker, at tructivo casc. type fine tope buper dynamic 3 ln . speaker, at tractivo cas
Bize ft \(\times 4+\times 1 / \mathrm{in}\), approx.
 Pares price list aud eaxy butld pla
NOW WITH 3in. SPEAKER! POCKET FIVE NOW WITH 3in. SPEAKER! * 7 Stages- 5 transistors and 2 diodes. Covers Medium and Long waves and Trawter Bands, a fenture usually found in ouly and many Continental stations were received loud and clear. Designed round supersensitive ferrite rod zerial and tine tone 3in. moring coll peraker, built foto atriactive black cate with
 avallable anymere)
rotal cost of ąl parts Now ONLY \(42 / 6\) P. \& P. 3/6,
Paris price dist and cany brild plans 1. (Free with Kith)


\section*{ROAMER SIX NEW ! t 8 stares- \(\theta\) transistors and 2 diodes. tra}



> NOW READY 1

Med POCKET 5 sion with minidure speaker. \(29 / 6\) P. \& \(\quad\).太 Now with Philco micro-alloy R.F. transiztors.
Tunable stations half a world away with this 6 waveband portable Punabie on M. and L. Waves, Trawler Band and three ghort Wavee. Push-pull output. Sensitice ferrite rod iverial and telescopic seriai \begin{tabular}{l} 
for short waves. Top graide trummistorn, 3 -inch gpraker, handsome case \\
with gilt nittings. \\
\hline
\end{tabular}
 tuning of LUXEMBOURG etc. \(\begin{gathered}\text { Total cost ol all parts NOW ONLY } \\ £ 3.19 .6\end{gathered}\) Parte prico list and easy briia plans \(2 /\)., (Free with hitt). Carrying strap \(1 / 0\) exara. P. \& P. \(3 / 6\). NEW! ROAMER SEVEN Mk. IV. 1 WAVEBAND PORTABLE OR CAR RADIO AMAZING PERFORMANCE AND SPECIFICATION * Now WITH PGilco micro-illoy r.f. trans. Founy tuni
* 8 angeges -7 tra ail wavebands.

Cover M . and IL. Wiwres. Trawler Band and three Bhort Waves to approx. 15 metres. Puub-pull output for room-alling
 tualng condenser. Ferrite rod aerial for M. \&\%. Wavee and gith trim and shoulder and hand straph. Size \(9 \times 7 \times 4 \operatorname{lin}\). approx. The perfect portable and the Ideal car radio. (Uses PP' batteries available anywhere). * Extra hand for easier toning of LUXEMBOURG etc.
 Total cost of all parts NoW ONLY \(\$ 5.19 .6\) P. \& P. 5/\%.
Total cost oi all parts NOW ONLY 85.19 .6 P. \&P. \(5 / 6\).
SUPER SEVEN


Covers M. And Stages- Waves inansistors and \(\mathcal{E}\) dioders. Covers M. and I. Waves and Trawler Band. The ideal radio Yor home, car or can be fitted with carrying strap for outdoor
use. Completely portable-built-kn ferrite rod acriul for wonderiul reception. spectal circuit incorporating \(2 \mathbb{R F}\) stages, pushopuil


Total cost of all parts Now ONLY \&3 19.6
Parts price list and easy bulld plans 2/. (Free with kit.) P. \& P. 3/8.

NEW!! TRANSONA SIX
\(\star 8\) stages- -6 transistors and 2 diodes
A top performance recelver covering full M. \(\&\). L . Wa A top performance recelvor covering full M. \& L. Waves and Trauler pleasure. Ferrite rod aerial Mrade stin. spcaker nakes listening a fncluding Lurembourg loviad and clenr. stations listed in one evening meluaing Luxembourg lond and clear. Attractive case ln grey with
red grille. slze \(01 \times 4 \frac{1}{} \times 1\) ing. (Uses PP4 battery, avallable auyWhere.) Total cost ol all parts \(59 / 6\) P. \& P. \(3 / 0\).

Pests price list and casy build plans \(9 /\). (Free with kit).


\section*{MELODY SIX NEW!!}
\(\star 8\) stages - 8 ransistors and 2 diodes. Our latest completely portablo translitor radio covering M. and La wavee, apcaker, top grale transistors, volume control, tuniog con denser, wave change sllde switch, sensitive 6in. lerrite rod aerial. Pueh-pull output. Wonderful reception of B.B.C. Home and Light, 208, and many Contlinental stations Handsome leather look pocket size case, only \(6\{\times 3!\times\)
 Parts price list and ensy luthd plams 24 - (Pree with kith. P. \& P. \(3 / 6\). All conpponenta used bis our receiverx may be purchased separnely if deat red.
Owild plans neailable separately at prices stated. OVERSEAS POST 10/.

\section*{RADIO EXCHANGE}

61 HIGH ST., BEDFORD. 'Phone: 52367
Gallers side entrance Barratts Shoe Shop. Weekdays 9-5 p.m. Sots. 9-12.30 WW-103 FOR FURTHER DETAILS.

\section*{Record it...and hear the play-back simultaneously on the Brenell Mk5M}

-and be sure it sounds superb!
Write for illustrated leaflet WW2

\section*{Arenell}

BRENELL ENGINEERING CO. LTD. 231-5 Liverpool-Road, London, N.I Telephone: NORth 827! (5 lines)

WW-104 FOR FURTHER DETAILS.

\section*{TECHNICAL TRAINING by ICs IN RADIO, TELEVISION AND Electronic engineering}

First-class opportunities in Radio and Electronics await the IC S trained man. Let I CS train YOU for a well-paid post in this expanding field. ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for :
* INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
* C. \& G. TELECOMMUNICATION TECHNICIANS CERTS.
* C. \& G. SUPPLEMENTARY STUDIES.
* R T.E.b. RADIO AND TV SERVICING GERTIFIGATE
- RADIO AMATEURS EXAMINATION.
* P.m.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tultion.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by resurn mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.



Does your hi-fi cause disharmony in the home? Does it clutter up the room? Does it irritate your wife? Why not bring harmony into the home with Record Housing? Our New Maestro Equipment Cabinet ( \(£ 32.10 .0\) ) with matching Folded Horn Speaker Enclosures ( \(£ 10.19 .0\) each) will blend harmoniously into any setting.
Whatever your set up there's a Record Housing Cabinet to meet your needs. Amplifiers, tuners, turntables, loudspeakers, records, tapes, tape decks-and even a complete tape recorder-you name it-we'll house it! Send for fully illustrated catalogue describing over 20 different cabinets and U.K. stockists' list.
FREE HI-FI HOUSING ADVISORY SERVICE RECORD HOUSING (Dept. WW2) Brook Rd., London, N.22. Tel: BOWes Park 7487


JOHN SMITH LTD.
209 SPON LANE WEST BROMWICH - STAFFS TELEPHONE:WES 2516 (3 lines) WDODS LANE CRADLEY HEATH • STAFFS TELEPHONE: CR 69283 (3 lines) WW- 107 FOR FURTHER DETAILS.


WW-108 FOR FURTHER DETAILS.

\section*{Precision Re istors}

\section*{wire-wound \\ with alternate sections reversed for low inductance.}

\section*{compatible resins}
for bobbin and encapsulation.

\section*{\(0.01 \%\) stability}
after 2000 hours, an independent test.

16 types
with axial lead, radial lug or printed circuit connections. many with type-approval, all stableq over range \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\).

\section*{all this and quantity deliveries in six weeks prototypes 14 days}

Send for full details of
M E C P-type precision wire-
wound resistors to
Miniature Electronic
Components Lid
St. Johns Woking Surrey
Woking 63621


WW-109 FOR FURTIER DETAILS.

\section*{MODEL 633}


An instrument for the connoisseur . . .
Designed to a strict specification Built to endure
* Three operational speeds

633-1 \(\frac{1}{8}, 3 \frac{3}{4}\) and \(7 \frac{1}{2}\) i.p.s. \(633 \mathrm{H}-3 \frac{3}{4}, 7 \frac{1}{2}\) and 15 i.p.s
* Monitoring of recorded programme.
* Comparison by " \(A-B\) " switching.

米 Switched bias control.
* Level meter reads on both record and playback
* Mixing facilities with separate gain controls.
* Modular construction to provide maximum service accessibility.
* Separate record and replay heads
* Separate record and replay amplifiers.
* Fully compensated input socket for magnetic pick-up.
* Spot erase.
* 3 watts undistorted output.

Model 633120 gns.
Model 633H \(\mathbf{1 2 5}\) gns.
The 633 is the latest addition to the Ferrograph range and is intended for the serious home recordist as well as the professional user. Each instrument is supplied with an abstract of actual performance in the form of a test certificate.
Spare parts-as with all Ferrograph instrumentsare guaranteed available for at least 10 years.


Ferrograph
the incomparable tape recorder ww-110 FOR FURTHER DETAILS.


Elcom complete mixing equipment is designed around the well known Elcom Electronic Fader which provides a noise free stepless fade.
A wide range of equipment is available from the transportable four channel Mono/ Stereo battery/mains units to large multi-channel studio consoles.
Standard equipment can be provided at low cost with an unlimited combination of facilities to customers specification, and we are pleased to discuss specific requirements and submit quotations.

For full details write or phonet ELCOM (NORTHAMPTON) LTD.
WEEDON ROAD IMDUSTRIAL ESTATE NORTHAMPTON. Tel, Northampton 51873

\section*{}

\section*{A.C. Power Supplies give you exactly what you need.}


Savage A.C. Power Supplies are available for:-

\section*{1, 2 or 3 PHASE OUTPUTS OF \\ [ 35 VA-35 KVA \({ }^{\text {Freaunclifs of }}\) 6 c/s - \(100 \mathrm{Kc} / \mathrm{s}\)}

For Industrial applications and processes; Research; Testing and Calibration

Our Engineers will be pleased to advise on all specific problems Now Manufactured \& Marketed by:-

\section*{PYE TVT LIMITED}

COLDHAMS LANE CAMBRIDGE•P.O. BOX 41 Telephones Cambridge (Office and Works) 45115 Cables TeeVeeTee, Cambridge: Telex 81103

\section*{A NEW CONCEPT IN TRIMMERS \\ VARIABLE TRIMMER CAPACITORS P.T.F.E. DIELECTRIC}

\section*{CHASSIS MOUNTING} capacitance range up to 30 pF .

\section*{HORIZONTAL P.C. MOUNTING capacitance range up to 30 pF . \\ VERTICAL P.C. MOUNTING capacitance range up to 7 pF .}



High accuracy, wide range, low cost. These are among the many ost. These are among the many rising a pocket size black moulded case with conerasting noulded case with conerasting MINITIME is designed to measure MNIME is designed to measure he time interval between the opening andjor closing of concircuits. Range: milli -10 secs.

Send for explanatory leafet to our Agents: Hird-Brown Ltd.. Bolton, Bolton 27311; Sencom Ltd., London. Hampstead Il03; Jiveco, Paris; S.P. R.L. Pol Francois, Belgium; or direct to A. G. BROWN ELECTRONICS LTD., LOWER MILLS, BUSBY GLASGOW, SCOTLAND.

WW-114 FOR FURTHER DETAILS.

\section*{wov. . PCOT manuers}

FOR THE HOME CONSTRUCTOR
Widely used professionally, a limited range of Vero products are available direct from the manufacturers:-
FRAMES
I. CF2U7E/MR
2. CF2UTDMMR
3. CF3UIOC/MR
4. CF4UIOC/MR
5. CF4U13B/MR
6. CFSUI3B MR


Ponlage 2/6. If Cornectors ars ordered ingether with frameres,
add posiage for frathen onty.
\begin{tabular}{lllll}
260 & \(7.93 \times 11.0\) & il & 6 & \(30 / 10\) \\
\hline .15 & 6 & \(34 / 9\)
\end{tabular}

VELOPMENTS COMPANY LIMITED
ULVERSTON LANCASHIRE, ENGLAND
Telephone: Ulverston 2621 Cables: Oxley Ulverston

Postage: Items \(1,2,3,4\),
\(4 / 6\) each; \(5,6,6 /-\) each.

PLUG-IN VEROBOARDS
TO FIT THESE FRAMES PART
NO. SIZE MATRIX \({ }_{30}^{303} \quad \begin{array}{lll}2.55 \times 3.7 \\ 2.51\end{array}\) \(241 \quad 2.55 \times 5.0\)
\(\begin{array}{ll}318 & 4.43 \times 8.0 \\ 259 & 4.43 \times 8.0\end{array}\)
\(\begin{array}{ll}317 & 6.15 \times 8.0 \\ & 6.15 \times 8.0\end{array}\)
\(248 \quad 6.15 \times 8.0\)
\(316 \quad 6.15 \times 11.0\)
\(258 \quad 6.15 \times 11.0\)
\(319 \quad 7.93 \times 11.0\)
Postage 2/6. If Veroboards are ordered together with Frames, add postage for Frames only.
PROMPT DELIVERY. CASH WITH ORDER TO
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Eastleigh, Hampshire
All prices U.K. only-Monufocturer's prices ovailable on request.

\section*{THREE INSTRUMENTS from}

Robust construction - Attractively designed with clear front panels - Ease of Operation - Compact Moderately Priced


Type G.I. L.F. Signal Generator \(10 \mathrm{c} / \mathrm{s}\) to \(100 \mathrm{Kc} / \mathrm{s}\) in four decade ranges. Scale \(5 \frac{1}{2}\) in. dia. \(180^{\circ}\) rotation Three outputs.
0-\% v. r.m.s. SINE WAVE with low distortion.
.0-9 v. peak to peak SQUARE WAVE with no droop and good H.F. rise time. \(0-1\) watt into \(30 \mathrm{hms}, 50 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{Kc} / \mathrm{s}\). PRICE 620 nett U.K.


Type G. 2 L.F. Signal Generator \(10 \mathrm{c} / \mathrm{s}\) to \(100 \mathrm{Kc} / \mathrm{s}\) in four decade ranges. Scale \(4 \frac{1}{8}\) in. dia. \(330^{\circ}\) rotation. Three outputs.
0-6 r.m.s. SINE WAVE with low distortion.
0-9 peak to peak SQUARE WAVE with no droop and good H.F. rise time. \(0-1\) watt into \(3 \mathrm{ohms} 50 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{Kc} / \mathrm{s}\). Step attenuator on output (1) and (2) giving XI, X.1, X.01, X.001. PRICE \(£ 24\) nett U.K.


Type M.I. Voltmeter 15 A.C. ranges \(1 \mathrm{mV}-500 \mathrm{v}\). Frequency \(10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}\). Input impedance. 10 meg. ohms. Amplifier output available at low Impedance with voltage gain of approximately 80 times on most sensitive range. D.C. range 0 to 400 v . in three ranges. Isolated from case.
Impedance 20 Kilohms/volt PRICE 226 nett U.K.

Further details from


WW-116 FOR FURTHER DETAILS.

\section*{CASTELCO SWITCHES}

Manufacturers of miniature precision electrical switches rated at \(I A\). and \(2 A\). 250 v . AC/DC and low voltage, to British and Foreign Specifications.
Comprehensive Catalogue
available on request.


We invite your specific enquiries. CASTELCO (G.B.) LTD., CASTLE WORKS, HIGH STREET, Tel: Woking \(4172 ; 3\), SURREY. \begin{tabular}{l} 
Telex 85186 \\
\hline
\end{tabular}

\section*{MICROPHONES}
their accessories TRANSISTOR SOUND
and

\section*{"RADIOMIC" EQUIPMENT}
top ranking quality for top ranking performance.
Full particulars from:

\section*{LUSTRAPHONE}

St. George's Works, Regent's Park Road, London, N.W. 1 Tel : PRImrose 8844

WW-117 FOR FURTHER DETAILS.
WW-118 FOR FURTHER DETAILS.


Sole Distributors

\section*{Super-Electronics Ltd.}

\section*{5 Violet Hill}

London, N.W. 8
Tel: Maida Vale 8281

\section*{THE AUDIO FIDELITY AF10/15}

A Superb High Fidelity, All Transistor Amplifier supplying 10 watts R.M.S. into 15 ohm load

\section*{OUTPUT}

15 watts (R.M.S.) into 3.75 ohm load. 10 watts (R.M.S.) into 15 ohm load.

TOTAL HARMONIC DISTORTION \(0.1 \%\) at 10 wates (R.M.S.) 1.000 c.p.s. DAMPING FACTOR 20

HUM AND NOISE - 80 dB .

\section*{FREQUENCY RESPONSE}

10-35,000 c.p.s. -3 dB .
(measured at tape monitor input)
TREBLE CONTROLS
+17 dB . to -14 dB . at \(10 \mathrm{Kc} / \mathrm{s}\).
FILTER (steep cut)
\(7 \mathrm{Kc} / \mathrm{s}\), \(11 \mathrm{Kc} / \mathrm{s}\), \(15 \mathrm{Kc} / \mathrm{s}\).
BASS CONTROLS
+18 dB . to -16 dB . at 40 c.p.s.
Tape, Record and Monitoring facilities available in each channel. For recording, an output socket providing 200 mV , is incorporated.

\section*{INPUT SENSITIVITY}

For 10 wates R.M.S. into 15 ohms.
Pick-up Magnetic 3.5 mV .
Pick-up Crystal/Ceramic 400 mV .
Tape Head 2 mv .
Tape Head 2 mV .
Radio/Aux. Ceramic P.U. 100 mV .


\section*{RECOMMENDED RETAIL PRICE \\ GNS.}

Ask your local \(\mathrm{Hi}-\mathrm{Fi}\) dealer for a demonstration or send S.A.E. for leaflet.

A brand new design incorporating the very latest Mullard Transistors making possible the outstanding performance figures given. Compare them with other leading makes currently available.

Designed and Developed by AUDIO FIDELITY LTD.

EQUALISATION (Switched)
Gram. to Standard R.I.A.A. curve.
Tape to Standard C.C.I.R. sharacteristic at \(7 \frac{1}{2} \mathrm{in}\). per sec.

NPUT SELECTOR SWITCH (5 position). (1) 33 f r.p.m. (2) 78 r.p.m. (3) Aux. (Radio Tuner, Tape Rec., etc.). (4) Microphone. (5) Tape Head.

For use with all makes, rypes, and impedances of ceramic and magnetic pick-up heads; crystal Moving Coil (Dynamic) and Ribbon microphones.
Two mains outlet sockets conerolled by amplifier mains switch are fitted for supplying auxiliary equipment.

\section*{MAINS INPUT SELECTOR}

For 100-110-120-200-220-240 V. 50/60 c.p.s. A brilliantly designed unit built to highest standards and employing all the latest techniques and materials. Easy to use, tastefully styled. Equally suitable for panel mounting or free standing use.

CASE FINISH: Black or imitation walnut.
SIZE \(12 \frac{1}{2} \times 4 \times 8\) 登in.
WEIGHT 12 t k :

Manufactured and Distributed by LINEAR PRODUCTS LTD. ELECTRON WORKS, ARMLEY, LEEDS

WW-120 FOR FURTHER DETAILS.

\section*{NGBROWN LTD}

\section*{MAIL ORDER DIVISION}

\section*{pacesetters in storage equipment}

\section*{36-DRAWER UNIT} SPACESAVER • 36A. Overall size \(42^{\prime \prime}\) high, \(24 \frac{1}{2}^{\prime \prime}\) wide, \(12^{\prime \prime}\) deep. 36 drawers. In best quality steel, stove enamelled dark green. £12.0.0.


12-DRAWER UNIT
POPULAR 12A
12 drawers in a
compact nest measuring \(9^{\prime \prime}\) high, \(35^{\prime \prime}\) wide, \(12^{\prime \prime}\) deepan invaluable storage asset for the very economical price of only £4.15.0.


TO: N. C. BROWN LTD. Dept. E29 Heywood Lancs Tel. 69018
London: Dept. E29 5/6 Staple Inn, W.C. 1 Prease send me a cony of your free illustrated catalogue. Please send me a 36 A drawer unit 12A drawer unit Tick where applicable and send cash with order.
NAME
ADDRESS
WW-121 FOR FURTHER DETAILS.

Accurate and direct measurement of speed without coupling to moving parts

\section*{fralim} Resomantreatichioneriers
for hand use or permanent mounting.
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive literature on FRAHM Tachometers and Frequency Meters is freely available from the Sole U.K: distributors:

\section*{ANDERS METER SERVICE}
anders electronics ltd. 103 hampstead road london nw1 TELEPHONE EUSTON 1639

MINISTAY OF AVIATION APPROVED WW-122 FOR FURTHER DETAILS.



WW-123 FOR FURTHER DETAILS.


\section*{VARIABLE VOLTAGE TRANSFORMERS \\ WORLD FAMOUS "SLIDE-TRANS" AVAILABLE ONLY FROMA I.M.O. \\ * rated current consistant at all points along the winding \\ Output: 0-260 V. Input: 230 V A.C. \(50 / 60\) c.p.s. Shrouded fully variable transformers for bench or panel mounting. \\ 1 Amp. \(£ 4.10 .0\) \\ 2.5 Amp. \&5.17.6 \\ 5 Amp. \(£ 9\). 0.0 \\ 10 Amp. \(£ 18\). 5.0 \\ 20 Amp. £32.10.0 \\ Inset shows latest type brush Gear providing I volt variation. \\ C. \& P. extra.}

\section*{CONSTANT VOLTAGE TRANSFORMERS}

BEAT WINTER!
ONCE AGAIN WE CAN EXPECT THE USUAL VOLTAGE DROPS DUE TO THE COLD WEATHER
+ No Attention
\# No Maintenance
* No Moving Parts
* Corrected Wave

Input: \(190-270\) V. A.C.
Output: 240 v. A.C.
Output: 240 V . A.C
Accuracy: \(\pm 1 \%\).
Capacity:
250 watts.

Weight: 21 lb . Fitted
signal lamp and switch.
Size: \(11 \times 6 \frac{1}{2} \times 6 \mathrm{in}\). high

154
30 Amp. L.T. SUPPLY UNIT
O TO 18 v. D.C. WITH SMOOTH STEPLESS VARIATION
Designed for CONTINUOUS use at max. loading.
*Fitted voltmeter and ammeter. XInstantaneous overload cut-out nput: Mains A.C.
Robust construction
2 tone grey hammer fin ish. Steel case.
\&55.0.0 \(\begin{aligned} & \text { C. \& P. } 40 /- \\ & \text { G.B. (inland) }\end{aligned}\)
ENTIRELY SUITABLE FOR PLATING PLANTS, LABORATORY SUPPLIES, ETC.

\(\star 11\) megohms per
 *s \({ }_{\text {volt. }} \mathrm{mV}-1,500 \mathrm{~V}\) \(+100 \mathrm{C}^{\mathrm{mV}-1,500 \mathrm{~V}}\) \(\times 0.1\) ohm- 1,000 Megohms. * Kc Oscillator Test Source.
\(\star\) Complete test probes.

\author{
Pricir \(\mathrm{P}^{2} \mathbf{3 5 . 0 . 0}\) BUY DIRECT from MANUFACTURER
}

\section*{36ft. AERIAL MASTS}

NEW Lumest partien
Check these vital points:
*Made from \(6 \times 1 \frac{3}{3} \mathrm{in}\). dia. Shera= dized steel sections, for duraability and strength.
*Extra strong locating base.
\(\star\) Top cap with fitted pulley and halyard.
* 2 sets (8) Rotproof Guys.
\(\star\) Rustproofed Steel Picketing Stakes.
ONLY
Carr. 20/-. Returnable wood
case 30/-

PORTABLE TRANSISTOR TESTER SUITABLE FOR PRODUCTION \& LABORATORY USE
 SPECIFICATION Alpha 0.7 to 0.997 Beta 5-300. ICO \(0-50 \mu \mathrm{~A} . \quad 5 \mathrm{~mA}\). Capable of measuring GERMANIUM AND SILICON DIODES. DESIGNED WITH RESISTANCE SCALE 200 ohms to I Megohm as an ADDED FEATURE. Housed in heavy duty plastic case, \(\mathrm{c} / \mathrm{w}\) in
ternal battery ternal battery.
Only 5 .15.0 Plus \(7 / 6\) C. \& P.

20 Amp. L.T. SUPPLY UNIT


NOT EX.W.D. G.B. (Inland)

LATEST DESIGN
HEAVY DUTY 12/24 VOLT D.C. Output: Adjustable up to 20 amps .
CONTINUOUS at \(12 / 24\) volts. Inpur: \(220 / 230 / 240 \mathrm{~V}\). AC 50 cycles
FULLY FUSED, Neon indicator, 0-20 amp meter. Size \(16 x\) in heavy gain. steel cabinet. Grey Hammer finish. Weight: 50 lbs. ONity 50 bs
232.10.1

\section*{IMMEDIATE \\ DESPATCH}
full spares and service available

\section*{VARIABLE HIGH VOLTAGE} SAMPLING TESTER dielectric breakdown testek
* Range: Infinitely variable up to 3,000 volts. 0.1 amp .
\(\star\) Entirely suitable for continuous testing \(\star\) Automatic safety cut-out. Input: Mains voltage. Input and tee-leads with clips.

PORTABLE VARIABLE A.C. POWER Designed for engineers SUPPLY UNIT whose requirements call for a visual indication of vol \(0-260 \mathrm{v}\). \(1 \frac{1}{2}\) amps. O-260 V.
INPUT:
230 V. A.C. \(50 / 60\) c.p.s.
Fitted Fitted with fuse, voltmeter, safety indicator, On-off switch and lead.
\(8 \times 5 \times 5\) in. high.
PRICE \&?.17.6 c. \& P. 12/6

5 amp. A.C. \& D.C. variable supply unit
 Specification:
Output: \(0-260\) v. A.C.
\(0-240 \mathrm{v}\). D.C
*Smooth stepless voltage variation from O-Max.
*Current consistent throughout
the controlled range.
* Ammeter and voltmeter fitted, and Neon indicator.
*Fully fused input and output. Strong steel case with carrying handle and rubber feet. \(11 \times 7 \times 14 \mathrm{in}\). high. MADE IN ENGLAND.

PRICE \(230.0 .0 \quad \begin{aligned} & \text { C. \& P. } 40 / \text { G. } \\ & \text { Gt. Britain (Inland) }\end{aligned}\)


AVO VALVE CHARACTERISTIC METER. This well known instrument comprehensively tests old and modern types. In very good condition, fully tested, rogether Testing Manual (1964 Edition). £30. Carr. £1.

BEAT FREQUENCYOSCILLATORS MARCONITF 195 M. Covers 10 cps . to \(40 \mathrm{Kc} / \mathrm{s}\) in two sweeps. 0 to \(20 \mathrm{Kc} / \mathrm{s}\) and 20 to \(40 \mathrm{Kc} / \mathrm{s}\). Outpue 2 wates into 600 or 2,500 ohms. Panel meter indicates ourput voltage. A.C. mains operation 100 to 250 volts. First class condition. Fully tested. \(\mathbf{£ 2 0}\), carr. 30/-.

EVERSHED BRIDGE MEGGER. 500 Volt. Varley and Loop rests. Complete in leather case and in as new condition. E 35 .
MARCONI "Q Q METER. Type 329G. As new condition and in perfect working order. \(£ 65\). Carr. 50/.

\section*{BC-22I FREQUENCY METERS} As new condition complete with crystal WITHOUT calibration charts. \(\mathbf{E 9 / 1 9 / 6 .}\) Carr. 10/6. Precise \((0.001 \%)\) dial readings to your requirements at \(2 / 6\) per frequency.

\section*{MICROAMMETERS}
R.C.A. \(0-500\) microamps. 24 in . circular flush panel mounting. Dials are engraved \(0-150-600\) volts. As used in the American version of the No. 19 set. Brand new and boxed \(15 /\).. P. \& P. 1/6.
\begin{tabular}{|c|c|}
\hline AR-88 SPARES & 12/6 \\
\hline Knobs, Medium size, Set of 8 & 101- \\
\hline Knobs, Large size & \(5 / 6\) \\
\hline Condenser ( \(3 \times 4 \mathrm{mfd}\) ). Post 4/6 & 12/6 \\
\hline Mains Trans. (L.F.) (postage 9/-) & 42/6 \\
\hline
\end{tabular}

\footnotetext{
AR-88.LF RECEIVERS
A good selection is available for callers at from \(£ 30\). All are in good condition and
}

\section*{LABORATORY pH METER}

Marconi type TF.1093/I. Range 0-14 pH direct reading. Full zemperature compensation. Scale expansion providing discrimination of 0.01 pH . A.C. mains operation. Brand new complete with electrode stand
and manual. Full details on request. \(£ 35\).

CINTEL OSCILLOSCOPE
A 12 in . demonstration oscilloscope with all controls at rear. BRAND NEW \(£ 80\).


SANGAMO VOLTMETERS S61. Dual range \(0-5\) and \(0-100\) v. D.C. FSD I mA. 3 in . scale. Recent manufacture. Ideal for schools. Com. plete in super quality canvas carrying case with rest case with leads. BRAND NEW. Boxed 32/6. Post \(2 / 6\)

\section*{ADVANCE TEST EQUIPMENT}

H1B Audio Signal Generator. . . ............ \(\mathbf{8 3 0} 0\)
J1B Audio Signal Generator. J2B Audio Signal Generator. TT1S Transistor Tester. VM76 AC/DC Valve Volimeter
VM77C AC Millivoltmeter
VM78 AC Millivoltmeter (transistorised)
\(£ 300\)

M78 AC Millivoltmeter (transistorised) £40 0
VM79 UHF Millivoltmeter (transistorised) 1125 These are current production, manufactured in U.K. by Advance Electronics Ltd. (not discontinued models). Showing a saving of approximately \(33 \frac{1}{\%}\) on nett trade price. BRAND NEW, all in original sealed carton. Carr. 10/- extra per item.

\section*{OSCILLOSCOPE TYPE 13A}

Double beam. Time base \(2 \mathrm{c} / \mathrm{s}\). to \(750 \mathrm{Kc} / \mathrm{s}\). Band width up to 5 \(\mathrm{Mc} / \mathrm{s}\). Calibration markers at \(100 \mathrm{Kc} / \mathrm{s}\). and \(1 \mathrm{Mc} / \mathrm{s}\). Cathode follower probe for H.F. testing. Operates from A.C. mains 100 to 250 volts. A completely reliable quality instrument. Supplied fully checked with all leads, gracicule, visor, circuit etc. \(822 / 10 /\). Carr. \(30 \%\).

\section*{PCR-1 and PCR-3 RECEIVERS}

Brand new condition. 3 wavebands. R.F. stage, 6 valves. PCR-1 \(860-2080\) metres, \(190-570\) metres, \(5.6-18 \mathrm{Mc} / \mathrm{s}\)., internal speaker. PCR-3 \(190-570\) metres, 2.3-7.3 Mc/s. 7.0 \(23 \mathrm{Mc} / \mathrm{s}\). required external 3 ohm speaker. External Power Supply required or can be fitted with internal Mains Power Supply for \(£ 2\) extra. Circuit supplied. Fully tested prior to
 Brand new external Power Supply Units, Vibrator Unit for operation from 12 V . car battery, for caravans or boats \(15 / 6\) or A.C. Mains Units \(\mathbf{E 2}\). Carriage 5/6.

\section*{HAMMARLUND SP-600-JX}

20 valve dual conversion superhet receiver covering \(540 \mathrm{Kc} / \mathrm{s}\) to \(54 \mathrm{Mc} / \mathrm{s}\) in 6 bands. This is a professional quality receiver of recent design with stability of \(0.01 \%\) or better. Second channel rejection 74 dB down and spurious responses are at least 100 dB down. Band width from \(200 \mathrm{c} / \mathrm{s} 20 \quad 13 \mathrm{Kc} / \mathrm{s}\). Crystal filter with crystal phasing control. Operates directly from A.C. mains \(90-260 \mathrm{v} .50-60 \mathrm{c} / \mathrm{s}\). Original cost \(£ 510\) Supplied overhauled and in first class working order. \(£ 100\) Fuller details on request

PRICES NOW REDUCED CINTEL EQUIPMENT. ELECTROLYTIC CAPACITANCE AND INCREMEN. TAL INDUCTANCE BRIDGE No. 36601
A modern inst rument, all solid state, which accurately measures the capacity of electrolytic condensers from \(0 \cdot 1,1 \mathrm{~F}\) to \(1,000 \mu \mathrm{~F}\) under operating conditions. Leakage current and polarizing voltage are separately metered. Inductances from 100 mH to 100 H can also be measured with current up to 100 mA A.C. mains operation. Unused with handbook. List Price \(£ 220\) Our Price \(£ 70\)
WIDE RANGE CAPACITANCE BRIDGE. No. 1864. A matching instrument to the above. All solid state. Mains operation. Measures from 0.002 pF to \(100 \mu \mathrm{~F}\). Unused with handbook. List Price E250. Our Price \(\mathrm{E75}\).

PULSE GENERATOR MARCONI TYPE TF.675.F. Repetition frequency \(50 \mathrm{c} / \mathrm{s}\) to \(50 \mathrm{kc} / \mathrm{s}\). Pulse duration 0.15 to \(100 \mu \mathrm{sec}\). Variable amplitude positive or negative pulses of up to at least 30 volts peak across a load of \(1 \mathrm{k} \Omega\) or 50 voles across \(100 \mathrm{k} \Omega\). Internal 0.1 and \(0.5 \mu \mathrm{sec}\). delay lines. BRAND NEW complete with Manual. List price \(£ 125\). Our price \(£ 45\). LOW FREQUENCY GENERATOR MARCONI TYPE TF. 1382. Frequency \(0.0033 \mathrm{c} / \mathrm{s}\) to \(1 \mathrm{kc} / \mathrm{s}\) in five bends. Sine,
Square and Ramp waveforms. Continuous variable output Square and Ramp waveforms. Continuous variable output
from \(0-15\) Volts peak to peak into a \(2.5 \mathrm{~K} \Omega\) load. BRAND NEW complete with Manual. List price 195 , Our price \(£ 75\).
DELAY GENERATOR MARCONI TYPE TF. 1415.
Provides sweep-delaying facilizies when used in, conjunction with the TF. 1330 (series) or similar oscilloscope. Alternatively, it may be used independenely as a general purpose delay generator. Derailed technical specification supplied upon request. BRAND NEW E35.

\section*{Charles britain (Radio) lid. \\ II UPPER SAINT MARTIN'S LANE LONDON, W.C.2. \\ TEMple Bor 0545 \\ Near Leicester Sq. Station. \\ (Opposite Tharn House) \\ Shop hours 9-6 p.m. (9-1 Thursdays). Open all day Saturday}


PORTABLE OSCILLOSCOPE CT. 52 A compact general purpose inssrument with many unusual features. Size 9 in. high, 8 in. wide, \(16 \frac{1}{2} \mathrm{in}\). deep. Time base \(10 \mathrm{c} / \mathrm{s}\) to \(40 \mathrm{Kc} / \mathrm{s}\) : Y plate sensitivity 40 V per cm . Tube \(2 \frac{1}{2}\) in., Frequency compensated amplifier up to 38 dB gain. Band width up to \(\mathrm{I} \mathrm{Mc} / \mathrm{s}\). Single sweep facilities Operates from A.C. mains \(100-250\) volts \(50 \mathrm{c} / \mathrm{s}\). Complete with all test leads, metal transit case, instruction book and circuit diagram. BRAND NEW. Tested and guaranteed. \(\$ 22 / 10 /\). Carr. \(10 /\).

> PHASE MONITOR ME-63/U (AN-URM-69)
> Designed to measure directly the phase angle between two applied audio frequency signals of from 20 to 20,000 c.p. 5 \(+1 \%\). Direct indication on a panel meter. Input can be sinusoidal or non-sinusoidal. from 2 to 30 volts, peak. Of recent manufacture (1957) by Control Electronics inc. and ex-U.S.A. Air Force. In first class condition with handbook. A complete instru-
> ment with 19 valves. 840 . Carr. 30/-
T.C.C. METALPACK CONDENSERS. 0.1 mid. 500 v . D.C. wkg. at \(70^{\circ} \mathrm{C}\). Brand new, polythene wrapped, T/6 doz, or \(£ 2\) per 100 . 0.1 mfd. (CP37N); 0.05 mfd . (CP35N); 0.01 mid. (CP. 32 N ) all at \(5 / 6\) doz. or \(32 / 6\) per 100 SPRAGUE METAL CASED CONDEN. SERS 0.01 mfd ,, 000 v. D.C. wkg., \(5 / 6 \mathrm{doz}\)., or 32/6 per 100.
T.C.C. VISCONAL CONDENSERS. 8 mfd .800 v . D.C. wkg. at \(71^{\circ} \mathrm{C}\). CP 152 v . Size \(3 \times 1 \frac{1}{2} \times 5 \mathrm{in}\), high. BRAND
NEW (boxed), \(8 / 6\) each. DUBILIER NITROGOL 8 mfd. 350 v . D.C. wkg. at \(71^{\circ} \mathrm{C}\). Size \(1 \frac{1}{3} \times 1 \frac{1}{4} \times 4 \frac{3}{4}\) in. high. With at \(71^{\circ} \mathrm{C}\). Size \(11 \times 1 \frac{1}{3} \times 4 \frac{3}{3}\) in. high. With
fixing clips. BRAND NEW (boxed) \(5 /\). fixing clips. BRAND NEW (boxed) 5/each. T.C.C. or DUBILIER. 4 mfd. 600 v ..wkg. CP \(130 T\) or simllar. \(1 \frac{2}{4} \times\) \(1 \frac{2}{x} \times 4 \frac{1 n}{8}\). high. BRAND
\(4 / 6\) each. All post paid.

\section*{STANDARD TRANSFORMERS} Vacuum impregnated. interleaved, E.S screen, universal mounting. Size \(4 \times 3 \div x\) \(2 \frac{1}{2}\) in. ALL BRAND NEW. 24/- each.
Pose \(4 / 6\).
Type 1. \(250-0-250\) v. 80 mA .6 .3 v .3 m. tapped at 4 v .4 a .6 .3 v .1 a . capped at 4 v . and 5 v .2 a
Type 2. As above but \(35000-350\) 80 mA .
Type 3. 30 v. 2 a., tapped at 12,15 , 20 and 24 v . so give 3-4-5-6-8-9-10 v., etc. Type 5. 0-6-9-15 v. 4 a. Ideal for chargers.


LOW CAPACITANCE BRIDGE MARCONI TF. 1342 . Range 0.002 pF . to \(1,111 \mathrm{pF}\). Accuracy \(0.2 \%\). Three terminal transformer ratio arm bridge allows "in situ" measurements. Interna! oscillator. frequency \(1,000 \mathrm{c} / \mathrm{s}\). \(12 \times 17 \times 3 \frac{1}{2}\) in. Weight \(150 \mathrm{v} .40-100 \mathrm{c}\) 's. With leads and handbook. ABSOLUTELY BRAND NEW. E45.


\title{
stern-clyne filectronic celirif
}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
LONDON: \\
18 Tottenham Court Roan. W.1. \\
23 Tottenham Court Road, W.1. \\
309 Edeware Road, W.2. \\
109 Fleet Street, E.C. 4. \\
162 Holloway, Road, N. 7.
\end{tabular} & \[
\begin{array}{r}
\text { MUS } 5929 \\
\text { MUSum } 3451 \\
\text { PADdington } 6983 \\
\text { FLEet Street } 5812 \\
\text { NORII } 7941
\end{array}
\] & \begin{tabular}{l}
\(\theta\) Camberwell Charch Street, S.E.5. 220 Edkware Road, W. 2. \\
CROYDON: 12 Suffolk House, George Str \\
BRISTOL: 26 Merchant Street. Bristol 1
\end{tabular} \\
\hline \multicolumn{3}{|c|}{SEND FOR CATALOGUE} \\
\hline A 1/-P.O. brings new with unique items; pron & age Sound y illustra & Science Catalogue pack \\
\hline
\end{tabular}


\section*{SULTAN} Solid State Integrated Stereo Amplifier

KN OF PART ع29.8.0

Designs by MULLARD interpreted by
STERN


\section*{5-10 POWER AMPLIFIER}

One of the most fambous amplifiers ever made-thousands are in use throughont the norld. Superbly construeted to rigid stern-ilynne reyparements and con forming entirely to Mullard specifleat fon Inctuding all gpecified componentn ani brand new Mnlairel valves. Auxiliary power take-otr for jre Kit of Parts \(£ 11.0 .0\) \(\qquad\) £14.10.0 Carriage and Insurance 6/6.

\section*{2-VALVE PRE-AMPLIFIER}

Specially desigued by Mullard Research Lilihoratories for use with the 5-10 amplifier and one of the
 and tipe reply direct, or from presamplifer. Cont rols: 8 posit tou selector, rolume on;ofr, wide range bash and treble. Powered dirett by 5.10 amplifier.
Zits of Parts \(\mathbf{6 6 . 6 . 0}\) Assembled and Tested \(\mathbf{8 9 . 1 0 . 0}\) Cartlage and Insurance b/-, COMBINED PRices
5-10 Anplifier with 2 valve pre-amplffler cornplete kit of parts \(£ 17 / 16 /\). TERMS: Deposit \(\varepsilon 5 / 2 \mathrm{li/}\) - and 12 monthly payments of \(\varepsilon 1 / 4 / 2\). Total oredit price \(£ 20 / 6 / \mathrm{F}\) S-10 Amplither and 2 valive pre-amplitior aswembled nnd teated. \(£ 24.0 .0\).
TERMA: Deposit 28 and 12 uonthly payment of \(\varepsilon 1 / 10 / 10\). Totul TEBMM: Duposit \& \(_{8}\) and 12 pronthly paynents of \(\varepsilon 1 / 10 / 10\). Totul credit price \(£ 26 / 10 /-\) Carriage and Insurance 10/.

OWAY, LONDON, N.7. Te!. NORth \(8161 / 5\)

\title{
LIVERPOOL: 52 Lord Street.
} MANCHESTER.
20122 Withy Grover Royal 7450
20122 Wlthy Grove, M, c 4. Blackfrlers 53795246 SHEFFIRLD: 125 The Moor Shefield 28993
NOTTINGAM: Eastown House, Lincoln St.
NOTTINGRAM: Eastonn House, Lincoln St. \(\begin{gathered}\text { Nottingham } 45889\end{gathered}\)

MEMBER


PORTABLE GRAM CASES
PC1 Fotrecort player inatalat ob only aud idmifor use with portable PA systems and Fililo set ampliffers. Takes all standoril single players and autochangers. Bize over-

PC2 Suitable single phryer and amplikerfspenker hatallation. size orerall: \(18 \times 16 \times\)
 Suitable for Garried ghPras Revord Playwe or nimilar unit. PC3 For autochanger, ampliticrlypaaker instalhation. asize overall: is \(\times 16 \times 8 \mathrm{in}\).
 Autochangers.
mogram amptifer, \(8 \times\) än. bppaker and all atiandard
Add ofs rarriage and insurance lor any of above.

\section*{MONOGRAM AMPLIFIER}

\section*{Superb space and ecist cconomy design} spectally developed by Mnltiund Kespiar Laborntories and quetity construkted hy valve but provides as mndistarted ovtpu from any atandard xtal pick-up. Plua features include Biass Boowt and Treble contruls, panel illumination and apreciatly \(10 \times 21 \times 4 \frac{1}{2} \mathrm{ln}\). high gilcer hammer chasait timiah, satin gilser finish engrave
Descriptive leaftet free on request.



STERNKIT FMI TUNER
A new specially destgned wensitive
tuner for the amateur buider.
Provides a giable interference-iree Provides a gtable interferenoe-iree Meeption of BBC FM transmossions, aptimuma performance from any
 aligned clrcuit includes RF stage and a 11 nolse limiting atagee. Input nenaltivity better than 100 microvolta for 40 dB quieting. Power
15.3 volke at 1.5 A .

Completa kit ol parts
Assembled and tested
£7.9.6
\&10.9.6
mut ins. \(4 /\)
:ait. \& Ine. 4/.
 Optional power pack Type D kis
Assembled and tented
\(\$ 3.10 .0 \quad\) Carr. \(3 / 6\). Descriptive leafies free on fequest.


RECORD PLAYERS AT ECONOMICAL PRICES BSR GU7 4-speed with X1FI cart ridpe............. QARRARD \&RP22 A-speed with (3P91 cartridge BSR UA25 t-apeed autochanger with GARRARD 1000 Autochanger with OCs eartridge GARRARD 3000 Autochanger with STH/HO eartridge GARRARD SP25 with GP91 cartridge

Ciarriage and Insurmee on above \(b /{ }^{\circ}\) e extra.
GARRARD 401 Transcription Motor GOL.......... GARRARD LAB80 Transcription Autochanger les GOLDRING GL70 Transcription unit less cartringe

\footnotetext{
TERMS AVAILABLE ON ALL ORDERS OVER CIS IN VALUE
}


OUR FINEST EYER METER VALUE! DUVIDAL ITI-2 MULTITESTER With Built-in Meter Protection!

Pucket size with side-angle. jewelled nieter movement, ceramic long-
 hma/ volt D.C. 10,000 ohas/rolt A.C.

19 Rankes measure
\(0.5-25-250-500-2500\) volta D.C. \(0-10-100-500-1000\) volte. A.C. \(0-50\) \(\mathrm{uA}-2.5 \mathrm{~mA}-250 \mathrm{~mA}\).
0.001 nifd. -1 mfi.
20
20


CLEAR PLASTIC METERS


\section*{TWO-WAY RADIOS}

SUPERB QUALITY, BRAND NEW \& GUARANTEED
3 TRANBISTOR £6/15/- PAIR
4 TRANEISTOR E7/19/8 PAIR
5 TRANEISTOR £8/4/- PAIR.
6 TRANGISTOR \(29 / 19 / 6\) Pair.
6 TRANSISTOR
f17/10/- PAIB.
10 TRANBISTOR C22/10/- PAIR.
13 TRANSISTOR 500 MW 2-channel 30 gns. PR .
POST EXTRA

HIGH GRADE MULTIMETERS


MODEL 370.E
\(20,000 \Omega /\) volt D.C. volts
\(101.5 / 2.55 / 1,000 / 5,000 \quad 7\). A.C. *oits \(0 / 2.5 / 10\) /
 \(1 / 10 / 50 / 250 \mathrm{~mA} 1 / 10\)
amp C. Current \(0 / 250 \mathrm{~mA} / 4\) 10 amp. Resistag. £12/10/-. P. \& P. 3/6.
 GLANT MOLTMETER 6 in. full view meter.
2 colour seale. \(0 / 2.5 / 10\) i \(250 / 1,000 / 5,000\) v. A. a \(0 / 25 / 12.5 / 10 / 50\) \(250 / 1,000 / 5,000\) v. D.O \(0 / 50 \mu \mathrm{~A} / \mathrm{ll} 10 / 100 / 500 \mathrm{~mA}\) \(\begin{array}{lll}10 \text { amp. D.C. } & 02 \mathrm{~K} / \\ 200 \mathrm{~K} & 20 \mathrm{MEG} & 0 \mathrm{MM} \text {. }\end{array}\) £12/19/6. P. \& P. \(5 /\)


MODEL \(500,30,000\) O.P.V \(0 / .5 / 2.5 / 10 / 25 / 100\) \(250 / 500 / 1,000 \mathrm{~V}\). D.C. \(0 / 2.5 / 25\)
\(10 / 25 / 100 / 250 / 500\) \(1,0125 / 100 / 250\) / 500
 0/b0/K6. Meg. 60 . Meg. 0 £8/17/6. Post paid.


TE-51. NEW \(20,0000 /\) VOLT \(0 / 8 / 60 \mathrm{HOO}, 1,200 \mathrm{~V}\). A \(0 / 3 / 30 / 60 / 300 / 600 / 3.000\) V. D.C. \(0 / 60 \mu \mathrm{~A} / 12 / 300 \mathrm{MA}\).
 85/-. P. \& P. 2/ब.

MODEL TE-12 20,000 O.P.F. \(0 / 0.6 / 6 / 30 / 120 / 600 f\)
\(1,200 / 3.000 / 6.010\) \(0 / 6 / 30 / 120 / 600 / 1,200\) V. A.C. \(0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}\). \(0 / 6 \mathrm{~K} /\)
\(600 \mathrm{~K} / 8\) \(600 \mathrm{~K} / 8 \mathrm{Meg} . / 60 \mathrm{Meg} \mathrm{G}\)
\(60 \mathrm{PF} .2 \mathrm{MrD} . £ 5 / 19 / 6\). 60 PF. \(\frac{.2}{2 / 6 .}\)


MODEL U50D. WITH METER PROTECTYON. 20,000 o.p.F.
\(0 / .1 / 5 / 6 / 60 / 250 / 1,000\) v. D.C. \(0 / 1 / .5 / 5 / 50 / 250 / 1,000\)
\(0 / 2.5 / 10 / 50 / 250 / 1,000\)
v. D.C.C. \(0 / 05 / 5 / 5 / 50 / 250 \mathrm{~mA} .0 / 5 \mathrm{~K}\) ]
\(50 \mathrm{~K} / 500 \mathrm{~K} / 5 \mathrm{meg} . \mathrm{\Omega} .0001-\mathrm{s}\). .2 mfd. -20 - 22 dB \(\begin{array}{llll}25 / 19 / 6, & \text { P. \& } & \text { P. } & -22 /-\end{array}\)

MODEL 250J. 2.000 0.P.V. 0/10/50/5001 2,500 v. D.C. \(0 / 10 / 60 /\) \(0 / 2 \mathrm{Meg}\) - \(\Omega\)
-20 to +36 dB .
\(49 / 6\). \(^{\circ}\) P. \& P. \(2 / 6\)

complete with instructions, battery and leade
f8/19/6. \(P\) \& \(P\).


LAFAYETTE HI-FI STEREO HEAD-

* Air cushioned headband太 Solt rubber ear pads K Frequency response, 25 to 15,000 cycles. A High
sensitivity. Impedance 8 obma per phone. Supplled complete with all cables, wires, overlaad junaction hox and 3-comnectlon plag.
\(79 / 6\). P. P. \(2 / 6\). 79/6. P. \& P. \(2 / 6\).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
VARIABLE \\
VOLTAGE TRANSFORMERS
\end{tabular}} & \multirow[t]{2}{*}{} \\
\hline \multicolumn{3}{|l|}{Brand New Guaranteed Fully Shrouded. Input 230 50/60 c/s. Ontput 0-260 *.} & \\
\hline 1 amp. & 84/10/- & 12 amp. & \\
\hline 2.5 amp. & 85/17/6 & 20 amp . & ¢32/IU/- \\
\hline 6 amp. & £9 & 2.5 amp & portabic \\
\hline 8 amp . & & metal case & with meter \\
\hline 10 amp . & 117 & fuses, et & £9/17/6. \\
\hline
\end{tabular}

HEAVY DUTY AUTO TRANSFORMERS
step up or step down. Tapped \(0-115-230\) voles.


\section*{SILICON RECTIFIERS}

200 v. P.I. \(\mathbf{V} .200 \mathrm{~mA}\).


TRANSISTORISED TWO-WAY TELEPHONE INTERCOM Operative over amazingly long
distances. Separate call and press to talk buttons. 2 -wire conbection. 1000s of appliin ebony. Supplied complete in etony. supplied complete £6/10/-pair. P. \& P. 3/t


AVO CT. 38 ELECTRONIC MULTIMETERS A high quallty instrument offered at a fraction of 250 volt A.C. andi D.C. current: \(10 \mu \mathrm{~A}\) to 1 'amp. Watts: \(50 \mu \mathrm{~W}\) to 5 wattr. Resistance: 4 ranges
to 200 megohma. 0 Oerates on \(110 \% 200 / 250 \mathrm{v}\). to \({ }^{200}\) megohman. Operates on \(15 / 65 \mathrm{c} / \mathrm{s}\). Buppled in guaranteed working ortier with all leauls and R.E. probe.
£25. Carr, 10/-

\section*{MARCONI TF. 801 A V.H.F. SIGNAL GENERATOR}

Covers 10 to \(300 \mathrm{Mc} / \mathrm{s}\). (4 bands). Density cali-
brated. Int. mod. at 400,1000 and \(5000 \mathrm{c} / \mathrm{F}\). Attenubrated. Int. mod. at 400,1000 and 5000 ch . Attenu-
ated or force output. Operates on \(200 / 250\) watt Atect or force ontput. Operates on 2007200 watt
 stors. \(85 \mathrm{Ke} / \mathrm{s} .25 \mathrm{Mc} / \mathrm{s}\). \(£ 35\). Сал. \(30 /\)-.


NOMBREX TRANSISTORISED EQUIPMENT ALL Post Paid With Battery Trangistorised
Audio Clenerator 10. Audio Generator 10
100,000 c/s. Sine or \(100,000 \mathrm{c} / \mathrm{s}\). Slice or
square wave. Bignal Generator \(150 \mathrm{kc} / \mathrm{s}\). \(230 \mathrm{Mc} / \mathrm{s}\). \(£ 10 / 10 \%\). Transistorisel renistance capucity bridge io
 Tranglstorised Induct ion bridge \(1 \mu \mathrm{H}-100 \mathrm{H}\). unit, output \(\mathrm{l}-15 \mathrm{v}\), up to 100 mA . \(£ 6 / 10 / \%\)

TE22 SINE SQUARE WAVE AUDIO


Sine: 20 cpa to \(200 \mathrm{kc} / \mathrm{s}\). 20 cps to 30 . Bquare: 20 cps to 30 ke/s. Out-
put impedance 5,000 put impelance 0,000
ohmes, \(200 / 250 \mathrm{v}\). A.C. operation. Bupplied operation. suppied
brand new and guaranteed with inatruction \({ }_{\text {manual and ichls }}\)


TE-20RF SIGNAL GENERATOR


Accurate wide range signal generator cover-
ing \(120 \mathrm{lc} / \mathrm{a}-2 \mathrm{NeO} \mathrm{Mc} / \mathrm{s}\). on 6 bands. Directly \({ }_{\text {c.alibrated. Vi Varlable }}^{\text {R.F. }}\) Operation \(200 / 240 \quad \mathrm{r}\) A.C. Brand new with Instructions \(£ 12 / 10 j^{-}\)

* TRANSISTORISED FM TUNER *
 6 TRANBISTOR MOH YUALITY
TUNER BTYK
 2110. 3 I.W. stagres,
moable tuned 115 . crinilnator. Ample
output to feed mose output to feed most
amplitiere. Operates amplitiere. Operates
88-108 Mc/s. Ready £6.19.6

BARGAIN!
TYPE 13A DOUBLE BEAM OSCILLOSCOPES


4 high quality trativment, offered at a fruction
of original conet. Trimebase of original cont. Timebase \({ }^{2} \mathrm{c} / \mathrm{o}-750 \mathrm{kc} / \mathrm{s}\).
 and 1 Mc . Operation for \(115 / 250\) v. A.C. A vallable in excelient com-
dition, fully tested and dition, fully tested and complete with leads and probe. \(\mathbf{5} 22 / 10 /\). Carr. 30\%-

PORTABLE OSCILLOSCOPE CT. 52
A compact ( \(8 \times 8 \times 16 \% \mathrm{in}\).) general
purpose scope. \(7 / 8 \quad 10 \mathrm{c} / \mathrm{s}\).
purpose stope. T/8 10 e/s.-
40 ke.s. bandwidth 1
Mc.
Mullard DG7/5 \(2 \frac{a}{8}\) CRT.
\(\begin{array}{ll}\text { Mullard DG7/5 } 2 \frac{1}{3} \\ \text { operation on } & \text { CRT. For } \\ \text { On }\end{array}\) Supplied complete with metal
transit chas, strap test leadg, and
Cirr. 10\%- Bupplied complete wth insiructions

\section*{MARCONI TF.195M BEAT}

FREQUENCY OSCILLATORS
Laboratory instruments offered at a fraction of cost. Range \(0-40 \mathrm{kc} / \mathrm{a}\). Output \(600 \Omega\) or \(250 \Omega\) 200/250 v. A.C. Excelleat condition, fully tested and checked. \(\mathbf{5 2 0}\). Cast. 30/-

TE-40 HIGH SENSITIVITY
A.C. MILLIVOLTMETER A.C. MILLIVOLTMETER
10 meg. fuput. 10 ranger: 10 meg. huput. 10 ranger:
\(.01 / .003 / .1 / .3 / 1 / 3 / 10 / 30 / 100 /\) 300 v. R.M.S. 5 eps-1.2 Mc/s. Decibels -40 to +50 db. Supplied brand new complete with leads and mastructions. Operat ion 230 v


\section*{TE.6S VALVE VOLTMETER}


High quality instrum
wfth 28 ranges.
D.C. volts \(1.5-1,500\) \%
A.C. voits \(1.5-1,600\). \(\begin{array}{lll}\text { A.C. volts } & 1.5-1,500 & \text { v. } \\ \text { Registance } \\ \text { up to } \\ \text { i.000 }\end{array}\) megohma.
\(220 / 249\) Complete
Complete with instruetilous £15. P.P. Additional Probes avall3ble: R.F. \(35 /-\); K.V.
42/6.
F.M. WIRELESS MICROPHONE

94-104 Me/s. Transistorited Operates from 9 v , battery. Complete with addlitional secret Lie-cllp microphone. List \(£ 12 / 10 /\). ONLY \(\mathrm{E} 7 / 10 / \mathrm{m}\)

 MICRO FM TUNER KIT E5 19.6 . MICRO
6 RADIO XIT 58/6. MICRO AMPLIFIER KIT, 6 RADIO XTT 58/6.
28/6. All post patd.
 and 4 outputs to meet twost audio demands. Electronic ehort clrcuit protection against accidental shorting of spether terminals. Atirac-
tive all metal cabinet finished in simnlated walnut wood grain with a quality good flish extruded alunigitum frone panel.

PRICE
£37.10.0
Carr. 7/6.


SPECIFICATION
Powes supply, \(117 \mathrm{Pr20} \mathrm{j} 240\) V.A.C. \(50 / 00\) CPS.
 Outputs: 4,8 or lit ohus for speakers plus headphoue jack. jortb at stoctrs. Frequerary response; 1 watt \(30-40,000 \mathrm{cps} \pm 2 \mathrm{db}\). Mum and nolve: Phono (low level)- \(\$ 5 \mathrm{~dB}\) auxiliary- 72 dB . Ioput seusitivity: Jhono-meg. 2MV, tape Head imv. Eyualinition: Phomsillary lionsiv. \(\pm\) ung. DdB. Tapt NAB \(\ddagger\) vamp.



\section*{R209 MK. II COMMUNICATION RECEIVER}

11 valve high grade communication receirer suitable peration. lneorponates preclston vernier drive, BFO. Aerial trimueve, internal eppeaker and 12 5. D.C. Internal pover supply. Auppilert in excelfent conditlus, fully lested aund checked. \(£ 22 / 10\) /-. Carr. \(20 /=\)


\section*{HAM-1, 4 BAND COMMUNIGATION RECEIVER}
 BANDEP'REAS TUNING. BUILTT-1N Hin. SPRAKEIL, FERHITEAEHIAL AND EXTERF NAL TELEBCOPIC AEBIAL: Operation 260 240 s. A.C. Supplied brand new with handlbook.
£16 \(\mathbf{1 6} / \mathrm{F}\). Curr. \(10 /\).

\section*{LAFAYETTE KT340} COMMUNICATION RECEIVER- SEMI KIT
Baild this woudeniul recciver and eave prounds.



 BEO, ANL. "B " meter, bandep
etc. Operation 110 P2:3 v. A.C. 1RICE 25 GNS. Earr. 10I.

\section*{LAYFAYETTE Y.H.F. RECEIVERS} HA-55A AIRCRAFT RECEIVERS. \(10 \mathrm{k}-13 \mathrm{~m} \mathrm{Mef}\) \(2 \mathrm{R} . \mathrm{F}\). Btages. Built-in speaker. 11 aj 230
Wonderful value. \(£ 19 / 8 / 6\), Carx. \(10 /\). Wonderful value. \(£ 18 / 8 / 6\), Cart. \(10 \%\), HA-52A F.M, RECEIVER. 152-17t Me/t, Fully tuned R.F. stage and 3 I.F. stages. Bull -in apeaker GROUND PLANE ANTENNA. Suituble for vither



Open 9 a.m.-6 p.m. every day Monday to Saturday. Trade supplizd.

DE-ICER, Controller Mk. 3. Contains 10 relays D.P. changeove heavy duty contacts, 1 relay \(4 \mathrm{P}, \mathrm{C} / \mathrm{O}\). ( 235 ohms coil). Stud switch 30 -way relay operated, one five-way ditto, D.C. timing motor with Chronometric governor \(20-30\) volts 12 R.P.M.; geared to two 30 -way stud switches and two Ledex solenoids, 1 delay relay, etc., scaled in steel case, size \(4 \times 5 \times 7 \mathrm{in}\). \&3 each, post 7/6.
GEARED MOTORS (Reversible).
GEARED MOTORS (Rever
28 v. 150 r.p.m., \(25 /-\), post \(2 / 6\).
28 v .150 r.p.m., \(25 /\)-, post \(2 / 6\).
24 v. Open gears with governor approx. 10 r.p.m, \(25 / \mathrm{m}\), post \(2 / 6\)
24 v. D.C. 1.4 r.p.m., reversible with two micro switches inside gear box silent operation, 2 each, post \(5 /-\)
A.C. Motor 115 v. \(50 \mathrm{c} / \mathrm{s} .1 / 300 \mathrm{H} . \mathrm{P} ., 3000 \mathrm{r} . \mathrm{p} . \mathrm{m}\). Capacitor \(1 \mathrm{mfd} .25 / \mathrm{m}\), post 3/-. Dalmotor SC5, 28 v. D.C. at 45 amps.; 12,000 r.p.m. output 750 W (approx. 1 h.p.), brand new, £ \(2 / 10 /\) each, post \(7 / 6\).
28 v. D.C., 200 r.p.m. (ideally suited for opening garage doors), current consumption approximately 6 amps. Price \(\$ 3 / 10 / \%\), postage \(7 / 6\)
CONDENSERS. \(10 \mathrm{mfd} .1,000 \mathrm{v} .12 / 6\), post \(2 / 6\). \(8 \mathrm{mfd}, 1,500\) volts, \(17 / 6\), post \(2 /\). 8 mfd., 1,200 volts, \(12 / 6\), post \(3 / \% .8 \mathrm{mfd} .600\) volts, \(8 / 6\), post \(2 / 6.0 .25 \mathrm{mfd} ., 2 \mathrm{kv} .4 /-\), post \(1 / 6\).
Vacuum condenser 50 pf. \(32 \mathrm{kv} .30 / \mathrm{m}\), post \(1 / 6.6 \mathrm{pf} .20 \mathrm{kv} .22 / 6\), post \(1 / 6\). All the above are new in cartons.
HEADPHONES. DLR.5, 10/- pair, \(2 / 6\) post. No 10 headset and microphone, \(15 /-\), post \(2 / 6\).
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many valves, relays, magnetic ciutches, mot
other items, price \(\mathbf{\Sigma} 7 / 10 / \mathrm{f}\), fl carriage.
U.S.A. DESK MICROPHONE CRV/5108/A. Complete with 7 yards of screened cable and universal jack (adjustable), \(10 /\) - each, post \(3 /\)-.
AR88 SPARES: Vibrator Unit, 6 v. D.C. New \(25 /=\), post \(6 /=\). Block Condenser \(3 \times 4600\) v. D.C. \(25 /-\), post \(4 /-0.01\) mfd. 400 v . D.C., 4 for \(12 / 6\). Capacitor Air Trimmer, \(2-20\) pF., box of \(310 /-\). Ceramic I.O. Valve Holder, box of \(57 / 6\).
SIGNAL GENERATOR TS155c/UP (as new) price \&75, carriage £1. TS125A, with leads etc., price 25, carriage \(10 /\) APNI ALTTMETER TRANS/REC., suitable for conversion \(420 \mathrm{mc} / \mathrm{s}\)
complete with all valves 28 v. D C Dynamotor and 3 relays, 11 valves, complete with all valve
price 53 each, carr. \(10 /\)-.
price 3 each, carr. \(10 /\)-.
RADIO TELEPHONE GR300 V.H.F. \(75 \mathrm{Mc} / \mathrm{s}\), two channels, complete with control box and 12 v. D.C. supply, as new, £50, carr. E1. Control unit for the GR300, £3 each; also power supply unit 12 v. D.C., \(83 / 10 /=\). Carr. 10/-
RELAYS SEMI ROTARY. 3 pole DT;, contacts suitable for 10 amps. (silver), coil 12 -volts D.C., new in cartons \(12 / 6\) each, post \(2 / 6\).
TRANS/RECEIVER UNIT Mk. 3. Freq. 2 to \(8 \mathrm{mc} / \mathrm{s}\). , RT or CW., MCW., requires external power supply. Complete station \(\mathbf{~ C 9}\), carriage \(25 /-\). Trans-rec. only £3/10/-. carr. 15/-.
RESISTORS. Variable 3 ohm. 10 amps., \(25 / \mathrm{m}\), post \(4 /\).
ROTARY TRANSFORMERS, \(24 . w\). input, 175 v . at 40 ma. output \(25 /-\), plus \(2 /\)-post. EICOR type, 12 v , input, 400 v . at 180 ma . output \(30 / \mathrm{f}\), plus \(4 /\)-post. 12 v . input, 225 v . at 100 mA . output, \(25 / \mathrm{m}\), plus \(3 / \mathrm{m}\) post. (All the above are D.C. only).
CANADIAN C52 TRANS./REC., Freq. 1.75 to \(16 \mathrm{mc} / \mathrm{s}\). on three bands R.T., M.C.W. and C.W. Crystal calibrator, etc., power input 12 volt D.C., new condition complete set \(\$ 50\), carr. \(\mathbf{£ 2 / 1 0 / \text { -. Used condition in working }}\) order \(£ 25\), carr. £2/10/-. C52 receiver only (less outer case), \(88 / 10 / \mathrm{l}\), carr. 15/-. Transmitter only \(27 / 10 /\)-, carr. \(15 /\). . Power unit C52 rec., new \(\mathrm{£} 3 / 5 /\). Used power units in working order \(£ 2 / 5 /-\), carr. \(10 /\) -

TRANSFORMERS. 230 to 115 v, isolation 300 va , \(£ 4\) each, plus \(5 / \mathrm{m}\), \(230 / 115\) auto 300 watts, £3, post \(10 /-.230 \mathrm{v}\). pri. 24 v. at 2 amp ., 22/6, post 10/=.

RDO RECEIVER has complete metering of both RF and Audio Circuits Calibrated Accuracy: \(1 \%\) approx. Video Output: 25 mv into 50 ohms. It utilizes the same plug in RF runing units as the AN/APR-4 Receiver, and is ideally suired for monitoring and measuring signals in the \(38-4,000\) mc range. Receiver with three tuning units covering \(38-1,000 \mathrm{mc} / \mathrm{s}\). and Panoramic Adaptor. Price £150, carr. 30/-
OSCILLOSCOPES. Type 1035 , Cossor Mk. 1 , in very good condition. e35, carr. £1. Hartley type. 13 a , E 25 , carr. £1. Type 1049 Mk . IV, excel £35, carr. £1. Hartley type. 13 a , £25, ca
CT. 53 SIGNAI. GENERATOR. Freq. range \(8.9-300 \mathrm{mc} / \mathrm{s}\). with calibra tion chart. Output \(1 \mu \mathrm{~V}-100 \mathrm{mV}\). internal square wave and sinewave modulation at \(100 \mathrm{c} / \mathrm{s}\), external modulation \(50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}, 230 \mathrm{v}\). A.C. Complete with chart etc., price \(£ 27 / 10 /\), carr. £1
MARCONI CR100/2 RECEIVER. Freq. \(60-30 \mathrm{mc} / \mathrm{s}\)., selectivity \(100 \mathrm{db}-\) 30 db , complete with bandpass filter switch \(100-300-1,200-3,000-6,000 \mathrm{c} / \mathrm{s}\), 2 RF stages, crystal filter etc., 230 v. A.C. power supply. Price \(\$ 30\) each, carr. £1.
MICA CAPACITOR: 04 mfd , 1000 volts Peak Wkg., 25 amps. at 1,000 kc/s., price \(£ 3\) each, post 5/-
TRANSMITTER ASSEMBLY UNIT: Complete with \(3 E 29\) and \(2 \times\) \(6 \mathrm{AG7}\) valves and miscellaneous components. Price \&2 each, carr. 6/-
HRO RECEIVER. Model 5T. This is a famous American High Frequency
 superbet, suitable for CW., and MCW., reception crystal filter, with phasing control. AVC, and signal strength meter. Freq. range \(50 \mathrm{kc} / \mathrm{s}\). to \(30 \mathrm{mc} / \mathrm{s}\)., with set of nine coils. Receiver only in working order, £18/10/\%, carr. 15/- each. Set of nine coils \(£ 12 / 10 /\), available only with set. Power unit for HRO., \(100 / 240\) v. A.C., \(£ 2 / 15 / \mathrm{m}\), carr. \(10 /\)-. CONVERTERS. Type 8 a., 24 v . D.C., 115 v . A.C. at 1.8 amps 400 cycles, 3-phase, \(£ 6 / 10 /\)-each, post 8/-.

DALMOTORS: (All ex equipment)
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs , rating intermittent, price \&3 each, postage 5/-.
Model PM-4: 28 v. D.C. @ 3 amps , 4,500 r.p.m., output 40 watts, contimuous duty complete with magnetic brake. Price £2 each, postage \(4 /=\).
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts, price \(25 /-\) each, postage \(4 /-\).
MOTORISED ACTUATOR: 115 v. A.C. \(400 \mathrm{c} / \mathrm{s}\). single phase, reversible, thrust approx. 3 inches complete with limit switches, etc. Price \(82 / 10 /\) - each, postage \(5 /\) - (ex equipment).
D.C. MOTOR: 27 v. D.C. with gear box, 4 r.p.m. Price \(25 /\), postage 3/- (ex equipment).
GEARED MOTOR: 28 v. D.C. approx. 200 r.p.m. complete with precision potentiometer, 40 k plus or minus \(3 \%, 2.5\) watts linear plus or minus \(0.25 \%\). Price \(30 /-\), postage \(4 /\) - (ex equipment).
TRANS/REC 510/A. This is a lightweight transmitter/receiver principally used for long range communications. Frequency tunable \(2-10 \mathrm{Mc} / \mathrm{s}\), and has facilities for "VOICE of "CW "working. The operator can set up 4 crystal controlled channels within this band and select the required frequency by means of a switch on the panel of the transmitter. Power requirements \(1 \frac{1}{2} \mathrm{~V}\). and \(90-7 \frac{1}{\mathrm{~h}} \mathrm{~V}\). The power output is approx. 0.2 watts for "VOICE" (unmodulated) and 0.5 watts for "C.W." Suirable for mobile units or can be used as a base station with improved aerial system In excellent condition. \&15 each, carr. 10/-
MARCONI TYPE TF-144G SIGNAL. GENERATOR. Freq. \(85 \mathrm{Kc} / \mathrm{s} .-\) \(25 \mathrm{Mc} / \mathrm{s}\)., internal and extenal modulation, power supplies \(200 / 250\) v. A.C. \(25 \mathrm{Mc} / \mathrm{s} .\), internal and
Price \(£ 25\), carr. \(30 /\).
TS535A/U, Hewlett Packard Co. Slgnal Generator: freq, on 4 bands \(7-16 \mathrm{kc} / \mathrm{s}\)., \(15-36,34-80,70-160 \mathrm{kc} / \mathrm{s}\)., with 400 cys . external mod., microvolts \(0-10\) and \(0-20 \mathrm{Db}\)., with a 2 inch cathode ray tube for visual indication. Power Supplies 115 v. A.C. Price 575 each, carriage £1
MARCONI SIGNAL GENERATOR NO. 13. \(2 \mathrm{bands}, 20-40 \mathrm{mc} / \mathrm{s}\) and \(40-80 \mathrm{mc} / \mathrm{s}\). FM., AM., and CW. Mod. freq. \(300 / 1000 / 1600 / 3000\) and external mod. Output voltage is \(0.1-10\). Power Supplies 110 v. or 250 v. A.C. Price E50, carriage £1.
MULTIPLIERS (CT54 valve voltmeter), \&2/10/- each, post 3/-
HS RELAYS. \(1,700 / 1,700\) ohm coil, \(17 / 6\) each. \(500 / 500\) ohm coil, \(15 /=\) each. Postage 2/-
TACAN Trans/Receiver, same as ARN21, British made, STC, TR9171 complete with five 2 C 39 A s with associated valve-holders. As new price £25. Used condition \(£ 15\), carriage \(£ 1\).
CONTROL MOTORS, \(115 / 115 \mathrm{v},, 2\) pole 60 cys ., output 5 watts, the tachometer 115 v .1 ph., output volts per \(1,000 \mathrm{v} .=6 \mathrm{v} ., £ 3 / 10 /-\), carr \(4 /\) - each. Type R110-2B-B. \(115 / 115\) v. 400 cys., £ \(2 / 10 /=\), carr. \(4 /\) - each. TELEPHOTO UNITS (Trans-ceiver) Type CNP. Complete with tuning fork and power supplies 115 v. 50 or 60 cys, \(£ 30\) carr. £2 each.
TELETYPEWRITERS. TT-4 TGXc-2. Also AN/PGC-1 and AN/ PGG-2, 235 , carr. E 1 each.
UNISELECTORS (ex equipment):
8 bank 25 way, 75 ohm coil, price \(35 /-\) each, postage \(4 /-\)
3 bank 25 way, with one homing bank, price \(25 /\)-each, postage 3/-
RELAY PANEL: with 4 Leach relays, 28 v., 135 ohm coil, 4.P. CiO, 10 amp . contacts, 4 relays, 28 v., 235 ohm coil, 3 pole \(\mathrm{C} / \mathrm{O}\) plus high speed relay, 16,000 ohms, \(1 \mathrm{C} / \mathrm{O}\). Price \(30 /\) each, postage \(5 /\)
TELEEPHONES (PORTABLE) TYPE "F." Suitable for all outdoor activities up to a range of 5 miles, in excellent condition. Price, complete with batteries, \(65 / 10 /\)-per pair, carriage \(10 /\) -
B. 44 MODULATION TRANSFORMER: Ratio \(2: 1\) or as an output transformer 85:1. Price 25/- each (new in cartons), postage \(3 / 6\).
FUEL INDICATOR Type II3R: 24 v . complete with 2 magnetic counters 0 to 9999 , with locking and reset controls mounted in a 3 in. diameter case. 0 to 9999 , with locking
Price \(30 /\) e each, post \(5 /-\)
MACHMETERS : Range \(0: 1\) and \(0: 1.2,6 \mathrm{~A} / 3384\) and 5325 respectively price \(30 /\) - each, postage \(5 /\) -
ALTLMETERS: 40 to 60,000 feet, the ideal instrument for making a barometer, price ES each, post 5/-.
BATTERY CHARGERS: 100-250 v. A.C. Input, 12 v. 15 Amp. Output 2-Rate Charger complete with Sun-vick thermal switch for fast or trickle charge), price \(\$ 12 / 10 /-\) each, carr. \(30 /\) -
AVOMETER MODEL 7: Secondhand condition, \(212 / 10 /-\). Postage \(10 /-\) COMMAND RECEIVERS: Model \(3-6 \mathrm{mc} / \mathrm{s}\) and \(6-9 \mathrm{mc} / \mathrm{s}\), as new, price £5/10/- each, post 5/-
BC-433-G COMPASS RECEIVER: Freq. 200-1,750 kc/s. in 3 bands, suitable for aircraft, boats, etc. Complete with 15 valves, power supply input 24 V. D.C. at 2 amps. Receiver only \(£ 5\) each, control box for receiver \&1 each. Sold only with Receiver. Carr. 15/-.

\section*{ADVANCE TEST EQUIPMENT}

H1B Audio Signal Generator
J1B Audio Signal Generator
J2B Audio Signal Gener
VM76 AC/DC Valve Voltmeter
VM77C AC Millivoltmeter
VM78 AC Millivoltmeter (transistorised)
VM79 UHF Millivoltmeter (transistorised)
\(\begin{array}{rrr}\mathbf{\$ 3 0} & 0 & 0 \\ \mathbf{\$ 3 0} & 0 & 0 \\ \mathbf{2 3 5} & 0 & 0 \\ \mathbf{2 3} & 10 & 0 \\ \mathbf{2 7 2} & 0 & 0 \\ £ 40 & 0 & 0 \\ \mathbf{2 5 5} & 0 & 0 \\ \mathbf{1 2 5} & 0 & 0\end{array}\)
These are current production, manufactuned in U.K. by Advance Electronics Lid. (not discontinued models). Showing a saving of approximately \(33 \mathrm{f} \%\) on nett trade price. BRAND NEW, all in original approximately \(33 \%\) on nett trade price.
sealed carton. Carr. \(10 /\) - extra per item.
Special offer of \(10 \%\) discount for schools and Technical Colleges, etc.

Complete installations can be quoted for. Please write further details. List available 6d. S.A.E. for all enquirles.


Be first this year SEED AND PLANT RAISING Boil heating wire and trans-
former. Suitable for standard former. Sultable for standard
size garden frane. \(18 / 6\).
plus \(3 / 6\) post and ins.

(1)PP3 Eliminator-play your pocket radio trom the mains! Save is. Complete component kit comprises 4 rectiflers-mains dropper resistancce, smonthing condenser
and instruetions. Only \(6 / 6\), plus \(1 / 4\) post.


\section*{2: kW FAN HEATER} 3 heat positions to suit changes in weather: \(1 \mathrm{~kW}, 11 \mathrm{~kW}\) and \(2 \xi \mathrm{~kW}\) also blowe cold for summer, has thermostatic salety cut-out. Proper" price 25/17/8. Yours for only £ \(3 / 15 /=\), plus \(7 / 0\) post and insurance.
MAINS TRANSFORMER. Upright mounting with
 250.0-250 v. at 100 mA and it has two L.T. Becondaries \(15 /\)-, plus \(3 / 6\) post and insurance.
"c" CORE POTTED OUTPOT TRANSFORMER. Made by the famous Parmeko company these are the heat
money can buy. we can ofter a bargain 15 watt rating, money can buy. we can ofter 3 bargain 15 watt rating, centre tapped primary with secondary for
Potted and in black stove cuareelled esse for npright mourting these will make your amplifer or rig look pericet at only \(12 / 6\), plus \(3 / 6\) carr. and insurancehurry for these
smeg. pots. By Erie. Standard itin. spindle, lin.
\({ }^{2}\) MEG. POTS WITH D.P. SWITCH. Again by Erie. Estindard size spindle lin. length. 10d. easch in duz. lots, otherwise \(1 / 3\) each.
MINIATURE PICE-U5. For pop recorids-this is made


miniature relays with removable cavers. Very senaitive (will close on only 20 maA ). Coil realstance 10,010 ohme, cuntacte arc three bets: triple bet for change-
over palr to open circuit and the third pair to close over palr to open circuit and the third pair to close,
circuit- perfect order unused (removed from equipment), circuit-p
\(7 / 6\) cach.

CAR CHARGER OUTFIT. \(3 / 4\) amp. transformer and selenium full wave rectifler. Only \(27 / 6\), plus \(3 / 6\) pust. - fluorescent liart giss. Compriaing choke, lampholdere, starter and two chrome tulke clips. 20 watt
\(18 / 6,40\) watt 11/6, Super Bilent 40 W 17/6. 80 watt 19/6. 40 watt 11/6, Super silent 40
\(17 / 6,65\) watt 19/6. Al \(4 / 6\) P. \& P.

\section*{SEMI-CONDUCTOR BARGAINS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(T_{\text {ype }}\) & & Type & & Type & \\
\hline  & \({ }^{\text {Price }}\) & Nati01 & Price
886 & \(\stackrel{\text { No. }}{\text { OC7 }}\) & \({ }_{\text {Price }}\) \\
\hline 2 N 1728 & 10\% & Matieo & 719 & OC72 & 5\% \\
\hline 2N1742 & 25/- & MAT121 & 8/6 & 0075 & 8i- \\
\hline 2N1747 & & OAS & 5 & 0076 & 5/- \\
\hline 2N1748 & 101- & OA10 & 6/- & OC77 & \% \\
\hline A0107 & 9/- & OA47 & 3/- & 0 C 78 & 5- \\
\hline AC127 & 9/- & OA70 & 2/- & 0078D & 5- \\
\hline Acy17 & \(8 / 6\) & OA79 & 216 & 0 CBI & - \\
\hline ACY18 & \(5 / 6\) & OA81 & 216 & OCs1D & \\
\hline ACY19 & \(8 / 6\) & OA85 & 3 & \(0 \mathrm{O}_{3}\) & \\
\hline ACY \({ }^{\text {a }}\) & 516 & OA90 & 216 & OC83 & 54 \\
\hline ACY31 & 6/- & OA91 & 218 & OC84 & - \\
\hline ACYO2 & 46 & OA320 & \(3 / 3\) & 00139 & \(8 / 8\) \\
\hline AFILH & \% & OA202 & \(4 / 3\) & OC140 & 12/6 \\
\hline AH15 & 616 & 0 O 22 & 10/0 & 00170 & \\
\hline AF116 & 71 & OC23 & 176 & 00171 & - \\
\hline AF17 & & \(0 \mathrm{OC24}\) & 22/6 & OCz30 & \\
\hline AF118 & \(12 / 6\) & \(00^{26}\) & 776 & OCz201 & 128 \\
\hline AF139 & \(17 / 6\) & 0028 & 15\% & Oc303 & 13/6 \\
\hline AF186 & \(18 / 6\) & OC29 & \(17 / 6\) & O2z23 & 12/6 \\
\hline AFZ12 & 15/- & OC35 & 12/6 & 0 CP71 & 18/6 \\
\hline AsZ2I & 15/- & OC36 & 15/- & ORP13 & \(8 / 6\) \\
\hline HC107 & 14/6 & 0 C 42 & 616 & ORP60 & \\
\hline BY100 & 5/6 & \(0 \mathrm{OC4} 4\) & 5 -- & SB078 & 6 \\
\hline BYZ13 & 716 & OC45 & 4/* & 88305 & \(8 / 6\) \\
\hline MA't100 & \(7 / 8\) & 0 CrO & & SB201 & 10i- \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
S.C.Rs (THYRISTORS)
100 v .1 amp. \(6 / 6.3 \mathrm{mmp} .7 / 6,12 \mathrm{amp} .15 /-, 400 \mathrm{r} .1\) \\
arap. 15/-, 3 amp. 17/6, 5 amp. 22/6, 25 amp . \(£ 3\). \\
80 v. 1 amp. \(6 / 6,3\) aup. \(7 / 6,10 \mathrm{amp}\). \(10 /-, 25 \mathrm{amp} .30 / \mathrm{F}\)
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Where postage is not definitely stated as an extia then orders over \(£ 3\) are post free. Below \(\$ 3\) auld 2/9} \\
\hline
\end{tabular}

HEAT AND LIGHT UNIT
Bring luxary to your bathroom-have comforting heat where you now only have Hght-all the parts to build a full size (16in. diameter) motel are now avalable-you will bulld it in an hour-12in. 750 watt ctrcular silica gliass encensed element-opul bowl for up to 100 watt lamp-non-rust spun reflector-whlte eazmelled base heat, shield-pull switch, magnificent unit as sold normally at 24/5/:. Only 49/6, pius 5/2 post and insurauce.

\section*{SUPERTONE G.C.V.}

Saves you work-
Saves you work
Like its predecessors this latest Comspanion has full it performance-such as only a good wooden cablinet and bifux speaker can give, and due to
tos being partly built you will have it going in an evening. Note these features:
- All Mullard Transistors including
- Two-tove Cabinet, size \(11 \times 8 \times 3\) in.
- All circuit requiremente- Puah-pull

- Printed circuit braard all wired only
W.C. Switch and Tuning Condenser.
- Ire-aligned IF stages complete with full inatructous. Price only \(23 / 19 / 6\), plus 6/6 post and insurance.


\section*{THIS MONTH'S SNIPS
3M SCOTCH TAPE}

Brand new, unused and guaranteed periect and not second in any way-


e3 post free otherwise add \(2 /\) - post and ins.
FINE RECORD PLAYERS ARE 'GARRARDS'


2000
3000
3000
AT60
8 P 25
INFRA-RED
HEATERS
and because they have been making
record playere for so long, GARRARD
are your bebt cholee-big range always
in stock.
7/6 for post and ins
LAB80
SRP1Z
\(\begin{array}{rrr}£ 25 & 0 & 0 \\ £ 3 & 8 & 6\end{array}\)

Make on one of these latest type heatcra. Ideal for bathroom, etc. They are rimple to male from our
ments designed for the correct infra-red wavelength
750 watts element, afl parta, metal cawing is flivstrated ( 816 merons). Trice for ins. Pull switch \(3 /=\) extra, fuetai casing its iliustrated, \(21 / 6\), plus \(3 / 4\) post and


\section*{F.M. TUNER}
of exceptional quality, giving really Antastic resalts with virtually no noise Buitable for mains or battery operition.
6 transistorg-ithrec IF atages-double tuned discrimolnator. Complete, new, and bullt up all ready to work on chinkis. N1ze \(6 \times 4 \times 2\) in. With tuning sale and
nlow motlon drive. A \(\& 12 / 12 /\). luaer for nlow motion
only
d
\(8 / 10 /-\)
NOW INSTANT START CIRCULAR FLUORESCENT Mringa sunghine into your home. liso watts of light but uses only 40 w . Beautiful fittings with plass, non-plastic cent. Made by Phllipe. Regular price e4/15/-: Speciai budzet price 65/-。 plus \(8 / 6\) carra, and inn- Pleasc state colour of class centre, white, piuk,
blue, red, bluck, yellow or cream. Also whether plug lato lanp holder or
celling mounting model. 80 witt model 99/6. 10/., cant. and ins.

\section*{MAINS TRANSISTOR POWER PACK}
deaigned to uperate trabsistor eets and auplitiers. Adjustable output of v. 9 v ., following batteries: PP1, PP3, P1'4, PP6, PP7, PP9, and others. Kit coinprises mains transfonmer-rectifer. smoothing and load resistor, 5,000 and 500 mfd. condensers, zener diode and instructlons. Real snip ist oniy \(14 / 6\), plus \(3 / 6\) post

\section*{BATTERY CHAROER-FREE}

9 v . Nelkel Cadmiumifattery type PP3 (its all pogular pocket trausistors).
Oan be reeharged 800 fimes. Price with transformes type battery charger, only \(37 /=\) post and ins. \(3 /-\). Chargeable replacements also in stock for U7, 12/6; 012,32 -

INFRA-RED BINOCULARS


These intra-red from a high voltage source will enable objects to be seen in the dark, providing the objects are at cumplete optical lens bystem. Each eye tube contains at cumplete optical leus system as weil as the infra.red eameras-light vello, ete. (detaiis supplied). The binoculars form part of the Armay night driving (Tabby)
cquipment. They are unosed and believed to be in good cquipment. They are unosed and believed to be in good
working order, but sold without a guarantee. Frice E2/17/6, plus 10/- carr, and ins. Handbook 2/6.

\section*{SNIPERSCOPE}
 will be gumping experments. \(5 /\) each. post 2/-. Dute

\section*{TUBULAR HEATERS}

New and unused made by (C.E.C.-rated at 60 watte per ft-thenc are Iflend in airing cupboarils, bedroumsh
oflees, stures, greeahouser, etc., curtains or papery can touch them without fear of scorching or fire. Bupplied complete with fising brackets and available th the
 price inely
Also in twin assemblies (one pipe above the other),
Ift. \(40 /\), \(\mathbf{0}\) (t. \(46 /=, 01 t .52 /-\).

\section*{THERMOSTATS}

Type "A" is amp. for controling room heatera greenhouse, airing cupboard. Haw uplodise for poluter
 Type ". B" 15 amp. This is, a 17 in . long rod type made by the Taternal screw ilters the settong this from 50 be ruljuatable over \(30^{\circ}\) to \(1000^{\circ} \mathrm{F}\). Bultable for controlling furnace, oven kiln, immersion heater or to make ftamestart or tire alarm. 8/8, pias \(2 / 6\) post and Insurinnes. Tope "D." We call this the Jecestat as it cute in athe out it around freezing point. \(2 / 3\) amps. Has many uses, one of which vould be to keep the loft pipes frum freezing, if a leagth of our blanket wire ( 16 yde. \(10^{\prime-}\) )
is wound roumd the phpen, r/6. P. \& P. \(1 / 1\).
Type "E." This is a standard refrigenator thernomiat. Apindle culjustupenfo eover normal refrigurator ternperalures, 7/6, pius \(1 /\) - jost.
Tigpe "F.". ©lass encased for controlling the temp. of . liquit-purifcularly those in glass tanhas, viats or sidkewhernontat fa held (half submeryed) by rubber sucker of wire clip-ideal for flsh tatiks-developers and chensical
bathe of all types. Adjustable over ringe \(50^{\circ}\) to \(150^{\circ}{ }^{\circ}{ }^{\circ}\). Price 18/-, plos \(2 /\). post and izeorauce.


AMPLIFIER
4 trameistors in. cluditug two in puoh-pull input inggnetic, microphone or pick-up -feedback buojum -sensitivity
Price 19/6
Post and innurance 2/6. Bpeakery 3 in. 12/6; 5in. 13/6;
( 14 .
PHOTO-ELECTRIC KIT
All-parts to make Hght operated switch/burglar alanu/ counter, cte. Kit comprises printed circuit, Iaminited Boards aud chemeaks, Latehug relay, mina-red wromitive block. Plastic came. Fesential datu, cfrcuits and P.d. chasais plans of 10 photorelectric devices including autu. car piarking light, mondulated Light alarm. Bimple m visthle ray Ewitch-counter-stray light alayn-warklimg tone electronic alarm-projector hump stabilise
etc., ete Only \(39 / 6\), plus \(2 /-\) pust und insurauce.

\section*{ELECTRONICS (CROYDON) LIMITED}
(Dept. WW), 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) also at 266 LONDON ROAD, CROYDON, SURREY


HENRY'S RADIO LTD.
303 EDGWARE RD., LONDON, W. 2.
PADdington 1008/9 (STD: 01-723-1008) Open Mon. to Sat. 9-6. Thurs. I p.m.


\section*{1967 CATALOGUE 200 PAGES PLUS!}

\section*{COMPLETELY NEW EDITION-HUNDREDS OF NEW LINES} - Contains the largest and most compre-- 5 FREE hensive range of Components and equipment available. Over S,000 Stock Lines with more data and illustrations. Hundreds of Bargain Lines. You cannot afford to be without a copy of this catalogue. Supersedes ali previous editions
UNBEATABLE VALUE - 200 PACKED PAGES

\section*{(1)}

5-WATT AMPLIFIER
6-Transistor Push-pull, 3 ohms. 6 mV . Into \(1 \mathrm{~K} .1218 \quad\) v. supply. \(27 \times 2 \times 1 \frac{1}{2}\) in. BUILT AND TESTED
(optional mains units \(54 /-\) ) \(69 / 6\) P.P. 2/It watt version \(59 / 6\).
Matching Preamplifier, 6 inputs, treblejbass/ selector/volume controls. \(6-10 \mathrm{mV}\). output. \(9-18\) v. supply. 79/6. P.P. 2/e.

For use with any Transistor Amplifier

(3) GARRARD DECKS—BRAND NEW WITH HIGH QUALITY CARTRIDGES

(4) REGENT-6 MW/LW

POCKET RADIO TO BUILD
6-Transistor superhet. Grared tuning. Push-pull speaker output. Moulded cabinet \(5 \times 3 \times 1\) tin. Phone socket. \(\begin{array}{lll}\text { TOTAL COST } \\ \text { TO BUILD }\end{array} 69 / 6\) P.P. Full tuning on both bands.
(6) 25 WATT AMPLIFIER

8-Transistor design. Push-pull output for \(7 \frac{1}{2}\) to 16 ohm speaker. 160 mV input. \(30 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{~dB}\). For use with valve or transistor preamplifiers as item (II) below. PRICE BUILT
AND TESTED (Mains unit 79/6, P.P. 2/6).
(8) GLOBEMASTER MW/LW/SW

PORTABLE RADIO TO BUILD 6 MULLARD TRANSISTORS Full 3 -waveband tuning. Push-button waveFull 3 -waveband tuning. Push-button wave-
change. Superhet printed circuit design. Blackchange. Superhet printed circuit design. Black-
chromed cabinet. \(11 \times 7+\times 3\) tin. ( \(\$ W\). \(17-50\) chromed cabinet metres!. Ear/Record sockets. I watt push/pul! metrest. Ear/Record sockets. I watt push/pul

(9) TOURMASTER CAR RADIO 7-Transistor MW/LW Car Radio. 12 volt operated. 3 wate output. Push-button wavechange. RF stage. Supplied built, boxed. ready to use with speaker and baffle. Car
fixing kit and manuacturers' current guarancee. Special Bargain Offer. Buy NOW! List price 15 gns.
OUR PRICE
O.9.0 P.P.
\(3 / 6\)

\section*{(5) TRANSISTOR RADIO TUNER} Fully tuneable superhet with excellent sensitivity and selectivity. Output up to \(\frac{1}{2}\) volt peak Complete with front panel etc operated. For use with any amplifier or tape recorder. 3 Mullard transistors TOTAL COST E3.19.6 \(2 / \mathrm{P}\).
TO BUILD
(7) VHF FM TUNER

Supplied as 2 pre-assembled Panels, plus metal work. Superhet design, \(88.108 \mathrm{Mc} / \mathrm{s}\). 9 volt operated. \(12 / 17 / 6\) P.P. \(/ 6\)

\section*{\(10 \& 20\) WATT MONO \& STEREO} TRANSISTOR AMPLIFIERS (10) POWER AMPLIFIERS. 10 watts RMS output. 100 mV input. \(30 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{~dB}\). 6 -Transistor Push-pull. Panel size \(4 \times 2 \frac{1}{2} \times\) lin. H/S \(4 \times 4 \mathrm{in}\).
MPA \(10 / 3\) 3-5 ohm speaker, \&4/10/-. P.P. \(2 / 6\) MPA10/15 8-16 ohm speaker \(25 / 5 /\)-. P.P. \(2 / 6\) (Mains unit, I or 2 amplifiers, 59/6. P.P. 2/6) (11) PREAMPLIFIERS. 8 input selector. Treble, bass, volume, fiteer controls. \(1 \frac{1}{2} \mathrm{mV}\) to 300 mV inputs. Battery operated or from Mains Unit. Output up to 150 mV RMS. (grey and gold front panei, 8/6). SP4 Mono/Stereo, \(9 \times 3 \pm \times 1\) in. \(610 / 19 / 6\). P.P. \(3 / 6\) (front panel plate \(12 / 6\) ). * ALL UNITS BUILT AND TESTED Detailed booklet free on request.

\section*{\(\star\) MAYFAIR PORTABLE ELECTRONIC ORGAN}

Build the World's first All-Transistor
Portable Electronic Organ Kit
- Plug-in printed circuits 170 transistors and devices 10 selected tone colours Fully sprung keyboard Vibrato 6 Octaves of generators Simple locked-in tuning - \(1 / 0 / 250\) volt mains unit Cabinet size \(30 \frac{1}{4} \times 15 \frac{1}{2} \times 9 \mathrm{in}\). Weight 35 lb . Cabinet with detachable legs, music stand and foot swell pedal - Fully detailed building manual with photos, drawings and full circuits.
TO BUILD YOURSELF IN EASY STAGES. ALL PARTS SOLD SEPARATELY.
 \(\star\) Start building for as little as \(\star H . P\). facilities available. 45. Build the Mayfair a t Complete range of organ section at a time. components in stock.
\(\star\) Complete kit 99 gns. (carriage 30/-). 太Handbook Separately 20/-
- DETAILED LEAFLET ON REQUEST
 SUPPLIERS OF QUALITY COMPONENTS AND EQUIPMENT FOR MORE THAN 20 YEARS


SEMICONDUCTOR DEVICES-ALL TYPES
TUNNEL DIODES
\(1 \mathrm{~mA} .22 / 6.5 \mathrm{~mA} .15 / \mathrm{c}\)
15 mA, \(18 ; 6\) with specs.
THYRISTORS (BCRE THYRISTORS (SCRE 1 AMP MINLATURES
50 plv F/6. 100 piv \(7 / 6\). 50 plv r/6. 100 pivz \(7 / 6\)
 Tms.) \(17 / 6\).
3 AMP 8 TYPES 50 plv.10--100piv. \(12 / 6\) 200 piv 15/ 300 piv 17/6. 400 piv ( 280 v rmas \(20 /-\)
A VALANCE AVALANCHE
RECTIFIERS 800 plv 10 amp.
800 pjv o amp.
\(12 / 6\) 1000 piv 1 amp. \(6 / 6\) POWER
( 6 amp)
( 6 mmp )
200 piv \(7 / 6,400\) pir 9/6 \(600 \mathrm{plv} 18 / \mathrm{F} .800 \mathrm{piv}\) \(6 \mathrm{amp} .15 /-\)
1.25 AMP. WIRELEADS 100 piv 5/- 200 plv \(5 / 6\) 400 piv \(6 /-600 \mathrm{plv}\) B/6
TRANSISTORS TPANSISTORS from stock the larges range avallable,
Q4 PAGE CATALOGUE With nearly 600 types, plus all othes-devices,
also also quartz and valves \(1 /\).

\section*{STEREO BROADCASTS}
the real sound
(I7) MARRIOT TAPE HEADS \(\frac{1}{3}\) Track R/RP/3 Med z, 7/6, R/RP// High z, \(8 /-\) R/RP// High \(z+R / E / I\) erase on block, 19/6. Track L/RP5/12 High \(z_{1}\) 15/-. L/RPS/7 Med \(z_{1}\) 19/6. L/ES/9 erase, \(12 / 6\). Also HR-RP single track Rec/Play Med z \(6 / 6\).
(18) RELAYS AND MOTORS

Large range in stock. See catalogue. Also micro switches, push switches, transistors, scrs, rectifiers, zeners, etc. Multimeters, panel meters. Precision and standard components of all types now in stock. The country's largest selection

We can supply from stock most of the parts specified on circuits in this maga. zine. Ask for quotation or better stilf the new 1967 catalogue has everything you need.
(19) STABILISED POWER SUPPLY Two outputs. 3.6 volt and 9.6 volt up to 250 mA . each. Transistorised and Zener tabilised. Ilo to 250 voit mains input in case with leads. PRICE 67/6, p.p. 2/6.

\section*{20) DEAC RECHARGEABLE BATTERY} 9.6 volt \(225 \mathrm{~mA} / \mathrm{H} 20 / \mathrm{m}\) P.P. I/6.

\section*{(21) DEAC CHARGER}
\[
\begin{aligned}
& \text { To charge } 3.6 \text { volt and } 9.6 \text { volt pacl } \\
& \text { Fully mains isolated } \\
& \text { in moulded case. }
\end{aligned}
\]
\(45 /-\quad\) P.P
(22) FM STEREO DECODER K?T As used by B.B.C. and G.P.O. 7-Transistor printed circuit design with stereo indicator and pre-amp. For use
with any valve or transistor FM tuner. with any valve or transistor FM tuner. Uses Ger. and silicon transistors and
cores to Mullard \(\mathbf{~ P . 5 . 1 9 . 6 ~ P . P . ~}\)
design. PRICE

(16) GARRARD BATTERY 2-SPEED 9 VOLT TAPE DECK Brand New with R/P head eraselosc. head, tape cassette with tape and instructions. 2 speed 2 -track. 9 volt operated. List price



HENRY'S RADIO LTD.
303 EDG WARERD., LONDON, W.2.
PADdington 1008/9 (STD 01-723-1008) Open Mon. to Sat. 9-6. Thurs. I p.m. Open all day Saturfoy

HI-FI EQUIPMENT
Complete range in stock at special prices. Full details in new 1967 catalogue ( \(8 / 6\) post paid). Visit our H-Fi showroom.


IO AMPLIPIER MODEL HA34
Designed for Hi-Fi reproductlon of
records. A.C. malng operatlon. recordy. Dulle on plated heavy giuge
 d. \(x\) tiln. b. Incorporates ECCB8,
KL84, EZ80 valves. Heavy duty, KL84, EZ80 valves. Heavy dety,
double wound milns transformer and output transformer matahed for 3 ohom speaker, separate base, treble and volume controls. Negative feedback line. Output \(4 \frac{1}{2}\) watts, Front panel can be detached and leads extepded ior ramote mounting of controls. The HA34 has been
specially designed for us and our quantify order enables us to offer hem complste with knobs, valves, ete., wired and tested for only £ \(1 / 5 / \mathrm{F}\). P. \& P. \(8 /-\).
H.VALVE, 4 WATT USING" AMPLIFIER EIT A.C. mains 200/240\%, special features include: \(\star\) Meavy duty double-wond mains transformer with elactrostatic screen. t geparate buss treble and voluma controls, givlag fully viariable boost and cut with minimum ingertion losg. © Heavy negative leedback loop over bistortion factor. * suitable for use with gultar, milcrophone or recard player. A Provision for remota mounting of controls or dirzet on chasisis. A All thls builds on to a chassis slze only
 anable even the inexperlenced amateur to construct with \(\mathbf{1 0 0 \%}\) sussess. \(\star\) supplied camplete with valves, output transformer ( 3 ohms only), sereened tead, wire, nuts, bolts, solder, etc. (No extra3 to buy.) PRICE 79/6. P. \& P. 0/-
Comprehensive circult diagram, practical layout and parts list hut employs eutirely different and adeanced ciretitry.
QUALIIY RECORD PLAYER AMPLIFIER
A top-quallty record player ampllier. Thls ampllier fwhleh was used in a 29 ga , record player) employs heavy duty double
wound mains transformer, ECC83, EL84, EZ80 valves, Separate bass, treble and volume controls. Complete with output trans-
 \(\bar{b}_{3}^{2} / \mathrm{ha}, \mathrm{h}\). Ready bult and tested. PRICE \(69 / 8\). P . \& P. 49 .
ALSO AVAILABLE mounted on loard with output tranglormer and 6 in . speaker ready to it Into cabluet below. PRICE 89/6. P. \(\&\) P. \(5 / 9\).

QUALITY PORTABLE R/P CABINET
Unent motor board. Whil take above amplifter and B.3.R. Or GAlRARD Autochanger or siagle Reco
gize \(18 \times 14 \times 81 \mathrm{in}\). PRTCE \(£ 3 / \mathrm{B} / 8\). Carr. \(7 / 6\).

(C) P. \& P. 0/6. SUPER DE LUXE version incorporating ECL86 valves, sep 4 watts output into 3 ohm speakers. 8 Gns , P . \& P. \(8 / 6\).

HIGH GAN A-TRANSISTOR PRINTED CIRCUIT
- Peas outpus in excess of \(1 \frac{1}{4}\) watts. - All standara Britizh components. Built on printed clrcult panel, size \(6 \times 3 i m\) - Generous size driver and output tranisformers. Outpu transformer tapped for 3 ohm and 15 ohm speakers. Trrasla
tors (GET 114 or \(\$ 1\) Mullard OC81D and matched pair of 0 Cs ? o/p). o volt opeation. Everythlag supplled, wire, battery, clips, solder, etc. Comprehensive easy to follow Instruc tlons and cliccuit diagram 1/B (Free with K1t). All parts sold separately, SPECIAL PRICE 45/- P. \& P. 3/= Aleo ready bullt and tested 52/6. P. \& P. 3/\% A palr of TAIs are ldeal for
 Banutifully designed and precision engineered by Dormer and Wadswith twin .005 tuning condenser for AM connection. Prealigned FM section covers \(88-102 \mathrm{Mc} / \mathrm{s}\). I. F. output \(10.7 \mathrm{Mc} / \mathrm{s}\). Complete with ECOB5 (8L12) valve and ful Arrother special bulk purchase enablies us to offer thesa purchase \(27 / 6\)
ent
each. P. \& P. 3/-. Order quic enable
reskly!
reductio
MATCHED PAIR AM/FM LE.E. Compriaing 1st IF and 2nd IE


 ume controlf, and separate bass and treble controla are provided giving good lift and cut. Valve line-up: 2 EL848, ECC43, EF88. and EZ80 rectitier. sinuple inatruction booklet 1/6 (Pree with Also avallable ready buitt and tested complete with standard input sockets, £9/5i-. P. de P. 8/6.

4-SPEED PLAYER UNIT BARGAINS

\section*{All brand new in maker's origlnal packing}

\section*{B.S.R. TU/12}
B.B.R, GU' with unit mounted pick-up arm
E.M.J. with de kux

Latest AUTO. CEANGERS. Carr \(6 / 3\) on each. GARRARD AT00 Buper Bim
GARRARD 1000 with special HiFi curtridge Ali the above unita are complete with \(t / 0\) mono bead with 196 phas ethe B.S.R. MONARDECK (Bingle apezd) \(3{ }^{3}\) in. per sec., elmple control uses 53 in . spools. E6/15/-, plus \(7 / 6\) carr. and lus. Tapes extra
ACOS CRYSTAL MIKES. High imp. For deck or band use High sensitivity. 1846. . TSL CRYSTAL STICR MIKE, NASt 4今/-. Our price 18/6. P. \& P. 1/6
QUALTY PORTABLE TAPE RECORDER CASE. Brand new. QUALTIY PORTABLE TAPE RECORDER CASE. Brand new
Beantifuly made. Jew only at \(49 / 6\). P. \&P. \(5 /\).

WELL-KNOWN MAKER'S SURPLUS
Suitable for use with Medium or High Impedance mikes, guitars, gram, pick ups, tape decks, ete.; for operation from \(2000 / 300\) Isolated input hy Mu-Metal smeened transformer. 1 : 1 . 43 in. lin. \(x 1 \mathrm{in}\). Ready built complete with full circuit diagram and instrutions. ONLY 15/- Post free.

Open all day Saturday
Early closing Wed. I p.m.
A fan minute

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W. 19 CHErrywood 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE NOTE: P. \& P. CHARGES PVOTED APPLY TO D. K. ONLY:
P. © P.
ON OVERSEAS ORDERS



\title{
NO EXCUSES! NO DELAYS! FROM STOCK!
}

\section*{portable} UARIABLE VOLTAGE TRAMSFORWERIS


Input 230 v. A.C. Output variable \(0-260\) A.C. at 1.5 amp . Fitted in beautifully finished steel case. Complete with voltmeter, pilot lamp, fuse, switch, carrying handle, 88/10/=P. \& C. 10/Also 2.5 amp. as above, £ \(9 / 17 / 6\). P. \& C. \(10 /\).

\section*{OPEN TYPES}

Designed for Panel Mounting Input 230 v. A.C. 50/60 \(0-260 \mathrm{~V}\).



50 AMPS

BRAND NEWT 230 v. A.C. \(50 / 60\)
BRAND NEW. Carriage Paid. Buy direct from the importer, keenest prices in the country. All Types (and Spares) from \(\frac{1}{2}\) to \(0-260\) v. \(0-260\) v. at 1 amp.
\(0-260\) v. at 2.5 amps \(0-260 \mathrm{v}\). at 4 amps. \(0-260\) v. at 5 amps. \(0-260 \mathrm{v}\). at 8 amps. \(0-260 \mathrm{v}\). at 10 amps . \(0-260 \mathrm{v}\). at 12 amps . \(0-260 \mathrm{v}\). at 15 amps .
\(0-260 \mathrm{v}\). at 20 amps . \(0-260 \mathrm{v}\) at 37.5 amps . \(0-260 \mathrm{v}\). at 50 amps . 68500 15 different types available for IMMEDIATE DELIVERY.

\section*{5 Amp. AC/DC VARIABLE VOLTAGE OUTPUT UNIT} \(\begin{array}{ll}\text { Input } 230 \\ \text { Output } & 0-260^{\circ} \text { v. A.C. }\end{array}\) Output \(0-260\) v. A.C.
Output \(0-240\) v. D.C. Fitted large scale am* meter and voltmeter. Neon indicator, fully fused, Strong attrac-
tive metal case 15 in . \(x\) tive metal case 15 in . \(x\)
\(8 \frac{\mathrm{in}}{} \mathrm{x} . \times 6 \mathrm{in}\). Welght 24 8 in. \(\times 6 \mathrm{in}\). Welght 24
lb. Infinitely variable,
 smooth stepless voltage variation over range. Price 230 C. \& P. \(£ 2\) Amp. A.C./D.C. Mk. || Variable Output Power Unit Inpur 230 v. A.C. Output continuously VARIABLE from 0 to
260 v. A.C. OR 0 to 230 v . D.C. at 7 a. Robustly constructed in metal case, complete with safery fuse, neon indicator, voltmeter metal case, complete with safety fuse, neon indicator, voltmeter
and ammeter. Size \(17 \mathrm{in} . \times 12 \mathrm{in} . \times 7 \mathrm{in}\). Weight 36 lb . and ammeter. Size \(17 \mathrm{in}, \mathrm{x}\)
Price \(£ 39 / 10 \%\). Carriage \(40 /\).

1 AMP.
constant
voltage
trans.
FORMERS


Input 185-250 v. A.C. Output constant at 230 v. A C. Capacity 250 watt. Attractive metal case. Fitted red signal lamp. Rubber feet. Weight I7Ibs
Price \(\mathrm{f} 11 / 10 /\). P. \& P. \(10 \%\)

\section*{100 WATT POWER RHEOSTATS} (NEW) Cermic construction winding heavy duty brush assembly desisigned for continuous duty. AYAILABLE FROM STOCK IN THE FOLLOWING 11 VALUES:I ohm 10 a. 5 ohm 4.7 a. 10 ohm 3 a.; 25 ohm 2 a; 50 ohm 1.4 a.: ! 00 ohm I a.; 250 ohm 7 a
500 ohm 45 a; 1000 ohm 290 mA 1500 ohm 230 2,500 ohm . 2 a . Diameter 3 tin. Shaft length \(\frac{3}{4} \mathrm{in}\). dia. \(\frac{15}{5} \mathrm{in}\) 27/6. P. \& P. \(1 / 6\).

\section*{25 WATT POWER RHEOSTATS}

10 ohm I.5 a.; 25 ohm | a.; 50 ohm 75 a.; 100 ohm . 5 a.
250 ohm . 3 a.; 500 ohm , 2 a.; 1,000 ohm , 15 a.; 1,500 ohm

SLIDER RESISTANCES
1.2 ohm 14 amp. \(27 / 6 ; 36\) ohm 65 to 2.8 amp , tapered winding, geared drive (less knob) \(37 / 6 ; 200 \mathrm{ohm} \mathrm{1.25} \mathrm{amp.}, \mathrm{37/6}\). P. \& P. 3/6.

SWING ARM RHEOSTAT Especially designed for educational use. \(0-10 \mathrm{ohm}\) in precision 1 ohm steps. Height 19in. Width llfin Depth 64 in . Price Depth 6 itin. Price
\& \(/ 19 / 6\). P. \& P. \(7 / 6\).

\section*{SERVICE TRADING CO}

Postage and Carriage shown below are inland only. For Overseas please ask tor quotation. We do no

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium Sulphide Photocell. Relay, Transistor and Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 volt operations Price \(25 /\)-, plus \(2 / 6\) P. \& P.
ORP. 12 and Circuit \(8 / 6\) post paid

> A.C MAINS MODEL

Incorporates mains transformer, rectifier and special relay with \(3 \times 5\) amp mains c/o contacts. Price inc. circuit \(47 / 6\), plus \(2 / 6 \mathrm{P}\). \& P .

PHOTO ELECTRONIC COUNTER
Can be set for counts of up to 500 per minute 210-250 v. A.C. powered. Kit of Components including photo cell, high speed non-resettable counter, transformer relay, etc., together with clear circuic diagram. \(\leqslant 3 / 2 / 6\), plus \(3 / 6 \mathrm{P}\). \& P.

LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light source with adjustable lens assembly and ventilated lamp housing, to cake MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell, with optic window. Both units are single hole fixing. Price per pair \(\mathbb{2} / 10 /\) plus 3/6 P. \& P.
SOLENOID OPERATÉD MAGNETIC RELAY Type Sc/3944, 4 pole c/o, 10 amp . contacts, 24 vol D.C. operation. \(12 / 6\) each. P. \& P. \(1 / 6\).

SIEMENS SEALED HIGH SPEED RELAYS
H96A \(22 \mathrm{ohm}+22 \mathrm{ohm}\) H96G \(50 \mathrm{ohm}+50 \mathrm{ohm}\) H96A, \(2.2 \mathrm{ohm}+2.2 \mathrm{ohm}\), H96G, \(50 \mathrm{ohm}+50 \mathrm{ohm}\) H96C, \(145 \mathrm{ohm}+145 \mathrm{ohm}, \mathrm{H} 96 \mathrm{E}, 1,700\) ohm \(+1,700\)
ohm . All at \(12 / 6\) each. P. \& P. I/6 on each Relay.

\section*{ohm, All at \(12 / 6\) \\ P.O. RELAYS Type 3000}

100 ohm 3 c/o, 2 make, 2 break. 200 olam, 6 c/o. \(\$ 00\) ohm, 1 Heavy duty clo. 500 ohm, 4 Heavy duty raake. 16,000 ohm, 2 make, z break. All at 1216 each. \(20,000 \mathrm{ohm}, 2\) Heavy duty make. Plus 1/0 P. \& P.
SOLENOID. Overall length \(3 \frac{1}{3}\) in., stroke \(\frac{1}{6}\) in. to tin. Maximum push 8 oz. 12-24 v. D.C. operation. D.C. resistance 35 ohm . Price 8/6. P. \& P. I/6. G.E.C. SEALED RELAYS

M1069 5,000 ohms, 2 c/0. M1087 180 ohm, 2 make, 2 break M1092 670 ohm, \(4 \mathrm{c} / \mathrm{o}\). M1 095670 ohm, 2 m .2 b. MIl00 670 ohm, \(2 \mathrm{c} / \mathrm{o}\). Ex new equipmene. Ml492 670 ohm 4 c/o.
\[
\text { All at } 12 / 6 \text { each, plus } 1 / 6 \text { P. \& P. }
\]

14,000 OHM SEALED RELAY. High Speed single c/o. Platinum contacts. Super-sensitive, ideal for Transistor circuitry. Will operate on 1 milliamp. 25/s. P. \& P. \(1 / 6\).
CARPENTER POLARISED RELAY. Type \(5 A T T R 2 \times 1,900\), turns at 55 ohms. Including Base. 25/-. P. \& P. 1/6.
COMPACT HEAYY DUTY 6 volt DC RELAY \(6-9\) volt D.C. operation 30 ohm coil \(2 \times 10 \mathrm{amp}\). c/o contacts, will handle up to 250 volt A.C. Size izin. high \(\times 2 \frac{1}{4}\) in. \(X 1 \frac{1}{2}\) in. Price \(7 / 6\), plus \(1 / 6\) P. \& P. 3 for 20/- post paid.

\section*{LATEST HIGH SPEED MAGNETIC}

4 figure 10 impulses per second. Type \(100 \mathrm{~A}, 500\) ohm coil. 18-24 v. D.C. operation Type 100 B , 2,300 ohm coil, 36-48 v. D.C. operation. Any type, 15/- each, plus \(1 / 6\) P. \& \(P\).
RESETTABLE HIGH SPEED COUNTER 4 figure 1,000 ohm coil, \(36-48\) v. D.C. operation. \(\pm 3 / 10 / \%\) P. \& P. 1/6.
\(£ 3 / 10 / \%\) P. \& P. \(1 / 6\).
3 figure 700 ohm coil, 24 v. D.C. \(22 / 2 /-\). P. \& P. I/6. SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY.
7 adjustments, pre-
cision tooled, speed
adjustable 10 w.p.m.
to as high as desired.
Weighe \(2 \frac{1}{2} l b, ~ \& 4 / 12 / 6\).

post paid. Fitted \(2 \frac{1}{2}\) in. Moving Coil Speaker. Uses type PP3 or equiv. 9 V. battery. Complete with latest
design Morse Key. 22/6, plus \(1 / 6\) P. \& P.

VENNER I4-DAY CLOCKWORK TIME SWITCH
5 amp .230 v . contact, I on/off every 24 h . Fitced in metal case with key. Used but guaranteed. 47/plus \(3 /-\) P. \& P.

230 v. A.C. RELAY. 2 e/o 2 amp. contacts \(9 / 6\), ex new equip. P. \& P. \(1 / 6\).

HIGH SPEED BLOWER UNIT
\(200 / 250\) volt A.C. Powerful 2 -speed motor, 11,000 and 13,000 R.P.M. \(17 / 6\) plus P. \& P. \(2 / 6\) AUTO TRANSFORMERS. Step up, step down. 110-200-220-240 v. Fully shrouded. New. 300 wate cype 63 each. P. \& P. 4/6. 500 watt type \(£ 4 / 2 / 6\) each. P. \& P. 6/6. 1,000 watt type
€ \(5 / 5 /\). each. P. \& P. \(7 / 6\).


STRATION A complete comcomprising a robustly buile Transformer and elec-cro-magnet with removable coils and pole pieces. Coil tapped for
230 v., 220 v.
110 v. 115 v. \begin{tabular}{lll}
110 & \(v, 115\) & \(v . ;\) \\
12, & 36 \\
\hline
\end{tabular} 110 v. A.C. These coils are also used for D.C. experiments Complete with all accessories 15/-carr. Leaflet on request.
WIMSHURST ELECTROSTATIC GENERATORS \&13/17/6, carr. U.K. (B.R.S.) 18/-. Leaflet on request.


SENSITIVE
GALVANOMETER Centre zero \(300-0.300\) microamp., 90 ohm approx. Calibrated 30-0-30 in clear divi sions. Mounted in sturdy terminals. Price \(£ 4 / 10 /=\) P. \& P. \(2 / 6\)

Matching voltmeter calibrated \(0-3 \mathrm{v}\), and \(0-15 \mathrm{v}\). D.C 64/10/-. P. \& P. \(2 / 6\).
D.C. Ammeter 0.6 amp . and 0.3 amp, , \(£ 4 / 10 / \mathrm{m}\) P. \& P. 2/6. Set of 3 matching instruments \(£ 12 / 19 /-\) P. \& P. \(4 / 6\).

230 VOLT A.C. GEARED MOTORS Type DI5G 5 r.p.m. 1.71b. inch, E2/9/6. P. \& P. 3/ Type B16G80 r.p.m. 26/b. inch, \(2 / 2 / \mathrm{m}\). P. 8 P. 3/ Type Di6G 13 r.p.m. 1.451 b , inch, \(£ 2 / 17 / 6\). P. \& P. 3/-

\section*{NICKEL CADMIUM BATTERY} Sintered Cadmium Type, 1.2 y 7AH. Size: height \(3 \frac{1}{2}\) ine, width 2 in \(X\) I \(\frac{3}{10}\) in. Weight: approx. \(2 / 3\).

\section*{}
D.C. 6 bank 25 position, 5 non-bridging, | bridging wiper; 5 bank 25 position, 4 non-bridging, 1 bridging wiper; 6 bank arranged to give 3 banks, 50 wiper; 8 bank arranged to give 4 bank, 50 wiper. These switches have been carefully removed from equip ment. All ac 35/. each. P. a P. 2/6
BRAND NEW 4 Bank 25 Way
Uniselector, 3 Bank + Homing,
Uniselector, \({ }^{3}\) Bank + Homing,
25 ohm coil, \(12-24 \mathrm{v}\). DC operation, 25 ohm coil, \(12-24 \mathrm{v}\). DC operation, E4/17/6 plus 2/6 P. \& P.

\section*{SPECIAL OFFER OF FIRST GRADE}

GUARANTEED TRANSISTORS

OC \(83-3\) for \(12 / 6\) OC \(44-3\) for \(10 /-\)
OC \(45-3\) for \(10 /=\) OC \(81-4\) for \(10 /=\)
OC 81D-4 for 10/. all post paid.

\section*{30 AMP D/POLE HEAVY DUTY
SWITCH \(4 / 6\) PLUS \(/ /-P . \&\) P.}

34R SILICON SOLAR CELL \(4 x .5\) volt unit series connected, output up to 2 v , at 20 mA . in sunlight 30 times the efficiency of selenium. As used to power Earth Satellites \(37 / 6\). P. \& P. I/-.
" solar cell and photo-cell

\section*{EXPERIMENTERS' GUIDE'}

Teaches the principles of light sensitive devices and their application. 26/-post paid.


MOVING COIL HEADPHONES Finest quality soft chamois ear muffs. Superb reproducrion. Complet with jack plug. 25/6. P. \& P. \(2 / 6\).
Similar with \(\mathrm{m} / \mathrm{c}\) microphone, with 5-way plug as used in No. 19 Set, 30/-. P. \& P. 3/\%.


MULTI.RANGE TEST METER
Model Bso. D.C. volt 0.6 ₹. 2.5 F. at 10,000 thams per Folt. Ideal for transistor circuit
tenthag. A.C. and D.C. volt, 10 v., B0 v. 250 V., \(500 \mathrm{~V} .1,000\) v. at 4,000 olams per volt Renistance \(\geq \mathrm{KK}\) ohm, 200 K ohm, 2 megohm, 20 megohns. Repair service svailable. Price includes Test Leads, Batter. Instruc tion book, packing and post (U.iK.). Price
£6/2/6. Additional models available. Leatlet sent on requeat.
L.T. TRANSFORMERS

All primaries 220-240 volts.
\begin{tabular}{|c|c|c|}
\hline & Sec. Taps & Price \\
\hline 1 & \(30,32,34,36 \mathrm{v}\). at 5 amps . & 23/5/0 \\
\hline 2 & \(30,40,50 \mathrm{v}\), at 5 amps . & E5/5/0 \\
\hline 3 & \(10,17,18 \mathrm{v}\), at 10 amps. & 63/1010 \\
\hline 4 & 6, 12 v . at 20 amps . & £4/17/6 \\
\hline 5 & 17, 18, 20 v. at 20 amps. & E5/12/6 \\
\hline 6 & \(6,12,20 \mathrm{v}\). at 20 amps . & 25/5/0 \\
\hline 6 & 24 v , at 10 amps . & E3/15/0 \\
\hline
\end{tabular}

Carr
A.C. AMMETERS 0-I, 0-5, 0-10, 0-15, 0-20 amp A.C. VOLTMETERS \(0-25 \mathrm{v}, 0-50\) v., \(0-150 \mathrm{v}\). M. 1 \(2 \frac{1}{2}\) in. Flush round all at \(21 /\). each. P. \& P. extra
\(\begin{array}{lll}0-300 & \text { v. A.C. Rect. M-Coil } 2 \frac{1}{2} \text { in........... } 29 /^{-} \\ 0-300 \text { v. A.C. Rect. M-Coil } 3 \frac{1}{2} \text { in. Type W23.... } & 55 /-\end{array}\) 0-300 v. A.C. Rect. M-Coil \(3 \frac{1}{2}\) in. Type W 23
D.C. AMMETERS 0-5 amp. D.C. M.i 2 in RIC 0-500 Microamp, sub-min. \(\frac{1}{4}\) in. dia. Scaled
\(\qquad\)
 STATIC GENERATOR, fitted with motor drive for 230 v . A.C. giving a potential of approx. 50,000 voles. Supplied absolutely compleze including accessories for carrying ous a number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonstrations. Price E \(6 / 6 / \mathrm{F}\) plus \(4 / \mathrm{-}\). P. \& P. Lft. on req. Latest type SIEMENS MINI-
ATURE RELAY in
 ATURE RELAY in Transparent Case, \(4 \mathrm{c} / 0700 \mathrm{ohm}\) I \(1 / 6.6\).
Base 4/-. \(2 \mathrm{c} / 0700\) ohm coil size \(\frac{7}{8} \times \frac{3}{2} \times 1 / \frac{7 i n}{2}\). I5/ ohm coil, VARLEY TYPE VP4 (similar to illus.). 5,800 ohm, \(4 \mathrm{c} / \mathrm{o}\).
New, \(12 / 6\), less base.
Similar to above.
Similar to above. Mfd.
GRUNER, \(4 \mathrm{c} / 0,2,400\)
New, \(12,7,4 \mathrm{c} / \mathrm{o}, 2,400 \mathrm{ohm}\) coil
INSULATED TERMINALS Available in black, red, whice, yellow, blue and green. New i5/- per dos. P \& P. \(2 \%\)
BUILD AN EFFICIENT STROBE UNIT FOR ONLY 37/6. We supply a simple circui Jiagram and all electrical parts including the N5P2 Strobe tube which will enable you to easily and quickly construct a unit for infinite variety of speeds, from I flash in several seconds to
chousands per minuee. \(37 / 6\) plus \(3 /-\mathrm{P}\). \& P.
20.WAY STRIP containing standard Post Office telephone Jack Sockets. Overall size Ilin. \(\times 3 \frac{1}{2}\) in telephone Jack Sockets. Overall size 1 in
\(\times\) tin. NEW PRICE \(15 /\) - each. P. \& P. \(2 / 6\).
\& INSUEATIONTESTERS (NEW)
 Test to I.E.E. Spec. Rugged metal construction, suitable for bench or field work, constant speed clutch Weight 6 lb. 500 vole, 500 megohms. Price 522 carriage paid. 1,000 volt \({ }^{5}, 1,000\) megohms, \(£ 28\) carriage paid NEW SOUND POWER OPERATED EX-ADMIRALTY HEAD AND BREAST SETS
Two such sets connected up will provide perfect incercom. No batteries required.
Will operate up to \(\frac{1}{2}\) mile. Price \(17 / \mathrm{s}\) each, plus P. \& P. \(4 / 6\) or 32,6 per pair. P. \& P. 6!

PERSONAL CALLERS ONLY: 9 LITTLE NEWPORT
STREET, LONDON, W.C.2. Tel.: GER OS76 (OFF LEICESTER SQUARE)
Open till I p.m. Thursdoy ond all day Saturday.

\section*{VIKING TRANSISTOR}

40-50 WATT AMPLIFIER OPERATING INSTRUCTIONS. GENERAL An extremely reliable lightweight amplifier capable of giving \(40-50\) watts of undistorted sound, made possible by the use of the latest semi-conductors (transistors) and techniques which ensure space-age reliability under the most rugged purpose amplifier particularly suitable for use with musical instruments that require exceptionally high treble response (not recommended for Bass Guitar). Tremolo facilities are available on Channel I only. INPUTS-CONTROLSCHANNEL I (Tremolo). This contains two high gain input jack sockers controlled by Volume Control I which is mounted directiy above the two sockets marked Tremolo. BASS I. Gives a controlled boost to the lower frequencies on Channel I only. TREBLE I. Gives a controlled boost to the high frequencies on Channel I only. TREMOLO. This operates on Channel I only and the variations of intensity and speed of the Tremolo beat is adjusted by the controls DEPTH and SPEED. A socket is provided in the rear of the amplifier so that the Tremolo may be switched on and off by the use of a footswitch plugged into the socket. If you wish the Tremolo to be used without she footswitch, this is possible as the footswitch is only used to short out the effect. INPUTS AND CONTROLS-CHANNEL 2 (Normal). This contains two high gain input jack sockets controlled by Volume Control 2 which is mounted directly above the sockets marked Normal. TREBLE, Gives a controlled boost to the ereble frequencies on Channel 2 only. MAINS VOLTAGE. Fully adjustable. \(200-250\) volts, A.C., 50 cycles. POWER OUTPUT \(40-50\) watts sine wave British rating. Very little distortion. OUTPUT IMPEDANCE 3 ohms. Price \(21 \mathrm{gns}\). plus El postage and packing.
WOLSEY U.H.F. AERIAL AMPLIFIER, two-stage, gain 23 dB , noise factor 8 dB power consumption 6 mA at 14 volts. Two AF186 transistors, complete with
 postage and packing.
MAINS TRANSFORMER, primary \(200 / 250\) volt, secondary \(425 / 425\) volt, 250 mA , 6.3 volt \(4 \mathrm{amp}, 5\) volt 3 amp; fully shrouded, chassis mounting. Price \(\mathrm{E} 2 / 5 / \mathrm{-}\), plus \(7 / 6\) postage and packing. Auto transformer step-up-step.down, \(240 / 110\) volt 400 watt. Price \(\{1 / 5 /\)-, plus \(7 / 6\) postage and packing.
MAINS TRANSFORMER, \(200 / 250\) volt, secondary \(250 / 250\) volt 70 mA 6.3 volt. 3 amp . drop-through. Price \(12 / 6\), plus \(4 / 6\) postage and packing.
Elac IOin, 10,000 lines ceramic magnet, 3 or 15 ohms 7 witt. \(£ 1 / 9 / 6\) plus \(4 / 6\) postage and packing.

\section*{'MAYFAIR' 5-Transistor TAPE RECORDER}

Capstan-driven, battery operated \(7 \frac{1}{2}\) and \(3 \frac{3}{4}\) i.p.s. Precision made. Push-button controls. High quality 2娄in. speaker. Push-pull circuit. High quality \(2 \frac{2}{4}\) in. speaker. Push-puli circuit.
Output: 400 mW . Frequency response: Output: 400 mW . Frequency response: \(200-7,00 \mathrm{kc} / \mathrm{s}\). Fast rewind up to 1 hour twin track playing time, Automatic erasing for

 at
 - \(\times 2 \mathrm{in}\) * High " \(Q\) " ferrite rod aerial.
t I.F. neutralization on each separate stage. - D.C. Coupled push pull output stage with - Room filling outpur 350 mW
* Ready etched and drilled printed circuit board back printed for foolproof con= struction.
* Fully comprehensive instructions and point-to-point wiring dlagrams.
* Fully tunable over medium and long wave. 168-535 metres and \(1,250-2,000\) metres.
* All components, ferrite rod and tuning assembly mount on printed board.
- Full after sales service.
* Parts list and circuit diagrams 2/6, with parts.

\section*{MULTIPLEX \\ DECODER}

For receiving STEREO FM
Now is your chance to benefit in full from the new B.B.C. stereo transmissions with Highly efficient Mullard vinkor pot cores Two semi conductor diodes pot cores. Two semi conductor diodes. Double purpose valve. Printed circuit type construction high input impedance. Specification: Cross talk minus 26 dB at \(1 \mathrm{kc} / \mathrm{s}\). input requirements 0.5-1.5 RMS. Stability plus or minus \(0.1 \%\). Voltage requirements H.T. 190-250 volts. D.C. at 5 mA heaters 6.3 volts. A.C. at 300 mA , Self powered unit shorty available, price to be announced. Size 5 tin: \(\times 3 \frac{1}{2}\) in. \(x\) lin. Fully built


Price 94.4.0 P, \& P. 3/and tested.

SPECIAL OFFER


ONLY f4.4.0 \(7 / 6\) Plus Buy yourself an easy to build 7 transistor radio and save at least £10. Now you can build this superb 7 transistor superhet radio for under \(\mathbf{4} / 10 /\)-. No one else can offer such a fantastic radio with so many de luxe star features so

Tin. \(\times 4\) in. P.M. Speaker at no extra charge, Power supply kit to purchasers of former, rectifier and smoothing condenser, A.C. mains \(200 / 250\) voles. Ourput 9 v. 100 mA. \(7 / 6\) extra.
* De luxe grey wooden cabinet size \(12 \frac{1}{2}\) in. \(\times 8 \frac{1}{3}\) in. \(\times 3 \frac{1}{2} \mathrm{in}\).
Horizontal easy


Type E MOTOR
SILICON RECTIFIERS
250 v. P.I.V. 750 milliamps.
Six for 7/6.
Post paid.

TRANSISTORISED \(1 \frac{1}{2}\) WATT' AMPLIFIER comprising 2AC, 128,20C, 75 and 2 AA1 29 separate bass and treble volume controls. Complete with Power Supply \(A C\) mains, 240 v , size \(7 \frac{1}{2} \times 3 \frac{7}{4} \times 2 \mathrm{in}\). Price \(50 / \mathrm{F}\), plus 2/6 p. \& p.


\section*{3 TO 4 WATT AMPLIFIER}

3-4 watt Amplifier built and rested. Chassis size \(7 \times 3 \pm \times 1\) in. Separate bass, ereble and volume conerol. Double wound mains transformer, metal rectifier and output transformer for 3 ohms speaker. Valves ECC8I and 6 v6. E2, plus \(5 / 6\) p. \& p.
 3 ohms speaker. Valves ECC8 and \(6 v 6\). E2,
The above in Kit Form, \(29 / 6\) plus \(5 / 6\) p. \& p.

\section*{CYLDON}
U.H.F. TUNER

Complete with PC. 88 and Complete with PC. 88 and
PC. 86 valves. Full variable PC. 86 valves. Full variable
tuning. New and unused. tuning. New and unused.
Size \(4 \frac{1}{2} \times 5 \frac{1}{2} \times 1 \frac{1}{2} i n\). Complete Size \(4 \frac{1}{2} \times 5 \frac{1}{2} \times 1 \frac{1}{2}\) in. Complete
with circuit diagrams. \(35 /=\)
Plus \(3 / 6\) p. \& p.


Our new Branch at 323 EDGWARE ROAD, LONDON, W. 2
IS NOW OPEN
Personal Shoppers only
All orders by post must be sent to our Acton address.

\title{
TRS \\ \\ BARGAINS IN MODERN QUALITY \\ \\ BARGAINS IN MODERN QUALITY KITS, COMPONENTS AND EQUIPMENT
} KITS, COMPONENTS AND EQUIPMENT
}

\section*{F.M. DECODER COILS
 \\ \(1 \%, 5 \%, 10 \%\) RESISTORS IN} PREFERRED VALUES ALWAYS IN STOGK.
COAY 8 OHM CABLE. High grade low loois
 Barkain Prices-Special meneths:

 Cuax Plugs 1 1-.
Outlet Boxes \(4 / 6\).
VOLOME CONTROLS - \(5 K-2\) Mrg. ohms. 3 in Guar. I year. LOG or LIN. ration lens \(8 \mathrm{~m} .3 / 6\) DP. Sir. \(5 / 1\) T. Twin Stereo less \(8 w .7 / 6\). 100 K to 2 M ohms WIth DP Sw. \(9 / 6\). STEREO BALASCE COMTROLS. Log/AbtI\(\log 5 \mathrm{~K}\), t, 1 or \(2 \mathrm{Meg} .9 / \mathrm{ea}\).
WAVECHANGE SWITCHES. 1 p. 12-way, 2 p.
 3-way, bong spindle, \(3 / 6\) ea.
TYGAN FRET or Vymair npkr. fisbric. \(12 \times\)
12in. \(2 /-; 12 \times 18 \mathrm{in} .3 /-; 12 \times 24 \mathrm{in} .4 /-\) etc. BONDACODET Speaker Cabinet Acoustic Wadding, approz. 1 in . thick, 18 in . Wide, nay
length cut, \(2 / 3 \mathrm{ft}\). \(6 / \mathrm{y}\). EXPANDED length cut, \(2 / 3\) ft- \(6 /\) Jd. EXPANDED
ANODIZED METAL. Attractive gitt finish ANODIVED METAL. Attractive git finieh
\(\times 1 \mathrm{~m}\). diamond mesh \(4 / 6\) sq. ft. Mult jples of 6 ins. cut. Max. size \(4 \times\) ist., \(47 / 6\) plus carr EHAMELLED COPPER WIRE- 2 oz. reel . \(14 \mathrm{~g} \cdot 20 \mathrm{~g} .3 /-; 22 \mathrm{~g} .-28 \mathrm{~g} \cdot 3 / 6 ; 30 \mathrm{~g}\).
\(36 \mathrm{~g} .-38 \mathrm{~g} \cdot 4 / 9 ; 39 \mathrm{~g} \cdot 40 \mathrm{~g} .5 /=\) etc.
TINNED COPPER WIRE- \(16-22 \mathrm{~g} \cdot 4 /-2\) oz. VEROBOARD-All slres including \(21 \mathrm{~m} . \times 5 \mathrm{in}\).
 accessories and tools in stock.
RESISTORS-Moderm ratings sulf range 10 ohms to 10 megohms, \(90 \% \frac{1-1}{} 1 \mathrm{w} .3 \mathrm{~d}\), es.. ditto
 and over 1 meg. 9 d. ca.j. \(1 \%\) Hi-ctab., 1 W \(1 / 6\) es. (below 100 ohms 2/- ea.).
WIREWOUND RESISTORS. 25 ohme to 10 K . \(5 \mathrm{w} .1 / 3 ; 10 \mathrm{w} .1 / 6 ; 15\) w. 2i-. CONDENSERS
Silver Mica, All values 2 pi. to 1,000 pl. 6 d . ea. Silver Mica. Al valueg 2 pi. to 1,000 pf. 6d. ea .001 mld. to .018 d . and \(.1 / 350 \mathrm{v} .10 \mathrm{~d}\). .02 ml to \(0.1 \mathrm{mf}, 500 \mathrm{v}\). \(1 /=. .25\) T.C.C. 1/6. . 5 T.C.C. \(1 / 9\). CLOSE TOL. STMTCAS. \(10 \%\) 5 pf. 500 pf . 8 d .
 ALUMIN, CRASSIS. 18 g . Plain undrtlled, folded 4 sides, \(2 \mathrm{in}\). . deep, \(6 \mathrm{in} . x^{2} 4 \mathrm{in} 4 /\).6
\(8 \mathrm{in} . \times 81 \mathrm{n} .5 / 9 ; 10 \mathrm{in} . \times 7 \mathrm{in} ., 6 / 9 ; 12 \mathrm{nn} . \times 6 \mathrm{in} .\), \(\sin . \times 61 \mathrm{n} .5 / 9 ; 10 \mathrm{in} . \times 7 \mathrm{in} ., 6 / 9 ; 12 \mathrm{~m} . \times 6 \mathrm{in}\).
\(7 / 6 ; 12 \mathrm{in} . \times\) Bln., \(8 i-\) etc. ALUMIN, SREET, 18 g . \(6 \mathrm{in}, \times 6 \mathrm{in}, 1 / 6 \mathrm{in}\). \(9 \mathrm{in} .1 / 6\)
\(4 / 6\) each.
A UNIQUE TRANSFORMER MANUFACTURING SERVICE We manufacture all types Radio Mains, Transf. chokes. Quality Op. Trans., etc. Enquiries invited
for specials, prototypes for small production runs. Quotations by return.
- LARGE STOCKS PROMPT DESPATCH PERSONAL ATTENTION GENUINE BARGAINS IN ALL DEPARTMENTS


Med, and VEF \(100 \mathrm{~m}-550 \mathrm{~m} ., 86 \mathrm{Mc} / \mathrm{s} .-103\) Mu/s.. 6 ralves and metal rectifier. Self-
contitined power unit A.C. \(200 / 250 \mathrm{v}\). opercontibined power unt Acc. \(200 / 200\) v. oper-
at ion. Margic-ege indjcat or, 3 push-bution controls, on/of Med., VHF. Diodes and hish outpat gockets with gain control, Dinminatell 2 -colour Perupex ditil \(11 /\) in. \(X\)
 A recommended Fidelity Unit for use with Amplifiers featured here.
Bargain Price. Complete kit of part, Ganr. \(7 / 6\). Ditto less Power pack 10 Gns. Carr. T/6. Circuit and Const. details, 4/6. F'ree with kit.
MAKE YOUR OWN INSTANT CIRCUITS WITH "CIR-KIT" hadiupromable for constructors. Rnables you cleanly. Kit No. 3 tne. bassebourd processed copper strip and sheet as advertised. 15/-

\section*{TAPE BARGAINS}

1,500 FT. 7in REEL. American professional qualty tape. Gives 18 hrs.
playing per trick at 37 r.p.s. With leader playing per track at 3f r.p.s. With leader
and stup folls. In attractively preeented sealed boxes. Ideal for 2 - and 4 -track masbines, mono or stereo- Outhinnding walue it \(17 / 6\) per reel ( \(\mathbf{p},-\boldsymbol{p}\). \(1 /\) - for
first reel, fid. each, after first when ordered first reel, ind. ead
it sume time).
UMIQUE DOUBLE SIDED TAPE on \(5 \frac{1}{2}\) in. reels. Superb quiblity used in normal way Ideal for experimenters ton. 6sint.
\(9 /-\) fiont. \(8 / 6\) (p. \& p. \(1 /-\) jer single reel, Bd. for ewh additional).
EMPTY TAPE REELS (Plastic). 3kn.1/3; 4 in . \(2 /-5 \mathrm{in} .2 t-554 \mathrm{n} .21-7 \mathrm{in} 2 / 3.\). 3 in . \(1 / 3\); \(5 \mathrm{in} .1 / 9 ; 5\) in. \(2 /-\); \(7 \mathrm{in} .2 / 3\).

PEAK SOUND STEREO AMP Model sas-8 with pre-amp 8.5 W. output per
chanmel. A aturly unit, easy to build, using Cir-kit aud speciadly compact chasesis layout. 14 Transistors, sieparate base/treble/rolume
controls. Juleal for uae with high quality controls. Ideal for use with high quality \begin{tabular}{l} 
ceranuic ispll erystal pick-ups. \\
Mitus Power Unit for \\
Ubove, \\
\(75 \%\) \\
\hline
\end{tabular}

\section*{TRS F.M. STEREO DECODER outstanding trs value}

This outstanding kit is based on the highly successful Mullard design and uses 6 Transistors on a printed circuit size \(5 \frac{3}{4} \mathrm{in}\). \(\times 2 \frac{3}{4} \mathrm{in}\). A 2-stage transistor Stereo Beacon indicator is incorporated. Requires a 12 v . supply.
Earth is negative.
Basic Kit supplied is suitable for Transistor Tuner input and Transistor Amplifier output. With simple mods (data supplied with Kit) this unit easily adapted for use with Valve Tuners and Valve Amplifier
Kit and assembly instructions complete with Mullard specified inductors Type WF2949 and WF29SI.
£4.19.6 \(\begin{gathered}\text { with hoils } \\ \text { prealigned }\end{gathered}\)
£5.5.0
Packing and postage either model \(2 / 6\).

\section*{COMPONENTS FOR TRANSISTOR EQUIPMENT}

MIDGET LFF. TRANS. fin. dia. Weyrad, ete 1st. 2nd. or 3rd. 1.P., ed. 5/6.
OSC. COLL. Tin. dia. Med. and L.W. 5/OSC. COIL. Repanco. \(\frac{1}{4} \times 1\) in. Standard type 1st, 2nd ind 3rdi.F. Osc. Mid
6/- ea. Double tuned type ea. \(6 / 9\)
MINIATURE PUSH-PULL DRIVER TRANSF. (Type TT45.) Retlo \(9: 1,6 /=\)
MINIATURE PUSH-PULL OiP TRANSF. to
3 ohms (Type TT4 3 ohms (Type TT46i). Ratio \(8: 1,6 /-\)
MIDGET R.F. CHOKES (for Mer. and L. W.).
\(2.6 \mathrm{mH}, 5 \mathrm{mH} .7 .5 \mathrm{mh}, 10 \mathrm{mH}\). ea. \(2 / 6\). \(2.6 \mathrm{mH}, 5 \mathrm{mH} .7 .5 \mathrm{mH}, 10 \mathrm{mH}\). ea. \(2 / 6\).
POLTESTER MINI CONDENSERS. Ideal for P/ct. use. 200 v. wg. 01 وd.. \(02294 ., .033\) 11d., \(04711 \mathrm{~d}, .0681 /-,-1 / 1 /\)
MIDGET TRANSISTOR RLECTROLYTICST.C.C. etc. 8 td. range, ali values 1 midd. \(50 \mathrm{mfd} .12 / 15\). wkg. \(1 / 9\) ea.; \(100 \mathrm{mfd} .12 \mathrm{\nabla}\) SPECLAL ELECTROLYTICS for Tranaistor SPECLAL ELECTROLYTICS for Tranaistor
Mains Unita. 1.000 mitd. \(26 \mathrm{~N} .3 / 9 ; 2,000 \mathrm{mid}\). 50 v. 6/6; 2,000 mfld. 75 v. \%/6.
TRANSISTOR CONDESSERS-Kunt's, T.C.C. .04 mid. 10 d. 1/3: . 47 mld . 1/6.
3 WATT TRANSISTOR AMPLTFIER (New
market \(\mathrm{PC}+\) ). 6 transistor, 3 ohm ontput Bize \(5!\times\) if \(\times{ }^{6}\) inansistor, 50 ohm output Excellent Figh Giain Med. 1 mp . Audio Amp. 75/-. Post \(1 /\)
9 v . PP3 Battery 2/6, and 3 ohms Bpeaker ext. SUB MIN. RESISTORS. 1/10th watt, \(10 \%\) tolerance. ea. 6 d .
BATTERY BOLDER-Takes 4 U7 batteries, \(2 / 9\).
MAINS UNIT for Transistor sets, \(200 / 250 \%\) A.C., for replaclng or reactivating PP3 or PPA Bittery Units, \(24 / 6\) plus 1/- post.

Ditto for PP9 Batteries, 29/6, plus 1/- post.
 178 pf . 8/6; ditto with Trimmera \(9 / 6\). 220 pl ,
+105 pf. with concentric elow motion drive,
 MIN, Slide Type WAVECHANGE SWITCH* \(\frac{2}{} \times \frac{7}{16} \operatorname{in}\). 2 pe 2-way, 2/6. 3-way Push Button Wong, Med. Ofr. \({ }^{3}\) push buttons engraved surplus Bargain, 5/8.
VOLUME CONTROLS. Midget transistor type. 5 K . with switch complete with edge Control MINIATURE DEAF AID EARPEONE. Continental type-High imp. Xtal earpiece, supplied with earplug innert, 31t. lead and miniature Jikis plug. Cs. \(81=\)
Ditto. Low impedance magnetic type, ea. 7/6 BOCKER SwITCH, Mains voltage type.
Chassis mounting- size \(\mid \times 1 \mathrm{in}\). S.P., D.P. or change-over. \(3 / 6\).
TRANSISTOR HOLDERS. 3 pla \(1 /-; 5-p\) in \(1 / 3\). FERRITE AERIAL RODS. \(4 \times\) 角in \(1 / 6\).
 PERRITE SLAB, \(3 \times\) in., \(1 / 6\). LOUDSPEAKERS
3 ohros. 2 inn. Mgh-flux E.M.I. Ideal for
pecket Transigtor Kits, 17/8. P. \& P. pocket Transistor Kita, 17/6. P. \& P. \(1 / 9\). - thons! value. 13/6. P. \& P. 1/9.

35 ohms. Fin. Goodmana, 21/6_ P. \& P. \(1 / 9\).
75 ohms. 2in. Plessey, Idesal Puih-PullOC81, etc., 15.6. P. \& P. 1/9.
80 ohms. 21n. Plesmey. 15/6. P. \& P. 2/-.

\section*{TRS KITS FOR MULLARD AMPLIFIERS}

MOLLARD " \(3-3 " 3\)-valve Hi-Fi quality at reasonable cost. Bass Boost and Treble controls, quality sectional output transformer \((8\) and 15 ohms). \(40 \mathrm{c} / \mathrm{s},-25 \mathrm{kc} / \mathrm{s}\). + 1 dB .
100 mV . for \(3 \mathrm{~W} .\), less than \(1 \%\) distortion. 100 mV . for 3 W ., less than \(1 \%\) distortion, only £7/10/\%. Carr, 5/=. Wired and tested 29/10/-

MULLARD " \(5-10\) " 5 valves \(10 \mathrm{~W} ., 3\) and 15 ohms output. Mullard's tamous circuit (with heavy duty niltra-linear quality output tir. Basic amplifier kit price
Carr. 7/8. Ready built \(1119 / 6\).

2 valve pro-amp. Mallard Circuit, \(98 / 12 / 6\)
(P. © P. 5/6). Assembled \(£ 8 / 10 /-\).

\section*{IDEAL REPLACEMENT CHASSIS}

The TRS 19667 valve A.M./F.M./R.G. chassis with tape
output socket and indoor F.M. dipole aerlah. Long/ output socket and indoor F.M. dipole aerlal. Long/ ability tuned on P.M. Edge Huminated glass scale marked in stations, etc. Chassis isulated from maing. 3 watts, \(3 \Omega\) output. A.V.C. Neg. feedback. Excellent
 7 ln . high \(\times 6 \mathrm{lln}\). deep; dial \(11 \mathrm{t} \times 31 \mathrm{in}\). Magic-eye.
4 controls. Thin makes the ideal replacement chassin 4 controls. Thin makes the ideal replacement chassis Fork. A fine unit by any standards. 313.19 .6
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
SINCLAIR KITS We work finl range of this yamous ued inectuding the remarrable mew MICROM ATIC. micro mait Tic 6 -stage vest pocket Ready bullt \\
 micro FM Pocket 7 Transistor \\
 PZ. 3 Power Pack \begin{tabular}{c}
\(8919 / 6\) \\
\(83 / 19 / 6\) \\
\hline
\end{tabular}
\end{tabular} \\
\hline
\end{tabular}

\section*{GARRARD}

LM,0000, Autochanger with ATG0 AUTOCHANGER DE. LUXE, With \(\begin{gathered}\text { lesing cast } \\ \text { tritable, } \\ \text { leartridge. }\end{gathered}\) SP. 25 DE LUXE Slagle playing unit. Lews cartridge.
Cary. and paeking on any of Carr. and paeking on any of

\section*{UNITS AND PLINTHS}

\section*{8 gns .}
\(9 \frac{1}{2}\) gns.
\(9 \frac{1}{2} \mathrm{gns}\).

GARRARD PLINTH. Suit-
able for use with any of the units here. Complete with
plustic cover (Carr, and pack. plastic cover (Carr, and pack.,
S/-). All types arailable. Post free.
frotn Mono at \(15 /-\), to Stereo from We stock Sapphire and Diamond Stylit for
(Carriage and insuranee 8/6.)
\&3.15.0 25/-

PACKING AND
CARRIAGE:
1b. \(1 /-: 1 \mathrm{lb} .1 / 9\) :
\(2 \mathrm{lb} .3 / 6 ; 61 \mathrm{~b}\). le1b. \(6 / 6\).

Send 3d. stamp for our Send \(3 d\). stamp for our
latest
lists (Dec. 66). lacest insts packed wasses of packed with mosses of

\title{
TASKYS RADIO \\ LONDON'S LARGEST STOCKISTS OF HI-FI AUDIO EQUIPMENT \\ \\ WORLD'S FAMOUS MANUFACTURERS
} \\ \\ WORLD'S FAMOUS MANUFACTURERS
}

\section*{DEMONSTRATION STUDIOS}

Lasky's Radio-established over 30 vears-offer you the most exciting and up-to-date chain of High Fidelity and Electronics Stores in London with the largest and most comprehensive stocks in Great Britain. Tur branches at 207 EDGWARE RD., W. 2,118 EDGWARE RD., W. 2,39 TOTTERHAM COURTRD. W. 1 and \(152 / 3\) FLEET ST., E.C. 4 , have huge stocks of everything in the "World of Electronles, Wi-Fi Audlo well-known British, Continental. American and Japanese manufacturers. Plus TV, Mi-Fi Audio Equipment, Raliograms. Revord Players, and a full range of domestie appliances, In addition our 118 EDGW ARE RD., W. 2 , branch, has the widest selection in Great Britain of Maine COURT RD., W. 1 ts London's nost up-to-date High Fidelity Sound Centre.

\section*{HI-FI FURNITURE}

Chonse frum our extensive riange of equipment
cablnets and speaker enclosures by Record eablnets and speaker enclosures by Record
Honsing, Fisher, G.K.D., Design Furniture, ete. Housing, Fisher, G.K.D., Design Furniture, etc. A full range is in stock to sutt all types of cquiplatious can be supplied to your choice, and our expert statif whil he pleased to oulvise you. Dlustrated- the Lowfiex equipment cabinet by equipment includtag space for record and tape atorige.


If you cannot call at any of our branches please send details of your reguirements to our head office and we shall be pleased to quote without obligation. We operate the "Purchase Tax Free" scheme for overseas visitors. Full H.P. terms available.

\section*{COMPLETE SYSTEMS}

A Laskg's "Package Deal "allows you to purchase the completo Audio System of your choice at a et equipsnent of your own choice. Bend us detalls of your requirements. H.P. and Easy Credit Terms
TAPE RECORDERS
MAGNAVOX 363 TAPE DECKS
 tares inelade: punse control; digltal counter: fast duction motor; interlocking keys, size of top plate 550 v. A.C. majus, 50 c.p.s. operation, Xew unused and Iully gnaranteed.
IASKY'S PRICE \(\frac{1 \text { triwk }}{\text { model }} 210.10 .0\) Carriagy LASKY'S PRICE t track \(\$ 13.9 .6 \frac{\text { Packing }}{7 / 6 \text { extra }}\)
 SPECTAL FOR OVERSEAS CUSTOMERS-the new. Magnavoz-Collaro 363 Deek for \(110 / 126\)
bo or 60 c.p.s. matns now avallable, prices as above. Post to any part of the world, \(35 / \%\).
NEW MARTIN TAPE RECORD REPLAY AMPS. of track model

LASXY'S PRICE E14/19/6 Carriage \& A track model

LASKY'S PRICE E15/19/6 Packing \(4 / 6\) extra LASKX'S PRICE \(12 / 6\). Post \& Packing \(2 / 6\).

\section*{NEW SPECIAL INTEREST ITEM FOR THE TAPE RECORDING ENTHUSIAST}

FM RADIO TUNER A1004
Miale by TTC this unique 5 transistor FM Radio Tumer enablen you to record yonr tape recorder. Selt powered by one PP3 type battery the the tuner mato your tape recoricr. Self powered by one PP3 type battery the tuner may aleo valtible for use with the TTO FM u ireless microphone (see Apec. Interest Itemas)
 Large easy to read tuning senic. 18im. fully directional telemcople aerial. Com LASKY'S PRICE £6.19.6 \(\qquad\)
Post 5 -.


\section*{AMPLIFIERS}

MODEL KT-55 TRANSISTORISED (SOLID STATE) STEREO AMPLIFIER BARGAIN

Made by well-knonn Britlsh manufacturer
and incorporiting the circutery. Spec.: Output 5 watte per channel; 14 transiators ( 7 per channel) plus rectifler
and varector in earch channel; frequency reand varector in each channel; frequency re-
aponse \(25 \mathrm{c} / \mathrm{s}\) to \(35 \mathrm{Kc} / \mathrm{s}\) at 3 watts (distortion better than \(1 \%\) ): inpui requirementa P.U. \(12 \mathrm{~m} / \mathrm{y}\), Radlo \(80 \mathrm{~m} / \mathrm{v}\), \(\mathrm{mpe} 80 \mathrm{~m} / \mathrm{v}\) (radlo and inputs are also suitahle for higher output crystal cartridgen); ontput imp. 8-160; bases, treble and balance controls with switching for Mono or Btereo and tape monitor; ontlet socket for tape reconder, For \(115 / 250\) y. A.C. mains. All ctrcuits are fully fuse protected. Fery compact free standing teak cabinet, size \(134 \times 64 \times 4\) in., with brushed aluminium front punei; all inputs and outletg are grouped LASKY's PRICE \(\$ 16.19 .6\)

\section*{LASKY'S ECONOMY STEREO HI-FI SYSTEMS BASED ON \\ THE MODEL KT-55 AMPLIFIER}

Comprises the Model KT-55 Stereo Amplifer as above with the Record player (single or autochanger), cartridge and speakers of your chotcc. Please send us detailo of your requifrements (with alternatives if possible) for our Economy Package Price quotation. Dodinery and Packing FREE anysehere in the U.K.

\section*{RECORD PLAYERS}


\section*{4-SPEED AUTOCHAHGERS}
B.S.R. AUTOCHANGERS


GARRARD AUTOCHANGERS at lowest ever prices:
 3000LM with stereo cartridgo ATh0 with Steren cartridg

GARRARD BASES
WB1.... £3 16 WB2 .. 3 e5 50 CLEARVIEW PERSPEX COVERS WB1.. £3 10 o WB2 … \(\& 4176\) SINGLE PLAYERS
 A50 iess cartridge ......... GARRARD 401 GARRARD Lab, 80, less car

ONNOISEEUR Cratteman III Model B LENCO GL58 LENCO GLB8
LENCO G88 LENCO GL70 KMI with Stereo cartridge \(\begin{array}{lrrl}£ 12 & 19 & 6 & \text { COLLARO JUNIOR } \\ £ 25 & 4 & 0 & \text { GARRARD ARP12 }\end{array}\) GARRARD SRP10 mains mdl. GARRARD ERP10 batt. mdl. GARRARD \(8 P 25\) Mono

THORENS TD135 II
THORENS TD124 IL PEILIPS AG/1016
 \(\begin{array}{ll} & 84 \\ 19 & 6\end{array}\) 84196
 All other current models available. Postage on all above \(5 /-\) extra.

\section*{GREENCOAT RECORD PLAYER} 2 speed model 831 and 45 r.p.m. \({ }^{6}\) v. battery operated. Com-
plete with pick + up and fited with erystal carr rldge. Size only \(7 \mathrm{in} . \times 6 \mathrm{in}\). Fitted with auto. stop ind start. Ideal for use
LASKY'S PRICE
49/6
Post 2/8


CRYSTAL PICK-UP CARTRIDGES-LOWEST PRICES EVER: All complete with Styli L.P. and Standard STEREO ully gnaranteed. Standard Fisting will Ronette Stereo O.V. Turnover with 2 sapphiree ... \(25 /-\) fit most P. U. Arms and Heads. Post \(1^{\prime \prime}\). Ronete stereo type 105 and 106 with 2 sapphires Garrard GCs .................. 15/- L/P fteree and sapphire standard

\section*{LASKY'S RADIO FOR FINEST VALUE and COURTEOUS SERVICE}

\title{
TRANSISTORISED BARGAINS \& COMMUNICATIONS SETS \\ \\ THE WIDEST RANGE AVAILABLE TODAY \\ \\ THE WIDEST RANGE AVAILABLE TODAY \\ Lasy RADIO
}


\section*{SUPERB VALUE OFFER-} FAMOUS MAKER'S SURPLUS PORTABLE TRANSISTOR RECEIVERS PTODEL 2105 7 transistor plus 2 diode superhet, 6 wsveband port-
able recairer. Covers the full Medium waveband and 8hort waveband \(31-94 \mathrm{M}\), and also 4 separate
and
switched band-spread ranges, \(13 \mathrm{M}, 16 \mathrm{M}, 19 \mathrm{M}\) and 25 M , swittched band-spread ranges, \(13 \mathrm{M}, 16 \mathrm{M}, 19 \mathrm{M}\) and 25 M ,
with Band Spread Turing. All Mullard Transletorg and with Band Spread Tuning. All Mullard Transistors and
Dlode. Usee 4 U. U batteries, 5in. Cramic Magnet P.M. Dipate. Useen 42 butteries, rod aeriul. Plastic cabinet, size \(10 \times 6 \mathrm{k} \times 3 \forall \mathrm{in}\).
findehed in midd-fawn with metal trim and carrying handle. Fully bulit and factory teated.
LASKY'S PRICE E9.19.6
4 U2 Batteries \(3 / 4\) extra. Post \(5 /\).

\section*{RUSSIAN BUILT BARGAIN THE "MICRO COSMOS"}
transistors - fiaeat Russian design and value (would cost much more if made elsewhere). Full medium wavetrand cover. Unique battery charger feature allows batteries to be recharged from AC mains. (Batteries last for ever). Two-colour plastlc
 Complete with leather zip puree, battery charger, rechs rgeable Batteries

LASKY'S PRICE 69/11

\section*{SPECIAL INTEREST ITEMS!}

TTC B4002 FM WIRELESS MIC.
Highly sensitive-suitable for either static or mobile use. signal can be picked up by any FM radio or tuner which receives frequencies between \(96 \cdot 104 \mathrm{Mc} / \mathrm{s}\).
over several hundred yards. Size only \(3 \times 24 \times 1\) (tn (in Jeather case). Operates on one PP3 type battery. Complete with neck cord, clip-om dynamic extension milke ( \(1 \times \frac{3}{3} \times \frac{8}{16}\) in.l) and battery.
LASKY'S PRICE 10 GNS. Pant Frec.
TTC 13/500. More poweriul wersion of above-size \(7 \frac{1}{2} \times 1{ }^{2} \times 3\) in. Operates on one
EXPORT TRANCEIVERS (WALKIE TALKIES)
All fully tranisisonfed, battery operated with internal epeaker and
telebcopic aerial. Fange varies depending on power of unit and area. telescopic aerial. Range varies depending on power of unit and area.
All complete with batherieg-prices shown are for pair. Post FREE anywhere in the forld.
TRANSETTE (ilusatrated)-size \(51 \times 2 \frac{1}{2} \times 11 \mathrm{in}\). (each unit), with
 FANTAVOX TR-1005- 10 transistors: size \(7 \times 2 \frac{1}{} \times 1\) in. (earh mait). Comp. with leather case and earphone EXPORT PRICE 25 Gns.
AFCO OB10- 10 transistors; batt. level meters; size \(8 \times 3 \times 1\) in. (each unit). Comp. with earphone and wribt strap \(8 \times 3 \times 1 \% 10\). STANDARD SRK-g2X-alze only \(5 \times 1 \%\) EXPORT PRICE 29 Gns. MIDLAND 18-13as- 16 transistor high power model. 2 switched Channels. output and batt. level meturs; aize \(101 \times 3 \times 2\) in. (each
unit). Socket for ext. battery MIDLAND 1S-IEOB- 11 translators. i channel with buitt-in call



\footnotetext{
"HARADA" AUTOMATIC CAR AERIAL
 Aaring Instructiong. Absodutely undversal itting, tor all cara with 12 v. electrical systeni.
LASKY'S PRICE £7.19.6 Post tree.

\section*{MISCELLANEOUS}

NOW AVAILABLE-OUR NEW BARGAIN BULLETIN.


\section*{TRANSISTORS all brand new and guaranteed}

GET 81, GET 85, GET 86 2/6: 837A. 874P 3/6; OC4b, OC71, OC81D 4/6; 0C44, OC70, OC76, OC81 (match pair 10/6); 5/6; AF117, OC2200 6/6; OC42, OC43, OC73, OC82D 7/6; OC801, OC204. 15/-; 00205, 0C206 19/6; 0C28, 24/6; OC75, 8/-
\begin{tabular}{|c|c|c|}
\hline TRANSFIETERS & \multicolumn{2}{|l|}{By BROSH CRYSTAL CO. Available from stoek.} \\
\hline  & TO-02D \(470 \mathrm{kc} / \mathrm{s} . \pm 1 \mathrm{ke} / \mathrm{s}\). TF--018 \(465 \mathrm{kc} / \mathrm{s} . \pm 2 \mathrm{kc} / \mathrm{s}\). TF-01D \(470 \mathrm{ke} / \mathrm{s} . \pm 2 \mathrm{ke} / \mathrm{s}\). & 9/6 ЕАСН Post 6d. \\
\hline
\end{tabular}

\section*{COMMUNICATION RECEIVERS}


\section*{MODEL KT 320 KIT}
Supplied in sub-Ansemblea for easy buildigg, Supplicd in sub-Aseembllea for easy buildiog, Covers ranges from \(540 \mathrm{Kc} / \mathrm{s}\). to \(30 \mathrm{Mc} / \mathrm{s}\). Ham Rand
is provided with a scale for direct reading and can alen be band spread. \(\%\) valves. Facilities: A.N. I A.V.C. and M.V.C. Q Muitiplier qloo serves as B.F.O. H.F. stage and two I.F. stages ensure hugh semsitivity and selectivity (all colhs and I.F.s are supplied pre-aligned). 2 Aerial sockets, Standby position for use With a transmikter of meter
fitted. \(200-250\) v. A.C. mains. Steel cabinet. grey crackie finith. size \(15 \times 8 \times 10 \mathrm{in}\). Dial \(12 \times 4 \mathrm{in}\). 11 parts new and fully guaranteed. Complete with full construction data and operating manual LASYY'S PRIGE 25 GNS. POST Also svailable ready built and tested 32 gns,

NEM MODEL SR 150 Covers full medlum waveband and \(1.6-4.4 \mathrm{Mc} / \mathrm{s}\).
\(4.5-11.0 \mathrm{Mc} / \mathrm{B}\). and \(11.0-30.0 \mathrm{Mc} / \mathrm{s}\). in separate 4. \(5-11.0 \mathrm{Me} / \mathrm{s}\), and \(11.0-30.0 \mathrm{Me} / \mathrm{g}\). in separate
switched band spread ranges. Two aerlals are fitted an internal loop and external telescople. Controls include: B.F.O. Sensitivity. C.W. A.N.L tone switch receiver/stand-hy. 8. meter. Eotay to read A.C. 4 valve plus rectifier. Fitted with internal speaker and socket for phones or external speaker. Cabinet \(81 z e 13 \psi \times 8\). \(x\) in. Complete with ful


LASKY's PRICE 16 Gns.
E.P. Terinas available Post \(10 /\) -


\section*{TEST EQUIPMENT}

NEW! LASKY'S CLEAR PLASTIC PANEL METERS

Precision made in Japan by HIOKI. Each meter boxed and fully guaranteed with all fixing nuts and washers. Sizes are of front panel.
\[
\text { Add } 1 / 6 \text { post on each. }
\]

TYPE KR-52 \(3 \times 2\) in. (illustrated) 1 mA
5 mA
mA 300 V DC \(50 \mu \mathrm{~A}\)
1 mA \& Meter


TYPE MK-38A 2in. square.
1 mADC
5 mA DO
1 mA S Meter
\(22 / 6\)
\(22 / 6\)
\(22 / 6\)
\(32 / 6\)
\(29 / 6\)
TYPE MK-45A 1 Iin, Square
mA DC

1 mA DC
300 V DC

\section*{1 mA B Meter}

NOMBREX TEST EQUIPMENT MODEL 27 TRANSISTORISED SIGNAL
GENERATOR (illustrated)
Wide range- \(150 \mathrm{kc} / \mathrm{s}\). to \(350 \mathrm{Mc} / \mathrm{s}\). Accuracy better than \(2 \%\) Direct calibration. AF. RF and MOD. Battery operatel. Light LASKY'S PRICE \&10.16.9 Pith test leads and batt
MODEL 63. Wide range AUDIO GENERATOR \(10.100 \mathrm{Kc} / \mathrm{s}\). \(£ 17 / 1 / 9\) complete with battery.
MODEL 66. Wide range INDUCTANCE BRIDGE
POW to 100 H in 4 ranger. Measures \(Q\), \(£ 18 / 6 / 9\), complete wit battery. MODEL 62 RESISTANCE CAPACITY BRIDGE \(\mathbf{8 9 . 6 . 9}\) complete with

\section*{THE "MINI-LAB" MULTIMETER}

A reai mighty midget offering 7 तifferent test facinties-ruggedly built and simple to use. Kesistance I watt \(5 \%\) tolerance, ranges \(100 \Omega, 1 \mathrm{~K}, 10 \mathrm{~K}\) 100 K and 1 Megohm. Capacitance: 5 ranges \(002-1\) mid. at \(600 \nabla\). and 35 mV . Audio Generator \(400 \mathrm{c} / \mathrm{h}\). at \(35 \mathrm{~m} . \mathrm{v}\). AC/DC voltmeter: 4,000 O.P.V., ranges \(0-15,50,150\) and 500 F . RF Field 8 trength: \(1-140 \mathrm{Mc} / \mathrm{s}\). Impact reslstant plactic cabinet size only \(6 \times 3 \mid \times 2\} \mathrm{k}\). Complete with
LASKY'S NEW LOW PRICE 89/6
Post 3/6.
HIGH QUALITY TEST METERS Complete with teet leads and baits.




\section*{ThAKYS RADIO}

\section*{CONSTRUCTORS' BARGAINS \& SPECIAL INTEREST ITEMS} STOCKS ALWAYS CHANGING-1,000's OF BARGAINS

\section*{CONSTRUCTORS BARGAINS}


THE SKYROVER DE LUXE
 Wareband \(31 \cdot 94 \mathrm{M}\) and also 4 separate nyitched bandspread ranger, 13 M .18 M .19 M ., and 25 M ., with Band spread Tuning for accuratc station Eelection. The coil puck and tuning heart is completely factory anembled,
wired and tested. The remaining assembly can be completed in under three hours from our easy to follow, stage by stage instructions. Superhet, \(470 \mathrm{Kc} / \mathrm{s}\). All Mullard Transistors and Diode. Useen 4 U2 batteries. Ein. Ceramic Maguet P.M, Speaker. Eaky to read Dial Bcale, 500 MW Output. Telescople Aerial and Ferrite Rod Aerial. In addition to Volume Control. Tunlug Control and In addition to Volume Control. Tuning Control and Wavered with i fashable material, wlih plastic trim and covered with it Hashable materia, with plath
carrying handle. Car aerial sockel fited.
\(\begin{array}{lc}\text { H.P. Terms: } 60 / \text { - deposit and } \\ 11 \text { monthly paymenta of } 12 / 8 . & \text { Total H.P.P. } \\ \& 10 / 0 / 3 .\end{array}\)
 810/0/3. Data 2/6. Refunded if you purchase parcel. Four U2 batts. \(3 / 4\) exira. All components arail. sep. * LONG WAVEBAND COVERAGE AYAILABLE FOR THE SKYROVER DE LUXE A aimple siditional circuit providea coverage of the \(1100 / 1950 \mathrm{M}\) band (Includiag 1500 M , Light ponents with constructlon data. Only 10/-extra. Post Free. This conversion is suitable for receiver alreads eonstructed.

\section*{NEW! LASKY'S MINIATURE TRANSISTOR AMPLIFIER MODULES}
monporatlog the very latest circuitry to provide high mensitlvity and good quality in conjunction with
extremely amal! slze and eompactness. High quallty Nowmarket triansistors used throughout. All deaigned


 TYPE LRPC3. 5 tranalstor. Input sems. 5 mV ., output 400 mW , output imp. \(10 \Omega\), slze \(2 \frac{1}{2} \times 1 \frac{1}{4} \times 2 \mathrm{in}\) TYPE LRPC 4. 5 transistor. Input sens. I60mV., output 330 mW ., output imp. 150 , PRICE 25/-
 . PRICE 58'6 TTPE LRPC 6. Tupe record/playback amp. (for ume with nelf oncillating _ASKY'S PRICE \(38 / 6\) PULI ENCAPSULATED MODULES
pectal function moflules-all one size \(11 \times 1 \times 111 \mathrm{n}\). Complete with detailed functiva and fustalTYPE PA-1. Publice Address amp tor spechlicution eneets
```

microphones. 3\Omega output imp.

```

TYPE CO-1. Morme eode proctice oscillator-ior use with morse key and
\(8 \Omega\) кpeaker

LASKY'S PRICE 30/LASKY'S PRICE \(22^{\prime} 6\)

\section*{}

The Micro 6 minhature radio .... \(£ 219\) THE Z-12 I2 matt amp. and pre
THE MICR O-FM (tuner/recelver)
XHE X-20 20 watt P.W.M, arng.
PZ-3 POWER PACK, for Z-12.

\section*{TAPE DECK MOTORS}

High quality tape deck capstan inotor made by E.M.I. Hulland. Bi-direcclonal. Nize \(4 \mathrm{in} . \mathrm{din} . \times 2 \mathrm{in}\), high, \(\mathrm{lin} . \times 3 \mathrm{in}\). apindle. LASKY'S PRICE 15/11 Poot z/a.

\section*{TAPE POSITION INDICATOR}

\section*{HI-F! TAPE RECORDER HEADS}


\section*{SPECIAL INTEREST ITEMS!}

RECEIVE STEREO BROADCASTS NOW ! THE LATEST "KUBA" IMPORTED AM/FM STEREO RADIOGRAM

\section*{CHASSIS}

Long, medium and ahort Fare-
band coverage, plus V.H.F./F.M. Plano-ley warechnnge. Separate flywheel tuning on A.M. and F.M. Bass, treble and balance controls. Magic-eye tuning indicator. Ycr-
rite rod aerial. The very intest printed-circuitry. Output: 5 watts plex. 5 valves: line-up: FOCA5, ECH plex, \(21 \times 6 \ln\). Overali dimenslons \(21 \times 61 \times 801\). ECCN3, ELL80. EAF801. Foull visian tuning peale gize \(21 \times 6 i n\). Overali dimenslons \(21 \times 6 \frac{1}{2} \times 8 \operatorname{lin}\). LASKY'S PRICE \(29 \frac{1}{2}\) CNS. Cimriage
Mide to the very highest mandaris. NOW AVAILABLE - MULTIPLEX ADAPTOR 7 GNS. extra

\section*{ARMSTRONG EQUIPMENT Alt the h teat modet to trock-}
\begin{tabular}{|c|c|c|c|c|}
\hline Model 227 M & £40 & 6 & 127M & £29 18 \\
\hline Model 223 & £31 9 & 0 & 127 & E40 1 \\
\hline Model 2227 & \&52 15 & 0 & 4. 30 Stereo Amp & 223 12 \\
\hline Model 228 & ¢61 0 & 0 & P.C.U. 25 Stereo Pre-amp. & 821 \\
\hline Model 2222 Aruplifier & £28 15 & 0 & Optlonal cases & E3 10 \\
\hline Model 224........ & £25 2 & 3 & MLústereo Multiplex Decoder & £14 10 \\
\hline Morlel 281 & £35 10 & 0 & M12 Btereo Multiples Decoder & £15 7 \\
\hline
\end{tabular}

SPECIAL PURCHASE-UHF/VHF/TV TUNERS Woll known British makers' surplus stocks. Now availa
Home Constructor. Add \(2 / 6\) Post and Packing on each.
VALVE UHF MODEL (Illustrited)
In metal case, size \(4 \times 6 \times 1 \frac{1 \mathrm{ln} \text {. Fully tunable complete with PCst and PC88 }}{}\) valves. LASKY'S PRICE with valves 29/6. Without valves \(18 / 6\).
TRANSISTORISED UHF MINIATURE MODEL 1
Shielded metal case, size only \(3 \frac{1}{2} \times 1 \frac{1}{3} \times 3 i n\). Fully tunable-complete with two AF 139 translistors. LASKY's PRICE \(39 / 6\).
TRANSISTORISED UHF TUNER MODEL 2
shlelded metal case 3 (plus spindle) \(\times 2\} \times 1\) in. Fully tunable with slow motion
drive. Complete with two A F186 transintors and \}ealy. TRANSISTORISED VHF TUNER
sub-minlature turret type fitted with 12 sets of coils and 3 Mullard AF102 tran


\section*{TREMENDOUS BARGAIN!} TV UHF TUNER AND IF AMPLIFIER PANEL Model No, 89384 made by tamous manutaotarer as stantard
 televisfon receivern. The muits are boxed, brand new and fulty guarinteed, complete with detalled conversion and operithng instructions. To effect conversion on the sets mentioned above you need only a puir of pllers and a serewdriver! The omita are fitted with 7 Mullard ralves-PCF80 \(\times 2\), EF183, EF184, ECC82,
PC8B, PC88. 8 ze of units: tuner \(71 \times 4 \times 8 \mathrm{in}\), IF panel on \(9 \times\) PC8B, PC88. Bize of units: tuner \(71 \times 4 \times 8 \mathrm{in}\), IF panel on \(9 \times\)
aitn. printed circuit buard \(\times 2 / \mathrm{h}\). detp. Complete with all leads, ith. printed cireuit buaru \(\times 21 \mathrm{in}\). detp. Complete with
serews. washern, etco ORIGNAL PRICE \(210 / 10 /\). LASKY'S PRICE \(49 / 6\) Post 5
TREMENDOUS VALUE IF BOUGHT ONLY FOR THE VALYES AND COMPS,

\section*{MARTIN HI-FI AUDIOKITS}

Using specialy dereloped elrcitits, the very latest tr
fully checked and tested before leavlng the factory.
KIT 1. \(\quad\)-stage Matchlig Input Selector Unit
KIT 2. Pre-amplifier with volume control
KIT 3. 3-Channel Mixer, with plus-in adaptors for individuady matching each circuit. Adaptors \(8 / 6\) euh Pre-ampllier with tone/volume control stages.
10 andi 3 watt Main Amplifier. 10 and 3 watt Main Amplifier 15 ohm version of Kit 5 .
Power supply for Kit
PM Head.


ALL MAIL ORDERS AND CORRESPONDENCE TO OUR HEAD OFFICE:-3-I5 CAVELL STREET, TOWER HAMLETS, LONDON, E.I.
 Lasky's price \(\quad\) E3/19/6

 LASKY's PRICE LASKY's PRIGE LASKY


42 TOTTENHAM CT. ROAD, W.1. Tel: LAN 2573 152/3 FLEET STREET, E.C.4. Tel: fle 2833 Both the above branches Open all day Thursday. Close 1 p.m. Saturday. ALL MAIL ORDERS TO 3-15 CAVELL STREET, E.I.

\section*{}

\begin{abstract}
AUTO TRANSFORMERS
Specially designed for American equipment. Supplied with either American Two-Pin Sockets or Terminal Blocks. 240 Volts to 100 110 Volts. All Types Fully Shrouded.
\begin{tabular}{|c|c|c|c|c|}
\hline & W. An & Types Full & , Price & \\
\hline Type & Wates & Weight & Price & Carriage \\
\hline 1 & 80 & 2i libs. & 32/6 & 4/6 \\
\hline 2 & +50 & 4 Ibs & 42/6 & 5/- \\
\hline 3 & 300 & \(6 \frac{1}{2}\) lbs. & 55/- & 6)- \\
\hline 4 & 500 & \(8 \frac{1}{2} \mathrm{lbs}\). & 77/6 & 6/6 \\
\hline 5 & 1000 & 15 ibs. & 655 & 7/6 \\
\hline 6 & 1500 & 20 lbs. & 6715 & \(0 \quad 8 / 6\) \\
\hline 7 & 2000 & 28 lbs. & \&10 19 & \(6 \quad 12 / 6\) \\
\hline
\end{tabular}

Note. Type 7 completely enclosed in beautifully finished case fitted with two 2-Pin American Sockets, Neon Indicator, On/Off Switch and Carrying Handle. Double Wound Transformers 240-110 Voles. Up to 1500 Watts. Made to Order. Let us Quote You.
\end{abstract}

\section*{SURPLUS L.T. TRANSFORMERS}

ALL BY FAMOUS MAKERS
A. Pri. 200-240v. Sec. (1) Tapped 38 v ., 40 v .

10 A. Sec. (2), 6.2, 6.8, 7.3, 7.9, 8.5,9,9
10. 10.6 v . 18 amps. \(£ 7 / 10 / \mathrm{F}\), Carr. \(10 /-\)
B. Pri. 240v. Sec. Tapped \(53.6,55.2 \mathrm{v} .6\) amps
" "C" Core, 72/6, Carr. 7/6
C. Pri. 200-240v. E.S. Sec. Tapped 32, 34, 38
\(40,44,46 \mathrm{v}\). \(7 \mathrm{amps} .75 / \mathrm{-}\), Carr, \(7 / 6\)
D. Pri. 200-240v. Sec. \(8 v .6\) amps. 19/6, P,P

E \(\quad 4 / 6\).
E. Pri. 200-240v. Sec. (1) 25v. 3A. Sec. (2) \(10 \mathrm{v} ., 0.1 \mathrm{~A}\). Sec. (3) \(115 \mathrm{v} .0 .6 \mathrm{~A} ., 29 / 6\),
P.P. \(4 / 6\).

Iv, 240 v . Sec. (1) \(45 \mathrm{v} .25 \mathrm{M} / \mathrm{A} . \mathrm{Sec}\). (2)

LOW RESISTANCE SMOOTHING CHOKES
5 hrouded type \(0.05 \mathrm{H} .0 .75 \Omega 2\) amps. \(39 / 6\), P.P. \(4 /-, 0.03 \mathrm{H}, 0.4 \Omega, 4 \mathrm{amps} ., 49 / 6\), P.P. \(4 / 6\). \(0.02 \mathrm{H}, 0.2 \mathrm{\Omega}, 8 \mathrm{amps} .55 /-\), P.P. \(6 / \mathrm{L}\).

HEAVY CURRENT TRANSFORMERS
Output tapped \(4 \cdot 6-11\) volts 200 amps . from 240 volts \(£ 10 / 19 / 6\). Carr. 10/\%,

\section*{Samson's Electronics Ltd.}

9 \& 10 CHAPEL STREET, LONDON, N.W. 1 Tel. PAD 7851

AMB 5125
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
BLOCK \\
New and Guarantee in stock at a fraction LATE
\end{tabular} &  & CITOR d for RIVALS & S ist, over ice. & 2,000 \\
\hline Maker Mid. & E.C.V. wkg. & Temp. & Price & Carr. \\
\hline T.C.C....... 10 & 750 & \(60^{\circ} \mathrm{C}\) & 10/6 & 2/6 \\
\hline T.C.C....... 10 & 350 & \(60^{\circ} \mathrm{C}\) & 6/6 & 21- \\
\hline T. & 1.500 & \(60^{\circ} \mathrm{C}\) & \(17 / 6\) & 3/- \\
\hline T.C.C.,..... 8 & 750 & \(60^{\circ} \mathrm{C}\) & 8/6 & 2/6 \\
\hline T.C.C........ 8 & 600 & \(60^{\circ} \mathrm{C}\) & 7/6 & 21- \\
\hline T.C.C........ 8 & 400 & \(71{ }^{\circ} \mathrm{C}\) & 6/6 & 2- \\
\hline T.C.C....... 2 & 2,000 & \(50^{\circ} \mathrm{C}\) & 12/6 & \(2 /-\) \\
\hline Dubilier & 600 & \(60^{\circ} \mathrm{C}\) & 716 & 21- \\
\hline Dubilier & 800 & \(71^{\circ} \mathrm{C}\) & 5/6 & \(21-\) \\
\hline Dubilier & 3,000 & \(100^{\circ} \mathrm{C}\) & \(17 / 6\) & \(21-\) \\
\hline Dubilier ..... 0.5 & 5,000 & \(60^{\circ} \mathrm{C}\) & 17/6 & 2/- \\
\hline Dubilier \(\ldots . .0 .1+0.1\) & 6,000 & \(71{ }^{\circ} \mathrm{C}\) & 8/6 & 21- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AMERICAN OIL FILLED CAPACITORS} & \multicolumn{4}{|c|}{A.C. RATED CAPACITORS} \\
\hline & D.C. & Price & Post & Mid. & A.C. & Price & Post \\
\hline 15 & 1,000 & 22/6 & 3/6 & 60 & 260 & 47/6 & \(7 / 6\) \\
\hline 12 & 1,000 & \(19 / 6\) & 3/6 & 45 & 250 & 35/- & 5/- \\
\hline 10 & 1,500 & 19/6 & 3/6 & 25 & 300 & 25/- & 4/- \\
\hline 8 & 600 & 8/6 & 2/6 & 10 & 650 & \(17 / 6\) & 3/6 \\
\hline 7 & 600 & 6/6 & \(2 / 6\) & 5.25 & 650 & 12/6 & 3/- \\
\hline 1 & 600 & 3/. & \(1 / 6\) & 5 & 400 & 10/6 & 3/- \\
\hline
\end{tabular}
P.V.C. EQUIPMENT WIRE

23/0076 100-yard Coils. 5 coils Different colours 32/6. Carr. 5/-.

\section*{VARLEY A.C. 200-240v. SOLENOIDS}

201bs. Pull. Spindle length 1 ifin. Base Size \(2 \frac{3}{4} \mathrm{in} . \times 2 \mathrm{t} \mathrm{in}\), Intermittent rating. 25/-. P.P. 2/6.

Send 6d. Stamp for our Latest Price List, giving full details of our range of Low Tension Transformers, Chokes, Capacitors, Rectifiers, L.T.
L.T. SUPPLY UNIT TYPE S.E.I


RELAYS
Special Offer of Brand New 3000 Type Relays All one price: \(7 / 6\) each, P.P. 1/6. 75S, 1 CO \(3 \mathrm{M}, \mathrm{IB}\). \(150 \Omega 2\) Heavy Makes. 500S 6 CO \(2000 \Omega\) 2CO.. 2 Heavy Makes.
Siemens Miniature Sealed Relays. Size \(1 \frac{1}{2} \times 1 \times\) \(\frac{3}{3}\) ins. \(700 \Omega, 4 \mathrm{CO}\). With Base. Brand New \(8 / 6\).
P.P. \(1 / 6\). P.P. \(1 / 6\)
A.C. SYNCHRONOUS GEARED MOTORS
\(200-250 v\)., very powerful. 40 R.P.M. Size \(2 \frac{1}{2} \times\) \(2 \frac{1}{2} \times\) lin. Easily adapted to oscilate up to half a revolution. 12/6. P.P. 2/6.

\section*{SMITH'S 4 MINUTE TIMERS}

Switch contacts 15 amps. 259 voles A.C. com Switch contacts 15 amps. 259 volts A.C. com
plete with chrome bezel and control knob plete with chrome bezel and control knob. Brand new, \(17 / 6\). P.P. \(2 / 6\).

SLIDING RESISTORS
\(1004 \Omega \mid\) a. 65/-. P.P. 6/6. \(758 \Omega 0.7\) a. \(49 / 6\). P.P 5/-. \(152 \Omega 2\) a. 39/6, P.P. 5/-. \(30 \Omega 21.25\) a. \(27 / 6\) P.P. 3/6. BRAND NEW.

ZENITH SLIDING RESISTORS
Worm drive type 7.5 ohms 4 amp . Length 10 ins. Price 30/-. P.P. 2/6.

BURCO POWER RHEOSTATS
7.5 ohms at \(5.48 \mathrm{amps}, 3\) ohms at 8.66 amps . Price 42/6. P.P. \(2 / 6\).

\section*{FATIGUE METERS MK. IB}

This extremely light self-contained instrument measures and records \(g\) forces from an accelero meter in the ranges of 0.05 to 1.95 g on the six high speed counters, all counters are clearly marked with the relative \(g\) forces enabling a premanent record to be kept. The only power required is 12 or 24 v. D.C. for relay operation. Size \(6 \times 6 \times\) 4 in., weight 416 . Price \(\varepsilon 9 / 19 / 6\).

ZENITH AUTO, VOLTAGE REGULATOR Input \(210-260\) vac. Output constant 230 vac plus or minus \(1 \%\) at 32.6 amps., small size modern equipment, for small outlay will protect your vital equipment against voltage fluctuations, Price, in as new condition, 665. Carriage 30/.

COLVERN HELIPOTS (Ten Turn)
Types CLR 26/1001/10. 1000 ohms
CLR 26/1001/13. 25 K ohms
CLR 26/1001/14. 10k ohms
CLR 26/1001/14. 100k ohms
Price 301 each. Brand new stock.
Colvern Helipot Counters for above Helipots, 15/- each.

\section*{SPECIAL OFFER-RHEOSTATS}

3000 ohms 75 watt C/W instrument knob, brand new stocks, \(15 \%\). P.P, \(2 /\). Also 50 ohms 1.5 amps., 12/6. P.P. 2\%-

\section*{TELEPRINTER, CARRIER FREQUENCY SHIFT ADAPTOR}

By Redifon in new condition, comprising F.S.K. and power supply unit in two separate transit and power supply unit in the P.S.U. has built-in \(80-0-80 \mathrm{y}\). p.S.U. which cases, the P.S.U. has buittin \(80-0-80 \mathrm{y}\). p.S. C. Which onables the unit to work cypes of teleprinter, for operation with or other cypes of teleprinter, for operation with
most types of Service Receivers. IF frequency most cypes of Service Receivers. adjustable \(445-475 \mathrm{kc} / \mathrm{s}\). sold complete with all plugs, cables, etc.
24 vde. Price \(\mathbf{4} 10 / 10 /\)-, carriage \(25 /\)-.

AN/APR4 VHF COMMUNICATIONS AND SEARCH RECEIVERS


For the first time offered in new boxed condition. Frequency Range \(38-1,000 \mathrm{Mc} / \mathrm{s}\). Accuracy \(1 \%\). ohms. Power supply 115 v. A.C. (internal). Price complete with three tuning units. NEW \(£ 90\).

\section*{AVOMETER MODEL 7}

New Ministry Release, in as new condition, Fully guaranteed. Price \(\mathbf{6} 12 / 10 / \%\) P.P. \(7 / 6\).

\section*{MARCONI POWER OUTPUT METERS}

\section*{TYPE TF340}

Measures \(5 \mathrm{~mW}-5\) watts F.S.D. A small portable instrument in excellent condition. Only \(\mathbf{6} 12 / 10 /-\) P.P. 7/6.

\section*{SELSYN MOTORS}

115 v. \(50 / 60\) cycle. Makers G.E. \(3 \frac{1}{2}\) in. type for erial systems, direction indicators, ect. Brand new aerial systems, direction indicators,
boxed, Price \(40 /-\) per pair. P.P. \(5 /-\).

COSSOR SPLIT BEAM OSCILLOGRAPH Model 1049 Mk. 4. Time base eighteen ranges from Model 1049 Mk . 4. Time base eighteen ranges from 150 us to 7.5 sec . Frequency response DC to \(200 \mathrm{kc} / \mathrm{s}\). at \(30 \%\) down. In as new condition, not to be conused with the older models. Price \(\mathbf{4 5}\), also Mode: 1035 Mk. 4.
P. F. RALFE
423. GREEN LANES, HARRINGAY, LONDON, N.4, MOUNTVIEW 6939

Tinsley Vernier Potenciometer Type 4363F Auto. Measurement Range 1. From Minus 0.00001 volts to plus 1.80100 volts in steps of 0.00001 volts. Range 2. From minus 0.000001 volts to plus 0.180 10 volts in steps of 0.000001 volts
Main Dial 1.7 in 17 steps of 0.1 volts.
Vernier Dial 0.1 volts in 100 steps of 0.001 volts. Vernier Dial 0.1 volts in 100 steps of 0.00
As new. Price 495 . C/W Standard Cell.

\section*{AUDIO OSCILLATORS}
B.S.R. L.O. 50A with LF \& HF Dials Range \(20 \mathrm{c} / \mathrm{s}\). . \(20 \mathrm{Kc} / \mathrm{s}\). O.P. Meter etc. price \(£ 15\). Callibration and \(20 \mathrm{Kc} / \mathrm{s}\). O.P. Meter
condition excellent.
condition excellent
B.S.R. L.O. 800 B Range \(20 \mathrm{c} / \mathrm{s}\) to \(25 \mathrm{Kc} / \mathrm{s}\). with H.F. \& L.F. dials., and high gain amplifier, Muirhead attenuator O.P. meter. Price \(£ 45\).
Marconi Type TFI95L. Range \(10 \mathrm{c} / \mathrm{s},-20 \mathrm{Kc} / \mathrm{s}\). with O.P. meter, etc. Price 415.

Muirhead type D-330-B. Range \(10 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}\). in three ranges output 10 MW -1 watt into 600 ohms . with attenuator O.P. meter. - Price \(£ 30\).
BRISTOL POTENTIOMETER RECORDER 25-25 Mv channel numbered printout, servo driven amplifier, strip chart recorder, for A.C. mains supply, Price, brand new, \(£ 85\).
CAPACITANCE BRIDGE ELECTROLYTIC 8.P.L. Cat. No. ZD00506. Measures capacitance under full working loads (variable voltage selection), easy to operate. CIW voltmeter, leakage current meter, balance indicator, discharge switch, etc. Range .2 mid. to 2,200 mfd. A modern instrument in new condition, and guaranteed accurate. Price C35, P.P. 20/-
MARCONI CRI50/2 COMMUNICATIONS RECEIVER
Range \(2 \mathrm{Mc} / \mathrm{s}\) to \(60 \mathrm{Mc} / \mathrm{s}\) C/W mains P.S.U. and case in very good condition. Price \(\$ 45\).

\section*{MINIATURE LEDEX ROTARY-SWITCHES} 5 bank single pole II way for 24 V . operation. Brand new stock. Price only 30/-. P.P. \(2 / 6\).

MUIRHEAD REFERENCE CELLS
Type D-845-C. "U" shaped type. Brand new in indiv.dual cartons. Price 25/-. P.P. \(1 / 6\).
COSSOR TV. ALIGNMENT \& PATTERN GENERATOR
Model 1320, Range Mc/s. 7.70 attenuator O.P. for A.C. mains supply. As new. Price \(£ 12 / 10 /=\). P.P. \(7 / 6\).

BRADFORD 10 North 25349. (Hali-day Wed.)

BRISTOL Se. \({ }^{14}\) Lower Castle Wed.) Tel. 22904.
BIRMINGHAM
30-31
Gt. Arcade. Opp. Snow Hill station Arcade. Opp. Snow Hill station.
Tel. CENeral 1279 (No half-day).

\section*{DARLINGTON}
R.S.C. STEREO/20 HIGH FIDELITY AMPPLIFIER Providing \(10 / 14\) WATTS ULTRA LINEAR PUSH.PULL OUTPUT ON EACH CHANNEL

\section*{Features inelule:}
* Four-position tone and compensating
input Geleetor swltch
* Stereo/Mono switch so that peak monaural
output of 28 watts can be obtained.,\(~\)
- Separate "Bass" "s ust" and "cut?
- Separate "Bass" "uft" and "cut" and
treble "lift" and "ext" controls * Neon panel indicator.

F Reon panel indicator.
Frontplete. Compleie
met of parts with peint-to-polnt wiring diasrat
DERBY The Smots (Hallild diy
Wed.). Tel. 41361 .
EDNBURG: 133 Leith St
GASGOW \(\quad 326\) Argyle CITy 4158 (No half-day).
 12/6 14 GIS. £R2 \(4 / 6\). SUITABLE for "MIKE" GRAM, RADIO OR TAPE. FOR HOME OR

 RESPONBE \(\pm 2 d \mathrm{~B},-30-20,000\) ch. 80 , 250 \%. A.C. mains. Seud B.A.E. for leaflet.

Tel.: 56420. \({ }^{5}\), County (Mecca) Tel.: 28252 Arcáde (No half-cay) LIVERPOOL \(\left.\begin{array}{c}73 \\ \text { Dale } \\ \text { (No } \\ \text { (Nall } \\ \text { hall-day) }\end{array}\right)\) Tel. CENtral 3573
LONDON \(\underset{\substack{238 \\ \text { W. Eddware Rd. } \\ \text { IHalf-day }}}{ }\) Thurs.). Tel.: PAD 1629 : 96 High Hellorn, W.C.I. Tel.:
HOL 9874 . Half-day Sat.

\section*{MANCHESTER \\ 60A-60B St. (No half-day),
Tel.: CENtral 2718. MIDDLESBROUGH \\ 106 NewporeRd. (Half-day Wed.) NENCASTLE 41 Blackett
 SHEFFIELD \({ }^{\text {is }}\) s.x.c.anase Market Bidgs. (Half-day Thursday) Torte eidid}

HIGH FIDELITY LOUDSPEAKER ENGLOSURES All types are of pleasing modern "slimline" design acoustically line and ported, and in alternative finishes of light teak or medium walnu SE8. Designed for optimum performance with any \(\mathrm{Hi}-\mathrm{Fi}\)
8 in . spkr. Size \(22 \times 15 \times 7 \mathrm{l}\) Сал. 7/6. \(£ 5 / 17 / 9\)
SE10. For High-Fidelity Speaker with provision for
tweeter. Size \(24 \times 15 \times 8\) in \(\begin{array}{ll}\text { tweeter. Size } & 2 \times 15 \times 8 i m . \\ \text { Carr. } 10 / \text {. } & \& 6 / 19 / 9\end{array}\)

Size \(27 x\) SE12. For outstanding per lormance with any 12 in . Hi provided. Size \(24 \times 20 \times 8\) in Carr. \(10 \%\) EIS
FHE8. Folded Horn type Size \(27 \times 16 \times 10 \mathrm{in}\). Provides exceptiona Carr. 10 \(\qquad\) 9 Gns.
HIGH FIDELITY LOUDSPEAKER UNITS
All types have handsome cabinets, of latest styline finished in Satin Teak or Walnut, acoustically lined and ported:
MINI-8 8 watt rating, 3 or The DORSET. Size \(16 \times 11\) 15 ohm. Response \(50-13,000\) Sperially \(\times 8 \mathrm{in}\). Response \(45-18,000\) c.p.s. Specially designed with low fundamental \(r\) sonance. Size \(9^{3} \times 61 \times 7^{1}\) in Carr. 7/6. \(£ 6 / 19 / 11\) The GLOUCESTER. 24 \(20 \times 10 \mathrm{in}\). 12 in , high flux 12,000 line speaker. Cross-over unit, an
Rating 10 watts smooth response. \(40-20,0010\) c.p.s. Im pedance 15 ohms, 12 EnS.

The BRONTE.
Size 22 . 15 \(\qquad\) The DORCHESTER. Size \(24 \times 15 \times 10 \mathrm{in}\). Fitted Audiotrine HF101D Speaker. Rating 12 watts. Frequency
response \(30-20,000 \mathrm{c.p.s}\) Im pedance 3 or 15
ohms. Carr. \(15 /-\) . \(2 \frac{1}{2}\) Ens.

TERMS ON ENCLOSURES AND UNITS
Deposit 3/- in the
Balance over 3 mon

\section*{}

\section*{}

\section*{FULLY TRANSISTORISED}
\(+\)
200-250 v. A.C. Mains Operafion
OUTPUT R.M.S. CONTINUDUS
10 W. ATTS into 15 ohms.
\begin{tabular}{l|l} 
Max. Instanfaneous Peak & Ftoml m.A.E. \\
Mor Ierthet. \\
\hline
\end{tabular}
Max. Instanfaneous Peak Iow lestlet.
PIRINTED CIRCUIT CONSTRUCTION
LATEST MULLARE TRANSISTORS
AD107 (Total of 9). OC\&1Z (2), OC44 (3) AC107 (Total of 9).
-POSITION INPUT SELEGTOR SWITCH EQUALIZATION Io Standard R.I.AnA. and C.C.I.R. Characteristics for Gram FULL TAPE MONITORING FAGILITIES * SENSITIVITIES: Magnet ie P.U. 4 m.v. Crystat or Ceramic P.U. 400 mv .
Microphore 4.5 mv . Tape Head 2.5 mv Radio/ \(4 u x\), or Ceramic P.U. 110 mv
* NEG.JTIVE 1:1EEDBACK 52 dB. * FREQUENCY - RESPONSE: 20-20,000
 All parts, point-te.point wiring diagrams and
detalfed instructions. 18⿺𠃊 \(\frac{1}{2}\) Gns. Unit factory built \(25:\) ans. onthly payments \(56 / 9\) Thit factory built 15 gus. Termas:
Deposit \(49 /-\) nid 9 monthly payments \(33 / 9\) (Total \(817 / 12 / 9\) ). Or fitted in walrut of teak veneered enblinet as


\section*{AUDIOTRINE HI-FI LOUDSPEAKERS}

Heavy cast constraction. Latest HF811D \(\sin .10\) WATT 4 gns
high anciency ceramic msgnets. Digh enciency ceramic magnets. HF101D 10 in .10 WATT 5 gns ramge. Plastic treated surround HF100D10in. 15 WATT \&5/15 giving low resonant frequency- Re- HF121D 12in. 20 WATT sponse \(30-20,000\) e.p.s. Imp
3 or 15 ohms. Carr. \(5 / 6\).

86/15/
HF127D 12 in .30 WATT 9 gns.

A DUAL CHANNEL VERSION OF THE SUPER 15 Employing Twin
* Matched Components. Close Tolerance Ganged Pots.
CROSS-TALK -52 dB , at 1,000 c-p.s. CROSS-TALK
CONTROLS:
(1) 52
5 Selector. (2) Bass. (3) Treble. (4) Selector. (2) Bass. (3) Treble. (4)
Volume. (5) Balance. (6) Siereo/Mono Switch. (7) Tape Monitor Switch (8) Mains Switch. (8) Mains Switch. (Matched Pairs): (1 Magnetic P.U. (2) Ceramic or Crystal P.U. (3) Radio/Aux. (4) Tape Head/Mic.
Operation of the Input Selector Switch aperation of the Input selector
\(\star\) Kigid \(18 \mathrm{~s} . \mathrm{w}\).g. Chassis. Size \(12 \times 3 \times 8 \mathrm{sin}\). Kigid 18 s.w. Rigid Perspez Facia Plate and Spun Silver Matching Knobs.
and Spun Siver Matching Knots
* NFON PANEL INDICATOR.
Above iacilitier, etc, except for Gamgine and Buance
Contrul,
 AUDIOTRINE HI-FI SPEAKER SYSTEMS

TREBITS Contml +15 dB . to -14 dB . BASS Control +12 dB . to -15 dB . at \(50 \mathrm{c} / \mathrm{s}\).
HARMONIC DISTORTION AT 10 watts R.M.S. 1.000 c.p.s, 0.25 Provides a smooth frequency response from \(40-20,000\) c.p.s. Consisting of \(12 i n .12,000\) line 15 ohm speaker. Crossover Unit and Tweeter.
Highly recommencled for use with any HighFidelity Amplifier 5 GnS. Carr. 6/O. 10 Watt Unit
extra heavy bass speaker 7


\section*{BSC. TFM1 TRANSISTORISED VHE/FM RADIO TUCWER \\ lader Super}
and \(: 30\) amplifiers and of the same high standard of performance and reliability. The pre-vired tusing head facili tates speed and simplicity of construction. Printed cir cuitry, only first grade transistors and components used Our latest product giving you the liest at half the cost of comparable units.

1NENTLY BUITABLE FOR USE WITH ANY
ICK-UP OH MICROPHONE (Crystal, Ceramic, MagMAKE OF PICK-UP OR MICROPRONE (Crystal, Ceramic, Magnetic, Moving Coll, RIbbon). SUPERB BOHND OUTPUE GAM

\section*{AUDIOTRINE PLINTHS} for Record Playing units. Teak finish cut for Garrard 1000, 2000, :3000, AT6 Mk. II, ATr0, SP25 or Goldring GL68. Or with clear \(66^{\prime}=\begin{aligned} & \text { Perspex cover as illustrated } \\ & £ 5 / 19 / 11 \text { complete. Carr. } 8 / 6 .\end{aligned}\) RP2 HI-FI SINGLE REGORD PLAYING UNITS. CO sisting of the popular Garrard SP25 turntable and Gold ring \(\mathrm{C} \$ 90\) High compliance ceramic Cartridge with diamond stylus. Fitted on Plinth as above and complet with Clear Perspex cover. Ready to "phig in "to any Hi-Fi amplifier. (Normal Price \(£ 25\).) TERMS: Deposi 3 Gns. and monthly payments \(43 / 7.19 \frac{1}{2}\) GnS. MODEL RP3
MODEL RP3. As above but with Goldring Lenco GL 68 Transcription Unit and CS 90 Cartridge. Normally over £33. Our price \(26 \frac{1}{2}\) Gns. Terms available. Garr. 15/=.

\section*{NEWCASTLE－LONDON}

New branches open．See opposite page TRANSISTORISED MINIATURE VHF／ FM RADIO TUNER
complete witherescopic serial，and ready for usc
in plants case．Size approx． 26.19 .11
\(4+\times 2 \times 1\) itin．


15 ohm．Terms available．Carr．12／6．
15in．40－50 watt LOUDSPEAKERS EXTRA HEAVY DUTY 15 ohms \(11 \frac{15 /-}{15 /}\) Normally approx， 819 ．Limited n＇ber．Gns．
FANE \(122 / 10 \quad 20\) WATT HEAVY DUTY LOUDSPEAKERS 13 ln ． 15 ohm ．GNS． With exceptionally robust 2 in
Model 122 1010A with Dual Cone 6 Gns
POWER PACK KITS Fully kmoothed out－ put 250 v． 60 maA E．T．and L．T． 6.3 v．， 1.5
amps．Consists of chams．Double wound Mains ther．Choke．Electrolytt and circuit．Or with csese in lieu of \(22 / 11\)
chasesis 26／11．Or aseembled 39／11． \(22 / 1\)

\section*{R．S．C．TRANSFORMERS}
yully Guarantued．Interieaved and Impregnatid．
 250 F .60 mA .0 .3 F .2 A ．
FULLY SHROUDED，UPRIGET MOUNTING \(250-0-250\) v． 60 mA ．， 6.3 च． 8 a．，0．5－6．3 v． 2 a \(25-3.3 \mathrm{in}\).
\(250-0 \cdot 250 \mathrm{v}\) ．


For Malland 510 Amplifer

 \(450-0.450 \mathrm{v}, 250 \mathrm{~mA}, 6.3 \nabla .4 \mathrm{i}\) c．t．， 5 v .3 a ． TOP SHROUDED DROP－THROUGG TPE

\(250-0.250 \mathrm{y}\)
\(350-0.350 \mathrm{y}\)
3
\(350-0.350 \mathrm{v} .80 \mathrm{mA}.\).
\(250-0.250 \mathrm{~V} .100 \mathrm{~mA}\)
\(300-0-300 \mathrm{v} .100 \mathrm{~mA}\) ，
 \(350-0-350 \mathrm{v} .100 \mathrm{~mA}\), B． 3 च． 4 R mplifer 0.5
 FILAMENT OR PRAMSISIOR POWER PACE 6． 3 マ． \(3 \mathrm{a} .9 / 9 ; 6.3 \mathrm{~F} .6 \mathrm{a} 10 / 9 ; 12 \mathrm{\nabla} .3 \mathrm{a}\) or 24 v
1．5 3． \(19 / 18\)
AUTO（Step UP／Step DOWN）TRANSFORMERS
 150 watts 29／11；stse waths 48／9； 500 watts．． 999
 6a． \(25 / 11 ; 8\) a． \(31 / 21\).
\(00 T P U T R A K S H O: ~\)
Btandard Pentode \(5,000 \mathrm{Q}\) to \(3 \Omega\) or 7,000 n to \(3 \Omega\) 7／9

Pusk pull \(10-12\) wat tos to match 6V6 to \(3,5,8\) or 150
Push pull ELisi to a－ 15010.12 watte
Push pull ditras Linser for Mulard 510, etc．
 Push pull 20 matt high－quality．sectlonaily
wound EL34， \(6 \mathrm{~L} 6, \mathrm{~K}\) K6，ctc．，to 3 or \(15 \Omega\) fully ehrouded
SMOOTHING GHOKBS
\(250 \mathrm{~mA} .5 \mathrm{H} ., 100 \mathrm{C} 120 ; 80 \mathrm{~mA}\) ．， 10 H： 350 日 \(7 / 8\)


R．S．C．AlO 30 watt AMPLIFIER HIGH FIDELITY ULTRA LINEAR PUSH－PULL OUTPUT SIX VALVES EF86，EF8B，ECC83，807， 807 ， aZ34．Tone Control Pre－amp．stages are In．
corporated．Sensitivity is extremely high．Only 12 millivolt minimum input is required for full
output．THIS ENSORES THE SUTTABILTTY OF ANY TYPE OF MICROPHONE OR PICE－TP Separate Bane and Treble controls give both

 pick－up．etc．，etc．AN OUTPUT SOCKET WITE PLOG IS INCLUDED FOR kit form with easy to follow wiring diagram．FOR A RADIO TUNER．PTice in ONLY 12 Or tactory built win
 \(12 y / 6\) ． 12 ．UNITS．DEPOSTT £2R／8／－and 9 manthly paymente of \(33 / 2\) （Total \(51 \% / 10 / 3\) ）．Protective cover with handles available for \(21 /\)－
Type 807 output valves are used with High Quality Type 807 output valves are ueed with High Quality Sectionslly Wound outpu
translormer specially designed for Uitra Linear transtormer specially designed for Ulita Linear operation．Negative feedbacel of
20 dB．in main loop．CERTIFOED PER FORMA MCE FIGURES APE 20 dB In main loop．GERTIFIED PERFORMANCE FIGURES ARE EqUAL TO
MOST EXPENSIVZ UMITS AVAILABLE．Frequency regponse \(+3 \mathrm{~dB} .30-20,000\) c／s．Tone Controls． 12 dB ．at \(50 \mathrm{c} / \mathrm{s}\). and noise 70 dB ．down．Gcod quality reliable components used．Chaseis flimiah gold hammer． 0 verail size \(12 \times 9 \times 9 \mathrm{yn}\) ．approx．Power consumption 150 watte． For A．C．mains \(200-250\) r 50 ct 1 ，Ontput for 3 and 15 ohm ppeakers．EQUALLY SUITABLE FOR THE CONNOISEEUR OR FOR LARGE EALLS，CLOBS OR OUT－ SIDE FUNCTIONS．IDEAL FOR USE WITH MUSILAL INSTRUMENTS SUME GARRISON THEATRES，eto．，etce．We can supply Mierophone，Speazers，eto eto at keen cash prices or on terms with amplifers．EXPORT ENOUIRIES
R．S．C．All 12－14 WATT AMPLIFIER HIGH FIDELITY ULTRA LINEAR OUTPUT ＂BUITT－TN＂TONE CONTROL PRE－AMP STAGES．Two knput sockets with aseoclated control allow mixing of＂I mike＂and gram．，etc．
High sensitivity．Includes \({ }^{5}\) valves ECB3， ECC83，EL84，EL84，Ez81．MIgh qualty sectlon－ ally wound output transformer specially deaigged for Ultra Linear operation．Rellable components．
INDIVIDUAL CONTROLS FOR BABS AND INDIVIDUAL CONTROLS FOR RASS AND TREBLE＂Llitt＂and＂Cut．＂Frequency response \(\pm 3 \mathrm{~dB}, 30-20,000 \mathrm{cja}\) ． 81 s negative feedback loope．Hum level 60 dB ．down．ONLY 23 millivolts INPUT
required for FULL OUTPUT．For use with all types of pick－uns and milica．
 Comparable with the very best designs．For grame，
INSTRUMENTS such ag STkING BASS，GUITARS，
OUTPUT SOCEET with plug provides 300 v .30 mA ．and 5.9 v．1．5．a．For supply of a RADIO TUNER．Bize approx． \(12 \times 8 \times 7 \mathrm{in}\) ．For A．C．mains \(200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}\) ， Output for 3 and 18 ohms speakers．Kit is complete to last nut．Chaseis is



\section*{COMMUNICATIONS RECEIVER TYPE HE 50}
 4 Band \(535 \mathrm{ke} / \mathrm{s}\) ．to \(30 \mathrm{Mc} / \mathrm{s}\) ．Slide Rule Tuning Dial with Band ppread and＂8＂ Jack．Bullt－in Rpeaker．Btand－by Switch with terminal for trangmitter．Bullt－in Antenna for long range reception．High Senaltivity．For \(200-250\) v．A．d．mains，
Handsome chrome decorated cabinet． \(132 x\) \(5!\times 8 i \ln\) ．or Deposit \(85 \quad 19\) Gns

\section*{}

\section*{R．S．C． 4 watt GRAM}

AMPLIFIER KIT
59／11
Complete set of parts to bulld a goo quality compset unit suitable for use with any record piaying unit．Mains isolated chassiis．Separate Bass and Treble controls．Output for 2 23 ohr

JASON VHF／FM
TUNERS FMTI
Complete kit with
£6．19．11
R．S．C．4／5 WATT A5 HIGH GAIN AMPLIFIER
A highly senaltive s－valve quality Arupliber for the home，stuall club P．U．heads and practically，all
 marate Bass parate Bass
and Treble controls giv－ ing＂lift＂．

Negative feed back 13 serve power supply 300 v．H．T．and 6．3 T．L．T．for Radio Tuner or Tape Deck Pre－amp．For A．C．mains 2000－ 250 \％．Speaker output 3 ohmas．Kit
complete in every detail．Fuily complete in every detail．Fuity point wiring dilagrams E4．17．9


\section*{R．S．C．BATTERY ELIMINATORS}

Type BM1．slze
prox．Completely replace
suppiying 1.5 v．and 90 \％．where A．C．mathe \(200-250\) v． 50 c／a． is available．Complete kit with diagrams

47／9

\section*{TAPE PRE－AMPLIFIER}

Linear LP／ 1 switched Equalisation
 Indicator．Designed as the link Metween a Magnavox Tape Deck and Hi－Fi amplifer，suitable aluon Ryy Tape Deck．Cass
or Terus．
lraftet．

\section*{TRANSISTOR SALE}

Mullard OC71，OC81，OC72 \(8 / 11\) ： 8／9；AF117 8／9：＇Ediswan 8／9；AF117 日／9；Ediswan XA101，

HEAVY DUTY SELENIUM RECTIFIERS F．W．Only \(19 / 3\)
SELENIUM RECTIFIERS F．W
（Bridged）
All \(6 / 12 \mathrm{~V}\) ．D．C．output．Max．A．C input 18 v．1 is． \(3 / 11 ; 2\) a． \(8 / 11\)

HEAVY DUTY BATTERY CHARGER KITS 6／12 V． Consisting of Malns Trans，200－250 v Rectifier，Ammeter，Variable Charge Rate Selector，Panela，Plugs，Fusea and holders．Fully puached，stov
4 a．49／II 6a．69／II Or asserabled ready
for use 10f－extra．


\title{
man's earliest ancestors
}


Fresh evidence advances challenging new theory on man's origin

How long is it since the common ancestors of ape and man lived? Was there a so-called " missing link" before the ape-man Australopithecus? Dr. David Pilbeam discusses new evidence which suggests that homo sapiens and anthropoid apes have been evolving separately far longer than is now believed-at least 35 million years. This new, and challenging theory makes absorbing reading in the February issue of Science Journal. Also in this issue of Scirnce Journal: how to propel Hovercraft; clear air turbulence; homopolar generators; simulating the space environment; the falling growth of research (interview with Anthony Crossland. Secretary of State for Education and Science). PLUS Science Journal's regular monthly coverage of the International Biological Programme.
FEB. ISSUE - OUT 25 JAN. 5s.

\title{
SCIENCE JOURNAL
}

WW-134 FOR FURTHER DETAILS.

\section*{A.C. S(DLENOID type SAM/T \\  \\ Now fitted with stainless steel guides-six times the life. \\ Continuous 14 oz . at \(\frac{3}{3}\) in. Instantaneous to \(5 \frac{1}{2} \mathrm{lb}\). \\ Larger and smaller sizes available. \\ Also Transformers to 8 kVA 3 phase.}
R. A. WEBBER LTD.

KNAPPS LANE; CLAY HILL, BRISTOL 5. Phone: 65-7228/9

\section*{WW- 135 FOR FURTHER DETAILS.}
 Price \(£ 25\), carr. free. Also the well-known vice models of:
\(36 \mathrm{in} . \times 18\)-gauge capacity \(\left.\ldots . . . \begin{array}{rlrl}12 & 10 & 0 \\ 24 \text { in. } \times 18 \text {-gauge capacity } & 5 & 0\end{array}\right\}\)
\(24 \mathrm{in} . \times 18\)-gauge capacity \(\left.\ldots . . . \begin{array}{lll}57 & 5 & 0 \\ 18\end{array}\right\} \quad\) Corriage
18 in . \(\times 16\)-gauge capacity
\(\begin{array}{lll}27 & 5 & 0\end{array}\)
One year's guarantee: money refunded wichout question if not satisfled. Send for details:
A. B. PARKER, Wheatcroft Works

WELLINGTON STREET, BATLEY, YORKS.
Tel.: 3426

WW-136 FOR FURTHER DETAILS.


Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de-1nxe plastic cabinets for desk or wall mounting. Call/talk/listen from Masier to Subs and Subs to Master. Operates on one 9 v . battery. On/off Switch. Volume control. Ideally suitable to modernise Office, lactory, Workshop, Warehouse, Hospital. Shop, etc., for Workshop, Wareliouse, Hospital, Shop, etc., for
instant inter-departmental contacts. Complete with 3 instant inter-departmental contacts. Complete with 3 connecting wires, each 00ft. and other acces-
sories. Nothing else to buy. P. \& P. \(4 / 6\) in U.K.


Why not increase efficiency of Office, Shop and Warehouse with this incredible De-luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A status symbol? Yes, but very useful one. A must for every telephone user. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. \(2 / 6\) in U.K. Add \(2 / 6\) for Battery.

Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.),
169 Kensington High Street, London, W. 8
wW-137 FOR FURTHER DETAILS.

WHTEBCOM/BABYALARM


This wonderful TWO-WAY TRANSISTOR INTERCOM consists of two units-Master and Subin Ivory plastic cabinets with chromium stands. Operates on one inexpensive battery. Call, talk or listen from Master to Sub and Sub to Master. On/off switch. Full Volume Control. IDEAL AS A BABY ALARM. Or communicate with your neighbour or listen for telephone bell in other room. Hundreds of other uses. Indispensable, in Home, Shop, Nursery, Surgery and Office. A boon for spastics and disabled. Saves shouting and walking up and down the stairs. Complete with boft. connecting lead. Battery 2/6 extra. Ready operate. P. \&P. 2/6 in U.K.

\title{
TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS EDTING \& REPRODUCING SETS
}


Codes: Int. No. 2 Mercury/Perasus, Elliot 803, Binery and specfal purpose Codes.

\section*{2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT}
telegraph automation and computer pertpheral accessories Picture Telegraph, Desk-Fax, Morse Equipment: Pen Recorders, Switchboards; Converters and Stabilised
Rectifiers; Tape Holders, Pullers and Fast winders; Rectifiers; Tape Holders, Pullers and Fast winders;
Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and FoM. Equipment; Repeaters;

Diversity,
Frequency Shift, Keying Equipment; Line, Mains Transformers and Suppressors; Racks and Consoles; Plugs, Sockets; Key, Push,Miniature and other Switches; Teleprinter Tools; Stroboscopes and Etectronic Farks; Cold Cathode Matrics; Test Equipment; Oscilloscopes; Miscellaneous Accessories and Spares.

\section*{W. BATEY \& COMPANY}

Gaiety Works, Akeman Street, Tring, Herts,
Tel.: Tring 3476 ( 3 lines) Cables: RAHNOTRING STD: OHH 282 TELEX 82362

WW-138 FOR FURTHER DETAILS.

\section*{HOWELL'S RADIO LTD.}
ministry of aviation inspection approved TRANSFORMERS
STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION
0 -50KVA, "C". CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS ETC.
Driver and Mains Transformer for 20W transistor Amplifier (W.W. Nov. 1966).
\(\begin{array}{ll}\text { Driver } & 22 / 6 \\ \text { Mains } & \text { Carr. } 2 /-~\end{array}\)
*HEATER TRANSFORMERS

> 6.3 v. 1.5 A. \(9 / 6\). Carr. \(2 /-\) 6.3 v. 3 A \(13 /=\) Carr. \(2 / 6\)
*MAINS TRANSFORMERS
350-0-350 v. \(60 \mathrm{~mA} ., 6.3\) v. 2 A. £1/15/-. Carr; \(4 / 6\)
500 v. 300 mA .6 .3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. \(5 / 6\).
\(500-0-500\) v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A. £4/10/6. Carr. 6/6.
\(525-0-525\) v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. £5/5/-。 Carr. 6/6.
*LOW VOLTAGE
\(30-0-30 \mathrm{v} .4 \mathrm{~A}\).
\(\begin{array}{ll}15 \text { v. } 2 \mathrm{~A} . & \text { Al/12/6. Carr. } 3 /- \text {. } \\ 15 \mathrm{v} .6 \text { A. }\end{array}\)
15 v. 10 A.
STEP DOWN TRANSFORMER
Primary 0-415-440 v. Sec. 250 v. 1.5 A. £5/5/-, Carr. \(6 / 6\).
*PRIMARIES \(10-0-200-220-240 \mathrm{v}\).
CHASSIS, CABINETS. AND PRECISION METAL WORK
ELECTRONICS - DEVELOPMENT AND ASSEMBLY Carlton Street
Manchester 14
Lancashire
Tel: 226341I \& Trunk dialling 061

\section*{BENTLEY ACOUSTIC} CORPORATION LTD. 38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS Telephone PRIMROSE 9090 47 NORFOLK ROAD, LITTLEHAMPTON, SUSSEX. Littlehampton 2043 Please forward all mail orders to Littlehampton

ALL GOODS LISTED BELOW IN STOCK


\footnotetext{
All goods are sew, first quality brands only, and subject to maker' full guarantee. We do
not handle manufacturers' seeonds nor rejects. which are often described an new and tested " but have a limited and unreliable life.
packing free. All orders cleared on day of receipt. Any parcel insured againat damake in eatalogue of valves, traukistors and components with conditions of side, price 60
}

\section*{(10) \\ STOCKISTS}


MODEA, : MK. 115


MULTLMINOR MK.JV REPAIR SERVICE 7-14 DAYS
We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Supplicrs of Elliott, Cambridge and Pye instruments.

\title{
LEDON INSTRUMENTS LTD
}

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
TEL.: TIDeway 2689
E.I.D. \& G.O.O. APPROVED

CONTRACTOR TO H.M. GOVY. WW-140 FOR FURTHER DETAILS.


WW-141 FOR FURTHER DETAILS.

\section*{OLRUS ELECTRONICS LTD. \\ PAD 1515}

9 Norfolk Place (off Praed St.) London, W. 2


METAL WORK—PANELS—CHASSIS
For P.W. P.E. Constructional Projects

8 WATT PUSH-PULL O.P. AMPLIFIER E5.5.0 (6/- Carr.) 200-240 A.C. mains. Hawn, treble athl vol controls. EZ80, ECC83 and 2-ELS4's. Chassis \(12 \times 3 \frac{1}{2} \times 3 \mathrm{in}\). With o.p. triass. For 2.3 ohm apeaker. Front panel (normally screwed to chaseis) may be removed and used as flying panel. With cream/black tontrol


\section*{STEREO-ANIPLIFIER \(2 \times 4\) WATT}

Valves 18CC83, \(2 \times\) EL84, on printed clreuit approx, \(4 \times 4\) in. Neg. 1eedbank. Controls (vol., treble, hass) on separate panel, \(1: x\) oin. Separate power pack with rect., double O.P transformers for 3 -ohm apeaticers, only \(£ 5 / 10 /\) - ( \(/ 6\) P. \& P.). Two speakery 3 -ohza for 20/- each, pust paid, if ordered with above Amp.

DECCA Deram Stereo Cantridge (latent type Blue mp), 93 (List \(44 / 1 / 8\) ). Pust \(2 /\).
ORP 12 Cell, \(8 /\) - (post \(2 /\)-)
"SUPER SIX" L.W. \& M.W. TRANSISTOR RADIO Cablnet vtnyl covered, two tone \(11 \times 7 \frac{1}{2} \times 3 \frac{3}{2} \ln .6\) fransistors and dlode. Euperhet.
 Fully built \(£ 6 / 7 / 6\). Carr. paid.

NEW 6 PUSHEUTTON STEREOGRAM CHASSIS
M.W., \&.W.1, S.W.2, V.H.F., Gram., Btereo Gram. Two separate channels for Stereo Grans., with balance control. Also operates with two epeakers on Radio. Chasuls size
 ECL86,9 LM84 and Rect. 190-550 M; 18-51 M; 60-187 M; 88-100 Mc/a. Price £19/19/-


TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS -2 or 4 TRACK ( 4 TRACK 25/- EXTRA)
Chassis \(121 \times 5 \frac{1}{2} \times 4 \frac{2}{2} \mathrm{mn}\). high. Plastic front parnel "gold"' finlsh- \(1231 \times 41\) in. \(200-250\) A.C. Recorl/Playback amp. 日sitch; Oll/On-Tone; Vol/Mic.: Vol/Gram; Mic. Input; Gram. powerpack. Complete anp. and power pack, £8/17/6 (plus 7/6 P, \& P.).
REXINE COVERED CABINET (TAN). \(15 \frac{1}{2} \times 17 \times 9 / \mathrm{m}\), high with sloping front for amp. Complete with two tweeter speakers, spectil auapthig brackets iof Magnavox Deck, 3-SPEED MAGNAVOX 2-TRACK TAPE DECK E10/17/6; 4 Track E12/15/-. Complete Recorders (with \(\$ 10\) more, on normal retail prices.

\section*{Send fil. for 20 -page illustrated catalogue.}

\section*{GLADSTONE RADIO}

66 ELMS ROAD, ALDERSHOT, HANTS. Aldershot 22240. (1 mln. from station and buses. Closed Wednesday afternoon.

\section*{WEYRAD}

\section*{COILS AND I.F. TRANSFORMERS IN LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS}
P. 9 SERIES \(10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}\). Ferrite cores \(6 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}\) operation \({ }_{n}\) Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES \(12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}\). Ferrite cores \(4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}\) operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES \(25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}\). Ferrite cores \(4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}\) operation-Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.
These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

\section*{OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK}

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

WW-142 FOR FURTHER DETAILS.

\section*{Belalere}

\section*{TRANEFORMERE}
M.S. Range of-

\section*{COMPACT MAINS TRANSFORMERS}

\section*{Standard Range Or Designs to Specification}

The M.S. Range of COMPACT MAINS TRANSFORMERS has been developed to meet the needs of engineers requiring maximum VA. density in miniature electronic circuitry.
The power rating of 10.5 VA . represents an achievement of approximately 2.5 VA . per cubic inch.
Send for descriptive literature:


THE BELCLERE COMPANY LIMITED, 385/387 COWLEY ROAD, OXFORD, ENGLAND.

Tel. OXFORD 77266/7


\section*{PEN RECORDERS}


Elfot portable recording milliam meters. recorder: As D.C. recorier: resietan - Hovenent retranee 12000 . As A.C. current or voltage recorder: Movement resistanee at 50 o/a. \(1800 \Omega\). Sensitlvity 1 ms . A.C.
\(\mathrm{FH8D}\). As decibel
As decibel meter: source impedance Prequency Range +5 to -10 dB . Frequen.
\(15 \mathrm{kc} / \mathrm{s}\).
Churts. fespomee so c/a to
Ghart drive: 230 F: A.C. at lin. and 6in. per hour. Minvement to fltted
with "hlgh" and "low narm contacts which can be set for any value of the current. Strip chart 3 sin. wide. Currilineatrue. PRICE
Packing and cartiage \(10 / \% . . .840\)

ORTABLE RECORDING MILLIAMMETERS
Thene are simular to the above but are somewhat smaller and Thene are simuliar to the above but are somewhat smaller and
 Packing and camiage 15j-


TYPE MFI5
A.C. and D.C. voltage ranges: \(0.10-80-250 \cdot 500-10001\) D.C. current ranges: \(500 \mu \mathrm{~A}-10-100 \mathrm{~mA}\). Resistance ranges: \(100 \mathrm{M} \Omega \cdot 13 \Omega\) The meter is also calibrated for \((0,6 \mu \mathrm{M})\) and output level menauremeats. Sensitivity mo00 2 V . Accurany \(\pm 2.5 \%\) for D.C. anti \(\pm 4 \%\) for A.C. measuremonts. Dlmensions: \(51 \times 31 \times 1\) isin. Price \(£ 3 / 3 /-\)

GERMANIUM POINT CONTACT DIODES
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 N 34 A & 4 & C662H & \(1 / 6\) & OA70 & 2/- \\
\hline 1N38A & 4/- & aEX23 & 116 & OA79 & \(2 / 3\) \\
\hline 1N69 & 4/6 & GEX44 & \(1 / 6\) & OA81 & 2/- \\
\hline 1N72 & 4/0 & GEX54 & 2- & OA86 & 3/6 \\
\hline 1581 & 4/- & HG5008 & & OA90 & 2/- \\
\hline CGte & 21- & OAJ & & & \\
\hline CGloE & \(1 / 6\) & OAB & 4/- & OA91 & \(2 / 3\) \\
\hline CG12E & & 0.7 & & OA95 & 3/- \\
\hline CG01H & 3/- & 0.447 & \(4 / 6\) & 89176 & 2/- \\
\hline
\end{tabular}

MICROWAVE DIODES


PERRANTI TRANSISTORS
\(7 T 88\)
\(7 T 91\)
\(\begin{array}{ll}\text { 12/- } & \text { 2T152 } \\ 50 /- & 2 T 148\end{array}\)
74

\section*{Zaed VALVES FOR EXPORT}
- Large scale purchases and expansion of our activities enable us to introduce further cuts in our export prices. This, in conjunction with strict quality control makes our goods most competitive, and our service most efficlent.

\(\star\)
Our extensive stocks (over 800,000 valves, tubes and semi-conductors), spread over 2,500 types, include comprehensive range of entertainment and industrial types. Our inspection facilities, approved by the British Air Registration Board, enable us to ensure consistent quality of goods, and to issue test certificates to E.V.S. and M.I.L. standard.
* We make sure, by selective buying and constant tests and inspection, that only first grade goods, complying with most strict specifications, are supplied.

Among our customers are: H.M. Government Departments, Foreign Governments, Post Office Departments, Air Lines, Universittes, Research Laboratories, Electronic equipment manufacturers at home and abroad, etc.

BELOW ARE A FEW EXAMPLES OF OUR EXPORT PRICES*. FULL EXPORT PRICE LIST AVAILABLE ON REQUEST.
* For direct export in lots of 100 per type, bulk packed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OA2WA & 8/- & & & & & & & & & & \\
\hline OA3 & 5/- & 6AL5 & 1/6 & 6SL7GT & 3/3 & ECC88 & 4/- & PCF80 & 2/7 & UCL83 & 4/8 \\
\hline OC3 & 4/- & 6AN8 & 4/- & 6SN7GT & 2/9 & ECF80 & 2/10 & PCF82 & 2/7 & UFB0 & 41. \\
\hline OD3 & \(4 / \rightarrow\) & 6AS6 & 4/6 & 6V6GT & 2/9 & ECH81 & 2/4 & PCL82. & 3/ & UY41 & 3/- \\
\hline 183GT & \(3 / 2\) & 6AS7G & 11/- & \(6 \times 5 \mathrm{GT}\) & 2/6 & ECL85 & 3/6 & PCL84. & 3/6 & UY85 & 2/2 \\
\hline IX2B & 2/9 & 684G & 12/- & 35 W 4 & 1/10 & EF86 & \(2 / 9\) & PCL85 & 3/7 & METAL & VALVES \\
\hline \(2 \mathrm{C40}\) & 501- & 6BA6 & 1/10 & 50 C 5 & \(2 / 6\) & EF183 & 2/6 & PCL86. & 3/6 & 6.7 & 4/6 \\
\hline 2 C 51 & 81- & 6BE6 & 1/10 & 807 & \(5 / 6\) & EF184 & 2/9 & PL36 & 4/3 & \(6 K 7\) & 3/6 \\
\hline 2D21 & \(3 / 6\) & 6BG6G & 7/- & 829B & 4517 & EL84 & 2/- & PL83 & 3/- & 6Q7 & 3/6 \\
\hline \(3 E 29\) & 45/- & 6BW6 & 4/6 & 884 & 7/6 & EY51 & 3/2 & PL84 & 3/- & 6SA7 & 316 \\
\hline 5R4GY & 4/6 & 6C5GT & 4/- & 2050 & \(7 / 6\) & EY86 & 2/8 & PY32 & 5/- & 6SG7 & 3/6 \\
\hline 5U4G & 2/9 & \(6 \mathrm{CY5}\) & 4/- & 5654 & \(6 / 9\) & KT66 & \(11 / 6\) & PY81 & 2/5 & 6S.J7 & 4/- \\
\hline 5 V 4 G & 4/6 & 634 & 5/3 & 5751 & 7/6 & PC97 & 4/- & PY800 & 3/- & 6SK7 & 3/6 \\
\hline 5Y3GT & \(2 / 8\) & 6J5GT & 3/- & 6360 & 14/- & PCC84 & 219 & PY808 & 31- & 6SQ7 & 3/6 \\
\hline 5Z4G & 3/6 & 656 & 2/- & 9003 & 7/- & PCC89 & 5/2 & UBF80 & 3/8 & 6SR7 & 3/6 \\
\hline 6 AK5 & 3/- & 6L6GC & 4/- & ECC85 & 2/3 & PCC189 & 4/8 & UCL82 & 3/6 & 125Q7 & 51- \\
\hline
\end{tabular}

In addition to currently manufactured valves we keep large stocks of obsolete and obsolescent types for immediate delivery. However old is your equipment, we may stlll be able to help you to keep it going.
We still require active agents in various territories. Please apply, giving details to: \(Z \& / E X P O R T \& W H O L E S A L E\) LTD., 44a, WESTBOURNE GROVE, LONDON, W.2.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{TRANSISTORS} \\
\hline 0 O 16 & 25 & 0070 & 51- & Ocis2 & 14. & AC107 & 10/- & AF14 & 81 & A8Y26 & 6/6 & Matio1. & 816 & 2N1766 & 15/- \\
\hline \(0^{0} \mathbf{0} 23\) & 151- & 0071 & & & & AC127 & \(7 / 6\) & AF118 & 71 & AsY28 & \(6 / 6\) & Matiso & 79 & \({ }^{2 N} 2068\) & 20/- \\
\hline 0 O 24 & 1716 & 0072 & 5/- & OC140 & \(10-\) & AC128 & 8/- & AF116 & 7 - & A8Z20 & \(7 / 6\) & MAT121 & 86 & \({ }^{28} 8002\) & 201- \\
\hline OC25 & 96 & 0073
0075 & 8/- & \({ }_{0}^{\text {OC141 }}\) & \({ }^{226}\) & \({ }_{\text {ACl7 }}{ }_{\text {ACP7 }}\) & \(7 / 6\)
\(8 / 6\) & \({ }_{\text {AF117 }}\) & 14/- & \({ }_{\text {AET103 }}\) & 15/6- & 88240
T1166 & 18/- & - \({ }_{2804}^{2803}\) & \(20 /\) \\
\hline 0028 & 15/6 & 0078 & 6/- & OC371 & 6/- & ACYI8 & 5/6 & AP124 & 9/- & GET113 & & TS4 & 5/- & 28005 & 50/- \\
\hline OC29 & 14/9 & \(0 \mathrm{C77}\) & 8 8- & Oc200 & 716 & ACY19 & \(6 / 6\) & AP125 & 816 & GETI14 & 4/- & V30/30P & 201- & 28006 & 201- \\
\hline OC3 & 12/6 & \({ }^{0} \mathrm{C} 78\) & 51- & \({ }^{0} \mathrm{O} 201\) & 176 & ACY20 & \(5 \cdot\) & AF126 & 81 & GETIL & 8/6 & 2N410 & \(3 / 6\) & 28012 & 140/- \\
\hline OC4 & 51- & Oc78
0 c81D & \(5 /\) & OC203 & 13/6 & \({ }_{\text {ACY }}\) & - & AFI27 & 81 & GET116 & 12/- & 2N412 & \(3 / 6\) & 28012 A & 100/- \\
\hline OC48 & 91- & 0031DM & 5i- & Ocr204 & \(15 \%\) & AD140 & 18/- & AFYIT & 2£/6 & GET875 & 9/6 & \({ }^{2 \times 1097}\) & 131- & \({ }^{281818}\) & 601- \\
\hline OC44 & \(51-\) & 0083. & 5-- & OC205 & 15/- & AD149 & 161/ & AFILZ & 171- & GET880 & 18/- & 2N1132 & 371- & 28103 & 251- \\
\hline 0C45 & 4/6 & OC84 & & 06206 & 22/6 & AF'102 & 18/- & APZ12 & 12/6 & JTX & 8/6 & 2N1304 & & 28104 & 32/- \\
\hline \multicolumn{16}{|c|}{AC176 is complementary to \(\mathrm{ACl} 28 ; 2 \mathrm{NI} 132\) is complementary to 2 N 697} \\
\hline
\end{tabular}

Our new catalogue of valves, tubes and semiconductors is now ready. Apart from listing prices of several thousand types we keep in stock it is a work of reference providing short specifications of semiconductors and special tubes. Please send foolscap S.A.E. (6d, stamp please).


\section*{MISCELLANEOUS SILICON HALF.WAVE}
\begin{tabular}{|c|c|}
\hline 200 pdiv, 750 mA . Wire Ended & \(3 / 6\) \\
\hline 04 600 p.liv. 750 mA . Wire Ended & \\
\hline 18113400 p.i.v. 400 mA . Wire Eb & \\
\hline \(18115{ }^{6000} \mathrm{p} .1\) & 12/8 \\
\hline BY100 700 p.L.v., 450 & \\
\hline BYZ10. See 8L800 & \\
\hline BYZ13 200 p.i.v., 6 amps. Atud M & \\
\hline BYZ19, reversed polarity version of BYZ13 & \\
\hline DD006 400 p.t.v., 500 mA . Wire Rnded & 16 \\
\hline DD058 800 p .4 tr, , 500 mA . Wire Ended & \\
\hline DD226 400 p.i.v., 1 amp. Wire Ended & \\
\hline OA210 400 p.lv., 500 mA . Wire Ended & \\
\hline OA211 800 p.i.v., 400 mas . Wire Ended & \\
\hline \(320 \mathrm{AF} 500 \mathrm{p} .1 . \mathrm{v} . \mathrm{E} 500 \mathrm{~mA}\). Wire E & \% \\
\hline Rg280AF 800 p.iv.r. 650 max . Wire Eaded & \\
\hline SJ102A 100 p.l.v., 2.4 amps. stud & \\
\hline SL800 800 p.i.v., 6 umps. Stud Mou & \\
\hline
\end{tabular}

\section*{CATHODE RAY TUBES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(3 \mathrm{FP7}\) & 201- & 5ADP7 & 100/- & Da7-6 & 80; \\
\hline 3GP1 & 40\%- & 5BPI & 80\%- & 090 & 80- \\
\hline 3 M 7 & 100\%- & \(5 \mathrm{CP1}\) & 401- & os & 80/- \\
\hline 3WP4 & 120/- & 6PP7 & \(30 /-\) & VCR97 & 50/- \\
\hline 4EP1 & 100/- & .5UP7 & 60/- & veri38A & 601- \\
\hline 4GP4 & 100\% & 7BP7 & 50\%- & VCR139A & \(301-\) \\
\hline 4SP7 & 200\% & 90EG4P & 180/- & VCR517 & 60/- \\
\hline \(4 \mathrm{SP11}\) & 200\% & ACR10 & 30\%- & verstio & 70/- \\
\hline 48P31 & 200/= & DG7. & 551- & vCRX388 & 201- \\
\hline
\end{tabular}

Please consult our Valve Catalogue for further details, pin connections, etc. of these and other Cathode Ray Tubes.

THE SECTION BELOW GIVES PRICES OF MOST COMMON RECEIVING and TRA


WHEN ORDERING BY POST PLEASE ADD \(2 / 6\) IN \(\&\) FOR HANDLING AND POSTAGE. MINIMUM.CHARGE 2/-

'BRIGHTLIFE' NEONS
* 25,000 hour average life as standard.
* High intensity neon and its resistor are Miside the
* Moulded in polypropylene and polycarbonate
* \(\frac{1}{2}\) in. and \(\frac{3}{6}\) in. diameter.
* Standard \(160-260\) V. with 6 in . leads, also \(95-500 \mathrm{~V}\). with 30 in . lead variants.
tand \$in. PC/A and PP/A In Red, Amber, Clear, 10, 2/8 each, \(1002 /\) each, \(5001 / 10\) ench. Keon only, \(101 /\) - each, \(1008 d\)
CONTIL
CASES


WEST HYDE MOULDED REED SWITCH

have all these advantages
* clever desizning and mass-production methods g ive the lowest prices \(\gamma\) yet \(\star\) Contemporary good looks \(t\) 21-gauge steel case with 18-gauge front panel \(t\) Smart electric blue finish with white panel 大 Front panel supplied with a special, easy to mark out, strippable coating * "Eyebrow" has no raw edge being folded for extra strength and appearance * Each individually packed * Easy ordering by code number indicating outside dimensions \(\star 4\) loose feet supplied free.

IDEAL. FOR-
OVER SPEED MONITORS UNDER SPEED MONITORS FLOW MONITORING CONVEYOR MONITORING ROUTING CONTROL COUNTING PRESS GUARDS POSITION DETECTION SEQUENCING PROXIMITY DETECTORS REV. COUNTERS
LIMIT SWITCHES
PRESS TOOL PROTECTION

ADVANTAGES-
Low cost
easy mounting LONG LIFE
SAFETY
VIBRATION RESISTANCE
MOULDED IN POLYPROPYLENE

ACCURATE LOCATION OF REED IN MOULDING IDEAL FOR DRIVING LOGIC HIGH OPERATING SPEED HERMETHCALLY SEALED CONTACTS
BEND RESISTANCE

PRICES Moulded reed switch \(\begin{array}{llllll} & 11 / 6 & 10 / 6 & 9 / 6 & 8 / 6\end{array}\) magnets available
Send for free leaflet and eircuits of Rev. Counters, Fire Alarms, ete.

\section*{CONTIL LOW COST PRINTED CIRCUIT BOARDS}

 6
-

\section*{£11/18/6.}



Minimuni Order Value 51.

\section*{VALVES}

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

SETS 1R5, 1856, IT4, 384, 3V4, DAF91, DF91, DK91, DL92, DL94 OL Set of 4 for 10/=, DAF96, DFOb, DK 06 , DL96, 4 for 846
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 A 7 GT & 7/6 & 1002 & 11/6 & DH77 & \(4{ }^{1}\) & EF92 & \(2 / 6\) & PL36 & \(8 / 9\) & UCL83 & \(8 / 9\) \\
\hline 1855GT & 718 & 10F1 & \(8 / 9\) & DH81 & 12/6 & EF97 & \(7 / 6\) & PL81 & \(6 / 9\) & UP41 & 8/- \\
\hline 1N6CT & 7/9 & 10 P 13 & 8/6 & DK38 & 7/9 & EF183 & \(8 / 9\) & PL82 & \(8 / 6\) & UF80 & 7/- \\
\hline 12.5 & 19 & 12AT7 & \(3 / 9\) & DK91 & 410 & EF184 & 6)- & PL83 & 6/- & UF89 & 5/9 \\
\hline 184 & 419 & 12AU6 & 4/9 & DK. 92 & \(8 /\) & EL33 & \(8 / 6\) & PL84 & 6/3 & ULA1 & 8/9 \\
\hline 186 & \(3 / 8\) & 12AU7 & \(4 / 9\) & DK96 & \(8 / 6\) & EL41 & 8/6 & PL500 & 13/6 & UL44 & 15/- \\
\hline 1T4 & \(8 / 9\) & 12AX 7 & \(4)\) & DL33 & \(6 / 9\) & ELA3 & \(7 / 9\) & PL801 & \(7 / 8\) & UL84 & 5/8 \\
\hline 3 AS & \(7 /\) & 12K7世2 & 3/8 & DL35 & \(5 /\) & ELS4 & 49 & PX25 & 710 & UY21 & \(8 / 9\) \\
\hline 394 & 5/6 & 12K8GT & 7 \(7 / 9\) & DL92 & \(4 / 8\) & EL95 & 5/- & PY81 & 6/B & UY41 & \(4 / 9\) \\
\hline 384 & 419 & 1207GT & [ \(3 / 6\) & DL94 & 5/6 & EM80 & \(5 / 9\) & PY32 & \(8 / 6\) & UY85 & 4/9 \\
\hline 3V4 & 5/6 & \(20 \mathrm{~F}^{2}\) & \(10 / 8\) & DL96 & 6/- & EM81 & 7/3 & PY33 & 816 & VP4B & 11/- \\
\hline WU4G & \(4 / 8\) & 20 LT & 14/- & DY86 & 8/6 & EM84 & \(5 / 9\) & PY80 & 5/3 & VP132 & 21/- \\
\hline 5 V 4 C & \(7 / 8\) & 20P1 & \(91-\) & DY87 & B/6 & EM87 & B/6 & PY81 & 5/8 & W70 & 3/8 \\
\hline 5Y3GT & 5/- & 20 P 3 & 91- & EABC80 & 6 & EY61 & 8/3 & PY82 & 5/- & W\%7 & 2/9 \\
\hline az4g & 8/9 & 20 P 4 & 13/6 & EAF4\% & 716 & EY86 & 6/- & PY83 & \(5 / 9\) & 277 & 3/6 \\
\hline \(6 / 90 \mathrm{~L} 2\) & 916 & 25 U 4 GT & T11/8 & EB4] & 4/- & E240 & \(8 / 8\) & PY88 & 7/3 & & \\
\hline 6AL5 & 2/8 & 30C15 & 10/6 & EB01 & 23 & E280 & \(3 / 9\) & PY800 & B/B & Transist & tor \\
\hline 6AM6 & 3/6 & 30 Cl 7 & 11/8 & Ebe33 & 6/- & E2881 & 4/- & PY801 & 8/- & ACl07 & 10\% \\
\hline 6AQ5 & \(4 / 8\) & 30F5 & 9,9 & EBC41 & \(7 / 8\) & GZ32 & 9/- & R19 & \(7 /\) & AC127 & \(7 / 6\) \\
\hline 6AT6 & 41. & 30 FL 1 & 10/8 & EBF80 & 6/- & KT61 & \(8 / 6\) & R20 & 12/8 & AD140 & 15/6 \\
\hline 68A6 & 4/6 & 30 L 15 & 11/m & EBF89 & 5/9 & N18 & 5/6 & U25 & 9/= & AF'102 & 18\% \\
\hline 6BE6 & 4/8 & \(30 \mathrm{L17}\) & 12/- & ECC8I & 3/9 & N78 & 14/9 & U26 & 8/9 & AF115 & 8/9 \\
\hline 68.J6 & 5/6 & 30 P 4 & 11/8 & ECC82 & \(4 / 9\) & P697 & \(5 / 9\) & U47 & 816 & AF'116 & 6/9 \\
\hline 6BW6 & \(7 / 8\) & 30 P 12 & \(9 / 9\) & ECC83 & \(71-\) & PC900 & 819 & U49 & \(9 / 6\) & AF117 & 5\% \\
\hline 6 Fl & \(7 / 8\) & \(30 \mathrm{P19}\) & 11/6 & ECOC84 & \(8 / 8\) & PCCds & 5/6 & U52 & \(4 / 6\) & AF118 & 13/6 \\
\hline 6 F 13 & \(3 / 6\) & \(30 \mathrm{PL1}\) & 12/8 & ECC85 & \(5 / 6\) & PCC89 & \(9 / 9\) & U78 & \(3 / 6\) & AF124 & 9/- \\
\hline 6 Fl 1 & 9/- & 30PL13 & 11/9 & EOF80 & 7/6 & PCC189 & \(8 / 6\) & U191 & 10/6 & AF125 & \(8 / 6\) \\
\hline 6 F 23 & \(9 / 9\) & 35L6GT & 6/3 & EOF82 & \(6 / 9\) & PCF80 & \(8 / 6\) & U301 & \(11 / 8\) & AFF126 & \(8 /-\) \\
\hline 6K7G & \(1 / 6\) & 35W4 & 4/8 & ECF'86 & 9/- & PCF8 8 & 8/9 & U801 & 18/3 & AF127 & 8/- \\
\hline 6 K 8 G & 4/3 & \(35 \mathrm{Z4GT}\) & 4/8 & ECH35 & 8/\% & PCF'86 & \(8 / 3\) & UABCs0 & 5/9 & OC22 & 17/6 \\
\hline 6K8GT & \(7 / 6\) & 85A3 & 5/8 & ECH42 & 9/- & PCF800 & \(10 / 6\) & UAF42 & \(7 / 9\) & OC25 & \(9 / 6\) \\
\hline \(6 \mathrm{L18}\) & \(7 / 6\) & 6063 & 12/6 & ECH81 & 5- & PCF801 & 8/9 & UBC41 & \(6 / 9\) & 0026 & 6/9 \\
\hline 607G & 8/8 & Azal & \(8 / 9\) & ECH84 & \(8 / 6\) & PCF802 & \(9 / 6\) & UBF80 & 6/- & OC44 & 4/3 \\
\hline 6V6G & 3/6 & B36 & \(4 / 8\) & ECL80 & 8/- & PCF805 & 81 & UBF89 & \(5 / 8\) & OC45 & \(3 / 3\) \\
\hline 6V6GT & 8/6 & B729 & 10\% & ECL82 & 8/3 & PCL82 & \(8 / 9\) & UBL21 & 91- & 0 C 71 & 3/6 \\
\hline 6 X 4 & \(3 / 6\) & DAC32 & \(7 / 3\) & ECL86 & 710 & PCL83 & 8/6 & UC92 & 5/6 & \(\mathrm{OCr}^{2}\) & 4/9 \\
\hline 6X5GT & \(6 / 3\) & DAF91 & \(3 / 9\) & EF39 & 38 & PCL84 & \(7 / 6\) & UCC84 & \(7 / 9\) & OC75 & 5/9 \\
\hline 786 & \(10 / 9\) & DAF96 & 6/- & EF41 & \(6 / 3\) & PCL85 & 8/3 & UCC85 & 8/6 & C81 & 3/6 \\
\hline 787 & 7 - & DCC90 & 71- & EF80 & \(4 / 8\) & PCL86 & 8/6 & UCF80 & 8/3 & OC81D & \(3 / 6\) \\
\hline 7 CL & \(9 / 6\) & DF33 & \(7 / 9\) & EF85 & 5/- & PENA4 & 6/9 & UCH21 & 913 & OC82 & \(5 / 9\) \\
\hline 7 C 6 & 619 & DF91 & \(2 / 8\) & EF86 & \(6 / 3\) & PEN36C & C15)- & UCH42 & 8/9 & OC82 & 5/9 \\
\hline 7H7 & 5/- & DF96 & 6 6- & EF89 & 5/- & PEN383 & 9/6 & UOH81. & 8/- & OC82D & \(5 / 6\) \\
\hline 7Y & \(5 /=\) & DH76 & 3/6 & EF91 & \(3 / 6\) & PFLL00 & 14/- & UCL82 & 7/- & OC170 & 5/6 \\
\hline
\end{tabular}

\section*{READERS RADIO}

85 Torquay Gardens, Redbridge, Ilford, Essex. CRE

\author{
ostage on 1 ralve 9 d . extra. On 2 valves or more, postage 6 d . per rave extra
}

Any Parcel lnsurred agalnst Damage th ' rausit 6d. extra.

\begin{tabular}{llll|c} 
Emitter-Base 2 Reverse Voltage... & 30 V & PRICES: \\
Emitter Current ... & \(\ldots\) & \(\ldots\) & 50 mA & \\
Peak Emitter Current & \(\ldots\) & \(\ldots\) & 1 A & \\
Base 1 Peak Pulse Voltage & \(\ldots\) & 3 V & 16 \\
Emitter Reverse Current & \(\ldots\) & 10 nA & \(10 \mathrm{up} 7 / 5\) \\
Peak Point Emitter Current & \(\ldots\) & \(5 \mu \mathrm{~A}\) & Ex-stock
\end{tabular}

BASTRA Alatoris wed 275/281 King Street, London,W.6. Tele:RIV 2960 ww-147 FOR FURTHER DETAILS.

VITALITY


Miniature and Sub-Miniature Indicator Bulbs in sizes from 4.5 mm

\section*{Catalogue from}

VITALITY BULBS LTD
MINIATURE LAMP SPECIALISTS beeton's way, bury st, edmunds, suffolk. TEL: 2071 STO 0284/2071 WW-148 FOR FURTHER DETAILS

\section*{CLASSIFIED ADVERTISEMENTS}

DISPLAYED STTUATIONS VACANT AND WANTED: \&S 5 s per single col. inch.
IINE advertisements (run-on): 6/- per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of \(1 /=\). SERIES DISCOUNT: \(15 \%\) is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, \(c / 0\)
Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

Advertisements accepred up to FEBRUARY 4 for the MARCH issue, subject to space being available.

\section*{situations vacant}
B.B.C. requires a Draughtsman.

IN the Drawing Offee of Equipment Department. Which manufactures and modifles B.B.C. designed broadcasting equipment. Applicants, British subjects only, should be experienced Draughtsmen with knowledge of modern manufacturing methods of light mechanical and electronic equipment. Some evidence of technical Salary on appointment between \(£ 1,140-£ 1,270\) depending on experience and qualifications, rising to \(£ 1,465\). The above salaries include London Weighting. permanent, pensionable post.
APPLICATIONS in writing to Fingineering Recruitment Officer, B.B.C., London, W.1, quoting reference A GRICULTURAL RESEARCH COUNCIL。
ASSISTANT EXPERIMENTAL OFFICER
A capable junior engineer is required for the Electronics Section of the A.R.C. Institute of Andmal Physiology at Babraham, Cambridgeshire. DUTIES. Development of special electronic apparatus for biological experiments; servicing general laboratory electronic equipanent. A sound general knowledge and experlence of electrontc
techniques essential. Below age 22 years: G.C.E. in five subjects including :wo (Science and Maths.) at "A " level. Further giudies encouraged. ABOVE age 22 years: H.N.C. or similar level of attain-
ment preferred. Consideration will be given to applicants possessing alternative proof of the necessary ability and experience. according to age in scale \(£ 685\) at 20 to S1,243. Maximum starting salary at 26 , or over, el,017. Contributory superannuation scheme. APPLICATIONS, with names of two referees, to the ham, Cambridge, within two weeks.
A OVERSEAS CAREER with International Aer
A N OVERSEAS CAREER with International Aeradio To meet the requirements of constant growth and exengineers for an overseas career in North. West and East Africa, the Mediterranean area and the Arabian Gulp. If you have recently completed service in a trade such as Ground Wireless Fitter in the R.A.F.. Radio Electrical Artificers in the Royal Navy or
R.E.M.E. Army, or have other experience in the mainR.E.Mance of B.F. and V.H.F. communications, R.T.T. and navigational alds, we should be interested to hear from you. Successful candidates would normally spend six weeks at our Radio Enolneering School, Southall, Middlesex, before proceeding overseas, but in some cases staff With suitable qualifications and experience
may be offered immediate posting. Overseas staff receive a tax-free salary with married and child allowances if appropriate and accommodation bachelor or married is provided free; other beneffts include generous U.K. Jeave and membership of an excellent penslon and life assurance scheme.
WRITTEN applications, please, to Personnel Manager. International, Aeradio Louthall, Middesex. PYE CAMBRIDGE WORES, Lld., Haig Rd., Cam* bridge.
* SINGLE sldeband egulpment.
* HI-FI reproduction equipment.

WE require trained personnel for production testing and fault finding of modern equipment.
WE have limited vacancies for more senior and experienced men with drive, who can lead small teams engaged on this work. vacancles for persons of less experience who can be trained for such work. APPLY to the Personnel Manager.
ROYAL FREE EOSPITAL, Gray's Inn Ra, 1131
NW.C.IVICS TECHNICIAN (Chtef Technician Grade) required to take cliarge of electronics workGrade) required to take charge of electronics work-
shop. Duties will be to service medical electronic equipment and bulld new apparatus for clinical projects. Salary in range £1,073-£1,383 plus £75 London Weighting.-Apply, with the names of two referees, to the Secretary, Royal Free Hospital, as soon as possible.
YORTEXION, LTD. require an audio amplifier test engineer. Apply in writing giving full details of qualin, Wimbledon. S.W.19. ay, Whiledon. S.W.19.
A FULL-TIME technical experienced Salesman reprevious experience. salary write giving details of age. previous experience. saiary mequired Ro-ke Manager, CRAMPIAN Roproducers Ltd., Hanworth Trading Junior engineers for Development Department and Testroam. experienced in Public Address, Audio and

\section*{\(\square \square \square\) \\ \\ ELECTROHICS \\ \\ ELECTROHICS TECHNICIANS TECHNICIANS \\ \\ United Kingdom \\ \\ United Kingdom \\ \\ Atomic Energy \\ \\ Atomic Energy Authority Authority \\ \\ CULHAM \\ \\ CULHAM \\ \\ LABORATORY \\ \\ LABORATORY \\ POST A \\ Quote Ref. A254/45 \\ To be responsible to a senior technician for the efficient running of an electronic service section which provides a repair and calibration service to the laboratory and covers a very wide range of equipment. Experience is required of electronic fault diagnosis and repair, preferably in an organisation employing a wide diversity of instrumentation methods and types. Applicants must be accustomed to the technical supervision of staff. \\ POST B \\ Quote Ref. A255/45 \\ To diagnose and correct faults on a wide range of electronic equipment both in the workshop and on experimental installations. A good general appreciation of semiconductor and valve electronics is required and a knowledge of pulse techniques would be an advantage. \\ For both vacancies applicants should have served a recognised electronics/electrical apprenticeship or have had equivalent training and should possess an appropriate Ordinary National Certificate, Final City and Guilds Certificate or equivalent qualifications. \\ Salaries: \\ Post A. \(£ 1210-£ 1380\) p.a. Post B. \(£ 1015\) (age 26)-£1210 p.a. \\ Housing: \\ The successful candidate will, if married, be eligible for rented bousing. \\ We offer : Excellent working conditions Work which will provide a wide range of experience Opportunities for further education - Contributory superannuation scheme \\ Please send a postcard for application form to: The Senior Personnel Officer (Ref. A254/5, 45 Culham Laboratory, Abingdon, Berkshire. \\  \\  \\  \\  \\ }


\section*{RADIO TECHNICIAN}

Required by the GOVERNMENT OF THE FEDERATION OF SOUTH ARABIA, Ministry of Internal Security (Federal Guards), to serve as Assistant Signals Officer on contract for one tour of \(18-24\) months in the first instance. Salary according to experience in scale rising to \(£ 2,574\) gross per annum. Gratuity \(25 \%\) of aggregate salary. Liberal leave on full salary. Outfit allowance £60, Free passages. Education allowances. Government quarters at moderate rental

Candidates 35 to 50 years of age, must be first class technicians and possess a City and Guilds Final Certificate in Telecommunications (or equivalent qualification); and have at least six years' experience of radio servicing. Supervisory and training abilities are necessary and a knowledge of Arabic would be advantageous.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.1, for application i- m and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M3D/63318/NF.

\section*{AEROPLANE AND ARMAMENT EXPERIMENTAL ESTABLISHMENT bOSCOMBE DOWN, NR. SALISBURY, WILTS.}

TECHNICIAN, aged at least 24 , required to carry out the inspection of electrical installations and instruments during routine servicing, modification and special intsrumentation of aircraft

QUALIFICATIONS. O.N.C. or C. \& G. Final Certificate or H.M. Forces equivalent such as R.A.F. Chief Technician, R.N. Artificer 3rd Class or above or Army S/Sgt. Foreman of Signals.

SALARY. A starting salary of up to \(£ 1,009\) according to age with annual increments to \(£ 1,129\). Good prospects of promotion and pension or gratuity if you leave after five years service.

TECHNICAL COURSES. These are sponsored for suitable candidates on day release-
APPLICATION FORMS. From The Manager (PE 5870), Ministry of Labour, Professional and Executive Register, Atlantic House, Farringdon Street, LONDON, E.C.4.

\section*{BROADCASTING TECHNICIANS}
required by the ZAMBIA BROADCASTING SERVICES for work in studios and/or transmitters on contract for one tour of threc years in the first instance. Salary according to experience in scale \(£ 1,460\) rising to \(£ 1,855\) a year. A supplement of not less than \(£ 200\) a year is also payable. Gratuity \(25 \%\) of total salary drawn. Liberal leave on full salary or terminal payment in lieu. Free air passages for officer and family. Quarters at moderate rental. Generous children's education allowances.

Candidates, preferably aged between 23-45, must possess City and Guilds Intermediate Telecommunication Certificate, or equivalent, and have had at least four years' experience in a recognised Broadcasting organisation on operational duties in either (a) Sound transmission and recording studios, or (b) Television studios, or (c) Short-wave transmitting stations.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.1, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M2T/63105/WF

\section*{TEST ENGINEERS}
for

\section*{ELECTRO MEDICAL \& X-RAY DEPARTMENT}

Experience of design and maintenance of test gear would be an advantage. Fault finding experience is essential. The minimum qualification should be O.N.C. Applications are invited from engineers with this type of background or similar suitable experience. Write in first instance to

PHILIPS BALHAM,
45 Nightingale Lane, Balham, London, S.W. 12

ELECTRONICS SERVICE ENGINEER required for Immediately inalifations inc or echivion driving lice nce essential. prepared to travel. transport provided: salary \(£ 750-£ 1,000\) according to qualifications and experience; successful applicant will be required to undergo one month's special training with pay. Apply Mr. P. J. Mason, S.L.E., 523 , London Rd., Thornton R ADIO ENGINEER required for maintenance, overBritish/American andallation work on a wide range of Would have some general radio experience and probably an "A" Radio Engineers Licence. Workshop is well equipped, working conditions and terms of employment are excellent. Pay would be according to experience. Please apply to the Service Manager, Rogers


11669
\(T\) exhcnicIins/Junior Technicians required
with ability in the use of machine tools for applied acoustics research laboratories, and (b) to do interesting work for research laboratories, including photographing and electronic assembly. Salary Juntor Technician £366£624 p.a. Techician £698-£1.078 depending on qualtfications and age. Application forms (to be returned
by 6 th February, 1967 ) obtainable from Superintendent of Laboratories, Physics Department. Chelsea College of Science and Technolory. Manresa Rd. London, S.W.3. Tel. Fla. 6421 , ext. 28

\section*{TELEVISION ENGINEER}

\section*{Government of the Federation of South Arabia.}

Qualifications: The officer should possess the full Technical Certificate of the City and Guilds of London Institute with a Television Supplementary Certificate in Television Broadcasting. He should have had at least 3 years responsible experience in the maintenance of television equipment.
Duties: This officer will be responsible for the operation and maintenance of the S.A.B.S. T.V equipment comprising Pye " \(4 \frac{1}{4}\) " image orthicon camera chains, Pye telecine, Pye Broadcasting Vidicon, Gates 100 watt band and band 3 trans mitters with associated VHF/SHF links, Hawly Processor film equipment, etc.
Age Limit: Under 40.
Terms of Appointment: On contract for 18 to 24 months.
Emoluments: Salary (subject to local income tax) according to experience within the following scale:-
£1,668-£3,108 p.a. Terminal gratuity of \(25 \%\).
Education Allowances, free passages and outfit allowance of \(£ 60\) payable.
Candidates, who must be nationals of the United Kingdom or the Republic of Ireland, shnuld apply, quoting RC 237/1/02 and giving full names, abe, qualifications and experience, to

Ministry of Overseas Development,
Room 301, Eland House,
Stag Place,
London, S.W. 1

TEST ENGINEERS required. Experienced in testing radio communications equipment. Must be able to diagnose fault conditions. and align and calibrate such equipment. Staff appointments, excellent starting
salaries. Call, phone or write. The personnel salaries. Call, phone or write.-The Personnel Manager, Redifon, Ltd., Broomhill Rd., Wandsworth, for Computer Maintenance. Pasts are avallable for men wishing to become Site Engineers. TRAINING Courses are arranged for suitably qualified men. F.N.C, Electronics, City \& Guilds Final or equivalent standard welcome. Knowledge of electronic or electro-mechanical equipment necessary. Good Pension and Bonus Plan in operation.
PLEASE write for application form to:-The Personnel Oficer. The National Cash Register Co.: Ltd. 206/216, TEST gear technician for the detall layout construc-- tion and wiring of test units for the electrical parts of our control and measuring equipments; the ability to test these units would be an advantage; applicants must have some experience of the assembly and wiring of electronic type equipments and of the components mum of supervision; salary \(£ 18\) or upwards depending on experience.-Please write or preferably telephone quoting reference ARN/2, Personnel Officer, Rank Pullin Controls, Great West Rd., Brentford, Middx. IsI.


\section*{T.R.A.C.E AUTOMATIC TEST EQUIPMENT}


We don't intend to rest on our laurels.
BOEING \(707^{\circ}\)
We are already designing new equipments.
BELFAST
This is a field with a future - for US and for YOU. If you have been trained as an electronic engineer you could become

\section*{A Systems Analyst} An Operational Programmer or A Digital Design Engineer with us
Come and discuss these opportunities with members of our technical staff.
Please write, in the first instance, to:
The Personnel Manager (Ref: 382) Hawker Siddeley Dynamics Limited, Hatfield, Herts.
 with IBM Ireland. We are looking for young Irishmen with a knowledge of electro-mechanics to train as Data Processing Customer Engineers -a career which calls for a good deal of ambition and confidence. Is this what you're looking for? Here are the facts:-
- As a D.P.C.E. you will eventually work on some of the world's most advanced computer systems.
- Your salary will be very good, with plenty of opportunity for promotion to senior posts. It is IBM policy always to promote on merit.
- There are valuable benefits including a noncontributory pension scheme, free life assurance and sickness benefit.
- You will geta really thorough training on modern computers, and this will include opportunities for advanced computer training in Europe or in the U.S.A.
- To qualify you need to be between 21 and 27 and have some radio/radar or telecommunications experience. (A radar course with one of the armed forces would be ideal).
In short, this is an exciting opportunity to start on a really go-ahead career in a new environment. IBM Ireland is expanding fast so your chances of promotion in a short time are excellent.
Please write, giving details of age, experience and background to: The Personnel Officer, IBM Ireland Limited, 28 Fitzwilliam Place, Dublin, 2, quoting ref. DPIWW1002.

IBM

\section*{The Civil Service}

Professional and Technical Appointments

\section*{POST OFFICE EXECUTTVE ENGINEERS}

At least 70 posts in London and Provinces for electrical, electronic and mechanical engineers to develop and design communications systems and postal service equipment.
QUALIFICATIONS: Degree or Dip. Tech. in Mechanical or Electrical Engineering, Physics, or Applied Physics or, exceptionally, very high professional attainment.
SALARY (Inner London): £877-£1,806. Promotion prospects.
AGE: At least 21 and normally under 35 on 31 st December, 1967. Some extensions for service in H.M. Forces or Overseas Civil Service. (Reference: \(\mathrm{S} / 322\) )

\section*{ELECTRICAL ENGINEERS}
urgently required to fill vacancies in Ministries of Aviation, Defence, Public Building and Works, and Transport, the Diplomatic Wireless Service, the Board of Trade (Civil Aviation) and other Departments. Vacancies in fields of (a) power, including building services, and (b) light currents and electronics.
QUALIFICATIONS: Degree or Dip. Tech. with 1st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E. or A.M.I.E.R.E.
SALARY (Inner London): £1,143 (at 25)-£1,718. Promotion prospects.
AGE: Normally at least 25 and under 35 on 31 st December, 1967. Some extensions for service in H.M. Forces or Overseas Civil Service. (Reference: S/85)

\section*{ENGINEERING DRAUGHTSMEN}

Vacancies in Ministry of Public Building and Works, Ministry of Defence, Post Office, and in other Departments for Engineering Draughtsmen in the fields of MECHANICAL, ELECTRICAL, and HEATING AND VENTILATING ENGINEERING.
QUALIFICATIONS: O.N.C. (or equivalent) in appropriate subject, three years' training and, in addition, at least one year's drawing office experience. SALARY (Inner London): \(£ 790\) (at 20)- \(£ 1,220\) (at 28 or over)- \(£ 1,338\). Annual leave allowance 3 weeks and 3 days rising to 6 weeks.
AGE: At least 20. Promotion prospects. Where appropriate, time off for further technical study may be given. (Reference: S/68)

\section*{TRAINING SCHEMES}

There are good opportunities for engineering training in the Post Office and in several Government Depart-ments-Student Apprenticeships, Sandwich Courses, University Scholarships, Graduate Apprenticeships, Engineering Cadetships.

Write to Civil Service Commission for details.

The' above posts are pensionable, and APPLICATION FORMS are obtainable from the Secretary, Civil Sorvice Commission, Savile Row, London, W.1. Please quote reference where appropriate

\section*{(2)}

\section*{Westinghouse Electric Corporation}

RESEARCH LABORATORIES OFFER OPPORTUNTITES IN U.S.A. for
interesting, original, creative applied research work at the new central laboratories pleasantly situated on the outskirts of Pittsburgh adjacent to the Allegheny Mountain recreational area.

\section*{POWER EIECTRONICS}
- HIGH-POWER
INVERTERS
- HIGH-FREQUENCY INVERTERS
- CYCLOCONVERTERS
- THYRISTOR MOTOR DRIVES

- LOGIC CIRCUITRY
- FIRING CIRCUITRY
- ADVANCED POWER CONDITIONING SYSTEMS

QUALIFICATIONS: Electrical engineering degree or equivalent. Experience in an industrial laboratory working in this field. Ability to perform original work. APPLICATIONS: Apply in writing to J. Jacoby, Personnel Manager, at the address below. To merit consideration for interview to be held later in London, please be sure to include:-
(a) Education: Schools and Colleges attended, degrees etc.
(b) Experience, positions held, salaries earned.
(c) Personal details, age, nationality, marital status, etc.
(d) Evidence of original work, patents, published papers, etc.
(e) References, both technical and personal.

\section*{Westinghouse Electric Corporation} research \& Development centre Pittsburgh 35, Pennsylvania, U.S.A.

\section*{So you've thought about a career in computers.}

\section*{Now} think again.

Think about the better future we can offer you as an IBM Data Processing Customer Engineer.

This responsible position involves working in direct contact with customers on some of the world's most advanced Data Processing equipment. It calls for ambitious engineers; men with a confident manner, a pleasing personality and the ability to talk to all levels of customer management. Men who enjoy working largely on their own initiative.

Applicants must have a sound electronic and electro-mechanical background, such as ONC/HNC Electronic or Electrical, or Tele-communications experience, or Radar/Radio/Instrument Fitters course in the armed services.

You will start at £1,100 a year, more for special aptitude or experience. At IBM drive and initiative are rewarded particularly well; promotions are always made on merit and from within the company.

So if you want an interesting and rewarding career, are between 21 and 31 and can maintain the tradition of high quality service in one of the fastest growing companies in the country - write to us.

Send details of age, training and experience to Miss S. A. Jones, IBM United Kingdom Limited, 101 Wigmore Street, London, W.1, quoting reference DP/WW/583.


暗

\section*{TEST ENGINEERS}

PYE TELECOMMUNICATIONS LTD. CAMBRIDGE

Due to rapid expansion of this Company in the communication field and the progressive promotion within the organization, a number of vacancies exist for engineers.
Ideally we are looking for men capable of fault finding and checking to an exacting specification V.H.F. and U.H.F. communication equipments involving valve and transistor circuitry. Training will be given to all applicants with the right background.
Suitable applicants will join our permanent staff and will enjoy the benefits of a Company which is offering first class financial rewards and rapid advancement within the organization.

\section*{Apply to:}

The Personmel Manager, Pye Telecommunications Ltd., Newmarket Road,
Cambridge.
Phone: Cambridge 61222.


\section*{ INSPECTORS}
with experience in light or electronic engineering.

\section*{ELECTRONIC INSPECTORS}
with experience in V.H.F., audio and telephone transmission equipment.

Apply personally, by 'phone or by letter to Personnel Officer,

\section*{PYE SCOTTISH} TELECOMMUNICATIONS LTD. VICTORIA PLACE, AIRDRIE Tel. Airdrie 2771


\section*{ENGINEER}
O.N.C./H.N.C. standard or equivalent to work on the maintenance of television relay distribution equipment. As this includes Pay-T.V. systems preference will be given to applicants with knowledge of digital techniques. Salary n accordance with qualifications and experience. Apply in writing:
Southern Area Engineer, BRITISH RELAY LIMITED, 397 Albany Road, S.E.5.

WEST London Aero Club invite "A" and \({ }^{\text {W }}\) " " sary equipment to commence Radio Worlkshop. Alter-
native propositions may be considered. Write full details to-White. Waltham Airfield, near Maideahead,
Berks.
ELECTRONIC ENGINEER required to design and purposes. A general knowledge of amplifiers, cathode ray tube displays and digital circuitry is required. The salary is in the range of £ 940 to £1. 181 as Senior Physics Laboratory Technician or £1,148 to £1,458 as Chief Physics Laboratory Technician, according to
age, quallications and experience. Applications, givane, details and the names of two referees to, Geoffrey A. Roblnson, Secretary to the Board of Governors, The National Hospital, Queen Square, W.C.1.
[1665

\section*{ARTICLES FOR SALE}

7 VHF/RT Transmitters type T1131: 3 VHF Recelvers Amplifer \(1392 A 1132 A\) and R5019, together with Power, Amplifer and Crystal Monitor units: \({ }^{3}\) TX/RX Switches and Jack panels. Offers by tender for this
equipment, as is, to Airport Commandant, Southampton Airport, Hants. Equipment can be seen 9 a.m./ \(6 \mathrm{p} . \mathrm{m}\). daily.

\section*{The}

BRITISH HOVERCRAFT CORPORATION LTD. has a vacancy in its Design Department at Cowes, Isle of Wight
rado installation engineer
Applications are invited from engineers with experience of air radio installations. A knowledge of navigational equipment would be an advantage as also would be the possession of City \& Guilds Full Technological Certificate in Telecommunications or its equivalent
Applications, which should include details of age, experience and salary etc., should be addressed to

The Personnel Manager,
British Hovercraft Corporation,
East Cowes, Isle of Wight.

\title{
COMPUTER ENGINEERS
}

Due to continued expansion NCR require additional ELECTRONIC and ELECTROMECHANICAL ENGINEERS for Computer Maintenance. Posts are available for men wishing to become Site Engineers.
Training Courses are arranged for suitably qualified men. H.N.C. Electronics, City \& Guilds Final or equivalent standard required. Men from Forces with radar experience welcome.

Knowledge of electronic or electro-mechanical equipment necessary. Good Pension and Bonus Plan in operation.
Please write for application form to The Personnel Officer, The National Cash Register Company Ltd, 206/216 Marylebone Road, London NW1.

Plan your future with
NCR

\section*{间}

\section*{TEIECOMMUNICATIONS}

We have vacancies for Fault Finders, Testers, and Inspectors to work on interesting and advanced equipment including H.F. SINGLE SIDEBAND, V.H.F. RADIO TELEPHONES, U.H.F. MINIATURE EQUIPMENT.
Transistor experience is essential. Vacancies exist at all levels and training will be given where necessary.

\section*{Apply: Personnel Manager, CAMBRIDGE WORKS LTD., Haig Road, Cambridge.}

Assistant to Technical Sales Manager of Connectors Division of expanding London based Electronics Company. High salary and excellent opportunities for right executive in highly active and progressive sales field. Write stating full particulars and salary required to Box \(5030 \mathrm{c} / 0\) "Wireless World."


\section*{LECTURER IN WORKSHOP PRACTICE} GOVERNMENT OF KENYA
Qualifications: Ordinary diploma in Mechanical/ Electrical Engincering or its equivalent and a minimum of three years' experience, teaching use of hand tools, lathes, machinery, soldering etc. Duties: To instruct at engineering and tradesmen's levels all forms of workshop practice.
Age Limit: Up to 50 years.
Terms of Appointment: On contract for one term of 24 months at salary (subject to local income tax) in the scale \(£ 1,821\) to \(£ 2,280\) per annum. Terminal gratuity of 25 per cent of total emoluments, Educational allowances, free passages etc.

Candidates, who must be nationals of the United Kingdom or the Republic of Ireland, should apply, quoting.RC 237/95/06 and giving full names, ages, qualifications and experience, to:-
MINISTRY OF OVERSEAS DEVELOPMENT Eland House, Stag Room 301,
g Place, Victoria, London, S.W.1.

\section*{AIR FORCE DEPARTMENT}

ARE YOU:
\(\star\) INTERESTED IN DOING VITAL WORK ON R.AF. RADAR AND WIRELESS EQUIPMENT.
\(\star\) Aged 19 or over and of good educational standard (G.C.E. "O" level passes in English Language, Maths and Physics or equivalent qualifications (desirable though not essential)
* Experienced in radio/radar servicing, with 3 years' training/practical experience.

IF SO, WE OFFER:
\(\star\) A first class opening as a Civilian Radio Technician. Starting salary of up to
 (top posts in excess of \(£ 2,000\) p.a.).
\(\star\) Facilities for Day release on full
* 5 -day week and over 5 weeks' leave and public holidays at the start, increasing gradually to almost 8 weeks.
\(\star\) Excellent prospects of a good pension. If you do not qualify for a pension, then you receive a gratuity if you leave after at least 5 years' service.
Appointment (through a trade test, which can be taken at a local R.A.F. Station, and an interview) will be initially at R.A.F. Sealand, near Chester, R.A.F. Carlisle or R.A.F. Henlow, near Hitchin, Beds. Later it may be possible to take up posts in other parts of the country. Applicants should write to:-

> MINISTRY OF DEFENCE (CE 3h(Air));

SENTINEL HOUSE
SOUTHAMPTON ROW, LONDON, W.C
or call at No. 30 M.U. Sealand between the following times:-
Monday-Friday: 8.30 a.m. to 4 p.m.
Saturday: 8 a.m. to 12 noon.

\section*{YOUNG DESIGNERS}

Opportunity for young designers trained in Electronics and Mechanics to enjoy future with progressive Company and further their experience in design of Colour Television Equipment.

\author{
Apply to: Personnel Officer, Pye T.V.T. Ltd., Coldhams Lane, Cambridge. \\ Tel. Cambridge 451.15.
}


B for assembling.-Please write to chassis required Nairobi, Kenya.
\(\mathbf{W}^{\text {ANTED. - Cash _mid for valves. }}\) televisions, radios any quantlty.-S. Willetts, 43, Spon Lane, West W'heatstone-oreed Continental-code keyboard perforator and sending head wantec. Must be In like new condition and pertect running order. Kit
of spare parts also desired. W3AFM.
\(\mathbf{W}_{\text {and }}^{\text {ANTED }}\) test \({ }^{\text {all types }}\) equipment.--Demmunications to receivers Electronics, Ltd. Ashipment-Details to R. T. As Ald


\section*{BOOKS. INSTRUCTIONS, ETC.}

MANUALS. circuits of all British ex-w.D. 1939 wisess equlpment and instruments from ortinal R.E.M.E. instructions; s.and instruments from origina
 Surrey. CR4.SPZ.

\section*{Welsh college of advanced technology DEPARTMENT OF APPLIED PHYSICS POST-GRADUATE OIPLOMA IN ELECTRONICS}

Applications are invited for places in the full-time one year College Diploma Course in Electronics, commencing October, 1967. The course will be of particular interest to graduates, or equivalent, in science or technology wishing to consolidate their studies with a specialist year devoted to Electronics.

Further details can be obtained from the Registrar, Welsh College of Advanced Technology, Cathays Park, Cardiff. Application forms should be completed and returned to the college as soon as possible.

\section*{PROJECT/DEVELOPMENT ENGINEERS}

\section*{mOBILE RADIO}

Engineers required for design and development of V.H.F. and U.H.F. transistorised radio communications equipment.
In addition to experience in development work at an appropriate level, candidates must have recent experience in circuit design of radio communications equipment.
Salary negotiable according to experience.
Write or telephone the Personnel Manager for application form and details about the Company.
HUDSON ELECTRONICS LTD.
Peall Road, Croydon, Surrey. CR93AX. Tel: THO 9771, 4994 \& 5987 STC
\(A\) division of Standard Telephones and Cables Limited.

\section*{ASSISTANT TELECOMMUNICATIONS CONTROLLER}

Required by the GOVERNMENT OF HONG KONG, Police Department on contract for one tour of 3 years' residential service in the first instance. Commencing salary, equivalent to \(£ 2,377\) rising to \(£ 2,692\) a year. Gratuity \(15 \%\) total salary drawn. Free passages. Generous Education allowances. Low income tax. Quarters at moderate rental. Liberal leave on full salary. There are also promotion prospects.

Candidates, under 45 years of age, should be Graduate (preferably Corporate) Members of the Institution of Electrical Engineers, or possess equivalent qualifications and should have had at least five years post-graduate experience in Telecommunications including V.H.F. systems and Telephone and Teleprinter line circuits. A knowledge of Marine Radar equipment would be an advantage.
Duties are to assist the Controller in planning, commissioning and maintaining telecommunication networks with direct responsibility for supervision of workshops staff.
Apply to CROWN AGENTS, M. Dept., 4, Millbank, London, S.W.1, for application form and further particulars, stating name, age, brief details of qualifications and experience, and quoting reference M3D/71072/WF.


\(9{ }^{1}\)
VhF test
ENGINEERS
CAMBRIDGE WORKS LIMITED have vacancies in their expanding Test Organisation for men with experience of VHF Transmitters and Receivers.
Men with Service training in VHF equipment would be suitable.
Progressive rates of pay and promotion and good facilities for training are offered.

> Apply: Personnel Manager, Cambridge Works Limited,
> Haig Road, Cambridge.
TAPE EECOROINC ETC.
TAPE to disc transfer using latest feedback disc
High cutters: EPs from 21/-i s.a.e. leaflet.-Deroy,
[162

\section*{ASSISTANT telecommunlcations engineer}

Required by the EAST AFRICAN POSTS AND TELECOMMUNICATIONS ADMINISTRATION on contract for one tour of 24 months in the first instance. Commencing salary \(£ 1,994\) in scale rising to \(£ 2,262\). including allowances. Terminal gratuity \(25 \%\) of salary drawn. Generous overseas installation grant Free passages. Liberal leave on full salary. Accommodation provided at low rental Education allowances.

Candidates should be aged between 28 and 45 years and possess relevant City and Guilds Certificates (or equivalent) and have a thorough knowledge plus sound experience of the installation and maintenance of HF and VHF radio equipment. A knowledge of carrier and telegraph equipment would be an advantage.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W. 1 for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M12T/62721/WF

\section*{WANTED \\ URGENTLY - FOR CASH T-217/GR TRANSMITTERS MD-129A/GR MODULATORS R-278B/GR RECEIVERS AND SPARES (PART OF AN/GRC-27) SUTTON ELECTRONICS SALTHOUSE, HOLT, NORFOLK CLEY 289 \\ WW-149 FOR FURTHER DETAILS.}

SPECIAL OFFER! ARMSTRONG, GARRARD, and GARRARD, and
other HI-FIUNITS, other HI-FIUNI
\(33 \div\) Deposit, \(33 \%\) Deposit,
Bal. over 12 months. A.L. Stamford Lid. 98 Weymouth Terr. London, E.2.


WW-150 FOR FURTHER DETAILS.

\section*{BARGAINS! BARGAINS!}

Ex. Government Equipment.
All Items available as previously
advertised. Complete List 1/- (S.A.E.)
A. J. THOMPSON (Dept. W.W.)

Eiling Lodge, Codicote, Hitchin, Herts.
Tel: Codicote' 242
WW-15I FOR FURTHER DETAILS.
WANTED. Your redundant or surplus stocks of Transformer Laminations, "C" Cores, Enamel Copper Wire and allied materials.

GOOD PRICES PAID.
J. BLACK

44 GREEN LANE, HENDON, N.W. 4.
Phone: SUNnyhill 1855 \& 3033
WW-152 FOR FURTHER DETAILS.

\section*{A GUIDE TO SURPLUS} COMMUNICATION RECEIVERS
A detailed guide to thirty-one receivers, including the HRO, AR88, CR100, R107, R1155 ing the
PCR, 5 , set, etc.
7/6, P. \& P. 1/-. Mail order only to
ADKINS, Dept WW, 72 Courtenay Avenue
Harrow, Middlesex.
WW-153 FOR FURTHER DETAILS.

\section*{WANTED}

\section*{CRYSTAL DIODES TYPE IN 23 B}

IN LARGE QUANTITIES
Telephone:
OADBY (OLE 722) 5831
 and all short wave stations of the world. 6s. net 6 s .9 d . by post.

\title{
Introduction to Vector Analysis for Radio and Electronic Engineers
}

\author{
W. D. Day, B.Sc., A.M.I.E.E., A.M.I.E.R.E.
}

A Comprehensive treatise on Vector methods written specifically with the needs of the electrical engineer in mind. Extensive use has been made throughout of problems in magnetism and electricity so that the reader is at once on familiar ground and can readily appreciate the considerable advantages which accrue by the use of vector techniques. The author has been guided in the selection and presentation of material for this book by the experience gained over many years in lecturing to engineering students, and the outcome is a volume eminently suitable for self tuition or for use as a textbook.
260 pp. 42s. net, cloth 43 s . by post. 27 s 6 d . net limp, 28s. 5 d . by post.

> Loudspeakers and Loudspeaker Cabinets In preparation A. Van Der Wal \(15 s\) net
available from your bookseller
ILIFFE BOOKS LTD. DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I

\section*{TRANSISTORISED TUNER CHASSIS}
> * LONDON- 10 Tottenham Court Rd. t PORTSMOUTH-350-352 Fratton Rd * SOUTHAMPTON- 72 East St. * WORTHING-132 Montague St BRIGHTON-Devonian Court, Park Crescent Place All Mail Order and 24-hour Robophone sepvice Brighton 680722 BULK STEREO DECODERS (Arena 6 (ramsistor complete), 7 Gns BUY - AM STEREO RADIOGRAM CHASSIS (Normally 18 Gns.), 11 Gns.

\title{
. MUS 2639 Tel.: 2203 Tel.: 2585
}
machine (size 6in.

TYPE FMT41 High quality, low noise, battery or mains operation. Reprodaction stands comparison with tuners costing 3 times as much. Come and hear if at any of our very hean send to Brighton rishout delay as tue antheipate a \(4 \mathrm{in} . \times 2\) tho.), consists of a low noise trequency changer stage machine (size 6in, \(\times 4 \mathrm{in}\), \(\times 2\) tha.), consists of a low noise iraquemey ehanger stage
with smooth 2 gang tuning feeding. No less than three IF Stages terminating in a double
tuned diseriminator and LF Stage giving ample output for all quality ampliffers. tuned diseriminstor and LF Stage giving ample outpot for all quality auplifiers Operates with nexligible draiu lor months of use irom a P.P. 3 or any 9 volt battery

POST 2/6 WW- 154 FOR FURTHER DETAILS

\title{
LAWSON BRAND NEW TELEVISION TUBES
}

Complete fitting instructions are supplied with every tube. Terms: C.W.O. Carriage and insurance \(10 /\).

\section*{LAWSON TUBES \\ 18 ChURCHDOWN RD., malvern, worcs.}

TeI. MAL 2100

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.s.
"Century 99" are absolutely brand new tubes throughout, manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance, needle sharp definition, screens of the very latest type giving maximum Contrast and Light output; together with high reliability and very long life.
"Century 99" are a complete range of tubes, in all sizes for all British sets manufactured 1947-1964.

Our stocks are very large and we can supply the EXACT rube you require by return

\(12^{\prime \prime}-64: 10: 0\) 14"-65: \(10: 0\) 17"— \(55: 19: 0\) 19"-£6: 19:0 1"-f7:15:0

\section*{COMPONENTS}

POSTAL SERVICE *RECHARGEABLE BATTERIES (Sealed DEAC Ni-Cad)
PP3 Equiv. \(9 v .37 /-\) (p. \& p. 2/-) \(\begin{array}{ll}\text { U2 Equiv.: } & 1.25 v .32 / 6 \text { (p. \& p. } 2 /(-) \\ \text { U7 Equiv.: } & 1.25 v .12 /- \text { (p. \& p. } 1 / 6 \text { ) }\end{array}\) \(\begin{array}{lll}\text { U7 Equiv.: } & 1.25 v .12 /- \text { (p. \& p. } 1 / 6 \text { ) } \\ \text { Ull Equiv.: } & 1.25 v .26 /- \text { (p. \& p. } 1 / 6 \text { ) }\end{array}\)
+ TRANSISTORS—OC44, 45, 70, 71, 72, 81 and 8ID equivalenes, each
* \(5 \%\), \(\frac{1}{4}\) wart worsh 53 )

ASSORTED CAPACITORS-New polyester, paper, electrolytic, etc., 100 off GRAMOPHONE AMPLIFIER—Guaran teed. \(\frac{3}{4}\) watt, for 8 ohm speaker, 9 v. supply 191 (P. \& P. I/6 per order) C.W.O

ELMBRIDGE INSTRUMENTS LTD. Island Farm Ave., West Molesey, Surrey. WW-159 FOR FURTHER DETAILS.

TAPE/DISC/TAPE transfer editing; duplicating: if from your precious tapes), consult Britain's oldest transfer service. Fund raising records publisher for schools, musical societies (tax free). Sound News Productions, 10. Clifiord St.. London, W.1. Reg. 2745 「i08

SAVE on cost of hi-f. See Audio Supply notice (advert
No. 111). No. 111)

\section*{TEST EQUIPMENT - SURPLUS ANDSECONDHAND}

SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range meters, ville Old Hall. Ashville Rd., London, E.11. Ley. 4986

\section*{MISCELLANEOUS}

METALWORK, all types cabinets, chassis, racks, etc., to your own specification, capacity avallable for small milling and capstan work up to 1 in bar PHILPOTT'S METALWORKS, Ltd., Chapman
Loughborough.
[15i

\section*{SPECIAL OFFER}

I wate S.T.C. \(300 \mathrm{Mc} / \mathrm{s}\). N P.N. Silicon Planar \(100 \%\) Transistcrs. Limited stocks, \&l for six, with data 3/- each. OC44, OC45, OC70, OC71, OC81 OC8ID, OC200. GETI6, GET20.

ZENER DIODES
3.9 v to 26 v all votrs BETWEEN tw 3/6d, \(1.5 \mathrm{w} 5 / \mathrm{F}\) \(7 \mathrm{w} 6 /-\) each.
4/- each. AFII4, AFII5, AFII6, AFII7, OCI70 OCI7I.

Send 6d. for full lists:-Inc. S.C.R., Zeners, etc CURSONS
78 BROAD STREET CANTERBURY KENT

WW-156 FOR FURTHER DETAILS

\section*{OSMABET LTD.}

WE MAKE TRANSFORMERS AMONGST OTHER TETNGS AUTO TRANSFORMERS. \(110-220-240\) F. A.C. up/down tully shrouded fitted terminal blocks, 50 .., 22/6, \(75 \mathrm{w} .27 / 6\),
 \(86-\) NS
MANS ISOLATION TRANSFORMERS. \(200 / 240\)
v. A.C., \(1: 1\) matlo \(100 \mathrm{w} ., 70 /-; 200 \mathrm{~W} ., 110 /-; 500 \mathrm{w} ., 240 / \mathrm{F}\).
MAIFS TRANSFORMERS, Input 200/240 V. AC., TX1.425-0425250 Ma, 6.3 ₹. 4 s. ct., 6.3 v. 4 ta. ct., \(0-5-63\) v. 3 a., \(1101-\) TX2 \(250-0.250150\) Mia, 6.3 v. 4 a, eto., \(0-6-6.3\) v. 3 a., \(60 /-\)


 ingle tapped sec., \(5-10 \cdot 15-20-25-30-35-40-55-60, \quad 10-0-10\); \(20-0-20,30-0-30\) v. A.C. 1 a., \(27 / 6,2\) а., \(37 / 6\).
OHARGER TRANSFORMERS, Prim 200/240 v. A.C., for charging
 ontact recs., 2 a., 8/6; 3 a., 12/-
OUTPUT TRANSFORMERS. Multi ratio MRT/10, 39 ratios, ne, p.p. 7/10 w., 25/-; Mullard \(5 / 10\) UL, \(45 / \mathrm{m}, 3 / 3,25 /-\), etc., etc. Cariage extra all transformers molnimuma \(3 / 6\) to \(7 / 6\) each. Comprehensive range of transformers and ohokes atocke
TRANSFORMERS WOUND TO YOUR SPECIFICATION TRUANSFORMERS WOUND TO YOUR SPECIFICATION BULK TAPE ERASER, and heai demagnetiser, \(200 / 250\) V. A.C., FLUORESCENT LOW VOLTAOE LIGHTIIG, input 6, 12 or 24 v. D.O., extensive range all fittings and meverters. Liat B.A.E. LOODSPEAKERS, SPECLAL OFFER. Brand new, famous make heavy duty, 12 m ., \(15 \mathrm{w} ., 80 /-; 25 \mathrm{w}\), , \(90 / \mathrm{l} ; 35 \mathrm{w} ., 140 /-\),
3 or 15 ohms, postage all speakers, \(5 / 6\) each. or 15 ohms, postage all speakers, \(5 / 6\) each.
CONDEN SERS. Electrolytics 5000/50 v., 15/-; 2500/50 v, 7/6:
 postage \(1 / 6\).
RADIOORAM CHASSIS. Many typer avallable, Am; Am/Fm; Stereo, etc. B.A. Fso llustrated caitalogue

\section*{SPECIAL OFFER}

Garrard Aatochangers, new stook to be cleared. 200/250 A.O. \(50 \mathrm{c} / \mathrm{s}\). Type 1000 at £5; Type 2000 at \(£ 5 / 15 /\) Type 3000 at \(£ 6 / 10 /=\), all less cartridge, ringle player with cartidge 3RP 12 at \(70 /=\), ceramic Garrand stereo cartridge ExR6 at \(12 / 6\).

S,A. all Enquiries please.
6 KENIL WORTE ROAD, EDGWARE, MIDDX, T'el.: \$TOnegrove 9314

\section*{TECHNICAL TRAININC}
D.M.G. Certificates, City \& Gullds Examtnations, I.E.R.E. Also many non-examination courses in famous I.C.S. Write for free Prospectus stating subject to-International Correspondence Schools (Dept. 443). Intertext House, Parkgate Rd. London S.W.II

CITY \& GUILDS (Electrical, etc.) on " Satisfaction or C Refund of Fee terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radilo, T.V.. automation, etc. send for 132 -page handbook-iree.-B.I.E.T. (Dept 152K). Aldermaston Court. Aldermaston, Berks. [146 BECOME \({ }^{\text {/ Technically Quallfea " in your spare time }}\) D guaranteed diploma and exam; home-study course in radio, TV, servicing and maintenance. R.T.E.B. City of Guilds, etc., highly informative 120 -page Guide-free,-Chambers College (Dept. 837 K ). \({ }^{148,}\)
Holborn, London, E,C.1.

\section*{Paisonal}
 t155

\section*{TO All}

Manufacturers, Wholesalers, Importers, etc. of the Radio and Electronic Industries
We are spot cash purchasers for all types of redundant and surplus stocks.
Phone or write Hillside 2713
Stonegrove 7624
Broadfields Disposals Ltd.
8, Broadfields Avenue, Edgware, Middx or
Mayco Products Ltd.,
21 Lodge Lane,
N. Finchley, N. 12

WW-160 FOR FURTHER DETAILS.

WW-158 FOR FURTHER DETAILS.


\section*{PHILIPS PAPERBACKS}

\section*{A Series of Technical Paperbaçk for the Enthusiast}

Aerials
D. J. W. Sjobbema 110 pp. 98 illustrations. 10 s 6 d net. Ils 3d by post

\section*{Audio Quality}
(P1)
G. Slot

156 pp. 61 illustrations 13 s 6d net. 14s 5d by posz.

\section*{Short Wave Listening}
J. Vastenhour

122 pp. 33 illustrations 12 s 6 d net, 13s 5d by post.
(P3) Loudspeakers and Loúdspeaker Cabinets
A. Van Der Wal 155 net.

\section*{Circuits Using Direct Current Relays \\ (P10)}
A. H. Bruinsma
\({ }^{94} 4 \mathrm{spj}\). 66 illustrations 13 s od net. 144 sd by post.

\section*{Transistors in Logical Circuits \\ (P11)}
1. Ph. Korthals Altes

117 pp. 125 illustrations 16 s net, 16s 8d by post.

\section*{FAMOUS ARMY SHORT-WAVE TRANSRECEIVER MK. III}


This set is made up of 3 separate units: (1) a two-valve amplifier using 6V6 output valve; (2) (some only) a V H.F. Transreceiver covering 229-241 Me/s. using 4 valves; (3) The main shortwave Transmitter/Receiver covering. in two switched bands, just below \(2 \mathrm{Mc} / \mathrm{s}\), \(-4 \frac{1}{2} \mathrm{Mc} / \mathrm{s}\) and \(4 \frac{1}{2} \mathrm{Mc} / \mathrm{s} .-8 \mathrm{Mc} / \mathrm{s}\).
 (approx 160.37 .5 metres) using 9 valves for RT, CW, MCW. The receiver is superheterodyne having one R.F. stage, frequency changer, two if \(465 \mathrm{Kc} / \mathrm{s}\).\() , Signal detector, A.V.C and output stage. A B.F.O. included\) octal bases. Many extras, e.g. Netring switch, quick flick diat settings,
octal bases. Many extras, e.g. Netting switch, quick fick dial settings, squelch, etc. Power requirements LT 12 volts., HT receiver 275 volts D.C. HT transmitter 500 volts D.C. Size approx. i/tin. x 7 in \(x 1 / i n\). Every set supplied NEW in carton with a 12 -pin connector and full book ineluding circuits at Only \(\mathbf{E 4 / 1 0 / \text { - and carriage 15/-, with V H.F. TX/RX } 1 0 / - \text { extra }}\) BRAND NEW and boxed No. 10 head and mike (made for this set) only \(15 /-\), post \(2 / 6\). NEW 12 volt D.C. power unit for these sets, \(30 /-\) carriage /-. NEW aerial tuning units, 20/-, post 7/6. We make a mains \(200 / 50\) vole A.C. power unit in louyred metal case
 charge of \(10 \%\) - to unpack and test the receiver of these sets is made only if requested to cover the cost of repacking set. We do however repeat, al
sets and equipment are NEW and boxed, being of fairly recent manufacture, ALL will be sent via B.R.S. within 24 hours of receiving order.
JOHN'S RADIO, OLD CO-OP, Whitehall Rd., Driglington, Bradford
A.F. Amplification (PT) 109 pp. 80 illustrations 10s 6d net, is 3 d by post.

\section*{Alternating Current and Acoustics \\ (P5)}

116 pp. 86 ilfustrations. 10 s 6 d net, IIs 3d by post.

\section*{Direct Current and Magnetism \\ (P4)}

119 pp. 92 illustrations 10 s 6 d net, by post Ils 3d.

\section*{Radio Valves}
(P6)
126 pp. 90 illustrations 10 s 6d net,
11 s 3 d by post.

Ww-161 FOR FURTHER DETAILS.

\section*{WALKIE-TALKIE MK III and} CRYSTAL CALIBRATOR No. 9


This set is housed in a waterproof die-cast aluminium case made by Murphy Radio for the Govt. having only
reliability and quality reliability and quality in mind. Range 7.3 \(\mathrm{Mc} / \mathrm{s}-9 \mathrm{Mc} / \mathrm{s}\). On side of set is crystal calibrator No. 9 which provided on the Tuning dial. Transmitter tunes to the same FX as receiver. Set uses a total of 5 valves, power required L.T. 3 volts D.C., H.T. 100-175 volrs D.C. Sets suppled in NEW or as new condition, boxed, only \(50 / \mathrm{F}\). Carriage \(10 /\) -

JOHN'S RADIO
OLD CO-OP, Whitehall Road, Driglington, Bradford

\section*{RECEIVERS AND AMPLIFIERSSURPLUS AND SECONDHAND}

HRO Rx5s, etc., AR88, CR100, BRT400. G209, S640, Ashville old Hall, Ashville Rd., London, E.11, Ley. Ashville Old Hall, Ashvilue Ra.. London, E.11. Ley.
4986 .

\section*{SERVICES OFFERED}

JOIN Audio Supply Association, \(7 / 6\) p.a. (65-page catalogues, 4/6; your best guide for safe buying. 10 catalogues, \(4 / 6\); your best guide for safe buying.- 10 ,
Clifford St., London, W.1.
ELECTRONICON, Ltd.- From drawing board to proE. duction with minimum delay; let us be your research development, design and prototype department,
Pilot production runs a speciality.- 176 . Lythalls Lane. Plot production runs a speciality.- 176 , Lythalls Lane.
Coventry. Tel. Nuneaton 2353 or Coventry 86544 . [160

TOROIDAL Coil Winding, transformers, transductors. 1 inductors, etc., designed and wound to order; quick delivery, 1 to 1,000 .-Magtor, Ltd., 68 , Dale St.; Manchester, 1. Cen. 3031 .

WE OFFER a large range of Patterns of TRANSFORMER LAMMATIONS
in RADIOMETAL, MUMETAL and H.C.R.
Stocks of most patterns available.
Please send for list.
ALSO AVAILABLE "C" \& "E" CORES,
CASE AND FRAME ASSEMBLIES
J. BLACK

44, GREEN LANE, HENDON, N.W. 4
Phone: SUNnyhill 1855 \& 3033.

\section*{Electronics and Instrumentation}

\section*{Robert L. Romey}

Provides a sound groundwork for understanding the basis of existing instruments and their applications; also of instruments which are likely to be invented in the future. A useful introduction for students of electronics, and a single course for students in other branches of science and engineering.
55 s net by post 56 s 5 d 321 pp . 128 illustrations,
obtainable from leading booksellers
ILIFFE Books Ltd.
DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I

\section*{5kandia \\ HF SSB Mandy, Portable \& Fixed \\ VHFAM \(T\) ?
UHF FM}
"SKANDIA SSB-IOW" Solid State HF SSB IOW PEP Portable/Mobile/Fixed Multi-purpose Transceiver

Other products
* AM/FM MPX Stereo Tuner Amplifier.
* 8 track 4 channel Cartridge Stereo Tape Player


TOMURA BUSSAN KAISHA LTD C.P.O. Box No. 118 Nagoya, Japan. Cable Add.: "SKANDIA" Nagoya.


\section*{LUITION}

A LDERMASTON Court Postal Training for B.Sc Guilds. (Eng.) Part 1. A.M.I.E.R.E., A.M.S.E., City \& Guilds. G.C.E. etc., prepares you privately for high pay and security as Technician or Technologist, thous ands of passes. For detalls of exams and courses in 811 branches of Engineering, Butlding. Electronics, etc,
(including latest information on C.Eng.). write for 132 page handbook-free; please state interest - British page hana ooon-free: please state interest-British Aldermaston Court. Aldermaston. Berks.

\section*{TRAIN TODAY FOR TOMORROW}

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:
- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY
- Closed circuit tv
- ELECTRONICS-many new courses
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND SERVOMECHANISMS
- COMPUTERS
-PRACTICAL RADIO (with kits)
- NEW PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS
Guaranteed Coaching for:
- Inst. Electronic \& Radio Engs.
- C. \& G. Telecom. Techns' Certs.
- C. \& G. Supplementary Studies.
- R.T.E.B. Radio/T.V. Servicing Cert.
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy


WW-164 FOR FURTHER DETAILS.


\section*{-but}
our cameras mot only look good -you can trust them!
-And that goes for the whole extensive range of Telford photo-optical instruments for science and industry - recording cameras, high speed cameras, oscilloscope cameras. And there is nothing Telford likes better than to solve your special problem, however large, small - or difficult. Their resources for reasearch, design and development are extensive. That's why every product not only looks first class - but is. Why you can unhesitatingly put your trust in a Telford camera. Whatever type of instrument you are interested in - see what Telford has to show you!. Full details on request.


TYPE OSCILLOSCOPE CAMERAS
TELFORD PRODUCTS LTD. 4 WADSWORTH ROAD GREENFORD DAVALI
PRODUCT
GROUP
GROUP

\section*{万OMDON CENTAGB TMDLO STCREE}

\section*{GORTSMANN CLOCKWORK TIME SWITCEES, 5A., one on} one of position, complete with key and connection block, en cased in metal box, \(30 /\) - P.P. 5/
10-WAY PRESS-BUTTON INTER-COM TELEPHONES I Bakelite case with junction box handset. Thoroughly over haulecL Guaranteed. \(£ 6 / 10 /\) - jer Unit.
20-WAY PRESS-BUTTON INTER-GOM TELEPHONES IT Bakelite case with junction box. Thoroughly overhauled per Unit.
WIRELESS SET No, 38 A.F.V. Freq, range 73 to 90 Me1 WIRELESS SET No, 38 A.F.V, Freq, range 7.3 to \(9.0 \mathrm{Mc/s}\)
Working range \(\frac{1}{\mathrm{~g}}\) to 2 mlles . Size \(101 \times 4 \times 6 \mathrm{in}\). Weight 61 b,
 also tank acrial with base. £6 per puir or \(£ 3\) single. P.P. 25/ELECTRICITY SLOT METERS (1/- in slot) tor A.C. mains plyed tariff to your requirements. guitabie for hotels, etc \(200 / 250 \mathrm{~F} .10\) A. \(80 \%\). \(15 \mathrm{~A} .90 \mathrm{j}=\). 20 A. 100/-. P.P.7/6. Othe aniperages avallable. Reconditioned as new, 2 years guarantee QUARTERLY ELECTRIC CHECK METERS. Reconditioned a new. 200/250 r. 10 A. \(42 / 6 ; 15\) A. \(52 / 6 ; 20\) A. \(57 / 6\). Othe amperages available. 2 years guarantec
TWIN GONG TELEPHONE, extensions bells, 21/-
TELEPHONE TYPE HAND GENERATORS, 50 v. bell ringing \(9 / 6\) BRASS JACK STRIPS. 20 Jack Bockets in each strip. Biz approx. \(11 \times 3 \frac{1}{2} \mathrm{tiP}\). \(1 \% / 6\). P.P. \(4 / \%\)
P.M. MOVING COKL SPEAKERS. 5in. 9/6; 8 in .3 ohm \(10 / 6\) P.M. Moving col Speakers. Pin. 9/6:
Eliptical \(7 \times\) tia. 3 ohm 10/6. P.P. \(3 / 6\).

MOVING COLL HEADPHONES, chamois leather earplece, \(25 /\) P.P. \(3 / 6\).

8-BANK UNLSELECTOR SWITCHES, 25 contacts, alterant wipling £2/15/-; 8 bank half wipe £2/15/-; 6 bank hulf wipe wiplng £2/15/-; 8 bank half
25 contacts \(47 / 6\). P.P. \(3 / 6\).
DESE PHONES, Black Bakelite
and internal bell, \(42 / 6\). P.P. 6\%
 \(0-990,25 / 50 \quad\) V. D.C. Size \(4 \times 1 \times\) lin. Single coll, \(2,300 \Omega\)
Single coil \(500 \Omega\). \(8 / 6\). P.P. \(3 / 6\). EX GOVT. BALANCED ARMATUR with plug, new, 7/6. P.P. \(3 / 6\).

23 LISLE ST. (GER 2969) LONOON W.C. 2
Closed Thursday 1 p.m.
Open all day Saturday
the

\section*{Semiconductor Data Book}
lists more than 10,500 semiconductors
includes data sheets for more than 2,800 devices from diodes to integrated circuits
has 16 edge referenced sections for fast fact finding
1,500 page hard bound for 40/incl. postage
Indispensable for the design or component engineer, the Semiconductor Data book. published by Motorola Inc. is the most comprehensive publication of its type available. It offers a new quick reference system of remarkable simplicity, recommends devices for specific applications and permits rapid selection of preferred devices to meet specifications.

Available now fram The Modern Book Co. Britain's Largest Stockist of British and American Technical Books, 19-21 Praed Street, London, W.2. Tel. : PAD 4185 Closed Sot. I p.m.

\section*{ERSIN}


\section*{in handy dispensers for easy use}

The most useful aid to soldering produced for many years. The solder wire is ingeniously coiled within the dispenser for easy withdrawal, and at the same time keeping it tangle-free. Dispensers keep solder free from dirt and grease and often act as a third hand whilst soldering

\section*{SIZE 5}

Contains 12 ft . of \(18 \mathrm{~s} . \mathrm{w} . \mathrm{g}\). Savbit Alloy in a continuous coil. For general electrical work. 2/6 each (subject)

\section*{NEW! SIZE 15}

Contains 21 ft . coil of 60/40 Alloy, 22 s.w.g. Ideal for small components, transistors, diodes, etc. Bubble packed.

3/- each (subject)

\section*{BHb}

Essential Accessories

A

\section*{MODEL 8 BIB WIRE STRIPPER \& CUTTER}

Strips insulation without nicking wire. Cuts wire cleanly. Splits plastic twin flex. 8 gauge selector. Plastic covered handles. 8/6 each (subject)

\section*{BIB PROFESSIONAL RECORDING TAPE SPLICER}

For quick and accurate editing. Precision made, plated, complete with razor cutter. 18/6 each (subject)
There is a full range of other special pre-packed Ersin Multicore Solder products and Bib Accessories available.
Details from your dealer or write to:
MULTICORE SOLDERS LTD
Hemel Hempstead, Herts.
Telephone: Hemel Hempstead 3636


WW-166 FOR FURTHER DETAILS.

\section*{HI-FI MAIL ORDER SPECIALISTS GOODS DESPATCHED BY RETURN} CARRIAGE \& INSURANCE FREE! (UK) A selection from our extensive stock SPEAKERS
Wharledale Super 8, R8/DD
Whariedale Super 10, KN/DD Goodmans Axiette 8
Goodmans Maxim Mini System Qoodmang Magnum K System
Quad Electrostatic Speaker Tannoy 12in. Monitor DC Sp Kelly Ribbon H.F., Mk. II. Lowther PM6 Drive Unit MOTORS
Thorens TD150 AB, motor/arn/plinth Garrard 401 Transcription Unif. Connoissenr Classic, 2-speed unit Garrard SP25, motor and p/up arm AMPLIFIERS
Leak Stereo 30 Transistor Amplifter Leak Stereo 20/Varislope 2 Pre-amp. Armstrong 222 Stereo Lnterrated Amp. Rogers Cedet III, stereo amp. and control Goodmans Maramp Stereo Amplifier Radford sce2k STA15 Stereo Units TUNERS (Btereo Decodera extra) Armstrong 223 AM/FM Tuner Leak Troughline III FM Tuner PICK-UPS AND CARTRIDGES Deoca Deram Trangeription Cartridme
 S.M.E. 3012/Series II Arm


\section*{WORLD WIDE EXPORTERS \\ OVERSEAS ORDERS SENT FREE OF PURCHASE TAX} AND SHIPPED PROMPTLY AT MINIMUM COST

Fully illustroted cotalogue 4/6. U.K. (Export 7/- or \(\$ 1.00\).)
c. C. GOODWIN (SALES) LTD.
(Dept. W82) 7 The Broadway,
Wood Green, London, N. 22
Telephone: Bowes Park 0077/8
minute from Wood Green Underground.
Open 9-6 Monday to Saturday (Thursday 9-1 p.m.)
WW-167 FOR FURTHER DETAILS.
I.E.R.E., City \& Guilds and R.T.E.B exams.; specialfor details of wide range of exam. and diploma courses In radio, TV and electrontcs, also new practical courses With kits, write to:-I.C.S. (Dept. xxx), Parkgate Rd. London,
KINGSTON-UPON-HULL Education Committee, FRTC FUEL-TIME courses for P.M.G. certiflcates and the radar maintenance certiffcate, also in electrical and Technology, Queen's Gardens, Kingston-upon-耳ull. STUDY Radio, Television \& Electronics with the City \& Guilds, R.T.E.B., etc. Also practical courses with equipment. All books supplied. Write for free prospectus stating subject to 1.C.s., Intertext House Parkgate Rd. (Dept. 442), London. S.W.11. [167 TV and Radio, City \& Guilds. R.T.E.B Certs etc. ands on satisfaction or reiund of fee terms, thousands of passes. For full details of exams and home
training courses (including practical equipment) in all branches of radio, TV, electronics, etc. write for 132 page handbook-iree; please state subject.-British Institute of Engineering Technology (Dept. 150k) Aldermaston Court, Aldermaston Berks. [148 R ADIO officers see the world. Sea-going and shore Grants avallable. Day and boarding students. Stamp for prospectus.-Wireless College, Colwyn Bay.

wW-168 FOR FURTHER DETAILS.

\section*{EXCLUSIVE OFFER}

\section*{PERMANENT OR} TRANSPORTABLE STEEL 60-FOOT AERIAL TOWERS

As supplied to British and other Governments \(\star\) Unique design.
\(\star\) Scientific Construction.
having the following remarkable features.

\(\star\) Entirely self supporting, requiring no gays, stays, toun-
dation, piekets or spikes. or dation, piekets or spikes. or
any atlachment to the * Fitted with step ladder to the top and balcony with railings alf round (You can walk right round we top with both
tands free.)
ing to 6 leet square at top. they are quite safe when subject to gale force winds and will aocept 50 square feet superficial ares on tog at
iorce of \(60 \mathrm{~m} . \mathrm{p} . \mathrm{h}\). They reiorce of grourd azea of 20 feet square.
* Will sapport up to 2 tons of equipment on top, the whole lowered to completely by 2 mes in 20 in the ssme time. \(\star\) Can be completely
orected and dis-
manticd by 3 men. mantied by 3 men.
* Breaks down for lorry into small loose parts no nuts or boits to got lost or damaged: all screws and adjustmente are fully protected lrom rust and so designed to be free from damage when transported or left loose on the ground.
* Foolproof-the Tower cannot be erected if not assembled correctiy. No skined labour bs required and no special tools are necessary.
\(\times\) Can be raised and lowered, erected and dismantled and removed as many times as desired.
\(\star\) Everything necessary lor the complete Tower to be put iaks and instructions.
These fine Towers were made in England by B.LC.C. and cost the Government £2. 200 each. Thes are BRAND NEW and kin naker's original packing. You can see one erected at our premises.

Cost \(£ 2,200\)
Price Brand New £345


WW-169 FOR FURTHER DETAILS

\section*{BI-PAK - VALUE PAKS \\ NEW-UNMARKED-UNTESTED 120 GLass Sub-min. GERM. DIODES 10/-

 \(60{ }_{200 \mathrm{MA}}^{\text {SUBMIN }}\) SILICON DIODES \(10 /-\) 20 GERm. 1 amp. RECTIFIERS 10/16 Top hat SILICON RECT. 10/50 mixed TRANSISTORS 10/-}

\section*{TESTED NEW VALUE PAKS}

15 Red Spot AF Transistors PNP 10/15 White Spot RF Transistors PNP 10/4 OAl0 Diodes, Mullard...... 10/6 Matched Trans. OC 44/45/81/81D 10/4 2G417 Trans. EqVt. AF117 .. 10/\(2200 \mathrm{~m} / \mathrm{c}\) NPN Trans. BSY27 10/4 OA202 Sil. Diodes Sub-min. 10/8 OA81 Diodes CV448 Type 10/15 AMP. SCR. 100 Piv...... 10/2 Power Trans. OC26/35 .... 10/-

MIN. ORDER 10/-. CASH WITH ORDER PLEASE. ADD \(1 /\) - Post and Packing PER ORDER. Full Lists 100's Bargains 6d. in stamps.

\section*{BI-PAK SEMICONDUCTORS}

8 Radnor House, 93-97 Regent St.,
London, W.I.
Mail only.
WW-170 FOR FURTHER DETAILS.

\begin{abstract}
CAPACITYAVABLABL
ELECTRICAL, mechanical and wiring assembly work Walters Yard, High Street, Bromley, Kent. A IRTRONICS Ltd. for coll winding. assembly and unit. sheet metal work - 3a, Walerand Rd.. Londoa, S.E.i3. Tel. Lee Green 1706.

\section*{HEXOHANGES}

URGENTLY wanted, manuals or instruction books, or Air Force radio and electrical equipment.-Harris.
93 , Wardour \(\$ \mathrm{St}\). W. .

\section*{300Ks}

R ADIO Desiguer's Handbook. Editor, F. Lang(U.S.A.), A.M.IE. (Ausit.), B comprehensive reference book, the work of 10 authors and 23 collaborating engineers, containing a vast amount of data in a readily those interested in the desngn and application of radio those interested in the desngn and application of radio mission and industrial electronics have been excluded in order to limit the work to a reasonable size. \(65 /-\) net from all booksellers. By post 67/9 from lliffe
\end{abstract}

\section*{DAMAGED METER?}

Have it repaired by Glaser
Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd.

IWSTRUMENT
REPAIAS We specialise in the repair of all types and makes of Voltmeters, Ammeters, MicroVoltmeters, Ammeters, Micro-
ammeters, Multirange Test ammeters, Muitirange Test meters, Recording Instruments, etc.
As contractors to various Government Departments, we are the leading Electrical Instrument Repairers in the Industry. For prompt estimate and speedy delivery send defective instruments by registered post, or write to Dept. W.W.

\footnotetext{
L. GLASER \& CO. LTD.

1-3 Berry Street, London, E.C. 2 Tel. : Clerkenwell 5481-2
}

\section*{Quartz Grystal Units}

For
ACCURACY RELIABILITY PRICE ECONOMY
you can

\author{
DEPEND \\ on
}

THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works, Wellington Crescent,

New Malden, Surrey (MALden 0334 \& 2988)
WW-172 FOR FURTHER DETAILS.

\section*{BUILDING A "SCOPE}

Indicator unit type 10 Q 53 . One of the finest units to appear on the surplus market, modern manufacturer, 15.B.7.9. and 3.1.O, valves, built in E.H.T. unit producing 3 kV to a modern version of the 5 in . V.C.R. 97 tube, brilliance, focus, \(X\) and \(Y\) shift. Controls on front panel ideal for conversion to an oscilloscope, circuit dlagram supplied. Slze of unit 7in. x \(7 \frac{1}{2} i n\). \(x\) 19in. long. Brand new In makers case. \(60 /\) - carriage 19/. Circuit diagram sold seperately \(3 / 9\).

New Catalogue No. 17. Government and manufacturers surplus. Also new components. 3/- Post Free. Available late Jan. 67.


\section*{WORLD RADIO \& T.V. handBook 1967 ED. 32/-}

By JOHANSEN. Postage \(1 /-\)
Radio Valve Data, new 8 th ed by Wireless World. 9/6. P, \& P, 1/-
Transistor Substitution and Specification Manual, 1967, ed, by Techpress. 22/6. P. \& P. 1/-. HI-Fi Year Book, new 1967 ed. 15/h. P. \& P. I/6. New Sideband Handbook by "CQ". 24/-. P. \& P. 1/3.
V.H.F. for the Radio Amateur by "CQ" 28/-. P. \& P. \(1 / 3\).
Questions and Answers on Electronics by Brown, also on Transistors. 8/6 each. P. \& P. 1/.
ABC's of Silicon Controlled Rectifiers by Lytel. 16/-. P. \& P. 1/-.
Amateur Radio Call Book, 1987 ed. by R.S.G.B 6/-. P. \& P. 8d.

Where possible 24 -hour service guaranteed
UNIVERSAL BOOK CO. 12 LITTLE NEWPORT ST., LONDON, W.C. 2

\section*{AMERICAN}

TEST \& COMMUNICATIONS EQUIPMENT
AN/APN-9 Loran Rx
AN/VRC-19 Mobile F.M. Transceivers. Freq, 152/174 Mc/s. P.O. 25 W Supply/V 24. Price \&10.
AN/PRC-6 AN/URC-4 \& AN/URC-11 "Handy - Talkies."
AN/ARN-6 \& AN/ARN-44 Compass Receivers AN/ARN-14 Power supplies DY-66.
AN/FPN-13 X band Radar Beacons.
CU-168/FRR \(2 / 32 \mathrm{Mc} / \mathrm{s}\) Antenna Couplers.
T-216/GR XTL Controlled Signal Generator \(225 / 399.9 \mathrm{Mc} / \mathrm{s}\).
SM-26A/U Antenna Position Simulators TS-118A/AP \& TS-118/AP RF. Wattmeters. TS-27/TSM R-C Bridges.
TS-170/ARN-5 I.L.S. Test Set.
TS-175A/U Freq. Meter \(85 / 1000 \mathrm{Mc} / \mathrm{s}\). Price brand new \(£ 85\).
TS-297/U Multimeters.
TS-382D/U AF/RF Signal Generators, 20 \(\mathrm{cps} / 200 \mathrm{kc} / \mathrm{s}\).
TS-497B/UR Signal Generator \(2 / 400 \mathrm{Mc} / \mathrm{s}\). TS-147A/UP Radar Test Sets.
TS-917A/CG (Stelma TDA-2) Telegraph Distortion Analysers.
I-177 Tube Testers.
ME-22/PCM Decibel Meters-45/ +25 DBM. DuMont 241 5in Oscilloscopes Price \(£ 19 / 10 /\) Tektronix 541, 543 \& 545 spare Tubes Type 5BHP2A. Price \&14.
* GENERAL CATALOGUE AN/102 \(1 /-\star\)

SUTTON ELECTRONICS
Salthouse, Nr, Holt, Norfolk. Cley 289

WW-173 FOR FURTHER DETAILS.
Wirkless servicing Manual " W. T. Cocking which Mince 1936 has been known to radio servicemen everywhere as a reliable, thorough and comprehensive guide to solving most of the problems that arise in the repair, maintenance and adjustment of the modern radio receiver. In the present edition a major addisets. The author of "Wireless Servicing Manual is well known to a wide circle of readers as forme editor af "Electronic Technology" and now of "In dustrial Electronics." His crisp. lucld style makes this handbook ot utmost value to the service man and amateur alike \({ }^{25 /-}\) net. \(26 /\) by post from rinc
Books Ltd..
Dorset
House,

BASIC Mathematics for Radio and Electronics, vised and enlarged by J. M. Head, M.A. (Cantab.) presents in readable form a complete course in bast mathematics from englneering students of all kind mathematics of increased importance to branches o gineers. In this edition the chapter covering the application of mathematics to radio has been revise and enlarged while new subjects covered include Stabllity, Linear Differential Equations, Elementar Introduction to Matrices. Will be invaluable to thos without previous knowledge of the subject. \(17 / 6\) ne from all booksellers. By post 18/6 from Iniffe Books, Ltd., Dorset House, Stamford St., London. S.E.1.


GUIDE \(n\)
LP. \# STEREO RECORDS
\(7=\)



\section*{THE ONLY \\ COMPREHENSIVE RANGE OF RECORD maintenance EQUIPMENT IN THE WORLD!}

Send stamps value 9d. for 16 page booklet and supplement ary data sheet Nos. I and giving the fultest and lates information.
CECIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Middx

WOODS 5 in . FANS (new, boxed). \(110 / 230\) v. A.C., \(45 / \mathrm{F}\) P.P. 5/-

RE-SETTABLE HIGH SPEED COUNTERS. ( \(3 \times 1 \times \frac{3}{4} i n\). ), 3 digit. 12/24/48 v. (state which), \(32 / 6\) ea. P.P. 2/6. HIGH SPEED MAGNETIC COUNTERS. \((4 \times 1 \times \operatorname{lin}\).\() ,\) 4 digit. \(12 / 24 / 48\) v. (state which), \(6 / 6\) ea. P.P. I/-, SANGAMO GEARED MOTOR. I r.p.m. 240 v., \(27 / 6\) ea. COPPER LAMINATE PRINTED CIRCUIT BOARD. ( \(8 \frac{1}{2} \times\) \(5 \frac{1}{2} \times \frac{1}{16}\) in.), \(2 / 6\) sheet. 5 for \(10 /-\)

\section*{BULK COMPONENT OFFERS}

100 Capacitors (latest types), 50 pf. to .5 uf . 250 Carbon Resistors, \(\frac{1}{3}\) and \(\frac{1}{4}\) wate (transistor type).
250 Carbon Resistors, \(\frac{1}{2}\) and I watt
150 Hi -Stab. Resistors, \(\frac{1}{4}, \frac{1}{2}\) and \(\mid\) watt.
100 Capacitors (ceramic), 2 pf. to 1,000 pf.
ANY ITEM 10\%. 62 THE LOT
VENNER LIGHTWEIGHT ACCUMULATORS. (I OZ., Iz \(x\) I \(\times \frac{1}{2}\) in.), 2 volt \(1.5 \mathrm{a} . \mathrm{h} ., 12 / 6_{\mathrm{e}}\) ea. (with electrolyte and charging inst.)
SEALED RELAY. \(4 \mathrm{c} / 0,6 / 12 \mathrm{v}, 45 \mathrm{ohm}, 6 / \mathrm{e}\) ea. P.P. I/6. SEALED RELAY (G.E.C.). 2 c/o., 670Д, 24 v., \(6 / \mathrm{L}\) a. P.P. \(1 / 6\).

LATEST TELEPHONE DESK SET WITH DIAL (New, boxed). Black or two-tone grey, 95/-. P.P. 5/-. TELEPHONE HANDSET (Latest type), \(15 / \mathrm{e}\) ea. P.P. \(2 / 6\). AMPLIFIED TELEPHONE HANDSET. Latest type with
built-in transistor amplifier and volume control,
35/-. P.P. 2/6
LATEST TELEPHONE DIALS (New and boxed), \(17 / 6\) ea. MOVING COIL HEADSET AND MICROPHONE. \(10 /=\) set. P.P. 2/6.
" 3000 " TYPE RELAYS. 10 for 25/-. P.P. \(2 / 6\). OSCILLOSCOPES. Cossor 1035, \(22 / 10 /-\) P.P. \(2 / 10 /-\). Lustraphone moving coil Microphones. Type
VC 152. (New, boxed.) Low or high impedance,
87/6 each. P.P. 2/6.
UNISELECTORS. 8 bank, 25 way, 50 ohm. (New and boxed), 50/- each.
PRECISION RESISTORS. \(1 \%\) 10/- doz. (Several standard values included.)
VITREOUS W/W RESISTORS. 5\%. 25 for 10/-.
SOUND-POWERED TELEPHONE HANDSETS, \(12 / 6\) ea. P.P. \(2 / 6\).

TRANSISTORS (New marked stock). OC 44/45/71/8I/ 81D/83, 3/- ea. 4 for 10/-. BCY 34 5/-, BSY25 10/, BSY26 716, 25323 7/6. GETII5 (matched pair) I5/25721 10/, OC \(16 / 24 / 25 / 28 / 29 / 3510 /-\) ea. DIODES, SX632, \(5 \times 781,2 /\) each. \(20 /\) doz.

400 P.I.V. I A. iunmarked diodes), 20/- doz SILICON CONTROLLED RECTIFIERS BTY87 (1OOR), 100 p.i.v. \(12 \mathrm{amp}, 15 / \%\) BTY91 (150R), 150 p.i.v \(6 \mathrm{amp}, 20 / \mathrm{F} .2 \mathrm{~N} 683,100\) p.i.v. \(16 \mathrm{amp} .15 / \mathrm{m}\) SPEAKER BARGAINS, E.M.I. ( \(13 \times 8\) in.) with double tweeters, 15 ohm, 65/-. P.P. 5/-.
As above, less tweeters, 3 or 15 ohms, 45/-. P.P. 5/\% Fane \(12 \mathrm{in} ., 20\) watt, with tweeter ( 15 ohm), 95/-. rane
P.P. \(5 / \mathrm{in}\)
CONNECTORS. 13 WAY "IN LINE" gold plated pins, 4/6 pair. P.P. 6d
SILICON BRIDGE UNITS. GEX541, 80 p.i.v. \(10 \mathrm{amp} .37 / 6\). EIIBD-RC, 100 p.i.v. 10 amp. \(37 / 6\) GA31-A (germ.), 200 p.i.v. 2 amp. 20/-.
PHOTOFLASH ELECTROLYTIC \(2,000 \mu \mathrm{f}\). 275 v., \(17 / 6\) ea. P.P. 2/6.

ELECTROLYTICS. \(100 \mu \mathrm{f} .60 \mathrm{v} .3 / \mathrm{s} ; 200 \mu \mathrm{f} .250 \mathrm{v}, 3 / 6 ;\) \(100400 \mu \mathrm{f} .275 \mathrm{v} .6 / 6 ; 500 \mu \mathrm{f} .100\) v. \(4 / \mathrm{l}: 1,000 \mu\). 50 v. \(5 /-; 3,000 \mu \mathrm{f} .100\) v. \(7 / 6 ; 5,000 \mu \mathrm{f} .50 \mathrm{v}\). \(7 / 6\). 50 V. \(5 /-;\) in fl .
P.P. \(2 / 6\) in
"VINKORS" L.A.2403/2405, 6/- ea. P.P. 6d. COMPUTER BOARD, containing 10 transistors (OC72 or OC76) and 10 diodes type OA10, \(10 / \mathrm{m}\). P.P. \(2 / 6\). SAMWELL \& HUTTON WOBBULATORS. Type \(42 \mathrm{~B}, 445\). P.P. 50/-

VOLTMETERS. METAL-CLAD, (6in., edgewise mirrorscale.) New, boxed. II-0-II and I10-0-110 v. D.C. (f.s.d. 250 micro/amp.), 75/-. P.P. 7/6.

TELEPHONE CONNECTING WIRE (internal). Twin twisted, 250 yds. 25/- coil. P.P. 5/- (copper conductor).
E.M.I. 3794 WAVEFORM MONITORS (Trolley mounted) f25.
STEREO OUTPUT AND BALANCE METERS. 200 mW . to 20 watts into \(3 / 8 / 15\) ohm, 110 ea.
ELECTRIC SLOT METERS (I/-), 25 amp . L.R. 240 v . A.C. 85/- ea. P.P. 5/-
QUARTERLY ELECTRIC CHECK METERS. 40 amp. 240 A.C. \(20 /=\) ea. P.P. \(2 / 6\)

TELEPHONE HAND MAGNETOS (70 v. A.C.). Trade enquiries welcomed.
All Goods Previously Advertised Still Available

81 PARK LANE, HORNCHURCH, ESSEX Tel.: ROMFORD 44473

\section*{Oudab \\ SOUND SYSTEMS AUDIO EQUIPMENT STANSTED, ESSEX. Phone: STANSTED 3132}

WW-175 FOR FURTHER DETAILS.

\section*{ WW-176 FOR FURTHER DETAILS.}

\section*{TKTRASONIC Delay Lines." C. F. Brockelsby,} B.SC., A.R.C.S., A.M.I.E.E., J. R. Palfreeman R. W. Gibson. B.Sc. (Eng.). Grad.I.Mech.E. The authors are members of a team which has been working on ultrasonic delay lines, since the early days, at the Mullard Research Laboratories. This is the first book to be written specifically on the subject, which has important applications in radar, radio and television, electronic computers, pulse-forming networks, correlation techniques and multi-channel communication systems. The early chapters discuss basic princlples and the various type of delay lines are then covered. The chapter on electronics for delay Hines deals fully with the design of broad-band amplifiers, oschliators, etc., either with transistors or valves. The last two chapters are devoted to the delay line measurements and the many applications of delay lines. Among the tive appendices there is one containing nearly 60 curves which give the characteristics of many delay line materials. The final appendix discusses ore of the latest developments, ceramic transducers. 65/- net, 66/3 by post.


\section*{The PUNCH you need!}
hole punches


No extra charge for postage and packing in the

\section*{Tompkins \& Longman \\ 237 GIPSY ROAD} WEST NORWOOD,
S.E. 27

Tel.: Gipsy 5000

11FT. WHIP AERIALS. 6 sections, copperized steel and painted. Dia. \(\frac{5}{18}\) in.-4in. Complete with moulded base 2\(\} \times 31\) in. \(9 / 6\) each. Post \(1 / 6\). ELECTRONIC MULTIMETER C.T.38. AVO type \(\mu\) volt to 250 valt D.C.; \(50 \mu\) watt to 5 watt: 0 - 200 Megs. in 4 ranges ; Output measurement 13 Decibels down to in 4 ranges: Output measurement 3 Decibels down to
7 Decibels up; Balanced Valve Voltmeter: Built-in stabilised Power Pack \(110-250\) voli A.C. Complete in light lised Power Pack \(110-250\) vo
steel case. £17. Carr. 10\%.
1155 B RECEIVERS air tested before dispatched 1155 B RECEIV
\(£ 6 / 10 /\). Carr. \(10 /\)
3 KVA AUTO TRANSFORMERS \(110 / 250\) Mounted in steel case with external hand voltage regulator. 7 Taps. Brand New. \(£ 12\) Carr. 10/-. HEADPHONES Balanced armature, DLR5. Brand New. 9/6 pr. Moving coil type, with ear muffs for noise excluding. 12,6 pr. Same fitted with moving coil mike, 17/6 pr. Carbon hand mike. 7/6 each.
TANNOY LOUDSPEAKERS Ideal for all outdoor uses enclosed in waterproof wooden case, complete with steel baffle designed to produce directional SMALL GEARED MOTORS W orking voltage 12-24 v. D.C. Overall size \(4 \times 2 \times 2 \mathrm{in}\). \(15 /\) - ea. Carr. 1/6. Miniav. D.C. Overall size \(4 \times 2 \times 2\) in. \(15 /=\) ea, Carr. \(1 / 6\). MiniaTRANSMITTER BC 625, part of T/R. SCRS22. Chassis only. Complete with valves, except 832's and Relay. Range \(100-156 \mathrm{Mc} / \mathrm{s}\). 21/- ea. Carr. U.K. 4/-. LINEAR ACTUATOR 24 or 12 v. D.C. Will operate 100 lb . load in either direction. 3in. travel through motor operated gearbox. \(£ 4 / 10 /-\) each. Carr. \(3 / 6\). 38 SETS - 6-9 Mc/s. New condition. Complete with valves. Untested, 21/- ea. Carr. 3/-. 37/6 pr. Carr. 5/-.
SIEMENS MINIATURE RELAYS. Size \(1 \frac{1}{2} \times 1 \times\) in. Res. of coils 250 ohms. 2 pole 2 way contacts, contact rating up to 2 amps. \(6 / \mathrm{Fe}\). P.P. I/
SIEMENS HIGH SPEED RELAYS. H96B type 50 +50 ohms, \(6 / \sigma\) ea.: Type \(H 96 \mathrm{D} 500+500\) ohms. 6/- ea.; Type H96E \(1,700+1700\) ahms, 7/6 each
"TELE L" TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete with Hand Gen. for calling each station. Supplied in new condition and tested. 70/-per pr. Carr. \(6 / 6\).
POST OFFICE TYPE RELAYS. 3,000 sers. \(2 \mathrm{c} / \mathrm{o}\)
2 m ; slugged coil 140 ohms; 2 c/o; 2 m . coil 1.000 ohms; 2 c!o slugged coil 500 ohms. All at \(6 /\) e each. D.P.CO. AERIAL CHANGE-OVER RELAY. 12 v. D.C. coil, heavy silver contacts. American Surplus 12/6 each. Carr.
MORSE KEYS complete with leads, terminals and cover, \(6 / 6\) each.
PRESSURE GAUGE. 2in. round brass case \(0-160 \mathrm{lb}\). \(9 / 6\) each
MINIATURE PLUGS AND SOCKETS. 8 way Jones, 3/6 pair
VIBRATORS. 6 v. 4 pin, 12 v. 4 pin: 12 v. 7 pin. Syn. All 6/- each
ELECTRO MAGNETIC COUNTERS. Register up to 9999 , coil res. \(300 \Omega\) ohms. 5/- ea. ELECTRIC PUMPS. 24 V. D.C. Overall size \(7 \times 2 \frac{1}{2}\)
\(\times 21 \mathrm{in}\).7 C.P.H. Brand New. \(37 / 6\) ea, Carr. \(2 /-\). HYDRAULIC RAMS. Miniature. 200 P.S.I. WT. \(\frac{1}{2}\) lb \({ }_{3}\) in. Travel 3 in . screwed extension. Gimbal fitting one end. 9 in. long, cylinder \(2 \frac{3}{3} \times 3 \frac{1}{2} \mathrm{in}\). Brand \(n \in w, 30 / \mathrm{mes}\) incl. carr.
P.O. TYPE Desk Telephones, black only. Brand new boxed, 27/6. Carr. 2/6.
P.O. TYPE TELEPHONE HAND GENERATORS 38 v. A.C. In black wood cabinets. New. 6/-. Carr 2).

MODULATION TRANSFORMERS. 150 watts suitable for pair 813 s , driving 813s. Size; \(6 \mathrm{in} . \times 5 \mathrm{in}\) WEE MEGGER Insulation Tester 500 v. with Con test range from 0.1 ohm to infinity. Bakelite case with hand gen. \(£ 9\) ea. Carr. 5,6
CUT OUT 12 v . or 24 v . operation. Heavy duty silver contacts ( 5 c .849 ). 7/6 ea.
OSCILLATOR,UNIT ARC27. Complete with 10,000 ks. crystal Oven. Brand new. Manul. by Collins, U.S.A. 45/- еа

SUPER LIGHTWEIGHT HEADSET, complete with Boon mic. made to highes Ministry Spec. Moving coil. Our price \(35 /\) - set. Carr. 3/-. Also Super Lightweight Hand set, 17/6 ea
200 AMP. 24 v. D.C. GENERATORS, ex Air
Ministry, £9/10/- ea. Carr. 10/6.
S.A.E. all enquiries

CHESHIRE

\section*{ADJUSTABLE HOLE \& WASHER CUTTERS}

\section*{The right} tool for trepanning holes \(1^{\prime \prime}-12 \frac{1^{\prime \prime}}{2}\) in diameter In our range of 17 Models

Adjustable hole and washer cutters 18\% Tungsten High Speed Tool bits


Write for illustrated brochure of our full range with straight or Morse taper 1-4 or Bitstock shank All madels available from stock
AKURATE ENGINEERING CO. LTD.
Cross Lane, Hornsey, London, N. 8
TEL. FITZROY 2670
WW-178 FOR FURTEER DETAILS.


\section*{ENTHUSIASTS}
for tape recording subscribe to the Magazine with the ZEBRA stripes! 25/- (U.S.A. \$3.75) rrly. incl. postage.
- FREE SPECIMEN COPY ON REQUEST TUDOR STREET, LONDON, E.C.4. FLE. 1455

WW-179 FOR FURTHER DETAILS.

TELevision Engineering Principles and Practice. vol. III. Waveform Generation," by S. W. Ames. B.Sc.(Hons.). A.M.I.E.E.: and D. C. Birkinshaw M.B.E., M.A., M.I.E.E. The third volume of a comprehensive work on the fundamentals of television theory and practice, written primarily for the instruction of BBC ougineering staff. This volume gives the application in televiston and sinusoldal, rectangular, sawtooth and parobolic waves and shows the mathematical relationship between them. The main body of the text is devoted to the fundamental principles of the circuits commoniy used to generate such signals, the treatment being largely descriptive in nature and therefore less mathematical than that of the previous volume. The work is intended to provide a comprehensive survey of modern television principles and practice, \(30 /\) - net from all bookseliers. By past 31/from Ilife Books Litd., Dorset House, Stamford St. London, S.E. 1.

MANUFACTURERS OF ELECTRONIC EQUIPMENT Can we assist you by manufacturing Control Panels, Assemblies, Sub-Assemblies. Long or short runs. Quality guaranteed.
Rock \& Taylor Ltd., Hayes Lane Trading Estate, Lye, Worcs. Tele:- Lye 2807/2822

WW-180 FOR FURTHER DETAILS.

\section*{NYLON • P.T.F.E.}

ROD, BAR, SHEET, TUBE, STRIP, WIRE
No quantity too small. List on application. BRASS COPPER BRONZE
ALUMINIUM LIGHT ALLOYS H. ROLINLESS STEEL

Howie Street, S.W.11. BATtersea 7872 ALSO AT LIVERPOOL, BIRMINGHAM. ALSANCESTERPOOL, BIRMLNGHAM

WW-181 FOR FURTHER DETAILS.


Ideal for Clubs, Hotels, Factories, and all Outdoor and Indoor applications.
RA. 30 TUNER/AMPLIFIER. 40 wat ts output. Fully tunable over Medium Wave (535-1605 Kc/s.). High class amplifier section with inputs for Mic. \(1(500 \mathrm{~K}\) ohms), Mic. 2 ( 500 K ohms). Gram. tape and mike miser. Separate volume control for each input. 10 valves and 1 diode. Tuning meter and output meter. Size \(18 \mathrm{in} . \times 10^{8} \mathrm{in}\). \(\times 7 \mathrm{in}\). high.
Gee's Price 42 gas.
REFLEX FORN SPEAKERS. Strong and durable, weatherproof, waterproof and shockproof. 201 in . dia., 25 watts output. Freq, response \(100-10,000\) c.p.s. Give excellent reproduction of speech and music. Gee's Price 22 gns. PAIR (or \(£ 11 / 19 / 6\) each).
HEAYY DUTY CHROME PLATED TRIPOD STAND. Suitable for above. Extends to 7tt. Gee's Price 6 gns. DYNAMIC MICROPEONE. Suitable for desk, hand or stand. High Imp. 50K chm. Gee's Price 6 gns. TELESCOFIC MICROPRONE STAND. Chrome plated. Gee's Price 3 gns.
All Brand New and Guaranteed. Supplied as complete P.A. System or separately if required. Send large S.A.E. for further details.

\section*{COMPACT}

\section*{COMMUNICATIONS}

RECEIVER CR. 150
The latest design. Covers 4 wave bands with continuous frequency range of
\(540 \mathrm{Kc} / \mathrm{s}\). to \(30 \mathrm{Mc} / \mathrm{s}\). Will receive all broadcast bands plus shipping, amateur and world-wide short wave. Exceptionally sensitive tuning circuit. Extra large Exceptionally sensitive tuning circuit. Extra large easy to read dial with Bandspread tuning, \(S\) meter for fine tuning. Buitt-in speaker and telescopic aerial. BFO for morse code listening. ANL, for clear recepticn. Phone output socket. Stand-by switch, etc. Attractively housed in metal case. A.C. \(200 / 250\) volt. Brand new, guaranteed. Gee's Price 16 gns. P. \& P.10/-

TRIO DE LUXE COMMUNICATION RECEIVER MODEL 9R59


4 Bande, \(550-1600 \mathrm{kc} / \mathrm{s} .\), \(\begin{array}{ccc}1.6-4.8 & \mathrm{me} / \mathrm{s}, \mathrm{n} & 4.8-14.5 \\ \mathrm{mc} / \mathrm{s}, & 10.6-30 & \mathrm{mc} / \mathrm{s} ., 8\end{array}\) ma/s., 10..5-30 mo/sis, 8 RF plus 2 IF stages for High Gain Reception, Easy to Read, Illumin-
ated. Aude Rule Dial,
Busite in Built-in Q Multipller,
Aerial Trimmer for Optimum Performance on adi Bands, Calibrated Electrical Bandspread on Amsteur Bands. 80 through
10 Metres, \(0-100\) Logging Scale for \(\$ W L^{\prime}\) s. Effective Automatio 10 Metres, \(0-100\) Logging 8cale for SWLs, Erictive Automatio
Nolse Limiter AvC-MVO Belector on Front Panel, 8 table Nolse Limilter AVC-MVO Belector OD And BSB Reception. Built-in Edgewise s-Meter. Price 30 GKS. Carr. 10/-
EVERSHED \& VIGNOLES MEGGER
2,500 \%. (hand-driven generatar). Absolutely brand new, com-位 885.
G.P.O. STANDARD 19in, HEAVY DUTY EQUIPMENT RACKS
Channel Cpights with heavy duty base. 5it. \(8410 /=\). Carr. 15/-. 6ft., é\%. Carro 20/-.

QEE'S RECORDING TAPE
Attractively boxed, Guaranteed Brand New 5 in Std. 600tt. \(8 / 6 \quad 5 \frac{3}{3} \mathrm{in}\). D.P. 1, \(8007 \mathrm{t} .22 / 6\)

 5sin. L.P. 1,200ft. 12/6 4in. T.P. 900fi. \(17 / 6\) \(\begin{array}{cccccc}7 \mathrm{in} . & \text { L.P. } & 1,800 \mathrm{ft} & 15 /- & \text { 5in. T.P. } & 1,800 \mathrm{ft} . \\ 4 \mathrm{ln} . & 35 /- \\ \text { D.P. } & 600 \mathrm{ft}, & 9 /- & 5 \text { 5in. T.P. } & 2,400 \mathrm{ft} . & 45 /-\end{array}\)
 Send s.a.e. for comprehensive tape list \(\frac{1}{1} \mathrm{in}\) COMPUTER TAPE, 2,400ft. on \(10 \frac{1}{2} \mathrm{in}\). NARIB metal spool.
British manufacture, Brand new, unused fresh stock. Few only available. 86, post paid

\section*{GEE BROS. RADIO}

15 LITTLE NEWPORT STREET, LONDON, W.C. 2 GER. 6794/1453 Open 9-6 Mon-Fri., 1 p.m. Sat. Adjolaing Leicester Square Tube WW-182 FOR FURTHER DETAILS.

\section*{RESISTANCE WIRES EUREKA - CONSTANTAN \\ Most Gauges Available \\ NICK EL-CHROME MANGANIN NICKEL-SILVER \\ COPPER WIRE}

ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED SMALL ORDERS PROMPTLY DESPATCHED b.A. SCREWS, NUTS, WASHERS soldering tags, eyelets and rivets EBONITE and BAKELITE PANELS. TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES. ALL DIAMETERS SEND STAMP FOR LIST TRADE SUPPLIED

\section*{POST RADIO SUPPLIES \\ 33 Bourne Gardens, London, E. 4 Phone: Clissold 4688.}
wW-183 FOR FURTHER DETAILS.

\section*{HAMMERITE HAMMER PATTERN BRUSH PAIN} \(3 / 6\) tin just brush on withstands \(150^{\circ} \mathrm{C}\), oil, water et colouns: Blue, silver, black or bronze. \(2 \frac{1}{2}\) oz tins, \(3 / 6\). \(\ddagger\) pht \(7 /\) I pint 15/-. \& gallon 35/ * 1 gallon 58/-* Carr. up to \(5 /-.9 \mathrm{~d}\), to \(10 /-1 / \theta\), over \(10 / \% 3 /=\). Sent by road
From component shope or dlrect from the manufacturer. FINNIGAN SPECIALITY PAINTS (W) Mickley Squar Scocksfield, Northumberland. Tel: Stocksfield 228

WW-184 FOR FURTHER DETAILS.

DINSDALE HIGH QUALITY AMPLIFIE
Complete sets of Metalwork, engraved Front Panels Printed Circuits and all I st gradespecified Component for Mono and Stereo Units. Ancillary Equipment Comprehensive lists available.

Send 6d. in stamps for lists
MALVYN ENGINEERING WORKS
Engineers to the Radio and Electronic Irdustries HERTFORD, HERTS.
TELEPHONE: HERTFORD 2264

\section*{OFRECT PRINTED CIRCUITS}

Any quantity Top quality
All design work undertaken, sub contract division will assemble printed circuits and also build any Electronic equipment. Very handy service. Try it. Contact:

Ofrect Electronic Systems Ltd.,
Hale Lane, Failsworth, Manchester. 061 fAil 6380
wW-185 FOR FURTHER DETAILS.

\section*{TRANSISTOR BARGAINS}

3/- each: OC44, OC45, OC46, OC70, OC71, OC72, OC75, OG76 OC78, OC78D, OC81, OC81D, 4/- each: AF114, AF115, AP116 AF117, AF118, ACl126, ACl27, AC128, OC170, OC171, OC172.
\(4 / 6:\) AF119, OC169, OC84. 8/: ACl 07, OC23, OC26, OC28. Al 4/6: AF119, OC169, OCR4. 8/=: AC107, OC23, OC26, OC28. Au the above are fully tested and guarant
unmiriked Transistors, 60 for \(10 /-\).
A. MARSHALL \& SON
(Dept. W.W.3)
28 Cricklewood Broadway, London, N.W. 2
Tel. No. GLA 0161
WW-186 FOR FURTHER DETAILS

\begin{tabular}{|c|c|c|}
\hline & & \\
\hline & & \\
\hline 350 จ. .. 2/3 & 250/25 & \\
\hline 8/450 จ. .. 2/3 & 500/15 v... 3/- & \\
\hline & & \\
\hline & & \\
\hline /25 マ. .. 1/9 & \(16+16 / 450\) v. 4/3 & \(60+100 / 350 \mathrm{y}, 11 / 6\) \\
\hline 50/50 v. .. 2/- & \(32+32 / 350 \mathrm{v} .4 / 9\) & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
PAPER TUBULARS \\
\(350 \mathrm{v}_{\mathrm{o}}-0.19 \mathrm{~d} ., 0.52 / 6 ; 1 \mathrm{mid} .3 /-; 2 \mathrm{mid} .150 \mathrm{v}, 3 /-\), 500 v , 0.001 to 0.05 日d.; \(0.11 /-; 0.251 / 6 ; 0.5 \mathrm{3} / \mathrm{o}\). \(1,000 \mathrm{v},-0.001,0.028,0.0047,0.01,0.02,1 / 4 ; 0.047,0.12 / 6\).
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|l|}{E.H.T. COFDENSERS 0.001 mld , 7 kV , \(6 / 6 ; 20 \mathrm{sV} ., 10 / 6\).} \\
\hline \multicolumn{3}{|c|}{OL} \\
\hline \multicolumn{3}{|l|}{; OLRAMIC 500 v . 1 pF . to 0.01 mid . 8 d .} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{midget less trimmers, \(7 / 6 ; 500 \mathrm{pF}\). slow motion, standard \(9 /-\);}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{SHORT WAVE. Single \(10 \mathrm{pF} . .25 \mathrm{pF} ., 50 \mathrm{pF}, .75 \mathrm{pF}\).}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{TUNING. Solid dielectric, \(100 \mathrm{pF}, 300 \mathrm{pF}\)., 500} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{250 У. RECTIFIERS. Selenlum \(\ddagger\) wave \(100 \mathrm{~mA} 5 /-;\) BY100 \(10 /\) CONTACT COOLED , wave \(60 \mathrm{~mA} 7 / 6: 85 \mathrm{~mA} 9 / 6\)}} \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|l|}{SPECIAL OFFER! NEW B.A.S.F. T} \\
\hline \multicolumn{3}{|l|}{\(7 \mathrm{in.L.P}. \mathrm{1,800} \mathrm{ft}. \mathrm{(Cat}. \mathrm{LGS35)} \mathrm{45/-}\)} \\
\hline \multicolumn{3}{|l|}{\(7 \mathrm{in}\). . P. 2,400 ft. (Cat. LGS26) 70/-} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Spare Spools 2/6, Tape Splicers \(5 /-\), Leader Tape 4/6. Tape Heads: Collaro 2 track \(28 / 6\) pair. B.S.R. 4 track 09/6.}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{MAINS TRANSFORMERS Piont} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(250-0-250,80 \mathrm{~mA}\), 8.3 v .3 .5 e.. Rectifes \(8.8 \mathrm{~F} . . . . .25 /-\)}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{INIATURE 200 จ. \(20 \mathrm{~mA} ., 6.3\) ₹. 1 a................. \(10 / 6\)}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{SMALL 300-0-300 v. \(70 \mathrm{~mA} ., 6.3\) v. 4 a........... 1916} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HEATER TRANS. 6.3 v, 1i, 3. 7/6: 6.3 v. 4 a...... \(10 / 6\)}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Ditto tepped seo. 1,4 v-, 2, 3, 4, 5, 6.3 v. 1 , amp.... \(10 / 6\)}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
\(6,8,9,10,12,15,18,24\) and 30 v. at 2 a.... \(29 / 62 \pi\) \\
1 amp., \(5,10,15,20,25,30,35,40,55,60 \mathrm{v}\) \\
\hline
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|c|}{CRYSTAL MIKE INSERTS} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{ TANNOY CARBON MIKE Wirh Swith 2000 ohms 128,4000 ohms \(15 \%\) -}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{BAKER 12 In. STALWART \\ The only Hi Fi Speaker
available with choice of 3 or 15 ohm models May be used with any Hi Fi or domestic sound equipment Max. Power 15 watts Blux. Res. 12.000 gauss. Voice coil. Chassls Sotid Alnnin. Chassls Solid Alunin-
ium, overall dia. 12 tin Overall denth. 6 in. Price 5 Gns. Frout \\ (State 3 or 15 ohms) \\ }

CATA LOUEE SAA.R: VOCALS
BASS, LEAD and RHYTHM GUITARS
-10,000 eps. Vice Cons 15 ohms Heavy Duts.
'Group 25' Group 35" 'Group 50'
\(18 \mathrm{in} .5 \mathrm{gns} .12 \mathrm{in} .8 \frac{1}{2}\) gns. \(15 \mathrm{in} . ~\)
25 w.
50 w.
g gns.
LOULSPEAKEMS P.Ki. 3 OHMS. 2in.. 31n. \(41 n ., 5 i n\). in. \(\times 4 \mathrm{in} ., 25 / 6\) each; sin. \(226 ; 61 \mathrm{in} .18 / 6 ; 10 \mathrm{in} .30 /-6\) E.M.I. Double Cone \(132,<8 i m . .3\) or 15 ohm models, \(45 / \%\), tertorian 10 in . PF1012 \(£ 5.10 ; \sin\). HF812, \&4. 1 j : Crossover 35 -; Horn Tweeters \(3-10 \mathrm{Kc} / \mathrm{s}\). \(10 \mathrm{w} .29,6 ; 20 \mathrm{w} .20 \mathrm{Kc} / \mathrm{s} .99 / 6\) SACK SOCKETS Sid, open-circuit 2/6. close circuit 4/6. Chrome Lead Socket \(7 / 6\), DIN 3 -pin 113; Lead 3 ' 6 . Phono Plugs 1/-. Socket 1-. Banaza Plurs 1 '- Sockets \(1 /-\) IACK PLUGS STANDARD. Chrome \(3 /\)-. DIN 3 -pin \(3 / 6\)
 Wavechange "MAKITS" 1 p. 12 -way. 2 p. 6 -way, 3 p. 4 way
p. 3 -way, 8 p. 2 -way. Prices include c!ick spiades \({ }^{2}\). ustable stops, spaces, etc., 1 wafer. 10/8: 2 whlor. \(15 \%\) -
 DE LUXE TAPE SPLICERS. Curs, trims, joirs. \(14 / 6\) For editing and repairs. With 8 bindes. MIXER.
4-CRANEL TRANSISTOR MICROPEONE MIX A-CRANNEL TRANSISTOR MICROPEONE MIXER. Will mix microphone, records, iape and toner \(59 / 6\) With separate controls into single output. \(59 / 6\) -way call buzzer. Desk or wall mounting. Fery good Volume. For home. oftice and slap. With long 59,6
leads, battery, etc. 4000 ohme \(15 /\)

\section*{C.Charge \(1 / 6\) uniess}

\section*{RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, WEST CROYDON}

Written guarantee with every purchase.

\section*{You are interested}
in Radio and
T.V.?-Why not

\section*{PUT SOME LETTERS AFTER YOUR NAME}

You can rapidly qualify in your spare time by means of an absorbingly interesting Chambers Postal Course. We offer expert and highly personal training backed by a "SATISFACTION-OR-MONEY-BACK " Agreement. Over 75 years' experience thousands of successes.

FREE 100-PAGE GUIDE
Choose from hundreds of CoursesPractical Radio (apparatus supplied), Radio \& T.V. Servicing, Applied Electronics, P.M.G. Cert., City \& Guilds, R.T.E.B., A.M.I.E.R.E., Radio Amateurs Exam., etc. Send today for the informative 100 -Page Chambers Guide To SuccessFREE. (Please state Career, exam. or subject of interest).

\section*{Chambers Collegre}
(Dept. 855F) 148 Holborn, London, E.C.1. wW-187 FOR FURTHER DETAILS.

\section*{TO INSERT AN ADVERTISEMENT}

\section*{IN THE}

CLASSIFIED SECTION
TELEPHONE WIRELESS WORLD

WATERLOO 3333 EXT. 210


\section*{Not a Lit a COMPLETE RADIO}

YES \(\mathbf{5 6 / 1 9 / 6}\) for faterference free VHF/FM Transistor Radio. Plus Medium wavebond. 9 Transistor. \(\$\) Diode, guperhet. Frequency
 This is a marvellous set at as ridiculously low price due to bulk purchase, Standard PP3 battery, ear-phowe, carrying case etc. FREE. Send cheque/P.O. £7/4/• (post padd)
Exchange \& Mart of Boscombe (Rei WW) 33 Curzon Road, Bourne mouth.

WW-188 FOR FURTHER DETAILS.

Thanks to a bulk purchase we can offer

\section*{BRAND NEW}

\section*{P.V.C. POLYESTER \& MYLAR RECORDING TAPES}

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitced leaders, etc. They qualicy is as good as any other on the marker, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meer with full approval, purchase price and postage will be refunded

Postage on all orders \(1 / 6\)
We can also offer, BRAND NEW PRE-RECORDER LANGUAGES COURSES in GERMAN, FRENCH, SPANISH AND ITALIAN.
Each course consists of 26 step-by-step lessons recorded at \(3 \frac{z}{2}\) i.p.s. suitable for two- and four-track machines and supplied complete with
handbook. Normal recail price \(59 / 6\). handbook. Normal recail price 59/6.

\section*{Our price \(19 / 6\) per cours:.}

STARMAN TAPES
28 LINKSCROFT AVENUE, ASHFORD; MIDDX. ASH 53020

WW-189 FOR FURTHER DETAILS.



WW-191 FOR FURTHER DETAILS.

\section*{DINSDALE MK II AMPLIFIERS}

Printed circuits and parts for mono and stereo versions. Special new power amp. printed board eliminates earth loop problems.

Multiplex Decoder. 'Hi Fi News' G. D Browne circuit with new P.C. board, all parts available including coils. Parts for WW 20 watt amplifier including Driver Transformer. SAE for Lists.
MULLARD IOW A.B. TRANSISTOR AMPLIFIER. SPECIAL CLEARANCE
Printed Circuit Boards to Mullard 'specification fully drilled and fluxed. Price \(4 /\) - each or \(7 /\) for two post free.

Layour Diagrams 9d each.
List of other parts available sent with each order. HART ELECTRONICS
321 Great Western Street, MANCHESTER 14
WW-192 FOR FURTHER DETAILS.

\section*{INDEX TC ADVEIBTISERS \\ Appointments Vacant Advertisements appear on pages 111-119}



\section*{TOTAL PERFORMANCE}


ILLUSTRATED
R300 BENCH STRIPPER


For full information
and sales apply direct to
HEAD OFFICE SALES \& SERVICE

\title{
ADCOLA PRODUCTS LTD adcola house, gauden road, LONDON, S.W. 4.
}

Telephones: Macaulay 0291/3
Telegrams: SOLJOINT, LONDON, S.W. 4
AUSTRALIAN ASSOCIATES: ADCOLA PRODUCTS PTY. LTD., 673 WHITEHORSE ROAD, MONT ALBERT, MELBOURNE AGENTS IN ALL LEADING COUNTRIES


CANADA
Ersin Multicore 5 Core Solder being used to solder Philco Auto Radios at the Philco factory, Don Mills, Ontario, Canada.


NEW ZEALAND
Ersin Multicore Savbit Alloy is seen being used at the factory of the Bell Radio Television Corporation Ltd., Auckland, New Zealand


HOLLAND
Ersin Multicore 5 Core Solder is used for soldering printed circuit boarts by N. V. Eminent, Bodegraven, Hollanc


INDIA
A motor being assembled with Ersin Multicore 5 Core Solder in the factory of M/S A.E.I. Manufacturing Co. Ltd., Calcutta, India.


DENMARK
Ersin Multicore 5 Core Solder being used for the manufacture of high quality electronic instruments at the factory of A/S Brüel \& Kiaer, Naerum, Denmérk.


FINLAND
Ersin Multicore 5 Core Solder being usec in the hand soldering of printed circuit boards for Television Receivers on an assembly line at a factory in Finlan 1.
```


[^0]: PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: Waterloo 3333 (70 lines); Telegroms/Telex: Wiworld lliffepres 25137 London. Cobles: "Ethaworld, London, S.E.1."; Annual Subscriptions: Home: £2 6s Od. Overseas: £2 15 s Od. Canada and U.S.A: $\$ 8.00$. Second-class mail privileges authorised at New York N.Y. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: Birchfields 4838. BRISTOL: 11, Marsh Street, 1. Telephone: Bristol $21491 / 2$. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210 GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.

[^1]: *Newmarket Transistors, Lid.

[^2]: * "Satellite Communications Service Begins," Wireless World, May 1965. See also: "More About Early Bird," W.W., June 1965.

[^3]: †See, for example, "Chorus" by M. Lorant, Jan. 1965 issue p. 51.

[^4]: SIFAM ELECTRICAL INSTRUMENT COMPANY LIMITED WOODLAND ROAD TORQUAY DEVON ENGLAND Telephone: TORQUAY 6382 2

 Telegrams: SIFAM TORQUAY

[^5]: LIGHT SOLDERING DEVELOPMENTS LTD., 28, Sydenham Road, Croydon, Surrey.
 Telephone CROydon 8589 \& 4559.

