hYSICS EXHIBITION REPORT

Wireless World

ELECTRONICS • TELEVISION • RADIO • AIIDIO

FERRANT/IIILCON pluarr rualisions

Designed and manufactured

 in Britain for youYou should specify - \quad IVN IT statistics show that this is the only way to achieve MAXIMUM RELIABILITY

T018
$2 T 80$

Iliffe Electrical Publications Ltd., Dorset House, Stamford Street, London, S.E. 1

Managing Director:
W. E. MILLER, M.A., M.I.E.R.E.

Editor:

F.L. DEVEREUX, B.sc.

Assistont Editors:
H. W, BARNARD
T. E. IVALL

Editorial:
D. C. ROLFE
G. B. SHORTER, B.Sc.

Drawing Office:
H.J. COOKE

Production:
D. R. BRAY

Advertisements:
G. BENTON-ROWELL
(Manager)
J. R. EYTON-JONES

Please Address to Editor, Advertisement Manager or Publisher as appropriate
(C) Iliffe Electrical Publications Ltd., 1965. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Wireless World
ELECTRONICS, TELEVISION, RADIO, AUDIO

M AY 1965

209 Editorial Comment
210 A Single-Carrier Colour Television System
By E. J. Gargini
213 Duality
By " Cathode Ray"
217 Books Received
218 I.F. Sweep Generator
By M. W. Rignall
220 Cathode Emitter and Decoupling
By J. F. Young
223 Manufacturers' Products
229 World of Wireless
231 Personalities
233 News from Industry
23550 Years of Public Address
237 Physics Exhibitlon in the North
243 Paris Components Show
245 Colloquium on Memory Technlques
246 Letters to the Editor
249 Satellite Communications Service Begins
251 Electronic Laboratory Instrument Practice-5
By T. D. Towers

257 May Meetings
258 Logic Circuits
258 H.F. Predictions-May

VOLUME 71,No. 5
PRICE: 3s. Od

FIFTY-FIFTH YEAR OF PUBLICATION

[^0]

Wireless World

ELECTRONICS, TELEVISION, RADIO, AUDIO

Science and/or Engineering

OUR front cover this month is symbolic of the complex physical structures which lie at the foundation of modern solid-state electronics. It is intended to show the importance of science, as exemplified in the report elsewhere in the issue on the Physics Exhibition, in breaking new ground for development by the technologist and utilization by the engineer.
Practising scientists and engineers respect each other as compeers exercising the same intellectual powers to different ends, but aspirants to these professions, and in particular young sixth formers deciding upon a career, seem to be attracted more by the glamour of science and less by the prospects of engineering, which many regard as a dull pedestrian pursuit.

What are the essential differences between science and engineering? A quick answer would be that science is easy and carefree whereas engineering is difficult and loaded with responsibility. No stigma attaches to the scientist whose hypothesis is proved false by experiment; only the return of "don't know" as the conclusion from his work can be scored as a failure. Engineering, on the other hand, can never contemplate so negative a termination, though the possibility of failure must always be present as a spur. Success is approached on a broader front. Engineering is a skill and, as R. Hadekel has pointed out recently (The Chartered Mechanical Engineer, March 1965, p. 176) it has its roots in craftsmanship. As such it pre-dates science not by centuries but by aeons. The modern scientific method (hypothesis tested by observation and experiment) has been establishd as a discipline for less than 400 years.
To claim that engineering is applied science is to do it less than justice. Applied science may produce a new technique, even a whole technology, but these wait upon the needs of the engineer and are his tools.

What is the superior attraction of science over engineering for the school-leavers of today? Could it be that science combines the freedom of dilettantism with the chance of making a great discovery, whereas engineering calls for iron discipline and steady application to a limited end? If so there are several ways of redressing the balance. One which we rather like was suggested recently at the Annual Dinner of the I.E.E. by its president, Mr. O. W. Humphreys, namely, that young men should be allowed first to sow their wild oats in pure research before moving on in maturity to engineering.
Engineering talent is born, but may remain dormant unless it is fostered by precept and fired by enthusiasm. The difficulty is that there are not enough good engineers to supply the needs of both industry and education. Suggestions that there should be part-time exchanges between these professions have frequently been made, but have not proved practicable. At a recent conference of headmasters in Cambridge, organized by the Engineering Institutions Joint Council and the Royal Society to discuss means of increasing the numbers of aspirants to an engineering career, it was generally agreed that a firm grounding in physics and mathematics must be given priority. Sir Willis Jackson expressed himself as against the teaching of engineering in schools but in favour of the use of imaginative experiments and films to show the relevance of physics and mathematics to engineering. There should then follow a year in industry before entry to a university where a first-year course common to both science and engineering students would be undertaken.
This seems the best way of settling the matter, for by the time the student has reached his second year at university and the real work is about to begin, any early romantic fantasies will have given place to an appreciation of the deeper satisfaction which a career in one or other of these disciplines will give.

A SINGLE-CARRIER COLOUR TELEVISION SYSTEM

ASTUDY of the possibilities of $\mathbf{h} . \mathrm{f}$. wired television distribution has led to the formulation of a new type of colour transmission system ${ }^{1}$ which could prove to have considerable advantages if used for colour television broadcasting. In this proposed compatible system, called SEQUIN (Sequential Quadrature Inband System), the colour information is transmitted sequentially by a suppressed carrier signal at the same frequency as the main carrier but in quadrature phase relationship with it. Brightness information is transmitted in the ordinary manner, the main carrier being modulated in the negative sense. The complete signal provides the monochrome picture for existing ($625-$ line) black-and-white receivers.
The colour signal conveys two sets of colour information in sequence. These two sets can be either two colourdifference signals, of the form $\mathrm{E}_{R}-\mathrm{E}_{Y}$ and $\mathrm{E}_{B}-\mathrm{E}_{Y}$, or two colour-ratio signals, of the form $\left(\mathrm{E}_{R} / \mathrm{E}_{e}\right)-1$ and $\left(E_{R} / E_{e}\right)-1$, where E_{e} is an equal-energy brightness signal formed from equal proportions of the three camera tube outputs. The first kind of signal, providing chrominance information, permits simple matrixing techniques in receivers but has the disadvantage, common to all chrominance systems, that fine detail brightness information is displayed as fine detail whiteness information ${ }^{2}$ on both colour and monochrome receivers. The second kind of signal, conveying chromaticity information, overcomes this
defect and permits approximate constant chromaticity and exact constant-luminance operation of the colour receiver ${ }^{3}$, with separate luminance signals. Normally the two sets of colour information would be transmitted line sequentially, but theoretically dot-sequential or framesequential working would also be possible.

The complete transmitted signal can be considered as a carrier wave modulated both in amplitude and phase. This is shown vectorially, for the chrominance system, in Fig. 1, where the modulus (envelope amplitude) and angle (carrier phase) of the rotating vector are determined by the amplitudes of the luminance signal and of a colourdifference signal in quadrature. Mathematically the vector modulus is given by
$\left|E_{\text {vision }}\right|=\left[\left(\mathrm{K}_{1}-\mathrm{E}_{\gamma}^{\prime}\right)^{2}+\mathrm{K}_{2}\left(\mathrm{E}_{R^{-r}} \text { or } \mathrm{K}_{3} \mathrm{E}_{\beta^{-}}\right)^{2}\right]^{2}$ where $\left|\mathrm{E}_{\text {vision }}\right|$ is the instantaneous carrier amplitude, E^{\prime}, is the amplitude of the luminance component, and $\mathrm{K}_{1}, \mathrm{~K}_{3}$ and K_{3} are constants. The carrier wave phase angle is given by:

$$
\angle \mathrm{E}_{v i \sin n}=\tan ^{-1}\left[\frac{\mathrm{~K}_{2}\left(\mathrm{E}_{\left.R^{-}-\gamma \text { or } \mathrm{K}_{3} \mathrm{E}_{B^{-}} \gamma\right)}^{\mathrm{K}_{1}-\mathrm{E}_{\gamma}^{\prime}}\right]}{}\right]
$$

where $\angle \mathrm{E}_{\text {rision }}$ is the instantaneous phase angle of the carrier in degrees, and $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} are constants as
*Rediffusion Research Lid

Above:-Fig. I. Vectorial representation of the complete SEQUIN signal (for the chrominance system). Correct phase detection, $(R-Y)+Y=R$, etc.; incorrect phase detection, $[R-Y \pm$ $\Delta\left(K_{1}-Y^{\prime}\right) I+Y=R \pm \Delta\left(K_{1}-Y^{\prime}\right)$ etc.

Right:-Fig. 2. Modulating amplitudes and carrier phase angles for a colour-bar transmission on SEQUIN (for R-Y, B-Y version). Moximum volues correspond to condition: $E_{B \cdots Y}=E_{\text {cision }}$ on yellow, and $\mathrm{E}_{R-Y}=1.8 \mathrm{E}_{1-Y}$.

Right:-Fig. 3. Receiver schematic, assuming that chrominance informotion is transmitted.

Below:-Fig. 4. Alternative detection system for receiver, assuming chromaticity information is transmitted.

some complication but it is the author's view that frequency control of u.h.f. colour receivers is desirable with any colour system.

In the second type of colour receiver, which assumes that chromaticity information is transmitted (Fig. 4), conventional frequency changing techniques with less precise frequency control may be possible. The colour signal could possibly be recovered by applying the composite vision carrier signal to a limiter and ratio type phase detector, the output of which would be further processed in a non-linear matrix to obtain colourratio or wide bandwidth colour difference signals. Either type of receiver could be arranged to suit chromaticity or chrominance information transmission.
above. Fig. 2 shows modulating amplitudes and carrier wave phase angles for a colour-bar transmission.

Recovery of the two sets of sequential colour information at the receiver requires a colour synchronizing signal. This is, in fact, transmitted automatically by the system, since, with negative modulation, the line and frame sync pulses constitute large-amplitude, long-duration bursts of carrier frequency in exact phase quadrature with the wanted colour signal. (During these bursts the colour signal is not transmitted and so does not affect the carrier phase.)

In the receiver two types of colour-signal detection are envisaged. The first of these, which assumes that chrominance information is transmitted, line sequentially, uses a single synchronous detector (see Fig. 3). The detection process includes an automatic frequency control system in which the local oscillator frequency is continuously adjusted to maintain the standard i.f. vision carrier in a fixed frequency and phase relationship to a second local oscillator, operating at this same frequency or at a sub-multiple frequency. This second oscillator provides the carrier re-insertion signal for synchronous detection of the sequential $E_{R}-E_{Y}$ and $E_{B}-E_{Y}$ components of the colour signal. Any departure from the correct phase setting of the synchronous-detector oscillator introduces positive or negative sync pulses into the colour channel and these can be used to maintain the phase angle of the re-inserted carrier at its optimum value. This carrier locking technique used in this type of receiver introduces

The delay line required in either type of receiver could be a steel wire type, and in the second type of receiver could be operated by the phase modulated signal available at the output of the phase limiter.

A SEQUIN transmission received on conventional black-and-white receivers should not show any degradation of picture quality from that obtainable with monochrome transmissions. On colour receivers the brightness resolution should equal that obtainable on monochrome.

In conventional quadrature transmission systems the two simultaneous signals are recovered by a carrier reinsertion process along the wanted signal axis. When the upper and lower sideband structure is substantially uniform these signals may be recovered independently, that is, free from transient crosstalk. In the SEQUIN proposal medium-detail colour information and brightness information is transmitted double sideband over the normal double-sideband region of the transmission standard, and over this region a colour signal may be recovered which is free of brightness information. The remaining fine-detail brightness components would be transmitted as in normal monochrome practice over the single-sideband region, and as this band of frequencies conveys no colour information the brightness components would be recovered free of colour information.

Because in SEQUIN the monochrome carrier is not suppressed, no carrier re-insertion is necessary along the brightness axis. This feature allows compatible operation of conventional monochrome receivers and also permits a
simple brightness-signal detection process in colour receivers, provided two precautions are taken before transmission. Simple diode detectors respond to the modulus of the composite transmitted waveform, which yields an incorrect grey scale. Thus brightness-signal compensation must be introduced to ensure that the modulus of the transmitted waveform is, in fact, the desired brightness signal. The second precaution is the generation of a pre-correcting signal to compensate for vestigial reception of the brightness signal. The main carrier is received at a nominal -6 dB point in the receiver response, and without this correction the colour signal sidebands would introduce some brightness-signal transient distortion.

Simple tests have indicated that there is no difficulty in effectively compensating for the receiver modulus distortion at the transmitter, and a theoretical study and simple tests have indicated that because colour transients are less rapid than brightness transients, low order spurious signal generation at receivers may be effectively cancelled by transmitter compensation, although this is a more difficult process. The carrier locking technique mentioned in connection with the chrominance type of receiver is currently in use in wired distribution signal originating equipment for translating from a v.h.f. carrier to an h.f. carrier.

An important advantage of the proposed SEQUIN system is that it would make possible simpler receiver tuning-which, in subcarrier systems, can be a somewhat critical factor in obtaining good colour reproduction. In a SEQUIN receiver (of the first type) the local oscillator would always be locked in the correct frequency
and phase relationship to the carrier, and colour reproduction would not depend on correct placing of a sub-carrier on the receiver response curve.

In general the proposed system has the advantages of a sequential system but would also overcome the compatibility problem that has characterized SECAM. Horizontal colour resolution would be superior to that of other systems because of the wider bandwidth colour signal ($1.5 \mathrm{Mc} / \mathrm{s}$ for the British 625-line standard); and signal/noise ratio would be better, because of the different manner in which the transmitter power is shared between the brightness and colour signal. Low-power v.h.f. or u.h.f. translater stations would be able to handle the SEQUIN signal (which has no video equivalent) by the standard frequency changing technique without recourse to further transcoding. Finally, selective fading would not affect the ratio of brightness information and colour information.

Acknowledgment

The author expresses his thanks to the Directors of Rediffusion Research Ltd. for permission to publish this article.

REFERENCES

1. British Patent Application 17346/64. See also "Colour television by wire," a paper read to the Television Society on 18th September, 1964.
2. "An alternative colour TV system," by E. J. Gargini. Wireless W'orld, August, 1957.
3. See "Constant luminance," by Ian MacWhirter. Wircless World, November, 1964.

RANGER TELEVISION SYSTEM

The 3W transmitter-receiver (for commonds, telemetry, etc.) in the Ranger "bus" or platform was powered by two solar cell panels.

AFTER transmitting more than 5,800 pictures of the lunar surface Ranger 9 , the final in the series, impacted the moon in the Crater Alphonsus on March 24th. Similar successful flights were achieved with Rangers 7 and 8 giving altogether a total of some 16,000 pictures taken at distances varying from 1,500 miles to $\frac{3}{4}$ of a mile from the moon. The resolution of the pictures televised by the six-camera R.C.A. system was excellent, detail being clearly observed in the final pictures of craters estimated to be about a yard across.

The television system, which was powered by two 33V batterics, employed two full-scan and four partial-scan cameras. The full-scan 1,125-line cameras were exposed
and read out sequentially at 2.5 second intervals and the partial-scan cameras, which utilized only the central 282lines of the raster, at 0.2 second intervals. During the intervals between exposure the photoconductive surface of each 1 -inch vidicon tube was erased. Two 60 W transmitters were employed for the TV system operating on 959.52 and $960.58 \mathrm{Mc} / \mathrm{s}$.

Six R.C.A. comeras (the full-scon are in the centre) pointed ot on angle of 38° from the roll axis of the spacecraft.

IDON'T usually have much to say in Wireless World about the Government, and the Editor is probably reaching for his blue pencil (or the electronic destructor that has no doubt superseded it) at the mere suggestion of such a thing, but he can relax. All I am going to remark on, and that quite non-politically, is the creation of Ministries of Education and Science and of Technology; because this is a sign of how growingly important these subjects are, and the need for more and better instruction therein. Every year the distance that students have to go through basic matters in order to reach the working face of their subject is greater. So anything that can help speed their effective progress is worth utilizing.

Perceptive teachers would agree, I think, that things are more easily remembered and more clearly understood if a pattern of relationships is seen. One of the admittedly most helpful methods of approaching a new subject is by way of analogy. And so electric currents in wires are likened to water flowing through pipes, difference of potential to difference in height above sea level, and so on. The danger of analogies such as this is that they are not perfect, so if they are followed too far they can mislead. For instance, resistance to the flow of water in a pipe is not inversely proportional to its cross-sectional area, as is resistance to the flow of electric currents in wires.
Duality is a perfect analogy. So it deserves special attention. Readers who have persisted with me for longI believe there are some-may have noticed my occasional bursts of salesmanship for duality. But there are always others for whom this is their first Wireless World, and presumably still more whose ideas (if any) about electrical duals and duality are vague. It is these I invite to gather around.
The most elementary instruction on electric circuits includes the two modes of connection-series and parallel. When we come to a.c. we are told that inductance and capacitance behave in some respects as opposites. Both of these dual concepts occur together in resonant circuits, which contain inductance and capacitance and come in two kinds-series and parallel. If we compare the equations relating to them we should find certain systematic resemblances. To come to the point, all true statements or equations connecting the things in either of the columns below can be transformed into other true

Fig: 1. Although "Ohm's low" is easy to apply to (o) it is slightly jess convenient for (b). and its dual is to be preferred.
statements or equations by substituting the corresponding words or symbols in the other column.

Current, I	Voltage, V or E
Voltage, V or E	Current, I
Resistance, R	Conductance, G
Conductance, G	Resistance, R
Inductance, L	Capacitance, C
Capacitance, C	Inductance, L
Reactance, X	Susceptance, B
Susceptance, B	Reactance, X
Impedance, Z	Admittance, Y
Admittance, Y	Impedance, Z
Series	Parallel
Parallel	Series
Mesh	Junction (or node)
Junction (or node)	Mesh
Short-circuit	Open-circuit
Open-circuit	Short-circuit

Each item in these lists is the dual of the other on the same line. We can take a general equation connecting any of the listed quantities, and construct its dual by substituting the dual quantities. Take the familiar example usually called Ohm's law:

$$
\begin{equation*}
E=I R \tag{1}
\end{equation*}
$$

Substitute the symbols in the opposite column and we get

$$
\begin{equation*}
I=E G \tag{2}
\end{equation*}
$$

which is also true and sometimes more useful, especially with parallel circuits. Equation (1) is quite suitable for attacking Fig. 1(a), because the total R is just the sum of all the resistances, so the particularized version of (1) is

$$
\begin{equation*}
\boldsymbol{E}=I\left(R_{1}+R_{2}+R_{3}\right) \tag{3}
\end{equation*}
$$

But the first time we are confronted with Fig. 1(b) we have to think a bit and finally come up with

$$
\begin{equation*}
E=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} \tag{4}
\end{equation*}
$$

which lacks elegance. By applying duality to (3)-i.e., by referring to our parallel columns-we are spared the need for any thought and we arrive directly at the same thing as (4) in the neater form

$$
I=E\left(G_{1}+G_{2}+G_{3}\right)
$$

Conductance, G, is of course the reciprocal of resistance, i.e. $1 / R$. It is also the dual of resistance, but not all dual quantities are reciprocals; the dual of L is not $1 / L$.

As well as dual quantities and dual equations there are such things as dual circuits. You might think that Fig. l(b) was the dual of (a) because its equation is. But we can see that this is not exactly so if we describe (a) in words and then transform it by using the parallel lists: thus, (a) comprises three resistors all in series with a voltage source. So its dual must be three conductors all in parallel with a current source.

A little difficulty arises when we come to draw the dual circuit diagram. Voltage sources are quite familiar: batteries and d.c. generators for d.c., and a.c. generators for a.c. Ideally they should have no resistance or impedance in themselves, and this condition can be approximated fairly closely in practice. Its dual must be a current source with no conductance in itself, and such things are not practical. The best we can do is use a very
high voltage source in series with a very high resistance. There isn't even a reasonable symbol for a theoretical current source. Most people use Fig. 2(a), but there are two reasons why they should not: it is an international standard symbol for a transformer, and it doesn't suggest cither the dual of a voltage source or a non-conducting path. So I use a dotted line to make clear the absence of conductance, and either the non-committal sine-wave symbol for a.c. or the letter I, Fig. 2(b).

Duality can be applied directly to "equivalent generators." A practical voltage generator has internal impedance, and can be represented in circuit diagrams for algebraical purposes by an ideal generator in series with an appropriate impedance. Dualwise, an actual current generator can be represented by an ideal current generator in parallel with an appropriate admittance. Fig. 3(a) shows the well-known equivalent generator which, for signals only, can be substituted for a valve.

(a)

Fig. 2. The symbol (a), though often used to denote an ideal current generator, is unsuitable; (b) shows two possible alternatives.

Here μ and r_{u} are the voltage amplification factor and anode a.c. resistance respectively, and v_{0} is the signal voltage at the grid with respect to cathode. (I prefer to use $v_{k n}$ for this, or even just kg , but am making a concession to common usage.)

If one were constructing a dual of the whole valve one would have to replace it by a current-operated device (e.g., a transistor). But when it is an actual valve it is more helpful to retain its voltage-control element, the grid, and just express the output side in its alternative current generator form. The series anode resistance is replaced by the parallel anode conductance, $g_{a}=1 / r_{a}$, in Fig. 3(b).

To be really equivalent these two must appear the same to any load connected to the terminals, so let us connect a short circuit to (a) and so find that the current therein is $-\mu v_{q} / r_{a}$. It must be the same in (b), and as this is equal to the current put into it by the generator it too is $-\mu v_{p} / r_{a}$. Since $\mu / r_{a}=g_{m}$, this is equal to $-g_{n} v_{v}$ as shown, g_{m} being the murual conductance of the valve.

I should like to emphasize that any valve can be represented in either of these two ways, and both yield the same answers; but (b) is more convenient than (a) for valves of pentode type, especially if the load is made up of items in parallel.

Returning now to the aside about notation for voltages, I said I denoted the voltage at g with respect to that at k by $V_{k g}$. There are those who would call it $V_{j, k}$. The latter usage is quite workable within a restricted field, but if one goes out for an integrated system embracing such things as phasor ("vector ") diagrams and such well-established conventions (in graphs and other things besides voltage notation) as that "up" is positive and "down" is negative, one is driven to the conclusion that $V_{g k}$ should mean the voltage change on passing from g to $\mathrm{k} .{ }^{*}$ The usual custom in common-cathode circuits is to take account of the change on passing from k to g; hence ${ }^{-} V_{k g}$.

People who use a double-subscript notation for vol-

[^1]tages-sither of the two opposite varieties just mentioned -presumably think it is a good idea, because ir indicates both the voltage and its direction (unlike the absurd arrows pointing both ways that are still often used) so why not for currents too? Up to that point the line of thought is impeccable, but unfortunately it almost invariably goes astray from there on. The thinker says to himself that if $V_{a b}$ means the voltage berween a and b then $I_{a b}$ should mean the current flowing from a to b. He would get away with this in circuits like Fig. 1(a), where the junctions between the resistors might be marked a, b, c, etc. But what about Fig. 1(b)? There are four currents flowing between the only two circuit junctions and they are probably all different. That will never do, so he finishes up by distinguishing them as $I_{\mathrm{R} 1}, I_{\mathrm{R} 2}$, etc., sacrificing the indication of direction in the process. All very arbitrary and unsatisfactory.

If only he had remembered the table of duals he would have realized that current is the dual of voltage, so if the voltage subscripts refer to circuit junctions the current subscripts should refer to circuit meshes. This is perfectly specific and unambiguous; the current flowing through, say \mathbf{R}_{1} in Fig. 1(b), is not specified by the points between which it flows, for three other currents do the same, but it is uniquely specified by the meshes on each side of \mathbf{R}_{1}. This is not even a revolutionary new idea; it was used for stresses in structures by Bow nearly 100 years ago.

If $V_{a b}$ means the change in voltage on passing from point a to b , then $I_{J K}$ (say) means the change in current on passing from mesh J to K . Just as, according to this notation, $v_{a b}$ is positive if b is at a higher (i.e., more positive) potential than $a, I_{J K}$ will be positive if the current around mesh K is more positive than that around J . There is a well-understood convention that b is more positive than a if electrons show a tendency to desert a in favour of b. (I would say that positive charges tend to move from b to a if somebody wouldn't be sure to jump up and ask what a positive charge is and why.) There is also a convention, probably less well understood, about mesh currents. For easing multi-mesh calculations, the great Maxwell suggested the concept of mesh or circulating currents, according to which each mesh is imagined to have a current circulating around

Fig. 3. Dual valve "equivalent generators": (a) voltoge; (b) current.
it, the actual current in any qonductor being the difference between the currents in the meshes separated by it. The difference, because all the mesh currents are supposed to have the same direction of rotation, so in any conductor they flow in opposite directions. This can be seen in Fig. 4, where the current through R_{1} is clearly $I_{\mathrm{L}}-I_{\mathrm{K}}$, which is the meaning we can appropriately give to I_{KL}, just as $V_{a b}=V_{b}-V_{a^{*}}$

Strictly speaking, V_{a} and V_{b} are meaningless, since the potential at any point is indeterminate unless given an

Fig. 4. Fig. I(b) repeated with junction and mesh labels, to show circulating currents.
arbitrary figure or related to some other potential. Thus the potential of an earthed point is said to be zero. But $V_{b}-V_{a}$, or $V_{a b s}$ is definite, because any constant that may be added to both of them cancels out in the difference. Similarly there are an infinite number of sets of mesh currents that could be equal to any set of actual currents, but these are reduced to one set by assuming that the current in the mesh formed by the circuit perimeter is zero. So in Fig. $4 I_{\mathrm{JK}}$, the actual current through the generator $=I_{\mathrm{K}}-I_{J},=I_{\mathrm{K}}$ because $I_{J}=0$.

The usual convention is for all the mesh currents (except the peripheral mesh) to flow clockwise. So for $I_{\text {KI }}$ to be positive, I_{L} must be greater than I_{K}; in other words, a positive $I_{K L}$ is one flowing from right to left as one passes from K to L .

I use capital letters to distinguish currents from voltages, because that renders the repeated symbols I, V and E superfluous, so there is no need for the junction and mesh designating letters to be subscripts. This greatly eases the labours of the typist and no doubt those of the compositor too. By using different letters for currents and voltages, as in Fig. 4, one avoids any oral confusion of AB with ab.

These notations and conventions lead to a simple and clear system of phasor diagrams, perfectly integrated with well-known electrical laws, principles, rules and con-
ventions, including (as we have seen) Maxwell's concept of mesh currents. But there is not room to go into that here.

There is yet another field for duality-laws. Kirchhoff's voltage law in its original form fails to follow the dual pattern of his current law and obliges one to distinguish between e.m.fs. and voltage drops. When the law is extended to include a.c., this is sometimes difficult to dot-and quite unnecessary. So only misplaced sentiment will hinder the bringing of the voltage law into line with the current law and expressing it more neatly and simply as: Around any mesh the sum of the voltages is zero. This can be written in symbols

$$
\Sigma V \equiv 0
$$

or, in our notation,

$$
\mathrm{ab}+\mathrm{bc}+\mathrm{cd}+\ldots \ldots+\mathrm{na} \equiv 0
$$

where a, b, etc- are consecutive points around a mesh.
The precise dual of this would read: Around any junction the sum of the currents is zero. And correspondingly

$$
\Sigma I \equiv 0
$$

or

$$
\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\ldots \ldots+\mathrm{NA} \equiv 0
$$

The above form of the current law, an abbreviated version of onę suggested by Mr. C. E. Newton, may need a little explanation. Just as in Fig. 5 the voltages ab $+b c+$ $\mathrm{cd}+$ da around mesh M add up to zero, so the currents $\mathrm{KL}+\mathrm{LM}+\mathrm{MK}$ (say) around junction a add up to zero, as do those around any of the other junctions. The words "mesh" and "junction" are used in the above statements of Kirchhoff's laws because they are applied to circuits, but the laws are equally true around any enclosures, even in open space. The sum of the changes in potential around any closed path is equal to zero, and so is the sum of the currents into any enclosed space, if Maxwell's displacement currents are included.

Note how the notation provides an automatic check of Kirchhoff's equations, as used in circuit calculations. The letters show completeness of path by forming a continuous sequence ending at the start.
\dagger "E.M.F.", Wireless World, July and August 1964.

A useful circuit theorem that has its dual is Thévenin's (or Helmholtz's). The dual is known as Norton's theorem. But as I wrote about this as recently as the January, 1964 issue perhaps it can be taken as read.

A more timely exercise would be to note the procedure for obtaining the dual of a circuit (1 nearly said "any circuit," but see later). Because the dual of a mesh is a junction, we begin by putting a dot in each mesh to form the junction of the dual circuit. Don't forget the

(a)

(b)
Fig. 7. Extremely simple example of duals with particular values.

Fig. 8. Maxwell bridge circuit, which is its own dual.

external mesh. Then we join these dots by lines to form meshes around each junction. Lastly we include in these lines the symbols of circuit elements that are the duals of the elements crossed by the lines. So if two junctions in the original circuit were joined through an inductor, the part of the new circuit passing between these junctions would have to contain a capacitor.

Fig. 6 is an example, where the original circuit (a) has 4 mẹshes and 7 junctions, so its dual, found as shown at (b) and redrawn separately at (c), must have 4 junctions and 7 meshes. And of course the dual of (c) is (a). Note how series tuned circuits become parallel ones, and inductive coupling becomes capacitive. All equations relating to (a) have their duals relating to (c), obtained by simply changing over the symbols according to the list. But how about the actual component values, currents and voltages in (b), given those in (a)?

Fig. 7 (a) shows a very simple example, with all the quantities marked. In its dual (b), if we assume the numerical values pass over unchanged we do find that it still checks: a current of 2 amperes passing through a conductance of 5 mhos gives rise to 0.4 volt across it. But it is quite possible-and for some purposes convenient-to have a dual circuit configuration with different values. In such a simple circuit as Fig. 7 there would be no difficulty in prescribing any values one pleased for two of the quantities and calculating the third by equation (a). But in more complicated circuits where use of duality would be really worth while, much of its effort-saving would be wasted if one had to calculate new values throughout.

So it is perhaps worth knowing that a conversion factor can be used, having the dimensions of resistance (or impedance), to change from a certain number of amps to a different number of corresponding volts in the dual.

Call this factor k. Then, if subscript 1 refers to the original circuit and 2 to its derived dual,

$$
\begin{aligned}
& \frac{V_{1}}{I_{2}}=k \quad \therefore I_{2}=\frac{V_{1}}{k} \\
& \frac{V_{2}}{I_{1}}=k \quad \therefore V_{2}=k I_{1} \\
& R_{2}=V_{2}={I_{2}}^{2} I_{1}=k^{2} G_{1} \\
& V_{1} \\
& G_{2}=\frac{I_{2}}{V_{2}}=\frac{V_{1}}{k^{2} I_{1}}=\frac{R_{1}}{k^{2}}
\end{aligned}
$$

This means that if we want the dual voltage $\left(V_{2}\right)$ of a current (I_{1}) to be numerically equal to k_{1}, every dual voltage must also be k times its corresponding current, every dual current must be $1 / k$ times its corresponding voltage, every resistance, impedance, reactance or inductance must be k^{2} times its corresponding conductance, admittance, susceptance or capacitance, and every conductance, admittance, susceptance or capacitance must be $1 / k^{2}$ times its corresponding resistance, impedance, reactance or inductance. So (using this sledge-hammer to crack the nut of Fig. 7) if we want 1.2 V in Fig. 7 (b) our k is $1.2 / 0.4=3$, so besides the voltage being $3 \times 0.4=1.2$ the current must be $2 / 3=0.67$ and the conductance must be $5 / 9=0.56$. Similarly, we can choose any other ratio between one of the above four classes of duals, but the ratios of all the others are thereby fixed.

Duality can be useful for discovering alternative circuits that may be more convenient in practice; for example, Fig. 6 (c) with its capacitive coupling might cost less to manufacture than Fig. 6 (a), or vice versa. Then it is sometimes helpful to realize that two types of circuit that appeared to be quite different are duals of one another, so they behave correspondingly and all the equations fer one can be easily derived from those for the other. Usually the dual is a different circuit, but not necessarily. Fig. 8 shows the Maxwell bridge circuit, the dual of which is the

Fig. 9. The simplest network for which no dual exists: (o) in symmetrical form; (b) redrawn to reduce cross-overs to the minimum (one).

Fig. 10. Another dualless network, again (a) in symmetrical form and (b) with minimum crossing.

Fig. II. (o) Three-phase star-connected system; (b) its dual, deltaconnected; (c) identicol with the foregoing modes of connection are the T and Π.
same except for the change from voltage to current generator. Obviously circuits of this kind must have the same number of meshes as junctions, and the same number of inductances as capacitances.

Finally, some circuits have no dual. It has been shown* that duality exists only if the circuit diagram can be drawn on a flat sheet of paper with no wires crossing. That might seem to rule out rather a lot, but in fact most basic circuits can be drawn without crossings. The simplest exception is shown in Fig. 9 (a). It is the basis of a celebrated puzzle, in which three of its points are supposed to be houses and the other three are sources respectively of gas, water and electricity; and the problem is to supply all three houses with all three services without any feeds crossing. It is not difficult to reduce the number of crossings to oneFig. 9 (b)-but there one sticks:

Another relatively simple dual-less circuit is shown in Fig. 10, (a) being its most symmetrical form and (b) as redrawn with the irreducible minimum of one crossover. In Figs. 9 and 10 I have not bothered to draw the components that are supposed to exist between every pair of points.

Fig. 11 (a) is familiar to all electrical power engineers as a three-phase star-connected system. Drawn in this rather pictorial manner, two wires cross, but this can easily be avoided by interchanging b_{2} and c_{2} without affecting the circuit. The dual can then be drawn and turns out

- By B. D. H. Tellegen in Philips Technical Review, Vol. 5, No. 11 (Nov. 1940), pp. 324-330.

to be the equally familiar three-phase delta-connected system-Fig. 11 (b). These might be considered irrelevant in Wircless World were the star and delta configurations not identical with those well known to us all as the T and $I \Pi$ (c), for these are the basis of all filters and attenuators. They can be regarded as duals of one another.

BOOKS RECEIVED

Nonlinear and Parametric Phenomena in Radio Engineering, by A. A. Kharkevich. In many of the processes encountered in radio-rectification, oscillation, etc.- the equations involved have variable.coefficients or coefficients which depend on the function or its derivatives. This book, translated from the Russian, gives the basic mathematical equipment to tackle such problems and gives examples of its application. Pp. 190 . John F. Rider Inc. New York, and published in Great Britain by Iliffe Books Ltd., Dorset House, Stamford Street, London, S.E.1. Price 35 s .

The Elements of Pulse Techniques, by O. H. Davic, M.I.E.E. Covers generation, amplification, delay, measurement and application of electrical pulses, with emphasis on physical explanation rather than mathematical analysis. Aimed at srudents and technicians. Pp. 197. Chapman \& Hall Lid., 11 New Fetter Lane, London, E.C.4. Price £1 15s,

Guide Technique de l'Electronique Professionelle. Fourth Edition (1964/5) of a buyers guide to the French electronics industry, including foreign firms represented in France. In two volumes (weighing over 12 lb). Pp. 1,352. Publéditec, 13, rue Charles Lecocq, Paris 15 e. Price (including packing and postage) 130F (but 160F in France).
Solid Circuits and Microminiaturization, proceedings of a conference held at West Ham College of Technology, June 1963, edited by G. W. A. Dummer, M.B.E., M.I.E.E. Contains 28 papers and five discussions on various aspects of the technology, including circuit design, manufacturing methods, descriptions of particular circuits and application to electronic equipment. Pp. 346. Pergamon Press Ltd., Headington Hill Hall, Oxford. Price £3.

Basic Electric Circuits, by A. M. P. Brookes, M.A., A.M.I.Mech.E., provides a grounding in the elements of circuit analysis for university and technical college students. It examines basic resistance, capacitance and inductance circuits and combined RCL circuits. A.C. theory, vectors and transients are dealt with briefly. Pp. 134. Pergamon Press Ltd., Headington Hill Hall, Oxford. Price 10s.
Radio Receiver Design. Part 1: Radio-frequency Amplification and Detection, by K. R. Sturley, Ph.D., M.I.E.E. Completely revised third edition of this standard work in which the application of transistors, where appropriate, has been afforded the same thorough treatinent as is given to valves. Pp. 937. Chapman \& Hall Ltd., 11, New Fetter Lane, London, E.C.4. Price 105 s .
Transistor Bandpass Amplifiers, by W. Th. H. Hetterscheid. Mathematical treatment of the theory of design of singleand multi-stage amplifiers, including neutralization. (A complementary volume on the design and construction of i.f. amplifiers for radio, television and radar is in course of preparation). Pp. 314. Philips Technical Library, CleverHume Press Ltd., $10-15$, St. Martins Street, London, W.C.2. Price 76 s.
Aerial Handbook, by G. A. Briggs with R. S. Roberts, M.I.E.R.E., as Technical Editor. Another entertaining book from Wharfedale. Instead of audio the author's topic is this time radio (including television) with the aerial as the central, though by no means the only theme. The introduction says: "The book is not for the expert but for the reader who would like a little mystery taken out of that piece of wire." Pp. 144. Wharfedale Wircless Works Lid., Idle, Bradford, Yorks. Price 8s 6 d .

I.F. SWEEP GENERATOR

TRANSISTOR CIRCUIT FOR $465 \mathrm{KC} / \mathrm{S}$ AND $1.6 \mathrm{MC} / \mathrm{S}$

By M. W. RIGNALL*

ALIGNMENT of màny i.f. amplifiers may be done with a signal generator and output meter. If, however, a crystal filter is incorporated this is no longer possible except by a laborious point by point plot. For such amplifiers, a sweep generator and oscilloscope provide the only acceptable means of alignment. The unit described is capable of sweeping a $25 \mathrm{kc} / \mathrm{s}$ range at any point in the $450 \mathrm{kc} / \mathrm{s}$ and $1.6 \mathrm{Mc} / \mathrm{s}$ i.f. channels.

The operation of the swept oscillator depends upon the change of input reactance of a grounded-base oscillator as its emitter current is varied by the voltage derived from the horizontal scan. The magnitude of the input reactances at the chosen frequency is dependent upon the f_{1} of the transistor, hence for a low-frequency device the input reactance is low. Thus for a given change of emitter current, the corresponding frequency change will be larger than in a high frequency transistor.

Circuit Function

The practical circuit is shown in Fig. 1. A grounded base oscillator employing an OC170 is biased by the normal potentiometer circuit $\mathrm{R}_{1}-\mathrm{R}_{6}$, which establishes the unswept d.c. condition. The sweep voltage from the oscilloscope is passed via the deviation control $R V_{1}$ through a resistor R_{1} or R_{2} to the point A, thus varying the voltage at this point and adding a linearly increasing

* The Marconi Comptany L.d.
voltage to the base potential. The resultant change of emitter current varies the transistor reactances over a range governed by the magnitude of R_{1} and R_{2}. Over the small range required the deviation is almost linear, but since the tuning capacity is greater at the 1.f. end of a range and the swept reactance is constant, the deviation for a fixed setting of $R V_{1}$ will be lower at the l.f. end than the h.f. end. Figs. 2 (a) and 2 (b) show the deviation plotted against sweep voltage for both ranges.

Swla selects the appropriate inductance for the range required, while Swlb adjusts the swept current flowing into point A by selection of \mathbf{R}_{1} or \mathbf{R}_{2}. This adjustment is necessary because the swept current must be reduced for the $1.6 \mathrm{Mc} / \mathrm{s}$ range, where a $25 \mathrm{kc} / \mathrm{s}$ sweep represents only a 1.6% deviation, in comparison with 5.5% at $450 \mathrm{kc} / \mathrm{s}$. It should also be noted that the deviation, being dependent upon a change of working point, will also vary with the supply voltage since the sweep voltage at point A will be added to a reduced voltage as the battery discharges. This variation is plotted on Fig. 3.
Changes of ambient temperature do not measurably affect the deviation, but move the mean frequency by approximately 4% for a $25^{\circ} \mathrm{C}$ variation.
The sweep input required is 150 V peak, which is obtainable from several widely used measuring oscilloscopes. This may be readily modified for the 20 V sweep output from the "Wireless World "'scope by substituting the input circuit of Fig. 4.

Above:-Prototype sweep oscillotor.

Left:-Fig. I. Circuit diagram of sweep generator arranged for 150 V sawtooth input

Fig. 2. Deviation plotted against input voltage for both frequency range.

Fig. 3. Reduction of maximum obtainable deviation with decreasing battery voltage.

Since the deviation is a function of the f_{1} of the oscillator transistor, the values of \mathbf{R}_{1} and $\mathbf{R}_{2}, \mathbf{R}_{11}$ and \mathbf{R}_{12} in Fig. 4 should be selected for the particular transistor used.

The swept output is taken through an emitter follower, giving an output of approximately 0.1 V r.m.s. from a 75Ω source.

Construction

The complete unit is easily accommodated in an Eddystone die cast box, Type 650. The layout is shown in the photos. The components are mounted on a tagboard with turret lugs; the layout is, however, not critical, and any of the usual methods of construction may be adopted. The battery, a Vidor VT4 or equivalent, while not shown, is mounted on the floor of the box.

Testing

The first step is to adjust the cores of L_{1} and L_{2} to the correct ranges. With C_{6} set to the maximum, the frequencies on the appropriate ranges (with no deviation) should be adjusted to $440 \mathrm{kc} / \mathrm{s}$ and $1,550 \mathrm{kc} / \mathrm{s}$. A digital counter is the ideal setting-up device, but in the absence of a counter a communication receiver may be used. Many such receivers will have an i.f. in the $450 \mathrm{kc} / \mathrm{s}$ region. In this case the second harmonic of the generator may be used, noting however that the deviation must be set at $50 \mathrm{kc} / \mathrm{s}$.

With the minimum frequencies set, a direct voltage equal to the peak sweep output should be applied to the sweep input socket with the deviation control set to maximum, i.e. RV_{1} slider connected to the sweep input socket (or RV, at minimum).

The resistors \mathbf{R}_{1} and R_{2} (or \mathbf{R}_{11} and \mathbf{R}_{12}) may be then adjusted to give a deviation of $25 \mathrm{kc} / \mathrm{s}$. The approximate values for the correct sweep amplitude will be $100 \mathrm{k} \Omega$ and $33 \mathrm{k} \Omega$ for the $1.6 \mathrm{Mc} / \mathrm{s}$ and $450 \mathrm{kc} / \mathrm{s}$ ranges respectively of the circuit of Fig. 1, and 390Ω and $1 \mathrm{k} \Omega$ in the circuit of Fig. 4.

Several of these sweep generators have been assembled for the Marconi Company's internal use and all are giving satisfactory performances. It must be stated, however,

Above:-Sweep oscillator component layout.

Right:-Fig. 4. Input circuit to accept 20 V sawtooth input.

that no manufacture for external sale is contemplated.
The author wishes to thank the Director of Engineering \& Research of the Marconi Company for permission to publish this article.

Component List	
$\mathrm{R}_{1} \mathrm{R}$	
$\begin{array}{ll} \mathrm{R}_{2} & \mathrm{R} \Omega \end{array}$	
$\mathrm{R}_{4} \quad 4.7 \mathrm{k} \Omega$	
$\mathrm{R}_{5} \quad 6.8 \mathrm{k} \Omega$	
$\mathrm{R}_{6} \quad 2.2 \mathrm{k} \Omega$	
$\mathrm{R}_{7} \quad 15 \mathrm{k} \Omega$	All 1/8 W
$\mathrm{R}_{8} 330 \Omega$	
$\mathrm{R}_{9} 82 \Omega$	
$\mathrm{R}_{10} \quad 4.7 \mathrm{k} \Omega$	
R_{11} See text	
R_{12} See text	-0, 250 V
$\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{5}$	0.04, F paper 250 V
C_{2}	$0.02 \mu \mathrm{~F}$ paper 250 V
C_{3}	470 pF polystyrene 250 V
C_{6}	100 pF air spaced variable
C_{7},	$25 \mu \mathrm{~F} 12 \mathrm{~V}$ electrolytic
VT1, VT2	Mullard OC 170
$\mathrm{L}_{1} \quad 30 \mathrm{~T}$	Layer wound On Aladdin
$\mathrm{L}_{2} 120 \mathrm{~T}$	in 5 slot bobbin 15/48 stranded Former No. PP5892 Core No. PP5804
RV1	
$\mathrm{RV}_{\underline{2}}$	50ks

Cathode and Emitter Decoupling

By J. F. YOUNG, C.G.I.A., A.M.I.E.E., A.M.I.E.R.E.

MOST electronic engineers use a certain number of "rules of thumb" in their work. Such rules of thumb are excellent in many ways since they remove the necessity always to think out problems from basic principles and so they can save a lot of the engineer's valuable time. However, such rules require occasional re-examination in order to bring them up to date as engineering techniques change. In some cases rules which have been perfectly adequate in the past become quite useless and must be rejected completely.

One rule which the writer often hears quoted is that the reactance of a cathode (or emitter) by-pass capacitor should be about one tenth of the cathode (or emitter) resistor value at the lowest operating frequency. Indeed, this rule appears in at least one respectable handbook. Now if it is a good rule, then it is sensible to use the highest possible value of cathode (or emitter) resistor in order to minimize either the lowest operating frequency or the size of capacitor required. In turn this implies the adoption of a high supply voltage so that at a given current a higher value of resistor can be used. Is this the true position? In order to find out we have to analyse the circuits mathematically.

Considering firstly the valve case, in Fig. 1 we obtain an expression for the gain:

$$
\begin{equation*}
\frac{v_{0}}{v_{i}}=\frac{\mu Z_{L}}{Z_{L}+\mathrm{r}_{a}+(\mu+1) \mathrm{Z}_{k}} \tag{1}
\end{equation*}
$$

(It is worth noting in passing that this is the gain which would be obtained with a valve having an anode slope impedance of $\mathrm{r}_{a}+(\mu+1) Z_{k}$. We make use of this fact if we want to increase the effective anode resistance of a triode so that it can be used as a constant current source. ${ }^{1}$) Now in the usual amplifier circuit of Fig. 2, Z_{k} takes the form of a cathode bias resistor \mathbf{R}_{k}, by-passed by a capacitor

SYMBOLS

valve amplification factor.

Z_{Z} load impedance.
\mathbf{r}_{a} valve anode slope resistance.
Z_{k} cathode circuit series impedance.
\mathbf{R}_{k} cathode circuit resistance.
C_{k} cathode by-pass capacitor.
ω angular frequency $2 \pi \mathrm{f}$, where f is the operating frequency.
\mathbf{R}_{L} load resistance.
g_{m}. valve mutual conductance.
I_{e} transistor emitter current.
I_{b} transistor base current.
I_{c} transistor collector current.
a transistor emitter to collector current gain.
Z_{1} base circuit series impedance.
$Z_{\text {e }}$ emitter circuit series impedance.
R_{e} transistor emitter resistance.
\mathbf{R}_{2} emitter circuit resistance.
C emitter by-pass capacitor,
\mathbf{R}_{1} base circuit resistance.
C. $_{6}$. Also the load Z_{L} takes the form of a resistor $\mathbf{R}_{l \text {. }}$. Therefore in this case the cathode circuit impedance can be written as:-

$$
\begin{equation*}
\mathbf{Z}_{k}=\frac{\mathbf{R}_{k}}{1+\mathrm{j} \omega \mathrm{C}_{k} \mathbf{R}_{k}} \tag{2}
\end{equation*}
$$

Fig. 1. Valve amplifier stage with cathode impedance $\boldsymbol{Z}_{\mathbf{k}}$.

Fig. 2. Valve stage with cothade bypass capocitor C_{k}.

Now if the values of Z_{k} and Z_{L} are substituted into equation (1), the gain becomes:-

$$
\frac{v_{o}}{v_{i}}=\frac{\mu \mathbf{R}_{L}\left(1+\mathrm{j} \omega \mathrm{C}_{k} \mathbf{R}_{k}\right)}{\left(\mathbf{R}_{L}+\mathbf{r}_{a}\right)\left(1+\mathrm{j} \omega \mathrm{C}_{k} \mathbf{R}_{k}\right)+(\mu+1) \mathbf{R}_{k}} .
$$

Equation (3) can be rewritten as:-

$$
\begin{align*}
& \frac{v_{0}}{v_{i}}=\frac{\mu \mathbf{R}_{L}}{\mathbf{R}_{L}+\mathrm{r}_{a}+(\mu+1) \mathbf{R}_{k}} \times \\
& \frac{1+j \omega C_{k} \mathbf{R}_{k}}{1+\mathrm{j} \omega \frac{\mathbf{C}_{k}}{\mu+1} \times \frac{\left(\mathbf{R}_{L}+\mathrm{r}_{a}\right)(\mu+1) \mathbf{R}_{k}}{\mathbf{R}_{L}+\mathrm{r}_{a}+(\mu+1) \mathbf{R}_{k}}} \tag{4}
\end{align*}
$$

Equation (4) is not really as complicated as it looks at first sight. The first term on the right:-

$$
\frac{\mu \mathbf{R}_{\mathbf{L}}}{\mathbf{R}_{L}+\mathbf{r}_{a}+(\mu+1) \mathbf{R}_{k}}
$$

should be compared with equation (1). It is the gain which would be obtained if the capacitor C_{k} was not there at all. Since in these circumstances Z_{k} would simply be equal to \mathbf{R}_{k}, the first term is completely independent of frequency. The second term on the right of equation (4) depends on the frequency, however, and
his term determines the frequency response of the implifier. The second term takes the form :-

$$
\frac{1+\mathrm{j} \omega \mathbf{C}_{k} \mathbf{R}_{k}}{1+\mathrm{j} \omega \mathrm{CR}}
$$

where

$$
\begin{equation*}
C=\frac{C_{k}}{\mu+1} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{R}=\frac{\left(\mathbf{R}_{l}+\mathbf{r}_{n}\right) \times(\mu+1) \mathbf{R}_{l k}}{\mathbf{R}_{l .}+\mathbf{r}_{a}+(\mu+1) \mathbf{R}_{l e}} \tag{6}
\end{equation*}
$$

The imaginary resistor R can therefore be thought of as formed from $\left(\mathbf{R}_{l .}+\mathbf{r}_{a}\right)$ in parallel with $(\mu+1) \mathbf{R}_{k}$ while the imaginary capacitor C is $(\mu+1)$ times smaller thin C_{k}.

Because of the presence of this frequency response term in the gain equation (4), we can see that the overall gain of the circuit of Fig. 2 is not independent of frequency. Instead, when the gain in decibels is plotted against the logarithm of frequency, a curve such as that of Fig. 3 is obtained. From equation (4) we can see that at very low frequencies, when ω is very nearly zero, the gain becomes:-

$$
\begin{equation*}
\frac{v_{0}}{v_{i}}=\frac{\mu \mathbf{R}_{\mathbf{L}}}{\mathbf{R}_{L}+\mathrm{r}_{a}+(\mu+1) \mathbf{R}_{k}} \tag{7}
\end{equation*}
$$

since the frequency response term equals one when $\omega=0$. On the other hand, at very high frequencies, when ω approaches infinity, equation (4) gives a gain of:-

$$
\begin{align*}
\frac{v_{0}}{\boldsymbol{v}_{i}} & =\frac{\mu \mathbf{R}_{\boldsymbol{K}}}{\mathbf{R}_{L}+\mathbf{r}_{a}+(\mu+1) \mathbf{R}_{k}} \times \frac{\mathbf{R}_{L}+\mathbf{r}_{a}+(\mu+1) \mathbf{R}_{k}}{\mathbf{R}_{L}+\mathbf{r}_{63}} \tag{8}\\
& =\frac{\mu \mathbf{R}_{L}}{\mathbf{R}_{l}+\mathbf{r}_{a}} \quad \cdots \quad \cdots
\end{align*} \cdots \quad \cdots,
$$

As might be expected, at high frequencies capacitor C_{k} removes the negative feedback, gain-reducing, influence of cathode resistor $\mathbf{R}_{k \text {. }}$. This is of course the reason for including C_{k} in the circuit in the first place.

Thus we know the low frequency gain and the high frequency gain. From equation (4) and Fig. 3 we also

Fig. 3. Voriation with frequency of valve stage gain.

Fig. 4. Transistor amplifier stage.

know the frequencies at which occur the "cut-off" points, where the characteristic curve departs by approximately 3 decibels from the low frequency and high frequency gain values. Now since capacitor C_{k} was added to increase the gain at any but the lowest frequencies, we are interested in the value f_{1} of the lowest frequency at which the capacitor is very effective in holding up the gain. From Fig. 3 it can be seen that this lowest frequency is given by:-

$$
\begin{equation*}
\omega_{1}=2 \pi \mathbf{f}_{1}=\frac{1}{\mathbf{C R}}=\frac{\mathbf{R}_{L}+\mathbf{r}_{a}+(\mu+1) \mathbf{R}_{k}}{\mathrm{C}_{k} \mathbf{R}_{k}\left(\mathbf{R}_{L}+\mathbf{r}_{a}\right)} \tag{10}
\end{equation*}
$$

Simply in order to make more sense out of equation (10), let us make the assumptions that $(\mu+1) \mathbf{R}_{k}$ is so much greater than $\left(r_{a}+R_{l}\right)$ that we can neglect the latter and also that r_{a} is so much greater than \mathbf{R}_{j} that we can neglect R_{L}. On the basis of these assumptions:-

$$
\begin{equation*}
\omega_{1} \approx \frac{\mu}{C_{k} r_{i}} \approx \frac{1}{C_{k} \times 1 / g_{m}} \tag{11}
\end{equation*}
$$

Thus, insofar as the assumptions are acceptable, the critical frequency below which the gain falls off fairly steeply depends on the relationship between the cathode by-pass capacitor value and the mutual conductance of the valve. The value of the cathode resistor is not very important in settling the required capacitor value. On the other hand the gain stops falling below a frequency f_{2} given by :-

$$
\begin{equation*}
\omega_{2}=2 \pi \mathrm{f}_{2}=\frac{1}{\mathrm{C}_{k} \mathbf{R}_{z}} \tag{12}
\end{equation*}
$$

This frequency is clearly very dependent on the value of \mathbf{R}_{k}. However, we are not normally very interested in the value of ω_{2}, our main interest is in the lowest frequency at which the capacitor is effective in maintaining the gain high, and this is determined by ω_{1}.

The argument so far is wide open to criticism in that some pretty wild assumptions have been made. In order to clear this up it will be as well to put a few typical values into our equations and to see what the numbers look like. Suppose we take a typical triode and operate it at -1 volt on the grid with an anode current of about 3.7 mA . Under these conditions r_{6} is $13.5 \mathrm{k} \Omega, g_{m}$ is $4 \mathrm{~mA} / \mathrm{V}$ and μ is 54 . Now suppose R_{L} is $39 \mathrm{k} \Omega$. In order to. obtain -1 volt of grid bias at 3.7 mA , a 270Ω cathode resistor \mathbf{R}_{k} is required. With these values :-

$$
\begin{align*}
& \mathbf{C R}=\mathbf{C}_{k} \times \mathbf{R}_{k}\left(\mathbf{R}_{L}+\mathrm{r}_{n}\right) \tag{13}\\
& \mathbf{R}_{L}+\mathbf{r}_{a}+(\mu+1) \mathbf{R}_{k} \\
&=\mathbf{C}_{k} \times 211 \Omega
\end{align*}
$$

Now g_{m} is $4 \mathrm{~mA} / \mathrm{V}$, so $1 / \mathrm{g}_{\mathrm{m}}$ is 250Ω and the approximation involved in equation (11) would give in this case a reasonable answer. However, also in this case \mathbf{R}_{k} is 270Ω so that the rule of thumb, which might be expressed as $\mathrm{CR}=\mathrm{C}_{k} \mathrm{R}_{k}$, is not too bad an approximation either. In fact, of course, the only reason that the rule of thumb works at all is that in most of our circuits \mathbf{R}_{k} is not terribly different from $1 / g_{m}$. However, suppose that we keep all conditions the same except that we make \mathbf{R}_{k} to a negative rail so that we can use a higher value of resistor. Can we then reduce the value of capacitor C_{k} without changing the cut-off frequency? Suppose that we increase R_{k} by nearly 40 times to $10 \mathrm{k} \Omega$, can we reduce the value of C_{k} by 40 times and yet still obtain the same cut-off frequency? To obtain the answer, we examine the value of CR in this case. On substituting the correct values, including the new value of R_{k}, into equation (13), we find that :-
$\mathrm{CR}=\mathrm{C}_{k} \times 873$
Thus we can indeed reduce the value of C_{n} without
changing the cut-off frequency, but only by about four times rather than forty times. If a rule of thumb is required, the only safe one is that the reactance of capacitor C_{k} should be low (say less than ten times) compared with $1 / g_{m}$, rather than compared with R_{k}, at the lowest operating frequency.

With valves at least the usual rule of thumb is satisfactory for use with normal amplifier circuits, even if this is just a lucky accident. What of transistor emitter by-pass capacitors, what value should they have? Here some people carry over the rule of thumb from valve circuits and say hopefully that the emitter by-pass capacitor should have a reactance of one tenth of the emitter resistor value at the lowest operating frequency. After our experience with the valve case, it will be as well to defer comment until the circuit has been analysed.

In the transistor circuit of Fig. 4, we can say without doubt that $\mathbf{I}_{e}=I_{b}+\mathbf{I}_{c}$. If required, Kirchhof can be invoked but it would seem to be common sense that what goes in must come out somewhere. In addition, let us make the assumption that $\mathrm{I}_{\mathrm{c}}=\alpha \mathrm{I}_{e}$, where α is a constant. This is an assumption which we can use safely at low frequencies with small signals as we can see from examination of the characteristic curves of a transistor. Accepting these two equations of operation, it is not too difficult to derive for the circuit of Fig. 4 an expression for the collector current I_{c} :-

$$
\begin{equation*}
I_{c}=\frac{\alpha V_{1}}{Z_{1}(1-\alpha)+Z_{e}} \tag{14}
\end{equation*}
$$

Now suppose that Z_{L} is a resistor R_{L}, Z_{1} is a resistor \mathbf{R}_{1} and \mathbf{Z}_{e} comprises a resistor \mathbf{R}_{2} in parallel with a capacitor \dot{C}, both in series with a resistor R_{e} as shown in Fig. 5. Thus :-

$$
\begin{equation*}
Z_{e}=\mathbf{R}_{e}+\frac{\mathbf{R}_{2}}{1+j \omega \mathbf{R}_{2}} \tag{15}
\end{equation*}
$$

By substituting the various component values into equation (14), we can obtain an expression for the voltage gain of Fig. 5.:-

$$
\begin{align*}
v_{v_{0}} & =\frac{I_{c} \mathbf{R}_{L}}{v_{i}} \\
= & \frac{\alpha \mathbf{R}_{L}}{\mathbf{R}_{1}(1-\alpha)+\mathbf{R}_{e}+\mathbf{R}_{2}} \times \\
& \frac{1+j \omega \mathrm{CR}_{2}}{1+j \omega C \frac{\mathbf{R}_{2}\left(\mathbf{R}_{e}+(1-\alpha) \mathbf{R}_{1}\right)}{\mathbf{R}_{2}+\mathbf{R}_{e}+(1-\alpha) \mathbf{R}_{1}}} \tag{16}
\end{align*}
$$

Equation (16) can be compared with equation (4). Once again there is a fixed term and a frequency dependent term, the latter having the form:-

$$
\frac{1+j \omega C R_{2}}{1+j \omega C R}
$$

where

$$
\begin{equation*}
\mathbf{R}=\frac{\mathbf{R}_{2}\left(\mathbf{R}_{e}+(1-\alpha) \mathbf{R}_{1}\right)}{\mathbf{R}_{2}+\mathbf{R}_{e}+(1-\alpha) \mathbf{R}_{1}} \tag{17}
\end{equation*}
$$

The imaginary resistor R can be thought of as a resistor R_{2} shunted by the series combination of R_{e} and $(1-\alpha) \mathrm{R}_{1}$. The frequency response obtained with the arrangement of Fig. 5 can be plotted as shown in Fig. 6. In this case :-

$$
\begin{equation*}
\omega_{1}=\frac{1}{\mathrm{CR}} \tag{18}
\end{equation*}
$$

so that the critical frequency is determined by :-

$$
\begin{equation*}
\mathbf{C R}=\mathbf{C} \frac{\mathbf{R}_{2}\left(\mathbf{R}_{e}+(1-\alpha) \mathbf{R}_{1}\right)}{\mathbf{R}_{2}+\mathbf{R}_{e}+(1-\alpha) \mathbf{R}_{1}} \tag{19}
\end{equation*}
$$

Usually $\mathbf{R}_{8}+(1-\alpha) \mathbf{R}_{1}$ will be small compared with \mathbf{R}_{2} and the former can therefore be ignored as a first approximation in the denominator of (19). On this assumption :-
$\mathbf{C R}=\mathbf{C}\left(\mathbf{R}_{8}+\left(1-{ }^{\circ}\right) \mathbf{R}_{1}\right)$

Fig. 5. Transistor stoge with emitter by-pass capacitor C.

Fig. 6. Variation with frequency of transistor stage goin.

Thus with the transistor circuit, the minimum frequency at which the emitter capacitor C is effective depends largely on $\mathbf{R}_{e}, \mathbf{R}_{1}$ and α rather than on \mathbf{R}_{20}. The reactance of capacitor \mathbf{C} should therefore be smali compared with $\mathrm{R}_{e}+(1-\alpha) \mathrm{R}_{1}$ at the lowest operating frequency in order to reduce the amount by which \mathbf{R}_{2} causes the gain to be reduced, even though \mathbf{R}_{1} is not in the emitter circuit.

Once again, the insertion of a few typical numerical values will make the position clearer. Suppose that $\mathbf{R}_{\mathrm{e}}=20 \Omega, \mathbf{R}_{2}=1 \mathrm{k} \Omega, \mathbf{R}_{1}=10 \mathrm{k} \Omega$ and $\alpha=0.99$,
then $\mathbf{R}=\frac{1000 \times(20+10,000 \times 0.01)}{1000+20+10,000 \times 0.01}=107 \Omega$
This value is much nearer to $\left(R_{e}+(1-\alpha) R_{1}\right)=120 \Omega$ than it is to $R_{2}=1 \mathrm{k} \Omega$, though if instead we happen to be using a value of \mathbf{R}_{2} in the region of 100Ω then the old rule of thumb would give a reasonable answer. Unfurtunately a value of R_{2} as low as 100Ω would be likely to lead to thermal problems in many cases.

Thus the old rule of thumb should be used with caution, if it is used at all, in either valve or transistor circuits. However, it is always safe to say that the by-pass capacitor reactance at the lowest operating frequency should be low compared with $1 / g_{m}$ in the valve case and with $\left(R_{e}+(1-\alpha) R_{1}\right)$ in the transistor case. It is interesting to note that the base series resistance R_{1} has a large effect on the temperature stability of a transistor stage as well as on the frequency response.

REFERENCE

1. Young, J. F., A Transistor Characteristic Curve Tracer ${ }^{\text {B }}$ Electronic Engineering, Vol. 31, p.330, 1959.

MANUFACTURERS' PRODUCTS

NEW ELECTRONIC EQUIPMENT AND ACCESSORIES

Plug-in Sampling Unit

A NEW plug-in unit that converts the existing 530,540 and 550 series of Tektronix oscilloscopes into d.c. to $1 \mathrm{Gc} / \mathrm{s}$ sampling scopes is announced by Tektronix UK Ltd., of Beaverton House, Station Approach, Harpenden, Herts. Known as the 1 S1 plug-in, it has internal triggering facilities that extend to over $1 \mathrm{Gc} / \mathrm{s}$, calibrated sweep speeds from $0.1 \mathrm{nsec} / \mathrm{cm}$ to $50 \mu \mathrm{sec} / \mathrm{cm}$ and a unique "time magnifier" which allows any part of the display to be magnified up to 100 times horizontally without reducing the display dot density. The sweep speed, even when magnified, is read directly from a single knob.

Calibrated vertical sensitivities range from 2 to $200 \mathrm{mV} / \mathrm{cm}$ and a d.c. offset control is provided which allows millivolt signals to be observed in the presence of up to ± 1 volt input levels. Provision is also made for driving $\mathrm{x}-\mathrm{y}$ and y-t chart recorders.
sww 301 for further detalls

Power Units for Logic Systems

A MODULAR unit for powering digital logic systems is being offered by Standard Telephones and Cables Ltd. Operating from $210-250 \mathrm{~V}, \quad 50-60 \mathrm{c} / \mathrm{s}$ supplies, it provides 1 A at 24 V d.c. and 0.5 A at -6 V d.c. Separate voltage controls are provided and allow adjustment from 20.6 to 27.6 V on the 24 V rail and from -5 to -7 V on the -6 V rail.
The long and short term stability of the Type 19G power unit over the entire load range-and for 20% input variation-is better than 250 mV on the 24 V rail and better than 60 mV on the -6 V rail. The maximum ripple voltage is quoted to be 1 mV r.m.s. and protection is provided against accidental overload by means of a semiconductor current-limiting circuit. Both rack mounting and bench mounting versions of the Type 19G power unit are available from Electronic Services, S.T.C., Edinburgh Way, Harlow, Essex.
5WW 302 for further details

Small Industrial Relay

A COMMERCIAL version of the Clare Type F "crystal can" relay is announced by Clare-Elliott Ltd., a mem-

ber of the Elliott-Automation Group.

 This small two-pole relay designated CF is primarily intended for computer and machine tool applications, and has been tested at speeds up to $30 \mathrm{c} / \mathrm{s}$ for 10 million operations without failure.Sensitivity is 300 mW and maximum operate and release times is claimed to be 5 msec . Other specification details include a typical contact resistance of 25 milliohms (75 maximum) and contact ratings of 28 V d.c. resistive at $3 \mathrm{~A}, 115 \mathrm{~V}$ a.c. resistive at 1 A and 88 V d.c. inductive at 1 A .

The company's address is 70 Dudden Hill Lane, Willesden, London, N.W.İ.
5 WW 303 for further details

Type $|5|$ plug-in sompling unit for existing Tektronix oscilloscopes.

S.T.C. Type 19G power unit provides dual outputs suitable for driving onalogue/digitol converters and system logic circuits.

Spark Erosion Machine

A SMALL spark erosion machine suitable for machining extremely small components is announced by the South London Electrical Equipment Company, of Lanier Works, Hither Green Lane, London, S.E.13. This machine, known as the Arcotron, uses a dielectric liquid to reduce the distance between the cutting electrode and the workpiece. This allows a practical working voltage to be used and also serves to cool the operation and by flushing, to carry away the enosion products from the gap.
The Arcotron is capable of cutting slots down to approximately 0.00035 in

Small industrial reloy, Type CF, from ClareElliott Ltd.

Precision spark eroder for use in the manufacture of micro-minioture components and apporatus. It is being made by the South London Electrical Equipment Compony.
wide and alignment is to approximately 0.00002 in . A surface finish of approximately 3 microns is obtainable with this bench-mounted machine. Spark rate is about $1 \mathrm{Mc} / \mathrm{s}$.

Applications for this machine in the electronics industry have so far been in the manufacture of evaporation masks, thin film resistor patterns and microwave components such as millimeter wavelength reflex klystrons.

5WW 304 for lurther details

" Broadcast" Vidicons

THE range of separate mesh one-inch vidicons manufactured by the English Electric Valve Company has been $\mathrm{e} \hat{\mathrm{x}}$ tended with the introduction of two new uniţs having high peak response in tine "blue" region of the spectrum. Entirely new photo-surfaces have been incorporated in these tubes, the 8625 (P846) and 8626 (P847), which give high resolution at high signal currents, correct panchromatic response with tungsten illumination, low lag and rediuced long term sticking characteristics, and a very high and uniform sensitivity. The improved features have resulted in new manufacturing techniques whereby the photo-surfaces are "prefabricated" to ensure an overall even deposition. The extra blue sensitivity has. also been found to improve considerably the signal to noise ratio in colour television cameras, While the 8625 (P846) has the standard $6.3 \mathrm{~V} / 0.6 \mathrm{~A}$ heater. the other tube has a low consumption $6.3 \mathrm{~V} /$ 0.095 A heater.

```
5WW 305 for further details
```


General-purpose Bridge

AN instrument containing a resistancecapacitance bridge, a resistance-capacitance-inductance comparator, a capacitance leakage/inductance-resistance analyser, a d.c. valve voltmeter and a d.c. valve ammeter has been introduced by the EICO Electronic Instrument Co. Inc., of 131-01 39th Avenue, Flushing, New York 11352. Called the

EICO 965 FaradOhm Bridge Analyser, this instrument is suitable for measuring resistance from 0.5Ω up to $500 \mathrm{M} \Omega$ (insulation resistance up to $100,000 \mathrm{M} \Omega$) and capacitance from 5 pF to $5,000 \mu \mathrm{~F}$. The internal supply to the bridge is only 0.45 V a.c. (at line frequency) which allows the instrument to be used for testing very low voltage components. An external voltage at a higher frequency and/or voltage may also be used, and an external polarizing voltage may be applied if required.

The six-range valve voltmeter and eleven-range valve ammeter-required for capacitance leakage/inductanceresistance analysis-may be used externally. The full scale voltage ranges cover 1.5 to 500 V d.c. with an input impedance of $10 \mathrm{M} \Omega$ on all ranges. Current range, full scale, is from 150 nA to 15 mA and the full scale voltage drop on all ranges is 75 mV .

The price of this instrument in the United States is $\$ 129.95$.
5WW 306 for further defalls

Transistor Tester

AVAILABLE either as a kit of parts or ready made is the new Heathkit Model IM-30U transistor tester. It provides facilities for testing most $\mathbf{p}-\mathrm{n}-\mathrm{p}$ and n -p-n transistors and has a $15 \mu \mathrm{~A}$ basic range for leakage measurements. Tests up to 9 volts are effected from internal batteries and provisions are made for connection to external supplies for higher voltage and current tests. The Model IM-30U costs $\dot{£} 2418 \mathrm{~s} 0 \mathrm{~d}$ in kit form and $£ 3510 \mathrm{~s} 0 \mathrm{~d}$ assembled and is available from Daystrom, of Gloucester.
5ww 307 tor further detalls

Small Closed-circuit Camera

ONLY $4 \frac{1}{2}$ inches long and weighing under two pounds is the new alltransistor closed-circuit television camera developed by EMI Electronics Ltd., of Hayes, Middx. The camera

INFORMATION SERVICE FOR PROFESSIONAL READERS

To expedite requests for further information on products appearing in the editorial and advertisement pages of Wireless World each month, a sheet of reader service cards is included in this issue. The cards wIII be found between advertisement pages 16 and 19.

We invite. readers to make use of these cards for all inquiries dealing with specific products. Many editorial items and all advertisements are coded with a number, prefixed by 5 WW , and it is then necessary only to enter the number(s) on the card.

Readers will appreciate the advantage of being able to fold out the sheet of cards enabling them to make entries while studying the editorial and advertisement pages.

Postage is free in the U.K. but cards must be stamped if posted overseas. This service will enable professional readers to obtain the additional information they require quickly and easlly.
can operate on 405,525 and 625 line standards and changing from one to another is achieved simply by pressing a button. The camera head equipment is contained in two sealed stainless-steel cylinders, each $4 \frac{1}{2}$ in long and of 1.7 in diameter. The lens head unit, which is fitted with a half-inch vidicon tube, can be up to 100 ft away from the amplifier head unit and is joined to it by cable. Camera control unit and other units comprising the camera channel can be up to $1,000 \mathrm{ft}$ away.
5ww 308 . Ior further details

Counter-timers

THE $3 \mathrm{Mc} / \mathrm{s}$ universal counter-timers (Types TM51B and TM51C) introduced last year by Levell Electronics Ltd. are now being produced under a revised specification which increases their top counting frequency to $6 \mathrm{Mc} / \mathrm{s}$. The sensitivity figures are also revised and are as follows: 35 mV up to $300 \mathrm{kc} / \mathrm{s}$, 100 mV at $3 \mathrm{Mc} / \mathrm{s}$ and 300 mV at $6 \mathrm{Mc} / \mathrm{s}$. The ageing rate of the crystals has also been improved and now is 2 parts in $10^{6} /$ week for the TM51B and 3 parts in $10^{7} /$ month for the TM51C.
Both instruments are portable, have five-digit displays and differ only in the stability of the internal $1 \mathrm{Mc} / \mathrm{s}$ crystal reference standard. No change is to be made to the type numbers, or the price of the instruments which is $£ 275$ for the Type TM51B and £295 for the TM51C. The company's address is Park Road, High Barnet, Herts.
sww 309 for further detalls

Klystron Power Supply

A SOLID-STATE power supply has been developed for medium-power klystrons by Microtest Ltd., of 9 Old Bridge Street, Kingston-upon-Thames, Surrey. It offers a fixed, regulated 300 volt output to drive the cathode (resonator), a continuously variable 0 to -300 volt output for the reflector and a 6.3 volt a.c. output for heaters. Current ratings are from zero to 50 mA , zero to $500 \mu \mathrm{~A}$ and 2 A respectively.

The reflector supply can be internally square wave amplitude modulated at frequencies between 900 and $4,000 \mathrm{c} / \mathrm{s}$ or externally frequency modulated by means of sawtooth waveforms or sinewaves. Amplitude of the internal modulation is 200 volts, and is provided by a- valve circuit.

```
5WW 310 for further details
```


Voltage Amplifier \& Charge Amplifier

TWO new signal conditioning devices for piezoelectric accelerometers, a Type 1-302 voltage amplifier and a Type 1-

303 miniature charge amplifier, are announced by the Consolidated Electrodynamics Division of Bell and Howell Ltd., of 14 Commercial Road, Woking, Surrey. Two standard models of the voltage amplifier are available. One is equipped with a voltage limiter and an adjustable voltage control oscillator reference supply, and the other contains an augmenter (power amplifier) that can drive several hundred feet of cable or very low load impedances (down to 1,200) without distortion of the signal.
The Type 1-303 charge amplifier is the first of a series to be introduced by Consolidated. It features low power drain, wide frequency response $(5 \mathrm{c} / \mathrm{s}$ without the requirement of a long time constant), good stability under extreme environmental conditions, and low output impedance.

Transistors are used in the voltage amplifiers, which weigh 45 grams, and in the charge amplifier which weighs 25 grams.
5Ww 311 for further detalls

Push-Button Reed Switches

A NEW push-button reed switch providing complete separation between the mechanical and electrical functions is being manufactured by Highland Electronic's Ltd., of 26-28 Underwood Street, London, N.1. A cylindical magnet connected to the end of the push-button is used to operate a pair of reed switches which are individually encased in glass tubes and mounted in p.v.c. shock absorbers on the outer part of the assembly.

The standard switch is supplied with two make contacts, however, other configurations can be supplied such as two break, one make and one break, and two changeover. The d.c. contact rating varies from 0.5 to 10 watts according to the construction and the type of contact used.

The operating time of the switch, which the makers claim is independent of the speed of operation of the pushbutton is approximately $500 \mu \mathrm{sec}$. Release time is a few microseconds. The magnets in these switches are not demagnetised or influenced by normal stray fields and do not require magnetic shields. At full rating, the life span is 10^{7}. The approximate dimensions are 2.316 in long by $\frac{3}{4}$ in diameter. Maximum weight is 2 oz .
5 WW 312 for further details

"Domestic" Transistors

SEVERAL new transistors have recently been introduced by Mullard Ltd. for domestic receivers, including a series with the trademark TVistor. So far there are four transistors in the TVistor

A new photo-surface material has been used on two new one-inch separate-mesh vidicons from the English Electric Valve Company.

EICO Model 956 FaradOhm Bridge Analyser.

Small television camera made by EMA Electronics Lid. for closed-circuit applications. The head amplifier for the camera is hqused in the rear stainless-steel container.

Right: Universal counter-timer Type TMSIC with a top counting frequency of $6 \mathrm{Mc} / \mathrm{s}$ (Levell Electronics Ltd.).

Heathkit Madel IM-30U transistor tester from Daystrom Led.

Right: Microtest Type 700 klystron power supply.

Left: Voltage amplifier and charge amplifier produced by Consolidated Electrodynamics for use with piezoelectric accelerometers.

TVistar series of "ransistors Mullard's have introduced especially for domestic television applications.

Fluke Model $540 B$ thermal transfer standard. Thermal reversal error is less than 0.01% of input.

Model EMT 125 low-frequency millivoltmeter (Elektromesstechnik Wilhelm Franz KG).

Twenty-four contact printed circuit boord edge connector (Ferronti Ltd.).
series: AF186, an amplifier and selfoscillating mixer for u.h.f. tuners; AF180, an amplifier for v .h.f. tuners; AF178 a mixer/oscillator for v.h.f. tuners; AF181 and AF179, which are both vision i.f. amplifiers.

The AF186 is an alloy-diffused transistor and can be controlled with forward a.g.c. to give improved signalhandling whilst retaining a low voltage standing wave ratio at the aerial input. The AF178 and AF180 are germanium alloy-diffused transistors and a typical noise figure of 5 dB and a gain figure of 18 dB is quoted for the AF 180 which, incidentally has a control range with attenuation of 40 dB . The remaining two transistors, the AF179 and AF1S1 provide power gains of 75 to 80 dB in typical i.f. stages. The AF181 is primarily intended for use in the first stage of i.f. amplifiers (or as a second stage in a three-stage unit) where adequate gain control is necessary if maximum signal-to-noise ratio is to be achieved. Hence the AF181 has a large control range-greater than 50 dB . The companion transistor, the AF179 is particularly suitable as an output device as it is able to maintain a constant gain at high current levels and has high dissipation characteristics. It also features low bottoming (voltage) at high frequencies.
A line-output transistor designated AU103 and a silicon efficiency diode BY118-both intended for use in con-
junction with the A28-13W eleven-inch television picture tube-have been developed by Mullard's for portable television applications. The transistor has a collector-emitter voltage rating of 155 volts and a collector current rating of 10 A with fast turn-off characteristics. Fast switching is also claimed for the diode which has a reverse voltage rating of 300 V and a current rating of 14 A .

Mullard's have also recently produced a new r.f. transistor which they claim will make possible a reduction in the number of i.f. stages in a.m. and f.m. receivers. This silicon epitaxial planar device, designated BF115, is suitable for use up to $100 \mathrm{Mc} / \mathrm{s}$-noise level at this frequency is about 3.6 dB -and has a high forward gain coupled with a low value of feed-back capacitance. A figure of not greater than 0.7 pF is quoted for a collector-to-emitter voltage of 10 V . Other features of this device include good a.g.c. performance, high resistance to voltage surges, a $\mathrm{V}_{\mathrm{cl} 1}$ rating of 50 V and a knee voltage of less than 1 V at 10 mA .

5WW 813 for further detalls

Low-frequency Millivoltmeter

A NEW high-stability millivoltmeter that can also be used as a laboratory measurement amplifier is announced by the German manufacturers Elektro-
messtechnik Wilhelm Franz KG, whose address is 763 Lahr/Schwarzwald, Kaiserstrasse 80. Designated EMT 125 , it covers 1 mV to 300 V (f.s.d.) in twelve ranges and has an input impedance of 1 MO . The output impedance in the amplifier mode is 4Ω.

Transistors are used throughout the EMT 125, which conforms to the DIN 45402 specification. The instrument is fully protected against accidental overloading and bursts of h.f. The upper cut-off frequency of the EMT 125 is $200 \mathrm{kc} / \mathrm{s}$ but, by switching, this may be reduced to $20 \mathrm{kc} / \mathrm{s}$.
5ww 314 for further detaits

A.C.|D.C. Comparator

AN instrument for accurate a.c. voltage and current measurement using therma! transfer techniques is being made by the John Fluke Manufacturing Co. Inc. Called the Model 540B thermal transfer standard, it has fourteen voltage ranges covering 0.25 to $1,000 \mathrm{~V}$ r.m.s., with a frequency range of $5 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$ and an input impedance of $\mathbf{1 8 2} \mathbf{~ o h m s} /$ volt of input.

Withour the use of calibration curves or correction tables, the basic a.c. to d.c. transfer accuracy is $\pm 0.01 \%$. The transfer is achieved by means of a specially constructed vacuum thermocouple which, incidentally, is protected against overload. Each input range may be used

Five-watt transistor local oscillator unit designed to operate at $2 \mathrm{Gc} / \mathrm{s}$. This unit is part of the new G.E.C. range of transistor microwove communications equipment.

Heothkit reflected power meter and v.s.w.r. bridge Type HM-IIU.
to measure voltages from $\frac{1}{2}$ to 1 times the range setting; maximum galvanometer resolution varies between 0.0012% of input per scale division at 1 times to 0.006% of input per scale division at $\frac{1}{2}$ of range setting.

A series of thirteen shunts are available for the 540 B and allow precision current measurements from 2.5 mA to 10 A a.c. The basic accuracy is $\pm 0.03 \%$ and the frequency range is from $5 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$.

Nine high-frequency thermal convertors are also available for the 540 B and extend the frequency range of the instrument to $50 \mathrm{Mc} / \mathrm{s}$. One is provided for each voltage range from 0.5 to 50 V and may be used at $\frac{1}{2}$ to 1 times the rated voltage.

This instrument is available in the United Kingdom through Livingston Laboratories Ltd., of 31 Camden Road, London, N.W.I.
sww 315 for further details

Printed Circuit Board Edge Connectors

A SELECTION of single- and double: sided printed circuit board edge connectors is available from Ferranti Ltd., of Kings Cross Road, Dundee. Contact sizes range from 8 to 40 in multiples of 8 . The spacing between contacts is 0.150 in and the d.c. working voltage is

Low frequency signal generotor introduced by Linstead Electronies Ltd.

450 V . The current capacity of each pole is one amp.

Polarizing keys are provided which may be inserted into any of the pole positions without removal of, or damage to, the contact concerned. The contacts are of phosphor bronze and the actual contact area is gold-plated to a depth of 0.0002 in .
5ww 316 for further details

Low-frequency Signal Generator

 COVERING the frequency range $10 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$ in four switched ranges is the Model G1 generator from Linstead Electronics Ltd., of 35 c Newington Green, London, N.16. This unit, which operates from the mains, provides up to 6 V r.m.s. sine wave output, up to 9 V p-to-p square wave output, and up to one watt at three ohms over the frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. The G1 measures $8 \frac{1}{4} \times 6 \frac{1}{2} \times$ 6 in , weighs $7 \frac{1}{2} \mathrm{lb}$ and costs $£ 20$.
5Ww 317 for further details

Transistor Microwave Equipment

MICROWAVE communications equipment using transistors throughout is being manufactured by G.E.C. (Telecommunications) Led., of Coventry. So far G.E.C. have two units in production, one suitable for main trunk routes and
will carry 960 speech circuits-or a television channel-in the frequency bands 1.7 to $1.9 \mathrm{Gc} / \mathrm{s}$ and 1.9 to $2.3 \mathrm{Gc} / \mathrm{s}$. Auxiliary equipment for this two-watt link has also been transistorized.

A capacity of 300 speech channels is provided by the second unit, which operates between 7.4 and $7.7 \mathrm{Gc} / \mathrm{s}$. This equipment is suitable for spur applications and a feature is that any part of the baseband may be dropped and reinserted at any repeater station without demodulation of through circuits.
5ww 318 for further defalls

Rotary Switches

MODULAR rotary switches introduced in the United States a few months ago by the Oak Electro/netics Corporation, are now being made-up by the British subsidiary Diamond H Controls Ltd. This series of switches, designated Moduline, gives the design engineer a wide range of variables, as follows: 6 different switch sizes; 101 different sections; choice of up to 24 positions; 6 different shaft ends; 24 options of flat angle; 1 choice of bushing; 2 locating key positions; 383 variations of the complete assembly; 5 choices of detent angle, depending on the type of switch; and 24 different shaft lengths.

The address of Diamond H Controls Ltd. is Vulcan Road, Norwich, NOR 85 N .
5WW 319 for further details

Reflected Power Meter \& V.S.W.R. Bridge

AN inexpensive instrument that can be used to indicate percentage forward and reflected power, and voltage standing wave ratio is announced by Daystrom Ltd., of Gloucester, in the form of the Heathkir Model HM-11U: Although designed primarily for use with amateur radio transmitters, this instrument has an r.f. power handling capability of 1 kW and may be suitable for some commercial applications. The input and output impedance of the Model HM11 U is 75Ω and the band coverage is from 160 to 2 metres (2 to $150 \mathrm{Mc} / \mathrm{s}$). Insertion loss from 160 to 10 metres is less than 1% and less than 10% up ro 2 metres.

This instrument measures $4 \frac{5}{5} \times 7 \frac{3}{3} \times$ $4 \frac{1}{16}$ and weighs $2 \frac{1}{2} \mathrm{lb}$. Assembled, the price of the Model HM-11U is $£ 1010 \mathrm{~s} 0 \mathrm{~d}$ and in kit form it costs £8 5s 0d.
sww 320 lor further details

High-power S.S.B. Tetrode

ABLE to develop a load power of 1 kW , the new Mullard YL 1230 tetrode utilizes

Mullard YL. 1230 metal-ceramic tetrode for s.s.b. applications at frequencies up to $200 \mathrm{Mc} / \mathrm{s}$.

Metal oxide resistor kit from Electrosil Lid.
metal-ceramic techniques to ensure optimum stability, high gain and low distortion, and is suitable for single sideband applications. At 1 kW output level -40 dB can be achieved without the use of r.f. feedback.

Typical s.s.b. operating conditions for the YL1230, which is suitable for use at frequencies up to $200 \mathrm{Mc} / \mathrm{s}$, are as follows: $\mathrm{Va} 2.5 \mathrm{kV} ; \mathrm{Vg}_{2} 250 \mathrm{~V}$; $-\mathrm{V}_{5}$ -50 V ; Ia 600 mA ; and p-e-p output of 1.2 kW .
sww 321 for lurther details

Metal Oxide Resistor Kit

A METAL oxide resistor kit containing thirty values of resistor, each with three ratings (general purpose, highstability and semi-precision) has been introduced by Electrosil Ltd., of Pallion, Sunderland, Co. Durham. The kit is housed in a cabinet measuring $14 \times 12 \times$ 5 in and normally covers the E6 range of preferred values, but special combinations ' ${ }^{\text {f }}$ resistance values can be supplied to order. The resistors are

S.T.C. Type 74251 millivoltmeter introduced for general purpose and telecommunications use.
qualification approved to DEF 5114A and have Post Office approval to D.2228A. Stability of all resistors is 0.5% at semiprecision rating, 1% at high-stability rating, and 2% at general purpose rating. Standard tolerances are $5 \%, 2 \%$ and 1%.

5WW 322 for further details

Differential Amplifier Transistors

TWO isolated high-gain, low-noise silicon planar transistors housed in a microminiature encapsulation about 150 times smaller than a TO-5 transistor can are being manufactured by the National Semiconductor Corporation. The two transistors in the block, designated NS7070, have a d.c. beta of 100 and are matched to within $\pm 10 \%$; the baseemitter voltages differ by less than 5 mV . The change in base-emitter voltage differential with temperature is $10 \mu \mathrm{~V}$ per degree Centigrade from -55 to $+125^{\circ} \mathrm{C}$, when the collector voltage is 5 V and current is $10 \mu \mathrm{~A}$. Connections to the block, which measures $0.080 \times$ $0.065 \times 0.065 \mathrm{in}$, are by 0.005 in wires that can be soldered or welded.

These silicon blocks are handled in the United Kingdom by Walmore Electronics Ltd., of 11-15 Betterton Street, Drury Lane, London, W.C.2.
.5ww 323 for further details

Millivoltmeter

A NEW general purpose a.c. millivoltmeter, covering $0-1 \mathrm{mV}, 0-3 \mathrm{mV}$ up to 30 V f.s.d. in ten ranges, is announced by the Transmission Testing Apparatus Division of Standard Telephones and Cables Ltd., Corporation Road, Newport, Mon. An active probe is employed with the new 74251 millivoltmeter, making it suitable for use in the
frequency range $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{Mc} / \mathrm{s}$. Input impedance is greater than $100 \mathrm{k} \Omega$ in parallel with 40 pF .
An easy-to-read meter display containing two r.m.s. voltage scales and a decibel scale for use with 75 -ohm circuits is provided and all the switching functions, including range, are by push-button. This portable, transistorized instrument may also be used as a bridge detector, and its calibrating oscillator can be used to supply approximately $100 \mathrm{kc} / \mathrm{s}$ at 300 mA for external use. The internal amplifer may also be used for external applications.

5 WW 324 for further details

Tunable Magnetrons for Frequency Diversity Radar

TWO tunable magnetrons designed to provide the controlled frequency jumping required by diversity radar systems are announced by Mullard Ltd. These magnetrons, which have been designated JPS 9-80 and JPS9-200, operate in the frequency range 8.5 to $9.5 \mathrm{Gc} / \mathrm{s}$ and are runed by a high-speed spinning tuner mounted in a specially designed resonant cavity. This provides a "failsafe" arc-free type of tuning and is driven by a simple servo-motor. The system covers $450 \mathrm{Mc} / \mathrm{s}$ in $500 \mu \mathrm{sec}$ in a quasi-sinusoidal manner.
This type of drive which utilizes the fringe fields of the magnetron magnet is said to avoid the inherent life limitations of the slower, hydraulic systems and the life of the units is dependent only on the cathode life-as with fixed frequency magnetrons. They are also considerably smaller than the hydraulically tuned magnetrons or the highpower klystrons of the type normally used in the local oscillator power amplifier chain of a radar system. They are in fact only slightly larger than the fixed frequency types. The smaller of the two, the JPS9-80, weighs 8 lb and has a minimum output power rating of 70 kW , while the other weighs 15 lb and is rated at 200 kW .
These spin-tuned magnetrons may be used at fixed or programmed pulse repetition rates with a variation in output frequency, or at fixed or programmed frequencies with a variation in repetition rate. The smaller of the two is now in production and development samples of the JPS9-200 are available
5WW 325 for further detalls

Airmec

The upper limit of the frequency range of the Airmec Type 298 counter advertised on page 77 of our April issue is $100 \mathrm{Mc} / \mathrm{s}$, not 50 , as stated in error.

WORLD OF WIRELESS

Colour Television Deadlock

THERE now seems little likelihood of an internationally agreed standard for colour television. The two-week meeting in Vienna of the C.C.I.R. television study group, which was attended by some 200 delegates from 45 countries, ended with a majority vote for SECAM (22) with PAL second (11) and N.T.S.C. third (6). It now remains to be seen whether any countries will introduce a service using the system of their choice, although the C.C.I:R. statement at the conclusion of the meeting said efforts to secure agreement on a single system must continue and the subject will be examined again at its plenary assembly in Oslo in 1966.

The countries voting for the three systems were:-
SECAM:-Algeria, Argentina, Bulgaria, Byelorussia, Cameroon, Crechoslovakia, France, Gabon, Greece, Hungary, Luxembourg. Mali, Monaco, Morocco, Niger, Poland, Rumania, Spain, Tunisia, Ukraine, Upper Volta and U.S.S.R.
PAL:-Austria, Denmark. Finland, Iceland, Ireland, Italy, New Zealand, Norway, Sweden, Switzerland and West Germany.
N.T.S.C.:-Brazil, Canada, Japan, Netherlands, U.K. and U.S.A.

Six countries abstained:-Australia, Belgium, Pakistan, South Africa, Turkey and Yugoslavia.

With no decision made at Vienna, zhere is opportunity for further evaluation of existing and new systems (see, for example, p. 210). A statement by the Postmaster General that the implications of Vienna must be fully considered before a date can be fixed for introducing colour in Britain suggests that the U.K. is not necessarily committed to N.T.S.C. Within days of the end of the conference the Television Advisory Committee met to discuss the situation. Engineering thinking within the I.T.A. and the programme companies, now appears to be favouring PAL.

Cylindrical steel mast at Winter Hill, near Bolton, Lancs, which will carry the aerials for both the B.B.C. and I.T.A. transmitters. It is $1,015 \mathrm{ft}$ tall. The lattice section (above 650ft) will support the aerials which will be enclosed in curved glass-fibre sheets thus keeping a cylindrical shape for the whole mast. The aerials are being supplied by E.M.I. Electronics and the mast by B.I. Collender's Construction Co. A similar most, but $1,265 f t$ tall, is being built at Emley Moor, Yorks.

Component Industry's Balance of Trade

ALTHOUGH the overali 1964 import-export figures for the component industry given in the 32 nd annual report of the Radio \& Electronic Component Manufacturers' Federation show a credit balance (exports $£ 58.7 \mathrm{M}$, imports $£ 24.2 \mathrm{M}$) certain products show an adverse balance of trade. For example, the value of exported transistors and semiconductor devices is given at $£ 2 \mathrm{M}$ (a 5% decrease on 1963) compared with imports of $£ 5.3 \mathrm{M}$ (a 56% increase). Exports of valves, c.r. tubes and parts increased by only 3% to $£ 9.6 \mathrm{M}$, whereas imports went up by 27% to $£ 7.6 \mathrm{M}$. Capacitor and resistor exports totalled $£ 3.2 \mathrm{M}$ although imports stood at $£ 4.3 \mathrm{M}$. It should be stressed however that neither the export nor import figures take account of components used in complete gear.

As in recent years, there were three main sources of component imports, the Netherlands ($£ 3.2 \mathrm{M}$), the U.S.A. (£3M) and West Germany ($£ 2.4 \mathrm{M}$), which together accounted for 77% of the world total. The principal markets for British components were South Africa ($£ 2 \mathrm{M}$), Sweden ($£ 1.9 \mathrm{M}$), India ($£ 1.8 \mathrm{M}$), Netherlands ($£ 1.8 \mathrm{M}$) and Finland ($£ 1.7 \mathrm{M}$).
The R.E.C.M.F. Report also refers to the plans made for the setting up of a European committee for co-operation between component manufacturers' associations in Belgium, France, W. Germany, Italy, the Netherlands and the U.K. The title chosen for the organization is the Committee of European Passive Electronics Component Manufacturers' Associations (C.E.P.E.C.).

Radio Astronomy: Fleck Committee Report

FOR just over three years the Radio Astronomy Planning Committee, set up by the Government under the chairmanship of Lord Fleck, has been considering the probable future developments in radio astronomy. The twelve-man committee* has been considering in particular the proposals for new and large radio telescopes for which Government aid is likely to be required, the best ways of providing and operating them and the question of international co-operation in the field of radio astronomy.

The commirtee's report has now been issued in which it pays tribute to the work of British radio astronomers, particularly the teams led by Hey at R.R.E., Lovell (Manchester)

[^2]and Ryle (Cambridge), and recommends that "as a matter of policy for at least the next eight years, the U.K. should press forward with research in radio astronomy at the existing centres giving it generous treatment."
The committee draws attention to the danger of electrical and radio interference which could severely restrict the use of the existing and planned radio telescopes at Jodrell Bank, Cambridge and Malvern, and appeals for the continued cooperation of the appropriate planning authorities in safeguarding this work because they regard it as of national scientific moment.

Space Science Laboratory

HOLMBURY HOUSE, a Victorian mansion near Dorking, Surrey, has been purchased by University College, London, and will be equipped as an outstation of the Physics Department and be devoted to space science research. The purchase
has been made possible by a gift of $£ 65,000$ from the Mullard Company and the centre will be known as the Mullard Space Science Laboratory. It will be headed by Professor R. L. Boyd who will initially have a staff of 50 when the laboratory is opened at the beginning of the next academic year (October).

Scientists at the Laboratory will be engaged both on the planning and design of experiments using instruments to be carried in satellites or rockers, and on the subsequent analysis of information reccived from these flights, together with related laboratory studies. The teams research programme for the next three years plans to utilize eight satellites-two from the European Space Research Organization (ESRO) and the remainder from America. It will also be employing a large number of high-altitude research rockets. One was recently launched (using a "Skylark" from. Sardinia under ESRO auspices to investigate electron temperature in the ionosphere at altitudes between 90 and 170 km .

More BBC-2 Stations:-By the end of this year five more major BBC-2 stations will be brought into service, making seven in all. The locations, transmitter characteristics, and opening dates are: Wenvoe, Glam (channel 51 , e.r.p. 500 kW) opening Sept. 12th; Winter Hill, Lancs (62/500) Oct. 17th; Emley Moor, Yorks. $(51 / 1000)$ Oct. 17th; Rowridge, I.o.W. (24/500) Nov. 14th; and Black Hill, Lanarks (46/500) Dec. 12th. The permanent 1000 kW transmitter at Sutton Coldfield, Warks., on channel 40, will begin operating on October 4th. All these u.h.f. transmitters will use horizontal polarization.

Stereo Transmissions.-As a result of the extension of the B.B.C's Third Network Music Programme into the afternoons, the experimental pilot-tone stereophonic transmissions from Wrotham three afternoons a week have been discontinued. Instead, pilot-tone stereo items are being included as part of the Music Programme transmissions from Wrotham on $91.3 \mathrm{Mc} / \mathrm{s}$ and Swingate (Dover) on $92.4 \mathrm{Mc} / \mathrm{s}$ on Mondays from 2.30 to 3.0 p.m. and Thursdays from 11.0 to 11.30 a.m.
R.E.C.M.F. Council.-At the thirty-second annual general meeting of the Radio \& Electronic Component Manufacturers' Federation on April 6th the following were elected to the council for 1965/6:- R. Arbib (Multicore Solders), E. E. Bivand (S.T.C.), S. H. Brewell (A. H. Hunt), N. Dundas Bryce (Belling \& Lee), R. A. Bulgin (Bulgin \& Co.), B. E. G. Harris (Bakelite), Dr. F. E. Jones (Mullard), Dr. G. A. V. Sowter (Telcon Metals) and J. Thomson (Morganite Resistors). At the first meeting of the council the following were co-opted:- K. Hughes (Rola Celeston), F. W. Irons (McMurdo Instrument), C. R. Jennings (Formica), E. Marland (T.C.C.), J. D. Sutton (Parmeko) and E. E. Webster (Plessey). The new chairman is S. H. Brewell.

Valve and Semiconductor Production.-Sales of British valves, tubes and semiconductor devices for 1964 show an increase of 16.9% over those for 1963, according to figures issued by the British Radio Valve Manufacturers' Association (B.V.A.) and the Electronic Valve and Semficonductor Manufacturers' Association (VASCA). The relative figures are:- valves and tubes $£ 48.3 \mathrm{M}$ ($£ 42.7 \mathrm{M}, 1963$) and semiconductors $£ 23.7 \mathrm{M}$ ($£ 18.9 \mathrm{M}$).

BEAMA.-The Kingsway and Ascot offices of the British Electrical and Allied Manufacturers' Association have been transferred to Leicester House, Leicester Street, London, W.C.2. (Tel.: GER 0678). This is now also the address of the Electrical \& Electronic Manufacturers' Joint Education Board.
A.I.R.O., the Acoustical Investigation \& Research Organisation, Ltd., is to hold open days at its new laboratories at Hemel Hempstead, Herts., on May 6th \& 7th. Invitation tickets are obtainable from A.I.R.O., 42, Store Street, Lendon, W.C.I.

Amateur Tribute to I.T.U.-To mark the centenary of the International Telecommunication Union on May 17th, and in recognition of the link between the International Amateur Radio Union and the I.T.U., the secretary of Region I of the I.A.R.U. (John Clarricoats) has been given permission by the G.P.O. to use the call GB3ITU instead of his own (G6CL) during May. Special QSL cards are being prepared to confirm contacts with GB3ITU which will operate in the $3.5,7,14$, and $21 \mathrm{Mc} / \mathrm{s}$ bands and possibly the $28 \mathrm{Mc} / \mathrm{s}$ band. It is also hoped to put GB3ITU in operation during "The '65 Show" at Earls Court (Aug. 25-Sept. 4) and also during September when the I.T.U. Plenipotentiary Conference will be in session in Montreux, Switzerland.
R.T.E.B. Exam. Results.-Of the 688 entrants for the practical test for the 1964 Final Radio \& Television Servicing Certificate of the Radio Trades Examination Board 462 passed (67% compared with 74% the previous year). A total of 1,646 entered for the intermediate exam. and 1,081 passed. There were only 19 entries for the Final Electronic Servicing Certificate and 14 passed. In the intermediate exam. 154 of the 215 entrants passed. All entrants had previously taken the written papers.
I.E.E. Structure.-A Control \& Automation Division is to be formed by the I.E.E. and the title of the Science \& General Division changed to the Science \& Education Joint Board. This board will co-ordinate the activities of those professional groups within each of the three divisions (Control \& Automation, Electronics and power) that deal with basic science and education.

The fifteenth International Apprentice Competition is to be held, for the first time in the U.K., from July 18th-31st. Approximately 240 apprentices from Westem Europe and Japan will be competing in practical tests in 25 different trades in Glasgow. The City \& Guilds of London Institute is responsible for the selection of the British team which is picked (one representative for each trade) from about 1,100 nominations by employers.

Electron Beam Machining. - At the Mullard Research Laboratories, at Salfords, Surrey, on experimental unit has been built for machining all types of materials-even diamonds-to a very high degree of accuracy, using on electron beam.

I.T.U. Centenary:One of the two stomps being issued by the Post Office on May 17th to mork the centenary of the International Telecommunication Union.

An international Aerospace Instrumentation Symposium will be held at the College of Aeronautics, Cranfield, Beds., from March 21 st to 24 th next year. It is being sponsored by the College and the Acrospace Division of the Instrument Society of America. Further details are available from M. A. Perry at the College.

A week's full-time lecture/laboratory course on transistor circuit design is to be held at the Twickenham College of Technology, Egerton Road, Twickenham, Middx., from May 31st to June 4th. It is intended for graduates or holders of the H.N.C. in electrical engineering. (Fee, 9 gn).

The U.K. Government proposes to increase receiving licence fees to $£ 5$ for a combined television-sound licence and 25 sor sound only from August 1st. When announcing this in the House of Commons on April 14th the Postmaster General said that the whole question of broadcasting finance requires further study. This review will be completed as soon as possible and, the P.M.G. said, must be seen as part of the wider review of broadcasting policy which the Government is undertaking, including educational broadcasting, the allocation of a fourth television service and local broadcasting.

1966 Battery Symposium.-The fifth international symposium on batteries will be held in Brighton in September 1966. It is sponsored by the Joint Services Electrical Power Sources Committee which has now taken over the duties of the Inter-Departmental Committee on Batteries, organizers of the earlier symposia. Further information is obtainable from D. H. Collins (secretary of the Commigee), Electrical Dept., Admiralty Engineering Laboratory, West Drayton, Middlesex

PERSONALITIES

Sir Lawrence Bragg, O.B.E., M.C., M.A., D.Sc., F.R.S., is retiring from the directorship of the Royal Institution at the end of August and will be succeeded by Professer George Porter, M.A., Sc.D., F.R.S. Sir Lawrence, who is a Nobel Laureate, gave up his post of Cavendish Professor of Physics at Cambridge in 1954 in order to take over the direction of the Royal Institution. Professor Porter, who is 44 and is at present Firth Professor of Chemistry in the University of Sheffield, recently gave a series of relevision lectures on "The Laws of Disorder." Since it was founded in 1799 the Royal Institution has been directed by a resident professor for whom it has provided accommodation at its headquarters in Albemarle Street, London, W.1.
S. R. Mullard, M.B.E., M.I.E.E., founder in 1920 of the Mullard Radio Valve Company, has received the honorary insignia award in technology of the City \& Guilds of London Institute (C.G.I.A.). Mr. Mullard, who is 81, retired from the managing directorship of the company in 1929 but remained a director of Mullard Lad., and its associate companies. During the 1914/18 war, he designed and constructed radio valves for the Services, and later, in collaboration with the staff of H.M. Signal School, Portsmouth, invented and developed high-power transmitting valves in fused silica bulbs.
W. R. Thomas, B.Sc., M.I.E.E., has been appointed group chief scientist of Elliott-Automation. He joined Elliott Bros. in 1952 as general manager and has been a director of Elliott Space and Weapon Automation Lid. since 1963. Mr. Thomas, who graduated at the University of Wales, Aberystwyth, was
technical officer in the Radio Dept., at R.A.E., Farnborough, throughout the war, after which he spent six years in the Guided Weapons Dept.

Group Captain E. Fennessy, C.B.E., B.Sc., M.I.E.E., who, as annnounced last month, resigned from the managing directorship of Decca Radar and joined the Plessey company, has been appointed chief executive of the new

Gp. Capt. E. Fennessy
Electronics Group of the company. Group Captain Fennessy, who is 53, served on the staff of No. 60 (Radar) Group, R.A.F., for the major part of the war having previously been with the original Air Ministry radar research team at Bawdsey Manor from 1938. He had been with Decca since 1945. E. E. Webster, M.I.E.R.E., has become chief executive of Plessey's new Components Group. Mr. Webster, who is 56, joined Plessey in 1950 as chief inspector of the Swindon Region of which he became general manager in 1961 and director a

E. E. Webster

year later. He started his career with Marconi Marine and was later with S.T.C. Throughout the war he was in the Air and Supply Ministries, after which he was, for three years, with Fleming Radio as general manager. Other chief executives appointed under the Plessey reorganization are F. Limb, O.B.E. (Telecommunications Group), H. E. C. Nash (Automation Group), and D. R. Trowbridge (Dynamics Group). Mr. Limb, who is 66 , is managing director of Ericsson Telephones which he joined 40 years ago as an engineer. Mr. Nash (41) who had been a director of Elliott Processing joined Plessey in January. Mr. Trowbridge (44) joined Plessey in 1939 and has been general manager of the Aircraft Equipment Group since 1962. Plessey also announce the appointment of G. H. Doust as chief executive of the Plessey organization in Australia. Mr. Doust, who is 49, joined Plessey in 1956 and has been managing director of Plessey International Led.
F. J. M. Laver, B.Sc., M.I.E.E., who joined the Post Office in 1935, at the age of 20 , and was employed at the Research Station at Dollis Hill, working at first on radio-frequency measurements and the development of the quiartz crystal clock, has been appointed an assistant c.-in-c. In 1951 he was posted to the Radio Planning Branch and dealt with international radio questions and since early 1963 he has been assistant secretary in charge of the Office Machines Branch of the Treasury Management Services. He graduated in logic and mathematics as an external student of London University.
J. E. Flood, D.Sc., Ph.D., M.I.E.E., chief engineer in the Advanced Development Laboratories of A.E.I's Telecommunications Division, has been appointed professor of electrical engineering at the College of Advanced Technology, Birmingham, which is to become the University of Aston. Dr. Flood, who is a graduate of Queen Mary College, University of London, has been closely associated with the development of electronic telephone exchanges and has served on the Electronic Research Committee of the G.P.O. and telephone manufacturers.
G. R. Scott-Farnie, C.B.E., M.I.E.R.E., managing director of International Acradio Ltd. since 1958, has also been appointed deputy chairman to the new chairman, Keith Granville, C.B.E Mr. Scott-Farnie joined I.A.L. as operations manager in 1947 shortly after the formation of the company. For

G. R. Scott-Farnie
the major part of the war he was on special signals duties in the R.A.F. and from 1944-45 was signals intelligence officer on General Eisenhower's staff. He operates an amateur radio station under the call GSFI.

David Ashworth has joined d-mac Itd., of Glasgow, as applications engineer. Mr. Ashworth, who is 27, was previously with I.C.T. Lid., Stevenage, working on computer developments.
J. H. D. Ridley, M.B.E., head of the Engineering Secretariat of the B.B.C. since 1950, has retired. He was in the radio industry from 1920 until he joined the corporation in 1938. From 1923 to 1932 he was with Burndept Wireless, latterly as chief engineer, after. which he joined Edison Swan Electric Co, as chief radio engineer. Mr. Ridley has spent the major part of his 27 years with the B.B.C. in the Engineering Secretariat. He is succeeded by J. A. Fitzgerald, A.M.I.E.E., who joined the B.B.C. in 1940 as a maintenance engineer. In 1949 he transferred to the Engineering Secretariat where he was responsible for patent work. He was also secretary of the B.B.C's Engineering Advisory Committec.

Hugh Menown, M.Sc., has been appointed manager in charge of the Gas Tube Division at the Chelmsford factory of the English Electric Valve Company. Mr. Menown graduated in experimental physics at Queen's University, Belfast, and joined the English Electric Valve Company in 1951, as an engineer working on gas tubes. He has been engaged on the development and production of hydrogen thyratrons, and for the past three years has been assistant manager of the division of which he is now in charge.
T. G. Clark, A.M.I.E.R.E., who had been with Decca Radar since 1951, has joined the Plessey Group. For the past three-and-a-half years he was a group leader in the Radar Development Laboratories, Chessington, Surrey, concerned with both marine and special developments. Before joining Decea he was in R.E.M.E. as a warrant officer working on radar, and telecommunications equipment.
J. Hale, B.Sc. (Eng.), A.M.I.E.E., production manager of Feedback Ltd., which he joined about a year ago, and E. G. Bell, A.M.I.E.E., the company's sales manager for the past two years, have been appointed to the board of directors. Mr. Hale was a student apprentice with A.E.I., then served as an electrical officer in the R.N.V.R. He was for four years with Production Engineering Ltd. before joining Feedback. Mr. Bell was a development engineer with Salford Electrical Instruments before joining Muirhead \& Co. in 1954. He went to Servomex Controls in 1958 where he stayed until joining Feedback in 1963.
S. D. Coombs has joined Keyswitch Relays Lid., as chief development engineer. He comes to Keyswitch from Standard Telephones and Cables where he was general applications engineer, concerned with relays and associated equipment. Prior to this, Mr. Coombs was with de Havilland Propellers Itd., on the Blue Streak project; and was earlier with Elliott Bros.

Sydney S. Bird, who in 1920 founded the well-known company bearing his name, celebrated his 80 th birthday at the end of March. To mark the occasion the directors of the parent company Astaron-Bird Ltd. arranged a banque!

Sydney S. Bird
a: Ferndown, Dorset. Gifts were presented to Mr. Bird by the directors and staff and, on behalf of over 80 friends in the radio and electronics industry, H. J. Barion-Chapple gave him a camera:
E. G. Lennard has resigned from the position of commercial director of Cosmocord which he joined $6 \frac{1}{2}$ years ago. He has represented the company on the council of the Radio \& Electronic Component Manufacturers' Federation for several years and has served on its Export-Import Committee.

Eric J. Gargini, A.M.I.E.E., A.M.I.E.R.E., author of the article on page 210 in this issue, is colour television section leader at the laboratories of Rediffusion Research Lid. He received his technical training at Southall Technical College and, after a short period as a trainee with E.M.I. and then Philco, he served in the R.A.F. throughout the war. He rejoined E.M.I. in 1945 where he was concerned with wire television distribution systems and later colour television receiver development. He left E.M.I. in 1960 to go to Marconi's at Chelmsford and six months later joined the Rediffusion organization.

Squadron Leader H. C. Jamieson and Senior Technician G. W. Honey have each been awarded $£ 75$ by the Air Force Board for a modification to the approach radar installation at R.A.F Wyton, Hunts, which was regarded as a valuable contribution to flight safety. Their device enabled a flatter angle of approach, as assumed by an aircraft suffering from wing flap failure, to be more positively indicated on the face of the radar tube thereby reducing the possibility of human error by çontrollers.

NEWS FROM INDUSTRY

Plessey Reorganization.-The Plessey Company's operations in the U.K. are being reorganized and all its subsidiaries will operate under the name Plessey within five groups, these being: Automation, Components, Dynamics, Electronics and Telecommunications. Commenting on this Lord Kilmuir, Plessey's chairman said eventually al! products will be marketed under the single name Plessey, although a number of traditional trademarks will be retained. Changes are also being made in the overseas organization.

Eddystone Radio Lid.-The English Electric Company have agreed to purchase from Laughton \& Sons Ltd. the whole of the issued capital of the latter's subsidiary Stratton \& Co. Lid., the manufacturers of Eddystone communications receivers. The purchase price

Oceanographic Equipment. - To assist in the collection of information in oceanograpic surveys, EMI-Cossor Electronics Ltd., of Canada. have produced a device for gathering underwater data for recording or relaying $t 0$ a monitoring station, ship or aircraft. The device consists of o sub-surfoce floot containing meosuring equipment (for waterspeed, salinity and temperature tests) moored to the bottom by a tout wire and connected to a surface-buoy which houses the recording and radio equipment.

was 220,000 English Electric £1 Ordinary Shares plus $£ 104,157$ in cash It is the intention of the English Electric Co. to change the name of Stratton to Eddystone Radio Lid. and operate it as a subsidiary of the Marconi Company, a member of the English Electric Group.

SGS-Fairchild European Expansion. -The SGS-Fairchild organization announced in London recently that the group is expanding its activities and is now able to supply silicon planar semiconductor devices for all types of electronic equipment. Under the title "Total Planar" the group is now producing and marketing comprehensive ranges of semiconductor devices, including microcircuits, for the military, professional, industrial and consumer markets. To cope with the expansion, it is planned to increase the output of the Ruislip plant-one of the two European manufacturing plants, the other being in Milan-by four times to about ten million units a year, and also to build a new factory in Sweden. SGSFairchild also plan to establish research and development laboratories in Europe. Information from the American Fairchild research laboratories will be available to the staff of the proposed European laboratories and in preparation for their opening, a number of SGS-Fairchild engineers are at the Californian laboratories of Fairchild Semiconductors "injecting the European point of view."

Long Term Planning.-Industrial Market Research Lid., of 34 Sackville Street, London, W.1, have been appointed U.K. representatives and consultants for the long term planning service run by the Stanford Research Institute, which was founded in 1946 by the Trustees of Stanford University and a group of American businessmen. This service is to draw management attention to new business possibilities and new competitive threats and also give the implications of development in technology. More than half of the 2,700 staff are technical and professional personnel and recent reports cover a variety of subjects including electrical test equipment and new semiconductors.

Mullard Research Laboratories.-A further three-storey wing is to be built on to the laboratory block recently completed at the Mullard Research Laboratories near Redhill, Surrey. Work has commenced and will sake about a year to complete providing an extra 35,000 sq ft of space.

Texas Instruments Incorporated, of Dallas, have received a contract valued at $\$ 5,604,937$ from the U.S. Naval Ozeanographic Office for a marine geophysical survey. This is one of the largest contracts of its type to be placed with an industrial concern and will be carried out over the broad areas of the eastern and central Atlantic Ocean, and the Mediterranean. Information during the survey, which is planned to take three years, will be collected with seismic and oceanographic instruments installed on two specially fitted vessels now being completed in an American shipyard.

Pantiya Electronics Lid., which was formed nearly ten gears ago when the old Pantiya Tea and Rubber Company ceased to trade, is to go public. In 1956 Pantiya acquired the whole of the issued share capital of Walmore Electronics Lid., for $£ 100,000$ in cash, and last November acquired the issued capital of Marlyne Electronics Lid. and its subsidiaries for $£ 300,000$. Marlyne Electronics manufacture, import, wholesale and retail radio and audio equipment and components for the home constructor; one of their outlets being Stern-Clyne Lid., who operate twelve shops in London and the provinces. A recently formed subsidiary of Pantiya, Saba Electronics Ltd., now has the sole U.K. concession for the products of Saba, the West German radio, television and audio manufacturers. The combined pre-tax profits of the Pantiya Group and Marlyne Group have increased from £6,500 in 1954-55 to $£ 139,000$ in 196364.

Associated Electrical Industries Lid trading profit for 1964 was up by over $£ 5.25 \mathrm{M}$ on the previous year's result at $£ 13.9 \mathrm{M}$. In the year under review, $£ 5.3 \mathrm{M}$ was set aside for taxation as against $£ 2.7 \mathrm{M}$ in 1963 , leaving a net profit of $£ 6.2 \mathrm{M}$, which represents an increase of $£ 2.3 \mathrm{M}$, In a circulated statement to shareholders (65 th a.g.m. on 28th April) the company's chairman, Mr. C. R. Wheeler, made reference to an improvement in the profit of the Electronics Group, which comprises the Electronics Apparatus Division, the Instruments Division and AEI Automation.

British Insulated Callender's Cables group sales for 1964 amounted to \& 216 M and showed an increase of £32M on the 1963 figure. Pre-tax profits were up by just over $£ 3 \mathrm{M}$ at $£ 15.86 \mathrm{M}$ and after providing for taxation and other deductions, the net profit totalled $£ 8,171,000$, compared with £ $6,820,000$ in the previous year.

The Amplivox Group, which became public last June, announce a pre-tax profit of $£ 202,748$ for 1964, an increase of $£ 54,735$ on the previous year's result. After tax, profits rose from $£ 64,085$ to £93,176.
N.S.F. Lid. pre-tax profit for 1964 amounted to $£ 360,000$ and showed an increase of $£ 49,526$ on the previous year's result. Tax on these profits accounted for $£ 194,000$, compared with £163,000 for last year, leaving a net profit of $£ 166,000$ ($£ 147,474$). The thirty-third a.g.m. to be held on 5th May is the first as a public company.

Marconi Instr. Acquire W. H. San-ders-Marconi Instruments Ltd. have acquired over 96% of the Preference Shares and over 84% of the Ordinary Shares of W. H. Sanders (Electronics) Ltd.

Painton Acquire Electroprints.-A majority shareholding in Electroprints Ltd., of Portsmouth, who manufacture printed wiring on flexible and rigid materials, has been acquired by Painton \& Co. Ltd. Mr. C. M. Benham, Painton's chairman has been appointed chairman of Electroprints Ltd.

Plessey Bid for T.C.C.-The Plessey Company have made a bid, worth $£ 3.6 \mathrm{M}$, for the Telegraph Condenser Company. The offer, which is subject to 90% acceptance, has been made after consultations with British Insulated Callender's Cables, who own about 65% of T.C.C. and intend to accept the bid. Financial details of Г.C.C. apepared in last month's issue.

Goonhilly-Bristol Microwave Link. Standard Telephones and Cables Lid. have received a contract from the Post Office, worth about $£ 300,000$, for a highcapacity microwave link between Bristol, Plymouth and the communications satellite station at Goonhilly Down, Cornwall. This link, which will be the first in the U.K. to operate in the "upper $15,000 \mathrm{Mc} / \mathrm{s}$ band," will join the microwave system S.T.C. are now installing between Bristol and the London Post office tower.

Hughes Expansion.-Hughes International (U.K.) Lid., who at present are producing a million semiconductors a month at their Glenrothes, Fife, plant are soon to start making planar devices. In preparation for the production of these devices, the floor area has been increased by $13,500 \mathrm{sq} \mathrm{ft}$. Initial production will be 300,000 per month. The company's sales department has moved from Hounslow to larger premises at Heathrow House, Bath Road, Cranford, Middx.
M.E.L. Automation.-While extensions to the company's main factory offices are being completed, the automation division of the M.E.L. Equipment Company has moved from Crawley to Stone Street, Waddon Factory Estate, Croydon, Surrey (Tel:: MUNicipal 4971). The division is expected to return to Crawley at the end of the year.

Floating Navigation Stations

PLAN FOR TRANSATLANTIC CHAIN

BECAUSE of the increasing amount of air traffic using the North Atlantic, a new company called Seastation Telecommunications Lid., has been formed to investigate a scheme for the setting up of a series of "floating stations " to carry trans-oceanic telecommunications and navigational apparatus.

In collaboration with the Ministry of Aviation-who have awarded the company a design contract worth $£ 60,000$ work is being carried out on the feasibility of establishing a number of permanent floating navigation-cum-communication stations connected with each other and with shore by underwater cables.

The proposed floating station consists of a tubular structure-about 400 ft in length and 16 ft in diameter-floating vertically in the sea with the greater part of its length submerged. The upper part of the spar buoy, as it is called, supports a large superstructure that is well above the reach of the waves and provides accommodation for the equipment, for a crew of about twelve, for a helicopter landing deck and for aerial arrays. The station is moored by three cables to anchorages on the sea bed and
as the motions of the sea decrease rapidly with distance below the surface, the length of the cylinder makes the station particularly stable in the roughest weather. From tests conducted with a scale-model in water tanks, calculations have been confirmed that for 95% of the time the half amplitude pitch or roll will not exceed half a degree and that vertical motion would not exceed six inches.
In addition to navigation aids such as medium-frequency beacons and d.m.e., and v.h.f./u.h.f. equipment for air traffic control purposes, primary and secondary radar could be provided if required, with the necesary display data being transmitted through the underwater cables to a.t.c. centres either side of the ocean.

The new company is jointly owned by Cammell Laird \& Co., shipbuilders and engineers, who are, incidentally, responsible for the marine construction side of the Ministry of Aviation study, and Submarine Cables, which is owned by Assosiated Electrical Industries and British Insulated Callender's Cables, and is responsible for the communications side. The company's chairman, Dr. J. N. Aldington, has stated that the Ministry of Aviation design study is expected to be completed in five to six months time. He also said a single chain-comprising two to four stations-crossing the North Atlantic would cost approximately $£ 10 \mathrm{M}$ to $£ 15 \mathrm{M}$ to install with running costs of about $£ 300,000$ to $£ 400,000$ a year. Once the go-ahead is given, it would take two to three years to get a system operational.
These "seastations," Dr. Aldington said, could also be used for other purposes. One of these being to replace weather ships as they have several advantages such as a stationary platform that enables high altitude wind velocities to be more accurately measured, and a direct link-by underwater cable-that allows contact to be made under all adverse conditions. Another example given by Dr . Aldington was the use of "seastations" in underwater cable communication projects where intermediate shore stations in long-distance links are not practicable for technical or political reasons.
The stations are to be self-supporting and able to operate for months at a time. Power for the various communication and navigational equipment will be provided by diesel-oil generators.
Should the scheme be adopted by the British Government, Dr. Aldington stated that subscribers, such as airlines and shipping companies, would pay dues in the same way as they now do for "fixes" and other services from the weather stations.

50 Years of Public Address

A.P.A.E INTERNATIONAL GOLDEN JUBILEE EXHIBITION

,AST year's A.P.A.E. exhibition was reported in Wireless World to be the most ambitious show presented by the Association of Public Address Engineers, and this year's exhibition has beaten last year's records in every respect. The rapidly expanding Association presented its 16th annual exhibition at the King's Head, Harrow-on-the-Hill, on March 17th and 18th and the occasion marked the 50th anniversary of the first application of electrical equipment to address the public. The event, which took place in San Francisco in 1915 under the guidance of Jensen and Pridham makes the p.a. industry older than wireless broadcasting, since no public broadcasts had been made at that time.

The opening ceremony was conducted by the Danish Charge d'Affaires and the Scientific Attache of the Danish Embassy in honour of their countryman Peter Jensen (the "father of the loudspeaker"). Shortly afterwards a two-way radio link with New York took place and the past 50 years of p.a. were recalled by engineers on both sides of the Atlantic. The discussion touched on the use of time delays to overcome problems due to reverberation time and frequency shifting in systems to prevent acoustic feedback. However at this interesting point, just as we were about to learn why these techniqes were not used more widely in Britain, the discussion was brought to a close.

B.B.C. Demonstration

An interesting demonstration by B.B.C. engineers was given on the studio control room equipment. The transistorized control console, which was B.E.C. designed and built, has quadrant mixers and also bass and treble controls on each microphone channel. But even these do not meet the demands of present-day entertainment and "presence" controls have been included also.

Live gun shots are notably unrealistic in studios and the B.B.C. use a simulator which gives a very impressive performance. A thyratron white noise generator is used with the high frequency end of the spectrum tailored (coloured?) and gated to give single or machine-gun shots; ricochets are provided by the generator and a multivibrator whose h.t. supply is run down.

Another item used by the B.B.C. was an acoustic table, which transmitted incident sound and thus avoided interference at the microphone.

Veteran P.A. Exhibition

A display of old p.a. equipment aroused much interest. One item dated back as far as 1894, but strictly speaking this was private-not public-address equipment. It was the "Electrophone" system, which used a carbon pencil transmitter disguised as a Bible for use in churches

Port of the veteran p.a. display. The amplifier used by Boird with his television system is shown just left of centre on the upper row. Some collected literature on p.a. is seen behind the equipment, including a number of pages of Wireless World.

connected via Post Office lines to subscribers' headsets. This was provided by the G.P.O. on their display of " 50 years of telephones" which included a replica of Graham Bell's original telephone.
The first p.a. apparatus did not use amplifiers and some of the carbon button microphones used passed as much as 5A. Amplifiers were introduced around 1918; but a 3-valve line amplifier used during the war in 1915 was shown. The Western Electric amplifier used by Baird in his television system is illustrated in the photograph of the display. One of the microphones shown was used by King George V at the opening of the Empire Exhibition at Wembley in 1924 (Western Electric double button carbon) and another was the Beyer microphone used by Rommel to address German troops in the desert campaign. Much of the equipment on display was in working order and an old Marconi amplifier with microphone and horn loudspeaker were shown to be capable of feedback at least!

Much of the equipment on manufacturers' stands had been seen before and some of the more recent items are outlined below.

Microphones

Most of the new introductions are dynamic types with multi-impedance connections (low, 20-60』; medium, $200-3005$; and high, $10 k \Omega$ and above), often with bass cut and on-off. switches. The AKG types D119CS and D119ES have both switches and a front-to-back ratio of 15 dB at $1 \mathrm{kc} / \mathrm{s}$. The CS has an output impedance of 200Ω and the ES offers a choice of three impedances. The Beyer M610 (displayed by Fi-Cord) with cardioid polar diagram has both switches with low and medium impedance outputs and the omnidirectional lavallière (neckslung) type M110 is also dual impedance. Fi-Cord also introduced two of their own microphones, the 801 and the directional 901 , with responses extending up to $18 \mathrm{kc} / \mathrm{s}$.

A field effect transistor has been used in the head amplifier of the S.T.C. capacitor microphone (type 4126) and this is available with an omnidirectional or a cardioid pattern. Also new is the 4119 ribbon microphone. Reslosound have added a switch to their pencil microphone (type PD); and the Vitavox M100, offering four impedances, has now reached the production stage.

Loudspeakers took a relatively back seat this year although a new range, primarily intended for rental, was announced by Sound Coverage but are electrically similar to the previous range. Goodmans have introduced two small loudspeakers with inverted ceramic magnets and whilst these are not for p.a. work, they will meet a demand for lighter and more compact equipment in other fields. A 3 -watt elliptical motor-cycle mounting loudspeaker (Home Office approved) was shown by Rola Celestion.

Amplifiers

The C.T.H. range of p.a. equipment has been augmented with the MA50 (50 -watt) transistor amplifier. Their p.a. series of amplifiers were battery operated whereas this unit (and the MB15) is for battery or mains operation. In the event of a mains failure, the amplifier will continue to operate from the battery, this being recharged when the mains supply is resumed. The Grampian 650 amplifier is similar to their 50 -watt type 600 but the number of microphone channels has been increased to four. A 100 -watt amplifier with six inputs (M.C. 100/6) is added to the VOX range and the volume level meter
also monitors circuit voltages. (Similarly with the M.C. 50/6.)

Modular amplifier units are becoming noticeably more popular. The Audix mixer (MXT/6) and mixeramplifier can be made up with any combination of their units, which include a single-tone generator. The S.T:C. modular transistor units include 35 and 60 watt amplifiers (with 100 V line outputs), two microphone preamplifiers, a mixer, master gain-control unit and microphone and loudspeaker switching units. Reverberation units (pre-amplifiers and 20 W amplifiers) for increasing reverberation time at selected frequencies, form part of the system. The pre-amplifier works from a 30Ω microphone in a Helmholtz resonator, amplifying a bandwidth of a few c / s, with provision for phase adjustment.

Contrary to the current trend Reslosound introduce three valve amplifiers (15,30 and 60 W) and with high and low impedance inputs.

Miscellaneous

Radio microphones were seen on a number of stands. The transmitters are frequency modulated, often with speech compression and are, of course, crystal controlled, usually around $175 \mathrm{Mc} / \mathrm{s}$ according to allocation by the G.P.O. Lustraphone have introduced a combined microphone and transmitter with an output of 10 mW and using voice compression. The receivers are double superhets and on mains types a transmission indicator lamp is included. Magneta and Pamphonic market a Labgear radio microphone using speech compression and the receiver output may be used to feed into a telephone handset or a normal p.a. installation. The transmitter has a range of up to $\frac{1}{2}$ mile under ideal conditions.

An Ultra tape recorder with a 32 -track head for standard announcements of up to 6 minutes was seen on the Trix stand. Each track is selected by a push button and the machine can be used for 64 channel work with message lengths of 3 minutes.

3 M have added two flat adhesive cables to their Scotchflex range; the 550 typé, with two conductors, and the 800 type, with 'four conductors. Other cables on show included the EM'T a.f. cables, shown by Bauch. One of the cables ${ }^{-}$contains 10 pairs of individually screened wires and is reported to be anti-microphonic. The capacitance is about 70 pF per metre.

A transistor portable loudhailer (Bouyer Super Megaflex) was shown by Douglas Lyons Associates. The unit is rated at 7 watts and the rubber microphone is provided with a volume control.

THIS MONTH'S COVER

This atomic structure model represents an epitoxial arrangement of silicon on quartz. Work ot the Allen Clark Research Centre of The Plessey Company alms to produce new types of integrated circuits in which single crystal films of semtionductor materials are debosited on insulating substraus. The purpose is to reduce capacitance coupling between neighbouring circuits.

PHYSICS EXHIBITION IN THE NORTH

IHIS year The Institute of Physics and The Physical Society broke fresh ground by holding their ex-hibition-the 49th-in Manchester instead of London. Once again the scientific character of the event was maintained, by careful selection of items for their interest to physicists, and only about half of the offers were accepted for display. Last year's innovation, a special section devoted to educational exhibits, was repeated, and proved a popular feature with visitors.

RESEARCH

Non-limear acoustics.-It is often assumed in deriving a wave equation for acoustic waves travelling through a fluid medium that various parameters are independent of acoustic pressure, which results in a linear represenfation of the system. If waves of sufficiently high intensity are considered the system becomes non-linear, since density and bulk modulus are functions of acoustic pressure. Because of this monlinearity, two sinusoidal pressure waves will interact and give, amongst others, sum and difference frequencies. Birmingham

- University demonstrated the existence of the difference frequency by propagating pulsed pressure waves along the same

Formation of a virtual source of acoustic energy by exploiting the non-linear characteristics of a fluld. (Birminghom University.)
axis from two small barium titanate sransducers immersed in water and at frequencies around. $300 \mathrm{kc} / \mathrm{s}$. In the region of interaction of the two waves a virtual source of directionally propagated audible pressure waves is thus formed. The elastic parameters are analogous to reacrive parameters in electric systems, so parametric amplification and sub-harmonic generation may be possible' in a similar fashion to electric systems. It is felt that this and similar exploitation of the non-linear effects may ultimately have application in sonar systems.

Protoplasm impedance is an unusual biological parameter being meásured by Wayne Kerr to aid research into cancer and into new methods of food production. The effects of electric and magretic fields on protoplasm and cell membranes are significant, and it is thought that more information may be obtained by a.c. impedance measurements than from the orthodox d.c. measurements, particularly as these living structures transmit electrical impulses by an electrochemical process similar to that of the animal nerve cell. A demonstration was given of measuring the dynamic response of the alga Nitella to electrical stimulation by an automatic balanc-
ing bridge. The real and imaginary components of the measured impedance (in this case R and C) were displayed on a chart recorder. Low-resistance metal electrodes cannot be used to make contact with the alga as they destroy the cell membrane, so extremely high-resistance glass electrodes are necessary. To avoid measurement ambiguities resulting from these high series resistances, the bridge is a uransformer ratio-arm type with a split neurral terminal to permit the use of four electrodes instead of the usual two.

Sub-millimetre source.-Until recently, there have been no strong sources of radiation for laboratory use in the submillimetre wavelengths, that is between the short wavelength end of the microwave region and the long wavelength end of the infra-red region. The main difficulty has been finding molecules with suitable energy transitions, but a number are now known which will give stimulated emission in the region between 0.01 mm and 1 mm . S.E.R.L. have developed a tube using water vapour and emitting microsecond pulses of radiation at 0.0279 mm . The N.P.L. demonstrated the Teratron (frequency about 1 teracycle per sec) which uses the CN radical in the form of acetonitrile vapour $\mathrm{CH}_{3} \mathrm{CN}$, and emits at 0.337 mm . The acetonitrile vapour is pumped into a tube (about a metre long) and emission is triggered by an electric discharge which causes the molecule to decompose and give an excited CN radical. Since the CN is short lived, the pump is necessary to remove the decomposition products and replace the $\mathrm{CH}_{3} \mathrm{CN}$. The emission at 0.337 mm occurs between two regions of strong absorption by water vapour; also, the wavelength is long enough to avoid scattering by most fogs, so there are possibilities for communication at this wavelength.

Reverberation.-A demonstration by the Physics Department of the Manchester College of Science and Technology illustrated the effect of increasing the reverberation time at midfrequencies of the main theatre in the Renold building. This theatre had been designed for speech and had a reverberation time of 0.8 sec at mid-frequencies, but was found to be "dead" to performances of music. Increasing the reverberation time to 1.2 sec , with delays provided by a multi-head tape recorder and 37 loudspeakers, resulted in increased liveliness.

Cyclotron resonance.-Power dissipation problems in high frequency backward wave oscillators has prompted research into alternative methods of microwave generation. A device employing cyclotron resonance was shown by G.E.C., providing a source which was tunable over the whole of Q band. Interaction occurs between electrons moving in a cyoloidal

[^3]motion in perpendicular electric and magnetic fields and an r.f. wave from a local source. The r.f. wave propagates along a transmission line formed by the electrodes providing the electric field, and takes up energy from the electron beam. so that the cycloid humps decrease in size. The output frequency is determined by the magnetic field which varies the cyclotron frequency of the electrons. The device has achieved a c.w. output of 11 watts with an efficiency of 5% and an anode voltage of 6 kV . It is expected that the tube will operate with up to 10 kV anode voltage and provide an output of 50 watts.

Thermionic generator.-In conjunction with Imperial College, Fairey Engineering Lid. have been developing a thermionic energy converter for use with radioactive isotopes. The device shown was described as a gas-filled triode converter. Given a heat source, electrons are emitted from a cathode and collected at an anode as in a normal diode. The available power at the anode is limited by the space charge around the cathode and operation of the device depends on its neutralisation, enabling much larger powers to be drawn from the anode. In the device shown, a third electrode is used to cause a discharge in the inert gas which provides a source of ions to neutralize the electrons causing the space charge. The emitter is 90% tungsten with lanthanum and zirconium. The heat source in this experimental model is electrical, but the final source envisaged is a radioactive isotope, in particular a waste fission product available in quantity from nuclear reactors. The emitter has a work function of 2.4 V and is operated at $1,650^{\circ} \mathrm{C}$, and the triode gives an output voltage of 0.7 V at a power density of 10 watt cm^{-2}. The power output achieved is in the region of $30-40$ watts.

Semiconductor microwave generator based on the littleknown Gunn effect was demonstrated by S.T.C. It consists of a 0.01 in thick wafer of n-type gallium arsenide with contacts on each plane face, mounted in a coaxial circuit. When a potential of about 100 volts is applied across the contacts, the charge carriers form into domains which move across the material at the carrier drift velocity, producing current instabilities in the form of oscillations. The frequency of oscillation is determined by the transit time of the current carriers, and for a 50 -micron wafer is about $6 \mathrm{Gc} / \mathrm{s}$. To avoid excessive power dissipation in the crystal the applied voltage was pulsed, and on an oscilloscope the resulting microwave signals were shown superimposed on the square waves. Several watts of r.f. power can be obtained with this pulsed operation and the efficiency of conversion of d.c. to microwave energy is of the order of 5%. This direct method of generating microwave signals may prove much simpler than the parametric solid-state techniques at present in use.

SENSING DEVICES

Space vehicle attitude sensors were shown by R.A.E., Farnborough. One very elegant sensor, for use in U.K.3, was described as an optical potentiometer. A slit image of the sun is formed on an array of phototransistors arranged in an arc of a circle whose centre is at the slit. Each of the phototransistors is connected on to a resistor chain forming a potential divider. On illumination, a transistor conducts and taps the potentiometer chain, with the result that the device gives an output voltage proportional to the angle of incidence of the light.

Tidal air integrator for continuously measuring and recording volumetric air flow in human breathing was demonstrated by Mercury Electronics. The patient breathes through a tube in which a wire gauze constriction is placed (pneumota-

Tidal air integrator developed by Mercury Electronics, showing pneumotochograph head in front and integrator unit on right.

Above: "Optical potentiometer" developed of R.A.E. for use in space vehictes, including U.K.3.

Right: Solartron vibroting cylinder pressure transducer.

chograph head) and the differential pressure across the constriction is proportional to the velocity of the breathed air. This differential pressure is measured by a micromanometer and the resulting velocity signal is then integrated in a separate unit to give a continuous measure of air volume. Normal breathing rhythm and any other effects such as coughing are clearly shown on recordings. The integrator comprises a transistor circuit controlling the charge applied to a capacitor. Total volume of air breathed during a given period can be registered by an electromechanical counter: this is operated by pulses obtained by discharging the capacitor through an electronic switch when a predetermined charge threshold is reached.

Vibrating cylinder pressure transducer, a new type of measuring element suitable for telemetering in widely spaced tank farms and other such plant, was demonstrated by Solartron. Intended mainly for measuring liquid level by head pressure in storage tanks, the device comprises a thinwalled cylinder of magnetic material with one end closed. Inside the cylinder are a drive coil and a pick-up coil, and these are electrically coupled through a small amplifier to form an oscillatory circuit which causes the cylinder to vibrate at its natural frequency. The cylinder is enclosed by a container into which liquid is fed by tube from the bottom of
the storage tank, so that liquid plus atmospheric pressure is applied to the outside of the cylinder and atmospheric pressure to the inside. The vibration frequency of the system then varies with the differential pressure on the cylinder walls, according to a known non-linear relationship. Electrical signals produced by the oscillating circuit are transmitted to remote frequency measuring equipment, operating on the counter-timer principle, and the resulting digital display gives the liquid pressure (or related variable such as liquid level or quantity) in appropriate units. The nonlinearity of the transducer is compensated in the countertimer by a pulse drópping technique. Good accuracy and long-term stability of calibration are claimed for the device.

Relative humidity transducers.- The ability of ion-exchange resins to take up water but not dissolve is utilized in a new type of relative humidity measuring element, shown by Wayne Kerr, which provides an electrical output signal. A thin film of resin is deposited on an insulating substrate incorporating two interdigital metal electrodes, and in this arrangement the surface conductivity is proportional to the ambient relative humidity. The resistance between the electrodes is measured by a self-balancing miniature a.c. bridge operating at $2 \mathrm{kc} / \mathrm{s}$ and this is displayed in terms of relative humidity on a pointer indicator with two scales, one calibrated $20-60 \%$ r.h. and the other $60-95 \%$ r.h. Temperature coefficient, constant over the whole measuring range of the uransducer, is $+0.4 \% \mathrm{r} . \mathrm{h}$. per $1^{\circ} \mathrm{C}$ rise in temperature.

Semiconductor radiation detectors are becoming more widely used and in many cases are replacing conventional methods of detection. Gamina radiation, γ-particles and β-particles can be detected with surface barrier semiconductors or with junction types by varying the depletion layer thickness to suit the type of radiation. Semiconductor and conventional radiation detectors were seen on many stands, and a personal gamma dosemeter which gave an audible $2-\mathrm{kc} / \mathrm{s}$ tone output modulated to give pips of decreasing duration as dosage increases was featured by Isotope Developments L.td. Here the detector is an ionisation chamber with an energy range of 50 keV to 2 MeV .

MEASUREMENT AND ANALYSIS

Laser devices held a prominent position in the exhibition and exhibits included two. rangefinders. The small beamwidths obtainable, which enable specific objects to be used for ranging without echoes from the surroundings, and the compactness of the apparatus make laser rangefinding attractive, particularly for low-level altimeters. The Services Electronics Research Laboratory displayed an equipment with a range of 1,000 feet and an accuracy of about 5 feet, using a pulsed gallium arsenide transmitter, about the size of a small torch, with a peak power of 10 watts. The equally small receiver has a sensitivity of 0.1μ watt and is situated at the focus of a parabolic mirror (see picture). Although some high-performance radars have been known to resolve overhead high tension cables, this elegantly simple and compact system has been shown capable of measuring heights of trees on experimental flights.
Specific gravity meter demonstrated by Sangamo Weston continuously measures the density of a liquid, on the hydrometer principle, by determining the electrical current necessary to maintain an immersed metal plummet at a given level in the liquid-the buoyancy of the plummet depending on the s.g. of the liquid. The ferrous plummet is suspended by an electromagnet within a vertical open-ended plastics cylinder immersed in the liquid, and its vertical position is
measured by search coils fed with $500 \mathrm{kc} / \mathrm{s}$ a.c. The position measurement is fed back to the suspension system, giving a closed-loop servomechanism which maintains the plummet at a fixed height in the liquid. Depending on the liquid density, more or less electrical power is needed to maintain the plummet's position, and in fact the suspension magnet current varies inversely with the density of the liquid. This current is measured and used for indicating or recording the s.g., which can be done over a range of 0.4 minimum to 2.0 maximum.

Neutron flux measurement.-A miniature fission chamber was shown by Elliott-Automation for monitoring neutron flux in reactor cores. The device, which is 1 in long and $\frac{\mathrm{in}}{}$ diameter, detects thermal neutrons with a coating of uranium 235,238 or a mixture of both. The usual fission of the uranium nuclei takes place and produces radio-active fragments which are then detected in a stainless stecl ionisation chamber containing helium and polarized with 75 volts. The device can withstand a temperature of $550^{\circ} \mathrm{C}$ and measure flux densities between 10^{11} and 10^{14} neutrons $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$. The sensitivity is 2×10^{-81} amps per neutron per cm^{2}.

Liquid composition meter shown by the N.P.L. is based upon the comparison of dielectric constants. The instrument was required for on-line computer control of chemical processes and measures the composition of an ethanol-water

Laser rangefinder, with application in low-ilying aircraft, using semiconductor laser. (Services Electronics Research Laboratory.)

Top of Sangamo Weston specific gravity meter, with a measuring cylinder shown on the right.
mixture. The mixture and a reference solution form the dielectrics of two capacitors which are used as the frequency controlling component in a bridge-type r.f. oscillator. The construction is such that the cell with the reference mixture is placed in a pipe carrying the mixture whose composition is required. A variable frequency oscillator sweeps the range $19.37 \mathrm{Mc} / \mathrm{s}$ and at either resonant frequency the oschlator grid current rises sharply giving pulses which are fed to a flip-flop whose output can be used with digital or a nalogue information processing equipment. Effects of temperature changes in the measured stream are reduced since both mixtures are subjected to the temperature variation, and temperature sensitivity is also reduced by frequency scanning in a linear manner.

The instrument will cover the whole range of dielectric constants of the water-ethanol mixture (26 to 81) and it is anticipated that other mixtures with dielectric constant falling low as 6 could be accommodated:

O-level oscilloscope. A low-priced simple oscilloscope, the Serviscope Minor, developed to meet Nuffield Committee requirements for an instrument for teaching O-level modern physics, was shown in the educational section by Telequipment. Weighing only 5 lb and measuring $\operatorname{6in} \times 6 \mathrm{in} \times 9 \mathrm{in}$, it has a $2_{4}^{3}-\mathrm{in}$ c.r.t. and a Y amplifier bandwidth of $30 \mathrm{kc} / \mathrm{s}$.

Telequipment oscilloscope designed for teaching " O "-level physics.

Sensitivity range is 100 mV to 50 V per 0.5 cm graticule division. Controls have been reduced to à minimum (bright-ness/on-off, focus, timebase speed, Y-shift, Y-amp. gain) and operation is further simplified by an automatically locking timebase. The timebase speed can be varied from $100 \mu \mathrm{~s}$ to 100 ms per 0.5 cm graticule division.

Automatic recording balance was displayed by U.K.A.E.A. Atomic Weapons Research Establishment. Electronic balances often use the variation of capacitance to determine the balanced condition, but this instrument was required to handle radioactive materials and total enclosure was necessary. This resulted in the use of variation of inductance of a coil, which was external to the glass-enclosed apparatus, by an iron dust core, which was internally connected to a balance pan. Movement of the balance beam changed the frequency of an oscillator tuned to a $10.7 \mathrm{Mc} / \mathrm{s}$. The circuitry which follows the oscillator gives a d.c. output proportional to the frequency change and is used in a servo system to return the pan to balance by a restoring force applied to a solenoid, which is provided with temperature compensation and damping. The current to the solenoid is passed through a standard resistance and the p.d. is measured with a digital voltmeter. The method is useful for measuring weights up to 1.5 gm with a sensitivity of 0.2 mgm .

CIRCUITS AND INFORMATION PROCESSING

RC active filters.-Apart from new manufacturing methods microminiaturization has brought about the need for new circuit techniques, one requirement being the elimination of inductances, since these circuit clements are extremly difrcult to fabricate on a microminiature sciale. One method has been to use crystal filters and follow these with RC amplifiers, but this still leaves a lot to be desired for many applications. Frequency selective RC amplifiers built in thin-film and integrated solid state form were shown by AEI Telecommunications Division and include negative impedance converters and inverters. Response curves normally associated with circuits including inductors have been readily achieved. As an illustration conventional filters were shown and compared with RC filters, and in particular a low pass filter with one pole at a finite frequency and one at an infinite frequency with a ripple of 1 dB and a stop band of 30 dB was shown.
The current interest in design automation was maintained at the exhibition by the Post Office Engineering Department. A method of using computers to design wide-band transistor feedback amplifiers was presented and relied upon the computer to perform nodal analysis and computer stability margins, with the aid of Nyquist diagrams, of multiple feedback loop amplifiers, from measured admittance parameters A directly coupled three-stage feedback transistor amplifier circuit was shown which had been designed with the aid of a computer, had constant gain up to $10 \mathrm{Mc} / \mathrm{s}$, and the input and output impedances were precisely defined by the feedback. Compured and measured characteristics of an amplifier up to $1000 \mathrm{Mc} / \mathrm{s}$ were also displayed.

Tuning active filters.-One of the difficulties in providing variable tuning controls in active filters (using transistor, R, C combinations) is that several potentiometers, each associated with an active circuit element, have to be ganged. The Roya! Radar Establishment showed a technique for providing automatic electronic ganging so that only one variable tuning control has to be adjusted. The circuits demonstrated used electronic integrators as basic units for synthesizing the required filter transfer functions, and normally each of these would be preceded by a potentiometer to permit tuning by variation of the integrator $C R$ product. In the R.R.E. technique the potentiometers are replaced by electronic inputsignal sampling switches, which alter the effective CR products according to the sampling period, and all these clectronic switches are operated by a common pulse generator with variable mark/space ratio. Ganged tuning is then obtained by applying a variable control voltage to the pulse generator to adjust the mark/space ratio. Examples of circuits demonstrated included a self-tuning filter providing high-pass, band-pass, low-pass and notch chäracteristics at separate terminals; a tunable two-phase oscillator with a 10:1 range; and a tunable 5 th-order low-pass filter with very steep cut-off.
Integrated matrix store of the magnetic, coincident-current type, shown as a demonstration model by Plessey-UK, uses new design and manufacturing techniques to achieve a largecapacity, small-size, random-access store with low cost per bit. Read-out is non-destructive. The magnetic storage elements are produced in thin-film form by electroplating on a substrate and the anisotropic square hysteresis loops are obtained by compressive mechanical stress, achieved by release of a tensile stress applied to the substrate during plating. Conductors are also thin films, laid on separate substrate. The size of a conventional magnetic matrix store is limited by noise resulting from half selection of the elements, so a new method of reading has been adopted in which

Demonstration model of Plessey coincident-current matrix store using thin film techniques.
frequencies of 8 and $9 \mathrm{Mc} / \mathrm{s}$ are applied to the X and Y selection conductors respectively. From the non-linearities at the "knees" of the hysteresis loops a $1-\mathrm{Mc} / \mathrm{s}$ difference frequency is obtained, and this has two possible phases depending on which knee of a loop, upper or lower, is magnetically biased (i.e. whether 1 or 0 is stored). To avoid destruction of the stored information by this a.c. read-out system, the storage elements are formed by two distinct magnetic films, magnetically coupled. One is of high coercive force and is used for writing in the conventional manner, by coin-cident-current d.c. pulses, while the other is of low He and allows a.c. read-out without wiping out the magnetic biasing of the coupled storage film. In the $16 \times 16 \times 10$ memory stack on show, cycle time was $30 \mu \mathrm{sec}$ and read cycle time $10 \mu \mathrm{sec}$. A 10^{6}-bit store built on these principles would occupy about 3 cu ft and consume about 250 watts.

DVM with a.c. reference. - The accuracy limitations imposed by a resistive potential divider are avoided in a new digital voltmeter technique in which the usual potentiometer and d.c. reference voltage are replaced by an inductive voltage divider (auto-transformer) and a.c. voltage reference voltage. Such inductive dividers can have division accuracies as high as 1 part in 10^{7}. As embodied in a new instrument shown by Digital Measurements, the technique makes possible a very wide range of measurement, $10 \mu \mathrm{~V}$ to 1.1 kV , in four switched ranges, with good accuracy $(0.001 \%$ f.s.d. of the a.c. reference voltage). A high-speed a.c.-d.c. comparator detects the unbalanced between the direct voltage to be measured (which is applied to an electrometer valve) and the a.c. output of the

Digital voltmeter with inductive voltoge divider, shown by Digital Measurements.
divider. A Weston standard cell is included to enable the first range, $10 \mu \mathrm{~V}$ to 1.1 V , to be set accurately. Resolution is 1 part in the maximum digital reading of 109999 .

Acoustic telemetry.-Another item in the field of acoustics was a telemetry system used by the Research Department of the British Railways Board. This was designed to transmit acoustically the movements of parts of the overhead power supply system and pantograph, which are at a potential of 2 kV , to recorders at earth potential. This is achieved by using piezo-electric transducers at both ends of glass rods acting as insulators. At the high potential end of the system, measuring transducers are energized at an audio frequency between 3.9 and $7.2 \mathrm{kc} / \mathrm{s}$ and the modulated outputs are fed to the piezo-electric transmitters after amplification. This resultant amplitude modulated signal is accompanied by an unmodulated signal and the two are received at the lowpotential end of the glass rod, amplified and fed to phasesensitive detectors. The equipment works from d.c. to $50 \mathrm{c} / \mathrm{s}$ and records displacements, accelerations, etc., associated with the power supply system.

DISPLAY DEVICES

Linear milliameter.-A low pressure discharge tube may de used to indicate current by measuring the length of the glow discharge at the cathode. A linear relation between current and length of cathode glow occurs when an anode of. equal length is mounted parallel to the cathode and at a sufficiently short distance to prevent the anode from glowing.

Mullard's glow discharge milliameter, which gives a linear indication of current up to 10 mA .

Mullard Research Laboratories demonstrated such a tube with a 5% accuracy of reading. The useful current range is dependent on the gas composition, pressure and electrode diameter. The device has a full-scale indication of 10 mA over a distance of 10 cm . The igniting potential (150 V) and maintaining potential (115 V) are fairly close, so the tube can be controlled by simple transistor circuits. A demonstration showed the use of the tube as a motor speed indicator, with calibration from 0 to 5,000 r.p.m.

Light guides.-Bundles of optical fibres through which light may be ducted were shown by Barr and Stroud. Light is transmitted along the fibres by total internal reflection at the interface of the fibre core and its sheath, which has a lower refractive index than the core. Flexible light pipes are made from 50μ fibres, and rigid rods from 10μ fibres which permit image transference owing to their rigidity. If one end of a rigid fibre rod is made larger than the other, a magnified
image is produced at the larger end, and rice versa. Contrast of the image can be improved by adding an outer absorbent sheath to the fibres and this effectively reduces "cross talk" between the fibres.

Faceplates: Fibres can be fused into a solid block, allowing application to coupling of image intensifiers and cathode-ray tube faceplates. Indeed, a c.r.t. faceplate was shown by R.R.E. for operation in bright surroundings (see picture). A high level of illumination at a c.r.t. screen causes reflections from the phosphor, decreasing the visibility of the image. The use of a fibre-optic plate increases the contrast by allowing light which is approximately normal to the screen to pass through the plate. Light incident at angles greater than the critical angle is absorbed.

Cascade image intensifier with a light flux gain of 10^{5} was shown by 20th Century Electronics. It has two intermediàte dynodes for electron multiplication, each comprising a phosphor and a photocathode deposited on opposite sides of a $4 \mu \mathrm{~m}$ thick mica sheet. Overall resolution is 30 line-pairs

Right-hand photograph shows a normal c.r.t. with trace under high ambient illumination. Left-hand picture shows the same trace under the same illumination, but with a fibre-optic faceplate. (R.R.E., Molvern.)
per millimetre and the final image appears on a screen of $39-\mathrm{mm}$ diameter. Developed on the basis of original work by Professor McGee of Imperial College, London, the intensifier is designed for use in astronomy and particle physics.

Commercial Literature

"The Sig Gen Book $1^{\text {" }}$ is the title of a 26 -page publication issued by Marconi Instruments Ltd., of St. Albans, Herts., on how to use signal generators for receiver measurements. It is split into seven sections covering source impedance, coupling to loop aerials, sensitivity, automatic gain control, receiver bandwidth (frequency response characteristic), selectivity, and spurious responses.
5WW 326 for further details
"Impedance Measurements with a Q Meter" is the title of another reference type of publication recently announced by Marconi Instruments, It gives theoretical and practical information and also possible pitfalls to look out for when conducting these tests.
5 WW 327 for further detalle
"Ten new products from Imhofs" are contained in an eight-page catalogue H/ 143 now available from Alfred Imhof Lid., of Ashley Works, Cowley Mill Road, Uxbridge, Middx. There are additions to their already extensive range of instrument housings and accessories, and make possible a new "square" form of styling, that is now optionally available on the majority of the racks in their International Series of Imracks. Other new items described in the catalogue include ventilation fan units, handles and chassis runners. 5ww 328 for further details
Modular Construction System.-Details of the ISEP (International Standard Equipment Practice) system of modular construction for electronic equipment housings are contained in a new twelve-page brochure (MG/104) available from the electronic services division of Standard Telephones and Cables Ltd., of Edinburgh Way, Harlow, Essex. The brochure is well illustrated and shows how, with standardized parts, the user can build different sizes of racking, sub-assemblies, circuit boards, multi-pole connectors and cubicles. This publications should be of particular interest to those building electronic equipment for the home and overseas Ministry and P.T.T. authorities as many of these have standardized on the ISEP system.
sww 329 for further details
SGS-Fairchild semiconductor products are now classified under the following headings : Military, Professional, Industrial and Consumer. Catalogues covering these fields are available from the company's offices at 23 Stonefield Way, Ruislip, Middx.
sww 330 for further detalls

Muillard Industrial Components. - The 1965 edition of " A quick reference guide to Mullard components" is now available from the company. Over a third of this 36 -page publication is devoted to capacitors. Other items in the guide include a selection of resistors, electro-mechanical components, magnets, ferrite materials and assemblies, computer core assemblies, thin-film circuits, and piezoelectric materials. Requests for copies should be made to central enquiry handling, Mullard Lid., Mullard House, Torrington Place, London, W.C. 1.
sww 331 for further setails
The 1965 "Electronic Valve and Component Data" abridged catalogue of the English Electric Valve Company contains brief specifications of the products they manufacture at Chelmsford and Lincoln. These include ignitrons, rectifiers and thyratrons, magnetrons, transmit-receive and transmission blocking cells, solid state microwave devices, photo-multipliers, and glass-to-metal seals. Two of the 20 pages are devoted to an equivalents index that lists valves of various manufacturers for which EEV types may be used as replacements.

5 ww 332 for further detalts

An "Extended Scale Voltmeter" employing a Zenar diode to achieve zero suppression is described in specification sheet 32 now available from the manufacturers, British Physical Laboratories, Radiett, Herts.
sww 333 for furtlier detalis
The 2500 series of "Radiation-tolerant Televisiqn Cameras" manufactured by Cohu Electronics Inc. are described in leaflet 6-327, which is available from the company's Kintel Division, whose address is Box 623, San Diego, California. One-inch vidicons are fitted to these $525-$ line cameras.

5ww 334 for further detatis

The second edition of the 19-page booklet describing the LFK4 "Audio Transistor Package for Transformerless Amplifiers" has been issued by the Entertainment Markets Division of Mullard Ltd., whose address is Mullard House, Torrington Place, London, W.C.1. This transistor package is intended for use in portable radio and audio equipment with output powers up to 750 mW at 9 V and 1 W at 12 V . The design method described in the publication is based on a report prepared by R.F. Brown of the Mullard Central Application Laboratory sww 335 for further detalls

PARIS COMPONENTS SHOW

PARIS, PORTE DE VERSAILLES, 8-I3 APRIL

NOW that the exhibition has left the collection of halls on the east side of the Avenue Ernest-Renan and crossed to the main exhibition (Le Hall Monumental) under one roof, the confrontation, as the French say, which meets the eye on entering is more daunting than ever. The horizon is lost in the haze at the far corners of the hall; there are nearly 900 stands and one has to walk 5 km to see them all.

Obviously, any report must be highly selective and many items, especially those shown by British Manufacturers who will also be at Olympia next month, have been left for our coverage of the R.E.C.M.F. exhibition.

A branch of the main hall was this year set aside for what the organizers term the ler Salon International de l'Electroacoustique but which did not differ much from the aggregation of the same firms in last year's general exhibition. Monsieur Gogny, who revives for one U.K. visitor memories of Voigt and his lone work for high quality in the mid ' 30 s , was showing refined versions of his now well-known Orthophase ribbon-driven flat diaphragm speaker cells. Also a number of combinations of conventional moving coil units, conventional that is with the exception of the "woofer" units which incorporate a separate velocity-sensing unit, with separate magnet system, providing feedback to linearize the velocity characteristic of the main coil.

Another interesting audio exhibit was the new Braun

TG 60 tape recorder designed to give "studio" performance comparable with the rest of Braun domestic quality equipment. The outstanding feature is the plugin head assembly which permits rapid change-over between 2 and 4 -track working.

In the main exhibition the real components, pièce détachée, are fittingly congregated around the entrance and as one penetrates into the hall the complication increases, with sophisticated measuring equipment at the four sides. For precision and quality in small metal parts it was pleasant to find an old-established Birmingham firm (Brandauer \& Co. Ltd.) setting the standard. Many of these minute parts-contacts, transistor headers, etc. -are gold plated and P.M.D. Chemicals Lid. were expounding their "Duplex" technique in which a heat

Broun TG60 tape recorder with plug-in heods

Photomicrogroph of the SGS-Fairchild decade counter chip.

resisting gold layer is combined with a second coating to reduce porosity.

A striking demonstration of the low-noise properties of Filotex coaxial cables was given by inducing large-amplitude traverse mechanical waves in a vibration test bench. Also on this stand was seen a parallel-stranded flexible coaxial shielding (Type FMG) which is easier to strip than the conventional braiding. Sub-miniature coaxial cables shown by Precicable-Bour S.A. are made down to 1 mm external diameter ($50 \Omega \pm 4,93 \mathrm{pF} / \mathrm{m}, 0.87 \mathrm{~dB} / \mathrm{m}$ at $200 \mathrm{Mc} / \mathrm{s}$). A useful kit of inter-series cable adaptors and fixing spanners for most NATO stock numbers was shown by Greenpar Engineering Ltd.
New n-p-n high voltage transistors (700 V , collector-toemitter) and germanium p-n-p diffused alloy power types (325 V) switching 2 A in $<2 \mu \mathrm{sec}$ were announced by Bendix for use in television receivers. The all-planar techniques evolved by S. G.S. Fairchild were well exemplified by a single chip decade counter circuit ($\mathrm{C} \mu \mathrm{L} 958$), measuring 1.25 mm square and containing four binary-
triggered flip-flops with feedback. There are 24 transistors and 30 resistors and it consumes 160 mW at 4 V . Thin film techniques for R and C in conjunction with silicon integrated active circuits were represented by the Ferranti "Multilin" system.

Some things transistors cannot yet do-for instance, produce 8 kW at $6.3 \mathrm{Gc} / \mathrm{s}$; but this is the performance of the M-O Valve Company's travelling wave tube which was on show and which is in use at Goonhilly Down. Nor can they yet do the work of vapour-cooled klystrons such as the KY366 shown by English Electric and used in the Post-Office microwave links between Goonhilly and Plymouth for the "Earlybird" tests. The contrast is even greater at broadcast frequencies for which Eimac have produced a 250 kW vapour-cooled pentode (5CV250, 000 A) and Telefunken a triode (RS1828) rated at 500 kW .

In switching circuits transistors have not yet entirely superseded mechanical relays, particularly glass-encapsulated reeds, typified "dry" by a new G.E.C. model

Milliohmmeter, Type ROI, by S.E.N.

Tektronix Type 422 portable oscilloscope
and "mercury-wetted" by the I.T.T. range. These are cheaper and have life expectances up to 10^{9} operations. High-speed polarized relays of the Carpenter type are also less expensive than the transistorized equivalent shown by T.M.C., but in unattended situations or where skilled adjustment is expensive, the higher capital cost of the transistor version may be justified.

Two new colour television display tubes, both with rectangular screens, were shown, one by the firm "La Radiotechnique" which markets the Miniwatt and Dario valve and transistor marques in France, and the other by Sylvania. This latter tube has a new phosphor coating for the red dots containing the rare earth europium which enables the brightness to be brought up to the more sensitive green and blue levels. An overall brightness increase of 43% is claimed.

Among measuring instruments a milliohmmeter (Type RO1) by Société Electronique et Nucleaire was noted. It has a range of $10 \mu \Omega$ to 10 k ? and uses long thin leads
and crocodile clips for connection to the circuit to be measured. Actually the jaws of each clip are insulated from each other one being used to establish a known current through the circuit under test and the other to measure the voltage developed across it. As the input resistance of the voltmeter is about a megohm the lead resistances can be neglected.

Oscilloscopes showed no striking advances in performance, but there was a trend among the high-grade makers to produce models of smaller size and weight, typical examples being the Hewlett Packard Model 132A doublebeam tube, using Nuvistors for low microphony in the channel amplifiers, and the Tektronix 422 measuring only $16 \times 8 \frac{1}{2} \times 6 \frac{3}{4} \mathrm{in}$, also with double-trace operation and a wide selection of functions for all kinds of scientific work in the field. The ultimate in portability was seen on the Cosmocord stand where a new range of inexpensive vibration measurement equipment included a 1 -in oscilloscope measuring approximately $5_{4}^{3} \times 4 \frac{1}{2} \times 3 \mathrm{in}$.

COLLOQUIUM ON MEMORY TECHNIQUES

PARIS, UNESCO, 5-10 APRIL

AN attendance not far short of 600 served to indicate the breadth of interest in this subject. While the commercial rewards in a future dominated by computers are likely to be thigh for anyone making a major breakthrough in capacity and/or access time, this alone wouid not account for the fascination of the problem for applied physicists, technologists and engineers who have the planning of computer systems. Work on thin magnetic films, optoelectronics, cryogenic devices and ferroelectrics have produced a wealth of paper work and more questions than answers, but the time will no doubt come when the dominance of the ferrite ring core matrix in present-day computers will be superseded.

Successive miniaturization giving better packing densities, and multi-aperture cores permitting non-destructive read-out have kept ceramic ferrite cores ahead of the pack so far. Although a higher Curie point is possible with lithium, and other minor improvements can be obtained with various additives, H. P. Peloschek (Philips) thought that the original manganese-nagnesium square loop ferrite was likely 10 remain the most-favoured type for a long time on account of its uniformity, reliability and fast switching time. He saw no sensational improvement in these directions, but thought that higher saturation magnetization and crystal anisotropy were possible, and that better ceramic structure might be found to improve the squareness of the hystersis loop, degraded by the increased effect of disturbances (pores, etc.) in miniature structures. Most speakers supported this view and agreed that competitors using other methods were aiming at a moving target.

Much work has been done on thin magnetic films which promise faster and cleaner switching because the change of magnetic state depends on 180° coherent rotation of the molecular magnetization in what is virtually a single domain and is independent of the wall motion between domains which is dominant in bulk materials. J. I. Raffel described work at M.I.T. on a high-capacity film store giving $\mathbf{3 , 2 0 0}$ word lines on 350 digit lines (1.1×10^{6} bits) on a glass
substrate only 10 inches long. The magnetic material is deposited by evaporation in a vacuum and special precautions against blemishes (e.g. dust) in preparation are necessary, as one open or shorted line could spoil the whole store. Non-destructive read-out is possible with sandwich films in which a "hard" (Ni Fe Co) film is separated from a soft (Ni Fe) film by a thin non-magnetic layer. The coupling between the magnetic films in these conditions is parallel and identical in direction and this unexpected phenomenon is as yet not satisfactorily explained, though work by Prof. Neel and his colleagues at C.N.R.S. at Grenoble suggests that three mechanisms may be involved: (1) contacts through microholes in the non-magnetic layer, (2) diffusion into this layer of ferromagnetic elements and (3) long-range interaction through the polarization of conduction electrons. The dominant cause is dependent on the metal used for the intermediate layer.
An unusual photoelectronic memory depending on persistent internal polarization (p.i.p.) in a layer of powdered photoconductive material in air, and also exposed to an electric field was described by H. P. Kallmann (Univ. of New York). The information is writen-in by a light beam and can be released by light in the absence of the electric field, but with both field and light off it is calculated that the latent image would last, under dry conditions, for 10 to 12 years.

Another unusual memory principle was described by J. T. Chang et al (Bell Tel. Labs.) and depends on the rotation of polarization of transmitted light through a mosaic of gadolinium iron garnet crystals on the application of a magnetic field. The magnetization of the iron sub-lattice of the garnet produces a rotation in opposite senses for magnetization along or against the direction of light, so the elements can be interrogated non-destructively.

In the concluding session J. A. Rajchman (R.C.A.), a pioneer of memory techniques, summarized the conclusions of the conference and gave his views of future prospects. Too much emphasis he thought should not be given to
miniaturization and perfection of integrated memories themselves without at the same time considering the integration of the access switching circuits which at present cost about as much as the matrix itself. Junction transistors at present capable of being packed at 20 or more to the "chip" were too big, and one had to think in terms of thousands in the same area. Meanwhile diodes which could be laid down at 60 to the inch must offer the best prospect for integration during the next 2 or 3 years. Tunnel diode characteristics were sensitive to manufacturing tolerances and he thought that the future might lie with field effect complementary pairs which were capable of nanosecond switching times with negligible energy requirements. But we would still need 6 to 8 transistors per bit.

In spite of slow progress and pessimism in some quarters he thought that superconducting memories had as much chance as any of beating the ferrite core. They contained only conductors and were simple to manufacture, energy requirements were small and switching thresholds sharp.
The attraction of optics as providing the ultimate in speed of operation was in Dr. Rajchman's view illusory. Compared with fibres, necessary for the conduction of light to the appropriate part of the memory, the copper wire for the conduction of electricity was a great invention; it was just as fast and much more efficient. Lasers with their capability of concentrating large energies in a small spot were not yet sufficiently developed to judge whether a practical application could be made.

LETTERS TO THE EDITOR

The Editor does not necessarily endorse opinions expressed by his correspondents

Class D Audio Amplifiers

THE article in the April issue by Messrs. G. F. Turnbull and J. M. Townsend concerning their "pulse width modulated," or "class D," audio amplifier circuit interests me very much. They have produced a design essentially similar to the one I described in this same journal over two years ago (Letter to the Editor, March 1963), although I am assured that they were unaware of my circuit until after their article was complete. We both advocate arrangements in which overall negative feedback is used to generate the basic switching, and apparently we were led independently to this principle from consideration of different kinds of automatic control system.

Since the publication of my letter I have several times heard the comment that this type of switching must lead to distortion, since it introduces a variation of the basic switching frequency when a modulation waveform is applied and that this variation must give rise to complex sidebands which will spread down into the a.f. band more seriously than would have been the case with the more usual fixed frequency of switching. But is this variation of the frequency necessarily a bad feature? Might not the feedback be cleverer than we are, and " know" that a judicious amount of frequency modulation can actually reduce the troublesome low-frequency sidebands? In fact I am sure that this is the case, and that the feedback effectively modifies both the mark-to-space ratio and the frequency of the switching square-wave in such a manner as to give a very worthwhile reduction of the spurious sidebands at the low frequencies.

Consider the basic arrangement as shown in Fig. 1, which is almost a reproduction of Fig. 8(a) from the article in the April issue. The amplifier A and the capacitor C form an integrator using the well-known "Miller" principle, and the resistors

R_{1} and R_{2} form a feedback network also in a familiar way. If the amplifier A has a high gain, so that voltage swings at its input are negligible, and ahigh input impedance, so that no current is wasted, then the feedback network delivers a current proportional to the voltage error at the output point and this current is integrated by the capacitor C. Thus the output voltage of the amplifier A is at every moment a measure of the integral of the error of the overall amplifiers and the hysteresis circuit H trips over whenever this accumulated (error \times time) integral threatens to get outside the range represented by the voltages $\pm \delta$.

We can thus draw a diagram of the error waveform of the overall amplifier by subtracting the ideal linear output voltage:

which is $V_{\text {in }} \frac{R_{2}}{R_{1}}$ from the actual output square wave that the system gives. The result will look like the waveform in Fig. 2. where the vertical edges have the same height and timing as the edges of the square-wave qutput, but are joined together by portions of the ideal linear output as a result of the subtraction. Now clearly we require this error to be as free as possible from components of frequency in the a.f. band. The modulation system we are discussing, and only this system, has the property that each single pulse in this error waveform has the same voltage \times time integral, indicated by the areas shaded on the diagram, as all the other pulses.
Now this means that not only are the very low frequency components of this error waveform always exceedingly small, but that their increase of size along the frequency spectrum is parabolic rather than linear. In contrast to this, conventional fixed frequency p.w.m. generates sideband components of constant amplitude even when their frequency is close to zero,
such as when the signals at the input are roughly one-quarter or one-sixth of the switching rate. Now the writer is forced to admit that he has been unable to find a satisfactory method for obtaining a proper Fourier analysis of this switching waveform, perhaps some reader may be able to help, but approximate methods suggest that the advantage gained with this arrangement extends over a band of frequencies up to at least a third or a half of the basic switching frequency, that ;s to say throughout the range that is of practical importance. It will be realized, of course, that if very heavy modulation of the mark-to-space ratio is used then the switching rate falls drastically and severe distortion occurs, but it will be found that the effects are not really so very much different when a system of the constant frequency type is overloaded, and the only honest course is to quote a figure for maximum output power based on a maximum modulation depth of perhaps 75%.

Thus this basic system of modulation, involving both the mark-to-space and the frequency of the switching wave, obtained with the negative feedback kind of circuit appears to be theoretically superior to the more usual fixed frequency p.w.m. scheme. This means that such a circuit has the practical advantage that a lower switching rate can be used to obtain a given level of performance, and this in turn cases the speed requirements on the final power transistors. The selection of these is at present the most difficult part of any Class \mathbf{D} amplifier design, so that easing of the requirements is of considerable value.

But this is not the only advantage of the negative feedback system. Consider Fig. 1 again and think what is actually involved in block H. This is not merely a switch with hysteresis, but a power amplifier capable of driving some watts into a loudspeaker. It will normally comprise four or more transistors of which several are being pushed for economic reasons to their limits of power and switching speed. Thus it is naive to assume that the pulse edges will emerge at the loudspeaker circuit with accurately defined amplitudes and uniform time-delays. But in a circuit without feedback this assumption has effectively been made and if it is wrong even by only a few per cent. then a corresponding distortion will be found in the output. The negative feedback, however, corrects for errors of these types and it is a feature of this kind of amplifier that feedback can be put over so many stages that the correction is easily made almost perfect. The only worry is that the circuit may possibly "squegg" if you are exceedingly careless; it will, of course, "hoot," as it was intended that it should!

This makes it clear that the only way in which the circuit can misbehave is by a weakness of the feedback arrangement. Thus the amplifier A in Fig. 1 must take only a negligible input current and its input voltage must not vary appreciably. If these conditions are not met then not merely does distortion appear, but power line hum is able to creep in and bass response can be lost. My circuit of March, 1963, can be substantially improved in this respect by the use of either a transistor of exceptionally high current gain or a Darlington pair in the first stage. The circuit of Turnbull and Townsend in the April issue has a lower impedance feedback network than mine, so that it will be likely to suffer less, but even so the selection of a high gain transistor for $\operatorname{Tr} 1$ will probably be worthwhile. The exact mechanism of this interference can be rather subtle, but the essential effect is that any variation of the collector current of this transistor due to any cause such as variation of the voltage applied to the load injects a current, reduced only by the current gain factor, directly into the feedback bridge. This in turn causes a corresponding change of the voltage at the loudspeaker and hence an unwanted contribution to the output.

It seems rather unkind to-criticize the details of the circuit given in the April issue when I am so much in agreement with its basic principles. Accordingly I will content myself with asking that interested readers should compare the two circuits before building either of them, and I would also like to point out that far and away the most difficult problem for many readers will be in obtaining transistors fast and powerful enough to work adequately in the final stage. The day when transistors become like vacuum tubes and are always able to function far beyond the highest audio frequencies whatever their current or power capabilities has
not yet arrived. When it does we may well see the Class D circuit as the only type of a.f. circuit used in any numbers.
Cheadle.
K. C. JOHNSON

Pulse Width Modulated Audio Amplifier

IT has been my pleasure to read the valuable article by G. F. Turnbull and J. M. Townsend on pulse modulated audio amplifiers in the April issue.
I would like, if I may, to underline the muffled plea (conclusions, p.167) for the development of transistors or G.T.O.s appropriate to power outputs of 20 to 100 watts r.m.s.
In the current range, there is a pronounced notch between audio types having inadequate switching speeds, and h.f. power devices which are too good, and correspondingly expensive for this application. It is to be hoped that the more enterprising semiconductor manufacturers will force the potential of class D systems in the industrial as well as domestic markets.
There is a good choice available for the lower-powered stages with prices ranging from under one shilling to about 4 s for planar epitaxial devices. I mention this to make the point that other components, e.g., a decoupling capacitor, can cost the manufacturer more than a transistor.
The editorial of the April issue makes appropriate comment about "habits of thought induced by long experience with valves. ..." Historically stress has always been laid upon the number of valves employed in a particular piece of equipment. There is surely no longer any reason to regard transistors differently from other circuit components, such as resistors and capacitors.
This argument is relevant when comparing open and closed loop class D systems. It is perhaps worth mentioning that in an open loop system employing double edge modulation the h.f. energy is confined to blocks centred on the fixed p.r.f. and its harmonics, and that filtering therefore tends to be easier. Whilst filtering is frequently unnecessary in domestic installations due to the large h.f. resistance of most loudspeakers, it is important in high-power p.a. applications in order to avoid radiation.
On this topic and again referring to "habits of thought," we ought not to be prejudiced against an audio amplifier containing a "local oscillator" any more than we are towards super-het receivers. In both instances, however, adequate design is called for.
Oxted, Surrey.
D. R. BIRT

kilystron Action

I CANNOT agree with Mr. K. E. Hancock's qualitative description of the action of the klystron in the October, 1964, issue. Contrary to his statement in the script on page 509, the charge distribution in the resonator of Fig. 4 gives a field distribution most favourably disposed towards accelerating the beam electrons within it.
Furthermore, although a finite transit time in the gap (G_{1} to G_{2}) does affect the intensity of velocity modulation of the beam (by a gap factor $\sin \frac{\phi}{2} / \frac{\phi}{2}$ where ϕ is the transit angle), the phenomenon of bunching can be explained without reference to it. The main factor governing the velocity of an electron leaving G_{2} will be the potential to which it has been raised at this point, and it can be easily shown that the velocity of an emergent electron is given by $\mu_{0}\left(1+\frac{v_{1}}{V_{0}}\right)^{\frac{1}{2}}$ where v_{1} is the instantaneous potential difference between G_{2} and $\mathrm{G}_{1}, \mathrm{~V}_{0}$ is the steady p.d. between resonator and cathode and μ_{0} is the electron velocity with no cavity resonance. Bunching is thus obtained by electrons entering the retarding field space near the repeller at different velocities as v_{1} goes through its sinusoidal cycle. The modifying gap factor will have little effect upon this as the transit angle is normally of the order of 1 radian.
If the bunch can be timed to return to the resonator when
it is again in the phase shown in Fig. 4, it will be retarded in velocity, thus giving up.energy to the field.

Carciff.
E. H. JONES

Welsh College of Advanced Technology.

Resistances and Reactances in Parallel

IN reply to Mr. de Visme's letter in the January issue, let me say that the graphical method for determining the equivalent series circuit of a given R and X in parallel, and vice versa, has been described in the literature. At a secondhand book shop I bought a nicely bound volume of Experimental Wireless and The Wireless Engineer for 1927, from which one obtains an excellent insight into "the state of the art" at that time.

Mr. de Visme's method is used in two articles: "Some New Coil Impedance Diagrams". by W. A. Barclay on page 87, and "Alterations to the Modulating Panel at 2LO," by Green, Hewitt and Petersen on page 467. In each case the authors give credit to F. M. Colerbook for originating the method in an article " The Graphical Analysis of Composite Impedance," in E.W. \& W.E. for December 1924.
The late F. M. Colebrook is, of course, well known for his book "Basic Mathematics for Radio and Electronics"" which, in the 1927 volume of E.W. \& W.E. was running in serial form. Another contributor, describing the horizontal Hertzian aerial, and a graphical method of amplifier coupling design was that Peter Pan of radio technical literature, M. G. Scroggie.

Brisbane, Qld., Australia.
A. R. WHITE

Audio Topics-Nomenclature

IN view of the increasing interest in class D amplifiers it is surely pertinent to begin this new design phase with accurate terminology.

It was in the Wireless World of April 1946 that "CathodeRay," dealt with the term "pulse width" and showed that this was slovenly jargon for "the appropriately designated concept of "pulse duration." However, pulse duration modulation has been customarily used for a different sort than that associated with your class D. Surely the correct and most widely used term for this type of amplifier is "pulse-ratio" modulation?
London, S.W.19.
P. F. COOK

I THINK I voice the feeling of the p.a. profession when I say we wish to remain old fashioned enough even with our latest transistor amplifiers, to retain sine wave ratings.
May I make a point about "pop" music? The dynamic range here is much less than the 10 dB mentioned-in many cases less than 3 dB ! As this class of programme takes up so much broadcast time, and abcounts for a large volume of disc sales, surely this type of signal must be considered? Luton, Beds.

HAYDON G. WARREN

National Certificate Courses

YOUR correspondent Mr. I. Leslie (April issue) complains that after working for 7 years and having three A Level passes he cannot enter directly a Higher National Certificate Course. When he left' school two avenues for his further advancement would in theory be open to him:-
(1) to follow technological courses leading to O.N.C. and H.N.C.
(2) to acquire sufficient G.C.E. passes at O and A level to qualify for entry to a degree course, if he had not sufficient already, and to proceed either as a part-time student for a London External degree or as a full-time grant-aided student (at a university or technical college) for an internal or a London External degree.

He has elected to follow the second avenue and now appears to be ready to enter on the degree course proper. If it happens that he has not yet obtained qualifications acceptable for admission as a corporate member of a particular professional institution, apparently without having years ago considered
what he would need for this purpose, he is in no position to complain that the regulations of avenue (1) above are not suited to his particular case.

In any case there are a number of professional institutions to which persons active in the field of electronics might usefully apply.

University of Newcastle Upon Tyne.
P. SHORT

Average Power

IN your editorial comment on the question of power ratings, of audio amplifiers you use the expressions "watts r.m.s." and "sine-wave r.m.s. power." It is clear from the context that what is actually meant is average watts and average power, and thus the addition of the letters r.m.s. is both unnecessary and misleading.
Virginia Water.
L. GOODALL

REPRINTS OF "W.W." ARTICLES

IN response to requests we give below a list of the articles which have appeared in Wireless World and are, or will be, available as reprints.

Wireless World Oscilloscope
Parts 1, 4, 5 \& 6 (Mar., June, July \& Aug. '63) 5 s 0 d
Part 2 (April '63)
2s 6d
Part 3 (May '63)
2s 6d
Parts 7 \& 10 (Feb. \& Oct. '64)
Parts 8 \& 9 (Mar. \& April '64)
2 s 6d
W.W. Audio Signal Generator (Nov. \& Dec. '63) 3s Od

Transistor Audio Power Amplifier \& Pre-Amplifier;
Tobey \& Dinsdale (Nov. \& Dec. '61)
3s 6d
Wireless World Crystal-Controlled Transistor F. M. Tuner
(July '64) available soon
Transistor High-Quality (Stereo/Mono) Audio Amplifier; Dinsdale (Jan. \& Feb. '65) available soon Low-cost High-Quality Amplifier; Baxandall (Feb. '58)

3 s 6 d
F.M. Tuner (Valve); Amos \& Johnstone (April, May \& July '55)

2 s Od

* Where do transistors go ..." some of those that fall by the wayside find their way to PMD Chemicals Lid., of Coventry, who find that it pays to recover the headers and olso the gold which is plated ot considerably greater thickness than on jewellery. Rejects arrive by the 1 ewt sack and stocks awoiting processing can be anything up to 10 tons!

Satellite Communications Service Begins

GOONHILLY STATION MODIFIED FOR EARLY BIRD SYNCHRONOUS SATELLITE

LAUNCHING of the Early Bird synchronous satellite on 7th April effectively established the first satellite radio communications system to be used in a commercial telephone service. Previous satellite communications systems have been purely experimental. After an initial test period, now nearing completion, the new system will carry a proportion of the transatlantic telephone traffic normally conveyed by cable between Europe and North America. Nevertheless it is still only a trial commercial system. The economics and technical advantages of synchronous satellite working have still to be assessed, relative to h.f. radio, undersea cables and the rival non-synchronous satellite systems, before a decision can be made on the best type of satellite scheme for global communications.

The Early Bird system will provide up to 240 telephone circuits between an American earth station, at Andover, Maine, and any one of three European earth stations, at Goonhilly Downs in Great Britain, Pleumeur Bodou in France and Raisting in W. Germany. Continuous operation is possible, but initially the service will be restricted to peak telephone traffic hours between noon and midnight, Monday to Friday. The system may also be used for occasional experimental television transmissions. The three European stations will operate consecutively, each carrying the whole of the satel-lite-system traffic for one week in every three week period. The remaining two weeks of the period are for standby operation and maintenance respectively. Switching centres at London, Paris and Frankfurt will establish the required telecommunication circuits throughout Europe, to and from whatever station is acting as the satellite terminal.

Early Bird, otherwise known as HS-303, has been placed at a height of about 22,240 miles and moves in a synchronous equatorial orbit which causes it to be stationary with respect to the earth at a point $27^{\circ} 30^{\prime} \mathrm{W}$ above mid-Atlantic. Built by Hughes Aircraft Company, U.S.A., the HS-303 is constructed as a cylinder 3 ft in diameter and 4 ft 6 in high with projecting aerials. The cylinder carries on its surface about 6,000 solar cells, providing a 45 -watt power generator, and encloses two communications transponders, a v.h.f. telemetry transmitter, two microwave beacons and a
battery of rechargeable cells. The two transponders (one for each direction of signal transmission) receive signals from a colinear aerial array and use a common travelling-wave tube transmitter, which has an output power of 4.3 watts and feeds a co-axial slot aerial. For telemetry, four v.h.f. whip aerials are used.
Communications signals are transmitted from the European earth station on $6.30 \mathrm{Gc} / \mathrm{s}$ and received by one of the satellite transponders, which re-transmits them on $4.10 \mathrm{Gc} / \mathrm{s}$ to the U.S.A. In the reverse direction, signals are transmitted from Andover on $6.39 \mathrm{Gc} / \mathrm{s}$ and received

Fig. 1. Main features of the modified oerial, showing the new bowl built on top of the old one.
by the second transponder, which re-transmits them to Europe on $4.16 \mathrm{Gc} / \mathrm{s}$. Beacon frequencies are in the region of $4 \mathrm{Gc} / \mathrm{s}$ (transmitted with e.r.p. of 250 mW) and v.h.f. telemetry frequencies are $136 \mathrm{Mc} / \mathrm{s}$. (All figures are approximate.)

In preparation for the Early Bird communication system the British Post Office, as reported earlier, has made extensive modifications to its terminal station at Goonhilly Downs. These have been necessary mainly because different frequencies are now used and because HS-303 is more distant than earlier satellites so that received signals are considerably weaker (power received from the satellite is about $10^{-13} \mathrm{~W}$). Furthermore, since the new communications system is intended for regular commercial use, it must be more reliable than an experimental scheme. The most imporiant aspect of the modifications has been the improvement of the signal/noise ratio in the system. This has been achieved by increasing the gain of the aerial; reducing losses in the aerial waveguides; introducing a new maser receiving amplifier; and increasing the output power of the transmitter.

The higher transmitter power (8 kW) is provided by a new water-cooled travelling-wave tube with a cloverleaf slow-wave structure developed by G.E.C. and S.E.R.L. This valve, like the maser, is housed within the aerial structure.

Changes made io the aerial are illustrated in Fig. 1. To obtain more efficient transfer of energy between the primary feeds and the paraboloid reflector, the reflector bowl has been made shallower and thee feeds unit moved outwards to the new focus position. As a result the aerial aperture has been reduced from 180° to 140°. The new bowl has, in fact, been built on top of the old one. Precision engineering techniques have been used to obtain high reflection accuracy. The bowl membrane now consists of a solid steel $25-\mathrm{ft}$ central section, machined to an accuracy of 0.015 in to act as a reference, and 24 adjustable stainless steel panels surrounding it. The surface positions of these panels have been adjusted, against a parabolic test template, by the multiplicity of screw jacks mounted behind the membrane on the supporting structure (the bowl having been rotated under the template). As a result the bowl is within ± 0.1 in of

New travelling-wave maser. A second maser will be installed later to act as a standby.

Fig. 2. Radiation poitern of new aerial compared with old one; stouwIng improvemenc in gain and sup. pression of side lobes.

the optimum paraboloid over 99% of its surface. In addition, the feed supports have been designed and positioned to reduce aperture blocking and feed shadowing, and losses due to these effects are estimated as less than 0.26 dB . As shown in Fig. 2, these aerial modifications have- sharpened the radiation pattern and increased the gain by 6 dB to 60.5 dB at $6 \mathrm{Gc} / \mathrm{s}$.

The new Mullard travelling-wave maser has a higher gain (about 7 dB more) than that of the earlier model and the noise temperature has been reduced from $15^{\circ} \mathrm{K}$ to about $10^{\circ} \mathrm{K}$. An unusual feature of the device is the use of a light-weight superconducting electromagnet for tuning in place of the earlier heavy permanent magnet. This has improved the stability of operation of the device. The low temperature necessary for superconductivity in the magnet coils is provided by the liquid helium bath $\left(-271^{\circ} \mathrm{C}\right)$ used for the maser.

Detection of the received signals (after they have been converted down to $70 \mathrm{Mc} / \mathrm{s}$) is performed by an f.m. negative feedback demodulator. In this the deviation of the signal is reduced by frequency feedback before it reaches the final discriminator and the noise bandwidth is limited by a filter with a passband narrower than that of the original deviation.

As a result of the modifications the figure of merit (gain/noise temperature) of the overall system has been improved by 4 dB . Of this, 3 dB results from the better aerial performance and 1 dB from lower noise temperature.

Since Early Bird is a "stationary" satellite the aerial tracking requirements are much less stringent. The aerial bowl movement is still controlled from predicted satellite position data (sent from the U.S.A. and converted into azimuth and elevation acrial co-ordinates, by computer at Goonhilly), but the predicted data sent are now more widely spaced in time. Position interpolation is performed by the computer and the aerial control equipment, to give position-demand signals for the aerial digital servos at $1 / 50$ th second intervals. Errors in prediction are estimated at not more than 10° arc. Fine positioning of the aerial beam, to correct errors in prediction or due to wind forces on the aerial bowl, is now performed automatically by a closed-loop control system. In this the beam is made to follow the satellite, by hydraulically powered movement of the aerial feed unit relative to the true focus of the paraboloid, in response to error signals derived from a conical-scan positiondetecting system.

ELECTRONIC LABORATORY INSTRUMENT PRACTICE
 By T. D. TOWERS, ${ }^{\star}$ M.B.E., A.M.I.E.E., A.M.I.E.R.E.

5.-MEASUREMENT OF RESISTANCE

|INE times out of ten in an ordinary electronics laboratory you will use a multimeter to measure resistance. Next time you have occasion to do such a measurement, halt that reflex reaching for the Avo, and think "What am I doing? What will the reading tell me? What accuracy can I expect?" If you think you could, without reference to a textbook, score more than 90% for an examination question like this, you need not read on. If, however, your ideas on resistance measurements are, like most people's, a bit hazy, you may be interested in the description given below of the variety of methods (of which the multimeter is only one) which can be used.

Multimeter Resistance Measurements

Most multimeters are provided with direct reading resistance scales. When switched to an "ohms" scale the instrument uses the basic meter movement in combination with an internal battery and resistive network to display a reading of the value of a resistance connected across its terminals.

In most commercial multimeters, the ohmmeter section is of the basic "series-type" shown in Fig. 28 (a) where the current meter M is combined internally with a voltage source, E , (usually a $1 \frac{1}{2} \mathrm{~V}$ battery) and a series resistance RV.. The component to be measured is connected across the test terminals $\mathrm{X}-\mathrm{X}$ and its resistance is read off on an ohms scale on the meter.

In practice, the operation is self-calibrating. First you leave the test terminals open, and verify that the meter scale reads zero deflection (infinite resistance). You may have to adjust the meter-preset screwdriver zeroadjustment for this. Then you short-circuit the test terminals and adjust the "zero-ohms" knob (controlling RV) until the meter reads full deflection (zero ohms), Next you connect the unknown R between the test points $\mathrm{X}-\mathrm{X}$ and read its resistance on the direct-reading resistance scale. The scale (which normally reads forward from left to right for increasing current or voltage) reads backward for increasing resistance, since the current through M falls as the resistance across the test terminals increases. The resistance scale is non-linear, being crowded up towards the left-hand (high resistance) end.

Good commercial multimeters, like the Salford "Selectest," or the Avo Model 8, described in previous articles, have three switched resistance ranges. In these the normal range ($\Omega \times 1$) measures $0-200 \mathrm{k} \Omega$, with $2 \mathrm{k} \Omega$ mid-scale; the high resistance $(\Omega \times 100)$ measures $0-20 \mathrm{M} \Omega$, with $200 \mathrm{k} \Omega$ mid-scale; the low resistance $(\Omega \div 100)$ measures $0-2000 \Omega$, with 20Ω mid-scale.

How accurately does a multimeter read resistance?

[^4]When it leaves the manufacturer; the accuracy specification (for example, of the "Selectest ") is typically \pm 3% from zero to mid-scale, $\pm 5 \%$ from mid-scale to $2 / 3$ rd full scale and $\pm 10 \%$ from $2 / 3$ rd up to full scale. After a few " adventures" in the lab., you would be unwise to assume that it is as good as this. If you are prudent you should not rely on its being better than 5% below mid-scale, 10% from to $2 / 3$ rd scale, and 20% to $2 / 3 \mathrm{rd}$ to full scale.

These accuracies are sufficient for many requirements in the laboratory but you may want to check more closely on occasion. You can then turn to one of the more specialized instruments described later. Alternatively (and this is very often done) you may check the multimeter resistance range error by measuring a standard cracked-carbon high-stability resistor of known value. These can be obtained quite cheaply to a 1% tolerance

Fig. 28. Basic circuits for resistance measurement: (a) series-type ohmmeter range of multimeter; (b) alternative series-type ohmmeter (c) shunt-type ohmmeter; (d) valve-voltmeter circuit for measuring resistonce.
from your usual electronics supplier or in case of difficulty from specialist firms such as the Radio Resistor Co. Ltd. With a range of these (say $1 \Omega, 10 \Omega, 100 \Omega$, up to $1 \mathrm{M} \Omega$) you can rapidly check the multimeter resistance scale in the area of resistance where you are critically interested, and apply the necessary correction to your reading of the unknown. A useful tip is to keep the resistances handy in a polythene bag Sellotaped to the top of your instrument.

In using the multimeter as an ohmeter, remember the few simple precautions following:-
(a) Before commencing test, adjust meter zerodeflection if necessary by screwdriver meter-zero adjustment control.
(b) Check that connections to test terminals are tight.
(c) Check that meter is switched to correct resistance range.
(d) Short-circuit test prods or terminals and adjust full-scale deflection (for zero resistance) with the "set-zero" control knob.
(e) Verify that in short-circuit test, (d), the meter pointer does noe " wander" or "jitter"-this indicates a nearly exhausted internal battery. If you cannot bring the pointer up to full-scale deflection at all, renew the battery.
(f) Don't leave a resistor (or short-circuit) across the terminals except in making measurements, as this may run the battery down.
(g) After use, always switch away from the resistance range (preferably to a high voltage one).
(h) Remember that without calibration check against a standard, errors as high as $\pm 20 \%$ can occur at some points of the scale in practice.
Variants of the basic series-type ohmmeter circuit of Fig. 28 (a) may be met with. For example, another version of the series circuit is given in Fig. 28 (b). Here the short-circuit adjustment for full-scale meter deflection is made by a variable resistor RV in parallel with the meter. However, the basic principle of measuring an external resistance connected across the test terminals X-X by measuring the current through it (and an internal resistance in series with it) still obtains.

A different principle is adopted in the shunt-type ohmmeter circuit of Fig. 28 (c) where, on open circuit, the meter is adjusted by RV to full-scale deflection. When a resistance is connected across the terminals X-X, the current through the meter falls to indicate the resistance. This type of ohmmeter reads increasing resistance from
left to right, the opposite way to a series ohmmeter, and is less common.

Valve Voltmeter Resistance Measurements

After the multimeter, the commonest instrument used for resistance measurements in an electronics laboratory is the general-purpose valve voltmeter, which now usually incorporates resistance as well as voltage measurements.

Fig. 28 (d) illustrates the basic arrangement of the valve voltmeter in its resistance ranges. Current from the internal d.c. voltage supply flows through an internal precision resistor \mathbf{R}_{0} and the unknown resistance \mathbf{R}_{x} connected across the test terminals X-X. The resultant potential difference across R_{x} is applied to the input stage of the valve voltmeter, which gives a corresponding pointer deflection. The higher the unknown resistance R_{x}, the greater the deflection. The resistance scales of a valve voltmeter thus sead from left (low resistance) to right (high resistance) in contrast to the multimeter which, as we saw above, reads the other way round.

The valve voltmeter ohmmeter tends to cover a wider range of resistance than the multimeter-and in a greater number of switched ranges. For example, the KL.B Paco V70 valve voltmeter has seven switched resistance ranges covering $0-1000 \Omega$ (10Ω midscale), $0-10,000 \Omega$ (100Ω midscale) etc. up to $0-1,000 \mathrm{M} \Omega$ ($10 \mathrm{M} \Omega$ midscale). This contrasts with the three internal ranges of the Avo with a $20 \mathrm{M} \Omega$ maximum. The difference is not so great, however, when the valve voltmeter is transistorized. In the typical good transistorized voltmeter illustrated in Fig. 29, the B.P.L. TVM1063, the resistance ranges available are $0-1 \mathrm{M} \Omega, 0-10 \mathrm{M} \Omega, 0-100 \mathrm{M} \Omega$. (Unlike the more conventional valve voltmeters, the resistance scale on this particular instrument reads from right to left like a multimeter.)

The precautions outlined earlier for using the multimeter in resistance measurements apply equally to valve voltmeters, which are provided with the same zerosetting facilities.

Bridges for Resistance Measurements

In the higher resistance ranges, the valve voltmeter is capable of measuring resistances with an accuracy better -than the multimeter, but otherwise its accuracy is still. only of the order of 5% or so. For better accuracies

Fig. 29. Typical commercial valve voltmeter with three resistance ranges $15 \mathrm{k} \Omega, 150 \mathrm{k} \Omega, 15 \mathrm{M} \Omega$ midscole reading (B.P.L. TVM 1063, transistorized).
you must turn to some other measurement method. Now the well-known Wheatstone bridge has been in use since the earliest days of electricity to make accurate resistance measurements and it still finds wide use in ordinary electronic laboratories.

The original Wheatstone bridge for d.c. measurement of resistance, from which many different bridge types have evolved, is shown in basic form in Fig. 30(a). Here E is the d.c. source voltage, A, B and S are the selected bridge resistors; and R_{x} is the unknown external resistor. The bridge resistors are adjusted until depressing the key produces no deflection in the galvanometer or current meter, M. At balance, it can be shown that

$$
\mathbf{R}_{x}=\frac{\mathbf{A}}{\mathbf{B}} \cdot \mathbf{S}
$$

The two internal bridge arms A and B in Fig. 30(a) are known as the "ratio arms". In commercial instruments the ratio of these is selected by switches so that the third arm S (known as the "series" arm), a dial-controlled variable, will yield the maximum number of significant figures.

For low resistances of the same order as the bridge contact and lead resistances, the Kelvin bridge, a modified form of the Wheatstone bridge, is often used. The basic Kelvin bridge circuit is given in Fig. 30(b). In this, B and S are chosen large compared with lead and contact resistances. \mathbf{R}_{x} can then be measured accurately even if it is very low. When the bridge is balanced with $\mathrm{b} / \mathrm{B}=$ s / S, it can be shown that $\mathbf{R}_{x}=\frac{A}{B} \cdot \mathbf{S}$ as before.

For very high resistances, again the accuracy of measurement on a standard Wheatstone bridge falls off, mainly due to lack of a sufficiently sensitive null detector meter, M. The Wheatstone configuration has, however, been used to measure resistance of the order of $1,000,000$ $M \Omega$. For this the meter null detector is replaced by a highly sensitive valve detector as shown in Fig. 30(c). A guard ring is used so that leakage across the insulation of the high resistance arm, A, of the bridge does not affect the balance point.

The balancing of d.c. bridges is not difficult, but one precaution it is wise to take is to confirm that the balance is obtained at the same point on the resistance dial when the polarity of the bridge energizing voltage is reversed.

Up till now we have dealt with a d.c. Wheatstone bridge where the source is d.c. from a battery, and the detector a centre-reading galvanometer or meter. Now laboratories also normally require a bridge for impedance measurements (to be discussed in the next article) and this calls for some form of a.c. bridge. If the signal source of the d.c. Wheatstone is changed to an a.c. oscillator and the detector to an a.c. detector (such as a pair of headphones or an a.c. voltmeter), we get a bridge capable of measuring impedances. At low audio frequencies, a "resistance" normally has negligible reactance, so that it is possible to use an l.f. a.c. bridge for "d.c." resistance measurement. The basic circuit of the a.c. Wheatstone bridge is given in Fig. 30(d). If the frequency of the a.c. source is low ($50-2000 \mathrm{c} / \mathrm{s}$) and the bridge impedances Z_{A}, Z_{B}, Z_{8} as well as the unknown Z_{x} are effectively resistive then the balance equation becomes, as with the d.c. bridge, $\mathbf{R}_{x}=(\mathrm{A} / \mathrm{B}) \mathrm{S}$.

The a.c. bridge circuits used in commercial l.f. bridges are not often simple Wheatstone types but usually one of the many derivative types, which are beyond the scope of this treatment. Interested readers might well consult E. Hague "Alternating Current Bridge Measurements" (Pitman) where over 100 bridge types are described.

The range and accuracy of resistance measurement
(a)

(b)

(c)

(d)

Fig. 30. Basic bridge circuits commonly used for resistance measurements: (a) d.c. Wheatstone; (b) d.c. Kelvin; (c) amplified d.c. Wheatstone; (e) a.c. Wheatstone.

Fig. 31. Typical commercial example of portable Wheatstone d.c. bridge (W. G. Pye 7383).

with the three types of d.c. bridges described for general purpose instruments is approximately as follows:
(a) D.C. Wheatstone $1-1,000,000$ ohms with an accuracy of the order of $\pm 0.1 \%$ (can be obtained down to $\pm 0.003 \%$).
(b) D.C. Kelvin (low resistance) down to 0.001 ohm with accuracy of the order of $\pm 0.1 \%$ except for very low values of resistance.
(c) Amplified D.C. Wheatstone (high resistance) up to 10^{12} ohms with accuracy of $\pm 4 \%$ up to 10^{10} ohms.
Fig. 31 illustrates a widely used example of a d.c. resistance bridge, the W.G. Pye type 7383 Portable Wheatstone. Capable of measurements from 0.001Ω to $1 \mathrm{M} \Omega$. this bridge has a built-in pointer galvanometer and a $4 \frac{1}{2} \mathrm{~V}$ internal battery for applications where full portability is required. However, terminals are provided for an external galvanometer and external battery for ultra precise measurements in the laboratory. The series arm comprises four decades, in steps of hundreds, tens, units and tenths of ohms, and uses manganin coils adjusted to $\pm 0.02 \%$ accuracy; except the 0.1 ohm coils which are adjusted to $\pm 0.2 \%$ accuracy. The two ratio arms are each switched selections of $1,10,100$ and 1000 ohms utilizing manganin coils adjusted to $\pm 0.01 \%$ accuracy. Other well-known names in the d.c. bridge field are

Fig. 32. Typical commercial example of portable a.c. bridge capable of accurate measurement of resistance, as well as impedance (Marconi TF2700-transistorized).

Baldwin, B.P.L., Cambridge Instruments, Croydon Precision, Sullivan, 'Tinsley and Wayne Kerr.

In the lab. you will often find that the l.f. a.c. bridge is used for rapid resistance measurements when accuracies better than the multimeter or valve volmeter are looked for, and the high accuracy obtainable with the sloweroperating Wheatstone is unnecessary. An excellent example of this type bridge is the Marconi TF2700 illustrated in Fig. 32. This is a new-generation transistorized universal bridge, designed to measure L, C and R, but eminently suitable for rapid, accurate resistance measurements. The internal battery-powered transistor oscillator provides a bridge source at $1 \mathrm{kc} / \mathrm{s}$. The TF2700 has eight resistance ranges in decades from $0-1 \cdot 1 \Omega$ to $0-11 \mathrm{M} \Omega$. In all ranges except the bottom one, the measurement accuracy is better than $\pm 1 \%$ of the reading added to $\pm 0.1 \%$ of the range maximum. On the bottom 1.1Ω range, the accuracy is $\pm 2 \%, \pm 0.1 \%$ of range

-ig. 33. Basic circuits for high-accuracy resistance measurement by: 1a) substitution; (b) potentiometer.
maximum. As a general statement it can be said that the accuracy is about 1%. The TF2700 is tending to take over from the well-known TF868 valve universal 1% LCR bridge which has been "a piece of the furniture" in so many electronics laboratories over the last decade. A.C. bridges suitable for resistance measurement will be covered more fully in the next article.

Substitution Measurement of Resistance

A simple " lab. lash-up " method for resistance measurement that can be of considerable accuracy employs the circuit of Fig. 33(a). A battery E is connected via a galvanometer or meter M with a variable shunt resistor R to a switch S. The resistance R_{s} is a variable standard resistance, and \mathbf{R}_{x} the unknown. With the switch in position 2 the meter current is adjusted to a convenient deflection by means of the variable shunt resistor R. S is then switched to position 1 , and R_{s} adjusted to give the same current reading. At this point $\mathbf{R}_{s}=\mathbf{R}_{x}$. The precision of the method depends on the accuracy of R_{s} and of the meter scale reading, and can be high if \mathbf{R}_{x}

Fig. 34. Typical commercial decade resistance box for use in methods of Fig. 33. (Levell type R410).
is large compared with contact and lead resistances. In Fig. 33(a) the "substitution" resistor \mathbf{R}_{s} is usually a "decade resistance box". This is a useful piece of general purpose laboratory equipment, which can vary from expensive 0.01% accuracy to economical 1% accuracy.

Usually it has four decades of resistors selectable by switches. Typical of the 1% variety is the Levell Type R410 decade resistance box illustrated in Fig. 34. This particular version can switch-select any resistance from 10 to 111,100 ohms with $\pm 1 \%$ accuracy. In decade boxes, you are likely to meet units manufactured by such companies as Baldwin, Cambridge Instruments, Croydon Instruments, Daystrom (Heathkit), Furzehill, Rivlin, Sullivan and W. G. Pye.

Besides resistance boxes, most of the firms specializing in d.c. resistance test equipment supply single standard resistances of various degrees of accuracy from 0.001% to 1%.

One feature of the circuit of Fig. 33(a) calls for remark. When you are using a decade resistance box for R_{s}, watch out that you do not put too much current through it. The high stability resistors in the box are very liable to lose their accuracy if overloaded. Read the instruction leaflet or manual for the decade. box very carefully, and ensure you do not exceed the manufacturer's current rating. If you should do so by accident, immediately tie a label to the box saying what has happened. This prevents the next user from placing unjustified reliance on the accuracy of the standard until calibration check has been possible.

Potentiometer Method of Measurement

Another lab. bench method of measuring resistance is by means of a potentiometer as illustrated in Fig. 33(b). The potentiometer, which was described in the February, 1965, article of this series, is used to compare the voltage drop, V_{x}, across the unknown R_{x} with that, V_{f}, across a standard resistance, S . It can be shown easily that

$$
\mathrm{R}_{x}=\frac{\mathbf{V}_{x}}{\mathbf{V}_{s}} \cdot \mathrm{~s}
$$

The measurement must ensure that the current through both resistors is constant. Usually a decade resistance standard box is used for S, and adjusted until the potentiometer reads the same voltage when switched repeatedly from \mathbf{R}_{x} to S and back. This makes the method rather tedious but it has the advantage that the unknown can be evaluated very accurately in terms of a suitably chosen standard. This method is capable of extremely

Fig. 35. Typical commercial high-resistance megohmmeter (W. G. Pye 11801 Wide Range Megohmmeter, $3 \mathrm{M} \Omega$ to 200 million $\mathrm{M} \Omega$).
(a)

Fig. 36. Basic circuits of miscelloneous resistonce measuring techniques: (a) oscilloscope trace decrement meth od; (b) meter internal resistance measurement by variable resistance.
high accuracy if a sufficiently good potentiometer and reference resistance standard are used.

Low Resistance Measurements

Several of the methods outlined above are useful in the very low resistance field. In particular the Kelvin bridge is very commonly used. Some firms make equipment specially for low resistance measurements, as, for example, Startronic with their "Lohmeter" and "Milohmeter".

A particular problem arises when you are measuring switch contact resistances. You may get variable and misleading results if you do not ensure that sufficient voltage is applied to break down surface oxide layers in the switch.

High Resistance Measurements

High resistance measurements have been discussèd generally under the various methods outlined earlier. Again some firms specialize in this field. Most electrical engineers for example, will know of the portable "Megger" type ohmmeter manufactured by Evershed and Vignoles. In electronics laboratories, while the Megger is not uncommon, it is more usual to find more specialized static equipment used if any substantial high resistance measurements are required.
Typical of these specialized high resistance test sets is the W. G. Pye 11801 Portable Wide Range Megohmmeter illustrated in Fig. 35. This covers 3 megohms to 200 million megchms in seven switched ranges. Battery operated, it provides a constant test potential of 500 V , and comprises a highly stabilized transistor converter, a range of reference resistors and an accurate transistorized voltmeter. It is. particularly suited to measuring capacitors or long cables, and is fitted with a guard terminal to minimize the effect of leakage paths.

Miscellaneous Techniques

One technique of resistance measurement I myself have been working with recently, which has considerable

JUNE ISSUE

Publication date of the June issue of Wireless World, which will include a previow of the London Radlo and Electronic Component Show, will be broughe forward to May 17th, the day before the exhibition opens at Olympla. The Show, sponsored by the Radio and Electronic Component Manufacturers' Federation, will open dally from $10 \mathrm{a} . \mathrm{m}$. to 6 p.m. from May 18 th to 21 st . The preview will summarize briefly some of the newest products of the 250 exhibitors and will be in addition to the normal quota of articles and regular features.
potential (but is not at present in common use), is the "square wave", or what I call the "scope trace decrement", method. The basic circuit of this is illustrated in Fig. 36(a) where a square-wave generator with output impedance negligible compared with the resistance \mathbf{R}_{x} to be measured is used to drive the differentiating network, $\mathbf{C R}_{x}$. The wave shape across \mathbf{R}_{x} is inspected with an oscilloscope (with input impedance high compared with \mathbf{R}_{x}). The capacitor C is adjusted until the step " $A B$ " at switch-over on the scope trace is 4.3% of its negative peak valued $\mathrm{V}_{p k}$. It can be shown then that $\mathrm{R}_{x}=$ $1 /\left(2 \pi f_{0} \mathrm{C}\right)$, where f_{0} is the square wave repetition rate.

A common practical problem in a laboratory is to measure accurately the internal resistance of a d.c. milliammeter or microammeter, particularly when you want to select a shunt or series resistor to attain a specific full scale deflection. There are many ways of doing this, but the commonest (and easiest) is probably the variable resistor method shown in Fig. 36(b). This uses a calirated variable resistance RV (which can be a decade resistance box) and a steady d.c. voltage source E (for example a fresh -1.5 V battery) to test the resistance of the
meter M. To make the measurement you close the switch and adjust RV until the meter reads full scale. Let $R V_{0}$ be the value of RV for this. Now increase RV until the meter reads half-scale. Let RV value now be RV_{1}. The meter internal resistance can then be found from $R_{M}=R V_{1}-2 R V_{0}$. The accuracy of your result depends on how precisely the mid-scale point on the meter represents half current and on how accurately you can measure $R V_{o}$ and $R V_{1}$. At a pinch you can use a volume control potentiometer for RV, and measure the values at the two settings with an Avo, or, better, a resistance bridge.

Summary

When you have to make resistance measurements, always try to use the best instrument available for the resistance range and accuracy you are interested in. In broad terms,
(a) For accuracies of the order of 10% and ñot too low or too high resistances, you can use a multimeter or valve voltmeter (but take the precaution of checking it with standard resistances occasionally).
(b) For accuracies of the order of 1% you can usually employ a good l.f. a.c. bridge or a general-purpose d.c. bridge.
(c) For accuracies of the order of 0.1% or better, you must turn to specialist instruments such as refined d.c. bridges.

To return to my original question, you should now be in a position to realize how and with what accuracy an Avo measures resistance. As most run-of-the-mill circuitry works with only 5% or 10% tolerance resistors, and a good well-calibrated multimeter can measure to this accuracy, you can also see why more than nine times out of ten engineers in an electronics laboratory reach for the multimeter, already on their bench, to check a resistor value.

This Month's Conferences \& Exhibitions

Further details are obtainable from the addresses in parentheses.

LONDON

May 17-21
Components \& Materials used in Electronics Engineering (I.E.E., Savoy Place, W.C.2)

May 17-21
International Instrument Show
(B. \& K. Laboratories, 4 Tilney St., W.1)

May 18-21
Radio \& Electronic Component Show Olympia
RECM. Fectronic Component Show
May 20-21 R.Ae.S., Hamilton Place, W.I
Electrical Conduction at Low Temperatures
(Inst. Phys. \& Phys. Soc., 47 Belgrave Sq., S.W.I)
DUNDEE
May 25-27 Marryat Hotel
Electronics in Action Exhibition
(I.E.E. Scottish Electronics \& Measurement Section, 50 Holeburn Rd., Glasgow)

EASTBOURNE

May 13 \& 14
Grand Hotel
New Materials \& Processes in Instrument Manufacture (Scientific Instrument Research Assoc., Chislehurst, Kent)

SCARBOROUGH

May 24-27
Royal Hotel
R.T.R.A. Annual Conference
, (Radio \& Television Retailers’ Assoc., 19 Conway St., W.1)

OVERSEAS

May 5-7
Clearway, Fla. Microwave Theory \& Techniques
(J. E. Pippin, Sperry Microwave Electronics Corp., Box 1828, Clearway, Fla.)
May 6-8
Boston
Human Factors in Electronics
(I.E.E.E., Box A, Lenox Hill Station, New York 21, N.Y.)

May 10-12
Dayton
Aerospace Electronics Conference
(NAECON, 1414 E , 3rd St., Dayton 2, Ohio)
May 19-25
Amsterdam
Electronic Exhibition
(Elvabé, Molenallee 63A, Wilp, Gld., Netherlands)
May 24-28
Mòntreux
-Television Symposium
(R. Jaussi, Postfach 97, Montreux, Switzerland)

May 24-29 New York Information Processing Conference
(British Computer Soc., Finsbury Pavement, London, E.C.2)

May 25-27
Washington
A.F.C.E.A. Annual Convention
(Armed Forces Communications \& Electronics Assoc., 1725, Eye St., N.W., Washington, D.C.)

MAY MEETINGS

Tickets are required for some meetings: readers are adoised, therefore, to communicate with the society concerned

LONDON

3rd. I.E.E. Graduates \& Students."Some aspects of transistor tape recorder design" by Dr. J. C. Vickery at 6.30 at Savoy Place, W.C.2.
6th. Royal Society.-"The organization of a memory system" by J. Z. Young at 4.30 at Burlingron House, Piccadilly, W.1. 11th. I.E.E.-Colloquium on "Semiconductor capacitors in varactor and pulse applications" at 2.30 at Savoy Place, W.C.2.

12th. I.E.E.-"Television recording" by P. Leggate at 5.30 at Savoy Place, W.C.2. 12th. I.E.E. \& I.E.R.E.-" Random access mass stores" by J. Davey at 6.0 at the London School of Hygiene \& Tropical Medicine, Keppel Street, W.C.1.
13th. I.E.E.-"Effect of weather on performance of 8 mm radar" by O . Nourse and S. G. Nichonts at 5.30 at Savoy Place, W.C.2.

19th. I.E.R.E.-"A groove control system for phonegraph disk cutting equipment" by H. Lindskov Hansen at 6.0 at 9 Bedford Square, W.C.I.
21st. Inst. of Navigation.-"A satellite/ ground station navigational aid" by R. E. Anderson at 4.30 at the Royal Instn. of Naval Archinects, 10 Upper Belgrave St., W.1.

26th. I.E.R.E.-" The impact of electronios on the Army's repair organization" by Major General L. H. Atkinson at 6.0 at the London School of Hygiene and Tropical Medicine, Keppel Street, W.C. 1.

CAMBRIDGE

4th. I.E.E.-"Anglo-Canadian transatlantic selephone cable" by F. Scowan at 6.30 at the College of Arts \& Technology.

MIDDLESBROUGH

5th. I.E.E.- "Fuel cells, a branch of electrochemical engineering" by Dr. A. B. Hart, at 6.3 A at Cleveland Scientific Instn.

PRESTON

5th. I.E.E.- "Computers" by Dr. R. Feinberg at 7.30 at the Harris College.

CLUB NEWS

Bexleyheath.-Mobile operation will be discussed at the meeting of the North Kent Radio Society on May 13 th at 7.45 at the Congregational Church Hall.
Heckmondwike.-Members of the Spen Valley Amateur Radio Society are to visit the Wharfedale Wireless Works at Idle, Bradford, on May 13th. A fortnight later at 7.30 at the Grammar School, H. Tomlinson, of the G.P.O., will discuss communication via earth satellites.
Leamingtos Spa. - The May programme of the Mid-Warwickshire Amateur Radio Society includes fectures on single sideband reception (3 rd), amateur aerial arrays (17 th) and the fifth of a series on radio theory (31st). Meetings are held at 7.45 at Harrington House, Newbold Terrace.
Portsmouth.-The Royal Naval Amateur Radio Society is holding a mobile rally at H.M. Signal School-H.M.S. Mercurynear East Meon, Hants, on May 30th. Talk-in staton GB3RN will operate on $1.88,70.26$ and $144.2 \mathrm{Mc} / \mathrm{s}$ and station G3BZU on $3.72 \mathrm{Mc} / \mathrm{s}$ for s.s.b. operators. Further pariculars from M. J. Mathews (G3JFF) H.M.S. Mercury, Leydene, Petersfield, Hants.

R.E.C.M.F. EXHIBITION

OLYMPIA 18 TO 21 MAY 1965

$$
\text { STAND } 155
$$

Our Friends at Home \& Abroad

are cordially invited to visit us.

LOGIC CIRCUITS

THE second I.E.E. \& I.E.R.E. Joint Colloquium on logic circuits early this year was well attended (more than 500 were present) and logic circuit design engineers will no doubt continue to present themselves on masse at future meetings, which are expected to be held annually.

As switching times are gradually decreasing the problem of interconnections assumes greater proportions, and engineers must give greater consideration to the design of logic elements driving interconnections. Considering interconnections as transmission lines,* propagation delay will be in the order of 2 nsec per foot with normal materials and the characteristic impedance will be about $50-300 \Omega$. Thus elements at each end of interconnections must be matched to this impedance if ringing due to reflections is to be minimized, and logic voltage levels must be kept low in order to keep dissipation within reasonable limits. Line-driver circuits were discussed, including a commercially available type with a 2 nsec edge speed.

Some aspects of a balanced $50 \mathrm{Mc} / \mathrm{s}$ tunnel diode circuit (Goto Pair) were considered. Here interconnection limitations are severe and in one realization described intermodule connectors were limited to 5 in . The impedance of the connections was controlled by interleaving the printed interconnections with earth planes. At speeds of $250 \mathrm{Mc} / \mathrm{s}$, where a maximum permissible length is about lin, it becomes necessary to use delay lines in

[^5]interconnections but these do not affect the repetition rate of the system.

Faster switching times in diodes are realized by shortening carrier storage time and this is achieved in the metal semiconductor diode or hot-catrier diode. But development of the related metal-base transistor is not sufficiently advanced to offer a challenge at the moment to tunnel diode switching times. (A metal-base transistor with a theoretical limit of $20 \mathrm{Gc} / \mathrm{s}$ was described at the 1964 Electronic Component Conference, U.S.A.)

Attention was drawn to the fact that a minimal logic design did not necessarily result from a minimal Boolean expression (particularly from the aspect of maintaining a minimum number of interconnections). In realizing a function involving \AA, for instance, in AND/OR logic, any one of the following six functions may be used in place of $\bar{A}: \bar{A} \bar{B}, \bar{A} \bar{C}, \bar{A}(\bar{B}+\bar{C}), \bar{A}(\bar{B}+C), \bar{A}(B+\bar{C})$ and $\bar{A} \bar{C} \bar{C}$. The function $A B+A \hat{B}$, for instance, can be realized from A, B, \bar{A}, \bar{B}, using five gates, but if $\bar{A} B$ is formed and used in place of \bar{A} and \bar{B}, only four gates are required. Similarly, a full adder of 12 modules is reduced to 8 modules.

The brief survey of fluid logic must have surprised some when it was stated that a liquid logic element in moulded plastic capable of switching 1-10 watts and measuring $1 \frac{1}{2}$. was available off the shelf in the U.S.A. Military requirements have resulted in the availability of a range of fluid devices which can handle from milliwatts to kilowatts and with temperature ranges from -100° to $1000^{\circ} \mathrm{F}$. At present, however, logic speeds are limited to around $10 \mathrm{kc} / \mathrm{s}$.

H. F. PREDICTIONS - MAY

The predictions for this month show very little difference from those of the same month last year. This is due to the predicted value of IF2 being the same as was used for last year. However, the value of IF2 is expected to rise, throughout the year, now that sunspot minimum has been passed. It is to be hoped that by July, conditions will be similar to those experienced in the same period in 1963.

The prediction curves show the median standard MUF, optimum traffic frequency and the lowest usable frequency (LUF) for reception in this country. Unlike the standard MUF, the LUF is closely dependent upon such factors as transmitter power, aerials, and the type of modulation. The

LUF curves are those drawn by Cable and Wireless Ltd. for commercial telegraphy and assume the use of transmitter power of several kilowatts and aerials of the rhombic type:

Note that the solid line represents the median maximum usable frequency. This means that communication will be possible for only 50% of the time at this frequency. For a higher grade of service, a frequency some 15% lower should be used.

ANOTHER STEP

FORYARD..

Fused ohms circuit provides

An improved AvoMeter " 8 Mk III

This new model incorporates increased sensitivity in the lower AC ranges and wide frequency characteristics, with the traditional AvoMeter features including the AVO automotic cut-out mechanism and interlocking rotary switches for quick range selection.

With the aid of a range of d.c. shunts measurements can be made up to 400 amps . d.c.
increased protection against inadvertent overload.

Improved temperature coefficient over whole range.

Now measures up to
400 amps d.c.

Write for illustrated brochures on AvoMeters
LTID

Photograph by courtesy of ELLIOTT AUTOMATION LIMITED

... used by experts everywhere!

ANTEX IS PURPOSE-DESIGNED

for speed and efficiency in soldering Printed Circuits, Transistors, Micro-Miniature Assemblies, Deaf-Aid Equipment and similar products.
ANTEX INCREASES PRODUCTION
ANTEX Irons weigh only 2-3 ounces. Streamlined to give absolute finger-tip control and ensure increased production of 5% to 10% compared with ordinary soldering irons.
ANTEX CUTS PRODUCTION COSTS
So easy to use - ANTEX reduces operational fatigue, with resulting drop in reject output. ANTEX, having the lowest leakage current of any miniature iron, virtually eliminates all risk of damage to transistors.

ANTEX FOR RELIABILITY

Guaranteed for 1000 hours' continuous production -on fine work giving a potential of well over a quarter of a million trouble-free soldering points. ANTEX BITS are really INTERCHANGEABLE ANTEX patent design gives instant interchangeability of bits-as often as you like-without damaging the iron!

* Latest in the ANTEX Range is Model C240N-a giant in power performance-a midget in compact constmuction! FITTED WITH LONG-LIFE "FERRACLAD" BITS.
For more details fill in and post this coupon TODAY!

OSCILLOSCOPE CAMERAS

. . . A range of instruments covering the entire field of Oscilloscope photography. Folaroid processing backs are standard on most models and these give you finished prints literally within ten seconds. No other equipment and no experience are needed.
Camera Model MII 565, for recording ultra-high-speed nanosecond traces. Has 1:1 object/image ratio and an 86 mm . $\mathrm{f} / 1.2$ Navitar lens which is exclusive to A-B-C. When used with the fastest Polaroid film, this remarkable lens gives recording speeds never before obtained with standard equipment.

35 mm . film is used in Model KD5 for rapid sequence recording or for continuous " streak " recording. There is also a dual-purpose model with a 35 mm . magazine for high-speed "streak" recording and a Polaroid unit for transient and repetitive phenomena.

Model KS (Illustrated) is surprisingly inexpensive although it has o fast f/l.9 lens, a multi-speed shutter, and is suitable for both repetitive and single shot transient waveforms. An additional "Lensette" converts the K5 for photographing diagrams, circuit breadboards and other laboratory subjects. Interchangeable backs provide for Polaroid roll or flat pack film, or for $4 \mathrm{in} . \times 5 \mathrm{~m}$. cut film. Engineers throughout the world specify K5 because of its low cost, ease of use and superior performance.

Check these K5 Features:-

* Adjustable ratio $1: 0.9$, $1: 0.7$.
* Multiple exposures, up to 13 on one frame.
* Parallax-free view of C.R.T. during setup.
* Records written data on film (optional).
* Swing-away, liftoff mounting (optional).
* Lensette attachment for off-scope pictures.
* 10-sacond developing with Polaroid film.
* Film speeds up to ASA 10,000 .
* Choice of lenses, $1 / 1.9$ or $\mathbf{\$ / 4 . 5}$.
* Complete cameras from $\mathbb{\text { Cl }} 39$.
A.B.C. cameras are joint products of Avo Ltd. and Beattie-Coleman Incorporated ot California. They are fully guaranteed and backed by Avo Service.
Ask AVO for full details or a demonstration.
AVOCET HOUSE, 92-96 VAUXHALL BRIDGE ROAD, LONDON, 8.W.1. IN NORTH AMERICA: BEATTIE-COLEMAN INC., ANAHEIM. CALIFORNIA.

Victoria 3404 (12 lines)

The STB2 is a masterpiece in mechanical engineering and electronic circuitry. It is a versatile mono/stereo tape recorder and has been designed with high fidelity stereo installations particularly, in mind.

SPECIFICATION (STB2/5/2)

It has all the standard Brenell features of 4 tape speeds, frequency correction at all speeds, three Papst outer rotor motors, pause control, monitoring and superimposing, $8 \frac{1^{\prime \prime}}{}$ dia. reels, fast rewind, etc., plus-adjustable attenuators on all input channels to ensure perfect matching with all auxiliary equipment - dual concentric recording level and playback level controls. cathode follower output four channel mixing on mono programme sources. twin recording and twin playback pre-amplifiers. comparison of original and recorded signal. adjustable bias level. recording facilities for $1 / 2$ and $2 / 2$ track. playback facilities for $1 / 2,2 / 2,1 / 4$ and $2 / 4$ track sound on sound facilities. two edgewise meters for recording level, tape output level and bias level optional extra:- stereo power amplifiers and monitoring speakers.
ALTERNATIVE MODEL STB $2 / 510 / 2$ has special deck to accommodate $10 \frac{1^{\prime \prime}}{}$ N.A.B. reels.

Please write for full details to the sole manufacturer:-

Sound is the business ofWHIIELEY

MODEL H.F. 1012 SPEAKER
10 in . die-cast unlt, incorporating 12,000 gauss magnet. Fitted with cambric cone and universal impedance speech coil providing instantaneous matching at $3,7.5$ and 15 ohms. Handling capacity 10 watts. Frequency response 30 c.p.s. to 14,000 c.p.s. Bass resonance 35 c.p.s.

T. 359 CONE TWEETER

Provides a very high standard of reproduction when used in confunction with 'Stentorian' 10 in . or 12 in . units. Incorporates High Sensitivity 9,000 gauss magnet, special cone and lightweight coil.
Frequency response: 3,000-15,000 c.p.s. Overall slze: 3 in. dia. $\times 2$ in. deep. Voice coil Impedance: 15 ohms or 5 ohms. Power handling capacity: 15 watts when used with a 3,000 e.p.s. crossover.

Type	Flux Density	Price	
10in. H.F. 1016 -Major	16,000 gauss	698	6
10in. H.F. 1016	16,000 gauss	$67 \quad 7$	0
$10 \mathrm{in}. \mathrm{H.F}$.	12,000 gauss	4412	0
8 in. H.F. 816	16,000 gauss	666	0
8in. H.F.812	12,000 gauss	6316	6
8in. H.F. 810	10,000 gauss	6217	0

Type	Height	Width	Depth	Price (Mahogany)	$\begin{aligned} & \text { Price } \\ & \text { (Walnut } \end{aligned}$	
Bass Reflex Console Cabinet	3 lin .	1973in.	18 in .	¢12 176	4135	0
Hi Fi Equipment Console	31 in .	193 in .	18 in .	15 0 0	11510	0
Bass Reflex Corner Console	$31 \mathrm{in}$.	1933. ${ }^{3} \mathrm{in}$.	17 in .	[11 176	$612 \quad 2$	6
Slim-Line Cabinet	3lin.	20in.	$9 \frac{1}{4}$ in.	61050	61010	0

THORESBY SLIM-LINE CABINETS
This enclosure has been designed to accommodate any of the Stentorian range of 8 in . or 10 in . units. Provision is made for the addition of either pressure or cone type tweeter and a crossover may be used.

WHITELEY ELEOTRIOAL RADIO OO. LTD MANSFIELD • NOTTS
 Telephone: Mansfield 1762/5

KEYSWITCH RELAYS

why say Keyswitch?

It's a difference of quality, often not visible until you look at performance data. Keyswitch miniature and sub-miniature relays are exhaustively tested each one individually. All conform precisely to a very fine specification. Their reliability is proven- they come from the makers of the C.E.G.B. approved plug-in P33 B.P.O. relay. They have all the benefits of Keyswitch delivery - and that's quick, every time.

TYPE 1051 Illustrated approx. actual size. Inexpensive sub-miniature switch relay. Snap action contacts rated to 7.5A of 480 V a.c. $/ 250 \mathrm{~V}$ d.c. Coil voltages (d.c.) $6 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V} \pm 20 \%$. This relay can cost as little as $7 / 5$.
TYPE 1051 P lliustrated approx. actual size. Snap action contacts rated at $3.5 \mathrm{~A}, 250$ a.c., 100 MA and 100 V d.c. Metal can-type cover and complete with octal socket. This relay can cost as little as 10/6.
always to price $\bowtie \triangleleft$ always to specification $\triangleright \triangleleft$ always on time

THE QUALITY KITS ANYONE CAN BUILD

 FeathbitBRITISH HEATHKIT MODELS USE BRITISH COMPONENTS

INSTRUMEMTS FOR LABORATORY, TEST, SERVICE AND HOME WORKSHOP

Transistorised REGULATED POWER SUPPLY

Model IP-20U
Tremendous value! $0.5-50$ volts D.C. output at up to 1.5 A. Voltage or current monitored on easy-to-read meter. Adjustable current limiter.
Relay protected against overload. Less than $150 \mathrm{mlcro-}$ voles ripple. Regulation less chan 15 millivolts. Outpus impedanec less than 0.1 ohm. Compact $9 \frac{1}{5}$ in $\times 6 \frac{1}{2} \mathrm{in}$. $\times 1 \mathrm{lin}$. Weight Illb. net. Full details on requese.
Kit

③5.8.0 Assembled [47.8.0.

5in. Flat-face GENERAL PURPOSE OSCILLOSCOPE Model 10-12U An outstonding new 'scope
" Y " sensitivity 10 mV . r.m.s. per cm . at $1 \mathrm{kc} / \mathrm{s}$. bandwidth $3 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Frequency compensared input attenuator $\times 1, \times 10, \times 100$. T/B. $10 \mathrm{e} / \mathrm{s} .-500 \mathrm{ke} / \mathrm{s}$ in 5 steps. Two extra switeh selected pre-set sweep frequencies in T / B. range. T / B. oucpus approx. 10 v . peak to peak. Built-in IV calibrator. Facility for $\therefore Z^{\text {. }}$ axis modulation. Electronically stabilised power supply. Power req. $200-250 \mathrm{w}. \mathrm{A.C.} 40-,60 \mathrm{c} / \mathrm{s}$. 80 wates. Fused. Frone panel silver and charcoal grey. Cabinee, charcoal grey, size $81 \times 14 \times 17 \mathrm{in}$. deep. Net weight 231b. S6-page construction and operation manual.

Kit $\mathbf{6 3 2 . 1 2 . 6}$ Assembled $£ 41.10 .0$

TV ALIGNMENT GENERATOR

Model HFW-I Designed to offer the maximum in performance, flexibility and utility at the lowest possible cost. Frequency coverage $3.6 \mathrm{Mc} / \mathrm{s}$, to $220 \mathrm{Mc} / \mathrm{s}$; on fundamentals. Unique non-mechantcal sweep oscillator system. High level ourput on all ranges. Sweep deviacions up' to $42 \mathrm{Mc} / \mathrm{s}$. Buitein fixed and variable marker generators. ($5 \mathrm{Mc} / \mathrm{s}$. crystal supplied). Power requirements: $110 / 200-250$ v. A.C., 50 watts. Size $13 \times 8 \frac{1}{2} \times 7 \mathrm{in}$.

KIt 〔34.18.0 Assembled $£ 44.10 .0$

De Luxe 6in. VALVE VOLT. METER Model IM-I3U
Modern seyling. Extra features. The ideal $V V M$ for the Electronic Engineer. Gin. Ernest VVM for the Electronic Engineer. Gin. Ernest Turner $200 \mu \mathrm{~A}$. meter with multiocoloured scales. Unique gimbal bracket allows bench. D.C voles $0-1,5,5,15,50,500,1,500$. Resistan. D.C. volts $0-1.5,5,15,50,500,1,500$. Resistance range 0.1 to $1,000 \mathrm{M} \Omega$ with int. battery. Vernier-action zero and ohms adjustmens. Roller-tinned printed eircuit. HIgh inpuz resistance (11 MO). Comprehensive assembly and operation manual. Size $5 \times 12 \mathrm{H} \times 4 \mathrm{l} \mathrm{in}$. Complete wish cese prod and leads.

$$
\text { Kitt18.18.0 Assembled } £ 26.18 .0
$$

H. V. and R.F. Probes available as optional extras.

2

Kit

P.A. AMPLIFIER

Model PA-I
A multi-purpose, high output. compact unit, suitable for vocal and instrumental groups. guitars, electronic organs etc. 4 inputs for guitars, microphones, record players. Has many features found only in expensive equipment, i.e. 50 watt Amplifier, two heavy duty speakers. "Magic Eye " volume indicator, variable tremolo. moderri elegant cablnet.

〔54.15.0 Assembled 174.0.0.
(Legs oprional extra $17 / 6$ set oi 4).

STEREO AMPLIFIER Model S-99

watts per channel. Within iss power rating this amplifier is the finest available, regardless of price. Features include: Inputs for stereo/
mono: Gram, Radio and Tape: sensutiviey, for optimum performance: excellently styled in ewo sone grey, variable fileer for optimum performance: excellently styled in two-tone grey perspex panel free-standing unit. Size $13 \frac{1}{2} \mathrm{in}, x 4 \frac{1}{4} \ln$. $x 12 \frac{1}{2} \mathrm{in}$, deep.
Kit :....
E27.19.6 Assembled £37.19.6

MODELS TO ENTERTAIH YOUR FAMILY AND FRIENDS

" OXFORD"LUXURY TRANSISTOR PORTABLE Model UXR-2

This superb transistor radio is the ideal domessic or personal portable Medium and Long Wave receiver. Solid leazher case and handle. Easy-toread tuning seale. Extra large loudspeaker.
Push button L. MW and tone. 10 semi-conductors Push button L. MW and tone. 10 semi-conductors $(7$ transistors plus 3 diodes). Sockers for personal earphone, eape recorder. car aerial. Internal 9 . vole battery (not supplied). lasts for months. Latest printed circuit techniques.
Comprehensive, casy-to-follow, fully illustrated Instruction Manual.
Kit ¢14.18.0 incl. P. Tax

Assembly can be arranged on your behalf.

A WELL DESIGNED

F.M. TUNER Model FM-4U Tuning range $88-108 \mathrm{Mc} / \mathrm{s}$. Flywheel tuning. Attractive Plastic Front Panel in two-tone grey with golden trim surround and motil. Thermomeser sype visual tuning indicator. Pre-
 aligned. I.F. iransformers. Three l.F. stages, Wide-band low distortion Ratio Detector. R.F. Unit. wired, tested and prealigned. Printed circuit for I,F. Amplifiers and Ratio Detector. Buile-in power supply. Output sockets for stereophonic adaptor (for stereo transmission when a vailable).
TUNER UNIT Model FMT-4U with $10.7 \mathrm{Mc} / \mathrm{s}$. I.F. output, $\mathbf{C 2} / 15 /-$ (inc. P.T.). 1.F. AMPLIFIER and power supply Model FMA-4U complete with case and valves, $<13 / 3 \mid$. Sold separately.

Kit Total ... \&15.18.0
Assembly can be arranged on your behalf.

DAYSTROM LTD.

DEPT. W.W.5. GLOUCESTER, ENGLAND

DE-LUXE LABORATOR	
Unmatched for	
* Provides complete d.c. analysis of PNP and NPN	
* D.C. ${ }^{\text {ccales }}$ gin (Beta, Alpha) read direct on calibrated	
$\star 15 \mu \mathrm{~A}$ basic range for leakage tests. Four lever switches for fast, easy, test selection.	

NEW MODEL

DE-LUXE LABORATORY TRANSISTOR TESTER. MODEL IM-3OU

Unmatched for Quality and Performance at the price

- Provides complete d.c, analysis of PNP and NPN Tramsistors.
$+15 \mu A$ basic range for leakage tests.
* Four lever switches for fast, easy, test selection.

6 W STEREO AMPLIFIER KIT Model S-33
A versatile high-quality selfcontained STEREO/MON AURAL Amplifier with adequate output for a living room. Can be used to convert a favourite (monaural) radiogram into a stereo-radiogram. 3 watts per channel: 0.3°, stereo-radiogram. wis watts per channel: i. ${ }^{\prime \prime}$ "1 for Redio (or Tape) and Gram, Stereo or Monoural: Ganged conerols. Sensitivity 200 mV . Kis £13.7.6 Assembled £18.18.0

6 W HI-FI STEREO AMPLIFIER KIT Model S-33H

An inexpensive stereo-mono amplffier with the high sensitivity necessary for lightweight miniature ceramic pick-ups (e.g. Decea Deram). De luxe varsion of the $\$-33$ with attractive ewo-tone grey Perspex panel.
$K_{1 t} £ 15.17 .6$ Assembled $£ 1.7 .6$
5 W HI-FI MONO AMPLIFIER

KIT Model MA-5 A low-priced general purpose Hi-fidelity amplifier based on the popular $\$ 33$ for those who do not require a stereophonic ystem. Separate bass and treble controls Gram and Radio inputs. Suitable for most crysta pick-ups. A printed circuit simplifies construction Kit $\mathbb{1} 10.19 .6 \quad$ Assembled $\mathbb{L} 15.10 .0$

HI-FI MONO POWER AMPLIFIER KIT Model MA-12 A compact high fidelity power amplifier (including auxiliary power supply). 12 watts output. Wide frequency range and low distortion. A variable sensitivisy control is fitted enabling it to be used with an existing amplifier in a stereophonic system. Other applications include sound reinfortement systems, transmitter modulators, for use with cape recorders, also as a general purpose laboratory amplifier.
Kit fll.18.0
Assembled $\{15.18 .0$
STEREO CONTROL UNIT KIT
Model USC-I
Incorporates all worthwhile feasures for high fidelity stereo and mono. Push-button seleccion, accurately matched ganged controls to $\pm 1 \mathrm{~dB}$. Negative feedback rumble and variable ow-pass filters. Printed circuit boards. Accepes inputs from most tape-heads and any stereo or mono pick-up
Kit 119.10 .0
Assembled $\mathbf{1 2 6 . 1 0 . 0}$

[^6]

The Heathkit De Luxe Laboratory Transistor Tester will be found invaluable for servicing, design work inspection, production testing. Tests include base current gain, collector current, collector voltage, leak voltage, short test, diode or collector-to-emitter leakage (Iceo) and collector-to-base leakage (Icbo) in all an outseanding instrumens, with attractive and modern functional seyling.

Kit £24.18.0 Assembled $£ 35.10 .0$

SEND FOR FREE

BRITISM CATALOGUE
Full details of any model sent on request.
MALVERN" HI-FI EQUIPMENT CABINET KIT

AN ATTRACTIVE CABINET in modern style designed to house all your li-Fi equipment (including tape deck and fullsized eranscription record player). The cabinet parts are veneered and predrilled, with edging in Panoplex plastic strip for ease of finishing. Complete with everyching you need. Complete including screws, hinges and even a padsaw! Left " "in the white "for finishing to choice. Size $39 \% \times 32 \times 21$ tin.
Kit $\mathbf{E 1 8 . 1 . 0}$ (inc. P.T.) Assembled $\mathbf{E 2 3 . 6 . 0}$
"GLOUCESTER" HI-FI CABINET KIT

Will accommodate: Tape Deck and/or Record Player. F.M. Tuner and Stereo Amplifier. For those with limised floo space a speaker system can be housed at one end. For shis purpose a loud speaker kit comprising one 4 in . plus sin. speaker systems, balance unit, speaker grille, cuttin cemplate, padsaw and mounting details is also available. Neutral hardwoods have been carefully selected so that the finished product can be stained and polished to individua choice. There is storage space for records, etc., also for power amplifiers. Dimensions: length 46 tin., height 30 in . depth 21 in

Mk. I for Tape Deck or Record Player
Kit El7.3.6 (inc. P.T.)
Assembled 122.8 .6
Mk. II for both T/D and R/P
Kit $£ 18.10 .0$ (inc. P.T.) Assembled $£ 23.15 .0$

TELEPHONE AMPLIFIER KIT

Model TTA-I for home, office or shop
Kit £7.9.6
Assembled E11.15.0

INTERNATIONAL MAIL ORDER SCHENE

Covering the American Healhkil range of 250 models
Direct from U.S.A. to your U.K. address. Hlluz trated American catalogue and full details can be abeained from us for 1/- post paid.

Deforred Terms availade on orders above 810

MONO CONTROL UNIT KIT Model UMC-I Ideal for use with MA-12 or similar amplifier. Outpur 0.25 v . Send for full details.
Kit $\mathbf{6 8 . 1 2 . 6}$
Assembled $£ 13.12 .6$

HI-FI SPEAKER SYSTEM KIT * Model SSU.I

 Ducted-port bass reflex cabinet " in the white." Frequency response is $40-16,000$ c / s. Power rating 10 watts. Matched speaker units 8 in . high flux (12,000 lines) with hyperbolic cone and $4 i n$. wide angle dispersion sype for higher frequencies. Kit (with legs) $£ \mid 1.12 .0$ (Less legs) $£ 10.17 .6$(inc. P.T.)

" COTSWOLD" SPEAKER

 SYSTEM KITThis acoustically designed enclosure measures $26 \times 23 \times$ 14 in., and houses a special 12 in. bass speaker with 2 in . speech coil, elliptical middie speaker coil, elliptical middie speaker cogecher whal a pressure unic to
 of $30-20.000 \mathrm{c}$. Isspolar finge of $30-20,000 \mathrm{c}$'s. Its polar distribution makes it ideal for really Hi -Fi Stereo. Delivered complete, with speakers, cross-over unit, level control, , rifile cloth, etc. Left " in the white " for finish to personal taste, all parts are pre-cut and drilled
Kit $£ 23.4 .0 \quad$ Assembled $£ 30.15 .0$

COTSWOLD M.F.S." SPEAKER SYSTEM KIT

This model, based on the standhis Cootswold, based on the stand36 in . hish, 16 tin. mide by only deep. Parsicularly recommended to those who require the best results in small rooms. the best
Kit $\mathbf{2 3 . 4 . 0}$ Assembled $£ 30.150$

[^7]

MULTIMETER KIT Model MM-IU
Provides wide voltage, current, resistance and dB ranges to cover hundreds of applications. Sensisivizy 20,000 oh ms/volr D.C. and 5,000 ohms/volt A.C. Ranges: $0-1.5 \mathrm{~V}$ to 1,500 v. A.C. and D.C. $0-150 \mu \mathrm{~A}$. to 15 A . D.C. Measures resistance from 0.2Ω to $20 \mathrm{~m} \Omega$. $4 \frac{1}{2} \mathrm{in}$. $50 \mu \mathrm{~A}$ meter. A polarity meversing switch eliminates sransferring test leads when alternately measuring and - voltages. Uses standard commertial batteries.
Kit $£ 12.18 .0$
Assembled $\mathbb{1} 18.11 .6$
OSCILLOSCOPE TRACE DOUBLER KIT Model S.3U

Kit $£ 12.18 .0$
This device will extend the use of your single-beam oscilloscope and, at a nominal cost, will give you the advantages of a double (or other multiple) beam scope.
R.F. SIGNAL GENERATOR KIT
 Model RF-IU

Provides extended frequency coverage on six bands from $100 \mathrm{kc} / \mathrm{s}$, $100 \mathrm{Me} / \mathrm{s}$-on fundamentals and up to $200 \mathrm{Mc} / \mathrm{s}$ on calibrated harmonics.
Kit $£ 13.8 .0$
Assembled $\mathbb{E} 19.18 .0$
DECADE RESISTANCE BOX KIT Model DR-I U. Range $1-99,999 \Omega$ in $/ \Omega$ steps. Ceramic switches throughout. Current rating from 500 mA . switthes throughout. Current rating from 500 mA .
to 5 mA , according to decades in cireuit. Polished to wooden cabinet supplied complete. Kit fle.8.0

Assembled $£ 14.8 .0$
RESISTANCE-CAPACITANCE BRIDGE KIT Model C-3U

Measures capacitance lOpF. to $1,000 \mu \mathrm{~F}$. Power factor and resistance 10052 to SM ohms. Test volzages $5-450 \mathrm{~V}$. Safety switch provided. Kit $\mathbb{\&} 10.10 .0$ Assembled $\mathbb{E} 16$ AUDIO SIGNAL GENERATOR KIT

Model AG-9U

$10 \mathrm{c} / \mathrm{s}$. to $100 \mathrm{ke} / \mathrm{s}$., switch selected. Distortion less than $0.1 \% 10$. sine wave output metered in voles and dB's.
Kic $\mathbf{6 2 2}$. 10.0
Assembled $\mathbf{\$ 3 0 . 1 0 . 0}$
AUDIO VALVE MILLIVOLTMETER KIT Model AV-3U
A very sensitive meter with high stabillty, 1 mV . to 300 V. A.C. The frequency response is virtually to $400 \mathrm{kc} / \mathrm{s}$. 44 in . $200 \mathrm{\mu}$ A. moving eoil meter $10 \mathrm{e} / \mathrm{s}$. Kit \&16.10.0

Assembled $£ 22.18 .0$

AUDIO WATTMETER KIT Model AW-IU
This popular merer is used in many recording studios and broadcasting stations as a monitor as well as for servicing purposes. Dissipation rating up to 25 w . continuous, 50 w . intermittent.
Kit 617.5 .0
Assembled $£ 23$.18.0

A.M./F.M. TUNER KIT

Tuning range 88-108 Mc/s. (FM) 16-50, 200-550, 900-2,000 m. Flywheel tuning. Astractive Perspex frons panel in two Pone arey with solden irim. Thermoner tuning indicator, pre-aligned I.F. transformers. Swisched wide and narrow A.M. bandwidths.
TUNING HEART Model AFM-TI E4/13/6 (inc P.T.) I.F. AMPLIFIER and Power Unit Model AFM-AI. Complete with metal eabiner and valves E21/16/6. Sold scparately.

Kit Total $£ 26.10 .0$
DUAL-WAVE TRANSISTOR PORT-
ABLE RADIO KIT Model UXR-I
Presented in elegant real hide case with tasteful gold relief. Can be assembled in 4 to 6 hours and you have a set in the cop flight of transistor portables. cop nrealighe of transistor portabies. printed circuit and a 7 in. $x 4 i n$. high flux speaker.
Covers both Long and Medium- waves. Dimensions $9 \frac{1}{3} \mathrm{in} . x 7 \frac{1}{2} \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in}$.

Kit $\mathbb{E} 12.11 .0$ (inc. P.T.)

4-wave TRANSISTORISED PORTABLE RADIO KIT Model RSW-I

Using 7 latest type transistors and three diodes this highly sensitive set is specially designed for short and Medium wavebands (200An internal. ferrite acrial is provided for medium wave and a provided for medium wave and a car aerial socket is also fitted.
Housed in an elegant leather case Housed in an elegant feather case
 this set will receive broadeasts from all over the world. Kit © 19.17 .6 (inc. P.T.).

Model UJR-I

A dual-wave headphone receiver
for use with external aerial and
 earth. Specially designed as a

JUNIOR TRANSISTOR RADIO KIT

 arth. Specially designed as practical introduction to radio and electronics and is particularly suitable for absolute beginners. Kit 22.7 .6 (ine. P.T.)
Additional Amplifier Stage UJR-IS, $16 / 6$.

ELECTRONIC WORKSHOP KIT Model EW-I

20 excising experiments can be made with this one kit. Transissor Radios, Incercom. Secs, Burglar Alarm etc. A 72 page illuserated manual is ineluded. Ideal for the junior experimenter. Kit $\mathbb{£ 7 . 1 3 . 6}$ (inc. P.T.).
TAPE DECKS are available as "packaged deals with other equipment. Details on request.

HEATHKIT THOMAS (Transistorised) ELEC. TRONIC ORGAN KIT. Model GD-232BE. Can be built with no knowledge of electronics. Send for details.

Money-back Guarantee

Daystrom Limited unconditionally guarantee that each Heathkit model assembled in accordance with our easy-to-understand instruction manual must meet our published specifications for performance or the purchase priee will be cheerfully refunded.

Deferred Terms available on all orders above $£ 10$
$4 \frac{1}{4}$ in. VALVE VOLTMETER KIT Model V-7A
The world's most popular valve voltmeter, with printed circuit and I per cens. precision resistors to ensure consistent laboratory performance. It has 7 voltage ranges measuring respectively D.C. volts to 1.500 and A.C. to 1,500 r.m.s. and 4,000 peak to peak. Resistance measurements from 0.1 ohm to 1.000 megohms ments from ol ohm to D.C. megohms
merohme and $d 8$ measurement has astance is II megohms and dB measurement has a censre-zero seaie. Compicte with rest prod, leads and seandardising battery. Power requirements, $200-250$ v. 40.60 s. A.C., 10 watts.

Kit $£ 13.18 .6$
Assembled $£ 19.18 .6$

HIGH VOLTAGE PROBE KIT

Model HV-336
Extends measurement up to 30,000 v. D.C. with negligible circuis loading. A special High Stability 1.090 megohm resistor gives a multiplication factor of 100 X when used with a valve voltmeter of 11 megolims input resistance such as the V-7A.

Kit $£ 2.19 .6$

R.F. PROBE KIT Model 309.CU

This complete probe kit will extend the frequency range of the $V .7 \mathrm{~A}$ Valve Voltmerer to $100 \mathrm{Mc} / \mathrm{s}$, and wilt enable useful voltage indication to be obtained up to $300 \mathrm{Mc} / \mathrm{s}$.
Kit $£ 1.13 .6$
Assembled $\mathbf{6 2} 2.0$

POWER SUPPLY UNIT KIT

 Model MGP-ICompact, general purpose unit suitable for F.M. Tuners, Tape Recording Amplifiers and general laboratory use. Input $100 / 120 \mathrm{v}$., laboratory use. Input loo Outpue 325 A A.C. $200,250,270$ $120 \mathrm{~mA} . \mathrm{max}^{2}$ D.C.
Kit 45.2 .6
Assembled $\mathbb{6} \mathbf{1 2 . 6}$

DECADE CAPACITOR KIT

Model DC-I

Cap̈acity values $100 \mu \mu \mathrm{~F}$ so $0.111 \mu \mathrm{~F}$. in $100 \mu \mu \mathrm{~F}$. steps. Precision silver-mica capacitors and minimum loss ecramic wafer switches ensure high aecuracy.
Kit £7.5.0
Assembled C10.8.0
23in. SERVICE OSCILLOSCOPE
KIT Model OS-1
Lighe, compact, portable for service engineers. Printed circuit board for easy construetion. Time base $15 \mathrm{c} / \mathrm{s}$.
 sine wave sweep. Fiyback suppresand 50 c/s sync size $5 \times 8 \times 14$ in. lons and 50 e/s sync. Size $5 \times 8 \times$ datin. long. Weight 10116 . Kit $\mathbf{E 2 2} 18.0$

Assembled $\mathbb{£ 3 0 . 8 . 0}$

CAPACITANCE METER KIT

Model CM-IU
This Direct-Reading Capacitance Meter is a very low priced, sime-saving instrument which is so useful that it should be part of the general equipment of every electronic laboratory and production line. Easily built in a few hours. $0-100 \mu \mu \mathrm{~F}$. $0-1,000 \mu \mu \mathrm{~F}$. $0-0.01 \mu \mathrm{~F}, 0-0,1 \mu \mathrm{~F}$. The meter has $4 \frac{1}{2} \mathrm{in}$. scale and can be used by an unskilled operator after a few minutes' instruction.

Kit \&15.15.0
Assembled E21.14.0

DAYSTROM LTD.

DEPT. W.W.5, GLOUCESTER, ENGLAND
A SUBSIDIARY OF THE WESTON INSTRUMENTS GROUP, MANUFACTURERS OF

AMATEUR TRANSMITTER KIT

Model DX-40U
Covers all amateur bands from 80 to 10 merres, eryseal controlled. Power input 75 watts C.W. 60 wates peak controtled carrier phone. Output 40 watts to aerial. Provision for VFO. Filters minimise T.Y. interference. Modulator and power supplies are built-in. Single knob band switchung is combined with a pl-network outpue circuit for complete operating convenience. A high-grade moving-coil meter indicates the finat grid or anode current. Provision is made for the use of 3 crystals with access through a erap-door in the back of the cabinet. A 4 -position switch selects the appropriate crystal or a jack for external VFO which can be used instead of the crystal(s).
Kit ... $£ 33.19 .0$ Assembled ... $\mathbb{4} 45.8 .0$

SINGLE SIDEBAND ADAPTER KIT

 Model SB-IOU

May be used with most A.M. transmitters with certain provisions. Allows full use of existing equipment for $\$ S B$ facilities. Band coverage: $80,40,20$, 15, 10 m . Unwanted sideband suppression; becter than 30 dB . Carrier suppression: better than 40 dB . Power requirements: 300 v. D.C. 85 mA . (average) 30 mA . (standby), 140 mA (transmit). 6.3 v. A.C.. 3.5 A. Meter: 2 itin. Scale edge reading, $200 \mu \mathrm{~A}$ movement, indicates carrier null and relative power output. Cabinet $\|$ lin. high $\times \operatorname{Bin}$. wide x 143in. deep.
Kit ... $\{39.5 .0$
Assembled ... 654.18.0

AUDIO SINE-SQUARE WAVE

GENERATOR KIT.
Model AO-IU
Covers $20 \mathrm{c} / \mathrm{s}$. $20150 \mathrm{ke} / \mathrm{s}$. in four ranges with choice of sine or square waves. The latter up to $10 \mathrm{ke} / \mathrm{s}$. Output 10 v . max. and distortion less than 1%. Ideal for audio testing. Size $9 \frac{1}{2} \times 64 \times 5 \mathrm{in}$.
Kit ... $£ 14.15 .0$ Assembled ... $£ 21.5 .0$ GRID-DIP METER KIT. Model GD-IU
 Functions as oscillator or absorption wavemeter. With plug-in coils for continuous frequency coverage from $1.8 \mathrm{Mc} / \mathrm{s}$. to $230 \mathrm{Mc} / \mathrm{s}$.
Kit... £10.19.6 Assembled... © 13.19 .6
Additional Plug-in Coils Model 341-U extend coverage down to $350 \mathrm{kc} / \mathrm{s}$. With dial correlation curves, 17/5.

TRANSISTOR INTERCOM KITS

 Models XI-IU and XIR-IUIdeal for home or bus iness use. Up to five remote stacions can be operated with each Master. The Master unit can call any one, any combination, or all five Remote stations and any Remote station can call the Master. A private call to any Remote station cannot be interrupted or over. Any by any other white a conversation is in progress. provided the Master is manned. These kits have been designed for easy construction and high performance. The mahorany veneered wooden cabiners are supplied completely assembled and finished. The Master unit has a 4 -eransistor amplifier and is operated by an internal 9 v. battery as are the Remote units. Bacteries are not included with the Kits.

Model XI-IU (Master)
Model XIR-IU (Remote)
Kit ... $\mathbf{4 4 . 7 . 6 .}$
Assembled ... E5.16.0
ELECTRONICS AND RADIO AVAILABLE. Send for Lists and Prices.

"MOHICAN"

GENERAL COVERAGE RECEIVER KIT Model GC-IU
This fully transistorised receiver which includes 4 piezo-electric eransfilters, is in the forefront of receiver design. te is an excellent portable or fixed station receiver. The R.F. "front-end" is supplied as a preassembled and prealigned unie. les many features include a 10 -transistor circuie. printed circuit board, telescopic whip antenna, tuning mezer, and a large slide-rule Jial giving a sotal tength of approximately 70 inches. Housed in a steet eabines and powered by two 6 volt dry batteries (not supplied), mounted internaliy, it gives frequency coverage from $580 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. in five coverage from $580 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. m . five Electrical bandspread covers the amateur Electrical bandspread covers the amateur
bands from 80 to 10 metres-each band bands from so to 10 metres-each band inches. BFO euning and Zener diode stabiliser. Size $6 \frac{1}{x} \mathbf{1 2} \mathrm{in}$, $\times 10 \mathrm{in}$.
Please write for specification leaflet.
Kit ... £37.17.6 Asmbld. ... ¢45.17.6

STABILISED POWER PACK

Models MSP-IM and MSP-IW
Speciatly recommended for industrial and laboratory use, meeting the need for a reliable and verstile stabilised power pack capable of a very high performance. Input $200-250 \mathrm{v}$.
 $40-60 \mathrm{c} / \mathrm{s} .$, A.C., fully fused. Outputs: H.T. $200-410 \%$ D.C. at $0-225 \mathrm{~mA}$. in 3 switehed ranges. Unstabilised A.C., 6.3 v , at 4.5 A . centre-tapped. Two 3 in , "easy-to-read" meters for reading volvage and current simultaneously. Separate L.T. and H.T. supply transformers. All output circuits are isolated. Size $13 \mathrm{in}, \times 8 \frac{1}{\mathrm{in}} \mathrm{in} . \times 9 \frac{1}{2} \mathrm{in}$.

> MSP-IM (with meters)

Kit ... €36.12.6 Asmbld. ... £43.12.6 MSP-IW (less meter)
Kit ... $\mathbf{2 9}$.17.6 Asmbld. ... $£ 36.17 .6$
BALUN COIL UNIT KIT Model B-IU. Will match unbalanced co-axial lines to balanced lines of either 75 or 300 n impedance. Frequency range $10-80 \mathrm{~m}$., input up to 200 watts.
Kit ... £4.15.6 Asmbld. ... £5.8.6
TAPE AMPLIFIER KITS
Models TA-IM and TA-IS
This Combined Tape
Record/Replay Amplifier
is available in both monophonic and stereo-
phonic models. Model TA IM to the stereo version wim can be modified TA-IC.
TA-IM Kit $\{19.8 .0$. Asmbld. $\mathbb{2} 28.18 .0$ TA-IS Kit $\mathbb{2 5} .10 .0$ Asmbld. ©35.18.0 TA-IC Kit ... $\{6.15 .0$
All prices include free delivery in the U.K.

Deferred Terms
are available on all orders above $£ 10$

AMATEUR TRANSMITTER KIT

Model DX-I00U
 The World's most popular Amateur TX Kit

8
Completely self-contained. 150 w. D.C. input.
Built-in highly stable VFO and all Power Supplies. TVI: Careful design has reduced TVI to a minimum by use of effectively screened frequency generazing stages and pi-cuned circuits as the inpus and ourpur of the PA stage and by 11 chokes and pi-network filters to all outlets from the cabinet.
The KT88 high-level anode and screen modulator stage gives over 100 watts of audio from less than A. mi input.

- Adjustable drive and slamp control ensures that valves are only driven sufficiently so maintain the Keying on CWut.Keying on CW is via the VFO and buffer amplifier cathodes; the other RF valves are biased beyond cut-off:

8Provision has been made for remote control operation VFO slow-motion drive is very smooth and backlash free. VFO or Crystal control.
Covers all Amateur bands up to $30 \mathrm{Mc} / \mathrm{s}$. 'phone or CW.
Kit
〔79.10.0
Assembled...£104.15.0

REFLECTED POWER METER KIT

Model HM-IIU. Indicates, reliably but inexpensively. whether the R.F. power output of your transmitter is being transferred efficiently to the radiating antenna, Kit...88.5.0 Assembled...£10.10.0

VARIABLE FREQUENCY

OSCILLATOR KIT. Model VF-IU

 fundamentats on 160 and 40 m Ideal for Heathkit DX fund amentals on 160 and 40 m . Ideal for Heathkit DX-40U and similar transmitters.
Kit ... £10.17.6 Assembled ... ©15.19.6

Q MULTIPLIER KIT. Model QPM-I

A reasonably priced Q Amplifier for the amateur and short-wave enthusiah. This self-powered unit ($200-250$ r $50-60 \mathrm{c} / \mathrm{s}$.) may be used with communications receivers to provide both additional selectivity
 and signal rejection.
Models QPM-1 for $470 \mathrm{kc} / \mathrm{s}$. IF. QPM-16 for $1.6 \mathrm{Mc} / \mathrm{s}$. IF. Kit, either model 68.10 .0 Assembled
¢12.14.0
By arrangement with RECORD HOUSING we can now supply you with any one of their large range of fully finished Equipment Cabinets.
May we send you details?

```
Please send me freE CATALOGUE (Yes/No)....
Full derails of Model(s)
NAME.
    (Block Capitals)
ADDRESS

\section*{RADIO EXPORT}

\section*{TUBES ONLY}

It is our desire to try to keep abreast of development of industry, where it concerns the use of radio tubes of all descriptions, also transistors.

Therefore, we are continually adding to our stocks, which are already probably the most comprehensive in the world and consist of over 3,000 types and total over \(4,000,000\) tubes. From such stocks we can, in nearly all cases, satisfy demands. However, part of our service is delivering at the shortest notice types which are nor normally carried in our stocks. Therefore, you are assured of a service which is without equal in the world.

OUR PRICE AND STOCK LISTS ARE AVAILABLE ON APPLICATION

\author{
Our Organisation is E.I.D. and A.R.B. Approved
}


\section*{Have you seen our hot stripper?}

miniature heat wire stripper

\section*{one of many ORYX products}
miniature mains soldering iron

miniature soldering tweezers

illustrated leaflet from
W.Greenwood Electronic Ltd.

677 FINCHLEY ROAD, LONDON, N.W. 2. telephone: SWIss COTTAGE 3383/4

\section*{Garrard}

OFFERS THE WORLD'S GREATEST RANGE

\section*{there's a Garrard to suit every record-playing requirement}

Garrard record charigers and iurntables form the only range in the world to answer every purpose and suit every pocket. Prolessionals who must have instrument quality enthuse abouit the precision engineered 401 .. while wondering how on earth Garrard can do it for the price. Highly selective enthusiasts who want the very best choose either the 401 or the LAB 80 . Others, who want first-rate equipment at a lower price, note cheerfully the great Garrard range of no less than 7 other models, varying widely in price and features enabling them to choose the right unit at the right price. Every model, high or low priced, is completely reliable, and is a product of good design, ceaseless Garrard research, and invariable adherence to the highest manufacturing standards.

Transcriptlon Turntable, with heavy \(12^{\prime \prime}\) turntable, machine-cut strobe, neon lamp and speed control.

A 70 For the critical user... offers automatic playing, with pusher-platform, and many other features.

AT60 Automatic or manual operation-has precision arm, bias compensator and heavy turntable.

SP 25 single record player, with precision arm, heavy turntable and cueing device

Model 50
Automatic record changer with large turntable, weight-counterbalanced arm and plug-in pick-up head.

3000 Designed for use with highcompliance cartridges; low-mass arm gives exceptionally low record wear.

2000
Automatic record changer with large turntable playing up to 8 records.

1000 Compact low-priced record changer, automatically playing up to 10 records.
For further delails wrile lo:
GARRARD ENGINEERING LIMITED
Swindon, Wiltshire. Telephone: Swindon 5381

LAB 80 An outstanding automatic transcription turntable for professional reproduction.

This company was founded as a marketing organisation to obtain the cream of the world's valve production, confirm the quality of each type by exhaustive testing, overcome the enormous complexity of valve nomenclature by relating all known equivalents to a single stock number, and thus make a selective product available under one brand name.

This was something unique in valve distribution and the idea met with success from the start. The company was called Pinnacle Electronic Products Ltd. and it adopted the motto " Pick of the World's Valves ". Each year important additions to the range found an ever-growing market of enthusiastic users. Well conceived literature made ordering easy.

To-day, with a slight change of title, Pinnacle Electronics Ltd. not only provides a speedy reliable service to manufacturers, wholesalers and retailers of Radio and Television equipment, but also makes available a comprehensive range of high quality specialised types which are now eagerly sought by all facets of Industry, Education and Research.

\section*{The value of Pinnacle to the Electronics Industry to-day}

\section*{A.R.B. and E.I.D. approved stockists}

Over 1,000 specific types are to be found in the index of our master catalogue. This will serve as an adequate testimonial to the beliefs on which this company was founded and will illustrate the nature of the service which Pinnacle sets out to provide.


THE VARIAC variable transformer is the most useful and versatile sevice ever developed for the control of a.c. voltage, or of current, power, heat, light, speed. It provides smooth continuous adjustment of output voltage from zero to line voltage and above, either handoperated or motor-driven.
Only Variac has Duratrak - a patented track surface giving longer life, increased overload and surge capacity and maximum economy in maintenance.
There are over 600 Variac models and assemblies to suit virtually every possible requirement, ranging from small units for laboratory or instrument use to large ganged assemblies for high power 3-phase operation. The range includes low-voltage, high-frequency. dual-output and narrow-range types, open, covered, portable, metalclad and oil-immersed constructions, plus many special models. This is the largest range of variable transformers available today.
The technicat superiority and dependability of Variac are the result of over 30 years of development and refinement since the introduction of the firsst Variac models - the original variable transformers. - Variaci and 'Ouratrak' are registered frade marks

Vaniacs are made in England by The Zenith Electric Co. Ltd. London, and exclusively dispributed in the U.K., Eire and British Colonies by Claude Lyons Lid.

\section*{Variac}

\section*{variable transformers}
-over 600 models to suit every possible requirement


\section*{Wireless World}

\section*{INFORMATION SERVICE FOR PROFESSIONAL READERS}

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of thls issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp.

PLEASE USE CAPITAL LETTERS

Pour obtenir tout autre renseignement sur tout article mentionné dans l'Editorial ou dans les pages publicitaires de ce numéro nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le numéro ou les numéros de référence. Vos demandes de renseignement seront transmises aux fabricanes intéréssés qui, entamps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées de l'étranger.
priere d'utiliser des caracteres dimprimerie

Weitere Einzelheiten über Irgendwelche Artikel, die auf redaktionellen oder Anzeigenseiten erscheinena erhalten Sie, indem Sie eine oder mehrere der beigefügten Karten ausfüllen und die Kennummer( \(n\) ) angeben. Ihre Anfrage wird an den Hersteller weiter geleitet, und Sie werden dann direkt von ihm hören. Karten, die im Ausland aufgegeben werden, müssen frankiert werden.
BITTE IN BLOCKSCHRIFT AUSFULLEN

Per ulteriori particolari in merito agli articoli menzionat nel testo o nelle pagine pubblicitarie di questo numero. Vi preghiamo di completare una o piú delle schede allegate citando il numero o i numeri di riferimento. La Vostra richiesta sarà inoltrata ai fabbricanti interessati che \(\mathrm{Vi}_{\mathrm{i}}\) risponderanno direttamente. Le schede dall'esterodevono essere regolarmente affrancate.

SI PREGA DI COMPILARE LE SCHEDE A
STAMPATELLO

Con objeto de obtener mas detalles de caulquiera de los articulos mencionados en las paginas editoria es o de annuncios de este numero sirvase rellenar una o mas de las unidas tarjetas citando el numero o numeros de re erencia. Sus consultas seran transmitidas a los fabricantes interesados de quiene stendran noticias directamente a su debido tiempo. Las tarjetas enviadas desde el extranjero requireren franqueo.

SIRVASE ESCRIBIR CON LETRAS MAYUSCULAS

\title{
10-12 Watts - 5 kVA \\ DRAKE TRANSFORMERS
}

\section*{Mains Transformers}

Chokes
Audio Output Transformers
Audio Input Transformers
Saturable Reactors


\author{
Current Transformers \\ Transistor Transformers \\ Inverter Transformers
}


Screened Microphone
Transformers
Wide Band R.F. Transformers
DRAKE TRANSFORMERS LTD., BILLERICAY, ESSEX
Billericay 1155

\section*{Extended range of EEV Ignitrons now avãilable with coaxial construction}

\section*{STAND No. 164 \\ RECMF SHOW} OLYMPIA

All Ignitrons with the International size letters A to \(D\) in the range manufactured by
English Electric Valve Company Limited at Lincoln, can now be supplied in co-axial construction form. This range, already established as the
most comprehensive in Europe, is now extended to incorporate those Ignitrons previously available from The English Electric Company at Stafford: these will continue to be available under their original type numbers. (AR10T, AR14T and AR31).



Full information on the complete range of Ignitrons available from EEV may be obtained from the address at the foot of the page. Enquiries from Government departments and overseas customers should be directed to the Sales Department, Chelmsford, Essex, England, Telephone: Chelmsford 3491 (Ext. 262) Telex: 99103, Telegrams: Enelectico, Chelmsford.

ENGLISH ELEOTRIC VALVE COMPANY LIMITED
CARHOLME ROAD, LINCOLN, ENGLAND. Telephone: Lincoln 26352
Telex: 5614, Telegrams: Enelectico, Lincoln AGENTS THROUGHOUT THE wORLD

\section*{THROUGHOUT 5 ! ! 近
}

QUAD is used professionally to ensure the highest quality of reproduction in music.


Monitoring with QUAD equipment at the Lucerne Music Festival.
. . . and in your own home, too. QUAD gives the closest approach to the original sound.

\section*{(8) (d) Al (D) for the closest approach to the original sound}

Send a postcard, quoting ref.W.W. for full details of the QUAD range.
THE ACOUSTICAL MANUFACTURING CO. LTD. HUNTINGDON, HUNTS. TELEPHONE : HUNTINGDON 361.

\section*{Insulators have a list of satisfied customers as long as your arm...}


\section*{And what can Insulators mould for you?}

With first-class design engineering facilities and three factories specialising in injection, compression and fibreglass mouldings respectively, Insulators are unusually well. equipped to tackle any size or shape of problem in plastics. Ask any of the companies listed on this page.
A.E.I. Hotpoint Ltd. Associated Automation LId. Belling \& Co. Ltd. Belling \& Lee Lid. Champion Sparking Plug Co. LId.
E. K. Cole Ltd.

Electrolux Lid.
Hoover Ltd.
Magravox Electronics Co. LId.
M. K. Electric Ltd,

Morphy-Richards (Astral) Lid.
Philips Electrical Ltd.
P. O. Contracts Dept.

Satchwell Controls Ltd.
Simplex Electric Co. LId.
Smith Meters Ltd.

\section*{COMPANY}

MODRESS

\section*{Insulators Limited}

Leopold Road, Angel Road, Edmonton, London N.18. (EDMonton 1195-8)
Grams: Mermould Southtot London.
\(\qquad\)

5WW-023 FOR FURTHER DETAILS


\section*{The meter game}


You win the Meter Game by going to Anders. For part of the Anders Meter Service is building meter-circuitry to your specifications. Your problems are solved in detail from just a broad" outline, because Anders are equipped to meet the most unusual and urgent demands a customer can make - fast ! Special calibration on both standard and non-standard meters is another part of the service. And Anders carry the largest stocks in the country of meters of all types for immediate off-the-shelf delivery. Whatever you want in metering - go to Anders.

Meters of all kinds from stock Meter calibration/Meter modification/Ancillary equipment Custom-designed meter circuitry and components \(\square\) Sole U.K. distributors of FRAHM vibrating reed frequency meters and tachometers

\section*{ANDERS METER SERVICE}


Reproducers \& Amplifiers Ltd., Wolverhampton


\section*{Heps.p.h?}

That's hiccups per hour. If you really want one, Anders will supply a meter calibrated to measure just that. And supply it fast! It's part of the Anders Meter Service - a service that will meet the most urgent and unusual demands a customer can make. Anders experts will solve your metering problems in detail from just a broad outline, and Anders carry the largest stocks in the country of standard and non-standard meters for immediate; off-the-shelf delivery, as well as a complete range of ancillaries. Whatever you want in metering - leave it to Anders.

Meters of all kinds from stock Meter calibration/Meter modification/Ancillary equipment Custom-designed meter circuitry and components \(\square\) Sole U.K. distributors of FRAHM vibrating reed frequency meters and tachometers

\section*{ANDERS METER SERVICE}

ANDERS ELECTRONICS LTD / 103 HAMPSTEAD ROAD / LONDON NWI TELEPHONE EUSTON 1639 MINISTRY OF AVIATION APPROVED


\section*{ifyMmARIET TRAMSISTORS}

Write for transistor data and packaged circuit specifications to Dept. 9
NEWMARKET TRANSISTORS LTD, EXNING ROAD, NEWMARKET Telephone: Newmarket 3381/4
DENMARK: Oskar Pade, 4 Ingerşvej, Charlottenlund, Copenhagen. SWEDEN; Forslid \& Co A-B, Rådmansgatan 56, Stockhoim. FINLAND: Ingenjörsbyran
Pluton, Kristinegatan 8A, 13 Heisingfors. NORWAY: H. Meltzer \& Co, Rådhusgaten 17, Os10 1. CANADA: Musimart of Canada Lid, 970 Mceachran
Avenue, Montreal 8.

\title{
THERE IS A ISHure SOLUTION TO AIL SOUND PROBIEMS
}
PROBLEM:

The comprehensive Shure range inclúdes a microphone for every application. If you have a microphone problem, do get in touch with us. We are confident we can help you.

this storage space no longer required either!

\section*{triple rating means triple economy}

Brilliant design and the use of metal oxide fused to a glass substrate, enables each Electrosil resistor to perform three roles:-Semi-precision, high stability and general purpose. Three applications for the price of one. Resistor stocks now need only be one-third the size. Powerful factors in industry are adopting this Electrosil concept-are saving space, effort and cash, getting more reliability in performance. TR resistors are approved to DEF.5114A and by the G.P.O. to D.2228A. Employ resistors the modern way-let Electrosil show you how.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & TR4 & TR5 & TR6 & TR8 & Stability \\
\hline Semi-precision & \({ }_{10} \mathrm{~W}\) & \({ }_{8}{ }^{\text {W }}\) W & \(\frac{1}{2}\) W & \({ }_{2}\) W & 0.5\% \\
\hline High stability & \({ }_{8}^{1} \mathrm{~W}\) & \({ }_{6}^{1} \mathrm{~W}\) & \(\frac{1}{2}\) W & IW & \% \\
\hline General purpose & \({ }_{4}^{1} \mathrm{~W}\) & \(\frac{1}{2} \mathrm{~W}\) & IW & 2W & 2\% \\
\hline Ohmic range & \[
\begin{aligned}
& \hline 51 \Omega- \\
& 150 \mathrm{~K}
\end{aligned}
\] & \[
\begin{aligned}
& 10 \mathrm{~s} 2- \\
& 470 \mathrm{~K} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10 \Omega- \\
1 \mathrm{M} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
100 \Omega- \\
1.4 \mathrm{M}
\end{gathered}
\] & \\
\hline \multicolumn{6}{|l|}{Standard Tolerances (All types) \(1 \%\) 2\% 5\%} \\
\hline
\end{tabular}


\section*{an essential event for all concerned with plastics}

This huge display-biggest ever held in Great Britain and unique in Europe in 1965-will present the latest achievements in plastics manufacture, design and technology. More than 500 firms from Great Britain, Germany, United States, France, Japan and other leading countries. Plant and machinery in action . : .
materials . . . processing equipment . . . finished and semi-finished plastics products . . . industrial and consumer goods ranging from boats to paper clipsmore than 10,000 exhibits. An incomparable opportunity to gather new ideas for product improvement, cost reduction.

\section*{SEE THE UNLLMTED \\ POTENTIAL OF PLASTICS today Mall THIS Now}

To: The Exhibition Manager, INTERPLAS 65, Dorset House, Stamford Street。 London SE1
Please send full information and a free season ticket
NAME.
FIRM
ADDRESS
SWW-030 FOR FURTHER DETAILS.


Heavy currents ahead．IR control them with new heavy duty epitaxial thyristors．Currents up to 150 A， PRV up to 1300．Give yourself new power over power；find out exactly what these new IR power thyristors can do．

\section*{Continuous Frequency Coverage from \(1.5 \mathrm{c} / \mathrm{s}\) to \(150 \mathrm{kc} / \mathrm{s}\) in 5 Ranges at Decade Intervals}

\section*{TRANSISTOR}
R.C. OSCILLATORS

TYPES TG150, TG150M TG150D \& TG1500M

See us on
STAND NO. 454
Grand Hall Gallery
RADIO \& ELECTRONIC COMPONENT SHOW OLYMPIA

18th - 21st MAY

\section*{SPECIFICATION:}

FREQUENCY
\(1.5 \mathrm{c} / \mathrm{s}\) to \(150 \mathrm{kc} / \mathrm{s}\) \(\pm 3 \%-0,15 \mathrm{c} / \mathrm{s}\).

\section*{STABILITY}
\(<0.05 \%\) drift after 30 seconds. 0.3 "\% drife for \(30 \%\)
fall of supply voltage
\(<0.05 \%\) drife per \({ }^{3} \mathrm{C}\) at \(1 \mathrm{ke} / \mathrm{s}\).
DISTORTION
\(<0.1 \%\) at \(1 \mathrm{ke} / \mathrm{s}\);
\(<0.30 \%\) from \(50 \mathrm{c} / \mathrm{s}\) to \(15 \mathrm{ke} / \mathrm{s}\) : \(<1.5 \%\) below \(50 \mathrm{c} / \mathrm{s}\)
and above \(15 \mathrm{kc} / \mathrm{s}\).

SINE WAVE OUTPUT
Variable up co 2.5 V
into 600s?
\(<10\).
\(<0.5^{\circ}\) change for
\(30^{\circ}\) fall of supply voleage.

SQUARE WAVE OUTPUT
Variable up to 2.5 V .
Rise time \(1 \%\) of period \(+0.2 \mu s\)
ATTENUATOR
\(20 \mathrm{~dB}, 40 \mathrm{~dB}\) and \(60 \mathrm{~dB} ; 600 \mathrm{R}\)

\section*{SUPPLY}

Self-contained PP9
batcerles, life 400 hours,
or, 200/250V A.C. When Power
Supply Unit is fitted.

\section*{SIZE}

10in. high \(\times 6\) in. wide \(x\) din. deep

\section*{WEIGHT}

6 pounds.

\begin{tabular}{|c|c|c|c|c|}
\hline TYPE & TGIS0 & TGI50M & TG1500 & TGI50DM \\
\hline Outpue Waveforms: & Sine only & Sine only & Sine and Square & Sine and Square \\
\hline Ourput Meser: & None & \(0-2.5 \mathrm{~V}\) and dB & None & \(0-2.5 \mathrm{~V}\) and dB \\
\hline Price with batceries: & 632 & \(¢ 42\) & 635 & 145 \\
\hline
\end{tabular}

LEVELL
PORTABLE INSTRUMENTS

Mains Power Supply Unit \(£ 7.10 .0\)

Leather čarrying case \(\quad\) E3.10.0
Fully detailed leaflets available on our complete range of portable instruments

\section*{LEVELL ELECTRONICS LIMITED}

PARK ROAD, HIGH BARNET, HERTS -Telephone: BARnet 5028
SWW-032 FOR FURTHER DETAILS.


YD5 SINGLE CHANNEL RECORDERS
\begin{tabular}{|c|c|c|c|}
\hline Model & Tape Speeds & Voltage & Frequency \\
\hline YD5A & \(7 \frac{1}{2}, 3 \frac{3}{4}\) and \(1 \frac{7}{8}\) i.p.s. & 100/250 V & 50 c.p.s.* \\
\hline YD5AH & 15 and \(7 \frac{1}{2}\) i.p.s. & 100/250V & 50 c.p.s.* \\
\hline YO5B & \(7 \frac{1}{2}, 3 \frac{3}{4}\) and \(1 \frac{7}{17}\) I.p.s. & 100/250 V & 50 c.p.s.* \\
\hline YOSBH & 15 and \(7 \frac{1}{2}\) i.p.s. & 100/250 V & 50 c. p.s.** \\
\hline
\end{tabular}
*60 c.p.s. to order
Y500 DOUBLE CHANNEL RECORDERS
\begin{tabular}{|c|c|c|c|}
\hline Model & Tape Speeds & Voltage & Frequency \\
\hline Y532U & \(7 \frac{1}{2}, 3 \frac{3}{4}\) and \(1 \frac{7}{8}\) i.p.s. & 200/250V & 50 c.p.s. \\
\hline Y532A & \(7 \frac{1}{2}, 3 \frac{3}{4}\) and \(1 \frac{7}{8}\) i.p.s. & 117 V & 60 c.p.s. \\
\hline Y532E & \(7 \frac{1}{2}, 3 \frac{3}{4}\) and \(1 \frac{7}{8}\) i.p.s. & 110 V & 50 c.p.s. \\
\hline Y522UH & 15 and \(7 \frac{1}{2}\) i.p.s. & 200/250 V & 50 c.p.s. \\
\hline Y522HA & 15 and \(7 \frac{1}{2}\) i.p.s. & 117 V & 60 c.p.s. \\
\hline Y522HE & 15 and \(7 \frac{1}{2}\) i.p.s. & 110 V & 50 c.p.s. \\
\hline
\end{tabular} metal cases and, in some instances, can be rackmounted. They are intended for those engaged in scientific research and industrial pursuits.

\footnotetext{
Send for details to
THE FERROGRAPH COMPANY LTD
84 BLACKFRIARS ROAD, LONDON, S.E.I
Telephone: WATerloo 1981
}


Hunts new 'Dipseal' process gives designers and service engineers a new kind of capacitor - a proven, reliable metallised paper unit in a tough, resinous housing. New 'Dipseal 'W95 midget tubulars are as small as or smaller than their thermoplastic cased equivalents ; the humidity performance is better ; and the hard thermosetting resinous housing is unaffected by heat, making soldering safe and easy.
Find out more about the new W95 and other 'Dipseal' ranges. Full particular's will be sent freely on request.

TYPE W95 STANDARD RANGE
\begin{tabular}{c|c|c}
\hline D.C. Working Voltage & Capacitance ( \(\mu \mathrm{F})\) & \multirow{2}{c}{ Dimensions } \\
\hline 250 & 0.004100 .05 \\
\hline 500 & 0.002 to 0.01 & \multirow{2}{*}{\(121015.5 \mathrm{~mm} \times 5.5 \mathrm{to} 6.5 \mathrm{~mm}\)} \\
\hline 750 & 50 pf to \(0.004 \mu \mathrm{~F}\) & \\
\hline Temperature Range : \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) & Capacitance Tolerance \(\pm 20 \%\) \\
\hline
\end{tabular}

\section*{HUNTS}

\section*{A. H. HUNT (Capacitors) LTD.}

Wandsworth, London, S.W.18. Tel! VANdyke 6454
Factories also in Surrey, and North Wales


These are transistor-stabilised power supplies of outstanding electrical performance coupled with very smai size ( \(5 \times 10 \times 7 \mathrm{in}\). high) and rated for d.c. outputs of \(\frac{1}{2} \mathrm{~A}\) (TCU-0550), IA (TCU-150) and 2A (TCU-250) The output voltage of each unit is \(0-50 \mathrm{~V}\), fully variable, and the stabilisation ratio is greater than \(1000: 1\) throughout this range. The comprehensive overload protectlon clrcuit gives both immediate current limiting and delayed trip action. Separate input sockets are provided for the control amplifier so that the effect ef lead resistance on the performance can be neutralised when the unit is used to supply a remote load. Other units in the TCU range give maximum outputs up to 15 A .

Please send me full details of your transistorised cased units.
Please send me your full catalogue of stabllised power supplies.

 EDM Series Capacitors provides outstanding stability, reliability and close tolerance characteristics coupled with versätility.
Operating temperature range:
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Capacitance tolerances:
\(\pm 10 \%\) and \(\pm 5 \%\)
Q factor:
1000 minimum*
Temperature Coefficient:
Generally -0 to \(+70 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \uparrow\)
* except for very low values texcept for low values

\section*{Write for EDM literature}


A versatile Transistorised Pulse Generator with isurde range of repetition rates, delays and pulse widths.
Rise time is less than \(10 n s\) up to 2 V and the output is true positive or negative with respect to Earth.
The PG54 can be externally triggered, synchronised or gated.

An auxiliary square wave is also available at the repetition rate.
- Repetition rate fully variable from \(2 \mathrm{c} / \mathrm{s}\) to \(3 \mathrm{Mc} / \mathrm{s}\)
- Delay fully variable 70 ns to 0.2 s
- Pulse width fully variable \(70 n \mathrm{~s}\) to 0.2 s
- Amplitude fully variable positive and negative 0.1 V to 2 V with additional steps at 5 V and 10 V
- Rise time less than 10 ns up to 2 V
- AC or Battery operation

NETT PRICE EX WORKS IN UK: \(£ 190\) (excluding battery)

\section*{transistorised}

\section*{pulse generator PG54}



SWW-037 FOR FURTHER DETAILS.

ADVANCE ELECTRONJCS LIMITED Roebuck Road, Hainault, Ilford, Essex Telephone : Hainault 4444
Electronic Instruments
Stabilised Pōwer Supplies Constant Voltage Transformers


This new brochure describes the wide area of study, extending into every application of electronic engineering, which C.R.E.I. (London) offers for 1964. The revised programmes bring the student right up to date with modern developments and technlques. The flexibility of the C.R.E.I. system provides an arrangement of studies appropriate to the technical level of each programme. Every course offers a clear.cut path to increased knowledge, linked with everyday problems and experience.

The student works at his own pace. On enrolment each C.R.E.I. student is allotted a highly qualified tutor who maintains a personal interest in his progress throughout the entire course.

Special programmes for the Clty and Guilds of London

Institute Telecommunication Technicians Syllabuses Nos. 49 and 300 have been prepared by C.R.E.I. (London), who are members of the City and Gullds of London Institute.
Some 30,000 students are currently taking C.R.E.I. Courses throughout the free world.
O.R.E.J. (London) (Dept. WW54), WALPOLE HOUSE, \(173 / 176\) SLOANE STREET, LONDON, S.W. 1


5 WW-038 FOR FURTḢER DETAILS.

\section*{돈心泡}

The best pick-up
arm
in the world

S.M.E. LIMITED • STEYNING•SUSSEX. 5WW-039 FOR FURTHER DETAILS.

A. N. CLARK (ENGINEERS) LIMITED

Binstead, Ryde, Isle of Wight
(Formerly of Merion. London, S.W.10)

\title{
GOODMANS IMPROVE ON EXCELLENCE \\ \\ INTRODUCING THE IMPROVED AXIOM HIGH FIDELITY LOUDSPEAKERS
} \\ \\ INTRODUCING THE IMPROVED AXIOM HIGH FIDELITY LOUDSPEAKERS
}

Goodmans loudspeakers have a long Tradition of Excellence. earned by setting the very highest standard: impeccable per formance, enduring reliability, flawless reproduction and outstanding value. To keep this leadership, a continuing programme of research and development is pursued. And now the lead is increased-but NOT the price!

The new Axiom High Fidelity loudspeakers improves on excellence. Even the world's largest selling 12* High Fidelity loudspeaker, the Axiom 301 has now been improved. New features now incorporated include:
- A pure plastic roll suspension for the moving assembly, providing great strength and excellent acoustic fermination, and allowing long and linear excursion, reducing distortion to. new, low limits.
- An entirely new pressure diecast chassis, in which open construction and high rigidity are combined to give positive alignment of all parts and to minimise chassis resonances.
- Smart new hammered grey finish.

The results speak for themselves. See and hear them at your Goodmans dealer-or send the coupon for free copy of the latest Goodmans Manual.

THE IMPROVED AXIOM FULL RANGE HIGH FIDELITY LOUDSPEAKERS


\section*{GOODMANS INDUSTRIES LIMITED} AXIOM WORKS • WEMBLEY • MIDDLESEX Tel: WEMbley 1200 A Member of the Rentaset Group

\section*{WEYRAD}

\section*{COILS AND I.F. TRANSFORMERS IN \\ LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS}
P. 9 SERIES \(10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}\). Ferrite cores \(6 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}\) operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES \(12 \mathrm{~mm} \times 12 \mathrm{~mm} \times 20 \mathrm{~mm}\). Ferrite cores \(4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}\) operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES \(25 \mathrm{~mm} \times \mathbf{1 2} \mathrm{mm} . \times \mathbf{2 0} \mathrm{mm}\). Ferrite cores \(4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}\) operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

\section*{OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK}

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

Weymouth Radio Manufacturing Co., Ltd., School Street, Weymouth, Dorset

\section*{CHASSIS and CASES}

H. L. SMITH \& CO. LTD.

ELECTRONIC COMPONENT DISTRIBUTORS 287/289 EDGWARE ROAD, LONDON, W. 2

Tel: PADdington 5891/7595
We shall be pleased to quote for all your component requirements

\section*{BLANK CHASSIS}

SAME DAY SERVICE
Of over 20 different forms made up to YOUR SIZE. (Maximum length 35in., depth 4in.)
SEND FOR ILLUSTRATED LEAFLETS
or order straight away, working out sotal area of material required and referring to table below, which is for four-sided chassis in 16 s.w.g. aluminium.
\(\begin{array}{lll}48 \mathrm{sq} \text {. in. } 4 / 3 & 176 \mathrm{sq} \text {. in. } 1 / \mathrm{l} . \quad 304 \mathrm{sq} \text {. in. } 13 / 6 \\ 80 \mathrm{sq} \text {. In. } 5 / 6 & 208 \mathrm{sq} \text { in. } 10 / \mathrm{lan} \mathrm{sq} \text { in. }\end{array}\)
80 sq. In. \(5 / 6 \quad 208 \mathrm{sq} . \mathrm{in} .10 / \mathrm{m} \quad 336 \mathrm{sq} . \mathrm{in}\). \(14 / 9\)
112 sq . in. \(6 / 6 \quad 240 \mathrm{sq}\). in. \(11 / 3 \quad 368 \mathrm{sq}\). in. \(15 / 9\)
\(\begin{array}{lllll}144 \mathrm{sq} . & \text { in. } 7 / 9 & 272 \mathrm{sq} . \text { in, } 12 / 6 & \text { and pro rata } \\ \text { P. \& P. 2/6 } & \text { P. \& P. 2/9 } & \text { P. \& P. 3/-. }\end{array}\)
P. \& P. \(2 / 6 \quad\) P. \& P. \(2 / 9 \quad\) P. \& P. \(3 /-\).
Discounts for quansities. More than 20 sless kept in stosk for

Discounts for quansities. More than 20
callers.
FLANGES (tin., zin.), 6d, per bend.
FLANGES ( \(4 \mathrm{in} ., \frac{3}{} \mathrm{in}\). ), 6d, per bend.
STRENGTHENED CORNERS \(1 \%\) each corner
PANELS: Any size up to 3 fr . at \(5 / 3\) sq. fs. 16 s.w.g.; ( 18 s. s.w.g.
4/6). Plus poss and-packing (over 22 free).


CASES


SILVER HAMMERED FINISH



Plus post and packing (over 2 free).
Type \(U\) has removable bottom or back. Type \(W\) removable front, Type \(Y\) all-serewed construction. Type \(Z\) removable back and frone.
for electronic components... ABK PALDERE FIRS

A range of paper and plastic film and electrolytic capacitors. Conforming to NATO \& I.E.C. specifications.
EROFOL II Type HX Polyester Capacitors
\begin{tabular}{|l|l|}
\hline Range of Values & from 33 pF to \(0.47 \mu \mathrm{~F}\) \\
\hline Tolerance & from \(5 \%\) to \(10 \%\) \\
\hline Voltage Range & from 100 V to 1000 V \\
\hline
\end{tabular}

\section*{EROMAK I (Type Hf)} Polycarbonate Capacitors
\begin{tabular}{|l|l|}
\hline Range of Values & 100 pF to \(1.0 \mu \mathrm{~F}\) \\
\hline Tolerance & from \(1 \%\) to \(20 \%\) \\
\hline Voltage Range & from 63 V to 400 V \\
\hline
\end{tabular}

\section*{Paper Capacitors}

Tubular \& Rectangular Can Styles
\begin{tabular}{|l|l|}
\hline Range of Values & from 47pF to \(10 \mu \mathrm{~F}\) \\
\hline Tolerance & \(10 \%\) \& 20\% \\
\hline Voltage Range & from 250V to 16 KV \\
\hline
\end{tabular}

Multiple types also available

\section*{ROE}

\section*{Electrolytic Capacitors}

Subminiature, miniature \& standard types
\begin{tabular}{|l|l|}
\hline Range of Values & from \(0.1 \mu \mathrm{~F}\) to \(25000 \mu \mathrm{~F}\) \\
\hline Voltage Range & from 3 V to 450 V \\
\hline
\end{tabular}

Multiple types and special mountings available




For further details concerning ranges and specifications of capacitors write to:

\title{
G. A. STAMIEV PALMER LIIITED
}

Island Farm Avenue, West Molesey Trading Estate, East Molesey, Surrey.



\section*{BIG BUSINESS in small pieces}

British radio and electronic equipment is world-famed. But it can never be better than the components that go into it.
Fresh techniques in the component industry, new materlals, more sophisticated testinstruments and smaller-thanever micro-miniaturisation are all to be seen at the Radio and Electronic Component Show at Olympia - Britain's only major electronic show this year - from May 18th to 21 st.
It is the biggest, widest-interest show of its kind. Three hundred exhibitors demonstrate the scientific and engineering progress which has rocketed our component exports 13 per cent this year.
A record 50,000 visitors from 70 countries saw the last component show. This year's exhibition, 20 per cent larger and even more comprehensive in scope, is the show that every buyer, engineer and scientist must see.

Exhibits include...
... components, accessories, valves, cathode-ray tubes, semi-conductors, instruments, test gear, materials, machinery and tools for. .

Professional \& sclentific electronic equlpment Process control, industrlal electronics \& automation Nucleonlc \& atomic power control apparatus Civil \& military ground \& air equipment Medical \& biological electronic \& allied apparatus Radar \& navigational aids
Gulded missile \& spacecraft equipment Electronlc computers \& data handling equipment Telecommunications equipment Radio \& television receivers
Tape recorders, record reproducers, film equipment Amplifiers, tuners \& "hi-fl"
Measuring instruments \& test gear

TIMES: 10 am-6 pm DAILY
ADNISSION: 5/- or by ticket available only from exhibitors Foreign visiltors free

Exhlbition
Imdustaial exhibitions itd 9 argyll staeet london wi


Printed Circuit Relay


Supplied as standard or latching type, single or double winding. Size \(\frac{7}{8} \mathrm{in}\). cube, weight 0.8 oz .
Contact Rating 24 v. D.C. 3 pole double throw. Voltage: 6, 12, 24, v. D.C. Power: 500 mW . Speed 10 ms .
Temperature: \(70^{\circ} \mathrm{C}\) max.

3000 TYPE
PLUG-IN
Size \(4 \mathrm{in} . \times{ }_{2}^{27} \mathrm{in} . \times\) \(1 \frac{1}{4}\) in. Specification as 3000 type 6 change overs maximum, light duty.


S 1500 MINIATURES
A.C. or D.C. operating. Coil up to 10,000 ohms. Single or double - winding. Contact material Silver, Platinum, Spring Set - 6 change overs. Light duty maximum.
Size: 2 |l/l6in. \(x\) \(1 \frac{1}{2}\) in. \(\times \frac{3}{8}\) in.

We are manufacturers of full ranges of 3,000 type, 600 type, and plug in relays, also 12 way mounting rack \(19 \mathrm{in} . \times 3 \frac{1}{4} \mathrm{in}\). Further details available on request to Mr. Clemens.

> FULLY APPROVED HOUSE 7 DAY PROTOTYPE SERVICE

\section*{ LASER \\ Continuous Monochromatic \\ Light Source}


Bradley hellum-neon Gas LASERS have a continuous high flux output of extreme spectral purity, readily appreciated by research groups, for applications such as Interferometry (Metrology and fine Measurement). Gas LASERS are rapidly replacing conventional light sources in schools and technical colleges, where their spectral purity and high flux greatly simplify the demonstration and explanation of optical principles and phenomena. The Bradley Gas Laser, Type 602, is the lowest-priced Laser in Europe.

Write or 'phone for demonstration and data sheet.
Stocks of Gas Laser Type 602 are available for immediate delivery.

complete with drive unit


\section*{FUIII TRANSISTORISED - FREQUENCY RANGE OF 0.6 10 \(32 \mathrm{Mc/s}\).}

\begin{abstract}
Any portable Receiver offering the detector outputs which this set has avaltable, capable of operating under the most adverse environmental candifions, and designed particularly with hard usage In mind, has so far been cumbersome, unwieldy and unsuitable for prolonged manhandling. This set marks a malor step forward in British communication equipment and was selected for use by the \(1964 / 65\) British Combined Services Expeditlon to South Georgia, Antarctica.
\end{abstract}

C \& N (ELECTRICAL) LTD,
Telephone: Gosport 80221/8.
Briel Technical Summary - Crystal calibration' at too Ke/s intervals. Freouency selecticn: \(11 \times 3 \mathrm{Mc} / \mathrm{s}\) Bands. Power Supoly: Between 12 and 50 V \(D C\) at 100 mA (peak). Slonal Modes: AM. PM, SSB. FSK \& \(C\) CW. Co-axial or Wire Aerial connections. Total Welohi: 20 ibs. The Receiver is housed in a standard R.A.E. aluminium alloy Equipment Case and has been accepted by the British Ministry of Detence.
(See it at the 1965. R.E.C. Show on Stand No. 318).
THE GREEN, GOSPORT,
HANTS.
Telex : 8621


\section*{high current} transformers
| Phase and 3 Phase
Output currents of hundreds or thousands of amperes for Furnaces, Rectifier Sets, Heat Runs, Short Circuit Testing and other uses.
Examples: 5V300A.
\(10 \mathrm{~V}, 000\) A 20V3,000 A 5V6,000 A.



HARMSWORTH, TOWNLEY \& CO. 2 Harehill, Todmorden, Lancs. Telephove: Todmorde, 602


Please send me the brochure "Instant Communication" together with other details of Multitone"s "Talk-Back"'system.
NAME
ADDRESS
W.W.

MULTITONE ELECTRIC COMPANY LTD., 12 UNDERWOOD STREET, LONDON, N.I.


Rugged high performance carbon microphones for communication use. They can be mounted on headset booms where small size and weight are obvious advantages. Both types can also be mounted in various ways to meet, individual requirements.
These microphones are designed for close speaking where the special acoustic screens, high electrical output and tallored frequency response make an important advance in speech transmission.

SPECIFICATION Frequency responsa Sensitivity Load Resistane Mountine

Finish

A 301
\(200-5000 \mathrm{c} /\) \(-50 \mathrm{~dB} / \mathrm{V} / \mathrm{dyne} / \mathrm{c}\) to 250 ohms 60 c/s Appror 40 mA 60.05 mA s/cu ohms By ewo 8 BA serews Special elip contact for which also form the mounting on headset Hligh impaer inlection boom High impace infection moulded case. Her. ed except for small equalising leak. fully tropicalised

\section*{LEAD SWITCH}

ARB Ref. WR650

A spring loaded single pole double throw snap-action positive contact switch, designed primarily as a microphone switch for airborne telecommunication headsets.

RATINGS: O.C. 28 v . D.C. max. at 100 mm .
A.C. \(240 \mathrm{v} . \mathrm{A} . \mathrm{C}\) at \(2 . \mathrm{A}\)

\section*{-M. R. SUPPLIES, Ltd.}

Univernally recognimedata supplers of UP-TO-DATE MATERIAR whleh does the job properly. Inmant defivery. Autlisiaction amsured. Pricee nétt.
AIR BLOWERS. Higbly ethcient units blted induction totally eaclowed motor, \(230 /\)


 (des. U.K. 7/(6)
COMPLETE SEWING MACHINE MOTOR OUTFITS. No better Job obtalnable any price. 200/250 F. A C./D.C. Fitted latcat radio/T.V. mupprestora. Comprimbsy notor with fixing brackets, foot coutmo and switch, needle light with switch, beit. et and inatruetlons for casy flxtag to ANY machine. The complete outit E6/18/6 (der. 3/6).
SYNCHRONOUS TIME SWITCHES (Our very popular speclality). AA for 200/250r 50 c . for aceurate prè- Bet swltching operations. Bangamo 8.204, proviling ug to optlonal). Canacity \(20-\mathrm{mmph}\). Compundly houmed tiu. dian. 3tin. deep. With ful natructions. \(£ 5 / 18 / 6\) (dea. \(3 /\)-). Also saune make, arme duty. Domentic Monke Itted with 13 atimp pleg for vasy installathon. name price. Also Paragon, \(220 / 260 \mathrm{p}\) bibe. with 7 -disy dial proviling for operistions on fons acparate circuite ( 2 makers breaks) at any required thme dowing rach diat, caparity 20 amppeach circuit, is unctil housing 7/n. X 4 in . x 1lis. Wall mount. \(£ 11\) (dem, \(5 /\) ). Almo very limited offer
 VENNER CLOCEWORE DELAY SWITCHES. Variable to 8 houre. Mike, breik C.O. Rasily get calibrated allul. 5 ntap ewitching. Panell mountimg. virn. dia 2 2hn. Loug. Idmen? for Prarkiug Ikgte. 37 6. (ulem, 2/-).
SMALL GEARED MOTORS. Iu adjlition to our well-known range (List ( 1 M/36 we offer maller apen tyme s.f. untitr, 260/200 v. A.C.. 1, A, 12, 20 of (180 p.p.in. Siz approx. + lin. \(x ~ 2!\mathrm{h} . \mathrm{x} 2 \mathrm{if}\). with ling. what prol. Sultible tor display work ath matuy indurtrial tes. Only \(69^{\prime} 6\) (dees. 2/6).
SYNOERONOUS ELECTRIC CLOCK MOVEMENTS (An meutioned and reoommenderl
 and central sucep recoürle han nise, Melf-ktarting, ceulral ome-hole firing. Dia. 21 in

EXTRACTOR FANS. Winal offer of thim very popular and emeient moodel compplete with outside erwilloz asal Ithilour whiter. Circular motor housing only fin. din no interference), 3.500 e.th./hr. Instpuctichis with rianth. Only \(69 / 6\) each (desputeh

 SYNCERONOUS TIMER MOTORS (Mimgaino) 200/250 v. 50 c/s. Belf starting \(2 i n\)


IMMEDIATE DELIVERY of Stuart Centrifugal Pumps, lochuding stalakes steel (more modelas). Phips Variabie Trassiormers (adl monels).
N. R. SUPPLIES, LId., 68, Naw Oxford Street, London, W.C. 1 (Telephone: MUSeum 2958)

OXIEY
PRINTED CIRCUIT SOCKETS
The OXLEY printed circuit sockets are designed for direce mouncing on \(1 /\) module printed circuis board with standard "050" diameter holes and accepts our standard plug Type 50P/156. The mounsing is arranged so that she plugs may be inserted in a plane parallel to the printed circuis board thus permitting close stacking of circuit boards.


Write for tise technical detoils of these and any other Oxley Products


ULVERSTON, LANCASHIRE
Tel: Ulverston 2567 OXLEY DEVELOPMENTS CO. LIMITED 5WW-050 FOR FURTHER DETAILS.

\section*{COMPONENTS E INSTRUMENTS}


\section*{STAND 218}


\title{
RUDIO AMPITELRR
}

12 Volt with 15 W . Output
Designed specially to give pleasing results on music and speech
Common emilter, class B output stages, with maximum efficiency choke coupling to 15 ohm speaker lines; temperature stabilised and direct coupled pre-amplifier stages with liberal feedback.
All output and input terminations are fully floating, thus enabling layman or skilled engineer to be equally confident in the simple matter of coupling up for use.


FULL DETAILS OF THIS AND OTHER EQUIFMENT by RETURN OF POST

\section*{E. K. ELECTRONICS, (1.A.) LTD: Brotherton, Knottingley, Yorks. \\ 5WW-052 FOR FURTHER DETAILS.}
\(\overline{\text { SOCKETS }}\) in short supply?

You need a Lexor DIS-BOARD


THERE ARE OVER 1000 COMBINATIONS IN ALL TYPES OF FITTINGS AVAILABLE FROM STOCK Full literature and price list from LEXOR DIS-BOARDS LTD Allesley Old Road, Coventry. Tel. 72614.

\section*{IMPEX ELECTRICAL LIMITED}
' GOWER ST., LONDON, W.C.I MUSeum 9777

\section*{IMPEX SEMICONDUCTORS}

Supplies are available of fully tested semiconductors with slightly relaxed specifications. Consinuity of supply is always assured. Availability list upon request
S31T p-n-p audio frequency eransistor similar to OC81 VCE max. = \(-9 V^{\prime} V_{B E}\) max. ( \(\left.1 \mathrm{C}=1.5 \mathrm{~mA}\right)=-200 \mathrm{mV} ; \mathrm{V}_{\mathrm{BE}} \max\). ( \({ }^{(\mathrm{C}} \mathrm{C}=300 \mathrm{~mA}\) ) -750 mV : \(\left.\mathrm{ICBO}^{(\mathrm{V}} \mathrm{CB}=-9 \mathrm{~V}\right)<25 \mu \mathrm{~A} ; \mathrm{h}_{\mathrm{FE}}>100\).
S91T sllicon junction transistor similar to OC204V CB max. = VCEmax. \(=-14 \mathrm{~V} ; I_{\mathrm{Emax}}=450 \mathrm{~mA} ; I_{\mathrm{B}} \mathrm{max} .=90 \mathrm{~mA} ; \mathrm{I}_{\mathrm{CO}}\left(\mathrm{V}_{\mathrm{CE}}=-6 \mathrm{~V}\right)\) \(<0.3 \mu \mathrm{~A} ; 11 \mathrm{~N}_{\mathrm{CE}}=-6 \mathrm{~V} .{ }^{1} \mathrm{C} \quad(\mathrm{mA})=1.5 \mathrm{Mc} / \mathrm{s}\).; hFE \(>14\). S3R germanlum general purpose point concact diode. P.I.V. 22V.

TRADE ONLY

\section*{}

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 156 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Divisionthe B.I.E.T. School of Electronics, explains the benefits of our Employment Dept. and shows you how to qualify for five years promotion in one year.

\section*{We definitely Guarantee \\ 66 NO PASS - NO FEE \({ }^{9}\)}

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than 225 . a week, send for your copy of "ENGINEERING OPPORTUNITIES" today-FREE

\section*{ERITISH INSTITUTE} OF ENGINEERING TECHNOLOGY (Dept. SE/22 ), 29 Wright's Lane, London, W. 8

WHICH IS YOUR
PET SUBJECT?
Mechanical Eng. Electrical Eng. Radlo Engineering. Automotile Ens Automoblie Eng., Aeronautical Eng. Production Eng.. Bullding, Plastec. Television, etc.

GET SOME LETTERS AFTER YOUR NAME!
A.M.I.Mech.E. A.M.I.C.E.
A.M.I.Prod.E
A.M.I.M.I.
A.I.O.B.
\(\qquad\)
A.M.I.E.R.E. City \& Gullds Gen. Cert. of Education Etc., etc.


\section*{practical EQUIPMENT}

Basic Practical and TheoreBasic Practical and Theore-
tic Courses for beginners in Radlo, T.Y. Electronics, Erc. Rado, M.E.R.E.E. City \& Guilds A. Ma.E.R.E. City \& Guild
Radio Amateurs' Exam. Ra Amateurs Exam R.T.E.B. Certlicate Practical Radio Radio \& Television Servicing Practical Electronics Electronics Engineering Automation

\section*{INCLUDING TOOLS! \\ The specialist Elec} ronics Division B.I.E.T. NOW offers you a real laborafory training ap home wish pracrical equipment. Ask for details. B.I.E.T. SCHOOL OF ELECTRONICS

\section*{post coupow mown}

Please send me your FREE 156 -page "ENGINEERING OPPORTUNITIES
(Write if you prefer not to cut page)
NAME
ADDRESS



SUBIECT OR EXAM
THAT INTERESTS ME

\section*{THE B.I.E.T. IS THE LEADING ORGANISATION OF ITS KIND IN THE WORLD}

5WW-055 FOR FURTHER DETAILS.

New? Not very. The circuits of Marconi Instruments dual trace oscilloscope Type TF 1331 have been subjected to detailed improvement since its introduction in 1960. It is now a well-tried, tested and stabilised instrument enjoying consistently good sales. However, there are many refinements in the latest version, Type 1331A : a supply socket for a cathodefollower probe has been added, the new rectangular bezel accepts a wide range of cameras and viewing aids, a graticule with edge illumination is fitted, and the restyled front panel is the result of a special study of ergonomics in relation to oscilloscope design.

\section*{MARCONI INSTRUMENTS TYPE TF 1331A}


Yes, we think so. This is a general purpose oscilloscope with a 3dB bandwidth of at least \(15 \mathrm{Mc} / \mathrm{s}\). The d.c. coupled amplifier has a response which is practically flat to 10 \(\mathrm{Mc} / \mathrm{s}\) with a very gradual roll-off up to \(30 \mathrm{Mc} / \mathrm{s}\). This really is a \(15 \mathrm{Mc} / \mathrm{s}\) scope with a writing speed that can cope with fast pulses. The 5 -inch CRT has a spiral postdeflection accelerator and is operated at an e.h.t. of 10 kV . You can really see the leading edge of a fast pulse on the TF 1331A.
And what other oscilloscope at this price- \(£ 400\)-has all these features?
\(\square\) Slide-back measurement of time and amplitude by means of directly-calibrated shift controls, giving measurement accuracy independent of amplifier gain and CRT sensitivity \(\square 250 \mathrm{nsec}\) signal delay, enabling you to view the teading edge of the pulse that triggers the timebase \(\square\) Provision for use of the full range of Marconi oscilloscope accessories, including probes, viewing aids, and camera attachments.

\section*{DUAL TRACE OSCILLOSCOPE}



A GOOD NAME FOR GOOD MEASURE

\section*{MARCONI} INSTRUMENTS

Marconi Instruments Limited, St. Albans, Herts. Tel: St. Albans 59292. Telex 23350

\title{
POWER AND RELIABIIITY GOODMANS AUDIOM LOUDSPEAKERS
}

\section*{}

Outstanding in the Goodmans Audiom range is the 18 inch Audiom.91. Very large numbers now in use under the most punishing conditions give ample evidence of the reliability of this unit, due in large measure to the use of a \(3^{\prime \prime}\) voice coil;' for increased heat dissipation, a massive magnet system for high control and efficiency, and a very strong cast chassis to stand inevitable severe handling. The diaphragm too is particularly durable, and provides excellent performance for critical musical applications, just as for purposes requiring sheer power.
The Audipm 91 is available in two versions: Audiom 91 STANDARD for use with Bass Guitars and in high power Public Address and sound reproducing systems; Audiom 91 BASS for use with Electronic Organs, in specialised applications, and as a Bass unit in very high powered multiple speaker High Fidelity Systems.
The heavy duty Audiom 91 handles up to 50 watts ( 100 watts U.S.A.) of power ( 35 watts when used with Bass Guitars).


For full details of the Audiom 91 and its many applications, and the other units in the Audioim range, contact Technical Advisory Department

GOODMANS INDUSTRIES LIMITED
AXIOM WORKS, WEMBLEY, MIDDX., ENGLAND Tel: WEMbley 1200

A Meniber of the Rentuset Grounp
ऽWW-057 FOR FURTHER DETAILS.


\section*{Marconi Instruments Type TF 1370A}

WIDE RANGE R-C OSCILLATOR

A new development in versatile sine-wave/ square-wave generators
- Sine-waves \(10 \mathrm{c} / \mathrm{s}\) to \(10 \mathrm{Mc} / \mathrm{s}\) Square-waves \(10 \mathrm{c} / \mathrm{s}\) to \(100 \mathrm{kc} / \mathrm{s}\) - Distortión less than 0.5\% over main part of range
- Dećade frequency bands with dual-ratio slow-motion tuning
- High outputs at 4 impedances
- Price - £275
- Accessories include a triple impedance unbalanced-to-balanced transformer, \(1 \mathrm{kc} / \mathrm{s}\) band-pass filter and \(\times 100\) attenuator pad

A GOOD NAME FOR GOOD MEASURE

\section*{MARCONI INSTRUMENTS}

Marconi Instruments Ltd., St. Albans, Herts., Englaņ
Tel: St. Albans 59292. Telex 23350

\section*{The revolutionary Tweeter -introduced at the Audio Fair-and available now!}


\section*{THE NEW SUPERB IONOFANE LOUDSPEAKER}

\section*{MODEL 601}

The basic H.F. unit ready for building into speaker assembly. It will handle the treble of 20 watts of music. 28 Gns.
MODEL 602
The basic lonofane: H.F. unit. together with a special 5 mid range unit, cross-over and provision for connection co an existing bass unit of up to 20 watts capacity

\section*{MODEL 603}

A full range speaker assembly of the highese qualicy. consisting of the lonofane H.F. sisting on the \(5^{*}\) mid range and unis, new \({ }^{\text {new }}\) i5 bass range and new lis bass unit. 75 Gns.

The IONOFANE operates on the lonophone principle invented by Klein of Paris and is covered by British Letters Patent No. 756546. It is a high frequency loudspeaker having a perfectly uniform response from 3 to 30 kilocycles, quite free from resonances and colourations and with perfect reproduction of transients. It is fully guaranteed.

WRITE NOW FOR
illustrated léaflet

HICK LANE,
BATLEY, YORKSHIRE

Enquiries for these Speakers including the Wholesale and Retail Trade may be sent direct to FANE ACOUSTICS LTD., BATLEY, YORKSHIRE, or to LINEAR PRODUCTS LTD., ARMLEY, LEEDS


\section*{Measurement of Harmonic Distortion}

One of the most essential measurements necessary in a high quality audio system is that of simple harmonic distortion. It is impossible to do serious development work on anything in high quality audio without measurement of this fundamental parameter.

RADFORD make the most advanced audio equip. ment in the world, and in order to do this it was found necessary to develop measuring instruments of a superior performance than those existing. The Low Distortion Oscillator and Distortion Measuring Set were designed by audio engineers knowing the requirements of such apparatus in audio engineering.

The Low Distortion Oscillator generates sine waves of extreme purity from \(5 \mathrm{c} / \mathrm{s}\) to \(250 \mathrm{Kc} / \mathrm{s}\). The instrument also contains a valve millivoltmeter, a squareing circuit which will produce a clean \(250 \mathrm{Kc} / \mathrm{s}\) square wave, and a switched ' \(T\) ' 110 dB 600 ohm attenuator with facilities for continuous interpolation. The distortion of the osclilator is less than \(0.005 \%\) at midband frequencies from its 600 ohm output attenuator. It is also capable of a very low distortion output of about \(0.001 \%\) or below from the 10K ohm output position at mid-band frequencies.

The Distortion Measuring Set is a complementary equipment, and is capable of measuring extremely low distortion content. The most sensitive range on the instrument is \(0.01 \%\) f.s.d. On this range it is possible to get an accurate measurement of \(0.002 \%\) distortion and an indication of the order of \(0.001 \%\) distortion.

The design of these instruments is described in leaflets which are available upon request.

Prices: Low Distortion Ostillator. 695.
Distortion Measuring Set. 675.


RADFORD ELLCCTRONICSITD.
Ashton Vale Estate, Bristol, 3. Tel.: 662301/2


\title{
FERRANTI T.R. CELLS
}
are used in marine radar throughout the world

A comprehensive range of T.R. Cells is available covering frequencies from \(2,700 \mathrm{Mc} / \mathrm{s}\). to \(35,000 \mathrm{Mc} / \mathrm{s}\). Write for further information.

FERRANTILTD KINGS CROSS ROAD DUNDEE TeI: DUNDEE 87141


First into the Funure

- Amplifier, microphone, 6 speakers, all contained in one case
\(\square 30\) watts output LIOperated from batteries or AC mains \(110-250\) volts \(\square 6\) specially designed Wharfedale speakers
Weighs less than 42 lb

PRICE
£69.10.0.
WITHOUT BATTERIES
LEATHERETTE COVERED CASE WITH VINYL GRILLE CLOTH. Size \(36 \frac{3}{4} \times 7 \frac{3}{4} \times 9 \frac{7}{6}\)

Ideal for schools, churches, social events, crowd control, yacht clubs, harbours. auction sales etc...etc. etc.


SWW-062 FOR FURTHER DETAILS.

NOW re-designed and fully weather protected The MINIMITTER BIRDCAGE F.M. AERIAL

Mk. 2

- Suitable for 88-108 Mč/s
- High Gain \((+9.5 \mathrm{~dB})\) with high Front to Back \((-35 \mathrm{~dB})\) and Front to Side ( -30 dB ) ratios.
- Full wavelength elements reduce interference
- Elimination of vertically, polarised signals gives freedom fromeraeroplane "flutter."
- Tuning facility incorporated to enable the cable to be accurately matched to the aerial.
- Suitable for loft or outside erection.

\section*{Retall price \(\mathbf{5}\) (4/6 pose \& packing) TRADE' ENQUIRIES INVITED}

\section*{Order direce from}

MINIMITTER (1964) LTD. Albion Mews, Kiburn High Road, London, N.W. 6 (MAlda Vale, 5588) Manufacturers of Specialist Aerials and Aerial EquiDment for the Entertainment and Communication Industries.

5WW-063 FOR FURTHER DETAILS.

\section*{Vahodio}

TRANSVERTERS (TRANSISTORISED D.C. CONVERTERS). the D.C. conversion
specialists
since 1935
2 KW. Peak Starting 750 W. Continuous. \(50-60-400 \mathrm{c} / \mathrm{s}\). or D.C. from 12-24.50v. Battery.
 Up to \(93 \%\) Efficiency. Polarity Reversal Protection. Square or Sinewave. Up to \(300 \%\) Instant Overload Capacity. Manually Controlled Frequency. Reed Type Indicator. Remote Conerol Facilities.
Applications: Static "No-Break" Standby Power Supplies: For Vital System(s) Protection, e.g. V.H.F. Transmitters: Industrial Processes; Control-Alarm-Warning Systems: Mobile Use of Counters; Sig./Gen. RecordersUN Sound. Oscilloscopes and Lab. Gear in Marine and Aircraft (K||4).
Range of models available Please write to deDartment with prices from CII-C94.10.0 C. 10 for transverter leaflet. VALRADIO LIMITED
BROWELLS LANE FELTHAM MIODLESEX Telephone: FELTHAM 4837-4242
Valradio and Scereosonóscope are the registered trade marks of Valradio Led
STAlND 113, R.E.C.KM.F. SHOW
18ch-21st MAY


When reliability is of the first importance-as with ambulance or patrol car work-BCC equipment is chosen time and time again. The BCC 81 moblle VHF transmitter-receiver is so compact that the whole unit can be fitted under the dashboard of almost any vehicle, without taking up valuable passenger space, thereby adding prestige and efficiency. Transistors are used throughout the receiver and power supply unit and in all but the final stages of the transmitter; current consumption is low-equal to only one instrument panel lamp on 'receive'; no standby faclity is necessary as quick heating valves are used in the transmitter.
With six channels in any frequency range between 37 and \(174 \mathrm{Mc} / \mathrm{s}\) and 6 watt A.M. output, the advanced design of the BCC 81 makes it quite unbeatable in its class.

BRITISH COMMUNICATIONS CORPORATION LTD.
EXHIBITION GROUNDS, WEMBLEY, MIDDLESEX Telephone: Wembley 1212 Telegrams: BEECEECEE WEMBLEY



Send Coupon, deleting as required.
To, LINSTEAD ELECTRONICS Ltd., 35c, Newington Green, London, N. 16.
Please supply Low Frequency Signal Generator Type G.1. Cheque for \(£ 20\) enclosed.
Please send Type G.1. Technical Leaflet.
Name \(\qquad\)
Address

\section*{Linstead Electronics}

LOW FREQUENCY SIGNAL GENERATOR Type G, 1
\(10 \mathrm{c} / \mathrm{s}\) to \(100 \mathrm{kc} / \mathrm{s}\) in four decade ranges
Three Outputs:
1) 0 to 6 v . r.m.s. SINE WAVE with low distortion
2) 0 to 9 v . peak to peak SQUARE WAVE with. no droop and good H.F. rise time.
3) 0 to 1 Watt into 3 ohms, \(50 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{kc} / \mathrm{s}\)
£20-0-0 Nett

FABBRICA ITALIANA APPARECCHI RADIO DIPARTIMENTO ELETTRONICA PROFESSIONALE

\author{
MILAN (Italy) - Via G. B. Grassi, 93 - Telephone : 306241/306841-Telex : 31295
}

PRODUCTION
- Closed circuit television
- Sound diffusion installations
- TV transmitters
- Radio transmitter/receivers

talian representative and licensee of TELEFUNKEN AG
for commercial radio equipment


Transistorised television repeater P 3149


Direction unit for large sound diffusion installations


Transistorised telecamera-.P 4814


An accurate, portable instrument for the evaluation of audio and carrier frequency systems.
- Compact, transistorised and ruggedly constructed, the instrument is ideal for field or station use.
- All major circuits are plug-in epoxy glass-fibre printed boards.
- Accuracy and high-stability have been retained by the use of tantalum electrolytic capacitators and deposited metal-film resistors.
- Unit may be operated from A.C. Mains, external D.C., or internal rechargeable cells.

\section*{FUNCTIONS OF THE A220 (provisional)}
- Measures signal level of transmission equipment, between \(50 \mathrm{c} / \mathrm{s}\) and \(250 \mathrm{kc} / \mathrm{s}\); impedances of \(75,150,600\), 1,200 ohms. Terminating and bridging level measurements with balanced input.
- High-impedance voltmeter (unbalanced), \(50 \mathrm{c} / \mathrm{s}\) to 650 \(\mathrm{kc} / \mathrm{s}\). I Mohm jnput, sensitivity 10 mV , F.S.D.
- A balanced frequency-selective voltmeter to measure pilot carrier level and "Tone-on-channel" selection. Bandpass \(100 \mathrm{c} / \mathrm{s}\).
- Measures individual channel levels (end-to-end) between \(200 \mathrm{c} / \mathrm{s}\) and \(3.4 \mathrm{kc} / \mathrm{s}\).
- Wien-bridge, sine-wave oscillator, frequency continuously variable over range \(100 \mathrm{c} / \mathrm{s}\) to \(630 \mathrm{kc} / \mathrm{s}\). With associated amplifier outputs to +13 dbm in \(75,150,600\), 1,200 ohms (balanced).
- Wien-bridge, oscillator amplitude, modulated by internal oscillator at \(820 \mathrm{c} / \mathrm{s}\) or by external tones between \(200 \mathrm{c} / \mathrm{s}\) and \(3.4 \mathrm{kc} / \mathrm{s}\).
- High-sensitivity measurements ( -80 dbm for transmission level and noise measurement).
- Meter indicates modulation percentage on carrier channels ( \(8 \mathrm{kc} / \mathrm{s}\) to \(250 \mathrm{kc} / \mathrm{s}\) ).
e Weighted noise measurements (with optional external plug-in unit) to C.C.I.T. Specification or other network if required.
- Simulates broadband carrier channels with a.m. modulation.
- Wave analyser measures harmonic distortion and intermodulation products down to \(0.1 \%\)
- Amplitude modulation monitor, 0 to \(80 \%\).
- Measures the bandpass characteristics of filters.
- Provides output for Pen recorder (0.1 mA 1,000 2) or head receiver for listening tests.
Dimensions and Weight:
Height: 8 inches 20.3 cm . Widıh: 14 inches 35.5 cm . Depth: 12.5 inches 31.75 cm . Weight: 20 lbs 9 kg . (approx. including power supply).


FOR FULL INFORMATION Apply Dicect to:

ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON S.W. 4
Telephones: MACoulay 4272 \& 3101


JOHN SMITH LTD. 209 SPON LANE : WEST BROM WICH - STAFFS. TELEPHONE WES 2516 "MITRE MILLS" RICHARD STREET • BIRMINGHAM 7 TELEPHONE ASTon Cross 2218 ( 4 lines) 5WW-069 FOR FURTHER DETAILS.


\title{
Labgear- S.N. IB. an onicinal Brilish desicn FOR WORID MARKETS ...
}

Illustrated is the LSP 30 Pack Set. 25 Watts p.e.p. output 2-11 Mc/s.
Totally transistorized USB/LSB and compatible A.M. complete with unique continuously tunable aerial.
Ruggedised and Tropicalised for use all over the world.

\section*{Also available :}
\(\star\) LSP 10-2 watt Pack Set
\(\star\) LS 100-100 watt Fixed Station
\(\star\) LSM 100P-100 watt Mobile Station \(\star\) LSM 30-30 watt Mobile Station - LSR 8--8 channel S.S.B. Receiver

Plus a rangè of continuously tunable Whip Aerials (patents pending)

Labgear 'Transistorised SSB Transceivers give you the Ruggedness and Dependability of military designs but at the cost of units made for commercial applications. One standardised Receiver/Exciter module is the heart of every equipment resulting in lower initial cost and better serviceability
Write for fuil details to the sole designers and manufacturers:

\section*{Labgear Limited \\ CROMWELL ROAD CAMBRIDGE ENGLAND}

TELEPHONE CAMBRIDGE 4730! - TELEX Bilo5 LAB. TELEGRAMS LABGEAR CAMBRIDGE ENGLAND


Fully transisforised Transmitter and Recelver
- Long endurance with Rechargeable or Dry Batteries _ Crystal Fliter selectivity

Reliability and accessibility of components ■ Very high performance Receiver
ghtweight 4 lbs ( 1.82 kg ) 25-174 Me/s

Weatherproof
Approved by G.P.O. to snec. W6345
Tel: TEVERSHAM 3131


The world's most competitive Single Sideband Radiotelephone - the SSB 125 is suitable for fixed or mobile operation and is the most economic equipment for long distance communication available today.


\section*{PYE TELECOMMUNICATIONS LTD. CAMBRIDGE.ENGLAND Telephone: Teversham 3131}

5WW-073 FOR FURTEER DETAILS.

\section*{THE LINEAR 'SUPER 30' HIGH FIDELTY PUBLIC ADDRESS AMPLIFIER}

\section*{TECHNICAL DETAILS:}

SENSITIVITY FOR 30 WATTS
Gram.- 50 millivolts.
Mic. I. 5 millivolts.
Mic. 2. 150 Microvolts.
FREQUENCY RESPONSE
\(\pm 2 \mathrm{~dB} 30\) c.p.s. 20,000 c.p.s.
BASS CONTROL
+15 dB to -15 dB at 50 c.p.s.
TREBLE CONTROL
+12 dB to -12 dB at 10 Kcs .
HUM AND NOISE
\(-60 \mathrm{~dB}\)
HARMONIC DISTORTION
\(0.5 \%\) for 30 watts.

\section*{VALYES}

Mullard ECC83, ECC83, ECC83. EL34, EL34, GZ34.
NEGATIVE FEEDBACK
20 dB
DAMPING FACTOR
12


\section*{RETAIL 33 Gns.
PRICE 33}

Send S.A.E. for leaflet. For operation on standard \(200-250 \mathrm{v}\). 50 c.p.s. A.C. mains. \(110 / 120 \mathrm{v}\). models available for export.

Trade and export enquiries Invited.
LINEAR PRODUCTS LTD. ELECTRON WORKS, ARMLEY, LEEDS.

\section*{A HIGHLY} EFFICIENT 30 WATT GENERAL PURPOSE PUBLIC ADDRESS UNIT

With input mixing facilities and outputs for 3-7.5-15 and 330 ohms ( 100 valt line).

A special feature of the SUPER 30 is its high degree of stability, ensuring that the longest output leads can be used without fear of the usual troubles associated with instability.

Three high sensitivity standard Jack inputs with provision for high and low Impedance microphones.

VARIABLE D.C. POWER UNIT WITH ACCUMULATOR PERFORMANCE FROM
A.C. MAINS


FEATURES 0-30 VOLTS Variable up to 20 ANㅔ․
RIPPLE CONTENT negligible, IMPEDANCE and REGULATION equivalene to accumulator, performance, SILICON RECTIFIERS. Inadvertent "SHORT" protection.

\section*{APPLICATIONS}

Operating and Servicing eransistorised equipment, 12v. Mobile rado/tel. operation, D.C. Morors, relays, induserial power, erc. from any point of A.C. WITHOUT THE USE OF ACCUMULATORS.

12 or 24 v . FIXED OUTPUTS up to 24 Amps also available AVOID THE EXTRA EXPENSE OF SUPER REGULATION YOU MAY NEVER NEED. PRICES: \(614-16-0\) to \(\{131-5-0\).


STANO 113
R.E.C.M.F.

SHOW
MAY 18-21
Please write to deportment C 3b. BROWELLS LANE,
for current literature. Tel.: FEL. 4837-4242 Tel.: FEL. 4837-4242
VALRAOIO and STEREOSONOSCOPE are the registered trade marks of YALRADIO LTD.

\section*{Pricasior POITIS}


PICRRSS specialists in precision hand tools and small machine tools for miniature assembly and repair work
HENRI PICARD \& FRERE LTD


\title{
the \(1.2 \mathrm{mc} / \mathrm{s}\) UNIVERSAL COUNTER/TIMER
} giving the facilities you need...
* ILLUMINATED 6 DIGIT DISPLAY
* TIME, PERIOD AND FREQUENCY MEASUREMENT
* 100 mV SENSITIVITY
*. PRINTOUT FACILITIES
* CRYSTAL OSCILLATOR ACCURACY \(\pm 1\) PART IN. \(10^{6}\)
* OPERATING TEMPERATURE \(0-45^{\circ} \mathrm{C}\)

\section*{£195}

For full information write today for Leaflet 23101

\section*{}

at your fingertips-each one repeatable, quickly, visibly and accurately to withln |dB!
This wide range of equalisation is available without insertlon loss or distortion in the LEEVERS-RICH 6 BAND AUDIO EQUALISER, a compact, A.C. operated unit to suit the requirements of curve shaping and quality matching in high grade rerecording and transcription work.
Model 46 X for use on 600 ohm linebalanced or unbalanced, bridging or terminated. \(\$ 166\) complete.

Write for full information to:
LEEVERS-RICH EQUIPMENT LTD.
319 L Trinity Road, Lundon, SW18 Vandyke 9054

LEEVERS-RICH

EDOYSTONE COMMUNICATON RECEEVERS
For the proffessional or Amoteur user who likes the Best.


Communication receiver at a moderate price. MANUFACTURING STANDARDS OF THE HIGHEST ORDER, 8 BBA valves Superheterodyne circuit. FREQUENCY RANGES:

Range 1............ \(12.4-30 \mathrm{Mc} / \mathrm{s}\). Range \(4 \ldots \quad 1.12-2.58 \mathrm{Mc} / \mathrm{s}\).
Range \(2 . \ldots \ldots \ldots . .5 .2-12.9 \mathrm{Mc} / \mathrm{s}\). Range \(5 \ldots 480-1,150 \mathrm{kc} / \mathrm{s}\).
Range 3 ........ 2.5-6.1 Me/s.
Ranges 4 and 5 include the International Distress Frequencies. Sensitivity better than 10 microvoles. Selectivity 30 db down at \(10 \mathrm{kc} / \mathrm{s}\). off resonance. A.C./D.C. Internal speaker.


CONFIDENTIAL TERMS. YOU DEAL SOLELI WITH H.P. RADIO
Carriage paid per passenger erain. SATISFACTION GUARANTEED


The Eddystone Specialists

\section*{SERVICES LTD.}

49/5I COUNTY RD., LIVERPOOL, 4

Telephone: AINTREE 1445
ESTAB. 1935
5WW-079 FOR FURTHER DETAILS.


\section*{It's easy to find small components} in an original raaco cabinet
- You can see at a glance what you want
- 6 drawer sizes with movable dividers
- Stout steel frame will carry heavy loads
- Hang them up, or stack them in units
- Range of 35 different space-saving cabinets

FOR MODERN AND EFFICIENT STORAGE OF SMALL ITEMS
raaco LTD
Whe loday for ree mustrated leanet London, E.C.1.

Hoborn Viaduc

5WW-080 FOR FURTHER DETAILS
 names will be therewhy not you too?

\section*{INTERNATIONAL SHOW} RADIOTELEVISION
from 9-19 September, 1965 PARIS
(Porte de Versailles-Hall Monumental)


Request for information on the INTERNATIONAL SHOW RADIO TELEVISION
to be forwarded to
S.D.S.A.; 16 rue de Presies, PARIS 1.5e-Tel. 273.24-70

Mr. (Name in capitals)
FIRM:
FULL ADDRESS
PRODUCTS

SIGNATURE:
POSITION IN FIRM:

\title{
\(\overline{A U D I O}\) SERVICES anNounce an IMPORTANT INVENTION
}
(Provisional Patent No. 06155)

\section*{RELATING TO} ELECTROSTATIC LOUDSPEAKERS

This Company has applied for U.K. and U.S. Patents on a revolutionary improvement in the efficiency and performance of electrostatic loudspeakers.

The unit will be incorporated in the new "DYNASTATIC Mk. II" Loudspeaker.

This development is to be the subject of an article in \(\mathrm{Hi} \mathrm{-Fi}\) News in the near future.

These new loudspeakers are now available and are being demonstrated here in Barnet. All interested are invited to see and hear what is now probably the world's finest loudspeaker at a price people can easily afford.

Write or ring BARnet 6605.

\section*{AUDIO SERVICES LTD.}

82 East Barnet Road, New Barnet, Herts No parking problems. Open Saturday until 7 p.m.

\title{
THE \\ WHARFEDALE SUPER RANGE
}

\section*{Each loudspeaker in} this range is fitted with roll surround for low resonance and double diaphragm assembly for extended HF response.

\section*{SUPER 8/RS/DD}

Impedance \(10 / 15\) ohms Ceramic Magnet
Flux density 14,500 oersteds Total fux 60,000 maxwells Aluminium voice coil Max. Input 6 watts rms or 12 watus peak
Frequency range \(40-20,000 \mathrm{c} / \mathrm{s}\). Bass resonance \(50 / 60 \mathrm{c} / \mathrm{s}\). Price \(134 / \mathbf{2}\) §nc. P.T.

\section*{SUPER IO/RS/DD}

Impedance doll 15 ohms
Flux density 16,000 oersleds Max. input 10 watts rms or 20 watts peak
Frequency range \(30-20,000 \mathrm{c} / \mathrm{s}\). Aluminium voice coil Bass resonance \(38 / 43 \mathrm{c} / \mathrm{s}\). Price \(\mathbf{1 1 8 / 8}\) inc. P.T.

\section*{SUPER 12/RS/DD}

Impedance \(12 / 15\) ohms Flux density 17,000 oersteds Total flux 190,000 maxwells Aluminium voice coil Max. input 20 watts rms or 40 watts peak
Frequency range \(25-20,000 \mathrm{c} / \mathrm{s}\). Bass resonance \(26 / 32 \mathrm{c} / \mathrm{s}\). Price 350/- (no tax)


WHARFEDALE WIRELESS WORKS LTD. IDLE • BRADFORD - YORKSHIRE Tel: Idre 1235/6 Grams: "Wharfdel" Bradford

\section*{YOUR TAPES ON \\  \\ PHILIPS PRO 50 RECORDER}

These are some of the features that make this new series of recorders particularly suitable for editing-although they are of course completely versatile:
1. Models for \(7 \frac{1}{1} / 5\) i.p.s. or \(15 / 30\) i.p.s.
2. One or two tracks on \(\ddagger\) in. tape, 3 or 4 tracks on in tape
3. CCIR or NARBT tape feed and equalisation
4. Ferrite heads for long \(1 i f e\), maintained quallty, precise alignment of multiple gaps, and easy main tenance.
5. Electronic tape tension control.
6. Press-button operation.
7. Finger gaps in headblock for ease of tape handling.
8. Tape lifted during rewind from all heads or in contact with play-back head only if required.
9. Push-button cutting or marking of tape on replay head.
10. Photo-electric tape stop, operating at end of tape or on transparent insert,


The PRO 50 is one of a new range of Philips Tape Recorders which covers every requirement of high grade professional sound recording: the PRO 20 transportable the PRO 25 for highest quality studio recording; the PRO 50, particularly suitable for heavy duty operation: and the PRO 70 for multi-channel recording and for dubbing, post-synchronising and transfer.

\section*{PETO SCOTT ELECTRICAL INSTRUMENTS LIMITED SOUND \& VISION SYSTEMS}

\footnotetext{
Addlestone Road, Weybridge, Surrey Telephone Weybridge 4551i. Telex \(26231 \theta\) Philips Professional TV and Sound Systems.
}

\section*{HIGH QUALITY INSTRUWENT KNOBS}


This superb range of instrument control knobs is produced by SCIENTIFCA in the knowledge that they will meet an increasing demand for serviceable knobs of the very highest quality. Machined from solid aluminium, they are sensibly constructed with a knurled surface which always ensures a definite, posisive grip. They are light, elegant in design, and yet extremely durable. There is a choice of ateractive finishes of lasting quality, with pleasing colours, which cannot fail to enhance the appearance of any equipment in which they are used. For further desails write to:
"SCIENTIF\|CA"
148 ST DUNSTAN'S AVENUE, ACTON, W. 3

5WW-08s FOR FURTHER DETAILS.

\section*{THLEPRINTERS.PRRFORATORS REPR:RORATORSTAPEREADERS}


2 F.S.K. TERMINALS, POWER SAMAS, FLEXO WRITER AND BURROUGHS EQUIPMENT
telegrapy automation and computer accessories Picture Telegraph Equipment, Desk-Fax, Morse Equipment, Cold Cathode Marrics Stroboscope and Electronic Forks, Pen Recorders, Switchboards, Rectiners, Tape Pullers and Rewinders, Governed, synchronous and Phonic Morors, Suppressors, Teiepriniter and Teletype Tables, Silence Covers, Terminals V.F. and F.M. Equipment, Telephone Carriers
 and Repeaters, \(\begin{array}{ll}\text { Multiplex Trans- } \\ \text { mitters, } & \text { Triple }\end{array}\) mitters, Triple Units Send Re Unirs? Send Re ceive Fow and kigh Pass Filters, Teleprinter and Relay resters, OscilloTesters, Electric Meters, Teleprinter and Teledeltos Paper, Plugs, Sockets, Key, Push Miniature and other Switches, Cord Wires and Cables, Relays and Relay Bases, Uniselectors, Telephone, Decimal and other Counters, Telegraph and Mains Transformers Racks and Consoles, Miscellaneous Accessories

BATEY \& CONPANY
Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Trink 3476 ( 3 Lines) Gables: RAHNO TRIMG




\section*{Tw NEW manerromet W2-DOVEDALE}


The \(12^{\prime \prime}\) bass unit with NEOPRENE SURROUND gives remarkably clean bass and will handle a \(30 \mathrm{c} / \mathrm{s}\). note with 10 watts input. The cabinet is modern and attractive in appearance, styled by Design Consultant Robert Gutmann, f.S.I.A.
Open baffle resonance of \(12^{\prime \prime}\) unit; \(15 / 18 \mathrm{c} / \mathrm{s}\). Freq. range; \(25-17,000 \mathrm{c} / \mathrm{s}\). Impedance; \(12 / 15\) ohms. Power handling cap. ; 15 watts rms. 30 watts peak. Size; \(24^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}\). Weight: 37 lb .
Finish; walnut, mahogany, teak or zebrano veneer. PRICE £31.10.0.
For illustrated leaflet write to Dept. W


WHARFEDALE WIRELESS WORKS LTD. IDLE - BRADFORD - YORKSHIRE Tel: Idie 1235/6 Grams: "Wharidel" Bradford

\title{
FIVE ACES!
}

Brochure WS pos: free an request.

\section*{LIGHT SOLDERING DEVELOPMENTS LTD., \\ 28, Sydenham Road, Croydon, Surrey. \\ Telephone: CROydon 8589}

\section*{TECHNICAL TRAINING by \\ ICsIN RADIO, TELEVISION AND ELECTRONIC ENGINEERING}

First-class opportunities in Radio and Electronics await che ICS trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambicious man the opportunity so acquire, quickly and easily. che specialized-training so essencial to success. Diploma courses in Radio/TV Engineering and Servicing. Electronics. Computers, ece. Expert coaching for:
- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
- C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. \& G. SUPPLEMENTARY STUDIES.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF.BUILD RADIO COURSES.
Build your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition.
POST THIS COUPON TODAY and find out how ICS can help YOU In your career. Full details of ICS courses in Radio. Television and Electronics will be sene to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES
\begin{tabular}{|c|c|}
\hline MTIENATONAL & Internatlonal Correspondence Schools (Dept. 222). Intercext House, Parkgate Road, London, S.W.lI. \\
\hline CORRSPONDSNCE & NAME ....... \\
\hline SCHOOLS & \begin{tabular}{l}
ADDRESS \\
Block Capitals Please
\end{tabular} \\
\hline A WHOLE WORL OF KNOWLEDG AWAITS YOU & 5.65 \\
\hline
\end{tabular}

5WW-089 FOR FURTHER DETAILS.

\section*{SWW-088 FOR FURTHER DETAILS.}

\section*{a Whole World || \(\begin{aligned} & \text { of users } \\ & \text { can'tbe } \\ & \text { wrong: }\end{aligned}\)}


This is a hand that can't be beaten. Five models from our tremendous range of soldering instruments. Superb performance. Amazingly compact. Developed to simplify YOUR soldering. Copper bits for greatest speed.
Permatip bits for long life. May we deal you in ?

\section*{SWITCH TO} Aadvance

\section*{and forget fluctuating voltage}



\section*{CONSTANT VOLTAGE TRANSFORMERS}

There are VOLSTAT Constant Voltage Transformers from 15 W to 10 kW rating (and others to special design) to keep your equipment operating in the factory or in the field no matter how the voltage supply is fluctuating. Stabilisation to \(\pm 1 \%\) is continuous and automatic from no load to full load, for supply variations of \(\pm 15 \%\). VOLSTATS are used throughout the world in a variety of equipments such as:
Measuring Instruments, Hospital Equipment, Control and Computing Installations, Photographic and Photometric Devices.
VOLSTAT types CVN and CVS have all the advantages of the CVT range with, in addition, reduced harmonic distortion limited to less than \(5 \%\). If fluctuating voltage affects your production or your products a VOLSTAT is the answer. For further technical details please write to

\section*{ADVANCE ELECTRONICS LIMITED}

ROEBUCK ROAD, HAINAULT, ILFORD, ESSEX. TELEPHONE: HAINAULT 4444

\section*{minitest PROVING ITSELF EvERYWHERE}

Small instrument .. fits in the pocket . lip-top performance. It's the Saliord Minitest. a highly sensitive fest meter for the measurement of A.C. and D.C. volts, current and resistance. Wherever there's a measuring job to do - you can rely on the' Minitest. The clarity of the scale is exceptional and the knlfe edge pointer ensures accurate reading. Housed in a tough Melamine cover, the movement is built into a pressed steel case which effectively screens it from external magnetic fields.

... in the lab

. IN THE TROUBLE SHOOTER'S HANDS
\begin{tabular}{|c|c|c|c|}
\hline MINITEST & D.C. Amps & D.C. Volts & A.C. Volts \\
\hline & 0.1 Amp. & 0-1,050 & 0. 1,000 \\
\hline Ohms & 0.100 mA . & 0. 250 & 0. 250 \\
\hline O- 2,000 & 0. 10 mA . & \(\begin{array}{rr}0 . & 100 \\ 0 . & 25\end{array}\) & \[
\begin{array}{ll}
0 . & 100 \\
0 . & 25
\end{array}
\] \\
\hline 0 - 200.000 & 0.1 mA . & 0. 10 & 0 . 10 \\
\hline 0.20 Megohms & 0.50 uA . & 0. 2.5 & 0. 2.5 \\
\hline
\end{tabular}

TRADE PRICE ONLY ع7-17-6 (with leather case [8-12-6)

All ranges are selected by a single twelve-position rotary switch: \(A\) sepolate slide swirch is provided to change over from A.C. to D.C. panges. IMMEDIATE DELIVERY.

At your finger-tips with the Minitest:-
* D.C. sensitivity 20,000 ohms per volt
* A.C. sensitivity 2,000 ohms per volt
* D.C. accuracy \(\pm \mathbf{2 4} \%\) F.S.D.
* A.C. accuracy \(\pm 2 \frac{3}{8} \%\) F.S.D.
* A.C. accuracy maintained up to \(20 \mathrm{kc} / \mathrm{s}\)
* Additional decibel scale

* Weight 18 ors. * 20 ranges.

SPECIALIST SWITCHES LTD the fastest switch service in the world

\section*{ROTARY AND LEVER TO SPECIFICATION}

New customers are generally very surprised when we tell them their order will be despatched today or tomorrowlatest. They are even more surprised when they receive the switches on time. They eventually get used to all their following orders also turning up within 24 hoursand they keep coming back.
Where's the catch?
There is no catch. Therc are one or two limitations of course-all switches have 2 in . long spindles, with no locating lugs, but this is a small price to pay for the fastest service in the world.

The Secret
Wc only make small quantities of switches to specification -We do nothing else. We are small and flexible-We need the minimum of internal paperwork-We are SPECIALIST. SWITCHES.

Quantities: 1 ia a dozen or so- 24 hours. Around, say, 250-7 to 10 days. If you zoant more-come to us for your earliest requirements and goto the 'big three' for the rest.

Ask for details and prices:
SPECIALIST SWITCHES LIMITED 23 RADNOR MEWS, W.2. Paddington 8866-7 5WW-094 FOR FURTHER DETAILS.

\section*{ORCHARD \& IND LIMITED} LOOSE LEAF BINDER DIVISION

Prestige Covers for all purposes, including:

\section*{Lightweight binders for-}

Brochures
Specifications
Estimates
Bulletins
Catalogues
Many new types and styles of fittings
Heavy Duty Binders for Workshop Manuals, Parts Catalogues, etc.

Write for new Catalogue
Enquiries to:

\section*{Head Office,}

\section*{Northgate, GLOUCESTER}

Telephone: (OGL2) 22111 (5 lines)

\section*{for the furst time!}

\title{
THE VACWELL "PR56" THERMAL COMPRESSION BONDER AND "PR44" DICE BONDER
}
have NEW 20 WAY Rotary Indexing Interchangeable Magazines and will be shown on our Stand No. 169 of the R.E.C.M.F. EXHIBITION - OLYMPIA TUESDAY 18th MAY to FRIDAY 2lst MAY These machines with their new magazines, now
enable Transistor production rates to be increased
up to 350 complete Headers per hour.

Suitable for both high volume production and laboratory scale outputs.


\section*{VACWIELL ENGNEERING COMPANY LIMITED}

SHERMAN ROAD, BROMLEY NORTH, KENT
Telephone RAVENSBOURNE 9933 Telegrams EMCO BROMLEY Telex 28566

\section*{}


\section*{why Sifam CLARITY instruments are specified, so often}

Instruments that are consistently accurate and easy to read are essential in modern industrial equipment. Sifam 'Clarity' instruments-made to B.S. 89 (1954) specificationsadequately meet these demands, having completely transparent fronts for maximum readability and providing a range which is outstanding in both visual presentation and. workmanship. Scales and pointers are supplied to B.S.3693, Part 1, 1964, or to customers' requirements.

Our Technical Representative will be pleased to call. Write for Data Sheets \(106 / \mathrm{C}\) and \(106 / \mathrm{Cl}\).

Sifam 'Clarity' instruments are part of a complete range of moving coil instruments.

See the Sifam range on Stand No. 461 R.E.C.M.F. Exhibition, Olympia, 18-21 May

\section*{}

I \(N S T R \cup M E N T S\) SIFAM ELECTRICAL INSTRUMENT CO. LTD.

Woodland Road, Torquay, Devon
Telephone : Torquay 63822/3/4/5


KIEL-GERMANY
British Agents
high fidelity centre
61, WEST STREET, DORKING. Telephone: 4229.
5WW-098 FOR FURTHER DETAILS.

* Approved for Joint Service use by Ministry of Defence.
For turther detalls phane wric lu:
CREATORS WITITED, SHEERW ATER, WOKING, SURREY. Telephone: Woking 6333

A PRODLCT OF ThE CRRATOR GROUY
5WW-099 FOR FURTHER DETAILS.


SOVIREL have great experience in the techniques of glassworking and devote a large part of their production facilities to the manufacture of components or assemblies for the electronic tube industry.

Examples are :
Image converter tubes
Image storage tubes
Memory tubes
Photomultipliers
TV camera tubes
Light amplifiers

SOVIREL recommend, from amorig their glasses in current production, the four types listed opposite. These are particularly suitable for the manufacture of cathode ray tubes and phototubes owing to their perfect sealing compatibility to each other and to the currently-used metals or alloys.
SOVIREL quality contrọl guarantees high dimensional precision and perfect optical quality.

\section*{GLASSES FOR FACEPLATES}

S 801-40 and S 801-51 (7056)
Optically perfect - stable
Supplied rough or with polished surfaces.

\section*{GLASSES FOR ENVELOPES, FEET, PUMPING TUBULATIONS AND FDR HIGH TENSION INSULATION}

S 740-01 seals to tungsten S 747-01 seals to molybdenum and to suitable \(\mathrm{Fe} / \mathrm{Ni} / \mathrm{Co}\) alloys.

\section*{New 5" double beam portable oscilloscope for less than £100}


A new 5 " flat-faced PDA tube gives a double beam trace of maximum clarity and visibility, on a compact portable instrument versatile and accurate enough for laboratory applications, yet simple and robust enough for general, industrial and teaching purposes. Advanced features include transistor stage high sensitivity amplifiers on both channels; \(6 \mathrm{Mc} / \mathrm{s}\) bandwidth, new faster starting time base of improved linearity, and printed circuit construction to ensure dependable performance under most arduous working conditions. Note the simplicity of controls characteristic of all Serviscopes.
\(£ 99\) A descriptive leaflet will be sent on request.


See us at the R.E.C.M.F. on Stand No. 231

\section*{D52 \\ SERVISCOPE*}

Max. sensitivity \(10 \mathrm{mV} / \mathrm{cm}\) Calibrated input attenuator\(10 \mathrm{mV} / \mathrm{cm}\) to \(5^{\circ} \mathrm{V} / \mathrm{cm}\)
18 preset sweep speeds plus variable control
Automatic sync. Trigger with level control.
Squarewave voltage calibration source
DC coupled flyback blanking Folding tilting feet fitted
* Serviscope is a registered trade mark of

Telequipment Limited, 313 Chase Road, Southgate, London, N. 14
Fox Lane 1166

Iliffe Electrical Publications Ltd., Dorset House, Stamford Street, London, S.E. 1

Managing Director:
W. E. MILLER, M.A., M.I.E.R.E.

\section*{Editor:}
F.L. DEVEREUX, B.sc.

Assistont Editors:
H. W, BARNARD
T. E. IVALL

Editorial:
D. C. ROLFE
G. B. SHORTER, B.Sc.

Drawing Office:
H.J. COOKE

Production:
D. R. BRAY

Advertisements:
G. BENTON-ROWELL
(Manager)
J. R. EYTON-JONES

Please Address to Editor, Advertisement Manager or Publisher as appropriate
(C) Iliffe Electrical Publications Ltd., 1965. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Wireless World
ELECTRONICS, TELEVISION, RADIO, AUDIO

\section*{M AY 1965}

209 Editorial Comment
210 A Single-Carrier Colour Television System
By E. J. Gargini
213 Duality
By " Cathode Ray"
217 Books Received
218 I.F. Sweep Generator
By M. W. Rignall
220 Cathode Emitter and Decoupling
By J. F. Young
223 Manufacturers' Products
229 World of Wireless
231 Personalities
233 News from Industry
23550 Years of Public Address
237 Physics Exhibitlon in the North
243 Paris Components Show
245 Colloquium on Memory Technlques
246 Letters to the Editor
249 Satellite Communications Service Begins
251 Electronic Laboratory Instrument Practice-5
By T. D. Towers

257 May Meetings
258 Logic Circuits
258 H.F. Predictions-May

VOLUME 71,No. 5
PRICE: 3s. Od

\section*{FIFTY-FIFTH YEAR OF PUBLICATION}

\footnotetext{
PUBLISHED MONTHLY (4th Monday of preceding month). Telephone: Waterloo 3333 ( 70 lines): Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home \(£ 2 \mathrm{ss} \mathrm{Od}\). Overseos: 2215 g Od. Canado and U.S.A. \(\$ 8.00\). Second-class mail privlleges authorised at New York N.Y. BRANCH OFFICES: BIRMINGHAM: King Edward House, New Street, 2. Telephone: Midland 7191. BRISTOL: 11, Marsh Street, 1. Telephone: Bristol \(21491 / 2\). COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265.6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412 . NEW YORK OFFICE U.S.A.: 111, Broadway, 6. Telephone: Digby 9.1197.
}



\section*{CAPACITORS} new Ippes new tedhiniues new developments

\section*{INtercontinental]Nestruments}

\section*{ALL SOLID STATE}

\section*{pulse gerearitos and spaditum onalyzars}


\section*{PG-2 Pulse Generator}
repetition rate 1 cps to 16 mc single or double pulse positive or negative pulse - one-shot pushbutton \(\boldsymbol{\square}\) adjustable reference, delay, width \(\square\) variable linear rise and fall time dc coupled output adjustable trigger sensitivity, threshold and slope ■ rack mountable - \(31 / 2^{\prime \prime}\) panel height

\section*{TPG-2 Double Pulse \& Square Wave Generator} repetition rate. 1 cps to 16 mc single, double, or delayed pulsa and square wave edual outputs: positive pulse and negative pulse - mixed positive and negative pulses \(=\) adjustable delay, width and base line dc coupled output \(=\) up to 400 ma into load \(=\) unlimited duty factor \(\begin{aligned} & \text { a external }\end{aligned}\) bias to 200 ma - meter readout of frequency, amplitude, width and delay

Other Models:
TPG-3 20 mc Repetition Rate TPG-10 Delayed Single Pulse


\section*{PG-1 Square Wave and Pulse Generator}
small size, light weight = frequency 1 cps to 10 mic - pulse, square wave and trigger modes 20 v positive or negative pulse \(\quad\) rise and fall time less than 10 nanoseconds \(\quad\) de coupled output \(=\) external bias to 100 ma

Other Models:
SG-1 Square Wave Generator


PU-2 Externally-Triggered Delay \& Double Pulser
Optional Single- and Multiple-Unit Rack Adapters Available.

HSA-1 Subsonic Spectrum \& Wave Analyzer
frequency range 1 to 4000 cps - resolving power 1 cps ; 5 cps at 55 db amplitude difference . linear and log amplitude scales wave and automatic sweep operation - odometer frequency indication with \(1 \%\) accuracy - linear sweep voltage output a remote sweep control a sinusoidal analysis frequency output \(\quad\) readout on standard plotter or recorder


HSA-2 Audio Spectrum and Wave Analyzer
frequency range 20 to \(30,000 \mathrm{cps}\) wave and automatic sweep opera \({ }^{\text {a }}\) tion a odometer frequency indication \(\square\) selective filters: 10 and 200 cps - linear and \(60 \mathrm{db} \log\) amplitude readout \(=\) sinusoidal analysis frequency output \(=\) automatic frequency tracking - linear electronic sweep output \(\quad\) crys-tal-controlled markers \(\quad\) readout on standard plotters, recorders or oscilloscopes


RSA-1 Random Signal Analyzer
power spectral density, probability density and cumulative probability distribution modes \(\boldsymbol{\square}\). linear and logarithmic output: instantaneous voltage, voltage squared, integrated voltage, or integrated voltage squared arequency range (with appropriate Intercontinental Spectrum Analyzer) to 30 kc - synchronized for continuous tape loops amplitude and frequency readout on stạndard XY plotter or scope


Optional Rack Adapters and Companion Recorders Available.

CLAUDE LYONS LIMITED • INSTRUMENTS DIVISION
76 Old Hall Street, Liverpool 3
MARitime 1761
Southern Offices; Valley Works, Hoddesdon, Herts. (Hoddesdon 4541) 5WW-104 FOR FURTHER DETAILS.


\section*{PRECISION OSCILLATORS}


As designers and as users of oscillators, Marconi set an exceptionally high standard in accurate frequency control. Years of experience give Marconi authority in The production of crystals, crystals with ovens, and complete oscillators.
The new Marconi range of packaged, transistorized, highly stable, pre-tested, quartz crystal oscillators, using conservatively rated silicon transistors, is available within the frequency range \(1 \mathrm{kc} / \mathrm{s}\) to \(75 \mathrm{Mc} / \mathrm{s}\).


Marconi specialized components are designed and manufactured only when the precision and high performance required is otherwise unobtainable. The Specialized Components catalogue lists the full range.

\section*{Marconi specialized components}
 CONNECTOR

\section*{New versatility}

Cannon has developed a mains version of the already well established range of high quality audio XLR connectors with latch/lock coupling. This will permit the standardisation by equipment manufacturers and users, of a common type of connector which covers both audio and malns input applications. The XLR-Mains is sultable for cable rated at 2 amps and fully meets the Safety Requirements of BS415. The XLR mains was designed at the specific request of the BBC.
(APPROX. FULL SIZE)


(APPROX. FULL SIZE)


The XLR-Mains insulator has been carefully designed to ensure that not only are the creepage requirements of BS415 fully met for mains voltages but that the safety requirements of the same Specification limiting access to live parts are complied with by both halves of the connector in the unmated condition. This has been achleved by having fully shrouded line and neutral socket contacts in the receptacle Insert and deeply recessed and shrouded corresponding pins in the plug. The earthing connection is made by a pin contact in the receptacle and by a socket contact in the plug; both the earth contacts are connected directly to the outer shell. By having both pin and socket contacts in each half of the connector and by the shrouding given to the line and neutral contacts, mismating of the mains version with any of the audio versions is prevented. In addition, to provide Immediate visual discrimination between the XLR Mains and the XLR Audio series, in both the unmated and mated condition, the insert -mouldings and cable bushing of the malns connector are coloured red.
An insulating shroud is available for the XLR-LNE-32 fixed receptacle. This permits electrical isolation of the metal receptacle body from the panel when the prevention of earth loops is desirable. The XLR-LNE connector is fitted with the latch/lock type coupling which is standard on the XLR range.
For any connector requirement consult the world's most foremost name in this highly specialised field.

\section*{CANNON ELECTRIC (GREAT BRITAIN) LTD.}

25-27 Bickerton Road, Upper Holloway, London N.19. Tel: ARChway 3088 PLANTS IN: LONDON • BORNEM, BELGIUM - PARIS - TOKYO - MELBOURNE - TORONTO LOS ANGELES, SANTA ANA \& ANAHEIM, CALIF. • PHOENIX. ARIZ. • SALEM, MASS.

Sales offices and representalives in principal cities of the world

\section*{BRIMAS high DOUBIE TRIODE Pariciculary suitioble for Tape Recoriders ond Instrumentation}

\section*{HIIN GANI \\ Amplifiadion fuctor ulbo}

LOW HOSE Giid Hum level 3uv


Please ask for Dala sheels
Thorn-AEI Radio Valves \& Tubes Ltd.
head office: 155 ChaRING Cross road . Lonoon, w.c. 2 Telephonese Gerrard 997
BRIMAR EXPORT DIVISION: THORN HOUSE - UPPER ST. MARTIN'S LANE LONDON. W.C. 2

Marconi Self-Tuning H.F System -the first in the world to be station planned from input to output


\section*{MST \(7 \frac{1}{2}\) kW transmitter H1100 series}

An h.f linear amplifier transmitter for high-grade telecommunications.
Frequency range: H 1100 and \(\mathrm{H} 1101,4-27.5 \mathrm{Mc} / \mathrm{s}\)
Output power: \(7-8 \mathrm{~kW}\) p.e.p, \(5-6 \mathrm{~kW}\) c.w.
The H1100 series meets all CCIR Recommendations.

\section*{saves \(85 \%\) floor space}

Transmitters can be mounted side by side and back to back or against a wall; built-in cooling fan; no external air-ducts. These features lead to smaller, simpler, cheaper buildings or more services in existing buildings.

\section*{simplicity}
R.F circuits have only three tuning controls and two range switches. Final valve can be replaced in 30 seconds. Miniature circuit breakers (used instead of fuses throughout) can be reset instantly. All subassemblies are easily tested because they are electrically complete units.

\section*{breakthrough}
\[
\mathrm{H} 1102 \text { and } \mathrm{H} 1103,2-27.5 \mathrm{Mc} / \mathrm{s}
\]

\section*{rugged reliability}

Stainless steel shafts in ball-bearings in rigid machined castings; stainless steel spur gears meshing with silicon bronze; heavy r.f coil contacts with high contact pressure-some examples of design features giving long term endurance and operatlonal reliability. Specified performance achieved with ample margins.

\section*{self-tuning}

Types H1101 and H1103, used with MST drive equipment, give one-man control of an entire transmitting station and continuous automatic aerial loading.

MANUAL TUNING
Manually tuned versions, types H1100 and H1102, are available which, when fitted with built-in drive units, become entirely self-contained transmitters for four spot frequencies and all types of modulation.
Manual tuning takes less than 60 seconds.


\section*{Marconi telecommunications systems}

\section*{Test 100 circuits...}

\section*{in less than 1 minute}


This automatic circuit tester provides a rapid means of testing large numbers of electronic components in circuits and the associated wirling. The tester automatically switches from one circuit to another, checking the resistance of each against a 'master' unit.

Any circuit with a resistance outside the tolerances set on the front panel stops the testing sequence and shows a warning light.


By using the tester in conjunction with an Ohmmeter, such as the Airmec Type 861, 'fault' readings from the tester can be accurately measured as and when they occur.

\section*{Airmec Automatic Circuit Tester Type 859}


\section*{Airnec for peak performance consistently}

LABORATORY INSTRUMENTS DIVISION-
High Speed Counters, Signal Generators, Oscilloscopes, Wave Analysers, Phase Meters, Ohmmeters, Valve Voltmeters, etc.
AIRMEC LIMITED. HIGH WYCOMBE BUCKS ENGLAND
TELEPHONE: HIGH WYCOMBE 21201 (10 LINES)


\section*{-_Vortexion quality equipment}

\section*{TYPE C.B.L. TAPE RECORDER}


Here is a versatile stereophonic recorder which has no equal in its price group.
IT CAN record monaurally or stereophonlcally with its own mixed inputs from Gram, Radlo or other sources and from high grade low impedance balanced line microphones. With good microphones, etc. the result is a suitable master for disc manufacturers. "Before and After " monitoring is provided together with adjustable metered blas for perfection.
IT CAN also make a recording on one track and then transfer it to the other track while measuring and listening to it and adding one or two more signals also metered.
IT CAN repeat the process and transfer this combined signal to the first track with one or two more signals. Composers use it for this purpose. One track may have music or commentary and the other cueing signals or commentary and either may be altered without the other.
IT CAN playback stereophonically or monaurally with its own amplifiers of \(3 \frac{1}{2}\) watts each.
Price £160 Os. Od.
The Vortexion W.V.B. is a high quality monaural machine with "Before and After " monitoring. The recording in puts are a high sensitivity socket for moving coil or ribbon microphone and a high impedance socket for radio, etc. either of which can be selected by a switch. Superimposing and echo work can be done and the playback has reserve galn for abnormal requirements. This model cannot be converted for stereo playback, but it is a thoroughly reliable machine for the engineer specialising on monaural work.

Price \(£ 110\) 3s. Od.
The Vortexion W.V.A. is a monaural machine which has a performance equal in sound quality to the other models. It possesses all the features of the W.V.B. except for "Before and After" monitoring, Dubbing and Echoes. The recording being made can be heard on the internal loudspeaker as in the W.V.B. and C.B.L. The controls are uncomplicated.

Price: \(\mathbf{E 9 3} \mathbf{1 3 s}\). Od.
All tape recorders have adjustable bias controls, low impedance mic. inputs for unlimited lengths of cable, highly accurate position indicators and meters to measure recording level and bias.
```

As demonstrated at:
International Audio Festival \& Fair, Hotel Russell, London, W.I. DEMONSTRATION ROOM 204

```

VORTEXIOH LIMITED, 257-263 The Broadway, Wimbledon, London, s.W. 19


Typical mains inpul unil incorporaling Minlature Circult Breaker, Minh ture Maint Plug and Sockef (L1436) and Minlature Unllor (14387)

\section*{overload protection supply switching, and supply indication}

In a panel space of \(2 \frac{1}{1}^{\prime \prime} \times \frac{3^{*}}{4}\) you can fit this small but robust Belling-Lee Miniature Circuit Breaker. And see what it can do for your designs!
A thermal (delayed) trip for small sustained overloads -and magnetic coil for operation in milli-seconds where heavy fault currents occur, whilst being unaffected by harmless surges.
Push-button reset that gives visual indication-when circuit is broken. Manual trip button that allows use as supply switch, too. Provision for special contacts for remote indicator lamp or other signalling.
Tripping time at \(I_{R} \times 1.4\) less than 30 minutes
\(I_{R} \times 2.0\) less than 60 seconds
\(I_{R} \times 10.0\) less than 50 milll-seconds
Rupturing capacity 750 Amp at 0.8 pf .
Tested for normal operation at \(-25^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\), altitudes to \(30,000 \mathrm{ft}\). Withstands accelerations of over 35 g without false operation.

For full information on Belling-Lee Miniature Circuit Breakers write for section E of the Belling-Lee Technical Catalogue, which deals with this and other efficient circuit protection devices.


See Belling-Lee components at the RECMF-stand 308

\title{
Get down to detail with BELLING-LEE
}

Belling \& Lee Limited • Great Cambridge Road • Enfield • Middlesex • Enfield 5393 Mose.Belling-Lee products are covered by patents or registered designs or applications.


\section*{the}
first

A MAJOR LOUDSPEAKER INVENTION THE "SANDWICH"" Price \(539: 18: 0 \mathrm{~d}\).

AUDIO AND RECORD REVIEW-.". . This design must be regarded as a breakthrough of fundamental and far-reaching importance."

\section*{A. SUCCESSOR TO THE FAMOUS "TROUGHLINE II": FM "TROUGHLINE 3 ". Price E31: 14:6d.}

HI-FI NEWS-" To sum up, the Leak Troughline II belongs to the very limited class of aristocrats in the tuner world."

\section*{ANOTHER MILESTONE IN AUDIO ENGINEERING "STEREO \(30^{\circ}\) TRANSISTORISED AMPLIFIER Price E 49 : 10 : Od.}

WIRELESS WORLD Editorial, May 1963-"Last autumn during his presidential address to the British Sound Recording Association, H. J. Leak demonstrated a prototype high-quality transistor amplifier which gave results indistinguishable from those of his valve amplifiers..."
"People sometimes ask why there is ony necessity to change to transistors. The eliminotion of the output transformer is, in our view, sufficient reason now that solutions of the problem of linearity in the response of the rest of the transistor circuit have been found. As additional bonuses we get smaller size, cooler running and the prospect of longer life.".

\section*{name}
in

\section*{High Fidelity}

\section*{since 1934}

If you are interested in \(\mathrm{Hi}-\mathrm{Fi}\) equipment combining faultess presentation with audio engineering to impeccable standards offering studio quality reproduction at reasonable cost.

WRITE NOW FOR FULLY ILLUSTRA-
TED AND DETAILED LITERATURE.
H. J. Leak \& CO., LTD., brunel road, estway factory estate, london, w.z. Telephone: SHEpherds Bush 1173 ( PB X ) Telegrams: Sinusoidal, Ealux' London


\title{
The most advanced 10 watt loudspeaker system (only \(1 / 3\) cubic ft )THE CELESTION ‘DITTON 10’
}

This full range, no compromise, loudspeaker system is designed for situations where space is limited and yet the highest standards of fidelity are demanded. The 'Ditton 10' employs a new, long travel, bass unit which, combined with the Acoustic Suspension Principle, gives a low frequency distortion content unique in this size of enclosure.

\section*{PRICE \(£ 18.18 .0\). Including tax}
(Available In Walnut or Teak finishes)

\section*{Celestion \\ Studio Series}

\section*{CELESTION LTD.}

Ferry Works, Thames Ditton, Surrey. Telephone: EMBerbrook 3402/6


\section*{OVER 17,000 ALREADY BUILT}


\section*{SMALLER THAN ANY SET IN THE WORLD}

\section*{Fascinating to build and use}
- MEASURES
\(\mathrm{I}^{\prime \prime} \times \mathrm{I}^{\prime \prime} \frac{3}{10} \times \frac{1}{2}^{n}\)WEIGHS LESS
THAN I OZ. INC. BATTERIESHAS AMAZING POWER, RANGE AND SELECTIVITYEASILY BUILT IN AN EVENING

No set in the history of radio has ever captured the public's enthuslasm as has the now-famous Sinclair Micro-6. Never was a set so small, never so efficient and powerful. Smaller than a matchbox, the Micro-6 brings instations from all over Europe for your pleasure and entertainment (unless you use it in the U.S.A. or Australla, for examiple). It performs with fantastic efficiency in cars, buses, trains as well as steel-framed buildings. yet everything to do with this set except the lightweight earpiece is contained in the minute white, gold and black case which is small enough to be held in a tea-spoon! The many attractive features of the Micro-6 include a highly stable 6 -stage circuit, powerful A.G.C., bandspread for easy Luxembourg reception, vernier-type tuning and three special M.A.T. Transistors. Tunes over the medium wave-band. The instructions make bullding easy.

\section*{SINCLAIR MICRO-6}


All parss including case and dial, and 8 -page instructions manual come so 59/6
Sinclair "Transrista" well-styled. strong black nylon wrist strap \(7 / 6\) (2 required) each \(1 / 111\) Pack of \(610 / 5\)
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{MEASURES
\(2^{\prime \prime} \times 2^{\prime \prime}\)} & SINCLAIR \\
\hline & TR750 \\
\hline \multirow{2}{*}{\(2^{\prime \prime} \times 2^{\text {n }}\)} & POWER \\
\hline & AMPLIFIER \\
\hline & \\
\hline & outstanding Sinclair Incorporaces its own conerol and \\
\hline  & (ethe Sinclair Micro-6. \\
\hline IDEAL WITH MICRO-6 & remextic radio. 750 \\
\hline All parss for buitd-
ind
with
imstruc- &  \\
\hline inn wiol ithersuc- & (in \\
\hline  & \begin{tabular}{l}
cord reproducer (paired \\
o) baby alarm, efc.
\end{tabular} \\
\hline
\end{tabular}

\section*{SINCLAIR MICRO-INJECTOR} INVALUABLE IN FAULT-FINDING This ingeniously
deslgned device generates a rest signal at any frequen-
cy from I Kels co 30 Cy from I Kels \({ }^{20} 30\) pected via the probe into any 'part of audlo or radio equipment to enable the user co vrace
faults rapidly and accurately. The and measures only \(1.8 x\) \(1.3 \times 0.5\) ins. with self-contained bas tery. Wieh
seructions.


Parts for building 2710
Ready built and \(32^{\prime 6}\)


SPECHAD DRIETR FDRM ON TME NEXT PAGE

COMBERTON, CAMBRIDGE Telephone: COMBERTON 682

\section*{SIINCLIAR}

£7•19•6

\section*{BUILD IT FOR ONLY}

\section*{AMPLIFIER AND PRE-AMP}

\section*{New principles-New power}

\section*{20 WATTS R.M.S OUTPUT!}
t No. of transistors-12
* Output into 7.5 ohms- 20 watts R.M.S. music
power
15 watts R.M.S. con-
cinuous
Output into 15 ohms- 10 watts R.M.S. continuous * Total harmonic distortion- \(0.1 \%\) at 10 watts R.M.S.
+ Frequency response-20-25,000 \(\mathrm{c} / \mathrm{s} \pm 1 \mathrm{~dB}\)
¿ Input sensitivity- 1 mV into 5 K ohms
※ Signal to noise ratio-better than 70dB * Power requirements- 36 V. d.c. at 700 mA \& Built-in low-pass filter in output stage

Here is proof positive of the power and quality that a Sinclair Pulse Width Modulated Amplifier can give you. The new X-20 which is complete with integrated pre-amplifier uses silicon epitaxial planars in the output stage, better than anything ever before offered in transistorised equipment for constructors. Many other refinements have been introduced into this latest Sinclair design, amongst which, for example, absolute constant amplitude is maintained in the output square wave form, irrespective of the modulation applied. Building this amplifier is exceptionally easy and the results to be obtained from it are completely rewarding. As with all quality hi-fi amplifiers, the \(\mathbf{X}-20\) has power and power to spare-much more in fact, than is ever required for normal domestic listening. It has superb quality too, all from a unit measuring only \(81^{\prime \prime} \times 34^{\prime \prime} \times \mathbf{I "}^{\prime \prime}\) dimensions which will inspire and enable constructors to build to entirely new concepts of design and layout.
Complete set of ports including 12 Tronsistors and X-20 instructions manuol
Ready built and tested
E7. 19. 6
69. 19.6

X-20 Low-ripple mains power pock for 200/240 V.o.c. operotion, sufficient for 2 \(\times\) - 20 's
£4. 19.6


\title{
WHAT YOU SHOULD KNOW ABOUT THIS BRILLIANTIWW SIMCLARTDESIGN
}
 Metamp

Illustration shows in block diagram form, the principal stages used in the Sinclair \(X\) - 20 Pulse Width Modulated Amplifier. It includes the latest in transistors and high quality components to achieve outstanding performance.

The Sinclair X-20 integrated Pulse Width Modulated Amplifier and Pre-amp marks a further important advance by Sinclair in the development of entirely new and original amplifier designs. Many months of research. and development have gone into its production and units have been subjected to impossibly severe working conditions with sensationally satisfactory results. The \(\mathrm{X}-20\) has even been, run flat out continuously for 12 hours at \(40 \%\) overload and at the end has still shown no signs of strain or distress.

\section*{CONSTANT AMPLITUDE IN ALL CONDITIONS}

Pulse Width Modulation requires a perfectly formed square wave to carry the audio signal and it must be of a frequency well above the highest level of the audio spectrum. In the Sinclair X-20, the peak-to-peak
 amplitude of the square wave is contant at all times, no matter to what extent it is modulated by the A.F. The result is that distortion figures are lower than ever over the entire range of audio frequencies and beyond.

\section*{PULSE REPITITION FREQUENCY}

In the interests of quality, the pulse repetition frequency in a P.W.M. amplifier must be as high as possible without extending into the region of radio frequencles. In the Sinclair X-20, the pulse repetition frequency is between 65 and \(75 \mathrm{Kc} / \mathrm{s}\), a value which is found to satisfy the most stringent demands likely to be made upon it in terms of uncompromising quality. This frequency is generated within the circuitry of the X-20 itself and the output has a rise-fall period of less than 0.2 micro-seconds. This is sufficient to ensure maximum efficlency in energy conversion to the loudspeaker with perfect reproduction of the audio signal itself.

\section*{OUTPUT STAGE-95\% EFFICIENT}

The rise and fall time of less than 0.2 micro-seconds is achieved by using silicon epitaxial planar output eransistors which makes the efficiency of the output stage at lease \(95 \%\). Thus only I wats is dissipated in each of the output transistors when the amplifier is giving an output of 20 wasts. The complete finearity of the insegraser and careful modulator design ensure absolutely negliglble distortion right up to the maximum output.

\section*{LOW-PASS FILTER}

A low-pass filter cutting off above \(20 \mathrm{Kc} / \mathrm{s}^{\text {b }}\) buit into the output of the \(X-20\) ensures that the output eransistors always "see" a high impedance at the P.R.F. making the amplifier widely tolerant of the type of load to which is is connected.

\section*{PRE-AMPLIFIER}

This consists of three transistors with two negative feed back loops which define the gain and ensure an absolutcly flas frequency response. The sensitivity is sufficient for all zypes of pick-ups. Provision is also made for connecting highoutput devices such as P.M. Tuners.

\section*{TONE CONTROL SYSTEMS}

The Manual included with the \(\times-20\) Amplifier details a variety of cone and volume control systems, any one of which may be added to the amplifier for very little outlay. Full information on stereo operation is also provided, of course.

\section*{POWER SUPPLY}

A special A.C. Mains operated power supply unit is available for the \(X-20\), dellvering 36 volss D.C. Full-wave rectification is used, and the unit is supplied ready buite in a completely enclosed steel case.

\section*{OTHER SPECIAL FEATURES}

Because of the high energy conversion factor of the \(X-20\), it requires no heat sink in the output stage. Connected to a 7.5 ohms loudspeaker, the power output is 20 watts R.M.S. music power. Using a 15 ohms loudspeaker, the output is 10 watts R.M.S. continuous power, a particularly useful arrangement for stereophonic, hi-fi repraduction.

RUSTRAK MINIATURE RECORDERS engineered for years of rugged service

All over the world you can see Rustrak recorders mounted on the cross-arms of telegraph poles, gathering dependable data day and night, winter and summer.
Because Rustrak recorders use presşure sensitive paper they maintain optimum accuracy in temperatures from sub-zero to \(160^{\circ}\).; from sea level to \(100,000 \mathrm{ft}\). and under conditions of high humidity.
In spite of low costs Rustrak recorders are precision instruments housed in rugged dle cast aluminium cases. Motor drive mechanism, g'alvanometer and writing system all give years of faithiul service under extremely tough conditions.
Dther important features include: NO INK. Smooth, high resolution traces
are produced without ink, heated stylus or voltage sensitive paper. 11 SPEEDS WITH ONE MOTOR. With any one drive motor 11 different chart speeds are available by means of rapidly interchangeable gearboxes. 99 CHART SPEEDS. From 16 " to \(450^{\prime \prime}\) per hour on all analogue (galvanometer) recorders.
LARGE CHART CAPACITY. At I" per hour a standard chart roll las!s a full month.
AC, DC DR BATIERY DRIVE. Chart drive powered by AC synchronous motors of any standard voltage, DC motors which consume only milliwatts of power, or by rechargeable batteries.
RANGES. Models available to record \(A C\) and \(D C\) current and voltage and temperature.


REROLL OR TEAR-OFF. The chart is re wound inside the unit or in the tearoff type it feeds out of the recorder and may be torn off as required. EXPERT ADVICE. Our representatives will be glad to advise yoũ on any application.
LOW COST. Prices from £53 - portable units or for panel mounting.


WEST instrument Limiled
A Division of
GULTON INDUSTRIES (BRITAIN) LID The Hyde - Brighton \(7 \cdot\) Sussex England Tel: Brighton 66271 - Telex: 87171

5WW-119 FOR FURTHER DETAILS.


\section*{but for those who use miniature transformers seriously ...}

The FERRANTI "SUBMIN" resin-cast range of transformers and chokes is becoming the automatic choice for designers of transistor circuits - not surprising when you consider the following features:
- Designed to meet all inter-service aircraft and G.W. specifications
- Superb mechanical finish
- Temperature range \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) - H7 Humidity classification (DEF. 5214) We think that our prices are reasonable and our deliveries are good. Moreover, our technical design service is second to none.

\section*{5 points to remember!}


19" Rack Panel mounted with attractive sturdy cover.

Two high sensitivity Mic. inputs and Gram. input.

All inputs independently faded and mixed.

Full power output at 100 V .

Less than \(2 \%\) distortion at 10 Watts. Max output-15 Watts.

\section*{SR415 audio amplifiep}

\section*{RESLOSOUND LIMITED}

24 UPPER BROOK STREET, LONDON, W.1. HYDE PARK 2291

\section*{From Europe's most modern capacitor plantSubminiature aluminium Foil capacitors in 42 standard ratings}



The most modern and efficient capacitors obtainable today.

For 8 years SPS International has been producing in the U.S.A. a range of miniature lightweight capacitors designed to cope with every extreme of temperature. Now the whole benefit of this experience has been brought to the new SPS factory at Shannon, treland, making the same high-quality capacitors available at short notice to any part of Britain. SPS capacitors guarantee complete reliability and long life thanks to the techniques of total encapsulation perfected over a tong period in the U.S.A.

Ideal for transistorized communications equipment, portable radios, hearing aids, electronic. instruments, audio cross-over networks, hi-fi tuners and amplifiers, recorders, test equipment: and other low voltage circults.

CAPACITANCE- \(20 \%+100 \%\) of rated cap. acity.

DISSIPATION FACTOR: Less than \(8 \%\) at 50 WVDC.
D.C. Leakage: Less than \(6 \mu \mathrm{~A}\) after 1 min . applied WVDC.

OPERATING TEMPERATURE: \(65^{\circ} \mathrm{C}\) at rated WVDC.

Available in 42 standard ratings, with intermediate values at no extra cost. For complete technicat information and assistance write or telephone SPS International Ltd., European manufacturing arm of a leading U.S. supplier of quality capacitors.


SPS INTERNATIONAL LINITED SHANNON AIRPORT, IRELAND. Tel.: Shannon 61155 sWW-122 FOR FURTHER DETAILS.

\section*{.2.2 Ms advanced}

\section*{\(\rightarrow\) of \\ 3 in gle e decade \\ - readout counters}

This single digit electromagnetic readout counter for flush panel mounting has many unique features:

\section*{Readout Signal}

Available for remote indication, for predetermining or to control electric recording machines.

\section*{Decade Advance}

For series operation either by through-switching of total current, or by control of relay or electronic switching of separate supply currents, amplified if necessary.

\section*{Resetting to zero}

Either automatically, or at will by mechanical or electrical control.
Predetermining function
To operate at any desired digit or, in the case of series assemblies, any one or more combinations of digits.
Programmed sequences
Of functions can be arranged without difficulty.

\section*{Operation}

Standard speed and voltage : 25 impulses \(/ \mathrm{sec} ; 24\) v.d.c. other voltages can be provided for.

\section*{Small dimensions}

Main body only \(4 \frac{t^{\prime \prime}}{}\) deep, \(1 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}\) high, \(\frac{1^{\prime \prime}}{}\) wide; plug-in connections.
Please ask us for full technical details.
> another outstanding counter from EUROPE'S MOST COMPREHENSVE RANGE

When you think of a numberthink of HENGSTLER!
5. HENGSTLER CO. Great Britain LTD. HIGHBRIDGE STREET . WALTHAM ABBEY . ESSEX Waltham Cross 2616617

\section*{©}

SHAPES OF SOUND


\section*{The Goldring-Lenco GL70}

The Goldring-Lenco GL 70 transcription unit with its integrally mounted transcription arm continues to be the first choice of discriminating record lovers with custom-built equipment. Now, for those favouring the trend towards shelf/table mounted \(\mathrm{Hi}-\mathrm{Fi}\) units, The GL70 is also available plinth-mounted or with shallow cabinet and clear Perspex cover.
GL 70 TRANSCRIPTION UNIT. The elegant appearance of the unit is matched by its superb performance. Swiss precision engineered throughout, its silent motor drives a die-cast and machined 8 lb non-magnetic turntable through the unique conical mandrel-knife edge idier system that permits continuously variable speed adjustment from above 80 rpm to below 30 rpm and from 15 to 18 rpm . There are adjustable click-in positions of the speed control lever for the four standard speeds. The integrally mounted transcription arm (which is much in demand for use with many other motor units) has a plug-in head shell taking all standard fitting cartridges, is fully adjustable for precisely maintained stylus pressures, and is wired for both mono and stereo operation. The mains 'on/off' switch is coupled to an idler disengagement mechanism and to pick-up lowering device which facilitates groove selection and affords protection against accidental stylus-record contact.
GL 70 TRANSCRIPTION UNIT: \(£ 25.15 .0 \div £ 4.3 .8\) P.T.
GL 70/P unit on fabric-covered plinth: \(£ 28.15 .0+£ 4.13 .5\) P.T.
C70 CABINET AND COVER FOR GL70 Elegant sapele mahogany cabinet with removable, clear Perspex dust 'cover. Cut for spring or rigid mounting of unit. Size: \(14^{\prime \prime} \times 17^{\prime \prime} \times 7^{\prime \prime}\). £8.19.6 + £1.12.0 P.T.
* Recommended cartridges for GL7O are Pickering 380A Goldring CS 90 and Goldring 600.

7
GOLDRING MANUFACTURING CO (GB) LTD / 486-488 HIGH ROAD LEYTONSTONE / LONDON E11 TELEPHONE: LEYTONSTONE 8343 SWW-124 FOR FURTHER DETALLS.


\section*{* PICKERING 380A}

Moving-magnet cartridge for exceptional mono or stereo reproduction. Features the exclusive V -guard pushin diamond stylus unit which prevents damage through accidental dropping of arm on record. The Pickering 380 A ensures high channel separation and virtually eliminates needle talk, hiss oi distortion. Hermetically sealed, it tracks at 2 grams, faultlessly reproduces the most exacting records.〔12.12.0 + £2.0.11 P.T.


\section*{* GOLDRING CS 90}

A stereo ceramic cartridge with excellent fréquency response and crosstalk separation. Can be played at light tracking weights and gives an output of 50 mv . Fitted with replaceable 0.0005" tip diamond stylus. £ \(4.4 .0 \div 13.8\) P.T.


\section*{* GOLDRING 600}

Turn-over type variable reluctance mono cartridge. Fitted witt diamond stylus for LP and sapphire for standard play. Exceptionatly flat frequency response. A mu-metal shield eliminates the hum problems sometimes encountered when using magnetic cartridges. £8.8.0† £1.7.4 P.T.


Installetlon by G.E.C. Illustratlon: Coventry Cathedral, Easl side. Archltect: Sir Basil Spence,


649B, the smallest dynamic lavalier microphone, was sent to Coventry Cathedral (and also to BBC and ITV studtos) because of its incomparably smooth and full-bodied response; its ability to mix outputs with any standard microphone; its lack of bulk and weight; and because of its history of trouble-free operation in the USA.
This tiny handful answers studio requests for a truly miniaturised, omni-directional microphone. Its performance, whether stand mounted, or as a neck-mike, is remarkable.
Send for literature, and see for yourself.
Length: \(2 \frac{1}{2}^{\circ}\) Weight: 31 gm . Output: -61 dB PRICE: 124

Made in the U.S.A. by Electro-Voice

\section*{Electroyoice}

Write to: KEF Electronics Ltd , Tovi, Maidstone, Kent Tel: Maidstone 55761 Grams KEF Maidstone

\section*{The Television Camera with 101 applications}

MANUFACTUREL TO A HIGH SPECIFICATION AT A REASONABLE PRICE


This camera can be supplied with an electronic automatic light level control which was designed and perfected in the Fringevision laboratomies and this item can be suppiied as an extra

KETAIL PRICE
£91.0.0

\section*{Send for full information}

(Electronics Division) swW-126 FOR FURTHER DETAILS.

\section*{HEWH Fabridue trankfoumers}

\section*{for use with the MULLARD 10 + 10 STEREO AMPLIFIER \\ using ECL. 86 Valves}

The range of Partridge Transformers for the High Fidelity enthusiast has recently been extended by two new types, for use with the Mullard \(10+10\) Stereo; Output Transformer TG. 1073 (price 62/6) and Mains Transformer TG 1074 (price 70/-).

> FROM STOCK AND PARTRIDGE SUPPLIERS


\section*{PARTRIDGE TRANSFORMERS LTD.}
roebuck road, chessington, surrey. Telephone: Lower Hook 4353/4/5

\section*{Bulleros ceramics}
for the ELECTRONIC INOUSTRY (and Electrical Appliance Manufacture)


Frequelex-for high-frequency insulation.


Refractories for high-temperafure insulation.


Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products. Write today for detailed particulars.

\section*{BULLERS LIMITED}

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 ( 5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trene Loadon Officé: 6 Laurence Pountney Hill, E.C. 4

Phone: MANsion House 9971


These carefully engineered printed circuit edge connectors feature diallyl phthalate moulding for maximum insulation and special bifurca- ted contacts for low insertion forces, minimum wear, and positive contact at all times. Contact edges are chamfered to obviate scoring of pads and sharp radii are avoided to eliminate fatigue fractures. Available in all standard sizes from 4 to 40 ways, with gold, silver, or nickel plated contacts, and solder slot, printed circuit, or wire wrap tails. For \(\frac{1}{16}{ }^{\prime \prime}\) boards with \(0.150^{\prime \prime}\) contact pitch.

\section*{CARR FAETENKER CO LTO}

\section*{the firm with the best connections}

Stapleford, Nottingham. Telephone: Sandiacre 2661 CLuch Sales Offices: Wembley. Sale. SWW-129 FOR FURTHER DETAILS.

\section*{STUDENTS STROBOSCOPE}

\author{
TYPE 1214 A
}

\author{
ESPECIALLY DESIGNED FOR THE UNIVERSITY OR SCHOOL LABORATORY
}

The Dawe Stroboscope Type 1214A was initially developed for the stroboscopic photography section of the Scottish Education Department's new syllabus, and is now generally available to all educational establishments. This lightweight, portable, low cost instrument provides a stationary or slow motion image of reciprocating and rotating objects, enabling cyclic speed to be accurately measured, and distortion, vibration and resonance to be detected and studied under operational conditions. Particular applications include the study of momentum, vectors in projectile motion and free fall characteristics.
* Measures directly speeds from 300 to 6,000 r.p.m.
* Indirect speed measurement up to 60,000 r.p.m.
* High intensity white light.
* No contact with a moving part required.
\& Simple to operate, mains powered.
* Fully portable and light in weight (approximately 6 lb .).

\section*{Brief Specification}

Range: Two overlapping, 300 to 1,500 , and 1,200 to 6,000 flashes per minute.
Accuracy: \(\pm 5 \%\) of scale reading.
Flash Duration: 5 to \(10 \mu \mathrm{~S}\).
Mean Illumination: 80 lux at I metre approx. Power Supply: 200 to 250 v . 50 cycles A.C. mains.
Power Consumption: 24w.
Enclosure: Metal case fitted with carrying handle. Finished blue \& grey.
Dimensions: \(7 \frac{1}{4} \times 6 \frac{3}{4} \times 8 \frac{3}{4}\) in. approx.

Full technical data from:
DAWE INSTRUMENTS LTD.,
Western Avenue, Acton, London, W.3. Tel. ACOrn 6751
A member of the Simms group of companies

sWW-130 FOR FURTHER DETAILS.


SWW-131 FOR FURTHER DETAILS.

\section*{TRANSFORMERS COILS CHOKES \\ LARGE OR SMALL QUANTITIES TRADE ENQUIRIES WELCOMED SPECIALISTS IN}

FINE WIRE WINDINGS
MINATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS; ETC.
VACUUM MPREGNATION TO APPROVED STANDARDS
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E.' C.E.B., B.B.C...ETC. 123-5-7 PARCHMORE ROAD, THORNTON HEATH, SURREY LIVINGSTONE 2261

SWW-132 FOR FURTHER DETAILS.


SIGNAL GENERATOR
MODEL 27

\section*{NOMBREX}

\section*{TRANSISTORISED}

INSTRUMENTATION
\(\star\) Signal Generator 27
... \(\mathbf{6 . 1 5 . 9}\)
\(\star\) Power Supply Unit 61
... \(\mathbf{6 6 . 1 3 . 6}\)
\(\star\) C.R. Bridge 62
* Audio Generator 63
* Inductance Bridge 66
.f. \(\mathbf{E 8 . 1 0 . 9}\)
... f17. 0.9
..f f18. 5.9

All prices include batterr, post and packing. Prompt Delivery.

S.A.E. FOR TECHNICAL LEAFLETS

ESTUARY HOUSE, CAMPERDOWN TERRACE, EXMOUTH, DEVON. Phone: 3515


MINISTRY OF AVIATION APPROVED INSPECTION.

\section*{TRANSFORMERS}

STANDARD RANGE OR TO YOUR DESIGN TOROIDAL - 'C' CORE - PULSE - MATRIX

CHASSIS - CABINETS \& PRECISION METALWORK ELECTRONIC ASSEMBLY
HOWELLS RADIO LTD. MULBERRY STREET, MANCHESTER, 15 MOSS SIDE 2000-2434

5WW-135 FOR FURTHER DETAILS.

\section*{LEARN ELECTRONICS}

AS YOU

\section*{BUILD including: \\ 25 \\ CIRCUITS EXPERIMENTS TEST GEAR}
- minatature cathode ray oscilloscope
```

- VALVE EXPERIMENTS
BASIC AMPLIFIER
BASIC RECTIFIER
PHOTO ELECTRIC GIRCUIT
TOME DELAY cIRCUIT
GUENERATOR
SIMPLE TRANSMITTER

``` TRANSISTOR EXPERIMENTS BASIC OSCILLATOR ELECTRONIC SWITCH SIGNAL TRACER BASIC COMPUTER CIRCUIT BASIC COMPUTER CIRCUIT BASIC RADIO RECEIVER ETC., ETC.
Thls complete practical course will teach you all the basic facts of electronics by making experiments and building apparatus. You learn how to recognlse and handle all types of components-their symbols and how to read a circuit diagram. You see how circults are built and how they work BY USING THE OSCILLOSCOPEPROVIDED. Application of all the main electronic circuits are demonstrated-radic reception and transmission; photo-electrics; computer basics; timers; control circuits; etc., including servicing techniques. NO MATHS USED ORNEEDED. NO THEORY NEEDED. NO PREVIOUS KNOWLEDGE OR EXPERI ENCE NEEDED. Tutor servlee avallable. No extras needed -rools provided. Send, now, for FRIEE DETAILS without obligation, to address below.
To: RADIOSTRUCTOR, Dept. K1, Reading, Berks. Please send free details of your 25 circuit kit courseNAME

ADDRESS

\section*{fasten onto 'FASTEX'}

With unshakable confidence! The unlque range of 'FASTEX' plastic fasteners provide a POSITIVE answer to all assembly problems, where cost reduction and fixing simplicity is of prime importance: Consider the 'FASTEX' facts: - CORROSION RESISTANT - IMPRESSIVE INSULATION MINIMUM FIXING TIME E MAXIMUM UNSHAKABLE GRIP. If you appreciate the advantages of combining several operations into one, cutting assembly costs and producing a higher qualityproduct; contact one of our Sales Engineers, or write to our development department for free samples and further information, you'll be glad you did.

\(4 \wedge\)
\(\infty\)
T E X

\section*{t}

ITW LIMITED, Fastex Division, 647 Alax Avenue, Trading Estate, SLOUGH, Bucks. Tel: SLOUGH 27441.

Q MAX CHASSIS CUTTER


NEW ELECTROLYTICS FAMOUS MAKES.
\begin{tabular}{|c|c|c|c|c|}
\hline tubular & TUBULAR & & can & \\
\hline \(1 / 350 \mathrm{~F}\). \(2 /\). & \(100 \times 25\) & 2/- & 8/800 & \\
\hline 2350 \%. 2/3 & \(250 / 25\) V. & \(2 / 6\) & 18/300 \%. & 18 \\
\hline 4/350 \%. 8/3 & 500/12 V. & \(3{ }^{3}\) & \(16+16 / 500=\) & 6 \\
\hline \(8 / 350\) \%. \(2 / 3\) & 1.000/12 & 3/ & \(32+32350\) & \\
\hline 16/450 \%. 3/- & \(8+8 / 450\) - & 3/8 & \(32+32450\) - & \\
\hline 32450 - \(3 / 9\) & \(8+164.450\) - & 3/9 & \(50+50350\) - & \\
\hline 95/25 \%. 1/9 & \(16+16 / 450\) v. & \(4 / 3\) & \(64+120 / 350\) & 11/6 \\
\hline \(50 \times 50\) ק, 2/. & \(32+82350\) च* & 416 & \(100+200 / 2 \% 5\) & 12 \\
\hline
\end{tabular}

PAPER CONDENSERS, 0.001 mtd., \(7 \mathrm{kV}, 8 / 6 ; 20 \mathrm{kV}, 10 / 6\)
 \(0.251 / 6=0.1350\) v, \(9 \mathrm{~d} . \mathrm{F} 0,5 / 350 \mathrm{~N}, 1 / 9 ; 0.012 .000 \mathrm{~F}\). 2/6:

SILVER MIDA. Close tolerance (plus or minus 1 p . , ) 2.2 to \(4 \% \mathrm{p}\) U-: ditto 1 g 50 to 815 pl . \(1 /: 1.000\) to \(5,000 \mathrm{pF} ., 1 / 8\). TOIN GANG. " \(0-0\) " \(208 \mathrm{pF},+178 \mathrm{pF}\). 10/6: \(385 \mathrm{pF} .\). minie midket with trimmer, \(8 /-: 500 \mathrm{pF}\), slow motion, miandard \(9 /-\)
 SHORT WAVE. Single \(10 \mathrm{pF}_{\mathrm{on}} 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF} ., 100 \mathrm{pF}\). 160 pF. . S. 6 each. Can be ganced lowether. Couplers 9 d . each.
TONING. Solid dielectric. 200 p . \(300 \mathrm{pF}, 500 \mathrm{pF}, 3 / 6\) each. TUNTNO. Solid dielectric. \(100 \mathrm{pF} ., 300 \mathrm{pF}, 500 \mathrm{pF}\). \(3 / 6\) each. \(150 \mathrm{pF}+\mathrm{H} 1 / 3 ; 250 \mathrm{pF} . .1 / 6 ; 600 \mathrm{DF}, 750 \mathrm{DF} . \mathrm{1} / 9\).
MAINS TRANSFORNERS Pout


 MIDGET 220 SMALL, \(300-0-300\) V. 70 mA ., 8.3 v v .4 t

Ditto fapped sec. 1.4 s. 2, 3. 4. 5. 6.3 \%. 11 amp GEIEERAL TURPOSE LOW VOLTAGE. Outputs is \(8 / 6\)



\section*{GRAM AMPLIFIERS}

Valves: UY85 Rectifier and UCL82 Triode/Pencode 3 watcs output. Size (inc, valves) \(5 \times\) St \(x\) tone and volume ONLY \(37 / 6\) P. \& P. \(2 / 6\). Ready for use \(200-250\) v. A.C


BAKERS PUBLIC ADORESS MODELS 2in. STANDARD HEAVY DUTY 20 w . Aore powerful magnet 14.000 lines, special

7 gns . uspension \(40-14.500\) c.D.s. Rass res. 40 c.p.s.
15in. AUDITORIUM MODEL 35 w . 17.000 lines, 18 g ns. \(20-12.000\) e.p.e. Bass Res. 36 c.p.s
15in. GOITAR MODEL, 50 w
LOUDSFEAKERS P.M. 3 OHSTS FAMOUS MAKES. \(21 \mathrm{in.}\).3 in . Tin.. 5in.. 7in. \(x\) 4in., \(15 / 1\) each: 8 in. \(17 / 6 ; 64 \mathrm{in}\). \(16 / 6 ; 18 \mathrm{in}\)
 Oin. HFiol2. 87/6; 81n. HF812 72/6. Crossover 3.000 o.g. \(30 \cdot-\), Yarn Tweeter 109 db \(2 \mathrm{Ko/s}\), to \(16 \mathrm{Kc} / \mathrm{s}\). \(20 / 6\).
WAVE-CHANGE SWITCHES WITH LONG SPINDLES.
2 p. 2 -way or 2 g. 6-way or 3 p. 4-way or 1 p. 12 -way en. \(3 / 8\)
4 p. 2-way or 4 p. 3 -way, \(3 / 6 ; 8\) p. 4 -way, 2 waler........ \(6 / 8\) Wavechanke "MAKITS "1 p. 12-way, 2 p. 6-way. 3 p. 4 -wsy p. 3-way. 6 p. \&-way. Prices finclude cliek apindles, adjustabl TOGGLE SWITCHES,
```

4 W W.0 B00KS (Please Add Postagt)
"W.W."" Radio Valve Data
High Fidelity Speaker Enclosures
At a Giance Valves, CRT Equivalents
Ty Fault-Finding
mullard Audio Amplitier Manual
Radio Valve Guide. Broke 1. 2
Practical Radio Invide Out
Trausistor Audio Amplifier Manual

``` NARIABLE VOLTAGE TRARSFORMEBS


\section*{SERVICE TRADING CO \\ ULTRA VIOLET BULBS} Ponsege and Carriage show
below ere inland onls．F oversess？ quotation． We do issue a catalogne or list

Easy co use source of
12 experimental use 36 ．SBC 816 12 vole 60 wate A．C．／D．C．SBC 8／6．P．\＆P．I／－ Transformer to suit the above．Inpuc 200－240 V A．C． 12 vole 36 wates， \(16 / 6\) ；P．\＆P． \(2 / 6\) ．inpue \(200-240\) v．A．C． 12 volt 60 watc，22／6．P．\＆P． \(3 / 6\) ． Set of 4 Colours FLUORESCENT PABNT． Red，yellow，green and cerise．In \(\frac{1}{2}\) oz．tins． Ideal for use with the above Ulera Violet Bulbs． \(9 / \$\) ，plus \(1 / 6\) P．\＆P．

\section*{SIEMENS SEALED HIGH} SPEED RELAYS
H96A， 2.2 ohm +2.2 ohm．，new \(12 / 6\) ． H96B， 50 ohm +50 ohm，new \(12 / 6\) ． H96C， \(145 \mathrm{ohm}+145 \mathrm{hm}\) ，new \(12 / 6\) ． H96D， 500 ohm＋ 500 ohm，new \(12 / 6\) ． H96F，1，000＋1，000 ohm，new 12／6． H96E， 1,700 ohm 1.700 ohm，ex equip．，18／6．P．\＆P． \(1 /\) on each Relay

P．O．RELAYS，Type 3，000
100 ohm 3 c／o 2 make， 2 break， \(12 / 6\)
\(200 \mathrm{ohm}, 6 \mathrm{c} / 0.6 .500 \mathrm{ohm}, 1 \mathrm{c} / \mathrm{o}\) ．I break．
\(500 \mathrm{ohm}, 6 \mathrm{clo} .16 .000 \mathrm{hm}, 2\) make， 2 break 500 ohm I Heavy duty c／o， \(12 / 6\)
\(500 \mathrm{ohm}, 4\) Heavy duty make．
\(2.000 \mathrm{ohm}, 4\) make， 4 break．
2.000 ohm， 4 make， 4 break．
20.000 ohm， 2 Heavy duty make， \(12 / 6\)

All at \(12 / 6\) each，plus \(1 /-\) P．\＆\(P\) ．

\section*{G．E．C．SEALED RELAYS}

M1069 5.000 ohm， \(2 \mathrm{c} / \mathrm{o}\) ．MIO84 180 ohm， \(4 \mathrm{c} / \mathrm{o}\) M1092 670 ohm， 4 c／o．MIO95 670 ohm， \(2 \mathrm{~m}, 2 \mathrm{~b}\) ． M1100 670 ohm， 2 e／o．Ex new equipment All ae \(12 / 6\) each plus \(1 /-\) P．\＆\(P\) ．

\section*{7，000 OHM SEALED RELAY．High Speed} single e／o．Platinum contacts．Super－sensitive，
ideal for Transiscor circuiery．Will operace on 1 milliamp．25／क．P．\＆P．I／－

SPECIAL REVERSING 24 VOLT D．C．MOTOR Quadrant moves 90 degnees with limit switches． Ideal for opening doors．ctc．Price 32／6 P．\＆P．3／－

SOLENOID．Overall lengeh 3 tin．，scroke tin． to \(\frac{1}{4} \mathrm{ln}\) ．Maximum push 8 oz． \(12-24\) v．D．C． operation．D．C．resistance 35 ohm ．Price \(8 / 6\) ．
P．\＆P．1／S．
SOLENOID Heavy Duty 230 V．A．C．Approx． 31b．pull．I5／－．P．\＆P．I＇6．
SOLENOID OPERATED MAGNETIC RELAY． Type Sc／3944， 4 Pole c／o．， 10 amp．Contacts，
\(5 \times 631\) SILICON RECTIFIER．I00 v．PIV． 750 mA in air or 2 amp ．on \(2 \times 2\) ali．heat sink， \(3 / 8\) each，P．\＆P．6d，or 4 to make bridge \(12 \%\) ，

\section*{WIMSHURST ELECTROSTATIC} GENERATORS
Really well constructed machine． Ideal for School and Laboratory to demonstrate the various effects associated with static energy． Will work well in any atmospherie condition giving a spark over 3 in ． long In dry weather．Ilin．dia． long in dry weather． 1 lin．dia．
twin plates． 2 Leyden jars．Dis－ charge electmodes．Heavily plazed firtings，mounted on solid wooden base．Outstanding value at C \(13 / 17 / 6\) ．Carriage U．K．（B．R．S．） \(10 /\) ．
RESETTABLE HIGH SPEED COUNTER 3 figure， 1.500 ohm coil， \(40-50 \mathrm{~V}, \mathrm{D} . C\) ．operation． Brand new，50／－each，plus I／6 P．\＆P．
EX P．O．MAGNETIC COUNTER（old＇type）． either 500 ohms for 24 vole operation or 3 ohms for 6 volt D．C．operation． 4 figures to 9，999．Price， either cypc，\(/ / 6\) ．P．\＆P．1／6．
LATEST HIGH SPEED MAGNETIC COUN． TERS． 4 figure， 10 impulses per－second．Type 1000， 4.1 ohm coil， \(3-6\) V．D．C．operation．Type 100A． 500 ohm coil， \(18-24\) v．D．C．operation． Type \(100 \mathrm{~B}, 2,300 \mathrm{ohm}\) coil， \(36-48 \mathrm{v}\) ．D．C．operation． Any type \(15 /\) each，plus \(1 / 6\) P．\＆P

DIALS FOR AUTOMATIC TELEPHONES CROMPTON PARKINSON BRAND CROMPTON PARKINSON BRAND
NEW H．p．MOTORS \(230 / 250\) VOLT A．C． 1,400 R．P．M．Fitced with \(2 \frac{1}{4} \times \frac{1}{2}\) in．SPIN－
DLE．Price 13 ． 5 ．Carriage \(8 / 6\) ．
HIGH SPEED BLOWER UNIT
\(200 / 250\) volt A．C．Powerful 2 －speed motor， 11,000 and 13,000 R．P．M． \(17 / 6\) ，plus P．\＆P． \(2 / 6\) ．
AUTO TRANSFORMERS．seep up，step AUTO TRANSFORMERS．Secp up，step down． \(110-200-220-240 \mathrm{~V}\) ．Fully shrouded．New．
300 wace type \(£ 2 / 6 / 6\) each．P． 8 P．2／6． 500 wart 300 wact type E2／6／6 each．P．\＆P \(2 / 6.500\) watt gillo／each．P．\＆P． \(6 / 6\) －TYPE 34R SILICON SOLAR CELL

Four ． 5 volt units series connected in high impact poly－ ryrene case．flylng lead connections Specially designed diffusing lens system \(t 0\) ensure maximum light pick－up．Output－up to 2 v ，at \(16-20 \mathrm{~mA}\) ．in brighe sunlight Wider speceral response，and chirty times the efficiency of selenium cells．As used to power earth sacelliss \(37 / 6\) ，and \(1 /-P\) ．\＆P．

\section*{230 v．A．C．RELAY，TYPC \(1.2 \mathrm{c} / \mathrm{o}, 2 \mathrm{amp}\) ．} contacts， \(9 / 6\) ．Type \(22 \times 15 \mathrm{amp}\) ．break， \(2 \times 2\) a mp．make，I \(\times 2\) amp．break． \(11 / 6\) ．Both types
ex new equip．P．\＆P． \(1 / 6\) each．
230 VOLT A．C．GEARED TVOTORS Type BI6G 80 r．p．m．261b．inch \(62 / 2\) ．．P． 8 P．2／－ Type B16G 80 r．p．m．26ib．inch 5 ． \(2 / 2 / 6\) ．P．\＆P．P． \(2 / 6\) ． Type D16G 5 r．p．m． 1.7 b ．inch 62／9／6．P．\＆P． \(2 / 6\).
Trpe D16G 13 r．p．m． 1.451 b ．inch \(2 / 12 / 6\) ．P．\＆P． \(2 / 6\) ． 230 Voit AP \(50 \mathrm{c} / \mathrm{s}\) ．S－figupe Veeder－Rooi Ab Counter（not resettable） New．Boxed． \(1 \% / 6\) ，plus \(2 / 6\) P．\＆INIATURE

UNISELECTOR SWITCH
UNISELECH 3 banks of 11 positions，plus
homing bank． 40 ohm coil． homing bank． 40 ohm coil \(24: 36 \mathrm{v}\) ．operation．Ex equip． individually tested．22／6，plus 2／6 P．\＆P．
20－way STRIP containing standard Post Office celephone Jack，Sockets，overall size \(11 \times 3 \frac{1}{2} \times \frac{1}{2}\) in．

\section*{LIGHT SENSITIVE}

SWITCH：
Kit and parts including ORP． 12 Cadmium
Sulphide Phococell，Relay，Transistor and
Circuic．Now supplied with new Siemens Circuic．Now supplied with new Siemens High Speed Relay for 6 or
Price \(25 /\) ，plus \(2 / 6\) P．\＆P．
ORP． 12 and Circuit 8／6，post paid
A．C．MAINS MODEL
incorporates main transformer，rectifier and special relay with 3.5 amp ．mains c／o contacts Price inc．clrcuit， \(47 / 6\) ，plus \(2 / 6\) P．\＆P．
SEMF－AUTOMATIC＂BUG＂SUPER SPEED MORSE KEY．
7．adjustments，precision tooled．speed adjustable 10 w．p．m．to as high as desired．Weighs 211 b pose paid．

MUIR HEAD KEY SWITCHES
Larest type，twelve c／o
（ 6 per side）．Heavy duty
silver concacts．Complete with chrome escutcheon places and screws（le
\(15 /-1 / 6\) P．\＆\(P\) ．


KEYING LEVER
Especially designed for use with all types of eleceronic keyers．Fully adjustable miero－switch action，no con－ tace bounce，precision made，finely polished parts． crew down base．Price \(E 4 / 4 /\) ，post paid
TRANSISTORISED FULLY AUTOMATIC ELECTRONIC KEYER． 230 v．A．C．or Bactery operated．Incorporates buils－in monitor Oscillator Speaker，and Keying Lever．Adjustable speeds．Keying cither auto．，semi－auso．of hold． 4 diodes． transistors．Price．
C \(16 / 10 /-\) plus \(4 / 6\) P．\＆P． 16／10／－p plus 4／6P．\＆P．
TRANSISTORISED MORSE OSCILLATOR Fitted 2 in．Moving Coil Speaker．Uses type PP3 or equiv． 98 ．battery．Complete with latest design Morse Key，22／א plus 1／6 P．\＆P．

Ise grade
\(15 t^{g r a}\)
\(0 C 28\)
OC28
OC29
OC29
OC
OC
0
O
－
OC73
OC75
OC76
OC76．

diodes
Sx781
Z5108
ZENERS \(5 \%\)
All it wate \(5 \%\) at \(10 /\) each， \(4.3 \mathrm{v} ., 4.7 \mathrm{v} ., 5.1 \mathrm{v}\) ． \(5.6 \mathrm{v}_{0}, 6.2\) v．． 6.8 v．， \(7.5 \mathrm{v} .8 .2 \mathrm{v} ., 9.1 \mathrm{v} ., 10 \mathrm{v}, 912 \mathrm{v}\),

\section*{HEAVY DUTY L．T．TRANSFORMER} Very conservatively rated for continuous dury． phase．Ourput \(28,29,30,31\) volts at 21 single Price \(\mathrm{C} / 115 /=\) ．Carr，10／．

\section*{T．TRANSFORMER}

Type 1．Pri， \(200-240\) sec．tapped \(30,32,34,36\) volt at \(\$\) amp．， \(57 / 6\) P．\＆P． \(4 /=\) ．
Type 2．Pri． 240 sec．tapped 30,40 and 50 volt at 5 amp．\(£ 4 / 15 /-\) P．\＆P． \(4 /-\) ．
Type 3．Pri．200－240 sec．sapped \(10,-17\) and 18 vole at 10 amp， \(57 / 6\) ．P．\＆P．4／－．
Type 4．Pri． 240 sec
Type 4．Pri． 240 sec tapped \(S\) and 12 volt at 20 amp．，72／6．P．\＆P．S／－．
Type 5．17，18，20V．ac 20
Trpe 6．6， 12 v ，at \(20 \mathrm{amp} 20 \mathrm{amp} .44 / 19 / 6\) ． \(5 /-\mathrm{P}\) ．\＆\(P\) ．
A．C．AMMETERS
\(0-1 ; 0-5,0-10,0-15,0-20\) amp．F．R． \(2 \frac{1}{2} \mathrm{in}\) ．dia． All at 21／－each．

A．C．VOLTMETERS
\(0-200\) v．A．C．Rect．M－Coil \(3 \frac{1}{2}\) in．Type W23 45／－ 0－300 v．A．C．M．I．2tin．F．L．．．
\(0-300\) v．A．C．Recr．M－Coil \(2 \frac{1}{2}\) ．．．．．．．．．．．．．．．．．
\(0-300\) v．A．C．Rect．M－Coil \(3 \frac{1}{2}\) in．Type W23
D．C．AMMETERS
\(0-20 \mathrm{amp}\) ．D．C．M－Coil 2 if ．And
\(0-40 \mathrm{amp}\) D．C．M．Coil 2 in ．Rnd
0－500 Microamp．iub－min．Ifiñ．dia．Scaled
0－1 miltiamp．
C．．．．．．．．．．．．．．．．Scaled
－ーー一一－CONDEGE oxtra．

DELCO \(12-27\) VOLT D．C．SHUNT WOUND MOTOR． 5.400 r．p．m．＇Torque 4 in ．oz．double spir－ VAN DE GRAAFFELECTRO－
STATIC GENERATOR，fitted
 with motor drive for 230 V．A．C． giving a potential of approx． 50,000
volts．Supplied absolutely complete， including accessories for carrying out number of interesting
experiments，and full instructions． This instrument is completely safe，and Ideally suited for School demonseracions．Price \(\varepsilon \$ / 6 /=\) plus 4／－P．\＆P．Leaflet on request．


Latest type SIEMENS MINI－ ATURE RELAY in Transparene Case．Gold－plated spring sets， 4 c／0 \(7000^{\circ} \mathrm{hm}\) coil． 25 v．D．C．op－ eration．Size \(1 ; \times i \times 1 / \mathrm{in}\) ．New in maker＇s pasklng．Price 12／6．

BUILD AN EFFICIENT STROBE UNIT FOR ONLY＂ \(37 / 6^{\circ}\)
The ideal instrument for workshop，lab．or factory This wonderful device enables you to＂frecze＂： motion and examine moving parts as if stationary． We supply a simple circuic diagram and all electrical parts，including the NSP2 Strobe tube which wil enable you to easily and quickly construct a unit for infinite variety of speeds，from I flash in several seconds to several thousands per minute．New \(3 /-P\) ．\＆\(P\) ．
NSP2 CV2296 STROBOTRON FLASH TUBE made by Ferranki，brand new，I．O．base．Price \(15 j^{5} . \mathrm{P} . \&\) P． \(1 /\) ．

\title{
Wilkinsons FOR RELAYS \\ \\ P.O. TYPE 3000 AND 600
} \\ \\ P.O. TYPE 3000 AND 600
}

BUILT TO YOUR REQUIREMENTS-QUICK DELIVERY COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS-QUOTATIONS BY RETURN

VEEDER-ROOT MAGNETIC COUNTERS WITH ZERO RESET
BOO COUNTS PER MINUTE. 6 FIGURES. GENERAL PURPOSE TYPE, YARIOUS AC, VOLTAGES AYAILABLE FROM IIOV to 250V. 65/-pose \(2 / 6\).
SMall MaGHellic Counters \(3 \frac{1}{2} \mathrm{in} . \times 1 \mathrm{in}\). ic counts per second, wish of figures. Thd following D.C. voltages are available. \(6 \mathrm{v} . .12 \mathrm{v}\)., \(24 \mathrm{v} ., 50 \mathrm{v}\), or 100 v .
 \(2 \frac{1}{2}\). Moving Coil Flush Round. 100 Microamp, \(40 /-\); 10-0-10 Milliamp. 35/-; 50 Milliamp. 35/-; 100 Milliamp 25/-. Proj. Round 50 Mieroamps, Special seale 45/-. All D.C.: 100 . Microamps, A.C. \(85 /\)., 3in. MC Flush Round. 100-0-100 Mieroamp. 70/-: 500 Microamp 70/-. 10 amp 45/., 500 Milliamp 54/-. 2 in. Moving Coil Flush-Round. O/1. Milliamp: 0/5 Milliamp.; \(0 / 10\) Milliamp.; \(0 / 20\) voles; \(0 / 30\) volts; \(0 / 40\) voles; 0/5 amp., all at \(21 / 6\) each.
MICROAMMETERS. \(2 \mathrm{in} .0 / 500\) D.C. Flush Round, \(25 /\) M.C. RECTIFIER A.C. METERS. \(3 \frac{1}{5} \mathrm{in}\), FR 10 Milliamps, \(70 /-: 50\) vols. \(72 /-\mathrm{B}\) 100 volts \(70 /-200\) voles \(75 /-\) - 1,0008 per volt.:
MOVING IRON A.C. AMMETERS. 0/40 \(2 \frac{1}{2}\) in. 44 4 -: \(0 / 20\) 3 \(\frac{3}{2}\) ins. \(56 /\)-, both flush round 0/60 6in. Projection Round, 90/-. Postage on small meters, 2/-. KEY SWITCHES (3 posision). P.O. \(2122 \mathrm{C} / 2 \mathrm{C}\) Locking \(6 / 6\). P.O. \(2642 \mathrm{~K} / 2 \mathrm{~K}\) Locking 9/. 4C/4C Non-Locking \(13 / 6\). P.O. \(2954 \mathrm{C} / 6 \mathrm{C}\) NL/L 17/6.

Other types avallable. Knobs \(6 d\).


RESISTORS WIREWOUND AND HIGH STABILITY CARBON inc Erie 109,108 and 100 , ex stock in quality. Write or phone your requirements PRECISION SILVER MICA CAPACITORS, \(0.1 \mathrm{mfd} .1 \%, 6 / \mathrm{ea} .1 \% \mathrm{e} / \mathrm{s} / \mathrm{ea}\)
 \(.002 \mathrm{mf} 15 \mathrm{kV} ., 9 / \% .02 \mathrm{mf} 10 \mathrm{kV} .10 / \mathrm{i} .025 \mathrm{mf} 2.5 \mathrm{kV}, 5 / \% .05 \mathrm{mf} 5 \mathrm{kV}, 9 / \%\) \(0.1 \mathrm{mf} 4 \mathrm{kV}, 9 / \mathrm{Fi} 0.1 \mathrm{mf} 6 \mathrm{kV}, 17 / 6 ; 0.5 \mathrm{mf} 2.5 \mathrm{kV}, 17 / 6 ; 1 \mathrm{mfd} 2 \mathrm{kV} ., 17 / 6\).


POTENTIOMETERS, WIREWOUND AND CARBON including Sub-miniature, sealed and precision cypes, latest addicion 7.5 WATT PAINTON SEALED in preferred values. \(100 \mathrm{~s} \%\) to \(50 \mathrm{~K} \Omega 9 /\) each. list now ready. 10 WATT BERCO 2 JKO with eaps at 5,10 and 15 K s, ideal for test equip-

MINIATURE SEALED RELAYS OVER 120 TYPESIN STOCK. SIEMENS - G.E.C. - S.T.C. - ERICSSON - SEND FOR LIST. S.T.C. POLARIZED RELAY 4192B. Coil \(4 \times 550\) R with jacks, \(50 \%\)

MINIATURE UNISELECTORS. Plugoin type. Occuples no more space than a P.O. 3000 Relay. Siemens No. 2200A, 3 level, 12 outlets, 50 voles, 1 bridging and 2 non-bridging wipers. Supplied with jack. \(90 /\)-inc. LONDEX RELAYS Type LF 24 v. D.C. or 440 v. A.C. 2 Break \(35 /\) - each. RELAYS 24 volt D.C. 4 Make, 4 Break 10 amp. 5 C/3944 Dust cover. \(12 / 6\) eàen LEDEX SOLENOID DRIVEN WAFER SWITCHES. Size 5 S. From \(90 / \%\). Commutating switch section and conerol wafers available.

\title{
AUTOMATIC \& HAND COIL WINDING, LAYER, WAVE AND CONTINUOUS STRIP WINDING
}

REEL CARRIERS (Light \& Heavy)
Machines supplied to customers* requirements.
Your enquiries are invited

\section*{ETA TOOL CO.}
(LEICESTER) LTD.
29A WELFORD ROAD, LEICESTER
Phone 56386

\section*{THE HIGH-FIDELITY MAIL ORDER SPECIALISTS} GOODS DESPATCHED BY RETURN
Carriage, Packing \& Insurance (U.K.) FREE!! AMPLIFIERS . TUNERS SPEAKERS MOTORS PICKUPS MICROPEONES
 SE.E.E. LEAR. LOWTEER. LENCO. LUSTR PHONE GHILIPS. PYE OUAD. RADFORD

 Hire Purchase rerms ovailable - "Comporator" Demonstrations

WORLD WIDE EXPORTERS
* OVERSEASORDERSSENT FREE OF PURCHASETAX
c. C. GOODWIN (SALES) LTD.
(Dept. W63) 7 THE BROADWAY, WOOD GREEN LONDON, N.22. Thera. 19.8 Tel: BOWes Park 0077/8

\section*{A.C. SDLENDID}

TYPE SCM

Continuous 3ozs. at \(\frac{1}{2}\). Instantaneous to 2 lbs . Larger sizes available. Also-Transformers to 8 kVA 3 phase.
9/10ths
full size
IR. A. WEIBEER LTD.
KNAPPS LANE, CLAY HILL, BRISTOL 5

\title{
NO PICTURE IS GOOD ENOUGH TO SHOW YOU THAT THE NEW ARMSTRONG 221 AMPIFIER
}

\author{
FULLY INTEGRATED \\ WITH \\ MAGNETIC pickup inputs \\ ceramic pickup inputs \\ tape inputs \\ tape monitoring \\ loudness control \\ treble filter \\ pumble filter \\ stereo \& mono \\ 10 watts per channel \\ optional case \\ many other features
}

IS


\section*{London's Unique Electronics specialists.....}

\section*{VISIT OUR NEWLY EXTENDED SHOWROOMS}

WHERE YOU CAN SEE SOME OF

AERONAUTICAL INSTRUMENTS OSCILLOSCOPES TO WAVE METERS FREQUENCY METERS CRYSTAL CALIBRATORS STANDING WAVE INDICATORS ELECTRICAL METERS
WAVE GUIDE EQUIPMENT

PRESSURE GAUGES ACCELEROMETERS TRANSDUCERS BLOWERMOTORS SERVO COMPONENTS MAGSLIPS MOTORS

RELAYS
RESISTORS AND CONDENSERS WIDE RANGE OF PLUGS AND SOCKETS FOR ALL PURPOSES TRANSISTORS \& DIODES SWITCHES \& CIRCUIT BREAKERS

\section*{LATEST CATALOGUE NOW READY}

\section*{SEND 6d POSTAGE FOR OUR FULLY ILLUSTRATED} CATALOGUE OF ELECTRONIC COMPONENTS Covering:

BLOWERS
MOTORS
PRECISION
SWITCHES
GEAR BOXES AND
MOTORS
SERVO MOTORS AND
SYNCHRO EQUIPMENT
MOTOR
TACHOMETERS RECTIFIERS AND VALVES
TRANSISTORS \& DIODES
Separate illustrated lists are available for Transistors, Diodes, Rectifiers and Valves. Send 3d. postage.

A.c. Ammetars. 0.10 amps. Moving iron
\(25-100 \mathrm{cls} 2^{-}\)diam, \(17 / 5 \mathrm{~d}\). PlP 2 2
 A.C. Ammerer. 0 . 15 amps. Moving irón
 Moles. Moving coil. \(2 t^{-1}\) diam. Round flush.

 volemeier. 0.15 volts \(A\).C. Moving fron \(50 \mathrm{c} / \mathrm{s} 21^{\circ}\) diam. Round flush, \(17 / 6 \mathrm{~d}\). P/P 2/-. Volemeter. \(0-20\) volts. A.C. Moving iron \(50 \mathrm{c} / \mathrm{s} 22^{\circ}\). diam. Microammeter, 200 N. A.F.S.D. Sealed Power Watts. 0.10 O-100, a- 200 W. \(2^{2}\) round flush. Simpson Elect. Co.. U.S.A 25/-, P/P \(2 /\)--
Mieroammer. \(20-0-20\) W.A.F.S.D. Clear Scale. \(2 \frac{t^{*}}{6}\) round Mieroammeter 20-0-20 W.A.F.S.D. Scaled 10-0-10, 11: \(11^{\circ}\) Mif sq. 29/6d. P/P 2/
```

Microammeter. 0-500/W.A.F.S.D. Scaled 0.1 MA. D.C. 1°

``` round flush 19/6d, F/P 2/-100 W.A.F.S.D. Res. 487 Ohms
Microammeter. \(100-0-100\) P.A.F.南 \(5 \% 21^{\circ}\) round flush. \(22 / 8 \mathrm{~d}\). P/P 2
Mlorioammeter. 500 W/A.F
 39/6d. P/P 3/-. \(500-0.500\) W.A.F.S.D. \(2^{-1}\) sq. \(31 \times 3 f^{\circ}\) Milliammater, 0-1 MA F.S.D. \(2^{-}\)sq. \(21 \times 28\) 35/- P/P 21 MHllammeter. al MA, F.S.O. 31 sa \(41-\times 41-75 /-\) P/P \(2 /-\)

\(\operatorname{Smal}_{\text {maze }}\) Magnetic er. High-speed zype. Mlliammeter. 0-25 MA. F.S.O. 2 , sq. \(3 \mathrm{f} \times 3 \frac{1}{3} 39 / 6 \mathrm{~d}\). P/P 21 .
round flush, Scated 0-5 amp. Res. 15 Ohm
Milli.
Milliammeter. \({ }^{30-0-30 \mathrm{MA}, 2)^{\circ} \text { round }}\)
flush \(12 / 6 \mathrm{~d}\). P/P \(2 /-\mathrm{m}\)
VENNER MINIATURE SILVER ZINC ACCUMULATOR, TYPE H. 105 Nominal Volcage - 1.5 volts. Nominal Capaciey -1.5 amp.-hrs. Recom mended Max. Discharge at \(20 \mathrm{C} .-4.5 \mathrm{amps}\). Max Discharge time at 5 amps.- 15 minutes Complete with ampule and vent cap.
 VENMER MINIATURE SILVER ZINCLIGHT. WEIGHT ACCUMULATOR, TYPE \& 075 Nominal Voltage 15 voles Discharge Time at \(750 \mathrm{MA}-53 \mathrm{minuces}\) Re time at 50 Max. Discharge rate 75 commended Max. Dischare 2 are 1.75 20 C . Max. Discharge as 2.5 amps a \(\times 1 \frac{1}{2}\). Weight \(1 \frac{1}{4}\) oz. \(10 / 6\), \(\mathrm{P} / \mathrm{P} / / 6\)

\section*{Rapidgraph Pen Recorders}

SEFRAM "RAPIDGRAPH" high-speed pen recorders, specially designed for direct recording of transient phenomena down co 0.01 sec or oscillaeory phenomena up 6060 c.p.s. (or 120 ep s. with correction amplifier.)
Interchangeable pen units and wide range of chart speeds make them suitable for many measurements or controls, either directly or associated with appropriate transducers, with or without amplifiers. Examples of applications are: Recording of varia. cions in currens, volsage, frequency, speed, corque acceleration: measuremens of working sime of relays, welding machines, circuit breakers, recording of vibrations, strain, pressure, geophysical prospecting by scismic methods, medical research, etc. Nine different speeds of paper feed.
Dual Voltage \(110 / 220 \mathrm{v}\). Size \(11_{\text {" }} \times 12 \mathrm{~s}^{\prime \prime} \times 7^{\prime \prime}\). Rack mounting version available specification as above, \(19^{\prime \prime} \times 12^{\prime \prime} \times 18^{\prime \prime}\). version avaidable specincacion as above, \(\times 12 \times 18\). list price. Brand new condition- 350 guineas. Further details available on application.
0.4 amp. Aadio Frequency Meter Thermocouple, Self contained. Finished in black bakelite. Size \(24 \times 31 \times 1 l^{\prime \prime}\) depth. 29/6d. P/P \(2 /\) Micro-s witches. Sinsle pole. Extremely sensitive EST EQUI


Relay. 39 Ohms, 3 volt ingle contact. Size P/P \(1 /=\times 1^{\circ}\). Price \(1 /-\)

MAIL ALL ORDERS TO DEPT. W.W.I
53. TOTTENHAM COURT ROAD . LONDON W. W


LOW CAPACITANCE BRIDGE MARCONI TF 1342 . Range 0.002 pF to 1,111 of. Accuracy \(0.2 \%\). Three terminal situ" measurements. Internal oscillator frequency \(1,000 \mathrm{c} / \mathrm{s}\). \(12 \times 17 \times 8 \frac{1}{2} \mathrm{in}\). Weight
 \(80 \mathrm{v}\). 40-100 c/s. With leads and handbook.
ABSOLUTELY BRAND NEW. 45 .

\section*{PORTABLE RECEIVER TESTER} MARCONIINSTRUMENTS TF-888/3 This instrument combines the functions of a wide range signal generator and outpur meter. Continuous frequency coverage of \(70 \mathrm{Kc} / \mathrm{s}\) to \(70 \mathrm{Mc} / \mathrm{s}\) in 8 wavebands by means of a rotating coil turret. Output impedanees 80 or 52 ohms or high level ( 500 mV ) \(40 \Omega \mathrm{int}\). Mod. at \(1000 \mathrm{c} / \mathrm{s}\). Two erystal checks as \(500 \mathrm{Kc} / \mathrm{s}\) and \(5 \mathrm{Mc} / \mathrm{s}\). Panel meter monitors carrier and also functions as output meter full scale 10 mV . 100 mV . and IW . Inpur impedances \(3,33,150\) and 60052 . Handsome grey case size \(15 \frac{1}{2} \times 7 \frac{1}{2} \times 11 \frac{1}{2}\) high. We. \(17 \frac{1}{2} \mathrm{lbs}\). Operates from A.C. mains 100 to 250 volts. As new, eested and guaranteed. \(839 / 10 /-\) Carr. 10/-

\section*{: 221 FREQUENCY METER} This crystal controlled heterodyne frequency meter is too well-known to need further deseription. Those we offer are complete with correct individual calibration book and are carefully rested and guaranteed. Used condition.
£16
Laboratory Standard

\section*{GENERAL RADIO LR2}

METERODYNE FREQUENCY :
CALIBRATOR EQUIPMENT.
BRAND NEW.
675

\section*{LM-14 HETERODYNE
FREQUENCY METER}

Naval version of the BC-221. \(125 \mathrm{Kc} / \mathrm{s}\) to \(20 \mathrm{Mc} / \mathrm{s}\). Undoubtedly superior to the BC-221 in construcsion and performance. Requires 12 or 24 v . LT and between 200 and 475 v . HT (self-stabilised). A particularly useful feature is variable RF coupling and modulation is also available. With correct individual callbration books. Unused and guarantced. ©25. P. \& P. 7/6. 5eparate power unit for A.C. (if reseparate power unit for A
quired). \& \(4 / 10 /\). P. \& P. \(5 /-\).

MARCONI SIGNAL GENERATOR TF-517. Three ranges. 18 to \(58 \mathrm{Mc} / \mathrm{s}\) in 2 individually calibrated ranges and 160 to \(300 \mathrm{Mc} / \mathrm{s}\) by DIRECTLY calibrated dial. A.C. mains operation. AS NEW CON. DITION. In originat bransit cases with instruction book. \(67 / 10 /\). Carr. हI


MARCONI TF-390-G SIGNAL GENERATOR. \(67 / 10 \%\).
Four rato 16-32 10-60 50-100. ह1 75-150 Mes: 16-32, 32-60, 50-100 and AS NEW /5. A.C. mains operation. correct individual calityation and in struetion books.

\section*{G.E.C. RECEIVER BRT402E}

4 valve superhet \(150-385 \mathrm{Kc} / \mathrm{s}\), \(510 \mathrm{Kc} / \mathrm{s}\) to \(30 \mathrm{Mc} / \mathrm{s}\) in six wave bands. Sensitivity, sig./noise ratio, freq. stability etc. of the highest order. Six step variable selectivity, Xtal filter (Xtal phasing conerol), RF, if and AF gain, \(500 \mathrm{Ke} / \mathrm{s}\) ' Xeal cal., Audio Filser, " S " meter, Ae trimmer, Variable BFO, A.C. mains operation. EVERY THING. Reconditioned. C60. Carr. 30/-. S.A.E. for detaits.

RECEIVER R. 107 T
This receiver covers from \(1.2 \mathrm{Mc} / \mathrm{s}\) so \(17.5 \mathrm{Mc} / \mathrm{s}\) continuously in three wavebands. It is completely self-contained with built-in speaker and power unis for operation from A.C. Mains or 12 vole battery. Those we offer are guaranteed perfeer. \&15. Carr. 30/-

\section*{HIGH STABILITY POWER UNIT}

5olarsron Type 5RS 156B.- Designed so give \(\pm 150 \mathrm{v}\). a \(0.40 \mathrm{~mA} .6 .3 \mathrm{v} .4 \mathrm{a} . \mathrm{C} . \mathrm{T} ., 6.3 \mathrm{v}\) I a. Operates from A.C. mains 100 to 250 v . 40 to \(60 \mathrm{c} / \mathrm{s}\). 5ize \(9 \times 6 \times 6 \frac{\mathrm{in}}{}\). high. Ripple and noise less than \(350 \mu \mathrm{~V}\). 5tability factor greater than 400 : 1 . Source impedances less than 20 . BRAND NEW. 65. Pose paid

\section*{TELEVISION SWEEP GENERATOR}

MARCONI TF Il04/l V.H.F. alignment oscillo scope for TV. V.H.F., IF and VF response. Crystal consrolled or variable oscilfator markers. 5wcep wideh up to \(10 \mathrm{Me} / \mathrm{s}\). Can be used as normal oscilloseope. With handbook. Details on requese. \(A B\). SOLUTELY BRAND NEW. 475.


As used in Wireless Ser No. 52 . Gives marker plps at \(1 \mathrm{Mc} / \mathrm{s}\), As used in Wireless Ser No. 52 . Gives marker plps at
\(100 \mathrm{Kc} / \mathrm{s}\) and \(10 \mathrm{Ke} / \mathrm{s}\) intervals. Harmonics are available uf to
 \(30 \mathrm{Mc} / \mathrm{s}\). Incorporates a twin \(\mathrm{Mc} / \mathrm{s} / 100 \mathrm{Ke} / \mathrm{scrystal}\) and uses
a mulsivibrator circuit for \(10 \mathrm{Kc} / \mathrm{s}\). Requires 12 v . L.T. and
 150 V. H.T. Complete With Vaves, circuit of \(5 / 2 / 6\) ser and
operational notes. ERAND NEW. \(57 / 6\), plus \(2 / 2\)

MAGNETIC COUNTERS (Ex-G.P.O.) 4 figures to 9,999 Coils \(500 \Omega\) for 24 v. operation. Tested (no reset). 5/- each P. \& P. 1/6. SPECIAL OFFER. Io for 30/-. P. \& P. 5/-.
MARCONI TF-643B. Covers from 20 to \(300 \mathrm{Mc} / \mathrm{s}\) in four
plug-In coil ranges. Complete with individual calibration charts
Aceuracy \(1 \%\). Indication is on a \(50 \mu \mathrm{~A} 2 \mathrm{lin}\). panel meter.
Aceuracy
```

 RELAYS G.C.E. MINIATURE SEALED
 M-1099 670S2 2M H1D Wire Ends RE SEALED
M-1052. 5,000\Omega 2/CO. PlaL Wire Ends.
M=1092 6705 4/CO Plat.Wire Ends
ALL BRAND NEW AND BOXED. Please add postage.

```

MINIATURE RELAYS. 240 v. A.C. coils, Contact assembly 2 " makes" and I C.O. 5 amps. Size \(2 \times 1 \frac{1}{} \times\) lin. Unused and removed from brand new equipment. 8/6 pose paid.

MICKOCK OSCILLOSCOPE OS-8B/U
A high grade general purpose instrument made to exacting U.S.A. Navy specification. Detachable cover with carrying handle. Compact ( \(131 \frac{x}{x} \quad 6 \times 8\) xin.), weighe 17 lbs. Green trace
3 in . eube. Bandwidth "'Y" 3in. cube. Bandwidth " \(Y\) "
amplifier D.C. to 2 Mc , amplifier D.C. to \(2 \mathrm{Mc} / \mathrm{s}\) (D.C. coupled). Sensitivity
\(40 \mathrm{mV} / \mathrm{cm}\). "X" amp. can be used separately similar spec. co "Y". amp. leads are housed in case. for A.C. mains 105 20 125 V. 50 to \(1,000 \mathrm{c} / \mathrm{s}\). BRAND NEW, cested and guaranteed. ©25. Carr.10/ Auto transformer \(15 / 6\) extro.

\section*{Charles britain (Radio) LTD.}

II UPPER SAINT MARTIN'S LANE LONDON, W.C.2. TEMPLE Bor 0545
Near Leicester 5q. Station. TEMPLE Thorn House)
Shop hours: 9-6 p.m. (9-1 p.m. Thursdays). Open all day Saturday.

OHM METER Type \(V\) i6 A.C. mains operation 200 to 250 v. \(50 \mathrm{c} / \mathrm{s} .10\) ohms to Megohm (4 ranges) and I Meg to 10,000 Megs. (4 ranges). Weston 4 in. mirror scale 4 cathode. follower valves fed
 lised H.T. line. With circuit etc. A quality instrument at a fraction of original price. BRAND NEW EB/I9/6. P. \& P. 5/6. De cails on request.

\section*{PHASE MONITOR ME-63/U} (AN/URM-67)
Designed to measure directly the phase angle berween ewo applied audio frequency signals of from 20 co \(20,000 \mathrm{c} . \mathrm{p} . \mathrm{s}\). \(\pm 1^{\circ}\). Direct indication on a panel meter. Input can be sinusoidal or non-sinusoidal from 2 to 30 volts peak. Of recent manufacture (1957) by Control Electronics Ine and exU.5 A Air Fores in first class condition with handbook. A complex inserument with 19 valves. C40. Carr. 30/-
MOVING COIL PHONES. Finest
quality Canadian with chamois ear-muffs
and leather-covered headband. With
lead and lack plug. Noise excluding and
supremely comfortable. \(22 / 6\). Post \(1 / 6\).
As above but complete with moving coil
microphone. \(25 /\). Post \(2 / 6\). DLR-5 Low
impedance headphones with atcached
throat microphone. \(12 / 6\). Post \(1 / 6\). All
these items BRAND NEW.

\section*{T.C.C. VISCONAL CONDENSERS.} 8 mid. 800 v . D.C. wkg. at \(71^{\circ} \mathrm{C}\). CP 152 v Size \(3 \times 1 \frac{3}{} \times 5\) in, high. BRAND NITROGOL. 8 mid. 350 v . D.C. wkg at \(71^{\circ} \mathrm{C}\). Size \(1 \frac{3}{4} \times 1 \frac{1}{4} \times 4 \frac{3}{\mathrm{~g}} \mathrm{in}\), high. Wirh. fixing clips. BRAND NEW (boxed), 5/each. T.C.C. or DUBILIER. 4 mfd. 600 v . Wkg. CP 130T or similar. \(1 \frac{1}{2} x\) \(1 \frac{1}{3} \times 4 \frac{1}{2} \mathrm{in}\). high. BRAND NEW (boxed). \(4 / 6\) each. All post paid.

\section*{ASSORTED CAPACITORS. Mixed parcel of 100 all brand new, marked micon and feed through from I pf to \(3,000 \mathrm{pF}\). \(10 / \mathrm{m}\)}

> STANDARD TRANSFORMERS Vacuum impregnated, interleaved, \(E\). screen, universal mounting. 5ize \(4 \times 3 \frac{1}{2} \times\) 2 tin. ALL BRAND NEW. \(18 / 6\) esch. Post \(2 / 6\). Type 1. \(250-0-250\) y. \(80 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .3\) a sapped at 4 v .4 a 6.3 v .1 a. sapped at 4 v . and 5 v .2 a. Type 2. As above bue \(350-0.350\) 90 inia.
> Type 3,30 v. 2 a., tapped at 12,15 , 20 and 24 v . to give 3-4-5-6-8-9-10 v., etc.
Type 5. 0-6-9-15 v. 4a. Ideal for chargers.

> ADVANCECONSTANT VOLTAGE TRANSFORMERS. Input 190-260 \(50 \mathrm{c} / \mathrm{s} . \mathrm{A} . \mathrm{C} . \mathrm{malns}\). Output 230 150 watts. \(47 / 10 / \mathrm{m} . \quad\) Carr. \(5 \%\).

OSCILLOSCOPE TRANSFORMER These are replacements for the Cossor 339 A scope. BRAND NEW in original packing. Only a limited number. 79/6. P. \& P. \(5 / 6\)


SANGAMO WESTON VOLTMETERS 561. Dual range
0.5 and \(0-100\) 0.5 and \(0-100 \mathrm{v}\). D.C. FSD \(1 \mathrm{~m} / \mathrm{A}\). Jin. scale. Recent manufacture. Ideal for schools. Complete in super quality canvas carrying case. with eest prods and leads. BRAND NEW. Boxed \(32 / 6\). Post \(2 / 6\).

\begin{tabular}{|c|c|c|c|c|c|}
\hline LEICESTER
\(\qquad\) &  & LIVERPOOL। LONDON &  &  &  \\
\hline
\end{tabular}

\section*{HIGH FIDELITY ULTRA LINEAR} PUSH-PULL OUTPUT SIX VALVES EFBA, Er'84, EOC'83, 807, s07,
QZ34, Tone Control Pre-Amp. slagen are
 ABLITTY OF ANY TYPE OR MAE OF "cut" with ample tone corrvction for long pol. control te prorlited mpothtith arsociate faputs such an "mike", unal sram. etc., can he OUTPUT SOCKET WITH PLDE IS INCLUDED
 FOrm
 Protective Cover 18/9. Type mo7 output valves are usel. Wlth High Quailty gectionally Wrund output traluformer sperlatly dwsigned for UItra limewr operation. Negatire fedlyck of 2011,1,

 EQUALLY SUITABLE FOR THE CONNOISSEUR OR FOR LARGE HALLS. CLUBS OR OUTSIDE FUNCTIONS, IDEAL FOR USE WITH MOSICAL MSTRUMENTS, SUCR AS STRING BASS. ELECTRONIC ORGAR, GOITAR, etc. FOR DANCE BANDS, GARRISON THEATRES, etc. cto. ENguIRIES INVITED.

\section*{MANCHESTER New large retail premises now o \\ POWER PACK KITS \\ Fully smoot hed output 280 V. 60 mAA . 1.5 umps . Consjats of chansio, malus
Trans. \(200-200\). Double Rectitler. Choke, clrevit. \(19 / 11\) \\ FANE HIGH FIDELITY SPEAKERS 12 in .15 ohms. Cast chassis: HEAVY DUTY \\ 

\section*{R.S.C. TRANSFORMERS}

\section*{FULLY GUARANTEED}

INTERLEAVED and IMPREGNATED

\section*{MAINS TRANSFORMERS. PHIMWHE 200.2}

 nonthly paywents of 159 . (Total \(£ \% / 17 / 6\) )
 for nae with all rashes and typer of pick-upa athl mikea. Compurathic with thervery the datable


 luilt \(210 / 19 / 83\), , If required louvred metal covere with 2 carrymp bandlea can be applied for \(18 / 9\). TERMS On


\section*{R.S.C. STEREO/2O HIGH FIDELITY AMPLIFIER}

 BUITABLE FOR. LAKGB HALLA OR CLULAS.

 Out put matechinga for 3 and
FREQUVNCY RRSFONALi
R.S.C. STEREO 10 high quality AMPLIFIER


AUDIOTRINE HIGH FIDELITY SPEAKER SYSTEMS
Designed to provide a
nrianth
 alst ing of 121t. 12.00 Mm lime Unit and Tweetcr. Highy neconumended for wee with
any Hirh Fullity Amplither. 10 Watt Untt.

 Onit \&6/19/9 Carr. \(7 / 6\)

OLSA MINIATURE 3-WATT GRAM AMPLIFIERS, POR

\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular} Changel. incluele:
Four-position tone coupelisa
ton/selector switch. StereofMono switch so tha
Deall monaural output ol 28 watts can be obtasined. "cout"
Sepatate bass ""litt" and "eut Separate bass "litit" and "eut"
and trebie ""isf" and "cut" eontrols. Neon panel indicator. 13 an, win wim int truet fank, or Practory ake mbled. of mouthe' kuatiad wet for our uknal - DFPOITT 2 grem and nine \begin{tabular}{l} 
unoustily \\
f20 \\
\hline \(15 / 6\).
\end{tabular}



\section*{COLUMN SPEAKERS}
 TYPE C58

W.B. "STENTORIAN" " High Fidetity P.m. SPEAKERS H1-1012. 10 watta rating. Where a really good quallty
 whether 3 oh mor or 15 ohm required.
R.S.C. JUNIOR BASS REFLEX CABIMET. Designed for above sppaker, but gualable for any good quality 8 in , or 10 in .
appeaker. Almustheally limed and ported. Poliabed walnus remers




\section*{Samson's sementir}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { Maker } \\
& \text { T.C.C. } \\
& \text { T.C.C. }
\end{aligned}
\]} & \multicolumn{5}{|l|}{BLOCK CAPACITORS} \\
\hline & Mid & DCV whg. & Temp. & Price & Carr. \\
\hline & 8 & 1,500 & \(60^{\circ} \mathrm{C}\) & 17/6 & \(2 / 6\) \\
\hline & 8 & 1,000 & \(60^{\circ} \mathrm{C}\) & 10/6 & 2/- \\
\hline G.E.C. & 8 & 600 & \(60^{\circ} \mathrm{C}\) & 1/6 & 21- \\
\hline T.C.C. & 8 & 250 & \(70^{\circ} \mathrm{C}\) & 8/6 & 1/6 \\
\hline Dubilier & 8 & 1.000 & \(60^{\circ} \mathrm{C}\) & \(9 / 6\) & \(2 /-\) \\
\hline Dubilier & 8 & 750 & \(60^{\circ} \mathrm{C}\) & \(9 / 6\) & 21 \\
\hline U.S.A. & 7 & 600 & \(100^{\circ} \mathrm{C}\) & 6/6 & 1/6 \\
\hline U.S.A. & 5 & 220 & \(100^{\circ} \mathrm{C}\) & 3/6 & 1/6 \\
\hline T.C.C. & 4 & 2.000 & \(60^{\circ} \mathrm{C}\) & \(17 / 6\) & 2/6 \\
\hline T.C.C. & 4 & 1,000 & \(60^{\circ} \mathrm{C}\) & 3/6 & 1/- \\
\hline T.C.C. & 4 & 400 & \(70^{\circ} \mathrm{C}\) & 3/6 & 1/- \\
\hline 81 & 4 & 800 & \(70^{\circ} \mathrm{C}\) & 5/6 & 1/6 \\
\hline Dubilier & 2 & 5,000 & \(70^{\circ} \mathrm{C}\) & 35/- & 3/6 \\
\hline Dubilier & 2 & 2,500 & \(70^{\circ} \mathrm{C}\) & 17/6 & 216 \\
\hline T.C.C. & 2 & 1,000 & \(60^{\circ} \mathrm{C}\) & 5/- & \(1 / 16\) \\
\hline T.C.C. & 2 & 500 & \(60^{\circ} \mathrm{C}\) & 2/6 & 1/6 \\
\hline T.C.C. & 1.5 & 4,000 & \(60^{\circ} \mathrm{C}\) & 12/6 & 2/6 \\
\hline T.C.C. & 1 & 7.500 & \(70^{\circ} \mathrm{C}\) & 501- & 5/- \\
\hline т.C.C. & , & 2,500 & \(60^{\circ} \mathrm{C}\) & 17/6 & 3/6 \\
\hline т.C.C. & , & 600 & \(70^{\circ} \mathrm{C}\) & 2/6 & 1/- \\
\hline Dubilier & 1 & 5,000 & \(70^{\circ} \mathrm{C}\) & 301- & 3/- \\
\hline T.C.C. & 0.5 & 500 & \(60^{\circ} \mathrm{C}\) & 2/- & 1/- \\
\hline Dubilier & 0.5 & 5,000 & \(70^{\circ} \mathrm{C}\) & 17/6 & 2/6 \\
\hline Oubilier & 0.5 & 2.000 & \(70^{\circ} \mathrm{C}\) & \(8 / 6\) & 2/- \\
\hline Dubilier & 0.25 & 5.000 & \(70^{\circ} \mathrm{C}\) & \(12 / 6\) & 3/- \\
\hline Dubilier & 0.25 & 7,500 & \(70^{\circ} \mathrm{C}\) & \(17 / 6\) & 3/- \\
\hline T.C.C. & 0.25 & 5,000 & \(60^{\circ} \mathrm{C}\) & 12/6 & 3/- \\
\hline B.I.C. & 0.1 & 5,000 & \(60^{\circ} \mathrm{C}\) & 10/6 & 31- \\
\hline
\end{tabular}

A.C. \(200-240\) volts \(\frac{1}{6}\) h.p. motor 2,850 r.p.m. Manufactured by famous manufacturers for compuker equiplosed size \(24 \times 8 \times 8\) in \(¢ 7 / 19 / 6\), carr 7/6.

1\% RESISTANCE BOXES FOUR DECADES 1.10-100 2 . 2.100-1,000 . 3.IK-10K \(\Omega 4.10 \mathrm{~K}-100 \mathrm{k} \Omega\), High Stability Resistors arranged as a potentiometer, rated at 1 watt at 70 deg. C. and \(1 \frac{1}{4}\) watts at 42 deg. C. Tolerance plus or minus \(1 \%\). Specially designed for use in technical colleges and schools where a high-precision instrument is required at
low cost. Supplied brand new and guaranteed. low cost. Suppl

STC INTER-COM. TELEPHONES. Latest type. All components, Buzzer and Battery housed in beautifully made Hand Set. Size \(9 \times 2 \frac{1}{1} \times 2 \frac{1}{2}\) in Effective communication up to 60 miles. Supplied
brand new, \(E Y / 12 /-\) per pair. P.P. 4/-. Further brand new, \(£ 9 / 12 /-\) per pair.
particulars sent on request.
G.P.O. HIGH SPEED COUNTERS Latest Design Type \(10004.1 \Omega 316\) v. D.C. Type 100 a. \(500 \Omega\) 18.24 v. D.C. either type 15/-. P.P. 1/6.

\section*{PHILIPS AUTO TRANSFORMERS. for mains boosting. Tapped \(220,230,240,250\) volts. 600 watts. Terminal block connections. Brand new, 39/6. Carr, 6/-}

\footnotetext{
MAGNETIC DEVICES SOLENOIDS. 180 v D.C. Overall size \(1+x 1 \frac{1}{2} \times 1 \frac{1}{2}\) in. Approx. \(\frac{1}{2}\) in. available for 50 v , operation. \(7 / 6\). P,P, \(1 / 6\).
}

\section*{DSiAGEDAMOL
SEARED UNISS \\ ERAND NEW \\  \\ Freezer \(12 \times 6 \frac{1}{2} \times\) Sins. Sealed unit \(9 \times 9 \times 5\) ins. Condenser \(12 \times 20\) ins. Ideal for replacement units, refrigerasion and cold cupboards and stores. In original packing 88-10-0 \\ THERMOSTATIC CONTROL \(15 /\) \\ P.P. \(1 / 6\) sold separately.}

BRAND NEW 30 AMP.
VENNER TIME SWITCH Type MD 1 BP.
Size \(5 \frac{1}{3} \times 8 \times 4 \frac{1}{2}\) in, deep. 24 hr . dial. One on, one off. Beautifully finished in black bakelite case with perspex window. Packed in original cartons at fraction of maker's price. P.P. 5/-

Arms for extra switch 6/-per pa
L.T. SUPPLY UNIT TYPE S.E.I

A.C. input
\(200-240\) D.C. Output tapped to give 12 or
24 voles 8 amps. continuous rating. Fitted with panel fuse. Mains onfoff switch and D.C. output socket. Built in strong metal case. Size \(15 \times 6 \times 6 \mathrm{in}\). An ideal general purpose L.T. supply unit for operating relays. Contactors. battery charging, etc. \(\$ 9 / 19 / 6\), carr. \(7 / 6\)
L.T. SUPPLY UNIT TYPE S.E. 2 A.C. input \(200-240 \mathrm{v}\). D.C. ouepue 50 voles 5 amps. Built-in mecal case size \(15 \times 6 \times 6\) in, Fitced
socket, \(69 / 19 / 6\), carr. \(7 / 6\).

\section*{SIEMENS MINIATURE SELECTOR SWITCHES}

Latest plug in type. 10 way 3 bank 3 wiper, type 2,200 c. \(50 \Omega\). Size \(3 \frac{1}{\frac{1}{2}} \times 2 \frac{1}{2} \times 1\) tin. complete with base. Fraction of makers Price 69/6, P.P. \(2 / 6\).

\section*{GRESSALL HEAVY DUTY \\ RHEOSTATS}

26 ohms 4 amps, 6 in, dia., carbon track. Panel mounting. Length of spindle \(1 \frac{1}{\mathrm{t}} \mathrm{in}\)., tin. dia, BRAND NEW 45/-. carr. 4/-.

MAGNETIC DEVICES MINIATURE RELAYS TAGNETIC DEVICES MINIATURE RELAYS
\(2000 \Omega 2\) C.O. contacts size \(1 \times \frac{1}{2} \times \frac{1}{4}\) in. \(10 / 6\) P.P. I/-

HEAVY DUTY SLIDER RESISTORS Zenith HEAVY DUTY SLIDER RESISTORS Zenith
Double Tube Geared Drive Log Wound. \(1.3 \Omega 15\) Double Tube Geared. Drive Log Wound. \(1.3 \Omega 15\)
amps. Continuing to \(55 \Omega 2\) amps. Overall size: \(\begin{aligned} & \text { amps. Continuing to } 55 \Omega 2 \text { amps. Overall size: } \\ & 22 \times 9 \frac{1}{3} \times 7 \frac{1}{3} \mathrm{in} \text {. } ~\end{aligned} 3 / 19 / 6\), carr. \(7 / 6\). \(4 \Omega 8\) amps. \(22 \times 9 \frac{1}{2} \times 7 \mathrm{in}\). \(13 / 19 / 6\), carr. \(7 / 6.4 \Omega 8\) amps.
Single Jube enclosed, \(32 / 6\), P.P. \(4 /\)-. \(30 \Omega 1.25\) Single Jube enclosed, 32/6, P.P. 4/-. \(30 \Omega 1.25\)
amps. इ Tube Gear Drive, 25/-, P.P. 3/-. \(1 \Omega 12\) amps., 12/6, P.P. 2/6. Ganged Twin Rheostazs, 6 in . dia. 2 COS 1.2 amps, each. Complete with 6in. dia. 2COS 1.2 amps, each. Complet
Fixing Frame and Control Knob, \(15 /=\), carr. Fixing Frame and Control Knob, \(75 /\)-, carr.
\(0.4 \Omega 25 \mathrm{amps}\). fixed with adjustable clip \(15 /-\) P.P. \(2 / 6\)

\(240-110\) AUTOTRANSFORMERS
wo pin Ameripletely shruuded fitted with 2 Please state which sockets or terminal blocks. C4/15\%, carr. \(5 \% .500\) watts, carr. \(4 \% .300\) watts 47/6, carr. 3/6. ISO wates \(37 / 6\), carr. \(3 /\). 60 wates 29/6, carr. 2/6.
2,000 wasts complecely enclosed in metal case size \(10 \times 8 \times 6 \mathrm{in}\). Fitced with 2 American two-pin sockets or terminal blocks \(\mathbf{6} 9 / 15 /=\), carr, \(7 / 6\).

\section*{A.C. VARIABLE SUPPLY UNITS}

Input 230 v. A.C. Output variable \(0-260\) v. A.C Fitsed in steel case, complete with v/meter, pilot lamp, fusc, switch, carrying handle. 1) amps. output E8/10/, carr. 7/6.
\(2 \frac{1}{2}\) amps. output \(\operatorname{c} 9 / 7 / 6\), carr. \(7 / 6\).
SPECIAL OFFER OF PARMEKO NEPTUNE SERIES TRANSFORMERS. Brand new in SERIES TRANSFORMERS. Brand new in
makers cartons. All primaries tapped \(200-240 \mathrm{v}\) No. 1 Sec. 30 v. 2 A., \(6.3 \mathrm{v}, 5 \mathrm{~A}, 6.3 \mathrm{v} .1 .1 \mathrm{~A} ., 6.3 \mathrm{v}\) \(0.3 \mathrm{~A} .47 / 6\), carr. 5/-. No. 2 450-4C0-0-400-450 \(180 / \mathrm{MA}, 6.3 \mathrm{v} .3 \mathrm{~A}, 6.3 \mathrm{v} .3 \mathrm{~A}, 6.3 \mathrm{v}, 4 \mathrm{~A}, 5 \mathrm{v}, 3 \mathrm{~A}\).
\(49 / 6\), carr. \(6 / \mathrm{No} .350-0-500 \mathrm{v}, 120 / \mathrm{MA} 63 \mathrm{y}\) \(49 / 6\), carr. \(6 /-\). No. \(3500-0-500 \mathrm{v} .120 / \mathrm{MA}, 6.3 \mathrm{v}\).
 6.3 v. 6 A. 6.3 v. \(2 \frac{1}{\frac{1}{4} A ., 6.3 v .1 .5 A . ~} 6.3\) v. \(1 \mathrm{~A} .25 /-\)
P.P. \(4 / \mathrm{F}\). No. 5 Two Sec. Windings of \(4-6.3 \mathrm{v}\). 2 amps. 6 kv ., D.C. Working, 25/-, P.P. 4/-.

GARDNERS FILIMENT TRANSFORMERS Pri. Tapped \(200-220-240 \mathrm{v}\). Sec. \(6.3 \mathrm{v}, 15 \mathrm{~A} ., 6.3 \mathrm{v}\) \(3 \mathrm{~A} ., 6.3 \mathrm{v}, 3 \mathrm{~A} .6 .3 \mathrm{v} .2 \mathrm{~A}, 6.3 \mathrm{v}, 2 \mathrm{~A}, 6.3 \mathrm{v}, 0.6 \mathrm{~A}\). 37/6, P.P. 4/-.

GARDNERS EHT TRANSFORMERS Pri. Tapped, 200, \(220,240 \mathrm{v}\). Sec. \(1500 \mathrm{v}, 10 / \mathrm{MA}\). RMS 19/6, P'P. 2/6. Pri. Tapped 200, 220, 240 v Sec. 4000 v. \(10 / \mathrm{MA}, 2-4 \mathrm{r}, 2 \mathrm{~A}\).
\(1.5 \mathrm{~A} ., 4 \mathrm{kV}\) Wkg, 65 j -, carr, 5/-.

26 KVA AUTO TRANSFORMERS \(240 / 125\) volts. Base \(14 \times 19\) Ins. H, 23 ins. approx Weight 2 cwt. 435 Ex-Warehouse, Admiralty Isolation Transformer, \(230 / 230\) v. 4.6 kVA Test to earth 3 kV . Base \(17 \times 16 \mathrm{ins}\).
H. 18ins. © \(19 / 10 /-\) Ex-Warehouse.
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
HEAVY CURRENT TRANSFORMERS LIMITED NUMBER ONLY \\
Pri 230 v. See. T 4-6-11 v. 200 z. \(\mathbf{6 1 0 / 1 9 / 6 . ~ C a r r . ~}\) 10/-. Pri. T 200-260 v. and 100-130 v. Sec. T 2 \(28,29,30,31\) v. 25 a, conservatively rated \(66 / 15 /-\) Carr. 10/-, Pri. T \(210-250 \mathrm{v}\), and \(105-115 \mathrm{v}\). Sec. 27 v .60 a. Totally enclosed new in maker's cases, \&12/10/. Carr. \(10 / \mathrm{F}\), Pri. 200, 225, 240 fv . Sec. T 12, 18, 20, 24, 30, 36 v. 10 a. \(5 / 5 /\)-. Can 7/6. Pri. T \(200-220,240 \mathrm{v} . \mathrm{Sec}\). T. \(50,70,73\) v. 15 a : \(66 / 19 / 6\). Carr. \(10 / \mathrm{p}\). Pri. 200, \(220,240 \mathrm{v} . \mathrm{Sec} . \mathrm{T}\). \(100,150,155\) v. 22 a. £9/19/6. Carr. \(10 /-\). Pri. 240 v. Sec. T \(53.5,55.2\) v. 6 a. C core \(13 / 17 / 6\). Carr. 6/-.
\end{tabular} \\
\hline HEAYBERD TRANSFORMERS. Pri, T 200-240 v. Sec. 12 v. 4 2. Brand new. fraction of maker's price. 15/-, P.P. 2/6. \\
\hline
\end{tabular}

LIMITED NUMBER ONLY Pri 230 v. Sec. T \(4-6-11\) v. 200 z. \&10/19/6. Carr, \(28,29,30,31\) v. 25 a , conservatively rated \(\mathrm{£6/15/-} \mathbf{~ . ~}\) Carr. 10/-. Pri. T \(210-250 \mathrm{v}\), and \(105-115 \mathrm{v}\). Sec \(27 \mathrm{v}, 60 \mathrm{a}\). Totally enclosed new in maker's cases, T 12, 18, 20, 24, 30, 36 v. 10 a. \(5 / 5 /\)-. Can 7/6. Pri. T 200-220, 240 v. See. T. \(50,70,73\) v. 15 a t6/19/6. Carr. 10/-. Pri. 200, 220, 240 v . Sec. T. \(100,150,155\) v. 22 a, . \(9 / 19 / 6\). Carr. \(10 /\)-. Pri. 240 v.
Sec. T \(53.5,55.2\) v. 6 a. C core \(\$ 3 / 17 / 6\). Carr. \(6 /\).

HEAYBERD TRANSFORMERS. Pri, T
\(200-240 \mathrm{v}\). Sec. \(12 \mathrm{v}, 4\) z. Brand new. fraction \(200-240 \mathrm{v}\). Sec. \(12 \mathrm{v}, 4\) 2. Brand
of maker's price. \(15 /-\) P.P. \(2 / 6\).


CLEAR PLASTIC METERS


Type MR.38P. 1 21; 39;e. square fronts.
\begin{tabular}{|c|c|c|c|}
\hline \(60 \mu \mathrm{~A}\) & 20/8 & 760 mA & \(22 / 16\) \\
\hline 1004 A & 246 & 1A D.C. & 2216 \\
\hline \(200 \mu \mathrm{~A}\) & 2716 & 2A D.C. & 22/6 \\
\hline \(500 \mu \mathrm{~A}\) & 251- & bA D.C. & 226 \\
\hline \(00-105-1 / 2\) & 28/6 & 3 V D.C. & 6 \\
\hline \(100-0-100{ }_{\mu} A\) & 27 & 10V D.C. & \\
\hline \(500 \cdot 0-50014 \mathrm{~A}\) & & 20 D.C. & 226 \\
\hline 1-0.lmA. & & 50 V D.C. & \\
\hline 1 mA & 2816 & 100 V D.C. & \\
\hline 2ma & 228 & 1 Inov D.C. & 22 \\
\hline 5 ma & 20.6 & soov D.O. & \\
\hline 10 mA & 20/6 & 500 V D.C. & 2 2'6 \\
\hline 50 ma & 22/6 & 750 V D.C. & \\
\hline 100 mA & 2816 & 15 V A.C. & \\
\hline 150 mA & 22/6 & 50 V A.C. & \\
\hline 200 ma & 28:6 & 300 V A.C. & \\
\hline 300 mA & 886 & 500 ¢ A.C. & 22 \\
\hline 500 ma & 2216 & - 8 ' Meter 1 m & \\
\hline \multicolumn{4}{|l|}{Type Mr.3PP, 2tim. square frons.} \\
\hline 60¢A & 5718 & \(50-0-50 \mu_{4} \mathrm{~A}\) & \(57 / 6\) \\
\hline 1004 A & \(47 / 6\) & 100-0.100 4 A & \(47 / 6\) \\
\hline 390; A & \(37 / 6\) & 1 ma A & 39/6 \\
\hline
\end{tabular}



\section*{bakelite panel meters}


MODEL 500. 30.000 O.P.V \(0 / 5 / 1 / 2.010 / 20 / 100 / 250 /\) \(500 / 1.000\) V. D.C. ef \(2.5!\)
\(10 / .20 / 100 / 200 / 500 /\) \(10 / 2.25 / 100 / 260 / 500 /\)
\(1,000 \mathrm{~V} . \mathrm{A} . \mathrm{C}\). \(0 / 50 \mu \mathrm{~A} / 5 / 50 /\) s00ma. 12 amp. 1.0 /60/K6 Mea/60 Meg. -7810 M \({ }^{-02}-3\) MFD.
G. W. SMITH \& CO (RADIO) LTD 3-34 Lisle St., London, W.C. 2 also see opposite page

STAR SR. 600 AMATEUR COMMUNICATION RECEIVER.
de cryme controlled erpio coaveration Extremely Migh retre band recelver. and stablity. Speclal leatures luclude 3 L. P. ntagee cryblal controlled oecilistor. 4 section LO filler, '8' nueter, B.F.O. A.N.L. \(100 \mathrm{kce/a}\) crystal calbrator, etc. 95 GNS. S.A.E. for full details.



\section*{OSCILLOSCOPES}

Algh quality Portable American Oscllloscope. 3in. c.r.f T/B: \(\mathrm{B} \mathrm{c} / \mathrm{p}-60 \mathrm{kc} / \mathrm{s}\). X Amp: \(0-500 \mathrm{Kc} / \mathrm{s}\). Y Amp: \(0-2 \mathrm{Mc} \mathrm{c} / \mathrm{s}\). new " conditiomentals' fented. 105.125 . A.C. Surf. \(10 /-\). Suitable

REUTER I-TRACK TAPE HEADS As fitted to Coslaro Mk. IV and 8 sudio Deckem Braud Dew. \(18 / 8\) Patr. Also Mlinitur is. track eet of \(3.29 / 6\); Bradmatic \(\frac{1}{2}\) wack, set of \(992 / 6\)

\section*{PRECISION COMBINATION VOLTMETER/AMMETER} Two mejparite inatrument h housed in pollshed wood case, BIn. acules with knife edge pointers. Ranges A.C. and D.C. Curreat: \(0-285-50-150-200\) amm supplied oomplete with whunta. lemil umd leasher carrying cape. Brand uew conditlone £9/10/6.

TS-382 F/U AUDIO OSCILLATOR High quality modera Americap listrument.
Frequency onverage on 4 bande
\(0-200 \mathrm{Kef}\) Outpul frupedance \(1,000 \mathrm{O}\). Output momiloring volta io 12 rolts Bupplled an new. e40. Carr. \(20 \%\)
LELAND MODEL 27 BEAT FRE
QUENCY OSCILLATORS
 in perfect intier E12110/-. Carr. \(10 \%\)

AMERICAN RECORDING TAPES



\section*{3 jin.
\(\begin{aligned} & 80 \\ & \mathrm{sin} . \\ & \mathrm{Bin} .\end{aligned} \quad 000\)} in. pont. L.P. miantic.


 Pintage 2\%. Over miliar prot pald.


DLR5. Inv Im?
HEADSETS
DLRS. LAW Imp
w. 8.88 IOW imp
Chamois pmoted movine col! S.F.20 High tmp.

LAFAYETTE HI-FI STEREO HEAD.
 Alr cushioned headiband
Sole rubber ear pada
䨋 * Prequency reaponse. 15 to 15,000 cycles. t H igh sensitivily. Impedance 8 whmy per phone. Supplied
complete with all cable complete with all cables box and 3.connection plug. 82/6. P. \& P. \(2 / 6\).

\section*{MODEL PV-58 VALVE} VOLTMETER
11 mee. input. 7 D.C. volt rangen. 1.8 .1500 \%. 7 A.C.
volt rangen \(1.8-1500\) d.000 Peaks to Peak. Rewle. tance -2 ohm to k000 megohm Supplied brand new with Instructions. leade and probe. c12/10/- P. \& P. 3/h.


CLASS D WAVEMETER NO. I MK. II
Cryatal controlled cover. \(\begin{array}{lll}\text { jug } 1.9-8 & \text { Mc/a. On } 2 \\ \text { bamis. } 6 \mathrm{c} & \text { D.C. oper- }\end{array}\) ation. Stipplied brand hew with, hasdobook,

MODEL ZAM TRANSIST
CHECKER
If has the fulleat capu
for checkiug on A, \(\mathbf{B}\)
adaptable for cherking
©pec.: A: 0. \(\mathbf{i} \cdot 0.9967\).
Ico: \(0-60\) Enlcroampe.


Reaistuace for dode \(200 \mathrm{Q}-1 \mathrm{MEG}\). Suppllod complete with indructions, bathery and leado.
\(£ 8 / 10 / 6\). P. © P. \(2 / 6\).

\section*{SILICON RECTIFIERS} 200 P.I. V. 780 Ma 400 V. P. I.V. 3 amp
1.010 V. P.I.V. 650 m

200 v. P.I.V. 200 mA
95 r. P.I.V. 3 amp
15t 5. P.I. .165 mA
Dhecounte for quautities. Post esta


\section*{MARTIN FM TUNEER}


Sis transistor printed circult superbet design． 88－108 Yc／a 9 volt operation：Consinte of 3 sections sold mparately．Total coet to build
E12／27／6．8．A．E．for leafies．

SINCLAIR \(\times 10\)
AMPLIFIERS IN STOCK
 Micro 0 50／6，TR750 Amp ki
Amp 28／6．wicro Injector \(27 / 6\)

\section*{P．O．MINTATURE HIGM SPEED COUNTERS}
+ dight ayadable．

\section*{DOUBLE BEAM C．R．T．}

Cornur 80D．
Dumment K105 IPİ
\(\begin{array}{lll}£ 2 & 18 & 6 \\ 82 & 6\end{array}\)
Brand New．Piout \(3 / 0\) ．

\author{
－
}

MAINS RECORD PLAYERS AND AUTO－CHANGERS
ALL GUARANTEED WITH ARM AND CARTRIDAE
GARRARD ERP－10 PLAYER．E4 176
Garrard autoslam
（GARRARD AUTORLIM DE LUAE
\(\Varangle 6 \quad 7 \quad 6\)
LUAE ．．．．．．．．．．．．．．．．．．．． GARPARD A．T． 6
Garrard dbocadme with DERAS CABTRIDGE Garbard trpe a changer GARRARD 4E．F． BRR G．U． 7 PLAYER R8R G．U． 7 PLATER．．
HGR UAIS CHANGER
\(\qquad\)
89176 \(£ 10 \quad 9\) \(215 \quad 150\) 217150 P．d P ．2／6 ANY OF ABOVE．

\section*{MAINS ISOLATINC TRANSFORMERS}

230 F．to 230 V． \(50 \mathrm{~W} .18 / 6\) P．P． \(3 /-1100\) tw．
\(29 / 6\) ．P．P， \(3 / 6 ; 1,000\) W． 25. Carr． \(10 / \%\).

\section*{PLUGS AND SOCKETS} Paintan 15 jin in line printel circuit connochors \(7 / 6 \mathrm{pr}\) ．Large quautitite avaftable．Ditto 39 pin 106pron miniature jones． 4 pin \(3 / 6 \mathrm{pr}\) ． 6 pin \(4 / 2 \mathrm{pr}\) ； 8 pin 46 pr ； 12 piu \(5 / 6 \mathrm{pr} . \mathrm{i} 18\) pin \(7 / 6\) pr

\section*{CHASSIS PUNCH SET} Bet of 5 popular dize hole cuttern，Jin．，In．
gin．， 1 in ． 1 din．
dupplled complete with punchen Iin．，Dine lita．Iupplled complete with punchen lozther cate and inatructions． 486 ．Nin 29 －

\section*{BEST BUY！}

Send \％／0 P．O．for full Catalogue and Lints．Open 9 a．m．to 6 p．b．
Trade supplied．

G．E．C．BRT． 402 RECEIVERS A hiah．grade it saive oommunicathon recelver covering \(150-385\) ke／s，and \(510 \mathrm{ke} / \mathrm{s}\) to \(30 \mathrm{me} / \mathrm{s}\) ． In six bands．Bpectal featurus include＇3 RF＇
ntages，＇ 8 ＇meter．Variable selectivlty，B．F．O． ntage， 8 meter．Vatiable selectrilty，B．F．O．．．
ANL，AGC， 500 re crystal colibrator，slide rule vernier dial with \(\operatorname{logging}\) seate．Operation for
\(95-130 \mathrm{v}\) ，and \(195-250 \mathrm{v}, ~ A . C\) ．Out appeaker or linc．Offereal in ercellent cortuptions fully tesied and guaranteed．£60．carr．30／－

ERSKINE TYPE 13 DOUBLE BEAM OSCILLOSCOPES Timelarae 2 c／a． \(750 \mathrm{kc} / \mathrm{s}\) ．Sejarate Y1 and Y2 and \(1 \mathrm{Mc} / \mathrm{s}\) ，J \(10 / 230 \mathrm{~F}\) ．A． C ．Quaranteel prro feet \(£ 27 / 10 \%\) ，rarr． \(20 / \%\)

\section*{350 MA R．F．METERS}

2in．mund．Plug in type，8／6．P．P．1／6．
12 VOLT TRANSFORMERS
 38／6．Post extra．

\section*{L．T．TRANSFORMERS}

200／250 volt Primaries． 9 or 17 volt 1A 9／日；
 \(4 \mathrm{~A} 27 / 6 ; \quad 5 \mathrm{~A}\) 37／6： 50 volt 1 A 13／6； 1 A
15／6； 3 A
\(29 / 6\) ．

L．T．METAL RECTIFIERS BELENIUM FULL wave bridge．

\(\qquad\)
EMI WMS CONSUL OSCILLO．
SCOPES
Avaitableas new．Guaranteel perfect order．\(£ 65\)

\section*{AUTO TRANSFORMERS}

Atep up or atep down．Tappel 0／11bpeno／上3日／

 （＇Onaw．tapped 0／110；230v．）Ponst extr
\(\frac{(\text { Only tapped 0／110／230V．）Pont extra．}}{\text { NATIONAL H．R．O．DIALS }}\)
Brand new \(27 / 6\) ．P．P．1／6．
IIFT．COLLAPSIBLE WHIP
AERIALS
Brand new 8／6．P．P． \(2 /\) ．
MINE DETECTOR No．4A
Will detect all typen of metala．Pully purtable Cowpact．with instructions \(39 / 6\) cavels．C 10／－．Rattery \(8 / 6\) extra．

\section*{VARIABLE VOLTAGE} TRANSFORMERS Brand New Guaranteed Fully shrouded．Input 230 \(50 / 80 \mathrm{c} / \mathrm{s}\) ．Output 0.260 v
1 amp．．．．£4 10／－
2.5 amp．
\(58 / 15 / 6\)
 8 амир．．．．．\＆9／10／－


MARCONI TF II4G／4 STANDARD SIGNAL GENERATOR
\(85 \mathrm{holn} .25 \mathrm{Mc} / \mathrm{a}, \pm 1 \%\) ：Output variable trom \(1 \mu \mathrm{~V}\) to 1 volt．Internal sine wave modutation \(400 \mathrm{c} / \mathrm{m}\) up to \(75 \%\) depth．Operation 200／250 volts A．C．Offered in really excellent condition，like vet，tully teated and graranteed．e25，carr．30／－

LAFAYETTE＇PRECON＂AMATEUR PRE
SELECTOR CONVERTOR
Convertor－20－15－10 metre．Pre－electar－80－40－20－15．10 metrem Cryotal conkrolle d－2 RF Btayes．who－250

LAFAYETTE TE－46 RESISTANCE CAPA CITY ANALYSER a PF－2，000 MFD． 3 ohnus． 2000 megohras．Also，check im－ 215，carr． \(7 / 6\)


MIne： 20 mpa tn \(200 \mathrm{ke} / \mathrm{ha}\) ．on
thandIf，Kquare： 20 cpa 10

 LAFAYETTE TE－20A



MAIN LONDON AGENTS FOR CODAR EQUIPMENT


COSSOR 1035 DOUBLE BEAM OSCILLOSCOPES
\(4 \mathrm{~m} . \operatorname{C.R}\) ．T．Ceubbrated YT Amplitier imm 80 mV ． to 60 F．bald whith in \(\mathrm{Mc} / \mathrm{s}\) ．Callhrated is
 time measurement from 1hume．to 130 millimecs． Bupplied in guaratiteed perfect working order． f35．Cantr \(20 / \%\) ．

MODEL DA．I TRANSISTORISED FULLY AUTOMATIC ELEC

carporates bullt－in monitor oacillator，
mpenker and keytny npraker and keying
lever．Fully adjunt．
\(\qquad\)
 ahde meede mivigg efther nutop，weni autn，or


NOMBREX EQUIPMENT
 Trimer mynare wave，£16／18／－ 160 ke／n－

 Transistorised Inaluction bridge 1 \(\mu \mathrm{H}\)－100H．







PAGE

\section*{WITRTE M MTP ETc}

THE SKYROVER \& SKYROVER De Luxe
GENERAL SPECIPICATIONS FOR BOTH MODELS
adranhtior and 2-dimit mpener- manh portable receiver, coveritis the
 Band spreas Tunting for aecurate slation actection, j.F. irequency 470 Kelm Output 500 M. W. 5 In. Ceramic Shenel P. M. Speaker. Te lesoopic sud Internal Ferrite

 Opepater on four 1.54 . torch baterites (
NOW-THE SKYROVER MK. III


 TME SKYROVER DE LUXE
olne \(11!\times\) if \(x\) 3in., covered in wablable tnatertal with plastle trim and carrying MAY NOW BE BOILT FOR \&10.19.6 H.P. Terms: \(25 /-\) dep, and \(\mathbf{L}\) miths All parts sold separately.

\section*{OUTSTANDING TAPE RECORDER BARGAINS} REFLECTOGRAPH MODEL A SEMI-PROFESSIONAL TAPE RECORDER


 fieted; inputa for microphonr and rallo/ pich-up. The remorder in linished in grey and is mounted on free.standeng makogany plinthsize: \(20 \times 16 \times 9\) In. Liss prloe of this Recorder is \(£ 110 / 5 /\)
WIRECOMP'S PRICE 69 GUS. Curr. and Ine 20/-extra. FEW ONLY-Carrying Cabes tor the keflecto OPTIONAL EETRA-PAMPEONIC VR 53 STUDIO RIBBON MICROPBIONE fx use with the Reflectorraph Micdel A Reoorder. Loe Impolanoe. ILtated at \(£ 9 / 196\).
WIRECOMP'S PRICE \(24 / 196\).

\section*{ELIZABETHAN TYPE LZ 511 STEREO TAPE RECORDER}


 uding apeakreas \(25 \times 13 \times 8\) sia. Maker'e orivianal List Prioe 65 Gns .
WIRECOMP'S PRICE 39 Gns.
PAMPHONIC 3001 INTEGRATED

 ancketa for tape recorfing: volume, bass, treble and balance con ousing sise \(13 \times 10 \times 41 \mathrm{in}\). Maker's list price \(£ 38 / 10 \%\) WIRECOMP'S PRICE 23 Gns. Pow 10 .
PAMPHONIC 732A SWITCHED
 powered-3 valves. For \(200 / 250 \mathrm{v}\). A.C. Filted with tome and

WIRECOHIP'S PRICE \(\mathrm{E}_{2}\).19.6
PANPHONIC 1002A CONTROL
 WIRECOMP'S PRICE £4.19.6

PA
 phone with pre-set titel coneron. WIRECOMP'S PRICE £5.19.6

PAMPHONIC 1002B PUSH BUTTON CONTROL UNIT/PRE ANP

every ing chatant re-
With reparate Inputs or radio, tape and mic. Man. output
1 volt. Unpuwered. Volume, bass, treble and fitter emitrols. WIRECOMP'S PRICE E6.19.6

PAMPHONIC S1 SPEAKER UNIT Cabinet type for ward facing
syitem. Fitted with \(10 \times 8 \mathrm{in}\). cllptical rlouble with \(10 \times 8 \mathrm{in}\). Wood cabinet size \(15 \times 12 \dot{x}\)
11 in., thisheal in medlum llin., thished ho medlum WIRECO P'S PRICE \&4.19.6


\section*{LEAK POWER ANPLIFIERS}

For \(200-250 \mathrm{v}\). A.C. malns. Fitted with integrated volume, hass TL25 Plos TL50 Plus Wirecomp' Price 15 gns Carriage and Paching \(\overline{\text { of }} / 6\) extra on each.

\section*{PAMPHONIC 100W RACK MOUNTING AMP} For \(200-250\) v. A.C. mains. All controls fitted. 100 V . line source Very limited stock.
 £1 extra, All parte available separately. Dhta and REAOY BUILT TRANSISTOR RADIO OFFER THE "STELLA" By famous maker-
7 transtistor portable radio. Hifh sena. sitivity. clroult Covering Longs,
Med.. and ghore Med. and Short
watclonds. Pitted
with tone witch with tone witch and sockets for personal earphone and external uerin
Buils-in chrome tulescople aerial. Powerml by four 1.5 F . torch batts. Attractlve plasile eabiuet in belge and red, aize \(4 \times 7 \times 1 \frac{1}{2}\). Fxcellent tone צin. p.m. speaker. Full maker's guarantee. List pricc 17 gn WIRECOMP'S PRICE \(\$ 9.19 .6\)

\section*{COM UNICATION RECEIVERS} MODEL HE 30 -PRICE 33 Gns. PRICE 25 Gns.


MODEL HE 40-PRICE 19 Gns.
 MODEL HE 80-PRICE 59 Gns.

 Cor Nodele EE to and 8 .

INTERNATIONAL TAPE
 "VIKING" GUITAR/P.A. AMPLIFIERS \({ }^{4}\) Tra osistor 50 " -50 wat ts, fully transistorised wit tremolo 30 w- 30 watt valve model, 8 inpats. Matching Speaker syste on for the "Viking amplifiers
Full detalls nnd illuetration see March oi w.... 33 Gns

VaLVES

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\

\end{tabular}} \\
\hline \\
\hline \\
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 6．AM5 2／8 & GLD 20 5／9 \\
\hline TiAMH 4／－ & 6x7 ．．．6／－ \\
\hline GAQS 7－ & 8N70．5／9 \\
\hline 6AQSIV \％／－ & 6970 ．．B／－ \\
\hline 6AEA 4／－ & 687 ．． \(5 / 6\) \\
\hline BA日BW \％－ & 48A7 ．． 7 \％ \\
\hline 6ab7e 20／－ & 88A70T 8y6 \\
\hline 6AT6 ．．3／8 & 68 CO 7／－ \\
\hline 6AV6 7\％－ & matiot 8i－ \\
\hline 6AX4 8i－ & 1897 ．．5／－ \\
\hline \(687 \ldots\) & 681700\％ \(6 / 8\) \\
\hline 0B8G＿．\({ }^{\text {a }}\)／8 & 68H7 ．．31－ \\
\hline BBAB ．．4i－ & 6成7\％．5 5－ \\
\hline 6BA7．．S／－ & 68JTGT 5／6 \\
\hline 6BE0 ．．．4／3 & RSJ7Y \(0 / 6\) \\
\hline \(6 \mathrm{BJ7}\) \％／－ & 68k7．．4／6 \\
\hline 6BR7 9／－ & 68L／ET 8／6 \\
\hline 6BW8 \(9 /\) & B8N7 ．．3／8 \\
\hline 6C4 ． \(2 /=\) & 6897 ．．6i－ \\
\hline 6С50 9／8 & 48577 ．．8／－ \\
\hline bCEAT 6／－ & 6440T 8）／8 \\
\hline 6C6 ．．4i－ & 4vent ． 8 \％ \\
\hline 6C80 ．． \(3 /-\) & 6vact 5／b \\
\hline \(6 \mathrm{CsO} . .3 \%\) & 656M 8／－ \\
\hline \(6 \mathrm{C21} \mathrm{80/-}\) & 8X4 3／8 \\
\hline ACH6．．4／6 & 6．50 \(51-\) \\
\hline GCLE ．．\({ }^{\text {\％}}\)－ & 6x60T 5／3 \\
\hline 8D6 ．．．3\％－ & BYFit b／－ \\
\hline 0E5 ．．8／－ & 8．3012 101－ \\
\hline 6 FSO 5／3 & 67／4 ．． \(5 /\) \\
\hline 6F5GT 5／9 & 787 ． 716 \\
\hline 6F6G ．． 4 － & 7C5 \(\therefore 10 /\) \\
\hline BFT ．．8／－ & 7 CB ．．7／－ \\
\hline 6F8G．． \(8 / 6\) & 7c7 ．．6／－ \\
\hline 8P19 ．－／8 & 7187－． \(7 / 3\) \\
\hline 6F13 ．．5／－ & 707 ．． 71 \\
\hline 6 F 17 ．．5\％ & 717 ．．51－ \\
\hline 6F32 ．．．4i－ & 734 ．．4／6 \\
\hline \(6 \mathrm{F33}\) ．．3／－ & \(\mathrm{OD2}^{2}\) ． \(8 / 6\) \\
\hline 20480 \(2 / 8\) & 9D2 ．．8／－ \\
\hline 8H1 ． \(6 / 8\) & 9D6 ．．3／6 \\
\hline 6H631 1／6 & \(11 \mathrm{LK3} 35 / 8\) \\
\hline 6J4WA 10／－ & 12Ad ．． 26 \\
\hline 6J5G ．．2／－ & 12AH7 5／－ \\
\hline 6J6 ．．3／\(\beta\) & 12AH8 11／－ \\
\hline 6J6W ．．68／ & 12AT7 4／－ \\
\hline －6J76 ．．8／－ & 12AU7 3／ \\
\hline 637 M 81－ & 12AX7 8／－ \\
\hline 6KGGT 5／8 & \(12.4 \times 7\) 10／－ \\
\hline 6870 8／－ & 12BAM \(5 / 8\) \\
\hline \(6 \mathrm{K7OT} 4,9\) & 128E6 7／－ \\
\hline \(6 \mathrm{~K} 80 \quad 3 \downarrow\) & \(128 \mathrm{H7} 710\) \\
\hline 6K8GT 8／3 & 1208 3／－ \\
\hline 6K8M 8／6 & 12H6 ．．\％－ \\
\hline 6 K 25 12／－ & 12JsGT \(2 / 6\) \\
\hline 6Lsa 8／－ & 12374T 8／6 \\
\hline 6L6\％．．B／－ & 12R7GT 2／－ \\
\hline 6Lboa 7／6 &  \\
\hline 6 LTO ／－ & 12\％AT 7 ／－ \\
\hline 6L／84 ．．4／8 & 128 C 7 \\
\hline
\end{tabular}





MANY OTHERS IN STOCK Including Cathode Ray Tube and Special Valves．
All U．K．orders below \(\mathbb{C I P}\) \＆P． \(1 /=\) ：over \(\mathbb{L} / 2 /\)－：orders over \(\mathbb{Z}\) P．\＆P．free：C．O．D． \(3 / 6\) extra，Overseas Postage Exera at Cose．

\section*{MARCONI COMMUNICATION \\ RECEIVERS}

C．R．150．Frequency coverage \(2-60 \mathrm{Mc} / \mathrm{s}\) ，in 5 bands． Two I．F．s Isc \(1,600 \mathrm{kc} / \mathrm{s}\) ．2nd \(465 \mathrm{ke} / \mathrm{s}\) ．Image signal protecting over 40 dB up to \(30 \mathrm{Mc} / \mathrm{s}\) ．and \(20-40 \mathrm{~dB}\) from 30－60 Mc／s．Self－cheeking calibration（buile－in calibrator）．Seabilisation of supply and temperature compensation．Electrical and mechanical band－
spread．Metering and visual cuning indicator．Band spread．Metering and visual tuning indicator．Band pass from \(100 \mathrm{c} / \mathrm{s}\) ．to \(10 \mathrm{kc} / \mathrm{s}\) ．in 5 stages．Acoustic fifter associated with \(100 \mathrm{c} / \mathrm{s}\) ．Bandpass position for EW reception．Facilities for diversity reception．
Excellent checked condition，C49．Mains P．S．U．by Excellent checked condition， 449 ．
P．C．A．Radio， \(64 / 10 /\) ，carriage \(30 /\) ．
P．C．A．Radio， \(4 / 10 /\) ，carriage \(30 / \%\) ． \(1.5-22 \mathrm{Mc} / \mathrm{M}\) ．in
C．R．I50／2．Frequency coverage
4 bands，all other features as in C．R． 150 ．Price 4 bands，all other
635．Carriage \(30 /\) ．
SEALED HIGH SPEED SIEMENS RELAYS． \(1700+1700 \mathrm{ohm}, 15 / \mathrm{o}\) P．\＆P．1／6
DUMONT MODEL 241 OSCILLOSCOPE in fully working condition \(\mathbf{C 2 2} / 10 \%\) ．P．\＆P．30／．
＂CONNECT AND FORGET，CANNOT OVERCHARGE＂＂EESSTRON＂MA
AUTOMATIC BATTERY CHARGER．
Initial charging rate \(6-7 \mathrm{amps}\) ．The charging rate automatically adjusts itself to the charge in the battery．Automatic surrent and voltage control．
Patented application of magnetic amplification to battery charging．Indicator Ilghts show batsery ted or faulsy cells．Mains volage \(200 / 250 \mathrm{v}\) ．Built for 6 or 12 v ．batteries．Measurements \(7 \times 5 \times 5 \frac{1}{5} \mathrm{in}\) ． Weight \(8 \frac{1}{3} 1 \mathrm{~b}\) ．Price \(\mathrm{f7} / 19 / 6\) ．P．P． \(3 / 6\) ．
POWER SUPPLY \＆L．F．AMPLIFIER UNIT NO．3．Input \(12 \mathrm{v}, 3 \mathrm{mmp}\) ．Output \(145 \mathrm{v}, 50 \mathrm{~mA}\) ． Synchronised vibrator and extremely efficient smoothing．Stabilized heaters supply．Valves， radio，etc．Diagram supplied．Brand new，37／6． P．\＆P．8／
H．R．O．SENIOR TABLE MODEL in excellent， fully checked and tested condition together with s28．Carriage 8 Packing \(30 /\)－．
NEW DHR．HIGH－RESISTANCE HEAD． PHONES． \(14 /\)－．P．\＆P． \(1 / 6\).

\section*{WELL PROVEN RELIABLE COMMUNICA．} TION RECEIVERP．C．R． 2.

（Made by Pye）． \(120 \mathrm{kc},-350 \mathrm{kc} .525 \mathrm{kc},-1,600 \mathrm{kc}\) Mc． 22 Mc．Overall sensitivity \(1-2 \mu V\) ．S／noise ratio 10 dB at \(6 \mu \mathrm{~V}\) ．Circuit incorporates an R．F． stage，two 1．F．stages，tone control，A．V．C．antenna trimmer， 6 V6 outpul set in fully working condicion rogether with headphones and speaker plug． ［7／12／6，carriage 15／．Ditco but with built－in powe supply for \(210 / 250 \mathrm{v}\) ．A．C． \(8 \% / 19 / 6\) ．Carriage \(15 /\) CAREON INSET MICROPHONE．G．P．O． ypes 2／6．P．\＆P． \(1 / 6\) ．
TELEPHONE HANDSET．Standard G．P．O ype，new 12／－。P．\＆P．2／－
Large selection of mains and Heavy Duty L．F RANS

\section*{EVERSHED MEGGER CIRCUIT TESTER} 2 ranges． \(0-1,000\) ohms． \(100-200,000\) ohms．With P．\＆P． \(3 / 6\) ．
VARIOMETER for No． 19 set，17／6．P．\＆P．3／－： AR88D RECEIVERS．Fully reconditioned，G55， rebuilt models 685．Brand new 495．Carriage paid U．K．

\section*{P．C．RADIO LTD．}

170，GOLDHAWK RD．，W． 12
SHEpherd＇s Bush 4946

ULTRA MODERN POWER SUPPLY UNIT． ULTRA MODERN POWER SUPPLY UNIT．
Supply voleage A．C．： \(105,110,115,200,205,210\). Supply voleage A．C．：105，110，115，200，205， 210
\(220,225,230,240,245,250 \mathrm{v}\) ．Available voltages D．C．
（a） \(1700-2050 \mathrm{v}\) ．（adjusta ble）approximately 90.5 mA （b） 600 v approximately 60 mA ．
（c） \(260-350 \%\) ．（adjustable）approximately 25 mA ．
（d） 450 v ．approximately 30 mA ．
All voleages are stabilised， 5 valves， 7 silicon reeti－ fiers， 4 Solenium HV rectifiers．Brand new \(\$ 9 / 10 /-\)
Carriage 12／－
VERY HIGH CLASS COMMUNICATION RECEIVER TYPE BRT 402E． \(150 \mathrm{kcs}-385 \mathrm{kcs}\) ． 510 kcs．-30 mcs．Fully cested 680 ．Carrlage \(30 /-\) PANEL METERS（round）
\(0-50\) mierosmpa
\(0-100\) microampa
0－900 microampa
0.1 mA ．
\(25-0-2 \mathrm{sin}\).
500 mA.
500 mA ．
0.100 mA ．
0.100 mA.
\(150-100.1 .500 \mathrm{~mA}\) ．
0.100 m

150－0．1．2．

\section*{0．07v．
0.16 v ．
0.80 v ．}
\(\mathrm{O}-150 \mathrm{~F}\), ．
0.10 k ．

\section*{STABILISED POWER SUPPLY UNIT TYPE} R 1095 （EDISWAN）with 2 independent outpues． 1．D．C． \(120-250\) v． 50 mA ，metered and regulared． 2．A．C． 6.3 v．C．T． 3 amps ． Stabilicy \(0.02 \%\) ．Price cl8．
STABILISED POWER SUPPLY UNIT TYPE R 2001．（EDISWAN）with． 2 independent＇outputs． 1．0－100 v． 50 mA metered and regulated by coarse and fine adjustmenes．2． 250 V ．Bias at 5 mA ． Stability 0．02\％．Price ElB．
WIDE RANGE MULLARD VALVE VOLT METER TYPE E \(7555 / 2.100 \mathrm{mV}\)－ 500 V ．D．C．or A．C．peak from 35 c .605 mc ，additional range 500 v ． to 15 kc ．D．C．or peak A．C．Frequency response
with probe is lever from 35 c ．co 100 mc ．Power with probe is lever from 35 c ． 0.100 mc ．Powe
supply \(110 / 245 \mathrm{v}\) ．A．C．Price \(£ 25\) ．Carriage fl ．

\section*{KEEPING}

\section*{THE SWIM \\ - ELECTRONICALLY}


Improved accuracy and immediate print-out of results are advantages of an electronic swim timing apparatus described in April Industrial Electronics, now on sale-one of many articles showing how electronics can improve speed and efficiency in all types of checking, measuring and control operations. Industrial Electronics is vital to all who must use electronic methods in industry to meet ever-increasing competition. Other articles in the current issue are summarised on right; May issue will include a feature on monitoring carferry loading with closed-circuit TV.

ALSO IN APRIL ISSUE:

\section*{Automated Forge Hydraulics}

Special equipment which-developed for automatic control of forging-has led to a great reduction in the number of times the work has to be reheated.

\section*{Weighing in Industrial Processes}

Automatic weighing-including automatic control of feed and discharge with a weighing hopper.

Electronics in Textile Machines
Control system for accurate maintenance of bobbin speed, essential in the cotton industry.
\[
\begin{aligned}
& \hline \text { ILIFFE ELECTRICAL PUBLICATIONS LTD. } \\
& \text { DORSET HOUSE, STAMFORD STREET, LONDON, } \\
& \text { S.E. }
\end{aligned}
\]

Please supply INDUSTRIAL ELECTRONICS monthly. I enclose 12 months' subscription of \(£ 3\) (overseas \(£ 310\) s, U.S. and Canada \(\$ 10\) )

NAME
INDUSTRIAL
ADDRESS

\section*{ELEGTRONIGS}

COMPANY
DATE


Designeal for Hi-Fi reproduction of
reconia. A.C. mains operation. reconin. A.C. maine operallon.
lleady bult on plated heavy gauge liendy built on plited heavy gaug
nietal chasels, wize tha. w. \(x\) tin. d. X Ahin. h. Mheorporates duty. doable vooumi malns trans-
former and output transtormer matched for 3 olam spruaker, separmer Negative reelback line. " Output of watis. Fromt payel can
 etc., wired and tested for ouly \(\mathbf{f} 4 / 5 /=\).
STEREO AMFLIFIER

HIGH GAIN 4-TRANSISTOR PRINTED OIRCUTT AMPLIFILR KII Type Ta
- Reak output
- All shazdand mritiah compon-
- Bulle on prinaize if \(\times 3\) ln.

Oenter
put transformers. tor 3 ohms and 13 olum ajpeakern. - Trannistors (GHT 114 or 81 Fullard OC81D and matcher pair of OC81 o/p.). 4 volt opern-- (bompehenaise eamy to fodlow inntructions and circuif elin 4:3m 1/6 (F'reo with \(\mathbb{K}(t)\) ). All parts muld mepamely. SPECM Price \(45 \%\) P. \& P. \(3 \%\) Abo remly butfe and teated, \(58: 6\)
Lumiteni number at EMM.I. 4 - SPEED SINGLE RECORD With unit mounted pick-up. Incornoritin pecia! leatures: Heavy 8 j . metal turniable tollowing perlormance shaded pole motor tor 200 zs 0 v. A.C. with 80 V. tap. Latest ultra libhtweixht pickup ( 5 grammes trackiag weight) Fixh o/p mono ceramic cartriake. Autoston. Overall moter
2iv. above. UNREPEATABLE OFFER AT

4-SPEED PLAYER UNIT BARGAINS
All brand new tu thaker original parkling:
SINGLE PLAYERS
 Carr. 5/9.
Carr. \(5 / 6\).
AUTO. CHANGERS

B.s. IB. UA1S \(886 / 28 / 6\) H.s.R. UAin

GARRABDATo
OARRABD Auto-sin \(\begin{array}{rrr}26 & 2 & 6 \\ 26 & 8 & 6 \\ 88 & 8 \\ 210 & 10 & 0 \\ £ 610 & 0\end{array}\)
All the ahove unita are complete with t/0 mono head with sap. phire ntylf or cen be nupplied with stereu homel at \(12 / 6\) extra. BRAND NEW CARTRIDGE BARGAINS:
ACOS 71-5. Bingleovided Crymal Cartridge for Stereo and L.P.
 GARRARD OC3 Mono complete. Llat prive \(24 / 11\). Our Price 18/6. P. A P. 1/- 105 CARTRIDGE. Btereo/t/P/78 complete RONETTE STEREO 105 CARTRIDGE. Btereo/LP/T8 complete
with two npphirce. Orighal list prho \(67 / 8\). Our Priee 24/with tro anpphires. Orighal list prhe 87/8. Our Priee 24/-.

\section*{QUALITY RECORD PLAYER AMPLIFIER}

A top-qualiy record player amplitier. Thit ansplitier (which Is unet in a 29 gm . Recond player) employn heary duty double wound maina trasisformer, BOCiss. FLSH, Nzso valves. Separate hase, trehio and volume ernemols. Complete with out put Iratig-
 AuBO AVAILABLEB moumted on boaril with outpnt transtormer
and fim. Epeuker realy to tit lipto eabluet below. PRICE \(89 / 6\). and Bin. speuk
P. \& P. \(8 / 9\).

QUALITY PORTABLE R/P. CABINET
Unout motor boant. W'ill lute above anplitier und B.8.R. or GARRARD Authchanger or single Hocord Fhayer Unilo

WAY NON-TANGLE TELEPHONE OA baek coll type, exterdy lidith to oft. Complete wish


Prectsion 6 -minute Delay Action Switcll, Clockwork aetuated. Mrection 6-mitute Delay Action Swich, Clock work aetuased.
 up to 13 anppat at es volt. Gutable fir photographic timer.
 OUR PRICE 10/- each.: P. \& P. I/6 (3 ux more prost tree). Bpecual qumatitions for quaniity.

10/14 WATT HI-FI AMILIFIER ITIT
A stylinhly quished mon-
nural amplifler with ad
Aural amplitler with an
outout of 14 wnits from
 Buper reproducthon on
binth inumbe and speeth, With nex lifitle spect him Beparate inposte for milke. rud gram allow records and anamuremsents th shrusiled acetion wound

ontput tranufoner to
H F nime cont robit and woparate lass and treble controls are prorided


 dard Inyut arkets. £8/15
VYNAIR \& REXINE SPEAKER \& CABENET FABRICS,
 A WEW HARVERSON EIT FOR THE HOHE CONSTRUCTOR


TYPL AMPLIFIER KIT. +WATT USING BOCO3, ELAf, se80 Valutis.
Spectal features 8pectan features include: \(\$\) Heavy
duty double-wound matha trannformer with clectristatle mareen. t Reparate boas, troble and
volune cuntrols, giviug fully vartable bonat and e minlmum fumertion howa. Heavy negative feadback loop over 2 khages easuren high output at excellent quabity ith very low or record play cs. AProvisiou for remote mounthig of controls
 7 fin . wide \(x 4 \mathrm{la}\). deeg. Overall beight 4 lta . All conuponents enable even the incxperfeterell armatcur to conetrict with \(100 \%\) eureu the supplifed completo with valves, output tram. former ( 3 uhus only), werecenci lead, wire, nut, bolts, solder,
 Coruprohenaive circe


 chaned at oue thme £5/19/6, plus 8/8 P.P. and the CFireat


 SPECIAL PURCRASEA TURRET TUNERS
 9. circuit dlayram supplied. O\&il. \(125 /\)-caeb. R. \& P. \(3 / 8\) GÖRLER F.M. TUNER READ

\section*{\(88-100 \mathrm{Ma}\)
\(8 / 8 \mathrm{extra})\)}
B.S.R. MONARDECK (RIngle apexd) 3 Sing per men, thuple control,
 COLLARO STUDIO DECK, 3 motom, \& speedin. puab buttom oomitrol. Up to 7 in . spowis E10'10/

SPECIAL OFFER" BRAND NEW HEAVY DUTY 12 INCH SPEAKERS
 ciat saluruiulum frame. Theme are entrent production by, world fanoun masker and as they arv offered well beluw live prlee we arn not pretmited th dibullowe the mame.
LIMITED NUMBGR ONLY. UNLEPEATABLE AT \(89 / 6\). Also \(2 \pi \mathrm{w}\). gultar model afallable at e5/5/

\title{
 \\ EQUIPMENT CABINETS OF DISTINCTION
}


IMPERIAL
- Illustrated in this advertisement are two fine cabincts from the Lewis Radio Runge,
- These Cubinets are just iwo of a really extensive range.
- Eich one carcfully made by British Craftsmen and soundly constructed from the best materials available


LOWBOY

\section*{LEWIS radio}
- Fill in coupon below to obtain FREE catalogue showing this wonderful range or cabinets.


THE NEW LEWIS CATALOGUE Designed to assist your choice of cabinet. The new Lew is Radio Cabinet Catalogue -the most comprehensive cver prepared. Sent absolutely FREE
Please send your FREE 24-page cabinet catalogue
NAME
ADDRESS
(Dept W 5/65)
CAPLTALS PLEASE
LEWIS RADIO
100 Chase Side, Southgate, London, N1 4
Telephone: Palmers Green 3733/9666

\section*{GEE's TAPE!}

5In. Std. 600ft. 8/6 7in. Std. 1,200ft. 12/6

TENSLISED TRIPLE PLAY \(\begin{array}{lll}31 \mathrm{in.} & 600 \mathrm{ft} & 15 /- \\ \text { 4in. } & 900 \mathrm{ft} . & 17 / 6\end{array}\) Sin. L.P. 900ft. 10/6 5\%in. L.P. 1,200ft. 12/6 7in. L.P. 1,800ft. 15/4in. D.P. 600ft. 9/5in. D.P. 1,200ft. 15/5 fin. D.P. 1,800ft. 22/6 7in. D.P. 2,400ft. 25/P. \& P. 2/- per order (Over \(£ 3\) past ifee). \(\begin{array}{lrr}4 \mathrm{in} & 900 \mathrm{ft} & 17 / 8 \\ 5 \mathrm{in} . & 1,800 \mathrm{ft} . & 35 /-\end{array}\) \(57 \mathrm{in} .2,40 \mathrm{ft} . \quad 45 /-\) \(7 \mathrm{in} .3,800 \mathrm{ft} . \quad 58 / \mathrm{B}\) SPARE SPOOLS hin. 1/6: 31n. \(1 /-\) \(\sin ^{\text {in. }} 2 / 6 ; \quad 4 \mathrm{in} .1 / 8 ;\) \(\begin{array}{llll}5 \mathrm{in} . & 2 /-; & 53 \mathrm{in} . & 2 / / ; \\ 7 \mathrm{in} . & 2 / 6 ; & 8 \mathrm{tin} . & 4 / 6 ;\end{array}\) \(10 \mathrm{in}, 11 /=\)
SPECIAL DISCOUNT FOR TAPE QUANTITIES, Send S.A.E. for Tape list.
 EVERSHED G VIGNOLES. Wee Megger 100 r., with leather carrying case, good working order, \&6/6/-.
 EVERSHED \& VIGNOLES Series I1, 500 v . Megger in good ond. E18/18/. EVERSHED KEVIGNOLES MEGGER CIRCUIT TESTER (low reading ohm
meter). meter).
\(0-3, \quad 0-30\) ranges
ohm. Complete with I ather case and test leads. As new, \(£ 6 / 6 / \%\). Ditto \(0-500\), \(100-5,000\) ohnıs \(£ 6\).
E. \& V. BRIDGE MEGGER \(500 \mathrm{v}_{\mathrm{i}}\), with leather case Perfect working order, \(£ 40\).
G.P.O. DESK TELEPHONES Black, complete with bell, handset, standard auto dial. Guaranteed sound, ex-office equipment. Bargain price 35/- P. \& P. 3/6.


COLLARO "STUDIO" TAPE TRANSCRIPTORS. Brand new in original cartons. 3 speeds, 17, 3y, 7 1.p.s. 3 motors, digital counter, etc. Complete \(200 / 230\) v. operation. SPECLAL PRICE 10 GNS. Carr. paid.

\section*{MICROPEONES}

BM3 Crystal Stick, 39/6. P. \& P. 2/ PA. 46 Dual 1 mp . Dyamic \(84 /-\) P. \& P. \(2 / 6\). PA. 17 Studio Twin Crystal, 42/-. P. \& P. 2/6. Telescopic Floor Stand, 55/-. Carr. 5/Send S.A.E. for Microphone list.

\section*{WANTED FOR CASH! !}

Good quality modern P.A. Equipment, Test Equipment, Hi-Fi Equipment, what have youp Single items or quantities. Offers by return.
AUTO TRANSFORMERS. Step up, step down, \(110 / 115,220 / 230\) V. Fully shrouded terminal block connectors. \(150 \mathrm{w} .32 / 6 ; 300 \mathrm{w} .47 / 6 ; 500 \mathrm{w}\). 67/6; 750 w. 77/6; 1,000 w. 90/-; 1,200 w. \(117 / 6 ;\) 1,500
tspe.
G.P.O. STANDARD 18in. HEAVY DUTY EQUIPMENT RACKS
5itt. Gin. Angle Uprights, 25.
Bft. Channel Uprights, \(26 / 10 /\). Carr.
Carr. 6ft. Channel Uprights, \(£ 8\). Carr. 25/-.
7ft. Channel Uprights, 88 . Carr. Bith Heavy Duty Base

\section*{GEE bros. RADIO เто. \\ IS LITTLE NEWPORT STREET, LONDON, W.C.2. GER. 6794/1453 \\ Open 9-6 Mon. to Fri. | p.m. Sat.}

Adjoining Leicester Square Tube

\section*{SAVE £ae's AT GEE'S ! !}

\section*{P.A.EQUIPMENT}

We offer a full range of all Amplifiers, Transisto or Valve, from \(250 \mathrm{~m} / \mathrm{w}\) to 50 watts output, also Speakers, Horns, Mikes, Floor-Stands, Cabinets, suitable for all sound applications. A small selection below-may we quote for your requirements.
SUPER POWER LOUD HALER MODEL 2583. Hearing rance \(1,000 f t\). Lightweight self-contained portable, \(w\) ith detachable dynamic directionar type microphone with cardiod polar diaphragm. Fully Ideal for all outdoor events. Brand new and Ideal for all outdoor events.
guaranteed. PRICE 22 Gns.
JUNIOR MODEL " BULL HORN." Range \(200 f t\). PRICE 24/15/- complete.
RE-ENTRANT LOUD HAILERS (Ex. Govt.) Heavy duty 20 watts, all metal, 15 ohms. Dja. 15 in , length 15 in , (approx.). Brand new and boxed, 89. Carr. 10/-. Ditto reconditloned \(£ 6 / 10 /\). Carr. \(10 /\)-. EXPONENTIAL HORNS BY FAMOUS MAKER OF P.A. SYSTEMS 20 watt, 15 ohm speech coil, 30 in . long, 20 in . square \begin{tabular}{l} 
flare. Good condition. \\
\hline
\end{tabular}
 With 180 ohm line transformer and condenser. lmpedance \({ }_{71}^{2}\) ohms, handling capacity 8 watts. Complete in slopefront wooden case, \(30 /\) Carr. 5\%. (Spare diaphragms 12/6 each.)
VIKING TRANSISTOR " 50 ." Superb 50-watt amplifier for music, P.A., guitars, groups, etc. 4 inputs with mixing facilities plus reverberation. Output for 15 ohm speakers. A.C. 200/250 v. Output for 15 ohm speakers. A.C. 200/250 V.
operation. Size \(22 \mathrm{in} . \times 10 \mathrm{in}, \times\) (6in. Brand new and fully guaranteed. GEE'S PRICE 42 Gas. Carr. 7/6. VIKING SOUND 30. Valve model similar to above, but with 8 inputs and 4 separate volume controls. A.C. \(800 / 250 \mathrm{v}\). operation. Size \(20 \mathrm{in} \times 9 \mathrm{in} . \times 6\) in Brand new and fully guaranteed. GEE'S PRICE 32 Gns. Carr. 7/6.



MODEL 8 MK. III 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS.89.
Release notes and certificates of accuracy on request.
Suppliers of Elliott, Cambridge and Pye instruments.

\title{
LEDON INSTRUMENTS LTD
}

76-78 DEPTFORD HIGH STREET, LONDON, S.E.8. TEL.: TIDeway 2689
E.I.D. \& G.P.O. APPROVED CONTRACTOR TO H.M. GOVT. sWW-137 FOR FURTHER DETAILS.


\section*{GLADSTONE RADIO}

66 ELMS ROAD, ALDERSHOT. EAFTS. Addershot 22240 . ( 1 min . Irom station and Duses.) Closed Wednesdays.


\section*{NEW TRANSONA FIVE}

 Designed mount amperwensilive Eertite llod Arrial and new type the tore supurs dymunle 2 fin, sapeaker, utitraplive mee In grey plastio \(m\) Ith red grille. alve \(61 \times 4\) is iflin. appros.
Total coat of all parts NOW ONLY
\(42 / 6 \quad\) P. \& ‥ अ\%.
POCKET FIVE
\(\star{ }^{7}\) Stages-5 transistors, and 2 diodes. Covers Mritum and
 the mont expenslve radiow. Un tent. Home, Lisht, liaxemiourg Dealshed round superamiltivo fertite Monl Aerlal and Ine tone



Total cost of su parts Now ONLY


ROAMER SIX NEW!!
\(\star 8\) stages- 8 transistors and 2 diodes. \& 8 waveband. \& Now with Pliteo miero-alloy R.F. transistors. Llewn to stations half a world away with thin is waychand
 therlal and telcacogric acrlal for shors waver. Top grade transig-
 Total cost of all parts NOW ONLY \&3.19.6

\section*{} 5 WAVEBAND PORTABLE OR CAR RADIO AMAZING PERFORMANCE ANO SPECIFICATION * Als TOIRA. * 9 stages- 9 transistors and 2 diodes.

Covers M. ated L. Wavra, Tra wher hatid and two Short Waves mo approx, is uperres. Puah-puil outputhor room-rilling volume
 gianced tuning comienser. Fomite ron aerial for M. \& La
 Urea PP7 hattery avallahle anyw
\&5.19.6.


Posy buide plown \(3 /-\)


\section*{SUPER SEVEN}
+ 9 Staget- 7 transistors and 2 diodes. Corers M. and L. Waves and Trawfer Hamin. The ideal radion
 11se. Conuphetely portable-built-in ferrite rod aerial firt worderful receptlon. Apecial circuit Incorporating a \(\mathrm{Kt} ⺊^{\circ}\) stagen, puah-prill

Total cost of all parts NOW ONLY
£3.19.6

\section*{NEW!! TRANSONA SIX}

\section*{* 8 staces 8 transustors and 2 diodes.} A top performanee reoelver covering full M. \& T., Waves anml Trawler pleasure. Ferrite rod aerial. Many viat ions listed in ohe evening including Luxemhourg ioud and clear. Attractive came tn crey with


Total cost of all paris 59/6 A. P. \(3 / \mathrm{m}\).

\section*{MELODY SIX NEW!!}
\(* 8\) ataces- 6 transistors and 2 diodes. Our latest conjpictely phriable trankintar riulio eovering M. and L. wavea lacorporates procagged clrcuit board, 3lu. heavy duty speraker. top grade
trausintors, volume control, tuning condeneer, wave change nlldo wwitch, Bensitive fin. ferrite rod aurlal. Puih-pull nutput. Wion dertill recoption of B,B,C. Home and Punh-pull nutput. Non Comtinental wat hnas. Handsome beather louk, 208, and whany
 and whontler strane. approx. With gite spraker grille abd han plans 2/\%. Total cost of all rarta
£3.9.6
P. \& P\% 3\%
-

,
neveiwers man be purchoned
separately at prived stated.

Calters side entrance 8arratts Shos Shop. Weekdoys 9-5 p.m. Sots. 9-12.30.
New 209 Communication Receiver. Latest model \(1.20 \mathrm{Mc} / \mathrm{s}\). Input voltages 12.24115 and 230 . Complete with phones, aerial, etc. 623.
Earphones for 209 Receiver, \(10 /-\)
Spare Valve Kits for 209 Receiver Mark II, containing \(2 \times\) DF91, E.F.92, \(2 \times\) DAF91. C.V. 284 and DK91, \(1 \times 6 \mathrm{v}\). bulb, fuse and \(12 \mathrm{v}, 4\) pin Vibrator in useful meeal box, \(\mathbb{E l}\).
2,000 Loudspeakers. Sin. by leading manufacturers in attractivè cabinets. Useful as extension speakers, \(12 / 6\) each. 2 for \(22 / 6\).
Logic Units by Mullard, contains 2 transistars, type OC84, ferrite coils, resistances, condensers. Brand new, \(17 / 6\).
Timers by Chamberlain \& Hookham 1.30 secs., 44.
2 K.V.A. Variacs. Type 100 by Claude Lyons, Ex equipment, 69. Coil Winding Machines
Oscilloscopes, by Nagar. Mullard, ezc.
Vacuum Pumps, by Edwards, zype 1550, \(\mathbb{1} 12 / 10 /-\). 2550, 20. New 200/220v. Crompton Parkinson, \& h.p. Motor, 22/10/Oil Diffusion Pumps, by Edwards. Models 203 and 403, \(\mathbf{f 6}\). Counter Tubes, type G.S. 10/C/S, new, boxed. \(15 / \mathrm{m}\).
Spot Weld Heads, \(\mathbf{4 4 / 1 0 / -}\). Many types of transformers suitable for spot welding, also control units. Details on request.
Industrial Spot Welders, 1, 2, 4,50 and 70 KVA . Details on requese. E.C.H. Unit, by Rediyon, 7 kw .
Electric Solder Pots, various sizes.
Stoving Ovens, \(24 \times 24 \times 24 \mathrm{in}\). by Creda \& Barlow Whitney, 640 ea. Fan Heater and Cool Air Circulator. Wall mouncing 3 kw . Brand new by famous manufacturer. Usual price \(£ 9 / 9 /-\). Our price only ¢4/19/6.

\section*{M.A.C. LIMITED \\ Works: TROY ROAD, MORLEY, NR. LEEDS. Phone 2334}

Shop: 126, NORTH ST., LEEDS. Phone: 26026

\begin{abstract}
Telescople Aerial Masts. Tubular steel Copiperised spray finish ring cam locking on cach
 Bot tom mection 1 iln . dla. 201 tt . ( 4 sections). Clowed 5 ft . 9 in . Welght \(16 \mathrm{lb} 55 /\), caarr. 5 f .

Auto Transtormers 3 KVA. \(110 / 280\) ov. unountel In steel case with external hanal vultage regulator, American surplis. Brand New \(\mathbf{8 1 2 / 1 0 / - \text { , carr, } 1 5 / \text { ., }}\)
 Siemens Riph Speed Relays. 50 ohm +80 ohm type Bigh \(10 / 6 \mathrm{ca} ; 500 \mathrm{ohm}+500\) ohm type H96D \(10 / 6\) ea.i \(1, i 00\) ohm +1700 ohm type \(190 \mathrm{D} 14 / 6\) eas. Siemens Minature Reiays. 81 ze \(14 \times 1 \times 81 \mathrm{n}\). Rea. 700 ohm consumptlon 18 mA nn 1 g voltn.

 whed with moving cail mike, \(17 / 6 \mathrm{ca}\). Type DLARs hal. armature, \(9 / 6\). Blower Motori, IJeval ter car heaten, ete. IXx R.A.F. equipment, 12.24 volt, D.C., 38/6
 Preaure dauge. 2in. nound Brass rume 01601 lb .. \(9 / 6 \mathrm{pa}\).
Tannoy Loud Hailers. 8 uatt output. Enclowed in strong woded case, with tevel protec tion, \(27 / 6\) ea.
Carbon Hand Mike. With replacoable Insert, F/6 ea.
Ministure Plugs end Sockets. Jones type, \(8 \mathrm{way} 3 / 6 \mathrm{pr}\)., \(12 \mathrm{Way} 4 / 6 \mathrm{pr}\)

valsea par \(832,21 /\)-, carr. \(3 / \%\). Inverter Type 300 . juput 28 v. D.C. Output 40 v. A.C. 1000 eye. Siugle \(\mathrm{Ph}, ~ £ 3 / 10 / \mathrm{m}\) Motor Generator, Trpe 4 IB Input as v. D.C. Out put 80 5. 4000 cycle 2 kw .1 Ph . \&12


 Carpenters Type Relay 5EM52. 260 T. at i.2 ohn: 3,000 T, at 150 ohm; 3,000 T. at 250 ohm, complete with securing aprings aud pligg in base. \(15 /=\mathrm{cm}\). P. \& P. 1/:, G. E.C. type

Signal Generator, Type 106 covers \(5.5 \cdot 55 \mathrm{Mvg}\). complete la cartylng canc. Munf. Malford thests. £5/0/0. Carr, 10/-.
Brand New Faive Voltmetera E 7555 ;2. Meanuring range 0.1 to 15,000 D.C. or peak A.C.
 Trms: cwo.

SAE enquirien
SPECIAL OFFER
PIRE SALVAGE TRANSISTOR SETS
Long/nvedtum wave coverage undig \& shma transintore, Leather carrylng cane, \(30 / \mathrm{F}\).
\end{abstract}

\section*{B. S. RADIO AND ELECTRICAL STORE}

108 CHESTER STREET, BIRKENHEAD, CHESHIRE.

\title{
PRoOMPS Wark-apournd stape and MAIL ORDER SERVICE
}

52 Tottenham Court Road, London, W.1. - Open 9.6, including Sats., Thurs. 9-1 - LAllgham 0141


\section*{MINIDRILLS}

Precision tools for miniature
electronic
less than hull
Superb maniature Electric Drill Xits aftered at much less than hall
manufacturer's scllinz price. Designed to fit requirementa of manulacturer's seling price. Designed and toy maling. fowellery, dental. oplical and camera olishing. Britieh manufacture but utilising the pick of world amous German and Japanese motors. Brand new in manulacturer's cartons and complete wfth \(b\) driltmen, polinhing and erindin Type 6: Compact unit fitted with powertul anotor and totully encluwed in white plantic canday,
 Identhal in appesrance to Type b, hut fitted with nuve. powerful rovtor and anpplied with iwo aldithonal chuck colletes to aecept Inrger size tool nharike. Workn Irom amy \(4 \frac{1}{2}-131 \mathrm{~V}\). D.C.


\section*{SEMI-CONDUCTOR MODULES} lee cube size encapsulated circuits
\(\qquad\)
lowarhpeaker athd it turgohmi pothont iometer.
tumedlately trivgens acreaming myren alazm

sirlth triger mpmanl morech (or meel wwiteh


\section*{\(6-12\) volt BLOWER UNIT \\ 25}
self-cont:ined asoembly of compach, cont lipuoundry rated motor and encmes entrifugal fan. Smooth, silent rmaning and providing a powirful blint of


 unused onsulition.


FULL -H.P. MAINS MOTORS Continuously rated, silent running


 mowem, and other light machinery. Herary welised meel oun-隹


 never aned condition. fully guaranteed. Offered at a traetion of cost. \(65 /=\)


CYLDON A.M./F.M. PERME. ABILITY TUNER FOR ALL TRANSISTOR OPERATION

Size \(2 \frac{1}{2} \mathrm{in} \times 2\) tin. approx. By famous manufacturer. A.M.-I.F. \(470 \mathrm{Kc} / \mathrm{s}\). F.M.-IIF. 10.7 Mc/s. A.M. coverage from \(1,620 \mathrm{Kc} / \mathrm{s}-525 \mathrm{Kc} / \mathrm{s}\). diagram 2/6. FREE with Tuner. 1st!! 2nd, 3rd A.M.-1.F.'s 1st, 2nd, 3 diagram 2/6. FREE with Tuner. 4 Fh. F.-I.F.'s V.H.F. Osc. choke A.M.F. trap. All the above are the R.F. end of an AM/FM receiver car radio, cte. The above atems. R.F. end of an AM/FM receiver car rad 2.10 .0
itec. 10.0

\section*{BSR MONARCH UAI4 With FUL-FI HEAD}

4-speed, plays 10 records, \(12 \mathrm{in} ., 10 \mathrm{in}\). or 7 in . at \(16,33,45\) or 78 r..p.m. Intermixes 7 in ., 10 in . and 12 in . records of the same speed. Has manual play position: colour, brown. Dimensions: \(12 \frac{1}{2} \times 10 \frac{1}{2} \mathrm{in}\). Space required above baseboard \(4 \frac{1}{2} \mathrm{in}\)., below baseboard 2 zin. Fitted with Ful-Ficurnover crystal head, E5/19/6. P. \& P. \(6 / 6\), B.S.R. UA16, similar to the above, E6/12/6.P. \& P. 6/6. B.S.R. GUT, 4 -speed, single player, complete wish pick-up on uniplate with automatic switch \(£ 3 / 19 / 6\). P. \& P. \(5 / 6\).

FLUORESCENT LIGHT KIT


TWIN 40 CHOKE insta
bi-pin \(200 / 250 \mathrm{v}\). holders.


50 v. D.C. Input. Outpus 240 v. A.C. 40 Wates incorporating transformers, choke, condensers and 2 Get 573 . In solid 16 gauge Alumintum Case size 15 in . \(\times 6\) in. \(\times 2\) tin. by \(19 / 6\) plus \(6 /-\)
famous manulac. turer.


FLUORESCENT LIGHT FITTING


RING BURGLAR ALARM A.C. Mains \(200 / 240\) volt. Fire salvage slightly tarnished.
Lise price 7 gns. Our price complete with double gong bell; five miero switches and full instruc.
49/6
P. \& P. 4/


SILICON RECTIFIERS 250 v . P.I.V. 750 milli-amps. Six for \(\mathbf{7 / 6 d}\). post paid.

R\& TV


\section*{FIRST QUALITY PVC TAPE}

57 in . Sed. 850ft. ... \(9 /-\quad\) Sin. D.P. 850ft. ... 10/6 7 in . Sed. 1200 ft . ... 11/6 3in. T.P. 600ft. ... \(8 / \mathrm{m}\) 3 in. L.P. 240 re. ... \(4 /-\quad 5 i n\). T.P. \(1800 \mathrm{ft} . . .20 / 6\)

P. \& P. on each \(1 / 6,4\) or more pose free

6-VALVE 15 WATT
PUSH-PULL AMPLIFIER \(15 \times 7 \times 1 \frac{1}{2} \mathrm{in}\). A.C. mains \(200-250\) volts. 4 inputs with controls for same and bass and treble lift controls. Tapped for 3 and 15 ohm speakers. Extra H.T. built and tested, 7 gns. plus \(12 / 6\) P. \& P.


\section*{POWER SUPPLY KIT}

In metal case, size \(3 \frac{2}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} . \times 2 \mathrm{in}\). Incorporating mains transformer, rectifier and condensers. 230/250 A.C. Mains P. \& P.

TWIN 20 CHOKE instant start complete with 4 bi-pin \(200 / 250 \mathrm{v}\). hoiders.
\[
\begin{aligned}
& 11 / 6 \text { P. \& P. 4/- } \\
& 17 / 6 \text { P. \& P. 4/- }
\end{aligned}
\]

variable A.F. output. Incorpo variable A.F. output. Inc
Accuracy plus or minus \(2 \%\) \(\begin{array}{ll}\text { accuracy plus or minus } 2 \% & £ 7 / 5 / 0\end{array}\)

3 to 4 WATT AMPLIFIER KIT comprising chassis \(8 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} . \times 1 \mathrm{ln}\) Double wound mains transformer, output cransformer. Volume and tone controls, resistors, condensers, etc. 6 V6 ECC81 and metal rectifier circuit \(1 / 6\) free with kit. \(29 / 6\) plus \(1 /-\mathrm{P}\). \& P.

POCKET MULTI-METER. Sizes \(3 \frac{1}{2} \times 2 \downarrow \times 1\) in. Meter size \(2 \downarrow x\) 1/in. Sensitivity 1,000 OPV on both A.C. and D.C. A.C. and D.C. current 0.150 mA . \({ }^{\text {vole }}\) Resistance current 0.150 mA. Resistance prods bazeery and full instructions. pro/6, Plus \(1 / 6\) P. \& P.

\section*{FIXED FREQUENCY}

\section*{SIGNAL GENERATOR}

Crystal control in metal case, size 10 inf. Crystal control in metai case, size
\(\times 6 \mathrm{in}\). \(x\) in. Incorporating 2 FC 13 valves. \(\times 6\) in. \(x\) in. Incorporating 2 fC13 valves, mains transformer, metal rectifier, choke, indicator lamp, crystal and numerous components. Modulated and unmodul.T.V. frequencies. Brand new. 39/6 plus 6/-P. \& P. A.C. Mains \(200 / 250\) volts.

\section*{SIGNAL GENERATOR}

Covering \(100 \mathrm{Kc} / \mathrm{s}-100 \mathrm{M} / \mathrm{cs}\). on fundamencal and \(100 \mathrm{Mc} / \mathrm{s}\). so 200 \(\mathrm{Me} / \mathrm{s}\). on harmonies. Metal case \(10 \mathrm{in} . x 6 \frac{\mathrm{zin}}{\mathrm{in} .} \times 5 \mathrm{tin} .\), grey hammer finish. Incorporating three miniature valves and metal rectifier A.C. mains \(200 / 250 \mathrm{v}\). Internal modulation of 400 c.p.s. to a depth of \(30 \%\) Modulated or unmodulated R.F. output continuously varlable 100 millivoles C.W. and mod, switch,
\[
\text { Poss and packing } 6 / 6 \text { extra. }
\]
\begin{tabular}{|l|} 
S0 MICRO. \\
AMP. METER \\
Movene by \\
world-famous \\
manufaceurer. \\
Size 3in. x 2 zin. \\
25/-plus \(1 / 6\). \\
P. \& P.
\end{tabular}


\section*{SPEGIAL OFFER—Power Supply Kit}

To purchasers of "Elegant Seven" parts, incorporating mains transformer etc. AC mains \(200 / 250\) v outpnt 9 v \(100 \mathrm{~mA} 7 / 6\).

\section*{the "Elegant Seven"}

Combined Portable and Car Radio The Radio with the "Star" Feotures
* 7-transistor superhet Output 350 mW .
* Two-tone grey wooden cabinet. fitted handle with silver-coloured fittings, size \(12 \frac{1}{\mathrm{ln}} . \times 8 \frac{1}{2} \mathrm{in}, \times 3 \frac{1}{3} \mathrm{in}\).
* Horizontal cuning scale, size \(11 \frac{1}{4} \mathrm{in}\). \(\times 2\) in. silver with black lettering.
* All stations clearly marked.
* Ferrite-rod internal aerial. t IF \(460 \mathrm{kc} / \mathrm{s}\).
t Operated from PP9 battery.
* Fully comprehensive instructions and point-to-point wiring diagram,
* Printed circuit board, back-printed with all component values.
t Fully tunable over medlum and long waveband.
+ Car aerial socket.
t. Full after-sales service.

RADIO AND T.V. COMPONENTS (ACTON) LTD.
21A, HIGH ST., ACTON, LONDON, W.3.
Goods not despatched outside U.K. All enquiries S.A.E. Terms C.W.O
SHOP HOURS \(9 \mathrm{a} . \mathrm{m} .-6 \mathrm{p} . \mathrm{m}\). EARLY CLOSING WEDNESDAY



CARRIER FREQUENCY SHIFT
ADAPTOR. This modern equipment of recent manufacture is in excellent condition and suitable for operation will most Service Receivers. IF frequency adjustable internally \(445-475 \mathrm{kc} / \mathrm{s}\), The adaptor will operate two independent Teleprinters Power supplies A.C. mains 230 v . or 24 v D.C. Price \(£ 12 / 10 /\), Carr. \(25 /\).

RELAY UNIT. G.P.O. 600 types 5 relays 150 ohm 1 set C/O., and 5 relays 400 ohm 2 M . 1 set C/O., in metal box \(8 \times 6 \times 5\) in, \(\mathrm{C2}\), post \(5 /-\) FACSIMILE KEYER UNIT KY 75 SRT, \(115 / 230\) volts, \(\mathbb{2} 25\) cach. MODULATOR MD 168/UX (for the above keyer), \(£ 12 / 10 /\)-.
SIGNAL GENERATOR \(1-196\) A. Freq. range \(100-156 \mathrm{mc} / \mathrm{s}\). Power requirements 115 v. A.C. or batteries. £3 each. Carr. 15/-
METERS. \(0-60 \mathrm{amps}\)., centre zero 6 in . scale, proj. m/c., 17/6 each, \(5 /=\) post. \(0-150 \mathrm{amps}\), centre zero 6 in . scale, proj. \(\mathrm{m} / \mathrm{c}\). (requires external shunt), \(17 / 6\) each, \(5 /\) - post. \(0-100\) amps., 6 in. scale, A.C. \(\mathrm{DD.C} 30 /\).- each, \(6 / 6\) post. \(90-180\) v., A.C./D.C., 4 in . scalc, \(£ 1\) each, \(5 /\) - post.
BC-221 or L.M 13. Freq. meter complete with original charts in good working order. Range \(125 \mathrm{kc} / \mathrm{s} .-20 \mathrm{Mc} / \mathrm{s} ., £ 16 / 10 /\), carr. \(15 / \mathrm{F}\)
SIGNAL GENERATORS
TF. 144 G .230 v. A.C. \(85 \mathrm{kc} / \mathrm{s} . ~ 25 \mathrm{mc} / \mathrm{s}\). In excellent condition, §.16/10/= TS.12AP. Standing Wave Indicator Equipment. Complete with Amplifier and waveruide plumbing equipment, \(£ 12 / 10 /-\) each \(15 /=\) carr.
TS.36AP Power Meter, with accessories, used for checking radar outputs, is cach, 10/- carr.
DE-ICER, Controller Mk. 3. Contains 10 relays D.P, changeover heavy duty contacts, 1 relay \(4 \mathrm{P}, \mathrm{C} / \mathrm{O}\). ( 235 ohms coil). Stud switch 30 -way clay operated, one five-way ditto, D.C. timing motor with Chronometri governor \(20-30\) voits 12 R.P.M., geared to two 30 -way stud switches and two Ledex solenoid
BC640 MODULATOR UNIT
BC640 MODULATOR UNIT, \(2 \times 811\) 's, mod. transformer and fil., trans. complete mod. unit fits 19 in . rack 50 watts, \(£ 5 / 10 /-\) carr. \(£ 1\) GEARED MOTORS (Reversible).
\(20-30\) v. D.C. 72 r.p.m., 17/6, post \(2 / 6\).
28 v. 150 r.p.m., \(25 /\)-, post \(2 / 6\).
24 v. Open gears with governor, approx. 10 r.p.m., 25/-, post \(2 / 6\).
24 v. D.C., 1.4 r.p.m., reversible with two micro switches inside gear box, silent operation, 22 each, post 5)-

MARCONI V. LVE VOLTMETERS TF428-B/I. Ranges: 0 to \(1.5,5,15,50\) and 150 vols. Fitted with probe unit for RF measurements. 230 v. mains input. Brand new, \(£ 12 / 10 /-\) each, carr. \(10 /\) -


TCS MODULATION TRANSFORMER 20 w . Pri., 6,000 ohm C.T Sec., 6,000 ohm. \(25 /\) - each, post 3/6. MICROPHONE TRANSFORMER. Pri., 75 ohm . Sec., \(125,000 \mathrm{ohm} .10 / \mathrm{m}\) each, post \(2 / 6\) OUTPUT TRANSFORMER. Pri, 7,500 ohm, Sec., 500 ohm . C.T., \(2.5 \mathrm{w} .12 / 6\) each, post \(3 / \mathrm{s}\).
POWER SUPPLY unit for SENDER No, \(36,110-240\) v. A.C. input, contains Speech amplifier. Modulator and External power supplies, \(3 \times\) FW \(4 / 500\) rectifiers provide \(\mathbf{H}\).T. for \(\mathbf{F}\).R. unit Specch amplifier 6 C 5 G Modulator \(2 \times 6 \mathrm{C} 5 \mathrm{G}\) and \(2 \times 807\) output. Size \(24 \times 16 \times 14\) inches. Housed in a fine oak case with circuit. Weight 110 lbs . As new, \(£ 6 / 12 / 6\), carr. \(30 / \mathrm{p}\). CONVERTERS. Type 8 a., 24 v. D.C., 115 v. A.C. at 1.8 amps. 400 cycles, 3 -phasc. is each, carr. \(7 / 6\).
CONDENSERS. \(1 \mathrm{mfd}, 20 \mathrm{kv}\), , \(£ 6 / 12 / 6\) each, post \(12 / 6\) each. 0.25 mfd . 32,500 volts Wkg. £5 each, post \(12 / 6\) cach. \(150 \mathrm{mfd} ., 290\) volts A.C L5 each, post \(12 / 6.50 \mathrm{mfd}, 330\) volts A.C. \(40 /-\), pust \(4 /-.10 \mathrm{mfd}, 1,000 \mathrm{y}\) \(12 / 6\), post \(2 / 6\). 8 mfd ., 1,500 volts, \(17 / 6\), post \(2 /-.8 \mathrm{mfd}\), 1,200 volts, \(12 / 6\) post \(3 /-, 8 \mathrm{mfd}\), 600 volts, \(8 / 6\), post \(2 / 6\). \(0.25 \mathrm{mfd} ., 2 \mathrm{kv}\). \(4 / \mathrm{m}\), post \(1 / 6\) Vacuum condenser \(50 \mathrm{pf} .32 \mathrm{kv}, 30 /-\), post \(1 / 6.6 \mathrm{pf}, 20 \mathrm{kv}, 22 / 6\), post \(1 / 6\). All the above are new in cartons.
POWER FACTOR CONDENSERS. \(160 \mathrm{mfd} ., 290\) v. A.C. working
\(5 / 10 /-\) each, carr. \(10 / \mathrm{-}\).
4 mfd . \(12,500 \mathrm{~V}\). D.C. Working, \(£ 7 / 10 / \mathrm{-}\) cach, carr. \(15 / \mathrm{m}\).
BLOWER MOTORS. . 24 v. D.C. (small U.S.A.), \(12 / 6\), post \(2 / \mathrm{m}\).
TELEPRINTERS. Type 7B, used, good condition. 24 v. D.C. \(£ 12 / 10 /=\) each, carr. E1.
OSCILLOSCOPES, Cossor 1035 and 1049 , used condition, \(\delta 30\) cach Hartley type \(13 \mathrm{~A}, ~ £ 25\) each. Solartron Type CT316, \(£ 20\) each.
INVERTERS. Type AN3499, 28 v. 11 C. \(_{0 .} 9.2\) amps. input, \(115 \mathrm{v} .400 \mathrm{c} / \mathrm{s}\) 3 phase, 25 each, post 5/-.
TX DRIVER UNIT. \(100-156 \mathrm{Mc} / \mathrm{s}\). Ideal for two meters, Valves 3C24, in excellent condition, fits 19 in , rack, \(£ 5\) cach, carr. 20/-

CONTROL UNIT. 230 v. A.C., output 24 v. 2 amps., 230 v. A.C. sole. noid switch, 15 amps., plus relays and switches, eitc, \(£ 2 / 10 /-\), carr. \(12 / 6\) RECEIVERS. HRO. Used condition, less coils, \(£ 10\) each, carr. £1 S.36, used condition, freq. \(30-143 \mathrm{Mc} / \mathrm{s}\). \(\Sigma 25\), carr. \(£ 2 . \mathrm{S} .27 / \mathrm{U}\), used, freq. \(143-210 \mathrm{Mc/s}\)., \(£ 25\), £2 carr. C.52, used, freq. \(1.75-16 \mathrm{Mc} / \mathrm{s}\), , 5 , carr. £. H. 63 (similar to 1392), \(100-156 \mathrm{Mc} / \mathrm{s}\), © 5 , carr. \&1.

MARINE RADAR EQUIPMENT. Complete installation for 110 \(220 \mathrm{~V} ., 3 \mathrm{cmm}\), made by B.T.H. Lid. The equipmeat is mounted in a weatherproof steel van \(6 \times 6 \times 6 \mathrm{ft}\), with the scanner on top to rotate 60 deg. The units are available with service manuals and some spares. £500. cach. F.O.B
UNISELECTORS. 6 bank, 25 way, 20 ohm. coil, \(£ 2\) each, post \(2 / 6\) 5 bank, 25 way, 20 ohm. coil, \(35 /=\) each, post \(2 / 6\). (Ex-new equipment.) BOMB SELECTOR UNIT, complete with uniselector 3B., 25 wati, 22 ohms, magnetic counter \(0-40\), and 1 relay 500 ohm .2 make, \(50 /-\) each post \(3 / 6\).
HEADPHONES. DLR 5, \(10 /\)-pair, \(2 / 6\) post. No. 10 headset and microphone, \(15 /=\), post \(2 / 6\). M/C phones with chamois ear muffs and jack plug, 17/6 pair, post 2/6.


POWER AND SMOOTHING UNITS. \(100-250\) v., A.C. input \(24 \mathrm{v},\). D.C. at 3 amps . or 12 v . switched fused, etc. In metal case \(19 \times 7 \quad 7 \mathrm{in}\). Smoothing two large chokes and 0.1 ma.; meter scaled \(0-50\) volts. \(£ 7 / 10 /-(\mathrm{pr}\). 15/- carr.

APX6 TRANSPONDER. Complete with UHF valves 2C42, 2C46 and 1B40, complete with special holders and condensers. 30 Valves, Blower Motor, Mechanical Counters, etc. 115 v. \(400 \mathrm{c} / \mathrm{s}\). (Suitable conversion for \(1,200 \mathrm{Mc} / \mathrm{s}\).). Price \(£ 10\) each, carriage \(15 /\) -
BATTERIES. Portable in metal case with carrying strap. 6 volt, 40 amps, new, unused, 20/-, carr. 6/6. Car type, 6 volt, 75 amps., \(£ 2\), carr. \(10 /-\) RESISTORS. Variable. 3 ohm. 10 amps., \(25 / \mathrm{F}\), post \(4 / \mathrm{F}\).
ROTARY TRANSFORMERS. 24 v . input, 175 v . at 40 ma . output \(25 /-\), plus \(2 /\) - post. EICOR type, 12 v . input, 400 v . at 180 ma . output, \(30 /-\), plus \(4 /\)-post. 12 v . input, 225 v . at 100 ma . output, \(25 / \mathrm{l}\), plus \(3 /-\) post. (All the above are D.C. only.)
MICROPHONE Type T50. Fits the palm of hand with on/of switch and lead (electro dynamic), 35/- each, plus 2/6.
CIRCUIT BREAKER. \(150 \mathrm{amps}, 600 \mathrm{v}\). A.C., \(£ 3\) each, carr. \(7 / 6\). PLUGS. Standard two-way jack plug PL55 with 6 ft . lead and transformer, low to high impedance, \(7 / 6\) each, plus \(1 / 6\) post. PL68 plug and switch lead assembly, \(5 /\) each, plus \(1 / 6\) post.
DIPOLE AERIAL. Complete set suitable for \(60-100 \mathrm{Mc} / \mathrm{s}\)., \(27 / 6\), carr. \(4 /-\) COMPRESSOR UNTT. Aircraft cabin pressurisation unit, 28 v. D.C. with automatic switches, etc., \(£ 3 / 10 /-\), post \(6 /\) -
AR88 SPARES. Set of 14 valves and headphones and 3 pilot lamps, new, original cartons, \(£ 3 / 10 /\) - each, post \(2 / 6\). Set of 14 valves only, £2/10/-, post \(2 /\).. Vibrator unit, \(6 \mathrm{v}, 15 /\), post \(4 / \mathrm{F}\). Headset only 12/5, post \(2 /\). Speaker unit, R.C.A., \(83 / 10 /\), plus \(5 /-\) post. Block condenser unit, \(3 \times 4\) mfd. at 600 v ., \(25 /-\mathrm{e}\) each, post \(3 /-0.01 \mathrm{mfd}\). 400 v. D.C., 4 for \(12 / 6\). Capacitor air trimmer, \(2-20\) pf., box of \(3,10 /=\)
1154 TRANSMITTER UNIT less power supplies (used), \(£ 4\) each, plus 15/-
TRANSFORMERS. 230 to 115 v , isolation \(300 \mathrm{va}, \mathrm{s}\), each , plus \(5 / \mathrm{m}\) \(230 / 115\) auto 750 watts, \(£ 4\), post \(10 /=230 \mathrm{v}\). pri., \(1,850-0-1,850\) at 500 ma., \(£ 5\) cach, plus \(15 /-\) carr. \(230 / 115\) auto 300 watts, \(£ 2\), post \(6 /-\). 230 v . pri., 24 v . at 2 amp ., \(22 / 6\), post \(5 / \mathrm{F} .230 / 115 \mathrm{v}\). pri., 275-0-275 v. at 120 ma., 6.3 V . at \(4 \mathrm{amp} ., 6.3 \mathrm{v}\), at \(1 \mathrm{amp.} 25 /\),m , post \(5 / \mathrm{l}\).
RADAR RECEIVER APG501. Complete Unit with Blower Motor, 40 valves, Relays, Transformers, cte. Condition as new. Price £ 5 each, carriage \(15 /\) -


WHEATSTONE BRIDGE in a bcautiful oak case, centre zero galvanometer 2.5 mA . 4 stud switches, \(0-10,0-100\) olims, 0 -inf., size \(16 \times 71 \times 6 \mathrm{in}\)., \(45 /-\) each, \(5 /=\) post.

RADAR TRANSMITTER APG501. Complete Unit in pressurised case with Magnetron CBPV6765 and Klystron 6378 and associated crystals and waveguides, Blower Motor and 12 valves. Power inputs \(115 \mathrm{v} .400 \mathrm{c} / \mathrm{s}\). Condition as new, price \(£ 10\) cach, carriage 15/-

\section*{FOR EXPORT ONLY}

TRANS./REC. WIRELESS SET No. 31, complete sets with acrials, headphones and mikes in working order. Freq. \(30 / 40 \mathrm{Mc} / \mathrm{s}\). 4 channel xtal-controlled, \(88 / 10 /\)-.each. WIRELESS SET No. 88. 4 channel, xtalcontrolled, complete with all Valves and xtals and attachments, \(£ 10\) each.
WIRELESS SET No. CS2. 12 v . D.C. \(1.7-16 \mathrm{Mc} / \mathrm{s}\). on three bands, 110 watts output. CW, MCW, etc. Can be used as Vehicle T/R, or basc station (as new complete set \(£ 52\) ).

Complere Installations can be quoted for:" Please write further details. List available 6d. S.A.E. for all enquiries.

\section*{7 Valve am/FM RADIOGRAM CHASSIS \\ New 1965 Model now avoilable!}

Valves: ECC85, ECH8I, EF89 EABC80, EL84, EM8I, EZ80 Tbree Wereband and Switched Gram
posittons. Med. 200.550 mm Lomg posittons. Med. \(200.550 \mathrm{M2}\) Loug.
\(1.000-2,000 \mathrm{~m}\). VHF/FM \(88.95 \mathrm{Mc} / \mathrm{s}\). Phillipe permeabillty tuning insert
on FM and comblied AM \(/ \mathrm{FM}\) IF transformera. Latest circuitry lncludIng AVO and Neg. Feedback. Three
watt output. Sensitivity and reprowatt output. Eensitivity and repro-
duction of very hish standard.
 71 in. Eidge thumimated glaze dial
 Aligned and tested ready for use
Aligned and tested reody for use
Complete with Tape outpiter
£13.19.6
Corr. \& ins. \(7 / 6\) Knoths- walnut or fuory to choice.


We manufacture all types Radio Mains, Transf, chokes, Quallty ted for specials, prototypes for small production runs. Quotation by return.

\section*{RECORDING TAPE Famous American Columble (CBS)
Premier quality tape at NEW
RED Dremier quality tape al genuline recom-
mended Quality Tape-TRY IT Brand mended Quality Tape-TRY IT Brand
new, boxed and fully guaranteed. ritted with leader and stop foils. 51 Standard Double Play
200ft. \(31 / 8\) \begin{tabular}{l}
51 n. \\
50 in. \\
\hline \(001 \mathrm{ft} .13 /-1,200 \mathrm{tt}\).
\end{tabular}
 \\ Lone Play
guoht. \(17 / 6\) Poet, \(1 /-\) plus ber 5 in . 1.200 it . \(18 / 8\) eat. for SPECIAL OFRER. 3in. Meseage tape


}

SPEAKERS P.M. 3 ohms. 21 in . EMI, \(25 / 6\). 3in. Goodmans \(16 / 6\). Sin. Rols \(15 / 6\).
 Goolmatur \(22 / 6.21 \mathrm{in}\). E.M.I. Tweeter,
\(22 / 6 . \quad 13\) in. \(\times\) 8in. E.M.I. (Ceramic Magnet), \(37 / 6\).

 TINNED COPPER WIRE \(16-22 \mathrm{~g}, 3 \rho\) fib. YALVE HoLDERS-Int. Oct. Bd. Nyion
or Ceramfo, B7G, BoA tmakifted. pd. B70 B9A skirted \(1 / /\) kiwh; B7G with. Can \(1 / 6\); 199A with Can, 1/9.et
KNOBS-Modern Continctital \&yper:-Brown of Ivory with Gold Bing. Ila, din, 90, eas
1 1 ln . \(1 /\) - ea. Brown or Ivory, with Golu Ceutre, lin, dia. 10d, vach; 1Hu. L/3 each
LARGE SELECTION AVAILABLE.
JACK PLUGS-2!in, type 2/8: Screened ditto, Transistor type Miss and Sub.-min. 1/3. JACK SOCKETS-Moolded type. open 3/6: ditfo, elused \(4 /-\). Stereo ditio, 3/8; Pax type
opeas 2/6: dito, cloed \(3 /=\) Tranaistor type, Min. and Sub.-nine \(1 / 6\).
PHONO PLUGS 9d. Phono shekets (open), 9d. Ditto (closed), 1/-. Twin Phono sockets
 SOLDERING IRONS. Mains 200/220 SOLDERING IRONS. Mains 200,220 v. or
\(230 / 260 \%\) Salon 25 watt Inst, \(22 / 6\). Spare
Eilements, \(5 / 6\). Bits, 1/3. 65 watt, \(27 / 6\), ctc. ALUMIN. CHASSIS. 18g. Plain Undrilled.
 ALUMIN. SHEET 18g. 6 tn \(x\) bin \(1 /\)


\section*{6 VALVE AM-FM TUNER UNIT}

Med, and VHF \(190 \mathrm{~m} .-550 \mathrm{~m} ., 85 \mathrm{Mc} / \mathrm{s} .103 \mathrm{Mc} / \mathrm{s} ., 6\) valves and metal rectifier. Self-contained power unit, A.C. \(200 / 250\) v. operacion. Magic-eye indicator. with gain control. Illuminated 2 -col., perspex dial \(11 \frac{1}{2} x\) in. Chassis size
 and tested readyfor use. Bargain Price \(\mathrm{f} 12 / 10 /\)-. Carr. \(5 /\). This popular unit Construction details. \(2 / \$\).

Only a few
items are listed from our comprehensive stock. Write now for full bargain lists, 3d

\section*{\(\mathbb{B E N T L E Y ~ A C O U S T I C ~}\) CORPORATION LTD.} 38 CHALCOT ROAD, CHALK FARMG, LONDON, N.W. 1 THE VALVE SPECIALISTS

TED BELOW IN STOCK


EETL
 16BC1.1.16.1 \(8 /-;\) FCA1 \(21 /-16 R D 2.28 .1\)
\(18 R A .1 .2 .8 .111 /-;\) FCL16 \(6 /-;\) FC124 12.6 . ELECTROLYTICS, Can typer: \(-32 \times 32 / 450\) v, \(6 /=; 50-50 / 350\) r. \(6 /-: 64 \times 100 / 350\) \%. \(9 /-\)


 All moods are new, first qually brauds only, and gubject to maker'a full guarantee. We do
not handle ranafacturers' mecomde nor rejecta, which are often degcribed as "new and tested" but have a limited and unreliable life.
Tarnus of busthess:-Cash with order or C.O.D. only. Poat/packing Bd, per item. Orders
 oritery by telephone accepted for immedinte despatch until 3.30 p.m. Any paroct inared

\title{
These features
} and 16 pages of interpretative news

PLASMA CONTAINMENT FOR NUCLEAR FUSION J. D. Jukes, U.K. Atomic Energy Authority. Progress towards reproducing the Sun's source of energy in the laboratory.

THE CHEMICAL ORIGIN OF LIFE Dr. Cyril Ponnamperuma, N.A.S.A. Ames Research Center, U.S.A. Simulation of primeval Earth environments produces key biological molecules.

SONIC BOOM AND ITS EFFECT Professor E. J. Richards, University of Southampton.

PHOTOGRAPHY FROM SPACE Dr. Paul D. Lowman, N.A.S.A. Goddard Space Flight Center, U.S.A. Colour photographs from satellites reveal details of the Earth's structure.

THE ORIGINS OF CORONARY DISEASE Dr. G. R. Osborn, Derby Royal Infirmary.
The most common fatal disease of modern civilization starts to develop shortly after birth.

\section*{LARGE SCALE STORAGE OF ENERGY}

Dr. A. B. Hart, Central Electricity Generating Board.

\section*{MAN AND HIS ENVIRONMENT}

Sir Dudley Stamp, Emeritus Professor of Geography, University of London.

SCIENTISTS AND THEIR SALARIES A Science Journal special survey.

Science Journal brings the new answer to the problem of keeping posted across the whole field of scientific and technological progress. Every month it interprets the forward thinking of each discipline for those working in others.

\section*{superbly produced, profound yet immensely readable}


SWW-145 FOR FURTHER DETAILS.

\section*{LASKYS RADIO}

\title{
For The Finest Value an THE HOME OF HI－FIDELITY
}

COMPLETE MONO／STEREO SYSTEMS TO YOUR SPEC－ IFICATION AT LASKY＇S SUPER PRIVILEGE PARCEL PRICES

\section*{DEMONSTRATION STUDIOS}

We are pleased to announce the opening of our premises at 42 TOTTENHAM COURT ROAD，LONDON，W．1．

 examine，hear ahd compare the very latent producta in the realin of high－filelity reproduction，


\section*{HI－FI FURNITURE by RECORDUIOUSING}

\author{
The ful range of Reond Howing equlpment－rabin
Delverms angwhere．Catalugue FRERE on lequep
}

\section*{COMPLETE SYSTEMS}

A Lasky＇s＂Prtvilege Parcel＂allow＂you to purchawe the Audlo Mytcm of your cholee at a
worth－while cash miving．We shall be plesued to quote our＂Privilege Parcel＂Pricen for ans welection of equipmeat of your own choles．Bemi us detatla of your requiremente．H．P．Term

\section*{RECORD PLAYERS}


\section*{TRANSCRIPTION MOTORS}

\section*{ARRARD AHF，} OARRARD 401 GAIRRARD Lab，Ro，Mono． GARRARD Lab．80．St GARRARD 301 （strobe）
GARRABD A with GCS GARPARD with EV＊MA GARRARD with EV
PRILIPS AG／1016 BRAUN PCAL 舥年e

CTafteman II
Cratteman II
All ot
4－SPEED AUTO－CHANGERS

\section*{B．S．R．AUTOCHANGERS AT All brand neer sad fully suratateed complete wit cartribe and my mus


}

\section*{FEW ONLY E．M．I．4－SPEED SINGLE RECORD PLAYER} 0


\section*{TAPE RECORDERS}

REFLECTOGRAPH MODEL A
SEMIMPROFESSIONAL TAPE RECORDER
These recorders are new and fuazanteed in
the makern orlginal cartons．They represent an exuellent opportunity for the protessional
and the quality conscinus aniateur to scyulre the beat quat aluost hall price．Briet specitlea－ tlome：Prequency reaponse 855 to \(15,010 \mathrm{cjo}\) 3 wotore；8\＆ino reel caspachy；reconl tereel meter，separate record and playback volume forward and rewind；built－ja \(8 \times\) bin．apeaker with extenslom L．，．Bocket；monstortug facilitles provided through the ithternat speaker；outlet from pre－implitier for extra
amplification；for \(200 / 250\) \＆． 50 e．p．в．malin amplilicathon；for \(200 / 250\) \＆． 60 e．p．s．maina
nos；tape position Indicator fitted；input！ for mictophone and－radlo／pick－up．The


LASKY＇S PRICE 69 Gns．
CLin price of this Reoorde is is
 OPTIONAL EXTPA－PAMPHONIC VR 53 STUOIO RIBBON MICROPHONE


HIGH QUALITY TAPE RECORDERS
Complete with cryaisl microphone，reel of tape and emply spool．General specificatlon：Tone

 MODEL A Fitled with Collarol－track Etudit Dech．Apeeds 13.32 and 21 i．p．s．Apon LASKY＇S PRICE 27 Gns
 LASKY＇S PRICE 25 GnS．Carrige and Juarance 206－extio．
 LASKY＇S PRICE 18 Gns．
 LASKY＇S PRICE 21 Gns．

\section*{AMPLIFIERS}

\section*{PAMPHONIC TYPE 1004 AMPLIFIERS}
 ler with inputs for thono ampli－ fier with inputs for Radio，Tape，
Mie．and pick－up．Frequency
responace 20 e／E to \(30 \mathrm{Kc} / \mathrm{s}\) Three reaponse \(20 \mathrm{e} / \mathrm{e}\) to \(30 \mathrm{Kc} / \mathrm{k}\) Three
different cqualising setting for different equalising setting＂for
plek－up．
Volume，, ，ass anus piek－up．Volume，base and
treble controle fitced，aleo var lable treble controlp fitled，aloo variable
contour（elope）control．\(O\) output Noeket for tape recorder gitced．
Hxtra H．T，and I．T．provided for auxiliary equipment．Outpu\＆ impedance 3 and 15 ohme，for
cabinet tivished la browis hamaer
enatuel with gole escutcheous．Cabluet flece \(1: 8 \times 10 \times\) tin．List Price 25 Gns ．
LASKY＇S SPECIAL OFFER PRICE 12 Gns． \(\qquad\)保

\section*{}
\begin{tabular}{|c|c|c|c|c|}
\hline A．F． 208 & 121 4 & 0 & T．t．e & 81719 \\
\hline Modet 228 M & \(£ 3615\) & 0 & T．4．b． & £20 8 \\
\hline Model 228 & 42815 & 0 & 1271 & £28 10 \\
\hline \％tereo 33 & \(\underline{29} 18\) & 0 & 127 & \(\underline{27} 10\) \\
\hline Model \(2 \times 27\) & ¢52 15 & 0 & 8．T．3．Mk， 11 & £25 12 \\
\hline Model 226 & £61 0 & 0 & 1．20 Bteren Amp & \(\underline{2312}\) \\
\hline Model \(22 \%\) Aup & £27 10 & 0 & J．C．U． 23 Stereo & ¢21 0 \\
\hline Model & £22 10 & 0 & Optional casea & £310 \\
\hline
\end{tabular}
sterec Mulatples Decexter now in stock \(£ 1410 \quad 0\) H．P \(£ 310\)

\section*{＂VIRING＂GUITAR／P．A．AMPLIFIERS}
＂TRANSISTOR 50 ＂－00 waths，fulty tranaish
＂SOUND 30 ＂． 30 witt valve model 8 Inpute
Matching Speaker System for the＂Vlking＂ampitiet

\title{
Service in Great Britain CONSTRUCTORS BARGAINS \\ THE WIDEST RANGE AVAILABLE TODAY FOR HOME CONSTRUCTION OR READY BUILT TO HIGHEST STANDARDS \\ Ihy RADIO
}

We consider our Construction Parcels to be the finest value available on the home construction market. If on receipt you feel
not competent to build the set, you may return it'as received within 7 days, when the sum paid will be refunded less postage.

\section*{TRANSISTOR PORTABLES}

THE SKYROVER AND SKYROVER DE LUXE GEMPRAL SPECIFICATION
7 transistor ptuns 2 diode, wiperhet, 6-waveband portable reoviver. onver the full Mifilam Waveband and Short
Wareband \(31-49 M\). and also 4 separate Ewliched
 with Band Spread Tunifg, for accurate Statfon Belection. The eoll, pack, and tuning heart is conpletely factory arsectrbled, wired and teated. The remaining angmbly can be completed in ander three hours from our eany ho foliow. All Mullard Tramiontors and Diode. USee 4 Utz batteriear \(51 \mathrm{hn.Coramic} \mathrm{Mugnet} \mathrm{P.M}. \mathrm{8peaker}\).
Easy to read Dial Acale, 000 MW Output. Tele-


NEW! SKYROVER MK. III (tluatrued) Mo muplige dub
 Comirol with oulont awitch. Tuning Control. In pluatic cabituet, wize \(10 \times 6 \mathrm{j} \times 3\) fin. with metal trim and carrylug handle.
\begin{tabular}{|c|c|c|c|c|}
\hline Can now be built for & 58.19 .6 & Poat 0/-extra. & H.P. Terms: 21 deposil and 11 monthis payments of 18/8 & \[
\begin{gathered}
\text { Total R.P.P. } \\
\approx 101 / 6
\end{gathered}
\] \\
\hline
\end{tabular}

The SKYROVER DE LUXC Tone Clrcuit is incorporated, with separate俍 Tuniag Control and Wisveband Belector. In a wood cabinet, size lif \(x\) of \(x\) 3in. covered
with is washable material, with phatic frim and carryhing handle. Aloo coar acerial moclet fitted.

Data for eaoh receiver: \(2 / 6\) extra, Refunded if you purchate the parcel. Four U2 batterles t LONG WAVEBAND COVERAGE IS NOW AYAILABLE FOR THESKYROVER \& SKYROVER DE LUXE A simple additional clecule provildes coverage of the \(1100 / 1950 \mathrm{M}\). band (tncluding 1500 M . Lighs programme). This to ks addltion to all exirting Medium and Short warebsidh. All necesary compenente with construction \(10 /\) oxifa. Poss Free.
Uata. This conversion is suitable for Skyrover and Skyrover De Luxe receivers already constructed.

\section*{REALISTIC SEVEN}

Fully tunable over long and methum
Mullard Tranubtors; plun Diode \(0 \triangle 70\).
STAR featurem:
\$ 7 Tranalstor Euperbet. +330 suluwalt output 4 in . bigh fiux mpeaker. All cumponenta mounted on a single printed

 aerial gre. i.f.frequeney \(470 \mathrm{Kc} / \mathrm{s}\). \(\#\) Ferrite rod Internal aeria!. © Operatee from PP9 or alnillar battery. t Pull comAn ontatinultig Recelver.

REALISTIC SEVEN De LUXE By popular request is De Luxe verslon now a vailable. With the ame electrical apecifteation an ntandard model-PLUS A 8UPER1OR with super-chrome trim and camrying handle. Alse a fuli wision circular dial. externally mounted with super-chrome trim and carrying handle. AIgg a full wision circular diai. externaly mounted Both modela: Battery \(3 / 9\) extra. (All comprnente available separately). Data and instructlon
separately \(2 / 8\). relunded is you purchase paroeL

\section*{SINCLAIR SUPER MINIATURES}

THE MICRO-6

 \begin{tabular}{l} 
All componeats available separately. Easy to assemble. CAN BE BUILT FOR \\
THE. NEN \\
\hline \(100^{10}\) watt power amplither fitted with integrated preamplifer
\end{tabular} 1HE IV size only
tranaletorn AVAILABLE READY BUILT, TESTED AND GUARANTEED, EQ:19/6 POST FREE

\footnotetext{
MINIATURE EARPIECES Lor Tranaintor Radios, Transpareat ear
GR.5. Crystal hugh imp.
}

CONSTRUCTORS BARGAINS
THE NEW "KUBA" IMPORTED AM/FM STEREO RADIOGRAM CHASSIS

Long. medium
waveband Wiavebamd copgrage. Bhers V.H.FolF.M. Plano key

 LASKY'S PRICE \(29 \frac{1}{2}\) GNS.

\section*{BUILD A HIGH QUALITY TAPE RECORDER} Using the famous Collaro "i STUDIO "deck and MARTIN COLLARO STUDIO TAPE DECK
Latest model 3 speed, 3 motors. Takee 7in. reels. Fitted with hali-track heads
COLLARO STUDIO TAPE DECK.
As above but fitted with the lateat quarter-track beads LASEY'S PRICE E13199. Can
MARTIN TAPE RECORDER AMPS.
S. Designed tor use with Collaro Studio
 etc. Monitortigg tacilities. 3 ohm ontput, mpeed equalising. etc. For \(200-200 \mathrm{v}\). A.C. mialas.
PRICES:
 M-F TAPE RECORDER HEADS Migh Imp. Record/
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
BOGEN t-traek heads ....................................... LASKY'S PRICE 7 GNS. paik.

\section*{TRANSISTORS ALL BRAND NEW AND GUARAKTEED}

TRANSFILTERS By Brosh crystal co. avalabie trom stock.
\begin{tabular}{|c|c|c|c|}
\hline &  & cis & \\
\hline &  & & os \\
\hline
\end{tabular}

\section*{JASON EQUIPMENT}

Bizh quality bome construation units for the diseerning Hi-Fi enthusiast. We stock the complete range of component parts.
FROM PRE-AMP TO 20 WATT HI-FI STEREO ASSEMBLY BY BUILDING WITH MARTIN AUDIOKITS-AVAIL-
ABLE FROM STOCK. Uaing suechally developed circulls, the wery latest tramsistors and printed clrcuits-theoe


 \(\begin{array}{ll}\text { KIT } & \text { 5. Pand } 3 \text { watt Maln Amplifler } \\ \text { KIT } & \text { Bower supply Coaverier Vnht }\end{array}\)
\(\qquad\)


TAPE DECK MOTORS
S \(\begin{aligned} & \text { Motors for } \\ & \text { Deck-new }\end{aligned}\) LASKY'S PRICE 23I18/6 LASKY'S PRICE 28/2/6
LASKY'S PRICE \(85 / 126\)


LASKY'S PRICE 14/11 each Pout \(2 / \mathrm{e}\)
State motor required when orderingt

SEND POR OUR LATEST BARGAIN BULLETN.

motito 어영



\section*{以和}
invaluable up－to－date technical books on radio and electronics

Radio and Electronic Laboratory
Handbook 7th edition
M．G．Scroggie，B．Sc．，M．I．E゚E．
55s net，by post 57s 3d，537pp．illustrated．

Radio Designer＇s Handbook
Ed．F．Langford－Smith，B．Sc．，B．E．，Sen．Mem．I．R．E． （U．S．A．），A．M．I．E．（Aus．）
65s net，by post 67s 9d，1，498pp．

Second Thoughts on Radio Theory
M．G．Scroggie，B．Sc．．M．I．E．E．
35s net，by post 36s 4d，410pp． 266 illustrations．
from leading booksellers
Published for＂Wireless World＂by
ILIFFE Books Ltd．DORSET HOUSE
DORSET HOUSE－STAMFORD STREET
LONDON
SEI

Radio Circuits th edition
A step－by－step survey
W．E．Miller，M．A．（Cantab．），M．I．E．R．E．，revised by E．A．W．Spreadbury，M．I．E．R．E．
15s net，by post 15 s 10d， 172 pp． 84 diagrams 2 fold－outs．

\section*{Radio Valve Data 7th edition}

Characteristics of 4,800 valves，transistors，rectifiers and cathode ray tubes
Compiled by the staff of＂Wireless World．＂
7 s 6 d net，by post 8 s 2 d ， 156 pp ．

Foundations of Wireless
7th edition
M．G．Scroggie，B．Sc．，M．I．E．E．
21 s net，by post \(22 \mathrm{~s} 4 \mathrm{~d}, 388 \mathrm{pp}\) ． 278 diagrams．

LOUDSPEAKERS
 We supply a of Good range of Goodmans, Wharfedale, Stentorian, TSL Spaker Units and complete systems. A comprehensive leafict is available on request, this covers specifications and prices of nearly 50 types including:Celestion Model CX2012 (as illustrated) Stentorian HF812 5 watts Stentorian HF1012 10 watts Goodmans Axictte \(8 \quad\)\begin{tabular}{l}
54 \\
\hline
\end{tabular} Goodmans Axiom 10 10 10 11
Goodmans Axiom 2015 C10 17 4 Super 8/RS/12/DD Wharfcdale Golden RS/DD 8

\section*{Watts} harfedale RS/i2/DD
Guitar Speakers include:-
Wharfedale W12EG 15 watts Goodmans Audiom \(51 \frac{18}{10} 10 \quad 10\) watts Carriage and Instaramee extra.

\title{
THE "TRAVLER" Mk. II CAR RADIO
}
\(\star\) MEDIUM AND LONG WAVES
* 12 VOLT POSITIVE EARTH
\(\star\) PUSH BUTTON WAVE CHANGE
* SIZE 7in. x 2in. x 7in.
* TRANSISTORISED

\section*{ONLY}

91/2 GNs.
P. \& P. 5\%.

Optional extras: 3-section chromium plated weatherproof tecescopic acrials. Type 1, 17in./44in. 19/6. Type 2, 2 in. 43in. 29/6, both plus p. and p. 2/6 if purchased separately.

\section*{THE "HIGHWAYMAN" CAR RADIO}

\section*{TO BUILD YOURSELF}

Similar in appearance to above but with on/off push button switch. Completeset of parts only \(£ 7.19 .6\) P. \& P.

TUNER UNITS


\section*{ARMSTRONG}

Mono Tuner Amp. ع26 \(10 \quad 0\)
Sterco Tuner Amp.
Stereo Tuner Amp. AM/FM Tuner \(223 \quad \begin{array}{llll}\mathbf{M} & 28 & 15 & 0\end{array}\) C37 10 FM Tuner \(224 \quad \cdots \quad \Sigma 2210 \quad 0\) Carriage and Insurance \(7 / 6\). Stern Fidelity Mk. II VHF/FM Built and tested. Carr. \& Ins. 5/-.
Car
JASON
FMT1 FM Tuner. Kit of parts £6 150 FMT2 FM Tuncr. Kit of Parts FMT3 FM Tuner for fringe Arcas:

Kit of parts. FMr 4 uner TV2/FM/TV Sound. parts. ........... §15 150 TRIPLETONE FM TUNER Unpowered …... £13 19 Self-powered \(\because . .\). \& 1514 6
Carriage and insurance \(5 /=\) each. Carriage and Iusurance 5/- each. Descriplive Leaflets free on request. Please state model required.


\section*{GREATBRITAIN'S GREATEST}

\section*{STERN-CLYNE HI-FI EQUIPMENT \\ Ready built or Kits of Pares}

Stern Mono-Gram Amplifier, 3 watts
Mullard 2-valve Audio Pre-amplifier
Mullard 3-valve Audio Pre-amplifier
Mullard " 3-3" Amplifier with Passive Control Unit Model 33/RC, 3 watts
Mullard " \(5-10\) " Main Amplifier, Model \(510 / \mathrm{M}, 10\) watts
Mullard "5-10" Amplifier with Passive Control Unit, 10 wats
Stern Twin Three Sterco Amplificr, 3 watts per channel ..................................
Stern Twin Threc Stereo Amplifier in Portable Case with Two Speakers and Leads
Mullard " \(10+10\) " Stereo Amplifier, 10 watts per channel
Mullard " \(10 \div 10\) " Secreo Amplifier with Passive Control Unit, 10 watts per channel
Mullard Dual Channel Pre-amplifier
The above two items purchased together
HF/TR3 Tape amplifier with Power Unit
Type 'C 'Tape Pre-amplifier with Power Unit
STP-1 Tape Preamplificr with Power Unit Mono and Stereo
CR3/S Tape Recorder with Studio Deck
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Complere Kit of parts} & \multicolumn{3}{|l|}{Ready built and tested} & \[
\begin{aligned}
& \text { Carr. } \\
& \text { and } \\
& \text { Ins. }
\end{aligned}
\] & Instructio book available separatel \\
\hline L4 & 10 & 0 & 16 & 0 & 0 & 3/6 & 2/6 \\
\hline £6 & 6 & 0 & c9 & 10 & 0 & 5/- & \(2 \mathrm{i}-\) \\
\hline £10 & 0 & 0 & ¢13 & 13 & 0 & 5/- & 3/6 \\
\hline 18 & 8 & 0 & 111 & 10 & 0 & 6/6 & 2/- \\
\hline £10 & 0 & 0 & 513 & 10 & 0 & 6/6 & 2/- \\
\hline 1.12 & 0 & 0 & \(¢ 16\) & 0 & 0 & \(7 / 6\) & 2/- \\
\hline & - & & C9 & 0 & 0 & 5/- & - \\
\hline & - & & 116 & 10 & 0 & 10/- & - \\
\hline \(£ 16\) & 0 & 0 & cy0 & 0 & 0 & 8/6 & 3/- \\
\hline \(¢ 20\) & 0 & 0 & ¢24 & 0 & 0 & 10/- & 3/- \\
\hline ¢12 & 0 & 0 & ¢15 & 0 & 0 & 7/6 & 3/- \\
\hline 127 & 0 & 0 & 534 & 0 & 0 & 15\%- & - \\
\hline ¢13 & 13 & 0 & 119 & 0 & 0 & 7/6 & 3/- \\
\hline c14 & 0 & 0 & \(¢ 19\) & 10 & 0 & 7/6 & 3/6 \\
\hline 522 & 0 & 0 & \(\check{28}\) & 0 & 0 & 8/6 & 5/- \\
\hline c33 & 8 & 0 & & - & & 15/- & 3/- \\
\hline
\end{tabular}

INDIVIDUAL DESCRIPTIVE LEAFLETS GIVING TECHNICAL SPECIFICATIONS, DIMENSIONS, PRICES. TERMS, ETC., FREE ON REQUEST.


Garrard SRP10 Single Player ATEST DS LS 9 4 speed changer 55196 Garrard Autoslim Autochanger 2610 © 19 Garrard AT6 Changer \(£ 10 \quad 196\) Garrard AT5 LM Autochanger (3000LM) \(£ 111111\) Philips AG1016. Stereo/Mono Record Player ...... \(£ 13130\) Garrard 4HP Single Player Goldring Lenco Model 88 Transcription Turntable © 1818 , Garrard Laboratory Type "A" Autochanger ….. 19 15 0 Garrard 301 Transcription Turntable (Strobe).. \(\quad\) §22 \(\quad 0 \quad 5\) Carr. and fus. 5/- on above. Descriptive Leaflet including prices with alternative cartridges, dimensions, terms, elc.s free on request. MICROPHONES
Extensive range available, send Extensive range avanable
S.A.E. for illus, brochure.

\section*{ANOTHER STERN-CLYNE BARGAIN OFFER!! SAVE £10!}

\author{
STEREO AM/FM \\ RADIOGRAM CHASSIS \\ BY FAMOUS MAKER \\ LIST PRICE C30.17.1I
}

\section*{\(\underset{\text { PRIIEE }}{\text { OUR }} 19\) GNS. \({ }^{\text {Carr. }}\)}

BRAND NEW WITH FULL GUARANTEE
Full Medium, Long and V.H.F. Coverage.
3 watts per channel output. 3 ohm output impedance. Internal aerial for A.M. Provision for Multiplex adaptor. Pick up and Tape input sockets. A.C. mains \(200 / 250\) volts.


NEW LOW PRICE COMMUNICATION RECEIVERS
HE-40. \(550 \mathrm{Kc} / \mathrm{s} .-30 \mathrm{Mc} / \mathrm{s}\). in 4 bands. [19/19/-. Carr. \(10 /\) -
HE- \(30.550 \mathrm{Kc} / \mathrm{s} .-30 \mathrm{Mc} / \mathrm{s}\). in 4 bands \&34/13/-. Carr. Paid.

HA-63. \(550 \mathrm{Kc} / \mathrm{s},-31 \mathrm{Mc} / \mathrm{s}\). in 4 bands. £25/4io. Cars. Paid.
STARFLITE 90 WATT TRANSMITTER Band coverage \(80-40-20-15\) and 10 Metres. £30/9/-. Carr. 15/
H.P. Terms available.

KT-320. As HE- 30 but offered as complete kit of parts. \(£ 26 / 5 /\)-. Carr. Paid.


ELECTRONIC HOBBIES ORGANISATION

DOUBLE FEATURE PRE-AMPLIFIER AND JLIO POWER AMPLIFIER


DOUBLE FEATURE PRE-AMPLIFIER. Inputs for microphoze, cryatal or magnetic pick-apm. tuner unlt and fo addition offers full faclitiea for tape recording and high fidellity replay. This unique teature means that ahould you wish to
 3 tape speeds equalised.
BULLT AND TESTED 18 GNS.
H10 POWER APLIPIER. (C. 8 IS I. \(8 /-3\) JLO POWER AMPLIFIER. Incorporates the lateat dlode/
pentode ECLB walves tn push-pril, PABTRIDOR pllua
 and amoothing choke. 10 watts power ousput, surplus power available for tuner.
BUILT AND TESTED 12 GNS. (C. \& I. 7/6) Prices if both units purchased togetber: BUILT AND TESTED 29 GNS.

NEWS FOR THE SHEFFIELD CUSTOMERS Visit us on STAND 48 ot the
Sheffield Ideal Home Exhioftiom-May 190h-29th

TAPE EQUIPMENT AND ACCESSORIES AMERICAN RECORDING TAPE
5 in .600 ft . Standard Acetate
5 in .900 ft . Long Play Acetate
5 in . 1,200ft. Long Play Acetate ...
3 in . 600 ft . Double Play Polyester
3in. 600tr. Doubie Play Polyester
7in. 1,200ft. Standard Play Polyester
5 in . 1,200ft. Double Play Polyester.
\(5^{3}\) in 1800 . Doug Ple Play Polyester
5in 1,000 , Double Pay Polyester
7in. 2,400ft. Double Play Polyester .... 25/ P. \& P \(1 /\) - per Reel extra, 4 or more Reel
POST PREE.

Fully Automatic Tape Splicer 14/6. P. \& P. 1/6. Plastic Tape Spools 2 in. \(1 /-; 3\) in. \(1 / 3\); 4 in . \(2 /-5\) in. \(2 /-3\) 5in. \(2 / 3\); 7in. \(2 / 6\).
Plastic Spool Containers, for spool sizes 5 in. 1/6; 5 in. 2/-; 7 in. \(2 / 3\).
Any single item plus 6d. P. \& P. Orders over \&1 POST FREE.

VISIT YOUR NEAREST STERN-CLYNE ELECTRONICS CENTRE

\section*{LONDON}

20, Tottenham Ct. Rd., W.1. MUSeum 5929/0095. Half day Sat. 23, Tottenham Ct. Rd., W.1. MUSeum \(3451 / 2\). Half Day Thurs. 309, Edgware Rd. W.2. PADdington 6963. Half Day Thurs. 109, Fleet St., E.C.4. FLEet St. 5812/3. Half Day Sat.
162, Holloway Rd., N.7. NORth 7941. Half Day Thurs.
9, Camberwell Church Ct., S.E.5. RODney 2875. Half Day Thurs.

12, Sutfolk House, George St. MUNicipal 3250. Half Day Wed. BISTOL

LIVERPOOL
52, Lord Street. Royai 7450. Open 6 Days a reeek.

\section*{MANCHESTER}

20/22 Withy Grove, Manchester 4. BLAckfriars 5379/5246. Opcn 6 Days a week

\section*{ISHEFFIELD}

125, The Moor, Shettield. Sheffield 29993. Half Day Thurs.

\section*{MAIL ORDERS AND EN QUIRIES TO:}

\section*{FLOODLAMP CONTROL}

Dim and full nwiteh for eontroliling photo fimadampl. lavipa full brilliathen ancl lampe ofl. Mimiliar eontrol of other applisncen. Whth eireft 3/4, plus idd. poninge.


\section*{Suppressor Condensor} Stop yonr drill meighboura ranto or televinions. simple instrte. Liont given. 1/6 each. J2/: diozer. FINE TUNERS


AUTO CHANGER BARGAIN GARRARD AUTO.SLIM RECORD


\section*{CHANGER}

One of the nleest record chanarere that uhi iathous company make-Automialic flection of records whleh may be mixed \(\rightarrow\) tuay aloo be played manualig. Finger tip anjustment of stylus presmare Fited with mono hem-lat picting "Ired For stereo-suitable 200/250 A.O mains-cahinet apare required 14 ! \(\times 14\) *lth 4 lina above and 2 lln . below. DONT miss this special smip, only cs 13/-. (Post and lns. 6/6.)

\section*{MULTI-METER BARGAIN}

Model number EPIOK. Bxtra wide scale fitted corner-wine for compractaces. extris arcurate ing uses \(1 \%\) coinfonhents. Semativity jo,000 ohme-per troit. A.C. and D.O. rungen D.C. voltaǵe up to \(1.2 \mathrm{k} \overline{\mathrm{y}}\) - in 5 ranges. A.C. voluge up, to 1.2 LV 5 ragges.- D.O. current up to 300 mA 3 rangeri. Reabtance up to 2 meg. Capracilles 0.05 to .25 mid ind dectere Complife with full Instructions and lest prowls and hettery for olims range. A real thargain not repeatable once stock cienred. Price \(68 \%\). Carriage and Insurance \(\%\).


TAPE RECORDER that. will play in your pocket


Undoultedly one of the smalleat practalum tape you can rocond and play liack with the Instrumenti in your pocket. It tis a fill function manhline using aticudard 3 in. tape nad exsy to replace latterien. givaling and playing back in from the wayme (cry tala) milcrophoue.
Specification: Dimensons of \(\times 24 \times 1 \mathrm{fin}\)., veigur
 oymem: Mapvetic ernalag; wow and fluter within \(2 \%\) and frequency-ruaponse; 500 1,200 e/w (whitn - Whits)
price \(\{919 \mathrm{~s} .6 \mathrm{~d}\). plar a/d port and ine


\section*{MAINS POWER PACK}

MAIMS POWER PACE desizned to operate transistor sets and amplitiers. Adjustable outpose V . - to 12 volts lor up to 500 mA . (class B working 1 , Tekes the place of any of the lollowing betteries. PR1, PPS, PP4, PPG, PP7, PP9, and others. Kit comprises: mains fransformer-restilier, smoothiag and load ressistor, 5,000 and 500 mid. condensers,

\section*{SPEAKER BARGAIN}


Price 25/B, plus \(3 / 6\) poet and insurance.
Hi-Fi Speakers
E.M.I. Cemmic magnet 12,000 IInen, size 13 in . \(x\) Bin. (roustly equivalent to 12 in , round apeaker)
 15 olful or 3 ohm.
 This ninoos cabinet as Cabinet snip must rated but ten control kinote is a rall.
able thio month at apectial mile price of 12ka, plus \(3 / \mathrm{mpost}\) padd asurranee. Size is \(3 \operatorname{in} . \times 9 \mathrm{~m}\) thi. and il is In invortone
I.C.I. Iabric.


SIEMENS HIGH SPEED RELAY
Trin 250 ohm coite allustable consion change

\section*{FIVE CORE CABLE}
lifeal for switchbug clrculte, Intervonus., 1.A. runs, ele., each core fies copper whth rubhbr
Inquintion corea covered overall to wough rubber of P.V.C. 9d. per ydu or 30 yds . Iength \(16 / \mathrm{j}\) - plus

MAKING A FAN HEATER
Minature motor, lami. Hakes poles. Operates oll \(20-40\). \(v, ~ D . O . ~ O r i g i n a l ~\)
cost tut least as each. \(8 / 6\) plua \(1 / 8\) postage and Pluwrance. Maitis condel
 9/4. phas 2/6) postage and Ionurance

\section*{THERMOSTATS}

Type ' \(A\) " 15 amp. for controling rosm beatern ureenbruse, sirlag cupboard. Raso vyipdic. for

 Tspe "Bu is amp. This ta a 17 mm . Iong roit trpe maide by the famous Bunvic Co. Spimile artjuuts this \(\mathrm{tmm} 50-550^{\circ} \mathrm{F}\). Intermal Berew altern the nettinis Ao this cound be adjustable nver : \(^{\circ}\) in
j000 Kumble for contralligg furnsee, oven,
kitn, Immerslon heater of to maka
 a/8 proat arod linsurance.

Type "C" In a small porcelein thermostat ar Hited in electric blankets, etc. If amp. sethine suthotable iy Rerew through side, 3 6, P. \& P. Bh Type "D" We call chis the loe-state as it cutn is
and ont sut sound freezing polint \(2 / 3\) ampu. Has and ont at around freezing point \(2 / 3 \mathrm{ampw}\). Has
many unen, one of which would be to keep the lot many unes, ore of which would be th keep the fors
pigea froun frepzing. If a length of our thanke -lre ( 16 ydr. \(10 / \omega\) ) is wound around the pisens 7/8. P. \& P. I/
Type "E" This is a slandard refrigerator thernueo nlet. Spindle adjume menta over noraial retrigerator
temperuture, \(7!6\), plus \(2 /\). post.

\section*{ELECTRONICS (CROYDON) LTD \\ 266 LONDON ROAD . WEST CROYDON - SURREY}

Post'orders to: Dept. W.W. 43 Silverdale Road, Eastbourne, Sussex

\section*{BARGAINS GALORE-WAREHOUSE BEING CLEARED}


FLEXIBLE COUPLINGS of alignment and for slug tenning controls, where of alignment core has to come in and out. Price 101-doz.


VARIOMETER
ASSEMBLY
As illustrated this is uscful for experimental circuizs, crys-
tal sets, etc. Price \(3 / 9\) each.


\section*{RELAYS}

Totally enclosed in bakelite. this relay has a 24 volt coil but can of course be rewound for mains operacion. Its contacts are suitable for breaking 20 amps. Price 2/6 each, 24/- doz.


VCRSI7 6in. \(9 / 6\) carr, and ins. 8/6 (replaces VCR 97 new and unissued) \(27 / 6\) carr and ins. 4,3 VCR 13831 lin. \(27 / 6\) carr. and VCR 1383 lin.
VCR \(4 / 13 \mathrm{in}\). .
VCR 112 sin . \(27 / 6 \mathrm{carr}\). and in
32/6 carr, and in CV 996 6in. CCR 976 in.
CV 1140
CV
CV
1590
121 in. \(\qquad\)

10 way Cable, ideal for interconnecting units and for remote switching circuits-each way has a inex copper corecapable of carrying Samps covered overall. Price i/i per yard. 10 yards poss free, otherwise add \(3 / 6\) post.
Twin Rubber Migh Current Flex. 110 strand in each core, 250 vole grada: carry a lengsh of flat bavtery you can join up co another car; regutar price of this cable is \(3 /=\) per yd. Our
price \(17 / 0\) for 10 yds, pose paid price \(17 / 6\) for 10 yds . post paid.
Bakelite Wall Switches. Normal household type for fishsing, erc., \(\% /\) doz. One way or \(10 /-\) A.C. Meter. Wall or Panal Moun Voltmeter 6 in. dia. in metal box for flush mounting-install one in your workshop and you will atways know how the mains are. \(35 /-\)
each. \(3 i 6\) post and ins.

\begin{abstract}
Famous Wartime "cats eye" used for seeing in the silver caesium screen which lights up (like a cathode ray sube) when the electrons released by the ipfra-red strike it. It follows that as light from an ordinary lamp is rich in infra-red these cells will work: burglas alarms, counting circuits, smoke detectors and the hundred cell. Here then is a golden opportunity for some interestimg experiments, price \(5 \%\) each, post \(2 \%\), Data will be supplied with cells if requested
\end{abstract}


TELEPHONE REPEATER NO. I MARK 1 . This equipment is for amplifying telephone signals in both directions of traffic and also to remedy line distortion of speech. It is intended for use
with two wire or four wire circuits, has four amplifiers and is in fact swo quite independent repeaters mounted on the same panel and having a common power supply. The power supply may be operated from a 12 -volt car battery or absolutely new in original packing complete with spares and instruetionat manual. \(67 / 10\) - cach and \(20 /\)-carr, and ins.


\section*{hurry or you may be too late}

See lost two months odverts for mare borgains but please note we ore aut of the following: Ferranti Meters-KIystron Receivers- 25 omp. contactorsMotorised Rotary Switches.


MULTI-SPEED MOTORS You can adiust chis moror 80 almost any speed you want, it will work directly off A.C. mains, or if you equire greater power or arcater speed, work it through a metal rectifier. This motor is fitted with a gear box enabling speeds down as low as I r.p.m
to be obtained. Price 19/6 postage and packing \(3 / 6\) extra.

UNITS FOR CONTAOLLED AUTOMATIC ROTATION


Two units work togesher to form a Tower rotating device, with remote control. Item 1, known as Tower 24A, is in fact the geared driving motor which rotates she mase. This is quite a heavy construction and would rotate a heavy scanner, refleczor. Beam
array, etc., erc. Item 2, known as Indicator 1-221-A is the remote controller which enables the azimuth
position of Tower 24 A to be controlled from position of point. Conversely, it enabies the azimuth posision of the tower to be known at any elme. Bosh the Tower and the Indicator contain selsyn transmitter/receivers and it is these that provide the impulses which cause the aerial zo roxate 117 volt. A.C. mains but operate from our mains if connected throuzh step down transformer of I K.W, rating.
Prices 1-221-A C25, TR24A C 35.
Special discount of 55 for cash with order or C.O.D. if both units purchased together.

\section*{THE INSTRUMENT COMPANY \\ Dept. W.W.}

\section*{43 SILVERDALE ROAD, EASTBOURNE}

\section*{Mail Order only from this address-roods may be seen by} appointment in Oxfordshire
If Carriage is quoted this must be sent, otherwise if your order
exceeds \(\mathbf{K 2}\) no postage will be chapged-under \(\mathbb{2}\) add \(2 /\).

Something for Everybody
Tokre Panel-Switcb. 2 F 40 manp , alagle pole, 24 24/- doz
Tounte 5 whelh. 10 amp. double pole. \(8 /=, 18 /=\) doz. Electric Lock. \(24 v\). coll but rewindable to atter voltages 4/8, \(88 /\) - doz.
Dynomotor. American make Iaput 27 v. ourput
 EET Reotilier. CV \(111,18 \mathrm{Kv} .380\) M.A. Ceramle Holder, for CV1II rectiter \(2 / B, 24 /=\) doz. Waler \$which. \(\frac{1}{2}\) assorted tspes all very useful 10/-, pose \(2 / 4\) i.
Headphones, theal for short ware listepling, etc. low resistance bent maken, of-, post \(2 / 6\). Sound Powered. Inserts (D.L. R..5) às P.E. Inter comm. an epeakers or microphones \(5 / 6,54 /\) - dosHot Wise Meters. Theae meanure 0-grama A.O.

| Mer Potent Meters. Sealed type by Morganile amoug the beet ever made, elandiard if spindie,


MU Metal Screen for Ameriken \({ }^{5} \mathrm{CP1}\) etc.
06 pair for VCR97 and other bin. tubes, \(7 /\). evimplete.

8 Way Connectors, Male und remale to permalt Chatals unila to be prugged into one ancther 3/8
Screezed Slee viak 8 MM, 8i- doz. ylurde.
Reverse Curent Relays. 12 to 18 จ. 12f\%, 6 for \(70 \%\)
P.M. Speaker Barrains. Minn. P.M. by Rolay Celearlon fitted with etandan Prentode ourpur \(116+34\). \(126+3 /=\) pheso kist oflo. 12 Volf Vibrator, 4 pin, standand for meat car

\section*{SELSYNS}

E15 the publy
Vibrator Invertor. American made d.c. trput \(24 v\). Tuo A.C. outputs each \(16 v\). at \(100 \$\). \(\$\). 00 c.p.e., 15\%,
Vibrator Unit. Brilish made d.c. Input 24 aven 250 \%. d.e. at \(80 \mathrm{M} . \mathrm{A}\). usiag metal recti

Vibrator Unft. Canadian made d.c. Input 2 kires 50-180 v. d.c. at 35 M.A. usep aynchronou Hibritor alou gives 1.4 dc . for thimento \(35 /\)

Rotary Tinnsiormer for wathing \(200 / 240\) d.c. or ACluC aupliancen from 32 volt. Car buttery, output 200 v. at \(100 \mathrm{M} . \mathrm{A} .0 \mathrm{US} /-+8 / 6\).
Trimmer Bank. \(5 \times 50 \mathrm{pl}\) eompriession trimmers
mounted on \(u\) inelal mounted on unetal strip sfing, hong, Weal it insulution, g/- eech, 18/- duz.
Air Sraced Trimmers, 0.50 pi with long pre-uet Type \(9 /=\) doz-. spindie type \(12 j\)-do \(z\).
Twln type wih spladie \(18 /-\) doz.

Tonghened Giass. Can be droppert, walked on te., unlikety 'to break uniess atruck on edge Then th zurna fato untarmitul crystals, 3 parnein

Enition Coil, 12 . suite mont gars-useful fo
E.H.T. experimente, 126.
E.E.T. Smioothing Concenset, 1 mfd .10 KV , 8/-. 23 duz.
Miero 5 witeh, by Rurgeas. will opien or clome ctrcult, \(28,24 /-\) แuz.
Mtalature Relay. Amerlan make- 630 ohm coll (o-so v, operation-two pole chagge over contacte, 2/B, 24/j- doz.
Electrical Rev. Counter Generator. This Is a ieautifully made generator supplicd with fles voltmeter and cailbrate this ta \(\mathrm{K} . \mathrm{P} . \mathrm{M}\)., \(20 /\) \(+2 / 8\).
Key \(\$\) whiteh. Three position 3 c/o and \(2 \mathrm{c} / \mathrm{o}\) Si-
Q.P.O., plug with lead 8'6, 24/- doz.

Press Button Swilch. Multjple contacts on and off when pressed, \(2 \%\)-. \(28 \%\) - doz.

\title{
TEXAS InsTRUMENTS SEMICONDUCTORS FROM STOCK QUARNDON SUPPLY:
}
1. By Refurn of Post
2. At Manufacturer's Prices
3. An Exfensive Range

Send for a copy of our new SHORT FORM CATALOGUE QUARNDON ELECTRONICS LTD. SLACK LANE, DERBY. 46695

\title{
Elementary Radar
}

\author{
(Notes for Radio Mechanics, Part III)
}

This book is the third of three volumes which, although written primarily to assist airmen under training, is well adapted for civilian needs. It gives a basic outline of the principles and applications of radar at craftsmen level and provides an easily understood introduction to the subject. Great emphasis is placed on the visual approach through copious and self-explanatory illustrations. As a whole, the three books should prove useful as textbooks for first-course training programmes and should also be of value to the interested layman who wants to absorb the rudiments of these subjects without prolonged study.

17 s .6 d . (by post 18 s .10 d .)
Already published: Part I, Basic Electricity, 15s.
(by post 16 s .5 d .)
Coming: Part II, Basic Electronics and Radio.
Free lists of titles (state subjects) are available from Her Majesty's Stationery Office, P6A(WW), Atlantic House, Holbom Viaduct, London, E.C. 1

\section*{HMSO}

Government publications can be purchased over the counter or by post from the Government Bookshops in London, Edinburgh, Cardif, Belfast, Manchester, Birmingham and Bristol, or through any bookscller.

\section*{You are interested in Radio and \\ T.V.-Why not-}

\section*{PUT SOME LETTERS AFTER YOUR NAME}

You can rapidly qualify in your spare time by means of an absorbingly interesting Chambers Postal Course. We offer expert and highly personal training backed by a " SATISFACTION-OR-MONEY-BACK " Guarantee. Over 75 years' experience thousands of successes.

\section*{FREE 100-PAGE GUIDE}

Choose from hundreds of CoursesPractical Radio (apparatus supplied), Radio \& T.V. Servicing, Applied Electronics, P.M.G. Cert., City \& Guilds, R.T.E.B., A.M.I.E.R.E., Radio Amateurs Exam. etc. Send today for the informative 100 -Page Chambers Guide To SuccessFREE. (Please state Career, Exam. or subject of interest),

\section*{Chambers College}
(Dept. 11) 148 Holborn, London, E.C.1. SWW-152 FOR FURTHER DETAILS.


4 VALVE 4 WATT AMPLIFIER "C" Core tinnsformers A.C.
Mains \(110 / 230\) vetty 600 olias of Mains 110 p230 veity 600 olitus of
high impedance tupal.
Ontput high impediance lipat. Ontput
3 or 600 ohmas (stite cholce). 3 or 600 ohms (stite cholce).
Controh: Ou/oIf switch, Gain controln: Onjoff switch, Galn
contrat. Indicator light. Vialse



79/6. Curr. 10
COSSOR DOUBEE BEAM OSCILLOSCOPES Model 1052 e2\%/10/-. Farry tepted Model 1030 22. 20 C. Carr.
MARCONI TF \(987 / 1\) NOISE GENERATOR Desigued for delermining nolec lactor of A.M. notl F.M. Ie:
celvers. A.C. \(230 / 250\) w operuthon. Btathised R.T. Btand new £12/10\%- Carr. Cl.
Tubular steel copperised, zpray fonkh, ring catr locking on cach acelion provides lor fult or niny helght required. Bultable for all
 ( 6 rectlon). Clomet 6it. Bin. Welght 20 ibu., 75/-, Carr. 5/o Further height by adding 3-itt. Whlpsections, 13/8. Carr, it
(Especial price for CREED TELEPRINTERS
\(7 B\) used coultion, from \(£ 15\). Carr. : 80.0
Dtpole and rod akt!nls \(30 /=\) per ket. \(\mathbb{P}\), \& P. . \(/ 7-\) Microphone with connecthg plug, 1516 . P. \& P. 2/-; buttery inpusand phone plug MOVING COIL HEADPHONES
BRAND NEW. Chamors padded, complefe whth lack plugi \(15 / 6\). Poat 2\% MOVING COIL HEADPHONES
As abora fut whit matching moving coll malerophone 19/6. Poet
ALL NO. 19 SET PARTS AVAILABLE.
Many other barkains.
S.A.E. all exquiries. - Eling Lodze." Codicote. Hitchin, Herts,

5WW-153•FOR FURTHER DETAILS.

\title{
TRICITAIR Coventry alrport Tel: TOLL BAR 3688
}

\author{
AVIONICS EQUIPMENT
}

R 1475 RECEIVERS Also known as
Receiver Type 88 these exceedingly versatile ex-R.A.F. 11 valve receivers cover 2-20 Mc/s in four bands. Many unusual features such as \(600 \mathrm{Kc} / \mathrm{s}\). Xtal reference oscillator, Xtal controlled BFO , voltage stabiliser and variable selectivity are incorporated. The dial is exceptionally large and readable and sensitivity is of the order of 1 microvolt. Complete with power unit (A.C. and 12 v .) and in working order. £15.
BC 348s, £25. RCA 710 A UHF Signal Generators, £35. Marconi TF 885 A Video Oscillators, £38. *Bendix V.O.R. Receivers \(R\) 252C/ARN14 (MN85-DB). Voltage Regulators 40E23-1-C. Fuel flow Amps 16501 -1-C, Oxygen Regulators 2880-5B-D1. Standing Wave Indicators IM81/ UP, 100 microamp. meters 10S/16379. BC 1333 Marker Receivers. Relays 590984HPX, PEC 6001-9, G.E. C.Z 530010. Export only: AN/ART 13s, AN/APX6, BC 788 AM, ARC2.*
- Prices on application. All icems plus carriage.

SWW-1s4 FOR FURTHER DETAILS.

\section*{THE SOTONIAN TRADIMG CO}

\section*{AMPLIFIERS}

TANNOY portable loud speaking ampli－ fiers with power microphone．Four 6L6G＇s in output，with sufficient power for 10 speakers．Further details on application． Price £22，plus carriage．

\section*{CABLES}

Circular rubber covered twin leads，suit－ able for battery chargers，ett．， 30 ft ．long \(8 / 6\) Coaxial cable，．45＂diameter， \(2 /\)－per yard． CHOKES
Small L．F．smoothing chokes， 50 m．a．6／－ Small L．F．smoothing chokes， 60 m．a． \(8 /-\)
\(1 / 3\) Cossor miniarure，H．F．chokes CONDENSERS
TCC＂Metalpack＂tubular .1 mfd ．，or .05 mfd．， 350 v ．D．C．working
Ditto．， 25 mfd ．
9d．
Ditto．； 25 mfd．，．．．．．．．．．．．．．．．． \(1 / 9\)
Dubilier metal tubular，1 mifd．， 350 v ．D．C．
working working
American \(5 \mathrm{mfd}, 7500 \mathrm{v}\) DC working， \(25 / \mathrm{C}\) working

9d．
B．I．Cables moulded tubular， 01 mid．， 5，000 v．D．C．working ．．．．．．．．．．． \(2 / 6\) TCC tubular condensers， 75 pf ．， \(5,000 \mathrm{v}\) ． D．C．working ．．．．．．．．．．．．．．．． \(1 / 9\)
TCC base mounting condensers， .02 mfd ． 11,000 v．D．C．working
TCC base mounting condensers， 2 mfd． 10,000 v．D．C．working ．．．．．．．．\(£ 12\) TCC base mounting condensers，i mfd．， 11，000 D．C．working
Hunts moulded mica condensers，． 002 mfd．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．9d． Laboratory type variable condensers， dimensions approx \(9 \times 5 \times 5\) in．，and suit－ able for use on transmitters，etc．．．．．．\(£ 3\) Jackson Bros．，single variable condenser， 132 p．f．
TCC base mounting electrolytic conden－ sers， \(2,000 \mathrm{mfd}\) ．， 25 v. D．C．working \(12 / 6\) INDUCTANCES
Transmitter inductance units by Redifon， with 10 turns approx． 5 in ．diameter，and sliding clip．Very suitable for laboratory use

\section*{METERS}
moving iron projecting type meters，A．C． D．C，approx． 4 in．dia． \(0-150 \mathrm{v}\) ．

\section*{POTENTIOMETERS}

Miniature potentiometers， 1 meg 2／－ Reliance 400 ohm wire wound potentio－ meters， 1 娄汸．diameter，with knob．．4／3 Colvern 2 ohm wire wound potentio－ meters
Colvern wire wound potentiometers， 20,000 ohms，pre－set type
RECTIFIERS
Westinghouse \(12 \mathrm{v}, 3 \mathrm{amp}\) ．metal recti－ fiers

12／6

\section*{SIGNAL GENERATORS}

Marconi type TF517F／1，covering 18－58 \(\mathrm{mc} / \mathrm{s}\) ，and \(150-300 \mathrm{mc} / \mathrm{s}\) ．These are offered by us brand new，and as received from Government sources，at \(£ 20\) each with in－ struction book．Carr．and packing 35／－extra． Signal generator，service type，SHF．，No．8， with equipment，

\section*{TRANSFORMERS}

Heavy duty unit in sealed container． Nominal input voltages， \(117 / 234\) Outputs 330－0－330 v．， \(200 \mathrm{~m} . \mathrm{a}\) ， 5 v．， 2 amps． 6.4 v．， 4 amps．Price ．．．．．．35／－ Heavy duty unit，input 230 v ．Outputs 4.5 v．C．T．at 6 amps．， 4.5 v．C．T．at 6 amps．， 4.5 v ．at 20 amps ．，C．T．Price \(£ 3 / 10\) Telephone transformers，type 34 or 35 5／－ Transformers，fitted with terminals．Input 230 v ．outputs \(365-0-365 \mathrm{v}\) ．at \(180 \mathrm{~m} . \mathrm{a}\) ． \(0-5.75 / 6.75\) v，at 12 2mps． \(0-5.75 / 6.75 \mathrm{v}\) ． at 12 amps ． \(0-5.75 / 6.75 \mathrm{v}=\) at 12 amps ．， \(0-5.75 / 6.75 \mathrm{v}\) ．at 12 amps．Price \(£ 3 / 10 /-\) ， Other \＄ypes available \({ }_{6}\)
Postage or carviage extra．Prompt despatch．
SOTONIAN TRADING CO．，
53，The Avenue，Southampton．


S．T．C．BALL MICROPRONES


LEDEX SOLENOID ORIVEN WAFE


9．Bank 2－pole 8－way plua 2－Rank 4 －way shoring，insulat ed ot carry up to 10 Kv ．on last two banks，operating voltage of solenoid \(122-24\) v d．c．All w：iters are stabdand size，removed
from brand new equipment ．．．．．．．．．．．．32／8 eq．P．P． \(2 / 8\)

MUIRHEAD KEY SWITCHES
Very lateat type twelve C／O heavy duty sliver contacte，these
awilches were designed for normal panel mounting，coroplete with chrone eacutcheon plate and serews．Price \(9 / 6\) each．spectat terms for quantities．

\section*{TEST EQUIPMENT}
＊Marconf U niversal lmpedance Bridge Type 373d Perfect condition
＊Marconi Signal Generator Trpe 144．．．．£30．
＊Muirbeall Valve Maintatned Tuning Fork Type D．630－ incorporates stablisel power unit．Frequency \(1,000 \mathrm{c.a}\) These inatruments are new and comply to laboratory stardards．
Furzhill \＆F． \(0.0-10 \mathrm{kc} / \mathrm{B}\) perlect condition．As new．
Complete with trawnit \(\star\) Complete with trawit case，etc．．．．．．．．E12．P．P．20／＝ －Q．R．type 583A Power Output Meters，range DmW，to \(\delta\) w．an and \(0-17 \mathrm{DB}\) ，multiplier \(1,1,10,100\) size \(10 \times 6 \times 3 \mathrm{in}\) ．In perfect condition ．．．．．．．．．．．．．．．．．．．．．．．．．．．£1810．P．P． \(7 / 6\) Measurement Corporatiog Square Wave Genermtor type 71. Frequency ranige 5 c．p．s．to \(200 \mathrm{Kc} / \mathrm{y}\) ，for 250 v．A．C．operation．
gizé \(15 \times 8 \times 7 \mathrm{~h}\) ，in a力 new condltion t Westera Electric sound Level Meter ispe RA331 to measure
 t General Rablo Portable Bonud Level Meter，Battery operated． Range \(40-120 \mathrm{db}\) as new condlition．．．．．．．．．．．．．£25．P．P．12／6 tPurzhll Micro Watt output meters，type 140 input impedance． ＊Marconi Cotadnetance Meter type．TF72ib 2510 P．． Hewlett Packard Audlos Opcilator 4 ype \(205 / \mathrm{As}\) ．perfect con－
 Tow inquaties are invfled．
KEY SWITCHES．PO type． 8 changeover． 8 c／o one side， \(4 \mathrm{c} / 0\) special quotations for quantitles． \(6 / 8\)
TRANSMITTINO SWITCHES．S hank，1－pole，2－way．Ceramic Waters insulited to 10 Kr ．，heavy duty silver contactm，elze
 MINIATURE CTBCUTT BREAKERS，ratiag 0 ampe up to 250 ． A．C．over fom instantaneroun，connecthons standard，new stock
\(10 / 8\) P．P．1／8
IVO－METER CALIBRATIOS TEST UNIT TVPE CT150 A motern precielon instrument．giving（ \({ }^{7}\) gtandard voltages． mV A．C．Also 250 mp D．C．frobin internal atandard ceil．Internal power mupply \(110-250\) v．A．C．，contained In portable carrying case．
Bize \(11 \times 8 \times 7 \mathrm{In}\) ．Brand new equipment ．．．\(£ 12 / 10\) P．P． \(10 / 6\) CLIVE COURTENAY ELECTRONIC PLASH UNTT，main or cell operated．The Master 111B is a protessional grade instrument． for laboratory and other uses giving high fight output，with built in chargiag unil，the master unlt．and issih head ure contained in attractive carrying case，at new …．．．．．．．．．．£12／101－ea． REO RELYS TYPE 3000

\section*{C．O．double noand coil \(10+55\) ohms．npecial latching type．}
 facturer
6 C．O． 500 ohmp，new stock
6 C．O． 300 ohtns，new stock 6 C．O． 300 ohms，new stock
6 C．O． 330 ohms，new stock

RELAYS TYPE 600
RELAY
4 C．O． 1,000 ohms，wew stoel
4 C．O． 300 ohms，new wtock
1 C．O． 500 ohms alugged
RELAYS，MINIATURE
RELATS．MINIATURE

8．T．C． 4184 CE 48 v． 2.700 ohms 2 C． 0
8．T．C． \(1188 \mathrm{EA}, 1\) ซ． 2 ohms 2 C．O．

\section*{，MINIATURE RELAY BANKS}
 Epacert erymal holders，designed to switch any desired crystal by remote control Relaye and crystal holders can be easily removed for other uses if required．territic
valce，only 150. P．P． \(1 / 6\) ．

SOLARTRON OSCILLOSCOPES \(\underset{\text { Trice }}{\mathbf{T} 55} \mathbf{~ C . D . ~}\)

L．T．TRANSFORMER 5．V．C．T．three timen，at 5 ampa， 230 \％．primary．The
U．S．A．trangformers are excellent for charging purpose．
New boxed． \(28 / 8\) ．Carr． \(3 / 6\) ． OSCILLOSCOPES
Coseor Double Beam Type 1035，perfect condition，£2\％／10／－ P．P． \(20 /\)－
Cospor Double Beam Type 1052，portable，conditlon new，\(£ 30\) ． Hartiey／Erncine Double Beam Type 13a，perfect condition．
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
SIGNAL GENERATORS VHF／UHF \\
Q．R．type 804 stgnal Generators．Frequency range 6－ 330 Mc／s directly callbrated in switched bands，mod． up to \(75 \%\) at \(400 \mathrm{c} . \mathrm{p}-8 .\), output from luv，to \(20 \mathrm{mv} .\), easy real output and tnod．per cent meters for 250 F．A．C． operation size \(19 \times 12 \times 8 \mathrm{in}\) ．Thls ine laboratory inditrud ment at a price you can afford，in perfect condlion．£25． Packlng and carriage pald．
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

P．F．RALFE
423，GREEN LANES，
HARRINGAY，LONDON，N．4． MOUNTVIEW 6939

> SIGNAL GENERATORS VHF／UHF 330 Me／s directly callbrated to 8 switched bande， up to \(75 \%\) at \(400 \mathrm{c.p-3}\), ，output from luv，to 20 mv ．，easy
real output and mod．per cent meters for 250 ．A．C． operation siae \(19 \times 12 \times 8\) in．Thas hat laboratory ingtrua Packling and carriage pald．

WE HAVE IN STOCK HUNDREDS OF ELECTRONIC BARGAINS，WHY NOT PAY US A VISIT？

\title{
Z. \& I. AERO SERVICES ITD. Head Office: 44a, Westbourne Grove, London, W. 2
}

\section*{VHF HETERODYNE PRECISION}


Total Frequency Coverage \(20-1,000 \mathrm{Mc} / \mathrm{s}\).
The Inatrument consista ot: Cryntal Controlled Oucillator (Cryutai \(100 \mathrm{ke} / \mathrm{m} . \pm 5 \mathrm{c} / \mathrm{a}\) )

 using coarse nemellistor nlone quick frequency ideatification can be made froma 20 to 1,000 Mc/as. with an arcuracy of \(2 \%\). By wising correct mpanuring procedure, l.e.

 provide exceptionar degree of dikctimination. Beat Uetection by Magec kequer menta \(115 / 230 \mathrm{~V}: \mathrm{A} . \mathrm{C}\).
PRICE. new and fully gumanteed
28500
Paekiug a wed carriage ali/a0/
CONSTANT VOLTAGE TRANSFORMER


Input: \(110: 230\) v. A.C. Output: 240 v. \(\pm 1.6 \%\) milv. evrrent A.


\section*{VARIABLE A.F. ATTENUATORS}

Unbolanced "pl" 'ype sood Atten wator swifthes conalineling of 21 -wrep stod swtech and wire wound remintancen. Switch



\section*{MARCONI TF338B}

VARIABLE ATTENUATOR
Characteristlc tupecdance coon. Internal/exteraal termination. Range of to 105 dB obtalnable by meank of Albewire
attenuator \(0-25 \mathrm{~dB}\) and 4 Fteps of 20 dB each. Yrequency


\section*{VARIABLE AUTO-TRANSFORMERS}




TYPE SBIO-illustrated nbore, 10 atape with protectine: buse. \(2185_{5 i-0}\), p.p. 1!/0.

\section*{TYPE 234 POWER UNITS}

TYPE 234. 19iv. rack mounted fully monothed and fued to 270 r. At 80 mA by weans of primily table trom 1800 P gritich in tie mercondary weinding. L.T. nutput \&.3 \(\begin{gathered}\text { \%. A.C }\end{gathered}\) it to aupu Fitted nith, M.I. nueter to resul A.C. loput abil
 DITTO, model wlthiut meter
TYPE E.H.T. Input 200250 v. A.C. Output 1,200 v. D.C.

 Packing anil carriake Eilioj-

\section*{METERS}

PMILIPS FIRST.CLASS MIRROR SCALE I mA D.C. MC METERS

nquye matige 4.8 in . \(\times 4.5 \mathrm{jn}\). furb mouated. Scal: lewsith tim. Body 2. Sid din. © Jatn. deep. Callbrated

VACUUM (GLASS ENVELOPE) DELAY
NELAY Type 6.030
OCTAL Base \({ }^{\text {K }}\)
TRANSISTOR TESTER MODEL AT-I


For P.N.P and N.P.N Transintors.
Measuren Ico and diode reverve current up to bous for low to seon \(\frac{1}{} 1 \mathrm{~mA}\). Powered by dry oello. f10\%/20/0. p.p.


R.F.T. TYPE FZ1-2

FREQUENCY INDICATOR
 range in covered to 8 thandm, the lowest being \(30 \mathrm{c} / \mathrm{s} . \mathrm{F} . \mathrm{S} . \mathrm{D}\). Measureroent accuracy \(+3 \%\) P.B.D. loput Impedance \(100 \mathrm{k} \Omega\). The instrument in provided whth internal mource of highly stahie frequency for checking and recallbration of the male. PRICk, new £20. Packing and cartlage 15/.
MULLARD EJ555/2 VALYE VOLTMETER
 The rotmeter measured
D.C. and peak A.C. D.C. and peak A.C.
voltages in the following rangem: b-1.b-6-15-50-100-\(600-1.500-5,000 \cdot 16,000\)
Frequener
response probe (up to 80 V . peatr) \(100 \mathrm{me} / \mathrm{s}\); without penhe (up to \(800{ }^{\circ} \mathrm{v}\). pealk), \(5 \mathrm{moc} / \mathrm{e}\). From 800 . to 15 kv . Areak \(60 \mathrm{c} / \mathrm{a}\) only. 500 v . Accuracy \({ }^{\text {D. }} \pm 2 \%\) F.S.D. \(600 \%\).
is. Up to 600 v. pk. A.C. \(\pm 3 \%\)
F.B.D. \(600 \% .-15 \mathrm{kV} . \mathrm{pk}\) A.C. \(\pm 7 \%\) F. \(.1 . \mathrm{D}\)

Power supplien 115 y 280 \%. A.C., \(48-60\) eycles. Plicice, new sud fulatanteed, complete with probe, E.B.T. lead and mathual

Yisking nad carriage \(1 \$ /\).
ARCONI TF8OI SERIES
SIGNAL GENERATORS
TFion A. Frequency lange \(10-300\) mache. In tonr overlapping hisoda. Callbration mecuracy \(\pm 1 \%\). Output 200 mV . max into \(75 \Omega\). Calibrated stepplatithenuator 0 to - 100 dB. In ldA. Atepo. Internal alnewave (up to \(80 \%\) ) sod square wave
( \(00-50\) ) moduiation at \(400-1.000-5,000 \mathrm{c} / \mathrm{a}\). Proviston for ( \(50-50)\) modulation at \(100-1.000-5,000\) c/s. Provision for
external modulathon. Power requirements \(100-130\) and external modulathon. Powet requirements \(200-130\) and TFBolal. Geecraly an above, but with frequency rance extender to \(310 \mathrm{me} / \mathrm{A}\). and with provimion of a ne parate" high output weket giving uyanonitored output of at lenat lv.
Fally, overhauled and zuaranted

HEADPHONES
DLRS Bhianced Arnuature headsets, low Impedance, \(\mathbf{1 0} / \%\), p.p. \(3 / \%\) Moviny coll heidert itted wth larze rubberizel poitereselydins carpadm. cumplete with marlag coll microphone with axitch. Low
lmpealaner. Slicel neekbund and canvas ndjuetable headband Hender cord teruinated with army ispe 5 -folmt moulded con nector. 25/-, p.p. 3/ts.
CRIt Biah imperdance hembeto with moljantable pteel healtonn D.C. Hemintance at 409 g - 15/~ D.p. 2/B.

POST OFFICE TYPE ELECTRO.MAGNETIC COUNTERS
d-digat new-eancelling type
\(2,30 n g\) oull, wecoudhand



\section*{EX-AIR MINISTRY DIMMER SWITCMES} 100 obme 24 volen, \(6 /\) - per dozen. P.P. I R.P.M. INDICATOR KIT

Ikado-Aitimeter Indleators with moving coll movement of 6 wa. F.S.D., eanlly convertible to accurale engme R.P.M. ton, and detailed inmtruct bous. Aultable for tocylituder engines

\section*{TRANSISTOR CIRCUIT COMPONENTS}
set of three \(450 \mathrm{ke} / \mathrm{s}\). 5.1. Colis. . . . . . . . . . . . . . . . . . . . . . . 10
Varlable Twin Gaps Miniature Tuning Capacitor, iwo
 Drtwer Tranmformer, Impedance ratio 2;1..... Ontput Tranoformer for punh-pull output, 280 mW 5000 g Bdgewlee volume control with Ewich Preking and carringe \(1 / 5\) per ltem.

\section*{CATHODE RAY TUBES}

 60 Blue Trece (Photouraphie) with P.D.A............... Tube ( 1solA (ACISi3): Jin. Generai Purpore Ovcilomope Packlng and poatage 5 j- per sub
AEP1: fin. IPticral Purpose Oceltoseope Tube
DdIs.2, 3sm. deneral Purpser Osclloncope Thibe ....
Thisisi sabpir similar to bcispiz but win hikher



WHEN ORDERING BY POST PLEASE ADD, \(2 / 6\) IN \(\&\) FOR HANDLING AND POSTAGE, MINIMUM CHARGE \(1 / 6\)
PLEASE OFFER US YOUR SURPLUS STOCK OF VALVES, KLYSTRONS, MAGNETRONS, ETC.
WE PAY \(£ 1,0.0\) FOR \(723 A / B\) AND \(2 K 25\) KLYSTRONS, SUBJECT TO TEST

\section*{Z. \& I. AERO SERVICES LTD.}

RETAIL BRANCH: 85 TOTTENHAM COURT ROAD, W.I. Tel: Langham 8403 Please send all correspondence and Mail Orders to ADDRESS OF HEAD OFFICE AT 44a WESTBOURNE GROVE, LONDON, W.2. Tel: PARk 5641/2/3

\section*{ERSIN 71 nulticoig
\&\% sOLDER NEW! \\ PRINTED CIRCUIT \& TRANSISTOR SOLDER}


Designed specificaliy for Printed Circuits and High Temperature Sensitive Components. Plastic re-usable reel contains, 212 feet of \(60 / 40\) High Tin Quality 22 s.w.g. ERSIN MULTICORE SOLDER with 5-cores of noncorrosive flux. Ash for Size 10.
15/- each (Subiect)
- For smail users, the same specification is available on a \(2 / 6 \mathrm{~d}\). reel (subject).

\section*{Bib \\ THE PROFESSIONAL. TAPE SPLICER}


All metat-beautifully plated-compact in size. Easily and permanently attached to a lape recorder. Clamps hold the magnetic or leader tapes in the precision cut channelno damage to the edges. Right angle and obllque cutting slots.
complete with Razor Cutter \(18 / 6\)


WIRE STRIPPER and cutter


This efficient tool strips insulation, cuts wires cleanly and splits plastic twin flex. It is adjustable to most wire thicknesses.
3/6 each (Subject)
If you have any difficully in oblalning these items they will be sent post free, (U.K. only)

MULTICORE SOLDERS LTD.
HEMEL HEMPSTEAD, HERTS.
TEL: BOXMOOR \(3636_{\text {Cmaskse } \text {. }}\)
(See also adverllsemeni on back cover)
5WW-158 FOR FURTHER DETAILS.

Quartz Orystal Units

For
ACCURACY RELIABILITY PRICE ECONOMY you can DEPEND

Write for on
THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works, Wellington Creseent.

New Malden, Sursey (MALden 0334 \& 2988)
5WW-159 FOR FURTHER DETAILS.


THE HOUSE 908 THE BEST \& - N WWEST IN HI-FI. TAPE \& ELECTRONIC EQUIPMENT 25. HIGH HOLBORN. LONDON WG.

5WW-160 FOR FURTHEK DETAILS

\section*{\(D\) A \(\square\)}

\section*{Electrolytic} Capacitors
* Electronic Flash
* Energy Storage * Motor Starters

DALY (Condensers) LTD Ealing Green - Ealing • London •W5 EAL 3127. Cables: Dalycon-London


\section*{SOLON} GETS THINGS TOGETHER FOR GOOD

SOLON ELECTRIC SOLDERING IRONS are made by AEI in a range of seven models rated from 15 to 240 watts. Designed for continuous duty and unsurpassed for industrial use. All parts are easily replaceable, spares alwaysavailable. Over 30 years experience behind every Solon. From your radio or electrical supplier


SWW-162 FOR FURTHER DETAILS. b/z/C

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{DISPLAYED: £5 per single col. inch}

LINE advertisements (run-on): \(5 / 6\) cer line (approx. 7 words), minimum two lines
Where an advertisement includes a box number (coung as 2 words) there is an additional charge of \(1 /-\)
SERIES DISCOUNT: \(15 \%\) is allowed on orders for twelve monthly insertions provided a contract
is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o
Wireless W.orld, Dorset House, Stamford Street, London, S.E.I.
No responsibility accepted for errors.

\section*{SITUATIONS VACANT} Ginaineer Techntclans.
DIPLOMATIC WIreless Service
THE Diplomatic Wireless Service have vacancles for bout 25 penslonable posts in (a) Grade 1 , (b) Grade THIB Department operates a world-wide network of Radio Communication Stations which is un the pros cess of belng modernised and expanded and the most up-to-date techniques in radio teleprinter systems are
being emploved. The duties of Engineers in this field belng employed. The duties of Engineers in this feld operation of radto iransmitters and receivers of the most modern types, remotely tuned aerlal systems, teleprinter and vofce irequency telegraph equipment. In addition several high-powered broadcasting statlons relaying programmes in both the H.F, and the M.F bands. The Transmitters involved include some of duties in this field include the installation, modifications, maintenance and operation of these very highpower transmitters, the most, modern receiving equipment, tape recorders, diesel generating plant, etc. The Department's policy is to encourage versatility and to as possible with its own stati. The initial appolntments will be elther to Crowborough, Sussex, or Hans lope, Bucks. Liablity for service overseas.
QUALIFICATIONS: O.N.C. In Electrical or Mechanical Englneering or a City and Guilds Telecommunications, Electrical, or Mechanical Engineering Technician tions may be accepted. Higher quallfications will be
an advantage, £1.244; (c) £769 (as age 21)-£975 (a\& 28 or over) K1,091. Promotion prospects.
WRITE (preferably by postcard) to Civil Service WRITE (preferably by postcard) wo civil Service form quoting S/6111/65. Closing date loth May 1965.

\section*{A N OVERSEAS CAREER WITH}

NTERNATIONAL AERADIO, LIMITED
TO meet the requirements of constant growth and expansion we dnvite applications from technictans and East Arrica the Mediterranean area, the Caribbean the Arabian Gulf and the Far East. If you have recently completed service in a trade such as Ground WIreless Fitter in the R.A.F. or Radio Electrical Artiftcer in the Royal Navy or have other experience in the maintenance of HF and VHF communications, RTT and you. Successtul candidates would normally spend six weeks at our Radio Training School, Southall, Middlesex, before proceeding overseas, but in some cases staff With suitable qualifications and experfence may be tax-free salary with married and chlld allowances if appropriate and accommodation, bachelor or married, is provided. rree; other benefts include generous O.K. leave and membership of an excellent pension and iife assurance scheme.
WRITTEN applications, please, to Personnel Officer. 40
A SSISTANT EXECUTIVE ENGINEERS.
POST Office.
ABOUT 25 pensionable posts for men or women aged \(171 / 4\) and under 25 on \(1 / 9 / 65\) ( with extension for Forces Service, Overseas Civil Service, and up to two years permanent Civil Service)
DUTIES: techatcal destan and development of telecommunications equipment.
EITHER (1) G.C.E. (or equivalent) passes in English Language and four other subjects, including two at of level obtained at the same examination for Pure Mathematics, Applied Mathematics, Physics OR (ii) Figher National Diploma in Electrical or Mechanical Engineering or Applied Physics. or a pass in (or exemptlon from) parts 1,2 and 3 of the Graduateship Examination of I.E.E. or I.Mech. E.. or a pass in (or exemption from) Sections \(A\) and \(B\) of the E.R.E. Graduateship Examination under the Sep ember 1962 Syllabus and Regulations.
GC.E (or equivalent) pass in Englis also have- a SALARY (Inner London): \(£ 740\), at 18 Language. or over Ei,575. Promotion prospects
WRITE (preferably by postcard) io Civil 0 , at 25 mission Savile Row London. W Civil Service Commorm, quoting \(\mathrm{S} / 330 / 65\). Closing date 6 th May, 1965

TEST engineers.-Applications are Invited from lest esting enineers with previous industrial experience ai testing radlo communications. recelvers and transon the sticcessful applicants will be offered position on the company \({ }^{*}\) sormanent staff: starting salartes Apply in weiting. giving full detalls. to Personnel Officer, Redlron, Lid., Bromhill Rd., S.W.18. [124

\section*{YORKSHIRE}

\section*{YORKSHIRE IMPERIAL METALS LIMITED}
have two vacancies in their

\section*{ELECTRICAL ENGINEERING DEPARTMENT}
1. Electronic Maintenance Supervisor
2. Electronic Maintenance Technician

The work will involve the malntenance, calibration and installation of a wide variety of industrial electronic equipment.

Applicants must have a knowledge of solid state circuiting for the supervisory oost. Some experience is also desirable in one or more of the following fields:
I. Non destructive testing equipment
2. Machine Control
3. Communicatlons

Consideration will also be given to men with experience of electronics in the Services.

The Company is the Jargest of its kind in Europe and offers attractive conditions of employment which include a Pension and Life Assurance Scheme and Profit Sharing Scheme.

Applications, giving details of age, experience, qualifications and present salary, should be marked "Reference 6168-Confidential" and addressed to:

The Personnel Officer (Leeds), YORKSHIRE IMPERIAL METALS LIMITED, P.O. BOX 166, LEEDS.

\section*{RADIO TECHNICIANS}

\section*{STC}

We require techniclans at our London Airport Service Depot for work on a wide range of airborne radio equipments.

Applicants should have experience in the maintenance of radio or electronic apparatus. Experience in the airborne field desirable but not essential. Familiarity with modern techniques an advantage. These are staff positions.
Write in confidence to Personncl Manager,

Srandard Telephones and Cables Limired
OAKLEIGH ROAD, NEW SOUTHGATE, LONDON, W. 17

\section*{Could you trouble shoot a computer?}

Keeping a computer working smoothly is only part of a Customer Engineer's Job at IBM. He works with his customers (within daily reach of his home) in thelr offices, helping them to use the equipment more effectively. He meets all levels of customer management in different branches of commerce and Industry. He should have the ability to produce fresh ideas and have confidence in his own judgment. He must be able to combine his engineering skill with an understanding of his customers' needs and business systems. The job is a challenge, so is any work worth doing. And it's never dull.

We offer a thorough training. Starting salaries are normally in the region of \(£ 1,000\) a year, with special consideration for men with special aptltude or specific experlence. Increases are on individual merit. As a Customer Engineer you could be earning between \(£ 1,250\) and \(£ 1,700\) in three years. Promotion also is on merit and from within the company.

Is this the kind of career you're looking for? If you are between 21 and 29 and have a working knowledge of electronics (e.g. through a Radar/radio Fitters Course, Telecommunications experience or ONC/HNC Electrical or Electronic) we'd like to discuss your plans with you and show you how they could be realised in our rapldly growing organisation.

If you're not quite old enough to have reached the standards we've indicated, we'd still like to hear from you. If you've just left school with ' \(A\) ' level Maths and English or are studying for ONC Electrical Engineering, we invite you to apply to us. There could be a place for you.

Please send a summary of your education, experience, interests and age to Mr. I. F. Bush, IBM United Kingdom Limited, 101 Wigmore Street, London, W.1., quoting reference CE/WW/195.

You can grow with
IBM

TESTERS
required for interesting work on L.F. and H.F. Transmitters. Previous fault-finding experience essential.
The positions available would be of special interest to persons employed in the fault-finding and repair of television who are keen to establish themselves in a position that offers:
* Satisfactory employment
* Five-day week
\(\star\) Good prospects of advancement
* Staff status
* Sick pay
* Generous salary

Apply: Personnel Manager
Multitone Electric Co. Ltd. 12-20 Underwood St., London, N. 1

R ADIO Examiners-Ministry of Defence (Air Force
R. Dept.)

A LARGE number of vacancies exist in the Unlted A. LARGE number of vacancies exist in the Unlted to time in the Air Force Department for Examiners Who are employed on the inspection and calibration of a wide range of electronic equipment. be Britisil subjects. Holders of the O.N.C. Clty and Gullds or an equivalent cerilfcate are preferred, but all applicants who have training and experience on Radio and/or Radar equipments and who are prepared to study for an appropriate technical certincate will be considerec. LOCATION of Posts at Kenlow (Beds) Sealand (Chester), Carlisle (Cumb), Addergrove (Northern Ire land) and various other R.A.F. stations in the United Kingdom. Aiter first appolntrient all inspection stan
are required to serve at any R.A.F. station at are required to serve at any R.A.F. station at
lome or abroad.. Housing is usually provided overscas for rent, and is sometmes available at a small number of stations in the United Kingdom.
PAY (increases under revtew): \(£ 769\) at age 21 increasing by annual increments to maximum of \(\mathrm{El}, 091\). Are 28 and over start at \(£ 975\). Extra pay and attructive
allowances for overseas service. PROSPECTS for Promotion io senlor grades up 10 salary maximum of ©I,928 (increases also pending) are good. Promotion by interview based on experience, qualifications and merte.
PROSPECTS for Pension also good. Temporary staft paid gratuity based on length of service If they retire ment (for pension and gratulty) can be obtained by passing Civil Service commission interview once ure O.N.C. or equivalent certificate is held STUDIES for O.N.C., H.N.C.. etc., encouraged by release rom work one day a wieek and by payment of rees.etc. by Department. Fic.-Five-day week. Annual holldays three weeks and three days at start increasing gradually to six weeks alter 30 years. In sedition. \(81 / 8\) days public holldays a year. Slck leave benefits APPLICATION for further detalls and forms should be addressed to: Ministry of Defence, CE3f(Atr), Sentinel House, Southampton Row. London. W.C. 1 .
QADIO Engineers and Mechanics with specitin work. Q shop experience in ADP/MPF VHF or ILS, VOR 40-hour week, salary according to experience and
ability, pension scheme.-Apply: Managing Director, Air Transport (Charter) (C.I.). Lid., Willow Rd.. Poyle


\section*{PROFESSIONAL ENGINEERS}

\section*{AND TECHNICIANS}
with at least two yrara' experience in Brilish Induntry are iovited to arail tbemselves of our Condidentinl and Free Service.
R. A.L. offers the moet efferent and atatilactory wy of obtaining alternative employment in the filectronices Industry.
R.A.I. is in eontect with all firms in S.K Kigiand and undertakes a complete and thoroush murvey of any area for sulfable vacancles fo every enaineer registered with us


Electromics
Appointments Lid.
22 Gloucester Mas. Cambridze Cireub
London, W.C. 2
Phome: TEMifle Bar B557/8

\section*{TEST ENGNEERS}

If you can confidently answer "YES' 10 ail three questions,
whether fully-qualified academically or not

\section*{then we can offer you}

1 A permanent position on our weekly staff with a salary in the range \(£ 884\) to \(£ 1,105\) p.a.

2 Non contributory pension, life assurance and sickness cover.
3 Prospects of promotion to more senior positions based entirely on merit and ability.
vacancies occur at both our
CHESSINGTON AND FARNBOROUGH
locations

\section*{interested? then write to}

Personnel Officer,
THE SOLARTRON ELECTRONIC GROUP LTD.
Cox Lane, Chessington, Surrey.

Personnel Officer,
THE SOLARTRON ELECTRONIC GROUP LTD.
Victoria Road, Farnborough, Hants.

\section*{COMPUTER ENGINEERS}

\title{
or ELECTRONIC ENGINEERS
}

English Electric Leo Marconi invites applications for the following new openings:
Design Engineers for Test Equipment. There are several vacancies for qualified electronic engineers ranging from posts concerned with the design of printed circuit testing equipment to posts for engineers who have relevant computer experience.
Systems Test Engineers for the factory commissioning of Computers and Industrial Data Processing Equipment. Some vacancies are immediate-others are for a few months ahead. Electronic engineers who have logical ability or experience would be suitable applicants.
Test Equipment Engineer to organise the maintenance of factory-made and proprietary Test Equipment, including oscilloscopes and printed circuit testers. Experience is more important than qualifications and men in their thirties are invited to apply.

All the above openings are at Kidsgrove, which is well placed on the border of Cheshire and Staffordshire. Housing is relatively inexpensive and easy to find in town or country environments nearby. This is a good time to join the Company and young men with energy would find plenty of scope for challenging work.

Please write giving age, qualifications and experience to:
The Technical Staff Officer, Dept. WW/P.19, English Electric-LeoMarconi Computers Ltd., Kidsgrove, Stoke-on-Trent.

\section*{ENGLISH ELECTRIC LEO MARCONI}

\section*{TELEVISION ENGINEER (TRANSMITTER) government of uganda}

A Transmiter Engineer is required to take charge of the Marconi \(5 \mathrm{~K} . \mathrm{W}\). vision transmitter and associated 1 K.W. sound transmitter at Kampala. The selected candidate will be in sole charge of the transmitting station under the Chief Engineer, will train and control a local staff of six, supervise the day to day running of the station, and prepare reports for the Chief Engineer. In addition he will maintain all sound and vision equipment and recommend on the maintenance of aerials tower, etc.

Candidates must have a good educational background with the Higher National City and Guilds full Technologlcal Certificate and extensive practical experience in the operation and maintenance of modern vision and associated sound transmitters, and in the use of transmitter test equipment including side band analysers, also the ability to test and maintain a modern high power vision transmleter.

Candidates should preferably have practical experience of T.Y. aerials filter plexers and assoclated equipment.

The appointment will be on contract for one/two tours of 21-27 months with salary in the scale \(£ 1,725\) to \(£ 1,956\) per annum plus gratuity of \(25 \%\) of total emoluments. Free family passages. Free medical attention and furnished quarters provided at moderate rentals. Generous leave and education allowances.

Applicants who must be nationals of the United Kingdom or the Republic of Ireland should apply to the

\section*{MINISTRY OF OVERSEAS DEVELOPMENT,}

Room 301,
Eland House, Stag Place, London, S.W. 1
giving qualifications, age, nationality and experience and quoting RC 237/182/02.

\section*{"WIRELESS WORLD"}

An additional member is required for the editorial team producing Wireless World.

Applicants with radio or electronic engineering experience and an ability to write lucidly should send the editor details of education and experience in the fields covered by the journal.
Preferred age 25/35.
Wireless World,
Dorset House,
Stamford Street,
London, S.E.1.
\(\mathbf{R}^{\text {ADIO \& Television }}\) Testers.
FOR City Factory: good rates up to \(7 / 6\) per hour; APe-day week.
ALBA (RADIO \& TELEVISION), Ltd., Tabernacle St.
Liondon, E.C.2.

\section*{Fxecutive Engineers, Post Omice}

PENSIONABLE posts in London and Provinces for mechanical, electrical and electrontc engineers to de. velop and destgn communications systems and postal
QUALIFLCATIONS: Degree or Dip. Tech in engineering or physics or, exceptionally, very high protesslonal attainment. Final year students may apply. SALARY (Inner London): £850-£1.748. Promotion prospects.
AGE: At least 21 and normally under 35 on 31.12.65. some extensions for service in H.M. Forces or Over-
seas civi Service. Write (preferably by postcard) to CivI Service Commission, Savile Row, London, W. 1. quoting \(S / 322\).
EXPERIENCED technical authors and specification Writers required tor well pald staf appointments In Reading and Manchester offices, and various parts of the country: we are an expanding company operat-
ing good sickness, pension and life assurance schemes. -Apply to Engineentis \& Technical Publications, Ltd. \(1-3\), Greyiriars Rd. Reading. or 3. Chepstow St., Manchester, 1.

\section*{ENGINEER}
to instal \& maintain wired T.V. system -share given if capital availablesuitable H.N.C., aged 25/35.
Box. No. \(5014 \mathrm{c} / \mathrm{o}\) "Wireless World"

\section*{ELECTRONICS development stalt. \\ IMPERIAL College, London, S.W. 7.}

WE have technical stafif vacancies for Interesting and varied duties in the construction and maintenance of the most modern electronic equipment used in our research programmes. If you have a crood practicat knowledge of electronics or are a young man working your education and career to date. Information about vacant posts in the salary range \(£ 630-£ 1,135\) will then be sent to you.
PROFESSOR
G.
Engineering and Hall. Department of Chemical lege, London, S.W.7.
A GRICOLTURAL Research Councll.
FOOD RESEARCH
EXPERIENCED Electronics Techniclan required in Norvich. inittally to run an electronic workshop at the of a simular workshop at the new rood Research Institute which is to be completed in late 1967. QUALIFICATIONS: HNC or simplar qualification in electrontss.
SALARY:
Experimental cal and Works Grade I ( \(£ 1.244-£ 1.532\) ).
cap and works rade ( 21.242 -1.12). APPLICATIONS (quoting ret. 65/1) with names and addresses of 3 referees to.-Secretary Lou Temperature

\section*{9 百 \\ SYSTEMS DESIGN ENGINEERS \\ PYE TELECOMMUNICATIONS}
require:

\title{
SYSTEMS ENGINEERS FOR THE DESIGN OF CONTROL SYSTEMS FOR USE WITH RADIO COMMUNICATIONS NETWORKS
}

Applicants must be experienced in the design and maintenance of telephone switching equipment or multi-channel telephone systems and be familiar with the principles involved.
Experience of the application of such systems to radio bearer circuits is desirable but not essential.
Corporate membership of the 1.E.E. or equivalent is desirable but applicants without such qualifications who can prove wide experience up to a recent date will be considered.
Apply to: Personnel Manager
Pye Telecommunications Ltd. Newmarket Road, Cambridge

THE MINISTRY OF DEFENCE (ARMY DEPARTMENT) invites applications for interesting Grade V ENGINEERING appointments in the BRITISH FORCES BROADCASTING SERVICE overseas in Aden, Benghazi, Tobruk, Tripoli and Cyprus.
DUTIES \& QUALIFICATIONS
Operation and maintenance of MF , HF, VHF, Transmitters, Studio equipment and generating equipment. Appropriate ONC, City and Guilds, or equivalent qualifications are necessary.
SALARY SCALE (under review) for Grade V staff is \(£ 739\) to \(£ 1,039\) p.a. In addition generous, non-taxable Foreign Service Allowances are paid according to location. Candidates must be at least 21 years of age.
For further details and Application Form please write to:-
The Director (EW),
British Forces Broadcasting Service, Kings Buildings,
Dean Stanley Street,
London, S.W.1.
sulrilis

\section*{AVIATION DIVISION}

SENOR Electronics ENGINEERS FOR AIRCRAFT AND INDUSTRIAL PROJECTS

The work is very interesting and includes: low level analogue circuits using the latest components and packaging techniques.
Control systems using miniature electromechanical components.
Magnetic tape devices.
Automatic programming devices using digital techniques.
Applicants will preferably have a degree or H.N.C. in electrical/electronics engineering. They will have had some years' experience of original design work but not necessarily in the specified subjects.

Apply in writing, giving full particulars of experience, qualifications, age, present salary and salary envisaged to:
The Personnel Manager,
S. SMITH \& SONS (ENGLAND) LTD.,

Aviation Division,
Bishops Cleeve,
Nr. Cheltenham.

\section*{Engineers and Technicians}
with a good knowledge of tape-recorders, especially in the mechanical fiela, and engineers with knowledge of pick-ups and record-works are wanted.
Have you the above qualifications and are you full of ideas and constructive capacity: are you able to work out a construction thoroughly; are you hard-working so that you can keep to the plans which you yourself have helped to draw up-then you are the right man for the job.
We can offer you very interesting assignments, gocd working conditions and a good salary.
Please send a written application with all necessary information to the electroacoustic laboratory at

Ingenieure und Techniker mit guten Kenntnissen zu Tonbandgeräten, besonders auf technischem Gebiet, und Ingenieure mit Erfahrung bei der Behandlung von Pick-ups und Grammophonwerken werden gesucht!
Wenn thre Fähigkeiten diesen Voraussetzungen entsprechen und Sie ausserdem einen Ideenreichtum und konstruktives Können besitzen; wenn Sie dazu imstande sind, eine Konstruktion gründlich auszuarbeiten und dabei so fleissig, dass Sie die Pläne innehalten können, an deren Aufstellung und Ausarbeitung Sie mitbeteiligt sein werden, dann können wir Sie gebrauchenl
Wir bieten thnen äusserst interessante Aufgaben, angenehme Arbeitsverhä|tnisse und ein gutes Einkommen.
Bitte, senden Sie Ihre schriftlichen Bewerbungen-unter Hinzufügung der nötigen Auskünfte-an das elektroakustische Laboratorium von


\section*{DO YOU WANT TO WORK ON A COMPUTER IN THE LONDON AREA?}

An increasing number of computers are kept working for customers in the London area by English Electric-Leo-Marconi. Site Computer Engineers are needed to provide this service at such installations. Shift work is necessary in most cases, but there are compensations.

Keenness and a sense of responsibility are the essential qualifications, but quickness of thought and electronic background are also necessary. Experience with pulse circuitry and transistors would be an advantage.

As well as openings for engineers there are opportunities for mechanics who have had experience on teleprinter equipment or similar perhaps in the Armed Services.

If you think that you match up with these requirements and you want to make contact with us please ring Mr. C. G. Ashby, on ELGar 2894 any working day between \(2 \mathrm{p} . \mathrm{m}\). and \(5 \mathrm{p} . \mathrm{m}\). or write to:
The Technical Staff Officer, Dept. WW/L.41, English Electric-Leo-Marconi Computers Lid., Kidsgrove, Stopke-on-Trent.

ENGLISH ELECTRIC LEO MARCONI

\section*{RADIO TECHMICIAN}

A number of suitably qualified candidates will be required for training, leading to permanent and pensionable employment. (Normally at Cheltenham but with opportunities for service abroad or appointment to other U.K. stations.)
Applicants must be 19 or over and be familiar with the use of Test Gear and have had Radio/Electronic workshop experience. had Radio/Electronic workshop experience. They must offer at least in English Language, Maths, and/or passes in English Language, Maths, andlor comsics, or hold the Citions Technician Intermediate Certificate or equivalent technical qualifications.
Pay according to age, e.g., at 19, \(£ 722\); at 25 , £929 (highest pay on entry) rising by four increments to \(£ 1,067\).
Prospects of promotion to grades in salary range £997-£1,634
Annual leave allowance of 3 wecks, 3 days, rising to 4 weeks 2 days.
Normal Civil Service sick leave regulations. Apply:

Recruitment Officer (RT/3),
Government Communication
Headquarters,
Oakley, Priors Road, Cheltenham.

HYDRAULICS RESEARCH STATION,
WALLINGFORD. Berks
ASSISTANT Experimental Offcer (preferably aged 2225) for design, development and construction of Instruments, and control systems for hydraulic models. Work mainly electronic but partly mechanical. Quallications: Degree, Dip. Tech. H.N.C. or equivalent in appro-
priate subject. Under 22. minimum quallifation is 2 Griate subject levels in Sclence andfor Maths. subjects. Experlence of circuit designt and construction of d.c. and I.F. amplifers, control and switching circuits desirable. Salary: A.E.O. E549 (at 18)- \(£ 776\) (at 22) £983 (at 26 or Gver)- -1.201 . -Housing avallable for married stand Application torms rom the Direchor at
tile above gddress quoting E/AL/023. BRADFORD INSTITUTE OF TECHNOLOGY.
(PROPOSED University of Bradford)
DEPARTMENT of Chemical Engineering.
APPLICATIONS are invited for the post of Senior Technictan to carry out duties in conmection with instrumentation and electronics; candidates should
have experience in the field of industrial instrumentation and an appropriate qualification aq H.N.C. level: Salary according to qualification and expertence withla range \&810-£1.010 per annum.
APPLICATION forms irom Secretary, Bradiord Institute of Technology, Bradtord. 7.
[1188 THE Diplomatic Wireless Service has vacancles for the ages of \(\angle 0-45\) years. the ages of \(00-45\) years
QUALIFICATIONS:
ABiLity to seng and recelve morse at \(25 \mathrm{w} . \mathrm{p} . \mathrm{m}\). and to matntain buste W/T equipment. Touch typing an advantage, Conditions of service include unreserved acceptance of overseas service and shift ducles. Famlwhere accommodation is provided. STARTING pay at age 25 and over E921 rising to \(£ 1,246\) (Nattonal rate) per annum. Adequate allowances are pald whilst overseas.
ALL arst appointments are on a temporary basis and candidates must be prepared to undergo a medical CANDIDATES and both thetr parents must have been British subjects at all times since blrth. WRITE, RIving age, oualifications and expertence and quoting O.T. 65, to the Personnel Ofticer. Diplomatic Wireless Service, Hanslope Park, Wolverton, Bucks. [1200

\section*{TELEMETRY/TELECONMUNICATIONS ENGINEER}

BP requires an engineer qualified to H.N.C. standard to operate and maintain a new telecommunications/telemerry network in the ARABIAN GULF. Applicants, aged 24-30, should have experience with modern medium power MF, HF and VHF single and multichannel radio, radar, small auto telephone exchanges and must have experience of digital data telemetry and control systeme using transistors and other solid state devices. The position is "single status " with home leave every 4 months, and is for an initial contract of 2 years. Conditions of service are excellent. Please send full details of qualifications and experience quoting reference F. 631 , to Box 3599 c/o Hanway House, Clark's Place, London, E.C. 2 .

\title{
(174)
}

\section*{The INDEPENDENT TELEVISION AUTHORITY has vacancies for ENGINEERING STAFF at its Transmitting Stations.}

The work on the Stations consists of the operation and maintenance of television transmitters and-ancillary equipment. This calls for a high degree of skill and knowledge of electronics, television techniques and high frequency engineering; these vacancies are for young men with good basic knowledge who can be given appropriate training. A Higher National Certificate in Electrical Engineering or similar qualification is required.
Conditions of service are excellent and include a contributory pension scheme. Shift working is involved to cover the period from 8 a.m. to midnight.
Starting salaries, depending on qualifications and experience, will be within the scale \(£ 875\) to \(£ 1,145\). Applications in writing, stating age and details of experience and qualifications and quoting Reference Number WW/583 should be addressed to the:

\title{
PERSONNEL OFFICER INDEPENDENT TELEVISION AUTHORITY 70 BROMPTON ROAD, LONDON, S.W. 3
}

EKCO ELECTRONICS. Ltd., Southend-on-Sea, have vacancies for interesting work on alrborne radar equipment for (a) Defect Investigation Engineer and (b) Assistant to Training Engineer f(ralning customers ensineers in maintenarce practice)
KNOWLEDGE of radar techniques essentlal. Ex R.A.F. personnel with technical expertence of air radar should suit these posts. Salary commensurate with expertence and qualifcations. Write stating full detalls to Personnel Manager
[1193
Q. O. The CENTRAL OFFICE requires a qualified and experienced TELECOMMUNICATIONS OFFICER (Unestablished) to oversee the world-wide network of communications used by the C.O.I. for the purpose of supplying press material to the Information Officers of H.M. Embassies and High Commissions, and to be responsible for planning future developments. The successful applicant must be familiar with the latest technical developments. Experience in running a communications system overseas and in dealing with Government Departments will be an advantage. Salary \(£ 1,777\) to \(£ 1,952\) per annum.

Please send posicard for application form to Manager (PE.2377/EW), Ministry of Labour, Professional \& Executive Register, Atlantic House, Farringdon St., London, E.C.4. Closing date for completed forms 14ih May, 1965.

\section*{HOME OFFICE CENTRAL COMMUNICATIONS ESTABLISH MENT AT PRESENT AT STANMORE, MIDDLESEX, BUT MOVING TO HARROW, MIDDLESEX IN AUTUMN 1965.}

\section*{Wireless Technicians}
cequired for varied and interesting work on all aspects of the provision and maintenance of a wide range of v.h.f. and u.h.f. communications systems for Police, Fire, and Civil Defence Services. Some posts involve some travelling and short periods of field work. A few posts may be ąvailable also at Regional Wireless Depots throughout England and Wales.

Salary \(\mathbf{£ 7 9 2}\) at age 21, rising to \(£ 929\) at age 25 (this being the highest rate payable on entry) increasing to a maximum of \(£ 1,067\) by annual increments. In addition an outer London weighting allowance, at present amounting to £45 to \(£ 50\) per annum, is payable to Stanmore staff. Annual leave allowance is 18 days rising to 22 days after 10 years service.

Applicants, who must be natural-born British subjects between 21 and 40, should have a general education to " \(O\) " level standard and a sound and up todate knowledge of radio theory and practice, preferably supported by relevant City and Guilds Telecommunications Technicians, or Ordinary National, Certificates.

All appointments will be unestablished in the first instance but there ate good prospects of establishment and promotion.

Opportunities for further technical education will normally be available.
Further particulars and application forms are obtainable from Communications Branch, Home Office, Whitehall, London, S.W.1.

Prospective applicants who would like to visit the Central Communications Establishment for an informal preliminary discussion are invited to telephone STOnegrove 5691, Extension 20, for an appointment.

\section*{MARINE SERVICE TECHNICIANS TO WORK IN CANADA}

Immediate openings are avallable with the Canadian Marconi Company in Quebec, Ontarlo and the Marltime Provinces.
Salaries would range from \(\$ 350.00\) to \(\$ 450.00\) monthly depending on the qualificatlons of the indivldual candidate.
Applicants must be experienced with marine radio and radar equipment. 2nd PMG or amateur certificate as well as some sea-going experience could be useful.
Those applying must be capable of working independently with a minimum of supervision. Candidates famlliar with the following types of equipment will be given first consideration: Radar; \(H / F, W / T\) and \(R / T\); VHF, FM and \(R / T ;\) M.F.D.F. and Echo Sounders.
Pleose write with full detoils, quoting reference WW2990F, to:
Technical Staff Officer, English Electric House, Strand, London, W.C. 2


\section*{GANADIAN MARGONI}

PYE CAMBRIDGE WORKS, Ltd., Haig Rd., Cam SINGLE sideband equipment.
- VHF radiotelephone equipment
- HL-Fl reproduction equipment. and faylt findink of modern equipment and fayit findir of modern equipment. pertenced men with drlve, who can lead small teams engaged on this work. vacancles for persons of less WE have also Ilmited vacancles for persons of less
experience who can be trained for such work. APPLY to: The Personnel Manager.

CXPERIENCED prototype wiremen and testers re= L quired by fastest-growing, small electronics company in the country: good rates and excellent prospects is we expund; varlety of products: testers required for
transistorized equipment.-Electronic Laboratories (Rendon), Lid.. Spalding Hali. Vicioria Rab. London. (Hendon), Ltd. Spalding Hall. Victoria Rd. London.
N.W.
[1191 1191 | 070
DUEEN MARY COLLEGE (University of London),
Q Mile End Rd., E.I.
SENIOR Technician, Department of Zoology.
AN Electrontics Technician is required in the Depart
ment of zoology to be responsible for the design, con-
in physiological research and teaching,
POSSESSION of the National Certifficate In Electrical
Engineering or equivalent would be an advantage.
Penston scheme; five-day week; four/five weeks annual
APPOINTMENT according to abllity, etc, on scale
E840 to £1,040 p. \(\mathrm{a}_{\text {e, }}\) plus London Weighting up to \(£ 45\)
\(\begin{aligned} & \text { and possible £ } 30 \text { or £50 qualification supplement. } \\ & \text { LETTERS only to the Registrar (ZST) stating age }\end{aligned}\)
LETTERS only to the Reastrar (ZST) stating age
IV service engineer required, good pay 5-day week,
Ltd., 261, Harrow Rd.. London, W.2. Cunningharn

\section*{AN INVITATION TO ALL QUALIFIED ENGINEERS}

Professional Electronic Design Engineers with specialist experience in any aspect of Electronic Technology are invited to apply for registration with a New Company of Consultant Engineers.
If you have expert knowledge in your field and can undertake. design, Part Time or in your Spare Time on a Fee basis, please write or phone:

Scientific \& Electronics Consultants (London) Ltd.
22 Gloucester Mansions, Cambridge Circus, London, W.C.2.
TEMple Bar 5557.

\section*{TEST ENGINEER}
required for testing and fault finding on transistor oscillators, amplifiers and voltmeters.
Permonent appointment in on expanding company.

40-hour week.

\section*{levell electronics limited PARK ROAD, HIGH BARNET} Telephone: Barnet 5028

BOROUGE Polytechnic, Borough Rd., S.E.1.
DEPARTMENT of Electrical and Electrontc EngineerELEECTRONIC Techntcians.
APPLICATIONS are invited for the following laboraCHIE posts: Technician-commencing salary \(£ 1,085\) per annum. rising by annual increments to a maximum, of £1.255 per annum. rising by annual increments to a maximum of £1,035 commencing salary may be fixed above the minimum in certain clrcumstances.
JUNIOR Technician-commencing salary on the scale £300 to \&695 according to age and qualifications. EAPERIENCE of research, development and testing or servicing of
APPLICATIONS must be made in writing stating clearly the appoinement which is sought. Candidates should give details-of are, experlence and quallifations
and address their applications to. The Secretary, and acdress their applications. 0 .-The Secretary.
Borough Polytechnic, Borough Rd., London. S.E. 1196

ELECTRONIC Service Engineers required to service It and install Airborne Navigationsl Equipment at London Alrport. Home Counties and Overseas. Apply: The Decca Navigator Co. Itd., Spur Rd., Feltham. Middlesex. Tel. Feltham 4898 . 1190
CERVICE engincer required for 16 mm sound fim SERVICE engineer required for 16 mm sound film projectors: knowledge of amplifiers essential; must be driver.-Burgess Lane \& Co.. Ltd. Thornton Works.
Thornton Ave., Chiswick. Chi. 5752 .
[1152

MINISTRY OF DEFENCE (Air Force Department) have vacancies for CIVILIAN RADIO TECHNICIANS at RAF Sealand, Cheshire, and other RAF Stations throughout the United Kingdom for the servicing, repair, modification and testing of air and ground radio and radar equipment. Commencing salary according to age is \(£ 722\) to \(£ 929\) p.a., max. salary \(£ 1067\) p.a. Houses may be available for renting at West Kirby some 15 miles from Sealand.
Apply to Ministry of Defence (CE3b(Air)), Sentinel House, Southampton Row, W.C. 1 or to any Employment Exchange.

\section*{PROTOTYPE WIREMEN}

At our new Farnhorough factory we are selecting Prototype Wiremen for posts in our Data Handling, Data Logging and Analogue Computer Systems Assembly areas.

Applications are invited from experienced wiremen able to work from circuit diagrams and engineers' sketches.

Salaries are progressive and will commence in the range of \(£ 15\) to \(£ 18.15\) s. per week according to experience.

We work a 5 day, 40 hour weck. Membership of our non-contributory pension fund and sick pay scheme is automatic.

Please apply: Miss CъJ. Read, Personnel Officer,
the solartron electronic group itd
Victoria Road, Farnborough, Hants: Telephone: Furnborough 3000.

\section*{ELECTRONIC TESTERS and SERVICE ENGINEERS REQUIRED}
for interesting work on Radio Transmitters, Receivers, Amplifiers, Test Instruments and General Electronic Apparatus.
If you have a monotonous job and want to better yourself, apply for a post with us which offers:-

Secure Employment.
Scope for Advancement.
Five Day Week.
Staff Status.
Holiday and Sick Pay allowance. Congenial Working Conditions.

Apply to Personnel Department.
LABGEAR LTD.,
CROMWELL ROAD, CAMBRIDGE.

\section*{Inspector \\ Telecommunications/Electronics}

The Burmah Oil Company Ltd. wish to employ on a temporary basis for a period of approximately one ycar, an Inspector with experience of inspection of radio and electronic equipment. The first requirement is that the candidate should have a good background of radio electronics and a thorough knowledge of inspection work. It would be an advantage if the candidate also had a knowledge of test techniques and procedures. We envisage that a retired man with a suitable background, and prepared 'to travel in U.K. might be suitable. Salary by negoriation. Please apply giving full details to the Staff Manager, The Burmah Oil Co. Ltd., Britannic House, Finsbury Circus, London, E.C.2.

\section*{0 有 \\ 0 F \\ CAMBRIDGE}

We require trained men for production testing, fault finding and inspection of Modern equipment.
\(\star\) SINGLE sideband equipment
\(\star\) VHF radiotelephone equipment
\(\star\) ELECTRONIC telephone exchanges
We have linited racancies for more senior and experienced technicians with drive, who can lead small teams. Theie are also yacancies for men with less experience who can be trained for suolr work.

Apply: The Personnel Manager, Cambridge Works Limited, Haig Roàd, Cambridge.

\section*{COMPUTER ENGINEERS}

Due 10 continued expansion NCR require additional ELECTRONIC and ELECTRO-MECHANICAL ENGINEERS for Computer Maintenance. Posts are available for men wishing to become Site Engineers.
Training Courses are arranged for suitably qualified men. H.N.C. Electronics, City \& Guilds Final or equivalent standard required. Men from Forces with radar experience welcome. Knowledge of electronic or electro-mechanical equipment mecessary.

Please write for Application Form to:-
The Personnel Officer,
The National Cash Register Co. Ltd., 2061216, Marylebone Road, London, N. W.I.

\title{
ELECTRONIC TESTERS
}

A number of wacancies exist for both trainec and experienced testers at the Test Division. Chelmsford: These are staff appointments enjoying a 37 -hour five day week and leading to good careers in the testing of all kinds of modern complex electronic equipment.
Applicants should have some knowledge of, or should wish to gain experience in, the fields of Television, Radar, Point to Point Communications or Navieational Aids.

\section*{Marconi}

Write giving full detalls of qualifications and experience to The Marconi Company Limited, Technical Staff Officer, Group Personnel Sarvices, English Electric House. Strand, London WC2, quoting reference WW/2504 C.

The Marconi Company Limited, Chelmsford, Essex

TRAMPIAN REPRODUCERS, Lid., require Sentor Test Engineer to take charge of lest department: must be fully conversant with sound amplitication systerus.-Apply Dept. R.B., Hanworth Trading Estate, Feltham. Middlesex
R adio Mechantes requited for workshop overiaaul of alrctaft radlo/electronic equipment, applicants, proor industrial radio testing and iait equipment overhau rates of pay, pension scheme. slek pay and holidays.Apply: Canford Engineers, Lid., Stansted Airport. Stansted. Essex.

「1192

\section*{DINSDALE AMPLIFIER}

PRINTED CIRCUITS and parts available for Mono and Btereo unlts. Also Printe and all parts for "W.W." F.M. TUNER netuding R.F. Asoctobly. An akeruative is now avaimbie af a total builaing coot of 811 loclading reads B.A.E, for Lists.

HART ELECTRONICS 193 Hart Road, Mancbester. 14.

5WW-189 FOR FURTHER DETAILS.

\section*{VACANCIES IN THE COMPOSITE SIGNALS ORGANISATION}

A number of vacancies offering good carecr prospects, exist for
RADIO OPERATORS(Male)
Candidates should have a minimem of two years' practical Radio Operating experience.
Write, giving details of Education and Qualifications to:-
Recruitment Officer (CSO/3),
Government Communications Headquarters, A Block.
Priors Road, Chellenham, Glos.

\section*{Hydraulic, Electrical, Electronic Engineer/Writers Technical Authors}

Required for permanent positions in our branch offices throughout England and Scotland.
Apply to:
A. \(\stackrel{\dot{W}}{ }\). PUBLICATIONS LTD.

203, BLACKFRIARS ROAD, LONDON, S.E. 1

Some vacañcies suitable for ex-service personnel with engineering experience and wishing to take up handbook writing.

Bournemouth Education Committee
BOURNEMOUTH MUNICIPAL COLLEGE OF TECHNOLOGY AND COMMERCE

\section*{FULL-TIME and PART-TIME COURSES}
in preparation for the

\section*{I.E.E. PART III EXAMINATION}
in both Power and Light Current Groups
The next course commences in September, 1965. Details from The Principal, College of Technology and Commerce, Lansdowne, Bournemouth. Early application is advisable.
W. R. SMEDLEY, Chief Education Officer.

\section*{MEASURE HIGH VOLTAGES with he KIL OVOLTER:30 Pocke Size K!LOVOLTER : kV}

Ideal for checking TV, Radar, Car Ignition, elc. Only \(97 / 6 \mathrm{~d}\). Trade discount \(15 \%\). Or osk for leoflet. WAVEFORMS LTD.
72 Vauxhall Bridge Road. London, S.W.I. 5WW-163 FOR FURTHER DETAILS.


\section*{ENTHUSIASTS}
for tape recording subscribe to the Magazine with the ZEBRA stripes! 25/. (U.S.A. \(\mathbf{3 3 . 7 5}\) ) yrly incl. postage FREE SPECIMEN COPY ON REQUEST 7 TUDOR STREET, LONDON, E.C.4. FLE. 1455

5WW-164 FOR FURTHER DETAILS.

\section*{TECHNICAL TRADING CO. \\ 11/12 NORTH ROAD, BRIGHTON} TEL.: 67999

\section*{CAN WE HELP YOU?}

If you require printed circuits planned, made, drilled, punched, gold or nickel plated, all at keen prices, then we undoubtedly can.

A range of board thicknesses in standard and glass fibre board are in stock.
Bushes and solder tags can be punched directly into the boards reducing your assembly cost. Coloured laminates for producing front panels with lettering in copper or plated copper are available. We should be pleased to hear from you if you are interested in this recent development.

We offer you our services and invire your enquiry for quotation.
P. \& M. SERVICES \(\begin{gathered}126 \text { ramsay sti. } \\ \text { Rochoale, lancics }\end{gathered}\)

SMALL TRANSFORMERS
Microphone, Pickup, Line input, Outpur, Computer Rectifier. High Fidelity. Midget. Transistor Vibration, Seismic, Instrument, Photocell, Recorders of all kinds aviek dellvery. Lamge or small quantities.
E. A. SOWTER LTD.,

7 Dedham Place, Fore Street, Ipswich Suffolk

Tel.: Ipswich 52794
5WW-165 FOR FURTHER DETAILS.

\section*{TO All}

Manufacturers, Wholesalers, Importers, etc. of the Radio and Electronic Industries
We are spot cash purchasers for all types of redundant and surplus stocks.
Phone or write Hillside 2713
Stonegrove 7624
Broadfields Disposals Ltd.,
8, Broadfields Avenue, Edgware, Middx or
Mayco Products Ltd., 21. Lodge Lane,
N. Finchley, N. 12

\section*{SOUTHERN RADIO SUPPLY LTD.}

11, LITTLE NEWPORT STREET, LONDON, W.C.2. GERrard 6653

GOODS AS PREVIOUSLY
ADVERTISED STILL AVAILABLE

Bombsight Computers; Frequency Crystals; Test Meters No. 1; Accessories for Type "38" and "18', Transreceivers, etc., etc.

ST. Bartholomew's Môspltal, Londón, E.C.1
DEPARTMENT of Medical Electronics.
APPLICATIONS are invited for the following posts:circult design. Experience in clinical application not mecessary, Grading equivalent to that of university lecturer on scale \(£ 1,400 \times £ 85-£ 2.165\), subject to reVhew to s2. 505 + Londan Allow ance.
of electronic apparatus. Salary scaie and maintenance annum plus London Wetghting. TYE work of the department is concerned with the application of electronic techniques to medical diaznosis and therapy. The research programme includes e.g. EEG data analysis, radio plli telemetry and the to the Clerk to the Governors within 21 dass. quoting POEEN MARY COLLEGE (University of London). NUCLEAR Engineering Department. Senlor Techniclan, A Sevelopment of electronte equlpment for a variety of functions within the Nuclear Engineering Department. He will also be required to assist in the maintenance THE work of the department includes reactor' THE work of the department includes reactor techaspects of nuclear and health physics instrumentatan EXPERIENCE in electronics is an essentlal require. ment. Pension Scheme; flve-day week; four/flive weeks APPOINTMENT
APPOINTMENT according to ability, etc. on scale £840 to £1.040 p.s., plus Londion Weighting up to. £45 LETTERS only to the Remistrar (NST) stating and giving tull detatis of experlence and present work,
[1197

\section*{DAMAGED METER?}

Have it repaired by Glaser
Reduce overheads by having your damaked Electrical
Measuring Instruments repaired by L. Glaser \& Co. Ltd. We specialise in the repair of all types and makes of Voltmeters, Ammeters. Microammeters, Multirange Test Meters, Electrical Thermometers, Recording Instruments. etc.
As contractors to various Government Departments, we are the leading Electrical Instrument Repairers in the Industry. For prompt estimate and speedy delivery send defective instrument by rekistered post, or write to Dept. W.W.:-
L. GLASER \& CO. LTD.

1-3 Berry Street, London, E.C. 1
Tel.: Clerkenwell 5481-2

5WW-167 FOR FURTHER DETAILS.

\section*{UNIVERSITY OF NOTTINGHAM}

\section*{Faculty of Applied Science} Department of Electrical and Electronic Engineering

\section*{EXPERIMENTAL OFFICER}

Applications are invited for the above appointment to commence on 1st October, 1965. Candidates should have a good knowledge and practical experience of basic electronic circuit techiques using both vacuum-tube and solid-state devices; they will normally be expected to have H.N.C. or equivalent qualification.
The commencing salary will be within the range \(£ 880 \times £ 40\) to 1,200

Applications giving details of experience, present position, qualifications, and the names and addresses of two referees, should reach the Registrar, The University, Nottingham not later than 7th May, 1965.


\section*{SERVICE ENGINEER (ELECTRONIC INSTRUMENTS)}

A vacancy exists for a Service Engineer to work on a wide range of high quality electronic instruments.

Candidates should have HNC, C and G, or equivalent qualifications, or wide experience in similar position.

Good salary and prospects in a rapidly expanding organisation with an International reputation.
Pension scheme and monthly staff position.

Apply in writing to Personnel Officer:

\section*{HEWLETT (hD PACKARD \\ HEWLETT PACKARD LIMITED • DALLAS ROAD • BEDFORD}

BOOKS, INSTRUCTIONS, ETC.
MANUALS, circuits of all British ex-W.D. 1939-45 R.E.M.E. Instructions; s.a.e. for IIst. over 70 types. W, H. Balley, 167 a . Mofrat Rd.. Thornton Reath. Sur-
rey. rey.

\section*{ARTICLES FOR SALE}

TRRROGRAPH 5/AN (March 1964, \&62, no offers - (Londor).-Box WW 110. Wireless World,'

HaFAYETTE International Tape; example: 7 in . 2.400ft. polyester, 22/6: p. \& \({ }^{2}\). \(2 /-:\) wide range GOVERNMENT Surplus Electrical and Radio equipOment, our new catalogue No, 16 ready now, \(2 / 6\) post free, cost refunded on purchase of goods over \(£ 2\). -Arthur Sallis Radio Control, Ltd., 93, North Rd.
[200 Erighton.
PhatiNG unfts,-New \(6 v 50 \mathrm{amp}\) d.c. output, fitted use, 240 y a.c. input, £ 38 ; Auto-transformers \(240 / 110 \mathrm{v}\) 500 watt fully shrouded, \(45 /-\) transformers, output EL34 push-pull to 3 ohms. 57/6. Malden Transtormer Supplles, 134. London Rd., Kingston upon Thames. Kin.
7534.


CAPACITY 15 pf to \(111 \mu \mathrm{~F}\) RESISTANCE \(0.1 \Omega\) to \(100 \mathrm{~K} \Omega\) VOLTAGE DIVIDERS and WHEATSTONE BRIDGES

LIONMOUNT \& CO. LTD. 24 LYNTON ROAD, LONDON, N. 8 Tel: Ftzzroy 4178

5WW -168 FOR FURTHER DETAILS
The London Borough of Twickenham College of Technology Principal: J. P. WOLFENDEN, M.Sc., M.I.E.E. Department of Electrical Engimeering and Physics

\section*{TRANSISTOR CIRCUIT DESIGN}

A one-weck, full-time course. A special one-weck, full-time course of lectures and laboratory work, to be given by specialists from industry, will be held from Monday, 31st May to Friday 4th June 1965. The course is for electrical engincers of graduate or Higher National Certificate stindard with a knowledge of electronics and fundamentals of semi-conductor devices. The lectures will give detailed methods of designing a wide range of transistor applications and are intended to help engineers choose the best type of circuit for a given purpose.

FEES Residential . .................... 20 gns.
Non-residential . . . ........... 9 gns.
Brochures and ewrolnent forms may be obtained from;
The Principal, Twickenham College of Technology,
Egerton Road, Twickenham, Middx.
Telephone: POP 6656

Royal Borough of Kingston-uponThames Education Committee Kingston College of Further Education

\section*{COLOUR TELEVISION}

A series of six lectures on Colour Television, which will include demonstrations, will be given at the Cranleigh Gardens Annexe of this College at 7.00 p.m. on the following dates:-
WEDNESDAY May 19rh, 26th; June 2nd, \(16 \mathrm{th}, 23 \mathrm{rd}\) and 30 th .
LECTURER: Mr. B. J, Rogers
FEE \&1. Os, Od, (for whole series).
As only a limited number of places are available, applications from practising Radionand Television Engineers should be sent as soon as possible to:-

\section*{The Registrar,}

Kingston College of Further
Education,
Kingston Hall Road,
Kingstom-upon-Thames
Cheques and Postal Orders should be made payable to the College.


5WW-169 FOR FURTHER DETAILS.


\section*{ARTICLESWANTED}

WANTED, als types of communications recelvers and lest equipment-Detalls to R. T. © I.
Electronics, Ltd., Ashyllle Oid Hall. Ashville Rd.. Lon-
(140 E.11. Ley, 4986. URGENTLY wanted, new valves, transisters, radios. comeras, binoculars. tane recorder, and taves.
watches, any quantity.-S. N. Wiltets. 43 . Spon Lane. West Bromwich, Stafts Tel. Wes. 2392.

SAVE on cost of ht-fi. See Audio Supply notice (advert.
No. 1109 .

\section*{HA M MER FINISH PAINT}

The modern finish for electronics. Can be BRUSHED or sprayed. Blue or Silver. 2 oz . zins 3 ss . 6 d ., post 8d, 咅 pine 7 s . 6 d ., pose 1 s . 9 d . I pine 15 s ., post 2s. 9 d . Orders over 30 s . post free. Return of post
service. Retailers service. Retailers supplied. Wrice or details, Micklev Square, Stocksfield, Northumberland.

5WW-170 FOR FURTHER DETAILS.

\section*{TAPE RECOROLNQ ETC}

\section*{FOR ALL YOUR PANEL WORK WRITE FOR ILLUSTRATED BROCHURE OF PARALEX \& LUFBRA ADJUSTABLE HOLECUTTERS}


HOLES ACCURATELY BORED FROM lin. DIA. TO \(12 \frac{1}{2} \mathrm{in}\). DIA. AKURATE ENGINEERING Co.Ltd. CROSS LANE, LONDON, N. 8 TEL. FITZROY 2670

\section*{DECCA RADAR}

ELECTRONIC IRGSECTORS.AND TEST ENGINEERS required for varied work in Developme 1 Laboratories Some previous experietce is desirable 40 hour week. Staft conditions. Apply, giving brief details and quoring Ref. INSP/140 to the Personnel Officer, 7 Beverley Way, Shannon Corner, New Malden, Surrey.

You ought to send for a copy of "Psychology and field-5/9 post free.
 TAPE/DISC/TAPE transter ediling; dupllcating: from your preclous tabes) consult Britaln's oldest transfer service. - Fund TaisinR records pubilshed 10
schools, musical socleties (tax free). Sound News schools, musical societies (tax freel. Sound News Pro
ductions. 10. Cliford St., London. W.1. Rek. 2745 .

\section*{NEW GRAM•AND:SOUND EQUPPMENT}

R ETURN of post service; record changers, players Martin tape kits. Muliard amplifier kits, test meters Martin tape kits. Mullard amphiner kits, test meters aists, postal only. Watts Rado. Ltd., 54 , Church St. Weybridge, Surrey. Tel, 47556.

Clasgow.-Recorders bought, sold, exchanged; Cameras, etc., exchanged for recorders or vice-versho FOOR the best tn Hi-Fi sound and tape recording schools, churethes and professtonal orkanzations. Rapid postal service anywhere in the world. Good quality part exchankes welcome. H.p. facilities. Speciallst
Audio Service Dept. Records all labels. Supplers Audio Service Dept. Records all labels. Suppliters ins architects and broadcasting organizat'ons. - Vistt us at No. \({ }^{70 .}\). Lambda Record Company Limited. \({ }^{70}\),
Liverpol Rd. Liverpool: 23. Tel.: Great. Cfosby 1012.

1012
12868

\section*{NEW: COMPONENTS}

A Li. radio and audio components at bargatn prices, A l.e., resistors, condensers, transiormers, valves, P.U.,
cartidges, loudspeakers, recording tape, cable, etc., cartridges, oudspeakers, recording tape, cable etc.
etc.: all orders and enqutres. promptly attended to. Audiocraft, 20, Eetterlng Rd., Northampton, 36291

A \(_{\text {Alba }}^{\text {L/Ultra more }}\) Lopts our speciality, any make EKCO T221/231/284/310/311, \(69 / 9\) : \(\mathrm{T} 30 / 331\). \(72 / 5\) : Murphy V240/250, 75/-i 270/280/310/470/540, 85/-i D.p. 4/- c.w.o. or c.o.d.i. Ekco/Ferranth Shrouds will save you عEES, standard 14/9, de luxe 19/6; s.a.e. for en-
(tuiries or telephone Tid. 5394 (day). Rod, 7917 (night): quiriers despatched same day; T.C.S. Mati Order Depart: ment now at Brockley T/V. 28. Brockley Cross. S.E.4.
Callers welcome.

> B.B.C.2, PV, RADIO. TAPE REC., SPARES.
 Stinal Booster Units. Labgear B1/3, or UHF \(75 \mathrm{~J}=\) masthead \(105 /\) - Perdio UHP \(70 /\) - post Iree; L:O.P T.s. Philips. Stella 1768, 8617, ett., 98/. Ekco/Ferranti U25 types \(48 / 6\). Ekco/Ferranti U26 and Perspez types \(62 / 6\),
Ferguson \(306.30848 / 6\). 406 , etc. \(65 / 6\). Sobell 1517
 Pam, Philco McMichael. R.G.D., Dynatron, Emerson, Regentone. Ulera. H.M. V. Marconl, etc.: Scan colls.
 ransformers. With/in colls mains droppers, dual rets, channei coils: CRTS. Mullard, Mazda, Brimar, Emiscope 141 in and \(17 \ln 85\) )-, \(211 \mathrm{n} 120 /-\) etc., carriage 10/-: Tape Recorders, belcs, heads. motors, ele.; salvaged components-large selecuon clean, serviceabie tur-
rets, transformers, etc.; enouiries invited, C.O.D. \(2 / 6\). rets, transformers, etc.: enquiries invited. C.O.D.
MANOR Supplites. 64,
Golders Manor Drive. N.W.11 Callers, 589b. High Rd. (near Granvill Rd.) N. Finchley N.i2. H11. 9118 (day), Spe. 4032 (evg)
open all week incl, Sat.

\title{

}

\section*{VALVES}

\(\mathbf{A}_{\text {mitu }}^{\text {Lling }}\) and valves British or American, trans What have you got to offer? Write or call Lowe Bros, 95-97. Redchurch St., London, E.2. Tel. Shoreditch
4915-6.
\([2882\)
\(W^{E}\) buy valves for cash, large or small quantitles, by return.-Waltons Wireless stores. 15, Church St.

RECEIVERS ANO AMPLIFIERS-
SURPLUS AND SECONDHAND
\(H^{R O}\) etc., eic. etc., AR88, CR100, BRT400, G209, S640, Ashville Old Hall. Ashville Rd., London, E.11. Ley.

\section*{WIRELESS WORLD" TEST INSTRUMENTS}

Complete sets of Metalwork, machine engraved Fronc anels, special Tag Boards and all specified ist grad ance.

\section*{Send 6d. in stamps for lists.}

\section*{MALYYN ENGINEERING WORKS}

Engineers to the Radio and Elcetronic Industrie TEL.EPHONE: HERTFORD 2264
5WW-172 FOR FURTHER DETAILS.

\title{
To book panel advertisements in this section, apply to Wireless World, (Dept. P); Dorset House, Stamford St., London, S.E. 1 or telephone WATerloo 3333, Ext. 210
}


\section*{\(30,000 \Omega\) per \(v\). MULTIMETERS}

\section*{AcC. volts: \(0-2.5-10-25-100-250-\)} 500-1,000.
D.C. Volts: 0 - 5-1-2.5-10-25-\(100-250-500-1,400\) D.C. Current: \(0-50 \mu \mathrm{~A} .-5-50-\) \(500 \mathrm{~mA} .-12 \mathrm{amp}\)
Resistance: \(0-60 \mathrm{~K}-6 \mathrm{M}-60 \mathrm{M}\) What more can you ask for than all these ranges plus a specially damped "off" position for transit protection. Brand nelw, fully guaranteed, complete protection. Brand new, instruction w.p. \&7-19-6 booklet.
DON'T FORGET THAT ELECTROSURE BRAND RECORDING TAPE AS RECENTLY REPORTED ON IS AVAILABLE ONLY DIRECT FROM US

\section*{of DUAL} DYNAMIC MIC. A beautiful unit. Professional pattern with satin chrome finish. Swivel mount for standard in. 26 TPI stands. Troe Cardioid patrern with buite in voice use Low 2 6002. High 250 K . 25-17-6
inc. P.P

O-300V PANEL METERS Superior quality black Bakelite flush mounting with silver scale. A.C. use. Firs in 2 sin dia. hole. . P. 30/,

CHASSIS PUNCH SETS High quality tool steel kir in zip leather case. Punches tin., lin., tin., fin., 1 in. dia. holes in up to 16 swg. steel. Amazing value. \(47 / 6\) Inc. P.P.

\section*{ELECTROSURE LTD.}
FORE STREET, EXETER. Telephone: 56687

\section*{PATTRICK \& KINNIE COMPONENTS}

SIEMANS MINIATURE RELAYS (new). 700 ohm coil 24 volt D.C. (wt. i oz.). \(2 \mathrm{c} / \mathrm{o} .8 /-\mathrm{ca}, 4 \mathrm{c} / \mathrm{o} 10 / \mathrm{cca}\). LONDEX H.D. RELAY (new). 10 amp. contacts, \(2 \mathrm{in} . \times 1\) in. \(\times\) lin. \(2 \mathrm{c} / \mathrm{o}\). \(5 /-, 2\) make \(3 / 6\) ea., \(12 / 24\) volt operation. HIGH SPEED MAGNETIC COUNTERS. 4 in . \(\times \mathrm{lin} . \times \mathrm{lin.}\), \(12 / 24 / 48\) volt (state which), any type, 6/6 ea., p.p. \(1 /\)
KEY SWITCHES (ex equip), \(6 \mathrm{~m} / \mathrm{l}\) 4 m . and 2 c.o. \(/ 3\) c.o., both types nonbiased, 4/6 ea.
AVO "MINOR ", MULTIMETER (new), £6 ea. Leather case, 10/- ea., p.p. 3/-

FIELD TELEPHONES TYPE \(F, 70 /-\) pair. P.P. 7/6.
MINIATURE RELAY (new), \(1 \frac{1}{\mathrm{in}} . \times\) \(1 \frac{1}{4}\) in. \(\frac{1}{2}\) in., 8,500 ohm coil, 110 volt, 2 make, 5/- ca.
UNISELECTORS (ex-equip) 25 way, 4 bank 22/6; 6 bank 25/-; 8 bank 27/6. P.P. \(2 / 6\).

FUSES. Glass and Ceramic. All sizes stocked.
TELEPHONE DIALS. \(0-9\). \(5 /\) - ea. P.P. 1/=.

PATTRICK \& KINNIE, 81, Park Lane, Hornchurch, Essex.

Romford 44473
 hole punches

\section*{Instant Type}
fin. dlameter
Screw.up Type
15/32in. diamerer Toggle switch
6/10 ea.


\section*{Oliver \& Randall Ltd}

\section*{9 KELSEY PARK ROAD \\ BECKENHAM, KENT}

Tel.: Beckenham 8262
Manufactured by world famous firm and offered at less than half price.
All tapes are \(100 \%\) ested, have fitred leaders, are bosed and fully guarantecd.
(Not to be confused with used or sub-standard tapes.)
These tapes are comparable with any other on the British market.
S.P. Sin. 600ft.
stin. 900 fe .
\begin{tabular}{l}
\(7 \mathrm{in} .1,200 \mathrm{fs}\). \\
900 fe \\
\hline
\end{tabular}
\(5 \frac{3}{3} \mathrm{in}, 1,200 \mathrm{ft}\)
7in. 1.800fc
D.P. Sin. 1,200fe.
\[
7 \ln .2,400 \mathrm{ft} .
\]
6/6

\section*{\(9 /-\)
\(1 /=\) \\ \(91-\)
\(11 /-\)
\(141-\)}
\(18 /-\)
\(23 / 6\)
STARMAN TAPES LTD
28, LINKSCROFT AVENUE, ASHFORD MIDDX

\section*{PRINTED CIRCUITS}

A NEW SERVICE FOR THE HOME CONSTRUCTOR INDIVIDUAL BOARDS

Made to your specification: All in charge \(10 /-\) plus \(\mathbf{1 / - ~ p e r ~ s q . ~ i n c h ~}\) Enquiries for quantities welcomed

\section*{EDEN ELECTRONICS}

140 Eyhurst Avenue, Elm Park, Homehurch Essex.

Phone: 47912


Solve your communication pe jbicms with this wonderiel 4-8TATIO. TRANBISTOR INTERCOH (One MABTER and three BUBB howsed in ateractive plautic cibibets for desk or wall mountiga. Cal talk and listen from MABTlit to SUBS and BUBg to MASTHR Buazing system operates to call cven "hen wwitched ceft, this pare

 of usen. Complete with 3 pen, of completearh Batit.). dis vtaples, lape and a bathery. Heady to operate. P. I P. \(4 / 6\).


This wonderful
two-way Traa-
sistor Intercom
conslats of two
waits-Minater
and subuctu
lvory plastle
cablacts with
ohrom fum
etands. Buth
unita
operate
units operate
on one 9


Gatiers. Cull, taik or listen from Master to bub and Bub to Manter other uspes Indigpenme controt In bonwe, athop, oftice, botel aud warchoume Complete with 6ott. connecting fead and buttery. Kendy to operate P. \& P. \(2 / 6\).

Full money back if not savisfied in'7 days.
WEST LONDON DIRECT SUPPLIES (Dept. WW/11)
- CHIGNELL PLACE, WEST EALING LONDON, W. 13

\section*{SOUND EFFECTS}

FOURTEEN EP's Of ESSENTIAL FX at \(7 / 6\) each +9 d 0 .
CONTRAST SOUND PRODUCTIONS (HOLBORN) 19 CHARING CROSS ROAD, LONDON, W.C. 2

TRA 2166

\section*{VIBRATOR}
G.E.C. VEM \(\$ \cdot 2\). Complete with 2/IKW amplifiers driver unit, and audic oscillators.

\section*{PATTRICK \& KINNIE}

81, PARK LANE, HORNCHURCH, ESSEX
Tel. : ROMFORD 44473
```

COPY FOR THIS FEATURE MUST
BE IN BY
MONDAY loth MAY
FOR THE
JUNE ISSUE
WIRELESS WORLD

```

\title{
NEW STANDARD CASES FROM OLSON
}


Quotations gladly given for oustomers' own specisications and opecial requiremeni. WRITE FOR FURTHER DETAILS TO:-

OLSON ELECTRONIC LIMITEO, 54, Myddleton Street, LONDON, E.C.I.Telephone: TERminus 808I

5WW-173 FOR FURTHER DETAILS.

\section*{TESTED TRANSISTORS}

2/- each, XA101, XAllI, XA102, XAl12 3/- each, OC45, OC7I, OC81, OC200. 4/- each, XB102, AF117, OCI70, OC171. 5/- each, OC139, OC140, GET7, XCI41. 10/- each, OC22, OC26, OC28, OC35: ZENER DIODES, 3.9 v . to \(30 \mathrm{v} ., \frac{1}{4} \mathrm{w}\)., \(3 / 6\) each; 1.5 w ., \(5 /\) e each; 7 w ., \(6 /\) e each. Over 100 other types in stock. Send \(6 d\). stamp for full list and equivalent chart.
B. W. CURSONS

78 BROAD STREET CANTERBURY

SWW-174 FOR FURTHER DETAILS.



> Record Cleaning \& Maintenance Equipment

Send stamps value 9d. for post free copy of 16 page booklet "A Guide to the better care of your L.P. and Stereo Records'

\section*{CECIL E. WATTS LTD.}

Consultant \& Sound Engineer
DARBY HOUSE, SUNBURY-ON-THAMES, MIDDX 5WW-175 FOR FURTHER DETAILS.

\section*{RADIO CLEARANCE LTD \\ 27 TOTTENHAM COURT, RD., LONDON, W.I}

TRADE ENQUIRIES INVITED Telephone: MUSEUM 9188

\section*{BARGAINS STILL AVAILABLE IN LOUDSPEAKERS}

Dn't mime this rolden opportunity to obitain a Armegrade permanent magbet LOUDSPEAKER on the production fine at LESS TEAN MANUYACTURER'S COST.
SCHEDULE OF LOUDSPEAKERS AVAILABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Dismoter & Geuss & Impedance & Price & SCHEDULE & Gaus & ERS AVAI & & & & & Prow \\
\hline ta ineher & in lures & 隹 & Price &  & , Gruss in Lines & Impedance & & La inches & in Linee & In Obms & \\
\hline 2 & 7,000 & & 8 \%- & 31 & 9,600 & 3 & 10/6 & 4 & P.500 & & 11/6 \\
\hline \(2 k\) & 7.000 & 35 & 816 & 32 & 9,500 & 8 & 10/6 & 5 & 6,00m & 3 & \\
\hline \(2{ }^{2}\) & 7,004 & 50 & \(8 / 6\) & \(3:\) & 7,000 & 85 & 8/6 & 5 & 7.000 & 3 & \(8 / 6\) \\
\hline \({ }_{3}^{2 k}\) & 7.000 & & 8/- & 38 & 9.600) & 00 & 10/6 & \({ }^{5}\) & 7.000 & 3 & \(8 / 8\) \\
\hline 3 & 8.500 & & 1010 & 4 & 9.500 & 20 & 11/6 & 5 & 9,500 & \({ }^{3}\) & 106 \\
\hline : & 6.000 & & 816 & 4 & 3,000 & 50 & \(11 / 6\) & 5 & 9.500 & 15 & 12/8 \\
\hline , & 8.500 & 80 & \(9 / 8\) & 4 & 9.5441 & 15 & 12/: & 4 & 8.004 & \({ }^{25}\) & \\
\hline 3 & 7.000 & \({ }^{6}\) & 9/- & 4 & 7.500 & 5 & \(9 / 6\) & 5 & 9,800 & 35 & 11/6 \\
\hline \({ }_{3}^{3}\) & \[
7.000
\] & \[
35
\] &  & 4 & & & 1118 & \({ }_{64}^{64}\) & 7.0000 & \({ }_{8}^{3}\) & 11/. \\
\hline 3. & \[
\begin{aligned}
& 6.000 \\
& 7.000
\end{aligned}
\] & \[
\begin{gathered}
\mathbf{1 s t} \\
\mathbf{3}
\end{gathered}
\] & 10/6 & 4 & \[
\begin{aligned}
& 6,000 \\
& 7,000
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & \[
1016
\] & 6 & & & 11/- \\
\hline Elliptical & & Impedasee & Price & Emiptical & & Impedance & Price & Elipticén & Gnus & Impedsnee & Prioe \\
\hline cize in tim & in Lioes & in Ohms & & Slze in Ins. & in Lines & in Ohmy & & Slze in ing. & in Lisen & in Obma & \\
\hline ¢ \(5 \times 3\) & \%,0000 & & \({ }_{8} 818\) & \(6 \times 4\)
\(6 \times 4\) & & & 10/ & \(8 \times 24\) & 6.000 & 3 & \(8 / 6\) \\
\hline \(5 \times 3\) & 10,000 & 35 & \(12 \%\) & \(7 \times 34\) & 7.000 & & 8/6 & \(8 \times 28\) & \(8{ }_{8} 500\) & 5 & 9/6 \\
\hline \(8 \times 3\) & 9.000 & 3 & 816 & \(7 \times 31\) & 9,500 & , & 1016 & \(8 \times 21\) & 9,5047 & 3 & 10/- \\
\hline \(8 \times 3\) & 9,000 & 3 & & & 9.5 m 1 & \({ }^{3}\) & & \(8 \times 5\) & 8.500 & 3 & 11/- \\
\hline  & 9,000
8,500 & \(\frac{1}{3}\) & \(88 / 6\) & \(7 \times 4\) & 9,500 & 30 & 18/6 & \(8 \times 3\) & 8,500 & 15 & 15/6 \\
\hline
\end{tabular}

ALLOW \(2 /\) - each speaker for \(P, \& P\)./handling charges, and please specily the exact requirements-the nearest available will be sent, SELECTED BARGAINS



Please send STAMPED AND ADDRESSED envelope with any enquiry. We regret no catalogues-our stocks move too quickly! Kindly make provision for sulficient postage and packing charges to avoid delay. TERMS: Cash with order or C.O.D on orders over 10/-

\section*{TEST EQUIPMENT \\  \\ valve voltmeter D.C. Input Impedance 11 Megobms. 7 Voitage
ranges, D.C. to 1,500 , A.C. \({ }^{\text {to }} 1.500\) R.M.M. .1. Resiftance. 2 ohm to 1,000 Megohms. Centre zero setting for recelver
alignment.
Complete alignment. feads Prill probe hatrat
details on requeat. ONLY details on request. ONLY
\&13/19/6 (1'oss' \(3 / 6\) ).}

SPECIAL OFFER OF AMERICAN VALVE VOLTMETERE 11 Meg. Input. 6 D.C. Voltage ranges to 1, no0. 6 A.C. voltuge rangea to 1,000 . of Resistance ranges to 1,000 Meghobmas. Sin.
200 m microamp. meter. For \(110 / 250\) volts A.C. operation. With 200 micraamp. meter. For \(110 / 250\) volts A.C. operation. With and \&lectronic Deelgia. OWLY \&7/19/6 (Pust etc. 3/6).

20,000 OHM P PER VOLT TESTMETER MODEL 700 Readel AC. and D.C. voltages up to 5,000 , Alternatiog and Dectbels from - 10 to -12 dB . Internal buzzer for aurlible warning of ahort clrualten or continuity, artl fitted with automatic overloail protectinn for moveruent. Meter wize Aftin. \(x\)


30,000 OHMS PER VOLT TESTMETER MODEL 500 .
Beals woltayes up to L.000 D.C. at 30,000 ohmse. per vole and
A.O. at 15,000 O.p.V., D.C. current to 12 amps. Realstance A.d. at 15,000 o.p.e.-i D.C. current to 12 amps. Realstance buzzer for audlbie warning of direct thorts and blocking condenser for A.F. oulput measurements. size 3 sifin. \(\times 6\) 友 \(\mathrm{in} . \times 2 \mathrm{x} / \mathrm{im}\). ONLY E8/19/8. 20.000 OHMS PER VOLT'TESTMETER. MODEL TP-SS Read
voltages up to \(1,00 \mathrm{D}\). C at at 20,000 ohm per volt and A.C. at
an 10.000 o.p.v.i D.C. current to sonmA; Resintance to 10 Meg.
 5iln. \(\times 1 \mathrm{jln}\). ONLY \(£ 5 / 19 / 6\).

2,000 OHMS PER VOLT TESTMETER MODEL TP-10. Renle A.C. and D.C. Volh ap to 1.000 D.O. curent to \(300 \mathrm{mA.a}\) Re-



FREQUENCY METERS TYPE LM
Frequeney range \(125-20,000 \mathrm{ke} / \mathrm{f}\). in 2 band o This is the United States Navy Model of the well-known BC2a1 Freyency Meter, but has many midutouar leatures which increane lis use umess. accurney and lu aldition it ts Atted with an Interna Modulition uflech to allow une an a Bignal Generator. Blze only \(8 \mathrm{jin} . \times 8 \mathrm{in} . \times\) 8 l l m . ONLY E 25.

NOMBREX IRSTRUMENTS"
TRANSISTORISED AUDIO GEHERATOR. \(10-100,000 \mathrm{c} / 0\). Sld or square wave. Wlth hattery \(£ 1815 / \%\).
TRAFSISTORISED SIGNAL GEIERERATOR. \(150 \mathrm{kc} / \mathrm{s} .350 \mathrm{Mc} / \mathrm{Q}\) Better than \(3 \%\). With battery \(£ 0 / 10 /\) -
TRARSISTORISED RESISTANEE CAPACITY BRIDGE 10. With battery. \(88 / 5 / 5\).
MAINS OPERATED TRANSISTOR POWER SUPPLT UNIT. Regulater
TRANSISTORISED INDUCTION BRIDGE. I \(\mu \mathrm{H}\) to 100H, £18
variable voltage transformbrs. pulfy abruoded.
 type \(\$ 38 / 10 /=\)

STANDARD TRANGFORMERS
 Port \(2 / 6\).
 1. ut tapped at 4 v. and \(s, v .2 a v, ~\)
Type 2. As above but \(350-0.850 \mathrm{v} .80 \mathrm{~mA}\).

Type 2. As ahove but \(350-0-350\) v. 80 ma . 24 r . lo give 3-4-6-6-8.
Type 3. 30 v. 2 a . tapped at \(13,15,20\), and 24
9-10 v., etc.

\section*{HARRIS ELECTRONICS (LONDON) LTD.}

138 GRAY'S INN ROAD, LONDON, W.C.I.
Telephone: TERminus 7937
Trading hours 9.6 Monday to Friday, elosed Saturdays. S.A:E. brings full details of any of above.

\section*{SPECIAL OFFER!}

\section*{THE AUDIO CYCLOPEDIA}

The most comprehensive reference on audio and HI FI ever pubilshed covering every phase of the subject, including latest data on stereo

Price 42/-
By H. M. Tremaine
Postage 3/-
THE RADIO AMATEUR'S HANDBOOK by A.R.R.L. 1965. 40/-. Postage 2/3.
NONLINEAR \& PARAMETRIC PHENO. MENA IN RADIO ENGINEERING. 35/Postage I/-
CLOSED CIRCUIT TELEVISION HANDBOOK by L. Wortman. 42/-. Postage \(1 /\)-. REFERENCE DATA FOR RADIO EN. GINEERS STC. 42/-. Postage 2/-
Inter. G.E.C. S.C.R. MANUAL. 3 rd ed. \(16 / 6\). Postage \(1 / 6\).
Inter. G.E.C. TRANSISTOR MANUAL. 7th Ed. 18/-. Postage \(1 / 6\).
TRANSISTOR SPECIFICATIONS \& SUB. STITUTION HANDBOOK. Techpress. \(15 / 2\) Postage \(1 /\)-.

COMPLETE CATALOGUE \(/ /-\)
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKISTS

\section*{of British and American Technical Books}

\section*{19-2। PRAED STREET,} LONDON, W. 2
Phone: PADdington 4185
Open 6 days \(9-6\) p.m.

\(\mathbf{R}^{\text {ECTIFIERS, Selenium and Silicon units supplited }}\) for all applications, keen prices, rood deliverles. J. R. SERVICES \& DEVELOPMENTS, 231, RivermM1.
 Wiring of electronic equipment, transistorised sub-

\section*{MISOELLANEOUS}

\section*{\(A^{T}\)}

TTENTION wholesalers and dealers, obtaln your supply of transistor radios and accessorles direct from empire mat
Wireless World.
METALwORK, all types cabtnets, chassts, racks, atc., to your own specification, capacity available for smal milling and capstana work up to
PHILPOTT'S METAL WORKS, Ltd., Chapman
Lit Loughborough.
\(B^{E N S O N ' S}\) better bargains, send s.a.e. for free cata\(B\) logue of Government and manufacturers. electronic surplus, to-Superadio (W.). Ltd., 116. Whittechapel. Liverpool.
ORDER directly from U.S.A. all kinds of electrontc Indicating specific products to. O'Hara international

T.E.R.E., City \& Guilds and R.T.E.B. exams., special ised I.C.S. home-study course wili ensure success courses in radio, TV and electronics, also new practica courses with kits, write to I.C.S: (Dept. 522), Parkgate
cour, London, S.W.11.


5WW-176 FOR FURTHER DETAILS.

\section*{EXCLUSIVE OFFERS}

\section*{AMERICAN AVIONIC EQUIPMENT}
\begin{tabular}{|c|c|}
\hline * AN/ARC-3 & ( AN/ARC-27 \\
\hline * AN/ARC-5 & - AN/ARC-33 \\
\hline - AN/ARC-34 & * AN/ARC-58 \\
\hline * AN/ARN-6 & - AN/ARS-7 \\
\hline * AN/ARN-14 & * AN/ARN-RI \\
\hline * AN/GRC-27 & * AN/GRC-32 \\
\hline + AN/FRC-27 & * AN/VRC-13 \\
\hline
\end{tabular}

\section*{AMERICAN TEST EQUIPMENT}
(ZM-3 Shaiticross, Oapactance Analyser
\(\star \mathrm{ZM}-4\) Shallcrons Resisfance Bridges.
* BC-378 75 nicit Osellatars.
* SPERRY T101007 Tachometer-Oscilloścopes.
* TS-323 Frequeacy Meters \(20 / 400 \mathrm{mc} / \mathrm{s}\) * TS-350 Voltare Dividers.
* Ballentme Model soo Vt Pontmeters.
* TACAN Test Sets, Type NUS.
* general radio sirobotacs.
* HEWLETT PACKARD Model 200J Oscillalors * ANIURM-1s Test Sets.
- OSts OSCILLOSCOPES Models A, B, \& 0. * AN'USM-3 Slanal Tracers. I-183 Polar Relay Test Sets. TV-1 Tube Testers. I-131 Western Electric Currend Flow Meters * Sierra 219 E Trangistor Testers. TS-270B Echo Boxez
TDA-2 Distortion Anslysert. TS-11: Spectrum Analysers \(8170 / 9300 \mathrm{me} / \mathrm{s}\) TS-148 Radar Testers. 8470/9380 me/s. - TS-19: Oscilloscopes, general purpose. - Ts-108 Siznal Gencrators, zeneral purpove. * TS-382 Audio Osclitaters \(20 / 20,000 \mathrm{cs}\)

\section*{10-pase List of over 1,000 items in stock arallable}
keep ose by you.

AN/UPM-33 (TS-148/UP) Radar general purpose Test Sets S.470/9.340 meia.
- Waterman s5b portable general purpose 3in. Oscillo.
- TS-35e. Q Multimeter Test Sete. (ME-8B)
- TS-382C Audio Osetliators 20/20,000 eyc
- TS-688/AP Potentiometers.
- T-281,ARC-21 Test Seta.

ANiPDR-39 Rudiac.
* AN/UPM-11 Range Calibrators (TS-738A).

AM-URM-38 Siknsl Cenerators 7,805/10.750 me/m. - POLARAD URM-36 Sisnal Cenerators,7, B60/10,750me/s - MUNSTON 268D Crystal Eectider Teat Sets.
* HICKOK TV-7/0 Matual Conductance Valve Testers * PRESS WIRELESS portable Voltare Dividers (minimum bepor tna Mimum an kV. 20 nmmad.
* SPERRY T101002 Ampliter Aalyser Test Equip-

LAvOIE 239A High Speed Oscilloscopes. AN/Usm-5
- ANjUPM-1 Test Sets \(150-550 \mathrm{mols}\).
- TS-497B;ORR Sienal Generators \&'440 mc/s.

TS-505D/C V.T.V.M. Mutlmeters.
AN ARM-7 R.F. Watmeters.
* AN/URM-64 Sir. Generators \(900 / 2.000\) mic/a

T TS-297/U Mulimeters.
* AN/UPM-6B Test Equipments.
* 883.A Airport control tower Monitors.
* 442G Airnort control tower Amplitying equipment.

\section*{AMERICAN TELETYPE EQUIPMENT}
* TT-5ifG paze printers.
- TT-18/FG reperforator

TD-80 tape reader:
Teletype Coder-Decoder Privacy Equipments.

We bave a larce quantity of "bits and pieces" wo cannot list-please send us your requirements as we can probably belp-all enquiries answered.

\section*{P. HARRIS \\ ORGANFORD-DORSET}

WESTBOURNE 65031.


FULL-TIME cobrses for P.M.G. certificates and the and electronlc enuineering.-iniormation from College THE Incorporated Practitioners in Radio \& Elecbooklet. \(1 /-\) : sample copy of I.P.R.E. Omclal Journal. 2/- past iree.-secretary, Depl. A. 32 . Kidmore Rd. Caversham Rd.. Caversham. Read.he. Berks. 1104 R ADIO officers see the world Sea golng and shore I appointments. Our many recent successes provide additional tralnee vacancies during 1965 , Grants avali-
able. Day and hoardlng students. Siamp for prosable. Day and hoarding studencs. Wireless College. Colwyn Bay.
peros-
\([128\)

\section*{CABINETS •CASES CHASSIS}

Anything in metal. "ONE OFFS" a pleasure Send your drawings for quote
Slove enamelled in any professional finish
MOSS, WATSON
40 MOUNT PLEASANT STREET, OLDHAM LANCS.

MAIN 9400
sWW-178 FOR FURTHER DETAILS.

\section*{The RADIO AMATEURS HANDBOOK 40 '-}

1965 Ed. by A.R.R.L Postage \(2 / 6\)
World Radio and T.Y. Handbook 1965 ed. by tohansen. P. \& P. 1/.. 26/..
How to Listen to the World, new ed by lohansen. P. \& P. 1/-. 177 -.
Transistor, Substitution Handbook, Amerian, lapanese, cec. P. \& P. \(1 / 0\). \(12 / 6\).
101 Ways to use your Oscilloscope by Middlecon. P. \& P. \(/ /=21 /\).
Computer Circuit Projects you cen build, by Boschen. P. \& P. 1/a, 21/-.
Practical Oscilloscope Handbook by Rufus Turner new ed. P. \& P. 1/-. 25/-.
Pulse Generators in Industrial Electronics by Littwin. P. \& P. I/.. \(16 /=\)
Amareur Radio Circuits Book new ed. by R.S.G.B. P. \& P. 9d. \(7 / 6\).

Amateur Radlo Call Book, 1965, ed. by R.S.G.B. P. \& P. 6d. 5/

UNIVERSAL BOOK CO.
12 LITTLE NEWPORT STREET LONOON, W.C. 2 .
(adjoining Lisle Strees)

\section*{WTANNOY. N}

\section*{For sound sense}

WEST NORWOOD LONDON SE27 GIPSY HILL II31 SWW-179 FOR FURTHER DETAILS.

\section*{SOUND ADVICE}
for
PUBLIC ADDRESS
EQUIPMENT
consult

\section*{SOUND COVERAGE \\ OECIBEL HOUSE, WELLINGTON TOWN RD., EAST GRINSTEAD,SUSSEX \\ Tel:21332/3}

5WW-180 FOR FURTHER DETAILS

\section*{RELAYS LARGE \(H\) KEEN P.O. TYPES 3000 \& 600 FROM STOCK OR BUILT TO SPECIFICATION. \\ COILS - SINGLE. TWIN SLUGGED B BUILD. UPS MAKE, BREAKS CIO's, etc., etc. SILVER - PLATINUM PARTS SOLD SEPARATELY QUICK SEALED G.E.C. SIEMENS S.T.C. HIGH SPEED SIEMENS} - write us your requirements -


SPECIAL OFFER - TO CLEAR
RELAYS-POST OFFICE 3000 TYPE Complete sested and guaranteed relays-Ex Unlt All coil values.
1 ClO
4 ClO
\[
\begin{array}{cc}
7 / 6 & 2 \mathrm{C} / \mathrm{O} \\
10 / 6 & 6 \mathrm{C} / \mathrm{O} \\
\text { Postage } 1 / 6 \text { each. }
\end{array}
\]

Also many orher combinations of contacts. N.B. Special Prices for lots of over 100

\section*{DEPENDABLE RADIO SUPPLIES}

12A TOTTENHAM ST., LONOON, W.I Telephone: LAN 7391/2
WRITE - CALL - PHONE

TUDY radio, television and electronies with the
world's largest home study organisation, \(\mathbb{I} . E . E . E\). . CIty \& Gullds. R.T.E.B. etc.: also practical courses With equipment: all books supplled.-Write for sre tersext House. Parksate Rd., London. S.W.11. [102 OWESTOFT COLLEGE OF FURTHER EDUCATION, RADIO Officers (M.N.) Courses. Full-time courses for the P.M.G. Certificates of Competence in Radiotele. graphy and the Board of T:ade Certificate in Radar Maintenance will begin in September, 1965 . Apply to
the Princlpal of the Coliege for full detalls.
[i194

\section*{NYLON • P.T.F.E.}

ROD. BAR, SHEET, TUBE, STRIP, WIRE No quantity coo small. List on application. ALUMINIUM LIGHT ALUOYS STAINLESS STEEL
H. ROLLET \& Co. Ltd.

Howie Street, S.W.II. BATtersea 7872 ALSO AT LIVERPOOL. BIRMINGHAM.
MANOHESTER, LEEDS, OLASGOW

5WW-182 FOR FURTHER DETAILS.

\section*{YOUR CAREER " RADIO?}

Big opportunities and big money await the qualified man in every field of Electronics today-both \(\ln\) the U.K. and throughout the world. We offer the finest home study training for all subiects in wadio, television, etc., especially for the CITY \& GUTIDS EXAMS. (Techniclans' Certificates); the Grad. Brit. I.R.E. Exam.; the Radto Amateur's Licence; P.M.G.-Ccrtificates; the R.T.E.B. Servicing Certificates, etc. Also courses in Television; Transistors; Radar; Computers; Servomechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study Institure specialising in electronic subjects only. Fullest details will be gladly specialising in electroligation.

DEPT \(1 \cdot\) RADIO MOUSE RUSSELL ST• READING BERKSHIRE
J. T. SUPPLY, 38 Meadow Lane LEEDS 11. EXCLUSIVE OFFER V.H.F. RECEIVERS PYE P.T.C. \(11465-100 \mathrm{Mc} / \mathrm{s} 12\) Volt D.C. Supply. This is an 11 Valve double superhet Receiver, operating on one fixed frequency be tween \(65-100 \mathrm{Mc} / \mathrm{s}\), Crystat Controlled, speaker output (housed in control box) using midget valves throughout. Supplied in first-class condition with tuning data, circuit diagram and complete crystal formula. Ideal for the 4 meter band ( \(70.2 \mathrm{Mc} / \mathrm{s}\) ) offered at only \(70 /\), post \(5 /-\), or tuned to any requested frequency in the above band, complete with crystal, air tested, 45/- extra. Control Box \(8 / 6\).

\section*{AMERICAN}

TEST \& COMMUNICATIONS EQUIPMENT Airborne AN/ARC. 33 (RT.173A) Transceivers. Freq. \(225 / 399.9 \mathrm{Mc} / \mathrm{s}\) in 100 Kc . steps. Guard channel R.X. Frect. \(238 / 248 \mathrm{Mc} / \mathrm{s}\). P.O.
8 W . Supplied complete with 20 chamnel 8 W . Supplied complete with 20 chamnel
remote control unit. Fully overhauled and remote cont
Buarantee
AN/TRC-34
V.H.F. Transmitter P.O. 50 w F.M. Transceivers, \(152 / 174 \mathrm{Mc} / \mathrm{s}\) AN/VRC-19 \& -19X Mobile FM M
ceivers Mobile F.M. Transceivers. Freq. as above, P.O. \(20 / 25 \mathrm{w}\). Supply/v. 24 and 12
CU-168/FRR 21 valve Antenna Couplers,
CU-168/FRR 21 vaive Antenna Couplers, to operate up 5 receivers from 1 aerial. Freq. 2/32 Mc/s. Price £10.
CF-2B Telegraph Carrier Terminals
105 Mod. A4 Northern Rad. F.S. Keyers.
TS-27/TSM Precision R-C. Bridges.
TS-34/AP High Speed Oscilloscopes.
TS-90/U Radar Modulator Dummy
Loads. Gain/Loss Test Sets,
TS-140/PCM A.F. Gain/Loss Test Sets. TS-297/U Precision Built Multimeters.
TS-402A/U AF/RF Attenuators, \(0 / 81 \mathrm{~dB}\) TS-776/U Battery Testers.
TS-917A/GG (Stelma TDA-2) Telegraph Distortion Analysers.
1-181
(D162269) Teletype Relay Testers.
AN/PDR-27A Geiger Counters.
DuMont 5 in. Oscillographs, 304A, 304H, 2559, 3000.

Minniapolis \& Honcywell Pot-Pyrometers. AN/FPN-13 X band Radar Beacon. Twin installations.
Full des̀cription of the latest releases in U.S.A.F. Airborne and Ground-support equipment are included in our current catalogue, available on request. Please quote MIL.-Type or Federal Stock numbers in all correspondence.

SUTTON ELECTRONICS
Salthouse, Nr. Holt, Norfolk. Cley 289.

\section*{OINTON CENTRAB Rewio stoliss}

LONDON EXCHANGE TELEPBONE DIALS (Chrome. Mew and boxed. \(25 /-\)
TWIN GONG TELEPRONE, extenalon bella 21/TELEPHONE TYPE BAND QENERATORS. 40 v . bell finglig 9/6.
\%/R
W/
WIRELESS SET NO. 38 A.F.V. Freq. runge 7.3 to \(9.0 \mathrm{Mc/a}\) \(6 / \mathrm{lb}\). lncludes power supply 8 ib . - and spate valves and vilb rator, aleo tank aet lat with base. 86 per pair or \(£ 3\) single Callers ouly

\section*{EX EQUIPMENTT COLLARO: 3-gpeed guto changern complete}
 7in. £3: P. \& P. 107-

20-wAY PRESS-EUTTON INTER-COM TELEPHONES in Bukelte case with Junction box. Thoroughly overhauled. 10-WAT PRESS-BUTTON INTER-COM TELEPHONES In Basielite case with junction bot. Thoroughly overhanled.
 LO-WAY PUSB-BUTTON KEY TYPE STRIP. BI
\(10 \ln . \times 3 \mathrm{lim} .10 / 0\)
P.M. MOVING COLL SPEAKERS.

Sin. 8/6. 8in. 3 ohm, \(10 ; 6\). Eilliptical \(7 \times 4 \mathrm{~m} .3\) ohm. \(10 / 6\). SUPERIOR TYPE DESE PHONES. Blacle Batellec cawe. Com O.P.O TELEPHONE TYPE CARBON HANDSETS
Q.P.O. TELEPHONE TYPE CARBON HANDSETS 10/6. ELECTRICITY SLOT METERS ( \(1 /\) - In siot) for A.C. malne. Pixed

 QUARTERLY ELECTRIC CHECK METERS
thew. 200/250 y. 10 A. 42/6; 13 A. \(52 / 6\) : 20 A. \(57 / 6\). Other amperagee available, \(\%\) yenri guarintec
8-BANK UNISELECTOR SWITCHES. 23 contacts, alterwate
 HIOR-SPEED
hioh-speed electro-manetic counters. Fx-(hovt
 slingle coll 500 \(2.55 /\)
wherices include carriage in United Kingdom except ane otherwise stated.
23 LISLE ST. (GER. 2969) LONOON, W.C. 2
Closed Thursday 1 p.m. Qpen all day Saturday

\section*{LAWSON BRANDNEW TELEVISION TUBES}


12 MONTHS
FULL REPLACEMENT GUARANTEE

Today's Orders dispatched Today, and full fitting instructions are supplied with every tube.
Terms: C.O.D. or C.W.O. Carriage and insurance 8/6.

\section*{TWELVE MONTHS} FULL REPLACEMENT GUARANTEE

The continually increasing demand for subes of the very highest performance and reliability is now being wes by the wew Lawson "Century 99 ": range of C.R.T.'s.
"Century \(99^{\prime \prime}\) are absolutely brand new rubes throughout, manufactured by Britain's largest CRT manufacturers. They are guaranteed to give absolutely superb performance, needle sharp defintion, sereens of the very latest types giving maximum Contrast and Ligh ourput; togerher soish high veliability and very long life.
"Century \(99^{\prime \prime}\) are a complere runge of inbes, in all sizes for all Briish sets manufactured 1947-1964. you require by relurn.
\(12^{\prime \prime}-64: 10: 0\)
\(14^{\prime \prime}-65: 10: 0\)
\(17^{\prime \prime}-65: 19: 0\)
\(19^{\prime \prime}-21^{\prime \prime}-67: 15: 0\)

LAWSDN
TUEEES
2. PEACHFIELD CLOSE MALVERN, WORCS. Tel. 2100 SWW-184 FOR FURTHER DETAILS.

BECOME "Techzicaily Qualtfed" in your spare ECOME Technicaly Quained exin your spare courses in sadio. TV. servictng and meaintenance. R.T.E.B., City and Qullds, etc.: high informative 120-pake Guide-fiee!-Chambers Coliege (Dept. 43\%). 148, Holborn, Zenderi, E.C. 1

\section*{TECHNICAL TRAINING \\ \(\mathbf{R}^{\text {ADIO }}\) and TV exams, and courses by Britaln City \& Guilds, Amateurs Licence. R.T.E.B.. P.M.G. Cert., etc.: free trochure from-British Natiocal' Radio School. Russell Et., Reactrm.}
D.M.a. Certiscates, City \& Gufics Examinations, I.E.R.E., also many zon-exancination courses in radio. TV and electronics; stucy at home whth world famous J.C.S.-Write for tree prospectus, stating subject, to internatonal Correspondence schools (Dept. 443). Intertext House, Parkgate Rd.; London. S.W.11.

\section*{R \& R RADIO \& TV SERVICE}

MARKET STREET. BACUP, LANCS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Salvage valves min} \\
\hline \({ }_{6013}^{6813}\) & 5 & \({ }^{10124}\) & \(8{ }^{8}\) & PL 2 & \({ }^{3 / 6}\) & \(2 \mathrm{mP}^{4}\) & 16/8 \\
\hline EFS0 & 1/6 & & & 101/1 & 7/6 & 100cs & \\
\hline Ectes & 3/- & 6F15 & . 010 & 2012 & w/10 & reles & \\
\hline belso & 3- & EB91 & 1/- & \% WFLl & 51. & PY81 & \(3 / 6\) \\
\hline \({ }^{30 \mathrm{~F} 5}\) & \%- & PFBS & S/ & PY32 & & Usel & \\
\hline PL38 & \(6 /\) & 8P37 & H/ & 6U4ET & & 10P13 & \\
\hline PCP30 & \$/- & 4013 & \({ }^{61} \cdot\) & & 1/6 & 2011 & \(1 / 6\) \\
\hline PL81 & 3\%- & \(30 \mathrm{PL1}\) & W & Ficcsi & & \(3 \mathrm{Pr13}\) & \\
\hline \({ }^{\text {P230 }}\) & & 1 L23 & 6/- & EY* \({ }^{\text {P }}\) & & PY83 & \\
\hline U3\%9 & 5 & [CLS 82 & bl- & & & & \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Speskers. Ex-TV. \(6 \times 4 \mathrm{ln}\).. 3/6; Aln , round \(6 / \mathrm{F}\); poot \(2 / \mathrm{F}\). \\
Line Output Translormers a salable state net Model No. 10tn.
\end{tabular}} \\
\hline \multicolumn{8}{|l|}{Line Output Translormers asalable. State bet Model No. 10hn. round speakers.} \\
\hline \multicolumn{8}{|l|}{Turret Tuners, 8/-, posi \(2 /\).} \\
\hline \multicolumn{8}{|l|}{Scan Coils. etc. Quate bet Montel No. with all evquirtes and B.A.B. for prompt reply. All goodn subject to saldefaction or money retundel.} \\
\hline
\end{tabular}

SWW-185 FOR FURTHER DETAILS.

\section*{RESISTANCE WIRES EUREKA-CONSTANTAN Most Gauges Available}

\section*{NICKEL-CHROME MANGANIN NICKEL-SILVER}

\section*{COPP長 WIRE}

ENAMELLED. TINNED, LITZ, COTTON AND SILK COVERED SMALL ORDERS PROMPTLY DESPATCHED B.A. SCREWS. NUTS, WASHERS soldering tags, eyelets, and rivets EBONITE and BAKELITE PANELS. TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES, ALL DIAMETERS. SEND STAMP FOR LIST. TRADE SUPPLIED*

\section*{POST 穊ADIO SUPPLIES}

33 Bourne Gardens, London, E. 4 Phone: Clissold 4688

5WW-186 FOR FURTHER DETAILS

\begin{abstract}
BOOKE
R ADIO Desinner's Handhook." Editor. F. Kank (U.S.A.). A.M.I.E. (Aust.). A comprehensive reference book. the work of 10 authors and 23 collaborating en-
gineers, containing ho vast amount of data in a readily accessible torm: the book is intended expectally for thase Interested in the design and application of radio recelvers or audio amplifiers. Televislon, radlo trans mission and industrial electronics have been excluded in order 10 limit the work to a reasonable size. \(65 / 0\)
net trom all booksellers. By post \(67 / 9\) from \(11 / f e\) net trom all hooksellers. By post \(67 / 9\) rom Sid. Dorsat House, Stamford St., London, S.E.I.
\end{abstract}


\section*{NOW READY!}

A modern way ol instrument case assembly using our "Die Strip." The strip has been specially made for us at Birmingham on quantity production, for low price to the public. It is made of high strength alloy and will enable anyone to assemble an instrument case or cabinet in minutes. Full details of these products will be sent free Please send envelope self addressed.
Also available Key Switches. 4-pole 2-throw, 3/6 each or 3-position D.P. plus D.P. centre off, \(5 / \mathrm{F}\), or rotary switch 6-pole 3-way, 3/-

Send for Surplus Lists.
Copper Laminate Board single or double sided, 5/- per square foot panels, either type, 3 ft . by 4 ft ., \(33 /\)-.

\section*{E. R. NICHOLLS,}

Mail 0
Stockport

\section*{VARIABLE VOLTAGE TRAMSFORMERS World famous "SLIDUP"}
* Rateo current consistent AT ALL POINTS ALONG THE WINDING.

Output: 0.260 v: Input: 230 v. A.C 50/60~

SAmp.
89. 0.0
18. 5.0

20 Amp.
\& 32.10 .0
Ex. works.
Carr. \& Pkg. EXTRA

\section*{SWW-188 FOR FURTHER DETAILS.}

\section*{INBEX TO ADVERTISERS}

\section*{Appointments Vacant Advertisements appear on pages 135 to 145}



J.T. Supply
Keyswitch Relays
Labgear. Lid.
Lasky's Radio, Lid
Leak. H, J.. \& Co.. Lid
Leevers-Rich Equipment. Lid.
Levell Electronles. Lid.
Lewls Radlo Co.
Lexar Electronics, Lid. ..............
Light Soldering Develo
Lind-alr. Led.
Linest produets
Linstead Electronics. Lid
Lonmount 82 Co.. Litd.
London Central Radlo Stores
Mali Orders
Malvyn Engineering Works
Marcont Company. Ltd. Marcont Instruments. Lid
McMurdo Instrument Co.. Lid.
Minimititer (1964). Lid.
Modern Book Co.
Moss Watson Co.
M.R. Supplies. Lid
Mulard. Ltd Multicore Solders, Lid
Multicore Solders, Lid.
Multitone Electric Co., Lid.
i34. Cover iv
Newmarket Translstors. Ltd
Nombrex. Ltd.
Olson Electronlc. Led.
Orchard \& Ind.. Ltd. Co... Lit

Post Radio Supplies
Premaler Radio Co.
Pye Telecommunications, "Lid
Quarndon Electronics
Raaco. Lid. Instruments. Lid.
Radford Dlectronics. Lid.
Radio Clearance, Ltd.
Radio Component Specialists
Radio Component Special
Radio Exchange
Radiosiructor
Ralfe, P. F.
Reproducers \& Amplifiers, Lid
Rollet H \& Co., Lid
R.S.C.
Salfors Elec. Inst. Co. Ltd.
amsons (Eiectronies). Lid
Sclence Journal
Scentific Products
Shure Electronics, Lid
Sllam Electrical Instrument Co.. Lid
Sinclair Radionics. Ltd.
Smith, G. W. (Radio). Litd
Smith. H. L. Co., Ltd.
Smith, John, Lid,
Southern Radlo Supply, Lid
Sovirel
Sowter E. A.tio. Lid
Spectalist Swithes. Liternational. Ltd
Stamiord, A. L.. Ltd. \& Cables. Lid
Stern-Clyne. Lid. Lid.
Seration \& Co.
Sutton Electronics
Tannoy Lecording Magazine
Technical Tradling Co. \(\quad\).........
Telegraoh Condenser
Telequipment. Ltd.
Thompson. A. J. Radio Valves \& Tubes, Lid Tricitair Rädio

Undversal Book Co.

Vitality Bulbs. Lid.

Watts. Cecil E., Ltd.
Webber R. A.: Lid.
Weblls, J. A.. Ltd.
West Instruments Ltd. C...................
Whattedale Wireless Works. Lid. ... 52. 64.
Whiteley Electrical Radio Co.. Ltd
White, S. S. Dental Mfo. Co., Led
Whrecomp Electronics
Z. \& İ. Aero Services, Led.

 300 West 11th Blreet, New York 14


\section*{Components A-Z...to locations A-Z}

Name any electronic component you need. Name your location on the map. Whether you're in Aberdeen or Zennor, STC Components Group can put the finest components service in the world right on your doorstep. How? Mobility and range of products. Nine successful components Divisions with a combined field force mobilized into one Group.

The Group is represented in practically every country, through International Telephone and Telegraph Corporation (ITT). STC maintains a mobile team of applications engineers whose collective skills are more diverse than you will find in any other company. Mobility of organization to lift any components project off the ground so much more quickly than if you were to call in a
number of separate manufacturers. Mobility of thought in the STC research laboratories to quicken new advances.
To obtain your copy of the STC 'Designers Digest' write, 'phone or telex STC Components Group, Footscray, Sidcup, Kent. Telephone: FOOtscray 3333. Telex: 21836.

\section*{RECMF}

See us on Stand 162 Grand Hall - Olympia May 18th-21st.

65/1M

\title{
The Solder of the utmost reliability
}

From 10 s.w.g. to 34 s.w.g.

For all soldering processes
For printed circuits
For engineers and electricians
For the handy-man


The finest cored solder in the world
Multicore Solders are covered by British Patent Nos. 433194, 675954, 704763, 721881.

VISIT US AT THE
RADIO \& ELECTRONIC COMPONENTS SHOW OLYMPIA MAY 18th-21st multicore - Stand 168-Ground Floor • Main Hall

\footnotetext{
MULTICORE SOLDERS LIMITED - MULTICORE WORKS - HEMEL HEMPSTEAD - HERTS - TELEPHONE BOXMOOR 3636
}```


[^0]:    PUBLISHED MONTHLY (4th Monday of preceding month). Telephone: Waterloo 3333 ( 70 lines): Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home $£ 2 \mathrm{ss} \mathrm{Od}$. Overseos: 2215 g Od. Canado and U.S.A. $\$ 8.00$. Second-class mail privlleges authorised at New York N.Y. BRANCH OFFICES: BIRMINGHAM: King Edward House, New Street, 2. Telephone: Midland 7191. BRISTOL: 11, Marsh Street, 1. Telephone: Bristol $21491 / 2$. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265.6. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412 . NEW YORK OFFICE U.S.A.: 111, Broadway, 6. Telephone: Digby 9.1197.

[^1]:    - The reasons are more fully given in Essays in Electronics, Chapter 12.

[^2]:    - Sir Edward Appleton (Edinburgh University), Dr. D. G. Dr. I. S. Hey (R.R.E., Malvern). Prof. F. Hoyle (Cambridge Univeriity), Sir Willis Jackson (London University). Sir Ewart Jones (Oxford University), Sir Bernard Lovell (Manchester University). J. A. Ratcliffe Radio Research Station), Prof. Martin Ryle (Cambridge University) and Sir Richard woolley (Astronomer Royal).

[^3]:    New microwave vacuum tube, by G.E.C., using cyclotron resonance. The device is tunable over the whole of $Q$ band by variation of the magnetic field in which the tube is inserted.

[^4]:    * Newmarket Transistors Ltd.

[^5]:    * Detailed analyses are contained in I.R.E. Transactions on Elecrromic Compurers, August and October: 1963.

[^6]:    AMERICAN HEATHKIT SINGLE IDE BAND EQUIPMENT
    For direct delivery from U.S. Plant. Send for fenais of modets. Fully illustrated Amerion Catalogue of Heathkit range sent for only Catalogue of

[^7]:    How to install hi-fi in YOUR home
    If you are planning to install a Hi-Fi system in your home, and are uncertain of the type of equipment to use, our widely experienced technical staff will with pleasure put forward recommendations. All you have to do is state the type of installation contemplated, the price you are prepared to pay and give details of existing equipment you wish to include. if possible.

