Building a High-Quality Oscilloscope 1. DESIGN REQUIREMENTS

Wireless World

ELECTRONICS
RADIO
TELEVISION

Change in Forward Voltage over life and storage at temperature extremes:

Max	1.0 mV
Typical Change	$<0.1 \mathrm{mV}$
(at 15 mA Forward Current)	

FERTANTI

 HIGH QUALITY minietureSILICON JUNCTION DIODES

DYNAMIC
LIFE
TESTING
48 hours at full rating with EVERY device

* MATCHED PAIRS AND QUADS.
* VERY STABLE FORWARD CHARACTERISTICS.
* MINIATURE SIZE.
* GLASS ENCAPSULATION.
* MAX. MEAN DISSIPATION 275 MILLIWATTS.

MAXIMUM RATINGS

Type No.	ZS90	ZS91	ZS92	
P.l.V.	50	100	200	Volts
Mean Rectified Current	250	250	250	mA
Max. Reverse Leakage at $25^{\circ} \mathrm{C}$.2	.2	.2	LA
Max. Forward Voltage Drop at 250 mA	1.1	1.1	1.1	Volts
Derating over Temperature Range $25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	2	2	2	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Ambient Operating and Storage Temperature Range		$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		

* EXTREMELY HIGH RELIABILITY ensured by VERY ḢIGH STANDARDS OF QUALITY CONTROL DURING MANUFACTURE AND TEST
* STRINGENT TESTING INCLUDING THERMO-CYCLING BETWEEN LIMITS AND FULL LOAD.
* P.I.V. RATINGS UP TO 200 VOLTS.

Wireless World

ELECTRONICS, RADIO, TELEVISION

MARCH 1963

Editor:

F. L. DEVEREUX, b.s.

Assistant Editor:

H. W. BARNARD

Editorial:

P. R. DARRINGTON
D. R. WILLIAMS

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisement Manager:
G. BENTON ROWELL

VOLUME 69 No. 3
PRICE: 2s 6d.

105 Editorial Comment

106 Transistor Bias Networks
109 Direct-coupled Pulse Circuits
111 Books Received
112 Paris Components Show
114 Citizens' Radio in U.S.A.

By R. L. Conhaim

115 H. F. Predictions-March
116 World of Wireless
118 Personalities
120 News from Industry
121 Wireless World Oscilloscope-1
128 Aerospace Telemetry
129 Physical Society Exhibition 1963
134 Letters to the Editor

Managing Director: W. E. Miller, M.A., M.Brit.I.R.E.
Iliffe Electrical Publications Ltd., Dorset House, Stamford Street, London,
S.E. 1

Please address to Editor, Advertisement Manager or Publisher as appropriate

[^0]
CONTROLIED WARM-UP TIMES

 for television series heater chains

 for television series heater chains
 A11 Mullard valves designed for operation in television series heater chains now possess equalised heating characteristics. These characteristics obviate damage to the valve heaters during

 NEW MINIATURE

 NEW MINIATURE TRANSISTORS

 FOR POCKET

 FOR POCKET

 PORTABLES

 PORTABLES} the warm-up period and eliminate the need for a thermistor.
The voltage developed across one which the temperature rises. Since heater of a series heater chain depends the space inside the cathode is small, almost directly on the resistance of it is difficult to ensure consistent that heater. The resistance of the positioning of the heater within the heaters depends on their temperature, and is greater when the valves are hot than when they are cold. When a receiver is switched on, if one valve warms up more rapidly than the rest, the effect on the current will not be appreciable, but the increase in the voltage developed across the heater of that valve can exceed the amount (50% above the nominal heater voltage) which can be tolerated during the warm-up period. This can shorten the life of the valve considerably, and to prevent it, heater chains have normally been designed to incorporate a thermistor.
The resistance of a thermistor is high when it is cold, but falls as heat is generated in it by the heater current. The thermistor thus reduces the rate of increase of the heater current, and prevents unequal rises in the temperature of the heaters from producing an excessive voltage across any heater.
The rate at which the temperature of a valve heater rises depends very much on the mounting of the heater in the valve. Any point of contact between the insulated heater and the surrounding cathode sets up a small drainage of heat away from the heater and thus retards the rate at
cathode, so that the number and extent of these contacts, and therefore the rate at which the heater temperature rises, can vary considerably from one valve to another. Now, however, Mullard have developed accurate and carefully controlled methods of manufacture which produce equalised rates of temperature rise in all their television valves. Extensive tests with a large number of valves in typical heater chains have shown that these equalised heating properties ensure that, without added protection, the voltage developed across any heater will not exceed the permitted 50% above nominal during the warm-up period. Use of Mullard television valves thus enables heater chains to be designed without a thermistor, and this, in addition to the obvious economy, leads to shorter warm-up times and a faster appearance of the picture on the screen.

These articles describe the latest Mullard developments for entertainment equipment

A new Mullard range of miniature transistors has recently been introduced for pocket-size portable radios. These very small transistors-the AF124, AF125, AF126 and AF127-have been evolved as a continuation of the Mullard contribution to miniaturisation which began with the well-known OC44 and OC45 alloy-junction transistors.

Early transistor sets were restricted to the long and medium wavebands but short-wave and v.h.f. operation became feasible with the improved frequency performance of transistors manufactured by the alloy-diffusion technique. The first of these r.f. transistors to be introduced by Mullard were the OC170 and OC171, but these were superseded by the nowestablished AF114, AF115, AF116, and AF117-a series that was soon accepted as fulfilling the h.f. requirements of all forms of portable receiver.
The new series is a miniature counterpart of the AF114 series: the electrical properties are identical, but the transistors are only a quarter of the size. All the many advantages of the alloy-diffusion technique are retained, but considerable economy of space is afforded. These benefits are reflected in the smaller size and improved performance of the latest pocket portables.

MULLARD MINIATURE ELECTROLYTICS 8 Values in the New Can Size 2 $\frac{1}{2}$

Mullard miniature electrolytic capacitors Mullard C426 series consisted of five can of the C426 series are a proven success in sizes, each of which offered eight commodern transistor radio receivers, and binations of capacitance and working the group of capacitors recently added to voltage. A new can size-can size " $2 \frac{1}{2}$ ""the series offers even better coverage of has now been added to the series, so that the already wide range of sizes and a further eight combinations of capacitvalues available. The capacitance and ance and voltage are now available. working voltage values of electrolytic As the designation implies, can size $2 \frac{1}{2}$ capacitors are linked closely with the lies between can sizes 2 and 3 . It has the size of the component. The original same length of 10.7 mm ., as can size 2
compared with the 18.7 mm . of size 3 . Its diameter of 6.3 mm . compares with the 5.0 mm . of size 2 and the 6.8 mm . of size 3. As with the other sizes in the C426 range, the eight working voltages follow the logarithmic series: 64, 40, $25,16,10,6.4,4.0$ and 2.5 V , and the corresponding values of capacitance are $3 \cdot 2,6 \cdot 4,12 \cdot 5,20,32,40,50$ and $64 \mu \mathrm{~F}$. The tolerance on these values is -10% and $+50 \%$. The electrical properties of the new capacitors are identical with those of the original capacitors, and in common with the whole range, the capacitors in can size $2 \frac{1}{2}$ offer a long and trouble-free service life.
mVe/caio3I

Wireless World

VOL 69 NO 3 MARCH 1963

Making and Doing

THIS journal is a meeting place for all interests in the world of radio and electronics. We cover a wide field not only of subject matter but of motives for interest in these subjects. A recent survey showed that 60% of our readers were gainfully employed in the electronics industry, while the remaining 40% were following their natural interest solely as a hobby. There is no hard line of demarcation between these categories and many of our readers have specialist interests in one branch of the subject as professionals and in others as amateurs. No reader is ever likely to be satisfied with the proportion of each issue devoted to his subject(s), but if we cannot supply the quantity we can at least attend to the quality. We are helped in this by pressure on space, which forces us to be selective. At the same time we try to preserve a proper balance between conflicting demands and to adjust our contents to changing needs.

We are grateful to those readers who from time to time write with criticisms and suggestions, and it is clear from their letters that more constructional articles would be welcome-not, as in the early days of broadcasting, as a means of building a receiver cheaper than a proprietary make (those days are long past) but for the satisfaction of proving theory by experiment and for the sense of achievement which comes from building a piece of hardware with one's own hands. Complaints that we have neglected the home constructor and become a "high-brow" journal are often made. True, we have followed the growing complexity of our subject, but a check on the contents of last year's volume shows that there was at least one constructional article in 11 of the 12 issues.

Many of our constructional articles have come from outside contributors whose background is known to us and whose competence is not in doubt. Some (e.g., Williamson) have achieved world-wide fame, but it is with the more plentiful supply of good sound wine, rather than the occasional vintage (which will, in any case, take its own time to appear) that we are primarily concerned.

To provide more of the "right-stuff" we must help ourselves, and to this end we have recently overhauled our own laboratory facilities and brought them up to date with a background of
modern professional measuring equipment. We intend to supplement these with a range of sound, but less expensive, measuring instruments which we shall design and make ourselves with the kind of tools which the average enthusiast can afford and knows how to use.

This work will be undertaken as much for our own satisfaction as for our readers' and we look forward to working together on the many interesting projects which we shall think up between us.

In deference to the often expressed wish of a majority of readers interested in construction we shall start with test instruments. The equipment which we are developing will not compete either in cost with the cheapest commercial instruments or in performance with professional laboratory standards, but our designs will be adequate for most needs and will aim to bridge the gap and combine some of the advantages of both these extremes. Their greatest value will be in the satisfaction they give in the building and the confidence with which they will be handled when finished. Any faults which may develop at some future date will be much easier to trace and rectify in an instrument one has built oneself.
We are starting with a comparatively ambitious oscilloscope, because we think this is not only fundamental as a measuring instrument, but is most rewarding in the variety of observations which can be made with it. Other equipment-some simpler, some more complex-will follow, and as far as possible transistors will be used. It is also planned to build to a standard modular form, so that eventually the units can be used separately or rack-mounted to form a comprehensive test console.
In embarking on this new series of Wireless World Test Instruments we are not breaking with any of the principles which have guided us in the past. On the contrary, we are making a slight shift of emphasis to restore the balance of the whole so that we can continue to serve all who have an interest in radio and electronics at any level. We think that the young man who has built his own instruments as an amateur will have better judgement as a professional when it comes to selecting the right kind of equipment for advanced research and development.

Transistor Bias Networks

SIMPLE DESIGN PROCEDURE

By T. ORMOND*

THIS paper is written for the technician or hobbyist in an attempt to fill the void of transistor bias network design. The theory of bias networks can be found in numerous textbooks and has been the subject of many magazine articles. A most serious drawback to the existing literature (as far as the technician or hobbyist is concerned) is that the articles are usually oversimplified with poorlyexplained assumptions, while the textbook material is too involved in mathematics and theoretical derivations to be of practical value to the hobbyist or technician.

Because of the wide variety of transistor circuitry, it will be necessary to restrict our discussion somewhat. We will discuss the biasing of a Class A amplifier. Because of its popularity and wide-spread usage, we will use the common-emitter connection in our design example.

Two of the most important criteria for a welldesigned bias network are the resultant stability factor and the degree to which the amplifier can be made insensitive to transistor replacement. (The stability factor is a measure of an amplifier's ability to maintain a given set of bias conditions over a range of operating temperatures.) The transistor is a temperature sensitive device, particularly with respect to the collector cut-off current $\mathrm{I}_{c o}\left(\mathrm{I}_{c b o}\right)$ and the input voltage $\mathrm{V}_{b e}$. The collector cut-off current will approximately double for every $10^{\circ} \mathrm{C}$ rise.

In the common-emitter connection, Fig. 1, the collector current is given by the equation:

$$
\begin{equation*}
\mathrm{I}_{c}=\beta \mathrm{I}_{b}+\mathrm{SI}_{\mathrm{co}}^{\prime} \cdot . \tag{1}
\end{equation*}
$$

where β is the common-emitter current gain and S is the stability factor (for good stability, S should be low-the ideal being $S=1$). If the stability factor is high and any great degree of temperature variation is experienced, the change in I_{c} could be large enough to cause the circuit to become inoperative. There is nothing we can do about the leakage current of any given transistor, this current being inherent in the device, but we can make the stability factor such that the circuit can withstand the expected temperature variation. The amplifier shown in Fig. 1 offers a good degree of stability with minimum sacrifice in other circuit parameters. For this circuit and most circuits, the stability factor is:

$$
\begin{equation*}
\mathrm{S}=\frac{\beta+1}{1+\frac{\beta \mathbf{R}_{e}}{\mathbf{R}_{b}+\mathbf{R}_{e}}} . \tag{2}
\end{equation*}
$$

where $R_{b}=R_{1} \mathbf{R}_{2} / \mathbf{R}_{1}+\mathbf{R}_{2}$. Examining equation (2), we can see that poor stability results when R_{e} approaches zero (S approaches $\beta+1$) and ideal stability results when R_{b} approaches zero (S approaches 1). We will later show that this ideal stability is unrealisable in the circuit of Fig. 1. The degree of stability designed for will depend

[^1]upon the application, but a useful " rule of thumb " for highly stabilised circuits is:
\[

$$
\begin{equation*}
S \leq 5 \tag{3}
\end{equation*}
$$

\]

Circuits which possess good temperature stability are usually also insensitive to transistor replacement problems. This is especially true of the circuit of Fig. 1. Obtaining the base bias voltage by means of a resistive divider essentially makes the circuit independent of transistor parameters. For the circuit of Fig. 1, the base bias voltage V_{b} is given by:

$$
\begin{equation*}
\mathrm{V}_{b}=\frac{\mathrm{V}_{c c} \mathrm{R}_{x}}{\mathrm{R}_{1}+\mathrm{R}_{x}} \tag{4}
\end{equation*}
$$

where $\mathbf{R}_{x}=\frac{\mathbf{R}_{2}(\beta+1) \mathbf{R}_{e}}{\mathbf{R}_{2}+(\beta+1) \mathbf{R}_{e}}$.
As shown in equation (2), good temperature stability requires that the ratio $\mathrm{R}_{b} / \mathrm{R}_{e}$ be small. Thus, in most cases, $\beta \mathbf{R}_{e}$ will be many times larger than \mathbf{R}_{2} and R_{x} nearly equals R_{2}. Equation (4) then becomes

$$
\begin{equation*}
\mathrm{V}_{b} \approx \frac{\mathrm{~V}_{c c} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \tag{5}
\end{equation*}
$$

Equation (5) gives V_{b} in terms completely independent of the transistor. We can also assume that V_{b} equals $\mathrm{V}_{e}\left(\mathrm{~V}_{b}\right.$ will be greater than V_{e} by the magnitude of the voltage drop across the forward biased base-emitter diode, a matter of tenths of a volt). Since the value of V_{e} is independent of the transistor, I_{e} will also be independent ($\mathrm{I}_{e}=\mathrm{V}_{e} / \mathrm{R}_{e}$), greatly reducing any change in I_{c} due to transistor replacement. Assumptions usually make the actual case worse than the ideal, so our operating point will not remain as stable as the foregoing discussion would indicate. However, operating-point shifts due to transistor replacement will be greatly alleviated in a circuit of the type shown in Fig. 1. The problems concerned with stability can be reduced by a wise choice of the quiescent (d.c.) operating point, a choice which we will now discuss.

Fig. 2 shows the common-emitter output characteristics of an n-p-n transistor. It is a plot of collector to emitter voltage $\left(\mathrm{V}_{c e}\right)$ versus collector current $\left(I_{c}\right)$ for various values of base current $\left(\mathrm{I}_{b}\right)$. Values of $\mathrm{V}_{c e}$ and I_{c} should be chosen so that the operating point Q is in the linear range of the characteristic

$V_{\text {ce }}$, collector emitter voltage (volts)
Fig. 2. Output characteristic of common-emitter n-p-n transistor.
curves (the point Q shown on the figure has no meaning other than to demonstrate operating point placement). It can be shown, by means which need not be discussed here, that the optimum condition for temperature stability is when $\mathrm{V}_{c e}=\mathrm{V}_{c s} / 2$. In some instances, such as in direct-coupled stages, it is not always possible to meet this criterion, but the relationship $\mathrm{V}_{c e}=\mathrm{V}_{c c} / 2$ should be met as nearly as possible (standard resistance values may make an exact match impossible). Establishing the operating point is now reduced to determining the value of I_{c}. There are several factors to be considered in selecting a value for I_{c}; stage gain and collector dissipation to mention two. The amplifier gain will depend on I_{c}, since β is to some extent a function of collector current. Entertainment type transistors are normally used in low-voltage circuits, so appreciable β 's will be found at low collector currents ($1-3 \mathrm{~mA}$ range). A value of I_{c} must be chosen to give good β but care must be used to insure that it places the operating point in the linear region of the characteristic curves. The supply voltage must also be considered. Its value will probably be dictated by existing circuitry to which we are adding a stage, or by available standard batteries. Meeting the criterion of $\mathrm{V}_{c e}=\mathrm{V}_{c c} / 2$ will allow only $\mathrm{V}_{c c} / 2$ to be dropped across R_{c} and R_{e}. Thus, choosing a high value of I_{c} to obtain a good β could make R_{c} so small as to adversely affect stage gain. It naturally follows that the higher the available supply voltage (short of the value that would make $\mathrm{V}_{c e}$ greater than the breakdown voltage of the transistor), the greater the latitude in the choice of collector current. The collector power dissipation must also be considered when choosing I_{c}. The dissipation limit of some transistors may be as low as 25 mW . If we have a $V_{c c}$ such that $\mathrm{V}_{c e}=10 \mathrm{~V}$, then the maximum collector current, from the equation

$$
\begin{equation*}
\mathrm{P}_{c}=\mathrm{V}_{c e} \mathrm{I}_{c} \tag{6}
\end{equation*}
$$

would be 2.5 mA . It is evident that the choice of I_{c} is governed by many factors. In the design procedure outlined in this paper, I_{c} is determined from values of R_{c} and R_{e} which have been calculated from gain and stability considerations. Although this may seem
to be a haphazard way of choosing I_{c}, the design procedure will show that this is not the case.

Before proceeding with a design example, we must consider a factor which complicates our stability considerations; namely, the input circuit loss factor. Fig. 3 shows the equivalent a.c. input circuit of our amplifier of Fig. 1. r_{i}, the a.c. input resistance of the transistor, is given by the equation:

$$
\begin{equation*}
r_{1}=r_{b}+(\beta+1) \mathbf{R}_{e} \approx(\beta+1) \mathbf{R}_{e} \tag{7}
\end{equation*}
$$

where R_{e} is equal to $r_{e}+\mathrm{R}_{e e} . \quad \mathrm{R}_{e e}$ is equal to any external resistance which is not a.c. by-passed and r_{e} is the internal emitter resistance, approximately:

$$
\begin{equation*}
r_{e}=\frac{26}{\mathrm{I}_{e}(\mathrm{~mA})} \Omega \tag{8}
\end{equation*}
$$

We are interested in getting maximum signal power transfer from the source (i.e., a signal generator or the output of a previous stage). In other words, we want $v_{2} i_{b}$ to approach $v_{g} i_{g}$ as nearly as possible. The best condition we can obtain is when $r_{i}=\mathrm{R}_{g}$ in which case $v_{2} i_{b}$ will equal $v_{g} i_{g} / 2$ (this represents a 3 dB power loss). This could most easily be accomplished by making $r_{i}=\mathrm{R}_{g}$ and then making R_{b} large enough ($\mathrm{R}_{b}>10 r_{i}$) so that it will have negligible effect on r_{i}. This arrangement would pose serious stability problems, however, as well as curtailing the gain possibilities of the amplifier. We have previously noted that for good stability, the ratio $\mathbf{R}_{b} / \mathbf{R}_{e}$ should be small. Now although it is true that r_{i} is an a.c. resistance, and as such will not necessarily include the full value of R_{e}, making r_{i} equal to R_{g} could make R_{b} very large when R_{g} is large (since R_{g} could be the output resistance of a previous stage, it could vary from the low value of a common-collector to the moderately high value of a common-emitter stage). To get good stability with a large value of R_{b}, we must make R_{e} large which in itself is no problem (since in the majority of cases it will be a.c. by-passed). The problem arises when we consider stage gain, which is approximately:

$$
\begin{equation*}
\mathbf{A}_{v}=\frac{\mathbf{R}_{c}}{\mathbf{R}_{e}} \tag{9}
\end{equation*}
$$

where R_{e} is as defined in equation (7). If we desire a high gain from our stage, the ratio $\mathrm{R}_{c} / \mathrm{R}_{e}$ must be large (40 dB would make the ratio equal to 100). Since it is desirable to make $\mathrm{V}_{c e}$ equal to $1 / 2 \mathrm{~V}_{c c}$, we are faced with the problem of dropping $1 / 2 \mathrm{~V}_{c c}$ across the resistances R_{c} and R_{e}, both of which will be large (R_{c} from gain and R_{e} from stability considerations). This would lead to a low value of I_{c} which is a condition we do not want. It is evident, therefore, that unless we require a low gain or the source resistance is low, we must accept some loss in our input circuit. The question is, how much loss? Table I shows the degree of loss experienced for various mismatch conditions. Since we cannot avoid a 3 dB loss, we will not consider this loss in

Fig. 3. Equivalent circuit of Fig. I amplifier.
our calculations. What we must decide is how much loss, over and above the unavoidable 3 dB , we shall accept in our input circuit. From Table I, we see that if $\mathrm{R}_{\text {in }}$ equals $\mathrm{R}_{g} / 7$, we will have a 6 dB loss in our input circuit (excluding the unavoidable 3 dB). This ratio will allow us to obtain good gain and stability factors without much trouble and it does not represent too severe an input circuit loss. We will, therefore, design around this input condition and define a further loss factor involving R_{b} and r_{i} :

$$
\begin{equation*}
\mathrm{K}=\frac{\mathrm{R}_{b}}{\mathrm{R}_{b}+r_{i}} \tag{10}
\end{equation*}
$$

Since the lower the ratio $\mathbf{R}_{b} / \mathbf{R}_{e}$ the better, we will assign a design value to K of 0.5 ; in other words, we will make R_{b} equal to r_{i}. Therefore:

$$
\begin{equation*}
\mathrm{R}_{b}=r_{i}=2 \mathrm{R}_{g} / 7 \ldots \tag{11}
\end{equation*}
$$

will be our starting relationship. The foregoing discussion has been based on the value of β being low which will not always be the case. Any reader in a position to obtain transistors with known high β values will not be faced with the problems just discussed. The following design procedure is based on the premise that β information is not available. A low value of β is assumed which represents a " worst case" condition, a condition which insures that at least the objectives designed for will be obtained. If it is felt that input matching is of prime importance, then a multi-stage amplifier can be designed. A paper design will quickly confirm if a single stage will suffice for matched input or whether the ratio $\mathbf{R}_{g} / \mathbf{R}_{i n}$ can be made more stringent (less than 7/1), reducing input losses. The following example shows the simplicity of the calculations.
We will start with the following information: we require an amplifier with 40 dB of voltage gain, the source resistance is $5 \mathrm{k} \Omega$, and we have a 22.5 volt battery for our power source. We will also take as our "worst case" conditions, a value of $\beta=20$ and design for $S=2$ ($\beta=20$ is not unrealistically low for entertainment-type transistors). We wish to use a single stage without necessarily matching the input. From equation (11), we have:

$$
\begin{equation*}
\mathrm{R}_{b}=r_{i}=\frac{2 \mathrm{R}_{g}}{7}=\frac{10 \mathrm{~K}}{7}=1430 \Omega \tag{12}
\end{equation*}
$$

We can now rewrite equation (2), solving for R_{e}

$$
\begin{equation*}
\mathbf{R}_{e}=\frac{\mathbf{R}_{b}(\beta+1-\mathrm{S})}{(\mathrm{S}-1)(\beta+1)}=\frac{1430(19)}{21}=1300 \Omega \tag{13}
\end{equation*}
$$

With 40 dB of gain required, equation (9) gives

$$
\begin{equation*}
\mathrm{R}_{c}=100 \mathrm{R}_{e} \tag{14}
\end{equation*}
$$

TABLE I

$\frac{\mathbf{R}_{\mathbf{g}}}{\mathbf{r}_{\mathbf{i}}}$ or $\frac{\mathbf{r}_{\mathrm{i}}}{\mathbf{R}_{\mathbf{g}}}$	Power Loss (dB)	Power Loss From Optimum				
$(\mathbf{d B})$			$	$	1	3.0
:---:	:---:					
2	4.8					
3	6.0					
4	7.0					
5	7.8					
6	8.8					
7	9.0					
8	9.6					
9	10.0					

TABLE II

β	s	\mathbf{A}_{v} (dB)	$\begin{gathered} \mathbf{I}_{\mathrm{c}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathbf{V}_{\mathrm{ce}} \\ (\text { volts }) \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{c}} \\ (\mathrm{~mW}) \end{gathered}$	Input Losses (dB)	$\begin{gathered} \mathbf{V}_{\mathrm{b}} \\ \text { (volts) } \end{gathered}$
25	1.86	40.3	1.46	10.7	15.9	8.8-5.8	1.97
50	1.96	40.4	1.48	10.5	15.6	7.9-4.9	2.0
100	1.98	40.5	1.50	10.4	15.6	7.4-4.4	2.02

From equation (7)

$$
\begin{equation*}
\mathrm{R}_{e}=\frac{r_{i}}{\beta+1}=\frac{1430}{21}=68 \Omega \tag{15}
\end{equation*}
$$

Thus, from equation (14)

$$
\begin{equation*}
\mathbf{R}_{c}=100 \mathbf{R}_{e}=6.8 \mathrm{k} \Omega \tag{16}
\end{equation*}
$$

We can now calculate I_{c}

$$
\begin{equation*}
\mathrm{I}_{c}=\frac{\mathrm{V}_{c c} / 2}{\mathbf{R}_{c}+\mathbf{R}_{e}}=\frac{11.25}{8.1}=1.4 \mathrm{~mA} \tag{17}
\end{equation*}
$$

As seen from the typical characteristics of Fig. 2, an I_{c} of 1.4 mA places our operating point advantageously and also keeps collector dissipation low ($\mathrm{P}_{c} \approx 16 \mathrm{~mW}$). The only calculations remaining are those of the resistances $\mathrm{R}_{e e}, \mathrm{R}_{1}$, and R_{2}. From (8),

$$
\begin{align*}
r_{e} & =\frac{26}{1.4}=19 \Omega \quad . \tag{18}\\
\text { Since } \mathrm{R}_{B} & =r_{e}+\mathrm{R}_{e e}=68 \Omega \ldots \tag{19}\\
\mathrm{R}_{e e} & =68-19=47 \Omega \ldots
\end{align*}
$$

Rather than bother to calculate how to divide the value of R_{e} from equation (13) to give $\mathrm{R}_{e e}$, we will simply add the 47Ω in series with our calculated value of $\mathrm{R}_{e}=1.3 \mathrm{k} \Omega$ (this procedure will have negligible effect on our emitter calculations). We can write the following equations for the bias network

$$
\begin{align*}
& \frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\mathrm{R}_{b}=1.43 \mathrm{k} \Omega \quad \ldots \tag{21}\\
& \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{\mathrm{V}_{b}}{\mathrm{~V}_{c c}}=\frac{\mathrm{V}_{e}}{\mathrm{~V}_{c c}}=\frac{\mathrm{I}_{c} \mathrm{R}_{e}}{\mathrm{~V}_{c c}}=\frac{1.82}{22.5} \cdots \tag{22}
\end{align*}
$$

Equations (21) and (22) are solved to yield $\mathrm{R}_{1}=17.7 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=1.56 \mathrm{k} \Omega$. Fig. 1 shows that we have made R_{1} and R_{2} equal to the next smallest standard resistance values (a rather obvious choice for R_{2}). By making R_{1} smaller, we take into account that $\mathrm{V}_{b}>\mathrm{V}_{e}$ and not equal to it as we have previously assumed. The completed amplifier is shown in Fig. 1, with standard resistance values for all components. Since C_{e} will be determined by factors not covered in this paper (desired frequency response), its value has not been calculated.

Using the principles set forth for good bias network design, we have completed the design for a common-emitter amplifier. Since several assumptions were made during the design, bench testing may indicate minor changes for improving operation. By designing around "worst case" conditions for β and S , it is felt that design objectives will be met under a wide variety of conditions. Table II shows measured circuit parameters using transistors with β 's of 25,50 and 100 . It is evident that our desire to make amplifier performance insensitive to transistor replacement has been fulfilled. By following the steps for bias network design outlined in this article, any reader should be able to design a transistor amplifier for his specific needs.

DIRECT-COUPLED PULSE CIRCUITS

GRAPHICAL DESIGN METHOD

By R. THOMPSON,* Grad. I.E.E., Grad. Brit. I.R.E.

IN many pulse circuits it is required to switch a transistor into either its fully conducting or its nonconducting state via a resistive coupling chain. A good example is the bi-stable circuit of the type shown in Fig. 1. The values of R_{1} and R_{2} must be chosen so that the transistors receive either sufficient base current or sufficient reverse base voltage to maintain the required states under all tolerance conditions. Satisfactory values for the resistors may be found by straightforward calculation, but this involves either surprisingly cumbersome simultaneous equations or tedious repetitive approximations. This is particularly true where the effects of several tolerances are required to be known. A graphical approach to this problem is attractive because the interaction of circuit conditions may be seen at a glance. In effect the construction replaces a series of equations with a series of lines whose implications are more readily appreciated and can be easily altered. The construction described here is extremely simple and consists entirely of straight lines.

The basic construction is shown in Fig. 2; the axes of voltage and resistance allow the circuit currents to be represented by the slope of lines drawn in the construction. Suitable manipulation of these lines will allow the required information to be obtained. For simplicity it is assumed that the bottoming voltage of VT1 and the forward base-emitter voltage of VT2 are both zero. It is required that when VT1 is nonconducting VT2 takes a base current of at least I_{b} and when VT1 is bottomed VT2 must be cut off by at least V_{BE} volts. The leakage current of VT2 is I_{co}.

Construction Procedure (refer to Fig. 2)

(1) Mark off the vertical axis in volts and the horizontal axis in ohms.
(2) On the vertical axis mark in the three supply levels V_{1}, V_{2} and 0 . On the horizontal axis mark in R_{L}.
(3) Choose a value of R_{1} (see later) and mark in the point $\left(R_{L}+R_{1}\right)$.

Fig. I. Basic bi-stable switch.

Fig. 2. Construction for R_{L}, R_{1} and R_{2}.
(4) From point ($0, \mathrm{~V}_{1}$) draw a line with slope equal to I_{1} (line A).
(5) Construct back from point ($\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{1}, 0$) to line A and hence draw in line B through $\left(R_{L}+R_{1}, 0\right)$. This construction subtracts I_{b} from the current flowing in R_{1}. The slope of the resulting line is the current through R_{2} and theretore its intersection with the V_{2} level will give the value of $\left(R_{1}+R_{1}+R_{2}\right)$. The value of R_{2} given by line B is the minimum which will result in sufficient base current in VT2.
(6) Mark in $\left(R_{L}, 0\right)$. Add on a further voltage $I_{\text {co }} \times$ R_{1}, to allow for the leakage current that flows when VT2 is cut off, giving point (R_{L}, I_{c}, R_{1}). Mark in point ($R_{1}+R_{1}, V_{B E}$). Draw in line C. Intersection of C with V_{2} level gives the maximum value of R_{2} which will result in sufficient cut-off bias.
The choice of R_{1} (stage (3)) is not as arbitrary as it may at first seem because the range of values which will give a satisfactory solution is limited. While an equation defining this range is cumbersome, and even approximation results in
$0=\mathrm{R}^{2} \mathrm{I}_{\mathrm{b}}\left(\mathrm{V}_{2}-\mathrm{V}_{\mathrm{BE}}\right)+\mathrm{R}_{\mathrm{i}}\left[\mathrm{V}_{2} \mathrm{~V}_{\mathrm{BE}}+\left(\mathrm{I}_{\mathrm{b}} \mathrm{R}_{\mathrm{E}}-\mathrm{V}_{1}\right)\right.$
$\left.\left(V_{2}-V_{B E}\right)\right]+R_{L} V_{2} V_{B E}$
two rough limits may be used. The value chosen must not be greater than ($\mathrm{V}_{1} / \mathrm{I}_{\mathrm{b}}-\mathrm{R}_{\mathrm{t}}$) if sufficient base current is to follow (in fact it must always be less than this to obtain a satisfactory cut-off condition). The minimum value of R_{1} is restricted by the loading it imposes on VT1 collector. Even if these guides are ignored and an unsatisfactory value of R_{1} chosen the

[^2]

Fig. 3. Modifications to basic construction to take account of variations in supply and resistance values.
simple construction allows alteration in a matter of seconds.

The basic construction described is readily extended to give more precise results and include other design restrictions. The saturation voltage of VT1 (or collector clamping voltage if a non-saturating circuit is used) may be included in stage (6) by using point ($\mathrm{R}_{\mathrm{L}}, \mathrm{V}_{\mathrm{sat}}$) instead of ($\mathrm{R}_{\mathrm{L}}, 0$). The forward base emitter voltage of VT2, V_{BE}, required for a current of \mathbf{I}_{b} can be included at stage (5) by replacing the point ($\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{1}, 0$) with ($\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{1}, \mathrm{~V}_{\mathrm{BE}}$). Because of the danger of voltage breakdown, or in the case of a bi-stable circuit a limit on triggering sensitivity, some maximum reverse emitter base voltage, V_{R}, may be specified and this could restrict the value of R_{2}. The worst condition for reverse base voltage occurs with zero $I_{o o}$; a line drawn from ($\mathrm{R}_{\mathrm{L}}, 0$) (or ($\mathrm{R}_{\mathrm{L}}, \mathrm{V}_{\text {sat }}$)) through ($\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{1}, \mathrm{~V}_{\mathrm{R}}$) to intersect the V_{2} level will show the minimum safe value of R_{2}.

Once a construction has been made it is very easy to alter conditions either to optimise the design for a particular requirement or to investigate the effect of tolerances. The main points of reference will be marked in already and hence only a few movements of a straight edge are required. Fig. 3 illustrates a simple construction and the manner in which it can be modified to show the effects of supply and component tolerances. The tolerance variations used are exaggerated to make their effects readily apparent. It can be seen that the information required can be obtained in a few seconds. If the only information required is the values of R_{1} and R_{2} for satisfactory operation under "worst case" conditions then a simple construction using appropriate tolerance values will be sufficient.

Fig. 4. Practical example of design method.

In a bi-stable circuit the approximate condition for sufficient loop gain is $\mathrm{R}_{1}<\beta \mathrm{R}_{\mathrm{L}}$. Provided the transistors are designed to saturate, this condition is satisfied since R_{1} must be less than V_{1} / I_{b} or $V_{1} /\left(V_{1} / R_{L} \beta\right)$, i.e. less than $R_{L} \beta$, assuming $R_{L} \ll R_{1}$.
Practical Example.-As an example of this constructional design method consider the following problem. Required, a bi-stable circuit to operate with the following conditions.

$$
\begin{aligned}
& \mathrm{V}_{1}=-20 \mathrm{~V}, \mathrm{~V}_{2}=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega . \\
& \mathrm{V}_{\text {sat }}=-0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{co}} \max
\end{aligned}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BE}}=+2 \mathrm{~V}, ~ l
$$ $\mathrm{I}_{\mathrm{b}}=1 \mathrm{sat}$.

Transistors to saturate in the ON condition.

Fig. 5. Extension of Fig. 4 to obtain information on effect of tolerances.

Choose values for R_{1} and R_{2}, then find the following information:-

Under nominal conditions what is the maximum reverse base voltage? What voltage may V_{2} increase to before insufficient base current is obtained? What is the effect of changes of $+15 \%$ in V_{1} and -15% in V_{2} on reverse base voltage and base current? What is the minimum reverse base voltage under these conditions?

Fig. 4 shows the construction. A suitable value for R_{1} is $10 \mathrm{k} \Omega$ and this puts R_{2} between $12.3 \mathrm{k} \Omega$ and $26.5 \mathrm{k} \Omega$. The value chosen was $18 \mathrm{k} \Omega$ as this is a preferred value and puts $R_{1}+R_{2}+R_{L}$ near the centre of the permitted range of values. The maximum value of V_{2} which can be tolerated with these resistances may be found by extending line B (which is
concerned with I_{b}) to intersect with ($\mathbf{R}_{\mathrm{L}}+\mathbf{R}_{1}+\mathbf{R}_{2}$). The limiting value of V_{2} is given by this intersection and is +14.7 V in this case.

For the sake of clarity the construction to obtain the other information required is shown in Fig. 5. Under " nominal" conditions the maximum reverse base voltage is given by point C on the line joining $\left(\mathrm{R}_{\mathrm{L}}, \mathrm{V}_{\text {sat }}\right)$ and ($\left.\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{1}+\mathrm{R}_{2}, \mathrm{~V}_{2}\right)$, in this case 3.25 volts. With variations in supplies this reverse voltage alters to 2.7 volts, point " b." The minimum experienced occurs when $I_{c o}$ is maximum and is given by point "a," 2.4 volts. The base current which flows with nominal supply voltage is given by constructing back from ($\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{1}+\mathrm{R}_{2}, \mathrm{~V}_{2}$) through $\left(R_{L}+R_{1}, 0\right)$ to give $I_{b 1}, 1.25 \mathrm{~mA}$. Similarly with varied supply voltages the base current is given by the slope of $\mathrm{I}_{\mathrm{b} 2}$ as 1.62 mA .

BOOKS RECEIVED

Radio-Electronic Transmission Fundamentals, by B. Whitfield Griffith, Jnr. A course of study, at an intermediate level, of the elements of radio frequency engineering at high powers. The book is primarily intended for those interested in r.f. transmission. Broadly divided into two aspects, the subjects covered include network theory and transmission lines, with aerials and transmitters in the second part. Higher mathematics are not used, the mathematics that are needed being introduced when necessary. Pp. 612. McGraw-Hill Publishing Co. Ltd., McGraw-Hill House, 95 Farringdon Street, London, E.C.4. Price 60s.

Aviation Electronics Handbook, by Keith W. Bose. This is a practical book, for the owner-pilot or service technician, on the operation and maintenance of a variety of airborne electronic equipment. Communications, navigation and instrument landing systems are described and a chapter covers air radar applications. American regulations for the establishment of servicing facilities are set out, and the final chapter gives guidance on the practical aspect of installation. Pp. 224. Howard W. Sams \& Co. Inc., Indianapolis 6, Indiana, U.S.A. Price \$4.95.

Photoelectric Control, by Harvey Pollack. Written at technician level, the book first deals with the design, construction and operation of photocells, and then goes on to describe the use of these devices in conjunction with electromechanical relays. A section then follows on measurement and indication by photo-electronics. The semiconductor photocell and photo-transistors are discussed, and the final chapter describes some industrial applications of photo-electric control. Pp. 136. John F. Rider, Publisher, Inc., 116, West 14th Street, New York 11, N.Y. Price $\$ 3.50$.

High Fidelity Home Music Systems (second revised edition), by William R. Wellman. This book was written with the layman music lover in mind. Most aspects of sound reproduction are dealt with. Information is provided for the home constructor and for those contemplating purchase of a complete system. Pp. 241. D. Van Nostrand Co. Ltd., 358 Kensington High Street, London, W.14. Price 51s.

Newnes Radio Engineers Pocket Book. Thirteenth edition, revised by A. T. Collins, contains wire gauges, design data and useful formulæ. Pp. 180. George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Price 10s 6d.

Electronisch Jaarboekje 1963. Pocket diary (in Dutch) with 150 pages of technical information with rapidaccess coloured identification of sections giving general formulæ, basic circuits, aerial design, valve and data and general information. De Muiderkring N.V. Bussum, Netherlands. Price Fl. 2.95; plastic cover Fl. 0.50 extra.
Loudspeakers, Theory, Performance, Testing and Design by N. W. McLachlan, D.Sc. (Eng.). This classic work, published originally in 1934 by Oxford Univ. Press is now available in an unabridged paperback version issued by Dover Publications, Inc., 180 Varick Street, New York 14. Pp 399. Price $\$ 2.25$, or from Constable and Co. Ltd., 10 Orange Street, London, W.C.2., price 18 s .
Thermoelectricity, by D. K. C. MacDonald. Unified treatment of the physical basis of various thermoelectric effects (principally in metals, but with some reterence to semiconductors) in terms of modern solid-state theory. Pp. 133 including a three-page bibliography. John Wiley \& Sons Ltd., Gordon House, Greencoat Place, London, S.W.1. Price 49s.

Trägerfrequenz-Nachrichtenübertragungen über Hochspannungsleitungen, by H.-K. Podszeck. Third revised edition of this textbook of carrier-frequency communications over high-voltage power supply lines. Pp. 191. Springer-Verlag, (1) Berlin-Wilmersdorf, Heidelberger Platz 3, Germany. Price DM36.

B.B.C. Engineering Division Monographs

No. 42 Apparatus for Television and Sound Relay Stations, by P. A. Peachey, M.I.E.E., R. Tooms, D.I.C., A.C.G.I., B.Sc. (Eng.), A.M.I.E.E. and D. L. Stuart, Grad. I.E.E. describes translators, receivers and drive equipment used in later stages of the expansion of television and sound coverage.

No. 43 Propagational Factors in Short-wave Broadcasting, by L. J. Prechner, B.Sc., deals with problems of choice of frequencies for the B.B.C. external services and compares typical reception results with theoretical predictions.

No. $44 A$ Band V signal-frequency Unit and a Correlation Detector for a VHF/UHF Field-strength Recording Receiver, by G. J. Phillips, M.A., Ph.D., B.Sc., A.M.I.E.E., P. T. W. Vance, M.Sc. and R. V. Harvey, B.Sc., A.M.I.E.E., describes additional equipment for use with the field-strength recording equipment covered by Monograph No. 6.

All the above published by B.B.C. Publications, 35 Marylebone High Street, London, W.1. Price 5s each.

Paris Components Show, 1963

FLOOR SPACE DOUBLED TO ACCOMMODATE INCREASED INTERNATIONAL SUPPORT

IN the advance publicity for this exhibition the French use the expression une grande controntation, and this year the literal shade of meaning which suggests in English something of a "facer" was even more apparent. A new hall had been added, nearly doubling the floor area, and the number of stands had risen to 765 , a 27% increase on last year. Of these, 342 were from countries other than France (e.g., Germany, 108; U.S.A., 91 ; U.K., 55; Italy, 22; Switzerland, 20). To visit every stand it was necessary to walk at least $2 \frac{3}{4}$ miles, and if one could have attended from $9.30 \mathrm{a} . \mathrm{m}$. to 7 p.m. on each of the five days of the exhibition it would be possible to devote an average time of $3 \frac{3}{4}$ minutes per stand-that is if one did not stop for meals!

First impressions were quantitative-of the large

Telefunken A59-12W "anti-implosion" Television tube.
numbers of firms making similar products and of the strongly competitive character of the European component industry, not only in the fields of fundamental materials and components like resistors and capacitors, but also in sub-assemblies such as tuner units and switches. Developments like integrated semiconductor circuits, which were comparatively new last year, were to be found on the stands of most of the large manufacturers in this field.

A new development in television tubes is the introduction of "anti-implosion" types which were shown by three firms ("La Radiotechnique," Sovirel and Telefunken). In principle the stresses in the tube skirt, due to the air pressure on the curved face of the tube, are balanced by compressive forces applied either by a steel band or, as in the case of the Sovirel "Solidex" and the Telefunken A59-12W tubes, by two pressed steel shells clamped together. A softer bonding material between the band (or shells) and the glass distributes the stress evenly, and may be extended, as in the case of the La Radiotechnique "Auto-Protecteur" tube, over the rear cone as an added precaution. Films in slow motion were shown of a comparison between the deliberate destruction, by a striker pin, of tubes of the
old and new types, of the damage caused to the set by the former and the localized cracking, without general collapse, of the new design. Not only are the weight and cost of plate glass or plastic fronts eliminated, but it is claimed that much lighter cabinet construction can be used with safety.

Miniature (8-inch) television tubes with 90° deflection were on show by several manufacturers in anticipation, no doubt, of further numbers of small transistor portable television sets.

Double-beam tubes for oscilloscopes were much in evidence and a very low pattern distortion (1%) is claimed for the Type $1000 \mathrm{H}, 10-\mathrm{cm}$ tube, shown by the M-O Valve Company, enabling the traces to be superimposed if required for accurate comparison. In the Type E $10-10 \mathrm{GH} 10-\mathrm{cm}$ tube by "La Radiotechnique" an aluminized screen is used, enabling the advantage of increased brilliance to be retained for an e.h.t. of only 3 kV . The vertical sensitivity is $8 \mathrm{~V} / \mathrm{cm}$. An interesting special oscilloscope tube (D7-16GJ) was announced by Telefunken. It is designed for use with transistor circuits and its heater is rated at only $80 \mathrm{~mA}(6.3 \mathrm{~V})$; the anode potential is 800 V . The overall length of the tube is only 154 m (6 inches) and the screen diameter 76.2 mm (3 inches). Sensitivity is $22 \mathrm{~V} / \mathrm{cm}$.

A reversible decade counter tube (ECT100) developed by Elesta S.A., Bad Ragaz, Switzerland, operates with inputs as low as 50 V and is used with a transistor switching circuit which applies the pulses with alternating polarity to odd and even numbered cathodes, with which are associated staggered intermediate guide electrodes. Counting speeds up to $100 \mathrm{kc} / \mathrm{s}$ are claimed.

Among test and measuring instruments the v.h.f. and u.h.f. wobbulators of Ribet-Desjardins were noted. Type 411A covers 0 to $320 \mathrm{Mc} / \mathrm{s}$ in three ranges with modulation depths of $7 \mathrm{Mc} / \mathrm{s}$ or $25 \mathrm{Mc} / \mathrm{s}$, and Type 412 A , in preparation, will extend the frequency from 350 to $950 \mathrm{Mc} / \mathrm{s}$ Principal crystal-controlled frequency markers in the 411 A are at $10 \mathrm{Mc} / \mathrm{s}$ intervals with smaller $1-\mathrm{Mc} / \mathrm{s}$ subdivisions, and the 412 A will give additional fixed markers at 29.5 or $39.5 \mathrm{Mc} / \mathrm{s}$. The new Hewlett-Packard 175A oscilloscope uses a c.r.t. with a parallax-free graticule ($6 \mathrm{~cm} \times 10 \mathrm{~cm}$) on the inside of the non-glare optically-flat faceplate. Also shown by Hewlett-Packard was the Type 5243L eight-digit electronic counter with a time stability of 3 parts in 10^{9} and a basic frequency range of $0-20 \mathrm{Mc} / \mathrm{s}$. A plug-in frequency converter extends the range to $512 \mathrm{Mc} / \mathrm{s}$.

For production line testing of diodes and transistors in situ in printed circuit boards the "Diotester," produced by Société d'Études, Recherches et Constructions Électroniques, Montrouge, Seine, is self-cont?ined. Spring-loaded contact points, spaced to fit JEDEC (T0-5) bases, apply a small potential to the appropriate connections and indicate by a press button and lamp the cut-off and saturation conditions of transistors ($n-p-n$ or $\mathrm{p}-\mathrm{n}-\mathrm{p}$) and the conductivity of diodes. The instrument weighs 300 gm (10 oz) including a rechargeable
accumulator. Working on a similar principle the tester shown by American Electronic Laboratories uses a separate three-contact probe in conjunction with a rather more sophisticated test instrument, operating from the mains, and automatically running through a series of tests, including gain, with lamp indications of "go" and " no go."

It is appropriate that in France, the birthplace of Peltier, more than usual interest is being revived in that branch of thermoelectricity which deals with the cooling of metallic or semiconductor iunctions by the passage of an electric current. Whatever may be the future of these devices in the domestic field, there can be no doubt of their present usefulness in the laboratory. In the Type 18/9"Frigatron" unit made by Companie Industrielle des Ceramiques Electroniques (a subsidiary of C.S.F.) the junction is tellurium-bismuth and the unit forms part of a stable zero (Centigrade) temperature reference for the cold junction of thermocouples. "Le Zerofix," as it is called, maintains a water/ice equilibrium in a sealed vessel which can contain up to 6 junctions. The great advantage of the Peltier refrizerator is that the energy transfer is continuously variable, and L'Omnium de Techniques Avancées (an associate of Soc. Alsacienne d'Électronique et de Mécaniques Appliquées) have developed a thermoelectric module Type P8 which has been applied to the cooling of photomultipliers used in scintillation counters. Going from cold to hot, we find the same group (S.A.E.M.A.) showing equipment for producing high-power (3 kW 50 kW) electron beams for cutting, melting and vaporizing "difficult" materials in a vacuum.

Above: Double-beam oscilloscope tube, Type E10-10GH ("La Radiotechnique").

Right: 3kW electron "cannon" for narrow-beam bombardment of materials (S.A.E.M.A.).

Below: "Otechna" Type 8

Diode and transistor Tester (S.E.R.C.E.L.)

In an annexe to the main part of the exhibition, under the title "L'Electronique Quantique," several firms were showing neon-helium gas lasers in operation. This was in support of a conference on lasers and masers held during the same week in Paris. Most of the equipment made use of metre-length tubes, but Philips demonstrated stable laser action at a wavelength of 1.5μ in a tube only 12 cm in length, and with a d.c. discharge. A heavy cylindrical quartz block is bored with a hole 3 mm diameter and dielectric infra-red reflecting end blocks are held on the optically flat and parallel ends of the tube by the vacuum. Tuning is by an external heating coil. After passage through polarizing elements the beam was detected in a photo-cathode and displayed by a closed-circuit television monitor to show the possible modes of operation.
Among audio exhibits a new electrostatic microphone, Type C 60, by A.K.G. was noted. It weighs only 60 gm ($2 \frac{1}{8} \mathrm{oz}$) and can be supplied with a cardioid or an omnidirectional capsule (frequency responses 3018,000 and $30-30,000 \approx / \mathrm{s}$ respectively). The built-in pre-amplifier gives an output into 600 ohms of $1.3 \mathrm{mV} / \mu \mathrm{bar}$. Power supply is from mains or a rechargeable battery unit, the latter giving 14 hours continuous service.

An ingenious magnetic tape mechanism known as the "Tape-Top 305," shown by General Television, 17, Avenue de Paris, Vincennes (Seine), is designed to fit on a gramophone turntable (78 r.p.m.) and gives in the standard form, 4 hours playing time on two tracks of a $2,200 \mathrm{ft}$ continuous loop $\frac{1}{4}$ in tape. The tape is stored on a shallow conical plastic base 12 in diameter and 2 in deep, fitted with a dust cover, and the tape feed mechanism and record/replay head are mounted at the centre, and can be adjusted vertically to select the appropriate track. With a special head up to six tracks can be recorded, and played back separately or simultaneously. Using thin (25μ) recording tape a maximum playing time of 24 hours is possible, using the six tracks. The weight of the unit is only 3 lb .

The growth of the Salon International des Composants Électronique since it changed six years ago from a national to an international exhibition has been phenomenal. It has now reached a critical state of development when a decision must be made, either to limit its size, or to extend the period of opening. This year the material present was sufficient to overwhelm the most hardened "exhibition addict."

Citizens' Radio in U.S.A.

DOES BRITAIN REALLY WANT SUCH A SERVICE?

By R. L. CONHAIM *

THERE has been a lively discussion in the pages of Wireless World on the pros and cons of a Citizens' Radio Service for Great Britain. Experience in the United States, Canada and some of the Central American countries has been cited as the basis for some of these arguments. But, no one could possibly know what the services in these countries are like, without having experienced them. The experiences gained within the United States should be valuable to both those proposing and opposing such a service for Great Britain, for there are now more than 350,000 Citizens' Radio \dagger licensees within the U.S.A., most of them utilizing the Class D or $27-\mathrm{Mc} / \mathrm{s}$ band. The actual frequency range is 26.96-27.23 and $27.255 \mathrm{Mc} / \mathrm{s}$ with a maximum "plate power" of 5 watts.

Case History

A little background may be of value. Prior to 1958, there existed in the U.S. a Citizens' Radio Service; divided into several classes. Voice communication, however, was limited to the $465-\mathrm{Mc} / \mathrm{s}$ band, and there were very few users, due to the propagation characteristics of this band. The other classes were for radiotelegraphy, and for the radio control of models and other radio-controlled devices, where more than 100 milliwatts of power was required. The Class A service, that around $465 \mathrm{Mc} / \mathrm{s}$, attracted little attention. The few transceivers produced for this service were limited in range to about a mile, except over particularly good terrain.

Then in 1958, the Federal Communications Commission opened the relatively unused 11-metre amateur band (around $27 \mathrm{Mc} / \mathrm{s}$) for Citizens' Radio voice communication. The results, at first, were not startling. There was no great rush to apply for licences. Potential manufacturers of equipment adopted a wait-and-see attitude. Then, about the middle of 1958, an article on how to build a Class D ($27 \mathrm{Mc} / \mathrm{s}$) Citizens' Radio transceiver was published in a radio journal. The article stirred an immense amount of interest, especially among those frustrated amateurs who knew a little about radio but never had enough ambition to learn the code and the necessary technical information to secure an amateur transmitting licence. Parts stockists were besieged by enthusiasts eager to build this transceiver, which comprised a simple transmitter and a super-regenerative receiver.
That's when the fun began. Bear in mind that most of the original Class D licensees were essen-

[^3]tially hobbyists. They used the new band for hobby purposes, and fostered the same kind of use by newcomers to the band. The F.C.C. regulations, which had been written in the usual official language, were completely misinterpreted, often wilfully, and Class D became another amateur band, but without the benefit of amateur licensing. One of the rules stated that the band was for short-distance communications for the business or personal business of the licensee. "Short distance" was interpreted by these early users as anything less than 3,000 miles! and during exceptional propagation conditions DXing was the rule rather than the exception. "Personal business" was interpreted as almost anything. Some owners considered hobby use as personal business. One licensee, to whom the author talked, said the regulations set up the band for business or "pleasure," and, after all, he was only using the band for his personal pleasure!

The F.C.C., with only a few monitoring stations, and limited personnel, realized they had a bear by the tail. There was little they could do about it. New licences were accompanied by instruction sheets, detailing somewhat more specifically the "do's" and "don'ts," and defined more specifically some of the regulations.

The requirement that only holders of professional licences (first- or second-class commercial radiotelephone) should undertake transmitter adjustments was ignored almost completely. Users adjusted transmitters at will, ignored the 5-watt input limitation and "souped up" even commercial transceivers to radiate much higher power than authorized. Any evening you wanted to monitor the band with a frequency meter, you would find that at least half the stations were off frequency. The tolerance of 0.005% was met by few users. The demand for crystals to operate on the 22 channels (now 23) became so great that some crystal manufacturers weren't always too careful about what they supplied.

The band was now becoming really wild. During the daytime hours, it was relatively quiet, except for business use, but at night the screeching, howling heterodynes made the 80 -metre amateur band sound like a school room at midnight. Long-winded discussions tied up channels and prevented legitimate users from gaining any benefits from the service. Incidentally the minimum age for a Citizens' Radio licence is 18 .

In early 1961 the author visited an F.C.C. secondary monitoring station and it was obvious there were so many violators, and so few monitoring people, that only a small percentage of the errant users ever received citations for their wrong-doings. Reports of television interference increased rapidly, from neighbours of Citizens' Band operators.

The licensing activity, in the meantime, had picked up so enormously, that the " W " numbers which had sufficed for years were exhausted. In 1960 "A" numbers, then " B " numbers were used. In 1961 "Q" numbers were used, then "QA" numbers. And in 1962 a three-letter system was inaugurated.
Equipment manufacturers were now in high gear. You could have your choice of kits or built-up transceivers for prices ranging from $\$ 40.00$ to about $\$ 200.00$, or roughly $£ 13$ to $£ 70$. The accessory manufacturers were reaping great profits as well. All manner of special antennas appeared, both for mobile and fixed base stations. Field strength meters, power output meters, standing wave bridges, crystal activity testers, wavemeters, frequency meters, dummy loads and a hundred other items appeared on the market and were gobbled up by ardent C.B. fans.

At this point the F.C.C. realized it would have to modify and clarify its regulations governing the Citizens' Radio Service. Conversations were limited to 5 minutes, kit manufacturers were required to seal the frequency-determining circuits of transmitters, DXing was strictly forbidden. But the users outnumbered the regulators by such tremendous margins that the new regulations had little, if any, effect.

The Present Position

Now the F.C.C. is proposing new regulations, spelling out in detail, what they expect of the band, what a user can do and cannot do. The language is more clear, more specific. Licence applications are receiving closer scrutiny, to be sure the applicant has a legitimate reason for his licence. New requirements cut the conversation limit to three minutes, followed by a five-minute silent period. More stringent rules are being applied to set manufacturers, especially the kit manufacturers. Only
five of the 23 channels are proposed for interstation use. The remaining channels are set aside for communications between stations of the same licensee, or for emergency and Civil Defence communications. All of the proposed new regulations will help to get a measure of order out of the chaos which now exists. But the final answer must of necessity come from self-regulation.

The idea of self-regulation is difficult. Users cannot, for example, report conversations to the F.C.C., for the Communications Act of 1934, under which the F.C.C. operates, forbids the revealing of message content to anyone except the person for whom the message was intended. The formation of Citizens' Band Clubs and associations has become wide-spread. Many of these are making honest attempts to clean up the band, while others are out to promote the idea of making C.B. a hobby. \ddagger

That brings us back to the question, "Does Great Britain Want a Citizens' Radio Service? "Apparently many British citizens do. The idea is basically sound -if it gets off on the right foot. But a Citizens' Radio Service should be set up only to provide a basic communications need. Benefiting from the mistakes made in the U.S., all hobby activities of any kind should be specifically forbidden. There should be tighter controls than we in the U.S.A. have over the manufacturers of equipment. Probably specific frequency assignments for specific purposes would prevent much of the "hamming" with which we have had to contend.

By all means, if you want a Citizens' Radio Service, set one up. But avoid our mistakes. And make your restrictions tight enough that they can be reasonably enforced. Go into it slowly and carefully, and come up with a service that really gives the average citizen a communications medium that will serve him and his fellows well.
\ddagger A new communication jargon has emerged; " 10-4" meons message received and " $10-7$ ", signing off.-ED.

H.F. PREDICTIONS-MARCH

The prediction curves now show the median standard MUF, optimum traffic frequency and the lowest usable high frequency (LUF) for reception in this country. Unlike the MUF, the LUF is closely dependent upon such factors as transmitter power, aerials, local noise level and the type of modulation: it should generally be regarded with more diffidence than the MUF. The LUF curves shown are those drawn by Cable and Wireless,

Ltd., for commercial telegraphy and they serve to give some idea of the period of the day for which communication can be expected. The LUF curve for Montreal takes account of auroral absorption.

WORLID OIF WIREIESS

U.H.F. Television Tests

THE second stage of the B.B.C.'s field trials of 625 line u.h.f. television began on February 1st when simultaneous transmissions on two channels (34 and 44^) were started from Crystal Palace, London. Transmissions, employing an e.r.p. of 160 kW with horizontal polarization, are radiated from 10 a.m. to 5 p.m. and from 8 p.m. to 9.30 p.m. daily from Monday to Friday. They include test patterns, slides and films in monochrome and in colour, including a colour film between 12.50 and 1.15 . During February the N.T.S.C. system has been used for the colour transmissions and in March trials will be conducted with Secam.
Tests will continue until towards the end of the year, after which preparations will be made for the start of the B.B.C.'s second television service scheduled for next April. Incidentally, we understand there is no foundation for the recent rumour that the two channels now being used experimentally will continue to be used for London when the new service starts.
${ }^{\star}$ Channel 34 , vision $575.25 \mathrm{Mc} / \mathrm{s}$, sound $581.25 \mathrm{Mc} / \mathrm{s}$. Channel 44 , vision $655.25 \mathrm{Mc} / \mathrm{s}$, sound $661.25 \mathrm{Mc} / \mathrm{s}$.

Balance of Trade

IMPORT-EXPORT figures for 1962 culled from the Board of Trade accounts reveal that while there was a 10% increase in the value of exports of radio and electronic equipment, imports increased by over 17%. The year's exports totalled nearly $£ 76 \mathrm{M}$ compared with $£ 69 \mathrm{M}$ the previous year and imports were $£ 31.6 \mathrm{M}$ as against $£ 27 \mathrm{M}$ in 1961 . Incidentally the value of receiver imports last year exceeded exports by nearly £1M.
The main increases in imports were in transmitting equipment and navigational aids $£ 8.6 \mathrm{M}$ compared with $£ 6.7 \mathrm{M}$, domestic and car receivers $£ 2.3 \mathrm{M}$ ($£ 1.4 \mathrm{M}$), instruments $£ 4 \mathrm{M}$ ($£ 3 \mathrm{M}$), valves and c.r. tubes $£ 4.8 \mathrm{M}$ ($£ 4.4 \mathrm{M}$) and transistors $£ 1.6 \mathrm{M}(£ 1.2 \mathrm{M})$.
From the table below can be seen the variations in the value of U.K. exports for the past two years.

Standard Frequency Transmissions

SINCE 1945 the $200-\mathrm{kc} / \mathrm{s}$ carrier frequency of the B.B.C.'s light programme transmitter at Droitwich has been stabilized and is now maintained to within 5 parts in 1 kM . The diurnal rate of frequency change is not greater than +1 part in 10 kM and the resultant error is now being corrected each month. The new carrier frequency generators at Droitwich employ Essen type quartz rings operating at a nominal frequency of $100-$ kc / s. These quartz rings were provided by the Post Office and operate in equipment supplied by Airmec.

Broadcast Receiving Licences.-The increase in television licences over the past 17 years is shown by the broken curve. The December increase of 6,684 brought the number to 12,230,987. The overall total of sound and television licences is shown by the full curve; the December total being $15,580,400$,
including 526,549 for including 526,549 for radio sets fitted in cars.

P.A. Show

THE annual exhibition of public address equipment organized by the Association of Public Address Engineers will be held at the King's Head Hotel, Harrow, Middlesex, on March 6th and 7th. Demonstrations of stereo recordings are being staged by several companies and the B.B.C. Admission to the show, open from 10.0 a.m. to 6.0 p.m. each day, is by invitation ticket obtainable from the A.P.A.E., 394 Northolt Road, South Harrow, Middlesex, or by business card. This year's exhibitors include:-

Ampex

Audix
B.B.C.
C.T.H. Electronics
E.M.I. Electronics

Film Industries
Goodmans
Grampian Reproducers
Lockwood \& Company
Lustraphone
Magneta
Mullard

Pamphonic Reproducers
Philips Electrical
Politechna (London)
Pye Telecommunications
Reosound Engineering
Reslosound
Shure Electronics
Sound Coverage
Standard Telephones \& Cables
Vortexion
Westrex Company
Williams Cine and P.A. Services
Warren, Haydon

Stereophonic Transmissions.-In addition to the series of stereo transmissions on Sundays, Wednesdays and Saturdays from the Wrotham station announced in our last issue, the B.B.C. has now introduced weekly tone test transmissions. These will be radiated at midday on Wednesdays from 12.0 to 12.30 . A schedule of the tone transmissions is given in Information Sheet 1602, obtainable from the Engineering Information Department, B.B.C., Broadcasting House, London, W.1.
Paris Radio Show.-TThe dates have now been announced by the Fédération Nationale des Industries Electroniques for the International Radio and Television Exhibition to be held in Paris in September. They are 5 th to 15 th.

Apprentice Prize Winners.-D. Brooker, a Marconi craft a pprentice, won the premier award-the Silvanus P. Th ompson prize-in the Physical Society's Apprentices Competition, and also the first prize in the senior grade of scientific instruments and components for his sun shutter and filter drive mechanism for use in closedcircuit television. The other four Marconi entrants also received awards. They are craft apprentices V. L. Cathcart, for his spot wave selector for a communication transmitter; T. H. Lodge, flywheel synchronizing panel for a broadcast television recorder: P. J. Howe, a joystick control assembly for use with radar display consoles; and C. L. Chadwick, inner chassis assembly for a marine radio receiver. A trainee at the Company's Basildon Works, M. A. W. Golding, gained an award for his entry of a printed circuit board assembly for a television test pattern generator.
T.E.M.A. Awards.- The annual awards in the competition for the best final-year apprentice of the member firms of the Telecommunication Engineering \& Manufacturing Association were made by the chairman, W. G. Patterson, of A.E.I., at the Association's annual dinner on February 12th. The recipients, who each received $£ 25$, were P. H. Morecombe, B.A. (G.E.C.), graduate-in-training; D. G. Hornby, Dip.Tech. (A.T.E.) and M. A. Woods (A.E.I.), who tied for the student apprentice award; and T. R. J. Hill (A.T.E.), technician apprentice.
R.S.G.B. Contests.-The first of this year's contests organized by the Radio Society of Great Britain will be held this month. On March 2nd and 3rd there will be the $144 \mathrm{Mc} / \mathrm{s}$ Open and Listeners' V.H.F. Contests, and on the 16 th -17 th the first $1.8 \mathrm{Mc} / \mathrm{s}$ contest. The full list includes a number of qualifying events leading up to the National D/F Final on September 15th. The National Field Day will be on June 8th-9th and the V.H.F. Field Day on September 7th-8th.

After five days of test transmissions for the trade, the Independent Television Authority commenced programme transmissions from its Moel-y-Parc station (Channel 11, vertically polarized) located on the borders of Flintshire and Denbighshire, North Wales.

The Soviet Union economic target for 1962 was exceeded and according to preliminary estimates industrial output was $9 \frac{1}{2} \%$ higher than the previous year. There was little increase in the production of radio sets and radiograms (4.3 M), but production of television sets (2.2 M) showed an 11% increase over last year's figure.

G6SL, the call sign of the amateur station operated at the Eddystone Works, Birmingham, has recently been used illicitly. This has been confirmed by the receipt of a number of QSL cards.

New laboratories for Racal Electronics were opened at Bracknell, Berks., by Mr. Julian Amery, Minister of Aviation, on February 12th. The new research and development laboratories, occupying approximately $24,000 \mathrm{sq} \mathrm{ft}$, bring Racal's total floor area to 150,000 sq ft . Since the company moved to Bracknell in 1954 its staff has increased tenfcld and is now approximately 1,000.

[^4]A combined symposium and exhibition on environmental testing is to be held on 27th-30th March, at the Imperial College of Science and Technology, South Kensington, London, S.W.7. The symposium will include the presentation of twenty-three papers, many of which will be of direct interest to those concerned with reliability. Full details can be obtained from the secretary of the Society of Environmental Engineers, 167 Victoria Street, London, S.W.1.

Anglo-American consortium of companies has been appointed by the South Arabian Federal Government to organize and operate a radio and television broadcasting system. The companies concerned are Thomson Television International (U.K.), National Broadcasting Company (U.S.A.) and Television International Enterprises (U.K.). A radio service is already in operation and it is hoped to have a 625 -line television service operating by the end of the year.

Trader Year Book.-First published in 1925, the "Wireless and Electrical Trader Year Book" is an indispensable reference book to the radio and domestic electrical industries. The 1963 edition, which costs 21 s and comprises 444 pages, includes all the sections which have proved so useful in the past, such as the buyers' guide; condensed specifications of current sound and television receivers, radiograms and tape recorders; valve, c.r.t. and transistor connections; receiver i.f.s and a directory of manufacturers.
R.F.C.W.O.O.C.A. Dinner.-The Royal Flying Corps Wireless Operators Oid Comrades' Association is to hold its annual dinner in London on March 30th. Details are obtainable from E. J. F. C. Hogg, 57, Hendham Road, London, S.W.17. (Tel.: BALham 6963.)

Professional Engineers.--The inaugural meeting of the South-East Essex Society of Professional Engineers will be held at the Queens Hotel, Westcliff-on-Sea, at 8.0 on March 1st. Particulars are obtainable from E. W. Marsden, 21 Somerset Avenue, Westcliff-on-Sea, Essex.

Semiconductor Applications.-A two-day course on recent advances on semiconductor applications is being held at the Slough College, William Street, Slough, Bucks., on March 27th and 28th. The fee is 2 gn .

The latest Dip. Tech. awards bring up the total to over 1,800 since the introduction of the scheme in 1958 by the National Council for Tecinnological Awards. There are now 7,292 students on courses.

CLUB NEWS

Birmingham.-The Slade Radio Society has arranged a Mullard film meeting in the Great Hall of the Birmingham and Midland Institute, Paradise Street, Birmingham, at 7.45 on March 8th. On the 22nd J. E. Smith (G3JZF) will give the fifth of his series of lectures on radio fundamentals at The Church House, High Street, Erdington.

Derby.-"Car Radio; Interference Problems" is the title of the lecture to be given by R. Barrell (G3FOP) to members of the Derby and District Amateur Radio Society on March 13th. Meetings are held at 7.30 at 119 Green Lane.

Edinburgh.-At the March 14th meeting of the Lothians Radio Society M. Russell will give a talk entitled "History of Automobile Communications." On the 28th J. Hughes (GM3LCP) and T. Spiers (GM3OWI) will discuss electronics. The club meets at 7.30 at the Y.M.C.A., South St. Andrew Street.

Prestatyn.-J. T. Lawrence (GW3JGA/T), chairman of the Flintshire Radio Society, will talk about fault finding at 8.30 at the club meeting on March 25th. Monthly ineetings are held at the Railway Hotel.

Spen Valley.-The subject of the talk by J. Belcher, of the G.P.O., to members of the Spen Valley Amateur Radio Society on March 7th is direction finding. The club meets fortnightly at 7.15 at the Grammar School, Heckmondwike.

Personalities

E. V. D. Glazier, Ph.D., B.Sc., M.I.E.E., has been appointed by the Ministry of Aviation to a new post at the Royal Radar Establishment, Malvern, in which he will be responsible for the "co-ordination of military and civil systems work in the fields of airborne and ground radar, guided weapons and space research." Dr. Glazier, who is 50 , has been director of scientific research (electronics and guided weapons) in the Ministry since 1957. He received his early training in electrical and mechanical engineering in industry and joined the Post Office in 1933. In 1942 he was transferred to the Signals Research and Development Establishment and in 1950 was put in charge of the Research Division at Christchurch.
G. E. Bacon, Ph.D., M.A., B.Sc., at present deputy chief scientific officer at the Atomic Energy Research Establishment, Harwell, has been appointed to a chair of physics at the University of Sheffield which he will occupy from next October. He will also assume the headship of the Department of Physics under a new scheme whereby each of the two professors will fill the post for three years. Dr. Bacon graduated at Emmanuel College, Cambridge, and in 1939 joined the Air Ministry. He eventually took charge of a group concerned with ground radar research and development at T.R.E. (now R.R.E.) at Malvern.
G. C. Gaut, M.A., B.Sc., has been appointed to the board of the Plessey Company, parent of the Plessey group of companies. He joined the Company after graduating at University College, Oxford, in 1934 and was appointed an executive director in 1951. He set up the Company's first laboratory at Ilford for research and development on technical processes for the manufacture of electronic components in 1937. This laboratory was moved to Caswell, Towcester, in 1940 and is now engaged in solid state research. In 1961 Mr . Gaut was appointed to the board of Semiconductors Ltd., a Plessey subsidiary.

Kenneth W. Brittan, Ph.D., B.Sc., D.K.C., who is 31, has been appointed chief engineer of W. G. Pye \& Company, scientific instrument manufacturers of Cambridge. Dr. Brittan graduated at Nottingham University with honours in physics in 1952 and continued his studies at the Postgraduate Technical School of Optics in the Royal College of Science, London, where he obtained his doctorate.
D. G. Smee, M.B.E., Assoc.I.E.E., who joined Marconi's W/T Company in 1933 and has been manager of the Broadcasting Division since 1956, has been appointed assistant general manager of the Company. During the war he was first with the Royal Signals and then R.E.M.E., rising to the rank of major. The new manager of the Broadcasting Division is T. Mayer, who joined the Company in 1948 and has been sales manager of the division for the past five years. His successor is F. J. Sidebotham.
S. Hill, M.Eng., the new chairman of the Acoustics Standards Committee of the British Standards Institution, is also chairman of the B.S.I. committee on electroacoustic transducers and is a member of the committee on acoustical terms and definitions. He was recently appointed chairman of the Acoustics Standards Committee of the International Organization for Standardization (I.S.O.). Mr. Hill is a senior engineer with Standard Telephones \& Cables which he joined in 1919.
N. H. Searby, C.B.E., Ph.D., B.Sc. (Hons.), M.I.E.E., manager of Ferranti's Guided Weapons Department since 1951, has been appointed to the board. Dr. Searby, who is 52, graduated at Birmingham University where he also obtained his Ph.D. He joined Ferranti's as a radio engineer on leaving the University in 1932 and became chief radio engineer in 1941.

Dr. N. H. Searby
P. R. Max

Peter R. Max, B.Sc., A.M.I.E.E., has become chief engineer of the radar division of Cossor Electronics Ltd. and will control all development and systems engineering. He was previously manager of air traffic control and data handling in Marconi's Radar Division.

Dr. Carlo L. Calosi has been appointed to the board of Cossor Electronics Ltd., a subsidiary of Raytheon, U.S.A., of which he is a vice-president in charge of European operations. Dr. Calosi was at one time Professor of Electrical Engineering at the University of Genoa and later head of communications research with Ericssons. He went to the U.S.A. as head of Raytheon's research division at the end of the war. The appointment of Leonard H. Weall to the board of Cossor Electronics is also announced. He joined the Cossor group last year after spending several years with G. \& E. Bradley Ltd., where he was works manager, having previously been with the Plessey Company.

Bernard Marsden, A.M.I.E.E., M.Brit.I.R.E., has been appointed deputy technical controller in the Engineering Department of Associated Television Ltd. and Len Mathews, M.Brit.I.R.E., to the newly-created post of head of special projects (technical). T. C. Macnamara, A.M.I.E.E., is ATV's technical controller. Mr. Marsden joined ATV in 1955 as senior engineer (installation and planning). He was promoted assistant controller of studios in 1958. Mr. Mathews also joined ATV in 1955 as senior engineer (communications) and has been assistant controller (communications and outside broadcasts) since 1958. He was previously in the B.B.C. Engineering Department.
F. W. Alexander, Ph.D., B.Sc., A.M.I.E.E., has been appointed superintendent engineer, sound broadcasting (equipment), in the B.B.C. Dr. Alexander joined the B.B.C.'s Engineering Research Department in 1933 from the research section of the Department of Physics of the University of St. Andrews. For the past few years he has been assistant superintendent engineer, sound broadcasting (studios).

Dr. T. E. Allibone, C.B.E., F.R.S., director of the Associated Electrical Industries Research Laboratory, Aldermaston, Berkshire, and director for research and education, A.E.I. (Woolwich) Ltd., has been appointed by the Royal Society to be Rutherford Memorial Lecturer in India and Pakistan, during a period to be arranged in the winter of 1963-64.
G. G. Parfitt, Ph.D., A.R.C.S., D.I.C., recently left the Department of Physics at the Imperial College of Science and Technology, London, and has gone to the University of Ibadan, Nigeria, as senior lecturer in physics. Dr. Parfitt, who has been at the College for about 15 years, spent a year at Göttingen University with Professor E. Meyer under an exchange arrangement. He has been concerned with acoustics research at the College including damping in polymers and noise problems. For the past four years he has been honorary secretary of the Acoustics Group of the Inst. P. and Phys. Soc.
A. H. Appleyard, A.M.I.E.E., A.M.Brit.I.R.E., has joined Avo Ltd. as senior electronics engineer and will deal with the design and development of electronic instruments. The company also announce the appointment of G. Doye as senior nucleonic engineer. He was previously with E.M.I. Electronics and on the laboratory staff of University College, London.

Dr. Ernst Weber has been elected as the first president of the Institute of Electrical \& Electronic Engineers, formed by the merging of the A.I.E.E. and the I.R.E. Dr. Weber, who is president of the Polytechnic Institute of Brooklyn, was president of I.R.E. in 1959.

Norman Caws (G3BVG), is the new president of the Radio Society of Great Britain, of which he has been honorary treasurer since 1958. Mr. Caws is especialiy interested in v.h.f. and u.h.f. operation and has been closely associated with the London u.h.f. group since its formation in 1952. His brother Raymond (G3BRL) is chairman of the Radar \& Electronics Association.
D. J. Collins, B.Sc.(Eng.), A.M.I.E.E., has been appointed divisional engineer responsible for research and development in the recently formed Data Recording Division of Consolidated Electrodynamics Corporation (U.K.) Ltd., of Woking, Surrey, a subsidiary of the Californian corporation of the same name. Mr. Collins, who is 35, was with E.M.I. for five years on missile work and since then with Solartron for ten years.

John Bunton, M.A., M.I.E.E., A.Inst.P., who joined Mullard in 1948 as scientific adviser to the board, has been appointed secretary of Mullard Ltd. Mr. Bunton was educated at Chesterfield School and Cambridge University where he graduated in natural sciences.

Arthur S. R. Toby, for the past 18 years engineer-in-charge of the North American office of the B.B.C., has joined Kramer Magnetics Ltd. of Port Credit, Ontario, Canada, as manager of the magnetic tape division.

OUR AUTHORS

Thomas Ormond, author of the article on transistor bias networks in this issue, joined Sylvania in 1960 as an applications engineer in the Semiconductor Division and recently transferred to the Company's Electronic Systems Division. He is a graduate of Northeastern University, Boston, Mass.
R. Thompson, Grad.I.E.E., Grad.Brit.I.R.E., contributor of " Direct-coupled pulse circuits," studied for his I.E E. graduateship at the North Gloucestershire Technical College and the Birmingham College of Advanced Technology. He has been in the telecommunications division of the Plessey Co. at West Leigh, Hants., since 1960 where he has been concerned mainly with S.C.R. and transistor high-power inverters. Before joining Plessey Mr. Thompson was with Dowty Nucleonics.

OBITUARY

Lord Hankey, F.R.S., who died on January 25th at the age of 85, was chairman from 1941-1952 of the Technical Personnel Committee of the Ministry of Labour and National Service which was given the task of organizing the scientific manpower of the country. In 1943 he was appointed chairman of the Government Television Committee set up "to prepare plans for the reinstatement and development of the television service after the war." It was on the Hankey committee's recommendation that the 405 -line service was re-established rather than defer the restarting "for the uncertain period required to give an opportunity of incorporating some fundamental improvement in the system."
Sir Isaac Shoenberg, M.I.E.E., leader of the team of engineers and physicists at E.M.I. which was responsible for the development of the 405-line television system, died on January 25th at the age of 82. Born in Pinsk, Russia, he was chief engineer of the Russian Wireless Telegraph and Telephone Company, Leningrad, from 1905 until he came to this country in 1914 as a consulting engineer to the Marconi Company of which he later became joint general manager. Sir Isaac, who was knighted last year "for services in the development of television and sound broadcasting", joined the Columbia Graphophone Company as general manager in 1928 and, when it merged with the Gramophone Company in 1931 to form E.M.I. he became director of research. In 1954 he received the Faraday Medal of the I.E.E. "for . . . the outstanding contributions which he has made to the development of highdefinition television in this country".
J. H. Dellinger, Ph.D., Sc.D., of "Dellinger Effect" fame, died on December 28th aged 76. He was chief of the Central Radio Propagation Laboratory of the U.S. National Bureau of Standards on his retirement in 1948 after over 40 years' service with the Bureau. He graduated at the George Washington University and obtained the Ph.D. degree from Princeton University in 1913. In 1932 his Alma Mater honoured him with the Sc.D. degree. Dr. Dellinger was an international figure in the world of wireless, especially in the field of propagation, and he had represented the U.S.A. at numerous conferences. He was the first chairman of the C.C.I.R. study group VI concerned with propagation, a position he held for many years.

Laurence B. Turner, M.A., Sc.D., M.I.E.E., a fellow of King's College, Cambridge, who died on January 28th aged 76, was at the Army Signals Experimental Station during the first world war and at the Admiralty Signals Establishment throughout the 1939-45 war. In the intervening years he was director of studies in engineering at King's College, Cambridge, and was closely associated with W. H. Eccles in the development of the Commonwealth chain of long-wave communication stations. After the second world war Dr. Turner returned to Cambridge for research work and in 1948 was appointed a University Reader.

Stephen Oswald Pearson, B.Sc., D.F.H., M.I.E.E., who will be remembered by many of our older readers as a frequent contributor to Wireless World in pre-war days, died on January 18th aged 67. Born in South Africa, he was educated at Faraday House Engineering College, London, where, after training with Metro-politan-Vickers, he stayed throughout his academic carecr. He became senior lecturer, head of electrical engineering section and superintendent of the electrical laboratories at the College.
C. H. Lamborn Edwards, A.M.I.E.E., the well-known operator of amateur station G8TL of Theydon Bois, Essex, died suddenly on January 31st at the age of 61. He had been a member of the council of the Radio Society of Great Britain for nearly 20 years and was chairman of the "mobile" committee of the committce of the Radio Amateur Emergency Network.

Masteradio trade name is being revived by G.E.C. and will be used for a range of television and sound radio receivers, radiograms and tape recorders. Masteradio Ltd. was acquired in 1960 by Radio \& Allied Industries (Sobell and McMichael) which is now part of the G.E.C. organization.

Peto Scott television receivers are to be marketed by Stella Radio \& Television Co. The servicing of Peto Scott sets will continue to be carried out by Amalgamated Electric Services Ltd., of Croydon.

Muirhead.-A record trading profit of $£ 752,253$ for the year ended last September, which was 73% more than the previous year, is recorded by Muirhead \& Co. The net profit, after taxation $(£ 389,812)$ and "retentions for subsidiaries," was $£ 259,791$.

AEI Automation Ltd. has been formed by Associated Electrical Industries Ltd. to concentrate the development and supply of industrial automation systems in a single company. A.E.I. has acquired Davy-Ashmore's interest in Steelworks Automation Ltd., hitherto a jointly owned company, which will now be amalgamated with AEI Automation. Headquarters are at Booths Hall, Knutsford, Cheshire.

Universal Capacitor Co. Ltd., of Swindon, has been acquired by the London Electrical Manufacturing Co. All enquiries should in future be sent to Bridges Place, Parsons Green Lane, London, S.W.6.

Derritron.-The names of five subsidiaries in the group have been changed to incorporate the word Derritron. New names, with the old name in brackets, are Derritron Research and Development Ltd. (Beme Research and Development), Derritron Ultrasonics Ltd. (Chapman Ultrasonics), Derritron Instruments Ltd. (Doran Instrument Company), Derritron Electronic Vibrators Ltd. (Electronic Vibrators), Derritron Transformers Ltd. (L.S.B. Components).

Television and sound distribution in the new Hilton Hotel, London, has been installed by British Relay Wireless Limited. The relay system, which serves every guest room, has provision for six sound channels and six vision channels. There is also a public address system and to facilitate the transmission of outside broadcasts from the hotel a microwave link to the Post Office Television Centre is installed on the roof.

Decca Radar announce their 13,000th marine radar order-for a new tanker of 68,000 -tons d.w. for the Tidemar Corporation of U.S.A. In 1962 they achieved a record number of 1,355 radar sales of which over 80% were exported.

A three language sound reproduction system used in conjunction with one film projector was devised by Williams' Cine \& P.A. Services, of London, S.E.23, for an international audience at Dusseldorf. Three synchronized sound tracks, in English, French and German, were fed into a Multitone induction transmitting system so that members of the audience equipped with small switchable receivers could hear the commentary of their choice.

Anglo-French Link.-A reciprocal marketing agreement has been concluded between G. \& E. Bradley Ltd., of London, and Société Ribet-Desjardins, of Montrouge (Seine). Ribet-Desjardins are leading French manufacturers of precision electronic measuring equipment, and their range of products is now available in the U.K. through G. \& E. Bradley.

Perdio, who have specialized in the manufacture of transistor portables, have acquired Electric Audio Reproducers, manufacturers of radiograms, record reproducers and tape recorders.

Raytheon.-Walmore Electronics Ltd. have been appointed by the Raytheon-Elsi organization as sole U.K. distributors of valves, microwave tubes, microwave components, semi-conductors and allied devices made by Raytheon in the U.S.A. and its subsidiaries, Machlett and Trans Sil Corp. The products of Ray-theon-Elsi in Europe are also included.

Vinylaz.-Baulma \& Co. Ltd., of 16 Berkeley Street, London, W.1, have been appointed by Société Belge de l'Azote et des Produits Chimiques du Marly, of Liège, Belgium, exclusive distributors for their range of Vinylaz unplasticized p.v.c. film and foil in the British Isles. Among its applications is the manufacture of sound recording tape.

Aero Electronics Ltd. are appointed the sole United Kingdom agents and distributors for Owen Laboratories, Inc. of Pasadena, Cal., manufacturers of semiconductor test sets.

Solid tantalum capacitors of J and N polar and nonpolar types are now being manufactured by the Kemet Division of Union Carbide Ltd. at their Aycliffe, Co. Durham, works. All capacitors are being made to the U.S. military specification number MIL-C-26655A.

OVERSEAS TRADE

Tactical control radar system for Australia's first sur-face-to-air guided missile unit, equipped with the Bristol/Ferranti Bloodhound, has been supplied by Decca. The complete system is built into a series of air transportable cabins.
Travelling-wave tubes for use on the 3,300-mile Mon-treal-Vancouver microwave communications link of the Canadian Pacific and Canadian National Railways have been ordered from Mullards. The t.w.ts., valued at $\$ 0.5 \mathrm{M}$, will be used in R.C.A. Victor equipment.
O.B. vehicles for the television service of Radiodiffusion Television Belge are being supplied by Marconi's through their Belgian agents Société Anonyme Internationale de Télégraphie sans Fil. There will be four production vehicles containing the control equipment and monitors, and four technical vehicles each with a $4 \frac{1}{2}$ in camera and associated equipment. Both 625 and 819 line standards are employed.

Storm warning radar, supplied by Cossor Electronics and mounted 2,000ft above sea level on Saddle Mountain in North Queensland, is being used by the Australian Bureau of Meteorology. The equipment is radio controlled from Cairns Airport seven miles away and the radar information is transmitted to the airport by a microwave link.

Colour television projection equipment to the value of $£ 6,000$ is being supplied by Rank Cintel for the University Medical College, Tokyo.

Television studio equipment, comprising cameras, sound and vision mixers, pulse generators and teleciné units, has been supplied for the Brazzaville station by Pye T.V.T. Ltd. in conjunction with Société Francais des Techniques Pye.

With this issue, Wireless World embarks on a new series of articles on the construction and use of electronic equipment. The intention is to describe, in the first few articles, a group of measuring instruments (signal generators, voltmeters, oscillators, etc.) so that the reader will be well supplied with test gear before starting work on other projects to be described that may appeal to him.
Throughout the series we will have in mind the fact that the average home constructor does not have extensive workshop facilities, and will design for construction by simple hand tools only. Cost will be kept down to the lowest possible figure, while retaining high performance, using standard commercial components.

Wireless World OSCILLOSCOPE

THE oscilloscope has long passed the stage at which it was used to display only the shape of voltage and current waveforms, and even the least sophisticated instruments now make some effort to provide voltage and time measurement. Any instrument designed for the home constructor must therefore afford these facilities, and possess as good a general performance as cost will allow. The resulting equipment, for the newcomer to the art, can be a somewhat daunting array of knobs, dials and excrescences, and it is felt that a short discussion of fundamentals will be useful. Techniques in general will be described, with particular reference to those used in our design. Next month's article will be devoted to constructional details of the oscilloscope.

Principles

The essentials of an oscilloscope can be reduced to three functions, shown in Fig. 1. The y amplifier is required to deflect the cathode-ray tube (c.r.t.) trace in the vertical direction, and is so called because the display corresponds to an ordinary x / y graph, and the y axis is usually the vertical one. The timebase or sweep generator deflects the trace in the x,
horizontal or time direction, and any amplifiers concerned with it are called x amplifiers. The third essential is the c.r.t. itself. This is a smaller, somewhat modified version of the one in the "telly," and although the spot traces out only one line instead of 405 or more, the programmes are frequently much more entertaining. As the spot progresses across the tube from left to right under the influence of the timebase generator, it is subject to a voltage from the y amplifier which moves it up and down, so that the display, Fig. 2, is a voltage/ time graph. The average instrument is far from being as simple as this, but these three are basic, and the rest are refinements.

Vertical Amplifiers

Having stripped our oscilloscope down to its bare bones, we can now begin to put the flesh back again, and, as the first part the signal encounters is the y amplifier, this is where we can start. The simple function of amplifying the y signal enough to operate the c.r.t. is attended with so many snares and delusions for the unwary, that the performance of this part of the circuit is usually the limiting factor in the design. Many different forms of ampli-

A
Fig. 1. Basic functions of general purpose oscilloscope.

A
Fig. 5. Method of specifying risetime.

(a)

Fig. 8. A.-c. coupling.

Fig. 3. Stray capacitance is disposed in parallel with the load resistors, assuming the impedance of the power supply is negligible.

Fig. 4. At l.f., anode signal voltage is effectively developed across R_{a} alone and is $l_{\mathrm{a}} Z$. At h.f., C_{s} becomes comparable with R_{2}.

(b)

Fig. 6. Shunt (a) and series (b) h.f. compensation.

Fig. 7. Effect of carrying high-frequency compensation too far.

fier exist, and it is partly for this reason that both y amplifier and timebase generator have, in the Wireless World design in common with many others, been made replaceable, plug-in units. The two functions can therefore be suited to a particular purpose and made as simple or as elaborate as required, and a whole series of units will be described from time to time.

A fairly common order of sensitivity is $50 \mathrm{mV} / \mathrm{cm}$. This means that 50 mV applied to the input will be sufficient to deflect the spot one centimetre. C.r.t.'s need between 10 and 50 V for this deflection, so that the amplifier gain required is between 200 and 1,000 . This may not seem an outstanding amount of amplification, until it is realized that it must be the same at all frequencies from a few cycles per second to upwards of $10 \mathrm{Mc} / \mathrm{s}$. A response extending to zero frequency is also found very useful at times. Amplifiers exist which will handle frequencies up to $2,000 \mathrm{Mc} / \mathrm{s}$, but these do not bear much relation to the kind we shall be concerned with, and they use entirely different techniques. The ordinary RC-coupled voltage amplifier works fairly happily up to about $50 \mathrm{Mc} / \mathrm{s}$, with a bit of trickery, but above this frequency, different methods are employed which use more valves, are difficult and expensive, and will be left severely alone.
H.f. Compensation: The biggest single headache in high-frequency amplifier design is capacitance, both intended and accidental. It curtails both ends of the frequency-response characteristic and is to be avoided as much as possible. In Fig. 3, C s represents the total stray capacitance from the anode of one stage of the amplifier to earth. This total takes in the internal capacitance of the valve, the capacitance of the valveholder, the strays of the wiring, and the input capacitance of the next valve or load, and probably amounts to between 15 pF and 25 pF . The gain from the stage is $g_{n} Z$, where Z is the impedance of the R_{c} and C_{s} combination, and at low frequencies this is simply $g_{m} \mathrm{R}_{\alpha}$. As the signal frequency increases, the reactance of C_{s}, which is $1 / 2 \pi f C_{s}$, begins to become comparable with the resistance $\mathrm{R}_{\|}$, and as C_{s} is effectively in parallel with $\mathrm{R}_{\theta}, g_{i n} \mathrm{Z}$ decreases. At the point where $1 / 2 \pi f \mathrm{C}_{s}=\mathrm{R}_{n}$, the gain is only 70% of that at low frequencies, as is shown by Fig. 4. This point is the one most often quoted as defining the bandwidth of the amplifier, and as a decrease in gain of 30% is also approximately -3 dB , it is known as the 3 dB point. With an R_{a} of $10 \mathrm{k} \Omega$ and stray capacitance of 20 pF , the gain of a valve with $g_{m}=5$ will decrease from 50 at low frequencies to 35 at $800 \mathrm{kc} / \mathrm{s}$.

It may not be entirely clear why so much importance is placed on the reproduction of high frequencies, and a digression is therefore needed. Any waveform can be made up by a combination of many frequencies and amplitudes of harmonically related sine waves, and the faster a voltage changes from one value to another, the higher the component frequencies. Frequency response and the time taken for a voltage to change are roughly related by the expression $f t_{r}=0.4$, where f is the -3 dB point in Mc / s and t_{r} is the "rise-time" in $\mu \mathrm{sec}$ of the waveform shown in Fig. 5. The time is measured between 10% and 90% of the total voltage change. For instance, for a rise-time of $0.1 \mu \mathrm{sec}-$ not a particularly fast step-the amplifier bandwidth needed is $0.4 / 0.1=4 \mathrm{Mc} / \mathrm{s}$. . In
the present U.K. television transmissions, the, video channel contains frequencies up to $3 \mathrm{Mc} / \mathrm{s}$ while the 625 -line transmissions will have a component of $6 \mathrm{Mc} / \mathrm{s}$. To examine waveforms containing a $6 \mathrm{Mc} / \mathrm{s}$ component, the oscilloscope must have a much wider bandwidth, and $10 \mathrm{Mc} / \mathrm{s}$ is a reasonable compromise between precision and cost.

To return to our amplifier, there are several methods of postponing the effect of stray capacitance, two being indicated in Fig. 6. The operation of both depends on the use of inductance to compensate for the stray C and the circuits shown in Figs. 6(a) and 6(b) are known as shunt and series compensators respectively. In Fig. 6(a), the reactance of $\mathrm{L}-2 \pi f \mathrm{~L}$-is made to balance that of C_{s}, and as X_{Cs} falls, X_{L} rises and tends to keep $g_{m} \mathrm{Z}$ constant. This process can only be effective over a limited range of frequencies, and if L is made too large, L and C_{8}, which form a parallel-tuned circuit, turn the circuit into a tuned amplifier and the result is a peak in the frequency response curve. If the signal has fast step, the display will take the form of Fig. 7, where the rise is continued into an overshoot, and if the effect is very bad, a train of damped oscilla-tions-a ring-will follow each rise or fall. The circuit shown in Fig. 6(b) uses L to separate the components of C_{s}, which are the output capacitance of V1 and the input capacitance of V2. The same remarks apply as to Fig. 6(a), but the improvement in frequency response is better. Both these circuits will be discussed more precisely and in more detail when the practical amplifiers are described. For audio and most broadcast radio work, a simple RC-coupled amplifier is sufficient.
L.f. Compensation: At the low-frequency end of the characteristic we are once more in trouble with capacitance, but this time the problem is to get enough. The coupling capacitor C, in Fig. 8, forms a potential divider with R_{g} as the bottom arm, and at the frequency where the reactance of $\mathrm{C}-1 / 2 \pi \mathrm{fC}-$ is equal to R_{g}, we are once again 30% down or -3 dB . Taking the average value of grid resistor as $470 \mathrm{k} \Omega$, a $0.1 \mu \mathrm{~F}$ capacitor will give this amount of reactance at $3.4 \mathrm{c} / \mathrm{s}$. From the point of view of waveforms, a square wave passing through an RC-coupled amplifier takes the form of Fig. 9 and looks more or less weary, depending on the product CR_{g}. The sag from A to B is roughly calculated from the expression t / CR_{g} where t is the time from A to B, or half a cycle. For the components assumed, a $50 \mathrm{c} / \mathrm{s}$ square wave would sag by 20%, and each successive stage makes matters worse. Clearly, some form of compensation is needed, one method being shown in Fig. 10. At high frequencies, R_{1} is effectively short-circuited to the signal by C_{1} but at low frequencies the anode load becomes R_{2} in series with C_{1} and R_{1} in parallel, and the gain remains constant to a much lower frequency. For best results, $\mathrm{C}_{1} \mathrm{R}_{1}=\mathrm{C}_{2} \mathrm{R}_{3}$. Several other circuits are used, and will be discussed in the appropriate article.

A response extending to zero frequency or, as the specification writers have it, d.c., is useful in several respects, and the difficulty of obtaining a stable amplifier is often worth while. The chief trouble is the tendency of directly-coupled amplifiers to change their characteristics slowly with variations in temperature, h.t. and 1.t. voltages. Many are the circuit configurations that have been employed to reduce this trouble, but modern amplifiers follow a fairly
standard pattern. Z.f. amplifiers are mainly used for pulse and waveform techniques, where it is required to know the d.c. level of an a.c. signal. Perhaps this is better described by a diagram, and Fig. 11 is the relevant one. The circuit is a familiar one, the Miller transitron, the electrode voltages being shown at (a) and (b). With a directly-coupled amplifier, the waveforms are displayed in the correct position in relation to h.t. and earth, while in the a.c.-coupled position, they are symmetrically disposed about the zero line. That this can be very convenient is clear, and most modern laboratory instruments possess z.f. amplifiers.
Measurement: As has already been mentioned, the engineer needs information not only on the shape of a signal, but also on the amplitude and time. Three methods of voltage measurement are in common use, all having their pro's and con's and all used in precision equipment. The first type of calibration used is still a perfectly good system and is used in the No. 1 amplifier in the "W.W." instrument. It consists of a known voltage, usually a sine or square wave, applied to the input of the amplifier. The voltage is adjusted by a calibrated control until it occupies the same amount of the c.r.t. screen as the signal, and the voltage read off the scale. A second method relies to a greater extent on the gain stability of the amplifier in that, at each setting of the input attenuator, the sensitivity is set at a given number of divisions on the screen graticule. Any adjustment of the gain control invalidates the measurement, but it is always possible to obtain a conveniently-sized display if the attenuator steps are correctly chosen. The third method is only possible with directly-coupled differential amplifiers. A direct voltage equal to the signal amplitude is applied to the second grid of a longtailed pair amplifier, the deflection reduced to zero and the amount of direct voltage needed to do this read from the scale of a calibrated potentiometer.

The No. 1 amplifier to be described is essentially a low-frequency design, suitable for audio and radio work, and consists of an a.c.-coupled pentode stage followed by a long-tailed pair phase-spiltter to feed the c.r.t. deflection plates. Calibration is of the type shown in Fig. 12(a). It was not felt that in this first unit, any purpose would be served by using direct-coupling with its inevitable extra cost, and signal-injection calibration is rather cheaper to provide than the alternatives, with the advantage that calibration holds with adjustment of the gain control.

So much for the y deflection system. More detailed descriptions will follow when the designs themselves are presented. We must now concern ourselves with the x, or horizontal spot-deflection units, and will start with the time-base generator.

Sweep Generator

Timebase, or sweep-producing circuits are probably responsible for more reputations, of both kinds, than any other single branch of electronics, with the possible exception of sine-wave oscillators. This is all the more strange because every last one of them depends on the same effect-the slow charge or discharge of a capacitor through a resistor, and a rapid recovery. As can be seen from Fig. 2, the voltage waveform required to give the constantspeed scan of the spot across the c.r.t. screen and a rapid "flyback" turns out to be a triangular shape,
or sawtooth. Circuits for producing this shape of wave are many, varying from the simple, highlycurved, free-running devices to the high-precision, triggered generators used in laboratory instruments. The basic principle of them all is shown in Fig. 13, and the No. 1 unit for our oscilloscope uses a modified version. Capacitor C charges up exponentially through R, and when the voltage across it reaches the point at which the discharger, D , comes into operation, the capacitor discharges through it rapidly, the resistance of the discharge circuit being much smaller than R. The sawtooth wave is produced across the capacitor C and the frequency can be varied by adjustment of C or R . Refinements of this circuit are mainly concerned with improvements to the discharger and with attempts to make the voltage rise during the charge period more nearly linear. D can take many forms, the simplest being a gas tube, which approximates to a diode filled with an inert gas such as neon; a voltage across the electrodes ionizes the gas and provides a low-resistance path. The point at which the gas ionizes is 20 to 30 volts higher than the voltage at which the tube extinguished, and the sawtooth is of this amplitude. It is usually required that a pulse is obtained from the sweep generator during the flyback period which can be used to suppress the c.r.t. spot at this time and avoid the confusion of two traces going in opposite directions. A circuit which provides this is shown in Fig. 14. The discharge circuit is formed by two triodes connected in the Schmitt trigger configuration, which, as far as the charging circuit CR is concerned, is the same as a gas tube. During the flyback however, pulses are produced at the two anodes which can be applied to the cathode or grid of the c.r.t. to suppress the spot. This is the form of timebase we shall use in the first unit and it will be described in greater detail in a future article.
Linearity: Perhaps a short discussion of some of the principles of linearization would not be out of place, as we shall make use of some of them at a later stage. The basic fact to get clear is that to obtain a perfectly linear change of voltage across a capacitor, the current flowing into it must be constant. No means have yet been found of conforming to this ideal completely, but some methods produce a sweep which does not measurably depart from linearity. The type of generator described so far relies on a high-value resistor to approximate to a constant-current source, and unless only a small part of the charging curve is used, the curvature is intolerable. A better (and more expensive) method is to make use of the fact that, above about 50 V , a pentode presents a very high a.c. impedance, which is seen from a glance at the $\mathrm{I}_{a}-\mathrm{V}_{n}$ curves; a large change of V_{a} makes almost no difference to the anode current. If, therefore, a pentode is used as a charging resistor, the rise in voltage is almost linear.
Miller Transitron: The most common principle used in modern timebase generators is the use of a feedback amplifier to linearize the voltage sweep. Fig. 15 shows the general arrangement. As the voltage across the capacitor increases, the voltage across R falls, and this fall is amplified. The output voltage of the amplifier increases and is fed in series with the CR circuit to keep the charging current constant. A practical circuit is shown in Fig. 11 and is known as the Miller transitron, the circuit

Fig. 11. A directi-coupled amplifier produces a display as in (a), while a.c. coupling (b) gives no information on level.

Fig. 10. L.f. compensation components, C_{1} and R_{1}.

(b)

Fig. 12. The two colibration systems we shall use.

(a)

Fig. 13. Basic sawtooth or triangularwave generator.

Fig. 14. Schmitt trigger sweep generator giving pulse outputs for fly-back blanking.

also performing the function of a discharger. C and R in Fig. 14 correspond to C and R in Fig. 11. If the gain of the amplifier is high, it can be assumed that the grid voltage remains almost constant for a large charge in anode voltage, and if the grid voltage stays put, so must the current in R. The capacitor discharges through R with, therefore, constant current and, as we have seen, this gives a linear change. The linear fall in anode voltage continues until the voltage is so low that the screen becomes a serious competitor and begins to take more than its normal share of cathode current. The screen voltage falls, and the change is fed to the suppressor grid via $\mathrm{C}_{2} \mathrm{R}_{2}$, a differentiating circuit. The suppressor being driven negative, anode current is decreased, more cathode current goes to the screen, the fall in screen voltage is passed to the suppressor . . . and so on. The action is a rapid switching sequence and the result is a complete absence of anode current, heavy screen current and a suppressor voltage which is returning to its "cut on " value in a time governed by the product $\mathrm{C}_{2} \mathrm{R}_{2}$. The anode voltage returns to $\mathrm{V}_{h t}$ in a time $\mathrm{C}_{1} \mathrm{R}_{c}$ and the whole thing starts again. We therefore have a linear, repetitive sweep, the frequency of which is governed by the value of C_{1}, R_{1} and the voltage to which R_{1} is returned.
Bootstrap: A similar principle is employed in the "bootstrap " circuit shown in Fig. 16. This is also a feedback amplifier and, in fact, is almost identical, basicaily, to the Miller circuit. In this case, the capacitor C_{1} changes towards $\mathrm{V}_{h t}$ through R_{2} and the signal across C_{1} is applied to the cathode follower. The output across R_{3}, is fed to the " top" of R_{2}, so that the " aiming" voltage of C_{1} increases as the charge increases, tending to keep the current constant, and "pulling itself up by its own bootstraps." The circuit needs a separate discharger.

Refinements and combinations of these two circuits are responsible for the vast majority of oscilloscope timebases, variations being occasioned by the need for synchronizing and triggering by the y signal and external sources, and the difficulties of high-speed operation.
Synchronizing: The time the spot takes to complete one sweep across the c.r.t. must be variable to avoid a confusing jumble of traces. Fig. 17 shows what is meant by this. At (a) the time base does not take an integral number of cycles of the y signal to get across the screen, and therefore does not start at the same point on the y signal at each sweep. At (b) this does happen, and the timebase is said to be synchronized. This state of affairs can also be brought about by keeping the sweep speed constant and varying its repetition rate, as in (c) and (d). This method is used for triggered timebases (i.e., types that require a pulse to produce each sweep) and has the advantage that as the speed is constant, calibration is made much simpler. We will be using a timebase of this type in one of our later units. Sync and trigger pulses in our instrument, are obtained from the y signal by means of a Schmitt pulse forming stage. Either internal or external signals, positive-or negative-going, can be used, with a variable level control to adjust the point on the y waveform at which the sweep starts.
Time Measurement: As in voltage calibration, several equally good methods of time determination are in common use, and we will use at least two of them in our timebases. Possibly the most accurate
way of calibrating the timebase is to impress upon it a series of time markers, either as vertical deflections from the y amplifier or as bright or dark spots by means of intensity-modulating the c.r.t. itself. This method never seems to catch on to any marked extent, although the Cossor 1076 60Mc/s oscilloscope uses it successfully. The modulating signal is often obtained by exciting a high-Q tuned circuit, or even a crystal, by means of a pulse or step from the sweep generator, and applying the train of oscillations to the grid of the c.r.t. A continuous-wave oscillator cannot be used, because the modulating signal must be phase-related to the sweep so that the spots come in the same place every time. Other methods depend on the linearity and constancy of amplitude of the sweep voltage and/or the x amplifier. For instance, the Marconi TF1330 series which uses the type of sweep in Fig. 17(c) and (d) the sweep amplitude is inherently constant, as is the sweep time for a given range, so that, assuming linearity of sweep, the relationship between sweep voltage and time is constant. The calibration can then take the form of a calibrated shift control at the input to the x amplifier, with the advantage that calibration holds for any gain adjustment of the amplifier, and even if it is not linear. A third method of measurement is to calibrate the sweep time control in time per division of the c.r.t. graticule. This is more inconvenient than the others in that it can involve a certain amount of mental arithmetic, but it is simple to provide, and was considered suitable for our first unit.

Power Supplies

The stability and measurement accuracy of an instrument is dependent to a large extent on the constancy of its power supplies, and in the " $W . W$." oscilloscope, both positive and negative supplies are stabilized. The extra high tension (e.h.t.) supplies for the c.r.t. are derived from an oscillator. This has the twin advantages that the ripple frequency is much higher, and therefore easier to smooth, and that the output impedance is very high, which means that if one touches the output rail accidentally, no damage to either life or limb is caused. With "Battersea power station on the other end" in a mains-derived supply, one cannot be quite so lighthearted about three or four thousand volts. The blanking pulse is applied to the c.r.t. grid via a "floating" winding on the e.h.t. transformer, so avoiding the necessity for a blocking capacitor, with its inevitable differentiation.

Cathode-Ray Tube

The tube we have used is the Mullard DN7-78 3-in flat faced instrument tube which has a post-deflection acceleration ring operated at 3 kV . The negative e.h.t. required is of the order of 750 V . Deflection sensitivity in the y direction is 9 volts per centimetre at 750 V cathode voltage, which makes amplifier design relatively simple.

Applications

Having built the oscilloscope, the uses to which it can be put may not appear entirely obvious, and a further article on this subject is necessary. This will appear after the constructional details have been given, and will describe the operation of the instrument in the testing of audio and radio equipment, and television receivers.

"AEROSPACE" TELEMETRY ${ }_{-a}$ short review

IT is generally accepted that the task facing the designer of "aerospace" telemetry is much more formidable than that encountered with other comparable communication systems. Not only has he to endeavour to produce an utterly reliable system meeting definite standards of accuracy but also this has to be achieved within severe design "constraints," particularly the environmental and other limitations imposed by the rocket or satellite concerned. In relation to these conditions there are three major areas in which improvements in system performance can be sought. The first two of these divisions are associated with the space vehicle itself, and are the bandwidth (fixed basically by the " amount" of measurement intelligence required to be transmitted), and the effective radiated power from the vehicle. The third division embraces the ground receiving installation in terms of its efficiency compounded from the "goodness" of the aerial as a collector of radio energy, and the overall noise figure of the receiving system, usually expressed as an equivalent noise temperature.
With the intensive research and development programmes being undertaken in this field at the present time, demands tend to grow at an ever-increasing rate for more telemetry data channels, each with a wider frequency response. To meet this demand means that the signal bandwidth becomes greater, i.e., that the signal/noise ratio of the whole telemetry link is degraded because of the proportional increase in noise with bandwidth. Clearly, if accepted, this change in the fundamental system parameters must be offset by an improvement in signal/noise ratio obtained elsewhere. It will be realized that little can be done with regard to effective radiated power--the power supplied to the transmitter is strictly limited by the permissible weight and the volume available for its source, while vehicle aerial systems cannot be given high efficiency as radiators (e.g., they must be made isotropic rather than directional and must be kept physically small).

In these circumstances it becomes necessary to concentrate largely on the ground receiving equipment. Improvement in signal input to the receiver can be achieved by increasing the "aperture" of the aerial and with it directivity and hence its gain. A price must be paid for this increased gain in that relatively complex aerial "steering" equipment must be provided to follow the moving transmitter. The other major factor, noise, can be reduced by introducing new techniques such as parametric amplification in the first stage of the receiver, but again complication, and consequently expense, is entailed.
At a recent I.E.E. conference on Satellite Communication it became evident that the trends outlined above were being followed closely both in the satellite telemetry systems themselves and in the corresponding "service" communication links. As an outstanding example of this common ground, it was clear that these communication links had been designed on the basis of the maximum return being obtainable from the ground receiving equipment. Thus at the British station at Goonhilly Downs, Cornwall, and at the U.S. station at Andover, Maine, extremely large aerials with precision steering systems have been installed, together with special low-noise amplifiers in the first stages of the
receivers. The two reflector apertures are $5,700 \mathrm{sq} \mathrm{ft}$ and $3,600 \mathrm{sq} \mathrm{ft}$ for Goonhilly and Andover respectively, but it appears that the lower aerial gain implied for the latter is counterbalanced by a rather better overall receiving system noise performance.

At this point it should be noted that the operating frequency, $4,170 \mathrm{Mc} / \mathrm{s}$, for the communication link is more than an order up on the $136 \mathrm{Mc} / \mathrm{s}$ allocated for the telemetry senders used in the Telstar and Relay satellites. However, it can be taken for radio telemetry as a whole that a move to much higher frequencies must be regarded as inevitable. A number of factors contribute to this result, of which one is the availability of frequencies as determined by international agreement, another is the tendency already mentioned, for signal bandwidths to increase and thus to necessitate a corresponding increase in carrier frequency. Consequently it is a reasonable assumption that the techniques developed for the higher frequencies will find application in the telemetry field in the not too distant future.

In this connection the following points should be made with regard to the difference between the rocket and the satellite applications. This difference is probably greatest for the paths followed by the two types of vehicle and consequently for the tracking methods which can be adopted in each case. Thus the orbit of the satellite is completely predictable for each "pass"; whereas, although a rocket is fired on a planned trajectory, it cannot be expected to follow an exact velocity programme because of variations in motor specific impulse, etc., between individual missiles. It is therefore common practice for satellite tracking to be carried out under the control of a digitally coded tape which has been prepared from predicted orbital data. Such data is made available on a world-wide basis for Telstar by the Goddard Space Flight Center, Greenbelt, Maryland. Provision is usually made for auto-following in the satellite case, but even if it is used the "putting-on" problem is rendered extemely small by prediction. On the other hand, it will be realized that the acquisition of a missile is much more difficult, and it may be that two aerial systems will have to be used at the higher fre-quencies-a "coarse" one for short range working, and a narrow beam "fine" one to take over in the autofollow mode for the longer ranges. Furthermore, it may well be that the complexity of the liquid-helium-cooled travelling-wave maser amplifiers in particular, employed at both Goonhilly and Andover, will rule them out for use at "up-range" receiving stations for rockets. This may also be the case at base stations purely for economic reasons.

Finally it is of interest to note that pulse code modulation is used in both the Telstar and Relay telemetry systems. There is a difference between them, however, with regard to the two-stage modulation method which is almost invariably adopted for such systems. Thus for Telstar the modulation sequence is f.m.-p.c.m., while for Relay it is p.c.m.-p.m.

A further point of interest is that the frequency modulation in the Telstar scheme takes place as an a.c. frequency change of $3 \mathrm{kc} / \mathrm{s}$; and that this increment produces the alternation between the equivalents of " 0 " and " 1 " or "off" and "on" in the modulated, and hence coded, waveform. R. E. Y.

PHYSICAL SOCIETY EXHIBITION 1963

Heralded by cold winds and frozen roads, the 1963 Institute of Physics and Physical Society Exhibition opened in the Horticultural Halls, Westminster. Restrictions on the number of exhibits per stand and the provision of wider passage ways eased to a certain extent movement in the halls. Afternoon visitors, however, were still too numerous for comfort and ease of inspection of the exhibits.
Prominent among the exhibits were test and measuring instruments, medical developments, industrial control and components. Worthy of especial mention were the entries in the Craftsmanship competition in scientific instruments and apparatus. The items on show in the vestibule of the New Hall more than justified their prominent position.

TEST AND MEASUREMENT

A tracer for valve and transistor characteristics with.several interesting features has been developed for the use of staff and students in the electronic laboratories of the Royal Mili-tary College of Science. The equipment enables the display of a single characteristic curve or a family of four such curves. Using the conventional form of display these can be calibrated enabling quantitative information to be obtained.: In the case of valves, r_{a} and $g m$ and in the case of transistors, slope resistance and " β " are easily derived. Up to seven transistors may be attached to the tracer and the display switched from one to the other enabling rapid comparison of characteristics. The voltage and current markers are calibrated by comparison with a "setin" d.c. supply which is measured on a meter. Tetrode and pentode valves can have suitable potentials applied to their second and third grids, the potential being measured on the same meter. Two cathode ray tubes, one for direct viewing and the other for photographic purposes, are present on the equipment. By making several exposures on the same plate curves of one valve under various conditions or different valves or transistors may be superimposed on the same photograph. The mains supply at $50 \mathrm{c} / \mathrm{s}$ operates a squarer stage followed by two binary stages providing eight time intervals in one period of 80 milliseconds or a p.r.f.
of $12 \frac{1}{2} \mathrm{c} / \mathrm{s}$. Four of these intervals are used to display the characteristic curves and the other four the axes and markers. The squarer and binary stages are also used to initiate the negative step generator which supplies negative known amplitude steps to the valve or transistor base. All the " X " information is applied to a combining circuit, the " Y " information is applied to another combining circuit. The output of these circuits is applied to the display amplifiers which have push-pull outputs for the deflecting plates and provide expansion and shift of the display without disturbing the calibration. Each circuit function is mounted on a separate panel. The supplies are taken to each unit by means of a flexible lead and 6-pole plug, the signals by single coloured leads and single-pole plugs. This arrangement enables signal paths to be easily traced, functioning of the - units checked and modifications to be carried out.
The dearth of pulse generators at the 1962 exhibition was more than made up for by the introduction of three new ones at this year's show.
An extremely flexible and fully transistorized pulse generator was shown on the Venner Electronics Ltd. stand. Normal controls associated with pulse generators such as frequency, pulse width, delay of prepulse, etc., are supplemented by controls for carrying the rise and fall

Royal Military College of Science valve and transistor characteristic tracer.
times of the leading and trailing edges. Amplitude controls, d.c. level control and polarity reverse switches are included. The maximum pulse amplitude is ten volts and the output impedance is approximately 50 ohms.
Versatility still being the keyword the pulse generator Type PG 53 introduced by Nagard makes use of plug-in units. Basically the generator consists of power supplies and four units. Of these, one is the trigger source unit; the other three are delayed pulse generators. The trigger source unit initiates pulses produced by the delayed pulse generators. This unit may also be used as a square-wave generator. It can be triggered externally by any type of signal and polarity from 0 to 25 $\mathrm{Mc} / \mathrm{s}(20 \mathrm{mV}$ r.m.s. sine-wave, 10 mV P-P pulse), the triggering level being adjustable. Internally, triggering is controlled by a rate generator or clock in three modes; normal mode100 ms to 100 ns continuously variable and calibrated; synchronized mode-synchronizes without adjustment to sine-wave input of less than 2 V from $5 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{Mc} / \mathrm{s}$; gated mode-positive 2 V pulses causes clock to run for period of pulse. A square-wave output is available at the clock frequency ($10 \mathrm{c} / \mathrm{s}-10 \mathrm{Mc} / \mathrm{s}$) continuously variable and calibrated,

Venner variable rise-time pulse generator.

Levell Electronics oscillator Type TG66 A.

$80 \mu \mathrm{~V}$ to 2 V amplitude. The rise time is approximately 3 ns . A wide variety of high-speed complex waveforms are possible by modulation of the squarewave output using the delayed pulse generators singly or in combination. A pre-pulse output is available having adjustable polarity and a pulse width of 20 ns . The delayed pulse generators all have controllable delay from this pre-pulse using the main output as a trigger pulse. All three d.p.g. units are triggered by the trigger source unit and have calibrated delays and main pulse widths. The three outputs may be used separately or mixed without loss of calibration accuracy.
A pulse produced by discharging a cable delay line with a mercury relay mounted coaxially for matching into 75 ohms is used as the basis of the E.M.I. pulse generator Type 2. This generator produces pulses of various widths with rise times of less than 0.5 ns . . The pulse amplitude is continuously variable from 0 to 150 V positive or negative. Three internal cables are provided giving pulse widths of 4,50 and 100 ns . An external cable may be used to produce pulses of any required width. The relay gives a p.r.f. in excess of 300 p.p.s. It can produce a single pulse or a continuous train.

A wide-band RC oscillator using ten basic components, of which the only two capacitors are those required for frequency determination, was shown by the Admiralty Surface

Weapons Establishment. This oscillator is a directly-coupled current-fed Wien bridge type. Equal resistances and reactances are chosen in the fre-quency-sensitive bridge arms; a current gain of 3 is thus required to maintain oscillation. This gain is determined by the ratio of two resistors; one, a thermistor, is used to give amplitude stabilization despite possible minor changes in the gain requirement over the working frequency. Switching capacitors giving steps of $10: 1$ control frequencies Fine frequency control is achieved by switching resistors in discrete steps but this system can be replaced by a continuously-variable 2-gang control of high linearity. The oscillator has a frequency rate of $16 \mathrm{c} / \mathrm{s}$ to $4 \mathrm{Mc} / \mathrm{s}$.

Another transistor oscillator, the Levell Type TG 66A, covering a frequency range from $0.2 \mathrm{c} / \mathrm{s}$ to 1.22 Mc / s was introduced at the exhibition. Frequency selection is made by four in-line additive decade controls and a five-position multiplier switch. The last control is continuously variable so that any frequency may be selected with a discrimination better than $\pm 0.05 \%$ above $10 \mathrm{c} / \mathrm{s}$ and better than $\pm 0.005 \mathrm{c} / \mathrm{s}$ below $10 \mathrm{c} / \mathrm{s}$. Frequency stability in terms of ambient temperature change is better than $\pm 0.03 \%$ per ${ }^{\circ} \mathrm{C}$. An unusual feature is that the currentfed dual of the usual Wien is not preferred. The high impedance necessary is obtained from a superalpha pair.

A d.c. Wheatstone bridge incorporting a number of new features designed for measurement of twoterminal resistors ranging from 0.1 ohm to 100 megohms was exhibited by the Cambridge Instrument Co. Ltd. The accuracy of adjustment of this instrument is to within $\pm 0.005 \%$. The bridge fitted with ratio arms consisting of two sets of four coils giving values of 10,100 , 1,000 and 10,000 ohms each provides seven bridge ratios from $\times 0.001$ to $\times 1,000$. The two sets of coils are controlled by separate switches and are so arranged that when the instrument is used as an equal-ratio bridge the ratio coils can be interchanged and intercompared. When used as an unequal-ratio bridge any of the coils can be used to establish the ratio. A guard circuit provides a means of eliminating errors due to leakage when using higher resistance ratios. In order to determine whether or not leakage errors are present this circuit can be switched out at will. In addition to conventional battery reversing and battery series resistance controls the bridge is fitted with a means of balancing out lead resistance. This is done by three cascaded adjustable resistors of relatively low accuracy of adjustment which are connected in series with the measuring arm decades. It effectively subtracts the lead resistance from the main measurement enabling the true value of the resistor under test to be read directly.

Low, switch resistance, small contact resistance variation and negligible maintenance were emphasized in the W. G. Pye Five Dial Wheatstone Bridge. This bridge was built around their Type 6001 low resistance precision instrument switches. These switches are characterized by contact resistance variation of less than $\pm 20 \mu \Omega$. The five-dial standard gives resistance in decades of $1,000,100,10,1$ and 0.1 ; the ratio
arms consist of $1,000,100,10$ and 1Ω resistors. Operating keys are provided for battery and initial and final galvanometer sensitivity.

The switch demonstrated with the bridge on show was developed for multiway switching applications. Basically a hundred-way switch; fewer ways can be provided on request.

The X-band solid state . source demonstrated by Microwave Associates Ltd., employed silicon varactor diodes. A v.h.f. oscillator, crystal controlled, followed by a transistor power amplifier and varactor multiplier stages may be adjusted to give an output at any desired microwave frequency. A stability of 1 part in 10^{7} may be attained. The fixed frequency unit as shown gave an output of 10 mW at 8.2 Gc / s. A d.c. power supply of 12 V at 200 mA was required. The overall size of the unit, less power supply, was $6 \mathrm{in} \times 4 \frac{1}{2} \mathrm{in} \times 4 \mathrm{in}$.

A microwave modulator designed to operate within the frequency range $2.5 \mathrm{Gc} / \mathrm{s}-7.5 \mathrm{Gc} / \mathrm{s}$ without tuning shown by the Mullard Research Laboratories can be applied to low-level microwave power control.

The modulator employs a pair of variable resistance diodes and a 3 dB directional coupler. The incident power from the driver stage is transmitted through the coupler only when a pair of similar terminating diodes are biased to either high or low resistance condition. If the diodes are biased so that their resistance equals the output impedance of the coupler the incident power is absorbed in the load formed by the diodes. The device is thus matched to the source and load in all operating conditions. The diodes used in the modulator are junction diodes made up from a sandwich of p-type, instrinsic and n-type semiconductor material.

INDUSTRIAL ELECTRONICS

Many methods are available for the recording of electrical outputs from transducers used in industrial monitoring and control. The main requirement is that the information may be conveniently stored for subsequent investigation and analysis. At one time the paper strip with pen tracings reigned supreme. The introduction of magnetic tape shows an improvement over paper charts in that the recorded information can be fed back directly into simulators, analogue computers, etc. When more than one signal is recorded simultaneously, the correct synchronization one to another can be
maintained during reproduction. This facility allows a time scale to be introduced to a recording. The Fenlow 2-channel tape recorder Type S.T.R. provides in the same unit, facilities for recording and reproducing on two channels signals between -1 and +1 volt from 0 to $100 \mathrm{c} / \mathrm{s}$. The recorder uses $\frac{1}{4}$ inch magnetic tape and an uninterrupted running time of 45 minutes on standard reels is possible. Use of oversize reels increases the time to 1 hour. Silicon transistors are used throughout. On each channel an overload signal flashes repetitively whenever the applied signal ex-
ceeds the input limits. A movingcoil meter on each channel indicates presence of carrier during record or playback. The reproduced signals emerge at the output socket at unity gain with' respect to the recorded signals. Phase distortion is held to less than $\pm 2^{\circ}$.

The sensitivity of a transformer ratio arm bridge to small changes of resistance is well known. This used in conjunction with an a.f. oscillator, amplifier and a phase-sensitive detector enables an extremely sensitive control system to be developed. Hatfield Instruments controller Type LE460 is based on this combination. Sensitive elements of either sign placed in one or both arms enable a differential to be determined to a sensitivity of 0.02% when referred to a bridge arm resistance of 250 ohms. When this instrument is used as a temperature controller it is fitted with a standard adjustable arm on one side of the bridge. Terminals for connection to the external sensing element form the other arm. Sensing elements suitable for this arrangement are platinum wire resistances or thermistor devices depending on whether positive or negative signs are required. When the bridge is unbalanced by a change of resistance in the control element a signal is fed to the input of the amplifier and then to the phase detector. When the bridge is unbalanced in one direction the output from the detector is zero and increases proportionately to the unbalance in the other direction. It is possible to select on which side of balance the control signal is obtained thereby enabling proportional control uses.

Temperature control by thermocouple is by far the more common

Fenlow 2-channel tape recorder.

G. V. Planer thermo-compression bonder.

moved in both horizontal and vertical planes. A wire feed appliance in conjunction with a micro-manipulator is used for the advancement and positioning of the wire or metal strip to be bonded. Designed to accept standard spools and wires between 0.005 in and 0.01 in diameter the wire feed mechanism has provision for advance and reverse wire feed directions. A wire cutter is mounted at the nozzle of the wire feed channel. A binocular "zoom" microscope with continuously variable magnification and adjustable illumination is incorporated.
The measurement of an a.c. voltage in the presence of other voltages of higher potentials and differing frequencies has always presented a problem when ease of measurement and portability of test equipment were the main considerations. The Avo Frequency Selective Signal Voltmeter was designed with these considerations in mind. The instrument demonstrated at the exhibition was developed for the measurement of voltages used in railway track signalling systems. Three parallel-T-derived networks form the filtering circuits. In this case one of the networks rejects $50 \mathrm{c} / \mathrm{s}$ interference of up to 100 V r.m.s. The others reject interference at 100 and $150 \mathrm{c} / \mathrm{s}$. All three networks allow free passage to low level signals of the order of IV r.m.s. at frequencies of 75 and $83.3 \mathrm{c} / \mathrm{s}$. The filters are tuned for a high degree of rejection at the unwanted frequencies and each is associated with a transistor amplifier, the three amplifiers being in cascade. In each amplifier the filter forms part of the forward signal path and negative feedback serves to sharpen the response of the filter in the neighbourhood of the rejection frequency. This
enables the very high slope of the insertion loss characteristic, necessitated by the close proximity of the interfering and signal frequencies to be attained.

Three voltage ranges (3,15 and 30 V) are provided for the measurement of the signals at 75 and $83.3 \mathrm{c} / \mathrm{s}$. In addition, a normal $150 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$ range and two d.c. ranges (3 and 15 V) are provided. The d.c. ranges are arranged to enable d.c. measurements to be made in the presence of up to $100 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$ interference. A standardizing oscillator is incorporated to enable the sensitivity to be corrected for changes of gain.

A reversible decade counter completely transistorized and developed for work in machine tool control, etc., was shown by Racal Instruments Ltd. The instrument has an in-line digital display which is connected to the counting circuits via a transistor decoding and drive matrix. The counter comprises a number of cascaded reversible decade scaling units capable of operating at a maximum frequency of $100 \mathrm{kc} / \mathrm{s}$. High-speed input amplifiers and shaping circuits together with direction discrimination logic circuitry enables detection of the direction of travel of the measuring heads. The instrument can accept several forms of input signal, the most common input being two or more sine waves at 90° phase difference. The relative lead or lag of those signals indicates direction of movement. Where angular position is required to be displayed by the read-out it. can be indicated in degrees, minutes and seconds directly. -. A technique having wide applications in the design of computer power supplies and three-phase d.c./ a.c. inverters was demonstrated by Transitron Electronics. The exhibit consisted of an anode commutated silicon-controlled rectifier (SCR) ring counter sequentially triggered by pulses generated from an SCR pulse generator. Selection of commutating capacitors determines the cisoidal waveform across any diametrically opposite terminal of the ring. The larger the number of stages, the better the sine wave shape. With N stages, N/2 phases of supplies may be generated each differing in phase by $360 / \mathrm{N} / 2$ with balanced loads the phase shift between stages is accurately defined by this relationship. If switching is symmetrical, harmonic distortion is mainly. contributed by the switching frequency which is N times the output frequency.

MISCELLANEOUS

Levitation is fast losing its whimsical character, and industry may well benefit from the process in the foreseeable future. Previous demonstrations have required some means of stabilizing and balancing the supporting field, but the N.R.D.C. demonstration by D. H. Cashmore and E. R. Laithwaite is considerably simplified. The device takes the form of several hundred E-type transformer laminations arranged in two rows, thus providing four slots. Copper bars are placed in the slots and alternating current passed through in such a way that flux from each slot opposes that from adjacent ones. If a conducting plate is placed over the assembly, eddy currents are induced in it, and a repulsive force set up. The flux from the inner slots supports the plate while the outer field stabilizes it in a central position. The space between the two sets of laminations can be occupied by a linear motor, the result being a completely frictionless system. A problem to be solved is the fact that eddy currents heat up the plate, increase its resistance and decrease the currents.
Cathode-ray tubes with several new features were seen at the exhibition. A camera tube by 20th Century Electronics is intended for ultrasonic applications in medicine and industry, where X-ray techniques cannot be used. In operation, the tube is something like a vidicon, the charge pattern being set up on the inside of the transducer. The pattern is scanned by a low-velocity electron
beam and the signal picked off capacitively from the outside surface of the transducer. Cathode-potential stabilization is obtained by ionization set up by the electron beam between the decelerator screen and the transducer. The operating frequency of the transducer is $4 \mathrm{Mc} / \mathrm{s}$.

High-sensitivity magnetic deflection is provided in a new E.M.I. tube. The coils, instead of being mounted externally on a deflection yoke, are fitted in place of the normal electrostatic plates. The coils are formed by a printing process, and, being nearer to each other than is normal, produce a greater degree of sensitivity-of the order of 100° per ampère of deflecting current. The signal required is current rather than voltage, and transistors would appear to be the ideal amplifiers for this application. The inductance of the coils is $8 \mu \mathrm{H}$. It appears possible, by the provision of a centre-tap, to use the coils as an electrostatic deflection system, simultaneously, although cross-talk then becomes a problem.

At low light levels, the performance of the normal image orthicon is degraded by leakage between elements of the target, and at a brightness of 2 foot lamberts with an aperture of f.16, the screen is capable of resolving only 200 lines. In a new English Electric tube, the interelement leakage has been considerably reduced, and the resolution is 350 lines. The process has also reduced the after-image effect at normal light levels.

LETMIERS TO ILHE EDITMOR

The Editor does not necessarily endorse opinions expressed by his correspondents

"New Phase-splitter"

IN his letter in the January issue Mr. Baxandall takes me to task over my criticism in an article in the Sept. 1962 issue of the concertina phase-splitter.
Now although I realize that the ideal state is for amplifiers to be driven within their ratings, I feel that it is unrealistic to ignore the possible effects of overload. Indeed the testing specifications laid down by several associations of amplifier manufacturers and other important bodies includes the testing under overload conditions. Most amplifiers are liable to be overloaded and it is very distressing if an amplifier indulges in a fit of hysterics for several seconds after an overload.
The greatly dissimilar, but coupled, output impedances of the concertina phase-splitter can help to cause this defect and the application of overall negative feedback can easily make matters much worse. This is perhaps best seen by considering the conditions that apply in both balanced and unbalanced drive impedances.
The block diagram of a balanced system is shown in Fig. 1 along with the waveforms associated with a suddenly applied sine-wave overload. The effect of the overload is to cause the output valve grids to back-bias due to the flow of grid current. The bias will, however, be equal for both valves as the system is balanced. The valves may easily bias back to class B operation if not beyond, but when the overload ceases they will rapidly return to their correct working point. As the system is balanced there will be no effective d.c. component in the output transformer windings.
If the concertina phase-splitter is now considered, we find that things are no longer the same. This is shown in Fig. 2. The output from the cathode side is at much lower impedance than that from the anode side. Hence for a given overload the output valve driven from the cathode side will tend to take a much larger grid current than the one driven from the anode side. The grid circuit driven from the cathode will, therefore, self-bias much further towards cut-off than the other one.
In addition, the limiting imposed by the output valve grid current on the cathode output voltage of the phase

Fig. 1

Fig. 2
inverter produces large negative-going spikes on the anode output voltage. It is now seen that there is a large difference between the standing currents in the two output valves. This difference can easily saturate the output transformer and thus severely reduce the output.

If overall negative feedback is present on the amplifier, this reduced output will cause the drive to the output valves to be greatly increased and thus make matters still worse. This defect in performance is not just surmise and has been observed in practice. One could presumably fit limiters to the amplifier input but I personally feel that a safe self-limiting circuit is preferable.

Apart from the question of overload, the concertina phase-splitter gives a gain of about twenty times less than the long-tailed pair. With large amounts of feedback this loss of gain can easily cause the required input voltage to become excessive.

On the question of stability there is no doubt that the concertina phase-splitter is far better than the conventional type of long-tailed pair. It would be interesting to try a normal long-tailed-pair phase inverter in Mr. Baxandall's amplifier using an identical feedbackloop gain. I have a suspicion that it would make the stability far worse even if oscillation did not ensue.
Regarding the subjective assessment of amplifiers: I feel that the only way of doing this is by means of A / B checks with impeccable signals and the best loudspeakers obtainable. The room used for the tests must be absolutely quiet and plenty of time taken over the tests. The last thing necessary-and the most importantis a keen ear. Under these conditions it is surprising what differences can be detected, even today, between amplifiers.

In conclusion I would like to say that I do not profess to have produced the last word in phase inverters. It is
felt, however, that the circuit described possesses to a large degree all the requirements of a phase inverter, without becoming too complex and uneconomic. ARTHUR R. BAILEY.

"Pulse Modulated AF Amplifiers"

IN view of the article under the above title in the February issue on an audio power amplifier using power switching (a mode of operation which P. J. Baxandall suggests should be called "class D"), readers may be interested in a circuit which I have developed using this same principle. The output power obtainable is greater than $1 W$ and I have used it to drive a 15Ω speaker from a normal crystal gramophone pickup. Only five small transistors are used and they remain substantially cold in operation whilst the "quiet" power consumption is in the region of 15 mA from the 10 V battery. The level of distortion is low as direct overall feedback from the output to the input is an essential feature of the circuit. A typical assembly with normal components occupies 12 cu in and weighs 4 oz , excluding, of course, the battery and loudspeaker.

The circuit is shown in the diagram and the operation is most easily explained by working backwards from the output terminals. First the inductance L_{1} is added in series with the speaker to give a total series time-constant with the speech coil of about $50 \mu \mathrm{~s}$. This serves as a filter to confine the high frequencies generated by the fast switching of the power stage as far as possible, to prevent radiation, and also to reduce the loading on the fast edges due to the capacitance of a long loudspeaker cable. At the same time the efficiency is improved as less switching frequency power is dissipated in the speech coil and, last but not least, a high-frequency "roll-off" is obtained to match the pre-emphasis normally used in disc recording. The value of L_{1} may typically be 0.5 mH and it can be wound on a ferrite core. Care must be taken that there is sufficient air-gap to prevent saturation at currents approaching 0.5 A and, of course, the d.c. resistance must be small compared with the 15Ω of the speech coil.

The transistors V4 and V5, which should be similar but need not be accurately matched, form a p-n-p/n-p-n pair of which one is cut-off and the other driven into saturation alternately at a frequency of about $50 \mathrm{kc} / \mathrm{s}$.

The diodes D2 and D3 are necessary to prevent difficulty when their respective transistors are required to carry large reverse currents during the peaks of loud low notes, since the reverse current-gains, even of alloy tran. sistors, are normally insufficient to ensure saturation under such conditions. Note that not only the emitters but also the bases of these transistors are directly crossconnected, and thus the danger of their both conducting together is eliminated. The collectors of these power transistors are connected to the negative and positive poles of the battery respectively, but notice that the battery is not centre-tapped. The return current from the speech-coil is taken to the centre point of a pair of large capacitors connected in series across the battery, and this same centre rail is used at several other points in the circuit. These two capacitors are by far the bulkiest components in the whole amplifier.

The drive to the bases of the power stage is taken from V3 through the capacitor C_{5}. The load resistor \mathbf{R}_{13} in the collector of V3 is taken to a floating-powerrail voltage generated across C_{6} by the diode D1 in a bootstrap type of circuit. This enables V4 to be driven hard into saturation when V3 is cut-off whilst at the same time allowing V5 to be driven equally hard when V3 is itself saturated. The drive to the base of V3 comes through a straightforward coupling network from the collector of the n-p-n transistor V2 and the base of V2 is driven parily from the collector of V1, and partly by positive feedback through R_{5} and C_{3} from the collector of V3. This positive feedback makes these stages act as a toggle and snap sharply from the off state to the saturated state at a particular value of the voltage at the collector of V1 and to snap back at a slightly different value of this voltage.

The transistor V1 now functions as a Miller integrator with the capacitor C_{1}. The current at its input is the linear sum of a term from \mathbf{R}_{1} due to the input signal and a negative feedback term through R_{2} from the output of the power stage, whilst it is the output voltage of this integrator which trips the toggle circuit of V2 and V3 and so switches the power stage V4-V5. This in turn reverses the current through R_{2} and sets the integrator running back towards the other tripping voltage so that the circuit oscillates continuously. Notice that the capacitor C_{1} controls the frequency of operation and its value should be adjusted as necessary to obtain running at about $50 \mathrm{kc} / \mathrm{s}$. Too low a frequency may generate

distortion from cross-modulation whilst too high a frequency makes the power stage unnecessarily inefficient.

In the absence of any signal current from \mathbf{R}_{1} the voltages across C_{7} and C_{8} adjust themselves in a few tenths of a second so that the mark/space ratio is very close to $50 / 50 . \mathbf{R}_{1}$ may need to be varied slightly if the ratio is not sufficiently exact. Any input signal, however, upsets this balance and, moreover, does so in such a manner that the net current into the integrator remains close to zero whilst the mark/space ratio changes appropriately. Hence the mean voltage applied across L_{1} and the speech coil of the loudspeaker changes in exact proportion and there is a powerful overall negative feedback effect fixing the voltage gain from the slider of RV_{1} at a factor $\mathbf{R}_{2} / \mathbf{R}_{\text {, }}$, that is $33: 1$ with the component values given. The current gain, however, is in the region of $200,000: 1$ and these values are adequate for ordinary use with a crystal pickup.

The resistor $\mathbf{R}_{1,}$, in the circuit is included solely to ensure that the oscillation starts correctly when first switched on. Without it the voltage across C_{8} might collapse, due to leakage through \mathbf{R}_{8}, and the transistors V2, V3, V4 and V5 would all remain turned off. Even with \mathbf{R}_{15} included the circuit may occasionally switch-on to a state where V3 conducts a small steady current, but the application of a moderate input signal initiates correct operation and once started this will continue until the power is switched off.

The circuit diagram shows S.T.C. transistor type numbers, but other makers are now offering fast high-gain germanium alloy devices of both $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ polarities which can almost certainly be used without any need for changes in the component values shown. If a diffused transistor is used for V1 then C, will almost certainly need to be increased, whilst a fast silicon device at V3 would allow the components R_{11} and C_{4} to be shorted out altogether.

The circuit as shown here is sensitive to ripple on the power supply and hence battery operation is recommended. It is expected, however, that further development will allow this difficulty to be overcome. Again the author has a version of the circuit in which the two power transistors V4 and V5 are of the same polarity, being driven from the collector and emitter of V3 respectively, but although this circuit has, in fact, worked over many months there are severe transients during switching-on which considerably exceed the ratings of the transistors and the circuit is not, therefore, suitable for publication in its present form. In any case satisfactory $\mathrm{n}-\mathrm{p}-\mathrm{n}$ germination devices are now readily available so that there is little need for such a version of the circuit.

These last remarks may, perhaps, encourage readers to experiment with circuits of this type for themselyes and the writer is quite sure that much progress remains to be made before any circuit will emerge that could be called conventional.

Cheadie.
K. C. JOHNSON.

The Wireless WorId Quality Amplifier

I WONDER how many Wireless World Quality Amplifiers are still in service? Shortly after the publication in December 1943 of the "Wartime modifications to a well-known design," when 6V6's with feedback were suggested as substitutes for the hard-to-get PX4's, a friend and I co-operated in building one each. Mine was put into daily domestic use for radio and gram in 1946, and continues to this day. The tiny thing in the cot when the " $W . W$. Quality" started its career is, at the moment I write, feeding delightful Paraguayan folkmusic from a tape recorder through it (the amplifier), in the manner of many of her fellow-teenagers. Faults in that time? One 6J5G, substituting for an L63, which was second-hand when it went into service, has failed, and last year the smoothing electrolytics went opencircuit.

I believe that it was in January 1946, in an article on the "genus W.W. Quality" generally, that Wireless World wrote modestly of the virtues of a good design which does not run its components to their limits. Well, my 16-odd years of service demonstrates this. The things that come before the power amplifier, and those that follow it in the reproducing chain, have been changed with changing years.
But what comes out the loudspeaker, owing much to a design you prepared in the 'thirties, is still what Ralph West calls "a nice noise." Overall feedback? Ultralinearity? High efficiency? One day, perhaps, when I have a disruptive fault on my present power amplifier, I'll make this change from Quality to High Fidelity!

St. Albans.
L. F. KEEL.

Transistor R-C Oscillators and Selective Amplifiers

THE article by F. Butler in your December 1962 issue presents a very comprehensive and lucid survey of the subject. However, when discussing the techniques for stabilizing the output level of R-C oscillators, the use of thermistors is criticized on the grounds that excessive power must be dissipated in the thermistor if the effect of varying ambient temperature is to be swamped. Your readers may be interested to hear of the STC type R thermistor produced specifically for low-level work in transistor circuits. No more than 3 mW is required to raise the bead temperature to $150^{\circ} \mathrm{C}$. This should be adequate to swamp the effect of room temperature variations!
Footscray, Kent. S. C. RYDER-SMITH,
Transistor Applications Dept.,
Standard Telephones and Cables Ltd.

"Analysis of the Bootstrap Follower"

IN deriving my expression for the gain of a bootstrap follower I made the simplifying assumption that the direct contribution of the input current to the output current is negligible. This is true of the vast majority of practical circuits, in which grid resistances of about

a megohm are employed. However, the rigorous formula given in Mr. Butler's article (January, p. 22) should be used in the case of circuits like the one shown here, and where the grid-cathode resistor of the follower valve $\left(\mathbf{R}_{1}\right)$ has a much lower value than usual. (The relevant gain here is $V_{\text {out }} / V_{m}^{\prime}$.)

Croydon.
G. W. SHORT.

OSCILLATORS:

3.-NON-LINEARITY, HARMONICS AND STABILITY

By THOMAS RODDAM

IN two previous articles we have surveyed the two broad classes which we can distinguish in the field of oscillator design. We have seen that some circuits may fall nicely into place in one or other class and that nicely is, for once, correctly used in this context. We have also seen how we are left with a few circuits which fit into this kind of scheme only with difficulty. This is a normal problem in classification and cataloguing. Throughout the discussion it has been assumed that the active system was operating in a linear region.

It is part of the dogma of oscillator theory that the highest stability of frequency necessitates freedom from distortion. This rule is attributed to Groszkowski (Proc. I.R.E., Vol. 21, p. 958 (1933)) although I doubt whether anyone nowadays takes the trouble to verify this. The logic of this rule is rather simple. If there is some non-linearity we shall get components of, say, $2 f$ and $3 f$ produced at the nonlinearity. These will be transmitted through the four-terminal network of a feedback oscillator with some arbitrary phases to appear again at the input. When the non-linearity is reached a component of frequency f will be produced by intermodulation and this component will not have the zero or 180° phase shift assumed in setting up the oscillator equation. Since this is an impossible situation the frequency must shift to bring the total fundamental into the $\mathrm{n} \pi$ state.

Dogma is not necessarily completely false: its great danger comes when one believes that it is completely true. We can design our active network for good linearity, we can design our feedback networks so that they reject the harmonic frequencies. This last operation is less simple than it sounds, however. Reactive filters do not absorb the signals they reject; they simply refuse to accept them. In a simple feedback oscillator, therefore, the feedback network will push the harmonics back into the valve anode, or whatever device electrode we may be taking at the output. High harmonic attenuation may not help us at all.

Quite a different approach is possible and it is this approach which I intend to consider in connection with negative resistance oscillators operating at large amplitudes. Our quarrel is not with the harmonics as such, but with the presence of harmonics which are sensitive to the operating conditions. We can arrange to operate under low-distortion conditions and keep the harmonics so small that it does not matter if they vary, but the price we must pay is the price of efficiency. We must operate at a relatively low level. The alternative approach is to fix the amplitudes and phase of the harmonics rigidly so that they do not vary.

There are a good many applications for this principle although I have rarely seen it used. Some long time ago I used it myself in a multi-frequency sig-
nalling system which illustrates its application fairly clearly. A very cheap oscillator with a very variable supply voltage can be switched to any one of a dozen or so frequencies. Filters are to be used to identify the frequency, which is the information to be transmitted. The second, and I think, though memory may be at fault, the third harmonic of the lowest frequency could fall into the pass-band of higher frequency filters if otherwise tolerable performance was accepted. The incoming tone was therefore amplified and limited, to deal broadly with the wide variations of signal level, and was then taken into a very well defined squaring circuit to provide a square wave of fixed amplitude. Although there has been an increase in the harmonic content there is a well-defined margin between fundamental and harmonic which is more than adequate for the reliable control of a trigger circuit.

The same basic idea is used by the best clockmakers. I do not know whether anyone has ever made what we might describe as a class A clock:

Fig. I. Short-circuit stable negative resistance characteristic.
at least I do not know if anyone has made a lowfrequency one. This change of mind is because I started to think of a design and found myself thinking first of a tuning fork drive system and then of a crystal oscillator using a four-electrode quartz crystal. In both these systems we have a mechanical tank circuit with a driving loop which can be linear. The best pendulum clocks use a pulse to maintain the oscillations in the tank circuit, and a pulse is even richer in harmonics than a square wave.

We know that circuits of the general inverter type produce quite square waves and we may begin by setting this concept down and then not taking too much notice of it. We shall see why we do this in a moment. We can use quite a lot of the concepts introduced in "Transistor Inverters: a Single View" (W.W., Jan. and Feb. 1962), but we will find that we need to make some important circuit changes.

The basic concept may be considered in conjunction with Fig. 1. This is the now familiar N -shaped negative resistance characteristic which we know is short-circuit stable. A load line is sketched in, to
give the three points of intersection, and again we know that the centre point is unstable and the two outer intersections are stable. In a small-amplitude system the point C will be the point at which the circuit is centred but in a large amplitude system the point C is inaccessible. We know the sort of waveform we can expect, for we have seen a modified version of it in our studies of inverters. In an inverter we have parasitic terms which produce an anti-resonant circuit of relatively high characteristic frequency. Here the waveform will be something like that shown in Fig. 2.

In this distorted sine wave we have a section $A B$ in which the anti-resonant circuit is being driven by the negative resistance, followed by the section BC which corresponds to the free swing of the circuit after the active device has been cut off. This is the spike region in ordinary square-wave operation. During CD the negative resistance is driving again until at D the trajectory runs into the diode

Fig. 2. Large-amplitude waveform in a negative resistance oscillator with an anti-resonant control circuit.
line and the tuned circuit is damped down hard along the region DA.

An oscillator of this type will obviously not be particularly stable, because we have in the region DA a relaxation oscillator mode which is notoriously poor in frequency stability owing to its dependence on the characteristics of the active device. Even in the region BC the active device is having some effect, for it provides some extra damping on the circuit and this damping, if the system is a transistor oscillator, will be temperature dependent.

The fact that the BC section of the waveform is fairly right is the clue to our next step. We must make the end sections of the device characteristic correspond to infinite impedance. In drawing Fig. 3 I have run slightly ahead of myself, but you can see here a short negative resistance region terminated by two regions in which the shape of the device characteristic is infinite. I do not think there is any difficulty in seeing that the waveform produced by this sort of negative resistance characteristic and an anti-resonant circuit will be of the form shown in Fig. 4. We can describe this as two half sine waves joined by short switching sections.

During most of the time the tank circuit is a completely free circuit and so the duration of the swing is fixed only by the anti-resonant frequency. The active device can only influence the duration of the switching interval. We have two available methods, in theory, for reducing the length of time the system spends in the driven mode and on close examination we find that one of them is meaningless. We might try to increase the tuned circuit swing or the size of the voltage step, without changing the actual shape of the negative resistance. \cdots What we must do, in fact, is make the negative resistance as small as possible and the tuned circuit parallel resistance as large as possible. The height of the voltage step is
then settled for us, because we shall have some limits on the size of the oscillations.

A circuit operating on this principle was described, although not exactly in this way, by Tillman (Wireless Engineer, Dec. 1947). The kind of circuit which we can use is simply our old friend which Terman calls a feedback oscillator. I have drawn it as a two-stage triode amplifier with biased diodes for limiting. If we say that the amplifier gain is 200, quite an arbitrary figure, the negative resistance will be $-\mathrm{R} / 200$ so long as the diodes are not conducting. When the diodes conduct the gain of the amplifier is pretty well zero and the amplifier input resistance is R.

A typical audio-frequency tuned circuit would be 100 mH with a Q of 100 at $1600 \mathrm{c} / \mathrm{s}$, giving a parallel resistance of 100,000 ohms. If we degrade the Q by 10% we have a feedback resistance of 1 megaton ohm and a negative resistance of -5000 ohms. I do not claim that this is the correct design, but it gives us some numbers to look at. When we start to examine the circuits more closely we find, at least I do, that the easiest way of treating it is by the feedback method. The swing at the first grid will be one-eleventh of one swing at the second anode, if we assume that at the second anode we are measuring the fundamental. Let us assume that we can allow $1 / 10$ volt swing at the grid, giving us 20 volts at the second anode if we just consider the gain, but only 1.1 volts swing if we consider the feedback ratio. From this we see that the circuit is under drive only for the central 1 volt of a 20 -volt swing. For the rest of the time it is swinging free.

Although we could have arrived at this result by working out the negative resistance characteristics we should have needed to examine the way in which the limiting conditions arise. The diode clipper circuit is used in this explanation because this keeps the various functions separate. The second valve may well be used as a limiter rather than as a linear amplifier, but the practical designer must then examine the effect of grid current on the symmetry of the limiting. If the bias point can

Fig. 3. Negative resistance between infinite-impedance end sections of the characteristic.

Fig. 4. Waveform associated with the characteristic of Fig. 3.

Left: Fig. 5. Two stage feedback oscillator with gain limited by biased diodes. Right: Fig. 6. Waveforms in class-C operation.
float with signal amplitude the energy pulse as the circuit passes through the negative resistance region will be de-phased and frequency stability will be lost. As shown in the figure there is no provision for loading the circuit, but a sinusoidal signal is available at the first anode and an appropriate square wave at the second anode. Since this oscillator is capable of giving high stability we may expect to use a buffer amplifier to the output.
This technique opens up a whole new range of sinusoidal oscillator techniques and also throws some new light on transistor inverter circuits. The characteristic in Fig. 1 is the characteristic seen at the collector: looking in at the base we do not see the collector diode line, because it is buffered off by the feedback resistance. In its place we see the higher resistance of the base diode line with the feedback effect from the emitter. By using compounded transistors we might get fair frequency stability in an inverter-oscillator of this kind. The negative resistance approach shows us, however, that what we need is a high gain in the amplifier circuit, for with a fixed value of feedback resistance R, the higher the gain the smaller the value of negative resistance and the shorter the duration of the perturbing drive.

There is room here for a good deal of general study, probably enough to rate a Ph.D. at a Yellowbrick University (I understand that yellow bricks are cheaper than red). We can introduce into our amplifier negative feedback to make the gain more stable, and/or positive feedback to increase the gain. The swings-and-roundabouts effect will be in operation, of course, but will not necessarily be in balance. It is a very attractive problem for anyone who wants to spread himself, because to add to the general complexity we have the desirability of putting in negative feedback to the cathode of the first valve to increase the input impedance. I have shown in Fig. 5 an undecoupled cathode resistor, but according to the rules of the game we should like to bring the feedback from the amplified input. This is a real tempter until you notice that it is not going to do any good. Since the output circuit is controlled by the limiter the gain is zero and this feedback will
only affect the input impedance during the switching interval. As you see, there is quite a lot to be learned about this kind of circuit without doing any mathematics at all. Remember, too, that it is not the specific circuit in Fig. 5 that we are talking about, it is the class of circuits of which Fig. 5 is typical.

We can get an insight into the workings of the class-C oscillators by this same method. We have seen that in a typical situation the resistance R is many times the effective resistance of the tank circuit. Let us replace the resistor by a capacitor, which we might expect to have the same sort of impedance. This will enable us to think of the capacitor as providing the familiar differentation operation. Basically the class-C oscillator is limited on one side only. Practically we must get some peak limiting by the grid current which tops up the bias; but let us overlook this. The waveform after limiting will have the form shown in Fig. 6 (b) and the waveform fed back will begin by looking like Fig. 6 (c), though in fact the tuned circuit will change this. Now in this approach we get the "tap at the end of the swing" effect which we know from pendulum analysis is bad.

If we use the negative resistance approach we simply draw Fig. 7 in which the tip of the wave, when the amplifier is working, is a piece of a sine wave of higher frequency owing to the negative capacitance term we have slapped across the tuned

Fig. 7. Feedback at the "top end of the swing".
circuit. We get at once a direct insight into the reason why tip drive is bad, for we can see that we come slowly into this region of changed frequency and small changes of amplitude will make a good deal of difference to the triggering phase. Crossing back to the classic feedback form we are not surprised. The network is listed in "Reference Data for Radio Engineers" (I.T. \& T., 4th Edition, 1956) as a 3-element shunt Type II and the image attenuation, shown in Fig 8, rises only slowly with frequency in the upper stop band. This circuit lets the harmonics get back round the loop rather early.

This philosophy points the way towards the design of an oscillator which might have some advantages. We know that we must give our pendulum a tap as it swings through the central position but we need not tap it every time. We can follow our limiter by a divider chain and drive our feedback impulse from this, giving a tap only, say, every 16 cycles, and leaving the tank circuit to oscillate freely in between. From the negative resistance viewpoint we get a gain through the chain only when all dividers are making a transition and then we get the gain of all stages in tandem. To my mind this reveals at once that we shall not have an optimum design : we shall have too many stages, none of them designed to give a good gain-bandwidth product. It will be far better to concentrate in getting a very short and correctly placed switchover every cycle.

I am tempted to say that this class of switching oscillator in the form which uses an open-circuit stable negative resistance and a series resonant circuit is of no interest whatever. Obviously there is some theoretical interest, but it is much more difficult to make an amplifier with an input resistance which is low enough not to degrade the Q of a series circuit, than one with a high input resistance which will not damp an anti-resonant circuit. The problem is made more difficult by the lack of a d.c. path through the circuit. Probably the most likely form of tuned circuit for this purpose will be a crystal, particularly a partially plated crystal with its very high inductance. I shall leave this as an example for the student.

The switching type of negative resistance oscillator, as we have already seen, encourages us to think about the switching type of four-terminal feedback oscillator. We started off with the idea that by fixing the harmonic content we should get the same sort of stability whether we fixed it at small value or a large one, provided we "fixed it good." Let us consider a system like the one shown in Fig. 9 (a). The half-section of band-pass filter feeds a fairly good sine wave into the amplifier and this drives the limiter to generate a well-squared output. In its basic form we may say that the amplifier is fed with a perfect sine wave of constant amplitude and must be designed for zero phase shift and no distortion, at least no distortion which can affect the crossing

Fig. 8. Attenuation characteristic of 3-element shunt network.

(a)

Fig. 9. (a) Amplifier-limiter-filter type of oscillator, and (b) image impedance presented to the limiter.
points. The limiter should be symmetrical in action and should have a very short input base.

In this particular technique of amplifier-limiternetwork we are faced by a problem in defining what we mean by a limiter. The circuit is loaded not by a resistance but by the input impedance of the network and this will not, in general, be independent of frequency. We therefore have a choice between limiting the output voltage and limiting the output current, between designing the limiter as a low impedance source and designing it as a high impedance source. If we design for a square voltage wave we must accept the fact that the current will be sinusoidal and vice versa. We must also choose a network which will accept our choice or will define it.
At this point I reach again for "Radio Engineers' Handbook." The image impedance presented to the limiter in the circuit of Fig. 9 (a) is shown in Fig. 9 (b) and it will be seen that it is high and reactive, for all input harmonics. Consequently although we can hold up a square voltage across the input terminal we shall not pass harmonic current. If we were to use the network the other way round with an amplifier taking a current input we should find that we could get a square-wave current drive and we should have a sinusoidal voltage.

We have a large range of filter networks at our disposal, especially if we allow ourselves to use lattice networks, zig-zag filters and impedance transformations. We can find a very large variety of amplifier and limiter combinations. One such circuit is shown in Fig. 10. You may recognize this as a rearrangement of the basic voltage switching oscillator described by P. J. Baxandall (" Transistor Sine Wave LC Oscillators" Proc I.E.E., Paper No. 2978E, May 1959, Vol. 106B, Supp. 16, p. 748). The amplifier is the well known single-ended push-pull
stage which is operated as a class-B system driven hard to bottoming. It will be noticed that the filter circuit is the constant-k half-section which is shown in Fig. 9.
The logical dual of this is the circuit shown in Fig. 11, but if the supply is taken from a lowimpedance source the fixed harmonic voltage will cause a very large current to flow in the high reactive admittance presented by the network. The circuit can, however, be fed from a very high impedance supply, a constant current system. If you can refer to Baxandall's paper (loc. cit.) you will find a circuit generally similar to this using an inductor to provide the constant current effect over a cycle of the oscillators. Baxandall uses only a first-order filter, the anti-resonant circuit, in his current switching oscillator, but for the student it is convenient to preserve the network order in changing from one circuit to the other. In the circuit of Fig. 10 the shunt inductance of the anti-resonant circuit must appear in any event, for it is, as you will realize, the same physical component as the input transformer of the amplifier.
The extensions of this principle with the wide variety of available amplifiers and limiters are again a matter of patience. The oscillators based on the system of Fig. 9 have the great disadvantage that the load and the frequency-determining circuit are intimately associated but there seems to be no formal difficulty in arranging for the load to be fed through one network while another network acts as frequency determining element.
The title of these articles may merit a note of explanation. William James divided temperaments into tough and tender minded. The hard-headed pessimistic tough minds are pluralistic and regard a whole field simply as the collection of its parts. The sensitive, optimistic tender minds are monistic and regard the essential unity of the field as dominating the parts. This division cuts very deeply; either you are a logical positivist or you are an existentialist; either you are objective or you are subjective. The reader's temperament will decide whether he sees a neat classification of oscillators, whether he feels that the classification "oscillators" is enough, and each should then be treated on its own merit, or whether he agrees with me in feeling that the classification is too rigid for the subject and that although quite a lot of the thinking can be

Fig. 10. Voltage-switching oscillator.

Fig. 11. Current dual of the circuit of fig. 10.
carried out on the type as a whole, the final examination of a circuit in detail may turn out to be easier if it is regarded as belonging to a different class.

This splitting into two temperaments raises some most interesting problems for the writer. If he takes up one attitude completely, presumably the one to which he is inclined, half his readers are totally out of sympathy. If he takes a balanced view he will probably lean over backwards to be fair. Should he be a whole-hearted holist and lump his oscillators in with feedback amplifiers? Should an atomist list every known and knowable circuit? I think we need to be, in our theory, holists, because there is no way of avoiding the atomist nature of hardware. When you construct an oscillator it is a circuit, a fixed thing, and "th' atomies of which we grow . . . no change can invade." (John Dunne.) Only by adopting a broader outlook before you start to be tough minded with the soldering-iron can you be sure that you have chosen the right atomie to build.

Commercial Literature

Siemens \& Halske Test Gear.-A series of leaflets describing a range of test gear manufactured by Siemens \& Halske in Germany and marketed in the U.K. by R. H. Cole (Overseas) Ltd., 26-32 Caxton Street, London, S.W.1, includes information of a noise intermodulation measuring setup, a complex-ratio tracing receiver, a level tracer, and a carrier-frequency measuring setup.
"Pulse Equipment Bulletin"- a six-page illustrated brochure describing pulse, sweep, and time delay generators, pulse amplifiers, and variable delay lines-is available on request to General Radio Company, West Concord, Massachusetts, U.S.A.

The Emitape Book, a 30-page loose-leaf brochure describes the making of E.M.I. magnetic recording tape, gives specications of each of the grades, and lists a range of accessories Details of Emitape for video recording are also given. E.M.I. Tape Ltd., Blyth Road, Hayes, Middx.

Pye scientific'instruments catalogue " P " describes new developments of interest to research laboratories, educational institutions and industrial organizations engaged in production testing and process control. Copies can be obtained from W. G. Pye \& Co. Ltd., York Street, Cambridge.

Lustraphone's latest literature includes illustrated leaflets describing a ransistorized p.m. radio microphone sysem, a miniature ribbon-velocity microphone and a transistorized electronic stethoscope. Lustraphone Ltd., St. George's Works, Regent's Park Road, London, N.W.1.

Prezoelectric and other properties of Rochelle acoustic elements are enumerated in a booklet available from Brush Crystal Co. Ltd., Hythe, Southampton, Hants.

MANUFACTURERS'

NEW ELECTRONIC EQUIPMENT AND ACCESSORIES

Power Amplifier 10-500 Mc/s

DESIGNED to operate from any conventional signal generator, the Model 230A amplifier announced by the Boonton Radio division of Hewlett-Packard Company has a frequency range of $10-500 \mathrm{Mc} / \mathrm{s}$ and provides an output of up to 15 volts across a 50 -ohm load. Its input impedance is 50 ohms and 10 volts output is provided into 50 ohms from r.f. inputs ranging from 0.316 volts at $10 \mathrm{Mc} / \mathrm{s}$ to 0.630 volts at $500 \mathrm{Mc} / \mathrm{s}$.

The amplifier is especially suitable for high-power requirements such as wattmeter calibration, attenuation measurements, etc. Priced at £476, the instrument can be obtained in the U.K. from Livingston Laboratories Ltd., 31 Camden Road, London, N.W.1.
For further information circle 301 on Service Card.

Universal Bridge

A TRANSISTOR universal bridge type TF2700 with a basic measurement accuracy of $\pm 1 \%$ has been introduced by Marconi Instruments. Completely portable (total weight $8 \frac{1}{2} \mathrm{lb}$) and powered by an internal 9 V battery, the bridge is very versatile. The measurement ranges are inductance $0.2 \mu \mathrm{H}$ to 110 H in 8 decade

Boonton Radio Type 230A r.f. power amplifier.

Marconi Instruments universal bridge, Type TF2700.
ranges, capacitance 0.5 pF to $1100 \mu \mathrm{~F}$ in 8 ranges and resistance $10 \mathrm{~m} \Omega$ to $11 \mathrm{M} \Omega$ in 8 ranges.
The manufacturers of this instrument are Marconi Instruments Ltd., St. Albans, Herts.
For further information circle 302 on Service Card.

Vacuum Variable Capacitors

ENGLISH Electric Valve Co. Ltd., of Chelmsford, have increased their range of vacuum variable capacitors. The new range, all rated at 40 amperes r.f. can be supplied with capacitance values from 5 to 750 pF . With a working voltage of up to 20 kV .(peak) the components are self-healing in cases of accidental voltage overload. Other advantages include an extremely low power factor (less than 0.0001) and a self inductance of 10^{-9} to $10^{-8} \mathrm{H}(150-600 \mathrm{Mc} / \mathrm{s})$.
For further information circle 303 on Service Card.

Television Analyst

A COMPREHENSIVE television receiver test instrument produced by the B. \& K. Manufacturing Company (a division of the Dynascan Corporation of U.S.A.), the

English Electric vacuum variable capacitors.

Model 1076 television analyst.

Saunders Dumatic drilling machine.
television analyst (Model 1076) provides r.f., i.f., vertical and horizontal sweep drive and sync pulse outputs. It enables the engineer to investigate receiver faults by using signal injection and substitution methods.

Versions are available for various standards. A test pattern output is produced by a flying-spot scanner and a high level signal is available for direct modulation of the c.r.t. Patterns for colour checks are also generated. The U.K. agents are Livingston Laboratories Ltd., 31 Camden Road, London, N.W.1.
For further information circle 304 on Service Card.

Drilling Printed Circuit Boards

A SPECIAL machine for drilling circuit boards, either individually or in stacks, is known as the Saunders Dumatic. A template is placed over the work and hole positions are located from above by a pneumatically operated stylus. Pressure is increased when the footoperated drill rises from below the table and this ensures a burr-free hole when the drill is set to penetrate only half the thickness of the top board, which may be used again as a backing. Swarf is vacuum extracted.

The provisional price is $£ 58315 \mathrm{~s}$ and the makers are N. Saunders Metal Products Ltd., 127, Munster Road, London, S.W.6.
For further information circle 305 on Service Card.

Pocket Signal Tracer

WITH a gain rated at 60 dB the " 670 " pocket test instrument has interchangeable a.f. and r.f. plug-in probes and may be used for tracing signals, hum, noise, etc., in circuits. It is marketed by Controlled Electronics, 62, High Street, Croydon, Surrey, and costs £6 19s 6d including a magnetic earpiece.
For further information circle 306 on Service Card.

Transmitting Triodes

EITEL-McCULLOUGH have introduced a range of triodes with characteristics suitable for linear amplifier s.s.b. applications. They have been designed to give optimum performance with zero grid bias-so no grid power supply is needed. They give power gains of over 20 and produce intermodulation products less than 35 dB below the peak envelope output power. Three glass and three ceramic envelope types are available with ratings varying from 400 W to 3 kW for the glass types and 1 kW to 20 kW for the ceramic. These valves

C.E. " 670 " pocket signal tracer.

Eitel-McCullough zero bias transmitting triode.
are available in this country from Walmore Electronics Ltd., of 11-15 Betterton Street, Drury Lane, London, W.C.2.

For further information circle 307 on Service Card.

Solid State Relays

FOR applications where high switching speeds and reliability are essential, M.L. Aviation have introduced a series of solid-state relays. In these units the driving circuit is through a transformer which operates transistor switches. A transistorized oscillator is incorporated in the driving circuit to ensure complete isolation between switch and switching circuit. The relays are fully encapsulated and provided with standard plug-in bases or flying leads as required.
"Contact" rating is given as 1 to 70 V d.c. with a maximum current of 1 A . The drive current is $600 \mu \mathrm{~A}$ at 6 V d.c. and a standing supply of 12,24 or 48 V d.c. is also necessary. The operating time is quoted as 1 millisecond. The relays are manufactured by M.L. Aviation Co. Ltd., White Waltham Aerodrome, Maidenhead, Berks.
For further information circle 308 on Service Card.

Measuring Oscilloscope

A NEW measuring oscilloscope type TF2200 is announced by Marconi Instruments Ltd. Either a.c.or d.c.-coupled by switch control the instrument has a 12 nsec rise time for less than 1% overshoot at $50 \mathrm{mV} / \mathrm{cm}$ sensitivity and a bandwidth of $35 \mathrm{Mc} / \mathrm{s}$ where overshoot may be tolerated, as in sine wave examination. With a maximum writing speed of $10 \mathrm{nsec} / \mathrm{cm}$ sweep delays from less than $1 \mu \mathrm{sec}$ to 5 seconds are

Marconi Instruments oscilloscope, Type TF 2200.
available for detailed waveform examination or line strobe. Triggering controls are simplified.

An interesting feature is the provision of two measuring systems for voltage and time measurement, a calibrated graticule or a calibrated shift potentiometer system. A 5 cm display is presented on a tube face of 5 in diameter and a post deflection potential of 10 kV is used.

Three plug-in pre-amplifiers, single trace, dual trace and differential (for TV) adapt the y input circuit to cover most requirements. All controls are on the front panel and apart from changing pre-amplifiers and probes all modes of operation may be selected by switching without the use of external links. The manufacturers are Marconi Instruments Ltd., Hatfield Road, St. Albans, Herts.
For further information circle 309 on Service Card.

Transistor Switching Time Tester

USERS of Tektronix sampling oscilloscopes now have available as an accessory the Type 290 Transistor Switching Time Tester. Combined with a fast-rise pulse generator and a sampling oscilloscope, this system provides a transistor testing system with an overall transient response of less than 1 nanosecond. The system tests fast transistors on a short duty-cycle basis for delay time, rise time, storage time and fall time with variable collector voltage and base drive conditions.

The transistor rather than the circuit is tested as far as possible by dispensing with speed-up capacitors or

Tektronix Type 290 Transistor Switching Time Tester.

Sealectro SKT-0930 test jack.

Miniature (2-in dia) blower, A. K. Fans Ltd.
catching diodes. The common-emitter base-driven circuit of the instrument introduces into the base of the test transistor a non-overshooting step of current equal to 1 mA per volt of input pulse.

Transistor input and output are presented in correct time relationship either simultaneously for dual-trace systems or at the turn of a switch for single-trace systems. The input monitor and output is at a 50 -ohm impedance level allowing remote location of tester and sampling system.

The Tektronix agents in the U.K. are Livingston Laboratories Ltd., 31 Camden Road, London, N.W.1. For further information circle 310 on Service Card.

Test Jack

THE SKT-0930 test jack is designed to facilitate insertion of test probes in difficult chassis locations and consists of a gold-on-silver-plated beryllium copper socket with a flared Teflon insulator, which is pressfitted into the chassis. The shank is 0.200 in diameter and the socket is designed to take an 0.093in dia., 0.5 in long probe.

Complete details are available from Sealectro Corporation, Hersham Estate, Walton-on-Thames, Surrey. For further information circle 311 on Service Card.

Miniature Blower

A $400-\mathrm{c} / \mathrm{s}$ axial flow blower with a 2 in diameter moulded impeller an overall length of only $1 \frac{1}{8} \mathrm{in}$ and a weight of 5 ozs has been developed by A.K. Fans. Fan performance is $28.5 \mathrm{cu} \mathrm{ft} / \mathrm{min}$ under full flow conditions with a nominal running speed of 11,500 r.p.m. and 12 watts input.

This model is claimed to have a life between overhauls of not less than 3,000 hours' continuous operation within the ambient temperature range $-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The stator windings are fully encapsulated. The fans are made by A.K. Fans Ltd., 20 Upper Park Road, London, N.W.3.
For further information circle 312 on Service Card.

Nonconductor Valves

POSSIBILITIES IN THE CONTROL OF CURRENTS THROUGH INSULATORS

By "CATHODE RAY"

REMEMBERING that nonconductors or insulators are, by definition, materials through which currents do not flow, you may be wondering what sense to make of the above headings. If so, it will help if memory also recalls that the most complete insulator is a vacuum and yet vacuum valves have made a great deal of sense for nearly everyone for quite a long time.
But, you may say, that's different. Electrons can be shot through a vacuum because there is nothing there to stop them. Insulators, if they are worthy of the name, ought to be able to stop electrons going

Fig. 1. Elementary diagram of a small piece of perfectly insulating crystal; the circles represent atoms fixed in perfectly regular formation, and with none of their electrons available for conduction. Since each atom is complete it is electrically neutral; its equal positive and negative charges cancel out.
through them. After all, if a valve springs a leak and lets the air in, even that seems to be enough to stop it working. And where are the electrons to come from, anyway? Semiconductors have themor alternatively holes-distributed throughout the material, ready for use. Nonconductors have none; or, at most, too few to form an appreciable current with any reasonable voltage.

Although there is some truth in these objections, they are not the whole truth. So let us clarify our ideas about electric currents. We started doing this last month, when we saw that there are three kinds of current: displacement, convection and conduction. But we spent most of the time on displacement cur-rent-the thing that goes on between the plates of a capacitor and often isn't reckoned as current at all. This month we are concerned with the other two.

The current through a valve or cathode ray tube is an example of the convection kind: a movement of charges introduced from elsewhere, not normally parts of the path itself like the electrons in a conductor. Conduction currents are the "ordinary" sort found in Chapter One of any elementary book on electricity. They are the most complicated and
difficult to understand-a fact about which a discreet silence is maintained in the said elementary book, which works on the principle that education is a process of diminishing deception.
Fortunately we don't have to go fully into the complications to get a rough idea of how to make currents flow freely through insulators. So we shall draw an elementary-book diagram of an enormously enlarged piece of insulator-Fig. 1. Here the circles represent complete atoms, each consisting of a positive nucleus with an electrically equal but negative cloud of electrons around it. As a whole, therefore, it is neutral. The atoms are fixed in position by forces which are prominent among the difficulties referred to above, but the fact that they are fixed means that the insulator is a solid. And they are arrayed in regular formation, which means that it is a crystal. (Another of the things too difficult to explain briefly is that the nature of electrons permits them to flow freely through a perfect crystalline structure provided their "wavelength" is simply related to the regular inter-atom spacing.)
We continue to follow the elementary book in supposing that all the electrons are bound to their respective atoms, whereas in good conductors such as metals at least one electron per atom is free to roam around, as in Fig. 2. And it does, even when no e.m.f. is applied. But such roamings are random, so on the whole cancel out.
When an e.m.f. is applied, the electrons are attracted towards the positive end, and their movement in that direction constitutes an electric conduction current (in the opposite direction, according to convention). But there are the same number of them as before in any part of the metal, which is therefore just as uncharged when current is flowing through it as when there is none. As one can readily

Fig. 2. Here by contrast is a metal, in which each of the atoms has an electron free to take part in a flow of current. Each electron being a negative charge, the fixed parts of the atoms carry an equal positive charge. The material as a whole is neutral.
imagine, the progress of the electrons is considerably impeded by the stationary atoms, like the balls on a pin table. They are interrupted and have to begin again from a standing start so often that instead of accelerating uniformly all the way their average speed is practically constant. This average speed-and therefore the strength of current-is proportional to the e.m.f., as stated in Ohm's law. The obstructiveness of the atoms is usually known as resistance.

In a vacuum, on the other hand, there is no charge at all-or anything else-so when electrons are pushed in and made to flow through it, as in Fig. 3, they charge it negatively. And because charges repel others of the same sign, this space charge (as it is called) discourages those coming on behind from the cathode and restricts the flow. If it were not for the space charge, the current would be limited only by the number of electrons emitted, for (as we saw last month) no e.m.f. is needed to keep a current flowing through empty space. Valve currents are therefore described as "space-charge-limited."

Once the electrons get free from the space-charge huddle around the cathode, they move with constant acceleration to the anode under the influence of the positive voltage there. The ultimate speed they

Fig. 3. A vacuum diode, which contrasts with both insulator and metal in having (as nearly as possible) no atoms in the path of the current, so the electrons charge it negatively.
reach is proportional to the square root of that voltage; actually, $594 \sqrt{ } \mathrm{~V} \mathrm{~km} / \mathrm{sec}$, so even with a moderate V it is considerable. For example, with the very usual h.t. of 250 volts it is $9,400 \mathrm{~km}$ (or 5,830 miles) per second. This contrasts with one tenth of an inch per second through copper even when the current is very strong.

It is possible-as has been confirmed by experi-ment-to combine features of both types of conduction by introducing the necessary electrons into an insulator. As these are additional to those already present there, they charge it negatively, as in a vacuum valve (Fig 4). But because the conduction is in a solid crystal, it has something in common with transistor operation.

The obvious question is how to introduce the electrons. Presumably not by clamping a red-hot cathode against the insulator. That might indeed cause current to flow-by ruining the material as an insulator. If, on the other hand, electrons can come out of cold metal, why don't they? It would be most awkward if they did, for all insulators would then conduct.

This is where we have to go into the matter a little farther, to understand why cathode heating is necessary and why electrons don't usually flow from metal into insulators.

So long as an electron is moving around inside the
solid of which it is a part, it is within a virtually uncharged space, as we have seen. But the moment it strays outside it finds itself as a negative charge close to the rest of the solid, which is now an equal positive charge. Their mutual attraction prevents the electron escaping unless its take-off speed is sufficient to carry it clear. This is the same sort of problem as sending a vehicle into space from the earth; the rocket has to give it at least a certain minimum velocity to ensure its departure.

The electron's minimum departure speed is expressed as the voltage needed to give it that speed from a standing start in clear space. The amount of energy it has to possess at the surface to escape is therefore reckoned in electron-volts (eV), and it is called the work function (ϕ). It varies from about 1 to 7 according to the kind of surface.

Now heat is nothing more nor less than the mechanical energy of the particles of which things are made. Heating a solid makes the loose electrons circulate faster. When their individual energies exceed ϕ electron-volts and they are favourably placed for a take-off, they can escape. To use the familiar technical term, they are emitted. Surfaces such as barium oxide, having a ϕ not much more than 1 eV , emit at a dull red heat; those such as bare tungsten $(4.5 \mathrm{eV})$ need white heat. Hence the preference for oxide-coated cathodes.

One way of looking at ϕ is as a measure of the attraction between an electron and the solid from which it has been removed. So if two solids having the same kind of surface-and therefore the same ϕ -are brought into contact, electrons can pass equally easily in either direction from one to the other; the attractions of the two cancel out. On the other hand, if surfaces with different ϕs touch, the one with the greater ϕ tends to collect rather more electrons than the other. This charges it negative, which makes it repel any further electrons. A balance is reached when the potential on that side due to the acquired charge exactly counteracts the difference in ϕ. This difference is called the contact potential, and between different metals is of the order of $\frac{1}{4} \mathrm{~V}$. If you are planning to get a supply of electricity for nothing by joining up lots of these contacts in series, you have to remember that the e.m.f. provided by the contact between metal A and metal B will be cancelled out by the next contact, which must be B to A.

What happens when a metal is brought into contact with an insulator? Insulators have a property called electron affinity, which corresponds to work function in metals, and is usually greater, so that the

Fig. 4. With the same symbols as in Figs. I and 2, a current through an insulating crystal would be represented like this. The atoms being neutral, the current electrons form a space charge.

Fig. 5. (a) Potential step between metal and insulator, which prevents electrons flowing freely into the insulator. (b) If the surface of the insulator in contact with the metal has a thin layer of n-type material, the step is reduced to a very thin ridge which is "transparent" to electrons.
insulator becomes negative and repels further electrons from the metal. But it has been found possible to devise contracts that prevent the formation of this potential step or barrier, by diffusing donor impurity -that is to say, one releasing electrons-on the surface of the crystal to a depth of a few millionths of an inch. This cannot eliminate a potential barrier altogether, but instead of a step as in Fig. 5(a) it is a ridge (b) so thin-a small fraction of one millionth of an inch---that electrons can pass through it quite freely by the tunnel effect I described in the August 1960 issue. Such a contact is the equivalent of the hot cathode in a valve, and the crystal takes the place of the vacuum. If a contact at the other side of the crystal is made positive, a space-chargelimited current flows through.

It still isn't quite so simple, because no crystal is perfect, and imperfections act as traps for electrons, delaying them for periods that may extend to days. Every atom is a possible location for such a trap, so even if only one in a thousand is not in perfect crystalline formation the number of traps is enormous. Relatively trap-free crystals have been produced by careful growing and by the process known as compensation-cancelling the effect of residual impurity by adding an impurity of the opposite kind.
These problems have been solved experimentally sufficiently to demonstrate that insulator valves are possible.

But why should anyone want to make them possible? From what I have said they might seem to combine the disadvantages of vacuum and semi-conductor valves. The space charge is a nuisance in a vacuum valve, necessitating a high anode voltage to overcome it. And the atoms are a nuisance in solids, obstructing the current flow.

But this would be the wrong way to look at the idea. On the whole, the best features of each are combined. There is the cold cathode, small size and power consumption, almost unlimited life and unbreakableness of the transistor. But unlike the transistor it is not upset by temperature rise. And, as is well known in connection with valves, the space charge reduces noise. Transistors are comparatively noisy devices. High anode voltages are not needed in an insulator valve, because the distance from the cathode can be made very much less than in a vacuum valve. The same feature reduces the transit time between the electrodes, which limits the frequency at which vacuum valves can amplify.

Transistors, in spite of their microscopic inter-
electrode distances, are still more limited, and it is interesting to consider why.

A little while back I contrasted the unimaginably supersonic speeds of the electrons in a vacuum valve with their less than snail pace in the copper wires leading to it, and you may have been left with the impression that this was due to their path through the wire being cluttered with atoms in contrast to the clarity of the vacuum. If so, I must correct it. One could get a given flow of water-say a gallon per second-either by a narrow jet forced out at great speed by high pressure, or by a wide river flowing almost imperceptibly across the plain. Similarly with an electric current. Through the vacuum there are a few electrons flashing by at high speed; in the wires the same current is made up of enormous numbers of them drifting very slowly. Even in a transistor, though free electrons are far sparser than in a metal, they are much more plentiful than in a space-chargelimited device.

Another reason for slow transit in a transistor is that nearly all the collector voltage appears across the base/collector junction, which is a reverseconnected rectifier and therefore presents a very high impedance compared with the main body of base and collector materials. There is, therefore, hardly any electric field across the base region to urge on the electrons or holes received from the emitter. They just diffuse slowly across, like a drop of ink in a glass of water, so no wonder the response to highfrequency signals applied to the base is sluggish. In an insulator valve, however, an appreciable field can be established to expedite the passage of the emitted electrons through the crystal lattice. Moreover, the fewer the active charges, the smaller the input capacitance, and that too helps at v.h.f.

Some basic research has been going on at Birmingham University, an account of which has recently been published by Dr. G. T. Wright (fourn. I.E.E., Oct. 1962) but so far, it seems, the electronic industry has been too busy with semiconductor devices to embark on the considerable development work needed to make insulator valves a commercial success. But it looks as if they offer sufficient attractions to justify the effort. However, don't write to ask me where you can buy some!

INFORMATION SERVICE FOR PROFESSIONAL READERS

The reply-paid forms introduced recently to replace the postcards hitherto included have proved to be very helpful to professional readers, judging by the number of forms returned to us. This improved Wireless World service is therefore being continued.
The forms are on the last two pages of the issue, inside the back cover, and are designed so that information about advertised products can be readily obtained merely by ringing the appropriate advertisement page numbers. Space is also provided for requesting more particulars about products mentioned editorially.

By the use of these forms professional readers can obtain the additional information they require quickly and easily.

TRANSISTOR AMPLIFIER OUTPUT STAGES

3.-COMMON-EMITTER WORKING CONDITIONS

By O. GREITER

THE two preceding articles have been concerned mainly with the problem of stage structure and have indicated the paramount position of the commonemitter mode of operation. It is therefore essential to ensure that the design principles of this type of stage are clearly understood. A power stage transistor can be regarded as operating under fairly large signal conditions. These are conditions in which the signal is too large for the characteristic to be approximated by its tangent at the working point but in which operation is not extended to reach both the severely non-linear regions although, as in Class B, one of the non-linear regions may be an important fraction of the working range. The object is; in fact, to provide sufficient overall linearity

Fig. 10. Typical output transistor characteristics.
for negative feedback to be satisfactory as a dis-tortion-controlling mechanism.
Much of the literature on transistor circuit design is devoted to the problems of common-emitter stages. The first and, in the strictest sense of the word, the most vital is the matter of bias and the stabilization of the operating conditions. In power stages this is a particularly awkward problem since in the analysis of the thermal stability it is inevitable that the heat should be high and that the stabilization should be low. The methods used for stabilizing low-level class A stages are frequently unsuitable for high-level class B stages since they offer a choice between the waste of a substantial part of the power
output and the use of ridiculous values of capacitance.
The biasing of class B stages introduces even more problems, for a new condition is imposed on the bias circuit. Incorrect biasing can lead to crossover distortion and also, in practice, although this is not discussed in the texts, to instability. The instability will only occur when the bias results in extra high gain near the origin due to excessive overlap of the characteristics, and when the amplifier is not designed with adequate stability. Crossover distortion is well-known, but in power transistor stages it is, apparently, not uncommon for crossover distortion to be observed when the amplifier is first switched on and the transistors are cold. This condition is met particularly in car radio circuits when, as is so often the case, the car is kept throughout the winter night under a lamp-post. Since the driver should be driving rather than listening and since few cars have space and few owners the inclination to fit good loudspeaker systems, this particular problem is not of great importance. By the time the driver is warm enough to care the crossover distortion will have vanished. This rather frivolous attitude cannot be applied to serious high-quality equipment and since it is unthinkable that the user should be expected to allow his amplifier to warm up, the designer will need to test with great care to establish that this effect does not occur. It is easily overlooked, since under laboratory conditions some time may elapse after switching on before any measurements are made.

A study of the textbooks reveals some confict of opinion about the appropriate drive arrangements for common-emitter stages operating at what we are calling fairly high level. We shall consider this from the point of view of distortion generally. It must be stated at once that any conclusions which are reached will be a compromise solution and will, moreover, be a compromise based on inadequate information. Published transistor characteristics seem to fall into two classes. In one class we are given excellent graphs covering an inadequate amount of data, while in the other class we have a large number of graphs so small that even the linear behaviour is difficult to follow. Both sets of information are based on average performance, measured and averaged by engineers like the reader. The curves are drawn, no doubt using some sort of curvedrawing aid, and are redrawn in a drawing office. They do not necessarily cover the whole working range. From these we are attempting to determine the departures from linearity of a real amplifier. It is probably not unfair to accept that the kind of shape, concave up or down, is correct. It would be imprudent to measure the sag and to assign much meaning to it.

The two curves in Fig. 10 indicate the sort of characteristic which is quoted by one manufacturer, brought together so that the features are clearly visible. Particularly distinct is the extremely linear transconductance and on the basis of this we can

Fig. 11. Bias circuit for low-level stage.
decide without hesitation that this transistor should be operated from a low-impedance source. The shape of the current transfer characteristic makes it abundantly clear that if we allow the input to be a current-controlled signal we shall get a very rounded inputoutput relationship. The knee of the transconductance graph, however, is surprisingly sharp. If we are to believe the linear portion we must equally believe the knee and when we attempt to fit the two halves of a class B pair together we get a construct shown as a dotted line which indicates a good deal of crossover distortion and a very high sensitivity to the exact bias conditions.
Let us look further at the situation. To obtain a current in the collector of 10 amps we shall need a bias of 0.27 volts plus a signal of 0.5 volts, and the base current will be just over 0.5 amps . The effective input impedance is thus just about 1 ohm . A lowimpedance supply feeding a not particularly linear input resistance with an average value at high levels of 1 ohm must have a generator impedance of, say, 0.1 ohm or less. In an analysis of this kind it is sufficient to work in orders of magnitude so that we can watch the broad picture. This sort of source impedance is by no means easy to obtain in a circuit providing a.c. coupling (circuits using d.c. coupling will be treated as compound systems) and when the bias path is added it seems improbable that a solution should be found.

As soon as the bias path is mentioned it directs our attention to the fact that we are calling for a bias of 0.27 volts. If we were considering a low-level stage we might derive this bias from a circuit of the type shown in Fig. 11. The rectifier can be regarded as providing any or all of several functions. To begin with it provides a moderately well stabilized voltage which does not vary too much with changes in the main supply voltage. It has a much lower source impedance than we should obtain for the same current consumption in a purely resistive voltage divider. Some measure of temperature compensa-
tion can be provided against changes in transistor parameters. The value of $\mathrm{V}_{b \in}$ in a typical power transistor has a temperature coefficient of between -2 and $-2.5 \mathrm{mV} / \mathrm{deg} \mathrm{C}$. The correct bias for a class B stage is therefore likely to vary over quite a wide range, wider than at first one would think. Newly switched on in an unheated room the junction temperature might be $10^{\circ} \mathrm{C}$, while after running at full load for some time in a warm room $60^{\circ} \mathrm{C}$ would be a very conservative figure. This gives a change of value for V_{b} of at least 0.1 volt. The reader can easily plot for himself the combined characteristic in the crossover region of Fig. 10 when the bias is this much in error.

Since the diode can be kept at heat sink temperature it can be assumed that it will vary in voltage in accordance with the average conditions of transistor operation. There is an averaging effect due to the thermal capacitance of the heat sink and a temperature-dividing effect due to the thermal resistance between the transistor junction and the diode junction. More important at this stage is the fact that a diode operating in its low-impedance region will not provide a bias of the required value and the diode voltage must be divided down in the way shown in Fig. 11. The diode temperature coefficient expressed in $\mathrm{mV} / \mathrm{deg} \mathrm{C}$ is naturally divided down in the same ratio and the approximate compensation is lost.

No account has yet been taken of the effect of temperature on $\mathrm{I}^{\prime}{ }_{\mathrm{co}}$. . The simple concept of a firmly earthed emitter with a partially compensated bias supply is seen to be very dangerous, for it involves the use of resistance in the base circuit. The expressions for determining stability are well known and need not be reproduced here. It is important to note that the minimum stability signal may not coincide with the maximum dissipation signal. This result is derived by Lin (I.R.E. Transactions on Circuit Theory, Sept. 1957) but although he shows how for one amplitude of square wave the stability is rather lower than it is for the maximum-dissipation square wave it is not easy to produce a convincing example using an arbitrarily chosen power transistor. In any event square-wave operation will normally be only a test condition and the tester should be prepared for thermal runaway.

Let us leave this matter unresolved at this stage and let us consider the characteristics of another transistor, shown as Figs. 12 and 13. The notable feature here is the relatively good linearity of the current transfer characteristic in Fig. 13 and the smooth but continued curvature of the input characteristic in Fig. 12. Indeed a test shows that a parabola with its vertex at $(200 \mathrm{mV}, 0 \mathrm{~mA})$ can be found to fit this curve to well within normal transistor limits. Here again, therefore, it is perfectly possible to use a low-impedance drive source and we can assume that the current gain is constant enough and

Fig. 14. Effect of a 5 -ohm source in straightening the input characteristic.
simply match the two input parabolas one against the other. If we do this on the basis of preserving the match up to a collector current of 5 amps , for which we need a base current of rather over 200 mA we find that the bias voltage should be somewhere between 550 and 600 mV . The quiescent collector current will then be about 1 amp .
The following reasoning will be found in some of the literature. We wish to straighten out the characteristic of the base-emitter diode and we can do this by swamping it with a high resistance. Then we shall need to consider only the current transfer characteristic of Fig. 13. Let us therefore say that a common-emitter stage must be driven by a highimpedance source and all will be well. As an exercise the effect of a $5-\mathrm{ohm}$ source is plotted in Fig. 14. The linearization of the signal voltage (now V_{ge})-base current characteristic is very noticeable and although the plot is on a rather small scale it would seem that the bias should now produce a base current of about $1 \overline{\mathrm{~mA}}$, giving a collector current of perhaps 400 mA , instead of the base current of 40 mA giving over 1 amp .
There is something unsatisfactory about a situation in which the style of a circuit design depends so completely on the shape, in detail, of particular device characteristics. Even if the shapes were covered by some sort of specification, which they are not, we should hardly be able to enforce a claim for specific performance. In addition, as we shall see later, there are other aspects to be taken into account.

In order to compare our procedure with these two conflicting types of transistor we must bring them to the same terms and we can commence by plotting Fig. 15, the $\mathrm{I}_{\mathrm{c}}-\mathrm{V}_{\mathrm{be}}$ characteristic of our second transistor. Not surprisingly, since the current gain is fairly constant, this has very much the same shape as Fig. 12 but it is undoubtedly very different from the long linear graph of Fig. 10. The obvious step which we can take is to linearize this graph. This can be done quite easily by introducing a resistance and if we assume that the emitter current is the same as the collector current this resistance becomes simply an undecoupled resistance in the emitter lead. A rather rough estimate of the value which will give a result comparable with Fig. 14 is that it must develop about 1 volt across it at a current of 4 amps. The resistance will then be about 0.25 ohms.

A plot of the result is shown in Fig. 16 and it will be seen that it differs very little from the shape shown in Fig. 14 but now, however, there is no residual distortion or intermodulation to be produced by the curvature of the current transfer characteristic. A typical load for the transistor we are considering will be about 5 ohms and so the price of this $\frac{1}{4} \mathrm{ohm}$ in the emitter lead will be small and may, indeed, reveal that we can get more power output by working to a higher current because of the effect of the local negative feedback.

Not only does this reveal an arrangement suitable for a low-impedance drive, but it indicates an arrangement in which the term low-impedance has a different meaning. The same base current must be flowing as before, but now a base current of 200 mA needs an input voltage change of about 2 volts, so that the definition of low-impedance introduces the qualification "with respect to 10 ohms." This is a much less exacting requirement than before.

The great advantage which has been gained is the advantage of flexibility. The base can be biased directly from the voltage set by the diode so that we have full compensation for the temperature coefficient of the junction voltage. By choosing a suitable value of emitter resistance we can then set the quiescent current where we will. Automatically we have improved thermal stability of the system, for near the origin we have $\alpha \approx 32$, making $\alpha \mathrm{R}_{\mathrm{e}}=8$ and if we take the base feed resistance as 2.75 ohms we get a factor of stability $1 / 1+8 / 4=1 / 3$. This is obviously very much better than the value of near unity we obtain if the emitter is connected directly to earth. We can go further and attempt to balance out the effects of the changes in $\mathrm{I}^{\prime}{ }_{\mathrm{c}}$ o with temperature and there is a certain amount of published material on this question. There is also some evidence of unpublished ingenuity. Short periods of high dissipation will heat the junction well above the mounting plate temperature and any averaged compensation will not come into action. One compensating technique is to use an emitter resistor made of wire with a positive temperature coefficient. If this is a lamp filament or a live wire suspended so that it has a fairly small time constant the compensation will track, rather roughly, the junction temperature. Such a filament may also act as a fuse.

It will be clear that the emitter resistance which is

Fig. 15. $I_{c} / V_{b o}$ characteristic of another type of transistor requiring linearization.
introduced for purely practical reasons, among which we must also include the way in which the matching of a pair of transistors will be improved, will also free the circuit from the restraints on generator impedance which might otherwise be imposed. A high generator impedance will certainly linearize the baseemitter diode but will leave unaffected the curvature of the current transfer coefficient. On the other hand, the emitter resistance, while assisting in the overall linearity, will not be able to affect the fact that the current transfer characteristic is curved, and if a really high impedance base drive is used the feedback voltage will be powerless to affect the situation.
The approach here is rather different from that of Tharma in Mullard Technical Communications. (Vol. 3, No. 24 May 1957, p. 106 and Vol. 3, No. 29, March 1958). In the first of these references the positive temperature coefficient of the emitter resistance is used to compensate for changes of V_{b} and he shows that if the temperature coefficient of V_{be} is $2.5 \mathrm{mV} /$ deg C (it is negative in sign) a positive temperature coefficient of $0.004 / \mathrm{deg} \mathrm{C}$ will compensate the circuit when the drop across the emitter resistance is 0.63 volts. In an example he shows a drop of 0.85 volts giving compensation for $I_{c o}$ as well. The base voltage is held constant. No account is taken of the improved linearity. In the second paper he discusses the combinations of shared or common-bias chains and shared or commonemitter resistances but excludes the form which is of interest when a diode is used for bias stabilization, the shared bias chain with separate emitter resistors.
The use of separate emitter resistors is inevitable in the circuits which make use of transistors in series, as in the output transformerless (OTL) circuits. The merits of the common-emitter resistor as an aid to stability in the traditional push-pull circuit are probably overruled by the flexibility introduced when the resistors are separate. Once the use of tempera-ture-dependent elements is allowed the subject becomes one of very great complexity, for the problem becomes one of balancing distortion, efficiency and power output against maximum operating temperature and heat sink size. Engineers who were taught at school that you cannot equate apples and pears find this type of balance sheet particularly difficult.
We have managed to produce a decision to make use of a low driver impedance on the grounds of circuit convenience, the introduction of an emitter resistance to simplify the biasing and to enable us to bias to a low quiescent current being the dominant factors. A quick check, which is not reproduced as a figure shows that the knee which appears in Fig. 10 is rounded to a more satisfactory shape by the use of this technique although in fact this knee is itself suspect. There is another factor which must also be taken into consideration.
The classical theory of transistor frequency response is usually summarized into the following form. The current gain in the common-base mode, α, has a frequency variation which can be described approximately by the expression $\alpha=\alpha_{0} / 1+\mathrm{j} / / f_{\alpha}$ where α_{0} is the low-frequency limit of the current gain and f_{α} is the characteristic frequency at which the response has fallen by 3 dB . This is an approximation to the theoretically sound expression

$$
\alpha=\frac{\alpha_{0}}{\cosh \frac{\pi}{2}\left(\mathfrak{j} \frac{f}{f_{\alpha}}\right)}
$$

Fig. 16. Transistor of Fig. 15 with added 0.25Ω in the emitter lead.
and it is sometimes important to remember this since the exact expression does not have a limiting phase shift of 90° but at the 20 dB down frequency has a phase shift of close to 180°. The significance of this phase shift in the design of feedback amplifiers need not be stressed.

When the common-emitter configuration is considered it is usual to write $\alpha^{\prime}=\alpha / 1-\alpha$ and to derive from this an expresson similar to the one above except that in place of f_{α} we have $f_{\alpha}{ }^{\prime}$ and

$$
f_{\alpha}^{\prime}=\left(1-\alpha_{0}\right) f_{\alpha}
$$

The frequency $f_{\alpha}{ }^{\prime}$ is often very low, for if $\alpha_{0}=$ 0.98 and $\mathrm{f}_{\alpha}=250 \mathrm{kc} / \mathrm{s}$ we have $\mathrm{f}_{\alpha}^{\prime}=5 \mathrm{kc} / \mathrm{s}$. In the derivation of this result it has been assumed that the common-emitter transistor is current-controlled but already it has been shown that this is not the condition which will be adopted. An expression which is given for a transistor operated with a resistance \mathbf{R}_{e} in the emitter lead and a total of R_{b} in the base lead is

$$
f \alpha_{1}^{\prime}=\left[(1-\alpha)+\frac{\mathbf{R}_{\mathrm{e}}}{\mathbf{R}_{\mathrm{o}}+\mathbf{R}_{\mathrm{b}}}\right] f \alpha
$$

This can be rearranged into the form

$$
\begin{aligned}
f_{\alpha^{\prime}}^{\prime} & =(1-\alpha)\left[1+\frac{1}{(1-\alpha)+\frac{\mathbf{R}_{\mathrm{b}}(1-\alpha)}{\mathbf{R}_{\mathrm{e}}}}\right] f_{\alpha} \\
& =\left[1+\frac{1}{(1-\alpha)+\frac{\mathbf{R}_{\mathrm{b}}(1-\alpha)}{\mathbf{R}_{\mathrm{e}}}}\right] f_{\alpha^{\prime}}
\end{aligned}
$$

The conditions discussed earlier will be such that is a good deal larger than $(1-\alpha)$ and a good deal smaller than unity. Two approximations are therefore

$$
f \alpha_{1}^{\prime} \approx\left[1+\frac{\mathbf{R}_{\mathrm{e}}}{\mathbf{R}_{\mathrm{b}}(1-\alpha)}\right] \mathrm{f} \alpha^{\prime} \approx \frac{\mathbf{R}_{\mathrm{e}}}{\mathbf{R}_{\mathrm{b}}(1-\alpha)} f \alpha^{\prime}
$$

From this it is possible to draw the conclusion that with a low-impedance drive circuit we are not limited by the common-emitter cut-off frequency. This conclusion merits a much closer examination, which must be postponed until next month.

By "FREE GRID"

Is Hi-Fi Ni-Fi?

HI-FI is a relative term and merely indicates that the amplifier or what-have-you, to which it is applied, gives a greater degree of fidelity to the original input than do ordinary run-of-the-mill instruments.
The ultimate aim, of course, is to build an amplifier to which the simple term "fi" can be applied. It will obviously never be possible to go beyond that, and so clearly such a term as "super-fi" which I saw recently is absurd. It could only mean that the instrument to which it was applied, went beyond " fi " inasmuch as it added something of its own to the original sound which it was designed to reproduce. If it did that, then it wouldn't be entitled to the honourable title of "fi."

Things are exactly the same if we use the word " reproduction" instead of "f." Obviously the perfect amplifier and loudspeaker system would be capable of reproduction, and nothing more. Any euphemistic qualifying adjectives would, therefore, mean that the equipment fell short of the goal of reproduction. The term "good reproduction" is permissible in a loose sort of way to indicate that it approaches nearer to the aim of reproduction, than is normally heard.

Now I may be asked what all these ebvious statements of mine are in aid of? The answer is that I want to know how near to "fi" is the quality of reproduction which to-day is called "hi-f "; in other words, is to-day's "high-fi" "nigh-fi"; and if so how "ni" is it to "fi"? Year by year we get closer to " fi "; indeed day by day we get closer to it by infinitesimally small degrees, and I suppose that those skilled in juggling with the calculus are really the only people who could sort it all out.

Personally, I don't think we shall ever reach the goal of "fi," but as the years go on we shall get even closer to it, and the closer we get, the more infinitesimal will be each move nearer to the target. The thing which set me thinking about all this was an article by E. R. Whittaker in our sister journal, Wireless and Electrical Trader, some months ago. I don't suppose many of you see this journal as it is intended only for those who-sordid fellows-seek to make a profit out of us by making and selling wireless sets and accessories.
Mr. Whittaker tells us that the "hi-fi" of 10 years ago was by present-day standards, only medium
"fi," we have thus moved considerably nearer to the goal of " fi " in the past decade, and it cannot be doubted, I think, that in 10 years' time our present "hi-fi" standards will sound relatively poor. But I still wonder how "ni" to " fi " is our present "hi-fi"? Can any one of you tell me, or is my question as unanswerable as asking what is beauty?

TV Aerial Design

I WONDER if any of you, especially those who live in "fringe" or "extra-fringe" areas, noticed-or seemed to notice-a loss of television signal strength during one of the Arctic spells we recently experienced. If so you may have been tempted by your womenfolk into wrong thinking.
The guiding or misguiding rule of every woman in technical matters seems to be "post hoc, ergo propter hoc." Working on this theory Mrs. "Free Grid" misled even me into thinking that because a drop in signal strength occurred when the TV aerial was encrusted with a thick coating of ice, therefore, this was obviously the cause of the trouble.

However, calm reasoning made me realize that she was all wrong. The only cause of signal-strength loss would be a direct electrical leakage between the aerial elements and the earthed support, but ice is an insulator like distilled water, and not a conductor because all the various impurities associated with the water from which it is formed, especially in urban areas, get thrown out when it freezes.

Dismissing this idea of a direct leakage path, I then recalled that the dielectric constant of ice is on the high side. Thus, I reasoned, the ice around the aerial elements could act as a series of paralleled shunting capacitances to the earthed support. The fact that the major drop in signal strength was in the I.T.A. transmission with its higher i.f. seemed at first to support this idea, until I recalled that most TV aerials are rather "broad-band" and will stand quite a bit of mistuning.

The real nigger-in-the-woodpile was, I found eventually, the new I.T.A. aerial at Croydon which had also a new radiation pattern.

Despite all this, however, I do think TV aerial manufacturers should seriously turn their attention to the production of electricallyheated antennae in readiness for the winter of $1964 / 5$ when the $625-$ line u.h.f. system will be in full swing, and we shali all be using horizontal
aerials. Obviously if these become heavily coated with ice their rods may tend to droop with the weight, more especially some of the very complicated combined-band ones, supported at only one end.
But apart from any question of snow and ice, I would point out that it will be necessary to provide electrical heating for these Band IV gerials at all seasons of the year, because horizontal rods will form natural perching places for various types of bird including the ubiquitous pigeon which is of no mean weight and bulk and so would tend to have quite a considerable distorting effect on the aerial.
Aiso, of course, the self-capacitance of several well-fed pigeons might just possibly have an adverse effect despite its broad tuning. It is, however, a matter for the slide-rule addicts to work out. Perhaps they will send me a few figures in support or ridicule of my idea.
At any rate it is clear, I hope, that it would be desirable to keep large birds off our Band IV aerials, and hot rods seem to be the answer. The rods need not be so hot as to invite the attention of the R.S.P.C.A.
Of course it might well be that aerial designers already have the matter in hand, and have devised a far better preventive than I have suggested.

Pioneer Propagation Problems

NOWADAY'S continuous radio communication over vast distances throughout the 24 hours of the day is so commonplace that we pay no more heed to it than we do to the constant broadcasting service given by the B.B.C. It is just taken for granted. Things were far different before the first world war, however, as I was recently reminded when rereading the Wireless World Golden Jubilee number of April 1961.

In that issue the author of the history of wireless, writing under the title of "Since the Wireless World Began" stated (p. 161) "a few of the early point-to-point stations, working at distances well beyond daylight range, provided a rather erratic service by taking advantage of nighttime propagation conditions."

At the time I first read this, I made a resolve to find out just how many of these direct high-power services were in operation. As far as I can ascertain, there were only two. There was in the first place, the

San Francisco-Honolulu service run by the Federal Co., using the Poulsen arc system. As far as I can find out, this service never did succeed in establishing communication in the period when there was daylight over the whole path, but relied solely on night-time propagation.

There was also the link between Port Stanley, in the Falkland Isles, and Montevideo, the Uruguayan capital, the distance being well over one thousand nautical miles. Quite frankly I cannot find evidence of any other long-distance service.

It would almost seem as though the Kaiser did the promoters of the various proposed long-distance services, including our own Imperial Wireless chain, a good turn by saving them the embarrassment (financial as well as emotional) of being unable to fulfil their contracts. 'The Kaiser's war and its aftermath gave time for the development of beamed short waves which have completely taken the place of the old long waves* of the pre-1914 efforts at continuous and reliable long-distance communication.
\star The building of v.l.f. stations at Solway and in the U.S.A. is evidence that the lower end of the radio spectrum has not been completely superseded.-ED.

Etymological Enquiry

I HAVE always been interested to find out when the word "radio" was first used as a synonym for what we in this part of the world call "wireless," and have ventilated my views on the matter previously in these columns.

My only excuse for returning to the subject is that I have had a letter about it from a correspondent. He draws my attention to some remarks by Süsskind in the October 1962 issue of Proc. I.R.E. Süsskind states that in 1897 Branly described his coherer as a radio-conductor. Süsskind italicizes the term but my correspondent suggests that Branly, being a Frenchman, would surely have called it a radio-conducteur.

However, my own opinion is that Branly might have used the termination "or" because he thought it had an international flavour. He certainly had a useful precedent a century earlier when, in the interests of international homophony, the French adopted the word kilometre instead of the more correct chiliometre.

I wonder if any of you can throw any more light on the matter of Branly's term, or name any earlier instances of the use of the word radio as a synonym for wireless.
The orthodox view is that "radio" was coined by the Germans as an acceptable word for use in the first international radio convention drawn up in Berlin in 1903. The word had already been used in a non-wireless sense, in X-ray work and other fields.

BRAND
 List Nos.: E.H.18, 19, 20.

List No. L.C. 15.

List Nos. D.862-3.

List No. S.805.

List No. M.P. 20.
E.H.18, 19, 20.

A set of three flexible shaft couplers to fit shafts of $\frac{1}{8} \mathrm{in}, \frac{3}{16} \mathrm{in}$. and $\frac{1}{4} \mathrm{in}$. diameter respectively. They will transmit up to 25 in. lbs. torque in up to 10° axial deviation and are therefore suited to many varied applications.

L.C.15.

We are the first manufacturers in the United Kingdom to develop a lampholder to accept the new. "Capless-lamps"; having " open" construction and high insulation its performance, even under adverse climatic conditions, is exceptionally good. There are various fixing brackets or clips available and the range is still being increased. Write now for fuller details and drawings.
D.862-3.

The Signal Lamp illustrated left incorporates a new design of lamp-holder which has very high insulation properties. It can work at a higher voltage than most signal lamps of comparable size and can also be used under adverse, high humidity conditions.

S.805.

This completely new toggle switch has been designed to meet heavy duty requirements of up to $10 \mathrm{amps}, 250$ volts ($50 \mathrm{c} / \mathrm{s}$ A.C. only). The body, operating dolly and front bezel are all moulded, thus giving high insulation and safety even under adverse conditions. Fixing is by push-in, spring grip fit, to a rectangular hole.

M.P. 20.

A new push-button, for 28 Volt, 3 Amps maximum working, which has an extremely modern and clean front-of-panel appearance. The operating button and bezel are square and are moulded in contrasting colours of red and black respectively. Switching is normally "OFF", press for "ON".

FURTHER DETAILS \& DRAWINGS AVAILABLE ON REQUEST

A. F. BULGIN \& CO. LTD.

MARCH MEETINGS

Tickets are required for some meetings; readers are advised, therefore, to communicate with the secretary of the society concerned.

LONDON

4th. I.E.E.-Discussion on "The evaluation of technologies for fabricating h.f. transistors" at 5.30 at Savoy Place, W.C.2.

6th. British Interplanetary Society. -One-day symposium on "Ground support equipment" at 4 Hamilton Place, W.1.

6th. Brit.I.R.E.-" Travelling-wave crystal amplifiers" by C. S. Brown at 6.0 at the London School of Hygiene, Keppel Street, W.C.l.
7th. Television Society.-"Colour television in medicine" by Prof. R. Warwick at 7.0 at 164 Shaftesbury Avenue, W.C.2.

11th. I.E.E.-" Microwave theory or microwave green fingers?" by L. Lewin at 5.30 at Savoy Place, W.C.2.

13th. I.E.E.-"Pulse techniques in line communications" by R. O. Carter at 5.30 at Savoy Place, W.C.2.
13th. Brit.I.R.E.-"Industrial leadership" by Prof. A. Rodger at 6.0 at the London School of Hygiene, Keppel Street, W.C.1.
14th. Radar \& Electronics Assoc."The rôle of the computer in radar systems" by D. Hunter at 7.0 at the R.S.A., John Adam Street, W.C.2.

15th. Institute of Navigation.-" The application of inertia navigation systems to air transport" contributions from several authors at 2.30 at 10 Upper Belgrave Street, S.W.l.

18th. I.E.E.-Discussion on " Merits of using the metric system" at 6.0 at Savoy Place, W.C.2.

19th. I.E.E. and R.Ae.S.-Discussion on "Semiconductors and their application to airborne equipment" at 6.0 at Savoy Place, W.C.2.
20th. Brit.I.R.E.-Symposium on "Multi-aperture ferrite devices" at 6.0 at London School of Hygiene, Keppel Street, W.C.l.
25th-27th. I.E.E.-Convention on h.f. communication at Savoy Place, W.C.2.
27th. Brit.I.R.E. and I.E.E.-Discussion on "Instrumentation for applied psychology" at 6.0 at the London School of Hygiene, Keppel Street, W.C.1.

ARBORFIELD

14th. I.E.E.-" The general problems of f.m. multi-channel communications" by R. G. Medhurst at 5.0 at the Garrison Hall, Arborfield Camp.

BASINGSTOKE

1st. Brit.I.R.E.-" Self-adaptive control systems" by K. R. McLachlan at 7.30 at the Technical College.

BEDFORD

18th. I.E.E.-" Solid circuits" by J. Walker at 7.0 at the Bridge Hotel.

BIRMINGHAM

4th. I.E.E.-" What is a magnetic field? " by J. J. Matthews at 6.30 at the James Watt Memorial Institute.
25th. I.E.E.-" Some aspects of radio propagation research" by Dr. \mathbf{K}. G. Budden at 6.0 at the James Watt Memorial Institute.

28th. I.E.E. \& Brit.I.R.E.-Symposium on "Automatic control" at 10.15 at the Electrical Eng'g Dept., the University.

BRISTOL

12th. Television Society.--" U.H.F." by H. W. N. Long at 7.30 at Royal Hotel, College Green.

27th. Brit.I.R.E. \& British Computer Society.-"Hybrid computers" at 7.0 at the University Engineering Lecture Rooms, Queens Building, University Walk.

CAMBRIDGE

20th. I.E.E.--" Electronics in neurophysiology " by P. E. K. Donaldson and Dr. J. G. Robson at 8.0 at the Dept. of Physiology, Downing Street.

CARDIFF

6th. Brit.I.R.E. - "Masers and lasers" by Dr. R. C. Smith at 6.30 at the Welsh College of Advanced Technology.
27th. Society of Instrument Tech-nology.-" Electronic weighing "" by L. F. Cohen at 6.45 at the Welsh College of Advanced Technology.

COVENTRY

25th. Brit.I.R.E.-" Satellite communications" by R. W. White at 7.15 at the Herbert Theatre.

CRAWLEY

27th. I.E.E.--" Some aspects of the use of computers in process-control applications " by J. F. Roth at 6.30 at the Institute of Further Education.

EDINBURGH

12th. I.E.E.-" Some aspects of the use of computers in process-control applications" by J. F. Roth at 7.0 at the Carlton Hotel, North Bridge.

13th. Brit.I.R.E.-"Communication satellites" by L. F. Mathews at 7.0 at the Department of Natural Philosophy, The University, Drummond Street.

19th. I.E.E.-" The Fylingdales ballistic missile early warning station" by F. Harrison at 7.0 at the Carlton Hotel.

28th. I.E.E.-Faraday lecture on "Electronics-the key to air safety" by Dr. E. Eastwood at 7.0 at the Usher Hall.

EVESHAM

1st. Brit.I.R.E.--" Electrical synthesis of music" by A. Douglas at 7.0 at the B.B.C. Club, High Street.
llth. I.E.E.-" Transistor video amplifiers for colour television" by F. G. Parker at 7.30 at the B.B.C. Club.

FARNBOROUGH

19th. I.E.E.-" The principles and operation of large radio-telescopes" by Dr. A. Hewish at 6.15 at the Technical College.
26th. I.E.E.-" Communication tests using the Telstar satellite" by Capt. C. F. Booth at 6.30 at the Technical College.

GLASGOW

11th. I.E.E.-" Some aspects of the use of computers in process-control applications" by J. F. Roth at 6.0 at
the Royal College of Science and Technology.
14th. Brit.I.R.E.-"Communication satellites" by L. F. Mathews at 7.0 at 39 Elmbank Crescent.

IPSWICH

4th. I.E.E.-" The automatic control of machines for assembling mechanical components" by A. V. Hemingway at 6.30 at the Electric House.

LEICESTER

19th. Television Society. "GRACE" by C. G. Lloyd and J. G. Allen at 7.30 at the New Vaughan College, St. Nicholas Street.

LIVERPOOL

4th. I.E.E.-" Optical masers" by I. L. Davies at 6.30 at the Royal Institution.

MALVERN

28th. Brit.I.R.E.-" Techniques for precise frequency measurement in the microwave region" by K. G. Hope at 7.0 at the Winter Gardens.

MANCHESTER

7th. Brit.I.R.E. and I.E.E.-" Satellite communications" by W. J. Bray at 7.0 at the Reynolds Hall, Manchester College of Science and Technology.

13th. I.E.E.-" The Atlas computer" by Dr. D. B. G. Edwards at 6.15 at the Electrical Eng'g Dept., the University.
19th. I.E.E.--" Some aspects of the use of computers in process-control applications" by J. F. Roth at 6.15 at the Engineers' Club.

NEWCASTLE-ON-TYNE

4th. I.E.E.-" The impact of the epitaxial technique on semiconductor devices" by Dr. J. T. Kendall at 6.30 at Rutherford College of Technology, Ellison Place.
13th. Brit.I.R.E. -- " Manufacture and test procedure of reliable resistors" by B. H. Nichols at 6.30 at Nevilie Hall, Westgate Road.
18tt. I.E.E.-" The principies and operation of large radio-telescopes" by Dr. A. Hewish at 6.30 at Rutherford College of Technology, Ellison Place.
25th. I.E.E.-Faraday Lecture on "Electronics-the key to air safety" by Dr. E. Eastwood at 7.15 at City Hall.

PORTSMOUTH

20th. I.E.E.--" Delta-modulation" by R. T. A. Standford and A. Poulett at 6.30 at the College of Technolgy.

RUGBY

13th. I.E.E.-" Superconductivity" by Prof. W. F. Vinen at 6.30 at the College of Engineering Technology.

SOUTHAMPTON

12th. I.E.E..-" Pulse transformers" by Dr. R. C. V. Macario at 6.30 at the University.

26th. Brit.I.R.E.-" The analogue computer as a tool in engineering research and design" by A. J. Collins at 7.0 at the Lanchester Building, the University.

WOLVERHAMPTON

6th. Brit.I.R.E.-" Lasers and their practical applications" by K. D. Harris at 7.15 at the College of Technology.

MULTIMINOR

The Mk. 4 MULTIMINOR is an entirely new version of this famous Avo instrument and supersedes all previous models. It is styled on modern lines, with new high standards of accuracy, improved internal assemblies, and incorporating panclimatic properties.

The instrument is supplied in an attractive black carrying case, which also houses a pair of leads with interchangeable prods and clips, and an instruction booklet. It is packed in an attractive display carton. Robust real leather cases are available, if required, in two sizes, one to take the instrument with leads, clips and prods, and the other to house these and also a high voltage multiplier and a d.c. shunt.

D.C. CURRENT: $100 \mu \mathrm{~A}$ f.s.d. - IA f.s.d. in 5 ranges A.C. VOLTAGE: 10 V f.s.d. $-1,000 \mathrm{~V}$ f.s.d. in 5 ranges D.C. VOLTAGE: 2.5 V f.s.d. $-1,000 \mathrm{~V}$ f.s.d. in 6 ranges D.C. MILLIVOLT RANGE: $0-100 \mathrm{mV}$ f.s.d. RESISTANCE: $0-2 M \Omega$ in 2 ranges using 1.5 V cell SENSITIVITY: $10,000 \Omega / \mathrm{v}$ on d.c. Voltage ranges $1,000 \Omega / \mathrm{V}$ on a.c. Voltage ranges

Modern styling in light grey with legible black engraving.
Constructed to withstand adverse climatic conditions.

Ever ready case, including leads, prods and clips.

Improved internal assemblies.
Re-styled scale plate for easy, rapid reading. Two basic scales each 2.5 in . in length.

New standards of accuracy, using an individually calibrated scale plate: d.c. ranges $\mathbf{2 . 2 5} \%$ of full-scale deflection. a.c. ranges $\mathbf{2 . 7 5} \%$ of full-scale deflection.

Available accessories include a 2500 V d.c. multiplier and 5, 10 and 25 A shunts for d.c. current measurement.

Dimensions (including case):-
$\left.\begin{array}{l}73 \times 4 \times 15 \\ (197 \times 102 \times 4 i \\ \hline\end{array}\right\}$ approx..$~$
Weight (including case):-
I $\frac{1}{2}$ lbs. (0.675 kg .) approx.

For full details of this great new pocket size instrument, write for descriptive leaflet.

FOR ALL RADIO, ELECTRONIC AND DOMESTIC ELECTRICAL CERAMICS CONSULT:

STEATITE \& PORCELAIN PRODUCTS LTD.

Spot-on alignment is often difficult and expensive, but its need can be cheaply, swiftly and efficiently eliminated by the use of a HYDROFLEX METAL BELLOWS SHAFT COUPLING. This compact unit takes up angular and lateral misalignment and provides a constant velocity drive without backlash. No friction... no servicing . . . no lubrication.

Some examples are illustrated. Even if yours is more difficult, our Customer Engineering Service can help you. Their skill in solving such problems is freely at your disposal.

DRAYTON CONTROLS LTD • HYDROFLEX DIVISION • West Drayton, Middlesex
 $7000 \mathrm{Mc} / \mathrm{s}$ PORTABLE OUTSIDE BROADCAST LINK FOR TELEVISION

This equipment comprises a number of easily portable units forming independent frequen-cy-modulated transmit and receive terminals operating in the frequencyrange $6850 \mathrm{Mc} / \mathrm{s}$ to $7300 \mathrm{Mc} / \mathrm{s}$.
The design is based on considerable experience gained since 1948 with STC portable television links supplied to the British Broadcasting Corporation, and administrations in various parts of the world.

- Suitable for 405,525 , or 625 line, monochrome or colour, television picture transmission.
-C.C.I.R. approved i.f. of 70 Mc / s.
- Highly efficient electrical screening allows working on same mast as high-powertelevision transmitter.
- High frequency stability with out a.f.c. circuits.
- Has built-in lining-up equip. ment.
-Range 30 to 40 miles. Exten. ded by connecting a limited number of links in tandem.
Receive terminal disassembled into its component parts for transport.

Block schematic of transmit and receive terminals.

used by the BBC
STC engineors can advise on all problems concorning radio
links for both television and telephone transmission.

Ask for leaflel C/2039

Standard Telephomes and Cables Limited
TRANSMISSION SYSTEMS GROUP
NORTH WOOLWICH • LONDON • E. 16

tish oxymen
Ha villand A1mozvirt

C.C.I. I.C.T.I.B.M. Imperial Co Miniatry of Supply Ministry of Aviation Muliaro lis ledical Research Council Morgan crucible pleasey Pye $111 p s$ Radio R.A.E.S.Smith Sc Sons Sylvania-Thorm th - C. Ultra Electronices University of leeds univaris of $31 x \mathrm{mingham}$ university or oxpora university of Westlanct Alrorart Wiggins Teape Neatinghoues Acmsr rgy Establishment A. E.I. Associated Television A. C 3.I.C.C. Bush Radio B.E.C.British OKygen B. B M C -ntral Electricity Board De Haviliand Alxcxis ctric E.M.I.Elilot Bros. Ford Motor Co.pajzey in mti Frigidaire G.E.C. A.H.Hunt I.C.I. I.C. N.I.B. aik J. Lyona Leo computere John laing Ministry of Muliska Murphy Morphy Richardes Mealcal Rescarch

from ANDERS to industry meters made to measure

There are many famous users of the Anders service-a service designed to give the speediest possible delivery of even the most unusual meter requirement. The Anders Instrument Centre has unique facilities for supplying nonstandard meters of all types, from $I_{\frac{1}{2}}{ }^{\prime \prime}$ miniatures to the largest switchboard meters, specially calibrated and tested. For immediate delivery, Anders carry huge stocks of stan-
dard meters of all well-known makes and types. New ranges are constantly being added-Anders are now sole UK agents for the famous Frahm vibrating reed frequency meters and tachometers. $2 \frac{1}{2}$ " miniature hermetically-sealed instruments to large panel-mounting meters with accuracies of 0.1%.
For full details of the Anders service, please write or 'phone

QuDE3S
ELECTRONICS LIMITED
103 HAMPSTEAD ROAD, LONDON N.W.I. TELEPHONE: EUSTON 1639 Contractors to GPO and Government Departments. Ministrv of Aviation approved. meters, blectronic and tbst bquipment to individual specifications

RCA HIGH FREQUENCY COMMUNICATION TRANSUITTER ET 4331

We have a full range of spares for this equipment.

Frequency Range: 3,000$20,000 \mathrm{~K} / \mathrm{c}$.

Power Output: 1 KW Telephone, 1.4 KW Telegraph.

Supply Requirements: 220 v. single phase 50/60C.

Crystal Selector switch for six crystal frequencies.

The transmitter is capable of high speed keying.

Tube Complement: Crystal Oscillator (802), Interm. P.A. (803), Power Ampl. (2-833A), 1st Audio Ampl. (53), 2nd Audio Ampl.(42A3), Modulator (2-833A), Rectifier ($4-872 \mathrm{~A}$).

All transmitter stages includ-
ing modulator and power supply unit are housed in one cabinet as per photo.

Dimensions: Height $84 \frac{1}{2} i n$. Width 36 lin. Depth $27 \frac{5}{1} \mathrm{in}$. Weight $1,900 \mathrm{lb}$. (nett).

15 KIV TELEGRAPH TRANSMITTER

Type ET-4750-X

Frequency Range-2 to 22 megacycles.
Keying Speed-up to 250 words per minute.
Power Supply Requirements- 230 v . 3 -phase $50 / 60$ cycles.

Enclosure Rectifier Unit	Length	Height	pth
	11ft. Oin.	7 ft . 6 in .	4ft. lin.
	4ft. 2 in .	5ft. 3in.	3 ft . 2 in .
Plate Transformer	2 ft .69 in .	3 ft . $6 \frac{8}{8} \mathrm{in}$.	1ft. $9 \frac{1}{2} \mathrm{in}$.
Weight (Nett) Enclosure (including control, R.F. and Output panels)			
put panels)	
Rlate Transformer 7	000 volts		1,2501b.

P.C.A.
 RADIO

Offices and Works

Telephone: RIV 8006/7

Tube Complement: Oscil-lator- 807 (1), Doubler(1st) Amplifier- 807 (1), Intermediate Power (2nd) Am-plifier-813 (4), Power (3rd) Amplifier-889-R (2), Plate Rectifier- 872 A (6), Auxiliary Rectifier- 872 A (3), liary Rectinier-872A (3), Beyer-807 (2).

5 KW COMMUNICATIONS TRANSMITTER

Three V. I. R's (very imporatat reloys)

Guaranteed always at hand for Immediate Delivery these three basic units form part of the KEYSWITCH Standard Range manufactured to Ministry and Post Office standards.

WHARFEDALE WIRELESS WORKS LTD.
IDLE BRADFORD YORKSHIRE
Telephone: Idle 1235/6 Telegrams: "Wharfdel," Idle, Bradford

Each week sees new consignments of Wharfedale Loudspeakers set off on lengthy journeys. Some go to Australasia, others to the Americas and Japan also takes its share as do most European Countries. In fact, wherever people wish to listen to music or speech, reproduced as near to " live " as possible, you will find Wharfedale Loudspeakers-undoubtedly among the best in the world.

6 W STEREO AMPLIFIER KIT
 Model S-33
A versatile high-quality self-contained STEREO MONAURAL Amplifier with adequate output for a living room. Can be used to convert a favourite (monaural) radiogram into a stereo-radiogram. 3 watts per channel; 0.3% distortion at 2.5 w/chnl. 20 dB N.F.B., inputs for Radio (or Tape) and Gram., Stereo or Monaural; Ganged
controls. Sensitivity 200 mV . 313.7 .6

6 W HI-FI STEREO AMPLIFIER KIT Model S-33H

An inexpensive stereo-mono amplifier with the high sensitivity necessary for lightweight miniature ceramic pick-ups (e.g., Decca Deram). De luxe version of the S-33 with attractive two-tone grey perspex panel.
£15.17.6
5 W HI-FI MONO AMPLIFIER KIT Model MA-5 A low-priced general purpose Hi-Fidelity amplifier based on the popular $\$-33$ and intended for those who do not require a stereophonic system. Separate bass and treble controls, Gram and Radio inputs. Suitable for most crystal pick-ups. A printed circuit simplifies construction.
£10.19.6
HI-FI SINGLE CHANNEL
AMPLIFIER KIT Model MA-I2
 A compact high fidelity power amplifier (including auxiliary power supply). 12 watts output. Wide frequency range and low distortion. A variable sensitivity control is fitsensitivity control is fit-
ted enabling it to be used with an existing amplifier in a stereophonic system. Other applications include sound reinforcing systems, transmitter modulators, for use with tape recorders, also as a general purpose laboratory amplifier. 21.9 .6

STEREO-HEAD BOOSTER KIT

Model USP-I

Hi-Fi Stereo Pre-amplifier for low-output Hi-Fi P.U.s. Input 2 mV . to 20 mV . Output adjustable from 20 mV . to $2 \mathrm{~V} .40-20,000 \mathrm{c} / \mathrm{s}$. Also suitable as low-noise
£7.7.6
R.C.-coupled amplifier.

STEREO CONTROL UNIT KIT

 Model USC-IIncorporates all worth while features for high fidelity stereo and mono. Push-button selection, accurately matched ganged controls to \pm I dB. Negative feedback rumble and variable low-pass filters. Printed circuit boards. Accepts inputs from most tape-heads and any stereo or $£ 19.1$ U.0
mono pick-up. mono pick-up.

TAPE DECKS are available as " packTAPE DECKS aged deals" with other equipment. Details on request.

MALVERN'

HI-FI EQUIPMENT CABINET KIT

AN ATTRACTIVE CABINET in modern style designed to house all your Hi-Fi equipment (including tape deck and full-sized transcription record player). The cabinet parts are veneered and pre-drilled, with edging in Panoplex plastic strip for ease of finishing. Complete with everything you need for assembly, including screws, hinges and even a padsaw! Left " in the white" for finishing to choice.
Size $39 \frac{1}{1} \times 32 \times 21$ 皆 in .
£18.1.0

TAPE AMPLIFIER KITS Models TA-IM and TA-IS

This Combined Tape-Record Replay Amplifier is available in both monophonic and stereophonic models. Model TA-IM can be modified to the stero version with modification kit TA.IC.

TA-IM $£ 19-2-6$
TA-IS £24-10-0
TA-IC 66-I5-0

TELEPHONE AMPLIFIER KIT Model TTA-I
For Home, Office or Shop
Don't be tied to your telephone. By placing handset on Amplifier cradle you can talk or listen with both hands free. All transistor circuit, inductive pick-up coil, built-in speaker and volume concrol. 9 V battery operated. Ivory toned cabinet. Size $6 \times 5 \frac{1}{6} \times 9 \frac{1}{2}$. deep.
£7.9.6

'GLOUCESTER'

HI-FI CABINET KIT

 Will accommodate Tape Deck and/or Record Player, F.M. Tuner and Stereo Amplifier. For those with limited floor space speaker systems can be housed at each end. For this purpose a loudspeaker kit comprising two 4 in . plus 8 in . speaker systems, balance unit, speaker grille cutting cemplate, padsaw and mounting details are also available Neutral hardwoods have been carefully selected so that the finished product can be stained and polished to individual choice. There is storage space for records, etc., also for power amplifiers. Dimenslons: length $46 \frac{1}{1}$ in., height 30 in ., depth 2 lin.Mk. I for Tape Deck or Record Player... $£ 17 \quad 3 \quad 6$ Mk. II for both T/D and R/P.............. $£ 1810 \quad 0$

So ensy to use

CHEPSTOW"
 EQUIPMENT CABINET KIT

Specially designed for those whose floor space is at a premium. Will house Record Player, FM Tuner, Stereo Amplifier and ad ditional power amplifiers where needed. An upper deck is available for the self-powered stereo amplifiers to ensure maximum heat dissipation. Veneered and left in white for finishing to personal taste. Overall dimen. 11.12 .6
sions are $35 \times 18 \times 33$ in. high.

HI-FI STEREO AMPLIFIER KIT

Model S-99

Gives 18 w. output (9
 per channel with 0.2 per
channel). It has ganged controls. STEREOI MONAURAL gram., radio and tape recorder inputs and push-button selection as well as many other first-class features well above its price range. In grey metal cabinet with a golden surround and perspex panel. Also ultra-linear push-pull output. \&27.19.6 Printed circuit construction

HI-FI SPEAKER SYSTEM KIT

Model SSU-I

Ducted-port bass reflex cabinet, " in the white." Frequency response is $40-16,000 \mathrm{c} / \mathrm{s}$. Power rating 25 watts. Matched speaker units 8 in. high flux (12,000 lines) with hyperbolic cone and 4 in . wide angle dispersion type for higher frequencies.
 With legs $\mathrm{E} \mid 1 / 12 /=$
£10.17.6

COTSWOLD'
 SYSTEM KIT

This acoustically designed enclosure measures 26×23 $\times 15 \frac{1}{\mathrm{t}} \mathrm{in}$., and houses a special 12 in . bass speaker with 2 in . speech coil, elliptica middle speaker together with a pressure unit to cover the full frequency range of $30-20,000 \mathrm{c} / \mathrm{s}$. Its polar distribution makes it ideal for really $\mathrm{Hi}-\mathrm{Fj}$ Stereo. Delivered complete, with speakers, cross-over unit, level control, Tygan grille cloth, etc. Left " in the white" for finish to personal taste, all parts are precut and drilled for ease of $\mathbf{\& 2 3 . 4 . 0}$ assembly.

SPEAKER

"COTSWOLD M.F.S."

SPEAKER SYSTEM

KIT

This model, based on the standard Cotswold, measures only 36 in . high, $16 \frac{1}{2} \mathrm{in}$. wide by 14 in . deep. Particularly recommended to those who require the best results in small $2 \mathbf{2 3 . 4 . 0}$
rooms.

- Deferred Terms available on all orders above $\$ 10$.

Techecically

5in. OSCILLOSCOPE KIT

Model O-I2U
Laboratory quality at utility oscilloscope price and ease of assembly make this kit of ouststanding value. Vertical outstanding response $3 \mathrm{c} / \mathrm{s}$ to
frequency $\begin{aligned} & \text { frequency response } \\ & 5 \mathrm{Mc} / \mathrm{s} ., \mathrm{C}\end{aligned} \mathrm{I} .5 \mathrm{~dB} .-5 \mathrm{~dB}$. , sensitivity ${ }^{+} 10 \mathrm{mV}$. per cm . at sensitivity 10 mV . per cm . at
I kc. Horizontal frequency $1 \mathrm{c} / \mathrm{s}$. to over $400 \mathrm{kc} / \mathrm{s}$ ($\pm 1 \mathrm{~dB}$. up to $200 \mathrm{ke} / \mathrm{s}$.). The Heath patented sweep circuit functions from $10 \mathrm{c} / \mathrm{s}$. to $500 \mathrm{kc} / \mathrm{s}$., in five ranges giving five times the usual sweep of other 'scopes. In addition it has exceedingly short
re-trace and rise times and electronically stabilised re-trace and rise times and electronically stabilised power supply. Included is a 48 -page $\mathbf{2 3 8 . 1 0 . 0}$
Instructional Manual.
ELECTRONIC SWITCH KIT Model (Oscilloscope Trace Doubler) S-3U

This extremely useful, low priced device will extend the use of your single-beam oscilloscope for duties otherwise only in the province of the double-beam tube. In short, at a nominal cost, the Heathkit model S-3U will give you the advantages of a double (or other multiple) beam 'scope, while retaining all the advantages of your present single-beam instrument.
Hitherto an electronic switch of this nature, permitting the simultaneous observation of two signals on the sereen of a single-beam C.R.T. oscilloscope, has cost nearly as much as the 'scope itself. $\& 11.15 .6$

RESISTANCE-CAPACITANCE BRIDGE KIT Model C-3U

Measures capacity 10 pF to $1,000 \mu \mathrm{~F}$. resistance 100Ω to 5 megohms and power factor. $5-450 \mathrm{~V}$. test voltages Safety switch provided. $9, \mathbf{9 , 0}$

MULTIMETER KIT Model MM-IU

Provides wide voltage, current, resistance and $d B$ ranges to cover hundreds of applications. Sensitivity 20,000 ohms/volt D.C. and 5,000 ohms/volt A.C. Ranges: $0-1.5 \mathrm{~V}$. to $1,500 \mathrm{~V}$. A.C. and D.C.; $150 \mu \mathrm{~A}$
to $15 A \mathrm{D} . \mathrm{C} . ; 0.2 \Omega$ to $20 \mathrm{M} \Omega$. to 15 A D.C.; 0.2Ω to
\&12.10.0
AUDIO SIGNAL GENERATOR KIT Model AG-9U

$10 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$., switch selected. Distortion less than 0.1%. 10 v . sine wave output metered in volts and dB's.
321.9 .6

AUDIO VALVE MILLIVOLTMETER

 KIT Model AV-3UVery sensitive. High stability. I mV. to 300 V. A.C. $10 \mathrm{c} / \mathrm{s}$. to $400 \mathrm{kc} / \mathrm{s}$.
£14.17.6

AUDIO WATTMETER KIT

Model AW-IU

This popular meter is used in many recording studios and broadcasting stations as a monitor as well as for servicing purposes. Disslpation rating up to 25 w . continuous. 50 w . intermittent.
£15.15.0

Feathkit

 excelleret
VALVE VOLTMETER KIT

Model V-7A

The world's most popular valve voltmeter, with printed circuit and I per cent. precision resistors to ensure consistent laboratory performance. It has 7 voltage ranges measuring respectively d.c. volts ranges measuring respectively d.c. voits
to 1,500 and A.C. to 1,500 r.m.s. and to 4,000 peak to peak. Resistance measurements from 0.1 ohm to 1,000 Megohms with internal battery. D.C. input impedance is 11 megohms and dB measurement has a centre-zero scale. Complete with test prods, leads
\&13.18.6 and standardising battery.

HIGH VOLTAGE PROBE KIT Model HV-336

Extends measurement up to 30,000 v. D.C. with neg. ligible circuit loading. A special High Stability 1,090 megohm resistor gives a multiplication factor of 100 X when used with a valve voltmeter of II megohms input impedance such as the V.7A.
32.19 .6
R.F. PROBE KIT Model 309-CU This complete probe kit will extend the frequency range of the V-7A Valve Voltmeter to $100 \mathrm{Mc} / \mathrm{s}$, and will enable useful voltage indication
to be obtained up to $300 \mathrm{Mc} / \mathrm{s}$.
$\mathbf{E 1 . 1 3 . 6}$

POWER SUPPLY UNIT KIT

Model MGP-1
Compact, general purpose unit suitable for F.M. Tuners. Tape Recording Amplifiers and generat laboratory use. Input $100 / 120 \mathrm{v}$., $200 / 250 \mathrm{v}$., $40-60 \mathrm{c} / \mathrm{s}$. Output 6.3 v .2 .5 A. A.C.; 200, $250,270 \mathrm{v}$. 120 mA max. $\quad \pm 5.2 .6$

DECADE CAPACITOR KIT

 Model DC-ICapacity values $100 \mu \mu \mathrm{~F}$ to $0.111 \mu \mathrm{~F}$ in $100 \mu \mu \mathrm{~F}$ steps Precision silver-mica capacitors and minimum loss ceramic wafer switches ensure
\&6.15.6
DECADE RESISTANCE BOX KIT Model DR-I U. Range $1-99,999 \Omega$ in 1Ω steps. Ceramic switches throughout. Current rating from 500 mA to 5mA. according to decades in circuit. Polished wooden cabinet supplied complete …....... $£ 196$

R.F. SIGNAL GENERATOR KIT Model RF-IU

Provides extended frequency coverProvides extendeds from $100 \mathrm{ke} / \mathrm{s}$. age on six bands from $100 \mathrm{kc} / \mathrm{s}$.
$100 \mathrm{Mc} / \mathrm{s}$. On fundamentals and up to $200 \mathrm{Me} / \mathrm{s}$. on to $200 \mathrm{Me} / \mathrm{s}$. on
£12.15.6
 monics.

23in. SERVICE OSCILLOSCOPE

KIT Model OS-I

Light, compact, portable for service engineers. Printed circuit board for easy construction. Wt. $10 \frac{1}{2} \mathrm{lb}$. Size $\sin \times \sin \times \quad$ \&19.19.0 $14_{\frac{1}{2}}^{1} \mathrm{in}$. long.

CAPACITANCE METER KIT

Model CM-IU

This Direct-Reading Capacitance Meter is a very low priced, time-saving instrument which is so useful that it should be part of the general equipment of every electronic laboratory and production line. Easily built in a few hours. $0-100 \mu \mu \mathrm{~F}, 0-1,000 \mu \mu \mathrm{~F}$. $0-$ $0.01{ }_{1 \mu} \mathrm{~F}, 0-0.1 \mu \mathrm{~F}$. The meter has $4 \frac{1}{2} \mathrm{in}$. scale and can be used by an unskilled operator
 instruction.
instruct

AMATEUR TRANSMITTER KIT

Model DX-40U

Covers all amateur bands from 80 to 10 metres, crystal controlled. Power input 75 watts C.W. 60 watts peak controlled carrier phone. Output 40 watts to aerial. Provision for V.F.O. Filters minimise T.V. interference.
£33.19.0

SINGLE SIDEBAND ADAPTER KIT Model SB-IOU

May be used with most A.M. transmitters with certain provisions. Aliows full use of existing equipment for SSB facilities. Band coverage: 80, 40, 20, 15, 10 m . Unwanted sideband suppression: Better than 30 dB . Carrier suppression: Better than 40 dB . Power requirements: $300 \vee$ D.C. 85 mA . (Average), 30 mA . (Standby) 140 mA . (Transmit). 6.3 v. A.C., 3.5 A. Meter; $2 \frac{1}{2} \mathrm{in}$. Scale edge reading, $200 \mu \mathrm{~A}$ movement, indicates carrier null and relative power output. Cabinet: I lin. high
$\times 8$ 8in. wide $\times 14 \frac{1}{2} i n . ~ d e e p . ~$

AUDIO SINE-SQUARE WAVE GENERATOR KIT. Model AO-IU

An inexpensive generator which covers $20 \mathrm{c} / \mathrm{s}$ to $150 \mathrm{kc} / \mathrm{s}$ in four ranges with choice of sine or square waves. The latter up to $50 \mathrm{kc} / \mathrm{s}$. Output voltage 10 v . max. and distortion less than 1%. An ideal instrument for audio testing. Size $9 \frac{1}{2}$ in. $\times 6 \frac{1}{2}$ in. $\times 5$ in.
£13.15.0

GRIP-DIP METER KIT

Model GD-IU

Functions as oscillator or absorption wave meter. With plug-in coils for continuous frequency coverage from 1.8 Mc / s to $250 \mathrm{Mc} / \mathrm{s}$. 210.19 .6

Additional Plug-in Coils Model 341-U extend coverage down to $350 \mathrm{kc} / \mathrm{s}$. With dial correlation curves, $17 / 6$.

TRANSISTORISED VERSION Model XGD-I

Similar to GD-IU. Fully transistorised with a frequency range of 1.8 to $45 \mathrm{Mc} / \mathrm{s}$. $210,18,6$

TRANSISTOR INTERCOM. KITS

Models XI-IU and XIR-IU

Ideal for home or business use. Up to five remote stations can be operated with each Master. The Master unit can call any one, any combination, or all five Remote stations and any Remote station can call the Master. A private call to any Remote station cannot be interrupted or overheard by any other while a conversation is in progress. Any Remote station can talk to any one or all others provided the Master is manned. These kits have been designed for easy construction and high performance.
The mahogany veneered wooden cabinets are supplied completely assembled and finished. The Master unit has a 4 -transistor amplifier and is operated by an internal 9 v . battery as are the Remote units. Batteries are not included with the Kits.
Model XI-IU (Master)
£10.19.6
Model XIR-IU (Remote)
£4.7.6

" MOHICAN"

GENERAL COVERAGE

 RECEIVER- KIT Model GC-IUThis fully transistorised receiver which includes 4 which includes ${ }^{4}$ plezonsfilters, is in transtilters, is in
the forefront of the forefront of receiver design. It is an excellent portable or fixed station receiver for both the Ham and for short-wave listener. To overcome the problems of alignment, etc., the R.F. "front-end" is supplied as a pre-assembled and prealigned unit. Designed for outstanding performance, its many features include IO-transistor circuit, printed circuit board, telescopic whip antenna cuning meter and a large slide-rule dial giving meter and lange lideroximat giving total length of approximately 70 inches.
Housed in a strong steel cabinet in stove-enamelled green and powered by two 6 volt dry batteries (not supplied), mounted internally, it gives frequency coverage from $580 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. in five bands; thus enabling world-wide reception.
Electrical bandspread on five additional bands covers the amateur frequencies from 80 to 10 metres-each band having a scale length of approximately 8 inches. B.F.O. tuning and Zener diode stabiliser Size: $6 \frac{1}{8} \mathrm{in}, \times 12 \mathrm{in}$. $x 10 \mathrm{in}$.
£39.17.6
See specification leaflet for full details.

STABILISED POWER PACK

 Models MSP-IM and MSP-IWSpecially recommended
for industrial and laboratory use, meeting the need for a reliable and versatile stabilised power pack capable of a very high per-
 formance. Input 200-250 v., 40-60 c/s. A.C., fully fused. Outputs: H.T. 200-410 v. D.C. at $20-225 \mathrm{~mA}$. in 3 switched v. D.C. at $20-225 \mathrm{~mA}$. in 3 switched A. centre-tapped. Two 3 in. " easy-toA. centre-tapped. Two 3 in. " easy-to" read" meters for reading voltage and current simultaneously. Separate L.T.
and H.T. supply transformers. All outand H.T. supply transformers. All out
put circuits are isolated. Size $13 i n . x$ put circuits are isolated. Size 13 in. x
$8 \frac{1}{2}$ in. $\times 9 \frac{1}{2}$ in.
$M S P P_{-I M}$ (with meters) 236.12 .6 MSP-IM (with meters)
£29.17.6

BALUN COIL UNIT KIT Model B-IU

Useful transmitter accessory. Will match unbalanced co-axial lines, used on most modern transmitters, to balanced lines of either 75 or 300Ω impedance. Can be used with transmitters and receivers without adjustment over the frequency range of 80 through 10 metres and will handle power inputs up to 200 watts. Cabinet f4.15,6

- Deferred terms
available on all orders above $£ 10$.

AMATEUR TRANSMITTER KIT
 Model DX-100U

The world's most popular Amateur TX Kit

Completely self-contained compact Amateur Transmitter, 150 W. D.C. input.

8
Buittin highly stable VFO and all Power Supplies VV. Careful design has reduced TVI to a minimum by use of effectively screened frequency-generating stages and pi-tuned circuits at the input and output of the PA stage and by II chokes and pi network filters to all outlets from the cabinet. No fewer than 35 disc-ceramic by-pass capacitors help to achieve the exceptional stability and high-performance for which this Transmitter is noted.

- The KT88 high-level anode and screen modulator stage gives over 100 watts of audio from less than 1.5 mV . input.
- Adjustable drive and clamp control ensure that valves are only driven sufficiently to maintain the required output
Keying on CW is via the VFO and buffer amplifier cathodes; the other RF valves are biased beyond cut-off. When zero-beating the TX with incoming signals, the exciter stages only may be run without the final amplifier being switched on.

Provision has been made for remote control operation.

- VFO slow-motion drive is very smooth and backlash free. VFO or Crystal control.
Covers all Amateur bands up to
$30 \mathrm{Mc} / \mathrm{s}$ phone or CW . $30 \mathrm{Mc} / \mathrm{s}$ phone or CW .

VARIABLE FREQUENCY OSCILLATOR KIT. Model VFIU

Specially designed to meet the demand for the maximum possible flexibility from an amateur Transmitter which would otherwise be subject to certain limitations imposed by crystal control. Calibrated for all Amateur bands $160-10$ undamentals on 160 and similar transmitters.

£11.17.6
Q MULTIPLIER KIT.
Model QPM-I
A reasonably priced Q Amplifier for the amateur and short-wave enthusiast. This self-powered unit (200-250 y $50 / 60 \mathrm{c} / \mathrm{s}$) may be (2ed with communication be used with communication IF
 IF, to provide both ad selectivity and signal rejection. Switched for Sharp-Nult-Broad conditions.
\&7.12.6

ELECTRONIC WORKSHOP KIT Model EW-I

From this educational kit 21 exciting experiments can be made (Transistor Radios, Intercom., Public Address System, Burglar Alarm, etc.). No soldering. No extra tools needed.
\&7.13.6
All prices include free delivery in U.K.
Please send me FREE CATALOGUE (Yes/No).
Full details of Model(s).
NAME.
(Block Capitals)
ADDRESS.

people of

sound judgement

 choose...Sound reproduction has been our business for over 35 years, and W.B. 'Stentorian' speakers are now in use commercially, professionally and in homes all over the world. This long experience enabled us to enter the Hi Fi field, in its very early days, with a wide knowledge of the problems likely to be encountered and the ability to solve them.

The familiar W.B. symbol is a guarantee of fidelity in reproduction, excellence in workmanship, and moderation in price. Your local Hi Fi dealer is always pleased to demonstrate W.B. equipment.

12" H.F. 1216 full range unit This highly efficient loudspeaker is fitted with an Alcomax III magnet having a flux density of 16,000 gauss and a total flux of 120,000 maxwells. To fully exploit this increase in magnet strength the cone and suspension system have been specially designed. The use of an aluminium voice coil results in an extremely smooth high frequency response and the unit is thus most suitable as a full range reproducer giving optimum results in the Thoresby bass reflex enclosure.

Specification:

ChassisDie Casting. Cone Diameter... 12 inches. Flux Density 16,000 gauss. Pole Diameter... $1 \frac{1}{2}$ inches. Bass Resonance ... 37 c.p.s. Handling Capacity 15 watts. Frequency Response 20 to 16,000 c.p.s. (in bass reflex cabinet).

Price $\mathbf{£ 1 5 . 1 5 . 0 \text { (inc. tax) }}$

Type	Flux Density	Price	Type	Flux Density	Price
1016 'Major'*	16,000 gauss	68196	T359 tweeter	9,000 gauss	61106
10" H.F.1012*	12,000 gauss	6476	T816	16,000 gauss	65139
8" H.F.816*	16,000 gauss	6600	T12 tweeter	16,000 gauss	41346
8" H.F.812*	12,000 gauss	63129	T10 tweeter	14,000 gauss	6483

*These four speakers incorporate a universal impedance speech coil.

'WNGUISHI BLDCOTRIC'

Corona

 StabilisersEnglish Electric Valve Co. Ltd has available a series of Corona Stabilisers for applications in high voltage, high impedance power supplies.
The voltage range covered by these tubes, which are known as the QS1218 series, is 1.2 to 2.0 kV in 200 volt steps, but types with intermediate voltages may be supplied to suit individual requirements. Operating currents for all tubes is 20 to $750 \mu \mathrm{~A}$, normal operation $250 \mu \mathrm{~A}$, and their average incremental impedance is $50 \mathrm{k} \Omega$.
The QS1218 series have B7G bases, but flying lead variants, designated QS1221, are available with identical electrical characteristics.
Full information on English Electric Corona Stabilisers and other cold cathode devices may be obtained on request.

NGLISH ELECTRIC VALVE COMPANY LIMITED

A world-wide view of plastics progress

interplas 63

You can profitably pay several visits to this vast showplace of the world's plastics industries where you can study the newest machinery, equipment, materials and products from 500 firms in 15 countries. Gather ideas for product improvement, cost reduction. See how plastics can be moulded, extruded, foamed, laminated into everything from shoe heels to houses, from propeller-shaft bearings to paper clips. Discuss your plastics problems with experts, join in the Convention, addressed by the industry's leading authorities.

Organised by british plastics and international plastics engineering with the co-operation of the British Plastics Fedzration.

100 YEARS OF PLASTICS

The Plastics Centenary Year will be marked by a special display of interest to everyone concerned with plastics in any field.

DESIGN AWARD
Over two hundred of the world's finest plastics products for the home in the INTERPLAS Design Display. The Exhibition's special trophy to the designer of the best product.

FILMS ABOUT PLASTICS

New films on all aspects of plastics production at the Interplas cinema, open daily to all visitors.

OLYMPIALONDON 12-22JUNE

When your work is worthy of the world's finest instruments . . .

Marconi Instruments Type TF2700 Universal Bridge

* Completely portable. Transistored. Battery operated.
* Measures capacitance from 0.5 pF to $1100 \mu \mathrm{~F}$ in 8 ranges of 110 pF to $1100 \mu \mathrm{~F}$ full scale. Inductance : $0.2 \mu \mathrm{H}$ to 110 H in 8 ranges of $11 \mu \mathrm{H}$ to 110 H full scale. Resistance from $10 \mathrm{~m} \Omega$ to $11 \mathrm{M} \Omega$ in 8 ranges of 1.1Ω to $11 \mathrm{M} \Omega$ full scale. Q indication from 0 to 10 at $1 \mathrm{kc} / \mathrm{s}$. D indication from 0 to 0.1 or 0 to 10 at $1 \mathrm{kc} / \mathrm{s}$.
* Basic accuracy: 1%.
* Bridge excitation : Internal 9 V d.c. and external d.c. for resistance measurement. Internal $1 \mathrm{kc} / \mathrm{s}$ or external A.F., $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$, for L, C and R measurement.
* Facilities for polarization of test components by d.c. bias.
* Dimensions : 8 in $\times 11 \frac{1}{2}$ in $\times 8 \mathrm{in}$. Weight: $8 \frac{1}{2} \mathrm{lb}$.
* Price : £75.

ALSO IN THE MARCONI INSTRÚMENTS RANGE:
TF 868B Universal Bridge
$1 \mu \mathrm{H}$ to $100 \mathrm{H} 1 \mu \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$; at 1 and $10 \mathrm{kc} / \mathrm{s}$. 0.1Ω to $100 \mathrm{M} \Omega$ at d.c.
TF 1313 1/4\% Universal Bridge
$0.1 \mu \mathrm{H}$ to $110 \mathrm{H}, 0.1 \mu \mu \mathrm{~F}$ to $110 \mu \mathrm{~F}$; at 1 and 10 kc / s. 3 ms 2 to $110 \mathrm{M} \Omega$ at d.c.

TF 1342 Low CapacItance Bridge

$0.002 \mu \mu F^{\prime}$ to $1,111 \mu \mu \mathrm{~F}$ at $1 \mathrm{kc} / \mathrm{s}$. Shunt
Resistance : 1 to $1000 \mathrm{M} \Omega$

TF 1245 Q-Meter

Q from 5 to $1000,1 \mathrm{kc} / \mathrm{s}$ to $300 \mathrm{Mc} / \mathrm{s}$.
External oscillators

TF 704C Dielectric Test Set

Precise determination of permittivity and power factor in dielectrics from $50 \mathrm{kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$

Please address your enquiries to
Marconi Instruments Limited at your nearest office:

London and the Soutil:
English Electric House, Strand, London, W.C.2
Tel: COVent Garden 1234
Midlands:
24 The Parade, Leamington Spa. Tel-: 25212

North:

23-25 Statlon Squiare, Harrogate. Tel: 67454

THE
 EXPANDING WORLD OF PYE TVT

By coming to Pye TVT for equipment you get a good deal more than high technical excellence, for that is tradition in Pye. You get exceptional craftsmanship, too. You also get the immediate benefit of far-seeing creative thinking, since Pye TVT not only gives great weight to research, but shares in the large-scale research of the entire Pye group. As a result, Pye TVT has a great and growing place in the television industry, with markets in 29 countries, including the U.S.A., the U.S.S.R. and Australia. Today, whether you're wanting just a camera, mixing and monitoring equipment, a complete studio or a transmission station, Pye TVT welcomes your enquiry, and offers you its resources.

明

Miniature

encapsulated electrolytics

Available in case lengths of $7 / 16 \mathrm{in}$. and 1 in ., these miniafure plastic-cased capacitors have been designed especially for vertical printed-circuit mounting. Asymmetric pin spacing on a 0.1 in. grid plus differing pin diameters and longer common or cathode pins ensure accurate positioning and correct connection in the printed-circuit board.

Multiple units, with a choice of common anode or common cathode connection, are available at a cost very little more than that of a single unit. These units can be used to replace two or even three single units and offer substantial savings in space as well as cost.

The rated voltage extends up to 50 V d.c. and the capacitance range is from 4 to $650 \mu \mathrm{~F}$ for single units and up to $500 \mu \mathrm{~F}$ (total) for multiple capacitors. Operating temperature range is
 $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ with H 2 humidity classification.

For full details on this range, write to :-

Plessey

THE PLESSEY COMPANY (UK) LIMITED
Capacitor Division Kembrey Street • Swindon - Wiltshire.
Telephone: Swindon 6211
Overseas Sales Organisation:
Filessey International Limited, llford, Essex Telephone: ILFord 3040

Plessey offer a fully comprehensive service in the design and manufacture of both core memory stores and complete storage systems, backed by a team of highly qualified liaison engineers. No matter how involved or detailed the problem, Plessey are always keen to help you. The Company's ever expanding experience in applications combined with a wealth of production know-how and the knowledge gained from building their own specialised test equipment, means that if you have a memory store problem, Plessey are confident of their ability to solve it for you.

Plessey

THE PLESSEY COMPANY (UK) LIMITED Components Group
Chemical and Metallurgical Division
Wood Burcote Way, Towcester, Northants
Telephone: Towcester 312
Overseas Sales Organisation
Plessey International Limited, Ilford, Essex
Telephone: Ilford 3040

The Plessey Industrial Electronic Components Division offers a complete and versatile winding service for toroid sizes between 0.050 in . and 14 in . diameter in finishes to customers' specific requirements. Among the types manufactured are high efficiency power transformers, transistor inverter and converter transformers, matching transformers for transistorised circuitry, pulse transformers, saturable reactors and transductors, magnetic amplifiers and filter elements. The smaller units can be supplled in a plastic or resin encapsulation suitable for printed circuit mounting, and a range of core materials is available, depending upon the application requirement. High temperature windings for operation up to $200^{\circ} \mathrm{C}$ are also available.
For full details on the Plessey Toroid Winding Service, write to:

Plessey

THE PLESSEY COMPANY (UK) LIMITED

 Components GroupIndustrial Electronic Components Division llford, Essex. Telephone: Ilford 3040

Overseas Sales Organisation:
Plessey International Limited, Ilford, Essex
Telephone: Ifford 3040

Fast-switching relay for V.H.F.

The new Plessey miniature Type ' CH ' low capacitance relay has been developed to meet the increasing demand for high frequency switching. It has low loss insulation and can be used for r.f. switching at frequencies up to $100 \mathrm{Mc} / \mathrm{s}$. Contact life at a load of up to 5 mA at 200 V is better than 10^{8} operations, and the operate time is 6 milliseconds. Thetwo-pole changeover silver-palladium wire contacts are self-cleaning and the framecontact capacitance is less than 1 pF up to $100 \mathrm{Mc} / \mathrm{s}$. For full details on the Plessey range of miniature relays, write to:

Plessey

THE PLESSEY COMPANY (UK) LIMITED Components Group

Industrial Relays Division : Abbey Works, Titchfield, Fareham, Hants, Titchfield 3031
Overseas Sales Organisation: Plessey International Limited, Ilford, Essex.
Telephone: liford 3040

VOLTMOBILE VOLTAGE SELECTOR
 AUTO-TRANSFORMERS

Output from 1.6% to 100% of supply volts in 64 steps. ON LOAD SWITCHING.
VOLTMOBILES can be connected directly to the load or used with a Transformer or Rectifier Set.
1 PHASE and 3 PHASE models with outputs of 20A, 30A, 60A, 100A, 150A, 200A.
25% OVER VOLTS AVAILABLE AS EXTRA.

TRANSMOBILE

SATURABLE REACTORS from I kVA to 300 kVA . Available for all standard supplles. Standard D.C. control: 12, 24, 36, 110 and 240 V , or as specified.

A MPMOBILE

TRANSFORMERS
Typical Secondaries

	200 A	12 V	60 A
2 V	100 A	12 V	100 A
4 V	80 A	18 V	30 A
5 V	150 A	24 V	30 A
5 V	300 A	30 V	5 A
5 V	60 A	30 V	25 A
6 V	100 A	30 V	40 A
6 V	50 A	40 V	25 A
$6-12 \mathrm{~V}$	125 A	50 V	60 A
8 V	150 A	55 V	20 A
10 V	200 A	60 V	40 A
10 V	100 A	110 V	10 A
$10-20-30 \mathrm{~V}$	100		
12 V	25 A	160 V	300 A

110 V centre-tapped at
currents from 5 A to 1000 A

s MEOAV S =MOBILE CURRENT TRANSFORMERS

These and other transformers can be supplied for 1 phase and 3 phase and for use with rectifiers.

D-GMOBILE

TYPICAL OUTPUTS

Full load DC Volts and Amperes.

6 V	15 A	36 V	10 A
6 V	50 A	36 V	20 A
6 V	100 A	36 V	40 A
12 V	10 A	36 V	60 A
12 V	20 A	70 V	100 A
12 V	30 A	110 V	5 A
12 V	60 A	110 V	10 A
12 V	105 A	110 V	15 A
12 V	210 A	110 V	20 A
12 V	$1,000 \mathrm{~A}$	110 V	25 A
12 V	$2,100 \mathrm{~A}$	110 V	600 A
24 V	750 A	220 V	100 A
24 V	12 A	250 V	6 A
24 V	20 A	250 V	10 A
24 V	30 A	250 V	15 A
24 V	60 A	250 V	20 A
24 V	105 A	250 V	200 A
24 V	200 A	250 V	300 A

For I phase or 3 phase input

Ammeters-Voltmeters-Rheostats_Variacs-Stabilizing Circuits-Control Devices-built-in to order.
With the exception of Voltmobiles, ratings are typical of our range. Any rating of TRANSFORMER, SATURABLE REACTOR AND RECTIFIER SET MADE TO ORDER

	uastep Switched		${ }_{\text {anc }}^{\text {and }}$				

SPECIFIC ENQUIRIES are invited for Transformers and Rectifiers. We specialize in HEAVY CURRENT EQUIPMENT.

HARMSWORTH, TOWNLEY \& CO.

 2 JORBAN STREET MANCHESTER 15 CENTRAL 5069
TRANSISTOR A.c. VOLTMETER TYPE TM2B

MEASURES FROM 50HV TO 500V ON

 12 RANGES, AND CAN BE USED AS AN AMPLIFIER

SPECIFICATION

VOLTMETER RANGES

$1.5 \mathrm{mV}, 5 \mathrm{mV}, 15 \mathrm{mV}$. . . 500 V f.s.d.
ACCURACY
$\pm 2 \%$ of reading $\pm 1 \%$ of f.s.d. at $\mathrm{lkc} / \mathrm{s}$. dB RANGES
-80 dB to +56 dB relative to ImW into 600Ω.
FREQUENCY RESPONSE
$\pm 3 \mathrm{~dB}$ from $6 \mathrm{c} / \mathrm{s}$ to $250 \mathrm{kc} / \mathrm{s}$.
$\pm 0.7 \mathrm{~dB}$ from $10 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$.
$\pm 0.2 \mathrm{~dB}$ from $20 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$:
$\pm 0.1 \mathrm{~dB}$ from $30 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$.

INPUT IMPEDANCE

$1.8 \mathrm{M} \Omega$ and 20 pF on 1.5 V to 500 V .
$>0.8 \mathrm{M} \Omega$ and $<60 \mathrm{pF}$ on 5 mV to 500 mV .
$>0.5 \mathrm{M} \Omega$ and $<65 \mathrm{pF}$ on 1.5 mV .
INPUT NOISE LEVEL
$<15 \mu \mathrm{~V}$ for zero source resistance.
$<30 \mu \mathrm{~V}$ for $100 \mathrm{k} \Omega$ source resistarice.
AMPLIFIER RANGES
10 dB steps up to 60 dB with frequency
response and input impedance as above; 80 dB gain from $10 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$ with input impedance $>50 \mathrm{k} \Omega$.
Output 1.5 V into $10 \mathrm{k} \Omega$.

MICROVOLT INDICATOR RANGE

$<150 \mu \vee$ f.s.d. $<10_{\mu} \mathrm{V}$ readable from $30 \mathrm{c} / \mathrm{s}$
to $30 \mathrm{kc} / \mathrm{s}$.
MAXIMUM INPUT VOLTAGES
$75 V$ A.C. and 350 V D.C. on " mV '"
750 V A.C. peak plus D.C. on " V ".

Self-contained PP9 batteries; typical life
1000 hours.
SIZE \& WEIGHT
$10^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 4^{\prime \prime}$ deep; 6 pounds.

Fully detailed leaflets avoilable on our full range of partable instruments.

delayed pulse and sweep generator

Rise Time less than 10 nanosec
Pulse Height, Width and Delay independently variable Wide Frequency range
True positive or negative pulse output
Sweep output gives jitter free oscillograms
pulse width and delay $0.09 \mu \mathrm{sec}$ to 105 msec

period	$0.9 \mu \mathrm{sec}$ to 1.05 sec
output	$\max .5 \mathrm{~V}$ in $75 \Omega, \max .50 \mathrm{~V}$ in $1 \mathrm{k} \Omega$

Brighton College of Technology, Richmond Terrace, Brighton.

I have recently purchased an Axiette 8 speaker for experimental purposes, and we have carried out a series of tests on it in our anechoic chamber. I feel I should like to tell you how excellently it compares with all the other speakers I have used for test purposes. The response is well maintained up to $20 \mathrm{Kc} / \mathrm{s}$, in fact it can be used as an excellent sound source for diffraction experiments. Also the curves we have obtained agree closely with the curves you publish for this unit, which is more than can be said for the majority of electroacoustic transducers offered for sale.
At the price, I consider that this speaker offers a really remarkable performance, and one which could scarcely be improved upon at the present time for the reproduction of speech and music at moderate power levels.
A.SHILTON,MSc.SeniorLecturer in Acoustics.

TYSONS-Sound Engineers, 41 Russell Street, Leamington Spa, Warwickshire.
We have just demonstrated the AXIOM 10 at the Regent Hotel, Leamington Spa (for three days) with outstanding success. The excellent frequency response and the very conveniently sized enclosure commend it to a large section of the quality-conscious public who are pleasantly surprised to see how well the AXIOM 10 satisfles the critical ear without dominating valuable living-space.
We find the AXIOM 10 is a top-seller and we find it necessary to keep a formidable stock of them to satisfy our customers.
Congratulations on another excellent AXIOM londspeaker, both with regard to quality and size.
W.M.TYSON

AXIETTE 8-Full range $8^{\prime \prime}$ High Fidelity loudspeaker, for amplifiers up to 6 watts. Price: $£ 4.11 .0$ (Plus P.T. 14/7).

AXIOM 10-Full range $10^{* *}$ High Fidelity loudspeaker, for amplifiers up to 10 watts. Price: £5.8.6 (Plus P.T. 17/5).

(N)

Nagard Oscilloscopes

- 3321 DOUBLE-BEAM OSCLLLOSCOPE WITH INTERCHANGEABLE PRE-AMPLIFIERS

Sweep Rate $20 \mathrm{~ns} / \mathrm{cm}$ to $1.2 \mathrm{~s} / \mathrm{cm}$.

Sweep Expansion x 5 on both channels.
Trigger Internal 2 mm . or external down to 100 mV p.p. Single Delay on both channels 170 ns .
C.R.T. 5 -inch flat-faced double-gun with minimum 2 cm overlap and adequate intensity for single-stroke recording at fastest time base speeds.
Accuracy Time and voltage direct from graticule $\pm 3 \%$. Built-in Amplitude Calibrator.
PRICE NETT IN UK. 8550 .

PI321A 2-Channel Pre-Amplifier Sensitivity $10 \mathrm{mV} / \mathrm{cm}$ to $12.5 \mathrm{~V} / \mathrm{cm}$; Bandwidth D.C. to $20 \mathrm{Mc} / \mathrm{s}$; Rise time 18 ns ; Input impedance constant at $1 \mathrm{M} \Omega$ shunted by 35 pF .
PRICE NETT IN U.K. $£ 95$.
PI321D 2-Channel Pre-Amplifier Sensitivity $1 \mathrm{mV} / \mathrm{cm}$ to $125 \mathrm{~V} / \mathrm{cm}$; Bandwidth D.C. to $5 \mathrm{Mc} / \mathrm{s}$; Rise time 70 ns ; Input impedance constant at $1 \mathrm{M} \Omega$ shunted by 35 spF (each side).
Balanced inputs with in-phase rejection ratio better than $500: 1$ at $5 \mathrm{Mc} / \mathrm{s}$ for 5 V .p. input and maximum sensitivity.
PRICE NETT IN U.K. £95.

Nagard Oscilloscopes cover varied requirements for wide bandwidth and high sensitivity by using integral switched pre-amplifiers or interchangeable plug-in pre-amplifier units. Three models are available, the OS301 being a high-speed, wide-band, single-beam Oscilloscope, while the OS311 and OS321 utilise double-gun cathode ray tubes and interchangeable pre-amplifiers. We suggest you write or telephone for complete specifications. Technical representatives are always available to arrange demonstrations and to discuss your particular requirements on request.

05301 HIGH-SPEED WIDE-BAND SINGLEBEAM OSCILLOSCOPE
Sweep Rate $0.1 \mu \mathrm{~s} / \mathrm{cm}$ to $1.2 \mathrm{~s} / \mathrm{cm}$. Sweep Expansion x10 giving maximum sweep rate of $10 \mathrm{~ns} / \mathrm{cm}$.
Trigger Internal 2 mm . or external down to 0.1 Vp .p.
C.R.T. 5-inch flat-faced.

Integral Pre-Amplifier Switched in Sensitivity $10 \mathrm{mV} / \mathrm{cm}$; Bandwidth $2.5 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{Mc} / \mathrm{s}$; Rise time 18 ns .
Integral Pre-Amplifier Switched out Sensitivity $100 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$; Bandwidth D.C. to $40 \mathrm{Mc} / \mathrm{s}$; Rise time 9 ns ; Signal delay 180 ns .
PRICE NETT IN U.K. $£ 550$.

- 331 DOUBLE-BEAM OSCILLOSCOPE

Sweep Rate $1 \mu \mathrm{~s} / \mathrm{cm}$ to $15 \mathrm{~s} / \mathrm{cm}$.
Sweep Expansion x5 on either or both channels.
Phase Measurement $\pm 180^{\circ}$ by calibrated horizontal shift.
Lissajous Displays by switching lower vertical channel to give horizontal deflection on upper channel.
Trigger Internal 2 mm . or external down to 50 mVp .p.
C.R.T. 5 -inch flat-faced double-gun with full screen display overlap.
Accuracy Time and voltage direct from graticule $\pm 3 \%$. Built-in Amplitude Calibrator. PRICE NETT IN U.K. £415. PI311D 2-Channel Pre-Amplifier Sensitivity $100 \mu \mathrm{~V} / \mathrm{cm}$; Bandwidth D.C. to $150 \mathrm{Kc} / \mathrm{s}$; Rise time $2.3 \mu \mathrm{~s}$; Input impedance $10 \mathrm{M} \Omega$ shunted by 35 pF (each side).

Balanced inputs with in-phase rejection ratio better than $1000: 1$ for 1Vp.p. input and maximum sensitivity. PRICE NETT IN U.K. $£ 75$.
PI311V 2-Channel Pre-Amplifier As for PI311D but with switched H.F. and L.F. attenuation. PRICE NETT IN U.K. $£ 120$.
PI311E 2-Channel Pre-Amplifier Sensitivity $1 \mathrm{mV} / \mathrm{cm}$; Bandwidth D.C. to $1 \mathrm{Mc} / \mathrm{s}$; Rise time $0.35 \mu \mathrm{~s}$; Input impedance $1 \mathrm{M} \Omega$ shunted by 25 pF . Balanced inputs with in-phase rejection ratio better than $1000: 1$ for IVp.p. input and maximum sensitivity. PRICE NETT IN U.K. $£ 95$.

PI311Q 4-Channel Pre-Amplifier As for PI311E but beam switching provides FOUR channels. PRICE NETT IN U:K. £140.

NAGARD Pulse Generators and Oscilloscopes are now marketed by Advance ADVANCE COMPONENTS LIMITED

Definitely Detronic forthe BEST VALUE IN OSCILLOSCOPES!

This versatile instrument is now available in a much improved version. Now incorporates a full 3 flat faced precision tube. New styling. Increased sensitivity. More rugged construction.

- $100 \mathrm{mV} / \mathrm{c} . \mathrm{m}$.

Fullyconipensated attenuator ranges $.1 V / \mathrm{com} ., .2 \mathrm{~V} / \mathrm{c} . \mathrm{m}$., .5 V/c.m., il V/c.m.'. $\mathbf{2} \mathrm{V} / \mathrm{c} . \mathrm{m} . \mathrm{s} \mathrm{V} / \mathrm{c} . \mathrm{m}$. . $10 \mathrm{~V} / \mathrm{c} . \mathrm{m} ., 20 \mathrm{~V} / \mathrm{c} . \mathrm{m}$. . $50 \mathrm{~V} / \mathrm{c} . \mathrm{m} .$, and continwously variable.

Time base continuously variable and switched in 9 ranges 0.5 sec./c.m., to $0.7 \mu \mathrm{sec} . / \mathrm{c} . \mathrm{m}$.

Excellent internal and external synchronisation.

- \times amplifier for timebase expansion and external time-base.
- Input impedance IM Ω shunted by 20 pf.

ELECTRONIC
EQUIPMENT
MANUFACTURERS

MODEL 381
£39.10.0

an ample choice of Philips electronic voltmeters

Philips voltmeters cover
every practical need
for accurate measurements
in the DC-LF-HF and UHF ranges.

D.C.

GM 6020
Range (fsd) $100 \mu \mathrm{~V}-1000 \mathrm{~V}$
Input impedance
Input I $1 \mathrm{M} \Omega$.
Input $11.100 \mathrm{M} \Omega$
Accuracy 3\%
Predeflection $<5 \mu \mathrm{~V}$
Automatic polarity indication DC current measurements ($10 \mu \mu \mathrm{~A}-10 \mu \mathrm{~A}$); with UHF probe for $A C$ measurements up to $800 \mathrm{Mc} / \mathrm{s}$, as an indicator up to $4000 \mathrm{Mc} / \mathrm{s}$.

L.F. $2 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$

GM 6012
Range (fsd) $1 \mathrm{mV} \cdot 300 \mathrm{~V}$
-80 dB to +52 dB
Input impedance
$(1 \mathrm{mV}-3 \mathrm{~V}) 4 \mathrm{M} \Omega / / 20 \mathrm{pF}$
(10V-300V) $10 \mathrm{M} \Omega / / 10 \mathrm{pF}$
Accuracy
($5 \mathrm{c} / \mathrm{s}-100 \mathrm{kc} / \mathrm{s}$) 2.5%
$(2 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}) 5 \%$
Calibration voltage 30 mV and 10 V
Amplifier output 50 x

Sold and serviced by Philips Organizations all over the world Sole Distributors in the U.K.: Research \& Control Instruments Ltd. 207 King's Cross Road, London W.C. I Overseas enquiries please, to the manufacturers, N.V. Philips, EMA-Department, Eindhoven, the Netheriands.

DC Range (fsd) $300 \mathrm{mV}-1000 \mathrm{~V}$ with EHT probe up to 30 kV Input impedance $10 \Omega \cdot 100 \mathrm{M} \Omega$ Accuracy 2.5%
AC $20 \mathrm{c} / \mathrm{s}=1000 \mathrm{Mc} / \mathrm{s}$
Range (fsd) $1 \mathrm{~V}=300 \mathrm{~V}$
Input capacitance 3.5 pF Accuracy 3\%
Resistances
Range $1 . \Omega-1000 \mathrm{M} \Omega$ (centre scale values $10 \Omega-100 \mathrm{M} \Omega$)
Special features
Floating input. Centre scale facility. Ealibration voltage incorporated. Special heater stabilisation.

Range (fsd) $1 \mathrm{mV}-300 \mathrm{~V}$.80 dB to +32 dB
Input impedance
without attenuator
$1 \mathrm{M} \Omega$ - $50 \mathrm{k} \Omega / / 7 \mathrm{pF}$
with attenuator
$50 \mathrm{M} \Omega-2 \mathrm{M} \Omega / / 2 \mathrm{pF}$
Accuracy 3\%
Calibration voltages 30 mV and 3 V

GM 6023
 U.H.F. $0.1 \mathrm{Mc} / \mathrm{s}-800 \mathrm{Mc} / \mathrm{s}$
 Frequency range $10 \mathrm{c} / \mathrm{s} \cdot 1 \mathrm{Mc} / \mathrm{s}$

 GM 6025Range (fsd) $10 \mathrm{mV}-10 \mathrm{~V}$
-60 dB to +22 dB
Input impedance at $200 \mathrm{Mc} / \mathrm{s}$

$$
35 \mathrm{k} \Omega / / 1 \mathrm{pF}
$$

Accuracy 5%
Calibration voltages for each range
Probe-diode quickly exchangeable T-plece for measurements on 50Ω -
coaxial lines available

Simple L.F. millivoltmeter
 Measuring range 10 mV (fsd) - 300 V -60 dB to' +52 dB
Overall accuracy 5% (from $20 \mathrm{c} / \mathrm{s}$. $200 \mathrm{kc} / \mathrm{s}$): 8% (f́rom $10 \mathrm{c} / \mathrm{s}-20 \mathrm{c} / \mathrm{s}$ and $200 \mathrm{kc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$)
Input impedance $1.5 \mathrm{M} \Omega / / 25 \mathrm{pF}$ $(10 \mathrm{mV}-1 \mathrm{~V}) ; 1.5 \mathrm{M} \Omega / / 15 \mathrm{pF}$ ($3 \mathrm{~V}-300 \mathrm{~V}$)
Pre-deflection $<300 \mu \mathrm{~V}$
Calibration voltage incorporated

instruments: quality tools for industry and research

$:::::$:YOUR FUUURE IN :::::EECTRONICS?

> C. R. E. I. training helps thousands of students to a more rewarding life.
> C.R.E.I. home study programmes, proved by thousands of successful electronic engineers in America. and Europe, are based on specific and current needs in the Electronic Industry.
> Continuous revision of the courses, to include the latest technological develop. ments in Electronics, ensures that each student is trained to meet the challenge of this highly exacting and rewarding career.
> If you have two years practical experience in Electronics or a suitable educational background, fill in and send this coupon for full details of C.R.E.I. courses, methods and achievements.
C.R.E.I. Courses are available in :
(i) ELECTRONIC ENGINEERING TECHNOLOGY
(ii) MATHEMATICS FOR ELECTRONIC ENGINEERS
(iii) AUTOMATION
(iv) RADAR
(v) SERVO
(vi) NUCLEAR ENGINEERING TECHNOLOGY

Course levels for
technicians, engineers and Graduate engineers,
C.R.E.I. (LONDON) (DEPT. W27) GRANVILLE HOUSE 132/135 SLOANE ST., LONDON, S.W.1. (INTERNA TIONAL DIVISION OF THE CAPITOL RADIO ENGINEERING INSTITUTE WASHINGTON D.C.)

:: C.R.E.I. aman

announce a special

 programme for THE CITY AND GUILDS OF LONDON INSTITUTE TEEECOMMUNCATION TECHNCLIANS'COURSEIn preparation for a suitable course, C.R.E.I. submitted the whole of their lesson material to experts who are fully conversant with City and Guilds requirements. The format and presentation has been modified and new material added to conform with British Examination requirements. The new course covers the subjects in greater depth than is usually found in one designed for examination purposes.

1st \& 2nd years* leading to the External Intermediate Telecommunications Certificate.
*Courses covering 3rd \& 4th year syllabuses and supplementary studies will be available shortly.
C.R.E.I. (LONDON) (DEPT W28) GRANVILLE HOUSE 132/135 SLOANE ST., LONDON, S.W.1.

| | Please send me (for my information and |
| :--- | :--- | :--- |
| entirely without obligation) full details of | |
| the City \& Guilds Programme offered by | |
| your Institute. | |$|$

A.C. MILLIVOLTMETER VM77

This compact and portable Millivoltmeter measures, in 12 overlapping ranges of 1 Millivolt to 300 volts F.S.D., $15 \mathrm{c} / \mathrm{s}$ to $4.5 \mathrm{Mc} / \mathrm{s}$. The input impedance is 10 megohms shunted by 20 pF . and the screened lead provided has a capacity of 60 pF . Also available is a low capacity probe lead (PL. 45). As a wide band amplifier with a maximum gain of 1,000 adjustable in 10 dB steps, the distortion is low particularly at small input levels.

features

* $100 \mu \mathrm{~V}$ TO 300V R.M.S. IN 12 RANGES
* CALIBRATION ACCURACY $\pm(3 \%+3 \%$ F.S.D. $)$
* INPUT IMPEDANCE 10 MEGOHMS, 20 pF .
* FREQUENCY RANGE $15 \mathrm{c} / \mathrm{s}$ TO $4.5 \mathrm{Mc} / \mathrm{s}$.
* AMPLIFIER BAND WIDTH $12 \mathrm{c} / \mathrm{s}$ TO $5 \mathrm{Mc} / \mathrm{s}$.

NETT PRICE IN U.K. £49

ADVANCE COMPONENTS LIMITED
INSTRUMENT DIVISION
ROEBUCK ROAD, HAINAULT, ILFORD, ESSEX. TEL: HAINAULT 4444

3000 types of both receiving and transmitting tubes IN STOCK In addition, a comprehensive range of crystals and some types of transistors and trustworthy tubes are available.

PRICE AND STOCK LISTS ON APPLICATION

Your specific enquiries for special types to CV. JAN and MIL specifications are invited.

Our organisation is E.I.B. \& A.R.B. Approved.

HALL ELECTRIC LTD

 HALTRON HOUSE, ANGLERS LANE, LONDON N.W.5.Tel.: Gulliver 8531 (10 lines)
Telex 2-2573 : Cables: "Hallectric London"

HILRO1.

? CLARK air operated telescopic
 MASTS
 are in use the World over

\star Radio Aerial Applications:
all types, directional and omni-directional, radio telephone base and mobile masts, variable \ddagger-wave Marconis, field strength measurement
\star Survey Use:
precision height marker
mapping
jungle survey aerial spraying marker
\star Broadcasting:
microphone mast
spotlight
television camera (using CLARK remote Pan and Tilt unit)
\star Aviation:
landing beam calibration
\star Emergency Uses:
fire-fighting and accident floodlighting public address

* General:
high-level photography
meteorological measurement
and countless others

CLARK MASTS are in use with Government Departments, Civil Authorities and leading firms in many parts of the World. Models range from 25 to 80 feet high. Prices start at £25. Specialist masts for specialist applications

Send immediately for new illustrated 44-page catalogue to:

A. N. CLARK

(ENGINEERS) LIMITED Binstead, Ryde, Isle of Wight (Fornerly of Merton, London. S.W.19)

HIGH QUALITY SOUND REPRODUCTION

The range of equipment offered for sale under the heading of "HIGH FIDELITY" is now quite considerable. Variations exist in respect of price, performance, quality of materials, reliability, finish and styling.

Specifications become more and more complex, and it is a formidable task for a potential buyer to select the equipment which suits his pocket. It is impossible for any one manufacturer to satisfy the varied requirements of all would be purchasers. For many reasons in purchase and production, the final product standard of a Company must be clearly defined and understood by all the staff. Double standards are impracticable as a high standard tends to drift to the lower.

The policy of this Company is to manufacture equipment to the highest technological level, using the best quality components and material available, with first-class workmanship and finish. If we could do this at the lowest price, then there would be little need to advertise; but in fact, the equipment probably costs less than you expect. This is due to years of experience in the manufacture of high quality equipment for professional and commercial uses, and good organisation in a modern factory fitted out with up-to-date machines and equipment, and a trained labour force.
At the moment we are manufacturing power amplifiers, pre-amplifier control units, and transformers, in the high fidelity field. During the past few years we have been doing development work on loudspeaker systems and an FM Tuner, and sometime in the very near future they will be ready for manufacturing, and available for purchase.

If you are interested in sound reproduction of the highest possible standard, please fill in your name and address below, and post to us. We will forward to you our current leaflets, and send leaflets of new items when they become available.

RADFORD ELECTRONICS LTD

Ashton Vale Estate

Bristol, 3, England.
Tel. 662301/2

Name \qquad
Address \qquad

Lewis have the RECORDHOUSING Cabinet for you

THE GRIEG
Price 24 gns
This fine cabinet is available in two satin
finishes: medium walnut or medium mahogany, and comes complete with 9in. legs. It will house any tape deck, turntable, amplifier and control unit, radio tuner, plus room to spare.

IOin. Reflex
Price £10.19.0
The specially designed Strauss signed Strauss
10 in. reflex enloin. reflex en-
closure is built closure is buitt
of \sin. solid chipof sin. solid chipboard and lined
throughout with wadding and is completely free from boom or panel resonance. It is available in medium walnut or medium mahogany.

LEWIS radio

100 CHASE SIDE, SOUTHGATE, LONDON, N. 14
Telephone Polmers Green 3733/9666

TWO NEW LEWIS CATALOGUES-
Designed to assist your choice of cabinet and lequipment. THE new Lewis Radio Cabinet Catalogues-the most comprehensive ever prepared. THE unique 64 -page equipment catalogue. Please send your two new catalogues. Enclosed is P.O. for $3 / 6$ which will be credited against any purchase I make.
\qquad
ADDRESS
W 32

10^{-12} Watts - 25 kVA

 DRAKE

 DRAKE TRANSFORMERS

 TRANSFORMERS}

Mains Transformers

Chokes
Audio Output Transformers
Audio Input Transformers
Saturable Reactors

Coils
Current Transformers

Transistor Transformers
Inverter Transformers
Screened Microphone Transformers

DRAKE TRANSFORMERS LTD., BILLERICAY, ESSEX

Billericay ll55

WHEN IT'S NEW FROM BRENELL IT'S NEWS!

When Brenell introduce a new development in the tape

 recorder field you can be sure that it's worthy of your attention. As you well know the development of a new machine takes time but below are a few details to whet the appetite.
THE STB 1

A four-speed deck with twin recording and twin replay pre-amplifiers.
In addition to Stereophonic recordings, with or without tape monitoring facilities, different recordings may be made simultaneously or either track may be used for recording purposes (with tape monitoring if desired) whilst the other track is replaying.
Sound-on-Sound-so eagerly sought by the cine enthusiasts and keen musicians -is easily accomplished with perfect synchronisation between two or more recordings.
This is the ideal tape unit for incorporating in your Stereo High Fidelity installation. Eminently suitable for language studies and other tutorial purposes.
Full information will be published shortly.

BRENELL ENGINEERING CO. LTD.

PEMBRIDGE

 COLLEEE
OF ELECTRONICS

ATTENDING COURSE

(A) Full-time One Year Course in Radio and Television. College course in basic principles for prospective servicing engineers.
Next course commences 25th April 1963
This course is recognised by the Radio Trades Examination Board (R.T.E.B.) for the Radio and Television Servicing Certificate examinations. Provides excellent practical experience on valve and transistor radio receivers and all well-knowń makes of television receivers.

HOME STUDY COURSES

(B) Courses in Radio, Telecommunications and Mathematics for the City and Guilds Telecommunication Techniclans' Certificates.

To: The Pembridge College of Electronics (Dept. P.10), 34a Hereford Road, London, W.2.
Please send, without obligation, details of A.... B.... (Please tick)
Name
Address bright aluminium.
A notable feature is the addition of four lattice fixing holes which enables the mounting of the chassis to the cabinet with self-tapping or wood screws only, thus saving the constructor a lot of time making brackets and holes, etc., and presenting a much firmer method of fixing.

HOME CONSTRUCTOR CHASSIS

CHASSIS made to your requirements with a scale of charges which enables. you to work out the cost of your prototype
Material is in 16 s.w.g. bright aluminium at 1 d . per square inch—plus 6 d . per bend-plus 3 d . per round hole-plus $2 / 6$ per shaped hole-plus welding at 6d. per inch-plus $2 /$-postage. 16 s.w.g. aluminium panels-4/- per sq. ft.
GENERAL CATALOGUE covering full range of components, send, $/ 16$ in stamps or P.O. PLEASE SEND S.A.E. WITH ALL OTHER ENQUIRIES.

DENCO (CLACTON) LTD. (Dept. W.W.), 357/9 Old Road, Clacton-on-Sea, Essex Stop Press: S.B. DECODER TRANSFORMERS - 26/- each.

When your work is worthy of the world's finest instruments . . .

Marconi Instruments Type TF 2200 OSCILLOSCOPE

Marconi Instruments provide a range of oscilloscopes, pre-amplifiers and other accessories. Please write for full particulars giving brief details of your requirements.

A GOOD NAME FOR GOOD MEASURE

* D.C. to $35 \mathrm{Mc} / \mathrm{s}$ bandwidth at $50 \mathrm{mV} /$ cm without distributed amplifiers
* 12 nsec rise time for less than 1% overshoot
* $10 \mathrm{nsec} / \mathrm{cm}$ writing speed
* 3 mode sweep delay from less than 1 $\mu \mathrm{sec}$ to 5 seconds for detailed waveform analysis or line strobe
* Two position frequency roll-off
* Simplified triggering control
* Single-trace, dual-trace and TV.-
differential plug-ins
* Slide-back or direct time and voltage measurement with built-in voltage calibration

MARCONI INSTRUMENTS

Please address your enquiries to Marconi Instruments Limited at your nearest office

London and the South:

English Electric House, Strand, London, W.C. 2 Tel: COVent Garden 1234

Midlands :

24 The Parade, Leamington Spa. Tel : 25212
North :
23-25 Station Souare, Harrogate. Tel : 67454

Write TODAY!
 Lor full Detalls of OSCILLOSCOPES

Model 1200 B . For A.F. and low R.F. applications.
\leqslant Sensitıvity
$100 \mathrm{mV} / \mathrm{cm}$.
B/W D.C. to
$100 \mathrm{Kc} / \mathrm{s}$. C.R Tube 2% in.
diam.
£35 100
Model 2300.
Light-weight Portable. B/W D.C. to $2.5 \mathrm{Mc} / \mathrm{s}$ Sensitivity $=$ $50 \mathrm{mV} / \mathrm{cm}$. C.K. Tube 2 草江. diam.
Dims.: $74 \times 4 \frac{1}{x}$
£39 $10 \quad 0$

FORUM WAY • EDGWARE•MIDDLESEX PHONE:-EDGWARE 6666/7/8

PLUGS \& SOCKETS.
A wide range, covering all technical requirements

VOLTAGE SELECTORS
Several types embracing
461012 \& 14 selections

Protected - capsulated hermetically sealed 0.1Ω to $30 \mathrm{M} \Omega$
Wire or lug Terminations

MeWiurdo

Precision Components

Ill
McMurdo Instrument Co Ltd
Ashtead Surrey. Telephone Ashtead 3401
Contact our sales office for details of our full range
10
$\left.\begin{array}{|ll}\hline \text { (1) }\{b] \\ a\end{array}\right]$ for the closest approach to the original sound

Your copy of Gardners "S/M"
Catalogue can be obtained now by writing to
GARDNERS TRANSFORMERS LIMITED, SOMERFORD, CHRISTCHURCH, Hants.

Brief Technical Data
Operating carrier frequency 3,000 c.p.s. $\pm 5 \%$
Minimum Input Signal 50 mV R.M.S.
nout. Impedance I Megohm
Input amplifier bandwidth -3 db at 2,500 and 3,500 c.p.s.

Effective limiter ${ }^{\text {range }} \pm 10 \mathrm{~dB}$.
Meter scaling-" Peak wow" 0 to $\pm 1 \%$ (centre zero).
Wow" and "Flutter" 0 to 1% and 0 to. 0.2% R.M.S.

Crossover frequency 20 c.p.s.
"Flutter " meter response -3 db at crossover
-3 dB at 200 c c.p.s.
-3 dB at crossover
RO. output frequency response level down to zero frequency- 3 dB at 200 c.p.s.
3,000 c.p.s. oscillator output level. $5 V$ R.M.S. into 0.5 Megohm 100 mV R.M.S. Into 500 ohms.

Accuracy: Meter presentations $\pm 2 \%$ f.s.d.
Power consumption 35 watts.
Mains $100 / 150 \mathrm{v}$. and $200 / 250 \mathrm{v}$.
Single phase $45 / 60$ c.p.s.

163 Mains transformers for valve and contact-cooled rectifiers, audio output transformers and chokes are fully described in Gardner's new " S / M " Catalogue available on request.
Electrical characteristics, dimensions, weights, fixing centres and prices are fully described in this new publication which includes the latest additions to the Solent range (to BSS 2214 group 10/55) and the high performance but inexpensive "Miniford " range. Typical frequency response characteristics are also given.

ADVAMCED DESLGN

MODEL AT6

AUTOMATIC RECORD PLAYER

Here, with its brilliant pickup arm, you see a striking example of Garrard design and engineering. Up to now, this type of arm was considered as a separate component-an added luxury. An aluminium tubular pickup arm dynamically balanced and counter-weighted-it is a professional arm in every respect-is provided as a standard fitting with the AT6, assuring perfect installation. This is just one of the precision features that enable the AT6 to provide the quality performance required of a Garrard unit built for knowledgeable, critical listeners. All the skill, the experience and the established facilities which Garrard have put behind the development of the highly successful Type " A " have also gone into the new AT6 unit.

The AT6 will now track each side of the stereo grooves accurately at the lowest pressure specified, even for cartridges labelled pressure specified, even for cartridges labelled "profe

The arm is balanced and tracking force adjusted in two easy steps. First . . . it is set on zero tracking pressure, by moving the counterweight until the arm is level, in perfect equal balance.

Now . . . you fix the tracking force desired on the built-in stylus pressure gauge conveniently mounted in upright position at the side of the arm.

The plug-in moulding will accommodate most makes of stereo cartridge and the bayonet fitting with threaded collar assures rigidity and banishes resonance.

Records may be played manually and the AT6 is fitted with a large, heavy and balanced turntable.

THE GARRARD ENGINEERING \& MANUFACTURING CO. LTD.

SALFORD ELECTRICAL INSTRUMENTS LIMITED PEEL WORKS, SILK ST., SALFORD 3, LANES Tel Blackfriars 6688 (8 lines) London Sales Office: Brook Green. Hammersmith, W 6. Tel. Riverside 5246 A Subsidiary of THE GENERAL ELECTRIC COMPANY LIMITED of ENGLAND

NOW a complete range of EKCO Static Inverters 15VA to 5kVA for air and ground use

* high efficiency
* no moving parts
* self protecting
* close voltage control
* stable frequency
* excellent waveform
* silent operation
* instant starting

ARB APPROVED TYPES AVAILABLE
For full detalls wrlle or phone

EKCO ELECTRONICS LTD
Southend-on-Sea, Essex. Tel. Southend 49491

This is a vibration test in progress. The scene is the Painton Environment Test House, the component is a Rotary Stud Switch, and the test mechanism is an electro-mechanical vibrator.
In the course of its progress through the Test House the Switch will also be subjected to the trials of other mechanical devices, introducing new rigours including bumps and steady acceleration. All are devised to
ensure that it is fit to fulfil the exacting applications for which it has been made and to meet Defence Specifications.
Painton Reliability springs from the kind of activity we show you here. This is part of a constant programme to check the quality of materials, the standards of construction, and the care of manufacture upon which Painton Relliability is founded.

KINGSTHORPE . NORTHAMPTON
Tel: 34251 (10 lines) - Grams: 'Ceil'Northampton - Telex: 31576

MICROWAVE SIGNAL GBNERATOR

TYPE TZA-102/1177 Frequency range $\quad 3500$ to $7500 \mathrm{Mc} / \mathrm{s}$ Fitted with automatic repeller voltage control.

Frequency accuracy
Output power
Output impedance
better than 1% higher than 1 mW 50 Ohms/rated/

Fitted with practically all modulation facilities.

Exporters:
METEIMPEX hungarian trading company for instruments Letters: BUDAPEST 62, P.O.B. 202, HUNGARY

Telegrams: INSTRUMENT, BUDAPEST

TWO NEW TYPES OF "WEYRAD" I.F. TRANSFORMERS FOR SET-MAKERS

 maximum performance-minimum size-COMPEtitive price

TYPE PIO
Oscliliator Coiis and Single-tuned I.F. Transformers $7 \times 7 \times 11 \mathrm{~mm}$.
Osc. Coils cover medium wave with 85 pF capacity swing.
I.F.s for $470 \mathrm{Kc} / \mathrm{s}$ operation.

TYPE T80
Double-tuned Ist and 2 nd I.F. Transformers $21 \times 13 \times 18 \mathrm{~mm}$.
T81 Ist I.F. "Q " 85.
T82 2nd I.F. " Q " 100.
Coupling for each type-critical.
\qquad

High Performance Preforms

Enthoven solder preforms reduce the percentage of rejects, economise in materials and in manpower.

We will gladly advise on any soldering problem you may encounter. As a first step why not send for our booklet on ENTHOVEN SOLDER PRODUCTS.

A wide range of Enthoven solders, both cored and solid, are available in the form of rings, washers, discs, shims, strips and ribbon, for use with advanced soldering techniques. Special sizes or shapes can always be evolved and precision manufactured to meet individual requirements.

ENTHOVENSOLDERSLIMITED Sales Office \& Works:
Upper Ordnance Wharf, Rotherhlithe Street, London, S.E.16. BERmondsey 2014

Mead Offlce:

Dominion Bulldings, South Place, London, E.C.2. MONarch O391

SOLDERING IRONS ANTEX

GROSVENOR HOUSE GROYDON SURREY PHONE: MUNIGIPAL 2774

MODEE	Mitrs	LEMGT
E	20	$7.75{ }^{\circ}$
c	15	6.5°
B	12	6.5
A	8	6.5
VOLTAGES		
240	220	110
53.28	24	2
ASK FOR FULL		

BuIICers ceramics

 for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products. Write today for detalled parțiculars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent
London Office: 6 Laurence Pountney Hill, E.C. 4 Phone: MANsion House 9971

V.H.F. SIGNAL GENERATOR DID

A compact and ruggedly constructed instrument providing sine or square wave amplitudemodulated signals in the range $10 \mathrm{Mc} / \mathrm{s}$ to $300 \mathrm{Mc} / \mathrm{s}$. The r.f. oscillator is triple screened giving negligible stray radiation. Maximum resetting accuracy is ensured by the linear scale with the vernier and slow motion drive.

FERTURES

- FREQUENCY RANGE $10 \mathrm{Mc} / \mathrm{s}$ TO $300 \mathrm{Mc} / \mathrm{s}$
* FREQUENCY ACCURACY $\pm 1 \%$
* OUTPUT IMPEDANCE 75 OHMS UNTERMINATED, OR $37 \frac{1}{2}$ OHMS TERMINATED
* OUTPUT VOLTAGE $1 \mu \mathrm{~V}$ TO 100 mV R.M.S. TERMINATED
* MODULATION, 30% SINUSOIDAL A.M. AT $1 \mathrm{Kc} / \mathrm{s}$, 1:1 SQUARE-WAVE AT $1 \mathrm{Kc} / \mathrm{s}$

ADVANCE COMPONENTS LIMITED

INSTRUMENT DIVISION
ROEBUCK ROAD, HAINAULT, ILFORD, ESSEX. TEL: HAINAULT 4444

Arcolectric SWITCHES and SIGNAL LAMPS

T.225: Miniature Slide Switch D.P.D.T.
\(\begin{aligned} S.L.266: \& Very small low cost
\& mains neon indicator\end{aligned}\)
S.L.60: Miniature L.E.S. Lampholder
T.906: New, very small push button Switch. Models for biased on or off switching

T. 225

Samples to manufacturers
For design purposes
AT ONCE - WITHOUT CHARGE

ARCOLECTRIC
 SW TCHES M LTD

 VALRADIO AGENTS IN THE FOLLOWING COUNTRIES

TRANSVERTERS
(TRANSISTORISED D.C. CONVERTERS)
2K.W. Peak starting. 650W. continuous. $50-60-400 \mathrm{c} / \mathrm{s}$. or D.C. from $12-24-50 \mathrm{v}$. battery. Up to 93% efficiency. Polarity reversal protection. Square or sinewave. Up to 300% instant overload capacity. Manually controlled frequency. Reed type indicator. Remote control facilities.
Applications: Static "No-Break" standby power supplies; for vital system(s) protection, e.g. V.H.F. transmitters; industrial processes; control-alarm-warning systems; mobile use of counters; sig/gen.: recorders-U/V sound; oscilloscopes and lab gear in marine and aircraft (K114);
Range of models available with prices from £11-£90.

Please write to department C.5. for transverter leaflet.

Vahadio LIMITED

the D.C. conversion specialists slnce 1935
BROWELLS LANE, FELTHAM, MIDDLESEX Telephone: FELTHAM 4242-4837

Valradio and Stereosonoscope are the registered trade marks of Valradio Ltd.

ADEN

Pallonjee Dinshaw Ltd., Steamer Point.

BURMA

Cargillis (Ceylon) Ltd., P.O. Box 963 . Rangoon.

HONG KONG
Universal Trading Co., No. I-26 Man Yee Building, Des Voeux Road.

ISRAEL
The Palestine Orient Co. Ltd.,
4, Herzl Street,
P.O. Box 230,

Tel-Aviv.

JORDAN

Khalil, Salem Khuri \& Co., P.O. Box 1008, Amman.

LEBANON

S. Audi \& Freres,

10-14, Avenue des Francais,
Belrut.

E. PAKISTAN

K. Rahman \& Co. Rahmat Building, Sadarghat Road, Chittagong.

ARABIAN GULF
Vithaldas Valabhdas \& Bros., P.O. Box No. 105, Dubai.

ARABIAN GULF
BRITISH GUIANA
Booker Brothers,
Georgetown,
Demerara.

Bhatia Radio Electric Co., Wonard Engineering Ltd.,
P.O. Box 16, 52, Church Street,
S. RHODESIA

Electronic \& Nucleonic, Industries (PVT), Lid., P.O. Box 2364

Salisbury.
S. AFRICA

Chenik \& Barnett (Wireless) Led.
P.O. Box 74S,

Johannesburg.
PHILLIPINES
The Mico Recording Mfg. P.O. Box 2364. Manila.

SINGAPORE

Bolter \& Simon,
The Great Eastern Life Bldg. 16A-3 Cecil Street.

SAUDI ARABIA
Abdullah M.O. Binzagr.
P.O. Box 209.

Jeddah.

JAMAICA

Kingston.
KENYA
Campling Bros. \& Vanderwal Ltd.,
P.O. Box 1951,

Nairobi.

CYPRUS

Chris Radiovision Trading Co
8c Onassagorou Street,
Nicosia.

GREECE

Philips S.A. Hellenique.
2, Rue Nokis,
Athens.

MALTA

20th Century Import \& Export Agency.
5. Monsigna D'Andria Street, Mida.

WEST AFRICA

G. B. Ollivant \& Co. (Nigerik) Ltd.,
P.O. Box 72 ,

Kaduna N. Nigeria.

Tilt \square
\square

$$
2=-1=8
$$

Jed

Ts The Power suppy that counts

Electrical and electronic equipment is only as good as its power supply! For optimum performance, specify Philips stabilizers. They cover all requirements whether a highly constant DC voltage for the supply of a single instrument is required or an entire electrical installation has to be operated continuously by constant input power.
from the Phillps stabisizer programme:
Regulated DC power supplies and fixed output DC. power supplies
for $0-500 \mathrm{~V}$ up to 10 Amps , with variable, highly constant output voltage, low internal resistance and noise level. short recovery time, automatic overload protection for 19 rack mounting or bench use and single phase AC mains between 110 and $245 \mathrm{~V}, 50 \ldots 60 \mathrm{c} / \mathrm{s}$.

AC Voltage Stabilizers, magnetic, electronic-magnetic and motor driven for output powers from 300 VA up to 50 kVA . with a highly constant output at wide input variation. Frequency independent; floor space-saving design.

PHILIPS

[^5]Overseas enquiries please, to the manufacturers:

Continuous servono creeping towards balance and NO NOISE.

Tropicalised, DEF spec. quality.

Wide/narrow range facility.

Price unchanged since 1953.

counts toward supremacy in A.C. Stabiliser design by
 SERYOMEX

Servomex A.C. stabilisers are true RMS instruments-they have to be to reach the new precision of 0.1%-any rectifier measuring device being upset by distorted waveform of the supply voltage, or of the load current. Servomex Technical leadership makes these new models better than ever and Servomex production know-how gives you a de-luxe instrument at no extra price.

Write for data sheets and a copy of "Technical Notes" on A.C. Stabilisers.

SERVOMEX CONTROLS LIMITED

Crowborough, Sussex. Crowborough 1247

AIMPLIVOX

PERSONAL COMMUNICATIONS EQUIPMENT

TELECLIP
The new Voxette acoustic tube stethophone with all-nylon tubes and combined wide frequency range reproducer/plug.

JETLITE

The lightest-weight, high quality headphone with cool, enveloping earpads (boom microphone headset versions available).

MINI-MIKE

A tiny sensitive hand microphone with or without switch, having single or double pole action.

ALWAYS IN STOCK and ready for immediate dispatch

 SPEAKER
 OFFERS
 TAPE famous brands offered at specially attractive prices savings. S.A.E. for list. If

MORE READIPACKS-ALL AT 8/6 EACH

Post Free in Great Britain

READIPACK NO. I.
100 resistors. assorted, 10Ω to $\$ 0$ meg., in preferred values $\frac{1}{4}$, $\frac{1}{2}, 1$ and 2 W
READIPACK NO. 2
25 assorted condensers Ipf. to 1,000pf.
READIPACK NO. 3
20 assorted condensers $1,000 \mathrm{pl}$. to . 01 mfd .
READIPACK NO. 4
12 assorted condensers .01 mfd . to 0.1 mfd .

TIME, TROUBLE AND MONE

METER CASES
$4 \times 4 \times 4$ in. Slope Front 106 $5 \times 5 \times 8$ in Slope Front $6 \times 6 \times 12$ in. Slope Front 16 $4 \times 4 \times 2 \frac{1}{2}$ in. Rectangular 5 $6 \times 4 \times 3$ in. Rectangular 8 $8 \times 6 \times 3$ in. Rectangular 10 $10 \times 7 \times 7$ in. Rectangular 126 $12 \times 7 \times 7$ in. Rectangular $£ 1 \quad 140$ $14 \times 7 \times 7 \mathrm{in}$. Rectangular El 176

4 tone and volume cont
READIPACK NO. 5
25 Hi-stability Resistors 10Ω to 25 meg. Assorted $1 \%, 2 \%$, 5\%. Welwyn, Erie, Dubilier, etc. $\mathbf{t}-2$ watts.

READIPACK NO. 6
10 assorted wirewound resistors by Welwyn, Painton, etc. $6 \Omega-82 \mathrm{~K}, 3-14 \mathrm{w}$.

4 tone and volume control pots. SAVING. ALL GUARANTEED

Black Crackle finish with removable aluminium panel.
$14 \times 9 \times 8$ in. Rect....... 126 $16 \times 9 \times 8$ in. Rect........ $£ 2 \quad 126$ $16 \times 11 \times 8 \mathrm{in}$. Rect....... 176 $\begin{array}{llll}19 \times 8 \times 1 \text { in. Rect....... } \& 3 & 4 & 0 \\ 19 x \mid 1 \times 10 \text { in. Rect....... } £ 3 & 6 & 0\end{array}$ P. \& P. extra an above prices. FULL RANGE OF CHASSIS. Lists free on request.

Switches for Mullard circuits Approved by

TR2. 2 v . pre-amp. Selector 12/9 TR3. 3 v . pre-amp. Selector $12 / 9$ TR4. 3 v. p/amp. H.F. Filter $10 / 9$ TR5. 3 v. p/amp. L.F. Filter $8 / 4$ TR6. 3 v . Tape amp. R/P $16 / 6$ TR7. 3 v . Tape Equaliser 7/4

TR8. Tape pre-amp. R/P 16/6 TR9. Tape p/amp. Equaliser 7/4 TRIO. St. p/amp. Selector 18/6 TRII. S. p/amp. Ch. to E. 9/6 TR12. Stereo p/amp. Steread Mono 9/6 Please add P. \& P. I/- per switch. ROTARY SWITCHES to order. List Free.

BRADMATIC HEAD ASSEMBLIES

 Special Offer BRADMATIC Erase and Record/ Replay Heads for 2-tr. working assembled on mounting platform with adjustable azimuth. BRAND NEW. Fits directly on Collaro Suxio and most $39 / 6 \mathrm{PpP} 1 / 6$.cher
cher
decks. other decks.

CAR AERIALS

3 section, universal feting. 4ft. 6in extended. Heavily plated, with fittings. Usually 39/6. 19/6. P. \& P. 2/-.

JASON KITS, TRUVOXDECKS, SAGA PRE-RECORDED TAPES, FERROGRAPH \& VORTEXION RECORDERS.
MICROPHONE BARGAINS ACOS MIC39/I. Crystal mic. originally 5 gns. Guaranteed. $39 / 6$.
HAND MIC., SWITCHED. Crystal, with switch, halter neckband and stand adaptor, P/P either mic. $1 / 6$.

Please Nofe

We stock vast ranges of components, valves, etc. as well as leading makes of the best in Hi-Fi. Enquiries welcomed with. out obligation.

OVER 3 OYEARS' EXPERENCE

is behind the design of these modern soldering instruments marketed under the names of:-

ADAMIN and LITESOLD

A NEW ADAMIN MAINS MODEL

The CIOL (shown on bench stand) is probably the smallest mains voltage model in the world. Bit dia. 3/32in., length 7 in., weight $\frac{1}{2} \mathrm{oz}$. (less flex). Heats in 30 secs.

Brochures A5 and 15 post free from the sole proprietors:-

LIGHT SOLDERING DEVELOPMENTS LTD

28 SYDENHAM ROAD, CROYDON, SURREY Tel.: CROydon 8589

PLASTRONICS LIMITED

Manufacturers of
HEARING AID CORDS; MICROPHONE LEADS, EARPHONE LEADS FOR DICTATING MACHINES AND PORTABLE•RADIO SETS

PIUGG SOCKETS AND INJECTION MOULDED COMPONENTS TO CUSTOMERS' REQUIREMENTS

PROTOTYPE, DEVELOPMENT AND ASSEMBLY WORK UNDERTAKEN

TOLPITS INDUSTRIAL ESTATE • TOLPITS LANE, WATFORD : Phone RICKMANSWORTH 2727

$62 a 745$

The call of the wild

NOWI Westinghouse Microscatter beams telephone signals over 118 miles of rough terrain! Telephone signals transmitted at $4400-5000 \mathrm{mc}$ via tropospheric scatter equipment! A telephone communications system was required to connect Uranium City with Fort Smith-118 miles away-and a national hookup. Alberta Government Telephones chose MICROSCATTER, a Canadian Westinghouse development proved 99.99% reliable in actual performance. This permanent MICROSCATTER installation eliminates the need for physical pole lines . . . overcomes the costly and difficult job of maintaining relay stations over inaccessible terraiin. Provides unattended operation. MICROSCATTER is further proof that for year-round communications dependability, you can be sure . . . if it's Westinghouse!

CANADIAN WESTINGHOUSE COMPANY LIMITED

For complete MICROSCATTER application data, write to: Electronics Division, Hamilton, Ontario, Canada.

RADIO and ELECTRONICS

Edited by J. H. Reyner, B.Sc., D.I.C., M.I.E.E.
Student and specialist alike need a book which will give them the fundamental applications of radio and electronics in an easily digestible form, and this book has been produced with that need in mind. In these two well-illustrated volumes a team of electronics experts shows you the theories and techniques, the methods and materials of this exacting science, from Acoustics to X-rays. You cannot hope to keep all of radio and electronics in your head, but you can keep "Radio and Electronics" on your bookshelf for constant and easy reference.

This most important book can be yours for a few small monthly payments under. the New Era Scheme. If you are interested in it, why not send us this application form? We shall then send you a brochure giving further details and explaining our free inspection offer, which lets you look through it in your own time before you decide whether you want it. It's easy-and there's no obligation to buy.

APPLICATION FORM

To New Era Publishing Co. (Dept. P4), 45 New Oxford Street, London, W.C.I.
Please send me full details of your book
" RADIO AND ELECTRONICS "
Name
(BLOCK LETTERS, PLEASE)
Address

Date.........................Age (if under 21).

-M. R. SUPPLIES, Ltd.,

draw your special attention to certain modern miniature devices below Always UP-TO-DATE. Instant deivery. Prices nett MINIATURE RUNNING TIME METERS (Bangamol, 200/250 v. 50 c . (synchronous). Comnting up to 9,999 hours, with $1 / 10$ oth ind cator. Only 1 inn, square with cyclometer post paid.
MINIATURE VARIABLE TRANSFORMERS (Philips). Another remarkable offer MINIATURE VARLABLE TRANSFORMERS (Pailips). Another remarkable ofter $\theta / 240$ v. 0.5 amp. (in two atages). Many applications including motor and ligbtin controi, 58/6 (despatch 2/6).
AIR THERMOSTATS (Pulin). Special contract enabies us to offer these ideal units at keenest price. Adjustable range $30 / 90$ deg. F. Switehing up to 15 amps. A.C. In smart ivorine housing, $41 \times 2 \times 2 \mathrm{in}$. Easily installed, itutructions with each. Right for greenhouse, rooms, labs., etc., 42/- (des. $2 /$).
miniature cooling fans, $200 / 250 \mathrm{v}$. AC, with open type induction motor. $3 \mathrm{in} . \times 2 \boldsymbol{i} \mathrm{in} . \times 1 \mathrm{in}$. and 4 in .4 -bladed metal Impeiler. Ideal for projector lamp cooling, convector beaters and light duty extractors, $28 / 6$ (des. $2 /$).
SMALL GEARED MOTORS. In addition to our well-known range (Last GM/;36i) we otfer smaller open type S.P. Units, 200/250v. AC, 1, 6, 12, 20 or 68 r.p.m. Bize approx. 4in. $\times 2$ inn. $\times 2 \mathrm{in}$. with lin. shaft proj. Suitathe for digplay work and many industrial purposes. Only $89 / 6$ ea. (des. 2/6).
EXTRACTOR FANS. New miniature model complete with outside cowling and Indoor shutter, circular motor housing only 4 itin. dia. Easily mounted in small window pane. Bilent induction motor, 200/250v. AC (no interference). $3.510 \mathrm{c} / \mathrm{ft}$. hour. Instructions with each. Remarkable offer, $59 / 6$ (des. $3 / 6$). We still supply our well-known $6 i n$. . £4/12/6, 8 in. £5/5/0 and 10in. £5/12/6, Extractors
(Ues. any one $3 / 6$). Details on request. (Des. any one 3/6). Detalls on request. SYNCHRONOUS TIMER MOTORS (Sangamo) 200/250v. $50 \mathrm{c} / \mathrm{s}$. Self starting 2 in . dia. $\times 13$ in. deep. Choice of following speeds: 1 r.p.m., 12 r.ph., 1 r.p.h., 1 rev. 12 hrs.i rev. per day. Any one $39 / 6$ (des. 1/6). Also high-torque model (G.E.C. -fin. \times 2in.x lin., 6 r.p.m. 576 (аes. 1/o).
CAPILLARY THERMOMETERS (Teddington). First-class brand new unita, with 4 in. circular dial, range minus 20 deg. F. to 90 deg. F. with 5 ft. tube. Many labora(dea. 2/6).
SYNCHRONOUS TIME SWITCHES (Sangamo), for accurate pre-set switching operations on 200/250 v. 50 c/s. Providing up to 3 on-off operations for 24 hours at any pactly housed, 4 in . dla., 3 i in . deep. With optiona). Capacity 20 amps. Also Smith's Relyon twin-circuit model, $20-\mathrm{amp}$. switchlng, £z/8/- (des. 3/6). COMPLETE SEWING MACHINE MOTOR OUTFITS. No better job obtainable, any price. $200 / 250$ v. A.C./D.C. Fitted latent radio/T. Di suppressirs. Comprising and instructions for easy fixing to ANY machine. The complete outfit $£ 6 / 18 / 6$ (den. 3/6)
IMmediate delivery of Stuart Centerfagal Pumps, Including stainless steel (most models). Philips Variable Traustormers (all models).
M. R. SUPPLIES, Lid., 68, New Oxiord Street, London, W.C.1.
(Telephone MUSeum 2958)

EDOOSSTONE COMMUNICATION RECEIVERS
for the Professiona or Amateur user who tikes the Dest.

Communication receiver at a moderate price. MANUFACTURING STANDARDS OF THE HIGHEST ORDER. 8 B8A valves Superheterodyne circuit. FREQUENCY RANGES
Range I ... $12.4-30 \mathrm{Mc} / \mathrm{s}$. Range 4 ... $1.12-2.58 \mathrm{Mc} / \mathrm{s}$ Range $2 \cdots \quad 5.2$ - $12.9 \mathrm{Mc} / \mathrm{s}$. Range 5 ... 480 — $1150 \mathrm{kc} / \mathrm{s}$. ge 3 2.5-6.1 Mc/s.
Ranges 4 and 5 include the International Distress Frequencies. Sensitivity better than 10 microvolts. Selectivity $30 \cdot \mathrm{db}$ down at $10 \mathrm{kc} / \mathrm{s}$ off resonance, $\mathrm{AC} / \mathrm{DC}$. Internal speaker. $£ 58$. HIRE PURCHASE TERMS
Model No. Cash Price Deposit 12 Mthly. 24 Mthly $\begin{array}{llllllllll}870 A & \ldots 28 & 10 & 0 & £ 5 & 0 & 0 & \text { Payments Payments } \\ 840 \mathrm{C} & 2 & 6 & \end{array}$ 840 C CONFIDENTIAL TERMS. YOU DEAL SOLELY WITR H.P. RADIO. Carriage paid per passenger train. If payments are completed in 6 months only cash price charged. SATISFACTION GUARANTEED.

Telephone: AINTREE 1445

The Eddystone Specialists.
SERVICES LTD.
49/5I COUNTY RD. LIVERPOOL, 4

STABILIZED POWER SUPPLIES

The TSU-0500 series of power supply sub-units (actual size $5 \frac{5}{8} \times 3 \frac{1}{16} \times$ $2 \frac{3}{4} \mathrm{in}$. high) provide stabilised d.c. outputs of $0.5 A$ at any fixed voltage in the range $6-30 \mathrm{~V}$.
The TSU-0500 is rated for operation in ambient temperatures up to $+45^{\circ} \mathrm{C}$, and incorporates a non-destructive overload protection circuit which ensures that the output current is limited to a safe value, even If the load is short-circulted. Other outstanding features are:
Stabilisation: Output voltage changes by less than 0.02% for mains voltage variations up to $\pm 10 \%$.
Output resistance: Varies from 0.01 ohm at 6 V output to 0.05 ohm at 30 V . Output impedance: Less than 0.5 ohm at all frequencies up to $500 \mathrm{kc} / \mathrm{s}$.
Temperature coefficient of output voltage: 0.05% (500 p.p.m.) per degree C.
Price: £25.
The TSU-0500 is the smallest unit in the TSU range. Other units are rated for outputs of 1A, 2A, 3A, 5A and 10A. Full details of the TSU-0500 and other units in the range will gladly be sent on request.

this portable oscilloscope has a $5^{\prime \prime}$ PDA tube

Based on long experience in the production of many thousands of oscilloscopes Telequipment have introduced the Serviscope* Type S ${ }_{5} \mathbf{1}$. This easy to use compact instrument offers all the advantages of large screen display-5" flat faced PDA Tube operated at 3 KV -at extremely low cost

Serviscope \mathbf{S}_{51} is ideal for use in Schools, Technical Colleges and all teaching establishments. Also many production control and industrial applications, requiring a portable instrument and easy to read display.

5" Flat faced PDA tube

gives a bright, fine trace over the whole of the screen area. Full $10 \mathrm{~cm} . \mathrm{X}$ and 8 cm . Y deflection.
D.C. coupled Y amplifier

Maximum bandwidth $3 \mathrm{Mc} / \mathrm{s}$. (-3 dB approx) Maximum sensitivity $100 \mathrm{mV} / \mathrm{cm}$.
Accurate calibrated input attenuator gives direct reading of A.C. or D.C. input voltages from $100 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$.

Wide range calibrated time base
has 5 pre-set sweep speeds from $\mathbf{1} \mu \mathrm{sec} . / \mathrm{cm}$ to ro $\mathrm{mS} / \mathrm{cm}$. plus ro:1 variable control.
X expansion control
gives over 2 diameters expansion equivalent of a trace length of over 20 cm .
Versatile triggering circuit
gives 3 modes of triggering:
I. Automatic Synchronisation.
2. Selective Triggering. Enables the Time Base to be triggered from any selected point on the input waveform.
3. TV Synchronisation from Video waveforms line and frame, positive or negative.
D.C. coupled flyback blanking
ensures uniform trace brightness and complete suppression of the retrace.
Dimensions
$7^{\prime \prime}$ wide $\times 15 \frac{1}{2}$ " long $\times 8^{\prime \prime}$ high. Weight 16 lb .
*Serviscope as a registered Trade Mark

Wireless World

ELECTRONICS, RADIO, TELEVISION

MARCH 1963

Editor:

F. L. DEVEREUX, b.s.

Assistant Editor:
H. W. BARNARD

Editorial:
P. R. DARRINGTON
D. R. WILLIAMS

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisement Manager:
G. BENTON ROWELL
105 Editorial Comment
106 Transistor Bias Networks

By T. Ormond
109 Direct-coupled Pulse Circuits

By R. Thompson
111 Books Received
112 Paris Components Show
114 Citizens' Radio in U.S.A.
By R. L. Conhaim

116 World of Wireless
118 Personalities
120 News from Industry
121 Wireless World Oscilloscope-1
128 Aerospace Telemetry
129 Physical Society Exhibition 1963
134 Letters to the Editor
137 Oscillators: a Monastic Approach-3 By T. Roddam
142 Manufacturers' Products
145 Nonconductor Valves By "Cathode Ray"
148 Transistor Amplifier Output Stages-3 By O. Greiter
152 Unbiased By "Free Grid"
154 March Meetings

Managing Director: W. E. Miller, M.A., M.Brit.I.R.E.
Iliffe Electrical Publications Ltd., Dorset House, Stamford Street, London,
S.E. 1

Please address to Editor, Advertisement Manager or Publisher as appropriate
(C) Iliffe Electrical Publications Ltd., 1963، Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief abstracts or comments are allowed provided acknowledgement to the journal is given.

[^6]
CONTROLLED WARM-UP TIMES

 for television series heater chains

 for television series heater chains
 $A^{\prime \prime}$11 Mullard valves designed for operation in television series heater chains now possess equalised heating characteristics. These characteristics obviate damage to the valve heaters during

 NEW MINIATURE

 NEW MINIATURE TRANSISTORS TRANSISTORS FOR POGKET PORTABLES

the warm-up period and eliminate the need for a thermistor.
The voltage developed across one which the temperature rises. Since heater of a series heaterchain depends the space inside the cathode is small, almost directly on the resistance of it is difficult to ensure consistent that heater. The resistance of the heaters depends on their temperature, and is greater when the valves are hot than when they are cold. When a receiver is switched on, if one valve warms up more rapidly than the rest, the effect on the current will not be appreciable, but the increase in the voltage developed across the heater of that valve can exceed the amount (50% above the nominal heater voltage) which can be tolerated during the warm-up period. This can shorten the life of the valve considerably, and to prevent it, heater chains have normally been designed to incorporate a thermistor.
The resistance of a thermistor is high when it is cold, but falls as heat is generated in it by the heater current. The thermistor thus reduces the rate of increase of the heater current, and prevents unequal rises in the temperature of the heaters from producing an excessive voltage across any heater.
The rate at which the temperature of a valve heater rises depends very much on the mounting of the heater in the valve. Any point of contact between the insulated heater and the surrounding cathode sets up a small drainage of heat away from the heater and thus retards the rate at
positioning of the heater within the cathode, so that the number and extent of these contacts, and therefore the rate at which the heater temperature rises, can vary considerably from one valve to another. Now, however, Mullard have developed accurate and carefully controlled methods of manufacture which produce equalised rates of temperature rise in all their television valves. Extensive tests with a large number of valves in typical heater chains have shown that these equalised heating properties ensure that, withoutadded protection, the voltage developed across any heater will not exceed the permitted 50% above nominal during the warm-up period. Use of Mullard television valves thus enables heater chains to be designed without a thermistor, and this, in addition to the obvious economy, leads to shorter warm-up times and a faster appearance of the picture on the screen.

WHAT'S NEW IN THE NEW SETS

These articles describe the latest Mullard developments for entertainment equipment

A new Mullard range of miniature transistors has recently been introduced for pocket-size portable radios. These very small transistors-the AF124, AF125, AF126 and AF127-have been evolved as a continuation of the Mullard contribution to miniaturisation which began with the well-known OC44 and OC45 alloy-junction transistors.

Early transistor sets were restricted to the long and medium wavebands but. short-wave and v.h.f. operation became feasible with the improved frequency performance of transistors manufactured by the alloy-diffusion technique. The first of these r.f. transistors to be introduced by Mullard were the OC170 and OC171, but these were superseded by the nowestablished AF114, AF115, AF116, and AF117-a series that was soon accepted as fulfilling the h.f. requirements of all forms of portable receiver.
The new series is a miniature counterpart of the AF114 series: the electrical properties are identical, but the transistors are only a quarter of the size. All the many advantages of the alloy-diffusion technique are retained, but considerable economy of space is afforded. These benefits are reflected in the smaller size and improved performance of the latest pocket portables.

> MULLARD MINIATURE ELECTROLYTICS 8 Values in the New Can Size 21 Mullard miniature electrolytic capacitors Mullard C426 series consisted of five can of the C426 series are a proven success in sizes, each of which offered eight commodern transistor radio receivers, and binations of capacitance and working the group of capacitors recently added to voltage. A new can size-can size " $2 \frac{1}{2}$ "the series offers even better coverage of has now been added to the series, so that the already wide range of sizes and a further eight combinations of capacitvalues available. The capacitance and ance and voltage are now available. working voltage values of electrolytic As the designation implies, can size $2 \frac{1}{2}$ capacitors are linked closely with the lies between can sizes 2 and 3 . It has the size of the component. The original same length of 10.7 mm ., as can size 2
compared with the 18.7 mm . of size 3. Its diameter of 6.3 mm . compares with the 5.0 mm . of size 2 and the 6.8 mm . of size 3. As with the other sizes in the C426 range, the eight working voltages follow the logarithmic series: 64, 40 , $25,16,10,6.4,4.0$ and 2.5 V , and the corresponding values of capacitance are $3 \cdot 2,6 \cdot 4,12 \cdot 5,20,32,40,50$ and $64 \mu \mathrm{~F}$. The tolerance on these values is -10% and $+50 \%$. The electrical properties of the new capacitors are identical with those of the original capacitors, and in common with the whole range, the capacitors in can size $2 \frac{1}{2}$ offer a long and trouble-free service life.

MVE/CA03I

The overwhelming advantages of the fully transistorised receiver have now been made available in this remarkable new mobile radiotelephone, at no additional cost and without sacrifice of the stringent performance requirements hitherto met only by valve receivers. This outstanding Pye product sets a new high standard in mobile radiotelephone design which cannot be surpassed.

- Fully transistorised receiver
- Printed circuit sub-assemblies
- Sealed IF block filters
- Dustproof and splashproof
- BPO approved. Meets American and European specifications

SUFLEX LIMITED • BILTON HOUSE
UXBRIDGERD W5 Wel: EALING 773 :

Suflex Sleeving is available in a variety of types for varyin applications and all are notable for their quality and reliability in use.
They comprise Peribraid Silver Glass Sleeving, Coloure Glass Sleeving, Silicone Glass Sleeving, Periglas P.V.C Coated Glass Sleeving, Varnished Glass Sleeving, Varnished Terylene Sleeving, Varnished Cotton and Rayon Sleeving All are supplied in a wide range of bores and colours. Detailed Leaflets and prices on request.

The most advanced error correcting

 telegraph equipment in existence
ERROR PROOF HF TRAFFIC

40% less capital cost per channel 75% reduction in size 75% reduction in weight 90% reduction in power consumption

Considerable savings in manpower, spares and maintenance

* One cabinet houses equipment for two 2-channel circuits which may be operated as one 4-channel circuit
* Modular construction means greater reliability and greatly simplified maintenance
* Built-in character storage for 4 or 8 character repetition cycle
* Fully automatic phasing including rephasing in traffic with no loss or duplication of characters
* Average rephasing time in traffic 4 seconds
* Mis-routing of sub-channels is impossible even with sub-division on all channels
* Error rate improvement factor of 100-10,000

* FERRITRANSISTORIZED code conventers and stores surpass fully transistorized designs by significant reduction in power and saving in space.

MARCONI SOLID STATE AUTOPLEX

Perhaps you have not thought of glass for that new component. But we have had so many inquiries recently from engineering designers who see in glass the necessary electrical, thermal and abrasion-resistant qualities (whether or not transparency is needed) that we have set up a new division at Chance-Pilkington Optical Works. This will give a complete service in developing and manufacturing industrial glass pressings, to the high standards for which Chance-Pilkington glass is already world famous in the optical and ophthalmic fields. Have you a problem component? If so, telephone St. Asaph 3281, and tell Ken Appleton about it. We'll have things moving quickly. (Chance-Pilkington are internationally renowned for speed and service as well as for precision and quality).

WHEN TRADITIONAL MATERIALS DON'T MEASURE UP

CHANCE-PILKINGTON OPTICAL WORKS

St. Asaph, Flintshire

One of the great Pilkington glassmaking companies

If your H.F. radiotelephone circuits are pushed to the limit or if you find new planning difficult-you need Rediplex for maximum utilisation and lower operating costs. Now for the first time, at low capital cost, Redifon introduce a compact ISB multi-channel system for short and medium distance communication. Four speech channels simultaneously using one carrier. The cost of the transmitting and receiving terminals, including the channelling, is far less than you would pay for regular channelling and displacement equipment-a quickly installed packaged deal. It will pay you to find out more about Rediplex. Write now for full specifications.

The Rediplex system gives you

Four simultaneous speech channels, or any combination of speech, teleprinter, facsimile or tone intelligence signals. Four crystal controlled spot frequencies, 2 to $16 \mathrm{Mc} / \mathrm{s}$. 100 watts p.e.p output, continuous rating (or 750 watts with the G.A. 406 amplifier).
Compatible with Standard International ISB systems.
Completely transistorised receiving terminal and transmitter drive unit.
Modular construction and printed circuits.
Alternative power supply units for a.c. mains or 24 volts battery supplies.

Mealifon
redifon limited Communications Sales Division Broomhill Rd., London, S.W.18. Tel : VANdyke 7281 A Manufacturing Company in the Rediffusion Group.

with a \square ■ \square

A volstat is the answer to many a.c. voltage fluctuation problems. In most cases, a standard type is all that is required - but there are occasions when a special design may be necessary. Either way an 'Advance' Technical Representative will be pleased to investigate your own particular problems, and recommend a volstat best suited to your needs. volstat stands for a complete range of Constant Voltage Transformers produced by 'Advance' - the leading authority on voltage stabilization.

Vortexion quality equipment

Will deliver 120 watts continuous signal and over 200 watts peak Audio. It is completely stable with any type of load and may be used to drive motors or other devices to over 120 watts at frequencies from 20,000 down to 30 cps in standard form or other frequencies to order. The distortion is less than 0.2% and the noise level -95 dB . A floating series parallel output is provided for $100-120 \mathrm{~V}$. or $200-250 \mathrm{~V}$. and this cool running amplifier occupies $12 \frac{1}{4}$ inches of standard rack space by 11 inches deep. Weight 601 lb .

30/50 WATT AMPLIFIER

Gives 30 watts continuous signal and 50 watts peak Audio. With voice coil feedback dis. tortion is under 0.1% and when arranged for tertiary feedback and 100 volt line it is under 0.15%. The hum and noise is better than -85 dB referred to 30 watts.
It is available in our standard steel case with Baxandall tone controls
 and up to 4 mixed inputs, which may be balanced line 30 ohm microphones or equalised P.U.s to choice.

120/200 WATT AMPLIFIER

ELECTRONIC MIXER/AMPLIFIER

This high fidelity 10/15 watt Ultra Linear Amplifier has a built-in mixer and Baxandall tone controls. The standard model has 4 inputs, two for balanced 30 ohm microphones, one for pick-up C.C.I.R. compensated and one for tape or radio input. Alternative or additional inputs are available to special order. A feed direct out from the mixer is standard and output impedance of 4-8-16 ohms or 100 volt line are to choice. All inputs and outputs are at the rear and it has been designed for cool continuous operation either on $19 \times 7 \mathrm{in}$. rack panel form or in standard ventilated steel-case.

Size $18 \times 7 \frac{1}{2} \times 9 \frac{1}{2}$ in, deep.
Price of standard model $£ 49$.

The 12-way electronic mixer has facilities for mixing 12 balanced line microphones. Each of the 12 lines has its own potted mumetal shielded microphone transformer and input valve, each control is hermetically sealed. Muting switches are normally fitted on each channel and the unit is fed from its own mumetal shielded mains transformer and metal rectifier.

Also 3-way mixers and Peak Programme Meters. 4 -way mixers and 2×5-way stereo mixers with outputs for echo chambers, etc. Details on request.

12-WAY ELECTRONIC MIXER

Full details and prices of the above on request

High electrical stability

 High mechanical strength
MAZDA
 Frame-Grid ValvesforTV

Low microphony Low noise

 Low characteristic spreadMazda Frame-Grid Valves offer all the advantages associated with this outstanding manufacturing technique, plus some noticeable extras. Most incorporate a new Mazda cathode coating process which ensures smooth surface textures and gives a final dimensional accuracy of $\pm 4 / 10$ ths of a thou. Some have tightly controlled variable - mu characteristics to give superior cross modulation performance. These high-performance valves are available for various uses, as detailed below, and are of sound mechanical design. Please ask for appropriate data sheets.

Valves Low cross modulation

I.F Valves

High gain Low cross modulation

6F28/EE80

> Video Output Valves

High peak current available High sensitivity Low distortion

LIEAKK BRITAIN'S BEST-SELLING

HI-FI EQUIPMENT-

the studio-quality equipment which is available to the music-lover for use in his own home

First-class performance ${ }_{- \text {each Lak }}$ instrument is individually built in the time-honoured British tradition and has the same high-quality performance as Leak instruments supplied to the B.B.C. and Broadcasting and Television Companies and Disk Recording Studios throughout the world who use them for monitoring (quality checking).

First-class appearance

 -Leak equipment has been styled by industrial designers to enhance its appearance in the home. The styling of the new Leak "Sandwich" Loudspeaker has been approved by Britain's Council of Industrial Design and has recently gained the coveted Fashion Foundation of America Gold Medal.
Reasonable price

 -the world-wide demand keeps the Leak Organisation fully and efficiently employed and, in turn, explains the very reasonable price of Leak studioquality $\mathrm{Hi}-\mathrm{Fi}$ equipment.

Above: The new Leak "Sandwich" loudspeaker System with the new "Sandwich" Cone gives, for the first time in history, a direct-radiator loudspeaker diaphragm which behaves in the theoretically ideal manner of a rigid piston and reproduces the signal applied to the speech coil without flexing and free of break-up distortions. $£ 39 / 18 /-$

FOR 30 YEARS Armstrong

. . . have specialised exclusively in the manufacture of top quality radio and audio products. Throughout this period our constant policy has been to provide the best possible standard of sound reproduction and engineering for all those discerning people who recognise a first-class product. And now today we are able to offer the fruits of 30 years experience, a range of hi-fidelity products which is unparalleled both in its variety and in its value.

Armstrong make a range of tuner-amplifier chassis which in versatility and compactness are unique. As the basis of a relatively inexpensive high fidelity system or a top quality radiogram there is nothing to equal an Armstrong chassis. Each chassis is virtually an AM Tuner, an FM Tuner, a Control Unit and Amplifier in one compact unit. There are two mono and two stereo chassis, the latter having two amplifiers built in.
Each one has facilities for use with a tape recorder (or with a tape deck and its associated tape pre-amplifier) for both recording and playback and there is a choice of pick-up inputs on each chassis suitable for crystal or ceramic pick-ups including the Decca Deram.

STEREO 12 Mk. 2 (illustrated) \&40/5/-
8 watts push-pull output from each channel, 16 watts total; VHF, with automatic frequency control, medium and long bands; A hi-fi system on one compact chassis.

STEREO 55
 E29/18/-

Junior version of Stereo 12; 5 watts per channel, 10 watts total; VHF and medium bands; Inputs for cape, pick-ups and future stereo radio.

JUBILEE Mk. 2

(28/5/-

Mono; 8 watts pushopull output; VHF, automatic frequency control, medium and long bands; Separate cone controls: Pick-up and tape inputs.

AF208

E21/4/-
Àn AM/FM mono chassis of 5 watts output covering VHF and medium bands. An inexpensive version of the Jubilee Mk. 2 .

We also make separate high fidelity amplifiers and tuners offering top quality performance at reasonable prices.

Write for free deseriptive literature to Dept. WMC
ARMSTRONG WARLTERS ROAD, LONDON N7
NORth 3213

BROOKES

mean

- Illustrated above
are
Left:
Type G. 2 Crystal
Unit. Frequency
$62 \mathrm{kc} / \mathrm{s}$.
Right:
Type G.I Crystal
Unit. Frequency $100 \mathrm{kc} / \mathrm{s}$.

ALL Brookes Crystals are made to exacting standards and close tolerances. They are available with a variety of bases and in a wide range of frequencies. There is a Brookes Crystal to suit your purpose-let us have your enquiry now.

Brookes Crystals (1961) Ltd

Suppliers to Ministry of Supply. Home Office, B.B.C., etc. CORNHILL FACTORY, ILMINSTER, SOMERSET Tel: IIminster 2402

ACCURATE AND RELIABLE INDUSTRIAL TRANSFORMERS

TO MEET YOUR SPECIFICATION FIRST TIME AND EVERY TIME PROVIDE A SOUND AND SATISFACTORY ECONOMY

They are obtainable from

R. F. GILSON LTD.

Who provide a first-class service to manufacturers in prototype design and commerclal quantity production of transformers and chokes for:

COMMUNICATIONS

 ELECTRONICS INSTRUMENTATION AUTOMATION RESEARCH TRANSISTOR CIRCUITS

HT, EHT \& LT SUPPLIES

IF TRANSFORMERS ARE YOUR PROBLEM
Let R. F. GILSON LTD. Solve it
11a ST. GEORGES RD., WIMBLEDON, S.W. 19. WIM 5695

$\sqrt{\text { ectron }}$ announce a new range of solid state high performance amplifiers with very high reliability factor

HIGH FIDELITY LOW NOISE MONOAURAL
OR STEREO PRE-A MPLIFIER
Specification:
Inputs: Mic. $1400 \mu \mathrm{~V}$
Mic. $\| 1100 \mathrm{mV}$
P.U. I $1 \mathrm{mV}-15 \mathrm{mV}$ adjustable

Radio: 50 mV
Tape: 50 mV
Controls: 6-position. Selector, Volume, Treble, Bass, Balance, Phase and Mains On/Off
Signal/Noise Ratio: Better than 60 dB (at 1 mV input in Mic. I)
Harmonic Distortion: Better than 0.1%
Size: $10 \frac{1}{6} \times 3 \times 3 \frac{3}{3}$ inches

LOW NOISE PRE-AMPLIFIER

Specification

Gain: 34 dB
Frequency Response: $20 \mathrm{c} / \mathrm{s}-20 \mathrm{kc} / \mathrm{s}$ $\pm 1 \mathrm{~dB}$ or others for requirements Input Impedance: More than 30 K ohme Output impedance: Less than 100 ohms Noise level is better than - 60 dB at 1 mV input
Supply: A long service battery is supplied with a life of 350 hours
Size: $3 \frac{1}{\frac{1}{4}} \times 1 \frac{1}{8} \times 2 \frac{1}{4}$ Inches

LOW DISTORTION POWER AMPLIFIER

Specification:
Power Output: $10 \mathrm{~W}, 20 \mathrm{~W}, 50 \mathrm{~W}$, or above with a choice of 3,5 or 15 ohm load. Input for Specification Output: 250 mV Total Harmonic Distortion: 0.1% at full output Frequency Response: $20 \mathrm{c} / \mathrm{s}-20 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{~dB}$ Signal/Noise-Ratio: Better than 80 dB Damping Factor: More than 50 Supply: A.C. Mains $240 / 120$ V, $50-60 \mathrm{c} / \mathrm{s}$ or battery with built-in D.C. converter-12/24 V Size: $11 \times 4 \times 7 \frac{1}{8}$ inches

AUTOMATIC GAIN-CONTROLLED MICROPHONE
Specification:
Input: Bullt-in microphone
Output Signal: 15 mV
Output Impedance: Less than 100 ohms
Frequency Response: $250 \mathrm{c} / \mathrm{s}-3,500 \mathrm{c} / \mathrm{s}$
A.G.C. Range: More than 60 dB

Supply: A long service battery is supplied with a
life of approx. 50 hours
Size: $4 \frac{1}{2} \times 2 \frac{1}{4} \times 6 \frac{7}{6}$ inches

Data Sheets and any further information jou require about these and other Vectron instruments from:-

THE NAME FOR QUaLITY AND RELIABILITY IN INSTRUMENTS FOR NEARLY FIFTY YEARS

GENERAL RADIO

General Radio Company of America have been manufacturing precision instruments for science and industry since 1915. The GR name is a guarantee of quality that is recognised throughout the world.

NEW O.1\% IMPEDANCE BRIDGE ... With epror-proof digital readout

- Digital readout of C, L, R and G. Rapid balaneing by coaxial coarse and fine controls. Automatic decimal point location and indication of unit of measurement.
- Contains six bridge circuits: series and parallel C , series and parallel L, serles R, parallel G.
- $\pm 0.1 \%$ basic C, L, R and Gaccuracy.
- Entire D or Q range for each bridge on a single scale -no multiplying factors. Appropriate scale illuminated automatically. Separate \mathbf{Q} balance for \mathbf{R} and G measurements.

Self-contained oscillator and null detector. Plug-in modules facilitate changing fixed frequency ($1 \mathrm{kc} / \mathrm{s}$ unit supplied).

- Provision for applying external dc bias to components under measurement.

■Provision for using external generator or detector (dc or ac, $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$).

Type 1608-A Impedance Bridge
RANGES

Capacitance Resistance	0.05 pF to $1100 \mu \mathrm{~F}$ $0.05 \mathrm{~m} \Omega$ to $1.1 \mathrm{M} \Omega$, ac ordc	Inductance Conductance	$0.05 \mu \mathrm{H}$ to 1100 H $50 \mu \mu \mathrm{mho}$ to $1 \cdot 1$ mho, ac or dc
at $1 \mathrm{kc} / \mathrm{s}$			
D (series C)	0.0005 to 1	D (parallel C)	0.02102
Q (series L)	0.5 to 50	Q (parallel L)	1 to 2000
Q (series R)	0.0005 to 1.2 inductlve	Q (parallel G)	0.0005 to 1.2 capacitive

The extensive GR range includes : bridges and impedance measuring instruments * coaxial instruments and components for VHF-UHF measurements * detectors and amplifiers * oscillators and signal generators * frequency standards and meters * counters * R-L-C standards and decades *. pulse and noise generators * waveform measuring instruments \# sound and vibration meters and analysers * recorders * stroboscopes.

For further details, write to Publicity Department, Hoddesdon

CLAUDE LYONS LIMITED
Exclusive UK representatives
Valley Works, Hoddesdon, Herts. Hoddesdon 4541 Telex: 22724 76 Old Hall Street, Liverpool, 3. MARitime 1761 Telex: 62181

seventeen into one

will go

pre-assembled packaged circuits by Pye Industrial Electronics save space, time, and money
The P.C.1. first of a new range! This transformer-less $125 \mathrm{~mW}-9 \mathrm{~V}$ audio amplifier circuit provides a preassembled block for simplifying the design and assembly of laboratory equipment and intercomm sets etc. The unit uses Newmarket matched npn/pnp audio transistors in complementary symmetry circuits to achieve low distortion (typically 2% total) medium high sensitivity (50 mV max out of 600 ohms for 50 mW out) and low standby battery current (typically 4 mA). Measuring only $2^{\prime \prime} \times 1^{\prime \prime} \times \frac{3^{\prime \prime}}{4}$ the P.C.1. is guaranteed for one year.

Write for full technical data to:
Pye Industrial Electronics Ltd, Exning Road,
Newimarket.
Telephone: Newmarket 3381

Audio Biographies
W'ith contributions by 64 collaborators
344 Pages 112 illustrations $19 / 6$ ($20 / 9$ post free)
A to Z in AUDIO
224 Pages 160 illustrations $15 / 6$ ($16 / 6$ post free) STEREO HANDBOOK
146 Pages 88 illustrations $10 / 6$ ($11 / 6$ post free) LOUDSPEAKERS, 5th Ed.
336 Pages 230 illustrations $19 / 6$ (20/9 post free) PIANOS, PIANISTS AND SONICS
190 Pages 102 illustrations $10 / 6$ (11/6 post free)

The aboce books are sold by mary radio dealers and bookshops. In case of difficulty direct from

IDLE, BRADFORD, YORKS. Tel: Idle $1235 / 6$
Grams: "Wharfdel", Idle, Bradford
DIECAST
INSTRUMENT BOXES

These diecast zinc alloy boxes will be found invaluable, parsicularly where a high degree of screening is necessary. Each has close fitting, flanged lid, held with 4 BA fixing screws.

No. 896. $4 \mathrm{tin}. \times 2 \mathrm{tin} . \times \operatorname{lin}$. No. 650. $4 \frac{1}{7}$ in. $\times 3 \frac{1}{2} \mathrm{in} . \times 2 \mathrm{in}$. No. 845. 7 7 in . $\times 4 \frac{9}{16} \mathrm{i}$. $\times 2 \mathrm{in}$. Manufacturers:
STRATTON \& CO. LTD. BIRMINGHAM 31

THE MOST VERSATILE INSTRUMENT EVER DEVISED FOR THE CONTROL OF VOLTAGE CURRENT POWER HEAT LIGHT SPEED

BASIC VARIACS

Basic Variac units are available in open or covered form in power ratings from 100 VA to 7.5 kVA and provide smooth continuous adjustment of AC voltage from zero to line voltage and above.

GANGED VARIAC ASSEMBLIES

Variacs are available in ganged assemblies of 2, 3 and up to 6 units controlled from one shaft, including 3-gang assemblies for 3-phase star operation and parallel-connected assemblies of the larger models for increased power output.

PORTABLE VARIACS

These models provide a compact and rugged portable source of variable AC voltage-ideal for general test purposes. With carrying handle, input cable, switch, fuse and outlet socket or terminals. Also voltmeter or ammeter if desired.

HIGH-FREQUENCY VARIACS

A large range of Variacs is available for operation at $400 \mathrm{c} / \mathrm{s}$ and other high frequencies and can be supplied in ganged or motorised assemblies,

MOTOR-DRIVEN VARIACS

Single units and ganged assemblies are available with motor drive for remote control applications. Standard speed 1 r.p.m. Alternative speeds are avallable to order.

Variacs range from single small units for laboratory or instrument use to ganged assemblies for high power 3-phase operation. In addition to the types shown above, there are dual-output, low voltage and narrow-range types, metal-clad, oil-immersed and flameproof models, plus many 'specials'. Write for illustrated technical literature to Publicity Department, Hoddesdon.

Variacs are made in England by The
Zenith Electric Co. Ltd, London and exclusively distributed in the UK Eire and British Colonies by -

CLAUDE LYONS LTD
Valley Works, Hoddesdon, Herts
Hoddesdon 4541 Telex 22724
76 Old Hall Street, Liverpool 3
maritime 1761 Telex 62181

©laude illoons

heterodyne frequency meters

* Were originally designed for use by the Services and built to rigid specifications.
t Tried, tested and extensively used by
Government Departments, major electronic
undertakings, etc. * Accurately measures frequencies in the H.F. and V.H.F. bands.
* Completely portable, battery or mains, and self-contained-ideal for laboratory or field testing and
measuring of pulsed, modulated or CW RF transmitters, receivers and signal-generators.
* Mains operated power unit optional extra.

TWO MODELS
TYPE T74
TYPE T75
Range: 20 to $280 \mathrm{Mc} / \mathrm{s}$ Range: 85 to $1,000 \mathrm{Mc} / \mathrm{s}$

CHASSIS. The top section contains the instrument chassis.

BATTERIES.
This section, bot tom rear, accommodates the batteries.

FINISH. Pack away 4 handle and stoveenamelled with a black crackle finish. ANTENNA 4 small compartment stores the antenna and connector leads. CALIBRATION BOOK. For set-
4 cings of any frequency, mounted in hinged front cover.

Reconditioned and calibration checked BC221's also available

instrument

TELEMECHANICS LTD

Telemax Works, Brokenford Lane, Totton, Hants, England. Telephone: Totton, Hants, 3666-7
Telegrams and Cables: Teleset, Totton, Southampton.

The above were supplied to U.K.A.E.A. for the Windscale plant.
itherdon
SPECIALISTS IN METAL WORK Including the fitting of instruments wiring and piping, where required, to your own specifications
fitherdon \& CO., LTD.,
Lorne Street, Darwen, Lancs. Tel. Darwen 1028

QUICKACASUASASASAS are possible with the latest timer-counter by Advance which incorporates an easy-to-read in-line display with automatic decimal point and units of measurement indicator.

$1 \mathrm{Mc} / \mathrm{s}$ Timer-Counter

 TYPE TC1A FEATURESIMPROVED SIX FIGURE DISPLAY with in-line presentation. INTERNAL STANDARD is a crystal oscillator pecurate to ± 1 part in 10^{6} at $25^{\circ} \mathrm{C}$ and ± 5 parts in 10^{6} between $0^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$.
frequency measurements from d.c. up to at least $1 \mathrm{Mc} / \mathrm{s}$.
time measurements for any time between 3μ sec, and 2777 hours.
PERIOD MEASUREMENTS for $1,10,10^{2}, 10^{5}, 10^{4}$, or 10^{6} cycles of the input.
frequency measuring period $0.1,1.0$, or 10 secs.
timing pulse output from 10^{-1} up to 10^{6} pulses per second.
input signal 100 mV to 250 V r.m.s.g via sensitivity control.
ambient temperature range $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.

VACUUM
ELECTRONIC
LIMITED

KEEPS YOU IN

THE PICTURE
WITH THE FINEST REBUILT CATHODE RAY TUBES

12 MONTHS
GUARANTEE

$$
\begin{array}{r}
12^{\prime \prime}-14^{\prime \prime} £ 4-15-0 \\
15^{\prime \prime}-17^{\prime \prime} £ 5-5-0 \\
21^{\prime \prime} £ 7-15-0
\end{array}
$$

15/-
ALLOWED ON RECEIPT OF OLD tube OR PRO FORMA, ADD $12 / 6$ FOR CARRIAGE AND INSURANCE
delivery free in london area

V.H.F. METER TYPE 183

- Range $20-1,000 \mathrm{Mc} / \mathrm{s}$ accuracy $\pm 0.3 \%$
- Built in calibrating quartz $100 \mathrm{Kc} / \mathrm{s} \pm 5 \times 10^{-5}$
- Power supply $120 / 220$ v. \pm $10 \% 50 \mathrm{c} / \mathrm{s}$
- Coarse and fine measuring adjustment
$\Varangle 180$
Write for full details of all instruments to

TELEMECHANICS LTD. are making a Special Introductory Offer OF HIGH GRADE ELECTRONIC EQUIPMENT AT VERY ATTRACTIVE PRICES WHILE STOCKS LAST

* Please ask for detailed literature and full price list.

An example of the excellent values being offered with full after sales service
Other instruments now available include:

REQUENCY INDICATOR TYPE FZ I-2	637	6
UNIVERSAL VALVE VOLTMETER TYPE 187A	665	
FREQUENCY METER TYPE I21A	¢165	
SERVICE OSCILLOSCOPE TYPE EOI/7I	633	
V.H.F. SIGNAL GENERATOR TYPE 2006	¢222 11	
BEAT FREQUENCY GENERATOR TYPE SS	63	

telemechanics ltd.
Telemax Works, Brokenford Lane Totton. Southampton

Agenes for
Elektrotechrik
D.I.A. Elektrotechnik, Berlin

VALVES. NEW TESTED AND GUARANTEED											
DAF91	\%/-	E BC41	81-	EL34	14/-	PLPP80	7 7-	UY+1	6/-	6F7 2	4/-
DAP96	2.	EBF80	86	1:L84	7-	PUF88	71-	1Ró	5/6	3K8GT	8/6
DCC\%0	$10 / 6$	ECCO81	61-	ELSos	$7 / 6$	PCLsi	7-	18.5	71	BQ74	519
DF91	$3-$	ECCC82	6/6	EY81	716	PCLA3	101-	174	3 -	813	4/-
DF92	$3 /$.	E0C88	6/6	EY81	71	PCLS 4	716	11.4	3/-	9 D 7	9/6
DP96	71	ECCO84	719	EY86	$7 / 6$	PY8I	$7 /$	JUs	5/8	12ADB	11/6
DH76	$51-$	ECPso	8/-	Ez4n	6/-	PY*3		304	7 7-	12AH8	8/6
1)H77	5/8	ECN82	81-	Ez80	$61-$	R19	$10 / 6$	384	5/9	12BE/	$7 / 6$
DH142	$8 / 6$	ECH 42	$8 / 6$	EZ81		U45	11/6	3 V 4	8/6	128H7	8/8
DK91	$5 / 6$	ECH81	8/-	HVR2	$9 / 6$	1150	5/6	6AKB	6/6	12 K 8	8/6
DK?	71 -	ECL80	718	N17	519	U78	$5 /$	6BA6	5/-	251 HicT	7/6
DL92	519	ECL82	91 -	N18	7 7-	[1BC4]	$7 / 6$	6BE6	71-	35LAGT	$7 / 8$
DL94	$8 / 6$	EPfl		N19	$8 / 6$	UCRIt?	7/6	6BH6	5/9	$35244 T$	5/8
DL93	$71-$	EF86	$9 /-$	N709	\%-	UF+1	716	6BR7	818	801 P	$7 / 6$
El391	$3 /-$	EF91	4/-	P(YC84	7 .	ULH1	\%/6	6BW6	-81/ 6	5753	716
VALVES MATCHED IN PAIRS											

R. J. COOPER, G8BX CRO. 9186 32 SOUTH END, CROYDON, SURREY P. \& P. 6 d C.O.D. 3/- S.A.E. ALL ENQUIRIES.

FOR Hi-Fi, ELECTRIC GUITARS ANDALL HEAVY DUTY APPLICATIONS

Models $122 / 12,122 / 14$ and $122 / 17$ have copper voice coils and a main resonance of $30 \mathrm{c} . \mathrm{p} . \mathrm{s}$. They are designed for low frequency reproduction and'are very suitable for bass or rhythm guitars. very suitable for bass or rhychm guicars.
Models $122 / 12 \mathrm{~A}, 122 / 14 \mathrm{~A}$ and $122 / 17 \mathrm{~A}$ are similar in size but have a twincone assembly and aluminium voice coils giving a full range response up to $15 \mathrm{Kc} / \mathrm{s}$. They are especially suitable for the lead guitar. The prices are $15 /-$ more than the corresponding bass units.

Write for descriptive leaflet to:-

MODEL 122/17
2in. pole, 17,000 gauss,
25 watts. 112. n. pole, 14,000 gauss, 22 watts. $t 9$.

MODEL 122/12
20 watts. El/l0/-.

FANE ACOUSTICS LIMITED
BATLEY YORKSHIRE

$\operatorname{LIASYYS}^{2}$ RADIO

LONDON'S LARGEST STOCKS OF EQUIPMENT \& COMPONENTS

SPEEDY MAIL ORDER SERVICE

THE Conet

Fully transistorised 2 speed Battery Tape Recorder. This is a high quality machine incorporating features usually found in machines 3 times the price. \star Capstan drive. $\star 2$ speeds, $3 \frac{3}{4}$ and $1 \frac{7}{8}$ i.p.s. \nrightarrow Rec. level meter. \ddagger Fast re-wind. \star All-metal case. \star Uses standard pen torch batteries with easy load containers. \star Twin tracks. $\star 2 \frac{1}{2}$ in. speaker. \star Accessories included: Real Leather carrying case, Microphone, Telephone adaptor, Personal earphone, Remote switch control available.

A REALLY SUPERB RECORDER

 NEW \& UNUSED LASKY'S PRICE

19 Gns.
COMPLETE
P \& P $7 / 6$

Illustration shows top of deck.

LARGE SELECTION OF OTHER TRANSISTOR RECORDERS STOCKED

THE "TRAV-LER." 17 Ens. Carr. and Insurance 10/6. A.C. Mains unit, 39/6.

PHONOTRIX, with leather cas 18 Gns. Carr. 7/6. VERY LATEST "PHONOTRIX" with push-pull output, 20 Gns. with push
Full details of the above see previous adverts

GOLLARO STUDIO TAPE DECK :

Latest model, 3 speed, 3 motors. Take 7in. reels. Fitted with half track heads. LASKY'S PRICE £10.10.0. New and Unused. Carr, and Pack. 7/6. COLLARO STUDIO TAPE DECK. As above but fitted with the latest quarter track heads. LASKY'S PRICE §13.19.6. Carr. and Pack. 7/6. MARTIN TAPE RECORDER AMPS. Designed for use with Collaro Studio Tape Deck. In sub assemblies for immediate installation. 8 valve circuit. Comprehensive instructions make final assembly as simple as possible. Everything supplied, including valves, etc. Monitoring facilities, 3 ohm output, speed equalising etc. For $200-250 \mathrm{v}$. A.C. mains. PRICE \&11.11.0. P. \& P. 2/6.
Portable carrying case designed to take the Collaro studio tape deck and the Martin tape amplifier. Fitted with 9 in. $\times 5 \mathrm{in}$. speaker. Price complete with speaker £5.5.0. P. \& P. 5/-.

Carriagc and Packing free if above 3 items purchased together.
Hear and compare the very latest

HI-FI EQUIPMENT

Visit our spacious showrooms at 33 Tottenham Court Road or 207 Edgware Road, whichever is most convenient. In our Demonstration Studios you can see, examine, hear and compare the very latest products in the realm of high-fidelity reproduction.

- TAPE RECORDERS TAPE DECKS MICROPHONES AMPLIFIERS CONTROL UNITS AM/FM TUNERS RECORD PLAYERS AUTOCHANGERS TRANSCRIPTION TURNTABLES PICK-UPS LOUDSPEAKERS SPEAKER SYSTEMS CABINETS AND ENCLOSURES TRANSISTOR RADIOS

ARMSTRONG	GRUNDIG	RESLO
BRENELL	HARTING	ROGERS
CHAPMAN	H.M.V.	SIMON
COLLARO	JASON	SOUND
CONNOISSEUR	KORTHNG	STELLA
COSSOR	LEAK	STUZZI
DULCI	LENCO	TANDBERG
ELIZABR.	LINEAR	TANNOY
FERROGRAPH	LORENZ	TELEFUNKEN
FI-CORD	LOWTHER	THORENS
GARRARD	ORTOFONE	TRUVOX
G.E.C.	PAMPHONIC	VORTEXION
GOLDRING	PHMIPS	W.B.
GOODMANS	QUAD	WHARFEDTE

PROMPT MAIL ORDER SERVICE to all parts of the British Isles, the U.S.A. and overseas. Enquiries invited. We also operate the official purchase tax-free plan for overseas visitors--the PERSONAL EXPORT SCHEME.

Makers' Surplus
 RADIOGRAM CHASSIS

Covers Long, Medium and VHF/FM Wavebands. Plano ton, makea this ion idea! chassis for radio kram use.
Valve line-up: ELR4; EABC80; EF89;
LCH81; ECC85 and EZ81.
Full width illuminated glass scale.
 Fick-up sockets and extension loudspeaker sockets foted. Dimensions: 15 in . wide, 7 in . front to back, 5 hin . high.

LASKY'S PRICE Opening required for scale: 134 in . $\times 3 \mathrm{k} \mathrm{km}$. \&13/19/6

Fully guaranteed. Carriage and
Ready for

WE STOCK A COMPLETE RANGE OF RADIO-GRAM CHASSIS A.M. \& F.M. AND ALSO TUNERS BY ARMSTRONG, DULCI, CHAPMAN Etc. Details on request

TELEFUNKEN STEREO
HIGH FIDELITY AMPLIFIERS Model 5.82

A complete stereo ampli

fier of unsurpassed qual-
ity, with inputs for radio,
tape recorder, F.M. tuner or any other hi-fi source, either monaural or stereo. Output power 5 watts total ($2 \frac{1}{2}$ watts each channel)
New and unused, listed at 16 gns .
LASKY'S PRICE $£ 5.19 .6$ Post 7/6

SUB MINIATURE TRANSISTOR AMPLIFIER
NPN.PNP Transformerkess Amplifier.
The smallest ever available. Size only $2 \times 1 \times 11 m$ Rated output 125 mW from 9 v . battery.
requency range $30-60$ ohms.
Usen 3 transistors. Single-ended jush-puil output ully assembled on printed circuilt with full data and instructions. Ready for immediate use. Thousands of ises. Illustration is half actusl size LASKY'S PRICE $35 /$ - complete. Post free.

NOW READY! LATEST EDITION
of 100 page HI-FI Catalogue superb production illustrating and providing technical data of all the latest equipment, Over 100 large pages. $114 \times 8 \frac{1}{4} \mathrm{in}$., in photogravure and colour Orders posted as soon as new edition available
Price 5/- Part post 6d. Refunded on your first hi-fi purchase of ${ }^{5} 5$ or over from the cataloguc.

SEND FOR OUR LATEST COMPONENTS CATALOGUE Completely new edition of over 100 pages. $8 \frac{1}{2}$ in. $\times 5 \frac{1}{2}$ in., copiously illustrated, packed with money-saving bargains! Invaluable for the ham" or service man. Price 2/=. Post 6d. Our latest 20-page "Bargain Bulletin" included free (separately by post, 6d.).

SPECIAL PURGHASE I ! ! Huge selection of various types of Chassis All brand for Radios-Radiograms-AM/FM Tuners etc All brand new-Prices from $£ 6-$ Personal Shoppers only.

New large purchases of components and reductions in purchase tax at the beginning of the year enable you to build your transistor radio at these vastly reduced prices.

STAR features

$\star 7$ Transistor Superhet. * 350 Milliwatt output into 4 -inch flux speaker. * All components mounted on a single priuted circuit board, size 5 in $\times 5 \frac{1}{2}$ in., in one complete assembly. \star Plastic cabinet, with carrying handle, size $7 \mathrm{in} . \times 10 \mathrm{in} . \times 3$ 느는. in choice of colours: red $/ \mathrm{grey}$, blue/grey, all grey, \star Easy to read dial. \star External socket for car aerial. $\star 1 F$ frequency $470 \mathrm{kc} / \mathrm{s}$. \star Ferrite rod internal aerial. \star Operates from PP9 or similar battery. \star Full comprehensive data supplied with each Receiver. \& All coils and IF's, etc., fully wound ready for inmmediate assembly. An outstanding Receiver. lasky's Price for the complete parcel including Transistors, Cabinet, Speaker, etc.
 P. \& P. 4/6

All components available separately. Data and instructions separately $2 / 6$, refunded if you purchase the parcel.

THE SPRITE Lexitur $79 / 6$ Pre.36

* Six-Transistor Superhet Miniature Personal Pocket Radıo t Long and Medium wavebands. t Used PP3 battery, t Ferrite Rod aertal. t $\mathbf{1 . F}$. Frequency $470 \mathrm{Kc} / \mathrm{s}$. Transistors: 3 x Philco 2067 's, \& x Mullard OC81 M, OC81 DM and $O .490$ diode. $t 3$ inch speaker. t Printed circuit $21 \times 2 \mathrm{in}$. A Slow Motion Drive. $\star \ln$ plastic case, size $4 \times 2 \frac{1}{2} \times \frac{1}{4}$.
In order to ensure perfect results, the SPRITE is supplied to you with R.F. and $1 . \mathrm{F}_{\text {: }}$ stages. Driver and Output stages, ready built witl all components ready mounted on the printed circuit. To complete assembly you only have to fit the wavechange switch, tuning condenser and drive, volume control, earphone socket and aerial rod, the remaining components all having been prefitted at the factory for you. The SPRITE is offered as above, pre-assembled, plus cabinet, speaker and all components for final construction, at the inclusive price of 79/6. Postage and packing $3 / 6$ extra. Data and Instructions separately, $2 / 6$. Refunded if parcel is purchased. Real calf packing $3 / 6$ extra. Data and Instructions separately, $2 / 6$. Refunded if parcel is purchased. Real calf Wather case, wrist strap, personal earphone, case for earphone and battery $12 / 6$ the lot extra. Make no
mistake this is SUPERHET receiver of genuine commercial quality. It is not a regenerative circuit.

THE COROVER

* A 6-transistor plus 2-diode superhet receiver using the latest circuitry * Three Mullard AF117 alloy diffused transistors are used with OA79 and OA91 diodes, followed by OC81D and two OC81's in push-pull. + 1.F. frequency 470 Kc .s. . Covers the full medium and long wavebands. * Sockets provided for personal earpiece or tape recorder, and car radio aerial. t Large interial ferrite rod aerial gives high sensitivity. car radio aerial. * Large interial ferrite rod aerial gives high sensitivity. * Uses four 1.5 v . pen torch batteries. $*$ Alt components mounted on a single printed circuit. Simple stage by stage instructions. $太$ Cabinet
size $6 \frac{1}{2} \times 4 \times 1{ }^{1}$ in. With carrying handle. 4 All coils add 1. .'s ready size $6 \frac{1}{2}$
wound. wound.
ALL COMPONENTS AVAILABLE SEPARATELY. Data and insfrucfions separately 2/6. Refunded if you purchase the parcel. CON BE BUILT FOR Batceries $1 / \$$ extra.

buILd yourself a transistor record player

- AMPLIFIER. 300 milliwatts pip. output using two OC71 and two OC72. Fully assembled $3 \times 2 \times 2$ inn, $39 / 6$. Knobs $3 / 6$ extra. Post $2 / 6$.

£5.7.6

Fully Guaranteed TAPE at Record Low Prices

Famous make, P.V.C. base on latest type plastic spools. New, periect, boxed, guaranteed. $1,200 \mathrm{ft}$. on 7 in . spool $1,800 \mathrm{ft}$. on 7 in . spool
$1,200 \mathrm{ft}$. on $5 \frac{1}{3}$ in. spool
850 ft . on $5 \frac{3}{3} \mathrm{in}$. spool
600ft. on 5in. spool
225 ft on 3 in . spool
2,400ft. D.P. on 6in. spool
Well-known Americau tape, 1,200ft, boxed, 18/- (listed $35 /-$).
All other makes, types and sizes of tape in All other makes, types and sizes
stock including E.M.I. and Scotch.

MINIATURE EARPIECES for Pocket Transistor Radios. Transparent ear-insert with 3 ft . cord, sub-min. jack and socket. Fully guaranteed. Post free. CR.5. Crystal, high imp., 9/-. MR.4. Magnetic, low imp., 8/-.

- SPEAKER.
 30 ohms, 5 in.
 toEAKER. S ohms, 5 in. Round matched

 (0-SPEED PLAYER. 6 volt, complete with t.o. crystal cartridge and two sapphire styli, 69/6. Post $2 / 6$.
MICROPHONE BARGAINS

ACOS CRYSTAL STICK MIKE. ACOS CRYSTAL STICK MIKE. Type M.C.39/1, complete with cable. List £ $/ \bar{\sigma} /$.
LASKY'S PRICE 32,6 . Post free. LASKY'S PRICE 32,6. Post free. Crystal Hand or Table Mike, 15/-. Post free. LAPEL TYPE MP110. High iup. xtal mic. 1 ifin. dia. \times in. thick. $15 /=$, post $1 /$ -
TYPE NP100. Tie clip mic. $1 \times \frac{3}{8} \mathrm{~B}$. High imp. xtal., 22,6, post 1/-.
LUSTRAPHONE MOVING COIL pencil mic. LFVH5s. Freq. response 00 to $12,000 \mathrm{c} / \mathrm{s}$. All imperlancos available. Listed 8 gns.
LASKY'S PRICE \&4/19/6.
 SPEGIAL OFFER! Verdick "Quality Ten" Hi-Fi amplifier and pre-amplifier. Listed at $£ 21$.
LASKY'S PRICE $£ 14 / 19 / 6$. Post \& Pkg. $7 / 6$.

LAMKY RADIO

CRYSTAL PICK-UP CARTRIDGES

LOWEST PRICES EVER!

Some are less than half list price.
ALL COMPLETE WITH STYLI, L.P. AND STANDARD (AND STEREO WHERE SHOWN). FULLY GUARANTEED, STAN. DARD FITTING, WILL FIT MOST P.U. ARMS AND HEADS. Postage $1 /$ - extra each.
MONO Type C.t.1. By well-known manfr. Wuth 2 sapphire styli 96 Garrard Ceramic G.C.E. 4
Garrard Magnetic T.O.M. 2
Acos GP.5y.
$A \cos$ GP. $65 / 3$
$\mathrm{A} \cos$ GP. $65 / 1$
150

STEREO ACOTe 731,
Acostereo $73 / 2$, with Diainond LP/
Stereo and sapphire Std.
Collaro type C Turnover, with 2 sappliires

1911
Collel S.C.1. Tumover, with 2 sapplires 1911
Collel S.C. 1 Turnover, with Diamond
LP/Stereo anid sapphire Std.
Ronette Stereo O.V. Turnover, with 2
sapphires 25
Ronette Stereo type 105 and 106 with 2
sapphires
Diamond LP/Stereo and sapplıre Std. 396

ACOS STYLUS PRESSURE

 GAUGE. Listed at $12 / 6$LASKY'S Price 7/6 plus 9d. Post. New and boxed.

MULTI TEST METERS

All new and mused and complete with test ineters.
TAYLOR 127A
£10 $10 \quad 0$ TAYLOR 88D AVO Model 8 Alo Minor Model P1
Model P3
Model AN 20
JENNEN 220s
JENNEN T.P.5.H
JEMCO MT 316
Morlel EP. 10 K
Model AN 27
JENNEN 500
JEMCO MT0 0 ²
KAPURA Model U1
£23 10
\&9 10
E2 140

\& P. 5/-

Full detalls of all the above meters sent

 and MAIL ORDER SERVICE

52 Tottenham Court Road, London, W.1. - Open 9-6, including Sats., Thurs. 9-4 - LaNgham 0141

HIGHLY SENSITIVE METER

High-grade, $2 \frac{1}{2} \mathrm{in}$. rectangular scale, $0-50$ microamp. meter by Sangamo Weston which provides an excellent basis for a really sensitive multimeter, valve voltmeter, etc. At present calbrated in Rontgens/Hour, but complete scale can be simply removed, pasted over and recalibrated. An extra feature is a spring-loaded scale change slide which can be moved to any of four positions in conjunction with a range change switch, if required. Unused in original package and fully guaranteed.

25/-

Post free

GREER MICRO-MANOMETER A novel and highly sitive, de-focusing, photo-electric pressure transducer having an output large enough to operate a pen recorder Supplied as a basic laboratory nucleus which is suitable for a variety of applications and consisting of transducer, rigid precision cast chassis and mirror system. Photo transistors, minor components and a 6 v . supply only are required to provide a manometer for operating 2.5 mA) for pen recorder, the maximum output being about 3.5 V . 2.5 mA) for a pressure of $30 \mathrm{~cm} . \mathrm{H} 20$. Drift is approx. 1 to 2 mV . per two hours so that pressure of 1 mm . of water may readily be measured using an amplifier or micro-ammeter. Frequency response is 3 dB down at $400 \mathrm{c} / \mathrm{s}$. Full technical information, calibrating instructions and suggested circuitry supplied. Complete and calibrated instruments can be supplied. Prices on request.
£9. 10 s.

ANTENNA BEAM ROTATING MOTOR 55'-

Magnificent series wound, split field motor which is ideal for beam rotation, winch operation, etc. Extremely robust unit incorporates a 600 to 1 epicyclic gearbox (output speed $12 / 15$ r.p.m.) and
 a magnetic brake to prevent overrun, together with limit switches which allow rotation of approximately 3 turns in either direction. Originally designed for use on 24 volt D.C. to actuate cowl gills on aircraft, but limit switches can be disconnected to provide continuous running in either direction and removal of magnetic brake enables unit to be operated on any voltage b :tween 6 and 30 volts A.C. or D.C. Size overall: 12×3 hin. diam. with $\frac{1}{2} \mathrm{in}$. diam. splined driving shaft x sin. long. Current consumption: 4 to 6 amps. at 24 volts D.C. Unused in original cartons.
$25 \mathrm{c} / \mathrm{s}$ TUNING FORK DRIVE AMPLIFIER 60/Modern, light-alloy cased, drive unit Type 114 containing a robust $8 \frac{1}{\mathrm{in}}$. induction sustained, $25 \mathrm{c} / \mathrm{s}$. tuning fork with attendant in-
duction pick-ups and waveform duction pick-ups and waveform amplifier comprising $2 \times$ DF50,
CV1092 diode, and 6 L 6 outpu CV1092 diode, and 6 L 6 output. Power is derived from a high cycle transformer (easily replaced by a mains type) together with a 5U4G rectifier and VSI1Q stabiliser. High grade components throughout. Easily removed, flexibly mounted tuning fork assembly can be separately energized from 6.3 volts A.C. only. Case size overall $8 \pm \times 74 \times 10 \leq \mathrm{in}$.

EXCLUSIVE OFFER-MICRO-MINIATURE TRANSISTOR AMPLIFIERS
 Completely encapsulated, top quality, ultra-modern equipment originally designed for famous Hearing Aids. Type 2: 3 transistors, rectangular pattern, size $\frac{7}{8} i n . ~ x$ in. x $\frac{1}{3}$ in. thick. Gain 40 dB , frequency response substantially flat over stethoscopes, etc. Operates from miniature Mallory Cell, size only

4-TRANSISTOR AMPLLIFIER

Specifically designed for general use in Portable Gramophones, Radios, Intercoms, Tape Recorders, etc. Latest circuit design with transformer coupled transistors in Class B operation. Two separate inputs and 3 ohms output to match standard loudspeakers. Built on 4 printed circuit board and measures only $4 \frac{1}{\mathrm{in}} \times 1$ lin. $\times 5 \mathrm{in}$. high. 200 mW . 9 volt battery.

45 - Post and

號

PHOTO

MULTIPLIER
30/- P. \& P. $1 / 6$
Type 27M1 by Ediswan and directly equivalent to RCA Type 831A. Specially produced with flying leads and

COLD CATHODE TRIGGER TUBES

Sub-miniature cold cathode valve developed by Ericsson primarily for computer work. Anode-cathode running voltage of 95 to 140 at $4.5 \mathrm{~mA} .$, and at 290 anode volts require a trigger current of only 250 microamps to cause the anode to take over the discharge. Typical 250 microamps to cause the anode to take over the discharge. Typical with zero trigger voltage without self-igniting. Complete with full performance data in original packs of 100 at the special f5. 0 Minimum quantity supplied: 6 for 10%, post paid. Posis paid

ETCH YOUR OWN PRINTED CIRCUIT KITS 21/- post

Each contains over 60 sq . in. of laminated board and sufficient chemcals to make dozens of printed circuits, plus comprehensive instruction book giving advice and examples on translating theoretical circuits into layouts ready for etching. High quality materialscompletely safe to handle-carefully prepared to ensure fine definition and uniform results without laboratory control.

二1 2 GEIGER COUITER TUBES

Brand new, individually tested, fully guaranteed, low voltage Halogenquenched Geiger Mueller tubes specially manufactured by 20th Century Electronics Ltd. Highly sensitive and similar to tubes fitted in high-grade instruments. Used in demonstration counters on B.B.C and I.T.V. television programmes. IDEALLY SUITED FOR HOME-BUILT GEIGER COUNTERS, BASIC EXPERIMENTATION, INSTRUCTION, and for serious work also. Circuits of simple all-transistor and conventional valve $25 /$ Post \& counters supplied on request to purchasers. 25/- Packing 2/-.

COPPER LAMINATE BOARD

Excellent quality single sided Copper Laminate on $1 / 16 \mathrm{in}$. thick backing board. Sizes 6in. $\times 3$ in. -3 panels for $6 /-$. Post free. $10 \mathrm{in} . \times 8$ in. $71=$ each. Post free.

ELECTRO/MECHANICAL COUNTERS 10^{\prime} -

Post and
Ultra modern, miniature style, precision
made units reading 0:9999. Fitted with
300 ohm coil. Size overall only: 3 iin.
long x sin. square. In excellent
guaranteed dondition.

PRE-AMPLIFIER

Model STP-1. For use with current TRUVOX, BRENELL or COLLARO " sTUNIO" Isad track stereo Decks. Incorporates Ferroxcube Oscillator, 4-speed Equalisation Yeter and reparate Gain Controls. Includes separate Power Untt. KIT OF PARTS £22.0.0
assembled and testrd £28.0.0
MULLARD'S TYPE "C' TAPE PRE-AMPLIFIER Buitable for most track Mono Tape Decks. Incorporates Fermxcube Push Pull Oscillator and 3 -speed Treblë Inductor. Includes separate Power Uuit.
MULLARD'S TAPE AMPLI FIER (Model HF/TR3) Based on Mullard's Type "A A design and Bultable for mont it track Mono Tape Derk. Incorporatex Ferroxcube s-spleed Treble Inducher And selurate Power Unit

STERN'S "ADD-A-DECK"
A self contalued Unit conalisting of Garrard Deck aud matcbet Pre-Ainplifier on one chaseiv. Provides full tape recordink facliltien and replays through
Pick-up sockets of slandard Radlo receiver or Amplifier. $£ 18.18 .0$
PRICE
£18.18.0

TAPE DECKS and COMPLETE

RECORDERS

By Collarn, Brenel3, Trumox, Wearite, Grundig, Ferrograph, Philips and others Descriptive leaflets readify avallable.

THE "TUDOR"

AM/FM TUNING UNIT

 SELF-POWERED HIGH FIDELTTY TUNER of outstanding design. provides FULL COVERAGE of the ViFfFM TRANSMISSIONS and aisoWAVEBANDS
PRICE ONLY $£ 19.19 .0$
Oprater perimety wib the gTER

Mk. 11 "Fidelity" FM TUNING UNIT An attractively presented Unit Insorporating MUL-
LARD PERMEARILTY TUNING HEART and ${ }_{\text {PARTS }}^{\text {KTI }}$
£10.10.0 PARSEMBL £14.5.0 corresponding Mullard valve line-up. Very suitable to ASSEMBLED corremponding Mullard vilve ine-up.
operate with our Mullurd Ampliferm.

ARMSTRONG

RADIOGRAM CHASSIS
foll range in stock, all pro-
VIDES AM aud FM RECEPTION.

The mont complete chasis ever producel. combinere
 compact unit, provide a total of if wattu for both tmono and aterev. Other fratures inclade: inputa for tape recnrding, play back, plek-ups and sterro radio (should this come gbont); separate toide range bass ant treble controle and halance control. Model STEREO 85 Model AF 208 20.18 .0 20.4.0 Model JUBILEE Mk 2 E28. 5.0 Model TVB VEF TUNER £20.8.0 ling design
STERN'S INTER-COMM. or BABY ALARM Employing the new MULLARD ECLS6 valve to provide two (or three) way converatinn up to extremte diatancen. Operntes from A. mains 200 to 2,0 volts.
PRICEB-MASTER UNIT and ONE EXTENSION. KIT OF
PART\& 6.17 .6 AB8EMBLED
and TESTED
\&8.0.0 PARTA C ansints of a MABTER UNIT, size TEMI 8 8tin. \times sfin. 8 in . and ONF FXTENSLON (a second extension may be

!! COMBINED PRICE OFFERS!!

 Includes small charge for special testing and PRECISE MATCHING of the ASSEMBLED PREAMPLIFIER (or Amplifier) to TAPE DECK.| (| | | 239 | |
| :---: | :---: | :---: | :---: | :---: |
| STP-1 (Assembled) " BTU D10 " Deck | | | 846 | |
| STP-1 (Kit) and Brenell Deck | | | ± 66 | 0 |
| STP-1 (Anembled) Brenell Deck | | | 2'75 | 0 |
| STPP-1 (Kıt) and Truvox Deek | | | 851 | 0 |
| STP-1 (Assembled) Truvox Deck | | | $£ 58$ | 0 |
| TYPE "C"* (Kit) a mi " STUDIO' Deck | 22610 | 0 Assembled | £33 | 0 |
| TYPE "C" (Kit) and BRENELL Deck | £43 0 | 0 Assembled | 850 | 0 |
| TYPE "C" (Assermbled) and WEARITE Deck | \&70 0 | 0 (Includes Head | | Tran |
| HP/TR3 (Kit) and 'sTUDIO ${ }^{\text {c Deck }}$ | 2280 | 0 Assembled | | 0 |
| HF/TR3 (Kit) and BRENELL Deck | 242 | 0 Assembled | | |
| HF/TR3 (Aswembled) and WEA RITK | | | | |

To build a complete TAPE RECORDER . . . We offer HF/TR3 AMPLIFIER . . . STUDIO DECK . . . PORTABLE CASE . . .ROLA 10×6 SPEAKER . . . MICRO: PHONE and li200ft. TAPE . . . ALL FOR £ 3 5.0.0

ALTERNATIVELY WE OFFER

THE COMPLETELY ASSEMBLED and GUARANTEED

 PORTABLE RECORDER MODEL CR3/5 . . FOR $\{43$
Stereo Amplifiers

MULLARD'S " $10+10$ " STEREO AMPLIFIER
A HIGH FDDELITY DESGIGN PROVIDING OP TO AREATYS (per ebannai). SUPERB REPRODUCTM from $3 \mathrm{co/s}$ to $60 \mathrm{Ko} / \mathrm{s}$ at 50 mW .
total harmonic distortion at 10 watts.
 0.1 .o.
(a) ASSEMBLED AMP.
P2

Built to the highees technical staudards and presented strictly to MULI.ARD'S specifteation. Two specially designed GILSON OUTPUT TRANSFORMERS with 20% taps are used.
We can also supply the assembled MAIN AMPLIFIER only for operation with our DUAL CHANNEL PRE-AMPLIFIER; thls provides for a more vernhilie Installation and b easentlal if a low output Magnetic Pick-up is to be used. When ordering specliy loulspeak. impedance.
(a) THE ASEMBLED MAIN AMPLIFTER
and ASSEMBLED DUAL
$£ 34.0 .0$ (b) KIT of PARTS for both Unith £27.0.0
THE "TWIN THREE" STEREO AMPLIFIER ABSEMBLED ANI) $\underset{\text { TESTED for }}{\text { AM }} \mathbf{E 9 . 0} 0$ (Carl. \& Inm. $7 / \beta$ extra).
Banet on a revent deairn by MíLLARD LTD. is ideally salted for map th PORTARLE AECORD PLA Y ERS for whleh purpume we otrer aspecially enigned babe:
It heorporates MULIA RD BCL, ss Valves. semarate BARs ant
TREBLE CONTROLA , and prodnece up to
To construot a STEREO PORTABLE RECORD PLAYER we ofer:-
Assembleal AMPLIFIER with two ROLA $\sin . \times 5 / 4$. LOUDSPEAK tirs and PORTABLE CABE ior $£ 16 / 10 / 0$ (Catr. \& las. 7/8 extrat).
MULLARD DUAL CHANNEL PRE-AMPLIFIER A four latie lexign for hoth RTEREOPRONIC and
MONOPHONIC onerailon. Omern to equally well with make of Amplister reqniring thlut of un $1.0250 \mathrm{~m} / \mathrm{c}$.

 anr

The "TUDOR" STEREO AMPLIFIER PRICEONLY £18.18.0
A seli containel Amplifier desiguel to pro-
tide high Guality wlereophonic und' mome
 ratel untpul of watis and for monophonic operation maprox. 12 watts is prodnced. en hol.

TERMS are available on Equipment over
$£ 10 / 0 / 0$

[^7]DEMONSTRATION and SHOWROOMS AT

Stomis'
 MULLARD 3-VALVE PREAMPLIFIER TONE CONTROL UNIT

MULLARD DESIGNS.
COMPLETE KITS OF PARTS

Designed by MULLARD-presented by STERNS strictly to specification.

Designed maiǹly for the STERN/MULLARD range of monophonic Power Amplitiers, but also suitable
for any Ampliter requiring an input signal up to ior any Ampliter requiring an input signal up to
250 mV . ${ }^{\text {Five }}$ fnputs, including one equalised for replay direct from high tmpediance tape bead, and one for low ontput nagnetic pick up. Output for tape record. Separate Bass and Treble controls. High Pass Filter 20 to $160 \mathrm{c} / \mathrm{s}$. Low pass Fitter E^{2} to $9 \mathrm{~K} / \mathrm{s}$. Power requirements 250 v . at 6 mA .6 .3 v , at 0.8 mmps . Totally enclosed case silver hanmmered. size $11 \mathrm{f} \times$ 4i \times 4in. Front panel. Polished perspex in white. KIT OF PARTS $£ 10.10 .0$
 \& TEETED
\&13.13.0

'5-10" MAIN AMPLIFIER

 For use with MULLARD ${ }^{2}$-atuge pre-amplifier with Th obtained. SPECTFIED COMPONENTS AND MULLARD VALlVES including Parmeko mains TRANBFORMER and choice of PARMEKO or PA RTRIDGE Oul put Transformer. $£ \mathbf{1 0 . 0 . 0}$ COMPLETE KIT (Parmeko $0 /$ gut tran\&13.10.0
ABSEMBLED AND TESTED ABOVE INCORPORATING PA

THE MULLARD 33/RC

A HIGH QUALTTY AMPLIFIER DEVELOPED FROM THE TERY POPULAK 3-WATT MUL LARD -. 3-3"DEATUN.
KIT OF 88.8 .0 ASBEMBLED C11. 10.0 PART8 Complete to the MULLARD specificution including Conplete to the MULLARD specifichelion incliding
PARMEKO OUTPUT TRANEFORMER. Swithed inpula for 78 and L.P. records plua a Radio position. Power to drive a Radio Tuner is also available.

THE MONO-GRAM

A small Amplifier of genutne high quallity performance. Incorporates new MULLARBIE ECLAB6 alve up to 3 watts undistorted olltput.
PARTS OF 8.10 .0 ASSEMBLED \&6.10.0
Perfectly sulted for Portable Installations for which purpose we offir ... PORTABLE CASE £3/10/-, the AMPLIFIER (Kit) and $8 \times 5 \mathrm{in}$. $\operatorname{BPEAKER}$ (E 1) All for $£ 9$. Atternatively with ABEEMBLED AMPLI-
FIER $\mathcal{E 1 0}$. The case quoted above will accornmodate some 4 speed Single Record Units. A larger model for autochanger is available for extra $10 /$ With thir Equipment be bullt for $£ 14$.

MULLARD FOUR CHANNEL

MIXING UNIT

self powered Cathode follower output, Incorporates two inputs for CRYSTAL MICRO-
PHONES, one for CRYSTAL PICK-UPS and fourth for Radlo or Tape.
KIT OF $£ 8.8 .0$ ASBEMBLED $£ 11.10 .0$ PARTS 28.8 AND TEATED 211.10 .0 Alternative Model $1 / \mathrm{L}$ provides

!!! SENSATIONAL BARGAINS !!!

 A BULK PURCHASE ENABLES US TO OFFER THESE TWO GRUNDIG MODELS AT APPROX HALF PRICE ... Each is fully GUARANTEEDTHE GRUNDIG "MINIBOY"
 PERFORMANCE
ORIGINAL
PRICE IS E26.5.0 OUR

$£ 10.10 .0$
 £10.10.0

A six Transistor (plua hor Amall enough to silip into Hand ag or Poke the \times at \times li.) ion Speaker Enclosure

GRUNDIG T.M. 60 TAPE UNIT
FOR STEREOPHONIC OF MONOPHONIC OPERATION, BEAUTIPULLY STYLED WITH PINGER TIP CONTROLS. CONSISTING OF TAPE DECK INCORPORATING HIGH QUALITY PREAMPLIPIER
$\begin{array}{lll}\text { LIST PRIGE IS } & \text { OUR } \\ £ 94 / 10 /- & \text { PRICE } & £ 49.10 .0\end{array}$
A completely self contained self powered Unit designed to add full TAPE RECORDNNG facilities to existing sound reproducing equipment. Will operate with the majorlty of high quality audio inslailations and ideally ordering piense state the make and type of Ampliter
ordering piense state the make and ty
or Radiogram to be used with the Untt.
LUSTRAPHONE MICROPHONES
Full range of MOVING COIL and RIBBON types
with Stands and Accessories are in Stoek.

MULLARD'S 2-VALVE PRE-AMPLIFIER TONE

 CONTROL UNITEmploying two EFRB valves and designed to
operate with the Mullard MAIN AMPLIFIER but alan perfectly sultable for other makes.

* Efulilisatlon fol the latest R.I.A.A. characterist ic
- Input for Crystal Pick-upa and vatiable reluc-
- Input (a) Direct from
* (b) Froin at Tape Amplifier or Pre-Amplifier. Head.
\star Sellsitive Microphone Channel. Wide range BASA and TREBLE Controls
HITOFPARTS £6.6.0
assembled and tested $\$ 9.10 .0$

COMBINED PRICE REDUCTIONS

(a) The KITOF PARTB Main Amplifier and the 2-Valve Pre-Amplifer. (b) KIT OF PARTR to Amplifier and 3-Valve Pre-Amplifier
£15.15.0
(a) The " $5-10$ ") lind the 2 Assembled and Tested
Amplifer
£21.10.0
(b) The "s-10" and the 3-Vaive Pre-Amplifter bot £19.10.0 Assembied and Tented
£25.10.0 With PARTRIDGE OUTPUT TRANBPORALER £1/6/-cxtra

THE MULLARD 5I0/RC AMPLIFIER

 The popular complete " 5 -I0" ficorporulling Control Unit The popular complete ${ }^{*} \delta-10{ }^{\circ}$ incorporatIng Controd Unit providing up to 10 watts high quality reproducion.iffed components und new MITLIARD VAlVEB.
Includer PARMEKO Includes PARMEKO. MAINB TRANBFORMERS Output Transformers. Price: COMPLETE KIT
£12.0.0
авввмвівd axd тевтвd.... £16.0.0
With Partridge output transformer £1/6/- extra.

WE STOCK THE COMPLETE RANGEOF

HIGH FIDELITY LOUDSPEAKERS BY
gOODMANS, WHARFEDALE and W.B. STENTORIAN

8 INCR TYPES

GOODMANB 'AXIETTE

W.B. MPRB16 ARFEDALE "SUPER 8/R8/DD
10 INCE TYPES
GOODMAN8" AXIOM 10 "
W.B. Model HF1016 10/RE/DD

$\begin{array}{rrr}\text { \&5 } & 5 & 0 \\ \text { £5 } & 18 & 6 \\ \text { £6 } & 14 & 0 \\ \text { £5 } & 16 & 8 \\ \text { £ } & 0 & 0 \\ \text { em } & 17 & 0\end{array}$ 12 INCH TYPES

ARE YOU PLANNING TO INSTALL HI-FI?

AND UNCERTAIN OF THF TYPE OF EQUIPMENT TO USE-OUR WLDELY EXPERIENCED TECENICAL STAFF WILL WITH PLEABIJRE PUT FORWARD RECOMMFNDATIONS-STATE TYPE OF INSTALLATION CONTEMPLATED AII APPROX. PRICE LEVEL.
CREDIT SALE TERMS are avallable on all Equipment over £10.
FULLY DESCRIPTIVE LEAFLETS are readily available-pleare enclose RA.E.

LEAK and QUAD AMPLIFIERS

LEAK. TL/12 PLUS" POWNR AMPLIFIER with the " POINT E31.10.0

FIER...28 wht ts rated output. AMPLIFIER with the vARIRLOPE
 15 watts output
!! HOME ! !
constructors
A Range of
"Easy To Assemble Prefabricated Cabinets

Designed by the w.R
'STENTORIAN $\begin{array}{cc}\text { COMPANY for } \\ \text { Fi } " & \text { LIoudspeaker } \\ \text { syb- }\end{array}$ tems or to aceommodate high quality equipment. full range in stock, please onclose S.A.E. for descriptive lealets.

RECORD PLAYERS

THE COLLARO "JUNIOR" 4 -speed single piayer with reyarate crystal plek-up.
 \&3.10.0

 GARRRARD Model SRP10 Single RecordPlayer Rifed with high outputerystal pick-up
\&5.0.0 Player fited with high outputerystal pick-up
THE NEWGARRARD AUTOSLIM 4 -speed
\&7.10.0 Autichanger with eryetal plek-up. $\operatorname{GARRARD}$.". ... spereel Anlnchanger,' Ineorporates transcription Pick-up Arm. unit w th St arlin "O" pick-11p. £6.19.6 changer iel rastal pick-u Mixer Auto The new GARRARD Model 4HF HighQnality T.P.A. 12 plek-up arm and $\mathbf{Q . C . B}$. crystal Cartritge PHILIPS Model AG1018. A A-speed Player which can be operatel both manually
and automatically. Sultable for Molo or and automatically. 8uitnble for Molo or
Btereo operation Carringe and insurance on ench above $5 /$ - extra.

FULLY GUARANTEED TAPE

NEW. PERFECT AND BOXED

 ALSO IN STOCK: E.M.I, SCOTCBBOY, PHILIPS, GRUNDIG (BASF) in ali sizes from 3 in , to 8 in . reels.

TEL: TEM. $1 / 89$ 2.4.EARLHAM STREET W.C.2.

Near Cambridge Circus. A few minutes walk from Lieicester Square or Tottenham Court Road Underground Stations. HOURS OF BUSINESS: 9 to 6. Saturdays 9 to I. OPEN ALL DAY THURSDAY

Special offer of AR 88's

AR 88 LF Receivers, $75.550 \mathrm{Kc} / \mathrm{s}$. and 1.5 to $.30 \mathrm{Mc} / \mathrm{s}$. $110 / 240$ v. A.C. input. Price from $\mathbf{£ 2 7 / 1 0 / .}$ (slightly soiled exterior) to $£ 30$ (as new). Carriage and packing 25/.
AR 88 F rack mounting as new. $540 \mathrm{Kc} / \mathrm{s}$. to $32 \mathrm{Mc} / \mathrm{s} ., 110 / 240 \mathrm{v}$. A.C. Price $\mathrm{E} 39 / 10 / \mathrm{c}$. Carriage and packing $25 /$ -
AR $88 \mathrm{D} 540 \mathrm{Kc} / \mathrm{s}$. to $32 \mathrm{Mc} / \mathrm{s}$. $110 / 240 \mathrm{v}$. A.C. Slightly soiled exterior $£ 35$. Carriage \& packing 25/-.
TYPE 46 WALKIE-TALKIES. Best buy in $T X / R X$ units in years. Complete with all accessories at give-away price. 3-Channel crystal controlled TX and RX. Supplied complete with one pair of crystals, coil box, rod aerials, leads and plugs valves, balanced arma. ture head set with throat-mike. Coverage: 3.6 to $4.3 \mathrm{Mc} / \mathrm{s}$ or 6.7 to $7.6 \mathrm{Mc} / \mathrm{s}$. by means of plug-in coil pack. (State which frequency preferred when ordering.) Requires only 150 v ., 15 v ., and 3 v . dry batteries. Range over 10 miles under good conditions. Full instructions supplied. As new. We offer this fine unit as supplied. As new. We offer this fine unit as
listed above with all accessories, at $42 / 6$ per listed above with all accessories, at $42 / 6$ per
unit or $£ 4$ for ewo. Postage and packing $6 / 6$. unit or $\mathbf{E 4}$ for two. Postag
Set of batteries $24 /-$ per set.
HELIPOTS. Brand new and boxed. 2,000 Ohms 10 turns. $=0.1 \%$ linearity. $18 / 6$ each. P.P. $1 / 6$.

GANGED WIRE WOUND 2 section variable resistors. 360° continuous rotation 30.000 Ohms 4 watts per section + or -5%. $\frac{1}{4} \mathrm{in}$. spindle $2 \frac{1}{4} \mathrm{in}$. diameter. $12 / 6$ each.
20-0-20 AMPS METERS. 2 in . flush mounting. D.C. Brand new, $11 / 6$ each. post $1 / 6$.

Abstract

CRYSTALS!!! LARGE RANGE OF $10 \times, 10 \times 1$, FT243, FT24I CRYSTALS ALWAYS IN STOCK. Send stamped addressed envelope for free comprehensive list.

LIGHTWEIGHT PICK-UP ARMS. Complete Hi/G. turn-over head. Standard \& L.P. 17/6. P.P. $/ / 9$.
DECCA X.M.S. L.P. HEADS. Brand new. 8/6, P.P. 1/-.
VARIABLE W.W. ATTENUATORS. American G.E.C. 4 Step attenuation 2.92 db ; $10.88 \mathrm{db} ; 16.9 \mathrm{db} ; 22.9 \mathrm{db}$. with $\frac{1 \mathrm{in} \text {. spindle }}{}$ in case $3 \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{\mathrm{i}} \mathrm{in}$. Brand new, boxed 22/6. P.P. $1 / 6$

TERMS OF BUSINESS

CASH WITH ORDER. Handling charge of $1 / 6$ on all orders under 20/- where P.P. is not otherwise stated.
L.T. TRANSFORMERS. Pri. 240 volts, Output 6.3 volts 5 amps . 8/6, post $2 / 6$. Pri. 240 volts. Output 17 volts 1 amp., $9 / 6$, post $2 /$ -
H.T. TRANSFORMERS. Tapped 200/250 volts primary. Output 250/0/250 v. $60 \mathrm{~m} / \mathrm{A}$ 6.3 v. 4 aıps., $9 / 6$. P.P. $2 / 6$. Type $(350 / 120)$ Tapped $200 / 250 \mathrm{v}$. input. $350 / 0 / 350 \mathrm{v} .120 \mathrm{~m} / \mathrm{A}$ $6.3 \mathrm{v} .3 \frac{1}{2} \mathrm{amp} .5 \mathrm{v}$. at 2 amps .. $16 / 6$. P.P. $3 / 6$. Type 5 K . Pri. 200/250 v. Output. $350 / 0 / 350 \mathrm{v}$. $350 \mathrm{~m} / \mathrm{A} .5 \mathrm{v} .3$ amps. Tapped 4 v .2 v .2 amps. 10 Kv . ins. 20 v . I amp. 7.5 v . I amp. 5 kV .5 m/A. Price 25/-, P.P. 6/\%.

SPECIAL H.D. 50 volts 10 amps. transformers 250 volts input. Brand new and boxed. Conservatively rated. 55/- each. Carriage $7 / 6$.

BC6IO TUNING

 UNITSChoice of 5-6.35 or $6.35-8 \mathrm{Mc} / \mathrm{s}$. These compact units ($9 \times 4 \times 2$ in.) were used as plug-in tuning boxes with the BC610 TX. Containing miniature variable condensers of 140 pfd.. 100 pfd. and a standard size 50 pfd. A $0-100$ graduated knob dial 1 tin. dia. D.P.D.T. toggle switch and several other components. Price 6/6 ea. P.P. 3/-.

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230v. AC 50/60~

BRAND NEW. Carriage Paid. Buy direct from the importer, keenest prices in the country. All spares available from stock.

Type 01	0.260 volts at 2.5 amps .	6519
Type 1	0.260 volts at 5 amps .	$E 9$
Type 2	$0-260$ volts at 8 amps .	E14 10
Type 3	$0-260$ volts at 10 amps .	E16 10
Type 4	$0-260$ volts at 20 amps .	E32 10

These instruments are fully shrouded

BC221 FREQUENCY METER

$125 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{mc} / \mathrm{s}$.
These well known heterodyne frequency meters are offered in first class condition. Complete with original calibration book. Individually tested before dispatch, $\mathbf{E 1 4}$, carr. paid.

AVO
METER
|MODEL 7. Individually tested on all ranges and guaranteed. Inclusive of Test Leads. Ell each. P. \& P. 5/-.

Leather carrying case 20/-

BRAND NEW INSULATED TESTERS (IMPORTED)
D.C. voltage 500 Range in Megohms 0-500. Price E22/10/., carriage paid.

7 Ampere A.C./D.C. VARIABLE OUTPUT UNIT

Input 230 v. A.C. Output continuously VARIABLE from 0 to 260 volts A.C. OR 0 to 230 volts D.C. at 7 amps. Robustly constructed in metal case, complete with safety fuse, neon indicator case, complete with safety fuse, neon indicator
and voltmeter. Size 17 in . $x 12 \mathrm{in}$. x 7 in . Weight and voltmeter. Size 17 in . x 12 in .
36 Ib . Price $€ 34 / \mathrm{lo} / \mathrm{H}$, carriage 20/-.

Input 230 v. A.C. Output variable $0-260$ v. A.C. at 2.5 a. Fitted in beautifully finished steel case. Complete with volt meter, pllot lamp, fuse, switch, carrying handle, 49/17/6.

ULTRA VIOLET BULBS

Easy to use source of UV for dozens of practical and experimental uses. 12 vole 36 watt $A C / D C 5 B C 6 / 6, P$: \& P, $1 /$. 12 volt 60 watt $A C / D C 5 B C$ 8/6. P. \& P. I/-. Transformer to suic che above: Input 200-240 A.C. 12 volt 36 watt, $16 / 6$; P. \& P. $2 / 6$. Input 200-240 A.C. 12 volt 60 watt, 22/6. P. \& P. $3 / 6$. Set of 4 Colours FLUORESCENT PAINT. Red, yellow, green and blue. In $\frac{1}{2}$ oz. tins. Ideal for use with che above Ultra Violec Bulbs. 9/6 plus. 1/6 P. \& P.

CARPENTER'S TYPE POLARISED RELAYS. $2 \times$ 9,500 curns at 1,685 ohms Price 22/6 each. P. \& P. 1/Bases for Carpenter relays ex new equipment. $3 / 6$ each.

NSP2 CV2296 STROBOTRON FLASH TUBE made by Ferranci, brand new, I.O. base. Price 15/-. P. \& P. I/-.
G.E.C. SEALED RELAYS TYPE MI484. 180 ohms. 12 volt operation. 4 changeovers (will operace from 6 vole). Price 12/-. P. \& P. I/-.
G.E.C. SEALED RELAYS TYPE M1494. 24 vole 670 ohms coil. I pole C.O. Brand new. Price $10 /-$ P \& P. $1 /$-.

NEW P.O. RELAYS TYPE 3000 2,000 ohms coil. 4 make 4 break. $12 / 6$ each. 6,500 ohms, I changeover, I break, Price 12/6. 10,000 ohms coil, 2 lighe c/o. 2 heavy duty c/o. Price 22/6. 16,000 ohms, 2 make 2 break. Price I5/-. P. \& P. I/- each item.
G.E.C. SEALED RELAY TYPE M. 1492. 24 vole 670 ohm, 4 changeover, Ex new equip., 12/6. P. \& P. 1/
100 OHM COIL for 6 v . operation, 4 make, 4 break, 9/6.

SIEMENS HIGH SPEED RELAY. SEALED TYPE H96D. 500 plus 500 ohm. Ex new equip., I2/6. Plus 1/-P. \& P. Very lacest cype sealed. H96E. 1,700 ohms plus 1,700 ohms,
 P. \& P.

BASES with cop clip for 5iemens H series. 3/6 each.

SLIDER RESISTANCES

Geared drive, new. $1.2 \mathrm{ohm}, 14 \mathrm{amp} ., 27 / 6$ 35 ohm. 3 amp., $37 / 6$ $75 \mathrm{ohm}, 2$ amp., $37 / 6$ P. \& P. 3/6.
W.W. RHEOSTAT. New. $3.5 \mathrm{~K}, 25$ wacts. Price $7 / 6$. P. \& P. $1 / 6$.

NEW RHEOSTAT

1.750 ohms 100 wate. Wound on Ceramic former. In metal case with lin. \times tin. spindle. New in maker's packing. 32/6. P. \& P. 3/-. EVERSHED \& VIGNOLES MEGGER CIRCUIT TESTER. (Low reading ohm meter). 2 ranges. $0-3,0-30$ ohms. Complete with cest leads, battery and leather carrying case. $66 / 6 /$-, post paid.

ADJUSTABLE THERMOSTAT
Adjustable between $55-75 \mathrm{~F}$. 8/6 plus $1 / 6 \mathrm{P}$. \& P. UNISELECTOR 8 bank 25 way 75 ohm coil full wiper, Ex. equipment. Individually cested. $45 /$, plus $2 / 6$ P. \& P.

HIGH SPEED BLOWER UNIT $200 / 250$ volt A.C. Powerful 2 speed motor, 11,000 and 13,000 R.P.M. 17/6, plus $2 / 6$ P. \& P. EX P.O. MAGNETIC COUNTER, either 500 ohms for 24 vole operation or 3 ohms for 6. vole D.C. operation. 4 figures to 9,999 . Price, either type $8 / 6$. P. \& P. $1 / 6$.
AUTO TRANSFORMERS. Step up, step down. $110-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 watt cype $£ 2 / 6 / 6$ each. P. \& P. $2 / 6$. 500 watc type $£ 3 / 7 / 6$ each. P. \& P. $3 / 9$. 1,000 watt type $£ 4 / 10 /-$ each. P. \& P. $6 / 6$.

500 MICROAMP SUB-MINIATURE M/C METER
Itin. diameter, flush mounting, single hole fixing. Scaled 0-1 MA.
Supplied with Resistor for use as I MA if required. This miniature instrument is fully tropicalişed, and made to the highest Ministry standard.
29/6, plus I/- P. \& P.

MAGNETIC COUNTERS

 10 IMPULSES PER SECONDVery lacest High Speed type ex P.O., guaranteed perfect, type No. 100B, coil 2,300 ohms, for 48 volt D.C. operation (will work on 36
volc), overall size $4 \times .1 \times$ lin. Also volt), overall size $4 \times .1 \times$ lin. Also
available, type 101 A which can be used as an-inceresting accessory with our Strobe unic. Eicher type price $15 /$. P. \& P. $1 / 6$.
New Miniature Type $3 \frac{3}{3}$ long $\times \frac{3}{4}$ square 300 ohm coil 12 vole D.C. operation. 5keleton type (less outer cover), $10 /$ plus $1 / 6$ P. \& P.

230 VOLT A.C. GEAREDMOTORS

Type Bl6G 80 r.p.m. .26lb inch El/19/6. P. \& P. 2/-.
Type DI6G 5 r.p.m. 1.7Ib. inch 22/9/6. P. \& P. 2/6.
Type DI6G 13 r.p.m. 1.45 lb inch E2/12/6. P. \& P. 2/6.
VEEDER MECHANICAL REVOLUTION COUNTER
6 figure fitted reduction drive. NEW 6 figure fitted reduct
PRICE IO/6. P. \& P. I/6.

ORP 60 MULLARD CADMIUM

SULPHIDE PHOTOCELLS
With mounting and leads including circuit for making lighe sensitive switehes. 7/6. Pose paid.

MINIATURE LEDEX SWITCH

24 volt D.C. oper-
ation. 2 Bank II
position plus Homing Contact.

compact form of uniselector. Exbrand new equipment, 32/6. P. \& P. 2/-
MINIATURE LEAD ACID ACCUMULATORS (brand new). 2V. 1.5 A.H. Size $4 \times 1 \frac{1}{2} \times$ lin. We. approx. $\frac{3}{4} 1 \mathrm{~b}$. $16 / 6$ for 3 , P. \& P. $1 / 6$.

I2V. 0.75 A.H. Size $4 \times 3 \times 1 \frac{1}{2}$ in. We. approx. 2 16. (can be used as double 6V). 15/6 ea P. \& P. $1 / 6$.

DELCO 12-27 VOLT D.C. shune wound motor

 5.400 r.p.m. Torque 4 in . oz. \quad Double spindle. 5 oz. powerful, ex new equipment. $12 / 6$. P. \& P. 2/3.BUILD AN EFFICIENT STROBE UNIT FOR ONLY " $37 / 6$ "
The ideal instrument for workshop, lab. or factory. This wonderful device enables you to "freeze" motion and examine moving parts as if stationary. We supply a simple circuit diagram and all electrical parts including the N5P2 Scrobe cube which will enable you to easily and quickly, construce a unit for infinite variety of speeds, from I flash in several seconds co several thousands per minute. New modified circuits bring price down to $37 / 6$ plus $3 /-\mathrm{P}$. \& P.

SELENIUM FULL WAVE BRIDGE RECTIFIER

D.C. output 36 v .10 amp., fitted in cooling funnel (removable). 5ize $1 \frac{1}{\frac{1}{2} i n . ~} \times \sin \times 4 \frac{3}{8}$ in. Price $45 /=$ P. \& P. 4/-

USED but guaranteed 1 amp., 25/-. P. \& P. 2/6. $2 \frac{1}{2}$ amp., 30/-. P. \& P. 2/6. 5 amp. type in weatherproo
$2 / 6$.

TRANSISTORS

L.T. TRANSFORMER

Type 1. Pri. 200-240 sec. tapped 30, 32, 34, 36 vole at $5 \mathrm{amp} ., 57 / 6$. P. \& P. 4/-
Type 2, Pri. 240 sec . capped 30,40 and 50 vole at 5 amp., $64 / 15 /-$ P. \& P. 5/-.
Type 3. Pri. 200-240 sec. tapped 10,17 and 18 volt at $10 \mathrm{amp} ., 57 / 6$. P. \& P. 4/-
Type 4. Pri. 240 sec. tapped 6 and 12 vole at 20 amp., 72/6. P. \& P. 5/-

METERS, GUARANTEED PERFECT

5 amp . D.C M.I. $2 \frac{1}{1}$ in. fi. rnd. $5-4$ amp.
$0-40 \mathrm{~A}$
10-0-10 amp. D.C. 2 in fl round
Voltmeters
400 v. A.C. M.I. $4 \frac{1}{2} \mathrm{in}$. rnd.
90-180 v. A.C. M.I: $4 \frac{1}{2}$ in. fi. iron.
Milliammeters
0. 1 Milliamp Meter. $2 \frac{1}{2}$ in. F.L. 2

500 microamp., M.C. $2 \frac{1}{2}$ in. rnd. F.L.
scaled $15 / 600$ volt. NEW i..........
$0-250$ microamp $2 \frac{1}{\frac{1}{2}} \mathbf{~ P . R . R . ~ p l u g ~ i n ~} \ldots .$.
Postage on all meters $1 /$ - each.
SANGAMO WESTON DUAL RANGE VOLTMETER. 5 and 100 vole D.C. 3 in . scale. F.5.D. 1 mA. Brand new in carrying case scale. F.S.D. mA . Brand new in carrying case
with Tesc prods and leads. Price 27/6. P. \& P.3/-

CROMPTON PARKINSON BRAND NEW $\frac{1}{t}$ h.p. MOTORS. $230 / 250$ VOLT A.C. 1,440 R.P.M. Fitted with $2 \frac{1}{2} \times \frac{1}{1}$ in. A.C. $\operatorname{SPINDLE.~Price~} £ 3 / 15 /$. Carriage $8 / 6$.

SPECIAL REVERSING 24-VOLT D.C. MOTOR 2 AMPERE. Quadrane moves 90 degrees with limit switches. Ideal for opening doors, etc. Price 22/6. P \& P. 2/-

DESK TELEPHONES-TYPE I
Used bue perfect.
Complete with twoway calling system (buzzer). Incernal battery. All ready for simple two-wire connection. Price
 £3/2/6 each or $£ 6$ the pair. P. \& P. 3/6 each handset.
DESK TELEPHONE SETS-TYPE II, similar to G.P.O. extension celephones. Each complete with automatic dial, internal bell and complete wich automatic dial, internal beng used long connection core and iunction box. $£ 2 / 17 / 6$ but in perfect work
each. P. \& P. 4/-.

Take your Ears

TO THE

Miniature Selenium Rectifiers

SIEMENS

Type	Input voltage			Output
	Capacitive load V	Resistive load V	Pulse operation PIV	$\begin{aligned} & d-c \\ & m A \end{aligned}$
E12.5C5	12.5	25	35	5
E 25 C5	25	50	70	5
E37.5C5	37.5	75	105	5
E50C5	50	100	140	5
E62.5C5	62.5	125	175	5
E75C5	75	150	210	5

For rectification of a-c and pulses, for use in phase and frequency discriminators, limiter circuits and
hum suppression circuits. Wide use in stabilizing circuits of transistorized radio sets.

AT THE HOTEL RUSSELL

RUSSELL SQUARE, LONDON, W.C. 1

where you will hear a wonderful array of sound reproducing equipment for the home. At this year's International Audio Festival and Fair the world's finest loudspeakers, amplifiers, tape recorders, pickups, discs, tapes and many new and unusual accessories will be continually demonstrated. There is as much for the newcomer to the world of quality sound as for the expert . . . with equipment at prices to suit all pockets. No one whose pleasure is to make harmony in the home should miss this "Audio Fair."

Just ask at your nearest Audio, Radio, Music or Record Shop, or write direct (enclosing stamped and addressed envelope) to:
AUDIO HOUSE, 42 MANCHESTER STREET, LONDON, W. 1

MARCONI TF987/I NOISE GENERATORS. DETERMINE NOISE FACTOR of A.M. \& F.M. receivers. A.C. mains operation. 5tabilised H.T. AS NEW. Tested, E15, carr. 7/6. 5LIGHTLY U5ED (but tested). $\mathbf{£ 8 / 1 9 / 6 . ~ c a r r . ~} 7 / 6$

COSSOR DOUBLE BEAM
 OSCILLOSCOPE TYPE 1035

A modern oscilloscope in good working order. Limited number only. $£ 45$. Carriage 30/-

BC221

FREQUENCY METER $125 \mathrm{kc} / \mathrm{s}$. $1020 \mathrm{mc} / \mathrm{s}$ This crystal controlled heterodyne frequency meter is too well known to need further description. Those we offer are complete with correct individual calibration book and are carefully tested and guaranteed. Condition
is very good.
\&16
LAVOIE LABORATORIES TS-127/U WAVEMETER
An American made wavemeter covering 375 to $725 \mathrm{Mc} / \mathrm{s}$. Individually calibrated charts. Resonance is Indicated on a 3 in. square 0 to 200 microammeter. 9in. x 1 in. $\times 7$ in., wt. 17 lbs. A beautiful job in new condition. E3/19/6. Carr. 7/6.

MARCONI SIGNAL GENERATOR TF-517. Three ranges. 18 to $58 \mathrm{Mc} / \mathrm{s}$. in 2 individually calibrated ranges and 160 to $300 \mathrm{Mc} / \mathrm{s}$. by directly alibrated dial. A.C. mains operation. As new condition A.C. mains operation. As new condition in original transit cases wit
book. $f 10 / 10 /$. Carr. EI .

HEWLETT PACKARD 205 AG. An American audio signal generator of the American audio signas generator of the 2,000 , and 2.000 to 20,000 c.p.s. Output is 5 watts. Fully variable attenuator is 5 watts. Fully variable attenuator
0 to 110 db in 1 db steps. Output im0 to 110 db in 1 db steps. Output im-
pedances $50,200,500$ and 5.000 ohms pedances $50,200,500$ and 5.000 ohms
CT ungrounded. Input and output CT ungrounded. Input and output
monitor meters Operation from 110 volts A.C. mains. Electrically perfect but wooden cases may be slightly damaged. $\mathbf{£ 3 0}$. Carr. 30/-.

AERIAL KITS. Comprise seven 4 ft . aerial rods. Makes a 16 ft . and a 12 ft . whip aerial. includes an aerial base with a ground spike. All contained in a steel tubular container with webb carrying strap. Ideal for field day (or fishing). 22/6. Carr. 4/-

CO-AXIAL RELAYS (5witch Type 78A). Simultaneously switch two separate inputs to alternate outputs. 24 volt D.C. coils (can be hand operated). Size (approx.) $5 \times 3 \times 31$ n. $8 / 6$. Post $2 / 6$.

MOVING COIL PHONES. Finest

 quality Canadian with chamois ear-muffs and leather-covered headband. With lead and jack plug. Noise excluding and supremely comfortable. 22/6. Post $1 / 6$. SILICON RECTIFIER. 800 P.I.V. The Modern Marvel. to replace T.V. rectifiers up to 500 mA . (40Ω ballast resistor). 7/6.

SANGAMO
WESTON VOLTMETERS S61. Dual range 0.5 and 0.100 v . D.C. FSD $1 \mathrm{~m} / \mathrm{A}$. 3in. scale. Recent manufacture. Ideal for schools. Complete in super quality canvas carrying case, with test prods and leads.

ABSORPTION WAVEMETERS
MARCONI TF-634B. Covers from 20 to $300 \mathrm{Mc} / \mathrm{s}$ in four plug-in coil ranges. Complete with individual calibration charts. Accuracy 1% Indication is on a $50 \mathrm{~mA} 2 \frac{1}{2} \mathrm{in}$. panel meter. Self contained $1 \frac{1}{2} \mathrm{v}$. battery. In original transit cases. Condition as new. $45 / 19 / 6$. Carr. $7 / 6$.

STANDARD SIGNAL GENERATORS

MANCONI TF-I44G. This covers 1 rom $85 \mathrm{Kc} / \mathrm{s}$ to 25 Mc / s with calibrated output irom $\mathrm{I} \mu \mathrm{V}$ to I volt It operates from A.C. mains 200 to 250 volts 50 cps . 5 tray radiation is virtually zero and monitor meter for "Set Carrier" and " 5 et Mod" is a $3 \frac{1}{2} \mathrm{in}$. panel meter. Supplied complete with mains lead and correct dummy aerial lead IN EXCELLENT CONDITION AND TESTED E25. Carr. 30/-

L, C \& R BRIDGES

AVO. Capacity 5 pfd, to 50 mfd . Resistance 5 ohms to 50 Megohms. Inductance can be measured against external standard. Balance is indicated on a meter which can be standard. Balance is indicated on a meter which can be
used as a valve voltmeter from 0.1 to 15 v . Leakage test and Power Factor scale. A.C. mains operation. Tested and guaranteed and in superlative condition. $\mathbf{E 9 / 1 0 / -}$, plus 5/-P. \& P.

MINIATURE RELAYS (ALL BRAND NEW and BOXED) G.E.C. sealed, wire ends, $670 \Omega, 2$ H/D makes, M1099 $10 / 6$ G.E.C., sealed wire ends, 5,000S $2 \mathrm{c} / \mathrm{o}$, plat., M 1052 12/6

UNISELECTORS

25 position, 8 bank double wipers, 50 volt operation. Ex-equipment and tested. 45/-. Post $2 / 6$.
DPAL FOR CROWD-HAILER EQUIPMENT
DTAL FOR CROWD CONTROL, FACTORIES, FETES, ETC. CONWIT OF 4 SPEAKER UNITS AND CONTROL UNIT. COMPLETE WITH MICROPHONE. HEADPHONE AND SPARE OPERATES FROM 12 VOLTS (D.C. OR 6 VOLTS A.C. WITH SLIGHTLY REDUCED
OOTPUT) CONSUMING ONLY OUTPUT) CONSUMING ONLY A AMPS. OUTPUT POWFR 8 WATTS. BARGANN. £4/18/6, CARRIAGE 25/6.

RECEIVER R 206 MK. 2

A super communication receiver with ALL the right features. $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ in 6 ranges. Turret tuning, osc. vernier control super slow motion tuning. Fantastic sensitivity. Complete with power supply and speaker and in good condition $£ 16$, plus carriage $E 2$.

SEARCH RECEIVER

Type AN/APR4. Covers 38 to $1000 \mathrm{Mc} / \mathrm{s}$. With 3 Plug-in R.F. Heads. TN 16 ($38-95 \mathrm{Mc} / \mathrm{s}$.), TN 17 ($74-320 \mathrm{Mc} / \mathrm{s}$.) and TN 18 ($300-1000 \mathrm{Mc} / \mathrm{s}$./. Self-contained power supply for 115 v. 50-2.600 c.p.s. Thoroughly reconditioned as new. In 100 per cent. mechanical and operational order. $£ 100$.

R 1475 RECEIVERS

Also known as receiver Type 88 these exceedingly versatile ex R.A.F. II valve receivers cover $2-20 \mathrm{Mc} / \mathrm{s}$ in four bands. Many unusual features such as $600 \mathrm{Kc} / \mathrm{s}$. Xtal reference oscillator, Xtal controlled BFO, voltage stabiliser and variable selectivity are incorporated The dial is exceptionally large and readable and sensitivity is of the order of microvolt. In very good condition, complete with power unit (A.C. and 12 v.) and working order. \&15. Carr. 10/-.

PCR COMMUNICATION RECEIVERS

Made by Philips these compact 6 -valve receivers incorporate an RF, two IF and a full size output stage for loudspeaker use. There is a phone jack for moving coil phones. All sets are in PERFECT WORKING ORDER and give very fine results on short waves
TYPE PCR has a self-contained speaker and covers 850 to 2,000, 200 to 550 , and 16 to 50 metres.
AS NEW CONDITION
E6 196
TYPE PCR2 requires external speaker and covers 850 to 2.000, 200 to 5SO, and 13 to 50 metres.

USED (GOOD CONDITION)
65196
TYPE PCR3. Requires external speaker. Has medium and two short wave bands. Covers 200 to 550 metres. 2.5 and $7 \mathrm{Mc} / \mathrm{s}$ (120 to 43 Metres) and 7 to $23 \mathrm{Mc} / \mathrm{s}$ (43 to 13 Metres). USED (GOOD CONDITION) E8 8 O CARRIAGE (any type) 10/6.
POWER SUPPLIES. The above receivers require 250 volts HT and 12 volts LT. We will supply any of the above receivers fitted with a BRAND NEW INTERNAL POWER SUPPLY for $£ 2$ extra. Fully guaranteed ready for use on A.C. mains.

CHARLES BRITAIN (Radio) LTD. II UPPER SAINT MARTIN'S LANE LONDON, W.C. 2

TEMple Bar 0545
Near Leicester 5q. Station.
(Opposite Thorn Housel
Shop hours: 9-6 p.m. (9-1 p.m.) Thursdays. Open all day Saturday

AVO MODEL 7
 £11-0-0 £8-19-6

With Leather Case $\boldsymbol{f 1}$ extra.
All meters are in perfect working order and first-class condition. Complete with batteries, leads and instructions. Please add 5/- for registered post and packing.

MILLIAMMETERS

Pancl meter $0-1$ milliamp. Flush mounting circular. Barrel diameter $2 \frac{1}{\frac{1}{2}}$ in., outside diameter 3 tin . Dials are scaled 0-100. Resistance is 75 ohms. Fo \& NFe. BRAND NEW. 25/., P. \& P. 1/.
Meter Rectifiers (5.E.I.). I mA. 8/6.

GAUSS METERS

American type T5-I5/AP. Made by Marion Electric for M.IT. Radiation Lag. AS NEW, E7/10/-

AR-88 SPARES

Escutcheons (Windows), $10 / 6$
Knobs. Medium size. Set of 8, 15/-0
Mains Transformer, 29/6. P. \& P. 4/-. Block Condenser ($3 \times 4 \mathrm{mfd}$.). $15 /$: P. \& P. 2/6.

CONSTANT VOLTAGE TRANSFORMERS. Input 190 to 260 volts. 50 c.p.s. Output 115 volts at kVA. A pair of these will give a constant output of 230 volts at 4 kVA. Price $£ 15$ each, plus $£ 1$ carriage. Two for $\mathbf{E 3 0}$, carriage paid.

" C" CORE TRANSFORMERS

Pri. 230 v. 50 c. pos. $510-0-510$ at 275 mA $375-0-375$ at 83 mA .6 .3 at 9 A .6 .3 v . at 2A. (twice). 6.3 v . at $/ \mathrm{A}$. (twice), 6.3 v at $1.5 A .6 .3 \mathrm{v}$ at 0.5 A .5 v . at 3 AA . $6 \frac{3}{2} \mathrm{x}$ $6 \times 7 \frac{1}{2}$ in. high. Weight 25ib. Removed from equipment but in perfect condition. 32/6. Carr. 10/..

HEAVY DUTY BLOWERS

For 200-250 v. A.C./D.C. mains, 300 wates. With $1 \frac{1}{2}$ inch diam. twin " V " shape outlets. 2 lengths of hose. 4 spare filters and brushes. Suitable for industrial use, forges. etc. Brand new, ¢4/19/6. Carr. 10/6

FERRANTI
 YOLTMETERS

N5.
$0-300$ volts, 25. $100 \mathrm{c} / \mathrm{s}$. Moving iron, 6 in. scale. F1. mtg. Hermetically sealed, grade IN. Made 1955. BRAND NEW. Boxed. 79/6. Post 4/.

INDUSTRIAL METER, Iron clad. 0 to 300 v. A.C. 50 cycle. Moving iron. 6 in. scale. FI. mtg. BRAND NEW. 59/6. P. 4/-.
! TAX - CUT - PRICES ! ! TAX - CUT - PRICES ! ! TAX - CUT - PRICES!

ARMSTRONG AF208 AM/FM RADIOGRAM CHASSIS

\star Full VHF Band (87-108 Mc/s.) and Medium Band, 187-570M $\star 7$ Valves $\star 5$ Watts Output $\star 15 \mathrm{~dB}$ Negative Feedback \star
For $3,7 \frac{1}{2}$ and 15 ohm speakers. Send S.A.E. for leaflet.

> Price £21.4.0 Carr. Free

Armstrong Stereo 12 Mk. 2 Chassis $£ 40 / 5 /=$ Two separate push-pull channels each 8 watts output giving 16 watts total, full coverage of VHF, medium and long wavebands. Stereo and mono inputs for tape record, tape playback, radio and any type of pick-up.
Armstrong Stereo 55 Chassis $£ 29 / 18 /=$ 10 watts output is available from two separate channels, each 5 watts. Full cover age of the VHF and medium bands.

C.R.T. BOOSTER TRANSFORMERS

For Cathode Ray Tubes having heater Cathode short circuit and for C.R. Tubes with falling emission, full instructions. Mains input, $10 / 6$ ea.
TYPE A. LOW LEAKAGE WINDINGS, OPTIONAL 25% and 50% BOOST ON SECONDARY; 2 V . OR (State tube voltage required.)

BARGAIN SALE PRICES

024	5/-6K7G	5/-1 EABC80		PCL82	10\%
1R5	6/- BK8G	5/- EB91	$4 /-$	PCL84	10/-
185	6/- 6L 8 G	8/- EBC41	8/-	PL81	10/-
$1{ }^{1} 4$	3/- 6N7M	6/- EBC81	8/-	PL83	8/-
2×2	2/-6Q7G	6/- EBF80	$9 /$	PY33	15/-
3 S 4	71-68N7	5/- ECH42	$9 /-$	PY80	7/-
3V4	7/- 6V8G	5/- ECH81	$9 /$	PY81	8\%
3 Q5	7\% 6x4	5/- ECL82	10/-	PY82	71
5 U 4	6/-6X5	6/- EF85	61.	QP25	$71-$
583	6/- 12AT7	5/- EF89	$81-$	SP41	$3 /$
524	9/- 12AU7	5/- EL32	$5 /-$	SP61	3/-
6AC\%	4-12AX7	7/- EL84	$71-$		71
6AM6	$4 /-128 H 7$	7/-EY51	$9 /-$	UBC41	81-
6AT6	6/- 12K7	51- EY86	$9 /-$	UBC81	$9 /-$
68A6	71-12K8	14/- EZ40	71	UBF80	91
6BE8	5/- 12Q7	5/- EZ80	$71-$	UCH81	91-
6BW6	7/- 25Y5G	9/- EZ81	71.	UCL82	101-
$6 \mathrm{C4}$	5/-35L6	9/- HABC80	10/-	UCL83	12/-
6D6	5/-3524	5/- H VR2A	5%	UF89	$91=$
6G6	4/-807	5/- KT33	81	UL41	$91-$
6H6	31- 954	2/- K T76	81	UY41	$7 /$
6 J 5	5/- DAF96	8/- MU14	71	UY85	71
658	5/- DF96	8/- PCC84		UV9	1
8J7G	6/- DR96	$8 /-\mathrm{PCF80}$		VR150/30	7/-
6K8	$5 /^{-1}$ DL96	8/- PCF82		W81	6/-

NEW ELECTROLYTICS FAMOUS MAKES

tUbULAR TUBULAR

CAN TYPES

$1 / 350 \mathrm{v}$. $\quad 2 /-50 / 350 \mathrm{v} . \quad 5 / 6 / 16 / 450 \mathrm{v}$.
$2 / 350 \mathrm{v} . \quad 2 / 3100 / 25 \mathrm{v} . \quad 2 /-32 / 350 \mathrm{v}$.
$4 / 350 \mathrm{v} . \quad 2 / 3$ 250/25v. $\quad 2 / 6{ }^{47 / 350 \mathrm{v} .}$
$8 / 450 \mathrm{v} . \quad 2 / 3500 / 12 \mathrm{v} . \quad 3 /-100 / 270 \mathrm{v}$.
$16 / 450 \mathrm{v} . \quad 3 /-1000 / 12 \mathrm{v} . \quad 3 /-3 /{ }_{32}^{5.0}+34 / 450 \mathrm{v}$ $32 / 450 \mathrm{v} . \quad 3 / 98+8 / 450 \mathrm{v} . \quad 3 / 632+34 / 440 \mathrm{p} / 350 \mathrm{z}$, $25 / 25 \mathrm{v} . \quad 1 / 98+18 / 450 \mathrm{z} . \quad 3 / 950+50 / 350 \mathrm{v}$. $\begin{array}{ll}50 / 25 \mathrm{v} . & 2 /-18+16 / 450 \mathrm{v} .1 / 389+120 / 350{ }^{\circ} . \\ 50 / 50 \mathrm{v} . & 2 /-32+32 / 350 \mathrm{v} . \\ 4 / 6100+200 / 875 \mathrm{v} .\end{array}$

ADASTRA 2-STAGE HI-FI AMPLIFIER READY BUILT, WIRED \& TESTED A.C, only, 200-250 V. Valves ECL86 and EZ80. 3 watt quality output. Mullard tone circuits bass boost, treble and volume controls. Separate engraved front-panel with de luxe finish. Heavy duty output transformer 3 ohm. Quality mains transformer. Stove
enamelled chassis size 6 in . x in. x 3 in . Bargain Price $£ 4 / 19 / 6$. Circuit supplied.

MORSE KEY with code-2/6: BOZZER-4/
VALVEHULDERS. Paz. int., oot., 4d. EA50, 6d. B18A.
 B9A 9n. B7G with oan. 1/6. B9A with can, 1/9. Ceramle. EF50 B7G, B9A, Int. Oct., 1/-. B7G, B9A cans, $1 /-$ each.

COMPLETE RADIO CHASSIS £4.19.6 post 5/-

4 Mullard valves, 5 in. speaker,
Superhet Clircuit, BRAND NEW,
Superhet Ctrcuil, BRAND NEW,
Size $9 \times 6 \times 5$ in. high. Tested by us ready for use. 200/250 P. A.C./D.C. mains, as illustrated with illuminated dial.
Fully tunable over medium and long wave. 12 months Fully tunable over medium and long
guarantee. Only $£ 4 / 19 / 8$ post $5 /-$.

MAINS TRANSFORMERS
 \section*{200, 250 AC Post $2 /$ - each}

STANDARD $250-0-250,80 \mathrm{~mA} ., 6.3$ จ., 2.5 a., tapped $4 \nabla .4 \mathrm{a}$, Rectifier 8.3 v. 1 a , tapped 5 v. or 4 ₹. 2 a . $22 / 8$ Ditto 350-0-350
MINIATURE, $200 \mathrm{\nabla} .20 \mathrm{mA.}$, B. $3 \mathrm{\nabla} .1 \mathrm{a}$.
MDDET, 220 จ. 45 mA., 6.3 จ. $2 \mathrm{a} .$.
SMALL, $220-0-2200^{\circ} .50 \mathrm{~mA}, 8.3$ จ. $2 \mathrm{a} .$. STANDARD, $250-0-25065 \mathrm{~mA}, 6$

 GENERAL PURPOSE LOW VOLTAGE, Outputs $3,4,5.8 .8,9,10,12,15,18,24$ and $30 \mathrm{\nabla}$. at 2 s . $22 / 8$ AUTO TRANS. 150 w.. 0,115 จ. $200,230,250$ ₹. $22 / 8$
AUTO. TRANS. 500 w., $0,115,200,230,250$ v. $82 / 6$ PARMEKO MANS TRANSFORMER. Made for special contract, the ratings can safely be doubled.
G garanteed 2 years. Primary $0-110-210-230-250 \mathrm{v}$. H.T. $300-0-300$ च. 50 mA L.T. 6.3 จ. 1.8a. Weight Bib. Price $17 / 1 /$, post $2 / 6$,
MAINS POWER PACK. Size $37 \times 4\} \times 4 \mathrm{in}$. with mains MAINS POWER PACX. Size $3 \ell \times 4 ; \times 4$ in. With mains
 Centre tapped A.C. Ready built on strong metal chassis. Brand new. Bargain 29/8. Post $2 / 6$
O.P. TRANSFORMERS. Heavy duty $50 \mathrm{~mA}, 4 / 6$. Miniature 3V4, eto., 5/9. Small, pentode, 4/8. Multi-ratio, 7/6 Guti-ratio heavy duty pnsh-pull 10 w., $15 / 6$. Estone ultra-linear OT/ML 10 W ., Spee. . Or " 510 " $45 /$ INTERVAVE TRANSFORMERS. $3: 1$ 4.1 $5: 19 /-$
LF CHOKES $15 / 10$ H. $80 / 65 \mathrm{~mA} .45: 10$ H. 85
 10/6; 10 H. 120 mA., $12 / 6 ; 10$ H. 150 mA. $14 /-$. or 12 จ. $1 \ddagger$ a., $8 / 9 ; 2$ a., 11/3; 4 a., $1 \% / 6$.
CHARGER TRANSFORMERS. Tapped inpnt $200 / 250$ for charglng at 2,6 or $12 \mathrm{\nabla}$. 1$\}$ 2.. $15 / 6 ; 2$ a., 1 7/6; 4 a., 22/6. Ammeter 0 to 5 a., $9 / 6$. Fuse, Case, ete., for 6 च. or 12 จ., 69/6.

BOOKS (List S.A.E.)

"W.W." Radio Valve Data 40 Circuits for Germanium Diodes High Fidelity Speaker Enclosures Valve and TV Tube Equivalents TV Fault Finding Quality Amplifiers
Radio Valve Guide. Books I, 2, 3 or 4, ea. Transistor Superhet Receivers Practical Radio Inside Out Master Colour Code Prall Design and Construg Handbook 5/Radio, TV and Electronics Data Book 3/6 $\begin{array}{lll}\text { International Radio Stations List } & 2 / 6\end{array}$ High Fidelity Stereo Gramophone Modern Transistor Circuits for Beginners

TINNED COPPER WIRE 16 to 22 s.w.k. 1 Ib., $3 /$ /COPPER ENAMEL WIRE $\ddagger 1 \mathrm{~b}$. 16 to $22 \mathrm{i} . \mathrm{w.5.} 2 / 9,$,24 to 30 s.w.g., 3/6, 32 to 40 s.w.g., $4 / 6$.

CRYSTAL MIKE INSERTS. High Outpui. $0 / 6$ Miniature size. $1 \times 11 \times \frac{3}{11}$ in or dia. \times inn.

ACOS STICK MIKE 39-1
816
t.S.L. DE LUXE STICE MIKE

BAKERS Quality Loudspeakers

12in. Baker 15 w . Stalwart, 3 or 15 ohms $90 /$ 12 in . Stereo, foam suspension, 15 ohms $£ 6 / 17 / 6$ 12 in . Standard $20 \mathrm{w}, 40-14,500 \mathrm{c} . \mathrm{p} . \mathrm{s}$. $£ 8$.
12 in . Bass 25 w . 20-18,000 c.p.s. $£ 12 / 12 /$.
12 in . Ultra Twelve, $20 \mathrm{c} . \mathrm{p} . \mathrm{s}$, to $25 \mathrm{k} / \mathrm{cs}$. $£ 17 / 10 / \mathrm{h}$ 15 in . Baker Bass Auditorium, 35 w . MK. II. £18 Details and Enclosure Plans S.A.E.
LOUDSPEAKERS. P.M. 3 OHM. FAMOUS MAKES. $2 \ddagger$ in.
 251-: 8in. Plessey, $17 / 6 ; 61$ in. Goodmans, 16/6; 10 in .
 E.M.I. 131 in X 8in.. $35 / \mathrm{F}$; Stentorian HF1012 10in., $82 / 6$ HF1016, £8/10/-. 12 in . R.A. 15Ω 35/Crystal DIODES. G.E.C.: 2/-; GEX34, 4/-; OA81, 3/-. CRYSTAL SET BOOKLET 1/-.
CRYSTAL SET KIT, $12 / 6$.
HEADPHONES, 40000 ohms, $15 /$ - pair. HEADPHONES, moving coil 100 ohms $10 /-$ pair.
8 WITCH
Cleaner fnid
8WITCH Cleaner fluid, squirt spout, $4 / 6$ tin.
TWIN GANG CONDENSERS "0-0." Transistor 208 DF and
 miniature, 1 in. x 1in. x 1 inin., 10/-; 500 pF siow motion drive, standard or midget, $9 /-$. Smali
 SHORT WAVE, Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}$, $75 \mathrm{pF}, 100 \mathrm{pF}$,
 $500 \mathrm{pF}, 3 / 6$ each, solid dielectric. C/6: 9/6; 0.1 mld. $7 \mathrm{kV} ., 9 / 6 ; 100 \mathrm{pF}$ to 500 pF Micas, Gd d. v., 9d.; $0.5 / 500 \mathrm{o}_{\mathrm{o}}, 1 / 9 ; 0.01 / 2,000$ v., $1 / 9 ; 0.1 / 2,000$ v., $3 / 6$ CERAMIC CONDENSERS. 500 ₹. 0.3 PF. to 0.01 mld ., 9 d . $0.1 / 30$ v, $1 / 3$. High voltage pulse ceramics, 100 pl., etc., $2 / 1 /$. SILVER MICA. $10 \% 5$ to 500 pF ., $9 \mathrm{~d} . ; 600$ to 3.000 pF , $1 /-$ close tolerance (plus or minus) 1 PF, 2.2 to 47 pF
ditto 1% to $815 \mathrm{pF}, 1 /-1,000$ to $5,000 \mathrm{pF}, 1 / 9$.
$465 \mathrm{Kc} / \mathrm{s}$. SIGNAL GENERATOR.
Price 15/-. Uses B.F.O. Unit ZA 30038 ready made
with valve 1S5. POCKET SIZE 2 in. $x 4$ in. $x 1$ in.
$\begin{aligned} & \text { Only one resistor to ehange! Full instructions supplied. } \\ & \text { Batterg } 8 / 6 \text { extra. } 69 \mathrm{q}+1 \text {. Details } S \text { A. } \text {. }\end{aligned}$
Battery $8 / 6$ extra. $69 \mathrm{\nabla}_{\mathrm{o}}+1$ + $\mathrm{\nabla}$. Details S.A.E.

WAVECHANGE SWITCHES

${ }_{3}^{2 p .2-w a y, ~ o r ~} 8-\mathrm{p} .6$-way, long spindle
4 p. 4-way or 1 p. 12-way, long spindle
8 p. 4-way 2 water, long spindle.
Wavechange "MAKITS \#\# Walers a quilable: 1 p. 12 -way 2 p. 6-way, 3 p. 4-way, 4 p. 3 -wava, 0 p. 2 -wat 1 water, $8 / 6 ; 2$ wafer, $12 / 6 ; 3$ wafer, $16 /$. Additional wafers up to $12,3 / 6$ each extra.
TOGGLE SWITCHES. s.p., $2 /$.
TOGGLE SWITCHES. s.p., $2 /-$ - d.p., 3/6; d.p.d.t.e e/${ }_{\text {Rotary }}^{\text {RACKS. Torgles, }}$ Eng.p., 3/6; d.p., 4/8. JAcks. Engish open-circuit 2/6, closed-circe JACK-PLUGS, $3 /$-, Screened $4 /-$, Grundig 3 -pm, $3 / 6$. BULGIN NON-REVERSIBLE PLUGS AND SUCKETS P74. 2-pin 4/3; P73
Mains selector Panel with
3-pin
4/6;
Mains selector Panel with plug, 1/-
JASON F.M. TUNER COIL SET, 29/H.F. coil, zerisl coil, oscillator eoil. two i.f. transformers $10.7 \mathrm{Me} / \mathrm{s}$., detector transformer and heate choke. Cironit and component book using four baM6 2/8.
Jason chassis with ealibrated dial, all components and 4 valves. $£ 6 / 5 /-1$ Per Power Pack 29/6 extra.
Ready Built FMT1
MODEL FMT2 KIT
with New Jason Cabinet, all components Power Pack and

48-HOUR RETURN OF POST MAIL ORDER SERVICE RADIO COMPONENT
Our written guarantee with every purchase, Buses 133 or 68 pass door. S.R. Stn. Selhurst.

! TAX - CUT - PRICES ! ! TAX - CUT - PRICES ! ! TAX - CUT - PRICES !
 Volume Controls Long spindies. Midnet Lis 31 D $\underset{\text { Stereo L/S 10/6, D.P. } 14 / 6 .}{4 / 6 .}$ Linear or Log. Tracks. CAR AERIAL PLUGS $1 / 6$, LEAD SOCKET 2/- COAX, OOTLET BOXES BALANCED TWIN FEEDER Gd. yd., 80 or 300 ohms. EXTENSION SPKR CEEDER $1 / 6$ yd., 80 oh:ng. TELESCOPIC CHROME AERIALS. 13in. oxtending to 43 in . $8 / 6$ asch. Coaz. Adaptor $1 / 6$. . 4d.; W., 4d.; 1 w. 6d.; $1+$ w. $8 \mathrm{~d} .-2$ to 10 me
 ALUMINIUM CHASSIS. 18 s.w.g. Plain, undrilled, sides, rivetted corners, lattice flxing holes, 21 in. $6 / 9 ; 13 \mathrm{in} . \times \operatorname{lin},, 8 / 6 ; 14 \mathrm{in}, \times 11 \mathrm{in},, 10 / 6 ; 15 \mathrm{in}_{\bullet} \times$ 14 in ., 1216.
 ALUMINIUM PANELS. 18 s.m.g. I2in. $\times 12 \mathrm{in} ., 4 / 6$ $14 \mathrm{in} . \times 9 \mathrm{in} .4 /-; 12 \mathrm{in} . \times 8 \mathrm{in} .3 /-\mathrm{i} 10 \mathrm{in} . \times 7 \mathrm{in}, 2 / 3 ;$
 F. CHOKES 2/6. Osmor QC1 $6 / 9$
 R.F. CHOKES 2/6. Osmor QC1 6/9. T.R.F. COILS A/HF. 7/- pair; HAX $3 /-$; HAXL $3 / 6$; DRR2 4/- DRX1 2/6.
 DRR2 4/- DRX1 2/6. ALADDIN FORMERS 0.3 and FORMERS 593% or 8 in. 8 d ., IIn. 10 d . SLOW MOTION DRIVES, Epicyclic ratio 6-1. 2/3 SOLON IRON, 25 W .200 v . or $230 \mathrm{\nabla} ., 24 /-185 \mathrm{w} .29 /-$ A.N.T.E.X. PRECLSION sub-miniature iron, 200 or 240 v A.N.T.E. Stands for above irons $12 / 6$ extra
 MONARCH RECORD PLAYER

 HiGA STABILITY. $\frac{1}{2}$ w. 1\% 21-. Preferted values, 10 ohms to5 watt 10 meg. Ditto $5 \%, 10$ ohms to 22 meg., 9 d .
WIRE-WOUND RESISTORS $\left.\begin{array}{r}5 \text { watt } \\ 10 \text { watt }\end{array}\right\} \quad$ WIRE-WOUND RESISTORS
10 watt $\}$
10 ohms-10,000 ohms
I2.5K to 47 K 10 w.
 tin. Bigh Q and good band width. Data sheet supplied

WIRE-WOUND Pots. Type, All valnes 10 ohm to $25 \mathrm{~K}, 3 /$-ea.; 30 K , 50 K , $4 /$-. Carbon $30 K$ to 2 meg., 4/-. Carbon 30K to 2 meg.,
TRIMMERS. Compression TRIMMERS. Compression ceramic $30,50,70 \mathrm{pF}, 9 \mathrm{~g} . ;$
$100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 1 / 9$. Philips 0 to $10 \mathrm{pF} ., 3$ to $30 \mathrm{pF}, 1 /$ - each.

1963 RADIOGRAM CHASSIS

 Three Warebands
 M.W. $200 \mathrm{~m},-500 \mathrm{~m}$. L.W. $800 \mathrm{m.-2,000} \mathrm{~m}$. ECL81. EER9. EL84. EZ80 12-month guarantee. A.C. 200-250 v. 4-way switch Short-Medium-Long-Gram, A.V.C. and Negative Feedback. 5 watts. Chassis 13itin. $\times 5$ in, $\times 2 \beta$ in. Glass Lamps. Four Knobs, Walnut or Ivory. Aligned and alibrated. Ohassis isolated from mains.
 BRAND NEW £8.19.6 Catr. 4/8. Matched Speakers $8 \mathrm{in}, 17 / 6 ; 10 \mathrm{in}, 25 /-$; 12in. $30 / \mathrm{F}$.

BLACK CRACKLE PANNT, Air drying, 3/- tin.
RADIO SCREWDRIVER, 5in., 6d.
SOLDER RADIOGRADE 4d
HIGH GAIN TV PRE-AMPLIEIERS BAND I B.B.C. Tunable channels 1 to δ. Gain 18 dB. ECC84 valve. Kit price $29 / 6$ or $49 / 6$ witb power pack. Details 6d. (PCC84 valves if preferred).
Tunable ohannels 8 to IT. 13 . - same prices
Tunable ohannels 8 to 13 , Gain 17 dB .
Set of coils and circuit only, $9 / 6$. Band I or mI .
PAXOLIN PANELS. $\frac{1}{16}$ in. $\times 10 \mathrm{in}, \times 8 \mathrm{in} . ; 2 /-$
RECTIEIERS. RM1 $5 /-;$ RM2 $6 /-$ RM3 $8 /-$ RM4 $10 /-$; RECTIEIERS, RM1 5/-; RM2 6/-; RM3 8/-; RM4 10/-; RMS 10/-: $14 A 100$ 10/- 14A116
MINIATURE CONTACT COOLED RECTIFIERS. 250 F. $50 \mathrm{~mA} .7 / 6 ; 250 \mathrm{\nabla} .60 \mathrm{~mA} ., 8 / 6 ; 250$ ॠ. $85 \mathrm{~mA} .9 / 6 ; 200$
$\mathrm{~mA} .21 /-; 300 \mathrm{~mA} .27 / 6$ Fnll Wave Bringe 250 v. 75
 SELENIUM RECT. Popuiar type. $300 \mathrm{v} .85 \mathrm{~mA} ., 51-$ OILS. Wearite "pp" type, 3 /- each.
OSMOR MIDGET " Q " type, adj. dust core, from 4/- each. TELETRON D.W.R. L. and Med. T.R.F. with reaction, 4/-: Mediam only DR, $3 / 6$.
FERRITE ROD AERIALS, M.W. 8/9; M. and L.. $12 / 6$

QMAX CHASSIS

The cutter consists of fonr parts: a die, a punch, an Allen screw and key

$\frac{1}{2} \mathrm{in}$.	$14 / 6$	11 in .	$17 / 6$	
in.	14/9	$1 \% \mathrm{in}$.	$201-$	21n. 44/3
in.	15/6	1 itn.	$20 / 6$	Iin. sq. 31/6
in.	15/9	11 in .	$22 / 6$	Hin. sq .
1 in .	17/6	2 in .	34/3	28/-

29/6. Stands for a bove irons 12/6 extra
Spares in stock for above irons.

EAGLE 4 TRANSISTOR PUSH-PULL

 AUDIO AMPLIFIER Size $3 \times 1 \frac{13}{4} \times \frac{7}{8}$ in A ready built miniature push-pull ampilter with input and ontput transtormers, 4 transistors. Ideal for use with record piagers, intercoms, or "BABYALARM "Complete with full Instructor and circuit PRICE 52/6 9 v . Batt. 2/3. 2in. SPEAKER $15 /-$

Xtal Mike insert, 6/6
MAINS DROPPERS. Midget. With adj. sliders. $\begin{array}{ll}0.3 \mathrm{~A}, 1.000 \text { ohms, } 5 /- & 0.15 \mathrm{~A} .1,500 \text { ohms, } 5 /- \\ 0.2 \mathrm{~A} .1,200 \mathrm{ohms}, 5 /- & 0.1 \mathrm{~A} .2,000 \text { ohms, } 5 /-\end{array}$

TELEVISION REPLACEMENTS Line Output Transformers from $45 /-$ each. NEW stook and other timebose components.
Most makes available. S.A.E. with all enquiries.
MIKE TRANSFORMER $50: 1,3 / 9$.
P.V.C. CONN. WIRE, single or stranded, 2d. yd.

TWIN P.V.C. FLEX, 2 amp. Ad $^{\text {S }}$. yd.
SLEEVNNG, 1 or 2 mm, $2 \mathrm{~d} . i 4 \mathrm{~mm}_{6}$. 3d.: $6 \mathrm{~mm} ., 5 \mathrm{~d} . \mathrm{yd}$. 3/6. 32 to 40 s.w.g. $4 / 6$.
T.C. WIRE. 31 lb . I6, $18,20,22$ s.w.g., $3 /=$

AMERICAN "BRAND FIVE"RECORDING TAPE			PLASTIC	
Double Play	7in. reel, 2,400ft. 5 in. reel, $1,200 \mathrm{ft}$.	$\begin{aligned} & 60 /- \\ & 37 / 6 \end{aligned}$		
Long Play	7in. reel, 1,800ft. 59 in . reel, $1,200 \mathrm{ft}$. 5 in. reel, 9001 .	$\begin{aligned} & 35 /- \\ & 23 / 6 \\ & 18 / 6 \end{aligned}$	$3 i n$. 4in. 5 in.	$1 / 6$ $2 /-$ $2 /-$
Standard	7 in . reel, 1.200 ft . 5 in . reel, 6001 t .	$\begin{array}{r} 25 /- \\ 16 / \end{array}$	$\begin{aligned} & 5 \mathrm{in} \text {. } \\ & 7 \mathrm{in} \text {. } \end{aligned}$	$\begin{array}{r} 2 /- \\ 2 / 6 \\ \hline \end{array}$

7in. Metal Reels 3/- each.

"Instant" Buik Tape Eraser and Head Defluxer, $200 / 250$ v. A.C. $27 / 6$. Leaflet S.A.E,

ARDENTE TRANSISTOR TRANSFORMERS, D3035, 7.3 CT : 1 Push Pull to 3 ohms for OC72 D3034, $1.75: 1$ C.T. Push Pull Driver for OC72 D3058, 11.5 : 1 Ontput to 3 ohms for OC72, ote
D187, $18.2: 1$ Output to 3 ohms for OC72, etc.. D167, 18.2:1 Output to 3 ohms for OC72, eto D239. 4.5: 1 Driver, fin. \times tin. \times tin. D240, 8.5 : 1 Driver, in. \times in. \times in............ ARDENTE TRANSISTOR VOLUME CO 5K or 1 meg, with switch, din. 9 in.. $5 / 3$.
701780 . 5 K with switch, dia. $7 \mathrm{in} . .10 / 6$ DEAF AID EARPIECE Xtal or magnetic, r/6 SUB-MIN JACK and PLUG, $3 / 6$ pair.

$$
\begin{align*}
& \text { SPEAKER FRET } \\
& \text { Gold Cloth, } 17 \mathrm{in} . \times 25 \mathrm{in} . .5 /-; 25 \mathrm{in} .
\end{align*}
$$ TYGAN

Varlous oolours, 52 in . wide, from $10 /-\mathrm{tt}$ 28in. wide from 5/- It. Samples S.A.E,
Expanded Metal, Gold. 12in, \times 12in., $6 /-$

BARGAIN SINGLE PLAYER KIT

£7.19.6 post 5 -

WITH 2-STAGE 2-VALVE 3-WATT AMPLIFIER.
HIGH-FLUX 5in. SPEAKER.
handsome portable case $13 \mathrm{in} . \times 10 \mathrm{tin} \times 7 \mathrm{x}$ in.
4SPEED MOTOR. $16,33,45,78$ R.P.M
CRYSTAL PICK-UP FOR L.P./STD
RRYSTAL PICK-UP Tin.. IOin.. 12 in. ${ }^{\text {R.P./STD. }}$
B.B.C. 2 TRANSISTOR
M.W. and L.W. Radio, Kit 22/6; Earpieoe 7/6;

Battery 2/3. Cirent and Dotails 6d

OUR ONLY ADDRESS
337 WHITEHORSE ROAD WEST CROYDON ${ }_{\text {TTelephone }}^{\text {THO }}$

EXPERTS ANSWER ENQUIRIES
SPECIALISTS

BUILD it rourself using 4-SPEED ESR MONARCH AUTOCHANGER READY BUILT 3W AMPLIFIER, HAND SOME PORTABLE CASE. HIGH FLUX LOUDSPEAKER. FULL. INSTRUCTIONS
Total Price
£11.10.0
GARRARD DE LUXE AUTO-PLAYER KIT £11.19.6 Carr. and ins. 5/-
detaila S.A.E.
GARRARD AUTOCHANGER (plug-in xtal head). Ready-built 2-valve amplffier, Loudspeaker and contemporary styled Portable Player Case.
All items guaranteed to fit together perfectly, can be assembled in thirty minutes, full instructions supplied.

RECORD PLAYER BARGAINS

complete with LP/STD Xtal Heads

4-SPEED AUTOCHANGERS: INSURED POST 3/6each BSR U.A.14.
E.M.I. with separate pick-np, complete EMI with auto. stop on baseniate. Garrard SRP10, £5/10/-; Model 4HF Replacement Sapphire Styli, Irom b/S Replacement Crystal Cartridge with 2 Styli from 15/-

RECORD PLAYER CABINETS, 70/-

Two-tone handsome rexine covered, size $18 \times 14 \times 8$, all accessories, battle, fret and mounting board 14in. \times 13in. Space for amplifer, speaker and all-modern Antochangers or single players eto. Mounting board will

$$
\checkmark \text { cur, rree or cararker for any moaern record playes }
$$

RECORD PLAYER AMPLIFIER 95/ 2-valve sw, A.C. amplitier and 6in. speaker all
ready mounted on baffe. 12in. \times in., 3in. deep. ready mounted on baffle, 12 in . \times \%in., 310 . deep.

" $6+1$ " TRANSISTOR RADIO

First-class components to make a 6 -transistor 2 -waveband superhet chassis, Ideal for portable or table aerial, printed circuit. 8ition. $\times 2$ inn., but Exclud ING speaker and oabinef, 35 ohm output. Simple nstrnctions $1 / 6$ (free with kit).
Speakers, 35 ohm, $7 \times 4 \ln$., $21 /$ -
5 in ., $17 / 6 ; 3$ in.. $15 / 6$.
\&4.5.0
NEW MULLARD TRANSISTORS OC7I 6/-; OC8ID 7/6; OC448/9; OCI7I 10/6; OC72 7/6; OC8I 7/6; OC45 8/6; AFII7 9/6. Sub-miniature Electrolytics (15 v .) 1 mfd . 2 mfd ., 4 mfd ., 5 mfd ., 8 mfd . 16 mfd ., 25 mfd $30 \mathrm{mfd} ., 50 \mathrm{mfd} .100 \mathrm{mfd}, 2 / 6$.
Diodes OA81, 3/-; GEX34, 4/-.

W E Y R A D

COILS AND TRANSFORMERS FOR A 2-WAVE TRANSISTOR SUPERHET WITH
Long and Medium Wave Aerial--BA2W with CAR AERIAL COIL. On 6in, rod, $\frac{7}{18}$ in. diameter, 208 pF tuning
Oscillator Coil, P5011ic, 178 pF tuning. $5 / 4$ 1 st and 2nd I.F. Transformers-P50/2CC, 470 Ko/8. Iry. diameter by fin. high, ea.
Driver Transiormer-LIFDT4
Printed Circuit-PCAI. Size $2 \neq 1 \mathrm{in}$. \times. 8 tin. Ready rilled and printed . Jackson " 00 " Rang 208
24 Fixed Resistors 24 Fixed Resistors
16 Fixed Condensern \quad V.
35 ohm Speakers, y \&in. $15 / 6$. 51ヶ. $17 / 6.7 \times 4$ in Waveohange Switch
set of 8 Mallard Transiztors and diode
3 ohm Output Modification parts
 Open: Tottenham Court Road 9 a.m. to 6 p.m. Mon. to Fri. Camberwell 9 holloway Rom daily. Thurs. I p.m. Sat. 5.30 p.m Manchester: Open all day Sat.

HIRE PURCHASE!!

H.P. terms are willingly quoted on any item value $\mathbf{E} 5$ and over Illustrated leaflets available on full range of ARMSTRONG chassis and most branded man ufacturers' items of interest to readers of this publication

NEW BRANCH

GAR KENG:
Our highly successful ix-transistor luxury portable with the "SLIM LINE" look.
To build yourself, with printed circuit chassis for reliability and simplicity in construction May be used as Car Radio, with full MED IUM wave and LONG wave coverage.
COOK AT THESE \&FATURESI

* 500 milliwast outjut to high flax $7 \times 3 \$ 10$, higb 0 detity loudspeaker * $81 x$ seloated MULLARS TRANSISTORS in latest supersenritive circuit
 are three-tore cavinet. bisois dark grey and siver grey, with wilt control knobs and all git fitings. \nrightarrow Coax. sooket Int car serial. \ddagger Brant new gruranteed componerits. \pm Push-pull ontput. \neq Automatic volume control. t Lonr-ine Daterv. $*$ super-sonsive internal Verrite rod aetian. specia coluaing mas
Alignement service availuhle. Full
assembly details and endividualit assemblt, details and motividualiy priced pards list, oll of which are
soallmble separately, price $1 / \beta$ poet free.

£7.19.6

- Nothing more to buy. Cabinet included.

THE

"COURTESAN"

Our 3 transistor plus 2 diode pocket receiver with full Medium and ${ }^{\text {omv }} 63^{\prime}$ -

(No external aerial and easth required.
Latest 2 in. 75 ohm speaker.
t Firgt-grade Mallard transistors.
\star Condenser tuning.
K Volume control with on/off switch.

* Easy assembiy on pre-tagged circalt board. $5 \frac{1}{4} \times 3 \frac{1}{4} \times 1$ in., chrome
* handle, attractive gold and black dial.
* Luxembourg, Hilversum, etc., guaranteed in reception areas

All parts available separately, itemised parts liat and full assembly instructions 1/6 post Iree.
A QUALITY F.M. TUNER UNIT

Combines guality with simplielty of consiruction (only spectally eelected toy-yrade oomponents are usel). The cennements provited. gnd the
verformance achleved are equal to many commercial monels at twica the price. t Guarfuning. t Frequency coverage Pernesblity
funing. $\$$ Frequency coverage 88.95 Mc/s.
Relf-powered using a good quality casina trans.
former and valve rectifer. \downarrow frully drilled chassis.
All parts availabl separately but if time, the whole will be supplied at a special inclusive price of
ONLY Plus ONLY \&10.19.6 4/-P. \& Plus Individually priced parts list and
comprehensive instruction booklet $2 / 6$ comprehensive instruction booklet $2 / 6$
post free. (Deducted from cost if post free. (Deducted from cost if
complete parcel purchased later.)
 everything supplied, all you need solder iron, pliers and screwdriver. Valve line-up: EF86, ECC83, $2 \times$ EL84, EZ81 and EM34 magic eye. Monitoring facilities, output socket for feeding to high quality amplifier, can be used as straight" amplifier for record reproduction. EQUALISING ON TWO SPEEDS. OUTSTANDING VALUE AT EII/II/- plus $2 / 6$ P. \& P. including all necessary instructions ATTRACTIVE TWO-TONE PORTABLE CARRYING CASE. Suitable for above amplifier and Collaro Studio deck. Fitted with $9 \mathrm{in} . \times 5 \mathrm{in}$. High Flux P.M. speaker for high quality reproduction. Inclusive price £5/5/plus $5 /-\mathrm{P} . \&$ \& P . Full list of competitively priced mics, and stands, on request. The above 3 items purchased ot one time, SUPPLIED CARR. PAID.
NOW AVAILABLE! FOUR-TRACK STUDIO DECK AS ABOVE. FITTED WITH HI-FI FOUR-TRACK HEADS. PRICE $£ 13 / 19 / 6$ plus $7 / 6$ P. \& P. Four track heads supplied separately, complete with mounting bracket for Studio Deck at $92 / 6$ pair, plus $2 / 6 \mathrm{P}$. \& P .
TAPE RECORDER AMPLIFIER 8311-4V. Exactly as $8311-\mathrm{V}$ but fourtrack, suitable for hi-fi four-track heads. Price $£ 12 / 12 /$ - plus P. \& P N.B.-Four-track deck and amplifier fit the above case, without any modification whatsoever
PRE-AMPLIFIER KIT TYPE 8312-CP Complete high quality preamplifier kit for use with Collaro Studio Deck. Price $\mathbf{6 8} / 8 /$ plus $2 / 6$ P. \& P.

TAPE! TAPE!

FOR THE FIRST TIME IN THIS COUNTRYCANADA'S HI-FI MAGNETIC RECORDING TAPE -

Following sizes available-others to follow.
BRAND NEW-NOT SUB-STANDARD.
High grade acetate base. Attractively boxed, fitted leaders, fully guaranteed.
5 in . 600 ft ., $12 / 6 ; 5 \mathrm{in}$. 900 ft ., $15 /-$; 7 in . $1,200 \mathrm{ft}$., $18 / 6$;
7 in . 1,800ft., 25/-. P. \& P. 6d. per spool, 3 or more post free (bona fide trade enquiries invited).
SPECIAL OFFER! AMERICAN MYLAR DUPONT. Brand new 5 fin 1,200ft., double-play, top quality, $25 /$-, post free. Limited quantity only. PLASTIC TAPE SPOOLS. Best quality $3 \mathrm{in} ., 1 / 3 ; 4 \mathrm{in}$., $2 /-;$ in., $2 /-$ 5țin., 2/3;7in., 2/6. Any single item plus 6d. P. \& P. Orders over \mathbb{E}, post free

EXPORT CHASSIS by famous manufacturer.

M.W. 200-550 metres S.W.I. 13-30 metres S.W2. 31-90 metres Calibrated also in kc / s. and me / s. A five-valve superhet chassis-EHC8I, EF89 EBC8I, EL84 and EZ80 for A.C. Mains. $90 / 110 / 200 / 230 / 250$
Four watts output, negative feedback Push-button selection of gram. and wavechange. Volume on/off. Tone and Tuning controls. Tropicalised high grade mains and output transformers, separate from main chassis, reduce hum and heat to a minimum. Attractive dlal printed in black, gold and red. Chassis dimensions 15 in . long $\times 6 \mathrm{in}$. deep $\times 7 \mathrm{in}$. high. (This includes mounting brackets which can be removed and reduces the depth to 13 . 12.0
aperture $13 \frac{1}{2} \mathrm{in}$. x 3in. (P.T. Paid.) Carriage and packing in U.K. only $7 / 6$.
H.P. available

ANOTHER Unrepeatable CHASSIS BARGAIN

 A six-valve waveband
AM/FM Superhet RadioAM/FM Superhet Radiogram chassis for 200/240 A.C. mains. Brand new, manufacturer's surplus. Covering:-1,200-2,000 metres L.W 200-550 metres M.W 6-19 MCS S.W. 87-100 MCS VHF.
Internal Ferrite rod aerial for long and medium wave. Permeability tuner unit on VHF. Piano keyboard style push buttons for waveband and gram selection. Other controls: Volume-Tone on/off Tuning. Valves: ECC85, ECH8I, EF89. EABC80, EL84, EZ80. Audio output: 4 watts. Chassis 15 tin. $\times 7 \mathrm{n}$. $\times 7 \frac{\mathrm{z}}{\mathrm{in}} \mathrm{in}$. high. Dial aperture: $13 \frac{1}{2} \mathrm{in} . x 4 \mathrm{in}$. Attractive dial printed In gold on dark brown background. An ideal chassis, especially recommended for use with any of the latest autochanger units. Wonder ful tone and dynamic range. Come and hear it at any of our branches. PRICE COMPLETE $£ 15 / 15 / *$ tax paid, plus $7 / 6$ P. \& P. H.P. available.

VISIT OUR FULLY EQUIPPED HI-FI SHOWROOM AT TOTTENHAM COURT ROAD FOR DEMONSTRATIONS OF THE LATEST HI-FIDELITY EQUIPMENT BY ALL LEADING MANUFACTURERS, i.e., Leak, Quad, Armstrong, Dulci, Ferrograph, Reflectograph, Tandberg, Vortexion, Tannoy, Linear Wharfedale, Grundig, Goodmans, W.B., Rogers, Garrard, Lenco B.T.H., Pamphonic, Simon, Brenell, Collaro, Telefunken, Fi-Cord Butoba, etc., etc. A full range of high quality cabinets to suit al purposes is on show. Enquire about our interesting part-exchange scheme for personal callers. H.P. available.
\star HI-FI DEMONSTRATION ROOM NOW OPEN AT MANCHESTER \star
SEND STAMP FOR COPY OF OUR INTERESTING

LITTLE BOOKLET

"WHAT IS HIGH FIDELITY?"

 and Suggestion List of Budget Hi-Fi Systems
THREE NEW BATTERY CHARGER KITS All complete with ammeter! For 6 and 12 v . For 6 and $12 v$. Louvred metal case, fuses, metal rectifier, transformer. absolutely com m plete
 Including heavy duty crocodile

 clips. Full instructions provided. $1 \frac{1}{2} \mathrm{amp}$. $35 /-; 2 \frac{1}{2} \mathrm{amp} .42 / 6 ; 4 \mathrm{amp}$. 50/- each, plus $2 / 6$ P. \& PAlso available 2 amp. charger kit complete, no ammeter, fully shrouded mains transformer, full Instructions 30/- plus $2 / 6$ P. \& P.
 NEW IMPORT!! Large quantity shipments enable us to offer the keenest meter value yet!

20,000 OHMS PER VOLT ! !
MODEL 200 H . Volt-ohm-Milliammeter RANGES:
A.C. VOLTAGE: $10,50,100,500$ and 1,000 volts (10,000 ohms per volt). D.C. VOLTAGE: $5-25,50,250,500$ and 2.5 k . (20,000 ohms per volt.).
D. CURRENT: $0-50$ micro-amps.,
$0-2.5$
 30 k . at centre scale). CAPACITANCE: 10 pf. to $.001 \mathrm{mfd} ., .001 \mathrm{mfd}$ to 1 mfd .
DECIBELS: -20 to +22 db .
A fully guaranteed pocket size meter, knife edge pointer, top quality, supplied complete with test prods and full $\mathbf{C 5} 5.0$ ONLY. operating instructions at $\mathbf{2 5} \mathbf{5 . 0}$ Post free. ALSO AVAILABLE: Model TEIO. Identical in appearance and size with rotary type switch but 10,000 ohms per volt.
Ranges: D.C. voltages: $0-6-30-120-600-1,200$ volts (10,000 ohms per volt). A.C. Voltages: $0-6-30-120-600-1,200$ volts (10,000 ohms per volt). D.C. current: 0-120 mieroamp., 0-3-300 mA. Resistance: 0-30K, 0-3 Meg. (150 ohms and 15 K at centre scale). Capacitance: 50 pF to 0.01 mfd ., 0.001 mfd. to 0.15 mfd . Decibels: PRICE $89 / 6$ Optional Post free. Optional extra, attractive carrying case suitable for either meter $13 / 6$ only
Leaflet available. Bona-fide trade enquiries invited. Leaflet available. Bona-fide trade enquiries invited.

Size $3 \frac{1}{6} \times 2 \frac{1}{8} \times$ $1 z \mathrm{in}$. Meter size $2 \frac{1}{6} \times 1 \boldsymbol{z}$ in. Sensitivity 1,000 o.p.v. on both A.C. and D.C.! A.C. and D.C. volts
$0 / 15,0 / 150$, 0/1,000 volts. D.C. current 0/150 mA. Resistance 0/100K. Complete with test prods, battery and full instructions. OUTSTANDING
VALUE AT
421
Plus 1/6 P. \& P.

30,000 OHMS PER VOLT MULTI METER! 9 ranges D.C. vol tage to I kV 7 ranges A.C. vol5 tanges D.C. cur. rent to 12 amp3 ranges resistance to 60 meg. corporates inter nal buzzer for audi ble warning of
direct shorts and blocking conden sers for A.F. output. Capacity -20 +56 . Measurements $3 \frac{3}{16} \times 6 \frac{3}{18} \times 2 \frac{1}{2} \mathrm{in}$ Outstanding value at $£ 8 / 19 / 6$.
H.P. available.

Just arrived! SOLID LEATHER CARRYING CA

R.S.C.
 R.S.C.
 R.S.C. BRADFORD

8-10 Brown Street
(Market Street) (No hali day)

73 Dale Street 5-7 County (Mecca) 1 mins. from Exchange Arcade Briggate, 4 mins. from Exchange Arcade, Briggate, Stn. 8 mins. from Lime Leeds, 1 (above
St. Stn.

Only 3 pairs of soldered

 joints plus mains.

Or available with Audiotrine Equipment Cabinet as shown at
oot ol opp. page and larger speaker for 81 gns . extra. Cash or Torms.

AUDIOTRON HI-FI TAPE RECORDER KIT Build a high quality recorder in the $£ 70$ class for only

Can be sembled

OR DEPOSIT £2.13.9 and 12 monthly payments of $44 /$ -

INCORPORATING THE LATEST COLLARO STUDIO TAPE TRANSCRIPTOR THE AUDIOTRON HIGH QUALITY TAPE AMPLIFLER, A BLGH FLUX $7 \times 4 \mathrm{in}$. LOUDSPEAKER. Reel of Best Quality TAPE, Spare Tape Spools, as
Portable Cabinet, size approx. $14 \frac{1}{2} \times 15 \times 8 \frac{1}{2}$ in, finished in durable and attractive duo tone Policrome and connection diagram for wiring amplifier to transcriptor. FEATURES INCLUDE

* 3 SPEEDS \pm.FREQUENCY RESPONSE $50-11,000$ 0.p.s. \star SWITCHED 4 WATTS * MAGIC EYE RECORDING LEVEL INDICATOR $\star 3$ MOTORS. Fast rewind $*$ TAPE, MEASURING AND CALIBRATLNG DEVICE + TAKES FULL 7in. DIAMETER REELS OF TAPE \star NEGLIGIBLE HUM \star ENTIRELY EFFECTIVE AUTOMATIC ERASURE. Send S.A.E. for leaflet

HI-FI 10 WATT AMPLIFIERS
 MODEL A REMARKABLE OPPORTUNITY. Carr. 4/a Push-puil output. Latest high efficiency Mullard valves. Dual separately controlled inputs for mike and gram. Separate bass and treble controls. High sensitivity. Output for 3 ohm or 15 ohm loudspeaker. Guaranteed, tested and
SUPERHET RADIO FEEDER UNIT
Design of a high quality Radio Tuner Unit (specially suitable for use with any of our Amplifers). A Triode Heptode F/changer is used. Pentode I.F. and double Diode Second
Detector delayed A.V.C. is arranged so that A.V.C. dis Detector delayed A.V.C. is arranged so that A.V.C. distortion is avoided. The W. Ch. 8w. incorporates Gram.
position. Controls are Tuning, W. Ch. and Vol. Output will load most Ampliflers requiring 500 mV . input depending on Ae. location. Only 250 ₹ 15 mA . H.T, and L.T. o 6.3 v . 1 amp . required from amplifier. Bize of unlt approx.
$9.6-7 \mathrm{in}$. high. Send S.A.E. for illustrated leaflet. Total 9-6.7in. high. Send S.A.E. for illustrated leaflet. Total building cost of $£ 4 / 15$
and Instructions $2 / 6$.

CRYSTAL MICROPHONES

Fand type 14/9. Hand or Desk R.T.C. 19/9. Acos Mic $4529 / 9$.
stand $59 / 9$.
LINEAR TAPE PRE-AMPLIFIER Type LP/1. Switched negative feedback equalisation. Positions for Record 1 in., 3 in., 7 fin. and Playback. EM8
Indicator. Designed primarily as the link between Collaro Tape Trasseriptor and high fidelity amplifier but suitable almost any Tape Deck. 9 GNS. Send S.A.E. for leaflet. LINEAR L45 MINIATURE $4 / 5 \mathrm{~W}$. QUALITY AMPLIFIER. Suitable for use with any record playlng unlt and most uicrophones. Negative feedback 12 D.B. bass and treble controls. For A.C. mains Input of $200-250$ v. 50 c.p.s. Output for $2 / 3$ ohms speaker. Three miniature Size only $6 \times 5 \times 5 \frac{1}{}$. high. Chassis fully isolated from mains. Guaranteed 12 months. Only $\$ 5.19 .6$ or of 22/-. Send S.A.E. for leaflet.
EXTENSION SPEAKERS, in handsome, walnut reneered cabinets. All standard $2-3$ ohms, 6 in. 29/9. Bin. 35/9. CABY MULTIMETERS. M1. Sensitivity 2,000 ohms per volt. A.C. and D.C. $54 /-$ A10, Basic meter, sensitivity
155 microamp. A.C. and D.C. ranges. \$4/17/6. B. 20. Sensitivity up to 10,000 ohms per volt A.C. and D.C. $8 B / 10 /$ - . Sond S.A.E. for leaflet.
STOCKISTS OF ARMSTRONG CHASSIS, GOODMANS, AND W.B. SPEAKERS. CASH OR H.P. THE SKYFOUR T.R.F. RECEIVER
A design of a 3-valve 200-250 v. A.C. mains L. and M. wave 6 K7, SP61, 6V6 and is spectally designed for simpllcity in wiring. Sensitivity and quality are well up to standard. Point-to-Point wiring diagram, instructions and parts llst $1 / 9$. This receiver can be bultt for a maximum of $£ 4 / 19 / 6$
including velseered walnut cabinet.

TRANSISTOR SALE $\begin{array}{lll}\text { Mullard } & \text { OC71 } & 3 / 9 . \\ 4 / 11, & \text { OC44 } & \text { OC45 } \\ \text { O/11, } & \text { OC72 }\end{array}$
 Ediswan XA101 XB102, XA112.
XB113 XB104,
XC101A
Postage 6d XCl01A $3 / 9$ ea. Postage 6 d
for up to 3 Transistors. JASON F.M. TUNER Type FMT1. All parts including Dial, Escutcheon, PunchedChassis \&Valves. Power supply required $180 \mathrm{v}, 25 \mathrm{~mA}$. and 6.3 v 1.5 a. FMT2 8 Gns.
Type FM/6 CHARGER KIT 14A At 12 v , or 24 V .7 amp Consisting of Mains Tran
$200-250$. F.W. Set, Rect Ammeter, Fuses, Variabl. Resistor and Circuit, 6 GNS Carr. 15/-

EX GOVT. SELENIUM RECTIFIERS $19 / 9$ 12 v. 15 amp. F.W. (Bridge). Only

EX GOVT. SMOOTHING CHOKES 60 mA .10 h .400 ohms $3 / 11.100 \mathrm{~mA} .10 \mathrm{~h}$. 100 ohms $6 / 9$ 150 mAA .10 h .100 ohms. 10711.120 mA .12 h .100 ohms $9 / 9$ 200 mA . $-10 \mathrm{~h} .100 \mathrm{ohms} 11 / 9.250 \mathrm{~mA} .5 \mathrm{~h} .50$ ohms 10 $8 \times 4 \times 2 \mathrm{In}$. $6 / 9$ each. 3 for $15 /$

R.S.C. Battery HEAVY DUTY KIT rat vo variable charge Consisting of Mains Trans. F.W. (Bridge), Selenium Rectifier, 0-7 amp. meter. Variable Charge Selector. Fuses, fuse - holders. panels, plugs and circuit

CHARGER
TRANSFORMER 200-230-250 v. $50 \mathrm{c} / \mathrm{s}$ $0-9-15$ v. $2 \frac{1}{2}$ a. $0-9-15$
0.15
v.
5 $\begin{array}{llll}0-9-15 & \text { v. } 6 & \text { a. } \\ 0-9-15 & \text { v. } & 8 & \text { a }\end{array}$

VALVES: Fult range at really compotitive prices.

 D.C. SUPPLY KITs. Suitablc Por electric trains. Consists of mains trans. 200-250 v. 50 c.p.p. 12 V . 1 amp. seleniumrect. (F.W, Bridge); 2 fuse-holders, 2 fuses, change direction rect. (F. W, Bridge); 2 fuse-holders, 2 fuses, change direction and ciroult. Very limilted number, 29/11.
R.S.C. POWER PACK8, 200-250 V. A.O.

R.S.C. BATTERY TO MAINS CONVERSION UNITS

Type BM1. An all-dry buttery eliminator. Size $5 \neq 4 \neq 22 \mathrm{n}$, approx. Completely replaces batteries mupply 1.4 v . and 90 v . Where A.C. mains $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$. is a a aliable.
Suitable for all battery portable receivers requiring 1.4 v , sind 90 v . This inciudes latest low consumption types. Complete kit with diagram 39/9 or ready for use 46/9. Type BM2. Size $8 \times 5 \ddagger \times 2 \mathrm{lin}$. Supplles 120 V. 90 V. and 60 r. 40 mA , and 2 v. 0.4 a to BATTERIES AND L.T. 2 v. ACCUMULATORS when connected to A.C. mains anpply $200-250$ ₹. $50 \mathrm{c} / \mathrm{s}$. SUITABLE POR ALL BATTERY RECEIVERS normally using

[^8]POWER PACK KITS. Only 19/11. Fully smoothed H.T. output of 250 v .60 mA . and L.T. supply of 6.3 v .1 .5 amp . Consisting of Double Wound Mains Transformer 230/250 v. 50 c.p.8, A.C. primary. Selenlum Rectifler. Smoothing Choke. Double Eiectrolftic Condenser. Aluminium Chassis and Clrcuit.

LEICESTER

SENSATIONAL STEREO OFFER

Complete klt of parts including twin $6 \$ \mathrm{in}$. P.M. speakers oo construct a $3+3$ watt good quality stereo amplifter providng heads Ganged vol and tone controls. Pre-set balance For 200-250 v. A.C. malus only. Fully
For isolated chassis.
Or including stereo Head $19 / 9$ extra. 4 mms R.S.C. STEREO/TEN HIGH QUALITY AMPLIFIER KIT
 es EZ81, ECC EL84. SCC83, EL84, bass and treble con-
trols giving acut and ". boost." sen. sitivity 50 mV .n 5 watts high quality
output on each
channel. Can be used as straight 10 volume, ganged treble, ganged bass and balance Outputs for 3 ohin speakers. Point-to-point 8 GN8 full wiring details and priced parta Hst $1 / 9$ ull wiring details and priced pa
asembled and tested $59 / 6$ extra.

ACOS GP67-2G EI-FI Crystal Cartridges with sapphir stylus. Standárd replacement for Garrard, B.S.R. and
Collaro. Only 19/9. Acos Stereo/Monaural 49/9. Ronetta Collaro. Only 19/9. Acos Stereo/Monaural 49/9. Ronette
Stereo/Monsural 59/6. BSR FUL-FI Stereo/Biono 39/6. R.S.C. 3 WATT GRAM AMPLIFIER KIT All parts to construct a very compact, highly sensitive amplifier suitable for any type of single or autochange player. Size $12 \times 2 \ddagger \times 2 \ddagger \mathrm{in}$. Chassis is isolated. Main put for 2-3 omh speaker. Volume and tone
control with-mains switch.

HEAVY DUTY SELENIUM RECTIFIERS GPECIAL PURCEASE OF LARGE QUANTITY OF $\underset{\text { Bew }}{\text { Brand }} 24$ v. $20 \mathrm{arap} \underset{\text { (Bridge) }}{\text { F.W. }} \quad 59 / 9$ ea.

SELENIUM RECTIFIERS

$1 / 9$	H.T. Types H.W. 120 v. 40 mA ..
2/8	250 จ. 50 mA .
ge)	250 v. 60 mA .
3/11	250 v. 80 mA .
6/11	250 v. 250 mA .
$9 / 9$	Contaet Cooled
2/3	250 v. 60 mıA. H.W.
$4 / 6$	250 v. 50 mA . F.W.
$5 / 6$	(Bridge)
19	250 จ. 75 mA . F.W.
18	(Bridge)

Chargers \& Xits for

battery charger kits

 Consisting of Mains Transformer F.W. Bridge, Metal Rectifier, well ventilated steel case. Fuses, fuse-holders, grommets, panels, battery clips and circuit. $2 / 9$ extra.6 v. or 12 v. 1 amp.
As above with ammeter 6 v .2 amps .
6 v . or 12 v .2 amps .
6 v or 12 v .2 amps .
(inclusive of ammeter) 6 v. or 12 v. 4 amps ., with variable charge rate selector and ammeter

CHARGER AMMETERS
0-1.5 a., 0-3 a., 0-7 a

Form 5 GNs. 7 Ens.
 R.S.C. BABY ALARM OF INTERCOMM. UNIT KIT

 For $200-250$ v. A.C. mains. Includes all parts, diagramsand instructions. Righ sensitivity. Completely safe.
 Completely Controllable either end.
Housed in two cablnets of pleasing design 5/-. Or assembled $\&$ tested $\mathbf{8 5 / 1 5 /}$.

HIGH FIDELITY ULTRA LINEAR PUSH-PULL OUTPUT

R.S.C. A10 30 WATT AMPLIFIER

six valves. EF86, EF86, ECC83,

 807, 807, aZ34. Tone Control Pre-Amp.stages are incorvorated.
Seneitivity stagea are incorporated. $\left.\begin{array}{c}\text { Senenitivity } \\ \text { is extremely high. Only } 12 \text { millivolt }\end{array}\right)$ minimum input is realired for fiul BILITY OF ANY TYPE OR MAKE OF MICROPHONE OR PICK-UP. Beparate Base and Treble controls give both
"Hift" and "cut" with ample tone correctuon for long playing reeords. Ane extra input with asseciated vol. control in provkied
 Ior 300 v . 20 mA . and 8.3 V .1 .5 A . FOR A RADIO FEEDER UNIT. Price in kit form

 Pro.
Proective Cover $19 / 9$. Type 807 output valves are used with High Quality Sectionally Wound outpnt transformer specially designed for Ulitra Linear operation. Negative feedback of 20 D.B. in main loop. CERTITIED PERFORMANGE FLGURES ARE EQUAL

 Overali size $18 \times 9 \times 9$ in. approx. Power consumption 150 watts. For A.C. mains 200 250 ₹. $50 \mathrm{c} / \mathrm{s}$. Output for 3 and 15 ohms speakers. EQUALLY SUITABLE FOR THE CONNOISSEUR OR FOR LARGE HALLS, CLUBS OR OUTSIDE FUNCTIONS, IDEAL FOR USE WITH MUSICAL INSTRUMENTS, SUCH AS STRING BASS, ELECTRONIC
ORGAN, GUITAR, ote. FOR DANCE BANDS, GARRISON THEATRES, otc., etc. We can ORGAN, GUITAR, ste. FOR DANCE BANDS, GARRISON THEATRES, etc., etc. We can supply Microphones, Speakers, et
EXPORT ENQUIRIES INVITED.
LOUDSPEAKERS, 2 tin. to 15 in ., at keen prices, $12 \mathrm{in} .6-8$ watt $3 \mathrm{ohm} 29 / 11$. 12in 10 watt 12,000 lines 3 ohm or 15 ohms $59 / 9$. TWEETERS. $4 \mathrm{in}$.Plessey 3 ohms $18 / 9$.
R.A. 15 ohms $25 / 9$. W.B. 15 ohms $31 / 9$. Fane 15 ohms, Pressure type, $23 / 15 /-$. GL3A MINIATURE 3 WATT GRAM AMPLIFIERS
For $200-250$ v. 50 c.p.s. A.C. mains. Overall tize only $11 \% 2 \mathrm{z} \times 2 \mathrm{iln}$. Fitted Vol. and Tone Control with mains awitch. Designed for use with any kind of single player or record changer unit. Output for $2-3$ ohm speaker. Guaranteed 12 months. Only $59 / 9$

$$
\begin{aligned}
& \text { R.S.C. A5 4-5 WATT HIGH GAIN AMPLIFIER } \\
& \text { tive 4-vaive guality amplifier for the home. Bmall ch }
\end{aligned}
$$

A highly sensitive 4 -vaive quality amplifier for the home, small club, etc. Only 50 millifidelity pick-up heads in addition to all other types of pible for use with the latest hig Separate Bass and Treble controls are provided. These give full long playing record equalisation. Hum-level is negligible being 71 D.B.
down. 15 D.B. of negative feedback is uned. H.T. down. $15 \mathrm{D} . \mathrm{B}$. of negative feedback is used. H.T. for the supply of a Radio Feeder Unit or Tape Deck pre-ampilfer. For A.C. mains input of $200-250$ v. alive. Kit is complete in every detail and includes iully punched chassis (with haseplate) with the blue hammer finish and point-to-point wiring diagrams and instructions. Exceptional value at only $£ 4 / 15 /-$
 or assembled ready for use $25 /$ extra, plus $3 / 6$ car-
riage. Or Deposit $22 /-$ and five monthly payments of - for assembled unit GARRARD AUTO-SLIM 4-SPEED AUTO-CHANGERS. With GC8 turnover Head For 200-250 v. A.C. mains. fy/19/6. Carr. 4/6. F.S.R. MONARCH AUTO-C
stylus $£ 6 / 19 / 6$. Carr. 4/6.
Any of the above suppsed with T/O stereo-monaural head for $£ 1$ extra

HIGH FIDELITY PUSH-PULL ULTRA LINEAR OUTPUT -BUILT-IN
 TONE-CONTROL
 PRE-AMP STAGES

A11 12-14 WATT AMPLIFIER

Two input sockets with associated controls allow mixing of " mike " and gram. as in A. 10 High sensitivity. Includes 5 valves: ECC83, ECC83, ELSy, ELA, EZ81, High and reliable small condensers of current manufacture. INDIVIDUAL CONTROLS FOR BASS AND TREBLE " Lit "ond "Cut." Frequency response ± 3 D.B. $30-$ $30,000 \mathrm{o} / \mathrm{s}$. Six negative feed back loops. Hum level $60 \mathrm{D} . \mathrm{B}$. down. ONLY 23 millivoits INPUT required for FULL OUTPUT. Suitable for use with all makes and types of plck-upa and microphones. Comparable with the very best designs
For STANDARD or LONG PLAYING RECORDS. For MUSICAL INSTRUMENTS such as STRING BASS, GUITARS, etc. OUTPUT SOCKET with plug provides $300 \mathrm{\nabla} .30 \mathrm{~mA}$. and 6.3 v . 1.5 a. For supply of a RADIO FEEDER UNIT. Size approx. $12 \times 9 \times 7 \mathrm{in}$. For A.C.
mains 200.250 v. $50 \mathrm{c} / \mathrm{s}$. Output for 3 and 15 ohms speakers. Kit is complete to last nut mains 200.250 v. $50 \mathrm{c} / \mathrm{s}$. Output for 3 and 15 ohms speakers. Kit is complete to last nut Chasais in fully punched. Full instructions and point-to-point wiring 8 GnS. Carr.
diagrams supplied. (Or factory built $51 / 6$ extra.) If required louvred metal cover with 2 carrying handles can be supplied for $18 / 9$ eral ON ASSEMBLED UNITS. DEPOSIT $24 / 9$ and 9 monthly payments of $24 / 9$. Send S.A.E. for illustrated leaflet detailing ready-to-assemble Cabinets, Speakers, Microphones, etc., with cash and credit terms.

AUDIOTRINE HIGH FIDELITY REPRODUCERS

THE DUO/l0. Consisting of a 12 in . 12,000 line Speaker with heavy four layer voice coil,
the Audiotrine cross-over unit, and a 4 in . Diameter Tweeter Unit incorporated in the the Audiotrine cross-over unit, and a 4in. Diameter Tweeter Unit incorporated in the
extremely attractive Audiotrine Senior Corner Console Cabinet as described below. extremely attractive Audiotrine Senior Corner Console Cabinet as described below. Matching impedance 15 ohms. Power handling 10 watts nominal, 14 watts peak. Frequency range $40 \cdot 18,000$ c.p.s. ONLY 12 gns . Or Deposit $27 / 9$ and nine monthly payments $27 / 9$.
THE DUO:20. Incorporating a 12in. High Flux 20 witt Speaker with 2in. Diameter Bpeech Coll. (Total Flux 160,000 lines), the Audiotrine cross-over unit, and a highly sensitive Tweeter unit, in the Audiotrine Senior Corner Console Cabinet. Matching impedance 15 ohms . Peak Power Output 25 watts. Frequency range $30-18,000$ c.p.s. ONLY 14 gas. Or Deposit $33 / 3$ and nine monthly payments $33 / 9$.
R.S.C. JUNIOR HI-FI REPRODUCER. The very latest Goodmans Axiette 8 High Fidelity loudspeaker (retalling at $£ 5 / 17 / \overline{\text {) }}$) fitted in a specjally designed Bass Reflex cabinet size 12in. $x 18 \mathrm{in} . \times 10 \mathrm{in}$. Acoustically lined and ported and fininhed in polished walnu 6 watts. Matching impedance 15 ohms. Frequency range $40-15,000$ e.p.s. Power handling

LOUDSPEAKERS IN CABLNETS

12in. 10 WATT. Walnut Veneered. Cabinet size $15 \times 15 \times 8 \mathrm{in}$. approx. High quaility 12 in . 10 watt 12,000 line Speaker.
3 ohms or 15 ohms. \&q/19/6. Carr. $5 /$. Or Deposit $11 / 3$ and nine monthiy payments $11 / 3$.
12 in . 20 WATT. High Quality. 15,000 line $1 /$ speakers 15 ohms in Cabinet finished as above. Size $18 \times 18 \times 8$ in. \&7/19/6. Carr. $7 / 9$. or Deposit $17 / 9$ and 9 monthly payments of $17 / 9$
15 in. 50 WATT, 14,000 iine speaker with 3 in. diameter 15 in . 50 WATT, 14,000 line sjeaker with 3in. diameter speeeh coil, 15 ohms Impedance, in Substantial Two-tone Rexine and Vynair covered cablnet of pleasing appearance. Acouatically ined. ONLY 29 Gns. Or Deposit f3/15/ and twelve
 approx. ONLY 29 Gn
monthly payments $50 /$.

LARGE REXINE COVERED CABINETS

INTRODUCING THE R.S.C. BASS-MAJOR 30-WATT GUITAR AMPLIFIER

A MULTI-PURPOSE IIIGH FIDELITY, HIGH OUTPUT UNIT FOR VOCAL AND INSTRUMcNTALIsT GROUPS

* Incorporating two 12 in . heavy duty 25 -watt high flux (17,000 lines) loudspeakers with 2 in . diameter pole pieces (total flux 220,000 lines). Designed for efficiently handling more than full output of amplifier at frequencies down to 25 c.p.s.
\star One speaker has an aluminium speech coil and dual cone to extend frequency range up to 17,000 c.p.s.
\star Heavily made cabinet of convenient size $24 \times 21 \times 14 \mathrm{in}$. has an exceptionally attractive covering in two contrasting tones of Vynair. \star For 200-250 v. 50 c.p.s. A.C. mains operation.
Send S.A.E. for leaflet.

EMINENTLY SUITABLE FOR BASS GUITAR AND ALL OTHER MUSICAL INSTRUMENTS.
\star Four jack socket inputs and two independent vol. controls for simultaneous connection of up to four instrument pick-ups or microphones.

* Separate bass and treble controls providing more than adequate "Boost" or "Cut."
\star Level frequency response throughout the audible range.
201 Or DEPOSIT $£ 4 / 3 /$ - and

3. $\frac{1}{2}$ GnS. 12 monthly payments of Carr. 17/6 £3/9/11.
Superior to units at twice the cost.

R.S.C. JUNIOR GUITAR AMPLIFIER.

5.watt high quality output. Separate bass and treble cut and boost contros. Sensitivity $15 \mathrm{~m} . \mathrm{v}$. Two high impedance Inputs.
10in. loudspeaker. Handsome
loin. loudspeaker. Handsome $£ 8 / 19 / 6^{\mathrm{Carr}}$. strongly made cabinet (size $14 \times 14 \times 7 \mathrm{in}$. approx.) finisher in or DEPOSIT $\frac{\text { El }}{}$ $200-250$ A.C. mains operation. payments of $£ 1$. Send S.A.E. for leaflet.
LNEAR TREMOLO/PREAMP. UNIT.
Designed ior introducing the Tremolo effect to any amplifer fitted with a reserve power supply point for smoothed H.T. and 6.3 v. A.C. This applies to practically all amplifters of our manufacture and to those of sereral other manufactnrers. The unlt plugs into power supply point and any input socket of ampiner. (for heavy or light effect), Volume, and \$witch. Three sockets are for 2 inputs and Foot switch. $_{0 \text { Only }} 4$ Gns.

R.S.C. SENIOR 10-WATT GUITAR AMPLIFIER. High-fidelity push-pull output. Separate hass separately "cut" and "boost" cont rols. Twln instruments or "mike" inputs so that two uned at the same time. Two loudspeakern are incorporated, a $12 i n$. high tlux 14 -watt bass unit and a 6×4 in. elilptical for treble. Cablnet is well made and Anished as Jnnior
Model. Slze approx. $18 \times 18 \times 8$ in.
Only 15 Carr. Or DEPOSIT $34 / 9$ and 9 15 gins' Carr. Or DEPOsit 34/9 and 9

Send 8 a E for leaflet.
 LECESTER

Newo Branch opens early 3larch. See belon
R.S.C. SUPER HI-FI 15-WATT.

An exceptionally efticient high fidelity Guitar Ampititer ncorporating a heary dnty 12 in . 20 -walt speaker with excellent frequency response.
R.S.C. (Manchester) MAIL ORDERS to 5 County Arcade, Leeds 1.

LEICESTER: BIRMINGHAM: SHEFFIELD: HULL: LIVERPOOL:
32, High Street
Leicester
HULL: 6 Ct. Western Arcade,
Birmingham No half day

3 D 73 Dale St.,
Liverpool, 2

Individual bass and treble eontrols give
ample ${ }^{\text {an }}$ boost $"$ and "cut." Two high ample ince Jack Sociket inputs are separately controlled. If required one or two addiltional inputs can be provided at a cost of $7 / 6$ per extra socket.
Cabinet is of substantial construction and attractlvely finished in two contrasting tones of polychrome. Size approx. $20 \times 18 \times 10 \mathrm{in}$.
 UNIT WITH OTHERS OF SIMILAR RATING UNTIL YOU HAVE HEARD THE DIFFERENCE.
Or DEPOSIT 51/6 and pine monthly
22 Gns. payments of $51 / 6$.
Terms: C.W.O. or C.O.D. No C.O.D. under Trade Supplied. S.A.E. with all enquiries pleas ${ }^{\circ}$

BRADFORD: MANCHESTER: LEEDS:

| 56 Morley St. | 8-10 Brown St. | 5-7 County |
| :--- | :--- | :--- | | (above Alhambra | (Market St.), | (Mecca) Arcade, |
| :--- | :--- | :--- |
| Theatre), Bradford | Manchester, 2 | Briggate, Leeds | Theatre), Bradford

No half day

Small in size

but "ELLIOTT-ACCURATE"

Three elegant miniature instruments from the famous Elliott range -small in size, crystal-clear in indication, consistently Elliott-accurate !

Available in colours.

Electrical Measurement Division

ELLIOTT BROTHERS (LONDON) LTD

Century Works Lewisham, London, S.E. 13 A member if \quad intt-Automation Group

WE SPECIALISE IN
EXPDRTING
CUSTOM BUILT
QUALITY
SQUNID EQUIPMENT TO
All you want in
TAPE RECORDERS AMPLIFIERS MOTORS \& PICK-UPS LOUDSPEAKERS ACCESSORIES
all parts of the world

Enquiries invited withour obligotion. We carry lorge stocks ond offer expert service down to the last detoil.

MODERN ELECTRICS (retall) LTD

120, SHAFTESBURY AVENUE, LONDON, W.I
(3 mins. from Piccodilly Circus and opposite Columbia Cinema)
Tel: TEM 7587 \& GER 9692 Cables: MODCHAREX, LONDON

RADIO CLEARANCE LTD

TRADE ENQUIRIES INVITED

27 TOTTENHAM COURT RD., LONDON, W.I.
The oldest Component Specialists in the Trade

Telephone: MUSEUM 9188 EST. 35 YRS.

The NEW "CONTESSA" Mk III.

The BEST is now even BETTER!
A BRILLIANT CONCEPTION OF THE FINEST 2-BAND 6-TRANSISTOR RADIO AVAILABLE

* Ultra-modern styling with a magnificent twin-tone cabinet fitted with fully expanded metal front and a slide-rule type waveband dial. GREATER OUTPUT using the latest high-efficiency Mullard Transistors and Diodes, incorporating an improved design, featuring different circuit constants.
MORE punch-MORE gain-MORE stations-SUPERB appearance-the NEW "Contessa" scores again!!
SEE it-HEAR it-you will BUY it!

Waveband coverage of $530 \mathrm{kc} / \mathrm{s}$ to $1,620 \mathrm{kc} / \mathrm{s}$ and $160 \mathrm{kc} / \mathrm{s}$ to $270 \mathrm{kc} / \mathrm{s}$.
Assured reception of at least a dozen stations in daylightl
Large clearly-calibrated station-named dial.
Internal high-gain Ferrite aerial
5: ratio slow motion tuning
Fitted with the latest 12,000 -line high-flux loudspeaker. Power of 600 milliwatts from the single-ended push-pull final stage.

- Specially designed aerial matching coil for use in a CAR. Only first-grade Mullard fully-guaranteed matched transistors and diodes are used.
Taoe recorder socket provided.

Inclusive price for all associated components, cabinet and battery, complete in every
detail Or our BUY AS YOU BU Send for comprehensive descriptive Manual and Parts List, $2 / 10$ post free.

YOU CAN HOLD EUROPE IN THE PALM OF YOUR HAND
WITH

The

"CAPRI"!
A miniature pocket transistor Radio that REALLY works, retaining the most attractive features of the famous "Contessa." Six first-grade Mullard transistors plus diode are employed in a highly sensitive superhet MW and pre-set LW circuit embodying the most modern design practices. A special $2 \frac{1}{4}$ in. high gauss loudspeaker provides surprising volume and a personal earpiece socket is also available. An attractive two-tone plastic case is supplied in two colours-ivory/red or ivory/blue, the full constructional details being furnished with each set of parts. The total measurements of the Capri are $4 \frac{1}{2} \times 2 \frac{3}{4} \times{ }^{\frac{1}{4}} \frac{i}{4}$.

SEE AND HEAR A WORKING MODEL TODAY
Inclusive price for all associated components, case and constructional Huge New Purdata, complete in every detall, or our BUY AS YOU BUILD Scheme. chases have enANY PARTS SOLD SEPARATELY. (9 volt battery $2 / 6$ extra)
ducethepriceto ONLY

INDIVIDUAL TRANSFORMERS

T0COMPLETE INSTALLATIONS
5pecialists in High Temperature Creep and Stress Rupture Machines

VARIABLE VOLTAGE TRANSFORMERS

S B5 amp $\quad 88100$
S BIO amp 617150
S B20 amp $£ 32 \quad 00$

Electronic EquipmentControl Panels - Transformer Design and Assembly Facilities-Welded Fabrications - General and Precision Engineering Machine Shop-all under one roof.

THE ELECTRONIC \& MECHANICAL ENG. CO. LTD., FORGE LANE, HALESOWEN, BIRMINGHAM
Tel: Halesowen 2556 Telegrams: E.M.E.C.,

Installation designed and manufactured by E.M.E.C.

COLEARO STUDIO TAPE RECORDER KIT

 SPCLIAL $\operatorname{laRGAIV}$ OfFER. Comp. Kit only $£ 25$ Carr. $12 / 6$. Famous mfrs. surplus offer-Listed 42 gns . A quamous design-EF86, ECC83, EL84, EM8I and Rectifier Specially designed Kit for Collaro latest Studio Deck, Freq. response $\pm 3 \mathrm{~dB}, 60 \mathrm{c} / \mathrm{s}$. latest Studio $10 \mathrm{~K} / \mathrm{s}$ Ap and Power Pack already wired. $-10 \mathrm{Kc} / \mathrm{s}$. Amp, and Power Pack already wired, $\mid 8^{\prime \prime} \times 16^{\prime \prime} \times 6^{\prime \prime}$ finished in concemp ${ }^{2}$ tone blue $18^{\prime \prime} \times 16 \frac{1^{\prime \prime}}{} \times 6^{\prime \prime}$ finished in contemp. 2 tone blue Rexine with gilt speaker Escutcheon. Magic Eye indicator. Circuit and Tech. H/book, supplied free with kit. Send 3d. stamp now for full details of to-day's outstanding Tape Recorder Bargain.CABINET £3/15/-. P. \& P. 6/6. AMPLIFIER KIT $£ 8 / 19 / 6$. P. \& P. $5 /-$ If above items are If above items are
purchased together $\mathbf{2 . 1 9 . 6 \text { P.\&P. }}$

RECORD PLAYER BARGAINS Latest 4 -speed models NEW RELEASE by E.M.1.-4 speed single Player Unt fitted with latest stereo and monaural Xtal cartridge and dual sapphire strif. Auto ston and start. A fidelity unit and bargain buy at only £6/19/6, carr, and ins. $4 / 6$, P.U., 75/-. EMI Junior" 983 " $79 / 6$. Latest model, £6/19/6. COLLARO "C60" Latest Model, £7/7/7/0.
Carr. \& Ins. 5

sovered cabinet in 2 -tone winc and ceream, size $181 \times 131 \times 8 \frac{1}{6} \mathrm{in}$. ht, titted with all ucceasories including bafle boand and anodised metal fret. Space available for all modern amplitiers and autochangers etc. Vucut recorl player mounted board

2-VALVE 2-WATT AMPLIFIER Twin stage ECL.82 with rol. and neg. feedback Tone control. AC $200 / 250$ v.
with knobs, etc., ready wired to fit abuve with knobs, etc., ready wired tinet, complete with 6in. Quality spcaker and O/P Trans., £3/19/6. Carr. $2 / 6$. Completo Record Plaver Kit as illustrated, nc. BSR UA 14 Unit, New reduced price:

$$
\Sigma 12 / 1010 . \text { Carf. }
$$

TRANSISTOR BARGAINS ! Brand New-BV A ist Urade.			
OC. 44	$8 / 6$	873	
OC45	81	GET11	6/6
0 C 81	$7 / 6$	OC7\%	6
$2 / \mathrm{OC81}$	15/6	0 C 70	$5 / 6$
XA10:	101-	0 C 71	
Xalud	9/6	0 C 78	\%/6
X B103	7/6	GEX13	
XC101	8/6	GEX34	
SB305	$9 / 6$	OA70	
874	$9 / 6$	0 A 81	2/8
SPESAL	0 C	16	19/

BARGAINS GARRARD

SINGLE PLAYERS: Carr 4/6. Model 4 BP £ $\mathrm{E} 617 / 16$.

Model 4 HF F £ $7 / 19 / 6$. Carr. $7 / 6$
Model 301 transeripition untt $221 / 19 / 6$. Carr. $7 / 6$.
AUTOCHANGERS:
Latest 4 -speed Model 209 with Oc8 head. 8 g gas. Carr. $5 /-$. Model A Lab. £18/19/6. Carr. \& Ins. 7/6.

TRANSISTOR COMPONENTS

 Midget I.F.'s- $465 \mathrm{Kc} / \mathrm{s} \frac{9}{16} \mathrm{in}$. diam.Osc Coil M. \& L.W........ 5/9 Midget Driver Trans. 3.5 : i 6/9 Midget Output Trans. Push-Pull-3 ohms $2 /-12 V$.
Condensers 150 v . working: $.01 \mathrm{mfd} ., .02 \mathrm{mfd} ., .03 \mathrm{mfd}$., $.04 \mathrm{mfd} .9 \mathrm{~d} . ; .05 \mathrm{mfd} ., 1 \mathrm{mfd} ., 1 / \mathrm{m}$ $.25 \mathrm{mfd} .1 / 3 ; .5 \mathrm{mfd}$. $1 / 6$, etc. Midget Tuning Condensers. J.B "OO " 208 pf . and 176 pf . $8 / 6$, ditto with trimmers $9 / 6$. JB 220 pf . and 105 pf . conc. slow motion 10/6. 365 pf . single $7 / 6$. Sub. Min. $\frac{3}{4}$ in. Dilemin 100 pf., 300pf. 500 pl. 7- each.
FERRITE AERIALS.
L.W., car aerial coil $9 / 3$.
Midget Vol. Control with edge control knob, $5 \mathrm{~K} /$ ohms, with s witch 4/9. Ditto less switch 3/9, Speakers: P.M.: 2in. Plessey 75 ohms 15/6. $2 \frac{1}{2}$ in. Continental 8 ohms. $13 / 6,7 \times 4 \mathrm{in}$. Plessey 35 ohms. $23 / 6$.
Ear Plug Phones-Min. Continental type 3 ft. lead, jack plug and socket. High Imp. 8/-. Low Imp. 7/6.

MULLARD " $3-3$ " HI-FI AMPLIFIER. 3 VALVES 3 WATT

3 ohm and 15 ohm Output.

 A really first-class Amplifie giving Hi-fi quality at a reason-able cost. Mullard's latest able cost. Valve Muliard's iatest EL84, EZ81. Extra HT and LT EL84, EZ81. Extra available for Tuner Unit addition This is the ideal companion Amplifier for FM tuner units.
TECENICAL SPECIFICATION-Freq. Response: +1 db . $40 \mathrm{c} / \mathrm{s}-25 \mathrm{Ke} / \mathrm{s}$, Tone controls: Max. Treble Cut 12 db at IU Ke/s. Max. Bass Bonst 14 dt . at $80 \mathrm{c} / \mathrm{s}$. Bensfitity: 100 Mv for 3 w . output Out put Yownr (at $440 \mathrm{c} / \mathrm{s}) ; 3 \mathrm{w}$.
At least 70 db . below 3 w .

COMPLETE K1T (incl, vaivea, all oomponents witing diagrata and special
quality sectional Output Trans.). ONLY £8/19/6. Carr. 4/6.
Complete wired and tested, 8 gns. Wired power $0 / \mathrm{P}$ socket and additional smooth
ing or Tuner Unit, $10 / 6$ extra.

Bronze "Escutoheon Panel, Printed Yol Treble, Bass, On-Off, supplied with each Trebl
Kit.

Recommended Speaker-WB. HF 1012 £5. Goodmans AXIOM 10 £5/15/-, 8^{*}
AXIETTE £6/10/0, or AXIOM $£ 8 / 10 / 0$.

SPECIAL BARGAIN OFFER!

A selt-contained Portable Unil Incorporating tatest
BSR 4 -speed Auto Changer Record Player and famous High Fldellty \cdot Ful-R, Xtal Pick Up with Turnover Cartridge. fitted with LP and 78 Sapphire Stylii. Internal 2 -valve Amplifier of Modern design with
variable Tone and Volume Controls. This, together with a quality P.M. Speaker ensures a high standard of reproduction. The whole is housed in a
robust wooden cabinet attractively styled robust wooden cabinet attractively styled
in two-tone contemporary leathercleth in two-tone contemporary le
With contrasting polka dot rellef.
Kit consists of 3 sub-assemblies already Kit consists of 3 sub-assemblies alrady
wired. Grub screw connections between units only necessary -absolutely no soldering ORIGINALLY BUILT TO BE SOLD AT 17 GNS. Recommended Buy!

SPEAKERS P.M. 3 ohms. 23 in. EMI $17 / 6$. 3ln. Goodmans $18 / 6$. 5in. Rola 17/6. 6 in . Elac 18/6. 7in. \times lin. Goodmans, $18 / 6.8 \mathrm{in}$. Rola 20/-. 10 in . Elac 25/-. $10 \mathrm{in} . \times 6 \mathrm{in}$.
ENAMELLED COPPER WIRE-Hib. reels. $14 \mathrm{~g}-20 \mathrm{~g}, 2 / 6$; $22 \mathrm{~g}-2 R \mathrm{~g}, 3 /-; 30 \mathrm{~g} \cdot 40 \mathrm{~g}, 3 / 8$. Other gauges quoted for.
VALVE HOLDERS-Int. Oct. 6d. Nylon B9A skirted, 1/- B9ach; B7G with Can B7G B9A skirted, $1 /$ - each; B7G with Can 1/6;
KNOBS-Modern Continental types: Brown or Ivory with Gold Riug, lin. dia., 9d. each; Centre lin. dia., 10 d , each; 11 in ., $1 / 3$ each

CO-AX 80 ohm CABLE

High grade tow loss Cellular Air Spaced Poiythene-tin. diam. Stranded Cond. Now only 6d. a yard.
BARGAIN PRICES SPECLAL LENGTES 20 yds. $8 /-$; P. \& P. 1/6. Coas. Plags $1 /-$ 40 yds. $17 / 6 . \quad$ P. \& P. $2 / \%$ Sockets $1 /-$
60 yds. $25 /-. \quad$ P. \& P. $3 /-$. Couplers $1 / 3$.

STANDARD MODEL E12/10
Autochanger Unit BSRR Model U T/6. Autochanger Valves UCLAZ UY8 and $7 \times 4 \mathrm{ln}$. Eiliptical Speaker. Cabinet size $17 \times 141 \times 81 \mathrm{in}$.
TYGAN FRET (Contem. pat.), $12 \times 12 \mathrm{in}$. $2 /-12 \times 18 i n$. . $3 /-; 12 \times 24 \mathrm{in}$. $4 / \mathrm{l}$, etc. ractive glit finish 쳔. x lin. diamond mesh $4 / 6 \mathrm{sq}$. ft . Multiples of 6 in . cut. Max. size: 4 ft .

JASON FM TUNER UNITS Designer-approved klts availabl FMT1, 5 gns. 4 valves, $20 /$ JVT Meroury, 10 gns. 3 valves $25 /$ JTV2, $£ 13 / 19 / 6$. 4 valves, $32 / 6$.
NEW JASON F.M. HANDBOOX, $2 / 6$. 48 hr . Alignment Service, $7 / 6$ plus 2/6. NEW VALYES GUARANTEED

RECORDING TAPE

Famons American Columb

 Premier q REDUCED PRICES. A genuine recommended Quality Tape-TRY IT! Brand Fitted with leader fully guaranteed, Fitted with leader and stop foils. Standard $54 \mathrm{in} ., 600 \mathrm{ft}$. $7 \mathrm{in}, 1,200 \mathrm{ft}$ 5 in. 000 ft . . Play Post \& Pack. 5?in. 1,200 t. $17 / 6 \mid$ per reel, 1 /-plus $7 \mathrm{in} .1,800 \mathrm{ft}$. SPECIAL OFFER. $28 / 6$ in. Monal reels. SPECIAL OFFER. 3in. Menage tape$150 f t .3 / 9 ; 3^{\sim}$ L.P. $225 \mathrm{fi} .4 / 9 ; 3^{\prime \prime}$ D.P 300 ft . $6 / 6$.
P. \& P. per reel 6 d .

TAPE REELS. Manfrs. surplus, 7 ln . $\begin{array}{ll}\text { 2/3: } 5 \text { inn. 2/-; 5in. 2/-: 3in. } & 1 / 3 . \\ \text { Platic } & \text { epool containers, א/n. } \\ \text { 1/6; }\end{array}$ Platic spool con
5 in. $2 /-; 7 \mathrm{in} .2 / 3$.

7 VALVE AM/FM RADIOGRAM CHASSIS

Valve line-up ECC85. EL84, EM81, EZ80.
Three Waveband and Switched Gram positions. Med. 200550 m . Long $1,000 \cdot 2,000 \mathrm{~m}$. VEF/FM $88-95 \mathrm{Mc} / \mathrm{s}$. Philips Continental Tuning insert with permeablity tunlag on FM and combined AN/FM IF transformers. $460 \mathrm{Kc} / \mathrm{s}$. and $10.7 \mathrm{Mc} / \mathrm{s} . \quad$ Dust core
tuuing afl coils, circuitry including AVC and Neg. Feedback. Three watt outyut. Sensitivity and reproduction of a very
high standard. Chassis size 131×6 in 711 n . Eige illuminated glass dial 11 Verifal pointer Horizontal stalion mame
 peration Maglc-eye tuning.

Terms: C.W.O. or C.O.D., post and packing up to $\frac{1}{2} / \mathrm{b}$. $7 \mathrm{~d} . ; 1 \mathrm{lb} .1 / \mathrm{l}, 3 \mathrm{lb} .1 / 6 ; 5 \mathrm{lb} .2 / \mathrm{l} ; 10 \mathrm{lb} .2 / 9$

TRS RADIO COMPONENT SPECIALISTS

70 BRIGSTOCK RD., THORNTON HEATH, SURREY

Tel: THO 2188

RELDA OFFERS "EAGLE PRODUCTS" AT THE ALL DIRECTIONAL STUDIO CRYSTAL MICROPHONE NEW REDUCED PRICES MODEL MC-70

 A professional microphone with 360 deg. pickup, using a new variable "D" shock mounted crystal cartridge for added power and sensitivity. Smooth response (SO$12,000 \mathrm{cps}$) and natural reproduction. Size 7 in . high $\times 3 \mathrm{in}$. wide. Complete with shielded cable. Lavalier cord and $\frac{5}{8}$ in. stand holder:
 NOW ONLY 5916
 Save those batteries by running your transistor set direct from A.C mains. Reactivate all your old 9 v. batteries. A "must" for every transistor set owner!
 Unit contains neon indicator and standard battery connections with nearly 2 yards of mains lead and plug. Also snap cord for connection to set. now only 2416
 9V. BATTERY CHARGER
 ANDA.C. ELIMINATOR
 MODE: LA.6P

SUB-MINIATURE TRANSFORMERS Outstanding value in transistor transformers consisting of one Driver Transformer, and one Output Transformer. Ideal pair for miniature transistor portables, etc. Driver Model LT44: Primary: 20k. Secondary 1k. Centre Tapped. Ratio: S:I Output Model LT700: Primary: 1.2 K Centr

NOW ONLY $8^{\prime}=$ PER PAIR

SPECIAL OFFERS!

Nonut $£ 4.19 .6$ P.ap r.4. OUR TRANSISTOR TAPE RECORDER IN ECONOMICAL SEMI-ASSEMBLED

KIT FORM

CCMPLETE-NO EXTRAS TO BUY Consists of three transistor amplifier record, play, volume control, miniature speaker, forward-stop-rewind-switch, reel of tape and spare reel, motor attractive coloured case. Mic. and earphone sockets, pick-up coil, mike earphone and carrying handle supplied Standard battery operated. Simple to ut together in less than one hour. Brand new and guaranteed.

ZEPHYR" 6 TRANSISTOR POCKET RADIOS now onlr £4.19.6

Complete with battery, earphone and leather case.

INTEGRATED STEREO AMPLIFIER, Model S.A. 300
Engineered for the professional . . . designed for the home. A completely new dual is watt stereo amplifier for professional quality reproduction, remarkable versatility and
new distinctive stylingnew distinctive stylingworthy of a place in the
 finest stereo $\mathrm{Hi}-\mathrm{Fi}$ system, a full range of front panel controls and switches permit adjusting volume, balance and tonal characteristics through every delicate shading of the entire audio range.
Supplied complete with installation and operation manual $£ 32 / 10 /-$ S.A.E. for further details.

SIGNAL INJECTIOM PROBE MODEL

 ITI-1 batteries.
DYNAMIC MICROPHONE

 MODEL DM-175Beautifully designed and attractively finished. Lightweight, complete with stand. Output imp. I.K, ohm freq. response: $150-9,000$ c.p.s.
$\pm 3 \mathrm{db}$. Sensitivity: -73 db . Ideal for almost all applications.
now only 39'6

Injects a sig

 Injects a signal into the nal into the
circuitatany given point. Produces a signal rich in harmonics from a built-in miniature transistor oscillator. Push button operation, and neon battery strength indicator. Ideal for making rapid checks on radios, amplifiers, T.V., Tuners, etc. A must for the amateur, hobbyist and service man. PRICE 42/6. Complete with

TRANSISTOR MEGAPHONE MODEL ER. 304

The smallest everl Incorporates printed circuit amplifier with current limiting device to give effective battery life. Range up to 1,000 feet. Size $10 \frac{5}{8} \times 6 \mathrm{in}$. dia. 12 Gins. Complete with batteries and shoulde strap. S.A.E. for illustrated leaflet.
the scope is laced on the inspecrion ip is then the inspection place, the plat is then magnified, and projected on the screen at any desired angle by use of back and forth, up and own controls. Complete with onjoff swicch, bulb and instruction

3-WAY SLIM CRYSTAL MICROPHONE

MODEL IOOC May be hand-held, stand mounted (either floor stand or desk stand) or suspended by lavalier cord Response 60-10,000 c.p.s. Built-in on/off switch output level- S 2 db , Omnidirectional head. Clips on or off standard stand adaptor permitting tilting for multi-angle use. Satin chrome finish.

ONLY 4.8'

Supplied complete with Desk stand, 7 ft . of shielded cable, lavalier cord.

10,000 O.P.V. MULTI-TESTER in semi-assembled kit form. Ranges: D.C. voltage: $0-6,30-120-600-1,200 \mathrm{v}$.

69'6
 (10,000 o.p.v.)
A.C. voltage: $0-6-30-120-600-1,200$ v. $(10,000$ o.p.v.).
D.C. current: $0-120 \mu \mathrm{~A}, 0-12-300 \mathrm{~mA}$

Resistance: $0-20 \mathrm{~K}, 0-2 \mathrm{Meg}$. (ISO ohm, ISK at centre scale).
Decibels: -20 to $\pm 63 \mathrm{db}$ (600 ohms 1 mW . odbm $=0.775 \mathrm{v}$.).
Accuracy: D.C. voltage and current $\pm 2 \%$ f.s. A.C. voltage $\pm 4 \%$ f.s. Resistance $\pm 3 \%$ of total scale length.
Size $4 \frac{1}{2}$ in. $x \quad 3 \frac{1}{4}$ in. x lin. Complete with test leads, battery and instructions.
Few only available, rysh your order now whilst stocks last.

UNIVERSAL AVOMETERS

Guaranteed perfect working order Supplied complete with leads, batteries and instructions. Model "'D", 34 range ... $£ 8196$ Model "7" 50 range E11 0 Registered Post 5/-extra.

MICROAMMETERS

0-500 mieroamps. 2 tin. Circular flush panel mounting. Dials are engraved $0-15,0-600$ volts. Brand new, boxed, 15/-. P.P. I/3.

7.5 K.V.A. A UTO

0-115-230 volts. Brand new, boxed, f15. Carr. $10 /-$

230/250 VOLT A.C. MOTORS $4 \frac{3}{3} \times 3$ in. dia. 90 watts, 5,000 r.p.m $\frac{1}{6}$ in. spindle, 22/6. P.P. $1 / 6$.

I K.V.A. ISOLATION
 TRANSFORMERS

230 v. Pri.; 230 v. Sec. Boxed, $\mathbf{E 5}$ ea. Carr. 10/-.

VARIAC TRANSFORMERS 24 amp., 230 volt primary, 185 to 250 volt output, $\mathrm{E} 12 / 10 /-$. Carr. $10 /-$

TELEPHONES TYPE "'L"
Generator Bell Ringing, 2 line connection. With batteries, fully tested, 69/6 per pair. Carr. 5/-.

HELIPOTS

Available in $10 \mathrm{k} \Omega$, $30 \mathrm{k} \Omega$, or $10 \mathrm{k}+$ $2 \mathrm{k} \Omega$. New, bored, $22 / 6$ each. P.P. 1/3.

3000 WATT A UTO
 \section*{TRANSFORMERS}

0-115-230 volts, step-up or stepdown. Brand new, boxed ex-U.S.A., ع7/10/- each. Carr. 10/-.

PANEL METERS				
$100 \mu \mathrm{~A}$	$2 \frac{1}{2} \mathrm{in}$.		D.C	
$\mu \mathrm{A}$	$3 \frac{1}{2} \mathrm{in}$.	F.M.	D.C	62/6
mA	2tin.	F.M.		25/-
/0/30 mA	2itin			$9 / 6$
50 mA	$2 \frac{1}{2} 1 \mathrm{n}$			$10 / 6$
300	$2 \frac{1}{2} \mathrm{in}$.	roj.	A.C	$19 / 6$
	$2 \frac{1}{2}$ in.		A.C	25/-
500 v .	$2 \frac{1}{2} \mathrm{in}$.	M.		25/-
20	$3 \frac{1}{2}$ in		D.C	32
1500 r				

FIELD TELEPHONES TYPE "F'"
Suitable for many applications Generator bell ringing, 2 line connection. With batteries and wooden carrying case, fully tested, £4/19/6. per pair. Carr. 5/-

8 RANGE SUB STANDARD D.C. AMMETERS

Ranges $1.5 \mathrm{~A}, 3 \mathrm{~A}, 7.5 \mathrm{~A}, 15 \mathrm{~A}, 30 \mathrm{~A}, 60 \mathrm{~A}$, 150A, 300 A and 450 amp . Housed in wooden carrying case, 8 in . mirror scale. Supplied brand new complete with all shunts and leather carrying case price $£ 15$ and 101 -carriage.

R. 107 COMMUNICATIONS RECEIVERS

This receiver covers 1.2 to $17.5 \mathrm{Mc} / \mathrm{s}$ continuously on 3 Bands. Completely solf contained with built-in speaker and power unit for mains or 12 volt battery. Offered Brand New. Boxed, fully checked, \&12/10/-. Carr. 30/-.

PCR. 2 RECEIVERS

850-2,000 metres. 190550 metres $6-22 \mathrm{Me} / \mathrm{s}$ output for phones or $3 \Omega 2$ speaker. As now, 65/19/6. Carr. 7/6. PCR3 as PCR2 but covers $190 / 550$ metres. 2-7 Me/s, 7-22 Mc/s. ineluding top band. As new, $88 / 8 /$. Carr. 7/6. All above models can
 be supplied with in-
A.C. at $39 / 6$ extra or alternatively plug-in external power units are 35/=

NATIONAL H.R.O. RECEIVERS BRAND NEW! 5enior model. table mounting. Complete with 2 full set of 9 coils covering $50 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. Supplied complete in original transit cases, $\mathbf{£ 2 5}$. Carr. 20/-. Power units to operate direct from $200 / 250$ volt A.C., $59 / 6$ extra.

PRECISION COMBINATION VOLTMETER/AMMETER FOR A.C. AND D.C.

Two separate instruments housed in polished wood case, 6 in . scales with knife-ed ge pointers. Ranges:-
Voles A.C. and D.C., $160-300-600 \mathrm{~V}$
Amps. A.C. and D.C., 25-50-150-200 A. Supplied complete with all current shunts leads and leather carrying case. Manufac tured by Elliott Bros. Supplied brand new €9/19/6. Carr. $7 / 6$.

MINE DETECTOR No. 4A

Will detect all types of metal. Fully portable. Complete equipment supplied tested with instructions, 39/6. Carr. 10/6. Battery $8 / 6$ extra

COLLARO STUDIO TAPE TRANSCRIPTOR
Brand new 1962 model, 3 speeds, 3 motors, digital counter, etc With latest bradmatic heads and interlock button. Supplied with spare spool, instructions, fixings, 10 gns . each. Carr. paid.

FABULOUS TAPE OFFER

Famous American Brand Tapes. Brand new, fully guaranteed. 5 in.600 ft ., $10 / 6 ; 5 \mathrm{in}$. 900 ft ., 13/6; 5 in .-1,200ft., $17 /-\mathrm{i}$ in. $-1,200 \mathrm{ft}$., 13/6; 7in.-1,800ft., 18/6; 7in.-2,400ft., 30/-: P.P. extra. S.A.E. for ful Tape List.

CT. 53 SIGNAL GENERATORS

Precision instruments covering 8.9 to $15.5 \mathrm{Me} / \mathrm{s}$ and 20 to $300 \mathrm{Me} / \mathrm{s}$ on 6 bands. Variable attenuator from I mierovolt to 100 millivolts. Operation 110/200/250 volts
A.C. Supplied in perfect working order. Complete with calibration charts.
19 gns . each. Carr. 10/6.
PRECISION A.C. AND D.C. VOLTMETERS
Two ranges, 160 and 320 volts, $8 i n$. mirror scale with knife-edge pointer. Housed in polished wooden case. Ideal for schools, labş., etc. Supplied brand new, $£ 5 / 19 / 6$ each. P.P. $3 / 6$.

NATIONAL H.R.O. 5T RECEIVERS

Later model using metallised octal valves. Complete with a full set of 9 coils covering $50 \mathrm{ke} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. Brand new, only $£ 30$. Carr. $£ 1$.

DELCO 24 VOLT D.C. MOTORS

Shunt wound, 5,400 r.p.m. Torque 4 in . oz. Double spindle. Smooth running, extremely powerful. Also runs on 12 volt. Brand new, 10/6 each. P.P. 2/-.

MINIATURE MODEL ACCUMULATORS

Lead acid. Brand new, unused. 2 v. I. 5 A.H. Size $4 \times 1 \frac{1}{2} \times$ lin. $\frac{2}{2} \mathrm{lb}$., $5 / 6$ each. P.P. $1 / 3$. 12 v. 0.75 A.H. Size $4 \times 3 \times 1 \frac{1}{2}$ in., 2 lb ., $15 / 6$ each. P.P. $1 / 6$.

Hours of Business: 3 LISLE STREET, 9 a.m.- 6 p.m. Half Day Saturda 34 LISLE STREET, 9 a.m.-6 p.m. Half Day Thursday

JEMCO 4,000 OHM/VOLT TESTMETER
\% Precision Resistors throughout. Single control system for all ranges. Single control system for all ranges.
Highly accurate. Sensitivity $4,000 \Omega$ / Highly accurate. Se
volt A.C. and D.C.

Decibels:
-20 to +36 dB (2 ranges). Meter sensitivity: 100 microamp. 59/6. P.P. $2 / 6$.

JEMCO 20,000 OHM/VOLT TESTMETER
As above but with increased sensitivity and extended resistance range ($0-5 \mathrm{M} \Omega$), 97/6. P.P. 2/6. Either type brand new. Guaranteed, with leads, prods, batteries, instruc tions.
L.T. METAL RECTIFIERS All full wave, bridge connected. Brand new, guaranteed.
$12 / 18 \mathrm{v} .1 .5 \mathrm{~A} . \quad 3 / 9 \quad 24 / 36 \mathrm{v} .4 \mathrm{~A} . \quad 22 / 6$
$12 / 18 \mathrm{v} .2 .5 \mathrm{~A}$. $\quad 8 / 3 \quad 24 / 36 \mathrm{v} .15 \mathrm{~A}$. $45 /-$ $\begin{array}{llll}19 / 18 \mathrm{v} .4 \mathrm{~A} . & 8 / 6 & 36 / 48 \mathrm{v} . & 2 \mathrm{~A} . \\ 19 & 19 / 6\end{array}$ $\begin{array}{lllll}12 / 18 \mathrm{v} . & 6 \mathrm{~A} . & 12 / 3 & 38 / 48 \mathrm{v} . & 4 \mathrm{~A} . \\ 12 / 18 \mathrm{v} .10 \mathrm{~A} . & 22 / 6 & 29 / 6 \\ & 36 / 48 \mathrm{v} . & 6 \mathrm{~A} & 32 / 6\end{array}$ $\begin{array}{lllll}12 / 18 \mathrm{v} . & 15 \mathrm{~A} . & 37 / 6 & 48 / 60 \mathrm{v} .2 \mathrm{~A} . & 21 /- \\ 24 / 36 \mathrm{v} . & 1 \mathrm{~A} . & 48 / 60 \mathrm{v}, 10 \mathrm{~A} & 82 / 6\end{array}$ 24/36v. $1 \mathrm{~A} .1348 / 60 \mathrm{v}$. 1 DA

L.T. TRANSFORMERS

All primaries tapped $200 / 250$ volts A Battery Charging. 3.5, 9 or 17 v . 1 amp 9/9. Ditto, 2 amp . $14 / 3$. Ditto, 4 amp, $16 / 6.9$ or 17 v .6 amp . 261-.
2 Model Type. 3, 4, 5, 6, 8, 10, 12 , $15,18,20,24$ or $30 \mathrm{v} 2 \mathrm{amp},. 18 / 6$. Ditto, 4 amp, 27/6. Ditto, 5 amp , 37/6. Add postage.

AUTO TRANSFORMERS
Step-up, step-down, tapped 0-1/5 200-230-250 volts. $15 \mathrm{w} ., 9 /-; 60 \mathrm{w}$. 12/6; $150 \mathrm{w} . .18 / 6$; $200 \mathrm{w} ., 27 / 6$ 300 w., 42/6; $500 \mathrm{w.}$. 67/6; 1,000 w. 99/6; 1,500 w., £6/19/6. P.P. extra

R.C.A. PLATE

TRANSFORMERS
Pri. 200/250 v. sec., 2,000-0-2,000 v. 500 mA . tapped I, 500 v ., new, boxed, £6/10/-. Carriage $15 /$-.

DUMONT K105IPI
DOUBLE BEAM C.R.T.
Twin Gun, Brand new, boxed, 59/6. P.P. 3/6.
1.2 Ohm 12 Amp RHEOSTAT Geared slider type, new, boxed 15/6 each. P.O. 3/6.

MARCONI TF 885 VIDEO

 OSCILLATORSFrequency coverage $25 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ Supplied as new. Price $£ 90$ each.

CADMIUM SULPHIDE

PHOTOCELLS
Very sensitive. full data supplied 12/6 each. P.P. $6 d$

Miniature panel METERS
For $1 \frac{1}{2}$ in. dia. panel hole.
$0-50 \mu \mathrm{~A}$... $39 / 160-300$ v. D.C. $27 / 6$ $\begin{array}{lllll}0-50 \mu \mathrm{~A} & \cdots & 39 / 6 & 0-300 & \text { v. D.C. } 27 / 6 \\ 0.500 \mu \mathrm{~A} & \cdots & 32 / 6 & " \mathrm{~s} \text { " meter 35/ }\end{array}$ $\begin{array}{lllll}0.50 \mu \mathrm{AA} & \cdots & 32 / 6 & \text { "s } \\ 0.1 \mathrm{~mA} & \cdots & 27 / 6 & \text { meter } 35 /-\mathrm{meter} 42 / 6\end{array}$ $27 / 6$

Send S.A.E.
For Bargain List

Bulk Buying means DELIVERY EX-STOCK LOWEST PRICES

U.S.A. Type 45ft. TELECOM.

AERIAL MAST
(7 sections, 6 ft . 8 in , $\times 2 \mathrm{fin}$., guys, etc.) This entirely complete set in carrying case, $12 \frac{1}{2}$ Gns. Carr. 17/6. Wood packing case (refund on return) add $20 /-$ extra. Or 2 sets
for $£ 25$. Carr. extra. British manufacture only.

VALVES, QUARTZ CRYSTALS, TRANSISTORS AND COMPONENTS A SPECIALITY

full details of all items STOCKED IN OUR ILLUS. trated catalogue $1 /$-.

C8ID and 2-OC81 Transistors Ideal for OC7I/ comm. Record Player, Tuner Amplifier or any application requiring a quality and reliable amplifier.
4 Transistor printed circuit 250 mW amplifier. $3 \times 1 \frac{3}{4} \times \frac{7 i n}{}$. 9 volt $52 / 6$.
3-Transistor. 125 mW .9 volt. $1.9 \times 1 \times \operatorname{lin} .45 / \mathrm{m}$

BATTERY ELIMINATORS AND
 CHARGERS

1. For PP3 or equivalent 9 volt Pocket Radio Battery, 18/6. P.P. 1/-.
2. For PP4, PP7, PP9, PPI0, 9 volt Portable Radio Batteries up to 300 mA 45/- P.P. 2/\% type batteries, 29/6. P.P. I/-
3. Rechargeable PP3 battery. Runs as long as 100 batteries. Complete with charger unit, 25/-. P.P. 1/-.
$0 / 500 \mu \mathrm{~A}$ METERS. P.P. $1 / 6$ any type.
$0 / 500 \mu A$. $2 \frac{1}{3} \mathrm{in}$. MC. FR. D.C.
$m A . ~ 2 i n . ~ M C . ~ S q u a r e ~$
$50 \mu A .2 i n$. MC. Square
$2 \frac{1}{2}-0-2 \frac{1}{2} \mathrm{~mA} .2 \frac{1}{2} \mathrm{in} . M C$. $\dddot{2}$.
0/40/120 2 in . MC. Square

DEKATRON

ERICSSON GSI2C (CV-1740) Bi-directional 12 -way Selector Tube. 25/-

BRAND NEW

new purchase reduces total cost "CONTESSA" III

- COMBINED PORTABLE AND CAR RADIO -

 AMAZING SENSITIVITY AND SELECTIVITY ON medium and long wavebands- The easiest Superhet Radio to build on the market. Features clearly marked printed circuit and packaged components with full illustrated building instructions. Full tuning of medium and long wave bands with unbeatable sensitivity and selectivity. Excellent tone and volume with over 600 MW push-pull output.
- Clearly marked horizontal station dial with slow motion tuning. Two colour Blue or Beige cabinets with Gold handles, grilles and fittings. Size $10 \frac{3}{2} \times 7 \frac{3}{4} \times 3$ 登in., include car aerial socket, recording sockets. - 6-Mullard Transistors and 2-Diodes. Guaranteed the Best Obtainable.

> Attractive Appearance-Reliable Design-Quality Performance FULL DETAILS WITH PARTS
LIST AND PRICES FREE ON
REQUEST.

"CAPRI" POCKET-SIX 6-TRANSISTOR MEDIUM AND

 LONG WAVE POCKET SUPERHET RADIO- SIZE $4 \frac{1}{2} \mathrm{in}$. $\times 2 \frac{3}{4} \mathrm{in}$. $\times 1 \frac{1}{4} \mathrm{in}$. REALLY POCKET SIZE

The most compact 6 -transistor and diode radio with speaker available to the home constructor. Features the latest in miniature components and circuitry. Supplied with Mullard transistors and two-tone moulded cabinets in red/white or blue/white with gold fittings. All components are supplied in packets and clearly identified. A printed circuit is used with fully illustrated building instructions. Push-pull output coupled with a sensitive and selective circuit make the "CAPRI" hard to beat. with a sensitive and selective circt
Fitted
F FULL AFTER-SALES SERVICE AND GUARȦNTEE

- ALL PARTS SOLD SEPARATELY-DETAILED LEAFLET ON REQUEST.

TOTAL соSt £5.19.6 P.P. 2/-

MINIATURE LEDEX
SWITCHES-BRAND NEW
24 volt D.C. rotating switches, fitted actuator at each end of bank of contacts. Uses standard switch wafers.

- 5 Bank 45/-.

8 Bank 50/. tions.

30,000 ohms per Volt
Model 500
8 Ranges D.C. volts to 1 kV , 7 Ranges A.C. volts to 1 kV . 5 Ranges D.C. current to 12 amps.
3 Range resistance to 60 meg . Short circuit buzz test. Output meter dB, etc., etc. Size $6 \frac{1}{4} \times 4 \frac{1}{4} \times 2 \frac{1}{4}$ in. With Leads, Batteries and Instruc-

6 Ranges D.C. voltage to $2 \frac{1}{2} \mathrm{kV}$.
5 Ranges A.C. voltage to 1 kV .
${ }_{3}$ Ranges D.C. current to 250 mA.
Resistance to 6 meg.
Capacity and $d B$ ranges.
Size $4 \frac{1}{2} \times 34 \times \frac{15}{16} \mathrm{in}$. with leads, batteries and instructions.
10,000 ohms per volt. Model TEIO.

49/6
I,000 ohms per volt Model PT34
0/10/50/250/500/1,000 volts A.C.|D.C. 0/1/100/500 mA. D.C. Resistance $0 / 100 \mathrm{k}$ ohm.

Ideal pocket sized multitester for all radio and domestic work.
Size $3 \frac{3}{4} \times 2$ 音 $\times 1$ tin. with battery, leads and instructions.

All Meters Fully Guar-
anteed for 6 months,
Full Service Facilities.

"MINIRANGER "
3-Transistor Plus 2-Diodes. Smallest radio to build yourself. Printed circuit full tuning. ONLY $3 \times 2 \times \frac{3}{4}$ in. Over 20 stations

> | TOTAL |
| :--- |
| COST |

-all pats solo stipa

75/-
2,000 ohms per Volt
Model THL33
£5.19.6 O/10
Ranges D.C. volts to I kV.
Ranges D.C. Current. to 4 Ranges D.C. Current. to
500 mA . 5 Ranges A.C. volts to 1 kV .
4 Ranges resistance to 10 Megohms.
Capacity dB etc.
TPSS, 20,000 ohms/volt. batteries, $\times 3 \frac{1}{3} \times$ itin. with Complete $5 t \times 3 \frac{1}{2} \times 1 \frac{3}{3} \mathrm{in}$, instructions.

HENRY'S RADID LTID.

5 HARROW ROAD, EDGWARE ROAD, PADDINGTON, LONDON, W. 2.
Opposite Edgware Road Tube Stn. PADdington 1008/9. OPEN MON. to SAT. 9-6. THURS. I o'clock. OPEN ALL DAY SATURDAY.

SEND 1/- FOR NEW 46 PAGE
CATALOGUE
TRADE ENQUIRIES INVITED

No. 1. Pri. 240 v. Sec. tapped 4, 6, II v. 200 a. 69/iol-. Carr. 10%.
No. 2. Pri, 200-220-240 v. Sec. tapped 12, $15,20,24,30,4 \mathrm{amps} .42 / 6$. P. \& P. $3 / 6$. No. 3. Pri. 240 v . Sec. tapped 25, 30, 35 v . 40 a. El0/19/6. Carr. 10/.
No. 4. Pri. 220-240 v. Sec. 24 v. 30 a. $£ 8 / 10 / \mathrm{F}$. No. 5. Pri. 220-240 v. Sec. 20 v. 30 a. £6/15/d. Carr. 7/6.
No. 6. Pri. 250 v. 5ec. 20 v. 20 a. £4/15/-. Carr. $7 / 6$.
No. 7. Pri. 240 v. Sec. tapped 6, 12 v. 20 a. 72/6. Carr. 5/.
No. 8. Pri. 240 v. Sec. tapped 12, 18 v. 10 a. Completely shrouded 59/6. Carr. 4/-. Un. shrouded 52/6. Carr. 4/-.
No. 9. Pri. 240 v. Sec. 12 v. 10 a. 52/6. Carr. No. 10. Pri. 240 v. Sec. 24 v. 5 a. 50/-. Carr. 3/6. 11. Pri. 240 v. Sec. 24 v. 8 a. 57/-. Carr. No. 12. Pri, 200-220-240 v. Sec. tapped 10, 17 18 v. 10 a. 57/6. Carr. 4/-
No. 13. Pri. 200-220-240 v. Sec. 30, 32, 34 36 v. 5 a. 57/6. Carr. 4/-.
No. 14. Pri. 240 v. Sec. tapped 9, 16, 17 v. 7 a. 52/6. Carr. 4/-.
No. 15. Pri. 240 v . Sec. tapped 30, 40, 50 v . 5 a. E4/15/\%. Carr. 5/\%.
No. 16. Pri. 200-220-240 v. 5ec. 17, 18, 20 v 20 a. $4 / 19 / 6$. Carr. 5/-
No. 17. Pri. 240 v. Sec. 24 v. 20 a. $£ 4 / 17 / 6$. Carr. 5/.
No. 18. Pri. 200-220-240 v. Sec. capped 48, 56, 60 v. I a. 29/6. Carr. 3/6.
No. 19. Pri. 200-220-240 v. Sec. tapped 9 15 v. 4 a. $22 / 6$, P.P. $3 / 6$.
No. 20. Pri. 240 v. 5 ec. 12 v. 5 a. $32 / 6$. P.P. $3 / 6$. No. 21. Pri. 240 v. Sec. tapped 12, 20, 24 v. 2 a. 22/6. P.P. 3/6.
No. 22. Pri. 240 v. Sec. tapped 25, 30, 35 v. 2a. 35/-. P.P. 3/6
No. 23. Pri. 200-220-240 v. Sec. 6.3 v. 10 a. 25/-. P.P. 3/6.
No. 24. Pri. 200-220-240 v. 5ec. 6.3 v. 15 a. 32/6. P.P. $3 / 6$.
No. 25. Pri. 240 v. Sec. tapped 9.15 v. $1 \frac{1}{2}$ a. 15/6. P.P. 2/6.
No. 26. Pri. 240 v. Sec. tapped 12.24 v. 1 a. 13/6. P.P. $2 / 6$.
No. 27. Pri. $220-240$ v. Sec. 6.3 v. 5 a. and $6.3 \mathrm{v}_{\mathrm{P}} \mathrm{I}^{\prime}$ a. Very conservacively rated. $15 /$ P.P. $3 / 6$.

No. 28. Pri. 240 v. 5ec. tapped $6-12$ v. 10 a. 47/6. Carr. $3 / 6$.
No. 29. Pri. $110-240 \mathrm{v} .5 \mathrm{ec} .75 \mathrm{v}$. C.T. $30 \mathrm{~m} / \mathrm{a}$. Totally enclosed 17/6. P.P. 2/6.
No. 30. Pri. 200-230-250 v. Sec. 12 v. 60 a. Fully shrouded. $69 / 10 /$. Carr. $7 / 6$.
No. 31. Pri. tapped $180-230$ v. Sec. 4.2 v. 10 a. and 4.2 v. 10 a. Tropically rated. $35 /$. Carr. 5/No. 32. Pri. 200-220-240 v. Sec. tapped 10 , 18,20 v. 9 a. Fully shrouded. 69/6. Carr. 7/6 No. 33. Pri. 200-230-250 v. Sec, tapped 12, No. 33. Pri. 200-230-250 v. Sec
$15,20,24,30$ v. 5 a. 52/6. P.P. 4/e.
A.M. ISOLATION TRANSFORMERS. Pri. 100-200-220-240 v. Sec. 225 v. Very conservatively rated at 1.1 amps. Table cop terminal block connections with flne and coarse adjustment. 75/-. P.P. 7/6.

BRAND NEW VARIAC
 TRANSFORMERS
 Input 110 v. Output $0-110 \mathrm{v} .7 \mathrm{amps}$. Panel mounting. Supplied brand new with control knob and fixing boits, in maker's original packing cases. $£ 4 / 17 / 6$. Carr. 5/-

EXCLUSIVE PURCHASE OF A.M.

HEAVY DUTY TRANSFORMERS
Tapped to give the following specifications: Pri. $440-400 \mathrm{v}$. S.P. Sec. 220 v . or 110 v .600
watts.
Pri. 220 v. Sec. 220 v. or 110 v. 600 watts. Pri. 220 v . Sec. 55,10 amps. All winding. Double wound. $£ 5 / 19 / 6$. Carr. $7 / 6$.

HEAVY DUTY AUTO TRANSFORM. ERS. $240-110$ volts 2 kVA . Completely enERS. $240-110$ volts 2 kVA. Completely en-
closed in metal case with carrying handie. closed in metal case with carrying handie.
Fitted with 2 two-pin American sockets or terminal blocks. Size $10 \times 8 \times 6 \mathrm{in}$. Supplied brand new and guaranteed. $£ 8 / 15 / \%$. Carr. $7 / 6$. 1,000 watts $£ 4 / 15 /-$. Carr. 4/-. 500 watts $£ 3 / 10 /-$
Carr. 4/-. 300 wates $22 / 7 / 6$. Carr. $3 /$-.
 guaranteed. 29/6. P.P. 3/6.

GRESSALLHEAVYDUTYRHEOSTATS 26 ohms 4 amps. 6in. dia. Carbon crack. Panel mounting. Length of spindle Itin., Pin. dia. BRAND NEW 45/-. Carr. 4/-.

SMOOTHING CHOKES

Willesden. $10 \mathrm{~h} .250 \mathrm{~m} / \mathrm{a}$. $15 /$.. P.P. $3 / 6.10 \mathrm{~h}$. $75 \mathrm{~m} / \mathrm{a}$. 8/6. P.P. 2/6. Brand new Gardeners. $1 \mathrm{~h} .2 .5 \mathrm{a} .6 \Omega$. $35 / \%$ P.P. 4/-. Brand. A.M. L.T. chokes. Designed to smooth $12-24$ v.
D.C. at 20 amps. Res $\frac{1}{2}$ ohm. $47 / 6$. P.P. $4 /$.

AMERICAN HEAVY DUTY AUTO TRANSFORMERS. $7 \frac{1}{2} \mathrm{kVA}$. $115-230$ volts. "CA." core winding. Completely enclosed. " C" core winding.
f15. Ex warehouse.

METRO-VICKERS MASTER VOLTMETERS. A.C. 0-20 v. 50 cycles. M.I. 6 in . round. Mirrored scale. We have been fortunate to obtain further supplies of these famous instruments and offer them brand new in maker's cartons at the low price of $15 /$-. P.P. 4/-.
A.C. 200-240 v. CHECK METERS.

25 amp . L.R. 32/6. P.P. 3/. 10 amp . L.R. $22 / 6$. P.P. $3 /-5$ amp. L.R. $17 / 6$. P.P. $2 / 6$. P.P. 3/-. 5 amp. L.R. $17 / 6$. P.P. $2 / 6$.
Guaranteed in perfect condition.
A.C. $0-300$ volt METERS. M.I. 50 cycles. Flush mounting. $3 \frac{1}{2} \mathrm{in}$. hole. Brand new and boxed. 32/6. P.P. $2 /-$

POCKET VOLTMETERS. M.C. D.C. Double reading $0-3$ and $0-30$ volts. Brand new. Fraction of maker's price. 12/6. P.P. 2/-.
S.T.C. SILICON POWER RECTIFIERS SERIES RS200. ALL TYPES $750 \mathrm{~m} / \mathrm{a}$. WIRE ENDED DIODES. MAX. P.I.V. 100 v. 5/-; 200 v. 5/3; 300 v. $5 / 6 ; 400$ v. 6/6; 500 v. $7 / 6 ; 600 \mathrm{v} .11 / 6 ; 700 \mathrm{v} .13 / 6 ; 800 \mathrm{v} .16 / 6$. Note these rectifiers are not seconds, or surplus. They are the very latest design and are supplled brand new and guaranteed. Postage free. Data sheet sent on request.

A.M. CAPACITORS

American. Pyronol 8 mfd 500 v . wkg. $7 / 6$. $5 \mathrm{mfd} .220 \mathrm{v}, \mathrm{wkg}$. A.C. $7 / 6.10 \mathrm{mfd} .300 \mathrm{v}$. wkg. 6/6. 0.2 mfd 5,000 v. wkg. 8/6. $0.1+$ $0.1 \mathrm{mfd} .7,000 \mathrm{v} . \mathrm{wkg} .8 / 6.0 .15+0.15 \mathrm{mfd}$. $8,000 \mathrm{v}$. wkg. 10/.. Add $1 / 6$ P.P. on all capacitors. British types. T.C.C. Visconol 8 mfd . 800 v . wkg. at $71^{\circ} \mathrm{C}$. $8 / 6$. $4 \mathrm{mfd} .1,000 \mathrm{v}$. $800 \mathrm{v} . \mathrm{wkg}^{\text {at }} 71 . \mathrm{C}$. $8 / 6.4 \mathrm{mfd}$. $1,000 \mathrm{v}$.
wkg. at $60^{\circ} \mathrm{C}$. $5 / 6$. 4 mfd . $1,500 \mathrm{v}$. wkg. at
 chassis mtg., 8/6. I mid. $2,500 \mathrm{v}$. wkg. at $12 / 6$. G.E.C. 8 mfd .600 v . wkg. at $71^{\circ} \mathrm{C}$., 5 mfd . 400 v. wkg. A.C. 8/6. Dubilier 2 mfd . $2,000 \mathrm{v}$. wkg. $12 / 6.2 \mathrm{mfd} .2,500.15 /-.0 .25 \mathrm{mfd} .7,500$ v . wkg. $10 / 6$. 10 mfd .450 v . wkg. 7/6. 75 mfd. 275 v. A.C. wkg. $37 / 6$. 1/6 P.P. on all capacitors.

STC FW BRIDGE RECTIFIERS.

Max. A.C. input 90 volts. D.C. output $8 \frac{1}{2}$ amps. $7 \frac{1}{2} \mathrm{in}$. sq. plates. Brand new $£ 7 / 10 /=$ Carr. 5/-.

SPECIAL OFFER.
 HIGH GRADE

 M.C. D.C. VOLTMETERS. $180-280$ volts $5 t \times 2 i n$. Rectangular dial. 5 et in wall mounting case, size $8 \times 6 \frac{1}{2} \times 3 \frac{1}{2}$ inches with lamp fitting to illuminate dial. Supplied brand new at a fraction of maker's price 37/6. P.P. $3 / 6$.A.M. L.T. POWER SUPPLY UNIT No. 13 A.C. input tapped $100-250 \mathrm{v}$. D.C. output 12 or 24 volts. Very conservatively at 4 amps . Built in strong metal case, size $17 \times 6 \frac{1}{2} \times 6 \mathrm{in}$. Fitted with on/off switch Fuses and output socket. An ideal L.T. supply unit for operating, relays, contactors, battery charging etc. E5/5/-. Carr. 7/6.
T.C.C. HIGH VOLTAGE CAPACITORS $1 \mathrm{mfd} .12,500 \mathrm{v}$. wkg. at 60 deg . C. $£ 6 / 10 /-$ carr. 7/6. 0.5 mid. E5, carr. 7/6. Supplied brand new. Limited number only.
HEAVY DUTY A.C 230-240 VOLTS CONTACTORS. Double pole 40 amp contacts. Brand new in maker's carton Fraction of maker's price. 47/6. P.P. 4/-
MINIATURE ALKALINE CELLS.
1.2 volts. 3 A.H. 5 ize $3 \times 2 \frac{3}{8} \times \frac{1}{\text { inn }}$. Unused and guaranteed. 12 for $35 / \%$ P.P. $4 /$ -
SPECIAL OFFER BRAND NEW A.M. LEAD ACID ACCUMULATORS. 2 v 14 A.H. Size $6 \frac{3}{i n}$. high, 2 in . sq. Ideal for constructing 6 or 12 v . batteries. 4/11 each. P.P. 2/-. Six for 27/-. Carr. 5/-. Supplied with charging instructions.
EXIDE GLASS 2 v. 3 A.H. ACCUMU. LATORS.
Size $4 \times 1 \frac{1}{2} \times 1 \frac{1}{2}$ in. Weight 15 oz. Supplied 5ize $4 \times 1 \frac{1}{2} \times 1 \frac{1}{2}$ in. Weight 15 oz. Supplied
new with charging instructions. Three for new with charging instructions.
$6 / 6$. P.P. $2 / 6$. Twelve for $21 /-$. P.P. $4 /-$-. SPECIAL OFFER. BRAND NEW AMERICAN METERS. 150 microamps D.C. Panel mounting. 2 in . hole, $2 \frac{1}{2} \mathrm{in}$. dial. $27 / 6$. P.P. 2/-.
$0-1 \mathrm{~m} / \mathrm{a}$. M.C. D.C. Panel mounting, 2 in , hole. $2 \frac{1}{2}$ in. dial. $25 / \%$. P.P. $2 /$.
${ }_{0}^{2}-150$ v. A.C. M.I. Panel mounting. $2 t i n$. hole. $3 \frac{1}{2} i n$. dial. $25 /$..
P.P. $2 /-$. BRAND NEW W.D. TELEPHONE CABLE Single D3 one mile coils, 59/6. Carr. $7 / 6$. Twin $D B$ one mlle drums, $67 / 10 /$ Carr. $15 / \%$ Twin D3 one mile coils, $65 / 18 /$-. Carr. $7 / 6$.

MAILPLAN

OEFERS
Dept. WW, 138 Lewisham Way, New Cross, London, S.E. 14 Terms of Business: Cash with order or C.O.D.

2 SENSATIONAL

 TRANSISTORISED INTERCOMS!ERPHONE For Horme, Work shop, Ofice, two Only colling current when talking or calling Housed in at tractive plastic
chrome stands. Completely purtable. Master and substation. Replacement battery only $2 / 6$ 89/6 MAILPLAN PRICE

P. \& P. $3 /$ -

 Inct P.P. 8 battery and $25 y$ ds. lead with plugg.7-STATION DE LUXE TRANSISTORISED INTERCOM The very iatest tory communica. tion. Calling ts audio and visual. Battery Operated. but oniy consumes current when calling attractive units. extensions supplied separately up to
6. Battery Hfe 300 hours.

HALF THE PRICE OF OTHER MAKES!

MASTER 14 ans. P. \& P. Free Extensions 2 gns.

Construct your own Record Player,
PK 543 SUBMINIATURE
4-TRANSISTOR PUSH-PULL AUDIO AMPLIFIER
 An ased miniature amplider incorporating output transformers anl
Clams B. All con-
transistors.
. Ans Clams B. All con
nections for bat tery, speaker and
volume control. The quality is amazing. Complete with in-
structions and clrcuit 52'6 P. \& P. 1/217A. 8 ohm speaker to suit above, 2 fin . $16 / 6 \quad P^{2}$. di ${ }^{2}$ M178 CRYSTAL LAPEL MIKE 176 $100-9,000 \mathrm{c} / \mathrm{c}$ lif. diam - 5 ft lead

MULLARD TAPE RECORDER AMPLIFIER
Printed circult board and set of 27 capacitors ranging 28/=

MINIATURE CRYSTAL EARPHONE Ultra-sensitlve. Impedance 80 K ohms at $1 \mathrm{Kc} / \mathrm{s}$. Com plete with lead, plug and socket.
$6 /=P$. \& $P .1 / . \quad$ (8 ohm magnetic same price)

MODEL V-7A/F VALVE VOLTMETER

Equal to many higher priced in circuit. Hold-plated printed(11 meg-ohms). The V-7A messures A.C. volts ($0-1.5,5,15,50$. 150, 500, 1,500) R.M.S. and A.C. volts ($0-4,14,40,140,400,1,400$
and 4,000) pk-to-pk. D.C. volts ($0-1.5,5,15,50,150,500,1,500$) ohms (with 10 ohms centre) X1. X10, X100, X1,000, X10K, xiook and nasedim

Camplete with 32 -page handbook MODEL V-7A (ln kit form).
£13.18.6

SLIM GRYSTAL 3-WAY MICROPHONE

 Mond or

- Suspended by Lavalier cord.
MODEL IOOC
39'6
Check the spec. and judge ro yourself. Response $60 \cdot 10,000 \mathrm{cp}$, Post Free Built-in ON/OPF Switch. Output (rectional Accessory Table Satin Chrome Finish. K ohms. Top Stand $8 / 6$

A "MUST" for Professional or Amateur TRANSISTORISED A.F. through to R.F. SIGNAL INJECTOR
A complete Probe Type Transistor Oscillator with Indicator Lamp, batteries and instructions. TRANSISTOR SETS.

42/6
AMAZING SPEAKER BARGAIN!
8in. DOUBLE CONE HI-FI SPEAKER (Big 8in. Model 8A7)
Frequency response $50-16,000 \mathrm{c} / \mathrm{s}$. Lowest resonance $60 \mathrm{c} / \mathrm{s}$. Sensitlvity 98 db . Impedance 16 ohros. Total Plux 53.000 maxwells. Voice coll dia. lin

PORTABLE SOLDERING
IRON MODEL SPI
(Size $10 \frac{1}{2}^{\prime \prime}$. $6 \frac{1}{2}^{\prime \prime}$ when not in use. 30 Wott - 230 Volts.)
Designed on an entirely new principle for inghtweight applica-
toons. Highly stable heat characteristics ensure long life. Removable handle permits iron to be carried safely
cuen white hot. Snpplied cven white hot. Snpplied
complete with Vlnyl bag. lead and plug \qquad $18 / 9$ Spares available.

Element $4 / 6$.
$8 / 9$ P.AP.1/

FOR YOUR HOME-BUILT TEST EQUIPMENT
DC MICROAMMETERS Model MR.25: 0 to $50 \mu \mathrm{~A} 39 / 6$ D.C. MILLIAMMETER Model MR.21: 0 to 1 ma 2\%/6 D.C. MILLIAMMETER Model MR.2l: All to Imaraz Individually Boxed and Fully Guaranteed.
"S" METER MODEL 8R. 2P. standard "Ham" Bigna strength indicator. Calibrated in " 8 " units from $0-9$ with scale terminating in +10 to
+30 dB calibrations. tional full scale calibrations of $0-5+0-10$ in inacar scale divi-
gions. $35 / \mathrm{F}$ METER MODEL VR. IP
Callbrated and damped in
 accordance with standard VU Meter Practlce. Upper scale reads -20 to +3 VU. Lower scale $0-100 \%$ modulation. Uses precision carbon film multiplier renistor and
full wave rectifer. $42 / 6$.

Miniature Clear Plastic Panel Meters

-

Immediate Despatch Service Best Value for Money

All items advertised have been approved by our technical team of qualified engineers

AHIGHQUALITY PROFESSIONAL MIKE

AT LOW COST

D.M.II MICROPHONE with Base A flexible, newiy designed dynamic ing desk stand. Professiona quality. ideal for tape recording. public address, broadcaating and communicntions. Ruggedly constructed, remorable base lor desk or hand use. 360° wwivel ball joint allows tilting in any direction. 9 in . high. Body dia. 2in. tapering to $\boldsymbol{f i n}$. chrome trimming. Complete with ehield ed cable atand. Fully guaranteed.

The famous WELLER SOLDERING GUN Touch the trigger-instant heat and focused spotlight outside engineer and a balanced, safe-a MUST for the

72/- P. \& P. 3/-.
NEW SUCTION TYPE TELEPHONE PICK-UP COIL 14/- P.\& P.gd
Enables telephone conversations to be amplified corded. Complete with 5 ft . shielded cable.

LOWEST PRICED LINE O/P TRANSFORMER TESTER

The D900
TRANSISTOR TESTER/ POWER SUPPLY

Checks Alpha gain. (Cur rent gain A.C.) with Cheoks Beta gata. (Car rent gain under-D.C conditlons)
Measures leakage cur rents between Collector Base and Collector
Emitter, at any voltage between sero and 25 V . Specially designed for all receivers using PNP Transistors
NOW you can carry out easy, fast testing of transistors and miniature transistor receivers without removing transistors from circuit, Self-contained signal tracing obcillator, self-contained variable power supply.
Labour-saving, Speedy, Simple, ONLY $\$ 10$ Slize $5 \mathbf{i} \mathbf{i n}$. by 3in. by $2 \boldsymbol{f}$ in.
Ask for full technical specification.

High Resistance Standard Type

TWIN HEADPHONES
2,000 ohm Model sF20.
Complete with heidband.

SEND FOR OUR 1963 COMPONENTS CATALOGUE

 48 pages of valves and accessories. Send $1 /-$ in stamps for your copy. Trade catalogue also available for which please attach your business letter heading.RECTIFIERS suitable for Battery Chargers 12 volt output, $2 \mathrm{amp} .7 /-; 4 \mathrm{amp} 12 / 6$ and 6 amp . $15 / 6$.

POTENTIOMETERS: A range of Ardente miniature potentiometers is available. In the circular type adjustment of the control is made by rotating the peripheral ring.
TYPE VC.1041, less switch, diameter 0.680 in ., width less pins 0.170 in ., available in the following values:- 5,000 ohms semi-log, I megohm semifog, 7/6.
TYPE VC.1545, with switch, diameter 0.900 in . width with pins 0.490 in ., available in the following values:- 5 Kohm semi-log, 20 Kohm semi-log, 1 Megohm semi-log, 5/3.

TYPE VC. 1760 , with switch, diameter 0.720 in . width with pins 0.378 in ., avaiable in the following values:- 5 Kohm semi-log, 20 Kohm semi-log, 1 Mohm semi-log, 10/6.

CHASSIS

Aluminium Undrilled with Reinforced Corner, available in the following sizes:-
6 in. $\times 4$ in. $\times 2 \frac{1}{2}$ in.
4/6 each
Bin. $\times 6$ in. $\times 2 \frac{1}{2}$ in. \quad.......................... 6/3 each
10in. $\times 7$ in. $\times 2 \frac{1}{2}$ in. $7 / 3$ each
$12 \mathrm{in} . \times 3 \mathrm{in} . \times 2 \frac{1}{2}$ in......................
$12 \mathrm{in} . \times 5 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} .$.
12 in. $\times \operatorname{8in} . \times 2 \frac{1}{2}$ in......................
4in. $\times \operatorname{3in} . \times 2 \frac{1}{2}$ in.6/- each
$14 \mathrm{in} . \times 9$ in. $\times 2 \frac{1}{2}$ in.
12/- each
$16 \mathrm{in} . \times 6$ in. $\times 2 \frac{1}{2} \mathrm{in}$.
9/3 each $16 \mathrm{in} . \times 10 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} .14 /-$ each
all are four-sided-ideal for radio receivers-
amplifiers-power packs, etc.

ALUMINIUM PANELS

For use with our chassis, as front panels base plates, etc. Available in the following sizes:4in. x 9in. 4/- each 2in. x 12in. ... 4/6 each

LOUDSPEAKERS BY WHARFEDALE

Bin. Bronze/RS
10.500 gauss. Roll surround. Resonance $50 / 55 \mathrm{c} / \mathrm{s}$. impedance $10 / 15$ ohms.
8 in. BRONZE F5/AL
10,500 gauss. Aluminium voice coil, foam surs round. Impedance $2 / 3$ or $12 / 15$ ohms. Resonance $50 / 55 \mathrm{c} / \mathrm{s}$. Total $£ 3 \quad 15 \quad 9$

SUPER 8 R5/DD
14,500 gauss. Fitted roll surround and double diaphragm. Resonance $50 / 55 \mathrm{c} / \mathrm{s}$. Impedance 10/15 ohms.

SUPER 10/R5/DD

16,000 gauss. Fitted roll surround and double diaphragm. Impedance: $10 / 15$ ohms only. Resonnance $38 / 43 \mathrm{c} / \mathrm{s}$.

Total $£ 10 \quad 18 \quad 6$
14,500 gauss GOLDEN IO/RS/DD
, 500 gauss. Fitted roll suriound and double diaphragm. Impedance $10 / 15$ ohms. only. Resonance $38 / 43 \mathrm{c} / \mathrm{s}$.

Total $£ 7 \begin{array}{llll}7 & 17 & 6\end{array}$
IOin. BRONZE/R5
10.500 gauss. Roll surround. Resonance $35 / 40 \mathrm{c} / \mathrm{s}$. impedance $10 / 15$ ohms, only. Total $\& 412 \quad 6$

10in. BRONZE/F5B
10,500 gauss. Foam surround. Impedance $2 / 3$ or $12 / 15$ ohms. Resonance $38 / 43 \mathrm{c} / \mathrm{s}$.

Total $64 \mid 2 \quad 6$

AUTOMATIC RECORD

CHANGERS

$\begin{array}{lllll}\text { B.S.R. UA } 14 \ldots \ldots & \text { \&6 } & 19 & 6 \\ \text { COLLARO C } 60 \text { Stereo } & \text {... } & \text { \& } & 10 & 0\end{array}$

OUR NEW 60-PAGE HI-FI CATALOGUE

IS NOW AVAILABLE
Send

PLUS 6d. POSTAGE

LOUDSPEAKERS

All 3 ohm IMPEDANCE
Round Types- $1 \frac{3}{3} \mathrm{in} .17 / 6 ; 2 \frac{1}{2} \mathrm{in}$. 17/6; 5 in . 15/-: 6tin. 16/6; $8 \mathrm{in} .17 / 6 ; 12 \mathrm{in} .29 / 6$.
$5 q u a r e$ Types- $2 \frac{1}{2} \mathrm{in}$. $18 / 6$; 3 in . 19/6; 4in. Tweeter 12/6.
Elliptical Types-6in. x 4in. 15/6; 7in. $x 4 \mathrm{in}$. 15/6; $8 \mathrm{in} . \times 6 \mathrm{in} .17 / 6 ; 10 \mathrm{in} . \times 6 \mathrm{in} .21 /-$.

TRANSISTORS \& DIODES

the "werrad" superhet tran. SISTOR RECEIVER FOR LONG AND medium waves
The following components are available from stock:
M.W. Oscillator Coil P50//AC 5/4. Rod Aerial RA2W 12/6. Ist and 2nd I.F. Trans. P50/2CC (2 required) 5/7. Driver Transformer LFDT4 9/6. 3rd I.F. Transformer P50/3CC 6/-. Printed circuit PCAI 9/6. Literature for complete range of "WEYRAD " components available on request.

GARRARD Autoslim
 $6719 \quad 6$ SINGLE PLAYERS

E.M.I. 4 speed with pick-up $£ 315 \quad 0$
E.M.I. Battery version 6596

THORESBY BASS REFLEX CONSOLE CABINET (C.15)
This cabinet is designed for 5 tentorian 8 in. or 10 in. Loudspeakers and there is also provision for fitting tweeter unit if desired.
Size: Height 5ize: Height 3lin. x width $19 \xi^{\text {in }} \mathrm{in} \times$ depth 18 in.
Price in Mahogany Price in Mahogany.
$\$ 12120$ Price in Walnut..

7/6 extra
THORESBY HI-FI EQUIPMENT
CONSOLE (Cl6)
This takes most makes of tape-deck or record player, amplifier, pre-amplifier control unit and radio tuner.
Size: Height 31 in. \times width 19 in. \times depth 18 in . Price in Mahogany
Price in Walnut

114140

PURCHASE TAX

REDUCTIONS ALLOWED ON ALL

 ITEMS TO NEW RATE OF TAX
PUBLIC ADDRESS
 CABINET TYPE LOUDSPEAKERS.

TYPE E6

A small Cabinet Type Loudspeaker suitable for quieter locations, offices, hospitals and multiple systems. Fitted with high quality 6in., 9,000-line permanent magnet unit. Two types of cabinet finish are available. WHITE WOOD so as to enable painting to match surroundings, and OAK VENEER for quality installations-offices, hosVENEER f
pitals, etc.
pitals, etc. loudspeaker switch.
Dimensions: 10 in . $\times 10 \frac{3}{4} \mathrm{in} . \times 6 \frac{3}{4} \mathrm{in}$. deep tapering to 3 in . deep at narrowest point.

TYPE E6/3W
Low impedance, 3 ohms. White
Wood List $£ 3100$ Low impedance, 15 ohms. White
Wood List \&3 100
With Transformer E6/10KW
matching on 100 V line Whit
matching on 100 V line. White List $£ 3150$ Low impedance, 3 ohms. Oak

Veneer.................................... LPE E6/15 0
Low impedance, 15 ohms. Oak
Veneer................................
With Transformer for I-watt
matching on 100 V line. Oak
Veneer.................................
A first-class Speaker of dignified appearance suitable for the majority of indoor installations Incorporates 10 in . unit with 10,000 line magnet Cabinet sloping front type suitable for wall Cabinet sloping front type suitable for wall mounting WOOD to allow for painting to match surroundings and OAK VENEER.
Dimensions: 16 in. wide $\times 14 \mathrm{in}$. high $\times 9 \mathrm{in}$. deep tapering to rounded edge.

TYPE EIO/15W
Low impedance, 15 ohms, White
Wood List £6 50
With transformer for 5-watt
matching on 100 V line. White
Wood
Low impedance, 15 ohms. Oak

With Transformer for 5-watt
matching on 100 V line. Oak
matehing
List $£ 776$

> 103 LeEdS terrace WINTOUN STREET
> LEEDS 7

[^9]
BENTLEY ACOUSTIC CORPORATION LTD.

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS Telephone PRIMROSE 9090 ALL GOODS LISTED BELOW IN STOCK. *indicates valves with new type chemical cathode for extra lite and reliabilicy.

 106
145 G
1路

LOOK! 'The realistic 7’

 FULLY TRANSISTORIZED PORTABLE RECEIVER CAN NOW BE BUILT FOR EVEN LESSThis super set-made to the highest professional standards-is now available to the home constructor. Comprises 7 Mullard Transistors OC44, 2 OC45's, OC71, OC81D, and 2 OC81's, plus OA70 Crystal Diode. Delivers 350 milhivatt output to 4 in . high flux speaker-iF Frequency $470 \mathrm{Kc} / \mathrm{s}$.-fully tunable over medium and long wavebands. All components mounted on single printed circuit board, size $5 \frac{1}{2} \times 5 \frac{1}{2}$ in Attractive two-tone plastic cabinet with carrying haudle-size $7 \times 10 \times 3 \underline{1}$. With
easy to read dial and socket for car aerial choice of Red/Grey, Blue/Grey or all Grey Complete with full instructions. All parts sold separately.

WIRECOMP'S
 £5.19.6 P.P. 9 BalteryPRICE

P. \& P. $4 / 6$ extra. (Circuit diagram $9 / 6$, free if all parts bought.)

TAPE DECKS, ETC.
B.S.R.

MONADECK

Pust furward ABC up to Jin. spools. For to 200.250 WIRECOMP'S PRIC
 (55.19.6

TMPLIFIERS FOR USE WITE THE MONADECK Martin Type 8312-M. Supplied in sub-issemblies. Selt mowetet. Everything Included for nam assembly

Linear L.P.1. Pre-amplifier. Fully assembled. Unyowerel. mplitler. Fitted wlih 7 XAlu. speaker. Finishad

COLLARO STUDIO DECKS

Litest model. three motors, three speerik. Fast fol ward and rewind. Mor :300-250 v. A.C. inaias. Fitter with fotrack headr.
£10.10.0 patm

As abore. but fitterl with high qualitr t-track heuds.

AMPLIFIERS FOR USE WITH THE STUDIO DECE Martin $8311-\mathrm{V}$. In sub-asmemblies, with everything supplled for tinal assembly at home. 6 vilve circutt.
uith record level indlestor, speed compensation, monitoring fuclities, and a host of other refinements to
 Martin 8311-4V.
£12.12.0

TAPE RECORDING AMP'FIER
lerel fudicator. inputa for mic. and gram. Volunie and

 £ $3 / 15 \%$ P. \& P. $7 / 6$ extra.

TF PURCEASED TOGETHER WE OFFER THE

 AMPLIFIER, CASE AND SPEAKER AT THE SPECIAL

SYNCHROTAPE

High fidelity, recording tape

5 in . Standard play, 600 ft .
7 in . Staudarl plav, $1,200 \mathrm{f}$ t.
áhn. Long play, 900 rt ,
3 in . Long play. 1.2000 t.
7 in . Long play, $1,800 \mathrm{ft}$.
Double Play Tape.
5 in., 1,200ft.
5 inin., 1, mart
Gin., 9 torort

LOOK oú ${ }^{\text {R }}$ NEW PRICES!

THE ‘SPRITE

A six fransistor superhel Miniature Pocket Radio of Commercial Quality Fulty tunable orer long and Mediun wavebands. Uses printerl circuit and
High sensitivity miemal ferrite turial. I.P. trequencr $470 \mathrm{Kc} / \mathrm{s}$. Tran sistors: 3 - Phequency 2 20iàs, 2-Mullard OC81M, OC81LM tand OAM dlute 3 theh speaker. Works on single PP3 buttery. Enpplled with the cornplete RF and IF stagen. Briver and Output stages, ready buitt and monnted on the printed circuit; for final assembly switch. tuning roudenser and trive volume control, parphone socket atud sierial mod. In very attrmetlve plantic casa size $f \times 2 \xi \times \frac{1}{3} \mathrm{in}$.
COMPLETE AS ABOVE $79 / 6$ All parts sold separately
Real Cali Leather Cuse, Firlst strap and Permonal Earphone with P. \&

THE COROVER '6

This superbet reoeiver uses the ver latest circuitry. 6 fransistors nad
two diodes and is fully tonable over two diodes and is fully tunable over
both medium and long wavebands Firgt atage uses thrce Mullaral AF, 1 I7 atloy difitusel transistors with OA.79 and OA.91 diches, outputOC.81D and two OC'81's in pushpull. I.F. frequency $470 \mathrm{Kc} / \pi$ Large internal ferrite rod aerial gives excellent reception over all
rauges. 3 inch hag fux
ratuges. 3 inch higa 8380 mW . Operates ond has 5 maximnm out put of 830 mW . Operates on four 1.5 v , pen torch bewrd. Altractive plastic case with carrying hangle-filted etrcuit for personal earpleces, tape reoorder and car nerial. Size $64 \times 4 \times 1$ in. MAY BE BUILT FOR 857.6 All Parts sold separately
P. \& P. 4/- extra. (Duta and thatructions 2/6, free if all parts bonght)

TYPE 82 TELEFUNKEN STEREO HI-FI AMPLIFIERS
NoW available at WIRECOMP'S unrepeatable Bargain Price of

The perfect 8tereo amplifier designed to unequalied specifications. Power output J witty (2$\}$ watts per channel). F'requency response $50 \mathrm{c} / 8$ to $40 \mathrm{Kc} / \mathrm{s}, 2 \mathrm{~dB}$. $45 \mathrm{c} / \mathrm{s}$. to $30 \mathrm{Kc} / \mathrm{s}$. \& dB. 8nitable for all Power requirements $110,125,150,220,240$ rolts A.C. Pinno key selecting. Preselected tone control. Fize $12 \times 0 \times 2 \mathrm{in}$. Finizhed in grey/green hammered enamel.

TRANSISTOR AMPLIFIER complete WITH Bin. moting coll speaker
49/6

Watt fully iransintorised Amplifier. Incorporates 2 nower Transistors and 3 G.E.T. 114 Translators an push/pull-complete with semarate tone and
rolume controls on 24 Operates from Ever Reads P.P. Il Batters. Suitable for use with the Blain Kinder Plarers. gee below.

THE STAAR "KINDER"

45 R.P.M.
9 v. Battery Operated Single Player Complete with P.U.

The ideal deck fol your transistozized portable Recomt Player, complete with Cariridge and stylus. size frean. depth below motor 2thn. Atfractive fro-tone rey finisn. Idenily suited for with the above Trabsistor Aruplitle
£2.9.6 ${ }^{\text {P. } 26 b^{6}}$
Two speed Model 33 \& 45 r.p.m. 79/6.

8 WATT AMPLIFIER

£5.5.0
nate by well. known matuuiacturer. Sjpec.
2 ELS4, $1 \cdot$ F/7e and 1 -ECCss Push-pull out.
put. Separate

 Treble controfs
on panel with extended lead P. \& P. $3 / 6$ LIMITED STOCK OFFER

KAPURA MdI. UI Multi-Meter $\begin{aligned} & \text { Offered } \\ & \text { for }\end{aligned} \quad 39 / 6 \quad$ P. \& $2 / 6$

A must for the home constructor A must for the home constructor. Sensitivity: 1,000 ohms per
volt. A.C. and D.C. Rances (A.C./D.C.): $\quad \begin{aligned} \text { and } \\ 0.10-50.250-800-\end{aligned}$ 1,000 v. D.C. curtebt $0 \cdot 100 \cdot 300$ m/a. (used at $0-10 \mathrm{v}$. range.) Resistance 1-2,000 ohins (ceut r $\begin{array}{lll}24 \text { ohnis). } & 100 \cdot 200,000 \text { ohms } \\ \text { (centre } 2.4 & \text { k.). } & \text { Size } 5 \times 3 \times 2!\text { in }\end{array}$ (centre 2.4 k.). Size 5
Complete with test lends.

ELECTRIC MOTORS

[^10]

The application of cathode-ray oscilloscopes in measuring effects of shock and vibration, as well as the more conventional stress, torque, pressure, displacement and acceleration, is described in February Industrial Electronics, now on sale-one of many articles showing how electronics can cut costs and increase productivity in all kinds of industrial processes. Industrial Electronics is vital to all who must use electronics to meet ever-increasing competition. Other articles in the current issue are summarised below; March issue will include Tunnel Diode Computer Stores.

ALSO IN FEBRUARY ISSUE:

- DYNAMIC BALANCING

Accurate balancing of rotating parts is essential to prevent vibration; this article describes apparatus which determines magnitude and position of the balancing weights.

- THE POLYVAC PROCESS

Equipment for spectrochemical analysis, comprising spectrometer, electronic measuring apparatus and computer, which presents its output as a typed record.

GOONHILLY AERIAL CONTROL SYSTEM

Description of an unusual control system operating from predicted data.

FIRST EVER! 100,000 O.P.V.

MULTI-TESTER

 MODEL 370-N
£14.14.0

Incorporates 9.5 μ. . $^{\text {. basic meter, }}$ scale size $4 \quad 23 \mathrm{in}$. Ranges D.C. volts, 8 ranges 100 ml amps., 7 ranges $10 \mu \mathrm{~A}$. to 10 A A.C. volts, 6 ránges Ohns 5 ranges ((0) inegohus and ranges to ohras
400 verall size 7 ohuis
Overall size 7 ~ 5 in. Complete with instruc tion manual
30,000 o.p.v. MULTI-TESTER MODEL 500. Ranges D.C. Volis $(1-1$, (NU 0, A.C. volts 0 . 1,0401 v. ($1:, 000$ o.p.v.). D.C. current $0.05-$,00 ms, 0-12 a. Resistance 0 -th inegs. Decibels
 ONLY 88/17/6.
20,000 o.p.v. MOḊEL C.T. 500. Ranges D.C. wh ts $0-j, 1101$. A.C. volts $0-1,000$ v. (10,000
 internal batteries). Decibels -20 to +62 d 8.

4.000 o.p.v. MODEL TK. 60 . Ranges D.C. volts 11)-1,(000 vo; A.C. volts 10)-1,(000 v. (2,000 o.p.v.) D.C. Current $250 \mu . A / 10$ m $/ / 250$ in.A. Resistance ($1-10$ ohms $/ 1-1$ I ohius $\left(b y{ }^{3} \%\right.$ internal battery). Derilels - 20 to +22dB. 796 .
1,000 o.p.v. MODEL TK.50. Kanges D.C. InA. 1,2.0 in.t D.C. and A.C. Volts 70-2050-50)1,010 V. bhins $0-10 \mathrm{~K}$ ohnis, $0-100 \mathrm{~K}$ obans Special prices 596 . Few only
IIl above are complete and ready to use with batteries, test leads and instructions.
AVO MODEL \%. This well-known test instrument supplying in rankes of current, voltage and resistarice lests. Complete with leads and bat teries. Ready for use. Perfect order. ONLY \&11.
AVO WIDE RANGE SIGNAL GENERATOR. Covering $. \pi() \mathrm{kc} / \mathrm{s}$. to $\mathrm{w}(1) \mathrm{Mc} \cdot \mathrm{s}$. in 6 turret-operated Covering 0 ke/s. to N Ne;s. in 6 turret-operated
ranges. Perfect condition in original transit ranges. Perfect condition in originat transit
case with accessories. Standard A.C. Inalins case with acce.
operation, $£ 15$.

EVERSHED \& VIGNOLES MEGGER CIRCUIT TESTER (low reading ohm nreter) ranges $0-3,0-30$ ohw. Complete with leather case and test leads. As new. $100-\bar{j}, 000$ ohms, £5,19/6.
EvERSGED
VIGNOLES. IVee Megger 500 v. Brand new with leather
carrying case 16 Gns.
Ditto, 250 v. $£ 12$ 10;
SPARE LEATHER CASES for Wee Meggers, 15!-each.

MAINS ISOLA'ING TRANSFORMER (Ciresham) I'ri. 2:30/250) v. Secs. 2t(1)-0-250 v. 1.5 ainps., also 5 V. 12.5 armps. Potted. Size 7 in . x Thin. $10 \frac{1}{2} \mathrm{in}$. Weight 50 lb . Ideal for obtaining TWO ISOL. 1 TED 240 v . lines at 360 watts each. Perfect condition. Removed from new equipment; 85 . Carr. is
AUTO TRANSFORMERS. Step up, step down. $1111,115,22(0 / 230$ v. litll shrouded, terminal bleck connectors. $150 \mathrm{w} .32,6,300 \mathrm{w} .37 / 6,500$ w. $6^{7}, 6,350$ w. $77 / 6,1,000$ w. $97 / 6,1,750$ w. 175/-. Carriage 4/. on each type.
RCA PLATE' TRANSFORMERS 1100 to 250∇. primary $50-60$ cycles. Secondary $1,500-0.1$,500 v . or $2,000-0-2,0013$ v. at 500 miliaiups. Brand new and boxed \&6 10 -. Carriage extra

TAPE! TAPE! TAPE!
 LOWEST EVER 1963 PRICES

"GEE'S" FIRST QUALITY FACTORY FRESH TAPE

5in.	Std.
7in.	Std.
5in.	L.P.
5in.	L.P.
7in.	L.P.
4in.	D.P.
5in.	D.P.
5in.	D.P.
Fin	D.P.

$600 \mathrm{ft}$.	$8 / 6$
$1,200 \mathrm{ft}$	$15 /-$
900 ft	$12 / 6$
$1,200 \mathrm{ft}$.	$15 /-$
$1,000 \mathrm{ft}$	$28 / 6$
$1,200 \mathrm{ft}$	$12 / 6$
$1,200 \mathrm{ft}$	$21 / \mathrm{m}$
$1,300 \mathrm{ft}$	$28 / 6$
$2,400 \mathrm{ft}$	$30 /-$

"GEE*S" SUPER QUALITY MESSAGE TAPES 3 in . Std. hivft. 3 11: 3 in . L.P. 240 ft . $5 /-; 3 \mathrm{in}$. D.P. 4(10)f. 10;-. On brightly coloured spools in neat plastic cassettes. Ideal for gifts or personal nessages.

	AMERICAN	"CBS	PE	
5 in.	Std.	600 ft .	(CIF-6)	3/
5in.	Std.	900 ft .	(CIP-9)	161
7 in .	Std.	1,200ft.	(CIP-12)	21
5 in .	L.P.	900 it.	(LP-9)	16/
5 in .	L.P.	1,200ft.	(LP-12)	19/6
7 in .	L. P.	1,800ft.	(LP-18)	28
5 in.	D.P.	1.200 ft .	(CMXP-12)	32
$5^{3} \mathrm{in}$	D.P.	1,300tt.	(CMXP-18)	
7 in .	D.P.	2.400 ft .	(CMXP-24)	47)
SPA	SPOOLS	tiu., J	$3_{1}^{3} \mathrm{in}$	

GEES' " AcCESSORY KIT
1 "B1B" Splicer, 1 Splicing Tape, 3 Leader Tapes (3 colours), io Retaining Clips. Packed in plastic container. PRICE $32 / 6$. While stocks last.

 able including ", SCOTCH," "E.W1," "B.4SF," "Synchrotape," etc. Send S.A.F. for our huge
moncy-saring literalure on Tapes and Accessories. WE ARE PREPARED TO ARRANGE DISCOUNTS FOR QUANTITY TAPE ORDERS.

We wish to purchase P.A. Heavy Duty Ampliflers. Loudspeakers and ancillary equipment, etc. Large or small quantities manufacturers or ex-govt. Only good quality equipment considered. Fair prices will be offered. Contact buyer at GER 1453.

GEE bros. RADIO ᄂто.

15 LITTLE NEWPORT STREET, LONDON, W.C. 2 GER. 6794/1453

Open 9-6 Mon. to Fri. I p.m. Sat.
P.A. EQUIPMENT
 6/10/-. Cart. $10 /$
AR. 88 Original 8in. P.M. SPEAKERS. Black crackle metal cases. Brand new in original cartons. Few only. $£ 3 / 10 /-$. Carr. $3 / 6$. 12 VOLT D.C. AMPLIFIER (Ardente). 15 watt push-pull output Mike and gram. inputs, tapped output transformer Brand new, maker cartons, £1210/-. Carr. 10/6. OOriginal hand microphone for above $30 /$..)
BEAM PROJECTION EXPONENTLAL BORN. 19 in . long, 12 in . square flare. Complete with mounting bracket, ideal for mobile use. Brand new, £6/10/-. Carr. 7/i
HEAVY DUTY PRESSURE UNIT. Special quality: $15 \mathrm{ohm}, 20$ watts P.M. 11 in . Screw top, 79/6. Carr. 4/.
6 inch P.M. HEAVY DUTX SPEAKERS. Complete with line trans., in all steel
blue-grey
double blue-grev double griled cabin
 LOUD HAILSRS With 1 ivo ohm line transformer and con denser: lmpedance 1 ohms, handling capacity 8 watts. front woolen case, $27 / 6$. Carr. $\overline{5} /$

CRYSTAL MICROPBONE MODEL BM. 3
Three-way mike for hand, desk or floor stand use Response $100-8,(0) 0 \mathrm{c} / \mathrm{s}$. Sensitivity -62 dB Length rin. Head dia. $1 \frac{1}{4}$. Supplied with neck band, lead and standarl, jack plug. Terrific band, lead and standarlinack plug. Territi performance. Outstanding value at ONi SUPER QUALITY HI-FI DYNAMIC (M/C) MIC ROPEONE Model MD. 180 with built-in trans former - 0 impedance. Sultable for hand or stand use Complete with screened lead Outstanding Value f4, 15'.. Post frce.
MICROPHONE FLOOR STAND (Telescopic) in. dome, clirominin stand with screw top. Extends to approx. if Suitable for above mikes, etc., 55/-. Carr. 5/ TELEFUNKEN EI-FI
STEREO AMPLIFIER FEW ONL
LEFT!! LATEST
MODEL 88
with balan
control

£7.7.0

$110 / 250$ v. A.C. is watt
SEND undistoricd output (10 watts nominal) size 1.2 (\$ 2 in ., wt. If 1 h Complete with spec. and instructions

G.P.O. STANDARD 19in. HEAVY DUTY

 EQULPMENT RACKSIft. 6in. Angle Uprights, £4/10,-. Carc. $10 /$ 6ft. Channel Upright, £6. Carr, $20 /$
7ft. Channel Upright, for. Carr. 2t

COLLARO "STUDIO" TAPE TRANSCRIPTORS. Brand new in original cartons. 3 speeds, 17, 37, 71 i.p.s. 3 motors, digital counter, etc. Complete with 7 in . spools, instructions and fixings. A.C. $200 / 250$ v. operation. SPECLAL PRICE 10 GNS. Carr. paid.

BREMGRIN ORADR! TELEFUNKEN HI-FI STEREO AMPLIFIER

$110 / 250$

 att V . C . input S (10 w . nominal) output $\times 9 \times 2$ in \mathbf{W}. Size 12 $\times 2 \mathrm{in}$. Weight 9 th.Complete with spec. and instructions. $25 / 19 / 6$
Also Model $\mathrm{S82}$ similar spec. but with balance control. $66 / 19 / 6$. Carr. 5/-.

COIL AND TRANSFORMER SET FOR TRANSISTOR SUPERHET
3 I.F. transformers, one oscillator coil, one driver transformer and wound Ferrite aerial (med., long and aerial coupling), 28/6 complete, post $1 /$-. 6 transistor printed circuit, board to match, $8 / 6$, post 9 d . Circuit diagram $1 / 6$ extra.

MARTIN RECORDAKITS

Tape A mp P. \& P. 3/6.

88.8.0

Cabill/. Carr. 7 and x in. sp
Tape Amplifier for Collaro Seudio deck, Tape Amplifier for
$\varepsilon 11 / 11 /-$ P. \& P. $3 / 6$.
Elilli/-. P. \& P. $3 / 6$.
Cabinet with x sin. speaker for above,
65/5/-. Carr. and ins. S/-
Tape Pre-Amplifier, complete with power supplies, $\mathbf{t 8 / 8 / - .}$ P. \& P. 3/6. Full easy-to-
follow instructions supplied. Send S.A.E. for follow instructions supplied. Send S.A.E. for
leaflet. Full range of Microphones and Tape always in stock.

RECORDING TAPE
P.V.C. base, full frequency L.P. tape. 7 in . 1,800ft. (normally SO/-). 27/6; Szin. $1,200 \mathrm{ft}$. (normally $3 \mathrm{~S} /-$), 18/9. P. \& P. $1 /-$ per spool. Ideal for 2 - or 4 -track recorders.
HARVERSON'S F.M. TUNER MARK I
Ouning
head by
famou
maker.
Guar
Guar-
anteed
non-drift
non-dr
runing.
quency cover-
age $88-100 \mathrm{Mc} / \mathrm{s}$. OA81 balanced diode output. Twol.F. stages and diseriminator. - Ateractive maroon and gold dial ($7 \times 3 \mathrm{in}$. glass). Self powered, using a good quality mains transformer and valve rectifier. Valves used ECC85, two EF8Os and EZ80
(rectifier). Fully drilled chassis. Size of completed tuner $8 \times 6 \times$ S $\frac{1}{2}$ in. parts sold separately. $\mathbf{6 5 / 1 9 / 6}$ plus 8/6 P.P. and ins. Circuit diagram and illustrations 1/6 post free.
Mark II Version, as above, but complete with magic eye, front panel and brackets. £6/12/6. P. \& P. 8/6.
Mark III Version, as Mark I but with output stage (ECL82) and tone control. 87/7/-. HANDSOME METAL CABINET choice of grey, black or green. To fit Mark I, $25 /-$. P. \& P. 2/6. To fit Mark II, 17/6. P. \& P. 25/-.
2/6.

SPECIAL OFFER! GORLER F.M. TUNER HEADS. $10.7 \mathrm{Mc} / \mathrm{s}$. I.F., $15 /$, plus $1 / 9$ P. \& P. (ECC8S
valve $8 / 6$

A permeability tuned tuner head by a famous maker. supplied without valve (ECC8S) and drum and spindie, 18/6, plus /9 P. \& P. Valve 8/6 extra. \quad Drum
spindle $3 / 6$ extra.

SPECIAL

PURCHASE!

Brand new and unus

TURRET
 TUNERS

By famous maker Complete with PCC84 and PCF80 valves. $34-38$ Mc / s. I.F. Biseuits for Channels I to S and 8 and 9. Circuit diagram supplied.
25/- each. P. \& P. 2/6
FURTHER HUGE PURCHASE enables us to offer the
E.M.I. 4-speed Player and P.U. $\begin{array}{cc}\text { NOW ONLY } \\ \text { P. \& P. 4/6. } & 67 / 6\end{array}$

Heavy 8 lain. metal turntable. Low flutter performance 2001 250 v . shaded motor with tap at 45 v . for amplifier. valve filament if required. Turnover LP/78 head.

4-SPEED

PLAYER UNIT

 BARGAINSSingle Players. B.S.R. TU/I2, $£ 3 / 10$ Carr. 3/6.
Auto. Changers. B.S.R. UA14, E6/2/6. Latest B.S.R. UAl6, E7/2/6.
Carr. S/- on each. Latest Garrard "AutoSlim," $66 / 17 / 6$. Carr.S/-

LOUDSPEAKER

SILKS Heavily woven in champagne \& brown 48" wide. Originally 3S,- per yard. Our Special Price 12/- per yd. length. P. \& Red rexine, dark grey and oatmeal grey forics for cabinet fabrics for cabing. $\$ 4 \mathrm{in}$. wide. 13/6 per yard length.

TRANSISTOR PERSONAL RADIOS

Complete with leather case, personal earphone and PP3 battery. Will re ceive Luxembourg ecc., ioud and clear.
SIX TRANSISTOR TYPE
$\$ 5.9 .6$ 816: $4^{\circ} \times 25^{\circ}$
EIGET TRANSISTOR TYPE
\&6.9.6

B.S.R. MONARDECK

(Single speed) 3 tin. per sec., simple control, uses Stin. spools, $\mathrm{E6/15/}$ plus $\$ / 6$ carr. and ins. (Tapes extra.) f $10 / 10 \%$ plus $\$ / 6$ carr. and ins. (Tapes extra.)

AMPLIFIER ON
 PRINTED CIRCUIT BOARD

Two valve, UY8S, UL84 with O.P. trans., use with 80 volt tap off motor. 39/6. P.P. $2 / 6$ on above. Dropper B.S.R. AUTO UN: UNTS 160 v . Suitable for use with above. (Slightly soiled) $84 / 4 /-$ P. \& P. S

LARGE CABINET

Suitable
a bo
b
or
re
B.S.R.

A $u t$ it
Un it
and amps.
and amps.
Complete with

〔3/9/6. Carr, 5/Superior Cabinet. Similar to above to take $8 \times \operatorname{Sin}$. speaker, with motor board, will accommodare BSR UAI4 or UA16. £3/9/6. Carr. S/6. Speaker 15/- extra. P. \& P. $1 / 6$ extra.

SPECIAL BARGAIN OFFERS

MAINS TRANSFORMER. Impregnated and fully shrouded. Size $4 t \times 3 \frac{1}{2} \times 2 \mathrm{zin}$ Weight 61 b . Tapped primary 20S, 22S. 24 Sv . Electrostatic screen. Cutput $360-0-360 \mathrm{v}$. at 120 m / a D.C. plus $\quad 6.3 \mathrm{v}$ at $3 . \mathrm{S}$ amps. centre m/a D.C., 6.3v. at $3 . S$ amps.. centre .6 amps. PRICE ONLY $21 /$ e each. P. \& P. 5 .

CARBON MIKE INSERTS. Brand new 2 tin. dia. $5 / \%$ P. \& P. 9 d
ELECTROSTATIC H.F. TWEET-
ERS. Type L.S.H. 7S. Size $3 \times 3 \mathrm{in}$.,
2/6 each, plus 9d. P. \& P
MIDGET 2-GANG CONDENSERS. Capacity I9S and 100 PF. Polystyrene case with built-in trimmers. Size $\frac{3}{3} \times \frac{3}{8} \times \frac{1}{2}$ in. Not used but removed from \mathbf{P} / C Boards. 2 for $9 / \%$. Plus 1/-P. \& P
ACOS CRYSTAL MIKES. Hi-imp., Stick type 25/-. P. \& P. 1/6.
TRANSISTOR DRIVER and O/P TRANSFORMERS. (Tapped 3 ohm and 15 ohm o/p), plus 4 suitable Transistors giving approx. I watt o/p. MAINS \& P. 2/-
MAINS TRANSFORMERS
Tapped Primary, $\frac{1}{2}$ wave or Bridge Rectifier. Secondary 250 v . at $75 \mathrm{~m} / \mathrm{a}$. 6.3 volts at 2 amps . 7/6. P. \& P. 3/-. 3 PUSH-BUTTON TRANSISTOR SWITCH D.P.-D.T. Each Switch $5 / 6$ plus 1/-P. \& P.

$\star{ }^{4}$ wates per channel.
\star Full tone and volume concrols. * Complete with sockets, etc.

QUALITY RECORD PLAYER AMPLIFIER

A top-quality record player amplifier This amplifier (which is used in a 29 gn . record player) employs ECC83. EL84, EZ80 valves. Bass, treble and volume. On/off controls.
Price 69/6. \quad P. \& P. 3/6
DITTO. Mounted on board with output transformer and $6 \frac{1}{2} \mathrm{in}$. speaker. Complete at $89 / 6$. P. \& P. $4 / 6$.
RECORD PLAYER AMP. 2 vaive, A.C. mains, 3 watts output, ready built, tested and complete with valves and output transformer. Size 7 "w, $\times 2 \frac{1^{\prime \prime} d . ~}{} \times 5 t^{\prime \prime} h .55 /-$ P. \& P. $3 /-$.
Suitable Speakers, $6^{\prime \prime} 15 /-$ or $10^{\circ} \times 6^{\prime \prime}$ Suitable Speakers, $6^{\prime \prime} 15 /$ or 10° 22/6. P. \& P. $1 / 6$ on each.

10/14 W. HI-FI AMP. KIT

A stylishly finished monaural amplifier with an output of 14 wats from 2 EL84s in push-pull. Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded ultra output transformer (co match 3-15 2 speaker) and 2 independent volume controls. and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectifier. Only $£ 6 / 19 / 6$. P. \& P. 6/6. All parts sold separately. Simple instruction booklet $1 / 6$. (Free with parts.)

TRANSISTORS

GETIS (Matched Pair) 15/-

OC71	$\ldots . .$.	$5 /-$	PXA101	..	$6 / 6$
OC72	$6 /$	XA103	$6 / 6$		

3 OHM LOUDSPEAKERS

$2 \frac{1}{2} \mathrm{in} .12 / 6 ; \mathrm{Sin}$. $12 / 6 ; 6 \frac{1}{2} \mathrm{in}$. $15 /-$; 10 in 21/-; 12 in .
E.M.I. $2 \frac{1}{2}$ in. tweeter

Goodmans Sin. tweete E.M.I. 13tin. $\times 8$ tin hiol.i.. $22 / 6$ Rola Celestion approx. 9in flux 3216 middle register speaker $10 / 6$
Also is ohm., 12 in .
HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, S.W. 19 CHErrywood 3985:6
Open all day Saturday
Early closing Wed., I p.m.
A few minutes from South Wimbledon Tube Station. Please Note: P. \& P. charges quoted apply to U.K. only. P. \& P. on
overseas orders charged extra. (PLEASE WRITE CLEARLY)

TESTMETERS FOR EVERY PURPOSE

2,000 OHMS PER VOLT MODEL TP-10. Keads A.C. and D.C. volte up to 1,000 ;
 sidtanee to 1 Mè.: Capactauce tel 1μ F) Deethets from - 20 to +36: Ontpnt jatels for Audlo metasurementa. Slze $3!\times 5 \times 1 \mathrm{hin}$. 8319/8.

20.000 OHMS PER VOLT MODEL TP-58. Reads soltages up to 1,010 D.C. at 90,000 ohms per volt, and A.C. at 10.000 o.p.w.; D.C. current to 300 mA .: Reaistance to 10 Megnos Capacitance to $0.1 \cdot \mu t^{\prime}$; Decibels from -20 to +3 en slize $3 \frac{1}{2} \times 3 \frac{1}{2} \times$ 1fin. 25/19/6.

30,000 OHMS PER VOLT MODEL 500 . Headm voltaren up to 1,040 D.C. it 30,000 ohms per volt, and A.C. at 15,01
o.p.v.; D.C. cerrent to 12 anips.; o.p.v., D.C. currento 12 anips.;
Resiatance to 60 Megs.: Dertbeles fromu - $\%$ to $+5 f$; Incorporales triternal buzzer for auditle warmbig of direct shorts und blocking condenser for AF

 monthe gharantee backel by full service faclitiles. Further details on request.

HRO SENIOR TABLE MODEL RECEIVERS. Complete Hth 9 coil sets covering $30 \mathrm{Kc/o}$ to :i0 31/ Ms. Uyed. very gion enndition, aerial tested. O.LY 217.10.0 vutrea, e22-10.0., plus carringe.
PCR COMMUNICATIONS RECEIVERS Manufactured by Pye and Phillim. One of the Army's mont rensutule and sensifice nets. R.F. stage and -3 of
 lsckilug device, Aerial Trimpner, Tone snd Volume cini. trols, Rand switch, front pumel jacks for spenker or

 Had $850,2,000$ usetree, and has interual sila. eppeaker. 86/19/6.
Joxilel PCR 2 has slmilar Long and Medium Wawreand coverage. Short wave of 18 Mels but no speaker. E5 $19 / 6$.
Moslel PCR 3 . Molel PCR 3. As PCRES but las 2 Short Wave Baude 190-354 metre. ONLY 88/8/-
All recelvers used hut exoellent condition. werial tented beiore deapatch. Add 10;6 carriage all momeles, S.A.E. for illustrated leaflet.
Designed to operate irom bulky EXTERRAL money supply, but 3ny set can he hitted with BRANU AEIV at an extra coat of $£ 2$.

RCA PLATE TRANSFORMERS. $190 / 250$ volth Primast
 ONLY $£ 6 / 10 /$ - (curr, at enst).

TELESCOPIC AERIAL. \& section join. open. If it chnsert. with tin projection. Chromium plited and inleat for a isrietr of usem. ONLY $10^{\prime} 6$.

LAVOIE U.E.F. WAVEMETER MODEL 105. Coverage $373 / 7$ Es Mc/s. Complete with correct Calibration Chart.

HIGR FREQUENCY A.C. VOLTMETER
A first-grade mnving tron instrumert volts A.C. Mirror arile reading up to 150 In substantial nak came with remorable
 Recently made for the Atr Minietiy by Everett Edgcuaube Lid.. and inf jperfect order. Brand nell and nnused. ONLY Ez/10/ Cian also be snpplied for 50
ercles use, eithet $0-150$ volts of 0.500 eycles use, eithet $0-150$ volts of $0 \cdot 300$ volts, sume price.
COMBINED VIBRATORIMAINS UNIT The Power Pack of the Aring RJ07 Receiver. Hus Vibrator for 12 volts D.C. operation and Mathe Tranyformer for $100 / 250$ volts A.C. Output 12.6
rolts 3 ampo L.T. and 350 volts 100 DA H.T. Complete with vibrater. 6 X5i rectilier, and cumbecting clata. Ifleal for driving TCS or Type à2 Recelvers. etc. or moble equipinent. BRAND NEW IN MAKER'S CARTONS. ONLY 45\%(carr. J/-)

6 TRANSISTOR COMBINED PORTABLE AND CAR RADIO

THE "GOOD COMPANION" Mk.II

Using TRANSFILTERS instead of I.F.T.s the latest manufacturing technique to save lining-up problems.
The finest Transistor Portable ever designed for the constructor.

* 750 mW Output.
* 6 Transistors plus I Diode
* Covers 540-1,540 Kc/s. (180-550 metres) and 160 $285 \mathrm{Kc} / \mathrm{s}$. (1,050-1,880 metres)
\star Latest printed circuit technique
A Very fine tuning with calibrated dial.
t Internal high gain zerial with car aerial socket. * Brilliantly styled 2 -colour cabinet size llin. x 8 in . $\times 3$ 3 n .
Technikal bnowienge to not requirel to baild thik ret, the easp-tofollow Ithutrated data which can be purchaneel for $3 / 6$ traking total cost including cabinet and data tbatery $3 / 6$ extra).

£9.19.6

With atternative luxiury cabinet using $7 \times 4 \mathrm{n}$, speaker, £10/19/6 All parts sold sepmintely, detatled list on reqnem.

BOUBLE BEAM OSCILLOSCOPE TUBES

Another purchase of Type CV 1596, equivalent to Cossor 09D as used in Oscilloscopes by Cossor (339 series) and Hartley \& Erskine (13 series). Listed $£ 12$

25/-

(carriage 5/-)
Brand new in maker's crates.
BC 342 RECEIVERS. A fen only of these famons Ameri. can sets covering $1.1 .5-18.0 \mathrm{Mc} / \mathrm{s}$, in wix bands. Internal condition and perfect working order. ONLY £20 (carriage 15/-).
SPRAGUE CONDENSERS. Metal cRencl wire ends. New .01 rutd., 1,000 re. and 11 mfd., 500 v., 7/6 per dozen. Special quotes for quantities.
AVOMETERS MODEL 7, re-conditionel and in perfect orier, with Lesde, internal hatteriew, und instuctions. (Hegत. post $\boldsymbol{0}_{1} \cdot$-).

AVOMETER MODEL 7 LEATHER CASES, Hitted with earrying bandle and long strap. BRAND NEW. ONLY 32/6 (post $2 / 6$).

HETERODYNE FREQUENCY

METERS TYPE LM14
Frequency range $125 \cdot 20,000 \mathrm{kc} / \mathrm{s}$. is 2 hawls. This is the United Ristes Navy Morlel of the well-kioown MC. 231 Freqnency Meter, bot hiak many additionan featnres
which Increase ita unefulnowa Voltage stablisation circuits and Crvatal control ensure extreme accuracy and in addition it is fitted with an Internai Modulation awitch
 Bill. $\times 8$ \&itis. Full infmatlon on request.

COSSOR TYPE 1036 DOUBLE BEAM OSCILLOSCOPES A reu only of these moxlern acopes, nerhatuled anyl in
perferl ordey ONI.Y 845. Further detaplim on reviuest.
"P.W." 6 Transistor Personal Receiver

Deolgned by the
technleal Techalcual ntafl
of Practleal
Wi reless.:Theressus Pasy to luald using athel lat ditikie Matched Transirtiprsauil IMonte.

Finll, Mediuin coverake til Wase nal sage to interparts sold sepm. rately (new components only) etumbling you to buy as | reqtired, and full detailed prlee list will be sent of re- |
| :--- |
| quest. $C o n s t m e t i n n a l ~ d e t a i l a ~$ |
| 18 . TOTAL COST | INCLUDING BATTERYAND NEWSTYLECAHESET £ $/ 119 / 6$.

Cash with order please, and print name and address clearly PLEASE ADD POSTAGE OR CARRIAGE COSTS ON ALL ITEMS

H ARRIS ELECTRONICS

(LONDON) LTD.

Radio Corner, 138 Gray's Inn Road, London, W.C.1. Phone: TERMINUS 7937
Open until I p.m. Saturdays.
We are 2 mins. from_ High Holborn (Chancery Lane Seation). 5 mins. by bus from King's Cross.

ARE MOVING TO NEW PREMISES REBU|LDING SALE!!

We are disposing of stocks which must be cleared regardless of cost.

Qty. Description

3,000 ROTARY SWITCHES D.P.C.O. 10 amp. 250 volt A.C Porcelain base
10,000 SLYDLOK FUSES Type MM. 60 amp., complete with studs, nuts and washers
1,750. INSPECTION LAMPS fit on foreliead leaving hands free Takes box battery 1215 and is supplied complete with Takes box battery 1215 and is supplierd complete with
battery container which fits on belt. In 3 cases cenbattery container which fits on belt. In $3 \overline{5}$ cases centaining 50 in each at 175 /

Cylindrical Bakelite screw-on cover, 2 contact
 2/6, post 6d. Large quantities available.

2^{2} in. Moving Coil Flush Round $0 / 1$ amp.; $0 / 3 \mathrm{amp.;} \mathbf{0}^{\prime} 5 \mathrm{amp} .: 0 / 10 \mathrm{amp} . ; 0 / 20$ volts; $0 / 30$ volts; 040 volts, all at $35 /$ - each.
2in. Moving Coil Flush Round
0/1 milliamp.; 0/5 miliamp.; 0/10 milliamp.; 0/20 volts; $0 / 30$ volts; 0,40 volts, all at $27 / 6$ each. 24 volt D.C. MOTORS. $1 / 25$ th h.p. Cont. rat. 1,000 r.p.m.

40 TANNOY LOUD HAILERS with 180Ω line trans former and condenser. Impedance $7 \frac{1}{2} \Omega 8$ watts Sloping wood case
FIELD TELEPHONE SETS Type F. 2-line connection. Generator bell ringing. Wood carrying case
BATTERY CHARGER WESTINGHOUSE TYPE BC3. 40/- ea. Charges 3 cells at 15 amps .

Stop/2 clange over. Locking ... 1/6 ea. Stop/4 change over. No lock ... $10 / 6$ ea. AC Lock $/ 2$ change over. Lock 10/6 ea. 8 change over. Optional lock. Muirhead $17 / 6$ ea. TRANSDUCERS. 520 p.s.i. S.E. Labs. No. 152A, with transformer, £ 15 ea. FERROXCUBE TRANSFORMER ASSEMBLIES. Type 25LAI, 10/- ea. TRANSFORMERS. $230 / 115$ volts, double wound, heavy duty, $1 \mathrm{KVA}, \mathrm{£} 15$;

$$
2.5 \mathrm{KVA}, £ 22 / 10 /- \text {; and } 5 \mathrm{KVA}, £ 30 \text { ea. }
$$

SLIDING RESISTANCE. 500Ω 1.5 anp. Twin tube, worm drive, $50 /$ ea. TRANSFORMERS. Input 230 v . Output 12 v .1 amp . In switch fuse, and resistance for use as safety supply for two 6 v. 6 watt lamps, 35/- ea. BARTLETJ ELECTRIC DRYING OVENS. Internal dimensions 20 in . x 20 in . $\times 20 \mathrm{in}$. 250 volts A.C. with adjustable thermostat giving automatic temperature control. Temperatures up to $160^{\circ} \mathrm{C}$, shown on builtin gauge. Rotary on/off switch with pilot lamp. Brand new, $£ 40$ ea. LEDEX SOLENOID-DRIVEN WAFER SWITCHES. Operating from $24 v_{i}$ with standard size wafers. Available in 4 -bank, 14 -bank, 24 -bank, all 1 pole, 11 -way, from $90 /$ -

3d. ea.
25 - ea.
500 CATHODE RAY TUBES. 2 in. 13Ha 35 SIMULATOR CABINETS on wheels with cooling fan, containing 250 millianıps, and +300 volts $250 \mathrm{~m} / \mathrm{A},-300$ volts, $450 \mathrm{~m} / \mathrm{A}$. A MONITOR OSCILLOSCOPE with supply unit, DISPL. f Y units etc. Cost thousands of pounds, will take verv low price to clear. Further details on application. of pounds, will take very low price to clear. Further details on appication.
78 BATTERY CHARGER (American). Output 12 volts 5 amps. D.C. Input $105 / 125$ volts A.C. in neat crackle finish casc. Relay with overlond reset push Ref. RA-63B
$60 /-\mathrm{ea}$
$1 / 9 \mathrm{ea}$

L. WILKINSON (CROYDON) LTD.
 19 LANSDOWNE RD. CROYDON SURREY

Phone: CRO 0839

RESISTANCE \& CAPACITANCE BOXES

for production, laboratory or college

LOW
COST

Wirewound resistors. Units to cover range 0.1Ω to $100 \mathrm{~K} \Omega$ each with 4 decades.
Low loss condensers. Units to cover range 100 pF to $10 \mu \mathrm{~F}$ each with 3 decades.
LIONMOUNT \& CO. LIMITED
24, Lynton Rd., London, N. 8 Tel: Fitzroy 4178

Send us your enquiries for all types of
QUARTZ CRYSTALS for:
RADIO FREQUENCY CONTROL FILTER PURPOSES ULTRASONIC PURPOSES

METALLIZED TO SUIT REQUIREMENTS ANY SHAPE AND SIZE CUT TO SPECIFICATION

PIEZO LIMITED
26 St. Albans Rd., Watford, Herts.
Tel: Watford 27808

AMPERIOR

IOWT SOUND REINFORCEMENT

THE PORTABLE PUBLIC ADDRESS SET WITH HI-FI STANDARDS.
ULTRA LINEAR OUTPUT (MAX 12WT) FOR 3, 7 or 15Ω.
INDIVIDUAL INPUTS WITH SEPARATE GAIN CONTROLS FOR MICROPHONE
AND GRAM.
HF5/H - $£ 15$ 15s. Od.
HF5/HZ - $£ 17$ 5s. 0d. - HAVING TWO MICROPHONE INPUTS.
FULL DETAILS OF THIS \& OTHER MODELS BY RETURN.

CONNECTORS FOR TCS RECEIVER, TRANSMITTER AND REMOTE CONTROL with original plugs on both ends. SPECIALLY BUILT POWER PACK for TCS receivers, 230 voles A.C. mains, including $6 \times 5 \mathrm{GT}$ valve, $\mathbf{6} 310^{\%}$. Carriage 5%.
TELEPHONE HANDSET. Standard G.P.O. 121- P. \& P. 2/
R. 109 RECEIVER. Covering $2-8 \mathrm{mc} / \mathrm{s} .6 \mathrm{v}$. D.C with set of spare valves and carrier. Brand new In original packing case. $66 / 18 /$ including delivery in U.K.
R. 109 A RECEIVER covering $2-12 \mathrm{mc} / \mathrm{s}$. E7/181- including delivery in U.K.
"CONNECT AND FORGET CANNOT OVERCHARGE " "ESSTRON" MARK
Initial charging rate 6.7 amps . The charging rate automatically adjusts itself to the charge in the automatically adjusts itself to the charge in the
battery. Automatic current and voltage control. battery. Automatic current and voltage control.
Patented application of magnetic amplification to batcery charging Indicator lights show bat tery fully charged, receiving charge. incorrectly connecied or fauley cells. Mains voltage 200, 250 v . Built for 6 or 12 v . batceries. Measurements
$7 \times 5 \times 5 \frac{1}{2} \mathrm{ln} \quad$ Weigh: $8 \frac{1}{2} \mathrm{lb}$. Price $£ 7 / 19 / 6$. P. \& P. $3 / 6$.

TELESCOPIC MAST. 34 ft . Consiscing of 6 sections of steel cubing of such internal and external diameter that the smaller sections may be collapsed with the larger sections. Immediate erection. Absolutely complete
brackets, guys, pegs, spikes, efc. $£ / 2 / 10 /-$
brackets, guys, pegs, spikes, efc. $£ / 2 / 10 /-$.
Carriage and packing 18 , As above but 20 ft . Carriage and packing 18,'-. As abo
$£ 7 / 10 /$. Carriage and packing $18 /$.
RE-ENTRANT LOUD HAILERS. 500 ohms. approx. 20 w ., $£ 6 / / 0 /$, carriage $10 /$. MARCONI RECEIVER TYPE CRIO0/2. Fully tested and aligned. $£ 32 / 10 /-$. Carriage $£ 1$.
H.R.O. SENIOR. TABLE MODEL. In excellent, fully checked, and cested condition (without coils and power pack), $£ 15 / 10 /=$ As above but rack mounted model, $\in 14 / 10 /-$ Individual frequency coils for above $£ 1$ each or set of 9 E8. Available only wlth sets. Eicher model carriage $61 / 10 /$.
POWER PACK FOR ABOVE. British made, A.C. $110 / 200 / 250$ v., 59/6. Postage $4 /$. AR 88's. Completely rebuilt with new PVC wiring. Type "D" $£ 75$; Type "LF" $£ 70$.
BRAND NEW ORIGINAL SPARE PARTS FOR AR88 RECEIVERS.
Please write your requirements

53 TRANSMITTER SPARES

ulf range. Price list on application

RECEIVER TYPE R.206. Frequency 0.55 me / s. to $30 \mathrm{mc} / \mathrm{s}$. in 6 bands. $100-250 \mathrm{v}$. A.C or 12 v. D.C. Loudspeaker in power supply unit. High performance super heterodyne eleven valves including a separate local oscil lator valve, beat oscillator valve and two valves (amplifier and detector) in the A.V.C. system in very good condition, $£ 20 / 10 /$ - including pewer pack. Carriage and packing 15 ;
CARBON INSET MICROPHONE, G.P.O. type, 2/6. P. \& P. 1/6.

P. C. RADIO LTD. 170, GOLDHAWK RD.
 W. 12 SHEpherd's Bush 4946

COLLINS VARIABLE CONDENSERS.
 output circuits. $8 / 6$. P. \& P. $1 / 6$.
80W 12V PETROL DRIVEN CHARGING SETS. Very compact in fully guaranteed condicion, $£ 12 / 10 /-$, carriage El .
R. 107 COMMUNICATION RECEIVER. 1.217 Mcs. 9 valves. wide and narrow band switch. AVC and BFO, with internal speaker, $100 / 250$ v. A.C. and 12 v. D.C. Meas.
DOUBLE BEAM OSCILLOSCOPE TYPE 13. $4 \frac{1}{2} \mathrm{in}$. sereen. Time base $2 \mathrm{C} / \mathrm{S}-1 \mathrm{Mc} / \mathrm{s}$. Callibration markers 1 microsec- 10 microsecs, Y2 attenuation. $115 / 230 \mathrm{v}$. A.C. In excellent checked condition, $£ 27 / 10 / \mathrm{F}$. Carriage El .
R. 209 RECEPTION SET. A 10 -valve highgrade Super Hetcrodyne Receiver with facilities for Receiving R/T (A.M or F.M.) and C.W. frequency I mc/s-20 me/s. Hermetically sealed. Built on miniature valves and incorporating its own vibrator power supply unit driven by a $6 \vee$ battery (2 point connector included). The set provides for reception from rod, open-wire or dipole aerial with built-in loudspeaker or phane ourput. Overall measurem .nts: Length 12 in ., w dth $8 \mathrm{in} .$, depth 9 in . Weight 231 lb . In as new. tested and guaranteed condition. E23/10/- including special headphones and supply leads. Carriage El
COMPLETE SET OF STRONG AERIAL, RODS (American). Screw-in type MP49, 50, $51,52,53$, cotal length 15 ft . 10 in . Top diameter 0.185 in . Bottom diameter 0.615 in ., cogether with matched aerial base. MP37 with ceramic insulator, ideal for car or roof insulation
$62 / 10 \%$. Post free.

PERSONAL CALLERS WELCOME

OSCILLOSCOPE

FOR D.C. \& A.C. APPLICATIONS

Engineered to precision standards, this high-grade instrument is made arailable at the lowest possible prise, incorporatiog the essentail features
uswally asweiated with luxury instruments. This "SCOPE" will alperal particularly to Service Hongineers and Amateurs. A high gain, extremely stable differential Y-Ainplifier (30 inV/C.M.). Provides ample sensitivity with A.C. or D.C. inpuls. Especially suitable for measurement of iransistor operating conditions where main-
tenance of $\mathbf{D . C}$. levela in of paramount inportance. tenance of D.C. levela is of paramount importance.
Push-pult X amplifier. Flyback supurespion; Internal Time hase Bcan Waveiorm arzilable for external use; palse/output uvailable for checking T.V. Line OfP Translormers, ete.; provisinn for external $X 1 / P$ and CRT. Brightnexa Modulation. A.C. mains $200 / 2$ no w. £18/18/plus P. \& P. 8/- or £4/13/-deposit, plus P. \& P. 8/. and 12 manth/y payments of $28 / 6$ FULE 12 MONTHS' GUARANTEE INCLUDING VALVES AND' TUBE.

STAAR 45

 9v. BATTERY
RECORD PLAYER

Complete with pick-up \& deck For a completely portable record player. Head is protected by a plastic dome with a brush which cleans the stylus as it risen into
playine position. 45 r.p.m. Autoplaying position. to r.p.m. Avto motor. Attractive 2 -tune arey tinish.

$$
\text { E2.9.6 P \& P } 2 / 6
$$

TRANSISTORISED AMPLIFIER

 CAN BE USED WITH THE STAAR 45Output I watt. Can be used with the above record player. Size $4 \frac{1}{2} x$ $2 \frac{3}{8}$ in., priited circuit. Tone and volume control. 4 transistors. Push/pull output complete with 3 in . moving coil speaker.

$$
\text { BUILT AND TESTED } 49 / 6 P \text { \& } P 2 /-
$$

SIGNAL GENERATOR

Coveriug $100 \mathrm{Kc} / \mathrm{s}-100 \mathrm{Mc} / 4$, on mandmenta and 100 Ne:'s. to 200 Mc 's. on harmulates. Metal ouse 10 in . x titin. $x 51 \mathrm{in}$.ogrey baumnuer thish. Incorporating three miniature

valven and Metal Revtifer. A.C. Malus :200f
 to a repth oi 30 m . Mordulated or unumdu. tated R.F. nutput continuously variahle able A.F. outut. Incorporating nagicerye as output indikator. Aucn acy plus or matus 2%.
Or 30\% deposit and fif monthly, payments of 21/6. Pont \& I'acking $5 / 43$ extra.

LINE E.H.T. TRANSFORMER

With buils-in line aiol wifth coutrol. It $\mathrm{h} v$ sean Coll, goin. deffection. on ferrite okem. Frame O.P. tranfornuer 300 pi , l8 KV sumothing audelawer. Cun be used
 FOCUS MAGNET sumbile tur the uhove (state tubf), 10\%. W, P. \& P.

4-VALVE AMPLIFIER IDEAL FOR SMALL HALLS

High power-high quality 200/250 v. A.C. 2 inputs, mike and gram, bass and treble lifts. For use with Standard/L.P. Records. Two would be suitable for stereophonic. Ideal P.A. system, $£ 3 / 19 / 6$. P. \& P. 7/-. CRYSsystem, E3/ $^{2} / 6 / 6$. P. \& P. 7/-. CRYS-
TAL MIKE to suit, $15 /-$ P. \& P. 2/-. TAL MIKE to suit, $15 /-$. P. \& P. $2 /-$.
Bin. SPEAKER to suit. $12 / 6$. P. \& P. 2/-.

RADIO AND T.V. COMPONENTS (ACTON) LTD. 2IA, ACTON HIGH STREET, LONDON, W.3. goods not despatcheo outsioe u.k. all enquiries s.a.e.

PVC GROMMETS \& Blanking Plugs

CASTLE PRODUCTS LTD.

ELTRIC ROAD, WORCESTER. TELEPHONE: 22036 \& 26579

FIri-IEiland Tape Recording

THE NEW

 LEAK "SOUTHDOWN" CABINET

For the finest equipmentthe finest cabinet. Here at last is a cabinet that really does justice to the worldrenowned Leak Hi-Fi equipment. Accommodates any combination of Leak equipment. Space saving, with modern styling and unique design, you will be proud to own the Leak "South
down." down."
The largest range of $\mathrm{Hi}-\mathrm{Fi}$ equipment in the North. Demonstrations with pleasure.

PART EXCHANGES - HIRE PURCHASE TERMS The North's Largest Electrical Store

158 New Bridge St., Newcastle Upon Tyne 1. Tel: 29866

Tubes Carr. \& Ins. 12/8.

 Highest quality-compare our pricesGUARANTEED | NEW TYPES HoST mULLARD EMITRON. EMISCOPE. BRIMAR, MAZDA, COSSOR ferranti types.

12 in.	£1.15.0	£3.10.0	MW ${ }_{\text {M }} \mathbf{3 1 / 7 4}$
14 in .	\&2. 0.0	£4. 0.0	
15/17in.	\$2.15.0	£4.15.0	${ }_{\text {CRM }}$
2 lin .	\&3.15.0	\&5.15.0	${ }_{\text {¢ }} \times 6-0-0$

6 Mooths 12 Montias
£1.15.0 £3.10.0
2. 0.0 £4. 0.0
15.024 .15 .0
£5.15.0

TRANSISTORS Hage
Rell
Reluctions
spot than

 yatched Oubput Kils (orstive nal

253 v . SILICON RECTS.

Top quality $8 / 6$ (3 for $24 /-)$.). COSSOR D.B. SCOPE TUBES. ilug sour quality oscilioscupe
$55 /=$

VALUE!

4 watt AMPLIFIERS
Excellent ainplifer with high galn preamy stage (1013), driving 20p3 output stage, complete with siu
speaker. In attractive 2-tone case Tone control, neyative feed-back ready tor immediate use, individaally tested. Amazing volume and clarity, ideal ior guitars, record playern p.a. in small halis, baioy alarms, eto. Easily worth £5. Our price whilst stocks last. Carr. 45/=
Packing, ete. 7,6 .

VALVES

BY RETURN OF POST GUARANTEED 3 MONTHS NEW LOW PRICES
10% DISCOUNT TPECLAL OFFER of any SIX VALVES maried in black type $(15 \%$ In dozens). Pust 1 ralve bd.; $\frac{2-11}{} 1 \%$. FREE TRANSIT INSURANCE. All valves are new
or of fully gum rauteed ex-fovernment or ex-equipment origin. Satisiaction or Money Back Guaran
tee on gocrls if returned unused within 14 day
 1H.4 1NUGT 184 $\begin{aligned} & \text { 1T4 } \\ & \text { 1T4 } \\ & 2 \mathrm{~A} 8 \\ & 2 \mathrm{D} \cdot 21\end{aligned}:$ 3 3 312
34
30

\qquad
\qquad 3 VB
3Y:GT ${ }_{5 \%}^{52}$ 6/3 6.10
$8 A$ 6A ${ }_{6}^{6 B}$ 63 H 6 숭 잉気路

technical trading co.
 devonian court, park crescent place, brighton 7.

A.C. ONLY. Chassis size $15 \times 6{ }_{9}^{7} \times 5 \mathfrak{b}$ high. New manufacture Dial $14 \frac{1}{2} \times 4 \mathrm{in}$, in 2 colours, predominantly gold.
Pick-up, Extension Speaker, Ae., E., and Dipole Sockets. Five "piano" push buttons-OFF, LW, M.W., F.M. and Gram. Aligned and tested
With all valves and O.P. Transformer. Tone Confrol fitted Covers $1,000-1,000$ M.; 200-500 M.; $88-98 \mathrm{Mc} / \mathrm{s}$
Valves EZ80 rect., ECH81, EF89, EABC80, EL84, ECC85.
Speaker and Cabinet to fit chassis (table model), 47/6 (post 3/6)
$10 \times 6 \mathrm{in}$. ELLIPTIC.AL SPEAKER, $20 /$-, to purchase of this chassis. TERMS: (Chassis) $£ 3 / 10 / 0$ down and 5 Monthly Payments of $£ 2$, or with Cabinet and Speaker $£ 4$ down and 6 Monthly Payments of $£ 2$.

"SCALA G-TRANSISTOR and DIODE KIT fantastic value

E6.5.0 (Pout $5 \rightarrow-1$

All Brand New Parte-attractive cabinel-choice of 6 colours; $83 \times 2 \times 51 \mathrm{j} \mathrm{i}$. bigh. Ferrite aerial, printed circuit, good styling, 31 in . Apeaker, fully tunable L.W. And M.W. $400 \mathrm{M} . \mathrm{W}$. plahh-prul Putput, All purts suppised separately. Write for Price List. Consiruction Buok and Circuit, $2 / 6$ refunded
COLLARO STUDIO TAPE TRANSCRIPTOR. 3 MOTORS. 3 SPEEDS. $1_{8}^{3}, 3_{4}^{3}$ and $7 \frac{1}{2}$ I.P.S. Push-buttons, $£ 10$ Pr/ $/ 6$ ($10 /-$ carr.) inc. spool

MAINS OPERATED RADIO

CHASSIS AND AMPLIFIER
Chassis $10 \times 5 j \times 4 \mathrm{in}$, front to back, Yalree
UBC $41, ~ U C H+1, ~$ UBC41. UCBH1, UF89, UL\&A wilh metal reetitier, Jin. suenker. Fertte rod aerinl.
Tone, vol, and gram. pokition. and M. waves. Limited quantity at only $£ 6$ (5f-carr.) complete with sinall dial

AUTOMATIC RECORD CEANGERS LATEST MODELS, 4 SPEEDS CRYSTAL CARTRIDGE. All 5 '- extra carr. B.S.R. UA14, £6/10/0. Garrard Slimline, Mono, 87 . Stereo $87 / 50$. Motor Board for UA8, UA20, UA14 and Slimline $5 /-$ (post $1 / 6$) or $3 / 6$ post paid when purchased with Autochanger

> SUPERIOR GRAMOPZONE AMPLIFIER

Valves UY85, UF80 and UL84. Mains trans. 200-240 v. A.C. Covered baffle $13 \frac{1}{2} \times 7 \frac{1}{2} \mathrm{in}$. ($0 \frac{1}{2} \mathrm{in}$. speaker) or 11×7 in. ($8 \times 5 \mathrm{in}$. speaker), 3 front controls bass, treble, on-off/vol. 74/- (post $4 /-$) either type. Rexine cabinet to fit, with carrying handle and lid (detachable), 14 in . or $12 \times$ $8 \frac{1}{2} \times 5$ in., $16 /-$ extra

SELF-POWERED VHF TUNER CHASSIS. COVCr ing 88-95 Mc/s. Mullard permeabilly Tuner. Dims. $104 \times 4 \times 5$ ha. high ECU85 and 3 EP91, 2 diodes. Metal Rectifier. Muins trunsformer Fully wired and tested. Only \&7/7/-(carr. pald). Feeder 8d. yard.

VERSATLLE PRINTED CIRCUIK AMPLIFIER. Sin $\times 2 i n . \times 1 \frac{1}{2} \mathrm{in}$, over transformers. Output for 3-ohm. speaker. Suitable for microphone record player, guitar and radio input. $0-12$ volt battery required 4 Transistors, Frequency range 100 cps . to 25 Kcps . Push/pull output single ended. Instruction sheet provided. Fully wired ready for u
Two types available, 1 W output. $35 / \mathrm{m}, 2$ watts $41 / \mathrm{F} . \mathrm{P} . \& \mathrm{P} .2 / 6$. THIS SUPERB SIET FOR 89
6-transistor radio covered in sponge clean Duracolour fabric, in latest two-tone shades. M.W. and L.W., ferrite rod, provision for car aerial, 4lb. With carrying handle. $12 \times 7 \frac{1}{2} \mathrm{in}$. high $4 \frac{1}{2} \mathrm{in}$. at base tapering to 2 in . at top. Brand new, fully guaranteed $£ 9$. Carr. paid. Worth $£ 16$. TAPE RECORDER AMPLIFIER
Type TR1. Fully built, high gain, low noise, printed circuit. Attractive gold front panel $13,3 \mathrm{in}$. Height $5 \frac{1}{2} \mathrm{in}$. overall. Front to back $5 \frac{1}{2}$ in. Vol, and onfoff tone. Mike and radio, ext. speaker jacks. Valves ECC83, ECL82, E280. Mains trans. Ready to bolt to B.S.R. Deck. Complete with switch wafer wired. Our Price ONLY $55 / 15 / 0$ ($6 /=$ Packing and Carr.). Or for Collaro Deck same price (state which). TELSFUNKEN SIEREO AMPLIFLERS. 2 ECL82, $2 \therefore 21$ watts, $12 \times$ $y \times 21 n .$, piano keys, $25,18 / 6$. post $4 /$-.

Send 0d. (stamps will do) for 20 -page illustrated catalogue. All New Goods. Delivered by return. (C.().D. 2/- extra)
all items guaranterd 12 months. valves 3 months
GLADSTONE RADIO "SCALA," CAMP ROAD, FARNBOROUGH, Hants.

Farnborough 3371 Closed Sat.
and 247 New Road. Copnor, Portsmouth. Closed Wed.

BOMB SELECTOR UNIT. I uniselector, 3 Gank, 25 way. 22 ohm coil, 1 counter $0-40,1$ relay 500 ohm $2 \mathrm{~m} ., 50 /-$ each. Post 3/-
AVO Bridges. No. $1 \mathrm{Mk} .2,5 \mathrm{pf}$. to 50 mfd ., resistance 5 ohms to 50 megohms. Valve voltineter 0.1 to 15 v . leakage test, and Poer factor. 230 v. A.C. As new, $£ 7 / 10 /-$ each. $5 /-$ post. Marconi signal generators. TF 144 G , excellent condition. $£ 35 / 10 /$ - each. H.S. RELAYS. $1,700 / 1,700$ ohm coil, $17 / 6$ each. $500 / 500$ ohm coil 15/- each. G.P.O. 3,000 type 100 ohm coil 4 M., 4 B., 10/each. 2,000 ohm 2 C/O., $12 / 6$ each. G.P.O. 600 type 10 assurted on bank $35 /$ - Post $3 /$-'Small relay 2 C/O $5,000 \mathrm{ohm} 12 / 6$ each. UNISELECTORS 4 bank 25 way 30/-. 6 bank 25 way 35/. 8 bank 25 way $40 /-$. All 22 ohm.
ROTAX CONVERTERS. Type 8 a., 24 v. D.C., 115 v. A.C. at 1.8 amps., 400 cycles. 3 -phase. \&5 each, carr. 7/6.

CANADIAN G.E. TUNGAR BULB. $60 \mathrm{v} .6 \mathrm{amps} .189049,15 /-$ INDICATOR UNIT. 5 inch tube CV1530. Valves $2 \times$ CV138, $2 \times$ CV140, $2 \times$ CV261 30/-. Post $5 /$-. ARC5 Rec. $190-550 \mathrm{Kc} / \mathrm{s}$ £4/10/ . Post $4 / \mathrm{F}$. Rec. $3-6 \mathrm{mc} / \mathrm{s}$. $£ 4 / 10 / \mathrm{m}$. Post $4 / \mathrm{l}$. Transmitters $3-4 \mathrm{mc} / \mathrm{s}$. and $4-5.3 \mathrm{mc} / \mathrm{s}$. $£ 3 / 10 /-$ Post $4 /-$. ARC5 modulator £3/10/-. Post 4/-. Amplifier AIC for the above units $£ 2 / 10 /=$. Post $4 /$ -
AR88 ORIGINAL SPARES VALVES. 1×5 Y3GT, $1 \times$ VR150 $30,2 \times 6 \mathrm{H} 6,1 \times 6 \mathrm{~K} 6,5 \times 6 \mathrm{SG} 7,1 \times 6 \mathrm{SA} 7,1 \times 6 \mathrm{SJ} 7,2 \times 6 \mathrm{~J} 5$ (metal valves). 1 set headphones HR. 3 spare pilot lamps. All brand new in cartons. Lot $£ 3 / 10 /-$. P.P. $2 / 6$
CONDENSERS. 1 mfd ., 20 KV., WKG., new U.S.A. Size $4 \times 12 \times$ 14 approx. Wt. 60 lbs. Packed. $£ 6 / 12 / 6$, carr. $12 / 6$ each. 50 mfd ., 330 volts A.C., $30 /$ - (Pyranol). Post $4 /-.8 \mathrm{mfd} .1,500$ volts (Pyranol), $17 / 6$ post $3 /-.8 \mathrm{mfd} .500$ volts U.S.A., $10 /-$. post $1 / 6.4 \mathrm{mfd}$. 600 volts, U.S.A., 7/6. Many other types from Stock. Quantities available.
TRANSMITTERS BC 640. $115 / 230$ volts A.C. Freq. 100-156 mc / s. Output 50 watts AM, CW, MCW. With all valves mounted in 6 Ft . Cabinet. $£ 45$ each. B44 Trans $/$ Receiver, $60-90 \mathrm{mc} / \mathrm{s}$., with full operating kits, $£ 16 / 10 /-$ F.O.B. W/S No. 19 Trans/Rec. Mk. 3. Excellent condition. 65/- F.O.B.

List available 6d. S.A.E. for all enquiries.

W. MILLS

3-8 TRULOCK ROAD, TOTTENHAM, N.I7 Phone: Tottenham 9213 \& 9330

CHASSIS and
 CASES by

Type Y

Type W
Type z

BLANK CHASSIS

SAME DAY SERVICE
Of over 20 different forms male up to YOUR SIZE Order LiKAOE SIZE you require to nearest $1 / 161 \mathrm{~h}$ (Maximum length som., depta 4in.) SEND FOP M SEND FOR HLUSTRATED LEAFLET Or order straight away, working out total arm for four-sided chassis in 18 g.w.g. (for 16 s.w.g. aic 1/16th).
48 sq. in. $4 /-\quad 176$ sq. in. $8 /=\quad 30 \frac{1}{}$ sq. in. $12 /$ $80 \mathrm{sq}, \mathrm{in} .5 /-\quad 208 \mathrm{sq} .1 \mathrm{ln} .9 / \mathrm{g} \quad \mathrm{s} 36 \mathrm{sq} . \mathrm{in} .13 /$ $112 \mathrm{sq} . \mathrm{in} .6 /-\quad 240$ sq. in. $10 /-\quad 348 \mathrm{sq} . \mathrm{in} .14 /$ $144 \mathrm{sq} . \operatorname{in} .7 / \mathrm{F} \quad 2 \overline{2}$ sq. in. 11/- and pro rata. Piscouvts for mantitles Flaishes P. \& P. 3/. Discouuts for quantities, Flaishes PLANGES ((21n.. |la.), 6d, per bend. STRENGTHENED CORNERS 1/- each eorner PANELS: Any size up to 3 ft . at $4 / 6 \mathrm{sq}$. it . $18 \mathrm{~m} . \mathrm{w}$.g.
 114 2/6: 432 2/8; 5763 3/-. 287/289 EDGWARE RD., LONDON, W. 2 Tel: Padd

TRANSFORMERS

COLLS
LARGE OR SMALL QUANTITIES
CHOKES
SPECIALISTS IN

FINE WIRE WINDINGS

MINIATURE TRANSFORMERS, PICK-UP.
CLOCK AND INSTRUMENT COILS. ETC. VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., M.O.S., L. $₹ . B .$, ETC. 123-5-7 PARCHMORE ROAD, THORNTON HEATH, SURREY LIVINGSTONE 2261

THE HIGH-FIDELITY MAIL ORDER SPECIALISTS
 goods despatched by return

Carriage, Packing \& Insurance (U.K.) FREE ! ! AMPLIFIERS TUNERS SPEAKERS MOIORS PICKUPS . MICEOPHONES DUD CABI DALE, TSAK. ROGERS. DULCI, ARMSTRONG. CHAPMAN, JASON, WHARFELENCO, ACOS, B. J., PBLIIPS, LUSTRAPEONE. RECORD HOUSING, FERRO, GRAPH. VORTEXION, BRENELL, WEARITE, TANNOY, LOWTHER, BONETTE, II-CORD, S.M.E., ETC.
Hire Purchase Terms available - "Comparator" Demonstrations
WORLD WIDE EXPORTERS

C. C. GOODWIN (SALES) LTD.
(Dept, W.40) 7 THE BROADWAY, WOOD GREEN, LONDON, N.22. $T_{\text {Thurs. }}^{0} \mathrm{i}$ ip.m. \quad Tel. BOW es Park 007t/8
A.C.SOLENOIID type sbm/t NOW FITTED WITH STAINLESS STEEL GUIDESSIX TIMES THE LIFE

Continuous $3 \frac{3}{4} \mathrm{lbs}$. at $1^{\prime \prime}$. Instantaneous at 16 lbs . Smaller sizes available. Also - transformers to 7 kVA 3 phase.

an important new book for

technicians, amateurs and
apprentice service engineers

SERVIIIIG transision radios

LEONARD LANE
edited by E. A. W. Spreadbury, M. Brit. I.R.E.

This book, based on an outstandingly successful book originally published in the U.S.A., gives in the language of the practical man a working knowledge of the theory of transistors as well as the applications and techniques. Printed circuits have been evaluated from the servicing standpoint and simple repairs to them are discussed. Completely anglicized, with all the line illustrations redrawn to conform with current British practice, this entirely practical work will appeal equally to the technician and to the amateur or apprentice service engineer.

prinite circuirs

42s net by post 42s 11d 260 pp. plus 16 pp. of plates
obtainable from
leading booksellérs

SERVO \& ELECTRONIC SALES LTD.

AIR-COOLED U.H.F. TRIODES,T YPE 2C49A for quertion tip to 2, 300 Mc 's., complete with mount and tracable 400 Mc/s carily, E6/10/- (2y/6). Mounts and cavitlea
 MONOBLOC 0 ,
 flxt(:E. $+186 \mathrm{FD}) .+193 \mathrm{BB}$. $+148 \mathrm{AA}$. . $17 / 6$ each $(2,-) .400 \mathrm{c.p.s}$. PIONEER-BENDIX TORQUE UNITS ntw available. SERVOMEX D.C. STABILISED POWER UNITS,
 geat ratios $30: 1$ ami toff:1. INDICATOR UNIT, type 28 , complete with 3 ilh grat matios 30 : anmil
 PLESSEY MK, 4 PLUGS AND SOCKETS, plense state vour requirenients quoting C'Z Nor. ELECTROSTATLC VOLTMETERS, $0-4 \mathrm{kV}$. TURNER MODEI, 23, DEW
 iuly yuarauted. S.T.C. TANTALUM CAPACITORS and PLESSEY CASTANETS
IN STOCK. RADIAC INSTRUMENTS INCLUDING FOUNTAIN PEN DOSIMETERS IN STOCK. RADIAC INSTRUMENTS INCLUDING FOUNTAIN PEN DOSIMETERS
AND CHARGING UNITS, RADIATION MONITORS AND CONTAMINATION METERS NOW AVAILABLE, S.A.E. $\|=1$. CAMBRIDGE MERCURY IN STEEL THERMOMETERS, $30-150^{\circ} \mathrm{F}$ Eiu, dian.. Izft. tube, $75 /-(H /-)$. PARISTOR PARALLEL RESISTANCE CALCULATORS bur solving reciprocal reaislunce eqnations, 8.A.E Int!phlet. $44 / 6(1 / 6)$. P.T.F.E, TWIN-SCREENED MINAITURE CABLE ($19 \times 006 \mathrm{in}$.$) ,$ prices and detalls on applicution. OLDHAM PYV4M ACCUMULATORS, 2 v. 17 a.h.

 PUTER MAGNETIC RECORDING TAPE, $1 / 6)$. T.C. BRIDGE RECTFIERS B/ $/ 12 / 2 / 1 \mathrm{iCW}, 24 \%$ vins oll 3in. centres, 10 mp . D.C., brand new $35 /-(2 /-)$. E.E. SEALED REFRIGERATOR UNITS, 110 r .50 c . p .s., with cooling coils, ied box, athe thermostat. charged, brand new. £20 (corr. estra). FERRANTL COLD CATHODE THYRATRON GN10. $12 / 6$ (1/ $)$ CARPENTER POLARISED RELAYS, euch riilc atible. "perate at $0.25 \mathrm{v}, 2.2 \mathrm{~mA} . .27 / 6$ ($1 / \mathrm{h}$). HIGH FREQUENCY MOTOR ALTERNATOR SETS, o/p 200 v .1 .100 c.p.s. 1 ph. $1 \frac{\mathrm{kla}}{}$. i/p 415 v. 50 e.p.s. 3 ph . Complete with control gear and mabiliser matufatured by c.p.p. COLVERN PRECISION POTENTIOMETERS, cunt. rotn.。 $2 \mathrm{gan} \%$ 。 $8 . \overline{5} \mathrm{~K}$ plum
 plis $5 . \overline{5} \mathrm{~K}$ In. whait, $17 / 6$ ($2 /-y$. CAMBRIDGE GALVANOMETERS, with builf-in mains projection hampand ground giasw seale. in excellent condithos aud indivilually

 POWER SUPPLY UNITS, 129 v. 8 pl. 400 e.p.s. output. 230 F. 50 e.p.s. input, uetered ollpult, rack mulating. £35 (30/न. G.E.C. 2. D. D.C. MINIATURE MOTORS CERTAIN TYPES OF SIZE 11 . 15 , $1 \times$ ath $\because 3$ SYNCHROS AVAILABLE EX STO 4AO C.P.N. SERVO SYSTEMS COMPLETE WITH MOTORS. TACHOS, AMPLIFIERS
 all mechatical and electronk cobapobents ior antonatic control aut compntation Please add carriage in brackets for delivery in England and Wales. Post orders and callers to:
43. HIGH ST., ORPINGTON. KENT. Tel.: Orpington 31066. WORKS: LYDD. KENT,
Terms: Nett monthly for approved accounts only, otherwise Cash with Order.

IS YOUR ABILITY GETTING THROUGH

I.C.S. personal training enables you to develop you abilities-at your own pace-for a more responsible future. Start now. Choose the course that will help your career and fill in the coupon below.

DIIRHATIONAL CORRESTOHDENCE SCHOOLS

PUSH-PULL FIVE
 (5 Transistors, plus 2 Diodes)

\star werial.
\star werial.

* Tuning
* Tuning
\star Volume
\star Volume
oscillator control.
oscillator control.
* Case with spea-
* Case with spea-
* Med/long waver.
* Med/long waver.
\star Simple a.sembiy
\star Simple a.sembiy
dlagramw.
dlagramw.
* 250 Milliwatta
* 250 Milliwatta
output P.P.
output P.P.
* Can be bualt ior 59/6
* Can be bualt ior 59/6
* Parts price list, etc. $2 /$

Plank; parts price list 3 /-

PUSH - PULL SIX

\star Ferrite rom * \ddagger new type transistors and top qaully componentr.tive trac.tive
case in 2 cone and carrỵiug strap with gilt trim. \star Kin. speaker. \star M.W./L.W.
\&3.19.6 Total building
P.P. 3/.

Components price Int and plane, 2:-

OVERSEAS POST IO/-
ALL PARTS SOLD SEPARATELY AFTER SALES SERVICE

RADIO EXCHANGE
27 HARPUR STREET, BEDFDRD (Opp. Co-op)
Phone 2367
10 to 1 p.m. Soturday

WORLD RADIO TV HANDBOOK

1963 edition.
22/-. Postage 1/-

PRINCIPLES OF COLOUR TELE VISION by G. N. Patchett. 16/-. Postage 6d.

SERVICING TRANSISTOR RADIOS AND PRINTED CIRCUITS by L. Lane. 42/-. Postage $1 / 3$.

WORKED RADIO CALCULATIONS by A. T Wites. 15/-. Postage 6d

ELECTRONIC ORGAN HANDBOOK by H. Emerson Anderson. 40/-. Postage 1/-.
RADIO COMMUNICATION by J. H. Reyner \& P. J. Reyner. 55/-. Postage $1 / 6$.
ELEMENTS OF ELECTRONIC CIRCUITS by J. M. Peters. 21/-. Postage 1/-.
THERMIONIC VALVE CIRCUITS by E. Williams. 27/6. Postage $1 /-$
G.E.C. INT. SCR. MANUAL. 12/-. Postage $1 /-$

RADIO VALVE DATA 7th Ed. Compiled by "W.W.". 6/-. Postage lod.

COMPLETE CATALOGUE I/-

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS of British and American Technical Books

19-21 PRAED STREET,

 LONDON, W. 2Phone: PADdington 4165 Open 6 days. 9-6 p.m

RELAYS-WE HAVE 100,000 PLAIN AND SLUGGED WHICH WE CAN OFFER AT EXTREMELY CO
 Enquiries welcome for REJ, 4 YN to meet your reyuirements. Pleane state oppryating nollapmandlor curcene - contacta nari applitu comag
 OUR FAMOUS TRANSFORMERS. Input $20 / 250$ Output tappel 3, 4, 3, 6, 8, 8. 10. 11.3, 15, 18, 20. 24, + . t . $38 / 6$.
 ACOS CRYSTAL MIC. INSERTS. HIGM GRADE MINIATURE MAGNETIC EARPHONE HIGR GRADE MINIATURE MAGNETIC EARPHONE. Complete with ear clip, lead, pluk and socket. \%/6; TOGGLE SWTCHES. DPIT $3 / 6$. AP $1 / 9$ MIGRO SWITCHES spring I faf, nuike und break, 5/6. MAINS TRANSFORMER AND RECTIFIER gIVIng NICKEL NIFE BATTERIES NICKEL NIFE BATTERIES. 1.2 volt, 2.5 ampe. size $3 \times 22 \%$ lin. Praticatly everlasting. $6 /$ or 3 for $1 \% /-$
 Ex W.D. MORSE KEYS. 3/8. 6/~ and 8/6.
 ${ }_{1,000}$ NEW S.T.C. FREQ. CRYSTALS. $13,740 \mathrm{kc} / \mathrm{k}$. to $19,872 \mathrm{kc} / \mathrm{a} ., 5 / 6$ each. I'lus tid. postage. Lists asailiable.
 W/W RHEOSTATS 12 v. 1 a., 2/6; 5 a. tilin. dia., 10/6. miniature relays. $1 \frac{1}{12} \times 1 \% \times$ lin. Wgt. 12-1 M/A METERS. M/C 2 2in. Flauged mountlag. $21 / 6$. SET 21 I.S. TWIST DRILLS. $/ 1 / \mathrm{Bin}$. to sin. in 64ths. Packed in winkich care, $28 / 6$. Set $17-15 / 6$. Sin. VERNIER SLDE CALTERS with Dept 5 in VERNIER SLIDE CALIPERS with Depth Gauge $9 /-$ each. Wiih thuml) :uljualment $10 / 6$. 6in. STEEL RULES 1/9. 12in.- $2 / 6$. 6ithe, 32nds, lims alim. 19/6. Our uriex 17/6. Weight 4 ozs.
 TOGGLE SWTTCHES. 4 c/us. Centre Off, $3 / 6$.
 ERICSSON UNISELECTOR
 SWITCHES

We now have a-further gupply of 6 bank 25 -way and 3 lank 50 -way 50 si. D.C. st $40 /$ - cach.
Lists sent on request. All post paid. Stamps please.

THE

RADIO \& ELECTRICAL MART
P.O. Box 9 G.P.O. Tunbridge Wells, Kent

G.E.C. - SIEMENS - S.T.C. - $3000-600$ SEALED - HIGH SPEED.

Large Stocks - Cheap Prices Quick Deliveries.

SPECIAL OFFER

Surplus to Requirements
GUARANTEED 3000 TYPE COIL5
SINGLE TWIN

TELEPHONE HANDSETS (ex unit)-ideal for building inter-coms., etc. TWO for 7/6, post 2/6.
Detivery Ex. Stock. Prices on Application

H.T. 31 Inpue 11.5 v Oucpur 250 v. at $\$ 25 \mathrm{~mA}$.	H.T. 32 Input 11.5 v Output 490 v. at 65 mA .

TYPE 1. Dual voltage. 12 v. D.C. or 24 v. D.C. Input 265 v. D.C. 120 mA output or 540 v . D.C. 26 mA . output, 37/6. Post 5/-
TYPE 2. 12 v. D.C. Input; 275 v. D.C. 110 mA output or 500 v. D.C. 50 mA output, 37/6. Post 5/-.

HEAVY DUTY SLIDING RESISTORS. suitable for charging boards, etc. 250 watts at 25 amps., 4 ohms. OR , 125 watts at 12 amps., $1 \mathrm{ohm}, 12 / 6$. Pose 3/-.
LOUD-HAILER with hand-powered microphone. Operaces on eicher 12 v . D.C. or 24 v . D.C. Output 6 watts. Weatherproof and excremely strong. Easily mounted on vehicle or boat. Complete-ready to work, 90/-. Carr. 10/-.

BARGAIN OFFER. Paxolin with foam rubber backing. Approx. $12 \mathrm{in} . \times 8 \mathrm{in}$. Paxotin
 foam rubb
Post $2 / 6$.

DEPENDABLE RADIO SUPPLIES LTD.
12a TOTTENHAM STREET, LONDON, W. 1
Tel.: Langham 7391/2
WRITE-CALL-PHONE
LARGE SELECTION OF COMPONENTS AT GIVE-AWAY PRICES TO CALLERS

MAKING AN AMPLIFIER?

TRANSFORMERS FOR MULLARD AND OTHER AMPLIFIERS

OUTPUT TRANBFORMERS (Secondaries for 3.75 and $\mathbf{1 5}$ ohms)
T.44. $\quad 5 \cdot 10 \mathrm{amp}$. ult ru linear, 8,000 uhm. 43% tappings $32 / 6$. P / P P/6.
T.182. 5-10 amp. aud Osram $9 / 2$, fi,600 ohtm. 20% tapplngs $32 / 8$. P/P $q / 6$. T. 100 . $5-10 \mathrm{amp}$. LOW loading, ti, 000 ohun. $32 / 6$. P/P $2 / 6$.

T142. LCL86's or ECL82's Push/pull, 9,000 ohm 20% lappings, $30 /$ - P/P $2 / 6$ T,140. \& watt amp. type Δ lape anp., 3 watt sterec, 5,000 obm, $13 / 6 . \mathrm{P} / \mathrm{P} 1 / 6$. MAINS TRANSFORMERS (Primarles 240-220-200; 0-10 v. 50 cfs.)
 6.3 ․ 1 a., $35 /-\mathrm{P} / \mathrm{P} 3 /$.

 All transformers fully guaranteed, all shrouded fully except T140 and Transistor. Write ior our fully illustrated catillogue, with all data.
SPEGALL OFFERS FOR TRANSFORMER SETS. T. 162 and T. 58 , 64lT. 317 and two 142 's, $96 /-$. T.4t and T.55, 64/. T140 and T141 $35 /-$. T.143 and two T. $1+2 \%$ \% 901 -. P/P $4 /$. on all.
SOUTHERN TECHNICAL SUPPLIES, 83 Station Road, Portslade, Sussex

SOCKET SUREWS?

MOUNT PLEASANT LEYLAND, LANCS.
Phone: Leyland 21202.

We are specialist distributors and can offer quick delivery of all threads, including B.A. and Unified.

Olivers

 SOCKET SCREWS LTDDELAY CABLE, CALIBRATION AND TERMINATION SERVICE

Using Hackethal FLEXIBLE Delax Cable.
AEON
AEON Laborátories, Beech Hill, Ridgemead Road, Englefield Green, Egham. Surrey. Egham 3961/4

Ari up-to-date directory of the radio, television and slomestic electrical industries - now ready
WIRELESS \& ELECTRICAL
THADBR
YAARBOOK
*adio. television a electaical appliances

1963

All the facts, technical data and business information needed by radio and electrical dealers and service engineers-at your fingertips in one compact, quickreference volume.
Includes: Directory of Principal Trade Organisations; Official Addresses; Legal Guide; G.P.O. and other Licences; Rates of Pay; Addresses of Electricity Boards; Valve Base Connections; Specifications; Wholesalers; Proprietary Names Directory; Buyers' Guide, Trade Addresses, etc.
21s. net by post 22s. $6 \mathrm{~d} . \quad 8 \frac{1}{2} " \times 5 \frac{1}{2}$ " 436 pages
from leading booksellers
Published for "Wireless \& Electrical Trader" by
ILIFFE Books Ltd.
DORSET HOUSE STAMFORD STREET LONDON S.E.I

TECHNICALLY TRAINED by

 \square C in radio, television andOpportunities in Radio Engineering and allied professions await the IC S trained man. IC S Courses open a new world to the keen student.

RADIO AND TELEVISION ENGINEERING: RADIO AND TV SERVICING; ELECTRONICS, COMPUTERS \& DATA PROCESSING, etc.

ICS Courses give very real help to the man setting up his own business or facing a technical career in the-radio industry. Examination Courses for:-British Institution of Radio Engineers, City \& Guilds TELECOMMUNICATION TECHNICIANS, C. \& G. Radio \& TV Servicing (R.T E.B.), and P.M.G. Certificates in Radio. Telegraphy, C. \& G. Radio Amateurs.
LEARN-AS-YOU-BUILD PRACTICAL RADIO COURSE Build your own 5 -valve superhet radio receiver, Signal Generator and High quality Multitester.
FILL IN AND POST THIS ICS COUPON TODAY it brings the FREE IC S Prospectus containing full particulars of IC'S Courses in Radio, Television and Electronics.

2. \& I. ARRO SERVICES LTD. Head Office: 14 South Wharf Road, London W. 2
 Tel.: AMBassador 0151/2
 Cables: ZAERO, LONDON
 A.R.B. Approved Stockists
 RETAIL BRANCH (personal callers only): 85 TOTTENHAM COURT ROAD, W. 2 Tel.: LANgham 8403 Please send all enquiries, correspondence and Mail orders to Head Office

Fully regulaterl and stablized rack mounted (19in.) nains operated power untt providing the following facilities:

Cathode volts -1.0 kV . to -3.4 kV .
Grid volts 0 to -220 V .
Reflector volts 0 to -500 V .
L.T. supplies 4.0 v . to 1.4 A

INTERNAL GRID OR REFLFCTOR MODUIATION: Square wave: $2-4 \mathrm{kc} / \mathrm{s} ., 70 \mathrm{v}$. peak-to-preak.
Sawtooth: $150-600 \mathrm{c} / \mathrm{s} ; 0$ to 30 v . peak.
1'R1CE, iully overbauled and guarautced, £60. Packing and carrlage $£ 2$.

TRANSFORMERS

CHARGER TRANEFORMERS. $200-250$ v. inpnt:MT3AT, output 12-18-2()-24-30 v, at 2 a . MT16AT, output 24 38/6 STEP-DOWN AOTO-TRANSFORMERS. $0-110-200-220 /-$ 250 v., 150 watts \quad Packing and carriage $5 /$. 2516

HIGH VOLTAGE CAPACITORS

. 00005μ	20 kV . Vlscouol	15
. $001 \mu \mathrm{~F}$	12.5 kV. Visconol	
. $00025 \mu \mathrm{H}$	5 kV . Visemol	
. $005 \mu \mathrm{~F}$	5 kV .	
. $01 \mu \mathrm{~K}$	5 kV .	
. $02 \mu \mathrm{~F}$	5 kV .	
. $1 \mu \mathrm{~F}$	5 kV .	
. $1 \mu \mathrm{~F}$	10 kV .	0
. $26 \mu \mathrm{~F}$	7.5 kV .	
. $\mu^{\mu \mathrm{F}}$	2.6 kV .	
. $3 \mu \mathrm{~F}$	5 kV .	15
$1 \mu \mathrm{~F}$	2.5 kV .	1
$2 \mu \mathrm{~F}$	2.5 kV .	
$8 \mu \mathrm{~F}$	2.05 kV .	
	ang and curring	

HIGH STABILITY CARBON RESISTORS We have in ntock most of the standard values in ${ }^{\text {n. }}$

4-DECADERESISTANCE BOXES

Trutal range $0-100,000 \Omega$ in 10Ω steps. High stabiltty Reantors used throughout. Accuracy better than 1% PRICIE

Packing and carriage 10% \&11 186

MARCONI TF934 DEVIATION TEST

Fundamental freutuency range $2.6-100 \mathrm{mc} / \mathrm{s}$, basic; range can be extended wo jow ine/s, by using harmonics. Deviatton range $0-5,0.25$ and $0-75 \mathrm{ke} / \mathrm{s}$. in the modulation rauge of $50 \mathrm{e} / \mathrm{s}$. to $18 \mathrm{kc} / \mathrm{s}$. Sensitivity better than 55 unV . Power supplies $100-150$ and $200-250 \mathrm{~V}$. A.C. Price fully overhanled and guarantced-reduced to .. $£ 8500$

BOONTON RADIO F.M. SIGNAL

 GENERATOR TYPE I52AFrequency range 1 to $5 \mathrm{mc} / \mathrm{s}$. aud $20-28 \mathrm{mc} / \mathrm{s}$. directly calibrated, Vernier dinl adjustment $\pm 150 \mathrm{kc} / \mathrm{s}$. Internal modulation at $100,400,1,000,4,000,10,000$ c/s.; F.M. deviation rauge $0-35 \mathrm{kc} / \mathrm{s}$. and $0-100 \mathrm{kc} / \mathrm{s}$; A.M. modulation depth 30%. Preemphasis eircuit. Sync. output forminal. Compiete with externs Power supply Unit

AN/APR-4 RECEIVING EQUIPMENT

 For detection and measurements of comparative signal strengths of signals in the rauge of $38 \mathrm{me} / \mathrm{s}$. to $4,000 \mathrm{mc} / \mathrm{s}$. Receiver is essentialiy a $30 \mathrm{mc} / \mathrm{s}$. Ave stage L.F. Wide Band Amplifier with associated Audio and Video stages. 1.F. Bandwidth can be selected at $4 \mathrm{mc} / \mathrm{s}$. (wide) and $600 \mathrm{ke} / \mathrm{s}$. (narrow). Various ranges are obtained by means of interchangeable R.F. Tunlng Units which plugininto the reciver unit, The Tuning Units are available into the reociver unit, The Tuning Units are avaisable $300-1,000 \mathrm{mc} / \mathrm{s}$, , $1,000-2,200 \mathrm{mc} / \mathrm{s}$, and $2,200-4,000 \mathrm{mc} / \mathrm{s}$. 1.F. sensitivity of the receiver is approximately $38-50 \mu \mathrm{~V}$. Video output socket is provided on the receiver for C.R. display of the received sigaal. Internal power supply unit for operation on 115 v . A.C. Step-down tranaformer for working off 230 v . mains supplied if required. Prices
and further details on applitation. and further details on application.

PULSE GENERATORS

Messuremonts Corporation Typ 79 B

Pulse output: 150 V . minimum peak-to-peak, with width Pulse output: 150 V . minimurn peak-to-peak, with width
variable from .5 to 40μ sec., at repetitioa speeds of 60 to 100,000 per second. Synchronizing pulne 3 SV . peak-to-peak, $3 \mu \mathrm{sec}$, wide max., delayed by hali perlod. Carrier input sooket for pulse modulatiug of external siguals up to the limit of $200 \mathrm{mc} / \mathrm{s}$. $11 \delta \mathrm{~V}$. A.C. Mains Operation. Dimenaions 14in. $\times 10 \mathrm{in} . \times 101 \mathrm{in}$. Fully Packing and carrlure

CIRCUIT MAGNIFICATION METERS

MARCONI TF328; oscll lator frequency $50 \mathrm{kc} / \mathrm{s}$. to $50 \mathrm{mc} / \mathrm{s}$. $\pm 2 \%$; Magnification Bagge 10 to 500 in two bands; \pm measurements accuracy approx. $\pm 5 \%$; Tuning caysacltor range 40.450 pF ; Vernier capacitor range $\pm 3 \mathrm{pF}$.
MARCONI TFB68A, V.H.F.; osellator frequency 15 to $170 \mathrm{mc} / \mathrm{s}$. In two bands $\pm 2 \%$; Magnification range $00-180, \quad 150 \cdot 450, \quad 400-1,200$ measurements accuracy
$\pm 10 \%$; Tunlag capacitor $12-85 \mathrm{pF}$. with Vernier acale
 " COMMAND " MODULATOR UNITS BC 456
Contalns Tone Oncillator 12J5GT. Speech Amplifier and Modulator 1625. Voifage Regulator VR150, Microphone Transformer for Carbon Microphone Input and Modnla. tion Tranaformer for sereen Grid Modulation of tho
1625 valves. As new, without Dynamotor. 25/w. PP. $5 / 6$,

EXP.O. MAGNETICCOUNTERS

 500Ω Coll, energized by 24 V. D.C., four digit electuro magnetis fast acting counters (non-cancelling tyl) counting up to 9999 . Perfect coudition. 8/6. P.P. 1/6.
POST OFFICE RELAYS

All Brand New

1 M. at 1 a., 6,5008 coil
M. +1 B . at 1 ar, $8,800 \Omega$ coil

2 B, at $500 \mathrm{mAL}, 2,000 \Omega$ con
$2 \mathrm{M} .+2 \mathrm{~B}$. at 500 mA ., break hefore make, $6,000 \mathrm{n}$ coll $13 /$
1 M, at 500 mA ., $2,000 \Omega$ coll
Postage aud packing 9 d 10/-
Postage and paeking ©d. per relay

METERS

AMERICAN WESTINGHOUSE SERIES 36 $2 \frac{1}{2} \mathrm{in}$. din. scalc; $2{ }_{3}^{3} \mathrm{in}$. dia. body; 3 !in. dia. flange. Open scale, clear and accurate calibratiou.

MOVING COIT METERS

1 mA . FBD, calibrated from -5 to $+8 \mathrm{db} . ; 0 \mathrm{db}$. at .778 r . into 6000 . Internal reslstance 50Ω 1 mA . callbrated $0-100$
$1.5 \mathrm{~mA}, 10 \mathrm{~mA}$., 25 mA . or 50 mA $110 \mathrm{~mA} ., 200 \mathrm{~mA} ., 250 \mathrm{~mA}$., 300 mA . 500 mA 10 v., $350 \mathrm{v}_{\mathrm{c}} 500$ จ. D.C., $1,000 \Omega / \mathrm{V}$. 1,000 v., 1,500 v., 3,500 г. D.C., $1,000 \Omega / \mathrm{V}$. , ath wit serves reslistors
MOVING IRON METERS:
5 v. A.C., 7.5 v. A.C., 15 v. A.C.
THERMOCOUPLE METERS:-
10 A. R.F. 15 A. R.F, callbrated for use from
Electrostatic $8 \frac{1}{2} \ln$. Round Plug. in, iō00

MINIATORE METERS GENERAL ELECTRIC $1 \frac{1}{2} \mathrm{in}$. Round flush elip mounted Moving Coll Meters: 1 mA. D.C. 25 mA. D.C. 30\% 75, 100, 150 mA, D.C 20%
INTERNATIUNAL" SUBMINIA TURE "PENNY BIZE" MNTRRS lin. Round Flush ring nut mounted, 1 mA . D.C. Moviag Coll, $30 /$

HIGH FREQUENCY THERMOCOUPLE METERS (see also abore)
200 mA . 2in. Round Plug-in
350 mA . ditto
Rd. Fl. Mud
$12 / 6$
$12 / 6$
13 Amps. 3 inin. Rd. Prol.
20
20
GANGAMO WESTUN 31 in . SCAI,F ROUN13 FLUAH MOUNTED GEALED METERA, 100 цA F.R.D. InteImal resistance $\mathbf{1 , 0 0 9 \Omega}$. inverse square lat callbrition (ln
V8WR). 8.
\qquad
"ELECTRON" OUTDOOR ROD AERIAL

3 strong tubular light alluy
screw-in sectlon 3 itt. long
each mounled on an insolated
kase. Bracket, hardware and
down-lead supplierl with the
aerial. 8uitable for wall or
window silt mounting. 15/-,
I'.P. $5 /-$

VENNER 8-DAY TIME SWITCHES

For piug-in mounting. 1 make aucl 1 break revery 2 hours. 2thour dial with nleht and day marking. Coutacts edjacity 1 a. 2 . Conaplete 20 key. BecondDltio 5 amps capacity
30% p.p. $3 / \%$
PLUG-IN COILS FOR EDDYSTONE Type 358 and $358 \times$ RECEIVER

All rangen from to kc / s. to $31 \mathrm{Mc} / \mathrm{s}$. covered in unith of follows: $40-90 \mathrm{ke} / \mathrm{s} . ; 90-150 \mathrm{tac} / \mathrm{s} ;$; $150-300 \mathrm{kc} / \mathrm{s.;} 300-$
 $4.5-9 \mathrm{Mc/a}. ; 9.2 \cdot 2 \mathrm{Mc} / \mathrm{s} .: \% 2-31 \mathrm{Mc} / \mathrm{s}$. PRICF $1 \% / 6$ per cuil. Post free. Full set of 10 coild, $£ 5 / 10 \%$. Posi free.

Abstract

MODEL MAKERS＇MOTORS 12 r．D．C．reverffle miniuture motor；ontput s watts at 7.000 r．p．m．Dlmensions $1 \nmid$ in，dia．x itn．long．Shait pre－lubricated bearings．．．．．．．．．．．．．．．15／6 post iree．

\section*{TRANSISTORS}

MULLARD：OCJt 7／6；OC45 6／6；OC78 H－；OC78D OC8：13／－；set oi two natched OC78 and one OC781 or two butched OCAI and one OC81D KDIBWAN；YCt01A．equiralent to OCi2 YELLOW SPOT： 6 v．L．F．1／10；GREEN SPOT： $3 / 8$

\section*{BELLING LEE 3－AMP．MINIATURE} TERMINAL BLOCKS Two－way Four－wa Four－way， $1 \times 1 \frac{1}{2} \times$ in．high Orslers accepied for mot．less than 3 terminal blowke Packing and pontage fol．

GEIGER－MULLER COUNTER TUBES

 G84B－Halogen quenched tube for Gnmma radiation． Average operathig voltage 370 v．；Platean length 100 v min．；Slope 3% per 100 r．；Buckground count 150 per minute．Dimensions： 23 mm ．dia． 060 mm ．long Suitable for geotogical surveys．．．．．．．．．．．．．．．．．15\％G10R－Background count 90 per minute．Dinzensians： 38 um．dia．$\times 195 \mathrm{~mm}$ ．long．Suitable for gemera applieations，otlierwise similar to G241
B12H－Halogen quenched thin glass wall beta－gamma （dipping）counter；typical operating conclition as $\mathbf{G} 24 \mathrm{H}$ ． Count up to 80,000 per minute． 200 min ．long $\times 35 \mathrm{mmi}$ dia．

G60E（CV2149）－organic quenthed tule for cosmic ray research．Average operating voltage 1，300 v．；Plateau leugth 200 v．；Bloue 3\％per 100 r．；Dead time less thrn $300 \mu \mathrm{sec}$ ；Disuensions 36 mm ．din．$\times 740 \mathrm{~mm}$ ．long 55／－ G24 ${ }^{2}$－Generally similur to GROF，for commic ray and gammat count．Dimensione： 22 mm ．dia． long

BYIOO SILICON RECTIFIERS

Half－wave silicon diode． $\mathbf{T 0 0}$ p．i．v．at 450 mA D．C． $8 /-$

KLYSTRONS

2K tō £7；RK25 £4：VA249 £30．
Further details of thse and other Klystrons aud Mag netrows smpplied on request

CATHODE RAY TUBES

	CATHODE	RAY TUBES	
2API	25／－	socs	120／－
3DP1A	15／－	3BP1	$22 / 6$
3RP1	45／－	3．） 177	100\％－
5FP7	10／6	5 CP 1	30／－
$7 \mathrm{BP}{ }^{\text {T }}$	$401-$	58P7 Dutule Gun	140／－
10UP2！	80\％－	129P7	40\％－
ACB10－1	ow soltage equiva	leut or VCR139，tite	havge－
alde but r	alliring 450 v．n	C．onty on fluai ano	20／－
ACR13	80\％	ACR22	40\％
CV960	80\％	CV966	40\％
CV1530	80\％	NCR！ 7	60／－
09D．09J	80\％－	VCR188	50%
VCR11？	701－	VCR517R	401
VCR139A．	．sce ACR10		

OA？6／－									KT63 6／－	04.7	$R 564$		
OA3 11／－			$7 E$	1		／E	KTis 15／－	$\text { R } 3 / 10 \quad 2 / 6$	VR57 6／－				
$\begin{array}{ll}\text { OB2 } & 6 /- \\ 083 & 6 \%\end{array}$	$\begin{array}{lll}4828 & 20 / \% \\ 4831 & 120\end{array}$	$\begin{array}{ll}604 & 178 \\ 606 & 3 /\end{array}$						KTU61 7／－	R10 15／－	VR65 4／－			
c3		6D6 3／－									KTW32 7／－	R17 8／－	VR6i5A 4i－
OD3 5／3	＋D1 4／－	6 F 5								KTZ63	$\begin{array}{ll}\mathrm{R} 18 & 76 \\ \mathrm{R} 19\end{array}$	$\begin{array}{ll}\text { VR66 } & 3 /- \\ \text { VR78 } & 5 /-\end{array}$	
O2\％5／－	182\％60\％	GF60	12AH7	5w 4 6／	1267 30／－	608025	DET18 4	102 $3 / 6$	$\begin{array}{ll}\text { L63 } & \text { 6／－}\end{array}$	RG1－125	VR83		
143.3 －	4THA 8／－	${ }_{6 F 7}^{61}$ 6／－		35Z4GT i／	1：399A 4／－	6094	DET20 2／6	とirys 5／	M8162 8／－	$12 / 6$	VR100		
$1.4 J$ T 5 i－	4×150	6r80 6／6	88	357 BaT 7／－	1616 7／－	6097	DETE $+70^{\circ}$	EFMA 10\％	M8L90 5／6	RK28A 60／－	VR101 12：6		
AR7eT		$6 \mathrm{6F17}$	TEATG	39／44 2	1619	609812	DF64 5／－	EV183 10／－	ME140120／－	RL18 12	VR102 126		
10－		$\mathrm{fiFS}^{\text {a }}$	12AT7	$41 \quad 5$	1620 20／－	6101	DF＇id	PF144 10－	ME140；30－	RYGI0	VR104 36		
$\mathrm{H}_{4} 4$	\＄18	${ }^{61} 833$ ， 4	12．AT7	12	1622 －12／－	6111． 15	DF93 \％	EWPro 10／－	Mribis	－ 120	VR119 3／－		
$3 \mathrm{dT} \mathrm{7/-}$	5B	${ }^{\text {liff6G } 2 / 6}$		5085	1625 6／－	613030	DRE3 6	ERT1 300\％	$12 / 6$	RZI－130	VR128 5／－		
30／－	3	1／6	12．AU7	50C3	1626	6138	DKs2 10	EList $4 /$－	ML6 64．	15／－	VR13．5 $2 / 6$		
2，40\％－	5	bJiWA 12／－	loave \％$/$	50 CD	1629 6／－	$6141.20 /-$	DK9： 8	Ela 10%	MAHB 13\％	$\begin{array}{ll}\text { SP2 } & 3 / 6\end{array}$	VR133 4／－		
$1 \mathrm{BS2}$ 5／－	3 30／－	biJj $4 / 6$	12AV7	25／－	1632 6i－	$6148 \quad 27 / 6$	DE9F 7	ELitS 5\％	MT1\％200／－	T＋1 $12 / 6$	VR137 6／4		
1 B 3 sa A $20 /-$	8029 120／－	i．） 3 （i $3 /-$	12AX7 6	501＊MT \％	163．）12／－	6147 1\％	D1as 10\％	ELA！81－	MTS $200 /-$	TD04．20	V888 15\％		
1838 50／－	5R4GY 9\％－	50， 6316	12AS7WA	33 KJ	2050 10／－	4186 10／－	DLis 10\％	E1H？8／－	Mu12／147／	70／－	VTHC 201－		
$1 \mathrm{B10}$ \％	5T4 5／－	6N7 9／－	10／－	54BK 25／－	3051 6／－	\＄201 10／	DLat 616	EL81 9／－	MZ05－20 6／－	TT11 3／－	VT52 9／－		
5 7／6	5t7M 5／－	6．Jan 5l－	I2AY7 10／－	37 6／－	4020A 20\％	6202 8／－	DLot 7／	ELLA3 716	NGTt 3／6	TT15 35／－	VT61．${ }^{\text {g／－}}$		
76GT 7－	504GB 6\％－	$6 \mathrm{K6OT}$ \％	2B\＆A 9／－	75 5／8	4022 A R15／－	6213 15／－	DMĩ 4／6	ELs4 \％i－	NG7\％30／－	TT16 80／－	VU3\％3／－		
1H5\％T 9\％	0才小 $81 /$	$6 \mathrm{K7}$ 5／－	128 ${ }^{1215}$	76	40223 20／－	6278 80／－	bencrey 10\％－	ELus 6／6	$\begin{array}{lll}3888 & 12 / 6\end{array}$	TTR31 60／－	vU3s		
11Lt 3／－	$3 \mathrm{SXCG} 10 /-$	6Кうa 2i－	128E6	77	40248 B 20／－	\＄3387 30／	k90ry．12\％	Eld91 6／－	N\％2 ${ }^{\prime} 16$	TZO5－20 51－	V1420 8／6		
11 Cd	${ }^{\text {a }}$ \％3G $4 /-$	6K7GT 6\％	12月H7	78	$4039 \mathrm{~A} \quad 15$	7103 21－		EL832 8／－	NRP1 25／－	TZ+1 30/-	VU120A $8 / 6$		
11.054	SY3GT 6\％	6K8	1208	80 61	tos3ap1	747.5	E180COL5／－	सM34 9／6	N8P2 $22-$	Uf 20\％－	VU138 7／－		
1N3GT 8	JYHGA	${ }_{6} 688$	12 kl 20	81 10／－	$4083 \times 25 /-$	$7598 \quad 22 / 6$	502132 ${ }^{\text {\％}}$	E．M80 8／－	NT：30 $2 / 6$	U12／14 8／－	$V \mathrm{Xiv} 0856$		
1 R 1	523	61.311	12F6 $2 /$	83 81－	＋048A 15i－	$7859 \quad 22 / 6$	सAats 716	FMN4 9／6	NTH0 10／－	U17 5／－	vxiloc 5 －		
112.	$5 \%+G$	GLis	12J5CT 3／－	88 V	40436：25／－	$8013 \mathrm{~A} 25 /-$	EABC80 8／－	HM8s 10\％	PABC808／6	018 7／－	vx7130 \％／－		
184	57， 4 9／－	6LAG 6／－	12 K （19T 7／－	85487	10．46A 8／－	8016 7／－	EAC91 4／－	E．N31 10\％	Prig7 10＇－	U20 8／6	VR81915／6		
1885	6：3012 10／－	ऊL18 8\％	1297（3T	m9AV 15	＋061．A 201－	8020 10／－	E．AFt2 $8 / 6$	EN32 101 －	PCCS 8 8－	U28 7／6	VX8190 5／6		
17t	6.13 8／－	6x7ct	12847 ．	90\％ 1	＋274A 201－	9001 4／－	EBC：21 7／6	EN91 6／－	PrCPs	U24 12／6	－X819\％		
1TnGT	6 646 4／－	P28 12／6	129C6－4／	95 Al	3517 6／－	9002 5／6	EBC＂33 8i－	ESU15030／－	PCCR8 13	U 25 11／－	W81．${ }^{\text {m }}$		
$1{ }^{14}$	A7 10\％	6070 6／－	1：2807	$11{ }^{\circ}$	5544 80／－	0003 \％	EBC：41 ${ }^{\prime} \mathrm{g}$ g	EYS1 8／－	PCCsy 11	026 11／－	X13 6\％－		
145	6.89317	$6 \mathrm{R7}$ 6\％	128H7	10／－	38368 10／－	90042	EBCSI 79	EY81 9／	PCPSOO 9	U27 8／－	X68 516		
1 V	CAB $4 / 6$	68474 8／－	112．57	211 30\％－	3643 30\％	90062	EBF80 916	Eri8 \％16	PCF82 $9 / 9$	U50 7／－	Nfil		
$1 \mathrm{X2A}$ 7／－	${ }^{4 A B 7} 44-$	$6^{68 \mathrm{Cl}}$ 7i－	128 K 7	220 TH	5681 8\％	A207 80\％	EBF83 12＇－	EY86 8／－	PCFP83 14／．	U191 $12 / 6$	X 81 M		
$17222 / 6$	6 AC7 3／－	68COAT 5／－	1281．7GT	323B 40／－	565410%	A1714 15	EBFr9 ${ }^{\prime}{ }^{\prime}$－	EY91	PClar 9 \％	U281 15／－	Y 1 iou		
－A3 5／－	BADA 20\％	188D74T 5／－		$380 \mathrm{P} \quad 10 /$	3670 10\％	A1820 20	EBL1 11／－	EZ：35 6／6	ECla 810%	U301 12／6	78.3		
26 3／	figs 3／－	6S1FRGT 6／－	T	3718 25／－	3672 \％	A 22226 18／－	EBL21 8／6	EZ40 7／－	PCLRs 10／－	U801 20／－	7 7 000 U		
34 4／－	$6 \mathrm{AG7} 7 \%$	63647 5／－		4468 10\％	3676 10\％	AC／2P 10\％	E691 3／－	EZH1 8／6	MClas 10\％	UABP808／6	7739 22／－		
$2 \mathrm{C39a}$ A 80／－	6AH6 11／－	887 3／－	129R7	430 T L3401－	\＄678 8\％－	AC／P4 $7 / 6$	ECCS：4／－	Ez80 6\％	PCL85 11／－	$1 \mathrm{AF}+2 \mathrm{C}$	z800U 20\％		
：C＋2 $25 /$	6AK5 5\％－	$\text { Gall } 7$	128w\％	464A 12\％	5684 80\％	ACT22	ErC＋0 9	EzS1 7／－	PCLEMS 11－	UB41 11／－	CV52 80\％		
2\％43 42／3	6AKG 7A	68 K 7	1－29x7	39 3／－	5886 20\％	240	ESY－70 15	F＇3i2k	PEEA 30\％－	UBCA 7／－	CV54 5／－		
	6AK7	681／AFT $6 / 6$	128 Y 7	583 40\％	$5618712 / 6$	PEX	Hexl 5	FC13 15／	PEN25 5／－	UnC81 3	OV57 10／－		
$2 \mathrm{Cz3} 130 \%$	8 AIL 5	68N－0T 4／8	1243G	703A 30／－	5181 25\％	61－	HCCM2，	FW4／300\％	PEN＋420\％	UnF80 816	cV58 30／－		
20．51 12／－	15Al．5w	hisqu 6／－	P2Yt 2	705 A 15\％	5883 20\％	AR8 4－	ECRS3	＋W＋／500	PEN＋6 6／－	UBF89， $8 / 6$	CV71 8：－		
2C32 12－	6АM	6887 3／－	13D1	708A 20／－	万ipm 8\％－	ARP3 3／－	EXXA！8／－	86	PFEN220A	U81，21 13／－	CV82 40\％		
20wt 14／－	BAM6	6T5 12/-	13D3	7154 40／－	5702 15／	ARP12 $2 / 8$	ECX48 8／－	15200%	7／－	UCCOS 81－	CV90 30／－		
2121 61－	fANS 15／－	6Ts 6／－	1＋E6	$71.5 B 60 \%$	5703 8／	ARTP＇2 6／－	13CC88 15／－		PEN383	UCF80 11／－	CV117 20／－		
$2 \mathrm{D} 21 \mathrm{~W} 101-$	6AQS 6／－	$6_{\text {6V6 }}$ 9\％－	1＋F7	717A	5718 7／6	ATP4 $5 /$	Hec9t 3／6		12／－	UCHE21 $9 / 6$	CV125 40\％		
2 E 26 20\％	6.18 .5	6F6G4	14 R 7	721B 25／－	5723 7／－	AT R 387	ECH80 10／6	1 K	PL3f 11／－	UCH－12 8／－	CV132 8／－		
2×2 3／－	6AR6	fivecit	$\begin{array}{lll}1+87 & 14 / 6\end{array}$	7248 15／－	5749 9／－	70／－	BCP^{2} 9／－	$22 / 6$	Plis8 16／	IFCH81 9／－	CV193 30\％		
2 x 2 A	6486 5／－	6 EX 4	19 F 2816	R01A 6／－	5751 11／－	AW2 3／6	FCF21 12－	（350）${ }^{\text {a }} 5$	Pl，R1 10\％	UCisis 11／－	CV943 201.		
3A／109B	6AFTG 20\％－	$X+\mathbb{V}$	$\begin{array}{ll} \mathrm{T} 9 \mathrm{Fl} 1 & 6 / 6 \end{array}$	$80650 /-$	5763 10\％	AZ1 9／－	ECH35 10：－	G150；2D	PL82 8／－	UCI83 $12 / 6$	$\text { Cvery } 15 \text { :- }$		
20	8AT6	5X5G 5/-	19H4 30／	807 6／6	3789 201－	A733 716	BCHR 96		Pld3 81－	$\text { 1Fil } 8 /$	CV2ist 15／－		
A／141A	6AC＇S GATB	6 SSOT $6 / 6$		813 55／－		A 711 9／－	ECUN $7 / 6$	$\text { 6iJown: } 7 / 6$	$\begin{array}{ll} \text { PLRA } \\ \text { purs } \end{array}$	UFt2 $9 /-$	$\text { ACV } 5 / \text { - }$		
15	${ }_{6 A 19}$	$\begin{aligned} & 6186 \\ & 671 / 8 \end{aligned}$	20 D 1 9／－	814 20／－	301－	B12H $25 /-$	WCH83 816	CCLIOA 25\％	$\begin{aligned} & \text { PMR4 } \quad 10 / \\ & \text { PTG } \end{aligned}$	LFP80 $7 / 6$	CVE89 40\％		
5	687 888	\％A8	20 P 4 LF	$\begin{array}{ll}815 & 40 / \\ 882 & 15 /\end{array}$	10／－	B65	ECLs\％ $7 / 6$	$3{ }^{2 / 4} 813$	PTJis 10\％	UF\％s 81－	CVias $12 / 6$		
$3 \mathrm{B2S} 301$－	6B8G $2 / 6$	$7 \mathrm{AC7}$		837 10／－	$581+\mathrm{A}$ 10\％－	RT35 30／－	PCNAB 11－	（1Z32\％12／－	PY33 12／－	UF8 12／－	CV349 30\％－		
3 Bg 45 5 －	6BAS	7 CH 9\％	25Z4C 8／6	238 18／	1883 5\％	BT79 30\％	EF＇37A 8／－	（1734 12／－	PY80 7／	8	0／－		
3B2＋W 121	6BE6 6／－	－CJ 12\％	23 3 81－	843 5／－	5882 20／－	13TR3 60／－	EF39 4	（1737 8）	PY81 $7 / 6$	ULH1 9／6	CV＋73 12，6		
$3 \mathrm{Br}_{26} 90 /-$	6RG6G 12／－	7 CF 5／－	25zarat 6	860 10／－	5879 13／－	C1B 22／6	EF50 10	HC！25\％	PY82 \％	ULE4 8／－	cuaso 10\％		
3828 15／－	$6 \mathrm{BL6} 6$ 6／－	$7 \mathrm{EP5} 51$	2iAfort	$866.415 /-$	8902 17\％	C1C 8／－	EY4 8	HL2\％3／－	PY88	UU8 12／－	30\％		
$3 \mathrm{B29}$－ 30%	6BJ6 8／－	7R7－8\％	15／－	884 10\％	5047 25／－	C3JA 80\％	EF4， 716	HL4 3i－	PY88 8／－	$\begin{array}{ll}\text { UY2I } & 6 / 6\end{array}$			
$3 \mathrm{B2008} 5{ }^{\prime}$	6B97A 8\％	iK7 10\％	2RD7 7／－	885 8／－	5979 40／－	CsP1t 25\％	LP30 1／6	111，23DD6／－	PY800 10／－				
1022 140\％	$\begin{array}{llll}\text { GBR7 } & 12 / 6\end{array}$	707	$28 \mathrm{DFW} 20 \%$	918 5／－	5993 12／－	C3R14 15／－	EH35 8／－	HLA1 4／－	PY801 10／－	UY85 8／－			
：1633 40／－	68885	7V7 81－	20 Cl 10	981A 60\％－	5908 15／－	C133 9／－	EFio 5／－	HL1220 4／－	PVI 15／－		CV220！10\％		
$3{ }^{3}+5800$		$\begin{array}{ll}7 W 7 & 6 /- \\ 72 t & 4 /-\end{array}$	$3 \mathrm{MC15} 10 /$	985 30\％－	（000）9／－	CY31	EFil	Kı0 15／－	PXes 10\％	V（iT12115／－	Cv2e+3 10/		
3CX100Ab	$6817{ }^{\text {6／－}}$	$\begin{array}{ll}\text { 7Z4 } & 4 /- \\ 8 \mathrm{Daz} & 3 / 6\end{array}$	30 Fs e	954 5／－	6058 8／－	D＋1	EF＇t	$\begin{array}{lll} K+1 & 151 \end{array}$	$\text { Qp-2s } 5 /-$	VET12810／－	CV2341		
100\％	${ }^{6} \mathrm{CWW} 414 / \mathrm{C}$	$\begin{array}{ll}\text { 803 } & 3 / 6 \\ 98 & 11 /\end{array}$	30FLI 9／6	935 3／－	60010 8／－	Da3n 20	FF\％	$\text { KD+n } \quad 15 /$	Qdves．10	V1507 5i－	200\％		
$3 \mathrm{D} 21 \mathrm{~A} 401-$	$\begin{array}{ll}\text { BCW } & 2 / 6 \\ \text { fib } & 8 /-\end{array}$	$\begin{array}{ll}98 & \\ 982 & 11 / 6\end{array}$	P11 12		60638	0		KDO1 15\％	30\％．	VL8631 15／－	CV4014 8\％－		
1829 50\％	6 CsO 5\％	10C1 10／－	30 PL 53	968A		100		5！－	Q875／itio20／－	VMP4012／－	CV 015 8／－		
3／170E	6CJIT 6\％	10 Dl 7／－	10	459	－	DAFT0 \％	－80	¢тви\％6i－	Q892／10 3／6	VP133 10／－	CV404：50／－		
600／－	608 4／－	10 FI \％$\%$	32 6／	991	8072 15／－	DAF96 ：	EF86 $7 / 6$	$\begin{array}{llll}\text { K＇tl } & 12 / 6\end{array}$	Q895／10 5／6	VR2l $3 / 6$	CV 4059 \％／6		
Q195E	4C80	11 E 2 20／	$35 \mathrm{L6GT} 8$	100620	6073 \％	DEFJ 10\％	8	T＋4 12／－	Qstos/t5	VH35，E／－	CV4063 8＇		
$4{ }^{3} 8$	6CBis 5 －	$11 \mathrm{ES} 20 \%$		E ADD	－	CKIN	D PO	GE	15／－	\checkmark R40 10／－	CVt069 6－		
$33^{3} \mathrm{GT} 716$	GCDAG 17\％	12AFS 3／－		K．ONL	SUBJE	TO MIN	UM OF		$150 / 15$	VR54 1／6	CV45015／6		
384 6／－	$68 H 6$ 6\％	12ABGT 5／－							10／－	VR55 8i－	CV＋302 5／6		

PLEASE OFFER US YOUR SURPLUS VALVES AND TUBES．URGENTLY REQUIRED KLYSTRONS 723A／B
OUR ORGANISATION HAS BEEN APPROVED BY THE AIR REGISTRATION BOARD FOR INSPECTION AND RELEASE OF ELECTRONIC VALVES

Z．\＆I．ARRO SERVICES LTD．

RETAIL BRANCH： 85 TOTTENHAM COURT ROAD，W． 2 Tel．：LANgham 8403
Please send all correspondence and Mail Orders to our
Head Office： 14 SOUTH WHARF ROAD，LONDON，W． 2 Tel．：AMBassador $0151 / 2$

ERSIN

MMararicord

IN THE NEW SAVBIT DISPENSER

Easy to find in the tool box-simple to use. The new Multicore dispenser will stand up or lay on the bench without rolling off. The solder is in a continuous coil which can be used direct from the handy dispenser-in fact, it is virtually a third hand for those tricky soldering jobs. Containing 15 feet 5 -core 18 s.w.g. Ersin Multicore Savbit alloy-the world-famous copper-loaded alloy that saves the soldering iron bit.

$$
2 / 6 \text { each (Subject) }
$$

Bib Wire Stripper and Cutter

This efficient tcol strips insulation, cuts wires cleaply and splits plastic twin flex. It is adjustable to most wire thicknesses.

3/6 each (Subject)

See also MULTICORE advertisement on backcover

If you have difficulty in obtaining any of these items, Ificulty in obtaining any
they will be sent post free
MULTICORE SOLDERS LIMITED HEMEL HEMPSTEAD, HERTS

CMMS. 6

New star of the Partridge Range is the P4200 "C" Core U.L. Transformer. Representing the very best in transformer construction, this 12 watt version of the famous P4160 maintains thestandard of excellence and faultless performance inherent in all Partridge Equipment.

General Information:

This is a C-core transformer. Resin Potted in a deep drawn seamless steel case.
Designed for inverted mounting.

Power Rating:

12 watts 20 cps . to $40 \mathrm{Kc} / \mathrm{s}$:
15 watts 25 cps . to $30 \mathrm{Ke} / \mathrm{s}$.
Frequency Response:
-0.5 db 20 cps. to $70 \mathrm{Kc} / \mathrm{s}$.
-3 db 12 cps . to $100 \mathrm{Kc} / \mathrm{s}$.

the best we've ever made!

Post the coupon below for full information and illustrated literature.

To Partridge Transformers Ltd.,

 roebuck road chessington surrey Full details of P4160\& P4200 Please.
NAME

ADDRESS

CLASSIFIED ADVERTISEMENTS

Rate $y /$ - for 2 lines or less and $4 / d$ for evers aaditional one or part thereof, a verage lines t words, box Numbers World" Dorset fouse, Stamford St., London, S.E.1.) Trade disount details availade on application. Fress Day April 1963 issue, Tharsday, Feoruary 28th. No responsibility accepted for errors.

SITUATIONS VACANT

A^{N} overseas carcer
WITE NATIONAL AERADIO LIMITED.
TO meet the requirements of constant growth and expansion we invite app.ications from technicians and engineers for an overseas career in North. West and East Africa, the Mediterranean area. the Caribbean the Arablan Gulf and the Far East. If you have recently cumWireles Fitter in the R A F or Radio Electrical Artificer in the Royal Navy or have other Artificer in the Royal Navy or have other communications. RTT and navigational aids, we should be interested to hear from y ou. SUCCESSFUL candidates would normally spend six weeks at our Radio Training School, Southall, Middlesex. before proceeding oversea;. but in some cases staff with suitab.e immediate posting. Overseas staff receive a max-free salary with married and chl:d allowances If appropriate and acconmodation. bac eior or married. is provided free: other benefits include generous U.K. leave and membership of an excellent pension and life assurance scheme.
RN appications, please, to Personnel Officer, 40, Park St.. W.

R^{A}

VACANCIES for Radio Techniclans, aged 19 or over. at alrports and radio stations throush out the communications and electronic navigational aids. Sound knowledge of radio and practical experience required for entry. Training givels on equipment in use. Salary at age 25 ± 876. rising to £1.006; 3 , weeks holiday with pay. Paid sick leave. Factlities to study for ligher qualifications. Guod prospects of permanent penslonable posts and promotion to Telecomdetails apply to the Ministry of Avlation, details apply to the Ministry of Avlation, Adam Street. London. W.C.2. Adelph, [2293 DOST OHlce Exccutive Enginecrs,
PENSIONABLE posts in London and provinces for Nechanical, Electrlcal and Electronic Englneers (male) at least 21 and normally under 35 on 1.9.63, to develop and design communications systems and postal services. Cardidates inust normally have (or expect to obtain shortly) a degree, or Dip. Tech. In of very high profersional attainment may be accopted in lieu. Starting salary (inner London) $£ 790-£ 1,368$. according to age; scale niaximuni £1,633; promotion prospects.-Write Civil Service Commission, 17 North Audley Street, London, $W .1$, for application form, quoting
S 322. (3.) CENTRAL ELECTRICITY GENERATING APPLICATIONS are invited for the following appointment:-
ASSISTANT Malntenance Englneer Instruments -West Thurrock Generating Station (Grays, Essex). (S.V. No. 1859.)
SALARY range $£ 1,200-£ 1,500$ p.a.
SUITABLE candidates must have a thorough knowiedge of generai electronics with an em phasis on pulse. circult technique. An understanding of instrumentation and/or transistors be preferably etther an apprenticeship with a major radio firm. or ex Royal Air Force radar mechanic. Technical qualifications would be an advantage.
APPLICATIONS, quoting reference S.V. No. 1859 , stating age, qualifications, experience and present position should be sent to the Assistant Regional Personnel Officer, Central Electricity Generating Board, South Eastern Place. Chalk Lane. Cockfosters. Barnet. Herts to arrive not later than 16 th March, 1963. [2292
R ADIO technician required for development R work and prototype construction of test instruments, audio equipment, etc.; neat workmanship essent'al; good long-term prospects for man capable of undertaking increasing responsibllity for design: small laboratory with pre-
cision equipment.-Box 5190 .
TEST engineers, - Applications are invited - from test engineer's with previous industrial experience of testing radio communications, will be offered positions on the company's permanent staff; starting salaries commensurate with qualifications and experience. Apply in writing, giving fuli details to Personnel Officer, Redifon, Ltd., Broomhill Rd.
S.W.18.

TEST ASSISTANT

Required for our Test Laboratory to maintain and design electronic test equipment associated with control and safety equipment for both aircraft and industrial uses.

Applicants should possess H.N.C. (Elec.) and a sound working knowledge of electronics in these fields

Excellent conditions of service and a good commencing salary are offered.
Applications to:-
Personnel Officer,
Wilkinson Sword (Colnbrook) Limited, Colnbrook, Nr. Slough, Bucks.

PILOT RADIO (S.A.) (PTY.) LIMITED DEVELOPMENT ENGINEER

Due to rapid expansion the radio laboratory requires a Senior Engincer for interesting work on receiver development.

Engineers must have previous experience in the development of valve and transistor AM/FM receivers and FM Tuner Units through to production level.
A B.Sc. degree, or similar qualifications would be an advantage, but is not essential. Preferred age 27 to 37 years.
Salary commensurate with experience and qualifications, in the range of $£ 1,2 C 0$ to $£ 1,800$.

Written application detailing experience and qualifications enclosing copics of testimonials and a recent photograph if possible, should be addressed to:

```
PILOT RADIO (S.A.) (PTY.) LIMITED,
P.O. Box 9076, Johannesburg,
SOUTH AFRICA.
```


PILOT RADIO (S.A.) (PTY.) LIMITED TRANSFORMER PRODUCTION

Applications are invited from suitably qualified engineers for the position of DESIGN PRODUCTION ENGINEER.
Applicants must have had several years' experience of both audio and power transformer design, and be capable of controlling production. Written application detailing experience and qualifications, enclosing copies of testimonials and a recent photograph, if possible, should be addressed to:

PILOT RADIO (S.A.) (PTY.) LIMITED,
P.O. Box 9676 , Johannesburg,
SOUTH AFRICA.

Field Engineers for electronic data processing equipment

THEREARE attractive vacancies in our Field Engineering Section for electronic engineers to maintain I•C•T electronic calculators and computers installed on our customers' premises in the Greater London area.

Applicants should be aged between 24 and 32 years of age and possess experience in the maintenance and repair of pulse technique equipment either in industry or H.M. Forces. They should also have the ability to handle bench tools and instruments and an appreciation of the effects of electrical and electronic circuits on complex mechanisms.

A National Certificate (Electrical) or a City and Guilds Certificate in Telecommunications would be an advantage. Applications from men with experience of radar equipment in H.M. Forces will be welcomed.

These are permanent, salaried positions which offer plenty of scope for advancement. The conditions of service are excellent.

Write, giving full details of experience, etc., to the Manager, Field Engineering Staff Group, International Computers and Tabulators Limited, Putney Bridige House, London, SW6(Tel : Renown 3322), quoting reference $\mathrm{FE} / 3$.

U
JIVERSITY OF ST. ANDREWS
APPLICATIONS are invited for the post of Electronics Technician. to be responsibte for the construction and maintenance of electronic equipment in the University Observatory and in other departments in St. Salvator's College. Applicants shouldree had experience in the design. construction and mainv sitage supplies and d.c. ampliners. Fixed salery within the range $£ 900$ to $£ 1,135$ per annum: pension and life assurance scheme.Applications, stating age, qualifications and experience, with testimonials or the names of two referees, to be sent as soon as possible. to the Secretary of the University. College CENTRAL ELECTRICITY GENERATING Couth
SOUTH Eastern Region.
NORTH Thames Division.
(CE:TRAL Radiochemical Laboratory.)
occur undermentioned vacancy will shorthy con ${ }^{2}$ at the above situated at Hornsey, North Lon on, and applications are invited from THE successful candidate will join a team which provides a radiochemical monitoring service for the Board's nuclear generating stations. Part-time day release for further tudy applicant appointed if aged under 21 yeirs. SALARY N.J C.. General Clerical Grade $£ 230$ -
 evel) passes in physics. mathematics and Enslish. The work requires an interest in electronics and provides an opportunity for nstruction in the servicing and operation of omplex electronic equipment
Applicants with some apprope considered for appicants with some appropriate experience, equal to O.N.C.
APPLICATIONS quoting S.V. Reference No. 1846, stating age, details of education, examinations passed, experience and present posi-
tion stoould be sent to the Assistant Regiona Personnel Officer. Central Electricity Generating Board, North Thames Division, West Farm Place. Chalk Farm, Cockfosters. Barnet, Herts. to arrive not later than 4th March. 1963. [2269
CITY OF BELFAST COLLEGE OF TECHPRINCIPAL: D. H. Alexander, O.B.E., F.C.G.I., M.Sc., Wh.Sch M.I.Mech. E
M.SC. Wh. Sch M.1.ecch. E.

APPLICATIONS are inv ted for the position of Assistant Lecturer, Grade A, in Marine Radio and Radar Mainteriance in the Marine Radio

APPLICANTS should hold the Postmaster General's Certificate of Competency in Radio Telephony and Telegraphy. First-Class, and the Ministry of Transport Certificate in Rada Vaintenance. Recent seagolng experience is ssential.
SALARY will be in accordance with the scales of the Ministry of Education for Northern Ire-
FURTHER particulars and form of application may be obtained from the Principal, College of Technology, Belfast. With whom completed applications must be lodged not later than Friday 1511 March. 1963
CANVASSING is strictly forbldden and will disqualify.
. STUART HAWNT, Director of Education.
YOUNG development engineer required for ex-- panding TV rental and distribution chain T ONDON H1-Fi dealer seeks part-time catandvantage copy writer: mail order experienc EXPERIENOED TV engineers wanted for available-Box 5195. house or modern [2300 R ADIO and Television Testers and Engineers -Alba (Radio \& Television) Ltd., Tabernacl St., London, E.C.2. [001]

TECHNICAL ADVISOR

An internationally known Company require Technical Advisor for internal telephone systems. Applicants should have considerable experience of surveying, quoting, estimating, installing and servicing, be prepared to travel throughout U.K., have H.N.C. or equivalent and be in the age range $25 / 35$ years. This position carries a Non Contributory Pension Scheme and Life Assurance.
Write giving details of age, education, previous experience, present position and salary envisaged to Box 5189.

EIECTRONICS APPOINTMENTS BUREAU

A New Service to Engineers of All Grades
If you are thinking of changing your job, we can be of considerable assistance to you. We will undertake on your behalf the task of searching the Electronics Industry in any district of the Greater London area for vacancies that are available compatible with your qualifications and experience. The cost of this service is borne entirely by the employer and is offered to you in the strictest confidence.
Electronics Appointments Bureau,
Gloucester Mansions.
Cambridge Circus.
London, W.C. 2.
Phone: Covent Garden 0280.

TECHNICAL WRITERS Senior and Assistant TECHNICAL ILLUSTRATORS Senior and Junior

We are expanding our Technical Publications Section and a number of vacancies are now open and others will occur within the next six months. Successful applicants will work on one of the following projects-
(a) Airborne Radar
b) Industrial Nucleonics
(c) Medical, Research and Reactor Nucleonics
SENIOR WRITERS will be experienced men with sound knowledge of Electronics. preferably to Higher National Certificate tandard.
ASSISTANT WRITERS: A number of experienced illustrators are required, preferably with knowledge of electronics. One of the successful applicants will be experienced in perspective line and exploded drawing technique: another will have some retouching ability.
IUNIOR ILLUSTRATORS: preferably with some D.O. experience.
Wrme D.O. experience. experience, training, age, etc., to:-

Personnel Manager,
Southend-on-Sea.

West ham college of TECHNOLOGY. Romford Rd., Stratford, E. 15 .
APPLICATIONS are invited for appointment as College Electronic Instrument Technician.
APPLICAN'S should have had wide experlence in the maintenance and repair of modern traning circuitry. SALARY scale: $£ 785$ to $£ 855$ pe, SALARY scale: £785 to ${ }^{\text {£ } 855 \text { per }}$ (o
London Welghting ($£ 25$ to
FURTHER information may be obtained from the Principal of the College to whom Jetters of application should be sent as soon as possime.

SHAW, M.A., Chief Education Officer.
SOGENIQUE (ELECTRONICS), Ltd., Newport N Pagnell. Bucks
ELECTRONICS Engineers.
This development engineers are required by this company which manufacture precision the scientific and machine tool industries. ONE engineer is required to develop new designs and carry out work on the basic limitations of the systens at present in use
A second engineer is wanted to produce fully engineered designs from prototype and experimental equipments.
pension fund and carry good remuneration, pension fund and life assurance scheme. Write salary required. stating age, education and YOUNG deve!opment engineer required to 405 line television conversion.-Please appls. In writing. stating qualifications. etc. Box 5164.
10180
SOUND recording studio requires an Assistant Engineer, knowledge of eiectronics required. preferaoly some experience of recoraing speech and m:xing music tapes from discs.- Write stating age, qual:fications, experience and salary required, to BCx 5186,
DUBLIC school leaver requíred as an elecPtronic trainee to assist in the design and construction of industrial controis ior use in ing salary f520-Write piving details of educaing salary £520.-Write piving details of educaford Hall. Chester.
A ${ }_{\text {With }}^{\text {RFR }}$ Radio Enginzers and Mechanics A with spec:fic workshop experience in one or more of the fol:owing: VHF. HF/MF, ADF
ILS, VOR, X Band Radar; 42-hour week; salary according to ability: pension scheme Apply Managing Director. Air Transport (Charter). (C.t.). Ltd., 7 Willow Road. Poyle Trading Estate. Colnbrook, Slough. Bucks. The inexperienced need not appiy. [2268 DTA processing.- BP, has a career appoint-
ment in its data processing develop$\underset{\text { ment }}{\text { ment in its }}$ itata processing developwidely experlenced in operating and programming computers and associated communications equipment; in addition to its responsi-
bilities in head office, the team liaises with overseas companies on selection of data processing techniques and equipment: conditions of employment are commensurate with the importance of this appointment.-Applicants, ased 30 to 40 . should write, giving full details. quot:ng reference H.5983A, to Box 7194 c/0 Hanway House, Clarks Place, E.C.2. W Senior Electronic Technician, post vacant on 1st April. 1963: the appointee will assist in researeh and the development of specialized electronics and e'ectrical apparatus used in various medical research projects. Applicants
preferab:y with an $\mathrm{H} . \mathrm{N} . \mathrm{C}$. and some experlience of medical electronics must be able to work on their own initiative although the projects are supervised by the Electronics Physicist from whom further particulars may be obtained Whitley Counctl salary scale (under (evtew) $£ 710$ rising to £905 plus London Weighting of age. education, qualifications and experience and the riamies of two referees to Development Secretary.

Audio circuit engineervalves and transistors - for development of electro/musical devices. Qualifications should include experience and original ideas. Progressive South London Company. Write in first instance, Box No. 5187, c/o "Wireless World"

장 웅 (a)

ELECTRONIC ENGINEERS AND ELECTRO-MECHANICAL TECHNICIANS

Expansion of our business has created openings in the maintenance of computers and their associated equipments. Vacancies exist at various levels and applications are invited from.men with any of the following backgrounds:-
(1) Qualified men with a degree of H.N.C. in Electrical Engineering or Physics.
(2) Engineers with experience of electronic circuitry and pulse techniques.
(3) Men who have served a mechanical engineering apprenticeship and have experience of maintaining light electro-mechanical equipments.
(4) Young men with a mechanical aptitude and a knowledge of D.C. theory.

Full training will be given and our training scheme provides the means whereby men of ability can advance to more senior positions.
Good starting salaries will be paid and further increases will be awarded quickly whenever individual merit warrants recognition.
Write giving details of career to date to:-

The Personnel Manager (Code 650), Leo Computers Limited, Hartree House, Queensway, London, W.2.

ELECTRONIC TEST ENGINEERS

EMI Electronics Ltd. has a number of interesting vacancies for Test Engineers and Assistant Test Engineers to be engaged on the wide range of ministry equipment developed and manufactured by the company.
Applicants must have previous experience of electronic inspection techniques or of the inspection of electronic components. An O.N.C. (electrical) would constitute a distinct advantage but is not essential.
These posts are of staff status and are located at Hayes and Feltham, Middlesex.
Please write, quoting reference.WWE/9/B9 to:

```
Group Personnel Manager, 04213/PF,
EMI Electronics Ltd., Hayes, Middlesex.
```


SIIIIIISEarimondice

BRITAIN'S CAR RADIO SPECIALISTS invite applications for the following posts:

RADIO SERVICE ENGINEERS RADIO TESTERS

These appointments hold out very definite prospects of advancement for those with the right experience and ability. Applicants should apply to:
The Service Manager, S. SMITH \& SONS (RADIOMOBILE) LTD., Goodwood Works, North Circular Road, N.W. 2
or telephone for an appointment, GLAdstone 0171.
(Near Staples Corner)

TEST Engineers.-Due to Lnternal promotions I and to increasing business in the TV broadcast equipment field, Pye T.V.T., Ltd.. have a continuing requirement for engineers to work on the setting up and proving of a wide range of high-grade equipment including transmioadicast equipment, closed circuit systems and transistorized studio equipment. The Chie Inspector is always interested in hearlng from engineers with a sound basic electronics train ing who would like to consider employment in this fleld.
ORKING conditions are pleasant and friendly and the prospects of advancement extremely
ENQUIRIES may be made in person to the Chief Inspector, at the York St., Cambridge, factory or in writing to the enginaering Personnel Officer, Pye T.V.T... Ltd.. St. Andrew' Rd.. Cambridge, quoting " TTE." [0014 MECHANICAL, Electrical and Heating and pensionable posts in Government Department for men and women aged at least 20 on date of application with not less than 3 years training (including adequate practical experlence with relevant technical study) and at least one year's full-tine drawing ofice work (inpropriate London) £640 (at 20) to £996 (at 28 (inser Londoll) £640 (at 20) to £996 (at 28 prospects.-For application form and details of vacancies and types of work available, write Civi! Sarvice Commission, 17 North Audley Street, London, W.1, quoting S/68. (3). [2267

SITUATIONS WANTED

R ADIO operator, 1st class P.M.G., seeks post COMMUNICATION Electronic Engineer, 41, world wlde experlence all aspects radio commu. nication L / F to $V H^{\prime} F, 100 \mathrm{KW}$ to 1 watt, mobile nets Simplex Duplex, $V \mathrm{H} / \mathrm{F}$ Multiplex, carrier, teleprinter, R.T.T., diversity. telemetry, sur veys. systems planning. U / G cables O / H lines, budgets, personnel, training. admin, etc., avail-

BOOKS, INSTRUCTIONS, ETC.
Webs's log-book for recording signals heard and worked. 112 pages. $93 / 2 \times 81 n$, approved format, semi-stific covers, excellent value. $6 /-$, post free, or callers. 5/4.-Webb's Radio. 14, Soho St., London, W.1. [0021

GOVERNMENT COMMUNICATIONS HEADQUARTERS
requitres
RESEAROH AND DEVRLOPMENT CRAFTSMEN
RADIO MECHANICS for the maintenance and installation of radio communication receiver and equipment MECRINTER MECHANICS for the maintenance of teleprinter and oypher machines and associated telegraph equipment.
WIREMEN for prototype sub-assembly layyout, wiring and testing of radiv and couputer type chaxsis.
BASIO PAY: 510 4s. 2i. per week plus werit puy in the range of $10 /-$ to $100 /$ - per week. Merit hay will be asserssed at interview basen Opportunities for eventual permanent aud pensiounble posts.
Plve-day 42-hour net week
tood working condltions.
Apply in writing to:
Recruitment Officer (RDC/3), G.C.H.Q. "A." Block, Oakley, Priors Roash, Cheltenham, Glue

NEW RECEIVERS AND AMPLIFIERS

TELECOMM 10 valve v.h.f. communication receivers, 3 separate models tuning $65 / 125$ speaker and A.C. mains power supply, bran speaker and A.C. mains power supply, bram munioations Co., Telecumm Works, Crewkerne,
Somer'set.
[2284
RECEIVERS AND AMPLIFIERS-SURPLUS

NEW TEST EQUIPMENT

HEATHKITS can now be seen in London and Durclased on easy terms; free brochure. Direct TV Replacements, Ltd.. Dept. W.W.
$25 / 3,138$, Lewisham Way, S.E.14. Tideway 25/3. 138, Lewisham Way, S.E.14. Tideway
6666 [9240

TRAIN FOR A CAREER IN TEACHING ENGINEERS

Persons ared between 25 and about 45 , with good industrial experience, are invited to apply for Persons ared between 25 and about 45 with good industrial experience, are invited to apply for
training as FULL TIME TEACHERS OF ENGINEERING SUBJECTS IN TECHNICAL COLLEGES AND SCHOOLS.

EXCELLENT CAREER PROSPECTS

NEXT COURSE: SEPTEMBER, 1963, TO JUNE, 1964
Applicants should hold suitable qualifications, e.g. a university degree, Diploma in Technology, associate or graduate membership of a professional institution, Higher National Diploma or Certificate, Final or Full technological Certificate of the City and Guilds of London Institute. Successful completion of the course gives Qualified Teacher Status under Ministry of Education regulations.

FREE TUITION
IMPROVED MAINTENANCE GRANTS
For details write immediately, quoting $S / 22$, to one of the following:-
The Director, Bolton Training College, Chadwick Street, Bolton.
The Director, Huddersfield Treining College, Holly Bank Road, Lindley, Huddersfield
The Principal, Garnett College, "Downshire House," Roehampton Lane, London. S.W. 15 The Principal, Wolverhampton Technical Teachers' College, Wulfruna Street, Wolverhampton.

Excellent prospects for these

TECHNICAL ASSISTANTS

We are looking for a number of young men to assist in carrying out functional testing and development work on a wide variety of electronic equipment. They will be given full training together with every encouragement to progress to Engineering grades.
A good starting salary will be paid to men with either a basic knowledge and experience of electronic circuits or education to O.N.C. or G.C.E. " A " level in Maths/Physics.
There are excellent staff benefits in operation.

Please write in detail to: The Personnel Manager, ELLIOTT BROTHERS (London) LIMITED Elstree Way, Borehamwood, Herts.

EA-A Member of the Elliott-Automation Group.

Since 1941 we have
HAND BUILT HIGH FIDELITY EQUIPMENT V.H.F. tuners from $£ 15 \overline{\text {. M M M }}$. Mavehand tunem including or less V.H.F, band frum
822 . Tone control units, Muno and Stereo ampliflers, etc. Technicial detalis willingly

\qquad
constac

- BENELUPMENFS NEWEOMBE SUSSEX

VINGTOR

AMPLIFIERS

4-transistors miniature amplifiers. 6 volt,'I watt or 9 volt/ 1.5 watt price each 35 sh. for 500 pcs. per order. Contact us for further information.

VESTFOLD raoio-elektro A/S, STORGATEN 94, HORTEN, NORWAY.

A.J.THOMPSON
 OFFERS

"Barganns with personal Service"

WIRELESS SET B.44. Double super-

 heterodyne TxRc. RF output 4 watts. 16 valves. amplitude modulation. crystal con-trolled. $65,90 \mathrm{mc} / \mathrm{s}$. 12 volts battery operatrolled. $65,90 \mathrm{mc} / \mathrm{s}$. 12 volts battery opera-
tion. Man-portable. Speaker, phone and tion. Man-portable. Speaker, phone and
loud hailer outputs contained in one unit. loud hailer outputs contained in one unit.
TxRc and PSU. Keen prices for export, etc., TxRc and PSU. Keen prices for export. etc.,
with or without operating kits. Full parwith or without operating kits.
ticulars and prices on application.
ticulars and prices on application.
RECEIVERS. R. 107 . $1.2-17 \mathrm{mc} / \mathrm{s}$. from $£ 8$. R. 206 . $55-30 \mathrm{mc} / \mathrm{s}$. £17/10/-

AR. 88 D from $£ 35$. R. 1475 £10. PCR from £5 9 6. V.H.F. 1392D $90-155 \mathrm{mc} / \mathrm{s}$. 1132 A , $100-124 \mathrm{mc} / \mathrm{s}$., many others, all carriage extra. NO19 TxRC Mk. II and III, sets from 50/-, complete stations from $£ 7 / 10$.
RF Units. Section of the R. $2091-20 \mathrm{mc} / \mathrm{s}$. complete dial and logging dial. 3 valves, dial lights, size $7 \times 7 \frac{1}{2} \times 71$. Brand new 59/6.
 Post Carr. $5 /$-.
47/6. RWER UNITS. R. $107,115 / 250$ POWER UNITS. R.107, $115 / 250$ v. a.c.
and 12 v.-d.c. Brand new 45/-, carr. $5 /$-, HRO. and 12 v.-d.c. Brand new $45 /-$, carr. 5/-. HRO.
6 volt d.c., 230 v. a.c. $80 / 100 \mathrm{~mA}, 25$, , 6 volt d.c.p 230 v. a.c.. $80 / 100$ mA., 25, ,, mA, 19/6, post $5 /$ /.
RADAR EQUIPMENT,
assembly type 63 (10DB/81 192 complete with assembly type 63 (10DB/8192 complete with
$2 / \mathrm{CV} 2792$ (723 AB Klystrons) and $2: 253$ (:rystal diodes). $£ 7 / 10,=$, post $2 / 6$. FEEDER assembly type 62 (10 DB/8191) 27!', post 2i6. TUNING UNIT. Type 205 (10DB Type 13 (10DB B/422) $17 / 6$, post $2 / 6$. RF UNIT (10DB8498), $25 /-$, post $3 /$. All these goods brand new in original packing.
Many other and various goods. Lists 6d., S.A.E.
inquiries. applies mainland.
"EILING LODGE," CODICOTE, HITCHIN, MERTS. Phone: Codicole 242^{3}

DAMAGED METER?

Have it repaired by Glasers
Reduce overheads by having your damaged Electrical Measuring Instruments repaire1 by L. Glaser \& Co, Ltd.

We specialise in the
 Annmeters, Mieroan-
ineters, Multiranke Test REPAIRS $\quad \begin{gathered}\text { Meters, Electrical Ther- } \\ \text { memelers, } \\ \text { Instruments, etc. }\end{gathered}$ Instruments, etc. As contractors to various Government Departurents. we are the reading Electrica: Instrument Repairers in the Industry.
For prompt eatimate and speedy delivery send defective instrument by rekistered post. or write to
L. GLASER \& CO LTD.

96-100, Alderszate Street. London, E.c.í
Tel.: Monarch 6822

The finest method for cleaning records Already over 200,000 enthusiastic users THE " Wlist JBHg" AUTOMATIC GRAMOPHONE RECORDCLEANER

PATEFT No. 817.998

Price reduced to $\mathbf{1 7 / 6}$ (plus 2;11 purchase tax)
from your local deoler or
CECIL E. WATTS LTD.
Conswlunt and Enyiwer (Nomind Recording and Reproduction) Darby House. SUNBURY-on-THAMES, M.DDX.

A SDIC type echo sounders, new, fully port£20 complete, leafiet available.-Teleradio below. control equipment, send for lists of available equipment for boats and aircraft. TELERADIO, 64, Hish St. Waltham Cross,
Herts.

TEST EQUIPMENT-SURPLUS AND SECONDHAND

SCILLOSCOPE COSSOr 1035. double beam, excellent condition; £45 o.n.0.-Box 5191 . SIGNAL senerators, oscllloscopes, output N meters, wave voltmeters, frequency meters.
 London. E.11. Ley. 7986 CVERSHED recorders, milliammeters, dual meters £10: B.S. R BFO 0-16 KC meters, £10, B.S.R. BFO $0-16 \mathrm{KC}$ one watt with 3 in CRT and spare Klystron, s 30 ; electronic instruments pH meter model 23 A probes extra. £22. Cambridge Unipivot centre zero microammeter. $£ 9$ all items in perfect condi-tion.-Altair Electronics, Ltd.. 76 , High St. Queenborough, Kent. Tel. Sheerness 2181

12296

NEW GRAM AND SOUND EQUIPMENT

GLASGOW.-Recorders bought. sold. exchanged: cameras, etc., exchanged for Arsyle St., Glasgow. C. 2 -Victor Morris. F . 0201 TAPE decks and recorders by Ferrograph, VorBradmatic, amplifiers Leak, Duici, Chapmar, Rogers.
MICROPHONES by Reslo. Lustraphone, S.T.C. Glampian, A.G.G. All tapes and accessories good quality equipment welcome in part ex change. circuit televiston for schools and in-
dustry from 119 gns.
SPECIALIST audio service and sound recording. Fire purchase facillties a vailable. Liverpool Road. Liverpool, 23. Telephone Grea Crosby 4012.

19014
JOIN Aud: Supply Assoctation and save on recording costs. $7 / 6$ p.a., 48 -page photogrephically illustrated hi-f. catalogue. ${ }^{2 / 6} 10132$
10 , Clifford St.. London, W.1.

Froica: recording studios (Est. for industry, research, music and private use Fertograph. Brenell. etc.: complete recording service: music for industry, tape; disc.-31. Peel St., Eccles. Manchester. Eccles 1624. Studio Director Thurlow Smith, A.R.M.C.M. 10122

GRAM AND SOUND EQUIPMENTSURPLUS AND SECONDHAND

WONDERFUL offer, Magnavox transcription fitted with the latest Garrard EV26 stereo cartridge fitted with dlamond stylus and are designed to track at only 5 grammes with its special light wetght pick up arm; price $£ 99$. - Hampstead Hifn, 91a. Heath St.. London, 12282

NEW COMPONENTS

LINE O.P. transformers and scan colls for most makes. exact replacements. from 25/ used and 50/- new: send s.a.e. for imm. quote, add $3 / 6$ for p. \& p.; te.ephone order's sent sanie dny c.o.d.: examp.es: new LopT's: Ekco T231 $65 /-:$ Cossor 938, etc.. $62 / 6$. Ferguson $992-8$.
$69 / 6$. Masteradio, $65 /-$ H. M.V. 1840-8. $65 /-1$ 69/6. Masteradio,
Alba
T321-4, etc., $52 / 6$ H.M.
52 Alba T31-4, etc., $52 / 6$ used and $14 / 17$ T/V's.
callers only, $£ .1$ each.-T.C.S., Ltd. 112 . Camberwell Rd. S.E.5. Tel. Rodney 7917. Open
all day Saturday.
lo334

TAPE RECORDING, ETC.

Ferrograph 4/Ah. professlonal model. FERROGRAPH 4/an recorder. Armstrong V.h.f. tuner. ${ }^{2}$ years, immac. $£ 75$ o.n.o. together/separate: P. Manly. Dunston Hali,
Stafford. Penkridge 451 .
$[2 \Sigma 83$ TAPE to disc recording-finest professional E.P quainty. 17/6; 48-hour postai serv!ce: s.a.e. for leaflet to:-Deroy Sound Service, 52. Hest Bank TAPE bargains in all
TAPE bargains in all sizes.-Examp:e: Top s.a.e for list: large choice of new and used recorders.-E.C. KIngsley \& Co., 132 . Tot ene
ham Court Rd.. London. W.1. Eus. 6500 . 10 en 70 TAPE DISC/TAPE transfer editing; duplicat(especially with LPs from your prectous tapes) consult Britain's oldest transfer service.-Sound New's Productions, 10. Clifford St., London. W. 1.
Reg. 2745 . 10192.

EXCLUSIVE OFFERS

[^11]We have a large quantity of "bits and pieces" we cannot list- please send os your requiremento we can probsbly lielp-all enquiries answered
P. HARRIS

ORGANFORD - DORSET
WESTBOURNE 65051

Radiospares Lhtd. FOR ELECTRONIC COMPONENTS-BY RETURN

VINGTOR "EKKO"

The exclusive amplifier with reverberation. A quality amplifier of international top class. The sound of it creates the right at mosphere amongst the public you entertain.

Many other popular amplifiers in the production range. Representative wanted.

Write to:

VESTFOLD Radio-Elektro A/S, STORGATEN 94, HORTEN, NORWAY.

[^12]HALF-PRICE transistors, Mullard OC44/5. 1/ OC81/D, OC170/1, 4/6, ea.; OC26, 3536 9/6 (min. 6), c.w.O., quantity terms.- Radio mex." 184, Kingston Rd., Portsmouth. England.

VALVE8

VALVE caitons by return at keen prices; A.. Boxmakers, 75a. Godwin St.. Bradford, 1.

VALVE8 WANTED

We buy valves for cash, large or small detaiis quantities. old types or the latest: send detaiis. quotations oy return. Walverhs wire less Stores. 15, Church St.. Wolverhamptod.
A LL types of vaives. British or American, inces ansmitiung and receiving; keenest cash r call pald What have you to oner?-Write or call Lowe Bros. 95-97 Redchurch St., Lon-
don E. 2 Tel. Shi: editch 4415-6. VALVES required for cash; either loose or \checkmark boxed but must be new; prompt settle ment.-'Phone, call or write to the valve specialtsts, Radio Facflities, Ltd., 38, Chalco Rd.. London. N.W.1. Tel. Primrose 9090.

REPAIRS AND SERVICE

Boultons of bradford

LOUDSPEAKER pıessure unit. and microphone repairs. D.C.B., cone assemblies and fleld colls in cartons. service and satisfaction guaranteed -D. C Boulton. 134. Thornton Rd.. Bradford

MAINS transformers wound to any specificaVi tion.
MOTOR rewinds and complete overhauls; first c.ass workmanship. fully guaranteed. F.M. ELECTRIC Co. Ltd. Potters Bldgs Warser Gate. Nottingham. Est. 1917. Tei 54898.
[0113
SPEAKER rebairs. cones fitted. fields and 5 clock colls wound, suaranteed satisfaction. prompt service.-L.S. Repair Services. Pluckiey Ashford. Kent.

Quartz Grystal Units

For

ACCURACY

RELIABILITY

PRICE ECONOMY

```
you can
DEPEND
on
Write for illustrated Brochure \& Price List.
```

THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works, Wellington Crescent.

New Malden, Surrey (MALden 0334 \& 29,88)

 communications receivers
 offer PROFESSIONAL
 PERFORMANCE
 ot AMATEUR COST!
 "840C" - $£ 58$
 Known and respected the world over for reliable long distance reception.
 "940'" - £125 Advanced design for the professional or amateur who demands the best.
 From Stock at
 WEBB'S RADIO
 14, Soho St., London W.1. GER 2089

A LL types of line output transformers supA plied (retall and trade)
FINEST service in the country. Send s.a.e. for return of post service. Terms c.w.d. or c.o.d., (Wimbledon) Ltd., 131, Kingston Rd., Wimbledon. S.W 19 Cherrywood 3955 . TV tuners, all makes, completely overhauled, plant for prompt service.-Tuner Service, Old Mill Farm, Grange Lane, Beenham Nr. Reading. Berks,
We repair and fully recondition all types of - electronic and electrical measuring instruments: quick and efficient service.-.Altair Electronics, Ltd., 76. High St., Queenborough. Kent. Tel. Sheerness 2181.

WANTED EXCHANGES

A PROMPT cash offer for your surplus brend A new valves and transistors.-R.H.S., Beverley House. Manville Terrace. Bradford. 7. 10191 - ANTED, all types of communications reR. T. \& I. Service, Ashville Old Hall Detalls to R. T. \& I. Service, Ashville Old Hall. Ashville
Rd. London. E.11. Ley. 4986. JRGENTLY wanted, manuals or instruction books, data. etc. on American or British Army, Navy or Air For e radio and electrical equipment,Harris. 93, wardour St.. W.1.

MISCELLANEOUS

ROTAFY wafer switches made to order. N wafer size $1 \pi /$ in.-Glenn Electronics. 18 ETALWORK, all types cabinets, chassis, - racks etc. to your own specification capacizy available for small milling and cap PHELPOTK'S METAL WORKS, Ltd., Chapman St.. Loughborough.

10208

WASHING machine spares. new or secondhand, for practically all makes of | machines.-J. \& D. Ellison. Ltd.. Newfeld |
| :--- |
| Works. Nelson. Phone Nelson 6253i. |
| 2252 | CTABILIZED power supplies, $£ 5$ each, unstabi5 lized ditto, with C core transformers. £2: 50 avallable: S.a.e. detais: carriage extra- -112 .

Groby Rd., Glenfield, Leicestershire.

A.D
LOUDSPEAKER ENCLOSURES Corner 172 ARU Enclosure for Goodmans 12 " Speakers
A. DAVIES \& CO (CABINET MAKERS) 3 Parknill Place foff Parkhill Road), London, N.W. 3 GULliver $57 \% 5$

SURPLOS stocks of new radio and. TV comWires, coils, holders, etc.: resistore write for stock wires, coils, holders, etc. : please write for stock
Jist.-J. G.
Coates,
Ltd., Trafalgar
St.,

SH380 relays, P.O. type, 3/- each; 1,250 telephone ext. bells, separately packed, best ollect-C. A Webster Middeton-Wirksworth Derbys. [2283 A LUMINIUM, brass. copper and bronze in sheet, any size cut;, complete price list steel Slater Molals (N.F.) ${ }^{\text {and }}$ Ltd., 17 Srice list $1 /=-$ J, ${ }^{\prime}$ verpool,

TEST METERS, POR-
TABLE, $3 \frac{7}{4} \times 3 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$. D/C. M/C. Ranges: $0-$ D/C. M/C. Ranges: 0 , 5,000 ohms; $0-60 \mathrm{~mA}$; Range can be extended to suit individual requirements by addition of resistances. (Featured in Practical Wireless, March 1961 issue.)
NEW AND TESTED.

NEW AND TESTED

LAWSON
 Lamson fuae mTh new silve

EXPRESS SERVICE
Orders received by 3 p.m: are dispatched same day Special direct services to treland and Scotland, including Eire.

FULL FITTING INSTRUCTIONS PLUS THE CORRECT TYPE TUBE MAKE INSTALLATION SIMPLE.
LAWSDN TUBES
2 PEACHFIELD CLOSE MALVERN, WORCS. TEL.: 2100

DIRECT REPLACEMENT TELEVISION TUBES

12 MONTHS FULL REPLACEMENT GUARANTEE

DESIGNED FOR PERFORMANCE

The modern Lawson Television rubes are specially designed to give the older types of television set very much improved performance. Their new silver activated screens are much brighter with better contrast, exclusive " micro fine." concrolled thickness aluminising gives 50 per cent. more light output. New small anode aperture electron guns by Mullard, Mazda, G.E.C., Brimar, E.E., Cossor, etc., with crisp needlesharp definition and focus. Silicon vacuum pumping plus depth formed cathodes giving very long life. Each tube is. 100 per cent. BRA ND NEW (glass excepted) and is designed to fit exactly as the original tube, ensuring complete accuracy and efficiency. MAKES AND TYPES FROM STOCK
ALL MAK
LAWSON. The ONLY replacement tubes for which all types are guoranteed carrect and direct plug-in replacements.
$12^{\prime \prime}-$ <4: 10:0
C.O.D. or C.W.O.
$14^{\prime \prime}-65: 5: 0$
$15^{\prime \prime} \cdot 17^{\prime \prime}-15: 15: 0$
Gladly refunded if you
$21^{\prime \prime}=87: 10: 0$
wish to return your old
(excepting 12 in)

$£ 15$ offered for Service manuai Loran L15 APN-9A. Sale: Decca 45 marine radar \&350, Loran indicaters $\& x$ RX APNA $£ 5$. Hallicrafter S27C (125-215 MCS) £15. RAIB receive (.15-15 MCS) \&7.-Crampin. Abbey Rd..
Grimsby.

CATALOGUE No. 15. government surplus Clectrical and radio equipment. hundreds of items at bargain prices for the experimenter and research engineer, $2 / 6$ post free, catalogue Sallis Radto Control North Rd Brighton 10195 Brighton

0195
DIRECT TV REPLACEMENTS, Ltd., largest stockists of TV components in the U.K.: line output transformers. frame output transformers, deflector coils for most makes, official sole suppliers for many set makers. same day Tideway 6666.-138, Lewisham Was. S.E.14. 1273

CAPACITY AVAILABLE

P.P. ELECTRONICS. London.

ALL types of e:ectronic wiring and assembls work carried out to your spec.. i.e.. prototype wiring exhibition samples. pre-production quantity production wiring.-FOr information teiephone FRE. 9463. [2099
We undertake the manufacture of transspecification: all work guaranteed for 12 specification; all work guaranteed for 12
monthis.
LADBROKE Transformer Co.. Ltd.. 820a, Harrow Rd. London, N.W.10. Tel. Ladbroke $\begin{array}{r}\text { ro220 }\end{array}$ 0914

MTANNOY:N

For sound sense
WEST NORWOOD, LONDON, S.E. 27
GIPsy Hill ||3|

SEMCO have capacity and abillty to develop and/or produce high grade electronic equipment: we require sub-contract wiring, assembly Cash's Lane, Coventry, $\quad 10090$
RAVEN TRANSFORMER CO. will quote for R all your transformer and coil winding requirements; prototype or production quanti Woodford. London. E.18. Tel. Enfleld 1569.

LSON Electronic Limited, specialists in wave irinding, coils, chokes, transformers. wiring of-v.h.f. and electronic equipment. transistorized city availabie.-54 Myddelton St.. London. E.C.1. Terminus 8081 .

TNJECTION mou:ded components, large quan1 tity produce a speciality, moulds made from drawings sample or prototype, all moulds made in our own too:room, examp!es of our work mouldings on Bal Aml juke boxes.-Optical
Produci 3 , Ltd. $370-3$ Stion Rd. Forest Producis. Lid. E. 7 London. Station Rd. 1025

NOTICES
THE ASSOCIATION OF PROFESSIONAL
RECORDING STUDIOS. Ltd. To protect ReECORDING STUDIOS. Ltd. To protect engageu in fiectrical sound recording. - Write to the General Secretary. A.P.R.S., F!at 4.

TECHNICAL TRAINING

E EARN Radio and Eiectronics the New Prac1 tical Way! Very latest system of experimenting with and bullding radio apparatus"as you learn."-Free brochure from Dept.
W.W.10. Radiostructor, Readig.
CITY \& GUILDS (electrical, etc.), on "No - For details modern courses in ail branches of electrical engineering. ajppiled electroncs, automation. etc.. send for 148 -page Hand-book-free and pust ree, B.I.E.T.. (Dept.
$388 \mathrm{~A}) .29$. Wright's Lane, London. W.8. 0017
D.M.G. Certficates. City $\&$ Guilds examına-
tions, Brit. I.R.E.. also many nom-examina tion courses in radio, iv and electronics. stud at home with world-famous I.C.S.- Write for free prospectus, stating subject, to International gate pondee

WORLD RADIO \& T.V. HANDBOOK 1963 ED. 22/-

By JOHANSEN. Postage $1 /-$

How to Listen to The World, by Johansen. Postage 9d.
Radio Data Reference Book, by R.S.G.B. Postage $/ /$

Radio Control for Models, Boats and Aircraft, new ed.. by Judd Postage I/-
Beginners Guide to Radio, by Camm Postage 9d.
The Microphone Guide, by Borwick Postage 9d.
Amateur Radio Handbook, by R.S.G.B., new edition. Postage $2 / 6 \ldots$ Mullard Reference Manual of Transistor Circuits. Postage $1 /-\ldots$ Elements of Electronic Circuits, by Peters. Postage 1/-
Using an Oscilloscope, by Easterling Postage 6d.
Amateur Radio Call Book, 1963 , by
R.S.G.B. Postage $6 d$ R.S.G.B. Postage 6d

UHIVERSAL BOOK co.

12 LITTLE NEWPORT STREET LONDON, W.C.2.
(adioining Lisle Street)

SERVICES OFFERED

Leave it to us.

FOR all electronic wiring and design. contro gear schemes and any type of control panels or metal fabrication; keen price and excelient
APPLY Contracts Manager. 3, Wellington Rd. St. Mary Cray. Kent. Tel. Orpington 31153
Problems about sound recording???
PROBLEMS about sound reproduction? CONSULT professional sound engineer Box 51,4 .
[0091
HI-FI can be costly, why not have the best equipment, exra cost, let us nt and mare your Chatham 42694 .
ELECTRONIC technician in Sweden, am inE terested in representing a British firm on a conimission basis. or ${ }^{-1}$ and " helping to obtain Swedish Electrical Authorities "Semko" approval for British electronic products. I. have very good contscts with the, Swedish ence in preparing equipment for Semko ence in preparing
approval.-Box 5194.

TUITION

THE Incorporated Practitioners in Radio \& Electronics (1.P.R.). Ltd., membership conditions booklet $1 /-$ sample copy of I.P.R.E.

FIND TV set troubles in minutes from that Servicing 10/6: all book houses and radto Serving. 10\%: all book houses and radto I.P.R.E., 20. Fatrfeld Rd., London, N.8. T0089 $\mathbf{R}_{\text {adIO O Officers see the world. Immediate }}$ successes provide addítional our many recent dur!ng 1963; day and boarding students, grants and seholarships available; stamp for prospec-tus.-Wireless College, Colivy Bay. $\quad 0018$
A.MI.Mech.E... A.M.Brit.I.R.E.E City \& ${ }^{2}$ A Guilds. G.C.E.. etc., bring high pay and successes.-For detalls of exams. and courses in all branches of engineering, building, elec tronics, etc., write for 148-page Fandbook-free.-B.I.E.T. (Dept. 387B), 29, Wright's Lane, London, W.8.
$[0118$

NYLON • P.T.F.E.

ROD, BAR, SHEET, TUBE, STRIP, WIRE
No quantity too smoll. List on opplication.
BRASS - COPPER • BRONZE
ALUMINIUM-LIGHT ALLOYS
H. ROLLET \& Co. Ltd.

6 Chesham Place, S.W.I. BELgrovio 4300 ALSO AT LVVERPOOL. BIRMINGHAM,
"SPEARETTE"
PRINTED CIRCUIT SERVICING RACK

THE ELECTRONIC ENGINEER'S THIRD HAND WHEN ASSEMBLING OR SERVICING PRINTED CIRCUIT PANELS
FULL ADJUSTMENT IN ALL PLANES
Details of this and other aids:
SPEAR ENGINEERING CO. LTD. WARLINGHAM, SURREY

Tel.: Upper Worlinghom 2774

FULL-TIME courses for P.M.G. Certificates, C.G.L.I.. Telecommunications and Radar Maintenance Certificates-Information from
College of Technology, Huil.
BECOME "Technically Qualified " in your D spare time; guaranteed diploma and exam. home-study courses in radio, TV, servicing and maintenance. R.T.E.B., City and Guilds, - N.I.E. (Dept 433) 148 , Holborn. London, etc.:
E.C. 1
STUDY radio, television and electronics with Brit. I.R.E. City \& Guilds R.T.E.B., etc. also Brit. I.R.E.. City \& Guilds. R.T.E.B., etc.; also bractical Write for FREE Prospectus stating subject to I.C.S. Intertext House. Parkgate Rd.
(Dept. 442). London. S.W.11. Dept. 442). London. S.W.11. 10035
HOW and Why " of Radio and Electronics way Postal Instructions bised on hosts of experiments and equipment buildings carried out at home. New Courses bring enjoyment as well as knowledge of thts fascinating subject.-Free Reachure from Dept. W.W.122, Radostructor
TV and Radio-A.M.Brit.I.R.E., City and -No Fee, R.T.E.B. Cert., etc., on No Pass detatls of exams. and home training courses (including practical apparatus) in all branches of radio. TV and electronics, write for 148page Handhook-free.-B.I.E.T. (Dept. 397 A),
29. Wright's Lane, London. W.8.
[0016

8 mm home movies, all interests. Send for Mountain Films, Ltd., 1, New Burlington St W.1. $[2245$

PATENTS

CONTROLLED photo-cell generator electricity Supply. The proprietor of British Patent No. 884,793 desires to enter into agreement with firm or firms for the development and application of the patent and for the granting of
licences.
Box
51750 THE proprietor of Patent No. 823538 for Side-Band Transmission ir rystems," desires to Secure commercial exploitation by Licence or otherwise in the United Kingdom.-Replies to Box 5188. [2286

FOR ALL YOUR PANEL WORK WRITE FOR ILLUSTRATED BROCHURE OF PARALEX \& LUFBRA ADJUSTABLE HOLECUTTERS

HOLES ACCURATELY BORED FROM I" DIA. TO $12 \frac{1}{2}^{\prime \prime}$ DIA.
AKIJRATE ENGINEERING Co. Ltd. CROSS LANE, LONDON, N. 8 TEL. FITZROY 2670

THE proprietor of British Patent No. 820318. entitied Radio and Televislon Receiver Component Adapted Espectally for Use with Printed Wiring, offers same for license or otherwise to ensure practical working in Great Britain.-Inquiries to singer, Stern \& Cariberg.
140 . 80 . Dearborn St.. Chicago 3 . Illnois. U.S.A. Dearborn St.. Chicago 3. [2259

BOOKS

INTRODUCTION to Valves." By R. W. Milward, B.Sc.Lond. A.I.M E.E. And H. K. K. the principles, construction, characteristics and ises of most types of radlo valves. The approach is simple and, as far as posstble, nonmathematical, but the book provides the student with a thorough understanding of valves and how they work. 8,6 net from all booksellers. By post $9 / 4$ from Iliffe Books Ltd., -. A DVANCED Theory of Waveguldes." By L. "A DVANCED Theory of Waveguldes." By L. ${ }^{\text {n }}$ ng problems artsing in work on this complex a number of topics as representative of the fleld in which the centimetre-wave engineer is engaged, many of the examples being concerned with the rectangular waveguides. $30 /-$ net from all booksellers. By post 31 - from Iliffe Books S.E. 1

Wireless Servicing Manuel." By w. T. edition of a standard work. Which has come to edition recognised as a rellable and comprehensive guide for amateur and professional alike, has been thoroughly revised and set in a larger and handier format. Essential testing apparatus 1 described and logical methods of deductng and remedying defects are explained. A completely new chapter on the servicing of freadded $17 / 6$ from all booksellers. By post 188 from Iliffe Books Ltd. Dorset House. Stamford St.. London. S.E.I.
$\mathbf{R}_{\text {Langford-Smith, }}^{\text {ADIO }}$ Dandbook. ${ }^{\prime \prime}$ Editor. F. Ler I.R.E. prehenstive (U.S.A.). A.M.I.E (Aust). a comzuthors ret reterence book, the work of 10 ing a vast 23 collaborating engineers, containing a vast amount of data in a readlly accessible interested in the design and application of radio interested in the design and application of radio
receivers or audio amplifiers. Television. radio transmisston and industrial electronics have transmisston and industrial electronics have
been excluded in order to llmit the work to a reasonable size. $55 /-$ net from all booksellers. By post $57 / 9$ from Iliffe Books Ltd., Dorset House. Stamford St., S.E.1

Instrumentation at its best..

SIFAM ELECTRICALINSTRUMENT CO. LTD. WOODLAND ROAD, TORQUAY Tel. 63822/3

ODDIE FASTENERS

THE FASTENER WITH ENDLESS APPLICATIONS - SIMPLE - POSITIVE SELF - LOCKING. MADE IN A VARIETY OF TYPES AND SIZES. SPECIAL FASTENERS TO SUIT CUSTOMERS' REQUIREMENTS. WIDELY USED IN THE RADIO INDUSTRY.
"llustrated brochure and other information will be gladly sent on request. DEPT. "W.W."
Oddie, Bradbury \& Cull Ltt. .Southampton Tel. 55883 Cables: Fasteners, Southampton

SECOND Thoughts on Radio Theory." By © Cathode Ray of "Wireless World." Fortyfour artlcles reprinted from popular " Wireless World series, in which the author examines var.ous aspects of elementary radio science.
explans them clearly, and show's that there explans them clearly, and show's that there may be more behind them than is apparent from che usual text-book. This volume deais with busic ideas: circuit elements and tech-
niques; circuit calculations: and some matters in ighter mood. An entertaining and helpful text-Dook for the student, refresher course for the engineer and reference book for all combincd: 25/- net from all booksellers. By post E 4 from Iliffe Books Ltd. Dorset House.

BASIC Mathematics for Radio and ElecD.I.C.A.C.G.I. Revised and enlarged by J. M. Head M.A. (Cantab.), Presents in readable form a complete course in basic mathematics from engineering students of ail kinds and leads on to the more advanced branches of mathematics of increased importance to radio engineers. In this edition the chapter covering the application of mathematics to radio has been revised and enlarged. While new subent:al Equations, Elementary Statistics, Short Cuts to Numerical Calculations and an Introduction to Matrices. Will be invaluable to those without previous knowledge of the subject. 17/6 net from all booksellers, By post 18/6 from Iliffe Books Ltd., Dorset House, Siamford St., S.E.1.

TELEVISION Engineering Principles and By S W. Ames, B.Sc. (Hons.). A.M.I.E.E., and
D. C. Birkinshaw, M.B.E., M.A., M.I.E.E. The third volume of a comprehensive work on the fundamentals of television theory and prac tice, written primarily for the instruction of BBC ingineering staff. This volume gives the ppplication in telev.sion and sinusoidal, rectanguiar, sawtooth and parabolic waves and shows The main body of the text is devoted to the fundamental principles of the circults commonly used to generate such s.anals, the treatment being largely descriptive in nature and therefore less mathematical than that of the previous volume. The work is intended to provide ${ }^{\text {a }}$ comprehensive survey of modern
telev.sion principles and practice, $30 /-$ net telev.sion principles and practice, $31 /{ }^{\circ}$ net net Iliffe Books Ltd., Dorset fouse. Stamford St.. London, S.E.1.
A BACS or Nomograms." By A Giet Phippen and J. Wranslated fred Mosench by H. D made se of nomozrams at some time in their careers, and are fully allve to the fact that formula has to be solved repeatedly for several sets of varlables. It is fair to say. however that only a small proportion of even those who hab-tually employ nomograms know how to construct them for their own use. Most of the comparatively small literature on tha subject difficult for the practical en aneer to comprehend. This book is essentiaily prastical and not cnly demonstrates the many an 1 varje applications of the abac or nomos:am, but show's how even those w thout highly specialized mathematical knowledye may construct the.r own charts. Dorset House, Stamford St., S.E.1.

GOMDON CENRRAL icadlo storse

d BANK UNISELECTOR BWITCHES. 25 conbactri £2/15/- 4 bank £2/5:-, 6 bank half wipe 25 contact 47/6. EIGGH-SPEED ELECTRO-MAGNETIC COUNTERS. Ex-Govt. 0-9.499, $25 / 60 \quad$ v. D.C. Slize $4 \times 1 \times 1$ in magle coil 2,300 $2.15 /$ -
H. $8 / 8$. $5 \mathrm{~B} \quad 120 \mathrm{~m} / \mathrm{s} .8 / 6$

STOP WATCHES. NINE-JEWELLED WALTEAM. One revolution every six seculds. Start, stop und ALL GADGES INSTRUMENT WIRE TiU Copper ALL GAUGES INSTRUMENT WIRE, Tiu coppe to 50 S.W.G. List sent ou request. Send S.A.E SUPERIOR TYPE DESK PRONES, black hakelite ases. Complete with Hand Sel, Dlul 0.9 andinteria bell, $£ 3 / 7 / 6$.
ELECTRICITY SLOT METERS. ($1 /$ - in slut) for A.C mains. Fixed tariff to your requirements. Suitable or hotels, etc. $200 / 450$ Y. 10 A., $84 /-15$ A. $94 /-$ 20 A. 104/-; other amperages nvallable. Recondi loned as new. 2 years guarantee
SYNCHRONOUS A.C. MOTORS (geared meter more nents) $200 / 250 \mathrm{~F}$. for models, etc. Approx. size 3×3
$x 3 \mathrm{in}$, Weight 1 t b . $7 / 6$.
$5-W A Y$ PRESS-BUTTON INTERCOM. Tclephones in bakelite case with junction box. Thoroughly over 10-w Y PRESS BUTTON INTER
10-WAY PRESS-BUTTON INTER-COM. TELEPFONES in bakelite case ulth junction box. Thor -wAy PRESC POTON
PHONES, in bakelite case with function to TELE ouglhly overhauled. (iuarauteed. £7/15/-.
QUARTERLY ELECTRIC CHECK METERS, Ke conditioned as new. $300 / 250$ ₹. 10 A. $42 / 6 ; 13 \mathrm{~A}$ $52 / 6 ; 20 \mathrm{~A} ., 57 / 6$. Other umperages uvailable. ears' guarantee.
CEROME TELEPRONE DIALS. $0-9$. Suitable for inter-othice and factory installation. $12 / 6$ G.P.O.TELEPEONE NPPECARBON HANDSETS, $10 / 6$ OVING COIL EARPIECES with rubber paris. 7/4 DESKK PRONES.

Complete uith Hand set and Dial $0-9$. In black lakelite case und int crmal bell. £1/1z/6 $5{ }^{*}$ ROUND MOVING COIL SPEAKER 3 ohm. 10,6 $10^{*} 22 / 6$
All prices include corriage in United Kingdom
23 LISLE ST. (GER. 2969) LONDON, W.C. 2
closed Thursday 1 p.m. Open all day Salurday

RADIO COMMUNICATION

J. H. Reyner and P. J. Reyner

Covering the syllabus of the City and Guilds Telecommunications Technicians courses and the corresponding parts of the Institution Examinations, this book will be invaluable to both the student and the practising engineer.

55s. net.

RESISTANCE WIRES EUREKA-CONSTANTAN
 Most Gauges Available
 NICKEL-CHROME MANGANIN NICKEL-SILVER

COPPER WIRE

ENAMELLED, TINNED LITZ, COTTON AND SILK COVERED
SMALL ORDERS PROMPTLY DESPATCHED B.A. SCREWS, NUTS, WASHERS. soldering tags, eyelets and rivets. EBONITE and BAKELITE PANELS. TUFNOL ROD. PAXOLIN TYPE COIL FORMERS AND TUBES. ALL DIAMETERS. SEND STAMP FOR LIST. TRADE SUPPLIED.

POST RADIO SUPPLIES
33 Bourne Gardens, London, E. 4 Phone: Clissold 4688

PANEL METERS

 A comprehensive range of MICROAMMETERS - AMMETERSVOLTMETERS.
 PROMPT SERVICE

E.I.R. INSTRUMENTS LIMITED 329 Kilburn Lane, Lordon, W. 9 Tel.: LAD 4168

CCELLDSENE

CELLULOSE WADDING

AS RECOMMENDED BY GOODMANS FOR RESONANCE DAMPING

40-ply ($\frac{1}{2}$ " nominal thickness) $36^{\prime \prime}$ wide 5 yd. roll $19^{\prime \prime}$ -

Carriage 3 /Sole retail distributors
H. L. SMITH \& CO. LTD.

287/289 EDGWARE ROAD, LONDON W. 2
Telephone Paddington 5891/7595

GOODMANS \& WHARFEDALE
LOUDSPEAKERS UN DEMONSTRATION

INDEX TO ADVERTESERS

Appointments Vacant Advertisements appear on pages 125 to 128

Goodmans Industries, Ltd. 25 Goodwin, C C., (Sales), Ltd. 118 Gramplan Reproducers, Ltd. 131
Hall Electrlc, Ltd.
Harmsworth Townley \& Co.
Harrls Electronics (London), Ltd. Harris, P.
Harverson Surplus Co., Ltd.
Henry's (Radlo), Ltd.
H.P. Radio Services, Ltd.
Iliffe Books Ltd.
.
International Aurio Fair
International Aurro Pain 90
International Correspondence Schools 119, 121 Interplas
Irongate (M.O.) Co.
103
Keyswitch Relays, Ltd.
Lasky's Radio, Ltd Lawson Tubes
82, 83, 84
Leak, H. J., \& Co., Ltd. 131
Ledon Instruments, Ltd.
108
Levell Electronics, Ltd.
Lewis Radio Co.
Lexor Electronics, Ltd.
Ldght Soldering Developments, Ltd.
Linear Products, Ltd.
Lionmount \& Co., Ltd.
London Central Radio Stores
Lyons, Claude, Ltd.
Mailplan
Marconi Instruments, Ltd.
Marconi's Wireless Telegraph Co., Ltd McMurdo Instrument Co., Ltd. Metrimpex
Mills. W
Mills. W. W......
Modern Book Co
Modern Electrics (Retail). Ltd. M.R. Supplies, Ltd.
Mullard, Ltd.
Multicore
Newmark Transistors, Ltd
124, Cover iv
Nombrex, Ltd.
Oddie Bradbury \& Cull, Ltd.
Oliver Socket Screw, Ltd.
Painton \& Co., Ltd
Parker, A. B.
Partridge Transformers, Ltd.
P.C.A., Ltd.
P.C. Radio, Ltd.
Pembridge College of Electronlcs
Philco International, Ltd.
Philips, N. V.
30,3153
Plezo, Ltd.
Pltman, Sir Isaac \& Son, Ltd.
Plastronics, Ltd.
... 114
.............................. 56
Plessey Co., Ltd. 17, 18, 19, 20
Post Radio Supplies
Proops Bros., Ltd.
Pye Telecommunications, Ltd.
Pye TVT, Ltd.

Salford Elec. Insts., Ltd. 46
Samsons (Electronics), Ltd. 8.8
Servo \& Electronic Sales 119
Servomex Controls, Ltd. 54
Sifam Electrical Instrument Co., Ltd. 132
Smith, G. W., (Radio), Ltd- 13
Smith, H. L., \& Co., Ltd. 42
Southern Radio Supply, Ltd.Southern Technlcal Supplies131
Spears Engineering Co., Ltd. 132
Stamford. A. L. 124
Standard Telephones \& Cables, Ltd.Stern Radio Ltd. \& Premier Radio Co.2
87
Stratton \& Co., Ltd. 76Sufiex, Ltd
Sugden, A. R., \& Co. (Engineers), Ltd.78
Sweetman \& Bradley, Ltd
131
Tannoy, Ltd. 117
echncal Trad 78, 81
Telequipment, Ltd 60
Tele-Radio (1943), Ltd. 56
Thorn-A.E.I. Radio Valves \& Tubes, Ltd. 70
T.R.S. Radio 100
Universal Book Co. 132
Vacuum Electronics, Ltd. 80
Valradio, Ltd. 52
Vectron. Ltu.
128,130
Vestfold Radio-Elektro A/S 130
118
Vortexion, Ltd.69
Watts. Cecil E. 129
Webber. R. A., Ltd 118
Webb's RadioWellington Acoustic Laboratories, Ltd.Weymouth Radio Mfg. Co., Ltd., TheWhiteley Electrical Radio Co., Itd.Wilkinson, L., (Croydon), Ltd.Wirecomp Electronics
What Wlaless Works,12Z. \& I Aero Service, Ltd.
122. 123 130 36 116 99 , 93 120 130
98 98
23
44 44
67 101 29
78 132

[^13]Page 1
號

$\xrightarrow{2}$

SOLDERING EQUIPMENT

INSTRUMENTS DOUBLE BANKED FOR THE PURPOSE OF SOLDER IOINTING CIRCUITS CONTAINING VARIED SIZED TERMINATIONS.

For catalogue apply direct to
HEAD OFFICE SALES \& SERVICE
ADCOLA PRODUCTS LTD
ADCOLA'HOUSE, GAUDEN ROAD,
LONDON, S.W. 4 .

[^0]: (C)Iliffe Electrical Publications Ltd., 1963. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief abstracts or comments are allowed provided acknowledgement to the journal is given.

[^1]: *Sylvania Semiconductor Division, Woburn/Mass. U.S.A.

[^2]: *The Plessey Company (U.K.) Ltd.

[^3]: * Dayton, Ohio, U.S.A.
 \dagger Defined in the F.C.C. regulations as "a radio communication service of fixed, land, and mobile stations intended for personal or business radio communication, radio signalling, control of objects or devices by means of radio and other purposes not of objects or devices by means of ",

[^4]: "Assembling Radio Valves" is the title of a new film in the B.B.C. Schools TV series "Going to Work." It deals with a teenage girl who chooses to work in electronics and light electrical engineering. The programme is to be transmitted on March 4th and 5th and viewers will see her going through the normal selection procedure, receiving instruction in a training school and finally making valves for use in industrial electronic equipment. The film was shot at Mullard's factory at Mitcham.

[^5]: Sole Distributors in the U.K.:
 Research \& Control Instruments Ltd, 207 King's Cross Road, London W.C. 1

[^6]: PUBLISHED MONTHLY (4th Monday of preceding month). Telephone: Waterloo 3338 (70 lines). Telegrams: * Ethaworld, London, Telex." Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home and Overseas, £2 0s. Od. Canada and U.S.A. \$5.50. Second-class mail privileges authorized at New York, N.Y. BRANCH OFFICES: BIRMINGHAM: King Edward House, New Street, 2. Telephone: Midland 7191. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 62, Buchanan Street, C.1. Telephone: Central 1265-6. MANCHESTER: 260, Deansgate, 8. Telephone: Blackfriars 4412. NEW YORK OFFICE: U.S.A.: 111, Broadway, 6. Telephone: Digby 9-1197.

[^7]: POSTAL ENQUIRIES and MAIL ORDERS TO
 STERN RADIO LTD.
 6.12. TUDOR PLACE, TOTTENHAM COURT RD.

 LONDON, W1. TEL. MUSEUM.6128/9

[^8]: Complete kit with diagrams and instructions. $49 / 9$ or ready for use 59/6.

[^9]: TERMS: Cash with Order or C.O.D. Postage and Packing Charges extra. Single valves 9d. Minimum Parcel Post charges 2/=. Please include sufficient postage with your order Minimum C.O.D. fee and postage $3 / 6$.
 These Postal Rates apply to U.K. only. These Postal Races apply to For furl terws of business see inside cover o Mon. to Friday. Saturday $10 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p.m}$.

[^10]: Brand
 moters
 $00-250$ anse, fully shrouded.
 $200-250 \quad \nabla$. A.O. ${ }^{2} \times 1 \mathrm{in}$.
 ley, fitted switch. Sultable
 or tape deckn, record players
 $\begin{array}{ll}\text { and many other } & 14 / 11\end{array}$

[^11]: 40-page list of over 1,000 different items in stock
 available-keep one by you.

 * R.C.A. $420 \mathrm{mc} / \mathrm{a}$ 5-element Yagi Aerial
 * "Gibson Girl" Transmitters
 \star 19in. Folding Rack Shelves, nickel and
 * Wide Band Aerial Exchange Amplifiera
 \star S.O.S. Diatress Band $500 \mathrm{kc} / \mathrm{a}$ Precision Filters
 \star Duiselectors, 25 ways, 3 bands, 2×37 \}
 $2!$ in. $0 / 25$ Micro/Ammeters, finsh roun ralibrated 0/125
 * Woden $400 \mathrm{~m} / \mathrm{m} 20$ Heary Chokes
 * Stonebridge 4 -digit Counters.
 * Crypton Cabinet Rectifiers, $200 / 250$
 - BC-610 Whip Aerials, 3 sections, 9 Reet Whig
 - American Condensers. 3.600 mid., - Precision Mains Filter units.
 \star R.C.A. 25 Watt Horn Projector Speakers. range 1 mile.
 \star R.C.A. Squadron Announcing Systems, capacity up to 12 speakers
 $£ 150$
 * Dowty Eligh Speed Register Countors,
 - Edwards Speedivac Pumps, 230 v. A.C.
 * Metro-Vickers Metrovac Pumps. 280
 - Avo Geiger Counters
 * DAE-1 Marine Receiveŕs
 * American Radiosonde OMD-1 £175 0
 * PV-500 watt Marconi Transmitter.
 E.C.C. 10 KW Rectifiers. 330 v. A.Q
 + TCC-3 Carrier Telephone Systems....
 * RD-115 Twin Channel Video Type

 Tape Recorders

 * Type 44-5-unit Keyboard Periorators
 \star Creed Morse to 5 unit Electronic Converters
 * Teletupe Metal Tables for 2 machines.
 * American Triplett Valve Testers.

 Western Electric L-20 Transmission Measuring Equipment

[^12]: WAL GAIN TRANSISTORISED PRE-AMPLIFIERS, for any surpuse where it is necewgury to amplify a minute voltaye into utefly output. Many spplications. Supplied complete with $9 v$ battery, etc. Mono f5/10/Btereo or two monn channels, s7/10/-. New unit With tape equalisation WAL BI-GAIN, Ey/16/-. f $2 / 10 / \mathrm{m}$. WAL BULK ERASER, tape and film.钓 $118 / 6$. WALTRAK pocket audio noplliator, pocket sized, £6/10/-. Full technical leatlets.
 WELLINGTON ACOUSTIC LABORATORIES LTD. Farnham, Surrey.

 Farahem 8481.

[^13]: 都

