# Wireless World 

## RLECTRONICS

Radio . Television


FIFTIETII YEAIB DF PQBLICATION

## Another outstanding new <br>  $1 \sqrt{2}=$

with a CV4000 specification


The EDISWAN S2P20 (CV4097) Filamentary Beam Fetrode

Here is a new special quality Filamentary Beam Tetrode with a really low anode vo!tage, for use as an RF Power Amplifier at frequencies up to $100 \mathrm{Mc} / \mathrm{s}$.
Instantaneous filament heating enables the valve to be switched off during non-duty periods, which makes it particularly suitable for use in battery operated portable equipment. Its specially rugged construction enables the valve to withstand continuous vibration at 2.5 g and a short duration shock of 500 g .

MAIN PARAMETERS ARE AS FOLLOWS:-


## Associated Electrical Industries Limited

Radio and Electronic Components Division Incustrial Valves and Ca:hode Ray Tubes Department 155 Charing Cross Road, London. W.C.2. Telephone: GERrard8650 Telegrams: Sieswan Westcent London

Managing Editor:
HUGH S. POCOCK, MIIE.E.

Edior:
F. L. DEVEREUX, B.Sc.

Assisanı Editor:
H. W. BARNARD

VOLUME 66 No 8.
PRICE: TWO SHILLINGS

FIFTIETH YEAR
OF PUBLICATION

## AUGUST 1960

## 365 Editorial Comment

366 Transistor V.H.F./F.M. Receiver-1 By R. V. Harvey
369 Hybrid Computing System
371 Corner Baffle Loudspeaker Mounting By H. C. Pinfold
372 Optical Line Eliminator
373 B.B.C. Television Centre
374 Technical Notebook
376 World of Wireless
378 Personalities
379 News from the Industry
381 Battery-Powered Marine Radar By L. H. Dawson
386 Transistorized Wien Bridge Oscillator
By F. Butler
391 Microwave Valves
395 Letters to the Editor
399 Transistor Inverters and Converters-1 By M. D. Berlock and H. Jefferson

402 Short-Wave Conditions
403 Inverted Triode Voltmeter
405 Manufacturers' Products
407 Elements of Electronic Circuits-16
408 Tunnel Diodes
413 Improved Printed Wiring
414 Random Radiations
416 Unbiased

By R. B. Rowson and A. P. Williams

By 7. M. Peters By "Cathode Ray"

By "Diallist" By "Free Grid"

Offices: Dorset House, Stamford Street, London, S.E. 1
Please address to Editor. Advertisement Manager, or Publisher, as appropriate

## (c)

Iliffe \& Sons Ltd. 1960. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief abstracts or comments are allowed provided acknowledgment to the iournal is given.

[^0]
## AND COMPONENTS

## COMPPREENSIVE TEEHNICALHANDBOOK SERVIIE

The Mullard Technical Handbook has long been established as the comprehensive reference work for all those needing full data on Mullard Valves, Tubes and Semiconductors.
It has now been replanned: a volume on Electronic and Magnetic Components has been added and Volume 1A incorporated in enlarged Volumes 1 and 3.
The Handbook Service includes the supply of any or all of the loose leaf volumes listed below, plus the automatic issue of revised and supplementary sheets as and when published.


## Reliability

THE emergence of electronics from the physics laboratory and its acceptance as an essential part of industrial and indeed of everyday life was amply confirmed by the scale of the recent I.E.A. Exhibition at Olympia and by the range of topics and lively discussion at the concurrent E.F.F.I. conference under the title " User Experience of Electronics in Industry."

The versatility and flexibility of electronics have through long familiarity ceased to be a source of wonder. It was no surprise to find at this conference papers on stock control and insurance computation followed by machine control and heat treatment, or a lecture on process control in petroleum refining between discussion of biscuit-making and steel production; but we hope that the many young electronics engineers in the audience were as impressed as we were by the revelation of the conditions under which some of their pet designs are expected to work--the high temperature and humidity of paper works, where in one instance an air-conditioned room had to be built to house the control equipment, and the radiant heat from steel strip which has called for the use of water cooling for phototransistors in equipment designed for the control of strip width by optical methods. Even in the equable atmosphere of an insurance office there may be hidden environmental hazards in the form of electrical interference. One case was reported of the mutilation of the contents of a computer store by spurious pulses arising from a radio-frequency ripple on the neutral line of the power supply.

The possible consequences of even the slightest malfunction of electronic equipment are often frightening. If a width gauge is faulty a whole coil length of steel strip may be considered as scrap and it would then be necessary to roll 100 coils accurately to make up the loss. In the threc-dimensional profile milling of steel wing sections for high speed aircraft a 3 in-thick billet of anything up to 40 ft in length may have to be reduced to a skin thickness of 0.064 in , and here again scrap can be very expensive. Petroleum refineries, where electronic controls in conjunction with digital computers are tending to take the place of analogue and pneumatichydraulic control, are expected to work continuously throughout the "on stream" period of 9 to 18 months with not more than $2 \%$ shut-down time for instrument maintenance.

Not only in industry, but also in the civil and military services the question of reliability is never far from the thoughts of those who must put their trust in electronic devices. Problems of maintenance have been thrown into relief by the phenomenal reliability of the gas turbine engine which has greatly reduced the turn-round time for short-haul airline services. The demand is
now for radio aids which will go for 3,000 flying hours between major overhauls. These and other matters such as the storage reliability of guided weapons were discussed in detail at the Symposium on Electronic Equipment Reliability organized by the Institution of Electrical Engineers. This was concerned with field experience and methods of assessing and predicting reliability and showed that the best way of coming to terms with the problem is to accept the fact of unreliability, to circumscribe it by routine maintenance or built-in self-checking facilities and by statistical analysis of case histories to trace the root causes of failure. It is interesting to note that routine testing can itself be the cause of unreliability. A case reported to the Symposium showed how failure of diodes in a large computer was traced to momentary short circuits when applying test probes. Insulation of adjacent conductors resulted in a reduction of the failure rate from as much as $4.4 \%$ to $0.03 \%$ per 1,000 hours.

The study and improvement of reliability is now a technology in its own right with its own specialized vocabulary; it may even be said in some respects to have attained the status of a science. Looking to the future we can safely build on the reliability of the electron itself, but there is still much to be learned of its behaviour in association with other elementary particles. In short, solid state physics and the properties of materials open a wide field for investigations into the long-term stability of the basic ingredients of electronic circuits. Meanwhile there is plenty of scope for simplification of some of the electronic "technicians rackets" we see employed for simple menial tasks; other things being equal, the chances of failure must increase with complexity and the number of elements involved. Ultimately, the best methods of achieving reliability are learnt from experience, but, as has so often been said, the fees are high.

## Eloreat Tegalis Societas

ON the occasion of the tercentenary of the Royal Society we tender our respects and felicitations and wish the Society continued strength and wisdom in the future in fulfilling its functions as a touchstone of truth and a symbol of goodwill in the international relations of science.

Although the interests of the Society are wide (scientific disciplines have increased exponentially in recent years) it has not neglected to support research which is fundamental to radio astronomy and communications. In particular we have in mind the work of the Halley Bay station organized by the Royal Society during the International Geophysical Year.


In the three parts of this article a v.h.f./f.m. receiver of straightforward design is described: transistors of moderate cost are used and one watt output at low distortion is achieved. The receiver incorporates a recently described limiter and discriminator circuit giving good a.m. suppression. Some constructional and alignment details will be given in Part 2, and Part 3 contains the results of performance tests made on a prototype model.

# Transistor V.F.F./F.M. Receiver 

I. DESIGN CONSIDERATIONS AND CIRCUIT

By R. V. HARVEY*, B.Sc. A.M.I.E.E.

IN designing a transistor broadcast receiver, there may be a tendency to make undue concessions to the small size and low power consumption of transistors which might result in a sacrifice of performance. In applying transistor techniques to the design of a v.h.f. receiver for f.m. broadcasts, it was considered desirable to avoid this approach and to produce a receiver which without resorting to excessive expense or complexity had a performance equal, in the more important respects, to that of the betterquality domestic valve receiver. In particular, adequate suppression of amplitude modulation, adequate sensitivity and reasonable fidelity of sound
reproduction were regarded as essential requirements for such a receiver.

## General Design

The receiver is continuously tunable from 87 to $100 \mathrm{Mc} / \mathrm{s}$. In the initial design, consideration of the availability and cost of transistors having a useful gain at $100 \mathrm{Mc} / \mathrm{s}$ led to the decision not to use an r.f. amplifier. However, the RCA Type 2N247 drift transistor was readily available and has sufficient gain to be used as an oscillator at frequencies *B.B.C. Research Department.

Fig. 1. Theoretical circuit diagram. Centre-tapped choke, $L_{2}$, and capocitors $C_{8}$ and $C_{9}$ may not be needed- $T_{2}$ is then joined directly to VI and V2, the mixer diodes. Shown dotted are components for boosting bass for loudspeaker equalization: other component changes are $C_{52}$, reduce to $0.5 \mu F$, and $C_{49}$, reduce to $1,200 \mathrm{pF}$. Asterisk against component value indicates odjustment during setting up.

from 77 to $90 \mathrm{Mc} / \mathrm{s}$ and to drive a diode mixer adequately for efficient conversion of the signal to the standard i.f. of $10.7 \mathrm{Mc} / \mathrm{s}$. Radiation of oscillator power from the aerial is minimized by using a balanced mixer circuit. The effect of supplyvoltage changes on the oscillator frequency is almost completely removed by shunting the oscillator supply by a Zener stabilizing diode. The remaining frequency drift is then quite small and is mainly caused by changes in room temperature as the "warming-up" effects due to internal heat production are negligible.

The i.f. amplifier must have a maximum gain of about 90 dB to make up for the conversion loss of the mixer and to supply sufficient power to the limiter; the latter can then operate satisfactorily at signal input levels down to about $30 \mu \mathrm{~V}$. A stage gain of 22 dB could be achieved with adequate stability using the Mullard Type OC170 transistor and the required overall gain and bandwidth was finally obtained by cascading four such stages, using alternate single- and double-tuned coupling circuits. As miniaturization was not proposed, the i.f. amplifier could extend over some ten inches of chassis to avoid unwanted feedback.
It has been emphasized elsewhere that efficient suppression of amplitude modulation is essential to reduce the effects of co-channel interference ${ }^{1}$ and multipath propagation ${ }^{2,}{ }^{3}$. A simple valve receiver has been described ${ }^{4}$ which achieves a good performance in this respect by incorporating a discriminator combined with a "dynamic diode" limiter. The limiter operates with a self-generated bias proportional to the mean level of the applied signal and suppresses rapid changes in level. The bias is also used for a.g.c. so that for slower changes in level, the variation of a.f. output is kept small but is not completely suppressed so enabling strong and weak transmissions to be distinguished from one another when tuning. As this combined limiter and discriminator is a passive circuit, it was adopted with little change in the transistor receiver.

A maximum a.f. output power of one watt, delivered to an 8 -in high-flux-density loudspeaker, was considered sufficient for domestic reception. A transformerless Class-AB push-pull output stage,
using G.E.C. Type GET115 transistors operating from a 12 -volt supply, gives the required output into a loudspeaker impedance of 15 ohms. The phaseshift in these transistors at high frequencies is sufficiently small to allow about 20 dB of negative feedback to be applied to the input of the driver stage whilst maintaining adequate stability. Three additional stages, one incorporating the gain control, provide the necessary a.f. gain.
For acceptable fidelity of sound reproduction, a fairly large "table-model" size of cabinet measuring $22 \times 16 \times 10$ in was chosen. As the mean power consumption of the receiver is less than one watt, there is no need for internal ventilation. The cabinet was therefore constructed as a vented enclosure with a rigid back and with internal acoustic damping. Fixed bass- and treble-lift circuits were subsequently added to the a.f. amplifier to preserve a fairly uniform axial response.

## Description of Circuits

The circuit diagram is shown in Fig. 1. Lists of suitable components and coil- and transformerwinding data will be given in Part 2.
R.F., Oscillator and Mixer.-The r.f. and oscillator circuits are each tuned by one section of a twogang capacitor. The effective capacitance range is reduced to a variation from 5 to 7 pF by adding series 18 pF capacitors and restricting the angular swing of the tuning capacitor to $150^{\circ}$. To assist in the tracking of the two circuits, the r.f. coil is of slightly lower inductance ( $0.5 \mu \mathrm{H}$ ) than the oscillator coil and is loaded by an additional capacitive network which transforms the aerial impedance of 75 ohms to about $20 \mathrm{k} \Omega$. The load imposed by the mixer and the coil loss is of the same order, resulting in an effective Q -value of about 50 for the r.f. tuned circuit.

The oscillator coil is connected between the emitter and collector of a 2 N 247 drift transistor, its base being tapped in close to the emitter end of the coil. This gives the required positive feedback, bearing in mind that the phase angle between collector and emitter currents approaches $180^{\circ}$ at $90 \mathrm{Mc} / \mathrm{s}$. As the oscillator frequency is dependent on collector

capacitance, part of which depends on the collector potential, the supply is stabilized at 10.5 volts by a Zener diode, S.T.C. Type Z2A110. The collector current is held stable at 1 mA by an emitter resistor of 150 ohms, the base being fed through a small choke from a potential divider across the battery supply.

The mixer consists of two GEX66 point-contact diodes driven in push-pull by the oscillator; the r.f. coupling is connected between the mid-point of the oscillator coil and the earth. The balanced circuit reduces the oscillator voltage appearing at the input to less than 1 mV and direct i.f. pick-up through the mixer is minimized by the use of inductive coupling. To prevent spurious f.m. of the oscillator by input signals of 100 mV and greater, it may be necessary to insert capacitance ( $\mathrm{C}_{8}$ and $\mathrm{C}_{4}$ ) in series with the mixer diodes and the oscillator couping, as shown in the circuit diagram; the centretapped choke, $L_{2}$, then provides a d.c. path for direct current in the mixer, which is about $200 \mu \mathrm{~A}$. If $\mathrm{C}_{8}, \mathrm{C}_{9}$ and $\mathrm{L}_{2}$ are omitted, V1 and V2 should be connected directly to ${ }^{T} \Gamma_{2}$ primary. The output impedance of the mixer is about 600 ohms and the conversion loss of the unit at $90 \mathrm{Mc} / \mathrm{s}$ is approximately 12 dB .
I.F. Amplifier.-The balanced output from the mixer is transformed to an unbalanced impedance of 300 ohms by the first i.f. tuned circuit and applied to the base of the first i.f. stage. The amplifier consists of four OC170 transistors in commonemitter connection. The maximum-possible unilaterilized power gain is about 120 dB , of which, in the interests of stability, about 30 dB is deliberately lost. This is achicved by choosing the L/C ratios of three interstage-coupling circuits to obtain a loss of about 10 dB in each coupling with unloaded $Q$-values of 100 . The overall response is largely determined by these three circuits, one singletuned and two coupled pairs, and is 3 dB below the maximum at about $\pm 90 \mathrm{kc} / \mathrm{s}$ from the centre frequency. Non-critical neutralization is effected by $6.8-\mathrm{pF}$ fixed capacitors.

The first two OC170 stages operate at a maximum collector current of 1 mA , developing a potential drop of five volts across their emitter resistors. The gain of the recciver may be reduced by up to 50 dB by applying a.g.c. voltage to the bases of these two stages. The third and fourth stages operate with fixed bias and the last stage has a collector current of 3 mA in order to deliver a maximum i.f. power of about 5 mW to the limiter and discriminator circuits.

Limiter, A.G.C. and Discriminator.-The action of the limiter and discriminator circuits is described only briefly here; a more detailed explanation has been given elsewhere ${ }^{-1}$.
The collector of the last i.f. stage is connected to the primary of a tightly coupled step-up transformer. The secondary winding is shunted by an amplitude-modulation limiter in the form of a peak detector with a long-time constant load. As the mean load resistance imposed by the limiter is approximately one-seventh of the remaining shunt resistance across the secondary winding, the limiter will function with modulation depths of up to $87 \%$; at greater depths the limiter will not operate at troughs of modulation. The limiting efficiency is improved by the addition of a third-harmonic filter ( $\mathrm{L}_{8}, \mathrm{C}_{41}$ ) in series with the diode ${ }^{5}$.

An a.g.c. voltage is applied to the bases of the first two i.f. transistors from one end of the limiter load resistor. The other end of the load is returned to a point on a potential divider across the d.c. supply; thus the a.g.c. bias is maintained at -5 V in the absence of a signal, decreasing to -0.5 V for large signal inputs. The a.g.c. is applied to the i.f. stages without any more long-time-constant filtering so that amplitude modulation such as aircraft flutter is effectively controlled when its frequency is too low for the limiter to operate.

A Foster-Seeley type of phase discriminator is coupled to the limiter by a small series capacito which, with some of the primary reactance of the discriminator transformer, forms an impedanceinverting network. The discriminator is thus fed from a high-impedance source (as is essential for its correct operation) derived from the very low impedance presented by the limiter.

A capacitive centre-tap is used on the secondary of the discriminator transformer and the inductive coupling between primary and secondary is 1.5 times the critical value. The combined primary and secondary voltages are applied to two shunt diodes with load resistors returned through a relatively small common resistor. This resistor forms the source impedance for the first a.f. stage, carries the base bias for the transistor and, with the input impedance of the transistor and a shunt capacitance, forms the de-emphasis network. By connecting the diodes and their load resistors so that the differencecurrent flows in a small common resistor, the "dual" of the conventional Foster-Seeley circuit, which applies the difference voltage to a high-value shunt resistor, is formed. The lower output impedance of the former circuit is clearly more suited to supplying a transistor amplifier.
A.F. Amplifier and Output Stage.-The output of the first a.f. stage following the discriminator is passed to the a.f. unit, in which an output power of 1 watt is obtained from a minimum signal of 0.5 V across the $5-\mathrm{k} \Omega$ a.f. gain control. There are two intermediate common-emitter stages, a coupling transformer and a pair of output transistors operating in Class AB for power economy. There is no output transformer as the 15 -ohm loudspeaker forms an optimum load connected (via a capacitor) between the junction of the output transistors and the chassis. The quiescent current in the output transistors is about 7 mA and, to give minimum cross-over distortion adjustment of the bias is required. About 17 dB of negative feedback is applied to the preceding stage from the loudspeaker through a correcting network and 9 dB feedback from the collector to the base of that stage. By choosing output transistors having moderate power-handling capacity and relatively high cut-off frequency, negative feedback is easy to apply and the design of a very efficient output stage has been possible.

Loudspeaker Compensation.-The 8 -in diameter loudspeaker, when mounted in an open cabinet, gave a somewhat irregular response. By making the back of the cabinet of rigid board, treating the inside surfaces with layers of fibre-board and wood-wool, and cutting a 2 -in diameter vent in the front panel, the gross irregularities were removed. The smoothed axial response has a progressive loss above and below $2 \mathrm{kc} / \mathrm{s}$, amounting to 8 dB at $100 \mathrm{c} / \mathrm{s}$ and 6 dB at $10 \mathrm{kc} / \mathrm{s}$. The circuit shown in Fig. 1 gives a substantially uniform audio-frequency response; to
compensate for the response of the particular loudspeaker and cabinet used here, the circuit can be modified slightly. Partial electrical compensation at high frequencies can be provided by simply reducing the de-emphasis time-constant to $30 \mu \mathrm{~s}$ ( $\mathrm{C}_{4} 9$ is reduced to $1,200 \mathrm{pF}$ ). Partial bass-compensation is effected by inserting a 680 -ohm resistor shunted by a $1-\mu \mathrm{F}$ capacitor in the a.f. feedback loop, between $\mathrm{C}_{59}$ and $\mathrm{C}_{55}$ (shown dotted). To prevent the gain rising to excessively high levels at very low frequencies, the coupling capacitor between the first two a.f. stages ( $\mathrm{C}_{52}$ ) is reduced to $0.5 \mu \mathrm{~F}$.

## Power Supply

The receiver will operate satisfactorily at supply voltages of between 11 and 15 volts; the upper limit is set by the rating of the output transistors and the lower limit by the Zener diode stabilizing the oscillator supply. The current consumption is about 22 mA with no signal and about 30 mA at normal
listening level. A convenient supply for the table model receiver is provided by two 7.5 -volt dry batteries, each measuring $5 \frac{1}{8} \times 2 \frac{1}{4} \times 3 \frac{3}{4}$ in. Using this supply, costing $6 s$. $6 d$., the estimated life of the batteries is about forty days if the receiver is used for four hours every day.

## (To be continued)

## REFERENCES

1. Phillips, G. J., "F. M. Discriminator Bandwidth," Wireless World, Vol. 63, p. 571 (December 1957).
2. Scroggie, M. G., "F.M. Multi-Path Distortion," Wireless World, Vol. 62, p. 578 (December 1956).
3. Harvey, R. V., "V.H.F. Sound Broadcasting: Subjective Appraisal of Distortion due to Multi-Path Propagation in F.M. Reception," I.E.E. Paper No. 3221E, March, 1960; (to be re-published in Vol. 107, Part B, Proc. I.E.E.).
4. Spencer, J. G., "F.M. Receiver Using New Dynamic Limiter." Wireless World, Vol. 65, p. 493 (November, 1959).
5. Mayo, C. G., Wigan, E. R., Jones, R. E., British Patent Specification No. 822,762.

## HYBRID

COMPUTING SYSTEM

Analogue and Digital Methods

Combined in New Equipment



IT has been recognized for some time that the ideal electronic computing system is one which combines the advantages of both analogue and digital techniques. On the analogue side there are the advantages of high speed of operation, ease of programming even with very complex calculations, ability to alter the input information during computation, relatively small size and low cost. On the digital side the principal advantages are high accuracy, convenience of input and output facilities, extensive storage and stability with time.

Unfortunately, in practice one cannot get the advantages without the disadvantages, and any combination of the two techniques must take into account such things as the limited accuracy and lack of storage of the analogue computer and the relatively slow speed and high cost of the digital machine. In short a particular pattern of advantages and disadvantages has to be selected, depending on what sort of work the hybrid computer is required for. This pattern will, of course, determine the particular way in which the analogue and digital electronic circuits are combined.

An extremely versatile combination of techniques has been adopted in the new hybrid computing system developed by Redifon (who are perhaps better known at present for their flight simulators and com-
munications equipment). It is called RADIC, which stands for Redifon Analogue Digital Computing system. Basically it is an analogue computing system with digital input, output and storage facilities-the storage equipment being an unusual design giving quantization in the time scale. It is, above all a system, from which groups of computing elements can be selected for particular types of calculation -not a fixed-size computer. A major field of application which depends largely on the analogue facilities is the analysis and simulation of industrial and other control systems. Other applications, such as statistical analysis, linear programming and analysis of the transfer functions of commercial and other operations, depend more on the digital facilities.

Since the RADIC is basically analogue in its mode of calculation it is not intended for commercial and accountancy work, where 100 per cent accuracy is essential (for example, in calculating payrolls!) There are, however, a good many commercial calculations that do not require exact figures since the input information is not 100 per cent accurate, but where an answer of 99.9 per cent accuracy is most valuable if it can be produced quickly-as it can by analogue methods.

The electronics of the RADIC system, then, com-
prises an assembly of drift-corrected d.c. amplifiers, electronic multipliers and diode-network function generators operating on well-known principles. ${ }^{\star}$ These electronic computing elements, backed up by electro-mechanical servo-operated integrators and multipliers, perform the operations of addition and subtraction, multiplication and division, integration and differentiation with respect to time and the generation of mathematical functions (e.g., sines, squares, logarithms). The elements can be interconnected in various ways, depending on what type of computation is to be performed, by means of a central " patchboard."

As already mentioned, digital devices are used for feeding numerical data into and out of the analogue computing elements, and also for storage purposes. There are two keyboards for input information. One, on a modified " Addo X" digital printer, is for feeding numerical data into the storage system. The other keyboard is for the automatic setting of coefficients in the analogue computing elements. There are also two devices for digital output information, an illuminated number display (on both the main computer and the central desk) and a print-out mechanism (on the "Addo X" unit). Digital storage is provided by a magnetic tape equipment, which can also be used for the simulation of time delays in control systems and for other special purposes.

All these digital input, output and storage devices operate in the "parallel," as distinct from the "serial," mode-that is, all the pulses representing a number occur simultaneously on separate wires, not in sequence on a single wire. This method, using the binary-coded decimal system of representing numbers, enables the digital units to match the high speed of the analogue computing elements. The translation of data from digital to analogue form and vice versa is done by analogue-to-digital and digital-to-analogue converters.

## Magnetic Storage

The feature of the RADIC system which, perhaps more than any other, distinguishes it from conventional analogue computers is the magnetic-tape digital storage system. This extends the field of use of the system to complex types of input data which the normal type of analogue computer is unable to handle. Physically this storage system takes the form of a separate transportable cabinet -the reason being that it can be used on its own for certain types of calculation or taken to a remote site to record characteristics of, say, an industrial plant. It contains two tape decks, a digital encoder for translating input data into a form suitable for storage, and a digital-to-analogue converter for translating digital data from the tape into a form suitable for the analogue computing elements. The magnetic tape is 35 mm wide and has sprocket holes like cinematograph film. It will record 16 channels simultaneously.

As mentioned earlier a new principle is used for the storage of digital information on the tape. This is the process of quantizing the time scale as well as the data recorded. Using a sprocket drive system,

[^1]the tape is moved in separate small steps, and digits are recorded and read-out while the movements are taking place.

By this means the stored information is put under more precise control than it would be on a continuously moving tape, and, in fact, the small steps are accurately synchronized to the read-in/readout circuitry. Although the tape always moves at constant speed over the magetic heads, the intervals of time between successive movements can be extended at will. As a result the average tape speed can be precisely varied over an extremely wide range of speed. The pulse which controls the stepping action can be set at a constant rate or made to vary in accordance with some other quantity involved in a computation. Incidentally this new time-quantizing method of operation dispenses with the cumbersome and costly circuitry normally required for slow-moving tapes and flux-sensitive magnetic heads.

## Time-delay Applications

One special use $f$ this storage system is that it can be used to sin ulate time delays which may occur in process control systems. Data is recorded on the tape and then read out by a reading head which is physically displaced from the recording head-the time taken for a point on the tape to pass from the recording head to the reading head being determined by an accurately controlled number of steps, each of which takes an accurately controlled interval of time.

In addition this time delay facility is used for correlation computing, in which data stored on the tape is continuously compared with data on other parts of the tape (displaced by known intervals of time) in order to detect periodicities. For this work it is necessary to be able to automatically alter the spacing between the two heads by an electrical signal to give a series of different time delays as the computation proceeds. This is done by an ingenious mechanism in the tape deck based on differential movement between two tape driving sprockets.

Correlation computing (which is explained at some length in "Electronic Computers"*) can be performed on either analogue or digital input data. In the RADIC system it is intended to be applied mostly to digital information for statistical analyses -particularly the analysis of systems, whether industrial plant or commercial operations, which defy normal mathematical treatment. For this field of applications the digital storage unit, combined with built-in integrators and multipliers (required in computing correlation coefficients), is supplied as a separate equipment which is small enough to be transported to remote sites where recordings may have to be made in situ.

Overall control of the RADIC computing system is given by a bank of press-buttons situated on the control desk near the digital input and output equipment. Some of these buttons, for example, provide an elaborate selection system which enables the voltages at the outputs of any of the analogue computing amplifiers to be indicated as numerical values on the digital number display (actually a digital voltmeter).

The equipment shown in the photograph is a medium-sized assembly incorporating the maximum variety of analogue and digital units.

# CORNER BAFFLE LOUDSPEAKER MOUNTING 

## METHOD OF DOUBLING THE EFFECTIVE BAFFLE SIZE

By H. C. PINFOLD

THE recent revival of baffle mounting of loudspeakers initiated by G. A. Briggs led the writer to do some experimenting with this form.

It is known that, given a large and rigid enough sheet of wood, preferably about seven feet square and several inches thick, and a speaker of really low free-air resonance, then plain baffle mounting gives remarkably clean bass free from the boom which is often associated with the various types of enclosure mounting.

However, few people have the space for such large baffles as are necessary for reproduc-


Fig. I. Conventional baffle mounting of a loudspeaker. The dotted lines show the shortest paths connecting the front and back of the cone. tion right down to $40 \mathrm{c} / \mathrm{s}$.

The purpose of the baffle is to keep the front and back radiations separate from one another for as great a distance as possible. The speaker is usually mounted near the centre of a square or rectangular board and thus effective separation of the front and back waves is achieved for a distance of only twice one half of the size of the board (see Fig. 1).


Fig. 2. Plan (a) and perspective (b) views of corner bafflemounted loudspeaker.

However, if the speaker is mounted near a corner of the board, as near to the edges as the depth of the frame and magnet will allow, and the board is placed diagonally into the corner of a room as in Figs. 2(a) and 2(b), then, assuming the board to be the same size in both cases, it will be seen that the shortest path between the back and front of the speaker in Fig. 2 is nearly twice that in Fig. 1.

Alternatively, the arrangement of Fig. 2 will give, for a board of half the size, at least as good results as that of Fig. 1.

Loading of the speaker cone is much improved in the corner arrangement, as both sides of the speaker face into spaces which are horn-like in shape. Furthermore, when a speaker is mounted on a conventional baffle and placed as is usual near to a wall, there is an inevitable interaction between the cone and the wall so that a standing wave is built up. This effect is avoided in the corner arrangement.
There is no critical tuning to be done with this sort of mounting, which works well with a variety of speakers. The only factor that governs the choice of speaker for this mounting, as for all baffle arrangements, is the bass resonance of the unit, which should be as low as possible. The Wharfedale 10 -in Bronze FSB unit (bass resonance about $35 \mathrm{c} / \mathrm{s}$ ) sounds remarkably good and is not costly, but no doubt a high-flux 12 -in unit would be more beefy.

As for the baffle board itself, 3 feet square of 1 -in block board gives very fine bass and exhibits no tendency to panel resonance. Two 1 -in boards screwed together would be better, or a sand-filled sandwich would be better still. A rectangular board might also be preferable. Sealing to the floor and walls is not critical, but some shaping is necessary around skirtings, etc. The board is self-supporting.

## CLUB NEWS

Essex.-The Silverthorn Radio Club is holding its annual field event over the August Bank Holiday weekend at Carroll's Farm, Sewardstonebury, near Chingford. Station GB3SRC will operate in the $160-\mathrm{m}$ band. The club meets on alternate Fridays at the South Chingford Community Centre, Hall Lane, London, E.4.

London.-The secretary of the International Short Wave Club (Arthur E. Bear, 100 Adams Gardens Estate, London, S.E.16) offers to send a specimen copy of the club's news bulletin "International Short Wave Radio" to any reader of Wireless. World. The duplicated fourpage monthly bulletin gives up-to-date news of shortwave broadcasting stations, including schedules and operating frequencies.

Middlesex.-At the meeting of the West Middlesex Tape Recording Club on July 28th Angus McKenzie, of Olympic Sound Studios, will speak on stereophonic recording and reproduction. The meeting will be held at 8.0 at the St. George's Hall, Lancaster Road, Southall Broadway.

Monmouth.-Preparatory to forming an amateur radio club in Blackwood, Mon., meetings are being held each Friday at 7.0 at the Blackwood Miners' Welfare Institute. Further details are obtainable from P. M. Fulton, 36, Sunnybank Road, Blackwood.

## OPTICAL LINE ELIMINATOR

## DISPERSIVE SCREEN UNDER DEVELOPMENT BY THE GERMAN FIRM SABA

0NE of the arguments put forward in favour of changing British television line standards from 405 to 625 is that on the larger screens ( 21 -inch and upwards) the line structure is disturbing. It is interesting to find that the same criticism is made of high-quality pictures on the 625 -line standard in Germany, according to a recent survey by SABA, the Black Forest firm of receiver manufacturers. At a recent international press conference, on the occasion of the 125th anniversary of the foundation of the firm, it was stated that, with all possible improvements in the matter of optimum phase and amplitude characteristics, fully automatic tuning and contrast control, etc., already incorporated in their sets, line structure, according to some of their customers, was the only performance factor requiring improvement. The spot-wobble technique is, of course, expensive and the production of an elliptical spot is difficult with the short necks and complicated deflection coils now necessary with wide-angle tubes.

The solution being developed by SABA is purely optical and consists of a transparent plastic sheet, with horizontal parabolic corrugations embossed on one side. This screen is mounted a short distance in front of the cathode ray tube and light from the screen is dispersed vertically (Fig. 1) but not horizontally, so that the resolution along the line is unaffected. An essential feature of the method is that the pitch of the corrugations should be small compared with the picture line spacing. In a specimen examined by this journal the rulings are $125 \mu$ ( 0.125 mm ) wide, i.e., about 200 per inch, and the height of the parabolic arc is $8.5 \mu$. There are thus about 8 lenses to every line of a 405 picture on a 21 -inch tube (line spacing 1 mm ).

To test the efficacy of the device a photographic plate was made of two lines each $\frac{1}{2} \mathrm{~mm}$ wide and separated by a dark space of the same width (very approximately 405line 21 -inch conditions). This was illuminated from behind and photographed through the screen, the lefthand edge of which was resting on the plate and the right-hand edge raised about $\frac{3}{8}$-inch. The result is shown in Fig. 2 from which it will be seen that the lines merge when the spacing is about $-\frac{1}{4}$ inch ( 6 mm ); when the distance is increased, multiple lines reappear. In practice optimum spacing would, of course, depend also on the thickness of the glass of the c.r. tube. Fig. 3(a) is a test plate also ruled to simulate 405 lines on a 21 -inch tube and is reproduced fuli size, so that it can be judged at any desired viewing distance. Fig. 3(b) is an untouched photograph of the plate taken through the SABA screen.

Research is proceeding and in particular is directed to producing a clearer screen-the specimen we tested was translucent, due to minute score marks made by the tool used in cutting the master plate.

The beauty of the scheme, which gives the same result as spot wobble, is its cheapness; replicas are easily cast in thermoplastic material. And those who like to see the lines can always remove the screen!

Lenticular screens are not in themselves new-they have been suggested for modification of picture aspect ratio (Wireless World, December 1952, p. 502) and for stereoscopic television (Wireless World, July 1953, p. 298)-but this latest application to the removal of lininess promises more immediate benefits. It is certainlv cheaper than changing our transmission system to 625 lines, or should we now say, in view of Continental experience, to 4,050 lines?


Fig. 1. Vertical section illustrating the principle of the dispersive screen under development by $5 A B A$.


Fig. 2. Variation of visible line structure with distance between tube and screen.


Fig. 3. Test specimen (a), reproduced full size to represent 405 lines on 21 -inch tube, and (b) viewed through the SABA dispersive screen.


# B.R.C Television Centre 

AWHOLE issue of this journal would be quite inadequate to cover all the interesting features of the new B.B.C. Television Centre in West London. We shall, therefore, describe and illustrate from time to time points of special interest in the installation.

Co-ordination and ease of control have been key words in the planning of the operational control areas associated with each of the seven studios grouped around the central ring building. The first transmission from the Centre was on June 29th. Only one studio, of $8,000 \mathrm{sq} \mathrm{ft}$, is so far in use.


Eleven flying-spot film sconners for both $35-\mathrm{mm}$ and $16-\mathrm{mm}$ films are being installed in the Telecine Suite. At the central control desk illustrated above the outputs from oll the machines, which are housed in adjacent bays, are monitored and distributed. Facilities are provided for remote storting ond stopping of the film scanners from several points in the control system.

Control consoles for studio lighting (left) and vision (right) are adjacent so that each controller sees the same set of monitors. By the use of six joystick-type controls (ringed in the photograph) one operator can remotely control the iris ond the picture black level of each of up to six cameras in the studio. Each of the joystick controls bas three functions. Moving over a quadrant varies the comera lens aperture; a knob on the control is retated to adjust the picture black level and pressure on this knob switches the camera output from one picture monitor to onother. This last facility enables the output from each camera to be displayed in turn on a single monitor for matching, thus efiminating possible differences in individual monitors. Alongside each monitor is a miniature waveform display. The waveform is about 5 -ia high but the time scale is compressed to about $1 \frac{3}{4}$-in as the controller is mainly concerned with checking voltage levels.


Field Plotting using a resistive sheet rather than an electrolytic tank was first described as long ago as 1845 by Kirchhoff, who used thin sheets of copper. However, this technique has been lying in abeyance pending the discovery of a more suitable sheet material. Creed's "Teledeltos" paper is used in a relatively inexpensive plotter recently introduced by Servomex (Type FP92). To plot a field, the paper is painted with silver electrodes which are then

connected to the internal supply voltage on the Servomex plotter. This voltage is divided down to an accuracy of $0.1 \%$ by means of a calibrated potentiometer, and then fed via a balance-indicating meter to a probe. By searching the resistive paper with the probe for balance points, a field line corresponding to the chosen dividing ratio can be built up. Non-uniformities in the resistivity of the sheet normally limit the accuracy of field measurements to about $7 \%$. This accuracy is, however, not much worse than what is normally achieved with an electrolytic tank. In any case, in practice, fields are usually plotted only in order to determine correction factors to theoretical formulæ; so that errors, being only corrections to corrections, need not be kept very small.

Prefabricated Electronic Bricks-ready-assembled circuit modulescan cut down development time spent on a control-engineering or data processing problem by eliminating the work of designing individual circuits. A particular range made by Mullard are slim,
colour-coded plastics "boxes" of guaranteed performance specifications covering the commonly used circuit functions. Typical units are AND/OR gates, timing and relayoperating circuits called "Norbits" (for control purposes) and flip-flop, pulse shaper and inverter-amplifier stages called Combi elements (for digital circuits). By giving only a performance specification the manufacturers can take advantage of advances in techniques (for instance, complete solid-state circuits) without, at the same time, rendering obsolete existing apparatus. Transistors are used throughout, so that battery operation is reasonably economical, and the modules are designed to connect together compatibly in a manner suited to their functions. Norbits have long, flexible flying leads for use with terminal blocks while Combi-elements have short, stiff tinned wires suitable for fitting into printed wiring boards.

Klystron Detector for Microwaves is the subject of an article by Dr. Koryu Ishii on p. 77 of Electronic Industries for November 1959. Dr. Ishii made the widely available 723A/B $3-\mathrm{cm}$ reflex klystron act as an a.m. detector with a $3-\mathrm{dB}$ bandwidth of $50 \mathrm{Mc} / \mathrm{s}$ at $9.2 \mathrm{Gc} / \mathrm{s}$ and a gain (for weak signals) of between 10 and 30 dB . As can be seen from the diagram, the repeller is connected, via the load, to the cathode and an h.t.

of about 250 V is applied between the cavity structure and cathode. Electrons accelerated by the field between cathode and cavity can pass through the modulating electrodes (lips) of the cavity and reach the reflector. When, however, the cavity is excited by signals at its resonant frequency the lips will modulate or bunch the electron flow, retarding and accelerating on alternate half cycles of the $9.2 \mathrm{Gc} / \mathrm{s}$ signal. The accelerated
groups will reach the reflector, where they constitute the signal current. The retarded groups, on the other hand, will not possess sufficient speed to reach the reflector and will return, under the influence of the potential gradient between the reflector and cavity, to the cavity lips. If the relative phase of the signal on the cavity and the returned bunches is correct, then the returned bunches will give up the energy gained from the reflector-to-cavity field, so reinforcing the signal. The reinforced signal exerts a greater effect on the electron beam, in the same way that the klystron normally goes into oscillation. Cavity potential is fairly critical: results given show that a 3 dB gain loss is caused by a $\pm 0.25-\mathrm{V}$ change in h.t.; however, for the same loss of gain a $1.3-\mathrm{V}$ variation in heater potential is permissible.

Peak Pulse Power Increase could be obtained by means of pulse shortening according to an article by C. E. Cook in Proc.I.R.E. for March 1960. The method of shortening suggested depends on providing a pulse in which the frequency changes linearly with time. This pulse is then passed through a filter which produces a delay which also changes linearly with time but in the opposite sense to that in which the frequency changes linearly with time in the pulse. The beginning of the pulse is then delayed more than the end and the pulse duration is decreased. If a passive delay network is used, the total energy in the pulse must remain constant so that the peak pulse power must increase in proportion to the decrease in the pulse period.

New Microphone brought into television studio service by Tyne Tees Television and manufactured by the American firm Electrovoice (Model 642) has a normal dynamic cardioid response characteristic up to $500 \mathrm{c} / \mathrm{s}$,

but above this frequency distributed openings at the front of the diaphragm make the response much more directional.

Stereo Listening-area Enlargement can be obtained by using loudspeakers having a figure-of-eight rather than an omni-directional polar response, according to an article by B. B. Bauer in the April 1960 issue of the American fournal of the Audio Engineering Society. When two loudspeakers are used to reproduce stereo, satisfactory results are obtained near places where the two loudspeakers produce equal sound outputs when fed with equal in-phase signals. In most cases such equal sound outputs are produced along the line of symmetry between the loudspeakers, and satisfactory stereo is produced in an area around this line. With figure-of-eight polar response loudspeakers, however, such equal sound outputs are produced not only along the line of symmetry between the loudspeakers, but also along the circle common to the polar responses of both loudspeakers (see diagram), so that satis-

factory stereo is produced in an additional area around this circle. One way of obtaining a figure-ofeight response is to mount a loudspeaker on a baffle smaller than the sound wavelengtin of the highest frequency of interest, although unfortunately at low frequencies such baffle mounting results in a sound output which falls as the frequency decreases.

## A Sub-harmonic Crystal Oscillator

 requiring only a single triode valve in a blocking oscillator circuit has been constructed at the U.S. National Bureau of Standards. As shown in the illustration at (a) the crystal is coupled to the blocking oscillator by means of a tertiary winding on the transformer. Alternatively the crystal could be connected across either the grid or anode windings, but the third-winding arrangement was found to be preferable. Typical waveforms at differ-
(a)
ent points on the circuit are shown at (b) in the illustration.

The fundamental frequency of the blocking oscillator is determined primarily by the time constant of $\mathrm{C}_{1}$ and $R$ in the grid circuit, so with $C_{1}$ or R or both variable a wide range of output frequencies can be generated. Each output pulse of the blocking oscillator "shock excites" the crystal, and the voltage so generated is used to synchronize the oscillator at a sub-harmonic of the crystal frequency.
Frequency division ratios as high as 10,000 to 1 have been obtained with a few crystals, but such extreme ratios would seldom be of practical value, since a small change in circuit constants could cause the output frequency to change from, say, $1 / 10,000$ to $1 / 10,001$ of the crystal's fundamental frequency. More realistic are divison ratios of several hundred to one.

The potentially wide range of division ratios obtainable means that a desired output frequency can be produced from any of several available crystals, or conversely, a single crystal can be used to produce a large number of crystal-controlled sub-harmonic outputs.

Interference with Television can occur in many ways-some difficult, some easy, to track down. Usually television interference by amateur transmitters falls into two categories -either pick-up by the i.f. circuits of the set, or the radiation of harmonics in the television bands. However, it can be more complicated, as N. Ashton notes in a letter on p. 424 of the March 1960 R.S.G.B. Bulletin. From the description given it seems that the process is like this: if a strong signal enters a television receiver it may cause cross modulation between sound and vision, so giving a $3.5 \mathrm{Mc} / \mathrm{s}$ beat. When the interfering signal is near $3.5 \mathrm{Mc} / \mathrm{s}$, or a sub-harmonic, it can beat with the cross modulation, this beat being modulated back on to the sound and/or vision signals! The obvious cure is a high-pass filter of

cut-off point $40 \mathrm{Mc} / \mathrm{s}$ or so, placed in the aerial lead; but this does not always work, due to the use of small isolating capacitors at the chassis end of the aerial socket-to-tuner cable. These capacitors may have a high impedance to a signal as low in frequency as $3.5 \mathrm{Mc} / \mathrm{s}$, thus pick-up on the cable "outer" is transferred to the receiver. Consequently the filter has to be fitted inside the receiver, as close to the tuner as possible.

## Motor-driven Automatic Correct-

 range Selection is an unusual feature of the new American Knight a.c. valve voltmeter kit shown assembled in the photograph: all the 11 ranges can be driven through in $2 \frac{1}{2} \mathrm{sec}$. Full scale deflections can be produced by potentials ranging from 3 mV to 300 V , and the response is withir, $\pm 1 \mathrm{~dB}$ from $20 \mathrm{c} / \mathrm{s}$ to $2.5 \mathrm{Mc} / \mathrm{s}$. As many as 10 valves are used in the circuit. Further particulars may be obtained from Ad. Auriema Inc. of 85 Broad Street, New York 4, U.S.A. or from Auriema-Europe S.A. of 27 Rue du Berger, Brussels, Belgium.

## WORLID OF WIREIESS

## Broadcasting Inquiry

ON July 13th the P.M.G. announced in the House the setting-up of a committee of inquiry into the future of sound and television broadcasting in this country. He also announced that the Government proposes to extend the B.B.C.'s Charter for two years so that it terminates on the same date as the I.T.A.'s-July 29th, 1964.

The Committee's terms of reference are:-
"To consider the future of the broadcasting services in the United Kingdom, the dissemination by wire of broadcasting and other programmes, and the possibility of television for public showing;
"To advise on the services which should in future be provided in the United Kingdom by the B.B.C. and the I.T.A.;
"To recommend whether additional services should be provided by any other organization; and
"To propose what financial and other conditions should apply to the conduct of all these services."
It is also being asked to consider the recent T.A.C. report. The chairman is Sir Harry Pilkington. The last Government committee of inquiry into broadcasting as a whole was set up in 1949 under the chairmanship of Lord Beveridge.

## Technical Writing Awards

NEW details have been issued of the scheme introduced ten years ago by the Radio Industry Council for awards to writers of technical articles making known British achievements. The scheme is now sponsored jointly by the Council and the Electronic Engineering Association who award up to six premiums of 25 gn each for what are adjudged the best articles published each year.

The panel of judges now includes:- Air Marshal Sir Raymund Hart (director, R.I.C.), Professor H. E. M. Barlow (University College, London), B. C. Brookes (University College, London), A. H. Cooper (E.M.I.), F. Jeffery (Murphy), G. Recves (A.E.I.) and Dr. R. C. G. Williams (Philips).

Copies of the leaflet outlining the scheme are obtainable from the secretary, E.E.A., 11 Green Street, London, W.I.

## Progress in Medical Electronics

THE publication* of the Proceedings of the Second International Conference on Medical Electronics, Paris, June, 1959, adds a valuable source book to the literature of a rapidly expanding subject. In 614 pages with 400 diagrams and photographs it records more than 80 full papers and 70 abstracts ranging over a wide field and grouped under the several headings of electrophysiological techniques, electroencephalography, cardiology, manometry and flow measurement, acoustic techniques, automation in medicine, radiology and isotopes, and chemical instrumentation.
The editor is C. N. Smyth, M.A., B.Sc(Eng.), B.M., B.Ch., M.I.E.E.

[^2]
## Radio Show

THIS year's National Radio and Television Show which opens at Earls Court on August 24th, will follow very much the lines of previous exhibitions and the 130 exhibitors will be showing exclusively British equipment. Audio equipment will again be concentrated in the Audio Hall, which will occupy a large part of the first floor. The Services, Metropolitan Police, G.P.O., B.B.C. and I.T.A. will all have displays, and the organizers are re-introducing in a new form the Television Avenue to show the advantages of the larger screen receivers.

A radio servicing exhibit will serve the treble purpose of showing the public the kind of servicing they should expect, the dealer the latest test equipment available and the would-be apprentice a glimpse of the work of a serviceman.

## International Scientific Studies

THE General Assembly of the International Scientific Radio Union (U.R.S.I.), which is held every three years, meets at University College, London, on September 5th. The chief aim of the Union, which was formed in 1919, is "to develop on an international basis scientific studies relating to radio."
The work of the Union is maintained through seven commissions and their "national committee" counterparts in each member country. The commissions are:-II, standards and measurements; II, troposphere; III, ionosphere; IV, radio noise of terrestial origin; V, radio astronomy; VI, radio waves and circuits; VII, radio electronics.
J. A. Ratcliffe, who is to succeed Dr. R. L. SmithRose as director of the D.S.I.R. Radio Research Station, is president of the British National Committee. The secretary-general of the Union is E. Herbays, 7, Place Emile Danco, Brussels 18, Belgium.

Hearing-Aid Code of Practice-Reference was made in our May issue to the proposal of the Joint Advisory Co-ordinating Committee of the National Institute for the Deaf to draw up a code of commercial practice for the hearing-aid industry. This code of practice, which " is designed principally to protect the public against exaggerated or false claims for the efficacy of hearingaids," has now been approved by the N.I.D. Well over 100 manufacturers and suppliers of hearing-aids are signatories to the code.

Schools TV.-Announcing plans for the extension of its television service for schools for 1960/61, the B.B.C. states that there are now 2,000 schools registered for the transmissions. This number is double that of a year ago.
I.P.R.E.-Founded in 1936 as the Institute of Practical Radio Engineers and in 1951 granted incorporation under the name Incorporated Practical Radio Engineers (I.P.R.E.) Ltd., the association has now changed its title to Incorporated Practitioners in Radio and Electronics (I.P.R.E.) Ltd. The secretary is W. Edwardes, Fairfield House, 20 Fairfield Road, London, N.8.

Receiving licences.-The number of combined television and sound licences in the U.K. increased during May by 78,253 bringing the total to $10,646,938$. Soundonly licences totalled $4,438,085$, including 439,649 for sets fitted in cars. According to a report from Moscow quoted by a German correspondent, there are now 25 million sound receivers in use in the Soviet Union where there also some 28 million loudspeakers connected to local community radio centres and relay networks. The number of television receivers in the Union is given as about four milion. -
Poldhu.-The site of the first radio station to span the Atlantic (on December 12th, 1901) has been presented by Marconi's W/T Co. to the National Trust. A granite column marks the site of the station, built by Guglielmo Marconi, overlooking Mounts Bay, Poldhu, Cornwall. Among those present at the presentation of the title deeds by Lord Nelson of Stafford was C. S. Franklin, who joined the company in 1899 and whose pioneering work on the Marconi-Franklin beam system was undertaken at the station.
Japan, which employs the 525 -line television standard, has officially announced the adoption of the American N.T.S.C. colour system.

Paris Components Show.-The French Fédération Nationale des Industries Electroniques (F.N.I.E.) is to hold the fourth international components show in Paris from February 17 th to 21 st, 1961.

Semiconductors.-An international symposium on semiconductor devices is being organized by the Société Francaise des Electroniciens et des Radioélectriciens in connection with the components exhibition mentioned above. It will be held in Paris from February 20th to 25th, 1961. Details and registration forms are obtainable from the Société, 10 avenue Pierre-Larousse, Malakoff, Scine, France.

A new aerial system is in course of construction at the Post Office receiving station at Somerton, near Yeovil, Som. When completed 93 new 180 -foot masts will be used to suppor the 65 directional aerial arrays. Work began in May on dismantling 27 of the existing steel lattice masts, many of them 280 -feet tall.
T.E.M.A.-At the recent annual general meeting of the Telecommunication Engineering and Manufacturing Association, R. A. Moir, O.B.E., M.C., director of Standard Telephones and Cables, was elected chairman and W. F. Oakley, director of Automatic Telephone and Electric Co., vice-chairman.

Biomedical Electronics.-The 13th annual conference on electrical teciniques in medicine and biology, organized by the I.R.E., will be held in Washington, D.C., from October 31st to November 2nd. Further details are obtainable from the Institute of Radio Engineers, 1 East 79th Street, New York 21, N.Y., U.S.A.

Solid-State Circuits.-The 1961 International SolidState Circuits Conference, sponsored jointly by the I.R.E., the American I.E.E. and the University of Pennsylvania, will be held on February 15th, 16th and 17th in Philadelphia, Pa. The secretary of the organizing committee is F. H. Blecher, Bell Telephone Laboratories, Murray Hill, N.J.

Cybernetics.-The third international congress on cybernetics is being organized by the International Association of Cybernetics (A.I.C.) for September 11 th to 15 th next year. It will be held in Namur, Belgium. It is planned to have sessions covering semantic machines; technical as well as economic and social aspects of automation; and cybernetics and biology. Further information is obtairable from the A.I.C., 13 Rue BasseMarcelle, Namur, Belgium.

Electronic Organ Constructors' Society, which now has a membership of some 120, is holding its next meeting at 7.0 on July 28 th at the Arsenal Tavern, Blackstock Road, Highbury, London, N.4. Alec Garton, of Nottingham, will be demonstrating his divider organ.

Royal Society Tercentenary celebrations include an exhibition of outstanding achievements in British science during the last ten years. Calculating machines, exploration by radio and electro-physiology are among the many aspects covered. The exhibition is being staged in the Diplona Galleries of the Royal Academy of Arts, Burlington House, Piccadilly, London, W.1, from July 25th to 29 th ( $10.30-6$ ). On the first three days admission is by invitation, but on the last two days the genera! public will be admitted without tickets.

Automatic Control.-British contributions to the first congress of the International Federation of Automatic Control, recently held in Moscow, will be discussed at a two-day symposium being organized by the Institution of Mechanical Engineers. It will be held on September 27 th and 28 th at the Institution, 1, Birdcage Walk, London, S.W.1.

Aviation Electronics.-A one-and-a-half-day convention on " Aviation Electronics and its Industrial Applications" is being organized by the South-Western Section of the Brit.I.R.E. for October 7th and 8th. Registration forms and further details of the convention, which will be held in the Bristol College of Science and Technology, are obtainable from the Hon. Sec., South-Western Section, Brit.I.R.E., c/o The School of Management Studies, Unity Street, Bristol, 1.

An Electro-Acoustics Group has been formed by the Brit.I.R.E., and its inaugural meeting will be held on October 12th, when Professor Colin Cherry, of Imperial College, will be the speaker.

Northern Polytechnic.-An evening course of 24 lectures on colour television is again included in the 1960/61 prospectus of the Northern Polytechnic, Holloway, London, N.7. The scope of the Department of Telecommunications, of which John C. Gilbert is head, has been broadened considerably and includes full-time, part-time and evening courses in industrial and applied electronics, computers, microwaves and navigational systems.

Printed Circuit Techniques.-A course of thirteen weekly lectures covering the preparation and production of printed circuits begins at the Twickenham Technical College, Egerton Road, Twickenham, Middx., on Tuesday evening, September 20th. Fee 30s.

Brentford Evening Institute, Clifden Road, Brentford, Middx., is again holding courses during the coming session in radio servicing (on Tuesdays and Thursdays) and on Wednesdays a course in preparation for the Radio Amateur Examination. Classes commence on September 20th (fee 10s per term).

Transistor Techniques.-The Medway College of Technology, Chatham, Kent, is again providing a course of lectures and experimental work on transistor techniques on successive Tuesdays, commencing October 4th.

Northwood Evening Institute, Potter Street, Northwood, Middx., is organizing classes in radio theory and also for the Radio Amateur Examination for the coming session which begins on September 19th.

## WHAT THEY SAY

Now We Know Why!-" The decision to build your own high-fidelity instrument is the beginning of an emotional adventure. .. Every time a man turns a knob or plays a record, there is an unparalled intimacy, between himself and the instrument . . . and the sound." -Sidncy Harman, of Harman-Kardon, New York.

Stimulating.-" . . . and it may be the reason that some hi-fi fans like to play their systems at loud volumes -for body stimulation." From "Perception of the stereophonic effect as a function of frequency," by W. B. Beambien and H. B. Moore, fournal of the Audio Engineering Society, April, 1960.

## Personalities

Earl Mountbatten of Burma has been appointed honorary member of the Armed Forces Communications and Electronics Association. The certificate of membership "in recognition of his long-standing personal interest in defence communications" was presented to him at the Ministry of Defence by Major-General Harold Grant, a vice-president of the Association. The A.F.C.E.A. is an American organization (of which there is a chapter in London) and Lord Mountbatten is only the second Englishman to receive honorary membership, the first being Brigadier W. T. Howe, O.B.E., secretary of the Royal Signals Institute.
N. A. de Bruyne, M.A., Ph.D., F.Inst.P., is resigning from the managing directorship of CIBA (A.R.L.), Ltd., at the end of the year to give more time to research. He remains on the board and R. F. G. Lea, O.B.E., M.A., and D. A. Hubbard will become joint managing directors. Dr. de Bruyne founded in 1934 the original company (Aero Research Ltd., of Duxford) which was acquired in 1947 by CIBA, of Basle, and the name changed to its present title two years ago. Dr. de Bruyne was formerly fellow and lecturer of Trinity College, Cambridge. In 1952 he contributed an article to Wireless World on the uses of a Fresnel lens for the magnification of television pictures.
Eric D. Daniel, M.A. (Oxon.), A.M.I.E.E., has been appointed head of the new research unit set up by Ampex Electronics Ltd. at Reading, Berks. He did two years' research work in audiometers and general electro-acoustics at the Post Office Research Station before joining the B.B.C.'s Research Department in 1946 where, in association with Dr. Peter Axon, now managing director of Ampex, he specialized in magnetic tape recording. Mr. Daniel left the B.B.C. in 1956 and has spent the last four years in America.

E. D. Daniel

P. E. M. Sharp

Peter E. M. Sharp, B.Sc.(Eng.), A.C.G.I., A.M.I.E.E., has joined Westrex Co. as general manager. For the past two or three years he has been personal assistant to the managing director of the Troughton and Young group of companies. Previously he was with the Telegraph Construction and Maintenance Co. and was for some time with their agents in the Far East. In 1959 Mr. Sharp was awarded a Ford Foundation Grant by the English-Speaking Union for a two months' tour of the United States.
L. J. Kennard, A.M.I.E.E., has joined the Microcell group of companies as head of the data handling and process control section of the group's Electronics Division. Immediately prior to joining Microcell he was with Solartron where he was concerned with radar simulators and industrial controls.

Sir Gordon Radley, K.C.B., C.B.E., Ph.D., M.I.E.E., who retired from the director-generalship of the Post Office in May, is to devote part of his time to the work of the English Electric group of companies, particularly the development of telecommunication equipment. He has also been elected a director of Marconi's W/T, Marconi Instruments and English Electric Valve Co. and has been elected to the board of Marconi Marine.
J. M. Westhead, B.A., Ph.D., has been appointed manager of the valve and semiconductor sales department of the A.E.I. Electronic Apparatus Division at Lincoln. He has been deputy manager of the department since April, and succeeds F. Baxendale who is continuing as consultant. Dr. Westhead studied at Oxford University where in 1950 he graduated with first class honours in physics. Two years later, while a University demonstrator in electronics, he gained his doctorate in nuclear physics. In 1956 he joined B.T.H. now part of A.E.I.

Dr. J. D. McGee, O.B.E., M.Sc., M.I.E.E., professor of instrument technology, Imperial College of Science and Technology, London, has been awarded a grant of $£ 1,000$ by the Paul Instrument Fund Committee for the construction of a television system for X-ray image intensification. This award is supplementary to a previous grant of $£ 2,000$.

## OUR AUTIIORS

L. H. Dawson, B.Sc., author of the article on page 381, has been with Marconi's W/T Co. for nearly 22 years, and is at present in the mobile navigational aids research division at the company's laboratories at Great Baddow. In 1957 he headed the development team working on the "Consort" marine radar, and more recently was associated with the development of the company's traffic analyser, colloquially known as "Police Radar."
R. V. Harvey, B.Sc., A.M.I.E.E., the first part of whose article describing a transistor v.h.f./f.m. receiver appears in this issue, studied electrical engineering at Faraday House, where he obtained the diploma. In 1943 he joined the receiver group of the Telecommunications Research Establishment (now R.R.E.), Malvern, leaving there in 1947 to study physics at King's College, London. Since graduating in 1950 he has been in the B.B.C. Research Department.
R. B. Rowson, B.Sc., A.M.I.E.E., joint author of the article on an inverted triode voltmeter, is assistant chief commercial engineer (research and statistics) with the South Wales Electricity Board, and was previously personal assistant to the chief engineer, British Power and Light Corporation. A. P. Williams, A.M.I.E.E., his co-author, is senior assistant engineer in the system operation department at the Board's headquarters, where he is responsible for line telephony, remote control and v.h.f. radio equipment.

## OBITUARY

Horace de Aula Donisthorpe, affectionately known throughout the radio industry as "Donny," died suddenly on June 15th. Born in 1893 and educated at the City and Guilds College, he joined Marconi's as a marine radio operator and was later engaged under H. J. Round on the development of valves. After service in the Intelligence Corps during the First World War he rejoined Marconi's and in 1922 was appointed assistant to the general manager. From 1926 until his retirement last year he was with the G.E.C., latterly as deputy manager of the Valve and Electronics Department. For the past year he had been sales consultant to Whiteley Electrical Radio Co. Donisthorpe was a prime mover in the formation of the Radio Industries Club, of which he was chairman for eleven years prior to being elected president for the year 1948/49.

## News from the Industry

Choiceview is the name under which the Rank Organisation and Rediffusion will operate a partnership "for the development and promotion of subscription television ... and for providing relevant programme and technical services." The two companies entered into a long-term agreement some months ago whereby the Rank Organisation acquired the right to use the Rediffusion system of wired television in relay operations. It is announced that the Choicevicw system of "Pay TV" will be available in due course for general licensing to intending operators.

Instruments Merger.-The Cambridge Instrument Company has acquired the whole of the ordinary share capital of Electronic Instruments Ltd., of Richmond, Surrey. The merger was announced on June 29th by Dr. P. Dunsheath, chairman of Cambridge Instruments which, with its overseas subsidiaries employs over 1,500 people. Electronic Instruments, which employs some 330 people, will operate under its own name and A. C. W. Norman will continue as chairman, P. Goudime as managing director and D. A. Pitman as sales director together with three directors of the Cambridge Instrument Co. Mr. Goudime has been invited to join the board of the Cambridge Instrument Co.
Dawe Instruments Lid. and its associated company, L.M.K. Manufacturing, have been acquired by Simms Motor and Electronics Corporation. The acquisition "for a sum in the region of $£ 250,000$ " extends still further the electronics side of the Simms Group which was recently augmented by the acquisition of Cawkell Research and Electronics. The reconstituted board of Dawe Instruments now consists of G. E. Liarder, chairman (chairman and managing director of the group), and $F$. W. Dawe, managing director, together with J. Ayres, M. A. Hassid and K. G. Smith, members of the boards of Cawkell and N.S.F.

## Greencoat Electronics

Ltd. is the new title of Staar Electronics Ltd., of 2 Princes Row, Buckingham Palace Road, London, S.W. 1 (Tel.: Tate Gallery 9393). The company, which is a member of the Gas Purification Group, will continue to market the "Little Staar" 45 r.p.m. batteryoperated motor and the range of Kinder d.c. motors. Very substantial quantities of these miniature motors are being exported to Germany. The company's sales director is Harry
 Read.

Derritron Group, of which V. G. P. Weake is chairman and managing director, announces that C. T. Chapman (Reproducers) Ltd., of High Wycombe, Bucks., has joined the group. The company will in future be known as Chapman Ultrasonics Ltd. C. T. Chapman remains managing director and is joined on the board by V. G. P. Weake and R. A. W. Rudd. Doran Instrument Co., of Stroud, has also joined the group. W. E. Doran remains managing director with Mr. Weake (chairman) and Capt. J. D. Mansfield-Robinson also on the board.

Elizabethan (Tape Recorders) Ltd., is the new name adopted by E.A.P. (Tape Recorders) Ltd. of Bridge Close, Oldchurch Road, Romford, Essex (Tel.: Romford 62366).
L.C.E. Ltd. is the name of a recently formed company jointly owned by Joseph Lucas (Industries), Ltd. (through its subsidiary G. \& E. Bradley, Ltd.) and the Collins Radio Co., of America. Lord Halsbury, the chairman of L.C.E., stated that although this is an Anglo-American partnership, the company is a completely autonomous body. It is not tied to a sole policy of manufacturing Collins equipment. Collins Radio have a marketing company in this country but until now had no manufacturing facilities in Europe. L.C.E., Ltd., is operating from Electral House, Neasden Lane, London, N.W.10, and it is planned to have a factory in operation by September.
T.C.C.-Sprague Agreement.-Under an agreement between the Telegraph Condenser Co. of this country and Sprague Electric Co. of the U.S.A., T.C.C. acquire the right to all Sprague U.K. patents and applications, together with the technical and engineering information necessary to exploit them, and Sprague will make available to T.C.C. all its present research and technical information and enginecring knowledge. Also "for the next 21 years the two companies will exchange research, development and manufacturing knowledge, extending beyond the field of capacitors and embracing all the products of the two companies."

Standard Telephones and Cables have supplied all the submarinc cable and 29 submerged repeaters for the 530 -nautical-mile route across the North Sca for the first direct telephone cable link between the U.K. and Sweden. It is the longest submarine telephone cable system in Europe and is also the longest in the world using a single cable for both directions of transmission. The repeaters are designed to carry 60 telephone circuits of $4 \mathrm{kc} / \mathrm{s}$ spacing. The cable is now being laid between Middlesbrough and Gothenburg by the G.P.O. cable ships Monarch and Ariel.

Anglo-French Agreement.-Steatite and Porcelain Products, of Stourport-on-Severn, have concluded an agreement with Compagnie Générale d'Electro-Céramique "for full technical collaboration including exchange of patent rights." Each company will act as agents in its own country for the other manufacturer.

Eimac Agents.-Walmore Electronics Ltd., of Phœnix House, 19-23 Oxford Street, London, W.1, have been appointed exclusive representatives in the U.K. for all products of Eitel-McCullough, Inc., of San Carlos, California.

Eitel-McCullough, S.A., has been set up in Geneva, Switzerland, as a European marketing organization by Eitel-McCullough.

Ether Langham Thompson (Italiana) Ltd., with offices and factory at Via Bisleri 19, Milan, has been formed by Ether Langham Thompson Ltd. to market and manufacture products of the group. The board of directors of the new Italian company includes J. Langham Thompson (chairman), F. W. Coulling and F. B. Duncan, who are directors of the parent company.

Campbell-Bruce Electronics Ltd. has been formed for the development of small transistor communications equipment. Offices and laboratories are at 22 Berners Street, London, W.1. (Tel.: Langham 7878.) The directors are I. Campbell-Bruce (managing), who was sales director of Cossor Communications Co.; M. D. S. Becher and R. Howard.

Teppaz record players, which are manufactured in Lyons, France, are now being handled in this country by Selecta Gramophones Ltd., of which E. R. Lewis (chairman of the Decca Record Co.) is chairman.

Westward Television L.td., programme contractors for the I.T.A. south-west England transmitters to be built in Devon and Cornwall, have placed the main contract for the electronic equipment for their Plymouth studios with Marconi's. They will supply five Mark IV image Orthicon camera channels, master control and monitoring equipment and associated sound channels. E.M.I. are supplying two Vidicon film scanners, RankCintel one film scanner and Pye a caption scanner.

An Emidec 1100 all-transistor computer has been ordered from E.M.I. Electronics for the Royal Naval Store Depot, at Copenacre, Wilts. It will handle the stock control of some 90,000 separate items covering the electrical, radio and asdic stores for H.M. ships.
An Orion electronic digital computer has been ordered from Ferranti Ltd. by the National Institute for Research in Nuclear Science. The computer will be installed at the Institute's Rutherford High Energy Laboratory at Harwell, Berkshire. Equipped with magnetic tape units and high-speed printers, Orion will be used by the laboratory for analysis and computation of data obtained from NIMROD, the 7 GeV proton synchroton now under construction at Harwell.

Murphy.-The 1959 profit of the Murphy group before taxation was $£ 668,085$, an increase of almost $50 \%$. on the previous year. The net profit after taxation was $£ 358,442$ compared with $£ 207,724$ the year before.

Ever Ready Co. (G.B.) record a profit before taxation of $£ 2,735,128$ for the year ended in February, compared with $£ 2,430,553$ the previous year. Taxation for the period is estimated at $£ 1,184,146$.

Elliott-Automation Group.-The group profit before taxation of $£ 1,015,630$ for 1959 represented an increase of about $25 \%$ over the previous year. Taxation absorbed £466,755.

Ferranti accounts for the year ended March 31st show a group profit of $£ 2,123,390$, which was almost twice the previous year's figure. This was after deducting all charges, including $£ 1,854,000$ for taxation.
S.T.C. installed the sound reinforcement system in the new Royalty Theatre built on the site of the Stoll Theatre, Kingsway, London. The installation includes 19 amplifiers, 12 microphones and 41 loudspeakers. S.T.C. have also supplied the sound equipment for the son et lumière installation for H.M.S. Victory at Portsmouth.
"Hi-Fi" Catalogue.-An unusually well-prepared catalogue of "hi-fi" recording and reproducing equipment has been issued by Lasky's (Harrow Road) Ltd., 207 Edgware Road, London, W.2. Printed on art paper and profusely illustrated it gives manufacturers' particulars of all the leading makes retailed by the firm, with the object of facilitating the choice of equipment. It comprises 72 pages and costs $3 \mathrm{~s} \cdot 6 \mathrm{~d}$ to callers or 4 s by post.

Temporary Address.-Wright \& Weaire, the Ferrograph Co. and British Ferrograph Recorder Co. have temporarily moved to 88 Horseferry Road, London, S.W. 1 (Tel.: Sullivan 5426), pending completion of new offices in Cromwell Road, Kensington, next year.

Teleng Ltd., manufacturers of communal aerial systems and relay equipment, are building a two-storey extension to their factory at Harold Wood, Essex. It will increase the available floor space from 6,000 to 17,000 sq. ft.
G.E.C. Applied Electronics Laboratories have been transferred from Brown's Lane, Coventry, to The Airport, Portsmouth, Hants. (Tel.: Portsmouth 62271.)

Oryx Electrical Laboratories Ltd., manufacturers of Oryx soldering irons, have moved to Industrial Estate, Meadow Road, Worthing, Sussex (Tel.: Worthing 30066).

## EXPORT NEWS

Travelling wave tubes manufactured by the English Electric Valve Co. have been supplied to the Bonn University for its radiotelescope which is to be used for investigating the temperature of interstellar gas. Special dual channel amplifying equipment, using two tubes in cascade in each channel, has been supplied to the University by Marconi's. The telescope's parabola is $83-\mathrm{ft}$ in diameter.

Aeronautical Communications.-International Aeradio Ltd., in conjunction with Pye Telecommunications, Ericsson Telephones and Creed \& Co., installed the equipment for the inter-island multi-channel aeronautical radio communications system which links the eastern islands of the West Indies. It provides a $24-$ hour automatic telephone and teleprinter service for aircraft operating in the Caribbean. Twelve separate and simultaneous voice channels together with 12 to 18 teleprinter channels have been provided.

Surveillance Radar.-Two $50-\mathrm{kW}, 50-\mathrm{cm}$ radars, together with three display consoles and ancillary equipment, have been ordered from Marconi's for Momona Airport, Dunedin, New Zealand.

Airfield Radar.-A contract has been awarded to Decca Radar by the Crown Agents for the supply to the Royal Ceylon Air Force of a Decca 424 Mark II airfield control radar. It is to be installed at Katunayake, an Air Force Base which is also used by civil airlines operating scheduled flights.

Radar Weather Stations.-Cossor Radar \& Electronics are to supply "windfinding radars" (Type CR353) for the network of eight radar weather stations to be set up in the South Pacific. Six stations will be in New Zealand, one in Fiji and another on Funafuti Island.
Electronic Development in Great Britain is the theme suggested for the prestige trade exhibition to be staged in the British Pavilion at the German Industrial Exhibition in Berlin from September 10th to 25th. Information is obtainable from the Central Office of Information, Hercules Road, London, S.E.1.

Mobile demonstration unit of E.M.I. which undertook a 4,000 -mile tour of Western Furope last autumn, is now visiting Eastern Europe. The 35 -ft trailer is fitted with machine tool control systems, closed-circuit television and other industrial electronic equipment.

## SEPTEMBER ISSUE

## Show Guide

The next issue of Wireless World, appearing a day or two before the opening of the 27th National Radio and Television Exhibition at Earls Court (Aug. 24th-Sept. 3rd), will contain a stand-to-stand guide to the show together with a plan and list of exhibitors.
The September issue will also include constructional details of the v.h.f./f.m. transistor receiver outlined by R. V. Harvey on p. 366 of this issue. The enlarged September number will also contain the usual quota of articles and regular features.

## OCTOBER ISSUE

## Show Review

The year's trends in vision and sound broadcasting receivers as exemplified by the equipment seen at Earls Court will be reviewed in the October issue. It will also include a survey of aviation radio gear seen at the Farnborough Air Show (Sept. 5th-llth).

# Battery-Powered Marine Radar 

## DESIGN OF TRANSISTOR

POWER SUPPLY FOR
SMALL-CRAFT EQUIPMENT

By L. H. DAWSON,* b.sc. (Eng.)

IARINE radars have, in the past, been developed mainly for use on the larger passenger and cargo ships where size, weight and power consumption are not of primary concern. However, the "Consort" $\dagger$ radar has been designed to be suitable for shipping such as tugs, fishing boats, pilot cutters, police and customs launches and private yachts.

In these smaller vessels the main, and usually the only, source of electrical power is a 24 -volt battery which is used to supply the ship's lighting and radio equipment. It is recharged by an engine-driven dynamo and may also serve as the starter battery for the ship's engines. Standard radars may require upwards of one kilowatt of power; but the "Consort" requires much less than this, taking only nine amps from the 24 -volt battery in full operation and four amps on "standby." A "press-to-view" switch is fitted to the "Consort." The equipment automatically reverts to the "standby" condition at the end of the two-minute viewing period, but is immediately ready for a further period of operation.

To achieve consumption as low as 220W some special techniques have been used in the design and only the essentials of a radar have been included. The consumption might have been reduced even further by extensive use of transistors instead of valves; but this would have been contrary to another main aim of the design, which was to keep the cost low. Thus transistors were used in the power supply, where they offer the greatest advantage over more conventional equipment, both in cost and efficiency.

## Transistor Stabilizer

As is well known, the e.m.f. of a lead-acid battery varies with its state of charge. A single cell terminates its charge at 2.66 volts and is considered to be fully discharged at 1.8 volts. Thus the e.m.f. of a nominal 24 -volt battery can vary over the range of 32 to 21.6 volts. Electronic equipment cannot normally tolerate such a large variation in its supply, so some form of automatic stabilization is necessary.

Until quite recently there have been only two practical methods of doing this. One was to use

[^3]

[^4]a "carbon-pile regulator" and the other was to employ a motor-driven rheostat controlled by some form of error-sensing circuit. There are disadvantages in both these methods. The carbon-pile regulator can need frequent attention due to gradual softening of the carbon discs during use. A regulator large enough for the "Consort" equipment would consume about 10 watts in its control circuit and could not follow input variations faster than a few cycles per second. The motor-driven rheostat is even slower in operation and if sudden changes of load current are to be accommodated, some auxiliary switching is necessary.

Within the last two or three years, high-power transistors have become available and these can be used as the series element of a stabilizer which, in general principle, is similar to a conventional h.t. stabilizer using valves. This is possible because power transistors can pass several amperes with only a fraction of a volt between collector and emitter.

In the "Consort" radar, the maximum load current that has to be stabilized is eight amps and transistors exist that can handle this and even greater currents. However, the choice does not rest on current-carrying capabilities alone: cooling is necessary, as the maximum junction temperature must be limited to, say, 85 to $90^{\circ} \mathrm{C}$.

The level at which the output of the stabilizer is controlled should be as high as possible (con-
sistent with being lower than the lowest battery p.d.) in order to keep down the power dissipation in the series transistors. The level should also be suitable for direct connection to a valve-heater chain so that inefficiencies of conversion may be avoided. To satisfy these two requirements 19 volts has been chosen as being nearly equal to $3 \times 6.3$ volts, i.e., three times the standard heater p.d. In the "Consort" power supply the stabilizer must operate over a range of load currents from four amps minimum to eight amps maximum, while the voltage drop may be as much as $32-19=13$ volts. The definite minimum current allows the use of a by-pass resistor to reduce dissipation in the series transistors and this resistor can have a value as low as $13 / 4$ ohms. The standard value of 3.3 ohms is suitable.

It can be shown that the maximum dissipation in the series transistor occurs when the load current is shared equally between the transistor and the by-pass resistor, provided other design limits are not exceeded. In this case, with eight amps load current, the maximum transistor dissipation is $(8 / 2)^{2} \times 3.3=53$ watts approximately, corresponding to a battery p.d. of 32 volts. If the equipment is to work in ambient temperatures up to $55^{\circ} \mathrm{C}$ and the maximum junction temperature is, say, $90^{\circ} \mathrm{C}$, the permissible temperature rise is only $35^{\circ} \mathrm{C}$. This means that the effective overall thermal resistance between the junction and surrounding air must not

be greater than $35 / 53$, i.e., $0.66^{\circ} \mathrm{C} / \mathrm{W}$. No transistors are as yet available with such a low thermal resistance, even between the junction and mounting base; therefore more than one transistor must be used to share the power loss.

## Cooling Methods

The next consideration is, how should the heat be removed from the transistor-mounting bases? The almost obvious answer for a marine radar is to use the sea water for cooling. This, however, means a pump, long pipes and a filter. If any of these failed to work satisfactorily, the transistors would soon be irrcparably damaged, with a possibility of further damage to the rest of the equipment. A second method would be to blow air over them but, here again, a filter would be needed. Furthermore, a small d.c.-operated, blower is not normally a very quiet device and does not have a very long life.

The most reliable method is to use large-area cooling fins, and to provide adequate ventilation. The fins will dissipate the heat by a combination of convection and radiation; but to do this efficiently they must make good thermal contact with the transistors and be of high thermal conductivity with short paths from the transistors to the edges of the fins.
The cooling fins used in the "Consort" consist of seven plates per transistor, each plate being 6 -in square of 16 s.w.g. aluminium sheet. The plates are bent so that, although they are all in contact with one another at their centres where the transistor is bolted, a large proportion of the total surface area is exposed to the air. Blackening of the surfaces increases the heat-loss by radiation, and the resulting thermal resistance of each set of fins is $1.5^{\circ} \mathrm{C} / \mathrm{W}$.

Power transistors have internal thermal resistances ranging from approximately $0.8^{\circ} \mathrm{C} / \mathrm{W}$ upwards. The type chosen for use in this stabilizer is the Mullard OC29 which has an internal thermal resistance of $1.2^{\circ} \mathrm{C} / \mathrm{W}$-nearly as good as and considerably cheaper than the best available. This makes the overall resistance $2.7^{\circ} \mathrm{C} / \mathrm{W}$ so that four units in parallel give an effective value of 0.675 ${ }^{\circ} \mathrm{C} / \mathrm{W}$-very close to the required value-and an estimated temperature rise of $35.8^{\circ} \mathrm{C}$ at maximum dissipation. This is considered a sufficiently conservative design for three reasons:-

1. Although the recommended maximum temperature for the OC29 is $90^{\circ} \mathrm{C}$, temperatures up to $100^{\circ} \mathrm{C}$ are permissible for short periods (provided total time at this temperature does not exceed 200 hours).
2. The maximum dissipation requires a battery at 32 V or $2.66 \mathrm{~V} /$ cell.


View of stabilizer power tronsistors, showing way in which cooling fins are splayed outwards from centre, where transistor is fitted to increase surface area.

This is very high and unlikely to be maintained for more than a few minutes or even reached in hot weather.
3. The stabilizer heat sink (cooling fins) has a fairly high thermal capacity and takes about one hour to reach a steady temperature.

This last factor is of great importance when considered in conjunction with the "two-minute viewing" feature of the equipment.

## Circuit Design

Having obtained a satisfactory design for a heat sink, the electrical design can be proceeded with (Fig. 1). A small resistor is connected in each power-transistor (V1 to V4) emitter lead to provide a degree of current feedback which equalizes the emitter-current base-potential characteristics and causes the four transistors to carry similar currents. The $3.3 \Omega, 60-\mathrm{W}$ resistor is the by-pass. With this combination of four transistors carrying a total of eight amps maximum, the base current requirements are quite large. To reduce the control current to a low level a tandem pair of emitter-followers, V5 and V6, are used. The dissipation in V5 can amount to as much as 2 W , so a power transistor is necessary. To keep the number of different types to a minimum (and therefore the spares requirements low) V5 is another OC29. The heat sink requirements for this transistor are very modest and a single cooling fin of the same size as those in the main assembly is more than sufficient. The overall current gain is approximately the product of the three current amplification factors of V1, V5 and V6, amounting to
some 75,000 times. This makes the normal basecurrent requirements of V6 only about 0.2 mA , supplied via the 4.7 k ! cullector load of V7, the error amplifier.
This collector load resistor and the collector of V6 are connected to an auxiliary nine-volt supply to avoid increasing the minimum potential drop in the stabilizer. Without this auxiliary supply the minimum working potential would have been increased by the base-to-emitter p.d. of both V5 and V6 as well as the potential drop in V7 collector load. In the system as shown, the minimum potential drop in the stabilizer is the sum of the p.d. across one $0.5-$ ! sharing resistor, the base-to-emitter p.d. of V1 2,3 or 4 and the collector-to-emitter potential of V5, amounting to about 1.5 V total. The lowest input potential at which the output can be stabilized to 19 volts is therefore 20.5 volts, so allowing for one volt drop on the battery leads.

The error amplifier V7 has its emitter potential fixed by a pair of reference cells. These are small hermetically-sealed units designed to provide a constant $1.5-\mathrm{V}$ p.d. with a low dynamic impedance. They have very little storage capacity and must be supplied with a charging current; they are therefore similar in operation to neon stabilizer tubes and Zener diodes. Neon tubes are, naturally, not suitable and Zener diodes are many times more costly.

A divider chain of low resistance compared with the input impedance of V7 applies a fraction of the output voltage to the base of V7. A thermistor $\mathrm{R}_{\mathrm{t}}$ is arranged so as to compensate for the temperature characteristics of both V7 and the reference cells. The $5000-\mu \mathrm{F}$ capacitor connected across the output provides a low impedance at a.c. and the $0.5-\mu \mathrm{F}$ capacitor connected from the base of V5 to the common positive line suppresses any tendency to oscillation.

The output impedance of the stabilizer at d.c. and very low frequencies can be calculated as $1 / \mathrm{ABg}{ }_{\text {n }}$ where A is the surrent gain from V6 base to V1-4 emitters, $B$ is the voltage ratio of the divider chain and $g_{m}$ is the slope of $V 7$ expressed in collector current (A)/base potential change (V). This comes to $1 / 75,000 \times 0.17 \times 0.05 \approx 0.002 \Omega$ ). At higher frequencies the current amplification factors of all the transistors fall off and the output impedance increases to a value set mainly by the series resistance of the $5000-\mu \mathrm{F}$ electrolytic capacitor, which is of the order of $0.05 \Omega$. To achieve these low values of resistance care has to be taken with the lengths and disposition of connecting leads. For instance, it is necessary to take separate leads direct from the


Fig. 2. Basic oscillator for " chopping " d.c. to produce o.c. Dots on transformer denate start of windings.
error amplifier to the output terminals, as in Fig. 1.
The collector impedance of the series transistors is high (hundreds of ohms) so that the stabilization ratio of the circuit is simply the ratio of the by-pass resistance to the output impedance and is in the order of 1,000 times. This is a very satisfactory figure and means that the "Consort" radar can be operated from nominal 24 -volt d.c. supplies having a large amount of ripple superimposed, so long as that ripple does not take the input voltage outside the design limits of the stabilizer, i.e., 20.5 to 32 volts.

## D.C. to A.C. Converter

Several different h.t. potentials are required in the "Consort" radar equipment, as well as separate supplies for both the magnetron and klystron heaters and the nine-volt auxiliary supply for the stabilizer. To obtain these it is necessary to convert the stabilized 19 -volt d.c. to some form of a.c. The


Fig. 3. Typical collector potentiallcollector current characteristics of power transistor.
traditional methods have been to use either a rotary machine or a vibrator. The former is expensive and heavy, while the latter has a very short life. Now that power transistors are available, a third method is possible.
Again the ability of transistors, when " bottomed ", to pass large current with a very low potential drop between collector and emitter is used: the "saturation resistance" is measured in hundredths of an ohm. They can thus replace the mechanical contacts of a vibrator, the switching action being controlled by a drive waveform applied to the bases. The base drive is conveniently obtained by transformer action from the output so that the circuit resembles a push-pull oscillator, as shown in Fig. 2.
Mode of Operation.-The characteristics of the transformer have a major controlling influence on the oscillation frequency. During one half cycle practically the whole of the supply potential is applied to one half of the primary winding. The
potential is opposed by the induced e.m.f. in the transformer winding so that the rate of change of flux is substantially constant. A magnetizing current is necessary to produce the flux and when the uransformer core begins to be saturated, this magnetizing current increases rapidly.

The conducting transistor has been maintained bottomed by the drive applied to its base via the secondary winding on the transformer. This drive potential can produce only a limited base current which in turn sets the maximum collector current the transistor will pass. When the sum of the load current and the magnetizing current approaches this value (and it does so rapidly as the core saturates) the operating point on the current collector potential characteristic moves from the bottomed region round the knee (see Fig. 3). The collector potential increases: as a consequence the transformer primary potential must decrease and this in turn reduces the drive to the base. The available collector current is thereby reduced causing the operating point to move even farther round the knee. The whole effect is cumulative, causing a rapid switch-off of the transistor. The stored energy in the magnetic circuit causes the transformer output to "overswing" sufficiently to switch on the other transistor and start the next half cycle.

During each half cycle the core swings from saturation in one direction to saturation in the other direction and hence it can be shown that the frequency of oscillation is given by:-

$$
f \approx \mathrm{~V} \cdot 10^{*} / 4 \mathrm{NAB}_{\mathrm{sat}}
$$

where V is the supply potential in volts, N is the number of turns on each half of the primary, A is the effective cross-sectional area of the core and $\mathrm{B}_{\text {gat }}$ is the maximum flux density achievable in the core.

The simple circuit shown in Fig. 2 has one defect -it will not start under load. It may not even start without a load unless the transformer losses are very low. This is because the transistors pass only very small currents if the bases are at emitter potential. To make the oscillator start under all normal-load conditions a sufficient forward bias must be provided and this can be done conveniently by a potentiometer network across the supply, as in Fig. 4. The transformer secondary potential must be increased to compensate for the potential drop due to the base current flowing in $\mathrm{R}_{2}$.

This explanation of the mechanism of switch-over between the two transistors is rather over-simplified, although convenient. A more accurate explanation is that as the transistor operating point moves up the $\mathrm{I}_{\mathrm{c}}-\mathrm{V}_{\mathrm{c}}$ curve, such as shown in Fig. 3, the slope of the curve decreases, i.e., the dynamic impedance of the collector increases. This means that the instantaneous loop gain increases until, at unity loop gain, a point of unstable equilibrium is reached. The switch-over action then takes place rapidly.
Looking at the simple arrangement of Fig. 2 in this light it can be seen that switch-over may well occur at collector-current levels which are much less than those allowed by the base currents. This is especially true with high impedance loads, i.e., light loads on an oscillator fed from a high-p.d. d.c. source. To correct this condition the loop gain must be reduced and, strange though it may seem, this can be done by increasing the amplitude of the drive waveform from the transformer secondary and absorbing the excess in a series base resistance.

That this is so can be seen by taking extreme cases, as in Fig. 5. The curve represents a typical $\mathrm{V}_{\mathrm{b}}-\mathrm{I}_{\mathrm{b}}$ characteristic with the required operating point marked A. With a zero-impedance base circuit a $10 \%$ reduction of base potential brings the operating point to $B$, while if an infinite impedance could be used, the operating point would be moved only to C , a considerably smaller change of base current.

The resistance obviously cannot be infinite, and indeed cannot be very large if excessive waste of power is not to occur. It need, however, only be high compared with the input impedance of the base itself, which, in transistors of this class, is only one or two ohms. A satisfactory value is 10 ohms and this is the value chosen for $\mathrm{R}_{2}$ in Fig. 4. A separate resistor for each base is not necessary, as $\mathrm{R}_{2}$ serves for each alternately.

## Transformer Details

These principles of design have been used for the d.c.-to-a.c. converter of the "Consort" radar. A pair of OC29s switching at 6 amps handle an input current of 4.75 amps from the stabilized 19 -volt supply. The frequency of oscillation is $2 \mathrm{kc} / \mathrm{s}$ and -a Ferroxcube-cored transformer supplies the drive to the bases as in Fig. 4. On light loads most of the stored energy in this core is returned to the supply via the collector-emitter path of the transistor. While this energy is being removed the collector and emitter interchange roles. The transistor resistance this way round is relatively high so that excessive stored energy would cause a large " spike" on the leading edge of the square-wave output waveform. For this reason the core is chosen to be as small as possible. Leakage inductance between the two half-primaries is also a cause of spikes on the waveform, and this, too, must be kept as small as possible in any loadcoupling transformers as well as in the maintaining transformer. This is accomplished by winding the primary in bifilar fashion, i.e., two wires are laid side by side and wound together to form the two halfprimaries.

One of the advantages of a high oscillator frequency is that the load transformers can be small. In the h.t. systems the smoothing components may also be reduced in size. As the output waveform is essentially a flat-topped square wave, a fullwave rectifier system can supply the load directlya reservoir capacitor is needed only to supply the load during the transitions of the square wave and no further smoothing is required.


Fig. 4. Final oscillator for production of h.t. and special I.t. Resistors R1 and R2 aid starting.


Fig. 5. Typical base potential/base current characteristic showing required operating point (A) and effect of zero(B) and infinite-(C) impedance base circuits.

The upper limit to oscillator frequency is set by the transistor losses which occur mainly during transition between the conducting and non-conducting states, the collector potential rising to its peak value before the current falls to zero. The transition time is substantially constant irrespective of frequency, as it depends mainly on the transistor characteristics and the effective circuit capacitance. Therefore, the higher the frequency, the higher the losses.

At the oscillator frequency used in this equipment, i.e., $2 \mathrm{kc} / \mathrm{s}$, the total transistor losses are approximately 5 W and cooling fins of $24 \mathrm{in}^{2}$ per transistor are sufficient.

The d.c.-to-a.c. converter feeds outputs to the heater transformer for the magnetron and localoscillator klystron and to the h.t. transformer which is provided with tappings at levels up to 2 kV . A voltage-doubler rectifier delivers 4 kV for the magnetron modulator and further rectifiers multiply by six to give 11 kV for the cathode-ray tube. Highvoltage generation by multiplier was chosen because a suitable transformer cannot easily be wound with a self-capacitance of much less than 50 pF . The transformer ratio is roughly 1 to 100 so that the effective capacitance presented by the transistors is about $0.5 \mu \mathrm{~F}$, which requires a charging current of two amps to change the p.d. across it by 40 V in $10 \mu$ sec (the changeover time). Obviously a $4-\mathrm{kV}$ winding would not be practical because the reflected capacitance would be four times bigger and would thus require a charging current of eight amps; which, together with the load current, is far in excess of the transistor's capabilities.

The lower-potential supplies have fairly low output impedances, as they are obtained directly from fullwave selenium rectifiers. Because of this, and the stabilization of the input to the converter, h.t. stabilizers are not necessary. The overall d.c.-to-d.c. efficiency of the converter and rectifier system is better than $85 \%$, due partly to the absence of losses in smoothing chokes. This is most satisfactory, but even greater efficiencies can be obtained if fewer d.c. outputs are provided.

# Transistorized Wien Bridge Oscillator 

INEXPENSIVE DESIGN COVERING 20-20,000 C/S

By F. BUTLER, O.B.E., B.Sc., M.I.E.E., M.Brit.I.R.E.

IT is not altogether a simple matter to design a wide-range variable-frequency oscillator using thermionic valves in the driving amplifier, and it is considerably more difficult to do so using transistors. In the case of the Wien bridge circuit there are three principal factors which complicate the task. The input impedance of a normal transistor amplifier is relatively low and it has a reactive component which can prove troublesome at high frequencies. The low impedance affects the performance of the frequency-determining components of the bridge, restricting the frequency range and making impossible demands on the maintaining amplifier. In the second place it is difficult to design a satisfactory circuit for amplitude control which will work effectively under the very-low power conditions which are normal in transistor circuits. Lastly, the characteristics of transistors vary widely from one sample to another of the same nominal type and these characteristics are strongly temperature dependent. With care it is possible to circumvent these troubles and to build a transistor oscillator comparable in performance with its valve-operated counterpart except in respect of output power and frequency stability. Wide range, low distortion and a good signal-to-noise ratio are readily obtainable. The small size, low power consumption and humfree output of the battery-operated transistor oscillator are all points in its favour, and a long trouble-free life can be expected since all the electrical components are operated conservatively.
Valve-Operated Wien Bridge Circuits.-Before con-


Fig. 1. Wien bridge oscillator using thermionic valves (design due to D. E. D. Hickman).
sidering the design of a transistor oscillator it is instructive to examine some of the features of a conventional valve-operated RC bridge circuit. Fig. 1 illustrates a version recently described in Wireless World'. It is a fixed-frequency device designed to operate at $50 \mathrm{c} / \mathrm{s}$. The frequency-determining elements $R_{1} C_{1}$ and $R_{2} C_{2}$ are of high resistance and reactance. They place almost negligible loading on the driving amplifier. The valve input impedances are virtually infinite so that the attenuation and phase shift of the interstage coupling networks can be held at an acceptable level, even at very low frequencies, by using conventional values of coupling capacitors and grid resistors. So much gain is available from the two-stage amplifier that it is possible to dispense with cathode circuit by-pass capacitors. The resulting negative feedback causes an increase in the already high input impedance of the valves.

There is, in consequence of the high impedance of the bridge elements, some risk of high-frequency attenuation and phase shift due to the inevitable capacitance to ground of these and other components, particularly the interstage coupling capacitors. This is of little consequence in fixed-frequency oscillators but in wide-range circuits it may result in a requirement for separate scales on the various ranges. For example, in a three-range oscillator it will normally be found that on the lowest frequency range the phase shift due to the interstage coupling capacitor contributes considerably to the overall loop phase shift of the amplifier and feedback network. On the highest frequency range the interstage phase shift due to the coupling capacitor is negligible but on this range shunt capacitance becomes important. On the middle range, series and shunt capacitance in the amplifier circuit have only a small effect on the oscillator frequency which is determined almost completely by the Wien bridge elements. The effect of amplifier phase shift is to cramp the tuning range of the oscillator. Padding or trimming capacitance is thus required on some ranges if it is desired to use a single scale with decimal or decade multipliers to cover three ranges.

At this point it is worth drawing attention to another design feature of variable-frequency oscillators. In principle a change in either R or C in the bridge elements serves equally well to effect a change in frequency. If C is increased, the operating frequency will be lowered in such a way that the impedance of both arms of the bridge remains unchanged. The load on the driving amplifier stays constant and a change in frequency is not accompanied by a change in output level due to this cause. By contrast, if a frequency change is effected by varying $R$, then there is a change in the magnitude of the bridge impedance and a consequential change in oscillator output unless the


Fig. 2. Transistorized version $0^{\circ}$ the Wein bridge oscillator of Fig. I.
driving valve is of abnormally low output impedance.
The thermistor in Fig. 1 serves as an amplitude limiter. It has a large negative temperature coefficient which is exploited to control the oscillator output. Any increase in the output level causes a rise in the power dissipated in the thermistor element. Its temperature rises and the resistance falls proportionately. Since it is the series element in the negative-feedback circuit, the resulting degeneration restores the output very nearly to the original value. There are of course thermistor resistance changes due to room temperature variations but these are effectively swamped by the much larger changes due to internal energy dissipation changes caused by feedback from the output stage.

Consider now the direct transistor equivalent of Fig. 1 which is shown in Fig. 2. Typical component values are shown on both diagrams. In general, the lower impedances of the transistors call for corresponding reductions in resistance and for large increases in the value of coupling and by-pass capacitors. Minor changes in the input circuit of the first transistor VI are called for to satisfy the base bias requirements. Corresponding changes are also required in the interstage coupling networks, but in other respects the circuits are virtually identical.

In spite of the superficial resemblances between

Figs. 1 and 2, the transistor version would perform indifferently even if it worked at all. As shown, the input impedances of V1 and V2 might be of the order of $5,000 \Omega$ (using OC 71s, for example). That of V1 would impose a gross load on the parallel RC arm of the bridge, while that of $\mathrm{V}_{2}$ would shunt the collector load of $\mathrm{V}_{1}$ and reduce the stage gain. Even though coupling and by-pass capacitors of high values are used, they are associated with such low resistances that unacceptably large phase shifts would be experienced. Objectionable as these may be there are still worse defects to be overcome. Low-frequency operation calls for very large values of capacitance in the bridge network. Fixed capacitors must be used and frequency variation must be achieved by the use of ganged potentiometers. A practical difficulty is at once encountered, since any change of the resistances in the base circuit of V1 will alter its working bias. To avoid this trouble it might be possible to devise some complex resistance network which would serve to provide a fixed base bias current. It might be argued that some of the criticisms of the direct transistor analogue of the valve circuit are too sweeping and severe. For example, the low working voltages of transistor circuits make it quite practicable to use very high values of coupling capacitance, and to counteract the relatively high shunt capacitance it is sufficient to use very low collector load resistances. However, the amplifier gain then falls to an unacceptably low level and the current consumption rises to an uneconomic figure.

Fortunately it is possible to employ direct coupling between transistors with few of the penalties which are incurred when this technique is used with thermionic valves. This at once solves the problem of interstage phase shift and attenuation, though it calls for additional care in bias stabilization.

Finally, the use of negative feedback can transform the amplifier input and outpu: impedances to almost any desired values. This practice can become extravagant in transisters if extremely high input or very low output impedances are required. The use of a single extra stage, properly employed, can raise the input impedance by a factor of 100 or more.

## Transistor Amplifiers of High Input Impedance.-

 Fig. 3 shows three amplificr configurations which have a high input impedance. An emitter follower is shown in Fig. 3(a). It is roughly analogous to a cathode follower but the parallel is not exact. Internal feedback in the transistor circuit is respon-

Fig. 3. Transistor amplifiers having a high input impenance: (a) is an emiter follower. (b) a feedbask amplifier in which there is no deroupling capacitor in parallel with the emitter resistor, and (c) a "super-apha" pair.


Fig. 4. Circuit diagram of a transistorized Wien bridge oscillator covering $20-20,000 \mathrm{c} / \mathrm{s}$. (Half-watt resistors can be used throughout.)
sible for the differences. An emitter follower has a high input impedance only if it has a large load resistance. It has a low output impedance only if it is driven from a signal source of low impedance. Fig. 3(b) shows a feedback amplifier in which there is no decoupling capacitance in parallel with the emitter resistor. In this case the high input impedance is achieved at the expense of amplifier gain. To be really effective a two-stage amplifier is required with feedback over the two stages from the second collector to the first emitter. Using this technique it is easy to raise the first stage input impedance to a value of several megohms.

A rather less expensive solution is shown in Fig. 3(c). Two transistors are used to form a "superalpha"pair. The base current of the second stage is the emitter current of the first. The first-stage base current is smaller than its emitter current by a factor which is of the same order as the current gain. Assuming that this is 100 and that the input impedance of the second transistor is $5,000 \Omega$, the effective input impedance of the first stage becomes $0.5 \mathrm{M} \Omega$. The arrangement has other desirable properties. A large amount of negative feedback is provided which tends to linearize the characteristics of the transistor pair, and there is some improvement in the stability of the composite circuit in respect of temperature changes. Most textbooks on transistor circuits contain only a brief reference to the "super-alpha" connection although its special properties have been exploited, without explanation, in many recent circuits. Some of the foregoing remarks about its special characteristics thus warrant further comment. An emitter follower of the type shown in Fig. 3(a) has a voltage gain which is always less than unity. It can nevertheless provide a moderately high power gain which is due to current amplification within the transistor. An emitter follower can be used as a pre-amplifier to drive an
earthed-emitter amplifier like that shown in Fig. 3 (b). Components may be saved and the composite amplifier may be used down to zero frequency by directly coupling the two stages. To do this it is sufficient to set the operating points of the two transistors at an optimum value by proper choice of the base bias resistances of the first transistor. This first transistor is then an emitter follower of which the load resistance is simply the input resistance of the second stage amplifier. The composite amplifier then has the high input impedance of an emitter follower. A single circuit change is now sufficient to arrive at the " super-alpha" connection shown in Fig. 3(c). It involves disconnecting the collector of the emitter follower from the negative h.t. line and joining it to the collector of the second transistor. The principal effect of this change is to place in series with the collector circuit of the first transistor the whole output voltage developed across the load resistance $R_{1}$. This voltage is opposite in phase to the amplifier input voltage and constitutes a large series negative-feedback signal. The effect of this is to cause a further increase in the already high input resistance of the first transistor and to linearize the characteristics of the transistor pair. Wide-range Oscillator Circuit.-Fig. 4 shows the complete circuit diagram of a Wien bridge oscillator covering $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$ in three overlapping ranges. A point-to-point wiring diagram is given in Fig. 5. Coarse frequency changes are made by a 2-gang 3-pole switch, used to select matched pairs of capacitors. Fine tuning is effected by a 2 -gang potentiometer, $\mathrm{R}_{1} \mathrm{R}_{2}$, having a semi-logarithmic winding law. A linear winding is acceptable for most purposes and such a component may be more readily available than that actually used in the prototype oscillator.

Because of the very high input impedance of the first transistor its bias current is quite small and is not seriously affected by variations of the main tuning resistances $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$. Direct coupling between the three transistors saves components and avoids the phase shifts which would be caused by coupling capacitors and base-bias resistors. Variations of bridge impedance over each tuning range are due to changes in the resistive arms of the bridge. These effects are minimized by the use of an amplifier V3 of very low output impedance. A Mullard OC 72 is used in this stage. Transistors V1 and V2 should have characteristics similar to the OC 71.

Two thermistors are used for amplitude limitation. The main control is exercised by Th 2, which is the negative-feedback element. It is a glass-
(Continued on page 389)
sealed Type A thermistor, manufactured by Standard Telephones and Cables. The sample used had a resistance of 12002 , measured at room temperature and near-zero current. This element is not ideally suitable for transistor applications. Preferred types, specially manufactured for low power control and regulation, are the S.T.C. thermistor Types R. 53 or R.14. The difficulty with physically large thermistors is that the resistance changes due to ambient temperature variations may exceed those due to changing oscillator signal levels.

The use of a second Type A thermistor, Th 1, (whose resistance should not be significantly greater than that of Th 2) serves to give partial compensation for room-temperature changes. In series with a large capacitor, it is connected in shunt with the emitter resistor of V2. Here the signal level is so low that it has a negligible effect on the thermistor resistance. By contrast, the resistance of Th 1 is markedly dependent on the room temperature. A rise in temperature causes a fall in resistance and a consequent reduction in the negative-feedback voltage applied to V2. This, in part, neutralizes the effect of a decrease in the resistance of Th 2 caused by the same room-temperature changes. The signal level in Th 2 is high enough to cause additional resistance changes, sufficient in practice to give a reasonable degree of control of the output amplitude.

In series with Th 2 is another control element. This consists of a pair of germanium junction diodes (such as B.T.-H. Type GJ3-M) connected in parallel but with opposed polarity. These constitute a nonlinear resistance, the magnitude of which depends on the instantaneous voltage drop across the diodes. With an infinitesimal p.d. across the diodes their effective resistance is almost infinite. It drops to a few ohms with an applied e.m.f. of about 250 mV . A resistance shunt $R_{13}$ across the diodes limits their maximum effective resistance at low signal levels. The use of this non-linear circuit element ensures reliable oscillation over a wide range of temperatures. This it does at the expense of some waveform distortion. The degradation is barely perceptible on an oscillogram, but is undesirable when the oscillator is being used to make distortion measurements on high-grade amplifiers. If the oscillator
is to be used only at normal room temperatures and is not exposed to extreme variations the diodes may be omitted, or a short-circuiting switch may be fitted if it is desired to retain them for use under abnormal conditions. If a thermistor Type R. 53 is substituted for Th 2 the diodes are certainly unnecessary, but a Type A unit should still be used in the emitter circuit of V2.

It might be thought that amplitude control by thermistors must necessarily result in some nonlinear distortion. This is not the case, since the thermal capacity of the resistance element is so large that, except at the very lowest frequencies, the resistance does not change significantly during the time of one cycle of the oscillator frequency.

The actual distortion produced by the diodes is dependent on the signal level and on the value of the shunting resistance $\mathrm{R}_{13}$. It is very slightly affected by the thermistor resistance in series with the shunted diodes. Diode distortion is a function of signal amplitude and is virtually independent of frequency.

As regards components, those shown in Fig. 4 are a mixture of preferred and non-preferred values, arrived at by actual measurement. There are only two really critical components, $\mathrm{R}_{3}$ and $\mathrm{R}_{4}$. These set the high-frequency limits on each tuning range and their ratio affects the bridge attenuation which, in turn, calls for corresponding adjustments of amplifier gain. The base-bias resistance $R_{5}$ is also fairly critical. The best procedure is to complete all the circuit wiring with the exception of $R_{3}, R_{4}$ and $R_{5}$. External variable resistances should then be connected temporarily in circuit and the correct settings established by trial. The aim should be to produce the best possible waveform on each range and to equalize the output level at the extreme ends of each range. The maximum undistorted output is 1 V r.m.s. into $1,000 \Omega$.

As regards frequency calibration, the best procedure on the low-frequency range is to establish the main points on the scale by reference to a $50 \mathrm{c} / \mathrm{s}$ signal. A precise comparison of frequencies which are integral or simple fractional multiples of each other can be made by observation of Lissajous figures on an oscilloscope.

The high-frequency ranges call for the use of



Fig. 6. 1,000 c/s ouxiliary oscillator for calibration pur. poses. (Half-watt resistors can be used throughout.)
auxiliary oscillators. Fig. 6 gives a simple circuit of a $1 \mathrm{kc} / \mathrm{s}$ oscillator which can be calibrated against a $50 \mathrm{c} / \mathrm{s}$ signal and set precisely on frequency by the adjustment of the $2 \mathrm{k} \Omega$ potentiometer, again using a Lissajous display. The 50k! variable resistor has a small effect on the generated frequency but its main function is to set the transistor base bias for maximum undistorted output. This oscillator can be used to check most of the mid-frequency and high-frequency ranges. On the $20 \mathrm{kc} / \mathrm{s}$ range, the higher-frequency points can be checked against a $100 \mathrm{kc} / \mathrm{s}$ crystal-controlled oscillator.

To avoid the considerable labour of matching all the ranges to permit the use of a single scale with decade multipliers, it is much simpler and less cumbersome to use separate scales for each range. Alternatively an arbitrary scale of 100 or 180 divisions may be used in conjunction with conversion tables or charts.
Range Extension.-Experiments show that with high-frequency transistors there is little difficulty in adding a further range covering up to $200 \mathrm{kc} / \mathrm{s}$ and in fact a slightly modified circuit using American 2N 499 v.h.f. transistors operated reliably up to 2.3 $\mathrm{Mc} / \mathrm{s}$. At such high frequencies, variable capacitors become more useful than variable resistors as the tuning element. There is little point in using RC oscillators at frequencies much higher than $100 \mathrm{kc} / \mathrm{s}$ since it is simpler and cheaper to use switched tuned circuits.
Crystal-Controlled Oscillator.-The amplifier circuit shown in Fig. 4 is easily convertible to a precision low-frequency crystal oscillator. The crystal is merely substituted for the serics RC arm of the Wien bridge network. The other arm is reduced to a pure resistance by removal of the shunt capacitance. At its series resonant frequency the crystal behaves as a pure resistance. Off-resonance it simulates a very high reactance. The crystal acts as one segment of a voltage divider, the other being the resistance between the base of V1 and earth. Off resonance the amplifier input voltage is attenuated and its phase is changed so that oscillation is made impossible. At series resonance the low effective resistance of the crystal results in the development of sufficient amplifier drive to start and sustain oscillation. The amplitude control circuit functions as in the Wien bridge arrangement to ensure strict Class-A operation. Because of the strong negative
ieedback, variations in transistor parameters due to temperature and supply voltage changes have only a minor effect on the frequency stability. Considerable development work would be required to bring up the performance of such an oscillator to meet the exacting specifications of modern frequency standards. It would be necessary to employ v.h.f. transistors in order to reduce the amplifier phase shift to a satisfactory level. Temperature control of both crystal and amplifier would be required and the supply voltage would need to be stabilized. Preliminary tests show that the performance of the simple circuit is good enough for many purposes. Its outstanding feature is that the operating conditions can be adjusted to set a definite limit to the amplitude of vibration of the crystal. The harmonic content of the oscillator output is then extremely low.
Variable Inductors.-It seems probable that suitably designed variable inductors could be used in conjunction with fixed resistors as the frequency determining elements of an audio oscillator instead of the variable resistors and capacitors normally used.

One possible scheme would be to use twin solenoids with moveable ferrite cores. Range-changing requirements could be met by the use of suitably tapped coils. Such a system would present a constant impedance to the driving amplifier and this would ease the problem of securing constant output over a wide range of frequencies.

## REFERENCES.

1. Hickman, D. E. D., "Wien Bridge Oscillators", Wireless World, Vol. 65, No. 11, December 1959, p. 550.
2. Bailey, A. R., "Low-Distortion Sine-Wave Gencrator'", Electronic Technology, Vol. 37, No. 2, February 1960, p. 64.
3. Melehy, M. A., "A Wide Range Junction Transistor Audio Oscillator", I.R.E., Wescon Convention Record, 1958, Part II, Circuit Theory, p. 74.

## Commercial Literafure

Anglo-French Microwave System.-Illustrated brochure describing the 94 -mile radio system working on $4,000 \mathrm{Mc} / \mathrm{s}$ which links the U.K. and French telephone and television networks. Phase diversity is used for the over-water section to combat fading. From Standard Telephones and Cables, Lid., Connaught House, Aldwych, London, W.C.2.

Microwave Instruments, including attenuators, loads, oscillators, transformers, wavemeters, power supplies and many other special components. An extensive illustrated catalogue covering the complete range of products from Decca Radar, I.td., Decca House, 9 Albert Embankment, London, S.E. 11.

Bench Assenably Trays and storage bins in polythene and other plastics. Various sizes and shapes, some designed for stacking and others for interlocking side by side. Leaflets from "Kabi," Precision Components (Barnet), Ltd., 13 Byng Road, Barnet, Herts.

Television Aerials, masts and accessories. The complete range of Band-I, Band-III and combined types, including v.h.f. acrials, is displayed on a broadsheet from Telecraft, Ltd., Quadrant Works, Wortley Road, Croydon. Surrey.

Ultrasonic Cleaning Equipment for use on small parts and assembijes. Operating at $40 \mathrm{kc} / \mathrm{s}$, the generator delivers 250 watts peak either into a complete tank and transducer assembly or into an immersible transducer. Technical details on a leaflet from Dawe Instruments, Lid., 99-101 Uxbridge Road, Ealing, London, W.5.
Industrial TV Equipment, with a photoconductive camera in a cast aluminium weatherproof housing for use under extreme weather conditions. Pan (up to $350^{\circ}$ ) and tilt (up to $\pm 90^{\circ}$ ) equipment is remotely operated from a control unit. Operation on 625 -line standards. Leaflet from Te-Ka-De, Nuremberg, W. Germany.

# Microwave Valves 

INTERNATIONAL CONGRESS AT MUNICH

ASOMEWHAT unusual general feature of the recent Munich Congress was the relatively large number of survey papers given. These should lend an added interest to the forthcoming publication of all the congress papers (in their original languages) as volume 22 of Nachrichtentechnische Fachberichte. Since as many as 145 papers were given, three simultaneous sessions had to be run. Fortunately, by choosing what he hopes were the most novel and important papers, your reporter generally managed to avoid having to be in several places at once. For reasons of space, this report must be even more selective.

## Magnetrons

One of the problems of magnetron design is ensuring complete stability in the desired mode of oscillation. This is because the r.f. waves associated with the many unwanted modes (and indeed also with the wanted one) have velocities which remain constant round the anode structure. Electrons with a constant and suitable velocity can thus interact favourably with all modes. A general way of avoiding such unwanted interaction which was described in a paper by D. A. Wilbur et al is to make the velocities of the unwanted modes vary round the anode so that these modes cannot interact with electrons of constant velocity. (At the same time the velocity of the desired mode must of course be kept constant round the anode.) These conditions can be satisfied by making the anode up out of two or more sets of resonators whose frequency/phase shift characteristics are the same only for the desired mode. Two examples of anode structures which can be made to satisfy this criterion are a combination of forwardand backward-wave sections or alternatively, a number of different-sized cavities arranged in a random sequence. Tapering the cavity dimensions towards the end of a travelling-wave tube to suppress back-ward-wave oscillations in a somewhat similar way was discussed in a paper by M. Chodorow et al.

A paper by W. E. Willshaw mentioned a way of facilitating third harmonic operation of magnetrons. This is done by making the anode up out of two sets of cavities-one set resonating at the fundamental frequency and the other at the harmonic. Twice as many harmonic as fundamental cavities are provided, so that electron bunches produced at the fundamental frequency have the correct angular velocity for interacting with the harmonic.

## Klystrons

A paper by J. Favalier described an unusual method of electrically varying the frequency of a klystron. This method uses an external tuning cavity in which a gas discharge is set up. To microwaves such a discharge looks rather like a dielectric whose permitivity depends on the electron density and thus also on the discharge current. By varying the discharge current one can thus also vary the tuning-cavity
resonant frequency and consequently also the kiystron frequency. The frequency of an X-band ( $\sim$ $9,000 \mathrm{Mc} / \mathrm{s}$ ) klystron could thus be varied by more than $500 \mathrm{Mc} / \mathrm{s}$ by increasing the discharge current from zero to 250 mA .

## Travelling-Wave Valves

A paper by O. Doehler and G. Mourier discussed the theory of valves in which an electron beam interacts with a slow-wave structure which is periodic in two dimensions. Such a structure is a more general version of a number of ordinary structures in parallel (in which case the distance between adjacent structures is the second periodicity) so that it should be capable of dissipating high powers. The gain was calculated for the case of the transversotron in which the r.f. energy is propagated in a direction at right angles to that of the beam. This device is reciprocal, i.e., can amplify forward- or backwardgoing signals equally well. Thus in order to prevent feedback and consequent oscillations, a non-reciprocal device such as an isolator must be included.

## Backward-Wave Valves

A paper by W. Wendrich described a way of using such valves as mixer oscillators. (For a description of the backward-wave valve see, for example, the article by C. H. Dix in Wireless World for November 1959 (p. 478)). In this modification, the output (at the electron gun end of the slow-wave structure) is terminated in a matched load, and the input is fed to the other end of the slow-wave structure. Both the input and oscillator thus modulate the electron beam and, since the modulation is non-linear, combinations of the oscillator and input frequencies are also produced at the same time. The microwave sum frequency is absorbed in the output load, and the low difference frequency may be picked up at the input.

A paper by A. W. Trivelpiece showed that a longitudinally magnetized ferrite rod can propagate backward waves with velocities of the order of one hundredth of that of light. Interaction with such waves and a beam passing through an axial hole in the ferrite was observed. Such a simple slow-wave structure should be very easy to make.

## Crossed-field (M-Type) Valves

Some of the work on the best-known example of this type of valve-the magnetron-has already been described in this report.

A paper by E. Dench et al discussed the bitermitron. This is similar to a crossed-field backwardwave oscillator (for a fuller description of which see, for example, the previously mentioned article by C. H. Dix in our November 1959 issue (p. 480)) except that, instead of one end of the slow-wave structure being internally terminated in a matched load, both ends are taken out to external circuits. This difference accounts for the first part of the
name, the iron being added, as the authors put it, because this is essential for satisfactory operation. The bitermitron can be operated as a conventional voltage-tuned backward-wave amplifier or oscillator. More interesting is the possibility of operating it as a locked oscillator at high-power levels. An advantage of this arangement is that in the event of failure of the driver oscillator, the bitermitron will continue to oscillate.

A paper by J. E. Orr described a way of controlling the beam current by means of a closely packed parallel-wire grid in front of the cathode emission surface. Normally, any electrodes near the cathode are used for shaping the beam, and the current is controlled by varying the voltage of an accelerator electrode near the entrance to the slow-wave structure. However, the use of a grid control enabled a seven times greater charge in the beam current to be obtained for a given control-voltage change. Little change in the r.f. characteristics was produced by the addition of the grid. An interesting method was used to observe the effect of different electrode positions. A model scaled-up in size (and electrode voltages) was placed in a large evacuated chamber. This was big enough for a man in a space suit to go in and adjust the electrodes to give a suitable beam shape, the beam position being photographed from the light produced through excitation by the beam of the residual gas in the chamber.

## Tornadotron

A paper by G. E. Weibel and R. H. Bartram described the theory of a device for converting microwaves to sub-millimetre waves at high powers. Electrons are first injected and trapped inside a chamber in a magnetic field. By making the frequency of a microwave input resonate with that due to cycloidal motion in the magnetic field (cyclotron resonance) orbital motion of the electron cloud is next induced. It is then proposed to multiply the orbital frequency and its associated rotational energy by a factor of between 100 and 1000 by means of a very large ( $\geq 100,000$ gauss) pulsed magnetic field. Power at sub-millimetre wavelengths should then be radiated directly from the rapidly swirling electron cloud. This cloud actually swirls on its own axis as well as round its orbit-hence the name of the device.

## Noise Reduction

In spite of, or perhaps because of, the recent discovery of new types of valve-such as the parametric amplifier-with very low noise characteristics, many new ideas for reducing noise in conventional valves are being investigated. Moreover, earlier pessimistic theoretical calculations of the minimum possible noise figure in such valves (which was not much less than what had already been achieved in practice) are no longer regarded as valid. A survey paper by M. R. Currie included a discussion of noise reduction in conventional valves. In such valves it can be shown that nearly all the noise is produced at the beginning of the device, near the cathode and potential minimum. It is on modifying the electron velocities in the multi-velocity region just beyond the potential minimum that many of the newly proposed methods of noise reduction depend. These electron velocities can be modified by depressing the potential minimum by the space-charge effect of high-density
injected electron beams or, more usually, by modifying the beam profile either by means of special electrodes near the cathode or by shaping the cathode emissive surface itself. The noise can also be reduced by confining the emission to the edge of the cathode. In general, the use of two- rather than single-dimensional concepts is an advantage in this field. Space-charge effects can also reduce the noise, and since the extent of such reduction varies with the frequency, it may be advantageous to operate at certain frequencies to obtain low noise.

Modulation in an electron beam is usually propagated along it in two waves. One-the fast wavehas a velocity greater than that of the beam itself and the other-the slow wave-a velocity less than (but usually similar to) the beam velocity. Until recently microwave valves have relied on interaction between the slow electron beam wave and a circuit, and it has usually been thought that it is impossible to completely remove the noise from this slow electron beam wave. A paper by P. A. Sturrock, however, not only suggested flaws in the reasoning by which this impossibility is deduced, but also proposed a possible general method of removing the noise from a slow wave. In this method the fast and slow waves are parametrically coupled together by a pump signal in such a way that any noise on the two waves is interchanged periodically along their lengths. The noise can thus be removed from the slow wave if the noise on the fast wave has previously been removed. This can be done by a somewhat similar interchange process which is already known and which will be briefly described later in this report in connection with transverse-field valves.

A method of noise reduction which should be applicable to both slow and fast electron beam waves was described in a paper by R. Adler and G. Wade. This depends on the fact that for an electron beam spiralling in a longitudinal magnetic field, the noise temperature for transverse modulation (at rightangles to the direction of the beam motion and magnetic field) can be shown to be proportional to the ratio of the signal to the spiralling (cyclotron) frequencies. By using a large magnetic field to give a high cyclotron frequency, the noise can thus be reduced. Moreover, the field need not be kept large throughout the valve since it can be gradualiy reduced beyond the initial noise-reduction region without increasing the noise. Experimental results showed a reduction in the fast wave transverse noise temperature from $1100^{\circ} \mathrm{K}$ to $180^{\circ} \mathrm{K}$ for a cyclotron frequency nine times that of the signal. The main problems in applying this method arise in designing a transverse-field input coupler which will operate at a fraction of the cyclotron frequency (rather than, as is usual, at the cyclotron frequency) and, of course, in providing a magnetic field high enough to give a cyclotron frequency several times that of the signal.

## Periodic Electron Beams

Until recently microwave valves have relied for their operation on synchronism between r.f. waves and the longitudinal velocity of an electron beam. Thus, since the velocity which can be attained by electrons is necessarily limited, special slow-wave structures which are capable of propagating r.f. waves with velocities as slow as those of the electrons have to be provided. As the wavelength is decreased, such structures become correspondingly smaller. They
are then more difficult to make and cannot dissipate so much power. In addition, the r.f. fields also fall off more rapidly away from them and so interaction with electron beams is more difficult to achieve. Slow-wave structures are generally either periodic, like the helix, or resonant, like the cavities in a magnetron. Aperiodic, non-resonant, smooth-wall circuits (such as waveguides), which would be easy to construct, can normally only propagate fast r.f. waves, i.e., waves with phase velocities equal to or greater than that of light and thus greater than that of any possible electron beam. Electrons can, however, interact with a fast wave by travelling not in a straight line but rather in a periodic path which is made to correspond to the spatial or time periodicity of the r.f. wave in such a way that any given electron always sees the same value of the r.f. field.
A paper by C. K. Birdsall and L. Haas discussed beams which are made to follow a zigzag path along a waveguide by means of repelling electrodes outside the guide. Up to 21 crossings have been successfully induced, about $40 \%$ of the beam being transmitted through six crossings. In fact, however, only a small number of crossings is necessary for interaction, for similar reasons as in the case of a reflex klystron where the beam passes only twice through the cavity. The beam can interact with either forward or backward waves, possible output frequencies being those at which the r.f. wave slips a whole number of wavelengths per zigzag ahead of or behind the beam.

Birdsall and Haas also discussed beams which are made to follow a helical path between two concentric cylinders by balancing the outward centrifugal force against an equal inward force produced by an electrostatic field applied between the two cylinders. Here for interaction, the frequency of helical rotation must be equal to the required cutput frequency, neglecting any motion of the electrons in a direction along the cylinders' axis.

Papers by A. Reddish and by A. H. Beck and R. F. Mayo described beams which are made to follow a cycloidal path by means of a magnetic field. (It is interesting to remember that such motion was in some cases responsible for the operation of early magnetrons.) In such motion the cycloidal radius depends on the electron velocity. Thus the unfavourable electrons which gain energy from the r.f. field are automatically separated from the favourable electrons which lose energy to the r.f. field. For interaction, the cycloidal frequency must equal the required output frequency, neglecting any electron motion along the field.

A disadvantage of this system is that to produce short wavelengths high magnetic fields are required (field $\approx 10,000$ gauss divided by wavelength in centimetres). This could be avoided if the cycloidal motion could be at a sub-harmonic of the required output frequency. The paper by Beck and Mayo showed that in this case interaction is still possible, provided that the r.f. field has an azimuthal spatial periodicity corresponding to the subharmonic used. Thus, for example, the $\mathrm{TE}_{m_{1}}$ waveguide mode can interact to produce output at $m$ times the cycloidal frequency.

## Transverse-field Valves

These are valves in which the r.f. field, and consequently also the electron modulation motion, are at
right angles to the electron beam motion. Since a transverse-field parametric amplifier with very low noise was developed by R. Adler (see the Technical Notebook section of our November 1958 issue (p. 555) or for a full account Proc.I.R.E. for June 1958 (p. 1,300) and October 1958 (p. 1,756)) much interest has been shown in such valves, and a number of devices more or less similar to the Adler tube were described at the conference. Two of these were simply microwave versions of the Adler tube (which has a relatively low operating frequency around $600 \mathrm{Mc} / \mathrm{s}$ )--one due to A . Ashkin for $4,140 \mathrm{Mc} / \mathrm{s}$ and the other due to T. J. Bridges for $2,700 \mathrm{Mc} / \mathrm{s}$.

The orginal Adler tube used input and output couplers of the Cuccia type, which were first described in R.C.A. Review as "long" ago as June 1949 (p. 270). In such couplers the r.f. input signal is applied via suitable circuits across two deflection plates on opposite sides of the beam. This produces transverse r.f. fields across the beam. A longitudinal magnetic field is also applied to produce spiral motion of the beam along the field. When the input frequency across the coupler is made equal to the cyclotron spiralling frequency, the phenomenon of cyclotron resonance produces an increase in the spiral radius. In this device the coupling is between the fast electron-beam and r.f. waves. It has the great advantage that under certain conditions (such as, for example, for a particular length of coupler) the beam noise is, in theory, totally removed to the coupler (and in practice nearly so) as the r.f. input signal is transferred to the beam

One disadvantage of the Cuccia coupler is the fact that the coupler signal input frequency is tied to the magnetic cyclotron frequency. A paper by P. A. H. Hart discussed theoretically a method of obtaining a somewhat wider choice of possible signal frequencies relative to the cyclotron frequency. In this method, slow-wave deflection circuits are used to produce transverse r.f. signal fields which travel along the electron beam. The phase velocity along the beam of the r.f. signal is chosen relative to the longitudinal beam velocity so that an observer travelling with this beam velocity would see, because of the Doppler effect, a transverse field not at the signal frequency but at the (in this case lower) cyclotron frequency. Resonance between the apparent signal frequency and the cyclotron frequency, fastwave coupling and noise removal are then possible as in the Cuccia coupler. A greater bandwidth should, however, be obtainable than with a Cuccia coupler. (Doppler shift concepts similar to that just described were of importance in several of the interaction processes discussed at the conference.)

A paper by W. R. Beam described experimental results on the use of a slow-wave helix to couple to a hollow beam. Hcre again the input frequency was not tied to the cyclotron frequency. Unfortunately the results obtained did not agree with those to be expected on conventional coupling theories and have not yet been explained.

A paper by R. H. Pantell discussed the theory of a transverse-field coupler which uses a d.c. electrostatic rather than a magnetic field. In this coupler, as in the periodic beam device described by Birdsall and Haas which we have alrcady mentioned, spiral motion of electrons is produced between two concentric cylinders by balancing the outward centrifugal force against that produced by an electrostatic
field applied between the two cylinders. For interaction the spiralling frequency must equal the signal frequency as in the Cuccia coupler, and again fastwave coupling and noise removal are possible for a certain critical length of coupler.

Couplers such as we have just been describing can only put spiral modulation motion on to the beam and are not capable of amplifying this motion. One or more quadrupoles were used to produce amplification in almost all the transverse-field valves described at the congress-indeed one author said he would not have dared to describe his device if it had not used a quadrupole. Such quadrupoles each consist simply of four deflection plates spaced round the electron beam. Adjacent plates are given opposite electric potentials so as to produce fields which are tangential to the spiral motion of the beam. Amplification of the spiral modulation motion is produced by arranging for any given electron to continually see an accelerating tangential field as it spirals along the tube. This can be done by means of either a time- or space-varying quadrupole field, i.e. either by applying a pump r.f. field to a single quadrupole or alternatively, by applying direct voltages to a number of quadrupoles which are rotated and suitably spaced relative to each other. The latter system was used in several of the new devices described at the congress: the former was used in the original Adler tube.

When an r.f. pump field is used, this provides the energy necessary to produce amplification. In the original Adler tube, to correspond to the two pairs of plates in the quadrupole, the pumping had to be at twice the spiral (signal) frequency. A paper by J. E. Carroll discussed the possibility of pumping at a rather lower frequency-two-thirds of that of the signal. In this case the pumping process can be con-
sidered as an initial interaction between the pump and signal to produce a difference signal (at one-third of the original frequency), followed by pumping of this difference signal as in the Adler tube at twice its own frequency (i.e., at two-thirds of the original frequency). With this method of pumping the noise should be as low as in the Adler tube. Other effects may, however, prevent its successful practical realization. Pumping at the signal frequency was discussed in a paper by E. J. Gordon and A. Ashkin.

Amplification by means of a number of spaced relatively-rotated d.c. quadrupoles may be loosely described as being with a zero pump frequency. The energy required to produce amplification is, however, no longer obtained from the pump field, but rather from the d.c. beam energy, longitudinal beam kinetic energy being converted into spiral rotational energy by the d.c. quadrupoles. In the example described by J. C. Bass, adjacent quadrupoles are spaced one quarter of a cyclotron wavelength apart and rotated through ninety degrees relative to each other. Identical results are obtained by not rotating the quadrupoles but instead reversing the signs of the applied direct potentials between adjacent quadrupoles. Apparently d.c. quadrupoles will not give low noise, but should on the other hand be capable of producing higher power outputs. The absence of an r.f. amplifying structure would, of course, be an advantage in constructing very high-frequency devices.

Possibilities of getting away from the quadrupole as an amplifier by using a helix and hollow beam were described in the paper by W. R. Beam already mentioned. In this case also pumping need not be at twice the signal frequency. The possibility of using a number of spaced magnets as a spiral motion amplifier was mentioned in a paper by K. Blotekjaer and T. Wessel-Berg.

# TRAFFIC CONTROL AT HANOVER 



RADIO communications play an important part in the special police arrangements for traffic control in Hanover, particularly during the period of the annual Trade Fair, when upwards of 40,000 cars may be added to the normal traffic streams during the morning and evening rush hours.

Television cameras mounted at strategic points are connected by links in the 6,700 $\mathrm{Mc} / \mathrm{s}$ band with display units at a control centre on the top of the 170 ft high Electrotechnical Hall of the exhibition. These displays give an overall picture of the traffic situation in Hanover and its environs.

This year remotely controlled steerable cameras (supplied by Te-Ka-De and Felten and Guilleaume of Nürnberg) were used for the first time at muitiple road junctions and an additional circuit was made available for a camera fitted in a patrolling helicopter.

The traffic-control officer (second from left) is operating the "joy stick" of one of the remotely controlled television comeras.

# LLETTERS TO THE EDITOR 

The Editor does not necessarily endorse the opinions expressed by his correspondents

## Circuil Conventions

AS the subtitle to Patrick Halliday's article, "Better Circuit Diagrams," was in the form of a question, presumably comments were invited.

The use of the nanofarad is a practice I applaud-see the preface to "Radio Laboratory Handbook," 6th edition. The same goes for omitting $\Omega, F$ and $H$, with the object of making it easier to specify values on the circuit diagram instead of in a list.

Saving time in the drawing office is certainly a valid motive for re-examining our graphical symbols. But any competitive candidates must themselves be able to stand examination. The following are some comments on Mr . Halliday's recommendations.

The rectangle for a resistor is much less easy to sketch than the traditional zig-zag, nor need the latter take up much time in more formal drawings if the number of strokes is kept small. If the rectangle can be drawn with a stencil, so too can the zig-zag. There are other things than resistors for which rectangles are more suitablegeneral impedances, for example. The wattage code shown makes no provision for resistors of unspecified wattage; unless otherwise specified they are all $\frac{1}{4} \mathrm{~W}$ ! The same objection applies to the capacitor voltage code.

For sketches, the present inductor symbol is unrivalled, but for formal drawings there is certainly an advantage in the row of semicircles, and in the "block" method of drawing mains transformers.

The proposal to substitute a single stroke for both earth and chassis connection symbols is most ill-advised, however, as the vital distinction between these two is thereby obliterated.

There is no need whatever to cause confusion by using a black spot (which already signifies "electrode with special function ") in place of the BS. 530 cathode symbol -admittedly a time waster if drawn accurately to standard. A simple curved or bent line is sufficient. And as for the segmented spot to indicate a cathode common to other parts of a multiple valve, it seems to have nothing in its favour. It fails to show which other electrodes it is related to, and is not even easy to draw. Again, what is wrong with a simple line?

To sum up: some, at least, of the foreign practices deserve consideration for working diagrams of equipment. Presumably they were put forward with this qualification understood. They are less suitable for diagrams illustrating principles or techniques, and still less for engineers' sketches.

Bromley, Kent.
M. G. SCROGGIE

AS a technical author, I agree strongly with Patrick Halliday about circuit element symbols. In the production of literature on electronic subects, circuit diagrams are major items. Currently conventional symbols demand space which is very scarce in a big, complicated diagram; they convey only one order of information-"values" take up added space; they are tiresome to draw neatly and their sizes create difficult problems in overall lay-out. These archaic shortcomings give rise to consumption of time and money, in the preparation of diagrams, which could be greatly reduced by universal adoption of an intelligent new code of symbols.

The most significant word, however, in the last sentence above is "universal." Confusion arising from regional codes and styles is already present and will increase if anarchy in symbolic representation is allowed to continue. We may eventually need "dictionaries" to understand "local dialects" in electronic pictorial
language. There is, therefore, I suggest, a real and urgent requirement for the setting up of some authoritative body to devise a new code which, by virtue of its advantages, would soon replace all regional variants from Tokyo to London.

London, E. 17.
W. H. CAZALY

IN your editorial of June, 1960, you speak of "following BS 530 slavishly." This is not possible in every case since BS 530, like so many British Standards, frequently offers a choice with a preference instead of laying down a unique standard. The convention of crossing wires is a case in point.

Then when symbols are required for heavy electrical applications not included in BS 530, one looks in BS 108 Here one finds some useful additional symbols but a whole lot more which are in direct conflict with BS 530 . An example is relay or contactor contacts, where BS 108 distinguishes between relays and contactors, main and auxiliary contacts, and different physical assemblies of contact (single and double break), and at no point agrees with BS 530 .

The British Standards Institution's intention to coalesce these two standards is urgently needed, but it is no small task.

London, N.W.10. R. S. FERGUSON
Leq Computers Ltd.
REFERRING to Mr. L. H. Bedford's letter (April 1960) concerning circuits diagrams, I wish to express to your goodselves that I was very glad that you did not fall in with his ideas, maintaining the usual procedure in drawing diagrams.

With looped crossings and staggered junctions, one minimizes the chances of mistakes. As regards the valve's envelope, I believe that same ought also to be drawn: one cannot think of a vacuum tube without its envelope, therefore said envelope plays its role and should appear on the diagrams.

## A. EDUARDO DINIZ SCHLAEPFER, <br> Eng. Diretoria de Rotas Aéreas, Ministério da Aeronáutica.

## Rio de Janeiro, Brazil.

I REMEMBER the time when the symbols representing the various components in a circuit diagram (I refuse to use that horrible Americanism-" schematics ") were simplified sketches of the actual thing. For example, a standard dry cell, then the most commonly used source of electrical energy, was represented as in (a). The thick black rectangle is the carbon plate and is, of course,

positive; while the thin circle indicates the zinc can and is negative. Later, as a time and space saving expedient, the zinc can was flattened and the terminal omitted as in (b).

Modern draughtsmen insist on reversing the polarity of the symbol so that the thick black stroke is negative and the thin stroke positive. When this is queried, it is pointed out that the present back-to-front polarity is laid down in a Government publication. I should be
interested to hear if there is a valid reason for this change.

London, W. 13.
J. C. BAKER

## V.H.M./E.M. Car Radio

Mr. Blanchard (July issue) was disappointed with the results given by his v.h.f./f.m. car radio, both here and on the Continent; however, his remarks indicate likely causes of this unsatisfactory performance.
I stated that an omnidirectional aerial is desirable and that a ground plane, using the car roof, is ideal. Enlarging on this point, a quarter-wavelength in Band II is only $2 \frac{1}{2}$ feet, a dimension common to many features of a car body. Because of reflections, and its asymmetrical mounting, a wing aerial must have most unfortunate and pronounced directional properties, making it quite unsuitable for v.h.f. reception in any but the strongest signal areas.
Good sensitivity coupled with fading in strong signal areas and difficulty in tuning for best a.m. rejection all point to inadequate limiting action in the tuner. This would also account for the troubles experienced with interference suppression
Mr . Crossland mentioned noise picked up inside the receiver as another difficulty; the avoidance of multiple earthing in the receiver and the use of a remote power supply unit together with the filters I recommended have made further precautions unnecessary in my experience.
Using a Jason tuner (fringe area model) I have had no interference suppression difficulties, nor has other traffic caused any bother. Certainly the only noise entering the receiver does so by way of the aerial, and then it is removed by the limiting circuits in all but weak signal areas. When demonstrating the receiver in South London an unfiltered vibrator pack was used with a considerable length of cable between the power supply and a.f. units. A filter was fitted on the a.f. chassis; even then noise caused no trouble. Subsequent removal of the filter to the vibrator end of the cable (as indicated in the article) has eliminated vibrator noise.
As for coverage of the country, there certainly are gaps, but in noise-prone areas (which coincide with the population centres covered by v.h.f. transmitters) the f.m. receiver is capable of far better performance than any a.m. receiver. The ideal is a combined a.m./f.m. receiver but no British firm makes one. On the Continent, where I have also used a v.h.f. car radio with satisfactory results (tuned usually to B.F.N.), combined receivers are made by many firms. They seem to find no difficulties with noise, the normal h.t. suppression being adequate in most cases.

Danbury, Esses.
R. V. TAYLOR

## Deeper Amplitude Modulation

WITH reference to recent correspondence in your journal commenting on the difference in modulation levels of British and French a.m. stations to the detriment of British stations, I would like to comment from another point of view.

Here in Switzerland, French stations are notorious for their amount of sideband splatter. Even under good reception conditions, foreign (including British) stations are often unreadable because of French stations on nearby channels.

I have operated a receiver in Great Britain and know from experience that British a.m. stations are very free from sideband splatter. It would be a shame if this were spoilt for the sake of a few dBs' increase in audio level.

Geneva.

## F. KONOPASEK

## Cathode-follower Biasing

IN his letter in the June issue, Mr. Bailey shows one way of translating my elementary circuit (which was in-

(a)

(b)

(c)
tended merely to convey the essentials of a cathodefollower, and not to represent a practical one) into a physical reality. It is not the only way, and in particular, it is not necessary to have a negative supply line if response down to zero frequency is not required.
The whole subject was covered by "Cathode Ray" in the June, 1955 issue,* but this may be inaccessible to newer readers, and it is perhaps worth repeating some of the circuits discussed in it.

If the cathode-follower is driven from a valve, a simple direct coupling as shown at (a) is the ideal solution. Where this cannot be done, one is obliged to apply a positive bias between grid and earth in order to make possible the use of a normal-sized load resistance. Two ways of doing this are shown here. The method shown at (b) is the simplest, but it has disadvantages. If there is any ripple on the h.t. supply, a fraction of it is developed between grid and earth, and appears almost unattenuated at the output. Moreover, to preserve a high input resistance, $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ must be high resistances, running perhaps into tens of megohms. Practical high-value resistors have a reputation for instability, and if their resistances vary in this circuit the biasing of the valve is upset. Circuit (c) shows how these difficulties may be overcome. $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ may now be low resistances, and ripple can be removed by the capacitor C. Ro can have a high value: if it is unstable, the input resistance is affected, but not the biasing of the valve. Variations in input resistance are often unimportant provided that the latter is always above a certain minimum valuc.

An objection to these circuits is that they almost invariably lead to the use of grid resistances far in excess of the valve manufacturers' maximum ratings. If

[^5]one uses the same high-value grid resistors in a normal amplifier, the anode current is often found to be different from the expected value. This is the result of small stray currents. For example, a high-resistance leak between anode and grid may set up an appreciable positive bias between grid and earth. Fortunately, in a cathode-follower, such voltages result in the development of opposing voltages across the cathode resistor. Their effect on the actual grid-cathode voltage is reduced by a factor of $1 /(1-\mathrm{A})$ where A is the "gain" of the cathode-follower.

Croydon.
G. W. SHORT

## Self-balancing Push-pull Circuits

UNDER "Electronic Circuitry" in Wireless World of August 1948 J . McG. Sowerby showed how a high degree of negative feedback can be applied over three cascaded stages via an impedance common to the first
trol by feeding back the error-signal such as this, the tightness of control depends upon the gain from the point of application of the error-signal to the point from which it is taken. An advantage of the above method over Mr. Birt's use of an amplifier in the first stage cathode circuit is that all valve stages are used gainfully as far as a.f. is concerned.

In a two-stage amplifier the error-signal can be fed back from the output anodes to the common cathode resistor of the input stage, but Mr. Birt's method of taking the error-signal from a resistor at the output transformer primary centre has some weaknesses. To obtain a substantial error-signal, $\mathrm{R}_{7}$ (Fig. 5, May issue) must be large and of high wattage rating, and robs the output valves of precious h.t. voltage, and, I suspect, complicates the output loading. I would suggest the alternative in Fig. 1 herewith, $R_{1}$, and $R_{2}$ being selected for equality and together at least six times the optimum output load. $\mathrm{R}_{\mathrm{g}}$ in this case would be about equal to $\mathrm{R}_{\text {, }}$ (the higher it is the greater the applied error-signal since $R_{1}-R_{3}$ and $R_{2}-R_{3}$ are potentiometers across the two phases of the output): normal Schmidt working of the first stage applies. Here, the output valves are not restricted to Class A if the bias resistor is properly bypassed.

To my pleasure at reading Mr. Birt's first instalmentbecause of my interest in his subject-was added surprise at reading his second, as I have done some work on cross-coupled cascode pairs also (and labelled them "Croscode"!). A point worth emphasizing is that the arrangement provides "free" phase-division without the Schmidt resistor or any other device. I have used two ways of providing automatic bias for the upper pair-Fig. 2-different again from Mr. Birt's method, not necessarily better.

However, as I see it, neither the self-balancing method in his first instalment nor that in this letter can be applied to the "Croscode". Assuming one of
and third cathodes. This gives the clue to self-balancing push-pull. A three-stage push-pull amplifier with feedback from the common output valves bias resistor to the common first stage bias resistor (via a large electrolytic capacitor to take care of bias voltage difference) gives such tight control of balance that the large cathode impedance of the Schmidt splitter is unnecessary, at least for reproduction of speech and music. As D. R. Birt hints in the last section of his June instalment, Class A working of the output stage is essential since the bias resistor is un-bypassed. The high gain from three stages enables heavy overall n.f.b. to be applied, and to give a very long time-constant to the middle stage grid coupling in the interests of I.f. stability (if not directly coupled) grid-leak bias$10 \mathrm{M} \Omega$ with $0.1 \mu \mathrm{~F}$ and earthed cathodes-can be used.

In any method of con-

the upper valves has lower gain than the other, it will be seen that the error-signal applied positively to one side and negatively to the other, attempting to restor? balance, is fed to both sides through the cross coupling, and the overall effect is exactly nil. Perhaps Mr. Birt's solution to this problem will appear in his promised design of a complete amplifier.


Fig. 2.

For those wishing to try out the Croscode, I would mention that I found it necessary thoroughly to bypass the common bias resistor of the lower pair, or to earth the cathodes directly with grid-leak bias, to prevent l.f. instability.

Walsall, Staffs.
STANLEY MAY

## The author replies:-

I have read with interest Mr. May's letter, and I should like if I may to make some comments about the suggestions he has made.

An impedance common to the input and output cathodes of a triple does indeed provide control of the output stage balance. Since the resistance to earth of the input cathodes is that of the output stage cathode resistor (100,) no coupling takes place within the input stage, and all the drive to the earthed-grid triode of the input pair has to be developed by the out-of-balance output stage current. This drive (and the unbalance) increases if negative signal feedback is taken to the "earthed" grid. As Mr. May states, the degree of balance is proportional to the total gain between the cathodes, but the condition of perfect balance cannot arise, unless there is cross-coupling within the amplifier. In practice, it is difficult to achieve a very large loop gain and sufficiently low phase shift, because three h.f. time-constants are involved, and the cut-off frequencies of two of these (the first and second stage anode circuits) are comparable when maximum gain is realized in each stage. The performance is therefore inferior to that of the multi-loop systems previously discussed, where less overall feedback is required for a given degree of balance and where the cascode anode time-constant provides the dominant phase lag at high frequencies. It is perhaps worth pointing out that if comparable balance is obtained by employing a common cathode resistor in the middle stage of the triple, together with favourable component tolerances, then the earthed-grid triode becomes redundant as far as signal amplification is concerned.

Error voltage feedback, as distinct from any form of signal feedback is restricted to Class A operation; whether this feedback involves many stages or is provided over the output stage only by an un-bypassed cathode resistor. This is because it is implicit in Class B operation that the increase in anode current in one valve cannot be instantaneously balanced by a decrease in the anode current of the other valve, the latter being zero.
Referring now to Fig. 5 (page 226, May issue) if V4 and V5 are typical 25 -watt pentodes operating from 300 V h.t., and $\mathrm{R}_{1}=\mathrm{R}_{2}=220 \mathrm{k} \Omega$, then the error loop gain is 36 dB when $\mathrm{R}_{T}=100 \Omega$. The effective h.t. is reduced by approximately $5 \%$ and the wattage rating of $\mathrm{R}_{3}$ is 2.5 watts. I suggest this is not too gloomy!

In Mr. May's alternative circuit (Fig. 1), even if one output valve is removed, there will be no error voltage at the junction of $\mathrm{R}_{1}, \mathrm{R}_{2}$ since the magnetic coupling in the output transformer will provide a balanced voltage across the potentiometer $\mathbf{R}_{1}, \mathbf{R}_{2}$. Thus $\mathbf{R}_{1} \mathbf{R}_{2}$ and the electrolytic capacitor are redundant components! If the load impedance is constant the situation can be remedied at some cost by the inclusion of an L R network in the lead to the transformer centre tap. ${ }^{\star}$ Even then, we are not out of the wood, for if the source impedance at the input terminals is low compared to $\mathrm{R}_{01}$, the impedance " seen" by the iunction of $R_{1} R_{2}$ is not $R_{3}$, but $\mathrm{R}_{3}$ in shunt with the cathode impedance of the input stage ( $\frac{1}{2} \mathrm{~g}_{m}+\mathrm{R}_{k}$ )-about 1500 ${ }^{\text {O }}$. Furthermore, inequality between the source impedances can influence the amplifier balance.
I am not quite sure what Mr. May has in mind in his penultimate paragraph, because it is intentional that the error voltage should be fed in the same phase to both sides of the amplifier.
The self-balancing methods discussed can be applied to the circuit of Fig. 11 (page 284, June issue). I think

[^6]
perhaps the source of confusion is the connection between the grid and cathode of the upper valve in the push-push equivalent circuit shown in the accompanying diagram. The upper valve does not contribute appreciably to the error loop gain, but it should be remembered that the middle triode will not provide more gain because of its increased load The measured error loop gain from the point marked "feedback" in Fig. 11 to the output terminals is 150 times at $400 \mathrm{c} / \mathrm{s}$, which is generally sufficient to maintain the output stage balance to within $0.1 \%$.

I should like to point out that a cross-coupled cascode circuit is inherently stable, and that it is not necessary to decouple any common cathode resistance. Any time constant in this part of the circuit can only cause instability when it forms part of a feedback loop (intentional or otherwise), involving at least two further timeconstants.
In conclusion I should like to point out that the grid current bias which Mr. May favours can cause considerable distortion if the source impedance is high.
D. R. BIRT

## Standing Wave Ratio

I NOTE with dismay that in his article in the June issue, Mr. J. Robson elects to use the "American" rather than the "British" convention regarding v.s.w.r. "as the use of this convention appears to be increasing." I hasten to add that my dismay arises from no spirit of jingoism but merely from a feeling that confining a variable to the range 0 to 1 is a rational procedure followed in many "normalization" processes whereas to let it "roam" in the wilderness between 1 and infinity smacks of rank carelessness. And "Cathode Ray" in his current essay on hyperbolic functions admits that the world in which $x / r$ is less than unity is more familiar than its "imaginary" counterpart.

However, there is one other somewhat analogous case arising also most commonly from transmission line problems, namely the impedance chart. The Cartesian form of this chart is rarely used for the very good reason that complete coverage of the impedance plane would require an infinite sheet of paper. Instead we use the polar form or Smith chart in which all passive impedances are constrained within a finite (unit!) circle. Why not apply the same criterion to v.s.w.r? After all, we do sometimes wish to plot v.s.w.r. against some variable or other and in spite of the possible indication to the contrary by the length of this protest, my supply of paper is strictly finite.
North Baddesley, Hants. L. C. WALTERS

# Transistor Inverters and Converters 

I-Basic Principles of the Ringing-Choke System

By M. D. BERLOCK,* Grad. I.E.E., and H. JEFFERSON,^ M.A.

PASSIVE methods of storing and of generating electrical energy deliver it in the form of a unidirectional current which, in the most efficient systems, is produced by units having a nearly constant potential difference at their terminals. This ideal of a fixed electromotive force and zero internal impedance is characteristic of the well-established primary and secondary cells and the new fuel cells, and is the aim of the makers of solar cells. The designer of the simpler forms of transistorized equipment is well content with energy sources of this kind, asking only for more watt-hours per pound, avoirdupois or sterling. The designer of valve equipment has always found this kind of energy source unsatisfactory except in very large installations, since he requires a number of different supply voltages and is constantly faced with the problem of balancing the advantages and disadvantages of single packs and multiple packs of batteries. The combined h.t. and g.b. battery of the older portable broadcast receivers was a typical compromise.

For most devices, of course, the supplies are derived from the a.c. mains and the use of a simple and efficient device, the transformer, permits a free choice of voltages. At the highest power levels mercury arc inverters may be used. It is when we turn to battery-cperated equipment consuming power measured in watts, or hundreds of watts, that difficulties are encountered. This equipment may not necessarily be mobile equipment; it may be vital equipment which is normally operated by supplies taken from the a.c. mains but which cannot be allowed to stop operating if there is an interruption of supply.
Until recently the only available methods for converting the d.c. from a battery into a.c. for voltage transformation were by the use of vibrators or rotary converters. Both these methods rely on mechanical systems with moving parts: contact life in the vibrator and brush wear in the rotary converter are serious limitations in situations where skilled maintenance is not available. For low powers it has not been found possible to achieve high efficiencies.
The transistor inverter is bringing about a radical change in our views on battery operation: we may expect that the silicon controlled rectifier inverter will continue this minor revolution. It has now become practicable to construct efficient devices to generate, for example, 50 mW at 100 volts from a 6 -volt torch battery or 100 W at 230 volts, $50 \mathrm{c} / \mathrm{s}$, from a 12 -volt car battery. Existing but expensive semiconductor devices extend the range up to perhaps a kilowatt.

To the electronics engineer these semiconductor inverters, for generating a.c. from d.c., and converters, which include a voltage transformation and rectification, are particularly attractive. By conservative
design he can assure himself of an extremely high reliability, limited only by factors with which he is already familiar. Precautions and protective techniques are those required for the remainder of the equipment and the inverter is the same kind of thing as the rest of the system so that it marries well into it. Furthermore the equipment designer can either design the inverter himself or, if he buys from another manufacturer, can understand exactly how it works. Rotary converters are regarded by most electronic engineers with all the doubt and suspicion reserved by rotary machine designers for electronics.

Three basically different types of transistor inverter appear to be in use. One of them, the class-B (or class-C) oscillator seems to us to be of little special interest: it is not a particularly efficient system and it wastes its power where it can do most harm, in the transistors. Its merit is that the output is sinusoidal.

The two types of inverter which have attracted most attention are the ringing-choke system and the transformer-coupled inverter. The latter, which

Fig. 1. When the switch is opened a high voltage appears across $L$.

has several variants, is probably the most important and will be discussed in detail in later articles. The remainder of this article will be devoted to the ringing-choke inverter.
We must begin by saying that the ringing-choke inverter, as such, is probably almost useless. In all the applications which we can see the ringingchoke system is used with a rectifier to provide a d.c.-d.c. conversion: the reasons for this will appear in the analysis. We must next say that we cannot see any particular reason why the choke should ring, in the sense indicated by T. R. Pye in Electronic and Radio Engineer for March 1959. It would appear to be more correct to describe the circuit as a blocking-oscillator inverter (or converter) when, as is usual, it is self-driven and to describe the corresponding device with separate drive, which as far as we know has not been used, as a pulsed-choke system.
In order to understand the operation of what we shall now call the blocking-oscillator converter it is necessary to build up the circuit piece by piece. The mode of operation of these circuits is so different from the conventional sinusoidal circuits that any

[^7]

Fig. 2. The presence of $C$ reduces the voltage appearing when the switch is opened.
attempt at short cuts can lead the unwary into difficulty. To start off, thercfore, we consider the circuit shown in Fig. 1. When the switch is closed there is initially no current, but the current in the loop increases steadily, satisfying the equation.

$$
\begin{equation*}
\mathrm{I}=\frac{1}{\mathrm{~L}} \int \mathrm{E} \mathrm{~d} t \tag{1}
\end{equation*}
$$

or, in fact

$$
\begin{equation*}
\mathrm{I}=\mathrm{E} / \mathrm{L} \cdot t \tag{2}
\end{equation*}
$$

After some time $t$, then, the inductance is storing an amount of energy

$$
\mathrm{W}=\frac{1}{2} \mathrm{LI} \mathrm{I}^{2}=\frac{1}{2} \mathrm{EI} t=\frac{1}{2} \mathrm{E}^{2} t^{2} / \mathrm{L}
$$

If now the switch is opened we are faced with an intolerable situation. We may very conveniently refer to the simple mechanical analogue of a mass L moving with velocity I , which has kinetic energy $\frac{1}{2} \mathrm{LI}^{2}$. Opening the switch brings it to rest instantly, which is getting close to the irresistible mass hitting the irresistible object. The old-fashioned induction coil for providing electric shocks and the coil used in motor-car ignition systems show what happens. For analytical purposes we must now put a capacitance in parallel, as shown in Fig. 2. When we open the switch the energy stored in the inductance has somewhere to go: in our mechanical analogue the object has become a spring. The capacitor has initially stored energy $\frac{1}{2} \mathrm{CV}^{2}$ but when the switch is opened the voltage swings to some value $\mathrm{V}_{1}$ which satisfies the equation

$$
\frac{1}{2} \mathrm{CV}_{1}{ }^{2}=\frac{1}{2} \mathrm{CV}^{2}+\frac{1}{2} L I^{2}
$$

The energy is then passed back again, the system ringing until the unavoidable resistances have dissipated it.

Instead of putting a capacitor across the choke let us connect a rectifier and a resistor $R$, as shown in Fig. 3. The added components have no effect on the current build-up, because the rectifier isolates the resistor. The switch is again opened when the current has reached a value I, given as before by equation (2). The "magnetic inertia" keeps I flowing and it can now flow through the resistor by the path shown dotted in Fig. 3. Consequently

Fig. 3. The energy stored in $L$ is now transferred to $R$ when the switch is opened.


Y must be positive with respect to X and the instantaneous voltage reached will be

$$
\mathrm{V}_{\mathrm{yx}}=\mathrm{IR}
$$

The current will now decay exponentially in the usual way until all the stored energy has been dissipated in the resistor.

The sudden jump from the situation in which $Z$ is positive with respect to Y , switch closed and diode backed off, to the situation in which $X$, and thus $Z$, is negative with respect to $Y$ will be slowed down by any stray capacitance, the capacitance shown as C in Fig. 2. If, in addition, we add a capacitance across $R$ and make this ( $C_{1}$ in Fig. 4) large enough to hold the voltage constant while we repeat the switching operation quickly, we will get the following sequence of operations:
(a) switch closes, current in L grows linearly,
(b) switch opens,
(c) current in $L$ flows into $C$, charging it until $E_{2 y}$ exceeds $E_{1}$,
(d) diode conducts, current flows into $C$, until the linear fall in current through $L$ produced by $E_{1}$ (this satisfies eq. 2) brings the current to zero, when,
(3) The diode cuts off, leaving $C$ and $L$ to oscillate in the usual damped sinusoid.

This sequence is shown in Fig. 5.
If now we arrange that when $E_{z y}$ goes positive (or reaches zero or a small negative value) the switch is closed we can produce condition (a) again, and if we arrange to reopen the switch at some chosen current we produce (b). The system is then a self-maintaining one. It is very important to notice that it is basically a two-stroke system, drawing energy from the battery when the switch is closed and passing it on to the load when the switch is open. This is, of course, a consequence of the introduction of the diode and it is for this reason that the circuit is used in converters rather than inverters. The other reason is that the two-stroke mode of operation gives a waveform which is thoroughly inconvenient for use in any a.c. device.

The switch used is, as you might expect, a transistor. In Fig. 6 we have the basic circuit with the battery $E$ in series with the inductance $L_{1}$ and the collector-emitter path of the transistor switch. Bias, in this rudimentary circuit, is applied to the base through $L_{2}$ from a bias battery $E_{b}$. When first switched on this bias $E_{b}$ is enough to allow some collector current to flow, and the growth of this current produces additional bias across $L_{2}$ to keep the transistor conducting. The current in $\mathrm{L}_{1}$ therefore rises linearly and obeys equation 2. Meanwhile the voltage across $L_{2}$ is proportional to the

Fig. 4. With these additional capacitors we get the waveforms shown in Fig. 5.



Fig. 5. The conditions in the circuit of Fig. 4. The charging stroke lasts for time $t_{1}$ and the discharging stroke for time $\mathrm{t}_{2}$.
rate of change of the current in $L_{1}$ and is thus constant with a value

$$
\mathrm{E}_{\mathrm{L} 2}=\left(\mathrm{L}_{2} / \mathrm{L}_{1}\right) \mathrm{E}
$$

Neglecting the effect of $E_{b}, I_{c o s}$ the internal resistance $\mathbf{r}_{b}$ and other oddments, which only make the equations more elaborate, this voltage $\mathrm{E}_{\mathrm{L} 2}$ will drive a current $I_{b}$ into the base, where

$$
\mathrm{I}_{b}=\mathrm{E}_{\mathrm{L} 2} / \mathrm{R}_{b}
$$

In turn this base current makes available a collector current of

$$
I_{o}=\beta^{\prime} I_{b} .
$$

As the current through $\mathrm{L}_{1}$ grows the collectoremitter path passes it freely so long as it is below this available value $I_{c}$ but when the current reaches $\mathrm{I}_{c}$ it cannot increase any more. We have travelled up the diode line of the transistor to the knee and now move round the knee to the high impedance region. The current now increases only very slowly through $\mathrm{L}_{1}$ and, in consequence, the voltage $\mathrm{E}_{\mathrm{L} 2}$ falls to a low value. Now the base current $I_{b}$ is reduced and even the existing limit of $I_{c}$ is too much for the transistor so that the current actually starts to fall and, in doing so, produces a reverse

Fig. 6. The basic blocking oscillator.

bias at the base. The transistor is well and truly cut off.

The sequence described above is the charging stroke in which energy is fed into $L_{1}$ through the switch and the operation terminated by opening the switch. We now add to Fig. 6 a diode, a capacitor and a load resistor across $\mathrm{L}_{1}$ so that the discharge stroke, which is quite independent of the transistor, can follow the pattern already described.

Towards the end of the discharge stroke the diode cuts off under conditions which depend on the reactance structure. The detailed analytical techniques used for pulse-generating blocking oscillators do not seem to have been found necessary by any converter designers. It is usual to consider that the circuit would settle in a damped oscillatory mode if the first overswing did not drive the transistor into conduction, but if the value of bias is suitably chosen an over-damped settling would bring the system into the region where a new charging stroke could begin. The oscillatory mode is probably advantageous because it speeds up the transition phase and produces a more definite switch-on in the transistor. It goes without saying that since the storage and delivery of energy is in the magnetic flux through the inductor core a third winding may be used for the diode and load circuit.

One very important factor has not yet been mentioned explicitly. We have seen that the voltage across $L_{1}$ will shift violently until the diode conducts. If the swing needed is too great the voltage actually applied across the transistor may be sufficient to destroy it. This represents one of the most important factors in design.


Fig. 7. The practical converter.

We may now turn to the problem of establishing a practical design. The circuit is shown in Fig. 7 in which the base bias battery is now replaced by a voltage divider $\mathrm{R}_{s}, \mathrm{R}_{b}$. The three windings of the transformer have inductances $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and $\mathrm{L}_{3}$ with corresponding turns ratios $\mathrm{N}_{1}: \mathrm{N}_{2}: \mathrm{N}_{3}$.

The first step is to define the requirements, an output power W at some voltage V to be obtained from a supply E. From experience with similar converters we make a guess at the efficiency which will be obtained: this depends on a number of factors which are discussed below and for purely arithmetic (and typographical) reasons we shall choose the very low value of $50 \%$. We need then to draw a total power of 2 W from the supply. For $83 \%$ efficiency the figure will be 1.2 W and in a practical, rather than tutorial, problem this might be more correct.

This power of 2 W is drawn in a series of pulses with spaces between them. If the pulses last for a
time $t_{1}$ and the spaces for a time $t_{2}$ the power must all be drawn at the rate of

$$
2 \mathrm{~W}\left(t_{1}+t_{2}\right) / t_{1} \text { watts }
$$

The average input current must therefore be
(2W $\left.\left(t_{1}+t_{2}\right) / t_{1}\right) / \mathrm{E}$ and, as this current has the form of a series of triangular impulses, the peak current must be twice this, or ( $\left.4 \mathrm{~W} /\left(t_{1}+t_{2}\right) / t_{1}\right) / \mathrm{E}$

The voltage which appears at the collector during the energy discharge stroke is equal to

$$
\begin{gathered}
\mathrm{E}\left(1+t_{1} / t_{2}\right) \text { and also, of course, to } \\
\mathrm{V}=\left(\mathrm{N}_{3} / \mathrm{N}_{1}\right) \mathrm{E} t_{1} / t_{2}
\end{gathered}
$$

We know from the transistor data that we may not apply more than $\mathrm{E}_{p k}$ to the transistor, so that, working to the limit (and the wise designer will put in his own safety factor)

$$
t_{1} / t_{2}=\left(\mathbf{E}_{p k} / \mathbf{E}\right)-1
$$

This number can now be substituted in the expression for current,

$$
\mathrm{I}_{p k}=\frac{4 \mathrm{~W}}{\mathrm{E}}
$$

and this can be compared with the permitted figure for the transistor already tentatively chosen.

Assuming all is well the value of $\beta$ for the transistor at this current, or the value of $I_{b}$ required (some transistor manufacturers seem rather chary of disclosing data on their products) is now found. Then we must make

$$
\mathrm{I}_{b}=\mathrm{I}_{p k} / \mathrm{B}=\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right) / \mathbf{R}_{b}
$$

We would wish $\mathrm{R}_{b}$ to be very small, so that minimum energy would be diverted into it, were it not for the fact that then $\mathrm{R}_{s}$ would need to be small too, so that the small forward bias of about 0.15 to 0.2 volt might be developed. A compromise is to allow the $\mathrm{R}_{s}, \mathrm{R}_{b}$ divider to dissipate a few per cent of the converter energy. The value of $\mathrm{R}_{b}$ is then known and the equation above gives the turns ratio $\mathrm{N}_{1} / \mathrm{N}_{2}$.

Only one factor remains to be decided: we have
determined the turns ratio $\mathrm{N}_{3} / \mathrm{N}_{1}$ and the turns ratio $\mathrm{N}_{2} / \mathrm{N}_{1}$. What value of inductance, how many turns, should we use? The choice of operating frequency is involved here too, and the criteria to be used are difficult to define precisely in a simple survey. One limitation is set by the short pulse $t_{2}$. The edges of this should be fairly square, occupying, let us say, less than $0.1 t_{2}$. The repetition frequency must be chosen so that $10 / t_{2}$ is less than the highest frequency the transistor will handle: we know that $t_{1} / t_{2}=r$, so that $\left(t_{1}+t_{2}\right)=(1+r) t_{2}$ and as

$$
\begin{gathered}
f_{r e p}=1 /\left(t_{1}+t_{2}\right)=1 /(1+r) t_{2} \\
f_{r e p}<f_{m a x} / 10(1+r) .
\end{gathered}
$$

The establishment of a minimum frequency of operation is associated with the transformer design. We know that

$$
f_{r e p}=1 /\left(t_{1}+t_{2}\right)=r /(r+1) t_{1}
$$

and that, following from eq. 2

$$
t_{1}=\mathrm{L}_{\mathbf{1}} \mathrm{E} / \mathrm{I}_{p k}
$$

We thus need a transformer having one winding with an inductance $L_{1}$ which will not be too near saturation at a current $I_{m k}$ and which has a resistance small compared with $\mathrm{E} / \mathrm{I}_{p k}$. Having made a tentative choice, we check that the resulting frequency satisfies the inequality given earlier.

For a close design we must examine the losses which are introduced by the various elements and attempt to minimize them. There is a loss in the transistor during the conduction period when the collector voltage is low and equally important losses during the transitions. Some power is necessarily fed into the base circuit. Core and copper losses in the transformer are probably the main source of inefficiency. The rectifying diode is more wasteful than one would expect, because it operates at high current for a short time. In a completed design both the overall efficiency and the transistor losses alone should be calculated, because it is essential to ensure that no overheating takes place.


THE full-line curves indicate the highest frequencies likely to be usable at any time of the day or night for reliable communications over four long-distance paths from this country during August.

Broken-line curves give the highest frequencies that will sustain a partial service throughout the same period.

........... FREQUENCY BELOW WHICH COMMUNICATION SHOULD BE POSSIBLE
FOR $25 \%$ OF THE TOTAL TIME

-     - PREDIGTED MEDIAN STANDARD MAXIMUM USABLE FREQUENCY
—— FREQUENCY BELOW WHICH COMMUNICATION SHOULD BE POSSIBLE ON ALL UNDISTURBED DAYS


# Inverted Triode Voltmeter 

NOVEL CIRCUIT USING A.TRANSISTOR TO GET GREATER SENSITIVITY

By R. B. ROWSON, B.Sc., A.M.I.E.E. and A. P. WILLIAMS, A.M.I.E.E.

THE inverted triode voltmeter, as shown in Fig. 1, is occasionally mentioned in the literature as having a very desirable high input impedance but as being suitable only for very high voltage measurements. This last-mentioned disadvantage we have sought to overcome, and the simple instrument described will give full-scale deflection for only 0.3 volts input. The circuit uses a combination of valve and transistor and takes advantage of the best features of each, i.e. the high input impedance of the valve and the current amplification properties and low output impedance of the transistor.

The first reference to the inverted triode voltmeter known to us is a paper by Terman ${ }^{1}$, who mentions how it can be used for operating an oscillograph without taking current from the source. The inverted triode is thus a power amplifier and can also be used as a voltage amplifier if a high ratio* step-up transformer is put in the grid circuit. This is possible because the output impedance is low.

In operation a negative or positive potential applied to the anode (Fig. 1) causes a decrease in grid current and thus a reduction in the reading of the meter in the grid circuit, the highest grid current flowing when the anode potential is approximately zero. Intuitively a negative anode potential can be visualized as forcing the electrons back into the cathode, thereby reducing the
 grid current. If the Fig. I. Basis of the conventional anode is made posi- inverted triode voltmeter.
tive it draws
electrons through the grid and thus again reduces the grid current.

More precisely we can consider the equation originated by van der $\mathrm{Bijl}^{2}$, which gives the electron current $I_{s}$ in terms of the grid and anode potentials, i.e.

$$
\begin{equation*}
\mathrm{I}_{s}=\mathrm{f}\left[\mathrm{E}_{g}+\left(\mathrm{E}_{\boldsymbol{a}} / m\right)\right] \tag{1}
\end{equation*}
$$

neglecting the term covering the intrinsic potential difference between cathode and grid-anode system. In this equation $m$ is similar to the usual $\mu$ and can be shown to be $\mathrm{C}_{a k} / \mathrm{C}_{g k}$ and thus the inverted triode can be looked upon as acting as a capacitance divider. While $\mathrm{E}_{a}$ is sufficiently negative no current flows to it and thus $\mathrm{I}_{s}=\mathrm{I}_{g}$, and under these conditions one can readily see that a negative $\mathrm{E}_{a}$ results in a decrease in grid current, if $\mathrm{E}_{g}$ is held constant.

* Greater than the value $m$ which appears in equation (1) and is defined just below it.

If $\mathrm{E}_{a}$ is made positive the condition is more complex, $I_{a}$ ceases to be zero and the split-up of $I_{s}$ is confused by secondary electron effects. It has been shown by Chaffee ${ }^{3}$ that lines of constant emission current plotted on axes of $E_{a}$ and $E_{g}$ have discontinuity for low positive values of $\mathrm{E}_{a}$ and $\mathrm{E}_{g}$. Spangenberg ${ }^{4}$ shows that whilst $E_{G}$ is less than $\mathrm{E}_{g}, \mathrm{I}_{g}$ is greater than the primary electron current, but if $\mathrm{E}_{a}$ is greater than $\mathrm{E}_{g}$ it is less. Based on an empirical law he finds

$$
\begin{equation*}
\mathrm{I}_{g}=\mathrm{I}_{s} /\left[1+d\left(\mathrm{E}_{a} / \mathrm{E}_{g}\right)^{n}\right] \ldots \tag{2}
\end{equation*}
$$

" $b$ " is 0.5 if $\mathrm{E}_{a} / \mathrm{E}_{g}>0.8$ or 2 if less, and " $d$ " is. the current division factor, i.e. $\mathrm{I}_{a} / \mathrm{I}_{g}$ when $\mathrm{E}_{a}=\mathrm{E}_{g}$.

By substituting for $I_{s}$ from (1), an expression in measurable factors is obtained. Unfortunately " $d$ " changes rapidly for small values of $\mathrm{E}_{a}=\mathrm{E}_{g}$ due to the change in position of the virtual cathode. The numerator of (2) changes very slowly with changes in $\mathrm{E}_{a}$ if $m$ is high. For example, a tenfold change in $\mathrm{E}_{a}$ may only result in a $7 \%$ change in the numerator. If $\mathrm{E}_{a}=0$, the denominator is a minimum and thus $\mathrm{I}_{g}$ is at its maximum. For increasing positive or negative $\mathrm{E}_{a}$ the denominator increases quite rapidly and thus $\mathrm{I}_{g}$ falls in both cases. As the particular virtue of the inverted triode voltmeter is its high input impedance it is desirable to avoid anode current and in the arrangement described later a minimum bias has been built into the circuit.

As $I_{a}=0$ for negative values of $E_{a}$ and as $I_{a}$ has a value for positive $\mathrm{E}_{a}$ the valve has a rectifying action. This can be made use of to measure a.c. by inserting a capacitor in the anode lead (capacitance somewhat greater than $\mathrm{C}_{a k}$ ). This charges up when the impressed wave goes positive and thereafter current flow is zero.

Having considered the general theory, it is useful to examine the various practical circuits which have been suggested. Ref. 5 describes a circuit using a special valve (Westinghouse, RH507) having an internal earthed wire touching the inside of the glass envelope to drain away static charges, and draws attention to the need of constant filament current. It also shows that the maximum sensitivity occurs at around $\mathrm{I}_{a}=0$. With this design currents of $10^{-14}$ amp are measurable. In contrast, the circuit described by Kepferberg ${ }^{6}$ uses a 211-D and was designed for voltages up to 5 kV and has an input impedance of $5 \times 10^{9}$ ohms.
Several engineers have used a slide back arrangement; Foster ${ }^{7}$, for example, puts a voltage $\mathrm{E}_{\mathrm{b}}$ on the anode (positive to anode) and finds the grid voltage for zero or known $I_{a}$. He then puts the voltage to be measured, $\mathrm{E}_{x}$, in series with the battery and anode, and adjusts the grid voltage to give the same $I_{a}$ as before. In this case

$$
\mathrm{E}_{x}=\left(\mathrm{E}_{b} \cdot \mathrm{E}_{g 2} / \mathrm{E}_{g 1}\right)-1
$$

This method is referred to by Hund ${ }^{8}$ and is used by


Fig. 2. Improved circuit incorporating a transistor. Battery switches are not shown.

Yuan. ${ }^{9}$ To prevent splash current Yuan puts a 7.5 -volt battery in the anode lead. He also gives graphs showing that $\mathrm{I}_{g} / \mathrm{V}_{g}$ is a curve but $\mathrm{V}_{g} / \mathrm{V}_{a}$ is a straight line, the moral being that $\mathrm{I}_{g}$ should be kept constant.

One way of overcoming this lack of linearity was mentioned above; another, due to Scheenburger ${ }^{10}$, is to use a tetrode, returning the screen to the cathode via a high resistance, again resulting in lack of sensitivity. Scheenburger's instrument had an input resistance of $10^{13}$ ohms, tested by charging the anode with a comb run through the hair and finding the time for the volts to drop to $63 \%$. Knowing the anode/cathode capacitance, the resistance can be calculated.

One difficulty of the inverted triode voltmeter is the very low grid current to be measured needing a very sensitive meter for a low reading instrument. A way of overcoming this is given by Genin ${ }^{11}$, where the measuring valve, a pentode EL8, is the upper part of a cascode pair. Here the grid current is fixed, the cathode of the top valve (i.e. the anode of the lower one, a 6AU6) moves, and the change in voltage is applied to a cathode-coupled pair.

It will be seen that what is required is a method of maintaining the grid current relatively constant and of amplifying the very small changes in voltage which occur, so that a relatively robust meter can be used. It is felt that the circuit shown in Fig. 2 meets these conditions. The input impedance is very high, no noticeable difference in reading being observed when a $50-\mathrm{M} \Omega$ resistor is placed in series with the incoming voltage. The circuit, using a 954 valve which can be bought very cheaply and has very well insulated electrodes, gives in effect an electrometer for a very moderate cost. As the electron current required is small the heater can be run at half, or even less, voltage, which also has the advantage of reducing secondary emission from the grid.

With the shunt $\mathrm{R}_{s}$ (say $1 / 20 \mathrm{R}_{m}$ ) across the meter and no backing-off current (the backing-off current is merely to balance the static collector current through the meter), potentiometer A is adjusted to give a reading of about 1 mA to bring the sensitivity of the transistor to about optimum and to give a reasonable grid current. The backing-off current is then increased to give about zero reading, when the shunt can be opened. Either control is then slightly adjusted to give full-scale reading.

For some purposes potentiometer B, taking the positive end of the incoming voltage, is adjusted so that the same reading is observed when the incoming terminals are either short-circuited or open-circuited; depending on the valve it may be necessary to connect end " $b$ " of potentiometer $B$ to the slider of $A$ instead of to the junction point of the batteries to achieve this condition. Application of a positive voltage to the anode reduces the reading. As described, 0.3 volts give a change of 100 microamps in the reading of the meter. A " charged" fountain pen held about one foot away drives the pointer offscale. In view of the sensitivity, for general use the terminals could be shunted by a $50-\mathrm{M} \Omega$ resistor.

To read a.c. Medina ${ }^{12}$ used a rectifier to charge a polystyrene capacitor, which was connected across the incoming terminals, thus obtaining a peak voltmeter. He used a 6 V 6 G , removing the base and painting the envelope with methylchlorosilane to reduce leakage further. By this means the charge was retained in the capacitor and readings could be taken some time after the phenomenon being measured had occurred. A probe incorporating a silicon rectifier and a $100-\mathrm{pF}$ or less capacitor gives satisfactory results with the present instrument. Alternatively, having set $B$ to give no change in reading, a.c. can be applied directly via a $10-\mathrm{pF}$ capacitor.

| "Anode " | " Grid " | Earthed <br> Screen $\dagger$ | D.C. Range |
| :--- | :--- | :--- | :--- |
| $\mathrm{a}+\mathrm{g}_{3}+\mathrm{g}_{2}$ | $\mathrm{~g}_{1}$ | - | $0-0.3$ volts |
| $\mathrm{a}+\mathrm{g}_{3}$ | $\mathrm{~g}_{1}+\mathrm{g}_{2}$ | - | $0-50 \quad "$ |
| $\mathrm{a}+\mathrm{g}_{3}$ | $\mathrm{~g}_{1}$ | $\mathrm{~g}_{2}$ | $0-75 \quad "$ |
| a | $\mathrm{g}_{1}+\mathrm{g}_{2}$ | $\mathrm{~g}_{3}$ | $0-600$ " |

$\dagger$ In the instrument described there is no appreciable difference whether the earthing is direct or via a resistor.

In order to reduce leakage currents to a minimum it is advisable to use a ceramic valve holder and to bring the leads for the anode, suppressor and screen grid through the case via ceramic bushes. Higher voltages can be measured by connecting the valve electrodes to form the effective grids and anodes in the manner indicated in the table. Line 1 of this table corresponds to Fig. 2, and is the most sensitive arrangement.

## REFERENCES

1 F. E. Terman. Proc. I.R.E., April 1928, p. 447.
2 H. J. van der Bijl. "The Thermionic Vacuum Tube," McGraw-Hill, New York, 1920.
3 E. L. Chaffee. "Theory of Thermionic Vacuum Tubes," McGraw Hill, New York, 1933.
4 K. R. Spangenberg. "Vacuum Tubes," McGraw Hill, New York, 1948.

5 Anon. "Inverted Triode for Industrial Measurements," Electronics, December, 1944, p. 176.

6 M. Kupferberg. Rev. Sci. Inst., August, 1943, p. 254.

7 H. G. Foster. Electronic Eng., Oct. 1945, p. 731.
8 A. Hund. "High Frequency Measurements," 2nd ed., McGraw-Hill, New York, 1951.

9 L. C. L. Yuan. Rev. Sci. Inst., 1948, p. 450.
10 Sheenburger. ibid., 1948, p. 40.
11 R. Genin. J.Phys. et Rad., Jan. 1955, p. 74.
12 L. Medina. Australian f.Ap.Sc., June 1954, p. 141.

# Manufacturers' Products 

NEW ELECTRONIC EQUIPMENT AND ACCESSORIES

## Stereo A.F. Power Meter

THE new Amos of Exeter Model 158 comprises two of their Model 156 a.f. output meters. These are housed together in a single cabinet and have their impedance and power-range selection switches ganged together. The four power ranges give full-scale deflections with inputs of $10 \mathrm{~mW}, 100 \mathrm{~mW}, 1 \mathrm{~W}$ or 10 W (the meters are


Amos of Exeter twin-channel a.f. power meter.
also graduated in dB ), and the input transformer can be matched to impedances of $3,5,7.5,15$ or $600 \Omega$. The accuracy is $\pm 0.5 \mathrm{~dB}$ from 10 to $20,000 \mathrm{c} / \mathrm{s}$ : the two channels are matched to $2 \%$. The Model 158 costs $£ 34$ 10s (carriage paid in U.K.), and is manufactured by Amos of Exeter Ltd., of Weircliffe Court, Exwick, Exeter.

## H.F. Wide-band Amplifier

APERIODIC amplification over the frequency range $1 \mathrm{Mc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ is provided by a wide-band amplifier, Type VM 30, recently developed by R. H. Minns Electronics, of The Lower Mill, Kingston Road, Ewell, Surrey. An output of 15 watts into an impedance of 100 ? is obtained for frequencies up to $26 \mathrm{Mc} / \mathrm{s}$ with 1 volt applied across the $100-\Omega$ input circuit. The output falls to 10 watts at $30 \mathrm{Mc} / \mathrm{s}$ for the same input. Models are available for various input and output impedances, coaxial or balanced. Amplification is carried out in three
stages, the last two using Mullard QQVO6-40A valves. Inter-stage coupling throughout is by means of a new range of wide-band transformers developed by R. H. Minns Electronics. The equipment operates from the mains supply, through a germanium rectifier. Several of the amplifiers are being used by the B.B.C. to provide drives for h.f. broadcast transmitters.

A wide-band distribution amplifier, Type VM 40 , is also available, enabling up to three of the Type VM 30 wide-band amplifiers to be fed from a single source. There is a voltage gain of $3: 1$ between the input and each output of the distribution amplifier.

## Tunable Mobile Aerial

IN mobile v.h.f. radio systems transmitters and receivers frequently operate in channels too widely separated for the average whip aerial to operate at best efficiency and a compromise aerial has to be employed. With the new "Avel Mobile Antenna," however, maximum efficiency is obtained by automatically tuning the aerial to the transmit and receive frequencies as required.

The tuning unit, which is illustrated, forms the base for the usual vertical aerial and it incorporates trimming capacitors and a coil, the inductance of which is changed, as required, by a solenoid-operated dust-iron core. By this means the aerial can be tuned correctly and in turn to any two frequencies up to $15 \mathrm{Mc} / \mathrm{s}$ apart. The unit is built to withstand severe vibration and is protected by a toughened fibre-glass moulding. While designed initially for use on motorcycles operating in the 80$100 \mathrm{Mc} / \mathrm{s}$ band, models are becoming available for frequency bands between 30 and $174 \mathrm{Mc} / \mathrm{s}$ for use on cars, vans and launches, and for $6 \mathrm{~V}, 12 \mathrm{~V}$ or 24 V operation.
The makers are Aveley Electric Ltd., Ayron Road, Aveley Industrial Estate: South Ockendon, Essex.

## Small Induction Motor

A COMPACT, fractional-h.p. induction motor, intended for use in tape recorders, record players and electronic equipment generally, has been introduced by R. B. Pullin and Co. Ltd., Phœnix Works, Great West Road, Brentford, Middlesex. It is a shaded-pole, squirrel-cage type with the rotor supported in self-aligning bearings embodying oil-impregnated lubricating pads.

The working voltage is 200 to $250 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$ and the

Below: Aveley remotely tuned, mobile-aerial unit.



Above: Pullin shaded-pole
fractional-h.p. induction fractional-h.p. induction motor. .

Wide-band amplifier for communication frequencies by.R.H. Minns Electronics.
starting torque is greater than 60 gm cm . A no-load speed of 2,900 r.p.m. is attained falling to a minimum of 2,600 r.p.m. with a torque of 80 gm cm and 230 V input. Under these conditions the input current does not exceed 0.2 A , and the maximum power output is 0.003 h.p. (2.5W). The maximum temperature rise without a fan is $50^{\circ} \mathrm{C}$.

Motors are available with the driving shaft at one end (Type ASP1), or with extended shafts at both ends (Type ASP2). The price is 15 s .

## New Tantalum Capacitors

HAVING concluded an agreement with the Fansteel Metallurgical Corporation of America the Plessey Company are now marketing the extensive range of tantalum capacitors made by the American firm.

The new range extends from $325 \mu \mathrm{~F}$ at 6 V to $1.75 \mu \mathrm{~F}$ at 125 V d.c. working and they are available in three


Examples of the three sizes of Fansteel Corp. tontalum capacitors marketed by Plessey.
sizes, the smallest measuring $15 / 32 \times 5 / 16$ in and the largest $49 / 64 \times 37 / 64$ in.
All three sizes are available with the alternative tolerances of -15 to $+20 \%$ or -15 to $+50 \%$ at an ambient temperature of $25^{\circ} \mathrm{C}$, but they may be used up to $125^{\circ} \mathrm{C}$ (ambient) at reduced working voltages. Full details are obtainable from the Plessey Chemical and Metallurgical Division at Towcester, Northants.

## Capacitor Decade Box Kit

THIS unit achieves the ten capacitance steps in each decade by switching a combination of four $\pm 1 \%$ sil-vered-mica capacitors. With all switches at zero the residual capacitance is 18 pF and the maximum of $0.111_{\mu} \mathrm{F}$ is reached in 100 pF increments.


Costing £5 18s 6d in'kit form the Heathkit DC1 capacitor decade box is rated at 350 V d.c. and is available from Daystrom, Ltd., Two Mile Bend, Bristol Road, Gloucester.

## Marine V.H.F. Radio Telephone

THE new Marconi "Argonaut" v.h.f. radio-telephone equipment provides a maximum of 50 working channels in the international maritime band of $156 \mathrm{Mc} / \mathrm{s}$ to $163.4 \mathrm{Mc} / \mathrm{s}$. It is designed to enable ships to communicate on the frequencies assigned for emergency calling, port operations, public correspondence, inter-ship and private maritime use. It has received the British G.P.O. approval for these services.

Basically the "Argonaut" comprises two separate units, a control unit measuring $10 \frac{1}{4} \mathrm{in} \times 11 \frac{1}{2} \mathrm{in} \times 6 \frac{1}{2}$ in and incorporating loudspeaker, channel-selecting switches, microphone-telephone handset and all necessary controls. This unit is used for either local or remote operation of the transmitter-receiver which, with its power supply, is a separate unit measuring $36 \frac{3}{4} \mathrm{in} \times 20 \frac{3}{4} \mathrm{in} \times 7 \frac{1}{2} \mathrm{in}$ and may be installed up to 300 ft from the control point.

The equipment operates on either 110 V or 220 V d.c. or 115 V or $230 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$ a.c. Maximum r.f. output is 20W (the limit under the Hague agreement) but a "re-duced-power" switch permits a reduction in output to sbout 0.5 W to be effected. Direct operation from 220 V d.c. mains (without an internal power unit) is possible, and under these conditions an r.f. output of about 7 W is available. Frequency modulation is employed.

Compact control unit of the Marconi "Argonaut" marine v.h.f. radio telephone.


The addition of a switching unit enables the equipment to be operated, including channel selection, from either one of two control positions. A "watch" unit may be added also to provide unattended monitoring of two independently selected channels. Duplex or simplex operation is possible.
Further details can be obtained from the Marconi International Marine Communication Co. Ltd., Chelmsford, Essex.

## Soldering Equipment

THE extractor tool illustrated has been designed to facilitate the removal of worn and seized bits from Adcola miniature soldering irons. Normally the extractor is operated by hand, but for particularly stubborn cases of seizure it can be set in a vice and the extractor screw turned by an ordinary $\frac{3}{8}$ in spanner. Separate thrust plates and chucks to take the three normal sizes of bits, $\frac{1}{8} \mathrm{in}, \frac{3}{16}$ in and $\frac{1}{4} \mathrm{in}$, are available.
The combined protective unit and stand made for Adcola soldering irons has been redesigned and now embodies wiper and abrasion pads for cleaning the bit, also a handy reel of solder wire, all accommodated in the base of the unit.
Further details can be obtained from Adcola Products, Ltd., Gauden Road, Clapham High Street, London, S.W. 4

# Elements of Electronic Circuits 

16.-THE TRANSITRON TIMEBASE

By J. M. PETERS, B.Sc. (Eng.), A.M.I.E.E., A.M.Brit.I.R.E.

THE transitron circuit has been previously dealt with, in the March, 1960, issue, in connection with the generation of rectangular waveforms, and its action as a triggered relay has been described. Slightly modified, it can be used as a freely running generator of sawtooth voltages, and such an arrangement, known as the Fleming-Williams circuit, is shown in Fig. 1. Before describing the action it will be helpful if some general properties of transitrontype circuits are outlined:-
(a) Under certain conditions the space charge existing between screen and suppressor grids can act as a "virtual cathode"; hence variations in suppressor grid potential can vary the anode current. When these conditions obtain, it is possible to regard the pentode as consisting of two separate triode valves. One triode is formed by anode, suppressor grid and "virtual cathode," the other by screen grid, control grid and true cathode.
(b) A reduction in anode voltage diminishes the anode current, increases the screen current and hence lowers the screen voltage.
(c) A reduction in screen voltage, however, reduces both anode and screen grid currents, so that the anode voltage rises.
(d) When anode current flows the screen current is low and the screen voltage is high. When anode current is cut off, screen current is high and screen voltage is low. These are the limiting conditions operating in a transitron circuit.
(e) With certain values of anode voltage and suppressor voltage, a rise in suppressor voltage causes a decrease in screen current and a rise in screen voltage. A typical static characteristic is illustrated in Fig. 3. A further rise is caused due to the external coupling between screen and suppressor and this action is cumulative. When the suppressor volts fall (over the same region of the


Fig. 2.
characteristic) the screen voltage falls. This is again a cumulative action.
With these properties in mind, let us examine the sequence of events in the circuit in more detail.

## Stage A

At the commencement $V_{g_{3}}$ is assumed to be positive, $I_{a}$ is flowing and is larger than the $C_{1}$ charging current through $\mathrm{R}_{1}, \mathrm{~V}_{a}$ is falling and $\mathrm{V}_{\mathrm{E}_{2}}$ is at its maximum value. $C_{1}$ discharges rapidly and $V_{a}$ falls. $I_{a}$, however, remains constant until the

"knee" of the $V_{a} / I_{a}$ characteristic is reached and then it falls. $\mathrm{V}_{\mathrm{g}_{3}}$ is falling; ultimately a condition is reached when a "virtual cathode" starts to form between screen and suppressor grids. The fall in $\mathrm{V}_{\mathrm{g},}$ causes a fall in $\mathrm{V}_{\mathrm{g}_{2}}$ (vide suppressor volts/screen volts characteristics) and there is a further reduction due to the coupling circuit $\mathrm{C}_{2} \mathrm{R}_{3} . \quad \mathrm{I}_{\mathrm{a}}$ is finally cut off and the suppressor is driven beyond the suppressor cut-off bias.

## Stage B

$C_{2}$ discharges through $R_{3}$ and the suppressor voltage starts to rise. $\mathrm{V}_{\mathrm{g}_{2}}$, however, remains constant as the suppressor volts are still below suppressor cut-off bias. $C_{1}$ charges through $R_{1}$ and $\mathrm{V}_{\mathrm{a}}$ starts to rise. Ultimately $\mathrm{V}_{\mathrm{g}_{3}}$ reaches suppressor cut-off and $\mathrm{I}_{\mathrm{a}}$ starts to flow. $\mathrm{I}_{\mathrm{g}_{2}}$ drops as a result. $\mathrm{V}_{\mathrm{g}_{2}}$ rises, taking $\mathrm{V}_{\mathrm{g}_{3}}$ with it. $\mathrm{I}_{\mathrm{a}}$ increases further, $\mathrm{I}_{\mathrm{g}_{2}}$ drops. The action is cumulative at the end of this stage until $\mathrm{I}_{\mathrm{a}}$ cannot increase any further (the
"knee" of the characteristic has been reached). By this time $\mathrm{V}_{\mathrm{g}_{2}}$ has taken $\mathrm{V}_{\mathrm{g}_{3}}$ well positive.

## Stage C

The production of the large $I_{a}$ causes $C_{1}$ to discharge at the commencement of this stage. $\mathrm{C}_{2}$ now starts to charge and $V_{g_{3}}$ falls gradually to zero. $V_{a}$ falls as $C_{1}$ discharges and the cycle repeats.

By an adjustment of $R_{1}$ and $R_{3}$ the charging time, and hence the duration of the sawtooth, is made controllable. $\mathrm{R}_{2}$ controls the mark/space ratio of the square waveform at the screen. The oscillations can be synchronized if negative pulses are applied to the control grid, or alternatively if positive pulses are applied to the suppressor grid. The cumulative action occurring at the end of Stage B is initiated by either of these methods of synchronization.

Finally, whether the cumulative action can occur or not depends very much on the relative grid potentials, and, in particular, that of the anode should be fairly low.

## TUNNEL DIODES

By "CATHODE RAY"

## NEGATIVE RESISTANCE WITH TWO ELECTRODES

IIERE is another request programme. And it made me yearn for the good old days when the task of producing a convincing explanation of how an electronic device worked could be undertaken without risk of mental collapse, either for oneself or one's readers. What made me particularly nostalgic in this case was that the characteristic curve of a tunnel diode (Fig. 1) is practically a repeat of that of the old screen-grid tetrode or dynatron. Would that its cause were as easy to understand!
To build up our self-confidence by continuing to see daylight for at least another paragraph or two, let us consider the effect before the cause.


Fig. I. General shape of tunnel diode current/ voltage curve. It reminds those who are old enough to remember such things of the dynatron.

The characteristic curve of ordinary resistance, as known to Prof. Ohm, is, of course, a straight line passing through the origin and sloping upwards from left to right. The amount of resistance represented is inversely proportional to the steepness of slope. Two parts of the curve in Fig. 1 at least slope upwards from left to right. One of them even passes through the origin, and the other looks as if it could do if it continued its trend. But between them is a section sloping downward from
left to right. An increase in voltage causès a decrease in current. The resistance within the limits of this section is, therefore, negative. Unlike positive resistance, practical negative resistance can't extend indefinitely. In this case, it changes over to positive resistance at each end of its limited range by passing through infinitely high resistance. There are other devices in which the resistance passes through zero, as in Fig. 2. This is sometimes called an $S$ curve, to distinguish it from the N curve of Fig. 1.

There are more important distinctions between these two kinds of negative resistance, which we looked into at some length in the January and February, 1957, issues. The most practically important is that whereas the $S$ or current-controlled type is most likely to make a circuit oscillate if its resistance is low, the N or voltage-controlled type does so if its resistance is high. This is shown in Fig. 3, where two load lines are drawn, APB representing a lower positive resistance than the negative resistance, and CPE a higher resistance. And if you are unaccustomed to load lines and think I must be getting muddled in saying these represent positive resistances, I must explain that their scale of voltage runs to the left from A and C, not to the right from O , so the sign is reversed.

If the total voltage OA is applied to the low positive and the negative resistance devices in series, the one point P common to both their graphs means that the voltage OA divides between them in the proportions OF and AF, and the current through both is represented by OG.

On the other hand, if voltage OC is applied to the high positive and the negative resistance devices, there are three possible states, represented by $D$, $P$ and $E$. And, whereas $E$ and $D$ are stable, $P$ is unstable, which means that if the line EPDC represents the dynamic resistance of a tuned circuit at


Fig. 2. This is an alternative type of negative - resistance curve.
some frequency it will be made to oscillate at that frequency, while if it is an ordinary d.c. resistance the current and voltage will flip over to either E or D .

The uninitiated may be surprised at this, arguing that since EPDC represents a larger positive number of ohms than the negative number of ohms in series, the total resistance must be positive. As I hope those who were with us in 1957 saw, however, the N type of negative resistance works in such a way that the rest of the circuit is effectively in parallel; and if you calculate the combined resistance of, say, $-400 \Omega$ and $+500 \Omega$ in parallel you will find that the answer is $-2,000 \Omega$.

If the figures were reversed, so that $-500 \Omega$ was combined with $+400 \Omega$, the result would be $+2,000$ ? ; which means that the circuit would be stable but with a greatly increased positive resistance. If the $400 \Omega$ was a dynamic resistance, the effect of the negative-resistance device would be to raise it five-fold, increasing its $Q$, selectivity and sensitivity.

So a negative-resistance device can be gainfully employed either to improve the performance of tuning circuits or to stimulate oscillations therein, as desired. In untuned circuits it can be used as a high-speed switching device. For instance, if the working point were initially E , a positive voltage pulse $\mathrm{CC}^{\prime}$, sufficient to lift it over the hump, would make it flip across to $H$, and thence to $D$ at the end of the pulse. The status quo could similarly be restored by a negative pulse.

The most familiar negative-resistance devices work by means of positive feedback, which requires a minimum of three electrodes to operate it. And so


Fig. 3. Load lines applied to Fig. I show that interesting results are obtained when the load resistance is greater than the negative resistance; for example, EPDC.
we need valves and transistors. The snag about them is that they-especially transistors-get into difficulties at very high frequencies because of the time taken for electrons or holes to cross from one electrode to another; the "transit-time effect." There are also complications due to capacitances between the various electrodes.

## Esaki's Diode

These difficulties are not necessarily avoided in two-electrode devices-diodes. Some, such as the ordinary metal rectifiers for $50 \mathrm{c} / \mathrm{s}$, have so much interelectrode capacitance as to be unsuitable for high audio frequencies, let alone very high radio frequencies. Although point-contact germanium and silicon diodes-and junction types, if small enough-have reasonably little capacitance even by v.h.f. standards, their transit time may not always be negligible. And in any case, diodes don't normally show any kind of negative resistance. Fig. 4 is a typical characteristic curve, with the usual familiar features: hardly any current due to reverse voltage,

Fig. 4. Typical characteristic curve of conventional rectifier diode.

until the breakdown point, and rapid increase of current with comparatively small forward voltage, of the order of tenths of a volt.

Such characteristics are just what one wants in a rectifier, and are obtained by a junction between semi-conductors of the same material distinguished from one another by only perhaps one or two parts of opposite kinds of impurity in every thousand million. One can vary the breakdown voltage and the top working frequency to suit requirements by varying the proportions of impurity. The more the material is "doped" with impurity, the lower the breakdown voltage; and although this tendency may be acceptable, within reason, for the sake of a higher working frequency, there is a limit. If it is carried too far, the breakdown voltage becomes so low as to be practically non-existent; in which case the thing ceases to be a rectifier at all. Most people wouldn't pursue the matter any further, but there is sometimes something to be said for the generally anti-social occupation of carrying things too far. Considerable fame has come to a Japanese experimenter, Dr. Leo Esaki, for doing just that. He tried something like a million times as much impurity as in ordinary rectifiers- $10^{29}$ atoms of it per cubic centimetre, or one part in a few hundred-and at the same time reduced what is called the depletion layer between the two sides of the junction to one millionth of a centimetre, or about a fiftieth of a wavelength of light. As we shall see, the extreme thinness of layer tends to result automatically from the extremely heavy doping.

Although a diode constructed on these lines offers
hardly any reverse resistance, the forward curve above about one-third of a volt is hardly affected. The important thing, however, is what happens within that first third of a volt. It is shown in Fig. 5, with the characteristic of a typical rectifying diode dotted in for comparison.
This is the sort of thing that you and I could hardly have foreseen, and even when confronted with the experimental fact we would be hard put to it to think up a plausible explanation. I'm not at all sure that you will regard the official explanation, when we come to it, as plausible; if not, the onus will be on you to produce a better one. Meanwhile, shall we continue to put off the evil day by taking note of the practical side of this development.

We have become so accustomed to reading about fabulous new semiconductor devices proposed by exotic scientists, not obtainable in the foreseeable future, if at all, that it may be hard to take in as an actual fact that this most unlikely one can be obtained now by ordinary people, in at least six varieties with such commonplace type numbers as JK10A and JK11A, by sending a finite amount of cash to Standard Telephones \& Cables, Ltd., Footscray, Kent. But so it is.

## $10,000 \mathrm{Mc} / \mathrm{s}$

Laying a ruler parallel with the downward slope of Fig. 5 and reading off current and voltage, we find that the negative resistance is of the order of 40 ohms. This compares with $10 k \Omega$ for an exceptionally good dynatron valve. Remember, the lower the value of an N -type negative resistance the more potent it is, for it will produce oscillation in any circuit with a dynamic resistance numerically higher. Tunnel diodes with lower values than $40 \Omega$ are even casier to make. In fact, the lowness of their negative resistance tends to be embarrassing because of the difficulty in getting the power supply and connecting lead impedance low enough for the system to be stable at all frequencies, except perhaps one. On the other hand, there is no difficulty in getting

Fig. 5. Curves of tunnel diode and ordinary diode show some striking differences.


Fig. 6. (Below) Diagram of the ionized impurity atoms scattered about a piece of n-type semiconductor.



Fig. 7. (Above) in a single crystal with p and n zones, migration of the mobile charges builds up a difference of potential just sufficient to stop further migration.
the dynamic resistance of oscillatory circuits low enough, even at the highest frequencies. That, of course, would be no consolation if the diode ceased to function as per Fig. 5 at the said frequencies. But experimentally at least, tunnel-diode oscillation has been reported up to $5,300 \mathrm{Mc} / \mathrm{s}$, and $10,000 \mathrm{Mc} / \mathrm{s}$ is confidently expected.
Before considering why this is possible, we will probably find it helpful to remind ourselves why a decade of struggle with transistors has failed to make them work at anywhere near such frequencies. One reason is that there is not merely one junction for the current carriers-electrons or holes-to cross, there is the whole base layer between two junctions. And except in the comparatively recent "drift" transistors, in which the base doping is tapered to produce an accelerating field for hurrying the carriers along, they just stroll across it in their own time.
In a pnp transistor, for example, the base-the meat in the sandwich-consists of $n$-type semiconductor. That is to say its material (usually germanium) is doped with an impurity whose atoms have one movable electron each. The main body of each atom, fixed permanently in the crystal structure, is therefore one electron short and so is electrically a positive charge. These fixed charges are denoted in Fig. 6 by plus signs in circles, and their mobile electrons by uncireled minus signs. The electrons are called majority current carriers because -well, they are in a majority, greatly outnumbering the few holes knocked out of the germanium atoms by heat, etc., or straying in from the neighbouring emitter. These emitter holes-the minority carriers -are responsible for the operation of the transistor, however, for they are the ones collected by the negatively biased collector. The base as a whole has hardly any electric field in it, because the equal and opposite charges distributed throughout it, as indicated in Fig. 6, cancel out.
In tunnel diodes, on the contrary, it is the majority carriers that count, and their journey is very short indeed. But we are still no nearer accounting for the essential feature of the tunnel diode: the low-
(Continued on page 411)
voltage hump and negative-resistance slope in Fig. 5.

Again, let us remind ourselves how the conventional $p n$ junction diode works. Fig. 7 is a diagram of one, the $n$ half being originally the same as Fig. 6 and the $p$ half the same in reverse. As we have seen, when separated they have no net electric charge. The mobile carriers in both halves are moving randomly all the time, and when both share the same crystalline structure there is nothing at first to stop the carriers nearest the boundary from straying across it. Electrons doing so leave behind an equal number of unneutralized fixed positive atoms on the $n$ side, and incoming stray holes increase the positive charge there, as well as leaving behind a negative charge on the $p$ side. The potential difference thus created checks further straying and a balance is quickly reached. This p.d., of the order of quarter of a volt in germanium, necessitates an external voltage of that order, positive to $p$, to overcome it and make current flow freely across the junction. Hence the rather slow start of the dotted curve to the right of zero in Fig. 5.

If the voltage applied externaily to $p$ is negative, it increases the existing p.d. between the two sides of the junction and stops all current flow (except the


Fig. 8. Energy-level diagram for a perfectly pure semiconductor.
small leakage due to hole-electron pairs created among the germanium atoms, due to heat, etc.). Note that, provided the material changes abruptly from $p$ to $n$ at the junction, the more heavily the material is doped the greater the total charge created by a withdrawal of mobile carriers each side of the junction for a given distance, and therefore the less that distance for a given number of volts p.d. So one would expect a tunnel diode to have a phenomenally thin depletion layer.

The Fig. 7 sort of picture tells only part of the story. It fails to take account of the fact that in solid materials the existence of current carriers and an e.m.f. isn't enough to guarantee a current. There must also be vacant energy levels right at hand for the current carriers to step into. (If that remark doesn't make sense to you, a little homework will be necessary before proceeding further. Most of the 1958 Cathode Ray instalments refer, especially the one in the July issue.) In a pure semiconductor the mobile electrons completely occupy a band of energy levels called the valency band, and the nearest available levels are in the so-called conduction band, separated by a gap, or band of forbidden levels, as in Fig. 8. As the vertical scale in such diagrams indicates the energy of electrons, upwards is negative. The Fermi level is a sort of reference, like sea level in geography. Below it, more than half the available energy levels are filled; above it fewer than half are filled. At absolute zero temperature, when all the electrons are at rest like a calm sea, it marks their "surface." At ordinary temperatures, heat disturbs the electrons, giving them enough energy to lift some to higher-than-Fermi levels; and as they leave
behind an equal number of lower-than-Fermi holes the situation is vertically symmetrical, so the right place for the Fermi level is in the middle of the gap.

The promoted electrons have plenty of room to move about in the nearly empty conduction band, and likewise the holes in the valency band. What this amounts to in practice is that these "particles," very few in number, are available as current carriers; they are responsible for "intrinsic" or both-way leakage conduction, which is a nuisance in transistors and diodes, and as one might expect increases with temperature.

Impurities upset the balance by creating a very narrow empty band just above the valency band in $p$ material, or a filled band just below the conduction band in $n$ type. These gaps are so small that they are crossed freely by electrons at ordinary temperatures, leaving holes behind. The increased conduction so caused normally far outweighs the intrinsic conduction, which we shall now ignore. The new balance is indicated by the Fermi level rising towards the impurity gap in $n$ material and falling towards it in $p$ material.

While impurity greatly increases conduction throughout material of either kind, the state of affairs is more complicated in a crystal which is $p$ at one end and $n$ at the other. If no voltage is applied externally, the Fermi level is the same for both sides, as shown in Fig. 9. This creates the potential step we have seen already at the foot of Fig. 7, preventing current flow from one side to the other. Connecting a battery to the crystal diode alters the relative potentials of the $p$ and $n$ halves, shifting their Fermi levels and either reducing or increasing the step according to whether the battery is positive to $p$ or to $n$.

The more impurity is included, the more it dominates the situation, until, with the altogether abnormal amount used by Esaki, the upper levels of the valency band are practically cleared and the lower conduction levels filled, so the Fermi level is actually inside the main bands, as in Fig. 10. So far from explaining the early rise of current in Fig. 5, this would seem (in the light of all we have remembered) to make it even more impossible, by increasing the height of the potential step.

## Tunnelling

To rescue us from this difficulty we must look to one of the most apparently fanciful theories of modern science, which rells us that when things are as small as electrons it is impossible for them to be clearly defined particles. They behave as waves of probability. I tried to explain that not very easily intelligible concept in the November 1958 issue.


Fig. 9. Energy-level diagram for $p-n$ junction with very small impurity content, as in a rectifier diode.


Fig. 10. Diagram corresponding to Fig. 9, for a highimpurity (tunnel) diode.

Discarding all set ideas about what extremely small particles are like, because we have no right to assume they are just like particles we can see only smaller, we must accept experimental evidence of their dual personality, wave-like as well as particle-like. Just as the band of waves that combine to form a square signal pulse can never have a perfectly defined start and finish, and the uncertainty is negligible with wide pulses but appreciable with very brief ones, so there is uncertainty about the position of a particle as small as an electron. It can be visualized as a sort of haze; the local density of the haze, which is greatest in the centre and gradually tails off as the distance therefrom increases, being a measure of the probability of finding the electron there at any given moment.

Now if an electron is close to a potential barrier as thin as in a tunnel diode, its haze extends beyond the barrier, and if there is a vacant place for it an appreciable possibility exists of its being there, even though it doesn't possess enough energy to climb over the barrier. With one electron, that is rather like the statistics which say that if you are alone in a room that room contains 0.01 (or whatever it is) tuberculous persons. Just as you get a more sensible result by applying such information to a crowd outside Buckingham Palace, so one reaches the conclusion that when there are trillions of electrons milling around close to a thin potential barrier an appreciable number are on the far side, and since they couldn't have climbed over it they are regarded as having tunnelled through it.

Taking another look at Fig. 10, we see that in diagram (a), which represents zero applied voltage, there are no filled levels alongside empty levels on
either side, so there is zero current, even when tunnelling is allowed. But when the $p$ side is made negative, by what is usually called back voltage, as indicated by the step in the Fermi level in (b), part of the valency band on the $p$ side, bursting with electrons, is separated only by a fantastically thin depletion layer from empty levels on the $n$ side. This means a fairly good conductivity across (or through) the barrier, the arrow showing direction of electron flow. This accounts for the steep downward slope to the left in Fig. 5, in contrast to the ordinary diode (Fig. 4).

A small forward voltage (c) permits current in the opposite direction. But as this forward voltage is increased, the number of empty levels opposite full ones decreases (d), so the current falls off, causing the negative-resistance slope. Finally, further increase of forward voltage (e) progressively reduces the potential barrier, causing a rising current as in an ordinary diode.

Besides the useful features we have already noted, tunnel diodes are less upset than transistors by radiation of various kinds. This may be important in nuclear equipment. They are more tolerant of temperature, working happily at hundreds of degrees below and above zero. They are likely to be much less affected by contamination, and the expensive precautions against it needed for transistors and rectifier diodes should be largely unnecessary. They are very small and simple. On the other side of the balance sheet: Being diodes, they are not even approximately one-way in action as are transistors. For their resistance to be high enough to match reasonable circuitry, their size is necessarily small and their power-handling correspondingly limited. Fig. 5 shows how limited is their working voltage range.

But these are early days, and there is already reason to believe that the conventional germanium and silicon may not display the full capabilities of tunnel diodes. Indium antimonide and gallium arsenide are being tipped as winners. Computers performing operations at $50 \mathrm{Mc} / \mathrm{s}$, compared with $1 \mathrm{Mc} / \mathrm{s}$ which is regarded as quite good in present practice, are forecast. Uses in television receivers, especially frequency changing and amplification in bands IV and V, seem likely. All in all, then, I'm not disposed to lodge an objection against the claim that the tunnel diode is the most important semiconductor development since the junction transistor.


# IMPROVED PRINTED WIRING 

New technique gives great bond-Strengit

MANY criticisms have been made of printed wiring in the few years it has been with us. Today many of the troubles discovered in its early use have been, if not overcome completely, reduced in their incidence; but the application of palliatives has not been easy. A new method for producing printed-wiring boards, developed by Electronic Circuits, Lid., shows great promise in being free from the majority of nasty habits that have possessed most foil-laminate circuits in the past in varying degrees.

The wiring pattern is printed on the substrate with a bonding medium
construction, so that a section through the pattern shows, instead of undercut conductors, a meniscus form.

Switch and plug contacts can be plated on to the solder in the normal way, following milling down of the surface to provide a level base. Particularly successful are palladium or gold over hard nickel.

Ordinary flow solder and solderdip techniques may be used for connecting component leads. Normally, with solder-tinned leads, no fluxing is required. The solder of the bath, leads and circuit dissolve into each other forming a good joint even in

Deep ruptures of the substrate material occur in ordinary pull test. Wiring pattern does not separate from board material.

and finely divided copper is then applied, resulting in a granularcopper pattern. This is then deoxidized and very quickly tinned by a roller-coating process to give a solder-coated wiring board. Conductor resistance is equivalent to that achieved by the use of $1-0 z$ copper foil ( $1.5 \times 10^{-3}$ in thick).

This technique shows greatly improved bond-strength compared with the normal foil-laminate construction. The photograph shows a test-picce to which a strong wire was soldered, end on. It was possible to pull off by hand the wire, but only with considerable effort. The result in each case was a rupture of the board material: the wire came away with the printed wiring attached to it bearing on the back a considerable amount of synthetic-resin-bonded paper board material.

The normal peel test which demands an "end" of copper to peel cannot be applied; but performance should be eminently satisfactory, as in none of the pull tests did the wiring separate from the board material. No etching process is involved, as it is with the traditional
the presence of foreign matter. Advantages here, of course, are that the risks of corrosion from decomposed or damp flux deposits are completely eliminated, as are "dry" joints. It is possible, by repeated application of fresh copper-free solder, to dissolve away the copper particles on a very thin (too thin to be of use as part of the circuit) line; but provided normal soldering practice is followed this does not occur. The use of a copperrich solder for servicing work naturally eliminates even this slight opportunity for failure.
Last, and in this case definitely least, is cost. It is expected that this process will allow the production of punched boards at about the same price as etched-foil boards unpunched. Further economies could be made in assembly-line working due to the rougher treatment and simpler processing possible so the final all-round result should be cheaper, more-easily made equipment of better reliability.

The address of Electronic Circuits Ltd. is 177 Kensington High Street, London, W. 8.


## Additions to the

 TRIX Sound Equipment range

## Model B100

Transistorised Amplifier for 12 volt operation. Output 12 watts. Inputs for microphone and music. Minimum battery consumption-maximum efficiency.

## Model GP100

AC operated general purpose high quality Amplifier. 4-way Input Selec-tor-Bass and Treble controls. 10/12 watts output.

Full details available on request.

THE TRIX ELECTRICAL CO. LTD. I-5 MAPLE PLACE, LONDON. W.I Tel.: Museam 5817 (8 Hnes) Grams: Trixadio Wesdo London

# RANDOM RADIGTIONS 

## By "DIALLIST"

## The Report

THE Television Advisory Committee's report is clearly the result of much hard work and of much hard thinking. With many of its recommendations most people agree. What I do regret is that a 625 -line standard should have been recommended. The Committee feels that this is the last opportunity we shall have for 25 years of improving the definition of our television and I really can't feel that the 625 -line standard will be accepted as adequate for anything like such a time. Nor do I find it all that much better than 405 lines. Readers who have been for holidays or on business to countries using 625 lines will, I fancy, hold similar views. It is better, but not strikingly better. I should have liked to see a much bolder proposal: to use Bands IV and V for something like 1000 -line television. If you've been to France and seen the R.T.F.'s 819-line pictures on a good set, you must have been struck by their enormous superiority to ours.

## Othe. Considerations

There are, I know, several reasons against the adoption of a really high standard. Not the least of them is that nine viewers out of ten don't seem to care two hoots about the quality of the pictures on their screens. No doubt you've found, as I have, that non-technical friends aren't in the least worried about all sorts of shortcomings that would drive you and me crazy, and they make no attempt to have them put right. Faults, I mean, such as poor focus, incorrect height or width, " soot-and-whitewash," ringing, poor h.f. response-and dozens of others. Against that, the desire for a big screen is very strong and with the present standard you can't profitably have a very large screen in the smaliish rooms of modern homes unless you're prepared to put up with lininess. Another suggestion of the Committee's is that the adoption of their proposals would enable us to have eventually no fewer than five TV networks. Five!-but where's the material coming from? The supply of actors, singers, comedians, instrumentalists, variety artists . . .
and so on and so forth for even two networks doesn't appear to be superabundant nowadays. Wouldn't it iust mean more and more films? Surely, television should stick as much as possible to actualities-the presentation of things as they happen; and TV films should be mainly recordings of them.

## More DX Feats

LONG-DISTANCE reception of both v.h.f./f.m. and television signals seems to be gaining increasing popularity. A reader writing from Twyford, in Buckinghamshire, tells me he has had a receiver specially modified to 625 lines and with this he has been remarkably successful. This set is a standard domestic model, not even a fringe-area type. He uses normally a Channel 1 vertical " $H$ " aerial, but he has also a Channels 4-8 combined aerial, also vertical. So far this year, he writes, he has had direct TV pictures from Italy, Czechoslovakia, Spain, Hungary, Russia, Italy, Germany, Rumania, Sweden and the Netherlands. He sends some remarkably good photographs of pictures from some of these countries received on his screen. A reader who lives at Antwerp (though he's not a Belgian) tells me that he has at any time a choice of seven or eight stations in Holland, Belgium, France
and West Germany, all of which provide first-rate reception. He is the fortunate owner of an aerial rotatable in azimuth and provided with a motor to turn it in the right direction

## 819 Lines Too

Though I'd heard that the French 819-line transmissions could produce a locked picture on a 405 -line receiver, I'd never, until recently, had any definite evidence on the subject. Now it has come along in the form of clear photographs of his screen from a reader living at Shenfield, Essex, who uses a standard domestic set. What does come as a biggish surprise is that his successes have been achieved with a 5 -element Band III aerial, mounted at first in the loft of his bungalow and now fixed to a 14 -foot pole outside. He tells me that on an average of five evenings a week he can obtain a picture. On the best evenings it is not much inferior to those of the B.B.C. and I.T.A., which should be first rate at Shenfield; on other evenings it is just usable. Perfection couldn't be expected, naturally, for our standard receivers aren't designed to cope with such large modulation bandwidths as are used in French television. I'd be glad to hear of any other instances of successful 819-line reception on standard 405-line receivers.


## Prehistoric Electric Cell?

THE June issue of the fournal of the I.E.E. contained a note by C. MacK. Jarvis concerning an article recently published in the German journal Elektric on an object discovered near Baghdad about 1936. Archacologists put the date of other objects excavated on the site as between 300 B.C. and A.D. 300. It is a kind of vase, about 6 -in high, made of yellow clay. Inside it is a copper cylinder held in place by the asphalt lining of the vase and containing an iron rod kept in position by asphalt discs at top and bottom. It is suggested in the German journal that this was an early form of electric cell and that galvanic gold plating had been carried out with the aid of similar cells from as early as 2500 B.C. A fascinating idea, but there doesn't seem to be much to support it. One can hardly believe that the galvanic cell, if developed by the Parthians and used over a long period, would simply have disappeared until Galvani "rediscovered" it. And C. MacK. Jarvis suggests something that scems fatal to the idea of the practice of gold plating by electricity in those days; no solvent of gold was known to the ancients and there were, therefore, no gold salts.

## The Moon's Surface

INVESTIGATIONS into the nature of the moon's surface were recently undertaken by V. A. Hughes of the Royal Radar Establishment at Malvern. He used a 2 MW radar transmitter, the wavelength being 10 cm , in conjunction with the Malvern 45 ft radio telescope. In a letter in Nature of June 11th he states that the surface appears to have numerous small ups and downs. The height or depth of these is not great, being mainly a matter of a few feet; but their width may be 20 times greater. I wonder if further investigations will confirm these conclusions? They don't agree very well with the results of optical methods, which give ground for believing that the moon's surface is covered mainly by fine volcanic dust. I suppose that hillocks and depressions could occur in this, though there can't be any wind to make them.

## Servicing Exams

LAST month I incorrectly referred to the "R.T.R.A. exams. and certificates." The servicing examinations in question are, of course, run iointly by the Radio Trades Examination Board and the City and Guilds of London Institute.


# UNBIBASEID 

## From the Horse's Mouth

JUST lately we have heard a lot about miniature secret transmitters concealed in the furnishings of conference rooms used by high diplomatic dignitaries. Even the gifts to our own Home Secretary on a recent tour were subjected, we are told, to strict screening by secretservice agents to see if they contained any hidden devices of this nature.

The menace of having our private conversations broadcast in this manner is a very real one, but I think secret-service Sherlocks are-if I may mix my metaphors--barking up the wrong tree when they examined things like Mr. Butler's "Presents from Margate." I cannot think the agents of any foreign power would be so crude as to place secret transmitters there when much more intimate places are available.
I was thinking of this as I was examining the "radio pill" on a stand at the Instruments, Electronics and Automation Exhibition held at Olympia in May. This pill, as many of you will know, consists of a small capsule which is swallowed by the patient. It houses a tiny radio transmitter which radiates information about the pressure, temperature and acidity of the patient's alimentary tract through which it passes.

It should be possible to fit it with a miniature mike so that it radiated the patient" 6 conversation as it journeyed through his innards. But the danger of its use for espionage is negligible, as no statesman would go to a conference with one of these inside him, and in any case it only remains in the patient's body for a limited time.


As a precaution, however, it would probably be advisable for the breakfasts of all statesmen to be vetted on the morning of a conference, as it would be possible, I suppose, for an unscrupulous chef to conceal a capsule in the porridge.
In my opinion, however, it is not in the alimentary tract but in quite a different part of a statesman's body that a search should be made for a concealed transmitter. It must be clear to any thinking person that if a transmitter can be concealed in such a small space as the capsule exhibited at Olympia, it would be a simple matter for a dentist in the pay of a foreign power to conceal one in a cabinet minister's denture.
Enemy agents listening on their nearby receiver would thus have secret information straight from the horse's mouth, as the saying goes. It seems to me the remedy would be for a secret-service agent or a police officer to stand at the door of the cabinet room with a tray and collect all dentures as ministers passed inside, or, less comfortably, to hold the meeting inside one of those screened rooms one sees in microwave research laboratories.

## Homo Infrasapiens

I MUST thank the many readers who wrote in answer to my query (June issue) to tell me that the circle is divided into 360 degrees because the astronomers of old-some say the Babylonians-were a bit out in their calculations and thought the year contained this number of days instead of 365 and a bit.
This is, I feel sure, the correct conventional explanation because all the books of reference are more or less in agreement about it. But the fact that this explanation seems to be accepted by all the best people does not necessarily mean that it is correct. After all, in every biography of King Edward VII we are told that he had his appendix removed when undergoing an operation in 1902. The only man to disagree is the late Sir Frederick Treves who was the presiding surgeon on that occasion. But he was in a minority of one like myself in this Babylonian affair.

My idea is that at some time in the life of the solar system
the speed of the earth's journey around the sun may have been such that there were indeed just 360 days in the year. Needless to say, this was long before the coming of homo sapiens who has only been on the earth some 500,000 years and in that relatively short period of time, the earth's speed cannot have changed much, if at all.

If, however, we go back a sufficient number of million millenia, there may have been exactly 360 days in the year. I cannot say exactly when that was as I haven't an electronic computer handy to feed in the necessary data.
In my opinion, it may well be that in those distant days, the earth was inhabited by a race of pre-men (homo infrasapiens) much more advanced than ourselves in scientific knowledge but less well developed in the matter of morals, intelligence and political wisdom-hence the name infrasapiens-who wiped each other out in a nuclear war. According to my theory fragments of their ancient records which escaped destruction were found by the Babylonians who failed to realize that days and years had lengthened and therefore 360 was no longer the correct figure.

In the same way, fragments of our own records may be discovered a few million millenias hence when the solar system may have slowed down still more, and the people of those far-ahead days (homo supersapiens) will wonder what it was like to have had a year of such a few number of days as $365 \frac{1}{4}$, and a day of such brief duration as 24 hours. They may even wonder what we meant by the word "war."

## Why?

I AM always thirsting for information, and I wonder if any of you can tell me why an angstrom unit is so called? Now before you all take up your pens or typewriters to tell me all about Angström and his work, I should like to say I am not ignorant of all that. What I want to know is why the seemingly unnecessary word "unit" is tacked on to angstrom. After all, we don't speak of an ampere unit nor yet an ohm unit, do we?
I wonder if it is due to sheer ignorance, of the type shown by certain people who tack the superfluous word wine on to Port when they wish to speak of the drink which comes from the valley of the Douro, but omit it when speaking of the bubbling beverage of the Champagne country, and of other forms of nectar.

## AVO INSTRUMENTATION



# against all conditions 

## The Plessey XP5 <br> hermetically sealed moulded carbon track potentiometer

## POWER RATING

3 watt continuous at $70^{\circ} \mathrm{C}$

## RESISTANCE RANGE

$500 \Omega$ to $2.5 \mathrm{M} \Omega$
RESISTANCE LAW
Linear or Logarithmic

## INSULATION

Not less than $5000 \mathrm{M} \Omega$ at
500 V.d.c. (applied for 1 minute between spindle and all terminations)

Overseas Sales Organisation
PLESSEY INTERNATIONAL LIMITED Overseas Telegrams: PLessinter - TRLEX - ILFORD Head Office: IIford • Essex • England

Telephone: Ilford 3040 Telex: 23166 Plessey Ilford Telegrams: PLESSEY TELEX ILFORD

Under the most arduous climatic or service conditions the XP5 will give trouble-free service. Completely sealed against moisture, it will withstand the -most severe conditions of bumping, vibration, humidity and tropical exposure. Operating over a temperature range of $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ it will give smooth, noise-free and reliable service - with negligible wear. It is approved to Inter-Service Standard RCS 122A.

For full details of this outstanding new component send for leaflet 312.

## THE PLESSEY COMPANY LIMITED

Capacitors \& Resistors Division • Swindon Group KEMBREY STREET • SWINDON • WILTSHIRE
Telephone: Swindon 6211 • Telex: 44-355 - Telegrams: Plessey Telex Swindon

# A new rugged local osillatar 



Mechanical tuning range 9.9 to $9.5 \mathrm{Gc} / \mathrm{s}$.
Typical operation

| Freque | 9.37...... Gc/s |  |
| :---: | :---: | :---: |
| Resonator voltage |  | .... V |
| Resonator current |  | ...... mA |
| Reflector voltage. | -90 | ... V |
| Electronic tunlng r | $\pm 20$ | ... Mc/s |
| Output power | 40 | ...... mW |



Engineers now have the opportunity of designing low cost radar receivers using a high quality local oscillator. This advance is made possible by the Introduction of the Mullard X-band klystron KS9-40 which incorporates many features previously only available with much more expensive valves. Brief details are given herefor full information on the KS9-40 and other microwave valves contact Mullard at the address below.

## - Rugged

Withstands 10 g acceleration with a resultant maximum frequency modulation of $2 \mathrm{Mc} / \mathrm{s}$.

## - Specified Noise Performance

Typical a.m. signal to noise ratio greater than 160 dB per cycle of l.f. bandwidth for receiver intermediate frequency in excess of $25 \mathrm{Mc} / \mathrm{s}$.

## - External Tuned Cavity

This constructional feature isolates the turning cavity from the effects of variations of beam current and contributes largely to the high frequency stability.

## - Low Warm-up Frequency Drift

$3 \mathrm{Mc} / \mathrm{s}$ max. after first 5 minutes of operation.

## - Good Altitude Performance

Less than $1 \mathrm{Mc} / \mathrm{s}$ change from 0 to 30,000 feet.

## - Waveguide Output

incorporates a matching screw to ensure close tolerance power output.

## Hermetic Sealing

STEATITE \& PORCELAIN NICKEL METALLISING

Quality Approved (Joint Service R.C.S.C.)
Will meet the most exacting requirements

METALLISED BUSHES

## Perfect Terminations

-made readily without special precautions by semi-skilled labour, employing simple hand soldering methods, R.F. Heating, Hot Plate, Tunnel Oven or similar mass production methods.

STANDARD RANGE
Shouldered, Tubular, Conical, Disc and multi seals are included, assembled with stems if preferred. SEND FOR CATALOGUE No. 47

## TECHNICAL SERVICE

Always available, do not hesitate to consult us. Samples for test will be supplied on request.

## STEATITE \& PORCELAIN PRODUCTS LTD.

## DELAYED PULSE <br> AND <br> SWEEP GENERATOR

A versatile pulse generator designed to meet the need for a comprehensive instrument covering a wide range of pulse work. Four main facilities are provided: a pre-pulse, a main pulse
delayed on the pre-pulse, a negative going sawtooth and a fast rising pulse formed from a pure line.


## BRIEF SPECIFICATION

## Period

Continuously variable from $0.9 \mu \mathrm{sec}$ to $1 \cdot 05 \mathrm{sec}$ i.e. $0 \cdot 95 \mathrm{c} / \mathrm{s}$ to $1 \cdot 1 \mathrm{Mc} / \mathrm{s}$. Accuracy $\pm 5 \%$.

## Pre-pulse

$40 \mathrm{~m} \mu \mathrm{sec}$. 8 V peak in $75 \Omega$, positive going.

## Main pulse

Width: Variable from $0.09 \mu \mathrm{sec}$ to 105 msec $\pm 5 \%$.
Amplitude: Control gives 4:1 attenuation of each of four maximum outputs as follows: 5 V max in $75 \Omega$ rise time $10 \mathrm{~m} \mu \mathrm{sec}$ 10 V max in $150 \Omega$ rise time $<20 \mathrm{~m} \mu \mathrm{sec}$ 25 V max in $600 \Omega$ rise time $<40 \mathrm{~m} \mu \mathrm{sec}$ 50 V max in $1000 \Omega$ rise time $50 \mathrm{~m} \mu \mathrm{sec}$
Polarity: Positive or negative going.
Accuracy: $\pm 2 \%$.

## Delay

Conclusion of pre-pulse to advent of main pulse, delay variable from $0.09 \mu \mathrm{sec}$ to 105 msec . Accuracy $\pm 5 \%$.

## Sweep

D.C. coupled negative going sawtooth same width and delay as main pulse.
15 V peak max.

## Cable pulse

Obtained from short circuited pure line. One positive and one negative going pulse coincident with main pulse. $25 \mathrm{~m} \mu \mathrm{sec}$ wide $3 \mathrm{~V} \max$ in $75 \Omega$, rise time $<8 \mathrm{~m} \mu \mathrm{sec}$.

Sync, trigger or single shot facilities provided. Full data available on request.

## CINTEL

RANK CINTEL LIMITED


## frequency STANDARD

TYPE 761

## in instrumentation...

## Aipmec

## makes most things . . . better

## AIRMEG LIMITED

HIGH WYCOMBE • BUCKS
Telephone: High Wycombe 2501/7

## FUNCTION

Provides an excellent crystal controlled frequency and time standard of small size and moderate cost. The short term frequency stability of better than 1 part in $10^{6}$ obtainable upon installation improves with time and correct treatment up to a working stability approaching 1 part in $10^{7}$.

## OPERATION

Sinusoidal and pulse signals are produced at five standard frequencies, the pulse waveform being rich in harmonics. The instrument includes both an Oscilloscope and Heterodyning Circuit as independent facilities and is therefore extremely flexible in operation.

## FEATURES

- $100 \mathrm{kc} / \mathrm{s}$ crystal housed in an oven conitrolled at $70^{\circ} \mathrm{C}$.

Standard signals provided at $100 \mathrm{c} / \mathrm{s}, 1 \mathrm{kc} / \mathrm{s}, 10 \mathrm{kc} / \mathrm{s}$, $100 \mathrm{kc} / \mathrm{s}$, and $1 \mathrm{Mc} / \mathrm{s}$.

- Identification of an unknown signal by Lissajous figure or beam modulated circular trace.
- Beat output available from a plug on the front panel.
- Suitable for rack mounting.

IMMEDIATE DELIVERY

" GLOUCESTER" STEREO CABINET KIT
Specialliy designed to meet the varying needs of different homes. Mk. I houses Record Player, F.M. Tuner, Stereo Amplifier, records, ect. Mk. II will house a Tape Deck in, addition. 46 tin . long, 30 in . high, 21 in . deep. "in the white" for finish to personai taste.
$\begin{array}{llll}\text { Mk. } 1 & \text { £15.18.6 Mk.ll } & \text { £17.8.6 }\end{array}$
"COTSWOLD" HI-FI SPEAKER SYSTEM KIT
Acoustically designed enclosure "in the white" 26 in . $x$ 23 in . $\times 15$ tin. housing a 12 in . bass speaker with 2 in . speech coil, elliptical middle speaker together with pressure unit to cover the full frequency range of $30-20,000 \mathrm{c} / \mathrm{s}$. Complese with speakers, cross-over unit,
lover control, etc.
£19.18.6

## 5 in. OSCILLOSCOPE KIT Model 0-12U

Has wide-band amplifiers, essential for TV servicing, F.M. alignment, etc. Vertical frequency response $3 \mathrm{c} / \mathrm{s}$ to over $5 \mathrm{Mc} / \mathrm{s}$. without extra switching
$T / B$ covers $10 \mathrm{c} / \mathrm{s}$ to $500 \mathrm{kc} / \mathrm{s}$. in 5 ranges.
£34.15.0

## ELECTRONIC SWITCH KIT Model S-3U

(Oscilloscope Trace Doubler)
Enables a single beam oscilloscope to give simultaneous traces of two separate and independent signals. Switching rates approx. 150, 500, 1,500, 5,000 and $15,000 \mathrm{c} / \mathrm{s}$. Sig. freq. response $10-100 \mathrm{kc} / \mathrm{s}$. $\pm 1 \mathrm{~dB}$. Separate gain controls and sync. output. Sig. inpue range 0.1-1.8 v. r.m..
£9.18.6
amateur Transmitter kit Model DX.100U
Covers all amateur bands from 160-10 metres. Self contained including Power Supply. Modutator and V.f.O.
£78.10.0
TRANSCRIPTION RECORD PLAYER Model RP-1U
4-speed A.C. motor. Ronette Stereo/
Mono pick-up. Complete on plinth.
£12.10.0
CAPACITANCE METER KIT Model CM-1U
Direct-reading 4 tin. scale. Full-scale ranges $0-100 \mu \mu \mathrm{~F}, 0-1,000 \mu \mu \mathrm{~F}, 0-0-01 \mu \mathrm{~F}$ and $0-0.1 \mu \mathrm{~F}$.

STEREO-HEAD BOOSTER KIT Model
USP-1 Hi-Fi Stereo pre-amplifier for lowoutput Hi-Fi P.U.'s. Input 2 mV . to 20 mV . Output adjustable from 20 mV . to 2 v . 40 $20,000 \mathrm{c} / \mathrm{s}$. Also suitable 23 low-
noise
R.C.-coupled
high-gain £5.19.6 monaural amplifier.

VARIABLE FREQUENCY OSCILLATOR KIT ModeI VF-1U From $160-10 \mathrm{~m}$. Ideal for our DX-40 snd similar transmitters. $£ 10.12 .0$

HI-FI SPEAKER SYSTEM KIT Model SSU-1 Dacted-port bass reflex cabinet "in the white." Twin speakers. £10.5.6 With legs ¢ $11 / 12 / 6$.

DUAL-WAVE TRANSISTOR RADIO KIT Model UJR-1 This sensitive headphone set is a fine introduction to $£ 2.16 .6$ electronics for any youngster.
£2.16.6

TAPE DECKS are now available as "packaged deals " with other equipment.

Prices include free delivery !n the UK. D.C. mono pick-up. steps. distortion.


HI-FI STEREO AMPLIFIER KIT Model S-88
16 w . output, 10 mV . basic sensitivity ( 2 mV . available, $20 /$ extra). Gant. Ganged controls. Stereo/Monaural gram., radio and $\begin{aligned} & \text { extra). Ganged controls. Stereo/Monaural gram., radio and } \\ & \text { tape recorder inputs. Push-button selection. } \\ & \text { Two-tone grey metal cabinet. }\end{aligned}$ £25-5-6 Two-tone grey metal cabinet.

## 6-W STEREO AMPLIFIER KIT Model S-33

3 watts per channel, $0.3 \%$ distortion at $2.5 \mathrm{w} / \mathrm{chnl}$., 20dB N.F.B. Inputs for Radio (or Tape) and Gram., Stereo or


TRANSISTOR PORTABLE KIT Model UXR-1
Pre-aligned l.F. eransiormers, printed circuit
and a $7 \times$ tin. high-flux speaker. Real hide case
R15.18.6
"HAM" TRANSMITTER RIT Model DX-40U
From $80-10 \mathrm{~m}$. Power input 75 w . C.W., 60 w . peak controlled carrier phone. Output 40 w . to aerial.
Provision for V.F.O.
AUDIO VALVE MILLIVOLTMETER KIT AV-3U
1 mv . to $300 \mathrm{v} . \mathrm{A} . \mathrm{C} .10 \mathrm{c} / \mathrm{s}$. to
£13.18.6

## VALVE VOLTMETER KIT Model V-7A

7 voltage ranges d.c. volts to 1,500 a.c. to 1,500 r.m.s. and 4,000 peak to peak. Resistance 0.1 ohm to $1,000 \mathrm{M}$. ohms with internal battery. D.C. input impedance 11 megohms. with internal
i8 measurement has centre-zero scale. Complete megonms.
$£ 13.0 .0$ with test prods, lead and standardising battery.
213.0.0
R.F. PROBE KIT Model 309-CU

Extends the frequency range of our V-7A to $100 \mathrm{mc} / \mathrm{s}$. and enables useful roltage indication to be obtained
up to $300 \mathrm{Mc} / \mathrm{s}$.
AUDIO SIGNAL GENERATOR KIT Model AG-9U
$10 \mathrm{c} / \mathrm{s}$. to $100 \mathrm{kc} / \mathrm{s}$., switch selected. Distortion less than $0.1 \%$. 10 v . sine wave output metered in
volts and dB 's.
RESISTANCE-CAPACITANCE BRIDGE KIT Model C-3U
Measures capacity 10 pF to $1,000 \mu \mathrm{~F} ., \mathrm{resistance}$
$100 \Omega$ to $5 \mathrm{M} \mathrm{\Omega}$ and power factor. 5-450 v.
£7.19:6
test voltages. With safery switch.

## "CHEPSTOW " EQUIPMENT CABINET <br> KIT. Occupies minimum floor space. Will house Record Player, F.M. Tuner, Stereo Amplifier and <br> HI-FI F.M. TUNER

 additional power amplifiers where needed. Dim. $35 \times 18 \times 33 \mathrm{in}$. high. $\mathrm{E} 10 / 10 / 0$POWER SUPPLY UNIT KIT. Model MPG-I Input $100 / 120 \mathrm{v}, 200 / 250 \mathrm{v} ., 40-60 \mathrm{c} / \mathrm{s}$. Output 6.3 V., 2.5A A.C.; 200, 250,270 V, $120 \mathrm{~mA} . \max$. E4/9/0
STEREO CONTROL UNit KIT Model USC-I. Push-button selection, accurately matched ganged controls to $\pm 1 \mathrm{~dB}$. Accepts inputs from most tape heads and any stereo or

E17/19/6
BALUN COIL UNIT KIT. Model B-IU Will match unbalanced co-axial lines to balanced lines of either 75 or $300 \Omega$ impedance. $£ 4 / 4 / 6$
MULTIMETER KIT. Model MM-I U
Ranges $0-1.5 \mathrm{~V}$. to $1,500 \mathrm{~V}$. A.C. and D.C.; $150 \mu \mathrm{~A}$ to 15A d.c.; $0.2 \Omega$ to $20 \mathrm{M} \Omega$. 4 in. $50 \mu \mathrm{~A}$ meter.
£ $11 / 8 / 6$
DECADE CAPACITOR KIT. Model DC-IU Capacity values $100 \mu \mu \mathrm{~F}$ to $0.111_{\mu} \mathrm{F}$ in $100 \mu \mu \mathrm{~F}$

65/18/6
2tin. SERVICE 'SCOPE KIT Model OS-I Light, compact portable for service engineers. Dim. $5 \times 8 \times 14 \frac{1}{2} \mathrm{in}$. long. Wt. $10 \frac{1}{2} \mathrm{lb}$. E18/19/6 HI-FI MONA URAL AMPLIFIER KIT Model MA-12. 12 W . output, wide freq. range, low

Tuning range 88-108 Mc/s. For your convenience this is available in two units sold separately as follows: Tuner Unit (FMT-4U) with $10.7 \mathrm{Mc} / \mathrm{s}$. I.F. output $63 / 2 /$ - inc. P.T.
I.F. Amplifier (FMA-4U). Complete with case and valves $10 / 10 / 6$. £13.12.6

## MATCHED HI-FI STEREO KIT

We offer as a "packaged deal " the following matched Hi-Fi Stereo Equipment.
4-speed Record Player (RP-IU)......... $£ 1210$ 6 W Amplifier $(\$-33)$................... $\leqslant 1180$ Twin Speaker Systems (SSUU-i)........... 20 II 0
Cost of Units ................................. 84490
At an "all-in" price of £42.10.0
Pedestal Speaker legs $\mathbf{2} / 14 /$ - optional extra.
AUDIO WATTMETER KIT Model AW-1U
Up to 25 w . continuous.
50 w . intermittent
£13-18-6

## Deferred Terms

available on all orders above $£ 10$.

- For fuller details of our klts see last month's advertisement


## DAYSTROM LTD.

DEPT. W.W. 8 GLOUCESTER, ENGLAND
A member of the. Daystrom Group, Manufacturers of the

Please send me FREE CATALOGUE (Yes/No).
Full details of model(s).

## NAME

(Block Capitals)
ADDRESS

## LEEVERS RICH

## Precision is an outstanding feature of the Leevers-Rich magnetic recorder.



MODEL ED-142K TWO-CHANNEL (STEREO) RECORDING CONSOLE This recorder is also available in single-chonnel and in portable or rack-mounted versions. Other models include multi-channel recorders for $\frac{1}{2} \mathrm{in}$. and $/ \mathrm{in}$. tapes.

## Precision in Tape Motion

The Leevers-Rich capstan design includes a special mechanical filter of exceptional performance, giving a residual flutter and wow content of well under $0.15 \%$ r.m.s. at $7 \frac{1}{2} \mathrm{in}$. per second and at all higher tape speeds. This is particularly important when the F.M. carrier system of recording is used, since any fluctuation of tape speed will appear as "noise" or variation of D.C. level.

## Precision in Tape Alignment

Special tape guídes limit the lateral weave of tape to a figure which is difficult to detect by measurement. This reduces changes of amplitude due to skew or weave to a very low figure and enables the full performance of the best tapes now available to be realised in practice.

## Precision in Head Adjustment

Micrometer adjusements of the heads within their machined cavities in a solid dural head block unit ensure accuracy of setting and interchangeability of tapes and machines. Accuracy of alignment between the gaps of multi-track cluster heads ensures freedom from phase discrepancies even at the very shortest wavelengths.

## Precision in Mechanical Construction

Major units such as the head-block and capstan units may be removed individually for service, and replaced on their seatings without disturbing alignment.

Advanced design, fine workmanship and precision throughout make the Leevers-Rich "Analyst" recorders the first choice for high quality audio recording, and for all forms of data recording where high performance must be maintained for long periods of service.

## DD M A A keeps George going!



Auto-Pilot 'George' is now a well-known figure in aviation circles. Less well-known is the fact that ordinary valves could not be used in 'George' since they quickly succumbed to aircraft vibration, and put the entire equipment out of action. Brimar solved this problem by supplying valves of exceptional ruggedness that would withstand this testing wear . . . valves that were subjected to microscopic scrutiny before issue, to rule out all possibility of structural defect. The lessons learnt in devising valves for such special applications have been applied in the manufacture of the Brimar commercial range of valves. That's why-whenever reliability counts-

## better make it

## BRIMAR



## POPULAR REPLACEMENT SPEAKERS

For the guidance of the trade and public we publish below a list of the most popular ELAC replacement loudspeakers.

We have made this selection from our wide range of speakers as they cover practically all the requirements of the replacement trade.

The new prices are now operative.

| POPULAR REPLACEMENT MODELS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Type |  |  |  |  |
| Ref |  |  |  |  |
| in. |  |  |  |  |
| $6 \frac{1}{2} \mathrm{in}$. |  |  |  |  |

All loudspeakers have Standard 3 Ohm impedance. Higher impedances can be supplied at an extra cost of 3/- plus 1/- Purchase Tax.
Please write for leaflets and further details.


ELECTRO ACOUSTIC INDUSTRIES LIMITED
Stamford Works, Broad Lane, Tottenham, N. 15
Tel: TOTtenham 0505


## and the fourth dimension-reliability...

BRIMISTORS
CAPACITORS
CONTACT COOLED RECTIFIERS FERRITES
GERMANIUM DIODES
GERMANIUM PHOTOCELLS
hermetic seals
HIGH STABILITY RESISTORS
MAGNETIC MATERIALS
QUARTZ CRYSTALS
QUARTZ CRYSTALS
RECEIVIN
RELAYS VALVES
GELENIUM RECTIFIERS
SLIICON RECTIFIERS
SILISTORS
SUPPRESSORS
TELETUBES
TRANSISTORS
THANSISTORS
TRERMISTORS
ZENER DIODES

The fourth dimension, time - invisible and intangible, but in the case of STC components, definable in terms of sustained, faultless performance - is a very definite factor incorporated in their design and manufacture.
Such dèpendability is very necessary in view of the vital functions that STC components have to perform -in equipment for communications, navigation and remote control; and it is the reason why STC components are trusted implicitly by manufacturers of electronic equipment all over the world.

## Standard Telephones and Cables Limited

Registered Office: Connaught House, Aldwych, London W.C.2.
COMPONENTS GROUP . FOOTSCRAY • SIDCUP
KENT

(9)
$-\Omega 7707770 \sim-$


## A SERVICE

## FOR DESIGNERS

The possibility of a component change-due to shortage of supplies, increased costs or failure to meet specific conditions -is a problem facing every designer of electronic equipment. However, one basic component can be "tailor-made" from the start, for LAB will supply the precise type of Resistor required, ex stock and at the right price. Write for full technical data, prototype samples and price schedules to:-

THE RADIO RESISTOR CO. LTD., 9-11 PALMERSTON ROAD, WEALDSTONE, HARROW, MDX. Telephone : HARrow 6347

| CARBON | WATTS | OHMIC RANGE | TOLERANCES $\pm$ |
| :---: | :---: | :---: | :---: |
| 1. Solid | $\frac{1}{2} 1$ and 2 | 10-10M | 5\% and 10\% |
| 2. Cracked | 1/30-20 | I-500M | 5\% and 10\% |
| 3. *High Stability | 1/10-3 | 1-50M | 5\% 1\% 2\% 5\% |
| 4. Variable | $\frac{1}{4}$ | $5 \mathrm{~K}-2 \mathrm{M}$ |  |
| 5. V. High Resistance | $\frac{1}{4}-3$ | 50M-1013 | $5 \%$ and $10 \%$ |
| 6. V.H.F. (Rods and Discs) | 1/10-1 | 10-1K | $1 \%$ and 2\% |
| WIREWOUND |  |  |  |
| 4. Rheostats | 4-500 | 10-18K | - |
| 8. Vitreous | 3-500 | I-150K | 1\% 2\% 5\% |
| 7. Cemented | 1-15 | 1-25K | 5\% and 10\% |
| 9. Metal Oxide | $\frac{1}{4}-2$ | 100-4.2M | 1\% 2\% 5\% |



Do you KNOW
THAT the whole of the vast range shown under (3) can be delivered ex-stock in all preferred values.
THAT Cracked Carbon Resistors (2) are more economical in the $\pm 5 \%$ range than Solid Carbon.


The demand for coils for audio and carrier frequency circuits has required the development of cores having high stability with time, temperature and magnetisation. To meet these stringent requirements STC have produced cores having the highest permeability and lowest core losses possible. These requirements have been proved to be most satisfactorily met by employing a core structure made from compressed insulated powdered material. By this means the requisite air gaps are introduced In an evenly distributed fashion, and the magnetic material is sub-divided so as to reduce eddy current losses.

## joint responsibility...

To rely on Enthoven for all your soldering requirements is a policy
 that will take a load off your shoulders...

Superspeed and Superspeed 'XX' cored solders are unequalled for general assembly work on radio, television,


Enthoven preforms, such as cored solder washers, rings and pellets, are available or can be designed to meet the precision requirements of the most advanced manufacturing techniques:


Enthoven aluminium cored solder is the perfect medium for soldering aluminium to aluminium - or aluminium to copper, tinned copper, tinned and silver-plated brass and most other non-ferrous metals:


The comprehensive Enthoven range of solder products comprises cored solder wire, solid solders, materials for soldering aluminium and for the processing of printed circuits, fluxes of all kinds, standard and special preforms and many other special-purpose products. For technical information on all these items please send today for your copy of "Enthoven Solder Products" - or for more detailed technical literature on any soldering material in which you are specifically interested.

## ENTHOVEN SOLDERS LIMITED

Sales Office \& Works: Upper Ordnance Wharf, Rotherhithe Street, London, S.E.16. Telephone: BERmondsey 2014
Head Office: Dominion Buildings, South Place, London, E.C.2.
Telephone: MONarch 0391


SUMMARY OF OTHER STC inOUSTRIAL transistors

Germanium transistor for general purpose LF telephone and telegraph carrier systems
For amplifiers and ościllators (audio and higher frequencies) TK40 TK41 TK42
Silicon alloy junction transistors for amplifying, switching and control in extremes of amblent temperature

## TK23

TK70 TK71 TK72

Data sheets and further information gladly sent on request.

## Standard Telephones and Cables Limited




MODEL 1324
Sweep generator for FM receiver alignment
Carrier 87.5 to $107.5 \mathrm{Mc} / \mathrm{s}$
Sweep generator with internal crystal marker oscillator for all TV oscilloscopes

MODEL 1046
A one millimicrosecond pulse source for testing wide-band amplifiers, delay cables and high-speed counters in Up to 100 V into $52 \Omega$ at 120 p.p.s.


MODEL 1090
A 3 to 4 millimicrosecond risetime square-wave generator giving 0.5 V into $70 \Omega$ at $1.25 \mathrm{Mc} / \mathrm{s}$


MODEL 1450
Doubly-screened general-purpose signal generator for everyday
boratory use
frequency range: $150 \mathrm{kc} / \mathrm{s}$ to 390 Mc accuracy: $\pm 1 \%$ up to $33 \mathrm{Mc} / \mathrm{s}$ Internal and external modulation Internal and external modulation

Cossor made the first British Oscilloscope.

* Cossor provided Industry and Research with over 3,000 new Oscilloscopes last year.
Cossor make more Oscilloscopes
than any other
Company in Europe or the British Commonwealth.
à fast-growing multi-purpose Çossor range - with the built-jn technological supremacy that has made Cossor oscilfoscopes the best in Britain.


## AMPLIFIERS



MODEL 1449
For providing matched DC amplifiers for each trace of oscilloscope 1049 or an $X$ amplifier identical in every respect to th


MODEL 1439
Wide-band amplification for simultaneous distribution of all signals in bands I, II and III enabling common aerial for a number of TV and VHF Gain $20 \mathrm{~dB} 40-220 \mathrm{Mc} / \mathrm{s}$

MODEL 1440
DC pre-amplifier primarily designed for 1049 oscilloscope to give sensitivities up to $0.65 \mathrm{mV} / \mathrm{cm}$ $\mathrm{DC}-25 \mathrm{kc} / \mathrm{s}, 0.22 \mathrm{mV} / \mathrm{cm} 5 \mathrm{c} / \mathrm{s}-25 \mathrm{kc} / \mathrm{s}$ Used with model 1327 battery (Used with
eliminator)

## TRANSISTORISED POWER UNITS



## MODEL 1326

A 6V-2A transistor power unit average ripple $300 \mu$ output impedance $<10 \mathrm{~m} \Omega$ stabilization 200:1

MODEL 1327
Battery eliminator primarily to powe Cossor pre-amplifier 1440. Also suitable for circuits requiring highvoltage stabilization and low ripple ontent and output impedance supply: L.T. $6-6.5 \mathrm{~V} 1.7 \mathrm{~A}$

MODEL 1328 Laboratory power source or transistor equipment mpedance $<10 \mathrm{~m} \Omega$ and ipple $<1 \mathrm{mV}$ make it ideal in design of transistors and assoclated circuits Output contin dousiy varlable 0-3

MODEL 1070 Positive and egative valve Using pulse technique to give information hitherto unobtainable on dynamic

## SIGNAL DELAY UNIT



MODEL 1447
For delaying the work voltage to standard oscilloscopes until time-base has fired
DC to $11 \mathrm{Mc} / \mathrm{s}-0.5 \mu \mathrm{sec}$ delay DC to $8 \mathrm{Mc} / \mathrm{s}-1 \mu \mathrm{sec}$ delay


MODEL 1442
Laboratory high-gain amplifier for use in industry, nuclear physics, neuro and myo-graphic investigations
response: $5 \mathrm{c} / \mathrm{s}$ to $3 \mathrm{kc} / \mathrm{s}$
gain: $10^{6}$

## vaLVE ANALYSER



## These three facts

behind this new symbol
of supremacy in
electronic instrumentation matter to you


MODEL 1045K For technical colleges and radlo and television servicing response:5c/sto3Mc/s $(-3 \mathrm{~dB})$ sensitivity: $50 \mathrm{mV} / \mathrm{cm}$

MODEL 1058
General laboratory use, radlo and television servicing, etc response: DC to $4 \mathrm{Mc} / \mathrm{s}$ (-3dB) sensitivlty: max. $250 \mathrm{mV} / \mathrm{cm}$ $\mathrm{min}, 200 \mathrm{~V} / \mathrm{cm}$ Calibrated time and voltage scales
TV sync separator

MODEL 1065 For fast pulse phenomena examination In TV, radar, computers and pulse circuitry response: DC to $11 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB})$ sensitlvity: $250 \mathrm{mV} / \mathrm{cm}$ sweep delays: 0.1 msec and 1.0 msec

## MODEL 1076

For nucleonics, communications, semi-conductor research, servo control, engineering, high-speed pulse and translent examination response: DC to $60 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB})$ sensilivity: $50 \mathrm{mV} / \mathrm{cm}$ plug-in units


MODEL 1039M Portable for industrial and service engineering in fleid and workshop, for allgnment of TV and FM receivers response: $25 \mathrm{c} / \mathrm{s}$ to
$1.5 \mathrm{Mc} / \mathrm{s}$ (-3dB) sensitivity: $150 \mathrm{mV} / \mathrm{cm}$ welght: 10才ib

MODEL 1092 Osciliograph monitor capable of storing multiple phenomena for subsequent examination simultaneously. Storage time up to 60 days. Accessory unit to model 1049. MODEL 1043 Also available for simuitaneous identical display whilst parent instrument 1049 is obscured by camera.

## SINGLE-BEAM OSCILLOSCOPES



Cossor make the best and biggest range of oscilloscopes in Britain

## MONITORS




MODEL 1035 For research and industrial applications requiring high sensitivity and wide response: (-3dB) $\mathrm{A} 15 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ A2 $5 \mathrm{c} / \mathrm{s}$ to $250 \mathrm{kc} / \mathrm{s}$ MODEL 1049 For servo-control, electrical engineering, vibration analysis, electro-medical instrumentation response: $(-3 \mathrm{~dB})$ A2 DC to $400 \mathrm{kc} / \mathrm{s}$ sensitivity: $30 \mathrm{mV} / \mathrm{cm}$ Calibration for voltage and time

MODEL 1059 For precision measurements over a wide band of frequencies. entical Y amplifiers $\mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB})$
sensitivity calibrated $100 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ Internal calibration and slgnal delay

## SPLIT-BEAM OSCILLOSCOPES



MODEL 1063
Small portable instrument for display analysis and measurement of all transducer outputs compression in hydraulic and pneumatic systems 0 to 50,000 p.s.i.

HYDRAUDYNE

MODEL 1441 6-way transducer unit or use with hydraudyne 1063 Provides a means of one of six transducers connected to the equipment being tested
(tension, hydraullc


MODEL 1060 2-30 millimicrosecond - 30 millimicroseco oscilloscope for translent tests up to $250 \mathrm{Mc} / \mathrm{s}$ Time Callbration $0.6 \mathrm{mu} . \mathrm{sec}$ per divislon


## Cossor pride in fine craftsmanship ensures maximum reliability <br> in every instrument

You will find the new Cossor Instruments' Trade-mark on a wide and fast growing range of first-class electronic products

Cossor instruments are of advanced, but proved, electronic design and circuitry. They are manufactured and tested to the published specification and are backed by lucid and comprehensive operating and maintenance manuals. Robust compact construction with realistic ventilation for long, continuous operation under the severest working conditions are but every-day qualities of Cossor instruments.
... and Cossor technical representation provides complete before and after sales advice-either as to the choice of a Cossor instrument to meet your particular requirement, or on the correct use of that instrument to perform its task to your satisfaction.

The new Cossor Trade-mark is the symbol of a superior electronic instrument, backed by first-class sales representation and service, Whenever you have a technical problem or doubt consult Cossor Instrument sales service.

Cossor policy pays
The Cossor policy pays you with higher efficiency and really worthwhile economy. For Cossor Instruments need the minimum of malntenance, as the numerous users of Cossor Oscilloscopes over long years will readily testify.

CoSsor INSTRUMENTS LTD., COSSOR HOUSE, HIGHBURY GROVE, LONDON, N. 5 Telephone: CANonbury 1234
Please fill in and send to the above address.

The Cossor range is growing all the timechange up to Cossor

I require full Information and specifications on model(s) ...
I require technical representative to call
NAME


TELEPHONE
COMPANY
ADDRESS

## Where great things

are done with

## Microwaves



RADAR: Fire Control - Navigation of Aircraft and Small Ships - Automatic Landing - Missile Guidance - Transponders - COMMUNICATIONS: Multichannel Radio Links for telemetering Data and Speech - VALVES : Klystrons and Magnetrons for 35/GCS and 75/GCS bands • Monitor Diodes for I/GCS to 35/GCS - INSTRUMENTS: Comprehensive Waveguide measuring circuits covering 6 to 75/GCS - RESEARCH: Outstanding Research and Development of the latest techniques.


## SenTercel i watt shlicon zener doooes

- Have a large dissipation for their size
- Are suitable for high temperature operation
- Have a low temperature coefficient of voltage
- Are suitable for use as regulators, limiters, surge suppressors, and voltage references
- The first complete range of closetolerance ZENER Diodes available from production
Characteristics and ratings of SenTerCel Zener Diodes are given in publication MF/IO3

| Z2 SERIES ZENER DIODES |  |  |
| :---: | :---: | :---: |
| $\pm 5 \%$ Voltage Tolerance (Red and Green Sleeves) | TYPE | NOMINAL <br> voltage |
|  | 22A ${ }^{\circ} 3{ }^{\circ} \mathrm{F}$ 22A Z2A | 3.3 3.6 3.9 |
| $\pm 10 \%$ Voltage Tolerance (Red and Yellow Sleeves) | 22A43F | 4.3 |
|  | 22A51F | 5.1 |
|  | - 22 A $62 F$ | 5.6 |
|  | Z2A68F | 6.8 |
|  | Z2A82F | 8.2 |
| $\pm 20 \%$ Voltage <br> Tolerance <br> (Red and Blue Sleeves) | Z2A91F | 9.1 |
|  | 22A110F | 11 |
|  | Z2A 120 F | 12 |
|  | 22A130F | 13 15 |

60 4MF

## Standard Telephones and Cables Limited

## 

## CEEESTIOK

Trade and Public DemonstrationRm. 312

## Manufacturens enquiries onlr

 No 213
## LOUDSPEAKERS FOR ALL PURPOSES




## A complete packaged oscillator unit Stability 4 parts in $10^{9}$

This new S T C complete packaged oscillator unit represents a revolutionary step forward in crystal design. It is an extremely small unit for use as a laboratory reference or as the oscillator section of high quality equipment. The ruggedness of design together with the size makes possible a degree of portability hitherto unknown in this type of unit. Standard frequency is $5 \mathrm{Mc} / \mathrm{s}$. Frequencies either side can be made to order.

## RADIO EXPORT

Great strides are being made in all branches of the electronic industry and they are based in the maln on the Radio Tube.

HALTRON have not lagged behind in this development, for we are daily adding to the number of types stocked, so that today we carry over 3,000 types of Radio Receiving, Transmitting and Special Purpose Tubes, together with Transistors.

HALTRON Tubes and Transistors are more competitive today than ever before. Contractors to Government Departments and Airlines throughout the world.

OUR ORGANISATION IS AIR REGISTRATION BOARD APPROVED.

## PRICE AND STOCK LISTS ON APPLICATION.

## HALL ELECTRIC LTD HALTROK HOUSE, ANGLERS LANE, LONDON N.W.5.

Tel.: Gulliver 8531 (10 lines) Telex 2-2573 Cables: "Hallectric Londan"

## The future

## is linked to

## printed circuits

## and in the forefront of circuitry stands Bribond



Industry stands on the threshold of a new era, with progress in electronics and nucleonics opening up limitless possibilities of process operation and production control. To the designers and manufacturers of the essential équipment, Bribond offers specialised production of printed circuits for any form of component assembly.
As pioneers of plastic lamination and experimental research in precision circuit printing, Bribond now have many advantages which linked to modern line production methods result in unsurpassed delivery service and reliability. Further, the Bribond prototype department can produce the initial circuit from which final production


## PRINTED CIRCUITS

for Radio, Telecommunications, Electronics, Nucleonics

## Three NEW...



## 3.5 - millimicrosecond risetime.

## Type 581.

A new laboratory oscilloscope with many of the capabilities needed in the current rapid advancement of the electronic art. Its $3.5-\mathrm{m} \mu \mathrm{sec}$ risetime, $0.1-\mathrm{v} / \mathrm{cm}$ sensitivity and $0.01-\mu \mathrm{sec} / \mathrm{cm}$ sweeptime are features for modern high-speed pulse applications. A new series of Tektronix plug-in preamplifiers promises outstanding signal-handling versatility for an oscilloscope with a vertical passband of dc to approximately 100 mc .

## Type 585.

Having the identical general specifications as Type 581, the 585 has second time base generator. This acts as a sweep delay generator, providing a wide range of calibrated sweep delay, continuously variable over the range of $1 \mu \mathrm{sec}$ to 10 sec . Colour-correlated controls eliminate confusion, making this new high performance oscilloscope easy to operate.

## OSCILLOSCOPES

When top performance oscilloscopes are required, the range of Tektronix instruments can satisfy the most rigorous demands. Livingston Laboratories are the sole representatives in Great Britain of Tektronix Inc.

## NEW DC to 30 MC

## Dual-Beam Oscilloscope

Type 555.
Two electron beams, each with its own X and Y deflection systems, help make possible a highly versatile dual-beam oscilloscope. Either of the two time-base generators in the Type 555 can deflect either beam for dual and single displays, and either can deflect both beams for a dual display on the same time base. Time-
 base units are the plug-in type to facilitate instrument maintenance and the sweep speed is variable between $0.02 \mu \mathrm{sec} / \mathrm{cm}$ and $12 \mathrm{sec} / \mathrm{cm}$. This new oscilloscope will accept the standard range of plug-in pre-amplifiers.


Same signal displayed simultaneously on slow sweep (upper beam) and fast sweep (lower beam) shows both coarse and fine structure of waveform. Delay range $-0.5 \mu \mathrm{sec}$. to 50 secs.

## Radiotelephones by ATE - a vital service for isolated localities



## Blazing

 a new trail

To drive a new highway through virgin bush country, modern machinery, equipment and materials-and modern methods of communication-are essential. The men on the spot can now have the benefit of a first class telephone service by radio link to supply and control centres in distant towns. For such projects the new Type 800 equipment in the ATE single channel VHF rural radio-telephone range may well prove just what the contractor needs. Exhaustively tested under arduous tropical conditions, Type 800 has already been proved thoroughly dependable and efficient.

Extended frequency coverage over VHF and UHF bands

New compact cabinet-type construction with sllde-In chassis for easy access and malntenance

Plug In test meter facilities
High or low power versions to sult propagation conditlons

WIII work Into any type of telephone exchange with improved 'outband' tone slgnalling facilitles

Modern design conforming to G.P.O., C.O.T. and F.C.C. specifications

## TYPE 800

ATE Radiotelephones are used by industrial. mining, agricultural, civil and miltary enter-prises-and by research and survey teams-in 60 countries.


## ... and 200 miles away a telephone rings!

Eight hours ago, an expanse of barren mountainous country made communication impossible. Tonight, 60 telephone channels and teletype span the wilderness.
Transportable MICROSCATTER is a super high frequency radio system for long-range communication. Developed by Canadian Westinghouse, MICROSCATTER beams signals high above the earth sending two-way voice and teletype messages up to 200 miles over land and water . . . without costly relay stations.
The compact MICROSCATTER radio system fits in a standard 30 ft . truck trailer. Now, whenever men and equipment move, MICROSCATTER moves right along with them. It is particularly suited to military and government projects in remote locations. Units designed for self-contained field operations are set down by helicopter.

## CANADIAN

Westinghouse

A Westinghouse communications specialist will be pleased to explain fully the MICROSCATTER operation and relate it to your problem. Contact your nearest Westinghouse office, or write to Canadian Westinghouse Company Limited, Electronics Division, Hamilton, Canada. YOU CAN BE SURE . . . IF IT'S WESTINGHOUSE.

| MICROSCATTER | APPLICATIONS |
| :---: | :---: |
| COMMERCIAL Fixed Station - 120 telephone channels - television and sound Transportable - 60 telephone channels -teletype |  |
| FEATURES |  |
| Frequency-4400-5000 mc <br> Antennas -10 to 28 ft . diamete | - Power- 2 KW <br> - Range- 100 to 200 miles |



So easy to operate . . .
SIMPLE-anyone can operate this deck-controls reduced to an absolute minimum.

ROBUST-no need to worry about maintenance costs. Brilliant design has removed the complications. ELEGANT - beautifully styled to tone with modern home furnishing.


## FOR UTTER SIMPLICITY

THE GARRARD ENGINEERING AND MANUFACTURING CO. LTD. Factory and Registered Office: NEWCASTLE ST., SWINDON, WILTSHIRE Telephone: SWINDON 5381 (5 lines)


Advance constant voltage transformers are available in the CVH range with low harmonic distortion in the output waveform, ideal for use with precision equipment sensitive to power frequency harmonics, and also with all equipment requiring a constant voltage sinusoidal input.
In most applications the harmonic distortion present in the output waveform will not exceed $3 \%$. Under the most unfavourable conditions this figure will not rise substantially above $5 \%$. When used with a rectifier to provide a d.c. supply, the characteristics of the system are identical to the normal mains source and particularly close regulation of the output is obtained.

| Type | I/P V Range | $\begin{aligned} & O / P \mathrm{~V} \\ & \mathrm{r} . \mathrm{m} . \mathrm{s} . \end{aligned}$ | Watts | p.f. | Net Price in U.K. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CVH60A | 190-260 $50 \sim$ | 240 | 60 | 1.00 | £10 10 |
| CVH125A | 190-260 $50 \sim$ | 240 | 125 | 1.00 | $£ 170$ |
| CVH420A | 190-260 $50 \sim$ | 240 | 420 | 1.00 | $£ 370$ |
| CVH750A | 190-260 $50 \sim$ | 240 | 750 | 1.00 | £68 0 |
| CVH1500A | 190-260 $50 \sim$ | 240 | 1,500 | 1.00 | £99 0 |
| CVH3000A | 190-260 $50 \sim$ | 240 | 3,000 | 1.00 | £185 0 |
| CVH6000A | 190-260 $50 \sim$ | 240 | 6,000 | 1.00 | $£ 3550$ |

Full details in Folder M1 available on request

ROEBUCK ROAD • HAINAULT• LLFORD•ESSEX • TELEPHONE: HAINAULT 444

- CONTINUOUS AND AUTOMATIC STABILIZATION
- RAPID RESPONSE TIME
- CURRENT LIMITING CHARACTERISTIC
- COMPACT DESIGN
- NO MOVING PARTS
- NO ROUTINE MAINTENANCE


THEY LOOK SO GOOD The moment you see the styling of a Truvos Tape Recorder, See them at your dealers.

You'll enjoy 'listening' more than ever before. All the technical know-how of a decade of specialisation, to give perfect sound enjoyment, is embodied in the Truvox R6 and R7 . . . the original sound truly recorded and truly re-played through large
 loudspeakers. Hear them at your dealers.

THEY ARE SO GOOD That you'll never be satisfied with any


THEY MUST BE
other Recorder . . . once you've seen and heard them, you'll decide for yourself ' . .

7in. spools. 10 watts out-
H.P. Facilities available. SERVIGE IN YOUR OWN HOME.

7in. spools. 4 watts output.
2 speeds. 8 in. $\times 6$ in.
speaker. Response 30 $15,000 \mathrm{c} / \mathrm{s}$.

Retail Price 55 gns.


Ask your local dealer for a demonstration or full details from:-


# Simplicity of control 

The Quad 22 Control Unit... with every practical.refinement for the full appreciation and enjoyment of music for the discriminating listener... yet so simple and easy to operate. For instance- the Volume Control.

THE ACOUSTICAL MANUFACTURING CO. LTD.
'Huntingdon, Hunts. Telephone: Huntingdon 361

## THE VOLUME CONTROL

The large knob provides adjustment of volume on both channels simultaneously for ease of operation, and this is combined with the on/off switch for the complete equipment. The function of a volume control is rather more important than in merely providing an adjustment to suit the listener's taste; it also determines perspective in the reproduction. For a close approach to the original it is essential that the music be replayed at the correct volume level for the recording-and incidentally this is usually lower than is imagined.
Send a postcard to Dept.WW for illustrated leaflet.



# PHILIPS <br> <br> electronic measuring 

 <br> <br> electronic measuring}

Sold and serviced by Philips Organizations all over the world Overseas enquiries please, to the manufacturers, N.V. Philips, EMA.Department, Eindhoven, the Netherlands. Sole Distributors in the U.K.: Research \& Control Instruments Ltd., 207 King's CToss Road, London W.C. 1


## Low-Frequency Oscilloscope, type GM 5606

## Vertical Amplifier

Bandwidth: DC - $200 \mathrm{kc} / \mathrm{B}(-3 \mathrm{~dB}$ ).
Sensitivity: $10 \mathrm{mVp} \cdot \mathrm{p} / \mathrm{cm}$ to $50 \mathrm{Vp}-\mathrm{p} / \mathrm{cm}$ in 12 calibrated steps, accurate within $3 \%$,in a 1-2.5 sequence; vernier $3: 1$ permits continuous adjustment to at least $150 \mathrm{~V} \cdot \mathrm{p} / \mathrm{cm}$.
Inpnt impedance: $1 \mathrm{M} \Omega$ in parallel with $40 \mu \mu \mathrm{~F}$.
Sweep range
$2.5 \mu \mathrm{sec} / \mathrm{cm}$ - $1 \mathrm{sec} / \mathrm{cm}$.in 18 calibrated stepa, accurate within $3 \% \mathrm{in} \mathrm{a}$ $1 \cdot 2 \cdot 5$ sequence, x 5 magnifier expands fastest sweep speed to. $0.5 \mu \mathrm{sec} / \mathrm{cm}$ (arcuracy $5 \%$ ).
Trigger facilities
Internal, external or line frequency with adjastable trigger level.
Accelerating voltage: 2 kV

## High-Frequency Oscilloscope, type GM 5601

## Vertical Amplifier

Bandwidth: DC - $5 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB})$.
Sensitivity: $100 \mathrm{mVp}-\mathrm{p} / \mathrm{cm}$ to $5 \mathrm{Vp} \cdot \mathrm{p} / \mathrm{cm}$ in 6 steps, accnrate within $3 \%$, in a
1.2 .5 sequence; vernier $3: 1$ permits continuous adjustment to at least. $15 \mathrm{Vp} \cdot \mathrm{p} / \mathrm{cm}$. An attenuator probe $10: 1$ is delivered with the instrament.
Input impedance: $0.5 \mathrm{M} \Omega$ in parallel with $35 \mu \mu \mathrm{~F}$.
(Probe $5 \mathrm{M} \Omega$ in parallel with $9 \mu \mu \mathrm{~F}$ ).
Sweep range
$0.5 \mu \mathrm{sec} / \mathrm{cm} \cdot 200 \mathrm{msec} / \mathrm{cm}$ in 18 calibrated steps, accurate within $3 \%$ in a 1.2.5 sequence, $\times 5$ magnifier expands fastest sweep speed to $0.1 \mu \mathrm{sec} / \mathrm{cm}$ (accuracy $5 \%$ ).

## Trigger facilities

## High-Frequency Oscilloscope, type GM 5602

Vertical Amplifier
Bandwidth: $3 \mathrm{c} / \mathrm{s} \cdot 14 \mathrm{Mc} / \mathrm{s},(-3 \mathrm{~dB}$ ), risetime $25 \mathrm{~m} \mu \mathrm{sec}$. Sensitivity: $75 \mathrm{mVp}-\mathrm{p} / \mathrm{cm}$ to $10 \mathrm{Vp} \cdot \mathrm{p} / \mathrm{cm}$ in 7 calibrated steps, accurate within $3 \%$, in a 1.2 . 5 sequence; vernier 3:l permits additional attennation to 30 V p-p/cm. An attennator probe $10: 1$ is delivered with the instrument.
Inpui impedance: $0.5 \mathrm{M} \Omega$ in parallel with $12 \mu \mu \mathrm{~F}$. (Probe $5 \mathrm{M} \Omega$ in parallel with $8 \mu \mu \mathrm{~F}$ ).
Signal delay permits viewing of the leading edge of the displayed signal in the linear portion of the time base.

## Sweep range

$0.2 \mu \mathrm{sec} / \mathrm{cm} \cdot 10 \mathrm{msec} / \mathrm{cm}$ in 15 calibrated steps,
accurate within $3 \%$ in a 1.2 . 5 sequence, $\times 2$ and $\times 5$
magnification expands fastest sweep
speed to max. $40 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$ (accuracy $5 \%$ ).
Trigger facilities
Internal, external or line frequency with adjustable trigger level and preset stability control.
High frequency synchronization up to at least $15 \mathrm{Mc} / \mathrm{s}$.
Accelerating voltage: 4 kV
Internal, external, or line frequency with adjustable trigger level and stability control.
Accelerating voltage: 2 kV


# Sensational Success of culdiotape 

Tape Recording experts and enthusiasts all over the country are changing to AUDIOTAPE for its flawless perfection of sound reproduction over the entire audio range and its consistent, uniform quality from reel to reel.

Available on all standard reel sizes, there are eight different types to meet every recording requirement . . . AUDIOTAPE, manufactured in the U.S.A. by Audio Devices Inc., gives you the truest sound your recording equipment can produce-try AUDIOTAPE . . . it speaks for itself.

sensational C-SLOT REEL!
All 5 in . and 7 in . reels of AUDIOTAPE are supplied on the exclusive C -slot Reel-the fastest-threading tape reel ever developed. The tape end, dropped into a slot in the hub. anchors itself automatically at the first turn of the reel.

## ELPICOA NAME FOR BETTER PERFORMANCE

Concessionaires to the United Kingdom.
LEE PRODUCTS (G.B.) LIMITED, "Elpico House," Longford Street, London, N.W.I Telephone: EUSton 5754 (all lines). Telegrams: Leprod, London.


- ELEMENTS " CLICK "INTO POSITION
- NO "COMBINER" REQUIRED. - RESONATES ON BOTH BANDS.

OVERALL HEIGHT LESS THAN 5FT.

## REGISTERED

TRADE MARK

THE CONSTRUCTION ALLOWS THE ARRAY TO BE ACCURATELY POSITIONED FOR MAXIMUM RECEPTION.

- OFTEN WORTH 2 or MORE EXTRA PARASITIC ELEMENTS.
- HIGH GAIN ON BAND III.
- BAND I EQUAL TO ORDINARY LOFT.


## TELECRAFT LIMITED

Quadrant Works, Wortley Road, Croydon, Surrey Telephone: Thornton Heath $1191 / 2 / 3$
Depots at : Newcastle-on-Tyne • Doncaster • Sheffield Birmingham - Southampton

# NOW A MARCONI <br> <br> GENERAL-PURPOSE OSCILLOSCOPE 

 <br> <br> GENERAL-PURPOSE OSCILLOSCOPE}

* D.C. to $15 \mathrm{Mc} / \mathrm{s}$ pass band * $50 \mathrm{mV} / \mathrm{cm}$ sensitivity * $\cdot 02 \mu \mathrm{sec} / \mathrm{cm}$ writing speed * 10 kV e.h.t. for bright clear trace
* Direct-reading time and voltage calibration independent of X-expansion or Y -gain


## BRIEF SPECIFICATION

Y Amplifier bandwidth: D.C. to $15 \mathrm{Mc} / \mathrm{s}$. Rise Time: $0.025 \mu \mathrm{sec}$. sensitivity: Seven ranges, 50 $\mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. AMPLITUDE MEASUREMENT $2 \%$ accuracy. INPUT: Two switched coaxial inlets. Impedance: $1 \mathrm{M} \Omega, 30 \mu \mu \mathrm{~F}$. Optional probe: 10 $M \Omega, 7 \mu \mu F$. Distortionless signal delay : $0.25 \mu \mathrm{sec}$.
X Amplifier Bandwidth : D.C. to $2 \mathrm{Mc} / \mathrm{s}$. EXPANSION: Up to at least $\times 5$. EXTERNAL INPUT : D.C. coupled; i M $\Omega, 25 \mu \mathrm{~F}$.

Sweep Generator sweep veloctry: 15 ranges, 0.1 $\mu \mathrm{sec} / \mathrm{cm}$ to $1 \mathrm{sec} / \mathrm{cm}$ at minimum expansion. TIME MEASUREMENT: $2 \%$ accuracy. TRIGGER SELECTION; A.C. coupled, D.C. coupled, TV field sync, or Automatic.
General TUBE: 5 inch, spiral accelerator. POWER SUPPLY: 200-250 and $100-150 \mathrm{~V}$ WEIGHT: 48 lb . PRICE (complete) : $£ 300$, F.O.B. U.K. port.


Please address enquirles to MARCONI INSTRUMENTS LTD. at your nearest office :


An article in the July issue of ELECTRONIC TECHNOLOGY describes a pulse generator which uses a thyratron as an electronic switch in a novel circuit, This generator produces short pulses of exponential shape with repetition rates from $1 \mathrm{c} / \mathrm{s}$ to $12 \mathrm{kc} / \mathrm{s}$. The author discusses the principles of operation and gives a complete circuit description and diagram.

## ARTICLES

## IN THE AUGUST ISSUE INCLUDE:

## NEW HIGH-VACUUM TECHNIQUE

The use of an inexpensive and simple procedure for evacuating valves and other tubes is described in this article. Developed for use in teaching, it enables students to make their own valves without elaborate equipment.

TRANSISTORS IN AUDIO- AND CARRIER-FREQUENCY AMPLIFIERS
In this article, the design of amplifiers embodying transistors with heavy overall negative feedback is discussed. It is shown that by the use of a bridge circuit the input impedance can be made independent of the current amplification factor of a transistor.

Electronic Technology covers all technical interests in electronics, using this word in its widest possible sense. All the familiar features of Electronic \& Radio Engineer are retained, including, of course, the well-known Abstracts and References section. Regular readership will keep you in constant touch with progress in the entire field.

## POST THIS COUPON TODAY

TO ILIFFE \& SONS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I, ENGLAND
Please enter my name as a subscriber to:
Electronic Tbchnology for 12 months
commencing with the August issue.
I enclose remittance $£ 3.7 \mathrm{~s} .0 \mathrm{~d}$.
(U.S.A. and Canada $\$ 9.50$ ) (Three years $\$ 19.00$ )

NAME . .
ADDRESS $\qquad$
$\qquad$

DATE

## TRANSFORMERS



TRANSDUCTORS
SATURABLE REACTORS


Saturable Reactors for controlling AC loads from .5 kVA to 300 kVA . Available for all standard AC supply voltages, single-phase and 3phase. Standard DC control volts: 12, 24, 36, 110 and 240 V .

All for 240 V Input. Other Supply Voltages as Required CONTINUOUS RATING. Short Rating Transformers also available

## THREE-PHASE TRANSFORMERS

Input 400/440 V.
$40 \mathrm{~V} \quad 50 \mathrm{~A} 3$-phase $£ 40$ $230 \mathrm{~V} \quad 50 \mathrm{~A}$ 3-phase $\mathbf{6 7 8}$ $110 \mathrm{~V} \quad 100 \mathrm{~A}$ 3-phase $\mathbf{6 9 0}$ 4 V 5,000 A 3-phase Cl 130 These and other Transformers can be supplied for 3-phase, 6 -phase and 12 phase Rectifiers.


## VOLTMOBILE

VOLTAGE SELECTOR AUTO-TRANSFORMERS

Range: From $1.6 \%$ to $100 \%$ of Supply Volts in 64 steps of $1.6 \%$. ON LOAD SWITCHING.

VOLTMOBILES can be used by themselves or in the prim. ary of another transformer to give very fine changes of output. Overvoltage available as extra.

## D-CMOBILE

RECTIFIER SETS
For 240 V AC. The larger outputs are available for 3 -phase supply. Full load DC Volts and Amps are stated. Prices are without Meters and Regulators.

| 6 V | 15 A | E14 |
| :---: | :---: | :---: |
| 12 V | 10 A | ¢15 |
| 12 V | 20 A | E19 |
| 12 V | 30 A | ¢25 |
| 12 V | 60 A | 635 |
| 12 V | 105 A | 655 |
| 12 V | 210 A | 671 |
| 12 V | 1,000 A | $¢ 185$ |
| 24 V | 12 A | ¢23 |
| 24 V | 20 A | E27 |
| 24 V | 30 A | 633 |
| 24 V | 60 A | 44 |
| 24 V | 105 A | ¢70 |
| 24 V | 200 A | 186 |
| 24 V | 750 A | 1262 |
| 36 V | 10 A | $\ldots 26$ |


| 36 V | 20 A | £32 |
| :---: | :---: | :---: |
| 36 V | 40 A | 642 |
| 36 V | 60 A | 655 |
| 110 V | 5 A | 632 |
| 110 V | 10 A | E42 |
| 110 V | 15 A | ¢53 |
| 110 V | 20 A | 667) |
| 110 V | 25 A | ¢84 |
| 220 V | 130 mA | ¢15 |
| 250 V | 6 A | ¢49 |
| 250 V | 10 A | 670 |
| 250 V | 15 A | ¢89 |
| 250 V | 20 A | ¢110 |
| 1,200 V | 225 mA | 630 |



Built in to order-Ammeters-Voltmeters-RheostatsStabilising Circuits-Chokes-Variacs.

SPECIFIC ENQUIRIES are Invited for Transformers and Rectifiers. We specialize in HEAVY CURRENT EQUIPMENT.

HARMSWORTH, TOWNLEY of CO. 2 JORDAN STREET, MANCHESTER 15. CENTRAL 5069



## D. 31 double beam

Serviscope*
D.C. amplifiers and slow speed time base (down to 5 sec/cm if necessary) are eminently suitable for servo work and similar applications. Fast rise time ( $.06 \mu \mathrm{sec}$ ) and high writing speed ( $10 \mathrm{~cm} / \mu \mathrm{sec}$ at maximum expansion) are essential for any work dealing with fast pulses or TV waveforms. The unique triggering arrangements enable complex waveforms to be examined in detail with complete accuracy of synchronisation. At this moment the D. 31 is in use in the diverse fields of computer development and servicing, radar equipment, telemetering applications, closed circuit and broadcast TV, automatic telephone equipment... and is proving itself ideally suited to laboratory work where an oscilloscope has, of necessity, to be somewhat of a Jack of all trades.

## Potentialities per pound

Both per £ and per lb., each Serviscope* offers greater flexibility, accuracy and reliability than any oscilloscope of comparable specification. $A$ radical reassessment of design and production techniques has enabled smaller, lighter, instruments with many improved features to be offered giving a far higher performance than their low price would suggest.

Weight: 26 lbs .
$-3=5$


12312
Electrically identical, but designed for mounting in standard $19 \frac{1}{2}^{*}$ racks.

single beam oscilloscope has the same specifications with a single beam display. The original, highly successful, 'Serviscope'.
Weight: 16 lbs . Price 575.

- 'Serviscope' is the registered trode mork of Telequipment Ltd.



A.C. Voltage Regulators.

Amplifiers
Attenuators
Audio Frequency Oscillators
Audio Power Meters
Automatic Sorting Bridges
Bridges
Capacitors-Standard and Sub-standard
Computers and Test Equipment
Constant Voltage Transformers
Delay Networks
Deviation Meters
Digital Voltmeters
Distortion Meters
Electronic Counters
Filters
Frequency Meters
Frequency Monitors
Galvanometers
Gauss Meters
Getter-lon Pumps
Grip-Dip Oscillators
Inductance Meters
Inductors-Standard and Sub-standard

You name

we can supply it...

Insulation Testers.
Klystrons
L.C. Meters

Memotron and Tonotron Tubes
Microwave Equipment
Monoscope Equipment
Noise and Field Intensity Meters
Oscillators
Oscilloscopes
Oscilloscope Cameras
Pattern Generators
Peak Reading Pulse Voltmeters
Pen Recorders
Phase Meters
Phase Sensitive Null Detectors
Precision Potentiometers
Pulsed Carrier Generators
Pulse Generators
'Q' Meters
Ratio Transformers
Resistances-Standard and Sub-standard
R.F. Bridges
R.F. Wattmeters

Semi-conductor Devices

KEEP THIS
AGUERTISEMENT FOR
FUTURE REFERENCE

For your records - a list of groups of Instruments we handle regularly-we deal with many others occasionally.

Servo Test Equipment
Signal Generators
Sine/Square Wave Generators
Solar Cells
Stabilised Power Supplies
Sweeping Oscillators
$S$-X Band ' $Q$ ' Meters
Tape Recorders (Professional Types)
Television Testing Equipment
(Colour and Black and White)
Time-Mark Generators
Transducers
Transistor Curve Tracers
Transistor Test Sets
Universal Test Sets
Valve Curve Tracers
Valve Testers
Valve Voltmeters
Vibration Meters
Vibron Electrometers
Video Frequency Oscillators.
Wave Analysers
Wide Band Attenuators
X.Y Plotters

Zener Diodes
....and from the pick of the world's manufacturers

Acoustical Mfg. Co. Ltd. (U.K.)
Advance Components Ltd. (U.K.)

Ad-yu Electronics Lab. Inc. (U.S.A.)

Affiliated Mfg. Inc. (U.S.A.)
Airborne Inst. Lab. Inc. (U.S.A.)
Airmec Ltd. (U.K.)
Allied Electronics Ltd. (U.K.)
All-Power Transformers Ltd. (U.K.)

Amos of Exeter (U.K.)
Atlantis Engineering Corpn. (U.S.A.)

AVO Led. (U.K.)
Bird Electronic Corp. (U.S.A.)
Brit. Elect. Resistance Co. Ltd. (U.K.)

Boonton Electronics Corp. (U.S.A.)

Boulton Paul Aircraft Ltd. (U.K.)

8 ritish Physical Labs, (U,K.)
Brush Instruments (U.S.A.)
Bur roughs Corp. (U:S.A.)
California Technical Ind. (U.S.A.)

Cambridge Instrument Co. Ltd. (U.K.)

Cawkell Ltd. (U.K.)
Clare \& Company (U.S.A.)
Cossor Instruments Ltd. (U.K.)
Cubic Corpn. (U.S.A.)
Dawe Instriments Ltd. (U.K.)
Dymec Inc. (U.S.A.)

Edgerton Germeshausen \& Grier Inc. (U.S.A.)
E.H. Research Labs. Inc. (U.S.A.)

Electro Measurements Inc. (U.S.A.)

Electro Products Labs. Inc. (U.S.A.)

Electro-Pulse Inc. (U.S.A.)
Electronic Instruments Ltd. (U.K.)

Elliott Brothers Ltd. (U.K.)
E.M.I. Electronics Ltd. (U.K.)

Empire Devices Prod. Corp. (U.S.A.)

Evershed \& Vignoles Ltd. (U.K.)
Fairchild Camera \& Inst. Corp. (U.S.A.)

Fernseh G.m.b.h. (Germany)
John Fluke Mfg. Co. Inc. (U.S.A.)

Franklin Electronics Inc. (U.S.A.)

Frequency Standards Inc. (U.S.A.)

Furzehill Labs. Ltd. (U.K.)
Gertsch Products Inc. (U.S.A.)
Hatfield Instruments Ltd. (U.K.)
Heinz-Gunther Neuwirth (Germany)
Hewlett-Packard Company (U.S.A.)

Hivolt Ltd. (U.K.)
Hoffman Electronics Corp. (U.S.A.)

Hughes International (U.S.A.)
(Divn. of Hughes Aircraft Co.)
Jennings Radio Mfg. Corp.
(U.S.A.)

Kasama Electronics Ltd. (U.K.)
Kay Electric Company (U.S.A.)
Keithley Iristruments Inc.
(U.S.A.)

Kelvin Hughes (Indust.) Lrd. (U.K.)

Arthur Klemt (Germany)
Kudelski (Switzerland)
Lael (|taly)
Langham Thompson Ltd. (U.K.)
Lemouzy (France)
Levell Electronics Ltd. (U.K.)
Lumatron Electronics Inc. (U.S.A.)

Magnetic A.B. (Sweden)
The W. L. Maxson Corpn.
(U.S.A.)

Measurements Corp. (U.S.A.)
Millivac Instrument Corp.
(U.S.A.)
F. L. Moseley Company (U.S.A.)

Musirhead (U.K.)
Mullard Limited (U.K.)
Nagard Limited (U.K.)
Nash \& Thompson Ltd. (U.K.)
Nems Clarke Company (U.S.A.)
Non-Linear Systems Inc.
(U.S.A.)

Panoramic Radio Prod. Inc.
(U.S.A.)

Philips (U.K. \& Holland)
W. G. Pye \& Co. Led. (U.K.)

Quan-Tech Labs. (U.S.A.)
Racal Engineering Ltd. (U.K.)
Radio Frequency Labs. Inc. (U.S.A.)

Radiometer (Denmark)
Rank-Cintel Ltd. (U.K.)
Rutherford Electronics Co. (U.S.A.)

Samwell \& Hutton Ltd. (U.K.)
S.C.I. Led. (U.K.)

Servomex Controls L.td. (U.K.)
Shackman \& Sons (U.K.)
S.I.D.E.R. (France)

Sierra Electronics Corp.
(U.S.A.)

Southern Instruments Ltd. (U.K.)

Stratton \& Co. Ltd. (U.K.)
Sunvic Controls Letd. (U.K.)
Tektronix Inc. (U.S.A. \& Guernsey)
Telechrome Man. Corp. (U.S.A.)

Telequipment Ltd. (U.K.)
Telonic Industries Inc. (U.S.A.)
Varian Assoc. (Microwave Dvn.) (U.S.A.)

Veeco Vacuum Corpn. (U.S.A.)
Venner Electronics Led. (U.K.)
Waveforms Inc. (U.S.A.)
Wayne Kerr Labs. Ltd. (U.K.)
Zenith Electric Co. Ltd. (U.K.)


If you are searching the horizon for something out of the ordinary in the way of transistors, it may not be as far away as you imagine. There's a whole new galaxy of Ediswan Mazda Industrial transistors, and the number is constantly increasing. We'll be pleased to send you detailed specifications of those that meet the requirements of the job you have in mind if you will send us

This could be it!
One of the important additions to our range is the XB121 germanium pnp alloy transistor with a 105 volt collector breakdown and punch through voltage rating for high voltage low power switching and control applications. details on your letterheading.

## EDISWAN

MAZDA
SEMICONDUCTORS

Associated Electrical Industries Limited
Radio \& Electronic Components Division Semiconductor Department, 155 Charing Cross Road, London W.C. 2 Tel: GERrard 8660 . Telegrams: Sieswan Wescent London CRC $15 / 75$


Keep. in touch-with BCC and the latest in communications techniques

BCC's Type 400/100 VHF 15-watt Flxed Station makes other means of communlcation look a little old fashioned. It's designed for the control of moblle systems, polnt-to-point links, ground/air communications and similar uses. Two-way, single or dual frequency simplex, or duplex operation. Auxillary units are ayailable for extended or remote simplex or duplex operation. A fully-descriptive leaflet is avallable.

Consult our Systems Planning Service for full information and guidance on communications systems planning

## BRITISH COMMUNICATIONS CORPORATION LIMITED

## one of the world's smallest



## SIIICON DIODES MULLARD OA2O2

## Generously rated Wide temperature range High back resistance Ideal for automatic wiring Rugged construction ECONOMICALLY PRICED

Despite its extremely small size, the Mullard Silicon Junction Diode OA202 will handle peak currents of up to 250 mA at $25^{\circ} \mathrm{C}$. Apart from other favourable electrical and mechanical characteristics, the OA202 is distinguished by its cost which is kept at the lowest p.ossible level by very large scale production.
This all-glass diode is hermetically sealed and really is a rugged device. It is made in exactly the same way as the Government Type Approved CV7040, whose rigorous specification includes temperature cycling, climatic cycling, fatigue and shock tests, 1000 hour life tests and high temperature storage.

Brief electrical data is given below. For further information please contact Mullard House.

ABRIDGED DATA (AT $25^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED)
Max. peak inverse voltage. $\qquad$ 150 V
Max. peak forward current $\qquad$ 250 mA
Max. d.c. forward current $\qquad$ 160 mA

* Average forward current (sinusoidal
input with resistive load). $\qquad$ 80 mA
Typical forward voltage drop at 30 mA . Inverse current at -150 volts:

Maximum at $25^{\circ} \mathrm{C}$. $\qquad$ $-0.1 \mu_{\mathrm{A}}$
Maximum at $125^{\circ} \mathrm{C}$ $\qquad$ $10 \mu \mathrm{~A}$ Ambient temperature range - $\quad-\quad . \quad-\quad . \quad . \quad . \quad 125^{\circ} \mathrm{C}$
*Max. averaging time so millisecs.
(An alternative type, OA200, is available for lower voltage applications.)


MULLARD LIMITED - SEMIGONDUGTOR DIVISION MULLARD HOUSE • TORRINGTON PLACE • LONDON • WC1

TELEPHONE: LANGHAM 6633

industrial semiconductors

wide range of capacitors, incorporating all the latest developments, are described fully in these new leaflets..

## SEND NOW for COPIES

DALY has succeeded in maintaining full capacity values and working voltages in more compact designs, specially suited to ultra modern equipment:-

## DALY <br> CAPACITORS

Condenser Specialists for over 20
years.

## DALY (Condensers) LTD., WEST LODGE WORKS,

 THE GREEN, EALING, LONDON, W.5. Phone: Ealing 3127-8-9. Cables: Dalcyon, London
## If it's Electronic

and you want it

## Designed and Developed or produced *

 to your specification

Compact Stabilised High Voltage Supply. Safe and reliable supply for photo-multiplier cells and cathode ray tubes. Variable output between $0-1250$ V D.C. at 250 micro amps. Size $6^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$.

## Consult <br> TYER

(formerly P.A.M. Ltd.)

R.F., E.H.T. Unit. A safe, D.C. high voltage unit specially designed to meet the need for a reliable source of supply for television C.R. tubes. Also satisfactory for flash testing where a D.C. supply is necessary.
Tyer \& Co. Ltd. Electronics division combines the technique of several companies, long-established in the Electronic field, with the extensive modern production resources of Tyer \& Co. Ltd. Examples of recent work are illustrated.

> Whichever stage of the struggle you've reached, we can save you time and trouble-maybe money too-write or 'phone without delay.

T Y E R \& PERRAM WORKS, MERROW SIDING, GUILDFORD, SURREY Telephone Guildford 22II A member of the Southern Areas Electric Corporation Group

## Only EIMAC gives you ceramic "extras" in more than 40 tube types



SMALLER SIZE


VIBRATION SURVIVAL


EXTREME HEAT SURVIVAL


IMPACT SURVIVAL


EXACT DIMENSIONAL UNIFORMITY


LOWER DIELECTRIC LOSS

Write for literature on these incomparable ceramic reflex and amplifier klystrons, negative grid and travelling wave tubes.

EITEL-MCCULLOUGH, INC. S A N CA, RLO S, CALIFOMRNIA. Eimace 7 inst with seramic tubes that can take it

## SOLDERING INSTRUMENTS AND EQUIPMENT

## PRODUCTS FOR PRODUCTION

SUPPLIED IN ALL VOLT RANGES

ALL BRITISH MANUFACTURE

## ILLUSTRATED

SOLDERING INSTRUMENT, LIST No. 70 WITH COMBINED PROTECTIVE UNIT, LIST No. 700 SHOW. ING WIPER/ABRASION PAD AND SOLDER REEL.

BRITISH AND FOREIGN PATS. REG. DESIGNS ETC.


APPLY
FULL PARTICULARS

## ADCOLA PRODUCTS LTD. head office <br> GAUDEN ROAD, CLAPHAM HIGH ST., LONDON, S.W. 4 <br> Telephones: <br> MACaulay 4272 \& 3101 <br> "SOLIJOINT," LONDON



THE S. S. WHITE DENTAL MFG. CO. (G.B.) LTD.


Britannia Works,



## TELEVISION AERIAL COMPONENTS

DESIGNED FOR CONSTRUCTING BAND I\& BAND III T.V. AERIALS



## ELEMENT DIMENSIONS SUPPLIED FOR ALL CHANNELS

Selecting at random from our new multi-page cotalogue:

- Band III Folded Dipoles (As illustrated).
- Reflector and director rod holders.
- Masthead Fittings for $\frac{3^{\prime \prime \prime}}{4}, 1$ ", $1 \frac{1}{2}^{\prime \prime}$ and 2" Masts.
- Mast Coupling Units for $2^{\prime \prime}$ Masts.
- Insulators, Both Rubber and Plastic
(As illustrated).
- Alloy Tubing for Elements, Crossboom and Masting.

Send I/-P.O. for the revised, fully illustrated catologue to

## Pringevision Ltd

MARLBOROUGH, WILTS. Phone : 657/8


In addition to the range of Punches and Dies $\frac{1}{8} \mathrm{in}$. to $3 \frac{3}{4} \mathrm{in}$. dia. available from stock, some of the tools usually required in the Radio and Electronic Industries have been standardised for use with the Hunton Universa! Bolster Outfit. Illustrated here are a few which can be supplied quickly or from stock.
In London and Home Counties, ask for a practical demonstration in your own works.

Write for illustrated brochure W.W.I

## HUNTON LTD.

Phoenix Works, ||4-||6, Euston Road, London, N.W.I

Telegrams: Unotonexh, London EUSton 1477 (3 lines) MAIN DISTRIBUTORS FOR LANCASHIRE, YORKSHIRE AND CHESHIRE
JAS. H. VICKERY \& CO. LTD.
21 Bradshaw Street, Manchester, 4 Telephone: Blackfriars 3221. Telegrams: Vickery, Manchester



## T19

## EGCEMOMO

## Lung

A member of the Pye Instrument Group W. Watson \& Sons Ltd. has produced an electronic lung which is capable of replacing an iron lung. The Barnet Ventilator, as the instru-
 ment is called, is transistorised and is easily portable in cases of emergency. It is shown here in its application in an operating theatre for the administration of anæsthetics.

The Pye Instruments Group Consists of:

[^8]
for mains or low voltage operation FINGERTIP CONTROL
with sharp, controlled heat for transistor and other small assemblies. Location of element under soldering tip produces 30 watt capacity for only 15 watts consumption. Avallable for $230 / 240 \mathrm{v}, 220,200,110$ and low voltages $6,12,24,28,50 \mathrm{v}$. List prices range from 25/- to 29/6 (all prices subject).

## INTERCHANGEABILETY

The 5 sizes of bits shown can be easlly changed by sliding on and off the shaft. Heavily plated, split right through to facilitate changing, special hard wearing alloy.

## miniature soldering iron



Stands as illustrated at $12 / 60$
send for detailed catalogue to
$\mathbf{A} \cdot \mathbf{N} \cdot \mathbf{T} \cdot \mathbf{E} \cdot \mathbf{X}$
LIMITED 7-8 IDOL LANE LONDON EC3

## mcmurdo Red Range Connectors

8 WAY

$$
16 \text { WAY }
$$

$$
24 \text { WAY }
$$

$$
32 \text { WAY }
$$

* Gold plated Contacts
* Nylon loaded P.F. mouldings
* Easy insertion and withdrawal


## meters made to measure



This multi-range meter, using Sangamo Weston S.157, is cre of several similar instruments produced by Anders for Ultra Electronics Limited within 14 days. The meters are used in Ground Test Equipment supplied to-B.O.A.C. (shown below) for testing the Ultra Engine Throttle Control fitted in Bristol Britannia Aircraft. A typical example of the quick service Anders are giving to many famous firms. Anders are indebted to Ultra Electronics Limited and B.O.A.C. for permission to illustrate this. equipment.

## special multi-range meter produced for Ultra in 14 days



The Anders Instrument Centre is in a unique position to meet the most urgent, and the most unusual; meter requirements from production, development and research. Most standard meters are available immediately from stock. Non-standard meters are calibrated, tested, and normally ready within 10-14 days. All shapes; sizes from 11를 to the largest switchboard meters. All well-known makes. and all types including moving coil, moving iron, thermocouples, electrostatic, dynamometers and full range of meter accessories. Anders would like to demonstrate the kind of service they can give you and look forward to your enquiries, by letter or by telephone.

## SOUND



## directed

 like a beam of light....This is one of the Pamphonic Line Source Loudspeakers in the Portsmouth Guildhall. Only two are needed to cover the whole auditorium! The special stand enables the loudspeaker to be moved and tilted to cover the varying seating arrangements . . . sound being directed like a beam of light. This unique Pamphonic sound system can operate under difficult conditions and still give perfect results where other systems fail.

## Damphonic

## LINE SOURCE LOUDSPEAKERS

Greater power economy with no extra expensive fitting costs. Used extensively by Municipal Authorities for many Public Buildings and by the B.B.C. Special robust all-metal weatherproof models are available for out-door sound coverage.


## PAMPHONIC REPRODUCERS LTD

17 Stratton Street, London, W.1. Telephone: GROsvenor 1926


Type AS.7012*, Solent series Audio Output Transformer, has been designed especially for the Mullard 5 Valve 10 Watt High Quality Amplifier, and is capable of the highest quality reproduction. The static frequency response (withour feedback) is within 0.5 db . from $20 \sim$ to $25,000 \sim$, and there is appreciable response at $50 \mathrm{kc} / \mathrm{s}$. and above, Primary tappings for feedback are provided at $43 \%$ and $20 \%$ of the windings, and the secondary windings are suftable for $3.75 \Omega$ and $15 \Omega$, with identical characteristics on both outputs. A response curve, panel layout and loudspeaker connection chart are included with each transformer. Priced at 49/3, it can be obtained through your local radio dealer, or direct from us, post free.

* This is one of twenty-two Audio Transformers in the Solent and Minford series described in Gardners new leaflet " $\mathrm{S} / \mathrm{M}_{3}$ " which inchudas over a hundred standard Mains Transformers and Chokes. We shall be pleased to post you a copy upon request.


## RESPONSE CURVE:-



## Gardners

## GARDNERS RADIO LTD

 CHRISTCHURCH, HANTS. Tel.: Chriscchurch 1734

## 

## BUILDS COMPLETE STUDIOS

Many countries owe their first glimpse of TV to the resource and enterprise of Pye. Today Pye transmission equipment is used by the television services of more than twenty-eight nations throughout the world. Even in such countries as America and Canada, where television is highly developed and keenly competitive, the Pye product is increasing in demand. The company's pioneering work in the field of TV transmission, and the succession of major developments which they have introduced, have given Pye a place of leadership in the industry.
For full technical details, please write to

THE WORD MAX IS THE REGISTERED
OFDENCO (CLACTON) LIMITED
IT IS ALSO A GUARANTEE OF WORKMANSHIP \& TECHNICAL PERFORMANCE

OUR RANGE OF PRODUCTS IS SO GREAT THAT WE NOW HAVE TO REQUEST THE AMOUNT OF I/4d. FOR OUR GENERAL CATALOGUE AND TO SAVE YOU POSTAL ORDER POUNDAGE CHARGE WE REQUEST SEND I/4d. IN STAMPS.


## modulated test oscillator mto. 1

* Provides a modulated signal suitable for I.F. alignment, also trimming and tracking R.F. circuits.
* Frequency is continuously variable from $170-475 \mathrm{kc} / \mathrm{s}$ and $550-1,600 \mathrm{kc} / \mathrm{s}$.
$\star$ Suitable for the alignment of transistor receivers.
* Operates from a single 9 -volt grid-bias battery (not supplied) which is housed within the unit.
* The case is manufactured from steel and is finished in silver hammer. The front panel is gloss black bearing white lettering. Dimensions are $5 \frac{1}{16} \mathrm{in} . \times 4 \frac{1}{16} \mathrm{in} . \times 3 \mathrm{in}$.
* Supplied with full operating instructions.

PRICE $£ 3 / 17 / 6$
PLEASE SEND S.A.E. WITH ALL ENQUIRIES
DENCO (CLACTON) LTD.
(DEPT. W.W.)
$357 / 9$ OLD ROAD, CLACTON.ON-SEA, ESSEX

## Superb equipment by


for stereo or monaural

## Stereo Pickup Mark III.

Designed to accept both monaural and stereo heads. Adjustable for heights of various turntables. Pick-up head specification identical with the Type CSI.
A. R. SUGDEN \& Co. (Engineers) Ltd.,
Market Street, Brighouse, Yorkshire.



Stereo Pickup Type CS1.
Pick-up arm fitted with integral lifting device. The pick-up head employs miniature ceramic units, frequency range 20-16.000 eps. output range 20-16,000 e.p.s. output 20 mV . With channel separation of 20-25 dbs. Downward pressure $3 \frac{1}{2}-4$ grams. Diamond stylus. Will accept Mark II monaural heads.
 Stereo Amplifier and Control Unit Type S66.

Twin channel, delivering 7.5 watts per channel with ultra linear output stage. Inputs for P.U., Tape and Radio, sensitivity being 6 mV . Separate treble and bass controls.

## SIGNAL GENERATORS IN THE AUDIO RANGE

## INTERKAMA



The 'Advance' Types H1, J1 and J2 are the most widely used Audio Signal Gener. ators in Great Britain for Research, Development Communications, Servicing and Education.

## Type II

- Frequency range $15 \mathrm{c} / \mathrm{s}$. to $50,000 \mathrm{c} / \mathrm{s}$.
- Sine or Square Wave output.
- Output Voltage (High Impedance). Sine Wave, $200 \mu \mathrm{~V}$. to 20 V ., r.m.s. Square Wave, $800 \mu \mathrm{~V}$. to 80 V ., peak-to-peak. - Distortion less than $1 \%$ at $1,000 \mathrm{c} / \mathrm{s}$.


## List Price in U.K. 1

Full technical details in leaflet W41.

## Type JI

- Frequency Range $15 \mathrm{c} / \mathrm{s}$. to $50,000 \mathrm{c} / \mathrm{s}$.
- Output (Sine Wave only)

Into 600 ohms, 0.1 mW . to 1 W . continuously variable.
Into 5 ohms, maximum 0.5 W .

- Output Impedance 600 ohms, unbalanced.
5 ohms, unbalanced (one side earthed).
- Distortion, less than $2 \%$ at full output.

$$
\text { List Price in U.K. } \mathbf{E} \mathbf{6}
$$

Full technical details in leaflet W33.

## Type J2

Identical with the Type J1 but with output voltage meter.

List Price in U.K. . 42
Full technical details in leaflet W33.

the big name in PRECISION components
Jackson Brothers' Stand Off Insulators and Terminal Strips are used in large quantities by all the services and
in every branch of Electronics, Neucleonics and Communications. Write now for fully illustrated list of complete range of Stand Off Insulators comprising some 40 different types.

-15याए $M$


## JACKSON BROS. (LONDON) LTD., KINGSWAY-WADDON, SURREY <br> Telephone : Croydon 2754-5 <br> Telegrams: Walfico, Souphone, London Canadian Distributors:- Messrs. R. Mack \& Co. Ltd., 1485, South West Marine Drive, Vancouver 14, B.C., Canada

 American Distributors :- Messrs. M. Swedgal Electronics, 253, Broadway, New York 7, U.S.A.
## GOOD COMPANIONS! <br> MINIATURE TRANSISTORIZED SIGNAL GENERATOR TYPE 40

t Up to $20 \mathrm{Mc} / \mathrm{s}$ on fundamentals.
R.F. and Audio Output, Attenuated. Accuracy better than $2 \%$.
Miniature size only $4 \frac{1}{2} \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in}$.
PRICE NET £5.15.0. $\begin{gathered}\text { Battery } \\ 2 / 6 \text { extra }\end{gathered}$
Post (C.O.D. or C.W.O.), 2/6.


## MINIATURE TRANSISTORIZED

 R.C. BRIDGE TYPE 4I> Capacitance $5 \mu \mu \mathrm{~F}$ to $20 \mu \mathrm{~F}$.
> Resistance $5 \Omega$ to $20 \mathrm{M} / \Omega$.太 Magic Eye Balance Indicator. ※ Calibrated Power Factor Check.丸 Miniature Size-Light Weight.

$$
\text { PRICE NET £5.10.0. } \begin{aligned}
& \text { Battery } \\
& 3 / 3 \text { extr }
\end{aligned}
$$ Post (C.O.D. or C.W.O.), 2/6. EXPORT ENQUIRIES INVITED.

SEND S.A.E. FOR LEAFLETS, OR ORDER TODAY, FROM


3 phase type
Ratings up to $84 / 168 \mathrm{amps}$ and $300 / 150$ volts DC Size $131^{\prime \prime} \times 6 \frac{1^{1}}{} \times 4 \frac{43^{\prime \prime}}{}$
(2) 3 phase type

Ratings up to 22/44 amps and 300/150 volts DC Size $88_{8^{\prime \prime}} \times 4 \frac{1}{2} \times 3 \frac{17}{2}$
(3) 1 phase type

Ratings up to 16 amps and 200 volts DC Size $53^{3 \prime} \times 2^{\prime \prime} \times 3$ 3 ${ }^{\frac{7}{16}}$
(4) Sizphase type

Ratings up to 16 amps and 200 volts DC Size $2 \frac{3}{4}^{3^{\prime \prime}} \times 3 \frac{1^{\prime \prime}}{} \times 3 \frac{1^{\prime \prime}}{}$

## APPLICATIONS

Ferranti high power silicon rectifiers have many applications in the aircraft, electronic, electrical, chemical, marine and general engineering industries including aircraft and marine power supplies, radar systems, computers, chemical processing, welding and electroplating.


Frazar \& Hansen Ltd., internationally known since 1834, presents many leading U. S. A. manufactured test instruments and components, including nuclear instrumentation, radiation detectors, microwave and transistorized electronic devices, aluminum microwave and relay towers, AM transmitters, high speed pulse generators, signal generators, spectrum analyzers, and transistorized power supplies. Write for information.

FRAZAR
\& HANSENLid.
301 Clay Street• San Frơricisco, Calif., U.S.Á.

Low Price 4-Digit Voltmeter


Model V64, Ranges from $\pm 9.999 / 99.99 / 500.0$ volts. Snap-out type readout $\pm(0.01 \%$ of reading or I digit) accuracy, I second average balancing time, front panel sensitivity control, manual ranging and polarity. Used for quality control, calibration laboratories, production line testing and receiving Inspection. Dimensions: 5 tin. high, 15 in deep, for 191 n . rack mounting. For $110-220$ volts, $50 / 60$ cycles
NON LINEAR SYSTEMS, INC.

## Portable Alpha Counter



Model PAC-IS. Alpha Counter-Scintillation Type. Designed for surveying alpha contamination over a wide range of activity levels and under wide temperature variations. Consists of a probe, a single conductor 36 inch shielded cable, and rate meter. All units waterproof. Controls and scale selector, etc., are conveniently grouped around handle and can be operated by one finger of the carrying hand even when wearing protective gloves.

EBERLINE INSTRUMENT CORP.

New Frequency Selective Voltmeter


Model 125A. Both an A.C. voltmeter covering 3 to 600 kc . in one band and an A.C. VTVM with flat response ( $\pm 0.2 \mathrm{db}$ ) from 1 to 600 kc . Selectivity settings of 250 cps and 2.5 kc . Measures voltages from -90 to +32 dbm within $\pm 1 \mathrm{db}$; frequencies $\pm \mathrm{Ikc}$. to 100 kc ., and $\pm 2 \mathrm{kc}$ between 100 and 600 kc . As a flat A.C. VTVM, it has a range of -30 to +32 dbm . 40 in . precision Irequency scale.


## Low Resonance Speaker by Whartedale

registered trade mark


Model SEB/3 (Reg. design 881,557) 23 COMO-TO COMPLETE

## Attractive appearance

Free-standing and easily moved Resonance-free Sand-filled Baffle Omni-directional
Frequency range: $30 \mathrm{c} / \mathrm{s}$ to $20,000 \mathrm{c} / \mathrm{s}$ Moderate price

## SPECIFICATION

Size 34in. $\times 3$ Iin. $\times 12 \mathrm{in}$. Weight 64lb. Impedance $8 / 15$ ohms. Bass Resonance $30 / 35 \mathrm{c} / \mathrm{s}$. Max. input 15 watts.

## UNITS

WI2/SFB, $10-\mathrm{in}$. Bronze/SFB, Super 3. The 12 -in. and $10-\mathrm{in}$, units are in parallel. This arrangement gives very smooth results over the full range with a 3 dB gain at low frequencies. The Super 3 is again in parallel via a 4 Mfd . capacitor and is mounted on a small baffle facing upwards.
Descriptive literature sent free on request

## Whartedale

WIRELESS WORKS LTD IDLE BRADFORD YORKS

Telephone :
Idle 1235/6
Grams: 'Wharfdel' Idle Bradford

The

## Superspeed

Soldering Inon

## heats up from cold

 in 6 secondsDesigned on an entirely new principle, this lightweight, versatile iron is eminently suitable for soldering operations in the radio, television, electronic and telecommunication industries. For test bench and maintenance work it is by far the most efficient and economical soldering iron ever designed.

1. Activated by light thumb pressure on the switch ring. When pressure is released, current is automatically switched off-thus greatly reducing electricity consumption, wear on copper bit and carbon element.

Can be used on 2.5 to 6.3 volt supply ( 4 volt transformer normally supplied) or from a car battery.

- More powerfal than conventional
(150-watt irons; equally suitable for light wiring worls or heavy soldering on chassis.
- Simple to operate; ideal for \& precision work.
$\delta$
Requires minimum main-tenance-at negligible cost; shows lowest operating costs over a period.

| LIST PRICES |
| :---: |
| IRON $39 / 6$ |
| TRANSFORMER $35 / 6$ |
| All prices and trade dis- <br> counts subject to revision |

ENTHOVEN SOLDERS LTD.
(Industrial Equipment Division)
Sales Office © Works:
Upper Ordnance Wharf, Rotherhithe Street,
London, S.E.16. Tel.: BERmondsey 2014
Head Office :
Dominion Buildings, South Place, London, E.C.2. Tel.: MONarch 0391

## from Alrpoots

By far the largest number of hospital and industrial installations of the pocket receiver type in this country, and overseas, are Multitone. Our selective induction system " Personal Call" is saving time, money and worry in well over 100 different types of industrial concerns from airports to zymurgists. (We are looking for a Quill Manufacturer to complete the alphabet.)
The New MULTI-CHANNEL equipment provides over 400 individual channels using the new flat receiver (as illustrated)

## personal eall

system of staff location

Additional Facilities

## ELECTRONIC TRUNCHEON

The Electronic Truncheon is no bigger than standard equipment carried by guards and serves the same purpose, but inside there is a transmitter which, when the button is pressed, sends out a signal. This is picked up by the loop of wire around the area to be protected. The pulse is used to operate a small receiver, which automatically switches on any form of electrical alarm. It can be operated from any point in the area.

INTERNAL TRANSPORT COMMUNICATION
The Multitone "Personal Call" loudspeakerreceiver has been designed to solve the problem of conveying verbal instructions to transport vehicles used for handling loads inside a given area. Messages can be conveyed to all or selected vehicles from the central transmitter.

MULTITONE INDUCTION SYSTEMS CAN SOLVE YOUR STAFF LOCATION PROBLEMS:

* Equally suitable for large and small areas or concerns
$\star$ Low rental terms
* Virtually no internal wiring
(the 'peep-peep' in the pocket), the only staff location system worth installing
Write or 'phone for further particulars. We can be found in 10 seconds.



## Bulleps ceramics

 FOR INDUSTRY
for high-temperature insulation

We specialise in the manufacture of-PORCELAIN
for general insulation


## REFRACTORIES



High quality material and dimensional precision are attributes of Bullers die-pressed products.
Prompt delivery at competitive prices.


FREQUELEX
for high-frequency insulation
PERMALEX \& TEMPLEX for capacitors


## RADIO • TELEVISION • TRANSMITTING \& INDUSTRIAL TUBES



\author{

## WALMORE ELECTRONICS LTD. PHOENIX HOUSE 19-23 OXFORD STREET LONDON • W. 1

 <br> Cables: <br> VALVEXPOR-LONDON}

LOWEST

PRICES

ALSO IN STOCK LARGE RANGE OF AMERICAN TYPES


WAT Post this coupon or write for free descriptive literature or call at our Holloway Showroom for full unhurried demonstration and professional advice on your installation. Open 9-5.30 weekdays and 9-5 Saturdays.

NAME
ADDRESS Armstrong

MODEL T4.
A high fidelity VHF tuner which is designed for operation with any good performance amplifier. Incorporating many features which are normally found only in the most expensive tuners it represents outstanding value at its price (which includes purchase tax). The T4 is completely stable with no trace of drift and automatic frequency control provides broad easy tuning.
Full VHF band ( $87-108 \mathrm{mc} / \mathrm{s}$.). 大 Selfpowered. $\star$ Automatic frequency control. $\star$ Cathode follower output. \& Variable output $0-500 \mathrm{mV}$. * Multiplex output for stereo broadcasting adaptor. $\rightarrow$ Separate 75 ohms and 300 ohms aerial inputs. $t$ Dimensions $10 \frac{1}{2}$ in. $\times 4 \frac{1}{8} \mathrm{in} . \times 8 \mathrm{in}$.

## price 19 guineas

An attractive cabinet in polished wood (price $£ 2 / 16 /-$ ) is available for the T4 tuner. This will be of particular interest to those enthusfasts who require a separately mounted tuner for use with a tape recorder.

## offer...

## adjustment of $\pm 7 \%$

## with an accuracy of better than $上 0.02 \%$

Any assembly in the Mullard Vinkor range can be easily adjusted to an accuracy of better than $\pm 0.02 \%$ by using a trimming screwdriver, whilst stability is ensured by the self-locking action of the adjuster core. The range of adjustment is approximately $\pm 7 \%$ about the nominal midposition of the adjuster core. Over and above these advantages, for each size of core there is a choice of three permeabilities which are controlled to close limits so that it is possible to calculate and wind an inductance to $\pm 3 \%$ of the value required before adjustment.
These are just some of the reasons why leading equipment designers acclaim Vinkor as the world's most efficient pot core. If you have not received your copy of Vinkor data, write at once to the address below.


## LONDON'S LEADING STOCKISTS OF EQUIPMENT • ACCESSORIES • MATERIALS

## MASTERLINK TAPE UNIT M2A AND COLLARO "STUDIO" DECK

Build your qwn $\mathrm{Hi}-\mathrm{Fi}$ Tape Equipment using our tape pre-amp and the new Collaro deck. INC, PRICE 41 gns. Carr. extra.
Complete with instructions.
The M2A is complete with external powerpack and is also suitable for use with Wearite and Brenell decks. C.C.I,R. Characteristic, PRICE 27 Gis. Plus P. \& P. 4/-. Leaflet on request.

PNEUMATIC LID STAY with pressure adjuster. Heavy duty, 10/-complete. P. \& P. 1/6.

## SPECIAL OFFERS!~

I. Mains Translormer. Drop shrough. Primary 0 -200-10-20-30--50. Secondary $300.0-300$ v. at 70 mA., 6.3 v. 2.4 A. 15/6. P. \& P. $2 / 3$.
2. Mains Transformer (Potted) 350-310-0. $310-350 \mathrm{v}, 220 \mathrm{~mA}, 6.7 \mathrm{v}, 5 \mathrm{~A}_{0}, 6.3 \mathrm{v}, 3 \mathrm{~A}_{\text {., }}$, 6.3 v. I A., 5 v. 3 A., 6 v. 3 A., 6.3 v. 1 A., 230 v . Primary. Size $7 \frac{1}{2} \mathrm{in}$, high $\times 5 \frac{1}{2} \mathrm{in}, x$

3. Mains Transformer. Weyrad Drop through, Shrouded. $250-0-250$ v. 100 mA . 6.3 v. $3 \frac{1}{2}$ A. Tapped Primary 200-240 v. $18 / 9$.
4. Choke 10 H 250 mA . Potted " C " Core, 25/-.
. Choke 20 H 50 mA . Potted, $5 / \mathrm{s}$.
6. Choke 16 H 120 mA . Potted "C" Core, 20/-.
7. Choke 5 H 100 mA . Potted, $5 / 6$.
8. Choke 5 H 300 mA . Potted, $12 / 6$.
9. Rectifier 300 v. 300 mA . $13 / 6$.
10. R.F. Chokes 4MH Pot cored $7 / 6$.

## JASON CONSTRUCTIONAL KITS

AUDIO GENERATOR AG.IO. Capacity tuned Wien bridge gives good stability from $10 \mathrm{c} . \mathrm{p} .5$. to $100 \mathrm{kc} / \mathrm{s}$. sine/square wave output. Kit $£ 14 / 5 /$ -
OSCILLOSCOPE QG.10. Push-pull scan on $X$ and $Y$ plates with an $X$ band width of 10 G.p.s. to $1.5 \mathrm{Mc} / \mathrm{s}$. $\pm 1 \mathrm{~dB}$. Kit $£ 22 / 10 /$.
STABILIZED POWER PACK PP.IOM and PP. 20 M . The PP. 10 is rated at 75 mA and the PP. 20 at 175 mA . Both have low output impedance and are complete with metering facilities. PP.IOM kit El . 9 . PP.20M kit $\mathbf{2 2 / 1 0 / =}$.
ATTENUATOR AA.10. Calibrated in dB giving any reading between 1 dB and 110 dB Uses $1 \%$ resistors. Kit 66 .
CRYSTAL CALIBRATOR CC.IO. Complete with crystal oscillator and audio output so that signal generators in the range of 100 $\mathrm{kc} / \mathrm{s} .-200 \mathrm{Mc} / \mathrm{s}$. may be accurately checked. Kit $816 / 19 /$.
VALVE VOLTMETER EM.IO. A four valve bridge circuit. May be used as a genera purpose meter since there are 23 ranges including D.C. current ranges. Kit $£ 18 / 10 /=$ W.II WOBBULATOR KIT. Produces a frequency modulated signal for alignment of F.M./A.M. including $465 \mathrm{ks} / \mathrm{s}$. I.F, and T.V. Sound and Picture channels, $£ \mid 4 / 19 /$. BELLING-LEE BULGIN - COLVERN - DUBILIER ERIE - MORGANITE MULLARD PAINTON T.C.C. - WELWYN - WESTINGHOUSE.

STEEL METER CASES
$4 \times 4 \times 4$ in. Sloping Front ...................
$5 \times 5 \times$ Bin. Sloping Front
$6 \times 6 \times 12 \mathrm{in}$. Sloping Front. $4 \times 4 \times 2 \frac{1}{2}$ in. Rectangular. $4 \times 4 \times 2 \frac{1}{2}$ in. Rectangula
$6 \times 4 \times 3$. Rectangular... $6 \times 4 \times 3$ in. Rectangular.
$8 \times 6 \times 3$ in. Rectangular. $8 \times 6 \times 3$ in. Rectangular...
$10 \times 6 \times 2 \frac{1}{2}$ in. Rectangular $10 \times 6 \times 2$ in. Rectangular.
$10 \times 7 \times 7$ in. Alum. Panel. $12 \times 7 \times 7 \mathrm{in}$. with Alum. Panel $14 \times 7 \times 7 \mathrm{in}$, with Alim. Panel $14 \times 9 \times \operatorname{Bin}$, with Alum. Panel $16 \times 9 \times 8 \mathrm{in}$, with Alum. Panel. $16 \times 11 \times 8 \mathrm{in}$, with Alum. Paneil $19 \times 11 \times 10$ in, with Alum, Parel
$\qquad$ 48

6 | 6 | 8 |
| ---: | ---: |
| 8 | 10 | $\begin{array}{rr}810 \\ 11 & 0\end{array}$ 133 \&I $\begin{array}{r}13 \\ \hline\end{array}$

Immediate dispatch
of goods available TELE-RAD|O (1943) LTD from stock. Car- 189 EDGWARE ROAD, LONDON, W. 2 riage charged extra

Phone: PAD 4455/6

Our only address Few mins. from Marble Arch Open all day Sat.

## TRANSISTORISED AERIAL AMPLIFIER

TELENG again leads in the full use of the latest H.F. Transistors in revolutionary amplifier equipment, operating in Bands I, 2, \& 3, for general use in Communal Aerial and Wired T/V Systems.

TRANSISTOR AMPLIFIER Type U4000
Three amplifiers with power unit in case overall size $13 \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 2 \mathrm{in}$.
Gain 40db any Channel to order in Bands $I$ and 3 .
Gain 37db all V.H.F. Channels in Band 2.
O/P $130 \mathrm{~m} / \mathrm{V}$ of each channel with Xmod-
43 db
For AC Mains, consumption 1-5 watts.

Send for fully descriptive list to:-
TELENG LIMITED, TELENG WORKS, CHURCH ROAD, HAROLD WOOD, ROMFORD, ESSEX Ingrebourne 42976-7-8

# International Computers 

 $\begin{gathered}\text { and Tabulators } L t \\ \text { use } \\ *\end{gathered}==A$ solderless wiring devices

Application of Taper Pins to wiring Harness.


Insertion of Taper Pins on
Harness into rear of wire reloy plug in block.


WRITE NOW ABOUT THE CREATIVE APPROACH TO BETTER WIRING AIRCRAFT-MARINE PRODUCTS (GT. BRITAIN) LTD.


* Trade Mark of AMP Incorporated. U.S.A.

Head Office: Dept. 14, AMPLO HOUSE, $87 / 89$ SAFFRON HILL, LONDON, E.C.I.
Tel: CHAncery 2902 ( 7 tines) Cables: AMPLO LONDON TELEX. Telex. 23513
Works: Scottish Industrial Estate, Port Glasgow, Scotland.
SOUTH AFRICA: DISTRIBUTOR: E. S. MOWAT \& SONS (PTY) LTD. 51-57, MILNE STREET, P.O. BOX 437, DURBAN, NATAL, SOUTH AFRICA
AUSTRALIA: MANUFACTURING COMPANY: AIRCRAFT-MARINE PRODUCTS: (AUSTRALIA) PTY. LTD. BOX 78 P.O. AUBURN: N.S.W. AUSTRALIA DISTRIBUTOR: GREENDALE ENGINEERING AND CABLES PTY. LTD. 43.51 NELSON STREET, ANNANDALE, N.S.W. AUSTRALIA
ASSOCIATED COMPANIES IN: U.S.A., CANADA, HOLLAND, FRANCE, GERMANY, ITALY, JAPAN \& PUERTO RICO

## TWO NEW LINES

by
§.6Thrown

## FIST MICROPHONE

Moulded in Nylon, this attractively designed unit is weatherproof and almost indescructible under the most adverse conditions. It has a positive action Double Pole Changeover Switch, and is available with either Carbon or Electromagnetic Transmitter. When ficted with the E/M Inset it also operates as a Receiver. For use on Mobile Radio, Walkie-Talkie Police Motor-Cycle Wireless, ete.


We proudly draw attention to our newly designed FIST MICROPHONE and UNIVERSAL HANDSET, which find applications everywhere where quality, toughness and serviceability are major factors.

## UNIVERSAL HANDSET

Moulded in Propionate-one of the toughest plastic materials ever produced, this beautifully styled, robust and lightweight instrument is designed to accommodate any known signed to accommodate any known in Double Pole Changeover Switch in Double Pole Changeover Switch is also available. Standard Insets:
Moving Coil, Electro-magnetic, Single Carbon and Double Button Carbon. For use on Radio Stations, Mobile Radio. Walkie-Talkie, Police CarRadio, etc.


Handsets; Microphones; Headsets; Headsets with Boom Microphone; Headsets with Throat Microphone; Transmitter Insets; Receiver Insets;

Details of all S. G. Brown products sent on request.

Hospital Headphones and Pillowphones; High Fidelity Headphones.
M. R. SUPPLIES, LTD.

For over a quarter of a century have held the highest reputation for best quality material at keenest possible prices. Prompt despatoh-careful packing. Satisfaction assured.
SYNCHRONOUS ELECTRIC CLOCK MOVEMENTS. $200 / 250$ v. $50 \mathrm{c} / \mathrm{s}$. FItted with spindles for hours, minutes and seconds hands- Self-8tarting, central hole fixing.
Dia. 24 in., depth behind dial only lin. Very latest model. With dust cover, $29 / 6$ Dia. 2 in. depth behind dial only 1 in. Very latest model. With dust oover, $29 / 6$
(despatch $1 / 6$ ). Sets of three hands to fit, in good style for $5 / 7 \mathrm{in}$. dial, $2 / 6$ sel, or $8 / 10 \mathrm{in}$. dial, $3 / 6$ set.
SYNCHRONOOS TMER MOTORS (Sangamo). 200/250 v. $50 \mathrm{c} / \mathrm{s}$. self-starting, 2in. dia. by 1 kin. deep. 1 r.p.m., 1 r.p.h. and 12 r.p.h., any one $3 \% / 6$ (des. 1/-). Also high torque model (G.E.C.) 6 r.p.m.; $57 / 6$ (des. 1/-). Theas are suttable for dlsplay
turntables. tons on $200 / 250 \vee$. $50 \mathrm{c} / \mathrm{s}$. Providing up to 3 on-off operathons per 24 hours at any chusen times, with day-omitting device (use optlonal). Capacity 20 amps, Com-
pactly housed 4in. dia., $3 \frac{1}{2}$ In. deep. With full instructions, \&5/8/6 (despatch 2/6), pactly housed $4 i$, dia., ofin. deep. With full matructions, $£ 5 / 8 / 6$ (despatch $2 / 6$ ).
Also smith's Relyon Twin-circuit model, 20 -amp. switching, $87 / 8 /$ (des, 2/6). Also Smith's Relyon Twin-circuit model, 20 -amp. switching, \&7/8/- (des, 2/6).
EXTRACTOR FANS. A very popular line. Well-made units at much lower thant
normal prices, $200 / 250$ v. A.C. induction motor, silent running, no interference. normal prices. $200 / 250 \mathrm{v}$. A.C. induction motor, silent running, no interference.
With mounting frame and back grille, ready for easy installation with sin impeller With mounting frame and back grille. ready for easy installation, With 8 in . impeller
(10in, overall dia.), $200 \mathrm{C} . \mathrm{F}$. M, $£ 5 / 5 /-$. 10 in . impelier ( 12 in , overall) 240 O .F.M., ( $5 / 12 / 6$. Also minor model, 6 in. overall dia., 75 C.F.M., es $12 / 6$ (despatch any One $3 /-)$.
COMPLETE SEWING MACEINE MOTOR OUTFITS. No better job obtainable at any price. $200 / 250$ v. A.C./D.C. Fitted latest radio/T.V. suppressors. Comprising motor with flxing bracket, foot control and switch, needle light with switch, belt, etc., and instructions for easy fixing to ANY machine. The complete outet still E6/15/- (despatch 3/-).
SYNCHRONOUS TIMERS
for those who applied too by well-known British maker-brand new). Good news $200 / 250$ v. 50 c . Providing any " on "perlod between 5 mln . and 8 hours, switching "off" at the end of the set period. Made for electric cookers and suitable for many other purposes-tape recorders, immersion heaters, etc. Capacity 25 amps., fitted

ROTARY INSTRUMENT SWITCHES (positive stud type). 1 -pole, 9 -way, 3 -amp. A.C. switching, $2 t$ in. dia., $\frac{1}{2}$ in, shaft, $5 / 6$ (despatch. 9d.).

SUPERB INSTRUMENT OFFER. Brand new portable laboratory Voltmeters by famous British makers, first-grade m/iron A.C.jD.C. $0 / 160$ volts with 8 in . mirror
scale. Basic meter 10 mA deflectionIn wooden case $9 \frac{1}{2} \times 8 \frac{1}{2} \times 3$ inn. with carrying handle. Current list price approx. el4. Limited supply in sealed cartons ex-Govt. at only $85 / 15 /$ - each (des. $3 / 6$ ). OPERATION COUNTERS (mechanical). Continuous rotary action, counting up to 6,000 with $1 / 10$ th indicator. One rev. per digit. Counting forwards and backwards. Size $31 \times 11 \mathrm{in}$. sq., $29 / 6$ (despatch $1 /-$ ).
SUPPLY METERS (Kilowatt hour), $200 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Usual 5 -index dial reading from 1/100th unit, Loading o amps. L.R. (suitable for 10 amp . load). T'bese are Brand New, at zero, simple to install. $39 / 6$ (despatch $3 / 6$ ).
UNISELECTOR SWITCEIWS. New miniature model. Two
Contacts contacts. 30 ohme coil ( 24 v.), $22 / 6$ (despatch $2 /$-)
SEADED POLE MOTORS. $200 / 250$ v. A.C. (Scoph fans, stirrers, etc., quitet running-no inter ference. 4sy), 1,200 r.p.m. Suitable for proj. lin., Jin. dia. 21/- (despatch $1 / 6$ ).
M. R. SUPPLIES, Ltd., 68 New Oxiord Street, London, W.C. 1

(Telephone: MUSeum 2958)

## EDOYSTONE COMMUNICATION RECEIVERS



Model 840 A illustrated
HIRE PURCHASE TERMS


5I COUNTY ROAD, LIVERPOOL, 4 Telephone: AINTREE 1445

ESTAB. 1935

## Radio Transmitters Conquer Space

In our technical era the perceptions of time and distance are undergoing radical changes. Fast moving, powerful engines take us securely to our distant destinations within a few hours, and, it is hardly more difficult for the pilot of an aircraft to get in touch with the ground stations over the ether than to talk to his co-pilot.
The only thing that matters is the performance of the board transmitter and, above all, of its transmitting valves. The


## COMPETITIVE-PROGRESSIVERELIABLE

Important building elements of our technical world
RFT transmitting valves serve as high frequency amplifiers for ultra short-wave and television transmitters. They are also used in all stages of long-, medium- and short-wave transmitters and at an increasing rate also in industrial generators for melting, glowing and hardening, etc.
The valve factories of the German Democratic Republic supply you with transmitting valves which are known for their small size, high performance, high mechanical stability and a long-service life.

## RÖHRENWERKE

Export through: Heim Electric, Deutsche Export-und Import Gesellschaft mbH, Liebknechtserasse 14, Berlin, C2 ${ }^{2}$ Agent: Winter Trading Co. Led. 6, Harrow Road, London, W. 2

## Messrs. Heim-Electric

Liebknechtstrasse 14, Berlin C2, Abt. W. u. M. 1/6

Will you please send me, free of charge, leaflet on transmitting valves, high frequency valves, thyratrons, stabiliser valves.

Please underline whichever is applicable.

Name. $\qquad$


## BROOKES <br> Custals



## mean DEPENDABLE frequency control

Illustrated left is a Type M Crystal Unit from a range covering $8 \mathrm{Mc} / \mathrm{s}$ to $17 \mathrm{Mc} / \mathrm{s}$.

- Frequency $12,500 \mathrm{kc} / \mathrm{s}$.
- Hermetically sealed metal can.
- Frequency tolerance $\pm$ $0.01 \%$ of nominal at $20^{\circ} \mathrm{C}$., or better for special applications.

All Brookes Crystals are made to exacting standards and close tolerances. They are available with a variety of bases and in a wide range of frequencies. There is a Brookes Crystal to suit your purpose-let us have your enquiry now.

Brookes Crystals Lid.,
Suppliers to Ministry of Supply, Home Office, B.B.C., etc. LASSELL STREET, GREENWICH, S.E. 10

Telephone: GREenwich 1828
Grams: Xtals, London, S.E.IO. Cables: Xtals, London

## GILSON TRANSFORMERS

Provide a first-class service to manufacturers of electronic valve or transistor operated equipment for

## AUTOMATION <br> INSTR UMENTATION

 COMMUNICATIONS OUR AUDIO
TRANSFORMERS
are used for RECORDING
and BROADCASTING F.M.
and TELEVISION
PROGRAMMES

Their use in receiving equipment will complete the chain to the satisfaction of the most discriminating listeners.
Our new list showing sizes, styles, specifications and prices of a very popular range of output and mains transformers is now a vailable.


## Voltage Stabilisers

The English Electric Valve Co. Ltd manufacture a comprehensive range of cold cathode gas-filled voltage stabilisers for providing a sensibly constant output voltage from a source of supply liable to fluctuation. These products are noted for their reliability and conform to British Service specifications. Your needs for general, rugged or high stability type stabilisers and reference tubes are covered by our range, which is the most extensive provided by any


## Mobile Ranger

MODEL PTC 2007

The addition of a Transistor Power Supply unit to its many other leading features makes the Pye Ranger Radiotelephone even more attractive.

This A.M. radiotelephone includes many other valuable features such as channel spacing down to $25 \mathrm{kc} / \mathrm{s}$, multi-channel switching and low battery drain.

The Transistor Panger is designed for operation in all climates.
Please write for full details.
Pye Telecommunications Limited, Newmarket Road, Cambridge Telephone: Teversham 3131. Telegrams: Pyetelecom Cambridge

Managing Editor:
HUGH S. POCOCK, MIIE.E.

Edior:
F. L. DEVEREUX, B.Sc.

Assisanı Editor:
H. W. BARNARD

VOLUME 66 No 8.
PRICE: TWO SHILLINGS

FIFTIETH YEAR
OF PUBLICATION

## AUGUST 1960

## 365 Editorial Comment

366 Transistor V.H.F./F.M. Receiver-1 By R. V. Harvey
369 Hybrid Computing System
371 Corner Baffle Loudspeaker Mounting By H. C. Pinfold
372 Optical Line Eliminator
373 B.B.C. Television Centre
374 Technical Notebook
376 World of Wireless
378 Personalities
379 News from the Industry
381 Battery-Powered Marine Radar By L. H. Dawson
386 Transistorized Wien Bridge Oscillator
By F. Butler
391 Microwave Valves
395 Letters to the Editor
399 Transistor Inverters and Converters-1 By M. D. Berlock and H. Jefferson

402 Short-Wave Conditions
403 Inverted Triode Voltmeter
405 Manufacturers' Products
407 Elements of Electronic Circuits-16
408 Tunnel Diodes
413 Improved Printed Wiring
414 Random Radiations
416 Unbiased

By R. B. Rowson and A. P. Williams

By 7. M. Peters By "Cathode Ray"

By "Diallist" By "Free Grid"

Offices: Dorset House, Stamford Street, London, S.E. 1
Please address to Editor. Advertisement Manager, or Publisher, as appropriate

## (c)

Iliffe \& Sons Ltd. 1960. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief abstracts or comments are allowed provided acknowledgment to the iournal is given.

[^9]
## AND COMPONENTS

## COMPPREENSIVE TEEHNICALHANDBOOK SERVIIE

The Mullard Technical Handbook has long been established as the comprehensive reference work for all those needing full data on Mullard Valves, Tubes and Semiconductors.
It has now been replanned: a volume on Electronic and Magnetic Components has been added and Volume 1A incorporated in enlarged Volumes 1 and 3.
The Handbook Service includes the supply of any or all of the loose leaf volumes listed below, plus the automatic issue of revised and supplementary sheets as and when published.


Train at home in your spare time LEARN RADIO STV.VEEVMCIIIG


Electronics is rapidly becoming a great new industry with far reaching applications into every field of modern activity.
You can learn all the essentials of this new science at home in your spare time and turn your knowledge to good purpose!
Now is your chance to set up your own business and be your own boss!

## RADIOSTRUCTOR EQUIPMENT COURSES MAKE LEARNING SO SIMPLE

You learn by building actual equipment with the big kits of components and parts which we send you. You advance by simple steps using high quality equipment and performing a whole series of interesting and instructive experi-ments-there are no complicated mathematics! Instruction manuals and our teaching staff employ the latest techniques for showing clearly how radio works in a practical and interesting manner; in fact, you really have fun whilst learning!
And you end by possessing a first-rate piece of home equipment with the full knowledge of how it operates, and how to maintain it afterwards. In fact, for those wanting help with their radio career training, to set up their own full or parttime servicing business, or the hobbyist, this new and instructional system is exactly what is needed and it can be provided at very moderate cost with payments available. Post the coupon now, for full details. There is no obligation of any kind.

\author{

- No Mathematics Easy Terms
}

Available • All Test Equipment Supplied

- Personal Tuition • Finest Equipment



## DONT

## wuFFIE

THEIUSIC

Unfair to flautists! If you stifle the input with a poor microphone, you trifle with the output from the speaker. Do the right thing by the performer and the composer, by the tape recorder and by your ear. Use the right microphone. Use an Acos microphone. An important new one has recently been added to the range.

MIC 45
Acos Mic 45 is an attractive, and


## " BELLING-LEE" NOTES

No. 19 of a series.

## Fusing, part 3

We have used the term " blowing " several times in previous notes on "Fusing" without saying exactly what is meant by this. It is a word with which nearly everyone is familiar in this context, but unless one has thought about it, it may be associated with a hazy mental picture of an instantaneous happening, often of some violence, whereas in fact it involves a cycle of events which occupies a measurable period of time. This, the " Operating Time", may be anything from a few microseconds to several minutes.

The blowing of a fuselink, then, is a process rather than a single event. Its duration depends on the magnitude of the overload, and also on the characteristics of the fuselink. It may be a relatively simple affair, or complex, but in either case there are two clearly defined stages involved. The first is the "cooking up" stage, during which the temperature rises to the point of fusion, followed by the circuit clearing stage; these are generally known as the "Pre-arcing ", and the "Arcing" stage, respectively. The latter is virtually instantaneous if the circuit conditions preclude the maintenance of an arc, and in any case its duration is negligible by comparison if the prearcing stage lasts longer than 5 minutes. Its importance, however, is by no means negligible.

Fuselink performance is often expressed as a graph, where steady fusing current is plotted against operating time. Due to variations in materials, and manufacture, the operating time at a given value of current is subject to some degree of tolerance, and therefore it is customary to draw the curve in the form of an envelope whose upper and lower boundaries define the maximum permissible variations. The performance of any individual specimen will be somewhere on a straight line crossing the enveloped area from one boundary to the other. In this connection it is important to make sure that the context of the graph is appreciated, i.e., the mounting conditions, the ambient temperature and whether the performance is given in terms of a suddenly applied current, or as an overload following a period of normal running and, if so, what this was. Such curves, however, give no information about the performance under conditions of varying current nor the ability of a fuselink to withstand harmless surges, matters which we must leave for attention on some future occasion.

Advertisement of BELLING \& LEE LTD. Great Cambridge Road, Enfield, Middx.


The "Belling-Lee" laboratories include a fully equipped Type Test Department where, for example, mass spectrometry is employed for measuring the efficiency of seals. This is the latest technique which enables minute traces of a selected gas to be detected and accurately assessed in a matter of minutes, and renders the tracing of leakage rates as low as $\mathrm{IO}^{-6}$ lusec under a pressure differential of one atmosphere a workaday routine matter. With relatively little extra difficulty, leakage rates down to $\mathrm{I}^{-\mathbf{1 0}}$ lusec can be measured, which represents a leakage of approximately I c.c. in 250,000 years! The lusec, or litre, micron per second, is defined as the flow of as much gas as would produce a pressure increase of $I$ micron (.oon mm.) of mercury per second in a I litre container, at $0^{\circ} \mathrm{C}$.

TERMINALS • PLUGS \& SOCKETS GLASS SEALS

## CIRCUIT PROTECTION DEVICES

INTERFERENCE FILTERS • RECEIVING AERIALS

Most "Belling Lee" products are covered by potents or registered designs or applications.


## G.E.C. switching transistors for high speed operation!

One hundred and twenty millimicrosecondsthat is the rise time which can be obtained using G.E.C. germanium p-n-p transistors.
Peak collector current rating is 150 mA , and maximum junction operating temperature $85^{\circ} \mathrm{C}$.

The GET 871, GET 872 and the new GET 875 are designed for use in computers, scaling units, counting circuits, shift registers, waveform generators and similar applications.
These transistors are immediately available from stock.

| Type | Maximum Ratings |  |  |  |  | $\begin{aligned} & \text { Minimum } \\ & h_{F E} \\ & V_{c e}=-I V \\ & l_{c}=25 \mathrm{~mA} \end{aligned}$ | Minimum fa (Mc/s)$\begin{aligned} V_{c b} & =-6 V \\ I_{e} & =1 \mathrm{~mA} \end{aligned}$ | Maximum <br> $V_{e b}$ <br> $(\mathrm{mV})$ Maximum <br> $V_{\text {ee }}(\mathrm{sat})$ <br> $(\mathrm{mV})$ <br> $\mathrm{I}_{\mathrm{c}}=25 \mathrm{~mA}$, $I_{b}=0.83 \mathrm{~mA}$ |  | Typical Transient Response (for circuit details, see data sheet) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{v} \mathrm{cb}(\mathrm{pk})$ (V) | $\begin{aligned} & i_{c(p k)} \\ & (\mathrm{mA}) \end{aligned}$ | $T_{i(w)}$ <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $P_{t(\text { max }}{ }^{(m W)}$ |  |  |  |  |  |  |  |
|  |  |  |  | $35^{\circ} \mathrm{C}$ | $55^{\circ} \mathrm{C}$ |  |  |  |  | $\begin{gathered} \mathrm{t}_{\mathrm{r}} \\ (\mu \mathrm{~s}) \end{gathered}$ | $\begin{gathered} \mathrm{t}_{\mathrm{f}} \\ (\mu \mathrm{~s}) \end{gathered}$ |
| GET871 |  |  |  |  |  | 20 | 3 | 400 | 250 | 0.18 | 0.07 |
| GET872 | $-15$ | 150 | 85 | 75 | 45 | 30 | 7 | 400 | 250 | $0: 14$ | 0.04 |
| GET875 |  |  |  |  |  | 50 | 15 | 400 | 250 | 0.12 | 0.04 |

Fuller information is available on request. G E.C. also makes a range of high-speed switching diodes, described in Semiconductor Application Report No. 14

## SEMICONDUCTORS

THE GENERAL ELECTRIC COMPANY LIMITED, SEMICONDUCTOR DIVISION SCHOOL STREET, HAZEL GROVE, STOCKPORT, CHESHIRE
Telephone: Stepping Hill 3811, or, for London area. phone TEMple Bar 8000. Ext. 10

# Aspects of design 

This is the twenty-fifth of a series of special features dealing with advanced problems in television and radio circuit design to be published by The Ediswan Mazda Applications Laboratory. We will be pleased to deal with any questions arising from this or other articles, the twenty-sixth of which will appear in the September 1960 issue.

## 25

## FM RATIO DETECTOR (PART 2)

The circuit and coil details of a ratio detector circuit, designed to work with a 6LD12 or 10LD12 triple diode triode valve, are given in Figs. 1 and 2. A standard intermediate frequency of $10.7 \mathrm{Mc} / \mathrm{s}$ is used, and circuit adjustments are provided for obtaining the best possible AM rejection ratio.

The coil assembly shows provision for the $470 \mathrm{kc} / \mathrm{s}$. IF transformer which is required in a combined $A M / F M$ receiver. In an FM receiver only, these details are of course omitted.

The following are important features of the design:-

1. A capacitive centre tap is used in the secondary circuit for making connection to the tertiary winding L3. This avoids the use of a bifilar winding, since a physical centre tap (point 7) is good enough for providing the audio take off connection.
2. The tertiary winding L3 is tightly coupled to L2 which forms part of the tuned primary circuit but is only very loosely coupled to the remainder of the primary winding L1. By adjustment of the dust iron cores in coils L1 and L2, the coupling of the tertiary winding L3 to the primary can be varied, and hence the magnitude of the tertiary voltage over a limited range. Since the ratio of tertiary voltage to secondary voltage has a pronounced effect on the balanced component of any unwanted amplitude modulation, this adjustment enables the effect of variations in the circuit to be reduced to a minimum. By making use of the dust iron tuning slugs which are available with hexagonal holes, all three coils can be mounted on the same former, and the central tuning slug which controls the inductance L2 still adjusted.
3. The capacitor Cl in series with R1 mainly affects the amount of unbalanced $A M$ rejection in the circuit, and this is made adjustable to provide the optimum result.
4. The value of R1 quoted is the best value for use in the circuit tested, but differences in the construction or layout of the ratio detector transformer may require a different value for optimum results. Once the optimum value has been determined in any given layout, a fixed value may be used.

## ALIGNMENT PROCEDURE

As both the tertiary inductance and the trimmer Cl affect the unwanted audio output, these controls are interdependent.

The dust iron core at the centre of the former should be initially set to lie midway between the windings L1 and L2. A signal of about 100 mV at $10.7 \mathrm{Mc} / \mathrm{s}$ should be injected into the grid of the preceding pentode valve and the dust iron slug in L 1 adjusted for maximum voltage across the stabilising capacitor $\mathbf{C} 2$.

Using a high resistance centre zero d.c. voltmeter the secondary dust iron slug in L4 is adjusted to give zero voltage between the audio take off point and the centre of the diode load which can be provided by using two equal resistors in series for the load, or by connecting two equal high value resistors across it during measurement.
FIG. I. F.M. RATIO DETECTOR IN COMBINED AM-FM RECEIVER


Using simultaneous amplitude and frequency modulation, the trimmer capacitor Cl is adjusted for minimum AM output (as described in Part 1). The centre iron dust slug is now moved towards the winding L 2 in steps, measuring the $A M$ rejection ratio at each step (after re-adjusting the primary and secondary tuning and the trimmer setting as required), until the required, or a maximum, value of AM rejection ratio is obtained.

The adjustment of the centre core mainly corrects for variation between transformers, and setting this for an optimum requires the use of simultaneous amplitude and frequency modulation. Once set it need not be re-adjusted if a valve is changed. Optimum AM rejection is then obtained by adjustment of the trimmer only. Since the residual. AM is mainly due to the unbalanced component and this is not greatly affected by tuning, it can readily be measured by the sequential frequency and amplitude modulation method which is more simply applied.

## TYPICAI PERFORMANCE FIGURES

All inputs refer to grid of valve preceding the ratio detector.
Response curve-Substantially linear to $\pm 100 \mathrm{kc} / \mathrm{s}$, with peaks at approximately $\pm 150 \mathrm{kc} / \mathrm{s}$.
AM Rejection- $<24 \mathrm{~dB}$ for inputs over 35 mV . $>35 \mathrm{~dB}$ for inputs between 57 and 380 mV .
$>35 \mathrm{~dB}$ over $50 \mathrm{kc} / \mathrm{s}$ tuning range using 100 mV input.
Above apply for AM frequencies between 250 and 6000 c.p.s.
Total Harmonic Distortion-< $2 \frac{1}{2} \%$ at $75 \mathrm{kc} / \mathrm{s}$ deviation for $\pm 30 \mathrm{kc} / \mathrm{s}$ detuning.
Diode cut-off-Circuit handles downward amplitude modulation up to $45 \%$ at 100 mV input.

## WINDING DETALLS

OF F.M. COILS

Dimensions
a- 9.5 mm
b- 14 mm
c- 4 mm


FIG. 2.
BASE PIN CONNECTIONS
VIEWED FROM UNDERNEATH

L1-47 turns 38 SWG ESS. Start to pin 4, Enish to pin 5.
L2-12 turns 38 SWG ESS. Start to pin 5, finish to pin 3.
L3-121 turns 38 SWG ESS (wound on $1 \frac{1}{2}$ turns .002' acetate film over L2). Start to the junction of the two 100 pF capacitors. Finish to pin 1.
L4-22 turns of 38 SWG ESS, centre tapped. Start to pin 6, centre tap to pin 7, finish to pin 8.
100 pF capacitors are in series between pins 6 and 8 .
5 pF capacitor between pins 3 and 4.
Former is polystyrene $0.3^{*}$ O.D. threaded to take iron dust cores 6 mm . dia. $\times 12.5 \mathrm{~mm}$. long, 0.75 mm . thread, with hexagonal trimming holes.
Can be $1 \frac{5^{\prime \prime}}{8^{\prime \prime}}$ long $\times 1^{\prime \prime}$ wide $\times 2 \frac{11^{\circ}}{}$ high.
Associated Electrical Industries Ltd
Radlo and Electronic Components Division
Technical Service Department
155 Charing Cross Road, London, W.C. 2

## EDISWAN MAZDA 6LD12

The 6LD12 is a Triple Diode Triode intended for use in FM and $A M / F M$ a.c. mains receivers. The first diode is for $A M$ detection with the second and third diodes designed for use as the FM ratio detector. The high $\mu$ triode is for audio amplification.

Heater Voltage (volts) $\quad V_{h} 6.3$
Heater Current (amps) $\mathrm{I}_{\mathrm{h}} 0.45$

## Triode Section


Diode Sections
$\begin{array}{llllr}\text { Peak Inverse Voltage (all sections) volts } & \text { PIV }_{(\text {max })} & 350 \\ \text { Anode Current. } & \text { Section } 1(\mathrm{~mA}) & . . & I_{a^{\prime}}(\mathrm{d}) & 1 \\ \text { Anode Current. } & \text { Section } 2(\mathrm{~mA}) & . . & I_{a^{\prime \prime}}(\mathrm{d}) & 10\end{array}$ 10
Anode Current. Section 3 (mA) .. I Ia" $(a)$

| Anode Voltage (volts) $\ldots \ldots \ldots \ldots \ldots$ | $\mathrm{V}_{\mathrm{a}(\ell)}$ | 100 |
| :--- | :--- | :--- |
| Grid Voltage (volts) |  |  |

Anode Current (mA) $\cdots \cdots \ldots \ldots . . I_{a(t)} 0.8$
Mutual Conductance (mA/V) ...... $g_{m} 1.45$
Amplification Factor. ................ us $\mu$ 1.45
70

Ratio Anode Resistance ( $\mathrm{o} \mathrm{V}_{\mathrm{s}} / \mathrm{di}_{\mathrm{B}}$ )
Diode 2 to Diode 3 ........... $\quad r_{a}{ }^{\prime \prime} d / r_{a}{ }^{\prime \prime \prime}{ }^{\prime} d \quad 0.65$ to
INTER-ELECTRODE CAPACITANCES $(p F)_{\star \star}{ }_{\star}$
Triode Section Anode/Earth
Grid/Earth
Grid/Anode
Diode Sections

| Cathode, Diode 2 /all | $\mathrm{C}_{\mathbf{k}}$ | 4.9 | 5.3 | 6.4 |
| :---: | :---: | :---: | :---: | :---: |
| Anode Diode 3/all | $C^{\prime}{ }^{\prime \prime \prime}{ }^{\text {d }}$-ald | 5.1 | 5.6 | '6.6 |
| Anode Diode 1/h, pin 7 | $\mathrm{Ca}_{\text {a }} \mathrm{d}-\mathrm{kt}$. $\mathrm{k}^{\prime} \mathrm{d}$ | 0.8 | 1.1 | 1.7 |
| Anode Diode 2/h, pin 7, Cathode Diode 2 |  | 4.8 | 5.0 | 5.4 |

Cathode Diode 2
$c_{a}{ }^{\prime \prime d-k \prime d, ~ k t . ~} 4.8 \quad 5.0$
5.4
$k^{\prime} d, k^{\prime \prime \prime}{ }^{\prime} d$. $h$ s
Cross Capacitances
$\begin{array}{lllll}\text { Anode/Anode Diode } 1 & \mathrm{C}_{\text {at- }} \text { a'd }^{\prime} \mathrm{d} & 0.08 & 0.09 & 0.10\end{array}$
$\begin{array}{llllll}\text { Anode/Anode Diode } 3 & \mathrm{C}_{\text {at-a""d }} & 0.05 & 0.11 & 0.22\end{array}$
$\begin{array}{llllll}\text { Anode/Cathode Diode } 2 & \mathrm{c}_{\text {at }}-\mathrm{k}^{\prime \prime}{ }^{\prime}{ }^{\text {An }} & 0.006 & 0.011 & 0.016\end{array}$
$\begin{array}{llllll}\text { Grid/Anode Diode } 1 & c_{\text {g- }}{ }^{\prime} d & 0.06 & 0.07 & 0.10\end{array}$
$\begin{array}{llllll}\text { Grid/Anode Diode } 3 & \mathrm{c}_{\mathrm{g}-\mathrm{a}} \mathrm{a}^{\prime \prime \prime} \mathrm{d} & 0.012 & 0.021 & 0.035 \\ \text { Grid/Cathode Diode } 2 & \mathrm{c}_{\mathrm{g}-\mathrm{k}} / \mathrm{dd} & 0.0025 & 0.0044 & 0.0066\end{array}$
*Inter-electrode capacitance in fully shielded socket, without can.
**Inter-electrode capacitance with holder balanced out (using holder quoted below).
***Total inter-electrode capacitance including B9A nylon phenolic holder without skirt or radial shield (AEI Clix holder Type VH19/902).

TYPICAL OPERATING CONDITIONS AS RESISTANCE CAPACITY COUPLED AF AMPLIFIER

## (Grid Current Bias)

Supply Voltage (volts) .... Va(b) 170170170200200200 Anode Load Resistance (ks).. Rs $47100 \quad 220 \quad 47100220$ Grid Resistor (Grid

Current Bias) ( $\mathrm{M} \Omega$ )
$\begin{array}{lllllll}\mathbf{R}_{\mathrm{g} 1} & 10 & 10 & 10 & 10 & 10 & 10\end{array}$
Anode Current (mA)

| I | 1.25 | 0.82 | 0.46 | 1.6 | 1.0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Grid Resistor of following valve (k $\Omega$ ) 150330680150330680
Voltage Amplification .............. $32 \begin{array}{lllllll} & 32 & 42 & 51 & 34 & 44 & 53\end{array}$ Total Distortion for
$\begin{array}{lllllllll}3 \text { volts (rms) output (\%) . ....... } & 0.6 & 0.5 & 0.4 & 0.5 & 0.4 & 0.3\end{array}$
Total Distortion for
$\begin{array}{lllllllll}5 \text { volts (rms) output (\%) } & \ldots & \ldots & 1.1 & 0.8 & 0.5 & 0.9 & 0.6 & 0.4\end{array}$
Total Distortion for
$\begin{array}{lllllllll}8 \text { volts (rms) output (\%) . . . . . . } & 2.0 & 1.3 & 1.1 & 1.5 & 1.0 & 0.9\end{array}$
Maximum Dimensions (mm)

| Overall Length | 67.5 |
| :--- | :--- |
| Seated Height | 60.5 |
| Diameter | 22.2 |

Seared Lengt
Diameter
 Tel: GERrard 8650. Grams: Sleswan, Westcent, London


Characteristic curves of Ediswan Mazda Valve Type 6LD12



## Automatic <br> tuning

The AD 712 is the most advanced radio compass in production today. Only the AD 712 has automatic crystal controlled tuning, and decade switches make frequency selection as simple as V.H.F. No fine tuning is required and there are no meters to be read.
The AD 712 uses a ferrite cored fixed loop aerial which has no moving parts and is considerably more sensitive than any other ADF loop in use today.

WITHE THE

# MARCONI <br> AIRPORT AND AIRCRAFT RADIO SYSTEMS 



## introduce

a range of

VHF/FM
Broadcasting

## Equipment

A new range of VHF/FM broadcasting equipment developed to meet the ever growing demand for high quality equipment at really competitive prices. Redifon can engineer, plan and install complete broadcasting schemes anywhere in the world.


50 W TRANSMITTER

## we can get

## you out of

## a wide band

## problem

And if you're in a rage over rectifiers or in a diode of despair-don't worry. We'll get you out of that too. (Why, we've made some of our customers actually beam at tetrodes!) It's because we've experienced over 40 years bottling up valves-Tx, Rx, rf, audio, hard, soft, gov't., special-that problems like this no longer hold any terrors for us. Also, we've everything on the research and production side you could possibly wish for. So the next time you're enveloped in a valve problem, let us know.

valves are obtainable from

## THE M-O VALVE CO. LTD

BROOK GREEN HAMMERSMITH LONDON. W.G.


## TYPE 201 the new

 compact camera channelA new vidicon camera channel, which offers considerable economy of operation, and has been specially designed to meet the needs of broadcasting organisations throughout the world, has now been added to the E.M.I. range.
Known as the Type 201, this channel has been found particularly suitable for interviews and live news programmes where the use in the studio of a larger Image Orthicon or CPS camera is not justified. It is also of great value as a fill-in camera for outside broadcasts under suitable lighting conditions. The channel is designed for use with E.M.I. vidicon tube 10667 S or equivalents, such as the R.C.A. vidicon 6326.
The complete channel comprises the camera Type 201 and Camera Control Unit Type 211. The principal controls on the Control Unit
can be operated remotely using a Remote Control Panel Type 216. Unattended operation of the camera can be achieved by fitting a motorised variable focus lens and mounting the camera on the new E.M.I. remotely controlled Pan and Tilt Unit.
The same channel is used in the new Telecine Equipment Type 404.

## FEATURES INCLUDE :

* Four lens turret with precise detent indexing
* Compactness and low weight. Built-in 7" electronic viewfinder
* Two isolated composite or non-composite outputs
* Complete accessibility provided by use of removable printed wiring sub-units
* Operates by simple change of plug connectors on any of the following systems :

625 lines to CCIR/OIR standards
525 lines to IRE/EIA specifications
405 lines to BBC TV80 specification


## $120 / 200$ WATT AMPLIFIER



Will deliver 120 watts continuous signal and over 200 watts peak Audio. It is completely stable with any type of load and may be used to drive motors or other devices to over 120 watts at frequencies from 20,000 down to 30 cps in standard form or other frequencies to order. The distortion is less than $0.2 \%$ and the noise level -95 dB . A floating series parallel output is provided for $100-120 \mathrm{~V}$. or $200-250 \mathrm{~V}$. and this cool running amplifier occupies $12 \frac{1}{4}$ inches of standard rack space by 11 inches deep. Weight 60 lb .


Also 3-way mixers and Peak Programme Meters.
4 -way mixers.
12-way mixers, and $2 \times 5$-way stereo mixers with outputs for echo chambers, etc. Details on request.

## NEW Marooni 10 KW Band 1 Television Transmitter

## (an wam



## Make a wise choice . . .

buy $\| \mathbb{I E} \mathbb{A}$. . . the first name in High Fidelity

Britain's Best
Hi-Fi Equipment . . .

- Britain's Best Selling

Hi-Fi Equipment
Britain's Best Value in
Hi-Fi Equipment .

For over twenty five years we have devoted our activit es exclusively to the design and manufacture of $\mathbf{H i}-\mathrm{Fi}$ equipment. We were the first manufacturers in the world to design and market amplifiers with a distortion content as low as $0.1 \%$.

This technical lead resulted in a demand for LEAK amplifiers from professional engineers in the B.B.C. (over 500 delivered), the South African Broadcasting Corporation (600), ITV and many other Commonwealth and Overseas broadcasting and TV systems, who use them for transmitting and/or monitoring broadcasts. Also, many gramophone records are cut via LEAK Amplifiers. This acceptance by professional engineers led to a demand from music-lovers throughout the world.

The concentrating of our resources exclusively on Hi-Fi equipment and our world-w:de market enables us to offer the best equipment at the lowest prices.

## The New "Varislope Stereo"

The New. "Varislope Stereo " pre-amplifier incorporates facilities which make it the most comprehensive preamplifier presently available.

Price £25



## Ask your dealer for a Demonstration

H. J. LEAK \& CO. LTD.<br>BRUNEL ROAD, WESTWAY FACTORY ESTATE, LONDON, W.3.<br>Telephone: SHEpherds Bush II73<br>Telegrams: SINUSOIDAL, EALUX, LONDON

Please send detalls of your equipment including your new "Varislope Stereo " unit to:-

Name
Address. $\qquad$
$\qquad$

## Arcolectric

## SWITCHES \& SIGNAL LAMPS

T.225: Miniature Slide Switch
D.P. change-over switch
S.L. 166 : Very small low cost mains neon indicator
T.280: Sensitive Snap Action Switch Popular switch for tape recorders T.626: Double pole 3-AMP switch with tags to fit printed circuit boards


T 626

## Write for Catalogue No. 132

## ARCOLECTRIC SW•TCHESMLTD

CENTRAL AVENUE, WEST MOLESEY, SURREY. TEL.: MOLESEY 4336



Brayhead TV Turret Tuner, for $33 / 38 \mathrm{Mc} / \mathrm{s}$. I.F., non
mally $79 / 6$. Sale price $88 / 6$, plun $3 / 6$ poat and ins.
Ditto, but for $16 / 19 \mathrm{Mc} / \mathrm{s}$. I.F., normally 79/6. Sa price 69/6, plus $3 / 6$ pcst and ins.
Output Transiormer, fixed ratio for pentode, normaily 6/6. Sale price 4/6, plus 1 /.
Valves, old types FCs-DDT4, etc. Sale price hal carrent inst price.
14in. TV Mask, grey plastic, normally $10 \%$-. Sale price 7/6. plus $1 / 6$ pest and ins.
17in. TV Mask, grey plastic, normally 12/-. Sale price $9 /-$, plis $1 / 6$ post and ins.
L2v 5 amp . Car Battery Charger, variable charge rate, In stove enamelled case, with meter,
250-0-250 B0/80 mA. Mains Transform
200-0-250 80/80 mA. Mains Transformer, with 6.3 ~ Alament winding, hali-sh rouded dropthrongh, standar eplacement in many receivers, made to sell at 19/6. ale price $12 / 6$, plus $2 / 6$ pont and ins.
Ditto, but with additional 5 v. winding for, aeparate
rectificre, made to sell at $21 /$. Sale price $13 / 6$, plus rectificrs, made to sell at $21 /$. Sale price $13 / 6$, plus 2/6.
Transistor A.F. Transtormer or driver, made to sell at $15 \%$. Sale price $8 / 6$.
Sub-miniature electrolytic Condensers, for transintor

 $30 \mathrm{mid} ., 3 \mathrm{~m}$. All normally $3 /-$ each. Bale price $1 / 6$. Transistor Ferrite Rod Abrial, with medium and long ave colls with circuit, normally $12 / 6$. Sale price $7 / 6$ Oscillator Coil and set of 3 I.F. transformers for transistor set, with circuit, normally 35/-. Bale price 23/6. TV Rectifer, RM5 equivalent, normally $25 /$-. Sale price 12/6.
Auto Transformer, totally enclosed primary 200-250 econdary $110-120$ v. 150 w . normally 27/6. Sale price 7/6.
I.F. Coils, standard size by Weymouth 465 KC , dust cores, normally 12/6. Bale price $6 / 6$ per pair
Breakdown Unil. Over 20 Ibs . of useful spares including metal rectifiers, transformers, pot meters, switches, valse holders, resiators, colls, coil formers, knobs, pye plugs. sockets, slow-motion drives, trimmers, etc. ic. Must have cost $\varepsilon 100$ each. Slightly soiled but mosi parts usable, 15/-. plua $7 / 8$ carriage
P.M. Speaker, 6$\} \mathrm{in}$. with output transformer. Normally 30/-. Sale price 17/6.
Miniature Microphones. Dynamic Ainericain. Beautifully made. Bale price $2 /-$. .
Pilot Bulbs. $3-5$ volt. 0.3 amp . $3 / 6$ a boz of 25.
Transistor Set Case with chrome handle, tuner knob ransistor Set Case
14in. T.V. Cabinet, modern desigti. Cost 24 to make Bele price $9 / 6$. plus $3 / 6$ carrlage.
stiok Mierophone, Cosmocord 39/1, normally E3/3/3ale Price 35/-,
Set of Four TV Parts, acan coils, line E.H.T. frame autput and width control. Normally 57/6. Sale price 39/6. plus $2 / 6$.
200 Service Sheets, for modern TV aets, normally 01 - Sale price $30 /$
Windsor Cabinet and Chassis, comprises a veneered and polished cablinet, size $14 \times 17 \times 04 \mathrm{ln}$., and prepare metal chaseis with glana dial to it, normally $\mathrm{E} 3 / 15 /$.
sale price $29 / 6$. plus $5 / \%$.

Charging Switchboard, offered at about $1 / 20$ th of original cost. Ex government, contains three revers current relays, one voltmeter, one mains ammeter, wo secondary ammeters and three variable resigtors n original cases. sale price $£ 3 / 15$
Cine Camera, 16 mm . trotorised ( 24 v . for 15 frames per second. Bale price $£ 5 / 10 /$ - plus $3 / 6$ carriage
Dinghy Mnst, tubular aluminium, extends from 15 in . o 9 it. Sale price $4 / 6$, plus $1 / 6 \mathrm{p}$.
Insulated Terminal Heads, always useful, bargain at our normal price of $2 /$ - dozen. Sale price $1 / 6$ dozen. plus 1/- poet.
Magneto Generator (hand), as uned in telephones Sale price $7 / 6$, plus $1 / 6$ postage.

## ELECTRONIC


thing needed down to last nut and boit. Only 22/6, plus $1 / 6$ p. \& p. Batteries 10d. extra. Fuil con structional data Included in above price or separately 1/6. Money refunded if not fuily up to your expec-
tations.

Remote Control Contactor, double pole, rated for 30 ampe, D.C., suitable much higher current on A.C' Many applicationa, remote switching for motors, banke of lamps, ete. Probahly cost $\frac{4}{}$ originally. sale price 27/6, plus 3/6.
Push-Pall Translormers, mput and output, midget, potted. Sale price $5 /-$ pair, plus $1 / 6$. P.O. Type 3000 Relays, 2,000 ohm coll, 6 contacts
7/6. 4 contacts $6 / 6.2$ contacts $5 / 6$, plus postage $1 /$ Variable Rheostats, heavy duty sllder resintor rated at 25 amps., Ideal for dimmer clrcuits, etc. Sale price 7/6, plua 6d. poatage
Versatile Wire, single atrand 18 gauge, with p.v.c covering. New 1 -mile on drum. Sale price 6/6, plus $3 / 6$ carriage.

Where the value of your order for small articles exceeds $£ 2$ theae are post free. Under $£ 2$ add sufficient to cover and where carrlage or postage specifically mentioned, add this in any case.

Wire Jointer (welder for 28 gauge or thinner), in bakelite case with trigger switch, works off step-dowt trans former. Bale price 2/6, plus 9d. postage.
B7a Eolder, with skirt for screening can. Normally 10d. Sale price 6d. or $5 / 6$ doz.
Phillips Trimmer, $0-30 \mathrm{pF}$. normally $1 / 9$. Sale price 8d. of 7/6 dozen.
F.M. Tuner (Radio Constrictor Circult), normally £12/I0/-. Sale price $£ 6$ !19/6. Note: These are made up but may need attention. - Plus $3 / 6$ post and ins.
Metal Reotiflers, 250 v. $60-80 \mathrm{~mA}$., Ideal for maina set or instrument, or to replace that expensive vaive. 8sle price $3 / 6$.
Reotiter Bargain, selenium rectiffer 36 v. 9 amp., eanily rebullt into 6 fuil-wave charger rectifers, suitable or $12 v$, battery at 3 amps. Sale price $15 /=$, pla ,
Malti-speed Motor with gearbox, works on A.C./D.C mains, gives any speed from 1 r.p.m. Bale price $17 / 6$ us 2/6 postage.
Navigation Compass, in carrying case but less fluid may be slightly damaged. Sale price $5 / 9$, plua $2 / f$ thotare.
5 amp. 12 v . Iull-wave Cbarger Rectifer, normal price 17/6. Sale price $10 / \mathrm{F}$, plus $1 / 6$ post and Ins.
Westinghouse Meters, $0-500 \mathrm{~mA} ., 0-250 \mathrm{~mA} ., 0-150$ $\mathrm{mA} . .0-100 \mathrm{~mA} .0-50 \mathrm{~mA}$., D.C. 0-1.5 kง.., $0-2.5 \mathrm{k}$ 0-15 v. A.C. Alí $15 /$ each. plus $2 /$-postage.

## Transistorised Stethoscope

 Trice signal right through: radio, t.v., Tape amplifier, m- -A , etc. $\rightarrow$ almplest way to fanlf find-carry it ike a fountain penall parta including transistor. barrel crystal, everything ezcent battery. $12 / 6$ plus 1/6, battery fid.-data tneluded or separately fid.$1 / 6$.

Moving Coll Meter, 2 in movement 0.750 mieroAmp Sale price $19 / 6$. $0-30 \mathrm{~m} 1 \mathrm{~A}$., $15 / \mathrm{F}$, plus $2 /$ Low Resistance Headphones, good British make. Bale price 6/-. Plus $1 / 6$.
Chest Mierophone, cxcellent American make, with adjustable mouthpiece, 6/6. plus 1/6.
Throat Microphone, excellent American make, 6/6, plus 1/6 post.
American Likhtwelsht Eeadphones, Type H830, Bale price 17/6, plus $1 / 6$ post
Regulator Resistors, slider type, 11 ohm, 15/-, 3 ohm 12/6. 1 ohm, 2/6, phis $2 /$-. post Converter 12, 24 v. D.C. Bale price $32 / 6$
E.H.T. TransIormer, standard majns input, 3 second sries, heary duty pintted trannformer in cast case normal price $20 /$. Siale price $15 \%$, plus $3 / 8$ post. Suppressor Condenser, stops drills, etc. Intefering with radio or television. Simple instructions iveluded,
Bi-Metsl Contact Strip for making thermatat, $1 / 9$ 250 v . 4 gmp . Rectifer, 7/6.
3 -Phase Contactor, $1 \% / 6$.
Filament Translormer, 6.3 v. 11 amps., uormatly 8/6. 8ale price 6/6, plus 1/-poat.
Filament Transformer, 6.3 v. 2 amp., normally $10 / 6$ gale price 8/6, plus $1 /$. post.
80 ohm Coax, low loss expanded polythene, normally
Midget 3 in. P.M. Loudspeaker, for transistor set. 3
ohm coil, normally $22 / 6$. Eale price $15 /-$, plus $1 / 6$ post ohm coil, normally $22 / 6$. Bale price $15 /$-, plus $1 / 6$ post Midget 208 pF . two-gong Tuning Condenter, for transistor set, normally $15 /-$. Sale price $9 /=$, plus $1 /=$ pont Push-Pull Output Transformer, for transiators OV72, etc., made to sell at $15 /-$. Sale price $8 / 6$, plus $1 /$ poet.
Connecting Wire, 24 gauge, tuned copper, P.V.C.
tusulated. Four 100 ft . coils, different colours, Sale price 8/-
125 watt Choke for fluoreacent tube, 22/-
Superhet 7 v. 5 Waveband Chassis. Unused. Lesp valves and power pack. 8lightly solled 75/\%. Coll pack with twice as much Carriage and Insurance $7 / 6$ Rectitter Unit, for working D.C. instrumenta, motorised equipment, etc., from A.C. malns. Input 200-240 V . Iron Dust Aerial Rod, $8 \times 5 / 16 \mathrm{in}$. dia., $2 / 6$ each. Westinahouse Rectifers, type H4, 2/9 each.
Geiger Connter Tube, 20th Century. No. G25 with geiger counter. Sale price 2\%/6.
Twin-twisted Lighting Flez equivalent 1430, $12 / 6$ per 100 yd . coil. Carriage $1 / 6$.
3029 Twin T,R.S. $37 / 6$ per 100 yd . coll. Carriage 8/6. 3028 Single T.R.S. 20/- per 100 yd . coil. Carriage $2 / 6$ Transistor A.F. equivalent to red spot. Bale price $4 / 6$ ling TV Cabinet.
Pocket 6 Transistor Spt Parcel, as recently advertised, 29/6. Sale price 22/8r with full instractions, or instructions only $1 / 6$.
Sniverscope, "Cats Eye," for seeing in the dark Will work burglar alarms, counting circults, etc. \$ale price $4 /-$, plus $1 /-$ post.
Telenhone Handset, sonnd powered, just joln two tagether with a pair of wirem and yon have telephonic commumication. ale price 25/-, plus 3/- port and ins Ex R.N. Sound-powered Telephone, complete with sounder. Sale prlce $49 / 6$ each.
$12-24$ \%. D.C. Converter. Sale price 32ia,
R.F. 25 Tuner Onilt, mmplete, new condition, gale price $8 / 6$ plus $2 / 6$ post.
Stud Switch, heary duty, 30 amp . contacta, for dimmer, chnrger, regulator, etc. Sale price $7 / 6$.
0.0005 Twin Gank tuning condensers, 5/9, post iree
 Powertul Blower, with motor, 24 v., D,C., hut can be Poperated of mains with rectifier. $15 /=$, post and operaled $2 /$-.
pack ing
200 200 watt Step Down Translorm
vice veraa. 15/a, carriage 3/6.
Cathode Ray Jrer V.F.R. sif replaces V.C.B 97 $8 / 6$ each, carriage" $2 / 6$.
10-core Flezible Cable, 230 \%. Insulation. Price 1/6 per yard.
7-core Flexible Cable, 230 v . insulation. Price 10 d . per yard.
post orders are dealt with from Eastbourne, so for prompt attention please post your orders ' 066 Grove Road,
Easthourne, marked Department 2. Callers may use any one of the Companies below :

## Electronics (Croydon) Ltd. <br> 266 London Road, Croydon. <br> Phone: CRO. 6558. <br> Half day, Wednesday.

Electronics (Finsbury
Park), Ltd.
29 Stroud Green Road
Finsbury Park N.4.
Phone: ARChway 1049
Half day, Thursday.

Electronics (Manor Park) Ltd. Electronics (Ruislip) Ltd.
520 High Street North, Manor Park, E. 12.
Phone: ILford 1011.
Half day, Thursday.

42-46 Windmill Hill,
Ruislip, Middx.
Phone: RUISLIP 5780, Half day, Wednesday

## hats off to

## SIMETM <br> GILIOON RECTIFIERS

First again!

## Complete range of TMPE AP-RONED

Medium Power Top Hat

## STMETR

"G" Series Rectifiers,
which is the range from which these Type Approved devices have been developed, offer high temperature operation -250 mA , at $150^{\circ} \mathrm{C}$ up to 600 P.I.V.
-and high voltage operation. up to 1000 P.I.V.
-and are available from stock

## Plessey

## COMPONENTS GROUP

Semimetals Division
The Plessey Company Limited
Woodburcote Way Towcester Northants
Telephone: Towcester 312
Overseas Sales Organisation
Plessey International Limited IIford Essex
Telephone: Ilford 3040

# DOUBLE ENDED STAINLESS SHEEL VACUUM OVENS 



* Made throughout in polished stainless steel.
$\star$ Single action door openings.
* Rectangular with shelf spacings to suit.
* Double ended controls.
* Electrical interlocking of air inlet and isolation valves.
* Outer cover hermetically sealed.
$\star$ Temperature range $0^{\circ}-300^{\circ} \mathrm{C}$ or equivalent $F$.
* Temperature Control: Normal $\pm 7 \frac{1}{2}^{\circ} \mathrm{C}$. Special $\pm \mathrm{IC}$.
$\star$ Internal Spacing 7in. $\times 8$ in. $\times 18 \mathrm{in}$. (can be altered to special requirements).
* Vacuum Range: To 10-4.
* Respective Vacuum Gauges incorporated.
* Automatic air inlet valve on Backing Pump.
* Visual Indicators and fuses on all switches.
* Flanged for fitting into Dry Box.


View showing automotic interlocking of unloading compartment on glove box.

We design and manufacture Ovens to Customers' special requirements. Should you have any problems in this field our Technical Department is always willing to help you solve them.
Vacuum Ovens with temperatures of up to $600^{\circ} \mathrm{C}$ are also manufactured by us on similar lines but with Sectional Heating and Water-Cooled Ends.

WILLOW LANE, MITCHAM, SURREY
Phone: MITcham 8211 (3 lines)

## combinations of Termination

FOR FULL DETAILS AND SAMPLES

## Chapman Sterred



Elegance coupled with outstanding performance have already earned an enviable reputation for the Chapman 305 Control Unit (illustrated above) and 305 Power Amplifier.
$\star 8$ watts per channel at $0.1 \%$.
$\star$ Direct from Tape Head CCIR.
\& Any low output magnetic P/U RIAA.
太 Distortion negligible all levels.
\& Spare power for Tuner.

* Main Amplifier only $12 \times 7 \times 5$ in.
\& Separate balance control.
* Elegant in black and gold.

太 For shelf or cabinet mounting.
305 Control Unit 18 gns. Main Amp. 20 gns. Matehing FM or AM/FM Tuners available.
Full specification from your hi-fi dealer or

## CHAPMAN ULTRASONICS LTD.

Sales office 24 UPPER BROOK STREET, W.I
Telephone Hyde Park 2291

## AT LAST, FOR ONLY £1!

A really efficient Fan for use in Electronic Equipment


This is what the Electronics world has been waiting for! At extremely low cost air-stirring and extraction can be easily achieved.
Also in production we have Low-Speed Motors from 8 r.p.m. to 40 r.p.m. Price and further details on application to:
kenure, holt electronics ltd. BOYN VALLEY 'RD., MAIDENHEAD, BERKSHIRE

Telephone: Maidenhead 5331-2
WE ALSO HAVE SUB-CONTRACT FACILITIES FOR ELECTRONIC WIRING AND ARE FULLY A.I.D. APPROVED

## 00000

## ANGUS MACKENZIE

Technical Advisor

- Tape Recording and Hi-Fi Magazine'



## PERCY WILSON

Technical Editor
'The Gromophone'

## MILES HENSLOW

## Editor

'Hi-Fi News' and 'Record News'


DONALD ALDOUS
JOHN GILBERT
Technical Editor 'Music Trades Review'


The range of Stentorian loudspeakers incorporating the patented cambric cone was developed to provide reproduction that takes full advantage of the television and V.H:F. sound transmission and high fidelity recordings now available.
H.F. I216 $12^{*}$ full range

## Unit

This $12^{\prime \prime}$ P.M. Unit fitted with a highly efficient magnet assembly having a flux density of 16,000 gauss on a $1 \frac{1^{\prime \prime}}{}{ }^{\text {diameter }}$ pole.
Bass resonance 37 c.p.s. Handling capacity 15 watts in bass reflex cabinet. Frequency response, 20 c.p.s. to 16,000 c.p.s.

Price $£ 15$

MODEL H.F. 1012
$10^{\prime \prime}$ Die-cast Unit, incorporating 12,000 gauss magnet. Fitted with cambric cone and universal impedance speech coil providing instantaneous matching at $3,7.5$ and 15 ohms.
Handling capacity 10 watts. Frequency response, 30 c.p.s. to 14,000 c.p.s.

Bass resonance 35 c.p.s.
Price $£ 4.15 .0$ (inc. P.T.)

MODEL H.F. 816
8" P.M. Unit, 16,000 gauss magnet. Fitted with cambric cone, die-cast chassis and universal impedance speech coil providing in stantaneous matching at $3,7 \cdot 5$ and 15 ohms.
Handling capacity 6 watts.
Frequency response, 50 c.p.s. to 15,000 c.p.s.

Bass resonance, 63 c.p.s.
Price 66.10 .6 (inc. P.T.)
T. 10 Tweeter Unit

Speech coil impedance 15 ohms.
Response:
2,000/15,000 c.p.s.
Flux density: 14,000 gauss.
Power handling capacity:
5 watts.
Dispersion angle: $90^{\circ}$
Price E4.4.0 $^{2}$
T. 12 Tweeter Unit

Price $£ 12.12 .0$

## T. 359 Cone Tweeter

 UnitFrequency response:
3,000 c.p.s. to 15,000 c.p.s.
Overall size:
$3 \frac{1}{2}^{\prime \prime}$ dia. $\times 2^{\prime \prime}$ deep.
Voice coil impedance:
15 ohms or 5 ohms.
Power handling capacity:
15 watts when used with a 3,000 c.p.s. crossover.

Price 33/3 (inc. P.T.)

Visit us at the Radio Show Stand 69 Dem. Room 304 24th Aug. = 3rd Sept.
 ALL IN BULK PRODUCTION-TRADE ENQUIRIES INVITED
WEYMOUTH RADIO MFG. CO. LTD., CRESCENT STREET WEYMOUTH, DORSET


GRAWLEY ROAD, HORSHAM, sUSSEX. Horsham $3232 / 5$


CRAWLEY ROAD, HORSHAM, SUSSEX, Horsham 3232/5

# NEW <br>  <br> m <br> E  <br> erS 

A selection from our comprehensive range of Electronic Test Equipment and Panel Meters

NEW CONTEMPORARY METERS TAYLOR "VISTA" RANGE<br>$\star$ OPEN SCALES<br>* MODERN DESIGN<br>A completely new range of modern style Panel Meters in 2in.-6in. mouldings incorporating our well established centre pole movement of extreme robustness. Cases available in various colours: sensitivities from 5 micro amps.<br>Very competitive prices.<br>$\star$ HIGH<br>\section*{SENSITIVITY}<br>Prompt delivery:<br>prototypes-7 days quantities-4 weeks



## NEW! INEXPENSIVE! <br> HIGHLY SENSITIVE! MULTIMETER 105 A

## Outstanding Features:

$\star$ Resistance readings to 20 megohms, self contained
$\star 20,000$ o.p.v. D.C.

* Extreme Robustness
$\star$ High degree of accuracy
- 

$\star 21$ self-contained ranges
$\star 30$ KV D.C.
$\star$ Portability

## NEW MINIATURE EDGEWISE METER

* MAXIMUM

READABILITY
$\star$ MINIMUM
PANEL SPACE
$\star$ SMALL SIZE

A new miniature Edgewise Meter Accupying approximately one quarier occupying approximately with meters having panel area compared with meters having equivalent scale lengths. Transparent case provides shadowless readings and design of the moulding allows room for self-contained circuitry and components. Our cenere pole movement is incorporated, providing inherent magnetic shielding, allowing meters to be mounted in close proximity. Comparative readings can be obtained by mounting two Edgewise Meters next to each other.


Model 220. ACTUAL SIZE.

Please write for fully informative literature of TAYLOR range:
TAYLOR ELECTRICAL INSTRUMENTS LIMITED
MONTROSE AVENUE, SLOUGH, BUCKS.
Member of the METAL INDUSTRIES GROUP OF COMPANIES

## FUTOMATE



RECTIFIERS

## D G EQUIPMENT

AUTOMAT Moorside Swinton Manchester Tel: Swinton 4242-3-4


## LIGHT

in weight
EASY
to style

## HIGH

impact resistance
COSTS LESS
to produce

## EASILY FINISHED

with paint or p.v.c. foil
Fibreform mouldings are made from an exclusive material of strong cellulose fibres bonded with synthetic resins. They are strong - need no smoothing, readily take an air-dried or stove enamel finish or a bonded P.V.C.foil. Because they mould easily and accurately, we can produce quite large and complex forms at low cost.

We make television receiver cabinets and backs - clock cases - and if you examine its possibilities - your new products.
specify
Fibre Form Ltd
Garrate Mills Trewint St Earlsfield London SWI8 Wimbledon 2386/7
Midland Factory : Lower Gornal Nr. Dudley Worcs Sedgley $2766 / 7$

## Cenaran?

## SUPREME AMONG SOLDERS

Grey \& Marten make solders specifically for the Radio, Television and Electronic industries. Amalgam 'Resinact' Cored Solder with specially activated resin flux, to specification DTD 599, and B.S.441.
Amalgam P.C. Alloys for diptinning printed circuits (free service for checking analyses of metal in customers' baths).
Amalgam Fusible Alloys made in all forms, for all uses. Fully approvedA.I.D.,C.I.A.,G.P.O., I.R.C.S.C. and M.O.S.


## GREY \& MARTEN <br> ESTABLISHED 1833 <br> LTD.

CITY LEAD WORKS, SOUTHWARK BRIDGE, S.E.I
Telephone: HOP 0414 Telegrams: Amalgam, Sedist, London and at Birmingham, Manchester and Ipswich

(Dept. W.W.) 23 TOTtenham COURT RD., LONDON, W.I.
Tel.: MUSeum 3451/2

# $\star$ VISIT OUR NEW BRANCH AT 309 EDGWARE RD., W.2. TEL.: PADdington 6963 



## TAPEDECKS

 Latest BSR Monardeck. Single speed $3 \frac{1}{2}$ i.p.s. Will take 5 itin. spools. E9/19/6. P. \& P. 5/-. Collaro Studio Tape Transcriptor. 3 speeds $1 \frac{7}{5}, 3 \frac{1}{2}, 7 \frac{1}{2}$ i.p.s. 3 motors. Push-button controls. Will take 7 in . spools. 15 gns . P. \& P. $7 / 6$.Collaro Mk. 4 Tape Transcriptor. Twin track operation. 3 speeds, $3 \frac{3}{4}, 7 \frac{1}{2}, 15$ i.p.s. Will take 7 in . spools. E17/19/6. P. \& P. 7/6.
Tape Recorder Amplifier, specially designed to match the Collaro Studio Tape Deck. $£ 12 / 17 / 6$. P. \& P. $4 /$-. Size $11 \frac{1}{4} \times 5 \times 3$ in., uses 3 valves, magic eye, contact cooled metal rectifier. Incorporates mike/ gram/radio inputs, ext. 1.s. jack. super-imposing switch, with matching knobs.

## RECORDING TAPE

By well-known manufacturers, brand new, boxed and fully guaranteed. 1,800ft. on 7in. spool .............32/6 1,200ft. on 5 娄in. spool...............22/6 P. \& P. $1 /$ - per spool.
AMERICAN
RECORDING TAPE
Manufactured by ferrodynamics, brand
new and fully guaranteed.
$1,200 \mathrm{ft}$. on 7 in . spool..............25/-
1,800ft. on 7 in . spoal.............35/-
600ft. on 5 in . spool...........
P. \& P, I/- per spool.

## AMERICAN

 RECORDING TAPE Manufactured by Ferrodynamics, brand uly gucrameed.1,200rt. on 7in. spool...............25/600tt on 5 in. spool P. \& P, I/- per spool.

## SINGLE PLAYERS

Collaro Junior 4-speed Player, complete with Pick-up............. $£ 3$ IS 0 Garrard 4SP 4-speed Player, complete with Pick-up and automatic stop wired for stereo, with plug Head Philips 10810 Philips AG2009, 4-speed Player, wired for stereo............... $£ 10 \quad 10$

## RECORD CHANGERS

BSR UAB, 4-speed .......... 66196 BSR UAI2, 4-speed, wired for stereo and complete with Stereo cartridge £8 196 Collaro Conquest, 4 -speed $\begin{aligned} & \text { Changer } \\ & £ 7 \\ & 19 \\ & 6\end{aligned}$ Collaro RC457, latest type 4 -speed changer ............................ 10 . 0 Garrard RCIII 3-speed Change
Garrard RCI20 Mk. 2, 4-speed
Garrard RC121/4D, 4-speed 69 19 6 Garrard RCI21 MK 24 -speed wired Garrard RC121 Mk. 4 -speed, wired 6 for stereo and with plug-in Head

$$
10 \quad 19
$$

## transcription UNITS

$\begin{array}{llll}\text { Garrard } 301 \\ \text { Garrard } 301 \text { (Strobe turntable) } & 7 & 3 \\ \text { Garrard } 4 \mathrm{HF} \text { (Stereo)...... } £ 19 & 48 & 4 \\ \text { Gis }\end{array}$ Garrard 4HF (GC8).........f18 99

## 3-WAVEBAND RADIOGRAM CHASSIS

By Famous Manufacturer
\&10.19.6 plus 5/- p. \& p.
A special offer for a limited period only
 of this Continental style Radiogram chassis. Brief detalls: Long, Medium and Short wavebands covering $1007-1960$ metres, $185-555$ metres, 10-32 metres. Valve Hne-up: ECH81, EBF80, ECL82. Mains voltage 200/250 v. A.C. Gramophone Pick-up ioput. Dimensions 171 in . long, 5 in. high, 6 in deep.

## take advantage of these

## DRAMATIC PRICE REDUCTIONS

AVANTIC SPAII Stereophonic Amplifier. Technical details: power output (each channel) 10 watts peak, L.S. impedance, 4,8 and 16 ohms, DUAL VOLTAGE -60 cycles. 6 -position input selector, bass, treble, volume on/off controls, stereo reverse switch, phase reverse switch, stereo balance control, P.U. balance control. Dimensions $14 \frac{1}{2} \times 8 \frac{7}{2} \times 4 \mathrm{in}$. Original Price 28 gns P. \& P. $7 / 6 . \quad$ OUPRICE 19 gns. AVANTIC DL7/35 Power Amplifier, designed to the highest possible standards to meet present-day demands and when used in conjunction with the SP2I Pre-amp. Control Unit perfection in stereo reproduction is achieved. Specifications: power output 54 watts peak; L.S. impedance, 4,8 or 16 ohms, power inputs $105-250 \mathrm{v}$. Valve line-up $G Z 34,2$ - EL34, ECC83, EF86. Dimensions $14 \frac{1}{2} \times 9 \times 8 \frac{1}{2}$ in.
$\begin{array}{lll}\text { Original Price } 30 \text { gns. } & \text { P. \& P. } 12 / 6 \quad \text { OUR PRICE } 24\end{array}$ AVANTIC SLI2-2I Speaker System employing 12 in . dia. P.M. L.S. and high frequency pressure Unit mounted in an acoustically designed enhigh frequency pressure Unit mounted in an acoustically designed en-
closure, impedance 15 ohms, dimensions $38 \times 187 \times 157 \mathrm{in}$. Finished matt closure, impedance 15 ohms, dimensions $38 \times 18 \frac{1}{6} \times 15$ in. Finished matt
medium walnut with front and sides covered with fawn fabric, standing medium walnut with front and sides covered with
on small contemporary legs. Original Price 30 gns. P. \& P. 20/-

OUR PRICE E2I AVANTIC SP2I Stereophonic Pre-amp. Control Unit, this Unit was primarily designed for use with the Avantic DL7/35 Power Amplifier. Brief specifications, 6 inputs for each channel, 6 position input selector, bass, treble, volume control, on/off stereo/3D/reverse stereo switch. stereo phase switch, low pass filter. Power requirements 6.3 v . at 1.3 A , A.C. 350 v . at 5 mA . D.C. Dimensions $14 \frac{1}{2} \times 9 \times 4 \mathrm{in}$. Original Price $128 / 10 / \mathrm{F}$ P. \& P. $7 / 6$

OUR PRICE 18 gns.

## PREMER BATERY ELMMANATOR

tainers which are to replace AD35 and B126 batteries.
KIT $37 / 6$ plus $2 /$-post and packing. Only suitable for use with DK96 Series valves ALL THI8 EQUIPMENT 18 BRAND NEW AND IN MANUFACTURERS' ORIGINAL SEALED CARTONS, IT IS ALL DESIGNED TO COPE WITH THE MODERN TREND OF BOOK-SHELF MOUNTING 80 THAT EACH INDIVIDUAL UNIT GAN BE MATCHED, FINISHED IN BLACK AND GOLD. TECHNICAL DETAILS AND DESCRIPTIVE LITERATURE AVAILABLE.

## MULLARD TYPE 5-10 AMPLIFIER

By Well Known Manufacturer
PRICE £13.19.6 plus 5/- p. \& p. send for full technical details

## A SIX TRANSISTOR POCKET RECEIVER



With Earuece and Plastic case, £14.14.6 Battery extra $2 / 6$. Plus 2/. P. \& $P$ This amazing Receiver is so small that it will fit snugly into a shirt pocket or ladles* bandbag, size being only $4 \times 2 \frac{1}{2} \times$ 13 in . Ferrite Rod Aerial is used. full station relectlvity on medium wive band.


AVANTIC STEPII. Stereophonic Magnetic Pick-up Pre-Amplifier Unit. Price E4/4/\%. AYANTIC STEP2I. Stereophonic Tape PreAmplifier Unit. Price $\mathbb{4} / 4 /=$.

THE MODEL FMA/1 FURGUSON FM TUNER
13 gas plus $3 /-\mathrm{p} . \& \mathrm{p}$.
This Tuner has beeli
designed for use with
or $\mathrm{Hi}-\mathrm{Fi}$ equipment. The Unit is completely self-conor med bethg self-powered sind bouned to a hammered metal finished steel case, measurements $10 \times 7 \frac{1}{3} \times 29 \mathrm{in}$. Brief technical specifications: Frequency coverage 87.6-100 Me/s. (conthnousty). Valve line-up: 2-EF80, ECF80, 2 germanium dindes and metal rectifier. for operation on A.C. mains $2 n 0 / 250$ v. $40-60$ cyeles.


## radio and television DEVELOPMENT ENGINEERS

Excellent opportunities exist for young men who have scund experience in design and development of either transistor radios or television receivers. "Supersonic" is the trade name of Chassay Bros. (Put.) Ltd., of Bulawayo, Southern Rhodesia, who are the largest radio manufacturers in Africa with an up-to-date plant, expanding markets. and well-equipped Laboratory.

Bulawayo, with a European population of 50,000 is a most modern and healthy city with good schools, entertainment and sporting facilities. Ample accommodation is available with domestic servants. The Victoria Falls Wankie Game Reserve and many other attractions are within a few hours motoring distance of the city.

Applications are invited for both junior and senior posts in the above categories. Junior salaries from $£ 1,200$ to $£ 1,600$ per annum and senior salaries from $£ 1,650$ to $£ 2,000$ per annum, plus an annual bonus and thirty days annual leave. Paid passages for successful applicants and family. All applications must state nationality, age, marital status and number of children and include the fullest details of experience and qualifications, with names of referees. Post by air mail and address to:-

THE CHIEF ENGINEER, CHASSAY BROS. (PUT.), LTD., P.O. Box 8096, Belmont, Bulawayo, S. Rhodesia.

Brochure giving details of Chassay Bros. and the City of Bulawayo, will be sent to applicants.

STABILIZE YOUR AC MAINS with the finest equipment, at a fraction of the normal cost:-

## FERRANTI 71-KVA MOVING COIL

## AUTOMATIC VOLTAGE REGULATORS

Any stabilized output voltage in the range 200-250 v. can be selected by plug-board tappings. The selected output voltage is automatically maintained constant within $\pm \frac{1}{2} \%$, at all loads 0 to $30 / 37 \frac{1}{2}$ amps., when the supply voltage is varying over the range $+8 \%$ to $-12 \%$.

- Frequency compensated $45-55$ and $54-66 \mathrm{c} / \mathrm{s}$.
- Excellent output wave-form.

Can also be used as a variable transformer.

- Unused. Complete with spares and instruction book.
P. B. CRAWSHAY

94 Pixmore Way, Letchworth, Herts. 'Phone 185I

## One of the most important books on television

## TELEVISION EQUIPMENT <br> RECEIVING <br> 4TH EDITION

by W. T. Cocking, M.I.E.E.

The book deals comprehensively with television receiving equipment and gives many practical details and design data. It assumes that the reader will have a fair knowledge of sound radio technique, and while the treatment is largely non-mathematical formulx useful to the designer have been collected in appendices.

30s net by post 31s 9d 454 pp illust from leading booksellers Published for "Wireless World" by

Iliffe \& Sons Ltd Dorset House Stamford St London S.E. 1

## HI-FI

HI-FI
Can you plot response curves?
Can you measure sensitivity?
Can you check distortion!
What is the resonance of the speaker?
Is that bass reflex cabinet correctly adjusted?
Is your stereo equipment balanced throughout?
These and hundreds of other problems can be solved with our VVoO Valve Milli-Yoltmeter and A050 Oscillator. No reputable Hi-Fi dealer can afford to be without these two instruments.
The VV60 is $£ 14$ and the $A 050$ is $£ 10$.
Send for details to:-

## GRAYSHAW INSTRUMENTS

126 Sandgate High Street, Folkestone, Kent Tel:. Folkestone 78618.


## For Safety's Sake use AVO Prodclips <br> Patent No. 748811

Safety first every time with these patented springloaded AVO Prodclips.
Cleverly designed for use as insulated prods, they are invaluable for reaching and holding test points which are difficult of access.
Suitable 'or use with AvoMeter, Multiminor and Avo Electronic Test Meter Leads.
Order supplies from your usual wholesaler now 1 Post Free 15/- per pair.

A MEMBER OF THE METAL INDUSTRIES GROUP OF COMPANIES


AVOMETER MODEL D.
28.19 .6 (P. \& P. 3/6)
D.C. Volts A.C. Volts D.C. Current A.C. Current $105 \mathrm{mV} . \quad 7.5$ \%. 300 mV

| 7.5 V. | $15 \mathrm{~m} / \mathrm{A}$. |
| :---: | :---: |
| 15 V . | $30 \mathrm{~m} / \mathrm{A}$. |
| 75 V . | $150 \mathrm{~m} / \mathrm{A}$. |
| 150 V . | $300 \mathrm{~m} / \mathrm{A}$. |
| 300 V. | 1.5 Amps . |
| 600 V . | 3 Amps. |
| 750 V . | 15 Amps. |
| 1.5 KV | 30 Amps. |

$75 \mathrm{~m} / \mathrm{A}$.
$150 \mathrm{~m} / \mathrm{A}$.
$750 \mathrm{~m} / \mathrm{A}$. 1.5 Amps. 1. 5 Amps.

Resistance
$0-1000$ ohms
0.10 K ohms
1.5 KV .

Thoroughly overhauled. Complete with batteries and instructions. An extremely robust meter at a very reasonable price.

SELENIUM BRIDGE RECTIFIERS. Funnel cooled. A.C. input 45 V. RMS. D.C. output 30 v . 10 amps . BRAND NEW. Boxed. 45/-. Post $3 / 6$.

MARCONI IMPEDANCE BRIDGE. Type TF373. Measures, L, C \& R at 1,000 Cycles. Accuracy $1 \%$. $0-100 \mathrm{H}$; $0-100 u F ; 0-1 M \Omega$ each in 5 ranges. Power Factor and "Q." First-class condition, £35, carr. paid.

6-VOLT VIBRATOR PACKS. HRO type, 180 V . D.C., $65 \mathrm{~m} / \mathrm{amps}$. BRAND NEW. 29/6, post $3 / 6$. Type PU2, 200 y D.C. $100 \mathrm{~m} / \mathrm{amps}$., with OZ4 rectifier BRAND NEW, 25/-. Post fREE.
ADMIRALTY HT TRANSFORMERS Pri. $230 \mathrm{v} 50 \mathrm{c} /$.s . Secs. 620-550-375-0-375-550-620. v. ( 620 and 550 v. 200 m/amps., 375 v. $250 \mathrm{~m} / \mathrm{amps}$.), plus two 5 v. ${ }^{3}$ amp. rectifier windings. Total rating 278 VA. Upright mtg. Original boxes. 45/0. Carr. 5/-.

INSTRUMENT TRANSFORMERS 230 v . A.C. input. Outputs 0-65-130-195 v. $85 \mathrm{~m} / \mathrm{amps} ., 6.3 \mathrm{v} .5 \mathrm{amps} ., 6.3 \mathrm{v} .0 .3 \mathrm{amps}$. Shrouded. Size $3 \frac{1}{4} \times 3 \frac{3}{4} \times 3 \frac{3}{4}$ in... high. $15 /-$ Post FREE

## AR88D MAINS TRANSFORMERS.

 Input $110-240 \mathrm{v}$. Output $345-0-345 \mathrm{v}$. $125 \mathrm{~m} / \mathrm{amps} ., 6.4 \mathrm{v} ., 4.5 \mathrm{amps}, 5 \mathrm{v} .2 \mathrm{amps}$. $4 \frac{3}{4} \times 4 \frac{1}{4} \times 5 \frac{1}{2} \mathrm{in} .4 \mathrm{high}$. Wt. 12 lb . Potted $4 \frac{3}{4} \times 4 \frac{1}{4} \times 5 \frac{1}{2} \mathrm{in}$. high. Wt. 12 lb . Potted. Tag ends.$29 / 6$, post $3 / 6$.
"C" CORE TRANSFORMERS. Pri. 230 v. 50 c.p.s. $510-0-510$ at 275 mA . $375-0-375$ at 83 mA .6 .3 v . at 9 A. 6.3 v . at 2A (twice), 6.3 v . at 1 A (twice), 6.3 v . at 1.5 A .6 .3 v . at $0.5 \mathrm{~A}, 5 \mathrm{~V}$. at 3 A . $6 \frac{3}{4} \mathrm{x}$ $6 \times 7 \mathrm{i} \mathrm{in}$. high. Weight 25 lb . Removed from equipment but in perfect moved rom equipment b.


SANGAMO.

## WESTON

VOLTMETERS S61. Dual range $0-5$ and $0-100 \mathrm{v}$ D.C. FSD $1 \mathrm{~m} / \mathrm{A}$ 3in. scale. Recent manufacture. Idea for schools. Com plete in super qual ity canvas carrying case, with test prods and leads. BRAND NEW. Boxed. 27/6. Post $2 / 6$.

## MARCONI CRIOO

Completely overhauled. In perfect working order. LOOK LIKE NEW. E2I.
Later model with Noise Limiter, $£ 25$.
Carr. Eng. and Wales $30 /$-. Send S.A.E. for full details.

## RCA AR-88 SPEAKERS

A high quality 3 ohm unit fitted into heavy gauge black crackled steel cabinet, size $10 \frac{1}{2} \times 11 \frac{1}{2} \times 6 \mathrm{in}$. Fitted with rubber feet and 6ft. lead. Ideal for extension speaker. CR 100, etc. In original cartons. BRAND NEW. 45/-. Post 3/6.

MINIATURE 373 IF STRIPS. For FM tuner described in "Practical Wireless." Complete with 3 of EF91, 2 of EF92 and I of EB91. A fresh release enables us to offer these once again. BRAND NEW. Complete reprint of conversion instructions and circuit supplied free. 35/-. OR less valves, 12/6. Post, either, 2/6.

## LOUD-HAILER EQUIPMENT

IDEAL FOR CROWD CONTROL, FACTORIES, FETES, ETC. CONSISTS OF 4 SPEAKER UNITS AND CONTROL UNIT. COMPLETE WITH MIGROPHONE, HEADPHONES AND SPARES, OPERATES FROM 12 VOLTS D.C. (OR 6 VOLTS D.C. WITH SLIGHTLY REDUCED OUTPUT), CONSUMING ONLY 3 AMPS. OUTPUT POWER 8 WATTS. BARGAIN. E4/19/6. CARRIAGE 25/6.

COMMUNICATIONS RECEIVERS R-II55B. A firstclass 10 -valve Communications receiver, covering $75 \mathrm{Kc} / \mathrm{s}$. to $18 \mathrm{Mc} / \mathrm{s}$. ( $16.2-4,000 \mathrm{~m}$.) in 5 bands. The large scale and superior dual ratio slow-motion drive make tuning easy and the R.F. stage and 2 I.F. stages ensure world-wide reception. All the receivers we sell have been thoroughly overhauled, completely re-aligned and are in first-class working order. ONLY $\mathrm{E} 9 / 19 / 6$.
A.C. MAINS POWER PACK OUTPUT STAGE. In handsome black crackled steel cabinet to match the R-II55. fitted with RCA 8 in . speaker. Just PLUG IN and switch on! Only the finest quality components are used and we guarantee OUR power packs for 6 months. ONLY $\mathcal{6} / \mathrm{l} / \mathrm{/}$. Deduct 10/- when purchasing receiver and power unit together. Send S.A.E. for further details or $1 / 3$ for 14 -page illustrated booklet giving technical data and circuits etc. (FREE with each receiver). Add $10 / 6$ carriage for receiver, 5 /- for power unit-
T.C.C. VISCONOL CONDENSERS. 8 mfd .800 v . D.C. Wkg. at 71 deg. C. CPI52V. Size $3 \times 1 \frac{3}{4} \times 5 \mathrm{in}$. high. BRAND NEW. Boxed. $8 / 6$ each, post paid.

MINIATURE RELAYS (ALL BRAND NEW and BOXED) G.E.C., sealed, wire ends, 670 2M2B H/D M1095 G.E.C. G.E.C., sealed, wire ends, $670 \Omega$, 2 H/D makes, M1099.. $15 /-$ G.E.C. sealed, wire ends, $670 \Omega, 4$ c/overs, platinum, MIO92
G.E.C. sealed, wire ends, $5,000 \Omega, 2$ c/overs, platinum MIO52
Siemens High Speed, $1 \mathrm{~K}+1 \mathrm{~K} \Omega$, $i$ c/over. $10 / 6$

## MORE METER BARGAINS



Fiush Circ. Bcale * Ront25 Microamp . D.C. M/C 2 lin . 50 Microamp. D.C. M/C 2 tin. 50 Microamp. D.C. M/C 24 in . 100 Microamp. D.C. M/C 3 in.
100 Microamp. D.C. M/C 24 in 1 Milliamp. D.C. M/C 3 in 1 Milliamp. D.C. $\mathbf{M} / \mathrm{C} 3$ 3in 200 Milliamp. D.C. M/C 24 in . 3 Amp. Thermocouple 2 in . 1 Amp . Thermocouple 21 300 Volts $\quad A .0 . \mathrm{M}_{1 / 1} 6 \mathrm{in}$. 300 Volts A.C. $M / 12 \mathrm{lin}$,
 METAL RECTIFIERS. Full wave bridge. BRAND NEW. Balford $1 \mathrm{~mA}, 8 / 6,5 \mathrm{~mA} .8 / 6$. BTC $2 \mathrm{~mA} 5 / 6$

TRANSMITTER TYPE 1403. A crystal controlled tranamitter coverina 2-7 Mc/s. Circuit conniste of CO (EBC33), Buffer (EL33), PA (807) and built-in modulator (EL33). Incorforates Aerial and E.T. current meters Gives 40 watts on C.W. and 10 watts on R.T. Power supplies required 600 V . at $200 \mathrm{~m} / \mathrm{A}, 6.3 \mathrm{~V}$. (247P. Unit was used) and 14 V . D.C. for relay less ralves and Xtals. Unused but slightly store sojed. $49 / 6$ plus $10 / 6$

## GIANT COMPONENT PARCEL

Contains 100 and wath resistors. of Ei stab resistors, wire wound resistors, carbon and W/W pots, 100 capacitors (rica, paper, sprague, btas, variable. etc.), valveholders, tag strips, metal rectiflers, sleeving, etc. All components are unused. GUARANTEED VALUE. 25/- plus $2 / 6$ poat.

CHARLLS BRITAIN (Radio) LTD. II UPPER SAINT MARTIN'S LANE LONDON, W.C. 2

## TEMple Bar 0545

Near Leicester Sq. Station. (Opposite Thorn House) Shop Hours: 9-6 p.m. (9-1 p.m. Thursday). Open all day Saturday


This testmeter has exactly the same ranges as the Avo "D." The scale is even larger Those we offer are in first-elass condition completely overhauled and carefully tested prior to despatch. Complete with battery test leads and instructions. $\mathbf{6 7 / 1 0 / \%}$. \& P. $3 / 6$.

ELECTROSTATIC METER. Dia. $6 \frac{1}{2}$ in. reads $5-18.5 \mathrm{Kv}$. Manufactured 1953. reads $5-18.5 \mathrm{Kv}$ Manufactured 1953.
Contained in wooden case $10 \times 10 \times 9 \mathrm{in}$. Contained in wooden case
high. $£ 9 / 19 / 6$. Post paid.
SANGAMO.WESTON ANALYSER E772. A useful multi-range meter Thoroughly overhauled and in perfect working order. For full details see previous adverts. $£ 7 / 10 / \%$ Carr. 4/6.
MARCON1 TF987/I NOISE GENERATORS. Range $100 \mathrm{Kc} / \mathrm{s}$, to $200 \mathrm{Mc} / \mathrm{s}$. Determines noise factor of AM and FM receivers. Fully stabilised H.T. supply A.C. mains operation. Brand new and in original boxes. $\mathbf{£ 1 5}$. Carr. $7 / 6$. MARCONI TF. 340 O UTPUT METERS. Perfect working order, $89 / 19 / 6$. Carr $7 / 6$.

HEAVY DUTY SLIDER RESISTORS $1.25 \Omega 20 \mathrm{~A} ., 12 / 6$, post $3 / 6.1 \Omega 12$ A., $8 / 6$ ZENITH ÄDJUSTABLE $25 \Omega 4$ A., $8 / 6$. Post $2 / 6$.
PRECISION RESISTORS. I Megohm $1 \% 1$ watt wire wound, Ex-U.S.A. BRAND NEW. 10/6 per dozen

## D.C./A.C. CONVERTERS. Input 12 v .

 D.C. Output 230 v. $50 \mathrm{c} / \mathrm{s}$. A.C. at135 watts. Fitted with $0-300 \mathrm{v} . \mathrm{A} . C$. 135 watts. Fitted with 0-300 Y. A.C. $2 \frac{1}{2}$ in. meter and slider resistor for voltage adjustment. In stout wooden carrying
case with lid. Perfect working order. 69/19/6. Carr. 10/6.
24 v . Input 230 v . A.C. $50 \mathrm{c} / \mathrm{s}$. 100 wates output. In grey metal case. BRAND NEW. 92/6. Carr. 7/6.

RADIATION METERS. Portable dose rate meter, containing modern type rectangular 50 micro-amp. meter, CVX494 electrometer valve, etc. BRAND NEW In canvas carrying case, $£ 3 / 19 / 6$. Post $2 / 6$. For details of other equipment, see our previous odverts.


An indispensable guide to prominent people in the electrical industry

# ELECTRICAL WHO'S WHO 1960'61 

the only book of its himed

The sixth edition of this comprehensive personal directory contains some 9,000 biographies of people in all branches of the industry, showing education, training, careers to date, membership of associations and private addresses, with an additional alphabetical listing of firms and organizations in the industry, with their principals.

35s net by post 36 s 9 d about 550 pp from leading booksellers
An ELECTRICAL REVIEW book
Dorset House • Stamford Street • London S.E.I

## Characteristics of 3000 valves rectifiers transistors and C.R. tubes <br> RADIO VALVE DATA 6th Ed.

The latest edition of this widely used reference book has been enlarged and made easier to use. It now contains operation data on over 3,000 British and American radio valves, transistors, rectifiers and cathode-ray tubes. A new feature of this edition is that the valve base connection codes have been included in the index, as well as being retained in the main tables. This allows the user to find the base connections of a valve easily and quickly, without having to refer to the main tables, as was necessary in previous editions. As before, the index also includes a list of equivalents, which has been revised and expanded.
The main tables first of all classify the valves by function (frequency changers, efficiency diodes, etc.), then by manufacturers' names and finally into current, replacement or obsolete types, as recommended by the makers. Within each section the valves are listed in order of their heater voltages. A useful feature of the layout is that it enables comparisons to be made between the electrical characteristics of valves from different manufacturers.

5s net BY POST 5s 9 d 11 ins. $\times 8 \frac{1}{2}$ ins. 126 pages

## from leading booksellers

Published for "Wireless World" by
Iliffe \& Sons Limited Dorset House Stamford St. London S.E. 1


## Mechanical Relay Latch

 FOR P.O. TYPE 3000This latching device enables the P.O 3000 type relay to be held in the closed held in the closed position when the coil is de-energised and until manually released.
Does not impair the versatility of the contact arrangements, nor affect the normal mouncing position.

WILL TRIP
AND HOLD
ON A.C.
IMPULSE


EITHER TYPE CAN BE FITTED TO YOUR
EXISTING 3000 TYPE RELAYS IN A EXISTING 3000 TYPE RELAYS IN A MATTER OF MINUTES.
Please send for illustrated leaflet

RELAYS, UNISELECTORS, KEY SWITCHES TO SPEGIFICATION.

$\left\{\begin{array}{l}\text { Due to the overwhelming success of Model B-5 we now } \\ \text { introduce two brand new models-B-10 and } \mathrm{B}-20 \text {. All three } \\ \text { have an input voltage of } 230 \mathrm{v} \text {. with a continuously } \\ \text { regulated variable output from } 0-260 \text { volts. } \\ \text { These Variable Transformers are of advanced mechan- } \\ \text { ical design, offering long life, moderate temperature } \\ \text { rise, high efficiency and linear output voltage, incor- } \\ \text { porating direct reading dial with large white numerals } \\ \text { for output voltage selection of the highest accuracy. } \\ \text { All Models are supplfed totally enclosed complete with } \\ \text { shrouded Input and output terminals and laboratory } \\ \text { tested prior to dispatch. }\end{array}\right.$ tested prior to dispatch.

## ALL FULLY GUARANTEED

WIRELESS SET No. 19 Mk. II


This famous Transmitter Receiver, incorporates "A" Set TTX/RX cover$\begin{array}{r}\text { ing } \\ \text { ( } 37.5 \\ \text { 2-8 } \\ \text { Mc/s. } \\ \hline\end{array}$ \begin{tabular}{l}
(37.5 <br>
metres). <br>

- <br>
$\mathrm{B}^{150}$ <br>
\hline
\end{tabular} Set-VHF TS/RX covering 230-240 Mc/s. (I.2-1.3 metres) and intercom. amplifier. Complete with metres) and intercom. amplifier. Complete with

15 valves, 500 micro-amp. check and tuning meter, 15 valves, 500 micro-amp. check and tuning meter,
circuits, and instruction book. In used condition, circuits, and instru
$65 /-$. Carr. 10/-.

PRECISION $\frac{1}{2} \%$ RESISTORS
Manufactured by Electrothermal, we offer the following values: $100 \mathrm{~K}, 400 \mathrm{~K}, 500 \mathrm{~K}$, all $\pm \ddagger \%$ । watt, 1/9 each; 20/-per dozen.

## COMMUNICATION RECEIVER R. 206

Frequency range $550 \mathrm{kc} / \mathrm{s} .-30 \mathrm{Mc} / \mathrm{s}$, on 6 frequency ranges. Panel Controls: two speed, backlash free, tuning control. Frequency range selector. Very fine osc. vernier cuning control. Aerial trimmer. L.F. Gain. H.F. Gain. A.F. Bandwidth switch; $0.7,2.5$ or $8 \mathrm{kc} / \mathrm{s}$. A.V.C. switch. switch; $0.7,2.5$ or $8 \mathrm{kc} / \mathrm{s}$. A.V.C. switch.
B.F.O. control. $900 \mathrm{c} / \mathrm{s}$. filter switch. B.F.O. control. $900 \mathrm{c} / \mathrm{s}$. filter switch. earth, muting, phones and line inputs. Designed for use with an external A.C. or D.C. power supply. Receiver dimensions $25 \times 13 \times 13 \frac{1}{2}$ in. Supplied complete with A.C./D.C. power unit with internal speaker. Original cost over 1175 . Very limited quantity offered at only $\mathbf{E 2 2} / 10 /=$, carr. 50/-

TWO TRANSISTOR POCKET RADIO with Miniature Speaker


HERE IT IS ... The very best transistor kit you have ever seen . . . at a price so low that it will amaze you!

ANYONE CAN BUILD IT! This powerful pocket radio gives reception over the entire broadcast band. Complete with all parts including two transistors, exclusive ferrite rod, miniature speaker, tuning condenser, plastic case, wiring
$\begin{array}{cc}\text { ONLY } & 27 / 6\end{array}$ diagram and step-by-step instructions. Size $4 \frac{1^{\prime \prime}}{} \times 1 \frac{1^{\prime \prime}}{4} \times 3^{\prime \prime}$

Batteries $1 /$ - extra.


COSSOR OSCILLOSCOPE


A truly magnificent firstgrade L.F. oscilloscope incorporating a hase, speeds I-5-40 milliseconds, easily extended for a few shillings to 3 c.p.s. to $30 \mathrm{kc} / \mathrm{s}$. speeds. Has high-class amplifier with
fine and coarse gain controls. Brightness and focus cor.fine and coarse gain controls. Brightness and locus cor.-
trols, $X \& Y$ shifts. 115 v . and 230 v , mains power pack fully fuse protected. Employs 2 itin. tube ACR 10 . Size $19 \mathrm{in}, x 7 \mathrm{in} . \times 12 \mathrm{in}$. Only 20 in stock so first come first served. Genuinely cost 659 each:
OUR PRICE E12/10/-. Carr. 15/-
D.M. 34 DYNAMOTOR. America's finest little dynamotor offering 12 v . in with 220 v out at 80 mA . With suppression and smoorhing mounting base. Size $4 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \mathrm{in}$. Original packing. ONL.Y $35 /-$. P. \& P. $3 / 6$.
T.C.S. TRANSMITTER

Designed for mains or mobile use covering $1.5-12 \mathrm{Mc} / \mathrm{s}$. ( $160-80-40$ metre bands) consisting of a VFO, Buffer, Doubler, PA with an internal push-pull modulator. Provision for VFO or erystal conerol. Output 40 watts phone, 100 watts C.W. Complete with aerial and plate current meters. plete with aerial and plate current meters.

PORTABLE TRANS/RECEIVER No. 18 A self-contained Trans/Receiver for Telephone and C.W. Range approx. 10 miles. Frequency $6-9 \mathrm{Mc} / \mathrm{s}$. miles. Frequency $6-9 \mathrm{Mc} / \mathrm{s}$.
( $50-33.3$ metres). Valve line( $50-33.3$ metres). Valve line-
up: 3 ARP-12. I AR-8. I UP: ${ }^{3}$ ARP-12. I AR-8. I A.T. and L.T. meter and all aecessories. Weight 201b. size $8 \times 10 \times 17 \mathrm{in}$. ONLY 80/-. Carr. 10/-.
LEAD ACID ACCUMULATORS (unspillable). 2 volts 16 A.H. Ideal for 6 volts and 12 volts supply. Brand new original cartons. Size $4 \mathrm{in} . \times 7 \mathrm{in} . \times 2 \mathrm{in} . \quad 5 / 6^{\text {each }}$

## P. \& P. 1/6

$$
\begin{array}{lll}
3 \text { for 151.: } & \text { P. \& P. } 3 / 6 \\
6 \text { for } 27 / 6 . & \text { P. \& P. } 5 /-.
\end{array}
$$

AMERICAN LIGHTWEIGHT HEAD SET They're High and Low Impedance!
These H.S. 30 phones are the smallest used by .S. Air Force. 250 s in p. sure solt rubber miniaure ear music and maximum music and voice reproduction of the finest quality. Supplied free is a small transformer unit
with cord and plug which steps impedance up to $4,000 \Omega$. ONLY 15/P. \& P. 2/6.

Complete HEADPHONE AND MICROPHONE AND MICROPHONE every Constructor and "Ham," consists of moving coil, padded headphones and "press to talk" microphone. $10 /-$

HOOVER ROTARY TRANSFORMERS. 12 v . input, 500 v . output at 65 mA . or 6 v . input, 250 output t 75 mA . ONLY $10 / 6$ each. P. \& P. 2/-


PORTABLE RADIOPHONES MODEL MK II


BATTERIES 20/- Per set DE LUXE 12ft. WHIP AERIAL

We are proud to offer these Brand New British Army Mortable Transmitter Receivers. The improved model Mk II (not to be confused with earlier models) is sold exclusively by us!
The Mk. II Radiophones are designed for rellable voice intercom. munication operating up to 10 milles depending upon obstructions frequency range between $7.4-9 \mathrm{Mels}$, and is fully tunable on both Transmifter and Recelver.
The Radiophones are simple and a delight to operate as all controls are mounted on the front panel of the set and cleurly marked. The fle tuniug dial is fully calibrated and complete with locking position. Change over from send to receive is performed by a filck switech. Operates from standsrd dry batteries 3 y. L.T. and 120 v. H.T. Consumption: L.T. receive .23 amps., L.T. send 45 amps, H.T. receive $9 \mathrm{~m} / \mathrm{a}$. H T send $14 \mathrm{~m} / \mathrm{a}$ arerage battery life $30-35$ operating Amplifer, Second Detector, Output, and Power Amplifier.
Ampliter, second Detector, Output, and Power Amplifier
All seta are supplied complete with all acceasories comprising of dynamic sound powered headphones, electro magnetic supersentive
microphone, 4 ft . aerial, junction box, battery connectlon details and full circuit dlagram.

## R.S.C. HI-FI TAPE RECORDER KIT Build a high quality recorder in the $\mathbf{8 7 0}$ class for only $\int \frac{1}{2} \frac{\text { ans. }}{\substack{\text { Carr. } \\ 17 / 6 .}}$

 OR DEPOSIT $25 / 15 /-$ and Cagh monthly parmeats it settled in 8 months.

## HI-FI 10 WATT AMPLIFIERS <br> brand new <br> BUT IN SLIGETLY SOILED CONDTTION £5-19-9

A REMARKABLE opportunity
Push-pull out put. Latest higb efflency Mullard valves. Dual вeparately controlled Inputs, for mike and gram Separate bass and treble controls. High sensitivity. Output for 15 ohm loudspeaker. Guaranteed, teated, and in periect ing order.
VALVES! Full range at really competitive prices
SUPERHET RADIO FEEDER UNIT
Design of a higb quallty Radio Tuner Unit (specially suitable for use with any of our Ampllaers). A Triode Heptode F/changer is used. Pentode I.F. and double Dlode second Detector, delayed A.V.C. is arranged so that A.V.C. dis tortion is avolded. The W. Ch. Sw. incorporates Gram. pusition. Controls are Tuning. W. Ch. and Vol. Output will load most Amplifers requiring 500 mV . input depending on Ae location. Only 250 v. 15 mA . H.T. and L.T. of ${ }_{9.6-7 \text { in. high. Send S.A.E. for fillustrated leafet. Total }}^{6.3 \text { r. }}$ bullding cost is $\mathbf{e 4 / 1 5 / - \text { . Point-to-Point wring diagrams }}$ and instructions $2 / 6$.

RE-ENTRANT LOUDSPEAKERS For factory or outdoor use.
Tannoy 7.5 ohms 8 watts 25/8.
Parmoko horn type, highly
efficient efflcient. Handles up to 10 watts. 15 ohm ${ }^{\text {a }}$,
ohm matchlag $59 / 8$.
R.C.A. 20 watt rating, ${ }^{3}$ ohm, 15 ohm. and 200 ohr matching 6 gns.

> ACOS HI-FI CRYSTAL 'MIKES' Mic 40 hand $27 / 9\left(\begin{array}{c}\text { Desk } \\ \binom{\text { type }}{45 /-d}\end{array}\right.$ 39.1 Stick type 39/6 (
Limited number.

## R.S.C. BATTERY TO MAINS CONVERSION UNITS

 Type BM1. An all-dry battery eliminator. Size $\delta 1 \times 41 \times 24 \mathrm{n}$ approx. Com-pletely replaces batteries supply 1.4 v . and 90 v . where A.C. mains $200-250 \mathrm{v}$ $50 \mathrm{c} / \mathrm{s}$, is avallable. Suitable tor all batiery portable receivers requiring $1.4 \mathrm{\nabla}$. and 90 \%. This includes latest low consumption types. Complete kit with diagram $39 / 9$ or ready for use $46 / 9$.
Type BM2. Size $8 \times 5\} \times 2 \mathrm{Mn}$. Supplles 120 ₹. 90 ₹. and 60 ₹., 40 mA , and 2 v. 0.4 a. to 1 amp., fully smoothed, THEREBY COMPLETELY REPLACDNG BOTH H.T. BATTERIES AND H.T. 2 ₹. ACCUMULATORS when connected to A.C. mains supply $200-250$ v. $50 \mathrm{c} / \mathrm{s}$. SUITABLE FOR ALL BATTERY RECEIVERS normally using 2 v . necumulator.
Complete kit with diagrams and instructions. $49 / 8$ or rendy for tise $59 / 8$.


BULLD A PORTABLE BATTERY OPERATED RECORD
PLAYER FOR ONLY $£ 6 / 19 / 6$. Portable Cabinet, Garrard ${ }_{45 \mathrm{r}}^{\mathrm{PL}} \mathrm{r}$. motor and pick-up unit all parts for transistor 43 r.p.m. motor and pick-up umit, ant parts ser translis.
ampliber, and circuit diagrams. Parts sold separately.

designed for simplicity in wirlng. Sensitivity and apecially ${ }_{\mathrm{I}}^{\mathrm{I}}$ re well up to standard. Point-to-Point wiring diagram. ${ }_{f}$ nstructlons and parts list $1 / 9$. This receiver can be built $f_{n}$ or a maximum of $£ 4 / 19 / 6$ includlng cablnet. Avallable $I_{n}$ brown or cream bakellte or veneered walnut.

A deess. of

B.S.R. MONARDECK8. As fitted to most tape recorders in the $£ 20 / £ 30$ class. With a suitable amplifiey


#### Abstract

and speaker really excellent recordings can be made at 3 in. per sec. 9 GNS. Carr. $5 /-$


## R.S.C. Al2 STEREO AMPLIFIER KIT

EXTENSION SPEAKERS. Handsome walnut veneered

## 4 GNS. 

 stereo amplifier providing really life-like reproduction. stereo plek-up heads at present available. Ganged volume and tone controls. Preset balance control. Outpula fo matched $2 \cdot 3$ ohmW.B. "STENTORIAN" HIGH FIDELITY P.M SPEAKERS
HF1012, 10 watts, 15 ohms (or 3 ohm) speech coil. Where a really good quality speaker at a low price is required, we highly recommend this unit with an amazing performance. $£ 4 / 10 / 9$.

## SELENIUM RECTIFIERS

We can quote special prices for quantities of 12 to 10,000 We can quote special prices for quantities of 12
of most types. Epecial types made to order.

| L.T. Types | H.T. Types H.W. |  |
| :---: | :---: | :---: |
| $2 / 6$ v. \& a h.w. .. 1/9 | $120 \mathrm{v}, 40 \mathrm{~mA}, \ldots$. | 8 |
| $6 / 12$ F. 1 a. h.w. . $2 / 9$ | 250 v. 50 mA . | 1 |
| Following F.W. (Bridge) | 250 v. 60 mA . | $4 / 11$ |
| 6/12 v. 1 a. ...... 3/11 | 250 จ. 80 m A. | $6 / 11$ |
| $6 / 12$ v. 2 a. ...... 6/11 | 250 v. 250 mA | 12 |
| 6/12 v. 3 a. . . . . . 9/8 |  |  |
| $6 / 12$ v. 4 a. ...... $12 / 3$ | Dontact Cooled |  |
| $6 / 12$ v. 5 a. ...... 14/6 | 250 v. 80 mA . | $6 / 1$ |
| $6 / 12$ v. 6 a. ..... $15 / 6$ | 250 \%. 75 mA . |  |
| $6 / 12$ v. 10 a. ...... $55 / 9$ | F.W. (Bridge) |  |
| 6/12 v. $15 \mathrm{a}_{\text {a }}$...... 35/9 |  |  |

JUNCTION TRANSISTORS, R,F Type $11 / 6$, Audio type, 5/9. Power type Goltop V16/10P 2 watts, $17 / 9$. OC71
$10 /=$ OC72 16/9. XB102 10/-. XB104 $10 /-$ XA101, 10/. 101 OC74, XA102 $17 / 6$, and many other types.

Recording heads. Baird Record Playback and Eras RECORDING HEADS. Baird Record
(Housed in one container.) $9 / 6 \mathrm{pr}$. cabinets. All standarl $2-3$ ohms. 6 k n . 29/9; $81 \mathrm{n} .35 / 9$

All Battery Chargers and Kits for 200-230-250 v. $50 \mathrm{c} / \mathrm{s}$. A.C. Mains

| COLLARO STUDIO <br> TAPE TRANSCRIPTORS Incorporating 3 motore. Provision for extra head for stereo. Speeds 1\%, 31, $7 \frac{1}{2}$ ins. per sec. 15 Gns. |
| :---: |
| HEAVY DUTY CHARGER KIT |

$6 / 12 \mathrm{v}$. variable charge rate up to 6 amps. Consisting of Mains Trans., F.W. (Bridge) Selenium Rectifier, 0-7 amp. meter, multiposition switch with knob, fuses, fuseholders, panels, plugs, and circuit. Only 59/6. Post 4/6.

## ASSEMBLED

CHARGERS
6 v. 1 a.
6
$6 / 12$
V.
$6 / 12$
v.
1 $\mathbf{1}^{2}$ a.
Above ready for use with mains and output leads. Cases well ventilated and finished in stoved blue hammer. Carr. \& pkg. $3 / 6$.

CHARGER
TRANSFORMERS 200-230-250 v. $50 \mathrm{c} / \mathrm{s}$ $0-9-15$ v. $1 \frac{1}{2}$ a.
$0.9-15$ v. 21
0.9 $0-9-15$ v. $3^{2}$ a. 0-9-15 v. 5 a $0-9.15$ v. 6 a

## BATTERY CHARGER KITS

 Consisting of Mains Transformer F.W. Bridge, Metal Rectifier well ventilated steel case. Fuses, fuse-holders, grommets, panels and circuit. Carr. 2/9 extra. 6 v. or 12 v. 1 amp. As above, with ammeter 6 v. 2 amps.6 v . or 12 v. 2 amps.
$v$. or 12 v. 2 amps.
(inclusive of ammeter)
6 v. or 12 v. 4 amps. ...... 53/9 6 v . or 12 v .4 amps, with variable charge rate selector and ammeter

## CHARGER AMMETERS

$0-1.5$ amp., $0-3 \mathrm{amp}$., $0-4 \mathrm{amp}$. $0-7 \mathrm{amp} ., 0-25 \mathrm{amp} ., 0-60 \mathrm{amp} .8 / 9$

ASSEMBLED CHARGER 6 v. or 12 v. 2 amps. Fitted Ammeter and selector plug for 6 v . or 12 v . Louvred metal case, finished attractive hammer blue. Ready for use with mains and output leads. Double Only $49 / 9$ Carr. $3 / 9$.
As above, but for 3 amp. charging. Only 59/6. Carr. 3/9

ASSEMBLED 6 v . or 12 v .


Fitted Ammeter and variable charge selector Also selector plug for $6 v$ or 12 v . charging. Double fused. Well ventilated steel case with blue hammer finish. Ready for use with $69 / 9$
mains and output leads. Carr. 5/Or Deposit $13 / 3$ and 5 monthly payments of $13 / 3$.
As above, but for 6 amp. charging 4 GNS. Carr. 5/-. Or Deposit 16/- and 5 monthly payments of $16 /=$. The 6 amp . model only is slightiy store soiled and is being offered at well below usual price.

LINEAR L45 MINIATURE $4 / 5 \mathrm{~W}$. QUALITY AMPLIFIER, Suitable for use with any record playing unit and most controls. For A.C. mains input of $200-250$ v. 50 c.p.s. Ontput for $2 / 3$ ohm speaker. Three miniature Mullard valves. Size only $6 \times 5 \times 5$ in. high. Chassis fulty isolated from mains. Guaranteed 12 months, Oniy $55 / 19 / 6$ or of 221 . Send 8.A.E. for leaflet.
R.S.C. STEREO/TEN HIGH QUALITT AMPLIFIER KIT. and treble controle, giving " cut: and " boost" Bengitlvity $50 \mathrm{~m} . v$. 5 watts high quallty output on each channel Can be used as atraight 10 watt ampliaer. Controls: Stereol Monaural switch. ganged volume, ganged treble, ganged bass, and balance. Outputs for 3 ohm speakers. Cary. 7/9.
D.C. SUPPLY KITS, Sultable for electric trains. Consiat of mains trans. 200-250 v. 50 c.p.s.; 12 ₹. 1 amp . selenium rect. (F.W. Brldge): 2 fustholders, 2 fuses, change direction switch, variable speed regulator, partialiy drilled steel case and circuit. Very limited number, $33 / 9$.

REPANCO TWINETTE TRANSISTÓR PORTABLE RADIO desian. Constructonal Envelope and parts list $1 / 3$. Bullt in Ferrite Acrial, 7in. $\times$ 4in. speaker, Long and Medium waves. Bize approx. $7 \times 4 \times 3$ in. Total cost of all parts 5 ans.

## POWER PACK KITS. Only 18/11. Fully smoothed H.T. output of 250 F .60 ma . and L.T. Gupply of 6.3 $\nabla .1 .5$ amp. Consisting of Double Wound Maing Transformer 230/250 ४. 50 c.p.s A.C. primary. Selenfum Rect1ier, Smoothing Choke, Double Electrolytic Condenser. Aluminium Chassls and Circuit.

P.M. SPEAKERS. $2-3$ ohm 21 ln . Perdlo $21 / 9$. 5 in . Good* mans $17 / 9.7 \times 4 \mathrm{in}$. R.A. Elliptical 18/9. 6in. Rola $19 / 9$ Sin. Rola $19 / 9$. 8in. Goodmans $25 / 9.8 \times 6 \mathrm{in}$. Elac. With higa
flux maguet $25 / 9$. 10in. R.A. $28 / 9$. $10 \times 6 \mathrm{in}$. Ellintical Goodmans 29/9. 12 in. R.A. 29/11. 12in. R.A. 3 or 15 ohms 10 watts, 12,000 lines, $59 / 6$.

TWEETERS, 4in. Plessey, 3 ohms, 18/9. R.A. 15 ohm 25/9.

## R．S．C．A10 ULTRA LINEAR 30 WATT AMPLIFIER

 inputs such as＂mike＂and Gram．，etc．，etc．，can be slmuitancously applled for mining purposes．AN OUTPUT SOCEET RADIO FEEDE ONLY Or Factory bult with 12 months＇gus fantee £13／19／6．TERMS Carr，10／－1 CIS：ON ASSEMBLED UNLTS．DEPOSIT $24 / 8$ and 12 monthiy Cover as lllustrated Type 807 output valves are used uith High Quallty Bectlonally
$18 / 9$ extra． operation．Negative feedback of 20 D．B．in main loop．CERTLFIED PERFORMANCE FIGURES ARE EQUAL TO MOST EXPENSIVE UNITS AVAILABLE，Frequency response
 at $12,000 \mathrm{c} / \mathrm{cs}$, ，hum and nolse 70 D．B．down．Good quallty reliable components used．
Chassis finlsh blue hammer．Overall size $12 \times 9 \times 9 \mid \mathrm{n}$ ．approx．Power consumption 150 Witta．For A．C．malns $200-250$ v． $50 \mathrm{c} / \mathrm{s}$ ．Outputs for 3 and 15 ohm speakers，EQUALLY
GUITABLE FOR TEE CONNOISSEUR OR FOR LARGE HALLS，CLUBS OR OUTSIDE FUNCTIONS IDEAT FOR USE WITH MUSICAL INSTRUMENTS SUCH AS STRING BASS ELECTRONIC ORGAN，GUITAR，eto．FOR DANCE BANDS，QARRISON THEATRES， te．，etc．We can supply Miorophones．Speakers，etc．，at keen eash prices or on terms with ampligers．EXPORT ENQUIRIES INVITED．

FULL RANGE OF LINEAR BIGE FDDELITY AMPLIFIERS ALWAYS IN STOCK．
LINEAR GIGE FIDELITY AMPLIFIERS ALWAY
GL3A MINIATURE B WATT GRAM AMPLIEIER
For 200－250 v， 50 c．p．s．A．O，mains，Overall size only $11 \neq 2 \% \times 24 \mathrm{in}$ ．Fitted Vol．and Tone Control with malns switch．Designed for use with any kind of single player or record chang－ fig unit．Output for $2-3$ ohm speaker．Guaranteed 12 months．Only 59／6．

R．S．C．A7 3－4 WATT QUALITY AMPLIFIER．Spec．exactly an AS below with exception

R．8．0．A5 4－5 WATT RUGI GAIN AMPLIFIER
A highly sensitive 4 －valve quallty amplifier for the home，smatl club，etc．Only 50 milli－ volts input is required for lull output so that it is suitable for ase with the lateat high fidelity pick－up heads in additlon to all other types of plek－ups and practically all makes． equalisation．Hind reble is negligibla belng 71 D．B． equalisation．In．inm－level is negligible belng 71 D．B． of $300 \nabla .26 \mathrm{~mA}$ ，and L．T．of 8.3 v ． 1.5 a ．is avallable for the supply of a Radio Feeder Unlt or Tape Deck pre－ampliffer．For A．C．mains input of $200-250$ ． $50 \mathrm{e} / \mathrm{s}$ ．Output for $2-3$ ohro speaker．Chassis is not alive．Kit is complete in every detall and includes fully punched chassis（with baseplate）with the blue
hammer finish．and point－to－polnt wiring diagrama and instructions．Exceptional value at only f4／15／－ or assembled ready for use $25 /$－extra，plus $3 / 6 \mathrm{car}$－ riage．Or Deponit 221 ．nnd five monthly pasyments of 22 －for assembled unit．

R．S．C．TRANSFORMERS．Fully Guaranteed．Interleaved \＆impregnated． WE CAN QUOTE FOR SPECIAL OR STANDARD TYPES IN ANY QUANTITY．OUR FACTORY HAS SUPPL

MAINS TRANSFORMERS
FULLY SHROUDED UPRIGBTMAR $200-230-250 \mathrm{v}$ FULLY SHROUDED UPRIGET MOUNTING． $250-0.250 \mathrm{v} .60 \mathrm{~mA}$.
$250-0-250$
$\mathbf{~ v . ~}$
30000 mA
$3000-250$ v． $100 \mathrm{~mA}, 6.3$ v． 4 a．， 5 v． 3 a． $350-0-350$ v． $100 \mathrm{~mA} ., 6.3$ v． 4 a．， 5 จ． 3 ก
 TOP SEROUDED DROP－THROUGE TYPE
 $250-0-250 \mathrm{v} 100 \mathrm{~mA}, 6.3$ ष， $4 \mathrm{~A}, \mathrm{~B} \mathrm{\nabla} 3 \mathrm{a}$ $300-0-300$ v． 100 mA ．， 8.3 v． 4 a．，B v． 3 a $300-0-300$ ซ． $130 \mathrm{~mA}, 6.3$ 甲． 4 a．， $0 . t_{-1} 6.3$ v． 1 a．， suitable for Mullard 510 Amplifier
$350-0-350$ v． $100 \mathrm{~mA}, 6.3$ v． 4 a．， 5 v． 3 a
$350-0-350$ v． $150 \mathrm{~mA} ., 6.3$ v． 4 a．，$s$ v． 3 a
ELIMMNATOR TRANSFORMERS，
120 マ． $40 \mathrm{~mA}, 5-0-5$ v． 1 a ．
90 v． $15 \mathrm{~mA}, 6=0-6 \mathrm{v} .250 \mathrm{~mA}$
FILAMENT TRAHSFORMERS

AUTO（Step Up／Step Down）TRA NSFORMERS $50-80$ watts $110-120$ v．$/ 230-250 \mathrm{~F}$ ．
150 watta $110-120 \quad$－．$/ 200-230-250$


## $\square$（LEEDS）LTD． LEEDS \＆BRADFORD

Open to callers at the following branches：－
54－56 Morley Street（above Alhambra），Bradford． 8－10 Brown Street（Market St．），Manchester， 2.

## $50 \mathrm{c} / \mathrm{s}$ ． 1716 $25 / 8$ 2519 <br> 2519 2519 2518 $33 / 9$ $49 / 9$

80 mA
$60 \mathrm{~mA}, 10 \mathrm{H}, 3500$ $100 \mathrm{~mA}, 10$ H．， $200 \Omega 8 / 9$ 1 amp． $0.6 \Omega$ L．T．t． PARMEKO MAINS TRANSFORMERS．Fully shrouded，
 paymentin of $11 /$

## HIGH FIDELITY 12－14 WATT AMPLIFIER TYPE A11

## PUSH－PULL ULTRA LINEAR OUTPUT <br> ＂BUILT－IN＂ TONE CONTROL <br> PRE－AMP STAGES

## wo imput sockets with assock－

 ated controls allow mixing of＂mike＂and gram．as inA． 10 HIgh senaitivity．Includes 5 Valves：ECC83，ECC83，
ELRA，ELB4，${ }^{5} \mathrm{~V} 3$ ，High Quslity acetlonally wound output transformer speeially designed for Ultra Linear operation and reliable smal！condensers of current manufacture．IN－ response +3 D．B，30－30，000 c／cs，Six AND TREBLE＂Lift＂and＂Cut．＂Frequency response $\pm 3$ D．B． $30-30,000$ e／cs．Six negatlve feedback lopps．Hum level 60 D．B．down，
ONLY $2 \%$ millvoits INPUT required for FUL1，OUTPUT．Sultable for use with all maken and types of pick－upa and milerophenes．Comparable with the very beat designs． For STANDARD or LONG PLAYING REOORDS．FOr MUSICAL INSTRUMENTS such as STRING BASS，GUETARS，eto．OUTPUT SOCKET with plug provides $300 \% .30 \mathrm{~mA}$ ．and 6.3 v ． 1.5 a ．For supply of a RADIO FEEDER UNIT．Bize approx．：12．9－7in．For A．C． mains 200－250 v． 60 cfcs ．Output for 3 and 15 obm speakers．Kit is complete to last nut．
Chassis Is fulty punched．Fult instructions and polnt－to－polnt wiring Chassis is fully punched．Fult instructions and polnt－to－polnt wiring 8 GIS．Carr． diagrams supplied．（Or factory built $45 /$－extra）．
 If required louvred metal cover with 2 carrying handles can be supplied for 18／9．TERMS ON ASSEMBLED UAITS．DEPOSIT 18／9．and 12 monthly payments of 18／9．Send B．A．E． for illustrated leaflet detaill
with cash and credit terms．

## R．S．C．PORTABLE GUITAR AMPLIFIERS


 Bass and Treble＂cut and and boost＂controls． Sensltivity 15 mv ．Kigh Flux 8 in ． $1 / \mathrm{speaker}$ ．Input sockets for Radio／Tape or Gram Pick－up and Mike Instrument Pick－up．Fandsome strougly made cablnet（size approx． $14 \times 14 \times 7 \mathrm{in}$. ）．Finished to satin wainut and fitted carrying handle． $88 / 19 / 6$ Carr．7／6，or Depoait es and nine send 8．A．E．for leaflet．payments £1．

SENIOR 10 WATTS．High－Fideity Push－Pull output．．．Separate Bass and Trebie＂cat＂and ＂boost controis．Twin separately controlled high gain inputs so that two hustruments such the Guitar and Btring Biss can be used at the same P．M．for Bass notes，and $17 \times 4 \mathrm{~h}$ ．elliptical for P．M．for Bass notes，and $17 \times 4 \mathrm{~m}$ ．elliptical for walnut，Bize approx． $18 \times 18 \times 81 \mathrm{n}$ ． 15 Gns．Plis 10／－cart．Fi，P．TERMS．DEPOSTT $26 / 9$ and 12 monthly payments 26／9．Both models for $200-250$ v．A．C．mains．
STAAR GALAXY 4－SPEED MIXER AUTO－CHANGERS．Brand New，cartonad．Turnover sapphire styll．Many exclusive features．Unique design motor virtually free from rumble （ $5 / 19 / 6$. Car．4／8． COLLARO CONQUEST 4－SPEED AUTO－CEAN－ GERS．With studio pick－up with turnover head． Latest model for $200-250$ v．A．C．mains，£6／19／6． B．S．R．MONARCE AUTO－CEANGERS．
UAB 4 speed T／O Pick－up with sapphire stype £6119／6．Carr． $4 / 6$
Any of above supplied with T／O stereo／monaural head for $£ 1$ extra．
COLLARO JUNIOR， 4 －speed Bingle Players with Hi－Fi T／O cryatal pick－up hezd，£3／19／6．
LOUDSPEAKER IN POLISHED WALNUT FINISHED CABINET．Gaus 12,000 lines． Speech coil 3 ohms or 15 ohms．Only $94 / 19 / 6$.
Carr 5／－TERMS：DEPOSIT 11 －aud 9 monthls


12in．20 WATT 15,000 Ine 1／apeakers 15 ohms in Cabinet finished as above．Blze $18 \times$
$18 \times 8 \ln$ ． $8 / 19 / 6$ or Deposlt $13 / 10$ and 12 monthly paymenta of $13 / 10$ ．

ACOS HGP5日 Hi－Fi Crystal Cartrdakes，（Turnover type with sapphdre atylus）．Btandard replacement for Garrard ac2 19／0．Acos stereo／Monaural 49／9．
ACOS HIGH FIDELITY PICKUPS，GP54 with HGP59／52 Cartridge．Turnover rapphlire atyll，cream finish．Limited number at approw half price．Only 29／11．


## PLESSEY <br> DUAL CONCENTRIC I2in．P．M． SPEAKERS <br> I2in．PM

（15 ohma），consisting of a high quality 12 in ．speaker ing a small elliptical speat－ er ready wired with choke and condensers to set as tweeter．This high fidelity unit is highly recommended for use with our All or any 10 wimilar amplifier．Rating lis 10 watts．Galurs 12,000
lines．Price only $85 / 17 / 6$
Or Or Deposit $10 / 6$ and 12
monthly payments of $10 / 6$

TERMS：C．W．O．or C．O．D．No C．O．D． under $\mathbb{L 1}$ ．Postage $1 / 9$ extra on all orders under $£ 2,2 / 9$ extra under $£ 5$ unless carri－ riage stated．Trade supplied．Post orders to：Mail Order Dept．

29－31 Moorfield Road，Leeds， 12.
－

## VIBRATORS

Oais and Wearite, synchronous 7 -pin, 2 v. 7/9, $6 \mathrm{v}, 8 / 3$. 12 v. 4 -pin non-synchronous $7 / 9$.

## EX-GOV F. MAINS TRANSFORMERS

 a. $5 \mathrm{v}, 3 \mathrm{a}$.

250 v. 60 mA .6 .3 v .2 a. ......
$300-3-300 \mathrm{v} .60 \mathrm{~mA} ., 8.3$ v. 2 a .
 $260-0-265$ v. $150 \mathrm{~mA}, 0.3$ v. $2,5.3$ a., 58.3 亿. $29 / 11$ $0-24-28-28$ v 15 amps . A.C. conservative Govt, ratin (marked with D.C. rating aiter rectifleation) $69 / 9$. Carr. 15/
O-10-20-25 v. 24 a. (Govt. rating) 79/6. Carr. 15/.

AUTO 500 wratta $0-215 \cdot 220-225-230-235-240$ ₹. .. $20 / 9$ | AUTO 500 wratts $0-215 \cdot 220-225-230-235-240$ |
| :--- |
| ₹. .. |
| Carr, $7 / 6 . \quad 50 / 9$ |

## EX-GOVT. SMOOTHING CHOKES

60 mA .10 h .400 ohms.
80 mA .20 h .900 ohm
100 mA .10 h .100 ohms
150 mA .10 h .100 ohms.
120 mA .12 h .100 ohms. $200 \mathrm{~mA} .5-10 \mathrm{~h} .100$ ohm

## LOUDSPEAKER OFFER FOR ONE MONTH ONLY!

$6 \frac{1}{2}$ in. P.M. Speakers by leading manufacturers.

## 2 for 11/9

This offer will not be repeated.

## EX-GOVT. CASES

Well ventilated, black crackle finlshed, undrilled Cover. Size $14 \times 10 \times 8 i \operatorname{lo}$ high. INEAL FRYMET CASE. COVER COULD BE USED FOR AMPLI. FIER. Only $9 / 9$, plus $2 / 9$ nost.

## WAYNE KERR SIGNAL GENERATORS, TYPE CT53


$8 \cdot 9$ to 300 megacycles. Output 1 micro-volt to 10 millvolte. Five position switched attemuator. Variable multipller 1 to 10 , calibrated 0.20 db . C.W. square wave and sine
charts. SUITABLE FOR ALIGNING T.V. and V.E.F. RADIO For $200-250$ v. A.C. mains, Beautifully made to very high standards. Worth over $£ 100$. Very 12 Carr.
limited number available at only

## MICRO-AMMETERS

600 Micro-amp. Scaled in Declbels. Diamete 31/n Flush mountin $59 / 6$
$14 / 9$ $250-0-250$ Micro-amp, Dlameter $2 \mathrm{in} . . . . . . . . . . . .$.
$0-50$ mlero-amp. Dlameter 2 in 0-100. Flush mounting $39 / 6$

## VOLTMETERS

$0-300$ v. A.C., 50 c.p.s. Diameter 24 Ln approz $18 / 9$

## MULTI-METERS

Ferrant!, Unlversai (A.C, and D.O.). Complete In carrying case with leads

## 2. v. 16 A.H. EX-30VT. ACCUMULATORS

## V.H.F./F.M. A.M. 4 WAVEBAND RADIO RECEIVERS

Complete in beautiful veneered Walnut Cabinel. Covers cormal Short Mediuma, and Long wavesbands, plus Y.H.F. Brand new and covered by usual For $200-250$ guarantee.
For $200-250 \mathrm{v} .80 \mathrm{c} . \mathrm{p} . \mathrm{s}$. A.C. malns. $12 \frac{1}{2}$ GNS.

## COSSOR BATTERY PORTABLE RECORD PLAYER

Operates with two 4.5 v. Dry batterles which last for months under normal conditions. Plays 45 r -p.m. records at ample output le vel. Ideal for picnics, etc. number. Brand new, guaranteed, at only 9 Carr. $5 / 8$ balf list price,

## RELAYS

Carpenter's Type Polarised $2 \times 9,500$ turns at 1,685 ohms
Miniature Moving Coll Differential Type, Bingle pole way, or centre stable. Two coils each 350 ohms. Minimicro amps, maximum 8 milli-amps. Two-way contact current $100 \mathrm{~m} . \mathrm{a}$. at 50 v , A.C. or D.C. Size approx $1 \frac{1}{6} \times 8 \times 1$ in.
Miniature type G.E.C. 6702 MZB H/D M. 1095. . . $7 / 11$
FIELD TELEPHONES


Complete including bell. Sultable for office, warehouse, factory or outdoor cormmunication. Operate
with small dry battery lasting many months. supplied complete in
Only 59/6 Carr. 5/.

Mail Orders to $29 / 31$ Moorfield Road, Leeds, 12.
For Terms see Double page advert, Pages 102 and 103.

# BENTLEY 

TELEPHONE RESS POSTAL SERVICE! ALL ORDERS DESPATCHED SAME DAY AS RECEIVED.


# PR-DADS Walk=amound store and MAIL ORDER SERVICE 

52 Tottenham Court Rd., London, W.I © Open 9-6 including Sats., Thurs, 9-1 LANgham 0141



## VARIABLE SPEED

HYDRAULIC GEARBOX.
This specially made oil-filled casing houses a hydraulic torque conversion unit originally precision made by Westinghouse from high quality materials for the U.S. Government at an acquisition cost exceeding $£ 150$ each. Highly suitable for lathe head drive, workshop variable speed power take-off, etc. Basically the unit is a back-toback mounted, oil submerged, variable displacement hydraulic pump (input shaft) feeding a reversible hydraulic motor (output shaft) so that variation of the pump displacement by manual control gives very fine selection of output speed from zero up to $6 \%$ below input speed while a changeover valve in the supply lines to the motor provides instantaneous reverse at any speed. Recommendedkinput speed $500-1,000$ r.p.m., maximum power ${ }_{1 \frac{1}{2}}$ h.p. Both shafts $\frac{8}{\text { Ein }}$. dia. with Woodruff key.
Tested and fully guaranteed, supplied complete with technical data and performance curves for the remarkable price of $£ 16$ only, carriage paid.


## flo GEIGER COUNTER

Circuit embodies U.K.A.E.A. patent. Specially moulded case. Currently being supplied throughout the world.
Three ranges-highly sensitivelight - portable - visual and audible response - plus output socket.
Ideal for introduction to radiation measurement and nucleonic circuitry. Specially written 40circuitry. Sage instruction manual supplied. page instruction manual

## KIT OF PARTS \&4.17.6.

Identical Parts. Guaranteed Performance
Manual and printed circuit plates for battery pack supplied (assembled pack £2/15/3 extra). Fully illustrated assembly instructions. Spares and Service permanently available.

SELENIUM RECTIFIERS.
16/- post paid.

MAINS OPERATED PHONE BELLS.
16/- post paid.

33/6 post paid. New, weather protected, sealed twin
between twin bin. dia. plated gongs.

VIBRATOR HT UNIT.
12/6 post paid. Type 244 in neat black case $3 \times 6 \times{ }^{7} \frac{1}{8} \mathrm{in}$. with flying lead 6 v . input and type 10 H socket outlet. Mallory vibrator, metal rectifier, choke smoothed.
NICKEL CADMIUM BATTERIES. NICKEL CADMIUM BATTERIES.
Five heavy duty 1.2 v. cells gives 6 v . for 75 amp.-hours. Fully charged in $151 \times 12 \times 6 \mathrm{in}$. wooden crate.

TORCH IGNITER PUMP.
£2 carriage paid. Plessey FP3 Mk. 4, totally
 enclosed, flame proof compound wound motor driving a self-lubricating, posıtive displacement, sliding blade Kerosene pump through a 4 to 1 reduction gearbox. 4 to 1 reduction gearbox. Running on 24 volts D.C. (designed for $16-29 \mathrm{v}$.) the motor develops $1 / 6$ th h.p. at 13,000 r.p.m., pumping about a gallon a minute at 30 p.s.i. (adjustable by pressure relief valve). Performance marginally less on 12 volts. Inlet and outlet unions. $\frac{1}{4}$ in. B.S.P. Brand дew.
200 AMPERE D.C. GENERATORS.
I6 carr. paid.
Normally driven from tractor power take-off or the like to give a 29 v . output sufficient to weld $\frac{1}{2}$ in. plate.

## AMERICAN COWL GILL MOTORS

Smaller and neater than British counterpart. Split-field, reversible. 12-24 volts.
£2 carr. paid.


## AMERICAN 400 CYCLES INVERTER.

30/- post paid
Very neat unit indeed, only $2 \frac{1}{\frac{1}{2}}$ dia, by 4 in . long on $1 \frac{1}{2} \mathrm{in}$. high pedestal base containim suppressor. Ball bearings. 24 volt D.C. input for 26 volt single phase output. Instrument quality - as used with Bendix Magnesyn compass system.

1-30-A SIGNAL GENERATOR 100-156 Mc/s.
Modern, portable, battery operated, 5 -valve Signal Generator with alternative crystal or master oscillator, either optionally modulated by $1,000 \mathrm{c} / \mathrm{s}$ Hartley oscillator. Large directly calibrated dial with precision slow motion drive. Five step and variable attenuator. Supplied with matching drive. Five step and variable attenuator. Supplied with matching black crackle carrying case for 6 and 135 v. batteries with loft. supply cable, and metal cased 1 mA . test meter for checking crystal reson-
ance, etc. BRAND NEW, $£ 2 / 17 / 6$ Plus $7 / 6$ packing and carriage.
I-95-A FIELD STRENGTH METER $100-156 \mathrm{Mc} / \mathrm{s}$.
Self-contained, tunable-input, valve-voltmeter with telescopic aerial and battery-fed diode rectifier and pentode voltage amplifier for measuring field strength present of modulation, and approximate frequency of transmitter Compensating circuit for state of $1 \frac{1}{2}$ and 45 v . batteries. In attractive black crackle case.

BRAND NEW, £4/2/6 Plus 5/-packing and carriage.
TS. 92/AP. ALIGNMENT UNIT. Modern, high-quality test set for plotting the bandwidth and adjusting the frequency response of I.F and R.F. amplifiers. Probe signals between $15-500 \mathrm{Mc} / \mathrm{s}$ are rectified by a crystal detector and passed through a low-pass filter to the 6SA7 mixer oscillator stage of a highly sensitive conventional superhet circuit with two $6 \mathrm{AC} 715 \mathrm{Mc} / \mathrm{s}$ I.F. stages and 6 H 6 detector. 115 volt 6 X 5 G power pack in separate compartment of attractive lightweight black crackle case. BRAND NEW. Complete with circuit diagram, technical use, and test data.

57/10/- Plus 10/-packing and carriage.
DESK MICROPHONES.
High-grade crystal desk microphone made for use with world renowned recording equipment. In contemporary styled diecast case with sliding note tray in base and rubber feet. Attractive green crackle finish. Fitted with two heavily chromed flap type switches for Record/Playback operation, and complete with multi-cored lead and plug. 35/- post paid.
TS. 184/AP. 70 cm . WAVEMETER.
Tuning stops adjustable to any $30 \mathrm{Mc} / \mathrm{s}$ Band within $400-470 \mathrm{Mc} / \mathrm{s}$. coverage. 6 J 6 Detector. 24 -page instructions covering use as signal generator with 6 and 30 volt battery BRAND NEW in light steel carrying case.
£2/10/-Plus 7/6 packing and carriage

## TS. 100 AP PORTABLE OSCILLOSCOPE. Beautifully built, com

 pact, modern, dual-purpose unit with crystal controlled precision time base giving delayed, gated or continuous circular traces accurate to $02 \%$ and a separate linear time base giving delayed, triggered or repetitive sweeps for general-purpose work. 10 valves. 115 or 230 volt 50 cls mains. Comprehensive technical information and circuit diagram with all working voltages supplied.BRAND NEW, $£ 20$, carriage paid.

#  <br> (BADIO) LIMITED <br> Phone: GERRARD 8204/9155 <br> Cables: SMITHEX LESQUARE <br> LISLE STREET, LONDON, W.C. 2 

UNIVERSAL AVOMETER MODEL "D"
D.C. A.C. D.C. A.C. VOLTS VOLTS Currene Current $150 \mathrm{mv} .7 .5 \mathrm{v} .15 \mathrm{ma} . \quad 75 \mathrm{ma}$. $300 \mathrm{mv} . \quad 15 \mathrm{v} . \quad 30 \mathrm{ma} . \quad 150 \mathrm{ma}$. $1.5 \mathrm{v} . \quad 75 \mathrm{v} . \quad 150 \mathrm{ma} . \quad 750 \mathrm{ma}$. $3 \mathrm{v} . \quad 150 \mathrm{v} . \quad 300 \mathrm{ma}, \quad 1.5 \mathrm{mmp}$. $15 \mathrm{v} . \quad 300 \mathrm{v} . \quad 1.5 \mathrm{amp} .7 .5 \mathrm{amp}$. $30 \mathrm{v} .600 \mathrm{v} . \quad 3 \mathrm{amp}$. 15 amp . $150 \mathrm{v} .750 \mathrm{v} . \quad 15 \mathrm{amp}$. Resist300 v . $1,500 \mathrm{v} .30 \mathrm{amp}$. ance 750 \%. $1,500 \mathrm{v}$.

1,000 $\Omega$

Supplied reconditioned as new, with internal battery. instructions and leads $£ 8 / 19 / 6$ each. P/P. 3/6.


## WESTON MODEL 772 TESTMETER



| A.C. VOLTS | D.C. | A.C. CUR- |
| :---: | :---: | :---: |
| 2.5 v . | CURRENT | RENT |
| 10 v . | $100 \mathrm{micro} / \mathrm{a}$. | 500 ma . |
| 50 v . | 1 ma . | 1 mmp . |
| 250 v | 10 ma . | 5 amp . |
| $1,000 \mathrm{~V}$. | 50 ma . | RESIST- |
| D.C. VOLTS | 100 ma . | ANCE |
| 2.5 v. | 500 ma . | 100 ohms |
| 10 v . | OUTPUT | 1,000 ohms |
| 50 v . | METER | 100 k . ohms |
| 250 v . |  | 10 megohms |

Supplied in perfect working order complete with internal batteries. £7/10/-. P/P. 4/-


PORTABLE PRECISION VOLTMETERS
Brand new instruments by famous manufacturer. In
polished teak case. Moving fron instrument reading A.C. or D.C. volts on 2 ranges $0-160 \mathrm{v}$. or 0 320 v., 8 in. mirror scale. Ac$2 \%$. E5/19/6 ea. P.P. 3/6.


MARCONI TYPE TF340 OUTPUT POWER METERS


Meter calibration 50 MW/I7DB F.S.D. Meter multipliers, 0.1-1-10-100. Impedance values, $25-30-40-50-60-80-100-125-150-200$ ohms. Impedance multipliers. $0,1-1-10-100$. Perfect condition. E9/19/6 each, $7 / 6$ carriage.


FIELD TELEPHONES TYPE F. Generator bell ringing. Supplied complete with batteries fully tested and complete with wooden carrying case 59/6 each. P/P. 3/6. 5/- pr.


## DON Mk. 5 FJELD TELEPHONES

## Jdeal for all

 inter-com. munication. Buzzer calling. Supplied fully tested, complete with batteries and instructions. $39 / 6$ each, P/P. 3/6 ez., 5/-pr.

## BRAND NEW MEDRESCO HEARING AlDS



Fully tested, complete with earpiece, all necessary leads and battery pouch. Incorporates three sub-miniature valves and sensitive crystal microphone. Price only 32/6 each, plus $/ /$. P. \& P. Batteries 5/- extra.



## COSSOR 339 DOUBLE BEAM OSCILLOSCOPES

Operation $110 / 200 / 250$, volts A.C. Ten position time base, 6 cps . to $250,000 \mathrm{cps}$. Amplifier 10 cps . to $2,000,000 \mathrm{cps}$. Perfect working order,
only $£ 15$ each
Carriage 10/-

| E.C. SELECTEST MULTI-RANGE TESTMETERS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

MARCONI TFAIOC VIDEO OSCILLA. TORS. Ranges 20 cps . to $30,000 \mathrm{cps}$. and $30 \mathrm{kc} / \mathrm{s}$. to $5 \mathrm{Mc} / \mathrm{s}$. Variable attenuator. 200/250 V. A.C. Reconditioned, perfect order, $£ 35$ each.

MARCONI TF. 373 UNIVERSAL IMPEDANCE BRIDGE. Reconditioned to makers' spec $1,000 \mathrm{c} / \mathrm{s}$. Ranges: $100 \mathrm{H}, 100 \mathrm{mfd}$. 1 MEG. 100 Q. $200 / 250$ v. A.C. operation. $£ 35$ each.

PADDED MOVING COIL HEADPHONES
Good quality. complete with moving coil hand mike. Brand new. 12/6 per set. P. \& P. 2/-

## PHOTO VOLTAGE AMPLIFIERS. These

 special units contain a I microamp. Tinsley mirror galvo and a double selenium photo cell. Brand new, $\mathbf{E 9 / 1 9 / 6}$ each. P/P. 7/6.MARCONI TF-329 "Q Q " METERS. Range 0 to 500 Q. Frequency $50 \mathrm{kc} / \mathrm{s}$. to $50 \mathrm{Mc} / \mathrm{s} .200 / 250$ volts A.C. operation. Reconditioned to maker's spec. 665 each.

MARCONI TF-428 B/I. VALVE VOLTMETERS. 5 ranges A.C. and D.C. 1.5, 5 , 15,50 and 150 volts. Complete with internal H.F. probe. Operation 200/250 volts A.C. Brand new, $£ 17 / 10 /$ each. P/P. 10/-.

MINE DETECTORS No. 4a
Complete equipment comprises Search Head, Amplifier Headset, Control Box, Telescopic Amplier Headset, Control Box, Telescopic Rods for Search Head, Search Head Test and Test Depth Measure and Haversack.
Operation is from a standard 60 v ./l. 5 v . combined
dry battery. The unit will detect ferrous or nondry battery. The unit will detect ferrous or nonferrous metals to a depth of 24 in . giving maximum signal but can be used at, greater depths giving lower output. Ideal for tracing underground pipes or cables and any hidden metallic objects.
Complete equipment supplied brand new in original transit cases complete with circuit and operating instructions.

AMERICAN SUPER LIGHTWEIGHT
HEADSETS. Res, 50 ohms. Brand new, $15 /$ P/P. $1 / 6$.

SOUND-POWERED TELEPHONE HAND. SETS. No batteries required. 15/- each. P/P |/6.

LEACH 12 VOLT AERIAL C/OVERRELAYS. Double pole, $7 / 6$ each. P/P 9d.

MUIRHEAD PRECISION STUD SWIT. CHES. 4 bank, 4 pole, 24 positions. New, boxed, 17/6 each. P/P. 1/3.

CR.IO0 SPARES KITS. Contains 15 valves, resistors, pots, condensers, output trans., etc. All brand new, $59 / 6$ set. P/P. 3/6.

24 AMP. VARIAC TRANSFORMERS. 230 v . input. Variable output 185 to 250 volts. Can be used reversely giving 230 volts out with variable input. $\mathrm{f} 12 / 10 /-\mathrm{P} / \mathrm{P}$ 10/-.

## R. 1155 RECEIVERS

Standard Model B with improved geared drive, perfect order, $\mathbf{E} / 19 / 6$ each, $7 / 6$ P/P. Trawler Band Model L or N, $£ 12 / 19 / 6$ each. P/P. 7/6. Combined Power Pack and Audio Output Stage suit either model, 85/- extra.

CONVERTERS
12 v . D.C. inpur 230 volt A.C. 150 watts 50 cycles output Housed in wooden case and fitted with volţage control slider resistance switch, plugs and A.C. mains voltage output check meter. Supplied in perfect condition, individually tested $£ 9 / 19 / 6$ each. P/P. 10/-.

## BC 221 HETERODYNE frequency meters

$125 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{mc} / \mathrm{s}$
Complete with all valves, crystal, headset and instruction book, but less calibration charts. $100 \%$ condition.
$\underset{\substack{\text { SpElaL } \\ \text { RRice }}}{\text { E14-10-0 }}$
Carrioge $7 / 6$ extro.

## HIGH FIDELITY RECORDING TAPES.

P.V.C. Base. Brand new in makers' cartons, universal plastic spools. 5 in . 600 ft . Std. $12 / \mathrm{l}$; 53in. 1200 ft , L.P. 19/6; 7in. 1200 ft. Std. 19/6; 7in. 1800ft. L.P. 29/-; P/P. I/-, 2 or more reels post paid. Spare spools. $5 \frac{3}{4} \mathrm{in}$. 2/3; $7 \mathrm{in} .3 / 6$.


1,000 WATT MAINS ISOLATION TRANSFORMERS. 230 to 230 volts. Heavy duty, exAdmiralty. New, boxed 45 each. P/P. 10/-.

750 WATT AUTO TRANSFORMERS. Tapped from 110 to 230 volts. Fine heavy duty type, $69 / 6$ each. P/P 5/-.

AR. 88 WAVECHANGE SWITCH ASSEMBLY. Brand new with screens, $17 / 6$ each. P/P. $2 / 6$.

MARCONI TF-517-SIG. NAL GENERATORS. 10-18 Mc/s; $33-58 \mathrm{Mc} / \mathrm{s}$; 150-300 Mc/s. 200/250 k . A.C. operation. $65 /-$ each
 FOR CALLERS ONLY.


Carriage 10/6.

## PRICE <br> 99/6 each



Open: Tottenham Court Rd., and Cheapside: 9 a.m. to 6 p.m. Mon. to Fri., Sat. I p.m. Holloway Road; 9 a.m. to 6 p.m. daily. Thurs. p.m., Sat. 5.30 p.m.

If not stated, please add postage on orders under $£ 1$. Cash with order or C.O.D. (charges extra).

Our advantageous H.P. and Credit Sale Terms are available on any single item over 65 . Your enquiries invited. Please print your name and address!!

## YOUR MOVE...

WE ARE THE EXPERTS IN THIS FIELD AND CARRY THE MOST COMPREHENSIVE STOCKS IN THE COUNTRY.
ALL PARTS AVAILABLE SEPARATELY.

(1) New Look " RAMBLER " all dry s'het portable
(2) "RAMBLER "' Mains Unit (suits most portables)
(3) "ECONOMY FOUR "T.R.F. Mains Receiver
(4) " ECONOMY FOUR " with New Look Cabine
(5) "FAMILY FOUR" (our new T.R.F. Receiver)..
(6) "SUPERIOR FOUR " (four valve mains receiver)
(7) Standard JA SON F.M. Tuner FMTI
(8) Fringe area JASON F.M. Tuner FMF
(9) JASON "MERCURY 2 " Switched F.M. Tuner plus iTA/B. B......................... Sound
(10) OSRAM 912 Prineed circuit F.M.T........
(11) JASON "ARGONAUT" AM/FM Chassis
(12) JASON "ARGONAUT" AM/FM Tuner
(13) F.M. Power Pack (suitable for most tuners)
(14) R.C. $3 / 4$ watt Amplifier (with Bass, Middle and Treble controls)
(I5) 2 -amp. Battery Charger
(16) R.C. Transistor/Crystal Receiver ('phones extra)
(17) R.C. Super Transistor/Crystal Rec. (ditto)
(18) R.E.P. I-valve Battery Receiver
(19) "CRY-BABY" ALARM (Baby Alarm)
(20) MULLARD 510 Amplifier (printed circuit) Uitra Linear Version
(21) MULLARD 510 as above plus input selector and spare power sup plies
(22) "DE-LÜXE :Mrinted Circuit Superhé
(23) "DE-LUXE " with New Look Cabinet
(24) JASON J.T.V. 2 Tuner
(25) RADIO JACK
(26) MULLARD TYPE $\because$ © Tape pre-amp.
(27) JASON WII Wobbulator
(28) JASON Valve Voltmeter EMiO ( 23 ranges)
(29) NEW JASON F.M. TUNER FMT2 with built-in power supplies and
(30) NEW JASON FRINGE F.M. TUNER FMT3, as above
(31) PULLIN Series 90 TEST METER
(32) R.C. Super Personal Portable I-valve (phone extra)
(33) R.C. Super Personal Portable, 2-valve (phone extra)
(34) R.C. TRANSETTE 2-Transistor Personal Portable
(35) JASON EVEREST 6-Transistor 2-wave Portable,
36) JASON EVEREST 7-Transistor 2-wave Portablé
(37) CLYNE Cathode Ray Oscilloscope
(38) Compact Multi-range Test Meter
(39) CAR RADIO, Printed Circuit, 5-valve S'het. NEW LOW PRICE (40) JASON Audio Generator AGIO
(41) JASON Oscilloscope OG10
(42) Super SHORT WAVE RADIO $i$ i valve
(43) "WAVEMASTER " 7-Transistor Luxury Portable
(44) "GOLD STAR" De-luxe l-valve Portable

## THE "WAVEMASTER" 7-TRANSISTOR LUXURY PORTABLE

## 400 MILLIWATTS OUTPUT

To bulld yourself Medium and Long Waven-Push•Pull Superhet A.V.C Perfect Car Radio reception. Blze $10 \mathrm{in} . \times 6$ in. $\times 4 \mathrm{~km}$, at base tapering to $4 \ln$. at top.
Very attractive two-tone grey Vynide covered cabinet with black and gold printed escutcheon plate, cream and gold knobs, handle and cabline
 High-grade transistors throughout. $\star$ High-Flux $7 \mathbf{l n} \times 4 \mathbf{k}$ n. Elliptical Speaker. $\star$ Slow motion tuning. $\star$ Co-axial socket at rear for direct connection to Car Radio Aerial. $\star$ Improved reception by use of seven section plated telescople aerial disappearing into Cabinet when olosed 34in. above Cabinet when fully extended.
Construction simplifed by Bakelite chassls board with the following components alrcady mounted:-I.F. Transformer (3). Osciliator Coil, Trimmer Bank, Output Transformer, Interstage Transformer, Aerial Brackets and Eartb Bar SPECLAL INCLUGIVE PRICE for all required components, full assembly lostructions-nothing more to buy-is £10/19/6 plua $3 / 6$ P. \& P. Allgnment service availabie. Full assembly instructions and indivldually priced parta list, all of which sre available separately, $2 / 6$, post free.

## VISIT OUR FULLY EQUIPPED <br> HI-FI SHOWROOM AT TOTTENHAM COURT ROAD FOR HI-FIDELITY EQUIPMENT BY ALL LEADING MANUFACTURERS

We stock equipment of Quality by all leading makers:
i.e., Leak, Quad, Armstrong, Dulei, Ferrograph, Reflectograph, Vortexion, Linear, Wharfedale, Grundig, Goodmans, W.B., Rogers, Garrard, Lenco, B.T.H.,' Pamphonic, Simon, Brenell, Collaro, Teléfunken, Fi-Cord, etc., etc. A full range of high quality cabinets to suit all purposes is on show, i.e., "RECORD HOUSING," "W.B.," "A.D.," etc. Enquire about our interesting part-exchange scheme for personal callers. H.P. Available.


Readers will no doubt be pleased to know that our working model of this amazing organ for home construction, may now be heard and seen, at our Hi Fi Showroom in Totten ham Court Road, W.I For the benefit of constructors all components, keyboards, chokes, etc., are available ready made. Full constructional details are available in book form at $15 /$-plus $1 / 6 \mathrm{p}$. and p . We shall be happy to forward a complete
price list on receipt of price list on receipt of
a stamp. Please address all organ enquiries for the attention of Mr. L. Roche

## SUPER MAGNETIC RECORDING

TAPE SPECIAL ! ! ! Trade enquiries invited First delivery Famous American Ferrodynamics Acetate Base High Quality Recording Tape. An enthusiast's must. Brand new (NOI SUB-STANDARD), $5 \operatorname{in} .600 \mathrm{ft}$. $16 /-, 5 \mathrm{in}$. 900 ft . 18/6, 5 i in. 1,2001t. 23/6, 7in. 1,200it. 25/., 7in 1,800ft. 35/-. Professional quality " MYLAR " Du Pont $5 \mathrm{in} .1,200 \mathrm{ft}$. 37/6. 7in. 1,800ft. 44/-
$7 \mathrm{in} .2,400 \mathrm{ft} .60 / \mathrm{m}$, each on plastic spool. P. free.


DECCA PORTABLE AMPLIFIER. As supplied in famous DECCAMATIC III. Complete with small cream knobs. Full range tone and volume controls. Employs ECL82 valve. Size $3 \times 3 \frac{1}{2} \times 8^{\frac{3}{4} \text { in. Only } 59 / 6 \text { plus } 2 / 6 \text { P. \& P }}$ SPECIAL CELESTION $8 \times 6 \mathrm{in}$. elliptical high flux loudspeaker 30/plus I/-P. \& P. to fit.
VERY ATTACTIVE PORTABLE CABINET in two-tone rexine covering for accommodating the above items and ancillary equipment. 75/-plus 5/-P. \& P.
Note. If the above three items are purchased together they will be Nupplied at the special inclusive price of $£ 7 / 2 / 6$ plus $6 / 6 \mathrm{P}$. \& P.

## EXTRA SPECIAL OFFER!

A small three-valve PORTABLE RE-CORD-PLAYER AMPLIFIER mounted on baffle $12 \times 7 \mathrm{in}$., with High Flux $6 \frac{1}{2} \mathrm{in}$. Loudspeaker. Valve line-up ECC83, EL84, EZ80. Incorporates separate bass and treble controls. Max. output 3 watts. Will match all types of high impedance pick-up. Ready to use, EAT finished in two-tone Leatherette. Will accommodate above Amplifier and Baffle without modification, also most types of Ancillary Equipment. Overall size $18 \times 13 \frac{1}{2} \times 8 \frac{1}{2} \mathrm{in}$. Fitted with carrying handle, $£ 3 / 9 / 6$ plus $5 /-\mathrm{P}$. \& P
NOTE. If both items purchased together they will be supplied at a special inclusive price $88 / 7 / 6$ plus 6/6 P. \& P.
TWO-TRANSISTOR PERSONAL PORTABLE. This is an amazing little receiver with built-in aerial, and small enough to be held in the palm of the hand. Medium wave reception at wonderful volume. Supplied with drilled chassis and colour coded components. Easily assembled with the aid of the easy-to-follow assembly instructions provided. Total cost of all necessary components, including transistors, Deaf-aid type earpiece, wiring wire and even solder. High Resistance complete with single standard High Resistance earphone at ONLY 62/6. Plus $1 / 6$ P. \& P.
list and Easy Lay-out Plan s $2 /$ post free.

SUPER PERSONAL PORTABLE. A wonderful little set that you can take anywhere. Ideal for camping, picnics, etc. Detachable aerial rod supplied. Covers Medium waveband 200-500 metres. Can be built in approx. I hour. All necessary components available at the following SPECIAL INCLUSIVE PRICES: 1 -valve version ONLY 35/-. Super 2 -valve version ONLY 41/-. Plus 2/- P. \& P. Send for point-to-point wiring diagram and parts price list $2 /-$ post free. Extra for use with the above DLR5 balanced armature headphones, $7 / 6$ pair.

## CABY UNIVERSAL TEST METERS

These pocket-size multi-range test meters are of excellent quality and cover all the most useful ranges (A.C. Volts, D.C. Volts, resistance and current). Supplied resistance and current). Supplied
complete with test prods, incomplete with test prods, in-
struction book and batteries. struction 10 ( 2,000 ohms per volt)
Model A.
Model B. 20 ( 10,000 ohms per volt) \&6/10/-
Plus P. \& P. 3/6 on each.
Fully detailed and illustrated leaflet available on request.

## RECORD PLAYERS

Full range at usual competitive prices. Interesting H.P. facilities B.S.R. TU9.

4-speed single record unit with separate light weight pick-up fitted with T.C.8H weight pick-up fitted with I.C.8H.
crystal insert and sapphire styli. Arystal insert and sapphire styli. gramophone. Brand new and fully guaranteed. SPECIAL PRICE: 75/- plus 2/6 P. \& P. or motor and turntable only at $42 / 6$ plus $2 / 6$ P. \& P . or Pick-up only at $27 / 6$ plus $1 / 6$ P.\&P.
E.M.I. 4-SPEED STEREO SIN GLE RECORD UNIT. Complete with Stereo Head and Sapphire Styl Brand New and Fully Guaranteed. ONLY $66 / 19 / 6$ plus $3 / 6$ P. \& P.

## IUST ARRIVED!

LATEST B.S.R. UAI4. 4-speed Attractive appearance. Wired for stereo. Fully guaranteed. 67/19/6, plus 3/6 P. \& P.
B.S.R. UAB STEREO/MON AURAL. Few only at $\overline{\pi / 19 / 6}$, plus 3/6 P. \& P. Brand new. Guaranteed.

No. 38 AFV WALKIE-TALKIE. A wonderful offer. This famous trans-receiver unit, with relay operated SEND/RECEIVE switch operated $\mathbf{c o v e r i n g ~} 7.4-9 \mathrm{Mc} / \mathrm{s}$ band, range covering 5 miles. Good condition.
approx. 5 mand, range ONLY $22 / 6$ plus $2 / 6$ P. \& P. per unit (less accessories). Quantity export inquiries welcomed.
AERIAL TUNING UNIT ZA084l. This well made ex-W.D. unit contains a host of useful components including: I mA. 2in. flush round $M / C$ meter, I $m A$. Westing house full-wave meter rectifier, 5 -pole 5 -way heavy-duty silver plated wavechange switch. 3in. dia. silver plated rotary tuning indicator, 350 pF tuning condenser with insulated coupler and $3 \frac{1}{2}$ in. calibrated dial ( $0-180$ deg.) etc. etc. Contained in strong metal carrying case 9 in . $x$ 9in. $x 8$ in. with hinged lid. ONLY $27 / 6$ plus

LATEST COLLARO STUDIO
3 speeds 7 3i 7 i P. takes 7 . plus 5/-P. \& P. Usual H.P. facilities.
TAPE RECORDER AMPLIFIER for use with Collaro Studio Transcrip tor. Size $114 \times 5 \times 3 i n$. Uses 3 valves, magic eye, contact cooled metal rectifier incorporates mike/gram/radio inputs, ext. I.s. jack, superimposing switch \& $12 / 12 /$. . Complete with matching knobs (Gold/Black). Circuit etc. Post $3 / 6$. LATEST B.S.R. "MONARDECK." Single speed Tape Deck. Takes $5 \frac{3}{4} \mathrm{in}$. spools- $3 \frac{1}{4}$ i.p.s. At $£ 9 / 19 / 6$ only plus $S /-\mathrm{P}$. \& P .

SURPLUS P.N.P
RED SPOT (Audio/Experimental Ap plication) (......................... 5/-ea WHITE SPÖT, R.............. up to 2.5 Mc/s ...............................5 Attractive discounts for bulk pur chases. The above is a selection only Full range in stock by all leading manufacturers. Let us have your enquiries.
(ALL POST FREE)
FRUSTRATED EXPORT NOt repeatable! L., M. and S.W. SUPER HET RECEIVER. Manufactured by McCarthy for export. At present for operation on 6 volts, but conversion details supplied free.


Vaive line-up: $6 K 8 G, 6 K 7 G, 6 Q 7 C$ $6 F 6 G, 6 \times 5 G$ and 6 volt 4 -pin non synchronous vibrator. 8in. P.M Speaker, 4 watts output, P.U. socket Ext. L.S. socket, etc. Tone control. Fitted in polished wood cabinet size $21 \frac{1}{4}$ in. $\times 10 \frac{1}{2}$ in. $\times 10 \frac{1}{4}$ in. These cabinets are slighty soiled owing to storage, but each is guaranteed un used, in serviceable condition, tested prior to despatch. Price $£ 5 / 19 / 6$ only plus P. \& P. 7/6, plus $27 / 6$ for A.C Mains Conversion Components 12 CHANNEL TV TURRET TUNER (By famous manufacturer). Brand new, NOT sur plus or ex-equipment.
$35 \mathrm{Mc} / \mathrm{s}$. I.F. PCC 84
and PCF 80
valves. Comvalves. Com-
plete with coils: Band Channels I to 5 Band III Chan nels 8 to 11 . In carton. Fully guaranteed at only $39 / 6$
plus $2 / 6$ P. \& P. AMPLIVOX HEADSET SPECIAL (not surplus). As used in up-to-date ships, aircraft, etc. Excellent quality super lightweight, low impedance, magnetic headphones complete with button microphone attached and plastic ear moulds. Absolutely brand new. 45/-pair. Plus 1/6 P. \& P.
ACOS MIC 39-1. Crystal stick microphone. List price 5 gns. Our price $39 / 6$ plus $1 / 6$ P. 8 P.
MIC40. General purpose microphone with desk stand. Our price $25 /$-only plus $1 / 6$ P. \& P.

APE TRANSCRIPTOR. 3 motors

## ฉัา 4 -

CIYNE RADIO LTD.
THE COMPONENT 162 Holloway Road, London, N. 7. SPECIALISTS

99 Cheapside, London, E.C. 2 18 Tottenham Court Road, London, W.I.

## LASKYS RADIO

## NEW <br> TAPE <br> RECORDER <br> SCOOP

LASKY'S PRICE
29 Gns
including Acos mike and 1,200ft. Scotch tape.

Carr. \& Inse 25/-
A complete Tape Recorder using Collaro Studio 3-speed Deck, 17, 3 年, $7 \frac{1}{2}$ i.p.s. Twin Studio 3-speed Deck, 1 t. 37, , $\frac{1}{2}$ i.p.s. Twin
track, with pause control, rev. counter, track, with pause controo, rev. counter, superimposing switch, volume and tone controls, $7 \times 4$ loudspeaker, 4 watts output. Takes 7in. spools. In contemporary design carrying case, $9 \frac{1}{2} \times 16 \times 16$ in. Limited number. Brand new and unused.
Note: Can be used as a straight-through Amplifier.

## NEW PRINTED CIRCUIT

 GR.AM AMPLIFIERUses two valves, ECL82 and EZ80, and separate mains transformer to minimise hum. Incorporates Elac 8in. X 5in. loudspeaker with output transformer mounted. Concentric volume and tone controls. Size of printed circuit, $4 \times 3 \times 2$ in.

## LASKY'S PRICE, complete,

Post
2/6.
Available less Speaker, 55/-

## SHORT WAVE CONVERTER

## FOR ANY CAR RADIO

Smith's "Radiomobile" Converter offers short wave reception of your favourite stations 6 or 12 y positive or negative earth Uses 6BE6 heptode freg. changer. Easily installed, may be used with any car Easily installed, may entcheon, cream push buttons. Size: $1+\times 7 \times 5$ in. All plugs and sockets included. Supplied with 3 removable coil units of your choice. Bandspread: $16,19,25,31,41,49,60,90$ metres.

## LASKY'S PRICE $8: / 6$ Post $2 / 6$. 68

Additional Coil Units, 6/- each.

## - Avartir STEREOPHONIC HI-FI EQUIPMENT AT TREMENDOUS REDUCTIONS

For $100-250$ v. A.C. mains. Brand new and unused in maker's cartons. Fully guaranteed. Limited quantities only. Come and have free demonstrations. Fullest details of any item post free on request


SPAII _ STEREO AMPLIFIER AND PRE-AMPLIFIER
Twin 10 watts output, 3-dimensional monaural reproduction by combining both channels. 8 inputs for each channel. Size: $14 \frac{1}{2} \mathrm{in}$. wide, 4 in . high, $8 \frac{3}{4} \mathrm{in}$. deep. LISTED AT $£ 20 / 81$.
Lasky'S Price 19 C̈ns.
Carr. \& Ins,, 7/6.


SPA2I STEREO AMPLIFIER AND PRE-AMPLIFIER
Twin 25 watts output. 6 inputs for each channel. Size: $14 \frac{1}{2}$ in. wide, 4 in , high, 14 in , deep.

LISTED AT $448 / 101$ -
LASKY'S PRICE 829/10/=
Carr. \& Ins. 12/6.
BM611. VHF-FM/MW-AM RADIO TUNER. Employs
8 valves plus rectifier. LISTED AT $£ 40$.
LASKY'S PRICE 825
Carr. \& Ins. 7/6.



DL7-35 POWER AMPLIFIER. 54 watts peak output. Freq. response $5 \mathrm{c} / \mathrm{s}-30 \mathrm{Kc} / \mathrm{s} \pm 0 \mathrm{~dB}$. Two of these can be used in conjunction with SP21/2 Pre-Amp. Control Unit for stercophonic reproduction. Size: $14 \nmid \mathrm{in}$. long, 9 in. wide, $8 \frac{1}{2} \mathrm{in}$. high. LISTED AT $£ 31 / 10 /$ -

LASKY'S PRICE $£ 24$
Сагr. \& Ins. 12/0.

SP21/2. STEREO PRE-AMPLIFIER CONTROL UNIT. Twin channel. Designed primarily for use with two DL.7-35 Power Amplifiers. Six inputs for each.channel Freq. response $40 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s}$. LISTED AT $\mathrm{f} 28 / 10 /$.

LASKY'S PRICE 18 GMS.
Carr. \& Ins. 7/6.
PL6/21. 20-watt MONAURAL AMPLIFIER and combined pre-amplifier control unit. 5 inputs LISTED AT $£ 20 / 8 /-$

LASKY'S PRICE 19 GIS.
Carr, \& Ins. 7/6.
8TEP11. STEREO PICK-UP PRE-AMPLIFIER UNIT. LISTED AT $£ 6 / 16 / 6$. LASKY'S PRICE 99/6 Carr. \& Ins. $7 / 6$

## NOW READY!

 LASKY'S FABULOUS HI-FI CATALOGUENothing like this has ever been offered before. Note the large size page, $11 \frac{1}{6} \times 8 \frac{\mathrm{in}}{\mathrm{in}}$,, approz. 100 pages in photogravure. This is a COMPARATOR-CATA. LOGUE to enable you to choose from all the latest and most advanced equipment. Every hi-fi enthusiast will want super catalogue. Send for your copy today.

Price $3 / 6$ Post 6 d .
Fully refunded on making. your first hi-fi purchase.

## TAPE OFFER

Famous make. P.V.C. base on latest type plastic spools. Brand new, boxed and guaranteed. 1,800ft. on 7in. spool 1,200ft. on 7in. spool $1,200 \mathrm{ft}$. on 5 烘in. spool 850 ft . on 5 itin. spool sCOTCH PLASTIC TAPE $1,200 \mathrm{ft}$. on 7 in . spool 32/6 $22 / 6$ 16/6 25/-

## GEVAERT L.P. PLASTIC

$1,700 \mathrm{ft}$. on 7 in . spool 35/850ft. on 5 in . spool 18/6 810 ft . on 3 in . spool ....

Post: 1 spool $1 / 6$
Orders over 60/-Rost free

PLASTIC TAPE SPOOLS


7in. Metal Spools, $1 / 9$ each
Post exura
TAPE RECORDER AMPLIFIER for use with Collaro Studio Transcriptor. Uses 3 valves, magic eye, contact cooled metal rectifier. Incorporates mike/gram/radio inputs, ext. l.s. jack, superimposing switch. Complete with gold/black knobs. 12 Gns.

Post $3 / 6$.
ALL MAKES OF TAPE in stock Long Play Double Play, and the American "MYLAR

## TAPE DECKS

B.S.R. "MONARDECK," single speed, 3 I. i.p.s. uses $5 \frac{1}{4}$ in. spools. Complete with 850 ft . Tape and Spool. 28/19/6 Carr. free.

COLLARO TAPE TRANSCRIPTOR Mk. IV, fitted digital counter. List ${ }^{25}$.

LÁSKY'8 PRICE £17/19/6
Carr. 21/-
Latest COLLARO STUDIO TAPE TRANSCRIPTOR. 3 motors, 3 speeds. $17,3 \frac{17}{8}, 7 \frac{1}{2}$ i.p.s. Pushbuttop controls.

Carr. $\overline{12} / 6 .{ }^{-1} 14$ Gns.

## FERGUSON <br> F.M. TUNER

FM/1. Brand new and unused Employs 3 valves and incorporates own power supply. Freq, range 87.6 to $100 \mathrm{Mc} / \mathrm{s}$ continuously. Metal case, hammer finish, size $10 \mathrm{in} . \times 7 \frac{1}{3} \mathrm{in} . \times 2 \frac{1}{4} \mathrm{i}$., with smart escutcheon in cream.

LIST PRICE 18 Gns
LASKY'S PRICE \&13/19/6
Carr. \& Ins. 2/6.
"LINEAR" AMPLIFIERS
Complete range of types in stock Leaffets on request.


B．S．R．UA12．Wired for STEREO， complete with stereo $£ 8.19 .6$ cartridge．Post $5 /$ ．

28．19．6
B．s．R．Type UA8，complete with latest B．S．R．＂ful－f．＂．＂$£ 6.19 .6$ － $87 / 19 / 6$
Stereo version，＂$£ 7 / 19 / 6$
COLLARO．Complete with Studio crystal p．u．and sapphire stylus． LIST $£ 13 / 17$／－

## Post 3／6 <br> £7．19．6

STEREO version $£ 8 / 19 / 6$ ．

## GARRARD

Model 121．Mk．II ．．．．．．$£ 1010 \quad 0$ 121，Mk．II STEREO \＆11 100 121，Mk．II，with mon－ aural and Stereo heads $£ 1210$ RC． 88 ．．．．．．．．．．．．．．．．．．．．$£ 12196$ RC．88，STEREO ．．．．．．\＆13 196

PICK－UP CARTRIDGES ACOS type HGP． 59 or HGP． 37 turnover crystal cartridge with I．P． and standard styli．List $39 / 7$ ． LASKY＇S PRI日E 18／－Post free．

ACOS 73－1A STEREO pick－up cartridge List $52 / 6$ ．
LASKY＇S PRICE 29／6 Post 1／－

## LASKY＇S <br> CAR RADIO

 can be builtABSOLUTELY COMPLETE FOR £12．10．0 Post $3 / 6$ ．

$\star$ Small size．Will fit any car $\star 12$ volt operation ＊New Hybrid circuit太 Transistor output夫 New Type Brimar valves太 No Vibrator， 12 volt H．T．\＆L．T ネ T．C．C．Printed Circuit and Con－ densers
－Tuned R．F．stage
＊Medium and long waves
＊Permeability tuning
ڭ $7 \mathrm{in} \times 4$ in．elliptical speaker． Instruction Booklet giving full de－ tails，illustrations，dimensions，cir－ cuit diagram and shopping list 2／6 post free
（returned if you order）．

SINGLE PLAYERS
Brand new and unused Auto start and stop．Complete with pick－up and crystal cartridge． GARRARD 4SP ．．．．．．．． $8619 \quad 6$ GARRARD TA Mk．II，wired for STEREO，plug－in head 8890 E．M．1．4－spd．，wired for STEREO and fitted Acos stereo T．O．car－ tridge Post on all above $5 /$－ B．S．R．TU9，non－auto Turntable and separate Pick－up ．．．\＆4 96 Post 3／6．
COLLARO JUNIOR 4 －speed motor and separate pick－up with cartridge styli Post．free．

## H．P．TERMS AVAILABLE

on certain goods． Call or write stating your requirements．

## ALL TYPES OF CHASSIS

We hold the largest selection of leading makes，including ARM－ STRONG，DULCI，EMPRESS，etc． A．M，chassis（1．，m．，s．）from 7 Gns． A．M．／F．M．chassis from 14 Gns． A．M．／F．M．STEREO from 22 Gns．

## BUILD THIS FINE 3－SPEED TRANSISTOR RECORD PLAYER

## FOR £9．19．6 Carr． $7^{1 / 6}$

6 volt operation．For all L．P．and standard records．Complete parcel comprises：－ AMPLIFIER． 300 milliwatts output，using two OC71 and two OC72 transistors．Fully assembled．79／6．Knobs 3／6 extra．
LOUDSPEAKER． 30 ohms， $7 \times 4$ in．elliptical Speaker matched to amplifier．25／－． 3－SPEED TURNTABLE with rubber mat and speed adjustment，complete with t．o．crystal cartridge and two sapphire styll．79／6．
CARRYING CASE as illustrated，hand－ some two－tone finish，size 17 in ：deep， 14in．wide， 5 腬in．high．49／6．


Balleries extra．All components available separately．Build this modern Record Player for $£ f$ f́s less than an equivalent ready－build Player．

## MICROPHONES

The DIANA．A high quality moving coil microphone with unique magnetised table magnetised tanle
base．Response base．Response
$30-15,000$ c．p．s． Ideal for tape Ideal for tape
recorders．LIST recorders
4 GNS．
LASKY＇S 55／＝


ACOS GRYSTAL STICK MIKE， type MIC．39／1，complete with cable．Listed at $£ 5 / 5 /-$

LASKY＇S PRICE
Post free
$39 / 6$
Desk Stand $1 / 6$ extra
ACOS type 33／1．Crystal hand or table Mike，29／6．Post $1 / 6$ ．

RIBBON MIKE on table stand． Famous make，high impedance．

LASKY＇S PRICE $\quad £ 6.19 .6$
Post $3 / 6$.
TEST METER BARGAIN
＂ALFA＂MULTI－RANGE．A．C． and D．C．3，333 ohms per volt． A．C．and D．C．up to 1,200 ．Overall A．C．and D．C．up
size： $5 \frac{1}{4} \times 3 \frac{5}{s} \times 1$ ．

Including Leads．
Post 2／－

C．R．TUBE BARGAINS NEW AND UNUSED
FERRANTI，9in．type T9／3． 4 v ．heater， triode，octal babe，atandard defection． LIBT 9 GNB．

LASKY＇S PRICE
Cart．\＆Insur，12／6
49／6
FERRANTI，12in．，types TI2／44 and
T12／54．
LIST $\underset{\substack{\text { E12．LASKY＇S PRICE } \\ \text { Carr．\＆Insur．} \\ \text { 12／6．}}}{59 / 6}$
FERRANTI 17in．type TR17／10， 6.3 v． .3 amp．heater．Brand new and unused． LASKY＇S PRICE
Carro and Insur，12／6．
2 6.19 .6

17in． 90 degrees C．R．TUBES Seconds but in perfect working order and guaranteed．$£ 4 / 19 / 6$ ．

Carr．and insur．12／6．
RE－GUNNED C．R．TUBES
GUARANTEED FOR 12 MONTHS
Type
12in．round
14in．rect．$\ldots$ ．．．．．．
17in．rect．
21in．rect．

| Price |  |
| :---: | :---: |
| \＆6 10 | 0 |
| 86 | 10 |
| 86 |  |
| 86 | 19 |
| 86 |  |
| 87 | 19 |
| 8 | 6 |

## 12－CHANNEL

## TURRET TUNERS

Buy now free of Pur．Tax．Large selec－ tion，many by famous makers such as Cyldon，Brayhead，Peasey，Cossor，etc．
all I．F．s．Brand new and uused．Write for quotation on model you require．

Ldated at 7 Gns．
LASKY＇s PRICE from $39 / 6$


BUILD THE COSSOR ＂TRAVELLER＇S FRIEND＂ 4－Transistor
POCKET SUPERHET
Uses 9 v．PP4 battery Coyers 100－550 metres．Output 30MW，All components fincluding 4 transistors．OC44，OC45． OC45，OC72，two OA70 diodes，two $A G C$ systems，2ili．M．C．speaker，Ferrite slab aerial，etc．，leatherette case，size $6 \times 3 i \times 18$ in．Printed Creuit and easy－to－ follow instructione．

LASKY＇SPRICE $\begin{array}{rl}\text { Post } 2 / 6 & £ .19 .6\end{array}$
Originally nearly $£ 20$
All components available separately．

## TRANSISTORS

P．N．P．Junction Types
AUDIO，yellow／green spot，each 5／－ R．F．，yellow／red spot，each 7／6． TS1．For all audio applications， $3 / 6$ Post 6d．Special prices for quan－ tities．

OC44 15／－；OC45 15／－；OC70 8／6；0C71 8／6；OC72 15／－（Matched Pair 30／－） 0073 14／－； 0016 54／－

EDISWAN MAZDA TRANSISTORS．The very latest types． $\mathbf{X B} / 10210 \mid-;$ XB103 $10 /-\mathrm{XC} / 101$ 12／6：XA／101 15／－： XA／102 $17 / 6$.
＂GOLDTOP POWER＂ TRANSISTORS
All types in stock．Example：－－
V15／10p．Ideal for output stage of car radio，will give approx． 3 watts operating from $12 \mathrm{\nabla}$ ．Each $15 /-$ past free．
Buitable Output Transformer for above， correct ratio，matched to 3 ohms， $9 / 6$ ． Post $1 /$
Driver Transformer 9／6．
CRYSTAL DIODES．General Purpobe GEX00，each $1 /-$ Fer doz． $9 /-$

All other types in stock：
Send for Lasky＇s COMPONENTS CATALOGUE OVER 100 PAGES $8 \frac{1}{2} \mathrm{in}$ ．X $5 \frac{1}{2} \mathrm{in}$ ． GOPIOUSLY ILLUSTRATED

Price 2／－Post 6d．
Our latest 12－page＂BARGAIN BULLETIN＂of Special Offers free with each copy or available separate－ ly by post，price 6 d．

Please address MAIL ORDERS and enquiries to EDGWARE ROAD

207 EDGWARE ROAD， LONDON，W． 2

Few yards Praed Street PADdington 3271／2

42 TOTTENHAM COURT ROAD，W． 1
Nearest Station：Goodge Street MUSeum 2605

Both Addresses OPEN ALL DAY SATURDAY Close
Thurs．I p．m．

# THE MOST COMPREHENSIVE RANGE and outstanding value in TAPE EQUIPMENT <br> Prean's thidelixy TAPE EQUIPMENT <br> THE TYPE "C PREAMP. HF/TR3 AMPLIFIER and the HF/G2 UNITS are STERN'S MULLARD DESIGNS 



Incorporating the HF/TR3 AMPLIFTER and COLLARO "STUDIO" TAPE DECK. Twin track operates at 1\%. $3{ }^{2}$ and 7 inn. $/ \mathrm{sec}$.

Price $£ 39.10 .0$
H.P. Terms. Deposit £\%/18/-and 12 months at £2/1\%/11.


## STERN'S presentation of MULLARD designs



## MULLARD " 5-10"

 MAIN AMPLIFIERFor use with the MULLABD 2-valve preamplifier with which an undistorted power output of up to 10 watts is obtained. We supply BPECIFIED Including PARMEKO MAINS TRANGEORMES noluding parmeice of the latest Ultra-linear PARMEKO or the PARTRIDGE Oulput Transformer. Price: GOMPLETE KIT (Parmeko \&10.0.0 O/put Trans.)
Aiternatlvely we sup ly AssEM. \&11.10.0 ABOVE INCORPORATING PARTRIDGE OUTPUT TRANSFORMER £1/6/- extra. THESE TWO UNITS PURCHASED TOGETEER, ARE OFFERED FOR

## MULLARD 2-VALVE PREAMPLIFIER-TONE CONTROL UNIT

Erapioys two Mullard EF8s vaives and desigued to operate with the Mallard " $5-10$ " Miln Amplifler but also aultable for all
power Ampllficrs requiring an 1 nput of up to $250 \mathrm{~m} /$ volts.
Inputs for Crystal and Magnetic Plek-ups, Mierophone, Tape. Separate Bass and Treble Controls.
KIT OF PARTS $£ 6.6 .0$ or ASSEMBLED $£ 8.0 .0$ .KIT OF PARTS .. £15/15/-, or ASSEMBLED .. £18/18/-


MULLARD " 3-3" AMPLIFIER
Ideal for simall high quaility installation, provides excellent reproduction up to 3 watts output. Inouts for Crystal Pick
KIT OF PARTS
£7.10.0 or ASSEMBLED
£8.19.6
MULLARD "5-10" AMPLIFIER MODEL 5I0/RC A complete Amplifier, incorporatiog CONTROL UNIT. Providing up to 10 watts bigb quanty reproduction. Inputs for crystal pick-ups and Radio Tuner. KIT OF PARTS
\&11.10.0 or ASSEMBLED
£13.10.0

## STEREO "3-3" MAIN AMPLIFIER

Comprises two MULLARD 3-3 Main Ampiihers on one chassis. Operates with MULLARD STEREO PREAMPLIFIER and Radio Tuner
\&10.0.0 $\qquad$ E11.15.0

## COMPLETE STEREO AMPLIFIER

Meets the many requests for a low priced but good quality stereophonic Arapllier. Output power ls 4 watts and sultable for Crystal Pick-Ups.
KIT OF Parts ...... $£ 8.10 .0$ or assembled ........ $£ 10.10 .0$

## MULLARD "STEREO"

## PREAMPLIFIER

sultakle for Btereo or Monaural operation with any Power-Amplifer requiring Input of up to $250 \mathrm{~m} /$ volts. Inputs for Crystal or Magnetic Pick-ups, Microphone, Tape. Separate Bass
and Treble Controls.
KIT OF PARTS
£12.10.0


THIS STEREO GETHER WITH
(a) One "mullard" $5-10$ main amplifier

KIT of parts ...... £21.10.0
mer ASSEMbled
wo mulard " $5-10$ " Mank amplelers KIT OF parts ...... $£ 31.0 .0$ or ASSEMBLED ..... $£ 36.0 .0$ c) MULLARD "Stereo" 3-3 MAN AMPLIFIER KIT OF PARTS ...... £21. 10.0 assembled

## TAPE AMPLIFIERS and PREAMPLIFIERS presented from MULLARD DESIGNS

## MODEL HF/TR3 TAPE AMPLIFIER

## (Mullard Type "A" design)

A very high-quality Ampllter incorporating 3 -speed treble equalisation, using the latest FERROXCUBE POT CORE INDUCTOR. FOR COLLARO-TRUVOX-BRE NELL-WEARITE or MOTEK Tape Decks, has GILSEN Output Transtormer. In
 cludes separate Power Bupply Unit. KIT OF PARTS
£12.15.0
or ASSEMBLED
£16.10.0
MODEL HF/G2P TAPE PREAMPLIFIER-ERASE UNIT dentical to the HFVG2A but excludes Loudspeaker and oatput transiormer. (See Model HF/G2P-D
KIT OF PARTS
£9.10.0
\&11.5.0
Mk. \|I "Fidelity" FM TUNING UNIT
an attractively presented Unit incorporating MULLARD PERMEABILITY TUNING HEART and corresponding Mullard valve line up.
FOR THE CONSTRUCTOR
\&10.10.0
or ASSEMBLED
£14.5.0

## SPECIAL CASH ONLY OFFER!!

This very attractive PORTABLE AMPLIFIER CASE
together with good quality GRAM AMPLIFIER and a
(plus 7/6 carr. and ins.). The Amplifer 88.7 .6
consists of a 2 -stage design incorporating the 3 modern BVA valves and has separate BASS and TREBLE CONTROLS. The Portable Case will also accommodate aimost any make of Autochanger and is attractively AUPPLY $\operatorname{sePARATELY}:-$
(a) The 2 -stage (plus Rectifer) AMPLIFIER (b) The portable carrying case 26 (c) 6 inn. P.M. SPEAKER
£3 17

"Mi-Fi" LOUDSPEARERS WE HAVE IN STOCK A GOODMANS-WHARFEDALE-W.B. ILLUSTRATED AND PRICED LEAFLETS ON REQUEST
THE "ADD-A-DECK"
" incorporating
"MONARDEGK" \& MATGHED PREAMPLIFIER Carriage and Tnsurance, 10/
Deposit $23 / 12!-$
£17.17.0
Designed to operate through the Pick-up Sockets
of the atandard RADIO RECEEVER through which first-class results are obtained. It consists of it Twin Track Tape Deck, incorporating matched
Preamplifer, and operates at 3 in. /sec. speed Supplied fully tested and completely assembled on an attractive wood plinth, and only requires connections to the mains supply and the Pick-up sockets, for which purpoees "floating " leads are incorporated.
H.P. TERMS ARE AVAILABLE ON ALL EQUIPMENT OVER £9. FULLY DESGRIPTIVE LEAFLETS ARE AVAILABLE FOR ALL EQUIPMENT, BUT PLEASE SEND S.A.E.

MULLARD TYPE "C"

## TAPE-PREAMPLIFIER

## ERASE UNIT

The "Hi-F1" link to add full tave recording facilittes to High Fidelity
FFERROXOUBE POT CORE PUBH-PULL OSCILLAATOR and 3 -speed treble equalisation by FERROXCUBE POT CORE INDUCTOR. FOR WEARITE-COLLARAROTH FERROXCUBE POT MORE TAPE DECKS. Includes aeparate Power Bupply Unit. $O$ F PARTS ...... S14.0.0 or ASSEMBLED ...... \&17.0.0 (Excluding Power Unit £11/15/- and 玉14/10/- respectively.)

## MODEL HF/G2A TAPE AMPLIFIER

Completely self-contained and spectacaliy designed to operate the GARRARD TAPE DECK. All input and output sockets, loudspeaker and Power Unit are contained on KTT OF PARTS ........ $£ 11.0 .0$ or Assembled ...... $£ 12.15 .0$ ! ! RECORD PLAYERS ! !
The LATEST MODELS are in Stock. Many at REDUCED PRICES!!! Send S.A.E. for ILLUSTRATED LEAFLET
B. S.R. MONARCH UA8 4-gyd. Mixer 86.19 .6

Autochanger with Crystal Pick-up

### 26.19.6

The COLLARO "CONQUEST" 4 -spd $\mathbf{A 7 . 1 0 . 0}$
Tbe latest COLLARO "CONTI-
NENTAL " 4 -speed MIXER Auto $\mathbf{f 8 . 1 0 . 0}$
The NEW COLLARO Model RP594, 4 -speed Bingle Record Player,
£9.18.9
 THE NEW B.S.R. Model UA12 is in stock. A 4-- SPEED MiXER AUTOCHANGER
UA12 Is alBo available incorporating the B.S.R. STEREO pick-up, plays L.P. and 78 records.
GARRARD
RC210
4 -speed
Garrand Rezo Autochanger itred with latest Crystal Pick-up
The lat
The latest GARRARD TRANSCRIPTION MOTOR "301" with The new GARRARD Model 4BF High Quality single Record Player Atted with the latest T.P.A. 12 Pick-up arm and G.C.8. Crystal Cartridge Garrard Model TA/Mk, If Bingle Record Player fitted with higb
\&6. 9.6
£8. 7.6
£10.10.0
$\& 10.10 .0$
£23.18.4
£18. 7.6
£8.10.0
HIRE PURCHABE TERMS avallable on all unita $88 / 19 / 6$ and
HOME CONSTRUOTOR
A RANGE OF "EASY TO ASSEMBLE" PREFABRICATED CABINETS Designed by the W.B." BTENTORLAN" COMPANY for "Hi-Fi" Loudspeaker systems or to accommodate high quality equipment. The acoustically deaigned Brass Reflex Cabinets containing the very successful "Stentorian " Apeakers give really Arst-class
reproductlon and are well recormanded. high-quality Amplifiers, Pre-amplifers, Tuning Units, Record Players, etc. All models
 sTENTORIAN LOUDSPEAKERS. Please encloge 8.A.E.


Electronic techniques, are becoming increasingly important in the medical sphere, because they provide extremely sensitive and versatile means of measuring or examining physiological effects which often cannot be detected by other methods. The growing importance of medical electronics was first recognized on a world scale when the First International Conference was held in Paris in 1958. This was an exploratory meeting, which led to the organization of the full-scale Second International Conference on Medical Electronics, held at the UNESCO building in Paris in 1959. This book is a record of the proceedings. Because the 1959 conference was the first of its kind, the door was deliberately held open for a wide variety of papers, so that the proceedings would give a true impression of the extremely broad scope of medical electronics. The choice of contributions for publication has been difficult; but in making the selection attention has been paid to the opinions of conference delegates and in particular the chairmen of the specialist sessions. Some papers were selected for publication in abstract form only,

Proceedings of the Second International Conference Paris 1959

Edited by C. N. Smyth ma., B.SC.eng., b.ch., Miee

and published for the International
Federation for Medical Electronics
largely because they would be or had been printed more completely elsewhere. But, of the 160 papers delivered, as many as 150 are represented in this volume.
For convenience in publication the papers have been specially grouped in eight broad sections (not corresponding to the 16 sessions of the Conference itself). These are Electrophysiological Techniques; Electroencephalography; Cardiology; Manometry and Flow Measurement; Acoustic Techniques, Automation in Medicine; Radiology and Isotopes; Chemical Instrumentation. This classification draws together papers which are related by similar electronic techniques.
This book is primarily a record of useful and original ideas expressed at the Conference; it is a book in which to discover what work is being done, where, and by whom. It should prove to be a basis for scientific collaboration in an interesting and profitable field of research, and as such, a very valuable addition to the literature of medical electronics.

## RII55 RECEIVERS

The famous Bomber Command Receiver known the world over to be supreme in tita class. Covers 5 wave
ranges: 18.5-7.5 Mc/s., $7.5-3.0 \mathrm{Mc} / \mathrm{s}$, , $500-600$ tels, $500 \cdot 200 \mathrm{kc} / \mathrm{A} ., 200-75 \mathrm{kc} / \mathrm{A} .$, and is easily and almply adapted for normal maina use, full detalls being aupplled All sets thoronghly tested and in perfect working order before despatcb, and on demonstration to callers, Fit* ted with latest type Super Slow Motion tuning assembly. Have had some use, but are in excellent condition. ONLY £9/19/6.
A.0. MAINS POWER PACK OUTPUT STAGE in black, metal case to match recelver, enabliag tt to be operated immediately, by just plugging in, without any modiffea.
tion Fitted with 8 in . P.M. Speaker $£ 6 / 10 /-$ DEDUCT 10/:. IF PUBCHABING RECEIVER AND POWER PACK TOGETHER.
Send 8.A.E. for illustrated leaflet, or $1 / 3$ for 14 -page booklet which gives technical tuformation. ctrcuits, etc., and is supplited frec with each receiver. Add carrlage 10/6 for Recelver,
RCA RECEIVERS AR88D. Thoroughiy re-conditioned nnd in perfect working order. Cover $500 \mathrm{kc} / \mathrm{s} .-31 \mathrm{Mc} / \mathrm{s}$. ONLY $£ 60$ (carriage etc., $25 /-$ ).

CRYSTAL CALIBRATOR No. 10 A auperb Grystal Controlied
Wavemeter fust relessed
 by the Ministry of Bupply. Hias directly callibrated dlal for nominal coverage of .5*10.0 Mc/s. but may actually be used trom 500 $\begin{array}{lll}\mathrm{kc} / \mathrm{s}, \mathrm{up} \\ \text { Complete } & \text { to } \\ \text { with } & 500 \mathrm{Mc} / \mathrm{s} . \\ \mathrm{kc} / \mathrm{s} .\end{array}$ Crystal 2 walves type IT4, 1 or IR5 and 1 of CV286 (Neon Btabiliser), and Instruction Book. 8ize 7in. $\times 71 \mathrm{in} . \times 4 \mathrm{in}$, weight 51 b . Used but in first class condition. ONLY $£ 2 / 19 / 6$.
Carr. $3 / 6$.

POWER UNITS TYPE 234


Primary $200 / 250$ v. 50 cycles. Out puts of 250 v .100 mA ., and 6.3 v. 4 amps. Fitted double 8 moothing. For normai rack gaounting (or bench use) having grey front panel size 19in. $\times 7 \mathrm{~h}$. BRAND NEW. Only $59 / 6$.
ALSO POWER UNIT TYPE 3. Specification as above, but has two meterg mounted on front panel to read (Carriage on elther anft 7/6).

12 VOLTS AMERICAN DYNAMOTOR. Deliverg 220 volta at 100 milis, gize $\delta \frac{1}{6} \times 3$ hin diameter. Ideal for runntug Radio and Electric Shaver, etc., from car hattery. ONLY $32 / 6$.
MARCONI SIGNAL GENERATOR TF 144G/7. Coverage $85 \mathrm{ke} / \mathrm{s} .-2.5 \mathrm{Mc} / \mathrm{s}$ and $8 \mathrm{Mc} / 4 .-70 \mathrm{Mc} / \mathrm{a}$. Complete, and
in AS
NEW CONDITION. ONLY 295 .


## CANADIAN RECEIVER No. 52

A magnificent 10 valve Receiver covering $1.75-16.0 \mathrm{Mc} / \mathrm{s}$. (19-170 metres) In 3 switched bands. Has built-in 3 valve Crystal Calbrator employing dual 100/1,000 ke/s. CrybLa to provide marker check points at $10-100 \cdot 1,000 \mathrm{kc} / \mathrm{s}$. Other refincment inclade Vaive-check Voltmeter, Internal 3in. gpeaker, R.F. and A.F. Gain Controls, Noise Limiter, B.F.O. Switch, Helerodyne Plteb Control, choice of Wide or Narrow Bandwldth, Speaker or Headphones and Manual or Automstle Volume Control on both C.W. or R.T. There are Fast and slow Tuning Cont rols, with additional Oscillator Control for Fine adjustment. In steel carrying case as illustrated, size $151 \mathrm{n} . \times 12 \mathrm{in} . \times 16 \mathrm{in}$. First elass condltion, thorougbly checked and tested, and in perfect working order before despatch. Circuit supplied. Voltages required 12 volts L.T. and 160 volts H.T. ONLY \&11/19/6 (carrlage ete. $15 /-$ ).

A suitable Power Pack, for use on $\mathbf{1 1 0 - 2 5 0}$ volts A.C. or 12 volts D.C., can be supplied (kess outer case) for $60 /-$, olus $5 /$ - carriage.

RCA 8in. P.M. SPEAKER

## DOUBLE BEAM OSCILLOSCOPE TUBES

Type CV 1596 equivalent to Cossor O9D as used in oscilloscopes by Cossor ( 339 series). Hartley and Erskine ( 13 series). Listed at 612/10/-.

Our price £2/19/6 (carriage 5/6) Brand New in makers' crates.

## W II9IA WAVEMETER

Oryatal controlled hoterndyne frequency meter covering $100 \mathrm{kc} / \mathrm{s}$. to $20 \mathrm{Mc} / \mathrm{s}$. in 8 awitched bandw and la virtually the British BC2221. Power requiremente 2 v. L.T. and 40-60 volts E.i. Complete with Calbration book NEW IN ORIGINAL TRANBIBT CASES. ONLY e9/19'6 (carriage 1 int-)
canadian moving coil peones. Low-resistance BANADIAN MOVING Coll PEONES. Low-resistance. covered head-band. Lead terminatea io lack plug. BRAND NEW. ONLY $19 / 6$ (Post $1 / 6$ ).

CARRYING CASES, solid leather, BRAND NEW.
 Fitted lock and key, and shoulder gtrap. Ideal for Teat Inatrument. Camera and acceswories. etc. ONLY 35/(pontaree 2/-).

BC 342 RECEIVERS. A tew noly of these famous Amarican sets covering 1.15-18.0 Mc/s, in sly bands. Internal 115v. A.C. Mains pack. A super recelver in firat clase condition and perleet worklug order. ONLY $\begin{aligned} & \text { (carriane } 15 /- \text { ). }\end{aligned}$ (25


In heavy black crackled metal case, dealgned for use with AR 88 Receiver, or any set with 3 obm Output. BRAND NEW IN MAKERE CABTONS. ONLY $45 /-$ (Post $3 / 6$ ).


Utilises 4 valves, 1 each 5Z4G, 6V6G, 6J70, 6.56G and high quality compouents such as "O" Core Transformers and Block Paper frmonthing Condenayera A.C. Mains Pack for nominal $110 \times 230$ volts. Prorision frr 600 ohma or High Impedance lnput. Output to 600 ohm Line. For normal use only requires changing Outpent for Standard Rack Mountirg, having grey front paneit aize 19in. X 71n. All connections to rear panel, front haviag *On/OH" 8 witeh. Gain Contml, Indicator Lightw. Fusen and Valven Inspection Panel. BRAND NEW IN MAKERG PACKING. ONLY \& $4 / 9 / 6$ (car. rtave $10 / 6 \mathrm{fi}$.
EHT TRANSFORNERS. 7 kV (Rect.) with 2 v. 1 a .



## SELECTEST

 TESTMETER DIIIMannfactured by General Electric Co. and has exactly the same ranges as the $A$ vormeter D, but with a rather large: mirror scale, 8ize 9ln. $\times 7 \mathrm{ln} . \times \mathrm{Bln}_{\mathrm{n}}$. with carrying strap. Thoroughly overhauled and in perfect order, with batterles and inatructions. A real " snip" while they last 0NLY £7/10/(powtage. etc., 3/6).

## UNIVERSAL AVOMETER 34

 RANGE MODEL DFix-Alr Ministry, but tborougbly recouditioned and cbecked. Supplled with internal
structiong. Covers ranges as -follows:

| D.0. | A.O. | D.C. | A.C. |
| :---: | :---: | :---: | :---: |
| VOLTS | VOLTS | Current | Current |
| 150 mV . | 7.5 | 15 mA . | 75 mA . |
| 300 mV . | 15 v. | 30 mA . | 150 mA . |
| 1.58 | 758. | 150 mA . | 750 nLA . |
| 3.v. | 150 v . | 300 mA . | 1.5 mmp . |
| 15 F | 300 จ. | 1.5 amp . | 7.5 nmp . |
| 30 v | 600 \%. | 3 amp . | 15 amp. |
| $150 \%$. | $700 \%$. | 15 mmp |  |
| 300 v . | 1,500 r . | 30 amp. | Renirtance |
| 750 |  |  | 1,040 0 |
| 1,500 v . |  |  | 10,000 0 |

ONLY £8/19/6 (Postage, etc., $\mathbf{3 / 6}$.


Cash with order please, and print name and address clearly PLEASE ADD POSTAGE OR CARRIAGE COSTS ON ALL ITEMS

## H ARRIS ELECTRONIC S <br> (LONDON) LTD.

Radio Corner, 138 Gray's Inn Road, London, W.C.1. Phone: TERMINUS 7937
Open until 1 p.m. Saturdays.
We are 2 mins, from High Holborn (Chancery Lane Station) and 5 mins, by bus from King's Cross.

## Portable/Mobile

V.H.F RADIO TELEPHONE


## EXPORT ONLY

## CRYSTAL CONTROLLED $60-95 \mathrm{mc} / \mathrm{s}$.

A modern 14 -valve superhet receiver and AM transmitter usiny current series of B7g valves. Valve line-up: 2-CV136/7D9, 1-CV137/EAC91, 7-CV138/EF91, 4-CV416/ 6F17. Robust cast aluminium case includes 5 in . loudspeaker. Internal vibrator pack (synchronous type) provides operation from 12 -volt accumulators or vehicle or boat 12 -volt supply, in fixed or mobile use. Available, less crystals and accessories, but with connecting plugs, ex-stock. Accessories and crystals for specified frequencies in the range $60-95 \mathrm{Mc} / \mathrm{s}$ can be supplied to order at extra cost.
Each unit is fully tested and in good condition. Price (including packing FOB London), £20 each.
Special quotation for quantities up to 500 sets.

## 50 MICRO AMP MOVING COIL METERS

Brand New \& Boxed-Large Stocks available
Made on Government Contract by Famous British Maker
3 tin. Square- 800 ohms resistance. 4 Scales operated by lever "Set-zero"" 0-3"-" 0-30"-" 0-300." Easily coupled to rotary range switch by cord or lever. Ideally suitable for transistor tester, output meter, volt-milliameter. Adjustable to work as centre-zero 25-0-25 $\mu \mathrm{A}$.

## A RAMGE OF METER BOXES

Useful for all kinds of testgear, a quality iob in welded steel, finished in grey hammer stoved enamel. Standard panel size $4 \frac{l^{\prime \prime}}{} \times 7 \frac{1}{4 \prime \prime}$, available in depths $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}$ and $6^{\prime \prime}$.
UNDRILLED : $2^{\prime \prime}$ 12/6: $3^{\prime \prime} 13 /-: 4^{\prime \prime} 13 / 6$ : $6^{\prime \prime} 15 /-$. With panel punched to take one $50 \mu \mathrm{~A}$ meter, add $1 / 6$, or to take two meters $2 / 6$.


Complete with data

 SPECIAL PRICES FOR 100 LOTS

# HARUSPSON SURPLUS CO ITD 

Phone: CHErrywood 3985/6/7
83, HIGH STREET, MERTON, S.W.19.

Phone: CHErrywood 3985/6/7

# The world famous E.M.I. Angel Transcription P.U. 

Physical
Length 15 Inches ( 40.32 cma .)
With 2 : Inches ( 6.03 cmis.)
Centre of base to stylus tip 12 inches (30.72 ems) Approz overall. Stylas
A dlamond stylus is fitted to the $331 /$ 45 r.p.m. head supplied
fead Impedance
Frequency Response
For a constant reat
frequency responecorded velacity the rithin the response is sensibly level Frouve stylus $20-16,500$ with microgroove stylus $20-16,500$ e.p.s. With standard stylus $20-20,000$ c.p.s. Distortion
Measured at 400 c.pe., the total harmonic distortion is le.ss than $5 \%$ for a recording level of +20 db referred to Sonsitivity
50 raV at secondary of transformer provided from a recording level of +10 db referred to $1 \mathrm{~cm} . / \mathrm{sec}$. r.m.s. velocity.
Weight at Stylus Point
Varlable from 3-10 grammes as


* (MODEL 17A)

A PICKUP FOR THE CONNOISSEUR ORIGINALLY PRICED AT \&17/IO/- WE CAN OFFER THE LAST REMAINING FEW AT £4.10.0

PLUS P. \& P. 5/-.

\author{

* WITH DIAMOND STYLUS
}

SPECIAL OFFER FOR 1 MONTH ONLY

## 8 WATT Push Pull MONAURAL AMPLIFIER

By well-known manufacturer-mploying four Mullard valves: ECC.83, 2 EL. 84 and EZ.80. Bass, treble and volume on remote panel. Elegant. knobs. OUR PRICE—Plus P. \& P. $4 / 6$. 50 only at 4.19 .6
Also a few Stereo left.


## PLESSEY TWEETER

 This well-known Plessey 3 ohm Tweeter at our amazing price of$$
12 / 6 \mathrm{TAX} \mathrm{PAID}
$$

$$
\text { Plus P. \& P. } 1 / 6 .
$$



## Amazing two scoops!

 Harverson does it again! AM/FM RADIOGRAM CHASSIS$\star$ By famous manufacturer. $\$ 200 / 250$ volts A.C. $t$ Coverage $1000-1900 \mathrm{~m} ., 200-500 \mathrm{~m}$.. $88-98 \mathrm{mc} / \mathrm{s}$. 大 Tuned by 5 "Piano Keys "-Off, LW, MW, FM and Gram. 太 Sockets for P.U., Ae, E. Extn. Spkr. and Dipole. $\star$ Tuning and tone controls fitted. * Valves, ECH8I, EF89, EABC80, EL84, ECC85 and EZ80, 50 Only at ridiculous price of 10 gins., plus $8 / 6$ P. \& P.

## TAPE RECORDER

* CONTEMPORARY Red and White Tygan Cabinet. Size $13 \frac{1}{2} \times 14 \frac{1}{2} \times 9 \frac{1}{2}$ inches.
* B.S.R. DECK.
* MAGIC EYE tuning.
* INPUTS for RADIO and MIKE.
$\star$ VOLUME and TONE Controls.
This instrument has to be seen and heard to be believed. Complete with ACOS Xtal Mike. ONLY 18 gins.

SPECIAL OFFER FOR 1 MONTH ONLY
Ex. Speaker, 5in. Goodman unit. Cabinet $8^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$. Complete, includlead lead. P. \& P. 2/-.

18/6


## NOT GOVT. SURPLUS

$\frac{1}{6}$ H.P. $220-250$ A.C. motor, ideal for lathe, coil winder, drill, saw motor, etc. Don't miss it. Dimensions: $6 \frac{1}{2} \times 3 \frac{1}{2}$ 29/6 P. \& P. 2/3.

## Wilkinsons

METERS GUARANTEED
F.S.D.

50 Microamps
100 Microamps
100 Microamps
500 Microamps 500 Microamps
1 Milliamp
1 Milliamp
30 Milliamps
30 Millamps
100 Milliamps
200 Milliamps
500 Milliamps
5 Amperes
15 Amperes
25 Amperes D.C
50 Amperes 30-0-30 Amp 50-0-50 Amp 10 Volts 50 Volts 300 Volts 200 Volts $\quad 25 / \mathrm{in}$. $\mathrm{MR} \quad 25 /$ - Complete list available METER REGTFIERS $250 \mu$ A 1 M.A., 5 M.A., F.W. bridge, $8 / 6$, post 6 d . CROSS POINTER METERS. 2 scparate 100 microamp movements, $22 / 6$. MICROAMMETER. 250 F.S.D. $3 \frac{1}{2}$ in. F.R, Sangamo Mod. S37. Scaled
for valve voltmeter. Circuit available free, $55 /-$, post $1 / 6$. UNI-PIVOT GALVANOMETER by Cambridge Instruments, 50-0-50 microamps, dia. 4 in. Knife pointer, mirror scale. Complete with leather carrying case. Ideal for laboratory use, $£ 10$, carriage $3 /$ PORTABLE VOLTMETER. $0-160$ volts A.C./D.C., accuracy within 2\%, 8in. mirror scale, knife pointer, in polished case. A precision moving iron instrument at a very low price, $£ 4 / 19 / 6$, post $3 / 6$.
FLEXIBLE ALUMINIUM TUBING. A.P. $1 \frac{1}{2} \mathrm{in} .3 / 6$ per foot.

WHEATSTONE BRIDGE 1 to $10,000 \mathrm{ohms}$, plug.type, 85 , carriage $7 / 6$. OSCILLOSCOPE No. 11 with high-class amplifier. 230 volts. $£ 12 / 10 /$ carr. 15/-
AVO TEST BRIDGES. $220 / 240$ volt A.C. Measure capacities from 5 pf . to 50 mfd . and resistances from 5 ohms to 50 megohms. Valve voltmeter range 0.1 to 15 volts and condenser leakage test. Full working instruc tions supplied with instrument. $£ 9 / 19 / 6$, post $3 /-$
SLOW MOTION VERNIER DRIVE. Scaled $0-180^{\circ}$. Ratio 38:1, diam. 3 in. $15 / 6$, post $1 / 6$.
3 in . $15 / 6$, post $1 / 6$.
OSCILLOSCOPE. Type 43. With 31 in . C.R.T. 138A, 4-617, 3-VR54 5Z4, VU120. Brand new with usual controls, power pack and leads. 524, VU120. Brand new with usual controls,
Suitable for 230 volts, $£ 10 / 10 /-$, carriage $12 / 6$.
FREQUENCY METERS. 45-55 Cycles per second 230 volts, 6 in . dia, Flush Round. Brand new in maker's box, $810 / 10 /$-, post $3 / 6$.

RELAYS P.O. TYPE 3000


Built to your own specification

## Keen Prices

Quick Delivery
Contacts up to
8-Changeover
MINIATURE RELAYS:



TELEPHONE SET TYPE "A." Ringing and Speaking both ways on a four-core cable. Carries the voice loudly and clearly over any distance. Two handsets are supplied as illustrated and the set is complete with Pushes, Buzzers, Battery, Plugs and Sockets. We can supply 4-core PVC cable at 10us. per yard or 2 -core at 3d. per yard extra. Price 75/-set, post $3 / 6$.
TELEPHONE SET "TELE-F." This is the best known portable telephone ever made, it has a built-in generator for ringing the other instrument and requires only twin wire between the sets. The set of two instruments and batteries in carrying case, $£ 7 / 10 / 0$, post $7 / 6$. Twin flat P.V.C. wire 3d. yard. TELEPHONE SET TYPE ' $K$.' The most compact telephone set available as the $4 \frac{1}{2} \mathrm{v}$. Flat battery and buzzer is built-in to the hand instrument. Ringing and speaking both ways on twin wire, instrument is complete with 5 ft . flex. Easily hangs on the wall. Set of two instruments, $£ 5 / 10 / \%$. post $3 / 6$. ROTARY CONVERTERS. Input 12 D.C. Output 230 A.C. 50 cy . 135 watts. In fitted case with variable resistance, $0 / 300$ voltmeter. The ideal job for T.V. and tape recorders where A.C. mains are not available. $\$ 10$, carr. 15/-. Special connectors, one fitted with 6it. heavy duty flex and clips for D.C. side, $10 /$ set, post $1 /$. ROTARY CONVERTER, input 12 v . or 24 v . D.C., output 230 v. A.C., 135 watts, $£ 8 / 10 /$-, carriage $7 / 6$.

BATTERIES. Portable Lead Acid type, 6 volts 125 ampere hours. In metal case $16 \mathrm{in} . \times 18 \mathrm{in} . \times 11 \mathrm{in}$. (Two will make an ideal power supply for our 12 volt Rotary Converters.) Uncharged $£ 6 / 10 /-$ each, carriage $15 /-.24$ volts 85 amperes, $£ 14$ each, carriage $15 /$-.
GEARED CAPACITOR MOTORS. $220-240 \mathrm{v}, 50 \mathrm{cy}, 30$ watts, 300 r.p.m. also spindle for $1425 \mathrm{r} . \mathrm{p} . \mathrm{m}$. A powerful and useful motor $75 / \mathrm{o}$, post $3 / 6$. BARTLETT DRYING OVEN. Interior dimensions $18 \mathrm{in} . \times 15 \mathrm{in} . \times 15 \mathrm{in}$. Automatic temperature control. $230 / 250$ volts A.C. 1500 watts. $£ 40$, carr. 30/BAIRD \& TATLOCK HOT AIR OVEN. Interior dimensions $14 \frac{1}{\mathrm{i}} \mathrm{in} . \times 12 \mathrm{in} . \times$ 12 in . Copper framed. Double Jacketed "Stabilec." $110 / 115$ volts $14: 8$ amps., with adjustable temperature control. $£ 30$, carr. $20 /$
KEY SWITCH LOW CAPACITANCE (Henry \& Thomas). 2 C.O. locking, $7 / 6$ each. 4 C.O. Non-locking, $10 / 6$ each. 6 C.O. locking, 2 C.O. locking, 17/6 each. Also 8 C.O. No lock (Muirhead), 17/6 each.
T.C.G. CONDENSERS. $0.1 \mathrm{Mfd} .31 \mathrm{kV} .75 /-$ each, $1 \mathrm{Mfd} .10 \mathrm{kV} .45 /-$ each SOLENOID8 suitable for remote control, mechanical indicators, etc. 12 v . D.C., 400 M.A., $30 \Omega, 3 \frac{1}{2}$ in. arm, $\frac{1}{2}$ in. movernent, $5 /$ - each, post $1 / 6$.

RESISTORS EX STOCK, IN QUANTITY WIRE WOUND, HIGH STABILITY GARBON ETC., BEST MAKES AT LOWEST PRICE.


## MAGNETIC COUNTERS

## Counting to 9009.

$2-6$ v. D.C., $15 /-$ each, post $1 / 6$. $75-230 \mathrm{v}$. D.C. $15 /$ - each, post $1 / 6$ HIGH SPEED TYPE No. 100c. $35 /-$, post $1 / 6$

VEEDER-ROOT MAGNETIC COUNTER. General purpose type with zero reset. 800 counts per minute up to $990,999,48$ volt D.C. $55 /$, post $2 / 6$ reset. 800 counts per minute up to 990,999 , 48 volt D.C. $55 /$-, post $2 / 6$. 15 amps .
THERMOSTAT SATCHWELL, 12 in . stem $0 / 250$ volt A.C./D.C. A.C. 10 to 90 degrees cent. $25 /-$, post $2 / 6$.

ROOM THERMOSTAT. Adjustable between 45 and 75 deg. Fahr., 250 10 amp . A.C. Ideal for greenhouses, etc., 35/-, post $2 /$ -

## THIS MONTH'S SPECIAL OFFER

TANNOY LOUD HAILER with 180 ohm line transformer and condenser. Impedance 7.5 nhms. Capacity 8 watts. Complete in slope front wood case, power microphone and built-in switch. 27/-, post $5 / 6$

NIFE BATTERIES. Nickel Cadmium 12 volt 18 ampere hours crated and connected alkaline filled. Brand New $£ 4$ each, carriage $10 /$ - Also available 2.4 volt 10 ampere hours, $20 /$ - each, post $3 / 6$.

TRANSFORMER Single Phase $250-115$ volts 50 cycles 5 KVA double wound, £30, carriage extra.
FAN8 INDUSTRIAL TYPE 230/240 volt A.C. Capacity Motor, $\mathbf{1 6}$-inch blades in housing, adjustable louvres, filter. Brand New, £25, carr. extra. AIR BLOWER powered by a 230 -volt A.C. motor, 15 in . fan. Volume of free air at max. r.p.m. is $1,250 \mathrm{cu}$. ft. per min. At maximum efficiency 900 cu . ft. per min. Brand New $£ 25$, carriage $20 /$ -
EXTENSION SPEAKER in cabinet $9 \mathrm{in} . \times 8 \mathrm{in} . \times 4 \mathrm{in}$. Permanent Magnet 3 ohms. Ready for use, $25 /$-. post $2 / 6$.

## L. WILKINSON (CROYDON) LTB. <br> 19 LANSDOWNE RD. CROYDON SURREY

Phone: CRO 0839

## A SELECTION OF P.A. SYSTEM EQUIPMENT FOR INDOOR OR OUTDOOR USE



## VORTEXION PORTABLE

 AMPLIFIERA first-class amplifier for 200/ 250 v .A.C. or 12 v . D.C. operation. 12 watt pushpull watt pushpuil output 15,250 or 500 ohms.
Incorporates inputs for mike and gram, volume control and bass and treble control. Good working order. ONLY $£ 9 / 19 / 6$. Carr. 10/6.

NEW AND UNUSED ACCUMULATORS


2 v. 100 A.H. 75 actual (ex Govt.), with carrying ${ }_{3} \frac{1}{2}$ in., i5/- each. Carr. $3 / 6$. 2 v . 16 A.H., as above. $7 \frac{1}{x} \times 4$ $\times 2$ in. $5 /$ - each. P. \& P. $2 /-.{ }^{6}$ 12 v. 25 A.H. (as on left) $45 /$. Carr. $7 / 6$. Ideal for use
 or 24/-. P. \& P. 10/-. 2 V. 14 A.H., as above (less handle). $7 \times 2 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$., $5 /-$ each. P. \& P. 2/ $=6$ for $24 / \%$ P. \& P. $10 /=$

ROTARY CONVERTER. 24 v. D.C. to 230 v. A.C. 50 cycles, 150 watts. Brand new and unused. $88 / 10 /-$. Carr. 7/6. Ditto. 100 and unused. $88 / 10 /-.7 / 6$. Carr.
ROTtSARY CONVERTER. Ex-Govt. 12 v . ROTARY CONVERTER. Ex-Govt. 12 V .
D.C. input 230 V . A.C. outpue 50 cycles at 135 watts. Complete in carrying case with lid. Voltage control. sliding resistance, mains switch and $0-300$ v. A.C. flush meter. In good condition ClO . Carr. $10 /$-.
Motor only, without case, etc. Brand new and unused, $£ 8 / 10 /=$. Carr. 5/-.


## G.P.O. RACKS

19 in . Heavy duty, all steel Standard drilling.
5 ft . bin. angle uprights. 63/10/-. Carr. 15/-. 6ft. channel uprights (as illustrated) 65. Carr. 15/$7 f t$. channel uprights. 66. Carr. 15/:.

19in.x14in. PANEL SHELF in 14 s.w.g. steel. Suitable for above racks. 15/-. P. \& P. 5/-.

## HEAVY DUTY-ALL STEEL

## TRIPOD STANDS

Adjustable every 6 in. to approx. 9it. 6in. when fully extended. (Folds up to only 4 ft . 6 in . for storage). Suitable for outdoor speakers, public address systems, floodlighting, etc., etc.
OUR
PRICE
23.10 .0
Carr. 5/-.

HAND MICROPHONE. Electro-dynamic. Suitable for use with our Portable Amplifier. With built-in on/off switch and rubber mouthpiece for outdoor work. 30/-. P. \& P. 2/-.


MARCONI SIGNAL GENERATOR. TYPE TF517-F/l. Covering $10-18 \mathrm{Mc} / \mathrm{s}$. $33-58 \mathrm{Mc} / \mathrm{s}$. $150-300 \mathrm{Mc} / \mathrm{s}$. In very good condition. Complete with full technical data and instructions. Unrepeatable at only $\mathbf{E 1 2 / 1 0 / - .}$ Carr. 20/-
MARCONI SIGNAL GENERATOR TYPE TF390G. for 200-250 v. A.C. mains input. Frequency range $4-16 \mathrm{Mc} / \mathrm{s}$. and $32-100 \mathrm{Mc} / \mathrm{s}$. indirect calibration. Outpus $1 \mu \mathrm{~V}$ to $100 \mathrm{M} / \mathrm{V}$. $400 \mathrm{c} / \mathrm{s}$ internal modulation. In good order. Only \&12/10/-. Carr. 20/-
BRAND NEW CRYSTAL CALIBRATOR No. 10 . (Battery powered 1.4 v . valves.) Complete with full working instructions, circuit diagram, carrying haversack, connecting lead and spare valves. Frequency range: 1.5 to $10 \mathrm{Mc} / \mathrm{s}$. (nominal) but can actually be used up to $30 \mathrm{Mc} / \mathrm{s}$. Weight 5 lb . Size 7 in . $\times 7$ tin. $\times 4 \mathrm{in}$. A miniature B.C. 221 in every respect. A must for every laboratory, etc. ONLY \&4/19/6. P. \& P. 2/6.
MULLARD BRIDGE. Type GM, $4140 / 1$ Mains operated from $100-250 \mathrm{v}$. A.C. Will test resistances from 0.1 ohm to 10 megohms and condensers from 10 pf. to 10 mfd . Good condition and complete with instruction booklet. $£ 6 / 19 / 6$. P. \& P. 2/6.

> RECORDING TAPES. Super quality P.V.C. $1,800 \mathrm{ft}$. L.P. 7 in , spools, $30 /-\mathrm{F} 1,200 \mathrm{ft}$. Std. 7 in . $19 /-;$ Empty 7 in, spools $3 / 9$ each.
> Send S.A.E. for Tape Bargain List.

EVERSHED AND VIGNOLES MEGGER CIRCUIT TESTER (low reading ohm meter). 2 ranges. $0-3,0-30$ ohms. The perfect meter for continuity and polarity testing, complete with test leads and ready to use. Brand new. Only £4/I7/6. P. \& P. 3/-.
BRIDGE MEGGERS. Evershed and Vignoles. Series 2 in perfect condition. 250 v, $\mathbf{f 2 2}$. Carr.
paid. Leather case available at 20/. extra paid. Leather case available at 20/- extra.

## TELEPHONE SETS (TELE "F ") Housed in Bakelite cases, complete with built-in ringing generators and batteries. ldeal between two or more positions up to practically any distance. Tested before despatched. ONLY 70/-. P. \& P. 3/6. 2 sent for $66 / 10 /$. Carr. paid. <br> TELEPHONE CABLE. Twin one-mile drums (Don 8), f5. Carr, 20/- Single onemile drums (Don 3), 50/- Carr. $7 / 6$.

$6 \mathrm{kV} /$ A. AUTO-TRANSFORMER. $230 / 110 \mathrm{v}$ 50 cycles (fully tapped primary and secondary). Capable of $25 \%$ over actual rating. Brand new and unused, $\mathrm{I} / 8$. Carr. 20/ . Also $3 \mathrm{kV} / \mathrm{A}$ as and unused, £18. Carr. $20 /$
$20 \mathrm{kV} / \mathrm{A}$ AUTO-TRANSFORMER. 230/II5 V. $50-60$ cycles, by Jefferies Transformer Co., U.S.A. Perfect condition, $£ 20$. Carr. $£ 1$.

## Limited Quantity Only!!

TRANSMITTER TYPE T. 1945 As used for Air-Sea Rescue. This transmitter is a non-directional sono-buoy. The freq. band of $62.9 \mathrm{Mc} / \mathrm{s}$ to $71,7 \mathrm{Mc} / \mathrm{s}$ is divided into band of $62.9 \mathrm{Mc} / \mathrm{s}$ to $71,7 \mathrm{Mc} / \mathrm{s}$ is divided into
12 channels spaced $800 \mathrm{kc} / \mathrm{s}$ apart, each buoy 12 channels spaced $800 \mathrm{kc} / \mathrm{s}$ apart, each buoy
being set up to one of the channels. (Most channels available.) H.T. power supply is from 3-45 v. batteries, L.T. 1.5 v. Absolutely brand new and complete in tropically sealed packing (less batteries).
HOME AND EXPORT ENQUIRIES INVITED


PARMEKO TWIN BAKELITE


NEW P.M. HEAVYDUTY SPEAKERS Complete with O.P. erans, in all steel bluegrey double grilled cabinet 6 in. 30/8in. 32/6
Carr. 3/6 each
10inch Speaker in wooden cabinet, size approx. $14^{\prime \prime} \times 16^{\prime \prime}$ $x 8^{\prime \prime}$ with padded interior and volume control. 50/-. Carr. 3/6. FLARE HORN. $30 \mathrm{in} . \times 12 \mathrm{in} . \times 26 \mathrm{in}$. long. Driven by Heavy duty 3 ohm P.M. Speaker. Ideal for music, etc. $£ 7 / 10 / 0$. Carr. $10 \%$.

## EXPONENTIAL HORNS

 by famous manufacturer of P.A. systems.

15 watt, 30 in . long, 20 in . square flare, 15 ohms speech coil. Good condition, c7/10/6. Carr. 10/-. VITAYOX PRESSURE UNITS TYPE N. Heavy Duty. Special quality. 20 wates P.M. Brand new 80/-. Carr. 5/-.

## BAKER'S SELHURST SPEAKERS 12 in . P.M. 15 ohms 15 watts, $30-14,000$ e.p.s. Our price e4/10/ <br> "A UDITORIUM"' 12 in . $150 \mathrm{hms}, 12$ watts, $35-16,000$ c.P. PRICE $\in 7110 \%$. <br> "SUPER HI-FI 25 " 12 in ., 15 ohms, 25 watts 25-20,000 c.p.s. Flux density 17,600 . OUR PRICE $69 / 9 /-$. All are brand new and full priceriptive specification is available.

TRUVOX TANNOY LOUD-HAILERS With 180 ohm line transformer and condenser. Impedance $7 \frac{1}{2}$ ohms, handling capacity 8 wates. capacity 8 watts. Complete in slope front wooden case
Brand new $25 /-$. Brand new
Carr, $4 / 6$.


## GEE BROS. (RADIO) LTD.

15 LITTLE NEWPORT STREET, LONDON, W.C.2. GER. 6794/1453
ADJOINING LEICESTER SQ. TUBE STATION-Open $9-6$ Weekdays. 9-1 Sat.


\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{ll} 
PL83 \& \(\ldots 11 / 6\) \\
PL84 \& \(\ldots 12 / 7\) \\
PL820 \& \(\ldots 18 / 7\) \\
PX25 \& \(\ldots 12 / 6\) \\
PY31 \& \(\ldots 16 / 7\) \\
PY32 \& \(\ldots .17 / 11\)
\end{tabular} \& \[
\begin{array}{cccc}
\text { VU39 } \& \text { MUI2/ } \\
\text { 14) } \& \ldots \& 8 / 9 \\
\text { W21 } \& \ldots \& 10 /- \\
\text { W76 } \& \ldots \& 7 / 6 \\
\text { W77 } \& \ldots \& 8 / 6 \\
\text { W101 } \& \ldots \& 8 /-
\end{array}
\] \& \begin{tabular}{lll} 
6J6 \&... \& \(6 /-\) \\
6J7G \& \(\ldots\). \& \(6 / 6\) \\
6K7G \& \(\ldots\). \& \(4 /-\) \\
6K7MM \& \(\ldots\). \& \(6 / 9\) \\
6K8GG \& \(\ldots 76\) \\
6K6GT... \& \(7 /-\)
\end{tabular} \\
\hline ACHLDDD \& EK32 ... 7/- \& PY80 ... \(7 / 6\) \& W729 ...1016 \& 6K7GT... 5/9 \\
\hline 1017 \& EL32 ... 4/6 \& PY81 ... 816 \& W61 … 6/- \& 6K8GT...10/- \\
\hline \[
\mathrm{AC} / \mathrm{P} \quad .716
\] \& EL33 ...14/- \& PY82 ... 71- \& W61 (M) 8/- \& 6K25 ...19/11 \\
\hline AC5PENDD \& EL34 \& PY83 \& \(\times 22 \ldots 1216\) \& 6L6G ... 8/- \\
\hline \[
26 / 6
\] \& EL36 ...19/11 \& PZ30 ...19/11 \& X41M ...12/6 \& 6L6M ... \(9 / 6\) \\
\hline AC6PEN \(6 / 6\) \& EL38 ... \(26 / 6\) \& PEN4DD \(26 / 6\) \& \(\times 101 \mathrm{M}\)... \(8 /-\) \& 6L7G ... 716 \\
\hline ATP4 ......3/6 \& EL41 ...10/6 \& PEN4VA 10/- \& Y63 ...... 716 \& 6LI ......23/3 \\
\hline AZ1 .....101- \& EL42 \(\ldots\).. \(10 / 6\) \& PEN25... 61- \& Z21 (4 pin) \& 6 L 18 ...11/6 \\
\hline AZ31 ...10/- \& EL81 ...16/7 \& PEN46... \(71-\) \& . 216 \& \(6 L .19\)...1316 \\
\hline AZ41 ...13/11 \& EL83 ...19/11 \& PEN383 23/3 \& Z309 \(\ldots\).. 716 \& 6LD20 ...15/11 \\
\hline B36 ......10/- \& EL84 ... 91- \& PEN220A 4/- \& Z359 \& \(6 \mathrm{M1}\)......17/3 \\
\hline CBLI \(\ldots 26 / 6\) \& EL91 ... 5/6 \& PEN45DD \& \[
\text { 1A3..... } 3 / 6
\] \& 6N7GT... 716 \\
\hline CBL31 \(\ldots 23 / 3\) \& EL821 ...26/6 \& PENA \(26 / 6\) \& IA7GT... \(12 / 6\) \& 6P1 ......19/3 \\
\hline CCH35 23/3 \& EM34 ... \(9 / 6\) \& PENA4...12/6 \& IC2.....11/6 \& 6P26 ...19111 \\
\hline CL4......12/6 \& EM80 ...10/- \& PM12M... 81- \& IC5GT... 12/6 \& 6P28 ...26/6 \\
\hline CL33 ...19/3 \& EM81 ... 1016 \& QP21 \& ID5 ......12/6 \& 6Q7G ... 716 \\
\hline CY31 ...16/7 \& EY51 ... 91- \& R16 ...... \(26 / 6\) \& ID6 ......12/6 \& 6Q7GT... 916 \\
\hline CY1 .....18/7 \& EY81 ...13/3 \& SP41 \& 1H5GT... 9/- \& 6SA7GT 8/- \\
\hline \(\begin{array}{lllll}\text { CV73 } \& \text {.. } \\ \text { C36 }\end{array}\) \& EY86 ...101- \& \(\begin{array}{lll}\text { SP61 } \& \ldots \& 3 /- \\ \text { SP4/S }\end{array}\) \& \(\begin{array}{llll}\text { IL4 } \& \cdots \& \text { 6/6 }\end{array}\) \& 6SG7 \(\ldots\).. \(7 / 6\) \\
\hline C36A ... 616 \& EZ35 \& SP4/S \& \(\begin{array}{ll}\text { ILD5 } \& . . \\ \text { IN5 } \& 3 / 6\end{array}\) \& 6SH7 . .. 416 \\
\hline D42 ..... \(4 / 6\) \& EZ40 \(\ldots\).. \(7 / 6\) \& SP4/7 ...10/6 \& IN5 .....1016 \& 6SJ7...... 8/6 \\
\hline DAF96 ..
DF96
D \& EZ41 \(\ldots\)... 7/6 \& T41 \(\ldots \ldots .23 / 3\) \& IRS
IS4
I \& \({ }^{\text {6SK7 }}\) 6SL7GT \({ }^{\text {a }} 8\) \\
\hline H63 \(. . .87 / 6\) \& EZ81 … 71- \& TP25......101- \& IS5 ...... 6/6 \& 6SN7GT \(7 / 6\) \\
\hline H1O1 8/- \& EZ90 ... 7/6 \& U10 ..... \(10 / 6\) \& IT4 ...... 6/- \& 6SQ7 ... 9/3 \\
\hline K96 ... 8/- \& E1148 ... 2/- \& U14..... 816 \& 2C26 \(\ldots . .1 / 6\) \& 6U4GT...121- \\
\hline DL63 ... 9/- \& FC4 ..... 2616 \& U16 ..... 1216 \& 2P \(\quad . . . .26 / 6\) \& 6U5G ... 8/6 \\
\hline DL82 ... \(10 / 6\) \&  \& U22 ..... \(81-\) \& 3A5 ......12/6 \& 6U7G ... 8/6 \\
\hline DL96 ... 8 8- \& FW4/500 10/- \& U25 .....17/11 \& 3A8GT... 6/- \& 6V6G ... 61- \\
\hline DM70 ... 716 \& GTIC ...27/6 \& U26 ..... 1016 \& 3D6 ...... 5/- \& 6V6GT 719 \\
\hline DN41 ...12/6 \& GZ32 ...12- \& U37 ..... \(28 / 6\) \& 3Q4 ….. 8/- \& \(6 \times 4 \ldots . .716\) \\
\hline EASO ... 1/6 \& H30 ...... 5/- \& U45 ......151- \& 3Q5GT... 9/6 \& \(6 \times 5 \mathrm{G} \ldots 7 \mathrm{7l}\) \\
\hline \begin{tabular}{ll} 
EABC80 \\
EAF42 \& 9/- \\
\hline 10
\end{tabular} \& H63 .....101- \& U50 ..... 81- \& \(354 \ldots . . .7 / 6\) \& \(6 \times 5 \mathrm{GT} . . .71-\) \\
\hline EAF42 \(\ldots\) 10/6
EB34 \& \begin{tabular}{l} 
HL23DD 816 \\
\(H L 22\) \\
\hline 816
\end{tabular} \& 476 U81.... 81- \& \begin{tabular}{llll}
\(3 V_{4}\) \& \(\ldots . .\). \& \(8 / 6\) \\
4 D \& \\
\hline
\end{tabular} \& 6/30L2 ...12/6 \\
\hline  \& HL22
HN309

H \& 481
$482 . . . . . .88 /-1 / ~$ \& 4D1 ${ }^{\text {SRYY... }}$ 9/6 \& 786 <br>

\hline $$
\begin{array}{ll}
\text { EB41 } & \ldots \\
\text { EB91 } & \ldots \\
\hline
\end{array}
$$ \& K40N $24 / 7$ \& U82, ..... 8/-

U101
81/ \& 5R4GY... 9/6 \& 7B7 ...... 8/6 <br>
\hline EBC33 ... $6 / 9$ \& KF35 \& U339 \& SU4G \& 788 ...... 6/- <br>
\hline EBC41 ... 9/6 \& KK32 ...21/11 \& U403 ...1617 \& 5Y3G ... 8/- \& 7C6 <br>
\hline EBC81 ...11/4 \& KLL32 ...24/7 \& U404 $\ldots$. $11 / 4$ \& 5Y3GT 8/- \& 7D6 ......13/6 <br>
\hline EBC90 ... 12/7 \& KT2 ...... 51- \& U801 ...29/10 \& 5Z4G ... 9/- \& 7H7 ...... 9- <br>
\hline EBC91 ... 12/7 \& KT24 ... 5/- \& UABC80 101- \& $5 Z 4 \mathrm{M}$...10/- \& 707 ...... 9/- <br>
\hline EBF80 ... $9 / 9$ \& KT32 ...14/- \& UAF42 ... 916 \& $6 \mathrm{SF}^{\text {6 }}$... 101- \& 757 ...... 916 <br>
\hline EBF89 ... 9/6 \& ${ }^{\text {KT33C }} 816$ \& UB41 ... 91- \& 6ABG ... 91- \& 7Y4 ...... 8/6 <br>
\hline EBL21... 23/3 \& KT36 ...29/10 \& UBC4I 8/6 \& 6AC7 ... 4/- \& 8D2 ...... $2 / 9$ <br>
\hline EBL31 ...23/3 \& KT61 ...13/6 \& UBC81 $11 / 4$ \& 6AG5 ... 5/6 \& 9D2 ...... 3/6 <br>
\hline ECC40 ...23/3 \& KT63 $\ldots . .716$ \& UBF80 ... $9 / 6$ \& 6AK5 ... 5/- \& 10 Cl .....17/3 <br>
\hline ECC81 ... 81- \& KT66 ... $17 / 16$ \& UBF89 ...13/11 \& 6AL5 ... 4/- \& $1002 \ldots 1716$ <br>
\hline ECC82 ... $7 / 6$ \& KT74 $\ldots$.. 816 \& UBL21 ...23/3 \& 6AM5 ... 7/6 \& 10D2 ... 12/- <br>
\hline ECC83 ... 91- \& KT76 ... 616 \& UC92 ...13/3 \& 6AM6 ... 4/- \& 10FI ...12/6 <br>
\hline ECC84 ... $101-$ \& KT88 ...22/6 \& UCC84 10/11 \& 6AQ5 ... $7 / 6$ \& 10F3 ...23/3 <br>
\hline ECC85 ... 9/6 \& KT101 ... 9/- \& UCC85 ... 916 \& 6AT6 $\ldots . .816$ \& I0F9 ...15/3 <br>
\hline ECF80 ...12/- \& KTW61 616 \& UCF80 ...1617 \& 6AU6 ...10/6 \& 10FI8 …15/3 <br>
\hline ECF82 ...13- \& KTW63 $7 / 6$ \& UCH21 23/3 \& 6B8G ... 4/- \& 10 L . ...15/11 <br>
\hline ECH3 ... $26 / 6$ \& KTZ41 $3 / 6$ \& UCH42 916 \& 68A6 $\quad . .7 / 6$ \& 10LDI1 12/- <br>
\hline ECH21 23/3 \& MH41 ... 61- \& UCH81 1016 \& 6BE6 ... 7/6 \& 10M2 ...23/3 <br>
\hline ECH35 23/3 \& MHL4 $. . .7 / 6$ \& $\begin{array}{ll}\text { UCL82 } & 1617\end{array}$ \& 6BG6G...23/3 \& 10 P 13 ...15/- <br>
\hline ECH42 $9 / 6$ \& ML4 ...... 816 \& $\begin{array}{ll}\text { UCL83 } & 13 / 6\end{array}$ \& 68H6 ... 91- \& 10P14 ...19/3 <br>
\hline ECH81 91- \& MS4B $\ldots 10 /-$ \& UF41 ... 9/- \& $6816{ }^{68}$ \& 1246 .... 5/- <br>
\hline ECH83 13/11 \& MSP4/5.. $7 / 6$ \& UF42 ...17/3 \& 68R7 $\ldots . .1216$ \& 12AH8 ...12/- <br>
\hline ECL80 ... 9/- \& MSP417... $7 / 6$ \& UF80 ...13/11 \& 68W6 ... 91- \& 12AT6 ...10/6 <br>
\hline ECL82 ...12/6 \& MSP41 ... 61- \& UF85 …9/- \& 68W7 ... 8/6 \& I2AT7 ... 716 <br>
\hline ECL83 ...19/3 \& M $\times 40$...12/6 \& UF86 ...17/11 \& 6C4 ..... 416 \& 12AU6... $81-$ <br>
\hline F9 ${ }^{\text {c....23/3 }}$ \& N37 .....19/11 \& UF89 ... 91- \& 6C5GT... 616 \& 12AU7 ... 8/- <br>
\hline $\begin{array}{llll}\text { EF22 } & \text { ar } \\ \text { 8/6 }\end{array}$ \& N78 .....19/11 \& UL41 \& 6C6 ..... 5/- \& $12 A \times 7 \quad 8 /-$ <br>
\hline $\begin{array}{llll}\text { EF36 } & \cdots & \text { 4/- }\end{array}$ \& N147 ...14/6 \& UL44 $\ldots$.. $26 / 6$ \& 6C9 ….. $17 / 3$ \& 12BA6 ... 91- <br>
\hline EF37A ...15/- \& N339 ... $17 / 6$ \& UL46 ...26/6 \& 6C31 $\ldots$ 7/6 \& 12BE6 ... 9/- <br>
\hline EF39 \& $\begin{array}{lll}\mathrm{OZ4} & \text {... } 516\end{array}$ \& UL84 \& 6CD6G 29/10 \& 12C8 <br>
\hline EF40 ...14/6 \& P61 …… $3 / 6$ \& UU6 ...19/11 \& 6D6 ..... 51- \& 12H6 … 3/6 <br>
\hline EF41 \& PABC80 13/11 \& UU8 ..26/6 \& 6CH6.. .816 \& 1215GT 3/- <br>
\hline EF42 $\ldots 11 /$ \& PCC84 $91-$ \& UYIN ...12/6 \& 6F6G ... 716 \& $1217 \mathrm{GT}, 10 / 6$ <br>
\hline 550 .... 4/- \& $\begin{array}{ll}\text { PCC85 } & 11 / 6\end{array}$ \& UY41 ... $7 / 6$ \& 6F6M ... 7/6 \& 12K7GT $7 / 6$ <br>
\hline F50SYL 71- \& PCC88 23/11 \& UY85 $\ldots$.. 71 \& 6F1 .....14/- \& $12 \mathrm{~K} 8 \mathrm{GT} 13 / 6$ <br>
\hline $554 . . .6 /-$ \& PCC89 19/11 \& VP13C... 3/6 \& 6 FI 3 ...14/- \& $12 \mathrm{K8M} \mathrm{13/-}$ <br>

\hline $$
55 \quad \ldots 10 /
$$ \& PCF80

PCF82 \& VP133 ...15/- \& 6F14 6 F15 $\quad . .26 / 6$ \& 12Q7GT $7 / 6$ <br>
\hline  \& PCF82 $\ldots$...12/6 \& VR22 (PM2A) \& $6 F 15$ \& 12SG7 ... $7 / 6$ <br>
\hline $\begin{array}{ll}\text { EF85 } & \cdots \\ \text { EF86 } & \text { al3/- }\end{array}$ \& PCF84 \&  \& 6F18 6 623 $\quad . .1513$ \& $12 \mathrm{SH} 7 . . .6$ 6- <br>
\hline EF89 ... 8/9 \& PCL83 ... $14 / 6$ \& $\begin{array}{lll}\text { VP23 } & . . & 8 / 6 \\ \text { VP41 } & \ldots 8 / 6\end{array}$ \& $\begin{array}{ll}6 F 23 & \ldots .18 / 7 \\ 6 F 33 & \ldots . .7 / 6\end{array}$ \& $\begin{array}{llll}12517 & . .6 & 6 /- \\ 125 K 7 & . & 6 /-\end{array}$ <br>
\hline EF91 ... 5/9 \& PL38 ...26/6 \& VRIO5/30 8/- \& 6H6 ...... $2 / 6$ \& <br>
\hline $91(B \vee A)$ \& PCL84 ...13/6 \& VR116 ... 4/- \& 6H6GTi... $2 / 6$ \& 12SN7GT10- <br>
\hline 9/- \& PL36 $\ldots . .14 / 6$ \& VRIS0130 716 \& 615G ... 316 \& $12 \mathrm{SQ7}$... 8/6 <br>
\hline EF97 ...13/3 \& PL81 ...11/- \& VUI20A 3/6 \& 615 GT ... 5/- \& 1457 ...171- <br>
\hline EF98 ...13/3 \& PL82 ... 8/6 \& VUlll ... 2/6 \& 615 M ... $6 / 6$ \& $\begin{array}{llll}15 \mathrm{D} 2 & \ldots . . & 7 / 9\end{array}$ <br>
\hline
\end{tabular}

## FOR VaLles, TUBES AND COMPONEHTS:



| TELEVISION TUBES <br> REGUNNED <br> 12 MONTHS' GUARAN- <br> TEE. <br>  <br> Carriage and Insurance 10/extra. <br> ALLOWANCE ON OLD TUBE IF RETURNED. |
| :---: |
| ER UNITS |

LOUDSPEAKER UNITS
\& All Brand New.
Note the Special Prices. ohms Impedance.
2 tin . Square Rola C25
$2 \frac{1}{2} \mathrm{in}$. Square Units ${ }_{2}^{2}$ in. Celestion
...... 3in. Sq
4in. Square Units by Elac.... 18 5 in . Round Units by Good-
man. Celestion and Ples-
$6 \frac{1}{2}$ in. Round Units by 8in. Round Units by Good man, Elac
IOin. Philips Type with

$$
\begin{aligned}
& \text { tweeter } \\
& \text { IOin. Round }
\end{aligned}
$$

2 in. Round Units by Elac $22 / 6$ 7 in . $x$ ind Units by Plessey and Goodman
$8 \mathrm{in}, \times \operatorname{Sin}$. Units by Celestion and Richard Allen
in. $x$ and Celestion
man and
Good-
CLAROSTAT POTENTIO. METERS FOR STEREO. PHONIC AMPLIFIERS, etc. $50 \mathrm{~K} \times 50 \mathrm{~K} \mathrm{Log}, 100 \mathrm{~K} \times 100 \mathrm{~K} \mathrm{Log}$, $500 \mathrm{~K} \times 500 \mathrm{~K}$ A/Log, $1 \mathrm{Meg} \times 1$ Meg Log, $250 \mathrm{~K} \times 250 \mathrm{~K}$ Log, 500 K Linear. All $6 / 6$ each.

SWITCHES. WAVE CHANGE SWITCHES, etc. 3 pole, 4 way ……....3/- each 4 pole, 3 way ……… 3) 3- each 4 pole, 4 way
pole, 12 way
2 pole, 6 way
2 pole. 6 way
…....... 3/- each 3 pole, 3 way …...... 4/6 each 3 pole, 3 way, 3 bank ... $2 / 3$ each

## ACOS MICROPHONES

Acos Mic 39/I. Crystal Stick Microphones for use as a hand, desk or floor stand unit for high quality recording, broadcasting and public address work. List With table stand 47/6. With floor stand adaptor 52/6. Postage $1 / 6$ Acos Mic 40, as supplied with most modern tape recorders with folding rest and 8 ft . lead response $40-6,000$ c.p.s.
at $35 / \mathrm{L}$. OUR PRICE
25 AUTOMATIC RECORD
CHANGER UNITS
Monarch UAB, 4-speed automatic record changers with Fulc6/19/6. Carriage $3 / 6$.
BSR Monarch UA12. 4-speed unit. Ful-Fi Turnover Crystal Cartridge. Attractively styled in
two colours of Cream and Pastel Green, 68/19/6.
Collaro Conquest, 4 -speed fully mixing changer complete with 67/19/6. Carriage 3/6.
Collaro RC475 High Fidelity. 4 speed Automatic Record ridge, $67 / 19 / 6$.
ridge,
Garrard RCI
RCO/D, Mk. II, speed unit manual control to enable records to be played singly, $£ 8 / 19 / 6$. Carriage $3 / 6$.

TAPE DECKS
Latest Collaro Studio Tape Transcriptor. 3 motors, 3 -
speed, $1 \frac{7}{3}, 3 \frac{3}{3}, 7 \frac{1}{2}$ i.p.s., takes 7 in. speed, $1 \frac{1}{3}, 3 \frac{3}{3}, 7 \frac{1}{2}$ i.p.s., takes 7 in .
spools. Push-button controls. spools. Push-button controls.
Price $£ 15 / 15 /$. Tape extra. Price $£ 15 / 15 /$-. Carr. \& Ins. 12/6.
Latest B.S.R. "Monardeck," spools. Simple contrals. Price E9/19/6. Tape extra. Carr. \& Ins. $12 / 6$.
Best Quality Recording Tape $1,200 \mathrm{ft}$. on 7 in . spool......... $21 /-$ 850 ft on $5 \frac{3}{4} \mathrm{in}$. spool ......... $18 / 6$
600 ft on Sin spool ....... $13 / 9$ 200ft. on 31 inin. spool

## Collaro Junior

Single 4-speed record player unit In cream, complete with pick-up fitted turnover cartridge. Special
Price 75/- each. Post $3 / 6$. Garrard GC2 Crystal Cartridge. Black moulded case complete with Standard and LP styli.
Price $15 / 6$. 4BA Terminals, Red and Black, suitable for Battery Chargers, etc. $1 / 6$ each.
PANL-Air drying Paint Black Crackle (Crystalline Black), 3/- tin Tuning Indicator Escutcheon suit-
able for EM80 type of valves, 2 able

## CATALOGUES

Our 1961 Mail Order catalogue is now available, please send 1/-in logue, please apply on Business Heading.

## 103 LEEDS TERRACE, wintoun street

TERMS: Cash with order or C.O.D. Postage and Packing charges extra, as follows: Orders value $10 /$ add $1 /-; 20 /$ add $1 / 6 ; 40 /$ add $2 /-; \leq 5$ add $3 /$ - unless otherwise stated. Minimum C.O.D. fee and postage $3 /$-.

For full terms of business see inside cover of our catalogue.
Personal shoppers 9 a.m. to 5 p.m. Mon. to Friday. Saturday $10 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$.


NEW CARPENTER'S TYPE POLARISED RELAYS. $2 \times$ POLARISED RELAYS. $2 \times$
9,500 turns at 1,685 ohms. 9,500 terns at 1,685 ohms.
Price $22 / 6$ each. P. \& P. $1 /$.
Carpenter's, similar to above, but type 5A48. Coils $\mid \times 3200$ turns at 100 ohms and $1 \times 2000$ turns at 145 ohms, 22/6 each.

P. \& P. //-. Bases for same $2 / 6$


SIEMENS H.S. reLAY. Very latest type, sealed. H96E. 1,700 ohms plus 1,700 ohms, single C.O. contacts. Brand new with fixing clip. In maker's cartons. Price $16 / 6$ each, plus I/- P. \& P.

Siemens sealed similar relay to above, but 2.2 ohms plus 2.2 ohms. Minus clips, $12 / 6$ each.
Plus i/- P. \& P. Plus i/- P. \& P.

SUPERIOR BRAND NEW RELAY. 7,000 ohms coil. Will pull in at 750 mieroamp. and out at 450 mieroamp. Change-over platinum contacts. Vacuum sealed, will therefore not be affected by oil, moisture or water and never needs adjusting. Weight $2 \frac{1}{2}$ oz. Price 18/6 P. \& P. 1/-

MINIATURE MOVING COIL DIFFERENTIAL RELAY. Two coils 350 ohms each.
 Operating current minimum 140 microamp., nominal 400 microamp, maximum
8 milliamp.
One 8 milliamp. One centre stable. Two way contact current 100 mA . at 50 V. A.C. or D.C. Size $1 \frac{1}{6} \times \frac{1}{6} \times \frac{10}{}$ in. Price $22 / 6$ each.
rotary relay. 12 volt. Heavy duty change-over contacts and one low current for external circuit, plus one break set. Price $\$ / 6$. P. \& P. $1 / 6$.

NEW WIRE WOUND RHEOSTAT ON CERAMIC. 58 ohm. 50 watt, complete with instrument knob. Price 8/6. P. \& P. $1 / 6$.


## Miniature

 UNISELECTOR SWITCH. Two banks of ten plus home contacts one bank continuous of normal. 30 ohm coil for 24 volt operation. Brand new, manufacturer's packing. Price 22/6 each. P. \& P. 2/6. As illustrated.EX P.O. MAGNETIC COUNTER. 3 ohms type for $4 \frac{1}{2} / 6$ volt or 500 ohm for $24 / 36$ volt D.C. operation. Price $6 / 6$ each. P. \& P. 1/-.


MAINS POWER SUPPLY UNITS Potted and sealed transformer and choke by famous maker. Mounted on metal chassis $6 \frac{1}{2} x$ $7 \frac{1}{2}$ in., complete with $5 Z 4$ rectifier valve and full smoothing.
input tapped $220-230-240$ volts.
Output: 300 V. D.C. at 100 mA
6.3 V. A.C. at 4.5 amp .
6.3 V. A.C. at 2 amp .

Rectifier supply 5 V. A.C. at 3 amp . Very conservatively rated. Price 42/6 plus P. \& P. 6/6.


BRAND NEW FREQUENCY METERS manufactured by Crompton Parkinson. Calibrated 45 cycles to 55 cycles per second. 6" dial. Panel mounting type. In original manufacturers' boxes. PRICE \& 10.15 .0 each. Postage 3/6.

AUTO TRANSFORMERS. Step up, step down, $110-200-220-240 \mathrm{~V}$. Fully shrouded New. 300 watt type £2/2/- each. P. \& P. $2 / 6$. 500 watt type 63/3/- each. P. \& P. 3/9. 1,000 watt type $44 / 4 / \mathrm{e}$ each. P. \& P. 6/6.


LABORATORY PRECISION BOLTMETER. polished teak case. Moving Iron instrument reading D.C. or A.C. $0-160$ volt scale. Accuracy $2 \%$ £4/19/6 each. P. \& P. $3 / 6$.

BRAND NEW SOUND POWER OPERATED EX. ADMIRALTY HEAD AND BREAST SETS. Two such sets connected up will provide perfect intercom., no batteries required. Will operate up to $\frac{1}{2}$ mile. Original manuiacturer's boxes. Price $17 / 6$ each, plus P. \& P. 2/-; or $32 / 6$ per pair. P. \& P. 3/-


MUIRHEAD PRECI. SION, 4 bank, 1 pole 24 position Stud Switch. Heavy duty contacts. Brand new. Original boxes. Price 17/6 each. P. \& P. I/-

CERAMIC PRECISION SWITCH. 2 pole, 6 way 4 banks. New in manufacturer's boxes. Price 10/6. each. P. \& P. $1 / 6$.

MINIATURE INSTRUMENT RECTIFIERS. Bridge Type 1 milliamp. Guaranteed perfect, $7 / 6$ each.

8-day clockwork Time Switch. Contacts $2 \frac{1}{2}$ amp. 230 volt, 24 hour phase, $\frac{1}{6}$ hour divisions, allow setting for one make and one break to be made every 24 hours, completo with key. Used but guaranteed perfect. Price $27 / 6$ each. P. \& P. $1 / 6$.


METERS GUARANTEED PERFECT
Charging Types
$2 \frac{1}{4}$ amp. D.C. M.1. 2 in . fl. rnd. ...... 7/6 5 amp. D.C. M.1. $2 \frac{1}{2}$ in. fl. rnd........... $11 / 6$ $7 \frac{1}{2}$ amp. D.C. M.I. 3 in. proj. rnd..... $12 / 6$ 9 amp. D.C. Hot Wire W.R. $2 \frac{1}{2}$ in. fi., rnd.6/6 $\begin{array}{ll} \\ 100 & \mathrm{amp} \text {. A.C. M.I. } 4 \frac{1}{2} \mathrm{in} \text {. fl. rnd. ...... } \\ 32 / 6\end{array}$ Voltmeters
12 v. D.C. M.C. $2 \frac{1}{2}$ in. proj. rnd....... $8 / 6$
20 v. D.C. M.C. 2 in fi s.
25 v. D.C. M.C. 2 in fl
30 v. M.I. 3in. proj. rnd.
40 v. M.C. 2 in . fl. sq.
300 v. A.C. M.C. $2 \frac{1}{2}$ in. fil. rnd
300 v. A.C. M.I. $2 \frac{1}{2} \mathrm{in}$. fl. rnd.
400 v. A.C. M.I. $4 \frac{1}{2}$ in. fl. rnd
Milliammeters
1 mA . M.C. $2 \frac{1}{2} \mathrm{in}$, fl. rnd.
500 mA . M.C. $2 \frac{1}{2} \mathrm{in}$. fl. rnd. $\qquad$ 25/6
Microamp
50 microamp. sealed $0-100$, M.C.
$200^{2 \frac{1}{2} \mathrm{in} \text {. fl. rnd. }}$ microA........................ $2 \frac{1}{2} \mathrm{in}$. fi. rnd.
(calibrated 0.50 )., $2 \frac{1}{2}$ in. fl. rnd.
50 microA. $2 \frac{1}{2} \mathrm{in}$. square, side fitting
scales.
29/6

$35 /-$
$16 / 6$
Postage on all meters $1 /$ each.
Miniature latest type moving coil 0.5 milliamp meter, $1 \frac{1}{2}$ in. diameter, flush fitting, comp'ete with fixing clip. Price $17 / 6$. P. \& P. $1 /-$


CRYSTAL CALIBRATOR No. 10. A
 crystal controlled 4 -valve high-grade instrument in the same category as the famous B.C. 221. Directly calibrated, does not require cross reference or charts - functions as follows: (I) A oscillator which oscilator which provency signals of 500
KC and all harmonics of 500 KC to beyond 10 Meg. and up to 30 Meg.
(2) A variable oscillator from 250 KC to 5 KC, this enables all intermediate frequencies between $250 \mathrm{Kc} / \mathrm{s}$. and 30 Meg . to be produced and modulated.
Supplied complete with 3 spare valves, all leads and maker's instruction book in carrying haversack. The complete outfit is brand newrepeat NEW. Price: 64/19/6. Carr. 3/-

## TWELVE PLATE F.W.

 BRIDGE CONNECTED RECTIFIER mounted on 200/250 volt A.C. input transformer Output $36 / 40$ volt D.C. at 1.2 amps. New, perfect. Price 16/6. P. \& P. 3/6.

## WE ARE EXPERTS AT OVERSEAS PACKING \& SHIPPING! SERVICE TRADING Co.

PERSONAL CALLERS ONLY: 9 Little Newport Street, London, W.C. 2 Tel: GER 0576 ALL MALL ORDERS (Early Closing Thursday) 47-49 High Street, Kingston-on-Thames Telephone: KINgston 4585

# RADIO CLEARANCE LTD. 

TRADE
ENQUIRIES
INVITED

27 TOTTENHAM COURT RD., LONDON, W.I
The oldest Component Specialists in the Trade

Telephone:
MUSEUM 9188 EST. 30 YRS.

All Components as July issue and Electrolytic Condensers as advertised in May issue still available.


## And still... We proudly present the greatest All-Transistor Circuit of our time

 BUY AS YOU BUILD the "MIRACLE"' Super Six Plus ANY PART SOLD SEPARATELYMakes up to a portable transistor superhet embodying all the latest design developments including a self-oscillating mixer, two double-tuned IF stages, audio amplifier and a matched push-pull output stage. Also two germanium diodes are incorporated, additional to the six Mazda transistors, one as detector and the other to assist the AGC as a variable damping element.
12 Good Reasons why the Miracle has no equal
$\star$ Printed Board engraved with component locations
$\star$ Special provision for use as a CAR RADIO
$\star$ Double-tuned IF Transformers
$\star 6$ First Grade Mazda transistors plus 2 Mazda hi-efficiency diodes
$\star$ Hi-flux 5in. ( 12000 lines) 25 -ohm loudspeaker.
$\star$ Full coverage Medium and Long wavebands
$\star 3 \frac{1}{2}$ in. tuning dial with 5 : l slow motion
$\star$ Long life dry battery. 150/200 hours
$\star$ Internal high-Q Ferrite Aerial
$\star$ Push-pull matched output stage 400-milli-watts
$\star 3 \frac{1}{2} \mathrm{in}$. $x 7 \frac{1}{2} \mathrm{in}$. $\times 10 \mathrm{in}$. attractive two-tone case-total weight approx. 4 lb .
$\star$ Comprehensive Manual supplied -so easy to build


INSTRUCTION MANUAL AND CIRCUIT BOOK containing itemised list of all component prices, $3 / 6$ post free. See and hear a complete working model in the shop.

STAMPED AND ADDRESSED ENVELOPE with any enquiry, please.
PLEASE ALLOW FULL POSTAGE AND PACKING CHARGES. TERMS OF BUSINESS: CASH WITH ORDER OR C.O.D. ON ORDERS OVER $10 /-$


You've got ability-everyone has. But are you making the most use of it-to earn what you're really worth? If not, let ICS training develop your ability and help you to a better job, with more security!


## Occupation

- T


FULL RANGE OF HI-FI, MONAURAL and STEREO ON DEMONSTRATION

STEREO OUTFITS
Consisting of two 3 valve (IOF3, IOPI4,UU9) 3-watt mains amplifiers eachcomplete with 8 in. loudspeaker in neatbakelite cases with independent con-trols, together with UA8 Stereochanger and screenedleads. Unrepeatable£11.10!
AMPLIFIERS ONLY 49/- EACH.
UA8 STEREO CHANGERS
B.S.R. Monarch Autochangers fittedwith quality Stereo Cartridge,truly amazing value at

## SPECIAL OFFERS

## Sagatone Tape Recorders

 Few only reduced from 39 gns., incorporating latest Collaro studio tupe transcriptor, ${ }^{5}$ valves," auperimpose ", speaker, mike, two tmputs, " auperimpose" speaker, mike, two impurs,
excellent portable caee, snip. 29 gns.

UA14 B.S.R. Changers
 PM SPEAKERS Surplus 3 ohm
 Test Sets Type 74A A service scope easily convertible for standard
use, $200 / 250$ v.a.c., all valves, E.C. B. 30 tube, excellent case worth $£ 10$. Our price $£ 4.10$
$\star$ CHASSIS BARGAINS $\star$ Top quality, undrilled, lowest possible prices due to the large quantities handled
PACK FLAT CHASSIS
Consinting of flat top platea with separate sides and ends, in stout " easy to solder "' tin plate.
$7 \mathrm{in} . \times 5 \mathrm{in} . \times 2 \mathrm{in} .4 / 2 ; 10 \mathrm{in} . \times 7 \mathrm{~m} . \times 2 \mathrm{in} .5 /=$ $7 \mathrm{in} . \times 5 \mathrm{in} . \times 2 \mathrm{in} .4 / 2 ; 10 \mathrm{in} . \times 7 \mathrm{mn} . \times 2 \mathrm{in} .5 /=; 10 \mathrm{~m} . \times$ $5 \mathrm{in} . \times 2 \mathrm{in} .4 / 6$; $14 \mathrm{in}, \times 5 \mathrm{in} . \times 2 \mathrm{in}$. $6 / 2$; $14 \mathrm{in} . \times 10 \mathrm{in}$. TIN PLATE-BOX FORM
Complete whith sides and ende in "eany solder" tin plate. $4 \mathrm{in} . \times 2 \mathrm{in} . \times 1 \mathrm{in} .8 / 2 ; 6 \mathrm{in} \times 4 \mathrm{in} . \times 2 \mathrm{in}$. ALUMINIUM BOX FORM
OPEN ENDED. In heary gauge bright sheet, $6 \mathrm{in} . \times 4 \mathrm{in} . \times 2 \mathrm{in}$. $3 / 5 ; 8 \mathrm{in} . \times 6 \mathrm{in}, \times 2 \mathrm{in} .4 / 6 ; 10 \mathrm{in} . x$ $7 \mathrm{in} . \times 2 \mathrm{in} .5 / 2 ; 12 \mathrm{in}, \times 6 \mathrm{in} . \times 2 \mathrm{in} .5 / 6 ; 12 \mathrm{in} . \times 8 \mathrm{in}$.
$\times 2 \mathrm{in} .6 /-16 \mathrm{in} . \times 8 \mathrm{in} . \times 3 \mathrm{in} .7 / 8$. $\times 2$ in. $6 /-; 16 \mathrm{in}, \times 8 \mathrm{in} . \times 3 \mathrm{in}$. 7/9.
ALUMINIUM BOX FORM
Gin. $\times 4 \mathrm{in}$. $\times 2 \mathrm{in}$. $4 /=-8 \mathrm{gin} \times 6 \mathrm{in} \times 2 \mathrm{in}$.
$6 \mathrm{in} . \times 4 \mathrm{in} . \times 2 \mathrm{in} .4 /-; 8 \mathrm{in} . \times 6 \mathrm{in} . \times 2 \mathrm{in} .5 / 2 ; 10 \mathrm{in}, x$
$7 \mathrm{in} . \times 2 \mathrm{in} .5 / 9 ; 12 \mathrm{in}, \times 66 \mathrm{~m} . \times 2 \mathrm{in} .6 / 3,12 \mathrm{in} \times 8 \mathrm{in}$, $7 \mathrm{in} . \times 2 \mathrm{in} .5 / 9 ; 12 \mathrm{in}, \times 6 \mathrm{in} . \times 2 \mathrm{in} .6 / 3 ; 12 \mathrm{in} . \times 8 \mathrm{in} . \times$
$2 \mathrm{in} .6 / 9 ; 14 \mathrm{in} . \times 10 \mathrm{in} . \times 2 \mathrm{in} .9 / 9$.


|  |  | CV1087 (14L | 8 | CV1 |
| :---: | :---: | :---: | :---: | :---: |
| CV601 (5BP1-5 | 25/- | CV1112 (V1028) | 12/6 | CV1759 |
| CV718 (5FP7-5in_) | 15\% | CV1131 (41D8) | 12/6 | CV1869 (12TO1A-12 |
| CV816 (3DP1-3in.) | 12/6 | CV1131 (41D8) |  | CV2108 9 9MO5A |
| 851 (32A) |  | cV1511 |  | CV2180 (E450 |
| ( |  |  |  | , |

TubesHIGHEST QUALITY-NEW LOW PRICES


MOST MULLARD, MAZTRON SCOPE, BRIMAR,
FERRANTI TYPES PROCESSED IN OUR OWN FACTORY. N6w Mullard, Mazda $\underset{\text { (Equiv. 3/16) }}{\text { NEW }}$ /-

9/10in
12 in.
14 in .
15/17in. £3-10-0
$2 l \mathrm{in}$.

6 Months
REVACUUMED £2-0-0 £3-10-0 £2-10-0 £4-10-0 £3-0-0 £5-0-0 £3-10-0 £5-15-0 £4-10-0 £6-15-0

12 Months
Mw 31/74
£4-10-0
Mw 36/24
£7-10-0
Mw 43/64
Mw
£8-10-04

Staar Galaxy Spares We hold the most comprehensive range of spares in the country. send $\begin{aligned} & \text { Sice } \\ & \text { Service Sheet and Bpares Price }\end{aligned}$ TRANSISTORS: ${ }_{8 \mathrm{BED}}^{\mathrm{RED}} 4 / 6$ I.F., L.F. and Output up to 800 kefs .


CO-AXIAL CABLE Semi-air spaced, low loss. 50 yard drums
$22 /$ B, carr. $2 /-6$ drums $125 /-$, carr. $5 /$-.
B.S.R. TAKE DECKS 89/10/-

COLLARO STUD
B.B.R. Mons reh

13 CHANNEL TV's
TABLE MODELS, FAMOUS MAKES Absolutely complete
These seta are unequalled in value due to huge purchase direct from source. They
are unteated and are not guaranteed to be
$12^{\prime \prime}-£ 3.19$
$14^{\text {n }}$-£6.19
$17^{\text {" }}$ - £9.19
ALSO 12" 5 CH . TV's 55/-


4-SPEED RECORD PLAYER Latest Turntable, together with lightweigat Staar Galaxy dual sappbire erystal
turnover plrk-up head. Amazlog value (Pick -np only 19/-.) $£ 3 / 10 /-$. Carr, $3 /-$.

RECTIFIERS: For Chargers wave bridge 12 volt $3-4$ amps. $9 / 6$. 250 v. $80 \mathrm{~mA} ., 5 /-, \quad$ RM1, $6 / 6 ; \mathrm{RM} 2,8 /-$ 14A96, $17 /-$ R 14A97, $23 /=14 \mathrm{Al00}$, $25 /=$

100 RESISTORS 7/100 CONDENSERS 10/ A must. A well baicanand eeramic eondensers. $3-10,000 \mathrm{PF}$. List value over E 5 .
ALL DRY PORTABLES
Famous Stella shoulder strap, super polkn dot finish. Economy valves, lightweight. Listed e13/2/6. Truly an uurepeatable

## VALVES BY RETURN OF POST

$10 \%$ DISCOUNT ${ }_{\text {TO }}^{\text {SPECIAL }}$ PURCHASERS of any SIX VALVES marked in black type $(15 \%$ in dozen). Port: 1 vaive, 6 d ., $2-11,1 /-$

## NEW LOW PRICES GUARANTEED

FREE TRANSIT INSURANCE, All valves are new or of fully guaranteed ex-Government or ex-equip-
ment origin, Satisfaction or Money Back Guarantee on goods if returned unused within 14 days.

| 024 | $5 / 6$ | 8A | 6 | 6 |  | 0x |  | 1208 8/6 | $32006 T ~ 8 / 6$ |  |  | ECC34 8/- | EL84 7- |  |  |  |  | $1 / 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IASGT | 5/- | 6AQ | - | 6, 77 | $7 / 8$ | 6X 4 | 6 | 12 El 12/6 | $42 \quad 7 / 6$ | DAF | 5/3 | ECC35 619 | EL91 4/9 | N108 | 181- | T41 7/6 | UCL33 | 13/6 |
| 1A7at | 11/8 | 6AT | - | 6 J 8 | 8/6 | 6X5G | 5/6 | 12J5GT 3/8 | 43 7/6 | DAF96 | $7 / 8$ | ECC81 5/9 | EM34 8/6 | N152 | 10/6 | TH30C 12/6 | UP41 | 8/8 |
| 1 Cs 9 | $9 / 8$ | 6AU | 719 | 6K8G | 6/8 | 6x5GT | 8/- | 12K7CT 5/6 | 50С5 9/6 | DF33 | 918 | ECCS2 618 | EM80 9/3 | P41 | 4/8 | U14 81- | UF42 | 6/8 |
| 1D5 | $9 / 6$ | 687 | 916 | 6K7 | 5/8 | 747 | $10 / 6$ | 12K8GT11/8 | 50CD6G19\%- | DF91 | 4/- | Ecc83 71- | EM81 9/3 | P61 | 2/3 | U 18 8/8 | U F80 | 9/- |
| 1 D 6 | $9 / 9$ | 61886 | $3 / 6$ | 8K7G | 2/3 | 785 | 12/8 | 12K8 12/6 | 60L6GT 9/3 | DF96 | 718 | ECC84 8/8 | EM84 918 | PABC |  | U22 8/9 | UF85 | 9)- |
| 1859 | $8 / 9$ | 6BA6 | $81-$ | 6K7G | 5/- | 786 | $9 / 8$ | 12Q7GT 5/8 | $53 \mathrm{KU} 10 / 8$ | DR83 | $8 / 9$ | ECC85 8/3 | EM85 10/6 |  | 11/- | U24 15/- | UF86 | 14/6 |
| 114 | $3 / 6$ | 6BE6 | 6/- | 6R8 | 101- | 787 | $7 / 3$ | 12807 6/- | 54KU 8/8 | DH76 | 5/6 | ECF80 $9 / 9$ | EN31 16/- | PCC84 | $7 / 8$ | U25 $13 / 6$ | UF89 | 7/3 |
| 1LD | 318 | $6 \mathrm{BG6C}$ | $12 / 6$ | 8K8G | $5 / 6$ | 7c5 | $7 / 6$ | 128575 | 618PT 11/- | DH77 | $7 /$ | ECF82 $9 / 8$ | EY51 | PCC85 | 9/3 | U26 11/- | UL41 | $7 / 6$ |
| 1LN5 | 4/6 | 6BE6 | $61-$ | 6K8G | 01- | $7 \mathrm{C6}$ | $7 / 3$ | 128 K 7 5/6 | 75 8/- | DK 32 | 11/9 | ECH21 14/- | EMALL 8/8 | PCC88 | 19/- | U21 7/3 | UL44 | 12/6 |
| INSGT | $9 / 9$ | 6BJ6 | 6/- | 6K25 | 7/8 | 7E7 | 9/6 | 12SN7GT 8/6 | 77 6/6 | DK91 | $8 /$ | ECH35 9/6 | EY86 8/- | PCC89 | 13/9 | U33 131- | UL46 | 9/9 |
| 12.5 | 8/- | 6BR7 | $9 / 3$ | 6 L 1 | 12/6 | 7H7 | $7 / 6$ | $12 Y 4$ 9/6 | $78 \quad 76$ | DK92 | 8/6 | ECH42 $8 / 6$ | EZ35 6/- | PCF80 | $7 / 6$ | U35 8/9 | 0 LS | 7/8 |
| 184 | $8 / 6$ | 6BW6 | 718 | 6L6 | 9/9 | 7 K 7 | 8/- | 1487 14/9 | $80 \quad 6 / 8$ | DK96 | $7 / 8$ | ECH81 8/3 | EZ40 6/9 | PCFR2 | $7 / 8$ | U37 26/6 | UM80 | 9/6 |
| 185 | $5 / 3$ | 6BW7 | $8 / 6$ | ${ }^{\text {BLE }} 6$ | 7/8 | 7Q7 | $9 / 6$ | 19AQ5 7/6 | 83 976 | DL33 | $8 / 9$ | LCL80 7/8 | EZ41 7/3 | PCL 82 | 8/6 | U43 8/0 | UV6 | 12/6 |
| 1 T 4 | 4/- | 68×6 | 5/3 | 6 L 7 | $91-$ | 7R7 | 10/6 | 198G6G15/- | goav 4/8 | DL36 | $9 / 9$ | ECL82 10/- | EZ80 6/3 | PCL83 | 11/6 | U50 6/- | UU? | 8/6 |
| 2 D 21 | 4/6 | BC4 | 316 | 6L70 | $7 / 6$ | 787 | $9 / 6$ | 20D1 9/9 | 11726 10/6 | D182 | $9 / 8$ | ECL83 14/6 | EZ81 7/- | PCL84 | 919 | $05251-$ | U 48 | 251- |
| 3A4 | 5/6 | 6 C 5 | $5 / 8$ | $6 \mathrm{L18}$ | $91-$ | 7V7 | $7 / 9$ | $20 \mathrm{F2}$ 9/8 | 185BT 16/- | DL91 | $8 / 8$ | EF22 12/- | GT1C 7- | PEN25 | $4 / 6$ | 076 5/6 | UY1N | 11/- |
| 3 A5 | $9 / 6$ | 6C6 | $4 / 9$ | 6L19 | 12/6 | 7Y4 | 71 - | $20 \mathrm{Ll} \mathrm{13/6}$ | 723A 29/- | DL9\% | 81- | EF36 3/3 | GZ32 8/8 | PEN45 | 7/3 | U78 5/8 | UY21 | 11/6 |
| 3 Q 4 | 7/3 | 6 C 9 | $9 / 6$ | 6LD3 | $8 / 6$ | 724 | $7 / 6$ | $20 \mathrm{P1}$ 11/6 | 807A 3/- | DL94 | 7/- | EF39 4/3 | G334 12/6 | PEN48 | $5 / 3$ | $\mathbf{U 1 0 7}$ 11/- | UY41 | $6 / 6$ |
| 3Q5G | $8 / 9$ | 6CD6G | $18 / 6$ | $6 \mathrm{LD12}$ | $7 / 6$ | 8D3 | 3/6 | $20 \mathrm{P} 3 \quad 18 / 6$ | 807E 3/8 | DL96 | 719 | EF40 13/6 | GZ37 10/6 | PL33 | 91- | U191 918 | UY8 | $8 / 8$ |
| 384 | 81- | 6CH6 | $9 / 3$ | 6LD20 | 8/6 | 10 Cl | 11/- | 20 P 4 17/- | 808 15/- | EAb0 | 9 d. | EF41 $8 / 6$ | HLA1DD9/8 | PL336 | 11/- | U281 8/6 | VR1 | 30 |
| 3 V 4 | 7/- | $6 \mathrm{CD1}$ |  | 6N7 | 8/6 | 10C2 | 13/6 | 20Pb 16/- | 954 2/- | EABC80 | $7 / 6$ | EF42 $7 / 6$ | HVR2 7/6 | PL38 | 14/6 | U282 15/- |  | 7- |
| 5R4G | $9 / 6$ | 6D2 | $3 / 9$ | 6P1 | 14/- | 10 Cl 14 | 9/- | 2546 F 8/- | 955 8/9 | EAC91 | 4/9 | EF50-BR2/- | KL35 719 | PL81 | $9 / 9$ | U301 14/- |  |  |
| 4 | $5 /-$ | 6D3 | 12/6 | $6{ }^{8} 25$ | 91- | 10F1 | $8 / 8$ | 25L6G 6/8 | 956 2/8 | EAF42 | 8/6 | EF50-USA | KT32 6/9 | PL82 | 716 | U309 12/6 |  | 5/6 |
| 5V4G | $9 / 6$ | 6 D 6 | $4 / 9$ | 8 P 28 | 12/6 | $10 \mathrm{F9}$ | 10/3 | 25L6GT 9/- | 5763 10/- | EB34 | 1/6 | $2 / 6$ | KT33C 6/6 | PL83 | $7 / 6$ | U329 12/6 | W61 | 11- |
| $5 Y 36$ | 6/- | 6F1 | $5 / 8$ | 607G | $8 / 9$ | $10 \mathrm{Ll4}$ | 81- | 25 Y 5 G 9/- | 9001 4/- | E8841 | 7/- | EF54 3/3 | KT36 9/- | PL84 | 11/- | U339 11/- | W76 | 5/6 |
| 5Y3GT | 6/6 | 6F6G | $8 / 8$ | 607G1 | 9/3 | 10LD3 | 8/3 | $25 Z 4 \mathrm{G} \quad 73$ | 9002 4/8 | EB91 | 319 | EF80 5/3 | KT44 9/6 | PM84 | 919 | U404 $6 / 8$ | W77 | $4 / 8$ |
| 5 Y 40 | 11/- | 6F6M | 71- | 6R7G | 7/8 | 10LD12 | 8/9 | 28Z5 8/- | 9003 4/- | EBC: | 91- | EF85 7/- | KT45 8/日 | PX25 | 18/- | U801 18/- | W81 | $5 / 9$ |
|  | 11/- | 6F12 | $3 / 8$ | 68A7 | 5/9 | 10P13 | 8/6 | $25 Z 6$ 9/- | ATP4 2/8 | EBC33 | 5/- | EF86 10/3 | KT61 9/- | PY31 | 818 | UABC80 8/9 | X 61 | 12,6 |
| 40 | 8/6 | 6 Fl 3 | $8 / 8$ | 6SG7 | $4 / 8$ | 10P14 | $9 / 8$ | $2784181-$ | AZ31 9/- | EBC41 | 8/6 | EF89 81- | KT63 6/6 | PY82 | 10/6 | UAF42 9 - | X63 | $9 / 6$ |
| 5Z4GT | 11/- | 6 F 14 | $9 / 6$ | 6817 | 4/6 | 10 P 18 | 8/- | 30 Cl 7/6 | B38 816 | ERC81 | $7 / 9$ | EF91 3/6 | KT66 12/6 | PY80 | 71 | UB41 8/- | X 65 | 11/- |
| 6 A7 | 101- | 6F18 | $9 / 6$ | 68077 | $51-$ | 1246 | 5/3 | $30 \mathrm{FE} \quad 7 /-$ | B65 4/9 | EBF80 | 8/6 | EF92 4/9 | KT78 ${ }^{\text {KTP }}$ | PY81 | 8/6 | UBC41 8/3 | X66 | 11/- |
| 6A8G | 9/6 | 6 Fl 6 | $8 / 8$ | 6 SK 7 | 5/2 | 12AH7 | $8 / 9$ | 30FLI 9/6 | CBL31 91/- | EBF89 | 8/6 | EF95 6/9 | KT81 14/- | PY82 | $8 / 9$ | UBC81 10/- | X781 | $9 / 6$ |
| SABGT | 13/6 | 6 F 33 | 8 | 68L7GT | 8/- | 12AM8 | 918 | $30 \mathrm{LI} \quad 7 / 8$ | OCH35 7/6 | EBL21 | 141- | EK32 7/9 | KTW61 5/6 | PY83 | $81-$ | UBF89 8/6 | X78 | $14 / 6$ |
| 6ati | 8/3 | 6G6 | - | 68N7G | 4/8 | 12AT ${ }^{\text {a }}$ | $7 / 8$ | 30P4 12/6 | CL33 18/- | EBL31 | 21/- | EL32 4/6 | KTW63 4/9 | PZ30 | 12/- | UBL21 14/6 | X 79 | 18/6 |
| 6AC7 | 4/3 | 6 H 8 | 2/- | $68 Q 7$ | 6/3 | 12AT7 | 5/9 | 30 P 12 8/- | CY31 9/9 | EC52 | $3 / 9$ | EL33 9/- | KTZ63 5/6 | R18 | 12/6 | UCC84 14/6 | Y6 | 8/3 |
| 6AG5 | $4 / 3$ | $6 \mathrm{~J} \%$ | 4/3 | BSS 7 | 5/- | 12AU7 | 8/8 | 30P16 7/9 | D63 1/6 | EC90 | $3 / 6$ | EL35 8/6 | L63 $2 / 9$ | R19 | $181-$ | UCC86 81- | 283 | 5/3 |
| $6 \mathrm{AG7}$ | 81- | 6. 5 5 | $2 / 8$ | 6U4GT | 10/8 | 12AX7 | 71- | 30PL1 10/6 | D72 3/9 | E | 4/6 | EL37 11/8 | LN152 7/8 |  |  | UCF80 16/- | 288 | $9 / 6$ |
| 6AK5 | 6/8 | 6 J | $3 / 8$ | 6U5G | 6/3 | 12BA8 | 8/- | 35LBGT \%/- | D152 8/8 | ECC31 | 9/8 | EL38 12/6 | LZ319 7/6 | $8 \mathrm{8P41}$ | $2 / 6$ | UCH21 14/6 | 277 | 3/6 |
| 6AL5 | $3 / 9$ | 6J6 | 1/- | 6V6G | 5/6 | 12BE6 | 8/9 | 35W4 6/9 | DA30 18/6 | RCC32 | 4/- | E1A1 8/6 | MU14 8/- | SP61 | 2/6 | U6H42 7/8 | 2152 | 5/3 |
| 6 A | 4/8 | 6 JJ 7 | $7 / 8$ | 6VGGT | $6 / 8$ | 12BE7 | 10/6 | 35Z4GT 5/6 | DA90 2/6 | ECC33 | $4 / 9$ | 42 8/6 | N37 11/- | 8U25 | 18/- | UCH81 8/8 | Z718 | 5/- |



The A.W.A. Teleradio 5.4 breaks down the barrier of isolation in outback areas. Trained operators are not required. The equipment uses the most modern valves and design features to provide simplicity of operation and efficiency.

Made by Australia's largest manufacturer of telecommunication equipment, the A.W.A. Teleradio 5A is a low-power H.F. transmitter-receiver for distances up to several hundred miles over land or sea, and is in use by Government and private networks in many places. Write for details.
Manufactured and guaranteed by -
AMALGAMATED WIRELESS (AUSTRALASIA) LIMITED 47 York street, Sydney.

ES36.58

## BENSON'S BETTER BARGAINS

TRANSFORMERS, potted, " C "core; Input 230 v. Outputs:- 6.3 v ,, 0.3 A. (1 A. actual), twice, $8 / 6$; Outputs: $-510-0-510$ v. 275 mA , $375-0-375$ v. $83 \mathrm{~mA}, 5$ v. $3 \mathrm{~A} ., 6.3$ v. 7 times ( 17 A.$), 65 /=\mathrm{CON}=$ DENSERS, block, paper; $8 \mathrm{mfd} .250 \mathrm{Vw} .4 /-; 600 \mathrm{Vw}, 6 /-; 4 \mathrm{mfd} 2 \mathrm{kVw}$. $7 / 6 ; 000 \mathrm{~V} w .3 / 6$. Switch fuse splitter, DP, $15 \mathrm{~A} .15 /=$. Panel fuseholders, $1 / 3$; Panel Lampholders (indicators), $1 / 6$. POWER UNITS. Input A.C. $115 / 250$ v. Outputs: D.C. 330 v., 120 mA . and 6.3 v. A.C. twice. Potted trans. and LF choke, new (post $3 / 6$ ), $30 /=$. MONITOR 56 , triggered oscilloscope, comprising Indicator 248 and Power Unit 675. Valves VCR138a, 3/EF50, 2/ECC33, 5/EF55, EF37A, 6V6, 3/EA50 and $2 / 5 \mathrm{U4} \mathrm{G}_{1}$ VU120A. Two units each $12 \times 9 \times 18$ in., black finish. 230 v. A.C. input with 18 -way cable and mains cable and circuit. 230 v. A.C. input with 18-way cable and mains cable and circuit.
Cathode probe unit extra, 17/6, £8/10/- (Rail $20 /-$ ). INDICATORS, Cathode probe unit extra, $17 / 6$, E8/10/E Rail 20/-). INDICATORS,
Type 101 with VCR530 and 2/EB91, 2/EFg1, 2/R10, new cond., 30/Type 101 with VCR530 and 2/EB91, 2/EF91, 2/R10, new cond. $30 /=$
(post 7/-). Type 1 with VCRX263, 2/EF52, 5/6J6, 1/6V6, 1/EY51, (post 7/-). Type 1 with VCRX263, 2/EF52, 5/6J6, 1/6V6, 1/EY51,
2/EB91, 3/EF91, RF EHT Generator and $28 \mathrm{kc} / \mathrm{s}, \mathrm{xtal}$, 45/- (Rail 7/6). 2/EB91, 3/EF91, RF EHT Generator and $28 \mathrm{kc} / \mathrm{s}, x \operatorname{tal}$, $45 /-$ (Rail 7/6).
HEADPHONES- CLR, $7 / 6$. CR100 Noise Limiter assemblies, with HEADPHONES- CLR, T/6. CR100 Noise Limiter assemblies, with
valve, $3 / 6$. NEW M.C. METERS, $3 \frac{1}{2}$ in. round flush, $50 \mu \mathrm{~A}, 70 /-; 200 \mu \mathrm{~A}$, centre zero, $50 /-; 1 \mathrm{~mA}$, centre zero, $45 /-; 1 \mathrm{~mA}, 55 /-; 2 \frac{1}{2} \mathrm{in}$. 1 mA , $22 / 6 ; 2 \mathrm{in} .300 \mathrm{~mA}$, each $8 / 6$. $2 \frac{1}{2} \mathrm{in}$. M.I. 20 v . A.C., $8 / 6 ; 300$ v. A.C. $2 \frac{1}{2}$ in., $15 /-$ VIBRATORS, Mallory G634C 12 v. 4 -pin, $7 / 6 ; 6$ v. 5 -pin reversible, 7/6. R1155B, good condition, tested with handbook. \&7/10/- (Rail 10/-). DRIVES: slow-motion Admiralty 200:1 ratio, scaled $0-100,5 / 6$. R1155 S.M. " $N$ " type, new, 10/6. ViBRAPAK 6 v . D.C. to 250 v .60 mA , smoothed case, $22 / 6$. 12 v . to 250 v .60 mA , $21 /-(p . p, 3 / 6)$. DYNAMOTORS (post 3/6). 12 v. to $250 \mathrm{v} .65 \mathrm{~mA}, 11 / 6$;

> HOLIDAYS. BOTH ADDRESSES WILL BE CLOSED FROM 17TH AUGUST TO 3RD SEPT. INCLUSIVE.

6 v . to $250 \mathrm{v} .60 \mathrm{~mA}, 11 / 6$. ROTARY CONVERTERS. Input 24 V. D.C. Output 50 v., 4 a., $50 \mathrm{c} / \mathrm{s}$., 40/- (Rail 7/6). CATHODE RAY TUBES New: VCR 139A or VCR 138, each 30/= CHOKES, LF 10 H 200 mA , 8/6; 100 H 60 mA, 8/6, 9H $100 \mathrm{~mA}, 5 / 6$; Potted $10 \mathrm{H} 100 \mathrm{~mA}, 7 / 6$; "C," $5 \mathrm{H} 400 \mathrm{~mA}, 10 / 6,10 \mathrm{H} 250 \mathrm{~mA}, 12 / 6 ; 10 \mathrm{H} 50 \mathrm{~mA}, 6 /-$ R.F. 27 , good cond., 18/- (p.p. 3/6). METAL RECTIFIERS, 240 v. $100 \mathrm{~mA}, 4 /=$; 240 v. $30 \mathrm{~mA}, 3 / 6 ; 600 \mathrm{v} .30 \mathrm{~mA}, 5 / 6 ; 240$ v. $80 \mathrm{~mA}, 5 / 6 ; 1,000$ v. 30 mA , $7 / 6,350$ v. 2: a, 30/- CONTROL8 Camera Type 35; a timing device, new 10/6, (post 3/6). COMMAND Receivers, medium-wave (520-1,500 $\mathrm{kc} / \mathrm{s}$ ), 6 valves; new, $97 / 6$; used $82 / 6$. Conversion data for above to CAR RADIO, 12 v., with circuit, $1 / 6$. RELAYS, potted, small, $1,700 \div$ $1,700 \Omega$, hi-speed SP c/o, 10/6. 2,500 2 make, $6 /-$
LIST AND ENQUIRIES S.A.E, please. Terms, C.W.O. Postage LIST AND ENQUIRIES S
extra. Immediate despatch.
Callers \& Post: W. A. BENSON (WW), 136 Rathbone Road, Liverpool, 15. Callers: SEF 6853 SUPERAOIO (Whitechapel) Ltd., 116 Whitechapel, Liverpool, 2. ROY 1130

## Small in size . . .

## but "ELLIOTT-ACCURATE"

The introduction of these three new models completes the famous Elliott range of miniature instruments Small in size . . . crystal clear in indication and consistently Elliott-accurate!


Electrical Measurements Division

## ELLIOTT BROTHERS (LONDON) LTD.

Century Works, Lewisham, London S.E. 13
A member of the Elliott-Automation Group

# Just right for a day's outing 大"CONTIN ENTAL-6" 

MEDIUM AND LONG WAVE FULL TUNING * Plessey Printed Circuit

* 6 Top Grade Ediswan Transistors
* Sin. High Fidelity Speaker
* Double Tuned IFT's
* 400 mW Push-Pull Output
$\star$ Internal Ferrite Aerial + Size $9 \frac{1}{2} \times 7 \times 3$
$\star$ Slow Motion Tuning $\star$ Weight 41 b .
* Fully illustrated inseructions

Printed Circuit marked with Component
Numbers
$\star$ All Components Guaranteed

All components available separately. CALL FOR DEMONSTRATION $\star$

NEW FREE ILLUSTRATED LEAFLET AND PRICES

COMBINED PORTABLE/CAR RADIO

| Total Cost of all Components |
| :---: |
| f\|l. 0.0 P.P. $3 / 6$ |
| ineluding Cabinet, Battery, |
| Transistors, Car Radio, AVC |
| and all necessary items. |

A highly sensitive and selective portable fully tunable on medium and long waves. Performs equally well as a car radio. Low running costs, good looks and ease of construction combine to produce a radio equal to commercial receivers in the 20 gns . class.

## MAJOR-3 $\quad$ * 5-stage Reflex

 (3-Transistor Pocket Radio) $\star$ No Aerial or Earth required. Min. Volume Control. * 3 Ediswan Transistors.$\star$ Medium Wave Tuning.
$\times$ Size $4 \frac{1}{2} \times 3 \times$ 1tin.

* Personal phone included.
All parts sold separately.
TOTAL $87 / 6$ P.P. $1 / 6$. BOOKLET FREE
t NO AERIAL-NO EARTH t RESULTS GUARANTEED ANYWHERE
MAJOR-2
+ 4stage reflex.
(2-Transistor Pocket Radio) tunable.
* Very sensitive. No aerial or earth required. - Complete illustrated layout. - Over 6 months on one battery. Size $4 \frac{1}{2} \times 3 \times$ Lin. Weight only 4 Personal phon 69/6 POST included.
TOTAL FREE BOOKLET: All components sold separately. * NO AERIAL - NO EARTH t

MARCONI No. I9 SET CRYSTAL CALIBRATOR
CRYSTAL CONTROLLED OSCILLATORS: 10 $\mathrm{Kc} / \mathrm{s}$. $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Me} / \mathrm{s}$. Output up to $20 \mathrm{Me} / \mathrm{s}$. On/Öf MODULATOR. With handbook. Unused. ONLY 79/6. P.P. 2/6.


## QUARTZ CRYSTALS FROM 5/- EACH

From $6 \mathrm{Kc} / \mathrm{s}-47 \mathrm{Me} / \mathrm{s}$. FT243, FT241, 10 XJ and B7G.
All types for all purposes. Send for free list.

> WALKIE/TALKIE TYPE 38 TRANSMITTER/RECEIVER Complete with 5 valves. In new condition. These Sets are sold without Guarantee, but are serviceable ( 7 to $9 \mathrm{Mc} / \mathrm{s}$ ), 22/6. P.P. $2 / 6$ Headphones $7 / 6$ pair, Junction Box 2/6, Throat Mike 3/6, Aerial Rod 2/6.

## 931A (27M1) PHOTO-MULTIPLIER <br> BRAND NEW, ORIGINAL CARTONS 80/- P.P. I/-. BASE $2 /-$



## PYE "SCALAMP" GALVANOMETER

 (TYPE 2000)Limited Quantity of these Brand New and Guaranteed Instruments.

$$
215 \text { Р.Р. 5/- }
$$

## SPECIFICATION:

$200 / 250$ volt $50 \mathrm{c} / \mathrm{s}$. supply or 4 volt 1 amp . dry cell.
SENSITIVITY (Typical) 32.5 mm //uA: $1.45 \mathrm{uV} / \mathrm{mm}$. Period 2 secs: 850 ohms damping. Complete details supplied with each unit.

## VHF TRANS/RECEIVER

 TYPE 1986

* 10-CHANNELCRYSTAL CONTROLLED $\star 124.5$ to $156 \mathrm{Mc} / \mathrm{s}$ COVERAGE
太 $9.72 \mathrm{Mc} / \mathrm{siF}$; BAND WIDTH $23 \mathrm{Ke} / \mathrm{s}$ COMPLETE UNIT WITH 21 VALVES, 24 VOLT POWER UNIT BUILT IN. IN. CLUDES CIRCUIT DIAGRAM, GOOD NEW CONDITION. LIMITED QUANTJTY. ONLY ET/I9/6. CARRIAGE 10/6.


## TRANSMITTER/ RECEIVER

Army Type 17 Mk. It Complete with Valves, High Resistance Headphones. Handmike and instruction Book and circuit. Frequency Range 44,0 to $61 \mathrm{Mc} / \mathrm{s}$.
Range approximately
3 to 8 miles. Power
requirements: Stand-
ard 120 v. H.T. and
2 v. L.T.
Ideal for Civil Defence and com- $\mathbf{4 5 / - \quad P . P .}$
munications. BRAND NEW munications. Me/s. Calibrated Wavemeter for same, 10/- extra.

## CRYSTAL MICROPHONES

Acos 39-1 Stick Mic with screened lead 39/6, P.P. 1/6
Acos 40 Desk Mic. with built-in stand and screened lead ...........................25/-, P.P. 1/6

## NEW PURCHASE! THE "AVO-MINOR"



ACIDC volts.
$0-500$ volts.
D.C. mA.

RESISTANCE
0-20 K.
COMPLETE WITH LEADS AND LEATHER CASE 79/6
P.P. 2/-

Limited quantity.

| CATHODE-RAY TUBES |  |  |
| :---: | :---: | :---: |
| (IDEAL FOR 'SCOPES) |  |  |
| 2 API | $2 \mathrm{in}$. | 25/- |
| VCRI39A | $2 \frac{3}{3} \mathrm{in}$. | 351- |
| 3BPI | 3 in , | 301- |
| 3FP7 | 3 in . | $12 / 6$ |
| 3API | ${ }_{2} \frac{3}{4} \mathrm{in}$. | 301- |
| Mullard DG7/5 | $2 \frac{3}{4} \mathrm{in}$. | 45/- |
| SFP7 | Sin. | 20/- |
| VCR517C | 6in. | 30/- |
| VCR97 | 6 in . | 40/- |
| Screens for VCR97 <br> P.P. 2/- any type. |  |  |
|  |  |  |
| ALL GUARANTEED. |  |  |
| FREE LIST and D | ata on | quest. |

PADDINGTON, LONDON, W.2.
OPEN MONDAY to SAT. 9-6. THURS. 1 o'clock.

FREE LISTS RETURN VALVES, TUBES, TX/RX, STANDARD AND MINIATURE COMPONENTS


# super <br> RADIOTECH <br> limited 

 38 MOMMOUTH ST., UPPER ST. MARTIN'S LANE, LONDON, W.C. 2

## MINIATURE ELECTRIC BULBS FROM $1 V$ to 50 V

## IN SIZES FROM 4.5 mm to 18 mm DIAMETER

After nearly 30 years of specialising solely in the production of Miniature Electric Lamps, we have accumulated a store of information that is freely available to the Electronics Industry. You are invited to write or phone us for any information you may require about Miniature or Sub Miniature Filament Lamps for use in existing or new projects.
VITALITY BULBS LTD.
Neville Place, Wood Green, London, N.22. 'Phone: BOWes Park 0018


## C.R.T. ISOLATION TRANSFORMERS

For Cathode Ray Tubes having Heater/Cathode short
circuit and for C. R. Tubes with falling emission Full instructions supplied.
Type A. Low Leakage windings. Optional Boost $25 \%$ and $50 \%$. Tapped mains primaries:

## 2 volt 4 volt <br> 12/6 each <br> 12/6 each <br> $12 / 6$ each $12 / 6$ each <br> 12/6 each <br> 6.3 volt <br> 10.8 voit <br> $12 / 6 \mathrm{each}$ ype A2. <br> OUR LATEST SUPERIOR PRODUCT.

 $\begin{array}{lll}\text { High Quallty. Low capaelty, } 10 / 15 \mathrm{pf} . & 16 / 6 \\ \text { Optlonal boost } 25 \%, 50 \%, 75 \% \text { esc } \\ \text { Type B. Mains lnput. Low capaelty. } & \text { Multi Outpu }\end{array}$ Type B. Mains input. Low caprelty. Multi Output$2,4,8.3,10$ and 13 volts, Optional boost $25 \%$ and $50 \%$. Suitable for all Cathode Ray Tubes'21/.
RESISTORS. All preferred values. $20 \% 10$ ohms to 10
 to 10 meg., Ditto $5 \% 9$ d., $100 \Omega$ to 5 meg.
10 watt $\}$ WIRE-WOUND RESISTORS 15,000 ohms. $-50,000$ ohms, $5 \mathrm{w} ., 1 / 9 ; 10 \mathrm{w}$ WIRE-WOUND POTS, 3 w. Kre-set Min. T.V. type All values 25 ohma to 25 K ., 3/- ea., 30 K., $80 \mathrm{~K} ., 4 /$-; Ditto, $W$. Carbon Track WLRE-WOUND POTS, 4 w. Btandard size Pots, Iong Spladle Figh Grade, All
values 100 ohma to 50 K ., 6/6;100 K, 7/6. SPEAKER WIW EXT, SPEAKER
CONTROL $10 \Omega, 3 /=$ O/P TRANSFORMERS. Heavy duty 50 mA., $4 / 6$. Muitiratlo push-pull, 7/6. Miniature 3 V 4 , etc., $4 / 6$. Hygrade Push-puli 10 watts, $15 / 6$. Puad-puli 20 w .6 K or $8 \mathrm{~K} 30 /$ L.F. CHOKES $15 / 10 \mathrm{H} ~ 60 / 65 \mathrm{~mA}, 5 / \%, 10 \mathrm{H} 88 \mathrm{~mA}$, $10 / 6$.
10 H
$150 \mathrm{~mA}, ~ 14 /$.

MAINS TRANSFORMERS $200 / 250$ v. A.C.
STANDARD $250=0-250,80 \mathrm{~mA}, 6.3$ v. 3.5 a ,
tapped 4 v. 4 a. Rectifer 6.3 v .1 a., tapped $\mathrm{s} v$
tapped 4 v. 4it. Recher 6
or 4 v .2 a. Ditto $350 \cdot 0-350$
MTNIATURE 220 v. $20 \mathrm{~mA}, 6.3$ v. 1 ह
SMALL, 200-0-200 00 mA .6 .3 F .2 A .
STANDARD, $250-0-250,65 \mathrm{~mA}$. 6.3 \%. 3.6 a
HEATER TRANS., 6.3 v. 1f A, $7 / 6 ; 3 \mathrm{smp}$.

GENERAL PURPOSE LOW VOLTAGE. Outpute $3,4,5$ | $6,8,9,10,12,15,18,24$ and 30 v , at 2 A.......... $22 / 6$ |
| :---: | ALADDIN FORMERS and cores, $\frac{1}{2} \mathrm{n} ., 8 \mathrm{~d} . \mathrm{i}$ in, 104. 2 in, or $3 \mathrm{in}, \mathrm{Eq}, \times 1 \mathrm{fin}$., $2 /=$ with cores.

$2 \ln$ or $3 \mathrm{in}, \mathrm{Eq}_{\mathrm{i}} \times 1$ inn, $2 /-$ with cores.
SOLON. Midget Soldering Iron, 220,40 v. 26 w., $24 / 3$ REMPLOY INSTRUMENT IRON. $220 / 40$ ₹. 25 w., $17 / 6$ MAINS DROPPERS. $3 \times 1 / \mathrm{m}$. Adj. gllders, 3 amp . 1,000 ohms $4 / 3.2$ amps. $4 / 3, .1 \mathrm{amp} .2,000$ ohms., $5 /-$
LINE CORD. $3 \mathrm{gmp} ., 60$ ohms per foot, 2 amp., 100 ohm LINE CORD. 3 amp., 60 ohras per foot, 2 amp.,

CRYSTAL MIKE INSERT by Acos $6 / 6$ Precislon engineered. Bize only $\frac{1}{} \times 1 \frac{3}{16}$ in. ACOS CRYSTAI STICK MIKE 39-1. Bargain 35/~. MKE TRANSF. $50: 1,3 / 9$ ea.; $100: 1$ Potte
LOUDSPEAKERS P.M. 30 MM , 5 in . Rola, $17 / 6$. $6 \mathrm{in} . \times 4 \mathrm{in}$. Rola, $18 / 8.6$
$10 \mathrm{in} . \times 6 \mathrm{in}$. Rola, $27 / 6$.
in. $x$ in. R.A $10 \mathrm{in} \times 6 \mathrm{in}$. Rola, $27 / 6 . \quad 8 \mathrm{in}$. Piessey, $19 / 6$

 121n. Baker 15 wt. 3 ohm. and 15 ohm
12in. Baker foam suspenion 15 w .15 ohm, $£ 8$.

I.F. TRANSFORMERS $7 / 6$ pair $465 \mathrm{ke} / \mathrm{s}^{2}$. slug tuning miniature can $2 \ddagger \times 1 \times$ lin. High Q sad good bandwidth. By Pye Radio. Dasa sheet supplied. Wearite M 800 I. F. Miniature $465 \mathrm{ke} / \mathrm{s.*}$. $12 / 6 \mathrm{palr}$.
Weymonth I.F. Staudsrd size $465 \mathrm{kc} / \mathrm{g} ., 12 / 6 \mathrm{palr}$. CRYSTAL DIODE G.E.C., 2/-. GEX34, 4/-, 40 Gircults, 3/H.R. HEADPHONES,
SWITCH CLEANER Fluld, squirt spout, $4 / 3$ tin. TWIN GANG CONDENSERS. 365 pf . Miniature, 1 ln $x$ lifin. $x$ 1tin., $10 /-.0005$ 8tandard with trimmers $9 /-;$ less trimmers, $8 /-$. Midget 7/6; 8 ingle $50 \mathrm{pf}, 2 / 6 ;$
100 pfas, 150 pf , $7 /$-. golid dielectric $100,300,500 \mathrm{pf}$., $3 / 6$
 B12A, CET, 1/3. Eing. and Amer. $4, ~$ B, 6, 7 pin, $1 /-$
MOULDED Mazda or Int. Oct. 6d. B7G, B8A. B8G, B9A Od. B7G whit can, $1 / 6 ;$ B12A, $1 / 3$. B9A with can, $1 / 9$.
CERAMIC, EF50, B7, B
 $35 \mathrm{in}, 10 /$ =. Tyg WAVECHANGE SWITCHES
3 p 2-way, or $3 \mathrm{p}$. . 2 way; short apladle 5 p. 4 -way, 2 wafer, or 3 p. 11-w. 3 wafer long splindie 3 p. 4 -way, or 1 p. 12 -way, long spindle. Wave change "MAKITS" 1 water, $8 / 6$; 2 wafer, $12 / 6$ 3 water 16/-; 4 wafer 19/6; 5 waier $23 /-;$ waier $26 / 6$,
TOGGLE SWITCHES. B.P., $2 /-$; D.P., 3/6; D.P.D.T., $4 /-$ MORSE KEXS, good qualty, $2 / 6$. SUB-MINIATURE ELECTROLYTICS ( 15 v.), 1, 2, 4, 5,8

## THE HI-GAIN BAND 3 PRE-AMP

 Cascode circult using Valve ECC84. 17db gain. Kit 29/6 less power; or $49 / 6$ with power pack. Plans only 6d.Also Band I version same prices.
(PCC84 Valve if preferred)

## RCS "REGENT" 4 VALVE



## PRINTED CIRCUIT BATTERY PORTABLE KIT

Medium and long wave. Powerful output from 6 in. high Flux Speaker. T.C.C. Printed circuit and condensers. All components of finest quality clearly identified for assembly with full Instructions. Osmor Ferrite Aerial and Coils, Rexine covered attache case type cabinet. 'Size $12 \mathrm{in} . \times 8 \mathrm{in} . \times 4 \mathrm{in}$. Batteries used B126 (L5512) and AD35 (L5040), 10/- extra. Details and instructions 9d. (free with $k i t$ ). Mains Unit ready made for above 39/6. Same size as batteries sold.separately.

## 1960 RADIOGRAM CHASSIS



THREE WAVEBANDS S.W. $18 \mathrm{~m} .-50 \mathrm{~m}$.

FIVE VALVES L.W. $800 \mathrm{~m} .-2,000 \mathrm{~m}$.

LATEST MULLARD 12.month Giarant EL84, EZ80 Short-Medium-Long-Gram. $200 /$ A.V.C. and Negatlve Feedback, 4.2 watts, Chassis $131 \mathrm{in} . \times 5 \nmid \mathrm{in}$. $\times 2 \frac{1}{2} \mathrm{in}$.
 calibrated. Chassis isolated from malns. Augued and
BRAND NEW £9.10.0. carr. 4/6 TERMS: Depoait $55 / 5 /$ - and 5 monthly payments of 81. MATCHED SPEAKERS $8 \mathrm{in} .17 / 6$; IOin. 25/ $\%$; 12 in . $30 /=$

RECORD PLAYER BARGAINS


Speed Autochangers, B.S.R., U.A. 8 Collaro Conquest 6719
61010 Garrard Model 210. speed Single Players, EMI....
Garrard TA Mk.
All post free

TELETRON POCKET RADIO KIT
Transidyne Superhet Six $6^{\prime \prime} \times 4^{\prime \prime} \times 1_{z^{\prime \prime}}$ T.C.C. Printed Circiut, internal Ferrite aerial, Rola loudspeaker push-pull output. All parts cabinet, 6 Ediswan transistors, 9.9 .0
GEX34 diode. Details 9d.

## 

Long spindle. Guaranteed 1 year. All valuea 5 K. ohms up to 2 Meg. Ideal Band 1 II . No owitch D.P. SW. | Linear or $\log$ Tracks. |
| :--- |
| 4/9 | AIRSPACED .... 1/- Fi PANEL SOCKETS .... 1/ OUTLET BOXF BALANCED TWIN FEEDER per Fd. 8d., 80 n or 300 TWIN SCREENED BALANCED FEEDER $1 / 8$ yd., 80 ohm WLUMINIUM CHASSIS. 8 s.w.g. Plain, undrilled with 4 sides, riveted corners and lattice flaling holes,

with 21 in sldes $7 \times 4 \mathrm{in}$. $4 / 6 ; 9 \times 7 \mathrm{in}$. $5 / 9 ; 11 \times 7 \mathrm{in}$
 and $18 \times 16 \times 3$ in., $16 / 6$.
BLACK CRACKLE PAINT. Air drying, 3/- tin. P.V.C. CONN. WIRE, coloured, single or stranded, 2d. 5d. NEON MATNS TESTER SCREWDRIVERS, $5 /$
CORED SOLDER RADIOGRADE, 4d. Yd., $\frac{1 \mathrm{lb}, \text {, } 2 / 6 .}{}$
P.V.C. PLASTIC RECORDING TAPE

| Ong Play | 7 in . reel, $1,800 \mathrm{it}$. 5 in. reel, 1,200ft. 81n. reei, 850 ft. 3 in. reel, 225 ft . | $\begin{aligned} & 32 / 6 \\ & 22 / 8 \end{aligned}$ $\begin{aligned} & 2216 \\ & 19 / 6 \end{aligned}$ $716$ | ALL <br> Spare <br> Plastic <br> Reels |
| :---: | :---: | :---: | :---: |
| Standard 7in | ln. Reel. 1,2001t. | 21/ | 3/- еа |
|  | $5 \% \mathrm{in}$, reel, 8501 t . | 716 |  |
|  | 5 in , reel, 600 ft . | - 15\% | Reels |
| B | Bulk Tape Erase | d Fead Defluzer |  |
| 200/250 マ. A | A.C., 27/6. Leafl | 8.A.E. | 2/- |

RECTIFIERS, RM1, 5/-; RM2, 6/-; RM3, 8/-; RM4, 18/-i RM5, 20/-; FC31, $27 / 6 ; 14 A 86,17 / 8 ; 14 A 100,21 / \sim$
MLNIATURE CONTACT COOLED RECTIFIERS ONALE CONTACT COOLED RECTIFIERS. 200 v.
 type adj. dust core from $4 /=$ each. Ail rangea.
TELETRON. L. and M. T.R.F. with reaction, $3 / 6$. $12 / 6$.
 JASON F.M. TUNER COLL SET, 28/e. R.F. coil serial coin, Osclilator coll, two I.F. transormers $10.7 \mathrm{Mc} / \mathrm{s}$.
Detector transformer and heater chokes. Circult and component book using four 6AM6, 2/6. Complete kit FMT1 with Jason Calibrated dial and 4 valres, $£ 6 / 5 /=$.
With new Jason Cabinet, FMT2, $30 /$ extra. With new Jason Cabinet, FMT2, 30/- extra.
CONDENSERS, New stock. . 01 mid. 7 kV . T.C.C., 5/8, $20 \mathrm{kV},, 9 / 6.1 \mathrm{mid} .7 \mathrm{kV}, 8 / 6$. 100 pf . to 500 pt . Micas, 6 d .
Tubular 500 v. 0.001 to 0.05 mid. $9 \mathrm{~d} . ; 0.1,1 /-; 0.25$ $1 / 6 ; 0.5,1 / 9 ; 0.1 / 350$ v.. $9 \mathrm{~d} . ; 0.1 / 1,000 \%$., $1 / 9 ; 0.1 \mathrm{mId}$. 2,000 v., $3 / 6 ; 0.001 \mathrm{mfd}, 2,000$ v.., $1 / 9$.
CERAMIC CONDS. 500 ₹. 0.3 pt. to 0.01 mfd ., 9 d .
CERAMIC CONDS. 500 ₹. 0.3 pt. to 0.01 mfd., 9 gd .
SUVER MICA CONDENSERS. $10 \%$ pf. to 500 pf ., $1 /$ 600 pf . to $3,000 \mathrm{pf}$., $1 / 3$.
GLOSE TOLERANCE ( $1 \pm$ pf.) 1.5 pf . to 47 pf ., 1/6. DITTO
 TRIMMERS. Ceramle, $30,50,70 \mathrm{pf}$., 9 d, , $100 \mathrm{pf} ., 150 \mathrm{pf}$
1/3. $250 \mathrm{pf} ., 1 / 6$. 600 pf., 750 pi., 1/9. Phillipe, 1/- ea.

NEW ELECTROLYTICS. FAMOUS MAKES

$1 / 350$
$2 / 350$
$2 / 3$
$4 / 4$
$8 / 4$
$8 / 6$
16
816
16
16

## -

## - 5

 FULL WAVE ERIDGE/SELENIUM RECTIFIERS. 2.6 or
$12 \mathrm{amp} 14 \mathrm{am}, 8 / 2 \mathrm{a}, 11 / 3 ; 4 \mathrm{a} ., 17 / 6 ; 6 \mathrm{a}, 22 / 6$. CEARGER TRANSFORMERS. Tapped loput $200 / 250$ v. for charging at 2,6 or 12 v., 11 a., $15 / 6 ; 2 \mathrm{a} ., 17 / 6 ; 4 \mathrm{a}, 22 / 6$.
Charger circuit free. AMPMETERS, 4 a ., and 5 a a, $13 / 6$.



## POWER UNITS

$100-250$ volt A．C．input， 24 \％．at 3 amps．or $12 \nabla$ ．，twice at 3 emps． each winding．Continuous tropical rating switched and fused．etc．，in metsl case that fits 19in．rack， bize $19 \times 7 \times 7 \mathrm{in}$ ．Brand new £3／15／－，carr．7／6（with circult）．


## SMOOTHING UNIT

for the sbove power supply 2 chokes and 0.1 mA ，meter （grado 1）metal caso，camo as the p．u．，£2，carr．7／8．

## RANGE CONVERTOR

（part of R20 6 Rec．），115－600 ke／s，on three bands， large dial with a Mulrhead olow motlon drive Talves EP39，ARTH2，the set can be used with R107，R208，and many other types of receivers 32／6 each．Carr．7／6．

## GRAHAM GEARED MOTORS

115 volts A．c．， $1 / 6$ th E．P．，variable speed bor 0－168．Size of unit 14！ $\times 91 \times$ 8in．$£ 8 / 10 /=$ Carr． $10 /$－． Transformers to operate this unit 35／－eack．

WIRELESS SET NO，19，Mk．2．Two trans．／Recs．in one case．＂A＂set $2-8$ Me／s
 Variometer，Control box 3 B ，all leads，key and plug assembly．No． 1 headset Microphone and headphones M／C．．and 12 －volt rotary power unit．All mounted
RF DRIVER UNIT．Freq． $100-156 \mathrm{Me} / \mathrm{s.}$, ，valves 2， $4304 \mathrm{CB} / \mathrm{c} ; 2$ ，CV1079； 1 CVIo52； $0.100 \mathrm{~mA} .$, meter 3 in．scale， 3 slow motion drives and C．O．section，atis any 19 in ， rack．Brand new in maker＇s cases．No charge for case or packing．Price és each Post 1
MOVING IRON METERS， $0-100$ amps．， 6 in ，scale，at $22 ; 90-180$ ₹．，4in．teale at 35／－，3／－post．
VENTLLATING UNIT．Motor 115 v．1／20th H．P．，AC．£ 2 each．
AMERICAN L．T．TRANSFORMERS．Potted type，finished ta black crackle and very conservatively rated．（1） 230 v ，taput $2 \times 6$ ．3 voits CT，at 3 amps，and 6.3 volts at 3 amps，output， $18 / 3$ each．（2） 230 volt input， $2 \times 6.3$ volte at 3 amps，and
 6.3 volts 3 amp．， $22 / 6$ each．（All these transformers are new and boxed plenso include postage $3 / 8$ each）．
MODULATION TRANSFORMERS as used in the BC 640， 40 watta，modulate two $811^{\prime}$＇， $39 / 6$ each，brand new，bosed， $3 /$ ．post．
AMERICAN COMPUTERS AN－II－70A，Single parallax，Contains 8 relays 10 k ． relays are small type）， $9 \times 6 \mathrm{~V} 6$ small $\mathrm{GT} ., 3 \times 6 \times 5 \mathrm{GT}$ ，and a 6SN7．Seven small D．C．motors 27 Y． 6 selsyn motors， 10 mmall micro switches．Plus gearb，condensers， ball bearings and pots，etc．This unrepentable bargain，£ 10 each．
DOUBLE PARALLAX AN－II－70－9．Similar to the above but largor eta，welght 1401bs．Brand new $£ 12 / 10$－each．Carr． 21 ．
DESE TELEPRONES（standard type No．1）complete with the handset and cord ready to connect to line $£ 2 / 15 /$ each，post $3 / 6$ ，or $£ 5$ a pair．
DIPOLE AERIALS vertical E，span 72 inches easy fixing brackets and 23 ft ．co－ax cable， $37 / 6$ each，carr． $5 / \mathrm{c}$ each（new）．
120 VOLT BATTERIES（Milnes H．T．units）Cap 6 amps．made up from Nickel Iron Cells Unused， $50 /$ each，carr． $5 /$ each．
G．P．O．GENERATORS，as used for ringing 80 to 100 volts output Mar．，\％／6 each， 16 post．New
Variable resistors， 3 ohms 10 amps ． $18 / 6$ each， $3 /$ post．
$25 F T$ ．AERLAL MASTS．Heavy galvanised steel tubes，four sections，tapered 28 to 1 inch．No guy ropes needed，$£ 12 / 10 /-$ each．Wt． 2 cwt．
RECEIVERS．Type 71 （part of the 1143 TR） $\mathbf{1 0 0 - 1 3 0 ~ m e / s . ~ M a n u a l ~ a n d ~ X t a l ~ c o n - ~}$ trolled，3xVR91，3xVR53 and IxEL32，25／＊eacb，post 3／6．
TRANSFORMERS（drop thro＇type）， 110 and 230 volts pri．， $275-0-275$ at 125 mls ． 6.35 v ．，at $0.9 \mathrm{amp} ., 6.4 \mathrm{v}$ ．at 4 amps．8ize $4 \times 4 \times 4$ in．， $22 / 6$ each， $3 / \cdot$ post． ROTARY CONVERTORS， 24 volts D．C．，input 11 amps．， 230 volts A．C．，output a $30 / 100$ watts，D．C．，regulated，voltmeter $0-300$ ，starter and controls，also fuses o the front or the panel．Fhished in grey，size $24 \times 18 \times 10 \mathrm{n} .$, £1710／－each．
TRANSMITTERS．Type CW8 52244．Model YG．I． 115 甲．A．C．， 25 watte，Carrier $246 \mathrm{Me} / \mathrm{s}$ ．Beacon transmitter， $218 / 10$／－each．（For export only．） List available send gd in stamps
please include postage on gooos
TERMS C．W．O．All goods offered are ex－W．D．S．A．E．for enquiries W．MILIS
3－B TRULOCK ROAD，TOTTENHAM，N．I7 Phone：Tottenham 9213 \＆ 9330

## over 750 European medium－wave stations <br> over 2000 world－wide short－wave transmitters <br> television and v．h．f． transmitters in Great Britain <br> GUIDE TO BROADCASTING STATIONS <br> 12th EDITION

All European long－and medium－wave broadcasting stations and nearly 2,500 short－wave transmitters in 135 countries are listed both geographically and in order of frequency and wave－length．
Carrier frequencies of v．h．f．sound broadcasting and television stations in the United Kingdom are also listed． The information has been checked against measurements made at the BBC receiving station at Tatsfield．

3s 6d net<br>by post $4 s$

from all booksellers
Published for WIRELESS WORLD by lliffe EO Sons Ltd．，Dorset House， Stamford Street，London，S．E． 1

## TRANSISTORISED POWER AMPLIFIERS

PORTABLE，MOBILE，MAINS

FOR ALL RADIO，AMPLIFIER \＆ SOUND INSTALLATIONS


STANSTED，ESSEX．

## SOUTHERN TECHNICAL SUPPLIES

TRANSFORMERS FOR ALL MULLARD AMPLFIERS
OUTPUT TRANSFORMERS（Socondaries for 3.75 and 15 ohms）
T．44．5－10 amp－ultra linear， 8,000 ohm． $43 \%$ tappings 30／－．P／P． $2 /$－
T． 160 ， $5-10$ amp．LOW loadling， 6,000 ohm． $20 \%$ tappinge， $30 /-$ P／P．2／
T．142． 7 watt stereo amp．， 8,000 ohm． $20 \%$ tappings， $26 /-$, P／P． $2 \%$
T． 140 ． 3 wat amp．，type A tape amp． 3 watt atereo， 5,000 ohm， $12 /$ ．${ }^{2}$ P／P． $1 / 6$ ． T． 55 ．$\delta-10 \mathrm{amp}$ ．and tuner， $300-0-300 \mathrm{v}, 120 \mathrm{~mA} ., 6.3$ \％． 2.5 a．， $6 T ., 6.3 \mathrm{v} .2 .5 \mathrm{a}$. 6．3 サ． 1 а．，32／－，P／P， $2 / 6$.
T． 56 ． $5-10 \mathrm{amp} .300-0-300$ v． 100 mA .6 .3 จ． 2.6 凡．，cT． 6.3 v． 1 n．，27／．P／P．2／6． T．101．Two $5-10$ amp．Low loading． $300-0-300$ v．， $150 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{~g}$, ，cT．， 6.3 v 1 a．，34／－．P／P， $2 / 9$.

T．141． 3 watt， $300-0-300$ v．， $60 \mathrm{~mA} ., 6.3$ v． 1 д．，cT．， 6.9 v．$^{2} 1$ 亿．，22／－．P／P． $2 /$ ． T．A．Trans，and Rectifer． 270 v．D．C． 100 mA, ， 6.3 v．cT．， 3 a．， $32 /=$ P／P． $2 /=$ T．B．Trans，and Reetifier． 270 v．D．C． 60 mA ． 6.3 v．cT．， 2 a， $25 / \%$ ．P／P． $2 /-$－ All transformers fully graranteed，all shrouded fully except T140 and TB．Write for our fully illustrated catalogue，with all data．
SPECLAL OFFERS T44 and TB5，59／－：T143 and two T142＇s，82／－，P／P． $3 / 6$ on both． Mrullard＇s lategt Publication detaillag the complete range，＂CIRCUITS FOR AUDIO
BOUTHERN TEGHNICAL 8UPPLIEs，83，8tation Road，Portslade，8ussex


# STILL NO DEPOSIT 

 20 or 36 WEEKS to PAY! ON OUR CREDIT SALES SUMMER SALE! BARGAIN! 17" T.V.s COMPLETE 19 gns.

Cash, or terms over 20 weeks. (NO interest charged). Initial payment \&1/0/7 and 19 weekly payments of 19/11. Carr. \& Ins, 30/-. ITV/BBC. Beautifully styled polished cabinets. These are table models with the option of contemporary legs fitted ( 2 gns. extra). 17 in . rectangular tube guaranteed for 12 months. Valves and chassis guaranteed for 3 months. (Chassis salvaged but reconditioned). Where possible personal collection is advised.

## REPLACEMENT, REBUILT T.V. TUBES

 12 months guarantee.
21 in . TUBE ... $£ 8.10 .0$
$17 \mathrm{in}$. TUBE ... $£ 7.10 .0$
$12.14,15 \mathrm{in}$. TUBES

12, 14, 15 in . TUBES
65.10.0

TERMS AVAILABLE OVER 20 WEEKS
15/9

## SUPER CHASSIS 3/11 week

Five valve superhet chassis including 8 in. P.M. Speaker and Valves. Four control knobs (tone, volume, tuning, w/change, switch). Four wavebands with. position for gram. P.U. and extension speaker. A.C. Ins. \& Carr. 5/6.


## HOME RADIO 7916

 A.C. or UNIVERSAL MAINS 5 valve octal superhet. 3 waveband receiver. In attractive polished cabinet. Dimensions $0 \frac{3}{3}$ in. $\times 18 \frac{1}{2} \mathrm{in}$. $\times 11 \frac{18}{\text { gin }}$. Carr. \& Ins. 4/0.Will take B.S.R. Monarch 4 -speed Auto changer, 7in. x 4in. elliptical speaker and our Mk. D.2. Portable Amplifier.

## MK. D. 2 <br> Printed circuit $\quad 79^{\prime 6}$ $7 \times 2 \ddagger \times$ bin. A.C. only. Mains isolated. 4 watts

 output. Incorporating the latest ECL82 triode pentode output valve, giving high undistorted output. Volume and tone controls. Knobs 2/6 extra. P. \& P. 3/6.

Beautifully made Tape Recording Cabinet. Size 13in. x $10 \frac{1}{5} i n, x$ 7in. Covered in two tone coloured rexine cloth. Stylish design. Carrying handle with detachable lid and lock and key. Easily adapted to Record Player Cabinet. Exceptional value at this very low price. P. \& P. 4/6.

## 29 gns NOW ONLY 18 gns

 COMPLETE TAPE RECORDER
## UNREPEATABLE VALUE

Famous manufacturer. Huge purchase allows us to offer at this amazing price. Beautifully styled, rexine covered cabinets. Colours: Red, Grey, Black. Storage space for 4 tapes, mike and lead. Incorporating the latest B.S.R. Deck. LOOK AT THESE EXPENSIVE FEATURES. Controls. Record/Playback switch and rewind with interlocking device to prevent accidental erasure. Tone and volume controls. Superimpose and electronic eye Ample power output 3.5 watts. Small overal size $14 \frac{1}{2}$. $x 14 \frac{1}{4}$. $x 7 \frac{1}{2} i n$. Lightweight, only 21 lbs. Playing time $1 \frac{1}{2}$ hours, $5 \frac{1}{3}$ in. standard tape. Terms. Carr. and Ins. 12/6. Microphone 27/6 extra. Tapes 19/9.

## MK. 'D. 1

Brand new. Latest design with printed circuit. Dim ensions $7 \times 24 \times 5 \mathrm{in}$. A.C. only. Mains isolated 3 watts output. Incorporating EL84 as high gain output valve. Volume and tone controls. Knobs $2 / 6$ extra. P. \& P. $3 / 6$ B.S.R. MONARCH, 4-speed Autochanger...... \&6 196 T.U. 9 B.S.R. 4 -speed single player GOLLARO GONQUEST, 4-speed Autochanger $£ 6196$ COLLARO CONQUEST, Stereo Autochanger 9 gns .

## DUKE \& CO (LONDON) LTD <br> 621/3, Romford Rd., Manor Park, E. 12

 ILF 6001/3MK. D. 3
8916
As D.2. but with 3 controls, incorporating a special tone corrector circuit for extra base and top boost, giving a tone of reproduction seldom heard on a very expensive amplifier. Must-be heard to be appreciated. Knobs 3/6. P. \& P. 3/6.

## T.V. CHASSIS FOR SPARES

 All this for only 9,656 Resistances. 54 condensers. 13 valveholders. 4 transformers. Chokes 250 ma. Metal rectifiers 300 volts at 250 m .a. Fuse panel. Focus magnets. Plugs. Sockets. Carr, 7/6.
"MONARDECK" Latest B.S.R.
Single Player. Simple controls. 3 i. i.p.s. takes 5 in. spools. 850 ft. Tape and Spool
£9.19.6
TAPE RECORDER AMPLIFIER. £7.19.6
Compact well designed 5 valve amplifier. Output 3.5 watts. Valve line-up ECC83. Double triode first audio amplifiers. ECL82 Triode pentode further audio amplifier and output valve. 6BW6 Dias and erase oscillator. EM84 Record Level Indicator. EZ80 H.T. rectifier. Input for mike, radio and gram. Controls-Record Playback volume and On/Off Playback tone. Dia.: 8 in. $x \sin . x 4 \frac{3}{}$ in. Ins. and carr. $4 / 6$. Initial payment $9 / 1$ plus Ins. and Carr. $1: 0$ weekly payments of $7 / 11$.


## Stereo record player cabinet

WITH EXTENSION SPEAKER CABINET

FREE CATALOGUE ON REQUEST


## SOLO

 SOLDERING TOOL 12'6110 v, , 6 v . or 12 v (special adaptor for 200 ) (special adaptor for $200 /$
250 v., $10 /-$ extra). 250
Automatic solder feed Automatic solder feed including a 20ft. reel of
Ersin $60 / 40$ solder and Ersin 60/40 solder and spare parts. It is a too for electronic soldering or car wiring. Revolutionary in design. Instantly ready for use and cannot burn. In light metal case with full instructions for use Post ${ }_{3 / 6}^{2 / 6}$

## LONDON'S -ALSO 24

NEW WALK-AROUND SELF-SERVE HOURS MAIL-ORDER DESPATCH SERVICE!


ONLY E5-10-0 Build this beautiful beautiful radio for only (5/10/- Sturdy, exceptionally well finished cabinet with horizontal dial. Covers all medium and long waves. Good selectivity and very good quality reproduction. For A.C. mains 200/250 volts. All high quality parts, gold insert knobs, etc. No knowledge needed-our SIMPLE CONSTRUCTION ENVELOPE makes it as easy as A, B, C. All our parts tested. CAN BE BUILT FOR ONLY $£ 5 / 10 /$ - including construction envelope and everything down to the last nut and bolt. Post and packing 4/- extra. C.O.D. 2/6 ex. (Parts sold separately. Components price list $1 /-$. )


## ONLY $97 / 6$

The famous "CABY" TESTMETER. We recommend these multi-range meters as being accurate and well made. Ranges cover A.C., D.C. and resistance. New in box with test prods and instructional booklet. OUR PRICE 97/6. P. \& P. 2/6.


ONLY 35/ The "CORONET" 2-transistor radio. Is very sensitiveideal for Office, Bedroom, Holidays, etc. Fits in the palm of yourhand. Months' and months' listening off a 7d. battery. CAN BE BUILT FOR ONLY $35 /-$, including everything down to the last nut $35 /$-, including everything down to the last nut
and bolt and our SIMPLE CONSTRUCTION and bolt and our SIMPLE CONSTRUCTION
ENVELOPE makes it easy as A, B, C. Post and packing 2/-extra. (C.O.D. 2/6 extra.) (Parts sold separately. Components price list $1 /$-.)

| THE LATEST B.S.R. TAPE DECK, brand new and boxed. <br> OUR PRICE E9/19/6. <br> RED-SPOT <br> TRAN. SISTORS, tested, 5/each. WHITE-SPOT TRANSISTORS, tested, $7 / 6$ each. <br> DIODES, tested, 3/- ea. OUTPUT <br> TRANSFORMERS standard, $6 / 6$ each. <br> FILAMENT TRANSFORMERS, 6.3 v., 2/3 amps., 7/6 each. |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

THE LATEST B.S.R. TAPE DECK, brand OUR PRICE P. \& P. $4 / 6$ RED-SPOT white 5 , TRANSISTORS, tested, $7 / 6$ each.
DIODES, tested, 3/- ea. DUTPUT TRANS$6 / 6$ each.

FORMERS 3 , 13 amps., 7/6 each.


## ROBERTS ELECTRONICS

## NOW AVAILABLE

report of the fifth International Plastics Convention proceedings including a text of the papers and a record of the ensuing discussions

## PLASTICS PROGRESS 1959

Papers and discussions at International
Plastics Convention 1959
This book presents the technical papers read at the International Plastics Convention at Olympia, June 1959. The papers include reports of new work on polypropylene, expanded plastics and extrusion. It also contains a surveyfrom experts in Europe, the United States, and the United Kingdom-of recent thinking in the glass-reinforced plastics field.
The texts of the papers are considerably longer than the versions which the authors had time to present at the convention itself, and the record of the discussions which followed them is also included. This authoritative survey of important branches of plastics technology will be invaluable to all engaged in the science and industry of plastics.
55 s net by post $56 \mathrm{~s} 4 \mathrm{~d} 208 \mathrm{pp}+22$ pp of plates from leading booksellers Published for "British Plastics" by Iliffe © Sons Lid. DORSET HOUSE STAMFORD STREET LONDON S.E.I

## TRANSFORMERS COILS LARGE OR SMALL QUANTITIES CHOKES <br> TRADE ENQUIRIES WELCOMED <br> SPECIALISTS IN <br> FINE WIRE WINDINGS <br> MINIATURE TRANSFORMERS, PICK-UP. CLOCK AND INSTRUMENT COILS. ETC. <br> VACUUM IMPREGNATION TO APPROVED STANDARDS

## ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., M.O.S., LE.B., ETC. 123-5-7 PARCHMORE ROAD, THORNTON HEATH. SURREY LIVINGSTONE 2261

EST. 1933

Send us your enquirles for all types of
QUARTZ CRYSTALS for:
RADIO FREQUENCY CONTROL FILTER PURPOSES ULTRASONIC PURPOSES

METALLIZED TO SUIT REQUIREMENTS
ANY SHAPE AND SIZE CUT TO SPECIFICATION

## PIEZO LIMITED

26 St. Albans Rd., Watford, Herts. Tel : Watford 27808


RECORD PLAYER BARGAINS Latest 4-speed models NEW RELEASE by E.M.I. -4 -speed slingle Player Unit nited with latest stereo and monsural Xtal cartridgo and dosis sapphire stylit. Auto stop and start. A idelity unit and bargain buy ut only $£ 6 / 19 / 6$. carr. \& ins. $3 / 6$.
SINGLE PLAYERS. B.B.R. (TU9) gO/-; COLLARIO JUNIOR with latest studio P.U., £4/10/-: GARRARD (TA. Mk. II) de luese model, ex7/19/6, carr. \& Ins, 3/6.
AUTOCEANGERS. B.S.R. (UA8), £6/19/6; COLLARO CONQUEEST, £7/19/6. NEW GARrard Release - Latest 4 -speed Autochange Unit. Model RC210 with
plug in GC8 head-Bargain price 10 gns 。 Carr. \& Ins. $4 / 6$.


Atted with all accessories including baffie board and anodised metal fret. space.
available for all modern amplifers and auto. avsilable for all modern amplifiers and auto-
ehsugers, etc. Oncut record player mounting board $14 \times 13$ in. supplied.
2-VALVE 2-WATT AMPLIFIER Twin stare ECLS2 with vol, and neg. feedbuck Tone control. AO $200 / 250 \mathrm{v}$. with double-wound Mains trans. Complete with linobs, etc., ready wired to fit above cablnet. £2/17/6 P: \& P. $1 /$ -
6in. Speaker and matchlng trans., 28/-
P. \& P. $1 / 6$.

## TRANSISTORS

## SPECIAL OFFER

BVA $18 t$ Grade Types, BRAND NEW. Mazda XA102, 16/6; XA101. 14/6; XC101, 10/6; OC70, 8/8; XB102, 10/-: XA103, 9/6; GET15, $12 / 6$ (matched pra. 25/-).
and NOW the TOURIST
 NEW $_{\text {BEXD }}$ VALVES avarantekd

 \begin{tabular}{l|l|ll}
$1 \mathrm{RK}, 185$ \& $7 / 6$ \& ECC84 \& $10 / 6$ <br>
B34,3V4 8/- \& ECF80 \& M14 \& $9 /-$ <br>
PCC84 \& $9 / 6$

 

834,3V4 \& 8/- \& ECF80 9/6 \& PCC84 \& 9/6 <br>
$5 Z 4$ \& $9 / 6$ \& ECF4210/6 \& PCF80 \& $9 / 6$ <br>
6 K 7 \& $5 / 6$ \& ECL80

 

\& 6K7 \& $9 / 6$ \& ECL80 10/6 \& PCL83 <br>
6K7 \& 12/6 <br>
6 K 8 \& $8 / 6$ \& ECL80 \& 8/6 \& PL81 <br>
12/6

 

$6 K 8$ \& $8 / 6$ \& EF80 \& $8 /-$ \& PL81 \& $12 / 6$ <br>
$6 Q 7$ \& $8 / 6$ \& EF86 \& 12/6 \& PL82 \& $9 / 6$ <br>
6V6 \& $7 / 6$ \& EF99 \& $7 / 6$ \& ${ }^{\circ}$ PL83 \& $10 / 6$

 

DAF96 \& $9 /-$ \& ELF41 \& EL/6 \& PL83 \& $10 / 6$ <br>
DF96 \& $9 /-$ \& ELs4 \& $8 / 6$ \& PY80 \& $7 / 6$ <br>
PY81 \& $9 / 6$

 

DK96 \& 9/- \& EY51 \& 9/6 \& PY82 \& $7 / 6$ <br>
DL96 \& $9 /-$ \& EY86 \& $10 /-$ \& U25 \& $12 / 6$
\end{tabular} SPECIAL PRICE PER SET 1R5, 1T4, 185, or 384 or 3V4, 25/$6 \mathrm{~K} 8,6 \mathrm{~K} 7,6 \mathrm{Q} 7,6 \mathrm{~V} 6,524$ or $6 \times 5,35 /=$

JASON FM TUNER UNITS (87-105 Mc/s)
Designer-approved tits of parts for these quality and highiy popular tuners avaltable
as follows. STANDARD MODEL (FMT)-as pre viously extensively advertised. ComPLETE KIT, 5 kns., post free. Set of 4 spec. valves, $30 /-$, post free.
LATEST MODEL (FMT2)-attractively presented shelf mounting unit in enclosed COMPLETE KIT, \&7. p. \& p. $3 / 6$. Set of 5 spec. valves, $39 / 6$.
MODEL JTV2. Self-powered switch Tuned B1-B2-B3 AM/FM Unit. 5 preset stations. AFC and $\triangle G C$ clrcults. Complete KIt incl. ready-built and valved Turret Tuner, £12/19/m post free. 4 spec. valves, 35 - extra.
NEW JASON COMPRERENSIVE F,M. HANDBOOK, $2 / 6$ post free. 48 hr . Align-
ment Service, $7 / 6$, ment Service, $7 / 6$, p. \& p. $3 / 6$.

## MULLARD*3-3

Quallty built to Mullard's specifica. tion, with speclal sectlonalised $\mathbf{O} / \mathbf{P}$
Trans. £619/6. P. \& P. $3 / 6$.

Size only $\operatorname{Bin} . x 5 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in}$.
Sensitive Dual Ferrite Rod Internal Aerial. Contemporary style light-
weight Cablnet. Operatea from
 (7/6) extra. Mains Unit Kit (B114 batt. size), $45 /-$ P. \& $P$. 1/6.
Complete Receiver Component Kit... $57 / 6$ Set 4 miniature valves ( 96 series)... Sin. Speaker \& O/Put Trans. 35/- P \& P. 1/6 Cabinet, Dial \& Knobs, etc. $211-$ Parts List and Instruction Booklet, $1 / 6$ (Free with Kit)
Latest circuitry delayed AVC B A.F. Neg. feedback.
46.10.0

4 valve. Med. \& L.W., Lightweight battery Radio. Weedback.
 good sensitivity and aignal noise ratio. Printed
circult for easy construction and $7 \times 4 \ln$ elliptical speaker for fidelity output. Complete Kit Self-contained in neat metal cablnet $8 \times 7 \times 2$ ifin, with attractive call brated dial. Bargain Price Speaker and power transistor stage mounted separately approx. $8 \times 5 \times 3$ iц, $\quad$ \&12.19.6 ${ }_{3 / 6}^{\text {P\& }}$ Instruction tooklet and parts avallable. $3 / 6$ post free.

COAX 80 ohm CABLE Now only 6d. a yard
High grade low loss Cellular Alr Spaced Polythene-tin. diam.-Famous mfr. bargain prices-special lengtas


## RE-GUNNED TV TUBES

new reduced prices
and now 12 months guarantee!
All tubes rebuilt with new heater, cathode and gun assembly reconditioned virtually as new.
12in. ©5, 14 in . $55 / 10 /=$ I7in. $\mathbf{6 6}$ etc.

## 10/-part exchange

 allowance on old tube Carr. and ins. 10/-. Comprehensive stocks-quick deljvery.| 20 | ydg. |
| :--- | :--- |
| 40 |  |
| yd |  |
| da |  |

${ }^{60} \mathrm{Cox} \mathrm{ds}$.
Coax Plugs 1o.... 25/- P. \& P. 3/ Couplers, $1 / 3 ;$ Cable Rand Sockets, $1 / 6$; Outiet Bozes, 4/6.
CONDENSERS Silver Mica, All prel.


 T.c.C. $1 / 9$. . $0016 \mathrm{kv} .5 / 6$. 00120 kv . $9 / 6$ RESISTORS-FULL RANGE 10 ohms10 megohms $20 \%$. I w. And i w. 3 d. . i w. 5 d . (Midget type modern rating), $i$ w. Gd., 2 w
 \%.... 9 d .,
ohms 2/-).
PRE-SET W/W POTS. T/V Type, 25 ohms50 K ohms 3 -. $50 \mathrm{~K}-2 \mathrm{Meg}$. (Carbon $3 /$-). SPEAKER FRET-Expanded Bronze anodised metal $8 \times 8$ in. $2 / 3: 12 \times 8$ in. $3 /-1$
$12 \times 12 i n .4 / 8 ; 12 \times 16 \mathrm{in} .8 /-; 24 \times 12 \mathrm{in}$. $12 \times 12 \mathrm{in} .4 / 8 ; 12 \times 181 \mathrm{in} .8 /-; 24 \times 12 \mathrm{in}$ TYGAN FRET (Contemporary pat.) $12 \times$ 12in. $122 /-$;- $\times 18$ in. $3 /-$ - $12 \times 24 \mathrm{in} .4$ - etc Elace $17 / 6$. 31 in . Goodmans $18 / 6$ : 5 in Rola, 17/6. 6in. Elac, 18/6: $7 \times$ 4/n. Good mana Ellptical, 18/6; 8 in, Rola, 20/;-10in. R. and A., $25 j_{-1}$ 10in. W.B.-HF1012, $99 / 9$ 12in. Plessey 16 ohms with $6 / 41 \mathrm{n}$. Tweete and Cross Over Filter, $97 / 6$.
Electrolytics All Types New Stock
TUBULAR CAN TYPES
 $50 / 50$ v. $100 / 25 \mathrm{v}$. $2 /-32+32 / 276 \nabla$.
 $\begin{array}{ccccc}16+18 / 450 \\ 32+32 / 450 & \text { v. } & 5 / 6 & 100+200 / 275 & 60+250 / 275 \\ \text { v. } & 12 / 6\end{array}$

Comprehensive range in stock.
VOLUME CONTROLS-SK- 2 Megohns. ALL LONG SPINDLES, MIDGET TYPE, linu dism. Guar. 1 yT. LOG or LIN
 81

## 7 VALVE AM/FM RADIOGRAM CHASSIS

Volve Line-up: ECC85,
ECH8I EF89: EABC80, EHB1, EFB9, EABC8

Three Waveband and Switchad Gram ponitions. Med. 200. VHF/FM $88.05 \mathrm{Mc} / \mathrm{s}$, Philip's Continental Tuning insert with permeability tuning ou FM and combined AM/FM IFF transformers, $460 \mathrm{Kc} / \mathrm{s}$ and 10.7 Me/s. Dust core circuitry all conls. Latering AVC and Neg. Feedback. Three watt output. Bensitivity and reproduction of a very high
 Illumblnatcd glass diat $11 \frac{1}{2} \times 33^{1 / n .}$ Vertical pointer. Horizontal station hamer chollon Aligned and tested ready for use, $\{\mathbb{1} .10$. 0 . Carr. \& ins. 5/Complete with 4 Knobs-walnut or Ivory to cholee.
Three ohm P.M. speaker only required. Recommended quality apeakera 10in. Rola (Heavy Duty)


As previonsly announced fresh supplies are now. being recelved, but we regret some slight deiay may be experienced in fuffiling orders for this popular item.
ONLY A FEW ITEMS ARE LISTED FROM OUR COMPREHEN. SIVE STOCK. WRITE NOW FOR FULL BARGAIN LISTS, 3d.

# RCA 15 KW TELEGRAPH TRANSMITTER Type ET-4750-X 

Frequency range-2 to 22 megacycles.
Keying Speed-up to 250 words per minute.
Power Supply requirements- 230 v. 3 phase 50/60 cycles.
Tube complement: Oscillator- 807 (1), Doubler (1st) Amplifier-807 (1), Intermediate Power (2nd) Amplifier-813 (4), Power (3rd) Amplifier-889-R (2), Plate Rectifier-872 A(6), Auxiliary Rectifier872A (3), Bias Rectifier-872A (2), Keyer-807 (2).

|  | Length Height | epth |
| :---: | :---: | :---: |
| Enclosure | 11 ft . 7 ft . 6 ins. | 4ft. lin |
| Rectifier Unit 4ft. 2ins. 5ft. 3ins. 3ft. 2 in |  |  |
|  |  |  |
|  |  |  |
| Enclosure (including control, R.F. and |  |  |
| fier Unit |  |  |
| late Transforn | 00 | 1,2 |



We have a full range of spares for this equipment.

If desired, we can modify this transmitter to work also on the telephone with an output of approximately 5 kW .

Offices and Works
BEAVOR LANE, HAMMERSMITH, LONDON, W. 6
Telephone: RIV 8006/7

7th. edition now available


## a valuable book for students and service engineers

W. E. Miller, M.A. CANTAB, M. BRIT. IRE

Revised by
E. A. W. Spreadbury, M.BRIT. IRE

## TELEVISION EXPLAINED

This popular book was thoroughly revised and enlarged in the previous edition to about twice its former length to bring it completely up to date. This seventh edition has been further revised to bring it into line with subsequent developments. It gives in simple terms and nonmathematical language a step-by-step survey of the circuits of modern television receivers and aerial systems for multichannel reception, including such devices as A.G.C. and flywheel synchronising and the combination of F.M. radio with a television receiver.

192pp. 10pp. of plates
12s 6d net
by post 13 s 5 d

## from leading booksellers

Published for "Wireless $\mathcal{E}$
Electrical Trader" by Iliffe ©
Sons Ltd., Dorset House,
Stamford St., London, S.E. 1

## Vitreous Enamelled Resistors

FULLY R.C.S.C. TYPE APPROVED, $10 \Omega$ to $100 K \Omega$, our RWV4-K and RWV4-L style resistors conform to InterServices Spec. RCS 111.
Other styles available. R.C.S.C. type approval pending-

| RCSC Style | $\begin{aligned} & \text { CGS } \\ & \text { Siyle } \end{aligned}$ | Rating in watts |  | Range |
| :---: | :---: | :---: | :---: | :---: |
|  |  | RCSC | Commer- cial |  |
| - | VPF1 | 1.5 | 2 | $0.5 \Omega$ to $5 \mathrm{~K} \Omega$ |
| RWV4-J | VPF4 | 3 | 4 | $0.5 \Omega$ to $15 \mathrm{~K} \Omega$ |
| RWV4-K | VPFIO | 4.5 | 10 | $1 \Omega$ to $68 \mathrm{~K} \Omega$ ! |
| RWV4-L | VPFI4 | 6 | 14 | $1 \Omega$ to $100 \mathrm{~K} \Omega$ |

## THE C.G.S. RESISTANCE CO., LTD. mARSH LANE, GOSPORT STREET, LYMINGTON, HANTS. Tel. Lymington 2811 <br> London Office: 30 Clarendon Rd., Harrow, Middx. Tel. Harrow 4147

## MAIL ORDER SPECIALISTS

SPEAKERS • AMPLIFIERS • TUNERS • MOTORS • PICK-UPS FREE Carriage, Packing \& Insurance (U.K.) WORLD WIDE EXPORTERS
overseas orders sent free of purchase tax
AND SHIPPED PROMPTLY AT MINIMUM COST Now Yora/Montreal Vancouver LEAK Stereo 20 amp . with Point One Stereo PreAmplifter
Two WHAR FEDALE Wa
Two Quak Electroatatic
Speakers ...............
GARRARO Botrobo with
DECCA flss stereo P.U. with
arm
All the above prices include Carriage, Packing and insurance
C. C. GOODWIN (SALES) LTD.
(Dept.W.10.) 7, THE BROADWAY, WOOD GREEN,


| AMPLIFIERS, STEREO AND |  |
| :--- | :--- |
| MONAURAL, BY: | QUAD |
| VERDIK | ARMSTRONG |
| ROGERS | W.BK. |
| DULCI | etc. |

## ARMSTRONG LEAK QUAD

V.H.F. TUNERS BY: QUAD
T.S.L.

DULCI
ROGERS, etc.

HI-FI SPEAKERS BY: GOODMAN PLESSEY WHARFEDALE LORENZ
W.B.
T.S.L.
G.E.C. etc.

## BIGGEST SCOOP OF THE YEAR

DUE TO HUGE PURCHASES OF THE FAMOUS

## AVANTIC BEAM-ECHO EQUIPMENT

## We can offer the following Hi-Fi amplifiers brand new in sealed cartons, beautifully finished and

 presented with matching dials. All the units are completely enclosed and ventilated, suitable for shelf or cabinet mounting.
## AVANTIC PL6-2I

High quality monaural power amplifier and pre-amp., compactly housed and suitable for shelf mounting or cabinet. Two EL84, three EF86, one ECC83, one EZ81. 30 watts peak; speaker impedance, 4, 8 or 16 ohms. Sensitivity: $4 \mathrm{M} / \mathrm{V}$ on pickup, $3 \mathrm{M} / \mathrm{V}$ on tape, $100 \mathrm{M} / \mathrm{V}$ on tuner. Intermod. distortion $1 \%$ at 10 W . equiv. Sinewave output. Maker's price $628 / 10 /$. OUR PRICE ig gns. Post and packing $7 / 6$.

## AVANTIC SPA2I Stereo Amplifier

Twin channel power amplifier and pre-amp, for stereo or monaural reproduction. P/pull output, 25 W . peak each channel. Frequency response $40 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Speaker impedance 4,8 and 16 ohms. Tape output $15 \mathrm{M} / \mathrm{V}$. Continuously variable bass and treble, loudness control, stereo balance control. Input sensitivity: 10 w . Output: tuner, 100 and $250 \mathrm{M} / \mathrm{V} ;$ tape, 3-5 M/V; pick-up 5 and $50 \mathrm{M} / \mathrm{V}$. Maker's price $\mathrm{f} 48 / 10 /$. OUR PRICE $\mathrm{E} 29 / 10 /$-. Post and packing $12 / 6$.

## AVANTIC SPAll Stereo Amplifier

A twin channel amplifier and pre-amp., push-pull output, 10 w . peak each channel, rumble filter, speaker impedance 4, 8 and 16 ohms. Tape output: $100 \mathrm{M} / \mathrm{V}$. Continuously variable treble and bass, stereo balance control. Input sensitivity: for 7 watts, $100 \mathrm{M} / \mathrm{V}$ radio; $100 \mathrm{M} / \mathrm{V}$ tape; $650 \mathrm{M} / \mathrm{V}$ pick-up. Manufacturer's price 28 gns. OUR PRICE 19 gns . Post and packing 7/6.
AVANTIC. SP2I Stereo Pre-amp. Control
A twin channel pre-amp. control unit. Can be used with the Avantic stereo tape pre-amp. STEP21. The SP21 has six inputs for each channel. Input sensitivity: for $250 \mathrm{M} / \mathrm{V}$ or 1.5 V . output. Tuner: 100 and $250 \mathrm{M} / \mathrm{V}$. Tape: $100 \mathrm{M} / \mathrm{V}$. Flar: $250 \mathrm{M} / \mathrm{V}$. Pickup: 5 and $50 \mathrm{M} / \mathrm{V}$. Frequency response: $40 \mathrm{c} / \mathrm{s}$ to $15 \mathrm{Kc} / \mathrm{s}$. Tape output: $50 \mathrm{M} / \mathrm{V}$. Continuously variable bass and treble, loudness control, stereo balance control, power needed 6.3 V . at $1.3 \mathrm{~A} . \mathrm{A} . \mathrm{C} .350 \mathrm{~V}$. at $5 \mathrm{M} / \mathrm{A}$. D.C. This can be used with DL7-35 power amp. Manufacturer's price $£ 28 / 10 /$. OUR PRICE f . $8 / 18 / \mathrm{m}$. Post and packing 12/6.

## AVANTIC DL7-35 Power Amplifier

An amplifier faultless in performance. 50 wates peak, intermodulation distortion $.7 \%$ at 20 watts. Power response: 20 w . linear from $30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{Kc} / \mathrm{s}$. Frequency response: $5 \mathrm{c} / \mathrm{s}$. to $30 \mathrm{Kc} / \mathrm{s}$. ${ }^{4}$, 8 and 16 ohms switch selected load impedance. Sensitivity: $220 \mathrm{M} / \mathrm{V}$ for 20 W . outpur. Two of these amplifiers with SP21 pre-amp. control unit make a high output stereo tie-up. Maker's price of amplifier $£ 31 / 10 /$. OUR PRICE $£ 24$. Post and packing $12 / 6$.

AVANTIC VHF and AM Radio -Tuner BM6II
8 -valve and rectifier, A.F.C., Foster Seeley discriminator ensuring drift-free reception, magic-eye tuning on both bands, $88-108 \mathrm{Mc} / \mathrm{s}$. continuous on VHF, $545-1,600 \mathrm{Kc} / \mathrm{s}$. on medium wave. Self powered. Attractive scale. Suitable for bookshelf or cabinet mounting. Matching to any other Avantic equipment. Maker's price $\mathbf{\text { f40. OUR PRICE } £ 2 5 \text { . Post and packing 12/6. }}$

Also available are the following items which can be.used with the aforementioned equipment:STEP II. Stereo pick-up pre-amp. unit.
STEP 21. Stereo tape pre-amp.
SLI2-21. Speaker system in enclosure.
SL7I. Speaker system in enclosure.
Send S.A.E. for detailed leaflet.

## THE LAST OF THESE

## HI-FIDELITY TAPE HEADS

Made by famous manufacturer. Brand new. Upper or lower track, record/play-back,- high impedance giving up to 12,000 e.p.s. at $7 \frac{1}{\frac{1}{2}}$ I.P.S., output $5 \mathrm{~m} /$ volts at $\mid \mathrm{KC}$ at $7 \frac{1}{\rho}$ I.P.S. Erase heads low impedance.
ONLY 39/6 per pair. Post $1 /$-. State upper or lower track.

THE NEW "INSTANT" BULK TAPE ERASER Can erase a spool of magnetic tape in a few seconds. Demagnetises oxide deposits on tape heads. ONLY 27/6, post free.
THE NEW TAPE EDITING BLOCK. For standard $\ddagger \mathrm{in}$. mag. tapes. Can be fixed to tape deck. ONLY 7/6, post and pkg. 6d. The new Acos relephone adaptor can be attached to any recorder. 21/- post frèe.

## ANOTHER OF OUR SUCCESSFUL OFFERS THAT CUSTOMERS ARE CONTINUALLY REPEATING



## LIMITED NUMBER

F.M. Tuner by the Ferguson Company. An attractive and compact unit in gold finish hammered metal case 10 in . wide, $7 \frac{73}{8} \mathrm{in}$. deep. 2 zin . high. Neat escutcheon and tuning dial. Has own power supply. Uses two EF80, one ECF80, 2 Germanium diodes and metal rectifier. Coverage $87.6 \mathrm{Mc} / \mathrm{s}$ (continuously). Will feed into any age $87.6 \mathrm{Mc/s}$ (conti
amplifier or radio.

AT THE AMAZING PRICE OF $£ 13 / 19 / 6$, 2/6 post and pkg.

## ANOTHER SNIP FOR TAPE RECORDER CONSTRUCTORS

The new Collaro studio tape deck using 3 motors, 3 speeds at $1 \frac{7}{6}, 3 \frac{3}{4}$ and $7 \frac{1}{2}$ I.P.S., will take 7 in . spools, push-button controls $t 12 / 19 / 6$, $5 /-$ post and pkg. Well designed tape recorder amplifier (not a kit) for the studio deck, incorporating Mic/Gram/Radio inputs, ext. loudspeaker, superimposing switch, with matching knobs, separately mounted mains transformer. Frequency response $60-10 \mathrm{KC} 3 \mathrm{~dB}$ at 7.5 I.P.S., magiceye level indicator. Using ECC83, ECL82 and EM85 and Metal rectifier. Assembly instructions. The 2 units, $£ 25 / 10 /-$ complete. Crating and insurance, 17/6. Suitable Acos mic. 40 for above, 25/-.
A repeat of our previous popular offer. The Collaro Mk. IV tape transcriptor tape deck, ci7/10/-, Crating and carr. 11/6. The Collaro tape pre-amp. and powerpack. The 2 items 630 complete. Crating and carriage $17 / 6$. THE LATEST BSR. Monardeck 3z i.P.S., single speed. $5 \frac{z}{z}$ spool, simple controls. Brand new, $\mathbf{c} 9 / 19 / 6$, Carriage free.

## PORTABLE BATTERY ELIMINATOR

Housed in two containers which are to replace AD35 and BI26 Batteries. 37/6, Plus 2/- P. \& P. Only suitable for use with Dk96 Series valves.

## Fortiphone transformers <br> for d.c. CONVERTERS



Transformers suitable for use in the circuits described in the recently published G.E.C. Application Reports on d.c. converters are now included in our standard range.
TYPICAL SPECIFICATIONS

| INPUT | OUTPUT | RATING |
| :---: | :---: | :---: |
| 6 V | 100 V | $1,1.5,2$, |
| 6 V | 200 V |  |
| 6 V | 400 V | 3 or 4 WATT |
| 6 V | 800 V |  |
| 12.18 V | 250 V | 50 WATT |

FORTIPHONE TRANSFORMER DIVISION (DEPT. 5) 92 MIDDLESEX ST. LONDON E.I.

## The first name you think of for <br> DC/AC CONVERTERS

TRANSISTORISED, ELECTRONIC AND VIBRATOR MODELS
available for operating practically any-thing-from an electric shaver to a television-from battery or DC Mains supply.


## All goodlabs use

 Radiospares quality components for design development and prototype work Sewrics!Enginers! Remember-Radiospares components are delivered absolutely "by return"


## SAMSON'S SURPLUS STORES LTD.

LONDON'S GREATEST DEALERS IN RADIO AND ELECTRONIC EQUIPMENT


BRAND NEW TELEPHONE CABLE. Twin D.8, one-mile drums $67 / 10 /-$. Carr. 15/-, Twin D.3, $500-y d$. drums, 35/-. Carr. $7 / 6$. Single D.3, one-mile drums, 85/-. Carr. 7/6. also $1 / 3 \mathrm{rd}$-mile drums, 27/6. Carr. 5/-.
Commando Assault Cable, P.V.C. covered, 1,000-yd. drums, 8/11, carr. 4/-. Cartons of five drums, 42/6. Carr. 7/6.

VENNER I4-DAY CLOCKWORK TIME SWITCHES. One makes one break every 24 hours. Complete with key and mounting bracket. 1 -amp. 230 v . contacts, 27/6. 5-amp. contacts, 32/6. P.P. 2/-

## SPECIAL PURCHASE!! <br> NIFE ALKALINE BATTERIES <br> 6 VOLT 75 A.H. TYPE LR7 SUITABLE FOR ENGINE STARTING. Five 1.2 v . cells crated and connected to give 6 v . Brand new and fully guaranteed. Size of crate $15 \frac{1}{2} \times 12 \times 6 \frac{1}{2} \mathrm{in}$. $\quad \mathbf{6 7 / 1 0 / -}$ Carr. 15/-.

## ADMIRALTY LT TRANSFORMERS

 Special Offer: Pri. 230 v., Sec. 6.3 v. 5 amp . 6.3 v . I amp, and tapped H.T. winding 65 , 130,195 volts $85 \mathrm{~m} / \mathrm{amp}$. Tropically rated, Brand new in maker's cartons, I5/-. P.P. $2 / 6$.AMERICAN HEAVY DUTY AUTO TRANSFORMERS. $7 \frac{1}{2} \mathrm{kVA} 115 / 230$ volts. Completely enclosed. $\quad \mathrm{f} 12 / 10 / \mathrm{F}$

HEAVY DUTY SLIDING RESISTORS, $25 \Omega 6$ amp single tube slider control, $32 / 6$. $0.4 \Omega 25 \mathrm{amp}$ geared drive control, $17 / 6$. $1 \Omega 12 \mathrm{amp}, 8 / 6 ; 1.2 \Omega 15 \mathrm{amp}, 12 / 6 ; 3 \Omega 10 \mathrm{amp}$, $15 /-; 20 \Omega 2.3 \mathrm{amp}, 17 / 6$. All single tube slider control $29.5 \Omega$ 4.5/1.4 amp right angle geared drive, $30 /-, 1,000 \Omega 100 \mathrm{~m} / \mathrm{amp}$ enclose slider control, 17/6. $12,000 \Omega 0.003 \mathrm{amp}$ double tube, geared drive. P.P. on all Resistors 3/6.

AMERICAN CAPACITORS, OIL FILLED. $4 \mathrm{mid} .4,000 \mathrm{v}$. wkg., $17 / 6 ; 5 \mathrm{mfd}$. $1,500 \mathrm{v}$. wkg. 7/6; 8 mid. $1,000 \mathrm{v} . w \mathrm{~kg} . \mathrm{y}$ 8/6; 8 mid . $1,500 \mathrm{v}$ wkg., $15 /-; 8 \mathrm{mfd} .600 \mathrm{v}$. wkg., $7 / 6 ; 10 \mathrm{mfd}$. 600 v. wkg., 7/6; 16 mid. 400 v. wkg., 8/6; 45 mid .200 v . wkg., $10 / 6 ; 4 \mathrm{mid} .1,000 \mathrm{v} . w \mathrm{~kg}$. 5/6; 4 mfd .250 v . wkg., 2/6; 1 mid. 750 v . wkg. 3/6; $0.1 \mathrm{mid} .7,500 \mathrm{v}$. wkg., 8/6. All capacitors tropically rated and supplied Brand New and Guaranteed. Please send $2 /$ - on each condenser P.P.

ADMIRALTY THREE-PHASE TRANSFORMERS. Pri. $400-440$ v. 50 cycles. Sec. 50 v. 6 amps . Completely tropicalised. Size $7 \frac{1}{2} \times 14 \times 5$ in., weight approx. 60 lb . Brand new in maker's cases. Price 85/-. Carr. $7 / 6$
S.T.C. F.W. RECTIFIERS. Brand new. Max. A.C. input 75 volts. Output 18 amps . 87/10/-. Carr. 5/-.
L.T. CHOKES to smooth $12-24 \mathrm{v} .5 \mathrm{mps}$. Res. $\frac{1}{2}$ ohm., 17/6. Carr. 5/-

AMERICAN OHMITE RHEOSTATS. 15 ohms, 2.24 A., 12/6. 25 ohms 0.75 A., 15/6. 350 ohms, 25 watts, $3 / 6$. Tubular adjustable. Length $10 \frac{1}{2} \mathrm{in}$. dia. 1 tin., 2 ohms 6 amps, $7 / 6$. 100 ohms I A., 5/6. P.P. on all resistors 2/-.

169-171 EDGWARE RD., LONDON, W.2. Telephone PAD 7851, AMB 5125



192pp. IOpp. of plates
12s 6d net

## from leading booksellers

## SEVENTH EDITION NOW AVAILABLE

## a valuable book for students and service engineers

## TELEVISION EXPLAINED

W. E. Miller, M.A. Cantab., M.BRIT.IRE, revised by E. A. W. Spreadbury, M.BRIT.IRE.

This popular book was thoroughly revised and enlarged in the previous edition to about twice its former length to bring it completely up to date. This seventh edition has been further revised to bring it into line with subsequent developments. It gives in simple terms and non-mathematical language a step-by-step survey of the circuits of modern television receivers and aerial systems for multichannel reception, including such devices as S.G.C. and flywheel synchronising and the combination of F.M. radio with a television receiver.

A WIRELESS \& ELECTRICAL TRADER book

## DOUBLE BEAM <br> 'SCOPE'



## For D.C. \& A.C. APPLICATIONS

Engineered to precision standards, this high-grade Instrument is made available at the lowest possible price, incorporating the essential features usually associsted with luxury instruments. This "sCOPE" will appeal particularly to Bervice Engineerr and Amateurs. A high gain, extremely stable differential Y-Amplifer ( 30 mV m.C.M.).
Provides ample senstivity with A.C. or D.C. Inputs. Especlally sultable for measarement of transistor operating conditions where majntenance of D.C. Ievels is of paramount importance. Push-pull X amplitier. Flyback output a vailnble for checking T.V. Line $\mathbf{O} / \mathbf{P}$ Transiormers, etc.; Provision for external $\mathrm{X} 1 / \mathrm{P}$ and CRT, Brightness Modulation. A.C. mains $200 / 250 \mathrm{v}$. £19/19/- plus $\mathbf{P}$. \&
$\mathrm{P} .7 / 6$, or $50 /$ - deposit, plus $P$. \& P. $7 / 6$ and 12 monthy P. 7/6, or $50 /$-deposit, plus P. de. P. $7 / 6$ and 12 monthly payments of $33 / 4$.

FULL 12 MONTES' GUARANTEE INCLUDING VALVES AND TUBE:

## ALIGNMENT ANALYSER TYPE MC12

A.C. MAINS, $200 / 250$ volts. Provides:"WOBBULATOR" (SWEPT FREQUENCY) OPERATION, for FM/TV alignment linear frequency sweep up to $12 \mathrm{Mc} / \mathrm{s}$. From $400 \mathrm{Kc} / \mathrm{B},-80 \mathrm{Mc} / \mathrm{s}$. CAPACITANCE MEABU REMENT. Two ranges provided $0-60 \mathrm{pf}$. and $0-120 \mathrm{pf}$. SPECLAL FACIL-
ITY enables true resonant frequency of any ITY enables true resonant frequency of any rapidiy determined. Cash price $£ 6 / 19 / 6$ and 5/. P. \& P. H.P. terms 25/-deposit and $5 /$. P. \& P. and 6 s.inthly payments of 21/6.


## CHANNEL TUNER

Will tnme to all Band 1 and Band III statlons. BRAND NEW by famous manufacturer. Complete with P.C.C. 84 and P.C.F. 80 valves (in series). I.F. 16-18 or 33-88. Also can be modified as an acrial converter (instructions mupplied.)
mplete with knobs.
22/6 Plus 3/6 P. \& P.
HEATER TRANSFORMER To suit the above, $200-250$ v., 6/- Plus $1 / 6$ P. \& $P$


## B.S.R. MONARCH UA8 with FUL-FI HEAD

 4 -speed plays 10 records 12 in ., 10 in . or 7 in . at 16,33 .
45 or 78 r . p.m. Intermives 7 in , 10 in . and 12 in . records of the same speed. 耳as manual play position; colour brown. Dimensions: 12 in . $\times 10 \mathrm{gin}$. Space required above baseboard $4 \frac{1}{2}$., below baseboard 21 in . Fitted with Ful-Fi tarnover erystal head. $86 / 19 / 6$. Plus $5 / \cdot$ P. \& $\mathbf{P}$

STEREO HEAD e\%/19/6 Plus $5 /=\mathrm{P}$. \& P .

## LINE E.H.T. TRANSFORMER

With bullt-In Hie and width control, 14 KV . Scan coil, $90^{\circ}$ deflection, on ferrite yokes. Frame O.P. transformer 500 pf 18 KV , smoothing condenser, Can be used for $141 \mathrm{~m}, \mathrm{l} 7 \mathrm{ln}$. or 21 ln . tubes.

As above
but for 625 lines

FOCOS MAGNET suitable for the above (state tabe), $10^{\prime} \%$ 。 $2 / 8 \mathrm{P}$. \& P

## MAINS TRANSFORMERS

All with tapped primaties $200-250$ volte.
$0-160,180,200$ г., $60 \mathrm{ma}, 6.3$ ष. $2 \mathrm{amps}, 10 / 6 \quad 280-0-280,80^{\circ} \mathrm{ma} .4 .3 \nabla ., 2 \mathrm{amp} .6 .5$ tint., $6.3 \nabla^{2}, 2$ amp., 10/6. Postage and packing on the above $3 \%$.

## SURFACE BARRIER TRANSISTORS

type SB 305, $15 \mathrm{Mc} / \mathrm{s}$. 7/6 each.

## 100\% AUDIO TRANSISTORS

5/- each.

## BATTERY RECORD PLAYER AND AMPLIFIER

 ncorporating $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. "Starr" motor "Acos" crystal plek-up, 3 transistor push-puiIamplfier complete with tranklstors. Oatput 500 milliwatts, $49 / 6$ plus $3 / 6 \mathrm{P}$. \& P


## SIGNAL GENERATOR

Covering $100 \mathrm{Kc} / \mathrm{a} .-100 \mathrm{Mc} / \mathrm{s}$. on fundamental and $100 \mathrm{Mc} / \mathrm{s}$ to $200 \mathrm{Mc} / \mathrm{s}$, on harmonics. Metad case 10in. $\times$ 6tin. $\times 5$ fin., grey hamwalves and Metal Rectifier. A.C. Mains 200 250 v and Metal Rectifier. A.C. Mains 200 to a depth of $30 \%$ Modulated or c.p.s. lated R.F., output continuously variable 100 millivole C.W. and mod. ewitch rat nole A.P. output. Incorporating magiceye as output trdicator. Accuracy plus or minue
Or $25 /$ - depossit and 6 monthly paymente of Or 25/- deposit and 6 monthly
21/6. Post \& Packing $5 /$ extra.

## Signal generator

Coverage $120 \mathrm{Kc} / \mathrm{s}-230 \mathrm{Kc} / \mathrm{s}, 800 \mathrm{Kc} / \mathrm{s}$ $900 \mathrm{Kc} / \mathrm{s}, 900 \mathrm{Kc} / \mathrm{s},-2.75 \mathrm{Kc} / \mathrm{s}, 2.75 \mathrm{Mc} / \mathrm{s}$.
$-8.5 \mathrm{Mc} / \mathrm{s}, 8$
$\mathrm{Mc} / \mathrm{s}, 28 \mathrm{Mc} / \mathrm{s}, 16 \mathrm{Mc} / \mathrm{s}-56$ Mc/s. $24 \mathrm{Mc} / \mathrm{s} .84 \mathrm{Mc} / \mathrm{s}$. Metal case IOln. $\times$ $6 \frac{1}{4} \mathrm{~m} . \times 4 \mathrm{in}$. Nize of scale 6 in . $\times 3 \mathrm{in}$, valves and rectifer A.C. malns $230-250$ Internal modulation of 400 e p.s. to a depth oi 30 per cent., modulated or unmodulated R.F: Output continuously variable, 100 millivoits C.W. and mod, switch variable A.F. out put
and moving coil output meter. Grey hammer faish case and white panel.
Accuracy plus or minus $2 \%$.


Or 25/- deposit and 4 monthly

## SIGNAL \& PATTERN

 GENERATOR
Or 25/- deposit. P. \& P. 5/- and 6 monthly payments of $21 / 8$.
Coverage $7.6 \mathrm{Mo} / \mathrm{s},-210 \mathrm{Mc} / \mathrm{a}$. In five bands. all on fundamertals, slow motion tuning andio ging scale. In grey hammer finished case with carrying handle. Accuracy $\pm 1 \%$ A.C. malna 200-250 .


## F.M. TUNER UNIT

By famons German manufacturer Coverage $88-100 \mathrm{Mc} / \mathrm{s}$. Complete with ECC85 Size 4in. $\times 2 \mathrm{in} . \times 2 \mathrm{in}$.

> 25 Plus P. \& P. $1 / 6 . \quad \begin{gathered}\text { Circuit diagram } \\ \text { free with untt. }\end{gathered}$ $10.7 \mathrm{Mc} / \mathrm{s} .1 . F$. and Discriminator Coil $4 /-$ pair

## 3-TRANSISTOR POCKET RADIO

Plus GERMANIUM DIODE ON PRINTED CIRCUIT

Size $3 \frac{11}{4}{ }^{\prime \prime} \times 4^{\prime \prime} \times \frac{7^{\prime \prime}}{6}$
To build yourself.
Incorporating Ferrite Rod Aerial. Two Surface Barrier Transistors and one Audio. Tuneable over medium and long waves.

## 3. 6 Plus 1/6 P. \& P

ALL PARTS SOLD SEPARATELY.
Circuit diagram $1 / 6$ freee with kit.
8 WATT PUSH- AMPLIFIER


COMPLETE WITH CRYSTAL MIKE AND A.C. malns $200 / 200 \mathrm{v}$. 8ize 10 itn. $\times 6 \frac{1}{2} \mathrm{in} . \times$ 2 in . Incorporating 6 valves. H.F. pen. For use with all makes and and rectifer. and mike. Negative feed-back. Two lnputs, mike and gram., snd controls for same. geparate controls for Bass and Treble Hit. Response flat from 40 cycles to $16 \mathrm{Kc} / \mathrm{s}$. $\pm 2 \mathrm{db} ; 4 \mathrm{db}$ down to $20 \mathrm{Kc} / \mathrm{a}$. Output 8 watts at $5 \%$ total distortion. Noise level
40 db down, all hum. Output transformer tapped for 3 and 15 ohm speech coils. For use with Std. or L.P. records, musical instruments such os Guitara, etc.
£4.19.6 Plus P \& P. 7/G
Or $£ 1$ deposit, plus P. \& P. 7/6 and 4 monthly pasments of $23 / \cdot$.
PORTABLE AMPLIFIER on printed circult for A.C. Maine $200 / 250$ v. gize $4 \mathrm{in} . \times 3 \mathrm{in}$, with tone and Folume control. Valves: ECL82 and EZ80. 39/6. P. \& P. 2/6. BUILT POWER SUPPLY UNIT, A.C. Mains $200-250$ v.. D.C. output. 250 F. at 76 ma., aleo 6.3 v .2 amp , heater winding. $21 / \mathrm{m}$. Pus $3 / 6 \mathrm{P} . \& \mathbf{P}$.

RADIO AND T.V. COMPONENTS (ACTON) LTD. 23, ACTON HIGH STREET, LONDON, W. 3 GOODS NOT DESPATCHED OUTSIDE U.K. ALL ENQUIRIES S.A.E. TERMS OF BUSINESS C.W.O.

## DEPENDABLE RADIO SUPPLIES LTD.

12a TOTTENHAM STREET, LONDON, W.I. ( 2 minutes Grodge Street Station. Opp. Heals in Totrenham Court Road.) Phone LANgham 7391/2 Hours of Business 9-6. (Mon. to Fri.) Callers welcome. Terms: Cash with order or C.O.D.


## POST OFFICE RELAYS TYPE 3,000

BUILT UP TO YOUR REQUIREMENTS

Type 600 also available
COMPONENT PARTS ALL PLATED

## Yokes, 4/- each.

Top plates, 3d. each. Fixing Screws (with Armatures, $1 / 3$ each. Bottom Plates, 3d. insulators), 2d. each Adjustable, 1/9 each. Spindles, 1/6 each. Butier

BUILD UPS CONTACT'S
COIL VALUES


|  |  | Single |
| :---: | :---: | :---: |
| Up to | 100 Ohms | 3/- 5/- |
|  |  | 4/- 6/- |
|  | 1.000 | 5/- 71- |
|  | 10,000 | 81/ 916 |
| ", ", | 20,000 | 141- |
|  | 40,000 | $16 /$ |
|  |  |  |

SIEMENS HIGH SPEED C/O RELAYS
$\begin{array}{lll}250+250 \text { ohm Twin Coils } & 6 / 6 & 1,000+1,0000 h m s T w i n C o i l s \\ 10 / 600 & 176 \\ & 1700\end{array}$ $850+850$ " " $1 / 6$ PöST \& PACKING ON ALL RELAVM

## G.E.C. MINIATURE SEALED RELAYS





[^10]

Television Receiver Servicing
E. A. W. Spreadbury M BRIT IRE

## volume one

Mainly intended for the professional radio service engineer who, having already become skilled in the art of fault tracing in radio receivers, wishes to extend his activities to television servicing. Others interested in television will, however, also find it a fund of information not available in other current books on the subject. It does not attempt to teach the principles of radio servicing, but extends them to the more complex circuits and techniques of television. This first volume covers the time-bases and their associated circuits only; and probably at least half the servicing problems likely to be met by the engineer occur in these sections.

## volume two

Deals with all the other sections of the modern receiver, including the video stage, tuning circuits, sound channel, power supplies and aerial arrangements. Attention is also paid to such matters as vision interference suppression, the various multi-channel tuning systems now in use, vision automatic gain control, and the problem of reflections and " ghosting." A final chapter gives much valuable information on the technique of circuit alignment. The text is presented in a practical and straightforward manner, and the numerous illustrations include a wide variety of actual circuits, each of which is discussed in detail These two volumes form a complete exposition of the subject, and they can be strongly recommended to service engineers who intend to take the Television Servicing Certificate Examination conducted by the City and Guilds of London Institute and the Radio Trades Examination Board, particularly in the practical test.
21 s net each volume by post 22 s 3 d

## Studio Engineering for Sound Broadcasting

A BBC Engincering Training Manual by members of the Engineering Division BBC
This book has been compiled for the primary purpose of training BBC technical staff in the general principles underlying operational procedures at the Corporation's studio centres. It is now made available outside the Corporation in the belief that broadcasting staff throughout the world, on both the engineering and non-engineering sides, will find a great deal of interest and practical value in its pages. Some of the information is specific in that it relates to equipment and procedures specially designed to meet BBC requirements, but the greater part of the text, dealing with principles of audio-frequency engineering, has a very general application.
25 s net by post 26 s
from your bookseller
PUBLISHED BY ILIFFE \& SONS LIMITED

VALVESBrand new, individually checked and guaranteed

| AC/DD ... 2/6 | E1524 | 6/6 | FW4/500 | 6/6 |
| :---: | :---: | :---: | :---: | :---: |
| AC/P $\quad . . . .4$ 4/6 | EA50 | 1/6 | H30 | 5/- |
| AC/PI $\ldots . . .{ }^{2 / 6}$ | EAC9: | 4/6 | H63 | 3/6 |
| AC5PENDD 4/- | EB34 | 1/6 | KBC32 | . 5/- |
| AC6/PEN ... 5/- | EB91 | 4/3 | KF35 | 5/- |
| AC/SP3 $\quad . .4 / 6$ | EB91 | 3/7 | KT2 | 4/- |
| AL60 ...... 61- | EBC33 | 6/- | KT31 | 8/- |
| AR8 ......... 5/- | EC52 | 31- | KT33C | 7- |
| ARDD5 ... 2/- | ECC32 | 4/- | KT44 | . 71- |
| ARP3 ...... 31- | ECC81 | $6 / 6$ | KT63 | 6/- |
| ARP4 $\ldots$..... 3/6 | ECC82 | 619 | KT241 | 9/- |
| ARP12 ..... $2 / 9$ | ECC83 | 71- | KTW62 | $7 / 6$ |
| ARP21 ...... 5/6 | ECC84 | 719 | KTW63 | ... $6 / 6$ |
| ARP24 $\ldots . . .3$ 3/6 | ECC91 | 4/- | L30 ... | .... 4/- |
| ARP34 $\ldots . . .4$ 4/6 | ECL80 | 916 | MH4 | . $3 / 6$ |
| ATP4 ......... $2 / 9$ | EF22 | $7 / 3$ | ML4 | . $4 /-$ |
| ATP7 ...... $5 / 6$ | EF32 | 51- | ML6 | 6/- |
| AUI $\ldots . . .51-$ | EF36 | 316 | MPT42 | 5/3 |
| AU4 ........ 5/- | EF39 | 4/6 | MS/PEN | 61- |
| AW3 ..... 41 - | EF50 | 2/6 | N34 | 8/- |
| BL63 ...... 61- | EF52 | 5/- | NRI5A | 3/- |
| BT45 $\because . . .401-$ | EF54 | . $3 / 6$ | NT37 |  |
| BT9B ......40/- | EF55 | . $61-$ | (4033A) | ) 10/- |
| D41 ........ 3/3 | EF70 | 4/- | OD3 ... | . 5/- |
| D42 ........ 4/- | EF80 | 619 | P61 | . $2 / 6$ |
| D77 ........ 4/3 | EF85 | 6/10 | PCC84 | 8/- |
| DA30 .....12/6 | EF86 | 9/- | PCC85 | .8/- |
| DAF86 ...... 81- | EF89 | $8 / 9$ | PCF80 | . $81-$ |
| DET5 ......15/- | EF91 | 4/10 | PEN25 | .. 4/6 |
| DET19 ...... $2 / 6$ | EF92 | 51- | PEN46 | . $5 / 6$ |
| DET20 ..... $2 / 6$ | EL32 | 3/9 | PEN65 | .. 6/6 |
| DF70 ...... 9/- | EL35 | $91-$ | PEN220A | ... 3/- |
| DF72 ..... $7 / 6$ | EL84 | $8 / 3$ | PENDD/ |  |
| DF96 ..... 8/- | EL91 | 7/6 | $1360$ | $9 / 6$ |
| DH76 ..... 4/9 | EM4 | 41- | PL81 | 11/- |
| DK96 ..... 81- | ESU208 | $8 /-$ | PL81 . |  |
| DL72 ...... $7 / 6$ | EYS1 | 8/3 | PL82 | 8/- |
| DL71 ...... 8/- | EY91 | $3 / 6$ | PL83 | 91- |
| DL96 ......8/- | EZ40 | 7/ | PM4DX | 31- |
| E1323 \%...25/- | EZ80 | 7/6 | PT25H | 7/6 |

 -

 6H6M
$6 H 6 G T$
$6 J 5$
$6 J 7$
$615 G$
616
$6 K 6 G T$
$6 K 7 G$
$6 K 7 G T$
$6 K 8 G$
$6 L 5 G$
$6 L 6$
$6 L 6 G$
$6 L 34$
$6 N 7 G$
$6 N 7 G T$
$6 Q 7 G$
$6 R 7 G$
$6 R 7 G T$
$6 S A 7$
$6 S C 7 G$
$6 S C 7 G$
$6 S G 7$
$6 S H 7$
$6 S J 7$
$6 S F 5$
$6 S J 7 G$
$6 S K 7$
$6 S L 7 G$
$6 S N 7 G$
$6 S Q 7$
$6 S R 7$
$6 S S 7$
$6 V 6 G$
$6 V 6 G T$
$6 X 4$
$6 X 5 G T$
$723 A / B$
$7 Q 7$
$8 D 2$
$9 D 2$
$10 Y$
$12 A 6$
$12 A H 7$
$12 A T 7$
$12 A U 7$

$12 A X 7$ | $2 /-$ |
| :--- |
| $1 / 9$ |
| $3 / 6$ |
| $7 / 6$ |
| $3 / 3$ |
| $4 / 3$ |
| $6 / 6$ |
| $2 / 3$ |
| $5 / 3$ |
| $6 / 6$ |
| $6 /-$ |
| $9 /-$ |
| $6 / 6$ |
| $4 / 6$ |
| $6 / 6$ |
| $7 /-$ |
| $6 / 3$ |
| $7 / 6$ |
| $8 /-$ |
| $6 /-$ |
| $5 / 6$ |
| $6 /-$ |
| $5 /-$ |
| $5 /-$ |
| $6 / 9$ |
| $8 /-$ |
| $6 / 6$ |
| $5 / 6$ |
| $6 / 9$ |
| $4 / 6$ |
| $6 / 6$ |
| $6 / 6$ |
| $5 / 1 / 6$ |
| $5 / 6$ |
| $6 /-$ |
| $5 / 6$ |
| $6 / 6$ |
| $45 /-$ |
| $7 /-$ |
| $6 / 6$ |
| $3 /-$ |
| $8 / 6$ |
| $5 /-$ |
| $7 /-$ |
| $6 / 6$ |
| $6 / 9$ |
| $7 /-$ |

12
12 E
12 H
121
121
125
125
125
125
125
125
125
150
15 A
30
357
352
352
391
$53 A$
58
59
$71 A$
77
78
80
82
83 V
84
$85 A$



 $30 /-$
$30 /-$
$7 / 6$
$15 /-$
$10 /-$
$35 /-$
$8 /-$
$2 /-$
$2 /-$
$5 /-$
$6 / 4$
$4 / 6$
$4 / 6$
$1 / 9$
$5 /-$
$22 / 6$
$10 /-$
$6 /-$
$5 /-$
$5 / 6$
$4 /-$
$4 /-$

Cathode Ray
Tubes $. .25 /-$
$. . .35 /-$
$. . .42 / 6$
5FP7
VCR $258 . . .45 /-$
scanning

Photo Tubes:
GS
Sp
2
3
3
3
3
72
72
A
C
K
V
V pecial
2131
$3 A / 1481$
$3 J / 170$
$3 J 192 /$
$723 A B$
$726 A$
ACT
CV69
KR3
VX7

WL4 | $181^{\circ}$ |
| :--- |
| $0 / E$ |
| $1 E^{\circ}$ |
| 25 |
| $4171^{\circ}$ |
| 17 | $.12 / 6$

Valves:
$\ldots . .45 /-$
$\ldots .45 /$
$\ldots 335$
$\ldots 37 / 10$
$\ldots .52 /$
$\ldots .27 /$
$\ldots .60$
$\ldots .60$
$\ldots .45$
$\ldots .15$
AND MANY OTHERS IN STOCK including Cathode Ray Tubes and Special Valves.
All U.K. orders below $10 /-$ P. \& P. $1 /$-; over $10 /-1 / 6$ : orders over $£ 3$ P. \& P. free. C.O.D. 2/- extra. Overseas postage extra at cost.

## BRAND NEW ORIGINAL SPARE PARTS

 FOR AR88 RECEIVERS.Please write your requirements.
MOVING COIL ROUND HAND MICRO. PHONE No. $13.2 \frac{1}{2} \mathrm{in}$. diam. with press switch. 12/6. P. \& P. //-
I.F. TRANSFORMERS. $4-5 \mathrm{Mc} / \mathrm{s}$. American made in black crackle finish housing, 6/-. P. \& P. 1/-

HRO MAINS power pack, input $115 / 250 \mathrm{v}$. A.C Output 250 v .75 mA . and $6.3 \mathrm{v}, 3.5 \mathrm{amps}$. E3, inc. carr.
VARIOMETERS for W/S No. 19. Fully tested and working 12/6. P. \& P $\mathrm{P} / 6$.
TRANSMITTER CABINET with door at back. 77 in . high $\times 29 \mathrm{in}$. wide. Rack fitting type. f17/iol-. Carr. E ).

FERRANTI TRANSFORMER. Oil cooled. $20 / 19.5$ KVA, 3 phase, 50 cycles. Pri. 360-380-400-420-440 volts. Sec. 2700-2900-3100-33003500 volts. 2.1 amps. Voltage regulation by simple switch. Pri, and sec. Weight I,1501b. Price fl25. Carr, at cost.

FILAMENT TRANSFORMERS. Primary $0-190-210-230-250 \mathrm{v} ., 50 \mathrm{e} / \mathrm{s}$. Sec. $1.2 .5 \mathrm{v} . \mathrm{CT}$ at 10 amps. 2. 2.5 v . CT at 10 amps . 3. 10.5 v CT at 11 amps., $4,000 \mathrm{v}$. insulation. Price E2/19/-, P. \& P. 5/-. Primary 0-190-210-230$250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Sec. $1 ., 10 \mathrm{v} . \mathrm{CT}$ at 4.5 amps . 2.10 v . CT at 4.5 amps ., $4,000 \mathrm{v}$. insulation, E1/16/-. P. \& P. $5 /-$. Primary $230 \mathrm{~V}, 50 / 60 \mathrm{c} / \mathrm{s}$. $67 \mathrm{v} / \mathrm{amps}$. Sec. $1: 6.3 \mathrm{v}$. $1-6 \mathrm{amps} .2 .6 .3 \mathrm{v}$. CT 3 amps. 3. $6.3 \mathrm{v} . \mathrm{CT} 3 \mathrm{amps} .4 .6 .3 \mathrm{v} . \mathrm{CT} 3$ amps. ह//i/2/- P. \& P. 5/-.
LOW RESISTANCE HEADPHONES. brand new, type CLR 5/-; Balanced Armature 7/6. P. \& P. V//-
TELEPHONE HANDSET. Standard G.P.O. type, new, 12/-, P. \& P. 1/6.
AYOMINORS in leather case with leads, Fully tested and guaranteed, with batteries. 2,000 v. D.C., $£ 2 / 19 / 6$. P. \& P. $2 / 6$.

NEW PRODUCT OF TAYLOR
Model I27A Pocket size meter. Sensitivity 20,000 o.p.v D.C. 1,000 o.p.v. 20 ranges.
D.C. current $50 \mu \mathrm{~A}$ to 1 amp .
D.C. volts 0.3 v.1,000 v. ( 25 kV . by probe).
A.C. volts 10 v $1,000 \mathrm{v}$.
3 resistance ranges from 0-20 megohms (self con$40 \mu \mathrm{~A}$ tatin. Metre Accuracy D.C. 30 Accuracy D.C. $3 \%$


Dimensions $5 \frac{7}{4} \times 3 \frac{3}{4} \times$ ltin. Weight 14 oz . Dimensions $5 \frac{3}{3} \times 3 \frac{3}{2} \times 1 \mathrm{inn}$. Weight 14 oz .
Price f 10 complete with instruction manual, Price $£ 10$ complete with instruction manual,
test prods and clips. Leather case $£ 1 / / 2 /$ - extra.
OUTPUT TRANSFORMER, in screening can giving 9 different ratios $10: 1$ up to $120: 1$ for battery receivers or any high resistance pentodes used as output valves, 6/6. P. \& P. 1/6.
DRIVER TRANSFORMERS. Primary 500 ohms imp. Sec. to match two 805 in push-pull \&1/7/6. P. \& P. 5/-

TRANSFORMERS. Relay supply. Primary 230 v . Sec. $0-27 / 29 / 31 \mathrm{v}$. at 0.5 amps ., $15 / \mathrm{m}$ P. \& P. 5/=

## P. C. RADIO LTD. 170, GOLDHAWK RD.,

W. 12 sHEpherds Bush 4946

ROTARY TRANSFORMERS. 171 watt, 12 v . input. $1,600 \mathrm{v}$. 110 mA . output, $30 /$ P. \& P. $7 / 6$.

COMPLETE SET OF STRONG AERIAL RODS (American). Screw-in type MP49, 50 , $51,52,53$, total length 15 ff . 10 in. top diameter 0.615 in ., bottom diameter 0.185 in ., together with matched aerial base. MP37 with ceramic insulator. ideal for car or roof insulation. £2/10/-, post free.
MODULATION TRANSFORMERS
(U.S.A., Collins), primary imp 6,000 ohms. C.T., secondary 6,000 ohms, 20 W., $9 / 6$ each, post free.

VIBRATOR UNIT. 12 v. $/ 160 \mathrm{v} .35 \mathrm{mAmps}$. Exceedingly well filtered and smoothed, excellent for car radios. New. Ineluding one 6XSG valve and vibrator. 17/6. P. \& P. 5/-.

CARBON INSET MICROPHONE. G.P.O. type 2/6. P \& P. 1/-.
INSULATION TEST METER. Testing voltage adjustable up to 6,000 v. D.C. Mains supply 180/250 v. In wooden case E25. Carr. 10/-.
TCS RECEIVERS made by Collins of U.S.A., in fully guaranteed working condition. 1.5$12 \mathrm{Mc} / \mathrm{s}$. line-up: 1257 (1). 12SQ7 (1), 12 A 6 (2), 12 SK7 (3), power requirements 12 volt

SPECIAL BUILT POWER PACK for the above. 230 volt A.C. mains, including 6X5gt valve. $£ 3 / 5 /$-, carriage $5 /$ -
TRANS RECEIVER. Number 22. 2 megocycles to $8 \mathrm{M} / \mathrm{cs}$. Built almost exactly as Number 19. Set much more economical in battery consumption. Complete in fully working gear and microphone, assembly key. £9/19/6, carriage 15/-

PERSONAL CALLERS WELCOME

## INTRODUCTION TO

LAPLACE TRANSFORMS for radio and electronic engineers

W. D. Day, Graduate I.E.E., A.M.Brit.I.R.E.

Radio and electronic engineers without a sound knowledge of Laplace Transforms and their applications to electrical circuits find themselves seriously handicapped; their difficulty has been to find an introductory text catering for their need, that of being able to use Laplace Transforms as a tool to solve their particular technical problems. This book, written specially for them by a radio engineer, presents the transformation theory in a language they will understand, dealing with electrical circuits from the very first paragraph and building up to the stage when transforms are used to investigate transient conditions.

A WIRELESS WORLD book


## INSTRUMENT REPAIRS

oont watir take iovantace ofoun aick shivet invel TIVE PRICES AND GUARANTEED REPAIRS.
We specialise in the repair and conversion of the following :-
MULTI-RANGE METERS.
AMP.VOLT-WATTMETERS
ELECTRONIC AND ALL ALLIED
MEASURING EQUIPMENT.
SPC. LABORATORY EQUIPMENT.
LEDON INSTRUMENTS LTD.
96, Deptford High St., London, S.E.8. TIDEWAY 2689


| TELETRON TAPEJAK |  |
| :---: | :---: |
|  | he first Trans arized Radio Tun pecially designed |
| use with Tape Recorders. |  |
| High Sensitivity. |  |
| Twin tuned cir. cuits. |  |
| Pre-setting for MW.Programmes |  |
| I,500M. |  |
|  | rice ...... 6590 |
| the teletron CO, LTD. |  |
| 112B, Station Rd. London, E.4. SIL. 0836. |  |
|  |  |



South Midlands Construction Limited ROMSEY RD., GADNAM, SOUTHAMPTON

# Methods of solving complicated problems to derive the fullest advantage from modern computers 

## Numerical methods

for high speed computers

G. N. Lance. msC, phd, mais, afres

This book collects those methods of solving complicated problems which have been developed by research mathematicians, including the author, to make the fullest possible use of all types of modern automatic high speed computing machines. All the methods described have been tested and found useful in practice, while important considerations, such as degree of accuracy, storage space, and time and cost to produce the answers, are discussed. The book should prove invaluable to programmers, mathematicians, engineers, physicists, chemists, and scientists generally who are interested in the application of electronic computers to the solution of their own particular problems.
42s net by post 42s 11d 167 pages from leading booksellers

Published for DATA PROCESSING by
Iliffe \& Sons Limited Dorset House Stamford Street London SE1
POST PAID-CUT PRICE TOOLS
WHIT. OPEN END SPANNERS, drop forged
and plated, set 6 , $\frac{1}{10}$ in. to $\frac{1}{2}$ in., $12 / 6$. POCKET
NEON TESTER, with retractable screwdriver,
5/-. 5in. SIDE CUTTERS, $5 /-.5 \mathrm{Sin}$. PLATED
ROUND NOSE TAPERED PLIERS, 5/-:
7in. FLAT NOSE BOX JOINT TAPERED
PLIERS, 8/6. 7tin. COMBINATION PLIERS,
6/-. TUB. HACKSAWS (Eclipse Type), 11/6.
H.s. TWIST DRILLS. Set 7 , $\frac{1}{1}$ in. to tin.
12 v. D.C. MAGNETIC SWITCH. Cuts out on 2
12 v. D.c. MAGNEr dead short. $13 / 6$. P.P.
OUR FAMOUS TRANSFORMERS. Input
tapped 5 , 11 17 tapped 3 to 30 v. 2 a. or

> 1 a., $7 / 6 ; 3$ а., $13 /-; 4$ a., 17/6; 6 а., 27/6; 24 v . 2 a., $23 / 6$
> TOGGLE SWITCHES DPDT $3 / 6$. SP $1 / 9$. MICRO SWITCHES. Make and Break, 5/6. MAINS TRANSFORMER AND RECTIFIER giving 12 v. 1 a. D.C. Output. 19/6. P.P. And with Output 30 v. 2 a., $33 / 6$. P.P. NICKEL NIFE BATTERIES. 1.2 volt 2.5 $\begin{aligned} & \text { amp. Size } 3 \times 28 \times 1 \text { in. Practically e } \\ & \text { ing. } 6 /=\text { or } 3 \text { for } 16 /=\text {. P.P. } 4 \text { for } 21 / \% \text {. }\end{aligned}$ Ex. W.D. ARMY MORSE KEYS. $3 / 6,6 /-$ and 8/6.
> All above items new and guaranteed 1,000 NEW S.T.C. FREQ, CRYSTALS. 10,555 $\mathrm{k} / \mathrm{c}$ to $19,872 \mathrm{k} / \mathrm{c}$. $5 / 6$ each. Lists available. PAXOLIN TUBING. $1 \frac{1}{2}$ in. O.D. $\frac{3}{10} \mathrm{in}$. thick. 6 ft . lengths. $17 / 6$ P.P. Ideal for aerial masts. Stronger than steel. Paxolin Panels $12 \times 6 \times \frac{1}{8}$ in. 3/6 P.P.
> UNISELECTOR 8WITCHES. 50 v. D.C. 6 bank 25 way and 3 bank 50 way, all tested and guaranteed, $30 /-$ each, in lots of 25 or more plus carriage. Or 37/- each. P.P. 10,000 STROWGER RELAY8. Open to offers.
> RELAYS $12 \mathrm{v}, 2$ or 4 make $11 / 6$
> Lists sent on request. Post orders only to THE
> RADIO \&ELECTRICAL MART 29 8TATION APPROACH, 8UDBURY TOWN, WEMBLEY, MIDDX.

## "AS-NU" <br> REGUNNED T.V. TUBES

Supplied from stock and despatched by British Railways same day. COMPLETE NEW GUNS fitted in every tube and fully guaranteed for TWELVE MONTHS.

|  |  |  | Mullard |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Mazda |  |  |  |  |  |
| 12 in. | $\ldots$ | 64 | 10 | 0 |  | 65 | 0 |

Other types available, Please contact.

## J. P. WRIGHT

Ia Shotton Street, Doncaster

Sole Distribution Agent
Phone: DON 2636 or 66252.


## Fidelia



Fidelis Major AM/FM tuner unit with pre-amp tone controls, etc., R.F. atage on all wavebands, variable selectivity, etc. Price £27/4/-, or witb the Major amplifier, £42/14/
Fidelis Imperial, YH
or with preamp, and toner. Price
$515 / 5 /-$, Fidelia prediton, switched VHF tone El 10. \&14/6/=, or with $\mu$ re-amp. and tone controls Prlce Eidelia Major amplifer, \&18.


Full details willingly on request (6d. ior postage is appreciated.)

2 AMHURST ROAD

- BCYEHOPMENTS

TELSCOMBE CLIFFS Nr . Brighton
SUSSEX,
Tel.: Peacehaven 3156

MORSE CODE TRAINING
Get your Radio Operator's Licence the easy way!
\|H\|! $\|$ CII CANDLER has taught MORSE CODE by correspondence for 50 years. On Land, Sea and in the Air and in every Continent, you will find hrat-class Radio Operators who have earnt their profession or excelled as Amateurs the CANDLER WAY. Write for the Candler "Book of Facts "without obligation and see for vourself how fascinating the Candler Method of teaching the Morse Code can prove. You may if you wish pay as you learn.
CANDLER SYSTEM CO. (5SW) 52b ABINGDON RD., LONDON, W. 8 Candler System Co., Denver, Colorado, U.S.A.

## BARGAIN ÖFFER surplus White Spot R.F. Transistors at $4 / 6$ each. POST FREE

Our Component Lists for 3d. Stamp Money Back Guarantee on all Irems NEO MAIL ORDER SUPPLIES 2A MAXWELL RD., PORTSMOUTH

## American

## DAMAGED METER?

Have it repaired by Glasers
Reduce overheads by havinz your damaged Electrical Measuring Iustruments r spaired by L. Glaser \& Co. Ltd.

We specialise in the repair of all types acd makes of Voltmeters.
JNSTRUMEMT
REPAIRS। meters, Multiranze Tast Meters, Elactical Ther mometers. Recording Instruments, etc. As contractors to various Govermont Departments, we are the leading Eleotrical Instrument Repairers in the Industry. For prompt estimate and speedy delivery send defective instrambat by registered gosi, or write to Dept. W.W
L. GLASER \& CO. LTD.

96-100, Aldorngate 8treet, London, E.C. Tel.: Moמarch 8822

## RESISTANCE WIRES EUREKA-CONSTANTAN

 Most Gauges Available
## NICKEL-CHROME

MANGANIN

## COPPER WIRE

ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED
SMALL ORDERS PROMPTLY DESPATCHED B.A. SCREWS, NUTS, WASHERS. soldering tags, eyelets and rivets, EBONITE and BAKELITE PANELS. TUFNOL ROD, PAXOLIN TYPE COIL formers and tubes, all diameteŕs send stamp for list trade supplied

## POST RADIO SUPPLIES

33 Bourne Gardens, London, E. 4 Phone: CLlssold 4688

## LYONS RADIO LTD.

SUPPLI UNITS No. 19 Mk . 2. Rotary transformer units in metal cases $10 \times 8 \times 6 \mathrm{im}$. Inpot 12 v , D.C. Outpat am 110 mA . In good condition. PRICE ONLY 45/MAGNETRONS. Type 725A. As new and unused in original cartons. PRICE ONLY 15/-. 931 A Photomultipliers with resistance net-work assembly. PRICE ONLY 52/6. Many other types of Magnetrons, Klystrons etc. in stock Enquirles welcome. AISERS. 5 in diz. 0/50A. A.O. or D.C. measurement. PRICE ONLY $30 /-$ A.C. or

HEADPHONES. With beadband and connecting cord: Low resistance type. PRICE ONLY $5 / 6$ pair. Brlanced Armature type. Sell-matching, very sensitive, especially suitable for use with crystal or transistor receivers, monitoring tspe recorders, etc. PRICE ONLY 7/6 pair Poatage $1 / 6$.
LLLIPTICAL SPEAKERS. $7 \times 4 \mathrm{in}$, , ohm p.m. $\mathrm{m} / \mathrm{c}$. ype by tamous maker. Aa new, manufacturer's surplus, MICRO-AMMETERA. Moving coll, 2 in. dia, flush panel mig., uncalibrated scile. PRICE ONLI 25 IGRANTC JACK PLUGS AND SOCKETS. New condl tion, ex equipment. PRICE ONLY $1 / 9$ each. Supplied separately, not necessarily in pairs. Post any qty. 1/6. RADIO EXBIBITION. As we are only a short bus ride sway trom Earis court we are holding our usual opening of the Exhibition, 24th Aug. So If in Town why not pay us a visit and secure some of the many Items which we whll have for disposal at GIVE-AWAY PRICES.

3 COLDHAWK ROAD, (Dept. M.W.)
SHEPHERD'S BUSH, LONDON, W. 12
Telephone: Shepherd's Bush 1729

## AUDIO OUTPUT METER

The Labgear audio power meter is an essential to all Sound engineers and $\mathrm{Hi}-\mathrm{Fi}$ enganeers
Ranges 25 mW to 1 wanges 25 mW to 1 watt and 1 watt to 10 watts. Accuracy $5 \%$. Impedance 3, 15 and 600 ohms. Ready to use £4/10/- or kit of parts and data $£ 3 / 15 /=$

## NOME RADIO OF MITCHAM

Dept. W. I87 London Road, Mitcham, Surrey. Telephone: MIT. 3282.

## A.R.R.L. RADIO AMATEURS HANDBOOK $1960 \quad 32^{\prime} 6$ <br> Postage $1 / 9$

Radio Handbook by Editors and Engineers I5th, edition. Postage 2/6, ............. 60/-
Radio Controlled Models by Camm. Postage 1/=,..................................... 12/6 World Radio Handbook for Listeners by Johansen. Postage $/ /-\ldots . . . . . . . . . . . .$. IS/6 Guide to Amateur Radio 1960 by R.S.G.B. Postage 6d.
Practical Wireless Service Manual by Camm, new edition. Postage $1 /-\ldots \ldots . .21 /-$ Marine Radio for Pleasure Craft by McKay. Postage 1/-. ........................ 23/Transistor Superhet Receivers by Sinclair, Postage 8d.
Using an Oscilloscope by Easterling. Postage 6d. ....................................... 6/6 Guide to Broadcasting Stations by "Wireless World." Postage 8d. ... 5/Mullard Circuits for Audio Amplifiers. Postage 10 d .
Beginners Guide to Television by Camm. Postage 8d.
UNIVERSAL BOOK CO. I2 LITTLE NEWPORT STREET
LONDON, W.C. 2 (adjoining Lisle Street

## electronic <br> in <br> engineers

## for supervisory appointments

- High technical interest
- Opportunity to travel abroad
- Individual responsibility
- Good promotion prospects
- Excellent salary levels

Ferranti Computer Division are about to make supervisory appointments in connection with Computing Installations, planned or already operating, in the U.K., France, Norway, Sweden, Italy, Germany, Switzerland, South Africa and South America.
If you have no academic qualifications, good Service experience will be favourably considered, as successful candidates will be given six months' training.
This is an opportunity to join the most progressive computer team in Britain. Please write, giving details of your qualifications and experience, to
T. J. LUNT, Staff Manager, Ferranti Limited, Hollinwood. Lancs. And quote reference CDM.

## UNITED COMPONENTS LTD.

Design and Manufacturing Organisation for

R.G.D. - REGENTONE - ARGOSY

Invite applications from Electronics Engineers for Senior and Junior positions in expanding design teams engaged on the following work:

## Television Receiver Design.

Radio Receiver Design.
Transistor Ápplications for Radio and T.V. Receivers.
Test Equipment Engineering.
Instrument Standardising.
Component Testing.
Technical Clerk.
These appointments offer unrivalled scope for personal advancement. Excellent working conditions with every facility required for top quality work. Salaries are excellent, normal working hours short and a pension and life insurance scheme is operated by the company. All applications will be regarded as strictly confidential.

Write to: Technical Director,<br>United Components Ltd.,<br>Eastern Avenue West, Romford, Essex.

## TECHNICALLY TRAINED by

## IC <br> in radio, television and ELECTRONIC ENGINEERING

Opportunities in Radio Engineering and allied professions await the ICS trained man. ICS Courses open a new world to the keen student.

RADIO AND TELEVISION ENGINEERING: RADIO AND TV SERVICING; ELECTRONICS, COMPUTERS AND DATA PROCESSING, etc.

ICS Courses give very real help to the man setting up his own business or facing a technical career In the radio industry.
Examination Courses for:-British Institution of Radio Engineers City \& Guilds Telecom. Tech., C. \& G. Radlo Servicing (R.T.E.B.) and C. \& G. Radio Amateurs.

LEARN-AS-YOU-BUILD PRACTICAL RADIO COURSE Build your own 4 -valve TRF and 5 -valve superhet radio receiver. Signal Generator and High-quality Multi-tester.
FILL IN AND POST THIS ICS COUPON TODAY It brings the FREE ICS Prospectus containing full particulars of ICS courses in Radio, Television and Electronics.


## THE NORTHERN POLYTECHNIC <br> Holloway Road, London, N.7.

Principal:
T. J. Drakeley, C.B.E., D.Sc., Ph.D., F.R.I C., F.I.R.I.

## Department of Electronics and Telecommunications

Full-time Day, Part-time Day and Evening Courses in Telecommunications Engineering in preparation for the Northern Polytechnic Diploma in Electronics and Telecommunications, the Graduateship of the British Institution of Radio Engineers, and the City and Guilds of London Institute Telecommunication Technicians Course and Supplementary Studies for the Full Technological Certificate.
Full-time 2 year Course in Radio and Television Servicing, also part-time day release and evening classes are held in these subjects in preparation for the City and Guilds of London Institute and the Radio Trades Examination Boards' Certificates. The Supplementary Studies covered are:-
Advanced Telecommunications and Electronic Principles Communication Radio
Basic Microwave Techniques
Microwave Radio-Felay Systems
Radar and Radio-Navigational Aids
Sound Broadcasting
Television Broadcasting
Digital Computers
Analogue Computers
Audio Engineering
Pulse Circuit Analysis
All the above courses include practical laboratory and workshop experience.
London fees: £30 per year, or £11 per term, plus $£ 2$ registration fee, for full-time courses. (No fee for students under 18 years of age).
Evening class fees range from $40 /$ - to $55 /$ -
Enrolment for day classes by appointment.
Enrolment for evening classes, $5.30-7.30$ p.m., 20 th and 21 st September, 1960.
New term commences 26th September, 1960.
Prospectus free on application to Secretary.

require a

## TRAINEE COMPUTER MAINTENANCE ENGINEER

This is an excellent opportunity for a man aged between 22-33 years to break into the computer field and to progress with a growing Department in an expanding industry. We want to hear from men who have, or are in the process of acquiring H.N.C. Electrical/Mechanical and who have experience in, and are familiar with, pulse techniques and electronics generally. Please write giving details of age, experience and qualifications, etc., to Mr. V. W. Williams, Ford Motor Company Limited, Dagenham, quoting reference GME.

## THE

## PEMBRIDGE

 COLLEGEOF ELECTRONICS

## offers training in

RADIO
TELEVISION
AND ELECTRONICS
(a) Full-time One Year Course in Radio and Television. College course in basic principles for prospective servicing engineers.
"The next course commences on 6th September, 1960, and enrolments are now being accepted. Following course commences 3rd January, 1961".
(b) Home-Study Courses in Radio, Television and Telecommunications Engineering up to City and Guilds Final Certificate. Some courses include constructional kits and practical exercises.
(c) Kits-of-parts with full constructional instructions.

For details of the above, write to:

> The Principal, P.11,

THE PEMBRIDGE COLLEGE OF ELECTRONICS
34a Hereford Road, London, W. 2

#  

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 156 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses; administered by our Specialist Electronics Training Divisionthe B.I.E.T. School of Electronics, explains the benefits of our Employment Dept. and shows you how to qualify for five years promotion in one year.

## We definitely Guarantee © NO PASS - NO FEE "

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than $f 20$ a week, send for your copy of "ENGINEERING OPPORTUNITIES" today-FREE.

## WHICH IS YOUR

 PET SUBJECT ?Mechanical Eng., Electrical Eng., Clvil Engineering, Radlo Engineering, Automobile Eng., Aeronautical Eng.,
Production Eng.,
Bullding, Plastios, Buliding, Plastics, Television, etc.
GET SOME
LETTERS AFTER YOUR NAME!
A.M.I.Mech.E. A.M.I.C.E.
A.M.I.M.I.
A.M.I.M.I.
A.F.R.Ae.S. B.S. A.M.Brit.I.R.E. A.M.Brit.I.R.E, Gen. Cert. of Education Etc., etc.

## BRITISH INSTITUTE OF ENGINEERING

TECHNOLOGY (Incorporating E.M.I. Institutes)
(Dept. SE/22 ), 29 Wright's Lane, London, W. 8

## PRACTICAL EQUPMENT

Basic Practical and Theore tic Courses for beginners in Radio, T.V., Electronics, Etc. A.M.Briti.R.E. City \& Guilds Radio Amateurs' Exam. R.T.E.B. Certificate P.M.G. Certificate Practical Radio
Radio \& Television Servicing Practical Electronics Electronics Engineering Automation

## INCLUDING TOOLS! T00LS!

The specialist Electronics Division of B.I.E.T. (incorporating E.M.I.Institutes) NOW affers you a reallaboratory training at home with practical equipment. Ask for details.
B.I.E.T. SCHOOL OF ELECTRONICS
FOST COOTON CMOLT

Please send me your FREE 156 -page "ENGINEERING OPPORTUNITIES" (Write if you prefer not to cut page)

## NAME



ADDRESS


## THE DATA PROCESSING AND CONTROL SYSTEMS DIVISION OF THE <br> ENGLISH ELECTRIC

COMPANY LIMITED

has vacancies for a number of

## SITE COMPUTER ENGINEERS

for diagnosis of logic and circuitry faults at Operational Establishments in the Home Counties and Preston, Lancashire. Successful applicants will, after an initial training course, be required to take up responsible positions at Computer Installations on customers' premises.

In addition, two positions are available in BRISTOL, as follows:-

1. An Engineer for permanent night duties. In view of the special operating circumstances of the Computers concerned, this Engineer will be required to work 9.30 p.m. to 8 a.m. four nights a week and will receive an appropriate salary.
2. An Engineer primarily engaged for daytime duties.
Applicants for any of the above positions should hold a Higher National Certificate (or equivalent qualifications) and have had at least two years. experience in Development or Maintenance of Computers or other pulse circuitry.

During training, special subsistence allowance will be made to any successful applicants, who have to live away from home. Attractive salaries will be offered with these positions, which are permanent and enjoy the benefits of the Company's attractive Staff Pensions Scheme and qualify, after initial service, for three weeks annual holiday. Assistance with housing may be available in certain cases.
Applications should be made in writing, giving full details of qualifications and experience to: Dept. G.P.S., Marconi House, Strand, W.C.2, quoting reference WW 388B.

## Electronic manienance techncians

are required by the

## ENGLISH ELECTRIC VALVE COMPANY LTD.,

Chelmsford

They should possess maintenance experience on radar or radio installations for work on modulators for the testing of magnetrons.

Attractive salaries and conditions of employment can be offered to suitable applicants.

Applications should be made to the:

Personnel Officer Dept. G.P.S., Marconi House, Strand, London, W.C. 2 quoting reference W.W. 1590C.

## COUNTY BOROUGH OF BOLTON - EDUCATION DEPARTMENT <br> BOLTON TECHNICAL COLLEGE

 FULL-TLME ELECTRONIC ENGINEERING COURSEA three year course in Electronic Engineering is available. Candidates should be at least 16 years of age and have taken, or be taking, Gieneral Certificate of Education courses, which include Mathematics and Physics at the Ordinary and/or Advanced level, or equivalent courses in Technical Institutions. The Institution of Electrical Engineers accepts the College Diploma for exemption from Parts I and II of the Institution Examination.

This rapidly developing industry offers new and attractive openings to qualificd men, and students who have passed through the course are readily absorbed by industry.
Further particulars may be obtained from the Principal.

## MARCONI INSTRUMENTS

## ST. ALBANS HERTS.

Junior and Senior Design Development Engineers required for work on Electronic Measuring Instruments in the Telecommunication field. Applicants should have a sound knowledge of Radio Frequency work and also experience in the use of electronic test gear associated with this type of Design Work. These Engineers would work in a small team which is responsible for a new design from the specification stage right through to the ultimate production. The positions are permanent and pensionable and offer good prospects to suitable men.

Write to Dept. G.P.S., Marconi House, Strand, London, W.C. 2 quoting reference WW 2970S.

## TECHNICAL

 TRAINING in radio televisionChoose the RIGHT course:
Radio and television engineering industrial television
radio and television servicing RADIO SERVICE AND SALES VHF/FM ENGINEERING ELECTRONICS COMPUTERS AND PROGRAMMING
A.M.BRIT. I.R.E.; City and Guilds Telecom. Technicians.
C. \& G. Radio and T.V. Servicing (R.T.E.B.).
C. \& G. Radio Amateurs Certificates.

## LEARN-AS-YOU-BUILD

## Practical Radio Course

Gain a sound knowledge of Radio and T.V. as you build your own 4 -valve T.R.F. and 5 -valve superhet radio receiver, Signal Generator and Highquality Multi-tester. At the end of the course you have three pieces of permanent and practical equipment and a fund of personal knowledge and skill . . . ICS Practical Radio courses open a new world to the keen Radio amateur.

## electromics emorincerimo



## THERE ARE ICS COURSES TO MEET YOUR NEEDS AT EVERY STAGE OF YOUR CAREER

FILL IN AND POST THIS COUPON TODAY

You will receive the free 60 -page ICS Prospectus listing examinations and ICS technical courses in radio, television and electronics plus details of over 150 specialised subjects.

Other ICS courses include:
MECHANICAL, MOTOR, FIRE, CHEMICAL, ELECTRICAL AND CIVIL ENGINEERING . . . SELLING AND MANAGEMENT, ARCHITECTURE, WOODWORKING, FARMING, GARDENING, ART, PHOTOGRAPHY.
please state on coupon subject you are interested in.


## is your flair for INITIATING NEW DESIGNS FOR COMPUTER SYSTEMS <br> being encouraged?

It will be at I.C.T.! We are looking for men who. have proved their ability on the logical design of computers or similar digital equipment.

We are offering you the opportunity to join our rapidly expanding research team where you can take responsibility for the initial design of large scale equipment.

You would enjoy a generous salary, excellent amenities and pension scheme facilities. You would hold a key position in our well equipped Electronic Laboratories at Stevenage, where housing aid is available.

We expect you to have an Honours Degree. But proven experience, ability and 'flair' can override its necessity.

Similar posts are available in our Special Projects Department at Dartford, Kent


Write to:
Manager, Personnel and Training Division International Computers and Tabulators Limited
Gloucester House, 149 Park Lane, London, W1

## english electric valve company ltd.

## COMMERCIAL ENGINEERS

Two new positions exist in our Sales Engineering Division for experienced electrical or electronic engineers with several years in sales engineering in the electronics industry.
Applicants should possess sound knowledge of transmitter valves, microwave tubes, and their applications.

An engineering degree and/or qualifications to C.I.E.E. standard required.

These are permanent, pensionable positions in an expanding industry. Write in first instance with details of age, experience and qualifications to

Group Personnel Officer,
Marconi House, Strand, London, W.C.2, quoting reference W.W. 15973.

## RADIO POLICE

nSPECTORS OF POLICE (SIGNALS) required by
GOVERNMENT OF NYASALAND
for permanent and pensionable appointments subject to natisfactory probatjonary service.

Commencing salary based on age and experlence in scale 2760 rising to $£ 1,285$ a year. Initial outfit grant und annual unlform allowance. Free passages. Liberal leave on full ealary.

Candidates of good education and physique, not below 5 ft. 7 in , normal fision without glasqes, must have cound knowledge of Z.F. and V.IH.F. fixed and moblle simplex and duplex radio telephone systems and low power petrol/ electriclty chargers and alternutors. Knowledge of morse and abllity to instruct trainees on radio subjects an advantage. Preference given to candjdates under
30 years of age.

Write to the Crown Agents, 4, Millbank, London, S.W.1. State age, name in block letters, qualifications and experience and quote MLA/50901/WF.

## LOUGHBOROUGH COLLEGE of TECHNOLOGY INSTRUMENTATION

A One-year post-graduate course in Instrumentation, organised in three substantially independent terms of ten weeks duration each, is being offered at Loughborough College of Technology.

The content of the course has been planned to provide a good grounding in the fundamentals of industrial measurement techniques with particular emphasis on Instrumentation for Control Engineering.

Tuition fees- $£ 25$ per term
£75 full course
College Union Fee-£2 per term.
Residential accommodation will be available in one of the College halls.
Further particulars can be obtained from:-
Head of Department of Electrical Engineering, Loughborough College of Technology, Loughborough, Leicestershire.

## THE INDEPENDENT TELEVISION AUTHORITY

 invites applications for the appointment of Assistant Engineer in Charge at each of its Medium Power Transmitting Stations which are now being built at Caradon Hill, Liskeard, Cornwall, and Stockland Hill, Honiton, Devon. The successful applicant would be required to control a shift and to act as deputy to the Engineer in Charge. He must have a first class knowledge of high frequency and television engineering, with practical experience in the operation and maintenance of television transmitters, and ancillary equipment. The salary scale for this appointment is £1,090 x £100- $£ 1,390 \times$ £95£1,580. Applications quoting E/16 and stating age, experience, qualifications should be addressed to thePersonnel Officer,
I.T.A.,

62, Brompton Road, London, S.W.3.
Not later than August 1, 1960.

## DRAUGHTSMEN

Opportunities exist for CIRCUIT and ELEC. TRO-MECHANICAL DRAUGHTSMEN to obtain progressive positions on interesting new projects. Convenient interviews arranged by telephone (DERwent 6688), or apply:-

Personnel Officer
DECCA RADAR
LIMITED,
2 Tolworth Rise,
Surbiton, Surrey.

# TELEVISION RECEIIING EQUIPMENT 

by W. T. Cocking M.I.E.E.

The book deals comprehensively with television receiving equipment and gives many practical details and design data. It assumes that the reader will have a fair knowledge of sound radio technique, and while the treatment is largely non-mathematical formulx useful to the designer have been collected in appendices

## 30s net by post 31s 9d 454 pp illust.

## from leading booksellers

Published for "Wireless World" by

Iliffe \& Sons Ltd Dorset House Stamford St London S.E. 1

##  <br> Vaconcies have arisen in the development and pre-production fields of microwave and thermionic valve manufacture at:- <br> M-O VALVE COMPANY LIMITED <br> (A subsidiary of G.E.C.) <br> Spheres of interest to Physicists, or Electronic or Mechanical Engineers will be available and a four-figure salary will be payable to successful candidates, according to qualifications and experience. <br> Applications are invited from Physicists, qualified Electronic or Mechanical Engineers, preferably aged between 24 and 40 years, to:- <br> <br> Personnel Manager Ref. PM/DE,60 <br> <br> Personnel Manager Ref. PM/DE,60 <br> <br> M.O. VALVE CO. LTD., <br> <br> M.O. VALVE CO. LTD., <br> <br> Brook Green, Hammersmith, W.6. <br> <br> Brook Green, Hammersmith, W.6. <br> Strictest confidence will be observed. <br> ลㄱ|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

## RADIO TECHNICIANS

 IN
## CIVIL AVIATION

Men aged 19 or over for interesting work providing and maintaining aeronautical telecommunications and electronic navigational aids at aerodromes and radio stations in the U.K. Fundamental knowledge of radio or radar with some practical experience essential; training provided on special types of equipment. Salary according to age and station, approx. $\mathcal{L 6 7 0}$ at age 25 rising to $E 795$. Prospects of permanent pensionable posts. Good opportunities for those who obtain O.N.C. in Elec. Eng. and certain C. and G. Certificates for promotion to posts with maximum salaries of $£ 875, £ 1,035$ and $£ 1,260$. Apply to the Ministry of Aviation (ESBI/RT), Apply to the Ministry of Aviation (ESBI/RT),
Berkeley Square House, London, W.I, or to Berkeley Square House, London, W.I, or to
any Employment Exchange (quoting Order any Employment Excha
No. Westminster 3552).

## EIECTRONIC ENGINEERS and TECHNICLIANS

are required by old-established engineering firm in North Cheshire to join new service department being formed in order to introduce specialised computing equipment of American design into Europe. ENGINEERS must possess H.N.C. or ENGINEERS must possess H.N.C. or
equivalent with not less than two years equivalent with not less than two years
experience in pulse circuitry and techniques. Salary in terms of experience.
TECHNICIANS must possess O.N.C. with not less than two years experience in the electronic industry. Salary in terms of experience.
All applicants must be free of military service obligations. Please write, glving details of age, education, experience, etc. to detais No age, education, experience, etc. to

## a

## erpanti -EDIMBURG

## TRIALS ENGINEER

Ferranti-Limited wish to recruit a trials engineer to join a team on the development trials of an advanced radar fire control system. Applicants should have a degree or Higher National Certificate and about three years experience in the electronic field. The successful candidate must be prepared to fly in modern high speed aircraft. A staff position with membership of a pension scheme and a substantial salary will be offered. Please apply giving details of training and experience to the PERSONNEL OFFICER, FERRANTI LIMITED, FERRY ROAD, EDINBURGH, 5 quoting Ref. Tr. E/59.

## UNICAM INSTRUMENTS LTD.

This company specialises in the production of high quality optical instruments for use in spectrum analysis and has an international reputation as a leader in this field. At all stages of manufacture the best standards of workmanship are needed.
We have vacancies for men with electronic experience for testing. Radar and radio technicians with fault finding experience would be suitable.
If you have the kind of. background which you think would fit you for this interesting work in a pleasant University City, please let us have full details of your qualifications and experience.
Write to:-
The Works Manager,
Unicam Instruments Lid.,
Arbury Works, Cambridge quoting reference E.S.26.

## THE UNITED OXFORD HOSPITALS

Applications are invited for the post of Chief Electronics technician to assist in the developments related to cardiac surgery. The salary will be $£ 785$ to $£ 1,005$ (subject to review). Conditions of service will be in accordance with the Whitley Council for the National Health Service. Applications together with the names of two referees should be addressed to the Assistant Administrator, Radcliffe Infirmary, Oxford, from whom further particulars may be obtained.

VACANCIES IN GOVERNMENT 8ERVICE
A number of vacancies offering good career prospects, exist for:-

RADIO OPERATORS - WALE
CYPHER OPERATORS MALE \& TELEPRINTER OPERATOR8 $\}$ FEMALE Write giving details of Education, Qualifications and Experience to:Personnel Officer,
G.C.H.Q. (FOREIGN OFFICE)(3/R CO), 53, Clarence Street, Cheltenham, Glos.

## Battersea College of Technology, London, S.W. 11. (Physics Dept.)

The following Postgraduate Courses will be held during the Session 1060-61. Autumn Term begins October 3rd, 1060. 1. Microwave Physics (full-time and parttime) leading to M.Sc. The Department of Industrial and Scientific Research has accepted this course as suitable for tenure of its Advanced Course Studentships. 2. Radiation Physics and Radiological Protection (part-time and evening) leading to the Certificate of the College 3. Rheological Techniques (evenings) Full details and enrolment forms from the Head of Department.

# We do not want you to apply... 

to us if you want a routine job.

On the other hand if you want an EXCITING, VIRILE position in Britain's latest industry with considerable opportunities of improvement we will be very pleased to hear from you.

Current vacancies located in a pleasant part of the country about an hour's journey north of London are as follows:-

## Chief Applications Engineer

An energetic and competent man is wanted to lead a growing team of engineers engaged in applying Company products to the needs of the customer.

The field covered is wide and includes new types of magnetic material, ceramics, loaded rubbers, etc., for the electronic and telecommunication industry.

The work is challenging and at times exciting but the right man can make it fascinating and rewarding.
A good degree or professional status in physics, electrical or electronic engineering is desirable, but extensive practical experience and administrative ability are essential.

Development Engineer for the development and testing of lelectronic components. A knowledge of electrolytic Capacitors or semi-conductor devices would be advantageous. H.N.C. level preferred.

Technical Assistants for the servicing and modification of electronic test and control equipment. Ordinary National Certificate or better is preferred and a knowledge of pyrometry as applied to the control of kiln temperatures is required for one vacancy.

Prototype Wiremen for the construction of automatic test and production equipment. All vacancies are permanent and progressive. There is an excellent contributory superannuation scheme. Housing at all levels is readily available.

Apply in confidence to Box No. 0585 c/o "Wireless W'orld".
T.V. ENGINEER required, fully experienced. Top wages. Permanent position.

RITZ RADIO
306
NEASDEN LANE, N.W. 10 GLADSTONE 4983


Interesting vacancies exist at the Feltham Laboratories of E.M.I. Electronics, Ltd., for the following:
ENGINEER to be responsible for the climatic testing of components and equipment. The post involves liaison duties with associated project teams. A H.N.C. in Electrical Engineering, together with experience in the basic techniques of measurement applicable to electronic components is an essential qualification for this post. Experience of environmental testing, particularly with regard to G.W. work would be a decided advantage.

Ref. Sa/2/4
TRANSFORMER DESIGNER (TEAM LEADER)-An experienced Transformer Designer of special purpose Transformers for use in G.W. and other defence projects is required. The qualifications required are H.N.C. and an imaginative engineering outlook, together with a sound theoretical and practical knowledge of Transformer design. Several years' experience in this field is essential.

Ref. Sa/2/5
INTERMEDIATE VALVE LIAISON ENGINEER in a group advising on the availability and use of valves and semi-conductors for missile borne "radar" applications. The Engineer appointed will be deputy to the head of section and will be required to organise trials on valves and semi-conductors and to give technical advice. A degree or H.N.C. with relevant experience is essential. Ref. $\mathrm{Sa} / 12 / 6$
ENGINEER to carry out the maintenance, modification and calibration of testing equipment to A.I.D. standard. Candidates should have at least two years' experience of this work and also hold qualifications up to H.N.C. (Electrical Engineering) standard. Ref. Aa/8/x
TECHNICAL ASSISTANT to assist an Engineer in the carrying out of the work detailed above. Experience in the servicing of test gear, either in the Armed Services or Industry is essential. An O.N.C. (Electrical Engineering) would be a distinct advantage.

Ref Aa/8/x
ENGINEER to join a project team and to be responsible for carrying out liaison duties between that team and other internal departments. He would also ensure that equipment designed is compatible with customer requirements. Candidates should hold a H.N.C. in Electrical Engineering and have a minimum of three years' experience in electronic development work. This post would be of interest to a young engineer wishing to take on duties with an appreciable administrative content.

Ref. Pa/4/30
Starting salaries will be determined by qualifications and experience and it is Company practice to review salaries annually on the basis of ability and potential.

Please write, quoting the appropriate reference number, to:
Personnel Manager,
E.M.I. ELECTRONICS LTD., HAYES, MIDDLESEX.

## ENGINEERS \& SCIENTISTS

of professional standing who wish to explore the possibilities of a new appointment are invited to write for further information regarding this confidential service covering the whole of Great Britain to

## STAFF CONSULTANTS LIMTTED

Engineering © Scientific Personnel Consultants, 20, Southampton Place, London, W.C.1.

## PHILIPS ELECTRICAL LIMITED

(Medical X-ray Division) 45 Nightingale Lane, Balham, S.W.12.

A vacancy has arisen for an Assistant in the Installation Planning. Department. Knowledge of electronics and drawing office experience desirable. Capable of working on own initiative, training will be given. Aged 18/23. Write giving full details of experience etc. to the Personnel Officer, at the above address.

# SMITHS Fwomede 

## BRITAIN'S CAR RADIO SPECIALISTS INVITE APPLICATIONS FOR THESE POSTS

## ASSISTANT FOREMAN

Experience of car radio application and maintenance desirable but not absolutely essential. This progressive appointment is in the Service Department.

## EXPERIENCED SERVICE ENGINEERS

These appointments hold out very definite prospects of advancement for the right individuals.

Applications giving full details of career to date should be addressed to: THE STAFF MANAGER, S. SMITH \& SONS (ENGLAND) LTD., CRICKLEWOOD, LONDON, N.W. 2 quoting ref. SM245

## Senior Electronic Engineer

A vacancy exists for a senior engineer to work on the development of new types of nuclear electronic equipment. Applicants should be of graduate status or equivalent, with several years experience of electronic development, preferably including recent work on semi-conductor units. Commencing salary not less than $£ 1,000$ p.a. according to qualifications and experience.
Apply in confidence to:-
The Personnel Manager,
Plessey Nucleonics Ltd., Weedon Road, Northampton.

## CONTROL SAUNDERS-ROE LIMITED <br> a Division of Westland Aircraft Limited

 have vacancies for CONTROL ENGINEERS to work on the Trials and further development of "Black Knight" at High Down, Isle of Wight. There is also a vacancy for a Mechanical Engineer with Rocket Motor experience. neer with Rocker Motor experience.Applicants should forward details of Applicants should forward
their career to date to the: Personnel Officer.
SAUNDERS-ROE LIMTTED,
East Cowes, Isle of Wight. Quoting reference DT. 62.

## London County Council Norwood Technical College

Applications fuvited for the following posts in department of Telecommunications and Eleotronics which provides full-time courses it Telecoms, Electronics, Radio Operating and Radar; part-time coursea additionally include Radio and T.V. Servicing, T.V. Technology and other specialist subject.s.

Assistants grade B to teach:-
(i) Radio and Electronics in full- or part time coursea leading to BL.B.E. and C. \& G. exams.
(ii) Radio Operating and Radar in P.M.G. and M.O.T. Radsar Certiflcate courses. Special knowledge of and qualifications in one or both these subjects necessary
(1ii) Machine Shop and Workshop Practice and Eagineoring Drawing in full- and part time courses leading to C. \&: G. and G.O.E exams.
(iv) Radio, T.V. and Blectronic Sorvicing in courses
exams.
Burnham (FE) salarles in the range 2738 £1,486. Commencing and maximum salary depending on age, qualifications and experience Appointments temporary in first instance.
Application forms from Principal at College (FEibi/WW/1626/8), Knights Hil, S.E.27

## INDEPENDENT TELEVISION NEWS LIMITED

 requireCAMERAMAN/TECHNICAL ASSISTANTS and OPERATOR ENGINEERS to operate camera and electronic equipment during transmission time and act as Technical Assistants or Engineers outside transAssistants or Engineers outside trans-
mission periods, constructing and maintaining equipment with the minimaintaining equpment with the mini-
mum of supervision. Sound knowledge mum of supervision. Sound knowledge experience required. Junior development engineer in radio or electronics would be suitable for the junior positions. Minimum salaries $£ 1,023$ or $£ 1,292$ per annum according to experience. Applications in writing to the Secretary, I.T.N. Television House, Kingsway, W.C. 2 .

## UNITED KINGDOM ATOMIC ENERGY AUTHORITY

## Instrument Mechanics (Physical and Electronic) and Instrument Electricians

We have vacancies for men experienced in fault diagnosis, repair and calibration of a wide range of instruments used in nuclear reactors, radiation laboratories and chemical plant operation. The work is interesting and involves working with instruments using pulse techniques, wide band low noise amplifers, pulse amplitude analysers, counting circuits, television, and industrial instruments for the measurement of flow, pressure and temperature.
Men with appropriate experience in H.M. Forces or with industrial experfence of radar, television, radio or industrial instrumentation are invited to write for further information.
The rate of pay is $£ 12.12 .0 \mathrm{~d}$. for a 44 -hour, 5 -day week. Housing will be available for married men. Promotion prospects are good and there is a superannuation scheme. Application forms and further information can be obtained from:

Recruitment Officer,
Dounreay Experimental Reactor Establishment,
Thurso, Caithness, Scotland.

## W. H. ALLEN SONS \& COMPANY LTD.

require a
SENIOR ELECTRONICS
ENGINEER
for their Servomechanism Design Department for work on electronic instruments and control systems.
Applicants, age about 30 , should have an Honours Degree in Electrical Engineering or alternatively an H.N.C. with a wide or alternatively an H.N.C. With a wide experience would be acceptable. Con-
siderable design experience of transistor siderable design experience of transistor
circuitry and digital techniques is essential circuitry and digital techniques is essential would be advantageous. The work involves co-operation with other staff working on electro-mechanical and hydraulic systems. The above post offers good prospects, excellent conditions of service, and a Contributory Pension and Life Assurance acheme. A comprehensive range of Welfare and Recreational facilities is available and ansistance will be given towards expenses assistance will be given towards expenses involved
district Applications should be made in writing, giving details of age, qualifications, experience and present salary to:

THE PERSONNEL MANAGER
(Ref. 1001/4)
QUEENS ENGINEERING WORKS, BEDFORD

## THE INDEPENDENT TELEVISION AUTHORITY

invites applications for the appointment of Engineer-in-Charge at its Medium Power Transmitting Station which is now being built at Caldbeck, near Carlisle. Applicants must have Electronic qualifications, a first-class knowledge of High Frequency and of Television Engineering, and must have gained practical experience of the detailed organisation and operation of a Television Transmitting Station. The successful applicant may be posted to one of the Authority's existing transmitting stations, prior to taking up his permanent appointment at Caldbeck early next year. The scale for the post of $£ 1,190-$ $£ 1,920$ per annum. - A contributory Pension Scheme is in operation. Applications, stating age, experience and qualifications, should be addressed to the

Personnel Officer, I.TA.,
62, Brompton Road, London, S.W.3, quoting reference $\mathrm{E} / 18$, not later than 8th August.

## AMPLIFIER DEVELOPMENT

Engineer required to assist design and development of large electronic power amplifiers and associate equipment. Applicants preferably educated to degree or H.N.C. standard.. Write to Manager, Vibration Department, W. Bryan Savage Ltd., 8, Dalston Gardens, Stanmore, Middx., giving details of qualifications and experience.

## THE INDEPENDENT TELEVISION AUTHORITY

invites applications for the appointment of Assistant Engineer-in-Charge at its Medium Power Transmitting Station which is now being built at Caldbeck, near Carlisle. The successful applicant would be required to control a shift and to act as deputy to the Engineer-in-Charge. He must have a firstclass knowledge of high frequency and television engineering, with practical experience in the operation and maintenance of television transmitters, and ancillary equipment. The salary scale for this appointment of $£ 1,090 \times £ 100-£ 1,390 \times$ £95-£1,580. Applications quoting E/19 and stating age, experience, qualifications should be addressed to the Personnel Officer, I.T.A., 62, Brompton Road, London, S.W.3, not later than the 8th August, 1960.

## UNITED KINGDOM ATOMIC ENERGY AUTHORITY <br> PRODUCTION GROUP <br> INSTRUMENT MECHANICS


#### Abstract

Windscale and Calder Works, and Chapelcross Works require experienced men with knowledge of electronic equipment and/or industrial instrumentation for fault diagnosis, repair and calibration of a wide range of instruments used in nuclear reactors, radiation laboratories and chemical plant. This interesting work involves the maintenance of instruments using pulse techniques, wide band low noise amplifiers, pulse amplitude analysers, counting circuits, television and industrial instruments used for the measurement of pressure, temperature and flow. Men with Services, Industrial or Commercial background of radar, radio, television, industrial or aircraft instruments are invited to write for further information. Training Courses in Specialised Techniques are provided for successful applicants having suitable Instrumentation background.

Married men living beyond daily travelling distance will be eligible for housing. A lodging allowance is payable whilst waiting for housing. Working conditions and promotion prospects are good.


Applications to:
Works Labour Manager, Windscale and Calder Works, Sellafield, Seascale, Cumberland
or
Works Labour Manager, Chapelcross Works, Annan, Dumfriesshire, Scotland.

## Telecommunications Equipment DEVELOPMENT ENGINEERS

## SENIOR \& JUNIOR ENGINEERS

 Required for the following posts AIR/SEA RESCUE EQUIPMENT LIGHT AIRCRAFT MULTI CHANNELEQUIPMENT HOMING DEVICESApplicants should have previous experience in V.H.F. and U.H.F Equipment, also a good working knowledge of transistor techniques.

Posts carry good salaries, excellent working conditions and first class prospects of advancement.

Write in confidence, giving full details of age, experience and qualifications, to

# Z. \& I. AERO SHRVICES LTD. <br> Head Office: 14 South Wharf Road, London, W. 2 

# Tel.: AMBassador 0151/2 <br> Cables: ZAERO, LONDON 

RETAIL BRANCH (personal callers only): 85 TOTTENHAM COURT ROAD, W.2. Tel.: LANgham 9403 Please send all enquiries, correspondence and Mail Orders to Head Office
VENNER 8 -day clockwork time switches. 24 -hour
dial with one make nod one break. 1 amp. 230 V con.
tacts Second-hand, good conditlon, complete with
winding key ....................................... $2 / \cdot 27 / 6$

## AVOMETERS

Overhauled and guaranteed Model 7


## KLYSTRONS AND MAGNETRONS

 Klystrous$417 \mathrm{~A}, 9.1-11.3 \mathrm{~cm} .25 \mathrm{~mW}$. output
$723 \mathrm{~A} / \mathrm{B}, 8702.9548 \mathrm{Mc} / \mathrm{s}$., 20 mW . output $2 \mathrm{~K} 25,8500-9660 \mathrm{Mc} / \mathrm{s}$, , 32 mW , output. KRN3. $3195 \mathrm{Mc} / \mathrm{s}, \quad 100 \mathrm{~mW}$. output. Magnetrons
$2 J 36,9003-9168 \mathrm{Mc} / \mathrm{a}, 14 \mathrm{~kW}$. peak output bJ30, $375 \mathrm{Mc} / \mathrm{s}$, mean, 150 W . mean output QK59. QK60, QK61, QK62-10cm, bund 923500

|  | CATHODE-RAY TUBES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Vol | Va: | Vgl | Defi. | Price |
| 2AP1 | 2507. | 1000 V . | 60 V . | E8 | 25/- |
| 3BP1 | 675 V . | 2000 V . | 50 V. | Es | $12 / 6$ |
| 5 FP 7 | 250 V . | 7000 V . | 45 V . | EMM | $12 / 6$ |
| ESP7 | 430 V . | 1500 V . | 30V. | Es | 140/ |
| 78 P 7 | 330 V . | 7700 V . | 50 V. | EM | 451- |
| $7 \mathrm{BP7} 7$ | 770 V . | 8800 V . | 70 V. | EM | 60/- |
| 10 UP21 | 770 V . | 13200 V . | 70V. | EM | 70/- |

## STEEL C.R. TUBE SCREENS

suituble ior 3PBI and other $3 i n$. tubes, brand new, with rubber lining and mounting foot

## BRAND NEW AMERICAN BLOCK

## CAPACITORS

$0.25 \mu \mathrm{~F} 4000$ V. 8prague, Btud Terminals, 2 tin.
3 in. $x 8$ tin.
00v. 3/~ 1500 V . $4 / 6$ P.p. $3 / 6$ $0.5 \mu$ F, G.E.: $1000 \mathrm{~V}, 3 / \sim 1500 \mathrm{~V}, 4 / 6$. P.p. $1 / 6$. $12 / 6$ $1 \mu \mathrm{~F}^{2}: 400 \mathrm{~V}$. 3/6; 600V. Bathtub $2 /-600 \mathrm{~V} .4 /$. P.p. $1 / 6$. $2 \mu \mathrm{~F} ; 400 \mathrm{~V} .3 / 6 ; 600 \mathrm{~V}$. Bathtub $3 / * ; 600 \mathrm{~V}$. Tubular 2/6; $2 \mu 60 \mathrm{~F}$. $3 /-$ P.p. $1 / 6$

 $4 \mu \mathrm{~F}: 220 \mathrm{~V}$. A.C. $4 / 6 \mathrm{i} 600 \mathrm{~V}$. $5 / 6: 600 \mathrm{~V}$. Tubular $5 /-$ $4 \mu \mathrm{~F}: 1500 \mathrm{~V}$. Btud Terminals $1 \mathrm{i} \mathrm{in} . \times 3 \mathrm{in} . \times 4 \frac{1}{2} \mathrm{P}$. p. $1 / 6$ $4 \mu$ F: 4000 V. G.E. Stud Terminals $41 \mathrm{in} . \times 3$ p.p. $\times 1 / \mathrm{min}$. p.p. 3/-25/ $10 \mu \mathrm{~F}: 350 \mathrm{~V}$. 76 ; $600 \mathrm{~V}, 8 /$ - P.p. $2 /$ VACUUM CAPACITORS $50 \mu \mu \mathrm{~F} 32 \mathrm{kV} .$. p.p. $3 / 6$ 40/ELECTROLYTIC CAPACITURs, T.C.O.:-
Micropack" $4 \mu \mathrm{~F} ~$
350 V . Pk. Wkg.. p.p. 3 d 1/8

Lectropack " $8-8 \mu \mathrm{~F}$. Can not isolated 450 V . 3/6

## COMMUNICATION RECEIVERS

All Recelvers are available on H.P. Terms. Please rite for detalls. R.C.A. AR.88LF HALIICRAFTER's-2 $\begin{array}{lll}£ 80 & 0 & 0 \\ £ 85 & 0 & 0 \\ £ 65 & 0 & 0 \\ \text { £42 } & 0 & 0\end{array}$ All the above are fully overhituled, tuned and adjusted in accordance with the original specification and fully guaranteed for six months.
MARCONI OB-100, good condition, tested and in guaranteed working order These can also be overbauled to Laboratory 8tandard. Please write for detalls.


PRICE, in perfect conditlon, complete with ten colls and

V.H.F. RECEIVER UNITS BC-624
(part of SCR-522 Transmitter-Receiver)


4 Crystal controlled channels, 100-156 Mc/a. 9003 R.F. stause; 9003 Mixer; Three I.F. stages 128G7; Det/AVC/Audio 12JEGT $\quad$ Oscillator Generator ; $\underset{\text { garmonla }}{\text { Hat }}$ monlo Amplifer 9003; Audio Squeich-other seetion of 12AH-GT. High and Low fimpedance output.
PRICE. complete with valves, with description and circuit dingram, but without squelch relay $25 /-$, p.p. $6 /-$

AL8O LLMITED QUANTITY ONLY:
TRANSMITTER UNITS BC-625
(part of sCB-522 Radio Set)
Valves: Speech Ampllfer 6887; Push.Full Molulator (two 12A6); Oscllator 6G6G; 1st Harmonic Ampl. 12A6; 2nd Harmonle Ampl. 832; Power Ampl. 832. Output 8 watte.
PRICE, complete with valves, description and circuit
 Price, ehations and circuits available at p.p. $3 / 6 \quad 7 / 6$

## WESTINGHOUSE SELENIUM RECTIFIER POWER UNITS

tnput $116 / 230 \mathrm{~V}$., fully smoothed and fused, Output adjustable from 80 to 140 V . D.C. by means of fine and coarse tap switches in the secondary winding. Maximum
 10 in. deep $\times 3 \frac{1}{2}$. high.

## METERS

$50 \mu \mathrm{~A}$. D.C. MC Miniature meters, 1 fin. Rd., Panel Mtd., Cal. 0-5, Bealed
$200 \mu$ A: D.C. MC:-
2In. Fid. FI. Mtd.

$500-0-500 \mu \mathrm{~A}$. D.C. MC $3 \ddagger \mathrm{in}$. Bd. Fl. Mtd., Call-
brated $5000-50$ yards, secondhand
lma. D.C. MC 2in. Rd. FI. Mtd., enclosed in a screened steel box $2 \ddagger \mathrm{in}$. Bq., and fitted with lead 5-0.5A. D.C. MO Charge-Discharge Meters, 2jin. $\underset{30-0-30 \mathrm{~V}}{\text { Mitd. }}$

150 V. A.C. MI:-
2in. Rd. Fl Mtd
2in Rin. Rd Mid.

brated $300 / 900 \mathrm{~V}$.
300 V . A.C. MI 2 tin. Rd. Fi. Mtd
td.....

221-
20/-
$17 / 6$
$12 / 6$ $17 / 6$
$20 /=$

17/6
P.O. RELAYS TYPE 3000. $1,000 \cap$ Coil, 6 C.O. contacts, P.O. RELA
unused, removed from equipment ....p.p. $2 /$. $6 /-$

Packing and carriage charges are quoted for England, Scotland and Wales only.
We urgently require Frequency Meters BC-22I, Communication Receiver RI359 and other high class Communications and Test Equipment.

# Wireless World Classified Advertisements 

Rate $9 /$ - 1or 2 lines or less and $4 / 6$ for overy additional ne or part thereof, average lines 6 words, Box Numbers World," Dorset House, Stamlord Si., London, S.E.1.) Trade Discount details a vailable on application. Press Day September 1880 issue, Wednesday, July 27th, 1980. No responslbility
aocepted for errors.

## WARNING

Readers are warned that Government surplus components and valves which may be offered for sole through our displayed or classified columns carry no 'manufacturers' guarantee: Many of these items will have been designed for special purposes making them unsuitable for civilion use, or many have deteriorated as a result of the conditions under which they have been stored. We cannot undertake to deal with any complaints regarding any such items purchased.

## RECEIVERS AND AMPLIFIERS

TTRO Rx'S, etc., AR88, CR100, BRT400, G209, S640, etc., etc., in stock. $-R$. T. \& I. Service, Ashville Old Hall, Ashville Rd.
London, E.11. Ley. 4986 . FOR sale, Decca broadcast receiver in steel band cabinet, a.c./d.c., long and medium waves, band spread tuning on $11,13,16,19,25,31$ output. -Offers to Workshops Superintendent Trinity House Workshops, Orchard Place, Blackwall, E.14. WHEN in the Midlands you must visit our Church St., Wolverhampton; always available, ex-Government surplus recelvers, test sets; valves and components of every description; also secondhand radio sets, T.V. sets, tape recorders, record players and suchlike equipment. Stores, 15, Church St., Wolverhampton Tel

## SURPLUS AND SECONDHAND

A RMSTRONG A. 10 Mk . 11 Amp. control enclosure (new 4 weeks ago) voigt domestic corner horn, and Volgt unlt, as new; £93, or separate.-McLintock. 12 . Springfield Rd. Moseley. Birmingham. 13. Spr. 1594

NEW TEST EQUIPMENT
$\mathrm{H}^{\text {Eathyiriss can now be seen in tondon and }}$ 1 purrchase on easy terms free brochire. 25/8, 138, Lewisham Way, S.E.14. Tideway $\mathbf{M}^{\text {Arcons }}$ Q-Meter itrzeg, as brand new
 Cased manual tris in. i. Marconi Briage 2a, Convent Hill, S.E.19. Liv. 8489. Evenings.
HETERODYNE Irequency meters, BC221
 $250 \mathrm{mc} / \mathrm{s}$ TS175A, $85 \mathrm{mc} / \mathrm{s}-1,000 \mathrm{mc} / \mathrm{s}$, brand new
receivers, Eddystone 358 X , $40 \mathrm{kc} / \mathrm{s}-32 \mathrm{mc} / \mathrm{s}$,
 $145 \mathrm{mc} / \mathrm{S}$ A.M./F.M. 125 : AN/APR-4 $38 \mathrm{mc} / \mathrm{s}-$ $4,000 \mathrm{mc} / \mathrm{s}$ Receiver-indicators APN-9s, etc.R. V. Wright, $4 a$, Nepal Ave., Atherton, Manchester.

## TEST EQUIPMENT-SURPLUS AND SECONDHAND

SIGNAL generators, oscilloscopes, output © meters, wave voltmeters, frequency meters, multi-range meters; etc., etc.' in stock. $R$. . I .

COSSOR double beam oscilloscope Type 339 , base, 5 CPS to $250,000 \mathrm{CPS}$, amplifier 10 CPS to 2 MCPS, good working order; offers above

## NEW COMPONENTS

CRYSTAL microphone inserts with excepC tionally high output. (Cosmocord Mic 6.) Guaranteed newly made and boxed free -Radio-Aids. Ltd.. Dept. W.29. Market Street, Watford, Herts.
INE output transformers and scan colls for new or $25 /-$ used, send s.a.e. for imm. quote, new or $25 /$ - used, send s.a.e. for imm. quote, Ltd., 28 , Brockley Cross, S.E.4. Tideway 5394, 7917.
[0334
COMPONENTS-SURPLUS AND
SECONDHAND
CATALOGOE No. 14 Government Eurplus and model radio control, over 500 illustrated items, $2 j^{\prime}$ (refunded on purchase), p.p. (6d. North Rd., Brishton
VARIABLE resistances (potentiometers), min. ref. ZA 2808/watt 100.000 ohms, $1 / / \mathrm{spin} \times 1 / \min$ : cond. qty. 4,000 at 6 d for the lot: $\mathrm{T} / \mathrm{R}$ new $1 / 6$ new terminal blocks $1 / 6$ each for th.e lot.-Fiodwell, Ltd., 232,
Lavender Hill, Enfeld, Middx. Enfield 7878. $[9112$


When you're looking for better reproduction, the most sensible thing to do is to make certain you use a Partridge Transformer. Specified as suitable for their designs by leading audio engineers and authorities, Partridge Transformers enjoy the trust and confidence of thousands of discriminating users.


## P4076

Baxandall 5 watt Amplifier. Price $36 /$


## P5203

Mullard 20 watt
Amplifier. Price 95/-

There's no doubt they're the best but cost no more!

All types available for immediate delivery. Post the coupon now and well send you the latest brochure and name of your nearest stockist.


## Partridge Transformers Ltd.

 Roebuck Road, Chessington, SurreyName of my stackist and illustrated brochure please.

NAME ADDRESS

WW/8/50.
U.S.A. Representative: M. SWEDGAL. 258 Broadway, New York 7, N. Y. Tel.: WOrth 2-5485

## NEW GRAMOPHONE AND SOUND

TAPE recorders; Ferrograph, Vortexion, BreTAPE Decks: Wearite, Brenell, Truvox BradTAPE Decks: Wearite, Brenell. Truvox. BradR.C.A. Dynatron. Dulci \& Chapman. Microphones: Reslo, Lustraphone, Grampian of Teleunken. All tapes $\&$ accessorles. Specialists in Audio Service \& Sound Recording.
HIRE purchase facilities avalable. Ltd. 95 , Liverpool Road, Liverpool. 23. Great Crosby
4012 . CINE-VOX disc recording mechanisms for 56 gns . ar somplete tape-disc or direct channels from $50 \mathrm{gns} .-112 \mathrm{gns}$.
DEMONSTRATIONS can be arranged in Lon-"Con-Fow, full details write to K.T.S., Litd., Callers by appointment only. BRAND new, selling off bargalns in High D Fidelity equipment and Tape Recorders; send w.a.e. GLASGOW.-Recorders bought. sold, ex$\mathrm{T}^{\text {changed, cameras, etc exchanged for }}$ recorders. or
Argyle Sice
Sla BOGEN or Telefunken heads Atted to your Stan. Harding can help you set up your home or studio equipment Repairs and mods home dertaken.-Harding Electionics. 120A, Mora Rd., Cricklewood. London, N.W.2. [9188 "EROICA " RECORDING STUDIOS (Est. or industry, research, music and private use: Ferrograph, Brenell, etc.; complete recording service: music for industry, tape/disc.- 31 . Peel St. Eccles, Manchester. Eccles 1624. Studio
Director Thurlow Smith, A.R.M.C.M. Director Thu

## TAPE RECORDING. ETC

R ENDEZVOOS RECORDS offer comprehensive $78 / \mathrm{LP}$ tape to disc recording facilities. -Leaflet from 19, Blackfriars St., ${ }_{[8829}$ TAPE to disc recording: Microgroove LP from 18 $27 / 6,78$ r.p.m. from $11 /-$, also 45 r p.m. 48-hour service; s.a.e for comprehensive leaflet Little Place. Moss Delph Lane, Aughton. Ormskirk, Lancs. Aughton Green 3102 . [8931 TAPE/DISC/TAPE transfer editing, copying: with L.P. from your precious tapes), consult Britain's oldest transfer service: every new tape recorder is supplied with a 2 -year free 35 per cent saving) now available. Sound News Productions, 10, Clifford St., London, W.1. Reg. 2745.
[0192

## VALVES

Valve cartons by return at keen prices: A., send $1 /$ formarers, $75 a$ all Gomples and list-J. \&

RECLALMED valves, tested and perfect, huge /. plus , modern and obsolete, all one price, -iewis 46 Wostage each; delivery by return. Essex.
[9184

## Valves wanted

NEW valves wanted, any quantity, best cash Lane, west Bromwich, Stan Whiletts, 43 , Spon Lane, West Bromwich, Staffs. Tel. Wes. 2392.
A transmitting and receiving; keenest cash prices paid. What have you to offer?-Write or call Lowe Bros., 9a, Diana Place, Euston Rd., N.W.1. Tel. Euston 1636-7. ${ }^{2} 9124$

## WANTED, EXCHANGE, ETC.

A pROMPT cash offer for your surplus brand A new valves. speakers, components. test Bradford, 1. 10190 $W_{\text {ceivers, and }}$ all types of communications reR T. \& I. Service, Ashville Old Hall, Ashville R.d., London. E.11. Ley. $4986.1[0163$ W ANTED in bulk radlo and telephone parts, Rodwell. Ltd, 232 . Lavender Hill, Enfleld, Rodwell. (Enfield 7878.)
[9111

## FOR <br> SALE AND WANTED ADVERTISMENT FORM TURN TO <br> PAGE No. 163

## EXCLUSIVE OFFERS

+ B. 46 Receivers (post war), $1.5 / 15 \mathrm{Mc} / \mathrm{s} .91910$ * B. 47 Receivers (post war), $15 / 500 \mathrm{kc} / \mathrm{s}$. * Muirhead ArlepotJ
* 5tt. P.O. Racks
* Coustant Current Transformers, 15 kVA range 10 miles)
* YT-81 Valver
* Dowty High Speed Registers
* Avo Geiger Connters
$\star 20 \mathrm{kVA} 115 / 230$ v. Auto Transformers.
* American Teletype Tables
* 50 watt Rack Mounling Power Amplifer $200 / 250$ v. A.O.
* Preaision Mains Filters
* 150lt. Aerisl Masts 6 in . dia., stee tubular
* 15 kVA Constant Carrent Translormers
* Trylon Lattice Ladder Towers, 50ft. high
$\star$ 851s. 21 in . dia. Steel Tubular Masts
$\star$ R. 201 Triple Diversity Receivers
* Ferranti jlVA Automatic Voltage Reguators
* T-1131 Transmitters
* Weatinghouse 30 kV ., 100 mA ., Cabinet Rectiflers varlable from $\mathbf{2} \mathbf{k V}$
* AM-8/TRA-1 250 watt Amplitien
* AN/FMD-1 Rawin
$\star$ DFG-24 Direation Finders
* TCJ Transmitters, 400 watts
* RCA 5-element Yagi Arrays, $420 \mathrm{Mc} / \mathrm{s}$.
* 75tt. Plywood Masts, 9in. dia
* RCA 25-watt Projector Speakers.
* RCA Twin Channel Brondeasting Control
* E.H.T. Power Supply, 3 kV . 0.5 amp. in cubicle
Standard Busineas Machines, Video type Tape Recorders, 3in. tape
* 18in. Bowl Deck Insulators
* Power Supply Units, 1,200 v. $200 \mathrm{~m} / \mathrm{a}$
t E.E.T. Power Supply. $7,500 \mathrm{v} .3 .5 \mathrm{mmps}$, cubicle
$\star$ E.H.T. Power Supply, 1,000 v. 5 amps.,
Sola 2 kW . Constant Voltage TransIormers

81210 8910 21210 £3 10 $£ 600$ £4 0 £6 0 $\$ 1610$ 8200 $£ 40$ 8115 10/-
£95-0
$£ 850$
$£ 60 \quad 0$
$£ 500$
21250
$\$ 350$
£35 0
2750
£8 0
8800
£27 0
£30 0
£3 0.
£35 0
8140 $£ 1850$
£25 0
22500 23 0
$2250 \quad 0$
$£ 1300$
8160

AERIAL EQUIPMENT. Whipg, Beams and Miarowave. Poles and Masts up to 150 ft., 70 different types in stoc
RECEIVERS from $15 \mathrm{Ka} / \mathrm{s}$ to $650 \mathrm{Mc} / \mathrm{s}, 60 \mathrm{kinds}$ available.
TRANSMITTERS, 50 types, Moblle and fixed up to 2 kilowatte.
CABLNETS and RACKS. American and British, open and closed, 30 patterns from 12in. to $9 f t$.
POWER SUPPLIES. Over 100 varieties giving up to 30,000 volts from standard and off standard inguts. TRANSFORMERS, 300 patterns in stock of all sizes to 20 kVA for power and 5 kW for Kadio, Andio and Modulatiou up to 2 kW also, lists, avallable.
TELEGRAPH and TELEPHONE APPARATUS of all kinds include Printers and Perforators for Morse 5, 6, 7 unit code also Transmitters and Converters and Carrier and Channelling equipment. Filters, Repeaters and Power supplies for all the above in Britigh and American versions.

40-page List of over 1,000 items in stock available -keep one by you.

RELAYS and CHOKES. 12 tons of American post-mar just arrived-a pleasure to use and look at-ask for special list-others in stock include Miniature, PolarChokes. open and potted, vary from one inch mu metal to 100 amp . power types-list avallable.
nUCLEAR GEAR-includes Scalers, Counters, Registers, Ratemeters, Dosimeters, Probes, Monitors, etc. Bpecial llat on request.
TEST EQUIPMENT. 200 different fitems of British and American test gear and hundreds of types of Meters available.

We have a large quantity of "bits and pieces" we caman int-please send us your requirements as we can probably help-all enquiries answered

## P. HARRIS

ORGANFORD - DORSET
WESTBOURNE 65051

WANTED, EXCHANGE* ETC
WANTED communication recelvers, meters, test equipment, components, electronic equipment.-Details to J. Ayres, 151. Brighton JRGENTLY wanted, manuals or Instruction Army booics, data, etc., on American or British Army, Nayy or Air Force radlo and electrical equipment.-Farris, 93. Wardour St., W.1.
Gerrard 2504. Gerrard 2504.
WANTED, good quality communication RYS radion tape recorders, lest equipment, domestic radios, record players, amplifiers, valves, components, etc., estab. 18 years-call, send of phone Ger, 4638 , Miller's Radto, 38a, Newpor: court, Leicester Square, W.C.2.
[9173
PROMPT cash for the purchase of surplus stocks of televisions, tape recorders, radios, amplifiers and domestic electrical appliances of every description, substantial funds avail-able.-Spears, 14 , Wating St. $^{\text {Sth }}$ Shehill,
Manchester. Manchester Bidland Banke, Ltd.
Bankers: M (
[0216

## REPAIRS AND SERVICE

Bomtrows of bradrobo.
LOUDSPEAKER, pressure unit, and microphone repairs, D.C.B. cone assemblies and fleld coils in cartons, service and satisfaction guaranteed -D. C. Boulton, 134, Thornton Rd.,
Brad
[0171 MAINS transformers wound to any specificaMOTOR rewinds and complete overhauls: first class workmanshlp; fully guaranteed F.M. ELECTRIC Co. Itd., Potters Bldgs Warser Gate, Nottingham. Est. 1917. Tel 54898.

We undertake the manufacture of transspecification; all work guaranteed for any 12 months. LADBROKE Transformer Co.. Ltd. 820 a , Harrow Rd., London, N.W.10. Tel. Ladbroke TRANSFORMERS to any spectication. quick and efficlent service, competitive prices estimates by return of post from: MESSRS. Newman \&t Son, 1. Grove Crescent,
South Woodford, E. 18 .
[0330
CRANSFORMERS.-Suppllers to B.B.C. slngle or long runs, prompt dellvery, home and export, rewinds to all makes.
FORREST (TRANSFORMERS FORREST (TRANSFORMERS), Ltd., Shirley Sollhull, Warwlcks. Tel. Shi. $2483 . \quad 10128$ SPEARER repairs, cones fitted flelds and cock colls wound, guaranteed satisfaction Ashford, Kent.

## Miscellaneous

## BARGAIN! Clearance of stock

10 only Electronic Counters, scale of two with Power Pack, $120-220 \mathrm{~V}$., A.C. -brand new. 0 only S.W. Transceiver, Maln $120-220 \mathrm{~V}$, A.C
${ }_{17}{ }^{17}$ only 60 W S.w. Transcelvers W/T, R/T Maln $120-220 \mathrm{~V}$ or 6 V . D.C. with rotating converter and rectifer.
ARES Por all abore equipment. Leaflets. ENQUuRIES in uriting-ATA Sclentific Pro gress Ltd.. 19 Effra Road, S.W.2. (9189 $\mathbf{M}^{\text {ETALWORK}}$, all types cabinets, chassls, capacticks, etc. to yourlabie for small milling and capstan work up to in bar.
SHILPOTT.
MEAL St., Loughborough.
$\mathrm{O}^{\mathrm{RGAN}}$, electronlc, 7-octave polyphonic, 28 O stops, twin reflex horn. requires completion, pollshing, testing, tunding: full informa-

[9172
$\mathbf{R}^{\text {ADIO }}$ Sound Pomponents made to order- - Bel R sound Products, Marlborough Yard, N19. $\mathbf{E}^{\text {LLECTRONICS }}$ engineers to the industry Production with $100 \%$ inspection. RADIO-AIDS, Let... 29, Market Street. Wat-
ford (25988), Herts.
ro214
$\mathbf{S}^{M A L L}$ London manufacturer has capacity high vacuum electrontc devices or production electronic devices.-Bax $\lceil 9108$ WEWLY formed electrical/electronic frm have
capacity available for manufacture in electro-mechanical and electronic flelds.-Box 8784. 19098

LIGGLY competitive quotations given for 11 all your prototype and production require-ments.-Newlyn Electronics, Ltd., The Fradgan, Newlyn, Penzance. Tel. Penzance 2462.

## SITUATIONS VACANT

TV engineer required, N.E. London; top rate plus sales bonuses and car allow-
[9183 nee-Box
DART.TIME electronic engineers for L.P disc I cutting mobile work, technical advising wanted in London.-Box 6677.
PART-TIME advertising and affice maneger material; experience important.-Box 6676 . material; experience important.-Box 6676.

DUODE TIME STARTS NEXT MONTH WRITE
NOW FOR DETAILS

## September brings as usual a new feast of pleasure for lovers of good musicand more especially to Duode owners who know that their enjoyment is doubled by the NATURALNESS of all they hear. <br> NOW is the time to join in the joy of Duode ownership. Whether for manoor stereo-the latest Duodes are the best long-term investment in GOOD SOUND. <br> Write now for a special offer. <br> DUODE LTD.

24 Dingwall Road, Croydon, Surrey

## More than meets the eye



It looks good but there is more in it than mects the eye-enough to make the discerning purchaser feel that he must have Savage Massicore regardless.
Generous design-no compromises on qual-ity-conscientious workmanship-that is what you get when you buy a Massicore Transformer.


SAVAGE TRANSFORMERS LIMITED
NURSTEED ROAD, DEVIZES, WILTS.
Telephone: Devizes 932

## LEWIS have the CABINET for YOU

## EXTENSIVE RANGE OF CABINETS FROM E4-7-6



THE CONTEMPORARY
Price $£ 11.11 .0$
This beautifully designed Contemporary Cabinet can be supplied in Oak, Walnut or Mahogany veneer and has a waxed semi-matt finish.
This cabinet can be fitted with any of the latest Hi-Fi units.


THE CONTINENTAL Price $£ 29.10 .0$

This elegant Cabinet is the finest in our range of those designed in the continental style. Solidly constructed and finished in Oak. Walnut or Mahogany veneers. (Dark, medlum or light, high gloss or satin finish available).

## TWO NEW LEWIS CATALOGUES:-

 The Cabinet CatalogueThe Equipment Comparator Catalogue
(Designed to assist your choice of cabinet and equipment).
Please send me details of your two new catalogues
Name
Address
BLOOCK OAPITALLS PLEASE
พพชo

## LEWIS radio

120 GREEN LANE8, PALMERS GREEN
LONDON, N. 13 (Near the Cock Tavern) Telephone: BOWes Park 1155/6

## 8ITUATIONS VACANT

$A^{\text {NTARCTICA }}$
VACANCIES exist for Wireless Operator Mechanics to serye with the Falkland Islands Dependencles Survey in the Antarctic for two year. Whilst in the Antarctic everything is provided free of charge including clothing cisarettes, etc. Liberal leave on full salary. CANDIDATES should be between 20 and 30 years of age and must be able to transmit and receive morse at 20 w.p. m. (plain language or
code) and capable of cilementary mantenance of wireless transmitting and receiving equipment.
leave leave the U.K. in October/November. London. S.W.1. State agents, name Mullbank letters, qualifications and experience and quote
$\mathrm{M} 2 \mathrm{~A} / 50980 / \mathrm{WF}$.

## LOUIS NEWMARK, Ltd.

LEADING company in the design of auto pilots for helicopters are expanding their facilities at their development laboratorles at Croydon and have the following vacancies to be flled immediately.
ENGINEERS and Assistant Engineers with degree or H.N.C. and experience in the field of light electrical engineering, electronics, electro on the development installation and filght testing of automatic pllots. Salary commensurate with experience. Pension scheme.-Apply in writing, giving full particulars to: PersonWorks. Purley Way, Croydon. Surrey, or 'phone
Mr. Barkham. Lodge Hill 3441 . 0333 Mr. Barkham. Loage Hill 344
B
APPLICATIONS are Invited for the following post in the Uganda Government Information Department Appointment on contract for 1 mencing salary (including Inducement Pey) according to sge and experience up to maximum in scale \&813 rising to £1,566 \& year: outfit allowance of $£ 30$ payable in certain circumstances; free passages; liberal leave on full
Salary, ${ }^{\text {BROADCASTING engineer (training) M2A }}$ 50941/WF).
CANDIDATES, proterably under 45 years of age, must have considerable teaching experience,
ablility to give theoretical instruction in tele communication subjects and practical instruction in maintenance and operation of medium power broadcasting trensmitters, studio control and recordlng equipment; A.M.I.E.E. an advantage. BROADCASTING engineer (M2A/50695/WF) CANDIDATES, preferably under 50 years of age, should possess Final C. \& G. Telecommuniwide practical experience of technical broadwide practical experience of technical broadcontrol equipment: A.M.I.E.E. an advantage. POSSIBILITY of permanency can be discussed at intervlew.
WRITE to the Crown Agents, 4, Millbank London, S.W. 1 State age, name la block reference number of post desired. 19165 TELECOMMUNICATION Mechanic.
War Department. Telecommunication Mechantes required for work on repair and calibration phone equipment and electronic test equipment THE work is interesting and varled and wil entall a certain amount of travel. THE posts are unestablish
QUALIFICATIONS: Apprenticeship of 5 years experience in this type of work will be given ravourable consideration.
SALARY: ${ }^{2} 9 / 8$ per week. plus $£ 1 / 2$ after satinsactory completion of probationary period, ices to $211 / 19 / 8$ according to merit and ser-
vice. ${ }^{\text {APPY: O.C. }} 4$ Command Workshop, R.E.M.E.
248, Fulford Rd.. York.
War department Employment.
A VACANCY exists in the Salisbury Plain S.W.S. Troop, Royal Signals, Bulford Camp for a Foreman of Signals. (Tech. III post) Telecommunications (Princloles) II and Tele phone Exchange Systems II, or equivalen qualifications.
FOR further particulars, conditions of service and salary apply to C.E.P.O., Salisbury Plain District, Command Ordnance Depot, Tidworth,
Hants. Hants.
SALES englneer required for well-established Sublic company distributing world-famous components to radio and electronic industries; technical background and good personality

FLECTRONICS inspector. With experience of E trouble shooting in electronic and transistor circuitry; some experience in light servo mechanisms would be an advantage.-Apply Bryans Aeroquipment, Ltd., Willow Lane
Mitcham Junction, Surrey. DRAUGHTSMAN, circultry with knowledge D of layout and wiring of modern electroacoustic communication systems, required by
Tannoy Products, Ltd., West Norwood, S.E. 27 ; Tannoy Products, Ltd., West Norwood, S.E.27; good working conditions and recognised rates
pai
pal

Qrmosiong

## HIGH QUALITY RADIOGRAM CHASSIS

STEREO 44 MODEL


A stereo and mono chassis providing 8 watts output, 4 watts from each channel, and covering the full VHF and medium wavebands. Stereo and mono inputs for tape playback and all types of crystal pick-ups and outputs for stereo and mono tape recording. Separate bass and treble manged controls with dual volume control for gase of balancing. An ideal basis for a stereo and mono system or for mono now and stereo later if required.

AF208 MODEL
22 GNS


An AM/FM chassis providing 5 watts output and covering the full VHF and medium wavebands. Tape record and playback facilities, separate bass and treble controls. Although an economically priced chassis, this has the same superior finish and quality components as our more expensive models. We confidently assert that there is no better value on the market.

## JUBILEE Mk2 MODEL

29 GNS

## (not illustrated)

This is the new and improved version of the famous Jubilee chassis. VHF, with automatic frequency control, and medium and long bands Separate bass and treble controls. Tape record and playback facilities. The improved amplifier provides 8 watts push-pull output.

These three models are of identical dimensions, 12 in . by 8 in . by 7 in . high, and of similar styling Free instruction booklet provided with each unit.

Post this coupon or write for descriptive literature or call at our Holloway showroom for full dem onstration. Open 9-5.30 weekdays, 9-5 Sats.

NAME
ADDRESS
WAC
ARMSTRONG $\underset{\substack{\text { WIRELEES } \\ \text { TELEVISION }}}{\text { CO. }}$ CO.
Warlters Road, London N. 7

## SOLDEHENG EQUIPMENT BY <br>  INSTRUMENTS for the ELECTRONICS INDUSTRY

－Comprehensive range
－Robust and Reliable
－Light weight
－Rapid heatins
－Bit sizes $3 / 32 \mathrm{in}$ ．to $3 / 8 \mathrm{in}$ ． －＇PERMABIT＇or Copper －All voltage ranges $6 / 7 \mathrm{v}$ ． to $230-250 \mathrm{v}$ ． －Prices from 19／6．

Illustrated is the 25 w ． 3／16in．replaceable bit model with safety shield．

British and Foreign Patents．Registered designs．Suppliers to H．M．and Foreign Governments．Agents Governments．Agents Brochure No．S． 5 sent free on request．
Sole proprietors and manufacturers：
LIGHT SOLDERING DEVELOPMENTS LTD． 28 Sydenham Road，Croydon，Surrey Phone：CROydon 8589

Grams：Litesold Croydon

## METER REPAIRS <br> 

All makes of Single and
Multi－range instruments repaired and recalibrated
太 Prompt Service
丸 All work guaranteed
$\star$ Priority for urgent orders．
Competitive prices for repairs to all types of instruments．Coneracts a speciality．
New meters supplied from stock（ $2^{\prime \prime}$ to $6^{\prime \prime}$ ） and complete equipment manufactured to specification．
Coll，write or phone for details to
E．I．R．INSTRUMENTS LIMITED
329 Kilburn Lane，London，W． 9 Tel：LAD 4168

## NEW HI FI LINES AT WEBB＇S：－

＂ALL BALANCE＂Pick－up arm，precision at a reasonable price ．．．．．．．．．．．．．．．．．．£13 4s．3d．
REFLECTOGRAPH＂A＂Recorder，new model built to professional standards 95 gns．
＂STERODYNE＂pick－up，low in price but high in performance．Cartridge $£ 77 \mathrm{~s} .7 \mathrm{~d}$ ．or complete P．U．with arm
$£ 17$ 17s．0d．
Hear and compare at：－
WEBB＇S RADIO

## 14 Soho Street，London，W．J．

Telephone：GERrard 2089／7308

TMPERIAL CHEMMICAL INDUSTRIES，Ltd．， 1 Plastics Division．have vacancles for Assistant Technical Officers，mostly at Welwyn Garden City，for work on Instrumentation De－
sign．Development and Maintenance．
 in Mechanical or Electrical Engineering or ap－
plied physics with practical experience in the branch offered．Some Development posts are on the electronic side where some knowledge of transistors，computing techniques and servo－ mechanisms would be an advantage
GOOD starting salaries will be paid and pen－ sion and proft sharing schemes are in opera－ tion．For married men temporary loding towards removel expenses， APPLY brtefy．quoting number 3101 to the Stafi Manager．Imperial Chemical Industries， Ltd．Black Fan Road，Welwy Carder［9163
$\mathrm{R}^{\text {ADIO }}$ mechanics．－Permanent and pension－ Rerienced in the assembly，young men ex－ perienced in the assembly，installation and testing of HF and VHF telecommunications equipment，preferably in connection with avia－ tion ground services．
STAFF will be based at the Engineering Divi－ sion of the Company，address below，but their main duties will take place overseas for varying periods installing telecommunications equip－ ment．Whilst overseas a generous daily allowance is paid．
EX－SERVICES personnel of fully skilled cate－ gories are particularly welcome to apply．
APPLICATIONS to the Personnel Officer，inter－ national Aeradio，Ltd．，Hayes Rd．，Southall， viddlesex．
ENGINEER for planning public address sys－ Ltems，qual fications H．N．C，with practical experience in electronic laboratory and／or fac－ tory production essential；salary according to producers 8，Dalston Gdns．，Stanmore，Midde Wor．0226．Dalston Gans．，stanmore，${ }_{[0312}$
I EADING Radio \＆Television Co．，require a tion of ctrcuit conversant with chassis prepara drawings primarily for service illustration． Knowledge of production sheet metal drawing an advantage．Salary according to age and ex－ CATHODE Ray Tubes：Engineer required CATHODE Ray Tubes：Engineer required for development work experienced and practical development work：experienced and prsctical and junlor levels－Apply in writing to Catho－ deon Electronic，Ltd．，Bircham Rd．，Southend－ on－Sea，Essex．

CLECTRONICS engineers：Men or women E with at least O．N．C．or equivalent experi－ ence to do final tests and inspection on a wide range of high accuracy instruments．These are permanent staff positions with penslon | fund and club room facilities．－Electronic |
| :--- |
| Instruments，Litd．，Richmond 6434． |
| 0124 | BRITISH COMMUNTCATIONS CORPORA－ D tion，Ltd．，urgently require Electrical Tes－ ters and Service Engineers；applicants should have experience of V．H．F．equipment；good rates and conditlons．－Ring Wembley 1212 or Write to Personne bition Grounds．Wembley．（Buses 8 and $92 A$ bition Grounds，Wemb

into Trading Estate．）
TECHNICIAN（aged 18－23）required to work either in London or Sunnlnghill on expert－ ments connected with the O．K．Space Research qualifications or experience in electronics：salary up to $£ 490+£ 30$ London Welghting according to age．－Apply to Geophysics Dept．．Imperial
College，London．S．W．7．
RADAR，wireless and instrument fitter Ministry in the provinces；appointments un established．but good prospects of becoming pensionable；trade training，practical experi－ ence and ability to teach are essential；pay Air Ministry，C．E．4e（CIV），London，W．C．
SERVICE man required f9181
SERVICE man required for radio irequency for the right person，42－hr．week，good wages paid according to experience．－Please apply in writing，giving experience of r．f．equipment． to the following address；Messrs．Buchanan Mash \＆Co．，Ltd．，＂D＂Block，133．Rye Lane Peckham，S．E． 15 ．
VERSEAS Of Exploration Company with world－wide selsmic partles offers permanent career to electronic techniclans．Work consists in maintaining and operating electronic record－ ing equipment under field conditions．Live generally in camp Qualification：H．N．C．or in electronics．Home leave every two years Box No． 5829.110331 CIRCUIT Designers and Circuit Laboratory of automatlc telephone exchange systems and other similar projects．Candidates should have had previous experience of this work and pre－ ferably have at least an O．N．C．or an inter－ mediate grouptd C．\＆G．certificate．K now． ledge of Crossbar switching or totalisators would be an advantage Good salary paid qualifying perlod． experience to the Personnel Manager，Ericsson Telephones，
quoting Ref．DAlted，Beeston．Nottingham，
［0160

# COVENTRY RADIO LTD．${ }^{\circ}$ ロロロロロロロロロロロロロロロロ <br> 189／191 Dunstable Road，LUTON． <br> Audio \＆Component Specialists Est． 1925 

If you are unable to visit us at Luton，send for a copy of our
HI－FI CATALOGUE
of 300 items 70 pages．
Price $1 /-$ plus 6d．postage．

## JASON KITS IN STOCK

Everest Portable Radio
\＆13／19／9－6 Transistor．
\＆15／18／9－7 Transistor．
Tuner FMT1
Tuner FMT2
Tuner FMT3
Tuner Mercury
Tuner Mercury 2．．．．．．
Tunes JTV2K
Tuner Argonaut AM／FM Tuner．．．$\& 10100$
Tuner Argonaut Radio Receiver $£ 11110$

## LUTON＇S HI－FI

CENTRE
Telephone Luton 7388／9

## The finest method for cleaning records

Already over 200,000 enthusiastic users

## THE＂Tllgt JBug＂

 automaticgramophone record cleanerPATENT No． 817.598
Price reduced to $17 / 6$（plus $5 / 10$ purchase tax） from your local dealer or

## CECIL E．WATTS LTD．

Consultent and Engineer（Sound Recording and Reproduction） Darby House，SUNBURY－on－THAMES，MIDDX

## NO NEED to go to the U．S．A．to see HEATHKITS

See the full range at Beulah Electronics＇ London Showrooms，or write now for illustrated literature．
Available as complete，ready－to－use instru－ ments，factory assembled，factory wired， factory tested or as kits．
Sole Distributors for Beulah Electronics，

（The largest Stockists of specialised TV Replace－ ments in Great Britain），
I38 LEWISHAM WAY，NEW CROSS，S．E． 14 TIDeway 6666 Grams：Flibak，London，S．E． 14

## HARRINGAY SUPPLIES

345 HORNSEY ROAD, N. 19
ARC 4107


2 complete sets-66/10/0,

## RE-ENTRANT LOUD HAILERS

Dia. 15in. Heavy Duty All Metal, new and unused, $\mathbf{6} / 10 / 0$, Carr. $10 /-$


TELEPHONES "F" TYPE
Complete in fitted case, portable, range up to 5 miles, suitable for factories, building sites, offices, etc


LOUDSPEAKER

## 10in. in cabinet

 S/H. Ex. Govt. Size $17 \mathrm{in} . \times 17 \mathrm{in}, \times$$6 \mathrm{in} ., 120 /-, \quad$ Carr. 3/6.

## TAPE <br> RECORDER or GRAM UNIT CASES Size 16 in. $\times 18$ in. $x 14 \frac{1}{2}$ in. Walnut, Polished, Polished, $30 /-$ each, Carr. 5/-.



## SMALL MODEL MAKERS MOTORS

24v. $A C / D C$
Reduction geared new. Size $1 \frac{1}{8} \mathrm{in}$. $\times$ lin. $\times$ $2 \frac{3}{3} \mathrm{in}$. long, $12 / 6$ each, $\mathrm{p} / \mathrm{p}$. 1/6. Other types of small 12 or 24 v . motors in seock.

CANADIAN
WIRELESS
REMOTE CONTROL
UNIT No. 1


With Bell and Morse Key, 15/-, Carr. 3/6.


Transformers. $\begin{array}{lll}2101250 \\ 275-0-275 & \text { v. } & 50 \\ 20\end{array}$ mA. 6.3 CT. 3 A. out 17/6.210/259 in. $300-0-300 \mathrm{v}$. 135MA6.3CT2A 6.3 CT. 2.5 A 5 v . $220 / 240 \mathrm{v}$ in. $250-0-250 \mathrm{v}$. 250 MA 4 v. 6.34 A . 4 v. 6.3 v. 4 A. 4 v. 6.3 v. BA. 4 v. 6.3 v. 3.5 A $32 / 6$. Postage $3 /$ - in the $\boldsymbol{E} I$ on all.
Pots $10 \mathrm{~K}, 10 \mathrm{k}$ Wire, 2.5 K 2 m . 25 K Lin and Log, $.05 / .25 \mathrm{M} 3 /$ - each, post 6 d . Tygan Fret $2 /$ sq. ft . Transformers Step Down.
$200 / 250 \mathrm{v}$. in 30 v . 100 watt out 17/6, post 2/-. $200 / 250 \mathrm{v}$. in 110 v .100 watt out $17 / 6$, post 21-. $200 / 250 \mathrm{v}$. in 110 v .3 .04 amps . out $44 / \mathrm{l} 0 / \mathrm{m}$, post $5 / \mathrm{m}$. AC. /TO DC. RECTIFIER UNITS, 200/250v. In $100 / 120 \mathrm{v}$. DC. out at 2.5 amp ., E8/0/0.

YOUNG man required by a Company marketqualifed to O.N.C. standard, electronics, with thorough knowledge of tape recorders and amplifiers; some light engineering expertence an advantage: successiul applicant will be respon-

sible for setting up a Service Department; piease repty with full details of career to date | and salary required.-Box 0489 . career to date |
| :--- |
| $[9177$ |

TEE RESEARCH LABORATORIES of the Middlesex, have a vacancy for a Radio Mechanic Middlesex, have a racancy for a Radio Mechanic
to work on the assembly and wiring of electronic apparatus to schematic dlagrams. Candidates should have had at least three years to the Staft Manager (Ref. WO/229T), giving particulars of experience and age
TEST engineers.-Applications are invited experience of testins radio communications experivers and transmitters; successful applicants will be offered positions on the company's permanent staff; starting salaries commensurate with qualifications and experience.-Apply In writing, giving full details, to Personnel Officer, Redifon, Ltd., Broomhill Rd., S.W. 18.
VRF-Assistant engineer required for interplanning and VHF multichannel carrier sysplanning andicants must possess HNC or equivalents; and must be experienced in above fields as there is no practical work on equipment: commencing salary at age 30 or over $£ 940$ per annum.-Personnel Oficer, Cable and Wireless, Ltd., Mercury House, Theobalds Rd.
London, W.C.1.
SENIOR Electrontc Engineer to lead design S. team for audio-frequency amplifiers up to lokW frequency, range $5 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$; qualifications degree or H.N.C. With not less than ence of broadcast relay systems. PA. and acoustics desirable; permanent position in according to qualifications and experience.Pamphonic Reproducers, 8. Dalston Gdns. Stanmore, Middx. Wor. 0226 . [0311
EXAMINER (Telecommunication) for travelCommand. inspection team covering Southern Theory and Practice essential. Fomirearity Theory and Practice essential. Familiarity to $£ 12 / 4 / 8$ for 44 -hour week plus travelling and subsistence allowance. Prospects of pensionable employment and promotion under Civil Service regulations.-Apply to REME Technical Services, Evelyn House, Salisbury,
Wiltshire.

INISTRY OF AVIATION requires M1 clan at Malvern, Worcs, for preparation of technlcal publications on radar and electronic equipment; quals., recognised engineering apprenticeship or equiv, training in an appropriate trade; H.N.C. or equiv. quals.; experience either in radar or electronics; previous ilcations advantageous; salary technical pub-p.a.-Forms from Ministry of Labour, Technical and Scientific Register ( K ), ${ }^{26}$. King St., London, S.W. , quoting D.446/0A. Closing date
[9185 12 August, 1960.
[9185
WAR OFFICE requires at Woolwich, Malvern sistants and Techntcal Assistant, for a Wide variety of work on the following Army equipments: electronic test equipment (Christchurch, Malvern and Woolwich); Radar (Maivern and Woolwich); control equipment, weapons (Woolwich): wireless, line and radiac (Christchurch and Woolwich); optical and mechanical instruments (Woolwich) plant machinery and generators (Woolwich); diesel and petrol engines (Woolwich); electro medical (WOR wich).
FOR appointment as a technical assistant ap-
plicants should possess an O.N.C. in Electrical or Mechanical Ensineering as applicable or equiv. qual.; successful completion of an Artif cers Course in R.E.M.E. or Foreman of Signals Course, may be accepted in lieu: candidates should preferably have served a recognised engineering apprenticeship and a knowledge of would be advantageous; training could be provided to successful candidates lacking equipment knowledge; willingness to continue studies for ${ }^{\text {a }}$ E.N.C. at the Department's expense would normally be expected and one day a week for attendance at a Technical College would be granted. Ability to write clear and FOR appointment as a Chief Technic
ant the candidate as a chid be expected as a minimum, the rqualifications applicable to a Technical Assistant and, in addition, to have several vears' experlence in one or more of the branches of engineering applicable to the classes of equipment listed above; for cerrepair ppointments is knowedge of R. . . E. repair procedure is hiliny desirable opportunifor both Chief Technical Assistants and Technical Assistants.
NATIONAL Salary Scales. Chief Technical Assistant £875 rising to $£ 1,035$ D.a. and Techni-
 tract where applicable a London weighting
addition of $£ 25-¢ 30$ p.a. Application forms addition of £25-C30 PR. Application forms Frofessional and Execuive Forlnato St, Atiantic

## SOUTHERN RADIO'S SPECIAL BARGAINS TRANSMITTER - RECEIVER TYPE 38 MK $\|$ * WALKIE-TALKIE



Complete in Metal Carrying Case. $91 \mathrm{n} . \times$ $6 \frac{3}{i n} . \times 4 \mathrm{in}$. Weight 61b. Frequency 7.3 to $9 \mathrm{Mc} / \mathrm{s}$. Five valves, $£ 1 / 2 / 6$. Post paid.

These TX-Rs are in NEW CONDITION, but owing to demand they are not tested by us and carry no guarantee, but should prove SERVICEABLE. ATTACHMENTS prove Type " 38 " Trans receivers. ALL BRAND NEW. Headphones 15/6; Throat Microphones 4/6; Junction Boxes 2/6; Aerials, No. 1 2/6; No. 2 5/-; Webbing 4/-i Haversaeks $5 /-$; Valves-A.R.P. 12 4/6; A.T.P. 4 3/6; Set of FIVE VALVES 19/- the set. SPECIAL OFFER No. 2:

38," as above, complete with set of external attachments, $42 / 6$, post paid.
SPECIAL OFFER No. 3:
Transmitter-Receiver " 38 ". Mk. 11. Brand new with completeset of external attachments including Webbing, Haversacks and Valves $57 / 6$ post paid. Fully guaranteed.
CONDENSERS. 100 assorted Mica; Tubular etc., $15 /$-. NEW. CONTACTOR TIME SWITCHES. 2 im pulses per sec, in case, $11 / 6$.
REMOTE CONTACTOR.
above, 7/6.
LUFBRA HOLE CUTTERS. Adjustable $\frac{子}{i n}$ MAGNETS. Strong Bar type, $2 \times$ tin., $1 / 6$ each MORSE TAPPERS. Midget type 2/9; Standard, 3/6; Heavy type on base, 5/6. ALL BRAND NEW MORSE PRACTICE SET. TAPPER with BUZZER on base. Complete with battery, $12 / 6$. BRAND NEW.
PACKARD-BELL AMPLIFIERS. Complete BRAND NEW, with valves, relay, etc., etc., $17 / 6$ each
QUARTZ CRYSTALS. Types F.T. 241 and F.T.243. $2-$ pin $\frac{1}{2}$ in. spacing. Frequencies between $5,675 \mathrm{kc} / \mathrm{s}$. and $8,650 \mathrm{kc} / \mathrm{s}$. (F.T.243). 20 $\mathrm{Mc} / \mathrm{s}$, and $38.8 \mathrm{Mc} / \mathrm{s}$. (F.T. 241, 54th Harmonic) 4/- each. ALL BRAND NEW. TWELVE ASSOR TED CRYSTALS, 45/ - Hoiders for both cypes, 1/- each. Customers ordering 12 crystals can be supplied with lists of frequencies available for their choice.
CRYSTAL CASES. 2-pin, 241/243. 10/6 per doz. RECORDING BLANKS. Brand new. "Em disc." Ready for curcing. 13 in . $6 /$ each or 15 RESISTANCES. 100 assorted useful values New wire end 1216 . NEW
SPECIAL OFFER. 12 ASSORTED METERS. Slightly damaged. Mainly broken cases (perfect movements). Including 3 BRAND NEW Aireraft nstruments. 12 for 45
STAR IDENTIFIERS. Type I A-N Covers both Hemispheres, 5/6.
TEST METERS D.C. PORTABLE 0-5,000 ohms $0-6 \mathrm{~mA} 0-1.5 \mathrm{v}$ and 3 v . In case $3 \frac{3}{3} \mathrm{in} \times 3 \frac{3}{3} \mathrm{in}$ $\times 2$ in. Voltage range can easily be extended by addition of resistances to suit individual requiroments. BRAND NEW. $12 / 6$.
ATTACHMENTS for " 18 " Transreceivers ALL BRAND NEW. Headphones 15/6; Hand Microphone 12/6; Aerials 5/-: Set of 6 Valves 30/-.
TRANSPARENT MAP CASES. Plastic I4in, $\times 10^{3} \mathrm{i}$ n. Ideal for Maps, Display, etc., $5 / 6$. Post or carr, extra. Full list Radio Books, etc., 3d
SOUTHERN RADIO SUPPLY, LTD.
II, LITTLE NEWPORT STREET,
LONDON, W.C.2.
GERrard 6653

## Transistor <br> Projects

These are all practical projects a selection of the best from the pages of RADIO-ELECRONICS MAGAZINE. Each one has been tested and they all work. Here's your chance to get the full benefit of the Lab. Work some of the best technician-writers like E. Bohr, L. J. D'Airo and many others.

## 23/- <br> Postage ||-

THE RADIO AMATEUR'S HANDBOOK by A.R.R.L. 1960. 32/6. Postage 2/-. MODEL ANSWERS. C. \& G. London. Telecommunications Principles A \& B. 7/6 (each). Postage 6d.
ANALOGUE \& DIGITAL COMPUTERS by A. C. D. Haley and W. E. Scott. 50/Postage $1 / 3$
TELEVISION SERVICING HANDBOOK by G. J. King. $30 /$-. Postage $1 / 3$
AN INTRODUCTION TO TRANSISTOR CIRCUITS by E. H. Cooke-Yar borough. 18/-. Postage $1 /$ -
SEMI-CONDUCTORS by R. A. Smith 65/-, Postage $1 / 6$.
RADIO VALVE DATA Compiled by W.W." 6th Ed. 5/-. Postage 9d.

NEW 1980 CATALOGUE I/-

## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS
of British and American Technical Books
19-21 PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Open 6 days 9-6 p.m.

A.D
LOUDSPEAKER ENCLOSURES AND
AMPLIFIER CONSOLE CABINETS A. DAVIES \& CO. (Cabinet Makers) 3 PARKHILL PLACE (off Parkhill Road),
LONDON, N.W.3.

GULLIVER 5775
Few minutes walk Belsize Park Underground

## ODDIE FASTENERS



THE FASTENER WITH ENDLESS APPLICATIONS - SIMPLE-POSITIVE SELF-LOCKING. MADE IN A VARIETY OF TYPES AND SIZES. SPECIAL FASTENERS TO SUIT CUSTOMERS' REQUIREMENTS. WIDELY USED IN THE RADIO INDUSTRY.

Mustrated brochure and other information will gladly be sent on request. DEPT. " $W$.W."
Oddie, Bradbury \& Cull Ltd., Southampton Tel: 55883 Cables: Fasteners, Southampton

## TIONS VACANT

UNIVERSITY OF SOUTHAMPTON: A nautics and Astronautics for an Electronics Technician (unestablished). Previous experience of electronic circuits essential and experience with tape. recorders and servo mechanisms an advantage. Salary (according to age) £450E615 + \&40 in lieu of superannuation,-ApplicaRegistrar. The University. Southampton, as soon as possible. INTERNATIONAL AERADIO, Ltd., has periodic City and Guilds Intermediate Telecams, an advantage but not essential if applicant has considerable experience installation/maintenance H.F./V. H.F. low/medium power comms. Equipment; applications ex-service personnel of fuliy skilled categorjes welcomed; posts are modation is provided with tax free emoluments equated to local conditions; additional marriage and chlld allowances; free air passages and Insurance; kit allowance; generous O.K. leave; apply in writing.-Personnel Manager. 40, park
M INISTRY OF AVIATION require electrical Mo engineers (assistant signals officers) for aviation telecommunications and electronic navigational aids; min. age 23, 1st or 2nd class degree tn physics or engineering or A.M.I.E.E. ${ }_{\text {Or }}^{\text {II }}$ A.F.R.Ae.S. (candidates with parts I. II and A.F.R.Ae.S.M.I.E.E or or parts 1 and of very high protessional attainment without these quals. con34) max. £1,300; slightly lower outside London and for women. Further detalls and forms from Ministry of Labour. Technical and Scientific Register (K), 26, King St., London, S.W.1.
quoting D.161/OA. quoting D. $61 / 0 \mathrm{ARCH}$ LABORATORIES of The THE RESEARCH LABORATORIES Of The MIddlesex have a number of vacancies for male Technical Asststants to work in teams tific research and vavery oin inesting sciencants should be not older than 28 and preferably up to O.N.C. standard; day release may be granted to men under 25 to enable them to continue studying for the National Certificate course; there are excellent prospects of promotion to higher grades within the Company for those who obtain the H.N.C.- Please apply in giving particulars of expertence, walleations and age. 10316 FXPERIMENTAL Officers (min. age 27) and ments mainly in Sth. England Office Establishments mainly in sth. England. Experimenta trical and mechanical engineering and survey computing, Vacancies in Sevenoaks, Salisbury, Chertsey, Farnborough (Hants), Feltham, Didcot and S.E. London, Quals.: G.C.E. (A.L.) Cert. of grouped course (Adv. grads.) in Telecomms. For survey computing wort, maths and geography at G.C.E. "A"" is useful A.E.O. $£ 382$ (age 18) to £830 p. i. $\mathrm{El}, 166$. rates in London Area. Women's scales the same by 1961. Possibility of pensionable posts and promotions.-Application forms from Ministry of Labour Technical and Scientific Register (K), 26, King St., London, S.W.1, quoting A.288/OA
SUPERINTENDENT, radio maintenance, reBroadcasting Service on contract for one tour of 3 years in frst instance. Salary scale £999, rising to $£ 1,224$ a year. Gratuity at the rate leave. Candidates, 25-50 years of age must hold a C. \& G. Final Certificate or equivalent qualification and have had at least 6 years ${ }^{\text {b }}$ experience, other than operational, 2 of which should have been in a supervisory capacity, in radio and telcommunlcations installation and maintenance especially of transmitters, up to 10 Kw power, receivers 1 rom V.B.F. to M.F., and radar and power plant up to 50 KVA, correct records and planning and executing maintenance schedules.-Write to the Crown Agents, 4, Millbank, London, S.W.1. State age, name in block letters, qualifications and agperience, and quote M2A/51051/WF. [9170
exper
TECHNICAL TRAINING

LEARN Radio and Electronics the New Pracmenting way very latest system of experi"as you learn"-Free brochure from Dept. W.W.10. Radiostructor, 40, Russell Street, Reading, Berks.
$[0241$
CITY \& GUILDS (electrical, etc.) on " No -For details of modern courses in atl branches of electrical engineering, applied electranics automation, etc., send for our 148-page Hand-book-free and post free.-B.I.E.T.
$388 \mathrm{~A}), 29$, Wright's Lane, London, W.8. TUITION
FULL-TIME courses for P.M.G. Certificates, F.C.G.L.I., Telecommunications and Radar Maintenance Certificates.-Information from
College of Technology, Full.
[0111
$W^{\text {WRELESS. See the World as a radio officer }}$
[0111 period low fees, scholarships, etc, available boarding and day students; stamp for prospec-
tus.-Wireless College, Colwyn Bay.
[0018

## LuDON CANTRGIN RADIO STORES

10. WAY PRESE BUTTON INTER-COM. TELEPHONES, In Bakelite Case with Junction
Onghly overhauled. Guaradteed. $£ 6.15 .0$. onghly overhauled. Guaradteed. £6.15.0.
DESK PHONES. Complete with Hand Bet and Dial Desk Phones. Complete wit
0.9 in
Bakelite
Case,
$£ 3 / 12 / 6$. 0.9 in Bakelite Case, $83 / 12 / 6$. 25, for PARABOLIC MIRRORS, 20 -tnch in good condition, £5, for callers only,
PROJECTION LAMPS, new condition, $8 / 6$.
PROTECTIO Bick 3
Condition $10 / 6$.
TIME SWITCHES, VENNER. 250 8 -day elockwork, 52/2/- theluding post and packing SOUND-HOWERED BREATT MIKE AND HEAD-SET. No Batteries needed, 151 -
CARBON TELEPHONE HANDSETS, New. $12 / 6$. SOUND-POWERED INSERTS. Buftable for Transisto Sete, New, 319 .
AVO UNIVERSAL TEST METERS. Reconditioned as new. In perfect working order. Model $40 £ 10 / 10 /$ -
 Ex-Gort. 0-9,999, $25 / 50$ v. D.O. Size $4 \times 1 \times 1 \mathrm{lin}$. Single coil 2,300 Q or siagle coil $500 \mathrm{Q}, 18 / 6$.
VENNER TIME SWITCHES, for switching on/of itghting and power. Reconditioned as new In ironclad coses, $10 \mathrm{amp}, 75 /-; 15 \mathrm{smp}, 85 /-; 20 \mathrm{amp}$,
TELEPHONE DIALS. 0.9 . Suitable for inter-office and factory tintallations. With fixing mount, fitted and tactory ingtalations.
with connect ting tags, $21 /$ -
with connecting tags, $21 /-$ - In good working order
$3-0 \mathrm{HM}$ PM. SPEAKERS. $10 \mathrm{in}, 27 / 6 ; 8 \sin .8 / 6 ; 6 \mathrm{in} .0 / 6 ; 5 \sin .11 / 6$. ELECTRICITY SLOT METERS ( $1 /$ - in elot) for A.C. mains. Fixed tariff to your requirements. Suitable for hotela, etc. $10 \mathrm{~A}, 84 \mathrm{~s} \cdot ; 15 \mathrm{~A} ., 94 /=20 \mathrm{~A}$. $104 /-$ Otber amperages available Reconditioned as new.
QUARTERLY ELECTRIC
RHIECK QUARTERLY ELECTRIC CHECK METERS. Re
conditioned as new, 10 A ., $42 / 6 ; 15 \mathrm{~A}$., $52 / 6 ; 20 \mathrm{~A}$., $57 / 6$. Other amperages available.
BALANCED ARMATURE HEADPHONES. Suitzble for crystal sets, $12 / 6$.

## All prices include carriage.

23 LISLE ST. (GER.2969) LONDON, W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

## ANANAN

The leading name in sound affairs
WEST NORWOOD SE27
Tel: Gipsy Hill 1131 (7 lines)


YOU are invited to apply for a copy of our illustrated brochure and price list which gives full details of our wide range of

## QUARTZ CRYSTAL UNITS

which are renowned for their

## Accuracy \& Reliability

THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works,

MALden 0334 \& 2988

## SOUTH SUPPLIES

## (ELECTRICAL LTD.)

95, OLD KENT ROAD, LONDON, S.E.I
90, HIGH STREET, EDGWARE, MIDDX. 124, JUNCTION ROAD, LONDON, N.I9


## 12-CHANNEL

 TURRET TUNER BRAND NEW. Fitted with coils $I$ to 5 and 8 to 9. $34138 \mathrm{Mc} / \mathrm{s}$. Complete with P.C.F. 80 and P.C.C. 84 Valves.Manufacturer's price E7|7|-
OUR
PRICE
$33 /-$
Carriage
paid.

## LIMITED QUANTITY BLACK D EECKER <br> 4-ELECTRIC DRILLS $\ddagger 4 \cdot 18 \cdot 6$ Carrac <br> Fraction of Maker's price

 and chuck key and in maker's sealed cartons Full instructions and full maker's guarantee. Drill polishes and takes ALL B. \& D. Home Workshop Tools including Hedge Trimmer. TV suppressed A.C.ID.C. $235 / 250 \mathrm{~V}$. We can supply all B: \& D. home workshop tools to fit this drill.
## ELECTRIC CLOCK, AUTO COOKER TIMER \& TIME SWITCH <br> BRAND NEW. Modernise and add pounds to the cooker. Ideal for automatic cooking, or any heat or current control. Complete with handsome elec. 30 Amp. Full fitting instruc.  <br> 

## Battery operated PORTABLE GRAM

78 r.p.m. Aural sound box with sapphire needle. on 2 flat 4 V , operates $\frac{0}{3} 2$ flat $4 \frac{1}{2} V$. batteries. | 300 records |
| :--- |
| List |
| f5/5 |

OUR 39/6 Plus $2 / 6$
PRICE $\mathbf{E x - l i q u i d a t o r ' s ~ s t o c k . ~}$
As above but with Transistor Amplifier, 45 r.p.m., erystal pick-up, 5in. high-flux speaker, record-ciarrying space, handsome cabinec.
£5.10.0 P. P. Pis.

## B.T.H. FAN MOTOR

200/250V. wats. A.C. $\quad 32 / 6$
Plus $2 / 6$ P. \& P.


R basic and TV servicing, all aspects from Rity \& Gulids, R.T.E.B. Cert., Brit.I.R.E., etc. Study at home under highly' qualided tutors. No books to buy.-Write for free prospectus stating subject, to I.O.S.. Intertext House. Stating subject, (Dept. 442A), London, S.W.11.
"How and Why " of Radlo and Electronics Way Poste easy by a new, no-maths, Practical perimental instructions based on hosts of exat home, New Courses bring enjoyment as well as knowledge of this fascinating subject.-Free
brochure from Dept W.W.12 Radlostructor Russell Street. Reading, Berks. [0240 TV Guilds, R.T.E.B. Cert. etc., on City and -No Fee , terms, over $95 \%$ successes.-For details of exams. and home training courses (ancluding practical apparatus) in all branches gage Handbook-free-B.I.E.T. (Dept. $397 A$ )
 A Gullds, G.C.E., etc. bring high pay and security: "No Pass-No Fee "terms; over 95\% successes.-For detalls of exams. and courses in all branches of engineering, building etectree. B.I.E.T. (Dept. 387B). 29, Wright's
Lrene, Londin. W.8. TNCORPORATED Practical Radio Engineers home stildy courses of radio and T.V. engineering are recognised by the trade as outa limited number of students only; syllabus of a mimited number of students only; syllabus of Engineer journal. sample only $2 / \sim ; 6.000$ alignment peaks for superhets 5/9: membership and entry conditions booklet $1 /-$ all post free, from the Secretary. I.P.R.E., 20. Fairfield
Rd., London. N.8.
$[0088$

## BOOKS, INSTRUCTIONS. ETC.

FOR Sale: E.W. \& W.E., Vols. 1-28 complete, 1950, almost complete, unbound; offers.- Box "A DVANCED Theory of Waveguides." By L. Lewin. Sets out subject. The author has selected for discussion a number of toplcs as representative of the field in which the centimetre-wave engineer is engaged, many of the examples being concerned With the rectangular wavegudes. - net from all booksellers. By post 31/- from Iliffe \& Sons
" INRODUCTION to Valves." By $R$. W. Milward. Bews. M.A.Cantab... M.I.E.E., and H. W. K. the principles, construction, characteristics and uses of most types of radio valves. The approach is simple and. as far as possible. non-
mathematical. but the book provides the student with a thorough understanding of valves and how they work, $8 / 66$ net from ail valves and how they work,
booksellers. By post $9 / 4$ from $\operatorname{liffe}$ \& Sons Ltd., Dorset House, stamford St. London, S.E.1.
" R ADIo Interference Suppression As applied By G. Lo Radio and Television Reception." By G. L. Stephens, A.M.I.E.E. 2nd. Ed. An
up-to-date guide to the various methods of suppressing electrical interference with radio and television reception. Many practical applicatlons are given, particular attention being paid quencies. Other chapters deal with the design quencies. of locating the source of interference, and suppression at the receiver itself. $10 / 6$ net from all booksellers. By post $11 / 2$ from Iliffe \& Sons. Ltd.: Dorset House, Stamford St., Lon-
" $\mathbf{R}_{\text {ADIO }}$ Designer's Handbook." Editor. $F$. ber I.R. E prehensive reference book. the work of 10 authors and 23 collaborating engineers, containIng a vast amount of data in a readily accessible interested in the design and appllcation of radio receivers or audio amplifiers Television, radio transmission and industrial electronics have been excluded in order to limit the work to a reasonable size, $55 /-$ net from all booksellers. By post $57 / 3$ from Iliffe \& Sons Ltd., Dorset House. Stamford St.. S.E.1.
"TEL.EVISION Englneering Principles and By S. W. Ames. B.SC. (Eons.). A.M.I.E.E., and thlrd volume of a comprehensive work on the fundamentals of television theory and practice, written primarily for the instruction of BBC englneering stail. anis volume gives the gular, sawtooth and parabolic waves and show's the mathematical relationship between them The maln body of the text is devoted to the fundamental principles of the circuits commonly used to generate such signals, the treatment being largely descriptive in nature and therefore less mathematical than that of the previous volume. The work is intended to provide a comprehensive survey of modern television principies and practice, $30 /-$ net Iliffe \& Sons Ltd., Dorset House, Stamford St.. London, S.E.1, Dorset House. Stamford


1910-Jubilee Year-1960
COMPONENT DISTRIBUTORS
Guaranteed components-

## made specially for us:-

$1 \%$ tol, SLlVER mica capacitors 84 standard values always in stock.
$\begin{array}{llll}5.1000 \mathrm{pF} & 9 \mathrm{~d} & & 1200-2000 \mathrm{pF} \\ 2200-3000 \mathrm{pF} & 1 / 3 & 3300-5000 \mathrm{pF} & 1 / 6\end{array}$ WAX COVD PAPER TUBULAR CAPACITORS 350 V . Wkg. $05 \mathrm{mF}, 7 \mathrm{fd} ., .1 \mathrm{mF} .8 \mathrm{dd} .25 \mathrm{mF}, 1 /-$
 P.V.O. COV'D ELECTROLYTIO CAPACITORS Blas $1 / 6$ to $2 / 8$. Smoothing $1 / 71$ to $3 / 3$.
I inn. dial. CAN TYPES $350 / 500 \mathrm{~V}$. from $4 /-$
${ }^{-1} 1 \mathrm{in}$. dia. POTENTIOMETERS 2 in . shaft $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$ (1реат), $250 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}$ (log.) $3 /$.
minlature mans transformer Pri. $0-200-2200.240$ v. Bec. 250 ॠ. $40 \mathrm{~mA} ., 6.3 \mathrm{v} .1 .5 \mathrm{amp}$ Stack size $2 \frac{1}{2} \times 1 \frac{12}{} \times 1 \frac{1}{2}$ n., $10 / 6$.
CELLDELOSE WADDING for resonance damping, 40 ply 36 in . wide, 5 yd. roll $17 / 6$ Sole distributors for this area

> TMPORTED HIGR STABIITY RESISTORS (12.10M). Very popular line 6d. each.
"SURPLUS" HMGH STABILITY RESISTORS Best makes. Largest eelection available, 145 atandar values plus many otaers.
$5 \%$ tw. 7 7hd.
$2 \%$ aw. 10 .
$\begin{array}{lll}5 \% \% W .70 \dot{0} & 1 \mathrm{~W} .9 \mathrm{~d} & 1 \mathrm{~W} .10 / 3 \\ 1 \% \pm W .1 / 3 & 3 W .1 / 6 & 1 \mathrm{~W} .1 / 3\end{array}$
1W. 10 10
Ordinary Carbon Resistors tW. 3d. WW. Ad, Also many
Carbon and Wirc wound up to 200 W . Full list No. 5.
AND, OF COURSE, OUR OWN PRODUCTS
Precision-made ALUMINIUM

## BLANK CHASSIS

Commercial quality, half thard 16 s.w.g. Same day
service. AN Y BIZE to nearest $1 / 16 \mathrm{in}$.2 , 3 or 4 sided. Max. length 17in., depth 4 in.
Specials dealt with promptly, $\ddagger$ no. Ain. or tha. flanges (inalde or outside). Bd. each extra.
Soldered corners (new process) 6d. ea. extra.
Price Guide (normal chassis only):-
Total area of material imeluding waste
 $112 \mathrm{sq} . \mathrm{in}$ 8/- $\quad 240 \mathrm{sq} . \mathrm{in} 10 /.-368 \mathrm{sq}$. in. $14 /-$ 14 sq. in. $7 /-\quad 272 \mathrm{sq} . \mathrm{in} .11 /-$
post $1 / 3$$\quad$ and $\underset{\text { pro } 1 / 6}{\text { post } 1 / 9}$ Quantity and trade discounts. Finishes arranged fo
quantities of 25 or over. panels


## THE WELL-KNOWN COOPER-SMITH HI-F! AMPLIFIERS

Each the best in its elass.
yet you can build it yourselft

| STEREO Control Unit | KIT | E12 12 | BUILT |
| :--- | :--- | :--- | :--- |
| 15 | 0 |  |  |

STEREO Main Amplifer .. $£ 131302180$
Mk. II Control Unit …... $£ 7 \begin{array}{llll}17 & 6 & 210 & 17\end{array}$
$\begin{array}{lllllll}\text { B.P.I. Main Amp. } 10 / 12 \mathrm{~W} . ~ £ 12 & 5 & 0 & £ 14 & 5 \\ \text { "PRODIGY"0/9W. Integ rated } £ 12 & 10 & 0 & £ 15 & 15\end{array}$

Building instructions $2 / 6$ each. (Bantam 1/6.)
Please add postage for all orders under $\mathbf{E 2}$
H. L. SMITH \& CO. LTD

287/289 EDGWARE ROAD, LONDON, W. 2 Telephone Paddington $5891 / 7595$

## REPANCO MINI-3

A new local station pocket transistor Radio

- Size $\operatorname{Sin} . \times 3 \frac{1}{9} \mathrm{in}$. $\times 1 \frac{3}{4} \mathrm{in}$.
- Long and Medium Waves.

Dual Ferrite Aerials.

- Loudspeaker reception.

Regenerative RF Reflex Circuit. Send Now! 1/6d. (post free) for easy wiring plans, instructions and price list.
Mail Order and Trade:

## RADIO EXPERIMENTAL PRODUCTS LTD.,

33 Much Park St., COVENTRY Tel.: 62572
Wholesale Enquiries and Export: REPANCO LTD.
O'Brien's Buildings, 203-269,
Foleshill Rd., COVENTRY. Tel.: 40594

## REBUILT TV TUBES

FULLY GUARANTEED 12 MONTHS
Complete New Gun fitted in every Tube
 immediate Delivery
Carriage and Insurance 10/-extra NU-GUN TELETUBES LIMITED 3 The Mewn, Dackett Rd., Harr ngay, London, N. 4. Telephone: MÓUnt view 2903

## A. K. \& L. G. SMITH LIMITED

Wholesalers and Distributors of Electrical and Electronic Appliances, Household, Etc.
38, Nunhead Lane, Peckham, London, 8.E. 15

## TAPE RECORDER SOUND HEADS

Monaural.<br>R/P \& Erase.<br>2 Track Stereo.<br>R/P \& Erase.<br>4 ., R/P \& Erase.

## HOME \& EXPORT

Full specifications, technical data, with samples available to the Trade on request :-

## BRADMATIC PRODUCTIONS LTD

124, ALBERT ROAD
BIRMINGHAM, 21 ENGLAND

BOOKS, INSTRUCTIONS, ETC.
"W Cocking, M.IEE.E. This. the ninth edition of a standard work, which has come to be recognised as a rellable and comprehensive gulde for amateur and professional alike, has and hander format Essential testing apparaand handier format. Essential hesting apparaand remedying defects are explained. A completely new chapter on the servicing of frequency modulated V.E.F. receivers has been added. 17/6 from all booksellers. By post $18 / 8$ from IIIffe 8 Sons Ltd.. Dorset House, Stamford St., London, S.E.1.
SECOND Thaughts on Radio Theory." By four Cathode Ray of " Wireless World, Fortyfour articles reprinted from popular "Wireless varlous series, in which the author examines Various aspects of elementary radio sclence, may be more behind them than is apparent from the usual text-book. This volume deals with basic ideas; circuit elements and techniques; circuit calculations; and some matters in lighter mood. An entertaining and helpful text-book for the student, refresher course for the engineer, and reference book for all com$26 / 4$ from Iltfe or Sons Ltd Dorset youse $26 / 4$ from infte of Sons Ltd.. Dorset House, "BASIC Mathematics for Radio and ElecD.I.C.A.C.G.I. Revised and enlarged by J. M. D.I.C.A.C.G.I. Revised and enlarged by J. M. form a complete course in basic mathematics from engineering students of all kinds and leads on to the more advanced branches of mathematics of increasing importance to radio engineers. In this edition the chapter covering the application of mathematics to radio jects covered include Stability. Linear Differjects covered include Stability Linear DifferCuts to Numerical Calculations and an Introduction to Matrices. Wlll be invaluable to those requiring a refresher course as well as to those without previous knowledge of the subiect. $17 / 6$ net from all booksellers. By post $18 / 6$ from Inffe \&
House, Stamford St., S.E.1.

## COUNTY BOROUGH OF GRIMSBY EDUCATION COMMITTEE <br> COLLEGE OF FURTHER EDUCATION

Principal: B. A. GBEEN, B.Bc., A.R.I.C.
Applications are invited for the following appointments:-
GRADE 'B'ASSISTANT-RADIO AND TELE VISION SERVICING
Applicants should hold sppropriate Clty and Guilds qualitications and have had industrial experience.
GRADE 'B' ASSISTANT-RADAE MAINTENANCE.
Appilcants should hold the P.M.G. 1st Class Certificate and Ministry of Transport Radar Maintenance Certifcate. The pnssession of a City
and Gullds Telecommunleations qualification will be a strong advantage.
salary in accordance with the Buraham Technical Scale, viz.: $£ 700$ to $£ 1.150$
Increment are payable in respect of approved Industrial, commercial or teaching experience and additions to the scale are payable in reapect of training and degrees or equivalent qualibeca tions.
Further particulars and forms of appucation may be obtrined from the underaigned to whom completed applications should be reburned within fourteen days of the appearance of this advertisement.
B. E. RICHARDSON

Educstion Offce,
Eleanor Street, GRIMBBY.

## RADIO-FREQUENCY heating

We require further Service Engineers in the London, Birmingham, Manchester, Liverpool, Durham and Sheffield areas to instal and service equipments in all branches of this rapidly expanding ficld. Experienced men are of course preferred but anyone with a sound Radio knowledge, a mechanical bent, self-confidence, and able to drive, should write giving full particulars of education, Services and industrial experience, age tion, Services and industrial experience, age Interviews can be arranged in each of the Interviews
above areas.

## Enquiries in first instance to:-

RADIO HEATERS LTD. 73 GRAY's INN ROAD, LONDON, W.C.

## W. E. SYKES LTD.

requires:-

## ELECTRICAL DRAUGHTSMEN

Preferably with O.N.C. and apprenticeship served, and some experience of electronic work. Required to enlarge staff working on machine tool control gear, electro-mechanical assemblies, electronic test gear. Training available.

## ELECTRICAL TECHNICIAN

Similar qualifications, to construct and carry out tests on electronic control, measuring and recording equipment; elec-trical-mechanical assemblies and test gear.

Generous salaries, excellent prospects and good working conditions. Non-contributory pension scheme. Apply giving details of education, experience, age and salary to Personnel Officer, Manor Works, Staines, Middx.

## TRANSFORMER DESIGN ENGINEER

Aged 19/24, to work with team of designers on Audio and small power transformers. Excellent prospects in expanding organisation.
READING WINDINGS LTD.,
169, BASINGSTOKE ROAD, READING, BERKS.

## BRASS, COPPER, DURAL,

 ALUMINIUM, BRONZE ROD, BAR, SHEET, TUBE, STRIP, WIRE 3,000 STANDARD STOCK SIZES No Quantity too small. List on Application. H. ROLLET \& Co, Ltd.6 Chesham Place, S.W.I. BELgrovia 4300 ALSO AT LIVERPOOL. BIRMINGHAM MANCHESTER. LEED3

Instrumentation at lts best . . .
 SIFAM ELECTRICAL INSTRUMENT CO. LTD.
LEIGH COURT - TOROUAY - Telephone $4597 / \mathrm{s}$

## METERS WE CAN SUPPLY WITHIN 7-14 DAYS

a complete range of moving coilmoving iron-electrostatic-thermo-couple-also multirange meters-meggers-pyrometers and laboratory test instruments, etc.

## All to B.S. 89

Instruments tested and standardised on our premises, and replacements supplied from our stock.

## REPAIRS

Delivered 7-14 days Our skilled craftsmen carry out repairs or convert any types and makes of single and multirange meters.
Where desired repairs are accepted on contract.
THE V.Z. ELECTRICAL SERVICE 311 EDGWARE ROAD, W.2.

Telephone: PADdington $\mathbf{4 5 1 5}$

BROADHEAD ASSOCIATES, ACE OF SPADES GARAGE, BUTLEY, Nr. MACCLESFIELD

FOR SALE:-
2 complete 4 MK6 Early Warning Radars. Contained in insulated van trailer. Also quantity of spares.

TELEGRAPH AND TELEPRINTER UNITS: Perforators, Repertorators. Auto Transmitters, Tape
Printers, Receiving Teleprinters, Transmitting Units, Printers, Receiving Teleprintern, Transmitting Units, complete units and brand new spare sub-units, e.g., Page Attachment.
RADIO TELETYPE TERMONALS AN/FGC/IC: with spares.
TELEPRENTER SWITCHBOARDS-16 Lines.
V.F. TELEGRAPHY 8YSTEMS: speech + Buplex, also 3-Channel and fi-Chaninal Dupler systems, Terminal Units and Repastorm
CARRIER TELEPHONY SYSTEMS: $1+1$ Terminala and Repeaters, $1+4$ Terminals and Repeatera.
MPEDANCE BALANORNG NETWORKS: For two wre terminution and repester stages, 1 or 2eelement networks for $3 \cdot$ or 4 -element networks with teat taclities FREQUENOI FILTERS: V.F. Telegraphy Band-pass Glters $1: 10$ c/a Band widih. Low-puss Alwera and Euppress for currer telephony channels up to 185 Kefs . FIELD TELEPHONES AND PORTABLE SWITCEBOARDS: Fjeld sets kR\& (American) D Mk. $V_{\text {, }}$ Type F and Type L (British), Switchboards up to 60-wine capacity
MOBILE HF RADIO STATIONS: Military Wireles Set 19 with all operating equipment and apare parta Colling $18 Q$ (T.C.S. series) $1 \frac{1}{2} 12 \mathrm{mols}$. 4 Channe D.C. and $110-220$ volt A.C.- Stations und spares.

HF RADIO TRANSMITTER T-1509 300 WATTS OUTPUT: CW, MCW and R/T High Speed Keying and Remote Control lf to $20 \mathrm{mc} / \mathrm{s}$., Power Bupply $200 / 250$ y $50 \mathrm{c} / \mathrm{s}$. Spares available.
EF TRANSMITTER: 20 Watts output 250 volt mains upply, $1 \mathrm{f}-18 \mathrm{Me} / \mathrm{s}$. Syatems Al , 42 and 43 . MOBILE VEF RADIO TELEPEONES: ex stock. 10 watt output 78-100 me/s.
MILTAEY MANPACK MOBILE AND HANDYTALKIE EQUIPMENTB: $40-48 \mathrm{me} / \mathrm{s}$.
AIRBORNE RADIO EQUIPMENT: 10-Channel V.H.F. equipment.

RADIO COMPASS EQUIPMENT: Rebecca Mark VIII Distance Measuring Equipment-stations and sparea.
R. GILFILLAN \& CO. LTD. National Provincial Bank Chambers, 29 South Street, Worthing, tussex. Tels Worthing 8719 \& 30181

## STEREO HANDBOOK

## by G. A. BRIGGS

Technical Editor R. E. COOKE B.Sc.(Eng)
Presents information on domestic stereo in a straightforward manner; relieved by humorous touches.
PRICE 10/6 (Post paid II/6)
144 pages 88 illustrations
Fine art paper Cloth bound
15 chapters including: Pickups, Loudspeakers, Amplifiers, Stereo Tapes,
Recording Techniques, Record \&
Stylus Wear, Stereo Broadcasting, Room Acoustics, Concert Halls.

## Published by

## Wharfedale

WIRELESS WORKS LTD., IDLE BRADFORD, YORKS
Tel. Idle 1235/6. 'Grams: 'Wharidel' Idle Bradford

## MALVYN ENGINEERING WORKS

Envineers to the Radio and Electronic Intuurries Pressings, Machined Components, Wiring and Mechanical Assemblies, to specification.
Single and Production Quantitices
7 CURRIE STREET, HERTFORD, HERTS.
Telephone: Hertford 2264

## CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- RATE: $9 /-$ for TWO LINES. $4 / 6$ every Additional Line. Average six words per line.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus I/-
- Cheques, etc., payable to Iliffe \&ons Ltd., and crossed "\& Co."
- Press Day. Wednesday July 27th for September, 1960 issue.

NAME

ADDRESS $\qquad$
L-

Please write in block letters with ball pen or pencil.
NUMBER OF INSERTIONS

# INDEX TO ADVERTISERS 

Acoustical Mfg. Co., Ltd
Adcola Products, Ltd.
Advance Components, Ltd
Alrcraft Marine Products, Lid.
Alrmec, Ltd.
Allen, W. H., Ltd
Alpha Radto Supply Co.., Ltd.
malgamated Wireless
Anders Electronics, Ltd.
A.N.T.E.X., Ltd
... .. 50
(149, 150, 151, 146, 147, 153, 148 ,
arcolectric Switches, Lta.
Ardente Acoustlc Laboratories. Ltd.
Armstrong Wireless \& Television Ltd.
Associated Electrical Industries, Ltd
41, 79,80 , Cover
Audix B.B., Ltd.
Automat, Ltc
Automatic Telephone \& Electric Co., Ltd. 23
Avo, Ltd.

Balun. Ltd
Batey, W., \& Co
Battersea College
Belling \& Lee, Ltd.
Benson, W. A.
Bentley Acoustic Corporation. Ltd.
Berry's Radio
Borough of Bolton
Bradmatic Productions
Bribond, Ltd.
Brltain, Chas. (Radio), Utd.
British Communications Corporation, Ltd.
British Institute of Engineering Technology
Broadhead \& Co
Brookes Crystals, Ltd
Brown, S. G., Ltd.
Bulgin, A. F.. \& Co., Ltd
Bullers, Ltd.
Burndept, Ltd

Canadian Westinghouse Co.; Ltd.
Candler System Co
C.G.B. Resistance Co., Ltd

Channel Electronic Industries, Lte.
Chapman Ultrasonics, Ltd.
Clyne Radio, Ltd.
108. 109

Cosmocord, Ltd.
Cossor Instruments, Lid. $16 \ddot{A}, B, C, D, E . E$
Coventry Radio
Crawshay, $P$ B.
Dale Electronics, Ltd
Daly (Condensers), Ltd.
Davies, A., \& Co.
Davis, Jack (Relays), Ltd
Daystrom. Ltd
Decea Radar, Ltd
Denco (Clacton), Ltd
Dependable Radio Supplies, Ltd.
Direct T.V. Replacements
Duke \& Co.
Duode Natural Reproducers
E.I.R. Instruments, Ltd.

Eltel-McCulloch. Inc.
E.K. Electronics

Electro-Acoustic Developments
Electro-Acoustic Industries, Ltd
Electro-Methods, Ltd.
Electro-Methods, Components
Electronic Precision Equipment. Lid.
Electronic Technology
Electronic Tubes, Ltd.
Electronles (Croydon), Ltd
Electronics (Finsbury Park), Ltd
Electronics (Fleet Street), Ltd.
Electronlcs (Manor Park), Ltd.
Electronics (Ruislip), Ltd.
Electro-Winds, Ltd.
Elek tromessteknic
Elllott Bros. (London), Lta
E.M.I. Electronics, Ltd

English Electric Co., Ltd
English Electric Valve Co., Ltd
Enthoven Solders, Ltd.
16. 124

84, 151
146. 158
. 71
$\begin{array}{r}71 \\ \hline\end{array}$

Page

Ferranti, Ltd<br>Fibre Form, Ltd<br>Ford Motor Co., Ltd.<br>Fortlphone, Ltd.<br>Frazar \& Hansen, Ltd.<br>Fringevision, Letd.

Gardners Radio, Ltd.
Garrard Eng. \& Mfg. Co., Ltd. The
Gee Bros., Radio, Ltd
General Electric Co., Ltd.
Gllillan, R., \& Co., Ltd
Glison, R. F., Ltd.
Glaser, L., \& Co., Ltd
Goodwin, C. C., (Sales), Lid.
Govt., Comm. H.Q.
Govt. of Nyasaland
Grayshaw Instruments
Grey \& Marten, Ltd.
Hall Electric, Ltd.
Harmswarth, Townley \& Co
Harringay Supplies, Ltd.
Harris Electronics (London), Ltd
Hartls, $P$.
Harverson Surplus, Ltd
Hatfield Instruments, Ltd
Henry's (Radio), Ltd.
Home Radlo (Mitcham), Ltd
H.P. Radio Services, Ltd.

Hunt, A. H., (Capacitors), Ltd.
Hunton, Ltd.
Ihffe Books 114, 128, 130, 132, 136, 140, 141 International Computers \& Tabulators, t.

International Correapondence Schools 122-148 I.T.A.
I.T.N.

149, 153

Jackson, Bros. (London), Ltd.
Kenure, Holt Electronics, Ltd.
Lasky's, Radio, Ltci.
Leak, H. J., \& Co., Ltd.
Ledon Instruments, Ltd.
Lee Products (Gt. Britain), Ltd.
Leevers-Rich Equipment, Ltd
Lewls Radio Co
Light Soldering Developments, Ltd,
LInear Products, Ltd.
Livingston Laboratorles, Ltd.
London Centrail Radio Stores
London County Counoll
Loughborough College
Lyons Radio. Ltd.
Malvyn Engineering Works

## ks.

 Marconl Instruments, Ltd. Marconi's Wireless Telegraph Co ... 35, 146 Merriott, P. A., \& Co., Ltd.McMurdo Instruments Co., Ltd.
Mills, W.
Ministry of Aviation
Modern Book Co
Modern Eleotrles (Retail), Ltd
M.O. Valve Co., Lutd
M.R. Supplies, Ltd.

Mullard, Itd.
Multicore Solders, Ltd. Ltd.
Neo Mail Order Supplies
Noxthern Polytechnic
Nu-Gun Teletubes
Oddie, Bradbury \& Cull, Ltd Oxley Developments Co., Ltd.

Pamphonic Reproducers, Ltd. Partridge Transformers, Ltd.
P.C.A. Radio
P.C. Radio

Pembridge College of Electronics
$\begin{array}{r}\text { PAGE } \\ \text { 57. } 143,150 \\ \ldots \\ \hline\end{array}$

22, 40
160
, 43, 65, 74

Post Radio Supplies
Premier Radio, Ltd
Proops Bras., Ltd.
Pye, Ltd.
Pye, Telecommunications, Ltd.
105
49.53
72

Quartz Crystal Cos, Ltd.
160
Radio \& Electrical Mart $\quad 141$
Radio \& T.V. Components (Acton), Ltd. 137
Radio Clearance, Ltd.
Radio Component Specialists
Radio Exchange Co., The
Radio Experimental Products Co
Radio Heaters, Ltd.
Radio Resistor, Ltd
Radiostructor
adiostructor
Radio Supply Co. (Leeds), Ltd. 102, 103, 104
Reading Windings, Ltd
Redifon, Ltd.
Relda Radio, Ltd.
Reproducers \& Amplifiers
Ritz Radio
Roberts Electronics
Röhrenwerke
Rola-Celestion, Lid.
Rollet, H., \& Co., Ltd.
Rubber Bonders, Lid.
Samson Surplus Stores, Ltd. .. .. 136
Saunders-Roe, Ltd. ...
Savage Transformers, Ltd
Savage, W. Bryan, Ltd
Service \&rading Co Eleotrical Sales, Ltd
Servo \& Eleowical males, Ltd 121
Smlth A.K \& Instrument Co.. Ltd. .. 16
Smith, G. W. (Radio), Ltd.
Smith, M. L. \& Co Cth.
Smith, M. L., \& Co., Ltd
Sound Sales, Ltd.
South Midland Construction, Ltd
South Supplies (Electrical), Ltd
Southern Radio Supply, Ltd Southern Technical Supplies Staff Consultants

142
142

0

Standard Telephones \& Cables, Ltd .. 15
Steatite \& Porcelain Products, Ltd. $15,17,19$
Stern Radio, Ltd. Products. Ltd.
Stratton \& Co., Ltd. ... .. 112, 113
Sugden, A R., \& Co. (Engineers), Ltd. . 5
Super Radiotech, Ltd.
$\begin{array}{lllll}\text { Swindon Condenser Co. Ltd } & \text {.. } & . . & 59 \\ \text { Sykes, W. E., Ltd. .. .. } & \text {.. } & . . & 162\end{array}$

Tannoy Products, Ltd. .. .. 160
Taylor Electrical Instruments, Ltd.
Technlcal Trading Co.
Telecraft, Ltd.
Telemechanics, itd.
Teleng, Ltd.
Teleguipment, Lid
Tele-Radio (1943); Ltd
Teletron Co., The , ..
Test Gear Components, Ltd.
TR.S. Radio ... Ltd.
Truvox, Ltd.
Tyer \& Co., Ltd.
Edit.
D.K.A.E.A
D.K.A.E.A.
Unicam Instruments, ${ }^{\prime}$ Ltd $\quad 152,153$

Unicam Instruments, Ltd
United oxford Hospitals
Universal Book Co. .
Vacwell Englaeering Co., Ltd.
Valradio, Itd.
Vitality Bulbs, Lid.
V.Z. Electrical Service

Waimore Electronics, Ltd.
Watts, Cecil E. Fitd.
Weymouth Radio "Mfg. Co Ltd The
Wharfedale Wireless Works., Ltd., The
Whartedale Wreless Works S. (G. $\dot{\text { W. }}$ ), Ltd. 60 ,
Whiteley Electrlcal Radio Co. Ltd.
Wilkinson, L. (Croydon), Ltd.
Wright, J. $P$.

## THE EDDYSTONE '880'



## High Stability Communications Receiver

The Eddystone " 880 " High Stability Communications Receiver reaches high modern standards. It has been designed expressly for use in professional communications systems and, with the many refinements provided, is widely versatile in its applications.

The principle employed results in an exceptionally high degree of frequency stability. Throughout the tuning range of the receiver, which is from $500 \mathrm{kc} / \mathrm{s}$ to $30.5 \mathrm{Mc} / \mathrm{s}$, the long term drift does not exceed 50 cycles. Particular care has been taken to reduce spurious responses to an absolute minimum and the figures for such characteristics as cross-modulation, blocking, inter-modulation and image ratio are extremely good. The electrical performance is well maintained in every way and conforms to accepted professional standards.

There are two fully tuned r.f. stages and all tuning is accomplished with a single knob. The tuning rate is linear and the large clear scale shows only the range in use. The frequency can be set to within one kilocycle. Radiation at any frequency has been reduced to a very low figure. Comprehensive information and full specification available on request to Commercial and Professional concerns.

## A soldering iron can have

 nine lives too

## provided you use Ersin



SAVBIT


## SAVBIT FOR FACTORIES

Ersin Multicore Savbit Type 1 alloy containing 5 cores of non-corrosive flux is supplied to factories at bulk prices on 7 lb . reels. 16 and $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. are the diameters most suitable for the majority of soldering processes. Supplies are also available on 1 lb . reels.

## SAVBIT FOR THE SERVICE

ENGINEER Approx. 170 ft . of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. SAVBIT is supplied on a 1 lb . reel packed in a carton. Price 15/- each (subject)

## SAVBIT FOR THE SMALL USER

The size 1 Carton contains approximately 53 ft . of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. SAVBIT. It is also supplied in 14 s.w.g. and 16 s.w.g. Obtainable from radio and electrical stores. Ersin Multicore 5-core Solder is also supplied in 4 specifications of Standard Tin/Lead alloys. Price 5/- each (subject)

Ersin Multicore Savbit Alloy contains a little copper which prevents absorption of copper from the soldering iron bit itself. Bit wear is reduced and the bits last more than nine times longer. By keeping soldering irons in good condition Savbit increases soldering efficiency and maintenance costs are reduced. Tests on production lines throughout the world have proved it.
Ersin Multicore Savbit Alloy is
manufactured under sole British Licence of Patent No. 721,881.

## PUBLICATIONS

Laboratory engineers and technicians are invited to write on their Company's letterheading for the latest edition of Mndern Solders. It contains data on melting poinus, gauges. alloys. etc.



[^0]:    PUBLISHED MONTHLY (4th Monday of preceding month) by ILIFFE \& SONS., LTD., Dorset House, Stamford Street, London, S.E.2. Telephone: Waterloo 3338 ( 65 lines). Telegrams: "Ethaworld. Sedist, London." Annual Subscriptions. Home and Overseas, if 15s. od. Canada and U.S.A., $£ 5.00$. Second-class mail privileges authorised at New York, N.Y. BRANCH OFFICES: BIRM1NGH AM: King Edward House, New Street, 2. Telephone: Midland 7101. COVENTRY: 8-10, Corporation'Street. Telephone: Coventry 25210. GL. ASGOW: 62, Buchanan Street, C.1. Telephone: Central 1265-6. M ANCHESTER: 260. Deansgate. 3. Telephone: Blackfriars 4412. NEW YORK OFFICE: U.S.A.: 111, Broadway, ©. Telephone: Digby 9-1197.

[^1]:    * The basic principles of analogue computing techniques were outlined recently by G. B. Clayton in "Simple Analogue Computer" in Wireless World for May, 1960 . For additional information, see "Electronic Computers," 2nd edition, by T. E. Ivall, tion, see
    Iliffe, $196 e$.

[^2]:    * "Medical 'Electronics," Iliffe \& Sons, Ltd., 145s.

[^3]:    * Marconi's W.T. Co., Ltd.
    * Marconis S.T. Co., Lid.

[^4]:    "Consort" radar in wheel-house of the Norwegion ferry "Sunnmore." Display on left, transmitter-receiver. timebase and power-supply unit on right.

[^5]:    * "Cathode Followers, With Particular Reference to Grid Bias Arrangements." Wireless World, June, 1955, p. 292.

[^6]:    * Etectronic Technology, Jan. 1960, p. 41.

[^7]:    $\star$ The Phonix Telephone \& Electric Works Ltd.

[^8]:    Pye Atomics Division.
    Pye Industrial Television. Division,
    Faraday Electronic Instruments Lid
    Pye Telecommunications Lid,
    Labgear Led.
    W. G. Pye \& Co. Lid.

[^9]:    PUBLISHED MONTHLY (4th Monday of preceding month) by ILIFFE \& SONS., LTD., Dorset House, Stamford Street, London, S.E.2. Telephone: Waterloo 3338 ( 65 lines). Telegrams: "Ethaworld. Sedist, London." Annual Subscriptions. Home and Overseas, if 15s. od. Canada and U.S.A., $£ 5.00$. Second-class mail privileges authorised at New York, N.Y. BRANCH OFFICES: BIRM1NGH AM: King Edward House, New Street, 2. Telephone: Midland 7101. COVENTRY: 8-10, Corporation'Street. Telephone: Coventry 25210. GL. ASGOW: 62, Buchanan Street, C.1. Telephone: Central 1265-6. M ANCHESTER: 260. Deansgate. 3. Telephone: Blackfriars 4412. NEW YORK OFFICE: U.S.A.: 111, Broadway, ©. Telephone: Digby 9-1197.

[^10]:    ROTARY TRANSFORMERS Made by DELCO
    TYPE 1, 27/6. P. \& P. 3/6. TYPE 2, 37/6. P. \& P. 3/6. Type 1. Dual voltage 12 or 24 v ., input 265 v ., 120 mA , output; 500 v., 26 mA . output.
    Type 2. 12 v ., inpur 275 y 110 mA . outpur; 500 v., 50 - 110 mA . ou mA. output.
    Both types dual output. Made in U.S.A.
    OTHER DYNAMOTORS IN STOCK, SEND FOR LIST

