Wireless World

 BLECTRONICS

 BLECTRONICS Radio . Television

For outdoor connections

BICC Polypole Couplers are also particularly suitable for use with ground control equipment, since they ensure a tough, permanent, moisture-resistant assembly which virtually eliminates the possibility of conductor breakages at the coupler.

Further information about these products is available on request.

BICC control cables

Wirroloss WJorld

In Theis Issue

VOLUME 65 No. 3
PRICE: TWO SHILLINGS

FORTY-EIGHTH YEAR OF PUBLICATION

Offices: Dorset House,
Stamford Street, London, S.E. 1

Please address to Editor, Advertisement Manager or Publisher, as appropriate

Telephone:
WATerloo 3333 (65 lines)
Telegraphic Address.
"Ethaworld, Sedist, London."

103 Editorial Comment
104 Waveguide Transmission
106 World of Wireless
109 European Television Stations
117 Time Past-Beam and Broadcast By P. P. Eckersley
121 Letters to the Editor
126 Physical Society's Exhibition
135 Relativity-2
139 Evaluating Aerial Performance-2
144 Short-wave Conditions
145 The Bifilar-T Circuit-2
149 News from the Industry
150 March Meetings
152 Random Radiations
154 Unbiased

By " Cathode Ray"
By L. S. Moxan

By Thomas Roddam

By " Diallist"
By "Free Grid"

[^0]
Transistors

A Simple Temperature-control System

This system involves the use of transistors to keep a block of copper at constant temperature and thus to provide thermostatic conditions for the transistors of any experimental or industrial circuit. The collector leakage current of a transistor varies with ambient temperature. The drift which thus arises affects the stability of d.c. amplifiers and test equipment.

COPPER BLOCK (approx. full size)
A copper block was constructed to the design shown in the drawing above. The block is made circular for ease of machining and for uniform heating effect. A layer of aluminium foil covering the heater coil reflects heat into the block.

A closed-loop servoméchanism controls a power transistor, which supplies the current for heating a coil wound uniformly around the block. The sensing element, used to provide the error signal, is an a.f. transistor mounted in the block. The leakage current $I^{\prime}{ }_{c o}$ of this transistor changes markedly with temperature, so that suitably amplified changes in I' ${ }_{c o s}$ are used to control the current through the heating coil. It was found that an initial current through the coil of 1.5A gave a good heating rate without much overshoot. For a 12 V supply the resistance of the coil becomes 8Ω. To provide sufficient length of wire to wind uniformly, five strands of thin enamelled constantan wire are wound in parallel.
The control circuit is shown here. The connection of Tr 3 and Tr 4 allows the OC 72 to drive the OCl 6 without danger of excessive dissipation. The gain of the combination is then the product $\alpha_{1}^{\prime} . \alpha_{2}^{\prime}$. The combined base-emitter voltage provides sufficient voltage for the collectors of Tr 1 and Tr 2 ; at
the same time it limits the maximum possible dissipation of these transistors. The variable resistance provides a path for some of the leakage current, allowing adjustment of the temperature to which the block is set.

When the circuit is switched on there is very little leakage current flowing in the sensing transistor. Accordingly the OC16 output transistor 'bottoms' and the current flowing in the heating coil is very nearly $\mathrm{V}_{\mathrm{cc}} / \mathrm{R}_{\mathrm{H}}$ (V_{cc} is the supply voltage and $\mathbf{R}_{\mathbf{H}}$ the heating coil resistance). The block heats rapidly to nearly $40^{\circ} \mathrm{C}$, at which temperature the leakage current of Tr 1 rises rapidly and the OCl 6 is cut-off, and remains cut-off till the block temperature has dropped to the set vaiue. There is a slight overshoot of temperature because the junction temperature of Tr 1 does not react to changes instantaneously.

Trl is the temperature-sensing transistor. Its collector voltage is limited to about 1 V , whilst the working voltage is about 0.6 V . To limit the maximum change of temperature inside the block to $0 \cdot 1^{\circ} \mathrm{C}$, the maximum variation of I^{\prime} o must be 0.012%. The actual stability achieved over at least 24 hours satisfies this condition.

A long-tailed-pair amplifier using germanium transistors was tested in the block. A variation of ambient temperature from 20 to $35^{\circ} \mathrm{C}$ resulted in a change of $0.75^{\circ} \mathrm{C}$ in the block. The drift, referred to the input, was about $75 \mu \mathrm{~V}$, or $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

[5518]

CONTROL CIRCUIT

Vol. 65 No. 3

Growing Pains

FROM January 1st this year the Electronic Engineering Association has ceased to be a member of the Radio Industry Council. This is not the result of any hasty decision, but of a level-headed and objective study of the divergence of the predominant aims and interests of these two great bodies which has become increasingly apparent in recent years.

In announcing the change Mr. G. Darnley Smith, chairman of the R.I.C., said,
"Electronics have become of such enormous importance in the last few years, playing an essential part in many major industries and having uses in all of them, that we-meaning all the Associationshave had to recognize that ours is now a two-fold industry. One side is dealing largely with broadcasting techniques and equipment and the other with electronics for all other purposes. To keep pace with the rapid technical, industrial and commercial advances on the capital goods side of the industry, it has been agreed that the E.E.A. should pursue its own policies and objectives. Close co-operation, however, will continue with the E.E.A. on matters affecting the welfare of both sections of the industry, particularly in the technical field, by means of interassociation committees."

A parallel statement by the Electronic Engineering Association in its annual report reads as follows,
"The Association remained a constituent of the Radio Industry Council during the period under review, during which time the four constituents reached the unanimous opinion that the capital goods side of the industry had developed in size and scope to the point at which capital goods and consumer goods could be recognised with advantage to all concerned as two distinct industries, each with its own objectives and policies. As from the 1st January, 1959, therefore, the Association has given up its right to nominate representatives to the Radio Industry Council, thereby permitting the three remaining nominating bodies, the British Radio Equipment Manufacturers' Association, the British Radio Valve Manufacturers' Association and the Radio \& Electronic Component Manufacturers' Federation to devote their attention to the affairs of the domestic broadcast entertainment industry, thus enabling the Association to take full responsibility for the capital goods interests of the Industry. It will, of course, continue its close co-operation with the components and valve industries, with the domestic equipment industry, and also, on a technical level, with the other industries associated with it in the Electronic Forum for Industry."

Commenting on this statement, Mr. F. S. Mockford, chairman of the E.E.A., said,
" Two distinct and vast irdustries have grown up side by side-one, the domestic entertainment industry supplying millions of sound and vision receivers, radio-gramophones and audio equipment to the general public; the other supplying millions of
pounds' worth of capital equipment for home and overseas, much of which is telecommunication, radar and navigational aid radio equipment, but a great deal of which is closed-circuit equipment, such as industrial television, computers, machine controls, and so on.
"Each industry has many more problems than in the past, but their common problems are fewer. The performance, characteristics and siting of broadcasting transmitters and their frequency allocations is still a matter of concern to both, but the E.E.A. to-day has as much or more need for association with other industries-for example, telecommunications, office appliances, machine-tools, aircraft, transport, fuel and power.
"The capital equipment makers, of course, will continue to require and are assured of the closest co-operation of the B.V.A. and the R.E.C.M.F., and joint committees are being formed."

If there are any twinges of regret at the disturbance of an order which has remained unchanged for so long they should be dismissed in the certain knowledge that they are but the growing pains of a strong and healthy industry. The processes of association and dissociation are as fundamental to organizations as they are to living organisms, and the radio industry is no exception. First there was the association of six firms to form the British Broadcasting Company, making both the transmitters and the receivers. Then the National Association of Radio Manufacturers, later to be joined by the traders in the N.A.R.M.A.T. Next the Radio Manufacturers' Association was formed and the traders split off into various groups of wholesalers and retailers. Inside the R.M.A. the set makers and component manufacturers formed sections which developed into the Radio Component Manufacturers' Federation and the British Radio Equipment Manufacturers' Association. These autonomous bodies together with the British Radio Valve Manufacturers' Association and the Radio Communication and Electronic Engineering Association (now E.E.A.), formed the Radio Industry Council to represent their interests in negotiations with Government departments, and in fostering the post-war development of broadcasting and electrenics.

The pattern of division and growth is apparent throughout. As the scope of industry widens the "domain boundaries" indicating further potential splits will become more readily discernible in the various associations as at present constituted. What must not be lost in the process of growth is the readymade machinery for rapid consultation, and the stabilizing influence of independent minds devoted to the task of seeing whole woods rather than trees. The R.I.C., under its newly-appointed director Sir Raymund Hart, and the E.E.A. can together provide the solid foundation upon which further specialization of interest will proceed with safety.

Waveguide Transmission

Abstract

Topics discussed at the Convention on "Long Distance Transmission by Waveguide" held at the Institute of Electrical Engineers in London on 29th and 30th of fanuary.

N radio transmissions through free space even when the signal is beamed the power losses to the outside are considerable; conversely, interference from the outside is likely. Such losses and consequent possibilities of interference can be eliminated or very much reduced by guiding the signal. One type of guide which is often employed for longdistance transmissions is the coaxial cable, but this is limited by attenuation and phase distortion to use with frequencies below about $25 \mathrm{Mc} / \mathrm{s}$. At higher frequencies low enough attenuations of the order of 10 dB per mile or less are offered either by using a single-wire conductor supporting a surface wave, or by the H_{01} (TE_{01}) mode in circular waveguide.

Effects of Bends and Irregularities

Although the use of the H_{01} mode in a circular waveguide was suggested as long ago as 1938 by G. C. Southworth, this system has apparently not yet been used commercially. The attenuation decreases with increasing guide diameter and decreasing wavelength, but low enough attenuations can only be obtained using wavelengths as short as about 6 mm in the mode giving lowest attenuation (H_{01}) simultaneously with a guide diameter of about 2 in several times the cut-off value. In these conditions about 100 other modes are capable of being propagated, and, moreover, the H_{01} mode is not dominant in circular waveguide. Thus conversion of the H_{01} to other modes occurs readily at irregularities or bends in the guide and this leads to greatly increased losses. Reconversion is also likely to occur and, since all modes but the \mathbf{E}_{11} have a different velocity from the H_{01} mode, such reconversion results in distortion. To minimize the effects of irregularities guide manufacturing tolerances of the order of thousandths of an inch or less are necessary. These tolerances are most severe for deviations of the axis from a straight line, according to a paper given by H. E. Rowe and W. D. Waters.
H_{01} mode conversion effects can also be reduced and the bends which may be required for geographical reasons allowed by increasing the losses for the undesired modes. Bearing in mind the differing field patterns in the various modes (in the H_{01} mode the electric field is circumferential), the losses for the undesired modes can be increased by changing the guide wall surface impedances in different directions, in particular by making the longitudinal impedance much greater than the circumferential by circumferentially corrugating the guide wall. Considerable attention was given at the Convention to the variety of corrugated guide made by helically winding enamelled or otherwise spaced wire and coating the outside of the helix
with an absorbing material to a thickness of about one-fourtieth of an inch. With such helical waveguide the attenuation of undesired modes can be multiplied by about 1,000 or more times their value in ordinary circular guide. Unfortunately the requirements for the absorbing layer to give maximum suppression of unwanted modes and at the same time minimum H_{0} mode loss in intentional bends are to some extent contradictory, according to a paper by H. G. Unger. Corrugated waveguide formed from flat rings a few thousandths of an inch thick spaced a few hundredths of an inch apart in air was discussed in a paper by A. W. Gent. Besides inhibiting \mathbf{H}_{01} mode conversion, such waveguide offers a reduced H_{01} mode attenuation of about one-tenth of its value in circular guide with a diameter equal to the ring outside diameter. Another method of increasing the losses in undesired modes is to coat the inside wall of an ordinary circular guide with a layer of low-loss dielectric a few thousandths of an inch thick.
H_{01} mode conversion at bends can be reduced by equalizing the path lengths at various points across the guide by filling it with a suitably inhomogeneous low-loss dielectric. Automatic methods of producing the required inhomogeneity as the guide is bent by filling the initially straight guide either with dielectric discs which become appropriately spaced or, alternatively, with dielectric structures containing air cells which become appropriately deformed were described in papers by Professor H. E. M. Barlow and D. G. Rickard and P. Marié respectively.

An ingenious method of reducing mode conversion by making the H_{01} mode effectively dominant by using an anisotropic guide wall to decrease the wavelengths of the other initially longer wavelength modes, either directly or after conversion to other modes, was described in a paper by Professor H. E. M. Barlow. The other modes can be eliminated in this case by operating closer to the $\mathrm{H}_{0,1}$ mode cut-off, but since this considerably increases the H_{01} mode loss, this method will only be usable with shost lengths of guide.

Even after mode conversion effects have been minimized, residual distortion will probably impose the use of pulse modulation so that signals can be exactly reconstituted at intervals and distortions cannot accumulate.

H_{01} Mode Launching

Launching the H_{01} mode is less difficult than bend negotiation, although to secure a sufficient bandwidth and to avoid generating unwanted modes the launching section must be longer than usualup to about 30 wavelengths. However, at the short wavelengths used this length can easily be accommodated. The signal is generally first produced as the dominant H_{0}, mode in rectangular waveguide, and this can be transformed over a broad frequency band into the H_{0}, mode in circular waveguide by two basic methods. Either the waveguide cross-sectional shape can be gradually changed from rectangular to circular in such a way as to change
the field from the rectangular to the circular H_{n} mode, or alternatively the rectangular and circular waveguides can be directly coupled through holes aiong a common wall. Direct coupling is usually through a common external wall, although a new type of coupler in which the rectangular guide is centrally placed inside the circular was described in a paper by B. Oguchi and K. Yamaguchi. One way of gradually altering the waveguide cross-section is to decrease the width of one narrow waveguide wall and at the same time to increase the width of the other narrow wall until the crosssection becomes a sector of a circle. The electric field in the H_{01} mode in rectanglar guide from one broad wall to the opposite is thus converted into arcs from one boundary radius of the sector to the other. These arcs are gradually converted to the circular electric field lines of the H_{0}, mode in circular guide by increasing the arc cross-section angle until a circle is formed. Narrow-band resonantslot methods of exciting the H_{01} mode can also be used.
Measurements of the large number of unwanted modes and of the low losses in such guides present a number of problems. The obvious way to measure such a small loss is, of course, to increase it by repeatedly reflecting the input signal to and fro in a comparatively short sample length of guide. Unfortunately, since in this method any guide irregularities give rise to periodically repeated effects, large spurious attenuations may be produced, as was pointed out in a paper by A. E. Karbowiak. Another standard way to measure the loss is from the Q of a short length of guide short-circuited at both ends to form a resonator. Since this Q will be of the order of 10^{6}, relatively small frequency differences must be measured to obtain the width of the resonance. Such differences can be measured using a waveguide many wavelengths long and short-circuited at its far end, as described in a paper by D. G. Keith-Walker. In this case the small wavelength changes in the standing-wave pattern will add up so as to give a large phase change with changing frequency at the waveguide input. Frequency stability problems are avoided by sweeping the source frequency.

Mode Identification and Measurement

Modes are usually identified and measured either directly from the actual electric and magnetic field pattern, or alternatively from their group velocity obtained from the transmission time through a known length of guide. The transmission time can be measured directly using short pulses of about $10 \mathrm{~m} \mu \mathrm{sec}$ duration. An alternative method of measuring the transmission time which was described in a paper by H. G. Effemey is to beat a sawtooth f.m. signal with the same signal delayed in transmission, when the principal beat frequency produced will be proportional to the transmission time.

Electric and magnetic fields at the guide walls can be measured by coupling them out through a small hole (containing a probe for electric field measurement) into a section of H_{01} mode rectangular guide with a crystal at its end appropriately oriented to detect the various field components. To measure the field at various points the hole is made in a sleeve which slides between and overlaps into two spaced sections of waveguide. The usual longi-
tudinal slot for field measurement would seriously disturb the propagation of many of the modes. Internal fields are more difficult to measure because of the disturbance which would be produced by the connection required to a normal conducting probe. Two methods have been developed which do not need such a link. One of these methods depends on measuring the change in the Q of a cavity as a small piece of metallic, dielectric or ferromagnetic material suspended by a nylon thread is moved about inside the cavity. Another method which was described in a paper by Professor H. E. M. Barlow uses a similarly suspended small dipole rotating about an axis through its centre and perpendicular to its length. Some of the electric field incident on this dipole is scattered, and this scattered signal can be readily identified, since it is modulated at twice the spinning frequency of the dipole. By measuring the phase and amplitude of the scattered signal the electric field at the dipole can be obtained. Very similar results were obtained using somewhat different lengths of dipole, thus showing that no serious perturbation of the field is produced by the dipole.

Single-wire Surface-wave System

Less attention was devoted at the Convention to the alternative single-wire surface-wave system. With such a surface wave the spread of the field beyond the surface of the conductor and consequently interference from outside increases with decreasing frequency, whereas the attenuation increases with increasing frequency. To compromise between these two effects an operating frequency of about $200 \mathrm{Mc} / \mathrm{s}$ is generally adopted. The roughly $100 \mathrm{Mc} / \mathrm{s}$ bandwidth of this system is much less than the potential one or more $\mathrm{kMc} / \mathrm{s}$ bandwidth of the circular waveguide system. Moreover, the potential attenuation using circular waveguide is also somewhat less than that of a surface wave on a single wire. However, the single-wire system has already becen utilized commercially as a television link over a 14 -mile distance in America.

Bends are also a problem in the surface-wave system. However, since only one mode can exist on the surface, mode conversion and consequent distortion cannot occur at bends. Instead radiation takes place which increases the losses and makes interference from outside more likely. However, radiation at bends can easily be minimized by confining the wave more closely to the surface of the conductor (which generally has a diameter of about half an inch) either by corrugating this surface, or alternatively by covering it with a polythene sleeve of roughly one inch outer diameter.
Surface waves can be launched over a broad frequency band on a continuation of the inner conductor of a coaxial line input by enlarging the outer conductor to form a conical horn. Narrow-band launching using a radiating circular hole concentric with the conductor is also possible.

The conductor can ideally be supported by nylon cords from the poles of an existing telephone system. The telephone wires do not have any effect provided they are half a wavelength or more away, and even closer spacing only increases the transmission loss without producing any distortion, according to a paper by G. Goubau. Even severe weather conditions have little effect on such a line.

WORLID OF WIRELESS

Radio Show Organization

THE announcement, discussed in greater detail in this month's leader, that the Radio Industry Council and the Electronic Engineering Association will in future pursue separate objectives and policies has been followed by the news that B.R.E.M.A. will now undertake responsibility for radio and television shows which are primarily of broadcast techniques and equipment. The component and valve manufacturers will continue to support the National Radio Exhibition and to share in its organization.

Record Radio Exports

PROVISIONAL figures for last year's exports of radio and electronic equipment, issued by the Radio Industry Council, show an increase of over $£ 1.5 \mathrm{M}$ on the previous year. The provisional total is $£ 45 \mathrm{M}$ -nearly four times the 1948 figure.
As can be seen from the table the highest proportionate rise was for valves and cathode-ray tubes. Last year's exports of sound reproducing equipment were more than double the value for 1955.
Exports of components, which had reached a peak value in 1957, were slightly lower in value although maintaining their volume. Their growth over recent years, together with that for valves, reflects the fact that several British manufacturers are assembling receivers in the consumer countries. This, in turn, affects the figures for the direct exports of receivers. Last year's figure does, however, include $£ 1.1 \mathrm{M}$ for television receivers which reached a significant level for the first time.
A reduction in the export of capital goods (transmitters, navigational aids, industrial electronics, etc.) is partiy due to the continued fall in Defence orders.

Capital goods	\ldots	\ldots	$\begin{gathered} 1958 \\ \mathrm{f} \mid 5.45 M \end{gathered}$	$\begin{gathered} 1957 \\ C 16.04 M^{*} \end{gathered}$
Sound and television receivers	\ldots	\ldots	3.54	3.56
Sound reproducing equipment	\ldots	...	11.28	9.86
Components ..	\cdots	\cdots	9.56	10.10*
Valves and tubes ..	\cdots	\ldots	5.30	3.90
			645.13M	643.46M

* Includes items not covered in provisional 1958 totals.

National Scientific Libraries

THE proposed National Lending. Library for Science and Technology-the nucleus of which already exists in the D.S.I.R. Lending Library Unit at Chester Terrace, Regents Park, London-will be housed at Thorp Arch, near Boston Spa, Yorks. It will take over the responsibility for the lending service now provided by the Science Museum Library, which will then concentrate on serving the enlarged Imperial College of Science and Technology. The second scientific library under discussion is the National Reference Library of Science and Invention, which it is proposed to establish in London as the successor to the Patent Office Library.

New Coast Station

ILFRACOMBE RADIO, the new Post Office Coast Radio Station at Mulacott Cross, North Devon, was opened on January 29th by T. A. Davies, O.B.E., Inspector of Wireless Telegraphy. For the past three years the short-range radio-telephone service for the Bristol Channel area has been operated from a temporary station at Iffracombe Head Post Office, and this, as well as the short-range radio-telegraph service previously given through Burnham Radio, will be taken over by Ilfracombe Radio.

This year is the jubilee of the Post Office shipshore radio for on September 29th, 1909, the Post Office took over services which had previously been operated by Marconi's and Lloyds.

There are 12 stations in the Post Office maritime service. The largest is Burnham Radio and it serves ships at sea in any part of the world. The remaining 11 provide communication up to about 300 miles.

Abstract

"What's in a Name? "-The word " radio" no longer appears in the title of what was, at one time, the Radio Section of the I.E.E. because "it is felt that this word, with its modern connotation of certain limited applications, is now insufficiently comprehensive." Some years ago the word "telecommunication" was added to the title, but this, too, has now been omitted and the word "communications" (to be "interpreted broadly within the context of electrical engineering") has been added. Announcing the new title-Electronics and Communications Section-the Council of the I.E.E. states that the incorporation of the word "electronics" in the title "is intended to emphasize to the profession that the Institution is manifestly the learned society for those properly qualified electrical engineers who regard themselves as 'electronic' engineers."

Noise and Vibration.-The Acoustics Group of the Physical Society is sponsoring two symposia dealing with the problems of noise and vibration. The first is at 2.15 on March 24th in the Physics Department of Imperial College, London, S.W.7, under the title "Recent Studies of Noise Problems." The second is a one-day meeting on April 7th in the Physics Department of Southampton University, entitled "New Techniques in the Analysis of Noise and Vibration"; it will include contributions on both practical and theoretical aspects of the use of correlation techniques, of digital computers for data processing and analysis, and on general applications of statistical communication theory. Further details of this joint meeting with the Institute of Physics may be obtained from D. M. A. Mercer, Physics Department, The University, Southampton.

Nine Million.-During January combined televisionsound licences in the U.K. passed the nine-million mark, for at the end of the year the total was $8,899,067$. Sound-only licences at December 31st totalled 5,853,549 including 371,391 for car radio. The year's increase in TV/sound licences was 1.13 M compared with 1.19 M during 1957 and 1.17 M during 1956.
C. \& G. Radio Society.-L. H. Bedford, C.B.E., chief engineer of the English Electric Company's guided weapons division, has been elected president of the City and Guilds College Radio Society in succession to Dr. J. D. McGee, O.B.E., professor of instrument technology at Imperial College.

Telemetry Symposium.-Since going to press with the "March Meetings" (page 150) we have received amended details from the Brit.I.R.E. of the radio telemetry symposium which is being held on March 25th at the London School of Hygiene and Tropical Medicine, Keppel Street, W.C.1. The afternoon session (3-5.30) opens with an introductory paper by A. Cowie, of R.A.E., which is followed by three papers describing a 24 -channel time-division multiplex f.m./a.m. system. Papers to be read at the evening session (6.30-8.30) cover a six-channel frequency-division multiplex f.m./ a.m. system and a pulse position modulation system. Non-members should apply to the Institution, 9, Bedford Square, London, W.C.1, for tickets.

Valve design techniques will be featured at a five-day London exhibition being organized by the English Electric Valve Company. It will be held at Kensington Palace Hotel, De Vere Gardens, W.8, from March 17th to 21 st and will be open each day from 10.0 to 7.0 but on the first day admission will be limited to the Press until 3.0.
$3 \frac{3}{4}-\mathrm{in} /$ sec Tape Records.-Since "Free Grid" prepared his copy for this issue in which he mentions one supplier of " $3 \frac{3}{4}$ " tape records we have been advised by Guildford Sound Recordings, of Birmingham, that Music on Tape Ltd., of Laurence Pountney Hill, London, E.C.4, also produces these tapes.
" Hi-Fi-A Guide to Good Listening" is the theme of the exhibition of high quality radio and audio equipment being staged by the Council of Industrial Design at the Design Centre, 28 Haymarket, London, S.W.1. It will continue until March 14th. The Centre is now open until 7.0 on Wednesdays as well as Thursdays.
"Do-It-Yourself."-Gilbert Davey, who in 1957 showed viewers to the B.B.C. Television Children's Hour how to make a one-valve regenerative detector receiver, is starting a series of instruction on building a transistor pocket receiver. It will begin on March 23rd in the Children's Hour programme "Focus."

FROM ABROAD

Kelly Award.-In honour of Dr. Mervin J. Kelly, chairman of the board of Bell Telephone Laboratories, the American I.E.E., in collaboration with the Laboratories, is establishing an annual award "for achievement in the field of telecommunications." It will consist of a bronze medal and $\$ 1,000$. Dr. Kelly, who retires on March 1st after 41 years with Bell Telephones, was closely associated with Sir Gordon Radley, directorgeneral of the Post Office, in planning the first transatlantic telephone cable.

Microwave Tubes.-An international congress on microwave tubes on the lines of those held in Paris in 1956 and in London last year is being planned by the Verband Deutscher Elektrotechniker for 1960. It will be held in Munich from June 7th to 11th.

New Zealand has adopted the 625-line standard for its experimental television transmissions starting in Auckland. These tests, using channel 3 ($55.25 \mathrm{Mc} / \mathrm{s}$ vision and $60.75 \mathrm{Mc} / \mathrm{s}$ sound), are being conducted by the New Zealand Broadcasting Service from its mediumwave station building in the capital. According to one manufacturer 17 in sets will cost about $£ 100$.
West Berlin is to have a new $100-\mathrm{kW}$ transmitter to replace the $20-\mathrm{kW}$ equipment at present used at the Sender Freies Berlin siation which radiates on $566 \mathrm{kc} / \mathrm{s}$. It is being provided by Telefunken, the cost being met by a grant of $950,000 \mathrm{DM}$ from the association of broadcasting organizations (Arbeitsgemeinschaft der Rundfunkanstalten). The transmitter will be switchable to one third of the power on any frequency in the mediumwave band and is anode modulated through a pushpull Class B amplifier. It is planned to come into service in the Autumn.

Personalities

Air Marshal Sir Raymund Hart, K.B.E., who succeeds Vice-Admiral J. W. S. Dorling as director of the Radio Industry Council was, until the end of January, Controller of Engineering and Equipment in the Air Ministry. Sir Raymund, who is 60 , qualified as a signals officer in 1928 and was for three years prior to 1939 employed at the radar research establishment at Bawdsey on the development and operation of ground-based radar systems. During this period he was concerned with the training of radar operating and servicing staff for the chain of radar stations and was responsible for developing the radar reporting system. In 1939 he went to the headquarters of Fighter Command, of which he later became Chief Signals Officer. In 1944 he was appointed Chief Air Signals Officer at S.H.A.E.F. Among the posts he has filled since the war are Air Officer Commanding No. 27 Signals Training Group; A.O.C. No. 90 Signals Group, DirectorGeneral of Engineering at the Air Ministry and, since October 1956, Controller of Engineering and Equipment. Air Marshal Hart was knighted in 1957.

Sir RAYMUND HART

F. C. LUNNON
F. C. Lunnon, assistant engineer-in-chief of Marconi's W /T Co., has retired after 47 years' service with the company. Mr. Lunnon's early years with the company were spent at the radio stations at Clifden, Ireland and Glace Bay, Nova Scotia, the two stations which provided the first commercial transatlantic wireless circuit. In 1926 he was given charge of the Writtle development establishment and remained there until 1946 when he was appointed development manager. He became assistant engineer-in-chief in 1951.
W. A. S. Butement, O.B.E., who was Assistant Director of Scientific Research in the Ministry of Supply during the latter part of the war and since the war has been chief scientist in the Australian Department of Supply, was promoted Commander of the Order of the British Empire in the New Year Honours. On the recommendation of the Royal Commission on Awards to Inventors he received an award for his "contribution to the development of radar installations" which included the "split" method of d.f., and a fire control system using echoes from shell splashes.

Major General W. A. Scott, C.B., C.B.E., Director of Communications in the Foreign Office, was appointed a Knight Commander of the Order of St. Michael and St. George (K.C.M.G.) in the New Year Honours.
S. F. Follett.-We omitted to announce in our February note (page 58) on the appointment of S. F. Follett as Deputy Director of the Royal Aircraft Establishment that he was appointed Commander of the Order of St. Michael and St. George in the New Year Honours.

Sir John Cockcroft, K.C.B., F.R.S., who has accepted the invitation to become the first Master of Churchill College to be built in Cambridge, recently received the honorary degree of doctor of technical sciences at the Delft technical university. Sir John, who was Cbief Superintendent, Air Defence and Research Establishment throughout the war and was for some time director of the Atomic Energy Research Establishment, is now a member of the U.K. Atomic Energy Authority.
T. S. England, B.Sc., Ph.D., F.Inst.P., A.M.I.E.E., has been appointed head of airborne radar at the Royal Radar Establishment, Malvern. Dr. England, who graduated at the University of Durham in 1937 was for two years working on radar in the Ministry of Aircraft Production before going to T.R.E. (now R.R.E.) in 1942. In 1948 he returned to Durham University where, as a result of two years research work in medical physics, he received his Ph.D. degree. He rejoined T.R.E. in 1950 becoming Superintendent, Circuits and Electronics, in 1954 and since 1956 has been Superintendent, Radar Ballistics.

Sir Robert Fraser, O.B.E., B.A., B.Sc., DirectorGeneral of the Independent Television Authority, has been awarded the Fellowship of the Television Society.

Dr. C. S. Szegho, who was for seven years head of cathode-ray tube research in Baird Television and since 1942 has been director of research with Rauland Corporation, of Chicago, has been awarded the Fellowship of the Television Society. Dr. Szegho, who was born in Hungary, received his doctorate of engineering in Germany.
E. K. Cole, C.B.E., chairman and managing director of the well-known firm bearing his name, which he founded in 1926, has been elected an Honorary Member of the Brit.I.R.E., "in recognition of his services to the radio and electronics industry and profession."
E. L. E. Pawley, O.B.E., M.Sc., M.I.E.E., head of the B.B.C. Engineering Services Group, has been re-elected chairman of the E.B.U. Technical Committee. He is also chairman of the committee's working party concerned with television and sound broadcasting on v.h.f. and u.h.f. Another B.B.C. representative on the Committee, M. J. L. Pulling, C.B.E., M.A., M.I.E.E., is chairman of the working party covering international television relays. Mr. Pulling, who has been with the B.B.C. since 1934, was for some years Superintendent Engineer (Recording) and is now Controller, Television Service Engineering.

Ralph Brewer, who as mentioned briefly last month (page 56), received the National Reliability Award for his paper entitled "Life Tests of Electron Tubes and the Analysis of Failure Causes" read at last year's American National Symposium on Reliability and Quality Control in Elestronics, has been in the G.E.C. Research Laboratories since 1937. During the war he worked on early magnetrons for radar and after the war took charge of valve reliability studies. His work has now extended to cover the study of the survival characteristics of transistors and related semiconductor devices. He is 44.
R. W. Stobbs, F.R.I.C., F.I.M., has been appointed general manager of Preformations Limited, the company recently formed by The Plessey Company and the Arnold Engineering Company, of Illinois, for the manufacture of "Magloy" permanent magnets at Swindon. Mr. Stobbs joined Plessey five years ago as principal metallurgist at the Company's Ilford factory.

Professor A. L. Cullen, Ph.D., B.Sc., who occupics the chair of electrical engineering in the University of Sheffield, has been awarded a grant of $£ 3,835$ by the Paul Instrument Fund Committee for the construction of a detector in which radiation pressure is used to convert a microwave signal to an audio or intermediate frequency.

Vice-Admiral Sir John Eaton, K.B.E., C.B., R.N. (Retd.) has joined Marconi's as Chicf of Administration at the Research and Development Laboratories at Great Baddow, Essex. He will be responsible for all administrative matters to the Chief of Research, Dr. E. Eastwood.

Air Commodore C. A. Bell, formerly Director of Electronics Research and Development (Air) in the Ministry of Supply (see December 1958, page 576) has joined the staff of G.E.C.'s Electronics Division. During the war, as a member of the British Air Commission in Washington, he was responsible for the radio equipment of American aircraft for the R.A.F. and prior to joining the Ministry in 1954 held several R.A.F. appointments in the research and development field.

William T. Frost, who after 10 years with the B.B.C. went to the U.S.A. last year and joined Ampex Corporation's video development unit, has been promoted to staff engineer. He is at present in charge of an advanced development investigation of basic head/tape phenomena in instrumentation wide-band recording.
A. J. Gray, B.Sc., A.M.I.E.E., who has been with Ferranti since 1935, has been appointed general works manager of the company following the retirement of W. Hunt, M.B.E.

OBITUARY

Ronald Keen, M.B.E., B.Eng., M.I.E.E., the direc-tion-finding specialist and author of the textbook "Wireless Direction Finding", died at Umtali, Southern Rhodesia, a few months ago. He joined Marconi's in 1912 and during the first World War was with the Admiralty serving for the most part overseas on d.f. installations. He returned to Marconi's after the war and together with Capt. H. J. Round and the late G. M. Wright was closely associated with the design and construction in 1923 of the Land's End d.f. station-the first coastal station specifically designed as a service to shipping. He transferred to the company's Traffic Services, which eventually became part of what is now Cable and Wireless, and from 1924 to 1939 was in charge of the Brentwood receiving station. During the war he was a Major in the Army Special Communications Unit and was responsible for the installation and technical operation of a network of high-frequency d.f. stations throughout the British Isles.

Hans Bredow, who died on January 9th this year, aged 79, joined the Telefunken Company in 1904. He was associated with Graf von Arco in the early development of spark telegraphy. In 1919 he joined the German Post Office and was responsible for the preparations which led to the commencement of broadcasting in Germany in Octcber, 1923. In 1926 he became Commissar for Broadcasting. He was called on as a consultant when German broadcasting was reorganized after the war.
Stanley T. Cope, Marconi's technical librarian died on January 31st aged 52. He joined the company's research department in 1933 and in 1947 transferred to the technical information division where his work lay in the writing and editing of technical handbooks. He became technical librarian seven years ago.

"Wireless World" Index

As stated last month, the index to Volume 64 (1958) is now available price is (postage 3 d). Our publishers will undertake the binding of readers' issues, the cost being 25 s per volume, including binding case, index and return postage. Copies should be sent to lliffe \& Sons, Ltd., Binding Department, c/o 4 lliffe Yard, London. S.E.17, with a note of the sender's name and address. A separate note, confirming despatch, together with remitrance shouid be sent to the Publishing Department, Dorset House, Stamford Street, London, S.E.I.

European Television Stations

survey of the continent's NeTwork

DURING the recent abnormal propagation conditions reception of, and interference from, foreign television stations has been frequent, and we have received a number of requests for help in identifying stations. It is thought, therefore, that it would be of more than passing interest to bring together in one survey the operating characteristics of the 500 or more television stations now operating on the Continent.

We have limited this survey to the European Broadcasting Area-it is hoped to cover other parts of the world at a later date. This area is bounded on the South by parallel 30° North (bringing in parts of North Africa) on the East by the meridian 40° East (thus including only Western U.S.S.R.) and on the West by coastlines. Most of the information given has been obtained from the broadcasting organizations in the countries concerned, and this is supplemented by data published from time to time by the European Broadcasting Union.

The map on the following two pages is based on information prepared by the E.B.U. It is impracticable on a map of this size to show all the available information regarding radio and cable links; the only differentiation shown, therefore, is between links for the main transmitters and those for satellites which in most cases depend for their input on direct reception of a main transmitter. We also give on the map details of the standards conversion available for Eurovision links. Incidentally, it is worth recording that secondary television circuits to bypass the national networks are now provided extensively on the Continent to facilitate the unilateral, bilateral or multilateral interchange of programmes.
Although basically there are three television systems in use on the Continent there are in fact a number of variants. For instance, the Belgium version of the French 819-line system is accommodated in a $7-\mathrm{Mc} / \mathrm{s}$ channel with a vision bandwidth of
$5 \mathrm{Mc} / \mathrm{s}$ compared with 14 and $10.5 \mathrm{Mc} / \mathrm{s}$, respectively, in France. Similarly, there are major differences between the 625 -line service used in the majority of European countries and those employed in the U.S.S.R. and Belgium. The characteristics of the world's television standards are given in Table 1.

Channels : E.R.P.: Polarization

Details of the channels employed in the European systems are given in Table 2. These channel numbers are used after the name of the station in the particulars of each country in the following pages.
An asterisk has been inserted against the e.r.p. of some transmitters. This indicates that the figure given is the maximum for a directional aerial. Transmitters employing vertical polarization are marked (V), the others being horizontally polarized.

A reproduction of the test card or
(Continued on page 111)

TABLE I:WORLD'S TELEVISION STANDARDS

	405	525	625 (C.C.I.R.)	625 (O.I.R.)	819	819 (Belgian)
Vision bandwidth (Mc/s) Channel width (Mc/s)	5	4 6	5 7	8	10.4	5 7
Sound carrier relative to vision carrier (Mc/s) \ldots...	-3.5	+4.5	$+5.5$	$+6.5$	-11.15§	$+5.5$
Sound carrier relative to edge of channel (Mc / s)	+0.25 +10.25	-0.25	15,625-0.25	-0.25 $15,625+0.05 \%$	+0.10§	$20,475 \pm 0.1 \%$
$\begin{array}{llll}\text { Line frequency (c/s) } \\ \text { Lramefrequency (c/s) } & \ldots & \ldots & \ldots \\ \text { Fin }\end{array}$	10,125 50	15,750 60	15.625 50.1%	15,625+0.05\%	20.475 50	$\begin{aligned} & 20,4 / 5 \pm 0.1 \% \\ & 50 \end{aligned}$
$\begin{array}{llll}\text { Frame frequency (c/s) } \\ \text { Picture frequency }(\mathrm{c} / \mathrm{s}) & \ldots . . & \ldots & \ldots\end{array}$	25	30	25	25	25	25
Sense of vision modulation $\quad \cdots \quad . .$.	positive	negative	negi.tive*	negative	positive	positive
Blanking level as \% of peak carrier	30 0	75	$7{ }^{\text {7 }}$		25	$0 \xrightarrow{25}$
Minimum level of carrier as \% of peak carrier...	0	$\leqslant 15 \dagger$	10^{*}	10 min .	$\leqslant 3$	a.m. ${ }^{\text {a }}$
Sound modulation Deviation (ke/s)	E.m.	f.m.	1.m.*	f.m.		
Deviation (kc/s) Pre-emphasis ($\mu \mathrm{sec}$) $)$$\ldots$		${ }_{75}$	± 50	50		50

\dagger In the Japanese 525 -line system the figure is $10-15 \%$.

* In the Belgian 625-line system positive vision modulation is used; the blanking level is 25%; minimum level of carrier is 0 - 3%; and sound is a.m. with $50 \mu \mathrm{sec}$, pre-emphasis.
§ In some of the French channels the vision and sound carriers are reversed-the vision carrier being the lower.
TABLE 2: EUROPEAN TV CHANNELS IN BANDS I \& III

U.K. 405 lines ($5 \mathrm{Mc} / \mathrm{s}$ channels)			C.C.I.R. 625 lines and Belgian 819 lines ($7 \mathrm{Mc} / \mathrm{s}$ channels)			O.I.R. 625 lines ($8 \mathrm{Mc} / \mathrm{s}$ channels)			French	819 lines channels)	(14 Mc/s
B1	45.00	41.50	E2	48.25	53.75	$\cdot{ }^{\circ} \mathrm{Ol}$	49.75	5625	F2	52.40	41.25
B2	51.75	48.25	E3	55.25	60.75	O^{2}	59.25	65.75	F3	56.15	67.30
B3	56.75	53.25	E4	62.25	67.75	OH^{+}	77.25	83.75	F4	65.55	54.40 175.15
B4	61.75	58.25	E5	175.25	180.75	O4t	85.25	91.75	F5	164.00	175.15
B5	66.75	63.25	E6	182.25	187.75	O5t	93.25	99.75	F6	173.40	162.25
B6	179.75	176.25	E7	189.25	194.75	O6	175.25	181.75	${ }_{\text {F }} \mathrm{F}$	177.15	18830
B7	184.75	181.25	E8	196.25	201.75	O7	183.25	189.75	${ }_{\text {F8A }}$	185.25	174.10 175.40
B8	189.75	186.25	E9	203.25	208.75	O8	191.25 199.25	197.75 205.75	F88	186.55 190.30	175.40
${ }^{89}$	194.75	191.25	E10	210.25	215.75 222.75		199.25	205.75 213.75	F10	199.70	188.55
B10 B11	199.75 204.75	196.25 201.25	El1*	217.25	222.75	O11*	215.25	221.75	FII	203.45	214.60
${ }_{\text {B12 }}$	209.75	206.25				O12*	22325	22975	FI2	212.85	201.70

The vision carrier precedes the sound carrier in this list.
\dagger These channels are outside the limits of Band I ($41-68 \mathrm{Mc} / \mathrm{s}$).

[^1]

tuning signal used for the country's television service is also given in most of the summaries.

ALBANIA

There is at present no television service in Albania. The Stockholm Plan of 1952 provided for one station in Band I and three in Band III using the O.I.R. 625-line system.

ALGERIA

Although outside the natural boundaries of Europe, Algeria does come within the European Broadcasting Area and is therefore covered by the provisions of the Stockholm Plan. The television service is provided by the French broadcasting authority, Radiodiffusion-Télévision Francaise; the standards employed (819 lines) and the test card are, therefore, the same as in France. Under the Stockholm Plan five transmitters are provided for but at present only two, at Algiers (Cap Matifou) and Oran, are in operation. The service is government operated and is financed from licence revenue - 2,000 francs sound, and 6,000 francs television. The number of television receivers in use is about 28,000 .
Algiers
Oran channel
FJI
e.r.p.
20 kW
20

AUSTRIA

Two years ago the Austrian Broadcasting System, Österreichischer Rundfunk, introduced a regular television service. There are now 8 main transmitters in Bands I and III, which are listed below, and 5 satellites. There is also a second station in Vienna which radiates in Band IV.

The television service is financed by a bank credit covered by a guarantee of the Austrian Federal Government. In January this year advertising programmes were introduced to supplement the income. The annual licence fee is 600 schillings (excluding sound

	channel	e.
Gaisberg (Salzburg)	E8	60 kW
Jauerling (St. Pölten) ...	\dagger	60
Kahienberg (Vienna) ...	5	60
Linz, Upper Austria ...	6	3
Patscherkofel (Innsbruck)	4	30
Pyramidenkogel (Klagenfurs)	10	30
Schöckl (Graz)	7	60
Sonnwendsiein, Lower		1.5
Austria	10	. 5

†Vision $49.75 \mathrm{Mc} / \mathrm{s}$, sound $55.25 \mathrm{Mc} / \mathrm{s}$.
radio) which is about £8. The present number of licences is approx. 60,000.

BELGIUM

Because its neighbouring countries operate on different standards (625 and 819 lines), Belgium operates a two-standard television service using a modified version of the Gerber

(C.C.I.R.) 625-line system for its Flemish transmissions and a modified version of the French 819-line system (with a $5-\mathrm{Mc} / \mathrm{s}$ video bandwidth) for its French transmissions. All sets in Belgium are designed to receive four standards: both the national services, the C.C.I.R. 625line standard and the French 819 lines.

The country's television service is operated by the Institut National Belge de Radiodiffusion (I.N.R.) and is financed by the government. Since January, 1958, television set owners have had to pay an annual tax of 840 Belgian francs (£6). The number of television receivers is about 300,000.

Antwerp (625)		channel		${ }_{\text {e.r.p. }}^{6+}$ (V)
		...	E2	
Liege (819)		...	3	100
Ruiselede (625)		...	2	100
Wavre (819)	\ldots	...	8	100
Wavre (625)	..		10	100

BULGARIA

So far only experimental television transmissions using a low-power station at Sofia have been made by Radiodiffusion Bulgare, which has adopted the O.I.R. 625-line standard. For these tests channel O3 has been used. Regular transmissions from a new station in the capital are due to begin on May 1st.

CYPRUS

An experimental television service was introduced on the island by the Cyprus Broadcasting Service just over a year ago. The 625 -line transmitter in Nicosia radiates in channel E2 with an e.r.p. of 1.5 kW . Television licences, costing £1 per annum, totalled 193 at the end of November.

CZECHOSLOVAKIA

Five stations are now ised in the Czechoslovak television chain which
operates on the O.I.R. 625-line standard. The service is state financed and viewers pay a fee of 180 crowns

		channel			e.r.p.
		\ldots	03	$12 k W$	
Bratislava...	\ldots	\ldots	9	10	
Brno	\ldots	\ldots	\ldots	10	0.6
Karlovy Vary	\ldots	\ldots	10	12	
Ostrava	\ldots	\ldots	\ldots	2	5
Prague \ldots	\ldots	\ldots	2	5	

(£9) excluding sound radio. At the end of last June chere were about 200,000 television licences in force.

DENMARK

Two high-power transmitters and four medium-power stations employing the $625-1$ ine standard are operated by the national broadcasting service, Statsradiofonien, which is financed by the revenue from licence fees. Television set owners pay an annual licence fee of 55 kroner

(about £3). There are about 200,000 televisión licences in force.

		channel		e.r.p.
Aarhus	\ldots	\ldots	\ldots	E8
Aalborg	10kW			
Copenhagen	\ldots	\ldots	5	10
Fyn	\ldots	\ldots	4	10
Sönderiyliand	\ldots	\ldots	7	10
Vestyylland	\ldots	\ldots	10	60

EIRE

There is no television service in Eire, but the Minister for Posts and Telegraphs recently appointed a twenty-one-man Television Commission "to consider and make recommendations on the question of establishing a television service." The committee is to base its recommendations on the assumption that the cost of the service will not fall on the Government. The Stockholm Plan provides for 5 stations in Band III for Eire and these are shown as operating on the British 405-line standard.

FINLAND

Three main stations, with two provisional stations, form the television network of the Finnish broadcasting authority-Oy. Yleisradio Ab --which employs the C.C.I.R. 625-line system. Since January, 1958, viewers have had to pay a licence fee of $6,000 \mathrm{Mk}$ (£7), excluding sound radio which is a

further $1,200 \mathrm{Mk}$. Television licences totalled 7,750 at the end of 1958.

			channel		e.r.p.
Helsinki	\ldots	\ldots	\ldots	E6	IOkW
Kotka	\ldots	\ldots	\ldots	5	\dagger
Lahti	\ldots	\ldots	\ldots	9	15
Tampere	\ldots	\ldots	\ldots	8	\dagger
Turku	\ldots	\ldots	\ldots	7	25

†Provisional transmitters.

FRANCE

Regular television transmissions have been radiated in France since 1938 when a 455-line system was used by the Eiffel Tower station. It

radiated in Channel F1 with a $7.6-\mathrm{Mc} / \mathrm{s}$ bandwidth. The scanning rate was subsequently changed to 441 lines and the transmissions from Eiffel Tower continued for over five years after the introduction of the present 819 -line standard in 1950. Since the cessation of the 441-line transmissions the French Channel 1 ($46 \mathrm{Mc} / \mathrm{s}$ vision, $42 \mathrm{Mc} / \mathrm{s}$ sound) has not been used.

In order to accommodate the maximum number of stations in the few $14-\mathrm{Mc} / \mathrm{s}$ channels available in Bands I and III, the R.T.F. (Radio-diffusion-Télévision Française) has adopted a scheme whereby they accommodate two channels in one. This is done by reversing the position of the vision carrier relative to the sound carrier in alternate channels so that four carriers come within a $14-\mathrm{Mc} / \mathrm{s}$ band.

The French television service is financed from licence fees and from
government grants. The fee for a home television set is 6,000 francs ($£ 410 \mathrm{~s}$), but is being increased to 7,500 francs in July. Where a television set is used in public places the fee is four times as much.

The present chain includes the 22 main stations listed below and 15 satellites. Under an agreement recently concluded between the Monacan and French governments, the television station at Monte Carlo will receive the major part of its programmes from the R.T.F.
An unusual feature of the French television service is that in addition to the R.T.F. network a number of satellite stations have been erected by private enterprise to improve local reception. The number of these stations increased so rapidly and so indiscriminately that recently regulations were drawn up prohibiting the erection of such stations except by local authorities. The power of the satellites varies from 0.1 W to 5 W .

At the end of December there were 988,594 television licences in force.

Bordeaux...	channel			e.r.p. $25 \mathrm{k} \mathrm{W}^{*}$
	\ldots	...	F10	$25 \mathrm{kW*}$
Bourges	\ldots	9	200
Caen	2	50
Cherbourg	12	
Côte d'Azur		\ldots	6	10 (V)
Diion	10	30 (V)
Grenoble	...	\cdots	10	20
Lille	8 A	200
Luttange	\ldots	6	200*
Lyon	5	0.1
Marseille	\ldots	8	300*
Mont-Pilat	...	\ldots	12	200
Mulhouse...	...	\ldots	8	200*
Nancy	7	$1.6^{*}(\mathrm{~V})$
Nantes	4	0.5 (V)
Paris	\ldots	...	8 A	180
Pic du Midi		...	5	20
Puy de Dốne	\ldots	...	6	160* (V)
Reims	\ldots	...	5	0.1 (V)
Rennes ...	\ldots		5	0.5
Rouen ${ }_{\text {Strasbourg }}$	\cdots	\cdots	10	50**

GERMANY, EAST

Television in the German Democratic Republic is State controlled and is operated by the Deutscher Demokratischer Rundfunk. The 625 -line system is employed but the channel numbering differs from either the C.C.I.R. or O.I.R. channels in table 2. The vision and sound carriers (in Mc / s) of the channels at present in use are: 1 (59.25/64.75); 2 (145.25/150.75); 3 (55.25/60.75); 5 (175.25/180.75);

D.D.R. EAST GERMANY

6 (182.25/187.75); 8 (196.25/201.75); 11 (217.25/222.75).

At the end of August there were 257,000 television licences issued in the Republic.

	channel		e.r.p. 100 kW
Berlin	5	
Brocken		6	-
Katzenstein (Dresden)	..	2	100
Helpterberg	...	3	-
Inselsberg	...	5	-
Karl-Marx-Stadt	...	8	-
Leipzig	...	1	100
Marlow	...	8	-
Schwerin	...	11	-

GERMANY, WEST

Although the television stations in the German Federal Republic are operated by a number of authorities - each one covering a zone of the immediate post-war period-there is a common television programme known as Deutches Fernsehen, to which each of these organizations contributes. There are 26 main stations and these are listed on page 114 with the initials of the operating authority against each-B.R. (Bayerjscher Rundfunk); H.R. (Hessischer Rundfunk); N.D.R. (Norddeutscher Rundfunk); S.D.R. (Süddeutscher Rundfunk); S.F.B. (Sender Freies Berlin); S.W.F. (Südwestfunk); and

BAYERISCHER RUNDFUNK

HESSISCHER RUNDFUNK

N.D.R., W.D.R. and S.F.B.
W.D.R. (Westdeutscher Rundfunk). In addition to the main stations listed there are over 80 satellites in use. A few experimental transmitters operating in Band IV have also been built but these are not listed.

West German television, which employs the C.C.I.R. 625-line system, was, until recently, financed entirely from licence fees, but this is now supplemented by commercial programmes. A combined televisionsound licence costs 84DM (£7) a year, of which the postal authorities retain about 27%.

With the incorporation of the Saar in the Federal Republic there has arisen the problem of the commercial sound and television stations in this territory. The French 819-line standard was employed by the commercial television stations, but these are now closed down and the present station at Saarbrücken employs the $625-$ line standard. Its e.r.p. is being increased to 100 kW .

In addition to the national network there are also a few Band IV stations (not listed) being operated for the American Forces. These employ the U.S.A. 525 -line standard.

The number of television receivers

SÜDDEUTSCHER RUNDFUNK

SÜDWESTFUNK

SAARLAND
in the Federal Republic was $1,765,410$ at the end of September.

	channe.	
galen (S.D.R.) ...	E8	$20 \mathrm{~kW}{ }^{*}$ (V)
Berlin (S.F.B.)	7	
Biedenkopf (H.R.)	2	20* (V)
Bremen-Oldenburg (N.D.R.)	2	100
Cologne (W.D.R.)	11	5
Dillberg/Nürnberg (B.R.)	6	100
Feldberg/Schwarzwald (S.W.F)	8	100
Fridberg/Taunus (H.R.)	8	100
Flensburg (N.D.R.)	4	50*
Grünten (B.R.)	2	100*
tramburg (N.D.R.)	9	100
Hannover (N.D.R.)	8	5
Harz-West (N.D.R.)	10	100
Hoher Meissner (H.R.)	7	100
Hornisgrinde (S.W.F.)	9	100*
Kiel (N.D.R.)	5	5
Koblenz (S.W.F.) ...	6	50
Kreuzberg/Rhön (B.R.)...	3	100^{*} (V)
Langenberg (W.D.R.)	9	100
Raichberg (S.W.F.) ...	4	40
Saarbrücken	2	10* (V)
Stuttgart-Degerloch (S.D.R.)	11	100
Teutoburger Wald (W.D.R.)	11	100
\checkmark deinbiet (S.W.F.)	10	50*
Wendelstein (B.R.)	10	100*
Würzburg (B.R.)	10	1

GREECE

No provision was made in the 1952 Stockholm Plan for television stations in Greece because the Government " had not yet finalized its plans for y.h.f.; sound and television broadcasting." The delegation to the conference did, however, state that initially three stations would be erected at Athens, Salonika and Patras. No announcement has been made of the implementation of these plans.

HUNGARY

Following a series of experimental transmissions in channel O2 from a low-power transmitter on the outskirts of Budapest, a new high-power station was brought into service in the capital in January last year and recently a second station, at Pécs, was opened. The television service, which employs the O.I.R. standard, is State financed and the licence fee

is 600 Forints (£19) a year excluding sound radio. The present number of receivers is approximately 24,000 .
Budapest
Pécs
channel

ITALY

By far the biggest concentration of television stations in Europe is in Italy where, at the beginning of the year, there were 270-
approximately one half of the Continent's total. Of this number only 24 are major stations (they are listed below), the remainder being satellites which radiate a main station's programme received by radio. One of these main stations (M. Penice) has as many as 52 satellites. With a total of some $1,100,000$ television receivers in the country, there is an average of about 4,000 sets to each transmitter.
Although Italy adopted the 625line standard when the national service was started by Radiotelevisione Italiana (RAI) in 1954, the channels used vary somewhat from those generally employed on the Continent. Moreover, under a protocol

to the Stockholm Plan (1952), Italy is permitted to use an additional channel (81 to $88 \mathrm{Mc} / \mathrm{s}$). Italy's television channels are designated by the following letters with which we give in brackets the vision and sound carriers: A (53.75/59.25); B (62.25/ 67.75); C (82.25/87.75); D (175.25/ 180.75); E (183.75/189.25); F (192.25/197.75); G (201.25/206.75); H (210.25/215.75).

The television service is financed both from licence fees- 14,000 lire (£8) a year for a combined sound and television licence-and from advertising which was introduced when the number of sets in use exceeded 150,000 .

Gambarie	...		channel D	e.r.p. 19 ch
Martina Franca	\ldots	\ldots	D	220
Mi.an ..	\ldots	\ldots	G	24
M. Argentario	E	2.5
M. Caccia...	-.		A	53
M. Cammarata	A	29
M. Conero	E	24
M. Faito ...	***	...	B	53
M. Lauro	F	100
M. Limbara	H	3
M. Nerone	A	29
M. Peglia	H	34
M. Peltegrino	...	\ldots	H	8
M. Penice	...	\ldots	B	100
M. Sambuco	H	35
M. Scuro...	G	5
M. Serra	-••	...	D	270
M. Soro	E	5
M. Venda	...	\ldots	D	190
M. Vergine	D	1
Portofino			H	127
P. Badde Urbara		\ldots	D	145
Rome	G	36
Turin	\cdots	C	16

LUXEMBOURG

Tt 8 819-line standard, but with a bandwidth of $7 \mathrm{Mc} / \mathrm{s}$ as in Belgium, was adopted by the Compagnie Luxer, ,ourgeoise de Télédiffusion wher it added television to its com-

mercial sound broadcasting service in January, 1955. The station, which is built on the top of the Ginsterberg ($1,460 \mathrm{ft}$), radiates in channel E7 with a vision e.r.p. of 100 kW . Transmissions are horizontally polarized. The service is financed by advertisements so that no licence fee is paid by the 4,000 set owners in the Grand Duchy.

MONACO

Since early 1955 a commercial television station, Tele-Monte-Carlo, has been operated in the principality by the company which owned the commercial stations in the Saar. Early last year the station, which radiates on 819 lines in channel F10 with an e.r.p. of 50 kW , was taken over by the Monacan government. It is now leased to R.T.F., the French broadcasting authority, which provides the major part of the programmes.

NETHERLANDS

Sound broadcasting in the Netherlands is conducted by five societies (representing different political and religious parties) whose activities

since 1947 have been co-ordinated through the Nederlandsche Radin Unie. These same societies in 195^{\prime} formed a co-ordinating body, which is known as Nederlandse Teievisic Stichting, for television. Experimental transmissions were onductit from the end of that year $7 \mathrm{t.i}$ regular service using 625 lines w. . started in 1953. Viewers F : annual licence fee of 30 Dutcin florms (about £3), excluding radio, and th-

				channel	e.r.p.
Goes	\ldots	\ldots	\ldots	$E 7$	$5 k W$
lrnsum	\ldots	\ldots	\ldots	6	25
Lopik	\ldots	\ldots	\ldots	4	20
Markelo	\ldots	\ldots	\ldots	7	50
Roermond	\ldots	\ldots	5	50	

service is government subsidized. Television licences totalled 374,738 at the end of November, 1958.

NORWAY

An experimental television service has been radiated from a low-power transmitter in Oslo for the past four years.

The 625-line standard has been employed for these tests conducted by the Norwegian broadcasting organization, Norsk Rikskringkasting. As a result of these tests, the Norwegian government has drawn up plans for a national television network and regular transmissions are scheduled to begin in 1960. As with sound broadcasting the provision of

the technical facilities (transmitters and links) comes under the country's telecommunications administration and the programme technical operations are carried out by Norsk Rikskringkasting. Under the Stockholm Plan there is provision for 10 stations in Band I and 23 in Band III, but this number is considered to be insufficient to cover the country satisfactorily. A revised scheme providing for 28 main stations (18 of which will be ligh-power) and 19 satellites has, therefore, been drawn up. It is planned to have most of the proposed stations constructed for unattended operation.

POLAND

In 1952, after an experimental jeriod with two transmitters operating on different standards (441 and 625 lines), the Polish Ministry of Posts and Telecommunications adopted the O.I.R. $625-$ line system. The present chain of 8 stations is operated by the Central Radio and Television Administration of the government. A tax of 480 zloty's

(£7) a year is paid on each television receiver. The number of sets in use is now about 80,000 .

Gdansk			channe.	e.r.p
	\cdots	\ldots	03	
Katowice	...	\cdots	8	-26kW
Lódz	6	2.5
Poznan	7	3.5
Stettin	\cdots	\cdots	-	
Warsaw	11	95
Warsaw	2	7
Wroclaw	\ldots	\cdots	12	123

PORTUGAL

Three years ago the Portuguese government granted a concession to the Radiotelevisĩo Portuguesa, S.A.R.L., to organize the country's television service. Its licence permits the transmission of commercial programmes and the company is also

allowed to sell and rent television sets and accessories. R.T.P., as it is known, is now operating five stations, the service areas of which cover a large part of the country. 'The service employs the 625-line standard. To encourage the purchase of receivers, licences are not being collected for the first two years of this service. The estimated number of receivers in use is 22,000 .

Lisbon		channe	e.r.p. 100 kW
Lousã, Coimbra	...	3	50
Monchique	...	5	6.5
Montejunto	...	S	1
Oporto		9	100

RUMANIA

Under the Stockholm Finn Rumania is to have three stations in Band I and eight in Band III. At present, however, only one transmitter, in Bucharest, is operating. It employs the O.I.R. 625-line standard and radiates in Channel O2 with an e.r.p. of 7.5 kW . The service is government financed.

SPAIN

Since June, 1956, a regular television service on 625 lines has been broadcast from the low-power transmitter installed experimentally at Madrid by the broadcasting cepartment of the Ministry of Information. A second station at Barcelona was recently opened and plans has been made for additional stations : Santiago and Zaragoza and for a new high-power station at Navacerrada to serve the capital. There are tr:proximately 10,000 television rece1 rs in use. The annual lic-

pesetas ($£ 210 \mathrm{~s}$) for sets with a 14 -in tube and 500 pesetas (£4) for larger sizes.

3arcelona $\begin{array}{cccc} & & \text { channer er.p. } \\ \ldots & \ldots & \text { E3 } & 20 \mathrm{k} v / \\ \ldots & \ldots & 3 & 2\end{array}$

SWEDEN

Regular television transmissions using the C.C.I.R. 625-line standard have been radiated in Sweden since June, 1956, following a long series of test transmissions. The stations are built and maintained by the Board of Swedish Telecommunications and the programmes provided by the Swedish broadcasting organization, Sveriges Radio AB. The television service is intended to be financed from licence fees, but the government is making grants towards initial development costs. The fee is 100 Swedish crowns (about £7) a year, which is payable quarterly. Incidentally, in areas where "reasonably good reception" is not obtainable set owners pay a registration fee of only 10 Swedish crowns. There are, at

present, about a quarter of a million receivers in use.

			channel	e.r.p.
Gothenburg	...	\ldots	E9	15 k
Malmö	10	
Norrköping	5	15
Stockholm	4	60

SWITZERLAND

Switzerland's tri-lingual television service, which operates on the C.C.I.R. 6.25-line standard, is radiated by the seven stations listed. The stations are provided by the postal administration and the programmes by the Swiss Broadcasting Corporation. The S.B.C. receives 70% of the proceeds from licence fees and the P.T.T. 30%. The annual fee is 84 Swiss francs, about $£ 7$ for home receivers, and 168 francs for public reception. The s also sub-

sidized by the Swiss Newspaper Publishers Association which is providing 2 M francs a year for 10 years on condition that advertisements and sponsored programmes are not broadcast. The number of licences at the end of the year was 50,300 . In addition to the seven main transmitters there are five privately owned low-power booster stations.

			channel	e.r.p.
Bantiger ...	\ldots	\ldots	E2	30 kW
Chrischona,	Basel	\ldots	10	10
La Dôle $\ldots . .$.	\ldots	\ldots	4	100
Monte Ceneri	\ldots	\ldots	5	10
San Salvatore	\ldots	\ldots	10	10
Säntis \ldots.	\ldots	\ldots	7	30^{*}
Utliberg	\ldots	\ldots	3	20

TURKEY

Provision is made in the Stockholm Plan for Turkey to have 43 television stations-11 in Band I and 32 in Band III. Tests using 625 lines have been conducted for some time but there is no immediate prospect of a service being introduced. An experimental station in the Technical University, Istanbul, has been radiating in channel E4.

UNITED KINGDOM

Being the only country to employ the 405 -line system, it is often said that the U.K. is odd-man-out in television, but it must not be forgotten that it was the first country in the world to have a regular television service-in 1936. There is strong feeling in many quarters of industry and research that a change should be made to 625 lines, but, be that as it may, we are here concerned with the present television service which, after the wartime shut-down, was restarted on the same standards in 1946. The service was provided by the B.B.C. until 1955 when, under the provisions of the Television Act, the Independent Television Author-

When used by the I.T.A. this test card carries these initials.
ity started an alternative service. Whereas the B.B.C.'s income is derived from receiving licence fees, the I.T.A.'s comes indirectly from advertising. For the sake of our overseas readers it should be made clear that the I.T.A.'s programmes are not sponsored by advertisers. They are provided by the programme contractor licensed to operate a station, the advertisements being inserted in "natural breaks" in the programmes.
The present combined televisionsound licence fee is £3, plus £1 excise duty which is retained by the Treasury. The B.B.C. receives 87.5% of the revenue from all receiving licence fees after the Post Office has deducted an amount for its services in collecting fees and investigating complaints of electrical interference. The remaining 12.5% passes to the Treasury.

There were 8.9 M television licences in force at the end of December.

	channel	e.r.p.
Black Hill (I.T.A.)	10	$475 \mathrm{~kW}{ }^{\text {(}}$ (V)
Blaen Plwy (B.B.C.)	3	1
Burnhope (I.T.A.)	8	100*
Chillerton Down (I.T.A.)	11	100* (V)
Croydon (I.T.A.) ...	9	120 (V)
Crystal Palace (B.B.C.)	1	200(V)
Divis (B.B.C.) ...	1	12
Douglas (B,B.C.)	5	2.5* (V)
Dover (B.B.C.)	2	4* (V)
Emley Moor (I.T.A.)	10	200* (V)
Folkestone (B.B.C.)	4	0.1
Holme Moss (B.B.C.)	2	100(V)
Kirk o'Shotts (B.B.C.)	3	$100(\mathrm{~V})$
Lichfield (I.T.A.)	8	200(V)
Les Platons (B.B.C.)	4	1
Londonderry (B.B.C.)	2	1
Meldrum (B.B.C.)	4	17*
N. Hessary Tor (B.B.C.)	2	15* (V)
Norwich (B.B.C.)	3	10*
Orkneys (B.B.C.) \dagger	5	17 (V)
Pontop Pike (B.B.C.)	5	12
Rosemarkie (B.B.C.)	2	I
Rowridge (B,B,C.)	3	32* (V)
St. Hilary (I.T.A.)	10	200(V)
Sandale (B.B.C.)	4	16
Sutton Coldfield (B.B.C.)	4	$100(\mathrm{~V})$
Wenvoe (B.B.C.)	5	100 (V)
Wick (E.B.C.) \dagger	1	4* (V)
Winter Hill (I.T.A.)	9	100(V)

†Temporary stations at present in use.

U.S.S.R.

As mentioned in the introduction, only that part of the U.S.S.R. within the European Broadcasting Area is dealt with in this survey. Regular transmissions using 343 lines and 240 lines were started respectively from Moscow and Leningrad in 1938. A few years later the Moscow transmitter was modified for a scanning rate of 441 lines, and this standard was used until the introduction in 1948 of its present 625-line standard approved by the O.I.R. (International Broadcasting Organization), representing the Eastern European broadcasting authorities.

The major problem in providing a television service for so vast a country is the provision of links between stations. One method recently employed for a relay from Moscow to Leningrad-about 400 miles-was to use two aircraft as relay stations with an intermediate ground station between them.

We have been unable to obtain from the Soviet authorities a list of stations with the frequencies and powers employed. However, from announcements made from time to time we have been able to prepare a list of some towns west of meridian $40^{\circ} \mathrm{E}$ in which stations are said to be operating. This list, which has been supplemented by information kindly supplied by the Society for Cultural Relations with the U.S.S.R., is given below. Where known the

channel number is given in brackets:-

Dniepropetrovsk; Gomel; Kharkov (O1); Kherson; Kiev (O3); Kishinev; Leningrad (O2); Lugansk; Lwow; Minsk; Moscow (O1); Moscow (O2); Novgorod; Odessa (O1); Petrosavodsk; Riga (O2); Stalino; Stalinogorsk; Tallinn (O2); Vilna (O5); Yaroslavl.

In addition to these main television centres there are also a number of relay or satellite stations. It was recently reported that 30 new stations were brought into operation last year; the northernmost on the Taimyr Peninsular, well within the Arctic Circle. There are about 2.5 M television sets in use in the Union. The "subscription fee" for a television set is 10 roubles a month (about £10 a year).

VATICAN CITY

Although residents in the Vatican City are able to receive transmissions from the Italian television service, provision was made in the Stockholm Plan for the Papal authorities to have their own television station. Two frequencies-one in each band-were allocated, but so far no decision has been made on the erection of a station.

YUGOSLAVIA

Two stations were operating independently for a year until last November when a third station, in the capital, was built and all three are now linked and provide a service for 38% of Yugoslavia's population. The C.C.I.R. 625-line standard has been adopted for the service. About 6,000 receivers are now in use.

			channel	e.r.p.	
Belgrade		\ldots	\ldots	E6	10 kW
Ljubljana \ldots	\ldots	\ldots	10	4.5	
Zagreb	\ldots	\ldots	\ldots	9	4

Time Past

By P. P. ECKERSLEY, M.I.E.E., F.I.R.E.

This is the second of a series of articles by the first Chief Engineer of the B.B.C. and is concerned with the progress of the revolution caused by the invention of the valve, a progress during which he was intimately concerned with the beginnings of broadcasting. In the first article the author gave an account of how the nineteenth-century scientists established the foundations upon which pioneerng inventors built their systems. In a third article he will round off with some predictions about the future.

IN the early autumn of 1915 I stood on the tarmac of Brooklands Aerodrome next to the late C. E. Prince and heard him say into a microphone "Hullo, Ferdy!* If you are hearing me now it will be the first time that speech has been transmitted from ground to an aeroplane in flight. If you are hearing me, please dip." The lumbering "Rumpty," doing its forty-odd knots, fifteen hundred feet above us, gave an obedient lurch; Ferdy had received the speech, strength R_{9}. The incident gave me a particular thrill; it was the first time I had seen the Thermionic Valve in action.

Of the inventions of the twentieth century that of the valve seems to me to be the most important in the sense that it has had a greater effect upon the form of human life than any other. The valve, generator, detector and amplifier of high-frequency currents, made broadcasting practicable and broadcasting, be it of sound or vision, is of mighty consequence. I say this because I believe that broadcasting is the most powerful means of publication so far devised to influence the mind, taste and manners of mankind. I appreciate the counter-claim for the jet engine and the rocket; these assemblies could indeed be more influential in their capacity to destroy mankind, but I decline to match potential horrors against potential delights. Further, I recognize the importance of drugs-softening pain, subduing infections, restoring sanity-but I still maintain the claims of broadcasting as having a paramount influence upon communal psychology.
Still trying to match credit with those pioneers who deserve it can we find, among several, any one of them who could be allowed to say, in the face of fact, "I gave the world the thermionic valve"? With deep respect for the person who said it I maintain that neither he nor any one single person did so. The invention of the valve, like that of wireless itself, was too big to be borne of a single individual. But names are possible-in the time order, but not necessarily the order of importance of their contributions. I cite Edison, Fleming, de Forest, Langmuir and-a process not a person-the " getter."

Edison was unquestionably the first to arrange a plate near a filament and to explain unilateral conduction across the space between them (1883); Fleming, informed about the Edison effect and having at his disposal, on the shelf of a London University

[^2]laboratory, "Apparatus for Demonstrating the Edison Effect" probably used it, as a relatively stable rectifier which could be used to give a reasonably accurate measure of the value of highfrequency currents-hence, as a natural evolution, the Fleming diode (1904). Lee de Forest was certainly the one who first placed the third or grid electrode between filament and plate (1907), but the action of this grid was not very well explained or, perhaps because of the softness of the valve, was then inexplicable.

I have no precise evidence to support me but I believe that Langmuir first analysed the behaviour of the hard valve which the "getter" eventually got. In other words it was Langmuir who related g_{m}, μ, and r_{a}, and showed the valve to be a voltageoperated device in which these three parameters played a co-ordinated role.

The foregoing, set out in such simple outline, may, by the degree of its generalizations, be unfair to those mentioned and neglectful of those not. If this be so then it is because of the difficulty of compressing into a few paragraphs what is a somewhat confusing and often unedifying story of protagonists upholding flimsy claims in terms of the polemic of vested interests rather than cool and factual analysis. Soft valves, soft thinking? But, with the tolerance of history, no hard words. Whatever may be the truth, the hard valve did appear out of a confused mist and proceeded, from 1914 onwards, to revolutionize the art and practice of electrical communication in all its forms.

It is surely fascinating to look back with wise-after-the-event eyes and watch the inventors of the past teetering on the edge of the obvious. A case in point concerns the use of the valve as a generator of oscillations; in other words the concept that, by positive feedback, the valve could be made to look like a negative resistance and thus overcome the losses in the resonant circuit it sets into oscillation. Lee de Forest described the triode in 1907 but does not claim regeneration until 1912. And simultaneously others, as we see from a famous legal action, had seen the same potentialities long after the appearance of the valve itself.

Thus "IN THE COURT OF APPEALS OF THE DISTRICT OF COLUMBIA Before Smyth, Chief Justice: Robb and Van Orsdel, Associate Justices This interference comes here on appeal by the parties Langmuir, de Forest and Meissner, from the decision of the Commis-
sioners of Patents awarding priority to Armstrong, also appeals by de Forest against Meissner and Langmuir jointly, and against Langmuir individually, for the invention set forth in the following counts"-and then ten or more thousand words in which other famous names came to the fore, notably Franklin and Round (England). A good deal of the evidence concerned "a beautiful clear tone" which de Forest claims to have produced from his Audion; it seems to have sounded as a syren voice in the ears of the legal pundits who gave judgment in de Forest's favour. Howard Armstrong, that prolific inventor, was much upset by a decision which was inclined to stress a somewhat loose description possessing a few months' priority against one which was far more concise if a little later in time.
While still thinking about these time-lags it is also strange to realize that we had to wait several years before we were given the immeasurable benefit of negative feedback, almost as important an invention in its influence upon the valve's ubiquity as the positive kind of feedback.
So much for genesis.
In spite of my presence at the Brooklands demonstration in 1915 I spent the greater part of the war in Egypt, Salonika and France looking after spark transmitters and crystal receivers. It was not until late in 1917 that I was appointed to do what was rather grandiloquently described as "Research," first for the Army at Woolwich and then for the Flying Corps at Biggin Hill. Here I came into intimate contact with the valve, its moods, potentialities, successes and failures.
Soon after the armistice I escaped out of a uniform (a "war to end all wars" had just been victoriously concluded, what point in remaining in military service?) and joined the Marconi Company. In a short time I became Head of the Experimental Section of the Designs Department, the laboratories being housed in an army hut in a field near the village of Writtle which is in turn near Chelmsford, where the Marconi factory was and is located. A claim to fame, before ever broadcasting came to increase it, lies with the fact that I played a considerable part designing both the first aircraft wireless telephone equipment, used extensively by Imperial Airways, also the Croydon ground station. Who remembers "Croydon calling" and its speech heard against a background hum as loud as any produced in his receiver by the most amateur of amateurs? The hum was purposive; it made tuning-in by the pilot all the easier.
Two important events accompanied my service at Writtle, first the setting up at Chelmsford of a powerful long-wave telephony transmitter and secondly the regular broadcasting service from " 2 Emma Toc, Writtle." I will not labour detail, the facts are well known and have been set out elsewhere; I would prefer rather to generalize than to indulge anecdotage. Suffice it to say that the initiative due to H. J. Round and W. T. Ditcham, in setting up the powerful long-wave telephony station at Chelmsford circa 1919 stimulated the wireless amateurs to petition for a regular broadcasting service, and that permission for this to be set up, on the limited scale of half an hour a week, resulted in the Writtle station and the Writtle programmes, a service which anticipated that started by the B.B.C., in November, 1922, by some eighteen months.

A diminishing number of wireless amateurs and others attracted to the hobby of building "wireless sets" will remember the programmes from Writtle as being frivolous, I would prefer the description "gay." Perhaps the more remarkable aspect of the Writtle transmissions was the staff that fostered them. This comprised in the order they joined me after I became Chief Engineer of the B.B.C., the late H. L. Kirke, C.B.E., sometime Head of the Research, and subsequently Assistant Chief Engineer; B. N. MacLarty now Engineer-in-Chief of the Marconi Company, the Hon. R. T. B. Wynn, C.B.E., now Chief-Engineer of the B.B.C., and Sir Noel Ashbridge who was for so long the Corporation's Chief Engineer and subsequently Director of Technical Services.

An accompanying group photograph recalls a collaboration which I dare to describe as unique.

In my first article I described how, when still a schoolboy, my subsequent career in wireless was largely determined by the tactile excitements of brass and ebonite: it was a similarly sensual experience which caused me to swerve from occupations concerned with the less romantic aspects of radio to one devoted to the service of broadcasting.

It must have been in the early autumn of 1922, before the formal creation of the B.B.C. in November of that year, when Station 2LO broadcast opera from Covent Garden. Up to the time when I was converted to a belief in broadcasting, the wireless telephone as such had to me done little more than intrigue my technical intellect, its applications were seemingly prosaic, while our Writtle broadcasts seemed to be no more than the aphrodisiac of a hobby ("keep your boys at home"). But the moment of revelation, the moment when I heard the opening bars of the opera, and was in two senses transported, then the potentialities of broadcasting were seen so vividly and so completely that thereafter all attempts to realize them have been to me tinged with disappointment.

The experience must be seen as mystical, as such I have unashamedly tried to describe it; its residue caused me, in prosaic contrast, to frame what I termed the B.B.C.'s technical policy; I still believe in it and I still believe it has not been fully implemented.
In sum it is my belief that "The Programme's the Thing" and that the mechanism which reveals it must be subservient to the art which creates it. To conclude from this that the policy so described does no more than demand realism in reproduction begs the question so long as the term realism is not defined. You do not have realism, as it sometimes is defined, when, for example, a single source of reproduction canalizes a widely diffused source of programme. A two-dimensional representation of a three dimensional subject, such as is seen in a painting cannot be said to demonstrate realism in one interpretation of the term. But the artist who knows his job knows how to make a virtue of necessity and uses the very limitations of a medium to make his art more realistic-in other words, to make the impact of his art upon the sensibilities of an audience more pronounced than realism, prosaically defined, could ever do.
Having said that the Programme is all important it might next be said, stressing the plural, that the Programmes are more so.
A hobby-horse cannot be ridden to death, since,

A notoble group, the members of which conducted the first regular broadcasting service, from station $2 M T$, Writtle, some eighteen montrs before the E.B.C. was formed. Left to right, standing, B. N. MacLarty, the !ate H. L. Kirke, R. T. e Wynn, H. J. Russell; seoted F. Bubb, N. Ashbridge, P. P. Eckersley, E. H. Trump and Miss B. Beeson.
lacking a rider, it is already dead. I shall now attempt, in a brief spell, to resuscitate my old nag. To do so demands an explanation why I believe that this stressing of the plural of Programme is so important. I was, I am and I believe I always will be convinced that the technical method by which broadcast programmes are distributed pays greater respect to the art it serves as, within reason, the number of different programmes it offers, simultaneously, for the individual's choice is the greater. This conviction determined me, after I had left the B.B.C. (1929), to do all I could to proselytize and develop rediffusion, i.e., schemes whereby programmes are distributed through wire networks rather than by radio. Need I stress the limitation of radio in being very spare of channels in the frequency bands available, while relatively the wire suffers no such restriction?

During the late twenties and early thirties the Post Office, the B.B.C. and the Radio Trade more or less openly opposed the development of rediffusion; in spite of so formidable a combination it grew, and when given a chance, goes on growing. This fact reaffirms an unshakable conviction that a majority want a reasonably wide choice between different kinds of clearly produced programmes.

This proposition might well have been denied when, in the early days, the passion for home-building radio receivers was at its height. Many of my readers must remember those delightful times when they would hear one of the cognoscenti boasting his home-built set and how he "received Zloik (station in Czechoslovakia, old man) on my Superwoppodyne; 'phones were lying on the kitchen table and I heard the station quite clearly, while I was upstairs changing my shirt." Well, "it was swell while it lasted"; it was that rarity a hobby that produced a full-scale manifestation. In contrast you built a model steam engine and the consummation was a smell of meths. and a jerky puffing concealed in a pale mist-how different from Zloik "clear as a bell and no fading, old man."

The hobby died, the public bought the superhet,
the programme was the thing and this gave rediffusion its opportunity.

I cannot refrain from taking this opportunity to air a grievance. Briefly it is that when there actually was a means to prevent the extension of rediffusion the vested interests made full use of it. My friend and colleague Rupert Carpenter and I devised a system whereby four to six programmes could be sent through the electric mains to householders who, by the movement of a switch, could select any one of them. There happens to be an Act of Parliament, dated 1882, which forbids the electricity authorities to use their wires "for the purpose of sending a telegram." After a demonstration of the practicability of our method it seemed to certain vested interests and their Parliamentary sympathizers that this act was hardly less important than Habeas Corpus. And so, in the "land of opportunity" (see Press) we were forbidden to prove how right our opponents were when they said, as they did, that our scheme would not work and that if it did it would introduce a "dangerous new principle."

The issue requires little elaboration, the proposals we made about it, also about the wider implications of wire-broadcasting received either contemptuous dismissal by Government committees and commissions of enquiry or combative assertions about technical method; funds were even raised to oppose the passage of a bill through Parliament revoking the ancient statute; today, with the impact of television the issue about the method itself is dead but not, I trust, the implications of the story.
I shall not say much here about the more important phases in the development of sound broadcasting, its rejuvenation by v.h.f., the introduction of the "Third" (the most notable and admirable of the B.B.C.'s innovations), automatic monitoring, the overseas service and its intricacies of switching programmes, so admirably conceived and executed and, above all, television. I excuse this unbalance by remarking that it is all recorded elsewhere whereas in like degree heterodox opinion, which becomes me better, has not. I could not, however, even begin
to excuse the dismissal of television and so, since it belongs more to Time Future than to Time Past I will have a good deal to say about in in my next and last article.
While I maintain that the most remarkable outcome of the invention of the valve is the broadcasting service, obviously parallel developments are nearly as important.

It was said in my first article that, broadly speaking, the first decade of the development of wireless proved it, as a means to link stations separated by world distances, a comparative failure. It was of course the valve that raised the status of wireless as a world communicator so that it became, under the aegis of private enterprise, a competitor with the under-sea intercontinental cable. In order that private enterprise should not become indecently enterprising the Establishment decided to synthesize thesis and antithesis and so brought the Public Utility "Cables and Wireless" into being.

The invention that brought about the merger was the Marconi beam system whereby it was proved that radio was capable of penetrating to distances of the order of π times the radius of the globe; a globe assumedly well wrapped in an ionized blanket. It was his ability to see the wood, without confusion of trees, that, just after the conclusion of the first war, made Marconi say, "Now that we have the valve why don't we try short waves again?" The sentence implies an appreciation of the signal-to-noise ratio; the higher the frequency of the signal the less the noise. On the other hand the shorter the wave the greater the overland attenuation. Before the aerial currents could be amplified, short-wave ranges were limited to very short distances; once the more feeble but less interrupted signals could be amplified the overall gain was, to say the most, fantastic.

I have never been able to find out whether and if so in what degree Marconi was driven to follow his hunch, so neatly stated, by the mass observation of amateurs; it is surely fitting to remember that these keen experimenters, driven away from the mediumwave gamut, did prove, by their skill and patience, that, on the lowest terms, an investigation of the commercial potentialities of short waves was well worth making. We may also note that the less imaginative authorities were still tied to lower frequency and higher power and still higher aerials.

In commending the beam system we should pay tribute to the genius of C. S. Franklin who designed the transmitters, aerials and receivers, and to T. L. Eckersley whose original work on the physical properties of the ionosphere made it possible to match optimum frequency with world paths and diurnal times.

I am drawn, in these concluding paragraphs to hover on the edge of prophecy; a giddy state and therefore exciting. Boldly stated, it is that point-topoint communication over ocean distances will eventually and as to the greater part be made by cable, while overland communication, as to a considerable part, will be consummated by radio. I stress ocean distances meaning communication where oceans get in the way; there is no need to define the term overland, it means over land. I stress also that it is point-to-point communication that is in question; obviously radio is the only viable method of communication for mobile services.
To expand this thesis we see already how the telephone and telegraph service between, in effect, Europe
and North America has been improved by substituting cable for radio. We learn of plans to bridge the Pacific and link the Commonwealth by supplementing this ocean cable by another spanning the Indian Ocean. We know that when the transistor and its associated components become more reliable that great benefits will be conveyed to the ocean cables. We can foresee intercontinental television exchanges (which are almost impossibly expensive when relying upon a radio link) becoming an everyday occurrence when there are sufficient cables to carry them.

As to overland communication by radio there are in operation today many systems, the wave frequencies climbing into and above the four thousand megacycle landmark. Line-of-sight transmission, from hill-top to hill-top, invites shorter and shorter waves and as the systems develop and according to the nature of the terrain we may see them, as we do today in various parts of the world, supplanting the coaxial and multi-quad cables by means of which many hundreds of messages are sent simultaneously through the same link. There seems to be, at first blush, something of a paradox if radio, hitherto used as an ocean bridge, should give up its role in this respect and take on another where, superficially speaking, the physical conductor would seem the obvious link. For overland communication the paradoxical aspects may fade, as does radio, when it is seen that signalling by refracted and reflected waves has a hazardous aspect when compared with a conductor which guides the waves to their destinations.

It may seem as if this adumbration of possible future developments is outside the terms of reference of an article headed Time Past. But no! Time past has seen the wide use of radio for point-to-point communication over land as it has also seen the introduction of the telephone cable bridging the Atlantic; the facts are there; all that has been done, in a time future category, is to postulate the continuation of a tendency already manifest in Time Past.

But "Amarath an Amarath succeeds"; a new form of multi-electrode amplifier-the transistor-is already taking up the work begun by its forbear the thermionic valve.

I end as I began by stressing the importance of the invention of the valve without which the Time Future of telecommunication, which I hope to glance at in my next article, would not, in all probability, be worth writing about.

Television Society's Exhibition

AS in past years, the keynote of the Television Society's Exhibition, which opens at the Royal Hotel, Woburn Place, London, W.C.1, on March 3rd will be television research rather than domestic reception. The three-day exhibition opens at 11.30 on the first day and at noon on the following two days. The respective closing times are 8,0, 8.0 and 7.0. At the time of going to press the following had taken space at the exhibition:-

British Communications \& Electronics
Chapman \& Hall
Cossor
E.M.1. Electronics Ever Ready

Hallam, Sleigh \& Cheston
Livingston Laboratories
Mullard
C. H. Nokes

Standard Insulator Co.
20th Century Electronics
N. E. B. Wolters
N. E. B. Wolters

John Ware
Rank Cintel
Rank Cintel
Wireless World
Wireless World and Radio \& Elec-
tronic Engineer
Admission is by ticket obtainable free from the Society at 166 Shaftesbury Avenue, London, W.C.2.

LETTERS TO THE EDITOR

The Editor does not necessarily endorse the opinions expressed by his correspondents

Stereophonic Records

HAVING just returned from a brief visit to America, where stereo rules the roost, I read your February Editorial with much interest. (Over there it is almost impossible to sell any new higk-grade mono equipment, and the mere sight of a new mono record, however good, scares the pants off record dealers.)

Mr. Haddy, of the Decca Studios, has now convinced me by demonstration that the sound from disc stereo can be as good as the same recording heard direct from $15-\mathrm{in} / \mathrm{sec}$ tape, provided the pickup is of adequate quality. The stylus should maintain contact with the groove walls at a playing weight of 3-4 grammes, with no audible needle chatter with the ear three or four feet away. As the Decca pickup fulfils these requirements and is now available through the trade, and other good stereo models are being produced, my previous complaint about inaccessible high-quality units no longer holds.

This leaves us with the great question: How does the best stereo compare with the best single-channel recording? The idea to have direct comparison, put forward in your Editorial, is excellent and should also be applied to pickups. With the co-operation of E.M.I. and Decca we hope to do something on these lines at our Royal Festival Hall Demonstration on the 9th May. If really omni-directional speakers are used I feel sure that a worth-while comparison can be made, even in the R.F.H. The big idea is to play some original passage of music through the same amplifiers and speakers with three different types of input as follows:
(1) Single-channel record with high-quality mono pickup.
(2) Same as No. 1, but with the best available stereo pickup connected for mono output.
(3) Stereo record with same pickup as used for No. 2, but connected for two-channel output.

Even if we prove nothing, it should be good, clean fun.
Idle, Bradford.
G. A. BRIGGS,

Wharfedale Wireless Works Ltd.

Stereophonic Sound

I SUGGEST that the mode of sound reproduction, commonly known as " stereo", will only prove technically satisfactory when some manufacturers realize that the "ting" of a cash register is not the only sound that requires reproducing.

Southam.pton.
JULIAN GARDNER

Stereophonic Standards

ONE of the great dangers of a rapid advance in the commercial application of a scientific discovery is that of ill-conceived standards. We are now, for instance, reconsidering our television system, and have recently asked ourselves why we chose odd standards for tape speeds. Now that stereophonic sound is a commercial proposition, we ought surely to start considering very carefully the standards we are going to accept, such as loudspeaker spacing, cross-talk levels and so on. It would be interesting to hear, for example, why 6 feet has been chosen by some as a loudsoeaker spacing. One can hardly imagine the most tolerant and adoring wife accepting two reflex cabinets or column radiators placed 6 feet apart in the living room or the lounge. Could we not have 12 feet? Practically every living room in the country must be very close to this dimension in either length or breadth. In this case they could be
placed in two of the corners of the room, which should be more compatible with the domestic situation. It would be interesting, therefore, to hear the experts declare whether such an arrangement would be acceptable from à technical standpoint.

Sevenoaks.
J. R. OGILVIE

Rigidity of L.S. Diaphragms

MR. BARLOW'S comment in the February issue on my letter intrigued me very much. I was very interested to find he had had similar results to mine-that a rigid (well, somewhat rigid) diaphragm didn't obey the rules. I have been brooding on this problem for some time and one or two thoughts occur to me.

In the matter of extended frequency response, as compared with a paper cone, there are two possible theories, but I wouldn't be prepared to say that either was a good one. Experimental proof is so very difficult. The more credible one seems to me to be this: it is common knowledge that liquids and solids conduct sound more efficiently than gases, and a hard solid is a better conductor than a soft one. One would not use a rolled-up newspaper as a car engine "stethoscope", but a metal rod behaves very well in locating the source of engine noises. I suggest that in a hard synthetic resin diaphragm there is good transmission of high frequencies from the cone apex throughout the main body of the diaphragm which results in a greater area for transferring the sound waves to the air, whereas with the customary felted paper cone this transmission does not occur owing to the (literally) absorbent nature of the material; hence the only part of the cone which does propagate the sound waves is the apex.
The alternative theory is that the hard cone material "rings" and produces spurious extreme treble which is not detected by rough-and-ready frequency response measurements but which might be detected (as was pointed out to me by Mr. Voigt) by applying the output of the measuring microphone to a sensitive oscilloscope. Unfortunately this test will not work with comparatively small inputs to the speaker since it is almost impossible to detect small departures from the sine wave on the 'scope.
This I can say: the old pre-war Hartley-Turner speaker had a phenolic resin cone, and its chief defect was excessive output in the 5 to $6 \mathrm{kc} / \mathrm{s}$. region. When I thought I had finally solved the problem of a synthesized resin cone I found it did exactly the same thing. The top sounded wonderful, but it wasn't the real thing, and the effect was only removed when I modified the formulation to reduce the hardness of the resin and give it (to use an ad. man's phrase) "built-in darnping."

This leads to a note on the matter of ordinary damp, which puzzles Mr. Barlow. The cones which were developed in the U.S. were designed to be as hard and stiff as possible. This involved using a very hard filler in the resin formulation. The filler was hygroscopic but I thought that perfect sealing off by the resin would make the cone waterproof, since the resin used was supposed to have negligible water absorption. Not a bit of it! I left the cones in a damp atmosphere for a month, and they turned limp. On heating them I could see steam coming off, and then the cones were hard again. I do not believe that any syrthetic resin in comparatively thin films can reject moisture. The figures quoted by manufacturers are based on the immersion of quite thick pieces of resin and, in the case of polystyrene for example, I feel pretty certain that the figure
of 2.8% quoted by Mr. Barlow is almost a "skin effect". If the major part of the resin used in the cone is a skin then the actual absorption would be quite a high percentage.

If so, then Mr. Barlow's thick sandwich is basically a very good idea, for he seals off the resin on both sides, and doubtless could seal the edges too. But the size/ weight figures he gives should, I think, be improved if good reble response is to be maintained. He quotes 15 gm for a $7 \frac{1}{2}$-in disc; I stuck to a conical shape as being, in my opinion, the strongest shape, and I finally managed to get down to 11 gm for an $8 \frac{1}{2}$-in cone. A felted paper cone of the same size and shape comes out at $5-6 \mathrm{gm}$, and the resin cone had more real top than the paper one. But if I increased the weight I am sure that the "roll-off" would be fairly severe. One sample had a weight of 22 gm and had the same treble response as the paper cone, but, of course, far better bass.

My work, and Mr. Barlow's, clearly indicates that, whilst we may feel pretty certain that felted paper's sole advantage is ease of production, change to another material which denies accepted design dogma involves basic research which is not very easy to carry out. There are so many possible permutations and combinations of materials.

Exton, Southampton. H. A. HARTLEY.

Miller Sweep Circuit

THE Miller sweep circuit described by C. S. Speight in your January issue was first developed some three years ago by J. D. Julian and myself. It may be of interest that the original object was to improve by Miller feedback, the linearity of saw-tooth obtained from the multivibrator with its excellent synchronizing properties.
The multivibrator circuit employed is shown in the accompanying diagram, and is due to H. E. Anthony*.

The timing capacitor C is in the cathode circuit of V2. Because of the low impedance of V2, C will charge rapidly when V2 grid is switched "on" by the multi"vibrator action. During the period when V2 grid is "off," no current will flow through V2 and C will discharge logarithmically through R. The essential feature of the improved circuit is the substitution for R of a Miller valve.
The circuit is capable of producing more than 200 volts of almost perfectly linear saw-tooth with 350 volts h.t. supply. This can be maintained, with careful design, up to $500 \mathrm{kc} / \mathrm{s}$ sweep recurrence. The sweep amplitude can be easily stabilized, permitting accurate time calibration; in addition all the advantages of easy synchronization are retained.

It is not clear why Mr. Speight refers to the circuit

[^3]as combining the Miller and Puckle circuits, as surely the essential ingredient of Puckle's timebase is the use of a constant-current pentode as a linear charging device. With the Miller-Multivibrator, as I prefer to designate it, it is the run-down which is linear. The constant-current anode characteristic of the pentode is not employed at all.

Bournemouth.

L. FREEMAN,

Waveforms, Ltd.
The author replies:
A timebase is generally referred to by a name which suggests either a special method of generating a linear sweep (e.g., Miller bootstrap) or a special method of recharging the sweep capacitor (e.g., thyratron, griddiode). In my view, the Puckle circuit is essentially a recharging device, in which a hard valve trigger circuit replaces the obsolete thyratron circuit.
F. J. M. Farley* describes the Puckle timebase with a resistor in place of the more usual constant-current pentode, and the arrangement then resembles that to which Mr. Freeman refers.

It is worth noting here that the factors influencing the operation of the Puckle circuit are quite different from those of the standard multivibrator and the only real similarity between the two circuits is in the method of applying positive feedback.

In reply to the letter of Mr. J. D. Julian, published in the February issue, I should like to make the following comments.

Apparently, Mr. Julian has overlooked the main difficulty, encountered in combining the Miller and Puckle circuits, which is to ensure that the current drawn by the Miller valve during flyback does not subtract substantially from the recharging current.

The situation is aggravated by the feedback action of the sweep capacitor tending to drive the Miller valve into heavy conduction. Ideally, this valve should be cut off, during flyback, but in practice it is more convenient to limit the anode current to a fraction of the recharge current. In my circuit D1 and R_{8} perform this function, and Mr. Julian is incorrect in saying: "D1, it will be appreciated, is not essential to the operation of the circuit and in the interests of economy can well be left out, together with R_{8}." This statement appears to be based on the assumption that these components serve merely to protect the valve against overload. I would suggest that equivalent components might be inserted into the circuit proposed by Mr . Julian, for, as the circuit stands, it is difficult to see how the sweep capacitor can recharge at all.

I cannot agree that synchronization and triggering efficiency can be improved by applying the pulses concerned to V3 cathode. Synchronization is most effective when it is applied to the initiation of the flyback, rather than to the initiation of the sweep, particularly when the ratio of sweep to flyback periods is as high as that of the circuit described. Another point in favour of the original method of sync. injection was mentioned in the article, and this arises from the action of V2(b) in amplifying the sync. pulses before they become effective.

The statement of Mr . Julian concerning capacitive loading of V2 is irrelevant. The resistor R_{1} is introduced to avoid this effect in the free-running circuit, whilst the diode D2 performs a similar function in the triggered version. The diode will cut off, should the rate of rise of voltage at V2(a) anode exceed that at the trigger input, thus isolating this point from stray capacity at the input. When the trigger pulse has a fast rising front, this will be transmitted through D2, contributing directly to the c.r.t. "bright-up" pulse.

Automatic "gate-out" of negative pulses arriving during the run-down is achieved by means of D2, whilst the grid-cathode diode of V2(b) reduces the amplitude of positive pulses to negligible proportions.

The term " initial fast region" was used deliberately

[^4]to suggest the effect of the Miller step on the c.r.t. display. I can see no point in trying to connect this indeterminate arithmetical error with the formal definition of non-linearity. I agree, however, that more should have been said about the Miller step, especially concerning its dependence on sweep speed.

The advantages of the circuit, which I overlooked, unfortunately do not include: "Constant amplitude of run-down, unaffected by sync." As was originally pointed out, the lower limit of sweep depends on the anode voltage of V2(b) during run-down, and this will vary with sync. amplitude.

Mr. Julian states that I overlooked mentioning "the superior triggering or synchronizing ability" of my circuit. It would, therefore, seem that the circuit performs satisfactorily in this respect and no modification is required. This is, in fact, the case.

It would be interesting to compare the commercial circuits referred to by Mr. Julian, with that which I submitted. The fact that these have some properties in common confirms my original opinion, that a timebase can be devised, which is no more complex than the standard Puckle circuit, yet compares with those presently available in commercial equipment.

It was thought that a description of such a circuit might be of interest to readers, but I must apologise to anyone who has been concerned with this type of circuit for not acknowledging the work done in this field.

Southend-on-Sea.
C. S. SPEIGHT

Printed Circuils

IN his reply to my letter (January issue) on printed circuits Mr. W. I. Flack accurately states the case from the manufacturers' point of view, and in so doing confirms my contention that most set makers are very much out of touch with conditions prevailing in the dealers. service department. Regarding his doubt as to a $24-$ hour service, I can assure him that although I do not regard our service department as being in anyway exceptional, the majority of our repairs are completed within 24 hours. Indeed, on the day that my Wireless World arrived and I read Mr. Flack's letter I looked at our job book and found that three TVs reported faulty in the morning had been collected, repaired and returned to the owners by 6 p.m. It will no doubt surprise Mr. Flack and other manufacturers to know that this is the sort of service which the customer expects and which I think he is entitled to receive. On the rare occasions when we have had to return a receiver to the makers for repair we never see it again for at least ten days. I am afraid most manufacturers do not know the meaning of the word "service".
Contrary to popular belief the average dealer's workshop does not consist of several fully qualified and whitecoated engineers surrounded with wobbulators and signal generators, busily aligning i.f. strips and making expert repairs to printed circuit panels. If it did, Mr. Flack would be quite right. It would take just as long to repair a "steam wired" set as a printed circuit set. After 30 years' experience I have found that the most efficient dealer service should be run by a few "Old Hands" with the necessary "know-how" and experience to diagnose faults quickly and accurately, (generally aided by nothing more complicated than a valve voltmeter). The faulty set is then passed to a less experienced engineer who executes the necessary, repair. Under these conditions the "steam-wired" receiver wins hands down for accessibility and general speed of service.

Is Mr . Flack really serious when he suggests that dealers should stock a complete set of printed circuits for every receiver on the market? At the present rate of progress most units would be obsolete within a year. A good idea from the manufacturers' point of view but as a dealer I will not trust myself to say more on the subject.

I am sure Mr. Flack will agree that when we reach the heart of the matter in this controversy, it doesn't really matter what he, as a manufacturer, or I, as a dealer, prefer. It is the customet that counts, and if he wants his faulty TV back in time to see "Emergency Ward 10" or the Cup Final, there's not much doubt which sort of service he would prefer!

In my original letter I did not question the reliability of the printed circuit, but since Mr. Flack has raised the issue by stating that they are superior in this respect I should like to point out that it is rather early days for such an assumption. I may be wrong but it occurs to me that when some of these printed-circuit receivers have been in use for five or six years, possibly under conditions of extreme condensation, etc., they may not be looking to well. Perhaps we shall then find that-as in the case of push buttons, black screens, plastic c.r.t. masks, etc.,-all new ideas are not necessarily good ideas.
It is unfortunately true that more and more manufacturers are falling for printed circuits but I think that the few who are sticking to their "steam-wired" designs will reap the benefit of bigger sales in the long run. I have found generally that sets that appeal to the service department are good sellers and vice-versa, but only time will tell!
London, N.W.6.
A. G. TUCKER.

YOUR correspondent, Mr. Flack (February issue), in defence of printed wiring (quite distinct from printed circuits) advances the argument that his technicians employed on production test, like, or even prefer, to work on these panels as against conventionally constructed chassis.

I should like to enquire if Mr. Flack would prefer to fault-find in an unfamiliar conventional chassis where all sleeving is of the same colour, or in one which employed the recognized sensible variety of coloured wiring? Since printed wiring falls into the first category, he would appear to prefer the former.

The second disadvantage is, that since wiring and components are on opposite sides of the printed panel, the eyes are required to move constantly from one side to the other, resulting in both eye and mental fatigue.

Thirdly, looking at the component side, this holds a disjointed array of resistors and capacitors fixed apparently at random and one is unable to see the interconnections. This is not the case with a well-designed conventional assembly.

Fourthly, the experienced and skilled technician is used to looking at valveholders and coils frob below, and by seeing all the wiring attached to these components in a well-defined and logical sequence, he makes his measurements without hesitation, just as Mr. Flack would, no doubt, unhesitatingly spell out the word Czechoslovakia. He suggests, however, that it is just as easy, or even easier, to spell the name of that country backwards.

I am well aware that to print and to read in the fashion we, in fact, do is merely an acquired habit. But I hope Mr. Flack will agree with me that it would not be a particularly good idea to print alternate words on the front and back of pages. It would take longer to read and be more strenuous if this method were, in fact, adopted. Although sooner or later one would, of course, get used to it and live. with it.

To say, therefore, that printed wiring offers any advantage other than perhaps to reduce the manufacturing costs is grossly misleading. Its general adoption will certainly increase maintenance and repair costs. On balance, therefore, the set owners will not gain, but the engineers' span of life is certain to become shorter.
London, N.W.6.
E. KISCH

MR. W. FLACK'S remarks in last month's issue are not altogether complimentary to service engineers in general. He states that the apparent dislike engineers
have for printed circuits is because servicing of such equipment calls for a good deal more care and technical skill, whereas with conventional wired circuits, hit-andmiss methods are the order of the day. Anyone who has had experience in servicing printed circuitry is fully aware of the care necessary in handling it, and has, no doubt, discovered that the application of a soldering iron can wreak havoc if not handled very carefully. If this means technical skill as interpreted by Mr. Flack, all good and well. But he goes on to say that there is less room for hit-and-miss methods in servicing printed circuitry than in conventional wiring circuits. I can only assume that this statement applies to "pirates" and the like, who are, unfortunately, to be found in every trade or profession. With a thorough knowledge of basic theory, combined with a logical approach, servicing of both types of circuits should not present undue hazards.

A final point on the cost factor of the printed versus wiring circuits. If the former is supposed to be much cheaper to manufacture, to whom has the saving been passed?

Sevenoaks.
A. W. WESLEY-COLLINS

What Makes Currents Flow?

"CATHODE RAY'S" article in the January issue concerning the causes of current flow led me to read the monograph by P. Hammond to which he refers, and I am prompted to make one or two general comments on the subject.
First, let me say that I support Hammond in his view that the current in a simple battery and resistance circuit is caused by charge distributions, whilst agreeing with "Cathode Ray" that the prime cause may be chemical action or even the act of assembling the battery. The term e.m.f. is one which we employ to describe one manifestation of a particularly complex process of electro-chemical action, charge distribution and charge motion, just as we use the term eleatric field to conceal our ignorance of the true laws of force between charges.
If a straight conductor is positioned between two terminals having a potential difference but without connecting to them, the charges in the conductor must redistribute themselves until the resultant electric field is everywhere zero; but one might hesitate before committing oneself to saying just what form this redistribution will take. For instance, since the applied field is apparently being set up by two equal and opposite conzentrations of charge at the terminals, one suitable charge configuration in the conductor should be with similar but opposite concentrations at its very ends. Is this the only suitable configuration or are there others; and if there are which one is correct?
The answers to these questions are by no means obvious, even in this straighforward case of a straight conductor carrying no current, but if current is permitted to flow by connecting the conductor to the terminals and the conductor is no longer assumed straight the problem is complex indeed and I do not pretend to know the carrect solution.
"Cathode Ray's" trump card, the closed ring surrounding a varying magnetic flux is, however, fairly easy to explain, at least in terms of the concepts of induced e.m.f. and lumped resistance. The effect of transformer induction, of which this is an example, is basically due, as E. G. Cullwick ${ }^{\star}$ points out, to the fact that charges in motion (namely those charges which constitute the current system setting up the magnetic flux) exert forces on stationary charges as a result of this motion. These forces, of whose true nature we are quite ignorant, may be regarded as producing an electric field in the closed ring and this, over a finite length of ring, is equivalent to an e.m.f. tending to drive current through the resistance of the ring.

However, this e.m.f. must not be regarded as concentrated at one point in the circumference of the ring but, like the resistance, as uniformly distributed around
it. The figure shows an equivalent circuit containing, say n sections each comprising a small e.m.f. $\delta \mathrm{E}$ in series with a small resistance δ R. The current will be $\mathrm{I}=n \mathrm{E}$ / $n \delta \mathrm{R}=\delta \mathrm{E} / \delta \mathrm{R}$ and the voltage drop from A to B is $\mathrm{I} \delta \mathrm{R}-\delta \mathrm{E}=0$ and similarly between any two such points of the circumference. If one imagines $\delta \mathrm{E}$
 and $\delta \mathrm{R}$ reduced to infinitesimal proportions the reason why no voltage drop can be measured around the ring is at once apparent.
This manner of explanation should satisfy those who prefer to tackle this kind of problem in terms of lumped parameters, but I do not claim that it will bear close inspection from the viewpoint of charge distributions and electric fields. In general it is obviously futile to try to explain fundamental mechanisms in terms of those very concepts which have been adopted purposely to avoid having to explain them.

Cranfield.
G. H. STEARMAN.
*."The Fundamentals of Electromagnetism", (Cambridge Univ.
Press), page 87 . Press), page 87.
The author replies:
The essential words in Mr. Stearman's letter are presumably. "in a simple battery and resistance circuit." For having voted in favour of the view that in such a circuit the current is caused by charge redistribution, he refers to examples of (1) a charge redistribution with no current, and (2) a current with no charge redistribu-
tion. tion.

As if this were not enough to underline my doubts about regarding charge redistribution and current as cause and effect, he goes on to emphasize how difficult it is to calculate the charge redistribution in (1) and how easy it is to handle (2)* on the conventional e.m.f. basis.

So he encourages me to go farther than I did in the January issue, by saying that if charge redistribution were to be substituted for e.m.f. as the cause of electric currents it would transform electrical technology into an unteachable mystery.
"CATHODE RAY."

* We are both taking for granted that on this level of electrical engineering we don'l venture into atomic physics.

Licence Reminders

IN his letter published in the December issue, Mr. W. R. Gregory complained that he was unable to renew his wireless licence the day before it expired on 31 st August because he could not produce a reminder notice.
I should like to assure Mr. Gregory that there is no question of the issue of a renewal licence being conditional on the production of the relative reminder notice and there is no reason why he should not have been allowed to renew his licence a day in advance as he wished. I can only assume that the counter clerk who refused to issue a licence was acting under a misunderstanding and I must apologise on behalf of the Post Office for the inconvenience caused.
London, E.C.1.
T. A. O'BRIEN,

Public Relations Officer,
General Post Office.

Transistor Tape Pre-Amplifier

IN Mr. Ridler's article in the December, 1958, issue he chooses the inductance-resistance integrator in preference to the resistance-capacitance integrator as a means of providing the bass-lift for a tape pre-amplifier. He makes this decision on the ground that a high input impedance implies high thermal noise. This is not correct, since the input is shunted by the source which is an inductance and,
(Continued on page 125)
in so far as it is pure, no thermal noise exists in it. The argument based on electrostatic pick-up also falls down for the same reason.

This would not matter if the alternative chosen by Mr . Ridler were as good, but this unfortunately is not the case. Even with a perfect integrating amplifier, the resistance included in the source limits the bass correction severely at the frequency at which the Q of the head falls to unity. Taking the $\frac{1}{2}$-henry head in the article and associating it with the probable value of 400 ohms d.c. resistance, the frequency of 3 dB loss is $127 \mathrm{c} / \mathrm{s}$ and the loss at $50 \mathrm{c} / \mathrm{s}$ is over 11 dB . It was this consideration which caused me to reject it as a practical possibility, when considering the problem in 1957. It does not help if the amplifier is inexpensive if the heads have to be of enormously high Q to operate it; the high impedance alternative is more complex, but at least it will work with any head up to an inductance of say one henry, without the risk of leaking electrolytics polarizing the head and, with exact corrections independent of the Q.

The explanation of the failure of Mr. Ridler's curves to show the real loss is that the test tape does not have continuous gliding tone and the number of fixed points is too low to draw conclusions from. The fact that the inevitable rippling in the head's response in the bass region due to the outer gap effect is also not shown must be due to the same cause. The curves for the amplifier and head inductance can be obtained by using, as a signal source, a constant current into a mutual inductance, say one milli henry, and injecting this in series with the head. The added inductance is small compared with the inductance of the head itself and has no effect on the response curve, which should now be flat up to the chosen turnover frequency. In this way it is much easier to see the departure from the strict law, than if a constant voltage input is used.
My second point concerns the bias loop circuit to which Mr . Ridler draws attention in his reference 3. (E.R.E., May, 1957, p. 161) and the essential distinction between that circuit and Mr. Ridler's Fig. 4. In this there is no d.c. resistance included in the first emitter circuit. The omission of this resistance results in an entirely different mode of operation. In this mode the current in the second transistor depends on the baseemitter drop of the first transistor and on the base current of the first transistor, which in turn depends on the alpha gain of the first transistor. As the base-emitter drop of the first transistor is scarcely affected by the battery voltage, there is no term which relates the current in the second transistor to that voltage and the circuit of his Fig. 4 fails when the battery voltage falls since the collector of the second transistor can bottom. In the circuit described in ref. 3 the current in both transistors is practically independent of the base-emitter drops and of the base currents, and is a function of the product of some fixed ratios and the battery voltage. This is due to the swamping of the relatively small collector-emitter voltage of the first transistor, by the drop in the emitter resistance, which may be ten or fifty times as great, and thus will determine the base potential of the second transistor with great precision.

Mr. Ridler is fully justified in claiming the low noise output of his amplifier and it is a pity that such an elegant solution as his Fig. 4 would have been, cannot form the basis of a tape characteristic corrector of the highest class. London, N.W. 2 .
J. SOMERSET MURRAY

The author replies:

I am afraid that I must still hold to my original contention that the thermal noise in the L-R integrator is lower than in the R-C circuit. The basic equations for the two types are

$$
\begin{align*}
& \mathrm{E}_{\text {out } t}=-\frac{1}{\mathrm{RC}} \int e_{i n} \mathrm{~d} t \tag{RC}\\
& \mathrm{E}_{\text {out }}=-\frac{\mathrm{L}}{\mathrm{R}^{1}} \int e_{\text {in }} \mathrm{d} t \tag{LR}
\end{align*}
$$

and assuming that the circuits are so adjusted that each
gives the same gain at a particular frequency, they will have identical signal performances. However, considering the input circuits

the equivalent noise voltage
in the R-C case is $e_{n}=\sqrt{4 k T \Delta f(R+r)}$
and
in the L-R case $e_{n}=\sqrt{4 k T \Delta f r}$
neglecting in each case the input impedance of the amplifier, which will be very low due to feedback. As R must be larger than the reactance of L at the highest frequency, then the ratio of the signal to noise ratios from this cause will be nearly $\sqrt{\mathrm{R} / r}$.

There is also a much more serious effect. Unless the first transistor is fed from nearly the optimum source resistance, the semiconductor noise will be far in excess of the thermal noise in the source resistance. With the R-C circuit, the first transistor sees a resistance R in parallel with a capacitor GC, where G is the gain of the amplifier. The resistive component of this will be much greater than optimum at low frequencies, but improve at higher frequencies. In the L-R case the transistor sees the impedance of the head in parallel with a resistance R'G. This is much lower than the optimum at low frequencies and tends to the correct value at high frequencies. Probably both circuits are equally good in this respect. I am presently engaged in a detailed analysis of the problem.
I see that I have committed a grievous error in not giving particulars of the tape head used, as this has led J. S. M. to a false conclusion. The head is one from a Collaro Tape Transcriptor and has a d.c. resistance of 50 ohms; this, of course, gives an equalization loss of -3 dB at $16 \mathrm{c} / \mathrm{s}$. Low-frequency variations in output were observed, but were neglected in the curves as they tended to obscure the main issue in an elementary treatment. I am most grateful to J. S. M. for pointing out the technique of injecting an e.m.f. via a mutual inductance, as this does simplify measurements considerably.

With regard to J. S. M.'s second point, I am afraid that I do not have a copy of his paper on hand as our copy here has gone to the binder, but I am sure that what he says is correct. However, the circuit as described has been functioning for fifteen monchs, and two versions have been tried using transistors of different characteristics but all other components the same. The range of ambient temperature here is extreme; winter minimum is about $50^{\circ} \mathrm{F}$ and summer maximum about 110° in the house. Another 15° could probably be added for the additional rise inside the apparatus cabinet. The same batteries have been used over this period. The drain is only 1.5 mA but due to the heat the voltage has fallen from 12 V to 8.5 V without noticeably affecting the results as judged audibly through a high-quality loudspeaker system. I think that although I have apparently misused J. S. M.'s citcuit the results are satisfactory.

Khartoum, Sudan.
PHILIP F. RIDLER.

Physical Society's Exhibition

NEW TECHNIQUES IN ELECTRONICS AND MEASUREMENT

ASLIGHT but nevertheless welcome reversion to its old character was noticed in this year's Physical Society's Exhibition. More of the exhibits seemed to be devoted to the results of research and fewer to the "bread-and-butter" sort of developments. Indeed some techniques were openly admitted to be quite impractical and were only shown because of their interest value. Unfortunately this trend was also accompanied by one of the old troubles of the earlier exhibitions-lack of space between the stands for visitors to circulate freely and see things in comfort (either that, or too many tickets were issued). There is a great need for improvement here. In the following pages we have made a selection of items which we think will be of particular interest to our readers.

MASERS rely for their operation on the release of energy stored in molecules elevated to a higher-thannormal energy level. In the threelevel paramagnetic maser, shown by the Royal Radar Establishment, molecules of a paramagnetic substance placed in a magnetic field are elevated from the first energy state to
the third by the absorption of a locally generated "pump" signal (which is higher in frequency than the signal input).

The energized molecules return naturally to the first level in a time known as the relaxation time. The random emission of the corresponding frequency is not wanted and, as

Above: S.E.R.L. parametric amplifier. Silicon diode is in centre of cavity (shown open) on polystyrene insulator. Pump and signal power is introduced via probes seen in side walls of cavity.

Left: Three-level paramagnetic maser assembly for insertion in cryostat. Cavity containing maser crystal is located at bottom of pump waveguide and signal cable (both enter at top): pipes at top are used for cooling. (Royal Radar Establishment).
the relaxation time falls rapidly with increasing temperature, the maser cavity and crystal must be kept very cool: this is achieved by boiling-off a liquefied gas round the cavity.

A $3-\mathrm{cm}$ signal is applied to the resonant cavity (which has modes at both signal and pump frequencies) via a coaxial cable. The incoming signal "triggers-off" the relaxation process in proportion to its strength, molecules returning to a lower state and emitting radiation at the signal frequency. The amplified signal is carried back up the coaxial cable and separated from the incoming signal by a directional coupler.

Originally, masers were operated at liquid helium temperatures-in the region of $1.5^{\circ} \mathrm{K}$. However. recent work at R.R.E. has established that the rate of decrease of relaxation time with increase of temperature is much smaller for ruby than for some of the other substances used and practical masers operating at about $60^{\circ} \mathrm{K}$ have been produced. This has the enormous advantage that these temperatures can be reached by boil-ing-off liquid oxygen which is far more readily available and much cheaper than helium. A large step along the path towards making the solid-state maser a practical device has thus been taken, and already useful gains together with usable bandwidths have been achieved at both 10 and 3 cm .

Instead of using a pump signal to elevate the energy state of molecules, the ammonia maser (built by Glass Developments, Ltd, for the Signals Research and Development Establishment, Christchurch) sorts, so to speak, the sheep from the goats by means of an electrostatic field. In this device a "jet" of ammonia gas (about 2 c.c. per day!) enters a vertical "tunnel" formed by eight wires alternately at earth potential and 20 kV . This strong non-uniform field affects the molecules having a low energy far more than those in a higher state: these latter pass down the tunnel and into a cavity resonant at the frequency corresponding to the radiation emitted when they drop back to the lower state (about $23.87013 \mathrm{kMc} / \mathrm{s}$). The "goats." or low energy molecules, are deflected

Klystron grids made by E.M.I. process mounted on microscope slide. Note very small area of grid presented normal to electron beam.
by the electrostatic field and are condensed on a cylinder which is cooled b_{j} liquid nitrogen and encloses the wires.

This maser is inherently a narrowband device and is likely to have greater application as a frequency standard of extremely high purity and stability (possibly 1 part in 10^{10}) than as an amplifier. How narrow this bandwidth is can be judged from the fact that the cavity was machined to within $1 / 10$ "thou" and then its temperature was controlled to about $\pm 2^{\circ} \mathrm{C}$, adjustment of this being used for fine tuning.
Parametric Amplifiers offer, like masers, some very attractive features; but they are likely to be of use at rather lower frequencies, probably in the region where specialized microwave valves take over from the conventional types. It can be shown that if the tuning of a circuit (i.e. one of the parameters L or C) is altered at twice the frequency to which the circuit is tuned (again this is called "pumping") the circuit will exhibit negative resistance provided that the relative phase of sigmal and pump frequency is correct. This is an onerous requirement so the signal is placed deliberately off-frequency by a small amount: the device will amplify and attenuate alternately as the phase relationship varies, so that the amplified output obtained is modulated at the frequency corresponding to the beat between twice the signal frequency and the pump irequency. Sometimes it is necessary to add a third tuned circuit known as the "idler") resonant to this; but the Q of the signal frequency circuit may be low enough to include this frequency within its pass-band. This type of amplifier is known as a three-frequency amplifier and it can exhibit a useful bandwidkh. As
the amplified output depends upon the power supplied by the pump circuit, increasing the pump power increases the gain-eventually oscillation results.

In the three-frequency amplifier shown by the Services Electronics Research Laboratory, Baldock, the parameter varied was "C"-the variable element comprised a small, back-biased, silicon junction diode mounted in the centre of a cavity resonant (in different modes) to pump ($1500 \mathrm{Mc} / \mathrm{s}$), idler ($972 \mathrm{Mc} / \mathrm{s}$) and signal ($528 \mathrm{Mc} / \mathrm{s}$) frequencies. The pump power applied was about 80 mW : this realised a gain of 30 dB and a bandwidth of $2.5 \mathrm{Mc} / \mathrm{s}$, and 25 to 30 dB was quoted as being the maximum usable gain at the present stage of development, as stability is difficult to maintain at higher gains.
Microwave Valves. - Broad-band voltage-tuned O-type backward-wave/oscillators-that is oscillators in which the electrons interact with an r.f. wave travelling with a similar velosity but in the opposite direction, and in which a magnetic field is used only for focusing the electron beamare now available from several manufacturers. Two shown by Standard Telephones and Cables obtain suitable r.f. waves travelling much slower than in free space by using a set of interlinking hairpins as a slow-wave structure rather than the more usual interdigital line. The hairpin line has the higher impedance, and this, as well as the fact that the electron beam can completely interlink its open structure, makes the interaction considerably more efficient.
Klystron Grids have in the past been made from round wires formed into a mesh: this provides a poor hole-to-wire-ratio and reduces efficiency. E.M.I. Electronics, Ltd had on show some klystron grids made by a pro-

Glass Development's ammonia maser. Resonant cavity is in base, wire " tunnel " forming non-uniform electrostatic field for molecule separation is inside cylinder.
cess which gives an extremely thin section to parts of the grid at rightangles to the electron beam. Aluminium wires are given a thin coating of copper and packed into a copper tube which is then sintered to join all the copper coatings together and to the tube. The whole is "sliced" and the aluminium dissolved out, leaving a grid with very thin "inter-cell" walls.
Microwave Components.-A fourway switch shown by the G.E.C. Research Laboratories used a gaseous discharge plasma initiated by short d.c. pulses to bridge the gaps between the inners of the input and alternative output coaxial lines. R.f. propagation is sustained for several hundred microseconds until the free electron density in the discharge decays below a certain critical value dependent on the transmitted frequency. The rate of decay of the electron density can be varied by changing the gas material and pressure, and its initial value changed by altering the input pulse power. Since the electrons rapidly lose their energy to the positive ions and neutral atoms little noise is produced. This type of switch has
been found to be usable from 600 to $4,000 \mathrm{Mc} / \mathrm{s}$.
Propagation Test Equipment. Elliott Brothers (London), Ltd were showing propagation test equipment (which could also be used as a 24 -channel telephone or multichannel data link with a minimum of modification) for the $7.5 \mathrm{kMc} / \mathrm{s}$ band. This equipment comprises a selfcontained transmitter and receiver unit fitted in a cylindrical, weatherproof trunnion-mounted case with the aerial "dish" mounted at one end, the feeder and radiator (Cutlertype twin-slotted cavity) projecting through the end of the cylinder into the middle of the dish. One unusual feature is that the same klystron (1.2W output) is used for transmission and reception, the signals received being separated from the transmission by a wide-band ferrite isolator with a 46 dB " reverse" loss.' This, of course, necessitates that the incoming signals (from a similar unit) are frequency-displaced by the i.f. ($70 \mathrm{Mc} / \mathrm{s}$) and automatically ensures that the remote unit is tuned to the transmission from the other. To avoid any chance of adjacent-channel interference a filter (rejection 50 dB) consisting of three tunable cavities in the $\mathrm{H}_{011}, \gamma / 4$ and H_{012} modes is fitted between the balanced mixer and isolator. The whole unit can be tracked in azimuth, elevation and height from a remote point and a full complement of test equipment is built into the waveguide assembly, direct readings of received and transmitted power, etc., being obtained with a display unit fed from the balanced mixer and a thermistor fitted in the waveguide.
Filter Crystals often exhibit undesired modes outside the required response. This makes it difficult to secure satisfactory rejection over a wide band, typical responses for crystal filters having points outside the passband where rejection falls to only about 17 dB . Some results of work on this problem at the G.E.C. Research Laboratories were on show, the improved crystals having out-ofband peaks about 25 dB down on the main response and of negligibly small amplitude compared with the rest of the out-of-band response. This is achieved by restricting oscillation of the crystal to the main mode by bevelling the edges and using only small-area contacts. Satisfactory results in crystals for frequencies between 1 and $10 \mathrm{Mc} / \mathrm{s}$ have been produced by this procedure.

Micro-measurement Technique.-
The measurement with an accuracy
of $\pm 1 \%$ of a change of $1.0 \times 10^{-7} \mathrm{~cm}$ seems formidable enough without making the operation far more difficult by having to do it at temperatures near absolute zero; but. this is the problem presented by the measurement of coefficients of expansion of small samples at liquid helium temperatures. An apparatus for doing this has been developed at the Royal Radar Establishment and was shown on the Ministry of Supply stand.

The sample (about 1 cm long) and a reference are placed in a brass "pot", so that both the sample and the reference each produce a capacitance of the order of 10 pF to a common electrode mounted on the top plate. A bifilar-wound transformer secondary and these capacitances make up a bridge circuit and the energizing supply (derived from a $100 \mathrm{kc} / \mathrm{s}$ transistor oscillator) develops about 40 V across the bifilar winding. The balance detector (a transistor amplifier feeding headphones or a visual indicator) is connected to the common plate of the capacitors and the bridge is balanced by introducing a further signal, which is adjustable in amplitude and phase, to the centre tap of the transformer. By itself, the sensitivity of the bridge to a small unbalance condition is hardly sufficient-to improve this a high-Q coil tuned to $100 \mathrm{kc} / \mathrm{s}$ is connected across the output to the null detector. When the temperature has been changed by a small amount, say $1{ }^{\circ} \mathrm{C}$, and the bridge has been rebalanced, the relative coefficient of expansion of the reference and sample is obtained.

The sensitivity is such that light pressure applied from a pencil on the top plate of the " pot" causes a large unbalance indication due to distortion of the half-inch-thick pot walls; likewise the expansion caused by breathing momentarily on the pot whilst it is at room temperature gives a clear out-of-balance indication.
Bridges.-A small (1-inch) c.r.t. indicates the phase and amplitude balance in the Cossor LCR bridge Model 1446. The $2-\mathrm{kc} / \mathrm{s}$ input signal is fed to the X-plates and the error signal from the Wheatstone bridge to the Y-plates via a high-gain differential amplifier. Balance is thus indicated when the trace is a horizontal straight line. Resistance is measured using d.c. (central spot for balance) so that the resistance of an inductor can be determined.

Impedance comparators containing two resistive arms of a bridge and a high-gain amplifier feeding a detector were shown by Griffin \& George
and Dawe. In the Dawe Type 304 an internal $1,000-\mathrm{c} / \mathrm{s}$ oscillator is provided, and both phases and amplitudes can be compared on a meter. In the compact Griffin \& George "Panmetron" the a.c. input is derived from the mains, and a rectangular tuning indicator shows balance at maximum shadow.

Wayne Kerr showed that transformer bridges can be wound with sufficient accuracy to make absolute measurements accurate to within 0.01% and comparisons to within 0.001%. The impedance looking into this type of bridge can be made less than 10^{-5} of the impedance to be measured. As the velocity of light is now known to better than 1 part in 10^{6} and linear dimensions can be measured to a similar order of accuracy, a standard capacitance of about 10 pF can easily be constructed to an accuracy of 0.01%. Other standards of different sizes can then be obtained using such accurate transformers.
The Griffin-Raleigh Elution Bridge (Griffin and George) is notable for its extreme simplicity of operation. This bridge, used for determination of the end of a washing operation to remove ionically-dissociated solutions, consists of two conductivity cells connected in a Wheatstone bridge circuit and a transistoramplified balance detector. The influent runs through one cell and the effluent through the other, the bridge being balanced initially in the absence of the material to be washed. This procedure eliminates errors due to temperature, carbon-dioxide absorption and cell differences. When the material is introduced the conductivity of the effluent cell increases, so unbalancing the bridge which returns to balance when the concentration of ionized material in the effluent has fallen to the value that it had when the bridge was first balanced. As one of the conductivity cells is a standard the bridge can be used also for the direct calibration of other cells and for the determination of the resistivity of solutions. It is mains operated and low-voltage a.c. is used to energize the bridge circuit.
Digital Meters.-A sufficient number of these were already on show last year to illustrate most of the common general methods in use (see Wireless World, May 1958, p. 222). One simple new system was seen this year however in the Nash and Thompson prototype digital ohmmeter. Here measurements are made using an a.c. bridge whose off-balance
(Continued on page 129)
voltage is amplified and used to drive a 2-phase motor. The motor drives a helical potentiometer forming one arm of the bridge. As the bridge passes through balance, 180° phase shift occurs in the off-balance output and the motor reverses and comes to rest: The time taken to travel the full 3 decades of the motor driven counter is approximately 10 seconds, and the input impedance is about 1,000 $2 / \mathrm{V}$.
Analogue-to-Digital Converters.Mechanical "digitizers" for converting shaft rotations into coded pulse output signals are usually commata-tor-type devices with wiping contacts or photocells for sensing purposes. G.E.C. have introduced an entirely new system which depends on electromagnetic induction. It is basically a transformer with a single energizing winding and a number of secondary windings corresponding to the rumber of digits. The rotating part is cup-shaped and contains a magaetic element which provides the coupling between the energizing winding and the various digit windings (which are arranged to conform to some code). A typical energizing voltage is 10 V r.m.s. at $20 \mathrm{kc} / \mathrm{s}$, giving an outpat of 1.5 V r.m.s.

An entirely electronic analogue/ digital converter shown by Mullard samples an input analogue voltage in the range $0-10 \mathrm{~V}$ and gives a binary output of 10 bits either serially or in parallel. Using transistors throughout, it is based on ten bi-stable circuits which are switched either "on" or "off" according to a comparison process which balances the current produced by the input voltage through a resistor with currents switched by the bi-stable circuits through graded resistors from a $10-$ volt source. The bi-stable circuits are triggered in sequence at a rate of $12 \mathrm{kc} / \mathrm{s}$ so the sampling period for a 10 -digit output is less than 1 millisecond.
Digital Storage Systems.-The principle of the superconductive storage element, based on a property of metals at very low temperatures, has already been explained in Wireless World (July, 1957, p. 326). A particular embodiment of this principle was described in the January, 1958, issue (p. 32), in which circulating currents are magnetically induced in a superconductive sheet by a drive conductor, the direction of circulation signifying whether a " 1 " or a " 0 " is stored. The Royal Radar Establishment demonstrated this idea, using three elements made from evaporated films of tin on a mica base
with drive and pick-up conductors, the whole being held at a temperature of about $3.7^{\circ} \mathrm{K}$ in a flask of liquid helium. Pulses of $50 \mathrm{~m} \mu \mathrm{sec}$ duration were written in, and read out when required, through special transmission lines with Constantan inners to reduce the thermal conductivity.

An unusual type of static storage system capable of giving a serial pulse output was shown by Elliott. It is based on both magnetic recording and magnetostriction principles. Information is stored permanently as a pattern of remanent magnetism along the length of a nickel-iron wire. It is read out by passing a single current pulse through the wire The magnetic field of this pulse interacts with the static magnetic pattern and causes magnetostrictive action, which creates an acoustic wave train corresponding to the stored pattern of information. This train travels along the wire and is converted into a serial pulse output by a pick-up coil, as in normal magnetostriction delay-line stores. The reading-out process does not destroy the stored information, which can be used over and over again.

Ericsson demonstrated the principle of the "twistor" magnetic storage system already described in the January, 1958, issue (p. 32) and February, 1959, issue (p. 80). Information was written into a 4×4 mat-
rix store by coincidence of currents through columns of coils $(100 \mathrm{~mA})$ and currents through the twisted magnetic wires (200 mA) A p.r.f. of $500 \mathrm{kc} / \mathrm{s}$ was used, with transistor writing and reading circuuts.
A new kind of square-loop ferrite store, shown by Mullard, is intended for computer speeds up to ten times faster than are possible with the existing types of magneric matrix stores. It achieves the higher speed of operation by not switching the cores into their full states of saturation. Two ferrite cores are required for each digit stored. They are switched in opposite directions of magnetisation by a wire carrying the input digit pulse and, coincidentally, in the same direction by a read/write drive wire. Thus, one core is magnetized more than the other-which one depending on whether a " 1 " or a " 0 " is stored. The output wire threading the two cores combines their outputs in series opposition (corresponding to the input wire) When the read/write drive wire is energized to "read", the differing magnetic flux changes in the two cores induce a combined current pulse in the output wire, and the direction of this depends on whether a " 1 " or a " 0 " was stored.

Very Low-Frequency Generators.-

 A popular circuit, which provides frequencies as low as 1 cycle in 10^{4} seconds in the Solartron JO 744 for
example, uses two mtegrator stages and overall feedback with 180° phase shift. This can be regarded as providing the sine-wave solution of the differential equation $\mathrm{d}^{2} y / \mathrm{d} t^{2}=$ $-y$. This method conveniently provides outputs from the two integrators whose phases differ by 90°. In the Solartron oscillator the effective input impedance of the integrators is multiplied by 1,000 times up to $1000 \mathrm{M} \Omega$ by feeding them from a 1000 -to-1 ratio potential divider. This keeps the integrator capacitors to reasonable values, but even so leakage across these capacitors and the integrator amplifiers themselves results in damping being effectively applied in the circuit. A gradual reduction in the output level is however avoided by sampling it at its peak value and using current feedback to keep this peak value constant.

Low frequencies are obtained by a different method in the Servomex Transfer Function Analyser Type TFA46. A plane loop of wire is rotated at the required modulating low frequency ($\omega_{m} / 2 \pi$ say) in a magnetic field which is alternating at a much higher carrier frequency ($\omega_{c} / 2 \pi$ say). If $\mathbf{B}_{\text {max }}$ is the maximum flux linking the loop, then at any time t the flux linking it can be expressed as $\mathrm{B}_{\max } \sin \omega_{c} t \sin \omega_{m} t$. The e.m.f. induced by the changing flux linkage is the differential of this quantity, i.e. $B \max \omega_{c} \cos \omega_{c} t \sin \omega_{m} t$ $+B_{\text {max }} \omega_{m} \sin \omega_{c} t \cos \omega_{m} t$. The second term causes the amplitude to vary with the modulating frequency. It represents effects due to the flux linkage changing at the modulating frequency, and is as might be expected negligible when the modulat-
ing frequency is very much lower than the carrier frequency ($\omega_{m} \ll \omega_{c}$). The loop output is then equal to $\mathrm{B}_{\text {max }} \omega_{c} \cos \omega_{c} t \sin \omega_{m} t$ and the lowfrequency modulation term $\sin \omega_{m} t$ can be obtained by demodulating the carrier frequency. Simple avoidance of the use of a carrier frequency by rotating the loop in a fixed magnetic field at the required low frequency would not be nearly so effective since the output would vary with frequency and also be very low at very low frequencies. Direct modulation of a valve-generated high-frequency signal by means of a motor-driven capacitor is used in the Airmec Type 257 to provide (after demodulation) frequencies from 0.03 to $30 \mathrm{c} / \mathrm{s}$. A second set of stator vanes on the capacitor can be manually rotated to provide a second output with a continuously adjustable phase difference from the first. These last two methods have a number of advantages. First, the output frequency can be varied by changing the motor speed without any delay due to long time constants, and its level can also be set quickly and accurately simply by varying the carrier level. Secondly, the purity and level stability of the output are independent of frequency. Finally, the output frequency is readily measured from the motor frequency.

Audio-frequency Oscillators. - A Wien bridge which is balanced by the addition of two extra resistive arms (one of which is an amplitudestabilizing thermistor) and which is fed from a push-pull transistor amplifier is used in the Dawe Type 421 to avoid the low input impedance and changing output phase-

U.K. Atomic Energy transistor sampling oscilloscope displaying a pulse a few millimicroseconds wide. The sampling pulse generator and sampling circuit are housed externally to the oscilloscope in a probe attached to the avalanche input pulse source to avoid using cable to carry very short pulses.
shift difficulties normally associated with transistors. A standard Wien bridge oscillator using valves is an addition to the range of Mullard educational constructional circuits.

A parallel-T network is used to control feedback in the Muirhead D-888-A analyser-oscillator to provide either narrow-band amplification with an equivalent Q of at least 70 or, with additional feedback, oscillation at frequencies beyond the audio region up to $650 \mathrm{kc} / \mathrm{s}$.
Ultrasonics.-Two new metal-testing sets were shown covering the range 1 to $10 \mathrm{Mc} / \mathrm{s}$, this latter high frequency being preferable for the examination of materials with a tight-knit grain structure, such as austenitic steels. The idea behind this is to use a shorter, higherpowered pulse (consequently the higher frequency so that a reasonable number of cycles form the pulse) to give higher definition, so making clearer the difference between the grain structure "grass" and the echoes due to faults in the material : smailer faults, too, are detectable. The Ultrasonoscope MkII flaw detector provides a non-linear amplifier facility so that this "grass" may be compressed in amplitude.

Kelvin Hughes, in their Mk. 5 set, provide two gated amplifiers whose outputs are displayed on muchbrightened portions of the timebase. This, it is said, eases the problem of locating "dangerous echoes" in production testing, by setting the gates so that only the points where faults could be the cause of failures in the object being tested are displayed at full brightness.

A rather amusing demonstration of the potentialities of barium titanate transducers was given on the stand of Sir Howard Grubb, Parsons and Co., Ltd. This took the form of a small transducer propagating a $1.6-\mathrm{Mc} / \mathrm{s}$ particle vibration in air and a receiver whose output was mixed with the transmitted frequency and fed to an a.f. amplifier and loudspeaker. Relative movement of the transmitter and receiver resulted in a doppler "burp" from the loudspeaker. This work, of course, has a serious application: it forms part of a research programme with a view to improving "sonic" gas analysers by raising the frequency used from 3 or $4 \mathrm{kc} / \mathrm{s}$ possibly into the megacycle region.

Short-Pulse Generators.-A second-ary-emission pentode is used to generate pulses with a rise time of less than $15 \mathrm{~m} \mu \mathrm{sec}$ in the Wayne Kerr Type P131. The pentode is
normally cut-off, but on triggering with a positive input pulse it conducts, and a negative pulse is sent from the anode down a shortcircuited delay line, this negative pulse being also fed back to the cathode. This positive feedback to the cathode results in a cumulative process, since owing to the secondary emission the anode current is several times the cathode current. The secondary emission also results in the secondary-emission electrode (dynode) losing electrons, and so its potential rises and provides the leading edge of the output pulse. At a time determined by the line constants the negative pulse from the anode is reflected from the shortcircuited end with its phase reversed. When this positive pulse is received back at the anode, the feedback to the cathode cuts off the pentode and the dynode potential immediately falls, terminating the output pulse. Owing to stray capacitances this fall would normally be rather slow. These strays are however discharged by using the positive reflected pulse to switch on a normally cut-off ordinary pentode connected between dynode and cathode. The resulting output pulse fall time is less than $20 \mathrm{~m} \mu \mathrm{sec}$.

Medical Electronics.-A mechanical scanning and recording machine for displaying pictorially the distribution of radioactivity in human organs (introduced deliberately by radioactive isotope techniques) was demonstrated by Hammersmith Hospital Department of Physics. The patient himself is moved on a float-ing-top couch in a scanning raster under a stationary radiation detector. The output from the detector is fed to a ratemeter and a recording meter which is fixed to the moving couch. According to the rate of count the meter deflection causes printing ribbons of different colours to move under a printing stylus, which makes dots through them on to a fixed sheet of paper. The result is an even array of dots covering an area equal to the area of patient scanned. The regions giving a count rate within certain limits come out in the same colour, rather like height contours on a map.

Bristol University Department of Anæsthetics had an electroencephalographic display system, based on a standard c.r.o., which gave inherent rhythm and phase information like the Grey Walter toposcope but by using a television type of timebase instead of the rotating p.p.i. kind. A 10 -second frame timebase is used, with a line-time-

Printing mechanism and control gear of the Hammersmith Hospital body radiation scanning machine.
base period depending on the frequency component of the brain wave under investigation. The output of the e.e.g. amplifier modulates the brightness of the tube spot, and the display (on a long-persistence screen) appears as vertical bands of light and dark.

Oscilloscopes.-A response from d.c. to $60 \mathrm{Mc} / \mathrm{s}$ (3 dB down) with a calibrated maximum sensitivity of $50 \mathrm{mV} / \mathrm{cm}$ can be achieved in the new Cossor Model 1076 using the 1078 plug-in Y pre-amplifier. Twenty-four calibrated timebase speeds from $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} /$ cm are available, and a $200 \mathrm{Mc} / \mathrm{s}$ ($\pm 2 \%$) oscillator provides intensity modulation dots for the measurement of pulse rise-times. A trigger level control is one of the facilities in the 1070 plug-in trigger unit. Other plug-in units, including, for example a differential Y pre-amplifier, are being developed for this oscilloscope.

Infinite persistence storage oscilloscopes for viewing " once in a lifetime" phenomena, using a tube similar to that described in our review of last year's Physical Society Exhibition (May 1958, p. 221), have previously been shown by Cawkell and are now also made by Solartron. Facilities available in the new Solartron QD 910 include a triggered timebase with 49 alternative speeds from $1 \mu \mathrm{sec} / \mathrm{cm}$ to $10 \mathrm{sec} / \mathrm{cm}$ and two identical Y-amplifiers with responses from d.c. to $1 \mathrm{Mc} / \mathrm{s}$ (3 dB down) and single or differential inputs.

A sampling principle for viewing repetitive waveforms is used to give an effective response from d.c. to
$300 \mathrm{Mc} / \mathrm{s}$ (3 dB down), using transistors except only in the final c.r.t. plate driving stages, in an oscilloscope shown by the U.K. Atomic Energy Authority. The maximum sensitivity is $200 \mathrm{mV} / \mathrm{cm}$ and the equivalent input noise 100 mV . The input impedance is as high as 1 pF in parallel with $0.25 \mathrm{M} \Omega$. Signals with p.r.f.'s from $100 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$ can be observed, and from 40 to 320 samples taken.
The principle consists in using a very short pulse to sample a small portion of each input pulse, the samples being taken at a time delay from the beginning of the input pulse which is increased slightly between successive input pulses. Thus the sampling pulse gradually progresses through the input pulse and builds up a picture of it in the process. The sampled pulse can be amplified throughout the period between input pulses so that only a comparatively poor response is needed for this amplifier. Moreover, if each sampled pulse is referred to the same zero potential, the sampled pulse amplifier need not even respond to d.c. Since the period between input pulses in which the sampled pulse is amplified and fed to the c.r.t. is " most of the time", this period is nearly independent of the input p.r.f., and so the brightness also is unaffected by the input p.r.f.

The equivalent rise time is equal to the width of the sampling pulse. The very narrow sampling pulses thus required to obtain a short rise time are obtained by avalanche operation of a transistor. In such operation the transistor emitter current is
initially cut off by making the base positive with respect to the emitter. Its collestor is connected to a negative potential of several hundred volts through a high resistance so as to draw a current of several hundred microamperes, the collector taking up a potential of about -50 V . If now the base potential is allowed to fall to that of the emitter, cumulative electron multiplication occurs in the transistor and the collector potential very rapidly rises to that of the emitter. By differentiating this rise, a very short pulse of several hundred milliamperes into a few tens of ohms can be obtained. By selecting ordinary $10 \mathrm{Mc} / \mathrm{s}$ OC44 transistors, pulses as short as 1 to $2 \mathrm{~m} \mu \mathrm{sec}$ can be obtained in this way. Sampling is carried out in the oscilloscope by feeding the avalanche pulse to the base of a $50 \mathrm{Mc} / \mathrm{s}$ SB100 (this is the only high-frequency transistor required) and the input pulse to its emitter. The difference between these two pulses then appears on the collector. Most of the noise is produced in this sampling process and in the avalanche sampling pulse itself.
Amplitude Distribution Measure-ment.-A sampling technique was also used in an instrument shown by Plessey. The input waveform is fed to one plate of a special type of c.r.t. and the sawtooth sampling waveform (which has a much lower frequency) to the opposite plate. A thin wire parallel to these plates replaces the usual screen. For a fixed sampling voltage, only a certain voltage on the input waveform will deflect the beam so as to strike the thin wire. The current thus produced will be proportional to the length of time during which this input voltage occurs. As the sampling voltage gradually changes, the current in the wire thus gives the lengths of time during which the various voltages present in the input occur.
C.R.O. Tubes. - Development in this field is aimed at the twin requirements of higher deflection sensitivity and increased trace brightness (especially with high-speed writing). Unfortunately these two requirements often conflict. The use of post-deflection acceleration to increase the brightness, for example, tends to reduce the deflection sensitivity and distort the trace. If the deflection plates are brought very close together to increase their effect on the beam, the anode aperture has to be made proportionately smaller so that the beam electron density, and hence the brightness, is reduced. An interesting method of

tube envelope to increase the deflection sensitivity. The coils in their experimental tube (two pairs) are arranged sequentially like electrostatic deflection plates and measure about $3 \mathrm{~cm} \times 1 \mathrm{~cm}$, with inductances of about $20 \mu \mathrm{H}$. The deflection sensitivity is 1 mA per millimetre in both directions.
Scan Magnification.-A means for increasing the spot movement produced by a c.r.t. magnetic-deflection system without increasing the power input to the coils has been developed by Mullard, Ltd. The basic principle of this involves passing the electron beam through a magnetic diverging lens after deflection; but this is not so simple as it seems, for two reasons. The spot will increase in size and become distorted, due to divergence of the beam itself, and there is difficulty in producing a magnetic lens of the required form. The solution adopted is to use a system of quadrupoles, which are "lenses" having a diverging effect in one direction and a converging effect at 90° to this (x and y deflections, say). One quadrupole is placed between the scanning coils and the c.r.t. screen: this will cause a movement of the beam in the x direction to increase and also mis-shape the spot. In the converging, or y, direction the deflection would be reduced; to obtain an increase in this direction the beam has to enter the lens in such a way that a focus is formed inside the lens; then divergence of the emergent beam is effected and the quadrupole magnifies (although to a lesser degree than in the x axis). Thus the beam entering the magnifying quadrupole must have different x and y foci and be shaped in such a way that the ellipticity introduced by the magnification process exerts a correcting rather than a distorting influence. This beam requirement is met by employing two more quadrupoles, with their axes crossed at 90°, as the focusing system. The demonstration on the Mullard stand showed the potentialities of this system very well-the image on the scan-magnified display filled the tube
and the conventional display was rather less than half-an-inch across. Some increase in spot size (about 5 times) does occur; but with modern c.r.t.s this should not prove an insurmountable problem; the quadrupoles, too, have the advantage of being of fairly simple constructionsmall bar magnets and simple pole pieces are used.

Electroluminescence, alreačy well established for illuminated signs and notices, is now being develaped for more complex indicators. Thorn, for example, were showing a new type of digital indicator for displaying the numerals 0 to 9 on a single flat plate (which could be viewed from very oblique angles). The numerals are built up by activating various combinations of electrodes on the back of the electroluminescent layer, the front electrode being continuous over the whole surface. A coding matrix, formed by a printed circuit with pellets of non-linear resistance material, selects the right combination of back electrodes to construct a particular numeral when the activating voltage is applied to the appropriate one of ten input wires. About 500 V a.c. is required for aetivation, with a current of 0.5 mA .

Also demonstrated by Thorn was a crude but nevertheless interesting attempt at achieving scanning over a series of electroluminescent elements (with perhaps the eventual aim of television picture presentation). A row of electroluminescent and photoconductive elements were linked

Image Intensifiers. - The principle of electroluminescence (see above) was used in an X-ray image intensifier demonstrated by Thorn in association with the Physics Department of King's College Hospital. It consists of an electroluminescent layer and a photoconductive layer separated by an optically opaque but electrically conducting material. An alternating voltage of about $1,000 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$, is applied across the whole "sandwich ". X-ray radiation falling on the photoconductor causes it to conduct in proportion to the intensity. This produces a corresponding pattern of increased voltage across the electroluminescent layer, and light is emitted to form a visual image. The picture is $20-50$ times brighter than that obtained from a conventional fluorescent screen.

Brightness amplification can also be obtained by using television techniques, and it is then possible to introduce extra facilities like variable contrast to assist in viewing. English Electric Valve Company showed a $4 \frac{1}{2}$-inch image orthicon pick-up tube intended for this purpose.

A more direct method of using the television pick-up tube for image intensification-this time for an electron microscope-was shown by Siemens Edison Swan. The fluorescent screen of the microscope is replaced by a photoconductive type of pick-up tube, the two envelopes being sealed together and evacuated as one. The sensitive screen of the pick-up tube is a layer of amorphous selenium, and the resistivity of this
is modified in a pattern when bombarded on one side by the highenergy electrons from the microscope beam. The other side of the selenium is scanned with 405 lines by the electron beam of the pick-up tube, and a signal corresponding to the electronmicroscope image is obtained from a signal plate as in television technique.
Photoelectric Devices.-One of the latest and most efficient devices for converting light into electrical energy is the silicon junction "solar cell." Ferranti were showing examples which gave open-circuit voltages of 500 mV for a light intensity of about 1,000 foot-candles, and currents of 20 mA per square inch of active area. They are available in various sizes with rectangular and circular shapes and in multiple form. One demonstration showed the ability of these cells to resolve high-frequency pulses of light (above $1 \mathrm{Mc} / \mathrm{s}$).

The photomultiplier tube has hitherto been rather a large and clumsy device because of the space required for its electron multiplier structure. This is becoming increasingly less true nowadays. For example, 20th Century Electronics were showing a single-stage tube measuring only $30 \mathrm{~mm} \times 6 \mathrm{~mm}$. It has a sensitivity comparable with a gas-filled photocell (about $100 \mu \mathrm{~A}$ per lumen) and the speed of response of a vacuum photocell.
Semiconductor Devices.-There was evidence of continuing development in power and high-frequency transistors. Silicon transistors are

together electrically and optically so that the light from one electroluminescent element activated a photoconductor connected in series with the next electroluminescent element. The output voltage from the photoconductor causes the second electroluminescent element to light up and illuminate the next photoconductor, and so on, causing a spot of light to travel down the row. The speed of scanning is severely limited at the moment by the slow response of the photoconductors.

Above: Mullard scan magnification: both 5 -in tubes are operated under identical conditions except that one has scan magnification, the other conventional deflection and focusing. Gain is about 12 times.

Right: Image intensifier tube mounted under the desk top of an electron microscope (Siemens Ediswan Swan).

becoming more common and B.T.H have now entered the field with several diffused-junction development types. These include an h.f. transistor with an alpha cut-off frequency of $30 \mathrm{Mc} / \mathrm{s}$ and a power type with a collector dissipation of up to 100 watts. Thorn demonstrated the switching of a 300 -watt lamp by their GT422 power transistor from a 45 -volt supply. G.E.C. had a new h.f. drift transistor, EW69, with a cut-off frequency of $30 \mathrm{Mc} / \mathrm{s}$.
Amongst the more specialized semiconductor devices was a p-n-p-n "sandwich" diode structure with a characteristic suitable for bistable switching circuits (see Technical Notebook, October 1957, p. 502, for principle). It has two states of conductivity and is made to switch from one to the other according to the value of the applied voltage. The triggering voltage is 100 V and the holding current for the fully conducting state is 50 mA at less than 1.5 V . Another semiconductor switching device giving two states of conductivity (shown by Plessey) depended on a phenomenon which occurs in germanium at very low temperatures, when the material is virtually an insulator. If a voltage is applied across the germanium the few remaining free current carriers are accelerated until, at a critical field strength, their energy is sufficient to ionize the impurity centres and cause a non-destructive breakdown. The resistance of the germanium then falls from about $10 \mathrm{M} \Omega$ to 20Ω.

Transistor Tester.-Noise can be measured in the new battery operated Avo Transistor Analyser by comparison with the output from a $1,000 \mathrm{c} / \mathrm{s}$ stabilized transistor oscillator. By restricting the measurement to noise above $200 \mathrm{c} / \mathrm{s}$, spurious hum pick-up is avoided and amplifier interstage coupling made easier. Current gain is measured by comparing the output from the oscillator before and after amplification using a calibrated attenuator and high-gain transistor amplifier.

Barium Titanate Capacitors are difficult and expensive to make in high values-difficult, because barium titanate is very brittle in the form of ceramic sheets, so making it hard to "stack" them without breakage; expensive, because the sintering process is carried out in air, and palladium is the cheapest metal able to withstand the sintering and remain unaffected. In the new Plessey process the barium titanate powder is mixed with a

Avo transistor analyser allowing noise measurement.
plastic binder to form a flexible sheet and the binder is volatilized during the sintering process, leaving the barium titanate dielectric. To overcome the expense associated with palladium they have also developed a process by which a sufficiently high dielectric resistivity may be obtained by sintering in hydrogen, so that nickel can be used for the "plates".

Resistance Wires for use in extremely stable highly accurate resistors are sometimes wound in pairs, the two wires having mutually compensating temperature coefficients and changes of coefficient. Johnson, Matthey have, in their Silver Minalpha wire, carried this technique a stage further by using the compensating alloy as a sheath to Minalpha wire. Minalpha itself (copper-nickel-manganese) has a positive temperature coefficient of about 5 parts in 10^{6} per ${ }^{\circ} \mathrm{C}$ up to $26^{\circ} \mathrm{C}$: this then turns negative after reaching a maximum. The silveralloy sheathing (silver-tin-manganese) exhibits almost the reverse of this characteristic, having a small negative coefficient up to $20^{\circ} \mathrm{C}$, going positive above this point, so that, by choosing the optimum proportions of Minalpha to sheath, a resistance wire with built-in compensation from $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ is produced.

Printed Circuits.-A recent development in this field was shown by G. V. Planer, Ltd, being a copper circuit on a glass substrate. The copper is deposited by a direct metallizing process, no "glue" of any type being used. Circuits produced by this method are said to be inert, stable and suitable for high-temperature operation. The examples shown included some inductors buitt up from double-sided " windings," the copper continuing over the edge of the glass to make contact with the
coil on the other side and the coils on other sections of the stack.
Magnetic Materials. - Comalloy (Murex Ltd. is a cobalt-aluminiummolybdenum material with an energy product of 1.0×10^{6} gauss-oersteds, the remanence being 9.7×10^{3} gauss. Although the energy product is not as high as that of some "magnetic-ally-hard" materials, this sintered material possesses the valuable characteristic of being machinable before its final heat treatment is applied. In its pre-treatment state the cutting characteristics resemble those of mild steel, and it is said that little distortion occurs during treatment, so that it is usually necessary only to restore the surface finish.
Melting by bombardment with an electron beami was perhaps the most direct application of electronics shown at this year's exhibition. Two demonstrations were given, one by S.E.R.L. (on the National Research Development Corporation's stand) and the other by Associated Electrical Industries. The S.E.R.L. apparatus was being used for zone refining: this was accomplished by encircling the rod of material to be refined with a heated tungsten filament and beaming the emission with two annular plates above and below, and connected to, the filament. The current is controlled by the variation of the filament temperature and e.h.t. and for zone refining either the cathode assembly or the rod can be inoved vertically (surface tension of the molten material keeps the rod whole). The temperatures achieved are sufficient to melt tantalum (m.p. $3000^{\circ} \mathrm{C}$) and tungsten. A $3 / 16-\mathrm{in}$ diameter ruthenium (m.p. $2450^{\circ} \mathrm{C}$) rod requires a bombarding current of about 100 mA at 3.75 kV .
Four electron guns consisting of a retractable tungsten filament in a slot in an air-cooled brass block (again connected to the filament) are used in the A.E.I. equipment: these are mounted above the material (e.g., silicon) to be melted and the beams are focused and deflected on to the material by electromagnets. 5 kV is applied to the guns and silicon crystal-pulling can be achieved with an input power of about 1 kW (rough comparison: 4 kW for r.f. and silica crucible method). The container is, of course, continuously evacuated, a pressure of at least $1.0 \times 10^{-5} \mathrm{~mm}$ mercury being necessary. Silicon crystals produced by this process are extremely pure as the molten material is not in contact with any contaminating substance (e.g. silica) and most of the other impurities are volatilized.

By "CATHODE RAY"

2. Throwing Weight Around

There was a young lady named Bright
Who travelled much faster than light.
She started one day
In a relative way,
And came back the previous night.
Traditional

THE difficulty about relativity is not so much that it is complicated as that it upsets things we had come to regard as absolutely basic, such as length and time. It is as if we were suddenly asked to accept that two and two make three. Perhaps an arithmetic of that kind would be no more complicated and difficult than the one we know, but it would mean we would have to think hard about every step instead of reeling it off from memory.
As we saw last month, Einstein's Special Theory of Relativity follows naturally from two simple facts, but the results are startling.
The facts are:
(1) The speed of light in empty space, denoted by c, is always the same.
(2) Nothing has been found in the whole universe which can be shown to $b \approx$ fised* and thereby entitled to a better claim than anywhere else as a reference point for measurement.

We drew a graph of time against length or distance (that is to say, space in one dimension) as reckoned from one viewpoint (ours) and then plotted on it the varying position with time of another viewpoint travelling at a uniform speed relative to us (Fig. 1). We also plotted on the same graph the progress of a beam of light, showing it travelling at the frequently and accurately measured speed of almost 3×10^{8} metres $/ \mathrm{sec}$. Our problem was to provide the graph with time and distance scales applicable to the other viewpoint, such that according to them too the speed of light would be 3×10^{8} metres $/ \mathrm{sec}$., as per Fact No. 1.

We were given the other viewpoint's zero-distance line, because it was our line representing their position relative to us. It then became clear that in order to comply with the requirements we had to abandon the usual assumption that what to the observers at the other viewpoint were a second and a metre must necessarily be the same to us.
Having done that, we had an infinite choice of time and distance scales. For instance, we could have made their metre measure up on our scale as two-thirds of a metre, leaving their time scale the same as ours. But that arrangement would have made our metre look like $1 \frac{1}{2}$ metres to them, and in the light of Fact No. 2 such a lack of reciprocity would be anomalous. In other words, since there is no essential distinction between the two view-

[^5]points, it would be unaccountable that one of them should find the other's lengths smaller and one should find the other's lengths larger.

We found we could avoid this anomaly by making the other people's time markings different, when seen from our viewpoint, in the same way as their distances. This, shown in Fig. 2, enabled us to arrive at a formula (part of the celebrated " Lorentz transformation ") for converting either's scales of seconds and metres to the other's, the difference being due to each viewpoint travelling steadily

Fig. I. Simple time/distance graph, showing the progress of a beam of light and of another viewpoint.

relative to the other at a velocity v. The conversion factor is

$$
\sqrt{1-\frac{v^{2}}{c^{2}}}
$$

and we see that according to it all lengths (in the direction of motion) and time intervals in a system moving towards or away from any observer measure less to him than to an observer travelling with that system. So a chronometer on a rocket hastening to the moon would, so far as perfect measurements on earth could tell, be running slightly slow, though it would be correct to an observer with equally perfect measuring gear in the rocket.

We also soon see, if we try plotting the conversion f2 tor against v, as in Fig. 3, that it doesn't begin to differ appreciably from 1 until v is far greater than can be achieved (relative to earth) by the fastest
moon rocket, or even by a car on the Preston bypass. So for most practical purposes relativity doesn't make a ha'porth (or even a microfarthingsworth) of difference. But in modern research certain small particles, such as electrons and mesons, sometimes approach the speed of light quite closely, with remarkable relativistic results. In the limit it would appear that to photons-which are light itself-all distance in empty space is shrunk to nothing, and that what to us are the thousands of million of years light takes to reach us from the far nebulæ is to them no time at all! At least we can say that any speed greater than c is unimaginable and presumably impossible, so we need have no fear of being faced with the situation outlined in the verse about Miss Bright.

What then, we may ask, would happen if a particle travelling at nearly the speed of light were to shoot off a sub-particle at high speed in the same direction? If v was the velocity of the particle (relative, say, to us) and u the velocity of the projectile relative to the

Fig. 3. Distance and time measures on one viewpoint always look less on another travelling at relative velocity v, the contraction factor being as plotted here.

Fig. 4. Diagram for calculating how to combine two velocities which are appreciable in comparison with that of light.

particle, then we would usually reckon that the velocity of the projectile relative to us (w) was $v+u$. So if v was, say $\frac{3}{4} c$, and u was also $\frac{3}{4} c$, then w would be $1 \frac{1}{2} c$, which is impossible.

Any such question would reveal that we were still bound by our two-and-two-make-four habits. Fig. 2 is a reminder that we were successful in using the graphical method to arrive at the Lorentz formula by simple geometry, which seems to me much more convincing and easily visualized than the usual textbook method by algebra, so let us try following it up to discover the correct result of combining two velocities in the same direction.

To save effort let us use our previous diagram with its dotted line (OBC in Fig. 4) to represent our tracking of the particle moving at the rate v. Remember, in this diagram the distance 3×10^{8} metres is represented by the same length horizontally on the
paper as 1 second vertically, so c appears as the diagonal of any square. Therefore

$$
\frac{\text { Speed of particle relative to us }}{\text { Speed of light }}=\frac{v}{\mathrm{c}}=\frac{\mathrm{AB}}{\mathrm{OA}}=\frac{x_{b}}{t_{b}}=
$$

Note that the quantities distance and time are now denoted by x and t respectively; and x_{b} means the distance from zero, and τ_{b} the time after zero, represented by point B -and so on.

Next we measure off along the particle's time and distance scales-the sloping dotted ones-1 second (represented by anywhere on the upper dotted line) and $C D$, so that
$\underline{\text { Speed of projectile relative to particle }}=\frac{u}{C D}$
Speed of light

It follows that

$$
\begin{aligned}
& \frac{\text { Speed of projectile relative to us }}{\text { Speed of light }}=\frac{w}{c}=\frac{x_{d}}{t_{d}} \\
& =\frac{O C \sin \theta+C D \cos \theta}{O C \cos \theta+C D \sin \theta}
\end{aligned}
$$

$$
(\text { from }(2))=\frac{\mathrm{OC} \sin \theta+\mathrm{OC} \frac{u}{c} \cos \theta}{\mathrm{OC} \cos \theta+\mathrm{OC} \frac{u}{c} \sin \theta}
$$

$$
=\frac{\sin \theta+\frac{u}{c} \cos \theta}{\cos \theta+\frac{u}{c} \sin \theta}
$$

$$
=\frac{\cos \theta \tan \theta+\frac{u}{c} \cos \theta}{\cos \theta+\frac{u}{c} \cos \theta \tan \theta}
$$

$$
=\frac{\tan \theta+\frac{u}{c}}{1+\frac{u}{c} \tan \theta}
$$

$$
\begin{aligned}
\mathrm{n}(1)) & =\frac{\frac{v}{c}+\frac{u}{c}}{1+\frac{v u}{c^{2}}} \\
\therefore w & =\frac{v+u}{1+\frac{v u}{c^{2}}}
\end{aligned}
$$

So if (to go back to the example that started this off)

$$
\begin{aligned}
& v=u=\frac{3}{4} c, \text { we find they add up to } \\
& w=\frac{1 \frac{1}{2} c}{1+\left(\frac{3}{4}\right)^{2}}=0.96 c
\end{aligned}
$$

In fact, even if v and u both go to the limit - $c-w$ is still no more than c. Sounds crazy, of course, but can you find any flaw in the argument?

One can hardly tamper so drastically with all we knew about length, time, and speed, and expect the consequences to go no farther. As the schoolmaster said, you will hear more of this. To go straight to the heart of the matter, consider energy and mass-the basic ingredients of the universe.

When a mass is moving, it has kinetic energy, which we are told at school is equal to $\frac{1}{2} m v^{2}$. We are also told that energy is conserved; that is, it
can't just disappear without trace-it can only change into an equal amount of energy of another kind. Well, even without bringing Einstein into it, that ought to make one think. For we used also to be told that mass is another indestructible quantity. So m in the energy formula was just a constant. But nobody can give an authoritative ruling on how much, in any particular case, v is. Take the earth, for instance. Galileo was threatened with torture if he didn't agree that its v was definitely zero. And certainly, from the point of view of his inquisitors, who were sitting on it, that was true, and its kinetic energy therefore also zero. An astronomer on Mars would observe that its v relative to him was at times very considerable, and he would be glad that the planetary orbits were such that there was no risk of collision, which would demonstrate the earth's kinetic energy in no uncertain fashion. (We would of course take a different view of the catastrophe, blaming the k.e.-and the k.o.!on Mars.)

So it appears that a body can have a lot of kinetic energy and at the same time none at all, depending on what point one happers to measure its velocity from. Which makes the law of conservation a little less simple than we may have thought. But let that pass.

Consider again the projectile-firing situation, but at such a low speed that Einstein can safely be ignored. Suppose you are cruising along a street in your car and, not liking the face of a man standing in your way, you hurl at it a custard pie of mass m, with a velocity (relative to yourself) v, which, by a curious coincidence, is equal to that of the car relative to the man in the street (Fig. 5). The latter, who happens to be interested in such problems, notes that your action has increased the k.e. that the pie had when it was travelling along with the car $\left(\frac{1}{2} m v^{2}\right)$ to $\frac{1}{2} m(2 v)^{2}$; that is to say, you have increased its energy by $1 \frac{1}{2} m v^{2}$. You, on the contrary, are firmly of the opinion that you have imparted a velocity v to a previously stationary and unaggressive pie, thereby increasing its energy by only $\frac{1}{2} m v^{2}$. So here is another potential cause of friction between you and the man in the street.

I, as an unbiased spectator, am chiefly disturbed by the thought that not onlly is it impossible to obtain agreement about the absolute kinetic energy of a body (which, after all our talk about relativity, was perhaps only to be expected), but that even the k.e. relative to what it was before the imparting of a given amount is disputable. How much energy did you in fact give the pie? Its impact on the man is four times as devastating as if you had thrown it with equal exertion from a standing car, or three times as much as it had while in the moving car. There is a 3-to-1 discrepancy between different but apparently faultless methods of calculation.
Much to my relief I found on looking into it more closely that although you were correct in supposing that it cost you no more effort to throw your missile from a moving car, and the target was also correct in supposing that the missile from the moving car did four times as much work on his face as one thrown equally hard from a standing car, nevertheless there is no discrepancy. It would spoil the fun to give the solution now; perhaps the Editor might offer a small reward for the best one sent in.

At least we need have no doubts about the correctness of the k.e. formula-l $m v^{2}$. So, m being assumed

Fig. 5. This incident poses some interesting scientific problems.
constant, doubling the velocity quadruples the energy. At normal car and pie-throwing speeds there need be no uncertainty about what is meant by doubling the velocity (relative to a specified origin). But if our car were travelling towards the man in the street at the speed (relative to him) of $\frac{1}{2} c$, and you were to throw the pie at him with the same speed relative to yourself, we have discovered by a chain of inexorable logic that the man sees the pie coming towards him not at the speed c but $0.8 c$. According to classical or school dynamics, your giving the pie the same velocity from yourself as you and it already had relative to the specified origin ought to quadruple its energy, whether the velocity in question was 10 m .p.h. or $\frac{1}{2} c$. But $\frac{1}{2} m(0.8 v)^{2}$ is obviously not four times $\frac{1}{2} m(0.5 v)^{2}$-in point of fact it is 2.56 times.

Here is another apparent discrepancy. But even if you didn't know the catch before I started, I have given so many hints that you oughtn't to have much hesitation in suggesting that it lies in wrongly assuming mass to be constant. There is some excuse for this, when we are brought up on the Law of Conservation of Mass-or at least in my day we were-and anyway one has an intuition that the mass of a thing is something pretty definite, that can't be annihilated or created, least of all just by changing its speed of movement. One would as soon expect an electron to vary its charge as it goes along. Nevertheless mass is actually one of the most difficult things to define satisfactorily. Of course it is mixed up in our minds with weight, and although we know that the weight of a thing depends on where it is (being almost nothing in a distant space ship or in a lift falling freely down its shaft) the fact that weight-other things being equal-is exactly proportional to mass is a strange coincidence, which led Einstein to his General Theory of Relativity.

Another Conservation Law

Don't panic! We're not going to embark on that; we had just reached the point of presuming (correctly) that if the relativity law for adding high speeds was not to land us in serious discrepancies about energy we would have to abandon the idea of constant mass. Without going into the mathematical details one can see that what energy is lost by the final velocity of the pie, being only $0.8 c$ instead of c, could be made up if its mass were to increase with velocity.

The actual relationship of mass to velocity is most easily calculated on the basis of another conservation law-that of momentum, which is equal to mass times velocity. What you do is describe the momentum conditions of two elastic bodies before and after they have collided, from two points of view moving relative to one another. That brings in the Lorentz transformation. The whole thing is given in simple algebra by R. C. Tolman in his book
"Relativity, Thermodynamics and Cosmology," p. 43. Very conveniently, the law for relativistic increase in mass is that the mass (m) at velocity v is equal to the mass at rest (m_{o}) divided by our old friend the Lorentz shrinkage factor:

$$
m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Because m is divided by this factor instead of being multiplied by it, the graph of mass against velocity is Fig. 3 upside down; at speeds not comparable with c it doesn't differ appreciably from m_{o}, but ultimately it rises to infinity as the speed reaches c.

Obviously that means that nothing having mass can ever reach, let alone exceed, the speed of light. Photons themselves, which are light (I am still using that word to include all electromagnetic radiation), are the only things that can reach that speed, and they have no rest mass at all-if for no other reason than that they are never at rest! Now zero divided or multiplied by any finite number is still zero, but when the velocity $v=c$ then the Lorentz factor becomes zero, and $0 / 0$ can be anything. In the particular case of a photon it can be shown by other means that it is equal to $h f / c^{2}$, $h f$ being the "quantum" of energy of the photon, made up of the frequency of its radiation (f) and Planck's constant (h). The photon's energy hf is therefore equal to its mass multiplied by $c^{2}-$ a fact we'll return to presently.
We left our pie approaching the face of the man in the street with a velocity $v=0.8 c$. He, poor chap, can take no comfort from the fact that this is less than c, which is what it would have been according to what he had been taught at school, because he (having studied Einstein) knows that so far as he is concerned its energy is just as great as he had feared, owing to its increase in mass. So he wisely takes evasive action by retreating with velocity $0.8 c$. Relative to him the pie is now at rest, so its mass is m_{o} only. (He notes, however, that the street and everything attached to it, flying past him at $0.8 c$, have become $66 \frac{2}{3} \%$ more massive).
Mass, then, joins length and time as a quantity which has no absolute value, but varies according to the relative speed between it and the observer. These three quantities, you may notice, are the three usually regarded as basic-hence the m.k.s. and c.g.s. systems of units.
That is not to say that the relativistic variation in mass is a sort of hallucination, with no reality. The nuclear physicists, who play about with particles at speeds close to c, are obliged to make very real and practical allowance for relativistic mass in the design of their large and expensive equipment. 300 kV , which is not very much nowadays, is enough to accelerate an electron to $0.8 c$, which makes quite a substantial difference to its mass.
It is fair to mention that an increase in mass of moving electric charges, such as electrons, had been predicted before the theory of relativity-by J. J. Thomson as far back as 1881, and with the actual relativity formula by Lorentz in 1904-but Einstein showed that this was just part of a general law applying to all masses.

If one calculates the kinetic energy given to a body in accelerating it from rest to velocity v as the work done on it, taking into account this depen-
dence of mass on velocity, one arrives at the result

$$
\text { kinetic energy }=\mathrm{E}_{k}=\frac{m_{0} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-m_{0} c^{2}
$$

For comparatively low velocities we can use the approximation

$$
\begin{aligned}
\mathrm{E}_{k} & =m_{o} c^{2}\left(1+\frac{v^{2}}{2 c^{2}}\right)-m_{o} c^{2} \\
& =\frac{1}{2} m_{0} v^{2}
\end{aligned}
$$

in accordance with school dynamics.
And in general, as $m_{0} / \sqrt{ }\left(1-v^{2} / c^{2}\right)$ is the variable mass m,

$$
\mathrm{E}_{k}=\left(m-m_{o}\right) c^{2}
$$

so the increase in mass due to acceleration from rest to velocity v is

$$
\frac{\mathrm{E}_{k}}{c^{2}}
$$

In other words, the increase in mass is equal to the increase in energy multipled by the very small constant $1 / c^{2}$.

If the masses of the colliding elastic bodies are calculated for the instant when they are both at rest, their deformed shape signifying the stored potential energy which is just going to fling them apart, they are found to be greater by an amount equal to this potential energy divided by c^{2}. And if alternatively they are assumed to be perfectly inelastic bodies, like lumps of dough, there is again an increase in mass corresponding to the heat energy generated. Whatever the form any quantity of energy takes, it can be shown to be accompanied by $1 / c^{2}$ times that quantity of mass, over and above the mass of the same body without that energy.
The 64,000 dollar question-no; literally the 64,000 billion dollar question-that follows from this is: If these infinitesimal increases in mass represent changes in energy, what does the comparatively enormous rest mass m, represent?
Einstein's answer, expressed in the simple celebrated equation $\mathrm{E}=m c^{2}$, is that it represents an enormous amount of energy. And you don't need me to tell you how practically this affects every one of us now. The sudden destruction of quite a moderate fraction of m_{o} is accompanied by the spectacular release of energy in a nuclear explosion, and its more gradual destruction is at this moment running electrical appliances in homes through the activity of Calder Hall.
So it seems that mass and energy are inseparable; two manifestations of the same thing-the basic stuff of the universe. When an electron gains in mass without anything being added to it except speed, that is not really a breach of the law of conservation of mass; it comes from the energy given to it. Whatever has given it that energy must have lost an equal amount of mass. Millions of tons of the sun's mass are streaming off every second into space as radiant energy. They are not lost, for the photons emitted have exactly that amount of mass, due to their speed, c. Some scientists believe that all the time the radiant energy of the universe is condensing back into matter.
To say anything at all after this picture, in which magnitudes range from the great universe itself working as a whole down to the activity of the minutest particles and waves, which are responsible for that working, would be an anticlimax. So I just stop, leaving plenty for the mind to follow up.

Evaluating Aerial Performance

2. Multi-element and Long-wire Systems:

Receiving Aerials: Matching

By L. A. MOXON, B.Sc. A.M.I.E.E.

(Concluded from page 65 of the February issue)

AS pointed out in the first part of this article aerial gain can be calculated with the aid of tables of mutual impedance. This is, in general, complex, but the reactive component can be got rid of by choosing an element spacing of $\lambda / 8$, and the calculations then become quire simple and give the results plotted in Fig. 12 (Ref. 2). Note that maximum gain, 5.3 dB , requires a phase shift φ of $0.6 \phi_{0}$ and the gain curve is equally valid for driven or parasitic beam systems except that in the former case it can be applied up to somewhat wider element spacings. With a parasitic reflector, the maximum gain falls to just over 4 dB at $\lambda / 4$ spacing, the corresponding figure for a director being only about 2.5 dB . A simple method of introducing the phase shift is to arrange that the two elements, together with the connection between them (Fig. 11 (b)) are exactly resonant, and move the feed point slightly off centre. This is equivalent to lengthening one element and shortening the other by the same amount, and inserts equal positive and negative reactances, the values of these being given by the $2 \pi b Z_{0}$ formula of Part 1 . The resulting phase shift is given in degrees for $\dot{\lambda} / 8$ spacing by $120 \pi b Z_{0} / R_{r}$, where R_{r} is the radiation resistance of the individual dipoles. A number of practical arrangements based on this principle have been described elsewhere ${ }^{2,9}$. It follows from the mode of operation outlined above, that Fig. 12 can be drawn as a universal set of curves

Fig. 12. Variation of gain, radiation resistance and front-toback ratio with phase angle for pairs of close-spaced, end-fire elements. ϕ_{0} is the phase angle corresponding to the spacing. The phose difference between the element currents is $180^{\circ}-\phi$.

for pairs of close-spaced equal-current elements, the use of $\lambda / 8$ spacing for the calculations being merely a subterfuge to simplify the algebra. It is further evident that it can be applied to elements of any shape so long as radiation takes place mainly in one plane, and provided that the dimensons remain sufficiently small in comparison with half a wavelength. It

Fig. 13. Single square loop as used in the "Quad" system. Arrows indicate direction of current flow. The portion efoab $=$ bcde $=\lambda / 2$. Figures indicate relative fields produced by each bit of the loop in accordance with Fig. 6(a). Main lobe of radiation in direction at right angles to plane of paper. Alternotive mounting is with
 diagonal vertical with feed point at lowest corner.
therefore holds, more or less, for arrangements such as the popular "cubical quad" aerial system. This usually takes the form of a pair of loops of the kind illustrated in Fig. 13; arrows show the direction of current flow, and also indicate, to scale, the relative magnitudes of the fields which each bit of the loop would produce on its own. It will be seen that radiation from the sides involves currents of opposite sign which tend to cancel each other. The two horizontal portions bear some resemblance to a folded dipole, but relative to this they give a 30% reduction of field strength in the vertical direction. This increases the gain slightly, but only to the extent of about 1 dB . This figure was obtained by regarding the loop as a 2 -element broadside array with rather close spacing for which handbook data is available, but it is also in reasonable accord with the radiation pattern. It is quite easy to show, with the aid of Fig. 6, that a $14-\mathrm{Mc} / \mathrm{s}$ quad will give comparable performance at frequencies up to $21 \mathrm{Mc} / \mathrm{s}$ in spite of a rather untidy current distribution which has given rise to a belief that the quad is a single-frequency system. A $21-\mathrm{Mc} / \mathrm{s}$ quad can also be used at $14 \mathrm{Mc} / \mathrm{s}$, the loops being roughly equivalent to shortened dipoles of about 28 ohms radiation resistance.

We now come to the interesting question of what happens with more than two elements. Obviously, the larger the number of elements the more variables we have at our disposal and the larger the number of directions in which the radiation can be made to cancel, to the advantage of those directions in which it does not quite cancel. It is at this point that the process acquires the label of "super-gain" and
becomes really fascinating. The gain theoretically obtainable ${ }^{3}$ is nearly equal to N^{2}, which checks quite well with the figure of 5.3 dB which was obtained for $\mathrm{N}=2$. Beyond this point the practical difficulties increase rather rapidly, but there is nothing, in principle, to prevent the design of, say, an aerial the size of a matchbox with a gain of a million; for this purpose, however, the matchbox would have to contain 1,000 elements all with zero loss resistance, and the element currents would have to be adjusted to various different values of amplitude and phase with fantastic precision. Having achieved this the bandwidth of the array would be

Fig. 14. Current distribution in a long-wire aerial is shown at (a). Standing-wave pattern disappears if aerial is terminated by a suitable load. Average current is then same at all points, ignoring losses. In (b) long wire of (a) is represented by point sources of alternate sign. Radiation in direction $A C$ is zero when $A B-A C=\lambda / 2$, which occurs when $\gamma=\sqrt{ } 2 / 1$ where l is in wavelengths and γ is in radians. (c) is a typical radiation pattern of a long-wire aerial. Null directions indicated by arrows are those for which $\gamma=\sqrt{ } 2 /$.
so narrow that it would be impossible to use it for signalling at a useful rate. As another example, one author ${ }^{4}$ has designed on paper a 9 -element "broadside " version having a gain of 8.5 dB based on its directivity, but an efficiency of only 10^{-14} of onc per cent at $10 \mathrm{Mc} / \mathrm{s}$ assuming $\frac{1}{2}$-in diameter, $\lambda / 2-$ elements. To achieve this the currents have to be adjusted to better than 1 part in 10^{11} !
In practice there is some doubt as to how far the process can be carried usefully beyond two elements whi $: h$, as we have seen, present no problem. A 4element end-fire super-gain array has been constructed ${ }^{3}$, but although fairly wide spacing was used, making the dimensions 0.6λ from back to front, the gain realized was only 8.7 dB out of the theoretical 10.2 dB , adjustments being critical and the bandwidth only $1 \mathrm{Mc} / \mathrm{s}$ at $75 \mathrm{Mc} / \mathrm{s}$. It seems difficult to reconcile this result with the high gains sometimes quoted for conventional parasitic arrays having three or more elements. Systems of this type are commonly known as Yagi aerials and can give large gains when their length is long in terms of wavelengths. Calculations for an idealized system of this type ${ }^{3}$ have
predicted a possible power gain of $1.8+5.6 l$ where l is the length in wavelengths. The case of 3 -element parasitic arrays having equal spacing has been investigated by Walkinshaw ${ }^{6}$ who obtained a theoretical gain of just over 7 dB , but this entailed the very low figure of about 4 ohms for the radiation resistance, which would present difficulties of impedance matching, and a poor front-to-back ratio. On the other hand reference 3 contains a hint that some improvement might be achieved by the use of unequal spacing.

There is one important class of aerial which, at first sight, appears to require a different kind of treatment. This is the "long-wire aerial," the wires being usually several wavelengths long and arranged in pairs (V-beams) or groups of four (rhombics). Let us first consider the case of a very long wire as in Fig 14(a) with its far end insulated so that a wave travelling down the wire is reflected from the far end and a standing-wave pattern is set up containing numerous current reversals. Such a wire can be regarded as a row of dipoles of alternate sign, as in Fig. 14(b), and for most directions the majority of the dipoles can be paired off with others which give an opposing field so that the effective radiation tends to zero. On the other hand, for directions nearly in dine with the wire positive and negative dipoles have their centres nearly half a wavelength apart and thus produce fields which add in phase. The great length of the wire makes up for the low value of $\cos \theta$. Referring to Fig.14(c), note that the main lobes of the radiation pattern are sandwiched between the nulls given by $\gamma=0$ and $\gamma=\sqrt{2 / l}$, where l is the length of the wire in wavelengths. The width of these lobes between half-power points is $0.5 \sqrt{2 / l}$ but a large proportion of the power is radiated in the minor lobes. The power gain is approximately equal to $l / 2$.
It is common practice, particularly with rhombics, to terminate the wires in their characteristic impedance, as in Fig.15, in which case there is no reflection and no standing waves, but the finite velocity of the wave travelling down the wire means that at any given instant there are current reversals and, in the direction of travel of the wave down the wire, the field is additive as before. There is, however, no radiation in the opposite direction since, considering any short section of the aerial, the radiation from it is cancelled by that from the corresponding section half a wavelength farther along, which is out of phase having originated half a cycle earlier; this has travelled one wavelength farther, i.e. half a wavelength out and back, and therefore remains out of phase, whereas for the forward direction it has a half-wavelength start

Fig. 15. Terminated rhombic aerial. It consists of four long wires arranged so that lobes in the direction of the arron reinforce each other.

Fig. 16. Illustration of aerial images: (a) due to horizontal dipole and (b) to vertical dipole. (c) represents end view of horizontal dipoles. Note that distance travelled by reflected roy is greater than that of direct ray by distance $A^{\prime} B$. Since aerial and image are of opposite sign fields reinforce each other when $A^{\prime} B=\lambda / 2$. Perfect "earth" is ossumed.
and arrives in the same phase. The energy not radiated backwards is absorbed in the terminating resistance and does not add to the forward-power gain but, conversely, on reception the termination absorbs half the noise power picked up on the aerial and may, therefore, result in a doubling of the signal-to-noise ratio.

Effect of the Ground.-The ground acts in general as a good reflector of radio waves and therefore, by optical analogy, the aerial must be considered as having an image as shown in Fig.16. This image is to be regarded as a duplicate of the aerial and modifies the radiation pattern so that, referring to Fig.16(c) the radiated field is zero along the ground or when $A^{\prime} B$ is an integral number of wavelengths, but is equal to twice the tree-space field when $A^{\prime} B$ is an odd number of half wavelengths. For intermediate angles of elevation the field must be worked out from the phase difference corresponding to the number of wavelengths in $A^{\prime} B$. Obviously the greater the height the lower the angle of the lowest lobe of radiation. Putting $2 h \sin \theta=\lambda / 2$, we find that h for an angle of 5° (which is a desirable angle for long-distance propagation at the higher frequencies) is just under three wavelengths. If, however, the ground slopes down at 25° an angle of 30° to the ground will give the required 5° angle of elevation and requires an aerial height of only $\lambda / 2$. In practice a height of 20 ft only at $14 \mathrm{Mc} / \mathrm{s}$ with a ground slope of about 20° was found to give near-optimum performance on the long route to Australia, an aerial near the bottom of the slope being just as good as one near the top provided both the aerial and the point of reflection were on the slope. Ground sloping in the desired direction is more or less equivalent to an increase of aerial height, and is a valuable asset for v.h.f. and u.h.f. as well as h.f. communication.

The effect of the ground is much more complicated in the case of vertical polarization. From Fig.16(b) one would expect the radiation to be concentrated at very low angles, but in general 'this is not the case in practice. The reason is that the
representation is only valid for a perfectly conducting earth, fairly high angles of radiation, or comparatively low frequencies. With normal ground it is found that as the angle of radiation is reduced more and more of the reflected wave is absorbed until an angle known from optical analogy as the pseudo-Brewster angle is reached. Below this the reflection coefficient increases again but the image is reversed in sign. This means that for low-angle radiation at the wavelengths used for long-distance communication, assuming level ground, the performance of a vertical aerial is roughly equivalent to that of a horizontal one at the same height.

With a centre-fed vertical aerial the feeder system is liable to present mechanical difficulties since it requires to be brought away from the radiator at right angles. One answer to this problem is the ground-plane aerial, Fig.17. Radiation from the horizontal wires cancels out in all directions, so that the radiatior is effectively half of a dipole. It has been shown that the radiation pattern of short elements is nearly the same as that of a half-wave dipole regardless of the precise shape of the current distribution and the ground-plane aerial is no exception to this. Being half the length, however, it requires twice the current to produce the same field and must therefore be assumed to have a radiation resistance of 18.3 ohms, although the figure usually quoted is slightly higher, about 22 ohms. It is important to realize that the so-called ground plane is merely a device for matching the aerial to an unbalanced feeder; it is not a substitute for the actual ground, and has no reflecting properties.

In certain handbooks a distinction is made between the "free space directivity gain" with which we have been concerned hitherto, and the

Fig. 17. Ground-plane aerial. $O A$ is a $\lambda / 4$ vertical radiator, $O B_{1}$. $O B_{2}$ etc. are three or four equally spaced horizontal radials, each $\lambda / 4$ long.

"practical DX signal gain." This appears to be nowhere fully explained, but seems to arise in part from the practice of comparing vertical stacks of dipoles with single dipoles at the same average height. Because of the relatively complicated geometry, the nulls in the vertical pattern may not occur at exactly the same angle in both cases, and large differences either way may be observed at certain angles of elevation. There is another effect which may account for apparent changes of gain with height, amounting to about $\pm 1.5 \mathrm{~dB}$ for aerial heights greater than 0.18λ; this is due to the mutual coupling between the aerial and its image, which causes the radiation resistance of a horizontal dipole to vary with height between limits of about 60 and 100 ohms. This causes a variation in current, and therefore of the field at a distance. Beam aerials tend to radiate less energy upwards and downwards which means in general that there is less coupling between the aerial and its image; the " 8 JK " aerial
provides a simple illustration of this because the two image elements must obviously induce nearly equal and opposite currents in each of the real elements, assuming that, as usually is the case, the spacing is small compared with the height. This almost completely removes the variation of radiation resistance with height, the apparent changes in gain being due to the reference dipole. Another possible cause of gain variation, in reception, is nonuniformity in the field surrounding the aerial. This could be due to reflections from neighbouring objects, e.g. telephone wires, and would of course affect the gain equally in the case of tranmission. This effect is one of the causes of error in gain measurements as discussed by Strafford ${ }^{1}$. These effects will usually be small and may work in either direction. There is no justification for the belief that beam aerials may give large gains due to the "lowering of the angle of radiation" in addition to their free space gain.

The Effective Keceiving Gain of an Aerial.-With modern receivers the range of reception is normally limited by the strength of the background noise, and not by lack of sensitivity. This means that aerial gain is of no value as such, and it is quite common to sacrifice gain in order, for example, to improve the back-to-front ratio.

The problem in reception is to achieve the best possible ratio of wanted signal to noise or interference. For this purpose the proper criterion of aerial performance depends on the nature of the unwanted background and may consist of the power gain, the directivity gain (which is the same as power gain if there are no losses), the depth of nulls in the radiation pattern, or more probably some rather complicated function of the directivity. These cases will be considered in turn, and it will be shown

Fig. 18. Effect on back radiation of alternative phasing. Angle over which field is reduced to 10% is greater when goin is higher although nominal back/front ratio is poor.
that, as an index of performance, the nominal back-to-front ratio is more likely to be misleading than otherwise.

At frequencies greater than $100 \mathrm{Mc} / \mathrm{s}$ or so signals are mainly interfered with by noise generated in the receiver, and the signal-to-noise ratio is then directly proportional to the power gain of the aerial. This situation may be affected in the foreseeable future by the introduction of new low-noise amplifiers such as masers and parametric devices.

A very similar situation exists if the sources of noise are external to the receiver but are uniformly distributed in space. Halving the aerial beam width
halves the number of sources which contribute to the noise level but doubles the aerial gain and therefore the strength of those noise sources which are within the beam. The received noise power is therefore independent of beam width, and signal-tonoise ratio is again directly proportional to aerial gain, but this time it is the gain as calculated from the directional pattern, losses in the aerial or feeder system being of no account since they act equally against signals and noise. The losses cannot, however, be allowed to increase indefinitely since, depending on the noisiness of the receiver, a point will eventually be reached where reception is limited by receiver noise or the thermal noise of the aerial loss-resistance ${ }^{7}$. This case is typical of normal reception against a background of galactic or atmospheric noise, although th.e spatial distribution of such noise is not strictly uniform and this may sometimes have to be taken into account.

The next case to be considered arises when reception is limited by noise or interference from one particular source. Provided the two signals are not in the same direction, the unwanted one can in principle be phased out with at worst some reduction in the level of the wanted one. This can be done either by means of two aerials, with appropriate adjustment of relative phases and amplitudes, or by making use of nulls in the radiation pattern. These nulls occur in the end-on directions and in other directions depending on the phase shift; Fig. 12 shows one such null occurring in the 180° direction for a phase shift of ϕ_{o}, which is the much sought after "infinite front-to-back ratio" condition. Referring now to Fig.18, it is interesting to observe what happens as ϕ is reduced; the nominal front-to-back ratio drops to about 4 to 1 but two nulls have now appeared instead of one. The gain is higher, which is useful if the aerial is also to be used for transmission, and moreover, we are free to select whichever null gives least reduction of the wanted signal relative to noise or other interference. One obvious application of this technique would be in television reception for the removal of ghost images caused by one or two indirect signal paths.

If interference is likely to come equally from all direction it might be thought reasonable to treat it as omni-directional noise, and the ratio of average signal to average interference power will of course be equal to the directivity gain. This is not, however, the correct approach if it is required, for example, to separate weak wanted from strong unwanted signals. It is obviously useless to reduce the strength of an unwanted signal merely by a factor of 10 if it is 100 times stronger than the wanted signal! The objective therefore is not to reduce the average level of interference but rather to reduce the number of occasions on which unwanted signals exceed the level of wanted ones. A deep but narrow null in the radiation pattern, unless it can be moved at will, is of very little use for this purpose; on the other hand, reduction of say 10 to 1 or more in field strength over a wide range of angles is of great value and by this criterion the higher gain pattern shown in Fig. 18 is slightly better. In one typical case, the reception of amateur signals from Australia via South America in the presence of short-skip interference from Europe, the author has found a parasitic beam to be just as good in practice as a driven arrangement, despite the in(Continued on page 143)
equality of element currents which causes partial filling in of the nulls. This is, of course, to be expected if angle is more important than depth of rejection.

Interfering signals vary in amplitude between very wide limits; they are almost as likely to exceed a weak wanted signal by 20 dB as by 10 dB , and may well be as much as 60 dB stronger, so that to make a large reduction in the number of occasions on which interference occurs the response of the aerial in unwanted directions must also be reduced by a large amount. Higher gain means that weaker signals can be received and correspondingly greater discrimination is therefore required against strong unwanted signals. These arguments underline the need to reduce the general level of side lobes of high-gain receiving aerials, even if this has a negligible effect on gain.
Feeder Losses.-Consider the case shown in Fig. 19 of a source of power having an internal impedance R_{1} connected to a load R_{2} through a line having a characteristic impedance Z_{o}. If $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Z}_{o}$, and there are no losses in the transmission line, all the power available will be delivered to the load. If now the load is changed to some new value, power is reflected from the load and on its way back, interacts with the wave travelling towards the load to produce a standing wave, i.e., varying amplitudes of current and voltage along the line. If the load remains resistive, the new value being R_{2}^{\prime}, the ratio of maximum to minimum current along the line is equal to R_{2} / R_{2}^{\prime} or R_{2}^{\prime} / R_{2}, whichever is greater. This ratio or its reciprocal is known as the standing wave ratio or s.w.r. The alteration made to R_{2} means that the generator row "sees" a less suitable value of load impedance and delivers less power, the mismatch loss being given as a power ratio ${ }^{2}$ by $(1+\sigma)^{2} / 4 \sigma$ where σ is the s.w.r. This loss is significant in cases such as TV reception since, in the absence of matching adjnstments at the receiver, it reduces the ratio of signal to internally-generated noise. It is not, however, applicable in the case of a transmitter supplying power to an aerial, since the mismatch is usually taken care of automatically by adjusting the aerial coupling to obtain correct loading of the transmitter. When this is done, it follows that if the line has zero resistance all the power leaving the transmitter must reach the aerial because there is nowhere else where it can be dissipated. The distinction frequently made between a "matched" and a "resonant" feeder, is not basic, as sometimes represented, but related in some arbitrary manner to the degree of mismatch coupled with the absence of "marching devices." A typical example of a "resonant" feeder system would be an open-wire line of about 600 ohms impedance feeding a half-wave dipole, the s.w.r. being then given approximately by $600 / 73$, i.e., just over 8 to 1 . Sometimes a resonant feeder is used from the aerial to some point such as ground level, at which adjustments can be made, and it is there matched into a non-resonant line which can be as long as necessary; one such case is recalled in which a certain successful aerial system having an s.w.r. of possibly 100 to 1 in the "resonant" portion was publicly criticized, without contradiction, on the grounds of a 3 to 1 s.w.r. in the non-resonant part of it!
Generally speaking the intensive efforts so frequently made to reduce s.w.r. to near unity, in the case of amateur transmitting aerials, bring very
little reward in the shape of increased radiation efficiency. High s.w.r. does not in itself introduce losses, although it does accentuate any series resistance losses which may be already present in the line. The reason for this is apparent when we recollect that losses in a resistance are proportional to the square of the current. Series resistance tends to be uniformly distributed along the line, and an s.w.r. of 4 means that the current varies between twice and a half its value for the matched condition; there is thus a 4 to 1 increase of loss in parts of the line, and this is counterbalanced to only a small extent by the reduction of losses to a quarter at the current minima. For standing wave ratios up to

Fig. 19. Source of r.f. power connected to a load via a transmission line.
3 to 1 the extra loss in decibels never exceeds 40% of the matched-line loss, and reaches a maximum value of about 1.2 dB when the matched-line loss is large. At 5 to 1 s.w.r. the corresponding figures are 100% and 2.5 dB .
Other disadvantages of resonant or mismatched feeders include narrow bandwidth, as previously discussed, and in some cases the possibility of voltage breakdown or excessive heating. The reduced overall bandwidth may be unacceptable in the case of television reception, particularly as it is likely to be associated with picture defects caused by multiple reflections in the line, and in amateur transmission it can be a nuisance owing to the necessity of retuning the transmitter when small changes of frequency are made. A high s.w.r. increases the dielectric and leakage losses in a lowimpedance feeder, in much the same way as it increases the series loss since the voltage wave along the feeder varies in a similar manner to the current wave although displaced from it by $\lambda / 4$. In the case of an open-wire line, however, standing waves can sometimes be used to reduce losses of this type by placing the insulators at low-voltage points in the system.
The following example of a 700 -ohm line in use by the author provides a simple illustration of the calculation of feeder losses. The length is 100 metres and the wire is 20 s.w.g. which is much thinner, and also much cheaper, than the 14 s.w.g. normally recommended. From Fig. 5, the loss per half wavelength at $15 \mathrm{Mc} / \mathrm{s}$ (20 metres) for one wire is 3.4 ohms. The total loss resistance therefore is equal to this multiplied by 20 , i.e., 68 ohms. With the line matched, this loss-resistance can be regarded as more or less in series with the terminating resistance so that $1 / 11$ of the total power into the line is lost. This amounts to just over $1 / 3$ of a decibel, rising to 0.5 dB at an s.w.r. of 3 . At $28 \mathrm{Mc} / \mathrm{s}$ the loss rises to 0.5 dB , if the line is matched, or $2 \mathrm{~dB}-$ just noticeable in terms of signal strength reportsif the line is used as a resonant feeder to a half-wave dipole. There is, of course, some loss by radiation from an open-wire feeder, but this is usually very small and would amount in the above example to an additional loss resistance of only 1 or 2 ohms.

Out-of-balance currents can, however, cause a considerable loss by radiation, and can be caused by anything which disturbs the symmetry of an aerial system. When coaxial cable is used for transmitting it is important to ensure that no currents flow on the outer of the cable, in other words voltage should not be induced from the transmitter, or the radiator itself, into the aerial-to-ground path formed by the outer conductor. This is, of course, similar to the requirement, for reception, that currents induced in the outer conductor must not be allowed to flow through the receiver input circuit. To this end the feeder should be brought away from the aerial for a considerable distance at right angles, but in the case of a vertical dipole of tubular construction it can be brought down through the centre of the lower half. An approximation to this last arrangement is obtained with a ground-plane type of construction when the radials are allowed to slope downwards. The lower end of the feeder should be firmly earthed to the case of the transmitter or receiver. As a further precaution the path to earth via the outer conductor can be made non-resonant by adjustment of feeder length.

REFERENCES

${ }^{1}$ F. R. W. Strafford, "Measuring TV Aerial Perfor-
mance," Wireless World, February, March and June
1958." A Moxon, " Two-Element Driven Arrays,"
2^{2} L. A
Q.S., July 1952 . " Bloch et al, " A New Approach to the Design of
Super-Directive A ${ }^{3}$ A. Bloch et al, "A New Approach to the Design of
Super-Directive Aerial Arrays," Proc.I.E.E. Part III, September 1953.
N. Yaru, "A Note on Super-Gain Antenna Arrays," Proc.I.R.E. Vol. 39, September 1951.
${ }^{5}$ D. G. Reid, "The Gain of an Idealized Yagi Array," F.I.E.E. Part IIIA, Vol. 93, 1946, p. 564.
"W. Walkinshaw, "Theoretical Treatment of Short Yagi Aerials," ibid, p. 598.
${ }^{\text {Th }}$ L. A. Moxon, "Noise Factor," Wireless World, December 1946.
${ }_{8}^{8}$ F. E. Terman, Radio Engineers' Handbook (1943), p. 864 .
${ }_{9}$ L. A. Moxon, R.S.G.B. Bulletin, August 1953.

BOOKS RECEIVED

The Services Textbook of Radio. Volume 5 Transmission and Propagation by E. V. D. Glazier, Ph.D. (Eng.), B.Sc., A.M.I.E.E. and H. R. L. Lamont, Ph.D., M.A., A.M.I.E.E. Deals with the propagation of electromagnetic energy on transmission lines, in waveguides, and in free space. Practical as well as theoretical aspects are covered and chapters are devoted to waveguide components and couplings and to aerial systems for all useful frequency bands. The text is arranged and marked for reading at elementary, intermediate and advanced levels. Pp. 500; Figs; 425. Price 25s. H.M. Stationery Office, York House, Kingsway, London, W.C.2.

Basic Electricity by Van Valkenburgh, Nooger and Neville, Inc. Treatise in five parts designed originally as a course of training for U.S. Navy technicians with no previous knowledge of electricity. The text is profusely illustrated with simple diagrams in which the approach is often anthropomorphic. The present series has been Anglicized and adapted for British and Commonwealth use by a team of the Royal Electrical and Mechanical Engineers. Pp. 120 (approx.) per volume. Price 12s 6d per part or 55 s per complete set. The Technical Press Ltd., 1 Justice Walk, London,
S.W.3.

Basic Electricity for Communications by W. H. Timbie and F. J. Ricker. Second edition of a textbook on d.c. and a.c. circuits and conduction in gases and semiconductors. Numerous worked examples show the application of basic laws. Pp. 538; Figs 450. Chapman \& Hall, 37 Essex Street, Strand, London, W.C.2.
International Radio Tube Encyclopædia by Bernard B. Babani. Third Edition (1958-59) containing data of 27,500 types including transmitting and microwave types. Pp. 768. Price 63s. Bernards (Publishers) Ltd., The Grampians, Western Gate, London, W.6.

Tube and Semiconductor Selection Guide 1958-59. (Philips' Technical Library). Compiled by 'Th. J. Kroes. Simplifies selection of preferred types in the Philips range for any given purpose and indicates possible replacements for obsolete types. Pp. 160. Price 9s 6d. Obtainable through the Cleaver-Hume Press, Ltd., 31 Wrights Lane, London, W.8.

SHORT-WAVE CONDITIONS

G.M.T

THE full-line curves indicate the highest frequencies likely to be usable at any time of the day or night for reliable communications over four long-distance paths
from this country during from this country during March.
Broken-line curves give the highest frequencies that will sustain a partial service throughout the same period.

GMT

The Bifilar-T Circuir

An Important Filter Investigated from First Principles

(Concluded from page 71 of February issue)

WE saw last month that the bifilar-T circuit is not really novel at all, but is, if used properly, an economical way of building a perfectly ordinary filter using a long-known equivalent circuit. The shape of the rejection peak is iust what you can get with any other equivalent of the same basic network, provided that resistance cancellation is used to push the attenuation up. Just to see what happens let us take the simplest network which might do the job and turn it into a lattice by means of Bartlett's Bisection Theorem. There it is, in Fig. 15, large
a resonance, and displace the standard curve accordingly.
I must digress for a moment. A couple of paragraphs back I made use of Bartlett's Bisection Theorem, comforting myself with the knowledge that it is in the books for you to look up if you will not trust me. Unfortunately it is only in some of the books, and anyway we do not really need it here. Look back to Fig. 15(a) and imagine, if you will, that a perfect centre-tapped coil, of infinite inductance and unity coupling between the two

(a)

Fig. 15. Applying Bartlett's Bisection Theorem to (a) we get the lattice shown in (c).
as life and twice as natural. If you compare this with Fig. 11 (last month's issue) you see that you have lost the freedom to produce the curve in Fig. 11(a) with C_{B} less than C_{A}, because that $\mathrm{L}_{2} \mathrm{C}_{2}$ must produce a real frequency of infinite attenuation. This is a normal limitation when a ladder is used in place of a lattice. It does not worry us, though, because we do want that peak. The circuit values are all positive, of course, and it is easy to see from what we calculated above that L_{2} should be about $1 / 10$ th of L_{1}.
The reason why negative element values are not needed is that I have been quite content to neglect the sense of the output terminals. The bridge shown in Fig. 16 shows that there is not any real justification for associating one input terminal with one output terminal. I do not feel sufficiently interested in this matter of phase reversal to work out the answer. If you happen to care, the shape of the image phase characteristic is in the book and all you have to do is work out the phase shift at one convenient frequency, such as zero, or infinity, or
halves, is added in parallel with $\mathrm{L}_{2} \mathrm{C}_{2}$. Obviously this cannot alter the conditions at all; since the inductance is infinite it cannot affect the behaviour of the circuit in any way. However, we can now carry out the operation shown in Fig. 14 and transform $\mathrm{L}_{2} \mathrm{C}_{2}$ into a lattice form, in which, of course, Z_{b} is infinite. Then using the transformation of Fig. 5 we bring the $\mathrm{L}_{1} \mathrm{C}_{1}$'s into the lattice. The only difference is that this time, since I did not have

Fig. 16. Drawing the lattice as a bridge emphasizes the essential symmetry of the arms.

Fig. 17. Adding C_{3}, here split to p.eserve the symmetry, to the network of Fig. 15 will give a worth-while improvement.

Fig. 18. This configuration is an equivalent for the series orm in Fig. 17.
to try to remember Bartlett's Theorem, the output terminals are crossed over.

The digression in the last paragraph was intended to show how these simple equivalences can be used to establish circuit conditions very easily. I do not think it is really necessary for me to show, by exactly the same reasoning as that used in the last paragraph, that a resistance R connected from the centrepoint of L_{2} can be called $Z_{b} / 2$ in Fig. 14 and thus introduced as 2 R across each of the lattice arms made up of L_{1} and C_{1} only. This resistance is used to balance the loss in L_{2}. You can do this calculation by a T-T transformation, but although I actually did this in these columns a good many years ago, the lattice treatment is much simpler and much more elegant.
From the discussion above it seems fairly clear that the bifilar-T, to do the job claimed for it, needs these end circuits and that it is, in fact, nothing more or less than a rather complicated way of making a simple fult section of an unsymmetrical band-pass filter. I do not imagine the phase reversal is important, but an extra winding on the inductance at either end would do this equally well and it would be possible to save one element. If the phase reversal is not needed the element saved is a double-wound coil, which, although not expensive, must still cost something.

It is thus rather a problem to find the advantage
of the bifilar-T network. I would expect the values to be more convenient in the π-network, because the inductance ratio is halved. Tuning in the π-network is more direct, with the top arm actually tuned to the notch frequency. The near edge of the pass-band is then fixed by the inductance ratio, but the tuning of the end circuits does not affect the notch. With the bifilar-T all the elements seem to control the position of the notch. The actual shape of the characteristic is the same for both circuits if they are designed to the same rules. Even the limitations on resistance cancellation seem to be the same. I must confess that I did not expect to reach this conclusion when I began to examine the bifilar-T, but I am now convinced that it is just a dreary old filter circuit dressed up in a new package. The chief feature of the new package is, indeed, the complete lack of design data.

The effect of leakage inductance in the bifilar coil, especially if one were to choose to work with less tight coupling, and of an appropriate capacitance in the top arm to provide both d.c. blocking and an additional impedance element, might be considered. After sketching out the appropriate variants on Fig. 11 I decided that the results were not of sufficient interest to discuss in any detail. The chief reason for this is that these extra elements appear in both arms of the lattice and thus lead us to rather restricted structures. It is for the reader to follow this up if he will, but I fear he will find that his principal satisfaction came in travelling hopefully.

Two topics seem to follow naturally on from the discussion of the bifilar-T and its equivalent ladder network. The first is the question of slightly more elaborate notch systems, elaborate in the sense of having more complex reactance diagrams. The obvious step is to add a single capacitance element in the series arm of the filter. To get the symmetry needed for ideal resistance cancellation, if we really want this, the capacitance must be split, and in drawing Fig. 17, and its footnote Fig. 18, I have assumed that we shall want this symmetry. I am not showing the equivalent lattice network diagrams as a figure because here again we have one of the standard filters of network theory. This structure, indeed, provides what is called a confluent band-pass characteristic, which means that in general it has two pass bands but that in practice you always arrange them side by side, flowing together. Although it is not a symmetrical filter, it is more symmetrical than the one we have been discussing up to now. Whether the top arm of Fig. 17 is used or whether you use Fig. 18 is something you have to calculate for each application. Sometimes it is convenient to take the coil shunt capacitance directly into the network, as in Fig. 17: sometimes Fig. 18

Fig. 19. Two variants of a circuit sometimes used. In practice the compensation resistonce must not be allowed to leak anode
voltage to the following grid.

Fig. 20. The circuit of Fig. 15 (a) may give awkwardly high values of L_{2}. This is one way of getting a lower value.

Fig. 21. These two equivalences may often be used to provide more easily realized elements.
gives more convenient values. The arrangement shown in Fig. 18 is slightly more convenient for adjustment, since $L^{\prime}{ }_{2}$ can be tuned with C_{3}^{\prime} to the centre of the pass-band, which is also the antiresonant frequency of $L_{1} \mathrm{C}_{1}$, and then C_{2}^{\prime} is tuned to give the correct peak frequency. In Fig. 17 we must either alter C_{3} or dodge backwards and forwards between L_{2} and C_{2}, each of these affecting both bandcentre and peak frequencies. All the design formule are in the standard reference books.

There is a considerable temptation at this point to discuss those natty little shunt absorber circuits which some designers like. The two variants shown in Fig. 19 are electrically equivalent. Although they look fairly simple they do take slightly longer in computation, still using the standard books, than the network of Fig. 17, though I do not think there is much to choose in performance. The reason for the extra work is that you must first consider $L_{1} C_{1}$ and part of C as a half-section of a filter, then treat
the middle bit with the rest of each C and the shunt arm as a full section of a different kind of filter, and then put the whole lot together. Mind you, it is nothing to the time you could spend messing about measuring characteristics with lots of different coils if you did no calculations at all. Time spent in reconnaissance, the manual says, is seldom wasted, and nowhere is that more true than in circuit design.
There are, no doubt, other ingenious notch circuits which may be considered, but I cannot offhand think what they are. In ordinary i.f. use they will all be connected between tuned anode and tuned grid circuits and I shall be very surprised if they do not all turn out to be quite conventional filter networks. In audio-frequency work we sometimes wish to put a notch into a system of such a large bandwidth that this approach is not appropriate. Frequently, too, we are actually working between resistive terminations. Here we have the case of a first order filter designed to provide a stop band and I have already covered the theory of this, the simple first order filters and the frequency transformations, in "Filters Without Tears" (August, September, November and December issues, 1954).
Sometimes one hears the objection that the design of these interstage networks by conventional filter theory leads to impossible values of components. The objector is usually a man who has muddled up a circuit by trial and error and has then declared himself happy with a much poorer performance than the one he specified for his calculations. If we take the circuit of Fig. 15(a) as an example, there is rarely any trouble about L_{1} because this is just the usual anode or grid inductance we have in any ordinary amplifier. It is always L_{2} which causes the trouble. One way in which the vaiue of L_{2} may be reduced is shown in Fig. 20. For example we might centre-tap L_{1} : the impedance level would be reduced to one quarter, so that $\mathrm{L}^{\prime}{ }_{2}=\mathrm{L}_{2} / 4$ and $\mathrm{C}_{2}^{\prime}=4 \mathrm{C}_{2}$.
The other way which can sometimes be used to make component values more convenient is to use a capacitance transformation. It was obvious in Fig. 20 that what we really did was introduce an ideal transformer in parallel at a different impedance level from the ends. If we consider the first pair of networks in Fig. 21 we can write

$$
\begin{aligned}
& \mathrm{V}_{1}=j \omega\left(\mathrm{C}_{3} / \mathrm{C}_{2}\right) \mathrm{V}_{2}+1 / j \omega \mathrm{C}_{2} \mathrm{I}_{2} \\
& \mathrm{I}_{1}=j \omega\left(1+\mathrm{C}_{1}\left(1+\mathrm{C}_{3} / \mathrm{C}_{2}\right)+\mathrm{C}_{8}\right) \mathrm{V}_{2}+\left(1+\mathrm{C}_{2}\right. \\
& \text { and } \\
& \mathrm{V}_{1}=n \mathrm{~V}_{2}+1 / j \omega n \mathrm{C}_{5} \mathrm{I}_{2} \\
& \mathrm{I}_{1}=1 / n \mathrm{I}_{2}
\end{aligned}
$$

There are several ways of arriving at these equa-

Fig. 22. An ideal transformer is introduced into the middle of a conventional half-section bandpass filter.

tions and I do not want to use up space on such a straightforward operation. If now we put $\mathrm{C}_{2} / \mathrm{C}_{3}=$ κ_{3} and $\mathrm{C}_{2} / \mathrm{C}_{1}=\kappa_{1}$ we can go on to demand that both pairs of equations should be identical. Again I skip the algebra to tell you that the answer in first stage of boiling down is:

$$
\begin{gathered}
n \mathrm{C}_{5}=\mathrm{C}_{2} \\
\frac{\kappa_{1}}{\kappa_{3}} \frac{1+\kappa_{3}}{1+\kappa_{1}}=n^{2} \\
\text { and } 1+\kappa_{1}+\kappa_{3}=0
\end{gathered}
$$

This last equation implies that either C_{1} or C_{3} must be negative. In fact

$$
\begin{aligned}
& \kappa_{1}=n /(1-n)=-n /(n-1) \\
& \kappa_{3}=-1 /(1-n)=1 /(n-1)
\end{aligned}
$$

Thus if n is greater than unity C_{1} is negative, and if n is less than unity C_{3} is negative. The equations for the other transformation are obtained in the same way and you will find them in Shea's book. The negative capacitance is rather a nuisance though it should not cause any more alarm than does the $-M$ in a conventional transformer. But you do have to find a positive capacitance to marry it in with. In the sequence shown in Fig. 22 an ideal transformer is put into the middle of a constant $-\kappa$ half-section band-pass filter. Ideal transformer plus C_{5} is equivalent to the π. of capacitors $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$
shown in the third diagram. If we have a step-up in the transformer C_{3} will be negative, because n will be less than unity. We can choose the value of n to make $\mathrm{C}_{3}=-\mathrm{C}_{6}$, so that the parallel end capacitance vanishes and we are left with the very simple network you see in Fig. 22. In one particular design this gave a ten-to-one step-up and was terminated in the losses of the end inductance.

The other topic which arises from consideration of the bifilar-T is the general use of coil-pairs in filter networks. I propose to treat this as the subject for a separate article because I have to meet a man in a glacier to morrow, and anyway I do want my notes.
In this study of the bifilar-T trap and matters which arise from it I hope I have conveyed to some readers at least the importance of making full use of the elementary filter theory which is in every book. The transformations used for twisting the circuits around are not difficult and once you have twisted the circuit into a standard form you can always find equations for the values in the standard references. If you want a superior design there is a great deal of superior filter theory available. Certainly you will not do any better by just using coils you have handy and hoping for the best, and if you cannot put numbers into a simple formula you just ought to give up design work.

An Interim Statement on the International Geophysical Year

By T. W. BENNINGTON*

IN a booklet published by the Royal Society \dagger an interim statement is made concerning some of the I.G.Y. achievements. The main impression one gathers from this is that, during a period of record high sunspot activity which provided a unique opportunity for the study of solar-terrestrial relationships, a vast programme of observational work was satisfactorily accomplished, but that it is much too early yet to attempt to discern even the outstanding results of this work. Nevertheless matters of interest have arisen :n each of the 15 scientific subjects studied in this country, and among them are some closely connected with radio.
The arrival in the earth's atmosphere of ultraviolet rays, X-rays and charged particles from the sun is of importance in radio because of the effects of these radiations upon the ionosphere, both in maintaining the structure of the ionized layers and in disrupting it. The latter aspect was studied by means of special observations made when it seemed likely that exceptional outbursts of solar radiation would occur. To ensure this 38 sequences of "alerts" were issued on a world-wide basis, and these culminated in 43 "special world intervals", during which the observations were made. Not all of these did, in fact, coincide with unusual solar activity, though it seems likely that a few exceptional outbursts were fully observed.
A vast measurement programme has been carried out upon the ionosphere, which included vertical sounding by pulsed radio signals, studies of absorption using radio waves from radio stars and reflec-

[^6]tions from meteor trails, and measurements of atmospheric noise produced by lightning flashes. At Halley Bay, Antartica it was observed that in winter, despite the fact that at the layer height the sun never rises, the F_{2} electron densities at noon are ten times greater than those at midnight, whilst in summer, when the sun never sets, the maximum density at noon is less than that at midnight. The maximum density at noon is, in fact, greater in winter than in summer, whilst at the equinoxes there is a sudden change from winter to summer conditions. It is concluded that, since the direct ionizing action of the sun is small, these variations in ionization are mainly due to movements in the ionosphere, and that in winter the layer is replenished by horizontal movements of ionization.

Studies of solar activity made in the U.S.A. and U.S.S.R. appear to indicate that when a solar flare occurs-such as may give rise to a sudden ionospheric disturbance-there is a sudden conversion of magnetic energy in the sun into wave and particle energy, for the magnetic lines of force undergo a sudden redistribution.

Many data on the earth's magnetic field have been obtained, the main use of which will begin when they can be correlated with simultaneous observations of aurora, the icnosphere and activity on the sun, and some of which may help to define the position of the electric currents in the high atmosphere which are responsible for geomagnetic-and ionos-pheric--disturbances. The auroral observations appear to indicate that displays of aurora australis and aurora borealis progress very similarly, and that the aurora penerates farthest towards the equator in the "summer" hemisphere.

News from the Industry

Thorn-Philco-Under an agreement with Philco International Corp., of New York, all its "radio and monochrome television engineering knowledge, designs and developments will become available through a licence to Thorn Electrical for manufacture and sale of these products in the United Kingdom." Thorn also acquires all the issued capital stock of Philco (Overseas), Ltd., Philco's manufacturing unit in this country, which also owns the U.K. sales company Philco (Great Britain), Ltd. Thorn Electrical will manufacture export receivers under the Philco trademark for Fhilco International's overseas distribution. Thorn will also manufacture and sell sound and television receivers and radiogramophones, under the Philco trademark in the U.K. Philco is now added to the names of Ferguson, H.M.V., Marconiphone, Champion and Avantic, already in the Thorn group.

Cossor Radar and Electronics, Ltd., have moved from Highbury, London, to new premises in Harlow New Town, Essex. The company has for some time occupied two small factories in the New Town, and to these has been added a large third factory. The site covers some nine acres and the factory, which has a floor-space of 95,000 square feet, houses the principal research and development laboratories and workshops, the main production unit, and the administrative and sales offices.

International Computèrs \& Tabulators, Ltd., is the title under which the recently merged British Tabulating Machine Co. and Powers-Samas Accounting Machines will trade. In the field of electronic calculators and computers both of the original companies are associated with concerns specializing in electronic developments. B.T.M. are associated with the G.E.C. (they jointly own Computer Developments, Ltd.) and Powers-Samas with Ferranti. B.T.M. also have a link with Laboratory for Electronics, of Boston, U.S.A. I.C.T.'s main manufacturing establishments are at Letchworth, Croydon and Castlereagh (N. Ireland).

Ferranti-designed klystrons are to be manufactured in the U.S.A. under an agreement concluded between Raytheon Corporation, Ltd., of Boston, Mass, and Ferranti, Ltd. A sum of $\$ 250,000$ is involved in this sale of British" know-how" to the United States of America. The agreement involves two tubes used in Doppler radar systems. They are intended for use in military equipment and production in the U.S.A. is expected to begin early in 1960.

Marconi's have received a contract from the Ministry of Supply for v.h.f. direction finders for a number of civil airports and airfields in the U.K. The type ordered is AD 210 C , the first of a new series of automatic d.f. equipment developed by Marconi's.

Sperry Gyroscope Co., of Brentford, Middlesex, announce a substantial re-organization. The main objective is a de-centralization of management and the establishment of three separate operating divisions each with its own sales, design and manufacturing organization. These three divisions will be known as the Brentford, Bracknell and Industrial Divisions. The Brentford Division will be responsible for the company's aeronautical, marine and naval activities, the Bracknell Division will concentrate on Government contract work for guided weapons and inertial navigation, and the company's interests in industrial control engineering will be concentrated in the Industrial Division. M. L. Jofeh, formerly the company's chief enginecr, is manager of the Industrial Division, Wing Commander J. C. G. Bell, manager of the Brentford Division, and H. B. Sedgfield, manager of the Bracknell Division.

Radio Rentals.- The net profit of the Radio Rentals Group for the year ended last August, after deducting £911,947 for taxation, totalled £824,940-an increase of $£ 219,221$ on the previous year. The group's manufacturing subsidiary is Mains Radio Gramophones, Ltd., of Bradford, Yorks.

Burnhope.-All the main transmitting equipment, including the aerial system, for the recently opened I.T.A. station at Burnhope, near Durham, was supplied by Marconi's. The Burnhope transmitters (two $4-\mathrm{kW}$ vision and two $1-\mathrm{kW}$ sound) are identical to those used at Chilterton Down.
E.M.I. Vidicon film-scanning equipment to the value of over $£ 30,000$ has been supplied to Tyne Tees Television, the programme contrestors for the Burnhope station.

20th Century Electronics, Ltd., of King Henry's Drive, New Addington, Surrey, have appointed Peter Holton to take charge of their Photomultiplier Applications Advisory Service. Mr. Holton was until recently in charge of testing and application of photomultiplier tubes in the E.M.I. Photomultiplier Production Group at Ruislip.

Griffin \& George (Research and Development), Ltd., has been formed by the Griffin \& George Group to conduct research into, and the development of, new and improved scientific instruments and apparatus for laboratory use and process control.

Redifon have received an order from the G.P.O. for a number of i.s.b. drive units valued at $£ 30,000$.

Printed Circuits, Ltd., of Borehamwood, Herts., which recently became associated with the London Electric Wire Co. \& Smiths, Ltd., are establishing an information service in the form of a series of technical bulletins. Those wishing to receive these brochures are asked to write stating their particular interest.

Consoles. - R. H. Minns has resigned his technical directorship of Hatfield Instruments, and, with J. S. Jordan, has formed Consoles. The company, which has premises at Hersham Trading Estate, Walton-on-Thames, will produce metal cabinets and control consoles, and a range of measuring instruments, transformers and aerial equipment.

A new plastics factory to make equipment for the radio industry has been opened at Reading by Resinoid and Mica Products, Ltd., which was formerly a subsidiary of Southern Areas Electricity Corp., Ltd.

Stella.- The head office and showroom of Stella Radio and Television Co. is now at Astra House, $121 / 3$, Shaftesbury Avenue, London, W.C.2. The telephone number (Gerrard 7086) is unchanged.

Amos of Exeter are moving on March 2nd to larger premises at Weircliffe Court, Exwick, Exeter. The telephone number (Exeter 72132) is unchanged.

Kelvin Hughes Survey Department offers a world-wide service for hydrographic surveys, in the sounding and sampling of river, coastal and sea areas, tide and tide stream studies, together with the necessary land surveys. All preliminary marine survey work for the proposed sixth nuclear power station at Sizewell, Suffolk, was undertaken by the department.

CQ Audio, Ltd., have arranged with Technical Suppliers, Ltd., of 63, Goldhawk Road, London, W.12, to act as sole distributors for their complete range of equipment.

EXPORTS

Trunk Radio-telephones.-Recent orders for the Murphy MR851 trunk radio-telephone equipment include 42 terminal installations-each comprising output unit, modulator, demodulator, r.f. unit and supply units -for British Guiana's first trunk telephone network. A second order for MR851 equipment for Australia's Snowy Mountains Hydro Electric Authority has also been received. The equipment provides 24 traffic channels.

India. - Solartron Electronic Group, who had a stand at the exhibition held in association with the recent Indian Science Congress, are in the course of forming, with Indian interests, a company in India.
V.H.F. communications equipment valued at more than $£ 600,000$ has been ordered from Plessey for the Australian Army. The equipment comprises the latest frequencymodulated v.h.f. multi-channel radio-telephone transmitter/receivers to have been proved in armoured fighting vehicles under field conditions. Three sets are involved, these being known to the British Army as the C42, the B47 and the B48.

Hanover Trade Fair.-Electronic Components Centre (Great Britain), Ltd., which represents a number of component manufacturers, have concluded a 10 -year agreement with the Hanover Fair Authorities to exhibit as the British Electronic Centre. Among the firms associated with the organization, which has offices at 31 Morden Road, London, S.E.3, are Ardente, Geo. Bray, British Electric Resistance, Cosmocord, E.M.I. Electronics, Hunt, London Electric Wire Co., Painton, and Telcon.

Norwegian Navy has ordered Decca true-motion radar, type TM909, for its new "Nasty" class of motor torpedo-boats.

Denmark.-The display of British products, including domestic sound and television equipment, announced in our last issue (page 98) as taking place in Copenhagen in May, has been postponed until November.

MARCH MEETINGS

Tickets are required for some meetings; readers are advised therefore to

LONDON

2nd. British Computer Society.-"Pseudo-random elements for com-puters-a survey of methods" by Dr. E. s. Page at 2.30 at Northampton College of Advanced Technology, St. Juhn's Street, E.C.I.
Srd. Association of Supervising Electrical Engineers.-" Wired television systems-installation and maintenance problems" by L. A. Isaacson (E.M.I.) at 7.30 at Windsor Castle Hotel, 134 King Street, Hammersmith, W.6.
4 th . Association of Supervising Electrical Engineers. -"High - frequency heating" by a representative of Philips Electrical at 7.45 at Wood Gieen Town Hall, N. 22.

5th. I.E.E.--" The reliability and life of impregnated paper capacitors" by J. P. Pitts at 5.30 at Savoy Place, W.C. 2 . 10th. I.E.E.-Discussion on "The Laplace transform-a tool for the electrical engineer" opened by A. C. Sim at 6.0 at Savoy Place, W.C.2.
10th. Association of Supervising Electrical Engineers. " Radio - frequency heating" by P. W. Ainscow (G.E.C.) at 7.45 at Eltham Green School, Queenscroft Road, S.E.9.
12th. Armed Forces Communications and Electronics Association.Visit to M.O. Valve Co.'s works at Hammersmith.

13th. Television Society.-"Training
television servicing" be in television servicing " by G. C. Barker (Murphy) at 7.0 at the Cinematograph

Exhibitors' Association, 164 Shaftesbury Avenue, W.C. 2.

13th. Radar and Electronics Association, Student Section.-"Radar data handling" by Dr. L. C. Payne (Decca Radar), at 7.0 at Norwood Technical College, Knight's Fiill, S.E.27.
18th. I.E.E.-" New amplifying techniques" by C. W. Oatley at 5.30 at Savoy Place, W.C.2.
18th. British Computer Society."An approach to learning and teaching machines" by C. E. G. Bailey at 6.15 at the Northampton College of Advanced Technology, St. John's Street, E.C 1.

18th. British Kinematograph Society. - Film and dem nstration of stereophinly at 7.30 at Mullards Theatre, Wuliard House, Torrington Place, WCI.
19th. Brit.I.R.E. Medical Electronics G1oup.-"Instrumentation in field physiology" by Dr. H. Wolff at 6.30 at the London School of Hygiene and Tropical Medicine, Keppel Street, W.C.1.

19th-20th-I.E.E.-Radio and Telecommunication Section convention on sterf ophonic sound recording, reproducLinn and broadcasting.
20th. Institute of Navigation. - "The imract of radar on the rules of the road at sea"" by Capt. F. J. Wylie, R.N. (president), at 5.15 at the Royal Geographical Society, 1 Kensington Gore, S.W. 7

20th. R.S.G.B.-" Single sideband techniques" by B. J. Rogers, G3ILI, (Hush) at 6.30 at the I.E.E. Savoy Mlace, W.C.2.
20th. B.S.R.A.-"F.M. feeder units" by R. S. Roberts at 7.15 at the Royal Society of Arts, John Adam Sureet, W.C. 2.
23rd." I.E.E.-" High-quality microphones" by M. L. Gayford at 5.30 in the Lecture Theatre at Savoy Place, W.C. 2 .

23rd. I.E.E.-" Effects of argon content on the characteristics of neonargnn glow-discharge reference tubes" by Dr. F. A. Benson and P. M. Chaliners a: 5.30 in the Tea Room at Savoy Place, W.C.2.
25th. Brit.I.R.E.-Papers on radio telemetry including "Engineering aspects of a 24 -channel f.m.-a.m. telemetry svesem" by W. M. Rac and "A sixcharmel high-frequency telemetry system" by T. C. R. S. Fowler at 6.30 at the London School of Hvgiene and Tropical Medicine, Keppel Street, w.C.I.

ABFRDEEN

13th I.E.E.-" The relation between picture size, viewing distance and picture Guality with special reference to colour television and 10 spot-wobble technicues" by L. C. Jesty at 7.30 at Robert Gordon's Technical College.

BELFAST

، 3ra. I.E.E.--Faraday lecture on "Automation" by Dr. H. A. Thomas at 7.30 at the Sir William Whitla Hall, Queen's University, Stranmillis Road.

10th. I.E.E.-" The B.B.C. sound broadcasting service on very-high frequencies" by E. W. Hayes and H. Page ai 6.30 at the David Keir Building, Queen's University.

BIRMINGHAM

23rd. I.E.E - "The history of B.B.C. television" by R. T. B. Wynn at 6.0 at the James Watt Memorial Institute.

BRISTOL

10th. Television Society.-" Industrial television" by J. G. M. Downs (Pye) at 7.30 at the Hawthornes Hotel, Clifton.

24th. Brit.I.R.E.-" Recent advances in travelling-wave tubes" by P. F. C. Burke at 7.0 at the School of Management Studies, Unity Street.

CAMBRIDGE

2nd. I.E.E.-"The recognation of moving vehicles by electronic means" by T. S. Pick and A. Readman at 8.0 at the Cavendish Laboratory, Free School Larfe.

17th. I.E.E.-" Reliability of electronic components" by G. W. A. Dummer at 8.0 at the Cavendish Laboratory, Free School Lane.

CARDIFF

10th. Association of Supervising Electricai Engineers. - " High-quality sound renroduction" by a representative of G.E.C. at 7.30 at the Angel Hotel.
11th. Brit.I.R.E.-"Applications of photo-electric cells" by Dr. F. A. Benson at 6.30 at the College of Advanced Technology.

CHATHAM

2nd. I E.E.- " Domestic high-fidelity reproduction" by J. Moir at 7.0 at the Medway College of Technology.

CHESTER

25 th . Society of Instrument Tech-nology.-" Industrial applications of transistors" by D. G. Holloway at 7.0 at the Grosvenor Museum, Grosvenor Street.

CHRISTCHURCH

25th. I.E.E.-" The application of transistors to line communication equipment" by H. T. Prior, D. J. R. Chapman and A. A. M. Whitehead at 6.30 at the Kings Arms Hotel.

DUNDEE

12th. I.E.E.-"The relation between picture size, viewing distance and picture quality with special reference to colour television and to spot-wobble techniques" at 7.0 at the Electrical Engineering Department, Qucen's College.

EDINBURGH

17th. I.E.E.-" The application of transistors to line communication equipment" by H. T. Prior, D. J. R. Chapman and A. A. M. Whitehead at 7.0 at the Carlton Hotel, North Bridge.
20th. Brit.I.R.E.-" Application of magnetic amplifiers to electrical switching" by J. A. Purdie at 7.0 at the Department of Natural Philosophy, The University, Drummond Street.

24th. I.E.E.-Faraday lecture on "Automation" by Dr. H. A. Thomas at 7.0 at the Usher Hall.

EXETER

121h. I.E.E.-" Gcrmanium and silicon power rectifiers" by T. H. Kinman, G. A. Carrick, R. G. Hibberd and A. J. Blundell at 3.0 at S.W.E.B. Showrooms, Bedford Street.

FARNBOROUGH

24th. I.E.E.-" Space rescarch" by Dr. R. L. F. Boyd at 6.0 at Farnborough Technical Coliege, Boundary Road.

FAWLEY

6th. Society of Instrument Tech-nology.-"Swartwout electronic instrunient system" by M. V. Needham at 5.30 at Copthorne House.

GLASGOW

19th. Brit.1.R.E.-"Application of magnetic amplifiers to electrical switching" by J. A. Purdie at 7.0 at the Institution of Engineers and Shipbuilders, 39 Elmbank Crescent.

LEEDS

16 th .
I.E.E-Faraday lecture on "Automation" by Dr. H. A. Thomas at 7.0 at the Town Hall.

LIVERPOOL

11th. Institution of Production En-ginecrs.-" Electronic control of machine tools" by J. A. Stokes at 7.30 at the Exchange Hotel, Tithebarn Street.

MANCHESTER

5th. Brit.I.R.E.-" Closed circuit television equipment" by R. E. Blythe at 6.30 at Reynolds Hall, College of Technology, Sackville Street.
18th. I.E.E.-" Bridging the Atlantic" by A. H. Mumford at 6.15 at the Engineers' Club, Albert Square.

NEWCASTLE UPON TYNE

2nd. ,"I.E.E.-" High-quality microphones" by M. L. Gayford at 6.15 at King's College.
11th. Brit.I.R.E.-" Microwave stripline circuits for radar equipment" by K. Foster at 6.0 at the Institution of Mining and Mechanical Engineers, Neville Hall, Westgate Road.
19th. I.E.E.-Faraday lecture on "Automation" by Dr. H. A. Thomas at 7.0 at the City Hall.

PRESTON

11th. I.E.E.-" Computers" by Dr. R. L. Grimsdale at 7.15 at the NorthWestern Electricity Board Demonstration Theatre, Friargate.

READING

10th. I.E.E. Graduate \& Student Scction.-"Stereophonic sound" by E. W. Berth-Jones at 7.0 at Reading Technical College.

SHEFFIELD

6th. I.E.E.-Faraday lecture on "Automation" by Dr. H. A. Thomas at 7.0 at the City Hall.

WOLVERHAMPTON

11th. Brit.I.R.E.-" The develop,ment of high-frequency tape recording" by P. J. Guy at 7.15 at the Wolverhampton and Staffordshire College of Technology, Wulíruna Street.

WORCESTER

25th. Institution of Production En-gineers.-Annual general meeting at 7.0 followed by "Numerical control of machine tools" by O. S. Puckle at the Star Hotel.

IATE-FEBRUARY MEETINGS

23rd. B.S.R.A.-"The application of transistors to low roise pre-amplifiers" by J. Somerset Murray at 7.0 at the Ruyal Society of Arts, john Adam Stieet, W.C.2.

27 th. R.S.G.B.-"Recent developaneris in the microwave field" by K. W. Dremmond (Muilard) at 6.30 at the I.E.E.W Savoy Place, W.C.2.

New Beries

 On Thirty Year Old LarrelsWarmly spoken of for the last 30 years, Trix does not lounge on its laurels but grows new berries. It's the same old story: meeting exacting needs of engineers questing for high quality, long service and cost realism. We never tire of it-neither do the customers.
Our latest fruit: Trixtereo for hiphiles. It immerses breathless listeners in deep, living sound.

NEW DEVELOPMENTS

in amplifiers, microphones and loudspeakers for every sound system and of course TRIXADIO Passenger Address installations as used in the Comet 4.

THE TRIX ELECTRICAL CO. LTD.

I-5 MAPLE PLACE, LONDON, W.I. Tel: MUSeum 5817 (6 lines). Cables \& Grams: Trixadio, Wesdo, London

ranidom radiations

By "DIALLIST"

Long-lived C.R.T.s

MY request for information about old television c.r.t.s which are still going strong after years of use produced some quite amazing figures not only for the tubes themselves, but also for valves and other components working in the same sets. The oldest c.r.t. reported still at work belongs to a Horley reader. The set was bought in 1948 and it has averaged not less than three hours' use an evening ever since. During all that time the only bits and pieces replaced have been one EF50, five EB41s and one autotransformer. Though still unboosted, the 9 -in tube is claimed to give an excellent picture. From Washington, D.C., comes an account of an R.C.A. 16AP4 tube which has been in use from late afternoon till bedtime every day since 1949. About four years ago the emission fell off so the heater voltage was raised permanently to 7.5 V and it has needed no further attention. My correspondent, who is an electrical engineer, puts its service life so far at 17,000 hours plus, for it gets some very hard work at the week-ends and during the children's school holidays.

Can You Say?

Several readers ask whether I can suggest reasons for the longevity of some c.r.t.s. I only wish I could! If you take a batch of well-made and
well-pumped c.r.t.s of the same type, a few (a very few) will fall by the way in the first six months of use; the great majority will have the about average service life for their classsome a little above and some a little below the mean figure. But just the odd one here and there will turn out to be a long-lived prodigy. I suppose, really, that that's only to be expected, for the same sort of thing seems to be true not only of most electrical and mechanical appliances, but also of human beings and other animals. Incidentally, my American reader asks why in this country we use c.r.t. and not c.r.v. as the abbreviation for the cathode-ray tube; in other words, why do we call it a tube and not a valve? The answer to that one is that the c.r.t. was developed (wasn't it by Crookes?) years before the electronic valve was even thought of.

The Sun Does Its Best

DURING the International Geophysical Year, which recently ended its eighteen-months span, the sun played its part in a way which exceeded all expectations. It's some 200 years since records of sunspot activity began to be kept and never in the whole of that time has solar activity been so marked as in the present maximum period. Many of the I.G.Y. programmes were concerned with such activity and some remarkable discoveries will no doubt come

to light when all the results have been fully digested. Two have already been disclosed. The first is that of the Van Allen belt of intense radiation, which surrounds the whole of the Earth, except for those regions which are near the magnetic poles. It was data from Explorer satellites which led to the knowledge of this belt's existence. Then, we seem now to have found the reason-or at any rate one of the reasons-why large "flares" in the sun are followed by wireless blackouts. Whenever such a flare occurred the U.S. authorities sent up special rockets and from the data received from these it was found that these activities are accompanied by a tremendous emission of X-rays, one of whose effects is to cause the wireless blackouts.

Some Bed!

ON the whole, I don't think I'll go in for one of the super-beds on show at the recent Furniture Exhibition in London. I use my bed for sleeping purposes. There are doubtless those who like to go abed and watch the "tele" or listen to the "wireless" and I've no doubt that there'll be quite a run on Slumberland's masterpieces, even of the variety with mink coverlets, which is to sell for a mere £2,500. I might be tempted to do something about it if the TV set were equipped to deal with tape recordings of single-file processions of sheep jumping one after another over a gate. That would indeed be a luxury beyond price to those who like myself sometimes have bouts of insomnia. But I don't think I need push-button curtain opening or shutting gadgets and I'm sure I don't want a bed fitted with an intercom. telephone-unless this is so arranged that it can be used only for outgoing calls. No, I think I'll remain content with my present simple, but very comfortable couch.

Non-detachable Backs

WHAT a blessing it would be if the television sets sold to the ordinary viewer could be made with backs that couldn't be taken off except by the use of a key or a special tool. Like me, I expect you've met with instances of the damage that can be done when someone who knows nothing about the works gets poking about in them
with a screwdriver. And then there's the question of the risk of accidents. By the law of averages about half the TV sets used with 2 -pin mains plugs are at any time so connected that their chassis are live. Yet people will get fiddling about with adjustments which can be made only if the set is switched on and working. One way of making backs non-detachable except by the serviceman would be to mount one side of the back on pintles like those used for rudders and to have a lock or a sealed fastening between the other side and the cabinet. Probably the seal would be the simplest. The dealer would fix it when he had installed the set and would impress his own mark on it.

CLUB NEWS

Barnet.-F. J. H. Charman (G6CJ) will give a lecture-demonstration on aerials to members of the Barnet \& District Radio Club on March 31st. The club's lecture-meetings are held at 7.30 on the last Tuesday of each month at the Red Lion Hotel, High Barnet. Morse and instructional meetings are held on the second Tuesday.

Battersea.-The London Short-wave Club meets every Friday at 7.30 at the L.C.C. Men's Institute, Latchmere Road, London, S.W.11. Lecturedemonstration meetings are arranged for alternate Friday evenings and the club station (G2CLR) is "on the air" on the intermediate Fridays between 7.30 and 9.30 .

Birmingham.-The March programme of the Slade Radio Society includes a Mullard film show on the 6th at the Y.M.C.A., Snow Hill; a talk on the 13 th by J. F. Moseley, of Pye, on v.h.f. business radio, illustrated by a film; and on the 27 th two members, T. J. Hayward (G3HHD) and G. Nicholson (G3HKC) will deal with the construction and use of test equipment. Except where otherwise stated, meetings are held at the Church House, High Street, Erdington, at 7.45.

Brighton.-Meetings of the Brighton and District Radio Club (G3EVE) are held at 8.0 on Tuesdays at the Eagle Inn, Gloucester Road, 1.

Bury.-B. P. Clear, of the Jodrell Bank Research Station, will talk on some aspects of the station's work at the March 10th meeting of the Bury Radio Society. The club meets at 8.0 at the George Hotel, Kay Gardens. On the 24th members are visiting the Mullard works at Simonstone.

Halifax.-High-quality recordings will be demonstrated by Fane Electronics to members of the Halifax \& District Amateur Radio Society on March 3rd. The club meets on the first Tuesday of each month at the Sportsman Inn, Bradshaw.

South Kensington.-D. E. A. Harvey, of Siemens, will speak on the manufacture and use of transistors at the March 10th meeting of the Civil Service Radio Society. Meetings are held at 6.0 in the Science Museum, South Kensington, London, S.W.7.

Delivery depends upon perfected precision!

We are now in a world where automation is gaining a controlling influence over our living, and where (more than ever before) small components are being relied upon for perfect operations. It is little wonder that more time must now be spent in designing and developing such components on which so much accurate and critical performance depends.

With these things in mind the Technical Departments of The House of Bulgin are consistently designing, developing and testing new components to keep abreast of the demands placed upon them. It is Our Aim to Maintain Our Existing Claim, of having the Largest Range of the Highest Quality Components in the World.

OVER 10,000 COMPONENTS AVAILABLE

A. F. BULGIN \& CO. LTD., BARKING, ESSEX

Telephone: RIPpleway 5588
(IO lines)

MICRO SWITCHES OVER 1,000 VARIETIES

LIST NO.
S.500-502

LIST NO.
S.509-51I

LIST NO.
S.2/736

LIST NO.
S.690, 691

LIST NO.
$\$.695$

LIST NO.
\$.530, S.532

LIST NO.
$\$.720$

UNBIBASEID

By FREE GRID

Extra-spatial Electrons

NOT long after the Russians launched their circumsolar satellite, I attended a lecture at the London Planetarium in which this man-made planet was shown, together with the other planets in their respective orbits, travelling around the sun. The lecturer must have been an electronics fan-which is not quite the same thing as an electric fan-as he was at pains to explain what a great part electronics played in space navigation.

In my opinion the next step will obviously be to launch a satellite at a high enough velocity for it to escape from the sun's gravitational field, and go into orbit around the nearest star, Proxima Centauri, which is only $4 \frac{1}{3}$ light years away. Then will come the day when a spaceship escapes out of our own Milky Way, and journeys towards another galactic system such as the giant nebula in Andromeda which is one of the nearer ones, only a matter of a million light years distant.

When that day dawns will there be no other fields to conquer? To the unthinking materialist it might seem so, but to the more intelligent members of the community who read $W . W$. it will be clear that the ultimate triumph will not come until a "spaceship" breaks out of this universe of space and time into the timeless and non-spatial one which seems to be inhabited by poltergeists and other clammy entities who, if the ghost hunters are to be believed, not only pass freely through brick walls, without let or hindrance, but have the ability to be in two or more places at once.

Now I have never actually seen a ghost, although I once mistakenly thought I did, as you will see by the accompanying 20 -year-old sketch. It may surprise you, therefore, when I say that I do believe in them, and I
think I can see the way in which we may eventually be able to launch a psychic sputnik.
Actually it was "Cathode Ray" who gave me the idea when he told us in the November issue that an electron seemed to consist of an uncancelled ψ wave, which, as he explained, is a wave in nobody knows what. Now obviously these ψ waves must possess the various attributes which we associate with waves such as length, amplitude and what-haveyou.
We all know that radio waves of various lengths and amplitude are constantly passing through our receivers and through each other without difficulty. Working on this analogy I have the idea that ghosts are built of atoms made up of ψ waves having a different length or other dimension from those which we call electrons.

It therefore follows that if we can find means to change the length or other dimension of the electronic ψ (psi) waves, we shall turn them into what I will call psychic electrons of which ghosts and ghostly walls are built. In other words if we change the wavelength of electrons or ψ wave in, say, a lump of sugar, it will disappear from our world into the fourth dimension, like the Time Machine in H. G. Wells's famous sciencefiction novel.

Challenge Accepted

IN the January issue Mr. James M. Hoy in a letter to the Editor invites me to visit the Institution of Civil Engineers for the purpose of reading a certain paper in the Proceedings of this learned society, after which I am further invited to give a definition of the phrase "common usage ". All this, because I stated in $W . W$. that the word "valve" had, by common usage, come to mean a one-way device.

I once mistakenly thought I saw a ghost

Fimeson
 choose the

Model

 8 AvoMeierfor their Television \& Electronic Laboratory

F

ERGUSON are typical of the many leading manufacturers of electronic, radio and television equipment who rely on AVO instruments.
The Model 8 AvoMeter shown in use is a 30-range self-contained A.C./D.C. moving coil instrument, produced primarily for the electronic, radio and television engineer. The upper photograph shows a mounted pivot under examination. This is only one of many operations carried out in a special air-conditioned dust-free zone in the AVO factory to ensure the highest possible standards of accuracy and reliability.

POST THIS COUPON TODAY!

Cut out this coupon and attach to your Letter-heading or Trade Card.

To Sales Department,
AVO LTD., Avocet House,
92-96 Vauxhall Bridge Road London, S.W.I.

Please send fully illustrated. Brochure describing the Model 8 AvoMeter. W.w

present a range of fine oscilloscopes for 1959

Continuous basic development and active research into customers' requirements ensure that there is always a Solartron precision-engineered oscilloscope available for your specific application.

A brief look at the nine basic specifications below will help you to plan your visual analysis instrumentation. From the special CD 715 for monitoring of power supplies to the latest Measuring Oscilloscope-the CD 643.2-each instrument represents the finest value in oscilloscopes obtainable today.

The CD 643.2 Measuring Oscilloscope (illustrated) is the most accurate measuring 'scope in quantity production. With a constant bandwidth of D.C.
to $12 \mathrm{Mc} / \mathrm{s}$ and an effective timebase ratio of 100 million to one, the CD 643.2 has precision decade measurement facilities on both ' X ' and ' Y ' axes. On the ' X ' axis "bright-up" markers for pulse work-and for lower frequencies a brightening pedestal of accurately controlled duration; whilst on the ' Y ' axis precision switching of a reference voltage source enables signal nulling to be easily accomplished and amplitude measured directly off the controls, both to an accuracy within 2%.

	General Purpose Oscilloscopa CD 513 -2	Pulse \& Radar Monitor Oscilloscope CD 518	General Purpose 0scilloseope CD 523 s2	$\begin{aligned} & \text { Servo } \\ & \text { Oscilloseope } \\ & \text { AD } 557 \end{aligned}$	Pulse \& Radar Monitor 0scilloscope CD 568	Measurint Ostilloseope CD 643.2	Double-Beam Oscilloscope CD 71182	Power Supply Monitor Oscilloscope CD 715	Constant Bandwidth Oscilloscope CD 814 -2
Sarylces No:	-	Mod. Version of CT 316	CT 386A	-	Mod Version of CT 316	CT 380	CT 414	Admiralty Mk. 29 TU	-
Bandwidth (3db):	Max: D.C.$10 \mathrm{Mc} / \mathrm{s}$.	Max: D.C.$5 \mathrm{Mc} / \mathrm{s}$.	Max:D.C.- $10 \mathrm{Mc} / \mathrm{s} .$	Max:D.C.$1 \mathrm{Mc} / \mathrm{s}$.	Max: D.C.$5 \mathrm{Mc} / \mathrm{s}$.	Constant $\text { D.C. }-12 \mathrm{Mc} / \mathrm{s} \text {. }$	Max:D.C. $7 \mathrm{Mc} / \mathrm{s}$.	$\begin{gathered} \text { Max:D.C. } \\ 20 \mathrm{Kc} / \mathrm{s} . \end{gathered}$	Constant: $0.9 \mathrm{c} / \mathrm{s}-9 \mathrm{Mc} / \mathrm{s}$
Sensitivity:	$1 \mathrm{mv} / \mathrm{cm}-$ $10 \mathrm{~V} / \mathrm{cm}$	$\begin{aligned} & 0.4 \mathrm{~V} / \mathrm{cm} .- \\ & 10 \mathrm{~V} / \mathrm{cm} . \end{aligned}$	$\begin{aligned} & 1 \mathrm{mV} / \mathrm{cm} .- \\ & 10 \mathrm{mV} / \mathrm{cm} . \end{aligned}$	$\begin{gathered} 3 \mathrm{mV} / \mathrm{cm}- \\ 100 \mathrm{~V} / \mathrm{cm} . \end{gathered}$	$\begin{aligned} & 0.4 \mathrm{~V} / \mathrm{cm} .- \\ & 10 \mathrm{~V} / \mathrm{cm} . \end{aligned}$	$\begin{gathered} 100 \mathrm{mV} / \mathrm{cm} .- \\ 60 \mathrm{~V} / \mathrm{cm} . \end{gathered}$	$\begin{aligned} & 3 \mathrm{mv} / \mathrm{cm} .- \\ & 100 \mathrm{~V} / \mathrm{cm} . \end{aligned}$	$\begin{gathered} 10 \mathrm{mV} / \mathrm{cm} .- \\ 10 \mathrm{~V} / \mathrm{cm} . \end{gathered}$	$\begin{gathered} 30 \mathrm{mV} / \mathrm{cm}_{3 .}- \\ 30 \mathrm{~V} / \mathrm{cm} . \end{gathered}$
'Y' Calibration:	Cal Sensitivity Acc: 10\%	Shin Meter Acc: 3\%	Cal. Sensitivity Acc: 10\%	Cal. Shift Acc: 5\%	Shift Meter Acc: 3\%	Cal. Shift Acc: 2\%	Cal. Shift Acc. 5\%	Special Facilities	Comparison A.C. Acc: 5\%
'X' Calibration:	Cal. Adjustment Acc: 10\%	'Pips' and Sinewave Acc: 2\% \& 1%	Cal. Adjustment Acc: 10\%	Cal: Adjustment Acc: 10\%	Sincwave Acc: 1\%	'Pips' and Bright-up Acc: 2\%	Cal. Adjustment Acc: 5\%	Special Facilities	Brilliance Mod. Acc: 5\%
fweep Velocity :	$\begin{aligned} & 10 \mathrm{~cm} . / \mathrm{Sec}- \\ & 10 \mathrm{~cm} . / \mu \mathrm{Sec} . \end{aligned}$	$0.1 \mathrm{~cm} / \mathrm{m} \mathrm{Sec}$ $10 \mathrm{~cm} / \mu \mathrm{Sec}$.	$1 \mathrm{~cm} / \mathrm{Scc}$. $10 \mathrm{~cm} . / \mu \mathrm{Sec}$.	$1 \mathrm{~cm} . / \mathrm{Sec} .-$ $1 \mathrm{~cm} . / \mu \mathrm{Sec}$.	$0.1 \mathrm{~cm} . / \mathrm{m} \mathrm{Sec}-$ $10 \mathrm{~cm} / / \mu \mathrm{Sec}$.	$\begin{aligned} & 10 \mathrm{~cm} . / \mathrm{Sec} .- \\ & 10 \mathrm{~cm} / \mu \mathrm{Sec} . \end{aligned}$	0.33 cm / $/ \mathrm{Sec}$. $3.3 \mathrm{~cm} . / \mu \mathrm{Sec}$.	$1 \mathrm{~cm} . / \mathrm{Sec} .-$ $100 \mathrm{~cm} . / \mathrm{Sec}$.	$0.1 \mathrm{~cm} . / \mathrm{m}$ Sec. $-2 \mathrm{~cm} . / \mu \mathrm{Sec}$.
' X ' Expansion ;	$\begin{array}{r} \times 0.5, \times 1.0, \\ \times 2.0, \times 5.0 . \end{array}$	-	$\begin{array}{r} \times 0.5, \times 1.0 \\ \times 2.0, \times 5.0 \end{array}$	$\begin{aligned} & \text { Variable } \\ & \text { up to } \times 10 \end{aligned}$	-	$\begin{aligned} & \text { Variable } \\ & \text { up } 10 \times 100 \end{aligned}$	$\begin{aligned} & \text { Variable } \\ & \text { up to } \times 10 \end{aligned}$	$\left\|\begin{array}{lll} \times & 0.05, & \times \\ \times 0.1 & 0.1 \\ \times 0.2,0.5, \times 1.0 . \end{array}\right\|$	Variable up to $\times 10$
Dimensions :	$\begin{array}{r} 161^{\prime \prime} \times 10^{\prime \prime} \\ \times 22^{\prime \prime} \text { deep. } \end{array}$	$\begin{aligned} & 12^{\prime \prime \prime} \times 9^{\prime \prime} \\ & \times 18^{\prime \prime} \text { deep. } . \end{aligned}$	$\begin{aligned} & 161^{\prime \prime} \times 10^{\prime \prime} \\ & \times 22^{\prime \prime} \text { deep. } \end{aligned}$	$\begin{aligned} & 16 \frac{1}{} 1 \times 10^{n} \\ & \times 22^{\prime \prime} \text { deep. } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \times 9^{\prime \prime} \\ \times 18^{\prime \prime} \text { deep. } \end{gathered}$	$\begin{array}{r} 20^{\prime \prime} \times 143^{\prime \prime} \\ \times 277^{\prime \prime} \text { deep. } \end{array}$	$\begin{array}{r} 16 i_{1 \prime \prime}^{\prime \prime} \times 13^{\prime \prime} \\ \times 272^{\prime \prime} \text { deep. } \end{array}$	$\begin{aligned} & 14^{\prime \prime} \times 10^{\prime \prime} \\ & \times 20^{\prime \prime} \text { deep. } \end{aligned}$	$\begin{aligned} & 14 \frac{1}{" \prime}^{\times} 101^{\prime \prime} \\ & \times 19 z^{\prime \prime} \text { deep. } \end{aligned}$
Weight:	70 lb .	40 lb .	70 tb .	70 lb.	40 lb .	140 lb .	116 lb .	47 lb .	43 lb .
Pries:	¢235	¢235	E27	c288	$\leftarrow 220$	¢ 490	8390	¢460	¢145

Also available shortly — the new Solartron Infinite Persistence Oscilloscope Type QD 910
Why not write or call us now for a demonstration of any of the nine models listed above?
Specialist instrument engineers are immediately available to assist you, whatever your problem or field of application.

These photocells give you the simplest photo-electric

 control possible

 control possible}

Photo-electric control with the Mullard ORP11 and ORP90 cadmium sulphide cells is the simplest possible because a photocell and relay form the complete circuit.
The unusual combination of high current capacity and extreme sensitivity of these Mullard cells enables robust relays to be operated direct-amplifiers are unnecessary.
Both cells can be operated from either a.c. or d.c. supplies, they are inherently rugged and have a wide range of applications in industry.
The usable response extends through the entire visible spectrum to the near infra-red.
The ORPIl differs from the ORP90 chiefly in being "end-viewing" and having a somewhat smaller photocathode area. This type of photocell is made available to simplify mounting problems encountered in certain applications-particularly in flame failure detectors in oil fired furnaces.
Data sheets giving further information are readily available from the address below.

abridged data

	ORP II	ORP 90
Required direction of incident light	End-on	Side-on
Area of photo-element	$1.25 \mathrm{sq} . \mathrm{cm}$.	2.9 sq. cm.
Average cell current at 10V d.c., 5 foot candles and lamp colour temperature 2 700	6 KnA	6 mA
Maximum ultimate dark current at 100 V d.c.	$5 \mu \mathrm{~A}$	$<2.5 \mu \mathrm{~A}$
Maximum cell dissipation at $25^{\circ} \mathrm{C}$.	200 mW	600 mW
Spectral response	Same for both cells-	
see curve.		

Mullard Limited
Mullard House, Torrington Place, London, W.C.I
Telephone: Langham 6633

Mullard

GOVERNMENT AND
INDUSTRIAL VAIVE DIVISION

Printed Circuit Counter Panels

A complete range of transistorized counter panels of common size, fixing method and electrical connexion, designed to provide a flexible unit system whereby any special requirements in the counting or data processing fields can be quickly built up.

A fully illustrated brochure giving complete performance and specification figures for every panel in the range is available on request.

50kc/s Scaler
$1 \mathrm{Mc} / \mathrm{s}$ Scaler
Input Amplifier
Gate Unit
10ke/s Oscillator
$1 \mathrm{Mc} / \mathrm{s}$ Oscillator
Power Unit
50kc/s Read-out Scaler
$1 \mathrm{Mc} / \mathrm{s}$ Read-out Scaler
4 Channel Output Unit
Read-out Unit
Meter Display Unit
Lamp Display Unit
Numerical Indicator Tube
Shift Register Stage
Shift Register Driver

RANK CINTEL LIMITED
Worsley Bridge Road London-SE 26 HITher Green $\mathbf{4 6 0 0}$

[^7]

When it's hot enough to fry an egg "Terecaps"are in theirelement

SIZES AND RATINGS

Capacitance	Working Voltage d.c. at $71^{\circ} \mathrm{C}$ at $125^{\circ} \mathrm{C}$		```Test Volts d.c.```		ons Dia.	Catalogue Ref.
0.1	150	125	300	11	$\frac{1}{4}$	8801.C
0.25	150	125	300	13	$\frac{1}{2}$	S-8803.C
0.5	150	125	300	17	\%	S-8800.C
1.0	150	125	300	17	?	S-8804.C
0.1	250	180	500	11	$\frac{1}{2}$	$8801 . C$
0.25	250	180	500	21	1	8803.C
1.0	250	180	500	21	1	8804.C
0.1	350	250	700	18	$\frac{1}{2}$	8802.C
0.25	350	250	700	13	:	S-8804.C
1.0	350	250	700	21	1	8806.C

"Terecap"* Capacitors

Dubílier "Terecap" Capacitors are of rubular form with extended foil metal electrodes fitted with wire tail terminations and incorporate a non-hygroscopic film dielectric. Being designed to meet abnormal atmos pheric conditons such as obtain in tropical zones the capacitors are supplied hermetically sealed in metal containers with ceramic end-seals.

* A Registered Dubiliep Trade Mark.

Dubilier "Terecap" Capacitors have these outstanding features:-

1. Can be used up to $125^{\circ} \mathrm{C}$. with voltage de-rating above $70^{\circ} \mathrm{C}$.
2. High insulation resistance, more than twenty times that of paper dielectric capacitors. $\left(10,000 \Omega \mathrm{~F}\right.$ at $20^{\circ} \mathrm{C}$.)
3. Compactness.
4. Excellent capacitance stability over a wide temperature range. (Normal capacitance tolerance $\pm 20 \%$)
Other capacitance values can be supplied to order. We invite your enquiries. 5. Power Factor 0.5% at $20^{\circ} \mathrm{C}$. for $1 \mathrm{kc} / \mathrm{s}$.

CAWKELL INSTRUMENTS IN ACTION ... 3

Time Calibrator type CU3....

We had intended, this month, to show a typical user of our time marker generator. Unfortunately all the customers we approached are working on secret projects and wouldn't let our camera near the equipment.

The CU3 Time Calibrator provides crystal calibrated time markers for use with an oscilloscope. The markers can be either free running or keyed from a square wave source. The keying source can be the internal generator or external to the calibrator.

BRIEF SPECIFICATION

Marker intervals :
0.5 - 1000 microseconds

Accuracy :
$\pm 0.05 \%$
Amplitude :
$\pm 50 \mathrm{~V}$
Rise-time :
0.1 microseconds.

A typical display of a keyed train of markers at intervals of 1 and 5 microseconds
 For full details contact:

CAWKELL RESEARCH \& ELEC

Telephone: SOUthall 3702/588I

Low Resonance Speakers

SPECIFICATION

Size $34 \mathrm{in} . \times 31 \mathrm{in} . \times 12 \mathrm{in}$. Weight 641b. Impedance $8 / 15 \mathrm{ohms}$. Bass resonance $30 / 35 \mathrm{c} / \mathrm{s}$. Max. input 15 watts.

UNITS

W12/SFB, 10 in . Bronze/SFB, Super 3. The 12in. and 10 in . units are in parallel. This arrangement gives very smooth results over the full range with a 3 dB gain at low frequencies. The Super 3 is again in parallel via a 4 Mfd . capacitor and is mounted on a small baffle facing upwards.

Model PST/8

A new, compact low-resonance cabinet, fitted with
EXPANDED POLYSTYRENE panels.

> SIZE: $24^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$
> Weight of cabinet 171 b .

The PST/8 has been designed to give optimum results at minimum cost in money and room space. Placed on a shelf or table, it is an ideal second speaker for STEREO with the SFB/3 or COLUMN EIGHT in the other channel, and may be laid on its back with the cone facing upwards to avoid directional effects if preferred.
The PST/8 also functions well as a second speaker to reduce room resonance on single channel input.

Made and guaranteed by

by Whartedale

registered trade mark
Model SFB/3 (Regd. design 881,557)

£39-10-0 Complite

- Attractive appearance
- Free-standing and easily moved
- Resonance free Sandfilled Baffle
- Omni-directional
- Frequency range: $30 \mathrm{c} / \mathrm{s}$ to $20,000 \mathrm{c} / \mathrm{s}$
- Moderate price

IMPEDANCE CURVE. Note the unusually level impedance which typifies the wide frequency response.

PRICES: (including tax where applicable) Cabinet only
£7/10/- in white wood.
£10/10/- polished and veneered walnut, oak or mahogany.
Fitted with $8^{\prime \prime}$ Bronze/FS/AL
£13/19/- in white wood.
£16/19/- polished and vencered as above.

> Fitted with Super 8/FS/AL
£16/15/- in white wood.
£19/15/- polished and veneered as above.
Leaflets giving full technical description and operational notes by G. A. BRIGGS Free on Request.
Telephone: Idle 1235/6. Grams: 'Wharfdel,' Idle Bradford.

big Imlok developments

TO SAVE YOU MONEY ON CASE CONSTRUCTION!

1MLOK - the unique cabinet construction system-now offers designers and engineers even more possibilities than before. Fifty-six new parts have been added to the already wide range of precision-made corner connectors, extrusions and accessories, and you can now buy Imlok in six different stages of manufacture. It means more versatility ... more scope in case and cabinet design. The Imlok system is ideal for both prototype and production work

NEW 36-PAGE IMLOK MANUAL
now available, includes illustrations and specifications of all Imlok parts, colour photographis of many cabinet and console
designs built in Imlok, as well as new Imlok uses. Send now for free copy

56 new parts

The addition of new connectors and extrusions means you can now have external or internal angles from $22 \frac{1}{2}^{\circ}$ to 90°. The new range also includes strengthening extrusions for extra heavy-duty structures, fashion trims, doorpulls, castors, and many more. Full list on request Uxbridge 6231

6 ways to buy

1. As individual connectors and with extrusions in 12 ft . lengths. 2. With connectors pre-drilled ready for assembly with selftapping screws. 3. With pre-drilled connectors and with extrusions custom-cut by Imhofs to your lengths and mitred. 4. As a complete frame-work, ready for fitting with your own panels. 5. As a complete structure with panels, but unpainted. 6. As a complete case, rack or console, fully finished

Alfred Imhof Ltd., Dept. M.3, Ashley Works, Cowley Mill Road, Uxbridge, Middx,

Export \& London Showrooms : 112-116 New Oxford St WCI: Museum 7878

IMHOFS AGENTS OVERSEAS
AUSTRALIA Aladdin Industries (Pty) Led, Stanmore NSW
BELGIUM Rogelec, Ghent
CANADA Measurement Engineering Led, Arnprior

NORWAY Birger Christensen, Oslo SWEDEN Elektronlund AB, Malmo C SWITZERLAND Walter Blum, Zurich 2/39
U.S.A. Bud Radio Inc, Cleveland 3, Ohio

BRIT. GUIANA British Caribbean Agencies Led,

DENMARK Tage Schouboe, Copenhagen N FINLAND Oy Scienta Ab, Helsinki HOLLAND J.Th. van Reijsen, Delft ITALY Prodel SPA, Milan
NEW ZEALAND Imarex Ltd, Auckland C3

Pye MICROWAVS Portable TV Links

Type PTC M1000

This transportable long-range television link is suitable for use with the N.T.S.C. colour or monochrome systems, the C.C.I.R. system or the British 405-line system. A sub-carrier f.m. music link circuit is incorporated. The normal frequency range is 6875 to $7425 \mathrm{Mc} / \mathrm{s}$ but models can be supplied to cover the range of 5925 to $6425 \mathrm{Mc} / \mathrm{s}$. The r.f. power output is one watt.
The equipment can be operated back-to-back as a demodulator repeater for multi-stage transmission links. Dependent upon siting, each link is capable of transmitting a distance of 50 miles or more.
Transmitter and receiver, as well as an r.f. wavemeter and intercommunication circuits are all contained in four lightweight luggage-type cases. Spun aluminium parabolic reflectors are available in diameters up to 10 ft ., and all ancillary equipment can also be supplied.
Please write for details.

As supplied to.

ASSOCIATED TELEVISION LTD.
scottish television ltd.
TYNE-TEES TELEVISION LTD. CENTRAL REDIFFUSION SERVIGES LTD. PORTUGUESE TELEVISION SERVICE ATOMIC WEAPONS RESEARCH ESTABLISHMENT
and many other users

now in quantity production

This latest ELAC deflection unit incorporates the new MULLARD Ferroxcube core Type FX 1981, enabling a 'spull back" of 4 mm to be achieved without loss of sensitivity. Line inductances of 5 to 30 mH with ${ }_{\mathrm{K}}^{\mathrm{L}}$ RATIO OF .8 and frame impedances of 2 to 70 ohms are readily available. The standard model is supplied complete with TUNGSTEN steel picture centring plates, positive tube neck clamping device and a terminal panel well removed from adjustment points.

AN ENTHUSIAST

Results now have justified my faith in buying a Brenell, and I shall not hesitate to recommend your products and excellent service to anyone... F.A.M.
again I would say that we are more than pleased with the instrument itself and it is nice to know thot one is dealing with manufocturers who have the interest of their customers after sale so much at heart.
F.G.C.

A MEMBER OF U.S.A.F.

having investigated tape recorders manufactured in the United States, Germany, the Netherlands and Great Britain I was greatly impressed by the performance and quality of your product: it is, in my opinion, one of the finest instruments of its type available in this wide market . .
D.B.

TAPE CLUB FOUNDER
... You can quote me at ony time as saying that pound for pound the Brenell recorder is the finest value in tape equipment on the market today . . .
C.W.A.

A PROUD OWNER

my recorder has given me excellent service and I am really delighted with it . .

A WARDEN

a member of the management committee of our Centre was at the Show last week, and came back full of praise for your equipment, Brenell Mk. 5 Stereophonic Record Playback. He has interested us to the extent that we would like to add this item to the Centre's equipment . . .

BRENELL 3 STAR $\star \star \rightarrow$ PORTABLE

* Three recording speeds, $1 \frac{7}{3}, 3 \frac{3}{4}, 7 \frac{1}{2}$ i.p.s.
* Frequency compensation at all speeds
* Push button operation (interlocked)
\star Printed eircuit amplifier
* Separate bass and treble controls
\star High-quality loudspeaker (8 in . by 5 in .)
* Spool sizes up to 7 in . to take standard pre-recorded tapes (all E.M.I. pre-recorded tapes are on 7in. reels)
- Pause control
* Digital revolution counter
* Modern style wooden cabinet designed for improved acoustic performance

58 gns.

Price includes Mlerophone, 7in. syool and 1.200 ff . Tape
Send for full details and information on Stereophonic/dual track play-back equipment, to Sole Monufacturers:
BRENELL ENGINEERING CO.: LTD.
la DOUGHTY STREET, LONDON, W.C.I
Tel : CHAncery 5809 and HOLborn 7358

* Four recording speeds $1 \frac{7}{6}, 3 \frac{3}{\frac{1}{2}}, 7 \frac{1}{2}$ and 15 i.p.s.
\star Permits use of $8 \frac{1}{2} \mathrm{in}$. reels $(2,400 \mathrm{ft}$. of tape for
long play. $1 \frac{7}{6}$ i.p.s. over 8 hours)
* Three independent motors (B.T.H.)
* Special foolproof interlocking controls

Ł Instant stop without spillage
\star Pause control

* Digital rev. counter
* High quality amplifier
* Recording level indicator
* Monitoring facilities
* Azimuth head adjustment

LIST PRICE

 64
 GNS.

including 1200 ft . of tope

* Provision for extra sound heads
* Fast rewind ($1,200 \mathrm{ft}$. in 45 jecs.)
* Coloured signal lights

Because the Mark 5 is of unir construction the following can be supplied as separate items for incorporation in your owr equipment.
Tape deck with provision for extra heads 28 gns.
Tape Pre-amplier Type T.P.2. 17 gns.
Power Unit T.U 2.
64.180
rtereo/Rec. Playback (including mounting rack) 893 . 16.0

Yes, we receive many letters congratulating us on the quality and fine performance of our products also the excellent service we maintain. Being the sole manufacturers of Brenell recorders, we are naturally pleased to receive such praises which fully justify our claim that the equipment we manufacture and sell is the finest value money can buy.

STEREO SOUND SUPREME/ P by
 THE RESULT OF 4 YEARS' PROGRESSIVE DEVELOPMENT

THE STEREO PICKUP
for playing $45 / 45$ records. Miniature ceramic type with replaceable diamond stylus. Constant velocity output approximately 20 mV from each channel. Frequency range 20 tol 6,000 cycles. Channel separation $20 / 25 \mathrm{dbs}$.
(Complete as illus.) $£ 9$ plus £3 . 16. 11 P.T.
Head only $£ 5 \cdot 10,0$ plus £ $2: 7$. 0 P.T.
Arm only $£ 3$: 10.0 plus $£ 1$: 9 : $11 \mathrm{P} \cdot 1$.

VARIABLE 3 SPEED MOTOR TYPE B
Operates at $33 \frac{1}{2}, 45$ and 78 r.p.m. Non-ferrous turntable. Built-in large stroboscope with internal light source. Precision ground and lapped spindles. Adjustable nylon graphite bearings. Synchronous motor.

$$
\begin{aligned}
& £ 20 \cdot 10 \cdot 0 \\
& \text { plus } £ 8 \cdot 15 \cdot 3 \text { P.T. }
\end{aligned}
$$

STEREOPHONIC AMPLIFIER AND PRE-AMPLIFIER

Twin channel amplifier and pre-amplifier for reproducing monaural and stereophonic sound from disc, radio and compensated tape.
Ultra linear push/pull output giving 7.5 watts peak from each channel.

Amplifier £24. 10 . 0
Pre-amp. £16. 10 . 0

A. R. SUGDEN \& Co. (Engineers) Ltd. market street, BRIGHOUSE, YORKS.
Telephone 2142

Magnetic Attraction Applications-1

The earliest known effect of permanent magnets is their ability to attract ferrous objects.
The attraction or holding power of a magnet under ideal conditions can be calculated from the basic formula:-
Force in dynes $=\frac{\mathrm{B}^{2} \mathrm{~A}}{8 \pi}$
or
Force in $\mathrm{lb} .=\frac{\mathrm{B}^{2} \mathrm{~A}}{11,263,000}$
where $A=$ area of magnetic pole faces in cm^{2}
and $B=$ corresponding fux density in gauss.
Under normal conditions joints, tolerances, misalignments and leakage flux rapidly reduce the theoretical pull; therefore the calculated value should only be used as a guide. One factor which must al ways be observed is that the magnet under the most severe conditions of open circuit should be of sufficient length to prevent self-demagnetisation-i.e. the maximum value of H should not exceed H_{d}.
This advertisement deals briefly with some of the many industrial applications using magnetic attraction, such as Machine Tool Chucks, Relays, Industrial Filtration, Door Catches, etc.

Machine Tool Chucks

One of the most useful applications of permanent magnets is in machine tool chucks where steel articles of a form extremely difficult to clamp, are held firmly in position for machining operations.

There are many types of magnetic chuck designed for various purposes but generally with relatively wide pole pitch spacing. The chuck illustrated bas the advantage of small pole spacing and is particularly suitable for small or thin articles. It consists of thin 'Magnadur'
blocks with mild steel pole plates assembled in sandwich form giving alternate poles $1 / 8^{\prime \prime}$ apart.

The attractive force to iron and steel objects of not less than $1 / 16^{\prime \prime}$ in thickness is approximately $130 \mathrm{lb} . / \mathrm{sq}$. in. The objects are released by moving the lower section of the chuck one pole pitch to short circuit or cancel the flux in the whole chuck.

Industrial Filtratlon Equipment

It is well known that one of the principal causes of wear in machinery is the presence of abrasive matter in the lubricating oil. A certain amount of the contamination to the oil can be prevented by careful design and dust covers but minute particles of steel can only be removed by the use of permanent magnets.

Relays and Thermostats

For current carrying relays and thermostats, contacts should open and close with a snap action and contact pressure must be sufficient to prevent chatter and arcing. It is in applications such as these that the a ttractive force of a magnet can be used to supply the necessary minimum contact pressure and also the desired degree of snap action.

Magnetic Fishing Tool

The tool shown is used for recovering broken rock drills or bits of iron or steel which accidentally get into deep boreholes. The one illustrated is of $14^{\prime \prime}$ diameter, and uses a magnet capable of lifting over two tons.
Photograph by courtesy of D.F.J. Burns Co. Ltd.

Magnetic Door Catches

Magnetic door catches can be designed to be extremely small, efficient and inexpensive. As an example, a 'Magnadur' magnet $0.89^{\prime \prime} \times 0.59^{\prime \prime}$ $\mathrm{x} 0.18^{\circ}$, when fitted between mild steel pole plates, is capable of holding an armature with a force of between four and five pounds.

Fixed Station. SSBL-1 60 watt (500 double sideband equivalent) four channels $3-15 \mathrm{mc} / \mathrm{s}$. Over 4000 RCA single sideband equipments are in use the world over as

FIXED AND MOBILE STATIONS

- Remote aerial tuning facility
- Rugged construcion for naval and military use
- Upper and lower sideband selection
- Corpatibility with double sideband systems

Noise limiter-clipper -filer for heavy interference conditions.

Mobile Station. SSRL-30M 30 vatt (250 w double sideband equivalent) four channels 3-15 me/s.

Don't spoil
 your
 ship!

In terms of cost the solder content of your products may be negligible. In terms of quality, dependability, your reputation, it is all-important. Why not act today? You've only to tell your buyer - "Switch to Superspeed"- and you can relax in the knowledge that all your risks are underwritten by the greatest name in soldering history.

ENTHOVEN

 incorporating Enthoven's unique 6channel stellate core, is unchallenged as the most efficient cored solder wire for general assembly work on radio, television, electronia and telecommunication equipment. But remember, too, that there is an Enthoven solder product for every other engineering and manufacturing application. And Enthoven always means the best ! If you use solder, please write today for the new edition of our brochure "Enthoven Solder Products"-or consult us, quite freely, on your particular problems.
Whenever soldering is discussed, ENTHOVEN enters the argument. It's a name that represents 150 years' experience in non-ferrous metals, and an incomparable record in research and development.

ENTHOVE soloer PRODUCTS

ENTHOVEN SOLDERS LIMITED SALES OFFICE \& WORKS:
UPPER ORDNANCE WHARF, ROTHERHITHE STREET, LONDON, S.E. 16 .
Telephone: BERmondsey 2014
HEAD OFFICE: DOMINION BUILDINGS, SOUTH PLACE, LONDON, E.C.2. Telephona: MONareh O39I

DYNATRON

SOME EXAMPLES OF THE COMPREHENSIVE RANGE OF

HI-FI, STEREOPHONIC AND SINGLE CHANNEL EQUIPMENT

AMPLIFIER LF.15.CS

AMPLIFIER LF.16.CS

AMPLIFIER LF. 20

TUNER T.10A

AMPLIFIERS

LF.15.CS 4 valve Push-Pull LF Ampllfler. 10 watts output. 1 voit R.M.S. input for full output. Auxillary power supply for tuners, etc. Operates with Tone Control TC.15.CS or TC.16.CS, or TC. 20.

E20.5.0.
LF.16.0S 4 valve Push-Pull LF Amplifier. 10 watts output. 1 volt R.M.S. input for full output. 2nd channel stereo use. Operates with tone control unit TC.16. \&17.10.0.
LF. 205 valve Push-Pull LF Amplifier. 20 watts output. 8 volt R.M.S. Input for full output. Auxiliary power
supplies. Operates with tone control unit TC.20. £29.15.0.

TUNER FM.2.LV

TUNERS

T. 10 A The 'Ether Pathfinder' 9 valive AM/FM Tuner. Four wavebands AM 13-2000 metres, one waveband FM $88-108 \mathrm{Mc} / \mathrm{s}$. Variable selectivity 4 positions. R.F. Stage. Tuning Indicator. Large fully llluminated tuning dial. High sensltivity, and signal to noise ratio. £66.0.0. FM.2.LV V.H.F. Tuner Pre-tuned. 7 valves. 4 Pre-tuned FM Stations. Range $88-108 \mathrm{Mc} / \mathrm{s}$. Single shaft operation, Unlversal mounting. Ideal for FM conversion purposes. As used by BBC. FM.2.HY (8 valves).
25.0.6.

E29.3.9.

TONE CONTROL UNIT TC.16.CS

TONE CONTROL UNIT TC.15.CS
\angle TONE CONTROL UNIT TC. 20

TONE CONTROL UNITS

(PRE-AMPLIFIERS)

TC.16.0S Stereo Tone Control Unit. The most advanced stereo-amplifier yet avallable. 4 Valve, Twin Channel. 6 Controls. Selectors for Volume, Balance, Treble and Bass. Operates with Amplifiers LF.15., LF.16., LF.20. Unique records, Tape or Radio Input features. £27.0.0. TC.15.6S Tone Control Unit. 2 valves, 6 controls. Selectors for Mixers, Volume Filter, Treble and Bass. Inputs for pick-ups, tape and radio. Operates with LF Amplifier LF. 15 or LF. 20.

ع17.10.0.
TC. 204 valve Controller Mixer. 6 Controls. (Level, Filter, Treble, Bass, Mix Level). Equaliser. Push-button switch and Channel Selector. Fully comprehensive input and output facilities. Operates with Amplifier LF.20, LF. 15.
£29.0.0
LOUDSPEAKERS
Panorama Console Loudspeakers. Bass reflex chamber with acoustic resistance unit.
CLS.10. 10 watts max. $12^{\prime \prime}+$ two $5^{\prime \prime}$ Treble speakers \quad £30. 9.0. CLS.15. 15 watts max. $12^{*}+$ one $5^{7 \prime}$ High Flux speakers £35. 5.0. CLS.20. 20 watts max. $12^{\prime \prime}+$ Trebax Treble Unit 846.10 .0 .

ROBUST-ACCURATE-DEPENDABLE

 F/M aerial installations, and communal or relay

Type 2

20 mV to $2.5 \mathrm{~V}(3-300 \mathrm{mc} / \mathrm{s})$ in three ranges
Designed for alignment, measurement and circuit investigation of HF amplifiers, etc.

SIGNAL LEVEL METER Type SL4B

A truly portable battery operated valve voltmeter. Provides for accurate and stable measurement of T / V and F / M signals on aerial installations or on amplifiers, repeaters or cabling of T/VF/M Relay or Communal Aerial Systems.
> \star Small size and moderate weight.
> \star Entire power from included "dry" accumulator cells.
> \star Transistorized Power Unit for H.T.
> * Turret Channel Selection.
> * Audible Signal Recognition.
> \star Excellent and stable accuracy characteristics.

Ask for list M4

TELEFUSION ENGINEERING LTD.
 ONE OF THE TELEFUSION GROUP OF COMPANIES

TELENG WORKS, CHURCH ROAD, HAROLD WOOD, ROMFORD, ESSEX

7heathkit

THIS IS THE IDEAL GENERAL PURPOSE OSCILLOSCOPE FOR LABORATORY, PRODUCTION AND SERVICE USE. ITS LIGHT WEIGHT MAKES IT EXTREMELY PORTABLE AND THE UNUSUALLY LARGE, FLAT-FACE C.R.T. SCREEN GREATLY SIMPLJFIES MEASUREMENT.

OUTSTANDING FEATURES

* SPECIAL Sin. FLAT-FACE C.R. TUBE
* GOLD-PLATED PRINTED CIRCUIT BOARDS
* "Y"BANDWIDTH: $3 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$
* "Y" SENSITIVITY: 10 mV per em
"X" BANDWIDTH: $1 \mathrm{c} / \mathrm{s}$ to $400 \mathrm{kc} / \mathrm{s}$
* "X" INPUT IMPEDANCE: $30 \mathrm{M} \Omega$, SHUNTED 31 pF
* TIME BASE: $10 \mathrm{c} / \mathrm{s}$ to $500 \mathrm{kc} / \mathrm{s}$

USING ONLY COMPONENTS OF THE HIGHEST POSSIBLE QUALITY, ŤHE VERSATILE MODEL O-I2U OSCILLOSCOPE HAS MANY FEATURES HITHERTO EXCLUSIVE TO VERY MUCH MORE EXPENSIVE INSTRUMENTS . . . WIDE BAND. WIDTH, STABILISED POWER SUPPLY, AUTOMATIC LOCK-IN SYNCHRONISING CIRCUIT, UNUSUALLY LARGE EASY-TO-READ, FLAT-FACE SCREEN, EXCEPTIONALLY WIDE-RANGE TIME BASE . . . ETC. THE USE OF PRINTED CIRCUIT BOARDS, TOGETHER WITH PRE-FORMED CABLE HARNESS, GREATLY SIMPLIFIES WIRING AND ASSEMBLY AND GUARANTEES CONSISTENCY. THE EXTREMELY COMPREHENSIVE MANUAL GIVES CLEAR "STEP-BY-STEP" INSTRUCTIONS TOGETHER WITH LARGE EASY-TO-FOLLOW PICTORIAL DIAGRAMS.

MODEL O-I2U
$\mathbf{\$ 4 . 1 5 . 0} \begin{gathered}\text { DELIVERED } \\ \text { FREE, U.K. }\end{gathered}$

OTHER POPULAR BRITISH HEATHKITS AVAILABLE EX STOCK INCLUDE
\star GOLD-PLATED PRINTED CIRCUIT
$\star 1 \%$ RESISTORS USED FOR HIGH accuracy
$\star 11$ M Ω INPUT IMPEDANCE

* Centre-zero db scale
* MEASURES AC VOLTS (R.M.S. TO 1500 AND Pk-TO.Pk TO 4000) DC VOLTS TO 1500
* MEASURES UP TO $1000 \mathrm{M} \Omega$ WITH INTERNAL BATTERY
* easy to build, robust and reliable in use

MODEL V-7A VALVE VOLTMETER
ع15.14.0 DELIVERED FREE, U.K.

16 WATTS OUTPUT OF SUPERB QUALITY (8 PER CHANNEL) FROM GRAM., RADIO OR TAPE, STEREO OR MONAURAL. MANY SPECIAL FEATURES, BEAUTIFULLY STYLED, TWOTONE GREY METAL CASE, 13 in. LONG $\times 5 \frac{1}{2} \mathrm{in}$. HIGH $x \quad 9 \frac{1}{2}$ in., WITH GOLDEN SURROUND, RELIEF AND MATCHING KNOBS. WILL OR L.P. RECORDS.

HP-FI SPEAKER SYSTEM: OUR SS-I IS IDEAL, PARTICULARLY WHERE SPACE IS LIMITED. £I0/9/- POST FREE.

MILLIONS OF HEATHKIT MODELS ARE IN USE ALL OVER THE WORLD BECAUSE THEY ARE SO EASY FOR ANYONE TO ASSEMBLE FROM THE SIMPLE "STEP-BY-STEP" PROCEDURE GIVEN IN EACH KIT'S COPIOUSLY ILLUSTRATED INSTRUCTION MANUAL. MOREOVER THEY COST SO MUCH LESS THAN OTHER INSTRUMENTS OF EQUAL PERFORMANCE.
\star 10-80 METRES 75 W CW, 60W. PHONE
$\star 6146$ FINAL, PI INPUT and output
\star SELF-CONTAINED RF, MOD. AND POWER SUPPLY
\star SIZE: I3in. WIDE $\times 8$ lin in. HIGH x 9lin. DEEP: WT. 30 lbs .
\star The most powerful AND LOWEST PRICED TX FOR ITS SPECIFICA. TION

HAS PRINTED CIRCUIT IN ABOUT 4.6 HOURS YOU CAN ASSEMBLE THIS FINE PORTABLE IN ITS HANDSOME SOLID LEATHER CASE AND HAVE A SET IN THE 25 TO 30 GUINEA CLASS. IT PERFORMS WELL IN A CAR, TOO.

£17.17.0

(INC. P.T.) DELIVERED FREE, U.K.

MODEL DX-40U HAM' TRANSMITTER

P29.10.0 $\begin{aligned} & \text { DELIVERED } \\ & \text { FREE, U.K. }\end{aligned}$

MODEL UXR-I DUAL. WAVE 6-TRANSISTOR PORTABLE

MAY WE SEND YOU FURTHER DETAILS OF ANY OF THE HEATHKITS?

DAYSTROM LTD., DEPT. W3,

 GLOUCESTER, ENGLAND.Telephone. GLOUCESTER 20217
A MEMBER OF THE DAYSTROM GROUP
MANUFACTURERS OF
THE WORLD'S FINEST AND LARGEST-SELLING ELECTRONIC KIT-SETS.

THE SOUND ENGINEER

can tell you, technically and precisely, why "SCOTCH" Brand Magnetic Tape is unsurpassed for fidelity of reproduction. He will tell you that the permissible variation in the thickness of the all-important coating of the tape is less than $.0001 \%$. And he will tell you that the frequency-response of "SCOTCH" Brand Magnetic Tape is wider than that of the human ear itself. This adds up to something very near perfection.

THE MUSIC LOVER

is probably quite indifferent to the science of sound reproduction. His highly sensitive ear tells him whether his equipment is reproducing with the highest possible fidelity or merely giving a rough approximation of the original sound. If he has had a good deal of experience, the music lover probably uses "SCOTCH" Brand Magnetic Tape anywaythen if a note sounds wrong, he knows it was played wrong.

YOU

may be of a practical turn of mind, wanting to know if you get good value for your money. With "SCOTCH" Brand Magnetic Tape you get doubly good value: you get incomparable reproduction, and protection for your tape recorder. Exclusive silicone "dry lubrication" is built in to every inch of "SCOTCE" Brand Magnetic Tapo-it reduces tape-friction to the minimum, and virtually eliminates distortion through wear of the delicate and costly magnetic heads.

Photograph by courtesy of the B.B.C.

The B.B.C. use

It is gratifying to know that in a world of rising prices our policy of maintaining and, in many instances, reducing prices has resulted over the years, and especially at this period, in ever increasing sales.

We carry a stock of 2,000 types of receiving, transmitting and special purpose tubes, and invite your enquiries not only for commercial grade tubes but also for those tested to C.V., JAN and MIL specifications.

Our Organisation is A.R.B. Approved.

If you are not already on our Mailing List, please send for latest Price and Stock List.

HALL ELECTRIC LTD

Haltron House, 49/55 Lisson Grove, London, N.W. 1

Telephone:
AMBassador 1041 (5 Ifnes)
Cables:
Hallectrlc, Luadon
TELEX 2-2573

$10.300_{\text {ks }}$ DIREGTLY GALIBRATED

The type D1/D is a V.H.F. Signal Generator of rugged construction designed for both laboratory use and also the severe conditions of 'the field.' This instrument is widely used by communication engineers throughout the world, and has the following outstanding features:-

Wide frequency range- 10 to $300 \mathrm{Mc} / \mathrm{s}$.

- Reliable Attenuator; Output variable over 100 dB from $\mathrm{I} \mu \mathrm{V}$ to 100 mV .
- Negligible stray field.
- Sine and Square Wave Modulation.

Nett Price in U.K.

Full teclonical details in leaffei W43

The TYPE DI/D v.h.f. SIGNAL GENERATOR

THE ADVANCE TYPE D/P/2 v.h.f. sIgnAL GENERATOR

This model is a special version of the D1/D designed for the alignment of narrow band communication receivers, and incorporates:-

Crystal Modulator, eliminating spurious frequency modulation.

- $2 \mathrm{Mc} / \mathrm{s}$ Crystal Reference Oscillator.

Buffer stage, eliminating attenuator reaction on the oscillator frequency.
Full technical details in Leaflet W37
NETT PRICE $\mathbb{\text { IN U.K. }} 10$
Advance components limited. roebuck road.haimault llford essex telephone: hainault the

From lst March 1959, The Benjamin Electric Ltd. will cease to represent the Carr Fastener Company Ltd. as sole Representatives.
Carr Fastener Co. Ltd. will, on that date, be opening a new sales office in London at 195/197, Great Portland Street, London, W.1. Phone: LANgham 3253-4-5
to which address should be sent all enquiries and correspondence relating to Cinch valveholders and Cinch components.
Mr. G. F. Wylde has been appointed sales manager of the Carr Fastener Co's Radio and Electronics Division.
the benjamin electric ltd. TOTTENHAM, N.17.

CABr fastener co. ltd. STAPLEFORD, NOTTINGHAM.

Every Company-and individual engineer-contemplating the use of PTFE* should send for a copy of our booklet entitled "PTFE ENGINEERING".

We were one of the first companies to process this unique material, and equally we were one of the first companies to develop methods of machining and otherwise fashioning it into a multitude of component forms.
Today we produce it in its raw material forms in very large quantities, and we have supplied many thousands of PTFE components to the electrical and allied industries.
Whether you require to buy PTFE in order to transform it into component forms in your own works, or whether you wish to buy small or large numbers of PTFE components, we should welcome your enquiries, and you would find advantage in utilising our accumulated resources of "know how" and experience in handling the material.

* PTFE (Polytetrafuoroethylene)-the basic polymer is
manefactured in this country by I.C.I. Led., under the trade name "FLUON".

ISSUED BY THE PTfE ENGINEERING DIVISION OF

the tuner

 with the outstanding specification

Valves:

Gircuit Description:

Tuning Range:
Input and Output:

Performance:
Sensitivity:
Power Supply: Consumption: Dimensions: Outstanding Features:
$3 \times$ EF80, ECF80, EF89, 2 crystal diodes.
R.F. stage; frequency changer and reactance valve; I.F.; 1st limiter; 2nd limiter; Foster Seeley discriminator. Automatic Frequency Control from discriminator to reactance valve; Automatic Gain Control from 1st limiter to I.F.
88-108 Mc/s., FM/VHF.
Standard 75 ohms co-axial aerial socket. Standard domestic co-axial audio output plug. Pre-wired on 3 feet of cable. Mains cable pre-wired with miniature 22 pin motor plug on 3 feet of cable. Motor socket for unswitched mains supply.
Frequency response: 20 to 20 K c.p.s. with standard de-emphasis applied.
$14 \mu \mathrm{v}$ for 40 Db quieting. $8 \mu \mathrm{v}$, for 20 Db quieting Automatic Frequency Control giving pull in from 300 K c.p.s. Output from $\pm 22.5 \mathrm{~K}$ c.p.s. deviation, 100 mv . across $25,000 \mathrm{ohms}$ impedance.
$210-250$ volts $\mathrm{AC}, 50$ cycles and $105-120$ volts AC 60 cycles.
30 V.A. Separate push button On-off switch, illuminated.
Height 31 ins. Width: $10 \frac{1}{2}$ ins. Depth: 5 ins.
\star Incorporates a push-button on-off control and a built-in power pack \star High sensitivity gives good reception up to 30 miles on indoor aerlal, and up to 80 miles on outdoor aerial \star Automatic Frequency Coretrol provides ease of tuning without the need for a 'magic eye' \star Twin Limiters cut out every vestige of background noise \star Output is more than adequate fut out every vestige of background amplifier of comparable quality and design.

The Pye Mozart 10 -watt amplifier, identical in finish and size to the FM tuner.

Tecnico Lid. Sydney, Australia.
Pye Limired, Auckland, C.I. New Zealand.

Deutsche Pye G.m.b.H. ., Berlin-ZehlendorfWest, Roonstrasse 2, Germany.

Svenska Pye A.B. Landsvagen 47, Sundbyberg, Sweden. Pye (Ireland) Ltd., Dublin, Eire.

Pye Limited, Mexico City. Pye (Canada) Ltd., Pye (Canada) Ltd
Northline Road, Northline
Toronto.

The creative mind of the scientist . . . in the hands of the craftsman
High Fidelity is a specialist bustness calling for knowledge and techniques of the highest order. Meticulous attention is paid to every detail. Exacting performance tests are carried out at every stage. Hand-finishing is by experts

WITH A TRUVOX

Stereophonic TWINSET
This equipment can be built up from an existing. Truvox R2 (monaural) Recorder. We fit the recorder with a stereo head and supply a ' B ' Unit (comprising correctly matched amplifier and loudspeaker together with additional microphone and leads). Send for full details.
Available from all leading stores and radio dealers or full details from:-
... till yorive heard .000000

R2 TAPE RECORDER

From the very first replay-pre-recorded or your own home-recorded programme-you'll be thrilled with its sureness of tonal quality and ease of control. Just as you recognise the voice of a friend on the 'phone or your favourite songster on radio or record, you'll know that this is the instrument you've always wanted. Designed and built by pioneers in the development and manufacture of Tape Decks and Tape Recording Ampli-fiers-TRUVOX are justly proud of an instrument that lives up to "all that the name implies." Increased production at our new, modern factory now enables us to offer this famous instrument at reduced prices-Models now available from 56 gns.
CREDIT TERMS ARE AVAILABLE THROUGH MOST DEALERS

TRUYOX Steroophonic Head for replay of prerecorded stereophonic stapes. tape	TRUVOX RADIO JACKS direct radio reception :nd recording.	TRUVOX TELEPHONE ADAPTOR for $2-$ way telephone recording.

A. A Aectroncs

New concepts in electronics have been developed at AWA, as a result of experience with missile systems. Now they have a wider application. Here are some of the new AWA devices now available to industry.

All devices are adaptable to suit customers' own
requirements. For further information consult:
COMMERCIAL ELECTRONICS DEPT.
SIR w. G. ARMSTRONG WHITWORTH AIRCRAFT LTD.,
Baginton, Coventry.

double beam scope

The D31R is a high pertormance, double beam, measuring oscilloscope, designed to be built in as a permanent monitor for the operation, servicing and maintenance of all types of complex electronic equipment. It utilises an entirely new $3 \frac{1}{2}$-inch flat-faced, double gun cathode ray tube, designed to our specification and now manufactured exclusively for Telequipment. The two beams have independent brightness and focussing controls and are provided with identical Y amplifiers and a common X-sweep.

Production of the D31R will commence shortly and will find many applications, especially in the missile and computor fields.

Telequipment ltd
 313 chase road " southgate • Iondon n. 14

telephone : palmers green 7111
write for illustrated leaflet


```
SIEMENS &HALSKE AKTIENGESELLSCHAFT
                                    BERLIN. MONCHEN
                                    FULL PARTICULARS FROM
```

R.H.COLE (OVERSEAS) LTD:
2. Caxion Sireet. Westminster. London S.W. 1

PERIPHONIC

the new

loudspeaker system that cancels distortion

At 40 cycles per second with 10 watts input, the Periphonic system reduces harmonic distortion to the incredibly low figure of 2.7%. At 1000 C.P.S. the distortion is 0.3%. Here is a triumph in sound reproduction achieved with two "aircoupled" G.E.C. metal cone loudspeakers and four G.E.C. presence units, mounted in a cabinet embodying entirely now principles. Exclusive to the G.E.c. and available as individual units, the metal cone loudspeakers give low inter-modulation distortion, extremely smooth high frequency response and excellent transient response. Designed as accessories to the loudspeakers, the presence units overcome point sound source and add "presence" to the 9 octave realism.

G.E.C.

HIGH QUALITY SOUND EQUIPMENT

Metal Cone Loudspeakers Presence Units - Stereophonic Systems - Periphonic Louds :eaker Systeras
Pre-amplifers - Amplifiers
Write today for details
THE CENERAL ELECTRIC CO. LTD.
MAGNET HOUSE
KINGSWAY LONDON WOZ

ROYAL FESTIVAL HALL

SATURDAY 9 ${ }^{\text {th }}$ MAY 1959

at $3-0$ p.m.
We have pleasure in announcing our FOURTH

CONCERT

OF LIVE \& RECORDED

MUSIC

Introduced by G. A. Briggs with the collaboration of P. J. Walker.
Artists taking port
Artists taking port
DENIS MATTHEWS
DENIS MATTHEWS
Piano
Piano
LEON GOOSSENS
LEON GOOSSENS
Oboe
Oboe
RALPH DOWNES
RALPH DOWNES
O-gan
O-gan

* HAROLD BLACKBURN
* HAROLD BLACKBURN
Bass
Bass
* GERALD GOVER
* GERALD GOVER
Accompanist
Accompanist
* By permission of Sadlers Wells Opera Company
Specia' recordings by B.B.C., E.M.I, and I.B.C. Stereophonic recordine of R.F.H. or an by Pye.

ADMISSION 3/6

All seats numbered and reserved. Book early for best seats.

> Tirkets will be available on and after Monday 16eh March rom Hi-Fi dealers in London or direert 'rom Wharfedale Wireless Works Led. ldle, Bradford, Yorkshirs. Tel. Idle $1235 / 6$.
> (Cash and stamped addressed envelope with order). Bookings may also be made at the R. F.H. Box Office on or after April 9th.
Promoted in the interest of the selence and art of Sound
Reproduction by

H.F. Exponential-Line Transformers

An article in the February issue of Electronic \mathcal{E} Radio Engineer describes the design and constructional details of the four-wire exponential transmission lines, used at the high-frequency transmitting station at Rugby, to match balanced impedances of 195 and 565 ohms over the frequency range $4-27 \mathrm{Mc} / \mathrm{s}$.

ARTICLES

IN THE MARCH ISSUE INCLUDE

Transistor Equivalent Circuit

An equivalent circuit is described which accurately represents the transistor at any frequency where the device gives useful gain. It is shown that calculations based on these formulae agree favourably with practical measurements made with a representative selection of alloyjunction germanium transistors.
Saturable-Transformer Switches
The characteristics and design of switches which operate by virtue of magnetic saturation of transformer cores are discussed. The switches are applied in groups to select magnetic reading and writing heads for a magnetic-drum store, as in a computer.

ALSO
The unique monthly Abstracts and References feature compiled by the Radio Research Organization of the Department of Scientific and Industrial-Research.

Original articles by leading authorities are a prominent feature of Electronic \& Radio Engineer. Regular readership will keep you in constant touch with progress in the entire field of electronics, radio and television.

POST THIS COUPON TODAY

ELEGTRONIC \& RADIO ENGINEER

TO: ILIFFE \& SONS LTD., DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.

[^8]ADDRESS

बANVIEP SIGNAL GENERATORS

HF SIGNAL GENERATOR Type 201

For accurate, stable sinusoidal signals of pure waveform from $30 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. Output levels, which are stabilised by an amplified A.G.C. system, can be varied from 1 microvolt to 1.1 volts R.M.S. (or 2.2 volts R.M.S. unmodulated). A high output of 5 volts (10 volts unmodulated) is also provided from a 300 ohm source impedance. The attenuators are very accurately calibrated and have a constant 75 ohm output impedance, regardless of their setting and the frequency in use.

SPECIFICATION

- Frequency range $30 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ - Crystal calibration - Harmonic components less than 1\% - Film scale giving actual scale length of $4 f t$. on each band 90:1 slow motion drive with logging scale - High output of 5 volts - Output variable from 1 microvolt to 1.1 volts at 75 ohm impedance - Output level constant over entire frequency range - Modulation depth variable from $0-100 \%$ - F.M. and A.M. less than $300 \mathrm{c} / \mathrm{s}$.

SPECIFICATION

- Frequency range $30 \mathrm{c} / \mathrm{s}-30 \mathrm{kc} / \mathrm{s}$ - Frequency stability $+0.25 \%+0.5 \mathrm{c} / \mathrm{s}$ - A screened and balanced transformer enables balanced, unbalanced and fully floating outputs to be obtained - A 600 ohm constant impedance attenuator provides steps of $0,20,40$ and 60 db of attenuation under all output conditions.

DELIVERY - EX STOCK

LF SIGNAL GENERATOR Type 702

A resistance-capacitance type of oscillator is employed to obtain a stable output waveform with very low harmonic distortion.
The output circuit of the instrument uses a screened and balanced transformer to enable unbalanced, balanced and floating conditions to be obtained, and a 600 ohm constant impedance attenuator provides steps of $0,20,40$ and 60 db of attenuation under all output conditions. A single level control is incorporated for setting the output to any desired value, and the amplitude is monitored by a diode valve-voltmeter calibrated both in open circuit volts and in db relative to 1 milliwatt in 600 ohms.

SIGNAL GENERATORS

AIRMEC LIMITED • HIGH WYCOMBE - BUCKS

Telephone: High Wycombe 2060

CONTINUOUS MESSAGE TRANSMISSION

```
0
```


with the A.T.E. Series TAA

TELEGRAPH TERMINALEQUIPMENT

This compact unit, comprising an electronic distributor and an operating head, is equipped with two tape readers arranged to operate alternately for the automatic transmission of messages. The space taken is kept to a minimum because
the operating head measures only $6 \frac{1}{2}{ }^{\prime \prime}$ in width. An operator can supervise two or more units without difficulty. Breaks in transmission time which often occur in normal operating practice can be eliminated and maximum circuit availability is achieved.

Special features are:
(A) Automatic transmission of:1. Station call slgn and serial number before any message. 2. A 100 -character test message. 3. Routine message.
4. Station call sign and serial number at predetermined intervals number at predetermined intervais
(B) Speeds $45.5,50,56.8$ and 75 bauds.
(C) $7,7 \frac{1}{2}$ or 8 -unit code.
(D) Stopping a transmission and restarting at the point when a transmission was interrupted, or at any point without starting a new preamble. In the case of a tape, this facility may be used to repeat, or omit a particular portion of the message.
(E) Transmitting the test message direct from the distributor.

Operating Head

Dimensions $6 \frac{1}{2}^{\prime \prime} \times 22^{\prime \prime} \times 9^{\prime \prime}(16.5 \mathrm{~cm} . \times$ $56 \mathrm{~cm} . \times 23 \mathrm{~cm}$.)
Welght 31 lb . (19.1 Kg .)

Electronic Distributor

Dimenslons $19^{\prime \prime} \times 8 \frac{1_{4}^{\prime \prime}}{} \times 3 \frac{1^{\prime \prime}}{2}$
$(48 \mathrm{~cm} . \times 21 \mathrm{~cm}, \times 9 \mathrm{~cm}$.) Weight $23 \mathrm{lb} .(10.7 \mathrm{Kg}$.

that elusive works manager ...

in 10 seconnds

NO LOUDSPEAKERS, BELLS or FLASHING LIGHTS
only the man who's wanted knows and replies.

Selective Induction is saving time, money and worry in Offices, Factories, Hospitals, Hotels, Departmental Stores etc., all over the Country. All key personnel carry small transistorised receivers bearing a number. When they are wanted their numbered key is pressed on a small transmitter. Immediately they must respond to the URGENT 'PEEP PEEP' in their pockets which summons them and them alone to Action! A verbal message can be transmitted if desired.

- Covers areas indoors or out, up to $10,000,000$ sq. ft .
- Designed for the man who cannot afford to be tied to his office.
- Equally suitable for large or small concerns.
- Low purchase price-virtually no indoor wiring-low rental terms.

Write or 'phone for further particulars - WE CAN BE FOUND IN TEN SECONDS

During the ten years that have elapsed since we first blazed the To us it is a matter of pride that so many features of that first Ferrograph have since become standard practice and embodied in the designs of other manufacturers．

To－day we again look to the future and initiate a policy to ensure that－no matter how Tape Recording develops or for what purpose it is used－every Series 4 Ferrograph can be readily adapted at any future time for a variety of applications．To achieve this，space has been provided under the Head Cover to permit Head changes and additions for monitoring，stereo recording，stereo playback，dual track stereo to the new American standard or for lower track use．Such Heads are designed to be plugged in and are fitted with rocking facilities for azimuth correction．

This Ferrograph development，for example，permits any Series 4 A to be instantly converted into a Series ${ }_{4} \mathrm{~S}$ merely by plugging in the additional stereo Head costing seven guineas．

Simultaneously the following important design improvements have been incorporated：
＊The cap．stan motor is resiliently mounted for quiet operation．
＊Function Switch Knob is re－fashioned for greater ease of operation．
＊Brief Stop（or pause control）is now a standard fitting on all Ferrographs．
＊The Head Cover－a one－piece moulding－is hinged for easy tape loading．
＊The Turns Counter－now gear driven－is accurate to a turn．
Finally，to conform to our policy of rationalisation，the Ferrograph will be supplied only in one standard colour finish－a handsome two－tone grey．It is available in two forms，either as a portable or as a unit for installation into your own cabinet，in thes following models：－

Series 4A

With standard monaural Recording／ Playback facilities
Modet 4A／N 3477 i．p．s． 81 gns ．
＊Model 4AN／CON 31／7 $\frac{1}{2}$ i．p．s． 81 gns．
Model 4A／H $7 \not+/ 15$ i．p．s． 86 gns． ＊Model 4 AH／CON $7 \frac{1}{2} / 15$ i．p．s． 86 gns．

Series 4S
With optional stereo sound playback facilities in addition（when used with Stere－Ad Unit．）
Model 4S／N 3 $3 / 7 \frac{1}{\frac{1}{2}}$ i．p．s． 88 gns． Model 4SN／CON $3 \frac{1}{i} / 7 \frac{1}{ \pm}$ i．p．s． 88 gns． Model 4S／H 7⿺𠃊⿳亠丷厂彡$/$ I5 i．p．s． 93 gns ． ＊Model 4SH／CON $7 \frac{1}{2} / 15$ i．p．s． 93 gns． Stere－Ad Unit（when required） 30 gns ．

Series 88
With full stereophonic recording and playback facilities
Model $887 \frac{1}{2} / 15$ i．p．s．$\quad 105 \mathrm{gns}$ ．
＊Model $88 / C O N 7 \frac{1}{2} / 15$ i．p．s． 105 gns ．
＊The suffix CON denotes console form for building into own cabinet．

The Incomparable
 FerNO【Ma／h

BRITISH FERROGRAPH RECORDER CO．LTD．

TRANSEORMERS

VOLTAGE REGULATING TRANSFORMERS E28.0.0
Input $230 / 240 \mathrm{~V}$. Output 50 V . to 250 V . in 16 steps of 12.5 V . at 30 Amps. These are Auto Transformers with Quick Make-and-Break Tapping Switches.

4 V., 5,000 Amps. $£ 7000$ 2 V., 10,000 Amps. $£ 68 \quad 0 \quad 0$ 3.5V.,20,000Amps.f110 0 2 V., 30,000 Amps. $£ 13000$ $10 \mathrm{~V}_{1,}, 2,000$ Amps. $£ 69 \quad 0 \quad 0$

HIGH VOLTAGE TRAKSFORMERS

3 kV .2 mA
10 kV . 23 mA . $4 \mathrm{kV} .2: 5 \mathrm{~mA}$. 42 kV . (21 kV.-O 21 kV.$) 126 \mathrm{~mA} .5000$

10 V. 1,000 Amps. 659
10 V. 500 Amps. $£ 38$
10 V .750 Amps . $£ 48$
9 V. 900 Amps. $£ 49$ 12 V. 1,000 Amps. $£ 64$ 15 V. 1,000 Amps. $£ 75$ 20 V. 800 Amps. 680 10 V .300 Amps. $\mathbf{E 2 8}$

PORTABLE SHROUDED TRANSFORMERS Each of the five Transformers below:67.18.0.

6-8-12-18-24-30 V., 12 Amps.
$24 \mathrm{~V} ., 30 \mathrm{Amps}$.
$110-120 \mathrm{~V} ., 4$ Amps.
$12 \mathrm{~V} ., 40 \mathrm{Amps}$.
55 V., 12 Amps.

Most Transformers up to 2 kVA can be supplied in a steel case with protected terminals and carrying handle.

TRANSFORMERS WITH
SWITCHED TAP CONTROL
Available with one or more $\$$ witches, Ammeters, Fuses etc. TRANSFORMERS WITH INFINITELY
VARIABLE
OUTPUT

Combinations of Transformer with attached Variac for very fine control.

MANY OTHER STOCK TRANSFORMERS

RECTIFIER SETS
All for $200 / 250$ V. A.C. (Other supply Voltages available)

Rectifier Sets with D.C. Output Control by internal taps
D.C. Volts ON LOAD are stated
$110 \mid 120 \mathrm{~V} . \mathrm{D} . \mathrm{C} ., 10 \mathrm{Amps}$....$E 29 \quad 0 \quad 0$ $200 / 250$ V. D.C., 10 Amps. ... $£ 3600$ $200 / 250$ V. D.C.,. I 18 Amps. ... $35 / 38$ V. D.C., 50 Amps. 34 V. D.C., 10 Amps. 1,200 V. D.C., 200 mA . 60 V. D.C., 5 Amps. $200 / 250 \mathrm{~V}$. D.C. 9.5 Amps. 6.3 V.D.C. 13 Am
V.D.C. 110 mA.

VOLTAGE REGULATING TRANSFORMERS. Variac Type INPUT 230/240 V, OUTPUT O-240 V 10 Amps

Rectifier Sets with Control of D.C. Output by Tap Switches. Fitted with Fuses. D.C. Volts ON LOAD are stated.
$12 / 25$ V. D.C., 12 Amps. $12 / 25$ V. D.C. 20 Amps. $E 15100$ 10120 V.C. 20 Amps. $£ 240^{0} 0$ 15 V. D.C., 5 Amps., Meter and Internal Rheo. 6.3 V. D.C., 13 Amps. and 220 $6810 \quad 0$ 6.3 V., D.C., 110 mA . Fitted Ammeters
Ruitt-in Rhaoctare

VOLTAGE REGULATORS

 Moving Coil TypeThis type produces a smoother change of output voltage than the Variac type. It is larger in physical size than the Variac but is more readily available and less expensive for the larger output current.
INPUT 230/250 V Also available for $400 / 440 \mathrm{~V}$ OUTPUT 0-265 V

40 Amps	442	0	0
60 Amps.	458	0	
80 Amps.	668	0	
100 Amps	¢78	0	

RECTIFIER SETS
$350 / 440$ V. 3 Phase Input
12 V 400 Amps, or 24 V .200 Amps. intermittent....

SPECIFIC ENQUIRIES

are invited tor Transformers and Rectifiers.

We specialise in
HEAVY CURRENT EQUIPMENT

Now available from stock

The first five instruments in the 'Nashton' range of miniaturised electronic test gear shown here are now available from stock. Instruments that are to become available in the near future include -The Flash Tester, Shorted Turn Detector, Transistorised Power Supply and Transistorised Quadrature Oscillator. For full information write to Nash and Thompson Ltd., Oakcroft Road, Chessington, Surrey, or to your nearest area agent.

AREA AGENTS

SCOTLAND

NORTHERN
ENGLAND

MIDLANDS

NORTHERN
HOME
COUNTIES

Elesco Electronics Ltd., 2 Fitzroy Place, Glasgow, C.3. (Tel: CENTRAL 1082|3)

Farnell Instruments Ltd., Wetherby Industrial Estate, York Road, Wetherby, Yorks. (Tel: Wetherby 2691/2)

Hawnt \& Co., Ltd., 59 Moor Street, Birmingham, 4. (Tel: CENTRAL 687115)
W. J. Picton Ltd., 123 a Neasden Lane, London, N.W.10. (Tel: GLADSTONE 2718-4075)

Nash amd Thompson umreo

 OAKCROFT ROAD, CHESSINGTON, SURREY. Elmbridge 5253
R.C.C. Bridge-A quick balancing bridge measuring from 5 ohms-500 megohmis and $5 p F-500{ }_{2} F$ each in three ranges.
-

D.C. Valve Voltmeter Miero-ammeter-A high impedance D.C. Valve Volimeter reading 1-1.000 Volts and 0.1-100 microamps f.s.d. over seven ranges.

Sensitive Valve VoltmeterAn audlo frequency A.C. Volsmeter providing 10 ranges from $30 \mathrm{~m} . V$. to 300 Volts f.s.d.

A.C./D.C. Valve VoltmeterSix A.C. ranges from 1-300 Volts fis.d. up to $200 \mathrm{Mc} / \mathrm{s}$ and sowen D.C. rarrges from 1-1.000 Volts f.s.d. at high impedance.

If you have a problem that can be solved by using digital techniques-then Venner packaged circuits can help.

Their versatility can solve your development or test set problems, because either you or we can build the equipment from fully developed circuit elements.

All the answers...

on punched tape, in I" figures or in print.
Some examples of 'specials' built from Venner plug-in stages are illustrated on the right.

1 In-line readout frequency and time measuring equipment.
23 diglt counter.
3 Frequency source for octave filter testing (12 output frequencies).
4 Dual channel tuned amplifier.
6 Speedmeter with tape readout.
6 In-line readout tachometer.
7 Solenoid valve timer.
83 digit batching counter.
9 Special purpose time measuring set.
10 Frequency source providing $10 \mathrm{kc} / \mathrm{s}, 1 \mathrm{kc} / \mathrm{s}, 100 \mathrm{c} / \mathrm{s}$, and $10 \mathrm{c} / \mathrm{s}$.
11 Reaction time indicator.

As a general rule we can give you delivery in 6 to 8 weeks of special items built in this way. Alternatively, if you "do-it-yourself", we will give advice and provide the majority of plug-in stages within $7 / 10$ days of receiving your order.

If you are not familiar with our circuit blocks, please send for leaflet WW/104.

VENNTR

Electronics

VENNER ELECTRONICS LIMITED Kingston By-Pass, New Malden, Surrey Telephone: MALden 2442

A member of the Venner Group of Companies.

SPECIFICATIONS

Model LTE-4.5/ $14-0.5$

Input voltage	$190-260$ voles, $50-60 \mathrm{c} / \mathrm{s}$. (115 v . model available)
Output voltage	$4.5-14$ volts (Variable).
Output current	500 mA .
Voltage regulation accuracy	$\pm 0.15 \%$
Output impedance	<0.1 ohm.
Ripple and noise	5 mV . p-p.
Ambient working	$25^{\circ} \mathrm{C}$.
Overall cabinet dimensions	$10 \frac{1}{2 \prime \prime}^{\prime \prime} \times 7 \frac{1^{\prime \prime}}{} \times 8 \frac{1}{1 / 2}$ deep.
Weight	$7 \frac{1}{1} \mathrm{lb}$.

Models LTE-12.5-0.75 \& - 1.5

Input voltage	205-250 volts, $50 / 60 \mathrm{c} / \mathrm{s}$. (115v. model available)
Output voltage	12.5 volts.
Output currents	0.75, 1.5 amps .
Voltage regulation accuracy	$\pm 0.1 \%$
Output impedance	<0.1 ohm (0.75 A model) <0.05 ohm (1.5A model)
Ripple and noise	10 mV . p-p.
Ambient working	$25^{\circ} \mathrm{C}$
Dimensions	$8^{\prime \prime} \times 3 \frac{t^{\prime \prime}}{} \times 3 \frac{1}{\prime \prime}^{\prime \prime}$ deep.
Weight	42 lb .

JLT Transistor Regulated D.C. Power Supply Units are meeting the need for controlled low voltage supplies in laboratories, production line testing and quality control. A special unit is available for use with transistorised public address equipment permitting connection to the normal mains supply; it will also charge the accumulator. Write for Leaflet LS6 for full details of the models available.

NEW
 Silicon alloy transistors with low 'bottoming' voltage

OC200 The OC200 is the first of a new range of silicon alloy transistors now being introduced by Mullard. This range has all the advantages of the well-known OC70 germanium series plus the silicon features of low collector leakage and high permissible operating temperature.

This duplication of the essential properties of the OC70 series-including a low "bottoming" voltage-enables designers to gain the maximum benefit from their experience with germanium transistors when using the new silicon types.

The wide junction temperature rating of these new transistors makes them suitable for use at high temperatures in aircraft, guided weapons and industrial equipment. This feature is exemplified by the $\mathbf{O C} 200$ which has a junction temperature rating of -55 to $+150^{\circ} \mathrm{C}$ with minimum α^{\prime} (or β) controlled to a limit of 10 at $-55^{\circ} \mathrm{C}$ and 15 at room temperature.

The maximum collector voltage of type OC 200 is 25 V , but due to its low "bottoming" point it may be operated from supplies as low as 1.2 V . The linearity of current gain with collector current is well maintained up to 50 mA .

Like the OC70, the OC200 is well suited for use in pre-amplifier circuits. Its noise figure is, in fact, better than that of the germanium transistor. Write on your company notepaper to the address below for complete data.

ABRIDGED DATA

Silicon p=n-p alloy junction translstor oc 200

Mullard Limited.Semiconductor Division
Mullard House . Torrington Place
London - W.C. 1 - Tol: LANgham 6633

Mullard

 division

TRIGGER TUBES DESIGNED

WITH YOUR COSTS IN MIND

Speedier production and skilful design are benefits passed to you in the form of low prices - so low as to be comparable with the cheapest components used in electronic equipment.

Anode voltage
Trigger striking volts
Anode current
Tube voltage drop
De-ionization time
Minimum ambient light
Base tubes would be uneconomic.
This range has proved particularly satistactory when employed in signal storage systems, and tor the operation of relays, display lamps and other electrical devices.

Without doubt, in thls role. these Ericsson trigger tubes are the cheapest method of oblaining the required results rellably and simply.

For data sheets write to:-
THE TECHNICAL SERVICES DEPARTMENT

Anode voltage	$180-400 \mathrm{~V}$
Trigger strlking volts	$100-155 \mathrm{~V}$
Anode current $5-25 \mathrm{~mA}(60 \mathrm{~mA}$ peak $)$	
Tube voltage drop	$95-130 \mathrm{~V}$
De-ionization time	10 mS
Minimum amblent light	Zero
Base	B 9 A

a NEW 5-Channel Transistorised

VHF Radio-Telephone Terminal

Compact design which at low cost provides five high-grade telephone circuits

Radio

Frequency range 156-184 Mc/s (other frequency ranges are available)
Transmitter power output 30 watts
Deviation $75 \mathrm{kc} / \mathrm{s}$
Receiver Noise Factor 8 db
All characteristics of the transmitter and receiver conform to CCIR specifications

Carrier Telephone Equipment
5 Telephone channels . $4 \mathrm{kc} / \mathrm{s}$ spaced Equipped with Out of Band Signalling Facilities for dialling, Ringdown or junction working Printed Wiring . Plug-in Units Crystal frequency control Resin cast components

Radar or Radio -

train with the royal air force

There are immediate vacancies today for Radar and Wireless Mechanics in the Royal Air Force. This is an increasingly important job in the R.A.F. and a responsible one, because there is a constantly growing range of vital equipment to be maintained and serviced-including that used for bombing and for the navigation, detection, interception and control of aircraft and the latest guided missiles.

A life of opportunity!

You get a full training in servicing many types of radar or radio. Your work is full of interest-particularly if you are keen on television or radio. Promotion is rapid for the right man. Pay and allowances are better than ever before; for example, a married Corporal can earn £14. 12s. 10d. a week including full allowances. There's a month's leave a year, the chance to travel and see something of the world and all the wider interasts of life in the modern Service.
This is not just a job but a career-with good prospects. Post the coupon for details now!

TO The Officer Commanding, R.A.F. Central Recruiting office (W.D.56), Victory House. Kingsway, London, W.C.2.

Please send me

R.A.F. Ground Trade leaflets A.M.P. 347 and Inf. 263. I understand that this puts me under no obligation.

NAME
ADDRESS

If you want

IMAGINATION, TECHNIQUE, EXPERIENCE, BUILT INTO ELECTRONIC EQUIPMENT
Whether in Design, Development or Manufacture*

A fully transistorised Portable Holiday Detector designed by P.A.M. LTD. for Cathodic Corrosion Control Ltd. It provides a non-lethal output voltage up to 20 K.V. D.C., and is used for detecting cracks or imperfections in protective coatings applied to metal structures.

A new "transistorised" Photo-electric Counter designed for continuous recording of production quantities up to a speed of 2,000 per minute. Photo-cell and lamp are fitted in dustproof housings with focussing adjustment.

NERA Projection Screens. For ciné or TV. This E.H.T. Cable Insulation Tester has been Activated curved aluminium to reflect light from designed and made by P.A.M. LTD. for detecting a controlled angle. High contrast ratios under and recording faults in the insulating coverings of normal room lighting. In robust wooden frames cables during manufacture. The system permits a for wall mounting $30^{\prime \prime} \times 22^{\prime \prime}, 40^{\prime \prime} \times 30^{\prime \prime} \& 48^{\prime \prime} \times 36^{\prime \prime}$ very high speed of operation. or to order.

P.A.M. LTD. Electronics Department

 combines the technique and experience of several companies long-established in the Electronic field, with the extensive modern production resources of P.A.M. LTD. Examples of recent work are illustrated.
P. P. H. LTTD

*Whichever type of service you need, you can save time and trouble, maybe money too, if you write or 'phone without delay.
P.A.M. LTD. Electronics Department

Merrow, Guildford, Surrey. Tel. Guildford 2211.

SOLDERING INSTRUMENTS \& ALLIED EQUIPMENT

 List No. 86CATALOGUES HEAD OfFICE SALES \& SERVICE ADCOLA PRODUCTS LTD. GAUDEN ROAD, CLAPHAM HIGH ST., LONDON, S.W.4.

TELEPHONES: MACaulay 3101
\& 4272

We've built

a service

from

A to W,

(X, Y, \mathbf{z}, will follow no doubt)
We hold stocks of many British instruments from leading makers. Our association with British manufacturers from (alphabetically speaking!) Advance to Wayne Kerr goes back many years and we maintain a comprehensive index and technical information service covering the electronic instruments of the world.
OUR FIRST CONSIDERATION-the right instrument for your application.
The relevant factors are not who makes it or where it is made, but will it do the job. At Retcar Street you can discuss the technical problems of instrumentation and the new techniques developed both in this country and abroad. If it is impossible to call-write or telephone about your particular problem or requirement and full information will be provided.

Some of the manufacturers.outside Great Britain whom we represent and for whose products we offer full service facilities are:

BIRD ELECTRONIC CORP. DYMEC
EMPIRE DEVICES
ELECTRONIC ASSOCIATES FAIRCHILD POLAROID (Oscilloscope Cameras) GERTSCH PRODUCTS INC. HEINZ GUNTHER NEUWIRTH HEWLETT-PACKARD

KAY ELECTRIC COMPANY
ARTHUR KLEMT
RADIOMETER
R. F. EQUIPMENT
S.I.D.E.R.

TEKTRONIX
VARIAN ASSOCIATES
(Microwave Division)
WAVEFORMS

Our importation service is second to none. Import licenses, treasury licenses for duty free importation, customs and clearance arrangements, checking on arrival, and most important of all implementation of the overseas manufacturers guarantee are taken care of without trouble to you.
\qquad

The new 'Etel ' four-inch instrument tube 4LP1 is the most economical high performance tube for dual trace oscillography.
Two traces are provided in the simplest and most economical mannerby means of a single gun with a beam dividing electrode. Sensitivity of $27 \mathrm{~V} / \mathrm{cm}$ at 3 kV is obtained by employing a post deflection accelerator. The 4LP1 is recommended for high quality general purpose applications. It has a flat face and side connections to the deflector plates. Write for full information to the address below.

MAXIMUM OVERALL LENGTH
151 inches

Capacitances

cx' $-x^{\prime \prime}$... .. $\quad 1.4$ to 2.0 pE
$c_{x^{\prime}}$-all
($x^{\prime \prime}$ earthed) ... 2.7 to 3.8 pF
(x earthed
2.7 to 3.8 pF
(x^{\prime} earthed) .. 2.7 to 3.8 pF
cy'-all .. 2.5 to 3.8 pF
cy"-all .. 2.5 to 3.8 pF
cy'-y"... ... $<0.1 \mathrm{pF}$

Typical Operating Conditions.
Va1 1.6 kV
$\mathrm{V}_{\mathrm{a} 2}$... .. 320 to 420 V
$\mathrm{V}_{\mathrm{a} 3} \quad . . \quad$.... .1 .5 kV
Va4 \quad... ... $\quad . \quad 3.0 \mathrm{kV}$
V_{g} (for cut-on) $\quad-40$ to -95 V
-Sx … ... $\quad 7 \mathrm{~V} / \mathrm{cm}$
Sy' $27 \mathrm{~V} / \mathrm{cm}$

New techniques demand new tools. Transistors, printed circuits, sub-miniature components can now be soldered more accurately, with much less effort, without risk of damage to adjacent components with the feather-weight pencil-thin Oryx. Available in seven models for continuous working up to $470^{\circ} \mathrm{C}$. Widely used by instrument makers, electronic equipment makers throughout the world. It will pay you to give the Oryx an extended trial on your own production lines.

For QUICKER . . BETTER Joints at less cost:

Write now for illustrated Folder and Price List.

from 25/subject EXCLUSIVE ORYX FEATURES

* Low voltage ($6-24 \mathrm{v}$.), absolutely safe, therefore ideal for female operatives.
\star Heats up in 35 seconds -cannot overheat during extended use * Uses renewable, interchangeable, corrosion-resistant bits
* Patented heating element has no ceramic spacers or mica insulators
* Ideal for battery-operated mobile service on cars, trucks, aircraft
\star Efficiency equal to mains-operated 80 -watt iron at fraction of weight and size
* Fully guaranteed against breakdown for twelve months

Yes, only $£ 23.2$.0 complete, bringing stereophonic Hi-Fi within the reach of everyone.
The equipment comprises two Speaker Enclosures and one Gram Unit on a Continental Bench.
The SPEAKER ENCLOSURES (left and right) have been designed for us by Goodman's Industries Ltd. for use with their 8^{*} Axiette. They cost $\mathbf{~} 5.17 .6$ (tax free).
The GRAM UNIT (centre) will take all turntables, most amplifiers, plus most radio tuners too. $\mathbf{£ 5 . 1 9 . 6 \text { (tax paid). }}$ They stand on a Continental Bench; price E5.7.6. 2
Also available in the Nordyk range is the matching RECORD UNIT, capacity 150 records and costs 44.17 .6 .

This

NORDYK HI-FI STEREO OUTFIT

will cost you only
 £23.2.0

complete!

Write NOW for leaflet and address of your nearest stockist to Dept. W.W. 93.

RECORD HOUSING

[^9]
ELECTRO METHODS みみみom LTD 1000006 OF STEVENAGE

Made under U．S．IIcence from Winchester Electronics Inc．

printed circuit

 connectors for the $0 \cdot 1^{\prime \prime}$ INTERNATIONAL STANDARD GRID| SOCKET
 CODE No． | NUMBER
 OF CONTACTS | CONTACT
 SPACING |
| :---: | :---: | :---: |
| BK 8 | 8 | $0.2^{\prime \prime}$ |
| BK 12 | 12 | $0.2^{\prime \prime}$ |
| BKM 17 | 17 | $0.1^{\prime \prime}$ |
| BKM 25 | 25 | $0.1^{\prime \prime}$ |
| BKM 17－8 | 8 | $0.2^{\prime \prime}$ |
| BKM 17－9 | 9 | $0.2^{\prime \prime}$ |
| BKM 25－12 | 12 | $0.2^{\prime \prime}$ |
| BKM 25－13 | 13 | $0.2^{\prime \prime}$ |

NOW AVAILABLE

Type D2 two－pole Stackable Connector
＊Alternative contact arrangements \star Self－polarising stacks $\star 0.3^{\prime \prime}$ centres for $0.1^{\prime \prime}$ Grid applications

Full technical data and illustrated leaflets forwarded on request：－

ELECTRO METHODS LTD．

Plug \＆Socket Division，
12－36 CAXTON WAY， STEVENAGE，HERTS．
Telephone：Stevenage 2110.7

Armstrong

Introduce another great addition to their range of radiogram chassis

Other models in our range of radiogram chassis. (See also our advertisement on page 173)
STEREO-TWELVE AM/FM - - 37 GNS JUBILEE AM/FM - - - - 29 GNS PB409 AM/FM - - - - 28 GNS

STEREO 44

RADIOGRAM CHASSIS

This latest model has been ingeniously designed for use as the basis of a complete monaural and stereophonic reproducing system. Whether you want stereo as well as monaural now, or monaural now and stereo later, it is the ideal solution. Even if you are not sure whether you will ever want a stereo system, the Stereo 44 provides full monaural facilities for radio, tape and gramophone reproduction and is an insurance against a possible change of mind about stereo in the future.

8 watts output, 4 watts on each channel. 20db negative feedback on each channel. Full FM band ($87-108 \mathrm{mc} / \mathrm{s}$) and medium band. - Stereo and monaural inputs for all crystal pick-ups. Stereo and monaural tape record and playback facilities. Mullard EL84 output valves. Separate wide range bass and treble ganged controls. Dual volume control. 3, 71 and 15 ohms speaker outputs on each channel. Satinised brass dial escutcheon and veneered facia board available. Size of chassis $12 \mathrm{in} . \times 8 \mathrm{in} . \times 7 \mathrm{in}$. high.

Post this coupon or zorite for descriptive literature and details of Home Trial | facilities, Hire Purchase Terms and Guaramtee or call at our Holloway Showroom for full, unhurried demonstration and professional advice on your installation. Open 9-6 weekdays and 9-5 Saturdays.

| NAME

ADDRESS
|
The name ARMSTRONG is the registered trade mark of
ARMSTRONG WIRELESS \& TELEVISION CO. LTD., WARLTERS ROAD, LONDON, N.7. Tel. NORth 3213

TRANSISTOR COMPONENTS

IFT.13, MINIATURE 1st and 2nd I.F. TRANSFORMER, $7 / 6$ each.
These transformers are wound in ferrite pot cores with an adjustable core for tuning. The aluminium screening can measures $17 / 32 \mathrm{in}$. $\times 11 / 16 \mathrm{in}$. high and is provided with two fixing clips. Nominal frequency: $470 \mathrm{kc} / \mathrm{s}$. $\mathrm{Q}=110$.
IFT.14, MINIATURE 3rd I.F. TRANSFORMER, $7 / 6$ each.
Construction and dimensions as IFT.13. Nominal frequency: $470 \mathrm{kc} / \mathrm{s}$. $\mathrm{Q}=130$.
TOC.1, MINIATURE TRANSISTOR MEDIUM WAVE OSCILLATOR COIL, $7 / 6$ each. Construction and dimensions as IFT.13. For use with FSA. 1 PRINTED CIRCUIT CHASSIS, punched complete, $8 /-$
FSA 1, MEDIUM WAVE FERRITE SLAB AERIAL, $6 / 6$ each.
Wound on a ferrite slab with easily adjusted inductance for ease of alignment. Nominal coverage: $540-1550 \mathrm{kc} / \mathrm{s}$. Overall dimensions: $4 \mathrm{in} . \times 7 / 8 \mathrm{in} . \times 3 / 16 \mathrm{in}$. Tuning condenser: Jackson " 00 " gang with internal screen. Aerial section: 208 pF . Oscillator section: 176 pF . Padder: 200 pF .

DRIVER TRANSFORMER, $10 /-$ each.
CIRCUIT DIAGRAM AND COMPLETE ASSEMBLY LAYOUT FOR BUULDING THE MAXI-Q 6 TRANSISTOR MEDIUM WAVE RECEIVER IS AVAILABLE AT 9d.
GENERAL CATALOGUE covering technical information on full range of components, $1 / 4 \mathrm{~d}$ in stamps.
TRADING TERMS for direct postal orders, C.W.O. plus appropriate postal charge. PLEASE SEND S.A.E. WITH ALL ENQUIRIES.
DENCO (CLACTON) LTD. (Dept. W.W.), $357 / 9$ Old Road, Clacton-on-Sea, Essex STOP PRESS: WF1388, PUSH PULL BIAS AND ERASE TAPE DECK OSCILLATOR COIL FOR THE NEW MULLARD TYPE "C" TAPE AMPLIFIER, PRICE 29/6d.

FOR BACK RACK MOUNTING

$\text { AILABLE IN } 8 \text { WAY }$	WAY 32 WAY
GOLD PLATED CONTACTS	WORKING VOLTAGE-750 D
POSITIVE POLARISATION	CONTACT RESISTANCE-LESS THAN . 005 OHM
SELF ALIGNING	current rating-5 amps per contact
EXCEPTIONALLY LOW INSERTION	MOULDINGS-RED NYLON LOADED
AND WITHDRAWAL FORCE	FLOATING BUSHES ON SOCKET MOUNTING PLATES ASIIST SELF ALIGNMENT

ALL TYPES AVAILABLE FOR PANEL MOUNTING WITH MK II COVERS

MK II COVERS MADE FROM SOLID DRAWN ALUMINIUM SILVER ANODISED FITTED WITH LATCHES AND REVERSIBLE CABLE CLAMP
Send for full details to -

YOUR OPPORTUNITY!!!

UNBEATABLE . . . UNREPEATABLE

 BARGAIN OFFERS IN HI-FI of USED, SHOP-SOILED and DEMONSTRATION EQUIPMENTLOUDSPEAKERS IN CABINETS
Pamphonic Victor Junior
Wharfedale 3 speaker system sand fil led corner baffle
B.J. Corner Speaker
R.C.A. Speaker

Pye Concerto
Lowther Accousta de Luxe Axiette
Lowther PW. 2 cabinet only
Philips corner sand filled and is watt
amplifier

AMPLIFIERS

Pamphonic Model 1004
Pamphonic Model 4005.
Lowther LL. 16
Lowther L.L. 10
Lowther Pre-amp MarkI Lowther RPB. (tape unit) R.D. Minor Mark. Mark R.D. Minor Mark II
E.A.R. Mullard $5 / 10$
E.A.R. Triple four Armstrong A10 and control unit Collaro Mark II Tape Deck Wyndsor Regent Tape Recorder Leak FM Tuner
Sound Sales AM tuner Acos crystal pick-up turnover cartridge Acos Black Shadow Braun Radio with VHF Piano key switching................................ Vidor FM/AM Battery portable RGD Radiogram

SPECIAL OFFER

Period High Fidelity Regency style, speaker enclosure, and equipment cabinet fitted with Garrard Arm, Tannoy cartridge, Garrard 301 transcription motor, Quad Mark II amplifier, Quad FM unit, and Goodman speaker. Only slightly marked. List price over 1250 . Sale Price $\$ 1980_{0}$

Ferranti Television 17in HMV Television $2 l i n$.

44500 Decea Radio $\begin{aligned} & \text { Magnafon Tape Recorder }\end{aligned}$
Lenco Arm Tannoy cartridge (diamond) B.J. Pick-up Goldring cartridge Collaro RC. $54 \quad 3$ speed gram motor autochange 175
627
10 $E 27100$ 42 gns. two decca heads......................... 810 0

SECONDHAND EQUIPMENT

B.J. Corner Speaker
$62710 \quad 0$ Philips Tape Recorder Tele Link Tape pre-amp with power ele Link Tape preamp wit
W.B. Bass reflex speaker cabinet fitred 1012 speaker and T10 unit and cross1012 speaker and 710 unit and cross-
over $\ldots 10$................................. Baker speaker fitted with column E10 10 ©

Trix T/41 Amplifier and control unit..... \& 418 is 6

Your Specialist Shop

CITY SALE \& EXCHANGE LTD

93-94 FLEET ST., LONDON, E.C. 4
Phone: FLEet Street 9391 -2

TAKE YOUR PICK

Our wide range of capacitors, incorporating all the latest developments, are described fully in these new leaflets... SEND NOW for COPIES

DALY has succeeded in maintaining full capacity values and working voltages in more compact designs, specially suited to ultra modern equipment :-

DALY

ELECTROLYTIC CAPACITORS

Condenser Specialists for over 20 years.
DALY (Condensers) LTD., WEST LODGE WORKS, THE GREEN, EALING, LONDON; W.5. Phone: Ealing 3127-8-9. Cables: Dalcyon, London

a new

range of

Silicon

Rectifiers...

The SIMET ' G ' series of silicon rectifiers will shortly be in production by Plessey. The new rectifiers are based on the designs and manufacturing techniques of the General Instruments Corporation, U.S.A., who produce one of the most comprehensive ranges of mediumpower rectifiers, including a complete coverage of all military types.

Plessey manufacturing resources, allied to the established General Instruments design, will ensure a component which is virtually indestructible and capable of long-term and stable operation at temperatures up to $150^{\circ} \mathrm{C}$.

AVAILABILITY

Rectifiers for operation in the range $100-1,000$ peak inverse volts and carrying a current of $400-750 \mathrm{~mA}$ half-wave, $0.8-1.5 \mathrm{amps}$ full-wave or $1.1-2.1 \mathrm{amps}$ in 3-phase full-wave circuits are available in sample quantities now, and in production quantities shortly. Other types will follow the establishment of this medium-power range.

SIMETR

WRITE FOR LITERATURE NOWI
Engineers and senior executives are invited to write for descriptive technical literature.

The new rectifiers will replace the " A " series which have been successfully used in a number of equipments, and will be interchangeable in all respects.

THE PLESSEY COMPANY LIMITED
Chemical and Metallurgical Division
TOWCESTER • NORTHANTS

Switch

to Cold Cathode Tubes

for the most modern electronic switching and control systems

Hivac cold cathode tubes provide flexibility, economy, long life and reliability
the range includes
diodes
stable diodes
difference diodes
triodes and
tetrodes
our Technical Service Department is ready to provide further details of thelr characterlstics or application.

CHECR THAT GENERATDH

WITH A JASON CRYSTAL CALBRATOR
 CC. 10

The exact frequency of a generator may be found by connecting the output to the Crystal Calibrator when the self-contained audio-section and loudspeaker allow marker pips to be heard directly. These marker pips are generated at $10 \mathrm{mc} / \mathrm{s} ., 1 \mathrm{mc} / \mathrm{s}$., $100 \mathrm{kc} / \mathrm{s}$. and $10 \mathrm{kc} / \mathrm{s}$. so that generators in the range of $10 \mathrm{kc} / \mathrm{s}$. to $250 \mathrm{mc} / \mathrm{s}$. may be checked. The basic accuracy of 0.01% comes from the $1 \mathrm{mc} / \mathrm{s}$. crystal oscillator.
To test the generator, it is therefore only necessary to know the frequency approximately at one point. In the absence of other methods, a wavemeter gives the best identification since it ignores harmonics. For example, if the unknown generator has a frequency of approximately $20 \mathrm{mc} / \mathrm{s}$., the approximate frequency may be foun: with the $10 \mathrm{mc} / \mathrm{s}$. harmonic, the crysta! and counters buing switched off to avoid any confusion The crystal orcillator is then switched in, and the harmonics of $1 \mathrm{mc} / \mathrm{s}$. allow exact calibration of the scale. The $100^{\circ} \mathrm{kc} / \mathrm{s}$. output is then-added to allow finer calibration between the $1 \mathrm{mc} / \mathrm{s}$. intervals.
 either as a ready built instrument or kit for assembly by the purchaser. Details of this and other electronic test equipment by fason gladly sent on request.

For HIGH SENSITIVITY! HIGHEST FIDELITY!

 MAXIMUM RELIABILITY! REASONABLE COST!
THE 'CONCHORD'

A HIGH FIDELITY 30 WATT AMPLIFIER INCORPORATING PRE-AMPLIFIER AND TONE CONTROLS

EMPLOYING THE LATEST MULLARD EL34 OUTPUT VALVES IN ULTRA LINEAR OPERATION AND HIGH GRADE SECTIONALIZED OUTPUT TRANSFORMER
Size approx. $13 \times 8 \frac{1}{2} \times$ Tin. Stoved gold hammered finish. Weight 141 b . For operation on $200-250$ v 50 c.p.s. A.C. mains. Or other voltages to order. : A shrome-handled cover is avallable at 25/-.

The Following Outstanding Test Figures include Preamplifier and Tone Control Stages

FREQUENCY RESPONSE.
(Exc. Rumble Filter). ± 1 d.b. 20-20,000 c.p.s. RUMBLE FILTER.
$12 \mathrm{d.b}$. per octave below $50 \mathrm{c} . \mathrm{p} . \mathrm{s}$
BASS CONTROL
Continuously variable $+12 \mathrm{d.b}$. to $-12 \mathrm{d.b}$. at 50 -.p.s.
TREBLE CONTROL.
Continuously variable $+12 \mathrm{d.b}$ to $-6 \mathrm{d.b}$. at 12,000 c.p.s.
HUM LEVEL.
Referred to full output $-73 \mathrm{~d} . \mathrm{b}$.
MAXIMUM POWER OUTPUT
In excess of 33 watts

MAINS POWER CONSUMPTION.

TABIL
Entirely stable with capacity of .08 mfd . in Entirely stable with capacity
parallel with loudspeaker load.
EFFEC:IVE OUTPUT IMPEDANCE. 0.9 ohms across 15 ohm terminals.

INPUT IMPEDANCE.
Both inputs 500 k plus 10 pfd.
NEGATIVE FEEDBACK.
Total 28 d.b
SENSITIVITY.
Input (1) 20 millivolts for rated output. Input (2) 200 millivolts for rated outpue.

HARMONIC DISTORTION.
$0.05 \pm$ at 10 wacts. $0.1 \pm$ at 20 watts.
OUTPUT SOCKETS.
Provide matchangs for 3 ohm and 15 ohm toudspeakers.
EXTERNAL POWER SUPPLY.
$30 \mathrm{C} v .30 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .1 .5 \mathrm{a}$. for radio tuner VALVES.
B.V.A EF86, EF86, ECC83, EL34 EL34, GZ34
Due to use of Mullard EF86 valves microphony is virtually nil
As in our extremely successful-Diatonie As in our extremely successful Diatonic two individually controlled nputc pro-
vide mixing acilities .or microphone and vide mixing acil
:ram. etc. ete

ALSO AVAILABLE:

The L45. A compact High Quality

 4-5 watt amplifier.Size approx. j-5-S娄n. high. Sonsitivity is 28 milivolts so that the input socket can be used for either microphone or cram. be used for either microphone or used are
tape, radio tuner, etc, B.V.A. valves used tape, radio tuner, etc. B. C.A.
ECC83. EL84. EZ90 Controls are: Voi. ECC83. EL84. EZ90 Controls Ire: Vol. controls , rovide full compensarion for lons controls records. Output masching for 3 ohm playing records. Output masching for 3 ohm oudspeaker. TAPE DECK AMPLIF'ER THE LT45 TAPE DECK AMPLIF'ER A complece unit (power pack and oscillator incorporatod) ready or zonnection to A.C mains. 3 ohm loudspeake and practically any make of deck. Negacive feedback equal zation adjustmens by or $3 \frac{1}{2} .7 \frac{1}{\frac{1}{2}}$ and 15 in . per sec Retail price 12 ans.
THE LG3 GRAM AMPLIFIER. Overal! size $6 \frac{1}{4} \times 4 \frac{1}{2} \times 2 \frac{1}{2} i n$. Controls: Vol, and ionc (with mains switch). Output for $2-3$ ohm loudspeaker All above for 200-250 v. SC c.p.s. A.C. mains. Retail price 55/9 L50 50 WATT AMPLIFIER, Size approx $13 \times 9 \times 7 \mathrm{in}$. S ansitivity $25 \mathrm{~m} . \mathrm{v}$. Outpuls for 3 and 15 ohm epeakers. Retail price 19 gn :
LIO 16.12 WATT HIGH FIDELITY AMPLIFIER with separate pre-implifier. Retail price 15 ans.
L3/3 STEREOPHONIC AMPLIFIER. Sensitivity $150 \mathrm{~m} . \mathrm{y}$. Output 3 watrs on each Sensitivity 150 m.v. Ou
channel. SEta STEREOPHONIC AMPLIFIER. Sensitivity $10 \mathrm{~m} . \mathrm{v}$. Output 5 watts on eich Sensitivity $10 \mathrm{~m} . \mathrm{v}$. Output 5 wates on eieh
channs. channs.

Retall afice 11 ans.

Tel: Leeds 630.126
ELECTRON WORKS, ARMLEY, LEEDS

DOUBLE-ENDED STAINLESS STEEL VACUUM OVEN

\star Made throughout in polished stainless steel.
\star Single action door openings.

* Rectangular with shelf spacings to suit.
* Double ended controls.
* Electrical interlocking of air inlet and isolation valves.
\star Outer cover hermetically sealed.
* Temperature range $0^{\circ}-300^{\circ} \mathrm{C}$ or equivalenti F.
* Temperature Control: Normal $\pm 7 \frac{1}{2}^{\circ} \mathrm{C}$. Special \pm IC
\star Internal Spacing Tin. x Bin. x I8in. (Can be altered to special requiremints).
* Vacuum Range: To 10-4.
* Respective Vacuum Gauges incorported
* Automatic air inlet valve on Backing Pump.
* Visual Indicators and fuses on all switches.
* Flanged for fitting into Dry Box.

We design and manufacture Ovens to Customers' special requirements. Should you have any problems in this field our Technical Department is always willing to help you solve them.
Vacuum Ovens with temperatures of up to $600^{\circ} \mathrm{C}$ are also mannfacture by us on similar lines but with Sectional Heating and Water-Cooled Ends.

VACWELL ENGINEERING CO. LTD.

ABOVE OVEN: Ult. Vacuum Range: $\mathbf{1 0}$ Microns Temperature Control: $2^{\circ} \mathrm{C}$.

WILLOW L.ANE • MITCHAM • SURREY PHONE: MITcham 82π (3 lines)

A service for Designers

(9)

The possibility of a component change - due to shortage of supplies, increased costs or failure to meet specific conditions - is a problem facing every designer of electronic equipment. However, one basic component can be 'tailor-made' from the start, for LAB will supply the precise type of Resistor required, ex stock and at the right price. Write for full technical data,-prototype samples and price schedules to:-

THE RADIO RESISTOR CO. LTD:,

50 ABBEY GARDENS, LONDON, N.W. 8
Telephone: Maid Vale 0888

*The ubiquitous blue (1%) grey (2%) "HISTABS"
Do you KNOW
THAT the whole of the vast range shown
under (3) can be delivered ex-stock in all preferred values.

THAT Cracked Carbon Resistors (2)
are more economical in the $\pm 5 \%$
range than Solid Carbon.

We have concentrated for many years on the design and construction of communications receivers and it naturally follows we have acquired a wealth of knowledge, covering the theoretical, practical and operational aspects. It is significant that, over the years, our total production of communications receivers exceeds 30,000 . The advantage of our specialised experience is at your service.
Your attention is drawn particularly to the model 730/4, which combines a first-class performance with robustness of construction. It is used extensively by the British Government and in profes sional communications systems throughout the world. The following important features apply:-
\star Excellent all-round technical performance.
\star Ease of tuning: minimum operator fatigue.
\star High reliability under all conditions.
\star Peak performance well maintained with the minimum of attention, over a long period.
\star Intended for 24 hours-a-day operation.
\star Excellent frequency stability-crystal control available where extremely high stability is required.

* Robustly constructed and capable of standing up to hard usage anywherc.
\star CV valves in all positions.
\star Easy to service--spares readily available.
Please write for complete specification, price and delivery details.

B7G and B9A

* LOW LOSS-GRADE 1.
* FULLY TROPICALISED-CLASS H 1.
* SILVER PLATED PHOSPHOR-BRONZE CONTACTS.
P.T.F.C.E. MOULDINGS HAVE SIMILAR PROPERTIES

TO P.T.F.E. BUT THEY ARE LESS COSTLY TO PRODUCE. FULL INTER-SERVICE TYPE APPROVAL TO Z.560092-Z.560094-Z.560095-Z.560134
send for full tochnical detalls to:-
MoMURDO INsTRUMENT OO. LTD., VIOTORIA WORKS, ASHTEAD SURREY

GERMANIUM POWER DIODES

The English Electric Valve Company announce a new addition to their range of Germanium Power Diodes. This is the VA7I9 which at its $35^{\circ} \mathrm{C}$ rating of 20 amps has a forward drop of only 0.5 volt.
These diodes are extremely efficient, mechanically robust, moisture proof, completely reliable and low in cost.
The diodes can be supplied in stacks with cooling fins, as illustrated, for almost any circuit arrangement.
The following list gives some typical examples of stacks together with maximum R.M.S. input and D.C. output figures:-

TYPICAL RECTIFIER STACKS
(Operation at $35^{\circ} \mathrm{C}$ Ambient)

CIRCUIT	STACK TYPE NO.	RMS INPUT VOLTS	$\begin{aligned} & \text { DC } \\ & \text { VOLTS } \end{aligned}$	OUTPUT AMPS	LIST PRICE \star
SINGLE PHASE FULL WAVE C.T. (2 Diodes)	$\begin{aligned} & 19 \mathrm{E} 2-1.1 \\ & 19 F 2-1-1 \\ & 19 \mathrm{G} 2-1-1 \end{aligned}$	$\begin{aligned} & 28+28 \\ & 21+21 \\ & 14+14 \end{aligned}$	$\begin{aligned} & 25 \\ & 18 \\ & 12 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	£10. 0.0 d £ 7.15.0d £ 5. 7.6d
SINGLE PHASE BRIDGE (4 Diodes)	19E3-1-1 19F3-1-1 19G3-1-1	$\begin{aligned} & 56 \\ & 42 \\ & 28 \end{aligned}$	$\begin{aligned} & 49 \\ & 37 \\ & 24 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & £ 20.0 .0 \mathrm{~d} \\ & £ 15.10 .0 \mathrm{~d} \\ & £ 10.15 .0 \mathrm{~d} \end{aligned}$
THREE PHASE HALF WAVE (3 Diodes)	$\begin{aligned} & \text { 19E4-1-1 } \\ & \text { 19F4-1-1 } \\ & \text { 19G4-I-1 } \end{aligned}$	Phase Line 32.4 56 24.3 42 16.2 28	$\begin{aligned} & 37 \\ & 28 \\ & 18 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & £ 15.0 .0 \mathrm{~d} \\ & £ 11.12 .6 \mathrm{~d} \\ & £ 8.0 .0 \mathrm{~d} \end{aligned}$
THREE PHASE BRIDGE (6 Diodes)'	19E5-1-1 19F5-1-1 19G5-I-I	$\begin{aligned} & 56 \\ & 42 \\ & 28 \end{aligned}$	$\begin{aligned} & 75 \\ & 56 \\ & 37 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \\ & 56 \end{aligned}$	£30. 0.0d £23. 5.0d £16. 0.0d

Arcolectric

SWITCHES \& SIGNAL LAMPS
T.225: Miniature Slide Switch Ideal T.V. mains switch

T. 225
S.L.I66: Very small low cost mains neon indicator
T.280: Sensitive Snap Action Switch Popular switch for tape recorders
T.626: Double pole 3-AMP switch with tags to fit printed circult boards

T. 280

Samples to manufacturers
For design purposes
AT ONCE-WITHOUT CHARGE

ARCOLECTRIC
 switches.eto

Tel.: MOLESEY 4336

M. R. SUPPLIES, Ltd.

Universally reoognised as suppliers of UP-TO-DATE MATERIAL whioh does the job properly. Instant delivery. Carelul pecking. Satisfaction assured. Brand new goods. Prices nett.
8YNCRRONOUS ELECFRIC CLOCK MOVEMENTS-agaln we are able to satisfy a great demand. $200 / 250$ volts 50 cycles. The mosi compact, enduring avd sjlebt running unit yet produced-right ap to date. Fitted with oplndles for Hours, Mia-
utea and Secondg hands. Central hule fixing, allowing up to fin. thickness of dial. utes and Seconds hands. Central hyle fixing, allowing up to fin. thickness of dial. of three hands to fit, iti good style, for $5 / 7 \mathrm{in}$. dlam, $2 / 6$ set, for $8 / 10 \mathrm{in}$. dial. 3/6 vet. MINIATURE AMMETERS, acaled $4-0-4$ ampa D.C.-charge and diecharge. Dia $1 \nmid n$. diameter, round fush mount, many uses luclude model raitways, $9 / 6$ (des. $1 /-$). SUPPLY METERS (KIlowatt Hour). $200 / 280$. 80 a Usual 5 -lnder dial from 1/100th cant. Brand new by best makers. Loading 5 ampa. L.R. Bemarkable offer, $47^{\prime} 6$ (des. 3/6).
ROTARY TRANSFORMERS. Inpuf 12 ₹. D.C. Output op to 385 F . D.C., 12 watteGuitable for unlversal shavers from car battery, 15/- (des. 2/-).
SYNCERONOUS INDUCTION MOTORS (G. E.C.). 220×240 v, 50 a 1,500 r.p.m.
AIR BLOWERS, fitted B.T.H. Indnction motor, $220 / 250 \vee$ (der. 2/6). 150 CFM (free air), 60 CFM ai 1 inin. W.G. Overall length 8ta. Dla. Intet 3yin., outlet 2in. Efticient, quiet running units, very linutted supply, esi/15/- (des. 3/6), HIGH DUTY AIR CONDITIONING FANS (Woods, G.E.C). The highly effelent Aerofoil Two-stage Fans, each fitted with two capacitor/induction motors, 220/250 V. 50 c 1 ph ., and two 12 in . disa. 7-bladed impeliers, $2,800 \mathrm{Ip} . \mathrm{m}$. The whole unit contained in cylindrical housing 28in. long by 15 in dia, Duty 1,100 C.F.M (free These remarkable unite are Hsted at approz. 275 each. We have secured a sery Hmited oupply, electrically and mechanically perfect, new, which we are eelting at exs each (des. U.K. 20/- each).
MINLATURE SERIES WOUND MOTORS. $200 / 250$ v. A.C.ID.C. Approx. 1/75th E.P. 日t 3,000 r.p.m. $81 z e$ approx. 3 in . by 31 n . by 2 in . and ideal for projector cooling fans, stirrers, etc. Open type, fitted suppressor, $25 /$ ($($ des. 1/9).
MAINS RELAYS (Mague lie Devices). 230 v . A.C. coll, Hith 2 -pole change over 4 amp. awitching. Brand new, compect units, sppros. 2 jin. by igin. by lin LmOPERATION COUNTERS (mechant
action, counting up to 6,000 . One rev. Ber count motor speeds. Counting forwards and backwards-suitahle for tape recorder and tim work. Bize 3 ifin $\times 1 / 1 \mathrm{n}$. equare. Very thalted quanty, $38 / 6$ (despatch
1/6). 250 . A.C. indurtion motor, ellent running, no interference. With mounting frame $55 / 5 / \mathrm{c}$. $10 / \mathrm{b}$. impeller, 240 cu . fis./min., $25 / 12 / 6$. Also new minor model with 6 in . Impeller, 75 cu . Ti. /min., E4/12/6 (despatch of any one $3 /-$).
We invite enquiries tor Eleotric Pumpa, B.P.L. Measuring instrumenta, Variable Transformers-ummediats delivery.
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1 (Telephone MUS eum 2958)

EDDYSTONE

COMMUNICATIONS RECEIVER

Tho "840A" recelver is a geueral purpose model for professional and amateur excelfent all-round performance. The tuning mechungala incorporstes high redicllon ratlo gearing, bandapread being provided by an auxdiary acale. The four tuning ranges are as followe:-

Band $130 \mathrm{Me} / \mathrm{s}$ to $10.5 \mathrm{Me} / \mathrm{B}$ Band
Band 4 \qquad $3.8 \mathrm{Mc} / \mathrm{m}$ to $1.37 \mathrm{Mc} / \mathrm{s}$ The tuning dial is callbrated in trequency to an accuracy better than 0.5%. The Amsteur bands are distinctiy marked in blue and the shortwave broadcast bauds in red, both on the basis of the Laternational allocatlons made at the Atlantic Clty Conference. It is of interest to note that range 4 covers the $500 \mathrm{Kc} / \mathrm{s}$ (300 metres) sblpplug and distress band. The recelver works equally well of A.C. or D.C. malue suppiles (110 and $200 / 250$ volta) and special attention has been pald to high ineulation CASH PRICE 255
or 12 monthly payments of e5.
Carriage paid per passenger train

5I, COUNTY ROAD, LIVERPOOL, 4 Telephone: ANTREE 1445. ESTAB. 1935

FOR VERTICAL OR HORIZONTAL CHANNELS Five-element lolded dipole array complete with mounting arm and bracket.
$353 \quad 32 \%$

FOR VERTICAL CHANNELS
Band I " V " electronically coup led to 5 Band IIt elements; com plete with mounting arm and bracket.
Independently variable directivity on both bands.

HLS23 42\%
Optional extra for Band III Addex FM/L 7/6.

Three-element folded dipole array complete with mounting arm and bracket.
 FOR HORIZONTAL CHANNELS

ML513 42'

THE

 VantemnaThe ideal "SECOND AERIAL " - enabling the Television Receiver to be used in any room.

Individually packed in an attractive display carton.

Read. Design No. 888,501

EXPORT RANGE

A specially designed range of T.V. and F.M. aerials, Incorporating many new and exclusive teatures, is avallable for overseas markets.

* Horizontally or Vertically Polarized Single or Stacked Yagi Arrays.
\star Broad Band and all-band types for International Frequencies.
* Models for 75 or 300 ohm inputs.

Supplięd oniv through Antiference Appointed Wholesalers.

ANTIFERENO

WEYRAD P. 50 TRANSISTOR COILS AND I.F. TRANSFORMERS

FOR 2-WAVE PORTABLE WITH PRINTED CIRCUIT AND ROD AERIAL

P50/IAC M.W. OSCILLATOR COILS. For

176pF TUNING CONDENSER PRICE 5'4d.
P50/2CC Ist and 2nd I.F. TRANSFORMER.
$470 \mathrm{Kc} / \mathrm{s}$ OPERATION. " Q " $=150 \ldots \ldots . . .$. PRICE $5^{\prime} 7 \mathrm{~d}$.
P50/3CC 3rd I.F. TRANSFORMER. $470 \mathrm{Kc} / \mathrm{s}$ OPERATION. "Q "= 170 PRICE 6/Od.

RA2W L.W. and M.W. ROD AERIAL 6 in . long, flying-lead connections. For 208pF TUNING CONDENSER.

PRICE12/6d.
LFTDI DRIVER TRANSFORMER. Split Secondary Type, fully enclosed. With 6 connecting tags PRICE17/6d.
PCAI PRINTED CIRCUIT PANEL, $2 \frac{3}{4} \times 8 \frac{1}{4} \mathrm{in}$. ready drilled with component positions and references printed on rear

WEYMOUTH RADIO MFG. CO. LTD., CRESCENT STREET, WEYMOUTH, DORSET

TEST SETS OF QUALITY

THE ELECTRICAL INSTRUMENT CO. (Hillington) LTD.

HILLINGTON GLASGOW

The illustration shows mouided TV Cabinet Backs made for United Components Lid. and for Pye Lid. Their strength, dimensional stability and good appearance moke them vital components of the cabinet design.
FIBRE FORM is a new material based on the combination of strong cellulose fibre with synthetic resins. There are other reinforced plastics, but FIBRE FORM mouldings are not only LIGHTER and
STRONGER, they are CHEAPER. STRONGER, they are CHEAPER.
Leading manufacturers use FIBRE FORM for TV portable cabinets portable radios. TV cabinet backs (right up to $2 l i n$. console model), radiogram backs TV tube end protectors, etc., etc.
WE CAN IMPROVE YOUR PRODUCTS AND REDUCE YOUR COSTS

FIBIRE FORM LIMITED

GARRATT MILLS, TREWINT STREET, LONDON 8 8.W. 18
Tel.: Wimbledon 3946 and
LOWER GORNAL, Nr. DUDLEY, WORCS.
Tel.: Sedgley 3486

" BELLING-LEE" NOTES CONTACTS PLUGS and SOCKETS

3 rd of a series

In the last issue we dealt with single plugs and sockets and we have a few more general notes applicable to both single and multi-plug assemblies. A resilient socket must always be closed below the diameter of the bottom limit of the appropriate pin. A pin on the top limit must not, after repeated insertions, distort a socket on either the top or bottom limit to impair its contact resistance with a pin on the bottom limit. The force required to insert a pin will be greatest at the point of entry, before the socket has accommodated itself to the pin diameter.

Now we propose to refresh our

memories regarding multi-way plugs and sockets. The difficulties in manufacture and gauging are considerable, but are generally eased by designing the component with the plugs and/or sockets floating, but the float must be controlled, so for practical purposes a locating dowel is essential, and dimensionally must be carefully related to the layout of the plugs and/or sockets, so that at no time may a pin find itself down the outside of a socket. Where the component takes the form of Unitor, i.e., a plug and socket fixed to two chassis units, the fixing hole must be very accurately dimensioned. The contact pressure between any pin and its socket need only be in the region of a few ounces, but the accumulated pressures set up in say a 24 -way Unitor, with the inevitable disposition of plugs and sockets, although within manufacturing limits, may result in an extraction force in the region of a pound per pin, which in the case of a free member really calls for some mechanical aid for disconnection. This is often associated with the cover.
Every effort is taken by manufacturers to reduce these pressures consistent with the retention of low contact resistance, because if thev
are too high there is great danger in the soft silver or gold plating being removed, leaving the part liable to corrosion and high resistance.
Some systems of printed circuit connectors use the actual printed board as the plug, in such cases great care must be taken that the pressures involved will not damage the deposited copper contact bars.
A number of factors come in here, e.g., is the component likely to be disconnected many thousands of times or only occasionally?
Many types of multi-way plugs and sockets provide two pins of larger diameter to carry heater currents, and there must be adequate spacing between pins, their associated sockets and the chassis for the voltages likely to be involved.

The material used as the insulant must be considered in relation to possible applications, anti-tracking, moisture resistant, high softening point, etc. Capacity or screening between certain pins, or pins and chassis may have to be considered.
The question of sealing will be dealt with generally later on in this series.
The materials from which plugs and sockets are manufactured are most important. When plugs are solid, brass is adequate, suitably protected. If sockets are turned, again brass is suitable, but care must be taken to ensure that the protective plating finish "throws" to the bottom of the socket, otherwise corrosion will commence there and spread upwards. There is an increasing tendency to favour sockets pressed from beryllium copper suitably treated, this can be hard and springy, and consideration must be given to the presence of burrs which can quickly remove protective surfaces in the plug. Leads will have to be soldered to the back end of both plugs and sockets, and it is good practise to present these suitably finished so that they will easily accept solder. When a bucket spill is provided, this should be tin dipped or silver plated to the bottom of the bucket, so that the conductor will "wet" with solder all the way. Spills left silver plated may be further protected by petroleum jelly dip. With pressed sockets, care must be taken to prevent solder from running, and damaging the contact surfaces.

In the next issue we will deal with coaxial plugs and sockets.

Advertisement of
BELLING \& LEE LTD.
Great Cambridge Rd., Enfield, Midds Written 11 ih Jmuarv, 1959

"BELLING-LEE"

L. 1409 Lead-through Flexible Terminal Block

Where electrical connections begin and electronic wiring ends, there has been a "no man's land" of improvisation. The new "Belling-Lee" lead-through flexible terminal block provides a solder spill termination at the back of a panel for the electronic technician and a screw terminal for the electrical wireman. For process control units, counter devices, amplifiers and a wide range of other uses, from laboratory to production and factory maintenance, this new component outmodes anything so far offered for termination where fine wiring ends and coarser wiring starts.
It is a 12 -way block, flexible, to fit uneven surfaces or shaped contours and is unbreakable. It can be sub-divided with a knife. Screw terminals are secured against accidental withdrawal and loss, even when upside down, and are vibration resistant.
Conservatively rated at 2 amperes, 250 v . A.C. (350v. D.C.) terminals are voltage proof at 2000 v . between adjacent terminals and chassis. Breakdown voltage is 3500 v . and 3000 v . D.C. (min.) between terminals and chassis. Permissable voltage based on creepage distance (B.S.415) between terminals 1135 v . peak; between terminals and chassis 320 v . peak. Capacitance 0.4 pF between adjacent ways and 0.7 pF to chassis. The material is tracking resistant.

See also p. 101.

Most "Belling-Lee" products are covered by patents or registered designs, or applications therefor.

Telephone: Enfield 3322 : Telegrams: Radiobel, Enfleld

DP4

 MICROPHONE

The new Grampian high output pressure type dynamic Microphone has a uniform, wide range, frequency response which extends from $50 \mathrm{c} / \mathrm{s}$ to $15,000 \mathrm{c} / \mathrm{s}$. Designed to fulfil the needs of Public Address, Wire, Tape and Disc Recording, Call Systems, and communication equipment, this lightweight Microphone can be used close to the lips without undue frequency emphasis.

Low, medium or high impedance models are available together with a complete range of stand adaptors, stands, swivel holders, and witch assemblies. Pack consists of Microphone (low impedance) with lead and plug, holder and swivel, adaptor and base. Weight complete in box, $2 l \mathrm{~b}$. 9 oz. (1.16 kilo). Size $10 \frac{1}{4} \times 5 \times 2 \frac{\mathrm{in}}{}$.

25 ohms-86 db below 1 volt/dyne/cm. 600 ohms -70 db below 1 volt $/$ dyne $/ \mathrm{cm}$. 50,000 ohms- 52 db below 1 volt/dyne/cm. ${ }^{2}$

-PEM A M S TO SPECIFICATION

POST OFFICE TYPE 3,000 and 600 RELAYS

Specialists in tropical and Services jungle finish.
Guaranteed to full A.I.D. and I.E.M.E. standards
Prompt Deliveries. Prototypes within 24 hours.
Post Office approved. All relays guaranteed made in our own works. P.Y.F.E. insulation now available

SIMMONDS

Manufacturers to H.M. Government Departments and leading Contractors L. E. SIMMONDS LIMITED, 5 BYRON ROAD, HARROW, MIDDX. IELEPHONE: HARROW 7797/9 TELEGRAMS: SIMRELAY HARROW

TRANSFORMERS for every requirement

 Electronics Transmitters Radar
 Test equipment M.V. discharge tubes R.F. heating L.V. heating

Range 1 volt- $35 \mathrm{~K} . \mathrm{V} . \quad 1 \mathrm{M} / \mathrm{A} .-1,000 \mathrm{amps}$ STANDARD OR TROPICAL FINISH

We are on Admiralty and Ministry of Supply lists and A.I.D. approved

Enquiries to:

STEWART TRANSFORMERS Ltd.

Quartz Crystals of any shape and size cut and ground precisely to specification and coated, if required, with Gold, Silver or Aluminium, etc.

:ROOKES CRYSTALS LTD

Suppliers to Ministrv of Supply, Home Oifice, B.B.C., etc. LASSELL STREET. GREENWICH, S.EIIO. Phone Greenwich 1828/4482.
Grams: Xtals, Green, London,

P.O. Type 3000

The most versatile relay available today. coils up to $120,000 \Omega$ Spring Set Insulation üp to 5 KV

600
Type 600 Polarised A.C. Relays High Speed
Uniselectors Key Switches Latching Relays Magnetic Counters Miniature Sealed Relays

Consult the

 Specialists!

For unprecedented performance and versatility

Marconi Instruments, renowned for more than 20 years as designers and manufacturers of electronic measuring equipment, provide a balanced and comprehensive range of instruments to answer the widest variety of voltage measuring problems. The TF ro4IB is the latest addition to this range -a versatile, precision voltmeter offering an unprecedented performance in the measurement of a.c. voltage, d.c. voltage, and resistance.

For a.c. measurement the frequency range extends from $20 \mathrm{c} / \mathrm{s}$ to $\mathrm{I}, 500$

Optional accessories include multipliers for $u p$ to 2 kV a.c. and 20 kV d.c., a T-connector for measurements on coaxial lines, and a wide-band coaxial dummy load. Send for leaflet G 145.

AM \& FM SIGNAL GENERATORS • AUDIO \& VIDEO OSCILLATORS FREQUENCY METERS - VOLTMETERS • POWER METERS DISTORTION METERS . FIELD STRENGTH METERS TRANSMISSION MONITORS . DEVIATION METERS OSCILLOSCOPES, SPECTRUM \& RESPONSE ANALYSERS Q METERS \& BRIDGES

Please address enquiries to MARCONI INSTRUMENTS LTD, at your nearest office:

Marconi House, Strand, London, W.C. 2
Telẹphone: COVent Garden 1234
Midlands:
Marconi House, 24 The Parade, Leamington Spa Telephone: 1408

LONDON'S 5-STAR HI-FI STOCKISTS

Complete with Power Pack (for A.C. mains operation $200 / 250$ volts), wiring detaifs 27 GNS and operating instructions.
\star Playback adjustable to C.C.I.R. characteristic

* Recordings may be made direct or from your existing amplifier equipment
* May be used with decks incorporating head-switching such as Wearite, Reflectograph, Brenell, Collaro, etc.
* Complete with separate power pack
* Guaranteed
present their own exclusive "MASTERLINK M2.A"

THE FINEST PRE-AMP UNIT EVER MADE FOR TAPE-RECORDING

Abstract

As specialist distributors of High Fidelity equipment for tape, disc and radio, we found a great need for a tape pre-amp of exceptional quality and adaptability and accordingly designed and produced our now widely-accepted "Masterlink " Unit. Model M2A meets practically every requirement of the recording enthusiast anxious to build up his own high quality installation, and is supplied complete with separate power pack. Provision is made for D.C. Solenoid supply, speed equalisation, signal and bias metering, oscillator cutout, etc. Response attainable $\pm 2 \mathrm{db}$ from 30 to $15,000 \mathrm{c} / \mathrm{s}$. A leaflet is available which we will gladly send on request. Please mention "Wireless World."

Do yon know

that we carry very large stocks of equipment for all highfidelity, tape and stereo requirements as well as components and accessories of every kind. We specialise in sending goods to all parts of the world. Carriage charged at cost.

TELE-RADIO (1943) LTD.

189 EDGWARE ROAD, LONDON, W. 2
Few minutes from Morble Arch Our only address - Open all day Saturday (1.0 p.m. Thurs.) Phone: PADdington $4455-6$

HI-FI EQUIPMENT

(CABINETS See page 175)

STEREO RADIO CHASSIS
AM/FM Stereo Radio on one chassis (as illustrated) 8 valve and 2 separate 4 -watt outputs, with
individual volume control 27 gns. STEREO AMPLIFIERS Dulci SP44 Stereo power amplifier, two 4 -wart outputs 12 gns . Control units available for above Dulci "Stereo 2 "......... 9 gns. Empress Two 4-watt amplifier ${ }_{68} 0_{0}$

RADIO CHASSIS

Empress 9-valve de luxe AM/FM with two speakers - 26 gns.
Empress 6 -valve AM/FM with 10 in. speaker 22 gns.
Empress FM Tuner (with magic eye)
Empress 5 -valve AM
Empress 5-valve AM.. 148 . 28 . AF 105 10-valve AM/FM 10-watt push-pull $£ 370^{\circ} 0$ AF ile 9-valve AM/FM push-pull 29 gns. Jubilee
H. 3 AM/FM 3 wavebands \qquad $E 20170$

H. 3 AM/FM 3 wavebands | $E 24$ | 6 |
| :--- | :--- |
| 6 | |

H.4.PP AM/FM push-pull 4 waveband $E 29310$ Full Dulci range in stock.

AUTOCHANGERS
"BSR" UAB (as illustrated) is the latest 4 -speed Autochanger fitted with Ful-Fi turnover cartridge, $\ell 6 / \$ 9 / 6$. Stereo cartridge also available, $£ 3 / 9 / 3$.
COLLARO CON QUEST $47 / 19 / 6$.
Full range of Garrard equioment in stock.

> Write for details of these and other equipment all available on easy terms.

LEWIS RADIO

120 (Dept. WW39), Green Lanes, Palmers Green, N. 13 (Nr. The Cock Tavern)

LOUDSPEAKERS

 5th EDITION by G. A. BRIGGS OCTOBER 1958 assisted byR.E. COOKE, B.Sc. (Eng)

PRICE $19 / 6\left(\begin{array}{c}20 / 9 \\ \text { Post } \\ \text { Free }\end{array}\right)$
LETTERS FROM
NEWCASTLE, STAFFS

Other Books by G. A. Briggs still available SOUND REPRODUCTION, 17/6 (18/6 Post Free) 80UND REPROUCTION, $17 / 6$ ($18 / 6$ Post Free)
Pianos, Pianists \& Sonics, $10 / 6$ (11/6 Post Free)

Wh t
 Whartedale

Telephone Idte 1235/6
Grams: 'Wharfdel'
Idle Bradiord

WIRELESS WORKS LTD IDLE BRADFORD YORKS

Vibration Measurement 50 micro - inches to 0.5 inch

- Non-Contacting Probes
- No Resetting Problems
- Linear Scale

Probe cable length is unimportant and vibration measurement independent of probe-to-structure spacing. Frequency coverage is $1 \mathrm{c} / \mathrm{s}-10 \mathrm{kc} / \mathrm{s}$ and the accuracy is unaffected by magnetic fields. Eccentricity and vibration of rotating machinery can be measured simultaneously and facilities are provided for connexion of recording, alarm, or servo-control systems.

For further information write or telephone

SPECIFICATION

Mains operated, $110 / 230 \mathrm{v}, 40-60 \mathrm{c} / \mathrm{s}$.

RANGES: $0-0.001$ in (Probe A) $0-0.01$ in (Probe C) 0-0.1 in (Probe E) 0-0.5 in (Probe F)
Facility is included on the vibration channel to increase the meter sensitivity by a factor of 5 .

ACCURACY: 2 per cent of full-scale deflection at $1 \mathrm{kc} / \mathrm{s}$. Better than 5 per cent at $6 \mathrm{c} / \mathrm{s}$ and $10 \mathrm{kc} / \mathrm{s}$.

DISCRIMINATION: Better than 0.5 per cent.
 giving details of these and many other Monaural and Stereo lines.
"SYMPHONY" COMPLETE STEREOPHONIC AMPLIFIER

Possesses all the features and tone controls of our single No. I Symphony Amplifier but gives 5 +5 watts at superb quality. Has facilities for single monaural and dual monaural from dise. radio and tape together with stereo dise. No additional pre-amps. or power required. Manufocturer's price 19 gns.

"SYMPHONY" SWITCHED

 F.M. TUNER KIT ideal for adding very high quality radio. Light, Home and Third at the turn of z switch. Autonatic frequency zontrol eliminates "drift." Manufacturep's price only $9 \frac{1}{2} \mathrm{gns}$ Ready built15 gns .
.
"SYMPHONY" INFINITE BAFFLE CABINET. Provides fantastic qua-
lity reproduction yet measures only $23 \frac{1}{2} \times$ $11 x$ measures only Price (in the white) $£ 5 / 10 / 0$ each. Two are very suitable for stereo or dual-monaural. Recommended speaker Wharfedale speaker Wharfedale 7 gns.

The GOLDRING latest model GL5O Transcription Unit.
Fitted with Ronette Stereophonic Monaural pickup cartridge and diamond stylus (essential for
stereo).
Price 29/3/10.

Wonderful new

DEFERRED TERMS
Minimum deposit as low as oneninth if required. Balance over 8 to 12 months.

No. I "SYMPHONY" FM TUNER, Mark II

This Tuner is based on the latest eype of permea-bility-tuned coil assembly of advanced design, housed in a die-cast protective anti-radiation shroud. The efficiency of the general circuit ensures extreme sensitivity and a very high musie/noise ratio. $\mathbf{6 1 5 / 8 / 0 .}$
"SYMPHONY" DE-LUXE
TAPE RECORDERS
Very high quality reproduction. Two-speed, twin track taking up to 7 in . reels. Fast wind and rewind. Very low notor noise. Instant temporary stop/start. Inputs for Mierophone, Radio and Gramophone. Cutputs for internal speaker, external-speaker, and external amplifier. Handsome cabinet 20 in . wide $\times 14 \mathrm{in}$. high \times 14 in . deep. Available in Standard. Medium Walnut, Lighe Oak or Mahogany. High-grade elliptical speaker.
Portable or Table Model \qquad 54 gns.

NORTHERN RADIO SERVICES
Il Kings College. Road, Adelaide Road, London, N.W.3. Business Hours: 9 a.m. -6 p.m. Monday to Saturday.
Il Kings College. Road, Adelaide Road, London, N.W.3. Business Hours: 9 a.m. -6 p.m. Monday to Saturday.

This high quality De Luxe AM/FM Tuner is specially recommended to the discriminating listener. Combining superb FM quality with extreme AM sensitivity, good World Wide coverage is assured.
S5E/FM. Medium and 3 Short wavebands plus FM, with an RF stage on all AM bands and variable selectivity. Cathode Ray tuning indicator.
${ }_{\mathrm{P}}^{32 \frac{1}{2}} \mathrm{gns}$. or $36 \frac{1}{2}$ gns. self-powered, including S5/T. Short wavebands plus FM.
Full specifications available from

Your Hi-Fi Dealer or

C. T. CHAPMAN (Reproducers) LTD.

CHAPEL LANE, HIGH WYCOMBE, BUCKS.
Telephone: High Wreombe 2474
Remender-Radiospares components are delivered absolutely "by return"

SHORT SERVICE COMMISSION*

Have you recently qualified-or hope to do so soon? Then a R.A.F. Short Service Commission can bring you greater all-round technical and executive experience than almost any civilian appointment.

With ever-growing aircraft, missile, electronic and nuclear developments, a Technical Officer in the Royal Air Force today has almost unlimited scope. The work is interesting, responsible and, above all, varied.

2 SCHEMES OF ENTRY

For men with engineering qualifications (especially electrical)

Commissions are for 3 to 6 years. Minimum requirements are a Higher National Certificate in Electrical or Mechanical Engineering and G.C.E., or equivalent, in English Language at ' O ' level. By joining at 21, you could be earning over $£ 1,250$ (including full allowances) by 27 , if married. The upper age limit forentry is under 37.

For men under 21 without technical qualifications

Commissions are for 5 to 8 years. Minimum requirements: G.C.E., or equivalent, with passes in English Language and four other subjects, which must include Pure and Applied Mathematics and Physics at ' A ' level. Join at 20 and, by 26 , you could be earning, if married, over $£ 1,100$ a year (including full allowances).

WITH вотн sChemes you must, of course, be physically fit. They also offer the possibility of extending a Short Service Commission or converting to a Permanent Commission, leading to higher ranks; and if you return to industry, there are special facilities to help you obtain a post in line with your age and added experience.

This is a fine way to help your future career, gain executive experience, see something of the world-and be well-paid while you are doing it! Write now for full details to Air Ministry (W.D.213), Adastral House, London W.C.1.

THE ROYAL AIR FORCE

* If YOU ARE A GRadUATE with a Science or Engineering degree, and under 30, you can apply for a R.A.F. Permanent Commission straight away. Write for details of the fine career prospects and pay offered,

An Important Announcement!

Due to the continually increasing popularity of the "Simplex " range of Record/ Playback and Erase Heads throughout the world, it has been necessary for us to take steps to meet the ever rising demand for our products.

The popularity of these Heads is undoubtedly due to their excellent frequency response, their extreme adaptability, due to their unique construction which enables them to be produced in a wide range of impedances to meet all possible requirements, and their competitive price.

To meet this situation, the Sales Office is now being moved to new premises attached to the Works, which will result in the closest possible co-operation between the Sales and Production Departments, and enable us to give our customers even better service than before.

All enquiries should in future be addressed to:-
BRADMATIC PRODUCTIONS LIMITED,
124126, Albert Road,
Handsworth, Birmingham, 21
Telephone No.: NORthern 8091.

It's NEW-

it's miniature

TYPE 40 TRANSISTORISED SIGNAL GENERATOR net price $£ 5 \cdot 15 \cdot 0$ post palo
BATTERY $2 / 6$ EXTRA - CASH WITH ORDER OR C.O.D.

* TRADE AND EXPORT ENQUIRIES INVITED *
* Small enough to fit in your pocket-only $4 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{1}{2}^{*}$.
* Frequencies up to $20 \mathrm{Mc} / \mathrm{s}$ on tundamentals.
* R.F. and audio outputs, attenuated.
* Full standard specification.
* Light weight-low consumption.

CHANNEL ELECTRONIC INDUSTRIES LTD.
INSTRUMENTS DIVISION
DUNSTAN ROAD - BURNHAM-ON-8EA - SOMERSET Phone 3167

Independent sideband receiver type GFR. 552

. . . developed to British Post Office specification and used on their international circuits.
This equipment is designed for operation on long distance, point-to-point short wave radio links forming part of the international trunk network. Special features of the GFR. 552 include a high order of oscillator stability and freedom from cross-modulation through which cross-talk between channels or intermodulation between wanted and unwanted signals might occur. Frequency range -4 to $30 \mathrm{Mc} / \mathrm{s}$. Noise Factor - better than 8dB over the band.
A.F.C.- Motor driven with exceptionaliy high retuning speed and low residual mistuning.
Cross-talk attenuation between channels is greater than 45 dB for modulation frequencies above $200 \mathrm{c} / \mathrm{s}$.
Output - Variable up to +14 dB relative to 1 mW into 600 ohms.

MULLARD EQUIPMENT LIMITED

 A company or the mullard groupMullard House - Torrington Place London, W.C.I
Tel: Langham 6633

(50) ME602a

NEW-Tesylormoter iöon

SUPER-SENSITIVE!! UNIQUE!! WORLD'S FOREMOST!!

100,000 O.p.V.

OUTSTANDING FEATURES:

Sensitivity 100,000 o.p.r. D.C., 5,000 o.p.v. A.C.
Current readings from 0.2 microamps - 10 amps . D.C. ($10 \mu \mathrm{~A}, 15 \mu \mathrm{~A}, 250 \mu \mathrm{~A}, 1 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{Amp}, 10 \mathrm{Amps}$.)
D. C. Volt readings from $10 \mathrm{mV}-2,500 \mathrm{~V}$ (25 kV by probe) ($0.5,2.5,10,25,100,250,1,000,2,500$)
A.C. Volt readings from $0-2,500$ ' \mathbf{V}.
($10,25,100,250_{y} 1,000,2,500$)
Ohms from 0-200 megohms in 4 ranges (self-contained).
5 Decibel Ranges.
5 Output Ranges. Many other advantages.
Accuracy 2\% D.C. 3\% A.C. 5\% Ohms.
5in. Mirror Scale meter.
Automatic Mechanical Cut-out effective on all ranges.
Reverse Polarity facility.
Robust and suitable for everyday use.
£ 31.10 .0
HIRE PURCHASE OR CREDIT SALE TERMS AVAILABLE Write for full detalls TAYLOR ELECTRICAL INSTRUMENTS montrose avenue

NOW AVAILABLEI New edition of VALVE MANUAL FOR TAYLOR TESTERS Gives over 5000 settings and characteristics Price $7 / 6$ post free SLOUGH BUCKS. Telephone - Slough 21381

ACOUSTICALLY SOUND

REPRODUCERS

The TOP 'C'TWEETER
Original sound sources produce wide angle radiation. The new BJ Top ' C Tweeter not only exactly reproduces the sound-but the sound spread as well. Designed to stand on a.l speaker cabinets, it is complete with B) High Efficiency unit, crossover and balance control. Beautifully finished in selected veneers.

Price only 5 gns. ainc. tax

BJ ' SONETTA'
To plan stereo, one Sonetta is the first purchase. Two cost only 33 gns . and each contain two loudspeakers giving a smooth response from $35-18,000 \mathrm{c} / \mathrm{s}$. Complete with crossover and balance control. Ideal for all high fidelity equipment.

Price only $16 \frac{1}{2} \mathrm{gns}$ ine. tax

When ordering your pickup, remember to ask for a BJ TANGENTARM.

Send or all details.
BURNE-JONES \& CO. LTD. - 18 BRUNSWICK ROAD SUTTON • SURREY

MODEL No. 121

The FANE 12" H.D. LOUDSPEAKER UNIT

TECHNICAL SPECIFICATION
Diameter over lugs $\quad 12 \mathrm{z}$ in Overall depth $6 \frac{1}{4} \mathrm{in}$ Power handling 20 watts R.M.S Voice coil diameter $\quad 2$ in Flux density $\quad 12,000$ gauss Total flux $\quad 160,000$ lines Main resonance Frequency response 25-5,00 c.p.s. $\begin{array}{ll}\text { Input impedance } & 15 \mathrm{ohms}\end{array}$

This 12 in . unit is fitted with a curvilinear cone, foam plastic sur. round and an extra long voice coil winding which permit large amplitude movements without introduction of harmonic distortion. It is recommended for use as a single speaker for any heavy duty requirement such as public address or home cinema or as the bass unit in a multi-speaker system. Suitable for use in all types of reflex enclosure, horn loading or open baffle mounting. Price $\mathbf{E 9}$. MODEL No. 121.A
As above but with aluminium wire voice coil giving improved transient response and useful range extended up to 10,000 c.p.s.

Price 9 Gns.
(Carriage paid in UK)
Further details available from the makers

THE NEM＇FLATPOT＇POTENTIOMETER

This most recent addition to the comprehensive range of Painton potentiorneters provides the electronic industry with a robust subminiature component that has been developed primarily for use with printed circuits，although its general design makes it eminently suitable for a wide range of applications；it is particularly useful where conditions of vibration pose problems for the design engineer． Its unusual＇linear＇construction slmplifies mounting and stacking where chassis space is at a premium．

The potentiometer winding，slider and drive are totally enclosed by a nylon filled plastic housing．

The slider is driven by a lead screw， whose head projects from the hous－ ing，permitting fine adjustment and resulting in stable settings．

The unique construction ensures rigidity and strength and minimises the likelihood of oxidation of the contact surfaces．

Damage to the mechanism by over－ winding is obviated by a slipping nut device．

Straight or 90° terminals are avail－ able．

Gaps between terminals and distance between the two locating holes con－ form to the 0.1 inch module common in printed circuit boards．

Range： 10Ω to $10 \mathrm{~K} \Omega$
Tolerance：10\％
Power Rating： 1 watt at $20^{\circ} \mathrm{C}$ ambient No．of turns from Zero to maximum resistance： 25
Insulation Resistance：in Excess of $1000 \mathrm{M} \Omega$
Welght： 0.1 oz ．（approx．）
Write for technical leaflet

Accurate information on over 3.000 short. medium arnd long wave transmitters

GUIDE TO BROADCASTING STATIONS 1958-59

Compiled by "Wireless World."

The revision of Guide to Broadcasting Stations is an essential, if formidable, task and many hundreds of additions and amendments have been made in preparing this edition. European medium- and long-wave transmitters are listed both geographically and in order of frequency; those not operating on frequencies allocated to them at the Copenhagen International Conference of 1948 are italicised. Operating characteristics for well over 2,000 short-wave stations of the world are tabulated in order of frequency and also geographically. Frequencies of v.h.f. sound broadcasting and television stations in Great Britain are also listed. The information has been checked against measurements made at the BBC Receiving Station at Tatsfield.
2 s . 6 d . net. By post 2 s . 11 d .
from leading booksellers
Fublished for "Wireless World" by

also published for "Wirieless World"

LOW-COST HIGH-QUALITY AMPLIFIERS

By P. J. Baxendall, B.sc., (ENG).
Design for a 5 -watt amplifier suitable for domestic high-quality sound reproduction, with alternative simple and advanced designs for a complementary preamplifier. Reprinted from "Wireless World." 3s. 6d. net, by post 4 s .

PORTABLE TRANSISTOR RECEIVER

By S. W. Amos, b.sc. (hons.) A.M.I.E.E.
Describes a self-contained, sensitive, medium- and long-wave superheterodyne receiver using transistors in all stages. It employs a total of seven junction transistors, three of which are the latest r.f. type. A push-pull output stage delivers over 300 mW . to the loud speaker. A 4.5 -volt or 6 -volt dry battery provides 150 listening hours. 2s. 6d. net, by post 2 s . 10 d .

LONG-WAVE \& MEDIUM-WAVE PROPAGATION

By H. F. Farrow, grad. I.E.E.
Based on a series of lectures given by the author at the BBC Engineering Training Department to students specialising in the operation and maintenance of transmitting stations. The main features of propagation at low and medium frequencies, $30-3,000 \mathrm{kc} / \mathrm{s}$, and in particular the broadcasting bands $150-285 \mathrm{kc} / \mathrm{s}$. and $525-1,605 \mathrm{kc} / \mathrm{s}$ are explained. Subjects covered include aerials, ground and sky-waves, recovery effects, mixed path propagation, ionospheric reflection, and low-power installations.

4s. 6d. net, by post 4 s .10 d .
 Its Star features form a brilliant constellation which is bound to attract. Motek is five stars high. Stellations: Push Button Operation, Counter, Safety Erase Button, Pause Control, Three Speeds.

KEEP YOUR TAPES ON MOTEK
MIOITEIRIN

Wedmore Street, London, N.I9.
Tel: ARCHway 3114.

Sole Agents Abroad
K. G. Khosla \& Co. (Private Limited) 1. Deshbandhu Gupta Road, New Delhi-1, India.
Etablts Octave Houart 14, Quai de l'Industrie, Sclessin-lez-Liege.
R. H. Cunningham P.T.Y. Ltd., 2-8 Bromham Place, Richmond, E.L. Australia.

Heitye \& Frogg, Oslo, Norway, Storgaten, 15 .

MODEL "Q"

AUTOMATIC COIL WINDING MACHINES

AND HAND WINDING MACHINES Machines supplied complete with stand motor and Two-speed Friction Clutch

ETA TOOL CO
 (LEICESTER) LTD.

29a WELFORD ROAD, LEICESTER
Phone :-5386

TMleorn and the Comet 4

We are proud to be assoclated with the De Havilland Aircraft Co. Ltd. in the production of the Comet 4. Telcon supplied Mumetal and HCR Magnetic Alloys for use in the Autopilot Equipment (supplied by Smith's Aviation Division) and the LKB 400 and LKF B7/3 Control Units (made by the British Thomson-Houston Co. Ltd.)

We are manufacturers of super pure basic metals and alloys for the instrument, electronic and aircraft industries. Our range includes:

SOFT MAGNETIC ALLOYS

Mumetal	High permeability Supermumetal Sickel Iron Alloys for Radiometal
Speclal Radiometal	
Rhometal	

DUCTILE HARD MAGNETIC ALLOY
Vicalloy Permanent magnetalloy (Cobalt-Iron-Vanadium) of ductile and machinable quality.

Berylllum Copper to Specification DTD 900 (CuBe"250). High tensile strength and fatigue resistance.

Thermostatic

 BlmetalsVarious grades for instrument protection, and compensation-overload protection of motors, synchros and similar electrical devices.

Most alloys are avallable as strip, rod, bar or wire, and enquiries are invited for ultra-thin magnetic materials for high frequency applications. A.I.D., A.R.B., and Admiralty approved.

* No cover and cable clamp worries. We connect your cable to plug or socket and pot the assembly in polythene. $\star 18$ connections in less than 1 Inch diameter. \star Standard B9A valveholder mounting. * Nylon loaded P.F. mouldings. * Cadmium plated or gold plated pins and contacts.

Send for full detalls to:-
THE MCMURDO INSTRUMENT CO. LTD., ASHTEAD, SURREY. TEI: ASHTEAD $34 O 1$
MPCIQ

Ready for use in 6 secs.

 SOLDERING GUN PRIMAXA | with Built-in Spotights |
| :---: |
| Model 100 |
| $\mathbf{9 9}$ |
| $\mathbf{9}$ |

Saves Pounds in Time-See What You Solder Available $110 \mathrm{~V}, 200 / 220 \mathrm{~V}, 220 / 250 \mathrm{~V}$. Only weighs 34 oz . Practically indestructible. Thousands of satisfied users,

PRIMAX Special Model 50 Ior use oft i2r batereries 6y; PRICE $74 / 6$
one Year's guarantee (except bit and lamps) 29 PADCINGTON STREET,
S. KEMPNER LTD. Lowoun w.1. Phomes EDSMm orso Dept. WW. Foreign Made

2 Irongate Wharf Rd., Praed St., London, W. 2 PAD 2231/2/3
Concractors, co Home and Overseas Governments and H.M. Crown Agents
We have moved to larger premises and opencd new production plant adoptivg latest all orders irterpective of quantity. Fheare address an enguiries to Relay Praduction against

Semiconductors limited
 Applications Laboratory

making new equipment possible-existing equipment better . . .

The Semiconductors Limited Transistor Applications Laboratory with greatly improved facilities, is now installed in a new building adjacent to the Swindon factory. This will considerably increase its capacity to assist manufacturers in the correct selection and use of Semiconductors transistors. You are invited to take advantage of this service, either directly or through your Semiconductors representative.
In addition to providing direct assistance to manafacturers, the Applications Laboratory is continuously investigating new approaches to existing problems. For immediate assistance on your transistor. problems telephone trig Applications Lathortiony SWINDON 6421 .

The evaluation of transistor high-frequency parameters is a continuing study in this specially-equipped section of the transistor Applications Laboratory.

Semiconductors Limited

CHENEY MANOR • SWINDON • WILTSHIRE Telephone: Swindon 6421/4 • Telegrams: Semicon, Swindon being issued. are you on the mailing list?

Bullers ceramics FOR INDUSTRY

High quality material and dimensional precision are attributes of Bullers die-pressed products.

Prompt delivery at competitive prices.

FREQUELEX
for high-frequency insulation
PERMALEX \& TEMPLEX for capacitors

for general insulation

REFRACTORIES

for high-temperature insulation

BULLERS LIMITED
 MILTON • STOKE-ON-TRENT • STAFFS

Phone: Stoke-on-Trent $24 \Delta 1$ (5 lines). Telegrams \& Cables: Bullers, Stoke-on-Trent Ironworks: TIPTON, STAFFS London Office: 6 LAURENCEPOUNTNEY HILL, E,C. 4 Phone: Tipton 1691

AVO

 10-DAY REPAIR SERVICE

Farnell Instruments Ltd

Official repairers to AVO Multi-Meters.
All repairs automatically guaranteed 12 months by AVO LTD. (Our staff are fully trained by AVO LTD. and fina! tests and calibration of all instruments are carried out on official AVO test consoles)

All repairs are scaled with the official AVO seal-Mark of Perfection.
The only 10 -day repair service officially accepted by AVO LTD.

FARNELL

 INSTRUMENTS LTDWETHERBY ENDUSTRIAL ESTATE YORK ROAD, WETHERBY. Telephone: Wetherby 2691/2

THE PARCOPAK

(built like a battleship)

D.C. to A.C. Mains Voltage From your Battery or House Lighting Plant

ENJOY MOBILITY FOR

Dictating Machines, Tape Recorders, Radio, Television, Radiograms, Record Changers. * Input 6, 12, 24, 32, 48, 110 and 220 volts. * Output 250 volts, $50 \mathrm{c} / \mathrm{s}$., 200 watts (max.). \star Fitted with remote control facilities or $0 / 0$ switch and watts output panel. Prices from 114 : $9: 0$
WRITE FOR DESCRIPTIVE FOLDER: TRADE ENQUIRIES
Sole Manufacturers:
P. A. R. LIMITED, TALBOT WORKS, TALBOT STREET, NOTTINGHAM
Telephone 46505/6. Telegrams Parco, Nottm.

"Here's how we put Microscatter on wheels!"

Now, Westinghouse has successfully reduced the size of microwave scatter-by developing an SHF system! And now, all radio equipment for a $5,000 \mathrm{mc}$. quadruple diversity repeater can be mounted in a 40 -foot truck trailer.

For voice, teletype, television, facsimile and raw radar video . . . this advanced MICROSCATTER gives you high quality SHF transmission to points 100 to 200 miles away!

WESTINGHOUSE MICROSCATTER also gives you

$$
\begin{array}{ll}
\text { HIGH QUALITY TRANSMISSION with an } & \text { LOW COST PER CHANNEL MILE due to } \\
\text { extremely linear, wide band } & \text { minimum operating and maintenance } \\
\text { Modulator/Exciter. } & \text { costs ... and low power consumption. }
\end{array}
$$

HIGH RELIABILITY of up to 99.99%. . . with quadruple diversity.

SMALL, NARROW-BEAM ANTENNAS, from 8 ft . to 28 ft . in diameter.

For complete information, phone your nearest Westinghouse office. Electronics Division, Longwood Road, Hamilton, Canada.

YOU CAN BE SURE...IF IT'S
$\left(\begin{array}{c}1404 \\ 3 \\ 3 \\ 3 \\ 1\end{array}\right)^{0}$

SPECIFICATION
Frequency Range: $40 \mathrm{c} / \mathrm{s}$. $15,000 \mathrm{c} / \mathrm{s}$.
Fundamental Resonance:
Power Handling Capacity:
Flux Density: $\quad 15,000$ gauss on Impedance: 3 or is ohms.

GOODMANS AKIETE
 HIGH FIDELITY LOUDSPEAKER

The AXIETTE is an $8^{\prime \prime}$ Full Range ($40 \mathrm{c} / \mathrm{s} .-15,000 \mathrm{c} / \mathrm{s}$.) High Fidelity Loudspeaker which has achieved World-wide popularity because of its impressive performance, modest space requirements, and sensible price. It is exceptionally versatile. In addition to its main application as a full range unit, it may also be employed in multiple systems as a highfrequency unit, a mid-range unit, or it can combine both functions in one.

For domestic Stereophonic installations, two Axiettes constitute a logical and highly satisfactory choice, and occupy a total floor space of less than $2 \frac{1}{2}$ square feet when mounted in reflex enclosures. The overall performance of the Axiette is so exceptionally smooth and well controlled that it compares very favourably with larger units; and is thus perfectly suitable for use as the second channel unit when one channel is already catered for by an existing good High Fidelity loudspeaker system.

Goodmans High Fidelity Loudspeaker Manual, which contains full information on Goodmans High Fidelity products, free on request

...Europe's largest Manufacturers and the World's largest Exporters of High Fidelity Loudspeakers
GOODMANS INDUSTRIES, LIMITED. AXIOM WORKS, WEMBLEY, MIDDLESEX.

Wembley 1200 (8 lines) Grams: Goodaxiom, Wembley, England

HI-FI AMPLIFIERS

A superb range of quality amplifier units specially designed to please the widest market of music lovers throughout the world.

* Virtually distortionless \star Utterly reliable
\star beautifully constructed and finished
* EASY TO OPERATE

Without technical
KNOWLEDGE

* VERY REASONABLE iN PRICE

N. MIERS \& CO LTD ${ }_{115}$ Gower Street, London W.C.I Tel.: Euston 7515 \& 5811 - T.A.: Miersco, London

- Mastertope is made to carefully controlled formulas.
- Mastertape is anti-static and free from curl.
- Long Play Mastertape Polyester base is as strong as mild steel.
- Mastertape has extremely low background noise.

The wise owl knows all about high top response, for it means simply the ability to capture sounds of extremely high register, faithfully and accurately. Mastertape can both capture and reproduce every sound with the utmost clarity in a way that must be heard to be believed. High top response also means that Mastertape can record efficiently at lower speeds with maximum possible brilliance.

MASTERTAPE IN THE NEWS!

Mastertape is now supplied for use with the B.B.C. Mars Recorder in service with the United States Air Force.

Mastertape

MAGNETIC RECORDING TAPE BY M.S.S. RECORDING CO. LTD., Colnbrook, Bucks.

Telephone: Colnbrook 2431 (8 lines)

Attractive, ideal tape storage. Stoutly bound book containers in red, black and gold, with transfer numerals, holding two 7in. reels of tape. Price 7/6. Boo!:rack to ho!d six books, $17 / 6$. Set of 6 books and rack 62/6.

LOW PRICE*
 HIGH PERFORMANCE

The TRECOSCOPE, designed around a most modern 3 -inch cathode ray tube and new type valves, meets all the requirements for a high performance and versatile general purpose oscilloscope. Its overall size is 7 in . x $8 \frac{1}{2} \mathrm{in}$. x 1 lin . and the specification, too comprehensive to be fully given here, is contained in our illustrated brochure, a copy of which will gladly be sent on receipt of S.A.E.

* NOT A SINGLE ITEM OF GOVT. SURPLUS STOCK IS USED IN THIS INSTRUMENT

CONTROLS: Brilliance, focus, X shift, Y shift, coarse time base, fine time base, synchronicaction, Y amplitude, X amplitude, Y input selector switch.

FACIIITIES: Y plates via (1) high gain amplifier (2) low gain amplifier (3) direct over isolating condenser (4) direct over attenuator. Time base covers $5 \sim 10150 \mathrm{kc} / \mathrm{s}$. Provision for internal or external sync. X amplifier for external sweep input. so
Brightness modulation. Flyback suppression

monthly payments of $£ 1.9 .7$. Postage and packing 6/-
 Price $\mathbf{1 7}$ 17.0
 Guaranteed for 12 months

the $R A N G E$ ELECTRONICS COMPANY CORMORANT WORKS, LETT ROAD, LONDON, E.I5

\qquad

> TELEVISION AERIAL COMPONENTS DESIGNED FOR CONSTRUCTING BAND I \& BAND III TiV. AERIALS ELEMENT DIMENSIONS SUPPLIED FOR ALL CHANNELS Selecting at random from our new multi-page catalogue:
> \star Band III Folded Dipoles (As illustrated)
> * Reflector and director rod holders
> \star Masthead Fittings for $\frac{3^{\prime \prime}}{4}$, 1", $1 \frac{1}{2}{ }^{\prime \prime}$ and $2^{\prime \prime}$ Masts.
> \star Mast Coupling units for $2^{\prime \prime}$ Masts
> \star Insulators, Both Rubber and Plastic
> (As illustrated)
> \star Alloy Tubing for Elements, Cross boom and casting.
> Send II- P.O. for the revised, fully illustrated catalogue to:

FRINGEVISION LTD., Marlborough, Wilts.
Phone 657/8

No interstage amplifier with this new

 Mullard counting tube Z302C

The new and unique Mullard cold cathode counting tube Z302C can be coupled directly to adjacent stages with consequent elimination of interstage amplifiers and many components.
This tube, which provides visual indication, operates with a single pulse drive. A typical circuit with two tubes in cascade is shown below.
Write today for details of the Z302C and other Mullard cold cathode decade tubesCounting Tube Z303C (CV2271), Selector Tube Z502S (CV2325) and Indicator Tube Z503M.

TYPICAL BASIC CIRCUIT

Mullard
GOVERNMENT AND INDUSTRIAL
VALVE DIVISION
MULLARD LIMITED
MULLARD HOUSE
TORRINGTON PLACE
LONDON • W.C. 1
Tel: Langham 6633

WE SEIDTHE BESTOF BRTIANS HFF EVERNWWERE

* SPEAKER SYSTEMS Quad Electrostatic
Column Eight Column Eight Wharfedale SFB/3 Wharfedale Golden 10 Wharfedale Golden 10 Wharfedale Super Tannoy 15 in . Dua Vitavox DU/I20 WB. 1016 Goodmans 300
Goodmans Goodmans 400
Goodmans Goodmans 15/4 Goodmans 1 B3
Philips Dual Cone Philips Dual Cone Kelly Ribbon Mk. II............... $£ 1010$ B.J. Tweeter complete 655 WB 1016 C.Q. Senio C.Q. Senior Lenco 56 and Stereo PU. Lenco Trans. Motor Garrard 301 Garrard 4HFIStereo P.U. Garrard TA/Mk. Il motor Connoisseur Motor Collaro 4TR200 Also available Garrard, Collaro and changers with stereo or mono pick-ups Philips P.U. 19 gns. Goldring 600
Goldring 600 $\$ 1113$ 6 $\$ 24$ Garrard Arm and P.U.......... $14 \quad 3 \quad 3 \quad \$ 29$ Also ORTOFON, LEAK, CONNOISSEUR, COLLARO,

* TO REMIND YOU

We carry extensive and up-to-date stocks of equipmen by Britain's leading makers. Enquiries invited which we deal with by return. Also 24-hr. repair service on customers' recorders.
164 CHARING CROSS RD., LONDON, W.C. 2 (3 shops from Tottenham Crt. Rd. Station Underground) Tel.: TEM 7587 \& COV1703 Cables: MODCHAREX, LONDON

BLICKVAC HIGH PRESSURE \& VACUUM I MPREGNATORS

BLICKVAC Impregnators are used by Marconi, Pye, S. Smith \& Sons N.C.B., M.O.S., and many pther well-known organisations. A full range of standard models is available-capacities 4 in . by 9 in . to 3 ft . by 3ft.-suitable for Varnish, Wax, Potting Resins, etc. Plants can be designed for special requirements. Blickvac Impregnators are designed to give simplicity in control, outstanding performance and ease in cleaning. A second autoclave can be added at low cost when needed. BLICKVAC products include:-Epoxy Resin Vacuum Mxing and Casting Plants, Electric Ovens, Vacuum Ovens, Mixing Vessels, Dipping Tanks, etc.

BLICKVAC ENGINEERING LTD.

NU-LIIE TRLETUBES
 ALL MAKES ALL TYPES
 REBULLT TO MANUFACTURERS SPECIFICATIONS
 Enquiries and goods to new factory:-
 STONEFIELD WAY, S. RUISLIP, MIDDX. BYRON 5676
 GARRIAGE, PACKING AND INSURANGE ARRANGED

WEST INSULATING COMPANY LTD.
Teiephone:
2 Abbey Orchard Street, Westminster, S.W:I
Abbey 2814 \& 7352

They know...

that British products are
the finest in the world and
when it comes to record playing equipment Garrard, without a doubt, is the soundest name in Sound Reproduction.

Sarrand

For forty years the finest record playing equipment in the world.

THE GARRARD ENGINEERING AND MANUPACTURING CO. LTD. SWINDON • WILTSHIRE

STEREO gram-chassis

 with AM/FM radio

MODEL H3S

A comprehensive radiogram chassis of advanced design for stereo record reproduction incorporating a sensitive and stable VHF, medium and long waveband receiver:

Eight watts output (4 watts per channel), radio automatically reproduced through both channels.

Write for illustrated literature giving full details of this high quality chassis which is eminentiy suitable for converting older types of radiograms to the latest standard of stereo reproduction.
PRICE $£ 29$. 10 inc. P.T.
Leaflezs are available for our full range of high fidelity amplifiers and stereophonic equibment, tuners, tope units and radiogram chassis.

THE DULCI COMPANY LIMITED 97-99 Villiers Rd., London. N.W.2. Tel: Willesden 6678/9

PREMIER PORTABLESTEREO AMPLIFIERS

THE PREMIER STANDARD STEREO PORTABLE
2 Preraier 1 valve 2$\}$ watt Amplif
e5/19/8. plus pkg. and post $4 / 6$. £5/19/8. plus pkg. and post 4/6. Amplifer Cabinet, \&2/19/6, plus pkg and post $\mathrm{B/}$ -
Elliptical $7 \times$ din. Speaker, E1/1/6, plus pkg. and poat $1 / 8$.
Sln. Bpeakar, 22!6, plus plg. and pos' 1,6.
Extension Speaker Cabinet matching the Premier Ampllifer cablnet, 19/6. suit able
gpeaker. Also Elifptical Speaker $8 \times 6, £ 1 / \% / 8$. PREMIER DE LUXE STEREO RECORD PLAYER AMPLIFIER This is a 4 -valve Btoreo Ampllifer with
 3in. wide, output of each section 34 watte, 88 , plus pkg. and post $4 / 6$. De Luxe Portable Cabinet aultable for bousing the sbove 8 toreo Ampliher with detachable lid which will accoins modater, overail size of Cabinet $181 \mathrm{lln} \times$ $134 \mathrm{in} . \times$ 9in deep. Price $75 /=$, plus 8/- pkg. and pcotaso. Collaro 4 -speed Chnr.ser. E7/19/6, plus 51 . pkg. and postago. B88 4^{-} speed Changer, $\pm 6 / 19,6$, plus $\$ / \%$ pkg and poem
太 Prealigned IF transformers. * 5 in. speaker of the latest type * Auromatic on/off switch operated by lid.

* Designed in our own laboratory.
* Backed by an up-to-date Technical Information Dept.
* Components available separately
if desired.
* Simple to construct, using nor-
mal soldering methods.
* Instruction book 1/6. pks.

DRAMATIC PRICE REDUCTIONS
 T.R.F. may be buill tor $£ 5.10 .0 \begin{aligned} & \text { plus } \\ & \text { P.p. } \\ & \text { 3/- }\end{aligned}$

These two receivers use the latest type circuitry and are fitted into attractive cabinets 12 in. \times $6_{2}^{1} \mathrm{in} . \times 5 \frac{1}{2} \mathrm{in}$. in either walnut or jvory bakelite or wood $1 /$ extra. Individual instruction books 1/- each, post free.

Build the "MAYFAIR" TELEVISOR which gives complete SAFETY to the constructor!

These Televisors use a double wound mains transformer which gives you complete safety from contact with the mains supply when handling the chassis or controls.
\star B.B.C. \& I.T.A. DESIGN
WITH NEW TURRET TUNER

MAY BE BUILT FOR
£33-7-11
PLUS COST OF C.R.T.
Build in 5 Easy Stages. Full Construction details available. Instruction Book $3 / 6$ Post Free

BOTH BRANCHES

 OPEN UNTIL 6 P.M. SAT. CLOSED 1 P.M. THURS.Put it together yourself and

PREMER BATTERY ELIMNMTOR Housed in two conreplace AD 35 and B126 Batteries.

SEND FDR IT NUW!

OUR 1959 FULLY ILLUSTRATED

COMPONENTS CATALOGUE

Quick reference guide to the latest and widest range of keenly priced components for:-

- RADIO - STEREO \& MONAURAL GRAM EQUIPMENT STEREO \& MONAURAL TAPE EQUIPMENT
Also Comprehensive Section on:-
- SPEAKERS - TAPE RECORDERS AMPLIFIER 3
STIFFENED COVERS PHOTOGRAPHIC ILLUSTRATION

OUUSFLF SPEGIALISTS 23 TOTTENHAM COURT RD., LONDON, W.I.

Designed for the American market by a famous continental manufacturer.
CASH $£ 16.19 .6$ Plus $7 / 6$ packing and PRICE 610.1
This Chassis is of the very latest design and has a much wider coverage on F.M. than Standard Receivers. It has 5 valves plus a full-wave Metal Rectifier, piano type push buttons for long, medium, F.M. and Gram, separate uning on F.M. and A.M. and incorporating Ferrite Rod Aerial for medium and long wave-bands, also Gram Pick-up switching Output 5 watts. Dial size: 121×2 fin. Overall size: $12 \frac{\mathrm{~g}}{\mathrm{~g}} \times 5 \frac{\mathrm{~B}}{\mathrm{~B}} \times 7 \frac{1}{2} \mathrm{in}$.

Introducing the
PHONOTRIX
BATTERY TRANSISTOR MINIATURE TAPE RECORDER Supplied complete with Microphone and small Loudspeaker, operates on 4 U2 Torch batteries, weighs only 41b and plays for 30 minutes. Size $6 \frac{1}{2} \times$ $4 \frac{1}{3}$ in. 26 gns. complete plus 5

MAINS UNIT NOW AVAILABLE
Making the Phonotrix the only tape recorder that operates both on battery and mains. Size $4 \frac{1}{2} \times 3 \frac{1}{2} \times 1 \frac{1}{2}$. Price 4 Gns.

LORENZ MODEL PL. 562 4-speed gram motor. Price $£ 3 / 13 / 6$.

THE PREMIER 7 WATT STEREOPHONIC AMPLIFIER KIT

This amplifer uses two ECL82 ralves, one
l2AX 7 valve, one L2AX7 valve one Provision is made for both' 3 ohms and
15 ohms speakeru. The base and treble tone coutrols are achjeved with separate control. Par rusy be assembled on
a gold harnmered finiahed chassiz, with a black perspex dial with gold letier Price $£ 7 / 19 / 6$. Inatruction booklet $1 /$. Plus $5 /-$. P. \& Or ansembled $88 / 19 / 6$.

A genuine H1-FY recorder at a price all can afford. The star-studded Verdik 81 tape recorder is made to very bish standards with particular emphasis on trouble-free

FIVE GTAR FEATUREG
Reparate record and playback amplifler and 3 head syatem allows playback of tape as you record. No more ruined recordings-you hear it as you record it.
Separate record and plartack
Five valves plus magic-eye level indicato
High tiux uternal speater
Frequency range $40 \mathrm{c} / \mathrm{s}_{\mathrm{s}, ~ t o ~} 12 \mathrm{kc} / \mathrm{s}$.
Corrected output for playback through your Hi-Fl amplifier Supplled complete with 1.200 ft . tape and microphone Mre Purchase Deposit 10% of 45 gns. Repayments to suit you.

THE CONNOISSEUR'S CHOICE OF STEREO EQUIPMENT

Ampliffers
AVANTIC 8PA II Atereo Amp. 28 gus.
Jason $\mathrm{J} 2-1010 \times 10$ watt, complete 2310%
Jason J2-10 10×10 watt, complete gesh/20/\%
Promier Stereo Outfit No. 1
 Compriag ng
plifiers. $842 / 2 / 2$
Premier Sterso Outfí No. a
Premier Sterso Outfit No. \&
For those with Monaural sytem comprising 32.2 pre mimp. and t-12 watt amplifer, 30 gng.

Stereo Pick-up Cartridges

Plavers
All makes in stock inc.
Garrard 201
Garrard 4HF
$\begin{array}{lll}\text { £26 } & 8 & 3 \\ \text { E19 } & 8 & 6\end{array}$
Sperkers

Goodmans Axlon Goodman
Goodmans Axiop 300
Corner Cabtnet (8tn.)
Goodmane Axde tite
WB HF1016.
Printed Circuit Transistor Pocket Superhet A printed circuit pocket-size sinual in appearance and of outstanding performance Incorporstes TC.C. printed circuit, ind transistor (push-pull) to cover medium and long waves, otilises No. 8 batteries. Attractive
cream and red plastic cablnet with engraved dial. Overall dimenslons 7 th . $\times 3$ inn. $\times 18 \mathrm{in}$. Total weight when assembled, Including batterles, only 20 oz . Our price for all required components including bstteries, £11/19/6. printed circuit. battery holder, nuis and bolts and fuli aasembly Inatructions, 25/-, plus pke. and post $1 / 6$.

VERDIK Tape Recorder

-studded Verdik 81 tape recorder is made to very

PLIFIER lus 2/6. P.F. Instruction post free A stael case 1 now available. complete with or $15 / 6$ extra. plus pkg.

HANGERS
Garrard RC121
Collaro Conque
Junction Transistors 10/- each.
THE "TRANSIDYNE"

EDGWARE ROAD - LONDON W.2.

Wirroloss WJorld

In Theis Issue

VOLUME 65 No. 3
PRICE: TWO SHILLINGS

FORTY-EIGHTH YEAR OF PUBLICATION

Offices: Dorset House,
Stamford Street, London, S.E. 1

Please address to Editor, Advertisement Manager or Publisher, as appropriate

Telephone:
WATerloo 3333 (65 lines)
Telegraphic Address.
"Ethaworld, Sedist, London."

103 Editorial Comment
104 Waveguide Transmission
106 World of Wireless
109 European Television Stations
117 Time Past-Beam and Broadcast By P. P. Eckersley
121 Letters to the Editor
126 Physical Society's Exhibition
135 Relativity-2
139 Evaluating Aerial Performance-2
144 Short-wave Conditions
145 The Bifilar-T Circuit-2
149 News from the Industry
150 March Meetings
152 Random Radiations
154 Unbiased

By " Cathode Ray"
By L. S. Moxan

By Thomas Roddam

By " Diallist"
By "Free Grid"

[^10]
Transistors

A Simple Temperature-control System

This system involves the use of transistors to keep a block of copper at constant temperature and thus to provide thermostatic conditions for the transistors of any experimental or industrial circuit. The collector leakage current of a transistor varies with ambient temperature. The drift which thus arises affects the stability of d.c. amplifiers and test equipment.

COPPER BLOCK (approx. full size)
A copper block was constructed to the design shown in the drawing above. The block is made circular for ease of machining and for uniform heating effect. A layer of aluminium foil covering the heater coil reflects heat into the block.

A closed-loop servoméchanism controls a power transistor, which supplies the current for heating a coil wound uniformly around the block. The sensing element, used to provide the error signal, is an a.f. transistor mounted in the block. The leakage current $I^{\prime}{ }_{c o}$ of this transistor changes markedly with temperature, so that suitably amplified changes in I' ${ }_{c o s}$ are used to control the current through the heating coil. It was found that an initial current through the coil of 1.5A gave a good heating rate without much overshoot. For a 12 V supply the resistance of the coil becomes 8Ω. To provide sufficient length of wire to wind uniformly, five strands of thin enamelled constantan wire are wound in parallel.
The control circuit is shown here. The connection of Tr 3 and Tr 4 allows the OC 72 to drive the OCl 6 without danger of excessive dissipation. The gain of the combination is then the product $\alpha_{1}^{\prime} . \alpha_{2}^{\prime}$. The combined base-emitter voltage provides sufficient voltage for the collectors of Tr 1 and Tr 2 ; at
the same time it limits the maximum possible dissipation of these transistors. The variable resistance provides a path for some of the leakage current, allowing adjustment of the temperature to which the block is set.

When the circuit is switched on there is very little leakage current flowing in the sensing transistor. Accordingly the OC16 output transistor 'bottoms' and the current flowing in the heating coil is very nearly $\mathrm{V}_{\mathrm{cc}} / \mathrm{R}_{\mathrm{H}}$ (V_{cc} is the supply voltage and $\mathbf{R}_{\mathbf{H}}$ the heating coil resistance). The block heats rapidly to nearly $40^{\circ} \mathrm{C}$, at which temperature the leakage current of Tr 1 rises rapidly and the OCl 6 is cut-off, and remains cut-off till the block temperature has dropped to the set vaiue. There is a slight overshoot of temperature because the junction temperature of Tr 1 does not react to changes instantaneously.

Trl is the temperature-sensing transistor. Its collector voltage is limited to about 1 V , whilst the working voltage is about 0.6 V . To limit the maximum change of temperature inside the block to $0 \cdot 1^{\circ} \mathrm{C}$, the maximum variation of I^{\prime} o must be 0.012%. The actual stability achieved over at least 24 hours satisfies this condition.

A long-tailed-pair amplifier using germanium transistors was tested in the block. A variation of ambient temperature from 20 to $35^{\circ} \mathrm{C}$ resulted in a change of $0.75^{\circ} \mathrm{C}$ in the block. The drift, referred to the input, was about $75 \mu \mathrm{~V}$, or $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

[5518]

CONTROL CIRCUIT

The reliabllity of the Brimar ' T ' range of valves has been 'built in' as the result of a continuous process of rigorous examination and testing. One of these tests is illustrated. Valves are placedinamachinespecially designed to simulate the effect of gun shock and rocket boosts where any structural fault will mean a defective valve. The information derived from this and other tests on valves for special applications is used to improve manufacturing techniques on commercial types. Which makes Brimar the obvious choice when the demand is for a reliable valve.

better make it

[BIMAMA

A NEW AERIAL RESEARCH LABORATORY

It will not come as a surprise to "Wireless World" readers to be told that we-Belling \& Lee Limited-do not make cookers or electric fires. Neither are television aerials our main interest, although we are considered specialists and consultants in all matters relating to the reception of V.H.F. signals, be they television, F.M. sound or professional communication.

Since the New Year we have opened a new aerial research laboratory divorced entirely from the main research facilities which are, of course, fully equipped for the most stringent testing of electronic components. The new laboratories have been specially equipped for the research and development of aerials, aerial distribution systems including amplifiers, interference filters and last but by no. means least, screened compartments.
Whilst domestic television aerials take up most of the time, there are always "special purpose" professional type aerials required, for example we have always developed and made the aerials for the T.V. pilot transmitter used by I.T.A. We also make aerials for the B.B.C. and "all round looking" aerials as used on lightships.

Aerials can rarely be finalised in a laboratory. There is inevitably field testing to be carried out, for which purpose we have a specially built

A general view across one side of the laboratory showing a screened comportment in the for corner. There are microwave facilities ovailable and a very comprehensive range of some of the finest measuring equipment ovailable on either side of the Atlantic and a lot more to come.

The Mobile Research Unit is complete with work bench and seats. It has self-contained 50 cycle 250 volt supply taken to a separate distribution system. The mast is winch-operated and may be raised to 32 feet. When on location the vehicle is fitted with a Television receiver and necessary measuring equipment.

One of the most modern and interesting pieces of equipment available in the laboratory is the impedance measuring set which plots the results directly on to a Smith chart thereby cutting out much tedious work.
mobile research unit, with its own power supply. We have also a number of permanent field sites that are in use in all but the very worst of weather. Delightful in spring and summer, when it comes, not so good in the winter, but the show goes on.

We have some very interesting equipment enabling us to work up to 2,000 M/c. Even Smiths charts are no longer laboriously plotted by hand, they are taken off a Diagraph.

We are looking for some extra staff, one senior engineer preferably of B.Sc. standard or equivalent, and a few junior engineers. If any readers would like to hear more about these jobs please write to the Secretary.

For work on any of our three field sites, we use 4 wheel drive vehicles as illustrated which carry a small petrol electric set as the supply unit.

[^11]
BELING LEE LID
 great cambridge road. enfield. middx., england

Two-segment solid flared core
 solid flared core
110° scanning is with us and cabinet designers have as many smiles as circuit designers have headaches.

To those concerned with driving electron beams around almost impossible angles, these new Ferramic* Scan Coil Cores bring a large measure of relief. Desirable electrical characteristics have been combined with sound mechanical design, facilitating the rapid production of coils.

If you have a wide-angle distortion problem, Plessey most probably have the answer. A letter or telephone call will bring you information about this, or any of a whole range of Plessey Ferramic* products.

* FERRAMIC is a Registered Trade Mark.

Aspects of design

This is the ninth of a series of special features dealing with advanced problems in television and radio circuit design to be published by Siemens Edison Swan. The Ediswan Mazda

Applications Laboratory will be pleased to deal with any questions arising from this or other articles, the tenth of which will appear in the April 1959 issue.

REQUIREMENTS OF AN R.F. STAGE

In a television front end tuner consisting of a cascode double triode R.F. stage followed by a triode-pentode mixer the R.F. stage has many functions to perform.

One of its requirements is to reduce the effect of the mixer noise which in this case would have a noise factor of the order of 40 at $200 \mathrm{Mc} / \mathrm{s}$. There must therefore be a stage of signal frequency amplification ahead of the mixer to render the mixer noise negligible in comparison with the noise of the input circuit and this can be done by providing a sufficiently high gain between the mixer grid and the grid of the R.F. valve.

The R.F. stage in providing the necessary gain must itselt make the least possible contribution to the receiver noise as well as meet the other necessary requirements of the input stage. These can be summarised as:

To attenuate the local oscillator voltage and prevent radiation via the receiving aerial.

To provide a reasonable match for the aerial feeder by means of an input transformer of the required bandwidth.

To handle large signals with the minimum cross-modulation effects between sound and vision carriers.

To maintain these characteristics at reduced gain with A.G.C. bias.

In designing an R.F. stage to give the minimum noise figure it is necessary to reduce as far as possible noise produced in the valve itself arising from normal shot noise and induced grid noise. In general a valve with the highest mutual conductance per milliamp of anode current working at a high cathode current density will provide the highest gain and the lowest noise figure. With this end in view, valves Kave been designed having a high slope per milliamp of anode current and a corresponding improvement in gain and noise performance. Unfortunately
their comparatively high cost prevents wide adoption, except .n receivers intended for real fringe area reception, but an improved version of the 30 L 1 presents an attractive compromise.

As an alternative to using a more costly valve in fringe sets only, it is possible to provide the improved valve costing not much more than the 30L1. Such a valve could be fitted in every set and would have a noise performance suitable for use in most fringe areas and at the same time would provide more gain on both Band I and III-a useful feature where a recelver is required to operate from a simple indoor aerial.

The Ediswan Mazda 30 L15 has been designed to meet these requirements and it gives a gain increase of 4 to 5 dB over the 30 L 1 with an average noise factor of 5.5 dB on Band III compared to 7.5 dB obtainable with the 30 L 1 .

If the 30 L 15 is plugged into an existing design in place of the 30 L 1 and only circuit re-trimming is carried out a gain improvement of up to 3 dB and a noise improvement of ${ }^{-1}$ to 1.5 dB may be realised. To take full advantage of the valve's capabilities some changes will be required to the bias resistor and slight readjustment of the coupling to the aerial feeder may be necessary.

NOISE FACTOR AND A.G.C.

The mistuning of the input circuit when A.G.C. bias is applied to the R.F. valve produces a change in the response curve of the tuner as shown in Fig. 1.

The amount of mistuning, or "tilt", with a given valve is largely controlled by the working Q of the aerial circuit. If a higher working Q aerial circuit giving more than about 1.5 dB of tilt could be accepted, lower noise figures than those given above could be obtained. It follows then that a full assessment of the performance of the input stage should consider noise factor and. gain in relation to the amount of tilt, or A.G.C. mustunung, present in any particular tuner. The practice in these Laboratories is to design and quote performance figures on the basis of a tilt of up to 2 dB for a gain reduction of ten times.

IMPROVED MIXER VALVE

A companion valve to the 30 L 15 has been designed to give higher conversion gain in the mixer stage of a television tuner. It has the same base connections as the 30 C 13 which it has superseded and is therefore specially suitable for printed circuit use but can also be used in a wired tuner to provide approximately 3.5 dB more gain than the 30 Cl .

The new valve will be described more fully in a later article on Aspects of Design.

FIG. 1.

Effect of A.G.C. bias on overall tuner response curve

NEW HIGH PERFORMANCE CASCODE AMPLIFIER

EDISWAN MAZDA 30L15.

The 30L15 is a V.H.F. twin triode specially designed for use as a cascode amplifier in television tuners where a high gain and good noise performance are required. The 30 L 15 will provide a gain improvernent of 4 to 5 dB and a noise façtor improvement of 2 dB as compared with the 30 L 1 .
Heater Current (amps)
Ih
Heater Voltage (volts)
V_{h}
0.3

MAXIMUM DESIGN CENTRE RATINGS
Anode Dissipation, either section (watts)
$\mathrm{P}_{\mathrm{a} \text { (max) }}$
Cathode Current, per section (mA) .. $I_{k(m a x)}$
Anode Voltage (volts) Va(max) 2.0

Negarive Grid Voltage (vults) $\quad . \quad \mathrm{Vg}_{\mathrm{max}}$) 250

Grid to Cathode Resistance, section
1 (k Ω) Cathode Resistance, section
Grid to Cathode Resistance, section $2(\mathrm{k} \Omega)$
Rg^{\prime} - k^{\prime} (max) 500

Effective Grid to Earth Resistance, section $2(\mathrm{k} \Omega$)

22*
$\mathrm{R}_{8}-\mathrm{E}$ (max)

* Grid current bias.
** With potentiometer bias from anode supply.

INTER-ELECTRODE CAPACITANCES ($\mathbf{p} \mathbf{F}$) \dagger

Grid 1 to Anode 1
Anode 1 to Cathode 1, Heater, Shield Grid 1 to Cathode 1, Heater, Shield. Anode 2 to Cathode 1, Heater, Shield Grid 1 to Anode 2

$\mathrm{Cg}^{\prime}-\mathrm{a}^{\prime}$	1.5,
$\mathrm{Ca}_{\mathrm{a}^{\prime}-\mathrm{k}} \mathrm{k}^{\prime} \mathrm{h}, \mathrm{s}$	1.9
$\mathrm{cg}^{\prime}-\mathrm{k}^{\prime}, \mathrm{b}, \mathrm{s}$	3.1
$\mathrm{Ca}_{3^{\circ}-\mathrm{k}} \mathrm{k}^{\prime}, \mathrm{h}, \mathrm{B}^{\prime}$	3.6
$\mathrm{Cg}^{\prime}=\mathrm{a}^{\prime \prime}$	0.005

BASE:
NOVAL-B9A

MAXIMUM DIMENSIONS
Overall Length mm) 56
Seated Height (mm) 49 Diameter
(mm) 22.2

TYPICAL CASCODE OPERATION

Conditions given for circuit with the second section using potentiometer bias from the anode supply, making $\mathrm{V}_{\mathrm{g}^{*}-\mathrm{E}}=99 \mathrm{~V}$. Anode supply voltage (volts) ..

Anode decoupling resistor, section $2(\mathrm{k} \ddot{\Omega})$	$\mathbf{R}_{a^{\prime}}$	2.2		
Anode current (mA)	\cdots	\cdots	\cdots	\mathbf{I}_{n}
Self bias resistor, section $1(\Omega)$	\cdots	$\mathbf{R}_{g^{\prime}}$	100	

Self bias resistor, section $1(\Omega) \quad \cdots \quad \mathbf{R}_{\boldsymbol{g}}$
Mutual conductance, section 1 (mA/V)
gm
Combined mutual conductance (mA/V)
A.G.C. Voltage (volts) to give $\triangle I_{B}$ $\Delta V_{g}=0.1 \mathrm{~mA} / \mathrm{V}$
$V_{g^{\prime}}$
Input capacity working (pF)
Change in input capacity by biasing to
cut-off (pF)

Characteristic Curves of Ediswan Mazda Valve Type 30L15-each section

SIEMENS EDISON SWAN LIMITED An A.E.I. Company Technical Service Department, 155 Charing Cross Rd., London, W.C.2. Telephone: GERrard 8660 . Telegrams: Sieswan, Westcent, London.

EDISWAN
MAZDA

the large-signal gain is maintained to high currents, giving Low Output Distortion,
and low thermal resistance allows High Output Powers

G.E.C. Audio Transistors

LOW NOISE Maximum noise factor 5 db $\begin{aligned} & \left(f=1 \mathrm{kc} / \mathrm{s}, \quad \mathrm{R}_{\mathrm{s}}=500 \mathrm{\Omega}\right. \\ & \mathrm{V}_{\mathrm{ce}}=2 \mathrm{~V}, \quad . \end{aligned}$	LOW POWER \dagger Maximum Dissipation at $45^{\circ} \mathrm{C}-\mathbf{2 0 0} \mathrm{mW}$ at $55^{\circ} \mathrm{C}-150 \mathrm{~mW}$			MEDIUM POWER \dagger Maximum Dissipation at $45^{\circ} \mathrm{C}-800 \mathrm{~mW}$ at $55^{\circ} \mathrm{C}-600 \mathrm{~mW}$ (with $3^{\prime \prime} \times 3^{n}$ cooling fin)		
MAXIMUM CURRENT 250 ma	MAXIMUM CURRENT 250 mA			MAXIMUM CURRENT 350 ma		
GET 106	GET 114	GET 103	GET 104	GET 115	GET 116	GET 105
$V_{\text {ce }}$ max (volts)	15	30*	30	15	30*	40*

* $\mathrm{R}_{\mathrm{e}} / \mathrm{R}_{\mathrm{b}}>0.03$ † Also supplied in matched pairs

Further details of these and other semiconductor devices manufactured by the G.E.C. are obtainable from the
Semiconductor Division.
Read "Transistor Audio Frequency Amplifiers", written by the staff of G.E.C. Research Laboratories, published by Iliffe \& Sons Ltd. Price 21/-
G.E.C. Semiconductor Division, Schóol St., Hazel Grove, Stockport, Cheshire. Tel: Stepping Hill 3811 or for London Area ring Temple Bar 8000, Extension 10

PLESSEY CUTS COST OF

RADIO TELEPRINTER OPERATION

New PVR. 500 Fixed Station Dual Diversity Radio Teleprinter Receiving

 Terminal for H.F. 2-30 Mc/s.

The low initial cost and relatively simple installation of the Plessey PVR. 500 Terminal makes possible Radio Teleprinter links where previously they would have been uneconomical. Designed in collaboration with International Aeradio Ltd., the equipment is particularly suitable for regional point-to-point communication and meteorological broadcast at airports, also for Press Agency and similar work. Some of its many outstanding features are detailed below.

A comprehensive brochure is available on request. Please ask for Plessey Publication No. 168.

FEATURES:

Built-in metering arrangements provide for checking, setting up and monitoring of all important circuit functions. Direct operation of up to 3 Teleprinters; no keying relays are used, thus ensuring maximum reliability and freedom from radio interference. Five separate channels are pre-set and crystal controlled. Channel selection can be
effected by the operation of one switch, while provision of crystal trimmers ensures that the frequency is exact.
The channel selector switch can be motor driven from the rear of the preselector unit, thus permitting remote control. Full remote control facilities are available.
F.S.K. Transmissions of differing
shifts of 150-1200 c/s are catered for by Wide Band Discriminators. Narrow Band input Filters, plus Discriminators, ensure true F.M. detection with increase in signal to noise ratio.

Rapid diversity switch action on small signal differential over side range of inputs. Complete suppression of weaker diversity signal.

the magnetic recording

tape with the highest

technical standards

* High sensitivity
* Low noise level
* Low 'print through' factor
* Anti-static
* Freedom from curl and stretch

general PURPOSE

LONG Play

Type No.	Title	Size	Length approx.	Price in Emicase	Price without EMICASE
88/3		$3^{\prime \prime}$ dia.	175'	-	76
99/3		$3^{\prime \prime}$ dia.	$250{ }^{\prime}$	-	96
88/3N	Message	3 3' $^{\text {dia. }}$	175°	-	76
99/3N		3 l" $^{\text {dia. }}$	250°	-	96
88/6		$5^{\prime \prime}$ dia.	600°	£1 36	£1 10
99/9		5" dia.	850°	£1 106	£1 80
88/9		$57^{\prime \prime}$ dia.	850°	£1 106	£1 80
99/12	Continenta	51" dia.	1200°	£1 176	£1 150
88/12		$7{ }^{\prime \prime}$ dia.	$1200{ }^{\prime}$	£1 176	£1 150
99/18	Standard"	$7{ }^{\prime \prime}$ dia.	1800^{\prime}	£2 126	£2 100
88/18	'"Professional"	8f" dia.	1750'	-	£2 176
99/24	$\}$ Professional	$8 \frac{1}{\prime \prime}^{\prime \prime}$ dia.	2400°	-	£3 126

FInnicase

now available separately 1
the polystyrene container that solves tape storage problems, protects spools from dust and allows easy identification of leader tapes.

7" - 4s. 0d; 5 ${ }^{\frac{3}{4}}{ }^{\prime \prime}-3 \mathrm{s}. \mathrm{6d;} 5^{\prime \prime}-3 \mathrm{~s} .6 \mathrm{~d}$.

E.M.I SALES \& SERVICE LTD (Recording Materials Division)
HAYES. MIDDLESEX Tel: SOUthall 2468

Vostexion qualay s. quipment

Our specialised MONITOR HEAD MODEL W.V.B. has an additional head and amplifier which enables this recorder to perform a number of useful functions. The most important of these is to monitor the recorded tzpe a fraction of a second after it is made, and if necessary compare it by throwing a switch, with the signal before it is recorded. This allows the recording engineer to make certain that he has made a first class recording before the artists leave the studio, without the necessity of waiting while another run through is made.
Additional items may be recorded one on top of another while listening to the first, since a switch is provided for the erase, and the bias, which also acts as a partial erase, can be lowered slightly, and its new value checked on the meter. In a similar manner, the original signal may be fed back and recorded, resulting in an echo, the time constant of which Is controlled by the speed of the tape and the distance apart of the heads.
VORTEXION RECORDERS use a synchronous capstan motor to ensure accurate recording and play back speed.

Many years of steady development have enabled us to still further improve the Vortexion W.V.A. and W.V.B. recorders.

All components which could contribute to noise or realiability are carefully measured and selected individually before incorporation, resulting in an exceedingly low background noise and distortion with frequency response within $\pm 1.5 \mathrm{db} 50-10,000 \mathrm{c} / \mathrm{s}$ and $\pm 3 \mathrm{db} 40-12,000 \mathrm{c} / \mathrm{s}$ at $7 \frac{1}{2}{ }^{\prime \prime}$ per second.
\star The meter fitted for reading signal level will also read bias voltage to enable a level response to be obtained under all circumstances. A control is provided for bias adjustment to compensate low mains or ageing valves.
\star A lower bias lifts the treble response and increases distortion. A high bias attenuates the treble and reduces distortion. The normal setting is inscribed for each instrument.
\star The distortion of the recording amplifier under recording conditions is too low to be accurately measured and is negligible.
\star A heavy mu-metal shielded microphone transformer is built in for $15-30$ ohms balanced and screened line, and requires only 7 micro-volts approximately to fully load. This is equivalent to 20 ft . from a ribbon microphone and the cable may be extended 440 yds . without appreciable loss.
\star The 0.5 megohm input is fully loaded by 18 millivolts and is suitable for crystal P.U.s, microphone or radio inputs.
\star A power plug is provided for a radio feeder unit, etc., Variable bass and treble controls are fitted for control of the play back signal.
\star The power output is 4 watts heavily damped by negative feedback and an oval internal speaker is built in for monitoring purposes.

* The play back amplifier may be used as a microphone or gramophone amplifier separately or whilst recording is being made.
* The unit may be left running on record or play back, even with I, 750 ft . reels, with the lid closed.

FOUR CHANNEL ELECTRONIC MIXER
This is a studio quality electronic mixer sultable for any climate. The controls are hermetically sealed, and great care and selection of components to make certain reliable low noise operation, and individual screens prevent break through. The built-in power transformer is screened and potted, and all the microphone transformers are individually potted in selected heavy gauge mu-metal boxes. Front or rear inputs and outputs may be obtained to order. The normal output is .5 volt.
The 3-CHANNEL MIXER and PEAK PROGRAMME METER is similar to the above but has the additional meter fitted calibrated in 2 db steps from -20 db to +12 relative to A.m.w. -600 ohm. The meter is fed by the full P.P.M. I second time delay circuit which includes a stabiliser valve, to ensure accurate gain and calibration. The standard

output is screened primary and I.m.w. -600 ohm balanced or unbalanced by switch. Inputs and outputs may be at the front or rear, and rack panel mounting is available at the same price.
Full details and prices of the above on request
VORTEXION LIMITED, 257-263 The Broadway, Wimbledon, London, S.W. 19
Telephones: LIBerty 2814 and 6242-3
Telegrams: "Vortexion, Wimble, London."

Consider Model 1065
Designed for a wide variety of laboratory applications, it has a very interesting specification including: Y amplifier of sensitivity $250 \mathrm{mV} / \mathrm{cm}$ with a bandwidth of d.c. to $20 \mathrm{Mc} / \mathrm{s}$ and rise-time better than $40 \mathrm{~m} \mu \mathrm{sec}$; X amplifier: time measurement by calibrated shift and internal oscillator for timing marks; voltage measurement by calibrated shift; probe providing an input impedance of $\mathrm{I} .5 \mathrm{M} \Omega \mathrm{I} 2 \mathrm{pF}$. We shall be pleased to send you full data on this and other equipment in the Cossor range. An export model ($\mathbf{1 0 6 5} 5 \mathrm{X}$) is also available. Write for information to:

COSSOR Issir IIETS LuIITEn

The Instrument Company of the Cossor Group
COSSOR HOUSE, HIGHBURY GROVE, LONDON, N. 5
Telephone: CANonbury 1234 (33 lines). Telegrams: Cossor, Norphone, London. Cables: Cossor, London. Codes: Bentley's Second.

TASNCl. 3

Is your amplifier good enough for broadcasting and recording?

URS
If NO we will send you full partic-
ulars of our amplifiers.
If YES we will make sure we have
your name an our mailing list far
details of our new stereo amplifiers
and future products.
NAME ...
ADDRESS..

Leak amplifiers were the first in the world to be marketed with a distortion content as low as 0.1%, a claim received with incredulity in 1945 but which was subsequently confirmed by the National Physical Laboratory and has since become an accepted worldwide standard.

LEAK amplifiers are the choice of professional engineers such as the B.B.C. (over 500 delivered), the South African Broadcasting Corporation (600), ITV and many other Commonwealth and overseas broadcasting and TV systems, who use them for transmitting and/ or monitoring (quality checking) the broadcasts to which you listen.

Also many of the gramophone records you buy are cut via LEAK amplifiers. This acceptance by professional audio engineers has led to a demand for Leak equipment from musiclovers throughout the world.

From long experience and by extreme attention to design details during development work on the preproduction models, we enable our craftsmen to achieve a high outpur per man-hour. The labour costs thus saved offset the increased costs incurred for high-grade materials, components and finishes, and this, together with quantity production (made possible only by a world-wide market), explains how quality products may be sold at reasonable prices.

The First Name in High Fidelity
H. J. LEAK \& CO. LTD., BRUNELROAD. WESTWAY FACTORY ESTATE,
LONDON W.3. ENGLAND.
Telegrams: Sinusoidal, Ealux, London Telephone: SHEpherds Bush $1173 / 4 / 5$ Cables: Sinusordal, London

Ask your dealer for a demonstration of LEAK equipment including the NEW POINT ONE STEREO pre-amplifier and STEREO 20 power amplifier.

Type AFS.II

FREQUENGY SHIFT CONVERTER

${ }^{\text {by }}$ Medifon

The AFS.i1 is a dual diversity unit for use with 2 -receiver space diversity systems working with the suppression of the weaker channel. It provides solid copy of signals which are 14 db below noise level. Primarily intended for space diversity operation, the AFS. 11 can also be supplied for frequency diversity operation.

INPUTIMPEDANCE: 600 ohms , balanced INPUT LEVEL : -40 to +10 dbm . INPUT FREQUENCIES (Space Diversity) MARK : $2975 \mathrm{c} / \mathrm{s}$
SPACE: Tunable from $1957 \mathrm{c} / \mathrm{s}$ to $2875 \mathrm{c} / \mathrm{s}$ (100 to $1000 \mathrm{c} / \mathrm{s}$ shift)

LIMITER RECOVERY TIME : Negligible for a 40 dB differential between Mark and Space

KEYING SPEED: 800 bauds maximum, dependent on shift

OUTPUT : Adjustable from 45 to 75 mA into 2000 ohms, floating (self-contained) teleprinter supply.

POWER SUPPLY: 100-125 and 200-250 volts, $50 / 60 \mathrm{c} / \mathrm{s}$

DUAL OR NON-DIVERSITY RECEPTION

OPERATES ON SIGNALS BELOW NOISE LEVEL

SHIFT ADJUSTABLE FROM 100 to $1000 \mathrm{c} / \mathrm{s}$ SELF-CONTAINED ISOLATED D.C. TELEPRINTER SUPPLY VISUAL AND AURAL. MONITORING

UNITED PRESS ASSOCIATIONS OF AMERICA

UNITED PRESS INTERNATIONAL MONITORING STATION, BICKLEY, KENT

Seprember 18ih, 1958.

Dear Sir,
The AFS. 11 Converter performed Cadmirably and at no time during the tests did it fail to produce readable "copy" when the signal was acceptable to the best of our other converters, and-what is importantit printed longer on deteriorating signals on several occasions. I am pleased to be able to report that this converter seems to be ideally designed to use for frequency shift reception, and that it requires minimum adjustment once a circuit has been "set-up."

Yours faithfully,
T. F. Wyatt,

Bickley Monitoring Station.

MOUNTING: Standard 19 ins. rack

The Phedifon
 Type R. 151

A very

 high quality, economical Frequency Shift ReceiverThis receiver is designed primarily for point-to-point frequency shift reception. Its high stability, sensitivity and rapid choice of frequencies make it ideal for unattended operation. Any one of six crystal controlled pre-set frequencies anywhere in the range may be switched into operation immediately. Available in three basic assemblies: a high sensitivity and high stability communications receiver, a dual space-diversity receiver, or a complete frequency shift receiving terminal incorporating the Redifon AFS. 11 or AFS. 12 converters.

FREQUENCY RANGE:

$2-27.5 \mathrm{Mc} / \mathrm{s}$ in five bands: (A) $2-3.65 \cdot \mathrm{Mc} / \mathrm{s}$. (B) $3.65-6.5 \mathrm{Mc} / \mathrm{s}$. (C) $6.5-11.4 \mathrm{Mc} / \mathrm{s}$. (D) 11.4 $18.5 \mathrm{Mc} / \mathrm{s}$. (E) $18.5-27.5 \mathrm{Mc} / \mathrm{s}$.

SENSITIVITY:

1/uV for 20 dB signal/noise ratio.
SELECTIVITY:
Two positions; 1.5 and $6.0 \mathrm{kc} / \mathrm{s}$ at 6 dB .
INTERMEDIATE FREQUENCIES:
1st $1 . F=1500 \mathrm{kc} / \mathrm{s} . \quad 2 \mathrm{nd} 1 . F=110 \mathrm{kc} / \mathrm{s}$

A.G.C:

Less than 5 dB change in output for 100 dB change in input.
AUDIO OUTPUT:
1 W at 3 ohms and 50 mW at 600 ohms POWER SUPPLY:
100-125 and 200-250 volts, $50 / 60 \mathrm{c} / \mathrm{s}$.
MOUNTING:
Standard 19 ins. rack

- HIGH STABILITY FOR LONG TERM UNATTENDED OPERATION

- SIX PRE-SET CRYSTAL CONTROLLED FREQUENCIES
- DUAL SPACE OR NONDIVERSITY RECEPTION
- ALL FREQUENCY DETERMINING CIRCUITS OVENED
- A.F.MUTING AND CHANNEL INDICATION

NOW-a miniature microphone that's 'MADE IN GT. BRITAIN'

besson balanced armature microphone type le

This Microphone incorporates the design and manufacturing skill that is characteristic of all Besson micro-components. And the financial advantages over imported microphones are obvious.

The Type LE Microphone is designed to operate with transistor amplifiers and will match into the average transistor which may have a resistance of $1,500-3,000$ ohms. The microphone impedance is $3,000 \mathrm{ohms}$ measured at 1,000 cycles and the resistance is 360 ohms . It is made to operate within a temperature range of 20 to $115^{\circ} \mathrm{F}$, but can be specially treated to operate at much higher temperatures if required.
It is ideal for hearing aids, dictating machines, tape recorders, lapel microphones, walkie-talkie sets, etc.
Send for technical leaflets to the SOLE SELLING AGENTS:

ST. HELEN'S AUGKLAND, CO. DURHAM
Phone: West Auckland 551/5 Grams: Solenoid, West Auckland Birmingham Office: 7 Newhall Street, Birmingham 3 Phone: Central 3901
A. P. BESSON \& PARTNER LTD., St. Josephs Close Hove 4, Sussex.

BESSON

MOVING COIL RELAY Type SB2

This robustly made relay will stand up to the wear and tear o industrial use. The powerful coil movement gives a high contact pressure and the contacts themselves can be-adjusted from outside over the whole scale.

STABILIZE YOUR AC MAINS with the finest equipment, at a fractlon of the normal cost:FERRANTI $7 \frac{1}{2}-K V A$ MOVING COIL
AUTOMATIC VOLTAGE REGULATORS
Any stabilized output voltage in the range 200-250 v . can be selected by plug-board tappings. The selected output voltage is automatically maintained constant within $\pm \frac{1}{2} \%$, at all loads 0 to $30 / 37 \frac{1}{2}$ amps., when the supply voltage is varying over the range $+8 \%$ to - 12%

Frequency compensated $45-55$ and $54-66 \mathrm{c} / \mathrm{s}$. Excellent output wave-form.
Can also be used as a variable transformer.
Unused. Complete with spares and instruction book.
P. B. CRAWSHAY

94 Pixmore Way, Letchworth, Herts. 'Phone I85I

TRANSFORMERS COILS
 LARGE OR SMALL QUANTITIES CHOKES
 TRADE ENQUIRIES WELCOMED
 SPECIALISTS IN

FINE WIRE WINDINGS MINIATURE TRANSFORMERS, PICK-UP, CLOCK AND INSTRUMENT COILS, ETC
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., M.O.S., L.E.B . ETC.
123-5-7 PARCHMORE ROAD, THORNTON HEATH, SURREY
LIVINGSTONE 2261
EST. 1933

You can now specify S.T.C.

Transistors for Entertainment

and Industrial Applications

ENTERTAINMENT TYPES

(a) TS. 7 TS. 8
...small signal amplifiers and frequency changers
(b) TS. 9 TS. 17
...higher power amplifiers up to several hundred milliwatts
(c) TS. 13 TS. 14
..low frequency applications

INDUSTRIAL TYPES

(a) TK. 23 A
(b) $T K .20 B$

TK.25B
(c) TK.21B TK.24B

TK.26B TK.27B
(d) TK .40 A
..low frequency telephone and telegraph carrier systems
...switching circuits (computers)
...switching circuits $8 \mathrm{Mc} / \mathrm{s}$ and above

...switching circuits and/or small signal amplification

.. amplifier and oscillator. Audio frequencies for power of several hundred milliwatts

First in Europe to produce transistors, S.T.C. are now making available to industry a range previously only used in their own equipment. Their long experience of components manufacture coupled with the latest production techniques has resulted in yet another high-quality product.

Send for literature on the available types.

Standard Telephones and Cables Limited

Reglstered Office: Connaught House, Aldwych, London, W.C. 2
TRANSISTOR DIVISION: FOOTSCRAY•SIDCUP•KENT

QUICK, EFFICIENT UP-TO-DATE COMPONENT SERVICE!

BUELD TEE "SKY PLXIE" VEST-POCKET TWO-
POCKET VALVE RADIO
Angone Can Build This Beantitul Precision Pooket Radio, TRANSISTOR PLUS DIODE RADIO whilch gives a No knowledge whatever needed, our Simple, Pictorial Plans

 waves, working entirely of a thy "pen-light" bat- a Real Valve Radiol With Detachable Rod Aerial. IDEAL tery. Every part eested before de ppatch SPECIAL FOR BEDROOM, GARDEN, ete. We can supply all the
STEP-BY-STEP-PLANS FOR ABSOLUTE BEGIN- parts necessary, ineluding Case, Screws, Easy Step-by-Step
 oto.-overything down to the last nut and bolt-ONLY Batteries extra- obtainable anywhere. (Plus $2 / 6$ post, etc.) $47 / 6$ with plans. Postage, eta 2/-. C.OD. 2/- extra. BUILD YOURS NOWI (Ail parts eold separately.) Pricead

record changer and player BARGADNSI B.SR. MONARCH, 4 -gpeed, mixer autochanger undt, model CA8. Fully com. new-Limited stocks Onig. BramT ع6/19/6. (Plus post and packing $5 /-$.) LATEST "COLLARO" 4-8peed suto. changer with Hiemi plick up. Complete 87/19/8. (Plua post and packing 4/6.) "COLLARO" JUNIOR, 4-speed, eingle player, with crystal pickup. using HePr9 cartridge. OUR PRICE 92/6. (Plus 4/post and packing.)

Choice of besutiful wainat veneered cablnet or lvory or brown bakelite. This in the lowest possible proce consistent with high quality. No built by anjone in 2-3 hours, ueing our very slmple easy-to-follow dlagramis. The terrific new circuit of the "OCEAN-HOPPER" covers all medlum and long waves, has razor-edge selectivity and excepuonaily good tone. Prisis
also lucludes ready drilled and punched chassis net of simple easy-to follow plans-in fact, every. thlngl Parts tested belore despatoh. Use standard
octal.-base valves. For A.C. mains $200-250$ volto (low running costs-approximately 18 watis). Slize $12 \mathrm{Zin} \times 6$ 6in. \times sin Build this long-range powerful mididget Now.

Can Be
Built For
107/6

COMPONENT BARGALIS
Redi-Spot Transistors, tested, $8 / 6$. White-Spot Transistors, testod. $15 /$ Also all Mulland and standard types Atocked.

Moving Coil P.M. Speakers. 2yla. 17/6; 3iln. 19/6; 5in. 17/6; 8in. 19/6.

ALL TYPES OF COMPONENTS
STOCKED AT COMPETITIVE PRICES

PRINTED CIRCUIT POCKET SET

BUTW THIS 3 TRANSISTOR POCKET RADIO ... PRINTED CIRCUTT VERSION: The "Companion" is comparable in sensitivity to a three-valve battery met, it is exceptionally amall \ln size ($4 \frac{1}{2 l n}$. $\times 3 \ln . \times 1$ lan.) and is a aelf-contalned pocket radio that does not need aerial or earth. It has hult-in speaker and covers medium and long waves. Thla unlque littie sot CAN BE BUILT FOR ONLY $87 / 6$. EVERYTHIN(INCLUDED! (Plus post and pseking 2/6.) All parta sold separatoly. Price list, etc., 6 d .

PRINTED CIRCUIT POCKET SUPERHET

BUED THIS PROFESSIONAL-LOOKING, FIRST-CLASS 6-TRANSISTOR POCEET SUPEREET. Size ouly 5 hla. $\times 3$ in $\times 1$ inn. Beapulitul red and cream plastle case with engraved dial. Bet wetphs only 20 oz, with batteriest Cuvers medium and additional audio gain. In-built ferite rod aerial and 2 дin. P.M. speaker. This is probably the best yet of lta kdad-it 18 simple to build and really sensitive. ALL COMPONENTS INCLUDING CABDNET, PRINTED CLRCOIT, TRANSISTORS-IS FACT EVERYTHLNG CAN BE SUPPLIGD FOR $211 / 15 /$. (Plus post and packing 2/6.) (All parts sold separately. Price llst, circuit, etc., 9d.)

CONCORD ELECTRONICS (\%)

69 PRESTON STREET, BRIGHTON, 1

The Best Manufacturers

 use Grey \& Marten 'Amalgam' solderGrey \& Marten make solders specifically for the Radio, Television and Electronic industries.
Amalgam 'Resinact' Cored Solder with specially activated resin flux, to specification DTD 599, and B.S.44I.

Amalgam P.C. Alloys for dip-tinning printed circuits (free service for checking analyses of metal in customers' baths).
Amalgam Fusible Alloys, made in all forms, for all uses. Fully approved A.I.D., C.I.A., G.P.O., I.R.C.S.C. and M.O.S.

GREY \& MARTEN LIMITED
City Lead Works, Southwark Bridge, London, S.E.1. Tel: HOP'0414 and at Birminghom, Manchester and Ipswich

POLYTHENE

Substantial quantities of Tape for sale - Natural and Ivory-Thicknesses $0.010^{\prime \prime}(0.25 \mathrm{~mm}$.) to $0.060^{\prime \prime}$ (1.5 mm .) Continuous length reels in widths of $\frac{1}{2}$ " to $3 \frac{1}{2}^{\prime \prime}$.

AMPLEX APPLIANCES (KENT) LTD.
19 DARTMOUTH ROAD, HAYES, BROMLEY, KENT
(RAVensbourne 5531)
All export enquiries to
ANGLO NETHERLAND TECHNICAL EXCHANGE LTD., 3, TOWER HILL, LONDON, E.C. 3 .
A. C. SOLENOID type SAM/T

Increased Performance

Continuous 14 ozs. at ${ }^{3 \prime}{ }^{\prime \prime}$ Instantaneous to $5 \frac{1}{2} \mathrm{lbs}$. Same dimensions as Type SA.
Larger and smaller sizes available. Greatly increased discounts for quantities. Also Transformers to 7 kVA 3 Phase
 crew. The operation is quite simple Prices Lacl. key: Size and tio, $13 / 9$ fin., 14/9; 1/n., 1lin., $1 / \mathrm{in}$., $17 / 6$ 1 gin., 22/-; 2 3/32in., 35/8; 2htn., $40 / 8$ lin. sq. hole, 27/-, Post $1 /$ -

All prices are with keys
DEMOBBED VALVES
MANUAL $2 / 6$
Giving equivalents of British and American Service and Cross Reference of Commercis] Typen with an Appendix of B.V.A. Equivalents and Comprehenalve Price Liat. We have still some Valves left at very old Budget Rates (33%) which are actuall sold at the old price (1951). Also ready ow new comprehensive B.V.A. list Colour code indicators. Sale price 1/3.

PIFCD

Illuminating
Soldering Iron
Designed and constructed with a complete understanding of the tachnical need for making a perfect soldering job in the quickest time. The Pifco Boldering Iron incorporates in ith red plastle handle a 0.3 voit lamp directing a beam of light directly on to the soldering point, enabling easy manipulation in the darkest and most diffcult places. The lamp also dias and diameter and of the pencil type, acknowledged so the most valuable for all general purposes. Chrome plated trivel allows the hot iron to stand on the table or may be used as a hanger. Element 35 watts. Six feet grey 3 -core flex fitted. Length 10 inches. For $200 / 250$ volts A.C./D.C.

Complete $22 / 6$

TRANSISTORWISE

"RECO" MIDDY ONE

MEDIUM AND LONG WAVES OR MEDIUM AND SHORT WAVES
 \star Two stage receiver \star Sensitivity control * Ferrite rad aerial \star Medium and Long Waves * Sonotone miniature earphone \star Drilled case. Complete kit with 1.5 volt pencell 37/6, p.p. $2 /$ -
"RECO" MIDDYGEN THREE (MEDIUM AND LONG) \star Regeneration control \star Ferrite rod aerial \star Medium and Long Waves \star Sonotone miniature earphone \star Red/yell. and 2 Green/yel her metically sealed high gain transistors. Complete_kit with $1: 5$ volt pencell 72/-, p.p. $2 / 3$.

"RECO" SUPER SPECIAL

\star Medium, Long and Two Short Wavebands \star Improved high gain ferrite rod aerial \star Three high gain transistors rod acrial \star Miniature Earphone or Balanced Armature
Reproducer, complete kit with 1.5 volt pencell 75/-. p.p. $2 / 6$.
"RECO" PUSH-PULL FOUR (Size 67 l in. $\times 4{ }^{5} \mathrm{in}, \times 15 \mathrm{in}$.)
As above but with push-pull output stage and 2 tin. loudspeaker. Complete kit with 4 pen. batteries $99 / 6$, p.p. $2 / 6$.
"RECO" TRANSIGEN THREE
 \star Ferrite rod aerial \star Medium and Long Waves (200 to 500 metres and 1,000 to 2,000 metres). \star Regeneration control. On test this receiver has proved really portable. Complete with choice of Sonotone miniature earpiece or Balanced armature reproducer and 1.5 volt battery $75 /$ armature p.p. $2 / 6$.

"RECO" Super Transigen Four Transistor Kit

 As above but with 2 tin. speaker and class A output stage 99/6, p.p. $2 / 6$. Parts price list, wiring diagrams and circuits $1 / 3$ each
RADIO EXCHANGE CO.

Issued by Northworks Lid.

WHIP AERIAL

by

RUGGED • RELIABLE

An 18 ft . aerial using copper coated high tensile steel 3 ft . sections, screwed and spiggoted for additional strength. It is mounted on a base insulator incorporating a robust double helical spring. Designed primarily for heavy duty mobile applications, for either military or civil use over the roughest country. As a portable aerial, extra sections can be added with suitable guys.

REDIFON LIMITED Communications Sales Division Broomhill Road, London S.W.18. Tel : VANdyke 7281 A Manufacturing Company in the Rediffusion Group

THE
 E.M.I. COLLEGE OF ELECTRONICS

10 PEMBRIDGE SQUARE, W. 2

Propose to commence a further One Year Course in Radio and Television on 14th April 1959. After 29th July 1959 the E.M.I. College of Electronics will cease to exist and students will be accepted by the Pembridge College of Electronics, 34a Hereford Road, W.2. Same staff, equipment and syllabus, will be used by both colleges.

Details and enrolment forms may be obtained from-
The Registrar, Dept. No. 127,
10 PEMBRIDGE SQUARE

LONDON W. 2

DEPFNDABLE RELAY CO．ITD．
 8A AINGER RD．，CAMDEN TOWN，LONDON，N．W．3．PRImrose 8161 Head office，12a Tottenham Street，W．I

Have you a Relay problem？

TRANSISTOR RELAYS

PACKAGED UNITS ready to connect to any A．C． Mains．Fitted $2 \mathrm{C} / \mathrm{O}$ ． 5 amp．and screw－type terminal outlets．Sensitivity 300 micro amps． and 3 micro amps．

HUNDREDS OF USES including：－
－OVEN CONTROL
－CONTACT THERMOMETERS
－BRIDGE CIRCUITS
－PHOTO－ELECTRIC CELLS
－LIQUID CONTROL
etc．etc．

P．O．TYPE 3000
 \＆ 600 RELAYS

Manufactured to your specification to Post Office or Interservice standards．

Don＇t be behearted or downwildered！

W是昆䍖S

STEREOPHONIC SOUND

A visit to our demonstra－ tion room will convince you that STEREO can and does enhance reproduc－ tion．Do call and hear for yourself the enthralling experience of good quality experjence of good quality plus stereo．sut，we warn you，the best monaural reproduction will sound comparison！
．．．you＇ll always find

Make your choice－at ease and in comfort－in our demonstration room．Instant comparison of．．．

AMPLIFIERS by ACOUSTICAL ARMSTRONG LEAGERS

PICKUPS \＆MOTORS by CONNOISSEUR DECCA EXPERT
GARRARD LEAK TANNOY

SPEAKERS by
GOODMANS
TANNOY
W．B．
WESTREX
WHARFEDALE

You＇ll find everybory at Webb＇s to be cheerful and helpful，whatever your cheerful and helprul，whatever your problem．Our experience and technical
knowledge will make your selection easier and save your money． the best at

CNM，RIS Radio

I4 Soho Street，Oxford Street，London，W．I．
Telephone：GER 2089
9 a．m．to 5.30 p．m．（7 p．m．Thursdays） 9 a．m．to $1 \mathrm{p} . \mathrm{m}$ ．Saturdays．

S.C.R. 399 WHOLE INSTALLATIDN

 INCLUDING SHELTER H.D. I7A \& 10 KW. PETROL GENERATOR P.E. 95G AVAILABLE
Also ovailable separately

 TRANSMITTER BGIOE
Frequency range $2 \mathrm{Mc} .-18 \mathrm{Mc}$. Three pretuned channels selected by switch. Frequency control regulated either by manually tuned MASTER OSCILLATOR or crystal controlled oscillator.
Power output 450 w . telegraph, 350 w , telephone.
Power supply 120 v. A.C. 50/60 cycles special auto-transformer 120/220 v. made by Hallicrafters can be supplied additionally.
Tube complement oscillator 6 V 6 , doubler or buffer 6L6, intermediate amplifier 807 (2). Power amplifier 250 TH. HV Rectifier 866A (2). Voltage regulator VTI39(3). Audio drive 2A3(2). Modulator IOOTH(2). Rectifier 5Z3(2).
Complete with Speech amplifier, aerial tuning unit, tank coils, tuning units, microphone, key, connecting cables.
We guarantee full supply of all replacement parts for a minimum of 5 years, after purchase.

P.C.A. RADIO

Offices and Works
BEAVOR LANE, HAMMERSMITH, LONDON, W. 6
Telephone: RIV 8006/7

Absolutely No Pro-Greaning with the VICTOR Saldaring Trol

The VICTOR is revolutionary - it heats the work direct by gripping it with the twin arms of the tool. Simply press the button, the work instantly heats up and the solder runs. No precleaning - even of oil -is required except where the metal has been oxidised previously. Operation is from a 6 VOLT supply.
For heavier materials and work the $6-12$ volt VENUM Soldering Tool is available. Price £4/4/-
Trade enquiries invited.
Please supply VICTORIVENUM I enclose P.O./cheque value $£$. (quantity....) soldering tool/s or NAME
send me free iilustrated litera.ure. ADDRESS
| WW201
ALLIED DISTRIBUTING CORPORATION LTD.
13/17 Rathbone St., London, W.1.

Vitreous Enamelled Resistors

 R.C S.C. Style RWV4-LFULLY R.C.S.C. TYPE APPROVED, 10Ω to 22K Ω, our RWV4L style resistors conform to Inter-Services Spec. RCSIII.
Other styles available. R.C.S.C. type approval applied for-

RCSC Style	CGS Style	Rating	Service	Watts Commer cial	Range
RWV4-J	VPF4	3	4	5Ω to $8 \mathrm{~K} \Omega$	
RWV4-K	VPF10	4.5	10	5Ω to $68 \mathrm{~K} \Omega$	
RWV4-L	VPFI4	6	14	10Ω to $100 \mathrm{~K} \Omega$	

THE C.G.S. RESISTANCE CO. EVERTON, LYMInciTON, nANIS. Tel. miltord-on-Sea $: 69$ London Office: 30 Clarendon Rd., Harrow, Mddx Tel. Harrow 4147

HYONS RADIO LTD.

DYNAMOTOR/BLOWER. Rotary convertert mounted on base plate with blower tan fitted to one end whicn, If desired, can easily be removed. Ruted at 18 v. D.C. input.
for 400 v . D.s. output at 80 mA . Opersto quite well from 12 v . D.C. finput producing approx, 220 v. D.C. output. Overall height from base 4$\} \times 9$ in. long $4 \mid n \mathrm{n}$ New condition PRICR ONLY 17/6, post 2/6.
CABLE BARGADNS. Electricians Cable, brand new to B.s. Spec. P.V.C. Insulated $7 / 029$ twin with earth, $1 / 7$ yard. $3 / 036$ twin with earth, $1 i 1$ yard. $3 / 029$ twin with earth, 10 d . yard. $3 / 029$ twin. 9 d . yard. Any length cut. Add for carriage up to 25 yds.
$2 / 6 ; 26-50$ yds. $3 / 6$ over 50 yds $5 /$. Orders over $£ 5$ carriage free. 5 wis Cgble 2/6; $28-50$ yds. $3 / 6$; over 50 yds $5 / \%$ Orders over 25 carriage free. 5 -way Cable, outer Insulation approx. o/dia. 8/16th ins. Ex-Govt. like new. Sold 100 yard coils
only. PRICE ONLY 35/-coil, carriage free.
ENGINE DRIVEN ALTERNATORS. Type E2. Air Min. ref. 5 U/2617. 1,200 to 2,400 cycles, excitation 24 P. D.C. As kew and unused. PRICE ONLY 35) INDICATOR UNITS TYPE 10QB 13 . Contain two Sin. dia. C.R. Tubes type 5 FP7, 2-6HE6s, 2-DP/CO relays, $6-20 \mathrm{gang}$ pots, etc., etc. In me ${ }^{\text {tg }}$ c
7in. In good cundition. PRICE ONLY $30 /$, carriage $5 /$.
G. \bar{F}. CONDENSERS. 10 mfd . 2.500 F . D.C. wkg. plus $100 \mathrm{v} . \mathrm{F}, \mathrm{m} . \mathrm{s}$, at 150 cps . Size ${ }^{15 i n}, \mathrm{H} . \times 8 \mathrm{in}$. W. $\times 3$ 3in. PRICE 21 , carriage $5 / \%{ }^{2} \mathrm{mfd} .4 \mathrm{Kr}$. D.C. wkg, size 61
 PRTCE 3/6, post $2 / 3$. Mica Tranamitting type in porcelain pota. $0.0015 \mathrm{mfd}, 25 \mathrm{Kv}$. 3 GOLDHAWK ROAD (DEPT. M.W.), SHEPHERD'S BUSH, 3 GOLDHAWK ROAD (DEPT. M.W.), SHEPHERD'S BUSH,
LONDON, W. 12 Telephone: Shepherd's Bush 1729

FOR THE AMATEUR AND ENGINEER

SPEAKER CABINETS crocodile finish for $7 \times 41 n$ speakers, $19 / 0$ each. DEFIANT LOUDSPEAKERS in cream and pale green cabinet with volu Really graart Job, $32 / 6$ each complete. P. P. P. $3 / 6$. doz. P. \& P. 3/-. SPEAKER CONES. CA6RZ and CA日1, both 1 thn. Sultable for Ecko TV., $12 / 6$ each. ACOS HGP/59 inserts, $35 /$ - each.
MINIATURE VOLUME CONTROLS, $250 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{meg}$. D.P.S.T., $5 / 6$ each. ERIE 250K limenr volume controls; L.S., $3 / 6$ each.
ERIE 5OK J.E.C. miniature S.P.S.T. volume controls, $3 / 6$ esch colvern 25K W/W Pre-set Pots, $3 /$ - each
TWEETER UNITS. LSH 75, 716 each. LSH $85,9 /$ each. Two $18 H 85$ for Sterèo. AERIALS, CAR AERIALS, CONDENSERS, CAR BATTERY CHARGERS, LOUD SPEAKERS, METERS, RESISTORS, TOOLS, TRANSFORMERS, SCOTCH BOY TAPE, RECORD PLLAYERS, etc. LARGE and
prehensive assortment of BRASS H.F.5, a few only, $£ 11 / 11 /$ each. WOLSEY Ei-Q TABLE TOP AERIAL for Band III, 17/6 each.
Write to us for your requirements-our lines are too numerous for us to enumerate Prompt attention glven to each enquiry or order.

RADIO HAM SHACK LTD.
155, Swan Arcade, Bradiord, 1, Yorks. THE W. RIDING MAIL ORDER SPECIALISTS

REPANCO HIGH GAIN COILS

Dual Range Crystal Set Coil, Type DRX1

Pair Dual Range Superhet Coils, Type sift, patr
 Miniature I. F. Translormers, Type MSE ($465 \mathrm{Kc} / \mathrm{s}$), pair esch 3/3 Miniature 1.F. Translormers, Type MSE ($465 \mathrm{Kc} / \mathrm{s}$), pair $\underset{\substack{121 / 6 \\ 121 / 6}}{\substack{12 / 6}}$ Send S.A.E. for latest Repanco Component Catalogue.
Mall Order and Trade:
RADIO EXPERIMEATAL PRODUCTS LTD.,
33 Muoh Park 8t., COVENTRY.
Tel.: 62572
Wholesale Enquiries and Export:
REPANCO, LTD.
O'Brien's Bulldings, 203-268 Foleshill Rd., COVENTRY.
Tel.: 40591

Now - Pedifon

 get $\underline{2}$ 'quartz' into less than a pint pot!Here is a new Redifon Crystal Oven of very high stability containing two style D crystals within its amazingly small dimensions of $1 \frac{3}{4} \mathrm{in}$. (excluding socket ($\times 1 \frac{1}{4} \mathrm{in}$. o/a dia. Weight (without crystals) $1 \frac{1}{2} \mathrm{oz}$. Dual voltage $6 / 12$ or $12 / 24$ versions facilitates wide application. Built on standard octal base. Low power consumption. 5 watts approx.

Ambient temperature range

- $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Operating temperature $75^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$		ype
Warm up time less than 5 minutes		V
Temperature cycle less than $\pm 1^{\circ} \mathrm{C}$		OVEN

REDIFON LIMITED Communications Sales Division Broombill Road, London, S.W. 18 Tel: VANdyke 7281
A Manufacturing Company in the Rediffusion Group

STEREO

Independent twin channel amplifier with excess of 3 watts per channel.
Concentric volume control (optimum balance arranged immediately without additional knobs).
Choice of volume and tone controls separately fixed or integral with chassis and having continental styled knobs (brown and gold).
Stoved grey hammer chassis $9 \frac{1}{2}^{\prime \prime} \times 5 \frac{1}{2}^{\prime \prime} \times 6^{\prime \prime}$.
Input suiting most modern crystals; output matching 3 ohm speaker each channel.
For operation on AC mains 200/250 v.

£7.7.0

E.K.E.

BROTHERTON, KNOTTINGLEY, YORKS.
If in difficulty obtainable direct from Manufacturers, carriage $3 / 6$.

TECHNICAL TRADING CO.

4-SPEED RECORD PLAYERS consisting latest B.S.R. turntable and separate ughtweight Galayy dual bapphtre pick-up unrepeaiable. e3/15/-. 12-TYCE 5-OEANNEE TABLE TV SETS
All picture fested before digpatch. We will send the make you reqrire if 88.10 .0 a vailable. Marcon, Cossor, Ferguson, Ekco, otc. Truly numuaq walue. 28.10 .0
ITA CONVERTORS. Internal power pack compact tuneable all TTA CONVERTORS. Intermal power pack compact tuneable all Carr. free

TRANSISTORS Latest EDISWAN XB104. SA. cotale

 te spot 12/T.V.TUBES FAGTORY REVAGUUMED, ALL GUARANTEED 6 MONTHS. our superior television tubes and the small number of returns we are now able to effect substantial reduction in their pricem. Nearly sll types of Mullard, Mnada, Brimar, Coseor, Emiscope, Emitron, Ferranti. Cathodion, G.E.C., availnble ex-stock,All 9in. and 92.15 .0 All 12in. 14in., 33.19 .0 excepting those 10in. types lisin., 10h. listed under. CRM123, MW31/16, MW31/74, 3/31, 3/32, CRM143, CRM152. All Muliard 14in. Types, £ $4 / 10 /-$ All 17in. Types, $24 / 15 / \mathrm{F}$. 21 in . Types, $£ 7 / 10 / \mathrm{F}$,

 8/6. Contaet cooled. 250 ₹. 50 ma.. $7 /-$; 250 v. 250 ma., $19 / 6 ; 250$ ₹. $300 \mathrm{~ms} ., 23 / 6$. GUARANTEED RADIO VALVES, $24-H O U R$ SERVICE

		6K7G	4,-	20F2 ${ }^{2} 16$	ECH	CZ32	10	61	
185	$7 / 8$	$6 \mathrm{K8G}$,	20P1 14/-	ECH81 $8 / 6$	KT33C	9/6	U22	16
IT4	6/-	6L1	$12 / 6$	25A6G 8/-	ECL80 12/6	KT36	11/-		$12 / 6$
384	7/0	${ }^{6 L 18}$	$9 / 6$	${ }^{25 L 6 G} 8 / 6$	EF36 4/-	KT61	916	U2	12/6
$3 V 4$	$8 / 6$	${ }^{6 L 6 G}$	81	35Z4GT 716	EF39 5/-	KT6E	9/6	U3	9/-
5U4G	716	6LD20	$9 / 6$	$80 \quad 716$	EF40 14/-	KTW63	6/-	U33	16
524	81.	6P25	9/6	$807(B R) 3 / 9$	EF41 9/-	MU14	9/-	U35	16
6AM	5-	6 P 28	11/-	B36 11/-	EF42 11/-	PCC84	819	U52	
6 6AD	9/-	607G	91	CCH35 8/6	EF50(A) $81-$	PCC85	$11 / 6$	U281	716
6BA6	8/-	6SG7	6\%	DH77 $7 / 6$	EF50(B)3/6	PCF80	816	U801	16)-
6BE6		68L7	71	EAF42 0/-	EF80 \% $7 /$	PCP8	11/-	UAF42	$8 /$
fiC8	416	68N7GT	519	EB41 $7 / 6$	EF85 7\%	PL93	11/-	UB41	-
$6 \mathrm{C9}$	$9 / 6$	6U4GT	11/6	EB91 4/6	EF86 16/-	PL36	15/-	UBC41	816
6 CH 6	11/-	6 FBGT	$7 / 6$	EBC41 9/-	EF89 $9 / 6$	PL38	13/-	UCH42	-
$6 \mathrm{D}^{2}$	416	6X4	61	EBC33 7/-	EF91 5/-	PL81	15\%	UF41	
6 Fl	$8 / 6$	10F1	$9 / 6$	EBL31 12/6	EL32 4/6	PL82	91-	UF42	
$6 \mathrm{Fl2}$	$5 / \mathrm{c}$	$10 \mathrm{P1} 13$	11/	ECC31 9/6	ELa3 11/6	PL83	11/-	ULA1	
6 F 13		10P14	121	ECC81 $7 / 6$	EL41 $9 / 6$	PY 31	101	UL44	
6 Fl 14	11/4	12AT7	10	ECC82 616	EL84 $8 / 6$	PY80	81-	UL46	$9 / 6$
6 Fl 15	11/-	12AU7	616	ECC83 8/6	EY51 11/6	PY8I	816	UU7	$9 / 6$
6 F 33	816	12AX7	816	ECC84 $9 / 6$	EY86 14/\%	PY82	91.	U08	$2 / 6$
6 F		12K7GT	616	ECC85 9\%	E240 8\%	PY83	91	UY41	$81 /$
6J5		$12976 T$	7/10	ECF80 12/m	E241 10/-	PZ30	12/m	266	$9 / 6$
6.J6	$4 / 6$	20.D1	6	6	E280 8/6	41	$2 / 6$	Z719	$7 /$

I2-PAGELIST OF 750 SNIPS

 350/352, FRATTON ROAD, PORTSMOUTH

1959

. . for the AUDIO ENTHUSIAST The LONDON AUDIO FAIR

at the HOTEL RUSSELL, RUSSELL SQUARE, LONDON, W.C. 1

Abstract

More and more people are taking a discerning interest in all forms of Audio development. To cope with this increase, the London Audio Fair is this year to be held at a new and larger venue. More exhibitors, more products and all the latest technical developments will be on display and you will be able to hear them in conditions akin to those of your own home.

Now fully established as the national event of the Audio year, the London Audio Fair 1959 promises to be an even greater success than the Fairs of previous years.
Apply now to your local audio, radio, record or music shop for FREE entrance tickets-and note the dates.

apply to EXHIBITION OFFICE

42 Manchester Street, London, W. 1

THURSDAY 2nd April
(Trade only 11 a.m. - 5.30 p.m.) 5.30-9 p.m.

FRIDAY 3rd April
11 a.m. - 9 p.m.
SATURDAY 4th April
11 a.m. -9 p.m.
SUNDAY 5th April
11 a.m. - 9 p.m.
your press tool costs HUNTON

UNIVERSAL BOLSTER OUTFIT

In addition to the range of Punches and Dies $\frac{1}{8} \mathrm{in}$. to $3 \frac{3}{4} \mathrm{in}$. dia. a vailable from stock, some of the tools usually required in the Radio and Electronic Industries have been standardised for use with the Hunton Universal Bolster Outfit. Hllustrated here are a few which can be supplied quickly or from stock.
In London and Home Counties, ask for a practical demonstrotion in your own works.

Write for illustrated brochure W.W.I

HUNTON LTD.

Phoenix Works,
114-II6, Euston Road, London, N.W.I

[^12]
Ex Sunise
 (RADIO) LINITED
 Phone: GERRARD 8204/9155 Cables: SMITHEX LESQUARE LISLE STREET, LONDON, W.C. 2

WESTON MODEL 772 TESTMETER

A.C. VOLTS	D.C.	A.C. CUR-
2.5 v.	CURRENT	RENT
10 v.	$100 \mathrm{mic} \cdot / \mathrm{a}$.	500 ma.
50 v.	1 ma.	1 amp.
250 v.	10 ma.	5 amp.
$1,000 \mathrm{v}$.	50 ma.	RESIS.
D.C. VOLTS	100 ma.	ANCE
2.5 v.	500 ma.	100 ohms
10 v.	OUTPUT	1,000 ohms
50 v.	METER	100 k. ohms
250 v.		10 megohm
$1,000 \mathrm{v}$.		

1,000 v.
Supplied in perfect working order complete with rexine carrying case, internal batteries and instructions, E8/19/6 each. P/P. 4/-.

COSSOR DOUBLE BEAM OSCILLOSCOPE

TYPE 339

Operation $110 / 200 / 250$ volts A.C. 120 watts. Time Base 10 positions. 6 cps . to $250,000 \mathrm{cps}$. Amplifier 10 eps. to $2,000,000$ cps. Sensitivity, YI.Y2.3.1 v. D.C. I.I. v. rms. X. 2.25 v. D.C. .8 v. rms.
Supplied in good working order complete with handbook and circuit. £27/10/- each. P/P. £1.
 $3 / 6$ per reel. P / P. $1 /$.
LEACH AERIAL CHANGEOVER RELAYS. 12 v. D.C. double pole transmitter type. New, boxed, $7 / 6$ each. P/P. 9d.

MARCONI SIGNAL GENERATORS

 TF517. Frequency coverage $10-18 \mathrm{mc} / \mathrm{s}$. $33-58 \mathrm{mc} / \mathrm{s}$ and $150-300 \mathrm{mc} / \mathrm{s}$. Operation $200 / 250$ volt A.C. Supplied in good working order, $\mathrm{f} 12 / 10 / \mathrm{F}$ each. P/P. $10 /=$750.WATT AUTO TRANSFORMERS. EX Admiralty, fine jobs. Tapped from 110 to 230 volts. Brand new, $69 / 6$ each. P/P, 5/-.
HEAVY DUTY MAINS ISOLATION TRANSFORMERS. 230 volt input. Output 230 volts 5 amps . Housed in ventilated meral case, unused, $£ 5$ each. P/P. 10/-

MUIRHEAD PRECISION STUD SWITCHES
 4 banks, 1 pole 24 positions each bank. Self cleaning heavy duty contacts. Brand new, $17 / 6$ each. P/P. I/.,
AMERICAN SUPER LIGHTWEIGHT HEADPHONES. Res. 50 ohms, Fitted with rubber earmoulds, extremaly good quality, ideal if used for long periods. \quad 15/= per pair, brand new, boxed. P/P. I/3.

CR. 100 SPARES KITS

Complete set of new valves $2 \times 66,2$ U50, 2 DH63, 2 KT63, 6 KTW6!. Also set of resistors, condensers, pors, toggle switch and output transformer. Supplied new and boxed, 59/6 each. P/P. 4/6.

HALLICRAFTER SX-24
 SKYRIDER

 DEFIANT RECEIVERSOne of the finest communication receivers made. Frequency coverage concinuous from $550 \mathrm{kc} / \mathrm{s}$ to $42 \mathrm{mc} / \mathrm{s}$. Incorporates crystal filter, S meter, variable bandwidth, etc. operation $110 / 230$ volt A.C. Supplied in perfect order at $£ 30$ each. P/P. 10/-. Further details on request.

MARCONI B. 29 L.F. COMMUNICATION RECEIVERS. Self contained 7 valve receiver similar to CR. 100 covering $15 \mathrm{ke} / \mathrm{s}$ to $560 \mathrm{ke} / \mathrm{s}$ on 4 bands. Operation 200/250 v. A.C. Supplied in good condition and complete but not tested. Only $£ 3 / 19 / 6$ each. P/P. 10/-.

CONVERTERS

12 v. D.C. input, watrs, 50 cycles ourput. Housed in wooden case and fitted with voltage control slider resistance, switch, plugs and A.C. mains voltage output check perfect condition, individually tested. $\mathbf{6 9 / 1 9 / 6}$ each. P/P. 10/-

PARMEKO MAINS TRANSFORMERS, Input 230 volts. Output $350 / 0 / 350$ volts 150 mA 6.3 v. 4 amp., 5 v. 4 amp . Brand new, $32 / 6$ each. P/P $2 / 6$.
R.II55 " N "TYPE SUPER SLOW MOTION DRIVES. Brand new, $12 / 6$ each. P/P. I/-.

$100 \mathrm{KC} / \mathrm{S}$ CRYSTALS. 3in. spacing, $15 /$ each CV967 lin. C.R.T. 4 v. HEATER. Suitable for oscilloscopes, etc., 25/- each. P/P. 1/-.CRYSTAL MICROPHONE INSERTS. Only 4/6 each. P/P. 6d
ALKALINE NIFE ACCUMULATORS Banks of 10 cells giving 12 v. 45 A.H. Unused in wooden crates, C5/10/- each. P/P. 7/6. Size $26 \frac{1}{2} \times 8 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}$.
MIDGET NIFE ACCUMULATORS. Single units, ideal for models, etc., $2 / 3$ each. P/P. 9d. I2-VOLT MOBILE AMPLIFIERS. Ex Admiralty. Mic. or gram. inputs, 10 watts output to 3 or 15 ohm speakers. Not new but in good working order, $€ 8 / 19 / 6$ each. P/P. 5/-.

RCA ET 4336 PLATE TRANSFORMERS.

 Special release, brand new in original transit cases. Primary tapped $200 / 250$ v. 50 cycless. Secondary, 2,0000/0/2,000 v. 400 ma ., tapped $1,500 / 0 / 1,500 \mathrm{v}$. Price $£ 12 / 10 /$ each. P/P. $£ 1$.

AMERICAN MULTI-RANGE TESTMETERS

1,000 ohms per voit, 400 microamp basic movement. A.C. VOLTS D.C. VOLTS $\begin{array}{ll}2.5 \mathrm{v} & 2.5 \mathrm{v} \\ 10 \mathrm{v} & \\ 50 \mathrm{v} & 10 \mathrm{v} .\end{array}$ $\begin{array}{ll}50 \mathrm{v} & 50 \mathrm{v} . \\ 250 \mathrm{v} . & 250 \mathrm{v} .\end{array}$ $1,000 \mathrm{v}$ 1,000 v 5,000 v. 5,000 v. D.C. CURRENT RESIST'CE $1 \mathrm{ma} \quad 500$ ohms 100 ma . $\quad 100 \mathrm{k}$, ohms I amp. DECIBELS -10 to +69
ALL BRAND NEW. COMPLETE WITH INTERNAL BATTERY TEST PRODS AND INSTRUCTIONS. E5/I9/6 EACH. P/P 3/-

LORAN indicators APN4

Another release, all brand new These units contain a 5CP1 C.R.T. 14 6SN7 valves, 8 6H6 3 6SL7, I $6 S J 7$ and a $100 \mathrm{kc} / \mathrm{s}$ crystal, also many thousands of useful components. Ideal for conversion to an oscilloscope 65/19/6 each. Carriage 10/-.

ADMIRALTY POWER UNITS 234A.

200/250 volt A.C. input. Output 250 volts 150 mA . and 6.3 volts 6 amps . Fully smoothed, double choke and paper condensers, fused and fitted with input and output plugs. Sockets are provided on the front panel for meter check. Housed in grey metal case for standard 19in. rack mounting. Supplied brand new, 59/6 each. P/P 7/6.

FERRANTI TESTMETERS TYPE 0.

D.C.	A.C.	D.C.	Oh
VOLTS	VOLTS	Current	
3 v .	15 v .	7.5 ma .	25,000
30 v .	30 v .	30 ma .	
150 r .	150 v .	150 ma .	
600 v .	600 v .	750 m	

500 ohms per volt on all ranges. B.S.S. first grade aceuracy on all self contained ranges. Supplied in perfect working order complete with leads, battery, instructions and rexine covered carrying case.
Price $72 / 6$ each. P/P 2/6.

6-VOLT VIBRATOR POWER PACKS, Output 120 volts 30 mA . Fully smoothed, uses standard 4 -pin mallory vibrator. New and boxed, 12/6 each. P/P 2/-.

METER BARGAINS

50 M croarup. D.C. M/C., fush so. Ln. 50 Microamp. D.C. M/G., prof. rd. $2 \mathrm{tin}$.
100 Mieroamp. D.C. M/C., fueh rd. 2 iti . 500 Microamp. D.C. M/C., luubh rd., 2in.
 1 Milliamp. D.O. M/C., flush rd. 2/in. 50 Milliamp D.C. M/C., Aush sq. 2in. 200 Milliamp. D.C. M/C., fush rd. 2 if ${ }_{30}$ Amp. D.C. M/C., flush re.., \downarrow inin. I5 Volt D.C. M/C., flueb rd., 1 ini. ${ }_{120}{ }^{2}$ Volt D.C. M/C., proj. rd. 2in. 120 Volt D.C. M/C., fuush rd. 3in. 300 Yoit A.C. M/L., flush rd. 24 ln .
300 Volt A. ${ }_{500}^{300}$ Volt AC. M/T, Aush rid fush rd., 2 |in. 500 Volt ALL MRAND NEW AND TESTED

$119 / 6$ $49 / 8$
 $15 / 6$ $19 / 6$ | 195 |
| :--- |
| 25 |
| 716 | 916 1016 916 18 1016 1016 $32 / 6$ $32 / 6$ $25 /-$ $25 /-$

MARCONI TF. 373 UNIVERSAL IMPED ANCE BRIDGES. Recond. as new, 655 each. P/P 10/-.
A.C. MAINS VOLTAGE REGULATOR TRANSFORMERS. Input 230 volts. Variable output 185 to 250 volts at 24 amps. $\mathrm{C} / 2 / 10 /=$ each. P/P. 10/-.

56-PAGE ILLUSTRATED CATALOGUE NOW AVAILABLE, I/6 POST PAID.

ROTARY CONVERTORS. Input 24 volts D.C. Output 230 volts H.T. 50 cycles 100 watts. New, $92 / 6$ each. P/P 7/6. Input 12 volt D.C. Output 230 volt A.C. 50 cycles 150 watts. New, $£ 7 / 10 /$ each. P/P $7 / 6$. Input 24 volts D.C. Output 230 volts A.C. 50 cycles 150 watts, $87 / 10 /$ each. P/P $7 / 6$.
R.II55 COMMUNICATION RECEIVERS MODELS L AND N. Incorporate the TRAWLER BAND. Coverage 200 to 500 kc / s, and $600 \mathrm{kc} / \mathrm{s}$. to $18 \mathrm{mc} / \mathrm{s}$. Supplied in perfect working order, aerial tested, £/2/19/6 each, P/P. 7/6. Standard model B also available fitted with improved N type drive, periect order, $£ 7 / 19 / 6$ each. Combined A.C. mains power pack and audio output stage suitable for either of above, 85/Instruction booklet supplied with each receiver.

> PARMEKOTABLE TOP TRANS FORMERS. linput 230 vo 50 cycles. Output $620 / 550 / 375 /$ $0 / 375 / 550 / 620$ volts 250 mA. Also $2-5$ vole 3 amp. winding. Size: $6 \frac{3}{4} \times 6 \frac{1}{4} \times 5 \frac{1}{2}$ in. Brand new only $45 /-$ each. P/P $5 /-$.

FERRANTI POTTED FILAMENT

 TRANSFORMERS. Hermetically sealed, ceramic terminations. All new and boxed Type 1. 200/250 v. input. Output 6.3 v . C.T. 5.6 a. tapped 5 v .6 .3 v. CT, 4.8 a . tapped 5 v. 6.3 v. CT, 1 a., tapped 4 v., $19 / 6$ each. Type 2. Input $200 / 250 \mathrm{v}$. Output 6.3 v . CT, 3.3 a . tapped $5 \mathrm{v}, 6.3 \mathrm{v}$. CT, I a., tapped 4 v. 6.3 v-CT, 9 a. 6.3 v. CT., 6 a., $15 / 6$ each. P/P 2/-, each type.BARGAIN GRAM MOTORS. Garrard centre drive motors complete with turntable, $220 / 250$ ì. A.C. Adjustable mechanically from 0-45 r.p.m. Only 22/6 each. P/P 3/-.

AMERICAN ROTARY TRANSFORMERS. 2 models available with either 6 or 12 volt D.C. input. Output 250 volt. 80 mA ., $22 / 6$ each. P/P 2/6
1-OHM 12-AMP SLIDERS, 6/6. P/P $1 / 3$
BATTERY CHARGER or MODEL TRANSFORMERS. All new, boxed. Primaries tapped $200 / 250$ volts, $3.5,9$ or 17 v . A. $9 / 9 ; 3.5,9$ or $17 \mathrm{v} 2 \mathrm{~A} .14 /$.3 ; 3.5, 9 or 17 v .4 A . $16 / 6 ; 9$ or 17 v .6 A . $26 /-; 3$, 4, $5,6,8,10,12,15,18,20,24$ or 30 v .2 A . 21/-. Add postage.
L.T. METAL RECTIFIERS. Full wave bridge connected. $12 / 18 \mathrm{v}$. $\mathrm{A} .6 / 3 ; 12 / 18 \mathrm{v}$. $2 \mathrm{~A} .9 / 3$; $12 / 18 \mathrm{v} .4 \mathrm{~A} .13 / 9$; $12 / 18 \mathrm{v} .6$ A. 18/6; 30 v . I A. 12/6; $30 \mathrm{v} .4 \mathrm{~A} .27 / 6 ; 24 \mathrm{v} .15 \mathrm{~A}$. 62/6. Add postage.

HALLICRAFTER S27 COMMUNICATION RECEIVERS. Frequency coverage 27 to $143 \mathrm{mc} / \mathrm{s}$., for F.M. or A.M. signals. Circuit incorporates S meter, B.F.O. noise limiter, A.F. and R.F. gain controls, etc. Supplied in perfect working order, reconditioned, 632/10/-each. P/P. 10/-. Operation is for $110 / 230$ volts A.C.

PORTABLE PRECISION VOLTMETERS

BRAND NEW instruments by famous manufacturer. Housed in polished teak case. Moving iron movement reading A.C. or D.C. volts on 2 ranges, $0-160 \mathrm{v}$. or $0-320 \mathrm{v}$., 8 in . mirror scale. Accuracy within 2%. Supplied at a fraction of original cost, $\mathbf{E 5 / 1 9 / 6}$ each. P/P $3 / 6$.

UNIVERSAL AVOMINOR TESTMETERS

Small, compact, accurate instrument. Resistance measurements from 0 to 20 k . ohms, D.C. volts from 0 to 500 v ., A.C. volts from 0 to 500 v., D.C. current from 0 to 500 mA . Supplied in perfect working order, complete with leather case and leads. $\mathbf{6 5 / 1 0 / -}$ each. P/P $2 / 6$.

SHERRILL U.S.A. COMPASS, magnetic type, directional indicator. Complete with buile-in variable horizon corrector, induced error corrector, variable course indicator, deviation calculator, ete., with provisions for internal lighting. Brand new. € $3 / 10 /-$ ea. P. \& P. 2/-

SOUND POWER TELEPHONE UNIT, no batteries required. Fitted with neon indicator lamp and high pitched buzzer, operated by built-in generator. Entirely self-contained, ex Admiralty. Rebuilt and guaranteed working. Effective up to half a mile, waterproof.
. $£ 3$ Unit or $£ 5 / 17 / 6$ pr. Carr. 7/6. Master Units to take five extensions also available. $£ 4$ each.

AERIAL AS ILLUSTRATED. Ideal for Car. Overall length $33 i_{n}$, khaki, with flexible shaft which enables the aerial to be fixed firmly in any position. Price 8/6, plus P. \& P. $1 / 6$.
ON CERAMIC ON CERAMIC. 58 ohms, 50 watt, complete with instr
$8 / 6$. P. P. $1 / 6$. 8/6. PP \& \& P. 1/6.
NEW
NROL IOWat TROL. 25 ohms, plus 25 ohms. $7 / 6$ each. P. \& P. $1 / 6$.

DIAMONDSTYLI. We are distributors for well-known British manufacturer of guaranteed diamond styli, which can be supplied to fit any pick-up. When ordering please state requirements. Price $\mathbf{6 3}$, incl. P. Tax.
U.S.A. ${ }^{27}$-volt 4 -pole CHANGE. OVER RELAYS. Brand new and boxed. 5/6 each. P. \& P. 6d.
VEEDER REVOLUTION COUNTER, 6 columns, fitred reduction drive, built inside smali unit. New 8/6 each. P. \& P. 2/-.

HIGH SPEED RELAY. Siemens, two bobbins, 1,000 ohms each. New, 10/6 ea. P. \& P. I/-.

SMOOTHING CHOKES 10 H .120 mA . New. Price $8 /$-. P. \& P. $2 / 3$.
1200 ft . NEW RECORDING TAPE on 7^{*} plastic spools. Famous make, not surplus, in plastic spools. Famous make, ${ }^{\text {mot }}$ marplas, P. \& P. I/-

BRAND NEW. EVERSHED AND VIGNOLES "WEE MEGGER," in leather case, guaranteed perfect. 500 volt $\in 12 / 10 /-$ each. P. \& P. $2 / 6$.

EVERSHED AND VIGNOLES Circuit testing, Ohms Meter, pattern " S " Complete with testing prods, inst. book, etc. Two ranges -3 and $0-30$ ohms. Brand new, guaranteed perfect, as illus. Offered at raction of maker's price. $64 / 17 / 6$ each. P. \& P. 2/6.

TRIPODS.Solid wooden legs 38 in, long, metal top and metal toes. As new. Price 10/6 each, plus 3 /- carriage.
E.H.T. COILS

Vibrator type, input 12 V . D.C., output 12.15 KV . New. Price: $17 / 6$ each. P. \& P. $1 / 6$.
MUIRHEAD VERNIER DRIVE. Scaled $0-180$ degrees, ratio $31 / 1$, dia. $3 i n$., as fitted to R.F. 26 units. Complete with lampholder. In manulacturers' original packing. New, $8 / 6$ each. P. \& P. $1 / 6$.
PRESSURE GAUGES
U.S.A. make, new. 0-150 fbs. p.s.i. Price $10 / 6$ each. P. \& P. 1/6.

AUTO TRANSFORMERS, step up, step down. 110-200-220-240 v. Fully shrouded. New.
300 watt type $£ 2 / 2 /$ - each. P. \& P. $4 / 6$. 500 watt type
 P. \& P. 4/6. Also 60 watts, $19 / 6$ each. Plus P. \& P. 2/-

AIRCRAFT CINE CAMERA G45B Mk. III, fully modified, fitted with $\mathrm{f} / 3.5$ triple anastigmatic lens, takes 25 ft . of 16 mm . film, fitted with 24 v . motor. 16 exposures per sec. Mint condition, brand new, in maker's original packing. E6/10/- each. P. \& P. paid.

WHEATSTONE BRIDGE UNIT. 4-stud switches 0-10, 0-100 ohms, galvanometer centre zero, F.S.D. 2.5 mA . In oak carrying case $16 \times 7 \frac{1}{2} \times 6 \mathrm{in} ., 40 / \mathrm{e}$ each. P. \& P. $3 / 6$.

Evershed and Vignoles, Series 11 metal cased, Megger. 500 -volt used, but in good condition, with leather carrying case. $£ 15$.

METERS BRAND NEW GUARANTEED PERFECT

Charging Types

Charging Types 2 in. fl. rnd.
$2 \frac{1}{2}$ amps D.C. M.I. 2in. fl. rnd. $\quad 7 / 6$ 5 amp . D.C. M.I. $2 \frac{1}{2} \mathrm{in}$. fl. rnd. $11 / 6$ $7 \frac{1}{2}$ amp. D.C. M.I. 3 inin. proi. rnd. $12 / 6$
9 amp. D.C. Hot Wire W.R.

2 $\frac{1}{2}$ in. fl. rnd. 2 $\frac{1}{2}$ in. fl. rnd

Voltmeters

12 V. D.C. M.C. 2 in , proj. and. 20 V.D.C. M.C. $2 i n$. fl. $3 q$.
25 Volt D.C. M.C. 2 in . fi. rnd. 30 Volt M.I. 3in. proj. rnd. 40 Vole M.C. $2 i n$. fl. sq.
250 Volt A.C. rectified moving
coil linear scale 3 inn. fl. rnd.
300 Volt A.C. M.I $2 \frac{1}{2}$ in. fl. rnd. $22 /$ 400 volt A.C. M.I. $4 \frac{1}{2}$ in. fl. rnd. 35/-
Milliammeters
5 mA . M.C. 2 in . fi. sq.
30 mA. M.C. $2 \frac{1}{2} \mathrm{in} . \mathrm{fl} . \mathrm{rnd}$
$50 \mathrm{~mA} . \mathrm{M.C.}^{2} \mathrm{in}$. fl. sq . 200 mA. M.C. 2 tin. fl. rnd 500 mA . M.C. $2 \frac{1}{2} \mathrm{in}$. fl. rnd. 1 mA. M.C. 2 in . sq. 11 .. 500 Microamp latest type Ernest Turner 2in. fl. rnd. with mounting ring and scaled 0-5, moving coil
500 Microamp ex. equip. M.C.
2 in. rnd. scaled $0-15$ and
$0-600 \mathrm{v}$. $14 / 6$ Thermo-coupled $10 \mathrm{amp} .2 \frac{1}{2} \mathrm{in}$. rnd . proj. 350 mA . 2 in . rad. plug.in $5 /-$
$3 / 6$ 500 mA . 2 in . rnd. plug-in POSTAGE ON ALL METERS I/. U.S.A. PRECISION SERIES 8345 MULTIRANGE TESTERS for
A.C. and D.C. volts, ohms and milliA.C. and D.C. volts, ohms and milliamps., basic movermeni amps., in wooden carrying case, complete with test prods, new batteries,
guaranteed perfect. guaranteed
P. \& P. 2/6.

MIDGET ROTARY TRANSFORMERS. $2 \frac{1}{4} \mathrm{in}$. dia. $\times 4 \frac{1}{2} \mathrm{in}$. input 11.5 volr. Output $310 / 365$ volts at 30 mA . Brand new. 17/6 each. P. \& P. 1/6.
DYNAMOTOR (Rotary Conver tor). 6 volt in, 250 volt out at 100 mA ex new equipment, 25/- each. P. \& P. 3/-, MICROPHONES - NEW. Throat British, magnetic, 4/6. P. \& P. I/-.
HEADPHONES. 4,000 ohms, imported new, 15/-.
H.S. 30 L.R. U.S.A., min. ear pes. 19/P. \& P. on above $1 / 6$ each.

MINIATURE UNISELECTOR SWITCH, two banks of ten plus home contacts, one bank continuous of normal. 30 ohms coil for 24 volt operation. Brand new, manulacturer's
each. Packing. Price $\&$ P. $2 / 6$. ${ }^{\text {Plilustrations above }}$ and below.

MINIATURE P.M. MOTOR $12 / 24$ volt, reversible, $1 \frac{1+i n}{4}$. dia. New. Price 9/6 each. P. \& P. 1/-.

TWELVE PLATE F.W. BRIDGE CON NECTED RECTIFIER mounted on 200/250 volt A.C. input transformer. Output $36 / 40$ volt D.C. at 1.2 amps. New, perfect. Price 16/6. P. \& P. 3/6.

200/250 v. A.C. MOTORS. New $1 / 80$ h.p., 2 drives, direct 6000 r.p.m., reduc-

No. 100 RM VARIABLE VOLTAGE TRANSFORM ERS, as illustrated above. Brand new in manulacturers original cases. inpur 230 volt A.C. output variable from 0 to 270 volt at 9 amperes. Price \boldsymbol{E} i' each, plus carr. 12/6.

No. 200 CUH YARIAC ex unit but new and unused. Input 230 volt A.C., output variable from 0 to 270 volt at $2 \frac{1}{2}$ ampere. Price $\in 7 / 10 /-$, plus carr. $10 /$.
No. 200 CU VARIAC, Tandem model. Input 230 volt A.C., output variable from 0 to 270 volt at $4 \frac{1}{2}$ ampere. New. Price 69 each, plus carr. 10/-

NEW UNCHARGED UNFILLED 12 VOLT AC. CUMULATOR 9 ampere in unspillable plastic cases. Comprises 6×2 volt separate cells connected by terminal 2/9. Wooden carrying case for same with lid and strap price $3 / 6$.

12 v D.C. AMPLIFIER, as new, for operation on 12 v car battery, 10 watts undistorted output, with $6 L 6$ valves $62,100,250$ or 500 ohms. E12/100 each. Carr. 15/-
L.T. TRANSFORMER, real heavy duty job, extremely well made for continuous duty. New in original manufacturers" cases. Input 110 v.-260 v. multi-tapped 50 cycles, single phase. Output 28 -29-30-31 y at 21 amperes. Price 69/6. Carr. 9/-

NEW CARPENTER'S PENTER'S PRISEP PE LAYS. $2 \times$ 9500 LAYS. $2 \times$ 1,685 ohms.

Price 22/6 ea. P. \& P. I/-.

NEW MOVING EADSETS Hemplete with Tomplete with hand carbon hand microplug suitable plug suitable Price: 12,6 each plu

RCA AR88-LF, the "Rolls-Royce" of receivers. Covers $73-550 \mathrm{Kc} / \mathrm{s}$. and 1.48 $30.5 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Controls: Variable Selectivity (crystal filter). $16 \mathrm{Kc} / \mathrm{s}-500 \mathrm{c} / \mathrm{s}$., Noise Limiter, Tone, BFO, etc. Has 2 RF Noise Limiter, 1 Ifiene: "Bro, etc. Has 2 in HT. For $110-230 \mathrm{v}$. A.C. mains. Supplied complete with 14 valves and handbook, but less case. in first class condition and perfect working order. Price 645.

VENNER 8-day clockwork Time Switch. Contacts 1 amp. 230 volt, 24 hour phase, $\frac{1}{q}$ hour divisions, complete with key. Used but guaranteed perfect. Price 27/6 each. P. \& P. 1/6.

BRAND NEW SELENIUM FULL WAVE BRIDGE TYPE RECTIFIERS, in manufacturers' original packing. D.C. output 36 v . 10 amp., made up of $12 \times$ 110 mm . dia. plates. These fitted in cooling funnel (removable), size $1 f_{\frac{1}{2}} \mathrm{i}$. $\times 8 \mathrm{in} . \times$ 4fin. Price 45/-. P. \& P. 3/3.

NEW! SPECIAL OFFER OF COMPLETELY BUILT TRANSISTOR POCKET RECEIVER

The smallest pocket radio with
the greatest value:
The product of a well known
British manufacturer.
омĽ $£ 10$. 10 . 0 P. P. 26.
(Listed at 17 gns.$)$

* 6-TRANSISTOR SUPERHET.
* Medium and long wave (Light programme)
* Built-in ferrite aerial.
\star Long life P.P. 3 battery.
* Attractive cabinet with gold
trimmings.
\star OC72 push-Pull output.
\star Not a do-it-yourself.

IT'S MAGIC IN MINIATURE!

THE "TRANSISTOR-8" COMBINED CAR-RADIO/PORTABLE PUSH-PULL SUPERHET

> This Portable 8 Transistor 8uperhet in tunable for both Medium and Long Waves and is comparable in performance to any equivalent Comunercial Transistor Set.
> Gimplifed construction enables this set to be built easily and quickly into an attractive lightweight cablnet supplied.
star features

* all ediswan transistors. * 250 Mill watts Output Pueh-Pull.
\star Medium and Long Waves.
\star Internal Ferrite Rod Aerlal.
* 7×4 Elliptical HIgh Effictency Speaker. \star Drilled Paxolin Chassls 81×2 inin. \star Transistor Holders.
* New Polnt to Point wring and practical * Economical. Powered by 71 v. battery * Highly sensitive. \star Ideal car radio.
Car Kadio Conversion Components 8/extra. A.V.C. $5 / 3$ extra.
325 MW veruion 401 - extra.

GALL AND HEAR DEMONSTRATION MODEL

SIX TRANSISTOR POCKET SUPERHET

STAR FEATURES

* Medium and Long Wave.
* 6 Selected Transistors. * Printed Circuit.
* Internal Ferrite Aerial.
* 30 ohms Speaker. * Instruction Booklet. \& Low consumption. \star Attractive Plastic Cabinet. \star (Red, Blue and White colours) t 9 v. P.P. 4 Battery. * Easy to Build.

"THE MINOR"

The smallest transistor radio offered on the market. Case size only $3 \times 2 \times$ in. Variable tuning over medium waves. Home, Light and Third programmes without an aerial in areas of reasonable reception. Uses a three-stage reflex circuit of high efficiency, Total cost including Personal phone; transistor; long life miniature battery, eircuit and complete layout diagrams and all components: * Internal ferrite aerial. \star Weight less than 2 ozs. All components sold separately. Circuit, layout diagrams and shopping list free.

This set is recommended as an ideal Portable. Highly sensitive, selective, containing the latest features giving simplicity in construction with amazing results.

All items supplied special inclusive price of \&9-19-6 P.P. $2 / 6$.
ALL COMPONENTS SOLD SEPARATELY. SEND FOR LISTS.

STAR FEATURES

* No aerial or earth. * Variable tuning ove medium waveband.
\$ Internal ferrite aerial.
\star Foreign stations (in areas of reasonable reception).
 ネ Four-stage reflex circuit.
* Highly efficient

K Economical ($1 \frac{1}{2}$ mA, consumption). Size $4 \frac{1}{2} \times 3 \times 1 \frac{3}{2} \mathrm{in}$. Total A May be assembled within an hour. weight less than 4 oz . \$ Complete layout diagrams.
We can supply all items including EDISWAN 7246
TRANSISTORS, case and personal earphone for... All parts sold separately.
post free Circuit, layout diagrams and shopping list free.

COLLARO CONQUEST.-4-speed autochanger with lightweight turnover crystal plek-up and minual control. $\mathbf{E 7 / 1 9 / 6 . ~ P . P . ~ 4 / 6 . ~}$
COLLARO 4 -speed single player with crystal turnover head, E6/19/6, P.P. 3/6.
B.S.R. 4 -speed auto-changer with lightweight
 ACH OF THE ABOVE RECORD PLAYERS INCORPORATE THE LATEST FEATURES: \& LIGHT WEIGHT ASCTION. A EIFE. \star EASE OF FITING AND USE. NNG LIFE.
$*$
$*$
FULLY EASE OF
OUARANTEED.

RCA $6 \frac{1}{2}$-inch P.M. SPEAKER in Cabinet. With vol. control and 600 ohm Line Trans.

$$
27 / 6
$$

P.P.2/6.

RF UNITS TYPE 25 Switched
Tuning, 30 to $40 \mathrm{Mc} / \mathrm{s}$. Includes
TYPE 26: Variable zuning, 50 to
$65 \mathrm{Mc} / \mathrm{s}$. Including 2 EF54's and
10/-
1 EC52. Carriage $2 / 6$.
25/
(Circuits in scock for both types 9d. each.)
STROBE UNIT
Complete with: 6-EF50; 5-EA50; SP61. Relays,
etc. $\quad 35 /-\frac{\text { P.P. }}{2 / 6}$.
APQ9 HF UNIT
Includes 93|A photo-multiplier. 2-807, 3-6AC7, $2-8012 \mathrm{HF}$. Gear drives. Blower motor. Mains transformer, etc.

87/10/- pipl
RADIO AND TV VALVES ETC. OVER 400 DIFFERENT TYPES IN STOCK: SEND FOR NEW FREE LIST.

Includes: 517C rube; 4-SP61; 5U4G; transform-
ers, etc. $57 / 6$ P.P.

MAINS OPERATED PORTABLE RADIO

* FIVE VALVE SUPERHET * BUILT IN FRAME AERIAL * ALL MARCONI VALVES * SLOW MOTION TUNING * 7×4 inch ELLIPTICAL SPEAKER
* GRAMOPHONE PICK-UP

SOCKETS

* SIZE $10 \times 10 \times 4$ inches.
\star MAINS $200 / 240$ v. A.C./D.C.

£7/12/6 ${ }_{\text {Post }}{ }^{3 / 6}$ 2/12/6 (8OTH MODELS)筑

 INET, $27 / 6$ EXTRA.SUPER REXINE PORTABLE CABINET (Illustrated) 37/6 EXTRA.

The product of a well-known radio manufacturer:
Gives world-wide coverage on all wavebands.

The ideal unit for a radio-gram or portable radio.

Models available:
Type C-
Medium wave, 180 to 550 metres
hort Wave. 10 to 30 metres (10 to 30 Mc/s) in two wavebands.
Gramophone.
Gramophon
Medium Wave, 180 to 550 metres.
Long Wave, 800 to 2,000 metres.
Short. Wave, 15 to 50 metres (6 to 20 Me/s.).
Gramophone.

PYE $45 \mathrm{Mc} / \mathrm{s}$. STRIP TYPE 3583.

Complete with 12 valves. 10-EF50; EB34; EA50, with modification data. ABSOLUTE BARGAIN $39 / 6 \begin{gathered}\text { Carriage } \\ 5 / 6 .\end{gathered}$

" 372 " MINIATURE IF STRIP $9.72 \mathrm{Mc} / \mathrm{s}$

The ideal F.M. conversion unit as described in May, 1957. ComMay, 1957. com plete with 6 valves, EF92's and one EB91.I.F.T's etc., in absolutely new condition With circuit and conversion data
$12 / 6$ (less valves) 37/6 (wish valves) Postage and packing $2 / 6$ (either type) FM AT ITS CHEAPEST!

ROTARY CONVERTER

24 v. D.C. to 230 v. A.C. 50 cycles. 100 watts. Brand new and unused.

$$
25 / 10 /=\quad \text { Carr } \quad 7 / 6
$$

426 CONTROL UNIT
Includes: 4-EF50; 2-SPG1; EB34; multibank switches; pots; transformer, etc.
ONLY 30/= P.P.3/-

PIRANI HIGH VACUUM
TEST EQUIPMENT
COMPLETE set of instruments including calibrator and PYE Scalelamp galvo.

$$
833 / 10 /=\begin{gathered}
\text { Post } \\
\text { free. }
\end{gathered}
$$

BRAND NEW. BOOKLET ON REQUEST
WAVE-GUIDE WATTMETER
Type W8921 10 cm . Complete in transit case. BRAND NEW E5/10/- P.P.
EVERSHED VIGNOLES WEE MEGGER 500 volt 50 Meg . BRAND NEW sealed in cartons with leather case and handbook

$$
£ 12 / 10 /-
$$

100 -vole type used but in new-condition. With Leather Case 26 Post

RADAR UNIT TYPE 1683
Complete with the following valves:
2-6C4; 832A; 829B; 2-5R4G; 3-6AC7 6V6GT; 931 A photo multiplier with associated network. Also 2-blower motors. input 30-1 vole 400 to $2,600 \mathrm{c} / \mathrm{s}$. ed 26 v . d.c. BRAND NEW and boxed.

E6/10/- $\begin{gathered}\text { Post } \\ \text { free. }\end{gathered}$
CRYSTAL CALIBRATOR
For No. 19 Set.
$10 \mathrm{Kc} / \mathrm{s} ; 100 \mathrm{Kc} / \mathrm{s}$.; $1 \mathrm{Mc} / \mathrm{s}$; ; spot frequencies; Crystal controlled oscillators; includes 52SC7 valves, neon modulator handbook, etc. BRAND NEW E4/19/6 $\begin{gathered}\text { Post } \\ \text { free }\end{gathered}$

MIXER UNIT TYPE 79

Frequency range 172 to $190 \mathrm{Mc} / \mathrm{s}$. Comprising: CRI39A Cath. ray tubes: 7-EFS, EF55: 4 VUI20, and EC52. Standard main input 200-250 volts $50 \mathrm{c} / \mathrm{s}$. Ideal Scope Basis.

$$
\$ 5 / 10 / 0 \quad \text { Carriage }
$$

WALKIE/TALKIE TYPE 38 TRANSComplete with 5 valves. In new condition. These Sets are sold without Guarantee, but are serviceable. $\quad 22 / 6$ P.P. H/phones $7 / 6$ pair, Junction Box, 2/6. Throat Mike, 4/6. Canvas Bag, 4/-. Aerial Rod, $2 / 6$.

TRANSMITTER/RECEIVER
Army Type 17 Mk. II
Complete with Valves, High Resistance Head. phones, Handmike and instruction Book and circuit. Frequency Range 41.0 to $61 \mathrm{Mc} / \mathrm{s}$. Range approximately 3 to 8 miles.
Power requirements: Standard 120 v. H.T. and 2 V . L.T.
Ideal for Civil Delence and com- 45/-
munications. BRAND NEW
munications. Calibrated Wavemeter for same, 10/- extra.

Includes: 3-6L6M. 12-6AC7: 6SO7: 5-717A; $6-6 S N 7 G T$; $6 \mathrm{H6}$; slow motion drive, blower motor, transiormer etc. $84 / 19 / 6$ P.P.

QUARTZ CRYSTALS

A large range of frequencies in stock from 100 $\mathrm{K} \mathrm{k} / \mathrm{s}$. upwards. Fundamentals: 54th and 72nd harmonics etc. Send for NEW free complete list.
(50 yards only from Tottenham Court Road Tube)

LOOK!

OUR NEW WELL. APPOINTED AND FULLY EQUIPPED HI-FI DEMONSTRATION ROOM IS NOW OPEN AT 18, TOTTEN HAM COURT ROAD Continuous Demonstrations Daily WHY NOT PAY US A VISIT? All post orders and correspondence to I62, HOLLOWAY ROAD, LONDON, N. 7

STEREO \& HI-FI EQUIPMENT

We stock equipment of Quality by all leading makers - QUAD - LEAK - ROGERS - DULCI AVANTIC PAM - JASON - B.T.H. ARMSTRONG CHAPMAN GRUNDIG VERDIK - HARTING - G.E.C. WHARFEDALE - GOODMAN - W.B. T.S.L. COLLARO - GARRARD - b.S.R. LINEAR - RECORD-HOUSING, etc., etc. Leaflets available on request. Write or call for individual attention. Terms available if required.

BUILD A QUALITY TAPE RECORDER FOR ONLY 39 GNS.

Collari Mark IV Tape Trans
criptor Deck
pectal ready buit ampiner 8×6 in. elliptcteal loadspeake net with gilt fillings. Collaro Mike (or simular) total

OUR SPECIAL NCLUSI PUIE SPECIAL RNCLUSIV 1iems purchased together, plus instructona provided assemble: Note We shall be pleased to wre the tape deck awtechea for yov
it you wish, at an extrs charre of 21 Hear this wonderful ocorder at elther of our branchees
or send stanp for further
detalle.

"TRU-SOUND" STEREO AMPLIFIER

 This amplifier ofters superb quality at very woderate cost and 1 d player. Brief fpec.:- Twin ampliners dellvering a total of record $7_{\text {pratis. }}$ Output to match 3 otm loudgeenkers. Valve line up 12AXX, 2-ECL82, E E80. Negative feed back employed to both chapnels. Controls: volume tone and balance. Supplied with attractivegold control panel with black lettering, brown and gold oontrol knobs. gold control panol with black lettering, brown and gold oontrol knobs.
Overall size $9 \times 6 \times 5$ in. Control panel $9 \times 21 \mathrm{D}$. Price only $28 / 10 /$,

PORTABLE GRAM AMPLIFIERS
RC2A. Smanl PRINTED CIRCUIT aingle-valve high-gain ampitier
for the mmaller type of portable. Employs latest type ECL 82 valve. Tor the emalier type of portable. Employs lasest type ECL, 82 valve.
Further details on request. Price only $59 / 6$ plus $2 / \cdot \mathrm{P}$. \& P . RC3A. A superior quality 3 -ralve arnplifar omploying Ez80, EL84 and ECCB3. With se parato habs and treble controle. Price $£ 3 / 19 / B$ plus 2/6. \mathbf{P}.

DECCA PORTABLE AMPLIFIER
 As supplied in famous

 DECCAMATIC III. Complate with small cream control panel Employs ECLs2 valve. Size $3 \times 31 \times 8!$ in. On! $58 / 6$ plus $2 / 6$ $\mathrm{P}, \& \mathrm{P}$.SPECIAL CEELESTION $8 \times$ bin., elliptical high Eux loudspenker.
30 - plai 1/-P. \& P.
VERY ATTRACIVE
PORTABLE CABINET in Red and White or Black and White polas dot for accommodating the sbove items and anculary equipment, 75/-, dias 51- P. ©

RECORD HOUSING " NORDYK " UNITS The above 日lustrated cabinets are avallable st f21/12/-, inc. Plus WE NOW STOCE THE FULL RANGE OF "RECORD HOUSING" CABINETS. These cabinete are renowned for their excelient qually

OUDSPEAKERS AND ENCLOSURES We stock all leading maikes in-
oluding B.T.E. Whartedalo, W B. Goodman, etc., êtc. Enquiries invited.

HARTING STEREO TAPE DECK

For the Connoisseur of genuine Higb Fidellity for inclusion in any High Fidelity combination. The Harting made and depigned is a professiozally made and dexigned unit of the higbesi tuon of stereo or standard tapes is roquired tbis deck cannot be beaten Will record Monaurally at 7 tin. per sec or 3 in. per poc. Wow and futter guar anteed to he less thas 0.1 of 1% at
7 tin. Frequency response: $30.20,000 \mathrm{c} / \mathrm{s}$. $\pm 2 \mathrm{db}$, at 7 lin. $30-16,000 \mathrm{c} / \mathrm{s}$. $\pm 2 \mathrm{db}$ at 3tin. This fantastic response is maintinined both on sterso and Monaural playback, and isentirely due to the Latest type of TELERFUNKEN Hecord Ylayback and arase heads employed. PRICE 42 GNS, plue $\left.15\right|^{\circ}$.
"ROLEX" SPECLAL HEAVY DUTY MANS/ZATTERY AMPLIFIER, Vary flolsh case with chrome and cream fitr ings. For wee on A.C. malne $200 / 250 \mathrm{v}$,

 match 4, 8. 16, 250 and 500 ohm Epaeaker systems. Ideal for P.A. work, etc. stze $\begin{aligned} & 133 \mathrm{in} . \\ & \text { laputs }\end{aligned} \times 8$ fin. \times 7ilin. Mike and gram laputs with maparate grain controis, tone rontroi. Brand new, fulty guaram.
teed. $\mathbf{O N L Y} £ 15 / 15 /-$ plua $7 / 6$ P. $\& \mathbf{P}$.

"USWAGS"

JASON J.T.V. TUNER

EXTRA SPECIAL OFFER ! !
A gmall three-ralve PORTABLE RECORD-PLAYER AMPLIFIER High Mux 6 tin. Loudspeaker Valve line-up ECC83, ELAA; Ez80. Incorporates soperate bass and treble controls. Max. output 3 watts. Will match all types of high hmpedance pick -up. Ready new style cabinet Anished in two-tone Leather-
ette. Will accommodate above ette. Will acoommodate above
Amplifer and Baffle without modification, also most types Overal size $18 \times 13 t \times 8 t$ th 2. Fitted with carrying handle. E3/9/6 plas 5/- P. \& \mathbf{P}. chased together they will uppited at a special linclusive

A SUPERB NEW TRANSISTOR PRINTED CIRCUIT POCKET PORTABLE (BY PERDIO)

mast attractlve recelver employing 6 belected transistora and covering Medium and Long wave bands. Housed in smart cream plastic case, size $\bar{f} \mathbf{f i n}$. x 33 ln . \times 1tla., with git table stand and control knobs. All necessary components for conatruction of this beautiful receiver are avalable at a spectal inclusive price of 29/19/6. plus $2 / 6$ P. \& P . Including comprehenslve, easy-tofollow instructions (available separately. $2 / 6$ post free.)

RECORD UNITS

COLLARO AC $3 / 554$

Three-speeds single record Player
for A.C. madza, 200/250 \quad. Crearn tor A.C. mains, 200/250 v. Crearn well-known high outpat in The type head. Strictly limited quantlity

LATEST 日.S.R. UA12
Sterea 4 -speed auto-changer unlt cormplete with FUI-FI stereo cartridge for monaural or stereo records. Brand now and fully guaran-
Mixer A.S.R. MONARCH
timited Stonger in cream and gold. £6/19/6, plas P. \& P. 3/6. Limited THE LATEST COLHARO "CONQUEST"
4 -8peed autochanger tin cream with Studio "O" insert. 87/19/6,
pins P. \& P. $3 / 6$.
GARRARD BC. 1210 MK. II STEREO MONAURAL 4-SPEED
This is the very latest unit by this famous manufacturer. supplied complete with GCS plug-in turnover crystal head and eapphire styli Tor 78 and har. standard records. Brand new and felly guaranteed. Tery limited atorks at ONLY $£ 11 / 0 / 6$, phus $5 /-$ P. \& P. NOTE: be supplied as an optlonal extra for only feloil above unit can 22/0/1 inc. P.T. Terms avallablo

GARRARD 4HF
A quality 4 -speed single -record unit complete with TPA12 tranacription arm and OC8 crystal pick-up. Size (apace reqd.) $174 \times 18 \downarrow \times 3$ iin.
above board and 3 ina. below. PRICE $£ 19 / 7 / 10$. Plus $3 / 6$ P. \& \mathbf{P}. GARRARD AS.F.
This famous slagle-record 4 -gpeed onit completa with GC2 turnover rysta head and sapphire etyil available in limited quantity. Brand

Our advantageous deferred terms are available on any single item over $\mathbf{f 5}$. Your enquiries invited.

If not stated, please add postage on orders under Cl . Cash with order or C.O.D. (charges extra).

Open: Tottenham Court Road: 9 a.m. to 6 p.m. Mon. to Fri., Sat. I p.m. Holloway Road: 9 am. to 6 p.m. daily. Thurs. I p.m., Sat. 5.30 p.m.

HEADSET SPECIAL. Excellent quality super lightwelght low impedance magnotic
headphones complete with button microphone attached and plastic ear mouids. By world tsmous manuiacturer. A bsolutely
brand new. $45 /-$ pair. Plus $1 / 8$ P. \& P. TRANSFORMER SPECLAL Superlor quallty half slurouded drop thro" Mains $350-0-350$ v. $80 \mathrm{~mA}, 6.3$ ₹. 3 ampa. 8 v .2 amps. Exeequipment but guaranteed O.K. Ody $9 / 6$ plus I/. P. \& \mathbf{P}.
METER SPECIAL. We have a Hmited quantity of aircraft electrical thermometers, by Weaton. 2in, moving coll meter, tlush square fitting. These meters have a
luminous ecale graduated $40-140$ degrees centlgrade, but the full-scale defection is approximately 150 microamps. Price $12 / 8$ each only, plus $1 /-\mathrm{P}$. \& P .
POWER PACK. By leading manufacturer. Input 200/250 v. Output $350-0=360280$
 2 a Fully manoothed. Incorporates valve
rectifer Gzaz. Chassis measurea 13in. X $7 \ln$. $\times 51 \mathrm{ln}$. Wt. 221 b . Few only at $84 / 19 / 6$ plus $3 / 6$ P. P. P. POOD . SPEAKER In attractive Bakelite Cablnet, (Black or Brown). Compiete with input
gocket and two wander plugs. Sllghty socket and two wander plugs. Blightly
shon moiled. Guranteed working order. ONLY $27 / 6$ plue $1 / 6$ P. \& P.
CEYSTAL MIC, DISERTS. Ex-equip. but perfect. $4 / 6$ each. Plus 9d. P. a P P.
WIRING WIRE. 5 coils 10 varde each in different colours contained in cellophane
bag. $5 /-$ bag pluen 9 d . postage.

"USWAGS"

No. 38 TRANSMITTER RECEIVER moet fortunate to obtaining a further supply of these complete statlons cromprising TX/ RX unit heaudhones, microphone, aerial, junction box, battery satchel and fuli
operailing instructions Range: approx 6 operaing Frstructons coverange: $7.4-9$ me/s.
miles Fraquency coll
ABSOLUTELY BRAND NEW, $65 /$. (Batterfse not supplied.) Export enquiries invited.

BARGAIN

> THE L CONSTRUCTORS' MOST ATEST "PIFCO"' INSTRU
BET SOLDERING IRON With integral Stand and buill-im Spol-
light tor Wuminating work, $200 / 250$ v. ONLI 22/6. P. \& P. 1/6.

EX-W.D. FIELD TELEPHONE SETS POWEB, NO. 1 MK. II A now, complete with handset,
EX-W.D. DON MK. ∇ FIELD TELEPEROND 8ET. Complete with handset, buzzer hand gener.
(Both above plus 2/6 P. \& P.)
OCNA, PLUGB, EX. EQUPP. 9d. er., plus PACKARD BELL PRE-AMPLIFIER SNIP Complete with 6SL7GT and $28 D 7$ Pluge hand switch, many components contained in usefui metal case. Brand new, boxed and complete with clrcuit diagram and
instruction book, Only $12 / 6$ plus $1 / 6$ P.P. MOVNG COIL EEADPHONES movara cour beadproses, complete 60 ohms fapedance. $12 / 6$ psir, plue ${ }^{60}$ ohms
H.G.P. 59 CRYSTAL INSERT. Complete new. B.S.R. Monarch, etc

SPECLAL PURCHASE from MINTSTRY. BRAND NEW No. 17 Mk. II TRANS MITER/RECEIVER.
Built into atrong wooden cablnet 15 in x 14in. x gin. Complete with headphones and micropho
Frequency coverage $44-61 \mathrm{rme} / \mathrm{s}$, ($5-7$ metres). Usen standard 120 V. H.T. and 2 -wolt LLT hastructions. 59/6. (Batteries not mpplied.) 24 VOLT ROTARY CONTERTERS. Input 24 v. D.C. Output $200 / 250$ F. AO. 100
 Completely smoothedght approx. soditum Lamp transformer. Brand new $92 / 8$.

CORNER
POLYSTYRENE COIL CEMENT. $1 / 10$ per 6 FOLT FIBRATOR PACK. Ex-TV.D Output 140 v at 30 mA . Fully smoothed Size only 6 itn $\times 5 \ln$. $\times 2$ th. New con-
dition $12 / 6$. Plus $1 / 6$ P. \& P .
SPECIAL UNREPEATABLE
OFFER!

(for example: Goodtnal, W.B., of similar) supplied in original coadition as Blgh mpedance unit with volume control, easily converted to aluodard how impedanc or matching domastic Radio ote 8 in reclaimed "Rental" unlte in first clas working order and are ONLY 16/6 complete plus $3 / 8 \mathrm{P}$. \& \mathbf{P}.

"USWAGS"

LIGHTWEIGHT EXCELLEENT QUALITY (b to bit) complete with neon indicato built into handle. 25 watt element. 8uitable for use on ACfDC mains $200 / 200$ v. Brand. new 16/6. Plus 1/, P. \& P
12 VOLT VIBRATOR PACE Mallory. Output 150 Y. 40 mA Completo with Pivnchronous Vibrator. Brand new 12/6
Pius $1 / 6 \mathrm{P} . \& \mathrm{P}$ MORSE KEY8, SUPERIOR QUALITY.
Brand Now. $\& / 6$ plus $1 / \cdot P$. \& P.

10in. RECoND. GOOD QUALJTY LOUD. SPEAKER. Complete with Q.P. trans. 12tn BAKERS SELHURST LOUDSPREAERS. 15 olms, 15 walt, 30 - 14.000
 SPEAKER RICHARD ALLAN P.M. LOUDha speech coil. Brand new. Oin LOUDSPEAKER. Ex-equlp. as new. Less transformer. 3 ohm speech coll. 15iplue $1 / 6$ P. \& PR PIT AERIALS. Ideal for flahing rods, ote. Eacb section 4 ft . Only NYLON DRIVE CORD. 12 yd. Reel. Best quallty $3 / 6$ plus 6 d . P. \& \mathbf{P}
CLR LOW IMPEDANCE HEADPHONES $5 / 6 \mathrm{pr}$. BRAND NEW IMPORTED EIgh impedancelightwelght headphoues. Flinished in cream. 15/-pr. DLR5 Moving Coll. All plus 1/- \mathbf{P}. \& \mathbf{P}
"INTERNATIONAL RADIO TUBE ENCY. CLOPAEDIA." World-wide valve dats in 14 Languages plis Euglish. Approx. 770 pages, $63 /$ plua $3 / 6$ P. \& P. Or Terms: $10 /-$ depoest and 6 monthly payments of $10 /$ -

TRANSISTORS!!

SURPLUS - P.M.P
 Application)

WHITE SPOT, R.F. np to 2.5
Mc/s.
STANDARD-
BRIMAR
T.s.
MULJARD
OC44 R.F................
0 0.70
0071
oci72 matched pair
NEWMARKET
V6/R2 R.F. up to $4 \mathrm{Mc} / \mathrm{m}$. VG/R8 R.F. 8 Mc/s.-aD.
AUDIO
V10/15A
V15/10P
(Power)............
(ALL POST FREE)

TO BUILD YOURSELF

- ALL PARTS AVAILABLE SEPARATELY

WE ARE THE EXPERTS IN THIS FIELD
AND CARRY THE MOST COMPREHEN-
SIVE STOCKS IN THE COUNTRY

STOCKS IN THE COUNTAY
(1) Now Look " RAMBLER
(2) "RAMBLER " Mains Unit (suitable for mose po
4) "EAMILY FOUR" (our new T.R. F. Receiver)
(4) "SAMLERIOR FOUR " (four valve mains receiver
(6) GRAM Chassis 5-valve Superhet
(7) T.S.L. F.M. Tuner (self powered)
(8) Standard JASON F.M. Tuner
(9) Fringe area JASON F.M. Tuner
10) JASON "MERCURY" switch tuned F.M. feeder

1) OSRAM 912 Printed cireuit F.M. Tuner
12. JASON ." ARGONAUT., AM/FM Chassis

14 F.M. Power pack (suitable for most tuners)
(15) R.C. $3 / 4$ watt amplifier (with Bass, Middle and Treble ontrols
16) 2-amp. Battery Charger

17 R.C. Transistor/Crystal Receiver (with 'phones)
18) R.E.P. I-valve Battery Receiver
19) "CRY-BABY" ALARM (Baby Alarm)
(21) MULLARD 510 Amplifier (printed circuit) Ulera Linear
(22) TELETRON "OOMPANIOON "3-Transistor Printed Circuit
23) TELETRON "TRANNSIDYNE "Transistor Portable
(24) "DE-LUXE " Printed Circult Superher
25) JASON J.T.V.
26) RADIO JACK MULIARD TYPE : C : i Tape pre-amp
(28) TAPE RECORDER (wlth Coltaro Mk. iv deck)
(29) JASON J. 3-3 Stereo pre-amp.

30 JASON PER Stereo pre-amp.......
32) New Jason F.M. Tuner with built-in power supplies \& cabinet
33) Now Jason Fringe Area F.M. Tuner as above

MULLARD 510 HIGH-FIDELITY AMPLIFIER
 Our printed circuit version
of this exellent ampliter,
with ULTRA-IINEAR with ULTRA-IINEAR
PUSH-PULL output stage Piving an exceptionally high quallity output of 10 watt (max.). Built-in Controls are provided for independ ent bass and treble Tone correction to suit all typee
of signal input. WIII match all erystal or high isapedance misgaetic pick up haads, P.M., A.M. or A.M./F.M. tuners or tape recorder output. All re
quired components of best quired components of bes are offered at a special inclusive price of $29 / 9 /$ plus $3 / 6$ P. \& P Inotruction Book, containing fued, prloe Het available separately a 3/6 poet trea.
AN ELECTRONIC ORGAN. Many readers will be Interested to hear that we are in the process of constructing the excellent Eectronic
Organ designed by Mr. Alan Douglas, M.I.R.E., A.M.I.E.E. The completed organ will be on view at our Holloway Road branch is due course (see lster for announcement). For the beneft of all would-be construc inade. Your encuiries are invited. Full constructional detalls available in book form at $15 /$ plup $1 / 6 \mathrm{P}$. \& P . Please address enquiries re. above for the attention of La Roche.
METERS. We carry Large ptocks of Meters from 50 microamps to 1.500 v. A few of the most popalar types are:- $\mathbf{1 0 0}$ microanaps 24 th
Flush Round Moving Coll a $45 /-500$ microamps 2 in . Flush Round Flush Round Moving Coll ($451-$: 200 microamps $2 i n$. Fush Roun Moving Coll 1954 man., $2518 ; 50 \mathrm{~mA}$. 2ib. Flush 8quare Moviag Coil, $816 ; 0.5 \mathrm{mmp}$.
 be plessed to quote for spectal meters to your own spacification.
RADIO JACK. The range of equlpment to butld yoursell. Covers local Medlum Wave variably tuned. Compart selfsell. Covers local Medfum Wave Btation to aerlal (no pormpact selif-contained onit requiring only connection in confunction with your tape recorver or high galn amplifer. Al necessary compo
plua $1 / 6$. \& P.

CLYNE RADIO LTD

(2) "RAMBLER" Mains Unit, £3/5/-; (7) T.S.L. F.M. Tuner, $£ 13 / 15 /-$; (4) F.M. Powor Pack
$52 / 6$; (15) R.C. $3 / 4$ watt Amplifier, $55 /-j$ (16) 2-amp. Battery charger,
BABY" Alarm, 89/6; (21) Mullard 510, ci2/12/-; Instruction Books which contain fulk des-
cription, casy-to-follow practical wiring diagrams, theoretical diagrams, femised price required.
NOTE: (2) The " RAMBLER" Mains Unit is surtable for use with MOST all-dry portables.

RECORD PLAYER CABINETS

A practical cabinet nicely designed, cloth covered twotone (brown and coffee). Size $15 x$ $17 \times 8 \mathrm{sin}$. deep. Takes B.S.R. 4speed Autochanger and $6 \frac{1}{2} \mathrm{in}$. round or elliprical speaker Carr. and Ins. 4/6.

69/6

'A beautifully styled cabinet. Made by a famous manufacturer. In polka dot cloth with clipped lid and carrying handle. Size $16 \times 14 \frac{1}{2} \times 8 \frac{1}{2}$ B.S.R. Monareh 4 speed Autochanger tical speaker, and mostof the modern portable amplifiers Carr. and Ins. 4/6.

EXTENSION SPEAKERS

Polished wood 19/9
cabinet of attrac-
tive appearance. Fitted with 8in. P.M. Speaker W.B. or Goodmans of the
highest quality. Standard highest quality. Standard
matching to any receivers matching to any receivers
(2-5 ohms). Switch and flex included. Ins. carr. 3/6.
Ideal for stereophonic sound.
8 in. P.M. Speakers $8 / 9$. With O.P. transformer fitted $10 /$.
To suit most Record Players.
$6 \frac{1}{4} \mathrm{in}$. Round P.M. Speakers, $12 / 6$.
$4 \times 7 \mathrm{in}$. elliptical speakers, $19 / 6$.
Postage 2/9.
STEREOPHONIC AMPLIFIER ET/19/6 Beautifully made for portable stereophonic record players. Latest design with printed circuit. Dimensions $3 \times 5 t \times 9$ lin. A.C. only. Mains isolated. Twin amplifiers each side ECL82 triode pentode valve. Full tone, volume and balance controls. Complete and ready to fit. Knobs $3 / 6$ per set extra. P.P. and ins. 4/6.

PHOTOGRAPHIC SLIDE CASE 17/6
Rexine covered. Size Takes 150 slides. Neep. Takes partides. Numbered partitions. Plated elip. Strong carryin
handle. P. \& P. 2/6.

MOTOR BOARDS $2 / 6$
For 4 -speed Autochangers. P. \& P. $1 / 3$. TELEVOX TELEPHONE (AMPLIFIER 89/6

Invaluable in a noisy office or workshop. suction upe urin in suction type vibration microphone A.C./D.C.
Size of amplifier $7 \times 11 \times 3 \mathrm{in}$. Fits any type of size of amplifier $7 \times 11 \times 3 \mathrm{in}$. Fits ${ }^{2}$
G.P.O. telephone. P.P. and Ins. $4 / 6$.

B.S.R. MONARCH 4-SPEED AUTOCHANGER
 £6.19.6

Incoroorating aveo and manual control com. =plete with zurnover crrstal p.u. and sapphire str) lus. P.P. and Ins. $5 / 6$.
COLLARO 4 -SPEED AUTOCHANGERS
£7.19.6 $\begin{gathered}\text { Incorporating auto and } \\ \text { manual } \\ \text { mintrol }\end{gathered}$ plete with studio crystal p.u. and sapphire Bstyus. P.P. and Ins 5/6.

- \star AMPLIFIERS
- 12 MONTHS GUARANTEE
- PORTABLE
- AMPLIFIER
- MARK D1.
- Brand new. Latest

- design with printed 59/6
- Mains isolated ${ }^{\text {cirens }} 7 \times 2 t \times 5$ in. A.C. onily. - porating EL84 as high gain outpur valve. - Volume and tone controls. Knobs $2 / 6$ exera. - P. and $P 3 / 6$.
- PORTABLE AMPLIFIER Printed circuit.
- MARK D. 2 79/6 Latest desisn.
- only. Mains isolated $3+2+\times$ Sin. A.C.
- Inly. Mains isolated 3-4 watts outpur.
- incorporating the latest ECL82 triode pentode
- ourpur Valve giving higher undistorted
- output. Volume and tone controls. Knobs
- PORTABLE AMPLIFIER De luxe model. - MARK D. 3 89/6 Printed circuit. Latest design.
$2 t \times 5 \mathrm{ln}$. A.C. only. Mains isolated 3-4 watts
- output. Incorporating the latest ECL82
- triode pentode output valve giving higher - undistorted ourput. Volume, treble and bass control. Knobs $3 / 6$ extra. P. and P. $3 / 6$.

PORTABLE
AMPLIFIER

- MARK D. 4 69/6
- Brand new. By famous
- manufacturer. Especi-
ally built for portable

- record players. Dimensions $4 \frac{1}{2} \times 3 \frac{1}{2} \times 4 i n$.
- A.C. only. 2 valves: EL84 as high gain output
valve. EZ80 as rectifier. Volume and toné
- controls. Knabs $2 / 6$ extra. P. \& P. 3/6.
- B.S.R. FUL-FI CRYSTAL TURNOVER -
- CARTRIDGES $19 / 6$

Brand new. Including sapphire needles for -- L.P. and Standard, giving fullest range and -- finest tone obtainable for any player. Can be - fitted to all standard pick-up arms P. and P. - 9d.

79/6
Seylish cabinet by famous manufacturer. Cloth covered in contrasting colours (red and grey). Grilled front controls panel. Size $15 \times 19 \times 8_{\frac{3}{4} \mathrm{in} \text {. }}$ deep. Reautifully made-a cabinet of which you can be
 really proud. Takes 4 -speed B.S.R. Autochanger. $6 \frac{1}{2} n$. round or elliptical speaker Room for any amplifier of your own choice. Carr. and Ins. 4/6.

49/6
 most of the modern portable amplifiers. Carr. and Ins. 4/6.
\star A FEW ONLY \star GARRARD STEREO \&12.19.6
R.C. $121 / \mathrm{Mk}$. II. Automatic selection for any size record. Separate heads for monaural and stereo. Carr. and Ins. 5/6.

COLLARO CONQUEST

STEREO AUTOCHANGERS 11 gMS. with zurnover cartridge for stereo L.P. and standard. Carr. and Ins. 5/6.

A "MUST" for

Less speaker fret. Size $133 \times 15 \times 8 \frac{1}{2}$ in. deep. Detachable lid with compartment for spare rape. Covered in 8 r
material. P.P. and Ins. $4 / 6$.

STURDY CASE 12/6
 18 Tin . long playing records. P. and P. $2 / 6$

DUKE \& CO.

spetaluss it
RECORD PLAYER CABINETS
*TERMS \star
AVAILABLE

0
 REGETTERED IMPROVED VACUUM T/V TUBES
 12 MONTHS GUARANTEE

$17^{\prime \prime}$ Rect. £7.10.0 $14^{\prime \prime}$ Rect. £5.10.0 Our 12 months' guarantee (6 months' full replacement, 6 months progressive) illustrates our wholehearted confidence in the Tubes we offer. We sell many hundreds a week throughout the country and have done so for the past seven years. Companies, Renters and Rerailers who are thoroughly satisfied with our supplies. Remember hey also hold a 10 days money back guarantee. " $10^{\prime \prime} 14^{\prime \prime} 15^{\prime \prime}$ and 16° ROUND TUBES " $10^{\prime \prime} .14,15^{\prime \prime}$, and $16^{\prime \prime}$ ROUND TUBES Our special offer of these sizes $\mathbf{6 5}$. 12 in . T.V Tubes $\& 6$. Three months' guarantee on round ubes. Ins. Carr. I5/6
EXPRESS DESPATCH SERVICE Please 'phone to confirm Tube in stock. Send Telegraph Money Order. Tube despatched Passenger Train same day. This service only available with remittance by a Telegraph Money Order. \qquad

17" T.V. CHASSIS, TUBE AND SPEAKER. 16 GNS.

I7in. Rectangular Tube on modlfied chassis supplied as single channel chassis covering .B.C. Channels 1.5 or, incorporating Turre Tuner, which can be added as an extra, at our special price to chassis purchasers of $50 /$ giving choice of any two channels (B.B.C. and ITT.A.). Extra channels can be supplied at $7 / 6$ each. Chassis size $12 \times 14 \frac{1}{2} \times 11$ in. less valves. Similar chassis are used by well known companies because of their stability and eliability. With Tube and Speaker (less valves) 16 guineas. Complete and working with valves and Turrer Tuner, 24 guineas. 12 months' guarantee on the Tubes. 3 months' guarantee on the valves and chassis. Ins. carr. (incl. Tube), 25/-.

* TRANSFORMERS

Drop Through Type $12 / 9$.
$350-0-350$ volts at $250 \mathrm{~mA} ., 6.3$ volt at 4 amp . 6.3 volt at 4 amp ., 4 volt at 3 amp ., 22 volt at $.3 \mathrm{amp} ., 4$ volt centre tapped at 1.5 amp Primary $200-250$ volt. 50 cycles. P. and P. 3/9.
Drop through type 12/9.
$350-0-350$ volts at 250 mA . 6.3 volt at 5 amp . 4 volt at 4 amp. 4 volt at 7 amp. ${ }^{4}$ volt centre tapped at
volt. 50 eycles. P. and P. $3 / 9$.

* HEATER

$12 / 9$ volt at $\frac{1}{2}$ amp. $0-200-25$

Upright type $3 / 9$.

$350-0-350$ volt at 80 mA ., 12 volt at 1.5 amp
vole at 2 amp . Primary $100-120-200-250$ volt. Fully shrouded. Ideal for mains auto transformers. P. and P. 2/9.

MAINS AUTO $12 / 6$
0-205-225-245 volts at 300 mA . Isolated windings of 6.3 volt at $2-6 \mathrm{amp}$. 6.3 volt at 3 Windings of 2 volt at $1-4 \mathrm{amp}$. P. and P. $3 / 9$

TRANSFORMERS *

2-1 ratio or $1-2$ ratio auto trans-
former 2 volt at 1.4 amp. primary,
$2-1$
former 2 volt at 1.4 amp. primary, $3 / 9$
4 volt secondary. ${ }^{\text {P. and }}$ P. $1 / 9$.

POWER PACK AND AMPLIFIER $19 / 6$ R.F. E.H.T. Not tested. Amplifier stage 6 V6 with O.P. trans. 3 ohms matching. Smoothed H.T. 350 volt at 250 mA .6 .3 volt at 5 amp . 22 v . at $3 \mathrm{amp} ., 6.3 \mathrm{v}$. at 4 amp . and 4 v . centre tapped. Less valves. Drawings free. Size $14 \frac{1}{2} \times 8 \times 7 \mathrm{in}$. ns. Carr. 5/6.

POWER PACK AND AMPLIFIER $9 / 9$

Output stage PEN45. O.P. trans. choke. Smoothed H.T. 325 volt at 250 mA .4 v . at 5 amp .6 .3 v . at 5 mp . 4 v . at 5 amp. centre tapped. a . standard plugs. Less valves. Ins. Carr. 5/6.

or car wiring. Revolutionary in design. Instantly ready for use and cannot burn. In light metal cas with full instructions for use. Post $2 / 9$
SOUND/VISION AND I.E. STRIP 25/6. Plessey. Tested. 1.F's $10.5 \mathrm{Mc} / \mathrm{s}$ sound. $14 \mathrm{Mc} / \mathrm{s}$ vision. 8 valve holders. Less valves. Size $8 \frac{1}{2} \times 5 \times$ $4 \frac{1}{2} \mathrm{in}$. Circuit incl. The tuner unit plugs directly into this chassis. P. and P. 2/6.
SOUND/VISION AND J.F. STRIP, $5 / 9$. Salvaged. Complete sound and vision strip 8 valve holders. Less valves. 1. F's $16-19.5 \mathrm{Mc} / \mathrm{s}$ Size $8 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{4}{2}$ in. Drawings free with order. P. and P. 2/6.

SOUND/VISION AND I.F. STRIP, 5/9 Salvaged. Superhet. 8 valve holders. Less valves I.F's $7.25 \mathrm{Mc} / \mathrm{s}$ sound. $10.75 \mathrm{Mc} / \mathrm{s}$ vision. Vision complete from input up to video ourput. Sound complete from input to A.F. Amplifier. P. and P. $2 / 6$.

TIMEBASE 4/9.
Containing scanning coils, focus unit line transformer, etc. Less valves. Drawings FOCUS MAGNET $9 / 9$. Brand new 38 mm . 9 Brand new. 38 mm . Incorporating picture SCANNING COils SCANNING COILS 10/6.
Low impedance. 38 mm . Brand new. COLVERN PRESET POTENTIO. METERS $2 / 9$
Brand new. 200 ohms. 10 K . and 20 K . P. and P. 6 d . T.V. MÁSKS-WHITE, $9 / 9$
(I7in.) GREY, $10 / 9$.
Brand new. Good quality plastic. Post T. $2 / \dot{\mathrm{V}}$. MASKS—12im., $1 / 9$. Soiled-needs washing. Flat face. Used. Post $1 / 6$.
Finest quality. 75 ft . $\times \frac{1}{2}$ in. in sealed metal Finest quality. 75 ft . \times tin. in sealed metal
container. Post on 1 tin 9 d . post on container. Post on 1 tin 9d. post on

ELECTRIC CONVECTOR HEATER

 switched for 1 or 2 kW . Illuminated grille Size $26 \times 18 \times 7$ tin. deep. Ins, carr $10 / 6$

SEND FOR FREE

 CATALOGUE14in. T.V. CHASSIS, TUBE AND SPEAKER, 11 guineas
As above, with 14 in . Rectangular Tube. I2 months' guarantee on Tube; 3 months' guaran tee on chassis and valves. Chassis with Tube and Speaker (Less valves) II guineas. Complete and working with valves and Turres Tune

\rightarrow SUPER CHASSIS 99/6

5 valve superhet chas sis including Bin. P.M. speaker and valves.
(tone, volume, tuning w/change switch). Four w/bands with position for gram. p.u. and extension speaker. A.C. Ins. Carr. 5/6.

DEAL CHASSIS 39/6

5 valve superhet. A.C. Radio or Radiogram wavebands and gram swish $45 / 9$ am. es $45 / 9$ extra Chassis size $19 \frac{1}{2} \times 7 \frac{1}{2} \times 9$ in. Carr. $5 / 6$

CHASSIS $1 /$

6 or 8 valve. Latest type, midget valve design for A.M. or F.M. Brand new. Cadnium. Size $12 \frac{1}{6} \times 7 \frac{1}{4} \times 2 \frac{7}{6} \mathrm{in}$. P. and P. $1 / 9$.
12in. T.V. CHASSIS 29/6
Complete chassis by famous manufacturer R F. E.H.T. unlt included. Easily fited to table or console model owing to this chassis being in three separate units-(power; s/vision strip; t/base interconnected). This chassis is less valves and tube. Speaker FREE. I.F's 16-19.5 Mc / s vision. Channels $1-5$ easily converted to I.T.A. by use of a Turret Tuner. Drawings available at 2/6 or FREE with order. Ins. Carr. 10/6. 12 in . Tube available at $£ 6$. plus Ins. Carr. 15/6.

- popular 12in. PLESSEY T.V.

CHASSIS $39 / 6$

This is a real bargain for anyone wanting to make up their own T.V. at a very low cost. I.F's $10.5-14 \mathrm{Mc} / \mathrm{s}$. Simply adapted for a 12 Channel Turret Tuner and can be modified to take a larger Tube. A chassis in one unit. Untested. Less valves, tube, speaker and scanning coils. (All can be supplied as extras.) Circuit diagram available at $3 / 6$ or FREE with order. Carr. and Ins. 10/6.

DUKE \& CO.

(Dept. C.3) $621 / 3$ ROMFORD road, manor park, E. 12

Tel. : ILF. 6001/3
Closed Thursday I p.m. OPEN ALLDAY SATURDAY

C.R.T. ISOLATION TRANSFORMERS

For Cathode Ray Tnbes having Heater/Cathode short cireuit and for C.R. Tabes with lalling emission. and 50%. Tapped mails primaries.

100 ohms to 10 meg. Ditco $5 \%, 9 a ., 10 \%, 6 \mathrm{a}$
$\left.\begin{array}{l}5 \text { watt } \\ 10 \\ \text { watt }\end{array}\right\}$ WIRE-WOUND RESISTORS
, 50,000 bmas- 10,000 ohms WLRE WOUND POTS. 3 WATT LAB. COLVERN, ETC.
 All values 25 ohme to 25 K . $3 L^{\circ}$ ea., 30 K. 60 K , $4 /$. Ditto Carbon
to 2 Meg., $3 / \mathrm{m}$. Spindle High Grade. Al 100 ohms to 50 K , 6/6; 100 K ., $6 / 6$.
$0 / P$ TRANSFORMERS. Heavy Daty $50 \mathrm{~mA} .4 / 6 / \mathrm{malti}$ Push-pall 10 watts, $15 / 6$. MULLARD 6510,46 . $4 / 61$ L.F. CKOKES 15/1018 60/65 ma., 5/-. 10 B 85 ma . $10 / 6$. 10H 150 ma . $14 / \mathrm{t}, 5 \mathrm{H} 850 \mathrm{ma} .16 / 6$.

MAINS TRANSFORMERS $200 / 250$ v, A.C.
STANDARD $250-0-250,80 \mathrm{~mA}$., 8.3 \%. 3.5 a .

MIDGET, 220 ₹. $45 \mathrm{~mA}_{\text {, }}, 6.3 \mathrm{v}$.2 a .
SMALL, $220-0-220,50 \mathrm{~mA}, 6.3$ ซ. 3 a
HEATER TRANS. $6.3 \mathrm{v} .1+\mathrm{A} .7 / 6$. 3 amp.

ALADDIN FORMERS and cores, in. 8d. ifin, 10 d, nd in. x.
SLOW MOTION DRIVES. Epicyclic ratio $8: 1_{1} 2 / 3$. TYANA. MIdget Soldering Iron. 200;2LO F. or $230 / 200$. $17 / \beta_{\text {, }}$
 LINE CORD. 3 amp., 80 ohms, per $1000,4 \mathrm{amp}$.
per loot, 2 way., 8d, per foot, 3 way, 7 d .
CRYSTAL MIKE INSERT by Acos 6/6
Precision engineered. Size only $\frac{7}{8} \times \frac{3}{6}$ in. Bargain.
ACOS CRYSTAL DESK wIKE, $33-2$, Ewitched. $35 / \%$. MIKE TRANSF, $50: 1,3 / 8$ ea.: $100: 1$. Potted, $10 / 6$
LOUDSPEAKERS P.M. 30 HM 2 1 m . and sin., $17 / 6$ LOUDSPEAKERS P.M. 3 OHM. $2 \% 1 \mathrm{n}$, and sin, $17 / 6$

 12in, Baker 15 wt. 3 ohm and 15 ohm models $105 / \mathrm{m}$
18 in , 15 ohm . Plessey 10 wt . with Twester, $87 / 6$
1.F. TRANSFORMERS $7 / 6$ pair

485 kofs , slug tunlag miniature can $21 \times 1 \times 1 \mathrm{in}$. High Wearite M800 L.F. Miniature $465 \mathrm{kc} / \mathrm{s}, 12 / 6$ pair,

CRYSTAL DIODE G.E.C. $2 /$-. GEX34, 4/-0 40 Cireaits, $3 /-$ A.R. HEADPLONES. 4,000 ohms, brand new $16 / 6 \mathrm{pai}$ WITCH CLEA CONDENSERS 365 . $4 / 3$ Mia. $1 / 4$ $\times 1 \frac{1}{2} \mathrm{in}_{0} \times 1 \frac{1}{5} \mathrm{in} ., 10 /$ - $\quad .0005$ Standard with trimmers $9 /-$ i less trimmers, $8 /-$ Midgat, 7/6; 8ingle 50 p.1., 2/8
 B12A, CRT, $1 / 3$. Eng. and Amar. $4,5,6,7$ and 9 pin, $1 /$ d. ByG with can, 1/6: B12A. $1 / 8$. B9A with oan, $2 / 6$ CERAMIC, EF50, B7G, B9A, OCt., 1/n, B7G with can, 1/9

 WAVECHANGE SWITCHES
D. 2way, 3 p. 2-way, short spindle

2 p. 6 -way. 4 p. 2-way, 4 p. 8 -way, long spindle 3 p. 4-way, 1 pi 12-way, long spinde 2

GOLTOP TRANSISTORS
Product of the Pye Group
Complete Dato Supplied
AUDIO V.10/15s suitable R.F. V.6/R2 sultable for for high gain and low ire- osclllators, frequency
quency amplifiers, and for changers aud I.F.ampiliers, output stages giving up to cut ofit frequency $3 \mathrm{Mc} / \mathrm{s}$, 260 millwatts in $10 /=$
push pull. PRIUE
average. PRICE $18 /=$ $\frac{\text { push puill. PRICE }}{\text { Power V15/10p, up to } 10 \mathrm{~W} \text {, with heat } \operatorname{sink} 20 / \mathrm{m}}$

1959 RADIOGRAM CHASSIS FINEST VALUE

THREE WAVEBANDS
S.W. $16 \mathrm{~m} .-50 \mathrm{~m}$.
M.W. $200 \mathrm{~m} .-550 \mathrm{~m}$. ECE 42, EF41, EBC41 12 month Guaranteo. A.C. $200 / 250$ Enti, EZ 4 -way awiteh Short-Medimmont-Gram. A.Y.C. and Negative Feedrack, 4.2 watts. Chassis 18% in, $\times 5$ hin $\times 2 \nmid i n$ 2 Pilot Lamps, Four Knobs, Walunt or Ivory, aligne and calibratod, Chassis isolated from mains.
BRAND NEW £9.10.0 carr. a/a.
TERMS: Deposit $£ 5 / 5 /$ and 5 monthly payments of $£ 1$.
MATCHED SPEAKERS $8 \ln$., $17 / 6 ; 10 \mathrm{in}$, 25/-; 12in. $30 /-$

GARRARD 4-SPEED RECORD

CHANGERS RC121/D MKII MODELS Brand now and fally guaranteed 12 months.

AUDIO PERFECTION

Designed to play 18, 33, 45, 78 r.p.m. Records 7in., 10 mm . 2in. With plug-m NORMAL
OUR PRICE $\frac{1}{1} 0.150$ each. Post Free. Optional Plag-in STEREO HEAD 22 extra.

HIGH-FIDELITY AUTOCHANGER Latest Model
4-SPEEDS-10 RECORDS
With Studio "O" pick-Up
BRAND NEW IN MAKER'S BOXES
OUR PRICE $\mathbf{£ 7 - 1 9 - 6 ~ p o s t ~ f r e e ~}$

B.S.R. MONARCH UA8 4-SPEED AUTOMATIC RECORD CHANGERS

Brand new and fanl ganraleod 12 months,
OUR PRICE $£ 6-19-6$ post free STEREO MODEL JA12, £11/17/6.

AUTOCHANGER ACCESSORIES Suitable player cabinets (uncut boards) ... 49/6 Amplifier player cabinets with cur boards $63 /-$ 2 valve amplifier and $6 \frac{1}{2} \mathrm{in}$. speaker for above $72 / 6$ 3 valve amplifier and $6 \frac{1}{\frac{1}{2}} \mathrm{in}$. speaker for above 95/Wired and zested ready for use.

EXCEPTIONAL OPPORTUNITY

COLLARO 4-speed MODEL $4 / 564$ Single Player, heavyweight turntable and lightweight Player, heavyweight turntable and lightweight
Studio O Piek-up with turnover Xtal mounted on baseplate. Autostop fitted. $6 \mathrm{~g} \mathrm{~g}_{\text {I }}$ Carr.4/-

Amplifier Player Cabinets, 45

* GARRARD 4-SPEED,SINGLE

 £8 AUDIO PERFECTION POST De luxe Cabinet with amplifier and $6 \frac{1}{2}$ in. speaker $\mathbf{\epsilon} 6 / 15 /=$ or complete kit $£ 14 / 10 /=$.Teletron Transistor Pocket Radios Designers Speeffied Kits
COMPANION PRINTED CIRCUIT 3 Local station receiver kie, $4 \frac{1}{2} \times 3 \times 1 \frac{1}{2}$ in. 84.19 .6 with 3 genuine Pye Goltop transistors; plans 6d.

Transidye Superhet Six $6 \times 4 \times 1$ Izin.
T.C.C. Printed Circuit, internal Ferrite aerial cabiner and 6 genuine Pye Goltop cransistors.
811.19.6 Plans, etc., 9d.

No surplus reject transistors supplied

THE HI-GAIN BAND 3 PRE-AMP. Cascode circuit using Valve ECCE4. I7db gain. Kit $29 / 6$ less power; or 49/6 with Alser pack kit Plans Also Band I version same Prices.

Volume Controls

 Long $\begin{gathered}\text { Midget sizz } \\ \text { spindles. Guaran- }\end{gathered}$ 5 K. ohms to 2 Meg.
No Switch D.P.SW.
Linear or Log Tracks
Linear or Log Tracks Semi-air spaced Polythene core. Ideal Band III $9_{b y}^{d}$
Losses cut 50%, FRINGE QUALITY ATRSPACED 1/6 yd. $\begin{array}{lllll}\text { COAXIAL PLUGS } & 1 /- & \text { DOUBLE } & \text { SOCKET } & 1 / 3 \\ \text { SOCKETS } & 1 / \mathrm{OUTLET} & \text { BOXES } & 4 / 6\end{array}$ BALANCED TWIN FEEDER pER yd. 6d 80Ω or 300Ω. TWIN SCREENED BALANCED FEEDER $1 / 6 \mathrm{yd}, 80 \mathrm{ohm}$. $1 / 3$. $250 \mathrm{pf.} 1 /$,6 . $600 \mathrm{pf}, 7,750 \mathrm{pt}$., $1 / 9$. Phillips, $1 / \mathrm{eca}$. ALUMINIUM CHASSIS. $18 \mathrm{~s}, \mathrm{w}-\mathrm{g}$. Platn, undrilled with 4 sides, riveted corners and lastice eixing holes,
with 2 in. sides. 7×4 in. $4 / 6 ; 9 \times 7$ in $5 / 9 ; 11 \times 7$ in. with 21 in sides, $7 \times 4 \mathrm{in}, 416 ; 9 \times 7 \mathrm{in}, 5 / 9 ; 11 \times 7 \mathrm{in}$,
$6 / 9 ; 13 \times$ oin., $8 / 6 ; 14 \times 11 \mathrm{in} ., 10 / 6 ; 15 \times 14 \mathrm{in} ., 12 / 6 ;$

BLAOK CRACKLE PAINT. Air drying, $3 / \mathrm{m} \mathrm{im}$. P.V.C. CONN. WTRE, 8 colours, single or stranded, 2d. Fd, CORED SOLDER RADIOGRADE $3 /$ yds, $9 \mathrm{~d}, \frac{1}{2} \mathrm{lb}, 2 / 6$.
PAXOLIN SHEET, 8in $\times 10 \mathrm{in}, * 1 / 6$. ION TRAPS $5 /-$

12/6 PURETONE RECORDING TAPE

$1,200 \mathrm{ft}$. Paper tape on 7in. metal reels
Spare Reels $5 \frac{3}{4} i n$. plastic, $3 /-; 7 \ln$. plastic, $4 /$
SUPERIOR 1,200tt. Plastic Tape 21/-
on 7in. plastic reels. Quality guaranteed.
"INSTANT" Bulk Tape Eraser, 200/250v. A.C. For any make and size of tape.
SENTERCEL RECTIFIERS. E.H.T TYPE FLY-BACK

 6/-; RM3, 120 mA ., $8 /-\mathrm{F}$ RM4, 250 N. $275 \mathrm{~mA}, 16 /=$
MINIATURE CONTACT COOLED RECTIFIERS. $250=50 \mathrm{~mA}$ 2/6. 60 mA 8/6: $85 \mathrm{~mA} 9 / 6$
 "Q " type adj. dust core from 4// each. Al ranges.
TELETRON. L. sud Med. T.B.F. with reaction, $3 / 6$. FERRITE ROD AERIALS. M.W., $8 / \theta_{1}$ M. $\&$ L. $\mathrm{L}, 12 / 6$.
T.R.F, COILS $A / H F$ r/ palr. H.F. CZOKES, $2 / 6$. T.R.F. COIS $A / H F$ r// palr. H.F. CHOKES, $2 / 6$. JASON F.M. TUNBR COL,
cotl Oscillator coil, two $1 . \mathrm{F}$. Transformers $10.7 \mathrm{Mc} / \mathrm{B}$, colk. Oscillator soil, two 1.F. Transformers 10.7 Mc/a,
Detecto transformer and heater choke. Circult and component book uaing tour 6aM6, 2/l. Complete kit
With Jason Calibrated dial and 4 valves, c6/15/,
 Mercury $\mathbf{3 - 3}$ quallty Ampltiler Ready built, $87 / 17 / 6$. CONDENSERS. New stock. 001 mld 7 kV . T.C.C., $5 / 6$. Ditto 20 EV . $9 / 6 ; 100$ 外 to 500 pl Miaas, 6 d ; Tubala

 600 pi to
CLOSE TOLERANCE ($\pm 1 \mathrm{pt}$.) 1.5 pf, to 47 pt ., 1/6. DITTO
NEW ELECTROIVI, FAMOUS MAK
TUBULAR ECTROLYTICS. FAMOUS MAKES

FTLL WAVE BRIDGE SELENIUM RECTIFIERS, 2,6 o 12 v. 1h amp., 8/9; $2 \mathrm{a} ., 11 / 3: 4 \mathrm{a}$. $17 / 6$.
for charging at 2,6 or $12 \mathrm{y} 1 \mathrm{1} \mathrm{a}, 15 / 6 \cdot \mathrm{a}$ input $200 / 250$ for charging at 2,6 or 12 F . $1 /$ a., $15 / 6 ; 2 \mathrm{a}, 17 / 6 ; 4 \mathrm{a} ., 22 / 3$
Charger dreuit free. AMPMETERS, 4 a . and 5 a ., $14 / \theta$. All boxed VALVES 90 day guarantoo

AMPLIFIERS ${ }^{\text {A }}$ MULLARD DESICNS FOR THE HOME CONSTRUCTOR
COMPLETE KITS OF PARTS FOR THE "HI-FI" ENTHUSIAST

Designed by MULLARD-Presented by U8 strictly to their specification

THE VERY POPULAR MULLARD" 5-10 MAIN AMPLIFIER

MULLARD'S NEW 2-STAGE PRE-AMPLIFIER TONE CONTROL UNIT

THE NEW MULLARD "3-3" MAIN AMPLIFIER

Undoubtediy the most successiful amplifer yot dealgned, and used in conjunction with the new Mulard Pre-Amplifier, an undistorted power output of up to 10 watts is obtained Thoroughly recommended to the $\mathrm{HL}-\mathrm{Fl}$ enthusiast who contemplates a very high quality home installation, TION with spectiled valves and components and including the latest PABMERO UVtra linear Output transformar and the Parmeko mains transformer which has power available to difve Radio Tuning Unit, Price for COMPLETE KIT PARTA.......................... Price for COMPLETE KIT OP PARTS.
211.0.0 Altermatively we supply ASSEMBLED and TESTED.
£11.10.0
(Carriage and insurance $5 /-$ extra).
We also offer this " $5-10$ " lincorporating the latest PARTRIDGE ULTRA-LINEAR OUT
POT TRANSFORNMER for $81 / 6 /=$ extra PUT TRANSFORMER for $£ 1 / 6 /=$ extra.

A completely new dosige employing two EF86 valves, and in particular designed o operate with the Mullard range of Power Amplifiers, but also periectly suitable for other makes.
Briefy it incorporates:-

- Equalisation for the lateat R.I.A.A. characteristics.

Input for variable reductance. Magnetic Pick ups.

- Input for Tape replay.
(a) Direct from High Impedance Tape Head
(b) From a Tape Amplifier or Pre amplifer.
- Eenaltive Microphone Channe
- Wide range BASS and TeEBLR Conisols
- Our Kit is strletly to MULLARD's BPECIFICATION Price, COMPLETE KIT OR PARTS
£6.6.0 Alternatively we supply ABSEMB LED AND TESTTED (Carrlage and Insurance 5/-extra).
£8.8.0
(en
Based entirely on the present very popular " $3-3$ " model and designed to operate in conjunction with the new 2-stage PRE-AMPIIFIER (shown bere) thus providing alt the faciltiles associated with the more expensive "Hi-Fi" equipment. We
recommend It as the IDEAL SMALL HOME INSTALLATION where very high quality is desired at the lower volume level (up to 3 watts). PARMEKO Ontput Thentormer apecioed Valves and Companents Has Power
 Price for COMCPLETE KIT of PARTS................
Alternatively we supply AssEnrrineD and IESTED 88.0 .0

Planse enclose S.A.E. if MLOSTRATED and DESCRIPTIVE LEAFLETS are required \ldots. alternatively the COMPLETE and practical Drawings, efc., are available at $1 / 6$ eaoh (a) THE " $3-3$ " and the 2-8TAGE PRE-AMPLIFIER both ASSEMBLED and TESTED........... S15.0.0
H.P. TERMS: DEP. 83 and 12 monthly payments of (b) THE " $5-10$ " and the 2-STAGE PRE-AMPLTFIER both ASSEMBLED and TESTED........ \&18.18.0
H.P. TERMS DEP. $£ 3 / 16 /-$ and 12 monthly payment of
E1/7/8 or DEP. $£ 6 / 6 /-$ and 12 monthly payments of $£ 1 / 3 / 1$

> Only NEW HIGH GRADE Components and Muilard Valves are supplied with these kits-we DO NOT use "Surplus or Chesp " components.
(a) THE COMPLETE KIT OF PARTS to bulld both th ${ }^{\text {e }}$ 3-3." MAIN AMPLIFIEB and the 2-gtage PRE-AMPL FIER-CONTROL UNIT
12.10.0
(b) THE COMPLETE KIT OF PARTS to build both the 2-STAGE MAIN AMPLIFIER and the TROL UNIT ALL PRICES QUOTED FOR THE " $5-10^{\circ}$ ARE SUB. ALLL PRICES QUOTED FOR THE SETO 10 ARE SUB Is REquired.

Special Price Reductions

WE OFFER

When ordering please include an extra $7 / 6$ to cover the cost of carriage and insurance

We offer this popular and very successful design COMPLETE to MULLARD'S SPECIFTCATION, but incorporsting some Improvements in the generai layout, BLGH QUALITY REPRRODUCTION up to a maximim of 10 watte output. The CONTROL UNIT is separate and completely enclosed; it is normally futted to the Mrin Amplifter Chassis as shown in the Ilustration but, if it is desired to use the unit remote from the Main Chassig, it can be quite and NEW MULILARD VALVES. We alan glve the puribaser the cholce of two of the best ULTRA-LINEAR OUTPUT TRANBFORMERS made-Arst the latest by PARMEKO LTD., and also the latest by PARTRIDGE (E1/6/- extra), which is generally recogntsed as the best U/L Output Transformer made today and ensurea maximum undistorted output and the widest frequency range. We also supply the PARMEK MAINS TRANSFORMER, and thls has extra power avallable to supply a Radio Tuning Unit amounting to 950 volts of PARTB (PARMEEO TRANSFOBMER)............................ $£ 11.10 .0$ (Plos $6 / 6$ Garriage and Insurance).
£13.10.0

 Send S.A.E
MANUAL

A VERY HRGH QUALITY 3-WATT AMPLEIER PROVIDING EXCELLENT REPRODUCTION AND HAVING AN ATTRACTVE ENGRAVED PERSPEX FRONT PANEL. Price for COMPTETE KIT OF PARTS (plus $6 / 6$ carriage and insurance).
Alternatively supplled ABSEMBLED and FULLY TESTED.
£8.19.6
carriage and inaurance).

H.P. Terms depoilt $£ 2$ and 8 monthly payments of $£ 1$.

Developed from the very popuar 3-valve 3-watt Amplifler designed In the Muflard Laboratories, Our kit is complete to the Mullard specification including supply of specifed components, valves and Pals is also and L.P. records plus a THE COMPLETE ABSEMBLY MANUAL AVATLABLE FOR $1 / 6$.

The "NEW" 1959

Stern \int "fidelity" TAPE REGORDER

for truly "HI-Fi" Recordings

IT INCORPORATES:

- The latest COLLARO TRANSCRIPTOR TAPE DECK,
- The model HF/TR3 "Fidelity" AMPLIFIER. (Described below)
- HIGH QUALITY 7in. $\times 4 \mathrm{in}$. P.M. Speaker.

1,200ft. reel EMI tape.
ACOS Crystal Microphone.
BEFORE CHOOSING YOUR TAPE RECORDER YOU SHOULD HEAR THIS MODEL-TRULY "Hi-Fi" RECORDINGS ARE OBTAINABLE and it is comparable to much higher-priced Recorders. ALTERNATIVELY, Send S.A.E. for ILLUSTRATED LEAFLET.
(Plus $\mathbb{E} / 10 / 0$ carriage and insurance of which $\& 1$ is refunded on return of packing case.

THE MODEL HF/TR3 TAPE AMPLIFIER

Incorporating 3-SPEEDTREBLE EQUALISATION by means of t'ie lotest FERROX CUBE POT CORE INDUCTOR. PRICE for COMPLETE $\mathrm{E} 12 / 15 /-$
KIT OF PARTS.........
FULLY ASSEMBLED $\$ 16 / 10 /$ AND TESTED.......... Deposit
HIRE PURCHASE: Deposi
E $3 / 6 / 6$ and 12 months at $£ 1 / 4 / 2$.
$£ 3 / 6 / 6$ and 12 months at $£ 1 / 4 / 2$.
A very high quality amplifier based on the very successful Type " A ", design completed in the MULLARD LABORATORIES. ONLY NEW HIGH-GRADE COMPONENTS are incorporated including MULLARD VALVES and a GILSON OUTPUT TRANSFORMER . . . other features are: Magic Eye Recording Hand Indicator-Effective Tone Control-Monitoring and Extension Speaker Sockets-has own Power Supply and can be used as independent Amplifier for direct reproduction of Gram Records or from Radio Tuner. Overall size $11 \times 6 \times 6 \mathrm{in}$.-Truvox-Collaro-Lane-Brenell or Morek Decks-please specify which.
Send S.A.E. for leaflet or $2 / 6$ for the complete Assembly Manual

THE NEW MULLARD TYPE "C" TAPE PRE-AMPLIFIER-ERASE UNIT

 INCORPORATING NEW FERROXCUBE POT CORE PUSH.PULL OSCIL. LATOR and 3 SPEED TREBLE EQUALISATION by means of the latest FERROXCUBE POT CORE INDUCTOR.the legs ghown in the illugtration are readily de tachable and are an op TIONAL EXTRA AT £1/2/6.

PRICES INCLUDING SEPARATE SMALL POWER SUPPLY UNIT COMPLETE KIT \&14,0.0 ASSEMBLED AND \&17.0.0 OF PARTS 214 : 0.0 TESTED

SO AVA
£11.15.0 and \&14.10.0 respectively. (Carr. and Ins. $5 /$-extra). Send S.A.E. for leaflet or $2 / 6$ for Complete Assembly Manual. WHEN ORDERING PLEASE STATE MAKE OF TAPE DECK.

- Pre-amplifier stricty to Mullards specification etc. NLY NEW HIGH GRADE COMPONENTS and the NEW MULLARD VALVES. It comprises a COMPLETELY SEL CONTAINED UNIT, all components and valves being contained in a well ventilated Box-Chassis neatly finished in Hammered gold with a very HOME CONSTRUCTORS YOU CAN BUILD THIS PORTABLE TAPE RECORDER from £41.10.0

TO ADD FULL TAPE RECORDING FACILITIES

WE OFFER YOU THIS SELECTION | (a) The PORTABLE |
| :--- |
| CAEE IIUustrated |
| heree | ${ }_{(\text {CASE }}$ H1lustrated ${ }^{\text {here }}$

 CRYETAL ${ }^{\text {TAPE }}$ MLKE (E1)15/-). ROLA A 10n. ($21 / 10 / 0$) ALL FOR
£9.0.0
AVATLABLE ON H.P. WITH (b) or (d) below.
(b) The COLLARO MK. IV TAPE DECK ($\{25$) and the HFTRS AMPLFIER Assembled $£ 36.00$ and Tested.
the of $82 / 12 / 6$
(c) As in (b) sbove, but HF/TR3 supplied a
232.10 .0
(d) The TRUVOX MK. IV TAPE DECK incorporating Precision Bev. Counter (£30/9/-) and the HF/TKs AMPLIFIEP
Assembled and Teated
.P. Deposit $28 / 6 /-$ sud 12 months of $23 /=/ 10$.
(0) As in (d) sbove, but the Eirfirs supplied as

COMPLETE KIT OF PARTS.
£41.10/0
(Carriage and Insurance on above quotes $10 /-$ extra)
£38.0.0
not wire up the Deck switches.

NEEDIS ...THE TYPE "C" PREAMPLIFIER and a TAPE DECK... WE OFFER
(a) The COLLARO MK. IV TAPE DECK and the MULLARD
£37.0.0
TYPE "C" PREAMPLIFIER \& Power Unit assembled, tested
$£ 34.0 .0$
(b) As H.P. Deposit $27 / 8 /-$ and 12 months $22 / 14 / 3$.
(c) The TRUVOX MK IV TAPE DECK incorporating Precision Rev. Counter, and the MULLARD TYPE"C" PREAMPLIFIER and $\$ 42.10 .0$ power unit assembled and tested.
(d) As in (c) above but the TYPE ©8/ C ., 12 months $£ 3 / 2 / 4$.
d) As in (e) above but the TYPE " C " supplied as COM-..
(Carriage and Insurance on above quotes $10 /$ extra).
PLEASE ENCLOSE S.A.E. WITH ALL CORRESPONDENCE

STERN'S FOR STEREO

OUR POPULAR MULLARD MAIN AMPLIFIERS ARE RECOMMENDED FOR USE WITH THE DULCI DUAL CHANNEL STEREO PREAMPLIFIERS

The "STEREO Two PREAMPLIFIER Price £9.9.0 (Carr. \& Ins. 5/- extra)

 Two are perrectig sultable to operate with ONE main Ampllier , and the second main Amplifer FULLy descriptive leaflets are available. enclose an ent the stereo,
WE OFFER . . . ASSEMBLED and TESTED
(a) The "stereo Two" with one " 3-3" MULLARD MAIN AMPLIFIER
(b) The "Stereo Two" with two " 3-3" MULLARD MALN AMPLTFIERS (This provides stereo reproduction of max. 6 watts output and is a
ideal Home Installation.) (c) The " stereo Two " with one " $5-10$ " mullard main amplufier (d) The "Stereo Two " with two " $\mathrm{k}-10$ " MULLARD MAIN AMPLIFIERs (e) The "stereo Eight" wth two " 5-10" MULLARD MAIN AMPLIFIERS (This provides for up to 20 watta Output.)
(t) The above (e) with one MUILARD " $5-10$ "

OTHER STEREO EQUIPMENT AVAILABLE.
£17. 0.0
$£ 24.10 .0$
$£ 20.10 .0$
$£ 31.10 .0$
$£ 44.10 .0$
$£ 34.0 .0$
GRAM UNTTS Atted with stereo Cartridge by GARrard, COLLARO, LENCO, B.s.r.
STEREO CARTRIDGES and PICK-UPS by B. J., GARRARD, COLLARO, LENCO, B.s.R. (Please enclose S.A.E. With any enquiry.)
DULCI TWIN POWER AMPLIFIER S.P. 4
£12. 12.0
hire purchase reduced terms are avatlable.

! TO MODERNISE YOUR OLD RADIOGRAM ! !

SPECIAL CASH ONLY OFFER!!

almost any make of Autochanger and is attractively hished in Grey colour Rexine-WE ALso sUPPLY (a) The 2-8tage (plus Rectifler) AMPLIFIER £4 26 (c) 61ic. P.M. SPEAKER, \qquad
\qquad
We also have a smaller PORTABLE CASE Ideal for Record Plagers. PRICE ONLY 23!3/- (plus carriage and

! ! HOME CONSTRUCTORS ! !

A RANGE OF "EASY TO ASSEMBLE" PREFABRICATED CABINETS
Designed by the W.B. " STENTORIAN " COMPANY quality equlpment. The acoustically designed Bass Refle. Cabinets containing the very successful "Btentorian" Speakers give really first-class reproduction and are wel recommended. Models are also available to accommodate high-quality. Amplifiers, Preamplifers, Tuning Units, Record Players, etc. All models are very easily assentiled,
in fact only a screwdriver is required. in fact only a Screwdriver is required.
Fully illustrated leaflets are available ineluding complete
specticatlons of the various STENTORIAN specticatlons of the various STENTORIAN LOUD-
SPEAKERS. PRerse enclose 8.A.

STERN RADIO LIMITED
 109 \& 115 FLEET STREET,
 LONDON, E.C.4 FLEET ST $5812 / 3$

!! RECORD PLAYERS ! !

THE LATEST MODELS ARE IN STOCK MANY AT REDUCED PRICES ! ! ! SEND S.A.E, FOR ILLUSTRATED LEAFLET.

A. FEW CASH BARGAINS

B.S.R. MONARCH

UA8 sespeed mixer
Autochanger with
Costat Pick - wp
£6.19.6

The collaro wconquest
The COLLARO
Studio Pick-up
The latest COLLARO "CONTINENTAL" Autochanger, Studto "C " Piok-up The COLLARO 4 -speed Single Record THE NEW B.S.R. model UA12 Is in Stock MIXER AUTOCHANGER.
UA12 also available incorporating the Piek-up, plays L.P. and 78 records. . B.S.R. Model TU9 4 -speed single record with separate crystal pick•up \qquad \&4. 10. 0
(This high output pick-up is availible separately for E1/12/6.)

Carriage and insurance on each above 5!- extra.

HIGH FIDELITY UNITS IN STOCK

The latest GARRABD TRANBCRIPTION Dator " 301 " with Stroboscopically murked 828.0 .11 turntable The new GARRARD Model 4HF High Quality SIngle Record Player fitted with the latest T.P.A. 12 plek-up arm and
G.C. 8 Grystal Cartridge 219.7 .10 and T.P. 1 Transforiner.............. £27.14.7 GARRARD Model TA;MK 4 gingle Record Player fitted with high output Crystal Pick-up 89.15 .8 The GARRARD T.P.A. 12 TRANSCRIPTION PICK-UP ARM is available separately or with Crystal or Moving Coil GARRARD AUTOCHANGERS AVAILABLE FROM STOCK Sond S.A.E. for Leaflet.

CAR BATTERY CHARGER

 Á COMPLETE KIT OF parts for ONLI $£ 2.19 .6$ Will charge 6 or 12 volt batteries at max, $2 \frac{1}{2}$ amps. Thedesign incorporates Reliant Resisto design incorporates Reliant Resletor and Fuse and we supply ASSEMBLY INETRUCTIONS ARE INCLUDED.

THE DULCI MODEL H.4T/2

 COMBINED AM/FM TUNING UNIT INCORPORATING OWN POWER SUPPLY is in Stock. Epecifcally designed for operation with High on Long, Medium and short Wavebands plus the complete VHF/FM Transmissions. Thoroughly reoommended where a complete self-powered All Wave Tuner is wanted. PRICE 224. 19.0 (Plus 7/6 carr. \& ins.) GURE PURCRASE: Deposit 25 and 12 monthu at $£ 1 / 16 / 7$.A fully Illustrated leafiet is avallable, please enciose S.A.E.

STERN'S MK

 "fidelity F.M. TUNING UNIT price $£ 15.0 .0$(Plus $5 /$ carr. © ins.)
HIRE PURCHASE: De posit $£ 3$ and 12 months at £1/2)- or deposit 25 and 12 monthly payments of 18/4. TUNING REART and the corres PERMEABILITY VALVE LINE UP comprising ECC85, 2 type EF85's (or EF89ss), EM84 Tuning Indicator, plus 2 type 0. A. 799° s Germanium Dlodes. A really firat-class Tuner very attractively presented and comparabie to many offered at much higher prices, Power consumption is oniy 1.5 amps at
6.3 volte and 25 m m / a at 250 volto.

HOME CONSTRUCTORS !

you can butld thas tunina ontt rorge11.0.0 0 ONLY
 Assembly Mauual is avallable for $1 / 6$.

THE JASON "MERCURY" SWITCHED

 FM TUNER IS IN STOCKPrice Assembled and Tested $£ 13.10 .0$ CREDIT SALE Deyosit $83 / 7 / 6$ and 9 monthiy payments of el1410.
ALTERNATVELY TBE COMPLETE HOME CON-
 is 5 j - extra).

AMPLIFIER N24

Manufactured for the Admiralty in 1952 by Burndept, this utilises 4 valves, 1 each 5 Z4G, 6V6G, 677G, 6J5G. and high quality components such as "C" Core Transformers and Block Paper Smoothing Condensers. Has A.C. Mains Pack for nominal $110 / 230$ volts. Provision for 600 ohms or High Impedance Input, and has Output to 600 ohm Line. For normal use only requires changing Output Transformer. Can be used for Speech or Music, giving High Quality Reproduction. Output approximately 4 watts. Enclosed in metal case, and designed for Standard 19in. Rack Mounting, having grey front panel size 19in. x 7in. with Chromium Handles. All connections to rear panel, front having "On/Off" Switch, Gain Control, Indicator Light, Fuses and Valves Inspection Panel. BRAND NEW IN MAKERS' PACKING. ONLY $£ 4 / 9 / 6$ (carriage 10/6).

POWER UNITS TYPE 234: Primary $200 / 250 \mathrm{v} .50$ cycles. Outputs of 250 v . 100 mA ., and 6.3 v .4 amps . Fitted double smoothing. For normal rack mounting (or bench use) having grey front panel size 19 in . x Tin. BRAND NEW. ONLY 59/6 (carriage etc., 7/6).
H.R.O. MAINS POWER UNITS: Input II5/230 v. A.C. Output 230 v. 75 mA., and 6.2 v. 3.5 Amps. Complete in black crackled case. ONLY $69 / 6$ (carriage $3 / 6$).

SPRAGUE CONDENSERS. Metal cased, wire ends. New, 01 mfd. $1,000 \mathrm{v}$, and . I mfd. $500 \mathrm{v} .7 / 6$ dozen. Special quotes for quantities.

MAINS TRANSFORMERS. Normal Primaries $250-0-250 \mathrm{v} .80 \mathrm{~mA}$., 6.3 v . 3 a., 4 v. 4 a. $0-4-5$ v. 2 a., 201-; $350-0$ 350 v. $80 \mathrm{~mA} ., 6.3$ v. 3.5 a., 4 v. 4 a., $0-45$ v. 2 a., 20/-; $0-30$ v. 2 a. tapped to give 13 different voltages, 20/-.

O/P. TRANSFORMER. 5/-.
EHT TRANSFORMERS. 5.5 kV . (Rect.) with $2 \mathrm{v} .1 \mathrm{I} ., 79 / 6.7 \mathrm{kV}$. (Rect.) with 2 v. 1 a., $89 / 6.2 .5 \mathrm{kV}$. (Rect.) with 2-9-2 v. 1.1 a., 2-0-2 v. 2 a . (for VCR 97 tube etc.), $42 / 6$ (postage $2 /$ - per trans.).

TRAWLER BAND R 1155s

The latest version of thils famous Communications Recelver to be releaced by the Air Ministry. Covers 5 wave ranges $18.5-7.5 \mathrm{Mc} / \mathrm{s}$, , $7.5-3.0 \mathrm{Mc} / \mathrm{s}$, mand, Air-ses $1.5 \mathrm{Mc} / \mathrm{s}, \quad 600 \mathrm{kc} / \mathrm{s}, 500 \cdot 200 \mathrm{kc} / \mathrm{s}$. An used by Cosstal Comperfect workhit onder Laumahes, eto. All sets thoroughly tested anders. Have had slight use, but are in excellept condition ONLY $£ 12 / 19 / 6$. \because B" Models also available. As above but inatead of $3.0-1.5 \mathrm{Mc} / \mathrm{s}$. band has 200-75 kc/s. coverage. ONLY gy/19/6.
A.C. MAINS POWER PAOK OUTPUT STAGE, in black metal case to match recelver, enabling it to be operated immediately, by just plugging in withont any modification. Fitted with Sin. P.M. Speaker \&6/10/. DEDUCT 101. IF PURCEASING RECEIVER AND POWER PACK TOGETHER.
Send S.A.E. for tliustrated leafiet, or $1 / 3$ for 14 -page booklet which gives Add carriage 10/6 for Recelver, 5/- for Power Unit.

OSCILLOSCOPE No. II by Cossor A First Grade L.F. Oscilloscope incorporating a Hard Valve Time Base with speeds of $1-5-40$ milliseconds, but easily converted for a few shillings to produce $3 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to $30 \mathrm{kc} / \mathrm{s}$. Has High Class Amplifier with Fine and Coarse Gain controls, Brightness and Focus controls, X and Y shifts. A.C. mains pack for 115 v. 230 v. nominal, fully fuse protected. Employs $2 \frac{3}{4}$ in. Tube ACR 10. Front panel I9in. x 7in., for rack mounting, depth 12 in ., or can be used in Steel Transit Case on bench. Complete with suggested Modification data, BRAND NEW AND UNUSED. ONLY E $12 / 10 /$ - (carriage $15 / \%$). Rll55 SUPER SLOW MOTION TUNING ASSEMBLY. As used on all late models 1155 s . Easily fitted to "A" sets etc. ONLY $12 / 6$.
ROLA $6 \frac{1}{2}$ in. P.M. SPEAKER. Mounted in grey crackled metal cabinet $9 \times 9 \times 4 \frac{2}{4}$ in., and with volume control. BRAND NEW AND UNUSED. ONLY $27 / 6$.
MAINS ISOLATING TRANS. FORMER. Manufactured by Vortexion. Fully shrouded. Will provide true $1: 1$ Ratio from nominal 230 v. Primary. Rated at 100 watts. BRAND NEW. ONLY $22 / 6$ (post $2 / 6$). 6 v. VIBRATOR PACKS. Output vprox. 130 v . at 30 mA . fully filtered and smoothed. Complete ONLY $12 / 6$.

HETERODYNE FREQUENCY METERS
 TYPE LM14

Designed and built to United States Navy specification, these Crystal Controlled instruments combine all BC. 221 Frequency Meter, plus many additional features which increase their usefulness.

* Frequency range $125-20,000 \mathrm{kc} / \mathrm{s}$.
* in 2 bands.
* Accuracy better than $.02 \%$ in than $.01 \%$ in $2,000 \cdot 20,000 \mathrm{ke} / \mathrm{s}$. band.
* Voltage stabilisation circuit enpower supply fluctuation.
- Separate power switches allow standby flament operation without HT supply.
t Modulation switch enables instrument to be used as a Signal Generator.
* Has corrector for WWV
t Supplied with removable shock protection mounting.
t Size only $8 \frac{1}{2} \mathrm{in}$. $\times 8 \mathrm{in}$. $\times 8 \frac{1}{2} \mathrm{in}$. Weight $\left\lvert\, 1 \frac{1}{2} l \mathrm{lbs}\right.$.
* Brand New and Unused. Further details on application.

OSCILLOSCOPE UNIT

American Loran Indicator APN4. A magnificent piece of equipment which is recommended for the "Wireless World Television Oscilloscope", a copy of which publication is supplied with each unit, and gives full details of necessary modiffeations. Contains 5CPI Cathode Ray Tube and Screen, 14 valives 6 SN7, 3 of 6SL7, 8 of $6 \mathrm{H} 6,1$ of $6 \mathrm{SJ7}, 100 \mathrm{kc} / \mathrm{s}$. Crystal, and hundreds of condensers, resistors, etc.

BRAND NEWIN MAKER'S CASES ONLY 65-19-6 (carriage l0/6)

Cash with order please, and print name and address clearly please add postage or carriage costs on all items

HARRIS ELECTRONICS

(LONDON) LTD.

Radio Corner, 138 Gray's Inn Road, London, W.C. 1 Phone: TERMINUS 7937
We are 2 mins. from High Holborn (Chancery Lane Station) and 5 mins. by bus from King's Cross

See and Hear all the latest

 STEREO \& Hi-Fi
Thaysis RADIO

in london's newest demonstration Studio

AMPLIFIERS QUAD, ROGERS, LEAK, RCA, JASON, LINEAR, PAMPHONIC, DULCI, w/b, Avantic ARMSTRONG, ETC.

SPEAKERS

WHARFEDALE, GOODMANS LOWTHER, G.E.C., LORENZ, philips, TANNOY, ete.

PICKUPS

COLLARO, GARRARD, CONNOISSEUR, LEAK, B/J, ORTOFON, goldring, ete.

Photo shows only a section of our fine new Studio at 42 TOTTENHAM COURT ROAD in the heart of London's West End. Come and have comparative demonstrations under ideal conditions assisted by specialist staff, who will answer all your queries. If unable to call, write us. Our Technical and Mail Orders Depts. are at your service.

TRANSCRIPTION

 TURNTABLEScollaro, garrard, LENCO, CONNOISSEUR.

TAPE RECORDERS

 GRUNDIG, ELIZABETHAN, brenell, Truvox, SOUND, VORTEXION, FERROGRAPH, ELON harting, simon, REFLECTOGRAPH, STUZZI, TANDBERG, TELEFUNKEN, STELLA, walter.CABINETS
Wide selection including the New G-PLAN and NORDYK Contemporàry Cabinets.

SPECIAL OFFERS OF FAMOUS MAKE NEW AND ? UNUSED MULTI-TEST METERS
AN/27. Accarate, highly sensitive 27 range Test Meter. 5,000 ohms per volt A.C. and D.C. In black leatherette-covered wood case, $73 \times 9 \frac{1}{4} \times$ $3 \frac{3}{\mathrm{in}} \mathrm{in}$. deep, with carrying handle and ample room for small tools as well as leads.

LIST 15 GNS.

lasky's price $\mathbb{Z} 11$.19.6 Post 5/- Leads 7/6 extra.

Volts (D.C. \& A.C.) 0-2.5-10-100-250-5002,500.
Milliamps D.C. 0-500 Amperes D.C. 0-1-5. Ohms (on internal batteries)
0-2500-25,000-250,000-2,500,000
Decibels $\ldots 0,+20,+28,+34$
(ailable on $=6 \mathrm{~mW}$ into 500 ohms)

STEREO
 PICK-UP CARTRIDGES

ACOS 73-1a turnover or 71-3

rnover
$.55 / 5$

B.J. with plug-in head …..... 8 Gns. All other available types in stock.

JASON
STEREO KITS in stock

SPECIAL

TAPE OFFER

Famous make, P.V.C base on latest type plastio spools. Brand pew, perfect, boxed and guaranteed.
1200ft. (7in.) 21/6 850ft. (5 ? 3 in. $) \quad 16 / 6$ 600 ft . (5in.) $12 / 6$ Gevaert L.P. Plastic. 1700 ft ($7 \mathrm{in} . \mathrm{in}^{2}$) 35/$\begin{array}{lll}850 \mathrm{ft} & (5 i n .) & 18 / 6 \\ 225 \mathrm{ft} . & (\mathrm{Sin} .) & 6 / 6\end{array}$ 225ft. (3in.) 6/6
Post: 1 suool, $1 / 6$. Orders over 60/= post Orders over 60/= post
free.

Volts (A.C. and D.C.) 0-2.5-10-50-250-1,000 Milliamps D.C. 0-1,000
Ohms......0-15,000-1,500,000
$\begin{array}{r}\text { Decibels...... 0, }+13,+27 \\ \text { (ODB }\end{array}=6 \mathrm{~mW}$ into 500 ohms.)

7-VALVE AM/FM

RADIOGRAM CHASSIS

Famous make, for 200-250 v. A.C. Output 4 watts matched to 3 ohms speaker. valves: ECC85, ECH81, EF89, EABC80, EL84, EZ80, EM81. Magic eye tuning indicator. Covers medium, long and FM bands. Length 12 in., height 7 in., front to back 8 gin. Limited number only. Brochure on request.
LISTED AT 22 GNS. 517.19 .6 Carr. and Insurance, 12/6.
A vailable on H.P. terms to suit you. Full details post free on request.

All Makes of RECORDING TAPE in stock. Standard, L.P. and double play. Write for our spectal Tape List. All mail Write for our special promptly despatched post free.

HIRE PURCHASE. Deposit and monthly terms to suit you. Call or write stating requirements.

COMBINED AM/FM TUNER, CONTROL UNIT AND AUDIO PRE-AMPLIFIER
(self-powered)
MdI. H11 by famous manufacturer. Note these star features:

* FM plus Long, Medium and Short reception
\star High Fidelity Audio Pre-Amplifier * Independent Bass and Treble Controls * Pickup Matching Device and Switch positions for LP and 78
* Tape Record and Replay facilities \star For use with any Hi-Fi Amplifier * Magic Eye Tuning Indicator

For A.C. $200-250$ v. 7 B.V.A. glass miniature valves, $\mathrm{ECC} 85, \mathrm{ECH} 81, \mathrm{EBF} 89$, two EF86, EM81, EZ81, and two matched Diodes. Glass dial, $11 \frac{1}{2}$ in. $\times 5 \frac{1}{2}$ in., tine readings and 'LOG' scale. Dimensions: length $12 i n$. depth 9 in . from dial front, 10 im . including knobs and spindles, height $7 \frac{7}{4} \mathrm{in}$.
LISTED AT $£ 29 / 3 / 40$. LASKY'S

20 GNS.
Carr. and Ins. 12/6.
Available on H.P. terms to suit you. Full details post free on request.

SEE OVERLEAF FOR MORE NEWS FROM LASKY'S RADIO

TWWTVNTWWTWWNTWWIT PORTABLE GRAM AMPLIFIER

$3 \frac{1}{2}$ watts output to 3 ohms sneaker. Uses one valve and metal rectifier ECL82. Incorporates tone and volume controls. Size $8 \frac{1}{2} \mathrm{in} . \times 3$ in. $\times 3 \frac{1}{2} \mathrm{in}$. high.

LASKY'S PRICE

 complete 59/6 Post 3/6.BARGAINS IN 4-SPEED
MIXER AUTO-CHANGERS

Collaro RC.456. Incorporating auto and manual control. Complete with Studio crystal p.u, and LASKY'S PRICE 57.19 .6 Post 3/6.
B.S.R. 4-spd. mixer AutoChanger type UA8, manual and auto-control, complete with latest B.S.R. "ful-fi" pick- 6.19 .6
up. Carr, \& Pkg. $5 /-19$. Garrard 120, Mk. II, £9/19/6. Garrard 121, Mk. II, £10/19/6.
collaro 4-SPEED SINGLE Model $4 / 564$ Wtudio T or \$6.9.6
Post $3 / 6$

Garrard 4SPH Single Player, e77/19/6. Post free.

Collaro "Junlor" 4-spd. motor

 and p.u. with HGP59 89/6 cartridge. Post $2 / 6$.89/6 Motor only 59/6, post $2 / 6$. Gick-upard ony Auto-Changers, Transcription Motors. Pick-Ups, all latest models in stock.

CARRYING CASES Large range of Cases for single record players, auto-changers and tape decks, at bargain prices.

Call or send for list.

MULLARD 510

AMPLIFIER KIT

All specified components and your choice of transformers and chokes by Partridge, Haddon, W/B, Ellison or Gilson. COMPLETE KIT of parts and printed circuitas low as 89.9 .0 Book 3/6 post free. Printed Circuit separately $22 / 6$. Also available built ready for use. Price according to transformers Price
used.

3-3 AMPLIFIER

Built to Mullard's exact specifica. tion, with 3 Mullard valves EL84, EF86, EZ81, complete with front panel. Post free

8 Gns.

FAMOUS MAKE BRAND NEW DE LUXE
 TAPE RECORDER
 LISTED AT
 64 GNS
 LASKY'S PRIGE
 42
 GNS.
 Complete with Lustraphone
 "Lustrette"" m.ke and 1,200ft. trpe arr. and Ins. 21/-
 Limited number only

Embodies the famous Collaro Tape Transcriptor Mk. IV. Tape deck, 6 -valve Hi-Fi amplifter, and $10 \mathrm{in} . \times 6 \operatorname{in}$. elliptical speaker, in handsome case superbly finished two-tone simulated lizard Overall size: $18 \frac{1}{3} \mathrm{in} . \times 15 \frac{1}{2} \mathrm{in}, \times 7 \frac{1}{2} \mathrm{in}$.
TWO HIOH GAIN INPUTS for radio/gram and mike, each separately cuntrolled and can be mixed, so that speech and singing can be superimposed on an orchestral background. Two outputs, monitor headphones and extension speaker.
4 WATTS UNDISTORTED OUTPUT. Freq. range at $7 \frac{1}{2} \mathrm{in}$. per sec., $50 / 12,000$ c.p.s. Separate bass and treble controls, per sec.i $50 / 12,000$ c.p.s. Separate bass and treble controls, automatic equalisation on all 3 speeds. Magic eye level indicator Upper and lower track recordings can be made quickly without Three speeds, $3 \frac{3}{4} \mathrm{in}$., $7 \frac{1}{2} \mathrm{in}$., 15 in . per sec., digital counter, pause Three sp

control.

For A.C. mains $200 / 250$ v. GUARANTEED FOR 12 MONTHS.
Demonstrations at both addresses. Available on H.P. terms;
deposit and monthly payments to suit you.
The carrying case only can be supplied for $79 / 6$ plus carriage.
"LINEAR" STEREOPHONIC "LINEAR"STEREOPHONIC GRAM AMPLIFIER with out-
puts for two matched $2-3$ ohm speakers. Can also be used as a straight 6 -watt amplifler. Instructions supplied.
Post \& Pkg. $5 \% .19 .6$
"LINEAR" TAPE DECK AMPLIFIER. Type LT45. A complete unit (power pack and oscilltor incorporated suible (all marks), Brenell, 12 Gns (all marks, Post \& Pkg. 5/. 12 Gns.
"LINEAR " "DIATONIC." High fidelity 10-14-watt ultra linear Amplifier with integral pre-amp. and tone controls. Post \& Pkg. 5/-

12 Gns.
"LINEAR" "CONCHORD." A high fdelity 30 -watt amplifier incorporating pre-ampliffer and tone controls.
Post \& Pkg. 7/6.
15 Gns.

ALL TYPES OF CHASSIS

We hold the largest selection of leading makes including all models ARMSTRONG, EMPRESS, DULCI, etc.
A.M. chassis, L,M,S from 7 Gns. A.M./F.M. chassis from 14 Gns. A.M./F.M. STEREO from

22 Gns.
DULCI HI-FI CHASSIS TUNERS and AMPLIFIERS Full range in stock.

SPECIAL OFFER
 HIGH FIDELITY TAPE RECORDER HEADS

Leading make, new and unused upper or lower track RECORD/ PLAYBACK, high impedance Double wound and will reproduce $u p$ to 12,000 c.p.s. at $7 \frac{1}{2}$ i.p.s. Azimuth adjustments. Output 5 millivolts at 1 Kc. at $7 \frac{1}{2}$ i.p.s. ERASE, low impedance. Please specify upper or lower track. LASKY'S PRIGE
Per pair 49/6 Post $1 / 8$.
SPECIAL FOR OWNERS. OF A STAAR "GALAXY" SERVICE MANUAL for the Staar "Galaxy" 4-spd. AutoChanger, $1 / 9$ post free.
Good range of Spares for the "Galaxy" available. Call or write stating your needs.
ALL MAIL ORDERS dealt with promptly and efficiently. OUR FULLY COMPREHENSIVE CATALOGUE will soon be ready.

THTWTTTNTTTTT MIGROPHONE BARGAINS
ACOS type 33/1,
Crystal hand or
table Microphone

Incorporates spe
ally designed
acoustic filter. Flat
response 30-7,000 c.p.s. .Omnidirectional. Suitable for tape recording, public address, etc. Attractive dark brown plastic case. Brand new in maker's cartons. List $50 /$.
LASKY'S PRICE
Post $1 / 6$. $29 / 6$
ACOS CRYSTAL PENCIL MIKE, type MIC.39/1, in presentation case with Desk Stand, complete with cable. Listed at と5/5/
LASKY'S PRICE
Post $1 / 6$.
59/6
ACOS Sub-min. Crystal Microphone Inserts type MIC.17. Size approx. fíin. square, $7 / 32 \mathrm{in}$. thick. Brand new and boxed. Each

4/6

MOVING COIL

P.M. SPEAKERS

$2 \frac{1}{2} \mathrm{in}$. 17/6. 3 in. and $3 \frac{1}{2}$ in. $19 / 6$ Sin. $14 / 6$. $6 \frac{1}{2}$ in. $17 / 6$. 8in. $19 / 6$ 10in. 29/6. 12 in . 29/6 $6 \frac{1}{2} i n$. with transformer ... $21 /-$
7×4 in. Elliptical $7 \times 4 \mathrm{in}$. Elliptical $10 \times 7 \mathrm{in}$. Elliptical $8 \times 5 \mathrm{in}$. Elliptical. $21 /-$
$19 / 6$
$32 / 6$ $10 \times 2 \frac{1}{2}$ in. Rectangular 25/

TAPE DECK OFFER

 COLLARO TAPE TRANSCRIPTOR, Mk. ЦI, fitted with digital counter. Limited quantity only. List £22. Lasky's Price 15 gns. Carr. \& Ins. 21/-. COLLAR 0 Mk. IV. \&17/19/6.TAPE RECORDER AMPLIFIER for use with Collaro Tape Deck. Manufacturer's surplus, complete with 4 valves and power supplies
Post $3 / 6$.
27.19.6

SPECIAL OFFER!

COLLARO 4-spd. Transcriptlon Turntables, 4T200/PX, with Studio trans. p.u. Brand new and unused. List f19/10/Lasky's Price
£16.19.6

PICK-UP CARTRIDGES

BELOW HALF PRICE: Your choice of ACOS HGP.59, GARRARD GC2, B.S.R. "ful-fi" TC4, COLLARO Studio 0 or T turnover crystal p.u. Cartridges, complete with L.P. and standard styli. All listed at 41/7.
LASKY'S PRICE
LASKY'S PRICE
18/-
ACOS GP43 t.o. crystal cartridge complete with L.P. and ridge complete with L.P. and
standard styli GARRARD GC34 ceramic cartridge complete with styli $19 / 6$ ridge complete with styli $19 / 6$
GARRARD TOM2
magnetic cartridge, list $57 / \mathrm{J}$.
GARRARD Lasky's Price 25/GARRARD turnover head shells MPM1 4/6. MPM2, 5/6 ea.

[^13]

LASKY'8 TRANSIBTOR

AUDIO AMPLIFIER

MK. 11 ($200 / 250$ milliwatts) $\begin{aligned} & \text { Size } 51 \\ & \text { excluding }\end{aligned} \times 2 \times 1$ in in , weight $4 \frac{1}{2}$ or, excluding battery. Operates from 6 v . battery. Output imp. 3 ohms.
cluding MPLETE KIT brand new ${ }^{4}$ components, transtors, alil T.C.C miniature condensers Printed Circuit and full instructions.
Post' $3 / 6$
With two OC72
Full data \& circuit diagram 9 /-

LASKY'S TRANSISTOR

 SUPERHET TUNERFor construction on Printed Circuit, size $3 \frac{1}{3}$ in. $\times 3 \frac{1}{3}$ in. Uses 3 R.F. transistors, 1 germanium diode, 3 I.F. transformers, Ferrite rod aerial. Operates from 6 v . battery and 1.5 v . from

CAN BE	B5:12.9

Post 3/6. Full details on request.
LASKY'S PORTABLE
GRAM AMPLIFIER KIT 2 watts. Note small dimensions, approx. $6 \frac{3}{2}$ in. $\times 3 \frac{3}{3}$ in., max. height in. Uses EL84 outpat and 6X4 rectiffer.
COMPLETE KIT, including valves, printed circuit, full instructions, less Speaker. 49/6 Carr. $2 / 6$.
7in. x 4in. "Elac" Elliptical Speaker, if required, 14/6 extra.

RADIO PARCELS

No. 1. Everything to butid a 4 -valve 3No. wave superthet tor $200 / 250$ v. A.c. maing. Can be brite for 8771916 .
No, 2. Everythimg to build s T.R.F. 3-

 ع5110-- Carrand pkg 2/6.

BAND III CONVERTERS

LISTED AT 9 GNS
LASKY'S PRICE Post \& Pkg. 5/
By famous manufacturer of Py group Limited number only group. Limited number only, in maker's cartons, 3 Valves: ECF80, ECC84, EZ90 rectifier, 8 witched channels on band ill converting to any Band I channel. Incorporates own power supply Black erackle finish metal a. $\sin \times 54 \ln \times 4$ in high with rub ber feet.

JASON F.M. TUNER Specisal Parcel containing data book chassig tront panel, dial, drive, tuning condenser, full sets of coils, T.F.F, $68 / 9$ DATA BOOK with price Het, $2 / 2$
 Also in btock JASON 'ARGONAOT" AMFM TUNER and JASON "MERCORY" switehed Tunor. Data Book 2/- each, post free.

YOU CAN BUILD THIS 6 TRANSISTOR POCKET
 RADIO FOR £9.19.6
plus $3 / 6$ post.
Printed Circuit construction. A FULL medium and long wave superhet using very latest components including 6 transistors, $2 \frac{1}{2}$ in. moving coil speaker and inbuilt Ferrite aerial. Handsome cream or coloured plastic case, $5 \frac{3}{3} \times 3 \frac{1}{4} \times 1 \frac{1}{6} \mathrm{in}$., weight 12 oz . Full Demony

LASKY'S 4-VALVE S/HET PORTABLE

FOR ONLY £ $7 / 7 /$ - plus $3 / 6$ carr. and pkg. you can build this battery Portable using all brand new components and valves. PRINTED CIRCUIT, circuit diagram and full instructions supplied. Ouly batteries extra.
Circuit diagram and full data $1 / 6$. FOR ONLY $£ 9 / 9 /$ - plus $3 / 6$ carr, and pkg. you can bulld thls job as a mains and battery Portable using our specially designed build-it-yourself Power Unit for 200-250 v. A.C.

CAN BE BUILT FOR £9.19.6 | Past. |
| :--- |
| Pkg. 3 . |
| s. |

TRANSISTOR PORTABLE

For Construction on PRINTED CIRCUIT $6 \frac{3}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. using 7 Transistors and 1 germanium diode; 6 v . operation; very low consumption, 200 milliwatts p.p. output; Ferrite rod aerial; fully tunable; choice of 7 in . $\times 4 \mathrm{in}$, elliptical or $3 \frac{1}{2} \mathrm{in}$. P.M. speaker; choice of cabinet. Circuit diagram and full building instructions supplied,

Full data and building instructions
available separately, 1/6 post free.

MIDGET T.R.F.

Handsome contemporary design case, overall size $8 \frac{1}{2}$ in. wide, $4 \frac{1}{3} \mathrm{in}$. deep, 5ln. high, 2 latest double-purpose valves EBF89 and ECL 80 , contact cooled rectifier. For A.C. mains 200-250 v. med. and long wave, 5 in. P.M. speaker. Plastic cabinet in cream, pastel green, pink, blue.
FULL DATA, instructions, circuit diagram, shopping list, $1 / 6$.

CABINET ouly, as illustrated,

SPECIAL OFFER

MINIATURE INSTRUMENT SOLDERING IRONS
Famous make, 230/250 v. 25 watts, complete with pencil bit and 3-core flexible lend Overall length 10 -in Tell-tale light in length 10-in. well-tale light in
LIST PRICE 22/6. 16/6
LASKY'S PRICE
Post 1s. 3d.
SPECIAL OFFER OF SOLDER 1-1b. reels of Ersin 5-core Savebit " Solder, List 15/-
LASKY'S PRICE $10 /=~$
Post $1 / 6$.

CAN BE BUILT FOR \&4.19.6 Post \& Pkg $14 /-$ plus $4 / 6$ post and pleg.

LASKY'S F.M. TUNER

 PRINTED CIRCUIT VERSION OF G.E.C. 912 "F.M. PLUS" TUNER FOR HOME CONSTRUCTIONUses 5 valves, 2 germanium diodes and brand new T.C.C. condensers The PRINTED CIRCUIT ensures that the I.F. and R.F. ammaximum are extremely stable at maximum gain and results are consistent on all tuners. CAN BE BUILT FOR (including valves)
£7.19.6
E.C. FM TUNER BOOK data and Sbopping List, $2 / 6$ post free. Al partr avaliabie separmtelp.

LASKYS RADIO

TRANSISTORS

AUD10 P.N.P. Junction Type sultable for bigh gain and low freq. amplifters, and for output stages op to 250 rallifwatts. $7 / 6$ 3 for $20 /-; 6$ for $37 / 6$, post free. R.F. P.N.P. Junction Type sultable fo medium and low freq. oscillstors. theq changers and L.F. amplifers $15 / \mathrm{m}$
$(1.5$ to $8 \mathrm{Mc} / \mathrm{s}$.$) .$ (Double spot-yyllow sud 3 for $40 /=6$ for $75 /$. Special ${ }^{3}$ for $40 /-6$ for $75 /$ for larger quantities.

MULLARD Transistors. OC44 40/-; OC45 $35 /-$; OC70 or $0 C 7121 /-$; OC72 or OC7
0 Cl 60

BRIMAR Transistors. T81 or TS2 12/6; T83 15/-; T84 27/6; TP1 or TP2 40/TJ1 15/-; TJ2 16/6; TJ3 $19 / 6$.
"GOLDTOP " POWER TRANSISTORS

All types now in tock, details on request. Example: V15/10P as illus. ideal for output stage of car radio will give approx 3 watts operating from 12 v Each $17 / 6$, Post free. Output Transformer to sait, correct ratio, matched to ohms, $9 / 6$. Post 1/-
Driver Transformer $9 / 6$. Post $1 /$.

C.R. TUBE

 BARGAINSpecial Offer of FERRANTI 9 in. C.R. Tubes, type T9/3, 4 v. heater, triode, octal base, standard deflection. New and unused
LASt $£ 12 / 19 / \cdot \quad$ PRICE
59/6
Carr. \& Insur., 12/6.
C.R. TUBES, new, unused. 17in. £ $16 / 19 / 6 ; 14 \mathrm{in}$. $14 / 19 / 6$ 12in., $88 / 19 / 6 ;$

TURRET TUNERS.
types-Cyldon, Brayhead, Tel enge, Vairadio. Describe your set and we will quote you, Prices from 79/6.

ALL TYPES F.M. TUNERS DULCI, QUAD, JASON, LEAK, ROGERS, etc.

POCKET VOLT TEST METERS. Two ranges D.C in leather case 12/6. Post free.

CONDENSERS, RESISTANCES
stability Resistances, Electrolytics. Al values and sizea soncked.

SPEAKER COVERINGS. Large atocks of Tygan and "Someweave." Any size pioce cut. Bamples and prices post tree.

SATURDAY

Early Closing
Thurs., I p.m.
(Both addresses)

LASKY'S (HARROW ROAD) LTD
42 TOTTENHAM COURT ROAD, W.1.
Nearest Station Goodge Street MUSeum 2605

370 HARROW ROAD, PADDINGTON, W.9.
(Opposite Paddington Hospital) LAD 4075 and CUN 1979

PROMPT POST SERVICE

Please address
Mail Orders to Harrow. Road.

COMMUNICATIONS RECEIVER B28 (MARCONI CRIOO)

PRICE-ONLY E21.

Later Model with Noise Suppressor $£ 25$ Carriage England and Wales 30/Send S.A.E. for further details.

CR100 SPARES KITS

Contents: 15 valves, 2 of U50, DH63, KT63, X66, and seven KTW61. Output transformer, Resistors, Condensers, Potentiometers, PK screws, pilot lamps, drive cord, etc., etc. ALL BRAND NEW. 59/6 Post 4/6.

Best Buy at Britain's

FERRANTI TESTMETER TYPE Q. An extremely compact self-contained multimeter: Volts 0 to $30,150,600$ A.C./D.C., with additional $0-3$ V. D.C and $0-15 \mathrm{v} . \mathrm{A} . \mathrm{C}$. ranges: Milliamps 0 to 7.5, 30, 150 and 750 D.C. ; ohms $0-25 \mathrm{~K}$ Accuracy BSS first grade. 500 ohms per volt. Knife-edge pointer and clearly calibrated 2 thin. scale. Complete with leads, prods, battery, and instructions in fitted velvet-lined $4 \times 7 \times 3 i n$. case. Brand new condition, periect working order. 72/6. Post $2 / 6$.
AVOMETER MODEL D. 34 ranges. Large size AVO. For full details see previous adverts. Thoroughly overhauled. Complete with batteries and instructions. $\mathbf{E 8 / L 9 / 6}$, post 4/-
SANGAMO-WESTON ANALYSER E772. A useful multi-range meter in rexine covered carrying case. Thoroughly overhauled and in perfect working order. For full details see previous adverts. $\epsilon 8 / 19 / 6$, carr. $4 / 6$.
VOLTAGE REGULATOR TRANSFORMERS. Input 230 V. A.C. output variable from $187-250 \mathrm{v}$., OR input $187-250 \mathrm{v}$., output 230 v at 24 amps Rating $5.5 \mathrm{KVA} . W \mathrm{~K} .42 \mathrm{lb}$. Brand new condition. £15. Carr. iol-. MINIATURE RELAYS
G.E.C. sealed, wire ends, 670 ohms. 2 H/D makes, M1099 $15 /-19$ G.E.C. sealed, wire ends, 670 ohms. 4 Clovers, platinum, M1092 G.E.C. sealed, wire ends, 5000 ohms. 2 C/overs, platinum, M1052 S.T.C. size $1 \frac{1}{4} \times \frac{5}{8} \times \frac{7 i n}{} 250$ ohms. 2 C/overs, double contacts Siemens High Speed, IK + IK ohms. I C/over
All BRAND NEW AND BOXED

FURZEHILL BEAT FREQUENCY OSCILLATOR No. 5.
Push-pull output $0-10,000 \mathrm{e} / \mathrm{s}$. of $0-5 \mathrm{v}$, at 10 ohms, or $0-50 \mathrm{v}$ at 600 ohms, monitored by $2 \frac{1}{2}$ in. M/C meter. Incorporates set-zero control and $50 \mathrm{c} / \mathrm{s}$. check. Operates from 100 250 v. $50 \mathrm{e} / \mathrm{s}$. mains. In handome instrument case, $17 \frac{1}{2} x$ $9 \times 1 l i n$. Despatched in transit case, in perfect condition, ested, complete with 7 valves, circuit and instructions. ONLY $£ 12 / 10 \%$ Carr. $10 /$.

See advertisement opposite

SG50 SIGNAL GENERATOR covers $100 \mathrm{kc} / \mathrm{s}$ to $80 \mathrm{Mc} / \mathrm{s}$ in six ranges on fundamentals. A de luxe instrument for only £9. A few only, brand new but slightly soiled cases for 88 . Carr./packing 6/extra.
CR50 BRIDGE measures 10 pF to 100 mF and 1 ohm to 10 Megohms in fourteen ranges. Leakage test for condensers. Designed for bench use, measurements are quickly and accurately made. Price complete £8/2/6, plus $4 / 6$ carr./packing.
VV60 AUDIO VOLTMETER for checking and designing Hi-Fi audio equipment. Measures 1 milli-volt to 100 volts. Price $£ 14$, plus $4 / 6$ carr//packing.
AO50 AUDIO OSCILLATOR covers 20 cps to $200,000 \mathrm{cps}$ in four ranges. Output variable up to 10 volts.
Details of above sent by return on receipt of stamped addressed envelope. HIRE PURCHASE available. TRADE supplied direct.

GRAYSHAW INSTRUMENTS

126 Sandgate High Street, Folkestone, Kent Phone: folkestone 78618

MIDLAND INSTRUMENT CO.

HUGEES MOTORS, ahant wound 12 v . 1 -amp. speed 5,000 r.p.m.., reversing, size 3 in. long. 11 in . dia., tin. shaft, weight 20 oz ., a very superior motor designed for anti-radar equipment.
new. unused, $10 /-$, post $1 / 6$. Ditto fitted renew. unused, $10 /$, post
duction zear, giving a final drive (f in. ahanft) duction gear, giving a final drive (tin. anatuied
either 320 or 160 r.p.lu., state which required. $\begin{array}{ll}\text { either } & 320 \text { or } \\ 12 / 6 \text {, poat } 1 / 9 .\end{array}$
 12/6, post 1/9.
BARR \& STROUD RANGEFINDERS. 1 -metre base, coincidence type, a hand-bel, 1 instrument that gives range in yards or any distant object from 500 to 20,000 ysurds
(12 miles). The variable focus is \times rigbt eyepiece provides two innages of the object (12 milies). The variable focus $14 \times$ right eyepiece provides two innges of the object
viewedt one from the night objective the other trom the ieft. When hese two images
 eyepiece. Fitted two fiters and other reânements. A very high-quality instrument, eriginal cost $£ 180$, our price new or near new condition, supplied In stout albre con N.I. $201-$

CEASSIS. U.S. manufacture all aluminium, $12 \pm \times 8 \times 5$ fin. complete with top cover
gome items have been removed, remalning are: -25 Amphenol midzet ceramic B7G some items have been removed, remaining are:- 25 Amphenol midget ceramic B7G
type v /holders, complete with cans, over 70 colour coded 5% resistors, alao many type vhoiders. complete what, trimmers., padders, fixed and variable inductances, trans. former, v/engtrol, etc., new, unused, bargain, $10 /-$, post $3 / 6$.
OPTICAL UNITS, consiats of a brass mount holding two high-grade $40-\mathrm{mm}$, dia. aehromats, each 31n, focal length, forming a Petzral aystem lenses easily removed by unscrowing retaining ring, new and periect.
are 3 in. focal length, $12 / 6$, port $1 / 6$.
R.C.A. ROTARY RELAYS, $12 \cdot v$. D.C., powerfuil 18 -deg. movement, actuating 2 heary and 1 light duty 3 -pole changeover contacta, slao fitted contact mutomatically openlng coil resistance from 8 to 118 -ohms holding, size 3in. $\times 3 i n . \times 2 H 1 \mathrm{n}$. , welght 13 oz., new boxed, well worth $50 /$. Our price 7/6, poat 1/6.
JOEN OSTER MOTORS. 12 v. 1.4 amp. , inflal drive 5.600 r.p.m., , atted enclosed gearbox with two kin dia, shaft drives, one 8 and the other 24 r.p.m., also a hinear Tociprocating shaft in guides, with win. movement opera ing at 24 unoesa minute, easily YACUUM GADGES, panel mounting 24 in. square front dial graduated in units up to B FACUUM GAVGES, panel mourdive boxed $5 /-$, post $1 / 6$.
CEARCING SETS, ughtweight, 46 lbs. easily carried, 4 -stroke aircooled, runsi or 18 hours from 1 gall. petrod, D.C. output 12 to 18 voits at 80 watts, complete with exhaust and silencer, canvas cover, completely reconditioned by makers and now as new,
supplied in stout canee, our price $£ 8 / 10 /$,- carriage $100 \mathrm{~m} .12 / 6,200 \mathrm{~m} .16 / 6,300 \mathrm{~m}$. $20 /$ gupplied in sto
(inland only). (thland only).
TELEPPHONE
TELEPPHONE SETS, consist of two comblned milcrophones and recelvers, which when wired ny by ordloary twin flex, provide perfect 2 -way communication, excollent results new unused, 7/6, post $1 / 3$. snitable twin 14/3 sapplied, postage each 2oft. flex 3d. extra.
SELENIOM nECTIFIERS. These sre latest brand new G.E.C. aupply, not ex-Govt. or assembled from bits, full-wave bridge, 12-v. 11 amp. cont., 2 smp. Int., 10/a, poat $1 /$.
 $230 / 250$ v., with $5-11-17$ v. output to charge a 2,6 or $12 v$. batiery, brand new, 1$\}$ an

Many other Bargains ; send stamped addressed envelope for lists.
MIDLAND INSTRUMENT CO., MOORPOOL CIRCLE, BIRMINGHAM, 17
Tel: HAR 1308

RCP MULTMMETERS. A.O. and D.C. volts, to $2.6_{1}, 100 \mathrm{~mA}, 0-1$ Ampe.; Resistance, 0 to 500 , $100 \mathrm{~K}, 1 \mathrm{Meg} ;$; DeciBels, -10 to +69 . 1,000 ohms per volt (400 microamps basic). In light oak case leade and prods, Internal battery, and instruction manual. All BEAND NEW and tested. $25 / 19 / 6$.

SELENIUM BRIDGE RECTIPIERS. Funnel cooled. A.C. input 45 . RMg. D.C. ontput
90∇. 10 amps. BRAND NEW. Boxed. $45 /=$. Poot $3 / 6$.

DUAL PURPOSE TRANSFORMERS (Gresham). Prt 230/250 v. Secc. 240-0-240 v. 1.5 amps., $5 \nabla^{\nabla}$. 12.5 amps. fr.

ADMIRALTY ET TRANSFORMERS. PTH 230 ₹. $50 \mathrm{c} / \mathrm{s}$. Secs. $620-550-375-0-375-550-620$ ₹. (620 and 650 v. $200 \mathrm{~m} / \mathrm{ampse}, 375 \mathrm{v} .250 \mathrm{~mm}$ amps.), plus two 5 V. 3 Amp, rectifler Windings. Total

Carr. 5/:.
TRANSFORMER BARGAIN. Tnput 0 -200/250 tapped. Outputs $250.0-250 \mathrm{~V} .80 \mathrm{~m} / \mathrm{amps} .5 \mathrm{v}$. 2 amps: 6.3 v. 4.5 amps. Upright mote. BRAND NEW. Boxed. Ex-Admiralty mado 1952. A Ane $50 \mathrm{c} / \mathrm{s}$. mains tranny for ONLT 16/6, post FREE.

> | HEAVY DUTY L.T. TRANSFORMERS (Gresham). |
| :--- |
| Lavest type potted, oil filled, Pri. 230 v. 50 c/s. |
| Sec. $0.70-76-80$ v. 4 amps. gize $5 \frac{5}{2} \times 4 \frac{1}{2} \times 6$ inn. |
| high. Wt. 19 lb. BEAND NEW. $42 / 6, ~ c a r r, ~$ |

AR88D MAINS TRATSFORMERS. Input 110-240 v.
 5 Potted. Port $3 / 6$.

MODULATION TRANSFORMERS. COlling type 20 watts 807 to $807,8 / 6$ each. Post $1 / 6$. FERRANTII TYPE, tor Tx 36 etc., puch-pull 807's | FERRAN |
| :--- |
| to plate and screen modulato push-push $807 \mathrm{~s}_{4}$ |
| Wh. 61 lb . $17 / 6$. | ratio 2:1.

Post 2/6.

RESISTORS

Margan "T" (1 watt) and " R"' (1 watt). Lateat types, al
Post $1 /-$

RCA TE-149 HETERODYNE WATEMETERS, Employ V-cut $1 \mathrm{Mc} / \mathrm{s}$. crystal (0.005%). Overal accuracy better than 0.02%. $105 \mathrm{Mc} / \mathrm{\beta}$. Useful calibrated every to $20 \mathrm{Mc} / \mathrm{s}$. Provision for ftting internal dry batteriea. As new, In original transit case. f9/10/6. Carr. 5/6.

MORE METER BARGAINS

RANGE TYPE SIZE PRICE

 25 Microamp. D.C. M/C atln. Flust Circ. Scale "Rontgens" 25 Microsmp. D.C. M/C 2\$l. Prol. Circ. Bcale " Rontgens ${ }^{\text {² }}$ 100 Microamp. D.C. M/C 3 1 ld . Flush Circ. Scale $0-50 / 0-1000 \mathrm{v}$. 100 Mlcroarap, D.C. M/C 2 In. Flush Circular. 1 Milliamg. D. M. M/C 3/in. FIush Circular
1 Miliamp. D.C. M/C 21n Flush Square. Fe/NFe. 1954 1 Miliamp. D.C. MC 6in. Flush Clre. \& 200 Milliamp . D.C. M/C 21 ln . Flush Creular
1 Amp. Thermoconple 2 in. Frin. Flush Circular
4 Amp. Thermocouple $2 / \mathrm{n}$. Flush Square
300 Voits A.C. M/I 6in. Flush Clircular. Made 1955 300 Volts A.C. M/I 2 2in. Flush Circular 500 Volts \quad A.C. M1I $2 / \mathrm{in}$. Flush Circular
10 Amperes METAL RECTIFIERS. Full wave bridge.
$1 \mathrm{~mA} ., 8 / 6$. $\quad \mathrm{mA} ., 8 / 6 . \quad 8 T C 2 \mathrm{~mA}, 5 / 6$.

CQSSOR 343 GANGMG OSCILLATORS. A.M./F.M. signal generator of $70 \mathrm{Kc} / \mathrm{B}$. to $21 \mathrm{Mc} / \mathrm{s}$. im 3 ranges. A.M. modulated 400 c/s., F.M. sweep cloan condition, but may have mNNOR faults. floan condig/6. Cart. 7/6.

HICKOCK 1-177 VALVE TESTERS. Checks EICKOCK 1-177 dynamic mutual condnctance, shorts, emiseion, gas, and nolse. For UX4, UX5, UX8, UX7, Octal, Loctal B7G, and Acorn types. Portable in wooden carrying case $161 \times 8 \times 5$ in. Wt.
1921b. BRAND NEW. Complete with Instru1921b. BRAND NEW. Complete with instru-
tion book and valve testing charts. For $117 \mathrm{\nabla}$. tion book and valve
A.C. 10 gns. Carr. $7 / 0$. Matching auto. tranafurmer tor 230 v. A.C., $12 / 6$.

MULLARD C. \& R. BRIDGES. 0.1 ohm to 10 Megohms in 4 ranges; 10 prd. to 10 minges: Callbrate. Open Bridge, and $\%$ range 3 ranges: Calibrate. Malnen Brige, and guaranteed.
For $100-550 \mathrm{~F}$ A.C. maled For 100-5 $\mathrm{F} / 10 \mathrm{~F}$. Pot $3 / 6$.

CRYSTAG CALIBRATORS. Give 1 Mc/s. CRYSTAE CALIBRATORS.
$100 \mathrm{Kc} / \mathrm{e}$, and $10 \mathrm{Kc} / \mathrm{s}$. "pips" with or without
Employ
dual
$1,000 / 100 \mathrm{Kc} / \mathrm{s}$. ruodulation. Employ dual $1,000 / 100 \mathrm{KC/s}$. crystal ralvos. Made by Canadian Marconl Co.
 Operate from 12 v. 0.45 ampa. L.T. and 250 v.
D.C. H.T. In neat metal casc $2 \times 44 \times 94 \mathrm{in}$.
 deep. BR connectors, ete. $84 / 19 / 6$.

R1155 RECEIVFRRS. With latest type super slow mothon drive. In good condition and perfect working order, re.aligned and air tested. Model (covers trawler and shipping bands) \&12/1916. Carr, (either) 10/6. Send 8.A.E. for detalls of sets and power units, or $1 / 3$ for Illustrated booklet.

INVICTA LOUDSPEAKERS. Good quality 101n. unit (Impodance 3 ohmas). In wooden cabinet $17 \times 17 \times 6 \mathrm{in}$ Complete with 50it. lead and
jack plug. BRAND NEW. $39 / 6$. Cart. $5 / 6$.

MOVING COL PHONES. Finest quallty Canadian, with chamois ear-muffe and leather-covered headband With lead and jack plug. Noise excluding
and supromaely comfortable. 10/6. Post $2 / 6$.

MARCON1 LOOP AERIAL type 696. A small, compact, onclosed loop. On swivel mount with Ideal for R115s, ete.

TX-36 MODULATOR/POWER UNIT. Supplies HT 500 ₹. $200 \mathrm{~m} / \mathrm{Amps}$ twice, I.T. 6.6 v. 8 Ampw and blas. Also modulator \$ 6CJG7, 2807 , and 3 FW $4 / 600$ Recta In oak case $24 \times 161 \times 1501$
Wht. 120 lb . Circult supplled. TREMENDOUS BARGAIN. EA/19/6, cart. $15 / 6$ Eng. \& Wales
D.C./A.C. ROTARY CONVERTERS Input 12 v D.C. Output 230 จ. $50 \mathrm{e} / \mathrm{s}$. A.C. at 135 w'atts. Fitted with $0-300$ v. A.C. 2 in. meter and slider resistor for voltage adjusiment,. In stout wooden carrying case with lid. Perlect working order.
c9/19/6. Carr. 10/6.

FERRANTI

 VOLTMETERS N5. 0-300 volts, 25. $100 \mathrm{c} / \mathrm{s}$. Moving iron 6 ln scale. Fl. mtg. Hermetically sealed, grade IN. Made 1955. BRAND NEW. B o \quad.$79 / 6$, post $3 / 6$.

AUTO-CHANGER
 COLLARO RC54 3-8PEED MIXER Fitted studfo pick-up with turnover head. Brand new, cartoned, but for 110 v. 50 c.p.s. A.C. mains. So that the unlt can be operate 1 from normal mans. So that madns we are supplying free with every changer a suitable W.B. "STENTORIAN" HIGH FIDELITY P.M, TF1012 SPEAKERS
 really good quality speaker at a low spesch coil. Where gighy recommend this unit with an ambazing performance \$4/10/9. Please state whether 3 ohm or 15 ohm required.

AM/FM RADIOGRAM CHASSIS, HIGH QUALITY, PUSH-PULL. 6-8 WATTS OUTPUT. Current manufacture. 12 months ${ }^{\text {O }}$ guarantee. For 200-250 v. mains. Covers
L. and M. Wavebands plus F.M. L. and M. Wavebands plus F.M. Includes 8 latest type miniature B.V.A. valves. Only 22 gns. plus $7 / 6$ carr. Or deposit $£ 2 / 12 /-$ and 9 monthly payments of $£ 2 / 12 /=$

BRAND NEW LUCAS MOTOR CYCLE BATTER TES. 6 v. 22 A.H (in sealed cartons). Limited number available at only $29 / 9$ each. Carr. 3/6. Normal price 71/- each.

ELECTROLYTICS (current production) Not Ex Govt
Tubular Types
$8 \mathrm{mfd} 450 \mathrm{v} \quad 1 \mathrm{~g} \quad 16 \mathrm{~F} 450$ Types
$8 \mathrm{mfd} .500 \mathrm{v} \quad 2 / 6 \quad 32 \mu \mathrm{~F} 350 \mathrm{v}$
16μ F 350 v
$16 \mu \mathrm{~F} 350 \mathrm{v}$. $\quad 1 / 11$
$16 \mu \mathrm{~F} 450 \mathrm{v} . \quad 2 / 9$
$16 \mu \mathrm{~F} 500$ v. $\quad 3 / 9$
$25 \mu \mathrm{~F} 25 \mathrm{v}$. $\quad 1 / 3$
$50 \mu \mathrm{~F} 12 \mathrm{v}$, $1 / 3$
50 mfd .25 v. $\quad 1 / 9$
$50 \mu \mathrm{~F} 50 \mathrm{v}$. $\quad 1 / 9$
$100 \mathrm{mfd} .12 \mathrm{v} . \quad 1 / 9$
100 mfd. $25 \mathrm{v}, \quad 2 / 3$
$3,000 \mathrm{fmd} .6 \mathrm{v}$. $3 / 9$ 32 mfd 450 100 mfd .450 v . $\begin{array}{ll}100 \mathrm{mfd} .450 \text { v. } & 4 / 9\end{array}$ $8-8 \mu \mathrm{~F} 450$ v. $16-16 \mu \mathrm{~F} 450$ v. $\quad 3 / 11$ $16-32 \mathrm{mfd} .350$ v. $4 / 6$ $16-32$ mfd. 350 v. $4 / 6$ $32-32 \mu \mathrm{~F} 350 \mathrm{v}$ $100-100 \mathrm{mfd} .350$ $6,000 \mathrm{mfd} .6 \mathrm{v} . \quad 3 / 11$

150 mfd .450 v. $5 / 9$

desyan or

 T.R.F. receiver thaer. For inclusion in cabinet iflustrated or walnut
vencered type. It vencered type. It
employs
valves $6 \mathrm{K7}, \mathrm{SP61}, \mathrm{BF6G}$, denigned for simplicity in wiring. Sonsitivity and quatity outu up to standard. Foint-to-point wiring diagram, Dor a maximum parts list, 1/9. Thls receiver can be built on brown or cream bakelite including cabinet. Available

SELENIUM RECTIFIERS

BATTERY C

ASSEMBLED CHARGERS 6 v. 1 а. 19/9 6 v .2 a.
$6 / 12$
$6 / 12$
v.
1 $\frac{1}{}$ a. $6 / 12$ v. 2 a.
$6 / 12$
v. 4 a. Above 4 a......... Above ready for use with mains and output leads. Cases well ventilated and finished in stoved blue hammer. Carr. \& Pkg. 3/6.

CHARGER
TRANSFORMERS 200-230-250 v. $50 \mathrm{cf} / \mathrm{s}$, 0-9-15 v. $1 \frac{1}{\text { a }}$ a., 11/9; 0-9-15 v. 3 a., 16/9; $\begin{array}{lllll}0-9-15 & \text { v. } & 5 & \text { a., } & 19 / 9 ; \\ 0-9-15 & \text { v. } & 6 & \text { a., } & 23 / 9 .\end{array}$

LINEAR L3/3 STEREOPHONIC AMPLIFIER

Sensitivity 150 m.v. for 3 watts output on each channel. Ganged Vol, and Tone Controls. Pre-set balance control. Outputs for two matched 2-3 ohm speakers. (Can be used as straight 6 -watt amplifier.) Provides remarkably realistic

output when connected to 200-250 v. A.C. mains point. Stereophonic pick-up head and good quality speakers. Instructions and guarantee included.

Carr. free
Send S.A.E. for leafler.
Or deposit $27 / 9$ and 5 monthly payments $27 / 9$.

7 gns.

12in. 10 WATT HIGH QUALITY LOUD

EXTENSION SPEAKERS

Limited number in handsome Walnut veneered cabinets. 2-3 ohm speech coils, $6 \frac{1}{2}$ in. 29/9، 8in. 35/9. 10in. 56/9.
DRY SHAVERS. Brand new in carrying case. Operation from 3 U2 batteries, fitted in case. Just the thing for travel. Only 59/6 (approx. half price)
RECORDING TAPE. 600ft. reels, 9/9 1,200ft. reels $14 / 9$.
ELECTRIC SOLDERING RONS. Light weight type for radio work, 19/9.
Cabinet can be supplied separately at $47 / 6$,
GARRARD 4-SPEED AUTO-CHANGER. at $£ 10 / 19 / 6$. Carr. 5/6.

COLLARO 4-SPEED AUTO-CHANGERS With studio pick-up with turnover head. 200-250 N A. Cartoned latest model. For Conguest $57 /$. . mains. Very limited number Conquest $£ 7 / 19 / 6$. Continental 9 gns. Carr. $5 / 6$.

Model RC120/4H. Limited number only
ACOS Crystal Microphone Inserts. Brand new. Only $5 / 11$ ea. Ex. Equip. 4/11 ea. ACOS HGP59 Hi Fi Crystal Cartridges. (Turnover type with sapphire stylus.) Standard
replacement for Garrard and B.S.R. Only

R.S.C. BATTERY TO MAINS CONVERSION UNITS

Type BM1. An all dry battery eliminator. Size $5 \frac{1}{2} \times 4 \frac{1}{2}$
2in. approx. Completely replaces batteries supply 1.4 v
and 90 v . where A.C. mains $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ is available.
1.4 v. and 90 v . This includes latest low consumption types Complete kit with diagram. 39/9 or ready for use $46 / 9$.
Type BM2. Size $8 \times 5 \frac{1}{2} \times 2$ itin. Supplies 120 V .90 v ., and 60 V. 40 mA . and 2 v. 0.4 a. to 1 amp. fully smoothed THEREBY COMPLETELY REPLACING BOTH H.T. BATTERIES AND L.T. 2 V. ACCUMULATORS When FOR ALL BATTERY RECEIVERS normally using $2 v$ accumulator. Complete kit with diagrams and instructions, 49/9, or ready for use, 59/6.

R.S.C. TRANSFORMERS

FULLY GUARANTEED

MAINS TRANSFORMERS
FULLY SHROUDED UPRIGHT MOUNTING $250.0-250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{v}, 2 \mathrm{a}, \mathrm{E} v .2 \mathrm{a}$.
$250-0-250 \mathrm{v}, ~$
$200 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 5 \mathrm{v}, ~$

$300-0-300$ ₹. 130 mA ., 6.3 マ. 4 a., 5 จ. \qquad kuitable for Mullard 510 Amplifier
 8. 3 a.

TOP SHROUDED DROP-THROUGE TYPE
 $250-0 \cdot 250$ v. $100 \mathrm{~mA}, 6.3$ v. $4 \mathrm{a}, 5 \mathrm{~F} .2 \mathrm{a}$. $300-0-300$ จ. $100 \mathrm{~mA}, 6.3$ マ. 4 a., 5 v. 3 a. $350=0-360$ v. $100 \mathrm{mAA}, 6.3$ v. $4 \mathrm{~B} ., 5$ v. 3 a. $350-0-350$ จ 150 mA ., 6.3 จ. 4 a ,
ELIMINATOR TRANSFORMERS Primaries 200-250 v. $50 \mathrm{c} / \mathrm{s}$.

Primarlea $200-250 \vee 50 \mathrm{cta}$

OUTPUT $7 / 9$$8 / 11$OUTPUT TRANSFORMERS
man Pentode $5,000 \Omega$ to 30Standard Peutode $5,000 \Omega$ to $3 \ddot{n}$
Giaudars Pentode $8,000 \Omega$ to 3Ω
Push-pull 8 watte 876 toPuah-pull 8 watts $8 \mathbf{V} 6$ to 5 ohmsPush-pull 10-12 watts 8 V 6 to 3Ω or 15Ω
Puah-pull 10-12 watts to match 6V6 to $3-5.8$ or 15ΩPush-pull 15-18 watte, sectlonally wound, 6L6, KTG6etc., to 3 or 15 ohms
Push-pull
20
watt high-quality6L6, KT66, etc., to 3 or 15SMOOTHING CHOKES$250 \mathrm{~mA}, 5 \mathrm{H} ., 100$ ohm$150 \mathrm{mA},. 7-10 \mathrm{H} ., 250 \mathrm{ohms}$0 mA ., 10 E. 200 ohmsA0 mA, $10 \mathrm{H} ., 360$ ohm

HARGING EQUIPMENT

 BATTERY CHARGERKITS ASSEMBLED Consisting of Mains Trans- CHARGER former F. Weifil vendge. Metal Rectified, well ventilated steel case. Fuses, Fuse-holders, Grommets, panels and circuit. Carr. 2/6 extra.6 v . or 12 v .1 amp .
As above, with ammeter 6 v. 2 amps. 6 v . or 12 v .2 amps. 6 v. or 12 v. 2 amps (inclusive of ammeter) 6 Y. or 12 v. 4 amps. $\begin{array}{lll}\text { (inclusive of ammeter) } & 41 / 6 & \text { tractive hammer } \\ \text { Y O. } 12 \text { V. } 4 \text { amps. } \\ \text { BATTERY CHARGE } & 53 / 9 & \text { blue. Ready for }\end{array}$ $6 / 12$ v., 6 amp . consisting of F.W. Bridge Rectifier Mains Trans. and ammeter. 49/9. Post 4/6.
.22/9
6 v . or 12 v .
2 amps .

Fitted Ammeter

 $32 / 9$ and selector plug $25 / 9$ for 6 v . or 12 v . 31/6 Louvred metal case, finished atuse with mains Double Fused Only Carr. 3/9.All for A.C. Mains $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ Guaranteed 12 months

ASSEMBLED 6 v . or 12 v .

4 amps.

Fitted Ammeter and variable charge selector Also selector plus for 6 v or 12 v , charging. Double fused. Well ventilated steel case with blue hammer finish. 75 / hammer finish. 75/= weady for use with malns and output leads. Carr. 4/6. Or monthly payments $14 / 11$. 1411 and five As above but nts 14/11
5 GNS. Carr. 5 amp. charging. 19/9 and Carr. 5/- Or Deposit 19/9 and five monthly payments of
19/9.

R.S.C. A. 10 ULTRA LINEAR 30 WATT AMPLIFIER

FIGH FIDELITY PUSH-PULL UNIT EMPLOYING SIX VALVES. EF86 EF86, ECC83, 807, 807, G234. Tone Sensitivity is extremely high. Only 12 millivoits minimum input is required for full ABMITYOFANY TYPEOR MAKEOF MICROPHONE OR PICK-UP. Separate Bass and Treble controls give both "lift" and "cut" with ample tone correction for long playing records. An extra input with associated vol. control is provided so that gram, gram, etc., etc., can be simultaneously applied for mixing purposes. AN OUTPUT FOR SUPPLY OF 300 v. 20 mA . and FOR SUPPLY OF
6.3 v. 1.5 a. FOR A RADIO 20 mA FEDER 6.3 V. 1.5 a. FOR A RADIO FEEEDER
UNIT. Price in kit form with easy-to-follow wiring diagrams.
Cover as illustrated 11 GnS. Cover as illustrated

11 Gn
 TERMS ON ASSEMBLED UN
and 12 monthly payments of $24 / 9$.

Type 807 output valves are used with High Quality Sectionally wound output trans former specially designed for Ultra Linear operation. Negative feedback of 20 D.B. in main loop. CERTIFIED PERFORMANCE FIGURES ARE EQUAL TO MOST EXPENSIVE UNITS AVAII. ABLE. Frequency response ± 3 D.B. $30-20,000 \mathrm{c} / \mathrm{cs}$. , Tone Controls ± 12 D.B. at $50 \mathrm{c} / \mathrm{cs}$, , $+12 \mathrm{D} . \mathrm{B}$. to $-6 \mathrm{D} . \mathrm{B}$. at 12,000 c/cs. Hum and noise 70 D.B. down. Good quality reliable components used. Chassis finish blue hammer. Overall size $12 \times 9 \times$ 9 in . approx. Power consumption 150 watts. For A.C. mains $200-250-250$ v. $50 \mathrm{c} / \mathrm{cs}$. Outputs for 3 and 15 ohm speakers. CONNOISSEUR OR FOR LARGE HPLLS, CLUBS or OUTSIDE FUNCTIONS. IDEAL FOR USE WITH MUSICAL INSTRUMENTS SUCH AS STRINGBASS,ELECTRONICORGAN, GUITAR, etc. FOR DANCE BANDS,

LINEAR LT/45 HIGH QUALLITY TAPE DECK AMPLIFIER COMPLETE WITG POWER PACK and OSC. STAGE. Sultable for Collaro,
 maing Output for standard $2-3$ ohm speaker. Only 15 millivolts input required for full recording. Only 2 millivolts minimum output required from recording head. Magic Eye recording level indicator. Pronetion for feeding P.A. amplifier. Negative feed back equalisation. Linear frequency repponse ± 3 D.B. $50-11,000$ ofcs. Facillties for recordlogs at 18 in ., 7 ilin . or 33 in , 12 Ready for use tuy from record to playback position automatic Or Dep. 22/3 and gain and output controls. Valves type ECC83,
 Leafiet 8d. Special offer LTT/45. Collaro Tape Transcriptor, studio Microphone, reai or tape and $\mathbf{6} \ddagger \mathrm{in}$. or $7 \times 41 \mathrm{In}$, speaker, 29 gos. Cart. 10 -

COLLARO JUNIOR 4 SPEED REGORD PLAYER with separate pick-up having dual point sapphire stylus. Brand new, cartoned. For 200-250 v. A.C. maine only. Only £4/10/-, Post $3 / 6$

LG3 MINIATURE 3 WATT GRAM. AMPLIFIER For 200-250 v. 50 e.p.s. A.C. msins. Overall size only $61 \times 4\}$ $\times 2$ Fin. Fitted vol, and Tone Control with mains switch. changing unit. Output for $2-3$ ohm speaker $\quad 55 / 9$
R.S.C. A4 4-5 WATT HIGH GAIN AMPLIFIER A highly sensitive 4 . falve quality amplifer club, otc. Only 50 milli. volts input is required for full output so that it is cuitiable for use with piek-up heads ln addl-piek-up heads ln addr. piek-ups and practically all milkes. Se parate Basa and Treble controls are
 provided. These give cuul long playing record equaliantion. Hum level is negligitle being 71 D.B. down 15 D.B. of negative feedback is
used. H.T. of 300 F .26 mA . and L.T. or 6.3 v .1 .5 n . 18 available for the supply of a Radio Feeder Unit or Tape Deck pre-ampllffer. For A.C. mains input of 200.230 .2200 ve . 50 cois. Output for 2.3 ohm speaker. Chassis is not alive.
Kit la complete fo every detall and includes fully punched Kit 18 oomplete in every detall and includes fully purched
chassis (with bnseplate) with the blue hammer Enish, and point-to-point wiring dlagrams and instructions. Exceptional value at only $84 / 15 /$ - or agsembled ready for use monthy payments of $221 /$ inr arsembled unit-
R.8.C. A7 3-4 WATT QUALITY AMPLIFIER A highly sensitlve 4 -valve amplifer using negative feedhack and having an ezcellent frequency response. Pre-amplifiter Bass and Treble Controls givlng full tone compensation for long playing records. Saltable for any kind of pick-up ncluding lateat high fidelity types. H.T. of 250 V .20 mA . and L.T. 6.3 . 1 a., available for supply of Radio Feeder Unit, etc. ONLY 40 millivolts input required for fuli mains $200-250$ v. 50 cycles. Output for 2.3 ohms speaker. Complete kit of parts, polnt-co-point wring dlagrams
 25- extra.

COLLARO TAPE TRANSCRIPTORS. Mark IV. Few only. 19 gns.

COLLARO AC/4/564 4 Speed Single Players £6/19/6. Carr. 4/6. PORTABLE CABINETS. Two tone rexine. Will take AC/4/564 Size inside $14 \frac{3}{4} \times 13 \frac{3}{4} \times 6 \frac{1}{4}, 47 / 9$. Post $4 / 6$.

ACOS HIGH FIDELITY PICK-UPS. GP54 with HGP59/弓 ulal point sapphire stylus. fortunate purchase
approx. half price.
these at
Only
$35 / 9$
PORTABLE CABINETS. Inside measurements $17 \times 124 \times$

SPECLAL OFFER. Above cabinet, LG3 ampllifer, 61 in . speaker and B.s.R. UAB Autochanger. 13 gns. Carr. 10/LINEAR L45 MINIATURE $1 / 5 \mathrm{~W}$. QUALITY AMPLEIER Suitable for use with Garrard B.S.R. or any other record playing unit and most microphones. Total negative feedA.C. mains input of $200-250$ F. $50 \mathrm{c} . \mathrm{p} . \mathrm{s}$. Output for $2 / 3$ ohm speaker. Three miniature Mullard valves used. Blze oniy $6 \times 5 \times 5 \mathrm{jln}$. hlgh. Chassic fully isolated from maing Guaranteed 12 months. Only $95 / 19 / 6$. Or Deposit 22

PLESSEY DUAL CONCENTRIC 12in. P.M. SPEAKERS

(15 ohms), consisting of a
high quality 12 in. speaker high quality lein. speaker of orthodox design supporter ready wired with choke and condensers to act a tweeter. This high fidelity untt is highly recommended for use with our A11 or any
similar ampllfer. Rating Is similar amplffer. Rating Is ines. Price only $£ 5 / 17 / 6$ Or Deposit $10 / 6$ and 12 toontbly payments of $10 / 6$

Radia Sumply Co. (leeds) lto.

Personal Shoppers to 5 and 7 County Arcade, Arlggate, Leeds, I. Mall Orders to 29-31, Moorfield Road, LEEDS, 12.
Terms: C.W.O. or C.O.D. No. C.O.D. under $£ 1$. Postage $1 / 9$ extra on all orders under $£ 2$ $2 / 9$ extra under $\mathbf{t 5}$ unless carriage charge stated. Full Price List $6 d$. Trade supplied. Open to callers: 9 a.m. to $6 \mathrm{~F} . \mathrm{m}$. Wednesday until I p.m. S.A.E. please with all enquiries.

All ULTRA LINEAR

 12-14 WATT AMPLIFIER

NEW 1958 DESIGN HIGH-FIDELITY PUSHPULL AMPLIFIER WITH "BUILT-IN" TONE CONTROL PRE-AMP. STAGES

Two input sockets with associated controls allow mixing of "mike" and gram. as in A10. High sensitivity. Imcluder sectionally wound output transformer specially designed for Ulita Linear operation, and reliable small condensers Fo current manufacture. INDIVTDUAL CONTROLS rep bass and treble "Litt" and "Cut." Frequency loops Hum B. $30-30,000$ cics. 8 negative reedback required for FULL OUTPUT. Sultable for with all makes and types of pick-ups and microphones. Comparable With the very best designs. For STANDARD or LONG PuAYING RECORDS. For MUSICAL INSTRUMENTS with as STRING BASS, GUITARS, etc. OUTPUT SOCKET supply of a RADIO FEEDER UNIT, Slze 3 ק. 1.5 a. For For A.C. mains $200-250$ v. $60 \mathrm{c} / \mathrm{cs}$. Output for 3 and 15 ohms speakers. Kit is complete to last nut. chassis is
fully punched. Full instructions and point-to-point wiring diagrams supplied. Only 8 Carr. 10/-. (Or factory bullt If required louvred inetal cover with 2 cant can be supplied for $18 / 9$. TERMS ON ASSEMBLED $18 / 9$ Send A E for tllustrated monthly payments of to-assemble Cablnets, Speakerg, Microphones, eic., with cash and credit terma.
LINEAR "DIATONIC" 10-WATT THGY FDDELITY Amput $200-230-250$ \&. 50 c.p.s. A compact attractively finished unit with two separately controlled inputs and outputs for 3 and 15 ohms speakers. Beparate Bass and Treble controls. Five latest type miniature Mullard valves. Only 12 Gns. Send 8.A.E. for leafiet and credit terms.

P.M. SPEAKERS

2-3 ohm 21in. Rola 17/y. Bin, Goodmans 1\%/9. $7 \times 4 i n$

 Elliptical Goodmans 29/9. 12in. Plessey 29/1
Plessey 3 or 15 ohms, 10 watts, 12,000 lines, $59 / 6$.

SUPERHET RADIO FEEDER UNIT

Design of a high quality Radio Tuner Uoit (specially suitable for use with any of our Amplifiers). A Triode Heptode F/changer is used. Pentode I. F. and double Diode Secons
Detector, delayed A.B.C. is arranged wo that A.V.C. distortlon is avolded. The W. Ch. Bw. Incorporates Gzan. position. Controls are Tuning, W. Ch, and Vol, Output will load most Amplifters requiring 500 mV . input depending on Ae location. Only 250 ๒. 15 mA . H.T. and L.T. of 6.3 r . 1 amp. required trom ampllier. Stze of unit approx.
$9-6-7 \mathrm{in}$. high. Bend S.A.E. for illumtrated leaflet Total building cost is $£ 4 / 15$-. Point-to-polint wiriag diagrams building cost is $24 / 15$
and inatructions $2 / 6$.

RADIO SUPPLY CO. (LEEDS) LTD.

(Dept. D) 5 and 7, County Arcade, Briggate, Leeds, 1.
Terms C.W.O. or C.O.D. No. C.O.D. under $£ 1$. Post, $1 / 9$ under $£ 2,2 / 9$ under 65 unless quoted. Open $9-6$ p.m. EX GOVT. METAL B mld., 10 mid. 600 v. $3 / 9$.
insulated staples in. Boxes of 100 . Only 1/- each. $10 / 6$ doz. £5/10/-gross.
RE-ENTRANT SPEAKERS, Tannoy, 8 watt, 7.5 ohms. Only 25/- each.

EX GOVT. MAINS TRANŚFORMERS

All $2000-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. fmput.
Pr. $0-110-200-230.250 \mathrm{v}$., $275-0.275 \mathrm{v} .100 \mathrm{~mA}$., 6.3 v . 7 a., 5 v .3 a.
$30-0.230 \mathrm{v} .80 \mathrm{~mA} .12 .6$ v, 1.5 в., B v. 2 в
$350-0.350 \mathrm{v} .160 \mathrm{~mA}$.

$450-0-450 \mathrm{v} .250 \mathrm{~mA} .6 .3 \mathrm{v}$. 3 a. 6.3 v. $1 \mathrm{a} \cdot \ldots .$. 12.5 v. 3 а., 5 จ. 3 a . d with D.C. rating after reetification) 69/9. Carr. 15/-, $0-10-20-25$ v. 24 a. (Gov. rating) 79/6. Carr. 15/-.

$$
\begin{aligned}
& \text { quoted. Open } \\
& \text { Weds until I p.m. }
\end{aligned}
$$

CO-AXIAL CABLE, 75 ohms, $\ddagger 1 \mathrm{n}, 8 \mathrm{~d}$. yard. Twin screened
teeder 11d. yard.
FOLUME CONTROLS with long spindles, all values, less

VOLUME CONTROLS with long ep
EX GOVT. STEP UP/STEP DOWN TRANSFORMERS. Double wound. $10 \cdot 0 \cdot 100 \cdot 200-220-240 \mathrm{v}$. to 9-0.110-122-136148 v . or Reverse. 300 watts, $35 / 9$, plus $7 / 6$ carr. 2 จ. 16 A.H, EX GOVT, ACCUMULATORS. New, boxed. Oni.
$3 / 6$.
D.C. SUPPLY KITS. Buitable for electrio trains. Consists of mains trans. 200-250 v. 50 c.p.s.; 12 v. lamp selenium rect. (F.W. Bridge); 2 fuscholders, 2 fuses, change direction stritch, variable speed regulator, partially drilled stecl case and circult. Very limited number, $29 / 9$.
VIBRATORS. Oak and Wearite, gynchronoms 7 pin, 2 . 7/9, 6 v. 8/9.
JUNCTION TRANSISTORS. R.F. type 17/6. Audlo type $7 / 9$.

Quality

rams PLEASE NOTE

The following items of

HEATHKIT EQUIPMENT

available from stock. . limited numbers only. Communications type All band Receiver Kit AR3 $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$, less cabinet...... £ 12100 Broadcast Receiver BR2, less cabinet $£ 900$

Test Equipment

Q. Meters type QMI. $150 \mathrm{kc} / \mathrm{s} .-18 \mathrm{Mc} / \mathrm{s}$.

40 mmf to 450 mmf . Complete
Oscilloscope. 5 in . etched circuit OMI
Complete kit
Williamson Amplifier, complete with pre-amps. HI-FI

62500
pre-amps. HI-FI
$E 2500$

All the above are U.S.A. types 110 v ., bur 0 . 0 auto Transformers can be supplied at fll $7 / 6$ small extra.

Receivers

NATIONAL H.R.O. Receivers, complete with coils from $\mathbf{E 2 0} 0$ MARCONI Type CRIOO, $60 \mathrm{kc} / \mathrm{s}-30$ Mc/s. Each S27CA, 135-235 Mc/s. EDDYSTONE $640,740,840,750,680$, 680X. Well below lise price. HAMMARLUND HQ120X. $550 \mathrm{kc} / \mathrm{s}-30$ Mcls.$£ 25 \quad 0 \quad 0$

ELECTRONIC
 EQUIPMENT

Manuals

RCA AR88D and L.F SX28, R107, HRO, Hallicrafter $\$ \times 24, \mathrm{B2}$, HR120, HQ129, 1359, $\$ 27$, S27CA and others available from $£ 1 / 7 / 6$ per copy.
HF. VHF \& Microwave

Laboratory Equipment

Cossor DB, Seopes type 339....

Rebuilt to Laboratory standard. Price upon request. Cossor Ganging Oscillator................. 120 0

Marconi Test Equipment

Signal Generator Type TFI44G, 85

$$
\mathrm{kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s} .
$$

$680 \quad 0$
Marconi TF329, circuit Magnification
Meter
Marconi Valve Voltmeter Type.....................................
Marconi Output Meter TF340 TF428 £25 00 Marconi hutput Meter $1 F 340$............. $£ 25000$ Marconi Spectrum Analyser Marconi Spectrum Analyser TF984/l TSII8 RF output power meter $5-500$
watts, $20-750 \mathrm{Mc} / \mathrm{s}$., complete and
Lavoie TSi27. Frequency Meter. $\begin{aligned} & \text {. } \\ & 0\end{aligned}$ range $375-725 \mathrm{Mc} / \mathrm{s}$. Checked and guaranteed. Each $£ 1500$

Tubes

Type 2K33, 723/AB, CV129, 2K29, Xtals IN2I, N2IB. IN26. Others available.

Elliott Single Pen Recorders
AC/DC Instrument. Range $0-1 \mathrm{~mA} \ldots 63500$

Megers

EVERSHED Series 2 Bridge Megger
$500 \mathrm{~V}$. 1,000V Meggers with external decade box. NEW 66500 Wee Type: 500V.... 12100 250V... 8800

Frequency Meters

BCC2I Range $125 \mathrm{kc} / \mathrm{s}$, $20 \mathrm{Mc} / \mathrm{s}$. In perfect condition.
Also in stock: U.S.A. BENDIX LM SERIES

Aircraft version of BCC2

TSI74, $20-250 \mathrm{Mc} / \mathrm{s}$. TSI75U, $85-1,000 \mathrm{Me} / \mathrm{s}$.
Prices and derails on request

Receivers for VHF-UHF \&

Microwave

AN/APR4, 30-1,000 Me/s. comp. AN/APRS, 1,000 $6,000 \mathrm{Mc} / \mathrm{s}$. RI $294,500-3,000 \mathrm{Mc} / \mathrm{s}$. RI359, $130-500$ Mc / s. S27CA, $145-235 \mathrm{Mc} / \mathrm{s}$. S27, 38-145 Mc/s.
AND OTHERS AVAILABLE FROM STOCK. We require URGENTLY. Test Instruments, Receiver RCA AR88. Hallicrafters SX28. Valves 2K33. Xtals IN26 and Freq. Meters of all types. High figures given for equipment in good condition.

UNIVERSAL ELECTRONICS

22-27, LISLE STREET, LEICESTER SQUARE LONDON, W.C.2. TEI: GERrard 8410 : 4447
Shop Hours: 9.30 a.m. to 6.0 p.m. OPEN ALL DAY SATURDAY Thursday 9.30 a.m. to 1.0 p.m.

WEBB'S RADIO

invite you to hear the realism of STEREOPHONIC SOUND

Stereo Amplifiers by LEAK and ROGEAS, Stereo pickups by TANNOY, ELAC,
DECCA aud RONETTE are in stock at
WEBB'S RADIO
14 SOHO ST., LONDON, W.I. Tel: GERrard 2089/7308

TELETRON Miniature Transistor
Superhet coil kit (as illustrated) 42/-

$470 \mathrm{kc} / \mathrm{s}$. I.F. Transformers and Osc. coil in screening cans $\frac{3}{4} \times$ - $\frac{1}{2}$ in. dia. Dual wave Ferpite rod aerial $5 \frac{1}{2} \times \frac{5}{6} \mathrm{in}$. dia. For the TRANSIDYNE printed circuite s/het.
Push-pull and single ended tape oscillator coils available for most decks at $8 / 6$ each. Bias rejector available for most decks at $8 / 6$ each. Bias rejector
coils and rop lift inductors. Dual range T.R.F. and X tal diode coils, etc. 9 d. stamps for complere lists and circuits.

The TELETRON Co. Ltd.
112B, Seation Rd., Chingford, London, E. 4

Perforators, Reperforators Teleprinters, Spare Parts

Terminals and V.F. Telegraph Multi-Channel Units; Telephone Carriers and Repeaters; Testing Equipment ; Signalling Rectifiers 26B, 43A, RA87, etc. Relays, Transformers; Filters; Repeating and Retardation Coils; Racks; Relay Bases.

British, American and German equipment.

WILLIAM BATEY \& CO.

Gaiety Works, Akeman 8treet, Tring, Herts.
Telephone: Tring 2183
Cables: RAHNO Tring.

RELAYS P.O. TYPE 3000

Wilkinsons

ELECTRONIC BARGAINS BY MAIL

quantities available callers welcome

BUILT TO YOUR SPECIFICATION GUICK DELIVERY, KEEN PRICES CONTACTS UP TO \& GHANGEOVER

KEY SWITCHES
PROMPT DELIVERY ALL TYPES
UP TO 4co/6co

MINIATURE RELAYS

	Siemens High Speed.	Sealed.	
	$+2.2 \Omega 1 \mathrm{CO}$	H96A	15/6
500Ω	$+500 \Omega 1 \mathrm{CO}$	H96D	22/6
1700Ω	$+1700 \Omega 1 \mathrm{CO}$	H96E	25/-
	S.t.c. Sealed.		
700Ω	2 CO	4184GD	19/6
2500S	1 make	4180 EE	22/6
	heavy duty		
2700Ω	2 CO	4184GE	21/6
	G.E.C. Sealed.		
180Ω	2 make 2 break	M1087	19/6
670Ω	4 CO	M1092	21/6
2500Ω	1 CO	M1022	22/6
5000 2	2 CO	M1052	25/-
T.M.C. Carpenter Relays.			
330Ω	$+1040 \Omega$	4B21	75/-
850Ω	$+2680 \Omega$	5M32A	45/-
300Ω	$+700 \Omega$	5XA24	45/-

METERS GUARANTEED

F.S.D.

 50 Microamps TypeMC/FR
MC/FR Price
$70 /=$ 100 Microamps 500 Microamps 500 Microamps Size 500 Microamps
1 Milliamps
1 Milliamp 1 Milliamps 30 Milliamps 100 Milliamps 200 Milliamps 250 Milliamps 500 Milliamps 5 Amperes D.
15 Amperes 25 Amperes D.C. 50-0-50 Amp 30 Volts
$20-30$ A $2 \frac{1}{2}$ in. $70 /=$
50% 20 Volts

2 in. CROSS POINTER METERS With 100 microamp movements. Brand new. $22 / 6$ Post $2 /$
ROTARY CONYERTERS. Input 12 volts D.C Output 230 volts A.C., 50 cycles, 135 watts. In fitted case with variable resistance, $0 / 300$ voltmeter, mains switch. The ideal job for television where A.C. mains are not available 810. Carriage 15/.

Sockets to fit the plugs on the above converters, 5/- per pair. Post $1 /$-.
BATTERIES. 6 v. 125 ampere hours, in meta case for use in pairs with the above converters. $£ 6 / 10 /-$ each. Carriage $15 /$ -

SELENIUM METAL RECTIFIERS

Full wave bridge. 12 v. 1 amp. 12 v. 2 amp 12 v. 3 amp. 12 v. 4 amp . 12 v. 4 amp. $8 / 6$
$13 / 6$
$16 / 6$
$20 /-$ 24 v. 1 amp 24 v. 2 amp 24 v. 3 amp. 24 v. 4 amp VIS TRANSFORMERS with $24 \mathrm{amp} 36 /$颠 2 v 1819 a 2 / 12 v. 1 amp., $18 / 9$. . 2 amp. $24 / 2$ AINS TRANSORMER
MAINS TRANSFORMER with selenium rectifier fitted on top from $200-250 \mathrm{~V}$. A.C. mains, $30-40$ v. D.C. can be obtained at 1 amp . 27/6. Post $2 / 6$.
AMMETERS. $0 / 3$ moving coil D.C., 6 in . fush round with a fine open scale with divisions of 50 M.A. B.S.S. 89. g0/-: Post $1 / 6$.
VOLTMETERS. $0 / 300$. Moving Iron, A.C. 2 in Flush Round, $25 /$-. Post $1 / 6$.
MIGROAMMETER. 250 F.S.D., $3 \frac{1}{2} \mathrm{in}$. Flush Round, Sangamo Model S37. Scaled for valve voltrmeter, circuit a vailable free. 55/-. Post $1 / 6$ "WEE MEGGERS," 500 volts, in leather case, 812/10/-: Post 3/-
CIRCUIT TESTING OHMMETER. 2 scales $0 / 1000 \Omega$ and $100 / 200 \mathrm{k} \Omega$ inf. with test prods Brand new. $84 / 17 / 6$. Post 3/-
AVO TEST BRIDGES. $220 / 240$ volt A.C Measures capacities from 5 pf . to 50 mfd . and resistances from 5 ohms to 50 megohms. Valve voltmeter range 0.1 to 15 volts, and condenser eakage test. BRAND NEW. Full workin instructions supplied with instrument. $£ 9 / 19 / 6$ Post 3/-
SIGNAL GENERATOR TYPE 52A. Input 230 volt 50 cycles, complete with leads, dummy antenna. Brand new in transit case. 6 to $5 \& \mathrm{hic} / \mathrm{s}$. nclusive in 4 bands with calibration charts. Coarse and fine attenuators. Int. and ext. mod Output 0.5 volt to 100 mv impedance 70 and 100s. 210. Carriage 10/=
WHEATSTONE BRIDGE. 1 to 210 ohms in 1Ω steps with built-in galvo, 4 stud switches in wood case with spare compartment. Ideal for extending range. 50/-. Post $3 / 6$.
VENTAXIA EXTRACTION FANS. 230 volt A.C. Bin. blades. Ideal for ventilating kitchens, etc. Easy to fix. Silent ruaning. $130 / \mathrm{F}$, post $3 /$ XPELAIR EXTRACTION FANS, $7 \frac{1}{2}$ in blades, with baffle outlet. 180/-, cge. 5/-
HEATING ELEMENTS. Flat enclosed type 30 volt 500 watt "Bray chromalox" 10x $1 \frac{1}{2}$ in. $7 / 6$. Post $1 / 6$.
Oscilloscope Type 43. With 31 in. CRT 4-6J7 3-VR54 1-524, 1-VU120 Brand new and complete with power pack and leads. $10 / 10 /$. Cre 12/B.
INSPECTION LAMP. Fits on forehead, leaving hands free, battery case clips on belt, $7 / 6$, hands free, battery case clips No. 1215, 2/9, post $1 / 6$
SWITCHES, 1 hole fix
ing, 3 amp. 250 volt Single pole changeover $\begin{array}{ll}1 / 6 \text { each. } 12 /- \\ 837 / 10 /= & \text { per } 1,000 .\end{array}$

BULKHEAD FITTING. Gin. diam., flat tripod ype, suitable for lamps up to 100 watt, complete with pushbar switch ampholder. Ideal for farm buildings, garages greenhouses, etc. Brand ew, 17/6, post 3/-. Adiustable between 4 Adjustable 75° Fahr., 250 V .
10 amp. D.C. Ideal for greenhouses, etc., 35/-
10 amp. D.C. Ideal for greenhouses, etc., $35 /$
THERMOSTAT. For frost protection, on at 34 deg. F., off at 49 deg, F., $1 \frac{1}{2}$ amps. at 250 volts, adjustable, $4 / 6$, post $1 /$
THERMOSTAT SWITCH. Bimetal type in sealed glass tube, $2 \frac{1}{2} \times 1 \frac{1}{2}$ in., 30° Cent. Ideal for Aquariums, Wax and Oil Baths, Gluepots, etc Will control 1 amp. at $240 \mathrm{v} ., 5 /-$ each, post $1 /$ THERMOSTAT. Satchvell 1̈2in. stem, $0 / 250 \mathrm{v}$ A.C./D.C. 15 amps. A.C., 10 to 90° Cent., 25/-, post $2 / 6$.

r ROOM TO ROOM

* hOUSE TO WORKSHOP

SET No. 5 TELEPHONE HAND SET as illustrated, with sound-powered earpiece and battery operated mouthpiece. Simply connect two instruments with twin flex and a $1 \frac{1}{2}$ volt battery in series. "Press to talk" button prevents waste of current whilst not in use. struments with cords and plugs. $25 /-$ pos $2 / 6$. SET No. 7. Consisting of two P.O. type handsets as illustrated with press button in the handle for ringing bell at other end. The instruments are entirely sound-powered and are upplied with two bells and batteries with full instructions for installing. Simply connect with four wires. 4.jd. par yard.

S.A.E. for complete list of ten available sets.

10 AMP BATTERY CHARGER
HERE IS YOUR CHANCE TO
PURCHASE A
BRAND NEW
UNIT WORTH $240!$
FOR OUR SPECIAL
PRICE C 17.10 .0
Carriage 20/-
SPECIFICATION.
Input $200 / 250$ volts A.C., 50 cycles. Output 10 amps,, 22 volts
4-po Controlled by two fine and coarse contr which enables 6 to 24 volt batts. to be charged Brand new with 0/12 ammeter. Fused A.C. and D.C.

LOUDSPEAKER BARGAINS

BRAND NEW

ELAC 5in. Permanent Magnet. 3 ohms. 9,700 gauss. Only $18 / 6$. Post $1 / 6$. A High Quality Speaker at a Low Price
AXIOM 150. Double Cone 12 in . 15 watts- 15 ohms, fully dust-proof. Our Special Offer. i7/19/6. Packing and carriage $7 / 6$. High Fidelity-in maker's cartons
P.M. SPEAKERS. 10in., in portable case with flex and plug. 50/-, carr. TANNOY LOUD HAILERS. In slope front wood case, with 180 ohm line transformer and con denser. Speech coil impedance 7.5 ohms 19/6. Carriage 5/-
RACK8-POST OFFICE STANDARD. 6ft high with U-channel sides drilled for 19 in panels, heavy angle base, 4 ft . 10 in . in stock. HEADPHONES. Balanced Armature Type DHR. 17/6 per pair, post $1 / 6$
HEADPHONES. High resistance $4,000 \Omega$ type CHR. $12 / 6$ pair, post $1 / 6$.
JACK PLUGS. Cylindrical bakelite screw-on cover. 2 contact. 2/6 each, $20 /-$ doz.

SOLENOIDS. 12 volt D.C., with $3 \frac{1}{2}$ in lever Very powerful. Ideal for remote control, model railways, etc., 5/- each. Post $1 / 6$.

TERMINAL BLOCKS. 2-way fully protected. No. 5C/430. $4 /-$ doz. or box of 50 for $15 /$ pos $11 / 6$.

VARIABLE RESISTANCE $140 \Omega 2.4 \mathrm{amps}$. in ventilated case, 10×7 in., stud tvpe. $35 /-$. Cge. $7 / 6$

MMTE DFHECHORSMO. 4 a

Abstract

COMPLETE EQUIPMENT COMPRISES SEARCH HEAD, AMPLIFIER, HEADSET, CONTROL BOX, TELESCOPIC RODS FOR SEARCH HEAD, SEARCH HEAD TEST UNIT AND TEST DEPTH MEASURE, AND HAVERSACK

Operation is from a standard $60 \mathrm{v} . / 1.5 \mathrm{v}$. combined dry battery. The unit will detect ferrous or non-ferrous metals to a depth of 24in. giving maximum signal but can be used at greater depths giving lower output. Ideal for tracing underground pipes or cables and any hidden metallic objects.

COMPLETE EQUIPMENT SUPPLIED BRAND NEW IN ORIGINAL TRANSIT CASES COMPLETE WITH CIRCUIT AND OPERATING INSTRUCTIONS.

G. W. SMLTPi \& CO

3-34 LISLE STREET, LONDON, W.C. 2

world famous
DYNAMIC MICROPHONE

Complete with cord and magnetlc base, patent pending
£4.4.0
"DIANA" world famous
CRYSTAI MICROPEONE
complete with cord and magnetic base,
patent
pending,
$£ 2.18 .0$

SOME SOLE AGENCIES STILL AVAILABLE For further details apply to

SUPERELECTRONICSLTD

5 VIOLET HILL, LONDON, N.W.8. Phone: MAIDA VALE 0569

BAKERS (Selhurst) LOUDSPEAKERS "THE CHOICE OF THE CONNOISSEUR"
First and foremost in high quality moving coil loudspeakers. Die-cast chassis and fully dust-proof and tropicalised. Low resonance cone with hardened apex for efficient treble reproduction. Plastic foam suspension gives clean undistorted bass with excellent definition.
12 in . Stalwart/FS Foam suspension. Response 40 to $13,500 \mathrm{k} / 15 /-$ (plus $3 / 6$ post).
12 in . de Luxe/FS Foam suspension. Response 25 to 17,000 E9/15/- (plus $3 / 6$ post).
Dolivery from stock, leaflets on request.

Special offer of Remploy instrmment soldering irons neon indicator ligh in hande inal for detachable bit, 20-240 volts. New and boxed. OUR PRICE 18/6, plus 9d. post,

HOME RADIO (MICHAM). LTD.

Dept. W, 187 LONDON ROAD, MITCHAM, SURREY MIT 3282 Shop hours 9.0-6.30 Weds. 1.0 p.m.

ALL-AMERICAN-SPARE-PARTS.

PLEASE NOTE. This advertisement is designed for the connoisseur of American-Equipment, therefore it is not illustrated. We cannot enter into any correspondence with anyone not conversant with such equipment.

6V6GT	716
6V6G	6/-
6X5GT	7/-
6X5G	61
6Y7G	8/-
$7{ }^{\text {74 }}$	7/-
7AS	71-
7 C 7	8/-
7 E	61-
7H7	9/-
7 K 7	8/-
7R7	9/-
7×7	6/-
10	101-
10Y	12/-
1246	5/-
12 AH 7	7/-
12 C 8	$7 / 6$
12 H 6	2/6
1215 GT	3/6
12SA7GT	10/-
125 C 7	1/6
12567	6/6
125 H 7	4/9
12517	6/-
125 K 7	5!-
$12 \mathrm{SL7}$	71-
12SO7G T	$8 / 6$
12SR7	6/-
12 U	7/-
$28 \mathrm{D7}$	$6 / 6$
37	71
38	7/
39/44	6/-
42	91-
42 E	$91-$
43	101-
45	71-
46	6/-
53A	3/-

HALLICRAFTER-S.27.-SPARES
Switch selectivity, 3-bank with on/off switch. $7 / 6$. Tuning Capacitor, $47.5 \mathrm{~mm} / \mathrm{d} .3$ section. $17 / 6$. Tuning Gear Assembly $17 / 6$.
R.F. Tuning Assembly, complete with 7 -bank rotary switch,
Inductor Chokes, 2 henries. 17/6.
Inductor Chokes 10 henries $17 / 6$.

```
HALLICRAFTER-S.36-R.B.K.-13_SPARES Transformer Power Mains \(115 / 230\) v. \(50 / 60\) cycles. \(39 / 6\). P.P \(3 / 6\).
Transformer, Audio, 25/. P.P. 2/-.
Reactor. Dual Filter Choke, \(3-12\) henries, 22/-. P.P. 3/-. 1.F. Transformers. Ist. 2nd, 3rd ( \(525 \mathrm{~m} / \mathrm{cs}\).). \(10 / 6\) each. Coils, Ist, 2nd, 3rd. Ant., Ist, 2nd, 3rd, R,F, Ist, 2nd, 3rd O.S.E. 6/- each.
Coil, BFO. \(10 / 6\) each.
Reactor, Linc Filter \(6 / 6\) each.
Capzcitor, \(4.8-8 \mathrm{mmft}\). 650 V. d.c. \(18 / 8\). P.P. 2/=.
Other Spares. Resistors, condensers, switches, tube holders, ere
```

```
NATIONAL-H.R.O.-SPARES
6-volt Vibrapacks. 35/= each. P.P. 3/6.
Tuning Condensers, 4-gang. 50/.
Tuning Condensers, cw . osc. selecrivity, audio gain, phasing, R.F. gain, all at \(3 / 3\) each.
I.F. Transformers, 2 nd, \(456 \mathrm{kc} / \mathrm{s}\). \(\quad 8 / 6\)
I.F. Transformer, B.F.O., 8/6.
```

PLEASE ADD POSTAGE AND PACKING. ALL GOODS OFFERED SUBJECT TO BEING UNSOLD:

When ordering please quote manufacturer's part number where possible.
 MAIL ORDERS \& TRADE ENQUIRIES:
 9A DIANA PLACE, EUSTON ROAD,
 LONDON, N.W.I.
 TELEPHONE: EUSton ! $636 / 1637$.

PERSONAL CALLERS:
 199 MILE END ROAD,
 LONDON, E.I.

(EARLY CLOSING THURSDAY)
(A FEW DOORS FROM STEPNEY GREEN STN.) TELEPHONE: STEpney Green 2579.

RECTIFIER BARGAINS

Mains (doubler) 300 volts per section at wave) for $8 /-$. P.P. $2 /$ P.
12 VOLTS 10 WATT AMPLIFIER Complete with internal dynamotor 2-6L6s push-pull, 2-6N7. Incorporating mike and gram inpurs, speaker outpurs, tone and volume controls. Size $12 \frac{1}{2} \times$ $64 \times 8 \mathrm{in}$. Sprung mounted. ONLY 68/10/-. Carr. 10/-
HEADPHONES-BRAND NEW. American chamois padded moving coil 100 ohms, 25/-. U.S.A. lightweight. Type H.S.30, $15 / \mathrm{m}$. Dynamic D.L.R.S, 8/6. Low resistance 120 ohms $6 / 6$, High resistance $12 / 6$. P. \& P. $1 / 6$ on each. AERIAL
VARIOMETERS.
These magnificent instruments will enable you to receive maximum signal strength on alf Short Wave receivers. Precision calibrated control. Complete with connection detail, $12 / 6$. P. \& P. $2 / 6$.

VIBRATOR PACKS. 12 volt input 300 volts output at 150 mA . consists of 12 volt vibrator, 4 metal rectifiers, chokes and smoothing condensers. ONLY 25/-, carriage $7 / 6$.
Also 6 v . input 230 v . output at 100 mA , complete 4 -pin vibrator. OZ4 rectifier. Fully smoothed 25/- each. P. \& P. 3/6. WHEATSTONE BRIDGE. Consisting of four stud switehes. $0-210$ ohms. Galvanometer centre zero F.S.D. 2.5 mA . Ranges easily extended. Housed in oak
Worth 520 . Comcabinets $16 \times 7 \times 6 i n$. Worth 22 . ComFREQUENCY METER. LM14 120 Ke/s. to $20 \mathrm{Me} / \mathrm{s}$. accuracy 0.01%. Brand new. Only $£ 27$ each, carriage 10/-. WESTINGHOUSE J.50 PENCIL RECTIFIERS, $500 \mathrm{v}$. mA., 5/-. P. \& P. 1/-

POWER SUPPLY UNIT No. 5
Contains Hand Generator giving 6 V output with overload cut-out, idea to boost a flat car battery; 6 volt Vibrator Pack giving 3 voles and 150 volts with output leads, plugs, etc., for Army 38 and 18 sets; Battery box for three 2 V . accumulators. This is a fully portable and multipurpose power supply unit. BRAND NEW.

ONLY 301 carr. paid.

RECEIVER B.C. 624 TRANSMITTER B.C. 625

RECEIVER:
RECEIVER: Has audio squelch circuit for low-noise listening Osc. is followed by two harm. ampl. which feed the mixer valve. R.F. stage proceeds the mixer. Three 12 meg. I.F stapplied with all io valves, circuits and operating gen. Compere receiver only $30 /$-, P. \& P. 5/-. Mains Power Pack Kit plete
TRANSMITTER: Is 4-channel erystal controlled, usin 6G6 ose., $12 A 6 \mathrm{harm}$. ampl. 832 har . ampl and driver, and $6 G 6$ ose., 12 A6 harm. ampl. 832 harm. ampl. and driver, and
832 R.F. output plate-modulated by P-P i2A6s which are 832 R.F. Output plate-modulated by P-P $12 A 6 s$ which are
transformer coupled to $6 \$ J 7$ speech amp. Supplied with circults and operating gen. Complete transmitter only 45/P. \& P. 5/-.

T.C.S. TRANSMITTER

Covering $1.5-12 \mathrm{Mc} / \mathrm{s}$. De signeation, consists of V.F.O Buffer, Doubler, P.A. with internal push/pull modulator and provision for V.F.O. or crystal control on 4 channels Output 40 watts phone 100 watts C.W. Complete with 7 valves, aeria current meter and R.F current meter.
§9.10.0

Carr
$15 /-$
Senior Model. Total frequency coverage is $50 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$, obtained by inserting coil sets of which 4 sets are supplled with every receiver. Incorporates 9 valves, 2 R.F., 2 I.F. and 2 audio amplifiers. Crystal gate with crystal phasing control. Variable selectivity. Effective tuning scale of $\mathbf{1 2}$ feet. R.F. and L.F. gain controls. Signal strength meter. B.F.O. on/off and pitch control. H.T. and "S" meter on/off switch. Phone jack and loudspeaker terminals. Black crackle cabinet, $17 \frac{1}{2} \mathrm{in} . \times 9 \mathrm{in} . \times 12 \mathrm{in}$ deep. Power requirements 240 voles D.C. at 70 M.A. and 6.3 volts at 3.4 amps. Fully tested and guaranteed. Each member of our staff has purchased one of these receivers-need we say more? We are proud to offer these magnificent receivers complete with 110 volt or 6 volt (state which preferred) power pack

ONLY £16.19.6

COSSOR OSCILLOSCOPE

A truly magnificent first grade L.F. oscilloseope incorporating a hard valve time base, speeds 1-5-40 milliseconds, easily extended for a few shillings to 3 c.p.s. to $30 \mathrm{kc} / \mathrm{s}$. speeds. Has high-class amplifier with controls. Brightness and focus controls, X \& Y shifts. 1.15 V . and 230 v . mains power pack fully in eded. Employs $2 \frac{1}{2}$ in.

R.B.Z. PORTABLE RECEIVER
Covenng 5 to $13 \mathrm{Mc} / \mathrm{s}$. The most compact ocelver ever produced for the U.S. forces. Only gin. $\times 2$ zin. $\times 1$ in. Frighing 3000 oz . vaive permeabis. convertor (oscilistor olxer), (1)-I.8.5. diode detector, AVC ad first audlo ampliher, (1)-I.L.4. 2nd audlo, power amplleter. Lncorporater ou/oli gain and frequency controls. Sapplied com pleve with aesdphones, aerial, aratohing attery container, canvas carrying case with rom and siandard dry batteries, iconsumption 6.5 mA.). Manufactured by Emerson Radio Brand new th original cartons. Fully guaran bed and ready for ONLY

SOLDERING IRON

 Instrument type 230 to 250 volt A.C. 25 W . with neon indicator. Only $16 / 6$ WALKIE/TALKIE SET. Consisting of transrecelver covering 7.4-9 Mc/s., range up to 10 miles, complete with 5 valves, headphones, mierophone, junction 4/- Two for f6 Post MAINS POWER UNIT MAINS POR UNIT 234. Double 240 valts 150 mA .6 .3 volts at 6 amps Standard rack mounting 19 in amps. 6 in. Limited supply ong 19in. x iOin. x AMERICAN ROTARY CONVERTORS. With cooling Fan. input 12 V . D.C. Output 250 v at 90 mA . Completely suppressed. Ideal for running Only $17 / 6$ each. P. \& P, $3 / 6$. CONTROL BOX B.C.602. Complete push-button control box. 4 position and on/off, with dual coloured indicator for instant channel check. In black crackle case Bargain price 5/-each, P. \& P 8/-, P. \& P. $2 / 6$PYE 10in. EXTN. with $36 f$. lead and plug. Brand new, LEAD ACIDACCUMULATORS (unspillable). 2 voles 16 A.H. Ideal for 6 volts and 12 volts supply. Brand new original cartons. Size $4 i n . \times 7 \mathrm{in}, \times 2 \mathrm{in}$. 5/6 each.
3 for 15/-
6 for $27 / 6$
WIRELESS SET NO. 19. \& P. Complete station comprising Transmitter/Receiver $2-8 \mathrm{Mc} / \mathrm{s} .12$ v. Supply unit, Aerial, Variometer, control box, headphones, microphone and all leads, circuit and instruction book. 69 carr. 20/-. S.A.E. for full details.

GEE'S BARGAIN COLUMN

WESTALITE TRANSFORMER WEETIALIER. Oil filled. Primary $\{380-440$ v. 50 cycles, 3 phase. Supfolying 20 v. D.C. at 200 amps. Complete with original control $\left\{\begin{array}{l}\text { panel. Perfect } \\ \text { 200 ex-stores }\end{array}\right.$

ELECTRIC LIGHT CHECK METER. For $200 / 250$ v. A.C. mains at 5 amps. For 200/250 V.A.C. mains at 5 amps. Good condition. Only 25/.. P. \& P. 3/6. MICROPHONE STANDS. 3 sections of $18 \frac{1}{2} \mathrm{in}$. per section. Extends to 56 in . Stands securely on 3 legs which told together for carrying purposes. A robust job, only $21 /=$ P. \& P. $2 / 6$.
C.M.G. 25 PHOTO CELLS (OSRAM). Brand new, 15/-. P. \& P. 1/-
MINIATURE 373 I.F. STRIPS for F.M. tuner as described in "Practical Wireless." Complete with all valves, and circuit. BRAND NEW. ONLY $37 / 6$, post paid.
TELEPHONE CABLE. Twin one mile drums (Don 8), 65. Carr, 20/-. Single one mile drums (Don 3), 50/\%. Carr. $7 / 6$
RECORDING WIRE. $\frac{1}{2} \mathrm{lb}$. spools, $3 \frac{1}{2} \mathrm{in}$ dia. New and unused, 7/6. P. \& P. $/ /=$ COMMAND RECEIVERS. B.C. 454 3-6 Mc/s., 455, 6-9 Mc/s.,good condition $39 / 6$ each type. P. \& P. 3/- each.
METERS. 0 - $1 \mathrm{~mA} .2 \frac{1}{2}$ in. circular F/M 25/. 0-50 microamps D.C. m / c., projecting $2 \frac{1}{2}$ in, round, $49 / 6$.
0-300 v. A.C. $2 \frac{1}{2} \mathrm{in}$. F/M., 251-
O-1 mA. F.S.D. moving coil, F/M. 41n. x 3in. rect. Uncalibrated 49/6, or calibrated 59/6.

S" Meter, 2 in., as used in AR-77 Recelver, 25/- All post paid.
ACCUMULATORS: Bakelite-cased 2 v. 100 A.H., 75 actual. Ex-Govt. New and unused. Complete with carrying handle. Size $6 \frac{1}{2} \times 6 \frac{1}{3} \times 3 \frac{1}{2}$ in., $15 /$ each Carr. 3/6. 3 sent for $50 / \mathrm{F}$, or 6 for $£ 5$ earr. paid. Ditto 16 A.H., $5 /-$: P \& P $2 /-. \dot{3}$ for 24/-. P. \& P. $10 / \ddot{0}$ Ditto, 14
A.H. less handie, $5 /=$ P. \& P. $2 /-6$ for A.H. less handle,
24/-. P. \& P. $10 /-$.

10 v. 10 A.H. ACCUMULATORS (Ex. ide). Glass cased, sıze $7 \mathrm{in}, \times \operatorname{in} . \times 2 \mathrm{tin}$. Brand new. 20/- each.
100 MIXED RESISTORS, $\frac{t}{4} \frac{1}{t}, 1$ and 2 wates. Snip at $5 /-$
TUNING UNITS. For B.C. 610 Trans Receiver. Frequency coverages: 2.5-3.2 Mc / s; or $12-18 \mathrm{Mc} / \mathrm{s}$. New and unused 15/- each freq.

TWIN BARREL SLIDING RESISTOR

 26 ohms at 6.5 amps, very liberally ratedBrand new and unused, 251, \& $P .3 / 6$. TRANSMITTER RECEIVER No 19, Mk. I6. Complete station comprising Transmitter/receiver, power supply unit, Transmitter/receiver, power supply unit, aerial, variometer, control box, head-
phones and mierophone and all connect ing leads. Air tested, $69 / 19 / 6$. Carr. 20/Two complete stations, $\mathbf{1} 20$ carr. paid. Any Two complete stations, $\mathbf{2 0}$ carr. paid. Any
items available separately except Trans/ items ava
Receiver.
SELENIUM METAL RECTIFIERS FB 6 or 12 v . I amp. $7 / 6 ; 24 \mathrm{v} .1 \mathrm{amp}$. $13 / 6$; 12 v. 2 amp., $10 / \mathrm{p} ; 24$ v. 2 amp., $20 / \mathrm{l}$ 12 v. $2 \frac{1}{2}$ amp., $15 / \% ; 24$ v. $2 \frac{1}{2}$ amp., $25 /-$ 12 v. $4 \mathrm{amp},. 16 / 6 ; 24 \mathrm{v} .4 \mathrm{amp},. 30 / \mathrm{l}$ $12 \mathrm{v} .6 \mathrm{amp},. 23 / 6 ; 24 \mathrm{v} .6 \mathrm{amp} ., 35 / \mathrm{s}$ $12 \mathrm{v} .10 \mathrm{amp} .140 / \mathrm{f}, 24 \mathrm{v} .10 \mathrm{amp} ., 80 /$ AMPLIFIER. 12 v. D.C. For Mobile and Outdoor operation. Powered by Converter 2-EL35's or 6L6's in push-pull. verter $2-E L 35$'s or 6L6's in push-pull.
Output 12 watts fitted for mike and gram inputs. A sound and practical unit in inputs. A sound and practical unit in
good condition for only cio/lo/=. Carr. $5 /$. R109A RECEIVERS. Freq, range 2-12.0 megs. In good working order. £4/7/6. Carr. 10/-. A.C. mains 200-250 v., power packs available. 44. Carr. 5/6.
TELEPHONE SET. Ex-Govt. "DON Mk. V " in good working order. Ready to use. 37/6 each. Carr. 3/6.
A.C.-D.C. RECTIFIER POWER SUP. PLY UNIT. $110-230$ v. A.C. 50 cycles input, $100 / 110$ v. D.C. output max. $2 \frac{1}{2}$ amp. $64 / 10 / \%$. Carr. $7 / 6$.

15, LITTLE NEWPORT STREET, LONDON, W.C.2. GER 6794/1453

 ADJOINING LEICESTER SQUARE TUBE STATION Open 9-6 Weekdays 9-1 Sat.
D.C./A.C. ROTARY CONVERTERS

ROTARY CONVERTER. 230 v. D.C. input to 230 v. A.C. output at 230 watts. Brand new and unused. \&15. Carr. IO/-

ROTARY CONVERTER. 110 v. D.C. input, 230 v. A.C. output, 50 cycles, 50 watts approx. Com-
plete in waterproof steel case, $£ 3 / 17 / 6$. Carr. $5 / \mathrm{l}$

ROTARY CONVERTER. 24 v D.C to 230 v.
A.C. 50 cycles, 150 watts. Brand new and unused. A.C. 50 cycles, 150 watts. Brand new and unused £8/10/-. Carr. 7/6. Ditto, 100 watts, E6/9/6. Carr. 7/6

ROTARY CONVERTER. (As illus.). Ex-Gove' 12 v. D.C. input 230 v. A C. Output, 50 eycles at 135 watts. Complete in carrying case with lid. Voltage control, sliding resistance, mains switch and 0.300 v. A.C. flush meter. Brand new and unused, $£ 10$. Carr. Mew and unused, $£ 8,10 \%$, Warr. 5%

TRANSFORMERS

 2.9 kVA. Pri. 230 V., $50 / 60$, Carr, paid.
unused. E25,
E.H.T. TRANSFORMERS. $3,850 \mathrm{v}$, at 50 mA with two additional 4 V . L.T. windings for 230 v .50 cycles primary. New and boxed. 63/15/-. Carr. $5 /$-. E.H.T. TRANSFORMER. 1,800-0-1,800 at I kVA. 230 v. 50 eycles primary. Fully tropicalised. New and boxed. E8/15/-. Carr. 10/.
HEAVY DUTY LT TRANSFORMER. 230 v .50 cycles pri. 11.12 .6 v . at 70 amps . sec. 230 v . 130 cycles pri. 11.12 .6 v . at 70 amps. sec-
Ditto 13.15 v . sec. at 60 amps . Both capable o earrying 25% over actual rating. Perfect condition. earrying 25% over actual rating.
ONLY $115 /$ each. Carr. $5 /-$.

ENTRANT LOUD

 HAILERS (Ex-Govt.) Heavy duty 20 watts all-metal 15 ohms. Diameter 15 in ., length ISin., (approx.). Per. fect condition. E6/10\%: Carr.
BAKERS SELHURST SPEAKERS

12 in. P.M. 15 ohms 15 warts, $30-14,000$ c.p.s. Our price $£ 4 / 10 /-$
H1-FI MASTER" 12 in. 15 ohms. 12 wates, 20-16,000 e.p.s. Flux density approx. $14-15,000$. OUR PRICE E7/10/-.
S5PER MI-F $25,12 \mathrm{in} ., 15$ ohms, 25 watts 25-20,000 c.p.s. Flux density 17,600 . OUR PRICE 9/9/- All the above speakers are Brand New and full deseriptive specification is availablo.

RCA MODULATION TRANSFORM是R. Heavy dury. Pri. 10,400 ohms. Sec. 4,350 ohms. Rew and unused, E5. Carr. IO/:. 190 v. primary. $50-60$ cycles. Secondary $1,500-0$ V. primary. 1,500 or $2,000-0-2,000$ at 1.75 kVA . Brand new and boxed. $£ 12 / 10 / \%$. Carr. $10 /-$.
VARIAC TRANSFORMERS. 230 v. 50 cycles input, controlling $0-260 \mathrm{v}$. continuously at $4 / 5$ input, controlling $0-260$ V. continuously at $4 / 5$
amps. Perfecr order, 69 . Carr. 10% Ditto, at $2 \frac{1}{2}$ amps. Perfecr order, 69.
amps., $£ 7 / 10 / \mathrm{m}$. Carr. $10 /$. amps. $£ 7 / 10 / \ldots$ Carr. $10 /$.
CONSTANT VOLTAGE
190-260 V primary, sec. 115 190-260 v. primary, sec. I 15 v . at I $\frac{1}{2} \mathrm{kVA}$. (listed at $2 \mathrm{kVA})$. Brand new and unused. $£ 25$ or $£ 45$ per pair. Carr. 20/- each.

CEAVY DUTY-ALL STEER TRIPOD STANDS

Adjustable every 6 in. tó approx. 9ft. Gin. when fully extended. (Fo'ds up to only 4 ft . 6in. for storage). Suitable for outdoor speakers, public address systems. floodlighting, etc., etc.

BARGAINS IN TEST EQUIPMENT

MARCONI SIGNAL GENERATOR TYPE TFSI7-F/I. Covering $10-18 \mathrm{Mc} / \mathrm{s}$., $33-58 \mathrm{Mc} / \mathrm{s}$., $150-300 \mathrm{Mc} / \mathrm{s}$ Used but in very good condition. Complete with full technical data and instructions. Limited quantity. Unrepeatable at only $\mathbf{E} / 2 / 10 /$ Carr. 20/-.
VALVE TESTER TYPE 4. $200 / 230 \mathrm{v}$. A.C. input. Ex-Gove., in good condition, with deseriptive book containing circuit diagram of instrument and how to test valves from 1.4 v . to 40 v . With valve holders for Brit., 4, 5, 7 pin and Octal. U.S., 5 and 7 pin, I/Octal, side contact large Brit., 4 and 9 pin. Acorn and diode. Housed in substantial wooden ease with hinged lid. ET//9/6. Carr. 101-.
TEST SET TS-26/TSM. This volt ohmmeter is the correct tester for EE8 tolephones and all standard telephone equipment. Brand new and boxed, with full technical data and calibration charts. $£ 7 / 10 /$-.
PRECISION SERIES 834-S (U.S.A.) Multi range tester for A.C./D.C. volts, ohms and milliamps. Basic movement 400 mieroamps. Housed in wooden box with lid and carrying strap. Over-
all size $7 \frac{1}{2} \times 7 i n . \times 5 i n$. Complete with test prods, batteries, etc. Ready to use, $£ 6 / 19 / 6$. Post $2 / 6$ EVERSHED \& VIGNOLES MEGGER CIRCUIT TESTER (low reading ohmmeter) 2 ranges. $0-3,0-30$ ohms. The perfect meter for continuity and polarity testing. Complete with test leads and ready to use. Brand new. Only E4/17/6. P. \& P. 3/-.
EVERSHED \& VIGNOLES 100 v. MEGGER. Good working order. Limited quantity. ONLY E4/15/0.
EVERSHED \& VIGNOLES. Series II 500 v Megger insulation Tester, with leather carrying case. As new. €20. Carr. paid.
RECORD MEGGERS. 500 v . insulation tester $0-20$ megohms. In leather case, good condition, $t 8$. EVERSHED \& VIGNOLES WEE MEGGER 500 v. New and unused. Only $\mathrm{f} 12 / 10 / \mathrm{-}$. Ditto $250 \mathrm{v}, \mathrm{E} 10 / 10 / \mathrm{F}$. P, \& P, 3/- on each.
AVO TEST BRIDGE. A.C. mains operated from $\mathbf{2 0 0 - 2 5 0} \mathrm{v}$. Will test resistance from 5 ohms to 50 megohms and capacity from 00001 to 50 mids. A most useful instrument for everyday uses. Our price ONLY $£ 7 / 19 / 6$. P. \& P $3 / 6$.

Radio Component Specialist2 since 1946. Staffed by Engineers and Amateur Radio Construetors who enthusiastically try to give you a square deal.

FOR FULL VALUE FOR MONEY

SPEEDY MAIL ORDER SERVICE

QUALITY AMPLIFIER

Tuner companion nuit to the Jason Amplifler giving Ni-Fi lass 3-valve 3 -wat able cost. Mullard's quaity at a season-line-up: EF86, EL84, EZ80. H/duty mains trans. giving extra HT and LT tor tuner Unit adưition.
Variable tre ble cut and bass boost controls sensitivity 100 MV for 3 -watt output
Frequency response
+or
$-1 \mathrm{db}, 40$ to $25 \mathrm{kc} / \mathrm{s}$.
Complete amplifier wired and tested with quality sectionalised output translormer t mumara specifieation.
(less speaker)
Carr. and ins.
88/8/-
Wired Power O/Put Socket with Additional Smoothing for F.M. Tuner $10 / 6$ extra.
Stereo version now under development.

JASON F.M. TUNER UNIT $87-105 \mathrm{mc} / \mathrm{s}$

Designer-Approved Kit of parta to build this modern bighly successful unit drilled chassis and auperior type dial. Colls, caris and all qualty components, etc., for oniy 5 gns. .post free. Set of 4 spec. EF91 or equiv. valves $30 /$-post free. Illusirated
haydbook with full details $2 /-$ post free-free with Kit 49 -h7. Alignment Service $7 / 6$ and $2 /-$ D. \& p. AND NOW-Ja son "' Mercury "Switc bed F.M. Tuner, with A.F.C. 76 and $2 /$ P. \& p. AND NO Wlus $2 / 6$ p. E p. Set of $3 \times$ E.F. 80 valves, special price $21 / \mathrm{C}$.

ELECTROLYTICS ALL TYPES NEW STOCK

TUEULAR

$20 / 25$ v. 50/12 จ. 1/9 50150 च. 4/500 v. 2%
1001250 v.
$8+8 / 450$
$8+8 / 450$
$8+18 / 450$
$18 / 450 \mathrm{\nabla}$
$16+16 / 450 \quad 3 / 6$ $38 / 350 \mathrm{\nabla}$ $\begin{array}{lll}32 / 500 \\ 32+32 / 450 & 5 / \%\end{array}$ Comprehensiv MIDGET TRANSISTRange in stook.
 CONDENSERS-Silver Mica. All pres. values, 2 pl to 1,000 pl., 6 d . each. Ditto ceramios 9 d . each. Tubulars 450 o. T.c.C. 02, 1/500 \quad V., 1j- each. .25 \#uats 1/6. 5 T.C.C. 1/O. $0018 \mathrm{kv}, 5 / 6.0120 \mathrm{kF}$, $8 / 6$. RESISTORS-FULL RANGE 10 ohms10 megrohms 20% \&w. $3 \mathrm{~d} . \mathrm{i}+\mathrm{w} .5 \mathrm{~d} ., 1$ w. 6 d. 5%. $9 \mathrm{d} .10 \$.
W/W RESISTORS $1 / 6$ ($10-100$ ohms $2 /$ -

$5-$ ohms- 30 K ohms $3 /$-.
OK- -2 Meg. (Carbon Track), $3 /$ W/W POTs-Long Spindie-3 watt 100 Ohme-5 Kik ohms, $5 / 6$. 100 K ohms $6 /-$. dised metal $8 \times 8 \mathrm{in} .2 / 3: 12 \times 8 \mathrm{in}, 3 /$; 12×12 in., $4 / 6 ; 12 \times 1610,6$
 12 in ., $2 /-; 12 \times 18 \mathrm{ln} ., 3 /=; 12 \times 2$ inn. $4 /$.
LOUDSPEAKERS P.M. 3 ohms, 2 !in Plessey 17/6. 31in. Goodmans 18/6: Jin. Rola 1616; 6in. Elac. 18/6; $7 \times 4 \ln$. Cood R. and A., $25 /-10 i \mathrm{in}$. WB-BF1012. $89 / 9$; 12ln. Plesse s 15 ohms with $8 \times$ 4in. Tweeter and Cross over Fllter. 97/6.
SENTERCEEL RECTIFIIERS. E. E.E.T. Type
 79: K3110 8 kV. $13 / 6$; cte. MAINS 125 v. $100 \mathrm{~mA} .5 / 8$; RM3 RAF v/ 120 mA ,

 | 607 | $8 / 6$ | EF80 | 106 | PL82 | $10 / 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 V 6$ | $7 / 6$ | EF86 | 1416 | PL83 | $11 / 6$ |
| 6×4 | 76 | EF91 | $8 / 6$ | PY80 | $8 / 6$ |

 Comprebensive range in stock.
special price per set
1R5, IT4, 135,184 or 354 or $3 \mathrm{~V} 4.27 / 6$ DK96, DF96, DAF96, DL96.... 35/ 6K8. $6 \mathrm{K7} 7$, 607, $6 \mathrm{~V} 6,524$ or $6 \times 535 /$ LONME CONTBOLS- $10 K-2$ M MOMME,
 LOO. or LIN. RATIOS $3 /$ 4/8 In our And outpur trans.- Made Fully interleaved and impregnated, ail primaries tapped $200 / 250$ ro dans Trans.-standard $250.0-250 \mathrm{~V}$
 etc., each $7 / 6$. CONVERTOR TRANS. Sec. 200 I.F. CHOKES, 10 H . 65 mA , $5 /-15 \mathrm{H}$ $100 \mathrm{~mA} .10 / 6 ; 10 \mathrm{H} 150$ mal $12 / 6$. SPECTAL TRANS, etc., made to in divdtan requirements.
OUTPUT TRANF.
aualty
HI-FI Type with sect TRallsed and resistance halanced primary windings. Super Silcor Lame sec. 3 and 15 ohme. Primary Imp. to ndivtdual ppec. Fuly shrouded Btock
Types. Mullard 3.3, $37 / 6:$ Mullard 8 watl Types. Mullard 3.3, 37/6: Mullard 8 wath 59/6. ditto with ularn linear mind 5 -10 with ultra linear taps, 69/6, etc.
Lose Tolerance condensers $80 \mathrm{Mica} 10 \%$ Type ${ }^{5} \mathrm{PF}-600$ pf., each 1 1.5 pf . -50 pf Pi, each $1 / 3$. 1% Tppe 00 pf . each $1 / 8 ;{ }^{575}$ pf. $-5,000$ pf EMITAPE RECORDING TAPE,--special

 ALL NEW AND BOXED ALL NEW AND BOXED

2/6 each.

ALL-WAVE RADIOGRAM

 3 WAVEBANDS 5 VALVESLatest midget bva gerieg CH42, EF41, EBC41, EIE EZ40.
. W. $16 \mathrm{~m} .-50 \mathrm{~m}$.
M. W. $200 \mathrm{~m} .-500 \mathrm{~m}$
I.W. $800 \mathrm{~m} .-2.000$ m.

Brand new and guar. A.C. 200/2000 Lonk Gram. P.U. socket. High Q dust core coils. Latest circult technique, delayed AVC and neg. eed back $0 / P{ }^{4}$ Watth Chaesi size $131 \times 51 \times 2 \mathrm{yin}$. Dial 10in. x
4 fin. Hor. or Vert. atation names.

Alimed and callbrated rady for uee sensitiot
and Quality at Low Cost, Carr, and ins. $4 / 6$. with Heavy Duty Mallas and Outpul Transformer.

Carr.
ina. $5 /=$.

RECORD PLAYER BARGAINS

SINGLE PLAYERS. 4 -speed BGR (TU9), $9216 ; 4 \cdot \mathrm{sp}$. COLLARO Jumior with Ac0s
P.U. 90 -- 4-8peed GARRARD (48P), \& $7 / 15 /-$, cait. and ins. $3 / 6$. AUTOCHANGERS, 4-4R. BBR (UAB), £6/19/6. 4-B. COLLARO, £7/19/6; OARRARD (RC121/4D Mk. II), plug-in head, stereo adapted, 10 gns. B8R (UA12),
lateat stereo model, 10 GNs. All above unita are latest 4 -speed models fited
 SELECTION AYAILABLE-AL
BRAND NEW AND GUARANTEED
> C.R.T. Heater

> Isolation Transformers New improved types-mains prim. 200/250v. tapped.
> All Isolation Transformers now suppuied with alternative no boost, plus
25% and plus 60% boost taps at no extra obarge.
> $\frac{2 V}{6} 2 \mathrm{~A}$ type
> ${ }^{6.3 V} .5 \mathrm{FA}$ ype
> 13V 3A type
> Other voltages in course of productinn. Small size and tag terminated for

TRANSISTOR RECORD PLAYER. Ready wired Push-Pull Tranestor Amplliter using latest 4 G.e.C. Transistors. Genulve 1 w. output into standard 3 obms speaker. Buperb quallity with neg. feedback eircut. Var. Tone and Volume cositrols. Speciai atze to fit u/m Player Cablnet Amplifier 6 gus. $8 \times 5 \mathrm{in}$. Speaker 20/. P. \& P. 2/6.
Latest STAAR 45 r.p.m. Record Player unit with Fidelity selfocleaning stylus. Lughtweight and contemporary styled -conslant speed from 4l- $\mathbf{6}$ v. Batters Only 9 2/6. P. \& P. $3 /$.
Record Player Cabinet to fit above units. Attractively covered in red rexine with white poika dot rellef. Fitted with modern styled tret. and surround. Cabinet size $13 \times 81 \times 8 \mathrm{k}$ n. Bargain Price $55 /$ \mathbf{P} \& \mathbf{P}. $3 / 6$. Send for special leafet giving full details.

80 OHM COAX. CABLE NOW ONLY 8d. YARD Filghest Quality Cable low-loss Poly. thene Aeraxial semi-air spaced feeder

 40 yds. $20 /$, carr. $2 /$ Couplers. Plugs $1 / 1 /$ Conx, sockets $1 /$-. Couplers $1 / 3$. out-
let Boxes $4 / 6$. BI-B3 Xover Unit
$7 / 6$.

RECORD PLAYER CABINETS Contemporary btyle rexine corered cabluel $18\} \times 131 \times h t$. 81 in., fitted with all acces sories, fincluding baffle board and plastic et. space avallable for all moderu ampll ders and autochangers, etc. Uncut recor Cabinet Price 2 FALVE AMPLIFIER Curr. and ins. $3 / 6$. eablnet), modern clicouit Fith ELSA output ransformer, $£ 3 / 12 \cdot 6$. carr. and ins. $2 / 1$ Uransormer, ${ }^{2}$ VALVE AMPLIEIER carr. And ins. 2/6
M. complete, wired and teated but with latees twin stage valve ECL82 giving higher fidelty
and greater output, $£ 3 / 19 / 6$ and $2 / 6 \mathrm{P}$. \& P .

Re-GUNNED TV TUBES- genuine offer

New Heater, Cathode and Gun Assembly can now be fitted to your old Tube-Reconditioned virtually as new. Fully Guaranteed to highest standards-as used by our own Service Dept.

$$
12^{\prime \prime} \in 8 \quad 14^{\prime \prime} £ 8.10 .0 . \quad 17^{\prime \prime} £ 10
$$

We regret only Mullard and Mazda types at present Delivery approx. 7 days. Carr. \& Ins. 12/6 Hours 9 a.m.-6 p.m., I p.m. Wednesday

ONLY A FEW ITEMS ARE LISTED FROM OUR COMPREHENSIVE STOCK. WRITE NOW FOR FULL BARGAIN LISTS. 3d.

RETURN-OF-POST SERVICE

ILLUSTRATED LISTS. We now have avatisole eeparate llustrated lists on ail of the following:-

GRAMOPHONE EQUIPMENT.-This Hist details no leas than 14 different thems Inctading Record Chanyers, single Record Players and Transcription Units, some at special prices.
READY BUILT AMPLIFIERS.-Hi-Fi and less expensive popular typen.
Test gear.-Testg Metera. Sigual Generatars, ete., by AVO. Pullin and Taylor.

LOUDSPEAKERS.-Full details of Goodmans, Whiteles, Wharredale, C.E.C., aud Elac typer which we atock
RECORDING TAPES. - We thuve a very wide range of tape and accessorles hy all the well-known nakers.
Any of these lista will be fent free upon request.

AMPLIFHER KITS

MULLARD 510 and G.EC. 912 PL
We carry full stocks for all veraions of these popular Amplifiers and our price lists are avallable free

MULLARD 2 VALVE PRE-A MPLIFTER
Latest Malland clrcuit for use with the 510 Amplifler. Booklet giving full detaile now available $1 / 3$ post free. Complete Kit. Including drilled chassis and control panel, $£ 6 / 12 /-$. Credit Terms. Deposit 19/- and seven monthly payments of $19 /=$

COSSOR 2 VALVE AMPLIFIER
Ready built, nupplied with valves, apeaker and se parate tweeter for home

GRAMOPHONE EQUIPMENT

LATEST TEST METERS

Avo Model 8
Avo Model 8 with leather ase
A VO Model ?
A Vo Model 7 with leather cute
AVo Multiminor
TAYLOR Model 71A
PULLIN Series 100
TAYLOR MONTROSE

MULLARD TAPE C AMPLIFIER

A new verston of this tape amplifier is now available. Detailed parts list on reguest.
HIRE PURCHASE -H.P. Terms are avallable on any item. Repayments may be spreal over 3, 6 or 12 months. Details as follows: three months: depoct $6 /$ - In the $\&$ Service charge 5% but minimum charge $10 /$. Six months: deposit $3 /$ in the f. Service change 10% but minimum charge $20 /$.
TERMS OF BUSINESS.-Cash with ordar or C.O.D. Postage extra under e3. We charge C.O.D. orders as follows: up to 23 prostage and C.O.D. fee minimum $2 / 8$. Over $\& 3$ and
under \&5, C.O.D. fee only $1 / 6$. Over $\& 5$ no charge.

WATTS RADIO ($\begin{gathered}\text { RAAIER }) ~ L T D . ~\end{gathered}$

54 CHURCH STREET, WEYBRIDGE, SURREY Telephone: Weybridge 4556

SERVICING TRANSISTOR
nemerar RADIOS
Postage 1/-
By L. D'Airo.
All phases of transistor radio servicing, includes fundamentals, types of construc. tion, testing, printed-circuit repairs, stage-by-stage servicing explanations and procedures, transistor interchangeability, data charts and glossary.

BASIC PULSE by I. Gottlieb. $26 / \mathrm{F}$. Postage $1 /$-.
RADIO DESIGNER'S HANDBOOK by F. Langford-Smith. 42/-. Postage 2/-. OSCILLOSCOPE TECHNIQUES by A. Haas. 23/-. Postage 1/-

RADIO COMMUNICATION by W. F. Lovering. 60/-, Postage $/ /$.

THE RADIO AMATEUR'S HAND. BOOK. 36th Ed. 1959. By A.R. R. L. 32/6. Postage $1 / 9$.
TRANSISTOR CIRCUITS by R. P Turner. 22/.. Postage $1 /$.
WORLD RADIO HANDBOOK FOR LISTENERS. 1959. 14/6. Postage 1/-

THE MODERN BOOK CO.

 19-23 PRAED STREET LONDON, W. 2BRITAIN'S LARGEST STOCKISTS OF BRITISH AND AMERICAN TECHNICAL B00 KS.
PADdington 4185 . Open 6 days 9.6 p.m.

VALVE VOLTMETER
MODEL V.O. 8 is a portable Meter suitable for the following measurements:
0.05 TO 1000 VOLTS D.C. With an input resiscance of $\mathrm{IIM} \Omega$ on all ranges. 0.1 TO 1000 VOLTS A.C. R.M.S 0.02 to 0.3 MICROAMPS D.C. at high impedance.
RESISTANCE 0.1Ω to $1000 \mathrm{M} \Omega$ Power Supply $200-240$ V. A.C.

Price $£ 17 / 10 /$ - complete.
Please write or telephone for full detoils
SWAN ELECTRONICS
(W) 75, BELLENDEN ROAD LONDON, S.E.I5
Telephone : NEW Cross 7136

	VALVES	H30 \ldots.... 5/5	SP41, 3/6	VUlll ... 2/6	6AO5 7/6	6SK7 $\ldots .$. $6 /-$ $6 S L 7 G T$... $8 j$ $65 N 7 G T$ 76 $65 Q 7$ $\ldots .$. $9 / 3$ 6U4GT $\ldots .$. $12 / 6$	$\left\lvert\, \begin{array}{lll} 125 K 7 & \ldots . & 6 /- \\ 12 S L 7 & \ldots . . & 8 / \\ 12 S N 7 G T & 17 / 6 \\ 12 S Q 7 & \ldots & 8 / 6 \\ 1457 & \ldots . . & 15 / 6 \\ 1502 & \ldots . . & 1 / 9 \end{array}\right.$
		HL2300... 8/6	5P61 3/6	W77 8/6	6AT6 91-		
		K40N 9/-	T41 24/4	W729 1316	6AU6 10/6		
		KF35 8/6	TP22 8/-	$\times 65 \ldots . .11 / 6$	6B4 5/-		
	Guaranteed	KK32 23/-	TP25 $27 / 10$	$\times 78$..... 22/3	6B8G 4/-		
	Tested	$\begin{array}{llll}\text { KLL32 } & \ldots & 8 / 6 \\ \text { KT24 } & \end{array}$	U10 10/6	$\times 79$..... 11/6	6BA6 $7 / 6$	6U5/6G5...18/1	
	Fested	KT24 5/-	422 8/-	Y63 9/-	6BE6 8/-	6U5G , ... 8/6	19AQ5 ... 9/9
	Before	KT33C ... 10/.-	U25 15/-	Z309 $\ldots \ldots . .9 / 6$	6BG6G ... 24/4	6U7G 8/6	19BG6G ... 24/4
		KT36 $27 / 10$	U26 \ldots..... 12/6	2359 9/6	6BH6 16/m	6V6G...... 7/	200116
		KT55 11/6	U37 27/10	Z759 9/6	68.16 ….. 9/-	6V6GT ... 7/6	20 F 2 27/10
		KT61 14/-	U45 15/-	IA3 3/6	6BR7 11/6	6V6M 8/6	20LI 27/10
		KT63 $\ldots \ldots . .716$	U50 8/-	IA7 12/6	6BW6 ... 9/-	6×4 ….. $7 / 6$	20PI 27/10
		KT66 15/-	$\cup 403 \ldots . .17 / 5$	IA5GT ... 6/-	6BW7 ... 10/-	6×5G...... 71-	20P3 24/4
AC6PEN... 6/6	${ }_{\text {ECL83 }} \ldots 14 / 6$	KTW61 ... 616	U404 11/10	IC2 $\ldots \ldots . .11 / 6$	6C4 $\ldots . . .7$ 7/-	6×5GT ... 7/-	$20 \mathrm{P5}$...... 20/11
AC/THI ... 34/9	EF22 \ldots..... 8/6	KTW63 ... $7 / 6$	U801 31/4	IC5GT ... 12/6	6C5GT ... 6/6	6/30L2 $\ldots 12 / 6$	25A6G $\ldots 11 / 6$
ATP4....., 3/6	EF36 6/-	KTZ41 ... 5/6	UABC80... $10 / 6$	ID5 12/6	6C6 …. 5/-	7B7 8/6	25L6GT ... 10\%
AZ31 15/-	EF37A ... 12/-	MH41 $7 / 9$	UAF42 ... $9 / 6$	ID6 …... 12/6	6CD6G ... 31/4	7B8 6/-	25YSG ... $9 / 9$
CBL31..... 24/4	EF39 $6 / 6$	MSP4/5 ... 1/16	UBC41 ... 10/-	IH5GT ... 10/6	6CH6 9/-	7C5 8/-	$25 Z 4 \ldots . .916$
CCH35 ... 24/4	EF40 14/6	MSP4/7 $\ldots 1 / 1 / 6$	UBF80...... 9/6	IL4......... 6/6	6D6 …上. 5/-	7C6 8/-	25Z5 101-
CL33 $20 / 2$	EF41 9/9	N37 18/1	UCC84 ... 20/11	ILD5 $3 / 6$	6F6G 7/6	7D6 13/6	2526 101-
CY31 16/6	EF42 11/-	N78 12/6	UCC85 ... 12/-	IN5 1016	6F6M 7/6	7H7 9/-	30 F 5 1016
DAF96 ... 10/6	EF50 4/-	OZ4 5/6	UCF80 ... 23/-	IR5 8/6	6FI 14/-	707 ….. 91-	30FLI 10/6
DF96 10/6	EF50SYL... 7/-	P61 3/6	UCH42 ... $10 / 6$	IS4 10/6	6F13 14/-	757 9/6	30P4 21/7
DH63 9/-	EF54 61-	PCC84 ... 101-	UCH81 ... 11/6	155 $7 / 6$	6F15 14/-	7Y4゙......... 8/6	$30 \mathrm{PI} 12 \ldots . .12 / 6$
DK96 10/6	EF55 101-	PCF80 ... 13/6	UCLB2 ... 23/-	174 71-	6G6G 4/6	8D2 $2 / 9$	30PLI 12/6
DL96 10/6	EF80 8/6	PCF82 ... 12/6	UCL83 ... 171/	IU5 7/6	6H6 216	$9 \mathrm{~S}^{\text {2 }}$...... 3/6	35L6GT ... $9 / 6$
DM70, 8/6	EF85 9/-	PCL82 ... 12/6	UF41 $10 / 6$	2 C 26 $1 / 6$	6H6GT $\ldots . .2 / 6$	IOFI 27/10	25 Y5 \%/19
EA50 1/6	EF86 14/6	PCL83 ... 16/-	UF85 1016	2×2...... 416	615M $6 / 6$	10FI	$35 \mathrm{~W} 4 \ldots . . .{ }^{8 / 6}$
EABC80 ... 10/-	EF89 10/	PL38 20/-	UF89 10/6	3A4 …… 71-	616 $61 /$	(surplus) 15,	$35 Z 4$ GT ... 8/-
EAF42 ... 10/6	EK32 8/6	PL81 16/-	UL41 $10 / 6$	3A8GT ... 6/-	617G 6/6	10P14 20/2	42 8_{1-}
EB34 2/-	EL32 5/6	PL82 9/6	UL44 27/10	3D6 5/-	6J7M 9/-	12A6 6/6	3575GT ... \%/-
EB41 ….. $9 / 6$	EL33 $20 / 2$	PL83 11/6	UL46 $24 / 4$	3Q4 9/-	6K6GT71-	12AH8 ... 11/6	$50 \mathrm{C} 5 \ldots . . .11 / 6$
EBC33..... 7/6	EL38 27/10	PX25 12/6	UL84 11/6	3Q5GT ... 9/6	6K7G1...... 5f-	12AT6 ... 1016	50CD6G 31/4
EBC41...... 101-	EL41 11/-	PY80 91-	UU6 20/11	$354 \ldots$	6K7M 6/9	I2AT7 ... 9/-	50L6GT ... 816
EBF80 10/6	EL42 12\%	PY81 10y-	UU8, 27/10	3V4........ 91-	6K8G 8/6	12AU6 ... 10/6	75 11/6
EBF89 12/6	EL84 10/6	PY82 9/-	UU9 8/6	4DI 3/-	6K8GT ... 10/-	I2AU7 ... 8/-	77 7/6
EBL21 ... 24/4	EM34 9/6	PY83 10/-	UY41 816	5R4GY ... 9/6	6K25 20/11	$12 \mathrm{~A} \times 7$... 9/-	80 $8 / 6$
EBL31 ...24/4	EM80 10/6	PZ30 20/11	UY85 10/-	5U4G $81-$	6L6G 8/6	12BA6 ... 9/-	1428T ... 3/6
ECC84 ... 10/3	EY51 13/6	PEN4DD 27/10	VPI3C ... $3 / 6$	5Y3G 81-	6L7 7/6	128E6 10/-	I85BT ... 34/9
ECC85 ... $9 / 6$	EY86 13/6	PEN4VA... 151-	VR22 ...	5Y3GT ${ }^{\text {a }}$... 8/-	$6 \mathrm{LI} 18 \ldots \ldots .13 / 6$	12C8 9/-	210DDT ... $4 / 6$
ECF 80 ... 13/6	EZ40 9/-	PEN25 ${ }^{\text {a }}$.. 5 5/-	(PM2A) 3/-	5Z4G 10/m	6N7 $7 / 6$	12H6GT ... 31-	$210 \mathrm{VPT} . . .3 / 6$
ECF82 $\ldots 13 / 6$	EZ80 8/9	PEN44 ... 27/10	VP23 $6 / 6$	6A7 $\ldots . . .12 / 6$	6P28 27/10	1215GT ... 3/-	807 6/6
ECH21 ... 24/4	EZ81. 11/10	PEN45 ... 27/10	VP41	6A8G 10/-	607G...... 9/-	1217GT ... 10/6	
ECH35 \ldots 10/6	EZ90 8/-	PEN46 ... 7/-	VRI05/30 8/-	6AC7 $6 / 6$	6Q7GT ... 9/-	12K7GT ... $7 / 6$	955 $4 / 9$
ECH42 ... 10/6	E1148..... 2/-	PEN220A 4/-		6AG5 $5 / 6$	6R7 \ldots....... 91-	12K8GT ... $13 / 6$	956 $3 / 6$
ECH81 ... 11/m	FCI3 $6 / 6$	PENA4 ... 15/-		6AK5 6/6	6SA7GT $\ldots .$. 6SG7 6S	$\begin{array}{lll} \text { I2Q7GT } . . . & 7 / 6 \\ \text { 125G7 } & \ldots . & 7 / 6 \end{array}$	9001 $\ldots . .$. $5 / 6$ 9003 $\ldots .$. $5 / 6$
ECL80 ... 13/6	FW4/500... 10/-	QP21 7/6	VU39 ... 3/6	6AL5 6/6	6SH7 …… 6/		9004 …... $5 / 6$
ECL82 ... 13/-	GZ32 12/-	R16 27/10	(MU12/14) $8 / 9$	6AM6 $7 / 6$	6S17......... 8/6	12517 8/-	9006 5/6

SILICONE COATED MAINS DROPPER
RESISTORS
Available in the following types:
Midget Type: 11 amp .2000 ohms $5 / 3$ each
. 15 mmp .1500 ohms 5/3 each
Standard Type: $.2 \mathrm{amp} .1000 \mathrm{ohms}$.
6/- each
Long Type: . 2 amp .1000 ohms .3 amp .1000 ohms 6/- each The above droppers have a fixed clip it each end and 2 slider clips.

CARBON TRACK DUAL GANG

 POTENTIOMETERSType SP5—3K linear Frone Section, $\frac{1}{2} \mathrm{M} \log$ Rear Section DPS. Used in English Elec. T40-T41-C42. $13 / 6$ each.
Type SP32-20K linear Front Section. I Meg, log rear Section D.P.S. Used in Bush
Clarostat 37. Dimensions: $1 \frac{1}{6} \mathrm{in}$. diameter, depth of case without switch $19 / 32 \mathrm{in}$. Spindle diameter tin., length $2 \frac{1}{2} \mathrm{in}_{\text {, }}$ with full length flat. Type 37 less switch, available in $5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$, t meg., $\frac{1}{2}$ meg., 1 meg., 2 meg. $2 / 10$ each. 37 S . As above but with Double Pole Switch. $4 / 6$ each.
100 Brand New Resistors, $\frac{1}{4}, \frac{1}{2}, 1$ and 2 watt, our selection. $12 / 6$

DOUBLE POTENTIOMETERS FOR

1 Meg. +1 Meg. Linear
$500 K+500 K$ Linear All $6 / 6$ each $250 \mathrm{~K}+250 \mathrm{~K}$ Log

CABLE T.R.S. FLEXIBLE
23/36 3-core Flexible Cable, sultable for all portable cools, etc. 25-yard coil $\mathbb{1}$. Shorter lengths at 1/- yard.

HEATER TRANSFORMERS
$6.3 \mathrm{v} .1 \frac{1}{2} \mathrm{amps} .6 / 9,6.3 \mathrm{v} .3 \mathrm{amps} .10 /-$
ESCUTCHEONS. For 12 in , and 17 in . Tubes. 7/6 each.

RECORDING TAPE

Paper base, plastic reel $1,200 \mathrm{ft}$. 12/6. Empty Spools, 3 in. $3 /-, 5$ in. $3 / 6$, $5 \frac{1}{3}$ in. 3/9, $7 \mathrm{in} .4 / 3$.

THE LATEST COLLARO "CONQUEST " Automatic record changer. Fitted studio " O " cartridge. $£ 7 / 19 / 6$. P. \& P. $3 / 6$.

GARRARD 45
Single record 4 -speed unit. Brand new and guaranteed. Complete with turnover crystal
head. $£ 6 / 19 / 6$. P. \& P. $3 / 6$.

THE FAMOUS " MONARCH

B.S.R, UAB-4-speed automatic changer $66 / 19 / 6$. , \& P, 3/6.

L.T. METAL RECTIFIERS-FULL WAVE

 12 volt 1 amp. $4 / 3 ; 12$ volt 2 amp . $7 /-$; 12 volt $3 \mathrm{amp}, 10 / \mathrm{f}$; 12 volt $4 \mathrm{amp} .12 / 6$: 12 volt 6 amp . $15 / 9$.
ACOS MICROPHONE 39°

Pencilostick crystal hand Mic. Listed 105/-. Special price 59/6. P. \& P. I/6.

ACOS MICROPHONE MIC 33-1
Crystal hand or table use. Omnidirectional, brand new in sealed carton. Listed 50/-29/6 brand naw in sea

RECORD PLAYER CASES. Uncut motor board. Will rake Collaro or B.S.R. Monarch board. Will take Collaro or B.S.R. Monarch each. P. \& P. $3 / 6$.

OUR 1958/59 FULLY ILLUSTRATED
OUR 1958/59 CATALOGUE
of components and accessories-invaluable for enthusiasts and engineersis now available. Send $I /=$ in stamps for your copy.

TERMS: Cash with order or C.O.D. Postage and Packing charges extra, as Postage and Packing charges extra, $10 /$ add $1 / 6 ; 40 /$ add $2 /$; 45 add $3 /$ - unless other wise stated. Minimum C.O.D. fee and wise stated.
portage full terms of of our catalogue
Personal Shoppers ? m to 5 m.m. Mon to Friday. Saturday 10 a.m. to i p.m

SAMSON'S SURPLUS STORES LTD LONDON'S GREATEST DEALERS IN ELECTRONIC AND RADIO EQUIPMENT

STC RECTIFIER SUPPLY UNIT No. A.C. input 100-250 volts, $45-65$ cycles. D.C. output 24 volts 11 amps and 130 volts $600 \mathrm{M} / \mathrm{A}$. Very conservatively rated, L.T. and H.T. completely smoothed. All circuits fused. Mains on/off switch. Built in grey metal cabinet, height 200 Ib . An ideal L.T. supply unit for the electronic industry, research laboratories and schools, etc. Supplied new with instruction manual t|7/|0/- ex warehouse.
HEAVY DUTY L.T. TRANSFORMERS No. 1. Pri. 230 v. 5 Sec. 50 v. 50 amps . adjustable by voltage regulator stud switch on primary Built in steel case with meter reading 0-100 Mains switch and O.P. sockets, will stand 100% overload. Supplied brand new, E15. Carr. according to distance.
No. 2. Pri. 230 v . Sec. tapped $4 \mathrm{v} ., 6 \mathrm{v}$., 10 v ., 200 amps . $88 / 10 /$-. Carr. 7/6.
No. 3 . Pri. $200-250 \mathrm{v}$. Sec. 50 v . 30 amps . $\mathbf{C 6} / 10 / \mathrm{F}$ Carr. 7/6.
No. 4. Pri. 200-250 v. Sec. tapped 28, 29, 30 , 31 volts, 21 amps. $64 / \mathrm{jo/-}$. Carr. $7 / 6$.
No. 5. Pri. $150-250 \mathrm{v}$. Sec. 50 v .20 amps . $\mathbf{6 4 / 1 0 / - 1 .}$ Carr. 7/6.
No. 6. Pri. 230 v . Sec., three windings of 5 v C.T. 5 A. each and one 4 V .5 A Ported rype 29/6. Carr. 4/-.
No. 7. Pri. 230 v . Sec., three windings of 6.3 v.C.T. 5 A. and one 6.3 v .5 A . Potted type. 25/-. Carr. 4/-.
No. 8. Pri. $200-250 \mathrm{v}$. Sec. 12 v .8 .5 A. Tropically rated. 27/6. Carr. 3/6.
No. 9. Pri. $200-250$ v. Sec. 6 v. 8.5 A. Tropically rated. 17/6. P.P. 3/-
No. 10. Pri. $200-250 \mathrm{v}$. Sec. 45 v .2 A . Enclosed in metal case with carrying handle. 19/6. Carr. No. 11. Pri. 200-240 v. Sec. 6.3 v. 15 A. $27 / 8$. P.P. 3/-.
No. 12. Pri. $200-250 \mathrm{v}$. Sec. tapped 42 v., 15 v . No. 12 . Pri. 200-250 v. Sec. tapped 42 v., 45 v .
48 v .50 A . Tropically rated. El 10 ex warehouse.

Abstract

We now have London's largest and most comprehensive walk-round dept. This enables you to see our enormouse stocks of electronic and radio equipment too numerous to advertise. We invite you to browse without any obliga-

 monthly account orders accepted.A.M. L.T. SUPPLY UNIT TYPE II5. A.C input $200-250$ v. D.C. output 24 v. 26 a. Rating continuous. Ideal for charging $24 \mathrm{\gamma}$. batteries at a high current. Size Ift. $8 \mathrm{in}, x$ Ift. 7in, x Ift. 5 in . 15 ex warehouse.
SPECIAL OFFER.
TYPE AUTO WOUN.D. TWO CIRCUIT A.M. TYPE WOUND TRANSFORMERS. witch ine No. 2773. Input 225-230 V . with switch
$240,245,250,255,260,270$ volts, 75 amps. With either switch in start position. Output No. 1 or 2. 270 v., $290 \mathrm{v.}$,310 v ., 100 amps . I minute in two hours. Other outputs as in run position but at 50 amps . The transformers
are built in heavy metal cabinets approx. Weight are built in heavy metal cabinets approx. Weight
$3 \frac{1}{2}$ cwe. with sloping desk front on which the start/run switches and $20-100$ M.I. ammeters are mounted. With an alteration of the exterior
wiring 100 volts at 35 amps can be obtained. 25 ex warehouse.
TELEPHONE CABLE. Single D3. $1 / 3$ rd mile drums 19/6, carr. 4/6. Commando telephone cable, and cele. cable and very useful in the home and garden. Cheaper than string. $8 / 1 \mathrm{I}$. P.P. NUTS BOLTS WASHERS $42 / 6$, carr. $7 / 6$. offer $5 /$ - carton of $2,4,6$ and 8 B. A nuts, boles and washers. P.P. I/-. SLEEVING, mixed bundle, $1 \frac{1}{2}-4$ mil., various colours. Wonderful offer.

169-171, EDGWARE RD., LONDON, W. 2.

AMERICAN VARIAC TRANSFORMERS. Input 230 v. Output $0-260$ v. 9 amps. Supplied brand new in maker's carton. 615, carr, and packing 12/6. Limited supply only.
FIELD TELEPHONE TYPE F. With ringing generator. In perfect condition. Complete with handset and batteries. Ideal for factories, building sites, offices, etc. $£ 6 / 19 / 6$ per pair. Carr. 7/6. VOLTAGE REGULATORS. Lilliput Minor Mk. 11 , load $3 / 0.73$ amps, 11 volts. Supply voltage
$19 / 25$ v. Supplied brand new. $12 / 6$. P.P. $3 / 6$. U.S.A. 813 CERAMIC BASES. Post free $3 / 6$. AMERICAN THERMOSTATS. By Fenwal. Inc. Set at 50 deg. F. Switch contacts 230 v. A.C. 12.5 amps . Length 4 in , dia. Set at 110 or 120 deg. F., switch contacts 230 V . A.C. 5 amps. Length 4 in ., dia. $\frac{1}{\text { in }}$. $17 / 6$. P.P. $1 / 6$. A.M. HEAVY DUTY AIR BLOWERS. AC 220-240 v. Driven by $0.4 \mathrm{~h} . \mathrm{p}$. motor. Inlet 6 tin. Outlet 5×4 in. Complete with intake filter unit upplied brand new. \&|5 ex warehouse. Other ypes available. Let us know your requirements. A.M. HEAVY DUTY A.C. 200-250 v. ALARM BELLS. Twin gong. Brand new. 35/-. Carr. 5/-. SPECIAL OFFER PERIFLEX SLEEYING. mm . one gross yard coils, yellow and brown. 2/6. Post free.
CARBON RESISTORS. $1+3$ watt. Carton of 100. Good selection of values. $10 /$ per carton. P.P. I/=.

ROLLS-ROYCE COOLANT PUMPS. spling-duty turbine pump driven directly from a outlet socket, 1,000-1,500 g.p.h. $\quad \frac{1}{2}$ in. bore outlet.
ADMIRALTY THREE-PHASE TRANS ORMERS. Pri. 400-440 ₹ 50 cycles. Ser 50 v. 6 amp. Completely tropicalised. Size $7 \frac{1}{16} \times 14 \times 5 \mathrm{in}$. Weight approx. $60 \mathrm{lb} .85 / \mathrm{l}$. Carr 7/6. Brand new in maker's cases.

$\star \star$ SPECIAL OFFER $\star \star$ "THE MELODY MASTER" GUITAR AMPLIFIER

 (ORIGINAL PRICE 12 GNS.)

Two inputs suitable for guitar, record player or microphone.

* Four controls: Vol. 1, Vol. 2, Bass
\star Four watts output, 8 In . Ioudspeaker. Superb black-and-white polka-dot case with gilt flttings.
\star Overall size $14 \times 11 \times 6 \mathrm{in}$.
\star A.C. malns $200 / 250$ volts. for free leaflet.)
Now only 27-19-6 plus $7 / 6$ carriage.

DE-LUXE

PORTABLE AMPLIFIER CASE
A truly attractive case, modern contemporary styling with latest black-and-white polka-dot rexine, gilt piping and fittings. Sturdy black moulded handle. wide, 18 in . long. Uncut motor board $15 i \times 13 \mathrm{in}$.

Price £3-19-6 plus 5/- carriage.

2-3 WATT AMPLIFIER

A good quality low-priced amplifer with volume and tone controls. ECL82 triode pentode valve, metal rectiffer, mains transformer, output transformer 2-3 ohms. Ample output, suitable for A.C. mains $200 / 250$ volts. Complete with matching $6 \frac{1}{2}$ in. speaker.

Price 23-19-6 plus 3/6 carriage.

STEREO AMPLIFIER

Latest 4 -valve 4 -control twin-channel amplifier, $3 \frac{1}{2}$ watts per channel. Twin ganged tone control, twin ganged volume control, balance control and special switch for channel and speaker combinations. A.C. mains $200 / 250$ volts. Complete with high flux elliptical speaker.

Price 28-17-6 plus $3 / 6$ carriage.

10/- discount if any two items purchased together.

8" EXTENSION SPEAKER CABINET

Suitable for use with stereo amplifler and above case. Style covering and size as Melody Master case illustrated on left. Price 45/= plus $3 / 6$ carriage.

JUST A FEW LEFT
Brand new guaranteed 5-valve superhet A.M. radiogram chassis. Send for free leaflet.
Price $87-10$ - 0 plus 10/-

8in. spenker P.M. 2-3 ohms.钟 plus 3/- carriage.

SUPERIOR RADIO SUPPLIES LTD.

37 HILLSIDE, STONEBRIDGE, N.W. 10
Telephone: ELGar 3644
9 o.m. to 6 p.m. (Holf Doy Thursday)

\sum visit the City＇s new acoustically．designed Heficentre．

COME AND HEAR THE LEADING MAKES IN AMPLIFIERS，TUNERS AND SPEAKER SYSTEMS

AMPLIFIERS BY：	
VERDIK	GOODSELL
ARMSTRONG	QUAD
ROGERS	LEAK
DULCI	W．B．，etc．

V．H．F．TUNERS BY：	
ARMSTRONG T．S．L．	
LEAK	
QUAD	
ROGERS，etc．GOLCI	

LEAK DULCI
ROGERS，etc GOODSELL

HI－FI SPEAKERS BY：	
GOODMAN	W．B．
PLESSEY	T．S．L．
WHARFEDALE	G．E．C．
LORENZ，etc．	

HURRY！

THE END OF THIS WONDERFUL OFFER DUE TO CANCELLED EXPORT ORDER

LIMITED NUMBER AVAILABLE BRAND NEW AND GUARANTEED

 The Famous COLLARO Mk． 3 Tran－ seriptor Tape Deck．Twin track， 2 record／ playback， 2 erase heads on 2 levels，pause control，digital counter， 3 speeds， 2 bal－ anced motors of low watrage input． 15 gns． WHILE STOCKS LAST．Crating and carr． 1776.Build yourself a HI－FI TAPE RECORDER．
The Collaro pre－amp and bias oscillator com－ plete with power pack for the above deck． with instructions．Price $£ 15 / 19 / 6$ ．Post and pkg． $7 / 6$ ．
The above two items at a special price of $\mathbf{E 2 9 / 1 7 / 6}$ ． Carr．and pkg．22／6 the two units．
The Linear Tape Deck Amplifier with power pack and oscillator incorporated power pack and oseillator incorporated． for the Mk ． $3 \frac{1}{2}$ ，$\frac{1}{2}$ and 15 in ．per sec．Suitable pkg．3／6．

A GIFT FOR THE SERVICE MAN

BRAND NEW IN CASE

 The Weston Model 772 Type 6 super sensitive analyser． This precision de－ signed multi－range test instrument has a large visible fine－ ly divided scale giving some of the range shown． Range：D．C．volts 20,000 ohms per volt or 1,000 per volt． 2.5 volt range 50,000 ohms． 10 vo＇t range 200,000 ohms． 50 volt range 1 megohm． 250 volt range 5 meg－ ohms． 1,000 volt range 20 megohms．Ohms： meg．D．C．milliamps： $10,50,250 \mathrm{IM} / \mathrm{A}$ or 50 microamps．A．C．volts： 1,000 ohms per vole． ONLY E $12 / 10 /-$ plus cost and pkg． $7 / 6$ ．STOP PRESS．Limited number of Brennell Tape Heads，erase and play record，49／6 per pair．Post \＆Pkg．1／6．

STEREO

NOW IN STOCK AND DEMONSTRATING Rogers Stereo Control Unit，designed to match RD Junior Units．Price $£ 18 / 10 \%$ ． Jason JSA Stereo Amplifier， 4 w．，E23／I5／－． Jason J1－10 Stereo Amplifier， 10 w ．，$£ 37 / 10 / \mathrm{F}$ Amplion Stereo Compaet Amplifier，beauti－ Amplion
fully designed， 4 w ．In silver－grey case．13⿺𠃊⿳亠丷厂彡 $\mathbf{~}$ gns．
Dulci Stereo 2 pre－amp．， 9 gns．
Dulci Stereo 8 pre－amp．， 22 gns ．
Dulci Stereo SP44 amplifier， 12 gns． Leak Stereo 20 pre－amp．， 29 gns． Leak Point I Stereo pre－amp．， 20 gns Elpico stereo compact amplifier． 15 gns ． Armstrong stereo 12 radiogram chassis， bands，each channel，FM，p／pull，L．and M． bands，tape record and playback for stereo
and monaural． 37 gns ． and monaural． 37 gns ．

A FEW ONLY BY MAKER

13 channel turret tuner complete with coils，with Mazda 30 LI and 30 Cl valves IFS sound $38 \mathrm{M} / \mathrm{c}$ ，vision $34.5 \mathrm{M} / \mathrm{c}$ ．Cir－ IFS sound $38 \mathrm{M} / \mathrm{c}$ ，vision $34.5 \mathrm{M} / \mathrm{c}$ ．Cir－
cuit available．New and unused．Our price $67 / 6$ ．Post and pkg． $2 / 6$ ．

LIMITED NUMBER SPECIAL OFFER

For the Hi－Fi enthusiast－Collaro 4－speed tran scription motor and p／up using the new TX88 Studio cartridge．Brand new．List price $£ 19 / 10 /$ ． OUR PRICE $616 / 19 / 6$ ．

CONDENSERS

BLOCE PAPER CONDENSERS
 15 PAFER CONDENSERS

 $1 \mathrm{~kg}, 2 / 6$ each. 1 mid., 750 v . 4 kg. $3 \mathrm{kr}, 4 \mathrm{~kg} .3 / 6 \mathrm{erch}$. 2 mid 1 mid . wkg., $4 /$ each. 3 midd., 400 v. wikg.
 4 md .4 rald., 400 . kv , wkg., $5 / 6$ each. motd, 1,200 v. Hkg
mid., 41166 each. 0.1 en 3 rafd., $\$ 00$ v. A.C. wkg., $5 / 1$ each. mid., 600 w. wkg.. $5 /-$ each. 4 nird 2 kv . wkg-; $8 / 6$ each. 8 mid., 500 kg ., 419 each. 10 mid ., 440 v. A.O A.C. 226 each. P.P. $9 / 6$.

VIBCONOL TYPES, $10 \mathrm{mid} ., 3 \mathrm{kv}$, wikg., $25 /-$ each. 10 infd., $1.5 \mathrm{kv} ., 15 /=$ each
 ROTARY CONVERTERS, 24 Y. D.C. lapur, . 30% each, post of
D.C. MOTORs. Brand new with starters, 1t h.p., 3 h.p., 5 h.p., all 110 volls, Also

VARIABLE CONDENSERS, air spaced, $5 \mathrm{pL}, 15 \mathrm{pf}, 25 \mathrm{pf}, \mathrm{a}$ ad 50 pf with 1 la pladle, $2 /=$ each. Pre-vet types, $1 / 6$ each Double spaced 25 pt, 4/6 each, 100 pf

RHEOSTATS (by OHMTE). 25 ohms, 2 amps., $17 / 6$ each (new). W/W pots, 6 hmen, 5 watta, $1 \% \mathrm{in}$. spindle, $2 / 6$ each.
R.F. UNITS, type 26B. Brand new in cartons, $18 / 6$ each. P.P. $2 / 6$,

RECEIVER BC 624C (part of SCR 522). This well-known recelver covers 100 to $156 \mathrm{Mc} / \mathrm{s}$., the " C " Is the latest type whth locorporates several mods, over the eariler models, nolse limiter, AVC, squelch circuit and extra nado stage. The powet with 11 walres, $\varepsilon 9 / 2 / 6$ each with circuit. P.P. $3 / 6$. (As described in the Surplus Radio conversion Manual Vol. 1.)
BC640B TRANSMITTERS, $\mathbf{1 0 0 - 1 5 6 ~ M c / G . ~ A ~ f o w ~ c o m p l e t e ~ u n i t h ~ s t I I I ~ a v a l i a b l e , ~ £ 3 0 . ~}$ POWER FACTOR CONDENSERS. 70 mfd ., 380 volth A. 3 . plus 170 mid., 250 voli A.c. Working continuous, ofl filled tropical rating, fitted with discharge resistor. $£ 10$ each.
TRANSFORMERS $300 / 250$ \%., huput 115 ₹., at 60 amps (double wound) with all sec.used, steel case, etc., $£ 15$ each. P.P. \&1. Welght $3 \frac{1}{1}$ owt
RANGE CONVERTER UNITS (as used with the Re06), Freq. $115-600 \mathrm{kc} / \mathrm{s} .$, valve ARTH2. EF39, slow motion drive and 3 -gang 0005 tunlng con., etc., $32 / 6$ each. post 5
RELAYS 12 volt (semi rolary) 3 P., D.T., large ailver contacts, \%/6 each.
GRAYHAM GEARED MOTORS. 115 volte A.C. 50 cys., 1/6th H.P., variable npeell astbox 0-168 R.P.M. (ss new). 88/10/- each. Transiormer to operate this unl 35/- each. Carr. 10/-
AMERICAN L.T. TRANSFORMERS. Potted type, finished In black crackel and very conmervativoly rated. (1) 2307 . input, 3×5 volts CT., at 3 ampa each and 4 volt at 2 smps output, $18 / 6$ eark. (2) 230 v ., input, 2×6.3 volta CT., at 3 amps and 6.3 volts at 3 anups output, 1818 each. (3) 230 volts input, 2×8.3 rolts at 3 amps and . 3 volts C.1.. at $2 m p s$ I. 6.3 rolt 3 mp. $29 / 6$ each. (All these transformers are new and boxed, please nelude postage $3 /$ /t each.)
MODULATION TRANSFORMERS as used in the BC 640, 50 watts, modulnte two 811's, $39 / 6$ each, new boxed, 3/. post
"C" CORE TRANSFORMERS. 200/250 v. pri., $350-0-350$ tapped $250-0-250$ v
 r. at 1.7 amp and 6.3 v. at $0.3 \mathrm{amp}, 10 / 6$, post $1 / 6$. $230 / 440 \mathrm{v}$. pri., 00 cys., $2 \times 115 \mathrm{~s}$. it 1 amp each and 24 vis at $0.8 \mathrm{amp}, 35 / 6$ each, post $3 / 60.230 / 440$ V. pri, 725,750 , 775 and 800 v. nt $300 \mathrm{mls} .400 / 250 \mathrm{~F}$. nt 200 mls ., $38 / \mathrm{L}$, each, port $3 / 6$
AMERIOAN COMPUTERS AN-II-70A. Single parallax. Containg 8 relnys 10 k , change-over plat. contacts, 8 relays 300 ohms, $\frac{0}{5}$ change over silver contacts (al elays are small type), $9 \times 6 \mathrm{~V} 6$ gmall GT., $3 \times 6 \mathrm{X} 5$ GT., and 26 6RN7. Seven sma D.C. motors 27 .., 6 selsya motors, 10 small micro. switches. Plus gears, conden COMPUTER CP-8 APO-13 Contains $13 \times$ PSNT 3×6847 and KY3.
COMPUTER CP-6 APQ-13. Contains $13 \times 68 N$. $3 \times 68 A$ sad $5 Y 3$. Three smal A MPLIFIERS. 50 watte 200/250 v . Inpul., 800 ohm line output. $222 / 10 /$
TRANSMITTERS ET 4336 reconditioned tested and in working ordex.
ATRCRAFT TRANSMITLERS. U.S.A. T47-ART-13.
Receivers type APR5A. 1,000 to $6,000 \mathrm{Mc} / \mathrm{s}$. S.G. BC
127rA. LZ frequency meter.
Prices for these items upon request
FUSE EOLDERS. U.B.A. type, panel mounting, $2 / 6$ each. post oud
Now in stock large quantity of Anerican cartridge fuses, aircraft and radio. Your entod
APPARATUS SELECTIVE CARRIER No. 1. Thin G.P.O, unit is a portable trans/ rec. to provide speech comnaunicathon on a number of high freq. cirrier waves over one pair of overhead wires. Dens use with Tole L or F ranges up to a 100 milles may be expected. Price upon request.
STATTIMETERS (KDC). 7in., scale 0.150 Kilogrammes. $88 / 10 /$ each. Scaled -370 Kilegram

PRESSURE GADGES (to read inches of mercury) Hin., scale $0-250 \mathrm{~h} . \mathrm{g}$. Ne \mathbb{W} in cartons. £2/10/- each. P.P. 2/6.
AMERICAN AIRCRAFT GADGFS, 3 in one case $0-100$ temp. centigrade $0-200$ the per sq. in., ofl $0-10$ tbs., fuel, complete with capillary 5it. Min long, $\& 2$ ench.
please include postage on goods
TERMS C.W.O. All goods offered are ex-W.D. S.A.E. for Enquiries
W. MILLS

3-B TRULOCK ROAD, TOTTENHAM, N.I7
Phone: Tottenham 9213 \& 9330

IRADID TRADERS LTD.

23 WARDOUR ST., LONDON, W.I.
(Coventry Street end) Grams: "Radlotrade"
stockists of carr fastener components

ALL POPULAR TYPES OF

COMPONENTS SUPPLIED FROM STOCK

SEPCIAL OFFER OF CURRENT MANUFACTURE ELECTRO. LYTIC CONDENSERS (tubular wire and P.V.C. sheathed). 8 mfd . $450 \mathrm{v}, 2 / 6$ each; $16 \mathrm{mfd} .450 \mathrm{v} .3 / \mathrm{-} ; 32 \mathrm{mfd} .450 \mathrm{v} .4 /-; 8 \times 8 \mathrm{mfd} .450 \mathrm{v} .3 / 9$; $8 \times 16 \mathrm{mfd} .450 \mathrm{v} .4 /-; 16 \times 16 \mathrm{mfd} .450 \mathrm{v} .4 / 6 ; 32 \times 32 \mathrm{mfd} .350 \mathrm{v} .5 /$. BIAS CONDENSERS. $2,500 \mathrm{mid}, 3 \mathrm{v} .3 / 6 ; 250 \mathrm{mfd} .25 \mathrm{v} .2 /-100 \mathrm{mfd}$. 25 v . $1 / 6 ; 50 \mathrm{mfd} .12 \mathrm{v} .1 / 6 ; 25 \mathrm{mfd}, 25 \mathrm{v} .1 / 6$.
ELECTROLYTIC CONOENSERS. Manufacturers' surplus, in perfect condition. $100 \mathrm{mfd} \times 200 \mathrm{mfd} .350 \mathrm{v}$. surge $5 / 6$ each; 100 mfd . $\times 100 \mathrm{mfd}$. 425 v . surge $5 / 6$ each; 150 mfd .450 v. wkg. $5 / 6$ each.
2 mfd .150 r . Size $2 \mathrm{in} . \times 1 \mathrm{din}$, suitable for crossover $1 / 9$ each or $18 /$ - doz.

TRANSISTORS: Junction type Red Spot by well-known manufac-
 TRANSIST- each.
 32 mfd CONDENSERS: Miniature Electrolytic Capacitors.

of condensers are $3 / 6$ each. SPECIAL DISCOUNTS FOR QUANTITIES.
AIR-SPACED TRIMMERS, 5, 10, 15, 25, 50 and 75 or pre-set and spindle types 2/- each per dozen.
200 Assorted Moulded Mica Condensers, popular values
200 Assorted Silver Mica. Condensers, popular values 200 Assorted Carbon Resistors, t, $\frac{1}{2}$ and I watt. Good selection \&1 100 PAXOLIN SHEET $18 \times 4 \times 1 / 216 ; 10 \times 10 \times$ in. $1 / 6 ; 20 \times 20 \times 1$ in $3 /-; 10 \times 10 \times \frac{1}{16}$ in. $2 /-; 20 \times 10 \times \frac{1}{16}$ in. $4 /-;$ minimum P. \& Pkg. $1 / 6$.
T.V. TUBES. A limited quantity of 9 in , and 12 in . Magnetic T.V. Tubes, brand new and boxed, by famous maker. Specification: 12 in . will replace most MAZDA $12 \mathrm{in} ., 2$ v, tubes. Flat face, white fluorescence
 mask. 9in. Tube, round face, white fluorescence, 4 v . lamp heater, max, anode volts 7 kV . Price $£ 5 / 17 / 6$. Both items plus $11 / 6$ carr. \& pkg.
W.W. RESISTORS, 5 watt $1 / 6 ; 10$ watt $2 / 6 ; 15$ watt $3 /-20$ watt $3 / 6$. We carry stocks of resistors from 2 watcs to 150 watts W.W. Your enquiries invired
HIGH STABILITY RESISTORS. $\frac{1}{6}$ watt 5% 6d.; $\frac{1}{2}$ watt $5 \% 9 \mathrm{d.;}$ I watt $S \%$ I $=$. A fow values in 1% and 2% stilt available.
ALL ORDERS FOR RESISTORS C.O.D. PLEASE, AS WE CANNOT ALL ORDERS FOR RESISTORS C.O.D.
GUARANTEE TO STOCK ALL VALUES.
GROMMETS. I gross assorted tin. to lin.
WESTECTORS, WX6, WX12, W4, $1 /$ e each SIGNAL LAMP HOLDERS. Panel mounting, complece...................... p doz. $9 /$
 FUSEHOLDERS. B/Lee L .356 single hole $2 / 6$ each; BiLee L. $1033 / \mathrm{C}$ double pole $3 / 6$ each. SPECIAL PRICES FOR BULK QUANTITIES

A GIFT FOR THE SERVICE MAN. Brand new in wooden case

 The Weston Model 772 Type 6 super sensitive analyser.This precision designed multi-range test instrument has a large visible finely divided scale giving some of the range shown.
Range: D.C. volts 20,000 ohms per volt or 1,000 per volt. 2.5 volt range 50,000 ohms. 10 volt range 200,000 ohms. 50 volt range i megohm, 250 volt range 5 megohms. 1,000 volt range 20 megohms Ohms: $0-3,000$ ohms. $0-30,000$ ohms. $0-3 \mathrm{meg} .0-30 \mathrm{meg}$. D.C. milliamps: $10,50,250, I M / A 100$ micro amps. or 50 micro amps
A.C. Volts: 1,000 ohms per volt. Price $12 / 10 /=$. Post $\&$ Pkg. $7 / 6$.

WEARITE COILS. PA4, PO4, PA5, POS, $1 / 3$ each......per doz. $12 /$ 4WAY PUSH-BUTTON UNITS $2 / 6$ each. Knobs for same, 3d. each POINTER KNOBS. Small black with white line, $7 / 6$ per doz. Small white with black line $8 /$ per doz. Boch types f in. spindle. Large price reductions for 1,000 lots and over.
VALVE HOLDERS. Moulded B9A 7/6; B7G 6/-; Int. Oct. $9 / \%$: Eng. Occ. 4/6. Vaive holders ficted with lower can $1 / 6$ per doz. extra.
SCREENING CANS for BTG and B9A $6 /-$ per doz.

CO-AXIAL PLUGS, SOCKETS AND CONNECTORS, PYE

 TYPE. $10 \mathrm{H} / 3911$, $1 / 6$ each; $10 \mathrm{H} / 701$, $1 / 6 ; 10 \mathrm{H} / 628,1 / 6$; "Tee " con. 2/-; F. \& E. TYPe: JS-I-PF 2/- each; JP-l-250 c.c.t. $2 /-$; JS-l-BHF PRICES FOR 100 and 1,000 lots.JONES PLUGS AND SOCKETS. 4 pin $2 / 6$ pair; 6 pin $3 / 6$ pair; 8 pin $4 / 6$ per pair; 12 pin $6 / 6$ per pair. If cover required send $1 / 6$ extra per cover.
WANDER PLUGS. Red and black
PHILIPS TTIMMER TOOLS I/- each ……... $10 / 6$
CASH WITH ORDER ON C.O.D. ALL ORDERS DEPT. W.I
ALL ORDERS FOR LESS THAN $\angle 2$ ADD POSTAGE
Wo inviso your enquiries for items not Ilsted.
Trada Ceunter open 9 to 6 Monday to Friday
Also 9 to I Saturday. Callers welcomed
WHOLESALE MANUFACTURERS' AND EXPORT ENQUIRIES INVITED

RADIO CLEARANCE LTD.

TRADE
ENQUIRIES
INVITED

27, TOTTENHAM COURT RD., LONDON, W.1.
The oldest Component Specialists in the trade

Telephone:
MUSEUM 9188

ELECTROLYTIC CONDENSERS-WE HOLD THE LARGEST STOCK OF ELECTROLYTICS IN ENGLAND

 $\frac{\text { ABBREVIATIONS: }}{\text { SINGLES }}$| | SINGLES | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity
 (Mids.) | Wkg. | | Price | Capacity | Wkg. | | |
| | 275 | W/8 | Price | (\%ms.) | Volts Siz | Type | Prioe |
| ${ }_{2}^{2}$ | ${ }_{6}{ }^{12} \times 1$ | | 116 | ${ }_{84}^{80}$ | 35011×2 2751×3 | ${ }_{\text {T/8 }}$ | 216 218 |
| 8 | 12×1 | | 116 | 84 | 3501×3 | 0 | 31. |
| 2 | 50×14 | w | $1 /$ | 70 | $3{ }^{3} 5 \times$ | -8 | $1 / 6$ |
| ${ }_{2}$ | ${ }_{200}^{70}$ of ${ }^{\text {of }}$ | W | 1/6 | ${ }_{75}^{75(R e v)}$ | 121×3 | c | 10 d . |
| 4 | 150 | T/8 | $10 \mathrm{d}$. | ${ }_{80}^{75}$ | | $\mathrm{T}_{\mathrm{W} / \mathrm{s}}$ | 1/6 |
| 4 | $150 \times 1 \frac{1}{6}$ | w | 1/- | 90 | 35011×3 | T/8 | 2/6 |
| 5 | 531×1 | | $1 / 8$ | 100 | 12×18 | W/8 | 1/. |
| 5 | 100×1 | | 1/6 | 100 | 25×1 | T | 1. |
| 8 | 1211×1 | | 1/6 | 100 | 23×18 | T | 1% |
| 8 | 15 \% $\frac{5}{16} \times$ | | 1/6 | 100 | 25×14 | T// | $1 / 3$ |
| 8 | $251 \times 1 t$ | T-8 | 1/- | 100 | $25.1 \times 1{ }^{1}$ | W/8 | 10 d . |
| 8 | 150 | w | 1\% | 100 | 27014×2 | | $2 / 3$ |
| 8 | 150 | T | 9d. | 100 | 2751×3 | 0 | $2 / 6$ |
| 8 | ${ }_{20}^{200}$ | w | 1/2 | 100 | 27511×2 | C/S | 216 |
| 8 | | ${ }_{\text {c }}$ | ${ }_{21}^{1 / 0}$ | 100 | $\bigcirc{ }^{275} 1 \times 3$ | P18 | $2 / 6$ |
| 8 | 450×1 | w/s | $1 / 11$ | 100 | 3001×3
 350
 1 | | $2 / 9$ |
| 10 | 15 1 $\times 1$ | w/s | 116 | 100 | $5001 \% \times 3$ | | 4. |
| 10 | $25 \times 1 \frac{1}{2}$ | w | 1/- | 150 | 251×2 | T | |
| 10 | 480 | W/8 | $1 / 8$ | 150 | 1501×3 | W/s | $1 / 8$ |
| 18 | ${ }_{150}^{25}$ | | $1 / 6$ | 200 | ${ }_{8}{ }_{1} \times 1$ | | 1/. |
| 18 18 | | T/8 | 1. | 200 200 | ${ }_{35}^{25} 1 \times 17$ | T/8 | 10 d . |
| 16 | 273 | | $1 / 8$ | 200 | ${ }^{350} 1 \times 1{ }^{1} \times 13$ | C/8 | 10 2- |
| 16 | $300 \times 1{ }^{1}$ | W-s | 1/3 | 200 | 27511×3 | | $2 / 6$ |
| 18 | 350 | P | $1 / 6$ | 250 | 61×2 | T/8 | 1. |
| 16 | 3501×2 | T | 19 | 250 | 12×1 | W | $1 /$ |
| 18 | | $\stackrel{8}{8}$ | $1 / 9$ | 250 | 12 | W/8 | 1/3 |
| 18 | 450 | | 2/\% | 250 | ${ }_{25}^{28} \times 1 \times 1$ | - | $1 / 3$ |
| 18 | 4501×3 | 0 | 2/- | 250 | 25×1 | W/T | $1 / 3$ |
| 20 | ${ }^{6}$ f $\times 1$ ¢ | | $1 / 6$ | 250 | 25×1 | W/8 | |
| 20 | 1501×1 | T/W | 1/- | 250 | 501×2 | | 1/6 |
| 20 | 4501×2 | W/s | 2% | 250 | 10011×3 | P | 1/3 |
| 20 | 4501×3 | T/88 | 2- | 250 | 20011×2 | T | 1/6 |
| 25 | 251×14 | W/8 | 10 d | $400(\mathrm{Rev})$ | 61×2 | $\stackrel{\text { P }}{ }$ | 1.- |
| ${ }_{2} 5$ | ${ }_{50} 5$ | W/8 | $1 /$. | 500 | ${ }^{6}{ }^{1} \times 18$ | T | 10 d. |
| 25 | 350 | w | 8% | 500 | 121×17 | T | 1 10d. |
| 30
 38
 8 | $12{ }^{12} \times 1 \times$ | -8 | $1 / 6$ | 500 | 121×2 | ${ }^{\text {T }}$ | 10 d |
| 32 | 2751×2 | 0 | $1 / 6$ | 500 | | | 1/3 |
| 32 | 2751×2 | ${ }_{\text {P }}$ | $1 / 6$ | 1000 | 3351×3 | c | 1/6 |
| ${ }_{40}^{38}$ | (150 | W/8/8 | $2 /$ | 3000 | $2811 \times 4{ }^{6}$ | 0 | 4/- |
| 40 | 3501×2 | ${ }^{\text {P }}$ | 21. | 5000 5000 | | -8 | 3/- |
| 40 | 4501×3 | W/8 | 216 | 6000 | 811×3 | -8 | 4/- |
| 50 | 50×1 | T | 113 | | | | |
| 5 | 50 | | 1/6 | | OUBLE | | |
| 50 50 | | W/8 | $1 / 6$ | 8+8 | ${ }_{350}^{275} 1 \times 2$ | | 3 |
| 50 | 3301×2 | W/8 | $2 / 3$ | $8+8$ | ${ }_{450}^{3501}$ | W/8 | 2/6 |
| 60 | 2751×3 | W | $2 /$. | $8+8$ | 4501×2 | W/8 | 2/9 |

Capacity (Mids.)	Whg. volts Size"	Type	Price	Cajacity (MIds.) $\begin{gathered}\text { Wke. } \\ \text { Volts. } \\ \text { Size }\end{gathered}$		
$8+16$	450, 1×1	W/8	3/8	$100+100$	Type	${ }_{1 / 6}$
$10+10$	4501×2	w/B	2/8	$100+100 \quad 27511 \times 3$		6
$12+12$	2761×2		$2 /-$	$100+200 \quad 251 \times 2$	${ }^{\text {IP }}$	
$12+18$	3601×2		2/6	100+200	-	16
$12+24$	2751×2		2/-	$100+2000^{2750} 10 \times 44$	${ }_{0}$	\%
$12+88$	2751×2		2/-			
$18+16$	150 \% $\times 1$. 8	1/-	$100+300$ 2751104		-
$16+16$	3501×2	C	3/-	$100+400 \quad 2752 \times 44$		
$16+32$	27514×4		$2 / 6$	$600+1400 \quad 2762\} \times 4{ }^{2}$		
$16+32$	2751×2	P	$2 / 6$			9/6
$20+10$	4501×3	-	3/-	TRIPLES	tc.	
$20+20$	1501×2	W/S	1/-		1	
$20+20$ $24+24$	4501×3 2751×3	W/8	$3 / 9$	${ }_{12+12+18}^{18}$	1	-
$24+24$ $24+24$	$\begin{aligned} & 2751 \\ & 350 \\ & 1\end{aligned} \times 8$	c	${ }_{3 / 6}^{2 / 6}$	$\begin{array}{lll}19+24+24 & 275 \\ 16+8+4 & 275 & \times 3 \\ 1 & \times 3\end{array}$	P	-
$25+25$	3001×2	T	$2 /$	$16+16+16$	${ }_{0}$	-
$30+30$	150 1 $\times 17$	w/8	1/-	$19+39+39 \quad 2751 \times 3$		6
$32+18$	2001×2	P	1/6	$20+10+10 \quad 35014 \times 3$		
$32+16$ $38+18$	35017×2 8501	T	$3 / 6$	$\begin{array}{ll}20+15+15 & 450 \\ 20+20+80 & \text { P3 } \\ 200\end{array}$	-8	6
$32+3{ }^{2}$	1501×2	T	316	$25+25+25 \quad 251 \times 2$	C/8	8
$32+32$	2501×24		1/6	$\begin{array}{ll}30+30+30 & 275 \\ 32+8+8 & 185 \\ 188 \\ 182\end{array}$		
32 233	27514×2	c	$2 / 9$	$32+32+8{ }^{275}$ 11 $\times 2$	o	$2 / 6$
$32+38$	27514×3		$2 / 9$	$32+32+8 \quad 27511 \times 2$		2-
俍 $\begin{aligned} & 32+32 \\ & 32+32\end{aligned}$	- $3501{ }^{1} \times 2 \times 2$	${ }_{-8 / 8}$	4/-	$32+3{ }^{32}+8 \quad 2751 \times 3$	P/C	-
$32+32$	45011×3	W/g	4/6	$3{ }^{32}+32+168176$		
$32+324 / 10$	${ }^{350} 11 \times 2$	T	36	$22+32+255275 / 251 \times 3$	T	
$40+18$ $40+80$	2501×3 1501×2	T	$1 / 6$			
$40+40$	150.1×3	${ }^{\text {P }}$	1\%	$\left.{ }_{32}+300+70 \quad 27511 \times 4\right\}$		
$40+40$	1501×2	W/8	1/-	$40+20+10 \quad 3501 \times 3$	P	6
$40+40$	${ }^{275} 11 \times 2$	C/s	$2 / 9$	$40+30+20 \quad 30011 \times 2$		$2 / 9$
$40+40$ $40+40$	${ }_{4}^{300} 1 \times{ }^{1} \times 1 \times 3$		$2 / 8$	$40+30+20 \quad 1501 \times 2$		
$50+3$	1501×2	W/8	1/.	$40+40+12 \quad 27511 \times 2$	P	-
$50+50$	${ }^{25} 1 \times 2$	C	1/6	$40+40+20 \quad 27511 \times 2$		8
	1501×2	w/8	$1 / 6$	$40+40+20 \quad 2751 \times 3$	P	
$50+30$	2001×3		1/6	$40+40+32 \quad 27812 \times 24$		$2 / 8$
50+50	${ }_{275}^{2511 \times 2}$	P	1/9	$\begin{array}{llll}40+120+70 & 278 \\ 44 & 11 \times 4\end{array}$		8
$50+50$	27511×3	c	$2 / 9$	$50+24+24 \quad 27511 \times 3$		
$50+50$	27511×2	T	$2 / 8$	$50+50+6 \quad 27511 \times 3$		
$50+30$	30011×2	P	$3 /-$	$50+50+10 \quad 15011 \times 2$	T	
$50+50$	3001×2	T	3/-	$50+50+50 \quad 35011 \times 3$	P	316
80+500	3005	P	$3 /$	$80+300+30 \quad 27519 \times 4\}$		18
$65+100$	25011×3	P	3/8	(100+100+50300 11×3		16
$60+200$	27511×4	c	41	$100+250+250275{ }_{2} \times 4$	C	
${ }^{60}+200$	27814	O	$41-$	$100+400+1627512 \times 4$		
$80+250$ 80 80	${ }_{275}^{275} 11 \times 4$	-	518	$100+400+3227517 \times 4$		-
$100+35$	25011×3	P	$\begin{aligned} & 3 / 6 \\ & 4 /- \end{aligned}$	$200+250+2502752+48$ $40+20+10+1035011$	0	$8 / 6$ $3 / 6$

STAMPED AND ADDRESSED ENVELOPE with any enquiry, please.
All voltages quoted are WORKING.
please allow full postage and packing charges.
TERMS OF BUSINESS: CASH WITH ORDER OR C.O.D. ON ORDERS OVER $10 / \mathrm{F}$.

TRANSISTOR COMPONENTS

 $2.8 \mathrm{mlds.}$,18 v...
SUB MINIATORE TRANSISTOR Cous
set of 3 I.F. Transfiormers $470 \mathrm{~K} /$ /es plus Oesilitator coll As specifed for Mullard Circuits $23 / 6$ complete.
As specified for Mazda Clrcuits, 23/6 completo.

TRANSISTOR GANG CONDENSERS
with Intermediate screen as apecifled for MULLARD Transistor cricults, $9 / 6$.
As above with switch for L.W. pre-selection, 11/-

SUB MINTATURE CARBON POTS

$1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 50 \mathrm{~K}, 220 \mathrm{~K}, 310 \mathrm{~K}, 1 \mathrm{M}, 2 /-$ orch. 5 M , with switch, $4 / 6$. $5 \mathrm{~K}, 1 / 6,500 \mathrm{~K}$ prese
SUB MINIATURE METALLISED PAPER CONDENSERE. 005 MFD., $0022 \mathrm{MFD}, .002 \mathrm{MFD}$. $, 001 \mathrm{MFD}, 8 \mathrm{~m}$, esch .01 MFD., . 02 MFD, Price 8d. each. . 04 MFD 10 d .

T.V. COMPONENTS

 Frame Output Transiormers. Wide sngle, $4 / 6$.
Foous Magnets. Adjustable for 14 in . tetrole, $4 / 6$.
Line Output Trausformer, Ferrox, 1 K Kv U25, $21 /$ Soan Coils, wida angle, for above, $15 / \%$
G.E.C. Rectifer 250 v. $250 \mathrm{~m} / \mathrm{a}$. Price $10 / \mathrm{F}$.

> SPECLAL OFFERS
> 100 assorted Erle $1+\frac{2}{2}-1$ watt rosistory....... $12 / 6$ 1 gross packots BA Nuta adod Bolts.......... $2 / 6$ plet. Treasiator Gang Condensers with trimmers, os. equip. $387 \mathrm{pt}+.186 \mathrm{pt}$. Fith slow motion. $4 / 0$
> Min Twin Gang Condensers with slow motlon 3/6;

VALVE HOLDERS
4 pin Brit. Pux. $2 d .{ }^{4}$ pin U.X. Amp. 7d. 5 pin Brit. Pax,
$2 d .7$ pin Brlt. Pax. 3d. 7 pin Bidt. Amp. 4d. Int. Octal 2d. 7 pin Brit. Pax. 3d. 7 pln Bidt. Amp. 4d. Tnt. Octal
Pax. 3d. Marda Ootal Phx 3d. Loctals Amp. 8d. B7a Pax. 6म, B7G P.T.F.E. 8d. B7G Cer. with saddle and 88A Cer. 8d. Boa Pax. 6d. B9A Amp. 8d. Boa Amp With skirt 10 d . B9A Cer. 10d. B8A Cer. with saddle ant valve retaning gpring $1 /$. B8A ceramic with skirt 1% 88A printed circult 1/-. B9A Valve Cans 6d.

WIREWOUND POTS

Min. $4 \Omega, 11$ spindie. 2/-. 100Ω Colvern, 2/\%. 500Ω Prem sets. 1/8. 5 K Colvern, $2 / 6$.

TRANSFORMERS
Audio Output Typer. $4,500 \Omega$ to $30,5,0000$ to $3 \Omega, 2 / 6$ ach, $6,000 \Omega$ to $3 \Omega, 3 / 6,10,000 \Omega$ to $3 \Omega, 3 / 9,13,000 \Omega$ tow Voltage
Low Vollage Types. Unlversal Charging with tapped 14/6. Unlversal CRT Boostere with tapped primaries. ${ }_{2}^{14 / v .7} \mathrm{~F} .6 .3 \quad$ v.-13 \quad v., 25% boost all taps. 10/6. Plament trineformers centre tapped, 6.3 v. output, 1.5 amps.,
$5 / 9: 3$ amps., $9 / 6$. 5.

MISCELLANEOUS

Vibrators, Plesey 6 SR7sDT Sync. 7 pin, 7/6. Bulldog Olps, 9d. Crocodile Clips, 4 d . Toggle Switches, $1 / 6$. Min LFT $470 \mathrm{Kc} / 8,7 / 6$ and $8 / 6$ patr. Ion Traps, $1 / 6$. Coay Plugs and Sockets, $2 / 2$ pair. Thin screened Pick-up
Wire, 1/- yd. Mlo. Mains Transtormer, tapped, anto Pri. $130 / 170$ v., $50 \mathrm{~m} / \mathrm{a}$. Sec., $4 / 6$. Min. Biaing Translormer, tapped Pri. 220 v . $35 \mathrm{~m} / \mathrm{a}$. Sec., with $16 \mathrm{v} .3 \mathrm{amp} \cdot 8 / 11$. Bayonet Pllot Lamp. 6 and 12 v., 8d. each. T,V. Panels with 8 pre-set controls, 5/6. Condenser Clips, $\frac{114}{}$ and $11 \mathrm{in}_{\text {, }}$

 $1,000 \mathrm{~F}$. 8d. Wx2s diodes 6 d

Cabinets and Equipment by A. L. STAMFORD LTD.

To house THE FERROGRAPE 66 and other large TAPE Decks and portables. Size 47in. \times 20sin. deep x

 charge). Hire purchase terms can be arranked. Delivery England and Wules 12/6; Scotland and N, Ireland 25\%.

S 27
Price 613/15/-

Price 68/19/6
S.27. Column enclosure to house any 8 in. \& 10 in , speakers.
 Choice of veneers and shades.
QPS 14 . Bize 14 inin, side panels, 3 tin. high, to house any 8in. speaker (Atste aperture required). Price $f 8 / 19 / 6$, or 271 depostt and 9 monthly payments of $18 / 2$. Veneered in Tola only, polished to shade required (except as "Light

GP 61
Size $36 \mathrm{ju} . \times 16 \mathrm{in} . \times 334 \mathrm{in}$. hish. Price $508 / 15 / \mathrm{m}$, or $24 / 7 /$ depostr and 9 monthly payments of $58 / 3$ For full detalls of these and many other new designs, write A. L. STAMFORD LTD. (Dept. J4) Showrooms and Works:
\&4/86\& \& 8 Whowrooms and Works: Telophona: 8EO 5008 ,

BAMMRSS 'selhurst' , RADIO

The $12^{\prime \prime}$ ULTRA DE LUXE
£15.15.0

For 20-20,000 c/s'Full Range Listening

Sales and Demonstration offices:
JOHN LIONNET \& CO. LTD.
17, CHARING CROSS ROAD LONDON, 'W.C.2. TRAfalgar 5575

EDDY'S (поттм. LTD DEPT. W.W.
 172 ALFRETON ROAD NOTTINGHAM

MIDGET BATTERY ELIMINATORS. To convert most types portables to mains operation. $57 / 6$. Post $2 / 6$. Size only $3 \frac{3}{2} \times 2 \frac{1}{\frac{1}{2}} \times 1 \frac{1}{4} \mathrm{in}$. Extremely small. (please state make and model number).
NEON MAINSTESTER/SCREWDRIVERS.
4/6 each. Post $6 d$.
JACK PLUGS. Standard type. I/II. Post $4 d$. GUITAR PICK.UPS. "THE PLECTRO." Super Hi-Fi non-acoustical universal fitting. $3 \times 1 t \times \ddagger$ in. Hlgh output. Complete with lead and plug. Full and easy instructions. 39/II. Post 1/-.
GERMANIUM DIODES. 1/- each, 10/. doz. Post 4d.
RECORDING TAPE. $1,200 \mathrm{ft}$. plastic reels. 7in. 10/11. Post I/
ACOS CRYSTAL PICK-UPS. Turnover, 2 sapphire styli. 29/II. Post, etc., $2 / 6$.
TRANSISTORS. Yellow/green spot. 6/ll. R.F. Yellow/red. I3/II. Post 4 d .

SUB-MINIATURE CONDENSERS (transistor). 1.6 mfd ., 5 mfd ., 32 mfd 2/6. Post 4d. ACOS CRYSTAL MIKE INSERTS. 4/II each. High quality. Can be used for tape recorders, baby alarms, etc. Post $6 d$,
TUBULAR WIRE END CONDENSERS (not ex Govt.). 8 mid. 450 v. $1 / 9.8$ - 8 mid .450 v . 2/6. $16 \mathrm{mid} .450 \mathrm{v}, 2 / 9.16-16 \mathrm{mid} .450 \mathrm{v} .4 / 3$. $32-32 \mathrm{mid} .350$ v. $4 / 9$. 32 mfd .450 v. 3/9. 16-8 mifd. 450 v. $3 / 9.25 \times 25 \mathrm{mfd}$. midget $1 / 3$. $50-50$ mfd. 400 v. $6 / 11$. Pose 6d.
B.S.R. MONARCH 4SPEED AUTOMATIC RECORD CHANGER. Type UA8. Complete RECORD CHANGER. Type turnover crystal cartridge type TC8, with with turnover crystal cartridge type 10 records.
twin sapphire styli. Capacity of 10 ren twin sapphire styli. Capacity of 10 records. $78,45,33$ and 16 r.p.m. A.C. mains $100-250 \mathrm{v}$. 78, 45, 33 and 16 r.p.
ALL ABOVE ARE NEW AND GUARAN. TEED.

1C5GT...12/6	6X5GT... 6/-	EBF80... 916
ID510\|-	7 7 7 8-	ECC81 ... 8/-
IH5GT... $10 / 6$	$7 \mathrm{C5}$...... 81-	ECC82... 9 -
IN5GT...10/8	$7 \mathrm{C6}$...... 81-	ECC83 ... 91-
IRS 716	7H7 8/-	ECC84 ... $9 / 6$
155 7/-	757 9/6	ECC85 ... 9/6
\|T4 5/6	7Y4 $7 / 6$	ECFPO ...12/6
3D6 4/6	10F9......10/6	ECH42 9/6
3Q4 8/6	$12 \mathrm{AH7} \ldots 7 / 6$	ECH81 8/6
3Q5GT... 9/6	12AT6 ... $10 / 6$	ECL80 ... $13 / 6$
354 7/6	12K7...... $7 / 6$	EF40 ...14/-
$3 \vee 4 \ldots . .816$	1207 ... $7 / 6$	EF41 ...91-
5U4G ... 6/6	12SH7 ... 5/6	EF42 ...11/-
5Z4G ...10/-	12517 ... 8/6	EF50 ... 31-
6A712/6	25A6G ...11/6	EF50(R) 4/11
6AG5 ... 5/6	25L6GT 9/11	EF80 ... 7/11
6AM6 ... $7 / 6$	25Z4G ... 9/11	EF86 ...14/-
6B8G ... 2/11	3523.....13/6	EF91 ... 6/9
6BA6 ... 8/6	$35 Z 4 \ldots . . .7 / 6$	EY86..... 12/6
6BJ6 8/6	$807(\mathrm{~B}) \ldots 316$	EZ80 ... 816
6C4 5/11.	807 (USA) 5/9	EZ81 ... 8/6
6FI12/6	954 1/6	GZ32 ...12/6
6F13...... 12/6	955 3/11	L63 6/-
6F15...... 12/6	956 2/11	PCC84 ... 8/6
6F6MET 7/6	AZ1......12/11	PCF80 ... 91-
6J5GT ... 3/11	AZ31 ...101-	PL81......16/-
6J5MET 3/11	B3615/6	PL82...... 8/6
6K7G ... 2/11	CY31 ...12/11	PL83...... 10/6
6K8G ... $7 / 6$	DAF95 ... 8/6	TDD4 ...12/6
6L6G ... 6/11	DF96 ... 8/6	U2517/6
6Q7G ... 8/11	DL96 ... 8/6	UBC41... 9/6
6S7JMET 7/11	DH77 ... 7/6 -	UCC85... 9/6
6SA7MET 7/11	DK96 ... 816	UCH42 9/9
6SNZGT 5/9	DM70 ... 7/6	UF41 ... 8/6
6U4GT...12/6	EB41...... 8/-	UL41 ... 9/6
6V6G ... 5/11	EB91...... 5/11	VT52(4 pin)
6V6GT -	EBC33... $7 / 6$	2/1
- 16	11.	

NEW, SURPLUS GUARANTEED VALYES Any parcel insured All tested before against damage in despatch. eransit for only 6d extra per order. All uninsured parcels at
customer's risk.
Send 1/- for 56-page
illustrated catalogue.
COD or CWO only. S.A.E. with all enquirles. Postage and packlng 6d. per valve extra. Over $[3$ free.

Trade enquiries invited

PROOOPS Watk-apourd store and MAIL ORDER SERVICE

MAGSLIPS

For remote control of mechanical, electrical, or hydraulic mechanism and servos, or remote sensing or indication. Brand new, perfectly stored in sealed tins. Guaranteed. Furcher information on request. E-20-A/I (AP 10636) 50 v. $50 \mathrm{c} / \mathrm{s}$. 3 inch. $£ 2$
Coincidence transmitter for amplifie: controlled electric servo system or Magslip receiver indicators direct.
E-54-A/I (AP 10747) 50 v. $50 \mathrm{c} / \mathrm{s}$. 3 inch. C_{2}
X-CO transmitter for use as controlling transmittel or receiver in
E-5-A/l (AP10827) 50 v. $50 \mathrm{c} / \mathrm{s} .2$ inch. El/IO/-
Two-phase induction generator for use as a computing element generating a voltage proportional to speed, or to provide velocity feedback

Two-phase induction motors for continuous drive, or for use as a
E.17-A/l (AP6547) 50 v. $50 \mathrm{c} / \mathrm{s} .3$ inch. $\subset 2$

Control tran mitter Mk. 5.
POT inductive potentiometer $\leqslant 1 / 10 /-$
Precision toroidal auto-transformer for use in computing circuits.

Coincidence transmitter for amplifier controlled electric servo systems or Masslip receiver indicators direct.
or Magslip receiver indicators direct.
$E=17-N / 2(A P!1101)$
$90-115 \mathrm{v} .400 \mathrm{c} / \mathrm{s}$.
Control transmitter Mk. 5.

GEIGER COUNTER KIT

£4.17. 6 (Guaranteed Performance)
Identical components to production model currently being supplied throughout the world.
Three ranges-highly sensitive-light-portable-visual and audible response-pulse output socket. Ideal for introduction to radiation measurement and nucleonic circuitry.
Circuit embodies U.K.A.E.A. patent. Specially moulded case locates components and standardizes wiring. Printed circuit plates for battery pack supplied. Batteries £2/15/3 extra. Spares, replacements and service permanently available. Supplied complete with fully illustrated assembly instructions and 40-page manual specially written for student, experimenter and radio amateur.

TEST GEAR

T.S. 92/AP. ALIGNMENT UNIT

Modern, high-quality text set for plotting the bandwidth and adjusting the frequency response of I.F. and R.F. amplifiers. Probe signals between $15-500 \mathrm{Mc} / \mathrm{s}$ are rectified by a crystal detector and passed through a low-pass filter to the 6SA7 mixer oscillator stage of a highly sensitive conventional superhet circuit with two $6 \mathrm{AC} 715 \mathrm{Mc} / \mathrm{s}$ I.F. stages and 6 H 6 detector. 115 volt $6 \times 5 \mathrm{G}$ power pack in separate comstages and 6 partment of attractive lightweight black crackle case. Brand new. partment of attractive lightweight black cracke case. data.
£7/10/-plus 10/-packing und carriage.

T.S. 288 ' 5 ' BAND WAVEMETER

Exceptionally rugged silver plated micrometer tuned precision cavity covering $2,900-3,150 \mathrm{Mc} / \mathrm{s}$. Resonance shown on 100 microamp meter. Brand new.
£15 plus £1 packıng and carriage.
SPECIAL THIS MONTH

BLACKSMITHS FORGES

Standard rectangular pattern medium-duty collapsible hand forges for hardening and tempering, hammer forging, etc.
Strongly made from heavy-gauge steel plate with sturdy girder section legs. Botton blast operated from hand-driven spiral geas and ball bearing blower. Length (including blower) 4 ft . 3 in ., width 2 ft . 3 in , height (to side guard) 2 ft . 4 in ., weight 2 cwt .
Brand new, complete with swo pairs of 23in. universal tongs, $£ 9 / 15 /-$ plus $£ 1$ carriage (England and Wales only).

VOLTAGE REGULATING TRANSFORMER (TF-12-A) Known th the U.S.A. is a Transtat," "hese are high-quality, heavy duty units of unusual construction with twin large-contact-area carbon bushes traversing the exposed twin windings cairied on separate robust cores to vary the output over 75 to 120 volts. Ir neat black crackle box with helical traversing gear. Input $115 \mathrm{v} .400 \mathrm{c} / \mathrm{s}$. Maximum current 6 mmps .

As new, $50 /-$ plus $7 / 6$ carriage.

MOTOR GENERATOR UNIT No. 7 (5U/3286)
Self-contained set incorporating a type E (adjustable) voltage regulator in the input circuit to provide a constant $3,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Input 22-29 volts. D.C. Output $80 \mathrm{v} .1,600 \mathrm{c} / \mathrm{s}$. Regulator, filtering and fuses in separate compartment of robust integral unit. Continuous rating 240 VA. Power factor 1

As new. 45/- plus $7 / 6$ carriage.

MODULATOR UNIT. Ex TR.1934/5/6

Modern miniature unit assocated with and similar to the type 373 $9.72 \mathrm{Mc} / \mathrm{s}$ I.F. strip. Only $5 \frac{1}{2} \mathrm{in}$. long $\times 3 \mathrm{in}$. wide $\times 3 \mathrm{in}$. high with screened B7G valver. Co-axial socket input to balanced primary of mu-metal microphone transformer with output from resistot bridge in secondary circuit for mutine associated receiver. Microphone amplifier is a Brimar 9D6 variable-mu HF pentode RC coupled to a 7D9 pentode which feeds the centre tapped input transformer of two 6C4 triodes in push-pull. Output from substantial modulation transformer having alternative tap on secondary winding. Additional winding on input transformer provides output through co-ax. fot phone monitoring. Outputs and 6.3 and 250 volt nputs through short cable terminating in miniature muiti-plug.

New, comolete with 4 valves. £1 bost free.

RECEIVER II32A

Further small supply of thesc well known, sensitive, highly stable, 11 valve monitoring receivers, which can 're aduster to tune Wrotham without alteration to wiring. Tuning meter, AVC or manuai gain BFO , voltage stabiliser, OJ output, precision diel, rack mounting. Requires 6.3 and 250 volt to Jones plug at rear. As new E4, carnage 10/-

MEGISTORS-125, 1,000 or 10,000 Megohms
Glass encapsulated 10% tolerance high value resistors for minute grid current applications. Ideal for extending the range of sensitive meters or oscilloscopes. One of each value plus any chosen two, the 5 fo 10/- post free.

RECEIVER 443G 200-I,750 K/Cs
Highly sensitive multi-valve superhet designed for aircraft D.F. work, operates from 24 volt input. Intended for remote control tuning through flexible table (similar to well-known MN26C) but drive spindle on front panel. Valves: 2050 and $2051 \mathrm{G}, 6 \mathrm{~N} 7,6 \mathrm{SC} 7,6 \mathrm{~J} 5$ and 6 L 7 , $2 \times 6 \mathrm{~B} 8,4 \times 6 \mathrm{~K} 7,2 \times 6 \mathrm{~F} 6,5 \mathrm{Z} 4$.

As new, complete with valves, $£ 4 / 10 /-$ plus 10/- carriage.
BAND I RF UNITS- $\mathbf{2 0 - 3 0} \mathbf{~ M c / s}$
Modern, compact, fully enclosed RF/IF strip ($12-14 \mathrm{Mc} / \mathrm{s}$) with two EF91 and one EF93. Three gang plated tuning condenser with in dividual air dielectric trimmers normally tuned by worm drive and slipping clutch mechanism from totally enclosed miniature 6 vol motor on die-cast suppressor box mounting. Cams on condenser shaft operate twin switches for external tuning meter.
Brand new in sealed packages, complete with circuit diagram, 47/6 post free.

ROTARY CONVERTERS
12 v . D.C. input. Output 250 v . at 60 mA and 6.3 v . at 2 A . $12 /-$ post free

you can bulld a quallty

TAPE RECCRDER with he
 'ASPDEN'

Tape Recorder Kits

TAPE DECK KITS

Two models, 5 in . or 7 in . spools, two speeds, twin track, lerroxeube heads, finest motor, and complete assembly instructions. Compact model 582 kit
$\begin{array}{lll}68 & 5 & 0 \\ 69 & 5 & 0\end{array}$ Assembled model 782 kit............... RECORD/REPLAY AMPLIFIER KIT, $2 \frac{1}{3}$ watt. neon indicator, without valves, $65 / 18$. POWER PACK KIT for above, less valve, 22/18/6. Carr. extra.
Mr. J. M. F., of Leicester, writes:
"I have been in possession of one of your Tape Deck and Amplifier cijts for some ume now ond it has always given very sotisfactory reproduction. I must congrotulate you on manufacturing such a high quality tape recorder at such a low price." Why not build one now.
Send STAMP for full particulars to:W. S. ASPDEN

Stanley Works, Clevedon Road, Blackpool, Lancs.

VORTEXION TAPE
PA. Equipment. Personal Recordings ete Tape to Tape/Dise. Secvise SALE OR HIRE Griffiths Hansen (Recordings) Ltd.
24/25. Foley Street. London W.. MUSSeum 277!

NEST OF DRAWERS
Overall: 6 j in. wide \times Sta. deep x 10 in. Migh. 12 drawers, each 3 in. wide \times 4pin. deep $\times 1$ igin. high. Useful storage for radio componento nuty bolts and other small parts, enarmelled, sheet steel 20/-. P. \& P. 31-

HARMSWORTH, TOWNLEY \& CO. 2 JORDAN STREET, MANCHESTER 15

59 GNS.-"17"

A full specification 17" Television Receiver to Spencer - West standands now available at your Dealers.

Remarkable performance and priced at 59 Gns . only complete. For leaflet apply to:

SPENCER-WEST LTD.
 GT. YARMOUTH, NORFOLK

THERMOSTATIC

 SOLDERING IRON CECO - 70 wattInstrument size
HEATS UP QUICKLYIt mins.-STAYS HOTbut NEVER OVERHEATS -BIT DOES NOT COR-

RODE OR NEED CLEANING
WEIGHT-4! 029 (Excluding Flex) ALL PARTS INTERCHANGEABLE
The Thermostat is easily adjusted to suit the grade of solder and keeps the temperature to within $15^{\circ} \mathrm{C}$. It incorporates a mieroswitch giving snap action on-off with minimum electrical interference. Eliminates dry joints and damage to insulation. Element and bit last much longer.
LIST PRICE 85/- each BRITISH PATENT No. 663214 Available from Manufac-turer-
CARDROSS ENGINEERING CO. LTD.
LEVENFORD WORK8 DUMBARTON
PhoneI Dumbarton 655

LOCKW 00 D

ENCLOSURES
Used by every Broadeasting \& Television Auchority in the British isles, and Eire. for High Quality Monitoring. LOCKWOOD \& CO. (Woodworkers) LTD., LOWLAND8 ROAD, HARKOW, MIDDX.

NEW BOOKS ON RADIO \& TELEVISION

World Radio Mandbook 1959, by H: ns Johansen. Postage 1/2.
Loudspeakers, a new book by Briggs.
Poscage $1 / 3$
Oscilloscope Equipment, by Easterling. Postage 6 d .
How to get the best out of your Tape Recorder, by Guy. Postage 6d..
Beginners Guide to Television, by Camm. Postage 9d.
T.V. Engineers Pocket Book, 2nd Edition, by Hawker. Postage 9d.......
R.S.G.B. Amateur Radio Call Book 1959. Postage 6d.

Servicing Transistor Radios, by L. D'Airo. Postage $1 /$........................ Oscilloscope Techniques, by Haas. Postage I/-. 7th edition. Postage 1/3.....................

A full range of Slide Rules and Drawing Instrument Sets in Stock. Send for lists.

UNIVERSAL BOOK CO.

12 LITTLE NEWPORT STREET LONDON, W.E. 2 (adjoining Lisle Seraet).

COPPER WIRE

ENAMELLED, TINNED LITZ

 COTTON AND SILK COVERED. RESISTANCE WIRES EUREKA - CONSTANTAN MOST GAUGES AVAILABLE NICKEL-CHROME - MANGANIN B.A. SCREWS, NUTS, WASHERS, soldering tags, eyelets and rivers EBONITE and BAKELITE PANELS. TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES, ALL DIAMETERS Latesc Radio Publications. SEND STAMP FOR LIST. TRADE SUPPLIEDG.E.C., B.T.H. \& WESTINGHOUSE GERMANIUM CRYSTAL DIODES
1/= each. Postage 3d.
Diagrams and three Crystal Set Circuits Free with each diode.
A large purchase of these fully GUARANTEED dioges from the manutacturers enables us o make this attractive offer.
POST RADIO SUPPLIES
33 Bourne Gardens, London, E. 4 Phone: CLIssold 4688

Instrumentation at its best . . .

SIFAM ELECTRICAL INSTRUMENT CO. LTD. LEIGH COURT - TORQUAY - Telephone 4547/9

METERS

WE CAN SUPPLY WITHIN 7-14 DAYS

a complete range of moving coilmoving iron-electrostatic-thermo-couple-also multirange meters-meggers-pyrometers and laboratory test instruments, etc.

All to B.S. 89
Instruments tested and standardised on our premises, ond replacements supplied from our
stock.

REPAIRS

Delivered 7.14 days

Our skilled craftsmen carry out repairs or convert any types and makes of single and multirange meters.

Where desired repairs are accepted on contract.
THE V.Z. ELECTRICAL SERVICE 9, NEWPORT PLACE, LONDON, W.C. 2. Talephone: GERrard 4861^{\prime}
(Retail 2613)

PORTABLE AMPLIFIER

Size 6 flo. long. Bln. high, 2 Hlh. deep. WIII sule any type of cryatal plek-up. Output approx. 2 watts. Imeorporating ECC83 double triode. Corsor 142BT outpur pontode and transformer for $230-250$ A.C. malas. Bass. treble and volume controls.

$$
49 / 6 \quad \begin{gathered}
\text { Plus P. } \& 8 \text { P. }
\end{gathered}
$$

5" SPEAKER WITH
O.P. TRANSFORMER purchased with the above 18/6. Plus P. \& P. 1/6.

B.S.R. MONARCH UAB

4 -speed, playe 10 records 12 in ., 10 In . or 7 in at 33,45 or 78 r.p.m. Intermizes 7 in ., 10 in and 12ia. records of the same speed. Has manual play positlon; colour brown. Dimensions: $12 k \times 10$ ilc. Bpace required above baseboard 4 \}in., below base board 2 \{in. Fit ted with Fall-Fl tumover crystal head.

£6/19/6 Plus 51 postage

COLLARO MIXER 4.SPEED AUTOMATIC

 CHANGERModel 457. Type " 0 " Pick-up, size 12in. x 13 in. Minmum clearance above baseboard 51 n , below 2fin., 10 records. A.C. mains $200-250$ v. Turnover crystal head. BRAND NEW, $5 /$ and 7 monthly payments of Cash 88/19/6

Flus' P. \& P. 8%

13 CHANNEL TUNER

34 to $38 \mathrm{Mc} / \mathrm{A}$ complete with PCF80 and PCCBt. These have been removed from 19/6 Plas P.\& Po 2/6

Knobs $3 / 6$ per set extrs.

AC/DC POCKET MULTI-METER KIT

Comprising 91 n . moving cail meter. scale calibrated in A.C./D.C. volts, ohms and milliamps Voltage range A.C.ID.C. $0-50,0-100,0-250,0-500$. Milliamps. 0-10, 0-100. Ohme range, 0-10,000. Front papel, range switch, wire-wound pot for ohms zero netuing), loggie wwitch, resistors hammer finish case. Built and terted 19/6 P. P. $1 / 6$.

FAMOUS MAKE "TELETUKER"

Covers all Channels, Bands 1 and 3. Valves used: PCC84, R.F. double triode, cascode R.F. amplifier, PCF80, trode pentode f.c. and mixer, I.F. output 33

Post 2/6. 59/6 Knobs $3 / 6$ per wet extra.

CONSTRUCTORS' portable parcel

Comprising case, chassls, top plate, scala, Bla P.M
 volume control with switch.
$39 / 6$ Plus $3 / 6$ Postage and packing.

EXTENSION SPEAKER CABINET

In pollehed walnut. Complete with 8° P.M. speaker with O.P. trauktormer. $19 / 6$ plus
P. \& P. $3 / 6$.

MAINS TRANSFORMERS

 picking on the above 3 /

RADIO AND T.V. COMPONENTS (ACTON) LTD.
23, ACTON HIGH STREET, LONDON, W. 3
GOODS NOT DISPATCHED OUTSIDE U.K. ALL ENQUIRIES S.A.E.

LIGHT-MASTS BYTELECRAFT LTp crooroon AND AERIALS for EVERY PURPOSE - FITTED ANYWHERE

$\mathrm{D}^{n} H$ DE HAVILLAND PROPELLERS LIMITED
 ROPGALKS
 $\xrightarrow{\text { ROPILEKS }}$
 DUE TO EXPANSION
 IN MANY DEPARTMENTS AT THEIR HATFIELD ESTABLISHMENT REQUIRE

D

TECHNICAL ASSISTANTS

(1) Required for analytical work in connection with the design of propellers, engine control systems and accessories. The work concerns aerodynamics and stability, calculations, systems and accessories. The work concerns aerodynamics and stability, calculations,
preparation of reports and carrying out original theoretical work to develop methods preparation of repor
(2) Required for the manufacture and maintenance of Test Equipment and Special Missile Service Equipment. Would suit ex-R.A.F. or R.N. Radar or Radio Fitter.
(3) For work in missile guidance field section. Knowledge of servo systems and training in servo theory is essential.
(4) To assist in assembling specifications, ordering supplies and circulation
(5) An assistant in newly formed Standards Section of the Propeller Drawing Office
(6) Required for environmental test work, covering Test Supervision, Report writing, Electronic and Instrument Servicing and Calibration and Design of Test Apparatus: Qualifications for the above positions range from O.N.C. to Degree Standard, and successful applicants will be eligible for all superannuation, medical, sports and social benefits applicable to our Hatfield staff.
Please write, giving full particulars of qualifications and experience, to:-
The Personnel Manager (R9f. 168),
DE HAVILLAND PROPELLERS LIMITED, Manor Road, Hatfeld, Herts.

BRADFORD INSTITUTE OF TECHNOLOGY

Principal: E. G. Edwards, Ph.D., B.Sc., F.R.I.C.

Applications are invited for the following new posts:-
TECHNICIAN IN THE ELECTRICAL
ENGINEERING LABORATORIES (two posts)
The principal duties of the persons appointed will be the maintenance and repair of apparatus, the setting up of laboratory experiments and lecture demonstrations and the testing and calibrating of instruments.
TECHNICIAN IN THE ELECTRICAL
ENGINEERING WORKSHOP
The person appointed will be responsible for the construction and maintenance of equipment for the teaching and research laboratories.
Candidates for the above posts should preferably possess a Final Certificate of the City and Guilds of London Institute in the appropriate subject or an Ordinary National Certificate or have suitable industrial experience.
Salary scale $£ 445 \times £ 20$ to $£ 625$ rer annum with efficiency bars at $£ 505$ and £565. Commencing salary according to qualifications and experience.
JUNIOR TECHNICIAN IN THE DEPARTMENT OF ELECTRICAL ENGINEERING (two posts)
Applicants should possess a General Certificate of Education with passes at Ordinary Level in at least three appropriate subjects and must be prepared to undertake an approved course of study.
Salary scaie, according to age, $£ 255$ per annumat age 16 to $£ 375$ at age 20 .
Further details and forms of application may be obtained from the Registrar, Bradford Institute of Technology, Bradford 7, to whom completed forms should be returned as soon as possible.
W. H. LEATHEM

MULLARD LIMITED

have an important vacancy in their SEMICONDUCTOR DIVISION

for a first-class

TECHNICAL/COMIMERCIAL

ENGINEER

to conduct terhnical market survey and applioational advisory duties in the telecommunications and allied fiolds.
This will require, amongst other duties, liaison with Official Establishments, Laboratories, Eqnipment Designers and Manufacturers. Know. ledge of, and experience in, the development of telecommunications, or radar or television apparatus is essential for this post and it is very desirable that applicants should have had adequate experience with transistors.
University or professional qualifioations are desirable but full attention will be paid to all candidates having proof of ability and experience.
This appointment should attract and satisfy a successful, onthnsiastio and ambitious engineer who desires to apply his knowledge and experience in a technical/commercial advisory position.
This post is open to applicants up to the age of 35 years and will carry an attractive and progressive salary appropriate to ago, experience and qualifications.
Written applications shouild be sent to the Personnel Officer,
Mullard House, Torrington Place, LONDON, W.C.1.

GOVERNMENT OF

BORNEO

Assistant Controller of Telegraphs,
Posts and Telegraphs Department
To manage staff and be responsible for the installation and mairtenance of RAX and small main automatic exchanges, VHF single and multi-channel telephone circuits and HF radio stations.
Contract appointment. Salary range $£ 1,302$ to $£ 2,324$ p.a with gratuity payable on satisfactory completion of contract. Free passages. Quarters at moderate rent. Generous home leave.
Candidates, not over 40 years of age, must have passed or be exempt from the examination of the Institution of Electrical Engineers, with at least two years experience in telecommunications.
Write
DIRECTOR OF RECRUITMENT
COLONIAL OFFICE, LONDON, ह.W. 1
giving briefly age, qualifications, and experience, quoting BCD 108/21/01.

RESEARCH LABORATORY

A•E•I

Electronic Engineers and Assistants required for development of specialised instrumentation and control systems for important physical research problems, mainly in the fields of controlled thermonuclear reactions, microwave communication, and semiconductors. Assistants should have H.N.C. or equivalent and experience of electronic circuitry. For Engineer appointments, a degree or equivalent is required but a keen interest in and flair for electronic circuitry is of greater importance than wide experience.
The laboratory serves a large group of Companies and is situated in pleasant rural surroundings near Reading with fast train service to London.

Five-day week Pension Scheme
Apply in writing, quoting reference No. EL/G/2, to the Personnel Officer,

Research Laboratory,
ASSOCIATED ELECTRICAL
INDUSTRIES LIMITED,
Aldermaston Court,
Aldermaston, Berkshire.

JOIN THE SUCCESSFUL ‘BLOODHOUND’ TEAM AT FERRANTI LTD.

If your interests are in RADAR, DIGITAL COMPUTERS, SERVO-MECHANISMS, CONTROL SYSTEMS, ELECTROMECHANICAL INSTRUMENTS OR TRANSISTOR APPLICATIONS, there are STAFF vacancies in

1 RESEARCH \& DEVELOPMENT, calling for a degree or H.N.C. or diploma in engineering, physics or mathematics.

2 PERFORMANCE TESTING \& TEST GEAR DESIGN. The normal minimum qualification is O.N.C. in electrical engineering, but candidates without academic qualifications may be considered provided they have good previous experience of electronic equipment.

Vacancies are at the Wythenshawe (South Manchester) and Moston branches of the Company.
Write for an application form to T. J. LUNT, Staff Manager, FERRANTI LTD., Hollinwood, Lancs., quoting ref. DB.

TWO PROTOTYPE TEST ENGINEERS

are required by the G.E.C. Applied Electronics Laboratories for work on Guided Weapons and Radar Equipment. Applicants from the Forces should be Ex-Naval R.E.A.s or R.A.F. radar fitters, men from industry should have had at least four years' Test or Maintenance experience on radar or similar types of Electronic Equipment. Qualifications will be considered an advantage but not essential. The posts are pensionable and afford good opportunities of advancement for men with ability and initiative.
Applications should be made to the Personnel Officer,

The General Electric Co. Ltd., Applied Electronics Laboratories, Brown's Lane, Allesley, Coventry. Ref. EHM/RRB.

ENGINEERS!
Whatever your age or expemepce, you must read
"ENGINEERING OPPORTUNITIES," Full detaila of the easiest way to pars A.M.I.Mech.E. A.M.!.C.E

144 PAGES

terms and ditails of Courses in all branches Meobanical, Electrical, Civid, Auto. Abro, Radio, etc., Buiding,
etc. It yon're earning ote. If you're earning
ieas than $\& 15$ a week leas than e1s a week
tell us what taterests you and write for your copy of "WNGGREEER-
TMG TMG OPPORTUNJ.
TES" today-FREE B.I.E.T. 387 College Bonse, 29
31, Wrieht's Lade London. W.8.

COMMUNICATIONS SUPERVISOR FOR SUMATRA

The Pacific Oil Company operating in Central Sumatra requires the services of a man, not over 35 years of age, of First Class City \& Guilds qualification in Telecommunications or equivalent to undertake the maintenance and installation of (a) A wide range of American $A M$ and FM fixed and mobile radio-telephone sers, (b) A Siemens telephone installation.
The commencing salary is $£ 1800: 0: 0$ per annum with free board and lodging, medical attention and paid local and home leaves, each tour of duty being two years. Apply in writing, giving full personal particulars as well as details of experience quoting "SUM" to Caltex Services Limited. Caltex House, Knightsbridge Green, London, S.W.1.

TWO FLRST CLASS T/V ENGINEERS REQUIRED

Good wages. Permanent position. Clean driving licence

TEST ENGINEERS

required to supervise interesting experimental work, up to the report stage, connected with the testing of Aircraft Pressurising and Air Conditioning equipment involving both components and complete systems. In addition to possessing suitable engineering qualifications, some electrical experience will be an advantage.
Apply in writing stating age, experience and salary required to the

> Personnel Officer, Sir George Godfrey \& Partners Ltd., Hampton Road West, Hanworth, Middlesex.

RADIO \& ELECTRONIC ENGINEERS

The MORSE CODE is still, and always will be, the basic Code for individual Signalling, whether on visual or telecommunication circuits. So add this simple and interesting subject to your qualifications. Apart from the pleasure derived from this extra knowledge, it counts for much when a grep up the ladder is under consideration. Write for the CANDLER BOOK OF FACTS and see for yourself hovo fascinating the Candler method of teaching the Morse Code will prove.
CANDLER SYSTEM CO. (66W) 52b ABINGDON ROAD, LONDON, W. 8 Candler System Co., Denver, Colorado, U.S.A.

TELEVISION DEVELOPMENT ENGINEER

Vacancy exists in the North-West London area for energetic young Engineer with some general experienc: in the design of television receivers. Preferably graduate I.E.E. or Brit. I.R.E., but equivalent qualifications acceptable. Pay according to qualifications and experience
Apply in writing to Box No. 1252
c/0 "Wireless World"

GRANADA T.v. NETWORK

have a vacancy for a senior engineer (sound) to be based in London. Applicants should have a thorough knowledge of audio frequency work with an emphasis on broadcasting techniques. In addition a basic knowledge of accoustics is expected. Previous experience in television studios is essential and ability to read a musical score would be an advantage. The suecessful candidate will be required to take avers a sound crew and will bequired to takponsible to over a sound crew and will be responsible to
the Engineer-in-charge for all sound operations and maintenance in the studio concerned. The mark includes major light entertainment productions and a considerable amount of pre-recording of audio tape is undertaken, Write for application form to
Personnel Manager,
MANCHESTER 3.

NORTHERN, POLYTECHNIC HOLLOWAY, LONDON, N. 7
The Governing Body invite immediate applications for appointment as fulltime ASSISTANT LECTURER (GRADE "B") IN TELECOMMUNICATIONS to teach up to the Final Certificate of the City \& Guilds of London Institute and the R.T.E.B. Radio \& Television Servicing Certificates. Candidates should be Graduates or the equivalent. Industrial and/or teaching experience an advantage. teaching experience an advantage. Salary scale: 5 per cent and allowances in plus 5 per cent and allowances in accordance with the Burnham Award
Commencing salary according to age, Commencing salary according to
qualifications and experience.
Apply for form of application and further particulars to the Clerk to the Governors.

IRISH T.V. APPOINTMENTS

Group interested in Irish T.V. con. cession Is anxious to hear from Irish men and others with specialised experience in any aspect of T.V. broadcasting operations and equipment. Replies treated in strict confidence. Group has no connection with any existing T.V. organisation anywhere.
BOX AC 46332 SAMSON CLARKS,
57-61, Mortimer Street, London; W. 1

JEFFERY TRANSFORMER Co.

(Winders to the late GALPINS)
Leaflets sent on request
199 Edward Street, New Cross LONDON, S.E. 14

TIDeway 4458

INSPECTION ENGINEERS

Are required for work in connection with Long Range Ballistic Missile project. Applicants must be prepared to travel inside and outside the United Kingdom. Minimum qualifications O.N.C. (Electrical); experience in Electronic and Mechanigal Inspection techniques an advantage. Ability to maintain correct records and write concise reports essential. These are Senior Staff appointments with the advantages of contributory pension scheme and life assurance benefits. Please write to:-
The Personnel Manager (Ref. 143)
DE Ha:ILLAND PaCpellerss limitio HATFIELD, HERTS.

Elecroonle Elinleer

required to take charge of new Calibration Department at the Company's premises situated in pleasant rural surroundings at Wetherby, Yorkshire, very convenient to Leeds and Harrogate.
The Department will be responsible for calibrating Electronic Test Instruments under Industrial Contracts to close limits, and will have its own Service Department to repair instruments, prior to calibration, as necessary.
This is an excellent position with very good prospects with expanding CompanyA group Pension Scheme is in operation. Previous experience in calibration up to $250 \mathrm{Mc} / \mathrm{s}$ desirable. Write stating age, full details of previous experience, academic qualifications and salary envisaged to:

Farnell Instruments Limited, Wetherby Industrial Estate, York Road, Wetherby,

quoting reference: "Calibration" on top of envelope.

TELEVISION DEVELOPMENT ENGINEER

Due to expansion in our Development Laboratory, applications are invited for the following posts:-

1. DEVELOPMENT ENGINEER with previous experience on Time Base and Scanning Circuits.
2. DEVELOPMENT ENGINEER with previous experience on Tuner Design, preferably with Printed Circuit knowledge.
Both these positions are permanent and pensionable. The factory is situated on the South coast, with many attractive local amenities.
Written applications, with full particulars including age, qualifications, experience, and salary required, should be made to:-

The Chief Engineer
SYÓNEY S. BIRD \& SONS, LTD.
FLEETS LANE, POOLE, DORSET.

TLCHNICAL/COMMERCIAL LIAISOV

A vacancy has occurred in the Technical/Commercial Department of the Television and Radio Division of PHILIPS ELECTRICAL LTD. It will be concerned with the commercial, manufacturing, and service aspects of record players, tape recorders, and Public Address equipment. A degree (or possible Higher National Certificate) in Physics or Electrical Engineering is necessary, and some musical training is desirable. The ability to appreciate both sales and manufacturing problems is essential. Candidates, who should be 25 '30 years of age, should write with full details to the Employment Officer, Century House, Shaftesbury Avenue, W.C.2, quoting ref.: 102.

ELECTRONIC MECHANICS
are required by the UNITED KINGDOM ATOMIC ENERGY AUTHORITY (Industrial Goup) for
Windscale and Calder Works, Sellafield, Seascale, Cumberland.
Chapelcross Works, Annan, Dumfriesshire, Scotland.

Dounreay Experimental Reactor Establishment, Thurso, Caithness, Scotland.
Applications are invited from experienced men with a knowledge of electronic equipment for fault diagnosis, repair and calibration of a wide range of instruments used in nuclear reactors, radiation laboratories and chemical plant. This interesting work involves the maintenance of instruments using pulse techniques, wide band and noise amplifiers, pulse amplitude analysers, counting circuits and teleyision.

Men with Services, Industrial or Commercial background of Radar, Radio or Television are invited to write for further information. Training in our Instrument School will be given to successful applicants.

There are accommodation, housing and lodging allowance arrangements.

Applications to:
The Works Labour Manager (at the appropriate Works address)

THE ENGLISH ELECTRIC COMPANY LIMITED
(Guided Weapons Division) Stevenage
has immediate vacancies for
TEST ENGINEERS
to work in a production organisation on work connected with the testing of missile systems or engaged on the investigation and preparation of test facilities and procedures.
For the senior vacancies, applicants must have had some years' experience working on electronic, particularly radar, equipment. Attendance on Services Radar training courses and/or some knowledge or experience of vibrational testing would be an advantage.

Candidates should have obtained an H.N.C. or equivalent and have served an apprenticeship.

Applicants who have not reached the above standard can be considered for less senior positions.

Housing assistance may be given in certain circumstances after a limited waiting period.

Please write in first instance giving details of experience to Dept. C.P.S. 336/7 The Strand, London, W.C.2., quoting reference WW 1390 G.

MARCONI INSTRUMENTS LTD.

Technical Personnel Required

SENIOR \& JUNIOR ELECTRICAL DESIGN ENGINEERS
 SENIOR \& JUNIOR MECHANICAL DESIGN ENGINEERS

DUTIES: To undertake the design of Test Equipment covering practically the whole electronic field, including Telecommunication, Guided Weapons and Nucleonics. Considerable personal responsibility and freedom is given, and there are no set rules regarding the number of people engaged on a project, the allocation of project leaders, etc.
QUALIFICATIONS: The ability to design equipment and aggressively progress a project through to the stage where a model is made and the information is available for a production drawing office. Senior engineers are usually of B.Sc standard with practical experience in measuring techniques, while Junior engineers are often Graduate Members of one of the Professional Institutions, or have similar qualifications, but this is in no way mandatory. The ability to progress the project through to a satisfactory conclusion is the prime requirement. Due to expanding activities, men with drive and initiative can be sure of progressive advancement.
Comprehensive pension and assurance schemes are in operation, and Canteen and Social Club facilities are provided.
Call any day including Saturday mornings at,

MARCONI INSTRUMENTS LTD.

 LONGACRES, HATFIELD ROAD, ST. ALBANS, HERTS.or write giving full details to Dept. C.P.S., Marconi House, 336/7, Strand, London, W.C.2, quoting reference WW 2970Y.

TECHNICALLY TRAINED BY

IN RADIO, TELEVISION AND ELECTRONICS ENGINEERING

Opportunities in Radio Engineering and allied professions await the ICS trained man. ICS Courses open a new world to the keen student.
RADIO TELEVISION ENGINEERING; RADIO AND TV SERVICING; RADIO SERVICE AND SALES; VHF AND FM ENGINEERING; ELECTRONICS, Etc.
I CS Courses give very real help to the man setting up his own business or facing a technical career in the radio industry.
Examination Courses for:-British Institution of Radio Engineers, City \& Guilds Telecommunications, Radio Servicing \& Radio Amateurs, Postmaster-General Certificates (Marine).
LEARN-AS-YOU-BUILD PRACTICAL RADIO COURSE Build your own 4 -valve TRF and 5 -valve superhet radio receiver, Signal Generator and High-quality Multi-tester. FILL IN AND POST THIS ICS COUPON TODAY It brings the FREE ICS Prospectus containing full particulars of I C s courses in Radio, Television and Electronics.

PYE LIMITED OF CAMBRIDGE

Have interesting vacancies in their T / V publications departments for:-

TECHNICAL AUTHORS

with a sound training in electronics, preferably including television, and the ability to write clear concise English.

The work involves the preparation of technical sales literature, from information obtained from the development engineers, for a wide range of television products, covering complete T / V and sound broadcasting systems, underwater T / V, and industrial equipment including atomic energy applications. One author is also required for the production of T/V receiver manuals.

Applications, quoting "TA" should be addressed to the Chief Engineer, Pye Limited, Cambridge.

THE ENGLISH ELECTRIC COMPANY LTD. SITE COMPUTER ENGINEERS.
for diagnosis of logic and circuitry faults at operational establishments. Successful applicants will, after an initial training course, be required to take up responsible positions at Computer Installations on customers' premises. Locations of these include the Home Counties, West Midlands and Lancashire.
Qualifications required are H.N.C. or equivalent with preferably two years experience in design of Computer or other pulse circuitry. During training, special subsistence allowance will be made for any successful applicants who have to live away from home. Very attractive salaries would be offered with these positions which are permanent and enjoy the benefits of the English Electric Staff Pension Scheme, and qualify, after initial service, for three weeks' annual holiday.
Applications giving full details of qualifications and experience should be addressed to Dept. C.P.S., Marconi House, 336/7, Strand, London, W.C.2, quoting refer-
eace WW 397C.

SKILLED MEN!

USE YOUR KNOWLEDGE IN A WORTHWHILE JOB

```
VACANCIES FOR
LINEMEN DRIVERS
DISPATCH RIDERS
DRAUGHTSMEN DRIVER
ELECTRICIANS RADIO MECHANICS TECHNICAL STOREMEN
TELEGRAPH MECHANICS OPERATORS
THE ROYAL SIGNALS
```


Up to £25 tax-free Bonus plus

first-rate wages for two weeks of your time

A^{a}ae you in a skilled trade? Then you can probably add a tidy sum to your income by joining the Army Emergency Reserve. For one thing, you get pay and allowances at full Regular Army rates whilst in camp. And the more your skill's worth in civilian work, the higher your Army rank and pay. Better still, you also get $99-£ 25$ bonus tax-free.
For this you just spend 14 days a year at a camp, working on your own speciality. And money's not the only profit you get from that. You get a grand refresher course, giving you a lot of new ideas, and putting you right in touch with the latest Army developments. And you get a welcome break from the usual routine, with sports, games and a great social life. For the place isfull of people with the same interests
as yourself: Don't miss this chance! Send off the coupon now to: H.Q. A.E.R. (R. Sigs.) Blacon Camp, Chester.

POST THIS OFF RIGHT AWAY!
Please send me-without obligation-the illustrated booklet telling all about the Army Emergency Reserve.

NAME

ADDRESS

TRADE
(WD/AER)

THE VICTRIX NICKEL ELECTROPLATING PLANT. A miniature plant to give real NG PLANT. A miniature plant to give real nickel plating to full commercial standards. Comprises, special plating tank , 0 in. $\times 8$ in.
nickel chemical, cleaning chemical, four 99.9% nickel chemical, cleaning chemical, four 99.9% pure nickel anodes, rods and spacers, U2 dry cell which gives approx. I4 hours of plating time. Supplied with instruction book, $90 / \%$, post $5 /-$ A.C. MOTORS. $/ / 10$ th, H.P. $110 / 230$ volts 50 cycles S.P. capacitor start, 2,850 r.p.m. shaft extension, $39 / 6$, post $3 / 6$ with capacitors.
THE LESDIX ELECTROTOR. The smallest and lightest $4 \frac{1}{2} / 6$ volts D.C. motor on offer, weight oz size $\frac{7}{1} \mathrm{in}$. x sin. dia. lin. spindle for drive speed 5,000 r.p.m. All new and guaranteed, 6/6, post 6d.
VARIACS TYPE 50B. Surplus stock, in new condition. Input 230 volts, output $0-270$ volts 5 K.V.A. 645 , carr, $7 / 6$.

HALLICRAFTER R,B.X. Radio Recoiver FM and AM $130-210 \mathrm{mc} / \mathrm{s} \mid 15 / 230$ voles A.C. 50 cycles 100 watts input Lab. Tested and in new condition. WAVEMETER TYPE 724 B by General Radio, U.S.A. $16 \mathrm{Kc} / \mathrm{s}$ to $50 \mathrm{mc} / \mathrm{s}$.

CAVITY WAVEMETER $300 / 1000 \mathrm{mc} / \mathrm{s}$. at special prices, write for lise of TEST GEAR.
VARIABLE WIRE WOUND SLIDER RESISTANCES for Lab. use. We can wind to specification, open or protected cype also. Send for list and state requirements.
MASON PHOTO PRINT MACHINE. $220 / 230$ volts A.C. take up to 40 in , $\times 26$ in. dry line print horizontal travelling arc. Needs new line print, horizoral travello . Developing machine glass otherwise perf
$50 /$ buyer collects.
THE LESDIX CRYSTAL RECEIVER. 1959 de luxe table model in beautiful pastel shades, tapped litz wound aerial coil, var. condenser, germanium diode detector, plugs and sockets for aerial and earth connections. All aerial tested and supplied with double headphones, $35 /$-, post $2 / 6$.

Leslie Dixon \& Co.

Dept. A, 214 Qusenstown Road, London, 8.W.8 Telephone: MACaulay 2159
a straightforward guide to the principles of television

COVENTRY RADIO LTD.

189/191, Dunstable Road, LUTON.
Audio \& Component Specialists Est. 1925

If you are unable to visit us at Luton, send for a copy of our

HI-FI CATALOGUE

of 300 items 70 pages.
Price 1/- plus 6d. postage.

Also available now

"THE GRUNDIG BOOK"
12/6d. plus 1/-postage.
If you own a tape recorder of any make you will find this book an essential for successful recording.

KUTON'S HI-FI CHNTRE Telephone Luton 7388/8.

A First Contrse In TELEVISION

By " Decibel." This new book not only deals in a simple manner with the reception of television pictures but also explains how the signals originate and the techniques involved in the transmission of pictures by televisionincluding colour transmission. Written by the author of that best seller-A First Course in Wireless, this handy book can be followed easily by the interested amateur as well as those engaged in, or studying for employment in, broadcasting and the servicing of receivers. From booksellers, 15/- net.

PITMAN
Technical Books

Parker St., Kingsway, London, W.c. 2

Z. \& I. AFRO SERVICES ETD.,

14, South Wharf Road, London, W. 2
Telephone: AMBassador 0151/2

A.R.B. Approved Stockists

RETAIL BRANCH: 85, TOTTENHAM COURT ROAD, W.l (near Goodge Street Station)

RECORDING MILLIAMMETERS
ELLIOTT SINGLE PEN SWITCHBOARD PATTERN RECORDING MILLIAMMETERS
Range 0-5 mA. Chart 6in, wide; Chart Speed 3 inches per minute; Electric Chart Drive 230 V. A.C............................... 85000 EVERSHED SINGLE PEN SWITCH. BOARD PATTERN RECORDING MIL. LIAMMETERS.
Range 2.5-0-2.5;- Chart 6in. wide; Chart Speed $\frac{1}{2}$ Inch per minute; Electric Chart Drive 230 V. A.C................................ $\$ 5000$ EVERSHED TWINPENSWITCHBOARD PATTERN RECORDING MILLIAM. METERS.
Range 0.5 mA . D.C. Chart 6 in , wide. Chart Drive 230 V. A.C. Chars Speed $\frac{1}{2}$ in. per minute. PRICE, unused, complete with two syphon and two gravity pens, dashpot oil, ink and charts EVERSHED 12-PEN TIME RECORDER

Portable 12-channel instrument for simultaneous recording of 11 events with time marks provided by 12 th pen. The recording is presented in the form of "on-off " pulses, Chart Speed 2 inches per second. PRICE, unused, in original packing, complete with accessories and a supply of charts $£ 30$ 0 0

MICROWAVE 10CM EQUIPMENT

 TSI4/AP SIGNAL GENERATORS, 3,200 $3,370 \mathrm{me} / \mathrm{s}$. Power Output- 100 to -20 dbm . Variable pulse modulation. R.F. Power measurements $20-200$ milliwatts. Fully overhauled andguaranteed $£ 8500$
WAVEGUIDE WATTMETER TYPE APW. $\mathbf{7 2 8 3}, 10 \mathrm{~cm}$, band MARCONI SPECTRUM ANALYSER
Type TF $984 / \mathrm{I}$, " s " Band ($2,900-3,150 \mathrm{md}$. $)$ Type TF-984/1. "S" Band ($2,900-3,150$ me/s.)? Spectrum Width to $10 \mathrm{me} / \mathrm{s}$. Fully ov
hauled and zuaranteed.

Particulars and prices on application KLYSTRONS $417 . \mathrm{A}$. $f=9.10 \mathrm{~cm}$. Veknier
tuning $\pm 100 \mathrm{mc} / \mathrm{s}$. min . Ers $=1,000$ V mater tuning $\pm 100 \mathrm{me} / \mathrm{s} . \mathrm{min}$. Ers $=1,000 \mathrm{~V}$. max Heater Volts 6.3 V . Power 50 watts. Forced Air Cooling
$\epsilon 20$

MICROWAVE 3GM EQUIPMENT

 TS-13 SIGNAL GENERATOR WITH SELF-CONTAINED WAVEMETER AND POWER MONITOR. Range 9305 to 9445 mc / s. Internal pulsing. Peak Power output 50 microwatts.TS-45/APM3 SIGNAL GENERATOR. Frequency range $9,300-9,450 \mathrm{me} / \mathrm{s}$. Power output 10 mW . average; Power meter range 5 watts. Details and prices on application.
KLYSTRONS $723 A / 8$, fully tested and guaranteed-price on application.
TS-II8 R.F. OUTPUT POWER METERS. Power Range 5 to 500 Watts. Frequency Range 20 to $750 \mathrm{mc} / \mathrm{s}$. Fully overhauled, complete with three thermocouples for three ranges, manual and accessories
T.C.S. COLLINS TRANSMITTING AND RECEIVING EQUIPMENT. range 1.5 to $12 \mathrm{me} / \mathrm{s}$, erystal contralled Frequency operation; output 20 W . voice or 40 W . C.W. Complete installation consists of: Transmitrer Receiver, Remote Control Unit with built-in, Loudspeaker, Antenna Loading Coil, interconnecting cables: Power Supply Unit for 12 V ., 24 V ., 115 V or 230 V S. C . A.C.: Headphones Hand Microphone or 230 V . These installations are especially suitable for use on board ships, small craft, etc. Large assortment of spares available. Par. ticulars on application.

RCA TYPE 301B HIGH FREQUENCY FIELD INTENSITY METERS. Frequency Range $18-125 \mathrm{mc} / \mathrm{s}$. Field Intensity Range 5 to $2,000,000 ~ \mu \mathrm{~V} /$ metre. Aural Monitoring and provision for recording on a 5 mA . recorder. PRICE, complete with Field Power Supply Unit running on a 6 V accumulator and test aerial running on a 6 V accumulator and test aerial
on a tripod............................... $1200_{0} 0$

COMMUNICATION RECEIVERS

 R-1155B, $75-1.500 \mathrm{kc} / \mathrm{s}$. and $3.0-18.5 \mathrm{mc} / \mathrm{s}$. P. P. 15/R-1 $55 \mathrm{~L}, 200 \mathrm{kc} / \mathrm{s}$. to $18.5 \mathrm{mc} / \mathrm{s} . P . P .15 /-£ 12100$ MARCONI CR-100, $60 \mathrm{ke} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$. Good operating condition. P.P. 21/-........ Q1 00 MARCONICR-150, $2-60 \mathrm{mc} / \mathrm{s}$., dual superhec, fully overhauled and guaranteed. P.P. $21 /-$ -
HALLICRAFTER S-27, $27.143 \mathrm{mc} / \mathrm{s}$., FM/AM. good operating condition O32 10 Ditto fully rebuilt to laboratory standard. HALICRAFTER S. 27 C 13016000

 Fully overhauled and guaranteed. P.P. 25/\% R.C.A. AR-88D, $50 \mathrm{kc} / \mathrm{s}-31 \mathrm{me} / \mathrm{s}$. Fully overhauled and guaranteed. P.P. 25/-... C85 of 0

SPECIAL RECEIVERS

R-1359. $130-520 \mathrm{mc} / \mathrm{s} .$.

R-1294, $500 \cdot 3,000 \mathrm{mc} / \mathrm{s}$. 590 R-1619, 1,250-5,000 me/s.................. 870 R11/APR-5, $1,000-6,250 \mathrm{mc} / \mathrm{s}$. . 120 AN/APR-4, $38-1,000 \mathrm{me} / \mathrm{s} \ldots1260$ All the above are overhauled to the highest seandard and fully guaranteed.
MARCONI TYPE CT- 218 FM/AM SIGNAL GENERATOR. Carrier Frequency Range $85 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{me} / \mathrm{s}$. Deviation range 5 to $90 \mathrm{kc} / \mathrm{s}$. Crystal Check at $200 \mathrm{kc} / \mathrm{s}$. and $2 \mathrm{mc} / \mathrm{s}$. Internal modulation at $400-1,000-1,600-3,000 \mathrm{c} / \mathrm{s}$. Output 1 mierovolt to 1 volt. As new and guaranteed, complete-with accessory cables. Puaranteed,
$\$ 1250$

OSCILLOSCOPES

Cossor Double Beam, madel 339....... $£ 30$ o Erskine Double Beam High Speed Oscilloscope model 13. Time Base from $2 \mathrm{e} / \mathrm{s}$. to 750 hers; 1 and 10 microseconds marker......... 658 . 0 o 0 Fully overhauled and guaranceed.

YALVES

We'hold a comprehensive stock of Ex Service Valves, mosely new and in original cartons, all tested and fully guaranteed. Here are some of this month's bargains:-
${ }_{2} \mathrm{C}_{26} 1 / 9,2 \mathrm{D} 21 \quad 12 / 6,2 \times 22 /$, 5 R4GY 7/6, 6AG5 4/-, 6C4 2/, 6G6G 2/6, 6H6 $1 / 3,6 \mathrm{~J} 64 /=$ $673 \quad 5 /-, 83230 /=, 20515 /=, 90063 /=, \vee R-150$ 4/6, C.R. Tubes 3BPI 10/6.
Please write for full list of valves.

VARIACS

Variable auto-transformers, made by General Electric type looR, or equivalent "Powerstat " made by Superior Electric Co. Rating 2 kVA . Input Voltage 230 V . Output Voltage 0 to 270 V. Max. current 9 Amps. New and guaranteed. P.P. 12/6....................... $£ 15$ o 0 General Radio Variable Auto-transformers 115 V . 200 CU . Rating 0.86 kVA . Input Voltage Current 5 Amps. New and guaranteed Rated Curr
$7 / 6$.

For resting Motor and Generator Armatures, max. dia. of commutator approx. 4 in .; max. overall dia. 7 in .i max length approx. I5in. PRICE 65/io\%. Packing and carrlage $15 /$.

SPARES FOR AR-88D RECEIVERS.
I.F. Coils, $12 / 6$ each; Set of four, $40 /$. I.F Crystal Load Transformers, $12 / 6$ each. Dial Wincows, $15 /$ - each. Main Tuning Dials, 10/-; Knobs, Large - $4 /-$; medium and small- $2 /-$; Flexible Couplings $2 /$ - each. Filter Capacitors 50\% each.

INSULATION TESTERS

Record "Minor" 500 V . Insulation Tester complete with leather case............... \&8 00 Evershed Serles 1 Megger Insulation Tester 500 volts, 40 megohms.................... <25 0 Evershed Series । Megger Insulation Tester 1,000 volts, 100 megohms, from...... 27100 Evershed Serles I Megger Insulation Tester, 1,000 volts, 100 megohms, complete with Decade Box, all brand new........... 660 with 0 Evershed Series 2, 500 volt Megger Insulation Tester in leather carrying case-now reduced Tester in leather carrying case-now reduced Evershed Bridge Megger, 1,000 V...... \&55 0 0 Leather eases for Evershed "Wee" Meggers $\begin{gathered}150\end{gathered}$

All above are fully guaranteed for six months.
FREQUENCY METERS. BC-221, $125 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{me} / \mathrm{s}$; LM Series, 125 or $195 \mathrm{ke} / \mathrm{s}$ to 20 mc / s; TS-174, 20-280 mc/s; TS-175, $80-1,000$ me/s; LR-I' Substandard Frequency Meter, $160 \mathrm{kc} / \mathrm{s}$. to $60 \mathrm{mc} / \mathrm{s}$. Details and prices on application.

POWER UNITS TYPE 234A

A.C. mains operation 230 V . Output tapped at 180 to 270 V. D.C. at 80 mA . and 6.3 V 4 Amps. A.C. Brand new. P.P. 10%, 219

SIGNAL GENERATORS

MARCONI "STANDARD" TF-I44G SIGNAL GENERATORS, $85 \mathrm{ke} / \mathrm{s}$ to $25 \mathrm{mc} / \mathrm{s}$. output $1 \mu \mathrm{~V}$ to | V. Fully overhauled and Guaranteed, complete with mains lead and GENERAL RADIO 605B SIGNAL GEN. ERATOR, $9.5 \mathrm{ke} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{s}$; output $0.5 \mu \mathrm{~V}$ to 0.1 V . and fixed output I V . Eully overhauled and guaranteed, complete with mains lead and output lead...................... £65 0 0
MARCONI TF 390 G SIGNAL GENERATOR. Range $16-150 \mathrm{mc} / \mathrm{s}$. Output $0.1 \mu \mathrm{~V}$ to 0.1 V . Fully overhauled and guaranteed, complete with $3 / 14$ ohms terminating, unit, instruction manual and calibration charts

62500
GENERAL RADIO/FEDERAL RADIO 804 SIGNAL GENERATORS. Range 7.5 to $330 \mathrm{mc} / \mathrm{s}$; output $1 \mu \mathrm{~V}$ to 20 mV . Fully overhauled and guaranteed, with Mains and Output
Leads 655 o 0

6650
RCA TYPE 7IOA SIGNAL GENERATOR, Range 370 to $560 \mathrm{mc} / \mathrm{s}$; output $1 \mu \mathrm{~V}$ to 90 mV . Fully overhauled and guaranteed, complete with outpur cable, frequency correction charts and attenuator calibration charts... $£ 45$ o 0

SULLIVAN CAPACITANCE BRIDGE.

Range 0 to 35 mmF
$€ 3200$
Range 0 to 65 mmF
63700
BENDIX MN- 20 ROTATABLE LOOPS, for use with Bendix RDF Equipment. Brand new. P.P. 7/6.,

6200
14 V . DYNAMOTORS. Output 250 V . at 60 mA ., for Command Receivers. Perfect for running a Radio Set or a Shaver from your car battery. P.P. $2 / 6 . ~ \& 2 ~$
I5

Meters, fiesting No. 1. Portable D.C. Multimeter for use with an external battery. Range 0 to 5,000 and 0 to 500 ohms; 0 to 1.5 V .,
0 to 3 V . and 0 to 60 mA . P.P. $2 / 6 \ldots . .$.

Large stock of American Canmon, Amphenol and Hubbell Connectors. Please write for complete stock list.

Wireless World Classificd Advertisements

Rate 7/- for 2 lines or less and $3 / 6$ for every additiona one or part thereot, average lines 8 words. Box Numbers ${ }^{2}$ words" plan $1 /$. (Address replies: Borset 0000 e/o "Wireless World" Dorset Elouse, Stamiord St, London, S, E.1.) Trade 1959 issue, Thursday. Februarr 26th. No respongibility 1959 issue, Thursda

WARNING

Readers are warned that Government surplus components and valves which may be offered for sale through our displayed or classified columns carry no manufacturers' guarantee: Many of these items will have been designed for special purposes making them unsuitable for civilian use, or may have deteriorated as a result of the conditions under which they have been stored. We cannot undertoke to deal with any complaints regarding any such items purchased.

RECEIVERS AND AMPLIFIERS

A M/FM stereo chassis, 6 W output, only $£ 20$. N.19. -Bel Sound Products, Marlborough Yard.
[0182

S .27 Hallicrafter rec. covers, $27 \mathrm{mc} / \mathrm{s}$ to 4030 (London).
CDDYSTONE 770R communications recelver new over £250; what offers?-Box 1426 . [19322 cost
nes HRO RX's, etc., AR88, CR100, BRT400, Service, Ashville old Hall, Ashyille Rd., LonService, Ashvile Old
don, E.ll. Ley. 4986.

TV RECEIVERS AND AMPLIFIERS-
SURPLUS AND SECONDHAND
FOR all radio and gram. requirements, also F loudspeakers headphones and mikes, etc.. s.a.e. for lists, to-R. E. King. 54, Longmoor
Rd. Liphook, Hants. DHILIPS 17 in projection televisions available. as taken in part exchange, complete, but not guaranteed; $\frac{f 9 / 15 \text {, originally } £ 92-£ 120}{}$ Hill. S.E. 23.
excel-
DROJECTION T/V, Philips model 1800 , excellength doors but needs EHT transformer, fubl and screen $£ 8$.-Chattell, 40 , High Street North, Dunstable.
North, Dunstable. 12 nearly all makes, $45 /-$ each, carrlage paid; 12in televisions, needing attention $\mathbf{\varepsilon 9 / 1 0 ; \text { . write for Ilst.-Tomlins, } 2 7 \text { , Brockley }}$ E9/10; Write for list.-Tomins, 127, Brockiey

LOUDSPEAKERS-SURPLUS AND

D OWTHER PM2 unit in PW1 corner horn, Linished polished mahogany veneer; as new.
-Offers to Pinner 5590 or Box 1649 . 8344 DYNAMOS, MOTORS, ETC.-SURPLUS AND MERCURY arc rectifier, 400 V., $3-\mathrm{ph} . / 400$ fler $400 / 415 \mathrm{y}$ or $200 / 240 \mathrm{v}$, s.p., 200 v 5 A . DC. £35; both "Nevelin ". exc. cond., also Rotary
converters 1.5 and $3 E W$, 200/230v- 230 V AC, £25. resp. 35 Mugdan, Ltd. 23 , Brook Mews TELEVISION special tel. rotary converter inD.C., $230 / 1 / 60$ output, 200 watts. many of this type sold by me new $£ 27 / 10$. used but good, £10; carriage forward. Valradio television type converter, $220-240 v$. DC, to $230 / 1 /$
60 new vibrator fitted now working. AC tele60 new fibrator fitted, now working. AC television, £8; car forward. ${ }_{\text {PEARCE }}$ 66, Great Percy St., W.C.1. [8352 TRANSMITTING EQUIPMENT-
SURPLUS AND SECONDHAND
Y ACHT trans/rec, 8 valve transmitter, 0 to metres, power packs and speaker: $£ 25 .-$ Bowe
[8336
Park 4030 (London). TEST EQUIPMENT-SURPLUS AND CIGNAL generators, oscilloscopes, output meters, valve voltmeters, frequency meters, muiti-sange meters. Ashle old Eall, Ashville Rd. London. E.11. Ley. 9986.
TVERSERED Vignoles "Wee Megger," 250 V E with leather case and strap, good condition £8; Evershed Vignoles "Varley". bridge megger and resistance tester, 500 V . $0-100$ megohms incorporating 6 selector switches. megger section O.K., ohmmeter section needs shigh ad-
justment. \& $12 / 10$.
[8351 COMPONENTS—SURPLUS AND
SEOONDHAND
LLUS2RA'IED Oatalogue No. 13 , contalining over 450 jtems of Covernment surplus and model radio of goods; $2 / 6$ overseas sea mail.Wrthur 95 , North Rd. Brighton. Deparment 1019

insist on

High Fidelity
Output Transformers 5-100 Watts

P6002 G.E.C 80-50 Amplifier Price 198/.

P4014
C core version, Mullard 10 watt Amplifier. Price 98/6.

P4076

Baxandall 5 watt Amplifier. Price 36/-.
P4131
Mullard
10 watt Amplifier Price 60/-.

TD5874
"HFN"
Stereo Amplifier,
Price 52/6.

undoubtedly the best but cost no more!

Over 40 models are available from stock at prices from 36/\%, rating $5-100$ watts. Ask your local dealer or in case of difficulty write direct to us.
Partridge Transformers Ltd., Roebuck Road, Chessington, Surrey. Phone: ELMbridge 6737-8.

COMPONENTS-SURPLUS AND

 MAGSIPS it how prices. fully guaranteed, $50 \mathrm{c} / \mathrm{s}$, unused each in tin. $35 /-$, post' $2 / 1$; Crawshay 94, Pixmore Way, Letchworth Herts. Tel. 1851. [OOB; CATHODE ray tubes, used, but in good ntee, Mullard and Mazda or equivalert tynes $14 i n$ and 17 in . \&t $£ 4 / 10$, plus $12 / 6 \mathrm{carr}$. and ins. also other sizes and types available on application to-B.H.P. Distributors (Iondon), Ltd., 379 , Stalnes Rd. Hounslow. Mlddx. Tel.Hou. 5144 .

CRANSISTORS, red spot, $7 /-$; white spot, 24/-: OC72, $30 /-:$ OC45, $35 /-;$ OC44, $40 /=$
 (L.F.), 10\%: Newmarket L.F. power types V15/iop, $20 /-$ Newmarket \quad V15/20P, $39 /-$ v15/30P, $48 /-:$ Vis/201p, $25 /-:$ add rostage, Morco Experi-
mental Supplies, $8-10$, Granville St., Sheffield.

NEW GRAMOPHONE AND SOUND
CAPE recorders, Ferrograph, Vortexion, Reflectograph. W TAPE decks, Wearite, Brenell, Truvox, Dulci AMPLIFIERS and turners. Leak, Quad, R.C.A. Dulci, Dynatron; microphones, Reslo, Acos. Philips, Labor, etc. accessorles; audio service dept, and recording studio: hire-purchase LAMBDA RECORD Co. Ltd., 95, Liverpool
Rd., Liverpool, 23. Great Crosby 4012. [7749 OUR March recommendation, a Unimixer. buy s. 179 , to go with the tape recorder you
bul from us.-Sound News. CINE-VOX disc recording mechanisms for 56 gns. : also complete tape/clisc or direct channels from 50 gns - -112 gns . DEMONSRRATIONS can be arranged in Lon-
dont-For full details write to \mathbb{K}.T.S. Ltd. Coplow, Park na. Braunton. N. Devon Callers by appointment only CLASGOW,-Recorders bought, sold, exrecorders or vice versa. - Victor Morris, 406 , " PROICA " RECORDING STUDIOS (Est. by Ferrogranh series Iv (Stereo as required) by Ferrograph, series IV etc., Brenell (Mk.
and the marvellous lightweight Three-Star): pocket 3 -way mixer. $\underset{i}{ } 3$ posted; installations for industry and the home: tape/disc, etc.Recorder House. Peel St. Eccles. M/c. Eccles
1624. Director. Thurlow Smith, A.R.M.C.M.

GRAMOPHONE AND SOUND EQUIPMENTSURPLUS AND SECONDHAND
JNIQUE opportunity.
COMPLETE tape and disc equipment, compricing: phonograph orthophonic high fidelity F.M. tuner. transcription turntable and varicontemporary polished wainut cabinet, together with 20 -watt R.C.A. power amplifier, Bradmatic console tape recorder equipment complete with every facility. Reslo microphone with floor stand and who equipment conprising one complete unit. CAN be seen working by appointment in the -Tel. Northern 8091 or write Box 1306. [8363 FERROGRAPR
access. extra.-Box 1705 . M. S.S, disc recording dual channel studio Sussex. Details-Box 1650 .
Somation: seen
8345 HI-FI equipment comprising speakers, tuners condition: list sent on request. - Buswell \& Sondition, Rothwell. Northants.
" PYE Bi-Fi" table auto, record-changer with speakers, condition and appearance as new 30gns. cost 65 gns.
PEARCE 66 Great Percy st.. W.C.1. $[8350$
KLIPSCHORN speaker cost £150, as new £30; one quad 11 amplifer and pre-amp, new hundreds books and hi-f magazines cheap Lecrers-Rich Recorder, £400; 100 tapes O NLY from us! A famous stick mike norm Cape bargain-Ferrograph Tape again super
 (Comer of Warren St.), London, W.i, Eus (Corm
6500.

PRECISION SOLDERING INSTRUMENTS for the ELECTIRONICS INDUSTRY
－Comprehensive range
－Robust \＆Reliable
－Light weight
－Rapid heating
－Bit sizes $3 / 32$ in to $3 / 8 i n$
－＇PERMABIT＇or Copper
－All voltage ranges $6 / 7 \mathrm{v}$ to 230／250

－Prices from 19／6

Illustrated is the 25 w 3／16in replaceable bit model with safety shield．

British and Foreign Patents．Registered designs．Suppliers to Governments．Agents throughout the world． Brochure No．$\$.5$ sent free on request．
Sole proprietors and manufacturers：
LIGHT SOLDERNG DEVELPPMENTS LTD． 106 George Street，Croydon，Surrey
Phone：CROydon 8589 Grams：Litesold Croydon
－AERIAL EQUIPMENT．Poles，Masts， Dipoles，Yagi，and Microwave arrays．Iin Dipoles to $\mathbf{1 5 0 f t}$ ．Masts．
CABINETS AND RACKS．36in．to 96 in ．high，standard 19 in ，wide
－CONDENSERS up to $10,000 \mathrm{mfd}$ ．and 50 kV ．
FUSES．Cartridge and E．S．$\frac{1}{6}$ amp．to
600 amps ．
INSULATORS． 80 different patterns．
LOUDSPEAKERS 3 in ．dia．to 50 wat Theatre Systems．
METERS 2in．to 12 ln ，dia． 120 different types．
POWER SUPPLIES．
Generators Rectifiers，Vibrators，Inverters，Dynamotors from 2 volts 100 amps ．to $36,000 \mathrm{v} . \frac{1}{2}$ a mp．
RECEIVERS． 80 eypes available from $15 \mathrm{kc} / \mathrm{s}$ to $600 \mathrm{mc} / \mathrm{s}$ ，including portable，D．F． Table Rack and Pedestal．
－TEST GEAR，American，over 100 differ－ ent types，Meters，Calibrators，Signal Gen－ erators，etc．
TELEPHONE AND TELEGRAPH EQUIPMENT．Single－and multi－channel apparatus，filters，switchboards，power sup－ plies，perforators，printers．
TRANSFORMERS Audio and Power 200 types from 2 voits to 18,000 voles and up to 15 kVA ．
TRANSMITTERS． 60 different types from UF－l Handle Talkie to G－50，2，500 watts FULL LISTS OF OVER 1,000 DIFFERENT ITEMS AVAILABLE

P．HARRIS
 ORGANFORD，DORSET
 Telephone：LYCHETT MINSTER 212

TAPE recorders for sale of hire．－Edric Films，Ltd， $34 / 36$ ，Oak End Wa．．Ger：－
rards Cross，Bucks．（Tel．Gerrards Cross 2908．） FASYSPLICE magnetic tape splicer makes tape spicing easy，prov，patent，guaranteed；
price $7 / 3$ ．－Easysplice， 30 ．Lawrence Rd，
R 8179 price．
R ENDEZVOUS RECORDS offer comprehen－ R sive $78 / \mathrm{LP}$ tape to disc recording facilities．
－Leaflet from 19 ，Blackfriars St．，Man－ Leaflet from 19，Blackiriars St．，Man－
chester． 3 ， TAPE to dlsc service．brand new cutting satisfaction guaranteed：keenest prices；s．a．e． for full details．－Sunderland Sound Services， 28，Vlewforth Terrace，Fulwell，Sunderland
Tel． 57032 ．
［8282
TAPE／DISC／TAPE／TRANSFER．－If quality LPs）consult Britain＇s oldest（especially with LPs）consult Britain＇s oldest full－time transfer
service（1952 rates）；delivery $3-5$ days；our Unimixers will improve your quality．－Sound TAPE to disc recording；Microgroove LP from 48 27／6， 78 r．p．m．from 11 ， also 45 r．p．m． 48－hour service；s．a．e for comprehensive leaflet Little Place．Moss Delph Lane，Aughton，Orms kirk，Lancs．Aughton Green 3102 ．［M8133

CABINETS

C．QP．speaker cabinets and others；shop 55／－to $80 /-$ ，new units available if requit．，from 55／－to 80／－in new units available if required； Saturday Mornings．TRel．Ennf． 8262.
Sarnesfield Rd．，Enfeld，Middx．
［8308 Sarnestield Rd．，Enfield，Middx．
VALVES VALVE cartons by return at keen prices；send makers，75a．Godwin St．．Bradford，1．A．Box－
［0172

VALVES WANTED

SURPLUS valves wanted；please state quan－ Uity，condior and price－Box 1698，8356 NEW valves wanted，any quantity，best cash Lane，West Bromwich，Staff．Tel．Wes． 2392. A LL types of valves British or American， prices pald．What have you to offer？Writ．e | or cal！Lowe Bros．9a，Diana Place，Euston |
| :--- |
| Rd．．N．W．1．Tel．Euston 1636－7． |
| 7848 | R ADIO and F．V．valves wanted for cash quantities；please give all details．including price required in first letter，or lot of under

50 may be sent in for our valuation．－Walton＇s 50 may be sent in for our valuation．－Walton＇s
Wireless Stores， $46,47,48$ and 49 ，Stafford St．Wolverhampton．
［0102

WANTED，EXCHANGE，ETC．

EX－GOVT．engine－driven generators $1,200 /$ ［8286 A PROMPT cash offer for your surplus brand instruments，etc．－R．H．S．， 155 ．Swan Arcade， instruments，etc．－R．H．S．，155．Swan Arcade，
Bradford 2． Bradiord \＆
all types of communications －cevers and test equipment．－Detalls to R．T．\＆I．Service，Ashville Old Hall，Ashville
Rd．London，E．11．Ley． 4986 ．
［0163 WANTED，coll winder tor pile windings， Ltd．，National Provincial Bank Chambers， 29 ， Ltd．i National Provinclal Bank Chambers， 29 ，
South St．，Worthing，Sussex．Tel．Worthin
8719 ． 88334
W ANTED，BC610 Hallicrafters，ET． 4336 frequency meters and BC 312 receivers， BC 221 best cash prices．－P．O．A．Radio，Beavor Lane，
Hammersmith． W .6 ． URGENTLY wanted，manuals or instruction Aooks，data，etc．，on American or British Army，Navy or Air Force radio and electrical
equipment．－Harris， 93 ，Wardour St．W． 1 equipment．－Harris，93，Wardour St．，W． 1
Gerrard 2504 ． 88235
WANTED．good quallity commundcation RYS \checkmark tap：recorders，test equipment，domestic radios，record players，amplifiers，valves，com－
ponents，etc．estb． 18 years．－Call，send or ponents，etc．estb． 18 years．－Call，send or Court．Leicester Sq．，W．C．2．
［7898
PROMPT cash for the purchase of surplus
stocks of televisions，tape recorders， amplifiers and domestic electrical appliances at every description．substantlal funds avall ble－Spears，14，Watling St．Shude chester，Blackfriars 1916．Bankers：Midland Bank，Ltd．
［0216

REPAIRS AND SERVICE

MAINS transformers rewound．new trans MOTOR rewinds and complete overhauls；first－ class workmanship；fully guaranteed， Warser Gate，Nottingham，Est．1917．Tel． 54898.

TRANSFORMERS to any specification， quicé and efficient service，competitife prices， estimates by return of post，from： South Woodford，E． 18.

10330

TONDON CENTRAL Rablo stopise

10 WAY PRESS BUTTON INTERCOM．TELE－ PENES．ER．
VENNER TIME SWTTCHES for switching on／off fad ing and power Reconditioned as hew．In from 25／5／
Photo－Electrio GeLlS，Type G818．These cells are the gas－ailed type with caeslum Cathode．Marle y Ointel．Minimum senestivity $100 \mu \mathrm{~A}+$ lumen work geg volte 100 D．C．or peak A．C．Projected cathod area 18 sq ． cm ．Suitable for 16 mm ．Home Chnerna Jatching，Burylar Alarns，Automatic Counting Dour Opening，etc．， $30 /=$
TELEPHONE DIALS．0．9．8uitable for inter－office and factory Instaliations．WIth fixing mount，fitted With connecting tags．21／．
SYNCHRONOUS A．C．MOTORS（geared meter move mants）， $200 / 250$ p．For modeis，etc．Approz．size $\times 8 \times 3$ in．，weight 1 lb ．， 10
3－OHM P．M．SPEAKERS．in good working order 10in．27／6；8in．9／6；6in．9／6；5in．11／6．
WESTERN ELECTRIC EXTENDING TELEPBONE with elingle earplece and headband，complete with Bcrew－fixing table stand．Approx．22in．extension AVO UNIVERSAL TES
AVO UNIVERSAL TEST METERS．Reconditioner道 odel Z
matis．Fized tarif METERS（ $1 /-$ in slot），for A．O or hotels，ctc． 10 A to your requirements．suitable ther amperages available．Reconditioned． 10 nep QUARTERLY ELECTRIC CEECK METERS．Re ry／6．Other amperages avalable， $15 \mathrm{~A} .52 / 6,20 \mathrm{~A}$ MIRROR GALVO＇s．Inetrument
Exteral resistance $1,400 \mathrm{ohm}$ ．Bensitivity 2,200 M．M．8．NEW，in wooden transit bex． 8 size $13 \times 6 \times$ Vin．f3／15／－，
So volts， 1 DAY CLOCHWORK TIME SWITCEES 30 volts， 1 amp．， $34 \times 28 \times 2$ lin．，with key and TUFNOL SHEETS． 1 in ．thick， $47 \mathrm{ln} \times 47 \mathrm{~lm}, ~ £ 2$ $23 i n \times 16 \mathrm{in} .7 / 6,16 \mathrm{in} \times 16 \mathrm{in} .5 /=$ per sheet． All prices include carriage．
23 LISLE ST．（GER．2969）LONDON，W．C． 2
Closed Thursday 1 p．m．Open all day Saturday

NEWG．E．C．，S．T．C．AND＂WESTALITE＂ SELENIUM RECTIFIERS．Largest L．T． range in Gt．Britain．ONLY Makers LATEST GOODS supplied NOT Surplus． S．T．\＆C．E．H．T．K3／15，5／－；K3／45， $9 / 4$ ； $\mathrm{K} 3 / 50,9 / 10 ; \mathrm{K} 3 / 100,16 / 8$ ；all post 4 d ．extra BRIDGE CONNECTED FULLWAVE． $17 \mathrm{v} .1 \mathrm{a}, 13 / 4 ; 1.5 \mathrm{a}, 26 / 6 ; 3 \mathrm{a}, 30 / 6 ; 4 \mathrm{a}$ ． $38 /-; 5$ a．， $38 / 6$ ，ali post 6d． $33 v$ ， 1 a．， $22 / 9$ ； 1.5 a．， $45 /-; 3$ a． $54 /-; 5$ a．， $68 /-;$ all post $1 / 6$ ． 5 a． $97 /-; 72$ v． 1 a． $42 /-; 1.5$ a． $78 /-; 2$ a． $94 /-9$ 3 a． $95 /-; 5$ a． $124 /-; 100$ v． 1 a． $61 /-; 1.5$ a 112／－； 2 a． $134 /-; 3$ a． $134 /-; 5$ a． $180 / \mathrm{j}$ ；all post

BRIDGE CONNECTED WITH 7⿺𠃊 $\frac{1}{6}$ in SQUARE COOLING FINS 17 v． 6 a． $53 / 7 ; 10$ a $61 /$ ；post $2 / 6$
BRIDGE CONNECTED HEAVY DUTY FUNNEL COOLED or $7 \frac{7}{4} i n$. SQUARE COOLN 1701 S．Both types，same pric 17 v． 20 a．120／－； 30 a．172／－；50 a，280／－； 33 v $6 \mathrm{a} .89 /-; 10$ a． $102 /-; 20 \mathrm{a} .202 / 6 ; 54$ v． 6 a $124 /-; 10$ a． $144 /-; 72$ v． 6 a． $160 /-; 10$ a．186／－：
100 v． 6 a．227／6； 10 a， $270 /=$ ；all post $3 /-$ 100 v． 6 a． $227 / 6 ; 10$ a．270／－；all post $3 /-$
WESTALITE＂（BRIDGE） $12-15$ v．D．C． 0.6 a． $12 /-; 1.2$ a． $30 / \mathrm{j} ; 2$ a． $32 / 6 ; 5$ a．37／b； 24 v． 12 a 20 a．il7／6； 30 a． $171 /-i 50 \mathrm{a} .278 /=$ 208／－； 36 v． 1.2 a $47 / 6,50 /-10 \mathrm{a} .109 / 6 ; 20 \mathrm{a}$ 100 v． 1.2 a． $82 / 6 ; 2.5 \mathrm{a}$ ． $154 / 6 ; 5 \mathrm{a}$ ． $195 / 6$ ； $10 \mathrm{a}, 391 / \mathrm{F} ; 170 \mathrm{v}$ ． $\mathrm{J} .25 \mathrm{a}, 135 / \mathrm{F} ; 195 \mathrm{v} .1 .25 \mathrm{a}$ ． 144／6．All post extra $1 / 6-3 / 6$ E．H．T．Rects $14 \mathrm{D} .134,25 /-; 36$ E．H．T． $6035 / 10$ ；post 4 d ． I ma．AC／DC meter rects． $14 / 6$ ．
＂SALFORD＂（BRIDGE）． 6 and 12 v．D．C． I a． $7 / 6 ; 1.5-2$ a． $8 / 6 ; 2.5$ a． $11 / 9 ; 3$ a． $14 / 9$ ； $4-5$ a．16／6； 6 a． $23 / 6 ; 10$ a， $34 /-; 14$ a． $42 /-$ 24 v． 1 a． $12 / 6 ; 1.5$ a， $14 / 3 ; 2$ a． $15 / 6 ; 3$ a．
$26 / \mathrm{a} ; 4$ a． $29 / 6 ; 6$ a． $36 / 6 ; 10$ a． $75 / \mathrm{m}$ ；other sizes．Post，under $£ 1$ add $1 /-$ ，over $£ 1$ add $1 / 6$ ．

Some Transformers now stocked． Wholesale and Retall．

T．W．PEARCE

66 Great Percy Street，London，W．C． 1
of Peatoaville Road，Botween Iing＇s Cross and Angel

Gilson Transformers

for Industrial

Equipment

Comply with the requirements of standard specifications such as RCS214, BSSI7I, etc., as required. In áddition they all possess the built in extra reliability that comes only from years of experience combined with the constant effort to maintain a high reputation.

GILSON U.L. OUTPUT TRANSFORMERS

Bring the same high standards to the high fidelity enthusiast.

$8 \mathrm{~K} \Omega \mathrm{~A}-\mathrm{A} 40 \%$ taps $6-6 \mathrm{~K} \Omega \mathrm{~A}-\mathrm{A} 40 \%$ taps
$3,8,15$ ohms secs.
4 sec sections
WO 892
I5 Watt

WO 866
30 to 50 Watt

Please write for information leaflets on the above.
R. F. GILSON LTD. wimacios

11a ST. GEDRGE'S RD., WIMBLEDON, O.W. 19
Makers of HEAVY DUTY MAINS, NEON and FLUORESCENT LIGHTING TRANSFORMERS

REPAIRS AND SERVICE

W^{E} undertake the manufacture of transspecification; all work guaranteed for and LADBROKE Rewind Service, Ltd. 820a, Harrow Rd., London, N.W.10. Tel. Ladbroke
$\mathbf{R}^{\text {ENEW }}$ to stock your faulty speakers of all fields and pressure units, microphones, coils, fields and cone assembilies \ln cartons. $-D$. .
Boulton.
134 Boulton. 134 . Thornton Rd., Bradtord ${ }^{\text {Telephone }} 2283$.
[017i

miscellaneous

1 ETALWORK, all types cabinets, chassis, 1 racks, etc., to your own specification, capactity available for small milling and capstan work up to 1 in bar. St. Loughborough
Glectrical E. make Appliances Actuators, all two to three weeks, Commercial Ex Store Contact: Stewart Aeronautical Supply Co., Ltd. Telephone: Redhul 5050 .

PAINTS, CELLULOSE, ETC.
Panl, recognised for many years as the prush unique one-coat black crackle finish $1 / 8$ prunt cans at $\frac{\text { baking }}{} 1 / 9$ avallable by post -in $1 / 8$ pint cans at $3 / 9$ from: G. A. Miller,
255, Nether St., London, N.3.

BUSINESS OPPORTUNITIES

$\mathbf{A}_{\text {stallation }}^{\mathrm{NY}}$ interested in the supply and insenior executive's office should write to fox 1570.

Working director required, with full techincluding $\mathrm{Hi}-\mathrm{Fi}$; small capital; excellent opportunity; Surbiton area,-Write Box 1685. [8361

CAPACITY AVAILABLE
A SSEMBLY, wiring, testing, H.F. and V.H.F. machine engraving, Supapliers, to metalwork. S.T.C., etc. ${ }_{\text {Re }}$. Somerset.
[8265
ELECTRONIC assembly, coll winding and Products. Marlborough Yard, London, Nound Tel. Arc. 5078 .
M AGNETIC amplifiers, transductors, etc.ment problems. Able Engtneering, Ltd. 12 ,

> SITUATIONS VACANT

PROCESS Control and

RADIO Telemetering.
A WELL-known Colnpany requires an Engineer to specialise in the application of telemetering process control. The candidate will be required to have a krowledge of teleprinter and
radio technique, coding systems (both teleradio technique, coding systems (both teleprinter and digital) and supervisory control strumentation would be a considerable advanthe. position will provide opportunities for an interesting and progressive career in the broaci feld of instrumentation and automatic A DECTRILEE (or near equivalent) is desirable; Age should be about $26-35$. The position is based in the London area but there will be
journeys of short duration in the U.K. and PLEASE write to Box 1686, quoting Ref. E. 9697 ,

$\mathrm{E}^{\text {LeCTRONIC engineer }}$

APPiications are invited for the post of Electronle Engtneer (Senior Technician grade)
in the newly established Medical Research Council Neuropharmacology Research Group ε^{+} the Medical School, Birmingham. The person tain electrophysiological and to develop and construct electronic equipment for use in research projects. Starting salary wll be de-
pendent on qualifications and previous experi-ence.-Applications, in writing, to The Director, Medical further particulars may be obtained. ${ }^{8} 820$ Electrical Draughtsman.
PREFERABLY with O.N.C. and apprenticeship served: experimental work on machlne tools. electronic test gear and related work; excellent training and prospects available with Europe's largest makers of gear-cutting machine tools; good conditions of employment. including detalls. in confidence, of age, education, experlence and present salary to W. E. Sykes,
ptd Manor Works, Stalnes, Middlesex. $[8362$

A SSOCIATED ELECTRONIC ENGINEERS, in design of small power and audio trans-formers.-Telephone Wordsworth $4474 / 5 / 6$. ${ }^{05}$
wrtte 10, Dalston Gardens, Stanmore.
[8343

BS125R. £46.10.0 (Plus $\left.\begin{array}{c}\text { fl2 } \\ P . T .12 .0 \\ \text { in U.K. }\end{array}\right)$
A reliable, high performance semicommunications receiver with 6 bandspread ranges (11, 13, 16, 19, 25 and 31 metre bands) and 3 general coverage bands (15-43, 43-150, $190-550$ metres). A tuned high gain R.F. stage and two I.F. stages ensure outstanding sensitivity and selectivity. The 10 -watt push-pull output amplifier section, with independent bass and treble controls and high quality output transformer gives a high standard of reproduction which with the gram input provided is available for record reproduction as well.

An ALL-WAVEBAND
 RECEIVER WITH R.F. STAGE

RF125R. £37.10.0 ($\begin{gathered}\left.\text { Plus } \begin{array}{l}\text { £. } 9.0 .0 .0 . \\ \text { P. in } U . K_{.}\end{array}\right)\end{gathered}$
This version of the 125 receiver is identical to that described above, except that coverage is continuous from 13 to 550 metres spread over 4 ranges and with the addition of the long waveband.

BANDSPREAD and R.F. STAGE TUNERS

Tuner-Control Unit versions of the above models, incorporating bass and treble and gain controls, and audio pre-amplification, are available for use with existing power amplifiers.
BS125T. £31.10.0 (Plus Purchase
RF125T. £22.10.0 United Kingdom)

Onmostone

The name ARMSTRONG is the registered trade mark of:-

Warlters Road, London, N. 7
Telephons: NORth 3213

RELAYs. $12 / 24$. coll; 4 make, 4 break contacts (10 amp. rated by Magnetuc Devices, 76. U.S.A.
Semi-rotary actlon, DPDT heavy silver contacts; Somi-rotary Bethon, DPDT heavy silver contacts;
SPDT
SPST SWITCHES, toggle, User.A., DPDT, 1/8. COMMAND
RECEIVERS, brand new, RECEIVERS, brand new, 6 valves, med. Wave (0.52-
$1.5 \mathrm{Mc} / \mathrm{s}), 97 / 8$: uned $82 / 6$ (post $3 / 6$). Conversimu $1.5 \mathrm{Mc} / 8)$, 9'7/6: used $82 / 6$ (post $3 / 6$). Conversinu
data \& circ. to CAR RADIO, $1 / 6$. 1 F . STRIP 373 , data \& circ, to CAR RADIO, 1/6. IF. STRIP 373,

 CHOKES, L.F., $10 \mathrm{R}, 120$ mA., 8creened, $7 / 6,5 \mathrm{H}$. $200 \mathrm{~mA}=, 4 / 6 . /$ R1155B, new condition, tested, with
handbook, $£ 7 / 101-$ (Rail 10/-). SCR52 Modulation or Driver Trans, otther 7/6. VARIOMETERS (19 set), new, 15/- INDIOATORS with C.R.T.s VCRb30 and VCR139A; 10 valves, etc, $50 /$ (raii 8/6). Single
 ROTARY), 24 F. D.C. to 50 V. A.O. 4 A., 40 -(rall 7/B). Mic inserts, G.P.O. carbon, \&/6. EARPIECES, inseris,
hal. ammature type, $2 / 6$. MORSE TRATNER SET with buzzer and key wired for 44 $\mathrm{\nabla}$. battery, 8/6. DRIVES: elow-moiton Admintity 200: 1 ratio , pcaled 0 -100. $5 / 6$. R1155 8.M. "N" type, Rew, 10/6. VIBRAPAK, 6 v. D.C. to 250 v. 60 mA., amouthed cased, 22.6 .
12 v. to 250 v. 60 mA., $20 /-($ p.p. $3 / 6)$. METERS, contain 2 separate microamp. movenenta and 2 neons. now, $8 / 6$. Crososer peedle, $1 \mathrm{~mA} \times 2,8 / 6 . \mathrm{RE}$.
8ISTORS, vitreous, 4 k watt, most values iromi k . to 8ISTORS, vitreous, 4$\}$ watt, most values from 1 k . to
100 k ., each 9 d . AMPLTIERS (Turbo) with $2 / 7 \mathrm{C}$.
 i.C. $100,200,300,500 \mathrm{~mA}$ each, $8 / 6 ; 1 \mathrm{~mA}, 17 / 6$;
 doz., M/w, POTENTTOMETERS, 100 k. or 500 k ,
new, doz., $5 /-$ AERIAL MAST' STAYS, 40 it ., muli-
 TORS 2 vV . $4 \mathrm{AH} 24 \times 1 i \times 31 \mathrm{Ha}$. $7 / 6$. CABLE, rubber1 ov or 2 k miniature, $1 / 3$. Trimmers 2 -1 2 pl . air-spacel. ceramic, 1/3. RELAT UNTTS with 7 " 600 " relagy, one milniature nod $2 / 6 \mathrm{CA}$ valves, $25 /=$ (p.p. 3/6). LIIT AND ENQUTRIES: 8.A.E. please! Terms,

Callers and Post W. A. BENSON (WW)

 136, Rathbone Road, Liverpool, 15. SEF 6853Callers: SUPERADIO (Whitechapel) LTD.
116 Whitechapel, Liverpool, 2. ROY $1 / 30$

PRECISION SHEET METALWORK

We specialise in manufacturing of
Chassis in all metals, large or small quantities to your own specifications
V. W. BEAMISH

Shardeloes Garage, Shardeloes Rd., New Cross, London, S.E. 14
Telephone: TIDeway 4795

YOU are invited to apply for a copy of our 1959 illustrated brochure and price list which gives full details of our wide range of

QUARTZ CRYSTAL UNITS

which are renowned for their Accuracy \& Reliability

The QUARTZ CRYSTAL Co. Ltd.
2.cicimo works Wallington Srescent,
Nation, Selrrey.

MALden 0354 \& 2988

SENIOR Design Draughtsman required by well-known manufacturers in West London district, for mechanical design and development of radie and television recelvers for mass production; this is a permanent position for the
right man; the company operates a pensions Tlght man; the company operates a pensions-
ilfe assurance scheme.-Applicants are relife assurance scheme,-Applicants are redetalis of write in sperience qualfications and details of age, experience, quaifcations and
salary required, to Box 1279 .
an09 UNITED OXFORD HOSPITALS.
MEDICAL Research Departments of the United Oxford hospitals require an eiectronics engineer counting equipment and to help in developing new apparatus and techniques. Experience in this field would be an advantage but it is not essential.
to age, qualificy range $£ 600$ to $£ 900$, according APPLICATIONS together with names of two referees to be sent to the Assistant Administrator, Churchill Hospital, within 14 days of the
appearance of this advertisement.
$[8329$ Transmitter installation Engineers
ARE required by Pye Limited, of Cambridge, to take charge of projects at home and abroad involving the installation and setting up of medium and high power transmitters of all
types ranging from $550 \mathrm{kc} / \mathrm{s}$ to $1,000 \mathrm{Mc} / \mathrm{s}$. together with associated equipment. IT is envisaged that the engineers appointed will either have experience of design and development of transmitters of 500 watts and upwards, or several years' operating experience tions stations. Successful candidates who wiil have the opportunity to familiarise themselves yith the equipment, should preferably be 25 to 30 years of age with technical qualifications
equivalent to equivalent to H.N.C. Appricsed to the quoting "TXEE," should be addressed to the Chief Englneer, Pye, Limited,
Cambridge.
THE INDEPENDENT TELEVISION AUTHINVITES applications for the appointment of Engineer in Charge at each of its medium power transmitting stations which are now being built at Mendresham in suals, Black MPPLICANTS must have electronic qualifications: a frst-class knowledge of high frequency and of television engineering and must have gained practical experience of the retalled ormitting station.
THE successful applicants may be pasted to one of the authorities existing medium power transmitting stations priur to taking up their Black Mountain in June/July and at Dover in THE scale this year. THE scale for this post is $£ 1,155$ to $£ 1,865$ per
annaum; contributory pension scheme is in anaum; ${ }^{\text {a }}$ contributory pension scheme
opertion ilions stating age, experience and APPLICATIONS stating age, experience and
qualifications should be addressed to the Perqualincations should
sonnel Offcer, 14, Princes Gate, London, S. W. 7 .
quoting reference
$\mathrm{E} / 2$ quoting reference E/2.
SCONTHORPE HOSPITAL MANAGEMENT LINCOLNSHIRE Radiotherapy Centre (50 bedysisc Laboratory Techniclan.
DUTIES concerned with application of Physics to Medical problems. maintenance and service X-ray sets and electronic eguipment used in radioactive isotope work. Educational qualif-
cations Inter B.Sc. or onC (Elect. Eng.) or equlvalent but practical experience considered In 1 leu of other qualifications. Salary scale
\& 495 to
\& $625-39-h o u r ~ w e e k . ~ F o r m ~ o f ~ a p p l i-~$ cation from Group Secretary, W/ar Memorial
Hospital, Scunthorpe.
H2 21
$\mathbf{R}^{\text {OYAL AIR AIRCRAFT }}$ FSTABLISHMENT, ELECTRONICS mechanics to serve as Research and development craftsmen. Rate of pay on
entry 189/8 plus $10 /-$ or $38 /-$ merit lead. for a4-hour 5-day week. Rate reassessed within three months, any incrase awarded will be back dated to date of entry. Prospects of ad-
vancement to higher rates of pay. Merit lead Vancement to higher rates of pay. Merit lead
can rise to 70%. Two weeks (88 hours) paid annual leave. Paid sick leave scheme. APPLICATIONS giving full details of apprenticeshlp, training and experience, to Director, Royal Aircraft Establishment, Farnborough,
Hants (WW).
$[8330$
SENIOR Design Draughtsman required for Applork in the Nuclear instrumentation field. AppLy in writing to the Chlef Engineer Nuclear Engineering Divilion. General Radiolosical, Ltd. 15/18, Clipstone street, Great
R ADIO Mechanic wanted for small repairs R to W.W. Straight Six. Set D.-6. Abingdon
Rd., Kensington, W.8. Wes. O347.
$[8315$

R ADIO and television engineer required; good Rewages and conditions, apply, M1ving ex-ESTMMATOR.-Midland electronic manufacto work on own initiative, -Please write rilliy
to Box 1587 .

POST OFFIOE LINE EQUIPMENT

TELEPRINTERS: Perforators, Reperforators, Axto POWER BUPPLY BECTFIERS: for Telegraph systems. FLITERS: Fiters Band-Pass cut-ot frequencles from SPARES AND ACOESSORIES OF ALL TYPES FOR LINE EQUIPMENT: Attenuators, Line Equaizer Unila Recording Bridges, Tolegraph Relays, suark Oap Protectors, Coils Inductance, Repeatling, Retardation. SWTTCHBOARDS: P.O. Mobile type AD-1240 (3-6-9), Untversal Call 10-line, Magneto to-line.
FIELD TELEPEONES: Types EE-8, D, F and L $1+4$ Speech \& Duplex, Apparatup $2 / 4$ Tone $1+1$ OHversity Comblning Units and apares of all types. LOW POWER RADIO STATIONS
(Ground use) COLLDNS 280 SERIES 14 to $12 \mathrm{Mc} / \mathrm{s}$ RF output 25 watte. Power untto
115 v and 230 v . A.C.
 ancillary equipment and R.F. Amplifers No. 2, Mk. 2.
WIRELESS
SET ${ }^{40-48} \mathrm{Me} / \mathrm{s}$. SET No. 82 : Lightwelght Communication wireLess Set $1 \mathrm{l}-10 \mathrm{Mc}$
WIRELESS SET No. 88: Manpack or Track Walkie Talkie $40142 \mathrm{Mc} / \mathrm{s}, 4$ Channel
LCR-193 40 -75 ratt output Radio station HF
(Airborne use)
BCR-522 4 -Cuannel $100 / 156 \mathrm{Mc} / \mathrm{s}$. complete with al operatigg and test equipment.
REBECCA DISTANCE MEASURGG EQUTPMENT Mk VII.
STR9X iype $100-124 \mathrm{Mc} / \mathrm{m}_{1}$ 118-185 Mc/日, 124-156 Mo/d.
RADIO COMPASS SCR-289G.
gpares stocked to large quantitiles. 2 mofd, at 10.000 anciers, variable and fixed up to Rectifier varions, Carbon Brishes Bull-races, Potentiometers, Teat Meters
TRANSMITTERS Redifon Type G12T-Output atts C.W. 500 watts phone Frequency coverag $100 \mathrm{Kc} / \mathrm{s}$ to $1,200 \mathrm{Ko} / \mathrm{s}$ in 4 bands. Operates from $2 s 0$ valta 50 cycles suppiy. V.F.O. and crystal control with switch selection of spot Frequencles. Atr Ministry Type T1509-Output 300 watth A1, A2 and A3, Fre quency coverage $1,500 \mathrm{Kc} / \mathrm{s}$ to 20
from 230 volts, 50 cycle guply
R. GILFILLAN \& CO. LTD.

National Provincial Bank Chambers 20 South Street, Worthing, Sussex Tel.: Worthing 8719 and 30181.
"GIL WORTHING" "BENTLEY'S 2nd"

RADIO \& TELEVISION COMPONENTS

We operate a prompt and efficient MAIL ORDER Service. 3d. stamp (onty) for catalogue. James H. Martin \& Co. Finsthwaite, Newby-Bridge, Ulverston, Lancashire.

ODDIE FASTENERS
 Pat. 507249

THE FASTENER WITH ENDLESS APPLICATIONS-SIMPLE--POSITIVE SELF-LOCKING. MADE IN A VARIETY OF TYPES AND SIZES. SPECIAL FASTENERS TO SUIT CUSTOMERS' REQUIREMENTS. WIDELY USED IN THE RADIO INDUSTRY

Illustrated brochure and other information will sladly be sent on request.
Oddie, Bradbury \& Cull Ltod., Southampton
Tel.: 55883 Cables: Fasteners, Southampton

CABINETS

FOR ANY EQUIPMENT CABINETS TO YOUR
-SPECIFICATION

LEWIS RADIO

120 GREEN LANES (Dept. WW39) PALMER GREEN, LONDON, N.I
(Near the Cock Tavern)

SITUATION\& VACANT
POBLIC adaress aluminium straight circular Rediorox. Bpesabars wanted make and priceRadiovox. Ltd.. Oxford Place, Leeds. 1. [8316

SENIOR scientific officers (a): sclentiff women in all major scientific felds, including physics, chemistry, blology, meteorology, mathematics. specially needed are:-
PHYSICISTS for research in physleal oceanography; determination of atomic constants from nuclear
studles;
$\begin{gathered}\text { magnetic } \\ \text { speech }\end{gathered}$
resonance,
characteristics; microwave $\begin{gathered}\text { computer } \\ \text { con }\end{gathered}$ design.
PHYSICIST-MATHEMATICIAN for Clill De-
fence problems. munications field.
GEOPHYSICIST (frequent overseas surveys) CHEMISTS for phyiologist.
chemistry for research in organic and/or biochemistry for plant protection; reaction kine techniques (especially spectrography and chromatography).
BIOLOGISTS for taxonomy of invertebrate anmals, rungus systematics; plant pathology palæobotany
ENGINEERS for research on road construction and traffic flow; wind pressures on butldings application of servo-control to machine tools.
HANDWRITING expert for forensic sclence laboratory.
QUALIFICATIONS: normally first or second class honours degree in sclence, mathematics or engineering, or equivalent attainment; saditionally, for (a) at least 3 years relevant (e.g.; post-graduate) experience, Normal age limits
(B) between 26 and 31 , (b) between 21 and 28, with extension for regular Forces Service and overseas Civil Service. London salaries (men):
 prospects. Write Clivi Service Commission, 17 , form, quoting (a) $\$ 53 / 59$, (b) ${ }^{\text {S }}$ S $52 / 59$.

PERSONAL assistant required by owner of London retail radio and electrical business of good standing; congenial position and good

prospects for capable conscientious person; | prospects for capable conscientious | person; |
| :--- | :--- |
| state age and detalls of career.-Box | 1687 |
| 8354 | |

TELEVISION sales and service engineer. good position and prospects for keen man; oldestablished N.W. London Murphy dealer; driv| ing experience essential state age and details |
| :--- |
| [8355 |
| experience.- Box 1688 . | TELEVISION bench and field engineers reparts of the British Isles: permanent positions with highest salaries plus bonus for suitable

applicants, $51 / 2$ day week.-Box 8489 .
[0251

CNGINEER required with knowledge of deE NGINEER required with knowledge of deponents: senfor post, excellent prospects; startpong zalary $\mathcal{L 1 , 0 0 0}$ p.a.-D.T.V. Windings, ${ }^{138,}$
Lewisham Way, S.E.14. Tideway 6666 . ${ }^{[8321}$
TECHNICAL, authors required for electronics Written a polications, with full detalls age, exWeritence, etc., to Personnel Manager, Marshal Airport Works, Cambridge, quoting TA/2 [8324

ENGINEERS for testing high-grade electronic required for working in developing laboratories 10 miles South West of London: salary approximately £875 per annum depending on quall.
fications; pension scheme.-Reply to Box 1103.

Z LECTRICAL fitter (radio and TV) required E present rate of pay $4 \mathrm{~s} 81 / 2 \mathrm{~d}$ per hour plus a productivity allowance of ${ }^{8}$ s 3 d per week after one month's service: N.J.I.C. conditions Electricty Board, 18, Widemarsh St.; Hereford.

DRAUGHTSMEN required for electronics sec Dtion, previous experience in this fleld desirable but not essential good salaries and prospects.-Writter, erpications with ini Manager, Marshall Airport Works, Cambridge quoting D/E. 2.
FXPERIENCED development engineers required for laboratory work connected with television wire broadcasting; qualitications to
H.N.C. or final C. $\&$ G. standard.-Write. stat ing age, experience, and present salary to C.E. Dept." British Relay Wlreless, Ltd...397, Albany
[8326
Rd., Camberwell. S.E.5.

FLECTRONIC Engineers are required by Dions, development and technical data work in connection with both large and small industrial and transmitting valves. Physics or Electrical
Engineering Degree or H.N.C. Previous Engineering Degree
experience desirable. Thisen are progressive expansion of the Valve arisen due to the expansion of the valve employment are excellent.

stout hearts for amplifiers made to order

The heart of any amplifier is the output transformer. Savage of Devizes have been 'heart' specialists for over a quarter of a century-designing and constructing transformers to meet customers' individual needs.

No matter whether the circuit is new, calling for a specially designed prototype, or well tried requiring a conventional instrument of the first grade, Savage will produce it.

H140 Mif
 SAVAGE

TRANSFORMERS LTD.
NURSTEED ROAD DEVIZES, WILTSHIRE

Telephone: Devizes 932

SELENIUM RECTIFIERS

40 ma . to $10 \mathrm{amp}, 6 \mathrm{v}$. to 100 v . Bridge, H. Wave or P.P. WITH OR WITHOUT HIGHGRADE TRANSFORMER TO SUIT. These are new goods, best makes, not reconstructed Government surplus. Popular types, 6 v. 1 a., 4/-, 2 a., 7/6, 12 v. 2 a., $8 / 6,12$ v. 1 a., 7/6, 12 v. 3 a., 15/-, 6 a. alloyfinned type, $27 / 6,24$ v. $0.3 \mathrm{a} ., 9 /-$ 0.6 a., $12 / 6,24$ v. 1 a., $13 / 6,2$ a., $15 / 6,24$ v. 3 a., $21 /-, 50$ v. 1 a., 24/-50 v. 2 a., $42 /-, 130$ v. $300 \mathrm{ma} . \mathrm{h}$. wave, $38 / \mathrm{-}, 250 \mathrm{v} .300 \mathrm{ma}$ do., $65 / \mathrm{-}$ 110 v. 1 a. bdge., $48 /-130$ v. 80 ma . bdge., 21/-. Postage 9d. extra each

CHARGER KITS

No. 1, a kit for 2 v., 6 v., 12 v., former, rectifier ammeter, all high-grade new parts, not rub bish, 52/6, unique convector housing for same, as illust., 12/6, p.p. 3/-, ditto but 2 amp., $43 /$-, case $12 / 6$, p.p. $3 /-$ Economy 12 v. 3 amp . kit, no ammeter needed, $34 / 6$, p.p. $2 / 6$, all with 12 months' guarantee

CHAMPION PRODUCTS

43 UPLANDS WAY, LONDON, N. 21
Telephone LAB 4457

THE "ZEPHYR" (W) $200 / 250$ volts SHADED POLE MOTOR

Precislon built. 2,600 R.P.M.
 extension in. Die.cast rotor, and pollshed spindle ($5 / 32 \mathrm{in}$. diam.).
Sritable for Fans, Extractors, Fan Houters, Projector cooling, cupboard airing and all purence and freodom from radio sad T.V. Interference is essential.
Price 37/6 post free

ACCESSORIES
ThE BESTRREND ELECTRICAL CO., LTO.
H. BANSTEAD, SURREY
F.H.P. motor manufacturers for 30 years. Quantify enquities inviled.

Already over 200,000 enthusiastic users

тне
 " \mathbf{D} Hst Jiug
 AUTOMATCC GRAMOPHONE RECORD CLEANER

PATENT APPLIED FOR

Price reduced to $17 / 6$ (plus $7 /-$ purchase tax)
from your local dealer or
CECIL E. WATTS LTD.
Consultant and Engineer (Sound Recording and Reproduction) Darby House, SUNBURY-on-THAMES, MIDDX

SITUATIONS VACANT

TECHNICAL writer required by company now extending its range of nucleonic instruments; knowledge of electronies desirable; salary in accordance with experience; opportunity of advancement.-A pply Personnel Oificer, Iso-
tope Development Lid. Beenham Grange, Aldermaston, nr. Reading, Berks, [8310

CLECTRONICS Technician, experienced, to assist with a large new national research project, initial salary approximately $£ 650-£ 700$ according to age, experience and qualifications.Administrative Assistant. physics Department Admivistrative Assistant, Paysics Department, PHYSICIST for development work on Amand monia Masers. Original work is now needed a man with ability and drive. A good depree plus experience in vacuum physics and instrument development is essential. Salary at least
$£ 1,200$ p.a. Write giving particulars to-Glass El,200 p.a. Write giving particulars to-Giass
Developments, Ltd.. Sudbourne Road, S.W. 2. TECHNICAL Writer; an interesting opening man or woman, able to write clear, concise English; duties include preparation of sales literature, instruction manuals and technical articles on electronic laboratory instruments and industrial equipment.-Apply, if possible with samples of your work, to Personnel Officer
Atrmec, Limited High Wycombe, Bucks. 8359

R ADIO Technicians required by International 1 Aeradlo Ltd. for overseas service. Permanent and pensionable posts. Normally tax-free, inclusive salary in local currency varying with location, and additional marriage and child insurance. Kit allowance. Qualified candidates to whom replies will be sent write to Personnel
officer, 40 , Park St. W.1. OVERSEAS.-Oil Exploration Company with career to electronic technicians; maintaining and operating field equipment; men prepared to accept responsibility and to live in camp concitions, academic qualifications to H.N.C. or equivalent essential or genuine practical
experience to this standard; liberal home leave. -Box 6478 .
A is interesting job as a laboratory assistant pleasant surroundings in Maidenhead. Ap very pleasant surroundings in Maidenhead. Appli-
cations are invited from voung men who have completed their National Service and have reached the standard of Advanced level G.C.E. in Physics with some electronic experience, preferably in the field of micro waves. Applicants should give details of age, education and expeirence
Box 8981.
[8184
SALES manager is required by a large comAfrica. He would be responsible for wholesale selling of radios and domestic electrical equipment. This is a most interesting job for a man who has the ambition to join an expand ing company operating in a rapidly developing country. He must have an up-to-date techadvise his customers on methods of sales and Service. additional allowances for a married man. Free furnished quarters, free passages, and a pension fund
 TNSTROCTORS required by Posts and Telement on contract for one tour of $12 / 24$ months in first Instance, commencing salary according to experience in scales set out below, outfit allowance $\mathrm{L}^{2} 60$, gratuity at rate of $£ 150$ a year,
free passages for officer and wife, assistance towards children's passages and grant up to \&150 annually towards maintenance in U.K. liberal leave on full salary, established Civil Servants pension rights may be preserved.
INSTRUCTOR Grade I (M2C/42120WF)
didates preferably under 40 years of ag) -Candidates preferably under 40 years of age, should maintenance of multi-channel radio telephone systems and be conversant with V.H.F. and 3 years teaching experience and possess C. \& G. certs. in relecomms, Principles III and Radio ment Addition) £1,536 rising to $£ 1,674$ a year.
INSTRUCTOR GRADE II (M2C/50237WF) Candidates, preferably under 35 years should possess C. \& G. certs. or equiv. in Telecomms, subjects and have had recent teaching experience in Radio Communication; Salary scale (inducement Adótion) WRITE to the Crown Agents, 4, Millbank, London. S.W.1. State age, name in block letters, full qualifications and experience and quote
Ref. No. against post applied for. 8327
VacanciEs for young men up to the age of telephone wires under modernisation plan telephone wires under modernisation plan

applicants must have attained G.C.E. standard in maths and English: fve-day Week, super onnuation fund, favourable travelling facilities Apply giving age, experience and gualifica | Royal London House Extension, 22-25, Finsbury |
| :--- |
| Square, London, E.C.2. |
| 8540 |

MARCH
 NOW
 FOR YOUR BEST SOUND CHOICE

What better time to come to Duode ownerhip than now? Many, many people who have already chosen Duode sound, often after long earch and much hard experience, would answer with a very firm " long ago" 1 A lot of them write to tell us so because they find o much ioy and delighs in Duode quality that they regret the timie and money lost before.

There's no mystery about this Duode supremacy. It springs from the unique dua drive, buit-in crossover, feedback, fabric cone with graded compliance, and individual care iven to every unic. The result-wide range erystal clarity, NATURALNESS.
For that is Duode achievement-giving you the truth; the better the gear you use co feed Duode, the more obvious its mastery of good sound becomes.

Send for detoils of the NEW |2D and |2E.
DUODE LTD.
24 Dingwall Road, Croydon, Surrey
 AMPLIFIER CONSOLE CABINETS LOUDSPEAKERS LP RECORDS
YOU CAN SEE YOUR CABINET BEING MADE IN OUR WORKSHOPS
Demonstrations Without Open till 5.30

A. DAVIES \& CO. (Cabinet Makers) 3PARKHILL PLACE (off Parkhill Road),
LONDON. N.W.
GULIVE 5775

Few minutes walls Belsize Park Underground

DAMAGED METER?

Have it repaired by Glasers Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co, Ltd.

We specislise in the repair of all types and /NSTRUMENT $\begin{aligned} & \text { makes of Voltmeters, } \\ & \begin{array}{l}\text { Ammeters, Miczosmme- }\end{array},\end{aligned}$ BEPAIPS ters, Mrltirange Test
Moters, Electrical TherMoters, Electrical Tbermometers. Recordin Astruments,
As contractors to various Goverament Departmente, we are the leadin Electrica! Instrument Repairers in the Industry For prompt estimate and speedy delivery send Dept. WW.
L. GLASER \& CO. LTD
-8-100, Aldergate Street, London. E.C.

SOUTHERN RADIO'S
 SPECIAL BARGAINS

TRANSPARENT MAP CASES. Plastic STAR IDENTIFIERS. Type I A-N Covers
both Hemispheres, 5/6. SWITCHES. 2 im . pulses per sec., in case, $11 / 6$
REMOTE CONTRACTOR. For use with above, 7/6.
MORSE TAPPERS. Midget type, $2 / 9$; 5tandard, $3 / 6$; Heavy type on base, 5/6. ALL BRAND NEW. MORSE PRACTICE SET. TAPPER with BUZZER on base. Complete with battery, $12 / 6$, BRAND NEW.
BRAND NEW.
MAGNETS. Strong Bar type, $2 \times \frac{1}{8} \mathrm{in} ., 1 / 6$ each. MAGNETS. Strong Bar type, $2 \times \frac{1}{s}$ in., $1 / 6$ each.
PACKARD.BELL AMPLIFIERS. Complete BRAND NEW, with valves, relay, etc., etc., $17 / 6$ each.
SPECIAL OFFER. 12 ASSORTED METERS. Slightly damaged. Mainly broken cases (perfect movements). Including 3 BRAAND NEW Aireraft Instruments. 12 for 45/-

SPECIAL OFFER
 TRANSMITTER - RECEIVER TYPE 38 MK II
 WALKie-talkie *

Complete in Meta Carrying Case. 9in. x
6 iin. x 4in. Weight 61 b . Frequency 7.3 to $9 \mathrm{Mc} / \mathrm{s}$. Five valves. $\mathrm{E} / / 2 / 6$. Post paid.

These $T x-R s$ are in NEW CONDITION, but owing to demand they are not tested by us and carry no guarantee, but should prove SERVICEABLE.
ATTACHMENTS for Type " 38 " Transreceivers. ALL BRAND NEW: Headphones 15/6; Throat Mierophones $4 / 6$; Juncrion Boxes 2/6; Aerials, No. $12 / 6$; No. $25 /-$; Webbing 4/-; Haversacks, 5/-; Valves-A.R.P. 12 4/6; A.T.P. $43 / 6$; Set of FIVE VALVES 19/- the set. OFFER No. 2:
" 38, ," as above, complete with set of external attachments, $42 ; 6$, post paid.

OFFER No. 3:

Transmitter-Receiver " $38^{\text {" }}$ Mk. II. Brand new with complete set of external attachments post paid. Fully guaranteed.
RESISTANCES, 100 assorted useful values. New wire end $12 / 6$. NEW.
CONDENSERS. 100 assorted Mica; Tubular, etc., $15 /-$ NEW. HOLE CUTTERS. Adjustable in. to $3 \frac{1}{4}$ in. For Metal Plastics, etc., 7/-.
QUARTZ CRYSTALS. Types F.T. 241 and QUARTZ CRYSTALS. Types F.T. 241 and
F.T.243. 2 -pin, $\frac{1}{2}$ in. spacing. Frequencies between $5,675 \mathrm{kc} / \mathrm{s}^{2}$ and $8,650 \mathrm{kc} / \mathrm{s}$. (F.T.243), 20 $\mathrm{Mc} / \mathrm{s}^{\circ}$ and $38.8 \mathrm{Mc} / \mathrm{s}$ (F.T.241, 54th Harmonic) 4/- each. ALL BRAND NEW, TWELVE ASSORTED CRYSTALS, 45/-. Holders for both types $1 /$ - each. Customers ordering 12 erystals can be supplied with lists of frequencies available for
Their choice. Two Units (Receiver and Sender). Six valves, Miero-ammeter, etc., in Metal Case, untested without guarantee but COMPLETE, $£ 2 / 18 / 6$ ATTACHMENTS for "18" Transreceivers ALL BRAND NEW. Headphones 15/6; Hand Microphone 12/6; Aerials $5 /-$; Set of 6 Valves TIIS4 TRANSMITTERS, Complete in transit case. New condition, $2 / 5 /$-. Brand new, " Emidisc." Ready for cutting. 13 in. $6 /-$ each, or 15 complete in metal case 44.
Post or capr. extra. Full list Radio Books, etc., 3d.
SDJTHEN RFDD SUPDIV, TD. LONDON: W. WT.L.

8ITUATIONS VACANT

TEE LONDON HOSPITAL, requires young struction to assist with maintenance and construction of electronic apparatus in the department of Electroencephalography; previous experience in this field is not necescary but
familiarity with electronic techniques is essential; starting salary according to age and experience scale £220-£445 p.a. ; continued study for this; closing date for applications March 7 th. Apply to House Governor, The London
Hospital, Whitechapel, E.1.
THE Queen's University of Belfast.-The S Senate of The Queen's University of Belfast Invitos applications for a lectureship in Lipht Electrical Engineering from 1st October, 1959
experience in semi-conductor applications or experience in semi-conductor applications o but is not a necessary qualification; salary range $£ 900$ to $£ 1,650$ plus contributory pension rights under the F.S.S. D.; initial placing at any polnt on the salary scale will depend on qualifcations and experience; applications should be recelved obtained from G. R. Cowle, M.A., LL.B., J.P. Secretary.

Whilnol

ELECTRONIC COMPONENTS DISTRIBUTORS FOR OVER 25 YEARS FOUR-SIDED BLANK CHASSIS
Made in our own works from commerctal quallty half-hard aluminium of 16 s.w.g. thickness there chasgis will carry components of considerable weight and normaly require no corner strengt henitig.

 TNSTRUMENT technicians.-Interesting opporof tunlties exist in an expanding department for versatile technicians to work oi prototype electronic equipment; practical experience of instrument construction and electronic wiring, together with the ability to work the minimum
of information is essential; O.N.C. Standard of information is essential; O.N.C. standard desirable but secondary to experience; salary
in accordance with qualifications and experlin accordance with qualitications and experiSPT/R. $19 /$ W, to Mr. W. Clover, A. V. Roe \&
Co., Ltd., Woodford, Cheshire.
[8312 TLECTRICAL component manufacturers ref quire man with university or similar quallfications in physics and chemistry to undertake manufacture; deveoopment experience in lizht angineering field would be a considerable advantage; the work is essentially practical and appicants with suitable experlence but lower academic qualifications would also be considered; salary according to qualifications and experience.-Apply to the Personnel Officer, Painton \& Co., Ltd., Bembridge Drive, Kings-
thorpe, Northampton. COREMAN required for small, but expanding lated Callender's Cabies, Ltd., for their shepherd's Bush research laboratories. The successful applicant will be required to supervise the manutacture of complete e.ectronic instruments from circuit diagrams and by discussion transfer to the permanent and pensionabie staff will be consldered for the right applicant. Applications, giving detai:s of age, qualifica tions and experience, should be made to the Personne cfticer, B.I.C.C., Ltd., 38, Wood DATENT Examiners and Patent Officers. Pentific, sionable posts for men or women for scienapplications. Age at least 21 and under 28 with extension for regular Forces Service and Overseas Civil Service. Qualifications: normaly first or second ciass honours degree in physics, chemistry, engineering or mathemationt qualifcation, e.E. A.M.I.C.E., A.M.1.Mech.E.. A.M.1.E.E. A.R.I.C London salary (men) minimum. Promotion prospects. WriteCivil Service Commission, for application form, $\begin{array}{ll}\text { Street, Londoal. W.1. for application } \\ \text { quoting } & \text { Sorm } \\ \text { [8318 }\end{array}$ SIGNALS Offcer required by Government of on contract for 2 tours of 18-24 months in first instance: salary (including Inducement addition) according to age and experience in scale $£ 1,574$ rising to $£ 1,666$ a year,
at rate of 15% of total salary drawn during contract; outfit allowance \&60; iree passages for officer, wife and 3 children Candidates should be experienced in MF. HF, VHF, VHF/DF and ancillary equipment, pos-
sess 1 st-class P.M.G. cert. or equivalent and sess lst-class P.M.G. cert. or equivalent and orgenise traffic schedules. C \& G Cert. in weather radar equipment (Type 41) an advan-tage.-Write to the Crown Agents, 4, Millbank, letters, full qualifications and experience and letters, full qualifications and experience and
quote $\mathrm{M} 2 \mathrm{C} / 50499 / \mathrm{WF}$.
SIGNAL Technician required by Renya tour of $24-45$ months in first instance with prospect of permanency. Commencing salary according to age and experience in scale (including Inducement Pay) £813 rising to £1.341 a year. Outfit allowance s40. Free passages for officer and wife and assistance towards cost of children's passages. Liberal leave on full saiary. Cand age, must have wide knowledge of Installation running and maintenance of H.F. V.F.F. equipment and installation and maintenance of anciliary equivment, Experience with V.H.F. multi-channel equipment. teleprinters or facsimile equipment. Would be an
advantage. Write to the Crown. Agents, 4 , Millbank, London, S.W.1. State age, name in block letters, full gualifications and experi-
ence nd quote $\mathrm{M} 2 \mathrm{O} / 5028 \mathrm{~W}$. F .
$48 \mathrm{gq} . \mathrm{in}$
$80 \mathrm{sq} . \mathrm{in}$
in
$112 \mathrm{Eq} . \mathrm{in}$.
$112 \mathrm{sq} . \mathrm{in}$.
$114 \mathrm{sq} . \mathrm{in}$. $240 \mathrm{sq} . \mathrm{in}$. in .
 Lengta plus twice depth x width plas twice depth.) goldered corners (new process) $2 /$ extra
Panels any size up to 3 ft . at $4 / 6 \mathrm{sq}$. ft . (sq . in. \times Id.), Full particulars on request.
Close Tolerance Wax-protected Silver Mica
$\begin{array}{rlllllllllll}\text { Values atock (pF):- } \\ 5 & 22 & 47 & 75 & 130 & 180 & 270 & 370 & 515 & 635 & 815 & 3000 \\ 10 & 25 & 50 & 80 & 135 & 200 & 280 & 386 & 533 & 670 & 820 & 3300 \\ 11 & 27 & 56 & 82 & 140 & 220 & 300 & 400 & 540 & 680 & 1000 & 3500\end{array}$ $\begin{array}{llllllllllll}11 & 27 & 56 & 82 & 140 & 220 & 300 & 400 & 540 & 680 & 1000 & 350 \\ 13 & 28 & 60 & 100 & 145 & 225 & 316 & 410 & 586 & 703 & 1500 & 400 \\ 15 & 30 & 65 & 110 & 150 & 230 & 330 & 450 & 560 & 710 & 2000 & 470 \\ 18 & 33 & 68 & 120 & 160 & 245 & 340 & 470 & 600 & 750 & 2200 & 500\end{array}$ $\begin{array}{lllllllllll}18 & 30 & 68 & 120 & 100 \\ 20 & 40 & 70 & 125 & 175 & 250 & 356 & 500 & 603 & 800 & 2500\end{array}$ Tol. up to $33 \mathrm{pF}, 1 \mathrm{pF}$., over 33 pF . 1 per cent. PRICES: $5-300 \mathrm{pF}$., $9 \mathrm{~d} . ; 316-820 \mathrm{pF} ., 10$ di.: $1,000-$ $2,500 \mathrm{pF}$., $1 / 3:$ 3,000-5,000 pF., $1 / 6.0 \mathrm{mfd} 1 \%,. 12 /-$.
special fimited number only), 0.1 mfd. -HIGE STABILITY RESISTORS. "T.S.L. f-wat 10% tol., 5 -year guarantee. Fun preferred valne range, 12Ω to 10,1 , 8 d each. Patren to withln $2 \%, 3 /$-pair.

- SURPLUS STOCKS, various makes:-8\% $\quad 2 \% \quad 1 \%$ I watt.
1 watt …vere AND CHOKES. Individually tested. Fully ahrouded. Used by leading laboratories. 66 types in stock. "0" CORE 20 W. OOTPUT TRANSFORMERS. 20% Ulitra-linear, type D84. $6,600 \Omega$ A-A 4 -section
95Ω Sec. giving $95,3.75,7.5$ and 15Ω O/P, £5/10/m.

The hignly successfui
 COOPER-SMITH HI-FI AMPLIFIERS(See p.II8, Dec.issue) MODEL B.P.I.

A better 10 watt outfit at lower cost.
Main Amplifier Kit 12 gns. Built $£ 14.17 .0$ Control Unit Kit $£ 8.3 .0$. Built $£ 11$.3.0 THE 'PRODIGY'
For the smaller room or bank balance. Kit $£ 13.7 .6$ complete. Built 16 gns.
Full stage-by-stage constructional details, with price lists, etc., for either amplifier

IIWN. BROWN KNOBS ($f \mid$ in. shaft), domed front, B9A MOULDED
B9A MOULDED VALVE HOLDERS, with 2 in. ecreen, MANSBRIDGE CAPACITORS, 200 V. D.C. wkg. suitable for crossover units, etc. . $5 \mathrm{mF}, 4 \mathrm{~d}$, each $1 \mathrm{mF} ., 6 \mathrm{~d}$. each; 4 mF ., 9 d . each.
GENERAL PORPOSE LOW VOLTAGE TRANS FORMERS. Mains lnpuit $200-230-250 \mathrm{~V}$. Output 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 24 and 30 V . at 2 A. 22/6 POWER TRANSFORMERS, $300-0-300$ V. 100 mA
6.3 V , at 3.5 A .5 V at 2 A . Mains $\operatorname{lnput} 200-230-240 \mathrm{v}$. 6.3 V, ,
$27 / 6$.

20 WATT AUTO TRANBFORMERS. 105-115-120 FIAMENT TRANS
FILAMENT TRANSFORMERS. 6.3 V .3 A. 10/MINIATURE MAINS TRANSFORMER. Pri. 0.200

BELLING-LEE L430 PROTECTIVE SWITCHES. $3 \mathrm{amp} ., 1 / 3$.
3 amp., $1 / 3$.
t.c.c. VISCONOL CATHODE RAY CONDENSERS T.C.C. 01 mid. 12.5 kv , type CP57VO, $4 / 6$.

LOUDSPEAKER FABRIC. Brown with gold thread $2 / 6$ per $\mathrm{sq} . \mathrm{ft}$.
DARK MAROON SPEAGER GRILLES. Moulded platic, 74×4 in., $1 / 6$ each.
H. L. SMITH \& CO. LTD

287/289 EDGWARE ROAD, LONDON, W. 2 Telephone Paddington 5891

AERIAL

 MASTSIMPROVED TYPE 50 MK. II 36ft. HIG H
Kile comprise- G 2 2 lin . difaTubular steel Sectlows of 6it. Pickets, Guys and Fittings. YOD can purchase this normally expensire MA8T or a fraction of 1 ls cost lease add $£ 1$ for (returns The MAST is particularly suitable to take aerials for Tx. Rx., F.M. and T.V. (expecinlly COMBERCLALA Exd has ranay other uses,

£8.10.0 only

U.S.A.Type 45ft. TELECOM AERIAL MAst. (f sections, 6ft. din. X 2 din. guy ere.) This entirely complete set in carrying Carr. extra. British Manufacture only.

ARMY TYPE 32ft. MASTS similar to above but 10 lin. screw-sections, suitable

TELEPRINTER EQUIPMENT

CREED (BRITISH)
Reperforators Type 7 TR $/ 3$ \& Complete

MICRO SWITCHES BURGESS BRANDNEW MINISTR RELEASE

 Compare this remarkable almost halfprice offer with manufacturer's prices.
RELAYS MINIATURE SEALED SIEMENS' TYPE
High Speed Single change-over

 ${ }^{1516}$
 1966 H96E, $1,7 n \mu \Omega+1,700 \Omega$ ${ }_{251}^{22 / 6}$
SPECIAL QUOTATIONS ON QUANTITY \& EXPORT ENQUIRIES HATTER \& DAVIS (RELAYS) LTD.

2, IRONGATE WHARF ROAD
PRAED ST.; LONDON, W.2.

TECANICAL Officers required by Kenya contract for one tour of $24-45$ monthment. on contract for one tour of $24-45$ months 1 m frst fications and experience in scale (Including Inducement Pay) 11.056 rislng to $\& 1,341$ a year, gratuity at rate of $131 / \%$ of total salary drawn during contract: outfit allowance $£ 40$. free passages for offecr and wife and assistance on full salay; candidates, between 30 and 45 years of age, must have had considerable practical experience in the operation and maintenance of High Power medium and short wave transmitters and assoclated equipment or of
modern Broadeasting Studio apparatus including tape and disc recorders and line equloment: they should preferably be graduates of a recosnised radio or electrical institution and/or possess appropriate C. and G Certs. Write to the Crown Agents, 4, Millbank, London, S.W. 1. cations and experience and quote M2C/50467; WF.

technical training

$\mathrm{B}^{\text {RIT I.R.E. and City and Gullds Examina- }}$ B tions in Telecoms. Radio Amateurs and Radlo Servicing (R.T.E.B.)--Learn at home dence Schools, 71. Kingsway (Dept. 442B) London. W.C.2.
CITY \& GUILDS (electrical, Etc.) on "' No For detatls of moderms; over 95% successes. of electrical engineering, applied electronics, automation, etc, send for our 148 -page Hand388A), 29, Wright's Lane, London, W. S. [0017 TUITION
FULL-TIME courses for P.M.G. Certlficates, F.C.G.L.I. Telecommunications and Radar Malntenance Certificates.-Information from

WIRELESS.-See the world as a radio officer on the Merchant Navy: short training period, low fees, scaolarships, etc. available; tus.-W

A LL examinations easler to pass by I.C.S. A home-study methods. A.M.Brit.I.R.E., C. \& G. Telecoms. P.M.G. Cert. in Wiretess, Telegraphy Radio and TV Servicing, etc-pondence Schools, 71, Kingsway (Dept. 442A),
London, W.C.2.
[003j London, W.C.2.
L EARN-AS-YOU-BUILD course in basic radio, electronic and electrical theory with practical training bulding a 4-valve TRF and 5 and high-quality multi-tester; write for free book.-International Correspondence Schools,
71 , Kingsway (Dept. 442), London, w.C.2.
A.M.I.Mech.E. A.M.Brit.I.R.E.. City A Guilds. G.C.E., etc. bring high pay and successes.-For detalls of exams and courses in all branches of engineering, buiding, electronlcs, etc.: write for 148-page Handhook-free.-B.I.E.T. (Dept. 387B), 29, Wright's Lane.
T/V and Radio.-A.M.Brit.I.R.E., Ctty and - Guilds., R.T.E.B., Cert. etc., on ." No Pass No Fee terms; over 95% successes.-For (including practical apparatus) in all branches of radio. T/V and electronics. write for 148 page Handbook-free-B.I.E.T.
29, Wright's Lane, London,
Wept. 397A),
[0116
A UTOMATION. Authoratative courses are A now avallable in Digital and Analogue Computer Technology Applied Electronlics.
Data Processing and Instrumentation up to Data Processing and instrumentation up to
professional level by home study. Individual protessional or mdustrial group scheme enrolments accepted. Syllabuses and prospectus sent on request. Write (Dept. S.E.11), E.M.I. House, Kensington, London. W.8. [0114 INCORPORATED Practical Radio Engineers Ineerne study recognised by the trade as out standing and authoritative; moderate fees to a limited number of students only; syllabus of Instructional text is free; the Practical Radio
Engineer, iournal. sample only $2 /-6.000$ alignEngineer, journal. sample only 2/-; 6,000 align-
ment peaks for superhets. 5/9; membership and entry conditions booklet $1 /-$ all post free, from the Seeretary, I.P.R.E.. 20, Fairfield
Rd., London. N.8. BOOKS, INSTRUCTIONS, ETC.
"W IRELESS WORLD." June 1927-Dec.

R ADIO, television, electronics books; tele R vision servicing $5 /$ (wadio servicing 4/List iree. -J Palmer (W), 32, Neasden Lame MATHS for Tels 1, 7/- Maths for Tels 2. and 2 in m. k, s. units, 10/6: Radio Referencecovers every phase from elem to gdvanced | kechnlques, Reading, Berks. |
| :--- |
| Riddiford, 384, Tilepurst |
| 7988 |

BOOKS WANTED

WANTED, 1031 Inventor's Exhtbition Drolves, Hunts.

S.T. RETIIFER SUPPIY UNIT

Specifieation: A.C. input $100 / 260$ volts 45,65 cycles D.C. output 24 volts at 10 amps . under tropical conditions (i.e. 131° F. 'butg uaranteed of full meter current of 20 amps No.: 12810234

All circuits fused and switched for full 20 amps. or $\mathbf{2 4}$ volts at $125 / 350 / 700$ milliamps. (Cireuit diagrams and instruetion book supplied) Constructed in grey metal cabinet as illustrated the unit is 2 ft . 8 in . high $\times 2 \mathrm{ft}$. long x Ift. $3 \frac{1}{2} \mathrm{in}$. deep, and weighs 1411 lb .
This unit was designed as a portable charging plant for use with S.O.S. IT 3 channel telephone system. AS SUCH ARE IDEAL HEAVY DUTY L.T. SUPPLY UNITS for the electronics inSupplied Brand New at Unation ommeres pricie E22-10-0

Ex Warehouse.
Instructions and circuit diagrams, 10/- dep.

VARIAC TRANSFORMERS

O UTPUT (2KVA) Completely Variable 0 to 270 Volts. 9 Amps.
INPUT 230 Volts, 50/60~
A SHROUDED FULLY VARIABLE
TRANSFORMER FOR BENCH OR PANEL MOUNTING.
SIZE:-APPROXIMATELY $8 t^{*}$ CUBE
WEIGHT:-APPROXIMATELY 30 LB.
PRICE:-RIDICULOUS-ONLY高 15.0 .0
+1216 d . CARRIAGE.
SUPPLIED NEW AND BOXED.
HATTER \& DAVIS (RELAYS) LTD.
2 IRONGATE WHARFRD., PRAED ST. LONDON, W.2. PAD. 2231/2/3

TTANSFRRMURES FOR MULLARD 510 AMO STEREOPHONIC AMPLIFIER ALL TRANBFORMERS. Fully guaranteed. Shroud- ed. Upright mountlag, interleaved and lmpregrated. ad. Upright mountug, interleaved and tmpregnated. Primartea on all malis Tralna 240-220-200; $0-10$ v. $80 \mathrm{c} / \mathrm{s}$.
 ontput trans.) $300 \cdot 0 \cdot 300$ v., 150 mA ., 6.3 v .4 a cT. 6.3 v.. $1 \mathrm{~B} .34 /-$ P. \& P. $2 / 90$ T. 55 . For 510 Amp and Tuner, 30
 T.55. For 510 Amp and Tuner. $300-0-300$ v., 120 T.56. For 510 amp. $300-0-300 \mathrm{v} .100 \mathrm{~mA} ., 6.3 \mathrm{v}$.

 T.56. For 610 amp. $300-0-300$2.5 a.cT., 6.3 v. 1 a, 27/m. $\mathrm{P} / \mathrm{P} 2 / 6.1$
2. $44 . c T .{ }^{\prime} 610^{\prime \prime}$ Ultra Liear Output Trans. 8000 ohm. 43% tappings, 30/-, P/P 2/-, T100," 510° Low Loading Output Trans. 6000 ohme. (not Vitra Linear), 28%, PPECTAL OFFERS. T. 44 and T.55, 59/-. P/P $3 / 6$.
ONE T. 101 and TWO T. 100 's for Btereo Ampllier, 86/-. P/P $3 / 0$.
" POWER-PAKS "
T. A, Trans. and Siemens contact cooled metal bridge rectifier deUrers 270 volts D.C. 100 mA . and $6.8 \mathrm{~V} . \mathrm{cT} .3$ a., 32/-. Plus $2 /-\mathrm{P} / \mathrm{P}$.
T.B. Trans. and semens contact cooled melal bridge rectifier dellyers 270 yolts D.C

8OUTHERN TECHNICAL SUPPLIES, 83 Station Road, Portslade, 8ussex

METERS

All types Any make

Single and Multi-range repaired and recalibrated
Meters $2^{\prime \prime}$ to $6^{\prime \prime}$ supplied from stock.
Scaled to requirements.
E.I.R. INSTRUMENTS LTD. 329 Kilburn Lane, London, W. 9 Tel.: LADbroke 4168
G.P.O. SERVICE ENGINEERS' TOOL KITS conlaining \&12.) G.P.O. DESK TYPE TELEPHONES $30 /$. G.E.C. GRAM GAUGES for adjusting relays and springe 25/-. ${ }^{\circ}$ DRITLS AND 7 ATTACEMENTS \&7. CONTROL UNIT8 FOR No. 19 SETS, 30/-. Power
Supply Units for No. 19 Sets, $25 / \%$. Supply Units for No. 19 Setg, $25 /$. KEEPGUARD BURGLAR ALARM SYSTERE. FUl!
protection for under \&5. SEND FOR LEAFLET protection for under \&5. SEND FOR LEAFLET
K.E.Ps, ASHMEAD WORKS ASHMEAD ROAD, LONDON, S.E. 8

SDAEH GNIDROCER CITENGAM

P. A. MARRIOTT \& CO. SUNLEIGH WORKS, SUNLEIGH RD. ALPERTON, WEMBLEY, MIDDX. Wem 7493

TMNNOY

Tells you whot's going on slearly

$$
\text { WEST NORWOOD = 5.E. } 27
$$

Petephone: Glpay Hill 1131 (7 lines)

METERS

All types, British or foreign makes, single or multirange, expertly repaired. Guaranteed workmanship.

7 DAY SERVICE

Mecers modified and re-scaled. Prompt deliveries rom stock, scaled to requirements.

R. B. HAWKINS \& SONS

6 Constantine Road, Hampstead, N.W. 3

LEEVERS RICH
 MAGNETIC RECORDERS
 AUDIO, INDUSTRIAL \& SCIENTIFIC APPLICATIONS
 LEEVERS-RICH EQUIPMENT LTD,
 as Mampstead Rd, London, N.W.1. EUSton 1481

FOR SALE

Large quantity of Radio Components for disposal, in small or large quantities. Cable and flexibles, condensers, rectifiers, resistors, screws, torches and bulbs, transformers, valves, volume controls, etc.
Enquiries invited from Retailers, Wholesalers and Manufacturers. Detailed list upon request.
A.E.L.,

91 Hampstead Road London, N.W. 1

BRASS, COPPER, DURAL, ALUMINIUM, BRONZE

ROD, BAR, SHEET TUBE, STRIP, WIRE
3,000 STANDARD STOCK SIZES
No Quantity 100 Small. List on Application. H. ROLLET \& Co. Lid.

6 Chesham Place, S.W.1. SLOane 3463 ALSO AT LIVERPOOL. BIRMINGHAM, MANGEESTER. LEEDS

anminn
 Unectiv
 Replacements

BONA FIDE TRADE ONLY
Non-Trade Clients-see your dealer NOWI 138 LEWISHAM WAY, NEW CROSS, S.E. 14 TIDeway 6666 Grams: Flibak, London, S.E.I4

RADIO TRANBMITTER/RECEIVER-BRAND NEW $\begin{array}{ll}\text { Type T.25-TTS-2. } & \text { Type R.36.TT8-2 } \\ \text { Line vollage 115V. } & \text { Serial No. } 69\end{array}$
 and left hand-Antenna Section. Complete with casee of spare valves, capacitors, resistors, etc. Unit in special carrying cases
$£ 22100$
DISCOUNT SALES HOLYHEAD ROAD, CHIRK NR. WREXHAM

FERROGRAPH RECORDERS

Tandberg Stereo, Harting, etc. Personal Recordings,

> Tape to Tape/Disc Service

GRIFFITHS HANSEN (Recordings) ITD.
$24 / 25$ Foley Street, London. W.I $\xrightarrow{\longrightarrow}$

INDEX TO ADVERTISERS

Acoustical Mig. Co. Ltd
Adco'a Products, Ltd. Ltd
Airmec, Litd. Alpha Radio Supply Co., Ltd
Amplex Appliances (Kent), Ltd.
Anders Electronics. Let.
Antex, Litd.
Antiference. Ltd.
Appointments Vacant $164,165,166,167.168$.
Ardente Acoustic Laboratories, Ltd
Ardel Pressings. Ltd.
Armstrong-Whitworth Aircraft, Ltd., Sir
Armstrong wareless \& Television Co. Army Reserve
Aspden, W Associated Electical Industries
Automat Tomatlc Telephone \& Electrlcal oo. Avo. Ltd.

```
Baker's 'Selhurst ' Radio Batey, W., \& Co.
Beamish,
Belling
Belling \& Lee, Lidd.
Berry's (Short wave), Ltd
Berry's (Short Wave), Ltd. (Lodge Radio), Lid
Berry. T. A., (Lodge Radio), Ltd
Birmingham Sound Reproducers, Litd.
Blickvac Eng, Ltd. Techinology
Bradford Institute of Technolo
Bradmatic Productions, Ltd.
Britain, Chas., (Radio). Ltd.
British Broadciasting Corporation
Brttish Ferrograph Recorder Co., Ltd.
British Institute
nology
British Insulated Callender's Cables, Lid
British Physical Laboratorles
Brookes Crystals, Ltd Lto
Bull, J. A \& Sons
Bullers, Ltd. so Co..." Lid.
69,

Caltex Services
Canadian Westinghouse. Lid.
Candier System Co. Cordross Engineering Co...it
Carr Fastener Co., Ltd.
Cawkell Research \& Electronics, Lid
C.G.S. Resistance

Champion Products Industries, Litd
Channel Electrontc Industries, Ltd
City Sa!e \& Exchange, Ltd.
Clyne Radto, Ltd.
Concord Electronics
Cosmocord, Ltd.
Cossor Instruments, Ltd.
Cossor Instruments, Ltc
Coventry Racking
Crane
Crawshay
\(\mathbf{P}\).

Daly (Condensers), Ltd.
Davies. A., \& Co.
Davis. Jack Itd.
Denco (Cacton)
Dependable Radio Suppliers. Lt
Dependable Relay Co., Ltd.
Direct T.V Repiacements
Discount Sales
Dubilier Condenser (1925), Ltd.
Duke \& Co., Ltd., The
Duode Natural' Reproducers
Dynatron Radio, Ltd

Easco Electrical, Ltd
Easco Electrical, Ltd.
E.I. \({ }^{\text {s }}\) Instruments, Ltd.
E.K. Electronics

Electrical Inst. Co, (Hंton), Itd.
Electro-A coustic Developments.
Electro-Acoustic Industries, Ltd.
Electronics (Fleet St.
Electronics Tubes, Ltreet), Litd.
Electro-Winds, Ltd,
E.M.I., Ltd.
E.M.I. Sales \& Service, Litd.

Engilish Electric Co.. Litd.
English Electric Valve Co., Litd.
Enthoven Solders, Ltd.
Erta Toct Co. (Lelcester). Ltd.

品
Fane Acoustics, Ltd Farnell Instruments, Ltd. Ferranti, Ltd.
Fibre Form, Ltd
Flash Fasteners, Ltd.
Fric, W. \& G., Ltd
Fringevision, Ltd.

Garrard Eng. \& Mfg. Co., Ltd., The Gee Bros., Radio, Ltd
General Electric Co., Ltd. . . 33, 64, 106 Gilfllan, R., \& Co., Ltd. Glaser. L., \& Co
Godfrey, Sir George, \& Partners, Ltd
Goodmans Industries, Ltd
Govt. of Borneo
Grampian Reproducers, Ltd. Granada Television
Grayshaw Instruments
Griffths Marten, Lta. .i.................... 116

Hall Electric, Ltd
Harmsworth, Townley \& Co Harris Electronics (London), Ltd Harris, P.
Hatter \& Davis, Ltd.
Hawkins, R. B., \& Sons
Henley's, W. T., Telegraph Works, Co. Ltd.
Hivac, Ltd.
Home Radio, Itd
H.P. Radio Services, Ltd

Hunton, Ltd.

Ilffe \& Sons Ltd.
Imhof, Alfred, Ltd
International Correspondence Schoo
Irish T.V. Authorlty

Jason Motor \& Electronlc Co
Jeffery Transformer Co

Kempner, S., Ltd
Kenroy, Litd. ...
Keyswitch Co., The
\begin{tabular}{l}
123 \\
\\
\hline 0.162
\end{tabular}

\section*{Lasky's Radio. Ltd}
139. 140. 14

Leak. H. J., \& Co.. Itd.
Leevers-RIch Equipment, Ltd
Lewis Radio Co. ....................... Linear Products. Ltd. Lionnet. J., \& Co.
Llvingston Laboratories. Itd Lockwood \& Co. (Woodworkers). Ltd London Audio Fair London Central Radto Stores Lyows Rras. . Itd.

Magnetle Devices. Ltd
Marconi Instruments. Ltd Marcont's Wireless Telegraph \(0 . . .73,168\) Marconis Wireless Telegraph Co., Ltd. 105 Martin. J. H. .............................. 17 McMurdo Instruments Co.. Ltd. .. 57. 64. 84 Miers, \&
Mills, W.
132, 133 Minnesota Mining \& Mf. Co., Litd
Minnesota Mining \& Mig. Co., Lto
Modern Electrics. Ltd.
Modern Techniques
M. R. Supplies. Ltd
M.S.S. Recording Co.. Ltd. .............. 89

Mullard, Ltd,
Multimustc. Lid....... 3. 15. 44, 79. 91. 98, 164
Cover IV Multitone Electric Co........................................... IV

Nash \& Thompson. Ltd. Newnes, George. Ltd. ................................. 41
 \(\begin{array}{lll}\text { Northern Radio Services, Ltd. . . . . . . . . . . . } & 76 \\ \text { Northworks, Ltd. . . . . . . . . . . . . . . . . . } & 117\end{array}\)

Oddie Bradbury \& Cull. Ltd.



Quartz Crystal Co.. Ltd.
174

\section*{Radio \& T.V. Components (Acton). Ltd}

Radio Clearance, Ltd, Component Specialists
Radio Exchange Co.. The
Radio Ham Shack Products Co.
Radio Resistor, Ltd.
Radiospares Lid
Radio Suppiy Co. (Leeds). Ltd. 144. 145.
Radio Traders, Ltd.
Range Electronics Co.
Rank Cintel, Ltd.
RCA. (Gt. Britain)
Record Housing ..... Ltd. .................. \({ }_{16}\)

Relda Radio, Ltd.
Rollet. \(H\).
Rollet. H.. \& Co.. Ltd.
Royal Air Force
Runbaken Electricai, Ltd.

Samsons Surplus Stores ............. 118, 15
Savage Transformers, Lto
.... 175
Semiconductors, Ltd.
- 126, 127

Sifam Electrical Instruments,
Stmmonds, L. E. Ltd.
Smith, G. W. (Radio), Litd. ...........i24, i25. 148

Solartron Electronic Group, Ltd.
Sound News Productions
Southern Radio Supply, Ltd. Spencer-West. Ltd.
Stamford, A. L. ............................. 162
Standard Telephones \& Cables, "Ltd, \(135,139,1\)

Sugden, A. R., \& Co. (Engineers); Litd
Stratton \& Co, Ltd.
Superior Radio Supplies, Lta
Swan Electronics


Vacwell Engineering Co., Ltd. ................................ 78
Valradio, Ltd.
Venner Electronics, Litd.
Vitality Bulbs, Ltd.
Vitavox, Lid.
Electrical Service ............................ 109
Walmore Electronics, Ltc
Watts, Cecil E, Ltd. Order), Lid.
Wayne 5 err Laboratorles, Ltd. The .... 154
Webber. R. A., Ltd. .....................
ii9. 1146
Webb's Radio
West Insulating Co.
Westool, Ltd. \(1 . . . . . . . . . . .\).
Weymouth Radio Mfg. Co., Ltd., The \(9,{ }^{\prime} 33,74\)
Wharfedale WIreless Works. Ltd. \(79 . .9 .{ }_{14}\)
Wi'kinson, L. (Croydon), Ltd.
Wright \& Wealre, Ltd.
z. \& I. Aero Services, Ltd. .............. 170

\section*{More seals than ever!}

We are continually extending our range of standard metal-to-glass seals as more and more equipment designers realise their advantages. You will find these Ediswan seals in such devices as indicating instruments, gyros, vibrators, transistors, crystals, relays, transformers and vacuum systems. Increasing use is being made of them in the nuclear energy and guided weapon fields. These metal-to-glass seals have excellent electrical and mechanical properties with the added advantage of being available in a wide variety of standard designs which can be supplied promptly and fitted easily-usually by soft soldering. Our present range of seals embodies the latest techniques and will almost certainly include types suitable for your needs. If your product calls for something out of the ordinary, let us know; we are always ready to develop new seals to meet special requirements where necessary.

Publication R. 1843 will give you full information about our standard range; you are welcome to a copy.


Thanks to recent big advances in our metal-to-glass sealing techniques, increased production capacity and highly developed systems of quality control, we can now supply first quality transistor headers at competitive prices. We are already supplying many well-known transistor manufacturers. If you are interested in cutting your transistor manufacturing costs, ask us to quote for the type of headers you are using and send you samples.



IF YOU are seriously interested in making high quality recordings at home you will want to be the proud owner of the Reflectograph Model 500, which is the only recorder costing less than \(£ 500\) possessing all these advantages.
- 21 features including variable speed between 8 and \(3 \frac{1}{2}\) i.p.s. Stroboscope shows precise speeds of \(7 \frac{1}{2}\) and \(3 \frac{3}{1}\) i.p.s.
- 3 heads - separate record and playback amplifiers providing instant monitoring off the tape whilst recording.
- Frequency characteristics guaranteed to comply with C.C.I.R. standards.
- Lever controls providing instant start and stop - fast and slow forward and rewind with inching - sound available if required.

\section*{Service \& Maintenance Guarantee}

1 year's free Service and Maintenance Guarantec (including valves) available throughout U.K. Service undertaken immediately by engineers of E.M.I. Company, Home Maintenance Ltd. Annual Service Contract available for 20 years subsequently for small annual fee.
Stereophonic Recording \& Reproduction Provision for conversion for stereo recording as well as stereo reproduction.

\section*{Recommended by High Fidelity Manufacturers}

The high quality reproduction obtainable from the Reflectograph has resulted in orders being received from gramophone recording studios, broadcasting authorities, and many industrial firms.
The majority of high fidelity amplifier manufacturers use, and recommend the Reflectograph. At the last Northern and London Audio Fairs, H. J. Leak \& Co. Ltd., used the Reflectograph exclusively for supplying a tape input during demonstrations of their latest amplifiers.

FOR THE TECHNICAL MAN-Dimensions: \(21^{\prime \prime}\) long \(\times 14 \frac{1}{2}{ }^{\prime \prime}\) wide \(\times 10 \frac{1^{\prime \prime}}{}\) high: Weight 50 lbs. Frequency Response: \(\pm \mathbf{2}\) dB. \(50-10,000 \mathrm{c} / \mathrm{s}\) : \(\pm 3 \mathrm{~dB} .45-12.000 \mathrm{c} / \mathrm{s}\). Overall Response: Strictly to C.C.I.R. recommended specifications. Signal to Noise Ratio: Better than - 45 dB . (unweighted, including hum). Output from Playback Preamplifier: 200 mV . R.M.S. Inputs to Record Amplifier (High Impedance): Microphone 1mV.: Radio or pick-up, \(50-200 \mathrm{mV}\).-for maximum record level. "Wow" and "Flutter": Better than \(0.2 \%\) R.M.S. as measured on the G.B.-Kalee Flutter Meter.

\section*{OPINIONS OF TECHNICAL EXPERTS}
P. Wilson, M.A., "The Gramophone"

This is without doubt the most versatile domestic tape recorder that I have had the pleasure of trying out, and the quality, both of its recording and its playback, is of exceptionally high standard. For quality of performance, then, I give the instrumen full marks: I know of no better. For the construction I have nothing but praise. There is nothing fimsy about it either as a piece of mechanism or on the electronic side. It is a fine piece of engineering up to the highest British standards.
D. W. Aldous, M.Inst.E., M.B.K.S.,
"The Gramophone Record Review"
The separate record and replay amplifiers make possible the direct monitoring from this facility is certainly a boon. There is no doubt whatever that when one has used this type of recorder one never wishes to return to the combined record/playback type of instrument. ! have never heard better quality at \(7 \frac{1}{2}\) in.p.s. from any tape recorder that has passed through my hands. The "Reflectograph" is a pedigree tape recorder of immaculate construction and impecof immaculate performance.
cable performance.
Separate motors are used for capstan drive and both spools, all three motors being of Garrard manufacture. The overall im pression after some months of use is that the machine is convenient and pleasant to
handle, while the exira facilities make it handle, while the exira facilities
very suitable for professional use.```


[^0]:    C) Iliffe \& Sons, Ltd. 1959. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief abstracts or comments are allowed provided acknowledgment to the journal is given.

    PUBLISHED MONTHLY (4th Tuesday of preceding month) by ILIFFE \& SONS LTD., Dorset House, Stamford Street, London, S.E.1. Telephone: Waterloo 3333 ( 65 lines). Telegrams; " lliffepres, Sedist, London." Annual Subscriptions: Home and Overseas, \&1 $15 s, 0 \mathrm{~d}$. Canada and U.S.A., $\$ 5.00$. Second-class nail privileges authorised at New York, N.Y. BRANCH OFFICES: BIRMINGHAM: King Edward House, New Street, 2. Telephone: Midland 7191. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 26в, Renfield Street, C.2. Telephone: Central 1265. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412 . NEW YORIK OFFICE: U.S.A.: 111, Broadway, 6. Telephone: Digby 9-1197.

[^1]:    * These channels are outside the imits of Band III (174-216 Mc/s).

[^2]:    * J. M. Furnival a pioneer of aircraft wireless, and now Consultant to Marconi Instruments Ltd.

[^3]:    * Electronics, Vol. 29, No. 2, p. 186 (Feb. 1956).

[^4]:    * "Elements of Pulse Circuits," by F. J. M. Fariey (Methuen).

[^5]:    *I omitted to mention last month that following the MichelsonMorley experiment, the null result of which could have been explained by the Lorentz contraction without necessarily abandoning the aether, there was a Kennedy-Thorndike experiment which would have showed the existence of an aether if there had been one-in spite of the Lorentz contraction-and it didn't.

[^6]:    * Research Department, British Broadcasting Corporation.

    Royal Some International Geophysical Year Achievements", The Royal Society, December, 1958.

[^7]:    Sales and Servicing Agents: Atkins, Robertson \& Whiteford Ltd. Industrial Estate, Thornllebank, Glasgow;
    McKellen Automation Ltd., 122 Seymour Grove, Old Trafford, Manchester, 16; Hawnt \& Co. Ltd., 59 Moor St. Birmingham, 4.

[^8]:    Please enter my name as a subscriber to:-
    ELECTRONIC \& RADIO ENGINEER for 12 months commencing with the March issue. I enclose remittance £2 9s. (U.S.A. and Canada \$7.50).

    ORDERS CAN ALSO BE PLACED THROUGH ANY NEWSAGENT.

[^9]:    Brook Road, London, N. 22.
    Bows Park 7487-8.

[^10]:    C) Iliffe \& Sons, Ltd. 1959. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief abstracts or comments are allowed provided acknowledgment to the journal is given.

    PUBLISHED MONTHLY (4th Tuesday of preceding month) by ILIFFE \& SONS LTD., Dorset House, Stamford Street, London, S.E.1. Telephone: Waterloo 3333 ( 65 lines). Telegrams; " lliffepres, Sedist, London." Annual Subscriptions: Home and Overseas, \&1 $15 s, 0 \mathrm{~d}$. Canada and U.S.A., $\$ 5.00$. Second-class nail privileges authorised at New York, N.Y. BRANCH OFFICES: BIRMINGHAM: King Edward House, New Street, 2. Telephone: Midland 7191. COVENTRY: 8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 26в, Renfield Street, C.2. Telephone: Central 1265. MANCHESTER: 260, Deansgate, 3. Telephone: Blackfriars 4412 . NEW YORIK OFFICE: U.S.A.: 111, Broadway, 6. Telephone: Digby 9-1197.

[^11]:    "Belling-Lee Notes " appear this month on page 69.

[^12]:    Telephone:
    Tèlegrams:
    EUSton 1477 ( 3 lines) Untonexh, London
    MAIN DISTRIBUTORS FOR LANCASHIRE, YORKSHIRE AND CHESHIRE
    JAS. H. VICKERY \& CO. LTD.
    21 Bradshaw Street, Manchester, 4
    Telephone: Blackfriars 3221. Telegrams: Vickery, Manchester

[^13]:    20,000 VAEVES. Brand new surplus and imported, also full surplus and imported, also full
    stocks of B.V.A. valves and C.R. Tubes. List post free

