

Never had your favourite programmes spoilt by a background of hissing, crackling and spluttering noises? No? Lucky you! But for thousands living in towns and cities near industrial electrical apparatus, near trolleybus routes or in the vicinity of high-frequency equipment such interference is only too common.

B.I.Callender's Anti-Interference Aeria! when properly erected, will give you better listening and reveal many stations you never heard before.

The acrial is a 60 ft . polyethylene insulated dipole type with suspension insulator and matching transformer. The 8oft. down lead is a fully screened coaxial cable with polyethylene plugs moulded to each end; it is matched to the receiver by a transformer with easily fixed suction mounting.

It acts as a " T " type acrial on long and medium waves and as a true dipole on short waves.

Write to-day for descriptive folder No. 22IS on "Anti-Interference Aerial."

Licensed under Amy Aceves © King, Inc. Patents Nos. 413917, 424239, and 491220.

BRITISH INSULATED CALLENDER'S CABLES LIMITED NORFOLK HOUSE, NORFOLK STREET, LONDON, W.C. 2

In response to popular request, we are now pleased to announce the availability of the following accessories, which provide an inexpensive means of bringing the "Avo" Valve Tester completely up to date. Possession of these accessories will, furthermore, render it a simple matter to maintain the "Avo" Valve Tester in a condition capable of testing any new types of valves that may be produced in the future.

ACCESSORIES for the 'AVO' VALVE TESTER

FILAMENT VOLTAGE EXTENSION UNIT

For providing filament voltages of 1.4 to 117 volts for testing valves recently introduced into general use and which are not covered by the original " Avo " Valve Tester.

This unit is plugged in between the Meter panel and the S.S. panel, where it may be left permanently in position regardless of whether the original or the additional heater voltages are being used.

VALVE BASE ADAPTORS
These Adaptors have been specially designed for plugging into the international octal socket of any "Avo" Valve Tester Panel which is fitted with a rotary selector switch. The following types, covering recently introduced valve bases not provided for on the existing Valve Panel, are now available :-

Other types will be made available as required, and Adaptars can alsa be supplied far any special valve base.

Price: 12/6 each, nett.
Sole Proprietors and Monufocturers :
AUTOMATIC COIL WINDER \& ELECTRICAL EQUIPMENT Co., Ltd.,
Winder House, Douglas Street, London, S.W.I
Telephone: VICtoria 3404.9

-conacial construction'

ensures longer life

The greatly advanced design and production methods employed in the manufacture of the "Series 700" Reproducer ensures long trouble-free life under all climatic conditions. Special purpose machines, tools and jigs ensure mechanically accurate co-axial alignment of all component parts. The magnet assembly is shock proof with virtually no external field. The voice coil and centring member assembly is of moulded Bakelised linen with integral beryllium copper leads. All types are completely dust proof. Each speaker and transformer passes Air Ministry K. 110 tropical tests and is made to exacting limits with 100% inspection at all stages.

Reproducers © Amplifiers Ltd., Wolverhampton.

DEVELOPED FOR VIBRATION ANALYSIS \& KINDRED INVESTIGATIONS

Built on the L.A.L. UNIRACK System an extension of our well tried UNIT Construction, all apparatus is instantaneously interchangeable.

The centre Unit comprises three six inch tubes with independent power supplies, working at 2.5 or 5 Kv . together with their associated shift voltages. Beneath the tubes is situated a Four Beam Electronic Switch which may be connected to any or all tubes, displaying up to 12 simultaneous phenomena. The Four Beam Switch is operated by the Time Base and the maximum useful switching frequency is about 10 Kc .

The Side Extensions to the desk contain the amplifiers, time-bases, etc., for the work in hand, with storage space for 6 spare or special UNITS. Four X and Four Y channels are actually available for use, and comprehensive interconnection can be neatly made through an "exchange board" situated in an accessible position above the tubes.

The L.A.L. UNIVERSAL OSCILLOSCOPE represents perhaps the most versatile industrial oscilloscope so far developed for vibration analysis and kindred investigations.

The

RA9TMST Dubilier Volume Control

Fully Tropical to withstand extreme conditions of temperature and humidity.

- Miniature size.
- Minimum weight.
- Extremely robust.
- Also available in Non-Tropical form.

Attention Please! The Taylor Cathode Ray Oscillograph is Now Available for IDIMEDIATE DELIVERY

A general purpose instrument incorporating a high sensitivity electrostatically deflected 3 各in. tube. A linear time base covering $10-10,000$ c.p.s. with coarse and fine frequency control is provided. Horizontal deflection can also be obtained at 50 c.p.s. or from an external source. Push-pull amplification for the vertical plates up to $100 \mathrm{k} / \mathrm{c}$ is provided.
Internal. 50 c.p.s. or external synchronisation can be applied to the test signal. Provision is made for connecting directly to deflector plates.
MODEL 30A price $£ 29 \cdot 10 \cdot 0$ H.P. TERMS: $£ 2 \cdot 17 \cdot 0$ deposit and 11 monthly payments of £2 16 - 6
tanor moducts include: multirange a.c. d.c. test meters signal generators valve testers a.c. brioges circuit analysers - Cathode ray oscillographs high and low range ohmmeters OUTPUT METERS INSULATION TESTERS MOVING COIL INSTRUMENTS
TAYLOR ELECTRICAL INSTRUMENTS LTD 11.424 MONTROSE AVENUE. SLOUGH. UCKS. ENGLAND

DISTORTIONS AND FAULTS CAUSED BY APPARATUS

Now let us deal with the distortions and faults which are introduced by the apparatus in the complete chain from the pick-up nicrophone through the amplifiers, modulators, and power stages of the transmitter - the receiving R.1F. amplifier, de-modulator, power output stage, and loudspeaker. In each and all of these stages distortions of all forms can, must, and do occur, and the engineer's job consists of reducing them to the greatest extent which

the economics of the installation will allow.
 Perfect Reproduction?

What types of distortion are there? In general they can be divided into three main forms. Firstly, unevenness of frequency response, i.e., the over accentuation of some audiofrequencies with respect to others. This distortion is always accompanied by relative phase shifts between components of different frequency which alter the wave form, often to unrecognisability. Since the ear is very largely unconscious of phase differences, this latter point is of lesser importance. Frequency distortion, as described above, is caused by combination of re-actances and resistances which produce frequency selective networks.

The second form of distortion is usually called harmonic distortion, and it is caused by "non-linear" elements in the circuit. When a sinusoidal input is applied to a nonlinear device, the resulting output is a distorted sinewave, which can be represented by a wave similar to the original input, plus a series of harmonics. The number and strength of these harmonics depend on the type of non-linearity shown by the clement. In practice there are two nonlinear circuit elements in common use - thermionic valves (including metal rectifiers) and transformer iron. In addition to producing harmonics, non-lincarity also causes intermodulation. If two pure sinusoidal inputs are passed through a nonlinear device, there will be found in the output components of the sum and difference of the two input frequencies. This is an extremely inportant form of distortion, since the components produced bear no musical relationship to the input. They are thus exceedingly distressing to the ear.

Frequency distortion and harmonic distortion are also likely to occur in mechanically moving systems - such as loudspeakers. This is particularly true in the bass register, where the movement of the core is relatively large; and may exceed the range where the curve connecting displacement with force is linear; in other words, we are dealing with a non-
WELWYN GARDENCITY. HERTS linear mechanical system.

The third form of distortion is the introduction of unwanted " noise" of any form. Obvious cases are atmospherics or man-made static ; thermal or valve noise, gramophone record noise, and mains hum. These unwanted noises can either be superimposed on the wanted sounds, or may be in the form of a modulation of them. A very common difficulty is modulation hum, which is often produced by a badly designed frequency changing circuit in a supersonicheterodyne receiver.

Apart from these three main types of distortion there is one other which must be mentioned. It occurs in loudspeakers and is only serious at very high volume level; in fact, it is virtually negligible in domestic receivers and is only included here for the sake of completeness.

Imagine a loudspeaker diaphragm to which is being fed a large input at, say, 100 cycles and 5,000 cycles. The diaphragm will be moving backwards and forwards by quite an appreciable distance as it follows the 100 cycle input, and since it is at the same time the source of the 5,000 cycle radiation, this source is also moving backwards and forwards.

If a stationary observer, standing in front of the loudspeaker, listens carefully, he will find that the frequency of the 5,000 cycle note is varying up and down slightly at a rate of 100 cycles per second. This is a case of the well known Döppler effect, many examples of which are matters of every day experience. For example, if one is passed by a railway engine while it is whistling, the pitch of the whistle changes quite wildly as the engine passes. By measurement of the frequencies of light waves emitted from the stars, physicists are able to measure the relative velocities of the stars and the earth.

All these forms of distortion are inherent in the apparatus involved in sound transmission and reception. In practice they can never be completely eliminated, although by careful design -and the spending of a great deal of money-they can in the main be reduced to very low limits. In our next notes we will examine some of the more important ways of rendering them as innocuous as possible.

The illustration above shows an ACOUSTICAL product of ten years ago-an amplifier designed for high quality reproduction of records and radio programmes. Using push-pull triodes throughout- RC coupled through-out-independent treble, middle and bass controls etc., it was considered about the best that could then be obtained. Indeed the circuit is often specified today for high quality reproduction.
A comparison of the performance with that of the QAi2/P reveals the extent of recent developments.

	Pre-War	QA12/P	Improvement achieved
Outpur deviation within 20-20,000 c.p.s. range	3 db	0.3 db	7 times better (\% power change).
$\begin{aligned} & \text { Crequency } \quad \text { range } \\ & \text { within } \pm \mathrm{db} \end{aligned}$	$\begin{gathered} 30-15,000 \\ \text { c.p.s. } \end{gathered}$	$\begin{gathered} 15-30,000 \\ \text { e.p.s. } \end{gathered}$	Increase of two octaves.
Total distortion at 10 watts (Both models rated $10-12$ watts).	2\%	0.1%	20 times less distortion.
Sensitivity (r.m.s. for full outpur)	0.2 V	0.0015 v	120 times more gain
Background noise (equivalent r.m.s. at input) ...	$\begin{gathered} 120 \\ \text { microvolts } \end{gathered}$	$\stackrel{1}{\text { microvolt }}$	with no background increase.
Background for equal (low) gain ...	$-65 \mathrm{db}$	$-80 \mathrm{db}$	15 db lower background.
Load impedance Internallmpedance	2	12	Betrer damping.
Treble and bass controls	variable extent of boostd and cuts.	variable slope of boosts and cuts.	Wider range of control and slopes of cortrols more accurately designed for small room listening conditions.
PRICE ...	660	830	$50^{\circ} \%$ less cost.

© Acoustical
Acoustical Manufacturing Co., Ltd., HUNTINGDON.

Tele. : Huntingdon 36r.

Dependable Di-electrics

OKERII waxes

and DI-JELLS

_-for insulating, filling, impreg. nating, waterproofing, sealing and finishing radio and electrical components, cables, etc.
ALL GRADES ARE DESIGNED TO MEET DEFINITE CHEMICAL, PHYSICAL AND ELECTRICAL STANDARDS.
For technical advice and samples, phone TEMPLE BAR 5927.

Sales Departmens

ASTOR BOISSELIER : LAWRENCE LTO

M.R. SUPPLIES Ltd.

It is universally known that we only misply material ready to do Its "Job of work." placed on our offers. All prices nett.
AC/DC CJNVERTERS (by S.T.C.). Brand new instruments of consderable use in Jaboratory. Input $200 / 250$ v. 50 c .1 ph. Output 220 v . 13.0. Model " A"; 1,C. current 500 m.a. (110 watta, choke and condenser smoothed to 4 per cent. ripple. Metal rectlfied. In ventilated steel came, 1 Bin. hy 14 in . by 10 in .. for wall mounting. Price \&9 (despatch $7 / 6\}$. Model "B "; D.C. current 1.5 anipa. (330 watts). not smoothed. Metal rectifled. Ventilated case, 221 in . by 11 in . by 151 in ., wall mounting £12 (des. 7/6).
GJVERNED L.V. MJTORS (a). 24 c. D.C. or 30 r. AC. Centrifugal suritch device controls speed at 2,520 r.p.m. Considerable torque. Length overall 71 in ., spindle \$/1bin. dia. Diameter of controlling device, 31 in . $27 / 6$.
HIGE SPEED M OT JRS, $12 / 24$ F. AC/DC. One-sixth H.P., 6,400 r.p.m. Length of body 5 in. New, soiled, perfect electrically. 28/6 (b).
CENTRIFUGAL BLDWERS (G.E.C.) $6 / 12 \mathrm{y}$. DC or 15 v . AC. Overall 8in. Outlet 1 in. Powerful blast, 6 cu. ft. per min., $57 / 6$ (b).
EXTRACFJR or cooling FANS Tank model. $12 / 24$ v. AC/DC. Overall 7in., Diameter of 4 short-blade impeller. 51 ln . Fittec
extraction or cooling in confined spacca, $18 / 8$ (m . CENTRIFUGAL PUMPS, $12 / 24 \mathrm{~F}$ AC/DC Immer CENTRGUGAL PUIPS, $12 / 24$ F. AC/DC. Imraersion type, self-priming, 16 in . Iong overall. Max. insertion 1412 ., min.
Hange. Preclsion made--remarkable duty, approx. $150 \mathrm{~g} . \mathrm{p} . \mathrm{h}$. Made for petrol but
 lettern a and bon the forezoing Indtcate sultable mains tranaformers below.
STEP-DOWH MATNS TRANSFJRMERS, prira. tapped $200 / 2201240$ v. (a) Sec.:j0 צ. 1 a., 29/6. (b) Sec.;-4 and $1 \overline{1}$. \& amps., 38/6. Also fully shrouded S/D Transformers. sec. 65.5 a., $25 / \mathrm{m}$. All of these transformers continuously rated. SYNCERONOUS ELECTRIC CLJCK M IVENENTS. $200 / 250$. 5.50 c . Bpindles for hours, min., necs, bands. Single hole mount-centre bush. silent and rellable. For domestic or lab. clocks, 37/6. Set of three hands, in good style for 5 to 6 inch dials 2/- (not sold $\begin{aligned} & \text { separately). }\end{aligned}$
HIGE-CURRENT STEP-DJWN MAINS TRANSFJRMERS. Prim. : $220 / 240$ v. 50 c Sec. : $13 / 15$ v. at 60 amps. continuous. Hizhest spec., wreight approx. 40 lbs. Sultable for welding, soll-war.ulng, plating, L.V. lizhting and power, 0 ord - we cannot moet are denpatched in tironginal panels, If any. Transformers new and electrically perifect G.E.C. ENERGISED SPEAKERS. 10in. high quallty ra/coll 2-4 ohms. Fleld 550 ohms, G.E.C. Eirbsuler. Leas trandormer, 15/- (des. 1/6)
with hum-bucker. Leas tranaiormer, $15 /$ - (qes. $1 / 6$. P.A. 8PEAKER 15 ohmp. Perm. mag.. Handle 10 watts, $58 / 6$.

TRIP JDS for P.A. SPEAKERS (ali steel), extending to 12 ft . Sturdy type, rigid nuder all weather conditions, 55 - (des. $5 /-$).
ROTHERMEL PIEZ J-CRYSTAL EEADPH JMES, with adjustable headbands. TYpe * A." response $60 / 10,000 \mathrm{c} / \mathrm{s}$. Weight h ozs. Used in normal way. Current list price £3/10/- We are able to offer a few, brand new, boxed, perfect, at $32 / 6$ pair MEASURING INSTRUMENTS, Exceptional offer of high-grade moving coll 0/1
 Asso 2it. Thermo-oouple

Despatch: Please include suffecient, excess refunded.
M. R. SUPPLIES Ltd., 68, Now Oxford Street, London, W.0. 1

Telephone : MUSeum 2958

RATED FOR DEPENDABILITY The MAZDA IOF9

The Mazda 10 F9 is a variable mu

AC/DC R.F. Pentode suitable for use in R.F. or

I.F. stages of small transportable receiving equipment.

It is fitted with the new B8A base and has

a maximum overall length of only 67 mm .
RATING

LIST PRICE I $3 /-\quad$ Full details on request (Plus Purchase Tax)

Other Valves in the $A C / D C$ Range	
include:	
$10 \mathrm{C1}$	T/Hep. Freq. Changer
$10 \mathrm{LD11}$	D.D. Triode
$10 \mathrm{P13}$	Output Tetrode
U404	H.W. Rectifier

mazDA
RADO
RADIO VALVES AND CATHODE RAY TUBES

THE EDISON SWAN ELECTRIC CO. LTD., 155 CHARING CROSS ROAD, LONDON, W.C. 2

*Contributing to the efficiency of pOLICE RADIO COMmunications TELCON R. F. CABLES and TELCONNECTORS

For the Hertfordshire County Police V. H. F Radio System, TELCON PT.20.M and PT.29.M Transmitting and Receiving Aerial Feeder Cables and TELCONNECTORS are used.
Illustrated is one of the Transmitting and Receiving Stations remotely controlled and linked by Radio to Police Headquarters. \bar{A} complete range of "TELCOTHENE" insulated R. F. Cables is available to meet all requirements. Full details on request.
THE TELEGRAPH CONSTRUCTION \& MAINTENANCE CO. LTD Head Office: 22 OLD BROAD STREET, LONDON, E.C.2. Telephone: LONdon Wall 3141 Enquirles to: TELCON WORKS, GREENWICH, S.E.IO. Telephone: GREenwich 1040

Manufacturers of
LOUDSPEAKERS
LAMINATIONS SCREENS In
RADIOMETAL -
PERMALLOY -
SILICON ALLOYS

12, Pembroke 8treet, London, N.1. Terminus 4355 2/4, Manor Way, Boreham Wood, Herts.

Elstree 2138

We'd like you to know-

Straight Speaking

No part of a radio receiver is so complex in its behaviour as the loudspeaker, and improvement in its performance is always a source of interest.

Of the factors influencing the efficiency of the loudspeaker a high flux density in the gap is the most important.

The efficiency is the ratio of the sound energy radiated to the electrical energy supplied. To radiate sound the cone must of course be put in motion. Because the cone, the voice coil, and the air adjacent to the cone and moving with it, together have quite a substantial mass, a substantial force is required to put them in motion and keep them in motion. This force is proportional to the current flowing in the voice coil, so that a considerable part of the current which flows is used only to maintain the motion of the cone itself. This current develops heat in the ordinary ohmic resistance of the voice coil and so wastes a large part of the electrical energy supplied by the output stage.

At the bass resonance, the mass
of the voice coil, cone, and adjacent air is "tuned" by the spring consisting of the spider and corrugated cone edge, and very little force is required to maintain motion. Indeed the problem is to obtain sufficient damping to stop the motion at the conclusion of the appropriate notes in the music, as otherwise we are afflicted with bass boom and muddled reproduction. So at resonance very little voice coil current is required to maintain motion and the efficiency is much higher.

At frequencies below resonance the motion of the cone has to be quite large, and the force required to bend the spring consisting of the spider and cone edge in the course of moving the cone becomes large, so that the voice coil current rises rapidly and the efficiency becomes very low. For this reason the bass resonance frequency is made as low as possible-practically there is no output below the bass resonance.

Turning to frequencies above the bass resonance, where the efficiency is more or less steady, the problem is to increase the efficiency.

Since the losses occur in the resistance of the voice coil, a decrease of this resistance is indicated, for example by increasing the thickness of the wire, which of course means a bigger gap and bigger magnet to maintain the flux. This course may be uneconomic, but in any case the mass of the voice coil is an important part of the combined mass of the cone etc., so that an increased size of voice coil winding tends to defeat itself and only a small improvement can be expected.

Again, the use of a material for the winding of the voice coil having a smaller mass/resistance ratio will help, and in fact aluminium is sometimes used in place of copper, but here also the possible improvement is limited.

The mass of the cone is of course kept as small as possible, but there is a limit set by the necessity of rigidity.

Finally, since the force exerted on the cone etc. is proportional to the flux as well as to the voice coil current, an increase in the flux will decrease the current required and so decrease losses and increase efficiency. Also a better control can be exercised over the bass resonance. In fact this is the most effective way of improving the speaker performance.
Thechoice of loudspeakercharacteristics for Ferranti receivers is always given a great deal of care, and the availability of new magnet steels and field designs has enabled the flux density to be economically increased to 10,000 lines $/ \mathrm{sq}$. cm . as compared with about 7,000 lines/ sq. cm. in pre-war receivers.
 chassis; square casting for the magnet seating, secured with large hexagon head bolts; centre pole and bottom plate all in one forging ; ring-clamped cone ; diecast centring ring ; practical construction matched by excellent response and high sensitivity - all made for
 Speaker will convince your most critical friends that your latest amplifier " has something." Truvox leaflet SH/l52 gives all the technical detail - a postcard brings it to you.

Model SS. 9

75-8,000 c.p.s. 15 wates peak 16.15 .0
Model 5S.9A
$55-8,000$ c.p.s. 12 watts peak 66 . 15.0 Model SS. 10
$75-11,000$ c.D.s. 12 watts peak 66.17 .6 Model SS.10A 55- 11,000 c.p.s. 10 watts peak 66.17 .6

TRUVOX ENGINEERING CO. LTD. EXHIBITION GROUNDS, WEMBLEY. MIDDLESEX

A NEW B.P.I. INSTRUMENT

THE VOLTASCOPE-A combined valve-voltmeter and oscilloscope. VALVE-VOLTMETER-Infinite Input Resistance for D.C. ranges 0 to 300 volts. A.C. ranges 0 to 150 volts in 5 ranges. $3 \frac{1}{2}$ inch scale meter. OSCILLOSCOPE-3 inch screen tube provided with balanced amplifiers for Y and X plates giving a 5 times trace expansion. Maximum sensitivity $150 \mathrm{mV} / \mathrm{cm}$. Response from D.C. to 100 kcs .

Limited quantity available for early delivery.
BRITISH PHYSICAL LABORATORIES HOUSEBOAT WORKS, RADLETT, HERTS.
= Tel: Radlott 5674-5-6

H. P. RADIO SERVICES เг. offer
 THE MOST OUTSTANDING BARGAIN OF THE YEAR

 NEW BC453B
 6.Valve Superhet, complete with valves. Line-up, three 12SK7's, one 12SR7, one 12 K 8 , one I2A6, all GT types. Frequency range 190.550 kcs F value 85 kcs .
 NEW BC454B
 Exactly the same but frequency range $3-6 \mathrm{mcs}$. value 1415kes.
 NEW BC455B
 The same but frequency
 ge $6-9.1$ mes. IF 2830 kcs
 All 25/- each POST PAID
 Or the Set of 3 Receivers
 70/: CARR. PAID.

Plan of connections showing extremely simple operation from 230 v mains, free with each order. Immediate Delivery and Satisfaction Guaranteed, or money returned within seven days.
H. P. RADIO SERVICES LTD. 55, COUNTY ROAD. WALTON, LIVERPOOL, 4 Estab. 1935.

Tel. : Aintree 1445.
Staff Call Signs, G3DLV. G3DGL.

one in a thousand

Fifteen years ago we introduced the first British-made low-loss ceramic. To-day the range of Frequentite components covers more than a thousand pieces of every shape and size. With such a store of manufacturing experience we are able to offer advice backed by practical knowledge on your insulation problem. Please consult us before you finalize your design.

Success through constant research-can we help you?

LOW LOSS CERAMICS

TAylor Tunnicliff

TAYLOR TUNOICLIFF (REFRACTORIES) LTD.
Head Office : Eastwood, Hanley, Staffs. London: 1:N, High Holborn, W.C.I.
Phones: Holborn 1951-2 \& Stoke-on-Trent 527:-f.

TASTTT•68.

Headphones which uphold British Prestige

Why you should use ...

152－153，FLEET STREET，E．C．4

（No． 169 will remain open as usual）．All POST ORDERS to 167．LOWER CLAPTON ROAD，LONDON，E．5＇Phone：AMHerst 4723.
Terms of Business：Cash with order or C．O．D．over $\mathrm{f1}$ ．Send $2 \frac{1}{2} \mathrm{~d}$ ．Stamp for list．

R107．ONE OF THE ARMY＇S FINEST COMMUNICA TIONS RECEIVERS．（Soe＂W．W．＂A Augukt，1，
 mains，leo－250 v．or 12% ．accum．Frequency ranke 17.5 to $7 \mathrm{me} / \mathrm{m}, 7.2 \mathrm{~S} \mathrm{mc} / \mathrm{s}$ to $2.9 \mathrm{mc} / \mathrm{me}, 3.0$ to $1.2 \mathrm{me} / \mathrm{s}$ ．
Monitor L．s．built in．Conplete．Write for full detalls． $\$ 16160$ ．Carriage paid．
THE FAMOUS R． 1155 RECEIVER．These are all brand new and unused．Frequency ranke 7.5 me，,-7 kc ．in 5 wavebands．Complete with 10 valves（iuclinding Magic Eye）．Completely enclosed in black erawked metal
 B1155 POWER UNTT TNCORPORATING OUTPUT STAGE．A robust unit contalued in a black enamelled wha $10 \mathrm{in}-\times 8 \mathrm{in}$ ． 6in．，which matches the Recelver． The power supply is 250 v ．at 80 nA ．which is ample for the R． 1153 Receiver and output stage，Primary is for $100-250$ จ． 50 cycle mains．
1＇ower unit with buill－in output stige（ 6 F （i）with outpht tramformer．
$\begin{array}{lll}23 & 15 & 0 \\ 52 & 10 & 0\end{array}$
CAR RADIO vibrator packs． 12 wolts input， 2．00 v． 60 mA ．output，complately smoothed and itited $10 \mathrm{in}, \times 8 \mathrm{in}, \times 6 \mathrm{ln}$ ．All contained in ．．．．．．．．．．．．．．．．．．．． 00 h，t eliminator and trickle charger kit． Consists of a complete kit of parta to construct an H．T． Eliminator with an output of $120 \mathrm{\nabla}$ ，at 20 in A ，and provisiou for Trichle Charghg a 2 ．Accumulathr． metal Rectifery are employed．Wita circuit， 36 ，Colly PREMIER COIL PACK 4－BAND．Cinsista of a imly ${ }_{5}$ wired and caition switch includes a gram．position．
 Warebands covered 13．6－52 metres（22－5．8 me／f） zinet res
nell rea．Air Dielectric Trimpmers on alls short Wave Cuils． netref．Air Dielectric rentedmertiong AEILAL．，R．I．aud Oscillator．
Dimension of Yack，liin．$\quad 41 \mathrm{in} . \times 2 \mathrm{fin}$ ．
Also included pair L．F．Transformers with perniealility Also included Litz windings of high＂\＆＂ 3 －gary condenser drive spinille，drive wheel．

85／－
or complete with culcured glass dial，backplate．puinter， prints，\＆5 100 ．
ALL DRY battery portable．a kit of parts to ALL DRY BAM 4 －valve portable receiver covering the medium and long warehands．
and long warehands． Pentode 1．r＇．Amplitier）， 1 LD5（Diode Pentode，2nd wetector．A．I．C．and 1 ist I．F．Amplifier）， $3106 / 1299$ （Output \dot{y} entorde）Litz Wound 1．F．Transiormers $465 \mathrm{kc} /$ s

Very eflcient rrame Aer izl on large ware Liading Cuil ${ }_{3}$ assembled wires only to connect Aerial Assembly to the Chassis． Separate H．T．and L．T．bateriee for ecommy of replace ment．H．T． 60 volts，t．T．If rolt，bilin．Speaker of the latest type， 3 colour cilass Dial clearly marked in metrea，with ntation numes．
Kit of parts suppled coniplete with bafleries and cabinet． Cabinet size，loin，wide，6igln．deep and lugin．high． 0

Kit，including tax …．．．．．．．．．．．． $810 \quad 50$ cluding tax

411 123
INDICATOR UNIT TYPE 174 contains； 1 C．R．Tule CR138， 1 C．R．Tute CRE21，${ }^{2}$ MIU．Metal Sorcene， meters，\＆Relayy， 2.02 mid． 50011 w．working Condense：s． oter 50 Resistore， 1 Nwitch δ－pule 9 －way， 1 Suitch 4 －phle 4 －way，Condensers，Vulveholders，Co－Axial Ylugs，Traus－ dormers，ete．A remurkuble radio bargain at $86 / \mathrm{o}$ ， RECEIVER TYPE R3102A，Radar Unit containa
 Recriver cuntains 4 me／s I．F．Atipp
Vinit ideal ror conversion to a Mision Heceiver．There is ample space for building time bnses．Also included is ample space for buiding cime baser．Amolinciuive Switch I＇nit，over a dozen CoroAxial Pluge and sockets， Re istorn，Heater Chokes，Transiormers and .01 mid． 2．iul volt working Condens．r．．．．．．．．．．．． 23100 RECEIVER TYPE 184．Radar Unit containing 14 valwer CU67， 4 VR91，NR63，VM1， 1 VR92．Visi
 hecpiver．There to ample space sor or Tirne Bases．Also included are or Potentirinetera， a quantity of Resilktora，Condensers und CorAxial Sorketa
PREMIER KITS AT REDUGED PRIGES

ALL－WAVE SUPEREET EIT．A Kit ol Partn to buits a b－ralve（plus rectifier）receiver，covering $16-50$ metres Mediun－and Longwave banda．Valve line－up，tiks， 6K＇7，U47，6J7，two 25 A6 in push－pul．，Setal Rectinier are incorporated for H．T．eupply．Output impedance corporating lrou Dust coils in used，making conatruction and alignment extremely simple．A pick－up position on the wave－change switch and pick－up terninals is jro－ rided．A complete kit．including ralies，hut without speaker or cabinet．Ghansia size， 1 tin．\times bin．Overall helght，gin．Price．$£ 1016$ 6，fuclowing Purchase Tax． Wired＇and tevted．£13 150 ．
Suitable loudspenkers are the（GOODMANB 10 in ．6．wat P．Sl．at 47／6，or for sulperlative reproduction．the mew
 switched Coll Pack ready wired and tested． 2 Nazdn deneers，resistors，diagramis and steel cree，all ready to

NEW 1948 MIDGET T．R．F．RADIO KITS with llluminated Glase Dial．All parts including rakes，Mi，Spenker ami inutructions． 3 valves plus setal Rectifier． $2110-557$ metres and $700-2,000$ metres． 2004 to 250 v．A．c．or A．C．／D．C．maine．State which is required．N1 6itioxtin．，£776，including Purchase Tax．
NEW 1948 MIDGET SUPEREET RADIO KIT，with Illuminated Glass Dinl．All parts including Valves， $3 / \%$ speaker and instructions． 4 ralves plus Metha Rectifier． $10-50$ metres and $200-285$ metres． 200 to

MIDGET RADIO CABINETS in Brown bakelit． he supplied firt

$$
\begin{gathered}
\hline \text { OUR NEW ENLARGED CATALOGUE } \\
\text { IS NOW READY } \\
\text { Please send stamps for copy }
\end{gathered}
$$

 Gsif Wave．For ume wath Valve or Metn Rectiner．give tised in a Voltaige joubling Circuit，these will give
alligt y over double the half wave output．We cal bupply suitable rectigers．
E．H．T．1．Output vo0 v．．．．．．．．．．．．．．．．．．．．．．．．．． 176 E．H．T．2．Output 1,000 F．and $2 \cdot 0-2$ v．2．a．．．．．26／ TAKB AERIALS veven＇sit length of steel tube which fit into each other．makink a very efficient aerial．
（1）ach
2／6 each
PORTABLE LOUDSPEAKER CABINETS．Strong mood Cabinets to take 10 in ．Speaker， $161 \mathrm{in}, \times 131 \mathrm{in} . \times 5 \mathrm{im}$ with handle．There in ample room to build s Portable Amplifier into the rabinet and a Chassis can be supplied to fit at 4／6．Finimhed in Brown Cellulose Wabinet only

COLLARO AUTO CHANGERS with Manuetic Puk－un Ditio with Crystal t＇jick－up， 423130
COLLARO ELECTRIC GRAMUPHONE EOTORS with 12 in ，turntanle，A．C．will， $1100-250$ v－E5 184 ． COLLARO ELECTRIC UNIT with Hakneli Pick－up and Alto stop．A．C．obly，limi－251 v．， 89136.
DITTO
CUNRAD RIM DRIVEN ELECTRIC GRAMOPHONE MOTURS with Min．Turntable．rixed speed（78 r．p．m． for $200-250$ V．A．C．only to clear $57 / 6$ ，ine
LOUDSPEAKERS BY FAMOUS MAEER
5 in P．M．2－3 ohms
6 in
8 in
8
10 in.
12n．
$10!11$

$18 / 6$
$23 / 6$
$85=$
METERS．All meters are hy the liest makerm and aro rimtainellim hakelfo

Нロットロ	Ext． ｜Dialn．	Fouting	Trpe	Pri
＋1）	2 ¢iti．	Flush	M．C．D．${ }^{\text {c }}$	5／9
$2!$ is．	－ 1 m ．	Flush	Therina If．${ }^{\text {P }}$ ．	$51-$
링％	2 ¢in．	Flush	M．C．D．＇．	716
\＄1 $\frac{1}{}$	2 tin．	Flush	M．C．18．0．	$7 / 6$
25：	3tim．	Fluh	MC．Wrs	$7 / 6$
g，at	： 4 in．	1r以	Mc．De	$7 / 6$
2．a．	：	Flny	M．D．${ }^{\text {de }}$	$2 /$
	ytirn．	Fl｜heh	M． 0.0	$7 / 6$
万） n ＇4．	$\because 1 \mathrm{in}$	Flush	M．D．	5／－
1 m \％	$\because \mathrm{al}$ ．	Flush	M．C．D．E．	15／1
	： 4 itio．	Flurls	M．c．D．C．	$18 / 6$
26，	utin．	Flush	Mo．De．	519
15 v ．	3tim．	Flusil	M．I．A．C．D．C．	7
	！$!$ in．	rluch	M．C．D．C．	
5， 1006	＋1．10．	Fhash	Flectrontatic	
1 mit	2in．	Plush	Mr． MC	
56 m	2 in	Flunh	I1（\％D．E	8／1016
：3im，a	： kin．$^{\text {a }}$	Flosh	M．．Do．	1016

TEST UNIT TYPE 73 Uscilloscope that reanirew only rewiring and the addition of a few condensers and resintora to contert into ib tule and $15 U^{-220 A}$ ． 1 FBB4， 1524,3 SP41， 2 EA50， are included．Carr．am puks． 8880 ．

Sensitivity
 The bat is

 said to derive its amazing sensitivity in flight from the echo of a high pitched sound which it emits. The Weston Model E772 Analyser, however, relies upon the more tangible asset of a sensitivity rating of 20,000 ohms per volt on all D.C. ranges and 1,000 ohms pervolt on all A.C. ranges. This instrument is designed to assist you in the tracing of difficult electrical faults and its quality is in accord with the highest Weston standards.
E 772
 WESTON Unalyser

NEW
 vibration ELIMINATORS

ISOLATION :Rom VIBRATION

"Equiflex" Mountings are invaluable for the mounting and suspension of machines, equipment, instruments, electrical apparatus, motors, etc., and whenever elimination of vibration and shock is required.

SPECIAL FEATURES
Flexible in all directions at an equal deflection. Can be loaded on any side, thus eliminating vibration in Vertical, Horizontal and Longitudinal planes employing best quality natural rubber spring elements and complete with snubbing device. Special Fittings made to suit customers' requirements.
Also available as previously advertised, the ALL-METAL construction comprising an ingenious Damped Spring System.

Write for illustrated brachure, and
send us details of your requirements.
A. WELLS \& CO. LTD. (Dept. W.W.),

STIRLING ROAD, WALTHAMSTOW, LONDON, E.I7
-Phone: Larkswood $269!$

NEW SOUND EQUIPMENT. NEW IDEAS.

A range of entirely new amplifiers

THE G/Q PLUS. THREE CHANNEL GRAMOPHONE
AMPLIFIER. 15 GNS
Factory built chassis, complete ready for use. Good quality reproduction from radio or records with wide range tone control system. First stage, triode amplifier as cathode coupled divider, separate amplifiers for bass and treble, together with middle frequencies, resultant output electronic mixed by second valve, a double triode. Another double triode as self balance phase changer driving two 6L6 in P.P. Output 6 watts. Distortion less than I per cent. Excellent reproducer for modern pick-ups. Write for technical data and basic circuit ($2 \frac{1}{2} d$. stamp).
THE HOME GRAMO AMPLIFIER PP/II. 10 GNS.
A new chassis which has all the advantages of push pull output. Double triode phase changer and two KT6I's giving 10 watts. Two inputs and tone control. A very reasonable outfit for general purposes.
PUBLICADDRESS AMPLIFIERS. Portable steel cases.
GP/IS watt. P.P.Output. With high gain microphonestage. 16 Gns. Bass Lift and Treble cut. A very popular equipment.
GP/25 wate. P.P. general purpose high gain amplifier. 19 Gns. Perfect for stage work, schools, social elubs, etc.
TRANSFORMERS. As used in our own productions.
Mains types $350 / 0 / 350$ v. 100 ma .5 v. 2 a., 6.3 v. 4 a. $30 / \mathrm{m}$.
As above but 150 ma., 35/-.
$500 / 0 / 500$ v. from 60/-
We have transformers for all applications, from our range you can select output and mains for all amplifiers and sets. Output transformers. for $3 / 8 / 15$ ohms. 25 watts. Plate loads of 8,000 and 10,000 . Price $25 /$

If you have not had any leaflets from us recently write-
GENERAL LAMINATION PRODUCTS LTD.
"Winder House," 294, Brosiwiy, Bexlepheath, KENT. Bexleyheath 3021.

THE $Z 77$ is the first of a new range of OSRAM miniatures. It is a high-gain pentode, mounted on the B7G base and is suitable for use in television, wide-band radio, amplifier and electronic instrument circuits.

INTERESTING FEATURES

Small size and rugged construction make it an eminently suitable valve for use in mobile and portable equipment.
Suitable for operation up to 100 megacycles per second. Owing to smaliness of size and low thermal capacity the valve rapidly reaches a stable operating condition.

List Price 17/6. Purchase Tax $3 / 10$ extra.

THE GENERAL ELECTRIC CO.. LTD.. MAGNET HOUSE, KINGSWAY, W.C.2.

All parts plated and keyed to body. Available in bracket or clip-fixing types,

Switch to

End the Flickering of Dial Lights with THE NEW MOULDED M•ES LAMPHOLDER

The new design eliminates all risk of noisy intermittent contacts. Screw-in bulb is gripped firmly in vibration-proof holder. Place your enquiries now for early deliveries,

THE GENERAL ACCESSORIES CO. LTD.

21 BRUTON STREET, LONDON, W.I Telephone: MAYfair 5543

RHO-METAL SCRATCH FILTER CHOKE

TYPICAL RESPONSE CURVES

WHERESURFACE NOISE IS THELIMITINGFACTORTO SUPREME QUALITY OF REPRODUCTION, fit a Sound Sales alloy cored steep trough tuneable filter. We know the problem of removing Surface Noise or Hetrodyne whistle is not easy to solve, but the steep trough filter has so far produced the most encouraging results we have encountered when using a compact component which can be incorporated in existing apparatus.
CHOKE TYPE, C/SF, Dia. 27", length $31^{\prime \prime}$. PRICE 21.8 .9 each.
SOUND SALES LIMITED
Specialist manufacturers of Transformers and Chokes of all types since 1930
WEST STREET, FARNHAM
SURREY
and S7 ST. MARTIN'S LANE, W.C.z.
Temple Bar 4284

R.F. E.H.T.

Manufacturers and home constructors will be pleased to learn that the HAZLEHURST R.F. E.H.T. Supply Units are now available. They have many outstanding advantages over the usual E.H.T. supplies:
i. Operation is independent of adjustments to time base circuits and regulation is excellent.
ii. The high voltage is non-lethal, dropping almost to earth potential on touch.
iii. Radiation is made negligible by efficient screening.
iv. A $5 K V-8 K V$ unit requires a D.C. supply of $320 \mathrm{v}, 30 \mathrm{~mA}$ and an A.C. of $6.3 \mathrm{~V}, 0.45$.
Units are available to supply any voltage between 5 KV and 25 KV with stabilized outputs to special order.

Price of complete supply (5KV-8KV) 5 Gns.
Price of coil unit (as illustrated) El.6.8
Trade and Export enquiries welcomed.
HAZLEHURST DESIGNS LTD.
186. BROMPTON ROAD, LONDON, S.W.3.
'Phone KENsington 7793

GONDON CENTRALS RAADIO STOLEES

Government Surplus - Immediate Delivery from Stock

Thise sets are as new. Freq, range $\mathbf{0 . 5} \mathrm{mc}$'s $75 \mathrm{kc} / \mathrm{s}$ in five wavebands. Complete with 10 valves including magic eye. Enclosed in metal case. Every receiver is aerial tested. Complete with Power Pack and Loudspeaker, for A.C. mains $200-250$ v. (Carr. and pkg. \$14.10.0
$10 / 6$ extra) $\$ 1$.
FREE with each receiver! Complete circuit, description and modifications for civil use, reprinted from "W.W": July, 1046 .

NEW MILNES H.T. UNITS (Everlasting)

120 v. 60 m .4 . Will charge from 6 v.
accumulator. For Callers Only $67 / 6$ small sliding resistances

$\times 24 \mathrm{in}$. high. Carriage paid $8 / 9$

With 4 in. Cathode Ray Tube, VCR138A, 4 SP81, 1 EB34 valves, potentionfters, etc. Complete on chassis, $16 \times 12 \times 5 \frac{1}{2}$ in Carriage 5/6.
£2.12.6
METAL RECTIFIERs, 12 -volts input, $15 /-$
6 volts output, 34 amps. 6 volts output, 31 amps. Carriage $1 / 6$.

2-VOLT POWER PACK8 complete with Vibrator Output approx. 200 v .150 mA . Sizs $9 \times 5 \times 3$ int. A first-ctass joh, complete with $\mathbf{8 3 . 7 . 6}$ accumulator in carrying case
Plus 5/- carr. and pkg.

- 3-VALVE R.F. AMPLIFIERs YHF $\frac{1 / t .10}{25}$ 3-VALVE R.F. AmPLIFIER8 V.H.
Types 24825.
$40,50 \mathrm{mc} / \mathrm{s}$. Connplete with valves. In
notal case. Brand new in carton..... $10 / 6$ Plus carriage and pack;ng 1/t.

FRACTIONAL H.P. A.C. MOTORS converted from ex-Govt. Generators.

3. rush type $220-250$ v. 50
cycles approx. cycles approx. S,000 r.p.m. Overall diam.
$10 \times 4 \mathrm{in}$. d in . $10 \times 4 i n$ din. spindle extends
lin. both ends. Post $2 / 6$ extra. Special reduction

25/-

Range $31 \mathrm{Mc} / \mathrm{s}$ to $90 \mathrm{kc} / \mathrm{s}, 9$ Plug-in coils, 7 valves and rectifier, variable selectivity, B.F.O. stand-by switch, A.V.C. switch, band-spread dial, valve check meter. In heavy black crackle finished steel cabinet with chrome fittings. Complete with 200-250 v. A.C. Power Supply Unit ... 225.0 .0 Carriage and packing $17 / 6$ extra.

Complete with 4 valves. Frequency coverage : $500 \mathrm{kc} / \mathrm{s}, 200 \mathrm{kc} / \mathrm{s}, 10 \mathrm{mc} / \mathrm{s}, 3 \mathrm{mc} / \mathrm{s}, 2.35 \mathrm{mc} / \mathrm{s}$, $8 \mathrm{nic} / \mathrm{s}, 2.5 \mathrm{ml} / \mathrm{s}$. Power input $1,200 \mathrm{v}, 200 \mathrm{~nm} / \mathrm{a}$. H.T. 6 v. 4 amp. L.T. Chassis size, $15 i n . \times 13 \mathrm{in}$. $\times 8$ lin. In metal cabinet. Supplied in strong wood case, with metal bound corners and carrying handles, easily adapted for Amateur 810.10 .0 use. Less Power Pack

Carriage and Packing $12 / 6$ extra.

Please Note: All carriage charges relate to the British Isles only e We do not issue lists or catalogues

LONDON CENTRAL RADIO STORES, 23, LISLE ST. (GERrard 2969) LONDON, W.C. 2

BUILT TO LAST

M.C.T. RANGE • CHASSIS MOUNTING

TYPE	USE	PRIMARY	SECONDARY
M.C.T. 100	$\begin{aligned} & \text { Mains } \\ & \text { Transformer } \end{aligned}$	$\begin{aligned} & 0-200-230-250 \mathrm{v} . \\ & 40-100 \mathrm{Cps.} \end{aligned}$	$\left\lvert\, \begin{array}{rc} 300-0-300 \mathrm{v} . & 75 \mathrm{~m} / \mathrm{a} \\ 4 \mathrm{v} . & 4 \mathrm{amps} . \\ 4 \mathrm{v} . & 2 \mathrm{amps} . \end{array}\right.$
M.C.T. 101	Mains Transformer	$\begin{aligned} & 0-200-230-250 \text {. } \\ & \text { 40-100 Cps. } \end{aligned}$	$\left\lvert\, \begin{array}{rr} 300-0-300 \mathrm{v} . & 75 \mathrm{~m} / \mathrm{a} . \\ 6.3 \mathrm{v} . & 3 \mathrm{mps} . \\ 5 \mathrm{v} . & 2 \mathrm{mpls} . \end{array}\right.$
M.C.T. 110	Auto Transformer	$\begin{aligned} & 0-100-110-200-230 \\ & 250 \text { volts } \\ & 40-100 \mathrm{Cps.} 100 \mathrm{w} . \end{aligned}$	
M.C.T. 120	Mains Transformer	$\begin{gathered} 0-200-230-250 \mathrm{v} \\ 40-100 \mathrm{Cps} . \end{gathered}$	350-0-350 v. $75 \mathrm{~m} / \mathrm{a}$. 4 v .4 amps . 4 v . 2 amps .
M.C.T. 121	Mains Transformer	$\begin{aligned} & \text { 0-200-230-250 v. } \\ & \text { 40-100 Cps. } \end{aligned}$	$\begin{aligned} 350-0-350 \mathrm{v} . & 75 \mathrm{~m} / \mathrm{a} . \\ 6.3 \mathrm{v} . & 3 \mathrm{mps} . \\ 5 \mathrm{v} . & 2 \mathrm{mpps} . \end{aligned}$
M.C.T. 124	Mains Transformer	$\begin{aligned} & \text { 0-200-230-250 v. } \\ & \text { 40-100 Cps. } \end{aligned}$	$\begin{array}{r} 350-0.350 \mathrm{v} .120 \mathrm{~m} / \mathrm{a} . \\ 4 \mathrm{v} .4 .5 \mathrm{mps} . \\ 4 \mathrm{v} .2 \mathrm{mps} . \end{array}$
M.C.T. 125	Mains Transformer	$\begin{gathered} 0-200-230-250 \mathrm{v} . \\ \text { 40-100 Cps. } \end{gathered}$	$350-0-350 \mathrm{v} .120 \mathrm{~m} / \mathrm{z}$. 6.3 v .3 mps. 5 v .2 mps .

TEAM VALLEY. GATESHEAD, II

FOLDED DIPOLES

The development of the folded dipole made from twin lead low loss transmission line has become very popular in the U.S. It is inherently a broad band antenna, and performs wel over an entire amateur band, not a single frequency.

We have been fortunate in obtaining a quantity of this 300 ohen twin lead, and can offer it at a price which will make our "W" friend envious, so get some while it lasts.

```
HEAVY DUTY 2\frac{1}{2}
TWIN LEAD PERFOOT
```

Might we also point out that in addition to the Government surplus gear offered in our list, we have the largest stock at the lowest prices of standard Receivers etc., namely National H.R.O. and NCl 20, R.C.A. AR 88, Hallicrafter S.27, Eddystone 358, National NTE Exciter, TCS Transmitters and Receivers.
REMEMBER G5NI has served you for years, knows what he is buying and has the largest stock of "worth while" short wave equipment.
SEND S.A.E. FOR RAYMART STANDARD LIST "W" AND NO. 7 SPECIAL OFFERS LIST.
RADIOMART
48, HOLLOWAY HEAD, BIRMINGHAM, I.
Telephone: Midland 3254

The Pullin S Meter has been designed for use on amateur band communication receivers. The meter is mounted in a bench stand with terminals on top. Two scales are printed on the dial, thus serving as a dual purpose meter. An instructional leaflet is supplied with each meter. This gives the user full instructions for wiring up and explains in detail the value of the resistors and potentiometer to be used in the circuit. Price, $£ 3$.6.0.

We can give early deliveries - write for full details MEASURING INSTRUMENTS (PULLIN) LTD.

CELESTION
 SPEAKERS

The new and special magnets used in the construction of the Celestion 5 in . and $6 \frac{1}{2} \mathrm{in}$. speakers detailed below, provide a degree of efficiency hitherto unobtainable with permanent magnets. They represent the very latest method of speaker design and construction.
Chassis Model P6Q is also available as a Cabinet Speaker (size 9in. $\times 8 \mathrm{in}$. $\times 4 \frac{1}{2} \mathrm{in}$.). The attractive cabinet is fitted with volume control. Cabinet finish in Green, Cream or Brown. Ask for Cabinet Model CTII5. Price 62/17/- (without transformer), suitable for outputs l-5 ohms; or, price 63/3/- (with universal transformer). Suitable for all receivers.

Chassis Diamerer	MODEL	Voice Coil Impedance (ohms)	Pole Diameter	Ffux Density (Gauss)	$\begin{aligned} & \text { Total } \\ & \text { Gap Flux } \\ & \text { (Maxwells) } \end{aligned}$	Peak Power Handling Capacity
5"	P5Q	3.0	${ }^{\prime \prime}$	8,500	26,000	2W
5"	P5T	3.0	?"	10,500	32,000	2W
$6{ }^{6 \prime \prime}$	P6O P6T	3.0 3.0	\%"	8,500 10,500	26,000 32,000	3W

Write for Brochure "W.W." It gives details of all Celestion chassis and Cabinet Speakers.

P5Q WHERE TO BUY CELESTION

The Public are requested to order from their local Radio Dealer.

Wholesalers are supplied by the sole Distributors: CYRIL FRENCH LTD., High Screet, Hampton Wick, Middlesex. Phone: KINgston 2240.
Manufacturers should please communicate direct with CELESTION LTD.
 Agency enquiries invited.
PIFCO LTD., PIFCO HOUSE, WATLING STREET, MANCHESTER, 4 and at PIFCO HOUSE, GT. EASTERN STREET, LONDON, E.C. 2

S H E F I MOVING COIL
 Licensed under Voist's Patent No. 538058.

It uses miniature needles suitable for modern fulı range recordings A terrous coil former concentrates the flux on the coil and also adds armature effect, thus increasing output voltage sufficiently to operate direct into a normal radio set.
Free needle movement and low do inward pressure ensure long record life.
The lundamental simplicity of this robust design keeps down manu facturing costs. Price including transformer $£ 2$ plus P.T. De Lixe model, with spring counter balance $£ 2.11 .0$ plus P.T.

EXPORT ENQUIRIES INVITED.
BROOKS \& BOHM LTD.
90, Victoria Street, London, S.W.1. Phone : VICtoria 9550/I441.

SPHERE INSTRUMENTS NOW AVAILABLE!
 The new "75" Range TESTGERR

Brief Specification of Item I

SIGNAI GENERATOR "75" Model I

Frequency Range. 110 to 50 Megacycles. With calibrated extension covering London, and Midland Television fre. quencies, at over 60 Megacyrles.
Modulation. 400 C.p.s. sinusoidal.
Attenuator. 5 -step ladder, with flue control.
Output. Switehed via singie test-lead. RF'. and AF. 1 volt Max. External Radiation. Less than 1 microvolt.
Vor AC. mains operation. Complete with Standard Dummy Aerial.

LOW COST EFFICIENCY
INQUIRIES INVITED
SPTIG: REDTO TTMTYISD
HEATH LANE, WEST BROMWICH, ENGLAND

E．H．T． DEVELOPMENTS

10 kV DC

from two rectifiers，type 36EHT145＊，in a 50 c．p．s． voltage－doubler circuit．

6kV DC

from three rectifiers，type 36 EHT 35^{\dagger} ，in a pulse voltage tripler circuit．

5 kV DC

from 350 volts A．C．using a Westeht EHT unit．
 METAL RECTIFIERS

Write for literature to Dept．W．W． 10
＊Each only $\frac{7^{\prime \prime}}{16} \times 7 \frac{1}{4}^{\prime \prime}$
\dagger Each only $\frac{7}{16} \times 2 \frac{11^{\prime \prime}}{}$
Interested manufacturers may obtain small supplies of any of these rectifiers as samples．

Westinghouse Brake \＆Signal Co．，Ltd． 82 York Way，King＇s Cross，London，N． 1

Available in four sizes， $2 \frac{1}{2 \prime \prime}, 3 \frac{1}{\frac{1}{2}^{\prime \prime}}, 5^{\prime \prime}$ and $6 \frac{1^{\prime \prime}}{}$ ，the WAFER answers space problems in＂midgets，＂ personal receivers，car radios，television re－ ceivers and intercom systems：
Depth less than one third of diamater Depth less tha
Light weight
High sensitivity
High sensitivity
Even Response
Even Response
Negligible external magnetic field
Patents pending

New developments at

The hub of the Experimenter's world

HIGH FIDELITY

Amongst other hi-fidelity reproducers we are demonstrating -
The Mordaunt "Duplex" Twin - Unit Corner Reproducer 98 Guineas and the
Barker "148," a single cone chassis of superlative merit 15 Guineas Hear them working from Brierley's Ribbon Pick-up, price............................. £io 149

$145 \mathrm{Mc} / \mathrm{s}$ BAND

The new amateur band $145 / 146 \mathrm{Mc} / \mathrm{s}$ (2 metres) offers experimental scope for both receiving and transmitting. Some stock items:-
Q.C.C. $8 \mathrm{Mc} / \mathrm{s}$ Crystals (multiply by 18), $32 / 6$. U.S.A. type 6J6, 18/3. R.C.A. Acorns 954 and $955,20 /$. Mullard EC91, 30/5. EC52, 18/3. EC53, 30/5. QVO4-20,75/-. EL9I, 15 /3. General Radio Absorption Wavemeter type 758 A, precision type calibrated $55 / 400$ Philips Concentric Air Trimmers 3/30 and 3/ropF, both.............................. 20 Eddystone Is plus ispF Split Stators 89

TELEPHONE: GERRARD 2089
 \title{
WERBS
 \title{
WERBS Webs
} Webs
}

COILS AND FORMERS

"Synchrodyne" coils wound to author's spec., per set of three with connecting diagram EI 176 Atkins "High Q." Excellent generalpurpose tuning inductances, adjustable dust-cores, wound on Aladdin formers. Full range covering s to 2,000 metres of three types, Aerial, H.F. Transformers and Oscillator. All 3 Webbs "Crystal " Coil. For use with circuit in "Wireless World," April 1948. Has two in "Wireless World," April 1948. Has two

* Your copy of our new
 awaits you- $5 d . t o$ callers, $7 \frac{1}{1}$ d., post free.

RADIO REPAIRS
Our enlarged Service Department can give prompt attention to all repairs, specializing, of course, in the alignment, etc., of communication receivers.
WEBB'S RADIO 14, Soho Street, Oxford Street,
London, W.I
(B.T.H. Crystal rectifiers-CS7A also avail-

$$
\text { able, } 7 / 6 \text {.) }
$$

Aladdin Coil Formers. Type F804. A modern former widely used for all frequencies. I lin. long by lin. dia. 6d. Aladdin Dust Cores, type PP5804 for same 4d.

RECEIVERS

Eddystone "670." A new receiver for AC/DC $110 / 230$ volt eperation. Especially interesting for Marine use. An export model, available under formalities for the seagoing officer $£ 3710$ o Eddystone " 640 ." Offers unparalleled value and holds its own on performance with any communications receiverirrespective of price. Availmunications receiverirrespective of price, Avail-
able for the home market ex stock... $£ 27$ io o

Shop hours : 9 a.m.-5.30 p.m. Sats. : 9 a.m.- 1 p.m.

जाmm
 STOUND SERVICE

THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION

* Mobile and Static Consinuous Recording Outfits.
* Recording Amplifiers.
\# Moving Coil and Crystal Microphones.
$\star \star$ Sapphire Pointed Reproducing Styli and Curters.
* Blank Recording Discs from Sin. to 17 in. Single or Double sided.
* Light-weighe moving iron, permanent sapphire and moving coil pick-ups.
* Label and Envelope Service.
* A comprehensive range of actessories to meet every requirement of the sound recording engineer.
t And our latest development (of special interest to users of sapphire or delicate pick-ups)-The Simtrol.
This is a controlled micro-movement easily fitted for use with any type of pick-up to eliminate the danger of damage to the record or pick-up. This is achieved by a vernier lowering action of the pick-up head to the record.

Write for comprehensive lists or call at Recorder House for demonstration.

RECORDER HOUSE, $48 / 50$ GEORGE ST. PORTMAN SQUARE, LONDON, W.I.

Telephone: WEL 2371 (4 lines).
Telegrams: Simsale, Wesdo, London.

HIVAC LIMITED
Greenhill Crescent. Phone. HARROW Harrow on the Mill.Middx. 0895

Fratures of the 'SENIOR' MODEL

P.M. Unit: 9" diameter. Capacity: 7 watts. Magnet flux density: 12.000 gauss, total flux 47,000 lines. Magnet in Alcomax, one of the most efficient permanent magnet alloys yet produced. Volume controls: constant. impedance type. Basins: die-cast in non-ferrousalloy. Cabinet in polished walnut veneer,

TRANSFORMERS (when required): Universal ratio type transformers, tapped to match high and low impedances or connection direct to speech coil. Price E5.15.6.
(without transformer), $\mathbf{6 5}, \mathbf{2 . 6}$.
'JLNIOR' MODEL
 P.M. Unit : $8^{\prime \prime}$ dia meter. Capacity: 6 watts. Magnet flux density: 10,000 gauss, total flux, 39,500 lines. Price E 5. 0.0 (without transformer) $\mathrm{E}_{\mathrm{t}} \mathbf{4} 10.6$

Mag
 WHITELEY ELECTRICAL RADIO COLTD• MANSFIELD•NOTTS

CARRIED AWAY

with enthusiasm.

Our new " Measurtest" series is so exciting to radio engineers that they - and consequently the instruments !-are carried away with enthusiasm. The PORTABLE RECEIVER TESTER, for instance, is a complete range of test equipment in itself, yet is no bigger than a small attache case and no heavier than a portable radio. In one assembly, it combines a crystal-standardised signal generator, a tone source and an a.f. power meter; further, it can be either mains or battery operated. For servicing or testing radio receivers, therefore, and checking radio amplifiers, the RECEIVER TESTER is the long-awaited universal instrument. Your enquiries are invited.

hire purchase terms avallable

PORTABLE RECEIV 3 Instruments-in-One
 SIGNAL GENERATOR

A Combined OUTPUT POWER METER CRYSTAL CALIBRATOR

COMPACT. PORTABLE. ROBUST
Mains or Battery Operated -

MARCONI INSTRUMENTS LTD
ST. ALBANS, HERTS. Telephone: St. Albans 6/61/5. Northern Office: 30 ALBION STREET, HULL. Tel.: Hull 16144.
Southern Office \& Showrooms: 109 EATON square, s.W.I. Tel.: Sloane 8615. Western Office: 10 PORTVIEW ROAD, AVONMOUTH. Tel.: Avonmouth a3e.

- CONSTANT VOLTAGE • POWER SUPPLY UNITS

NEW SERIES 101

Cur new Laboratory Power Supplies, Series 101, are based on our well-known Model 101-A, but incorporate a number of improvements and refinements.

DETAILS ON REQUEST.

ALL-POWER TRANSFORMERS LTD. 8a, GLADSTONE ROAD, WIMBLEDON, 8.W. 19 Tel.: LIBerty 3303.

ALL-BRITISH © VIBRATORS

 manuface careful investigation of their growing applications. If you have a problem which may involve the use of Vibrators, we shall be glad to put our specialised knowledge at your disposal.

WIMBLEDON ENGINEERING CO. LTD. GARTH ROAD • LOWER MORDEN • SURREY • TELEPHONE : DERWENT 4814•5010.

UNITED INSULATOR CO. LTD., OAKCROFT RD., TOLWORTH, SURBITON, SURREY

[^0]Telegrams : Calanel. Surbiton

IN a variety of combinations from 5 to 2,000 nietres with all necessary padding and trimmer condensers. Write for descriptive literature stating your problem.

LABORATORY

TESTED

[^1] A17105

OTH Potited type TRANSFORMERS
 ,

Potted Transformers are particularly suitable for incorporating in equipment for tropical or home use.

Note these advantages

Clean layout and smart appearance when built into equipment. Universal fixing allowing above or below chassis wiring. Silence in operation with absolute reliability.

PTM IIa 250-0-250 $60 \mathrm{~m} / \mathrm{a} 5 \mathrm{v} 2 \mathrm{a}$ 6.3v 3a PTM 12a $275-0-275120 \mathrm{~m} / \mathrm{a} 5 \mathrm{v}$ za 6.3 v 3 a PTM I3a 350-0-350 $120 \mathrm{~m} / \mathrm{a} 5 \mathrm{v} 2 \mathrm{a} 6.3 \mathrm{v} 4 \mathrm{a}$ PTM I4a $425-0-425 \quad 150 \mathrm{~m} / \mathrm{a} 5 \mathrm{v} 3 \mathrm{a} 6.3 \mathrm{v} 6 \mathrm{a}$ PTM $15 \mathrm{a} 500-0-500150 \mathrm{~m} / \mathrm{a} 5 \mathrm{v} 3 \mathrm{a} 6.3 \mathrm{v} 4 \mathrm{a}$ PTM $16650-0-650 \mathrm{v} 250 \mathrm{~m} / \mathrm{a}$
PTM $21500-450-0-450-500 \mathrm{v}$ at $250 \mathrm{~m} / \mathrm{a}$ PTM 22 350-0-350v $180 \mathrm{~m} / \mathrm{a}$

Also available with 4v Filament Windings.
Modulation Transformers, Smoothing and Swinging Chokes also available in Potted Types. Prompt delivery.

Send for New Catalogue.

WODEN TRANSFORMER Co., Ltd.
 MOXLEY RD., BILSTON, STAFFORDSHIRE
 TELEPHONE: BILSTON 41959/0

We believe that the only way to build a receiver is to begin at the beginning with a sound circuit design-a design that's been tested and re-tested-a design that will stand up to the most critical examination. From this design a prototype is constructed in which every component receives the same rigorous testing. We leave the experts to pass judgment on the resulting Sobell receivers. We are confident that for ease of control and absolute fidelity of reproduction this model will be found to have no equal-that, in fact, you will pronounce it to be 'technically outstanding'.
 loudspeaker. Covers long, medium and two short wave ranges.

TWO YEARS' FREE ALL-IN SERVICE IN THE HOME
Advt. of Sobell Industries Ltd., Langley Park, near Slough, Bucks.

Wireless World
 RADIO AND ELECTRONICS

OCTOBER
1948

Froprietors:
ILIFFE \& SONS LTD.
Managing Editor: HUGH S. POCOCK, w,t.e. $\frac{2}{}$ Editor :
H. F. SMITH

Editorial, Advertising and Publishing Offices DORSET HOUSE, STAMFORD STREET LONDON, S.E.I.

PUBLISHED MONTHLY
Price : $1 / 6$
(Publication date 26th of preceding month)
Subscription Rate: 20/-per annum. Home and Abroad

Branch Offices :
Birmingham: King Edward House, New Street, 2.
Coventry :
Glasgow :
Manchester:

8-10, Corporation Street. 268, Renfield Street, C. 2. 260, Deansgate, 3.

OUR COVER: Atmospheric Direction Finder (see page 3^{80})

In this Issue
EDITORIAL COMMENT 351
FRESH PROGRESS IN DRY BATTERIES By R. W. Hallows 352
ELECTRONIC MEGOHMMETERS By H. G. M. Spratt 354
IMPROVED HEARING AID 357
AMPLIFYING CRYSTAL 35^{8}
RADIO INTERFERENCE MEASUREMENT 359
REDUCING HEATER HUM By K. G. Britton 360
NEGATIVE FREQUENCY By "Cathode Ray ".. 361
SEAFARER'S RECEIVER 365
AIR COMMUNICATIONS 366
WORLD OF WIRELESS 369
UNBIASED By " Free Grid ' 372
STABILIZED POWER SUPPLIES By M. G. Scroggie. 373
SHORT-WAVE CONDITIONS 378
ELECTRONIC CIRCUITRY By J. McG. Sowerby 379
TELEVISION STANDARDS 38 I
MANUFACTURERS' PRODUCTS 384
LETTERS TO THE EDITOR $3^{8} 5$
RANDOM RADIATIONS By "Diallist " 388

TYPE TL/7 - a recording and reproducing head from amongst the components shortly to be made

$$
\begin{aligned}
& \text { Wright \& Weaire, Ltd. } \\
& \text { 138. SLOANE ST. LONDON • S.w.1 } \\
& \text { TELEPHONE SLOANE 2214/5 } \\
& \text { " Simonside Factory } \begin{array}{c}
\text { works" South Shields, } \\
\text { Co. Durham }
\end{array}
\end{aligned}
$$

separately available for this specific branch of electronics. Others include Erasing Heads, Combination Heads, Supersonic Oscillator Coils and Drives in addition to the normal range of Transformers, Switches, etc.; which have served the industry so well for the past three decades.

Valves and their applications

EHT SUPPLIES
 FOR TELEVISION RECEIVERS

The conventional EHT Supply for a Cathode Ray Tube consists of a high voltage transformer, a high voltage rectifier such as the HVR2, and a smooth. ing capacitor of appropriate voltage rating with a value of about $0.1 \mu \mathrm{~F}$. Experience has shown this arrangement to be rather unreliable unless a very well-made, and therefore expensive transformer is used. This is because the peak current requirement of the C.R. tube may be no more than 0.1 mA so that the fineness of wire used in the transformer secondary is determined only by the difficulty of winding it. (45 S .W.G. wire will carry 6.2 mA at $1,000 \mathrm{~A}$ per sq . in.) In consequence cheap transformers may be wound with such fine wire that the expansion and contraction of the winding during use will eventually produce a breakage.

EHT from Line Time-base

One way of avoiding this difficulty in the case of Television Receivers is to rectify the high peak voltage produced across the primary of the line scanning transformer during the flyback period. This is an economical method as the cost of the high voltage winding is saved and a smoothing capacitor of only $0.001 \mu \mathrm{~F}$ is adequate because of the high pulse frequency ($10,125 \mathrm{c} / \mathrm{s}$). Unfortunately it is difficult to get more than about $5 \frac{1}{2} \mathrm{kV}$. in this way unless one uses voltage doubling circuits, which, in turn, involve two rectifiers and three high voltage condensers, when the saving is not so great. One disadvantage of obtaining the E.H.T. voltage in this way is that the voltage depends on the setting of the line width control.

C.W. R.F. Oscillator

Another method is to use a radio-frequency oscillator feeding a tuned high frequency transformer as originally described by O.H. Schade. (Proc. I.R.E. Vol. 31, No. 4.) In this case the "goodness" of a design depends mainly on the Q of the secondary winding, and Litz wire has often to be used in order to obtain a sufficiently high Q in a reasonably small winding space. The oscillator valve can be a small triode, or a small output pentode such as the EL33, and the anode need not be insulated to a high voltage as the voltage step-up is obtained in the transformer. A limit to the efficiency which can be obtained with this circuit is set by the voltage regulation of the device, but for a given regulation this circuit is generally more efficient than the ringing choke circuit described below.

Ring Choke Circuit

In the ringing choke circuit a pentode such as the EL38 is used because the anode must be capable of withstanding high peak voltages. An inductor is inserted in the anode circuit of the valve, and its grid is supplied with a suitable voltage waveform. Current is allowed to build up in the inductor, and is then rapidly cut off. The inductive "kick"
produced across the anode load is rectified to produce the high voltage D.C. output. In this circuit the Q of the anode inductance is not so important as in the case of the oscillator circuit because only the first peak of voltage is rectified. In consequence a very cheap construction can be used, and this consideration may more than offset the disadvantage of its lower efficiency.

Advantages of the EY51

The Mullard EY51 high voltage rectifier has been specifically developed for these applications. The filament consumption is only 80 mA at 6.3 volts-i.e., 0.5 watt, less than a fifth of that taken by the HVR2. It is therefore quite practicable to operate the heater from a winding on the line scanning transformer, oscillator coil or ringing choke. Adequate insulation for such a winding is easily provided and expensive high voltage filament transformers are avoided. The damping is small even in the case of the R.F. oscillator in which power losses are so important. The valve itself is so small that it can easily be supported in the wiring. This greatly simplifies the problem of insulation.

TURE	HIGH	VOLTAG	R	CTIFIER	EY5I
V_{h}...	\ldots	...	
${ }^{\mathrm{l}_{\mathrm{h}}} \ldots \ldots$...	\ldots	80 mA $0.8 \mu \mu \mathrm{~F}$

OPERATION WITH SINSUISOIDAL INPUT UP TO 500kc/s.
Max. peak inverse voltage ... 15 kV
Max. rectified current $\ldots . \quad \ldots \quad 0.5 \mathrm{~mA}$
operation with pulse input
Max. peak input voltage lOkV
Max. rectified current 0.ImA
In later articles the detailed design of these circuits will be considered. Each has its oun sphere of usefulness and, if properly made, all are as reliable as the conventional circuit using a good transformer, more reliable than one using a cheap transformer, and, especially to the amateur who can make his own coils, they are considerably cheaper.

Reprints of this report from the Mullard Laboratories can be obtained free of charge from the address below:

> MULLARD ELECTRONIC PRODUCTS LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE., W.C. 2

Wireless World

H. H.C. Television: Healistic Tochnical Standards

EVEN before the war ended most of us showed a deep concern for the restoration of the British television service, and heated discussions arose as to the technical standards to be adopted. Everyone agreed that the service should be re-started at the earliest possible moment ; that, if any change was to be made, it should be made then; but at that point unanimity ended. One group maintained that as speed was essential the pre-war 405 -line system should be restored without change as soon as hostilities ended. Their opponents contended that the wartime suspension of the service gave an opportunity to make a change to a high-definition system that would endure for a long time. A third school of thought urged that definition should be increased, slightly to a value giving a potentially "perfect" picture, claiming that this could be done without involving any fundamental change in the wellproven receiver manufacturing technique of which we had had several years' experience.

This attractive middle-course scheme, advanced with vigour and eloquence by its proponents, gained many adherents, but it was finally decided to restore the service with the pre-war standards basically unchanged. Though at the time many of us regarded this decision with mixed feelings, there can now be no doubt that it was a wise one. Equally wise, we are convinced, was the issue of the recent unequivocal statement that the B.B.C. standards would remain unchanged for a number of years. This decision, made by the PostmasterGeneral on the advice of the Television Advisory Committee and with full support of the industry, has cleared the air and removed all uncertainty.

As we see it, there was a real danger that definition, as expressed by number of lines, would become a fetish, and television would develop into a "technician's racket." That expression, perhaps, ill becomes a technical journal, but clearly a stage has been reached where considerations of practicability, economics and even expediency
must outweigh questions of purely technical development.

In this matter there seems to be a very close parallel with newspaper illustrations, the standard of which has undergone little fundamental change for a generation. It would no doubt be technically possible for us to be given reproduced photographs of a vastly higher "definition," but to do so would be entirely unpractical and hopelessly uneconomic, So we find that the newspaper publishers of the whole world have tacitly agreed on a more or less uniform standard, which certainly seems to give an acceptable picture.

Does 405 -line television also give an acceptable picture? We think it does, and at any rate until other links in the chain between object and viewer have been strengthened, it is extremely doubtful if it is worth while increasing the number of lines, with all the disadvantages inherent in such an increase. Some of the technical arguments in support of this statement are given elsewhere in this issue. In any case, the decision to retain 405 lines does not mean that all progress is at an end for perhaps as long as ten years. On the contrary, the B.B.C. system is susceptible to great technical improvement without any change whatever being made to its basic transmission standards. As somebody said the other day, "No one has yet seen a real 405 -line picture."

Naturally enough, the decision to retain 405 lines indefinitely has provoked some criticism, though that we have heard so far is not convincing. One rather emotional complaint--deploring the fact that we are committed to the lowest definition standard in the world-seems to call for some comment. In this matter we can stand on our own feet; it is not necessary for us to peer anxiously around to see what others are doing. We have had the longest experience of a practical working television service, and we may yet convince other countries that our system is the right one on which to base an international standard.

Fig. I. Constructional details of the Vidor
ally the construction of the "Kalium" cell. The outer P.V.C. sheath is used as

IT is good to be able to record yet another step forward in dry cell construction, this time from our own country. The Vidor "Kalium" cell has certain points of resemblance to the Ruben-Mallory mercury cell described in a previous article*: the negative electrode is zinc in both cases, the electrolyte caustic potash (KOH) and the depolarizer mercuric oxide (HgO) ; but the two cells are entirely different in design and appearance. They differ also to some extent in their performance, though both maintain a substantially constant E.M.F. for long periods under relatively heavy loads. The RubenMallory cell is squat in shape and reverses the familiar Leclanché construction by having the can as the positive electrode, whilst the small round cap at the centre of the top forms the negative connection. The new Vidor cell looks almost exactly like its Leclanché dry cell counterpart. It is made in seven sizes of precisely the same dimensions as the dry Leclanché U_{1} to U_{7} series; its negative electrode is a zinc can; the positive electrode is a central carbon rod.

The only differences in appearance are that the can is enclosed (save at the bottom) in a polyvinyl chloride sheath and that the top of the cell carries not a black bitumen seal and a brass cap forming the positive contact, but a tin-plated cover with a raised central boss. The " Kalium " cell is thus completely interchangeable with existing Leclanché cells

Fig. I shows diagrammatica precaution against any possible damage to equipment; should a can become punctured and allow electrolyte to escape. Actually puncturing of the can is of the rarest occurrence, even when cells stand in a fully discharged state; the sheath, however, makes assurance doubly sure. It also serves another purpose. The top of it is turned
over inside the can ; thus when the walls of the can are bent over to fix the tin cap in position, the P.V.C. forms an insulating washer and a leak-proof gasket. The positive electrode is normally a carbon rod, but may be of ferrous metal.

Surrounding the rod is a bob-bin-shaped mass of mercuric oxide and powered carbon, which forms the depolarizer. The electrolyte element consists of paper coated with zinc particles and soaked in caustic potash solution. A plastic seal at the top and a polythene washer at the bottom make all secure. Near the top of each can is a small vent hole which, with the P.V.C. sheath, forms a release valve should internal pressure occur. This deals adequately
"Kalium " cell.
with any gassing that may take place when the cell is in series with others and current is driven through it continuously.

The makers state that the cells store particularly well; their shelf-life is, in fact, considerably better than that of dry Leclanche cells, for after 9-12 months' storage in normal conditions and six months of "tropical" storage, deterioration is slight. The working life, to a cut-off E.M.F. of $\mathrm{I} . \mathrm{oV}$, of cells so treated, is very little shorter than that of new cells; there is, however, a fallingoff of 10 to 15 per cent in the watt-hour output, but research work is going forward with a view to making considerable improvement here.
The chemical reactions of the cell are complex and interesting.

Like those of other mercurydepolarizer cells, their exact nature has not yet been established with certainty; they are, however, probably as follows:-
(1) $\mathrm{Zn}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{H}$.

The hydrogen is removed by
(2) $2 \mathrm{H}+\mathrm{HgO}=\mathrm{Hg}+\mathrm{H}_{2} \mathrm{O}$.

The zinc hydroxide is removed by
(3) $\mathrm{Zn}(\mathrm{OH})_{2}+4 \mathrm{KOH}=\mathrm{K}_{2} \mathrm{ZnO}_{2}+$ $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{KOH}$.
The last is a comparatively slow reaction, but if the area of zinc is made sufficiently large there is no such build-up of zinc hydroxide as to impair the efficiency of the cell. The slowness of this reaction, though, may possibly be responsible for the slight fall in E.M.F. (vide Figs. 2 and 3), followed by a rise, which takes place at first

IN DRY BATTERIES
 The Vidor "Kalium" Cell

By R. W. HALLOWS, M.A. (Cantab.), M.I.E.E.

when the cell is discharged at a high rate. From reactions (1) and (2) one ampere-hour is given by:

Zinc	\ldots	\ldots	1.22
Mercuric oxide	\cdots	402	
Water	\ldots	..	0.65

If I read the designer's mind aright, he set himself the task of producing a dry cell as like the Leclanché as possible an:d containing all its good points, but none of its bad ones. Zinc-the
"fuel" of the Leclanche cellis, as metals go nowadays, reasonably plentiful and cheap; the construction of cells with the container forming the negative electrode and a carbon rod, surrounderl by the depolarizing compound, acting as a conductor between the circuit and the positively charged electrolyte is both sound, from the manufacturing point of view, and convenient when cells have to be marle into batteries.

These are excellent points. Can they be retained in a cell of vastly improved performance? The answer is that they can, providerl that it is possible to fund an efficient substitute for the combination of sal-ammoniac electrolyte and manganese dioxide depolarizer to which nearly all the major shortcomings of the Leclanché cell are due. With

Fig. 3. Discharge continuously through 25s (hearing aid conditions) of $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{4}$ and U_{6} sizes.
them polarization is rapid and heavy, whilst clepolarization is slow and never quite complete. The electro-chemical reactions of both primary and secondary cells
were neutralized. The internal resistance of the cell would then remain constant, and the discharge curve of a cell would be a horizontal straight line, terminating in an almost vertical fall to zero when the electrolyte was exhausted.

The "Kalium" cell is not perfect, but the curves shown in Figs. 2, 3 and 4, show that the inventor has advanced a considerable way along the road towards his ideal. It will be seen that the E.M.F.s are substantially con

Fig. 4. Comparative performances of "Kalium " and Leclanché cells of the same size under Medical Research Council hearing aid test conditions (18.5 Ω per cell). Note that the "Kalium" cell was discharged continuously and the Leclanché intermittently at 8 hours per day.

are by no means beyond doubt; a simple working picture, however, of polarization and depolarization in a Leclanché cell inay be obtained in the following way. In the ionized electrolyte, when the cell is under discharge, hydrogen molecules travel in vast numbers towards the carbon rod, round which they form a resistive envelope. There is no way of preventing the arrival of the hydrogen molecules, for they are the positive ions which convery positive charge to the carbon rod. What is needed is a means of making them " move on," once they have dome their job and have been neutralized by collecting electrons delivered from the negative elec trodes via the circuit and the carbon rod.

In a cell with a perfect depolarizing system, the hydrogen would be removed just as fast as its molecules arrived and
stant uncler loads very heavy in relation to the sizes of the cells.

A particularly interesting point is that the hours of life of a "Kalium" cell are the same for a given load, whether it is discharged continuonsly or intermittently. There is no marked recuperation when a partly discharged cell is rested. Is this a strong point or a weak one? In years gone by some makers of dry-cell Leclanché batteries proudly proclaimed the marvellous recuperating powers of their wares. Your II.'T.B. might drop to volts cluring an evening's lis tening; but whilst you slept it put nine of them back again. Was!': that fine? Iuman beings do not have to recuperate unless they have been under the weather. And the same is true of primary batteries; only those suffering from a hangover resulting from a surfeit of undigested hydrogen need to make recoveries of that kind. In the "Kalium" cell depolarization very nearly keeps pace with electrolytic action, and the discharge curve has not the vicious sawtooth jags of the Lelanché.

My own tests are not yet complete, but so far as they have gone

Fresh Progress in Dry Batteries-

 they bear out the maker's claims. Some may criticize the E.M.F.s as being on the low side, ranging as they do from about 1.4 V on open circuit to between approximately 1.10 V and 1.25 V (according to the load) on closed circuit. But it is surely more useful to have a cell which starts with a comparatively low E.M.F. and maintains it than one with a higher initial E.M.F. which shows a continual falling away under load. Certainly a source of constant E.M.F. for both H.T. and L.T. circuitsshould vastly simplify the problems of those who design hearing aids, portable wireless sets and personal receivers, of those who make the valves for them-and of those who use them.

The fly in the ointment as regards the "Kalium" cell is that it is considerably more expensive to make than the Leclanché. Mercury is, unfortunately, neither plentiful nor cheap, and the "Kalium" cell needs over 4 grams of its oxide for each am-pere-hour that it gives. If we cannot have more and cheaper
mercury (and there seems little immediate likelihood of that), a new task for the research chemist working on dry cells must be to discover something less costly and less scarce which can take its place as a depolarizer. Both the Ruben-Mallory and the Vidor systems have shown that better dry cells can be made-at a price. What we need is the better cell at little or no extra cost. In view of the present state of activity in dry battery research, I have no doubt that it will come our way in the not-too-distant future.

ELECTRONIC MEGOHMMETERS

Measurement of Very High Resistance
By H. G. M. SPRATT

TTHE D.C. measurement of resistance, using portable non-electronic meters or galvanometers, becomes increasingly difficult as the order of the resistance value increases. This difficulty can be traced to either the low impedance or the low sensitivity of the indicating instrument, depending upon the method of measurement used, for it must be remembered that highly sensitive mirror galvanometers cannot be employed outside the laboratory. If, for example, a Wheatstone bridge is used, the supply voltage must be raised considerably when the unknown resistance is several megohms, if a noticeable deflection is to be obtained as balance is approached. Other methods employing a voltmeter and microammeter will probably be quite impracticable.

[Courtesy fournal I.E.E.
Fig. 1. This curve shows the relation between anode current and resistance for a grid-current type of megohmmeter.

The characteristics of the normal triode valve, however, are such as to enable some of the conventional methods to be utilized for resistance measurement up to $10^{12} \Omega$ and higher, as well as

The circuit ${ }^{1}$ depends upon the grid-voltage-grid-current characteristic of the normal triode. This characteristic, for small grid currents, approximates to the exponential form $\mathrm{I}_{g}=\mathrm{A} e^{\mathrm{BV}}$ where V is the negative grid voltage, I_{g} is the grid current and A and B are constants for a fixed anode voltage. If a resistance R is connected between grid and

introducing at least one new method. Furthermore, no difficulty is experienced in constructing instruments based on these principles in a compact and portable form.

Grid - Current Method. - The new circuit referred to above appears to have received earlier consideration than adaptations of methods already known but it is not self-calibrating to the same extent and does not lend itself to extremely accurate measurements. As the following paragraphs show, however, it is a low-voltage instrument of great simplicity.
cathode, we get

$$
\begin{aligned}
& \mathrm{V} / \mathrm{R}=-\mathrm{I}_{y} \\
& \mathrm{~S}()-\mathrm{V} / \mathrm{R} e^{\mathrm{BV}}=
\end{aligned}
$$

or $\log \mathrm{R}=\log \mathrm{V}+13 \mathrm{~V}+$ a con stant.

As the anode current depends upon the grid voltage, there is seen to be a definite relationship between it and the grid resistance, this relationship being indicated by the curve in Fig. I, where I_{a}, the anode current, is plotted against $\log R$. This curve approximates to a straight line over a considerable range and circuits operating on this principle will permit resistance measurements
up to $10^{8} \Omega$ with an accuracy of a few per cent, or to considerably higher values if a positive voltage is included in series with the resistance.

Practical Applications. - Fig. z (a) shows the basic form ${ }^{2}$ and Fig. 2(b) a practical form of this circuit. The latter gives satisfactory operation with a $45-60-$ volt battery and, if the indicator is a $50-100-\mu \mathrm{A}$ meter, will cover a range exceeding 10^{5} to $10^{10} \Omega$. A guard terminal helps to eliminate surface leakage by returning such paths to cathode, while a capacitor of the order of $100-500$

Fig. 3. The basic circuit of a substitution method of measuring resistance.
pF between grid and cathode reduces fluctuations due to noise voltages. The resistor R_{1}, between grid and H.T. negative, is some hundreds of megohms and ensures that the grid is never left entirely 'open.' Initial adjustment consists in setting the variable resistor in the cathode lead to give maximum deflection of the meter with the input terminals short-circuited.

It can be seen that a full calibration of this instrument can only be carried out by the application of a range of standard resistors. This prejudices its use as an instrument of high accuracy as the grid-voltage-grid-current characteristic may alter with time owing to grid emission caused by contamination. On the other hand it enables a varicty of nondestructive insulation tests to be carried out to the order of accuracy usually required.

Substitution Method.- The outstanding asset of the normal triode for present purposes is its high grid-cathode D.C. resistance when the grid is maintained negative with respect to the
cathode. This feature is immediately applicable to a substitution method of resistance measurement. It has been widely adopted and is described below.

Considering Fig. 3, let us assume that the valve is provided with H.T. and grid-bias supplies V_{12} and V_{23} respectively. The magnitude of V_{23} is somewhat higher arithmetically than the value V_{42} required for the normal operating point. Then if we connect across the terminals AB a potentiometer as shown, with the slider connected to the grid, we shall have to adjust it so that the drop across R_{1} is equal to $V_{23}-V_{42}$ in order to obtain the normal anode current. Then, since $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}$;

$$
\begin{aligned}
& \frac{\mathrm{R}_{1}}{\mathrm{R}}=\frac{V_{23}-V_{42}}{V_{42}+V_{23}} \\
& \frac{\mathrm{R}_{2}}{\mathrm{R}}=\frac{V_{12}+V_{42}}{V_{42}+V_{23}} \\
& \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{V_{42}+V_{42}}{V_{23}-V_{42}}
\end{aligned}
$$

Suppose we make $V_{12}=100$ volts, $V_{23}=3$ volts, $V_{42}=1 \frac{1}{2}$ volts and R a $\mathrm{I}-\mathrm{M} \Omega$ potentiometer. Then :

$$
\mathrm{R}_{1} \text { will be } 14,600 \Omega
$$

R_{2} will be $0.985 \mathrm{M} \Omega$
and $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=67$.
Now the grid-cathode resistance is high, and is likely to be of the order of $10^{9}-10^{10} \Omega$, so that the value given above for the ratio R_{2} / R_{1} will still hold good even if R_{1} and R_{2} are increased a thousand-fold, so that R_{2} is of the order of $10^{9} \Omega$.

Very High Resistances.-In applying this circuit to the measurement of very high resistances, the unknown is connected in place of R_{2} and R_{1} is made a calibrated variable resistor (preferably a decade resistance box). Calibration is effected by introducing a known standard resistor, not inconveniently high, in place of R_{2}. The ratio R_{2} / R_{3}, corresponding to a chosen value of anode current, can then be determined at comparatively low values of R_{2} and R_{1}. In carrying out a measurement, the unknown is connected in place of $R_{2} ; \mathrm{R}_{1}$ is then adjusted to give the same anode current, the value of the unknown being determined by multiplying

A commercial meter, the Dawe Instruments Type 402 B Insulation
Tester, which operates on the grid-current principle.
R_{1} by R_{2} / R_{1}. In practice there will probably be a demand for not only a specific meter deflection but also a specific and convenient value of $\mathrm{R}_{2} / \mathrm{R}_{3}$. This can quite easily be effected by providing a backing-off or balancing circuit, such as is shown in Fig. 4, where the meter is connected between the anode and a tap on the H.T. supply and a variable resistor included in the anode lead. Alternatively, by a small circuit change, the bias voltage can be made slightly adjustable to fulfil the same purpose. All

Fig. 4. The addition of a backing-off circuit to Fig. 3 is shown here.
instruments are then calibrated with R_{2} as the standard resistor and R_{1} as the calibrated variable, the anode or bias adjustment being set to give the required meter deflection at the correct

Electronic Megohmmeters-

$\mathrm{R}_{2} / \mathrm{R}_{1}$ ratio. For certain applications where precision measurements are not required and a simplified form of R_{1} is justifiable, the meter scale can be provided with subsidiary markings indicating $\pm 5 \%, \pm 10 \%$, etc., off the calibration values.

The limit of measurement with the values given above would be about $10^{9} \Omega 2$ for an accuracy of $\mathrm{I}-5 \%$, this figure of accuracy depending mainly upon the quality of the resistance elements in R_{1}. Above this point, however, the grid-cathode resistance of the valve may start to become a significant factor. Nevertheless, the range can be extended upwards if such accuracy is not required, as is frequently the case. Moreover, by increasing V_{12} and/or decreasing $V_{23}-V_{42}$, we can easily raise the limit by another order.

There is a number of modifications and refinements to the basic circuit which may be introduced with advantage, and it is proposed to discuss them briefly: For example, the high-potential point of the unknown resistor is sometimes made negative by using a separate battery between B of Fig. 3 and K_{2} instead of connecting R_{2} to A . This arrangement has the advantage of preventing a high positive potential from being applied to the grid if a short-circuit across the test terminals occurs. If the positive potential is retained, a resistor of a few megohms inserted in the grid lead (see Fig. 4) will provide the same safeguard. liurthermore, this resistor, in conjunction with a small capacitor connected between grid and cathode, will reduce the effect of extraneous noise voltages.

Preventing Leakage. - lt is normal practice to change over from standard to unknown resistor by means of a switch. With this arrangement it is necessary to guard the highpotential point of the standard resistor so as to prevent leakage to it from H.T. when it is out of circuit (see Fig. 4). For this purpose it is generally convenient to return both guard and cathode to earth potential. Guarding may also be desirable at the terminals or electrodes across which the unknown resistor is placed, for
this point is one of the weakest as regards leakage.

Where precise measurements of the higher orders of resistance are required and the necessary care has been taken to reduce stray leakage to the absolute minimum, the use of an electrometer valve is essential. Otherwise it is not justifiable, but a type of valve with low internal leakage between grid and cathode should be chosen and individual valves will probably have to be selected. Furthermore it may be desirable to keep the resistance in the grid-cathode circuit constant by using the connections shown in Fig. 4 in preference to those of Fig .3 .

Feedback can sometimes be introluced with advantage into this circuit as it assists in reducing (a) changes in circuit constants accompanying valve replacement and ageing and (b) unsteadiness due to voltage variations if the instrument is mains-driven. As regards (a), we have so far envisaged operation at a fixed meter reading, supplemented possibly with the 5% and 10% markings mentioned above, with continuous variation of R_{1}. Such an arrangement is not always convenient or cconomical if R_{1} is of the order of $10^{9} \Omega$ because of the demand for a large number of
lead (shown dotted in Fig. 4). In referring to mains variations it should be recognized that operation of the valve from raw A.C. is quite feasible although, if the potential applied to the resistance under test is to be negative, a smoothed I.C. supply is advised for this purpose.

It is perhaps needless to add that, where the resistor elements in R_{1} are too high to be wirewound, it is essential for precision working, to use the best type of high-stability carbon resistors with low temperature coefficients.

Ultra-high Megohmmeter. - A modification of the basic circuit discussed above which is claimed to be capable of measuring up to $10^{17} \Omega$ is of interest ${ }^{3}$ and is shown in lig. 5. Here an electrometer valve is used in a slide-back circuit. A reading of the output is taken with S_{1} open and $\mathrm{E}_{2}=0$. S_{1} is then closed and E_{2} adjusted to give the same output reading. Then

$$
\mathrm{R}_{x}=\mathrm{R}_{s}\left(\frac{\mathrm{~F}_{-_{1}}}{\mathrm{~F}_{r_{2}}}-\mathrm{I}\right)
$$

The accuracy of results depend upon the accuracy with which E_{1} and E_{2} can be determined by conventional-type voltmeters and upon that of R_{s} which will have

close-tolerance and stable resistors of high value. If the fixed meter reading can be replaced by a long calibrated scale of wide range (e.g.. ro to i) and sufficient stability maintained, it will obviously be possible to make up R_{1} of a comparatively small number of resistors differing in value by a factor of ro. In such a case the extra stability derived from negative feedback is particularly advantageous. This feedback is usually introluced in the form of a resistor in the cathode
to be of the order of $10^{15} \Omega$ for measuring resistances of $10^{17} \Omega$.

Bridge Circuits. - At the beginning of this article mention was made of the Wheatstone bridge and the impossibility of maintaining sensitivity with normal portable galvanometers when the unknown resistance exceeded a few megohms. This lack of sensitivity is due to the low input resistance of the indicating instrument in comparison with the output resistance of the bridge. The difficulty can be
overcome by substituting a sensitive value voltmeter in place of the usual galvanometer. The usual precautions must be taken to ensure a high input resistance. such as selection of valves and

correct biasing. Furthermore a regulated power supply is advisable otherwise the zero point of the indicator will drift too much to make an accurate balance possible. The outline of this circuit is shown in Fig. 6. Such an instrument does not show the same degree of superiority over other methods of measurement at
${ }^{1}{ }^{10} \Omega$ and upwards as does the normal Wheatstone bridge at lower orders of resistance, Apart from the likelihood of drift mentioned above it is difficult to reduce leakage to a negligible quantity. There is yet one further difficulty, 'The standard

Fig. 6. Bridge circuit using a valve voltmeter as an indicator.
bridge equation, $\mathrm{X}=\mathrm{AB} / \mathrm{C}$ holds good and even when C has been reduced to its lowest practical value A and/or H will have to include calibrated resistors of the order of $10^{6}-10^{8} \Omega$. Such components are extremely difficult to obtain to the order of accuracy and stability normally expected in a Wheatstone bridge.

The instruments which have been described provide an easy means of extending the study of high resistance and insulation phenomena. The insulation resistance of electro-dynamic machinery and of power cables, for example, frequently increases at a steady rate from the moment of application for a period of hours and time plots of such characteristics can be taken without difficulty with the aid of these meters. lurthermore, of recent years insulation resistance has proved to be a satisfactory measure of other physical qualities, such as moisture content and instruments of this type lend themselves immediately to these fields of application.

REFERENCES

${ }^{1}$ Instruments incorporating
Thermionic Valves, and their characteristics. Jaures, E. (i. Polgreen, G. R., and W'arren, G. W. J. Insth clect. Engrs., August 1!339, Vol. 85, p. 242.
${ }^{2}$ High-resistance Measurement with Vacum Tubes. J'reizman, A. Electronics. 1035, Vol. 8 p. 214.
${ }^{3}$ Vacuum Tube Voltmeters. J. F. Rider p. 128.

IMPROVED HEARING AID

Automatic Volume Compression and long Battery Life

ADEVELOPMENT of special interest to students of hearing aid design is the introduction by Multitone Electric, 223, St. Johns Street, Clerkenwell, London, E.C.I, of a new instrument, the " Mlonostat," in which fully automatic volume control has been introduced to overcome the irritation and distress of widely fluctuating souncl intensity levels and loud percussive noises, such as the slamming of doors.

The threevalve amplifier consists of the usual power output stage preceded by two stages of voltage amplification, and control of volume. looth automatic and general level, is effecterl in the first stage. A small metal-oxide contact rectifier connected across the output from the final stage developes a negative voltage, which is applio! through resistance-capacity filter circuits in the grid of the first stage. Thr time constants of the filter circuits have been adjusted to give almost instantaneous response in reducing gain and a recovering time which is long enough to avoid undure levelling and yet does not produce noticeable "holes" in the reproduction following sudden noises.

On test the A.V.C. system proved to be enmpletely effective; in fact.

> "Monostat" hearing aid with crystal earpiece.

persons with normal hearing might use the aid with advantage under noisy conditions, say, in a workshop. We found it much less distracting to carry on conversation in this way against an artificially produced background than be direct
listening, and the quality of the voice, using a crystal-type earpiece appeared to be quite as natural.
A selector switch enables the A.V.C. to he switched on or off and a third position gives a characteristic with falling H.F. response and no A.V.C. for special types of deafness

Battery replacement is simple, both II.T. and I.T. being of the plug-in type. The hinged back of the instrument is spring loaded and flies open when a catch is depressed, revealing an engraverl diagram showing how the fresh batteries should be inserted.

The $22 \frac{1}{2}$-volt H.T. battery (costing 3s) gives a life of 350 hours on intermittent discharge, For the L.T. supply the new Vidor "Kalium" cell (see p. 352 this issut) will he. employerl. The l'f size costing is has a life of 30 hours. Alternativels, half al No. 8 T.eclanché battery costing 2 al can be used, but the duration will then be only about $4 \frac{1}{2}$ hours.
The instrument, which measures only $+\frac{1}{2}$ in $\times 2 \frac{1}{2}$ in $\times 1$ in and weighs 630% will be available in black with chromium and silver plated fittings or ivory with gilt finish. It is in no, sense a cheap model and the price will be in the region of 37 guineas.

AMPLIFYING CRYSTAL

The Transistor : a 3-Electrode Germanium Contact Device

WORKING in Bell Telephone Laboratories, J. Bardeen and W. H. Brattain have developed a threeelectrode germanium crystal contact device, known as the Transistor, details of which have been published in the Physical Review. Vol. 74, July 15 th, 1948 , pp. 230233. Their experiments show that

Fig. I. Basic circuit of the Transistor.
by placing point contacts of tungsten or phosphor bronze in close proximity (0.05 to 0.25 mm) on the specially prepared surface of a germanium block; interdependenice of currents in the vicinity of the contacts can be utilized to obtain power amplification of the order of 20 db .

A positive bias of about I volt is applied to the "emitter" contact, which also carries the input signal, and negative bias on the "collector" contact is adjusted until the collector current is of the same order as the emitter. A large proportion of the emitter current passes to the collector, and amplification results from the fact that the collector contact, and the load to which it is matched, has an impedance about 100 times that of the input (emitter) circuit. Thus the input/output impedance relationships as well as the polarity of the "II.T." supply voltage are the reverse of those found in conventional thermionic triodes.

Typical D.C. characteristics are
shown in Fig, 2. The emitter current is given approximately by the expression:

$$
I_{e}=f\left(V_{n}+R_{v} I_{r}\right)
$$

Where R_{F} is a constant which is independent of the bias. There is positive feedback, represented by the term $R_{b} I_{c}$, which under some conditions may cause instability. The device can, in fact, be used as an oscillator.

Theory

A reasonable explanation of the mechanism of conduction in the region of the contacts is possible in terms of statistical mechanics, but it is difficult to convey a plausible physical picture of the transport of current. According to prevailing theories, there are two types of semi-conductor, the n-type involving the migration of electrons and the p-type in which permissible but unoccupied electronic energy, levels or "holes" are propagated through the crystal lattice structure, and are equivalent to a flow of positive electricity in the opposite direction to the electron flow. The nature of the conduction is influenced by impurities in the material.

In the Transistor the main body of the ger-

Fig. 2. Typical D.C. characteristics. The currents are the independent variables and the corresponding voltages, the dependent variables.

Indicating the size of a typical Transistor semi-conductor triode.
manium is of the n-type with a thin surface layer of p-type germanium. It is thought that the current between the emitter contact and the main body of the germanium is conveyed by "holes," and that a large proportion of these "carriers" are attracted to the collector.

The mobility of the carriers is

dependent on temperature and the field strength. In practice, the finite mobility is equivalent to transit time in a valve, and limits the response of the Transistor, at the contact spacings quoted, to frequencies below $10 \mathrm{Mc} / \mathrm{s}$.

If satisfactory circuit tech-
niques can be developed to meet the conditions of low input and high output impedance and positive feedback, and if signal/noise ratio is not unduly low, there would seem to be many applications in which Transistors could usefully take the place of valves. Bell Telephone Laboratories have
already constructed an experimental radio receiver with a power output of 25 mW , using Transitors throughout and have also demonstrated a repeater amplifier and an A.F. oscillator.

The D.C. power consumption is o.r watt, and the overall effciency is 25 per cent.

RADIO INTERFERENCE MEASUREMENT

Difficulties in Devising a Standard

Abstract

This summary of the present position in regard to Interference measurement was written by a member of the Technical Executive Committee of the Radio Industry Council, and is endorsed by that Committee. It is reproduced by permission from the "Technical Bulletin" of the Radio Component Manufacturers' Federation.

THE impression is very common around the radio industry that "they" ought to do something about radio interference measuring sets and that for want of a measuring set the whole interference position is getting out of hand. The note sets out the real position and outlines the possibilities of progress.

The fundamental catch is that the measuring set has to accept an input of any of an immense variety of types and assess not its magnitude but its annoyance. Working on a basis of a few types of interference an ad hoc international committee (C.I.S.I'.K.) started work in Berlin in 1934 and proposed a design of valve voltmeter whose readings were somewhat like the annoyance factor of the interference. Since then there has been some doubt expressed in many places whether the proposed valve voltmeter is a close enough copy of the human brain while at the same time the gamut of interfering sources has been extended by the widespread introduction of thermostats and similar devices which create bursts of interference at fairly long intervals. At the moment therefore the interference measuring set must line up with the ear tolerably well all the way from the pure tone of the heterodyne interference through "white" noise and the smoothly repetitive noises to the ragged and discontinuous types. An attempt has been made by tinkering with the time constants of charge and discharge proposed by C.I.S.P.R. but these changes while cloing good in
some directions are thought to have done more harm in others, and an E.R.A. committee is now attempting to examine a wide enough range of interfering sources to provide an answer which will last for some time.

This difficulty has been the biggest of all the difficulties. Anyone can make a field strength measuring set and those of us who have to measure the C.W. or white types of interference in the absence of a measuring set do so by improvising with a calibeated receiver by a standard signal generator. The Americans have produced such field strength measuring sets and have attempted to use them for noise measurement by building time constants into the AGC system of the same order as those recommended by C.I.S.P.R. Such devices are fundamentally wrong since in the absence of an input the receiver turns itself up to full gain and may not turn itself down until after a short burst of input is passed. This weakness is now realized and the convenience of this type of measuring set must, it is agreed, be sacrificed.
There is a British Standard describing a measuring set covering medium and long broadcast bands and incorporating the measuring technique of the C.I.S.P.K. This measuring set has been extended to cover short-wave broadcast bands by its original designers, the Post Office, still using the same technique and in fact taking this technique into frequencies for which there is as
yet no international agreement for its use. This measuring set used old-fashioned circuit arrangements and components and is clumsy and costly by modern standards. The Post Office has recently modernized this equipment and is having it manufactured.
-1his equipment is admittedly a stop-gap and has many faults: one which has been mentioned is that it has (in common with most broadcast receivers) a gap in its coverage near $460 \mathrm{kc} / \mathrm{s}$ to dodge its intermediate frequency. Apparently by so doing it also dodges a number of industrial oscillators. However, it would have been better to have raised this point with the B.S.I. committee when discussing this receiver rather than now when it is too late to do anything about it in this design. The work which the I3.S.I. committee did is being incorporated by Marconi Instruments in a design sponsored by R.A.E., but this will be a very large and ambitious research tool and will not be of immediate use to the engineering or electrical industries. There is no project in operation which will produce a really good measuring set of wide applicability, nor will there be as long as the radio industry omits to do anything about getting one made. For years I have suggested that the radio industry had within its members the means for doing all the stages of this work but the industry has always taken the attitude that this mysterious "they" ought to do it. The present position is unsatisfactory though in practically no other country is it really much better. In some countries (e.g., Switzerland) there is legislation based upon obsolete technique and measuring sets. In other countries (e.g., North America) there is widespread activity based upon unsound measuring sets. The fact that other countries are doing things badly is no excuse for us to do them as badly and the radio industry itself must find a way of doing better.

REDUCING HEATER HUM

Neutralizing by Injection of Anti-phase Voltages

By K. G. BRITTON, D.Phil. (with P. E. BAYLIS)

THE sources of hum in high gain amplifiers have been discussed from time to time in this journal,' and practical steps have been suggested for mitigating the nuisance. There are, however, two points which require consideration. First, in experimental work, it is not always expedient that time be spent on an elaborate layout which may have to be rejected, ind, secondly, when even quite elementary precautions are taken it is the heater hum which becomes the predominant factor and each valve makes its own indivilual contribution.

Various methods have teen suggested for overcoming this nuisance, such as varying the heater-cathode potential and by balancing the earth connection of the heater system by means of the so-called humdinger. Far too often these methods prove only partially effective, and for really high-gain amplifiers one is driven back to D.C. heating for the early stages. It was clesired to avoid this alternative and to make. a hum control system which could be applied rapidly and effectively to each valve in turn, and it is believed that the system to be described is effective enough to make the valve noises themselves the more important factor in the circuit.

At best, the overall application of a humdinger can only give an approximate solution, for each individual valve requires its own particular setting of the control The only solution along these lines is, therefore, to supply each early value with its own heater winding and centre-point contiol. an expensive and elaborate solution. It was found by experiment that the heater hum introduced by each individual valve was substantially in phase with

[^2]the heater voltage at the terminals of the valve. The solution which suggested itself, therefore, was to inject into the valve the appropriate proportion of the heater voltage in anti-phase to the hum. This proved to be singularly effective, and was achieved in a number of ways of which a typical one is shown in the figure.

> Method of balancing out hum voltage.

The heater winding itself must be centre earthed, and the hest method of achieving this will be discussed later. Each valve to be treated then has connected across its heater pins a low-resistance potentiometer of 50 or 100 ohms. A hum voltage is picked up from the slider of the potentiometer. In pentode valves the best point of injection proves to be the suppressor grid, which is connected to this potentiometer slider. In valves of the tetrode type a similar effect may be obtained by taking the screen decoupling condenser to this point rather than to earth. With triodes a considerable measure of control may be obtained by taking the lower end of the cathode resistor to this point, but in this case the resistance of the potentiometer in relation to the value of the bias
resistor must be considered. In any case, the control is not so good, and it is nearly always advantageous to use tetrodes or pentodes rather than triodes even when small gains are required. ${ }^{2}$

The only point needing further consideration is the centre earthing of the heater winding. It must be remembered that there are now certain points, which are normally earthed, which are separated from earth by the two halves (approximately) of the potentiometer in parallel with each other plus whatever centre earthing arrangement there may be on the heater winding. Often it is perfectly satisfactory to use the normal centre tap of the winding if one is provided, but there is the possibility of a rather long loop which can introduce trouble. Another solution which we have tried and which seems to be free from unpleasant defects is to discard the centre tap and connect a 50 -ohm resistor from each side of the heater system to earth at a point near the place where num control is taking place. A similar solution which gives a further measure of control is to use a norma: humdinger. Valves which are to be controlled by hum injection are removed and the centre tap is adjusted to give the best results for the remaining stages. When this adjustment has been made it must not be touched again. The earlier stages are then introduced one by one and their hum removed by means of their individual controls.

In conclusion, it may be said that work is proceeding on this and kindred problems, but that in a high-gain amplifier made for test purposes, using a single heater winding throughout, the hum could be reduced so as to be quite inaudible below the level of the valve noises.

[^3]
6U5G's for magic eyed - plus atouch of BRIMARIZE!

A replacement for the popular pre-urar "magic eyes" types 6US, 6Gs and 6US/6Gs is now available.
Known as type 6USG, the valve is fitted to an International Octal base and its characteri.tics are identical to those of the older types.

The dimensions of the GUSG permit the physical replacement of types $6 U_{S}, 6 G 5$ and $6 U_{S} / 6 G 5$ by simple change of socket only.

The College backed by an Industin!

- E.M.I. Institutes have behind them the vast resources of Electric \& Musical Industries Ltd. - the electronic organisation responsible for the British Television system and manufacturers of "H.M.V." and Marconiphone products.

Enrolment for a course with E.M.I. Institutes brings you into contact with the experts in Britain's Largest Electronic Organisation. With their unrivalled knowledge of industrial applications of Electronics, E.M.I. Institutes are in a unique position to provide the type of training which will form the basis for a successful career.
Here are some examples of the wide selection of courses available Daytime Attendance: Electronic Engineering (Three years). Laboratory and Workshop Practice (Three weeks). Evening Classes: Practical Radio, Practical Television, Television Theory (all Three months). Correspondence Courses: Intermediate Maths., Higher Maths., Basic Radio, Advanced Radio, Industrial Electronics, Basic Television, etc. SPECIAL COURSES FOR STUDENTS TAKING I.E.E., BRIT.I.R.E., and CITY AND GUILDS EXAMINATIONS.

E.M.I. INSTITUTES

I. I M I T E ID

[^4]- WRITE TODAY FOR YOUR COPY OF THIS FREE BOOKLET WHICH EXPLAINS HOW TO PLAN A SUCCESSFUL CAREER IN ELECTRONICS.

NEGATIVE FREQUENCY How to Distinguish -f from $+f$

STUDY of modulation, frequency changing and related arts during the last two months brought us inescapably into the realm of negative frequency. We found, for example, that the Synchrodyne works by means of a frequency changer which shifts the carrier-wave frequency of the selected transmission to zero, so that the lower sideband is bound to be negative. Then again, if a signal is modulated by another of higher frequency, the "difference" frequency is negative.

What, if anything, does a negative frequency mean? Can it be distinguished from a positive frequency, and if so how? It would certainly sound odd if the Elec tricity Board were to offer their supply at $-50 \mathrm{c} / \mathrm{s}$ (though it sometimes seems to be moving in that direction!) just as it would for the voltage to be specified as $230 \sqrt{-1}$. Both statements, on the face of them, are nonsense; but we saw (in " j," Feb., 1948, issue) that $\sqrt{-1}$ can be given a reasonable interpretation in terms of phase. So can $-50 \mathrm{c} / \mathrm{s}$. Even the highbrow books dodge the issue or gloss over it most shamefully, but let us away with such evasiveness and face it boldly.

Consider a single alternating current, frequency $f \mathrm{c} / \mathrm{s}$. As we ought to know by now, it can be represented by a single vector rotating at f revs per sec, as in Fig. I. The length of the vector is fixed, to represent the peak value of current, I; but when it is viewed from a position such as A, it looks as if it were alternately growing from a point to full length, back to zero length, then negatively, and so on, as in the succession of suap-shots shown at P. If hundreds of snapshots were taken during one revolution and placed side by side they would fill up the wave-shaped outline shown dotted. This continually changing apparent length represents the instantaneous value of current, i. (Of course, unless f were well below $10 \mathrm{c} / \mathrm{s}$ a real human

By
 "CATHODE RAY"

observer would see nothing but a blur; but that does not alter the fact that a vector revolving at any speed presents an end-on view that goes through the sequence shown.) The thing to

Fig. I. At P is shown a succession of "snapshots" of the vector as seen from A , during one revolution. Seen from B, its appearance varies as shown at Q. Neither viewpoint reveals the direction of rotation. For that one has to have both views at once. Views P and Q^{\prime} together would indicate reverse rotation, or negative frequency.
note is that it is impossible to say, from this one viewpoint, whether the vector is rotating anti-clockwise (which is conventionally described as positive rotation), or clockwise (which means negative). Positive and negative frequency both appear
the same, which is what we have been assuming for the last month or two and getting away with it.

The reason for this ambiguity is that the vector looks the same pointing towards one as it does when pointing away in the opposite direction. If one were to move to position 3 -or any other in the plane of rotation-it would be no better. The sequence of appearances would be as shown at Q, which is the same as P with a phase difference of godeg (corresponding to the angle through which the viewer has moved from A to B) ; and without reference to A the direction of this phase difference is unknown, so one still cannot tell which way round the vector is going,

But if it were possible to have an eye in both places at once (or do the same thing in a more practical way with the help of mirrors) one would see both P and Q simultaneously, and correlation of these two views would prove that the vector was rotating positively. If, however, the two views were P and Q^{\prime}, together they would indicate negative rotation.

Considering the thing vectorially, then, leads to the conclusion that the sign of the frequency (+ or -) has no meaning when the alternating signal or supply is single phase, but can be given a conventional meaning with a 2 (or more)-phase supply. Note the word "conventional," which means that this is one of those things that people have to agree on: not an absolute unalterable fact of the universe. People agreed to mark the carbon electrode of a Léclanché cell " + ," and continue to do so, even though what is now known about the direction of electric currents would make a " -" a more sensible convention. Still, as long as everybody agrees, even a cock-eyed convention works. In a similar way, + and - signs are useful for distinguishing alternating currents that look alike by a single-phase test but neverthe-

Negative Frequency-

less turn out to be different when examined in two different phases at once.

You will probably lodge an objection at this stage; namely that vectors are imaginary things, which may help to make A.C. theory clearer in the mind but are not A.C. itself. Coming down from airy fancies to physical realities, how does one tell a - from $\mathrm{a}+f$ on the bench?

If you have a single-beam oscilloscope and connect one pair of its deflection plates to a source of very low frequency voltage, the deflection of the spot from its normal position will vary in exactly the same way as the apparent length of the imaginary vector. If the other pair of plates is fed from a linear time-base generator, the spot will trace out a wave like the dotted line at P in Fig. r. And if the time base is locked to the frequency under observation, it will retrace the same wave over and over again, so there is no need for the frequency to be low enough for the spot to be followed by eye. 'This is a single-phase or single-position observation, which is incapable of showing whether the frecpuency is + or - .
If you have a double-beam scope you can examine a 2 -phase supply if you have a 2 -phase supply. Some people-though very few nowadays, because it is non-standard-do have a 2 -phase electric power supply laid on, and if they connect the two phases to the two beam deflectors, as in Fig. 2 , the beams will trace out a pair of waves either like P and Q or P and Q^{\prime} in Fig. i. (Unlike the output from a push-pull amplifier. which has a phase difference of iSo deg, the difference between the two "live" wires in a 2-phase power supply is normatly oo deg.) Taking one of them (say Phase 1) as the reference or standard, the other can be cither leading or lagging. 'The fregucncy of Phase 2 is the same in both cases-equal to that of Phase 1 --and the voltage is normally the same. The distinction between the two possible sorts of Phase 2 can be made by calling one of them a positive frequency and the other a negative. Hcavy electrical engineers may not have a doublebeam 'scope handy, but they are
quite likely to have a 2 -phase induction motor. Such a motor distinguishes between positive and negative frequencies (as just defined) in a very practical and significant fashion, by rotating anticlockwise (positively) with one and clockwise (negatively) with the other. But, of course, it all clepends on how Phase 1 has been connected to the motor (or 'scope). The Phase 2 that was cleclared "negative" with one Phase I connection will be "positive" if Phase I is reversed. There is nothing new about that with + and - ; the sign can only l:o decided by reference to something else, such as earth in the case of potentials. A positive potential with one reference may

Fig. 2. A practical method of distinguishing negative from positive frequency.
be a negative with another. In the same way, the sign of a frequency has no meaning in a single-phase circuit. That is how we have been able to ignore it in recent issues, and many radio people ignore it all the time.

After all that discussion, then, the mysterious negative frequency seems to be just an arbitrary way of labelling leading and lagging phase differences for the sake of distinguishing them, So why bring frequency into it at all, and make a mystery about something that is quite simple and vell known? And is there any guidance at all about which label to put on, like there is with potential (with reference to earth), or is any guess as good as another?

The whole matter begins to make much better sense when one looks closely into frequency changers and such-like, and especially the Synchrodyne and the modulation filter system I described. In case you have forgotten about them, or didn't read it, consider an ordinary superbet.

As is well known, it is liable to "second-channel interference." That is because there are always two signal frequencies that can combine with the oscillator frequency to give the intermediate frequency, so the I.F. amplifier is quite unable to distinguish between them, and amplifies both equally, though one may be the wanted programme and the other an interfering station on a different frequency. It is necessary to rely entirely on the " pre-selector" tuning circuits to discriminate between the two, and if those circuits are not sufficiently selective it is just too bad.

In the days when receivers had an I.F. of about $110 \mathrm{kc} / \mathrm{s}$, secondchannel interference was quite a problem, because the wanted and unwanted stations were separated by only $220 \mathrm{kc} / \mathrm{s}$, and two or even three tuned circuits are not enough to make a strong signal, $220 \mathrm{kc} / \mathrm{s}$ off tune, negligible compared with a weak signal on tume. The present-day $465-\mathrm{kc} / \mathrm{s}$ I.F. separates the two channels by $930 \mathrm{kc} / \mathrm{s}$, and gives the tuner a better chance.

Suppose, for example, that the wanted station is on $I, 000 \mathrm{kc} / \mathrm{s}$. If the I.F. is $465 \mathrm{kc} / \mathrm{s}$, the oscil. lator must be set to oscillate at $535 \mathrm{kc} / \mathrm{s}$ or $1,465 \mathrm{kc} / \mathrm{s}-$ usually the latter. A station working on $1,930 \mathrm{kc} / \mathrm{s}$ can also combine with 1465 to give $465 \mathrm{kc} / \mathrm{s}$, so that is the " second channel "-twice I.F. from the first or intended channel. Although these two channels are indistinguishable from the I.F. amplifier's point of view, they are different frequencies originally, so can be distinguished by pre-fre-quency-changer tuning.

A Synchrodyne, as I said last month, is a superhet in which the I.F. is zero. One of its advantages is that a low-pass filter accepting all frequencies below some specified frequency-say, $5 \mathrm{kc} / \mathrm{s}$ -is generally easier to design to an exacting specification than a band-pass filter covering the same total band of frequencies placed high up in the R.F. spec. trum. For example, if it is necessary to accept a $5-\mathrm{kc} / \mathrm{s}$-wide band, cutting off all others sharply, it is easier if that band is $0-5 \mathrm{kc} / \mathrm{s}$ than if it is, say, 5,000 $5,005 \mathrm{kc} / \mathrm{s}$. For some purposes in telecommunications (such as single-sideband amplification) the
$5,000-5,005$ sort of proposition is so unattractive that it is worth the trouble of frequency-changing it down to o-5, by using a 5,000 kc / s oscillator, so as to be able to use a $5-\mathrm{kc} / \mathrm{s}$ low-pass filter The snag is that signals in the band 4,995-5,000 kc/s also som bine with $5,000 \mathrm{kc} / \mathrm{s}$ to give sig. nals in the $0-5-\mathrm{kc} / \mathrm{s}$ band; and to the low-pass filter they are all the same as if they had originated in the desired $5,000-5,005$ band And the design of a pre-selector to weed out the $4,995-5,000$ signals is just the nasty sort of job that the scheme is intended to avoid.

Since the $5,000-\mathrm{kc} / \mathrm{s}$ oscillator can be said to reduce the frequencies of all the original signals by $5,000 \mathrm{kc} / \mathrm{s}$, the wanted band can be said to be moved to o to $+5 \mathrm{kc} / \mathrm{s}$ and the unwanted tbut unavoidably accepted) band ., -5 to $0 \mathrm{kc} / \mathrm{s}$. In this way the two lots of signals can be given + and - frequency labels ac. cording to a definite and reasonable system. $5,005 \mathrm{kc} / \mathrm{s}$ when modulated by 5,000 gives 5,005 $+5,000=10,005$ and 5,005$5,000=5$, whereas 4,995 modlulated by 5,000 gives 9,995 and -5 .

A low-pass filter, being a singlephase device, cannot tell $-5 \mathrm{kc} / \mathrm{s}$ from $+5 \mathrm{kc} / \mathrm{s}$. It can, in fact. be regarded as a bandpass filterthe one in the example admits the band -5 to $+5 \mathrm{kc} / \mathrm{s}$; a total width of $10 \mathrm{kc} / \mathrm{s}$.

That idea, possibly still rather novel to mosit readers (though I certainly don't claim originality) ties up with a diagram 1 showed in "Channels of Communication" (June, 1947), regarding which I said that the audio-frequency band can be considered to be a side-band of a zero-frequency carrier wave, and that whatever carrier wave was ased for a channel of communication the bandwith occupied was the same. This might have seemed to contradict the cammon impression that whereas a telephone channel to convey speech frequencies ap to, say, $5 \mathrm{kc} / \mathrm{s}$. has to have a band width of just under $5 \mathrm{kc} / 6$, directly they are used to modulate a transmitter for a radio link the bandwith has to be doubled to accommodate two sidebands each nearly $5 \mathrm{kc} / \mathrm{s}$ wide. That apparent discrepancy can be cleared
one way by pointing out that (with suitable precautions) he full range of the information ran bs conveyed by one sideband only. We now see-I hope-that it can be cleared in another way by saying that an A.F. low-piss filter to separate o to $5 \mathrm{kc} / \mathrm{s}$ from other frequencies also accepts o to $-5 \mathrm{kc} / \mathrm{s}$; a total band of
(a)

(b)

(c)

(d)

(f)

Fig. 3. A high frequency (roookc / s) carrier wave modulated at $3 \mathrm{kc} / \mathrm{s}$, represented in three waysa, b, and c. A zero-frequency "carrier wave" modulated at the same frequency is shown in the same ways at d, e and $f . g$ is an alternative to d, representing a different "phase" of the "carrier wave."
$10 \mathrm{kc} / \mathrm{s}$, just as in the R.F. con. dition. o to $-5 \mathrm{kc} / \mathrm{s}$ can, in fact be regarded as the other sideband of the zero-frequency carrier wave.
I am going to return to the system in which the negative frequencies represent second-chamel interference; but in the meantime this Z.F. carrier-wave idea is worth thinking about a little
more. Suppose we start off with the old familiar case of a R.F. carrier wave modulated by a single A.F.-say, i, ouo kc/s and $3 \mathrm{kc} / \mathrm{s}$ respectively-and express this in various words and diagrams. The way that everybody finds easiest to "see"" is to describe the froduct of the process as a $1,000-\mathrm{kc} / \mathrm{s}$ wave-train varying in amplitude at a rate of $3 \mathrm{kc} / \mathrm{s}$. The diagrammatic representation of this description must be an amplitude/time graph, and assuming the modulation to be 100 per cent, it will look something like Fig. $3 a$ if prolonged for the space of two-thirds of a millisecond (i.e., two cycles of the modulation frequency). the R.F. cycles are too numerous to show separately, but we know there are more than 600 of them in the short length of graph shown.

The alternative description that everybody finds so much more difficult to visualize, and some never quite believe, though in is a much easier form to handle mathematically, is that the thing consists of a $\mathrm{r}, 000-\mathrm{kc} / \mathrm{s}$ carrier wave plus waves of half the amplitude at 997 and $1,003 \mathrm{kc} / \mathrm{s}$. Using the same form of diagram, an incredibly patient person could draw a few hundred cycles of these three, correctly to scale, add them all together to make a single graph, and arrive at-Fig. $3 a$. While a complete cure for the sceptic, this is one he is not likely to be persuaded to take. A much more practical diagrammatic expression of the statement is the spectrum form-an amplitude/ freyuency diagram-as in Fig. $3 b$. which explains itself. Λ third form of diagram-yes, it is the vector or amplitude/phase diagram, Fig, $3 c$, which you will be getting tired of. All these diagrams are just different views of the same thing. The spectrum is a Fig. I view of the vector diagram with all the vectors simultaneously pointed up and spaced along their axis to mark their respective frequencies. The two little vectors in Fig. $3 c$ rotate respectively $3 \mathrm{kc} / \mathrm{s}$ faster and slower than the big vector, which is doing $\mathrm{I}, 000 \mathrm{kc} / \mathrm{s}$; and as a succession of diagrams during one modulation cycle demonstrates. this condition ensures that the resultant-the single vector equi-

Negative Frequency-

valent to the two small ones-is always in the same line as the carrier vector, so the combination with it is equivalent to a carrier vector which varies its length between double-normal and zero, at carrier frequency. Such a pulsating vector, viewed as from A in Fig. 1 , appears to vary in amplitude in exactly the way traced out in the amplitude/time graph, Fig. $3 a$.

Now suppose, to the great relief of anyone who is trying to visualize Fig. $3 c$ rotating at its various working speeds, that the carrier frequency is drastically reduced. To give the greatest possible relief, let us suppose that the carrier frequency is reduced to zero, so that its vector is brought to a standstill. Then the two side vectors rotate at equal speeds but in opposite directions. One is doing $+3 \mathrm{kc} / \mathrm{s}$ and the other - $3 \mathrm{kc} / \mathrm{s}$. The slowingdown of all the radio frequencies by an equal amount can be done physically by a frequency changer; and the Synchrodyne is a practical case in which the carrier wave is reduced to zero, but of course the usual apparatus does not distinguish between $+3 \mathrm{kc} / \mathrm{s}$ and $-3 \mathrm{kc} / \mathrm{s}$-all we know is that we get $3 \mathrm{kc} / \mathrm{s}$.

The vector diagram, however, does suggest that these two frequencies do exist, and that a twophase system ought to be able to distinguish them. Before examining this point, take another look at the slowed-down Fig. 3c. The resultant of the oppositely rotating side vectors is always either straight up or down, directly adding to or subtracting from the stationary carrier vector. I needn't go through it all in detail again; you will easily see that the resultant of the whole lot can be represented (if the carrier vector has come to rest in a vertically upward position) in amplitude/time form as in Fig. 3d, which is drawn to the same scale as Fig. 3a. The blur of R.F. cycles has been replaced by D.C. ; and we have the sort of thing that one might get in the anode circuit of a fully loaded (and surprisingly perfect!) audio amplifier. If the carrier vector had stuck in the downward position, that would represent the same thing with leads reversed. And if it had finished horizontally,
so as to be invisible from viewpoint A in Fig. I, the two sideband vectors would be left on their own to give Fig. $3 g^{g}$ - a pure A.C. of frequency $3 \mathrm{kc} / \mathrm{s}$. In fact, the amplitude of A.C. of any single frequency varies in a manner which is represented by the resulant of two half-size vectors rotating in opposite directions. So it looks as if any A.C. may, for all we know, consist of equal parts + and - frequency.

Turning from this shattering thought to the apparatus in which, for practical convenience of filter construction, a $5,000-$ $5,005-\mathrm{kc} / \mathrm{s}$ band had been transported by a $5,000-\mathrm{kc} / \mathrm{s}$ modulator to $0-5 \mathrm{kc} / \mathrm{s}$, only to run into interference from signals in the band $4,995-5,000 \mathrm{kc} / \mathrm{s}$, is there any way out of the difficulty? You have, I hope, been well prepared to look for the solution in a 2 -phase system. Such a system is described by N. F. Barber in Wireless Engineer, May, 1947; and as it is a rather specialized type, not likely to be adopted by many in what I might make bold to refer to as my constituency, I will not attempt to reduce it in detail to " Cathode Ray" terms. In brief, applying it to our example, the original signal is put in to a 2 -phase modulator, giving two outputs, in both of which the wanted signals are in the band -2.5 to $+2.5 \mathrm{kc} / \mathrm{s}$; that is to say, the modulating frequency is $5,002.5 \mathrm{kc} / \mathrm{s}$ instead of 5,000 . Each of these outputs is put through a separate low-pass filter with a cut-off at $2.5 \mathrm{kc} / \mathrm{s}$. All the interference is thereby disposed of. The trouble now, in a
single-phase system, would be that signals which were originally 5,000 and $5,005 \mathrm{kc} / \mathrm{s}$ would both appear indistinguishably as 2.5 kc / s. But by using another 2^{-} phase modulator to shift the frequencies into an all-positive band the two are given their proper $5 \mathrm{kc} / \mathrm{s}$ separation. The second frequency-changer could also have a $5,002-5$ oscillator, to restore the signals to their original places in the spectrum, rid of all unwanted frequencies. Or they could be transferred elsewhere, as required.

We have managed to get through all this without any sin-and-cos! But in case any readers deplore that, here, as a tailpiece, is what it has to say about negative frequency. The situation we saw at the start-the minus going unnoticed because to a single observer there is no difference between $-f$ and $+f$-arises in mathematics because \sin and \cos are ambiguous. Cos starts from a positive peak, and decreases in exactly the same manner whether one goes forwards or backwards. Put concisely, $\cos \theta=\cos (-\theta)$.
Also $\sin \left(\frac{\pi}{2}+\theta\right)=\sin \left(\frac{\pi}{2}-\theta\right)$. When the books deal with modulation (etc.) by multiplying two cos and/or sin terms together, they conveniently forget this ambiguity, to save themselves the embarrassment of producing a negative frequency and having to explain it. They give the results $f_{1}+f_{2}$ and $f_{1}-f_{2}$ (if f_{1} is higher than f_{2}), but drop out $f_{1}-f_{1}$. It exists, all the same, and, as we have seen, can even be separated from its mirror image, $f_{1}-f_{2}$!

LIGHTWEIGHT PICKUP

TIIE Decca ""ffrr", pickup, used in "Decola" electric gramophones, is now available separately either as a replacement head ($t+1458 \mathrm{~d}$) or with 8 -in tone

$\operatorname{arm}\left(t^{6}\right.$ I 4 s 4d); both prices including purchase tax. Replacement sapphire stylus elements will be avail. able.

SEAFARER'S RECEIVER

Eddystone Model 670 Broadcast Superhet

ALTHOUGH described as a marine receiver the new Eddystone Model 670 is essentially a broadcast set ansl not, as might be supposed, one of the communications type.

The set is primarily intended for personal use on board ship ant in view of this has been designed for operation on either A.C. or D.C. supplies of from 100 to 110 volts or 200 to 250 volts.

Particular attention has been given to the performance of the set
band and the four amateur bands of $1.7,7,1+$ and $28 \mathrm{Mc} / \mathrm{s}$.

Seven miniature valves on $\mathrm{B8A}$ bases are used in a superheterolyne circuit having one R.F. stage, combined frequency changer, one I.F. amplifier, A.G.C., detector and A.F. amplifier and finally a push-pull ontput stage delivering about 2 watts to a din loudspeaker mounted on the left-hand side of the chassis.
A.C.-I).C. technique with seriesconnected valve heaters and a tapped voltage dropping resistor is

The layout of the Eddystone 670 chassis is particularly neat and gives access to all parts. The coil box is below the deck.
on the short waves, as for long periods the high frequencies will often be the sole medium for broadcast reception. The use of a novel expanded tuning scale ensures precise re-setting of the set to any previously logged station. It is a mechanical system embodied in the reduction drive and provides the equivalent of goins of scale for each range.

There are four wavebands in this set, covering, respectively, 1,220 to $522 \mathrm{kc} / \mathrm{s}(246-575 \mathrm{~m}), 2.75$ to 1.2 $\mathrm{Mc} / \mathrm{s}(110-250 \mathrm{~m}), 13$ to $5.8 \mathrm{Mc} / \mathrm{s}$ $(23.1-5 \mathrm{I} .7 \mathrm{~m})$ and 30 to $12.8 \mathrm{Mc} / \mathrm{s}$ ($10-23.5 \mathrm{~m}$). In addition to the short and medium broadcast bands the set covers the so-called trawler
employed with a selenium-type rectifier providing H.T.

Special care has been taken to prevent interference to, or from, other radio sets in the vicinity, a very inlportant matter on board a ship where so much depends on radio for navigation and other essential services. Modern shins use a vast amount of electrical machinery and as interference from them may be carried along the ship mains, a mains filter for use external to the set is available if required.

The coil unit is a 3 -compartment die-cast metal box in which all trimmers and padders are included and the whole set is enclosed in a compact and stout metal cabinet

This view of the Eddystone 670 shows the large calibrated dial and the disposition of the controls. The bandspread dial is in the top right-hand corner of the main dial.
measuring only $16 \frac{3}{4}$ in by gin by tol $\frac{1}{2}$ in overall and finished in brown criackle enamel.

A point of interest regarding the supply circuit is that the mains leads and their plugs and sockets are completely insulated. Particular attention has, in fact, been given to insulation throughout, in addition to which all components are the tropical grade, so necessaty in a set of this kind which is almost sure to be used in every conceivable variety of climate ans! wenther.

The controls comprise a spinwhere tuning system, large illuminated dial with calibrated scales and the subsidiary band-spread scales previously mentioned, waveband switch, volume control and a combined tone compensator and onoff switch.

On the back are sockets for the mains input, voltage adjusting panel and sockets for a single wire or dipole aerial. There is also a pair of sockets and a plug which enables the internal loudspeaker to be disconnected and an external one, or headphone, plugged in instead.

We were able to give the set a brief test and knowing the condlitions under which it would normally be used it was made in fairly close proximity to a considerable amount of electrical machinery and with a mediocre aerial. Performance was very satisfactory; the A.G.C. system works particularly well and the mains filter was found to be definitely worth having in this location. Adjacent chammel selectivity is very good and the wavelength and frequency calibrations are extremely accurate.

The makers are Stratton \& Company, Ltd.. Eddystone Works, Alvechurch Road, West Heath, Birmingham, 3I, and the price of the re. ceiver is 637 los., the filter unit costing $f 2$ ios.

AIR COMMUNICATIONS

is divided into four lands. each f-Mc/s wide, and by motor-operated switching any one of the bands can be selected from the remote control unit. The five chosen crystals can be arranged either to bee all in one + -Mc /s band or distributed ower the whole range. The same crystal serves for both the transmitter and receiver.
(Left) Marconi portable radio telephone for use on airfelds.
(Right) Murphy MR6o 5-channel V.H.F. transmitterreceiver and control unit.

TNIIE fine display of V.H.F radio telephone equipment for ground and air use was a notable feature of the wireless section at the 1 llying Display and Exhibition held this year at Farnborough by the society of british Aircralt constructors.

Standard Telephones were show ing two V.H.F. aircraft sets, the STR12 and STRG, the former being a 12 - and the latter a 4 -chamed set giving crestal control of transmitter and receiver. As with all aircraft sets of this kincl, remote control is employed and the crystals (of which there are 2.4 miniatures in the STRiz) are fitted in an accessible position on the control unit. 'The main reason for this is to enable the crystals to be changed in the air if other spot frequencies are required.

A similar arrangement is adopted by Murphy in their MRoo aircraft set. Five spot frequencies are provided with the crystals and crystal oscillator included in the remote

> Chassis assembly of the G.E.C. BRT 600 V.H.F. set. The power unit is in the base.
control unit. The set covers the aircraft band of 116 to $132 \mathrm{Mc} / \mathrm{s}$, but in order to avoid retuning for each change of crystal this range

Since size and weight is at a preminm in all aircraft efpuipment, these sets are condensed into the smallest possible whame They are outstanding examples ot what can be achiewed with miniature valves and components.

The new G.E.C. set type 13RTroo, which measures $3 \begin{gathered}\text { ? } \\ \times 7 \% \\ 7 \%\end{gathered}$ $\times 0 \underline{2} 1 \mathrm{in}$, contains a transmitter, a receiver and a rotary transformer. some of its 11 miniature valves
dre used in a dual capacity, the crystal oscillator and frequency multipliers being one example. These serve either as a crystal drive

components has heen adopted Still another lightweight radio, telephone set for aircraft was seen on the Plessey stand. Described as the Model TR5I it provides five channels using the same crystal for transmit and receive and covers it 6, to $132 \mathrm{Mc} / \mathrm{s}$. The alesign permits crystals to be changerl in the air if other channels than those chosen are required. The overall size is $12 \frac{2}{2} \times 6 \times 5$ in and the weight is $9 \frac{1}{2}$ th only. The R.F. output is I watt and the power consumption 50 watts.

In addition to providing air-toground II.C.W. and R.T. communication the new Cossor V.H.F. set can be used also for reception of beam approach marker signals. In the latter case a small B.A. amplifier is used and the output is fed into the main part of the V.I.1: receiver. For commnnication purposes the range of the set is Ioo to $124 \mathrm{Mc} / \mathrm{s}$ and four pre-set channels are available.

For transmission a crystal oscillator is followed by a doubler and push-pull trebler which drives a push-pull P.A. to 6 or 7 watts R.F.
output. The receiver has an R.F. stage, a mixer with local oscillations derived from a crystal oscillatortrebler and a sext. rupler, three I.F. amplifiers, detector, A.G.C. and two A.F. stages. With motor generator and B.A. receiver the whole occupies only $13 \times 17 \times 8$ in
) ther radio equip ment in the V.II.F category shown included the latest standard Telephones instrument landing and runway approach re

Chassis view of the new Redifon R50 communications receiver.

ceivers, the STRIt and STRis. Ground equipment was represented by two distinct classes. There were the higher-powered transmitters built in rack torm for flying control on and ower the airport and in the approach areas, and some very compact portable amel mobile sets for use by ground personnel at remote parts of the airfield.

One example of the litst menfioned is the Marconi 「(i) $\mathrm{f}_{7} 2$ trams-

contained and very compact, weighing but $15 \frac{1}{2} \mathrm{lb}$ and measuring $2 \times 15 \frac{1}{2} \times 7 \frac{1}{2} \mathrm{in}$, and it can be either battery or mains operated. It is thus suitable for use in vehicles on the airfield. There was also a "Walkie-Talkie" set described as the type 1119.

Self-contained units assembled in a standard 19 -in rack and made up for single- or multi-channel operation were a feature of the I've Telecommunication exhibit. The transmitter panel gives 12 -watts output and includes modulator and power supply. The same form of construction is used for the receiver units each of which consists of a 17 -valve superhet, loudspeaker and power pack. It is A.C.-operated.

An interesting feature of the Ekco airport V.H.F. station is

(Left) Standard

Telephones STR 16/17 medium and high frequency aircraft installation.

Right) Twochannel Pye V.H.F. airport R.T. installation.
mitter of 50 watts output and covering a wide V.M.I: band including the aircraft one of ith to $132 \mathrm{Mc} / \mathrm{s}$. Single-or multi-chanmel operation can he provided, also amplitude or frequency modulation.

As a stand-by for this set, or where lower power will suffice, Marconi's have a ro-watt set, A.M. or $\mathrm{F} . \mathrm{M}$. as required, which is known as the type TAVfio. It is self.
the inclusion of 1 . F . facilities using a moslified form of the communications receiver and a pair of rotatable dipoles controlled from the operating position in the tower.
The latest H.F.-M.I: communications equipment made by standard Telephones provides for operation oyer a wide
range of frequencies. The STRi6 H.F. installation, for example, includes a jo-watt transmitter giving a range of about 500 miles on telegraphy at 5 ,oooft and 150 miles on telephony. The receiver covers 2.4 to $13 \mathrm{Mc} / \mathrm{s}$ in two bands. There is a companion rowatt M.1. communications set covering 150 to $505 \mathrm{kc} / \mathrm{s}$ giving a range of about 150 miles and including 1).F. facilities. It is rescribed as the STRI7

One of the latest pieces of equipment introduced by Marconi's is a 12-value communications rectiver, the ADg. It has six ranges, two (o)ering $150 \mathrm{kc} / \mathrm{s}$ to $510 \mathrm{kc} / \mathrm{s}$ and tour cowering 2 to $18.5 \mathrm{Mc} / \mathrm{s}$. The B.F.O. is crystal controlled. The normal I.F bandwilth is $5 \mathrm{kc} / \mathrm{s}$, but for C.W. operation a crystal filter can be brought into use giving r kc/s bandwidth. The calibration of this receiver is such that pretuning to any desired frequency can be effected with an accuracy of $\pm 2 \mathrm{kc} / \mathrm{s}$. Its power supply is provided by a built-in rotary converter consuming I amp at 28 volts.

Designed for use in large aircraft is a new Marconi high-power transmitter type Alotoz, covering the high and medium freguencies with

Air Communications-

independent, but complimentary, units. Each section provides for io crystal-controlled spot frequencies with either local or remote control and the power output is between 100 and 150 watts over 2 to $18.5 \mathrm{kc} / \mathrm{s}$. The equipment is fully tropicalized and wide use is made of miniature parts in order to conserve space and weight.

Several different models of transmitters and receivers for ground stations and for conmunication with aircraft were shown by Rediffusion. There was a joo-watt transmitter, the type G_{54}, designed for C.W., telephony and navigational services on 250 to $520 \mathrm{kc} / \mathrm{s}$. Eight crystal-controlled spot frequencies or a continuously tunable electron-coupled master oscillator can be provided, the latter having a stability of o.r per cent.

The transmitter consists of four separate units mountel it a steel cabinet. They comprise power supply, modulator, R.F. and acrial coupling units, and the form of

Radio sonde meteorological balloon transmitter shown by Salford.

construction facilitates servicing when the need arises. The whole equipment is fully tropicalized.
A new communications receiver was also seen on this stand. Known as the model R_{50} it is a 12 -valve superhet covering, in eight bands, the exceptional frequency range of $13.5 \mathrm{kc} / \mathrm{s}$ to $32 \mathrm{Mc} / \mathrm{s}$. Two R.F. and three I.F. amplifiers are employed and there is also a doublediode noise limiter. The A.C. power unit has a voltage stabilizer. A D.C. version is available.

A unique feature of the set is that the I.F. is switched from $465 \mathrm{kc} / \mathrm{s}$ to $I I O \mathrm{kc} / \mathrm{s}$ when receiving on 13.5 to $26 \mathrm{kc} / \mathrm{s}$ and on 240 to $606 \mathrm{kc} / \mathrm{s}$. Also, there is the choice of five bandwidths, ranging from $250 \mathrm{c} / \mathrm{s}$ to $17 \mathrm{kc} / \mathrm{s}$.

Since meteorological reports play such a vital part in flying, special interest attaches to the various devices used in compiling them. For investigating the conditions prevailing in the upper atmosphere radioequipped balloons

Decca Navigator Mark VI aircraft receiver with power unit.

shown by Salford Electrical Instruments.

Last year saw the introduction of

Plessey 5-channel V.H.F. radio telephone for light aircraft.
have long been used, and the latest form these transmitters take were
two automatic radio direction finders for use in aircraft, and both G.E.C. and Marconi were showing the latest version of these sets. Decca were showing a new aircraft receiver for the Decca system of long-range radio navigation. Some of the latest improvements incorporated include continuous and automatic lane identification, independent cross check of position and provision for use on up to five Decca Navigator clains. Receiver and power unit fit into the standard aircraft racking and operate from the low-voltage D.C. supply. Remote indicators, described as Decometers, are provided for the pilot and the navigator.
-

GRAPHICAL CIRCUIT SYMBOLS

Revised British Standard Issued

AREVISION of " Graphical Symbols for 'Telecommunications" has just been issued (BS530:1948; British Standards Institution, 28, Victoria Street, London, S.W.I; price 10s 6d.) This revision (the second) appears after a gap of eleven years, and, as might be expected, the number of symbols has grown considerably to keep pace with advances in the art. The publication of this new edition is a matter of some importance, especially in the world of wireless, as, out of 100 pages, a bare halfdozen only are exclusive to such non-radio subjects as wire telephony.
In addition to symbols purely for circuit diagrams, there are also representations of units comprising groups of components (e.g., amplifier, modulator) for use in " block schematics" or skeleton diagrams. There is also a set of symbols (e.g., direction finder, vision pick-up) for use on plans.
Where the Britisl standard symbol differs from the international standard issued by the
I.E.C. the difference is indicated and the I.E.C. symbols which so differ are given.

It is stressed in the foreword that circuit symbols should not be pictures, but should be simple in form, so they can be easily drawn. The primary purpose of graphical symbols is to indicate the electrical functions of the circuit. They are not intended to give guidance in the constructional details of apparatus; mechanical construction of apparatus to be represented is thus of secondary importance.

FOR CONSTRUCTORS

ALIMITED number of receiver chassis, suitable for incorporation in radio-gramophones, will shortly be for disposal from Multitorie Electric, 223, St. Johns Street, Clerkenwell, London, E.C.I. The circuit is similar to that used in Multitone Radio Set for the Deaf (Wireless World, October, 1946) and includes a push-pull output stage. It covers short, medium and long waves, but the auxiliary microphone amplifier circuits are umitted. The price, including tax, will be 212 I4s fil.

Television at Home and Abroad - New European Wavelength

 Plan + Kits of Parts Taxable - B.B.C. Finance

 Plan + Kits of Parts Taxable - B.B.C. Finance}

405 Lines to Stay

Simultaneous statements issued last month by the Post ()ffice, the Television Advisory Committee and the Radio Industry Council make it clear that the present technical standards of the B.B.C. television service are to remain unchanged for a number of years, unofficially interpreted as five years if the next step is to be a comparatively minor one, and up to ten years if it is to be something sweeping, like colour.

The Post ()ffice statement is welcomed by the industry for several reasons, the main one being that the present system allows the development of television services at minimum cost. The official industry statement urges the adoption of the 405 -line system as a European standard.

Exporting Television

BRITISH television is being featured at the British Exhibition which opened in Copenhagen on September 18th.

Arrangements have been made by the R.I.C. for cameras and transmitting gear, similar to that used by the B.B.C., to be installed by Pye for the demonstration of 405^{-} line television throughout the period of the exhibition. The equipment is housed in two vehicles, one containing the picture control room and the other the 25 -watt transmitter. E.M.I. 605 -line film-scanning equipment is being used for film transmissions.

Television receivers are being demonstrated in the Nimb Restaurant, where the transmitted picture is received by a master receiver from which the output is fed to the sets being demonstrated by Bush, Cossor, Ekco, Ferranti, G.E.C., H.M.V., Marconiphone, Mullard, Murphy, Pye and Ultra.

In addlition to the television exhibit, which is a concerted effort under the ægis of the R.I.C., the British radio industry is well represented by over thirty firms who have stands of their own.

Amateur Exhibition

THE second annual amateur radio exhibition organized by the R.S.G.B. will be opened at $2.30 \mathrm{p} . \mathrm{m}$. on November 17th, by Jr. R. I. Smith-Rose, Director of Radio Research, D.S.I.R. It will
be held at the Royal Hotel, Woburn Place, London, W.C.r, and will remain open until November 20th (hours II a.m. to 9 p.m.).

Admission will be by catalogue, price is if purchased at the door, or is 3 d by prost from the society, New Ruskin House, Little Russell street, London, W.C.i.

European Wavelengths

I^{T}T is anticipated that by the time this issue appears a new European frequency allocation plan wil! have been agreed upon by the delegates of the thirty-two nations participating in the European Broadcasting Conference which has been meeting in Copenhagen since June 25 th.

The responsibility for drawing up the final frequency plan for European broadcasting stations (below $1605 \mathrm{kc} / \mathrm{s}$) has been entrusted to the Frequency Allocation Committeeone of six set up by the Conference. This has been presided over by H. Faulkner, Deputy Engineer-inChief, G.P.O., one of the delegates of the U.K. It will be recalled that alternative provisional allocation plans were drawn up by a committee of representatives of eight European countries for consideration by the present Conference (see Wireless W'orld, June, p. 223).

It is learned from the International Broadcasting Organization, which is participating as an observer, that the question of allocating frequencies to the various occupied zones of Germany provoked considerable discussion in the general asseinbly.

P.T. on Kits

TIIE Commissioners of Customs and Excise have decided that for the present the following kits of parts including any loudspeaker or cabinet supplied therewith, are liable for Purchase Tax at the rate of $33^{\frac{1}{3}}$ per cent of the wholesale value:-
(i) R.F. tuned coil assemblies covering the medium- and/or long-wave broadcast wavebands, or television waveband.
(ii) Kits of parts, whether or not complete or assembled, which include a coil assembly as at (i) above.
(iii) Kits of parts, whether or not coniplete or assembled, which are sold for the assembly of domestic, portable or car receivers, e.g., an unassembled receiver sold in two or more separate kits for use in assembling a particular receiver.

B.B.C. Report

THE Governors of the B.B.C. have issued the Report for the year ended March 3ist last, which is the first full year of operation under the new Charter issued on January 1st, I9.47.
I.ittle that is not already known of the activities on the engineering side is inclucled in the report. The financial statement shows that the income for the Home and Television Services totalled $£ 9,986,420$, of which $£ 8,027,363$ came from licence fees and $L_{1,047,253}$ from publica-

BRAZILIAN STATION.

The recently opened broadcasting station near Recife, Brazil, which was equipped by Marconi with a 20-kW M.W. transmitter and two 15kW S.W. transmitters. A square section mast radiator is used for medium waves and the.S.W. arrays are supported on six short masts

World of Wireless-

tions. A balance of over a million pounds was brought forward into this year. The Corporation received a Government grant-in-aid for the Overseas Services of $\notin 4,025,000$.

It is announced in the report that negotiations are being made for securing a site in London for a new televisicn headquarters.

The Report has been published by H.M.S.O. as Cmd. 7506.

PERSONALITIES

L. W. Hayes, chief of the 13.B.C. Overseas Engineering and Information Department, who has been one of Great Britain's representatives at most of the international radio conferences during the past few years, has been elected vice-director (in charge of broadcasting matters) of the International Radio Consultative Committee. The C.C.I.R. is one of the permanent organs of the International Telecommunication C'nion, the duties of which are to study technical radio questions regarding the operation of stations. The new director is Dr. Jalth van der Hol, of Germany

Major H. E. Watterson, who was with Marconi's before the war, has returned from Shanghai where he has been for the last two years with U.N.R.R.A. as consultant and adviser on telecommunications. He was commissioned in the Royal Signals at the outbreak of the war and was posted to the Radio Security Section of M.I. 8 (War Office). From 194 ? until V.J. Day he was with the Embassy in Chungking.
A. F. Bulgin, M.B.E., chairman and managing director of the compans bearing his name, has been promoted to the rank of Wing Commander in the R.A.F.V.R. Training Branch.

IN FRIEF

An increase of 3,400 over the previous month was shown in the number of television licences in force at the end of July, when the total was 58,250 . The month's figure for broadcast receiving licences, including those for television, was approximately $11,292,750$.
Amateurs' Examination.-Of the 700 entrants for the City and Guilals Radio Amateurs' Examination held in May. 528 were successful. Ten of the thirteen overseas candidates passed. The examiner's report states that the standard of the candidates' work was much higher than in previous examinations. Copies of the question papers for the past three vears are available, price 4d each, from the Iepartment of Technology, 31, Brechin Place, London, S.W.7. The next examination will be held on May 1 ith, 1949, from 7 to io p.m
U.S.W. Amateur Band.-It is learned that the nequtiations for the release of the $420-460 \mathrm{Jc} / \mathrm{s}$ hand for l3ritish amateurs, to which reference was made last month, have been concluded and that the band will be ayailable from October ist. Power will be limited to io watts.

Gee. -The Scottish Gee Chain, which has for some time been under construction, is now operating experimentally on $73.8 \mathrm{Mc} / \mathrm{s}$. It will eventually work on $69 \mathrm{Mc} / \mathrm{s}$. The master station is at Lowther Hill, Dumfries; with slates at Craigowl Hill, Angus; Ru Stafnish, Argyill and Great Dun Fell, Cumberland.
S.I.M.A. - The Electronics Section ot the Scientific Instrument Manufacturers' Association has arranged for a series of technical papers to be read at meetings to be held at the Caxton Hall, Westminster, S.W.i, on November 18th and 19th. The morning and afternoon sessions on the first day will be devoted to electronics in scientific research and those on the second day to electronics in industry. Full particulars and tickets are obtainable from S.I.M.A., 26, Russell Square, London, W.C.I.
F.M. Patents.-Dr. Edwin Armstrong, the inventor of the F.MI. method of transmission, has filed a suit against the Radio Corporation of America and the National Broadcasting Company for alleged infringement of five of his basic F.M. patents.

Readership in Electronics.-Mullard's offer to finance a Readership in Electronics at the City and Guilds College of Imperial College has been accepted by the University of London. The Readership will be mainly concerned with post-graduate teaching of research.
E.M.I. Scholarships.-A scholarship carrying a three-year course in telecommunications engineering at E.M.I. Institutes is being sponsored by E.M.I. It will be awarded by open competition through recognized educational authorities. There is also a postal course scholarship.

Mullards.-A complete list of all reference cards for Mullard valye testers issued up to July, 1948, together with details of the valve types each card will test, has been prepared by the manufacturers. Owners of Mullard Master 'Test Boards wanting a free copy should write, mentioning the serial number of the instrument, to Mullard Flectronic Products, L.tr., Valve Sales Department, Century House, Shaftesbury Avenue, London, W.C.2.

Wire Broadcasting, - The development of wire broadcasting in this country is traced by IR. H. Coase in the August issue of Economica. The first relay exchange was opened in January, 1925; by December, 1929 there were 34 exchanges with some 8,500 subscribers. At the end of September last year there were 293 exchanges and 755,925 subscribers.
"Wireless Engineer."-With the October issue of our sister journal, Wircless Engincer, it celebrates its twenty-fifth anniversary. Originally Experimental Wireless, it later became Fxperimental Wireless and Wircless Enginerer. and eventually, in Septemher, 193I, adopted its present title. The changes in the title illustrate the gradual change of the coverage of the contents from the original experimental outlook to the present engineering standard. With this change the Abstracts and References section of the journal, which includes abstracts from and references to articles on radio and allied subjects in the world's technical
press, has grown from its original $1 \frac{1}{2}$ pages to the present average of 21 pages a month.

Servo-Mechanism.-A course of seventeen lectures on servo-mechanism is to be given at the Manchester College of Technology on Friday evenings from 7.0 to 9.0 , commencing on November i2th. The fee for the course, which is one of many sponsored by the Nanchester and District Advisory Council tor Further Education, is two guineas. The pamphlet covering the series of post-advanced lectures in electrical and mechanical engineering is obtainable from the Education Offices, Deansgate, Manchester, 3 .

Scientific Films.-This year's International Festival of Scientific Films will be held at the Royal Empire Society IIall, Northumberland Avenue, London, W.C.2, from October 8th-roth. Tickets for the two daily sessions (2.30-5.30 and 7.30-10.30) and details of the programme may be obtained from the Scientific Film Association, 34, Soho Square, London, W.I,

Marconi Veterans.-A reunion and luncheon is being held on October 9th at Caxton Hall, Westminster, London, S.W.I, for veterans of the Marconi International Marine Communication Co.

Broadcasting Stations.-The fourth erlition of our booklet "Guide to Broadcasting stations," will be published during October. It has bwen entirely revised and the information given has been checked against the records of the B.B.C. Tatsfield Receiving Station. The 64-page booklet, which is obtainable from booksellers and newsagents, price is, or by post from our Publishers, price is 2d, contains details of frequency, wavelength and power of European M.W. and L. W. broadcasting stations and S.W. stations of the world.
British Kinematograph Society. - The headquarters of the society are now at 53, New Oxford Street, London, W.C.I (Tel.: Temple Bar 2092).

Wanted.-Copies of the July and dugust issues of Wiveless World are wanted by our Publishers to complete their files. Full price will be paid.

FPOM ARPOAD

Personal Television.-It is announced by the Pilot Radio Corp. of America that it is producing a small television set with a three-inch C.R.T. To be known as the "Candid T-V," it is tunable over the complete thirteen television bands (from 44 to $216 \mathrm{Mc} / \mathrm{s}$), includes a built-in aerial, weighs only 15 lb and costs $\$ 99.50$. The aluminium cabinet measures $14 \mathrm{in} \times \mathrm{I} 3 \mathrm{i} \mathrm{in} \times \mathrm{gin}$.
High.Power F.M.-A $250-\mathrm{kW}$ F.M. transmitter has been brought into regular service on $100.5 \mathrm{Mc} / \mathrm{s}$ in California. The station, which is licensed to Eitel-McCullough, Inc., the valve manufacturers, is situated on Mr. Diablo 3849 feet above sea level.
International Television.-In addition to the main lectures mentioned last month, three of the twenty-one short papers read at the International Tele-
vision Convention, held in Zurich from September 6th to Ioth, were by Jritish engineers. They were: "Television Distribution over Short Wire Lines," by P. Arlorian (Rediffusion); Comparison of British and American Television Standards," by L. H. Bedford (Marconi's); and an introduction to the discussion on large screen television by A. (i. D. West (Cinema Television).
Amateurs head the list of non-loroatcast stations in the U.S. compiled recently by the F.C.C. with a total of 68,449. Aeronautical services are next with over 20,000, followed by maritime services with over 14.500, It the bottom of the list comes "citizen's radio" with . 30 stations.
U.N. Broadcasts are now radiaterl from Geneva twice each weekday on 18.450 and $6.672 \mathrm{Mc} / \mathrm{s}$; The programmes, of ten-minutes' duration, are broadcast in English and then Frencln at 1 ono and 2 iow G.MI.T.
U.S.S.R. Television.- After an interval of eight years the Leningrad television station has resumed transmissions.

German Radio Exhibition.-It is anncrunced by the International Broadcasting Inion that a radio exhibition is to be held in Dusseldorf, in the British \%one of Germany this autumn. This is the first since the war.
Sound Insulation.-A second supplement has been issued by the U.S. National Bureau of Standards to the report on Sound Insulation of Wall and Floor Construction. This fifteen-page supplement contains the results of tests conducted since 194° when the first supplement was issued. The original report (B.M.S.17) was prepared in 1939.

INDUSTRIAL NEWS

Plessey-Ediswan Agreement.Arrangements have been made whereby the sole distribution of the complete range of radio components and accessories manufactured by the Plessey Co., of llford, Essex, will be undertaken

Pye Canada, Ltd., is the name of a new company formed by P'ye, of Cambriclge, to establish at production plant at Ajax, Ontario. The company plans to produce domestic radio and television receivers and other electronic equiprnent.

Holiday and Hemmerdinger are holding an exhibition of electronic equipment, components and accessories at the Granel llotel, Manchester, from October 12th-14th. Admission to the exhibition, which will be opern claily from 10 a.m. to 9 a.m., will be by ticket olstainable from the organizers in $74-78$, Mardman Streert, Deansgate. Manchester, 3.

Tannoy.-The sales, instatlation and maintenance of Tamoy equipment is being taken wer by Sound Rentals, Ltd., of Canterburv Grove, West Norwood, London, S.E.27, who for a long time have specialized in the hire and rental of Tannoy gear, It will be recalled that (iuy K. loountain, l.tel., the mamufacturers of Tannoy products, recently went into compulsory liguidation. The Board of Sound Rentals has been reorganized and Guy K . lountain is now managing director.
B.V.A.-The Board of the 13ritish Radio Valve Manufacturers' Association has re-elected G. A. Marriott (©.E.C.) as chairman and l^{F}. Jones (Marconiphone) as vice-chairmant.

Beethoven Electric, of Cliase Road, Jondon, N.V.W.io, is to open in the near future a new factory in High l'ycombe which will eventually be the 1 Head Office.

EXPORT

Target Exceeded.--In antalysis of the export figures for the first half of the year, to which reference was made last month, shows that the radio industry exceeded its Government-set target of firexo,000 it month. The total value for the six months was $26,207,1,30$. Although fewer receivers and radiegrams were exported during the first six months of this year than during the same period last year-the value was

INDIAN RECEIVER

 H.E. the High Commissioner for India during his visit to the E.M.I. factory, Hayes, was shown a new receiver chassis by H. W. Bowen, managing director. It appears to have onlaid wiring. A similar chassis has been designed for the Indian market.

Wy the Edison Swan Electric Co. One of the first items to be introduced is the new llessey alutomatic record changer which will handle up to eight roin and 12 in mixed dises.

E1,979,000 compared with $2,2,2+9,000-$ the demand for communications equipment ($1,7,705,000$), components ($£ 1,586,0060$) and valses ($£ 1,025,000$) was moprectedenterl.

Australian Television. - The Australian Government has asked for tenders for the supply of two $5-\mathrm{kW}$ television transmitters for erection in Sydney and Melbourne and, alternatively, for 50 -watt stations for erection in each of the six State capital cities. Tenders close on November 25th.
Multicore.-1 25 per cent increase in tonnage of Multicore solder exported luring the first eight months of this sear, compared with 1947, is recorded by Multicore Solders, Ltel. lexport licences are no longer required for cored solders, and, as a result, supplies have been sent to forty-three countries this year.
Export Licences.-The Headguarters of the Board of Trade Export licensing Branch has moved from Stafford House to Kegis Honse, King William Street, London, E.C. 4 (Tel.: Avenue 3II).

MEETINGS

Institute of Electrical Engineers

Inaugural address of the president, T. (i. N. LIaldane, M.A., October 7 th. Kadio Section.-Inaugural address of the chairman, F. Smith, O.13.E., on Uctober 13th.
Discussion on " What should be the Design Considerations of Services' Kadio Equipment?" on ()etober rgth. Openers, S. J. Moss and G. C. F. Whittaker.
The above meetings will be held at $5 \cdot 30$ at the I.E.E., Savoy l'lace, London, W.C.2.
Cambridge Rudio Group.-Inangural address of the chairman, 1). H. Hughes, at 6o, on ()ctoler 12 th, at the (ambridgeshire Technical college, Cambriclge:
North-Eastern Readio and Measurements Group.-Inaugural addresses of the chairmen, F. Smith, O.B.E. (Rarlio Section) and S. Whitehead, Ph.I)., II.A. (Measurements Section) at 6.15 on Uctober isth at King's College, New-castle-on-Tyne.
North-liestern Radio Group.-" The Velodyne", by J'rof. F. C. Williams, O.B.E., D.Sc., J.Phil., and A. M. I'ttley, 1'h. W., at 0.30 on ()ctober zoth at the Eingineers' Club, Albert Spmare, Wanchester
Southern• Centre. -" Three-1)imensiomal Cathode-Ray-Tube Displays," by E. Parker, MI.A., and l'. K. W'allis, B.Sc. (Ens.), at 6.30 on vetoler 13 th, at the K.A.E. College, Farmborough. South Midland Rudio Group.-"The Design of High-Fidelity Bisc-Recording Equipment," by H. Wavies, M.Eng, on Septentber 27 th at 6.0 at the James Watt Memorial Institute, (ireat Charless Street, Sirmingham.

British Institute of Radio Engineers

Lomdon Section. - Ammal general meeting and address of the president, B.. H. Berlford, O.B.E., MI. A., at 6.0 on (actober 21st, at the Eondon School of Hygiene and Treprical Medicine, Kepmel Street, Iondon, W.C.I.

Scottish Section.-"Secondary Electron Emission," by L. D. Oliphant, B.Sc., at 6.30 on ()ctober 13th, at the Heriot-Watt College, Edinburgh.

British Sound Recording Association

'The Limitations of the Londspeaker," lecture demonstration by 1^{\prime}. J. Walker at 7.0 on October 22nd at the Royal Society of Arts, John dam street, London, W.C.s.

Unbiased

By FREE GRID

"Apologia pro Vita Sua

INN spite of "Diallist's" melliloquent remarks last month about my alleged vain imaginings concerning the meaning of the prefix " ter," I refuse absolutely to do a Galileo as I have still the odd idea, which I share with Cicero and Horace who used the word freely, that it is the best Latin for thrice. Apparently the three hundred-odd bishops who attended the recent Lambeth Conference are labouring under the same delusion, judging i,y their reference to the commemoration next January of the tercentenary of the beheading of that stalwart champion of the Church, Charles I.

But I have certainly never fallen into the error of imagining that its Greek equivalent was "tri" nor yet the adjective "treis." I have always thought it to be "tris." Only a few months ago, when I chanced to be in Cambridge, I heard some uncouth fellows in King's. College chapel " raise the trisagion,", as No. 423 in "Hymns A. \& M." quaintly puts what is more commonly known as singing the tersanctus. But, of course, you can expect anything in a town where a chemist calls himself a chynist. as does one of the pharmaceutical

fraternity whose shop is on the opposite side of the street to King's College.

Where it is a matter of euphony "tris" does sometimes lose its final letter as does the Latin "tria." I have never denied the bilingual nature of "tri," nor was I unaware that it was as much at home on the

Appian Way as in the shadow of the Parthenon. 1 am afraid that like Mr. Winston Churchill I am a bit of a terminological iconoclast. He tells us in an autobiographical sketch how he came up against pedagogic authority quite carly in his scholastic career by drawing attention to the illogicality of there being a vocative case to mensa even though it is the same as the nominative.

I can sympathize with him as I feel much the same about the illogicality of the indiscriminate and apparent do-as-you-please mixing of adverbial and adjectival prefixes (or should I say prefices?). But I have no more hope than Mr. Churchill of getting things straightened out. Why, even the Editor refuses to adopt a logical word like metrocyme, cymatometer or cymometer in place of the seemingly hybrid wavemeter. Like most totalitariocrats he does not lack a specious reason which in this case is that meter, like the word mete, is possitsly clerived from the Anglo-Saxon " metan." Maybe he is right, but where did the AngloSaxons get their word and at what date?

As for Mr. Jefferson, of Stock. holm, who also chides me with equal mellifluence which I heartily reciprocate, surely he is a little illogical. He tells us that in his opinion there is no real reason for sticking to Greek in seeking a prefix for cycles-per-second, when nearly everyone which he mentions and favours is Greek, the remainder hailing from the other side of the Aegean.

The Marcopoff

I^{T}T is astonishing how few inventors have given their names or had them given to the things which they invented. I can think of one-the late Mrs. Bloomer of cycling fame, and for aught I know to the contrary her invention has long since been superseded by modern developments more in keeping with the Government's wishes for limiting the consumption of textiles on the home market.

When we come to the world of electricity and magnetism there are, of course, many famous names which are used, either in full or in abbreviated form, to denote units of measurement, for circuit properties and the like. Faraday and a whole
host of others occur to my mind. Even in the world of radio we find that Hartley, Franklin, Colpitts, Schmitt and Puckle among others have received recognition of their work by this means; but unless 1 am very greatly mistaken the most famous name of all in radio has not been used in this manner. I refer, of course, to Marconi, and to forestall anybody who may seek to belittle Marconi's work by pointing out that, academically speaking, he was not numbered among those who sat in the seats of the mighty, I would point out that neither was

"One of the few, the immortal names"
Nelson who was only a humble vice-admiral at the time of his death.

To some of you it may seem a little difficult to choose a unit of measurement to which Marconi's name could be attached, but surely there is one circuit property which cries aloud for it. I refer, of course, to aerial radiation resistance, at present expressed in ohms which have to rub shoulders with the more vulgar sort of ohms used by ordinary electrical engineers. To couple Marconi's name with any property of an aerial would be particularly apposite for reasons which those of you who read W.W. diligently will realize. It is not too much to say that it was his idea of an elevated aerial which really changed wireless from a laboratory curiosity to a practical commercial proposition. I have no desire, however, to make Mr. Bevin's task more difficult than it is and so am willing to compromise by calling the new unit a "Marcopoff" as a sop to Popov.
Even in the field of broadcasting programmes there is scope for paying honour to famous radio names and at the same time improving the standard of certain performers by using a carefully chosen yardstick to measure the degree of success or otherwise achieved in their efforts to entertain us, more particularly in the field of spontaneous humour. As a listener from the days of Writtle I would suggest the " Eck" as a suitable unit; some of the moderns might then be surprised to find themselves well down among the micro-ecks.

Providing technical information, service and advice in relation to our products and the suppression of electrical interference

${ }^{* 1}$ The sketch shows the simple method of fixing the "BellingLee' 'distribution lead suppressor L630 which sells at $1 / 6$ each.

CAR INTERFERENCE WITH TELEVISION

Every reader of this page who drives a motor vehicle should see that a suppressor is fitted to his distributor. In nearly every case our ${ }^{11}$ [. 630 can be fitted without cutting any wires and its use does not in any way affect the performance of the engine.

An unsuppressed car or farm tractor can cause untold harm to air navigation in and around airfields. Within a range of $75-90$ miles of London, particularly between 25 and 90 miles, the greatest hindrance to the full development of television is interference from passing motor vehicles. If you read the "Wireless World," even if you do not yet possess a television receiver, have a thought for others. I.et it be your good deed for the day. It will cost you $1 / 6$ from your radio dealer or garage. You might even help by starting a small campaign amongst your motoring friends.

WHAT KIND OF TELEVISION FEEDER?

Still one of the most common queries that come our way is "What do we recommend in the way of feeder for television aerials?" This question comes to us from public and dealers alike. Television receiver designers still fall into three schools of .thought. (I) *2Coaxial feeder which needs complicated
matching and balarcing at the dipole end for best results and minimum interference. (2) *3 En screened twin which is the cheapest, but needs a carefully batanced input circuit in the receiver for optimum results and does not provide a screened input to stabilise a super sensitive receiver, and (3) *'Screened twin which gives the advantage of both, but is a triffe dearer than coaxial.

If the receiver manufacturer makes a strong recommendation for his set, it should be adhered to, but otherwise in most localities, the cheapest, i.e., the twin unscreened feeder of 75 to 85 ohms impedance, will give no apparent loss even when connected to a coaxial input. We have been saying this since the inception of television, and we believe that more new designs with be provided to make use of the more effective balanced feeder. Television costs enough alrealy, why make it cost more? Our own installation department carry ont the wishes of any particular manufacturer, but if left to their own devices would almost invariably use balanced feeder to obtain opt imum results.

We would like to remind readers that the reflector of a " BellingLee" television aerial, installed now, can be used immerliately for greatly improved broadcast reception by attaching an insulated lead to the screw on the cross arm. If *5." Eliminoise " equipment is added, this provides an anti-interference aerial system. Both methods can also be applied to the metal mast of the inverted " V " aerial and are covered by U.K. Patents 519883, 520628 .

LIGHTNING

By the time this is published the thunder and lightning season will be over, but we feel it worth while to let readers know of a really extraordinary case which was brought to our notice by a Wickford (Essex) dealer who wrote, " One of my television customers in this district has had a rather alarming experience during a recent heavy thunderstorm. A flash of lightning went to ground in the garden within six yards of the chimney supporting one of your television aerials. It completely burnt all the leaves oft a small tree, knocked out the housewife who was at the sink indoors,
hut did not affect the aerial or the set which was in operation at the time. This confirms that the addition of a television aerial incurs no extra risk. I should imagine the Cathode ray tube took a nasty flash but it appears to be none the worse for it."

Belling-Lee ":*6 Skyrod antiinterference aerials and *7 Viewrod Television aerials have always carried a one hundred pounds insurance against lightning damage. This becomes operative only in the absence of any collateral insurance, such as the usual Householders Comprehensive schemes. We do not know of any insurance companies who call for increased premium for the erection of an aerial, or which place any restriction in this matter, and if there is a risk, they lose. Insurance companies are grand business people and they know their job, so why worry?

For better listening use Belling-Lee Aerials

*2 75 ohm Coaxial feeder L600 for T.V. aerials, per yard, $\mathbf{1 / 6}$.
*3 80 ohm unscreened balanced twin feeder, L336, per yard, $7 \frac{1}{2} d$.
*4 70 ohm screened balanced twin feeder, L1221, per yard, 1/9.
${ }^{*} 5$ The equipment required is : L308 pair of " ELIMINOISE" transformers and receiver connecting lead, £4 10s. L622 adaptor kit, 1/6.

Required length of feeder $\mathbf{L 1 2 2 1}$ and earth lead. (L622 is not required with the inverted "V." aerial).
*6 "SKYROD " vertical chimney fixing 18 ft . spike with "ELIMINOISE" transformers, screened feeder and earth wire, etc., L638/K, £10.
*7 "VIEWROD ", television aerial for London frequencies $\mathbf{L} 502 / \mathrm{L}$, for Birmingham frequencies L634, each £6 6s.
Both types include dipole reflector and chimney lashings (less mast) Required length of feeder, extra.

The words "Skyrod" " Eliminoise" and " Viewrod" are Regd. trade marks.

Proprietors, THE GENERAL ELECTRIC CO. LTD. of England.

STABILIZED POWER SUPPLIES

1.-Practical Design Procedure for Series-Valve Types

ALTHOUGII voltage stabilized power units have been fairly widely emploved for some years, it seens that there are still many who do not fully realize how useful they are, or who have insufficient information about their work-
ing and design. As regards the first point, anyone who has once become accustomed to using a stabilized power unit will probably confirm that it is practically indispensable. As to the second, this article may be a partial answer.

At one time the need for sources of steady D.C. was met by secondary batteries, in spite of their high cost and maintenance troubles, because the alternativethe rectified A.C. power unithad a comparatively high internal impedance and consequently bad "regulation." That is to say, the output voltage varied considerably with the current drawn. An additional cause of substantial voltage variations came when power stations, in order to avoid the more drastic operation of load-shedding, began to practise frequency and voltage reduction. In the meantime, requirements for low ripple and noise content have become increasingly stringent. The development of stabilization technique, however, has now reached a state at which it is possible to dispense with batteries for even the most exacting requirements ${ }^{1}$.

Of the several distinct methods that have been adopted, the most popular and generally uscful, and the only one to be considered here, is that shown in principle in Fig. I^{2}.

The whole load current passes through VI, which is made to

[^5]absorb any voltage variations, whether slow or rapid, so that the output is constant and steady. Vi may also, if required, be made to serve the additional purpose of reducing the voltage of the source to any desired level within certain limits of arljustment.

The remainder of the circuit is designed to control the voltage drop in Vi in order to fulfil the purposes just mentioned. This it does by comparing a known fraction $\left(\frac{R_{2}}{R_{1}+R_{2}}\right)$ of the output voltage $\left(\mathrm{V}_{0}\right)$ with a fixed reference voltage, usually (but not always) provided by the drop across a neon tube, N. The difference in voltage is amplified by V2 and applied as grid bias to Vi in the correct polarity to oppose any change in V_{0}.

The device is closely analogous to the governor of an engine, and is an example of D.C. negative feedback-a sort of amplified cathode follower. Obviously one of the prime objects in design is to make the voltage amplification so large that the change in V_{0} necessary to neutralize (via V2) any fluctuations in source voltage is negligibly small. At zero frequency the feedback is reduced by the potential divider $\mathrm{R}_{1} \mathrm{R}_{2}$, but this reduction can be avoided at hum frequencies by shortcircuiting R_{1}, with a capacitor.

If the gain, reckoned from the junction of R_{1} and R_{2}, is made so large that any variations in voltage across R_{2} necded for feedback are less than, say, I per cent., and the reference standard is also very constant and accurately known, the current through R_{2} is correspondingly constant and V_{0} is directly proportional (within the working limits of the valves) to $R_{1}+R_{2}$. R_{1} can therefore be calibrated in volts to an accuracy equal to or better than that of a B.S. ist

Grade voltmeter. A notable example is the Tinsley Precision D.C. Stabilizer, in which the reference voltage is a standard cell and the amplifier a reflecting galvanometer and photo-cell. Any voltage from 20 to 600 can be selected, to an accuracy of 1 in 10,000,

However great the gain, some change in output voltage is necessary to effect the stabilization; but such change can be reduced to zero, or even reversed, by compensation for changes in input voltage and output current. By the use of such devices it is possible to make the power unit approximate very closely, over a wide range of working conditions, to a generat(r of constant zerofrequency voltage with zero internal impedance.

Fig. I. Basic circuit of series-valve stabilizer, in which the output voltage V_{0} is adjusted by varying R_{1}. N is the voltage reference standard, and V_{2} the negative feedback amplifier.

The practical design of stabilized power supplies on these lines was discussed in an excellent article by F. L. Hogg ${ }^{3}$. The present writer acknowledges that what follows is largely an extension of Mr. Hogg's work.

[^6]
Stabilized Power Supplies-

Considering now the design of stabilized power units in detail, there is first the question of requirements. The design problem is very much eased if only a fixed output voltage is needed, or one variable within narrow limits; and similarly if the current load is more or less constant, as it often is in built-in power sources. One has then only to provide against minor variations in load, and variations in A.C. supply. The latter can, if necessary, be brought within narrower limits by one of the special transformers sold for the purpose. The residual fluctuations can then be dealt with by valves and other components working on fixed adjustments very close to optimum conditions, and a very high degree of stabilization obtained without much trouble.

It will therefore be more instructive to $\overline{\text { tackle }}$ the relatively difficult case of a unit for general laboratory use, in which the output voltage is required to be variable within wide limits, and the load may be anything from zero to a stated maximum. The procedure for most other specifications should then be more or less obvious.

The design will of course be influenced by whether the most important thing is to stabilize against input voltage fluctuations, or load current fluctuations, or to reduce hum and noise to a very low level, or a combination of these. They correspond respectively, in the theoretical equivalent generator, to constancy of generator voltage, smallness of generator impedance, and absence of any generator frequency appreciably above zero. The length of time over which a specified performance in these respects must be maintained is also a factor to be considered. If an accurate output voltage calibration is wanted, that is yet another.

Let us assume as an objective the best all-round performance obtainable with a reasonably simple system capable of coping with wide voltage and current ranges. Its achievement can best be illustrated by an example. Suppose the maximum output is to be 100 mA at 400 V , with the mains voltage liable to vary
+4 per cent and -8 per cent from normal. The easiest and most instructive procedure is to make a voltage/load-current diagram (Fig. 2). Neglecting current through V_{I} other than the load current I_{0}, point A represents maximum output, and the horizontal line through it is the working line at 400 V for all load currents down to zero, assumıing perfect stabilization.

Now consider the drop in the series valve Vi. It can be allowed to reach its minimum under the condition of maximum output and mains 8 per cent low, and that minimum should of course be as

in any particular case, but in general economy calls for a low r_{a}.

As a start, take a triodeconnected Mullard EL37, which is typical of a number of similar valves. Fig. 3 shows the $\mathrm{I}_{k} / \mathrm{V}_{a}$ characteristics. From these, at $\mathrm{I}_{k}=100$ and $\mathrm{V}_{\mathrm{g}_{1}}=-\mathrm{I} \frac{1}{2}, \mathrm{~V}_{a}$ is seen to be 140 V . This must be added to $V_{0 \text { max }}$ in Fig 2 to give point B, the unstabilized voltage of the source, V_{i}. From the data relating to a suitable power supply, the regulation curve BC call then be drawn in. Normally it droops slightly between B and C, but a straight line is generally near enough. This line is the lowest allowable, so it relates to 92 per cent of normal mains voltage. Assuming V; at zero current to be proportional to mains input, points I) and E can be marked in at ioo per cent and IO_{4} per cent. Lines through them, parallel to CB , represent approximately the regulation curves for normal and maximum mains.

Fig. 2. Voltage/ current design diagram for a seriesvalve stabilizer.
imposed by the start of grid current ; to be on the safe side, the minimum bias may be assumed to be $-1 \frac{1}{2} \mathrm{~V}$. The shape of a tetrode (or pentode) characteristic gives it a low V_{a} for a given high I_{n}, but there is a constant screen voltage to provide. For simplicity let us assume a triode, in which the clue to a low voltage drop is low r_{a}. At the same time we want μ to be as high as possible in order to maximize the stabilization. There is thus no doubt that ligh g_{m} is needed. The best allocation of v_{a} and μ for a given g_{m} will be seen more clearly later
complete curve showing the minimum drop in I'i at any load current. It is got by (so to speak) hanging the $V_{y_{1}}=-1 \frac{1}{2} V$ curve of Fig. 3 from the line CB. One could, in fact, transfer the whole family of curves from Fig. 3 to Fig. 2 ; but it would be rather confusing to do so for each different mains voltage.

The most important limit is the maximum anode (actually $a+g_{2}$) dissipation, in this case $28 \mathrm{WV}^{2}$. It should be hung from the maximum mains line, EF, as shown. (The vertical distance hetween it and EF at any point is

Fig. 3. Characteristic curves for triode-connected EL37 valve for VI duty.
reckoned, of course, by dividing 28 by the current in amperes at that point). The maximum rated V_{a}, triode connected, is 400 V , and should be drawn at that distance below IE 1 . The maximum current rating, 200 mA , is not in the picture at all.

We can now see that kecping strictly within these limits we could get any current up to II5 mA at 370 V ; that at any current up to 100 mA the V_{0} could be varied from 350 to 400 ; that at a fixed output of 70 mA , stabilization against mains voltages from -8 per cent to +4 per cent is possible over a range of V_{0} from 260 to 450 ; while if $I_{0 \text { max }}$ were restricted to 40 mA , and the $\mathrm{V}_{a}+{ }_{g^{2}}$ limit were ignored, V_{0} could be varied from o to 500 V .

Study of this diagram should make it a simple matter to decide on a suitable power source and V_{1} to meet stated requirements. To obtain more than a very small range of V_{0} at a 100 mA rating, it is clear that a higher anode dissipation and/or lower r_{a} is needed. One solution is to use two or more valves in parallel. This is quite feasible, but it is necessary to make sure the valves are well matched, and wise to design a little more conservatively to allow for inequality. To avoid failure of all valves if one of them gres,
individual fuses, or better still a differential relay, may be worth while.

Using a pair of EL37's in parallel, making $2 I_{k \text { mix }}=1$ Io mA to allow for the drain in $R_{1} R_{2}$, etc., (I , being the cathode current per valve), and reducing the $p_{a}+y_{2}^{2}$ rating per valve to 26 W , $p_{a}+{ }_{y^{2}}$ rating get Fig. 4. The dissipation boundary has almost disappeared; but if one still strictly observes the $V_{a}+g_{2 \text { max }}$ rating at +4 per cent mains and $2 I_{k \text { min }}$ (say romA) the range of V_{0} adjustment cannot be extended below $290 V_{\text {min. }}$ To obtain a wider range, one can assume the valves will not

Fig. 4. Design diagram for a 200-400 V unit using two EL37's in parallel for VI.
mind the possibility of occasional breaches of this limit at low cur-
rents, or else use valves with a higher rating, such as Osram PX25 triode $(500 \mathrm{~V})$ or Mazda 12 EI tetrode (700 V) ; or cover the full range of V_{0} in steps, reducing the source voltage and R_{1} simultaneously with a switch.

Hefore going into this more closely, we should consider V_{2} and its appurtenances. It is clear from Fig. 1 that V_{0} has to be not less than the reference voltage $\left(V_{\mathrm{s}}\right)$. plus the anode voltage for $V^{\prime} 2\left(V_{2 \pi} *\right)$, plus the bias for V_{1} ($V_{1 g 1}$). There is therefore a practical minimum V_{0} with this circuit. V_{N} is determined by the characteristics of available tubes, and in any case there are disadvantages in its being a very small fraction of $V_{0 \text { max }}$ - the overall feedback is reduced in the ratio $\frac{R_{n}}{R_{1}+R_{2}}$, and the "error" ($V_{N}-V_{R 2}$) is relatively serious. The table on the following page gives data for some suitable tubes.
$\mathrm{V}_{2 \pi}$ cannot be reduced too far or the gain will fall off, gradually with a triode and suddenly with a pentode. As for $\mathrm{V}_{1 g 1}$, when V_{0} and I_{0} are least it must be at its greatest. Supposing the lowest V_{0} to be provided is 200 V , and

[^7]

Stabilized Power Supplies-

$2 \mathrm{I}_{k \mathrm{ml}}$ is 5 mA , this condition is represented by point G in Fig. 4, which is practically 500 V below V_{i} with mains 4 per cent high. From Fig. 3 the bias required is -65 V . That leaves 135 V for N and V2, which is sufficient for a tube running up to about 100 V , in series with a pentode. With a $\mathrm{G}_{50 / 1 \mathrm{G}}$ tube V_{0}.uisa can be reduced to about 125 V .

The advantage of a high μ in I_{1} when a wide range of V_{0} is wanted is now clear.

Voltage gain (call it m) is the chief criterion for V2, and the most generally useful characteristic is a graph of g_{m} against I_{n}, as in Fig. 5. Multiplying both scales by K_{3} converts it into a graph of approximate stage gain against output voltage \dagger. Now the required range of output voltage is known ; it is from $1 \frac{1}{2}$ to 65 V in our example. Whatever value of R_{3} is chosen, Fig. 5 shows that if it is fed from the cathode of VI_{I} as in Fig. I the gain will vary
enormously. U'sing an EF_{42} with o. $3 \mathrm{M} \Omega$, it ranges from about 6 at $V_{1 g 1}=-I_{2}$ to 230 at $V_{1 g 1}=-$ 65.

It is clear that m can be made
stabilizing tube, Nz, as in Fig. 6. Its running voltage must be substantially less than the minimum drop across $\mathrm{V}_{\mathrm{I}}\left(\mathrm{V}_{1 a}\right)$ in order that the ratio of maximum to

TABLE

Maker	Type	Vn at $\mathbf{I}_{\text {opt }}$	$\mathbf{I}_{\min }$	$\begin{aligned} & \mathrm{I}_{o p t} \\ & \mathrm{~mA} \end{aligned}$	$\underset{\mathrm{mAx}}{\mathbf{I}_{\max }}$	Approx. A.C. resistance (Ω)
Standard T. \& C.	G120/13	5\%	$\underline{-}$	-	30	110
	(150)/1G	50	-	-	-	100
Mullard	85.11	85.7	1	4.5	8	$\cdots 90$ (at $\mathrm{I}_{\text {opit }}$)
	7475	96	1	4	8	300
American	VR.75-30	75	5	-	30	-
	VR.IOT-30 VR.150-30	105	5	-	30 30	-
						-

much more nearly constant and at the same time its average level increased by feeding R_{3} from a more positive point. It could be fed from the anode of Vi; but unfortunately the potential of that point shifts in such a way that the output required from V 2 when V_{i} varies is multiplied by $\mu_{1}+1$. Looked at another way, it is equivalent to multiply-

Fig. 5. Slope/anode-current or gain/output curves for three types of valve for V_{2} duty. $V_{\mathbb{N}_{2}}$ is the zero $V_{1 g 1}$ point using a $G .120 / 1 B$ for N_{2}.
\dagger In Fig. 5 the gains shown were actually measured data, using 0.3 3 $M \Omega$ anole coupling, K_{3} and the g_{m} scale was derived from it on th:

ing R_{i} by $\mu_{1}+1$ (see Appendix in subsequent instalment, Eqn. I 1 b$)$.

The solution is to use another
minimum drop across R_{5} does not exceed the working current ratio for the tube, and at the same time to ensure that the current is always less than that taken by R_{1} and any other permanent drains.

In our example, the limits of $V_{1 a}$ are 105 V (A to B in Fig. 4) and 495 V (G to H). Using a $\mathrm{G} .120 / \mathrm{IB}$ for N_{2}, the range across $1 R_{5}$ is thus 50 V to 440 V , and the corresponding current in \mathbf{R}_{3} (if $0.3 \mathrm{M} \Omega)$ is 0.19 mA and 0.40 mA . Limiting the current through N_{2} to 4 mA say, the total maximum through R_{5} at 440 V is 4.4 mA , so R_{5} should be 1oo $\mathrm{k} \Omega, 2 \mathrm{~W}$. The minimum current through N_{2} is then $\frac{50}{100}-0.19=0.3 \mathrm{ImA}$. This is below the working range for N_{2}, but since appreciable fluctuation of voltage across it can be tolerated that does not matter. If anything, R_{5} might be increased, because the current through N2 tends to impair stabilization at low I_{0}, for it is not controlled by the feedback. It is a function of $V_{1 a}$ and could be allowed for by a modification of Fig. 4, but normally it should not be large enough to be worth this extra complication.

The voltage across R_{2} is equal to that across N_{1} less $\mathrm{V}_{2 g 1}$. VN_{1} is (we hope) constant, and $V_{2 g}$, ought not to vary much if the unit is doing its job. Its mean value may be difficult to find, since valve makers rarely show the working region-below 0.5 mA -very clearly; so unless one plots this part oneself it may be a case of making as good an estimate as possible. With $V_{2 g \underline{2}}$ about $80-100 \mathrm{~V}, \mathrm{~V}_{2 g 1}$ averages -1.5 V for the EF_{42} and -- 3 V
for the EF36 or EF 37 . Using ant 85 AI and EF_{42} therefore makes $\mathrm{VR}_{2} 84 \mathrm{~V}$. The value of R_{2} can then be chosen to pass a suitable current, say 5 mA . The exact value is more conveniently related to R_{1}, however, because part of it $\left(R_{1 b}\right)$ is the voltage control and may have to be a value that is available. Stability of $R_{1} R_{2}$ is most essential, and good wirewound components must he used throughout. The range of voltage control in our example is 200 V , so if a $50 \mathrm{k} \Omega$ rheostat is used the current is 4 mA . R_{2} must then be
$\frac{8_{4}}{4}=21 \mathrm{k} \Omega$, and $\mathrm{R}_{1 a}$ (which must
drop $200-8_{4}=I I 6 \mathrm{~V}$) is $29 \mathrm{k} \Omega$. Maximum total roo $\mathrm{k} \Omega$; at 4 mA , 400 V , which is the designed maximum, so correct.

With $2 \mathrm{I}_{1 k}$ as low as $+\mathrm{mA}, \mathrm{R}_{5}$ ought definitely to be raised, say to $I_{50} \mathrm{k} \Omega$, to ensure that $I_{N 2}$ is always less.

The extreme range of $\mathrm{V}_{2 g 1}$ can be deduced from Fig. 5. The mean gain in our example, using $\mathrm{EFF}_{4} 2$, is about 280 ; so a range of 63.5 V output necessitates about 0.23 V at the grid, which is $\pm 0.13^{6}$ per cent of the $x_{t} V^{\prime}$ across R_{2} and therefore the same percentage of V_{0}. This can be analyzed with the aicl of Figs. 4 and 3 into the variations due to mains fluctuations and to load current. For example, at 300 V output with normal mains, change of load from zero to 100 mA (neglecting $\mathrm{I}_{\mathrm{R} 1}-\mathrm{I}_{\mathrm{N} 2}$) necessitates a change in $V_{1 g 1}$ from $-4^{8} \mathrm{~V}$ to - Ig V, represented by P to Q in Fig. 5. Dividing the voltage change, 29, by the mean gain, 290, gives o.i V as the chan re in 84 V . and so 0.36 V in 300 , corresponding to a mean internal resistance of $0.36 / 0 . \mathrm{I}=3.6 \Omega$. The value varies considerably over the range of I_{0}, owing to variation in $I_{1 a}$. being higher when I_{0} is small and vice versa.

Similarly the V_{0} variation corresponding to $\therefore 4$ per cent mains variation from normal at 300 V 100 mA output can be shown to be \therefore o.or 43 per cent, or a stabilization ratio of $280:$ I

Formulæ for these parameters will be derived in the Appendix.

In the above calculations it is assumed that $\mathrm{I}_{2 \pi}$ is not appreciably affected by variations in the potential of any electrode other
than g_{1}. The gain m is reckoned on this basis. IReasonable constancy of anode feed voltage has been ensured by $\mathbf{N} 2$. But what about the cathode and g_{2} ? It seems to be generally assumed by writers on the subject that Ni keeps the cathode steady against any variations in the voltage of the source feeding it. That is by no means true. The A.C. resistance of Ni^{2} at its optimum current is usually of the order of 300Ω, and it is possible for the voltage drop to vary sufficiently to upset completely the performance calculated as abore. Even though the feed resistance 12 , may be, say,

Fig. 6. Modified feeds for V_{2} to ensure higher and more uniform gain.

500 times as great, so that source variations are reduced in the ratio $501: \mathrm{I}$, it must be remembered that they are then multiplied by the total feedback gain, $\mu_{1} m$, which may be of the order of 2500 .

So to preserve the stabilization it is desirable (and to use Ni as a voltage standard it is essential) to feed Ni from a stabilized source. If V_{n} is fixed, it is the obvious source. Keeping the current constant in this way, the best use can be made of a good tube. The makers of the 85 AI claim that its short-term stability is within \perp o.i per cent, and longterm stability ± 0.2 per cent, so that it can be used as an accurate voltage standard. For this purpose it is desirable to use a circuit in which V_{N} is applied
to the grid of a valve, to avoid current changes in Ni_{I} via the valve; but for power supply purposes such changes are generally negligible.

If $I_{N_{I}}$ is kept constant in this way, g_{2} can be tapped off the feed resistance, R_{4}, at about $100 \mathrm{~V} . \mathrm{IR}_{4}$ itself is chosen to pass about +mi , compared with which $I_{2,1}$ and $I_{2 g 2}$ are small.
The same arrangement will do if V_{0} is variable over a moderate range, but it may then be desirable to substitute a regulator tube for $R_{4 b}$, the part of R_{4} between g_{2} and h.

For a wide range of V_{0} control it would be necessary to gang $\mathrm{R}_{4,1}$ with $\mathrm{I}_{1 b}$. which would be rather a nuisance. It is therefore usual in a unit such as we are considering to feed Ni from the anode side of Vi. Here the range of voltage variation is relatively small, but, unlike the variations of V_{0}, which occur only while it is being adjusted, they are "stabilization" variations, in opposition to those provided by V2, It will be shown in the Appendix (Eqn. roa) that the effect is as if the source resistance, R_{i}, were increased by a factor equal to the total gain round the loop $\mathrm{R}_{4} \mathrm{~N}_{1} \mathrm{~V}_{2} \mathrm{~V} \mathrm{r}$, that is to say $\mu_{1} m v_{\mathrm{N}_{1} /} / \mathrm{R}_{4}$, which may mean a several-fold increase in apparent R_{i}, and a corresponding loss in stabilization.

A very convenient way out of this trouble is to adjust the resistance across which $V_{g g 2}$ is obtained ($\mathrm{R}_{1 b}$) so that its variations neutralize those in $V_{N 1}$. Neglecting the $I_{2_{2} 2}$ variations, the correct value of $\mathcal{R}_{1 b}$ is thus $\mu_{2 g \frac{2}{2}} r_{\mathrm{N} 1}$, where μ_{292} is the amplification factor between g_{1} and g_{2} in $V 2$. In the $\mathrm{EF}_{4} 2$ it is $85 ;$ but since I_{292} variations add to those in Ni the result is as if it were somewhat lower, in a measured example about 65 . The value of $R_{4 b}$ to fulfil this requirement is not necessarily suitable as regards the standing $V_{2 g 2}$: but in our case it is, for with r_{N}, at 300Ω, effective $\mu_{2 g 2}$ say 65 , and $I \mathrm{R}_{4 b}$ at 4 mA , we have $7_{8}^{8 \mathrm{~V}}$, which is quite a satisfactory screen voltage.

Having neutralized the apparent extra R_{i} in this way, one may well ask why the real R_{i} slould not be neutralized too. As the Appendix will show (Eqn. (a), this operation is equivatent to neutralizing an

Stabilized Power Supplies-

added resistance in Ni equal to $\mathrm{R}_{4} / \mu_{1} m$. In our example, the mean V_{i} is about $600 \mathrm{~V}^{\prime}$ (Fig. 4) ; less $V_{N 1}$ this is $5^{I} 5 \mathrm{~V}$, so, to pass $4 \mathrm{~mA}, \mathrm{R}_{4}$ should be about i $30 \mathrm{k} \Omega$. Taking $\mu_{1} m$ as 2000 , the extra $R_{4 b}$ required is $4.2 \mathrm{k} \Omega$.

When $\mathrm{R}_{4 b}$ is correctly adjusted, then, the unit behaves as if R_{i} were zero; and, what is more, stabilization as regards variations in mains voltage is theoretically perfect. It is accomplished solely via the sereen grid of V2, output feedback via the control grid being unnecessary, and variations in V_{0} nil. In practice it does not work out quite like that, because certain of the factors, notably m, are not constant. The slightest
departure from exact adjustment of $\mathrm{R}_{4 b}$ would, if there were no output feedback, make the stabilization fall right off. The designer should therefore aim at the greatest possible basic stabilization by output feedback, which does not depend on critical adjustments ; and then any unavoidable variations in the further improvement conferred by input feedback will be of minor importance.

For this reason it is not altogether recommended that input feedback be used to neutralize the large apparent increase in source resistance that would be produced if R_{3} were fed from the input side of V^{\prime}, although it could do so, and would save N_{2}
and R_{5} and the uncontrolled current around Vi.

By increasing $\mathrm{R}_{4 b}$ beyond that necessary to neutralize R_{i}, it can be made to neutralize $r_{1 a}$ also, with the result that R_{0} (the resistance of the unit as a whole) is zero, and the output voltage is -subject to variations in $n l$ and $r_{1 n}$-entirely unaffected by changes in load current. At this setting of $\mathrm{R}_{4 b}$ the unit is somewhat overcompensated for mains fluctuations. In practice one would adjust $R_{4 b}$ to give a compromise depending on the relative importance of mains voltage and load current changes. It is practicable in this way to improve on the basic stabilization in both respects.
(To be continued)

SH0RT-WAVE CONDITIONS

August in Retrospect : Forecast for October

By T. W. BENNINGTON and L. J. PRECHNER (Engineering Division, B.B.C.)

DURING August, while the average daytime maximum usable frequencies for these latitudes were much higher than in July, the night-time MUFs were considerably lower than during that month. This was in accordance with the normal seasonal trend, and it may be expected that the NUFs will now continue to vary in that manner towards the winter. One should note, however, that the conditions were very disturbed in the first two weeks of August.
Although communication on frequencies higher than $35 \mathrm{Mc} / \mathrm{s}$ was rather infrequent, yet, owing to the rapid increase in the average maximum usable frequencies, many contacts have been made. Frequencies below $14 \mathrm{Mc} / \mathrm{s}$ for distances exceeding 3,000 miles were not often usable at night.
The rate of incidence of Sporadic E was still very high, in accordance with the seasonal trend.
Sunspot activity in August was somewhat greater than in July, and may have had some connection with the exceptionally disturbed conditions in early August. Ionospheric storms were observed on 1 ist-3rd, $4^{\text {th- }} 5$ th, 7 th-1 $3^{\text {th }}$, 2oth21 st and 29 th-3ist.
Not very many "Dellinger" fadeouts have been recorded in August, but those on 6th and 9 th were fairly severe.
Forecast.-- Although the daytime Ml'es should continue to increase
in October and reach very high values, these should be below the $19+7$ values, having regard to the fact that sunspot activity has decreased since last year. Long-distance communication on very high frequencies should therefore be frequently possible in all directions from this country. The $28-\mathrm{Mc} / \mathrm{s}$ amateur hand, for example, should be regularly usable at the suitable time of the day, and frequencies considerably higher than this should also become workable over certain circuits. Night-time working frequencies will probably decrease somewhat as compared with September. Frequencies as low as $9 \mathrm{Mc} / \mathrm{s}$ will become the optimum for many night-time circuits, though frequencies lower than this will not be often necessary.

As the E and F, layers will not control transmission for any distance in these latitudes, and as Sporadic E is not likely to be much in evidence, medium distance communication on high frequencies will seldom be possible.

Below are given, in terms of the broadcast bands, the working trequencies which should be regularly usable during October for four longdistance circuits running in different directions from this country. All times in this article are GMT. In addition, a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this
indicates the highest frequency likely to be usable for about 25 per cent of the time:-

Montreal :	0000		Ic / s	(15)	Mc's
	(1)40)	7	"	(11)	,)
	0800	$1)$	"	(14)	"
	0 OM	11	"	(1)	,)
	1000)	15	"	(2)	,)
	1101	17	"	(27	,)
	1200)	21	"	(30)	"
	1400	2)	"	(35)	",
	1900	21	"	(32)	,1)
	2000	17	"	(2)	")
	2100	15	"	(2)	")
	2200	11	"	(18)	",
	2300	9)	"	(14)	, ${ }^{\prime}$
Beunos Aires	0000	11	Ic / s	(18)	Ic (s)
	0400	9	"	(16)	")
	()600	11	"	(17	",
	0700	15	"	(20	",
	0800	17	"	(25)	",
	03900	21	"	(32)	,)
	1000	28	"	(40)	,)
	2000	21	"	(32)	,)
	$\underline{2} 100$	17	,	(26	")
	≥ 200	15	"	(2)	, ${ }^{\text {(}}$
Cape Town :	0000	11	Ic / s	(19)	Mc/s)
	0200	9	"	(16)	,)
	0500	11	,	(18)	, 1
	0680	21	''	(30)	"
	0700	26	"	(38	, ${ }^{\prime \prime}$
	1900	21	${ }^{\prime \prime}$	(31	",
	2000	17	"	(26	,")
	2200	15	"	(22)	")
Chungking :	0000	${ }_{7} \mathrm{Mc} / \mathrm{s}$			
	0400	9	,"	(16)	,")
	0500	15	"	$(24$,
	0060	17	\cdots	(28	${ }^{1}$,
	0700	21	,	(30)	"
	(180)	26	"	(38)	",
	13300	21	"	(*8)	,
	1400	17	"	(2)	,19
	1800	17	,	(2)1	, 1
	1700	11	''	$(17$, 1
	1900	9	"	(1)	",

October is often a fairly storn:y month, and some periods of poor communication are therefore to be expected, At the time of writing it would appear that such disturbances are more likely to occur within the periods ist-5th, $14^{\text {th }}$-16th, 2oth-22nd and 28th-3ist than on the other days of the month,

FOUR-WAY ELECTRONIC MIXER

This unit with 4 built-in, balanced and screened microphone transformers, normally of $15-30$ ohms impedance. Has 5 valves and selenium rectifier supplied by its own built-in screened power pack: consumption 20 watts.
Suitable for recording and dubbing, or large P.A. Installations since it will drive up to $6-50$ watt amplifiers, whose base dimensions it matches normally for output line of 20,000 or less load since ample feedback is used.

Price in case with valves, etc., $£ 2400$

30-WATT RECORD REPRODUCER

This amplifier has been produced for extremely high quality gramophone or microphone quality in large halls or in the open. An output power of 30 watts is obtainable at under 1% distortion after the output transformer which is arranged for $4,7 \frac{1}{2}$ or is ohm output. The most noticeable point is the absence of background noise or hum. Very generous feedback is employed to help cancel out any distortion developed by the speaker and the large damping factor ensures good transient response. The usual response of 30 to 25,000 cycles plus or minus $\frac{1}{2} \mathrm{db}$ is given, and recording compensation of 5 db per ortave lift below 300 cycles is obtainable on the gramophone input by means of a switch. A carefully balanced treble control is arranged to correct top lift on some recordings as well as to reduce scratch on old records without noticeable effect on frequencies below 3,500 to 4,000 cycles. The input is intended for the high fidelity type of pick-up and is fully loaded by an input of .2 volts on 100,000 ohms or $\frac{1}{4}$ megohm as required. The microphone stage if
 fitted requires an input of .3 millivolts on 15 ohm through the wide response mu-metal shielded microphone transformer. An octal socket is fitted at the rear of the chassis to provide power for feeder units, etc., 6.3 volts at 2 amps and 350 volts at 30 milliamps is available.

As illustrated. Price $30 \frac{1}{2}$ gns.
10 WATT RECORD REPRODUCER WITH MICROPHONE STAGE, IN CASE PRICE $25 \frac{1}{2}$ Gns. SUPER FIFTY-WATT AMPLIFIER PRICE $36 \frac{1}{2}$ Gns.
CP20A FOR A.C. MAINS and 12 VOLT BATTERY PRICE 228

PमाIIPS

THE " VOXMOBILE" AMPLIFIER

Type 2856R
Mobile - Indoor - Outdoor
Operates from A.C. Mains or 12 -volt battery Output:-12-watts. Self-contained
The Voxmobile is a really versatile amplifier. While it produces excellent quality, it is light, quickly connected, and operated equally as well either from A.C. mains 250 volts or a 12 -volt car battery.
One of the outstanding features of this amplifier is the high sensitivity; only 3.5 mV being required into I megohm to produce the full output, thus allowing wide pick-up and the use of high quality microphones.

List Price: $£ 38$. 0.0

Excellent reproduction and wide angle distribution. Weatherproof - light - robust.
For use Outdoors, Indoors, or on a Vehicle.
No back radiation and therefore minimum feed-back. The ideal "general-purpose" quality P.A. Speaker. Complete with line transformer tapped at either I, 3 or 6 watts.

List Price: $£ 8.0 .0$
Complete Voxmobile "All-Purpose" Equipment
The ideal general-purpose equipment for Dealers and for Religious, Political, Social and Sporting Organisations. Comprises:-Amplifier, high fidelity moving-coil microphone, substantial stage-type microphone stand and two type $9816 T$ speakers.
List Price: 870 . 0. O. Available to all bona fide Traders
philips electrical limited, amplifier department, Century house, shaftesbury avenue, london, w.c. 2

List Price: L8.0.0
R.T.E.B. Diploma Courses for

HAIMID SEREMCE

EXGIVEERS
The Diploma of the British Radio Trades Examination Board is now accepted by the Radio trade and by the Public as an assurance of efficiency in radio servicing.
-THE BASIC RADIO course offered by E.M.I. Institutes offers a first class way to success in the examination for Radio Service Engineers. Already hundreds have been enrolled. A course for TELEVISION Service Engineers is a'so availab.e.
Details of these and other courses are contained in a new Free Booklet.
Write today for a copy to :

E.M.I. INSTITUTES LTD.

Dept. 16, 43 Grove Park Road, Chiswick,
London, W.4. Telephone CHIswick 44r7/8
E.M.I. Institutes-the Training College with Britain's Leading Electronic Organisation behind it.

ELECTRONIC CIRCUITRY

THE time delay flip-lop is a circuit possessing one stable and one unstable state. Normally in the stable state, on the receipt of a short pulse it can be forced into the unstable

Time Delay Flip-flop Circuits

 state where it remains for a period, t_{0}, determined by its own time constant. The leading edge of the resultant rectangular waveform is obviously coincident with the triggering impulse, and a second pulse can be obtained from the trailing edge (by a differentiator circuit for example) after a time t_{0}, as shown in Fig. I. Alternatively the rectangular
Selections from a Designer's Notebook

J. McG. SOWERBY
(Cinema Television Ltd.)

On the receipt of a positive pulse V_{1} conducts and its anode moves negatively and cuts off V_{2} via $R_{2} C_{2}$. Provided the triggering pulse is very short, V_{1} is then left conducting with a current determined by R_{c} operating as a normal cathode bias resistor. The resultant voltage drop across R_{L} is applied to $R_{2} C_{2}$ and keeps V_{2} cut off until most

Fig. I. Waveforms in the flipflop circuit.
waveform itself can be used as a pulse of known duration, or for any other purpose. The time t_{0} may be given any value between about 2 microseconds and 30 seconds without using extreme values of resistance or capacitance, so that this type of circuit can be put to a wide variety of uses.

Several time delay flip-flop circuits are described by O. S . Puckle in his book " Time Bases," and many readers will be familiar with the circuit of Fig. 2. Quite often the input time constant $\mathrm{R}_{1} \mathrm{C}_{1}$ is made short (a differentiator) to obtain the triggering pulses of Fig. I from a rectangular waveform. Initially in the stable state V_{2} is conducting, since it is at zero bias, and R_{c} is large enough to permit V_{I} to be cut off.
of the charge on C_{2} has leaked away through R_{2} and R_{L} in series. At some point on this discharge cycle V_{2} begins to conduct again
and to reduce the current in V_{1}. This action is cumulative and the circuit returns to its stable state again ; in doing so C_{2} is re-charged partially through R_{2}, but prin-

Fig. 2. Simple time delay flipflop. Typical values :- $\mathbf{R}_{1}=$ 100k $\Omega, \quad R_{2}=I M \Omega, \quad R_{L}=100 \mathrm{k} \Omega$, $\mathbf{R}_{\boldsymbol{c}}=1000 \Omega, \mathbf{Z}_{o}=$ required load, $\mathrm{C}_{1}=$ roop $\mathrm{F}, \mathrm{C}_{2}$ according to required $t_{0}, E=200$ volts, $V_{1} V_{2}=$ ECC_{32} or 6 N 7 .
cipally through R_{L} and the gridcathode path of V_{2} in series. The circuit therefore requires a little time to recover before it is ready to accept another triggering pulse.

The period t_{0} during which the unstable state persists is generally of the order of $5 \mathrm{R}_{2} \mathrm{C}_{2}$ depending

Fig. 3. Improved flip-flop circuit. Typical values:- $R_{1}=100 \mathrm{k} \Omega, \mathrm{R}_{2}=100 \mathrm{k} \Omega-3 \mathrm{M} \Omega$, $R_{6}=6.8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{e}}=4 \mathrm{k} \Omega, \mathrm{C}_{1}=100 \mathrm{pF}, \mathrm{C}_{2}$ according to required $t_{0}, \mathrm{E}_{1}=40 \mathrm{~V}$, $\mathrm{E}_{2}=55 \mathrm{~V}, \mathrm{E}=250 \mathrm{~V}$ volts, $\mathrm{V}_{1} \mathrm{~V}_{2}=\mathrm{ECC}_{32}$ or $6 \mathrm{~N} 7, \mathrm{~V}_{4}=\mathrm{V}_{3}=\mathrm{EF} 50, \mathrm{~V}_{5}=\mathrm{EA} 50$. ${ }^{0}$ N.B. For $t_{0}<10 \mu \mathrm{sec}$ miniature valves would be desirable.

Electronic Circuitry-

on the particular circuit details.
For short times an improved circuit has recently been published ${ }^{1}$ and is shown in Fig. 3. As before, V_{1} and V_{2} together with $\mathrm{R}_{2} \mathrm{C}_{2}$ form the time delay flip-flop. The anode of V_{1} is here coupled to the grid of V_{2} by the cathode follower V_{4}, and the diode V_{5} holds the grid of V_{2} at the potential F_{2} which is determined by R_{5} and K_{g}. The triggering pulse is fed into the anode of V_{1} (rather than the grid as in Fig. 2) by V_{3} which is normally cut off.

Initially in the stable state V_{g} is conducting because E_{2} is always greater than E_{1}, and V_{1} is cut off. When a short positive pulse is applied to the grid of V_{3} through $R_{1} C_{1}$, the grid of V_{4} (and hence of V_{2}) is driven negative, so that V_{2} is cut off and V_{1} is left conducting with a current of approximately E_{1} / R_{c}. The resultant voltage drop across R_{L} is applied to $R_{2} C_{2}$, and C_{2} begins to leak away through R_{2}. Since the voltage across R_{2} approximates to the full H.T. potential, this leakage is rapid, and the grid of V_{2} moves positively. Eventually V_{2} begins to conduct and to reduce the current in V_{1}. This action is cumulative so that V_{1} is abruptly cut off again, and the consequent voltage change across R_{L} attempts -via V_{4}-to drive the grid of V_{2} positive. However V_{5} now conducts and C_{2} is restored to its initial state of charge relatively rapidly as R_{6} is low compared with R_{2}. Hence the recovery time of the circuit after returning to the stable state is very short, so that it is quickly able to accept another triggering pulse.

The period for which the unstable state persists is given approximately by

$$
t_{0}=2.3 \mathrm{R}_{2} \mathrm{C}_{2}\left[\operatorname { l o g } \left(\mathrm{r}+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{c}}}-\right.\right.
$$

where $\boldsymbol{x}=\mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)$ and $\beta=$ $R_{6} /\left(R_{5}+R_{6}\right)$.

It is useful to realise that t_{0} can be varied over quite a wide range by the adjustment of E_{1} (i.e. α in the equation). The main advantages of this circuit are (i) delay times down to 2 microseconds are obtainable, (ii) the circuit has a short recovery time

[^8]so that it can spend most of its time in the unstable state if desired, and (iii) the time delay is controllable and constant within a few per cent.

O$N E$ of the uses of the time delay flip-flop is to energise (or more usually de-energise) a relay for a predetermined period, t_{0}. It is not always remembered that a relay represents an inductive

> Relay Operation by Valves load, so that if switched by a valve as shown in Fig. 4 quite large peak potentials of several hundred volts or more can easily exist across the relay coil at the instant of switching off (or on). These peaks tend to stray into undesired places in the usual annoying way and cause trouble, so it is often desirable to reduce them.

This reduction can be effected

Fig. 4. Valve-controlled relay with surge suppressor shown dotted.
by a shunt resistor across the relay coil, but this is wasteful of anode
$\beta)-\log (1-x)]$
current. A better solution is to shunt the relay coil (of resistance R and inductance L) with a resistance $n \mathrm{R}$ and a capacitance C in series as shown dotted in the figure. The peak voltage at the anode is then $\mathrm{E}_{p}=\mathrm{I}_{a} n \mathrm{R}$, where I_{a} is the anode current of the valve. By suitable choice of n it is obviously possible to give E_{p} any value we like. However, C must be chosen correctly or damped oscillations-also undesirable-

OUR COVER

C.R D.F - The illustration on this month's cover shows the cathode-ray direction-finder used at the Central Forecasting Office (Meteorological Office), Dunstable, for the location of thunderstorms. The equipment, which was made by the Plessey Co., operates on a frequency of about $10 \mathrm{kc} / \mathrm{s}$.
will appear. The correct value is

$$
C=\frac{4 \mathrm{~L}}{(n+1)^{2} R^{2}}
$$

As long as n is greater than one, the current through the relay coil will rise to I_{a} in a finite time- t^{\prime} and we may regard this time as the lag between switching the grid of the valve and the coil current reaching its operating valuebecause I_{a} is not generally much in excess of the minimum operating relay current for reasons of economy. The time taken for the relay current to rise to its operating value (actually I_{a}) is, then

$$
t^{\prime}=\frac{2 \mathrm{~L}}{(n-1) \mathrm{I}}
$$

and this lag is the penalty to be paid for the reduction in the peak voltage across the coil.

A relay of the usual P.O. type measured by the writer recently has a resistance of $\mathrm{I}, 000 \mathrm{ohms}$ and an inductance of 3.5 henrys. The energising current (I_{a}) was made 15 mA , and n was made 2.7 giving a peak voltage of 40 volts at the instant of switching on or off. Using the above equations, the shunt impedance was made $2.7 \mathrm{k} \Omega$ in series with a condenser of $2 \mu \mathrm{~F}$ and this yielded a satisfactory result since t^{\prime} worked out to be 4 milliseconds which, of course, was much less than the inherent mechanical lag of the contact assembly, etc.

BOOKS RECEIVED

Glossary of Terms used in Waveguide Technique. This is supplement No. 1 (1948) to B.S. 204: 1943 (Glossary of Terms used in Telecommunication). British Standards Institution, 28, Victoria Street, London, S.W.I, Price 25.
One Story of Radar. By A. P. Rowe. An account, largely non-technical, of the wartime development of radar at Telecommunications Research Establishment, by a former Chief Superintendent. l'p. 208; many illustrations. Cambridge L'niversity Press, 200, Fuston Road, London, N.W.i. Price Ss 6 d .

TELEVISION STANDARDS The Case for 405 Lines

IN the early part of 1937 the present British television standards were adopted after some months of experimental transmissions, carried out alternately with the present and with another system. Since then there has been a daily public service of television which was interrupted only during the war years.

It is the oldest regular service in the world and more experience has been gained with it than with any other. It also has the fewest scanning lines of any existing television system. Since it is generally believed that the picture definition obtainable is a direct function of the number of lines there has been a good deal of pressure put on the television authorities for an increase.

This pressure was most marked immediately after the war because the resumption of the service after a six-year break was unquestionably the ideal time for introducing any change of standards. Most existing receivers required overhauling after their spell of idleness and changes to suit them to new standards could have been made at the same time.

However, it was clecided to adhere to the 405 -lines standard, but ever since there have been rumours that this was to be only an interim measure and that a drastic alteration was to be expected in a few years' time. Such rumours did considerable harm to the television industry, for although they were assessed at their true worth-nothing-by the industry itself, they tended to discourage the nontechnical public from buying television apparatus.

The recent statement that the present standard is to be maintained indefinitely and certainly for many years is thus particularly welcome. It may come as a surprise, however, to those who believe that the 405 -line standard is an obsolete one and point to the American use of 525 lines and to their experiments with colour.

The number of scanning lines has become something of a fetish and is often taken as a clirect measure of the picture quality. In fact,
however, it is mothing of the sort. It indicates increly one limit to definition. In fact, under some quite common practical conditions an increase in the number of lines may well reduce the picture quality. This matter is so important and has been so little discussed in the past, that it is advisable to go into it in some detail.

The number of lines used primarily governs the definition only in the direction at right angles to the scan ; that is, vertically with all current systems. The lines divide the picture into narrow strips and it is obvious that the more strips there are the better until the limit set by the size of the scanning spot is reached. If there are too many lines for the size of the spot they will overlap and no advantage is then gained from increasing their number.
The spot size obtainable in practice depends on the design of the cathode-ray tube, the design of the deflecting system and upon the voltage at which the tube is operated. In general, the attainment of a minimum spot size demands highvoltage operation and the use of a deflection sustem of rather low efficiency. Both factors increase the power needed for scanning and consequently make the cost of a receiver greater.

Horizontal Definition

In the direction of scan-hori-zontally-the number of lines has no direct influence on the definition, which is actually governed only by the overall bandwidth and the size of the scanning spot. The bandwidth limits the maximum rate at which the light intensity of the spot can change. When the spot in the transmitting camera passes across a hard edge-say the edge of a vertical column in the scene being tele-vised-it is required for perfect definition that the light intensity of the spot on the receiving tube shall change instantaneously from one light value to another.

Due to the finite bandwidth of the circuits between the camera and receiving tubes, this cannot occur and a finite time is taken to

PORTABLE MODEL-B65 A completely self-contained low power P.A. system. Battery Operated.
This exceptionally compact equipment incorporates the amplifier complete with loudspeaker, rotary transformer, 6 volt unspillable accumulator, and microphone with cable, all self-contained in an easily portable case. Independent switches allow valve filaments to be kept warm in the non-operating condition at about 1/3rd normal battery consumption. Power output is approximately s watts, and for outdoor use the addition of a separate projection type speaker substantialiy increases the range. A most useful outfit for motor coaches, buses, police, auctioneers, and numerous other applications where no electric supply mains are available. Send for details.

TRIX RIBBON MICROPHONE
is designed for high quality reproduction. Frequency response substantially linear from $60-10,000$ c.p.s. Minimum feedback. Send for full details
THE TRIX ELECTRICAL CO. LTD. J. 5 Maple Place. Tottenham Court Road. London, W.I.
'Phone: MUSeum 5817.
Grams \& Cables:" Trixadio, Wesdo, London."
AMPITTERS MICROPHONES - LOUDSPEAKERS

Television Standards-

accomplish the change. The usual 9 -inch receiving tube gives a picture 19 cm wide, and with the British system the spot travels across it with a velocity of $2.28 \mathrm{~mm} / \mu \mathrm{sec}$. If the system has an overall bandwidth such that a change of light intersity cannot be completed in less than $0.2 \mu \mathrm{sec}$ the spot must travel $2.28 \times 0.2=0.456 \mathrm{~mm}$ while the light is changing. The result is a blurred, instead of a hard, edge.

With a given number of lines, any increase of bandwidth reduces this transition time and so increases the horizontal definition. With the standard 405 lines and a bandwidth of $2.5-3 \mathrm{Mc} / \mathrm{s}$, the vertical and horizontal definitions are roughly equal. Increasing the bandwidth to some $4-5 \mathrm{Mc} / \mathrm{s}$ results in very noticeably higher definition without clianging the number of lines. The horizontal definition is then better than the vertical, but the result is an improved picture.

Now if the $2.5-\mathrm{Mc} / \mathrm{s}$ bandwidth is retained and the number of lines is increased the vertical definition is improved but the horizontal definition is decreased. With more lines the scanning velocity is increased and as the rate of change of light intensity is unaltered the distance travelled by the spot during the change is increased. To maintain the horizontal definition unaltered it is necessary to increase the bandwidth in proportion to the number of lines. To improve both horizontal and vertical definition at the same, rate, the bandwidth must be pripertional to the square of the number of lines.

The size of the scanning spot exercises an effect very similar to that of a finite bandwidth and must be reduced as the bandwidth is increased if it is not to become a limiting factor.

It is clear from this that if the overall bandwidth is limited for any reason there is an optimum number of scanning lines which will result in the best picture. This optimum is roughly the number which results in equal vertical and horizontal definition, but it is not critical. The choice of the number of lines for a television system is, therefore, dictated by the bandwidth which it is practicable to adopt.

It must also be pointed out that the power needed in the receiver for carrying out the horizontal scan is proportional to the number of lines.

As scanning generators for 405 lines consume some 20-50 watts, according to their design, any large increase in the number of lines is likely very appreciably to increase the cost of a receiver. Bearing this in mind it may be preferable to use a number of lines slightly less than the optimum. In other words, it may be desirable to obtain a given picture standard by increasing the horizontal definition at the expense of the vertical since by so doing a cheaper scanning circuit can be used in the receiver.

Bandwidth

We have now to consider what factors limit the usable bandwidth in practice. The limitations are more economic than technical, but there are practical limits to what can be achieved in the way of reducing the size of the scanning spot in the receiver tube. However, even these are mainly economic.

As the bandwidth is increased the receiver stage gain falls off and more stages of amplification become necessary. The attainment of a smaller spot, while retaining normal brightness, demands a higher operating voltage for the tube and this, in turn, necessitates an increase of scanning power, over and above that needed directly to produce a higher-velocity scan. It is obvious that receiver costs must increase with the number of lines.

It is difficult to find any definite relation between the number of lines and the cost of a receiver but the increase of the one with the other is likely to be considerable. Matters are not helped by the natural tendency for the reduced production rates of higher-priced equipment to be reflected in still higher production costs.

Apart from the receiver there are two factors which materially limit the practical bandwidth. The first is the usual one set by the need for avoiding mutual interference between transmitters operating in a limited frequency spectrum. With the present 405 -line standards there is room for only about five clear channels in the European television band of some $40-70 \mathrm{Mc} / \mathrm{s}$. In a general European service, sharing of channels must be adopted, which means that the transmitters must be widely separated geographically.

However, the fact that the normal range of such stations is
about $50-70$ miles does not mean that interference will not be found between stations much more widely separated. The British station has been received on occasion in South Africa and in the U.S.A., in the latter case with sufficient intensity for a picture to be resolved.

The use of any appreciably greater number of lines would so increase the bandwidth as to make the problem of frequency allocation in the $40-70 \mathrm{Mc} / \mathrm{s}$ band an insoluble one. The use of higher frequencies brings its own problems in its train. The range of the transmitter is reduced and this makes it exceedingly hard to cover rural areas economically. In urban districts, buildings produce reflections which cause serious interference. This is very evident in the American highfrequency transmissions and aerial siting for their avoidance seems to be the major problem of receiver installation.

Because of this trouble from reflections, the use of higher power is not the answer to obtaining increased coverage. The need is for more stations. This in its turn increases the cost of feeding the stations with programme material. To provide each station with its own studio and independent programmes is prohibitively costly. It is necessary to have a very few central studios and programmes and to relay the signals to the transmitters by cable or radio links.

One of the most important programme items in television consists ${ }^{\circ}$. sporting events, and these usually take place remote from a transmitter. Mobile equipment is used and is linked to the main transmitter by cable or radio.

Relay Links

In any general television scheme, therefore, great use of cables or radio links must be made for conveying the signals to the transmitters. It is the bandwidth economically obtainable in such links which forms the major practical limitation to the number of lines which can be usefully employed.

If we compare two systems, such as the British 405 -line and the American 525 -line, we may expect that the American will give higher definition when the programme originates in a studio near the transmitter, but that it will give poorer definition than the British when the
progranme originates from a remote point and must be conveyed by a link of only $2-2.5-\mathrm{Mc} / \mathrm{s}$ bandwidth. If such remote programme sources are to lee used to any extent, therefore, it is clear that the advantage lies with the British system of fewer lines. This is especially the case when the lower cost of receivers, the greater service area of each transinitter, and the simple installation problems are taken into account.

This question of the bandwidth practicable for television relaying is the crux of the matter. In the case of permanent links for uniting a studio in the heart of a town with a transmitter a few miles away there is no serious difficulty in providing almost any bandwidth. For permanent links of a hundred miles or more a bandwidth of $2-2.5 \mathrm{Mc} / \mathrm{s}$ is probably the most that can be economically achieved with a cable. Radio links with a chain of relay stations offer better hope of greater bandwidth, but are as yet largely untried. One is being erected between London and Birmingham and more will be known of its capabilities when it is in operation. The practicability of such a link, of course, depends much upon the nature of the intervening country.

For the relaying of sporting events, which occupy a large proportion of programme time, it is feasible to install special cable only at a few places from which relays are frequent. In most cases portable equipment must be used with cables of rather narrow bandwidth. The radio link is not always practicable inside a town on account of the difficulty of placing the transmitting aerial suitably. The B.B.C. uses a 'fire-escape' to carry the aerial, but very often it employs the ordinary telephone system! It has been found practicable to equalize such lines up to some $1.5-2 \mathrm{Mc} / \mathrm{s}$ provided only a very few miles is involved.

In view of all this it may fairly be stated that the present 405 -line system is the best suited to the realities of television. If more lines were used better pictures could be obtained from studio transmissions, for there is then little bandwidth difficulty. However, outside broadcasts would usually be poorer than with 405 lines. Outside broadcasts are of great importance in popularizing television, and it is clearly wrong to increase the number of lines if by so doing poorer pictures are obtained on such broad-
casts, especially if the change is reflected in increased receiver prices.

Optimum Lines

Now what does all this mean in practice? Two tacts are clear. If the bandwidth is limited there is an optimum number of scanning lines for the best definition. Receiver prices increase with an increase in the number of lines. Clearly under icleal conditions there is a practical limit to the bandwidth set ly receiver costs. What this limit is has not yet been determined, but it is possible that quite a considerable increase would be practicable.

Other bandwidth limitations depend very largely on the distribution of the population in a country. If the bulk of the population is concentrated into a few large towns separated by great distances of sparsely inhabited country, any attempt at complete coverage is impracticable in the present state of the art. Each town must have its own independent television system with a central transmitter and its own studios. Outside broadcasts would never originate at, perhaps, more than five miles from the transmitter. There is then little or no difficulty in providing large bandwidth. Systems of some 60% lines become practicable and desirable.

On the other hand in more densely inhabited countries like Britain and much of the Continent, large towns are separated by 50 miles or less and the rural areas are relatively densely populated. Coverage over a much larger total area is: needed and it is impracticable on economic grounds to provide each of the transmitters required with its own independent local programme.

Cable and radio links of 50-100 miles are needed to feed the outlying transmitters, and in the not distant future, longer links will be necessary. The cost of such links increases enormously when the bandwidth exceeds about $2.5 \mathrm{Mc} / \mathrm{s}$, and so there is a definite limit to the number of scanning lines which is desirable.

All transmitters on such a linked system must operate on the same basic standards, and so we find that for the general requirements of a television service in Britain and the Continent a number of lines around the present 405 is about the optimum.

GALPIN'S

ELECTRICAL STORES,

408. HIGH STREET, LEWISHAM, LONDON, S.E.I3
Telephone : Lee Green 0309. Near Lewisham Hospital.
TERMS: CASH WITH ORDER. NO C.O.D. ROTARY CONVERTERS, EX-ADMIRALTY, 110 volts D.C. to 230 volts A.C. 50 cyc. 1 phase rated at 200 watts but capable of 550 watts continuous rating, weighs approx. 100 lbs.. centinuous rating, each, carriage $10 /$-. Another Ex-R.A.F. E8/10: each, carriage 20 voits Another Ex-R.A.F. 50 eys. I ph.
12 volts D.C. input, 220 vols at 100 watts output, approx. weight 15 ibs ., as new, 85/- each, carriage 3/6.
VARIAC TRANSFORMERS. Inpur variable between $200 / 240$ volts output constant at 220 volts at $7 \frac{1}{\frac{1}{2}}$ amps., $90 /$ - each, carriage $5 /-$.
MAINS TRANSFORMERS, all 200/250 volts 50 cys . I ph. input, output $700 / 0 / 700 \mathrm{v} .70 \mathrm{~m} / \mathrm{a}$., 50 cys .1 ph . input, output 400 . $2 \frac{1}{2}$ a., 12 v .1 a ., $30 /$-each. Another $525 / 525 \mathrm{v}$. $4 \mathrm{v} .2 \frac{1}{2}$ a., $12 \mathrm{v} .1 \mathrm{a},, 30 / \mathrm{each}$. Another $525 / 525 \mathrm{v}$.
$150 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} 5 \mathrm{a},. 5 \mathrm{v} .3$ a., $37 /-$ each. Another.
 6.3 v 2 a . tapped at $2 \mathrm{v} ., 65 /-$ each. Another $500 / 0 / 500 \mathrm{v} .300 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .6 \mathrm{a} ., 4 \mathrm{v} .6 \mathrm{a} ., 5 \mathrm{v}$. $62 / 6$ each. Another tapped output 6, 12,24 24 volts at $10 / 12 \mathrm{amps}$., $47 / \%$. Another $350 / 0 / 350 \mathrm{v}$. $180 \mathrm{~m} / \mathrm{a} .4 \mathrm{v} .4 \mathrm{a} ., 6.3 \mathrm{v} .4 \mathrm{a} ., 5 \mathrm{v} .3 \mathrm{a} ., 39 / \mathrm{l}$. Another 2,350 volts at $500 \mathrm{~m} / \mathrm{a} ., 85 /-\mathrm{each}$. Mains $5 \mathrm{mooth}-$ ing Chakes, $10 \mathrm{Hy} .100 \mathrm{~m} / \mathrm{a}, 6 / \%$; $150 \mathrm{~m} / \mathrm{a}, 8 / 6$: ing Chokes, $10 \mathrm{Hy} .100 \mathrm{~m} / \mathrm{a} ., 6 /-17 / 6$.
$350 \mathrm{~m} / \mathrm{a}, 125 /-; 5 \mathrm{Hy} .250 \mathrm{~m} / \mathrm{a}$., $17 / 6$.
EX-GOVERNMENT (G.E.C.) ELECTRIC FANS, 12 volts, A.C./D.C. laminated field, complete with 5 in. impellor. New, boxed, 20/-each, post 1/-. Transformer to suit, 230 volts input, $12 / 16$ volts at 4 amps. output, $32 / 6$ each. MAINS VARIABLE RESISTANCES, ex-Govt. (new) 4,000 ohms, 25 amps., $35 /-$ each. Worm wheel control, slider type, 60 ohms, to carry $1 \frac{1}{2}$ amps., $17 / 6$ each ; 5.7 ohms, 8 amps ., $25 /$ each. Dimmer resistances stud switch arm type, 2,700 ohms to carry. 27 amps., $25 /-$ each.
MAINS VARIABLE RESISTANCES (slider type), new, ex-Govt., 14 ohms, carry 1 to 4 amps., graduated, useful as dimmers, etc., $17 / 6$ each; another, 0.4 ohms, carry 25 amps.. $17 / 6$ each, post $1 / 6$. Ex-Gove. Moving-coil Cell Testers, post vols (new), 20/- each.
EX-R.A.F. MICROPHONE TESTERS (new). These consist of a Ferranti 0 to $450 \mathrm{~m} / \mathrm{amp}$. $2 \frac{1}{2}$ in. scale meter shunted to $1 \mathrm{~m} / \mathrm{a}$. incorporated Westinghouse Rectifier, the whole encased in polished teak case, calibrated at present 0 to 10 volts, $32 / 6$ each. 27/6 each.
EX-NAVAL (SELF-ENERGISED) TELEPHONE HANDSETS, $10 / 6$ each, or complete Telephones, Magneto Ringing with Neon Light, Telephones, Magneto Ringing with Neon
$35 /-$ each, post $2 / 6$. Another with BUZZER 35/- each, post 2/6. Ano
calling, $15 /-$ each, post $2 /-$ -
EX-R.A.F. CRYSTAL CALIBRATORS UNITS. Type 18, R.A.F. serial No. 10a/15237. These units contain $100 \mathrm{kc} / \mathrm{s}$. xstal 2-EF 50 valves and numerous other items all new and unused, 35/-each.
ELECTRIC LIGHT CHECK METERS (Watt Hour). A.C., 50 cys., $200 / 250$ voles, 5 amp . load, $18 / 6$, post $2 \% ; 10$ amp., $21 / \mathrm{m}$, post $2 / \mathrm{m} ; 20 \mathrm{amps}$. 25/: post $2 /$; also a few only Pre-Payment 1/- slot type, $20 \mathrm{amp} .$, load, less coin box, complere with synchronous Motor, 35/- each, carriage $3 / 6$. EX-R.A.F. INDICATOR UNITS, rype 48a, new, boxed, consisting of 2 $3 \frac{1}{2}$ in. tubes, type 138a, also time base, $50 /$ - each.
MOTOR ALTERNATORS, EX-R.A.F., as new, 230 volts 50 cys. I phase input, 250 volts. 625 cyc. I phase at .24 amps. output, $75 /$ each. Ditro, I, 725 cys. output, 85/- each. C/P.
EX-NAVAL (CROMPTON PARKINSON) PRONG-TESTERS, 0 to 100 and 0 to 400 amps.. new, in leather carying case, $90 /$ - each. A.C.
$V /$ Merers, 0 to 3006 in . scale, calibrated 50 cys . V/Merers, 0 to 300 6in. scale, calibrated 50 cys.. $37 / 6$ each.
EX-R.A.F. CRYSTAL MONITORS, type 2, complete in wooden carrying case, the frequency depending on crystal used, 5/-each. 5hort Wave Aerial Coupling Units (Wavemeters), 5/- each. FRACTIONAL H.P. MOTORS, 110 volt: with LAMINATED Fields (Ex-Naval Fan Motors) These need slight attention, to brushes or leads, 10/- each. Westinghouse (Blasting) Galvanometers, Moving Coil, very low deflection, 15/• each.

Television Standards-

Because of the need for common standards in any area over which a common programme is to be distributed it is rather important that neighbouring countries should consider their services jointly. Near their frontiers the stations of their neighbours may be receivable and provide alternative programmes. Then with common standards international relays become practicable. Britain must be considered as a part of the Continent for this purpose, since the English Channel is no barrier to a radio link and the interchange of British and French progranmes is within the realns of the practicable, provided only that
the standards are common and that they do not call for an excessive bandwidth.

Because it is considered that under British conditions an increase in the number of lines is undesirable it should not be concluded that there is no scope for improvement and that British television is a static thing. This is far from being the case. It has already been pointed out that a greater bandwidth with the present standard will give higher definition, and if the difficulties of frequency allocation can be overcome such a change can be effected at any time without in any way affecting existing receivers. It would give better pictures from
studio transmissions without affect. ing outside broadcasts.

Of even greater importance, however, is the attainment of a greater depth of focus in the transmitting camera. This entails the use of a lens of smaller aperture and so requires a more sensitive camera tube. The more sensitive tube also has obvious advantages for outside broadcasts under poor conditions of lighting. Such a tube is already in existence in the C.P.S. Emitron. It has not yet been put into service on a large scale, but it was used for relays during the Olympic Games, and the increased depth of focus and detail were remarkable and set a new standard of picture quality.

MANUFACTURERS PRODUCTS

Television Aerials

A\mathbf{N} inductively-loaded dipole in which the dimensions have been reduced to approximately $\frac{1}{4}$ wavelength has been developed by Antiference Ltd., 67, Bryanston Street, London, W.i. It is used in conjunction with a low-impedance stub section which is designed to compensate for variations in the aerial reactance. The impedance is said to be substantially resistive over the television band and is adjusted to 70Ω.

It is intended for indoor use and under average conditions satisfactory reception is claimed up to a range of ro miles.
The overall length of the aerial is 5 ft 6 in and the price is $£^{2}$ Ios.

Export Battery Receiver

A NEW all-wave bandspread superheterodyne (Model 92) operating from a 6 -volt battery has

19, 25, and 31 metres. A heavyduty roin loudspeaker is used and the set is designed to operate under alverse climatic conditions.

Cabinet Loudspeaker

TO meet the demand for a loudspeaker which will fit in the angle between two walls, Richard Allen Radio, Caledonia Road, Battery, Yorks, have introduced a "Bafllette Console" model incorporating their Type 81o loudspeaker. The cabinet is of polished walnut on a black plinth and measures $26 \mathrm{in} \times 17 \mathrm{in} \times 6 \mathrm{in}$. The price is $£ 6 \mathrm{Ijs}$, or $£ 7356 \mathrm{~d}$ with output transformer.

Record Groove Indicator

For identifying and selecting gramophone record, Wilkins and Wright, Holyhead Koad, Birming. ham, 21, have evolved a groove indicator which does
 not impose any extra load on the pickup and which gives a high magnification without backlash.
Designed for use with their "Coil"

Wilkins and Wright optical record groove indicator

 Type 0.been introduced for the export market by Invicta Radio, Parkhurst IRoad, London, N.7. The consumption is $3 \frac{1}{2} \mathrm{~A}$ at 6 V and the four-valve circuit covers wavelengths of II-25, 25-60, 60-200 and 200-550 metres. There is bandspread tuning on 16 ,
pickup, the Type O indicator consists of a curved graduated scale which is screwed to the motor board and viewed through a mirror attached to the tone arm pivot, and a telescope fitted with cross wires. The scale is divided into too divi-
sions and approximately three revolutions of the record are equivalent to a division. Precise placing of the needle to the nearest groove is easy, provided that the record is concentric ; with eccentric records a little nore skill is required. The indicator is also useful in gauging the height of the needle above the record, since the magnification of vertical movement is comparable with that of the horizontal.
The price of the complete outfit is $\mathcal{L}_{4} 6 \mathrm{~s} 8 \mathrm{~d}$, including purchase tax,

Wide Scale Meters

ANEW range of wide-scale, mov-ing-coil meters (Series 415) has been introduced by Taylor Electri-

Series 415 sector type meter by Taylor Electrical Instruments.
cal Instruments, 419-424, Montrose Avenue, Slough. D.C. instruments with ranges of $0-10 \mu \mathrm{~A}$ and $0-5 \mathrm{mV}$ upwards are available, and also rectifier types with ranges of $0-25 \mu \mathrm{~A}$ and $o-1 \mathrm{~V}$ upwards. The range will shortly be extended to include mov-ing-iron and thermocouple types.

" QUIET HIGH-GAIN AMPLIFIER '": A CORRECTION

In this article, the value of R_{31} was incorrectly given (p. 209, June, I948, issue) as $22!$. It should have been 220Ω.

LETTERS TO THE EDITOR

Series Capacitor Circuits - Television Receiver Selectivity + Discriminator Alignment

Series Capacitor Heater Circuits

$I^{T}$$T$ is rather surprising to read in this otherwise excellent article in your Sept. issue, that " dial lights gradually attain their full brilliance, taking several seconds in the process." Mr. Stanley evidently has not tried this, or he would have noticed the brilliant flashes often obtained at the instant of switching on, and the high probability of lamp burn-out.

Actually the instantaneous current in the circuit at t seconds after the E.M.F. wave has passed through zero, is
$i=1_{m}[\sin (2 \pi f t+\phi)-$
$\left.\epsilon\left(t_{1}-t\right) / R C \sin (2 \pi f t,+\phi)\right]$
where $\mathrm{I}_{m}=\mathrm{E}_{m} / \sqrt{ }\left(\mathrm{R}^{2}-\mathrm{I} / 4 \pi^{2} f^{2} \mathrm{C}^{2}\right)$
$t_{1}=$ value of t when switch is closed
$\phi=$ phase angle $=\tan ^{-1}$

$$
1 / 2 \pi / \mathrm{CR}
$$

The first term within the bracket corresponds to steady-state conditions and the second to the transient. The latter is zero when $2 \pi f t_{1}=-\phi$; i.e., if the switch is closed at the instant during the E.M.F. wave when the steady-state current would have been zero.

This transient current does not harm ordinary indirectly heated valves because of their thermal inertia, but the thermal time conconstant of the typical dial light is short compared with the first few cycles during which the transient current is appreciable.*

Two ways of overcoming the difficulty are (I) to have another switch short-circuiting the dial light and open this not less than, say, $\frac{1}{2}$ second after the main switch is closed, and (2) to arrange the main switch to short-circuit the heater chain plus dial light when it is desired to switch off. The latter method reduces switching to a single operation but leaves the series capacitor permanently across the mains when the set is out of use; however, negligible power is drawn, the set will remain cool, and no consequent rotation of the watt-hour meter should occur.
G. S. LIGHT.

Feltham, Middx.

[^9]$T \mathrm{~T}$HIRTY years of experience with radio components prompts me to raise friendly issue with A. W. Stanley in reference to his article.

Like many others, he would ap-
pear to confuse the A.C. working voltage of a capacitor with its D.C. rating by thinking of the former in terms of the latter.

I would suggest an empirical formula for his consideration: "In any capacitor rated for I).C. operation the safe maximum A.C. voltage that can be applied is one-half the D.C. rating or 250 V A.C., whichever is less.

When one considers the severe mechanical stresses that a capacitor has to meet under A.C. conditions it can be readily appreciated that for use on A.C. capacitors (strictly speaking) should be designed for that purpose. The better manufacturers do, in fact, supply components to meet this need.

The question of standard capacity tolerance of ± 20 per cent appears to have been overlooked, and although the regulation of the arrangement shown by Mr. Stanley is excellent, it is doubtful whether it would permit the adoption of capacitors whose capacity just falls within the limits prescribed.

Bearing the foregoing in mind, I would suggest that the arrangement is not entirely foolproof.
J. PARKINSON

Uxbridge, Middx.
The author replies :-
I have used a series capacitor circuit in a number of A.C. mains receivers and these have been in continuous use for more than two years without a single dial light failure which could be attributed to the initial transient current when switching on. In all cases the heater circuits were rated at 0.2 A and the dial lights were $6.3-\mathrm{V}, 0.3-\mathrm{A}$ types. It is a fact that the bulbs appear to warm up more slowly in such circuits than when a constant voltage is applied, but I admit, on reflection, that my "several seconds duration" is a slight exaggeration.

It is possible that the explanation of our differing experiences may lie in the different ratios of bulb to circuit current rating. It is well known that $6.3-\mathrm{V}$ bulbs last longer than 4^{-V} types on a 4^{-V} R.M.S. A.C. circuit, and it seems reasonable to suppose that 0.3 -A bulbs would last longer than 0.2-A ones on a 0.2-A R.M.S. circuit. My bulbs had a current rating 1.5 times the R.M.S. heater current; Mr. ILight used 0.35-A bulbs on a 0.3-A R.M.S. circuit for which the ratio is less than 1.2.

From the expression given by Mr.

INSIDE THE HOUSE!

Fixing an aerial inside a house is a very much smaller problem than mounting it on the roof.
The Antiference " COMPACT " Television Aerial is designed to give a satisfactory signal mounted indoors-in the loft or in any room. Under average conditions it will provide good reception within a 10 mile radius of Alexandra Palace.
Overall length $5^{\prime \prime} 6^{\prime \prime}$ (packed in carton $3^{\prime \prime} 4^{\prime \prime}$ long). Supplied complete with universal mounting and backplate in neutral brown finish.

Registered design and patents applied for.
ANTIEERENCE
67 BRYANSTON ST., LONDON, W. 1

Letters to the Editor-

Light it is interesting to calculate the rate of decay of the transient current. In my receivers the heater circuit has a cold resistance of 60 ohms and the series capacitor is $3 \mu \mathrm{~F}$. This gives a time constant of less than $1 / 5,000$ th second and the transient current has fallen to I/I,oooth second. The question to be settled is whether such a brief pulse of greater than normal current can damage a bulb filament. Mr. Light has found that it can; I have had no trouble from this cause. Probably it depends on the thermal inertia of the bulbs used and, as suggested above, on the ratio of bulb to circuit current rating. It would be very interesting to hear about the experiences of other users of the series-capacitor heater circuit.
Turning to J. Parkinson's letter: I did have two breakdowns of capacitors during my experiments on the series-capacitor circuit, even though my components were rated at 400 volts peak. I put this down to bad luck, but it appears that there is more in the subject than meets the eye. Afterwards I used components rated at 1,000 volts and had no more trouble: this bears out Mr. Parkinson's observations. The capacitance tolerance was ± 5 per cent, and I agree that the normal tolerance of ± 20 per cent is much too wide for this circuit.
A. W. STANLEY.

Selectivity in Television

Receivers

THE excellent article on selectivity in television receivers in your June issue would, I think, have been somewhat more complete if brief reference had been made to the use of a cathode parallel-resonant circuit for sound rejection, particularly as considerable space is devoted to the series-resonant rejector.

With the series circuit, a few calculations with normal component values show, as you yourself certainly imply, that adequate rejection at $9.5 \mathrm{Mc} / \mathrm{s}$ and inappreciable loss at $10 \mathrm{Mc} / \mathrm{s}$ are well nigh impossible.

If, for example, we assume for C, a value of 3 pF , about the lowest physically possible, then L_{1} will be $93 \mu \mathrm{H}$. Assuming further, perhaps rather optimistically, a Q-factor of 300, we shall obtain:
at $9.5 \mathrm{Mc} / \mathrm{s}$ an attenuation of about 25 db and
at $10 \mathrm{Mc} / \mathrm{s}$ an attenuation of about 8 db .
The first figure is reasonable, the second undesirably high. At ı Mc / s neither $\frac{\omega^{2} L_{1} \mathrm{C}_{1}-1}{\mathrm{C}_{1} \mathrm{R}_{1}}$, (not $\left.\frac{\left(1-\omega^{2} \mathrm{~L} . \mathrm{C}_{\cdot}\right)}{\mathrm{C}_{1} \mathrm{R}_{\mathrm{i}}}\right)$, nor $-\frac{2 \delta f . Q . \mathrm{R}_{1}}{\mathrm{f}_{\gamma_{2}} \mathrm{R}}$ are much
greater than I . They are about o.6, in fact. Furthermore, there does not seem much that can be clone about it.

If we decide to try the paralleltuned circuit in the cathode, we have the same demand for a high Q-factor but this time with the least possible value of L_{1} instead of the highest. Let us take looopF as a value for C_{1}, which gives an L_{1} of $0.28 \mu \mathrm{H}$, and assume $Q=120$, probably no more difficult to achieve than the previous conditions. Then, if we tap down about 15 per cent on the coil, we shall get attenuations of about 23 db at $9.5 \mathrm{Mc} / \mathrm{s}$ and +db at г Mc / s.

These results are slightly better than those obtained with the series circuit and do not occasion more difficulty in design.
H. G. M. SPRATT.

Enfield, Middx.

Discriminator Alignment

AG. CROCKER, in the excellent account of the practical work he has carried out, says (page 316, your Sept. issue): -
"Linearity. - The characteristic (Fig. 2) is linear up to $\pm 125 \mathrm{kc} / \mathrm{s}$, if linear means the distortion effect is less than 2 per cent."

Now this raises again the old question of how much distortion is "distortionless." Two per cent distortion doesn't sound very much, but inspection of Mr. Crocker's curve shows that the slope over the range quoted varies by as much as 20 per cent. This means that if in the modulation there were a strong component (corresponding to nearly maximum deviation) and also weaker components (at other audio frequencies) the strong component would modulate the weak ones by about ± 10 per cent. Can the quality enthusiast accept this amount of distortion in the reception of the very high fidelity signals which F.M. promises us?
E. F. GOOD.

Malvern, Worcs.

Direct-Coupled Amplifiers

I WAS rather surprised to see the circuit of N. Bonavia Hunt's amplifier in the July issue of the Wireless World, as I would have thought that, to-day, a circuit of this very crude type would have been beyond the serious considera. tion of most readers.

I am not, however, surprised to hear that it sounds very good, since it will presumably give a maximum output of the order of 20 watts, and yet inder average domestic conditions, will have to supply perhaps two or three watts. But surely what an absurdly extravagant way of obtaining such results?

1 would like to know what exactly were the conditions under which comparisons were made with other amplifiers. This amplifier incorporates a tone-control circuit (in which, incidentally, one of the potentiometers varies the anode current of the last three valves as well as controlling the tonel), and, therefore, of course, for a fair comparison, any amplifier with linear frequency characteristic (e.g., D. T. N. Williamson's or my own designs, described in the Wireless World May, 1947 and Jan., 1948, respectively), should have been preceded by a tone-control circuit of the same characteristics. Was this done? If not, the comparison is worthless.
I hope N. Bonavia Hunt will forgive my very outspoken criticisms, but I do sincerely believe it desirable to do what one can to stop people building amplifiers of this kind.

PETER J. BAXANDALL.

Malvern, Worcs.

" Principles of Radar"

IN the September issue of Wireless World there appears a review of the book "Principles of Radar," by Taylor and Westcott. The reviewer makes the statement that " metrewave types [of radar] had little or no future even in 1945." I presume by this description he means CH and CHL equipments. Admittedly. the function of CHL has been adequately fulfilled by the multifarious centremetre equipments, but as far as CH is concerned the reviewer can merely be stating his own opinion, which is by no means shared by all, including the Air Ministry, judging from their general policy at the time.
M.G.S. goes on to say that the book does not mention rocketdetecting radar. There may be security reasons for this, as when I was last actively concerned with radar, which is not so very long ago, methods of rocket-detection were still secret. Even if they are not so today, which I doubt, they may have been at the time the book was written.

In view of security requirements I can say little of the actual methods of rocket-detection, but I would inform M.G.S., if indeed he is unaware of the fact, that no small part was played in rocket-detection in 1945 by those equipments "which had little or no future."

Hertford. K. W. PEARSON.

Aircraft and Television

PPROPOS to the remarks by " Diallist" in the September issue, I should like to submit what appears to me to be the obvious explanation of the "beating"
effect of aircraft on television images. As an ex-radar boffin, I have heard many theories regarding the beating of echoes from objects, but never the present one.

Taking the television effect first: the reflected wave from an aircraft or other object is not locked in phase with the transmitter, with reference to any reception point on the ground. Obviously, as the distance between aircraft and ground varies, direct and reflected signals will be in phase for an instant (adding) then out (subtracting) and so on, at a rate of variation determined by the speed and line of flight.
Regarding the radar beat and the rotating propetler thesis, I can vouch for the fact that jet aircraft, buzzbombs, and barrage balloons all beat regularly and vigorously if any movement is present. This would indicate an effect analogous to the television llutter, caused by phase differences in direct and ground- or sea-reflected paths. In(leed, this path-difference (and
hence phase-difference) between the two was the essential basis of the height-finding facility of ground C.H. radar stations. The fact that an echo would beat fiercely on a high arerial and remain steady on a lower one appears to confirm the reason for the phenomenon.

It has been suggested to me that aircraft might be built of resistive material such as would present a matched load to a T.V. signal, and so prevent reflection ! (" Free Cirid," please note.)
IDOUGLAS M. (IIBSON.

Ashford, Kent.

REFERRING to "Diallist's" comments in last month's Wireless World, the flopping up and down effect is the only kind of interference from aircraft I experience here.

As this happens frequently with jets it cannot be due to reflections from the revolving propeller.
E. E. S. EARNSIAAW WALL. London, N.W.2.

MANUFACTURERS' LITERATURE

Technical data on low-pass filters for use in A.F. amplifiers and amateur transmitting stations from Aysgarth Manufacturing Co., 5, Aysgarth Road, Wallasey, Cheshire.
List No. 4A of ex-Government radio equipment from Clydesdale Radio Supply Co., 2, Bridge Street, Glasgow, C. 5 .

Technical details and prices of quality amplifiers, including H 'ireless H orld designs, from C. J. R. Electrical and Electronic Development, Hubert Street, Aston, Birmingham, 6.

Price list of aerials, including special television arrays, from Newhalk IBritish Indlustries, 69, Hornsey Road, London, N. 7.

NEWS FROM

Birmingham.-Special events have been arranged by the Slade Radio Society in celebration of its twentyfirst anniversary. The week's programme includes a lecture on Oct. ist by Dr. H. A. H. Boot on the cavity magnetron which will be open to nonmembers. Members are to visit the B.13.C.'s Droitwich transmitter on the following day. On the 6th a demonstration of tivo-way working on 80 metres will be given. The society's twenty-first birthday dinner will be held on October 8th. The meetings will be held in the Parochial Hall, Slade Road, Erdington, Birmingham, 23. Sec.: C. N. Smart, 110, Woolmore Road, Birmingham, 23, Warwick.

Birmingham.-Meetings of the South Birmingham Group of the R.S.G.B. are held on the first and third Sundays of each month at $10.30 \mathrm{a} . \mathrm{m}$. at Stirchley Institute. Regular morse classes are being held and those interested in joining are requested to communicate with T. F. Higgins, G8JI, 391, Rednal Road, Northfield, Birmingham, 31, Warwick.
lllustrated leaflet describing power transformers and chokes from Stewart Transformers, 1021, linchley Road, London, N.W.in.

Catalogue of low-current tubular rectifiers (selenium) from Standard Telephones \& Cables, Oakleigh Koad, New Southgate, London, N.II.

Price lists of Government surplus and other components from M. Watts, 38 , Chapel Avenue, Addleston, Surrey.
" M.O.S. Newsletter" No. 3, being a catalogue of Government disposal and , other items in the form of a journal, from Mail Order Supply Co., 3, Robert Street, London, N.W.r.

THE CLUBS

Middlesbrough.-The Tees-side Anateur Radio Society has secured premises for its headquarters at 400 , Linthorpe Road, Middlesbrough, where future meetings and morse classes will be held. Sec.: H. Walker, G3CBW, 9 , Chester Street, Middlesbrough, Yorks.

Pontypool-Weekly meetings of the recently formed Pontypool and District Radio Club are held in the Abersychan Technical Institute. Sec.: W. F. Chew, Bryn Cottage, Pontropiod, Mon.
Solihull.-Meetings of the Solihull Amateur Radio Society are held on alternate Werdnesdays at the club's II.Q., The Old Manor House, Solihull. Sec.: H. C. Holloway, 20, Danford Lane, Solihull, Warwick.

Tunbridge Wells.-The West Kient Radio. Society, which embraces the Tunbridge Wellis, Sevenoaks, Tonbridge and Southborough areas, meets on the first and third Wednesdays of each month at 7.30 at "Culverden House," Culverden Park Road, Tunbridge Wells. Sec.: R. [luck, 9, Prospect Road, Southborough, Kent.

THE "FLUXITE QUINS" AT WORK
"I told you that set was too small
To cope with the Royal Albert Hall Now look! It's gone mad
You'll need FLUXITE. m'lad
far it's needing a slight overhaul."

See that FLUXITE is always by you - in the house - garage workshop - wherever speedy soldering is needed. Used for over 40 years in Government works and by leading engineers and manufacturers. Of all Iron-mongers-in tins, 10 d., $1 / 6 \& 3 /$.

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings $A N D$ SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-but IMPORTANT.

The FLUXITE GUN puts FLUXITE

 where you want it by a simple pressure. Price $1 / 6$, or filled, $2 / 6$.aLL MECHANICS WILL WAVE

IT SIMPLIFIES ALL SOLDERING
Write for Book on the ART OF "SOFT" SOLDERING and for Leoflets on CASEHARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price Id. each.

FLUXITE LTD.
(Dept. W.W.), Bermondsey Street, S.E. 1

By " DIALLIS'T"

Liverpool's Radar

The Port of Liverpool radar supervision system is remarkable not only for being the first of its kind in the world, but also for having one of the most ingenious display arrangements yet devised. The technical details were dealt with in last month's $W . W$. There's one application, though, that strikes me as exceptionally valuable. The 12 mile channel up the Mersey is nar. row and winding and it is marked by about 60 buoys. It is obviously most important that these should be exactly in their proper positions and that movements of any kind should be spotted at once and communicated to shipping. In the past this meant hard and constant work on the part of a large staff; in foggy weather, when it is of the greatest importance, such verification must have been very difficult if not actually impossible. The checks are now made rapidly and almost automatically by the radar operator, no matter what the weather. In front of each of the screens showing a portion of the channel is a transparency on which the proper position of every buoy is marked by ; green dot. The operator can see at a glance whether the spot of light on the tube corresponding to a buoy coincides with the appropriate green dot. If one of the buoys has shifted he can read off its exact position from a grid on the transparency and can thus notify shipping without delay. The British Sperry Gyroscope Company, who, with Cossors, were responsible for the design and the installation, have made the system a flexible one so that only slight modifications will be needed to make it suitable for any harbour. One doesn't need to be a prophet to foretell that this system, or others like it, will soon be applied to many others of the world's great ports, some of which are now very difficult for shipping in certain kinds of weather.

Just the Place

The elaborate radar gear in. stalled recently at the tip of Southend's incredibly long pier has pro-
vided some of the lay papers with a magnificent opportunity of getting hold of the wrong end of the stick. To some of them it was just another amenity for trippers. They even went so far as to describe it as "penny-in-the-slot radar" which had taken its place amongst the various fun-and-games machines on the pier. The truth is rather different. The radar installation has a serious object; it is intended primarily for research and development work. It was placed where it is simply because the Southend pier juts right out into the Thames Estuary and the radar scanner is almost as well placed for following the movements of shipping as if it were carried by a vessel in midchannel. It would be difficult to think of a better site than the far end of that immense pier with streans of ships always passing up and down. For the time being, at any rate, a side-show for the public has been provided in the form of a repeater P.P.I. tube in a room open to all comers. That's apparently how the penny-in-the-slot notion originated. I hope the hut housing the gear has been made fairly draught-proof, for the far end of Southend pier can be pretty arctic. I remember being frozen stiff when I had to visit an A.A. gun site there during the awful winter of '40-'4I,

Navigation

Bradfield of T.R.E. has developed a short range navigational device of considerable interest. By placing his ultrasonic generator at the focal point of a paraboloid he has been able to focus the energy into a beam, and, using radar technique, he transmits pulses, which are echoed back to a receiver, the travel time being measured by a C.R.T. The fire fighting services are watching his development closely, for they see in it a likely means of enabling firemen to find their way about smoke-filled buildings. Other investigators are working on a multiplicity of possible applications of ultrasonics, Conn, of Sheffield University, takes the line that neither
the crystal nor the magnetostriction generator can provide the energy needed commercially at useful frequencies. He is working on a new method of generation by a combination of electric and magnetic fields. Jacob, at Imperial College, is studying the disintegration of bacteria (particularly those of milk) by ultrasonic methods. He has destroyed such bacteria, but is still endeavouring to establish the connection between frequency and lethal effect. At Cambridge, Pinkerton is obtaining valuable data about the construction of liquids by observing the effects of the passage of ultrasonic vibrations through them. He has already established that cavi-tation-the formation of liquid vacuums-may be caused. This may be a very valuable line of investigation, for it has long been known that cavitation in water may cause the eventual break-up of ships' propellers. That, in outline, is some of the story of ultrasonics to-day. No one can say yet what its ultimate possibilities may be; but there can be little doubt that it is a development of first-rate industrial importance.

Television Policy

The official statement on television policy in this country struck me as being eminently sound. Some people, I know, had been shy about investing in television receivers because of tales they'd been told by the irresponsible and not very knowledgeable about amazing improvements - big-screen, colour, stereoscopic images and the likewhich would shortly render all present sets obsolete. It was no use telling them that such rumours were utter nonsense; they just smiled politely and didn't believe you. The official announcement that 405 -line transmissions are to be continued for many years should put an end to silly talk of that sort. One hopes it will; but human nature being what it is, the people bursting with completely incorrect "inside information" will no doubt get busy again sooner or later. Lots of folk either don't or won't realize that if, say, colour television were perfected to-morrow, transmissions couldn't be made from B.B.C, stations for some years; it takes a long time to build and install new apparatus nowadays, as the history of the Sutton Coldfield station
shows. In any event the receivers for colour transmission would probably be much more expensive than those now in use. It would be a case of twopence coloured, penny plain, so to speak. I fancy that the penny plain 405 -line receiver will be good enough for most people for a long time to come.

Proving the Pudding

I'm Not sure of the frequency range claimed for the best of the U.S.A. television receivers; nor do 1 know to which their normal tolevision receivers respond adequately But I'm open to wager the shreds of my last prewar shirt that it must take them all their time to get more out of 525 lines than we do out of 405. I admit that I wouldn't hazard even the rags of that prized and irreplaceable garment if I weren't more or less betting on a certainty. American friends who watched events in the Olympic Games on television screens here have been lost in admiration of the steadiness and clarity of the pictures and of their depth of focus. Two other items of interest also came my way from these good friends. The first is that from the home entertainment point of view our television programmes are in the main better than theirs. Like broadcasting, television must consist over there mainly of sponsored items; I gather that Big Business is proving a little coy about taking television to its heart as an advertising medium, and that the quality of the programmes suffers accordingly. There is a surfeit of boxing and of baseball matches and so on and a sad deficiency of matter of general entertainment value. The second item is more or less a consequence of the first. Though the number of televisors in use in the States runs a good way into six figures, comparatively few of them are in private homes. The larger proportion is to be found in bars, restaurants, " hot dog stands" and so on. Some thinking Americans, I'm told, are convinced that the sponsoring system is not at all likely to provide the right sort of entertainment and are trying to find some way of making the programmes more or less independent of advertising by getting the viewer to pay for his fun by means of a receiving licence of some kind or through a subscription service.

SEMI-ROTARY TYPES:

Guaranteed

Switch On

Reliability with Bulgin Rotary switches for all needs up to 750 peak Watts, at up to 250 V . Guaranteed life tests of 25,000 operations at full load--SEVENTY TIMES EVERY DAY FOR A
YEAR! A type for every purpose, and new types as new purposes appear. Over 400 types of switches available.

[^10]
RECENT INVENTONS

A Selection of the More Interesting Radio Developments

Wide-band Aerials

T() be suitable either for frequencymodulated signals, or for television, an aerial should be sulsstantially aperiodic over a band of frequencies covering a ratio of at least two to one. A common expedient is to

use radiators of relatively large diameter, but this is not always convenient.

The desired impedance characteristic is also possessed by certain directional types, such as the Beverage and rhombic aerials, though at the expense of some power that is lost in the surge impedance by which they are terminated. The thin wire aerial shown is of this type, though it is modified to have ant omni-directional radiation pattern, similar to that of a dipole. The two co-planar "loops" or radiators A, B are fed at one side by a two-wire line l, and are connected at the other side by a transmission line T to a matched dissipating resistance K, which is preferably located some distance away and at ground level. The aerial is stated to be the equivalent of a "rhombus of zero apex angle."
Standurd Telephones and Cables, I.td., and W. L. McI'herson. Application dute, May 25th, 1945 No. 594ino

Scanning Beams

AIR()TMTING beam acrial, particularly suitable for radar, includes a parabolic reflector which is sprayed with primary wave energy from the slotted and tilted end of a waveguide. The waveguide terminates at a point which is located below both the horizontal scanning-plane and the principal axis of the paraboloid, so that it is also offset from the focus.

The arrangement reduces undesired secondary reflection effects and consequent clistortion of the radiated and received fields. In particular, it avoids the production of large side lobes of energy and prevents the so-called
"polarization splitting" common to horizontal scanning systems, where the linearized waves tend to break up into quadrature and so produce a circularly or elliptically polarized leam.

W'estern Electric Co., Inc. Contenfion date (U.S.A.), Nov. 6th, 1943. No. 595724.

Aerial Systems

THE diagram shows how two separate aerials are grouped together for the simultaneous transmissions of two broadcast programmes on different wavelengths without mutual interference. One aerial is an insulated mast A, which is connected in any suitable way to a first transmitter (not slown). The second aerial consists of four radiators $\mathrm{Br}, \mathrm{B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$, supported by triatics which are arranged symmetrically around the centre mast, as illustrated by the two different aspects shown in the drawing.

The radiators of the second aerial are transformer-coupled to a second transmitter through a line comprising phaseshifting networks P1, P2, which respectively introduce a lead and lag of 45 deg. The diametrically opposite limbs BI and 132 are accordingly fed in phase opposition, whilst the currents in adjacent limbs (such as Bi_{1} and H_{3} when viewed in plan) are in phase quadrature. The currents induced by the

central mast A in each pair Br, Hz and $\mathrm{B}_{3}, \mathrm{H}_{4}$ of the outer aerials will be in phase, and will therefore cancel at the terminals of the second transmitter. The symmetry of the arrangement preserves the normal radiation pattern of both the aerials.

The Brilish Broadcasting Corp. and II. L. Kirke. Application date. Feb. 13th, 1945. No. 5906 29.

Reducing Interference

THE signal is first divided into two equal but oppositely phased counterparts by passing it through a phase splitter. An electronic switch then feeds an element, taken alternately and
progressively from each of the two counterparts, to the modulator, so that the signal when radiated is "chopped " and alternately reversed in phase.
At the receiving end, the frequency imposed by the high-speed switch is first filtered from the carrier, and is applied through a separate channel to drive a similar electronic switch at the same frequency. This is used to reverse the phase of alternate sections of the rectified signal, and so restore it to its original form.
Any jamming or similar interference picked up by the receiver will also be "chopped" and reversed in phase. But, unlike the signal, the choppers elements are combined in phase opposition, and so cancel out. Suitable filter circuits are provided to protect the sound reproducer from the switching frequency.

Standard Telephones and Cables, Itd. (assignees of N. H. Young, Jr.). Convention dute (U.S.A.), April 16th. 1932. No. 594235.

Programme Selection

A RECEIVER can be set to reproduce only specially selected items from the daily programme of a given broatdcasting station, provided each of the transmissions from that station is preceded by a pulsed identification signal and is followed by a pulsed "signing-off" signal.

These control signals, preferably supersonic, are filtered out in the receiver and applied to operate the selecting relay through a triggering circuit, which includes a cold - cathode discharge tube. The relav is of the stepped switch or telephone tvpe, and is set each morning by inserting plugs into num.bered apertures corresponding to the selected items. When the same contacts are bridged from the rear, by a wiper operated by the preliminary identification signal, the heaters of the A.F amplifiers are switched on, so that
the inconsing item is
heard. The relay is reset to zero by the "signing-off" signal, and the receiver remains mute until the transmission of the next pre-selected item.
Electrical Components, Ltd., and W'. Sommer. Application date, June 15th, 1945. No. 595805.

[^11]
1998

RESISTORS • CERAMICONS • Hi-K CERAMICONS • POTENTIOMETERS SUPPRESSORS . VITREOUS ENAMELLED WIRE-WOUND RESISTORS Erie Resistor Ltd., The Hyde, London, N.W.9, England Tolephone: COLindale 8011-4. Cables: RE8I8TOR, LONOON. Tolophone: COLindale 8011-4, Fectories : London \& Gt. Yarmouth, England Toronto, Canada• Erie, Pa., U.S.A.

Precision built
 MANID CDIL WINIDING: MMCIINE

TMPE H/I

(with vari-speed motor drive if desired) for Solenoid and Choke Coils, etc., up to $6^{\prime \prime}$ dia. $\times 71^{\prime \prime}$ long, Field Coils, etc., up to $12^{\prime \prime}, \mathrm{A} / \mathrm{C}$ Corners, Armoture Rewinds, etc. (16 SWG to 45 SWG.)

ATTRACTIVE FEATURES INCLUDE

I. Two Spindle Speeds, I - I and 3і - 1 .
2. Turns Counter with Instant Reset. Adds and subtracts. Large, Easily Read Figures. Records up to 100,000 Turns.
3. Aluminium Headstock fitted with Precision Bronze Bearings. All Gearing Totally

Enclosed, Outside Oiling to all Bearings.
4. Quick Release Tailstock with Ball Thrust Live Centre.
5. Non-reversing Toggle Clutch with Instant Release.
6. Smooth and Effortless in Operation.

ARMMTERE WINIING IEND

TYPE MW/』

This Winding head has been primarily designed for use with the "Kolectric" Model HI hand coil winding machine, but t can be used on other makes of machines by means of special idaptors which we can supply to customers' requirements, and c an also be motorised if desired. It is suitable for small fractional h.p. armatures from 0^{*} - $3^{\text { }}$ diameter approximately. either skewed or straight slots. The Head can be quickly set to suit any armatures within these limits and it is the ideal job for rewinding motors from vacuum cleaners, fans, electric tools, etc.

Prices and further particulars will be sent on request.

KOLECTRIC LTI

20, AVONMORE RD., LONDON, W.I4
Telephone; Fulham 421):2

RIBBON PICKUP, type JB'P'R'1

Frequency range, $20 \mathrm{c} / \mathrm{s}$ to $40,000 \mathrm{c} / \mathrm{s}$.
Permanent point 6 times harder than sapphire and more robust.
Point pressure, $1 / 8$ oz.
Output voltage, 10 to 15 mV . across 15,000 ohms approx.
"Floating Element " design prevents arm corsional resonance.
Price in U.K. including specia, mumetal sereened transformer and Purshase Tax, £ $10 / 14 / 11$.

This autumn we arestarting a number of demonstration tours. In this way we shall be able to make many new friends and become better acquainted with our old friends, and here and there, we trust, give practical assistance on the spot where doubts or difficulsies exist.
Our aim is not only to popularise wide range high quality reproduction but also to help in making it more widely appreciated-since after all this must also to help in making
You and your society can probably help; it you can, or are in any way incerested, please write.
Details of Pickups, Pre-amplifiers. Amplifiers, Filters, Silent Turntabies, Needles, on request.
J. H. BRIERLEY (GRAMOPHONES \& RECORDINGS), LTD..

446, TITHEBARN STREET LIVERPOOL.

SYLMAR
 OFFER THE FOLLOWING

8in. Permanent Magnet Speakers
... 14 -
$6 \frac{1}{2} \mathrm{in}$. Permanent Magnet Speakers
12/6
42-1 Output Transformers 5/6
2 Gang 0005
60 ma . Chokes, 400 ohms.
465 kc. I.F. Transformers
$8-8 \mathrm{mfd} .500$ y. Alum Cans
32 mfd 275 v . Alum Gans
4 mfd .200 r . Tubular
25 mfd 25 v . Tubular
25 mfd 50 y . Tubular
.1 mfd .350 v .
.1 mfd 1000 v.
$.1-.1-.1250$ v.
Octal Holders
12 v. Iamp Rectifiers
Vibrator Packs 12 volt input 210 v. 70 ma out.
Tostie Smitches 3.P.
Mains Transformers, 270 v . G0 ma., 6.3 v. ō v. 2 a. ... 20
Other types and voltages in stock.
GRAMOPHONE AMPLIFIER, \& watts output, including
2nd detector and A.V.C. components. All parts mounted.
Complete with circuit and valves. A.C. 84 g ORAMOPHONE AMPLIFIER, as above. AC/DC ... \&4 50
Terms: Cash with Order or C.O.D. Post Orders only, cal riage and packing extra. Retailers' enquiries for above welcomed.

```
SYLMAR RADIO LTD. 197, Lower Richmond Road, Richmond, Surrey
```


Maximum sensitivity with uniform frequency response from a more compact speaker, appreciably reduced in weight-that is what Rola technicians have achieved with the new G.I2. Special features include dust-proof suspension completely protecting coil and magnet gap and the powerful Alcomax il magnet. Write for details and also for particulars of Rola 3^{*} and $4^{\prime \prime}$ P.M. models, dust-proofed and equipped with Alcomax II magnets.

best of the BIG

 speakers Telephone: EMBERBROOK 3402 (5 lines)
INTRICATE PARTS

Made in Three Principal Materials

frequelex
An insulating material of Low Di-electric Loss, for Coll Formers, Aerial Insulators, Valve Holders, etc. PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions. TEMPLEX
A Condenser material of medium permittivity, For the construction of Condensers having a constant capacity at all temperatures.

Speaking of operations, a suiting the weight of coil to delicate but highly successful cone we have reduced the one has been carried out in peaks and secured a freedom striking the balance of correct- from break-up, while the ly matched voice coil and very high flux density of the curvilinear cone for our new large Alcomax magnet r2" loud speaker. By carefully
 onsiderably increases the sensitivity, especially in the higher frequencies. All very worth while as you may see, or rather hear.
Overall diam. 122°. Depth 6°. Weight 716 . is ozs. Voice Coll Impedance is ohms. Fundamental Impedance 15 ohms. Fundamental
resonance 60 cycles. Flux density resonance 60 cycles. Flux densicy
14.000 lines per. $\mathrm{sq} . \mathrm{cm}$. Frequency range $50 \cdot 7,000$ c.p.s. Fixing holes 4 holes t^{*} diam. spaced 90° on P.C.D. 121^{\prime}.

DELIVERY FROM STOCK
LIST PRICE E6-10-0
GRAMPIAN REPRODUCERS LTD Hampton Road, Hanworth, Middx. Phone: Feltham 2657 TYPE 3512/15

Inductance Meter

TYPE M148-2

This instrument has been designed to provide simple and direct reading measurement of inductance values between 0.05 nuicrohenry and 100 millihenrys. A stable variablefrequency oscillator is

Wayne

WAYNE KERR LABORATORIES LIMITED, NEW MALDEN, SURREY.

Rate $8 /-$ for 2 linen or less and $3 /$ for every additional line or part thereof, average lines 6 words. Box Numbers,
 frat post Wednesday, October eth. No responsibility

WARNING

Readers are warned that Government surplus components which may be offered for sale through our columris carry no manufacturer's guarantee. Many of these components will have been designed for special purposes making them unsuitable for civilian use, or may have deteriorated as a result of the conditions under which they have been stored. We cannot undertake to deal with any complaints regarding any such components purchased.

1

NEW RECEIVERS AND AMPLIFIERS piet with valves, $\& 5 / 5 ; 12 w a t t$ high fide.ity A. D., 13 , Bence Lane, Dart on on request A MrLir'iERS, new 60 -watt heavy duty P.A. - modes, built for continuous rating and rack Broadcast and Acoustic Equipment Co spec.Tomosand. Norwich.
M1AsUN'S (W.W.). Wivenhoe, ar colchester ing 3-60 mes 10 waveband gram chassis, cover compete mes and $150-1$, bo cs. feeder units and changers, amplifiers. 5-500 watts we 8 mixed best only: Denco catalogue and full lists od WHew words nnesi anim. fier-acanowis, gd. Ltd. Mad io Trades Manufacturing Co, ting, amplifier masers and pioneers of the Williamson world's not be confuse reproducer; our amp.fier should quality parts ed with other similar products: first giving superb reproduction with the special job cult used; built on extra heavy gauge chassis ventilated covertly finish, price $\& 27 / 10$. With gram. motors tuners etc can be supplied. Full details from R.T.M.C., (Ealing). Ltd. 141. LONNOIS Ealing Lane. W.5.
CONNOISNEUR S receiver-wor:d-wide results receiver or thy sens.t.ve 10 -va.ve communication receiver or. by change of switch, very high get high fidelity receiver; basis rebuilt R1155. 9-1,500 metres, P $\times 4$ push-pu. 1 quality amp.ifer bass and treble controls (boost and cut), gram input, new panel, and other refinements; write for details. or call for demonstration; R1155 specialists. receivers repaired and realigned. also modified as a dove, or to your requ,rements; R1155 circuit and values, $2 /-$ post free.-R.T.S. Tel, Lib. з303. Wimbledon, S.W.19. RADIOGRAM equipment of every description. speakers, pick-ups, amplifiers, tuners, etc at the keenest prices in the trade. Example: 15 watt A.C. mains amplifier, input for mic, gram and radio, tapped output. housed in black crackle case with chrom handies, 14 gns , norTally £26; 12 in D.m. Speaker, £4/5; lOin ditto. 25/=; pthree-wave A.C. chassis, complete with loin speaker, £14. Inc tax; A.C, gram unit, 9 in cabinet, $£ 25$; ex Govt, headphones, $3 / 3$ post cabinet,
free; min m/coil mic/speaker unit, $3 / 3$ post free, sase, full list.-Radio, Unlimited. I6. CarUNIVERSAL ELECTRONIC PRODUCTS, 36. Specialists in the design and manufacture of high grade fidelity gramophone reproducers and radio units. If you are interested in obtaining the finest possible reproduction from recorded music we invite you to hear our equipinent and Wright coil pick-up and the Wharfedale corner cabinet speaiser, We will gladly give you a quotation for the conversion of your existing radio gramophone into a first-class reproducing instrument, or for the design and construction of equipment to your own special requirements. Write for descriptive leaflets of our range of fidelity amplifiers and radio tuning units 19900
COODSELL. Ltd., 40, Gardner St., Brighton. T Ss. Send bd for our new booklet giving a few views on high fidelity and full details of the Williamson amplifiers with K.T. 66 and PX. 25 output. together with particulars of version. at $£ 17 / 17 / 6$; also included are kit prices and a complete range of components for the willliamson. plus a general range of useful mains transformers, chokes and condensers, etc.: high fidelity superhet, two-band only. with fourth glass scale gin $\times 4$ and special detector. pointer. full details now available: the quality of this unit is equal to any strairht feeder. Five useful books: "The Brimar Valve Manual," 2/6: "Loudspeakers," by G. A. Briggs (Wharfe dale), 5/-; "Partridge Manual, ${ }^{\text {Bulletins. } 5 /- \text { each DBT. (Practical Denco }}$ Bulletins, $3 /-$ each: DBT. 1 (Practical Design of Receivers using Maxi-Q Coils), DBT, 2 (DeCiT. 7 with 5 wavebands and $R . F$. stage); postgage 3d; Denco C.T.6. \&.
C.T.4.
\& $10 / 10$. ex-stock.
[1917

Architect's impression of new factory for Partridge Transformers Ltd, situated at Kingston By-Pass, Tolworth, Surrey.

For the present all correspondence to Brixton address as below :-

> Telephone:
> Brixton 6506
> PARTRIDGE TRANSFORMERS LTD

PECKFORD PLACE, LONDON, S.W. 9

PostWAR radio at prewar price The shortwave superhet, neg. feedback, attracilye plastic 2 -colour cabinet, compete gitgns incl. pastind-coavr cabinet, compete 10 ign s Incl. Rd.. London, N.W.3. . $I^{\text {EEDDRR }}$ units with R.F. stage, S.M.L. wave $6 \mathrm{K8}$. 6 K 7 , 667 , aligned ready for connection to audio amplifier $\& 1018 / 6$ inc. pit. -Send $21 / 2 \mathrm{~d}$ josue, to Coulphone Radio, 58, Derby St corms kirk. A.F. IF .F. R.A.F. A.F.F. responser units, complete with television diodes, 2 twin triode mains valves and 1 EF50 Mullard; as so includes 24 v motor generator, Suitable for modification to universal
motor. 2 magnetic relays, several mechanical motor, 2 magnetic relays, several mechanical censers, variable and fixed, and other useful components, $25 /-$ each, carriage pald.-Uncle Tom's Radio Cabin, 5, Seven Stars Court. Man chester ${ }^{4}$ RECEIVERS, AMPLIFIERS-SECOND.HANO BC. 348 with handbook, no power unit; \&12, 1 - A.F. R1155A receiver, perfect condition: 1 © $8 / 10$.-Box 1446. [1817 1.C.A. AR88 receiver, perfect condition; ${ }^{\text {first }}$
reasonabie offer, -Box 1447 . THALLICRAFTERS SX24 with matched 1 Y 4 sobel 717, as new cost f45. ci 1 148 31. Alexandra Rd.. N.W.8. 11896 2-VALVE battery amplifier. A11344; 9/6.A. Stansfield, Areworth Terrace, Kelghley, A -Shields, A.S.T. Cub. Hambie, Hands. A.C./D.C. H.M.V. radiogram; 30gns.: 1948 a.c.
midget: $6 / 15$. -32 Barnhill Rd. Hayes. BRAND new 12in H.M.V. Emiscope type $3 / 4$, \rightarrow Box 1374. . 11737
H ALLICRAFTERS S-27, 27.8 to $143 m \mathrm{~m}$,
Box 1386, $C O U S T I C A L$ QA12/P high quality amplifier A with Vitavox K12/20, 12 in speaker, both Unused LGH quality amplifier E. Jeffery circuit $[1770$ I- list grade heavy duty components through-
 Holly Rd.. Hampton Hill. Middlesex. [1780 115 A with KT63 output, power pack, hill": Balcomoe Rd, Haywards Heath, Sx. V tuner for use with quality amplifier: $\kappa 6 / 10$, including valves; new and unused. --Box 1384,
$B C 342$ new condition, compete with autoE16 trans ion will Rd Northfeld Birmingham ITARTLEY-TURNER 215, £7; Goodman Axton as new. Raymond. 306. London Rd. Langley. Bucks. price and components, reasonable to clear: send s.a,e, -Mawson. 11, Salisbury St., Pelaw.
on-Tyne M ASON'S. Wivenhoe, nr. Colchester, can now Locus coils at $25 /-$; scanning coils at $33 /-$; os units at $18 /-$ - valve quality amplifier [with 1- GOR sale -7 valve quality amplifier with handsome cabinet; what offers?-Bush. 44. Priory Rd. N.W.6. BARGAIN, brand new B.C. 348 handbook and Bower pack components; £14 or exchange, Wanted Auto, change.-Tel. Per. 3214 or write
Page $\mathrm{BM} / \mathrm{MVB}$, London. W.C.1,
[1742 IT ,R.O. standard rack-mounted receiver, with OR. 100 with speaker, spare valves, £30.-
Vale. 56 . Gifford Ter. Rd., Plymouth,
[1654 BC348, unscratched, internal power pack, 3 handbook. 'phones. c20; also hotted R1155' With 8 in spier, and power pack. in cabinet, 182 A S brand new, boxed American indicator am 6S plifiers, 18 valves, ${ }^{2}$ 6L6G, 1 jUG, 6SN7G. 1/VR150, 5 6AC7, etc.: thermal relays Lane, Erdington, Birmingham. [1804 17 valve a.c./d.c. superhet radiogram chassis glass dial. multi-ratio output transformer, a new, complete with valves; £11/11.-25. Percy Ave., Kingsgate Broadstairs, Kent, 11 cabinet, by Hartley-Turner with Hartley Turner speaker and B.T.H. horn in beautiful controls: a receiver for the connoisseur of music going abroad: sacrifice $£ 95 .-$ Roza. Reading II TS in semi-whred state, complete in ever Hin ed beta all main components mounted and deep; M / L wavebands, 3 valves and roc., ac. d.c. mains; simplest instructions and circuit included: 4 controls: vol/ofi, tone, w/c, tuning
wiring time 1 hour; $\& 7 / 17 / 6$. inc, postage; c. $0 . d$ wiring time 1 hour; $\mathcal{E} / 17 / 6$. inc, postage, c. 322. High Rd., Wood Green, London, N. 22 Tel. Bow 5997.

SUMER IS YGOWEN OUT

but not before many of our more distant friends at home and abroad have come to see us while on holiday in London, or trying their strength at the Olympic Games.

Hartley-Turner enthusiasts are drawn from all walks of life, but have the bond of a common interest in good music. Our equipment gives them the results they need for the enjoyment of this most pleasant recreation, and judging from the volume of business we have done in the height of summer-even greater than that in the depths of winter-they seem to think so too.

We have no epoch-making plans for the forth. coming " season " beyond a steady determination to make better goods for better service. If you have not been in touch with us send for our data sheet catalogue to-day, and above all read " New Notes in Radio," a complete non-partisan guide to high-fidelity reproduction. We have secured a supply on cheaper paper and pass on the saving to you. Whilst this small reprint lasts we shall be glad to send you a copy for $2 / 6$ instead of the usual price of $3 / 6$, but supplies are limited and you should write soon.
H. A. HARTLEY CO. LTD.

152, HAMMERSMITH RD., LONDON, W. 6 RIVerside 7387.

PEERLESS

TYPE 1047 RADIO CHASSIS
This chassis is now available as an $A C / D C$ model, and can also be supplied as a complete Radio Gramophone with twin speakers, Radio Gramophone with twin speakers, acoustic labyrinth, etc. in wanut
one of Britain's leading designers.

Among its principal features are:-

- Io stage superhet circuit.
- Io valves (including magic eye).
- RF amplifier.
- 2 IF stages.
- 4 wave bands
- Io Watts push-pull output.
- Tropicalised components.

Communications enthusiasts should write for details of our 1546 Chassis.

PEERLESS RADIO LIMITED

374, Kensington High St., LONDON, W. 14 Phone: WEStern 1221

HALLICRAFTERS S.X. 17 and matched speaker, $0.55-62 \mathrm{mc} / \mathrm{s}, 13$-valve, crystal.
limiter, $115-240$ a,c.; offers. meter, noise limiter, $115-240$ a.c.; ofiers.
Hene y, 28 , Methuen Close, Edgware. Middx. He.A. audio amplifler; 4-6J7, 2-6L6. 1-5U4G R.C.A. audio amplifier; $4-6.77,2-6 L 60 ; 1-504{ }^{2}$ ourput 12 watts; price, chassis complete with outves, £12; 2 amplifiers with valves mounted in enclosed cabinet rack, $£ 25 ; 250 \mathrm{watt}$ auto transiormer, works 2 amplifters, 30/- extra-
Bi
$1 \mathrm{Box}^{1389} \mathrm{~A}^{\mathrm{A}}$ communcation receivers, brand 1.24 new, \&4/10. carr pd.: 1124 d R. A.F.
 sound, $30 /=$ carr. pd.: $355423 \quad 7216$ receivers. cheap focus and scanning coil assembly. $50 /-$: plete. J. Rae, 39 , Fenn Rd Wolverhampton $1 \mathrm{~B}^{\mathrm{C} 603} 10$-valve receivers. $£ 7 / 10$; 1154 trans. 13 mitters, 28 ; H.R. headphones, $8 / 6$; 0.25 mfd 2kvw, at $1 / 3$; we are agents for all makes; guaranteed delivery by return of post, all orders carriage free; the cheapest and most prompt service oo-day; our 12 -page catalogue win be sent rice of charge on request; send a P.C.-Torbay Elec-
tric. 43 . Colley End Park, Paignton, 8 . Devon. 120 watt twin rack, E.M.I amplifier. incor. driver unit, monitor speaker panel, gramoplione unit, fader unit, output line panel, etc., complete with 7-10watt born speakers and stand microphone, ex-wartime factory equipment, in good cond.tion; a bargain at $£ 58$. 100 W amp. ier. in perrect condition, incorporarng four The Electrical Equipment Co. (Leicester). Lid. The Electrical Equ:pment He.. 106. London Rd. Le ${ }^{\circ}$ cester. C. JEVELOPMENT, Ltd., Hutert St., BIRM ngHam 6 (Tel. Aston Cross 2440), the Midiand high fidelity specialists manufacture W. W. Wiliamin n and other quality ampliffers strictly to specitication; our own E:ectronola super a.c. and a.c./d.c. types; tone control stages, loudspoaker crossover units. contrast expanders and we can also adapt them for use with existing we can also adapt them for use with existing nents: call for a demonstration; give us a ring. or send 2% stamp for full detalls and prices. NEW LOUDSPEAKERS
HIGH quality, precision-built speakers die-cast chassis. twin cone.-Broadcast \& Ac ustic Equipment Co.. Ltd.. Broadcast House. Tomb'and, Ncrwich 26970
TET us help you design your Ideal
6435
High If Fidelity reproducer; hear our comparison tests between leading makes speakers includink Barker Concert, Sound Sales Phase Inverter. and 12 CS . and many others also following Pickups. Decca. Connoisseur. Lexington. Wilkins \& Wright, Marcont $14 .-$ Holley's Radio Stores.
285. Camberwell Rd.. S.E.5. Tel, Rodney 4988. 285. Camberwell Rd... S.E.5. Tel, Rodney 4988 ,
$1^{T^{\prime}} 4^{\prime} 6^{\prime \prime} \times 3^{\prime \prime} 6^{\prime \prime} 6^{\prime \prime} \times 1^{\prime \prime} I^{\prime \prime} 12$ or offer, Box 1502 TWWO $4^{\prime \prime} \times 3^{\prime} 6^{\prime \prime} 6^{\prime \prime} \times 1^{\prime \prime}$ i $£ 12$ or offer.-Box baffes. 1502 . TWO 25 in horn baffes. £2; twin 1oft exponenBM/DHUL. W.C.1. 2000 fleld, rectifter, curved M AGNAVOX 66, 2,000 fleld, rectifter, curved Grange Park Ave. N. 21 Duode. 2.000 ! field with HARTLEY-TURNER Duode. 2,000 (field with Sunnicot, Bosham, Sussex. 18 ; field energiser $V_{\text {by }}^{\text {OIGT }}$ twin unit, as new, £18; field energise London Rd., Leigh-on-Sea. Essex. 1822 NEW Voikt corner reflector horn and twin ofirs.-Grose. Symons Hill. Falmouth [1849 A COUSTICAL manuf. QiA12PP \&22; concert A labyrinth speaker, £38; Hartley new T.R.F
tuner, 12 ; all new, perfect order.- Box 1380 . HARTLEY-TURNER twin cone, told supply suovith 10-watt a.c. amplifier, television E.H. supor: c10. 2 Volgt loudspeakers complete. also special receiving set for reception on two
alternative stations glving almost perfect alernative stations siveduction by Scot-Sessions, Ltd.-Box 1363 . W RITE for detalls of the new Flexicone conWersion which considerably improves reproduction of speech and music to existing speakers. Looker's Quality Radio. 106. Davidson Rd . 1923
East Croyden. East Croyden.
$\mathrm{B}^{\text {AKER super quality } 12 i n \text { triple cone speaker }}$ B with Ticonal magnet, complete with infinite baffle cabinet in veneered wainut. l50hms splginal price,-Box 1383 . VOIGT speaker with h.c. corner horn and base chamber with energising unit. \&27/10:
5 in PM. speakers. $12 /-$; 12 in Goodman P.M., 5in P.M. speakers. $12 /-\mathrm{il} 12 \mathrm{in}$ Goodman P.M..
£5/12/6: $61 \%-8 \mathrm{in}$ P.M. Rolas. $15 /-\mathrm{a}$ all above less transformers.-Claremont Radio, 112, Pentonville Rd. LYNAMMOS, MOTORS, ETC.
A.M. disposals.-New portable petrol electric A generators in original overseas wood cases. output $12-15$ voits 600 watts d.c.. Self-starters. Turnbuckles, 4 por $10 /-;$ rotary converters, input 24 v d.c." output 230 a a.c. 100 watts, 50 cps , £5; $44-012$ unicel cable. single ${ }^{\text {E10, twin }}$ E18;
1.000 yds; Dl-pole aerials, 601 t , co-axial, $\mathcal{E 1}$; ail news, carr. Daid.-Wild's Radio, Victoria Rd. Fenton, Staifs.

COMMUNICATIONS RECEIVERS

A 10 valve receiver for use on $100-124 \mathrm{mcs}$, and adaptable for 144 mcs. Excellent A.G.C., and frequency stability. A local osc. gives audible beat when receiving unmodulated carrier wave. Receiver consists of a signal frequency R,F.amp Rellowed by a frequency changer with osc. valve, followed by a frequency changer with osc. valve,
3 I.F. amp stages, double diode det. and A.G.C., 3 I.F. amp stages, double diode det. and A.G.C.s
rect. and 2 stages a.1. amp. BFO included to switch into detector circuit. Functions from A.C. mains (200-250 v.) in conjunction with a separate power pack. Valve: I each $\mathrm{P}_{4} 1$, 7475, EB34, EF32, 6J5G, 2 of SP4I and 3 of EF39. Output impedance 600 ohms, but satisfactory $200+2,000$ ohms. Supplied with circuits and calibration chart. The power pack operates from 200-250 v. A.C. with a switch controlling input voltages. Output 220 v., $70 \mathrm{~m} / \mathrm{a}$ D.C. and 6.3 v. $4-5$ amps A.C. Meters $70 \mathrm{~m} / \mathrm{a}$ D.C. and 6.3 v. $4-5$ amps A.C. Meters measure output voltage and current. Receiver
dimensions 1 gin. x 10tin. x. $10 \frac{1}{2}$ in. and the power pack igin. x yin. x iolin. We can offer alternatives as detailed :
Brand new Receiver (Ri132A) with brand new Power Pack (Type 3) in cases. The pair for f7/19/6, (cafr. and pkg. ©1). Receiver only 67/19/6, (carr. and pkg. 1.1 . Receiver only 6.4/19/6, (carr. and pkg. 10/-). Power Pack only,
$6,3 / 10 /=$, (carr. and pkg. 10/-). Slightly soiled Receivers in cases $£ 3 / 9 / 6$, (carr. and pkg. 10/-).

CALLERS to 24, Naw Road, London, E. 1

TRANSFORMERS \& COILS TO SPECIFICATION.

MANUFACTURED OR REWOUND

Filter Coils + 1% a speciality.
JOHN FACTOR LTD.
9-11 EAST STREET, TORQUAY, DEVON Phone: Torquay 2162

Mr. A. C. BARKER'S MODEL 148 SPEAKER

is finding much favour amongst sound recording engineers as a monitor, since its command of the sharpest transients and most complex passages reveals details not otherwise apparent. The secrets of this clear cut highly damped response lie in the coil and cone. both of which employ Mr. Barker's exclusive patents.
Model 148 is a laboratory, hand made 12 inch Speaker for those who seek true NATURAL sound. Mr. Barker also invites enquiries from professional users, builders, designers and retailers of the highest quality sound equipment who may be interested in limited numbers of his Model 148.
Write for details to
BCM/AADU, LONDON, W.C. 1

 $\mathbf{B}^{\text {Andeds, }} 2-6-12 \mathrm{v}, 1,2$ or 4amp dc. any mains Yoguae, -Ten Hoddesdon 2659 . The Banner Eiectric Co.. Lid., Hoddesdon. Heris
$\mathbf{A}^{\text {LLL types of rotary converters, electric motors, }}$ batery chargers. sets. etc.; rotary transformers sutput 600 o at 250 ma , price $\mathrm{E} 4 / 10$ each
 Works. Ward. Lordscroft Works, Haverhill, Suft folk. Havernill 253-4.
 A.P.6547, $27 / 6 ;$ receivers A.P.6549A, 25/-itern Aesoivers, 27/6; all $50 \mathrm{~A}, 50 \mathrm{c}$. p,s. s . Linear potentiometers 10 watt wirewound Berco M10, free. - Hoton Radio 1 , Hopton Parade, Streattree. - Hopton Radio 1 Hopton Parade, St
EXIDE batteries, 12 volt.
necinew dry, uncharged. built to Ministry pickled (idarst class), 19 plates per cell. wonderful tenacity to life, suitable for any wuty fitted with Davis non-spill vents. carrying handles, etc., complete in waxed hardwcod case. E3, 10 each, carriage 9/6; Lyon Alco Norman lighting and charging piants, complete self-contained unit, blower-cooled ohy engine. 12-24volt $18 a m p$ circuit, with full control panel, includ.ng suitable for smail house. boats farms, worissh: ps caravans, new $\Sigma 27 / 10$, with push-button Starting, E30, carriage 20/

Instruments.

MOST makes in stock, some on terms.-Write for details, and list of radio and electrical spares. new and ex-Govt.. to The Instrument A vo batt. sig. gen. as new. in original 0^{-100} microampmeters; $9 / 6 .-$ Stansfleld, Aire-
 $\mathbf{B}^{\text {WIDGE }}$ Wats. Chapel Ave. Addlestone. Surrev. cash--Boiton, 55, Berkley Rd.. Newbury. $\mathbf{A}^{\text {VO valve tester, }}$ gith panel, modern type. Ave.. Cosham. Portsmouth. 11885 $\mathbf{W}^{\text {ESTON }}$ valve-tester, pertect $£ 12 .-$ N.R.S. 102. Parkhill Rd.. London, N.W.3., accept £40: ${ }^{[1868}$ one $\mathbf{P}^{\text {YE }}$ tent track, cost Wales Rd., Kiveton Park, Nr. Sheffeld. 16 Gs T Electronic Testmeter, valve tester. Atc.: write Electronic Testmeter, valve tester, etc.
 A lor vaive testeritent condition.-Claremont
 COSSOR double beam. CRO. eso, also Taylor w. Iondon or delivered London postal a area; reasonable offers accepted; all letters answered -Box 1356.
A. V.O. ace-d.c. Minor with case. 55: recondiin perfect condition- Northolt Electricai Serin perfect condition-Northoit Electrical ser-

 of valves. inc TX types. all guaranieed; state wants. stamp please.-Mort, 42, Barn Lane. GOlporne Lancs. meter BC221 AH $125-20000$ 1155 kc receivers. new, new. un modified. plas carriage: carriage: meters. 0.5 ma . $5 /-$ each; $0-50$ volts. $4 / 6$ each: $0-1$ ma. $5 / 1$ each. 1 ma meter rettifiers. 2ef each - Buchanan. Dunlop \& Co.. Lid. 27. Denmark St. London. WC2. © ezC; TB. $10 \mathrm{c} / \mathrm{s}$ to $350.000 \mathrm{c} / \mathrm{s}$. X and Y. plate amplifiers, easy to handle and has outstanding performance. brand new and fuly guaranteed. immeante oelvery comp et en wique. -Write for further details to Erskine Labrra:tories Leti. Scalby. Searbrrough
 amp. $21 / 2 \mathrm{in}$. thermo-roupled. $7 / 6 ; 60 \mathrm{ma}$. 3 in.

 Exers. as. used in plane inter-com., in selfcontained metal case, can be used to make up a deaf aid outfle intercommunication system. or with crystal set, complete with valves (also unused) 20 - post $1 / / 6$ letters only.
HIGHSTONE UTILITIES, 58, New Wanstead. London, E.11.
[1590

Armstrong

BETTER LISTENING

Armstrong have always made "better listening "a first consideration, and for over 12 years have fitted high quality pushpull output to practically all models.
Armstrong chassis described below come in this category.

Model EXP125. 14-VALVE ALLWAVE RADIOGRAM CHASSIS

giving continuous waveband coverage from 11.9 m . upwards. Waveband expansion. R.F, Pre-amplifier. Two l,F. stages with variable selectivity. Electronic bass and
treble lift controls, 15 watt push-pull treble lift controls, is watt push-pull
output. For $200-250 \mathrm{v}, \mathrm{A} . \mathrm{C}$. mains.

Model RF103. 10-VALVE ALL-WAVE RADIOGRAM CHASSIS
IO-valve circuir. R.F. Pre-amplifier. Waveband expansion (Short waveband covers over 20in.). Large glass scale. 3 stages A.V.C. Treble lift cont,ol (operates on both radio and gramophone). Plus 6 db . Bass lift on Gramophone (to restore bass cut on some records). 10 watt push-pull output For 200-250 y. A.C. mains. Price 19 gns. Plus Tax.

Model EXP83. 8-VALVE ALLWAVE RADIOGRAM CHASSIS

incorporating waveband expansion. Large glass scale. Treble boost control, Gram. switching, High quality push-pull output gives 10 watts audio. For $200-250$ v. A.C. mains. Price EI5. 8, 8. Plus Tax.

Model UNI-83.
 8-VALVE ALLWAVE RADIOGRAM CHASSIS

incorporating waveband expansion, e.g. the $16-50 \mathrm{~m}$. band covers just over 20 inches on the large glass scale, treble boost control, gram, switching, all control. work on both radio and grim., high quality push-pull output giving 6 watts audio. For $200-250 \mathrm{v}$. D.C. or A.C. mains. Price £15. 8. 8. Plus Tax.

HOME MARKET

Alimited quota of the above is available to our friends at home, and we shall be glad to send details and to give demonstrations at our showrooms.

> ARMSTRONG MiREESR WARLTERS ROAD, HOLLOWAY, LONDON, N. 7 Phone : NORth 3213

A^{D}DMIRALTY laboratory wavemeters, G62. by Marconi, frequency $15: 3 / \mathrm{s}$ to $2,500 \mathrm{kc} / \mathrm{s}$.
isting of nine valves. EBC 3 , thermostatically controlled crystal oven. jookc/s crystal variable oscillators, etc., weight 112 lb , size 28 in $\times 10 \mathrm{in} \times 10 \mathrm{~m}$. complete with valves; $0.5 \mathrm{mill}-$ ameter, £15; less valves, meter. £10, pius carr. 198. Moor End Lane, Erdington, B'gham.
$\mathrm{B}^{\mathrm{C2} 21}$ Xith frequency meters, very good conE8/10; TU5B, TU9B tuning un'ts, very good E8/10; TU5B, TU9B tuning un'ts, very good condition. $11 / 6$. BC348R receivers, hrand new. 175 ma, $5 \mathrm{v} 3 \mathrm{a}, 4 / 6$ each. ${ }^{\text {ectifiers. }}$ BS433G radio compasses, complete, 15 useful valves. $£ 3 / 5$; callers passes, complete, 15 userul valves, s3molecallers valves; give 1.100 v at 350 ma . $58 .-\mathrm{H}$. Clarte. N'EW ex-Govt. bargains! Send 1d s.a.e. for 1 radio/elec, list! A few examp es: All brand new. boxed, m/coil, electrostatic voitmeters (Elec. Inst. Co.) 0-5.000, volts. $31 / 2$ in round dial. fush
fitting. fitting. flange $41 / 1 \mathrm{In}$. $30 /-i$ ammeters (M.I.P.)
 couple, round 2 in prol. $5 / 6$; ditto (Ferranti) couple round 2 in proi. $5 / 6$; ditto (Ferranti)
$0-200 \mathrm{~m} / \mathrm{amps} \mathrm{H} . \mathrm{F}$ thermocouple. round 2 in oroj., 7/6: microammeters. visual indicators No. 3 conte, 2 comp. Weston 300 microamp mivements in bakelite case. round 2% in dial. 2 scales. 2 lamps with SBC holders comp!ete. $7 / 6$ ea. $12 / \%$ pair. or $48 /-$ doz; fuel content indicators contg. a single movement with 2 tappings giving f.s.d. $60 /=$ doz: Wee Meggers. 250 volt. brand new. comp. in leather case is e13). ©7/10 Aew. Ltd. 126. St. Albans Ave. London. W. 4 (Chisalick GRAMOPHONE ANO SOUND EQUIPMENT S IMON SOUND SERVICE have recorders in $\mathrm{N}^{\mathrm{N}}{ }_{1485}$ Collaro magnetic pick-up; offers. $\frac{\text { 「 } 8713}{\text { Box }}$ COLLARO auto changer: \&19.-Write BM'

INGTON Junior pick-up with transfor 1795
1 hardly used; £3/10.-Box 1505.
ADIOGRAM, Philips, a.c. beautiful walnut
cabinet; $£ 50$. - Tel. Mountview 3739 .
[1848
BRIERLY ribbon pick-up. JB/P/R/I, with
1 transformer, as new; ofiers.-Bcx 1525 .
IK ECORDING amplifier, AR15, 20 watt, guar-
YARRARD R.C.4A. record changer, as new:
offers.-388. Dudley Hill Rd.. Bradford. MICROPHONE and headphone sets. moving son's. 204. Lower Addiscombe Rd., Croydon. IOR sale. Collaro Mkcrogram, electric record -9. player, condition as new, $£ 18$ or near offer. TRANSFORMERS tone, control and flter Langland Cres Stanmore, Mdx, Wor 5321 I EXINGTON Junior and pre-amp, used test
 1 ECORDING machine, playback, amp'iffer: cheap at 455 .-Meyerowitz, 56, Albany Mansions. London. S.W.11.
GARRARD autochanger R.C:60. With sapphire. \rightarrow brand new condition, fitted in portable arrying case; $£ 20 .-35$. Colebrooke Ave.. W.13.
Middiesex.
$W_{\text {mixed }}^{\text {Perivale }}$ autiogram cabinet (new); Garrard
andic changer chassis; Voight
1876 and mixed automatic changer chassis; and Barker speakers; large baite.-Hardy,
Chichester House, Brighton. 7, NFINITE Bathe corner deflectors. scienthlicWireless World "June: send for catalogue. Broadcast \& Acoustic Equipment Co., Ltd., Broadcast House. Tombland. Norwich 26970 . SIMON SOUND SERVICE can supply your A TO-CHANGE H.M.V. Lex't'n head, E15: trans., 1-1. 3/6; Lexington Senior, 2 saph's' and trans, £5: 12in Goodmans P.M. new, in bass
Reflex cab'n't. \&15.-Taylor, 24, Enmore Rd.. Reflex cab ${ }^{\prime} n^{\prime}{ }^{\prime}$.
Putney 8433 .
CINEMA sound projection apparatus. Comments: reconditind dual standard size eour mound equipment; single units from $£ 125$: dual from E220.-Kine-Technic Services. Ltd.. 60 M ICROPHONES. moving coil, type 4021C. as 1 brand new, high fidelity dynamic, it a fraction of their original cost. one of the finest available, made by S.T.C. Co. our price $£ 5$. post free; only a few left.-Wilkinson's. 204 . ROTHERMEL S8 pick-up and sapphire, little $250 \mathrm{v} .60 \mathrm{~m} / \mathrm{amps}, 6 \mathrm{v}$ and $5 \mathrm{v}, 15 / \cdot ; 8+8+20 \mathrm{mfd}$ $350 \mathrm{v}, 60 \mathrm{~m} / \mathrm{amps}$. 6 V and 5 v . $15 / \cdots 8+8+20 \mathrm{mid}$. former, $17 / 6$; polished oak cabinet, 12 in $\times 9$ in \times
 CiNe-Vox type Cl complete self-cunC tained disc recording units available in increasing quantity; also in skeletcn form for existing amplifiers: orices from 48gns: early Technic Services Lord. 60. Aylward Rd. London. S.W. 20 Callers by appointment only.

Type T.W. Wire Wound	
Racing	RANGES
5 Wate Max. (linear)	$\left\{\begin{array}{c} 5-100,000 \Omega 2 \text { Max. } \\ \text { (linear) } \\ 50-50,000 \Omega 2 \mathrm{Max} \end{array}\right.$
3 Watt Max. (graded)	$\left(\begin{array}{c} \text { (graded) } \\ 100-10,000 \$ 2 \text { Non- } \\ \text { inductive } \end{array}\right.$
Type S.G. Composicion	
1 Wact Max.	2,000 ohms to S megohm;

CHARACTERISTICS: (both types) linear. log., semi-log.,inverse log., non-inductive, etc FULL DATA FROM RELIANCE
Manufacturing Co. (Southwark) Led. Telephone : Larkswood 3245

HENRY'S

TELEVISION MANS TRANSPORMER. Porth-

 minster. Exacty as specified in " Electronic Ensineer 2 a., 4 ₹. 3 a., fully quaranteed, 75 '-, Uther trans: formers available include Porthrinster: $200-250$ 4 F. 5 amps., fully shruuded, $28^{\prime} 6$.

8TEWART. $200-0-250$ if $\nabla .3$ amps., 5 v. 2 amps., 80 maa., 276. 3517-0-301, 6 v. amp., 5 . 2 amps.
 $150 \mathrm{~m}^{\prime a}$., 50 -

DENCO. We are now able to supply the new and Turet (T']. with R.F. stage Fise wave-banls, switchinge etuc., ete., e7/2'6. Jluntrated General Catalcgue of DENCO products cat be supplicd at 9d, ALUMINIUM SHEET. 1 wit. $15 \frac{2}{\mathrm{i} h}$., 18 gituge, 6 sheets for 21
"PIFC5" ALL-IN-ONE RADIOMETER. A!/DC, MADGET TWO GANG. .0nozi mifd, 2jh. 1lin. 1jh Lons spindle, 11/6.
TELEVISION COMPJNENTS BY * SCANCJ." HIghgrade tested components, standaril fitting, Euaraniteed 100 per cent, focus coil, 30%. Eine Transfurmers. 30%. Transormer, $4,000 \mathrm{v} .$. with +v . and 2 v . heaters, $59 / 6$ only". sultable for " Electronic Enpineering " desizns.
In addition to the above few item. We have probably the mont up-to-date stock of Radio Components in the trade. Also ovas 10,000 valves in stock.

TRADE SUPPLIED
Send stamp for latest Comprehensive Component List.

HENRY'S

5, HARROW ROAD, W. 2
PADdington 1008;9
$\mathbf{B}_{\text {amp.ifer }}^{\text {RIERLEY }}$ ribbon pu. with trans. and preWith amp. fier, 2 wikins wright p.u.s. one 250ma: scrath above in brand new condition. for 2 Gardner mains trans. sale for reasonable offers; Tayiormeter, 90a in perfect condition.-Enquiries to Box 1358 . A. C. mains gram untts. compete with gin Collaro magnetic and crystal units. at list price post free; radiogram cabinets. chassis. amplifiers, speakers. etc.; keenest prices in the trade; s.a.e. full list.-Radio. Unlimited. 16. Carnarvon Rd. Leyton. E,IO. with replaceable VOIGT M.C.P.U. (post-war), with repaceable
stylus, $£ 7$ voigt n rmal twin diaphragm (new), \&4: Jin oscilloscope T.B, and amplifiers, using E.C.R. 30 tube. in grey cellulose case new. not ex-Govt. $£ 10$: Marconi TllDA Companion Rd. London, S.E.20. Sydenham 5984. 11813 six mics and channels for two radios. I sentor RK speaker on baffle, B.B.C. ribbon mic, with prestage and stand, twin p:ayback turnrables in oak case, surtable App'ication for demonstration appiy recording. Appication for demonstration app.y W.I. Tel, Mus. $9971-3$. $\lceil 1682$ 1.OR sale, amplifying equipment consisting out put approximately 15 watts with collars. 12 in turntable (a.c. only), amplifter requiring repair. TWO table stands and 1 flo,r stand. G.E.C. No. BCS. 1580 , moving coil microphones togethel With 512 in and 2 loin P.M. moving coil Rola
speakers without transformers.
INSPECTION upon application to Town Hall
MNSPECTION upon application to Town Hall Hackney Borcugh Council, Mare St., Hackney. E. 8 , by 23 rd October, 1948 .
IROFESDIONAL recora.ng equipment to the 1 trade: M.N.S. recording machines. recordint amplifiers, ribbon and M/C microphones, blank discs. etc., etc.; gramophone motors and lightWeikht pick-ups. radio pre-stage units and
quality speakers. all from stock on full trade quality speakers. all from stock on full trade diate delivery.-Sound Discs (Supplies). Ltd. A.C. gram. motors, 200-240v. Sin turntable A. $75 /-$ Collaro ditto with 12 in turntable and variable speed, 118/4; Collaro combined unit motor/pick-up/autostop. a.c. \&9. carr, 5 , - ;
universal ditto $£ 12 / 18 / 9$ carr. $5 /-$ Plesses universal ditto, $£ 12 / 18 / 9$, carr. 5/-i Plesşey latest model super quick-action record changer 4-watt audio amplifiers, pick-up and tuner inputs. volume, tone and neg. feedback controls ()NE brand new comptete M.S.S. recording () machine, 1 matching transformer, 1 B.S.R. 20-watt amp!ifier, 1 lightweight pick-up with peimanent sapphire needle, 1 P.U. matching
transformer, 20 cutting needles. 24 in blank transformer, 20 cutting needles. 24 5in blank 25 gin blank discs. 30 10in blank discs. 1.000 25 6in blank discs, 30 ioin blank discs. 1.000 and table stand, all brand new or very little used; what offers?--Radiographic, Ltd., 66, Osborne St.. Glasgow
OHARLES AMPLIFIERS, Ltd., announce tha W their new 16pp fully illustrated catalogue " Living Music," is now ready: write for your copy now, and enciose 5d in stampsibe K1 and with the famous Kl amplifier kit (blue print 2/6); to match these high fidelity amplifiers which have been gaining popularity month by month since Radiolympia, 1947, we have two tuning units, both being sensitive superhets or simple TRF units at the turn of a switch. giving the choice of highest fidelity or long range sen sitivity; also the " Tricorne corner speake chamber available with or without speaker cream of high fidelity units are available at reasonable prices without straining the budget; we will be happy to answer your written enquiries or to see you between 9.30 and 6. Sats. 9.30 to 1 p.m.-Charles Amplifiers, Ltd. Ie, Palace Gate, Kensington, London, W.8. Tel. Western 3350.
VT114-5T4, new.-GALVES
TOR sale, two 813 s , new. C 2 each; one new 0 -1. IS5, IT4: new, $8 /-, 8$, Broomqe Ab:0*s Lang'ey. Herts. 11925 N field, Aireworth Terrace. Keighley. [1882 NEW boxed American types. 807 9/-, 6SN7G $16 /-$ list.-Stansfield, Aireworth Terrace. KOMPYLEy COMPUNENTS-SECOND.HAND. SURPLUS DENCO turret coll. 6 waveband. R.F. stage, TRANSFORMERS. Bryce. A00v, Ferranti A.F. CVERYTHING in radio, components, amplfbourne Rd.. Brixton Hill, London, S.W.2. Tel. Brixton 7937 .
EIAVE 3 ou
ponents? Everything for the wireless conLI ponents? Everything for the wireless con structor: list free,-Fred TayIor, Cemmercial
St.. Tadcaster, Yorks. TMELEVISION,-R.S.S.. Ltd., sole agents for ning transformer, scanning coll: 19/3 net trade each. 68 a . Park Rd.. Crouch End. N. 8.

NEW LEAFLETS ON

LOWTHER

TUNER UNITS

AND

AMPLIFIERS

are now available, write or call for a demonstration

THE
LOWTHER MANUFACTURING CO.
Lowther House, St. Mark's Road BROMLEY, KENT.

A.n. DAK

wafer switelies The wave-change switch with silverplated double contacts.
A.B. METAL PRODUCTS LTD.,

Great South-West Road, Feltham, Middx.

CRYSTALS ren AIRCRAFT MARINE AND AMATEUR TRANSMITTERS ALL LOW TEMP. CO-EFF. CUTS. BROOKES CRYSTALS LTD.
 10, STOCKWELL ST., GREENWICH, GRE. 1828
 LONDON, S.E.IO.

GENUINE HIGH FIDELITY

frow th the rin in the past fcus weeks, we now feel justitited in calling in the partfew weeks, we now feel justified in calling ourselves the leading high filelityspecialigt fin London.
I lemonstrat ionsa re now given daily of thef ollowing: Our RDI, the "Willianson" and the Partridge 15
What high fidelity amplitiers, the Hartley model Elv, and the Wharfedale WIOCBB loudakeakers.
The Connoisseur, the Wilins Wright Coil, the

Also the RD seratch flter, and the RD feeder unit. Now avaliable the Goodmans Rass Reflex Cabinet, Our irice list will be forwarded on receipt of lit

ROCERS DEVELOPMENTS CO. 106 HEATH STREET, HAMPSTEAD, LONDON N.W.3.
Telephone: HAMpsteod 6901
(1. W. SMe following sound and perfect:TELEVISION, ex-R.A.F. type 3585 receivers containing complete $45 \mathrm{mc} / \mathrm{s}$ strip, which comprises 5 t.r.f. stages, diode and Video stage, valves ent-
played 6 EF50s, IEA50, complete with circuit played 6 EF50s, IEA50, complete with circuit
of strip plus circuit of minor adaption, inis is of strip plus circuit of minor adaption, this is Without any headaches; in addition to the above there are some 17 other valves, including EF50,
EA50. VR54, 55 , 56 and 65 and de $2 e n s ~ o f ~$ condensers and resistors, these are brand new, at $£ 5 / 10$ each; Gee indicator units with verat tube suitable for television, with VR65 valves. and crystal controlled, $92 / 6$ each; Wll91 wavemeters, crystal controlled, $100 \mathrm{kc} / \mathrm{s}-20 \mathrm{mc} / \mathrm{s}$, can be used as signal generator, complete with charts and spare set of valves, in sealed boxes. £7 each; meters, 0-20volt a.c., 0-20amp a.c. thermo, all at $7 / 6$ each; $0-5 m a \quad 2 \mathrm{in} \mathrm{m} / \mathrm{c}, 4 / 4$ each; very special offer, space wanted, R.A.F. type 39 aerial coupiing units cumpeete with
loowatt dumny aerial o-3amp and 0 - 6 amp loowatt dumny aerial, o-3amp and 0-6amp tions, 7/6 each; constant voltage transformers. input $190-260 \%$, output 230 volt 150 watts, 82,6 each; 6volt rotary packs, completely smoothed, packs, $12 / 6$ each; 24 volt ditto $12 / 6$ each: 24 volt packs. $12 / 6$ each; 24 volt ditto, $12 / 6$ each; 24 volt television coils with dust cores, $1 /=$ each; each; camera motors with shaft, $15 /-$ each; 12 volt starter relays, $3 / 6$ each; 12 volt 30 amp cut-outs. 1.000volt condensers, 5 d . each; 0.001 midyet condensers, $4 / 6$ dozen; $25 \times 25,1 /-$ each: $16 \times$ Bmfd 450volt, $5 / 6$ each; assorted screws, nuts, assorted colours, 2/- dozen lengths. sleeving. G. W. SMITH \& Co, (RADIO). Ltd., 3 Lisle CLEARANCE.-Components. test gear. Service Chsts, cheap, s.a.e. list. -Box 1530 . [1902 chokes formers, mains transtormers and
W.W. May 1948 , delivery ex oscillcscope, as olitan Radio Service Co. 1021 , Finchley Rd.
 CONDENSERS.-16mfd 350 volt electrolytic small grommets, 6d, doz.. 3/6 100; Ceramic feed-
 38 , Chapel Ave., Addlestone, Surrey,
OISE suppressor and output swite switches, large, $7 / 6$; portable rectitier 8 -pole Switches, large, $7 / 6:$ portable rectifier unit.
230 v .50 c . ances, offer.-Spooner. Rainhill, Lancs, 11761
WELEVISION aerial equipment, 5 types fully Ings, all types of feeder in stock; send for brochures; aerials installed.-Wolsey Television.
Ltd.. 75 , Gresham Rd., Brixton. S.W.9. Bri. 7566 HAINS transformers, Brixton. S.W.9. Bri, 7566 . as per $\because W$. World," May, 1947 ; delivery ex stock.-Metropolitan Radio Service Co. Co. 1021.
Finchley Rd., N.W.11. Tel, Speedwell 3000. IARGE quantities of radio equipment tor sale speakers, enamelled and sikecovered wire, stan dard size laminations. sleeving, etc.-Appiy Buy TELEVISION scanning coil assemblies, as used iess in our own equipment, suitable for ". Wireframe coils, low impedance line coils; $32 /-$ ex-works,-Clive Courtenay \& Co.. Ltd.. 5, Horsham A MAZING bargain, 9/6, complete kit of parts Yaxley, coils, chassis, trimmers, etc... maing list in England.-Sussex Electronics. Ltd.. (G) Brighton. 7. Tel. 4446 . W can equipment, containing 807 oscillator and tuning controls for selecting crystal harmonics, spare valve, accessories, instruction book; bar-
gain, only $75 /-$, carriage paid, Wilkinson's, 204. gain, only $75 /-$, carriage paid,-W
HOR disposal surp.us to requirements, 1.500 seconds) delay relays model TYE. having single pole, 5amp $23 v ;$ normally open contact and heater wound or $220-230 v$, price for quantities
upon application. Box 8495 .
RECTIFIERS. Selenium, 12volt. Gamp.. new. R ECTIFIERS, Selenium, 12volt. 6amp.. new indicator lamps, clear, fully enclosed, new, 10
for $4 /-40 /=$ gross; parafilm insulating tape. 12
reels, $4 /=$ adhesive rubber tape, 12 reels. $5 /-2$ Gasteen, 181, Lane Rd.. Portsmouth, 11740

 $1,000 \mathrm{v}$ wkg.. oin, 2/6; new, clean goods.-.' Beam $T F$ you require radio or television components at really competitive prices you cannot do transformers, speakers, coil packs, condensers, etc., at low prices, send s.a.e. for list.-A. G.
Supplies, 90 , Melrose Ave., Mitcham. Surrey, PHASE shifting transformers, input 230 v .50 tron concies. output $75 \mathrm{v}, 2 \mathrm{watts}$. suitable thyrapulse motor drives 4 -way wafer switch. $2 / 6$: both post iree; wanted, or similar.-Box 1361. [1696

OUTSTANDING OFFERS!!!

LIGHTING PLANTS. 5tuart Turner and Pela
pone, slow speed engine and dynamo set on C.I.bed plate. 500 watt single cylinder 2 stroke water cooled self-oiled engine, mag. ign., coupled to 50,70 voles 10 amp . shunt dynamo, 1.000 r.p.m. $£ 45$. Villiers Portable plants $1 \frac{1}{2}$ K.W. 35 voles, 35 amps, \&22/10. J.A.P. 300 watt 32 volts 10 amp . lightweight f15. Chore-Horse 300 watt 12 volt 25 amp . $\mathrm{fl4} 10$. All ex-Battersea Stores.
OYNAMOS. Special offer. Car type 12 volt 10 amp. D.C. dynamos 1,400 r.p.m., $62 / 5 /=12$ vole $30 \mathrm{amp}, 2.500 \mathrm{r} . \mathrm{p} . \mathrm{m} . \mathrm{E} / \mathrm{IO} / \mathrm{C}$. 30 volt 5 amp . ,500 r.p.m. $\mathbf{~} \mathrm{E} 5$
BATTERY CHARGERS. For radio or car accumulators. The Lesdix Nitnday Model for A.C. mains comprise double wound step down transformer and metal rectifier 2 volts $\frac{1}{2} \mathrm{amp}$. $31 / 6$. 6 volts $\frac{1}{2}$ amp. 6 volts 1 amp. $£ 3$. 6 volts 2 amps. £4, 12;6. Larger sizes to suit your requirements. Westinghouse R.P. 10 for A.C. mains input and 8 volts 15 amps. output, $£ 18$. Tungar bulb chargers 60 volts 5 amps., $£ 13 / 2,6$. 60 volts 10 amps. double circuit $£ 20$.
PETROL ENGINES. I h.p. single cylinder 2 stroke 3 -port water cooled, on base, $£ 12,10 /-$ MOTOR
MOTOR BLOWERS. Keith Blackman: as BOURDON BOOST GAUGES, plus $8 \frac{\mathrm{lb}}{}$ per sq. inch to minus 7 lb ., for testing blowers vacuums, etc., luminous dial, bakelice case. $7 / 6$ FRE QUENCY METERS. $250-500$ voits Nalder Reed type $310-380$ cycles 7 in . dia., $66 / 10$, . Cromp ton Parkinson flush panel $45 / 55 \mathrm{cy}$. and $320 / 480$ Wycles, needle type Sin. dia. 2 in . scale ironclad, $£ 8$ K.W. full circular scale 230 volt $6 \frac{1}{2}$ in. dia, 3 ph 50 cy.. 45.
input 2 ORMERS. B.T.H. 200,250 volts 50 cy . input 2 volts 20 amps. and 75 volts 6 amps . with
15 taps output, $70 / \mathrm{l}$. Metal rectifier 75 volts 6 15 taps ou
amps. 90

TERMINAL BOXES. Bake-

 lite power terminal boxes $3 \frac{1}{2} \times 2 \frac{7}{4}$ $\times 2$ in. highly polished black with cover 2 -pole $5 / 16 \mathrm{in}$. connection studs and nuts. Admirable cransformer, 2-pole top on large or charging circuits $10 / 50$ amps. Wall or ceiling fixing, 2/6 each, 20/-per dozen. Special quotations CONTROL
CONTROL by Light and Invisible Rays. The Raycraft kit with selenium bridge 10,000 ohm relay, megostat and fittings with instruction
ELECTRO MAGNETS. Powerful I/C electromagnet $6 / 25$ voles D.C. with screw-in solenoid core, weight lib. 10 ozs, $2 \frac{3}{4} \times$ litin., will lift -28 lbs.. type No. 1, $4 / \mathrm{j}$; small 26 -volt D.C $7 / 6$ ectro-magnet weight 10 ozs., life $\sqrt{\frac{1}{2}}$ to 4 lbs. weight, 2 - each. DIMMER RESISTANCES. Totally enclosed panel type, 100 ohms $\frac{1}{2}$ amp. or 50 ohms $\frac{1}{2}$ amp. porcelain base, 10 ohms I amp., 26 .
MORSE PRACTICE KIT., Comprising ad justable morse key buzzer, plated terminals and battery holder on polished wood base 7in. $\times 6$ in. ex-A.M., $5 / 6$

HAND MAGNETO GENERATORS. 4 and 5 magnet type, 150 volts $50 \mathrm{~m} / \mathrm{a} . \mathrm{A} . \mathrm{A} . \mathrm{C}$. output new condition, P.M. Steel magner and gearing in

TELEPHONES for House or Office. Constructors' Parts for your own set-up. Ex-G.P.O. stocks, wall type, comprising Bracket Mike, Transformer and Condenser. Magneto Bell in walnut cabinet, $8 \mathrm{in} . \times 6 \mathrm{in}$. $\times 3 \mathrm{in}$., fitted terminals Hand Magneto Generator and G.P.O. Receiver, 35 - per pair, with wiring diagram.
PARCELS. 10 lb . useful oddments for the junk box. All clean, dismanted from Government and
other surplus apparatus, $7 / 7$ post free. (Not for Overseas buyers.)

Please include postage for mail orders.
ELECTRADIX RADIOS
214, Queenstown Road, London, S.W,8.

O SMOR RADIO PRODUCTS. Ltd.-All comat attractive prices. including the famous O coll pack, etc., designed for easv assembling and perto Bridge View Works, Borough Hill, Crovdon
10 ELCO-REMY $12-24$ volt a.c. or d.c. motors 3238 or 6.3 volt 3 amp output, $12 / 6 ; 24$ volt 80 watt M.B.C. lamps, $1 /=; 3$-position rotar SWitch with pointer knob, 1/3: p.ease order early worth St., Ke,ghiey, mains transforners [1914
UUPER-QUALITY mains primaries, $350=0-350 \mathrm{v}, 300 \mathrm{ma}$, $2 \times 6.3 \mathrm{v}$, 5 v $20-0-20 v^{2} \quad 37,6$, carrlage $5 /-2 \times 350-0-350 \mathrm{~V}$ chokes, $20-$-henry. $300 \mathrm{ma}, 25 /-$ carriage $5 /-$; $1 . f$ Lng items; S.u.e. list.-Cross, Skerries, Newton ITOVING coll m:crophones, each with 1020 M.C. headphones, orand new, boxed, 4,6, weans. etc., wh. alb torque remote control of in sealed tins with instructions; set of 3 motors to work d.rect from 230 v a.c. (1n Ser.es)
£ 3 10/6. Logan, 1. West Alley. Hithin Herts
 1//6; E.M.I. Sin p.m. Speakers. $11 / 6$; R.A. Bin 1/6; E.M.I. Sin p.m. speakers, 11 , 6 , R.A. 8 in, Go.den, 3 or 15 ohms. 75 -: B.T.H. R.K. Sen.or 102, Parkhill Rd., London, N.W.3, Guliver 1453 L with 10 valves, $£ 15$; pre-amp. chassis com p.ete, $£ 7 / 10$, also selection new steel racks, $£ 1$ to $£ 2 / 10 ; 1,200$ volt 200 ma and 6.3 volt 13 amp power packs. Selenium rectifiers, £5; 230 volt rage.-Broadcast and Acoustic Equipment Co. ITTS of radıo receivers from $£ 7 / 8$; 4- and 5 I valve new materials. iable models. semimidget; our latest kit.-Wylwyn Star 1948 has connections for gramophone pick-up. extensions to loudspeakers. A.V.C., 6 hours average time for constructing: full details, diagrams with each kit; c.w.o. or c.o.d.-Isherwoods, Reme Estd. 1936. LITS of spares for the American receiver boxed, $18 \times 6 \mathrm{SH}, 6 \times 6 \mathrm{H} 6,8 \times 7193$, also many useful relays, resistors, condensers and a dyna motor with extended spindle which will work on 200-250 a.c. mains; 145 items in all; brand new, properly packed; special bargain price 70/. carriage paid.-Wilkinson's, 204, Lower AddisCombe Rd., Croydon, [1859 Control, fitted with lens and 6 co:our selector disc, 7/6; m/coil microphine, hand type. with recessed on/off switch. $5 /+; \mathrm{m} / \mathrm{coil}$ volt meter, $4 / 6 ; \mathrm{m} / \mathrm{coll}$ a mpmeter, 4/6; 60ohm headphones,
$3 / 3 ;$ all items brand new, boxed, and guaranteed. -Radio Unimied. 16, Carmarion Ra Levton. London, E. 10 .
THIS month's bargain; experimenter parcel material-1 tested $465 \mathrm{kc} / \mathrm{s}$ I. Following ex-W. ${ }^{\text {N }}$. massorted mica conden $4 \mathrm{kc} / \mathrm{s}$ I. F. transformer, 12 mers, 1 Jones plug and socket. 4 assorted coil cans, 1 H.V.W. cundenser, 1 I.O. valve holder 1 potentiometer, 20 assorted condensers and resistors; price $10 /-$ post free.-Brabant, 43 ,
Josephine Ave., Brixton, $5 . \mathbf{W}^{2} .2$.
(1714 ${ }^{T}$ TELEVISION R.F. 2 pre amplifier for long3 tuned stages, compact chassis, co-axial coupang links aligned and tested 40 to $47 \mathrm{~m} / \mathrm{cs}$; single 200 H.T. with fying leads; R.F. $2 \mathrm{E} / 10$. R.F. 1 £2/10, cash with order; new goods, not exGovernment. Boscombe Radio \& Electric, 59
0 only, 3-waveband coil pack pair iron miniature $465 \mathrm{k} / \mathrm{c}$ I.F.S., fixed iron core, require 100 P.F trimmers. $11 / \mathrm{m} \times 11 / \mathrm{in}$. $4 /=$ long, higl gain, $5 / 6$ pair; Philco standard $465 \mathrm{k} / \mathrm{c}$ no f., soiled cans, 6-pair. dissatisfed.-Cohen. 67. Raleigh Ave. Hayes Middx.
$7 \mathrm{mfd} 600 \mathrm{v}, 5 /-; 4 \mathrm{mfd} 600 \mathrm{v}, 4 /=;$ chokes, American, sealed, screened. 6 Henry 75 ma , $6 /-$, flexible coupiers, 5/- dozen; choke, 5.5 Henry, 230 v a.c. $120 \mathrm{v}, 30 \mathrm{ma}$, stabilised, $£ 1$: hot air blowers. 300 watt element, 25 watt a.c. 110 v motor, 15 -: valve cooling small electric fans. 110 v a.c. 3amp $3 /-14 / 2 \mathrm{amp} 2 / 6$. $10 \mathrm{amp} 7 / 6$; send for $1 /-$ TASonable prices.-Box 1475 . 76 modulator $[1825$ It motor gen.; 500v. 9 valves, push-pull, in ransit case. $50 / \mathrm{c}$, plus $5 /-$; type 78 receiver, 5 plus $2 / 6 ; 2$. $200 \mathrm{kc} / \mathrm{s}$ vibrator packs, output 200 v it plus $2 / 6 ;$ volt vibrator packs, output 200 m at case, $£ 3 / 7 / 6$. pus $2 / 6$; brand new universal electric motors with gear box giving 20-40rpm, 30% plus 2/6; new American Army headphones, 1.r ear pads, leather headbands. $5 /=$, plus $1 / 6$. Morecambe Sound Service, 4-6, Green St. More-
cambe. Tel. 1161 .
$[1820$

MIDLAND INSTRUMENT Co.
 BRAND NEW GOVT. SURPLUS STOCK

DTRERPHONE AMPLIFTERS BC-218-D, coniplete With two 6C5 ralvea, input and output trathionmers,
 operalt, 22/6, post 9 d . WALKIE-TALKIE AERLALS, copr er collapaible, 9-gections, 7 ft . long, Im. dia. Lapers to $3 / 32 \mathrm{in}$, aiso nakes 8 , pood fishing rod 9 . 1155 RECEIVER, blow motion 3 for 6/9, post 9d. 1155 RECEIVBR, Blow motion knobas, and instriment type, all tin. abast, assort. doz., 2/6, poat 6d. MOVING COLL HEADPE NES. 5/- nair, poat 9 , Mod. MOVIN COIL MICR PH NES, fitted switch, $5 /$; post 6d, ENAM, CクPPER WIRE, 33-SW. W. 15 oz, reels, 2/6, pout id. FILM F.OOTAGE MDDICAT Es, makes good counter, $0-125$ with reset, dual voltage 12 or $24-4 ., 2 / 6$, post AND WA8EERS, B.A. size, 1 lb . assort., 2/6, posit riv. 24 Y. A.C./D.C. i-h.p.. exceptional bargain, 20/-, acohol fluxgate, engraved 360 des., lummous cros wires. in wood carrying cases, $10 / \%$, post $1 /$.. ENGDEE DRIVGA GENERAT BS (D.C, dynamos), output 125. th 500 watta, $17 / 6$, carr. $5 /$ SWITCH B XXES,
 A.C.jD. (C., fitted alr-blower and gearbox, final (irives
 CORDS, fitted hich or low inpedance natching unit with switch, 2/6, post 6d. VLLUME C JNTR $5 L S$, all lin. shaft (not pre-set), assort. doz., $10 /$ - pont 9 d .
VARI JMETERS 19-SET, contains m / A. meter YARI JMETERS 19-SET, contains
inatriment rectifier, etc., $2 / 6$, powt $1 / \%$. MAINS Instriment rectifer, etc., $2 / 6$, post $1 / \%$ MANS
TRAXSFORMER, input 230 v, output 50 v . 11 amp. $50 \mathrm{cy} ., 25 / \mathrm{c}, \mathrm{carr}, 5 / \mathrm{F}$ CO-AX CABLE, PV,C. covered. in. dia., 5-5d. lengths, fitted V.H.F. Mockets at both enda, 2,6, post th. RECEIVERS, TYPE 1284-A, 5 -valve battery superbet, complete with vation
VP23 (2), FC'2A, HL2, KT2, 30 to 300 metres in three switch bands, Muirbead vernier dial and other controls, operatea from $2-V$. L.T. $120 * v$, H,T. and 9-v. G.B., smart grey cabeptional hargain, $90 /=$ for phones or mpeaker, exceptional wee meagezs (Evershed \& Fignoles), 250 . 0 to 20 mes. and inf., mottled red bakelite cases, $80 / \mathrm{F}$, post and packing and registration, $1 / 6$.
Above is only a minute selectlon of thems we list : send for a copy, 2d, with S.A.E. Orders over $30 /$ are post-padd, carriage charces are extra tinue being.
MOORPOOL CIRCLE, BIRMINGHAM, 17 Tel. HARborne 1308 or 2664

Radio Mains Supply Equipment

By E. M. Squire

A useful guide to the principles of design and operation of the mains supply equipment. Practical radio engineers, mechanics and operators, as well as radio students, will find this up-to-date book invaluable in dealing with faults in the supply equipment. Illustrated. 12/6 net.

From your bookseller. Published by

PITMAN

Parker Street, Kingsway, London, W.C. 2

1155 登 1-3 American I. g. Firanteed, conits, containing carriage 6 6SH7. 2 CV6. 2 metal dtodes, rotary trans. 18 v , to 480 v .40 ma . $30 /-$ carr, $5 /-465 \mathrm{kc} / \mathrm{s}$ I.F.T.s. iron core. new. guaranteed, 7i- pair: 10in. Truvox L.S. new boxed. $22 /$, post $1 /-$ Weston's Radio, Harman's Cross. Corfe Castle. Dorset CLYDESDALE for ex-Service electronic bar unit, control box, tlexible drive, 2 indicators, inst. bx. at $£ 6 / 15$ per set; R. 1155 rcvr. \&C-221 freq. meter at $£ 9 / 19 / 6$ ea,; Packard Bell $2 v$ preamp. at $27 / 6$ ea; A.1134, $2 v$ amp; at $15 /-$ ea, tuning units. TU5B, Tu6B, at $25 /$
ea; TUBB, TU9B, TU26B, at $19 / 6$ ea; RF26 RF27, at $35 /-$ ea; half-wave dipole aerial (metal const,.), $21 /$ - ea; aso transformers, etc., all carriage paid.-Clydesdale Suppiy Co-. Ltd.
Bridge St. Giasgow, C.5. Tel, South $2706-9$ Bridge St.. Glasgow, C.5. Tel, South $2706-9$, Hup oy post - We pay all carriage, packing ment and new goods of the highest quality by all leading maxers send $21 / 2$ d. stamp uc-day for cur leading maxers, Here are a few examp.es of the value we offer; Meters, $0-350$ or $0-500 \mathrm{ma}$, h.f. 3/11; $0-500$ microamp, scaled $0-15,0-600$ volt 6/6; Weston backward reading. scaled 0-120 maxe ideal S meter, 0 - 1 ma F.S.D. $4 / 11$; G.P.O. headphone and mic set, 2/11; 24 volt mitors, approx. 1/9hp. $5 / 6$; twin tough ruber-covered caple, $5 /=$ duz yds: R.A.F. carbon micruphones, $2 / 6$; rectifier ynits, include transfurmer and metal rectifier, 230 volt input, 200 volt 250 ma out, $45 /-$; 4 -gang 0.0005 tuning condenser with trimmers, all new in box, $6 / 6^{\circ} \mathrm{J} . \mathrm{B}$. Siow mation drive with knob and dial, 2/9; wavemeter type 1117 complete With matched valves and charts in transit $120 \mathrm{v}, 30 \mathrm{ma}$ battery eliminators, 230 volt in, control units, stablised, all new, etc.. for 12 or 24 volt, $20 /-$ make time switch, include 6 in tube, VCR97, all valves, new, 70%; receiver units, contain 12volt motor generator, 11 standard valves, resistances, condensers, relays, etc., etc... 39/6. We are agenc for Woden tlansformers and electronic equipment and invite your enquires. Wolverhampton, less Stores, 203. Staveley to "48. Stafford St., Mail orders cnyy; caller [1870 DADIO CLEARANCE Ltd. 27. Tottenham RADIO CLEARANCE WUS. 9188 .-Receivers. R. 1481,10 valves, coverage $65 / 86 \mathrm{mc} / \mathrm{s}$, I.F. 12 Mc/s, R.F. VR65, mixer VR65, osc. VR66. ${ }^{3}$ I.F.s VR53, det. VR54, B.F.O. VR65, A.F. meter,
output VR67, stab. VS70. 6 in s.m. dial, S. m the output VR67, stab. VS70. 6 in S.m. dial, S. meter we offer the remainder of our stock of these receivers to clear, brand new, in these rec. also 19 in at $£ 6 / 10$; power packs ior these rec. at $22 / 19 / 6$; rack mounting, $200 / 250 \mathrm{v}$ covers $200 \mathrm{G}-400 \mathrm{kc} / \mathrm{s}$. size
 6SK7 r.F.. 6 run on 28 v d.c., all in, price $35 /-$ R.F. units, type 26 , brand new, boxed, $28 / 6$ ali in good condition; type 24, new, boxed, covers postage $1 / 6$ on all; Wavemeters, brand new, com-
$100 \mathrm{kc} / \mathrm{s} .20 \mathrm{mc} / \mathrm{s}$, in 8 bands, $100 \mathrm{kc} / \mathrm{s} .20 \mathrm{mc} / \mathrm{s}$, in 8 bands, bration charts, in original control units. BC434A, for radio carriage $5 /-\dot{c}$ control $15 /-$; fiexible drive cables 8/6; we have a limited number of official instruction books for BC433G at 5/-i receivers. VR92. 78,5 valves. VR91. ARTH2,
covers $2.4-13 \mathrm{mc} / \mathrm{s}$ in 2 bands. xtal calibrator with $100 \mathrm{kc} / \mathrm{s}$ Xtal, operates on 26 V . .c. Soxe $61 / 2 \mathrm{in} \times 81 / 2 \mathrm{in} \times 10^{1 / \mathrm{gin},}$ brand new, in $150-505 \mathrm{kc} / \mathrm{s}$.
 3 valves, VRS, with VCR97 and 20 valves, VR65s. units, type 62, with VCR97 and 20 vaives of com. ponents, these are brand new, and we prefer buyers to collect because of the transit risk, price £4; carriage, buyer's risk, $10 /-$; control units, type 109. With 2 in square meters. 8.00 ? ma and 0.40 v , 8/6: high res. phones, 0.000. $5 / 6 \mathrm{pr}$; metal-cased moving coil meters, scaled microamp movements, all 2in $0-15 / 600 \mathrm{v}, 6 / 6 ; 0-500$ microamp. $7 / 6 ; 0-20 a$, $0-15 / 600 \mathrm{v}$,
$5 /-: 0-40 \mathrm{a}$,
$5 /-;$
; both with shunts; 5/-: 0-40a. 5/-: 0 sothare, microamp. $96 ; 0-1 \mathrm{ma}, 7 / 6$; 0 in square, $6 /-500$ man, with series res. $7 / 6$: $0-5 \mathrm{ma}$. $6 / ; 0-3 \mathrm{a}$ R.F., $6 /-; 2^{1 / 1}$ in circu'ar, $0-500$ microamp, $16 / 6 ; 0-1 \mathrm{ma}, 13 / 6 ; 0-30 \mathrm{ma}$. $7 /-$;
 $0-3 \mathrm{v} .0-60 \mathrm{ma}, 0-5000 \mathrm{o}, 12 / 6$; electrolytics. 8 mf $500 \mathrm{v}, 2 / 6 ; 16 \mathrm{mf} 350 \mathrm{v}, 3 /-8+24 \mathrm{mf} 350 \mathrm{v}, 16+24$ $350 \mathrm{v}, 16+16350 \mathrm{v}$, all at $4 / 6 ; 16+8,16+16450 \mathrm{v}$.
$5 / \mathrm{b}$. 16 s . $25 / 25 \mathrm{v}$. $1 / 6 ; 25 / 50 \mathrm{v} .1 / 9: 50 / 50 \mathrm{v}$ -: Mansbridge conds. 2 mf 300v, 8d: 1 mf .000v. $9 \mathrm{~d} ; 4 \mathrm{mf} 350 \mathrm{v}$. $1 / 6 ; 4 \mathrm{mf}$ 600v. $3 / 6 ; 4 \mathrm{mf}$ $1.000 \mathrm{v}, 4 /-90.1 \mathrm{mf} 5000 \mathrm{v}, 3 /-;$ tubular conds. metal cased. 0011.000 v ' 002750 v 5d: 0.1 mf 350 v . 6d; 0.1600 v . 7d: micas. $0.0001-2-3-5$. 4 d 0.01. 5d: silver micas. 20-6.0000f. 6d: ceramic. 10-20-25-50-100pf. 6d; chokes. $5 \mathrm{H}, 200 \mathrm{ma}, 90 \Omega$ 7/6: high/low phone adaptors. 1/-; telescop aerials. 7 ft Gin extended. 15 in cosed, 1 in ${ }^{\text {a }}$ base. 3/11; rectifiers. 250v 40ma HW, $4 / 6$; 350 v 60ma HW $5 /=12 \mathrm{v} 1 \mathrm{~kg}$ 60 ma
bridge. $4 / 6$: $4 / 6$ Westectors. W6. WX6. WX12. 9d afr-spacpd variables. Hin soind'es. 250f. sopf $1 /-$ 50pf diff.in $1 /=$ switches. $2 p 4 w 3 b$ or Ip 10w 2b. 3 in soindles. 2/9: panel-mounting single fuseholders, $1 /-;$ toggles, on/off, $1 / 6 ;$ D.P.S.T.
$1 / 9 ; 4$-pin vibrators, 6 or $12 v, 3 / 9$.

A.C.S. RADIO

spectalists in ghort wave
receiving and tranamitting equipment, high auslity broadest rectivere and Gramophone amplifieri.
Our Stock includes :-
Aerial equipment: Enamelled. Stranded and Inmalated Wire, Twin Feeder 80 ohma and 300 ohms impedance, Coaxial Ceeder, Insearite and Eddystone Cuils, Ceramle and Pulvisyrene Coil Formers Iron Cored Formern, V.H.F. Coils, l.F. Transformers and B.F.O. Colls, Tranemittit g Inductors.
Capecitors: Fixed, Vlectrolytic, Paper aud Mica ${ }^{\text {'ypes, }}$ set and Trinmer typer.
Valves, Receiving and Transmitting types including V.II.F. and Foltage Regulat or Tubes.
Books: A full range of books on all radio subjects.
Isoudspeakers, Fick-ups, Headphones, a large selection raitable.
Communications Receivera, The Eddyatone 640 at $\mathbf{~} 89 / 10$ to-day's hest value in new ham receivers.
Transmitting Keys. We reconimend the new Eddyaton "Bug" Puttern key at e3,176, Standard Pattern
Our new Catalogue "W.W." gives full details of our entire stock and a copy will be gladly sent on request $A . C . S . R A D I O$

44 WTSMORE RP BROMLEY, KENI

WITH THE

GRCOVE INDICATOR
TYPE 0.
YOU CAN PICK PASSAGES PERFECTLY
WILKINS \& WRIGHT LTD., Holyhead Road, Birmingham 21.

LOCKWOOD

makers of
Fine Cabinets
and woodwork of every description for the Radio and allied trades
LOCKWOOD \& COMPANY Lowlands Road, Harrow, Middx.

Phone: BYRon 3704

IMDIVIDUAL TRANSFORMER REWINDS

> SEND YOUR "BURNT OUT TRANSFORMER TO BE REWOUND. NO TECHNICAL DATA REQUIRED. OUR TRANSFORMER WINDINGS ARE DOUBLE WOUND AND BACKED BY A SPECIALISED SERVICE LOUDSPEAKER REPAIRS, FIELD COILS.

SOUTHERN TRADE SERVICES LTD., 297/299, HIGH STREET, Telephone: CROTDON 4870.

Write TODAY for folder Y. 10.
W. T. Henley's Telegraph Works Co. Led. Engineering Department,
51.53, Hatton Garden, London, E.C.I.

LASKY'S RADIO THIS MONTH'S SPECIAIS

EX A.M. PJWER UNITS, TYPE 280. Containing 4 valven (2 high voltage recn. Vtll33, $15 \mathrm{U} 4 \mathrm{~g}, 1$ sith f multi contact relays, choker, tranitormera, con,
densers (incuding l(m mid, soo V, W. block condetiset), 4 metal recs., and other components. Totally enclowed in metal csose, size 14 in . $x 14 \mathrm{in}$. $\times 20 \mathrm{in}$. (Weight 40 lum. approx.). Larky's price 17/6. Carriage Eng.
and Wales 5 - extra.
EX A.M. RECEIVERS, Type 3515. (ontaining 2)
valvea, 10 VR65, 1 EAsO, 1 EB 34 , $5 \mathrm{VlR} 5,1$ VR53 Hundreds of components, resintances, condensers relaye, I.F. strip, colls, etc. (The I.F. strip can he remored and used an a separate unit.) Bull charet Nize $18 \mathrm{in} . \times 12 \mathrm{in} . \times$ Hin. Lataky'sprice 39 . Carriare
EXA. A. V. V. H.F. RECEIVER. Type 1132A. 11 valve bliperhet. Range $100 / 124 \mathrm{mc}$'s. Large tuntug dial
 lineup. R,F., separato ouc. ind mixer. ${ }^{\text {det., A.V.C., and L.F, Lakky'e Price 63/6. Carriake }}$ 7^{46} extra. Complete with circuit diagram and callbra-

EX A.M. MODULATOR UNITS, Type 64. Contalning - valves, 2 EFru, 2 CVB 4 (high voltage recs.), 180°, lays potimeters condensers (oll illied), metal rect tiern. Weight 50 Ibs. (approx.). Laisky's Price 226.
Carriage $5 /=$ extra.
In addition to the above ex-Gost, hargaing, we have an excellent stock of many other radlo and radio units. Do not delay. Write now for our special Bulletin of ex-Gov. bargatus and current list of radio componente. Enclone " 2 dd. atamp. (Ylease wite hame und address
In block capitals.). In block capitals.)
hyy not pay a visit to-day, We cad alway sen

LASKY'S RADIO

370, HARROW RD., PADDINGTON, LONDON, W.9. (Opp. Paddington Hospltal) Telephone:- CUNNINGHAM 1979.
Hours. Monday_Sat. $9.30 \mathrm{a} . \mathrm{m} .106 \mathrm{p.m}$. Thursday Half-day.

11TILEWOODS, 0.0005 mfd twin gang with reduction drive but no feet. 8/6: ex-R.A.F. motor generator type 47,9 volts d.c. to 450 d.c. at
50 ma, ideal for 6 -volt car radio h.t. supply, or easily convertible to ac $/ \mathrm{d} . \mathrm{c}$. mains motors, $7 / 6$ plus $2 /-$ post and packin.-G. Henson LittleCONDENSERS. $\mathbf{1} \mathbf{1 . 0 0 0}$ assorted, 5gns.: I.F.F. Ci sets, inc. valves (American), $30 /-: 37 / \mathrm{APT}$ 5/-: Bell type insulators. 3 d . ea.; M.C. hand mikes, 10/6; aerial masts, 45 ft , steel $75 /-$. 38 ft telescoplc with handle to raise and lower, made from solid brass tube, $150 /-i$ control boxes for
19 sets, 4 for $8 / 6$; Army $22 x$ transmitter re19 sets, 4 for $8 / 6$; Army 22X transmitter revalves complete but untested; w6332 Admty. modulator units, $17 / 6$; Wafer switches, 2-pole. 2 -way. £ 100 lot: 1.000 ditto. 3 bank, 2 -w'ay, $£ 20$ lot. samples available: transmitter tuning units. TU6, 7,8 , 9 10B, $10 / 6$ ea, or, less outer case, 5R4GY, 5/ - ea.-Astrosónics, Ltd., 166. Ashlev I-ARRY JAMES PRODUCTIONS. 270. Leith - Walk. Edinburgh. 6.-Mail order specialists C.n.d. or cash with order; electrolytics, new, not
W.D. surplus, $B .1$ Hunts, etc. $8 \mathrm{mfds} 3 / 2$
$16 \mathrm{mfds} 5 / 3.16+8 \mathrm{mfds} 6 / 3.8-8 \mathrm{mfds} 6 /-4 \mathrm{mfds}$ $16 \mathrm{mfds} 5 / 3$. $16+8 \mathrm{mfds} 6 / 3$. $8-8 \mathrm{mfds} 6 /-4 \mathrm{mfds}$ chassis, $3 / 6$: T.R.F, coils. M. 82 L L. $7 / 9$ pair: condensers. $0.1,001,0.05,500 \mathrm{v}$. 8 d each; variable 2 gang, 0.0005 , $12 /-$, with trimmers 13/6; 1.000 ohms, $29 / 6$; 8 in p.M. $25 /-;$ volume controls, long spindle. W/S. 5/6: L/S, $3 / 6$: mains transformers, $350-0-3506.3 \mathrm{~V}$ and 5 v or 4 v heaters. $30 /-$: output multi ratio, 9/-; valve holders 5-pin, 7 and octal, 7d each; amphenol type. 9d each: voltage droppers, $0,2 \mathrm{amp} 1.000$ ohms.
$3 / 9 ; 0.3 \mathrm{amp} 800$ ohms. $4 / 9$; line crrd, best quality. 0.3 amp 3 -core, 9 d per ft ; special offer 0-1 milliamp. metres, suitable for multi meters etc. price 12/6; valves c.o.d.; large stocks of British and American types; enquire for any-
thing in radio; s.a.e, for lists. frith RADIOCRAFT, Ltd. Leicester, offer:generators. type DFSIA. giving so t requencies every $100 \mathrm{kc} / \mathrm{s}$ fr'm $200 \mathrm{kc} / \mathrm{s}$ to $50 \mathrm{mc} / \mathrm{s}$. $\mathrm{ma}{ }^{4} \mathrm{~ns}$
operated. complete with 6 V 6 , $6 \mathrm{~K} 7 \quad 5 \mathrm{ZA}$, 100 operated. complete with 6V6, 6K7, 5Z4, 100 makers instructions. £6/6. carr. paid; d.c./a.c. rotary converters, input 24 v 9 a , output 230 v $50 \mathrm{c} / \mathrm{s} .100$ watts, brand new in carrying case, present cost over $£ 30$, our price $£ 3 / 15$, c. pd.; size. ceramic insulation. $5!-+9 \mathrm{~d}$ post: luxury ightweight headphones by Western Electric. 9d p. ${ }^{4}$: BI éectrolytic condencers. ton, 500 v working, brand new stock, $4 \mathrm{mfd} 3 / 3$ $8 \mathrm{mfd} 3 / 6.8+8 \mathrm{mfd} 4 / 9.8+16 \mathrm{mfd} 6 / 3$; vertical metal cans. $16 \mathrm{mfd} 500 \mathrm{v} 5 /-$ dozen lots asstd, post iree: I.F. transiormers. standard small size adjustable dust iron cores, $455 \mathrm{kc} / \mathrm{s}$, $7 / 6$ pair +6 d post, latest ists iree on request. satisfaction guaranteed or cash refunded without question. 58927. RADIOCRAFT. Ltd.. Leicester. Tel. NEW S.T.C. seienium rectifiers, not surplus, finish, from stock; H4/200 E.H.T. for W.W.W. televisors, $28 /-$ ea.. p.f. H.W. 16 y ", $6 / 8$, 1a
 p. 1/-: full-wave' bridge-conn., $17 v$ 1.5a $12 / 1$

 $60 \mathrm{v} 10 \mathrm{a} 130 / \mathrm{m}$, all p. 1/4; Industrial type. funnel cooled, 17 V 128 76/-, 15v 50a 188/-, 33v 6a 69/$10 \mathrm{a} 80 /-, 12 \mathrm{a}$ 124/-, $70 \mathrm{v} 6 \mathrm{a} 114 / \mathrm{F}$. 90 v 10a $192 /$ $100 v 6 a$ 160/-, all p. 1/6; valve chargers, con. and 367 , Tungar 68504,68530 and Philips 328 anded in' 5 mins.: kits, trans. rect, and rheostat 54 v 6a, £11/10. incl, tapping switch; 33 y . 6 , £7/19/6; 16 v 10a, £6/12/6: 17 v 6 a , £4/12/6. $16 \vee 5 a$, £3/10, steel case 7/6 extra: 16 v 4 a . £3, 16v 10a, 65 va, 38/6; Case 7/6: transformer $16 v 5 a .41 / 6$. p. 1/-; $16 \mathrm{v} 4 \mathrm{a} .35 / 6$. p. $1 / /-16 \mathrm{v} 2 \mathrm{a}$,
$23 / 6$ p. 10 d, slider res. ali values, from 24/6. p. 1/-: chargers. all with metal rect. inputs $200-250$ a.c., to charge 12 cells at 4 . With mins carr $6.12 v 5 / 6$ re re. in steel case. £9/10 plus carr.; 6-12v 5/6a rheo. and meter, steel case, Steel case, f10, plus carr. H.D charger 24 v 258 . in steel case with control panel m / c meters rheos. and fuses. £12. plus carr.; ex. H.D. 50 v 50a 3 -circult, m/c meter, control panel. fuse and switches, etc. S.T.C. rects., input $230 / 1 / 50$ or $440 / 3 / 50$. £20 only, plus carr.i one only $200 / 230 / 1 / 50$, output to charge $4.12 v$ batteries at $10 \mathrm{a} . \mathrm{m} / \mathrm{c}$ meter.. rheo.. etc. in vent, steel
 plus carr. $12-24 \mathrm{v} 350 \mathrm{w}$ pet. generators, brand new. self-starting 4-strnke with cut-out and meter, ready for use, £16/10, plus carr.' term wholesale gind rany, Othersce. 66 . Gt protorma W.C.1. Est. 16 yrs. Nr. Angel. King's Cross.

RADIO 246 HIGHST HACIESTKWW

 12SQ7, 15D1, $15 \mathrm{Dz}, 18,25 \mathrm{~A}, 2,25 \mathrm{~L}, f \mathrm{FOT}, 25 \mathrm{Z} 4,35 \mathrm{L6GT}$ 3574GT, 42, 43, 75, 76, 77, 78, 80, 83, 84, 1D5, 1D6 oZ 4 , R3, SB2 and $\mathrm{AB3}$.
COSSOR.-11DL4, 111T, GTD4R, MP/Pen7, M8/Per MS/PenB, OM4, OMt, OM10, PT41, B130, 2P, 4THA $4 \mathrm{TPB}, 4 \mathrm{TSA}, 4 \mathrm{TSP}, 514 \mathrm{H}, 5 \mathrm{Y} 3 \mathrm{G}, 5 \mathrm{Z4}, 606,61 \mu \mathrm{j}$
 $42 \mathrm{MPT}, 420 \mathrm{~T}, 42 \mathrm{sPT}, 2028 \mathrm{TH}, 202 \mathrm{VPB}, 203 \mathrm{THA}$ 2101)T, $210 \mathrm{HF}, 210 \mathrm{LF}, 210 \% \mathrm{PA}, 210 \mathrm{VPT}, 22 \mathrm{C} / \mathrm{OT}$
 K40N, K80A, K80B, S11A, 811D
FERRANTL,-DA, R42, 6K8G, 6Q7G, 12A6metal 2079T, $351 /$.

 1)L71, DL72, 1)L92, DO30, DW*2, 1)W4 1350, D Wi, 500 FA50, EB34, EB41, EB91, EBC3, EBC33, EBLA EBL21, EBIai1, HC31. EC52, NC5 3, NCC21, NCC32 FBCO4, ECO35 ECHIS, HCH21, ECH35, EF9, EF22 HF36, EF37, RH39, EF50, EF54, EK2, EL2, ELis
 FW $4 / 500$, FW $4 / 840$, HVR2, HVR2A, iW4/350 IW $4 / 50 \mathrm{C}, \mathrm{KBC} 32$, KF35, KK32, Kl,35, PEnA4 Penbs, Pent1)D, PentVA, Pens6G, Pentodid, PMoA PM2HL, PM12M, PM22A, PM24A, PM24M. PM202 QP2U1B, SPQ, SP4 $5 \% 7 \mathrm{~B}, ~ \mathrm{SP13}$, SP130, T1DD4
TDIM1:C, TH21C, TH30c, THP4, TT4, UBL21 LCH21, UR1C, UR20, UY21, VP2, VP2B, VP4 CJ7G, GK7G, 6L6, 61,7, 6V6GT, 6X5, 6X5GT, 12SK7 364V.354V.
 HLes, HIs:3blH, HLNS, HLat1DD, HLN2DI)
 Pentf, PendideA, Peniks, Pert 3DD, PPi/2J0

 HD14, H1, KK, KT2, KTis, KT3ic, KT+3, K [4t KTW6।, KTW'63, КTZ41, KTZ63, L63, LP3, MH4me MKTt 5 \& $7 \mathrm{p}, \mathrm{M} A, \mathrm{MsP4} 5$ \& $7 \mathrm{p}, \mathrm{MSP} 41$, MS4B MW14, PX4, PX25. U10, U14, U14, U17, U18,20, U131 50, U22, 74, (76, MP4G, MB4B, W6, X22 PHILIPs.-1821, CX:31, C10, C1, CYJ.
TUNGSRAM-APP\&A. APP4B. APP4C, APV4, ML13. HP4106, LDE10, MH1018, MH4105, PP13A HIVAC.-XI, XD, XY, XP, XSG, XH, XW. AMERICAN.-OZ4, 1A4. 1A5, 1A6, 1A7, 1B5, ID7 $1 \mathrm{H} 4,1 \mathrm{H}, 1 \mathrm{~T} 4,1 \mathrm{TJ}, 2 \mathrm{~A} 3,2 \mathrm{X} 2,2 \mathrm{~A} 6,2 \mathrm{~A} 7,2 \mathrm{~B} 7,3 \mathrm{AH}$约4, 345, 厄14. 5V4, 5Y3, 5Z3, 574, 6A3, ©A6, 6A7 CAB, 6AB7, 6AC7, 6AED, 6AE6, 6B7, 6B8, 6C4, 6C5 6C6, f10, 611, 6198, 6E6, 6F6, 6F8, 6G6, 6F6, 6J5 BSN7, 6SQ7, 6SR7, 6S87, 6V6, 6Y6, $6 \mathrm{X} 5,7 \mathrm{~A} 7$, 7H7 $7 \mathrm{~B} 6,10,12 \mathrm{~A} 5,12 \mathrm{~A} 6.12 \mathrm{C} 8,12 \mathrm{~J} 5,12 \mathrm{~K} 7,12 \mathrm{Q} 7,128 \mathrm{~A} 7$, $14 \mathrm{~A} 7 / 14 \mathrm{B7}, 14 \mathrm{~B} 6,14 \mathrm{Q} 7,15,17,18,20,22,25 \mathrm{~L} 6$ $25 Z 4,25 Z 6,26,27,32,33,34,35 A 5,35 L 6,3574,36$
$27,38,41,42,43,4575,46,48,49,50,53,55,56,57$ $71 \mathrm{~A}, 74,77,78,79, R 0,83,84,85,89,832,884,95$ o55, $956,901,9002,9003.9004,900 \mathrm{E}, 9006$ enquire. New release daily, Also obsolete and rare emquire. vew

NEW OFFER: Vibro Tool Elec, Engraver for metal,
plas fc. glasa, etc., plugs atraight into ltght, e2/12/6,
plas ic. glask, etc., plugs atraight into ltght, $\mathbb{E} 2 / 12 / 6$.

STOP PRESS

TELEVISION, The tamous "' Televisor'" Book, 2/6, Vision Vidi Chassis, $22 / 6$ (completely wired, 155/10). Sonnd Unit Chassis, $18 / 9$ (10:5/5).
Time Base Unit Chassis, $17 / 6$ ($17+/ 2$).
E.H.T. Combined Power Transformer

Focns Coils for 35 mm . Tubes, $32 / 6$
Deflextor Coils, 32/6.
Liue Ontput Translormer, 32/6.
Varles Chole inPx2, 5.5 Henrys, (3) 251 m/a, $18 / 9$. Rubber Martg (cream for !in. C.R. tuber,) 11/-. 8creen Enlargery, \&6 6s

Plenae wrife inumediately to BULLS (W,W

THINKING OF BUILDING A TELEVISION SET OR EXFLOITING THE NEW 2 METRE AMATEUR BAND ?

$7^{\text {REE:-Supacoils }}$ give away in their latest handbcok of circuits. hints. Wrinkles and components 20 l/- coupons! Don't miss this unique opportunity. send 3 21/d stamps for your copy right away and at the same details of how you can participate in our bonus dividend scheme. We supply all proprjetary lines for constructors at lowest prices, e.g., J.B. 0.0005 two-gangs, $7 / 9$ each! Three-gangs. is/4; MM I.F, transformers, $10 / \%$ pair; LTC model 30 coil pack, $21 /-; 40$ coil pack, 39/-! Also the latest push-button coil pack with gram switching; tuning hearts always in stock; fixed condensers 6d each; all other components at comparable prices; 1/- in he el discount on all orders; don't forget 98. Greenway Ave., London, E, 17. (5ELENIUM rectifiers. $250 \mathrm{v} 50 \mathrm{ma}, 2 / 9$ ea., $27 / /$ doz: doma, 3/= ea., 30/- doz. 75 ma 3/9 56 ea. Tunink condersers, standard size. $.0005 \mathrm{mfd}, 2$ gang (ceramic ins.), 3/1I ea Bias elecs. $12 \mathrm{mfd} 50 \mathrm{v}$. 1/2 ea.. $11 / 6$ doz. Metway. 311 ea. Volume controls. Morganite. .5 meq with ea, switch, 1 , in in spindle. $3 / 9$ ea.. $39 /-$ doz. Aluminium chassis, 16 gauge, $10-51 / 4-2 i n, 3 / 3$

 Miniature rotary type wave-change switches, 3 pole, 4-way, standard soindle, $2 / 6$ ea., $25 / 6$ doz, attsfaction guaranteed or money returned c. W.o. or c.o.d., postage extra; send 2lod. io 15. Queen Sq Leeds, 2 . 1 scanning coll unit, $30 /=$; line transformers, $30 /-;$ focus coll, $32 / 6$; vision E,E, chassis. With valveholders a nd coil formers,, 22/6; ditto sound chassis, 18/6; time base chassis, $17 / 6$; set of 8 coils fully wound, $15 /-$; rubber masks for 9in 2/6; Ultra midget 2 -gang variable condenser for personal portables, $10 /-;$ glass, $\$ \mathrm{~m} . \mathrm{m}$. dial, less trans., 17/6; 6;in P.M., with trans., $22 / 6$ P.P, output heavy duty trans. for 6L6 valves tapped output 15 and 7.5 and ditto for 6V6 valves at $21 /-$ each; amplifier cases, undrilled chassis $171 / 2 \times 81 / 9 \times 21 / 2 \mathrm{in}$. With detachable per$8 \mathrm{mfd} 350 \mathrm{v} 2 /-: 8+16 \mathrm{mfd} 450 \mathrm{v}, 5 / 6 ;$ trimmer kit in smart case, 17 tools "Qualrad." $45 /-$ heavy duty variahle resistance, 300 ohms, lamp, $15 /-;$ rotary trans. in $6-12 \mathrm{v}$, out. $200-480 \mathrm{v}$ 50 ma . or as motor d.c. mains, $15 /=$ Collaro a.c./d.c. gram. motor and P.U. on plate, $\begin{array}{lll}\text { cl2/17/6i } & 4 \text {-pin vibrators, } & 6 v, 6 /-: \\ \text { faxley, } & \text { switches, }\end{array}$ Yaxley, 3 -pole 2 -way $2 /-$ 4-pole 3 -way $3 /-$.
4 - pole 4 way $3 / 6,6$-pole 4 -way $4 / 6$, 14 -pole 3 -4-pole 4 -way $3 / 6,6$-pole 4 -way $4 / 6,14-$ pole $3-$
way $7 / 6 ;$ midget switches 4 -pole 3 -way $3 /-$ 4pole 2-was 3/-: full list at 26 , postage all Rd. London. E. 1 Bis. 5079 . 1915 *ELENIUM H.T. and L.T. rectifiers, charger kits, chargers, all goods new with full guarantee; add 8d postage up to $15 /-, 1 / 4$ above. Rectifiers: S.T.C. "Sentercell " With data
sheet. $12 \mathrm{v}-15 \mathrm{v}$ I amp $10 / 6,2 \mathrm{amp} 12 / 6,3 \mathrm{amp}$ sheet, $12 v-15 v{ }_{2}^{1}$ amp $10 / 6,2 \mathrm{amp} 12 / 6,3 \mathrm{amp}$
$21 /-, 4 \mathrm{amp} 25 /-, 5$ amp $28 /=$ giant 6 amp twpe with huge cooling fins, $33 /-.6 v-8 v$ half-
amp $5 / 6$, 1 amp $7 / 6,2$ amp $9 / 6,3 \mathrm{amp}$ 18/-, $4 \mathrm{amp} 21 /-, 6 \mathrm{amp} 24 /-10$ amp $26 /-$ also $24 v 2.5 \mathrm{amp} 33 /=, 24 v 5$ amp $44 / 6$, 36 v 5 amp
$64-24 v$ amp, $52 /-;$ small space selenium
H. rectifiers for converting radios, etc., to H.T. rectifiers for converting radios, etc., to metal rectifier, 250 v 60 ma $7 /-$. 110 v 60 ma $80^{-1} \mathrm{ma} 13 / 6$. for eliminatirs $120 \mathrm{v} 20 \mathrm{ma} 7 / \mathrm{v}$ or with transformer, trickle charge rectifier and two 8 mfds condensers for 120 v 20 ma eliminator, $39^{\circ}{ }^{\circ}$; conversion rectifiers stocked for converting garage type chargers to metal
rectifier. Charger Kits. completely reliable due to use of good. robust components of ample size, 12 v 3 amp selenium rectifier with transformer (50 Watts and ballast bulb or 2 v to 1 amp 32/6. half amp $30 /=$ charger kits as above for $2 v .6 \mathrm{v}$ only. with 2 amp rectifier 32 6. 3 amp rectifier $42 \%-4 \mathrm{amp} 50 /-$ medlum duty car battery kit -75 watt trans with $12 v$ 4 amp rectiffer and ballast bulb for $6 \mathrm{v}, 12 \mathrm{v}$ charger $62 /-i$ heavy duty kit, 140 watt transformer, $12 v, 6 \mathrm{amp}$ rectifier, $£ 3 / 15$, or with half ohm slider resistance and 0.6 amp ammeter, 55 , amazing value; special home charger resistance. steel case crackled black, for $6 \mathrm{v}, 12 \mathrm{v}$ charger $50 \%-$, ditto for 6 V only, $47 /-$; for small radio store, ${ }^{1}$ to 20 cell one amp kit $£ 4 / 15$.
ditto $2 \mathrm{amp} £ 6$ ditto 12 cell $2 \mathrm{amp} £ 4 / 15$: ditto 2 amp $£ 6$, ditto 12 cell 2 amp $£ 4 / 15$: manufactured chargers, $2 v$ to $12 v, 4 \mathrm{amp}$ variweight 71b, guaranteed 2 years. Auto Transformers: 110 v output. 1.400 watts. In steel case. bitumen flled, 99 for home cine, ditto, 600 watts. £5/10. Crystal Diodes, newt germanium crystal dicdes 3 . 9; Rola $8 i n$ P.M. speakers. $17 / 6 ; 2 \mathrm{mfds} 1,000 \mathrm{v}$ ofl filled Aerovox condensers. 3,$6 ; 8$ mfds Hunts electrotytics, 450 V . $3 / 4 ;$
0.5 hm 10 amp slider rheostats, $12 / 6 ; 0-6 \mathrm{amp}$ 0.5 ohm 10 amp slider rheostats, 12/6; 0-6 amp
ammeters. $12 / 6$; switch cleane fluld. correct ammeters. 12/6; switch cleane fluld. correct
formula, $2 / 6$ bottle; M.B. 3 instrument rectifirmua, for meters, 3,6 each; 10 ohm 3 amp L.T. mains transformers up to 300 kates to order.-Champlon. 43 . Uplands Way. London.
N. Tel. Lab. 4157

THESE ARE IN STOCK

The Radio Amateur's HandbookA.R.R.L. 16s,6d. Postage 9d.

Wireless Servicing Manual, by W, T.
Television Receiving Equipment, by W. T. Cocking. 12 s .6 d . Postage 4d.
Radio Laboratory Handbook, by M. G. Scroggie. 12s. 6d. Postage 4d.
Foundations of Wireless, by M. G. Seroggie. 7s. 6d. Postage 4d.
Y.H.F. Technique, by A. J. Bayliss \& E. J. Williams. 3s. 6d. Postage 2d.
Radio Engineering, by F. E, Terman. 42s. Postage 9d.
A Modern Home Built Televisor-Electronic Engineering. 2s. 6d. Postage 2d.
Radio Receivers and Transmitters, by S. W. Amos \& F. W. Kellaway, 25s. Postage 9d.
F-M Simplified, by Milton S. Kiver, 33s. Postage 9d.
We have the finest selection of British and American radio books. Complete list on application.

THE MODERN BOOK CO.
(Dept. W9)
19-23 Praed Street, LONDON, W. 2

MEW DUAL TESTOSCOPE

Send for interesting leaflet (R./4) on Electrical and

RUNBAKEN.MANCHIETERI

CALLING AMATEURS with BUCCLEUCH Precision Built Equipment

ANGLE BRACEETS 12t ${ }^{\circ}$ long, fr, $7 / 6$ Bright Aluminium. "11"' 225 5 $503^{\prime \prime}$, 235 axample, depth less tha $7^{\prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$ totals $14^{\prime \prime}$ at 6 d. per inch * \%/, Drlling Charges, Holes up large. 23. small
BUCCLEUCH RADIO MANUFACTURERS 1 \& 2 Melville Terrace, Edinburgh, 9

B.T-H. "SELSYN" MOTORS, type SM1406

By connecting one of these atelther end ol aline, when one is rotated (either by hand or any driving source) the other followe it precisely, both as to extent of rotation and direction, For instance. If 50u turt the one hotary beam aerjal will rotate 45 degreen clockwise Ideal for thls andsimilar uses where remote contros is required together with indicating device. Rated approx. 7 Itn. long. Bin. wide, Jin. high. oftered whilut avallable, at a fraction of cost, only $£ 3179.6 d$, per pair, plue 5/. packing and carriage. Buy these Rubber-covered becore flexible, ideal for int ernonnect lug these Motors, sultable outdoor use, 1/6 per gard.
WIRELESS SUPPLIES UNLIMITED
(Props. Unlimicex Radio Ltd.) 264-266, Old Christehurch Road, BOURNEMOUTH, Hants.

MOVING COIL

AMMETERS \& VOLTMETERS
ExGOVT., NEW, UNUSED \& BOXED
Offered at a fraction of original cost

FINEST QUALITY PRECISION INSTRUMENTS
by fanous makers such as Ferranti, Pullin, Metropolitan Vickers, Sagamo Wicston, G.E.C AMMETERS
2in. Filush, $50.0-50$ and $200 \cdot 20 \mathrm{amps}$ $2 \frac{1}{2}$ in. Flush, 0 -12 aups

VOLTMETERS

cin. Flush, o- fo volt $2 i n$. lilush, o-20 volt zin. Flush, 0.600 volts Dual

All at 3/11 each. Carriage paid. Caslr with order only.
Secure yours now-limited quantity.

H. H. LINTON \& CO., LTD. 340snaburgh St., London, N.W. 1

Telephone: EUSton 8406

OPPORTUNTHES numo

Get this FREE Book:
"ENGINEERING OPPORTUNITIES'
reveals how you can tecometechnically-qualified at home for a highlypaid key-appointment in the vast Radio and Television Industry. In 108 pages of intensely interesting matter, it includes full decails of our up-to-the-minute home study courses in all branches of TELEVISION and P.ADIO, A.M. Brit.I.R.E. A.M.I.E.E., City \& Guilds, Special Television، Servicing, Sound film Projection. Short Wave, High Frequency, and General Wireless Courses.
We Definitely Guarantee
"NO PASS-NO FEE"
If you're earning less than $£ 10$ a week. this enlightening book is for you. Write for your copy today. It will be sent FREE and without obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 388b, Shakespeare House, 17/19, Stratford Place, London, W.I.
(${ }^{1}$ - A. RYALL, 65, Nikhtingale Lane, London extra; c.o.d. £1 or over: ful postage or carriage please; U.S.A. tubular metal cased wire ended 0.1 m .f. $500 \mathrm{v} 7 / 6 \mathrm{doz}$., $350 \mathrm{v} 5 / 6 \mathrm{doz}$; U.S. A. tubular metal cased wire ended $0.5 \mathrm{~m} . \mathrm{f}$. $3507 / 6$ doz. Mansbridge $1 \mathrm{~m} . f$. $500 \mathrm{v} \mathrm{wkg} .3-2 /-;$ Mansbridge 4 nif. 40 ur $w \mathrm{~kg}^{2} 2,3$ each; silver mica $10 \mathrm{p}: 1$.
 Amphenol type British 5 holders $3 / 6$ doz. ${ }^{\text {typitish }} 5$-pin crmational octal chassis valve holders, paxolin, 4/- doz.; bar type 3 gangs $5 /-$, bar type 4 -gangs $5 /-$; res'stors t/wwat assortment $40-5,-i$ switches, SB. 2P 6 m miniature $1,6,3 B, 2 P$ 6w five poles total 2,3 each, SB.
$9 w, 2-2 B S P 6 w, 1 / 6, S B$. SP $3 w 1,-2 B$. $3 P$. 3W2. 2 , SB. 2P. WW 1/3; twelve-way groúp buards with $9-1 w$ and , resistances, etc., $2 /$ all
new new twenty other types in stock; octal plugs:
cap and chassis socket. $3-3 /-$ with tags $3-3 / 6$; high resistances, phones with sponge earcaps with good class inicrophone, all wired into plus type $10 \mathrm{H} / 10991$, $10 / 9$ pair; metal boxes, black tinish with quarter inch paxolin panel, fixing ugs and corner sockets, size $81 ., \times 71,2 \times 31,2$ deep. 6,9 each new. 10.000 ohm bakente cased volume controls niedium spindle 1/6; metal cased minimum depth theg vois., short spindle 1,6 each;
special list for trade. SOUTHERN RADIO'S wireless bargains:-BEN, DIX Command receivers, type B.C. 453 (190 comp/S), B.C. 454 (3-6megs), B.C. 455 (6-9megs) (1) 12 K 8 and (1) 12 A 6 , rand ne (1) 12 Sk cartons, 35% each plus $1 / 6$ nostaw in sealed ceivers are ideal for quick conversion to Q Fivers. car radios and standard receivers; a few only of B.C. 455 modified to $28-41$ megs. ideal for television sound, 50/- each, plus 1/6; Delco hand generators. bvolts 4amps, handspeed 110 rpm brand new wih spare brushes. $17 / 6$ each; conbeautiful clockwitches by enners or Smiths able for time wir, new in soundproof case master clocks, brand Bendix radio compass receivers, type MN26Y' ranges $150-325 \mathrm{kc} / \mathrm{s}, 325-695 \mathrm{kc} / \mathrm{s}$, and $3.4-7 \mathrm{megs}$ 12 valves, (2) 6 N 7 , (5) 6 K 7 , (1) 6 BB , (1) 6 F 6 . (2) 6 JJ , and (1) 6 L 7 ; complete, brand new, with 28volt generator, \&5, plus 10% carriage and packing, R.A.F. bombsight computers, complete barometric bellows and $28 v o l t$ motors, gearing, for model makers and experimenters, etc.. ideal 55%, pus 5% moving coil headsers, brand new. and microphone with lead and plug, brand new 12/6; Lufbra hole cutters, adjustable for use on wood, metal, plastics, etc., $5 /-$, plus 4 d . R.A.F. Morse keys, $1 / 6$, plus 4 d ., $15 /=$ per dozen. plus $1 /$-i permanent crystal detectors, $2 / 6$, plus plug. $5 /-i$ recording blanks, boxed, with lead and
 wli2, 6/- dozen, plus ad. lamps, complete with lead and pucas inspection carbon mike inserts, $2 / 6$, plus 3 d . batteries M.C.R.I., 90 volts and 7% volts, $6 / 6$, plus 9 d SOUTHERN RADIO SUPPLY, Ltd., 46, Lisle St Lindon, W.C. Gerrard 6653. [1852 (UPREME RADIO, 746b, Romford Rd., Manor 15 yrs. Television components. 115 . 1260. Est as follows: E.H.T. $4 \mathrm{k} / \mathrm{v} 2 \mathrm{v}$ fil, , tested at $20 \mathrm{k} / \mathrm{v}$ 30/- ea.; h.t. transformer, $350-0.350$ eas coils. 6amp 4 v at ${ }_{250 \mathrm{ma}}$, with screen, 70% at $3 \mathrm{mp}, 0-2 \mathrm{v}-6.3 \mathrm{v} 2 \mathrm{amp}$ $27 /-$ ea.: these comp nents are choke 250 ma . on the Electronic Engineering television receiver: line transformers by Scanco, 30/- ea.i valve holders for EF50 valves, ceramic type. 6 d. ea. clips for EF50 valves, 8d. ea.; valve holders for EASO valves, bakelite, 1/- ea.: Anti-Corona caps, plete, il ay type co-axial plug and socket comtrols and condensers for the Flances, variable coning television receiver in stack anc engineerprices; tubular condensers. 25 mfd 25 v and 50 mfd $12 \mathrm{v}, 1 /-$ ea., $11 /-$ doz.; 0.01 mfd 1.000 v .0 .02 mfd $750 \mathrm{v}, 0.05 \mathrm{mfd} 500 \mathrm{v}, 5 / 6$ doz.; $0.1 \mathrm{mfd} 350 \mathrm{v}, 5 / 6$ doz.; $0.1 \mathrm{mfd} 500 \mathrm{v} .6 / 6$ doz.: 0.001 mfd and 0.0005 mfd midget mica, $5 / 6$ doz.: 0.25 mfd and 0.5 mfd 350 v . $6 /-\mathrm{doz}$, 25 mfd 50 v , $14 /-\mathrm{doz}$.: Metalmite cond., 0.002 mfd 500 v , 6% - doz., and $0.01 \mathrm{mfd} 350 \mathrm{v}, \quad 7 / 6$ doz.: screw base tub. cond., $0.5 \mathrm{mtd} 350 \mathrm{v},{ }^{6 /-\mathrm{doz} \text {; }} 8 \mathrm{mmtd} 350 \mathrm{v}$ tub. cond.; doz.: $16+8 \mathrm{mfd} 450 \mathrm{v}$ midget tubular, $56 /-$ doz.; 4 mid screw base can type cond., 15/- doz.; double trimmer type con., 140pf, 12/6 doz., and double trimmer type cond. 50pt. $11 /-$ doz. ' fixed mica, cond. 500 pf . 325 pf . 590 pf , 4.550 pf , and 305pt, all at $2 / 6$ doz. or assorted doz. as above. 500 watt resistances, 100Ω, 150Ω, 200Ω, 400 ?, and 5 mo , these in doz, or assorted $\%$, 1.5 m 21/- gross only: 470k 1 /watt resistances, doz. or 18/- gross only; also most other values at $3 /-$ doz., 30/- gross only; $11 / 4 \mathrm{in}$ brown knobs, 4/6 doz,; clip-on pointer hands. 6d, ea.; complete octal screen can and base, 1/- ea., 11/doz.; bakelite gram. needle cups, $6 d$. pair, $5 / 6$ doz. palrs; ex-Govt. group boards, 5 -way with 6 resistances. $1 / 9$ watt. 1 W.X. 6 Westector. U.X. ceramic valve hoider, $2{ }_{1}{ }_{\mu 2}$ watt resistances. 5 ass. mica cond., s.w. choke and 22 -way panels 1/6 ea. [1850]

An All-Dry (No accumulator) Battery Receiver operating from II- 350 metres and using plug in coils-giving wide world reception at ful loud speaker strength

PRICE El2 120 (Pur. Tax $£ 2$ 17 5). Complere set of coils $\mathbb{L 2 0 9}$ (Battery and speaker extra.) NOWINI"AND $2{ }^{2}$ * TOO.
The" Q-Max" Chassis Cutter-theeasiest quickest and cleanest way of cutting holes in metal-thousands in daily use.

Polymax " (Regd. trade mark) The unbreakable Insulator-brings to an end those annoying breakages-full insulation properties
 Feed-through 1/3
Illustrated catologue $3 d$ post free.

25, HIGH HOLBORN
LONDON,W.C.I
(Opp. Chancery Lane.) Tel. HOLborn 6231

MAINS TRANSFORMERS

A fortunate purchase of the stock of a Tranaformer manufacturer enables us to ofter a range of Mains and are varnish ippregnated. Allprimaries are wound for 50 cycles.
TYPE A
Drop through. Top shroud fitted with maink voltage adjustment panel. Connections brought out to tag primary underside
Secondary 280-0-284
PRICE $16 / 6$
TYPE C
Drop through. Top shroud ditted with mains voliuge adjustment panel. Connections brought out to wire end.
Primary 200-210v., 220-230v., 240-250v
PRICE 15/-
TYPE D
Drop through with top shroud. Allconnections to tag
panel on underside
Primaty 2105., 230\%., 250 F
PRICF, $16 / 6$
TYPE F
Above chassis mounting. Fally shrouded. Mains voltage adjustment panel. Wire ends. Primary $210 \mathrm{v} ., 230 \mathrm{v} ., 250 \mathrm{v}$
Secondary $350-0-350 \mathrm{v}$, , 80ma., 5v. 2a., 6.3v. 38.
PRICE, 18:
TYPE H
Nkeleton drop through. No ahroud. Primary connections to wireends. Secondary to tag panel. Ratingas
type F.
PRICF; 12/6 type F.
tire endo. secondary to tag panel. Ratiga,
PRICF, 12/6 ALL POST FREE
Liet of many with order only. bargains available
M. WATTS

38 Chapel Avenue Addlestone, Surrey

Telephone: Weybridge 2542

Please note our NEW ADDRESS CHARLES BRITAN (RADIO) LTD.

11, UPPER ST. MARTINS LANE, LONDON, W.C. 2 Telephone: TEMple Bor 0545

BEST BUY AT BRITAIN'S

TEST 8ET 74
The ideal unlt for making ascope, colnplete with 3in. tube, mains power pack, 230 . 500 eycles and 11 yalven. Tested and in good condition. Price wit h full detailed instructions
for converting toscope, 86 10s., or, lessinstructions, 25 10s., for converting toscope, 26 103., or, lessinstructions, 25 10s.
plus 15 s . carriage.
INDICATOR UNIT TYPE 182
4 SPbI, 13 volume controls. etc., all tubes tested. Price 39/6, piua 15/- carriage.

TUNED 5-METRE CONVERTERS

Brand new ty
$27 / 6$ post free.

WAVE-FORM GENEEATOR TYPE 52

Containg 11 EF50, 12 EA50. 28 -mfd. $500 \vee$. condensers numerous condensers,resistors, etc., size $11 \mathrm{in} . \times 10 \mathrm{hn} . \times 8 \mathrm{im}$.
sll brand new. I'rice $55 /-$, plus $5 /$ - earriage.

E1124 RECEIVER

 trimmers, 6 ceramic valve-holders, 6 valve screening cans, 30 reaistors, 2 pot-meters, mica and tubular condensers, ceramic coll formers, 5-way 4 -bank awitch with lons
mpindle and IF trantormern, etc. A real buy at only $10 / 6$, plus $2 / 8$ andriage and parking.

62 INDICATOR

Size 9 in. $\times 12 i \ln . \times 18 i n$. Contains VCR日 persistent), 16 SP61, 2 EB34, 2 EA50, 16 pot-pheters,
Muirhead diat, 117 Me/s crystal, various switches, knobs, tranaformers, ete. To Callers only. 22198.6 d .
I.F. Tranaformers, variable iron-cared, $465 \mathrm{Kc} / \mathrm{s}, 8 / 8 \mathrm{pr}$. Moving coil mike and headset, gll brand new, $7 / 6$ set Westinghouse metal rectifiers, 260 v. 80 ma a., suitable for AC/DG receiver, $8 / 6$ each. Morganite 5 meg. and 2 urg.
pots, $2 /=$ each. All other values in stock.

Why not call and see our large selection of high-grade signal generatora, large maina operated industrial osclllo copen, receivera, ot

Shop Howrs, 9 to 6. Now open all day Saturday.

NEW ex-Govt. bargains! Sead 1d s.a.e. ior Headphones, double buing. A Ature units, Reed driven alumn. diaphragms, adjustable double headbands with $8 f t$ cords and jack plug, d.c, resistance 60 ohms, but ideal for Xtal sets, note these are brand new, boxed, super-seasitive in struments worth 2 guineas! Our price, $5 / 6 \mathrm{pr}$,
2 pairs $10 /-$ trade: 10 prs, (a) $3 / 6,100$ prs, (a) $3 /=$. 2 pairs 10/-; trade: 10 prs, (14) $3 / 6,100$ prs, (a) $3 /=$ 12 volt 1 amp, brand new, 2 for $10 / \mathrm{m}$, or 10 for £2, vibrators. Mallory 6 volt, non-synchronous
$629 \mathrm{C}, 5 / 6$ ea, $48 /-$ doz, 221 gross.-A. C., Ltd.. 15. Lawrence St., Northampton.
BEST value yet, all brand new.-M.C. phones throat mics. boxed, $4 / 6$ each; super American throat mics. boxed, $4 /=;$ type 26 converters, $37 / 6 ; \quad 350.0 .350$ 6V, 5 V mains transtormers,
$90 \mathrm{ma}, 19 /-0.5 \mathrm{mfd} 3,500 \mathrm{v}$ condensers at $5 / . \mathrm{ea}$ 0. $1 \mathrm{mfd} 2,500 \mathrm{v}$ cond., $2 /-;$ boxed 807 s , at $10 /-$; R107 receiver, perfect, $£ 16 / 10 ; 5$ in m.c. speakers, at $15 / 6$; 1 mfd 600 v Aerovox condensers, $9 / 6$ dozen; BC348 receivers, £16/10; ceramic coil formers, $4,2 \mathrm{in} \times 2$ in diam., threaded, $4 / 6$; complete vibrator packs, 12 volts, input 200 volts at 70 ma smoothed d.c. output; $2 \% / \mathrm{d}$. Stamp for many other super buys.-Radio Constructors, 28, Spital Denco. Enquiries welcome. Trade supplied and
(OODSELL Itd., 40, Gardner St., Brighton, surplus stock enables us to offer back 1st-quality surplus stock enables us to offer back 1st-quality .02 condensers, waxed paper, at $7 / 6$ per doz; valve screens, complete, 8d each: Bulgin rotary
togale switches, D.P.S.T. at $2 / 6$ each. Valve togale switches, D.P.S.T. at $2 / 6$ each. Valve
holders.-Amphenol octal ceramic, $1 / 6$ am-holders--Amphenol octal ceramic, 1/t amphenol plain octal. 7d; R.I. Berricon octal paxo Denco Maxi-Q coils, $3 / 3$ to $5 /-$ each, catalogues
9d: J.B. three-band drives, $11 / 9$ complete- ball drives, 3/- each: 0005 single gang condensers $4 / 6$ each: Govt. surplus T.C.C.. Type 92.8 mfd 750volt working, 8/6; Solar .25. at 1/-. please add dostage.

100 kcs. QUARTZ CRYSTAL UNIT
Type Q5/100

for Secondary Frequency Standards
\star Accuracy better than 0.01%. \star New angles of cut give a temperature coefficient of 2 parts in a million per degree Centigrade temperature change. \& Vitreous silver electrodes fired direct on to the laces of the crystal itself, giving permanence of calibration. * Simple single valve circuit gives strong harmonics at 100 kcs. intervals up to 20 Mcs. t Octal based mount of compact dimensions.

PRICE 45/-Post Free
Full details of the $Q 5 / 100$, including circuit
are contained in our leaflet Ql. Send stamp
to-day for your copy
THE QUARTZ CRYSTAL Co., Ltd. 63-71 Kingston Road, NEW MALDEN. SURREY Telephone : MALden 0334

COPPER WIRE, Enamelled, silk, d.c.c., etc.. 13-42 S.W.G. TRANSFORMER\& \& CHOKES. Standards or Specials supplied. A,C.
TURNTABLE UNITS. Now in stock. ALL COMPONENTS for the Radio and Television Constructor.

Send S.A.E. for list to

STAN. HOLT,

349, HIGH ST., SMETHWICK, STAFFS.

OLDCHURCH LABORATORIES OSCILLOSCOPE CONSTRUCTION AND CONVERSION DATA.

Teat Sets 73 and 74. Our Data covering these unita

 is untque and comprehenslve, consl ting of four Blue prints and Instruction booklet, enabling you tu produce a flrnt-class scope at very low cost. Fior either Enit, \&1 jer se kits or additional components for use in the above Time-Base and Power Supply.Circuit Blueprints (for use with any Electromtatic Tube). Per palr 7s. 6d.
Atl components for oscilloscope conversion and con-
 Television Constructors. scanning Coils, 35/-. Focus Coils, 33s.
E.H.T. Transformers, 65s. H.T. Trans., 75s
L. P. DISMORE,

52c, Oldchurch Road, Chingford, E.4.

WE OFFER

A large range of used and new Test Equipment, Converters, Recorders, Amplifiers, Motors, Transformers, etc.

All guaranteed and at very attractive prices.

We buy good modern used equipment of all types for spot cash.
UNIVERSITY RADIO LTD.
22 LISLE STREET, LONDON, W.C.2.
Tel.: GER 4447 \& 8582.

ALEC DAVIS

SUPPLIES LTD. Special Offer 14ft. AERIAL MAST

正
Weather -proofed paxolin
cubing

Carr. paid $7 / 6$ complese Consists of two lengths of paxolin tubing 25 in , and 31 in . dia. respectively with $3 / 16 \mathrm{in}$. wall. The smaller tube fits tightly into the larger, both having Aluminiummetal ends. When errule fitted, the aerial has an over-all length of 14 ft . Ideal for a transmitting or receiving aerial, but has many other uses also. May be fixed to the ground or to a fixture such as a chimney, wall, etc. Very sturdy.
ALEC DAVIS SUPPLIES LTD.
18 Tottenham Court Rd., London, W.I. Tel. MUS. 4539 and MUS. 2453

THE A.C.R.II55 COMMUNICATIONS

 RECEIVER. This superb R.A.F. 10 -valve superhet receiver covering 75 kcs - 18.0 mes. in 5 wavebands, is now available for use on ONLY f/8/10/-. An illustrated, fully descriptive leaflet, is available on request. R.1132.A COMMUNICATIONS RECEIVER. A superb U.H.F. receiver covering$100-124 \mathrm{mcs}$. Incorporates large 180 degrees $100-124 \mathrm{mcs}$. Incorporates large and $0-.5 \mathrm{ma}$.
dial with slow motion tuning, and tuning meter, Chassis tropicaliy treated. Complete with calibration chart, circuit diagram, parts lists,
(carriage, etc., $10 /-$).
R. 109 COMMUNICATIONS RECEIVER. An ex-Army superhet covering $1.8-8.5 \mathrm{mcs}$ in two bands. Circuit consists of R.F. amp. mixer, with separate local oscillator, 2 stages of combined signal detector, I,F. and A,V.C., and first A.F. followed by an output stage, A B.F.O. can be switched in for the reception of CW. Has buile in 3 in . speaker or from used with phones. Power supply from
6 v . D.C. source to vibrator power unit. which can be removed and set then operated from 2 v. L.T. and H.T. batteries. Complete in every way, and supplied with spare vibrator and valves, and instruction
E6/15/-(carriage, etc., $10 /-$).
SHORT WAVE CONVERTERS. EXR.A.F. R.F. units operating from 6.3 V. and 240 v. I.F. Output 7 mcs. Types 24 and 25 operate on 5 pre set frequencies and cover
ons. 50 mcs. and $40-50$ mcs. respectively. $15-30 \mathrm{mcs}$. and $40-50 \mathrm{mcs}$. respectively.
Easily adaptable to tuneable units by replacing Easily adaptable to tuneable units by replacing
ceramic switch with 3 ganging type 15 pf ceramic switch with 3 ganging type 15 p
condensers. ONLY $16 / 6$ (postage 16), or 8RAND NEW IN CARTON5 25/-. Types 26 and 27 are tuneable converters covering $50-65$ and $65-85$ mcs. respectively. They are fitted with a $3 i n$. slow motion illuminated dial. ONLY $27 / 6$ (postage $1 / 6$), or BRAND NEW IN CARTON5 35:

C.W.O. please

S.A.E. for lists U.E.I. CORP., THE RADIO CORNER, 138, Gray's Inn Road, London, W.C.I.

SERVICE with a smile."-Repairers of D types of British and American recelvers coil rewinds; American valves, spares, line cord 2675.fairs to moving coil speakers, cones 1 EPAIRS to moving coll speakers, cones. transformers, clock coils rewound; guaranteed satisfaction, prompt service; no mains trans accepted. Closed Sat L.S. REPAIR SERVICEE, 49, Trinity Rd.. Upper Tooting. London. S.W.17. Balham 2359 $\$$ and fields; we give prompt delivery and 'Harantee satisfaction; 14 years' experience: guarantee satisiaction, ${ }^{\text {prices on }}$ on request.-Sturdy Electric Co., Ltd.. Dipton. Newcastle-on-Tyne. 43316 IJ OUDPEAKER repairs, any make, reasonave quality fans; 25 years' combined experience with Rola, Magnavox. Goodmans, Celestion,- Sound Service Radio, 80 , Richmond Rd.. Kingston-onThames. Kin. 8008
$\boldsymbol{R}^{\text {EWINDS, mains transformers, speaker fleld }}$ delivery; new transiormers constructed to customers' specification, singly or in quantities.Metropolitan Radio Service Co.. 1021. Finchley Rd.. N.W. 11 . Speedwell 3000 . guarantee, any
6 [30UR service, 6 months gual 21 transformer rewind, mains outputs and i.f.s, etc.; all types of new transf. etc., sup-
p'ied to specification; business heading or service card for trade prices.-Majestic Winding Co. 180. Windham Rd., Bournemouth CoIL specialists.-Tuning and oscillator coils and wound to specification; wavewinding specialists; l.s. repairs. new cones, speech coil rewinds. etc.-Rynford Industries. Ltd. (formerly Electronic Services 17. Arwenack St., Falmouth.
Cornwall
9988 Cornwall 1 EWIND and repairs. mains transformers, $150 / \mathrm{P}$ trans., clock coils, fleld coils, pickups; vacuum and gram. motors; new transformers to any specifcation; guaranteed work;
compatitive prices; delivery $2 / 3$ days.-W. ompetitive prices, delvery ${ }^{2 / S}$ days.-15 Ickneild Port Rd.. B'harn. 16. [1482 A. W.F. TRADE SERVICE offers you speedy assemblies, mains transformer rewinds from 15/-; new transformers at keenest trade prices; tranjformers built to your own specifications, lists 1 Id,-A.W,F. Radio
Mills. Broducts,
Bradiford. Yorks,
Tel. $22838, ~ B o r o u g h ~$
11164 Mills. Bradford, Yorks, Tel. 22838 . D your loudspeaker repairs are treated by us as single units, and every care is taken to ensure that repaired speakers become again rive a quick, reliable service, our charges are give a quick, reliable service, our charge are your mains transformer rewinds will receive every attention,-Send to L. Cottenham, Spkr.
Repair Factory, Whetley Lane, Bradford. [1690 A MPLIFIER Testing; we have all facilities for A testing and adjusting hikh-quality amplifiers, no push-bull feed-back amplifer will operate really properiy unless rigorously tested and suitably adjusted-with its speaker system. We take a keen personal interest in this work. and gladly co-operate with you in obtaining facilities for light assembly, construction and production testing of note magnifiers and specialised electronic equipment.-Donald Dun, Ltd,
12. Hollywood Rd.. S.W.10. Tel. Flaxman 5705: MELEVISION MISCELLANEOUS
TELEVISION cabinet, large; \&10.-Write
BM DHUL, W.C.
BLEM,-Nov., 1946, plus Oct. E LEGTRONICS:" Jan.-Nov., 1946, plus Oct. SALE ${ }^{1945}$ Wireless Engineer, 42 , 43 complete - "44 three missing; offers.-Box 1482 , 1842 -DAY jewelled time switches; bargain. $15 / 6$; race, Keigh ey. I ERSONAL portable carrying cases. leather1 ette covered, hinged back.-Write Burmans. MVARE winding machines, new and slightly 1 used; sell or exchange lathe, straight winder IR ADIO cabinets, set mirs. surplus, $111 /$ in $\times 8 \mathrm{in}$
 WALNUT, radiogram and television cabinets.
 TTA model A coil winder, counter, motor 14 drive \&30; or part ex 35 mm camera or
Avo 7 .-Tel. Slough 22052, after 6 .
(1838 Avo 7.-Tel. Slough 22052. after 6. [1838 CIRCUITS and price list of components for supplied for penny stamp.-Cook, Old Barn Rd. Cristchurch, Hants
(UALITY enthusiasts!-Are you contemplatLondon. W.C.1, is the address to remember for all tspes of radio and electronic apparatus built 10 specification. Cashers, soldering tags, eyelets; screws, nuts. Washers, soldering tags, eyelets; ebonite and
laminated bakelite panels. tubes, coll formers: laminated bakelite panels, tubes, coll formers;
Tufnol rod; headphones, fexes, etc.; latest radio publications. full range available; list s.a.e., Gardens. London, E.4. [145

Resistances-Special Ofler. Parcel containing 100

M'Coil Epeakers P.M. with Tir., $27 / 6$; 81 ln . P.M., $2 / 3$ ohms, $18 / 9$ $6 / \mathrm{in}$, P.M., $2 / 3$ ohms, $16 / 6$; Sin. P.M, $2 / 3$ ohm 10/11. And all makes $1^{\prime} . M$. and energived.
Tuning Cond. (Twin gang). 0005 mfd , ceramic, $7 / 6$ (with Trim., 8/6), 0003 rodf. with Trim, $10 / 6$. Trim., $14 / 6, ~ M 1 \mathrm{dg}$ et $.00035 \mathrm{~m} / \mathrm{d} . \mathrm{lk} \mathrm{kn} . \times 1 \mathrm{in}$. $\times 2 \mathrm{in} ., 12$ ' 9 . 4 garig . $0005 \mathrm{mfd} ., 5 / 9$,
Coils, T.R.F, Matched pair, M. \& L., 6/9. Weymouth

 range available from $3 / 9$ emph.

Vibrator Transt, GV in, $250 \cdot 0.250 \mathrm{v} ., 100 \mathrm{~m} / \mathrm{m}$ out (also available in 12 v.), 8/6.
Potentiometers, Centralah. 5K, $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}$, $100 \mathrm{~K}, h_{1}, 1$, and th Mea., less 'Switch, 4/3. With 6/-. Speclal , 75 Seg., with Switch, $4 / 9$.
Electrolyticg, B.E.C., Midget, $8.8 \mathrm{~m} / \mathrm{d} .450 \mathrm{~F}, 17 \mathrm{in}$.
 $8 \mathrm{mfd} .500 \mathrm{v}, 2$ jin. x iln., $4 / \mathrm{m}$. And all makes and $8 \mathrm{mfd} .500 \vee, 2 f i n . x$ ind, 450 . with cilpa $7 / 6$.
Meter Rectifiers. Westinghouse. $0.5 \mathrm{~m} / \mathrm{a}, 3 / 11$;
$0.10 \mathrm{~m} / \mathrm{a}$. $7 / 6 ; 0.1 \mathrm{~m} / \mathrm{a}, 10 / 6$.
Selenitum Rectifers, H.T., h/wave : 250 v. $50 \mathrm{~m} / \mathrm{a}$. $5 / 9 ; 200 \mathrm{v}, 100 \mathrm{~m} / \mathrm{a} ., 5 / 9: 230 \mathrm{v} .100 \mathrm{~m} / \mathrm{a}, 7 / 6$ $250 \mathrm{v}, 300 \mathrm{~m} / \mathrm{a}, 12 / 9 ; 1$ Brige Rect. $: 6$ v. $1 / \mathrm{amp}$.
$6 / 3 ; 12 \mathrm{v} .11$ arap., $12 / 6 ; 12$ v. $3 \mathrm{amp}, 24 / \mathrm{l}$ 6., 6 จ. 11 arpp., $12 / 6 ; 12$ ri 3 amp, 29/37/6. Also L.T. $2 / 4$ v. 1 a., b/wave, $3 / 6$.
Television Transf.E.H.T. $4,000 \mathrm{\nabla}, 3 \mathrm{~m} / \mathrm{a}, 2 \mathrm{~F}, 1 \mathrm{amp}$
 $4 \nabla .3$ a., 13.3 v. (tapped 2 v.), 2 a., $72 / 6$.
Charger Transf. Input $200 \cdot 230 \cdot 250 \mathrm{~V}_{\text {, }}$ outputs 4 v , Ex-Covt. T.M.C. Reed-type Headphones. 70 ohms, $1 / 9$ each ($3 / 6$ pair with leads). Single earphones,
75 ohme, with adjustable Headband, $1 / 6$. Midget O'put Trans., $32-1$, and Paraleed Tir, 4-1, both $1 \mathrm{in}, \times 1 \mathrm{in}, \times \operatorname{lin}, 3 /$ each. $P /$ Pulll Intervalve \times. 11 inch half, and O'put Tfr. 60-1, both 11 in .
 300 ohms, $175 \mathrm{~m} / \mathrm{a} ., 12 / 6$. M/Coll Mike, 2/6. L.F. Trangf, $6.8 \mathrm{~m} / \mathrm{c}$., $6 / 6$ pr. Midget Intervalve Mrang. 3 Trangf 4 windings (2 C.T., orer 10 ration between 10 and $100-1,2 \mathrm{in}$. $\mathrm{x} 1 \mathrm{in}, \mathrm{x} 1 \mathrm{j} \mathrm{in} ., 3 / 9.12$ volt D.C. motor sultable for models 19/6.

Send 21d. stamp ior very full Stock Ihats. When

STERN RADIO LTD.

 109 \& 115, FLEET STREET, E.C.4. Telephone: CENtral 5814 and 2280.

The advance in Radio Technique ofters unllmited opportunities of high pay and secure posts for those Radio Engineers who have had the foresight to beoome technically qualifed. How you can do tained to our unique tap your spare time F'ull detalls are glven of A.M.I.E.E., A.M.Brit.I.R.E., City \& Gnild Examg., and particulars of up-todate courses in Wireleas Engineering, Radio Servioing 8hort Wivet, Television, Mathematica, ete., ofa,

We Guarantee "NO PA88-NO FEE
Prepare for to-morrow' opportualtios and futuro competition by bending lor your copy o

BRITISH IN8TITUTE OF ENEINEERING TECHNOLOEY (Dept. 388)
17, Stratiord Place, London, W.

£15 T.V. RECEIVER

This in the title of our latest publication givang wiring
diagratns and constructional diagrains and constructional
notes of an excellent |ittle tiotes of an excellent little
T. V', receiver. You can make this from toverument surplus eumpment. and the total
sombli not exceed 515 A demonstration receive he geell at our address.
price is 76 post free.

MINE DETECTORS. For the location of metal even under water-we ean offer the famons American
H(JR.fi2s-new in orluinal packing complete with instructions and spares. H'rice is $£ 10$ complete with padd.
INFRA RED IMAGE CONVERTER. Complete with technical dats. Price 146
E.H.T. TRANSFORMER. $4000 \quad 3$. 2 and 45 . heater winding, $50-$ Television Transiormer, 350-0-350

BUIL'S EX-GOVERNMENTDEPOT

ELECTRON HOUSE, WNDMLL HILL, RUISLIP MANUR, MDDLESEX.
Open Saturdayn until 5 p.m.

Mains ALL NEW GOODS Screened H.T. $350-0-350 \mathrm{y}$. or $250-0-250 \mathrm{y}$. 80 m / A, L.T. 6.3-4-0v, 4 amps . $5-4-0 \mathrm{v} 2 \mathrm{amps}$ Half-shrouded, 18/6. Fully shrouded $19 / 6$. Output Transformers. Multi Ratio. 26, $46,56,66,90120 / 150 \mathrm{~m} / \mathrm{A}$. P.P. to 6 v .6 , 46, 56, 66, $90120 / 150$ m/A. P.P. to 6 V . 6 ,
Q.P.P. etc. Sec, $2-4 \Omega$ at $5 / \%$. $4,000 \mathrm{v}$. R.M.S. E,H.T, Inpue 230 v . Output $4,000 \mathrm{v}$. R,M.S. $5 \mathrm{~m} / \mathrm{A}, 2-0-2 \mathrm{v} .2 \mathrm{amp}$. at $37 / 6$.
Combined E.H.T. Input 200/250v, Output $2,000 v .5 \mathrm{~m} / \mathrm{A}, 430-0-430 \mathrm{v}, 200 \mathrm{~m} / \mathrm{A} .6 .3 \mathrm{v} .7 \mathrm{amp}$. $4 \mathrm{v}, 2,5 \mathrm{amps} ., 4 \mathrm{v} .2 \mathrm{amps} ., 4 \mathrm{v} .2 \mathrm{amp} .$, at $77 / 6$. Heavy Duty $200 \mathrm{~m} / \mathrm{A}$ Choke. 15 H . Fully shrouded 350Ω, at $28 / 6$.
As Above, $100 \mathrm{~m} / \mathrm{A}, 425 \Omega, 20 \mathrm{H}$ at 216 . As Above, $200 \mathrm{~m} / \mathrm{A}, 125 \Omega, 5 \mathrm{H}$ at 21,6 . Terms : C.W.O. (add $2 /$

> ders under E2) H. ASHW ORTH

676, GREAT HORTONROAD. BRADFORD, YORKS.

FOR RADIOVALVES

 10,000 VALVES IN STOCK
We prcbably have that valve you are

 finding it difficule to obtain.SEND FOR OUR LATEST LIST. VOLUME CONTROLS.-(Less awttch) 25,000 , 6 d . $3,000,50,000$ and $73,000,1 / 6 ; 1$ meg. $2 / 6 ; 2$ mag, VALVE HOLDERS 5 pin, $4 \mathrm{~d}:$: Inter. Oct. 5d, ; (Amphenol), Mazdia Ot., bd. ; Inter. Oct.. 6 d .
${ }_{6}$ YAXLEY TYPE SWITCBES.-4-pole 2 -way, 2 -

 $1 / 6:$ oll filled 4 mfd. 600 r., $4 /-: 7.5 \mathrm{mp}$ Mica. 6 A . SPEAKERS-5
8pEA, ERS.-Sin. P.M. Prage. 12/6; filin. Turox.

KMJES.-Pointer. red or black, 3d filoul yill

MAINS DROPPERS,-3 a. 800 olins. 36 exel COMPREHENBIVE STCCE OF ALL RADIO 34, BOND STREET, BRICETON

Phone: 5803

TELEVISION cabinets, floor console model for few only; \&16/10.-Clive Courtenay \& Co 5. Horsham Rd, Dorking, Surrey. TIME switches, partly, used. 14 -day, $5-a \mathrm{mp}$ excellent condition. \&2; mercury sealed qube 10 -amp type, $£ 2 / 10$; cash with order.-J. Donohoe, 2, Upper Norfolk St. North Shields. 11172 R ADIO supervisors and thechnicians should join tion of Supervisory Stafts. Executives and Tech-nicians.- Write for free pamphlet to ASSET. 110, Park St. London. W.1. Tel. Mayfair $8541-2$. - PEAKER fabric, latest brown and fawn, innets, high-grade walnut and ebony. $15 \times 9 \times 6$. 42 6, inc 3 -wave dial: walnut speaker cabinets various sizes.-Burmans, 64, Reighton Rd. A^{T} last. 80 w fluoresce
A of parts, choke tapped $210-240 \mathrm{y}$ of all: k P.F., glow starter, terminal block, holders, suppressor. bleeder res., circuit. only $30 /-$ carr Iree! Buy your 5 ft tube locally, $19 / 6$ or less. New Malden. Surrey Supplies. 39. Malden RO
TLECTRONIC developm WNTED
OUR laboratories and drawing office. devoted to tronic, electrical and electron of complex elec have some capacity avallable for design and de velopment of specialized equipment; capacity is ulso a vailable for the bulding of piototypes and the small scale production of new designs: the service is also avaliable to manufacturers requirBrecomin and test reports on their own products Lta., Gads Hill, Gillingham, Kent (England) Lta., Gads Hill, Gillingham. Kent. Tel. BAKELITE moulding, capacity available for own fully equipped toolroom.- Box 709 [1564 We make wirejess and radiosram cabinets for Radiac Ltd., 26, Brondesbury Rd., London.
 WTE are now able to accept quantity orders Ludlow \& Cole. The Croft. Picketts Ave., Leigh. Essex. Tel. Southend 76589 .
[1863 R ADIO mirs, can undertake development and winding shop with vacuum electronic equipment; ample space and labour available.-Box 685 . Q UALIFIED electromics engineer is prepared prototype of industrial design. develop nent and prototype of industrial electronic projects in also undertaken, advisory service prequency work also undertaken, advisory service, prompt and
persona! attention.-Box 1527 .
[1897 TAWING and tracing work for radio and light engineering photoprinting and foll sets ond arawings undertaken to commercial or Ministry standards.-Drawing \& Tracing, Ltd., $456 a$
Ewell Rd. Tolworth, Surbiton, Elmbridge 7406 Ewell Rd. Tolworth, Surbiton. Elmbridge 7406

PATENTS

[T is desired to secure the full commercial deLelcpment in the United Kingdom of British Patent No. 568674 which relates to ". An improved electrical machine for the classification and segregation of diclectric sheets,* either by way of sale or the grant of licences on reasonBank Chambers, 329 . H.gh Holbo'n Whillips's, Vaconcies advertiscd are restrint
or employments exccpted from the provisions of the Control of Enoagement Order. 1947
R ADIO engineer required tmmediately, know-area.-Box 1536 . GOVERNMENT Department situated in Lonthe following two categories:CONTROL Room Duty Engineers; applicants should have practical knowledge of long-distance
and short-wave radio circuits and land line voice frequency signalling systems; some knowledge of printing telegraph equipment desirity, in rary according to experience and abilCONTROL ROom Junior Assistants
for general duty work in radio terminal requited have some knowledge of the principies of radio transmiss on and reception as well as land line signalling: salary according to age and abilit,
in the range $£ 250-£ 380$ per annum.-Appican the range ${ }^{2} 250-£ 380$ per annum.-Appica-
tions to Box 1372 . CERVICE engineer, conversant with all makes R.T.R.A. Scale wages; Cambs.-Box 1535 . [122] A PPLICATIONS are invited for electronic entransmitters and receivers; Wellington (Sa:op rea, SSISTANT 1381
A SSISTANT manager required for radio, elec stan control, buying and costing essenial: stan control. buying and costing essenial.
Fast Angia. Box 1357 .
WANTED rado testers for domestic and
television receivers and electronic gear.Apply Personnel Manager, Peto Scott. Trading Estate, Weybrldge 4271 . \quad INTED. radlo mechanics, must be expersH enced in current Amer.can and British fight, Ltd., London Alrport.

YOU CAN HEAR IT IN LONDON:

> IAN BAILEY
> CORNER HORN REPRODUCER

atis of high-quality sound wt, at
MESSRS. GUI DE BUIRE LTD. Recording Studios, 82/83, NEW BOND STREET, LONDON, W.I
Bシ A POONTMENT.
Our range of "Elmsleigh "Tuners, Feeders and Amplifiers is now complete, please send for lists
ELMSLEIGH RADIOCO 1102 LONDON RD., LEIGH-ON-SEA, ESSEX

HIGH "Q" IRON COREDCOILS

 of Unsurpassed Quality for Discerning AmateursAERIAL. H.F. OR OSCILLATOR, short, medjum or Cong wave, size of former lin. \times lin. $3 / 9$ each.
${ }_{2}$ INPUT FILTER. Hī̄ Kc/,., parallei or series tured.
DUAL WAVE COILS, mediun and Inng wave nerial I.F. TRANSFURMERS.
1.F. TRAMSFURMERS. stamdard. $465 \mathrm{Kc} / \mathrm{m}$, , per 86 each. TERMS : Cain with order or Ciakram.
TERMS : Cash with order or C.O.D. on orders over \&1 TRADE ENQUIRIES INVITED
MONOCHORD RADIO
17 Streatham Hill, London, S.W. 2 Thone : Tulse Hitl inst

MOIRSE CDIDE THIINING

There are Candler Morse Code Courses for
BEGINNERS AND OPERATORS
Send for this Free "BOOK OF FACTS"
It gives full details con cerning all Courses.

THE CANDLER SYSTEM CO.

(Room 55W), I2I Kingaway, London, W.C. 2
Candler System Co., Denver, Colorado, U.S.A.

CONDENSERS
 of all types...

We can offer, FOR IMMEDIATE DELIVERY from very generous stocks, a wide range of ultra-high quality fixed paper Condensers, from $.001 \mu \mathrm{~F}$ to $8 \mu \mathrm{~F}$. Also STOCKS of small, genuine MICA Condensers from $00001(10 \mathrm{pf})$ to $.01 \mu \mathrm{~F}$ (10,000p!). Prices are exceedingly moderate.
Enquiries are invited for manufac. turers requirements, wholesale and export only for bulk quantities, and for scheduled deliveries over a period, as required. Condensers of close or very close tolerance can be supplied within about one week.

Pleose request our 4 doge bulletin CONSEVEN Olll4 CLAUDE LYONS LTD. 180, Tottenham Court Rd., London, W. 1 and 76, Oldhall St., Liverpool 3. Lanes

High
 Quality

TRANSFORMERS and CHOKES

Made specially for your requirements. All coils layer wound and insulated between layers.

Our modern factory is fully equipped with vacuum and pressure impregnators and all the latest testing equipment.

POWER OUTPUTS up to 4 K.V.A.

AUDIO RATINGS
3.200 watts

AUSTIN MILLS LTD. LOWER CARRS, STOCKPORT

Established 20 yeors. Phone: STO 3791

E NGINEERS required, with experience in recept.on; specialisation in some of the followowing sunjects is essential:-
(1) Wide-oandwitn, medıum and low power ransmission.
(2) Vidco amplifier design.
13) Syne and scanning generators. APPLICANTS should have had some years and preference will be gen to those outined and preterence will be g.ven to those holding
recounised academic qualifications; London recoynised academic qualifications; London of education and experience, and salary required. to Box 1375. ${ }^{173} \mathrm{X}$-R.E.M.E. personnel, trained on No. 10 IX-R.E.M.E. personnel, trained on No. 10 new instrument works at Byfieet, Surrey.-Write to All-Power Transformers, Ltd., Chertsey Rd. Byfleet, Surrey, $\int 1930$ JOUDSPEAKER engineer, senior, required: with good opportunity and salary for man With specialised exparience in the ndustry over a number of years; give full details of expe
ence; all replies in confidence.
Box
1560 .
'WECHNICAL asistant, 20-24 years, with some write good English, requared by Puolic.ty Division of carge inquitrial orgamisation near W Luadon.-Write fuay to Box 1365. [1716 GENIOR design draughtsman required for work 1 in connection with commercial radio recevers and esectronic equipment at a radio works in West London.-Write, giving full parthcuars of experience, saary, etc., to Box 1416. 12 ADlO eng.neer for pnysicat research and perimental snowiedge of HF and $A F$ technique; perimental snowedge oity F and artechnique experience in high-a he V.S.E, Construction Co. Lotd. $5-7$, Denman St. W.1. Construction Co. VALES engineer to specialise in automonte D rad.o equ.pment; experience in comparavie thed and adequate training essential; technical qualifications desirabte; age 25-30; exceldent prospects with leading London manufaciurers; sasary according to exp.-Box 1367 .
S ALES enkineer required to specialize in electrochemical equipment; experience in comparabie
essential;
fe.d and good technical
excelsent whedge
prospects with Company manufacturing scientific instruments: sa:ary according to experience.-Box 1480 .
TRADE representative with first-ciass retall 1 connecti, ns required for North London and Eastern Counties to represent nationally known manufacturers of radio and domestic sound equipment; own car essential; salary, commission and expenses.-App.y Box 1479.' [1833 I EADING masers of industrial electromic $1 _$equipment require, for Greater London area. competent service, installation and sales engineer of good pers naity and training; experience in nandiling radio transmitters desiradee must drive own car an advantage.-Write full detalls Box 1444.
[1815 Wo senior development engineers required able experience on theory and design of V.H.F. abranmitters up to powers of 200 watts or on V.H.F. receivers is an essential requirement.Appications, giving age, qualifications, experience and saiary required, quoting Ref. No. 133, to Box 1392.
CROWN Agents for the Colonies.-Applications from qualified candidates are invited for the following posts: Staff required by Nigeria Government Post and Telegraphs Department for 18-24 months with prospect of permanency. Outfit allowance f60; free passages; salary according to age and war service
(A.) Radio Offcers, salary scale $£ 600-£ 800$ a year (including expatriation pay). Candidates must ho'd Postmaster-General's first-class certiperience in operating wire'ess and directiont exding stations used for air service circuits. (B) Wireless Station Superintendents. Salary scale $£ 600-£ 850$ a year (including expatriation pay). Candidates must hold first-class radiotelegraph operator's certificate, have had recent experience in wireless operating and direction finding operation, have thorough knowledge of transmitters and receivers, and be capable of diesel engine sets driving small generators. diesel engine sets driving small generators.
Appli at once by letter, stating age, 世hether married or single and full particulars of quallpaper to the Crown Agents for the Colonies, 4 , Millbants. Landon. S.W.1. quoting for (A) $\mathrm{M} / \mathrm{N} / 24048(3 B)$ and for (B) M/N/24044(3B) on both letter and envelope.
RADAR englneers required to operate from R London headquarters for installation and maintenance of marine installations home and overseas; the essential qualifications are; pracment noiltity to worl without supervision after training. and resourcefulness: inttial salary ac rording to experlience.-Box 1377 , PRODUCTION suparvisor reguired: must have sembly methods. counted with fair working knowledge of rate fixing and machine shor practice: good disciplinartan; 5-day week. canteen and welfare facilittes; write, glving full Darticulars of past experience and state sa'ary expected.-Box A. 1288, Haddons. Salisbury
Square London. E.c.
「1700

Specialists

 in
W. Bryan Savage Ltd WESTMORELAND ROAD, LONDON, N.W. 9

Telephone: Colindale 7131

NEW G.P. 12

CRYSTAL PICK-UP

with permanent sapphire stylus
-was fully described in The Wireless W'orld's recent article "Crystal Pick-ups-Basis of Design for Fidelity Reproduction."
This remarkable pick-up, which represents the ultimate in high-fidelity reproduction, is now available in limited quantities through your radio dealer, price 104/-incl. P.T.

FREE ILLUSTRATED FOLDER describing this new pick-up may be obtained by returning the coupon below.

TU COSMOCORD LTD.
FNFIELD, MDDX,
Please send folder of ACOS Pick-ups.
NAME.
|ADDRESS
1 -
\qquad
\qquad

L.R.S
 IN STOCK
 CASH OT EASY TERMS
 Goodmans "Axiom Twelve" Speaker Unit One of the finest quality speakers available $\begin{array}{llll}\text { to-day } \\ \text { Avo Model } 1 & \ldots & \text { Cash price } 28 & 8 \\ \text { Cash price } £ 19 & 10 & 0\end{array}$ Valve Tester, complete $\& 1810 \quad 0$ And practically the whole AVO range. Electrix A.C. or D.C. Spray Unit for spraying Paint, Distemper, Creosote, Insecticides, etc. Most efficient. Complete outfit 88100
 Specifications of the above on request.
 We can supply on convenient terms
 much of the Radio and Electrical Equipment at present available, all transactions being strictly between customers and ourselves.
 Please let us know your requirements and whether for cash or on easy terms.

The LONDON RADIO SUPPLY CO. Est. Is2;
BALCDM3E, SUSSEX

COVENTRY RADIO

COMPONENT SPECIALISTS SINCE 1925 HAVE YOU RECEIVED OUR $1948 / 9$ NEW RADIO COMPONENT CATALOGUE ?
THE FIRST ISSUE WAS SOLD OUT IN 14 DAYS. THE FINEST GUIDE OF PRICES TODAY, DETAILS OF HUNDREDS OF DIFFER. ENT NEW COMPONENTS, NEW ISSUE NOW READY, SEND 3d. IN STAMPS.
EQUIVALENT LIST of SERVICE VALVES NOW READY. C.V., V.R., V.T., ARP No's TO COMMERCIAL TYPES

PRICE 6d.

COVENTRY RADIO

DUNSTABLE ROAD, LUTON, BEDS.

HILL \& CHURCHILL LTD. BOOKSELLERS SWANAGE, DORSET

Available from stock

Electron Optics and the Electron Microscope 2worykin fier Design Bode
Electromagnetic Waves Sehelkunoff ... $37 / 6$ Hyper and Ultrahigh Frequency Engineering Sarbocher \& Edson 36.

Elepctric Circuits and Wave Filters A. T. Storr

The Amplification and Distribution of Sound. New Edition Greenlees :..... Fundamentals of Electric Waves Skilling 18/ Physics and Radio Nelkon - 8/6

Postage Extra.

CATALOGUE ON APPLICATION

WELL-KNOWN company London area manuiacturing radio receivers, requ.re tech te.evision saas.-App.lcants shou'd write. stat ing age, quaificat.ons, experıence and saary required, to Box Q/5991 A.K. Advg., 212 A. Shaftesoury Av., W.C.2.
©ENIOR draughtsman required with experiO ence precision mechanical or electro-me chanical apparatus; also sen experience of radio or electronic instru. ments.-Write. giving details of experience and saiary required, to Box S/5017, A.K. Advg. 212a, Shaftesbury Ave., W.C.2.
GENIOR and Junior,-Development, research - production engineers. draughtsmen required for radio, te.evision, speakers; preference to B.SC.. H.N.C.C. \& G.. ex-I'R.E., R.R.D.E personnel suitable, other positicns also avain179. Cıapham Rd, S.W.9. Tel. Brixton 3487 . CLECLRUNIC draughtsmen requared by arge - manutacturer of radio and aulied equ.pment situated in the East London area; suitable appicants shoud have previous experience of this work and technical qualifications to National Certificate or equivalent. State age, experience and salary required, to Box 1391. / ELEVISION engineer reglired for deveiopEast London area; essential exper.ence is at least two years in recognised laboratory engaged on television development and adequate technical knowledge; state full detalls ut experience, age and salary requ.red, to: Box 1368 . An ${ }^{[1721}$ in-HLECTRO-MECHANICAL designer. An in-
perienced man to work on the design of elecperienced man to work on the design of elory. salary up to $£ 500$; every assistance given to find suitable accommodation; secure stafi appointment for suitable app.icant.-App.y Box 1'r2. giving reference $D .0 .16$
DATENT agent or technical assistant required E in patent department of company engaged in manufacture of precision instruments, radar, etc.; knowledge of electronics and radar technology desirable: salary according to qualincaManager, Sperry Gyroscope Co.. Ltd., Great West Rd. Brentford, Middlesex. $[1741$ PYE, Lid., require senior and junior engineers ceivers, design and development of radio equipelvers, design and development of radio equipment, research on components, the applicants felds--Letters with particulars of training, ex-helds,perience and required Salary, to the Persong. TUNIOR draughtsman or draughtswoman re-- quired age 18 to 22 , for detalling and development work in drawing office attached to radio laboratory in S.W. London area; experience of public address equipment an advantage. Write, stating age, previous experience and salary required, to Box WW771. L.P.E., 110. St. Martin's Lane, W.C. 2 . BADIO service engineer required, compete celvers and television. sub-standard cine projectors to be repaired: smart appearance and full experience in both mechanical and electrical repairs essential; salary according to knowledge; permanent position; very good prospects for intelligent and keen engineer. Write full detalls Walace Heaton, Ltd., 127, New Bond St. London. W.1. A NUMBER of chernas a new research station in Essex. applicants should have a good degree in applicants should have a pood degree in years' experience in industrial research or development on electronics: houslng accommodation will be provided for the right type of keen and ambitious workers; salary of $£ 500-£ 700$ par annum.-Apply, stating age, qualificatlons, experience. etc. to $B 0 x 1364$.
A RADIO engineerng firm in Essex (30 miles nical sales literature, to deal with printing production and assist in administration; experience would range over whole of company s many products, and would be valuable to young wireless or electrical engineers; degree in electrical engineering or equivalent desirable keenness and abllity for writing of this special kind essen-tlal.-Apply, quoting Ref. 129. to Box 723. [1577 ©ALES engineer required for demonstrating executives, etc.; some electronic technical knowledge essential; a general radio technical knowledge would be sufficient if applicant has firm grasp of elementary electronic princspies; prevlous selling experience advantageous, but not essential; own car essential; London area.Apply. giving age. fullest detalls of educatlon and experience, together with saiar requirea, to Bex 1390. manager for Scotland, with Glasgow headquarters. required by major pary for sales. service and engineering actlvities: necessary quallications Include good sales and administrative experience in electronic industry and ablilty to acquire and drive car; successful applicant will be provided with period of specialised training in London and Provinces; applcants should state in detail age education, trative experience; commencing salary required. \rightarrow Box 1376 .

EDDYSTONE

'640' E 27 10s. 0d.
H.P. Terms available.

Full range of components.
All C.O.D. orders promptly executed. Send for Catalogue, 1/- post free.

SPECIAL OFFER

P.M. Speakers

5 inch 13/- 6 inch 14/. including packing and postage.

THE Radio firm of the South. 63, London Road, Brighton I, Sussex. 'Phone: Brighton 1555.

THE $W_{1}+\varepsilon$ MAN BUYS	AVAILABLE. H.C. type HORNS with Bass Chambers at E19-10-0. Reflector type CORNER HORNS £47-10-0 soon. Prices in the white and ex-works. The timber situation is worsening. Order now.
	VOIGT PATENTS LTD. LONDON, S.E. 26 P.S.Mr. Voigt is not yet fit

TELEVISION SCANNING COILS (H

Technical Publication No. 29. Post FREE HAYNE8 RADIO Ltd., Queensway, Enfield.

- Madiospares' Quality Parts The Service Engineer's First Choice

WARD ROTARY
 WARD CONVERTERS

For Radio, Neon Signs, Television, Fluorescent Lighting, X-ray, Cinema Equipment and numerable other applications.

We also manufacture :-
Petrol Electric Generating Plants, H.T. Generators, D.C. Motors etc. up to 25 K.V.A.

CHAS. F. WARD
LOROSCROFT WORKS, HAVERHILL, SUFFOLK Telephone: Haverhill 253 \& 4.

Compact and inexpensive
Fithout sacrificing accuracy aud reliabillty. Weighs ouly 3lbs Height allows for full swiug of generator handie.
lianges up to 20 megohms 500 volts.

CONTINUITY TESTER

 This latest addjtion to range is encioned in a moulded bakelite case of pleasing appearance. Equipped with selfoconlalned drybattery, Speciailg deaigned telt spikes and leads cam be supplied care in which the lastrunent may be used without removal. Rungen:0 3-0/30 ohms 0/301,300 ohms $0 / 500-$ 50,000 ohms $0 / 1,000$THE RECORD ELECTRICAL CO. LTD, Broadheath. Altrincham. Cheshire.

DESIGNERS with experience of radio comLondon area: the positions carry responsibility and are in conne positions carry responsibilit ment: applicants should have experience in of specialised knowledre of radio communication specialised knowtedge of radio. ©ommunication qualifications, experience age and salary re quired. to Box 1378 . 1 ADIO service engineers for works and feld 1 primarlly in London area, well-known company, excellent pruspects; applicants should have comprehensive knowledge radio servicing and minimum of $2-3$ years' retail or industrial ex perience in repair work; 5-day. 44-hour week: wages according to experience and at prevailing levels.-Apply, stating age, full details experiI LECTRIC \& MUSICAL INDUSTRIES, Ltd. ontice personnel on electronic, tele-communicathon and electro mechanical engineering: (a) Senior exectro-mechanical designer draughtsmen:
(bi) seniot mechanical desıner-draughtsmen: (b) senior mechanical desıgner-draughtsmen. (c) senior electrical designer-draughtsmen; (d) detail draughtsmen.-App.y, stating age funes details of experience an s.atary required, Re: Hayes. Middiesex, DESIGNER draughtsmen are required apont the development and production of electronic equipment whose factory is within a 25 -miles radius North Wes of London; applicants must have Senior Nationa Certificate in Electrical Engineering-Mechanica Engineering and shop experience, prevications equinment an advantage.-Write, stating age, equipment an advantage,-Write, stating age, required, to Box 1415.
W ANTED for employment in various parts Ireland, personnel experienced in thermionics: requ.red for employment as maintenance and repair of radar and fire control apparatus. Pay varies from $110 /-$ per week to $£ 62 \supset$ per year, ac cording to type of work for wh.ch selected; appicants shoud furnish full details of practica they should aiso state in which part of the U.K they should also state in Which
they would like to be emp.oyed.
REPLIES to D.D.M.E., H.Q.A.A. Command
Midd.esex.
M EDICAL electronics.- A vacancy arises or medical dept. of a large London company; the medical dept. of a arge to possessing technical qualifications equal to "Final City and Guilds Standard (Radio Comm.) should be wial acumen travel, and should have some commercial acumen, as his duties are mainy concerned wher equial sales of electro-medical equipment -Apply in the first instance in writing, stating qualifications, experience, age, etc., to Box 705 Valve engineer.-Well-known London frirm mitting valve department: successiul appacant must have had practical experience in all branches of the manufacture of valves up to 20sW of anode dissipation, and must be capable of conducting and supervising development of new types; some expersence of circuicry an asset,
salary $\mathbf{2} 600$ per annum approximately, depending salary $\mathbf{x} 600$ per annum approximatery, depending details of qualifications and experience to Box ${ }^{1385}$. 1 gineer required to take charge of depart ment in a South Wales factory engaged in the manufacture of a varied range of products. in cluding loudspeakers, domestic app.iances. etc. design of press tools. jigs and fixtures. manufacturing layouts, etc.; preference given to applicant who has held equiva'ent pasition.-Reply in confidence. giving full details of experience, age and salary required. to Box 546, Arthur S. D Xon Ltd, 229 High Holborn, London, w.C. - applications for a valve engineer for the research laboratory. This is a senior appointwith wide experience in the design and manufacture of electronic tubes. A science degree together with a knowledge of photo-electric processes. wou!d be advantageous; the applicant should be a good organiser and capable of con trolling staff; remuneration will be according to age, qualifications and experience-App:y giving full detalls of age, qualifications and English Electric Co., Ltd.. Queen's House. KingsEngy W. 2 2 , way, W.C.2.

situations wanted

SERVICE engineer, 6 years' exp., plus 6 years e'ectronics or radio.-Box 1417 . $[1799$ CHIEF engineer of well-known firm requires ledge of design and production methods.- Box I'X-P.O. radio mech. age 22, $31 / 2$ years' service 1 Flet Air Arm on alrborne radar, 2 years servicing and installation experience commercial marine radar. desires position.-Box 1526. $R_{\text {RA. engineer, pre-war experience. ex }}^{\text {ADIO }}$ ham age 30 techi ham, age 30 , married. proceeding canada (ons in Canada with view to position.-Box 1532.

-MAINS TRANSFORMERS 19/6 POST PAID
 NEW STOCK-NOT SURPLUS.

H.T. $2.50-0-250$ or 300-0-300 on $350-0-350$ s, 80 mA V'nizersal J..T. ${ }^{8}$. $0 \cdot 4-6.3 \mathrm{v}, 4 \mathrm{~A}$ C.T. and $0.4 \cdot 5$ v. 2A [30)-1-(35) v. 150 mA . Uprizht type. Fully shrouded $39^{\prime} 6$.

SMOOTHING CHOKES

 22 6: 250 mA, 25/-UNDRILLED ALUMHEIUM CHASSIS Bright pure All-not Dural, All 3 in. deep, 16 p.w.e. 1 min . 人 6in., 10 in . xin. $8 / 6$; 12in. \times 9in., 10 WILLAMSON OUTPUT TRANSPORMER
LAB' ${ }^{\text {b }}$ precision job to author's speciffication, 67/6 LINE CORD . 3 AMP 60/70 ohms per foot; 2-way, 16 yd. : 3 -way, 19 yd

FEEDER UNTTS WITH R.F. STAGE Model A. $1650,200 / 5 \mathrm{~b} 0$, 800,2000 metres. lakge 3-colour बlass scale. For $6 \mathrm{~K} 7 \mathrm{G}, 6 \mathrm{~K} 8 \mathrm{G}, 6 \mathrm{~K} 7 \mathrm{G}, 6 \mathrm{G} \mathrm{G}$ Completely aligned and ready for connection to audi amplifier. Provision for radiogram switching. Al but including Pur. Tax, £10 8r. 6d. Price with four valves, including tax, £12 19s. 9d

HIGF FIDELITY LOUDSPEAEERS Goodman's T2/1205 15, 12in. diameter. 86 15s. Od Goodnan's Asiom twin cone, 12 in ., \&8 8i. 01 . MINE DETECTOR AMPLIPIERS 3-valre R.C. amps., with 3 1T4 valves, \&1 2s. 6d QUALRAD AMPLIFIERS
A.C. type: 41 watts ontput, for 6Q7, 656,5Z4. Tone A.C. type; $4 t$ watts ontput, for 12.6 .
contrcl. Price less valves, $£ 5$ 12s.
. A.C.D.C. Type 21 watta output. send 2ld. stan, for latest catalogue and valve list
COULPHONE RADIO 58, Derby Street, Ormskirk, Lancs.

YOU

can become a first-class IRADIO ENGINEER

We are specialists in HomeStudy Tuition in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-tinie work.

T. \& C. RADIO COLLEGE

King Edward Ave., Aylesbury, Bucks.
(Post in ursealed envelope, 1d. stamp)
Please send me free details of your HoneStudy Mathematics and Radio courses.

NAME
ADDRESS
W.W.76.

R ADIO engineer, experienced in commercial Wave radio and televiston servicing and microaged 28; would prefer to work in country distric if accommodation could be found for wife and self: own car.-Box 1443 . EX-R.A.F. F/Sgt. W.E.M. (Regular), 12 yrs,' C exp. of all types service telecom, equip. air and ground, installation, maintenance and stations. fixed and mobile, also supervisory, AID and experimental exp., seeks post in civii radio, home or abroad. with prospects of per-car.-Box 1355 .
"PERIMET" ELECTRODE Soldering and Brazing Tool Operates from 4 or 8 Volt Accumalator or Traniformer

MAINS TRANGFORMER. 3 Heats. 355. Poot free. HOLEOROWV \& CO.,

VIBRO-ARC
 ElECTRIC METAL EMCRAVIMG TOOL
 Guquaves. etches, maths.

 writes.... anBYASS, COPPER,
SLLVER, MICKEL, ALUMMIUM
CHaOMOM. Hardoned Steel

REPRESEAGENTS WANTED
$\mathbf{R}^{\text {EPRESENTATIVES }}$ calling on radio dealattractive. quick additional advertised line. attractive quick selling, with repeat orders details, stating area covered, to Box 1366 . 1719 IIDDYSIUNE shrrt wave radio.-Stratt. n of I Lo Co. Ltd., are now in a position to consides applications for a limited number of registered dealerships in areas not already covered; applica-
tions are invited from expert and enthusiastic tions are invited from expert and enthusiastic Short-wave specialists at home and abroad Heath, Birmingham,' 31 .
TUITION
$\boldsymbol{R}^{\text {ADIO training-P.M.G. exams. and I.E.E. }}$ A. Diploma; prospectus free.-Technical ColA M.I.Mech.E., A.M.I.E.E., City and Guilds. A etc.. un "No Pass-No Fee" terms, over 95% successes; for details of exams. and courses in all branches of engineering. building, etc. (Dept. 387 B). 17. Stratford Place. L-ndon. W. 1 Wemetrical and eng. common prelim. vest in knowledge to fit you for a real career: free advice without obligation: tuition by specialists; write to-Comprehensive Correspondence' Schools, Ltd., 411, Oxiord St.. W.1. CITY and Guids Te:ecommunications Engiternal candidates.-For details of home study courses and personal tuition in first and secondyear subjects for this examinat:on. write to The Correspond nce School of E ectr cal and App:ied
Sciences. 127. West End Lane. London N. Sciences. 127. West End Lane. London. N.W.6. BOOKS, INSTRUCTIONS, ETC.
$\mathbf{W}_{\text {colour printing, with of world, new multi- }}^{\text {EBB }}$ colour printing, with up-to-date call signs and 6 d . Webb S Radio. 1-4. Soho St.. W.1. Gerrard 2099. YOURS for the asking grand 16 page detailed Press "ata-ogle the of. radio, television and electrical engineering: poto-the-minute, service and data sheets, etc. als? exceptional bargain lines in radio. gram., and amp ifier equipment, and the pick of Govt. surpius lines; your address and Id stamp piease London. E.10.

H AVE you had your copy of the " Home Conlet sives all the latest circuits for the radio constructor, hints. wrinkles. data, etc., together with full components list. We are offering (as an introduction this $2 / 6$ book FREE but please include 32 damps to cover postage. clerical work, etc. Earn easy money in your spare time without investment This and many other opportun.ties exist for the keen enthusiast. The atest development fron our lab, a 4 -valve plus post free and inclusive of P.T., ready to play. Nothing else to buy. All our'prices are onl: about one-half those ruling elsewhere! Direct from manulacturer to customer-that's our policy.-Roding Laboratories (Electronics). Dept. BUSINESSES FOR SALE OR WANTED G.W. London, radio-sales and repairs, main trade seryice cocnections. an. instruments. all in. £650; turnover 2 . 000 win and stock. figures, sutt radio engineer.-B0x 1474 . [1823

PHOTO-ELECTRIC CELLS
 \author{ for

}Talking Picture Apparatus.
Catalogue now available
RADIO-ELECTRONICS LTD.
S. George's Works, South Norwood. London, S.E. 25

Does these -
ACCURATELY An_ QUICKLY Opmela hrackets, shromas, Coaden. TREPANMTMGABformer or Alips Five nizos-12" to 36^{*} Full particulars from A. A. THTOAESAD (W), ASETON-UNDER-LYME

"You're CERTAIN to get it at ARTHURS!"

VALVES: We have probably the largest stock of valves in the country.

PERSONAL RADIO SETS IN STOCK New Olympic Romac, Long and Medium Wa re 61718 II Ever Ready ... \&12 18 10 REMINGTON FOURSOME SHAVERS $210-250$ v. AC/DC \&15 195

ALL AVO AND TAYLOR'S METERS. 67176 STOCKISTS OF ALL DOMESTIC APPLIANCES AND TELEVISION EQUIPMENT

Products of Quality \& Reliabiling mains transformers A. F. TRANSFORMERS fhermal oflay switches SMOOTHING CHOKES power resistances

Teoknical Exealloneo-

 combines with beauty and soundness of DESIGN in theDIFFERENTIAL AIR DIELECTRIC TRIMMER

* WIdth: 1603 win Leugth: 2j m/an

 He fight:1.5 to $8 \mathrm{pH}-8 \mathrm{~m} / \mathrm{m}$ 1.8 to $201 \mathrm{~F}-10.5 \mathrm{~m} / \mathrm{m}$ 2 to $261 \mathrm{~F}-11 \cdot 5 \mathrm{~m}, \mathrm{~m}$
2 to $321 \mathrm{~F}-12 \cdot 5 \mathrm{~m} / \mathrm{m}$ oxLey developments co., ltd.
ULVERSTON, N. LANCS. Tel. Ulverston 3306
Law: Straight line capacity Power Factor: Less thann 001 Insulation: Over 2,000 megohms
Voltare : 500 D.C.

WELWYN ELECTRICAL LABORATORIES LTD Walwyn Garden City. Herts. Telephone: Welwyn Garden.

TELEVISION \& OTHER

HIGH VOLTAGE APPLICATIONS

This well-known range of high voltage condensers is now processed with a new impregnant-"Visconol," a highly viscous mineral oil, the development of which has been dictated by the increasingly stringent operational conditions to which modern equipment is subjected. Among the advantages provided by this new process are:-adequate voltage rating, low power factor, stability of dielectric, and power to withstand sharp-front short-time fleeting surges. The mechanical construction and uniquc sealing technique renders them normally impervious to breakdown or flashover. T.C.C. "VISCONOL" Cathodray Condensers should be first choice where exacting conditions are likely. List No. 132, showing a full and comprehensive range is available on receipt of $2 \frac{1}{d}$. stamp.

CAPACITIES FROM 0.0005-I MFD.

VOLTAGE RATINGS FROM 750-25,000 D.C.

LGS CONDENSERS . . . A PRE-REQUISITE TO "BETTER LISTENING."

NORTH ACTON LONDON • W•3 Telephone. ACORN 006I

[^0]: Telephone : Elmbridge 5241 (6 lines)

[^1]: H. C. ATKINS Laboratories, 32 Cumberland Road, Kew, Surrey

[^2]: ${ }^{1}$ Wireless World, May; 1946, p. 142; Feb. 1947, p. 57.

[^3]: - W'ıreless W'orld, July, I944, p. Ig6.

[^4]: Dept. 16, 43 Grove Jark Koud, Chiswick, London, W.4. Telephone: CHlswick 4417/8

[^5]: 1 "Electro-Encephalograph Amplifier," D. L. Johnston, Wireless Engimeer, Aug. and Sept. Johnston, Wireless Engineer, Aug, and sept
 194% (Includes details of highly stable power 1917. (Includes details of highly stab
 supply with very low ripple content.)
 For the alternative shunt system see
 "For the alternative shunt system see "Shunt Voltage Stabilizers." J. McG. Sowerby, I'ireless World, June 1948 .

[^6]: ${ }^{3}$ "Electronic Voltage Kegulators," F. I, Hogg, W'ireless IMorld, Nov. and Dec. 1943.

[^7]: * Where the BS. 1409 standard nomenclature for valve voltages, etc., is elaborated by prefixing a number to the subscript, it is to identify the valve concerned.

[^8]: ${ }^{1}$ Scheuch, D. R. and Cowan, F. P. Rev. Sci. Inst. Vol. I^{7}, No. 6, p. 223. (June, 1936.)

[^9]: * "Condensers in Series-Heater Circuits," Electronic Engineering, April, 1945.

[^10]: A. F. BULGIN \& Co. Ltd., BYE-PASS ROAD, BARKING

[^11]: The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable, at the Patent Office, 25, Southampton Patent Omce, 25, Southampton
 Buildings, Iandon, W.C.2, price 1/- each.

