

A matter of Balance...

High fidelity in radio and television is mater too, of knowing precise balance in the circuit. A types of low-loss radio that B.I. Callender's manufandard ranges covering all frequency cables in electronic requirements involvtelecommunications and to, and even higher than ing frequencies up
$3,000 \mathrm{Mc} / \mathrm{s}$. This publication contains radio frequency cables and details of the standarite to-day for free copy made by B.I. Callender's. of Publication No. 223.

british insulated callender's cables limited NORFOLK HOUSE, NORFOLK STREET LONDON W.C 2

CEESSTION

Here are two excellent Celestion Speakers with dimensions which make them ideal for use in sma:l domestic receivers, as extension speakers, for cir radios and intercommunication sets.
Model P2V can also be used as a microphone.
THE MIDGET 2 CABINET MODEL CTII7 (as illustrated) uses the P2V Speaker in its bakelite cabinet of modern design which is available in a variety of pleasing colours.

CHASSIS MODEL P3CO.

Dia $3 \frac{1}{2}^{\prime \prime}$. Baffle opening $3^{\prime \prime}$. Voice coil impedance at 400 cps ., 30 hms . Pole dia $\frac{3}{4}{ }^{\prime \prime}$. Flux density gauss 7,700 . Total gap flux 24,000 . Peak power capacity I watt.

> Price less transformer (Suitable for output $1-5 \mathrm{ohms}$) \& $: \$ 9: \$$

WHERETO BUY CELEST:ON SPEAKERS
The Public are requested to order from their local Radio Dealer.
Wholesalers are supplied by the sole Distributors: CYRIL FRENCH LTD., High Street. Hampton Wick, Middlesex. Phona: KINgston 2240.
Manufacturers should please communicate direct with
CELESTION LTD., KINGSTON-ON-THAMES, SURREY

MIDGET 2 CABINET MODEL CT117

Size: Height $41^{\prime \prime}$ Width $6 \frac{1}{4}^{\prime \prime}$ Depth $23^{\prime \prime}$
PRICE complete in cabinet $\mathbf{\Sigma 2}: \mathbf{3 : 6}$
TECHNICAL DETAILS OF CHASSIS MODEL PZV
Dia 2 ${ }_{2}^{\prime \prime}$ Baffle opening $2 \frac{12}{\prime \prime}$. Voice coil impedance at $400 \mathrm{cps} ., 3$ ohms. Pole dia $7^{7 \prime \prime}$. Flux density gauss 8,500 . Total gap flux 8,000 . Peak power capacity $\frac{1}{}$ watt.

$$
\begin{array}{cc}
\begin{array}{c}
\text { Price less transformer } \\
\text { (Suitable for output } 1-5 \circ \mathrm{hms} \text {). }
\end{array} & \mathbf{Z}: 7: 0
\end{array}
$$

Write for Brochure " W.W." It gives details of all Celestion Chassis and Cabinet Speakers.

- CONSTANT VOLTAGE • POWER SUPPLY UNITS

NEW SERIES 101
Our new Laboratory Power Supplies, Serles 101, are based on our well-known Model 101-A, but incorporate a number of improvements and refinements.

DETAILS ON REQUEST.

ALL-POWER TRANSFORMERS LTD. 8a, GLADSTONE ROAD, WIMBLEDON, S.W. 19

 Tel.: LlBerty 3303.

HIVAC LIMITED
Greenhill Crescent. Phone HARROW Harrow on the Hill.Middx. 0895

Fifteen years ago we introduced the first British-made low-loss ceramic. To-day the range of Frequentite components covers more than a thousand pieces of every shape and size.
With such a store of manufacturing experience we are able to offer advice backed by practical knowledge on your insulation problem. Please consult us before you finalize your design.

STEATITE \& PORCELAIN PRODUCTS LTD.

Depissimu
 for diversity of stock

... A few items taken at random from our new 1948 Catalogue

EDDYSTONE CRYSTAL CALIGRATOR No. 690

Invaluable for accurate receiver alignment, etc., this unit gives marker signals every 100 Kc 's and $\mathrm{r}, 000 \mathrm{Kc} / \mathrm{s}$, the harmonics from the $100 \mathrm{Kc} / \mathrm{s}$ oscillator being usable up to $30 \mathrm{Mc} / \mathrm{s}$ and those from the $1,000 \mathrm{Kc} / \mathrm{s}$ oscillator up to 60 Mc / s. Two separate vacuum mounted crystals are incorporated. The small size ($4 \frac{1}{2} \mathrm{in}$. $\times 3 \frac{1}{2} \mathrm{in}$. $\times 2 \mathrm{in}$. deep) makes it admirably suited for use on a crowded laboratory bench or for portable service work. A self-contained power pack allows operation from $200 / 250$ volts A.C. mains. Price

B.T.H. GERMANIUM RECTIFIER TYPE CGI-C

A modern permanent detector having many uses for field strength meters and radio detection in general. Readers of the American Technical Press recognise this crystal as being similar but improved to U.S.A. type IN34. Price
(A further range of B.T.H. Silicon detectors is also available)

EDDYSTONE "BUG* KEY No. 689

A British-made semi-automatic key of excellent design with extended speed control, giving a full range of operating conditions with the highest speed comparable to any U.S.A. design and lower limits extended for practice work. The streamlined die-cast housing gives complete protection, the finish being ripple black with a pleasing chrome relief. Mounted on rubber feet with optional fixing holes and short circuiting switch

Price

GOODMANS HIGH FIDELITY LOUDSPEAKER

TYPE T2/1206-TC'I5
One of the many high fidelity reproducers stocked by Webb's, the Goodmans T2/1206-TC/I5, with its twin cone construction. is of special interest to those wishing to obtain full frequency response from one Loudspeaker. This unit is used by some of the leading manufacturers of specialised Cabinet Loudspeakers and when used by the home concabinet will give an excellent frequency response from structor will give an excellent frequency response from 40 to 15,000 c.p.s. The overall diameter is $12 \frac{1}{8}$ and the depth $6 \frac{9}{16}$. Voice coil impedance is ohms, nett weight

WODEN MODULATION TRANSFORMERS

A range of modulation transformers, primary winding for push-pull operation, meeting all amateur transmitting requirements. By means of the multi-match connecting chart some is anode to anode loads on primary, between 2,000 and 18,000 ohms can be covered. The secondary figures for RF loads, etc., can be adjusted in greater variety between 200 and 29,800 ohms.

			Max. Audio	Class "C" input	Max. D.C.	
Woden	type	UMI	30 watts	60 watts	$120 \mathrm{~m} / \mathrm{A}$	54/-
"	"	UM2	60 watts	120 watts	$200 \mathrm{~m} / \mathrm{A}$	$72 /$
"	"	UM3	120 watts	240 watts	$250 \mathrm{~m} / \mathrm{A}$	90
"	"	UM4	250 watts	500 watts	$400 \mathrm{~m} / \mathrm{A}$	215/-

* WEBB'S NEW 1948 CATALOGUE should be with every laboratory and home experimenter. It covers both complete apparatus and all individual components for experimental construction and the contents include sections of topical interest-television components-operating details of transmitting valves-Cathode ray tubes-Communication Receivers-high fidelity apparatus-test apparatus, etc. Two interest ing sections cover the all-important "Useful Oddments" and our "Special Offers" of unrepeatable Ex-Service material.

The catalogue costs 6d. to callers, or $7 \frac{1}{2} d$. post free.
Webb's Radio, 14, Soho St., Oxford St., London, W. 1
Phone: GERrard 2089. Shop Hours: 9 o.m. -5.30 p.m. Sots. 9 o.m.-I p.m.

M. R. SUPPLIES Ltd.

have the foilowing firnt-clara Redio and Laboratory material available for immediate delivery. We offer ontv fully recommended items. All prices nett G.EC.ENLRGISED COIL SPEAKERS, 10 -inch dia. Coil 2 tohms, field 550 ohms. with hirn-bucker (lesa tranaformer). Very apectal opportunity, $\mathbf{1 5} /=$ (despat ch 1/6). P.A. SPEAKERS. Reslo and other good m/coil Prespure Units. 15 ohmn. imp. P.M.. to 30 inch all-metal Projectlon Horn with auspension bracket, atandard threads, E5/19/6 (carr. 4/-.) Henve DUZY OUTPUT TRANsFORMERS (again available from atock). The new imnroved "W.W." model providing 11 ratios frotn 12/1 to $75 / 1$ with centre-tapped prim. and four-section nec. Welght fllbs. Terminal panels on prim. and sec. Handling un to 25 -watta. $59 / 6$
ROTHERMEL HIGH-QUALITY POWER AMPLIFIRRS (As described in the July iamue). Final opportunity for the VR.2 (5-wntta) $£ 23$ model for $812 / 15 /$ and the
 with fin, thread, with cable adaptor. Handsome model in chromium and black. Priced (Radiolympia 1947) at 18 gns. We are now able to cffer this excellent microphone at only $\& 4 / 17 / 6$, new, boxed, perfect.
ROTHERHEL PHEZO-CRYSTAL HEADPRONES, with adjuatable headhands, Responae foll $10,000 \mathrm{c} / \mathrm{s}$. Weirht 6 nzat. Used in normal way and can also be ured as microphonea. (Ijat ca/10/\%). Last few pairat at $32 / 8$
ROTAEY CONVERTERS (Ex Admiralty). Input $100 / 110$ V. D.C., out pat 230 v by llin. by 9in. Weight approx. 100 lbs . Despatched in orisinal Gort. packing casea at E 10 earh. carr paid.
HIGH-CURRENT STEP-DOWN MANS TRANSFORMERS. Prim: 220/240 Nec.; $13 / 15 \mathrm{~V}$. (tapped) at 60 ampm . cont finous. Met-tick and other good makes Higheat njec., weight approx. 40 lha. Suitable for weldink, plating, zoll-warming, L.V. lighting and power. etc. 65/- (These are deapatched by pasa. train-1/6 extra-in orizinal rope-handle packing carea and we cannot meet claims for
VARIAC TRANSFORMERS. For correct ing by manual control mains fluctuation between 200 and 250 volts (and other voltages in proportion), Oil-filled, new and perfect. Model "A." loading I. 65 Kva , £6. Mudel "B," loading 1.01 Kva , \&5 (dempatch either $3 / 6$). Final supply of these.
SYFCERONOUS ELECTRIC CLOCK MOVEMENTS-continuation of this popular utter. $200 / 250 \mathrm{w}, 50 \mathrm{c}$., fitted spindles for central hours, minutes and second hands. Centre-bush fixing. Supplied with duat-cover and flex. The ideal movement both for domeat ic and laboratory clockn, 37/6. Set of three hands, in good style, for 3/fin. dial. 2/- (Not rold separately.
 n/tismp micoil. $17 / 6$; 34 in ., $0 / 10 \mathrm{amp}$. thermo-couple, $21 / \mathrm{m} ; 3 \mathrm{in} .0 / 1500 \mathrm{~m} . \mathrm{a}$ (1.5 amp.) M/coil, $17 / 6$. Beat maker, new, boxed.

SIEMENS' EIGE-SPEED KEYING RELAYS. Res. 2000 ohtns, t win coils, $7 / 6$ each and apecial inntation fur quantitlea (we have about 2000 instork).
HIGA-SPEED MOTRRS, 12/24 v. AC/1M. One-sixth K.F., 6,400 r.p.m. Length of hody 5 in . New, soviled, perfactelectrically. $28 / 6$,
xia). The "stilent 9 " with 0 in . Imneller, with mount in ring and gaskets. Owaration 200/250 volta A.C. Reconditioned, perfect, 69/6 SIGNAL GENERATORS, Marconi-Ekco, Tjpe TFigo, varioua ranges. For callers only, 835 . Detaila on requlest, only a few.
M. R. SUPPLIES Ltd., 68, New Oxford Streot, London, W.C. 1

Telephone : MUSeum 2958

TMmm скмвяквла THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION
 * Mobile and Stazic Continuous Recording Outfits.
 \star Recording Amplifiers
 \star Moving Coil and Crystal Mierophones Sapphire Pointed Reproducing Styli and Cutters.
 * Blank Recording Discs from Sin. 20 17in Single or Double sided.
 * Light-weight moving iron, permanent sapphire and moving coil pick-ups.
 * Label and Envelope Service.
 ћ A comprehensive range of accessories to meet every requirement of the sound recording engineer.
 * \star And our latest development (of speciz interest to users of sapphire or delicate pick-ups)-The Simerol.
 This is a controlled micro-movemens easily fitted for use with any type of pick-up to eliminate the danger of damage to the record or pick-up. This is achieved by a vernier lowering action o: the pick-up head to the record.
 Write for comprehensive lists or call at Recorder House for demonstration.
 RECORDER HOUSE, 48/50 GEORGE ST. PORTMAN SQUARE, LONDON, W.I. releohone: WEL 237//2 Telegrams: Simsa!e, Wesdo, London

LIMITATIONS OF THE HUMAN EAR

Many people do not realise that it is essential to listen to reproduced sound at the right volume level. They

登

Perfect Reproduction?

*PROBLEMS REFERRED TO IN PREVIOUS NOTES

Spatial Distribution of Sound. Echoes in the Listening lRoom. Limitations of Single Channel.

mauromby reaclia limited

happens is that the whole programme becomes softer. Unfortunately, the frequency characteristic of the ear is by no means level and at any frequency there is a threshold level below which the ear fails to respond. Curves taken from a large number of human ears show that the threshold level at 50 cycles is about 40 decibels higher than at 2000 cycles - and above this frequency the threshold rises again.
If, therefore, we listen to three tones - one at 100 cycles, another at 2000 cycles, and the third at 5000 cycles, and arrange that they are all of the same intensity, then, as the volume control is turned down there will come a time when the 100 cycle note becomes inaudible, while the other two are still heard. This phenomenon is quite easy to notice when listening to an orchestra if one pays attention to the bass; at low volume levels the bass frequencies will appear weak, but as the volume is increased the bass intensity grows with respect to the upper and middle levels.
Special circuit arrangements for altering the frequency characteristic of a reproducer with the volume control setting, have been proposed and used from time to time. Their success depends entirely on the extent at which A.V.C. is able to keep all carrier strengths the same at the de-modulator.

㖟

Whartedale NEW GOLDEN 10 inch LOUDSPEAKER

During the last eight years hundreds of Wharfedale Golden Units have been supplied to the B.B.C. and G.P.O.

The Speaker was selected by reason of its level response.
The new model is fitted with precision die-cast chassis, im roved spider, and Alcomax if Magnet increasing the flux density from 10,000 to 12,500 .

Ask your Dealer or send for book "Loudspeakers" by G. A. Briggs 5/-

Speech coil

3 or 15 ohms impedance

Ask your Dealer or send for in which acoustic loading is fully explored.. Made and Guaranteed by WHARFEDALE WIRELESS WORKS

BRADFORD ROAD, IDLE, BRADFORD

Telephone : IDLE 4SI.
Telegrams : Wharidel, Idle, Bradford

. . . is it Rotary or Pushbutton or Slider ? is it wanted for circuit selection, band selection, tap switching ? Is it for a new design or in quantities for a well proved circuit?

Whatever it is - the answer is always OAK!
The basic design of all Oak switches is one of strength and efficient functioning, including such exclusive features as the double-contact clip and the floating rotor, ensuring self-alignment of each section.

SWITCHES

BRITISH N.S.F. CO. LTD., Keighley, Yorkshire (Sole Licensees of OAK Manufacturing Co., Chicago)
A.B. METAL PRODUCTS LTD., Feltham, Middx.
(Sub-Licensaes of N.S.F.)
The only Manufacturers of OAK Switches under Patent Nos. 478391 a 478392

FOR THE

RADIO SERVICEMAN DEALER AND OWNER
The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When $h z$ earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.
Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is Iree.
You may use this coupon
INTERNATIONAL CORRESPONDENCE SCHOOL Ltd.
OEPT. 38, INTERNATIONAL BUILOINGS, KINGSWAY, LONOON, w.c. 2
Pleose explain fully about your instruction in the subject marked X.
Complete Radio Engineering
Radio Service Engineers
Radio Service and Sales Elementary Electronics, Radar, and Radio
And the following Radio Examinations:-
British Institution of Radio Engineers
P.M.G Certificates for Wireless Operators

City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.
I.C.S. students for Examinations are coached til successful.

(V.66)

		vh.	lh.
10C1	FREQUENCY CHANGER	28.0	0.1
10F9	VARIABLE MU HF PEN	13.0	0.1
10LD11	DOUBLE DIODE TRIODE	15.0	0.1
10P13	OUTPUT PENTODE	40.0	0.1
U404	HALF WAVE RECTIFIER	40.0	0.1

Full technical details on request.

THE EDISON SWAN ELECTRIC COMPANY LIMITED

RADIO DIVISION

155 CHARING CROSS ROAD. LONDON, W.C. 2

$5 k V$. D.C. from $350+350 v$. A.C.
DELIVERY EX-STOCK. Further models for different output voltages are under development.
Write for data sheet No. 52 to Dept. W.W. 8, Westinghouse Brake \& Signal Co., Ltd. 82 York Way, King's Cross, London, N. 1

The GARIICK
12 months' generous guaran-
tee backed by unsurpassed tee back
service.

Wholesale Distributors

```
53 FARRINGDON RD.,
LONDON, E.C.I
Tel. HOLborn 2053
```

JOHN LOGIE-BAIRD LTD., Rayners Lane, Middlesex.
Telephone: Pinner 2051

$=\frac{1}{\square-1}$

Radio-Television De-Luxe

* 12° Cathole Ray Tube
 x $8 \mathrm{i}^{\circ}$ with exceptionallywharj deftuitios.
* Automatic rocussing atabil
* Vialmi unit of advanced dexign aprlying principle of
push-pull output, utilising high frequency valves.
* Pre-set picture hoid. Picture modulated to full brilliance and
$\star \underset{\substack{\text { Push button selector } \\ \text { bwitches. }}}{\substack{\text { a }}}$ switches.
* Send for further details of this aud other models.

4E[0

IMITED
show Pink, Red, Amber or Green on $230 v$ or $400 v$ AC or DC. Specially designed for easy assembly in $\frac{1}{2}$-inch mounting hole.
Send now for full details, prices and terms.

FOR SWITCHBOARDS INDICATOR PANELS, MACHINE CONTROLS, HEATING APPLIANCES,

ETC.

THE ACRU ELECTRIC TOOL MFG. CO. LTD.
123, Hyde Road, Manchester, 12.
Ardwick 4284.

The General Electric Co., Ltd., Magnet House, Kingsway, W.C.2.

Wireless World

There is something fascinating about the sound of silver clinking into a bag-and it is the true reproduction of the "noises-off" that mean so much when listening to a favourite programme - Home, Light or Third. It has taken us 18 years to achieve such realism . . . it's yours to-day. A range of three extension cabinet speakers is in the dealers' shops already, "Monobolt" speaker chassis in four sizes are there, too, you can hear them now. High fidelity pickups and "Wafer" speakers are well on the wav. A postcard will bring full details.

ODEL BX.10.5. One of the nerv rang of Truvox Extension Cabinet Speakers. This model incorporates $10^{\prime \prime}$ Monobolt chassis, volume control recessed in side. Beautiful Walnut cabinet with contrasting chamfers and fret motif in
Maple. List Price.
£5.10.0

Headphones which uphold British Prestige

S. G. BROWN, Type 'K' Moving Coil Headphones, supply that High Fidelity Reproduction demanded for DX work, monitoring and laboratory purposes, etc.

OUTSTANDING

CHARACTERISTICS.
D.C. RE8ISTANGE, 470 hms.

IMPEDANCE, 52 Ohms at 1,000 6.p.s.

SENSITIVITY, $1.2 \times 10 .{ }^{12}$ Watts at 1 kc. $=.0002$ Dyne $/ \mathrm{cm}^{2}$.

Descriptive Literature on request.

price $£ 5.5 .0$ per pair

Your Local Dealer can supply
For details of other S. G. Brown Headphones (prices from 30/- to $63 /-$) write for illustrated Brochure "W.W."

HEADPHONES WHICH UPHOLD BRITISH PRESTIGE.

Telephone:
Watford 7241.
SHAKESPEARE STREET, WATFORD, HERTS.

FOR TELECOMMUNICATION, RADIO AND GENERAL ELECTRICAL WORK

Outstanding Characteristics:-
I. Chemically activated rosin core ensures high degree of "wetting."
2. Increased fluidity accelerates production.
3. Allows more moderate soldering iron bit temperatures, and minimises the risk of physical damage and alteration to the electrical values of small pre-calibrated components such as Capacitors, Resistors, Coil windings, etc. 4. Ensures complete mechanical bonding of joint
metals, maintaining perfect electrical conductivity.
5. Reduces to a minimum the solder required per joint and cuts down waste.
6. Residue is non-corrosive, solidifies to a semi-transparent film of high electrical insulation value, is nonhygroscopic and unaffected under tropical conditions.
7. The heating of the activated rosin core does not cause any deleterious fume deposits.
Where a separate flux is desirable use
"Telecene " Liquid Activated Rosin Based Flux.
"Superspeed Special" Cored "Superspeed Special" Cored Solder \quad Solder is supplied in a wide ranze Soider and Rolecene Fiux anges and alloys, on $t-1 b$ and Activated Rosin Based Flux conform to British Post Office and Air Ministry Specifications.
Sole Manufacturers: H. J. ENTHOVEN \& SONS LTD. Forum House, $15-18$ Lime Street, LONDON, E.C.3. Telephone: MANsion House 4533

Telegrams: Enthoven Phone London Works: Croydon, Rotherhithe and Derbyshire.

DREMITR MADOTCOMLITY

OPENING MID-AUGUST——COMMODIOUS NEW PREMISES AT 152-153, FLEET STREET, E.C.4
($\mathrm{N}^{\prime} \mathrm{o}$. 169 will remain open as usual). All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.S. Terms of Business: Cash with order or C.O.D. O:er 1 I. Send $2 \frac{1}{2} d$. Stamp for list.

R107. ONE OF THE ARMY'S FINEST COMMUNICATIONS RECEIVERS. (See "*W.W.," August, 1945).
 mains, $100-250$ vo or 12 v accum. Frenuency range 17.5 to 7 mc s., $7.25 \mathrm{me} / \mathrm{s}$. to 2.9 mc 's, 3.0 to 1.2 me s. Minitor 1 ,.8. built in. Complete. Write for full details, £16/16/-. Carriage paid.
ALUMNNIUM CEASSIS. Substantially made uf bright alutuinium, with four sides, 10 in . $\times 8 \mathrm{in}$. $2 \boldsymbol{2 l i n}$., $12 \mathrm{in} . \times 4 \mathrm{in} . \times 21 \mathrm{in}, \quad 1 / 9 ; 16 \mathrm{in} . \times 8 \mathrm{in} . \times 2 / 2 \mathrm{in}, 8 / 6$ Nathe CSCILLOGRAPE POWER UNIT KITS. Injut $2: 30 \mathrm{v}$ 50 e. Include Tranaformer, Metal Rectitlers, Voltage [houbling and Sinoothing Condenern. Tyje 409, ont put 2500 , and $2-0.2$ \%., 49/6. Eunista of a complete kit of partato construct an K.'T. Eliminator with an output of 120% at $24 \mathrm{~m} / \mathrm{a}$. And provision for Trickle (harging a $2 v$. Accumutatur. Two Metal Rectifiers are employed. With circuit, 35/: 2 F. BAKELITE CASED ACCUMULATORS liy Best Makers. New and unused, unspillable vents, 7 lin. $\times 4 i n$.
BATTERY CHABGER KITS، 6 v. 1 a. (tapped at 2 w.), 22/6. 12 v. 1 a., 27/6.
These incorporate Metn] Rectiliers and Transiormers.
For 200-250 V. A.C. MARAN. opindfes, 1/6. each. Any value
PREMTER MANS TRANSRORMERS. All printaries age tapped for $200-230-250$ Mains, f(1)-100 wycles. All pimaries are screened. All L.T.'s are centre tapped. $\begin{array}{llll}\text { List No. } & & \text { Out put } \\ \text { NP. } 175 \mathrm{FA} . & 175-(1-175 & \text { v. } 50\end{array}$

$\$ \mathrm{P} .350 \mathrm{~B} . \quad$| $6.3 \mathrm{v} .2-3 \mathrm{~B}$. |
| :---: |
| $50-350$ |

<P.25E. $\quad 2,500$ v. 2-3 a., $6.3 \mathrm{v} \cdot 2 \cdot 3 \mathrm{a}$.
\rightarrow P5sE. $\quad 2,500$ v. $3 \mathrm{~m} / \mathrm{\beta} .2-0-2 \mathrm{c}$ v.
PREMIER KITS AT NEW REDUCED PRICES

ALL-WAVE SUPEREET KIT. A Kit of Partatuluild a 6-valve (plus rectifiel) ieceiver, coveritig 16 - 50 meties Medium- and Long-wave bands. Valve line-up, 6 Kk , iK7, 647, 6.I7, two 25A6 in push-pull. Metal Rect iflers are incorporated for 17.T. augpty. Out put impedance is for 3 and 15 ohms. The latest Wearite Coil lack incorporating Iron Dust Coila is used, making construction and aligmment extrenuely simple. A pick-up position on the wave-change switch and jick-up terminals is provided. A complete kit, Including valves, but without apeaker or cabinet. Chassis size, 14 in . \times 6in. Overall height, 9itn. Price, £10/16/6, including Purchase Tax. Wired and tested, £13/15/\%.
Suitable loudspeakera are the GOODDMANS 10in. 6-wat t P.M. at 47/6, or for superlatise reproduction, the oodnatin. P.ar. at £6/15
NEW 2-VALVE SEORT WAVE KIT, 16102,000 met res, Hwituhed Coil lack ready wired and tested. 2 Mazda densers, reasiotors, diagramis anil it eel case, all ready to assemble, $\mathbf{2 3 / 1 0 / \%}$. Including 1'.'T.
NEW1948 MIDGET T.R.F. RADIO KITS with llhminated Glass Dial. All parisincluding Valven. M/C Speaker and metres and $700 \cdot 2,000$ metres. 200 to 250 v. A.C'. or A.C./D.C. mainh. State whirh is required. Size, luin. X 6in. x bin., 87/7/6, including Purchase Tax.
NEW 1948 MIDGET SUPEREET RADIO KIT with illuninated Lilass Dial, All parts inchiding valves. y/C Speaker and instructions. 4 valves plus Metai Rectifer. 16 -50 metres and $200-257$ metres. 200 to 50 V. A.C, or A.C./D.C. mains. State whinh is required. 3ize, 10 in. >6 in. x 6in., $88 / 5$:-, Including lurchase Tax.

MIDGET RADIO CABINETS in Brown Bahelite. e smppied for either or the above Midget Kits at 25:movang coll earpieces

Comprise a 1 lin. Moving Coil Lundspeaker fitted with nolse excluding rubluer caps. Make excellent Mikes, Phones ur Speakers, 2/- each, 18 - doz.

COLLARO AUTO CEANGERS with Magnetic lich-up. A.C. only, $100 \cdot 250$ Ү., $£ 22,4$

COLLARO GLECTRIC GRAMOPEONE MOTORS with 12in, turntable. A.C. only. $100-250$ v., $25 / 18 / 4$. collaro electric UNIT with Magnetic fick-up and Auto stop. A.C. only, $100-250$ v., $£ 9 / 13 / 6$ DITTO UNIT with Crystal Pick-up. A.C.only, 100-250 v \&11/2/2.
CONRAD RIM DRIVEN ELECTRIC GRAMOPEONE MOTORS with Min. Turntalle. Firell speed (78 r.p.en.) LOUDSPEAKERS BY FAMOUS MAEER

METERS. All neters are by the beat nakera and are contained in bakelitecases. Frices are about one-ıuarter the original cost.

Range	1) ${ }_{\text {¢ }}$	Fiitting	Type	Price
40 v.	21 in .	F1019	M.C. D.C\%	5/9
21 a.	2 tim .	Flush	Thermo If.F.	5/=
20 a .	2 fin .	Flush	M.C. 1.C.	$7 / 6$
40 a .	2 tin .	Fluah	M.C. 1).	76
25 a.	34 in .	Flush	M.C.].6\%	7/6
25 a .	3 in.	Proj.	M.\%. J.c.	$7 / 6$
$2 \overline{5} \mathrm{a}$.	3 l in.	Flush	M.I. 1).	21
$500 \mu 3$.	2 tin .	Flush	M.t. 1,M.	76
¢) 1114	9tin.	Flush	Mr ${ }^{\text {cos. }}$	
1 min	3tin.	Plush	M.C. I.C',	$15 \cdot 11$
506 m 2 .	ifin.	r'lush	M.C.ID.	18/6
20\%	23 in .	Flush	M.C. D. ${ }^{\text {\% }}$	59
15%.	3lin.	Flush	M. I./A.C. D.C.	76
$150 \mathrm{~m} / \mathrm{a}$	2 tin .	Flush	M.C. D.C.	$6 \cdot$
$2041 \mathrm{~m} / \mathrm{a}$	3 jin .	Flush	M.C. I.C.	$8 \cdot 6$
5,000 $=$	41 in	Flush	Filectroatatic	$50 \cdot$
1 mm	2 fin	Flush	M.C. 1.C.	8/6
50 min	2 ¢in.	Flush	M.C. D.C.	8/6
30 ma .	3tin.	Flurh	M.e. 1).C.	10.6

TEST UNTT TYPE 73 consists of a special purjone Oscilloscope that requires only rewiring and the aildition of a few condensers and resistors to convert tube and $15 T^{2} 20 \mathrm{~A}, 1 \mathrm{~EB} 34,1524,3$ SP41, 2 EA50, are included. . Controls are "Brightness," "Velocity,", "X Shift,", ${ }^{\text {Ciblibrate }}$ Shitt," Focus Amplifier, "In/out," and packing $7 / 0$.

12 Advertisements

The illustration above shows an ACOUSTICAL product of ten years ago-an amplifier designed for high quality reproduction of records and radio programmes.
Using push-pull triodes throughout-RC coupled through-out-independent treble, middle and bass controls etc., it was considered about the best that could then be obtained. Indeed the circuit is often specified today for high quality reproduction.
A comparision of the performance with that of the QAi2/P reveals the extent of recent developments.

	Pre-War	QA12/P	Improvement achieved
$\begin{aligned} & \text { Output deviation } \\ & \text { within } 20-20,000 \\ & \text { c.p.s. range } \end{aligned}$	3 db	0.3 db	```7 simes better (% power change).```
	$\begin{gathered} 30-15,000 \\ \text { c.p.s. } \end{gathered}$	$\begin{gathered} 15-30,000 \\ \text { c.p.s. } \end{gathered}$	Increase of two octaves.
Total distortion at 10 watts (Both models rated $10-12$ watts).	2\%	0.10%	20 times less distortion.
Sensitivity (r.m.s. for full outpur)	$0.2 v$	0.0015 v	120 times more gain
$\begin{array}{lr} \text { Background } & \text { noise } \\ \text { (equivalent } & \text { r.m.s. } \\ \text { at input) } & \text {... } \end{array}$	120 microvoles	$\stackrel{1}{\text { microvolt }}$	with no background increase.
Background for equal (low) gain...	$-65 \mathrm{db}$	-80 db	15 db lower back. ground.
Load impedance Internal Impedance	2	12	Better damping.
Treble and bass controls	variable extent of boosts and cuts.	variable slope of boosts and cuts.	Wider range of control and slopes of controls more accurately designed for small room listening conditions.
PRICE \ldots	160	630	50\% less cost.

Acoustical Manufacturing Co., Ltd., HUNTINGDON.

Tele. : Huntingdon 361.

Manufacturers of electrical and radio materials and components are invited to investigate

for insulating, waterproofing, impregnating, sealing and finishing condensers, cables, transformers, batteries, resistances, etc.

For technical data and samples please telephone TEMPLE BAR•5927

RIBBON TYPE JB/P/R/I Fixed Point Pressure of toz Output voltage, 10 to 15 mV . Permanent Point 6 times harder than Sapphire. Price in U.K., with special raumetal screened transformer, and Purchase Tax, $£ 10 / 14 / 11$

GRAMOPHONE PICKUPS, for use where the highest possible quality of reproduction that can at present be obtained from records is required.

Demonstrotions ond Stockists :-

ARTHUR COULTON,
13, Manchester Road, Haslingden, Rossendale (East Lancashire) HOLIDAY \& HEMMERDINGER LTD., Hardman Street, Manchester WEBB'S RADIO, Soho Street, London, W.I
A. C. FARNELL LTD., IS, Park Place, Leeds, I
J. E. ROGERS, Eversley, Kingsland, Shrewsbury.
J. H. BRIERLEY (GRAMOPHONES \& RECORDINGS) LTD, 46. TITHEBARN STREET, LIVERPOOL, 2.?

Design

for purpose is as important in radio servicing as in nature. The Weston Model E772 Analyser has been designed to make the detection of electrical faults as simple and speedy as possible. Its features include high sensitivity (20,000 ohms per volt on all D.C. ranges), wide range coverage and
 robust construction- its quality is unsurpassed. Please write for details.

WESTON ${ }^{\mathrm{m}}$ Analyser

SANGAMO WESTON LTD. . ENFIELD . MIDDX. Telephone : Enfield 3434 \& 1242

telson
 THERMOSTATIC BIMETALS

PHYSICAL CHARACTERISTICS OF AVAILABLE TYPES

* The deflection constant (d) is defined as the deflection of a strip of unit length and unit thickness for each ${ }^{\circ} \mathrm{C}$. rise in temperature over the linear part of the deflection curve. Further details on application.
THE TELEGRAPH CONSTRUCTION \& MAINTENANCE CO. LTD. Head Office: 22 OLD BROAD STREET, LONDON, E.C.2. Telephone: LONdon Wall 3141 Enquiries to: TELCON WORKS. GREENWICH, S.E.IO. Telephone: GREenwich 1040

We can now put our best FOOT borward

Highest distortion-free performance accurate reproduction over widest possible audio-frequency range. Magnet of "Alcomax," the most efficient anistropic alloy. Die-cast chassis. Flux density: 13,500 gauss. Total Aux : 106,000 gauss. Speech coil impedance: 15 ohms. Handling capacity : 15 watts.

PRICE 66.6 .0 (without transformer)
\&7.7.0 (with transformer)

LOUDSPEAKERS AND

 RADIO EQUIPMENTATTENTION to detail and the careful consideration of the engineer's needs has earned us a reputation of which
 we are proud. lllustrated are the
larest models of the
1200 O Oscilloscope 12008 Oscilloscope and the 1400 B Visual
Alignment Signal Alignment Signa
Generator. Special features o the Oscilloscope are:
 fers on both axia,
linear time base with herfeet tynchronination at any irequency. Con
jolete independence all controls from euch other.
The 1400 B Unit will
show the shave and characteristics of a tuled circuit resposise curve on the Oscillograyh
screen. Thus periect screen, Thus periect
plignment of an I.F. or Plignment of an I.F. or
R.F. amplifier is easily R.F. amplifer is easils accomplished. overa.
rize of comb ped instru.
 high, 9° long.

- We also make electromic equipment for special purposes. If you have a problem in thin
field wa will be pleased to co-aperate.

Early Delfyeries.

- Model 1200B Oscilloscope, £3200 Model 1400 B Unic, $£ 8100$ Write for Specifications to :-

INDUSTRIAL ELECTRONICS

[^0] Makers of Industrial Contro!s and Frecision Instruments.

NEW RCZ48 COMMUNICATION RECEIVERS,
These magnificent δ-valve receivers comprise tro brages of tuned $R P$ preceding the first detector, a temperature compensated heterodyne nscillat or, three intermediate frequency tratusformer output circuit. A crystal band pass filter and beat aretluency uscillator a REOD Jacluded.
Band 1. $200-500 \mathrm{kc}$ Band $3,3.5-6$ nacs. Band 5. 9.5-13.5 mes. Band 2. $1.5-3.5 \mathrm{mc}, \quad$ Band 4. $6.0-9.5 \mathrm{mcs}$ Band B. Band i. 13.5-18.0 mes FITTED Coustant sensitivity on all bands. TITH DYNAMOTCR FOR 28 \%. FULLY MODIFIED FOK 230 F. A.C.
D.C. GPERATION . GPERATION £16/10.

Delimmediate Safe - 2. 10 and Satisfaction Gua H. P. RADIO SERVICES LTD.

Britain's Leading Radio Mail Order House
55 County Rd., Walton, Liverpool, 4. Estab. 1935. Managing Director-Mr. H. PANAGAKIS. Tel.; 1445 Staff Call signs: G3DLV. G3DGL. frequelex Valve Holders, etc.

PERMALEX est possible dimensions.

TEMPLEX

 temperatures.

BULLERS LOW LOSS CERAMICS

```
BULLERS LTD., 6. LAURENCE POUNTNEY HILL, LONDON. E.C.4
Telephone: Mansion House 9971 (3 lines) Telegrams: "Bullers, Cannon. London"
```

SPEEDIER PRODUCTION
at LOWERED COST

THE A1/1 AUTOMATIC

COIL WINDING MACHINE offers you speedier production and lowered costs and incorporates many outstanding features
 in its design.

- Wire Gauge indicator: Calibrated in mils or millimetres, as desired. The wire gauge capacity is $\mathbf{0 2 0 i n}$ ($508 \mathrm{M} / \mathrm{M}$) to .001 in . $(.0254 \mathrm{~m} / \mathrm{m})$.
- Suitable \ddagger h.p. Integral Clutch Motor: Can be supplied, fitted with 3 step pulley to give operating speeds of $750-1,500-3,000$ r.p.m.
- Stand and Table: Cast iron stand and plywood table also motor and plywood table asso motor mounting pedestal, as illu

Workmanship: Conforming to the highest engineering standards.

- Capacity: For coils up to 5in., ($127 \mathrm{~m} / \mathrm{m}$) diameter or across corners, and $7 \frac{1}{2}$ in. ($190.5 \mathrm{~m} / \mathrm{m}$) long.
- Dual Reel Holder and Wire Tensioner: Quickly and easily set independent tensioning to each reel for all wires in the above range. For reels up to 5 in . diameter and 5in. long.

THE H/1 HAND

 COIL WINDING MACHINE is ideal for winding : Solenoid, Choke and Transformer Coils, etc., etc., up to 6 inches diameter by $7 \frac{1}{2}$ inches long (16 S.G.W. to 45 S.W.G.) Field Coils, etc., up to 12 inches A/C corners. This mochine can be supplied with $\frac{1}{8}$ H.P. integral clutch motor with foot treadle control. We can also offer a special ARMATURE WINDING HEAD which has been designed for use with type - H/I. Details on request.KOECTRIC LTD
20, AVONMORE ROAD - LONDON W.I4 - fulchem flili.2

LONDON CENTRAL RADDIO STOBES

Latesters

Government Surplus
EX-ADMIRALTY TRAN8FORMER8. Primary 230 v. ., Secondary 14 v. C.T., 80 amps. Weight 68 lbs . Carr. $1 \geqslant / 6$ extra.
sin. CATHODE RAY TUBES, Type VCR97. For Callers Only.
UNI-8ELECTOR 8WITCHE8. 3-bank, brand new

MOVING COIL VOLTMETERS. $0-300 \mathrm{v}$. D.C. Complete with resistance.

EX-R.A.F. COMPASSE8. Superb Precision Instruments. Numbered io 10 degrees, sub-divided to 2 degrees and Cardinal points marked in bold letters (as used in aircraft). For all purposes and instructional uses. Dial 5 ind. diam. In perfect order. Price, in wooden ease

CHARGING BOARD CONTROL PANELS. $24 \mathrm{v}, 1,240$ watts. Includes five 1 in . moving coil ammeters (1, 0-40 a., 4, 0-15 a.). One coil ammeters ($1,0-40$ a., $4,0-15$ a.).
moving coil voltmeter $0-40$ v. Five heavy moving coil voltmeter $0-40 \mathrm{v}$. Five heavy
duty sliding resistances, etc., complete in duty sliding resistances, etc., complete in metal case as shown with fold-
Size, $18 \times 17 \times 8$ fins. Offered at less than half the component value. e4.19.6 Price, carr. 12/6 extra.
£4.19.6
3-VALVE R.F. AMPLIFIERS V.H.F. Type 25. $40 / 50 \mathrm{mc} / \mathrm{s}$. Complete with valves. 1 n metal case. Brand new in carton 16/6 Carr. and pkg. 1/6.
$16 / 6$
Type Demolition Mk. 1. EX-ARMY TEST SET-NEW. For circuit continuity and general testing. In hardwood carrying $50 /=$ case. Carriage paid.
sting) NEW MILNES H.T. UNIT8 (Everiasting). 120 v. 60 mA . Will charge from $6 \mathrm{v} .67 / 6$
accumulator. For callcrs only.
RADAR VIEWING UNITS. Consisting of 6 im . diameter Electmstatic C.R. tube, 7 valves, including four EF50, potentiometers, resistances and other associated components. In metal cabinet $18 \times 8 \times 7 \frac{1}{2} \mathrm{in}$.
£3.7.6
THE FAMOUS EDDY8TONE 358 COMMUNICATIONS RECEIVER. Range $31 \mathrm{mc} / \mathrm{s}$ to $90 \mathrm{kc} / \mathrm{s}$, 9 plug-in coils, 7 valves and rectifier, variable selectivity, B.F.O. stand-by switch, A.V.C. switch, band-spread dial, valve check meter. In heavy black crackle finished steel cabinet with chrome fittings. Complete with 200-250 v. A.C. Power Supply Unit. Cartiage and packing 17/6 825 xtra.

IO-VALVE COMMUNICATION RECEIVER-

 Type R1155. These sets are as new. Need only a power pack for immediate use (see "W.W." July, 1946). Freq, sange $7.3 \mathrm{mc} / \mathrm{s} 75 \mathrm{kc} / \mathrm{s}$ in July, 1946). Freq, sange $7.3 \mathrm{mc} / \mathrm{s} 70 \mathrm{kc} / \mathrm{s}$ in including magic eye. Enclosed in metal case. Every receiver is aerial tested. 10 Gns. Set only10 Gns.
FREE with reach receiver. Complete circuit, description and modifications for civil use, reprinted from "W.W." July, 1946 .

Please Nofe--We regret we do not issue
lists or catalogues.

2-VOLT POWER PACK\$

 complete with Vibrator. Output approx. 200 v. 0 mA . size $9 \times 5 \times 3$ [m. A first-class job, complete with accumulator $\mathbf{8 3 . 7 . 6}$ 1'lus $5 /$ - carr. and pkg.FRACTIONAL H.P.
A.C. MOTORS.

Brush type, 220 - 250 50 cyoles, approx. 5 , ()(M) .p.m. Overall diam. $10 \times \operatorname{lin}$., din. spindle extends lin. both ends. $25=$ special reduction.

Post 26 extra
SLIDING RESISTANCES. 8uitable for Voltage Controls, Speed Regulaters. Type 867A. 100 ohms on slider 3 amp. max. Tapped fixed $700,800,50,50$ ohes 21/- carr. paid
Type 868A. 450 ohms on lider 2 amp. max. Tapped $2(0), 3(x), 2(0)$ ohins. 21/. carr. paid. Type 866B. 100 ohms on slider 5 amp. max. Fixed 2(N), 400, 50, 51 ohms. 21/- carr. paid.
8 mall Type. 50 ohms, . 5 anp. Dimensions (in. $4 i n . \times 2 \frac{1}{2} \mathrm{in}, \mathrm{high}$,
$10 / 6$ carr. paid
EX-R.A.F. CAMERA MOTORS. Dimensions 3 in. $\times 2 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in} .12 \mathrm{v}$. and ELEGTRO-MAGNETIC COUNTERS. EX G.P.O., every one perfect, electromagnetic, 500 ohm, coil. counting to 0,099 operated from 25 v. 50 v. D.C., many industrial and domestic applica- $5 / 6$ See previous advts. for other interesting items. EX-G.P.O. TELEPHONE TRANSMITTERS on table stand, with screened lead and Jack Plug. New. 10/6. Carr. pd.
closed Thurs. 1 p.m. Open all day sat. and weokdays 9 a.m. -6 p.m.

IMIPDRTANT! These lines were all selected by us as being of special interest to all readers of the "Wireless World."

OUTSTANDING BARGAINS IN GOVERNMENT SURPLUS MATERIAL
 L.F. HEAVY DUTY CHOKES

These L.F. Chokes represent the inest value over offred, and will be unobtainsble at double the cont when our present atock are cieared. Send for sour requirements now to double the cont when our present atockn are cieared. Send for your requirements now to
avoid disappointment. They are all hrand new in rectangular cast alumindum " Pots, and can safely be run at 100% above specified ratings in amateur service.

30स 100 m -h. 150 ohms (wetght 14 lhss.), $20 /$, plus $2 / 6$ postage.
$30 \mathrm{H} 150 \mathrm{~m} . \mathrm{a}$. 150 ohma (weight $18 \mathrm{jbs}$.), $2 \mathrm{Lb} / \mathrm{F}$, pluan $5 / \cdot$ Passn. carr. and packing

HIGH VOLTAGE TRANSFORMERS

All by first class manufacturers, brand new in orikinal cartone. $1,250-0-1,250 \mathrm{v} .200 \mathrm{~m} . \mathrm{a}$ 115 v. 50 evcles primary, inay be connected In series for 230 volt working. (secondaries in paraliel $1,2550-0-1.2501$ v. 400 mph . Aecondarisa in series $2,500-0-2,500 \mathrm{~s} .200 \mathrm{~m} . \mathrm{a}$. tapped
 blus 5/- l'assn, ('arr, and Packing.

R.F. PIE WOUND CHOKES

.t mi.h. $100 \mathrm{~m} . \mathrm{s}$. Recpixing type, $1 / 6$ each, $15 /=$ doz. 2.5 m.h. $250 \mathrm{~m} . \mathrm{a}$. Tranamiteing type, 1/9 each, $18 /=$ doz. $2.5 \mathrm{~m} . \mathrm{h} .40 \mathrm{ma}$. Lilliputian type, 9 d . each, $7 / 6$ doz.
MICROPHONES, American single bntton, carhon type hreast ansembly, ribbed aluminium diaphragm, bakelite case, complete with ;-position switch, brand new in original cartnna 86. Ex-R.A.F. Throat type, comprising two midget mikes and atrap, 8/6. Moving Coil
 ansemhly in hakelite case with 3in. grill, can lie used as midget speaker, 3/11. 姐oving Coil hand micrurhone with switch, $5 / 6$.

All the obove moving coil units hove genuine Alni mognets
Many other bargains tos numerous to mention here, also full range of Raymart stondord components.
SEND 8.A.E. FOR RAYMART CURRENT LIST AND NO. 7 "W.W" SPEGIAL OFFERS LIST.

RADIOMART
 48, HOLLOWAY HEAD, BIRMINGHAM, I

G.L.P. PRESENT LATEST PRODUCTIONS OF OUTSTANDING MERIT

TUNER UNITS: CONSTRUCTOR'S $15 w \notin 10$

 KIT ; SIX WATT QUALITY AMPLIFIER ; NEW GENERAL PURPOSE AMPLIFIERS.TUNER or FEEDER UNITS. Add radio programmes to your entertainments, suit any amplifier, simply plug-in.
T.R.F. Model, 2 valve chassis M. \& L. wave complece, $\boldsymbol{E S}$.

SU/TU Superhet with a.v.c. Three wave band tuner using 6A8 6K7, 6Q7. In self contained case. Wide vision dials each model. SU/TU unit, $£ 10$.
(P.T. extra on above $24 / 5$ and $48 / 10$ respectively.)

KI5 CONSTRUCTION KIT. A fifteen watt push pull chassis for mic and gram, complete to the lasc nut, with all components, valves, drawings, etc. $£ 10$.
THE G/Q for Good Quality. 6L6's as criodes 6 w. P.P. Bass and Treble lift and eut independent controls. Suit any pick-up, six stage eireuic. £ $15 / 4 / 6$. (Factory built-accurately balanced.)
TWO GENERAL PURPOSE AMPLIFIERS. GP15 and GP25. Latest portables, up-to-the-minute improvements. Bass and creble cut and lift. H,G, for all mic's. GP15 complete 16 gns . GP25 complete 19 gns.
Write for details on these and other new releases. " What to choose," A leaflec to assisc in selecting suitable amplifiers and accessories, Price $2 \frac{1}{2} d$. baffles, horns, technicalities, from A to $Z .5 / \%$.
WHARFEDALE BRONZE SPEAKERS $45 /$ GOLDEN $75 /$ TWELVEINCH P.M. s in cabinets, dk, oak, $\mathbf{6 8 / 1 0 \%}$.

Winder House," 294 Broadway, Bexley Heath, Kent (3021).

LIFT TO ALL FLAWS!

In the hands of the radio engineer this universal "Measurtest" instrument will detect and locate the slightest flaw in receiver performance. Yet, weighing only 20 lb . and operated from either mains or batteries, it can be lifted with ease for use anywhere, any time.
The PORTABLE RECEIVER TESTER is ideal also for complete tests on audio amplifiers. In one compact assembly it incorporates the facilities of signal generator, output power meter and crystal calibrator-three instruments, in fact, for the price of one. And many novel features contribute to the attainment of unique standards in both performance and operational convenience. Your enquiries are invited and a demonstration can be arranged. hire purchase terms available

PORTABLE RECEIVER TESTER (T\&

3 Instruments:in-One
 SIGNAL GENERATOR
 A Combined
 OUTPUT POWER METER CRYSTAL CALIBRATOR
 COMPACT•PORTABLE - RQBUST Mains or Battery Operated -
 accurate and
 heliable

ST. ALBANS, HERTS. Telephone: St. Albans 6161/5. Northern Office: 30 albion street, hull. Tel.: Hull 16144.
Southern Office \& Showrooms: 109 EATON SQUARE, S.W.I. Tel.: Sloane 8615. Western Office: 10 PORTVIEW ROAD, AVONMOUTH. Tel.: Avonmouth 438.

MEASURING INSTRUMENTS (PULLIN) LTD. (Dept. J.) Winchester St. London W. 3

Manufacturers of
LOUDSPEAKERS
LAMINATIONS
-
SCREENS In RADIOMETAL

PERMALLOY -
SILICONALLOYS
EIECTRCCL SOUND \& TELIENSION Patents lto
12, Pembroke 8treet, London, N.1, Terminus 4355
2/4, Manor Way, Boreham Wood, Herts.
Elstree 2138

SYLMAR

OFFER THE FOLLOWING
Sin. Pormanent Magnet Speakers
14/-
6 fin. Permanent Magnet Speakers 12/6
42-1 Output Transformers 5/6
2 Gang 0005 $6 / 6$
60 ma . Chokes, 400 ohms. 5/-
465 kc . I.F. Transformers
pr. 15/6
$8-8$ mid. 500 v. Alum Cans
5/-
32 mfd .275 v. Alum Cans
3/-
4 mfd. 200 v . Tubular
2/-
25 mfd .25 v . Tubular
1/6
25 mfd .50 v . Tubular
1/6
.1 mfd .350 v .
loz. $3 / 6$
.1 mfd .1000 v .
$.1-.1-.1250 \mathrm{v}$.
Octal Holders
doz. 6/-
doz.
12 v . Iamp Rectifiers
Vibrator Packs 12 volt input 210 v. 70 ma out.
Toggle 8witches 8.P.
. $6 /-$
25/-
Mains Transformers, 270 v. 60 ma., 6.3 v. 5 v. 2 a. 20/-
Other types and voltages in stock
GRAMOPHONE AMPLIFIER, \& watts output, including
2nd detector and A.V.C. components. All parts mounted.
Complete with circuit and valves. A.C. \&4 96 GRAMOPHONE AMPLIFIER, as above. AC/DC ... \&4 50
Terms : Cash with Order or C.O.D. Post Orders only, canriage and packing extra. Retailers' enquiries for above welcomed.

197, Lower Richmond Road, Richmond, Surrey

All parts plated and keyed to body. Available in bracket or clip-fixing types.

End the Flickering of Dial Lights with THE NEW MOULDED M•ES LAMPHOLDER

The new design eliminates all risk of noisy intermittent contacts. Screw-in bulb is gripped firmly in vibration-proof holder. Place your enquiries now for early deliveries.

THE GENERAL ACCESSORIES CO. LTD.

21 BRUTON STREET, LONDON, W.I
Telephone: MAYfair 5543

Stabilised Insulation BY MODERN IMPREGNATION

HIGH-SPEED PRODUCTION

HYMEG Synthetic Insulating Varnishes are recognised and widely used for their mechanical rigidity, improvement of electrical properties of windings; heat, moisture, oil, acid and alkali resistance as well as for the considerably reduced stoving time necessary.
Nurther reduced processing times to a fraction of those previously believed necessary the use of HYMEG have still Often faster than infra-red baking with none of those previously believed necessary.
Often faster than infra-red baking with none of the defects, reduced handling, absence of special jigs, with complete freedom from blistering, bubbling and porosity, are some of the advantages claimed and substantiated for HYMEG
High Speed Production methods.

GLASS FIBRE INSULATION SYSTEM

After much research in our laboratories and in conjunction with many well-known specialist manufacturers, we have now evolved the Hymeglas system of Insulation which comprises modifications of Hymeg as used for coil impregnation to meet the varying conditions applying to each field of manufacture.
This integrated system of development is successtul in enabling machines to be designed and operated without weak links in the chain of insulation below $200^{\circ} \mathrm{C}$. Thus the fullest advantage is taken of modern glass fibre insulation by providing a degree of bonding and insulation at every point in which the uniting of Hymeg impregnation with the Hymeg as used throughout. throughout.
Hymeglas therefore virtually eliminates any risk of insulation failure and enables motors and the like to operate under abnormal conditions for long periods without risk of electrical breakdown.
Due to the excellent space factor of glass fibre as compared with the more usual asbestos and mica Class B insulations, it is often possible in redesigning with the Hymeglas system to employ larger copper sections with well-known advantages. The Berger Technical Service-the research work of which produced " HYMEG" and "HYMEGLAS" is avaitable to advise manufacturers on all problems of insulation. Get in touch now with-

LEWIS BERGER \& SONS LTD. (Est. 1760)
35, BERKELEY SQUARE, LONDON. W.1.
Telephone: MAYfair 917 i .
MANUFACTURERS OF HIGH - PERFORMANCE INSULATING VARNISHES AND ENAMELS

UaW): TRANSFORMERS

Potted Transformers are particularly suitable for incorporating in equipment for tropical or home use.

Note these advantages

Clean layout and smart appearance when built into equipment. Universal fixing allowing above or below chassis wiring. Silence in operation with absolute reliability.

flU ina 250-0-250 60 ma 5 v 2 a 63 v 3 a P’M 12a 275-0-275 120 ml a $5 \mathrm{v} 2 \mathrm{a} 6 \cdot 3 \mathrm{v} 3 \mathrm{a}$ 1’M 13а $350-0-350120 \mathrm{~m}$ 'a 5 v 2 a 6.3 v 4 a lcM I fa $425-0-425150 \mathrm{~m}$ a 5 v ja 63 v ba P'M ILa $500-0-500150 \mathrm{~m}$ a $5^{\mathrm{v}} 3^{\mathrm{a}} \mathrm{b}^{\circ} 3^{\mathrm{v}} \mathrm{fa}^{\mathrm{ta}}$ 1'TM $16650-0-650 \mathrm{v} 250 \mathrm{~m} / \mathrm{a}$
PTA 2 I $500-450-0-450-500 \mathrm{~N}$ at $25^{\circ} \mathrm{m}$ 'a
aTM 22 350-0-350v ISo ma
Also available with $4 v$ Filament Windings
Modulation Transformers, Smoothing and Swinging Chokes also available in Potted Types. Prompt delivery.

Send for New Catalogue

WODEN TRANSFORMER Co., Ltd.
MOXLEY RD., BILSTON, STAFFORDSHIRE
TELEPHONE: BILSTON 41959;0

Speaking of operations, a suiting the weight of coil to delicate but highly successful cone we have reduced the one has been carried out in peaks and secured a freedom striking the balance of correct- from break-up, while the by matched voice coil and very high flux density of the curvilinear cone for our new large Alcomax magnet I2" loud speaker. By carefully considerably increases the
 sensitivity, especially in the higher frequencies. All very worth while as you may see, 12* SPEAKER or rather hear.
or rather hear. ${ }^{\circ}$. Depth 6^{*}.
Weight 71 tb is orts. Voice Coil Impedance 15 ohms. Fundamental Impedance 60 cycles. Flux density resonance 60 cycles. Flux density 14,000 lines per. sq. cm . Frequency range $50.7,000$ c.p.s. Fixing holes 4 holes ${ }^{\text {f." }}$ diam. spaced 90° on P.C.D. $12 \mathrm{I}^{\prime \prime}$ ".

DELIVERY FROM STOCK
LIST PRICE 66-10-0 GRAMPIAN REPRODUCERS LTD Hampton Road, Hanworth, Middx. Phone: Feltham 2657

IN a variety of combi nations from 5 to 2,000 metres with all necessary padding and trimmer condensers. Write for descriptive literature stating your problems.

LABORATORY

H. C. ATKINS Laboratories, 32 Cumber.and Road, Kew, Surrey. Richmond 2950

R. M. ELECTRIC LTD., TEAM VALLEY, GATESHEAD, 11.

Success through constant research-can we belp you?

LOW LOSS CERAMICS

Taylor Tunnicliff

Head Office: Eastmood, Hanley, Sịffs. London - 125, Higb Holborn, W.C.1.
Phones: Holborn 1951-2 or Sioke-on-Trent 5272-4.

TAS.TT. 28

A portable Beat Frequency Oscillator of outstanding merit, widely used by all the leading government and industrial laboratories. Range: $0-16000$ c.p.s. Output: 0.5 watts. Weight: 30 lbs . Total Harmonic Distortion: Less than 1% at full output. Output impedance: 600 ohms. Calibration accuracy: 1% or 2 cycles.
 whichever is the greater. Vernier Precision dials and built in output meter $0-20$ volts. Suitable for use in sub-tropical climates ; very stable under reasonably constant ambient temperature conditions.

BIRMINGHAM SOUND REPRODUCERS LTD.
Claremont Works, Old Hill, 8taffs. Phone Cradley Heath 6212/3.

coodmans

INTRODUCE THE HXIOIT TWHLVE oudspeaker

AHMhe=Fiuctily INSIRUMENT FOR ALL MUSIC LOVERS AND ‘QUALITY' ENTHUSIASTS

This outstanding instrument marks a further important stage in the development of faithful sound reproduction. The patented twin diaphragm assembly* and high magnetic flux together account for the excellent overall frequency and transient response. Provided that the electrical input is faultless, every inflexion of the human voice is rendered with startling realism, and the natural range and contrast of the orchestra are strikingly re-created. It is absolutely essential to use this Loudspeaker with equipment which has been specifically designed for High Fidelity reproduction, as it will reproduce everything fed to it, including any distortion that may be present. For all normal requirements we recommend our standard 12 in . model T 2 . Please send for illustrated folder D88 giving full technical details.

> * British Patent No. 451,754. Other patents pending.

PIDELIIY NOTE. To obtain the best results from the Axiom Twelve Loudspeaker it is important to use a first class output transformer, correctly designed to match the equipment. Goodmans type H_{4} Transformers fulfil these conditions, being wound to individual load requirements. They can be supplied at short notice.
IHflCIENCY

GOODMANS INDUSTRIES LTD., LANCELOT ROAD, WEMBLEY. MIDDLESEX. 'Phone: Wembley 4001, Grams: 'י Goodmans, Wembley 4001

he Type 1684 series of Oscilloscopes is already well known. The new Model retains the desirable features of this series-d.c. shift controls, response flat to videofrequencies, d.c. coupled symmetrical amplifiers on both axes, fully-automatic synchronisation of the time base, etc. but incorporates many new 'eatures of design, both electrical and mechanical. 1684 B has, in fact, been accorded an enthusiastic reception and despite steadily mounting orders, a three-fold increase in production is enabling reasonable deliveries to be maintained.

PRINCIPAL FEATURES

* TUBE $3 \frac{1}{2}$ in. diam. Blue, green or delay screen.
\star AMPLIFIERS.
D.C. to $3 \mathrm{Mc} / \mathrm{s}$., 18 mV. r.m.s. per cm. or D.C. to 1 Mc's., 6 mV per cm . Symmetrical or asymmetrical input. X and Y amplifiers are similar.
\star tIME BASE. 0.2 c 's to $150 \mathrm{kc} / \mathrm{s}$. Variable through X amplifier 0.2 to 5 screen diameters.
* ACCESSORIES.

Camera, telescopic light shield, ruled graticule.

BAYTHEON CONTRIBUTIONS to development of Hoäring Aids Mare for the Money

IN HEARING AIDS..

A big factor in making the modern Hearing Aid such a neat, compact instrument is the great reduction made possible in size of batteries. In 1939 valves used in the average Hearing Aid drew almost one-third of a watt from the "A" battery. Today, thanks to Raytheon developments in valve design and construction, drain on the "A" battery is 80 per cent less, battery life ten times greater. so that batteries can now be much smaller, with many times the life. Because of thig and other important developments Raytheon is supplying more than 90 per cent of all Hearing Aid valves in use today.

Ask for complete information. Address your inquiry to Sub. marine Signal Company (London) Ltd., Artillery House, Artillery Row, London 5.W. 1 England, or to:

To Chief Engineer and/or Buyer.

Dear Sir,
Have you seen the last four advertisements describing the features of our "Series 700" Reproducers? If you have not and your requirements include reliability, performance, full tropical specification and low final - if not initial - cost, we suggest they merit your attention and request for samples (F.O.C. of course) and quotations.

> Yours traithfully,
> SALES DEPARTMENT.

REPRODUCERS AND AMPLIFIERS L'ID.
 with large hexagon head bolts; centre pole and bottom plate all in one forging ; ring-clamped cone ; diecast centring ring ; practical construction matched by excellent response and high sensitivity - all made for Heavy Duty. The Truvox $12^{\prime \prime}$ P.M. Speaker will convince your most critical friends that your latest amplifier "has something." Truvox leaflet SH/152 gives all the technical detail - a postcard brings it to you.

Model $5 S .9$

7S-8,000 c.p.s. IS watts peak $\mathrm{C6}$. IS . 0
Model SS.9A
SS $-8,000$ c.p.s. 12 watts peak 66.15 .0 Model SS. 10
75-11,000 c.p.s. 12 watts peak 66.17 . 6
Model SS.10A
SS-11,000 c.p.s. 10 wates peak 66.17 .6

TRUVOX ENGINEERING CO. LTD. EXHIBITION GROUNDS, WEMBLEY, MIDDLESEX

It uses miniature needles suitable for modern full range recordings. A ferrous coil former concentrates the flux on the coil and also adds armature effect, thus increasing output voltage sufficiently to operate direct into a normal radio set
Free needle movement and low dovnward pressure ensure long record life.
The fundamental simplicity of this robust design keeps down manufacturing costs. Price including transformer £2 plus P.T. De Luxe model, with spring counter kalance $£ 2.11 .0$ plus P.T.

EXPORT ENQUIRIES INVITED.
BROOKS \& BOHM LTD.
90, Victoria Street, London, S.W.1. Phone : VICtoria 9550/1441. -

RHO-METAL SCRATCH FILTER CHOKE

TYPICAL RESPONSE CURVES
A Tuned for maximum rejection at 4,000 cycles
B Tuned for maximum rejection at 9,000 cyclea
WHERESURFACE NOISE ISTHE LIMITING FACTORTO
SUPREME QUALITY OF REPRODUCTION, fit a Sound
sales alloy cored steep trough tuneable filter. We know the problem of removing Surface Noise or Hetrodyne whistle is not easy to solve, but the steep trough filter has so far produced the most encouraging rasults we have encountered when using a com. pact component which can be incorporated in existing apparatus.
CHOKE TYPE. C'SF, Dia. 2\%N, length $3 f^{\prime \prime}$. PRICE \&i.8.8 each.
SOUND SALES LIMITED
Specialist manufacturers of Transformers and Chokes of all types since 1930
WEST STREET, FARNHAM
SURREY
and 57 St. MARTIN'S LANE, W.C.2.
Temple Bar 4284

RESISTANCE RANGE

10Ω	to $0.75 \mathrm{M} \Omega$	$\pm 5 \%$
50Ω	to $0.5 \mathrm{M} \Omega$	$\pm 2 \%$
100Ω	to $0.5 \mathrm{M} \Omega$	$\pm 1 \%$

Wireless World
 RADIO AND ELECTRONICS

Praprietars
ILIFFE \& SONS LTD. Managing Editar : Editar:
H. F. SMITH

Editarial, Advertising and Publishing Offices: DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.

PUBLISHED MONTHLY

$$
\text { Price : } 1 / 6
$$

(Publication date 26th of preceding month)
Subscriptian Rate: 20/- per annum. Hame and

Branch Offices

Birmingham : King Edward House, New Street, 2.
Caventry : 8-10, Corporation Sereet. Glasgaw : 26B, Renfield Street, C.2.
Manchester
260. Deansgate, 3.

In this Issue

EDITORIAL COMMENT 271
VIBRATOR POWER PACKS By D. A. Bell 272
THE SYNCHRODYNE By "Cathode Ray " 277
MANUFACTURERS' PRODUCTS 282
ELECTRONIC CIRCUITRY By J. McG. Sowerby 283
NOVEL CAR RADIO 285
HIGH-STABILITY LC OSCILLATOR By Thomas Roddam 286
FRAME DEFLECTOR-COIL EFFICIENCY By W. T. Cocking.. 289
WORLD OF WIRELESS 293
MORE CATHODE-RAY TUBE DATA By D. W. Thomasson 296
HIFAM By Sarkes Tarzian.. 297
QUALITY IN THE HOME By H. S. Casey 299
SHORT-WAVE CONDITIONS 303
UNBIASED By "Free Grid ' 304
LETTERS TO THE EDITOR 305
RANDOM RADIATIONS By " Diallist " 308
RECENT INVENTIONS 310

[^1]

Valves and their applications

DELAYED AGC WITH E/UAF42

Receivers using AGC without delay suffer from the disadvantage that full output will only be obtained with a much larger signal input than in the case of a similar receiver with delay, and the overall amplification will appear to be less.

Delayed AGC may be obtained with various types of twodiode circuits, but modulation distortion frequently results from the loading of the primary of the IF transformer by the delayed AGC diode. This disadvantage may be overcome by the use of a three-diode circuit in which each diode performs its separate function-detection, AGC, and delay. The circuit to be described is a modification of this circuit which uses a single-diode pentode, the pentode section being the IF amplifier valve. While the advantages of coupling the AGC diode to the primary of the final IF transformer are lost, the circuit avoids modulation distortion and a very satisfactory delayed AGC characteristic results.

Fig. 1 illustrates a circuit using a UAF42 (or EAF42) diode pentode in which the main diode Dl provides the detector and AGC voltages while the suppressor is used as an auxiliary diode D2 to provide the delay which prevents operation of the AGC line until a predetermined signal level is reached.

The satisfactory operation of the circuit depends on the fact that for the E/UAF42 (a) the $\operatorname{Ig} 3 / \mathrm{Vg} 3$ characteristic rises sharply with increasing suppressor volts and will consequently give a well defined delay voltage and (b) the internal resist-
ance of D2 is low (50 K Ohm). The suppressor is connected through a high resistance R1 to the HT supply and through R2 to the AGC line. For small signals, the suppressor will be at substantially the same voltage as cathode since the negative voltage developed by D1 will be small. D2 will conduct and the AGC line voltage will remain constant ; as the input signal increases, the suppressor will be driven negative, D 2 will no longer conduct and the AGC line will operate. The magnitude of the delay voltage will be determined mainly by the values of R 1 and $\mathrm{R} 3: \mathrm{Rl}=22 \mathrm{M}$ Ohms, $\mathrm{R} 2=\mathrm{R} 3=2.2 \mathrm{M}$ Ohms, HT $=170$ volts, the delay will be approximately 15 volts.

The graph of volts on AGC line against peak detector volts (in full line) in Fig. 2 shows that the change in AGC line voltage over the range 0 to 15 peak detector volts is only 0.5 volts compared with 9 volts from 15 to 30 peak detector volts. The AGC characteristic for 30% modulation of a typical receiver using E/UAF42 is shown (in dotted line) in Fig. 2, the delay operates from 0.2 to lmV and the AGC characteristic is flat to within 5 db from 1 to 1000 mV signal.

Reprints of this report together with additional circuit notes can be obtained free of charge from the address below.
MULLARD ELECTRONIC PRODUCTS LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE., W.C. 2

Wireless World

RADIO AND ELECTRONICS
Vol. LIV. No. 8
August 1948

Conmments of the Month

IT is freely admitted that broadcast receivers are numbered among the very few articles of commerce of which the present supply exceeds demand by a considerable margin. The recent reduction in purchase tax has apparently done little to stimulate buying, and, indeed, the reason for reluctance on the part of the general public to do so is by no means obvious. Judging by the steadily rising licence figures, broadcasting is not losing its attraction, and new homes, presumably needing new equipment, are being set up in considerable numbers.

The price of receivers, if we deduct the unpopular purchase tax, has not risen since 1939 to as great an extent as that of most other comparable articles. In spite of that, it is widely believed in wireless circles that high cost is responsible for public apathy, and the view is often expressed that there would be a widespread demand for a really cheap set. Those who voice such opinions generally add that such a set could best be produced by abandoning continuously variable tuning in favour of switch selection of three or four stations. The advocates of this type of set contend that it would be vastly cheaper, and would satisfy the needs of the majority; even the minority who normally require continuous tuning and a good R.F. performance would buy it freely as a "second set," especially if the price were made sufficiently attractive.

This question of the cheap set raises many interesting problems, both technical and economic. In the first place we doubt very much if a switchtuned receiver, of a design suitable for use in all areas of the country, would be appreciably cheaper than the more-or-less standardized $4+1$ superheterodyne. It might well be more costly. Admittedly, a really cheap receiver for use in districts where high selectivity is not necessary for meeting the simpler requirements could easily be devised, but its retail distribution would probably introduce many commercial problems. This matter of selectivity is the fundamental problem; so far,
the most economical solution has been found in the conventional superheterodyne. We think; however, that the time has come for designers of broadcast receivers to explore basically new methods of cheapening production.

Hadio Equipment of Buildings

WE welcome the issue, under the ægis of the Ministry of Works, of a " Draft for Comment " of a British Standard Code of Practice* on the equipment of new buildings for broadcast sound and television reception. The recommendations relate mainly to aerial systems, the installation of which has hitherto been in the nature of an afterthought. A number of different types of aerials are treated.

On the broader issue, it is gratifying that the code is issued in the form of a "draft for comment," available to any interested member of the public who cares to buy it ; comments are specifically invited, and will presumably be taken into account in the preparation of the final code. This is a procedure that might be followed much more widely. Standard specifications are being issued at a great rate and, however good the qualifications of those who prepare them, there is always the risk of some glaring error or serious omission, due, perhaps, to lack of knowledge on some highly specialized aspect of the subject by those responsible. A case arose recently where it was found that standardized symbols could not be legibly printed by ordinary type-setting methods, with the result that the wide adoption of this particular form of standardization was in jeopardy. This is a matter where a great deal of circumspection and a fine discrimination is clearly needed. "In a multitude of counsellors there is safety," though, as some cynic recently added, "there is the probability of intolerable delay."

[^2]
Vibrator Power Packs Some Notes on the Principles of Design

Bv
D. A. BELL, M.A., B.Sc..

IARGE numbers of vibrator power packs are now being used in mobile P.A. and V.H.F. equipments for obtaining H.T. supply from a lower-voltage D.C. source. It therefore seemed worth while to collect the results of investigations into several aspects of vibrator power packs which the author has carried out at various times. The problems can be sub-divided as follows:-
(i) The role of the "timing" or "buffer" condenser which is connected across the transformer secondary, and the choice of the correct capacitance.
(ii) Operating conditions of the transformer iron and copper with approximately square-wave currents.
(iii) Regulation.
(iv) Suppression of radio interference or " hash."

The fixed condenser which is connected across the whole of the secondary winding is sometimes called the "buffer" condenser, but in view of its true function it is better described as the "timing" condenser. The basic circuit of a transformer with a self-rectifying or synchronous vibrator is shown in Fig. I, and both sides of the transformer are wound for double voltage and centre-tapped in the same way as the secondary of a transformer feeding a full-wave valve rectifier ; but to obtain the simplest circuit for theoretical analysis we will first replace the double-wound transformer and vibrator by a single-wound transformer and reversing switch, and then replace the transformer by the equivalent circuit viewed from the secondary side. Thus in Fig. 2 the battery is assumed to be stepped up to the secondary voltage, R is the secondary load, C the timing condenser and L and r the inductance and resistance of the transformer circuits as viewed from the sccondary.

The operation of the vibrator is then represented by the periodical changing over of the reversing switch, and when this opens there is a certain current, $i_{\text {l. }}$ say, flowing through the inductance L as well as a load current flowing through R . The inductance tends to maintain this current i_{L}, but the load R is disconnected by whatever rectifying system is used (since the maintenance of i_{L} after

Fig. 1. Circuit of synchronous vibrator with transformer and "timing " condenser.
the battery switch is opened would require current flow through R in a sense opposite to that of the main battery current through R), and in the absence of the condenser C there would be an abrupt cessation of the current through L, i.e., a large negative value of $d i_{\mathrm{L}} / d t$ and hence a high voltage. In fact there will always be some stray capacitance even if no external condenser is fitted, so the current i_{L} after the opening of the battery circuit flows in an oscillatory circut, L, r, C; and if there were no losses ($r=0$) conservation of energy would require the condenser to be charged to a peak voltage V_{C} such that

$$
\begin{equation*}
\frac{1}{2} \mathrm{CV}^{2}{ }_{\mathrm{C}}=\frac{1}{2} \mathrm{~L} i^{2}{ }_{\mathrm{L}} \tag{I}
\end{equation*}
$$

In the particular case of a transformer supplying a small radio set with 50 mA at 300 V , if the secondary inductance is 30 H , the stray capacitance is $0.001 \mu \mathrm{~F}$. and the " magnetizing current" $i_{\mathrm{L}}=10 \mathrm{~mA}$, equation (I) will give $\mathrm{V}_{\mathrm{c}}=\mathrm{I} 740 \mathrm{~V}$. approx. This is the secondary voltage "spike" which in the absence of losses would occur under incorrect operating conditions and would
break down any insulation designed for the normal 300 volts working.

Now suppose that the capacity across the secondary is increased by adding an external condenser. The peak voltage is reduced according to the square root of the capacitance, since from equation (I), $\mathrm{V}_{\mathrm{C}}=i_{\mathrm{L}} \sqrt{\mathrm{L} / \overline{\mathrm{C}}}$, and at the same time the period of oscillation is increased as the square root of the capacitance. Considering only a single break of the circuit, the effect of adding capacitance is to change the waveform from curve (i) to curve (ii) of Fig. 3(a). In practice the vibrator contacts re-close in the opposite polarity shortly after opening, so ideally the voltage waveform should be as shown in Fig. 3(b), and the problem is to produce a rate of voltage change during the " contacts open" part of the cycle which will fit as smoothly as

Fig. 2. Equivalent circuit of vibrator and transformer.
possible into the " contacts closed " parts. This will occur if the point marked X in Fig. 3(a), curve (ii), which corresponds to - 300 V., also corresponds in the time scale to the instant of reclosing of the vibrator contacts.
Fig. 4 shows idealized waveforms for limited variations of condenser capacitance about the correct value, and Fig. 5 shows tracings from oscilloscope pictures obtained in practice with different sizes of condenser. Clearly the timing conditions will be least critical if the point X in Fig. 3(a) occurs near the (negative) crest of the free oscillation of voltage, where the rate of change of voltage with time is small ; but in the absence
of dissipation the reverse-voltage peak would fall to the working voltage only when the condenser was so large as to make the oscillation period of the same order as the whole period of the vibrator cycle, i.e. the transfer of the inductive energy to the condenser would take as long as its accumulation in the inductance. With the small condenser required for correct timing, therefor, the voltage is likely to be still rising at the instant of vibrator contact closure, though the presence of iron and copper losses in the circuit reduces the amplitude of free oscillation.

One firm manufacturing vibrators has suggested including a resistance in series with the timing condenser, presumably in order to provide additional damping for this purpose, but it is more usual for the damping to be light enough for the voltage to over-swing appreciably, and correct timing is relied upon to give the appropriate voltage for re-closing the contacts. For a given time of change-over of vibrator contacts, the value of capacitance C which is required is inversely proportional to the transformer inductance L.

Now in any given iron-cored transformer the inductance L will usually vary inversely with the flux density, and therefore inversely with the input voltage. It follows that if the timing capaci-

Fig. 3. (a) Effect of secondary capacitance on voltage waveform for a single break. (b) Ideal voltage waveform for break and re-make.
tance is initially set to be correct at nominal input voltage (e.g. 12 volts from a 6 -cell lead-acid accumulator), it will be too small when the transformer inductance falls on high input voltage (e.g. 15 volts with battery on charge) and too large on low input voltage (e.g. io. 8 volts from a discharged battery). Since too small a capacitance can give rise to dangerous over-voltages on the transformer secondary, but too large a condenser causes little more than a slight loss of efficiency the timing condenser should always be chosen of value appropriate to the highest input voltage

Fig. 4. Theoretical waveforms for different condenser values; (a) too small, (b) correct, (c) too large.
likely to be met, not to the mean or nominal input voltage.

If the condenser is too large, giving a waveform of the type of (c) in Figs. 4 and 5, the condenser is abruptly charged to the new voltage when the contacts re-close, but since the energy from the inductance will not all have been transferred to the condenser, the residue of the inductive energy should be transferred back to the battery. Small upward pulses of primary voltage have been detected under such conditions, but according to a moving-coil ammeter there is no saving of mean battery current. In fact, the capacitance value for minimum mean battery current corresponds very closely with the value which gives waveform (b) of Figs. 4 and 5 ; and although it is desirable to check the waveform oscillo-
(a)

(c)
graphically, the condenser size can in an emergency be adjusted
 a short circuit, even if no permanent damage is caused, and this is presumably due to the secondary voltage surges setting up a continuous arc across the vibrator contacts.

Provided that the timing condenser is of sufficient capacitance to give correct timing with the transformer in question at maximum input voltage, there appears to be no reason why it should have any exceptionally high voltage rating: it is never likely to receive a voltage more than io per cent above the amplitude of the square wave on the transformer secondary. On the other hand, it is working under A.C. conditions, and must be capable of handling a small amount of current. The changeover time of a vibrator is, in very round figures, i millisecond; and if we take a condenser of $0.02 \mu \mathrm{~F}$ reversing its charge from +300 to -300 volts, the current can be found as the change of charge divided by the time during which it occurs, and comes out to 12 mA . This should not cause any trouble.

The simplified form of the voltage wave of a typical vibrator

Vibrator Power Packs-

transformer is illustrated at (a) in Fig. 6. This is drawn to scale for a vibrator with contact closure

(b)

Fig. 6. Voltage and flux waveforms. (a) Vibrator, 80% time efficiency. (b) Perfect square wave.
time of 40 per cent each way, i.e. each contacts-open period is io per cent of the complete cycle. Since the voltage per turn is proportional to the rate of change of flux, $\mathrm{E}_{0}=10^{-8}, d \Phi / d t$, the flux may be determined by integrating the observed voltage :

$$
\Phi=1 \mathrm{o}^{8} \int \mathrm{~F}_{0} d t
$$

By carrying out the integration of the voltage waveform for a vibrator-driven transformer (full line in Fig. 6a) the flux waveform is obtained, as shown dotted; and for the sake of comparison the pure square wave of equal amplitude and its integral have been plotted in Fig. 6(b). Since the flux is the integral of the voltage, the maximum flux is less in Fig. 6 (a) than in Fig. 6(b) in the same ratio as the mean arithmetic value of voltage is less in Fig. 6(a) i.e. by a factor of ($1-x / 2$) where x is the fraction of the cycle for which the vibrator contacts are open. ($x=0.2$ in Fig. 6a).

It might be thought that since the primary circuit is broken during the period of voltage reversal, and the primary current is then zero, the magnetomotive force and the flux would also be zero. But in fact the flux is maintained, as shown, by the secondary current which is flowing into the timing condenser.

Now the flux Φ is the product of the area A of core section and the flux density B, so that

$$
\begin{equation*}
\mathrm{B}=\frac{\mathrm{IO}^{8}}{\mathrm{NA}} \int \mathrm{E} d t+\mathrm{B}_{0} \quad \cdots \tag{2}
\end{equation*}
$$

where N is the number of turns in the winding across which E is measured, and B_{o} is the value of B at $t=0$. Since a half-period of the vibrator cycle covers the reversal of the flux from a maximum in one direction to a maximum in the other, the flux change corresponding to the integration of E over half the period T of the vibrator is equal to twice the maximum flux:

$$
\begin{equation*}
2 \mathrm{~B}_{\text {wat }}=\frac{10^{8}}{\mathrm{NA}} \int_{0}^{\mathrm{T} / 2} \mathrm{E} d t \quad \ldots \tag{.3}
\end{equation*}
$$

E is constant over a half wave of the square waveform of Fig. $6(\mathrm{~b})$. so that $2 \mathrm{~B}_{\max }=10^{8} \mathrm{ET} / 2 \mathrm{NA}$ and writing $T=1 / f$ where f is the vibrator frequency in c/s., and $1-x$ is the " time efficiency."
$\mathrm{B}_{\text {max }}=\left(10^{8} \mathrm{E} / 4 \mathrm{AN} f\right)(\mathrm{I}-x / 2) \ldots(4)$ A transformer operating on a sinusoidal voltage of R.M.S. value V^{*} would have $\mathrm{B}_{\max }=10^{8} \mathrm{~V} / 4 \cdot 44 \mathrm{AN} f$; so that comparing D.C. input voltage with R.M.S. alternating voltage, the transformer fed through a vibrator will run at II per cent higher flux density than it would if fed with a sinusoidal voltage of the same nominal magnitude. (If one compared the D.C. voltage with the peak value of a sinusoidal voltage, the

Fig. 7. Typical input-output characteristic of vibrator transformer.
ratio would be increased to 1.57: i; and this comparison is relevant if the transformer with sinusoidal input feeds a rectifier with con-denser-input filter, the D.C. output of which on no-load is equal to the peak voltage from the transformer.)

Having determined the flux density, the iron loss can now be considered. It is, unfortunately, a characteristic of vibrator transformers that their efficiency is usually about 60 per cent to 70 per cent instead of the 90 per cent which one might expect from a small transformer working on sinusoidal supply. A plot of output power versus input power shows that an appreciable part of the loss is constant and may be regarded as the open-circuit or magnetising-current loss. An analysis of the power input at full load to the transformer responsible for the graph of Fig. 7 was as follows:

Output power	\cdots	9.03 watts.	
Open-circuit losses	...	1.4	
Vibrator contact losses	...	0,93	
Secondary copper loss	...	0.37	,"
1'rinary copper loss	...	0.11	"
		11.84	"
'l'otal input power	\cdots	12.1	..
Balance of loss un. accounted for	0.36	"

The vibrator contact losses were checked both by measuring the voltage drop across the contacts oscillographically and by observing the temperature rise of the vibrator when handling current. The temperature rise was calibrated in terms of the constant power dissipated in the vibrator driving coil, and since a vibrator with independent drive circuit was used the driving power was the same with or without load current on the contacts. The open-circuit losses are the biggest item, and since there can be little loss in the timing condenser they must be mainly iron loss. The genuineness of this dissipation is confirmed by the fact that if the timing condenser is removed the peak voltage does not rise to the extent indicated by calculations based on equation (I),

According to elementary theory, the hysteresis loss should depend only on the maximum flux density and the frequency of repetition of the hysteresis loop, and should therefore be the same for a square wave as for a sinusoidal wave of the same frequency and $B_{\max }$. Eddy-current loss is usually assumed to be based on an expression of the type E^{2} / R where R
is the resistance of the path round which the eddy current flows and E, the E.M.F. driving this current, is proportional to flux density and frequency, so that the loss increases as the square of the frequency. E is also assumed to be proportional to a uniform flux density, and therefore to have the same waveform as the transformer input voltage. The mean-square value averaged over a quasisquare wave such as Fig. 6(a) is nearer to the peak value than is the mean-square of a sinusoidal wave; and therefore for a given maximum flux density, $\mathrm{E}^{2} / \mathrm{R}$ will be greater the more nearly the vibrator waveform approaches a perfect square wave. By integration of the actual trap. zoidal wave, one can calculate the average value of E^{2} / R in terms of the proportion of the complete cycle time for which the contacts are closed on one side or the other, and compare the ratio of mean-square-voltage to maximum-voltage-squared with the similar ratio for a sinusoidal voltage, which is 0.5 .
rapid, as shown by Fig. 8 which is based on handbook ${ }^{2}$ figures for transformer sheet of o.or4in thickness. The vibrator waveform can be approximated by the limited series

$$
\begin{aligned}
\mathrm{E}=\frac{4}{\pi} \mathrm{E}_{0}\left(\sin p t+\frac{1}{3}\right. & \sin 3 p t \\
& \left.+\frac{1}{5} \sin 5 p t\right)
\end{aligned}
$$

where E_{0} is its peak amplitude. The mean-square value of the wave is equal to the sum of the mean squares of the harmonic components (since the product terms of two components of different frequency vanish when averaged over the cycle) and for this series is of magnitude $0.935 \mathrm{E}_{0}$. If in a particular case E_{n} corresponds to the flux density for which Fig. 8 was plotted (9,000 gauss) and the vibrator frequency is $100 \mathrm{c} / \mathrm{s}$, the total iron loss for this material should be
$W=\frac{4}{\pi}\left(W_{100}+\frac{1}{3} W_{3011}+\frac{1}{5} W_{5010}\right)$ where the IV's represent the losses at the varions frequencies. From

Contacts-closed time, per cent		$\frac{\overline{\mathrm{E}}^{2} / \mathbf{E}^{2}{ }_{\text {ax }} \text { for vibrator }}{\overline{\mathrm{E}}^{2} / \mathrm{E}^{2}{ }_{\text {max }} \text { for sinusoid }}$
$\because \times 35$	0.8	1.6
2×40	0.87	1.73
2×45	0.93	1.86
2×50	1.11	2.11

Thus even with a perfect vibrator having contacts-closed time of $2 \times 50=100$ per cent and transit time zero, the increase of eddy-current loss on this basis would be only $2:$ i for a given maximum flux density and it would be about 1.7: I for the average practical value of vibrator closure time. This is not enough to account for the observed iron loss. But it is generally known that the iron loss in a transformer increases with frequency more rapidly than can be accounted for by an increase of the measured hysteresis loss binearly with frequency and a calculated eddycurrent loss. It has been suggested ${ }^{1}$ that the additional increase of loss with frequency is due to distortion of the flux waveform within the body of the core; but whatever the cause, the increase of loss with frequency is

Fig. 8 this leads to $W=$ $\frac{4}{\pi}\left(0.85+\frac{4.4}{3}+\frac{10}{5}\right)=5.5$ watts $/ 1 \mathrm{l}$ or about six times the loss for a $100 \mathrm{c} / \mathrm{s}$ sinusoid of the same $\mathrm{B}_{\text {max }}$ as the square wave. This agrees qualitatively with the observed losses, but should not be regarded as quantitatively true because the loss mechanism is probably non-linear with amplitude and this will invalidate the addition of the effects of the component frequencies.

In addition to the effect of secondary copper loss, the mean output voltage is less than the product of effective primary volt-

[^3]age and turns ratio, because of the intervals when the vibrator contacts are open. If x is the fraction of the cycle for which the contacts are open, the mean output voltage when feeding a resistance load would be $(1-x) \mathrm{F}_{o}$; and correspondingly the current in the windings when the contacts are closed would be $i_{o} /(1-x)$ where i_{0} is the mean output current. The regulation is therefore increased by a factor $1 /(1-x)$. The maximum squared current is increased by $(1-x)^{-2}$, but it flows for a fractional time $1-x$ only, so that the mean squared current and therefore the copper loss is increased by a factor I/($1-x$) only.

In the practical case, with a reservoir condenser connected across the rectified output, the conditions are slightly less favourable, because the loss of charge during contacts-open periods tends to cause an initial peak of current when the contacts close; but this is not very serious since the variation in condenser voltage is usually less than 5 per cent.

The fraction of the cycle for which contacts are closed is commonly known as the " time efficiency " of the vibrator. It has no direct relationship to the output/input power ratio of the complete equipment, but a high "time efficiency" is useful for the following reasons :-
(i) It reduces the size of " buffer" or timing capacitor required.
(ii) By bringing the mean output voltage nearer to the peak voltage it lowers slightly the maximum flux density, so reducing

Fig. 8. Loss v. frequency for o.ol4in. transformer sheet.

Vibrator Power Packs-

iron losses, and at the same time it reduces the ratio of R.M.S. to mean currents in the windings.

The interruption of the current from battery to transformer primary by the vibrator contacts produces a series of discontinuities which can be represented by Fourier series extending throughout the radio-frequency band. Assuming a periodic time of 10 milliseconds ($100 \mathrm{c} / \mathrm{s}$) the circuit is likely to be broken in a time of less than o.I m-sec ; with a primary current of 5 amperes this phenomenon may be described as a rate of change of current of 50,000 amperes per second, which perhaps suggests some radio interference. The secondary contacts of a self-rectifying or synchronous vibrator cause relatively less interference, partly because of the smaller current and partly because the timing condenser reduces the steepness of the wave-front.

The best method of suppressing the interference depends on the particular frequency band which

able dimensions is not very low. Therefore, the volt-drop limitations require that the minimum
and (b) better cooling of the transformer, but if the transformer is to be hermetically

Fig. 10. Filte:ing of individual vibrator contacts is practicable at high radio frequencies.
number of filter stages should be used ; and by completely screening the vibrator and transformer, only two leads need be filtered, the live battery lead to the primary and the H.T. + outgoing lead, of which the battery lead will probably need a 2 -stage filter but the H.T. lead only a single stage, as indicated in Fig. 9. If filament (directly - heated) types of valve are used in the equipment, care must be taken to avoid the injection of lowfrequency ripple into the filament circuits via the impedance of any common battery leads, and it may even be necessary to include a further stage of lowfrequency filtering in the lead to the valve filaments.

Where only the higher frequencies are involved, e.g. in V.H.F. equipment, adequate attenuation can be obtained with
is to be protected. In general, suppression is more difficult at the lower frequencies, and one of the worst cases is a receiver which has to cover the long-wave broadcast band. At such frequencies it is difficult to make a choke of high R.F. impedance but low D.C. resistance, and the reactance of a condenser of reason-
filter coils of low D.C. resistance. It is then feasible to insert filters directly in the leads to all vibrator contacts, and so avoid the necessity for enclosing the transformer also in a screen. An arrangement of this type is illustrated in Fig. Io. The advantages of eliminating the screen round the transformer are (a) easier wiring and assembly
sealed for tropicalization it might as well be screened by the same enclosure.

This article originated in work which was carried out in the Research Laboratories of A. C. Cossor, L.td., in 1945-6.

MANUFACTURERS' LITERATURE

Leaflet describing " Superspeed Special" cored solder for use in the radio and electrical industries, from H. J. Enthoven and Sons, 15-18, Lime Street, 1.ondon, E.C.3.

Publication No. 27 dealing with "Co-ax" articulated R.F. cables, including new types for photocells and high-power transmission lines, from Transradio, Ltd., 138:1, Cromwell Road, I.ondon, S.W.7.

Catalogue of T.M.C. Capacitors for telecommunications, electro-medical and industrial applications, from the Telephone Manufacturing Co., St. Mary Cray, Orpington, Kent.

Pamphlet describing a commercially built version of the "Williamson" amnplifier described in Wireless World. April and May, 1947, from Radio Trades Mig. Company, 14I, Little Ealing Lane, London, W. 5.

Leaflet describing a new range of 12and 18-way switches from Taylor Electrical Instruments, Ltd., 419, Montrose Avenue, Slough, Bucks.

Loudspeaker Cone Assemblies

TTO facilitate the rapid repair of damaged loudspeakers, A. W. F. Radio Products, Sharpe Street, Bradford, can supply diaphragms, centring spiders, cardboard fixing segments, etc., to fit the principal commercial types. Diaphragms are supplied in cartons of 12 in various assortments and prices range from $4^{8 s}$ s to 96 s per carton. Instructions for fitting the cones are included.

The Synchrodyne

Selectivity Without Tuned Circuits

By "CATHODE RAY"

IASI month I tried to show that modulation, frequency changing, beating, detection, rectification, etc., were all fundamentally the same-the results of alternating currents in non-linear circuit elements. Invariably there is the production of new frequencies, and the name that one calls the process depends mainly on which of these frequencies one has a use for. Admittedly there are differences in the practical details, and one of them-the difference between the so-called

Fig. 1. With a simple additive detector and no tuning, there

additive and multiplicative methods-is important. In both methods the modulating signal varies the slope of the modulator characteristic, but in the additive method it does it as a fellow passenger (not necessarily left-wing, though it often should be 10 avoid grid current !) and is liable to be modulated itself, whereas in the multiplicative method it does so, as it were, from its own private control room, shielded from personal risk.

Where in this co-ordinated scheme of things, one may ask, fits the receiver system known as the synchrodyne,* developed mainly by Dr. D. G. Tucker of the G.P.O.? It appears in some ways to be revolutionary, notably in requiring no tuning circuits other than an oscillator, and yet providing exceptionally high selectivity.

To see how this remarkable feature is possible, consider why tuning is necessary in the ordinary

[^4]receiver. Imagine an aerial connected direct or via an untuned amplifier to a detector of the rectifier type, such as a crystal, as in Fig. I. All signals picked up by the aerial are applied indiscriminately to the detector. Generally they would include an assortment of broadcast transmissions. Since the sidebands constituting, say, a variety programme are excessively complicated, let us simplify matters by supposing that all the stations ars doing their morning tuning notes, and that for identification these notes are all different. Then each carrier wave is escorted by two side waves differing from it in frequency by one of these audible frequencies. The top part of Fig. 2 represents the transmissions in part of the broadcast band in the form of a spectrum. Each of the upright lines represents by its position a transmitted frequency and by its height the received strength. The non-linearity of the detector will cause every frequency to modulate every other; so even with our simplifying assumption there will be a glorious mix-up. The \pm frequencies due to intermodulation between different stations' transmissions will, in general, be above audibility; but every carrier wave will beat with its own side waves,

Fig. 2. Part of a broadcast frequency band. Each of the groups of three lines on level (a) represents a carrier wave and a single pair of side frequencies ; the single vertical line on scale (b) (which can be shifted horizontally by the tuning control) represents the oscillator frequency in a synchrodyne. Between them is shown the various zones of difference frequencies produced when (b) modulates (a). They move along with (b).

The Synchrodyne-

way as Fig. I. Since this is an imaginary receiver, it is as easy to imagine it to be perfectly linear as anything else. On that assumption, no new frequencies can be formed; and as all those coming in from the aerial are radio frequencies there is complete silence.

Now start the triode oscillating. It varies the slope and amplification of the hexode sinusoidally, modulating all the incoming signals and forming \pm frequencies with them all, as I explained last month. Whereas the slope of the rectifier characteristic in Fig, I is varied at all the incoming frquencies, so that they all modulate one another, in Fig. 3 the right of modulation is strictly reserved to itself by the oscillator frequency.

When that frequency is adjusted to be exactly the same as the carrier frequency of one of the broadcasting stations, as shown in the lower part of Fig. 2, the difference between it and that carrier is (obviously !) zero, so is inaudible. The difference between it and the side frequencies from that station is, of course, its tuning note, so that is made audible. The difference between it and any of the other stations' carrier waves
modulation frequencies of the wanted station may then suffer.

But compare that with any orthodox receiver, where to cut out this adjacent-channel interference it is necessary to use R.F. bandpass filters. Even the best designs tend to cut the wanted modulation at a considerably lower frequency than the interference, while if they are very beautifully aligned to give exceptionally good results they all the more easily drift out of adjustment. An audio filter can be made with better characteristics and has practically no tendency to lose them.

Looking at Fig. 3 you may have thought it seemed remarkably like a superhet, except for the lack of tuning. If so, it is all the easier for me to say that in principle it is a very extreme case of superhet. Only it isn't the "super" that is extreme; quite the contrary, for "super" here has no connection with the enthusiastic exclamation "It's super!" but is an abbreviation for "supersonic "-" above audibility." In Fig. 4, where again there is a horizontal scale of frequency (not very uniform this time, I'm afraid), the line (a) carries a
(d)
(b)
(c)

Fig. 4. Spectrum (a) represents a typical broadcast transmission as received, and as applied to the detector in a straight set ; (b) the same after the frequency-changer in a superhet ; and (c) after the modulator in a synchrodyne.
or sidebands is generally too high to be audible; except that those immediately next to it in frequency (the "adjacent channels") may be only 9 or $10 \mathrm{kc} / \mathrm{s}$ different, so if they are strong enough a heterodyne note of that frequency will be heard, together with lower but generally more transient notes due to the nearer sidebands. If these are annoying, then the low-pass filter used for disposing of the R.F. by-products must be adjusted to cut off at a lower frequency and the highest
spectruin representing an incoming broadcast on (for example) $1,000 \mathrm{kc} / \mathrm{s}$. The more complicated sidebands show that it is transmitting something more interesting than a single note. In a straight set, all the tuning circuits have to be adjustable to select such a band, which is very narrow, anywhere out of the whole frequency scales provided. In a superhet the oscillator frequency is adjustable to make one set of difference frequencies come into line with the fixed-tuned I.F.
amplifier, as indicated on line (b). The nearer the oscillator frequency is to the incoming frequency, the lower the I.F. In the synchrodyne the oscillator frequency is adjusted so near to the incoming carrier frequency that it actually coincides with it, making the "I.F." zero, as shown on line (c). The sidebands are, as before, arrayed on each side.

But how can one of them be arrayed beyond zero, in what is presumably a zone of negative frequency? We came up against this entertaining little question last month, and once more I am going to ask you to postpone it for a while and in the meantime just to regard them as frequencies, without any + or - .

The important point is that whereas in the straight set and superhet all the frequencies are supersonic and have to be " detected" by some non-linear device which sets up audible beat notes between carrier and sidebands, in the synchrodyne they are already in the A.F. band and no detector is needed.

An interfering station with a a carrier spaced $9 \mathrm{kc} / \mathrm{s}$ from $\mathrm{r}, 000$ kc / s is less than I per cent clifferent in frequency, so it is difficult to make a variablefrequency filter cover the wanted sidebands evenly, and then cut off sharply to exclude such a near neighbour. In the superhet the separation is increased to 2 per cent and the filter tuning does not have to be varied, so the problem is eased. In the synchrodyne, the adjacent carrier is as much as 88 per cent higher in frequency than (say) $5 \mathrm{kc} / \mathrm{s}$ wanted sidebands; or looking at it another way, the synchrodyne filter can be made to accept wanted sidebands much closer to an interfering adjacent channel than either straight or superhet receivers.

Incidentally, what is really the same scheme has been suggested for getting round the general difficulty of making filters with very narrow pass bands. \dagger The signals are frequency-changed to bring the desired band down to the region of 'zero; a simple low-pass filter is used to cut out all the others; and the remaining ones can then, if desired, be trans-

[^5]ported back to their original frequencies. The synchrodyne is the same thing without the transporting back. Or in other words it is a "superhet" in which the frequency changer changes the frequency direct to audio instead of first to an intermediate frequency.

Fig. 3, as I implied, is a highly theoretical sort of synchrodyne, imagined solely for explaining the basic principle. To make the idea work in practice it has to be elaborated. The two main things are the oscillator and the modulator. Taking the oscillator first; it is obvious that the whole plan depends on its frequency being adjusted and kept exactly the same as the carrier frequency of the wanted station. The slightest difference would cause a loud heterodyne note, reminiscent of the dark ages of wireless. One possible solution is to use the carrier wave itself as the modulating oscillation. But to do that it would be necessary to have an extremely selective tuner, variable over all the reception bands, to pick the carrier out; which would destroy most of the attractiveness of the synchrodyne for broadcast reception. Something like this has been used under the name of "exalted-carrier" reception, for working on fixed commercial frequencies, to counteract distortion due to fading of the carrier wave.

A more convenient idea is to make use of the fact that an oscillator automatically falls into step with another oscillation on nearly the same frequency. This fact was more generally familiar in the days of receivers with reaction controls. If such a receiver was brought to the oscillating condition and tuned around, the heterodyne whistle due to an incoming carrier wave grew lower in pitch as exact tuning was approacheri. but instead of declining steadily to zero, as indicated by the dotted line in Fig. 5, it generally fell suddenly to it and remained silent over an appreciable span of the tuning control until it emerged suddenly at the other side. This "silent space" was the range of oscillator tuning within which its own free-running frequency was under the overriding influence of the carrier wave.

By having the incoming signal
coupled to the oscillator, the synchrodyne is locked in synchronism against a reasonable amount of inaccurate tuning or drift. Within those limits, drift causes some variation in volume, but except at very high frequencies or with a bad oscillator that is not a very serious trouble.

The important thing is that, unlike what happens with the ordinary highly-selective receiver, slight mistuning of the synchro-

difference between oscilla tor's "free" frequency AND INJECTED FREQUENCY

Fig. 5. The dotted line illustrates how an oscillator can be "tuned to zero beat" with another if the other is not coupled to it. When coupled it falls in step over a range of frequency (the "silent space") whose width depends on the closeness of coupling.
dyne causes no appreciable variation in quality of reproduction.

As Dr. Tucker has shown, the synchronized oscillator is a very selective device, for the other frequencies present in the control circuit have negligible effect unless they are very strong or very close in frequency. As regards the former, it is not much trouble to provide a moderate amount of tuned-circuit selectively as a protection against relatively strong interference. The point to notice is that this selectivity is used in the synchronizing circuit, not in the main signal circuit, so has no effect on fidelity. And the influence of very close frequencies, such as those in the sidebands of the station being received, can be minimized by reducing the coupling to the oscillator.

During the process of tuning from one station to another, the loưd heterodyne whistles are an unpleasant feature. At least, they are with the continuously-variable method of tuning, which is the only one provided in most broadcast recèivers, notwithstanding that it is quite unsuited to the listening habits of the vast majority of people. I estimate that in 90 per cent of homes
all the time and in 99.9 per cent of homes nearly all the time, people listen to one of two or three stations. But for the sake of the small minority of ether-searchers, the patient British public are condemned to grind away at the old tuning knob every time they want to change between llome and Light, and have to carry out the skilled operation of setting the control accurately to the carrier-wave frequency. It is not surprising that the accuracy is often poor, and the quality of re production correspondingly poor. What nearly everybody wants most of the time is a switch or set of buttons for instantly selecting any of the usual programmes, with continuous tuning as an optional extra for those "ho care to pay for it.
Assuming then that tuning is carried out in what, for ordinary needs, is the common-sense way. and not the archaic way still commonly provided, the synchrodyne howl need never be heard. Although the synchrodyne is feasible for long-range reception, especially if preceded by a superhet section, it seems to me that its natural role is as a high-quality localstation receiver with switch tuning. There is then no need to spoil its sweet simplicity by having to provide elaborate R.F. amplification to bring the weaker carriers up to oscillator-control strength, or means to prevent the stronger signals from overstepping the linearity of the modulator.

That brings us to the modulator. A triode-hexode is possible, but not very suitable, because the carrier voltage needed to synchronize the oscillator section is of the order of ten times larger than the maximum that can be allowed at the control grid if perceptible intermodulation is to be avoided; which means that a carrier amplifier is desirable. Dr. Tucker favours one of the balanced rectifier types of modulator, such as the one shown in Fig. 6. The arrows show the direc-

The Synchrodyne-

tion of current during one halfcycle of the modulating signal from the synchronized oscillator. You will see that it balances out in both input and output circuits, so does not interfere directly with them.

What it does do is to make the resistance of rectifiers A and B low and C and D high, so that the output is connected one way round to the input. In the next modulating half-cycle the situation is reversed, and so are the input-to-output connections. The frequency of the carrier wave in the input is, of course, the same as that of the modulating signal.
different from the carrier frequency, so there is a progressively increasing phase difference between them, amounting to one whole cycle for every cycle of the audio frequency. During that cycle the component of output due to the side frequency first adds to the carrier D.C., then declines to zero, reverses, grows to a maximum in opposition to the D.C., declines, reverses, and completes the cycle with a maximum, Fig. 7 (b). The addition of this to the D.C. due to the carrier is shown at (c). In words, the output reproduces the modulation of the received programme. This is where one can take another look at the vector diagram, Fig. 7 (d), in which the observer is supposed to be rotating with the vectors at the same speed as the carrier vector so that it appears stationary, with the sideband vectors rotating in opposite directions. In Fig. 7 the modulating signal does this slowing down
What happens to it depends on their relative phases. If.it is in phase, the carrier is full-wave rectified, giving a D.C. (plus carrier harmonics) output in one direction, Fig. 7 (a) ; while if the phase difference is 90° the changeover in polarity of the carrier occurs half-way through each half-cycle of the modulating signal, and cancels out, giving no output.

The last point is an interesting one, because if the phase can be controlled accurately enough the synchrodyne principle can be used to reject a signal completely.

At intermediate phases, the D.C. attains intermediate amplitudes; which is the cause of the volume declining when the oscillator is tending to pull out of synchronism. If there are strong tendencies of this kind, as there would be when receiving short waves, it is a good thing to employ something like A.F.C. (automatic frequency correction) to keep the synchronization stesly.

So much for the receiver carrier. What about the sidebands? Each frequency in these is slightly

Fig. 6. One type of bridge modulator used in syn-

for us, rather like a stroboscope, converting the R.F. carrier into D.C. and each pair of R.F. side waves into a + and - A.F. vector (that negative frequency again!).

Just one other thing about this modulator that may worry some readers. During the modulating -half-cycle shown in Fig. 7 (or any other half-cycle for the matter of that) the input signal has to go through one of the rectifiers in opposition to the modulating current. This does not mean that it has to defy nature's traffic regulations by going the wrong way through a one-way street. If a cyclist on a long lorry which is proceeding in the legal direction through such a street cares to ride his machine from front to back of the vehicle he is riding in the

Fig. 8. An alternative synchrodyne modulator, more convenient but less efficient than Fig. 6.
"wrong" direction, but, assuming the speed of the lorry is greater than his, his net velocity is opposite to the way he is facing, and no offence is committed by him, at any rate in respect of the one-wayness of the street. What is thought of his conduct in other respects is not our business. The point is that the modulating current is always made much larger than the modulated current, so that to the latter the rectifiers appear to be either practically linear low resistances or very high resistances.

A suitable input signal is o.I V which is just about what is needed to synchronize an oscillation of I V or rather more, which in turn is just about what is needed to work the modulator, if the new germanium rectifiers are used. They are more convenient than thermionic diodes; especially in
ing. Added to (a), they give (c) a reproduction of the original transmitter modulation. (d) is the vector diagram ; the resultant as the side-wave
vectors rotate varies as at (c).

Fig. 7. (a) represents the output in Fig. 6 due to a received carrier wave. When smoothed it is D.C. (b) represents the output due to side waves, after smooth-

CARRIEA HALF-CYCLES RECTIFIEO BY MODULATING OSCILLATION
the Fig. 6 circuit, where the cathodes are all at different R.F. potentials.

The vital thing about any premodulator stages is that they must be very nearly linear, so

on normal high-fidelity lines. Putting these parts together gives something like Fig. 9. But the attractive thing about the synchrodyne to experimenters is that it offers plenty of scope for trying variations and adapting it to indi-

Fig. 9. One form of synchrodyne circuit, with an amplifier aperiodically coupled to a cathode follower. The third valve is the synchronized oscillator.
 although it is very efficient. The special transformers can be avoided, at some sacrifice of efficiency, by using the Cowan modulator, shown in Fig. 8. Here the points X and Y are always at the same potential so far as the modulating oscillator is concerned, because the current (if any, and if the rectifiers are well matched) divides equally and sets up equal potentials, as in a balanced bridge. During one half-cycle it makes all rectifiers low resistances, so that they more or less short-circuit the input-to-output path, and most of the signal is absorbed by R. During the next modulating halfcycle all rectifiers are high resistances and the signal goes through. So what we have is a half-wave modulator, and a less than perfect one at that; while twice the modulating voltage is needed, to cope with two rectifiers in series.

To supply the "signal" to either type of modulator using germanium rectifiers, a fairly lowimpedance source is desirable; preferably a cathode follower. What goes before the cathode follower depends on how strong are the signals one wants to receive. Except for very strong locals, at least one stage will be needed. It can be broadly tuned, not selective enough to cause any reduction of the highest programme modulation frequencies, but enough to reduce relatively strong signals, noise, etc., to a level at which it cannot intermodulate.
negative feedback is indicated. The post-modulator stages can be
vidual taste and fancy. So I'll say no more.

Miniature Coil Pack and I.F.T.

ATHIREE-RANGE coil pack neasuring $316 \times 2 \frac{1}{2} \times 1 \frac{1}{8}$ in overall and small permeability tuned 1.F. transformers to match for use in miniature superllets have been pro(tuced by the Weymouth Kadio Manufacturing Co., Itd., Crescent Street, Weymouth, Dorset.

Three models of the coil pack are available, the type $B 5$ (illustrated here) when used with a two-gang midget condenser having a $365-\mathrm{p}^{\mathrm{F}}$ capacitance swing tunes over the following wavehands: 16 to 50,200 to 550 and 800 to 2,000 metres.

There is a B6 pack designed for a standarl size $483-\mathrm{pF}$ tuning condenser and two export models (types B_{7} and B8) covering 12 to 37,33 to 100 and 200 to 550 metres.

The coils in all these packs have adjustable clust cores and each includes all necessary trimmer and tracking capacitors. Each is fully screened and costs 35 s.

Weymouth type B5 coil pack and miniature I.F. transformer.

Manufacturers' Products

"Cathodray" Capacitor Improvements

ASPECIALLY developed and processed mineral oil impregnant is now used by the Telegraph Condenser Company, Ltd., North Acton, London, W.3, in the manufacture of the "Cathodray" range of high voltage tubular capacitors. The resulting improvement achieved in the paper dielectric has led to a better power factor, greater ability to withstand short-time transient surges and a higher breakdown voltage for the same form of construction.

Other manufacturing modifications, not apparent in either the shape or size of the capacitors, combine to make them less affected

T.C.C. Cathodray capacitors with Visconol impregnated dielectric.

than hitherto by changes in atmospheric humidity.
Fixing arrangements are as for existing models of the same capa-

OUR COVER

A control position at the B.B.C.'s short-wave station at Skelton, Cumberland, is illustrated on our front cover. Each of the tweive $100-\mathrm{kW}$ Marconi trans. mitters is completely controlled from an independent glasspanelled cubicle. Through the window can be seen the two valves in the final stage.
citance and rating so that no replacement problems arise.

Triple Ceramic Capacitor

AMONG the latest products of United Insulators is a miniature triple capacitor of the post, or ver-

Some of the latest miniature ceramic capacitors, including a triple model, made by United Insulators.
tical mounting, type. All three sections have a common earth connection and each has a value of $1, o o o p F$. These comparatively high values of capacitance for such small dimensions (the overall length is just over 1 in and the diameter is less than $\frac{f}{f}$ in) are obtained by the use of the latest type of " Hi-K" ceramic.

The illustration also shows two other new types using this form of dielectric. Their small sizes and good dielectric characteristics make them particularly attractive for use in television and other equipments designed for operation on extra high frequencies. The makers are United Insulator Co., Ltd., Oakcroft Road, Tolworth, Surbiton, Surrey.

Pre-Amplifier Converter

THIS is a self-contained unit which can be used either as a superhet converter or as a pre-amplifier for an existing amateur communications receiver.

It covers the four following bands: 14 to $I_{4} .5 \mathrm{Mc} / \mathrm{s}$, 21 to $21.5 \mathrm{Mc} / \mathrm{s}, 27$ to $30 \mathrm{Mc} / \mathrm{s}$ and 50 to $60 \mathrm{Mc} / \mathrm{s}$. The last-mentioned is wider than the others to take in the 6 -metre band.

Special care has been taken to
ensure good oscillator stability throughout, as C.W. telegraphy is now so widely used on the two highest frequency bands,

When the unit is used as a preamplifier it covers the three lower frequency bands only, the $\mathrm{EF}_{5} \mathrm{o}$ R.F. stage giving ligh amplification with a good signal-to-noise ratio and its two tuned circuits greatly improves image-signal rejection. As a converter the EF50 is followed by an ECH35 frequency changer and the two signal circuits are ganged with the oscillator.
The unit can be left permanently connected to the main receiver as all operations, such as switching on and off, range selection and aerial change over from the unit to the main set, are effected by switches neatly arranged on the front panel. There is also a transmit-receive switch. The large semi-circular diad is calibrated for each range. The I.F. is $4 \mathrm{Mc} / \mathrm{s}$.

Made by Labgear, Ltd., Willow Place, Fair Street, Cambridge, the price for A.C. operation is $\ell^{2} 5$.

Three-Band Scale and Drive

ACONDENSER drive giving a reduction ratio of 16 to 1 and fitted with an attractive tuning scale measuring roin long and $4 \frac{1}{2}$ in high has been produced by The Albert Manufacturing Company, 5, Shakespeare Road, Finchley, London, N. 3 .
It is intended for use in a 3 -band receiver having a short-wave range of from 16 to 50 metres. Station names and tuning points, as well as

Labgear optional pre-selector or convertor unit for A.C. operation.
wavelength scales, are included for all three ranges. The dial consists of glass and provision is made for diffused illumination from the top. Price is 2256 d .

For complete data write to: Department 3707

Standard Telephones and Cables Limited radio division OAKLEIGH ROAD, NEW SOUTHGATE, LONDON, N. II

Electronic Circuitry

Selections from a Designer's Notebook

Bv J. McG. SOWERBY (Cinema Television Ltd.)

Negative Feedback Circuit. Readers will be familiar with the use of negative feedback in the stabilization of amplifier gain. It is generally applied to audio amplifiers - when the stabilization of gain is a secondary effectthe aim usually being the reduction of distortion. However, in amplifiers for oscillographs and measuring instruments generally the stabilization of gain against valve and supply variations is of as much (or greater) importance as the reduction of distortion. Such amplifiers often have to operate over bandwidths of 100 kc / s upwards.

When applying feedback to a wide bandwidth amplifier it is tempting to employ circuits similar to those used in audio amplifiers, simply because the technique is familiar. Unfortunately the standard methods nearly all involve potentiometer circuits of fundamantally high impedance, and at high frequencies the effect of stray capacitances is often troublesome. A useful way of avoiding some of these troubles and of combining three stages in a negative feedback loop is given in H. W. Bode's book "Network Analysis and Feedback Amplifier Design " (Macmillan and Co.) and is shown in Fig. I.

The figure shows only the bare bones of the circuit, without decoupling and bias arrangements. It will be seen that the feedback is applied from the cathode of the third stage back to the cathode of the first via the common cathode resistor R_{c} of very low resistance, and a little consideration will show that the phase relations are correct for negative feedback. The gain obtained from such an amplifier is best expressed in terms of the three individual valve gains $\mathrm{M}_{1}, \mathrm{M}_{2}$, and M_{3}, and the overall gain $\stackrel{M}{o}^{2}$ when R_{c} is zero; i.e. $\mathbf{M}_{1} \cdot \mathrm{M}_{2} \cdot \mathrm{M}_{\mathbf{3}}=\mathrm{M}_{\mathrm{o}}$

When R_{c} is inserted the nverall gain becomes
$\mathrm{M}^{\prime}{ }_{\mathrm{o}}=$
$\frac{M_{o}\left(1-R_{c} / M_{o} R_{1}\right)}{1+R_{c}\left[M_{1} / R_{1}+\left(M_{o}+M_{3}\right) / R_{3}\right]}$ For many practical cases the approximate simplified relation:
$\mathrm{M}^{\prime}{ }_{0}=\frac{\mathrm{M}_{\mathrm{o}}}{\mathrm{I}-\mathrm{M}_{\mathrm{o}} \mathrm{R}_{\mathrm{e}} / \mathrm{R}_{3}}$
is quite sufficiently accurate.
Taking practical values of
$\mathrm{M}_{1}=\mathrm{M}_{2}=\mathrm{M}_{3}=20$, giving $\mathrm{M}_{0}=$
8, ooo; $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=4 \mathrm{k} \Omega$
valves, when in fact it has been due to an unsuspected common cathode impedance in the wiringif only of a fraction of an ohm.

Cathode-coupled Limiter. Occasionally in electronic devices of one sort or another it is required to clip a waveform of arbitrary shape to a square or rectangular shape. For example, it is desirable to clip incoming work waveforms to a roughly square shape before using them to synchronize an oscilloscope time base, for then the sharp-fronted waveform and constant amplitude enables the time base to be synchronized more stably over a wider range of frequency than would otherwise be possible.

Various clipping devices using

Fig. 1. Feedback circuit for wide-band amplifiers.
and $\mathrm{R}_{\mathrm{c}}=$ to ohms: $\mathrm{M}^{\prime}{ }_{\circ}=379$ by (I) and $M^{\prime}{ }_{o}=381$ by (2).
So we see that quite a low common cathode resistance reduces the gain very markedly by a factor of more than 20 in this case-thus stabilizing the gain to a great extent. Incidentally it is rather interesting to make R_{c} one ohm in the above example. Even this modest feedback reduces the gain by a factor of three, and it rather makes one wonder how often an unduly low gain has been ascribed to poor
diodes or pentodes are well known. The double triode cathode-coupled limiter is not perhaps so well known, but has certain advantages The circuit is shown in Fig. 2. It will be seen that it consists, virtually, of a grounded-grid triode (V_{2}), and a cathode-follower driver $\left(\mathrm{V}_{1}\right)$, and so is a relatively wide bandwidth device, since Miller effect is absent.

On the positive half-cycle of the input, the common cathode follows the grid of V_{1}, and V_{2} is

Electronic Circuitry-

cut off. if the input is of sufficient amplitude. On the negative halfsycle of the input, the current in V_{1} is soon reduced to zero and is, in fact, transferred to V_{2}; thereafter V_{1} is cut off and has no further effect. When V_{2} is cut off, V_{1} is working as a cathode follower

as the standard pentode type) the current charges the grid coupling condenser and imposes an undesired negative bias on the valve. This can only be eliminated by ensuring that such a limiter is driven from a lowimpedance source-a requirement which is not imposed by the double triode circuit.

The characteristic of the limiter of the figure is much as shown in

Fig. 2. Cathodecoupled limiter. Typical values are : $\mathrm{E}_{\mathrm{HT}}=250 \mathrm{~V}$, $\mathrm{E}=50 \mathrm{~V}, \mathrm{R}_{\mathrm{c}}=$ $27 \mathrm{k} \Omega, \quad \mathrm{R}_{\mathrm{L}}=$ $27 \mathrm{k} \Omega, \mathrm{E}_{\mathrm{p}}=3.5 \mathrm{~V}$,
$\mathrm{E}_{\mathrm{o}}=50 \mathrm{~V}, \mathrm{E}_{\mathrm{in}}$ (peak) 50 V (approx.). $\mathrm{V}_{1}, \mathrm{~V}_{2}$, ECC_{35}.
peak input voltage can be handled without grid current in V_{1}. This is a very real advantage if the mark/space ratio of the clipped wave must be constant with varying input amplitude. In limiters depending on grid current (such

Fig. 3, and it will be seen that limiting action does not begin to take place until the peak input amplitude is greater than F_{p}. A short cut-off valve such as the (Mullard) ECC35 or ECC9I should therefore be used when E_{p} must
be small. It is obvious that separate valves nay be used if a double triode of exactly the desired

Fig. 3. Characteristics of limiter.
characteristics is not available.
In design, the values of R_{1} and R_{2} should be chosen to permit the use of a fairly high value of R_{c}, and the drop, E, across R_{2} should be 20 to 100 volts. The peak-to-peak amplitude of the output waveform will be $\mathrm{E}_{\mathrm{o}}=$ $\mathrm{ER}_{\mathrm{L}} / \mathrm{R}_{\mathrm{c}}$ approximately, and the maxinum permissible peak input will be that corresponding to the onset of grid current as calculated for V_{1} with an anode current of $\left(\mathrm{E}+\mathrm{E}_{\mathrm{in}}\right) / \mathrm{R}_{\mathrm{e}}$, and an anode voltage of $\left(E_{H T}-E-E_{\mid n}\right)$, as is usual for a cathode follower.

The writer feels certain that this circuit has been published elsewhere, but has been unable to trace any reference to it. Any information on this point would be much appreciated.

New Book

Valve Technique. By D. N. Corfield and P. V. Cundy. Pp. 99; 59 figures. The Radio Society of Great Britain, New Ruskin House, Little Russell Street, London, W.C. 1 . Price 3s 6d.

THIS publication sets out to " present in as simple a manner -as possible the calculations associated with the application of thermionic valves." It is obvious that only a part of this field can be covered in the space of 99 pages, and. many omissions can be explained by the somewhat obscure line of demarcation drawn between valve and circuit technique. Subjects clearly on the "valve" side of the line, on which little or no information is given, include voltage stabilizers, crystal valves, limiters, noise diodes, and frequency drift in local oscillators. The last two of these are of particular importance to anyone concerned with communication receivers and the authors have missed an opportunity of fill-
ing some of the more serious gaps in existing amateur radio literature.

The greater part of the book is comprised of useful material. The various "Classes" of power amplification, voltage amplification (audio and video), letectors, frequency changers, frequency multipliers, power rectifiers and cathode and anode followers are treated in a simple manner adequate for most purposes, which will appeal particularly to those readers who like numerical examples.

The treatment of noise in valve amplifiers (Ch . IX) contains numerous misleading statements. Johnson noise is attributed to thermal agitation of molecules and descríbed as dependent on the passage of a current, bandwidth is wrongly defined, the equivalent noise temperature of a television aerial (actually about $5,000^{\circ}$) is taken as 293°, and instead of obtaining the required input circuit bandwidth by proper aerial coupling a damping
resistance is introduced, and with it unnecessary noise (correctly calculated) and loss of signal. The figures given for " the input impedance (R_{c}) of valves intended for V.I.F. operation" are only correct for valves such as the EF54, and the figure of merit for different valves is not, as stated, the noise resistance $\mathrm{R}_{e q}$ but for most purposes the ratio $\mathrm{R}_{e} / \mathrm{R}_{e q}$, both quantities being (for example) about ro times higher for Acorns than for the EF54.
The section on wide-band amplifiers is technically correct as far as it goes, but the presentation is misleading; for example the bandwidth is expressed in the form $f \sqrt{L / C / R}$ which makes it apparently depend. ent on f and L, instead of in the more useful form $1 / 2 \pi \mathrm{CR}$. There is no mention of the valve "figure of merit," $\mathrm{g}_{m} / \mathrm{C}$.
The glossary defines Q as the " usefulness" of a tuned circuit. If this were correct the circuits in a wide-band amplifier would be more "useful" with the damping resistances removed! The definition of "Class A" is at variance with BS2O4. \quad L. A. M.

Novel Car Radio

Two-Unit T.R.F. Receiver for Mounting Above the Windscreen

THE car radio receiver made by the Kiresta Electric is quite different from any other apparatus of its kind both as regards the nature of the construction and the circuit design. It consists of two parts, the most interesting one being the receiver unit, which is assembled in a long flattened tube measuring 15 by $2 \frac{1}{4}$ by 1 in , designed for mounting along the top edge of the windscreen. Where space is available it could even be fitted between the inner fabric and the roof of the car.

A small control pillar, containing the scale, the tuning knob, onoff switch and volume control projects downwards at one end, where it is very conveniently located for the driver. In the majority of cars it will be at about eye level, but being close to the vertical screen pillar it does not impair the driver's view ahead.

The main technical feature of interest is that a T.R.F. circuit is

The R.F. unit of the Kresta Car radio set is intended to be mounted above the windscreen. Above is an enlarged view of the control column.
steel tape, the movement of which is effected by the tuning mechanism inside the control pillar. This carries a spirally engraved scale marked with the names of the principal ISritish and European broadcast stations.

The volume control is concentric with the tuning knob and combines the function of switching on and off the set.

A separate wavechange is not employed, but it is arranged that when the tuning control reaches the end of its travel insulated tongues on the dust core carriages trip switches that bring the long-wave circuits into use. For use in

Loudspeaker, power output valve and H.T. supply are contained in one unit, which is usually fitted below the instrument panel.
used with permeability tuning, giving continuous coverage on the medium waveband and one spot frequency on the long waves. There are three R.F. stages, each completely screened from its neighbour, and these, in conjunction with the very efficient interstage couplings employed, give ample sensitivity for all normal requirements in a car.

As only a limited amount of travel of the adjustable dust cores is possible in a set of this design, the necessary variation in coil inductance is obtained by using Ushaped cores and binocular coils. The cores are operated by a thin
this country these circuits are pretuned to the Light programme.

Four valves are used in the receiver unit, two being exclusively R.F. amplifiers. The third, a double-diode R.F. pentode, combines the functions of R.F. amplifier, detector and A.G.C., while the fourth is an A.F. amplifier.
The signal from the receiver is fed, via a screened cable, to the supply unit which contains a power amplifier, loudspeaker and a synchronous-type vibrator for the H.T. supply.

During the course of a brief test made in the centre of London Continental broadcast stations
were well received with the car in motion and using a very short inside aerial.

Although only one suppressor was fitted to the engine, in the coil lead to the distributor, ignition noise was noticeably absent. The power unit contains filters in the input supply leads, and owing to the mounting position of the set the lead to the aerial is well removed from the worst zones of interference.

Heavy lorries, coaches and buses produced some interference when passing, but otherwise the reception of the Home and Light programmes was free from extraneous and background noise. The A.G.C. is particularly good, and the performance in general was most impressive. The quality of reproduction compared very favourably with that of the average domestic receiver operating under very much more favourable conditions.

The receiver is made by Kresta Electric, L,td., Parkes Street, Warwick, and distribution is effected by J. H. Carvill \& Co., Ltd., 5 , The Vinyard, Richmond, Surrey. It costs $£ 22$ plus purchase tax, and both 6- and I 2 -volt models are available. The consumption on 12 volts is 2.75 amps only.

VALVE TESTING

ANEW range of valve adaptors (including types for the B9G, B8s, etc.) for use with Taylor valve testers has been introducerl by Taylor Electrical Instruments, I.trl., 419, Montrose Avenue, Slough, Bucks. There is also a new issue of the firm's valve supplement.

Performance

IN recent years the growing popularity of the resistancecapacitance oscillator and the superlative performance of the best crystal oscillators have tended to divert attention from the merits of the inductancecapacitance oscillator. For many purposes the fixed-frequency LC oscillator provides a performance which is quite adequate, and which is considerably better than that obtainable from an RC oscillator. Indeed, a good LC oscillator is quite as stable as a bad crystal oscillator.

The bridge-stabilized LC oscillator, which is described in this article, has a very high short-

By THOMAS RODDAM

the valve characteristic and their exact performance is difficult to calculate in advance. Usually they are not calculated at all exactly, but a rough calculation is followed by a series of trials of different component values until a satisfactory performance is achieved. This circuit, however, really does work exactly as predicted, and the job of prediction is no harder than that of designing a single-valve Class " A" amplifier: in fact, that is all it is. Moreover, the waveform of the oscillator is very good.

Fig. 1. Circuit diagram of high-stability LC oscillator. $C_{1}, C_{4}, 950 \mathrm{pF}+$ 100 pF variable; $\mathrm{C}_{2}, 2 \mu \mathrm{~F} ; \mathrm{C}_{3}, 0 \cdot 1 \mu \mathrm{~F} ; \mathrm{C}_{5}, 500 \mathrm{pF}+10 \mathrm{pF}$ variable ; R_{1}, see text ; $R_{2}, 82 \Omega ; R_{3}, 22,000 \Omega ; R_{1,1,000 \Omega ;} R_{5}, 100,000 \Omega ; R_{69}, R_{7}, 100 \Omega ;$ $R_{8}, 1,500 \Omega ; R_{9}, 2,000 \Omega$ variable $; R_{10}, R_{11}, 50 \Omega ; V_{1}, 6 A G 7 ; \mathrm{R}_{2}, \mathrm{~V}_{3}$, VRI50; T_{1}, T_{2}, L, see text.
period stability, and has the additional advantage that it works exactly as calculated. Most oscillator circuits depend to some extent on the non-linearity of

The oscillator described was designed to operate at a frequency of $20 \mathrm{kc} / \mathrm{s}$ to provide calibration points at $20 \mathrm{kc} / \mathrm{s}$ intervals up to $1.5 \mathrm{Mc} / \mathrm{s}$. The actual frequencies
$n \times 20 \mathrm{kc} / \mathrm{s}$ were obtained by means of a single-valve transitron pulse generator, locked at $20 \mathrm{kc} / \mathrm{s}$, which will not be described here. The $20 \mathrm{kc} / \mathrm{s}$ was checked by beating the loth harmonic with the Droitwich transmitter carrier in an ordinary broadcast receiver. If the beat is adjusted to one per second the frequency is correct to within 5 parts in a million, so that the 50th harmonic, which is $1 \mathrm{Mc} / \mathrm{s}$, is within $5 \mathrm{c} / \mathrm{s}$ of the correct value. This was more than sufficient for the purpose for which the oscillator was constructed. Furthermore, a crystal oscillator using an X-cut crystal, without temperature control, had failed to give this accuracy, but was causing trouble owing to the trust in crystals which led the users to leave the frequency unchecked for too long. The LC oscillator gave a short-term stability of 1 in 10^{5}, so that the error at $\mathrm{I} \mathrm{Mc/s}$ never exceeded $10 \mathrm{c} / \mathrm{s}$.

All oscillators consist essentially of an amplifier and a selective feedback network. The circuit of Fig. I has been arranged so that the two parts of this oscillator can be seen clearly. The lower part is the amplifier, a single high-gain pentode, with tuned input and output circuits. Negative feedback is not used, for any improvement obtained by stabilizing the amplifier itself is lost as a result of the reduced gain. The feedback network is the upper part of the circuit, which is redrawn in Fig. 2. If the coil has an effective resistance R at the operating frequency and the lamp has a resistance R_{0}, the bridge is exactly balanced if $R_{8}=R_{7}=R=R_{0}$. This can only be true if $1 /(2 \pi f)^{2} \mathrm{LC}$ $=\mathrm{I}$: that is, if the tuned circuit is resonant at the operating frequency. Suppose now that R_{0} is reduced slightly; then the bridge will give a finite output: if \mathbf{R}_{0} is increased beyond the balance
point, the bridge will give a finite output, but in the opposite phase. If therefore the value of R_{0} is initially below that needed for balance, the feedback circuit can be connected so that it gives positive feedback. Increasing R_{0} reduces the feedback until, as R_{0} passes through the balance point the feedback becomes negative. If a small change of frequency is

This means that the amplifier must have an available output of 1160 milliwatts, of which 1000 milliwatts is useful power and 160 milliwatts is dissipated in the bridge. The valve chosen was the 6AG7, a high-slope pentode. Operated with an anode voltage of 300 , and 150 volts on the screen, the anode and screen currents are 30 mA and 7 mA respectively with -3 volts on the grid. Thie optimum load is then 10,000 ohms, the cathode bias resistor 82 ohms and the mutual conductance in $\mathrm{mA} /$ volt. The screen dropping resistor

Fig. 2. Feedback network and its equivalent circuit.

made, two things happen: there is phase shift at the output and there is also, if R_{0} is less than the value for balance, a reduction in the amplitude. The operation of the oscillator depends on making R_{0} self adjusting to the correct value which will just maintain oscillations at a chosen level. By using a small tungsten-filament lamp, any increase in the bridge input causes an increase in the power dissipated in the lamp, and consequently an increase in R_{0}. This reduces the amount of positive feedback and the amplitude is reduced accordingly. It is assumed that the amplifier is operating under Class "A" conditions and that it has zero phase shift.

The design starts with the choice of a lamp. The one actually used was a 4.5 volt torch bulb which was found to have a resistance of 100 ohms at 2 volts and a characteristic shown in Fig. 3. If approximately equal ratio arms are used in the bridge, the bridge impedance is roo ohms and the total power dissipated is 160 milliwatts. The bridge input voltage is then 4 volts R.M.S.

It was decided to design the oscillator to give I watt output.
be stable to within $\pm \mathrm{IpF}$, we must be sure that this will not produce too great a frequency shift. The frequency shift produced by a detuning of $\mathrm{I} \mathrm{c} / \mathrm{s}$ in the transformer secondary, assumed to have a Q equal to Q_{1}, will be $Q_{1} / Q_{2} \mathrm{c} / \mathrm{s}$, where Q_{2} is the Q of the frequency controlling circuit. This is because the phase shift produced by detuning the transformer must be balanced by a phase shift in the fecdback tuned circuit, and the oscillation frequency changes until the two phase shifts are equal and opposite.

We can probably assume a Q of 200 for the tuned circuit: for the transformer we can take a O of ro. The effect of detuning the transformer is then to produce i/2oth c / s change in oscillation frequency for each i c/s detuning. We know also that if we change the tuning capacitance by $\boldsymbol{x} \%$ the frequency will change by $x / 2 \%$. Then if we change the transformer tuning capacitance by $x \%$ the operating frequency will change by $1 / 20 \times x / 2 \%$. For this oscillator it was decided to keep the instability from this cause to within $\pm \frac{1}{2} \mathrm{c} / \mathrm{s}$ at 20,000 c / s, with an assumed change in valve capacitance of 1 pF . Immediately it can be seen that the total grid capacitance must be $1,000 \mathrm{pF}$. As the Q is to be ro, this gives a secondary impedance of $Q / 2 \pi f C=80,000$ ohms so that a step-up of $1: \sqrt{800}$,

Fig. 3. Characteristic of tungstenfilament lamp used in bridge.
or $1: 28$, is used. The overall gain from bridge output to bridge input is then $28 \times 11 \times 10 \times$ $1 / 27$, or just over 40 decibels. The loss through the bridge is, of course, also 40 decibels, which is very close indeed to the balance point.

High-stability L.C. Oscillator-
Both anode and grid are tuned with $1,000 \mathrm{pF}$, from which the inductance at $20 \mathrm{kc} / \mathrm{s}$ is given immediately as 63.5 mH . To save a little arithmetic the grid ratio was made $1: 27$, so that both step-up at the amplifier input and step-down to the bridge are the same. The inductance of the bridge windings is then $87.2 \mu \mathrm{H}$. The step-down to the load is 108: 10, which means that the

ris. 4. Inductance values required in the dust-cored input and output transformers.
load winding must have an inductance of 0.545 mH . These values are collected together in Fig. 4. The transformers were constructed on special dust cores which are not commercially available. They are quite straight forward affairs, however, though it is probably worth while making the bridge windings screened and balanced if facilities are available.
The inductance for the frequency control circuit must have a resistance of about 100 ohms at $20 \mathrm{kc} / \mathrm{s}$. The writer used a 127 mH coil, tuned by 500 pF , which had a Q of just over 200 . This gives a resistance of 80 ohms, and it was considered that this was satisfactory. The stability increases as the Q is increased, so that a good Q is desirable and the recommended procedure is to use that value of inductance which will give a resonant impedance of $80-100$ ohms with the core material available. If it is impossible to get such high values with a good Q, the design must be modified to use a lower bridge impedance by the use of unequal ratio arms or a lower resistance lamp.

The actual setting up of the circuit is quite easy if a reasonable amount of test equipment is available. The amplifier is connected up and an input of about 20 millivolts at $20 \mathrm{kc} / \mathrm{s}$ applied to the input transformer. The input and output circuits are tuned for maximum gain, and the input
transformer is loaded with R_{1} to bring the Q down to about ro. If an oscilloscope is available the tuning can be done very exactly by collapsing the ellipse produced when the input is applied to the X plates and the output to the Y plates. This is not as easy as it looks, because the oscillograph amplifiers must have identified phase shifts at $20 \mathrm{kc} / \mathrm{s}$ if it is to be carried out successfully. When the amplifier has been adjusted the feedback circuit is connected and the resistance $R_{\text {, adjusted }}$ until the circuit oscillates and gives an output of 10 volts R.M.S. across the load winding or 306 volts peak-to-peak at the anode if an oscilloscope is to be used for the measurement. By adjusting R_{8} we can control the operating level until it is equal to that assumed in the design, which we know to be well within the Class " A" limits. If no accurate way of tuning up C_{1} and C_{4} is available, it is possible to get the optimum values by varying the anode voltage and observing the frequency shift. C_{1} and C_{3} are trimmed to give the best stability. Several different anode voltages must be used, as there is a danger of passing through zero beat and getting a false value for the frequency shift.

In the circuit of Fig. i there are a few additional points which require mention. When first adjusting the circuit to operate at the correct level R_{9} was set to its mid position and R_{6} or R_{7} trimmed by means of a paralle! resistance to achieve an approximate balance. R_{10} and R_{11} were used simply because the following circuit requires 5 volts input in a high-impedance circuit, and it was necessary to dissipate the one watt for which the oscillator was initially designed. Voltage stabilization was included to save the trouble of checking the overall stability of the oscillator, which was needed for immediate use. Neon stabilizers were also connected across the heater supply circuits, although this precaution has now been removed. The whole oscillator, including the VRI5o's was mounted inside a metal box and this was enclosed by a wooden outer box. Heating lamps and a bimetallic strip maintained the internal temperature at $40^{\circ} \pm 1^{\circ} \mathrm{C}$: this also was
intended to be a time-saving feature. Other oscillators of this type now under construction will not include such elaborate precautions.

The calculation of oscillator values above really does mean something: it is as easy as that. In the writer's experience oscillator circuits are normally very stubborn brutes, if only because adequate valve data is not available to enable the amplitudes to be calculated. This circuit, operating as it does well within the lincar region of the valve characteristic, behaves exactly as it should. It is well worth using when a stable fixed frequency is needed, and is probably satisfactory if modified to work over a limited band by the use of a wideband amplifier.

News from the Clubs

Baldock.-The call sign of N . F . Wilshire, secretary of the Baldock and District Radio Club, was misquoted in our last issue; it is C3CEL'

Halifax.-Mretings of the Halifax Experimental Kadio Society are held fortnightly in the Toc II Kooms, Clare Koad, Halifax. Sec.: E. Allen, 13, New Road, Halifax, Yorks.

Romford.-The transmitter, Gikil / P. of the Komford and District Amateur Radio Society is now operating on 160 metres. Reports will be welcomed Weekly meetings are held on Tuesdays at 8, at the Y.M.C.A., Western Road, Romford. Sec.: R. C. E. Beardow, G3FT, 3, Geneva Gardens, Whalebone Lane N., Chadwell Heath, Essex.

Southall.-The West Middlesex Amateur Kadio Club is in need of a permanent club room where a workshop can be provided for memburs leetings are held on the second and fourth Wednesdays of the month at 7.30 at the Labour IJall, Uxbriclge Road, Southall. Sec.: C. Alabaster, 34, Lothian Avenue, Hayes, Middlesex.

Stockport.-It is learned from the late secretary of the Stockport Amateur Short-Wave Radio Society that it is at present inactive owing to the lack of suitable premises.

Walworth, -The radio clut, associated with the Walworth Men's Institute has been reconstituted and the new secretary is B. E.. Symons, 100, East Dulwich Grove, London, S.E. 22

Watford-Monthly meetings of the Watford Kadio and Television Saciety are held at 7.30 on the first Tuesday in each month at the Carlton Tea Rooms, Clarendon Road, Watford Sec. S. E. Sumner, (i3BGK, 48, Hilfield Lane, Aldenhatu, IHerts.

Weston super-Mare Group, R.S.G.B., meets at 7.30 on the first Friday of each month at the Y.M.C.A. Sec.: W. C. Holley, G5TN, 252, Locking Road, Weston-super-Mare, Som.

Frame Deflector-coil

Conditions in Coil and Valve

IT is well known that the backE.M.F. across a deflector coil which is carrying a saw-tooth current consists of the sum of a pulse and a saw-tooth voltage. The pulse voltage is produced by the inductive element of the coil and the saw-tooth by the resistive element. The magnitude of the latter depends on the amplitude of the current, but the magnitude of the pulse depends on the rate of change of the current.

In the case of the line scan the inductive back-E.M.F. greatly predominates and the resistive component is often considered negligible in comparison. The frame scan is much slower, however; the inductive back-E,M.F. is only about $1 / 5,000$ th as great and it is usually small compared with the voltage drop across the resistive element. Because of this, it is sometimes thought that the inductance of a frame deflector coil is an unimportant quantity and that only the resistance is important.

This would be true if only the scan conditions had to be considered, but it is very far from being true when the fly-back is taken into account. Resistance and inductance then become of at least equal importance. In order to show this, it is necessary to examine in some detail not only the characteristics of the deflector coil but the conditions in the valve and circuit which are used to feed it.

During the scan period t_{1}, which is 19 msec for the present transmissions, it is assumed that the current in the deflector coil has its ideal form and changes linearly with time in the manner shown by Eqn. (I) of the appendix. The power which must be supplied to the deflector coil is given by Fqn. (2) and, since r_{1} is a constant, it depends on two factors only- $1^{2} \mathrm{~L}$ and R / L.
With a given cathode-ray tube, picture height and final anode voltage the magnitude of these
factors depends only on the design of the deflector coil. Under these conditions the magnetic field required in the neck of the tube is of constant maximum amplitude. Now the term $\mathrm{I}^{2} \mathrm{~L}$ is a measure of the total field produced by the coil. Consequently, if the field in the tube neck stays constant, an alteration in the value of $I^{2} \mathrm{~L}$ means a change in the ratio of the useful to the total fields. Regarding the coil in its primary function as a field-pro-

Fig. 1. Basic circuit of a resistancecapacitance fed deflector coil.
ducing device, its efficiency increases as $\mathrm{I}^{2} \mathrm{~L}$ becomes less. In the design of a deflector coil, therefore, it must be a major aim to minimize the value of $1^{2} \mathrm{~L}$.
The second term, R / L, is a measure of the resistance loss and, again, it is clearly advantageous to minimize it. Its importance depends on its magnitude relative to $6 / \tau_{1}$, however. Practical values of R / L range from about 200 to 2,000 while the value of $6 / \tau_{1}$ is 316 . In practice, therefore, the value of R / L has a considerable influence on the power needed by the coil.

It is important to note that with a deflector coil of given design the values of both $\mathrm{I}^{2} \mathrm{~L}$ and K / L are substantially independent of the number of turns, N , on the coil. It is well known that under the conditions assumed the ampere-

By W. T. COCKING, M.I.E.E.

turns NI are constant and $\mathrm{L} \propto \mathrm{N}^{2}$; therefore

$$
I^{2} \propto I / N^{2} \text { and } I^{2} L \propto \frac{I}{N^{2}} \times N^{2}=
$$ constant, For a given wire diameter $\mathrm{R} \propto \mathrm{N}$, but for a constant winding area the wire area is inversely proportional to N ; hence, $R \propto N^{2}$ and R / L is constant.

The coil power is thus independent of L. Varying the inductance does alter the ratio of voltage to current, however, and has the same effect as altering the turns ratio of a matching transformer. The inductance must be chosen to suit the valve and its supply voltage, and its choice becomes a form of impedance matching.

The foregoing remarks about the constancy of $I^{2} L$ and R / L are true only for a coil of given design. By changing the physical shape of the coil and the winding area, large changes in their values can be obtained. Not a great deal of information about their possible values is available, but there is some evidence to indicate that R / L tends to increase as $\mathrm{I}^{2} \mathrm{~L}$ decreases.

So far only the question of the coil power has been considered. The magnitude of this is not a matter of very much interest in itself, however, for the factor of real importance is the power drawn from the H.T. supply. This must be greater than the coil power but does not necessarily bear any direct relation to it.

Two methods of coupling a valve and a deflector coil are available-transformer and resist-ance-capacitance coupling. Both are conimonly used, but there is an increasing tendency towards the use of the latter because it permits an appreciable saving of wire and laminations to be made. In view of this, only resistancecapacitance coupling will be considered here, and the circuit is shown in Fig. 1.

Frame Deflector-coil Efficiency-

It will be assumed that the valve characteristics are linear and that the capacitance of C is large enough for any voltage change across it to be negligible. In practice neither assumption is strictly true, and a finite capacitance is used to compensate for non-linearity of the valve characteristic. ${ }^{1}$ However, the voltage changes across C are normally sufficiently small to have an unimportant effect on the power calculations.

The conditions existing in the valve are sketched in Fig. 2, for a pentode (a) and for a triode (b). The D.C. load line is K_{a} and the mean voltage drop across this resistance is $i_{0} \mathrm{R}_{\text {o }}$, where i_{0} is the mean anode current. Ignoring for the moment the effect of the inductance, the A.C. load line is for $\mathrm{RR}_{a} /\left(\mathrm{R}+\mathrm{R}_{a}\right)$ and is drawn through the intersection of the R_{a}-line with the i_{0}-current ordinate. During the scan there is a constant back E.M.F. of magnitude $L . I / \tau_{1}$ across the inductance, however, and so the actual load line is displaced to the left on the diagram by this amount.

The relations involved are developed in the Appendix and Eqns. (5), (6), (7) and (8) summarize everything of importance during the scan.

From the point of view of power efficiency there is an optimum relation between the coupling resistance R_{a} and the coil resistance R which is given by Eqn. (9). Provided that this relation can be adopted there is a direct relation between the input power $P_{i n}$ and the coil power P_{L}, and a reduction of the latter involves a reduction of $P_{i n}$ of the same order of magnitude. No such relation necessarily exists if the optimum value of $\mathrm{R}_{a} / \mathrm{R}$ is not used.

In practice, it is common to find that the optimum value cannot be used, for the attainment of proper fly-back conditions sets a minimum value to R_{a}. It is usually permissible to ignore shunt-capacitance effects on the frame fly-back. If, also, the flyback of the grid-voltage waveform s more rapid than that of the a node, the conditions are approximately those of a current-carrying

[^6]coil L shunted by a resistance $\mathrm{R}_{\text {f }}$ comprising R in series with the parallel value of K_{a} and r_{a}, the effective A.C. resistance of the valve.

The current has changed by 98 per cent of its total value when $\tau_{2} \mathrm{R}_{f} / \mathrm{L}=4$, where τ_{2} is the flyback time; this is 1 msec for the present transmissions. This leads to Eqn. (Io) which gives the smallest value of $R_{\|} / R$ which is

Fig. 2. The operating conditions of the valve are shown here (a) for a pentode and (b) for a triode.
permissible if an adequately rapid fly-back is to be secured. When fly-back is to be secured. When
the A.C. resistance of the valve is high, as it usually is with a high, as it usually is with a
pentode, the simpler Eqn. (It) can be used.

When R / L is fairly large (say
When R / L is fairly large (say
above $\mathrm{I}, 500$) $\mathrm{R}_{\text {a(OPT, }}$ is usually larger than $\mathrm{R}_{a(M 1 s)}$ The optimum larger than $\mathrm{R}_{a(\mathrm{Yls})}$. The optimum
condition can be adopted and $\mathrm{P}_{\text {in }}$ is usually proportional to P_{L}; the fly-back time may be less than the fly-back time may be less than the
maximum allowable value, but there is no harm.in this. With there is no harm. in this. With
smaller values of R / L, however, $\mathrm{R}_{\text {a(OPT) }}$ will be less than $\mathrm{R}_{a(\mathrm{YIN})}$, and it is necessary to adopt the minimum permissible value in
order to obtain a sufficiently rapid fly-back. It is found that under this condition, which is a common practical one, $P_{i n}$ does not depend nearly so much on P_{L}. In particular, $P_{\text {in }}$ becomes insensitive to changes of R / L.

Expressed somewhat more fully, the input power is always reduced if the coil power is lessened by a reduction of $1^{2} \mathrm{~L}$. If the reduction is achieved ly altering R / L, however, it entails a corresponding reduction of input power only if R_{a} can be close to its optimum value. This entails reducing R_{a} and R together. Beyond a certain point, however, it is necessary to increase R_{a} as R is reduced in order to maintain a sufficiently rapid fly-back. When this happens
the efficiency of the coupling falls off rapidly as the efficiency of the coil increases and the net result is only a small change of input power. As a consequence, there is usually little to be gained by reducing R / L beyond a certain point.

Before giving an example of this it is necessary to consider the valve. There are three important factors-the values of V_{1}, i_{1} and r_{a}.

The value of i_{1}, the minimum permissible anode current is set chiefly by the amount of nonlinearity which can be allowed, and it varies somewhat with different
valves. It is not possible to assign any exact value to i_{1} without rather lengthy and laborious calculation. With the sort of values usually adopted, however, it is generally satisfactory to take i_{1} as about 5 mA -of the order of ro-20 per cent of the mean anode current. The main effect of choosing a low value of i_{1} is to increase efficiency and valve distortion; the latter makes it more difficult to secure a linear scan. The value of i_{1} is usually much the same for both triode and pentode.

The value of V_{1}, the minimum permissible anode voltage, varies much more. With a triode it is set quite definitely by the intersection of the i_{2}-ordinate ($i_{2}=$ peak current $\left.=i_{1}+\Delta i_{a}\right)$ with the gridvolts curve for a grid-cathode voltage which is just sufficiently négative to avoid grid currentabout -IV. The working A.C. load line must be arranged to pass through this point, as shown in Fig. 2 (b). It is only necessary to inspect a number of valve curves to see that V_{1} increases markedly with an increase of $i_{2} . \quad V_{1}$ depends also on the A.C. resistance of the valve and increases with it. With a valve of under $\mathrm{I}-\mathrm{k} \Omega$ resistance V_{1} is likely to be around $50-100 \mathrm{~V}$ with one of $3-\mathrm{k} \Omega$ resistance it is of the order of $100-150 \mathrm{~V}$, and still more with a higher resistance valve.

In the case of a pentode, V_{1} is again set by the intersection of the i_{2}-ordinate with a grid-volts curve, This curve is not now necessarily the one which just avoids grid current, although this still sets one limit ; it may be one more negative than this. It is set chiefly by the knee of the curve and does not vary with current nearly as much as with a triode. It nearly always lies between 50 V and 100 V , and in most cases is around 70 V .

It is clear from Fig, 2 that V_{1} reduces the effective H.T. voltage. Consequently its practical importance depends on its value relative to E_{HT}. If E_{HT} is very large compared with V_{1}, a change in the latter will affect the input power very little, whereas if the two are of comparable magnitude an increase of V_{1}, say, will entail a reduction of L and an increase in I and i_{0}, and hence, quite a large increase of $P_{i n}$.

If the A.C. resistance of the
valve is below a certain value it is not possible with any value of R_{4} to obtain a quick enough fly-back in the absence of negative current feedback. With a higher value an adequate fly-back is possible, but entails the use of a much higher value of R_{a} than would be needed for a pentode. This results in some improvement of current efficiency but a considerable reduction of voltage efficiency, and the power efficiency is nearly always lower.

However, it is always possible to make the effective valve resistance as high as with a pentode by using sufficient negative current feedback. The A.C. resistance does not then affect the power efficiency. lt is usually found, however, that the input voltage to the grid becomes inconveniently large when this is attempted, and it is rarely practicable to use as much feedback as this.

It is also desirable to consider the power loss in cathode-bias and screen-feed circuits. A triode tends to need more bias than a pentode, although not all types do, and so the power loss in the cathode resistor tends to be greater. There is, however, no screen-grid to supply.

It is not possible to draw any general conclusion about the superiority of either type of valve. In some cases there is not a great deal to choose between the two. However, it will nearly always be found that the pentode

TABLE I

		Coil A	Coil B
L	(H)	1	1
R	(Ω)	1,700	208
1	(mA)	40	58
12I.		0.0016	0.00034
R/L		1,700	208
$\mathrm{P}_{\mathbf{L}}$	(W)	0.269	0.149

is better than the triode when the H.T. supply voltage is under about 250 V , for then the lower value of V_{1} obtained with this valve has a considerable influence and there will also be no loss in a dropping resistor for the screen supply-only the actual screen loss of the valve itself. At higher voltages V_{1} becomes less important, and as few pentodes can be
operated with the screen at more than 250 V , a dropping resistol becomes necessary and causes an extra power loss. The triode may then become the more efficient of the two, but it may still be the less convenient on account of the large amount of negative feedback required. In addition, the highvoltage low-current conditions suited to a triode clemand a high value of inductance in the deflector coil, and it may prove impracticable to wind a suitable coil.

In order to illustrate these effects two deflector coils of very different design will be considered. Both are of $\mathbf{1 - H}$ inductance, but whereas one - coil A - has $\mathrm{R}=\mathrm{I}, 700 \Omega$ and $\mathrm{I}=40 \mathrm{~mA}$, the other-coil B-has $\mathrm{R}=208 \Omega$ and $\mathrm{l}=5^{8} \mathrm{mlA}$. The values of $\mathrm{I}^{2} \mathrm{~L}$ are thus respectively 0.0016 and 0.0034 , while I / L has the values I,700 and 208. Coil A is the more efficient of the two in producing a magnetic field where it is needed for deflecting the beam of the C. R. tube, but coil 13 has a much lower resistance loss in its windings. As far a.i the coil power is concerned the resistance loss outweighs the field loss and coil B needs little more than one-half the power of coil A. For convenience of reference the relevant figures are collected in Table I.

Now consider the use of these coils with a pentode valve of high A.C. resistance for which $\mathrm{V}_{1}=70 \mathrm{~V}$ and $i_{1}=5 \mathrm{~mA}$. The first stẹp is

TABLE II
$V_{1}=70 \mathrm{~V} ; i_{1}=5 \mathrm{~mA} ; r_{a} \rightarrow \infty$

		Coil A	Coil B
$\mathrm{R}_{\text {a }}{ }_{\text {(OPT }}$	(Ω)	2,760	670
$\mathrm{R}_{\mathrm{a}}^{\text {(M1N }}$)	(Ω)	2,300	3,800
i_{0}	(mA)	37.3	35.5
i.	(mA)	69,5	66
$\mathrm{E}_{11 \mathrm{~T}}$	(V)	210	215
$\mathrm{P}_{\text {in }}$	(IV)	7.85	7.65

to apply Eqns. (9) and (10). As shown in Table II, the optimum values of R_{a} for coils A and B are $2,760 \Omega$ and 670Ω, whereas the minimum permissible values are $2,300 \Omega$ and $3,800 \Omega$ respectively. In the case of coil A the optimum value is higher than the minimum, and it can be adopted. With coil B , however, the minimum value is much higher than the

Frame Deflector-coil Efficiency-

optimum, and it is necessary to adopt this minimum value. In what follows, therefore, the values of R_{a} for coils A and B are respectively $2,760 \Omega$ and $3,800 \Omega$.

The application of Eqns. (5), (6), (7) and (8) leads to the remaining figures of Table II, and it is interesting to see that the powers drawn from the H.T. supply are almost the same7.85 W and 7.65 W . Practically speaking, the difference is negligible. Although one coil needs only about one-half the power of the other, because of the fly-back requirement it can only be coupled so much less efficiently to the valve that there is virtually no difference in the demands on the H.T. supply.

Now with a valve such as the EL33 with a screen-cathode potential of 215 V the grid bias needed is approximately -4.25 V and the grid saw-tooth voltage input some 7 V p-p. The screen current is some 4 mA . For coil B , therefore, there is a screen power loss of $215 \times 0.004=0.86 \mathrm{~W}$ and a cathode bias-resistor loss of $4.25 \times 0.0395=0.168 \mathrm{~W}$. The total power drawn from the H.T. supply system thus becomes $7.65+0.86+0.168=8.078 \mathrm{~W}$.

If the same valve is connected as a triode it has an A.C. resistance of about $3,000 \Omega$, and so a large amount of negative feedback must be used. Suppose R_{a} is made arbitrarily $4,500 \Omega$, then γ_{a} must be $24,500 \Omega$ and sufficient feedback must be employed to increase the effective A.C. resistance from $3,000 \Omega$ to $24,500 \Omega$.

With this value of R_{a}, i_{o} and i_{2} are negligibly different from their previous values. Inspection of the valve curves for $i_{2}=66 \mathrm{~mA}$ and - I V between grid and cathode shows V_{1} to be 180 V . The grid bias needed is about -3.7 V and the bias power loss is some $3.7 \times 0.0355=0.13 \mathrm{~W}$. Application of Eqn. (7) gives $\mathrm{E}_{\mathrm{HT}}=350 \mathrm{~V}$ and so $\mathrm{P}_{\text {in }}=12.4 \mathrm{~W}$ and the total power becomes $12.4+0.13=$ 12.53 W as compared with 8.08 W for the pentode. Taking feedback into account the input grid voltage needed will be about $5.4 \times$ $24,500 / 3,000=44 \mathrm{~V}$ p-p. The pentode input of $7 \mathrm{~V} \mathrm{p}-\mathrm{p}$ will, in practice, be greater rather because it is usually desirable to employ some feedback even with this
type of valve in order to linearize the characteristic. The difference of input grid voltage is not, therefore, a very important one.

In this instance the pentode is very considerably superior to the triode on a power basis. This superiority is due almost entirely to the lower value of V_{1} obtainable with it. It is obvious from first principles that the advantage of the pentode will decrease if I. is made larger, for this will decrease the current needed and V_{1} will fall more for the triode than for the pentode. Such a change will increase E_{HT}, however, and this may be undesirable; in addition, with some designs of deflector coil it is inconvenient to make L much over i H, for it entails the use of very fine wire, and there is an increased risk of fracture during the construction.

It thus becomes clear that the pentode usually leads to higher power efficiency than the triode, and this is especially the case when the H.T. supply voltage is limited and it is necessary to use a deflector coil of moderate inductance and needing a fairly large current. In seeking to improve efficiency it is much more important to reduce $I^{2} \mathrm{~L}$ than l / L as long as the latter is not of such a value that $R_{u(O \mu T)}$ is much less than $\mathrm{R}_{a(\mathrm{Mn})}$.

Appendix

l.et the current through the de-

$$
\begin{equation*}
\left(\frac{\mathrm{R}_{a}}{\mathrm{R}}\right)_{\mathrm{OQT}}=\frac{\sqrt{2}^{-}}{\mathrm{I}+2 i_{1} / \mathrm{I}} \sqrt{1+\frac{\mathrm{L}}{\tau_{1} \mathrm{R}}+\frac{\mathrm{V}_{1}}{\mathrm{IR}}} \tag{9}
\end{equation*}
$$

and
$\mathrm{E}_{\mathrm{HT}}=\mathrm{V}_{\mathbf{1}}+\frac{\Delta i_{n}}{2} \cdot \frac{\mathrm{KR}_{a}}{\mathrm{R}+\mathrm{R}_{a}}$

$$
\begin{gather*}
+\frac{\mathrm{LI}}{\tau_{1}}+i_{0} \mathrm{R}_{a} \\
=\mathrm{V}_{1}+i_{1} \mathrm{R}_{a}+ \\
 \tag{7}\\
\\
\mathrm{IR}\left(1+\frac{\mathrm{R}_{n}}{2 \mathrm{R}}+\frac{\mathrm{L}}{\tau_{1} \mathrm{R}}\right) .
\end{gather*}
$$

The power drawn from the H.T. supply is clearly,
$\mathrm{l}_{i n}^{i_{i n}}=\mathrm{E}_{\mathrm{HT}} i_{0}$
Differentiating (7) with respect to $\mathrm{R}_{a} / \mathrm{R}$ and equating to zero gives for the optimum value,

When the change of voltage across C can be considered negligible, this is also the back E.M.F. on the anode of the valve additional to the mean voltage drop in \mathbf{K}_{a}.

Referring to Fig. 2 the D.C. load line for R_{a} is drawn from $E_{H T}$ in the usual way and the mean drop across it is $i_{0} R_{a}$. The A.C. load line for $\mathrm{RK}_{a} /\left(\mathrm{R}+\mathrm{R}_{a}\right)$ is drawn through its intersection with the i_{0}-current ordinate. On account of the back E.MI.F. across L, the actual working line during the scan is displaced by the amount $\mathrm{I} I / \tau_{1}$.

The change of voltage during the scan is clearly $\Delta i_{a} \frac{\mathrm{RR}_{a}}{\mathrm{R}+\mathrm{R}_{a}}$ and this must be equal to the change of voltage across the coil resistance IR. Hence,

$$
\begin{equation*}
\Delta i_{a}=\mathrm{I}\left(\mathrm{I}+\frac{\mathrm{R}}{\mathrm{R}_{a}}\right) \quad \ldots \tag{4}
\end{equation*}
$$

By inspection of Fig. 2,
$i_{0}=i_{1}+\Delta i_{a} /_{2}$

$$
\begin{align*}
i_{0} & =i_{1}+\frac{\mathrm{I}}{2}\left(\mathrm{I}+\frac{\mathrm{R}}{\mathrm{R}_{a}}\right) \quad \ldots \\
i_{2} & =i_{1}+\Delta i_{a} \\
& =i_{1}+\mathbf{I}\left(\mathbf{1}+\frac{\mathrm{R}}{\mathrm{R}_{a}}\right) \ldots \tag{6}
\end{align*}
$$

lhe current through the de
flection coil have the ideal form
$i_{\mathrm{L}}=\mathrm{I}\left(\frac{t}{\tau_{1}}-\frac{\mathrm{I}}{2}\right)$.
during the period τ_{1} of the scan.
The power loss in the resistance is $I^{2} \mathrm{R} / \mathrm{I} 2$. The energy stored in the inductance once each cycle is $\mathrm{LI}^{2} / 2$ and this is dissipated in the resistance elements during the following flyback. The total powet supplied to the deffector coil is thus :-
$\mathrm{P}_{\mathrm{L}}=\frac{\mathrm{I}^{2} \mathrm{~L}}{12}\left(\frac{\mathrm{~K}}{\mathrm{~L}}+\frac{6}{\tau_{1}}\right)$
The back E.MIF. across the deflector coil during the scan is,

$$
\begin{align*}
& -\left(i_{\mathrm{L}} \mathrm{R}+\mathrm{L} \frac{d_{\mathrm{L}}}{d t}\right) \tag{3}\\
= & -\left\{\operatorname{IR}\left(\frac{t}{\tau_{1}}-\frac{\mathrm{I}}{2}\right)+\frac{\mathrm{LI}}{\tau_{1}}\right\}
\end{align*}
$$

the minus sign indicating that it acts in opposition to the E.M.F., which drives the current through the circuit.

During fly-back the coil current is approximately of the form,

$$
i_{\mathrm{L}}=\mathrm{I}\left(e^{-t \mathbb{R}_{f} / \mathrm{L}}-\frac{1}{2}\right)
$$

assuming shunt capacitance effects to be negligible and the fly-back time of the grid voltage to be less than that of the anode. The change of voltage is 9^{8} per cent complete when $t \mathrm{R}_{f} / \mathrm{L}=+$ where $\mathrm{R}_{f}=\mathrm{R}+\frac{\mathrm{R}_{a} r_{a}}{\mathrm{R}_{a}+\gamma_{a}}$. and so the minimum permissible value of R_{a} / R is,

$$
\begin{equation*}
\left(\frac{\mathrm{K}_{a}}{\mathrm{R}}\right)_{\mathrm{y} 1 \mathrm{Y}}=\frac{\mathrm{I}}{\frac{1}{\frac{4^{\mathrm{L}} \mathrm{R}}{\tau_{2}}-1}-\frac{\mathrm{R}}{r_{a}}} \tag{10}
\end{equation*}
$$

and when r_{a} is large this reduces to,

$$
\begin{equation*}
\left(\frac{\mathrm{R}_{a}}{\mathrm{R}}\right)_{\mathrm{XIN}} \approx \frac{4 \mathrm{~L}}{\tau_{2} \mathrm{~K}}-\mathrm{I} \tag{II}
\end{equation*}
$$

Providing technical information, service and advice in relation to our products and the suppression of electrical interference

SUPPRESSION AT THE SOURCE

A customer wrote to us about the suppression of H.F. interference from a pump motor. He had tried one of our L. 300 mains filters (usually fitted at the receiver end) without success. We wrote confirming that it would probably do the job but that it must be fitted as near as possible to the pump motor, stressing the fact that "every inch matters." Back came the reply that " Fitting your L. 300 suppressor close up to the AC/DC motor, with only a 3 in. lead, has entirely cured the interference trouble. It was previously about four feet away and with a poor earth."

This leads us to a fundamental point. It is preferable to apply suppression at the source of trouble, where one suppressor will cure the interference for everybody. The fact that we manufacture more expensive filters and aerial systems does not deter us from encouraging simple effective remedies -we prefer to sell our products on the goodwill derived from giving sound technical advice. It would be pointless to advise the erection of a costly aerial where interference from a vacuum cleaner or similar appliance could be suppressed adequately with a flex lead suppressor ${ }^{*}$ I, at a fraction of the cost.

The "Belling a Lee" Flex Lead Suppressor L301 for fitting in the supply lead to vacuum cleaners, hairdriers, fans, etc. *I

SUPPRESSION AT THE RECEIVER

If the source of mains borne interference is inaccessible or untraceable, a mains filter (" BellingLee" List No. 300/3 or $305{ }^{*} 2$) should be tried at the mains outlet point, from which the receiver is being fed. It is essential, however, to establish that interference is mains borne before seeking a remedy of any kind. This can be done simply by detuning the receiver to a point between stations and where interference is heard at its highest level; the aerial and earth should then be disconnected and if no perceptible reduction of noise leve] results, it may be assumed either that the interference is mains borne,

The well-known set lead suppressor L300 Manfd. by Belling \& Lee Ltd. is normally fitted at the plug point supplying the receiver. *2
or that the receiver itself is collecting radiated interference from house wiring or adjacent metal objects. If, on disconnecting the aerial, the interference ceases, a further test should be made.,

Move the receiver away from the mains supply socket, until the mains lead is almost straight. Connect to the aerial terminal of the set, about six feet of wire and hold it, fully extended, first at a right-angle then close to and parallel with the mains lead. If the interference increases when the aerial lead is placed near the .mains lead, the presence of mains borne interference may be assumed. If mains filtering, in these circumstances, does not provide suppression, it can be accepted that suppression at the source of the interference is essential.

ANTI-INTERFERENCE AERIALS

A mains filter will not be effective against radiated interference, which reaches the set by way of the aerial or earth systems, or both. An "Eliminoise " ${ }^{*} 3$ or " Skyrod " * 4 anti-interfercnce aerial system gives the best results when this type of interference has to be overcome. It is necessary, however, that this equipment should be sited properly so that the responsive portion of the aerial is erected in a position which is reasonably free from interference. By this means, cloar signals are fed to the receiver through the interference field bythe screened downlead which prevents the superimposition of the disturbance.

Relative merits of vertical and horizontal aerials are :
(I) Since most interference is horizontally polarised a vertical collector is usually less responsive to it.
(2) The effective height of an 18 feet vertical spike is somewhat less than that of a 60 feet horizontal span erected at the same height, with a consequent reduction in signal pick-up.
(3) Generally, signal to noise is improved by employing the vertical rod.
(4) The vertical aerial is more readily installed in different situations (e.g. where no garden space is available.)
(5) For multi-point installations the vertical spike will supply 5 or even 6 points and the horizontal span will feed 12 points without amplification.
(6) The vertical aerial is very much less susceptible to night fading on local stations due to its poor response to downcoming high angle waves.
*I. Flex $^{\text {I }}$ lead suppressors L. 301 (3 core) 21/-. L.il74 (2 core) 12/6 each.
*2 Set lead suppressors L. 300/3 (I amp.) all wave $59 / 6$ each. L. 305 (2 amp.) Short and Medium wave $63 /$-.
*3. "ELIMINOISE" (Regd. Trade Mark) Anti-interference aerial kit L. $308 / \mathrm{K}$ complete shown above £6 $\mathbf{6 s}$.
*4. "SKYROD " (Regd. Trade Mark) Vertical, chimney fixing 18 ft . spike with "Eliminoise" transformers screened downlead and earth wire etc.
L. $638 / \mathrm{K} £ 10$.
L. 638 collector only $£ 4 \mathbf{4 s}$.
*5. "ELIMINOISE" additional receiver transformers for multi-point installations.
L. 307 receiver transformers each 22 s .
L. $621 / 5$ receiver lead each 9 s .

ERRATUM

" Belling \& Lee " page " Wireless World" June. Sub.: Burnt-out Eliminoise Transformers. Para I Line 12. 10 milliamps should read r.o milliamps.

World of Wireless-

writer states that the only additional equipment is an extra modulator at the tramsmitter-which is connected to a telephone line-and at the receiving end a unit connected to the telephotie and an additional threevalve unit in the receiver.

The picture is given a flicker which cannot be steadied unless the viewer asks the local telephone operator to connect him to the television station, whereupon the beam becorres steady. The telephone operator records the period during which the viewer was connected to the station and the charge for the I.V. service is added to the telephone bill.

It is pointed out that the use of P.V. does not interfere with incoming and outgoing telephone calls.

L.C.C. RADIO COURSES

I^{N}addition to the full range of courses in electrical and telecommunication engineering and applied physics for the National Certificate and City and cuilds exams, the South-East I.ondon Technical College is providing a number of special day and evening courses for the next session which commences in September.

Among these are the following, each of which will be held on one evening per week:-

Television-Two courses, one of about 12 lectures and one of about 30 lectures athe practical work.
Industrial Electronics-ahout 25 let. tures.
Communication Networks (Theory anl Design)-ahbut 30 leetures.
Communication Engineering Foonomic: about 30 lectures.
Applications of the C.R.T. to Intustrial 1'roblems-about 6 lectures.
Rallo.Frequency Measurements-about 10 evenings, including practical work. High-Vacumm Technique-about 6 lectures.
Electronic Equipment and Instrumenta tion-about 6 lectures.
The printed prospectus for the 194^{8-49} session will be available in August from the College, I.ewisham Way, London, S.E.4.

RESEARCH FOR INDUSTRY

THE firm of Mactaggart \& Evans has opened a Research Institute at Sondes Place, Dorking, Surrey, for general investigations into the problems of industrial production. The services of the institute are available to small firms who may not be in a position to maintain research departments of their own. Work is undertaken for an agreed fee, and any patents arising from the research become the property of the client.

The laboratories are equipped for chemical, physical, biological and metallurgical research and there is
an electronics laboratory dealing primarily with problems of servocontrol in industrial processes. Other work for which this section is equipped includes ultrasonics, elec-tro-biological research and the development of electro-mechanical computing methods.

TELEVISION CONSTRUCTION

ANEW printing of the booklet "' Television Receiver Construction" (consisting of reprints of a series of Wireless World articles) is now available: price as oxl from booksellers or $2 s$ gd by post from our Publishers.

The Mullard MW22-7 C.R. tube used in the set as described is tending towards obsolescence and the makers have introluced a new type to replace it. This is the MW22-I4C and is identical except for a heater-current rating of 0.3 A instead of o.6A. The new tube can be used, therefore, without any alteration to the equipment.

PERSONALITIES

Sir Edward Appleton, secretary of 1).S.I.R., has recently bern honoured by two foreign academies. Ite has been elected a Foreign Member of the Royal Swodish Academy of Science and a Nember of the Pontifical Academy ot Sciences. The latter has only seventy members, who are nominated by the l'ope.
L. H. Bedford has been awarled the liellow:hip of the American I.R.E. " for his development of special circuits, particularly those used for scantning purposes, in television." As Cossor's director of research he was one of the first two industrial engineers to be taken into the confirlence of the Government on radar. He is now with Marconi's.
T. E. Goldup celebrated on July and twenty-five vears' service with Mullards, of which he is now a director.

T. E. GOLDUP.

For some years he was in charge of the Technical Service Dept. and in 1938 was made a director of the subsidiary company, Rarlio Transmission Equipment, Ltd., at Balham.
C. R. Nortcliffe has resigned from the Boards of British Rola and Celestion but is maintaining his export connections. His address is "Riverhome," The Green, Hampton Court, Middx. (Tel.: Molesey 379.5).

IN BRIEF

Television Licences have increased nearly threefold during the past twelve months. The number in force at the end of May, 1947, when it was for the first tine possible to know the number of viewers, as all the old ios sound-and-vision licences had expired, was 18.850. At the end of May this year the total reached 52.500 , an increase of 3.300 in a month.

Broadcast Licences in force at the end of May totalled $11,2,35,700$. This number includes television licences.
P.T. on Pickups.-It has been ruled by H.M. Customs and Excise that where a matching transformer is sold with a pickup, but not as an integral part of the pickup, the transformer shall not, in future, be subject to Purchase Tax, which is now $60 \% \%$ on gramophone equipment. In consequence of this decision, the following price revision for the Marconiphone Type it lightweight pickup and transformer is announced: [ickup $\& 2$ 10S, P.T. \mathcal{L} is 8 d ; transformer $£ \mathrm{I} 5$ s.
"Cast out the beam. . . ."-B.B.C. staff will not in future be permitted to use their private cars on Corporation business unless interference suppressors have been fitted. "Suppression" is now a prerequisite for car allowances. The cost of fitting the suppressor will be borne by the Corporation.

Olympic Games.-Television receivers are being installed by the Radio Industry Council in all the Embassies for the duration of the Olympic Games, mans events of which will be televised by the 13. B.C. Fxtensive arrangements are being made by the 13.B.C. to facilitate the coverage of the Games by reporters from overseas.

Scientific Films.-The second congress of the International Scientific Film Association will be held in London from Octoleer ath-ilth. The primary ain of the Association, which was founded by twenty-two countrites last year, is " to raise the standard and to promote the use of the scientific film... in order to achieve the widest possible understanding of scientific method and outlook. . ." Details of the congress are available from the Scientific lFilm Association, 34, Soho Square, Iondon, W.i.

Record Library. - A choice of more than 2,00 records, inchoding frequencs test discs, is available to subscribers to the Vorkshire Gramophone Library 166, Briggate, I.eteds, 1. The postal service provides a parcel of ten records per month and subscriptions range from $\mathcal{L I}_{1} 1556 d$ for three months, to $£ 6556 d$ for a year. There is a returnable deposit and subscribers undertake to use thorn or fibre needles except where express permission is given to use an approved lightweight pickup.

Frequency allocations to all services in the entire telecommunication spectrum- $10 \mathrm{kc} / \mathrm{s}$ to $10,500 \mathrm{Mc} / \mathrm{s}-\mathrm{as}$ agreed at the Atlantic City conference, are given on a sisteen-colour chart, measuring 54 in by zoin, issued by Mullards. The vertical columns are divided into three-one for each of the three Regions. It is available from the Communications Ihivision, Mullard 1:lectronic Products, L.td., century. House, Shaftesbury Avenue, London, W.C.2, price 30s. A smaller six-colour exlition will be available later.

Television Demonstrations are now given every afternoon from 3 to 4 at the Science Muscum, South Kensington. Admission to the Museum, which is open from to a.m. to 6 p.m. weekdays and from 2.30 to $6 \mathrm{p} . \mathrm{m}$. on sundays, is free.

Aids to Production.-Although the first national mechanical handling exhibition, held at Olympia in July, was mainly concerned with the handling of heavier products than those generallyassociated with the radio inclustry, there were some examples of mechanical aids to light production engineering. A full report of the show will be given in the August issue of our associated journal Mechonical Hundling.

Brazil.-The new broadcasting station in Recife, Brazil, equipped by Marconi's for the Radio Jornal do Commercio, was inatugurated on Julv. 3 rd. The installation includes a $20-\mathrm{k} W$ M. W. transmitter and two $25-\mathrm{kW}$ S.W'. transmitters.

Television and the Cinema.- A convertion is being organized by the Société de Radioélectriciens of France on the question of the relationship between television and the cinema. It will be held in Paris in the autumn and invitations have been sent to other countries for contributions. Full details are obtainable from the society, 10 , Avenue l'ierre Larousse, Malakoff (Seine). France.
N. American F.M.-Agreement hat been reached between the L.S. and Canada regarding the allocation of frequencies for F.M. stations, their power and height of aerial. Eighty-one frequencies have been distributed among Canada's nine provinces.

Royal Yacht Radio.-Broarlcast receivers and radio-gramophones for the King of Norway's yacht "Norge" were supplied by Golden Voice Radio, Letd., 25, Haymarket, London, S.W.I. Special superheterodyne receiver chassis were designed to work from the ship's mains and the cabinet work of the seventeen pieces was varied to blend with furniture and panelling.
I.P.R.E.-A Midlands Section of the Institute of l'ractical Radio Fengineers has now been formed. The secretary is F. Prosser, 27. Duncroft Road. Yardley, Birmingham, 26.

Amateur Radio Exhibition.-The second annual exhibition of amateur radio equipment is being organized bv the R.S.G.B. and will be held in London from November 17 th to 20 th.
I.E.E. Council. - Among the new members of the Council of the I.E.E.
to fill the vacancies which occur on Sept. 3oth are A. J. Gill, B.Sc. (Eng.), who is appointed a vice-president, and Dr. W. (\%, Radley, C.B.E., from the Kadio Suction.

FREDERICK SMITH, O.B.E.
I.E.E. Radio Section.-The new chairman of the I.E.E. Ratio Section Committee is Frederick Smith, O.B.LE. who is general manager of the M.O. valve co. There are two vice-chairmen this year; they are R. T. B. Wynn, M.A. 13.13.C. asst. chief engineer, and C. F. Booth, O.B.F.., staff engineer in charge of the Post (Offier Radio levelopment Branch. The following have been electerl to fill the four vacancies occurring on the committee on Sept. 3oth: Dr. H. C. Booker, M.A. (Cavendish Laboratory, (Cambridge); Jr. I. F. Broarlway, 13.Sc. (E.M.I. Research Laboratorits); E. Fennessy, O.B.E., B.Sc. (Decca); and F. R. Willis, B.Sc. (Eng.) (Sir Alexander (ibb \& Partners).

INDUSTRIAL NEWS

Magnetic Disc Recorder.-A portalble recording machine, the "Recordon," using paper or blastic discs coated with powdered magnetic material, is to be manufactured under licence in this country by Thermionic Products, L.td., Pratt Walk, London, S.E.II. The machine, which is intended prinarily for office dictation, weighs about in lb and gives a playing time of 3 minutes (appros. 450 words) per disc. The design is hased on the "Mail-a-Voice" recorder of the Brush Development Co., of America
"Better Listening."-l'lans have been marle by IS.K.E.M.A. to launch a " Better Listening" campaign in the atutum to encourage the replacement of old receivers and, in the London area, the purchase of television sets. The campaign will be run from September 26th to October 9th.

Radio Ball.-The second annual Kadio Industries Club Ball will be held at Grosvenor llouse, Park Lane, on September 3oth.

Philips Electrical has installed two 50 -watt amplifiers and over fifty lourlspeakers at Lord's Cricket Ground

Mullard-Hallicrafter Agreement provides for Hallicrafter-designed com-
munication transmitters and receivers to be manufactured by Mullards, who will also represent Hallicrafters in the (I.K., Eire and Australasia.

Varconi E.H.F. radiotelephone equipment was installed in each of the six tugs used during the launching of the whale-tanker "Kosmos V," at Nidedesbrough, on July 8th. The equipment, together with a seventh set temporarily ftted in the " Kiosmos V," will tacilitate the handling of the ship, the longest- 675 ft -launched at this port.

British Rola, Ltd.-At the reguest of the company a receiver has been appointed to go into its affairs with a view to reconstruction. A net loss of over $\notin 10,6 \%$ was incurred last vear compared with the previous year's proft of over tra,oon.
E.M.I.-The Service Division of E.M.I. Sales and Survice, Ltd., has been transferred from llayes to the recently acquired Sheraton Works, Wadsworth Road, Greenford, Middx. (Tel.: l'erivale 3.344), to which all enquiries regarding servicing should be addressed. The E.M.I. London depot, previously at Clerkenwell Road, has also been transferred to Greenford, where all orelers for gramophone records and accessories should be sent.

Philco.-In addition to the reduction in price of Philco sets consequent upon the decrease in liarchase Tas the lhilco Radio and Television Corp. is arljusting the prices of receivers so that the selling price will be reduced by about 25 per cent.

Partridge. - The new factory for Partridge Transformers, Lted., on the Kingston By-pass, Tolworth, Surrey, is nearing completion and it is hoped to start production in August. Enquiries should continue to be sent to the new offices in Peckford l'lace, London. S.VV.9. (Tel.: Brixton 6506.)
S. G. Brown, Ltd., who manufacture hearlphones and precision instruments, have moved from North Acton to a larger factory in Shakespeare Street, Watford, Herts. (Tel.: Watford 7241).

Goodmans.-The telephone number of the registered offices and works of Goodmans Industries, Ltd., at Lancelot Road, Wembley, has been changed to Wembley $1 z 00$.

Melton Metallurgical Laboratories, Ltd., manufacturers of " liepuid silver" for capacitors, have moved from Slough to 42, Towngate Street, Poole, Dorset (Tell.: l'oole 872-3).

Wolsey Television has moved to 7.5, Ciresham Roard, Brixton, loondon, S.W.9. (lactory: 102. Barrington koarl, S.W.g.)

Tannoy.-Guy R. Fountain, Itd., who manufactures Tannoy equipment, has gone into conipulsory liquidation.

Advert. Corrections. - In the advertisement of Reprotucers and Amplifiers, L.td., in our June issue, the tolerance should have been given as ± 0.0005 innot o.oosin as printed. Purchase tax on the Collaro Nicrogram de Luxe equipment, incorrectly given in the July issue advertisement, should be 68 12S IId.

More Cathode-ray Tube Data

Further Notes on Ex-service Types

THE following list has been compiled in response to a number of requests for an extension of the original list given in the December, 1947, issue.

A number of correspondents were anxious to have details of C.R. tubes suitable for use in television receivers, but a careful search has revealed only one type with white

Compiled bv
D. W. THOMASSON

trace, large screen (izin) and magnetic deflection. This tube, the the CV274, has not been seen in the surplus market as yet. and it seems that television experimenters must
either put up with a green or blue trace and electrostatic deflection or buy in the civilian market.

There are a good many tubes for magnetic deflection, but they are mostly of the "afterglow" type, and useless for television. It is useful to note that such screens can gencrally be identified by the greenish tint of the screen caused by

[^7]
More Cathode-ray Tube Data-

phosphorescence. After exposure to sunlight, the screen glows plainly when shaded again. This will not,
of course, identify a tube with a "dark-trace" screen.

All but two of the tubes listed are 4-V heater types, the current drawn
being of the order of IA. The deflection and focus are generally electrostatic, the exceptions being noted.

BASE TYPES
There are a large number of variations between tubes of a given type, but the connection lists are framed to cover these as far as possible.

SYMBOLS: $G=$ Grid (Modulator); $H=$ Heater; $K=$ Cathode; Coa $=$ Coating (internal); $X_{1}, X_{2}, Y_{1}, Y_{2}=X$ and Y-axis deflector plates $A_{1}=1$ st anode $; A_{2}=2$ nd anode $; A_{3}=3$ rd anode ; $A_{4}=$ Splitter plate in double-beam tubes.

The probable variations are : Coating and A_{1} to A_{3}, K to H, and X_{1}, Y_{1} to A_{3}.

HIFAM
 E.H.F. Amplitude-modulated Broadcasting in U.S.A.

IN common with a large number of radio engineers, it has been the writer's opinion that the extra high frequencies could be utilized more economically by using A.M. than F.M. In order to study the radio service possibilities, particularly for small zommunities, of A.M., an experimental station, W9XHZ, was constructed in Bloomington, Indiana. W9XHZ operates on a frequency of 87.75 megacycles with radiated power into the aerial of 200 watts. The word "HIFAM" (highfidelity A.M.) has been coined to describe the service.

In the area covered by $\mathrm{W}_{9} \mathrm{XHZ}$, the terrain is very hilly, some of the hills around the transmitter being as high as 900 feet above sea level. The aerial, which is non-directional, is 795 feet above sea level. It consists of eight coaxial units mounted vertically and hanging down from the tower platform, and has a power gain of about ro. This is a very inexpensive type of aerial to construct. It gives vertical polarization, which has advantages when small vertical aerials are used for reception.

In all urban districts of Bloomington, the field strength is high, ranging from 250,000 to

By SARKES TARZIAN

$5,000 \mu \mathrm{~V} /$ metre. The $50-\mu \mathrm{V}$ per metre contour is about 25 miles with 200 watts of radiated power. The maximum power output of the transmitter is 500 watts. The fidelity characteristic of all components was specified as $\pm 3 \mathrm{db}$
from 30 to $10,000 \mathrm{c} / \mathrm{s}$. A compression amplifier is used in order to maintain a relatively high modulation level. The fidelity characteristic of the studio, equipment is $\pm 1 \mathrm{idb}$ from 30 to 15,000 c / s.

Amplitude modulation permits the use of inexpensive converters

Fig. I. Circuit diagram of the converter unit described. The input frequency is $87.75 \mathrm{Mc} / \mathrm{s}$ and the output $\mathrm{I}, 500 \mathrm{kc} / \mathrm{s}$.

HIFAM-

with standard broadcast band receivers which are already in use in thousands of homes. A great deal of development work was done in the design of an inexpensive converter to be sold at $\$ 5.95$; the circuit arrangement is shown in Fig. I. The problem was to build a highly stable oscillator with a frequency stability of 0.002%. It is essential to have high signal/noise ratio in the mixer stage. This was achieved by using a high ${ }_{\mathrm{sm}}^{\mathrm{m}}$ tube as mixer (6BA6 and 12BA6). The frequency stability was obtained by using a "chimney" type of construction which maintains a flow of cool air at room temperature

The inexpensive converter used for the American experiments in A.M. broadcasting to small communities on 87.75 Mcs .
past the oscillator components. An Invar oscillator coil and zerocoefficient capacitors are used in the oscillator tank circuit. In all cases the oscillator stabilizes after ten minutes. In many cases it is stable after five minutes. Fig. 2 shows the drift characteristic in production units. The overall
gain of the converter is 25 . The average broadcast band receiver with 5 or 6 tubes has a signal/ noise ratio of about 25 to 1 . Production converter units have a
ment with age will not cause such serious distortion as in E.M. receivers. In all our tests since May, 1946, we have encountered no multipath distortion. The

Fig. 2. Frequency stability curves of production models of the converter shown in Fig. I.
signal/noise ratio of over ino to 1 . Converters that have been in operation since July, 1946, have fulfilled the designers' expectations.

We have also developed small converters with an R.F. stage. These have been used in the 50 to $100-\mu \mathrm{V}$ field strength areas and have given excellent results. These units can be sold for $\$ 9.95$ to the public.

Several combined broadcastband and E.H.F. receivers were developed. A low-cost 6 -tube receiver was designed which is no more complicated than any stan-dard-band receiver with a simple short-wave band added. Common broadcast components can be used throughout. The band width of the IF system, which is tuned to $460 \mathrm{kc} / \mathrm{s}$, is broadened for HIFAM use. The HIFAM-AM receiver can be sold at a profit for $\$ 29.95$. Receivers for the AM system will always be simpler and cheaper than those for F.M.

In larger console type HIFAMAM receivers, it is possible to eliminate all oscillator drift. This is accomplished by using a crystal (cost $\$ 1.20$) to obtain a double superheterodyne. In addition to a standard broadcast band receiver, a crystal and two tubes are used for HIFAM reception.

Very satisfactory radio service has been given to the small community of Bloomington with a radiated power of 200 watts, and there has been no trouble from atmospheric interference, because the frequency use is inherently immune. Man-made electrical disturbances cause very little interference at $88 \mathrm{Mc} / \mathrm{s}$ and higher.

HIFAM receivers are very stable and any change in align-
country is very hilly and multipath distortion would be easily detected il present. This is another decided advantage of HIFAM over F.M.

Due to its nature HIFAM needs a much narrower band of frequencies than F.M. This permits the assignment of a greater number of stations on a given frequency spectrum. The number assigned will depend, of course, on the highest modulation frequency.

Pre-set Tuner Unit

THE tuner illustrated has been produced to simplify the construction of small superhet broadcast sets. Ganging and alignment of circuits are avoided by using preset tuning and a selector switch giving the choice of three stations in the medium waveband and one in the long.

Efficient dust iron coils with adjustable cores are used and the Sensitivity and selectivity should compare favourable with the more usual capacitor tuning.
The unit measures $3 \times 2 \frac{1}{2} \times 3$ in and costs 33 s . Makers are Electro Technical Assemblies, Eta Works, West Hill, St. I.eonards-on-Sea,

Eta switch-selected four-station tuner.

MODEL A.D./47 10-VALVE TRIODE CATHODE FOLLOWER AMPLIFIER

This is a 10 -valve amplifierfor recording and play-back purposes for which we claim an overall distortion of only 0.01 per cent., as measured on a distortion factor meter at middle frequencies for a 10 -watt output. The internal noise and amplitude distortion are thus negligible and the response is flat plus or minus nothing from 50 to $20,000 \mathrm{c}$'s and a maximum of .5 db down at $20 \mathrm{c} / \mathrm{s}$.
A triple-screened input transformer for $7 \frac{1}{2}$ to 15 ohms is provided and the amplifier is push-pull throughout, terminating in cathode-follower triodes with additional feedback. The input needed for 15 watts output is only 0.7 millivolt on microphone and 7 millivolts on gramophone. The output transformer can be switched from 15 ohms to 2,000 ohms, for recording purposes, the measured damping factor being 40 times in each case.
Built-in switched record compensation networks are provided for each listening level on the front panel, together with overload indicator switch, scratch compensation control and fuse. All inputs and outputs are at the rear of the chassis

Send for full detolls of Amplifier type AD/47

C.P. 20A. 15 watt AMPLIFIER

for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. to D.C. and " stand by "positions and only consumes $5 \frac{1}{2}$ amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.5 and 15 ohms. Complete in steel case with valves.

As illustrated. Price $\mathbf{C 2 8} 00$

RECORD REPRODUCER

This is a development of the A.C. 20 amplifier with special attention to low noise level, good response ($30-18,000 \mathrm{cps}$.) and low harmonic distortion (I per cent. at 10 watts). Suitable for any type of pick-up with switch for record compensation, double neg. ative feedback circuit to minimise distortion generated by speaker. Has fitted plug to supply 6.3 v . 3 amp . L.T. and $300 \mathrm{v} .30 \mathrm{~m} / \mathrm{a}$
 Complete in metal cabinet and extra microphone stage. As illustrated. Price 25 Gns. CHASSIS. without extra microphone stage. Price $\mathbb{1 2 1}$.

257-261 THE BROADWAY, WIMBLEDON, LONDON, S.W. 19
TELEPHONES: LIBerty 2814 and 6242-3.
TELEGRAMS : "VORTEXION, WIMBLE, LONDON."

LOUDSPEAKERS at the OLYMPIC GAMES

Obviously, for the Olympic Games, the loudspeaker arrangements must be the finest available in the world. That is why the Olympic Games Committee have relied very largely on Philips.

Philips loudspeakers will be installed at the
EMPIRE STADIUM, WEMBLEY
(opening and closing ceremonies and main events)
WEMBLEY POOL
(swimming and boxing)
WEMBLEY PALACE OF ENGINEERING (fencing)
WINDSOR GREAT PARK
(long distance eycle race)
LYONS' SPORTS GROUND, SUDBURY GUINNESS' SPORTS GROUND, PARK ROYAL POLYTECHNIC STADIUM, CHISWICK (preliminary hockey heats)
ALDERSHOT, CENTRAL COMMAND GROUND (equestrian events and modern pentathlon)

The responsibility for the sound amplification at these events is being shared by Philips Electrical Ltd., and Dealers.

 LIM।TED

AMPLIFIER DEPARTMENT, CENTURY HOUSE, SHAFTESBURYAVE.,LONDON, W.C.2.

FOR CAREERS IN ELECTRONICS

An E.M.I. correspondence course, brings students into direct contact with scientists of Britain's Largest Electronic organisation.

BASIC RADIO or BASIC TELEVISION
(Ready this Autumn)
INTERMEDIATE MATHS.
HIGHER MATHS.
ADVANCED RADIO
INDUSTRIAL ELECTRONICS

Also FULL TIME COURSES

Whatever course is chosen, the E.M.I. staff give first hand up-to-the-minute knowledge of the application of electronics to industry. Write for full details to:-

The Principal: Professor H. F. TREW'MAN, M.A. (Cantab) M.I.E.E., M.I.Mech.E., M.Brit.I.R.E.

E.M.I. INSTITUTES LTD.

 Dept. 16, 43, Grove Park Rd., London, W. 4

EER CAPACITANCE OR ATTENUATION

IMMEDIATE DELIVERIES FOR HOME \& EXPORT
Write ar cowto for doto sheets or delineres to
TRANSRADIOLTD.
comrnacrons to me. covtamment
43a CROMWEH ROAD IONDOM SWX
(IVCIS. TRANSRAD. AOMOON

Quality in the Home Are High-Powered Amplifiers Necessary?

SO much has been written on the design of high-quality amplifiers that it may appear to readers, especially after the recent articles by D. T. N. Williamson and P. J. Baxandall, that the subject is played out, and that there can be little justification for monopolizing the time of readers by a further article. Yet despite this I humbly submit that much that has been written is inconsistent, and that the underlying basic data of many amplifiers is based on false premises.
In Wireless World, March noth, 1938, "Cathode Ray" had been advocating remedies for "scale-distortion" as he called it, and the climax came when he visited the Queen's Hall, London, with " loutness" measuring equipment to prove that there was such a differcnce between the actual and reproduced levels of sound that a "weighting" network was necessary at the reproducing end to restore the bass response to the same level as the middle register.

The loudest playing of the B.B.C. Symphony Orchestra in peaks was 105 phons, the softest 55 phons. The sustained climaxes of loud playing were 90 phons. In measurements in a small room furnished in the customary style the power needed for a similar level was only I $\frac{1}{2}$ watts. The extreme contrasts were perhaps io phons less. I take this to mean the range in the Hall $55-105$ phoris was compressed to $60-$ loo phons in the room. This is borne out by his other measurements with a commercial receiver, nominal output $3 \frac{1}{2} W$ (actual about 2), which gave ito phons close to the speaker and less than roo some distance away. Assuming that the power ouput in the distorted condidition was $3 \frac{1}{2} \mathrm{~W}$ I deduce a mean level of 103 phons. Taking the $1 \frac{1}{2}$ watts and adding 5 db (to restore the peaks) we have an output of 5 W for a peak intensity of 105 phons which is in close agreement with the $3 \frac{1}{2}$ IV-ro3 phons deduction. Or again, take the third statement that I W pure tone gave ito phons in the mouth of the speaker and considerably less elsewhere, a figure of 5 W for peaks of 10.5 phons is not

By H. S. CASEY

unreasonable. Finally the formula he quoted gave 0.57 W for 100 db or 1. 0 W for 105 dl). Ile expressed doubts about the formula and thought it was a little on the low side.
Summing up I deduce that, with a baftle-loaded moving coil loudspeaker, an output of 5 W is all that is necessary at home to secure maximum ear-drum pressure comparable with that at the Queen's Hall.

> While not being entirely convinced by all the arguments adduced by the writer, we print this article as a salutory reminder of the incontestable fact that equipment for high-quality reproduction should be treated as a whole, and not as a collection of detached pieces.

It is relevant, I suggest, at this point to ask whether this level is necessary for the complete and full enjoyment of serious music. I am aware I am treading on dangerous ground, but it is necessary to go wherever the pursuit leads. I have a number of friends and acquaintances whose radio knowledge is practically nil, but who express keen interest in serious music. They have never suggested that the B.B.C. Symphony Orchestra was itself not powerful enough to fill the Albert Hall, although this hall is considerably larger than the Queen's Hall and must therefore have a lower average "phon" level than the old home of the Promenade Concerts. Such criticism has been made about solo voices and instruments but never, to my knowledge, about the whole orchestra. From this I deduce that there is a fair margin in the ear-drum pressures permissible for the complete enjoyment of orchestral works. The figure of 5 W may therefore be regarded as a " peak of peaks," and a figure of $1 \frac{1}{2} \mathrm{~W}$ maximum is not unreasonable. Remembering that these figures assume expansion by 5 phons, a figure for normal peak output for B.B.C. reproduction would be $\frac{1}{1}$ to $1 \frac{1}{2}$ watts. In case
these figures may appear absurdly small I would add that the $600-$ milliwatt power output of an $A C / P$ valve proved quite satisfactory in my own case for seven ycars with an efficient zin energized moving coil speaker.

There is another aspect of this problem which tends to be over. looked-interference with one's neighbours. For this reason we should aim at the lowest peak level consistent with the full enjoyment of the music and this level is something lower than was experienced at the old Queen's Hall.

I submit, therefore, that our amplifier need not exceed 5 W for high fidelity reproduction in the average home.

The next consideration is frequency response. The limits are variously placed from, say, $50-8,000$ c / s to $10-20,000 \mathrm{c} / \mathrm{s}$. "Cathode Ray," in his article, said that with a pure tone the output varied widely over the room. So far as the listener with normal hearing is concerned binaural listening eliminates to a considerable degree the presence of standing waves produced by reflection, so long as the wavelength of the note is not too great compared with the distance between the ears. This difficulty becomes worse as the frequency decreases and when the wavelength approaches that of the principal measurements of the room, regions of maximum and minimum sound intensity become very marked indeed and their location varies with the wavelength. Realistic reproduction in an average living room is therefore, I suggest, impracticable for notes whose wavelengths are greater than the physical dimensions of the room. Taking the greatest measurement as 15 feet this limits the reproduction to $80 \mathrm{c} / \mathrm{s}$. I submit on this basis that it is impracticable to reproduce in an average living room the sound heard in, say. the nave of Westminster Abbey when an organist is sounding his pedal notes going down to a fundamental frequency of $16 \mathrm{c} / \mathrm{s}$.

So far as I have been able to read there is no equivalent upper limit to the frequency range. Accordingly we need an amplifier with a range from, say, $50 \mathrm{c} / \mathrm{s}$ (to be on the safe

Quality in the Home-

side) to $20,000 \mathrm{c} / \mathrm{s}$ with a power output of 5 W .

The instrument we shall use for reproduction will be a baffle-loaded moving coil loudspeaker. First the loudspeaker: the average 12 in "high fidelity" speaker will handle 12 W at $400 \mathrm{c} / \mathrm{s}$, and this limit on power input is normally dictated by consideration of heat dissipation. I deduce, I hope correctly, from elementary dynamics that the limit on power input based on the amplitude of vibration of the voice coil will be greater at low frequencies. Thus, supposing the 12 W at $400 \mathrm{c} / \mathrm{s}$ was the maximum input before the voice coil travelled outside the zone of uniform magnetic field then the power input at $200 \mathrm{c} / \mathrm{s}$ would be 3 W , at $100 \mathrm{c} / \mathrm{s} \frac{3}{3} \mathrm{~W}$, at $50 \mathrm{c} / \mathrm{s} \frac{3}{16} \mathrm{~W}$, etc. In practice the power-handling capabilities of a loudspeaker are governed by consideration of amplitudes of vibration at the lowest frequencies and heat dissipation at the middle frequencies. There are at least two methods of ensuring a wide excursion of diaphragm movement with freedom from intermodulation difficulties caused by variations in magnetic field. The first, by using a thicker "top-plate" than the length of the voice coil, and the second, converse of the first, by using a longer voice coil than the thickness of the top plate. The objection to the first method is the impracticability of obtaining a high Hux density with a thick top plate. and to the second, the loss of sensitivity and increase in mass of the voice coil. To take a practical example, one manufacturer uses a $\frac{3}{15}$ in top plate with a This limits the travel to $\frac{1}{32}$ in and theoretically the maximum input before frequency doubling occurs at 50 cycles to 1 W . Another speaker with a izin diaphragm can handle $\mathrm{I}_{\frac{1}{2}} \mathrm{~W}$ at 50 cycles before difficulties ensue. It has a \ddagger in top plate. For a 12 in speaker with a top plate of $\frac{1}{2}$ in thickness a reasonable figure for the power handling capacity at 50 cycles would be ${ }_{4} \mathrm{~W}$.

Bass Resonance

Our troubles with the loudspeaker are not yet over, for there are at least two more considerations. First, the frequency of resonance in the extreme bass-I believe it is true to say that the movement of the loudspeaker above this frequency is
substantially inertia controlled, i.e., the stiffness of the surround and suspension do not constitute the major factor governing the amplitude of the diaphragm movement. Below this frequency, however, the audio output falls off sharply. For practical purposes it can be said that the linear range of the acoustic output of a loudspeaker starts from just beyond the frequency of major resonance in the bass. If the reader is interested he is recommended to study the curves of loudspeakers published in Wireless World since 1935 to appreciate this assertion. Let there be no mistake; I am not saying; there is no output below this point, but I am emphasizing the fact that the output is no longer linear with frequency. The fundamental frequency is usually about $60-70 \mathrm{c} / \mathrm{s}$ for the average 12 in speaker. If, therefore, this type of speaker is chosen for high quality reproduction in the average small room there is another reason why we need not bother to go below 50 cycles.

The second difficulty with conventional loudspeakers is the production of spurious notes by a development of the Doppler principle. Take, for example, a speaker reproducing a "pedal" note of an organ at $50 \mathrm{c} / \mathrm{s}$ with a displacement of its diaphragm of $\frac{1}{2} \mathrm{~cm}$ each way from the position at rest and also reproducing a flute note of 1,500 cycles. To the listener the diaphragm will approach and recede roo times per second with a peak velocity of 50 cm / s, assuming a sine wave motion. When the diaphragm is approaching the $1,500 \mathrm{c} / \mathrm{s}$ note will rise in pitch and become $1,565 \mathrm{c} / \mathrm{s}$ and when it is receding will fall to $\mathrm{I}, 43 \mathrm{I} \mathrm{c} / \mathrm{s}$. This is almost a variation of a semitone. The aural result is a harshness of tone as of, say, many flutes playing some half a tone flat and some half a tone sharp with others in between. The smaller the amplitude of the pedal note the less the displacement of tone. The amplitude of $\frac{1}{2} \mathrm{~cm}$ is certainly the maximum likely to be experienced without frequency doubling, but the aural effect is noticeable with much less than this input.
Recapitulating, it is not practic. able to aim at a reproduction below 50 cycles because of acoustic limit. ations of a small room, and because of limitation in loudspeaker performance.

We will proceed to the placing of
the loudspeaker on a baffle and point out that the power radiated depends on the size of the baffle. A baffle 6 ft square will result in 16 per cent efficiency or 8 db loss at 50 cycles, and many baffles are less than this in size. The difficulty in the production of long waves in small rooms is still further increased by the impracticability of housing large baffles. The use of a dividing wall between rooms as a baffle does not seem to be an unqualified success for various reasons.

The Output Stage

Proceeding now to the examination of the output valve, we must bear in mind that with the application of negative feedback the characteristics of the tetrode can be made similar to those of the triode in output impedance, distortion, etc. A. W. Stanley in the August, 1946, Wireless World produced curves for constant current and constant voltage input to a particular loudspeaker. The former rose 20 db at the bass resonance frequency; the latter was level at this point. Translating these extreme cases into those of the $\mathrm{KT}_{4} \mathrm{I}$ tetrode and PX_{4} triode without feedback, the gain will be reduced from 20 db to $\mathrm{I}_{4} \mathrm{db}$ for the tetrode and increased from zero to 1.7 db for the triode. The result for the tetrode is excessive boom and over-accentuation of the range $1,000 \mathrm{c} / \mathrm{s}$ to $5,000 \mathrm{c} / \mathrm{s}$. Filters are required to tune at the bass resonance, to reduce the gain by ${ }^{10}-14 \mathrm{db}$, and again progressively between $1,000 \mathrm{c} / \mathrm{s}$ to $5,000 \mathrm{c} / \mathrm{s}$ by a similar amount but to restore the full output by $10,000 \mathrm{c} / \mathrm{s}$, as the total spherical power radiated between $5,000 \mathrm{c} / \mathrm{s}$ to $10,000 \mathrm{c} / \mathrm{s}$ is much less than would be inferred from the axial response curve.
The use of negative feedback will not alter the response to these requirements and S . W. Amos in an article in Wireless World, Dec., 1944, stated that if too much feedback were used the top response sounded dead, and he proposed restoring some of the loss of "top" due to feedback. Feedback applied to triodes is open to this objection.

This leads on to the amount of distortion which can be tolerated before a detectable difference in quality is apparent. I would refer readers here to an article in the Post Office Electrical Engineers'

Journal, April. 1939, " Non-Linear Distortion of Music Channels with Particular Reference to the BristolPlymouth System." The findings of this study were for non-linear distortion with single- and two-tone inputs to be just audible by direct comparison, and the percentages were:
and harmonic (a) up to 25 per eent at $100 \mathrm{e} / \mathrm{s}$
(b) up to 3 per cent higher than $200 \mathrm{c} / \mathrm{s}$
(c) up to 1 per cent higher than $400 \mathrm{c} / \mathrm{s}$
3 rd harmonic (a) up to 5 per cent at $100 \mathrm{c}^{\prime} \mathrm{s}$
(b) up to 1 per cent higher than $400 \mathrm{c} / \mathrm{s}$
Quadratic Distortion
(a) up to 15 per cent at $100 \mathrm{c} / \mathrm{s}$
(b) up to 7.5 per cent higher than $200 \mathrm{c} / \mathrm{s}$
(c) up to 1.5 per cent higher than $400 \mathrm{c} / \mathrm{s}$ Cubic Distortion
(a) up to 30 per cent at $100 \mathrm{c} / \mathrm{s}$
(b) up to 10 per cent higher than $200 \mathrm{c} / \mathrm{s}$
(c) up to 5 per cent higher than $400 \mathrm{c} / \mathrm{s}$
(d) up to 1 per cent higher than $800 \mathrm{c} / \mathrm{s}$

Quadratic or cubic difference tones
(a) at any frequency between $100-200$ c/s, 20 per cent
(b) at any frequency between $200-400$ c/s, 5 per cent
(c) at any frequency between 400-800 c/s, 2 per cent
(d) at any frcquency between $800-6,400$ $\mathrm{c} / \mathrm{s}, 1$ per cent
From this article there is abundant evidence to show that it is unnecessary to worry about small percentages of distortion at low frequencies and it would appear that distortion percentages to which the average radio engineer would hold up his hands in horror would pass unnoticed to the human ear if the frequency is low enough. Consider 25 per cent 2 nd harmonic at 100 c / s; at $30 \mathrm{c} / \mathrm{s}$ a figure of 50 per cent would not be out of place. "Iron" distortion in transformers does not therefore appear important.

Adding all our deliberations together we need an amplifier which
son in his articles in the April and May issues of Wireless World last year showed that the output for 1 per cent distortion without feedback is not much less than the nominal output for the valves in push-pull. The rated output of one KTG6, triode-connected, is 5.8 W ; of a $\mathrm{PX}_{4}, 3.5 \mathrm{~W}$. Two $\mathrm{PX}_{4} \mathrm{~s}$ in pushpull will give 7 W with 1 per cent distortion total, and I contend that a satisfactory output can be obtained without feedback with distortion less than is audible by direct comparison. There are thus no major reasons why negative feedback should be used with triodes.

On the subject of tetrodes without feedback, two KT_{4} Is in pushpull, 250 V screen, 250 V anode, will give 4 W with 1 per cent third harmonic, zero second ; or 9 W with $3 \frac{1}{2}$ per cent third harmonic, zero second.

There remain at least two further considerations; the type of output valve, whether directly or indirectly heated, and the type of bias, whether fixed or cathode.

Normally a directly heated valve should always be chosen, as the control influence exercised by the grid at low anode current levels is greater than that of an indirectly heated valve. It is for this reason among others that manufacturers list their output triodes as directly heated: vide "Introduction to Valves" by F. E. Henderson. This superiority of the directly heated valve is reflected in the power output for a given degree of distortion. It is observed that the makers claim a greater output for the KTO6, triode-connected, than the PX_{25}, but this is most unusual. A comparison of other valves is given in the Table below.

	Type of Valve					Efficiency per cent $\frac{\text { (Power output) }}{\text { (Power input) }}$	Distortion per cent
Indirectly heated	$\left(\begin{array}{l}6166 \text { (triode-connected) } \\ 6 \mathrm{F6} \text { (triode-connected) }\end{array}\right.$.	10.5 10.0	$\begin{aligned} & 6 \\ & 6.5 \end{aligned}$
	MLA				.	17.0	5
	($\mathrm{ACl}{ }^{\prime}$.	20.0	5
	ACPl					19.0	5
Directly heated	$\int^{1} \mathrm{X} 4$				-•	23.0	5
	$\int \geq .43$.	.		.	23.0	5
	PX25	.	.		.	22.0	5
	10030	\cdots	,		.	27.5	5

has not more than I per cent distortion over the middle register and the rest of the scale will in all probability be satisfactory if standard components are used. Mr. William-

A further advantage of directly heated valves is their superior life; it is generally admitted by manufacturers that this is so.

The American valve handbooks

THE COMBINED TELEVISION

A new aerial which provides for both television and interferencefree radio reception and obviates the necessity for two separate installations, utilising the 10 ft mast and wave spreader as radio signal collector
Available for the London or Birmingham transmissions.
As illustrated and complete with 20 yards coaxial Television cable and 20 yards screened exstat cable LIST PRICE

Regd. Design \& Patents applied for.

67 BRYANSTON ST., LONDON, W. 1 A 14

Quality in the Home-

make a point of the superiority of fixed bias over cathode bias in reducing distortion, so far as triode valves are concerned. The details in the Table below have been extracted from the "R.C.A. Handbook."

I have no literature for B.V.A. valves with fixed bias, but no doubt the distortion would be reduced in like fashion. In the American cases cited above I observe that the load
coupling values will not fit such a low resistance.

Recourse can be made to transformer coupling, but my experience in this direction has not been entirely satisfactory. Although the transformer used was rated to have an adequate primary inductance with a particular value of 1J.C. flowing in its primary winding I found that fairly heavy A.C. voltage input was necessary to secure this induct-

resistance chosen produces considerable variations in anode current under working conditions, and I assume that fixed bias is helpful only where the power output is such as to cause these variations. These variations are not confined to the Class "AB1" and "AB2" conditions, but occur in simple Class "A." Thus a PX_{4} with -42 V bias and 300 V on the anode takes 50 mA , but when a grid swing of 42 V peak is applied the current varies between 95 mA and 12 mA giving a mean of 53.5 mA ; i.e., a rise of 3.5 mA .

With cathode bias this means an alteration of grid voltage tending to reduce the output of the extreme peaks of the wave applied to the grid, producing in turn added distortion. There is an added advantage of fixed bias, inasmuch as the potential for the anode need not now exceed the required value by the amount of the bias voltage. A separate metal rectifier can supply the bias and the total heat dissipation in the output stage can be reduced by something like io per cent. As usual, however, there is a snag. American valve manufacturers specify a grid-cathode resistance, under fixed bias conditions, of a fifth to a tenth of the normal value. The B.V.A. do not normally list the grid-cathode resistance of 15 -watt dissipation triodes under fixed and cathode bias. One value only is usually given-around \ddagger megohm. The American $2 \mathrm{~A}_{3}$ valve is limited to 50,000 ohms with fixed bias and the conventional resistance-capacity
ance. The normal values of applied A.C. are between $3 \frac{1}{2}$ and 5 volts. With a transformer of $1: 2$ ratio feeding two PX_{4} s the input to the primary would need to be 42 volts for 7 W output. Allowing our programme level of 105 phons corresponding to 5 W , the average level is 80 phons and this corresponds to 2 V . The softest passages, 55 phons, correspond to a level of 0.11 V . It is essential therefore that the primary inductance of any intervalve transformer should remain adequate at these low input voltages and I fear this does not happen,
especially when the transformer is directly fed. If the transformer is parallel-fed the presence of the resistance in the anode circuit of the "driving " valve limits the voltage output with any specified degree of distortion. The best valve 1 can find for transformer conpling is the American 61P5. The use of a centretapped primary and push-pull input valves overcomes this trouble, but a phase inverter will be necessary.

The performance in the extreme bass of a transformer coupling is usually criticised on the grounds of "iron" distortion, but, as I have hhown, the Post Office experts do not consider distortion as audible at low frequencies until it is very excessive.

Recapitulating, the amount of distortion can be reduced by the use of fixed bias, but this involves unusually low grid-cathode resistors and the penultimate stage requires special care if use is made of the resistance-capacity type of coupling. Transformer coupling is satisfactory provided steps are taken to see that the primary inductance is adequate at low signal inputs, and that the circuit arrangement does not prejudice the delivery of the required peak voltage output.

Summing up, a pair of $\mathrm{PX}_{4} \mathrm{~s}$ in push-pull without feedback should provide all that is necessary for home use under normal conditions with a baffle-loaded speaker.

Short-wave Conditions

June in Retrospect : Forecast for August

By T. W. Bennington and L. J. Prechner (Engineering Division, B.B.C.)

DJRING: June the average maximum usable frequencies for these latitudes decreased during the day in accordance with the seasonal tremd. but during the night they increased rather more than was expected, possibly because of the still considerable sunspot activity. Consequently there was very little difference letween the day and night M.U.1.s.
Communication on frequencies higher than $35-\mathrm{Mc} / \mathrm{s}$ was very infrequent, although contact was naintained with South and-Central Africa on the $28 . \mathrm{Mc} / \mathrm{s}$ band. Conditions on the lower frequencies were poor, and frequencies below $14 \mathrm{Mc} / \mathrm{s}$ for distances exceeding 3,000 miles were not practicable at night.
In accordance with the seasonal trend the rate of incidence of Sporadic E was very high and many contacts were made with the Continent by this medium. Very occasionally frequencies as high as $58-\mathrm{Mc} / \mathrm{s}$ came through. Longrange tropospheric propagation was again observed in June. Thus, the Paris television transmissions (sound $42 \mathrm{Mc} / \mathrm{s}$, vision $46 \mathrm{Mc} / \mathrm{s}$) were received in southern England on a number of occasions, but not as frequently as in May.
Although sunspot activity in June was about the same as in May, June was a very quiet month. Ionosphere storms occurred on 19th, 22nd, 26 th/27th, none of them being very severe. There may have been some connection with the sunspots, as four fairly large groups were observed in June, which crossed the central meridian on 2nd, 18th, 25 th and 29th respectively.

Many "Dellinger" fadeouts have been recorded, although fewer in number than in May. Those on 3rd, 18th, 2 th and 2 ist were particularly severe.
Forecast. - During August the working frequencies for longdistance transmission should, gernerally speaking, be much the same as during July, although the daytime usable frequencies may tond to be a little higher and the nighttime usable frequencies a little lower.

Working frequencies for longdistance transmission should, therefore, continue to be relatively low ly day and high by night. As in July, day-time cotnmunication on very high frequencies-like the 28 Mi / s band-is not likely to be very frequent, although near the end of the month they may begin to be-
come more useful, particularly to"ards the south of this country Over many circuits fairly high fre-quencies-like $17 \mathrm{Mc} / \mathrm{s}$-will remain regularly usable till midnight. Frequencies like $15 \mathrm{Mc} / \mathrm{s}$ may remain of use throughout the night on many circuits, but frequencies lower than $1 \mathrm{IMc} / \mathrm{s}$ will be seldom required.
For medium distances up to ahout ${ }_{1}, 800$ miles the \mathbf{E} and F , layers will control transmission for considerable periods during the day.

Sporadic E is usually somewhat less prevalent than during July, and so on many occasions (which it is, however, impossible to predict) communications over distances up to 1,400 miles may be possille by way of this medium on frequencies greatly in excess of the M.U.I.s for the regular E and F layers. For example, frequencies as high as $60 \mathrm{Mc} / \mathrm{s}$ may be occasionally reached for a very short time.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during August for four longdistance circuits running in different directions from this country (All times G.M.T.) In addition, a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time.

Montreal :	(M00)	11 Mcin	(16 Mc s)
	(1)300	11 "	(1) , ,
	(180)	11 "	(15) "
	1(H)0	15 "	(11) ."
	1400	15 "	(21 "
	2000	15 *	(19) "
	93300	11 "	(16)
Buenos Aires:	(400)	$15 \mathrm{Mc} / \mathrm{s}$	(10 Mc/s)
	0400	11 "	(16 .,
	10001	17 "	(23)
	1110	21 *	(27 "
	2100	17 "	(22)
Cape Town :	(100)	$17 \mathrm{Mc} / \mathrm{s}$	(2) Mc/s)
	0100	15 "	(14) ",
	0300	11 "	$(18$.
	0500	15 "	(\%) "
	0600	17 "	(t3) "
	0700	21 "	(26)
	10(\%)	20 -	(\%3)
	1700	21 "	(26
	2100	17 "	(\%)
Chungking:	(1)OO)	$11 \mathrm{Mc} / \mathrm{s}$	(1ti Mc/s)
	(15)(4)	15 "	(11) \quad,
	(0804)	17 \%	(-2)
	170	15 "	(19 "
	2000	11.	(16

Ionosphere storms are not usually very prevalent during August, but at the time of writing it would appear that the most likely periods during which disturbances may occur are 3 rd/6th, gth / roth, Ifth/ 15th, $21 \mathrm{st} / 23 \mathrm{rd}$, 25 th/27th and 3oth/3ist.

In the entire range there is Sound Equip. ment not only for Sports Arenas but for every purpose and every type of instal. lation from a 500 wate rack outfit to a portable battery model. A list giving full details will be gladly sent on requast.

```
SOmE TRIX INSTALLATIONS
        Queen's lce Rink, London. Richmond lce Rink.
Embassy Roller Skating Rink, Birmingham. Gateshead Greyhound Stadium. Cricklewood Dance Hall. Sportsdrome, Twickenham Mayfair Hotel, London. Victoria Ballroom, Nottingham. State Opera House, Ankara, Turkey. and many Theatres, Restourants, Clubs, etc
```

THE TRIX ELECTRICAL CO. LTD. i-5 Maple Place, Tottenham Court Road, London, W.I. 'Phone: MUSeum 5817 Grams \& Cables: "Trixadio. Wesdo,London

Nen TRIX Ribbon Microphone

Glass Houses and All That

THE suggestion that it should be made illegal for anybody to own or drive an unsuppressed motor vehicle has been made on more than one occasion and I am glad to see that " Diallist," writing in the July issue, lends it the weight of his advocacy. No doubt the critics

Totalitarianism in the family circle.
will say that the idea smacks somewhat of totalitarianism, but I think none the less of it for that. Totalitarianism in moderate doses and in the proper place has much to commend it, more especially in the family circle. In Queen Victoria's day the head of the family might truly say, as was said of another potentate, that "all the Earth trembled before him." This is certainly more than he has been able to say since 1918 when Lloyd George, playing Delilah to his Samson sheared of his locks by extending the franchise to women.

Although, therefore, I am on the whole, in favour of legislation to "suppress" motor vehicles and all other interference-producing apparatus ranging from trams to electric razors, I cannot consent to something which would, metaphorically speaking, hand me over, bound hand and foot, to the perpetrators of a far greater nuisance, the noisyloudspeaker brigade. At present whenever I hear the loudspeaker in a neighbouring garden bellowing out a futile appeal by the B.B.C. to people to moderate the volume, I can secure almost instant compliance by switching on Mrs. Free Grid's so-called violet-ray beautifier. This is, of course, nothing more than a dolled-up version of a ship's

By FREE GRID

plain aerial spark transmitter of bygone days. This always has a far more salutary effect than all the B.B.C.'s plaintive appeals. Moreover it causes no harsh words among neighbours who, under my guidance, imagine the din to be caused deliberately by an omniscient and omnipotent B.B.C. to secure compliance with its request.

Now if an anti-electrical-interference law were passed my exercise of the functions of a benevolent totalitariocrat would come to an end-as I could not think of breaking the law. My neighbourhood would, therefore, cease to be the peaceful and law-abiding one that it is and would at once become a hedlam of babbling loudspeakers. Frayed tempers and ill-feeling between neighbours would be prevalent as in most other districts during the summer months.

I think, therefore, that the wire-less-using community-which means virtually everybody-ought to put their own house in order before expecting motorists and others to bother about the particular type of interference caused by them.

Meaningless Misnomers

ITHOUGHT that in the statement of my views in the June issue I had effectively scotched the attempt that is being made in various quarters to foist on us strange-sounding units to denote thousands and millions of megacycles. Apparently it is not so, however, and I cannot allow to pass unchallenged a bid which is being made to get us to adopt an uncouth word like gigacycles to denote 10^{9} cycles.
This numerically meaningless term can do nothing but hold us radio men up to public ridicule, as it is at once suggestive of the unit which a schoolgirl might properly use to define the degree of her risibility (giggles to you). What is still more surprising, however, is one of the reasons which a correspondent in the July issue of Wireless Engineer - that most sternly puritanical of journals in technical matters-appears to advance in its favour, namely that it is in use on the Continent. To my mind this is strangely reminiscent of the "I've-seen-it-in-print" method of reasoning.

A correspondent in a recent issue of Electronics, who has also "seen it in print," goes even further as, in addition to wishing us to perpetuate the Greek prefix "giga" (giant) for 10^{3} cycles, he wants us to follow certain textbooks and indlicate 10^{12} cycles by using the prefix "tera." This is of course derived from a Greek word which, appropriately enough, means "a strange thing" or "a monster"!

He also delves into the question of the nomenclature of sub-units which we use for measurements of capacitance and upholds "nano" (dwarf), as a prefix for 10^{-9} and "pico", for 10^{-12}. The correspondent of Electronics supposes the latter term to be of Latin origin. I can at least assure him that he is correct in his supposition. It is a direct descendant of the litera picata, or large black letter, which the monastic scribes employed to commence a fresh section of the Church liturgy long before the followers of Caxton adopted it as part of their jargon.

I still maintain that every prefix, whether intended to indicate multiples or sub-units, should possess a definite numerical meaning, as in the case of the metric system, which would itself be greatly improved by adopting my logarithmic method of nomenclature. I could, however, go even further and sweep away all existing prefixes and, starting off with a cycle as the logical unit, would use hexacycle (IO^{6} cycles) for megacycle, and so on.

10^{3}	Treis
10^{8}	Hex
10^{9}	Ennea
10^{-3} Tres	
10^{12} Dodeka	10^{-9} Novem
	10^{-12} Duodecim

Prefixes for cycles, metres, farads or what have you? Words can be amended for the sake of euphony by omitting final letter, if a consonant, adding a vowel or in other ways as is freely done in the metric system.
10^{3} cycles would not, of course, become a tricycle but a treiscycle, as we do not want to use the Greek adverbial prefix which the muddleheaded makers of three-wheeled velocipedes adopted merely because it rhymed with the Latin prefix "bi" used for two-wheeled machines whereas the Latin prefix " ter" did not.

High-quality Broadcasting - Renaming Printed Circuits • Future of Television • Full-wave Detection

Is High-quality Broarlcasting Wanted?

THE discussion on the E.H.I: broadcasting service in your recent issues is very interestang, but seems to be natinly academac. An essential question which has not been asked is: "Are there enough listeners interested in high quality, and prepared to pay for it, to justity such a schente?

Present receiver sales suggest that the answer is "No." Most listeners are content with "Home" and "Light." and show no inclination to wander farther atield. They like the bass well boosted, and the top severely cut, in spite of the best efforts which have been made to persuade them that the resulting quality is very bad.

These people will have little interest in a high-quality service, and will not be prepared to pay large sums for new F, M. receivers. It is doubtful if the converter method would attract them much more. The service will therefore be of interest only to those few who appreciate quality and can pay for it.

In these circumstances, it seems absurd to proceed with a sclieme whose success is in any doubt, and there seems to be considerable doubt regarding the value of $\mathrm{F} . \mathrm{M}$. Even Thomas Roddam, who calls A.M. "cheap and nasty," has listed some very masty features of F.M. (Wireless World, Feb., 1947, p. 70).

In the same article, he says that the cost of an F.M. receiver will be "rather higher" than that of a normal broadcast receiver. Manufacturers estimate that the cost will be at least double, if not more. This assumes that proper advantage is taken of the possible quality of reproduction.

America has produced an object lesson and a warning. Unable to sell high-quality receivers for IF.M. in sufficient quantity, the manufacturers over there have devised a small set whose quality is comparable with that of an average A.M. midget set. The main advantage of the E.H.F, service is thus sacrificed.
These points have been made without reference to the technical matters affecting the case: difficulty of tuning, maintenance of alignment, and all the others. These are
well known, and have been discussed at length. Add them to the case given here, and it appears that the B.B.C. wouid be well adrised to delay the introduction of F.M. until the economic health of the country is in a better state. Any losses incurred would then be less inportant, and the public would be more prepared to buy quality.

Exeter. 1). W. THOMASSON.

Onlaying

Please save us trom this ${ }_{\text {bapplique }}^{\text {business }}$ (July issue, $\mathrm{p}, 260$). It is surely unnecessary to maul both the Firench and English languages to find a name for sprayed-on or printed-on electronic circuit manulacture. l.et us coin new words for the new thingsSPRON and PRON-and ser the result:

A factory spronning radio chassis can spron 5,000 a day, but, using the proming process, hundreds can be pronnel every hour."

Yes . . . ? I don't like it much either.

But there is already a word "inlay '" in our language; why not coin a word "onlay" to describe the manufacture of a unit having its wiring onlaid by a spraying or printing process?

I rather care for that.
W. IRE I.ESS.

Planless Television

T is understandable that I3ritain has not been able to extend her television service at a rate commensurate with the promise of 1937, when the service started; since then she has sulfered from the effects of a crippling war. But I think we are entitled to protest against the lack of any long-term plans for future extension of the service.

We read that America proposes to make television programmes available to nearly 67 million listeners by the end of 1948. Many will have alternative programmes. Nobody would suggest, while we are feeling the economic after-effects of war, that anything approaching equivalent growth can be planned here, but we should at least have some kind of declared aim, if only for the remote future.
Our distribution of population and the shorter distances for radio

High Fidelity Amplifier suitable for reproducing Frequency Modulation and Television Sound wide band transmission. Separate base and treble controls. Out-put, triodes in Push Pull. (12 watts undistorted). Blue Prints, 2 full size practical and theoretical $7 / 6$.

NEW CIRCUIT T.R.F. QUALITY RECEIVER

For first class radio reproduction on the three standard programmes of the B.B.C. (Third, Light and Home). Two R.F. stages. Infinite Impedance Detector, with special filter circuit and Interference Suppression. Double triode phase inverter and LF amplifier, feeding into two triodes in push pull. Blue prints, 2 full size practical and theoretical 7/6.

LAST MONTH'S new circuit

We are now able to give fuller details of this efficient and simple circuit for receiving the new Frequency Modulation Transmission of the B.B.C. One RF, stage of wide band amplification. Frequency Changer. Two I.F. stages, limiter, detector. Output rectifier. Tuning eye. Mains transformer, smoothing choke. Can be used as an H.F. unit in conjunction with high fidelity amplifier by removing output valve and plugging in socket from amplifier. All coils wound on polystyrene formers, and with two gang 10 pf. tuning condenser. Blue Prints, 2 full size practical and theoretical 7/6.
F.M. Coils. Silver plated on polystyrene formers, adjustable brass rod core, range from $2 \frac{1}{2}-10$ metres tuned with a 10 pf . variable or air spaced preset condenser as used on our latest F.M. and Television circuit, 3/3 per coil. A.HF, or Osc.

Audio frequency heterodyne filter choke, as used on our infinite impedance detector output circuits. Can also be used as a filter in any Grid circuit from detector. Cuts out unwanted whistles. Price $7 / 6$ with circuit.

[^8]Letters to the Editor-
and cable links, as compared with America, should help us to make up leeway with reasonable speed as
tector; the ansiver is twofold. lrirst, A.V.C. can be obtained in the usual way. Secondly, measurements I have made on typical valves in the
do. At low frequencies a diode circuit can be given a high input impedance by putting in front of it a cathode follower, and for I..I. work

soon as the economic conditions of the country permit.
H. T. STOTT.

Chadwell Heath, Essex.

Aircraft and Television Reception

CAN any of your readers suggest C a remedy for the complete break-up of a raster which occurs when low-flying aircraft are in the vicinity of a vision receiver.

This interference is quite common in this area and appears to be a greater menace than the increased interference created by the return of the basic petrol ration.

The interference is comparatively negligible in the sound channel and appears to be associated with the actual audible note and has what I term a "Doppler Effect." In less severe cases the interference is manifest in the form of fluctuating light density without affecting sync to any extent.
R. M. STAUNTON-LAMBERT.

London, N.W. 6.

Full-wave Detection

THE renewed interest shown in 1 the Cockcroft-WaIton multiplier circuits for H.T. and E.H.T. supplies prompts me to report that the circuit can be used with advantage also at the detector stage in a straight set, the principal advantage being that the use of an R.F. choke is avoided.

The circuit values I have chosen are shown in Fig. I, and although it can be seen that the detector will give a damping across the tuned circuit of about 25 or $30 \mathrm{k} \Omega$, a typical R.F. valve (EF_{39}) passing 6 or 8 mA will still be able to develop plenty of signal across it without distortion. Readers may ask, of course, why I prefer this circuit to the "infinite-impedance" de-
"infinite-impedance" circuit (6C5, 015) do not confirm the popular view that the circuit provides linear detection; diveles on the other hand

I have found the single-valve circuit of Fig. 2 quite useful, since an almost linear scale is obtained.
Malvern, Worcs. E. F. GOOD

Ribbon
 Pickup

New Equipment Demonstrated

AI a recent joint meeting of the City and Guilds Radio Society and Imperial College Musical Society, J. H. Brierley, gave a demonstration of reproduction from commercial gramophone records, using one of his latest designs of ribbon pickup.

Essentially this pickup consists of a U-shaped foil strip folded so that the plane of the foil lies parallel to the magnetic field. A bridgepiece of light plastic material is attached to both limbs of the ribbon and carries a tungsten carbide stylus which is cemented in position. A special grade of carbide, which does not flake, has been chosen and is stated to have a hardness six times greater than sapphire. The mass of the moving parts is about $1 / 25$ th of that of a standard needle so that record and stvlus

Ribbon and stylus assembly in the Brierley pickup.
wear is very small. The top resonance has been measured by harmonic methods and is stated to be in the region of $40 \mathrm{kc} / \mathrm{s}$.
Demonstrations given with the full frequency response were remarkable for the excellent transient response and attack, but surface noise on standard commercial pressings was also faithfully reproduced. With a low-pass filter cutting off at $8,000 \mathrm{c} / \mathrm{s}$ the difference in quality of reproduction was easily discernible, but there was less scratch. Musical critics in the audience called for the

8 ,oow filter at the hegiuning of the recital, but atter hearing recorlings with and withont the filter. pre-
pickup is small and care is neces sary in the design of the amplitier if mains hum is to be avoded. The

The tone arm tearing in the Brierle, pickup consists of widely spaced. spring load ball races in a dust-proot housing.

ferred the improvement in quality resulting from an extended II.F. response and agreed to tolerate the surface noise.

The e lectrical output from the
trierley ampatier equpment showed no trace of hum pick-up when demonstrated in conjunction with a widc-range loudspeaker reprolucing down to at least $40 \mathrm{c} / \mathrm{s}$.

New Domestic Receivers

DESICNE1) with an eye to the export market as well as tor home consumption, the Model ooo console receiver, made by Ace Radio. Tower Road, Willesden, London, N.W.io, employs an R.F. stage before the irequency changer and covers seven short-wave bands between 13 and 55 metres in addition to the usual long- and mediumwave ranges. A resistance-coupled push-pull amplifier provides an out put of 10 watts and the bandwidth of the 1.1: amplifier can be expanded to $20 \mathrm{kc} / \mathrm{s}$ for high-quality reception of local stations. The price is $65+$ I2s 6d, including purchase tax.
A 14 -inch glass scale with a separate pointer for short-wave stations is a feature of the Model U75 made by E, K. Cole, Southend-on-Sea. Suitable for operation from A.C. or D.C. mains, $200-250$ volts this receiver emplows a fonr-value plus rectifier superheterodyne circuit with a high-gain output pentorle used with negative feedback The price is $£ 22$ 19s ind, inclucling purchase tax.

The Philips Model 474^{13} is a sixvalve, three-wavehand superheterodyne for battery operation. There are two I. ${ }^{\text {P }}$. stages and the output stage employs two pentodes in quiescent push-pull. The normal consumption is $0.4 \mathrm{amp} \mathrm{I} . \mathrm{T}$. and 9.5 mA H.T., but an economy switch is fitted which reduces these figures to 0.3 amp and 5.5 mA for a slight reduction in sensitivity and power output. Battery connections are provided for combined II.T. and L.T. dry battery blocks, or separate batteries and the L.T. can be supplied from cither a 1.5 V dry cell or a 2 V accumulator. A rubber accumulator tray is provided to isolate acid leakages and prevent damage to the interior of the set. The makers are Philips Electrical, Century House, Shaftesbury Avenue, London, W.C.2, and the price is $\mathrm{f}_{2} 2 \mathrm{i} 8 \mathrm{~s}$ ird, including tax.

The Mullard Model Mi3Si 47 has a similar technical specification but a different style of calbinet; the price is the same and the makers are Mullare Electronic I'roducts, Century House, Shattesbury Avenue, London, W.C.z.

An attractive plastic case with detachable carrying handle has beers designed for the P'ye Model My8li miniature receiver. This is a fourvalve two-waveband superhet running from dry batteries and measures $7 \frac{1}{2}$ in $\times 5 \frac{5}{8}$ in $\times 3 \frac{1}{3}$ in ; the weight is $4^{\frac{1}{1} l \mathrm{ll}}$. Made by Pye I.tcl., Radio Works, Cambridge, the price

Pye miniature portable. Model M78F
i.s $\int 1212 \mathrm{~s}$ (excluding purchase tax). The chassis design is unconventional and permits the use of a 5 in loudspeaker-a notable achicvement in a set of this size.

And now

 the STANDARD RACK

Latest edition to the imhof range of cases is the new Standard Rack and Panel assembly. Of heavy gauge mild steel angle. it is strongly constructed wich welded corners, and finished in grey stove enamel. Standard $19^{\prime \prime}$ Rack panels of $1{ }^{\prime \prime}$ thiek mild steel plate are available in four sizes:--1 $7^{\prime \prime}$. $51^{\prime \prime}, 89^{\prime \prime}$ and $101^{\prime \prime}$ deep finished in grey stove enamel.
Prices:-
Standard Rack frame 5' $6^{\prime \prime}$ high $£ 415$ s. Od.each Fanels $19^{\prime \prime} \times 101^{\prime \prime}$

Ils. 3d. | $19^{\prime \prime} \times 88^{\prime \prime}$ | \cdots | \cdots | 8 c .9 d. |
| :---: | :---: | :---: | :---: |
| $19^{\prime \prime} \times$ | $\mathrm{jl}^{\prime \prime}$ | \cdots | \cdots |
| ... | 5 s .7 d. | | | $\begin{array}{llll}19^{\prime \prime} \times 51^{\prime \prime} & \ldots . & \cdots & 5 s .7 d . \\ 19^{\prime \prime} \times 11^{\prime \prime} & \cdots & \cdots & 3 \mathrm{~s} .2 \mathrm{~d} .\end{array}$ Plated chassis with associated mounting brackets $15 s$. per set.

PRECISION BUILT INSTRUMENT CASES 112-116, NEW OXFORD STREET, LONDON, W.C. 1
Telephone: MUSeum 5944

Random Radiations

By "DIALLIST"

Superlatives

Ir is refelshing to learn that in future Wireless World will have no truck with the wild welter of superlatives which often make it difficult to gather exactly what class of frequencies is under discussion when they are described as super, extra, very or ultra high. For readers E.H.1. will in future mean all frequencies above $30 \mathrm{Mc} / \mathrm{s}$, except that V.11.1". may be used when it relates beyond question to the so-300 Mc/s band only. Excellent, so far as it goes; but are we yet quite out of the wood? l hardly think so, for we really do seem to need some separate terms for the $3,000-30,000 \mathrm{Mc} / \mathrm{s}$ and the above$30,000 \mathrm{Mc} / \mathrm{s}$ bands. The corresponding wavelengths are nicely taken care of by calling them centimetric and millimetric; how would it be to adopt the same terms for the frequencies? If it were understood that the term "centimetric frequency" was a portmanteau expression standing for " Frequency corresponding to a centimetric wavelength," there couldn't be much objection to its use. An extension to metric, decametric, hectometric and kilometric frequencies would enable us to be just as precise in talking or writing of radio frequencies as we can now be in talking or writing of radio wavelengths. One can't, unfortunately, evolve a precise classification on the same lines based on the cycles-persecond. The warelength classes are all simple tenfold multiples or submultiples of the metre; but the cycles-per-second classes involve 3 , 30,300 and so on, and the corresponding terms would be over-large mouthfuls to receive any kind of welcome.

Radar and Cable Faults

An interesting application of radar technique for the location of faults in cables is now coming into use. When a discontinuity occurs in one of the leads a short pulse is injected into the line. The pulse is reflected back at the point of discontinuity and the time for the out-
and-home journey is measured by means of an oscilloscope. I'm told that results are exceedingly good. There are, of course, a good many snags; but means of overcoming most of them have been worked out and any that still remain will no doubt be dealt with in due course. Any reader who recalls the positive shambles that was apt to result in wartime, when breaks in radar, searchlight, predictor and other heavy multi-core cables had to be located without proper instruments and repaired in the shortest possible time, will realize what a packet of money such fault locators would have saved. In everyday life they should, if they give accurate information (as I am told they do), play an even more valuable part in assisting the maintenance of the vast and growing network of cables that now lies over and under so much of the world's surface.

French Television

The French P.T.T. authorities, I hear, have decided to adopt an 8ig-line system for the high-definition television service of the near future. The Paris station already possesses two cameras and a small transmitter designed for 819 lises, and experimental transmissions are being made. Like ourselves, the French have decided that their present lower-definition system with 455 lines is to be extended. A guarantee has been given that it will be continued for at least another ten years. Transmitters relaying the 455-line Paris programmes and probably sending out some items of their own are likely to be in operation before very long in Lille, Lyons, Toulouse, Marseilles and probably Bordeaux. Both in Paris and in these towns 8Ig-line transmitters are to be installed to send out the same programmes. Television will thus be available both for those who install simple, moderately priced 455 -line receivers and for those whose purses can run to the more elaborate 819 -line sets. It is also intended to erect television theatres in certain towns. In these. large audiences will be able to see
big-screen reproduction of the 8 rg line transmissions. Success has already been obtained by using the intermediate film method, in which a film is made of the images on the C.R.T. screen and then developed, fixed and passed through a projector, all in less than 60 seconds. A friend who has seen projection on to a $12 f t \times 1$ foft screen describes the inages as being as good as those of the 16 mm cine.

Battery Set Indicators

D. A. Bell's suggestion of the use of a flashing neon lamp as an indicator that a battery set is switched on is an interesting one. The snag, as he says, is that it is difficult to get neons to strike at much below 90 volts. Or, perhaps, it might be put in another way: there are small neons that strike at considerably less, but it's almost impossible to get hold of them. The kind I have in mind are not much bigger than peas and they're used in neon voltage testers. I've been trying ever since the end of the war to find one or two of them, but so far I haven't managed to do so. Used with a capacitor-and-resistor circuit with a time constant of a second or so, they'd be ideal for the job.

Vision Only

A Reader takes me to task for having written recently that the vision-only receivers seen at Radiolympia before the war didn't catch on because people were not attracted by the tiny images on their $2 \frac{1}{2}$ in or 3 in tubes. He reminds me that there was at least one model with a 7 -inch tube. He tells me that he bought one of these and is still getting good service from it. I'd forgotten that there were any vision-only sets with screens of this size-I'm sure, anyhow, that there can't have been many of them. But I do fcel that any manufacturer who cares to try a modern version of the vision-only set with a 6 -inch or 7 -inch tube might find that it was just what a good many people wanted. What happened in prewar years is really nothing to go by. Television of any kind was very "sticky" then, and there was only a feeble demand for receivers. Today people are becoming more and more television-minded, as the continuing rapid increase in television receiving licences shows. Many who
feel that they can't afford even the lowest-priced sound-and-vision table model might jump at a small visiononly set, if it cost appreciably less.

Tail-piece

You, i expect, get as bored as I do by the Old-Uncle-Tom-Cobbley-and-all lists of " those taking part" in broadcast programmes. I thought that bottom had been touched when the fellow whose sole contribution to the entertainment was "Your coffee, sir," was listed as "The butler, played by so-and-so." But I was wrong, quite wrong. The other night we had: " The part of the deaf mute was played by. . .." They'll never beat that one, unless they name the player of the part of The Man Who Was Not There in some whimsey piece.

BOOKS RECEIVED

Fundamental Principles of Ionosphere Transmission.-Radio Research Special Report No 17 , issued by the Department of Scientific and Industrial Research. Written to provide background knowledge on short-wave propagation, particularly for those engaged in applying the results of ionosphere measurements to the organization of communication services. Pp. 82; figs. 69. H.M. Stationery Office, Kingsway, Iondon. W.C.2. Price is fel.

Loudspeakers: The Way and How of Sound Reproduction, by G. A. Briggs. A collection of data gathered during is years of loudspeaker manufacture, including notes on the design of cabinets. Pp. 85, with numerous illustrations. Wharfedale Wireless Works, Bradford Road, Idle, Yorks. Price 5 s .

Microwave Transmission Design Data, by Theodore Moreno. An advancerl texthook giving basic formula and design data for the "plumbing" in microwave equipment. Is limited to problems arising in the propagation of energy in transmission lines and waveguides at frequencies above $300 \mathrm{Mc} / \mathrm{s}$ Pp. 241 , with numerous illustrations, tables and graphs. McGraw Hill Publishing Co., Aldwych House, London, W.C.2. Price 24 S in U.K.

Applied Electronics. By D. Hytton Thomas. Funclamental principles and description of valves, cathode-rav tubes, photocells and other electronic devices, with their applications. Pp. 13I; 90 figures. Blackie and Son, 66 , Chandos Place, London, W.C.2. Price $756 d$.

Photoelectric Cells in Industry. By R. C. Walker. A comparatively brief exposition of the theory of operation, followed by detailed information on the practical industrial uses of the cells in relay circuits and for such uses as measurement, control, reproduction of sound, facsimile and television. I'P. 500; 24 I figures. Pitman and Sons, Parker Street, Kingsway, London, W.C.2. Price 405 .

TAG STRIPS and

GROUP BOARDS

The BULGIN range of Tag Strips, Group Boards (with tags or holes), Captive-Screw Strips (4 B.A.) and RemovableScrew Connector Strips (4 B.A.) is most comprehensive and caters for all manufacturing requirements. The selection illustrated above, includes a few of our standard designs for upright mounting, centre-fixing, twin end-fixing, flush panel mounting and chassisbase mounting. Numerous standard types are manufactured, and special facilities exist for the production of individual designs, in quantity, to manufacturers' own requirements.

These components utilise the highest possible grades of low-moisture-absorbing S.R.B.P. or S.R.B.F. phenolic thermo-setting plastics-sheet, and non-ferrous metal parts, heavily silver plated. Tag strips are spaced $3_{8}^{\prime \prime}$ on $\frac{3}{8}_{8}^{\prime \prime}$ strip.

For working at 500 y . max. pole-to-pole and to Earth. Insulation resistance is $40 \mathrm{M} \Omega \mathrm{min}$. at I KV. peak, dry.

Enquiries for direct-and indirectexport are particularly invited
"The Choice D Dé OEGSTERED TRADE MARK

A.F.BULGIN \& CO. LTD. BYE-PASS RD. BARKING

Telephone: RIPpleway 3474 (5 lines)

DIRECTION FINDING

RELATES to a direction finder of the kind in which two parallel loop aerials, spaced apart, are rotated about a point halfway between then. The polar diagram of such a system is free from polarization errors, but includes four different directions of zero signal strength.
The diagram shows ant arrangement for resolving this ambiguity. Each of the aerials A, A_{I} is coupled, in rapid alternation, through a switch S, to an earthed resistance R. A second switch Si, driven synchronously with the first, feeds the output from the receiver to an indicating meter M, through a pair of amplifiers V, V_{r}, the effect of the switching frequency being smoothed out by the circuits associated with the second detector 1). The periodic in-
attracted upwards, against gravity, to form a deposit on the screen. When the layer is sufficiently thick, usually after two or three minutes, the screen is removed and exposed to a gaseous suspension of phosphoric acid, which settles uniformly on it, and binds the fluorescent coating firmly in position

To reduce the risk of subsequent damage, the coating process can be calrried out on the screen after it has been mounted insicle the bulb of the cathorle rity tube.

Cinema-Television, I.td., and R. B. llead. Application date, Feb. 1si. 1945. No. 592860.

RADAR INTERROGATOR

A
SMALI, self-contained unit is designed to radiate a characteristic series of pulses in response to a
circuits, one including a time-delay network equal to the pulse interval. Each circuit feeds one of the grids of a twogrid relay valve, which is normally non-conductive, until "unblocked" by the coincidence of the two impulses. An oscillation generator of the nultivibrator type is thereupon triggered and the response signal is radiated.
Stundard Telephones and Celbles Lid. (essiguees of 11 . G. Busignies). Convention date (U.S.A.) October 261h, 1943. No. 588777

RADIO ALTIMETERS

IN a radar set of the pulsed echo type, auxiliary indications are providerl to show when the measured range falls short of, or exceeds certain predetermined limits. In the case of a radio altimeter, for instance, one

clusion of the resistance K in the acrial circuits creates a different sequence of deflections, to right and left, in the centre-zero meter M, as the aerial system is rotated clockwise. This allows the directional sense of each of the four zero channels to be distinguished and identified.
F. Chaplin and J. H. Bagley. Application date, June 7th, 1945 . No. 593063.

FLUORESCENT SCREENS

THE sensitive screen of a cathorle 1 ray tube is coated by electrostatic attraction from a suspension of fluorescent particles, in such a way as to ensure a uniform layer of very fine grain. The screen is placed, face downwards, in a chamber containing a fine spray or mist of zinc silicate or sulphide, or other suitable material, and is connected to one pole of a $50-\mathrm{kV}$ supply, the other pole being earthed. Only the finer particles of the suspension are
definite calling or triggering signall. If one or more of these devices are placed surreptitiously near an enemy post thev can subsequently be interrogated, say by a radar set for controlling artillery fire. Their useful life is, however, limited to a few hours or days, at inost.

The receiving valve must be kept constantly active, but in order to make the most of the battery power available, the transmitting circuits are only brought into action as and when the unit is interrogated. The calling signa! takes the form of equally spaced pulses which are passed through two parallel

The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.G.2, price 1/- each.
lamp lights automatically when the aircraft is flying too low, whilst a second lamp may similarly indicate, either toe high an altitude, or the presence of a mountain or other obstacle in the path of the machine.
The incoming echo signals are fed in parallel to the indicator lamps through two separate amplifiers, which are normally biased to cut-off, but are periodically "unblocked" by two nositive voltage waves which are generated at different times relativels: to the master frequency control of the set. One positive wave is initiated bs each exploring pulse, and only lasts long enough to allow short-range echoes to light one lamp; the other positive wave is delayed so that the second lamp can only respond to long-range echoes. Between these selected limits, neither of the lamps is lit.

Marconi's W'irele'ss Telegraph Co. I.td. (assignees of W. I). Hershberger). Convention dale (U.S.A.) January zoth.
19.43 No. 588715.

ACKNOWLEDGED
 THROUGHOUT the world

RESISTORS • CERAMICONS • HI-K CERAMICONS • POTENTIOMETERS SUPPRESSORS . VITREOUS ENAMELLED WIRE-WOUND RESISTORS Erie Resistor Ltd., The Hyde, London, N.W.9. England Tolephone: COLindale 8011-4. Cables: RESISTOR,LONDON. Factories: London \& Gt. Yarmouth, England Toronto, Canada- Erie, Pa., U.S.A.
 receiver is to begin at the beginning with a sound circuit design-a design that's been tested and re-tested-a design that will stand up to the most critical examination. From this design a prototype is constructed in which every component receives the same rigorous testing. We leave the experts to pass judgment on the resulting Sobell receivers. We are confident that for ease of control and absolute fidelity of reproduction these models will be found to have no equals-that, in fact, you will pronounce them 12 to be 'technically outstanding'.

Roll top gives easy access to gramophone turntable. The receiver is a 5 -valve super-het. operating from 200/250 volts, $40 / 100$ cycles per second A.C. supply. Wave range : 16-50 metres; 193-577 metres; 800-2, 140 metres.
 loudspeaker. Covers long, medium and two short wave ranges. Voltages as for 516 T,G.

iWO YEARS' free all-in service in the home Advt. of Sobell Industries Ltd., Langley Park, near Slough. Bucks. 8-S8

BRITISH INDUSTRIES FAIR LONDON \& BIRMINGHAM

INTENDING EXHIBITORS

should apply for space by 9th August, 1948.

Manufacturers who have not received an application form should apply at once :
for the London Section to Export Promotion Department, Board of Trade, 27 Old Queen Street, LONDON, S.W. 1
or for the
Engineering \& Hardware Section to Birmingham Chamber of Commerce, inc. 95 New Street, BIRMINGHAM 2.

Ente $6 /-$ for 2 lines or lesi and $3 /=$ for every addjtional lise or part thereol, average lines 6 words. Box Numbars,
2 words plus $1 / \mathrm{C}$. Press Day: $\mathrm{September}$,1948 issue, 2 words plas $1 / \sim . \quad$ Press Day: September, 1948 istre, aseptes for errors

WARNING

Readers are warned that Government surplus components which may be offered for sale through our columrs carry no manufacturer's guorontee. Many of these components will hove been designed for speciol purposes making them unsuitable for civilian use, or may have deteriorated as a result of the conditions under which they have been stored. We cannot
undertoke to deal with any complaints regarding ony such components purchased.

B^{B}

NEW RECEIVERS AND AMPLIFIERS

C. 348 receiver, modifled for 200-250v A.C. EDER Unts with R.F. stage. ready aligned for connection to audio amp.inter, s.m. 1 , Wave, send 2 Rad stamp for illustrated eafiet to Lancs. ${ }^{\text {LONAVIA-HUNT direct-coupied } 11423}$ B (pat. applied for) as descrioed in Ju.y w.W will shortly be available; write for further de-
tails.-Sydney Nott \& Co., Ltd., 16, London Rdi Bromley, Kent.
HIGH yuanity ainp.itier and radio tuner untcs 15 valve, 12 watts. 30 D.B. Dass and treole lift: send for specification.-Broadcast \& Tombland. Norwich 26970 . POST-WAR radio at pre-war price! The N.R.S.
Fidelity 5 -valve a, c/d.c. medium and short wave superhet, wonderful tone and range, attractive plastic 2 -colour cabinet. complete: $91 / 2 \mathrm{gns}$.
incl, tax and carr.; illust. leaflet,-N.R.S., 102. incl, tax and carr.i illust. leaflet,-N.R.S.. 102, MASON'S (W.W.) Wivenhoe, nr, Colchester. ing 3-60 mes and $150-1,500 \mathrm{kcs}$, feeder units and complete radio kits auto-stop units and 8 mixed changers, ampliffers, $5-500$ watts; we stock the best only; s.a.e.; Denco catalogues, 9d. please N ${ }^{\text {EW }}$ and latest Denco turret; we can now fiywheel tuning, price $\mathbf{~} 6 / 19 / 6$; also 10 wave feeder units, 5 waveband kits and complete radiogram chassis; send s.a.e. now
talls;
Denco catalogues, 9d.-Mason's (W.W.) Wivenhoe, nr. Colchester
R.F. amplifiers. $100-120 \mathrm{M} / \mathrm{cs}$ for 2 VT 62 circuit, standard pushor rack mounting grid and cathode current meters with individual valve Switching, VR 67 Monitor and jack less valves.
brand new, easily modifled for $144 \mathrm{M} / \mathrm{CS} ; ~$
$£ 5 / 10$. brand new, easly modifed for - ilininson's, 204 . Lower Addiscombe Rd., Croydon. CHARLES AMPLIFIERS, Ltd., will be happy Chto demonstrate their famous model Contion and their new model the KI, 5watts at $3 / 4$ of 1% distortion; the KI is now avallable as a kit for home constructors (blue prints 2/6): also on demonstration all the leading makes on pick-ups and loudspeakers: send stamp for fully illustrated catalogue with helpiul advice ors high quality reproduction.-Charles Amplifiers, Western ${ }^{3350}$.J. ELETRICAL \& ELECTRONIC DEC. VELOPMENT. Ltd, Hubert St., Birmingham. 6 (Tel. Aston Cross 2440), the Midlands ham. fidelity specialists, manufacture W. W. Williamson and other quality amplifiers strictly to specification; our own eoctro stages. loudspeaker a.c./d.c. types; tone constol extages. quallty t.r.f. radio feeders for all amplifiers; quality t.r.f. radio feeders also adapt them for with existing We uipment accord:ng to customers' own requirements; rall for a demonstration: give us a ring. or send $21 / \mathrm{d}$ stamp for details and prices. THE world's fnest amplifier-acknowledged.Litd. Radio Trades Manufacturing Co, (Eating). amplifier offer what is acknowledged as the wot be confused with other similar products; first quality parts only used, making it a super job guality superb reproduction with the special circult used; built on extra heavy gauge chassis With black crackle finish price $\mathcal{L 2 7 / 1 0}$; with Fram, motors, tuners, etc., can be suppled. Full details rom R.T.M.C. (Ealing), Ld. II 1495
Little Ealing Lane. W.
UNIVERSAL ELECTRONIC PRODUCTS. 36. UNIVERSAL Maryebone High St.. London. w. Specialists in the design and manufacture of radio units. If you are interested in obtaining the finest possible reproduction from recorded muslc we invite you to hear our equipment demonstrated in conjunction with the Wilkins and Wright coll pick-up and the Whariedale corner cabinet speaker. We will gladyy give you a quotation or the conversion of your existing radio gramophone into a first-class reproducing of equipment to your own special requirements. Write for descriptive leaflets of our range of
fidelity ampliffers and radio tuning units.

Tpattrídge lilews R.A.F. I.F.F. responser units, complete With television diodes. 2 twin triode mains valves and 1 Eir 50 Muilard; a aso includes 24 v motor generator. suitable for modification to universal

LONDON SALES OFFICE

For the benefit of our many friends we have made arrangements for the im. mediate supply from stock of small quantities of our standard components (see paragraph below). These can be collected from our address at King's Buildings, Dean Stanley Street, Millbank Westminster, S.W.I Tel. : Abbey 2244. (250 yards from Big Ben). Hours to Fridays only) Kindly note this address is for stock sales only, and all correspondence and other enquiries correspondence and other enquiries

AVAILABLE STOCK
A comprehensive range of mains and audio components is now available from stock, and we can despatch small quantities of these per return. We would stress that before ordering you ponents. Our stock range now covers almost all normal requirements, and by availing yourself of this service you will save the inevitable delay in the production of a special component. We shall be pleased to send you our stock list upon receipt of your address.

THE NEW

PARTRIDGE MANUAL
The completely revised post-war edition of this new Manual, now available. contains :-
Many useful circuits including New 15 wate high quality amplifier with 40 db of negative feedback over three stages. Also articles on Sound Reinforcing and Public Address, Acoustical Problems. Cross-over networks, etc. A useful appendix is included consisting of six selected design charts

Price 5/- Post Free,

Telephone:
Brixton 6506
PARIRIIDEE TRANSFORMERS LTD

PECKFORD PLACE, LONDON, S.W. 9 motor, 2 magnetic relays, several mechanical
multi-contact reays; inctudes resstances, condensers, varlabie and fixed, and other uselud loms Hado caoin. S. Seven Star's Cuurt. Man. CONNOISSEUR'S receiver-wor.d-wide resuit (on h.ghay sens t.ve 10 -valve commun, cation receiver or, by change of switch, very high quality reception of ocal station; on non-super het high fidelity receiver; basis resu. it R1155. $9-1.500$ metres. $p \times 4$ push-pual quality amplitier bass and treble controls (bcost and cut). gram for details or and ar demonstration. Write spacialists. receivers repaired and re-aligned also modified as acove, or to your requirements R1155 circuit and values, $2 /$ post free.-R.T.S. Ltd., 5, Gladstone Rd., Wimbledon, S.W. 19 Tel. Lib. 3303 . 1266 Ti XPERIMENTORS surplus, all items used few and perfect. Lowther Straight-superhet ald wave tuner with 15 -watt low distortion amplifier. cost £78, accept £60: new post-war Voigt light twin coil with power Dack. £25; Barker Concert 148 .
$£ 12$; Hart 215 . $£ 6 / 15$: Warfedale $15, \mathrm{n}$. $£ 6 / 15$: £12; Hartley 215. £6/15: Warfedale 15,n, £6/15: Connotsseur P.U." trans.. £3; Br:erley armature.
 speed $78-33$ rpm, in wooden carrying cases with Talke type straight arm H,i. Fi. Peizo P.U. £28; B.A.E.C. corner defiector with twin cone unit. \&10; Voigt H.C. corner horn, no bas ; chamber, £5:-F. Asten, "Gienroyd,' 143, Chorley Rd., Heath Charnock, Nr. Chorley, Lancs. I1267 (OODSELL Ltd, 40 , Gardner St. Brichton in output at £22 using new improved Partidge output transformer kit of parts with drilled chassis. $£ 15 / 15$; Williamson amplifer using PX 25's in the output. giving 20watts. separate bower pack incorporating two h.t. supplies, one at 500 and one at 250 v finest a mplifier made. pack. all Partridge transicrmers. complete kit of parts. £16. or wired to order; Pre-amp (a per Osram book on amplifiers) With valves, $£ 6 / 6$. kit of parts £3/15/; all components available Baxendale $56 / 3$. all kits of parts less valves Baxendale. $56 / 3$; all kits of parts less Valves:
all equipments tested on B.F.O. an oscilloscope guaranteed for 12 months. A new booklet now available describing all our equipments in detall together with kits and components for high fldelity receotion: send ${ }^{11}$ stamo.
RECEIVERS, AMPLIFIERS-SECDND.HAND B.C. 348 noise limiter, s. meter. as new; § 300
BRO Sox 176 .
[1414 TRO Senior broadcast coll. A.C. mains power
HALICrs to Box 203 .
OLICRAFTER $S k y$ Rider Defiant $\$ \times 24$ H ALLICRAFTER Sky Rider Defiant S×24 $\mathrm{B}^{\text {c34 }}$ built-in power pack, S meter, lab,
modifled H.R.O. sentor 4 coils. xtal, per. cond. ${ }_{[1286}$ G We SMITH \& Collowing, (ROADIO), Ltd., offers TELEVISION: EX R.A.F. type 3585 receivers. containing complete $45 \mathrm{Mc} / \mathrm{s}$ strip which is 5 6.r.e. Stages.. 50 s ,. .A. 50 , complete with circuit diagram of strip plus diagram of coupling with gram of strip pius diagram ol couse and sound finest television outfit on the market. In addition to the above there are
some 17 other valves, including E.F.50s, E.A.50s, some 17 other valves, including E.F.50s, E.A.50s,
VR54. 55.56 and 65 , and dozens of condensers and resistances; these are brand new units, and superhet, complete with circuit for mods. using 6A indicator, ideal for long-distance reception $72 / 6$ each; brand new Gee indicator units with V.R. 97 tube, suitable for television. $92 / 6$ each $0-5 \mathrm{~m} / \mathrm{a}$ meters, 2 in square face. M/c, $4 / 9$ each; $0-1.5$. thermo coupled. $7 / 6$ each; $0-1$ amp. thermo coupled, $7 / 6$ each; $0-0.5 \mathrm{amp}$, thermo coupled $7 / 6^{\circ} 0-1 \mathrm{M} / \mathrm{a}$ meter 100 ohms resist ance. 21/in fush mounting, $12 / 6$ each; $0-20$ vol
A.C. $7 / 6$: $0-20$ amp A.C.. $7 / 6$ all brand new A.C., 7/6: $0-20$ amp A.C.. 7/6, all brand new
meters: W. 1191 wavemeters. $100 \mathrm{kc}-20 \mathrm{Mc} / \mathrm{s}$ meters: Wrrolled. can be used as signal generator, in sealed boxes with spare set of valves but less batteries. £7. R.A.F type 39 aerial coupling units complet with 100 -watt dummy aerial and $0-3$ and $0-6$ thermo coupled amp meters, all brand new with full instruction. $7 / 6$ each; constant voltage
transformers. $190-260$-volt input. 230 -volt out put. 150 watts. $82 / 6$ each $6-v o l t$ vibrator packs $15 /$ - each; 12 -volt and 24 -volt. $12 / 6$ each. al
with vibrators; 24 -volt D.C. to 230 -volt A.C rotary converters, 79/6 each (100-watt) St. London. W.C.2. Tel. Gerrard 8204. Open Week reopening August 9 shall be closed Ausus Week: reopening August 9th. \quad I 1426 R.C. 348 N . fully mod to mains. excellent conB. dition, performance: $£ 28 / 10$. - Bcx 8425 . MOD. 8 valve Bendix 10a rec.; 4 hands, reTDDYSTONE 640 receiver, complete, loud-

THESE ARE IN STOCK

Radio Laboratory Handbook. By M. G Scroggie. 12s. 6d. Postage 4d.
Standard Valves. Standard Telephones \& Cables, Ltd, 15s. Postage 4 d .
Radio Engineering. By F. E. Terman 42s. Postage 9d.
Television Receiver Construction. (10 articles from W.W.). 2s. 6d. Postage 2d. Principles of Radar-M.I.T. 30s. Postage 9d.
Electronic Transformers and Circuits. By R. Lee. 27s. Postage 9d.
Testing Radio Sets. By 1. H. Reyner 15s. Postage 4 d .
Vacuum Tubes. By Karl R. Spangenberg 45s. Postage 9d.
Radio Circuits. By W. E. Miller. 3s. 6d. Postage 2d.
Television Receiving Equipment. By W. T. Cocking. 12 s .6 d . Postage 4 d . The Mathematics of Wireless. By Ralph Stranger. 7s. 6d. Postage 4d.
Elements of Radio Servicing. By Marcus \& Levy. 27s. Postage 9d.
Ultra-High Frequency Techniques. By Brainerd, etc. 28s. Postage 9d.
Radar Engineering. By Donald G. Fink. 42s. Postage 9d.
The Cathode-Ray Tube Handbook. By S. K. Lewer. 6s. Postage 4 d .

We have the finest selection of B ritish and American radio books. Complete list on application.

THE MODERN BOOK CO.

(Dept. W.7).
19-23, PRAED STREET, LONDON, W. 2

MIDLAND INSTRUMENT Co. BRAND NEW GOVT.SURPLUS STOCK

BURGESS MICRO SWITCHES, make and break. 1/6, pont 3d., $15 /-$ doz. DIMMER SWITCEES with on/oft. 1/p poat ad., 15/- doz. KAMS TRANSFORMER8, Alteratlon, 100 v. at 51 amp., $25 /=$, carr. $5 /$.. ENGNE DRIVEN GENERATORS (D.C. dymamoi) fited maft, output 12 v. 500 watt. $20 /-$, carr. E/ $/ 8$. 8 ITCH Boxeg, 7 in . $\times 4 \mathrm{~m}$. $\times 2$ in., contains 16 on/orr toggle switches, siso alide and rotary switch, nignal lamp, etc. 7/6. post $11 d$. PAXOLIN STRIPS, 181 in . x in. \times lin. contains 28 robust plated terminals (worth at
 giving perfect 2 -way communication up to $100-5 d a .$, no batteries required, 7/-, post 9 d . with 10 yds . 2 -way connecting wire, 10% post 9 d . VOL, colvTROLs, sssort. doz. zin. ahaft (not preatet), 10/-, poat 9d. STARTER SWITCEES, 24 . operating 300 amp . switch, 3/6, post lld. CLAW MOVEMENTRS, complete, for 16 mm . cameras or projectors, $2 / 6$, post 3 d . CAMERA MOTORS, $12 / 24 \nabla$. A.C./D.C. $1 / 5$ amp., 20%, poit and packing. $1 / 4$. AIRCRAFT INSTRRUMEITS, air-speed indicators $2 / 6_{1}$ post 9d. ABTIPICTAL HORIZONS, B/-, posi $1 /$ D. DIRECTION INDICATORS, 7/6, post $1 /$ ALTLEETERS, 7/6. post 9d. Ditto. SENSITIVE \& X " TYPE, $15 /=$, post 9 d . GEAR BOXES, 1.1 , single to dual drive, $1 / 9$, post Od. AMMETERS. $0-9 \mathrm{mmp}$. hot wire, 7/6, post coil, $5 /=$, post 4 d . BELAYg, G.P.O. type, 1.000 ohm s.m. $1 / \%$, post 3d., $10 / \mathrm{m}$ doz. ELECTRIC PUMPS, $12 / 24$ v. A.C./D.C. fitted centrifugal pump for liquids only. delivery at 24 r. 10 g.p.m.. $35 /=$, post paid.
 CABLE, P. F.C. twin flat. 42/012. 6d. yd. RECEIVERS TYPE R.1294. 5.valve battery muperbet. VP23 (2), FC2A. HL2. KT2, Muirhead vernler dial, and ot her L.T., $120 \cdot v$. H.T., 9 v. G.B., cabinet finished battle. ship grey, 15 in . $\times 98 \mathrm{in}$. $\times 8$ itin., brand new complete with ralves, $£ 4 / 10 \%$, carr. 5).
Also hundreds of other Items, send for our new Julg/ Auguatlists, 2d, with s.a.e. Orders over 30/- poit paid, carr. extra. Our d.O.D. service is cancelled for the
t lme beini
MOORPOOL OIRELE, BIRMINGHAM, 17 Tel. HARborne 1308 or 2664
A. R.88, comm. rx., new cond. first reasonable H ALLICRAFTERS Sky Champion S 20 . 1289 H ALficrafters, 178 . Cambridge Rd.. Ilfurd Essex. A RMSTRONG 6 -valve chassis. A.C.. 8 in sp'ir - R.O., 6 coils and power unit, valves new 1 and "guaranteed, good condition: offers.BORTEXION, 10watt amplifier AD.47, as new; St Bradford best offer.-J. L. Shaw. 31 Market A RMSTRONG, r.f.103. 12 in Go dman
peohens Gdns. W.2.-Cymarysiewicz. ${ }_{\| 1290}$ TRO R10G receiver, almost new, colls. power 1 pack. mfrs. diagrams. full data: offers.-
Cushion, 46 . Belmont Rd.. E.15. WHAKIE-TALKIE 58 set .Canad:an." perfect Claremont Villas, Up ands. Stroud. Gros. 11365 TVELEV1SION and radio.-Cossor 1210 A 15in Wilson. 9. St. Peter's Rd.. St. Leonards. [1411 HAMMERLUND super-pro 100-400'sc/s, 2.5-fiters-Hooper, 105. Chutern Rd.. Duns.avie. R.K. 12 in energised speaser with rectifier, 1 carr. paid.-C.input, 15 chm co Hunti. St. Ives, Huntingdon ahire. R. 1155 as new, $6 v 6$ output, power pacis and 20. 50 kr . 80 metres. T 1154 thansmitter, 80 wat:s. 20. 40. 80 metres, key and mike, \&8.-Denell. $11 \pm$ receivers, 10 va, ves, as new. Wath receivers. $£ 4 / 17 / 6$. carr. pd. 1124 's $30-$ - J, Rae, 39 Penn Rd.. Wolverhampton Skyrider Defiant for sale, owner immi5×24 skyrider Defiant or sale condition and is perfect. comp.ete with phones. £35.-W. T.
C egg. 24 . Alderton Rd., Croydon. Surrey. (2 UALITY equipment, 2 R.F.. inf. imp. det. . bacs, bass. treble, 20 db up or dcwn, $£ 40$; heard London.-Box 8447 . $\mathbf{1}$ (-WATT Moreton-Cheyney ampifier very sale, c17 fle owner gong into hosp ta.. Tay ors HDDYSTONE 504, beautfful condition. 0.5 to I $30 \mathrm{mc} / \mathrm{s}$ accessories speaker optional. manuel; first reasonable offer.-I. Penrose. 27. Causewayhead. Penzance, Cornwall. DYE 817 television, as new. unused, £15; Mazda (CRM91. c.r. tube, guar, perfect, £7; Magna-

 R ACK-MOUNTED H.R.O, Standard, power Th pack, $230 v$ a.c. panel speaker, rack, 9
 Whase splitter, Williamson O.P. trans-
formers. radio tuner and Goodman's 12 in formers. radio tuner and Goodman's 12in speaker, £22, practically new.-8. Tudor Rd.
London. E.4. ? M.K. 19 s s.w. transmitter receivers, 2 complete and perfect order, one needs 5 unit and numerous experimentors equipment: the lot $£ 25$.-F. Smith. Cinema. Thurcroft. Nr Rotherham.
GOUND SALES 8-10-watt amplifier with t.r.f omplete in case B B. C prey excellent condition complete in case B.B.C. Erey, excellent condition C16.-R. North. "The Nag's. Head," High St.
Sunningdale. Tel. Ascot 707. PHILIIPS communication receiver, P.PK 230 A C., RF stage, BFO. Phone Jack. speaker. 2.000-16 mtrs., new. \&17/10; 2 Edisivan ES75 watt TX valves. $10 /-$ each.-E. Martin. 70. Bridge St.. Worksop. Nottinghamshire [1328 A MATEURS will find a host of uses for the
Canadian Mar' 58 Walkie-Talkle set: these receiving and transmitting sets are in the origrecelving and cases and cost more than $£ 100$ to make: they have transmitting radius of approx. 10 miles, with short-wave reception over a wide range of overseas stations: price $£ 12 / 10^{\circ} \mathrm{com}$ p!ete.-App!y G.T.C., 82-94. Seymour Place. Lon-
don W.1.
P10.-Army A set Mk. III receiver-transmitter F. A set $2-8$ mcs. B set 235 mcs, complete with 12 volt power unit and connector less control boxes and phones. diagram of phone and mic, connections suppied; \&4 each, for disvalves and connectors; ex R.A.F. Rio84, less valves and coils: motor generators. input 12 v 32 a output. 1.200 v 0.2 a $£ 1$: input 9.3 v 23a,
 4v 3a. output 13 v 1.8 a and 200 v 50 nas. 5 ,-12-VALVE Western Electric R1585 Midgo valve 3×6 A45 7×9001 FPC33 and 12A6. 4 gang RF. tuner, F.C. I.Fs. P. F.O. Det. AVC and out put; easily converted to 6 or $12 v$ car radio; nn extra colls or other components requ'red excep power unit and speaker; all smoothing in the receiver; a remote control box is included with the set, but no connecting cabes are avallable brand new condition: price $£ 0 / 10$ ea. carr. and packing $7 / 6$ extra: 12 v 200 v Ma'lory vibrapacks for above sets 15/- ea. complete; Goodman's 31, in speakers. £l ea. Maltings. Rayleigh Rd.
H. ENGLSH. The Hutton. Bren+wood. Essex.

OPPORTUNTIES amo

Get this FREE Book !

"ENGINEERING OPPORTUNITES"'
reveals how you can become technically-qualified at home for a highlypaid key-appointment in the vast Radio and Television Industry. In 108 dages of intensely ,nter. esting matter, it includes full details of our up-to-che-minute home study courses in all branches or TELEVISION and RADIO.A.M. Brit. I.R.E. A.M.I.E.E., City \& Guilds. Spacial Television, Servicing. Sound Film Projection, Shor Wave. High Frequency, and General Wireless Courses.
We Definitely Guarantee NO PASS—NO FEE"
4. you'rc earning less than $E 10$ a week, this enlightening book is for you. Write for your opytoday. It will be sent FREE and withour bligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 388b. Shakespeare House. 17/19, Stratford Place. London, W.I.

\star

Radio Receiver

Servicing and

Maintenance

13y F. J. G. Lewis. This work is an established favourite among radio dealers and service engineers. It gives up-to-date and reliable assistance in the technical details of their work, and includes a handy faultfinding summary.

Pructical, replete zeith facts, and wellarranged.
-WIRELESS WORLI.

$8^{\prime} 6$ net

OOlb weight of wireless for canajis type 19 sale, comprising set with 16 valves, etc., power unit, with vibrator and rotary transformer. etc., and aerial variometer, made by R.C.A. Canadian Victor; carriage extra, packing reif collected.--Hampshire Ignition. Lid.. Cheesehill.St. Winchester Tel. 2366. 19459 TX-R.A.F. equipment.-7-valve U.H.F. Retype 76. with motor generator 24 modulators. receivers, type 76 , $£ 3 / 15$; vibrator packs. new, input $2 v$, output 200 v . 60 ma . $37 /-1155$ recelvers, £12; converted 1155 with output valve power pack and speaker. $£ 19$.-Send your requirements to Morecambe Sound Service, ${ }_{[1250}$ NEW LDUDSPEAKERS
YOIGT H.C. horn and bass chamber, comp:ete \&40. With light coil twin diaphrapm unit, new; ford. Middlesex Ealing 8103. High St., BrentHIGH quality, precision-built speakers, die-cast chassis, twin cone.-Broadcast \& Acoustic Equipment Co.. Ltd.. Broadcast House,
Tombland. Norwich 26970 . © $6^{/ 10 .-N e w}$ Baker super quality 123 in /10.-New Baker super quality $12 i n$ manufacture ${ }^{\text {a }}$ by Baker's Selhurst Radio the ploneer manutacturers of moving-coll speakers since 1925 , wide-frequency range, even with magnet having an exceptionally high flux density in the air gap; a speaker in a class of its own.
£5/18/6-NEW Baker model $12 . C$ single-cone 12in P.M. speakers, built on the lines of the auditorium model, suitable for public address equipment, acoustical output being very good even when fed with a modest two-valve re-
ielver. £9/19/6. -NEW Baker Super Power cinema P.M. speakers with i8in triple cone, giving wideirequency response, iree from objectional reis reproduced with exceptional realism; ideal where power handling capacity plus realistic reproduction is required Send $2, \mathrm{~d}$. stamp for leaflet giving details of above; also amplifiers and constructional details of new acoustical quency range; prompt deliver per passenger train. range, prompt deliver per passenger BAKER'S Selhurst Radio, 75, Sussex Rd. . South LOUOSPEAKERS, SECOND.HANO G^{0} Watkins, Axl-y-Bryn, Waunlwyd, Ebbw ARTLEY TURNER 215, Vitavox. Lexington 11433 H with transf, and sapphire.-Chadwick. 41. ARTLEY. TURNER 215 ; \&7/15, as new.-R. North "'The Nag's Head," High St., SunOIGT Domestic Corner reffector horn, com Glete unit and rectifier; f90, near offer VITAVOX and Truvox 20w pressure type horn. P.M. M.C. type 5 or $73 / 4$, ohm coll: 45 -each.-H. English. Hutton, Brentwood, Essex. OIGT Corner Horn, special model, in cover, twin light-coll diaphragm, $\begin{aligned} & \text { or } \\ & \text { ofers.-Brewer, Bethcar St., Ebw }\end{aligned}$

BATTERIE8

A FEW dozen unused Drydex 120 volt batteries, carriage paid; guaranteed sound.-Box 8483. TXIDE batteries, 12 volt, fuli 75 amp-hour. De new, dry, uncharged, built to Ministry contract, a beautiful battery with wonderful tenacity to life, suitable for any duty, fitted with Davis non-spill vents, carrying handles, etc. complete in waxed hardwood case, E3/10 each carriage 9/6; Lyon Alco Norman lighting and charging plants, complete seli-cooled ohv eagine. $12-24$ volt 20amp circuit, with full control panel. including sliding resistance, petrol tank, exhaust system, suitable for small house, boats, farms. workshops, caravans, new $£ 27 / 10$, with push-button starting, E30, carriage 20/-. High St., Tedilington. Middx. Kin. 1193

R^{o}
 Rak ind
 Malden Rd., New Malden, Surrey.
DETROL, generating set, $2.3 / 4$ K. A. DETROL, generating set, $2.3 / 4$ K.V.A.: 230
volt, 3 phase, 50 cycles, new, unused; $£ 70$.
[Allen \& Gibson. Ltd., Towcester. D) YNAMOS, permanent magnet (or $\begin{gathered}9986 \\ \text { d.c. }\end{gathered}$ and 24 volts. $3 a m p$, ball bearing; amazing barand 24 volts, 3 amp, ball bearing, amazing barlege St., Worcester
A LL types of rotary converters, electric motors. sets, etc.: rotary transiormers. input 12 v d.c.. output 600 y at 250 ma . price $£ 4 / 10$ each nett.
post paid; J.A.P. No. 2 A engines, $1,2 \mathrm{bhp}$ at 1,600 post paid; J.A.P. No. 2A engines, $1,2 \mathrm{bhp}$ at, 600 folk. Haverhill 253-4.

ELECTRADIX

Bargains!
「REQUENCY METERS. Crompton mains frequency merer I/C $230 \mathrm{v} .40 / 60 \mathrm{cy}$. 5 in . dia. for flush panel fixing, 88.
WATT METERS. Met. Vic. Wattmeter, range 5 to 30 kW ., full circular scale, $6 \frac{1}{2} \mathrm{in}$. dia., 230 v . 3 ph. $50 \mathrm{cy} .$, with compensator, $\mathbf{6 5}$. Wireman's self-concained circuir cescer, Govc. model, un used, $6 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{8}$ in., almost pocker size, for all electrical circuits, totally enclosed, polished wood box and carrying strap and contact switch. The experimenter's best friend, worth 2 guineas, but a limiced number are available ar 1216 each. METERS. I/C switchboard type, $4 \mathrm{in} .$, G.E.C. $0-60$ voles and $0-40$ amps. A.C., $45 / \mathrm{e}$ each Crompton I/C ammeter, 0-50 amps. A.C. Volt meter to match, $0-75$ volts, $6 \frac{1}{\frac{1}{2}} \times 6 \frac{1}{2} \times 4$ in., with jamp on top to illuminate dial, 55/- each. Sin. dial A.C. ammecer, $1 / C ., 0-14 \mathrm{amps}$. $25 / \%$, Pane central, Weston D.C. moving cail D.C. Movin coil ammeters, central zero 50-0-50 amps., 15/-$0-30$ volis, $10 /=$ C.Z. $100-0-100$ v.. $10 / \mathrm{m} . \quad 0-20$ amp. $12 / 6$.
ELECTROSTATIC VOLTMETERS, panel rype, $0-3,500$ volts, $\& 1$ eac
LIGHTING PLANTS, 500-watt Stuart Turner 50 volt 10 amps . Engine and dynamo with fuel and water cank, \&45. J.A.P. Engine with $14 / 32$ volc 9 mmp . generacor and swirchboard, in first-class condition, $\mathbf{2 0}$, carriage exera.
HAND MAGNETO GENERATORS. 4 and 5 magnet type, 150 volts $50 \mathrm{~m} / \mathrm{a}$., A.C. ourpur new condicion, P.M. Steel magnet and gearing in handle, $12 / 6$, postage $1 /$ -
CUTOUTS. Auco non-mercury in bakelite case, $3 \times 3 \times 2 \frac{1}{2}$ in., 18 volits $30 \mathrm{amps} ., 21 /-$. G.E.C 12 voles 15 amp . non-mercury auto cutouts, $4 / 6$. concain Yaxley switch and knob, connection serips, fuse and holder, coil socker and connecrions, $2 / 6$, poscage 9d. Larger model with 2 Yaxley switches and pilor lamp, $4 / \mathrm{F}$, plus $1 /$ - postage.
ELECTRO MAGNETS. Powerful //C electromagnet $6 / 25$ volts D.C., with screw-in solenoid core, weight 1 lb . 10 ozs., $2 \frac{3}{4} \times 1 \frac{1}{2}$ in., will lift $7-28$ lbs., type No. 1, $4 / \mathrm{F}$; small $2 / 6$-volt D.C elecro-magner weight 10 ozs., lifr $/ \frac{1}{2}$ co $4 \mathrm{lbs.}.$, $7 / 6$. Solenoid Coils of 27 gauge wire, 6 ozs weight, 2/-each.
TRANSFORME
TRANSFORMERS. B.T.H. 200/230/250 voles 50 cy . input 2 voles 20 amps. and 75 volt 6 amps with 15 taps oucput, 70/- C.P. England and Wales. 250-wart Cores with lams and wire for rewind 25/-
SWITCHES. Dewar Key switches, 7 pole C.O. as new, with top plate, 5/m. D.P.C.O. Toggle switch, flush panel, 250 v. 1 amp., $3 /=$ S.P.C.O. 2/- each. Lucas 8 -way swisch box, $3 / 6$; 6-way 3/-. Sancon 10 -amp. D.P.S.T., back of board type, $7 / 6$ each. Square type, S.P.S.T. back of panel, $15 \mathrm{amp}, 2 \mathrm{in}, \times 1$ in, $\times 2 \mathrm{in} ., 316$.
DIMMER RESISTAMCES
DIMMER RESISTANCES. Totally enclosed panel cype, 100 ohms $\frac{1}{2}$ amp. or 50 ohms $\frac{1}{\frac{1}{2}} 2 / 6$ eamp. porcelain base, 10 chms I amp. $2 / 6$.
MORSE KEYS. Here is the key you have been waiting for, a solid job for the transmitter, bakelite base $3 \frac{1}{2} \mathrm{in}$. $\times 1 \frac{1}{4} \mathrm{in} .$, insulated arm and large knob,
 heavy adjustable back and frons contacts smooth action, beauti-
fully made and scientifically designed with length of heavy insulared cord and jack plug, 21/-. We have also a lighter model to similar design with brass arm and insulared knob without cord and plug, $15 / \mathrm{m}$. Transformer, $4 / 6$.

TERMINAL BOXES. Bake-

 lite power cerminal boxes $3 \frac{1}{2} \times 2 \frac{7}{4}$ $\times 2 \frac{1}{5}$ highly polished black with $\frac{1}{4}$. centre fillet and screwed scuds and nurs. Admirable terminal or branch cop on large transformer, 2-pole light power Wall or ceiling fixing, $2 / 6$ each, $20 /$ - per dozen. Special quotations for large quantities.
PARCELS. 10 ib . useful oddments for the junk box. All clean, dismancled from Government and ocher surplus apparatus, $7 / 7$ posi free. (Not for Overseas buyers.)

Please include postage for mail crders.
ELECTRADIX RADIOS
214, Queenstown Road, London S.W.8.

Elem motors again available from stock; example. This single-phase. $200-250 \mathrm{v}$. $1,400 \mathrm{rpm}$. from

 B models. $2-6-12$ v. 1,2 or 4 amp dc. any mains vorage: generous trade terms, write or catatric Co.. Lid.. Hoddesdon. Herts
$\mathrm{E}^{\text {LECTRIC motors. adaptable to gramophone }}$ minals, size $2 \times 2 \times 5$ in (double ended spindle) hy $1 / 30$ approx.: complete for 200-250 a.c./d.c. (nominal 24,3 , post pald with separate
 $\mathbf{R}^{\text {OTARY }}$ converters. ex-A.M., new. input 4 BA m.s. stiff nuts, single anchor 10. 1 lts. 4BA m.s. stif. nut. single anchor. 14.- per brass metal serews. $1 / 2 \mathrm{in} 7 / 6$ per 1.000 - Wild's
Radio. Victoria Rd. Fenton, Stoke-on-Trent. $\mathbf{S P E C I A L}_{\text {Famous }} \mathrm{ST}$ T. C Hams and . A. specialists. in perfect order. in perfect order, guaranteed, listed £.17, each: Electrical, Ltd.. 364, Lower Addiscombe Rd.
T 1 ROFESSIONAL recording equipment to the I trade: M.S.S. recording machines. recording amplifiers, ribbon and M / C microphones, blank discs. etc.. etc.: gramophone motors and light wetght pick-ups. radio pre-stage units and quality speazers. an from stock on full trad or 16 mm talkie projectors for imme diate de! ivery, Sound Discs (Supplies). Ltd.

I NSTRUMENTS.

MOST makes in stock, some on terms.-Write for details and list of radio and electrical spares, new and ex-Govt., to The Instrument CoSSOR 339A double beam W. 2 .

1) UMONT oscilloscope 224A. new: £25; very

DULIN series 100 meter as new; is 1464 1161, Christchurch Rd., Boscombe, Hants. Y ARCONI standard signal generator, TF WNIV. meter, sig. gen. and valve tester (unBox 13. ORMETER, 90a, as new; offers ove 1364 TAYLORMETER. 90a, as new; ofers over \&11. (CUALRAD sig. Gen., 100ks/c to $56 \mathrm{mc} / \mathrm{s}$, $14 . F$ (axd., charts, £12; Wilson 6w.b. coil pack 13 RIDGE 1 pf to 100 mfd . 1 ohm to 100 m ohms St. very accurate: £7.-Jordan, 15. Dane Rd.
()-1 milliamp meters, 31/4in diameter flush 12/6, post paid.-Jack Porter, Ltd., College St. 12/6, post paid.-Jack Porter, Ltd.. College St.
[1223 A VQ. new, unused, not Government surplus. minor, $£ 3 / 10$; post free.-Congdon, 11, Station
Parade. Muswell Hill, N.10. (T. 61 wavemeter, ex-Admiralty, with 1.000 k E crystal in oven, 9 valves. range lme to 25mc, complete as newi, £20, carr. extra.Wilts. Tel. 3164 . A MERICAN transmitting transformers and R.C.A., etc., in all sizes to 3 kw from $7 / 6$; list available, stamp will oblige.-Harris. Strouds,
A SMALL quantity of U.H.F. signal generators A 230 y 50 cyl., fitted piston attenuators; Addiscmbe Rd Croydon ()SCILLOGRAPH. 230 v 50 cyl . 3 in tube cali () brated time base, amplifiers and slid back valve voltmeter incorporated: in working order; $£ 15$ each; first offer secures Classic Elec trical, Ltd. 364, Lower Addiscombe Rd. Croydon. $A B G E$ electronic Fault Tracer complete tor Model PS600. $100 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{s}$ for A complete, just overhauled by makers. £15. -Box 100. Parrs, 121 , Kingsway, London, W.C.2. [137] ISUAL alignment for $£ 20$. Oscilloscope and
Wobbulator complete. T.B. $10 \mathrm{c} / \mathrm{s}$ to 350,000 bis X and Y plate amp'ifiers, easy to handle and has outstanding performance, brand new and fully guaranteed; immediate delivery. Further details on request to Erskine Labora tories, Ltd.. Scalby, Scarborough, Yorks $[1407$ A MERICAN signal generator new, perfect condition, frequency range $8-15 \mathrm{mcs}$ and $150-230 \mathrm{mcs}$, for use on 110 -volt a.c. mains. crystal check points ensure absolute accuracy. definitely a laboratory instru ment of the highest calibre, approximate size 19 in $\times 12$ in $\times 71 / g$ in; price $£ 95.7$ V.E.S., $42-46$ Windmill Hill, Ruislip. Middlesex. 9884 WE have a selection of Marconi/Ekeo stan dard signal generators, range $85 \mathrm{kc} / \mathrm{s}$ to double beam oscilloscope, beat irequency Audio callers at crystal calibrators. etc.. onered to Britain (Radio). Ltd., 2, Wilson St.. Londen
E.C.2.
$[1085$

YOU

can become a first-class RADIO ENGINEER

We are specialists in Home. Study Tuition in Radio, Television and Mathematics Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-time work.

T. \& C. RADIO COLLEGE

King Edward Ave., Aylesbury, Bucks.
(Post in unsealed envelope, Id. stamp)
Please send me free details of your HomeStudy Mathematics and Radio courses.

NAME
ADDRESS
w.w. 74.

BC433G

RADIO COMPASS UNITS by Bendix

 A Is valve superhet receiver which with slight modifications wil prove one of the most sensitive and selective of receivers. New and complete with instruction books. Frequency 2001750 Kcs Size 20in x 12in $\times 8$ in Wt 47 lbs 115 v: $400 \mathrm{c} / \mathrm{s}$ Power supply included. Valves 115 vi 4004 of $6 \mathrm{~K}_{7}$, I each of $6 \mathrm{~N}_{7}, 6 \mathrm{SC}_{7}, 6 \mathrm{~L}_{7}, 6 \mathrm{~J} 5,5 \mathrm{Z}_{4}$, 4 of 6 K 7 , I each of $6 \mathrm{~N} 7,6 \mathrm{SC} 7$,
and 2 of $6 \mathrm{~F} 6,205 \mathrm{I}$, and 688 .
£5.10.0
(Carr. and
pkg. io/-).

RECTIFIER POWER UNITS PP51'APQ9

A 4 valve power supply including 4 brand new sR4GY rectifiers, high voltage condensers, chokes and transformers. Input 115 v. 400$2,600 \mathrm{c} / \mathrm{s}$. Outputs $370 \mathrm{v} 130 \mathrm{~m} /$.a . ; $730 \mathrm{v}$.

MODULATOR UNIT TYPE 169

A brand new unit incorporating a 10 cm . Klystron tube type CV67. Also with EF50, 5U4G, CV88 and 3 neon-stabilisers. Power supply incorporated. Wt. 35 lbs . Size 18 in . $x 8 \mathrm{llin}$. incorpor
U.Hin. . experimenters-please note! In wooden U.H.F. experimenters-please note! In wooden
transit cases. ONLY $37 / 6$. (carr, and pkg. 5/-.)
Have you had a copy of our News Letter? Send 6d. for one NOW!

* Post orders to 3, Robert Street, Hampstead Road, London, N.W.I.
MOS mon moene wany oo
M.O.S. Doom W.

24, NEW ROAD, LONDON, E.I. Stepney Green 2760-3906.

CAMBRIDGE 5 ma , Vacuo Junctions, new. $6 / 6$ Elliott 6ma, $21 / 2 \mathrm{in}$. a.c./d.c, thermal meter 18/6: Weston 1 ma . $21 / 2 \mathrm{in}$ meter. $18 / 6$: c. W .0 . TRANSMITTING EQUUPMENT
$\mathrm{A}^{\mathrm{RMY}}$ dition; ${ }^{12 \mathrm{TX}}$, complete all valves, no offers. \rightarrow Box 8372 con- ${ }_{[1217}$ H OLIDAYS.-Take a type $51 / 1$ midget TX key, less Xtal; at $£ 5 / 10$; details s.a.e--Box 8494 ©FFERS invited for new transmitter section,
 $2 \times 832 A, 3 \times 12 A 6,2 \times 6 S 57,6 G 6$, less crystals,
beautifully made compact job, circuit suppdid. B0x 8440 .
$3_{\text {mensely }}^{\text {ENDIX }}$ 50ft ground station masts, imp dia., camoable; with chest accessories: $\& 9$ carr. paid-Lawrences, 61 Byrom St., Liverpool, entral 4430.
$\mathbf{R}^{\text {ACKS. }}$ standard P.O. type. $6 f t \times 19 \mathrm{in}$ up

 Addiscombe Rd.: Croydon. GRAMOPHONE AND SOUND EQUIPMENT SIMON SOUND SERVICE have recorders in WILKINS WRIGHT coil P.U. with trans. P.H. Ford 8 1946-Box 186 . 18 . sale, 30 -watt equipment; photos.-Box 149. (1396 A UTOCHANGER, latest Collard, as brand R RIERLEY ribbon P.U. and transformer EXINGTON Senior P.U.. trans, and sapphire EXINGTON Senior P.U. trans. and sapphire
1 C.D.P. recorder, used few times only, list £25; $1 \begin{gathered}\text { only } £ 22 / 10 \text { carriage paid. } \\ \text { RIERLEY } \\ \text { ribbon pick-up. } \mathrm{BB} / \mathrm{P} / \mathrm{R} / 1 \text {; }\end{gathered}$ B RIERLEY ribbon pick-up. JB/P/R/1, $\mathbf{R}^{\text {ECORSDER }}$, M. perrect; new, unused, £48,$W^{\text {ILKINS }}$ \& WRIGHT coil pick-up, almost D RIERLEY ribbon pick-up with trans, as new B offers over £7.-16, portman Rd., Liver${ }^{\text {pool, }}{ }^{15}$. ${ }^{\text {n }}$ 'S type $\mathrm{K} \mathrm{M} / \mathrm{C}$ headphones, as Bi $£ 4$ p.p.-Rumary. Bylstone. Grange Rd. Bishopsworth. Bristal.
16 permanent sapphire pick-up for sale, sapphires; £5.-Box 14 . C stop, speed regulator; \&6 or near.-Hinkley Exeter House, Crowborough. Sussex.
A COUSTICAL QA12/P amplifler, new, $£ 25$; W A \& W. coil pick-up, new, with equaliser, e4. A UTO-CHANGER for mixed 10 - and 12 -inch $\mathbf{A}_{\text {UTOMS }}$ Tecords, Collaro, overhauled and perfect.Offers over £16 to 5 , Horsham Rd., Dorking, D) IAMOND pointed Voigt P.U., special cor1) rector in Mu-metal boxes, little used, £14: will dem. on Voigt speaker after 6.30 p.m.
30. Upper Grotto Rd., Twickenham.
I253 COLIARO units, a.c. motor/pick-up/autostop. Curntable model, $\varepsilon 9$ cart. $5 /-\mathrm{i}$ motor and 12 in turntable ony, 118/4; all makes pick-ups.NFINTTE Baffe corner deflectors. scientificI NFlly designed acoustic chambers as reviewed "Wireless World "June; send for catalogue.Broadcast \& Acoustic Equipment Co. Litd. Broadcast House, Tombland. Norwich 26970 . H.M.V. model 580, 9-valve Auto radiogram 1 playing elght recordi non-stop. recently completely overnauled, guaranteed perfect con-
dition, mahogany cabinet. Offers to: Sir Edward Worthington, 16. Cadogan Sq., London. S.W.1. W ALL type microphones, 15 -ohm coil, $\mathcal{L} / 2 / 6$; $13^{\text {Triplett }}$ test meters. high voltage condensers. chokes, etc.; two-stage television signal booster, self-powered, $£ 7 / 10$; write for our current list.-Frank Shirley, 20. Hanson St., London. WCROPHONES moving coll type 4021 C fraction of their original cost one of the fit a available, made by S.T. Co. our price $\mathcal{L 5}$. post free whilist stocks last.-Wilkinson's. 204, Lower Addiscombe Rd. Croydon. ${ }^{\circ}$. With sapphire. L $15 / 10$. Hartley Turner 215,4 ohms. $£ 7 / 5$; Hartley output trans., for 215 , 1 st grade. $£ 2$; span quality receiver unlt 6 valves singlesplitter). will load single P-P output stage, bargain. $£ 6 / 10$ - Box 5 .
 8/9; $2 / 6 ; 8$ in. $3 /-i$ inin. $4 / 6$: $12 i n$. $6 / 7 ; 13 i n$, $8 / 9 ;$ steel cutters, $12 /-$ doz; sapphire $£ 1$ each:
disc envelopes. $37 / 6$ per $100 ;$ disc oil, $4 /-$ bottle: disc envelopes. $37 / 6$ per 100; disc oil, 4/-bottle: cutting heads, \&12; mikes. pick-ups, recording machines amplifiers. etc.-Morecambe Sound T HE Mordaunt duplex reproducer, as used in - the Enock instrument, is now avallable separately; folded horn brass unit and new high note refiector of original design. giving exceptionally smooth response from 40-20.000 c.p.s. even distribution over a wide angle. reproduction has an " atmosphere "" and realism hitherto unattainable; price (ex works). 98kns; in White wood. skeleton form, \&88; please send strate.-Joseph Enock, Ltt., è73a, High St,

 NEW G.P. 12
 CRYSTAL PICK-UP
 with permanent sapphire stylus

-was fully described in The Wireless World's recent article "Crystal Pick-ups-Basis of Design for Fidelity Reproduction."
This remarkable pick-up, which represents the ultimate in high-fidelity reproduction, is now available in limited quantities through your radio dealer, price 104/- incl. P.T.

FREE ILLUSTRATED FOLDER describing this new pick-up may be obtained by returning the coupon below.

TO COSMOCORD LTD. ENFIELD, MIDDX.
Please send folder of ACOS Pick-ups.
Iname
ADIDRESS
I \square

NO LACK OF IDEAS

Technically our policy is always to design and produce the best possible equipment, but our design ideas outstrip the best efforts of our production department. In the economics of production and selling our policy is always to charge as little as possible for these first-class technical ideas. This we achieve by ruthless elimination of non-productive labour, and maintaining our workshops at constant activity throughout the year.

To this end we look for and find good men and give them security of employment, for we have no slumps. Rather we are always trying to cope with mild booms. When we are very hardpressed we could take on hordes of workers and sack them when they are no longer needed, but their output would not come up to Hartley-Turner standards.

As a result of all this we try the patience of some of our customers very hard. We should like to produce at once all the bright ideas we have promised and will introduce in time, but this would not be consistent with our policy of high quality coupled with fair prices and a square deal to a loyal staff. So we ask you to integrate your needs with our capabilities and the result will be a true partnership of creative effort with real satisfaction to you and to us.

At the moment we can deliver speakers from stock and tell you how to build certain of our products, with a substantial saving in cost. Send or our interesting data-sheet catalogue, and above all read " New Notes in Radio" (3 s .8 d . postfree).
Here are all the answers to high-fidelity problems, whether you are a Hartley-Turner "fan" or not.

H. A. HARTLEY CO. LTD.

152, HAMMERSMITH RD., LONDON, W. 6 RIVerside 7387.

S IMON

 (YRAM. motor units.-Collaro type 48. E8/10: up and auto-stop, Audix unit, e4/15. less P. U.: Hoover induction motors. suitable turntable drive, self-starting. silent running. extensionshaft. new
E6 Shaft new $26 /-i$ larger model $30 /-i$ post extra T THE Enock pick-up is now available in limited Patent No. 538.058 . with precis.on made polished diamond stylus. weight at needle point. $/ \mathrm{koz}$. no resonances within the recorded range; price £36/15, inc. tax.-Full particulars from Joseph Enock, Ltd.. 273a. High St.. Brentford. MiddleVOIGT light coil twin unit, with professionfinished in eggshell glcss cream enamel. $£ 40$; Ferranti M.I. speaker. $\& 5$ Lexington Senior pick-up de luxe with sapphire, c4/10; E.M.I. Paillard Eramophone metor. 230
1948 new Polytone super electric gram tion type, loin non-magnetic turntable, constant speed auto stop. adjustable to any pick-up hum level nil, silent motor. suitable for high fidelity reproduction, complete with mounting p!ate. $14 \mathrm{in} \times 11 \mathrm{in}$, black ripple finish; $27 / 7$, carriage paid; c.w.o. or c.o.d.-Martuck Eng. Co. TELEVOX gramophone playing desks are stil TELEVOX gramophone playing desks are stil! concealed rim-driven constant speed induction pick-up, all mounted on a strong rubber-mounted metal chassis, $141 \mathrm{in} \times 121 / 2 \mathrm{in} \times 3 \mathrm{in}$ deep, at $81 / \mathrm{ghn}$, including purchase tax. packing and carriage: cash with order please.-Televox Sound Service. Alpha Works,
(Portsmouth 5006 .) $813^{\text {s, as } n w ; ~ 55 /--B O X ~}$
$\mathbf{N}^{\text {EW }}$ - boxed, 30 types at pre-pre-Budget prices N.W.1. ${ }^{\text {WeW }}$ and unused, pair 813s, pair 805s, ${ }^{[1299}$ 807s. pair 1622s. three 6J75 metal; offers lot or separate.-Smith, 44, Plevna St., Stourton.
Leeds. 10.4. Leeds. 10. Board the of Trade prices: send for list vapes, at Board of Trade prices; send ior list (valves tailers not supplied.
RANSOM, Bond St., Brighton. 7223
UNUSED R.C.A. valves, few each: 807 , $10 /-$ 7/6; also some British at list price, C.R.T.
 5Z4. 5U4. U52. FW4/500. $10 / 7$. any three 27/6: PX25. 16/-; 30/- matched pair; c.w.o. or c.o.d-COMPONENTS-SECONO.HAND, SURPLUS SOUTHERN RADIO'S wireless bargains:-
RADIO publications, " Radio Valve Manual, British , and American Alternatives and Equiva.ents," $3 / 6$, post 3 d . All publications pre-
viously advertised still a vailable. Send $21 / 2 \mathrm{~d}$ for complete list. A.C. motors. $200-250 v$. t/sh.p.. 2.000 r.p.m.. R.A.F. bomosight computers, brand new, with Sperry gyro $2-28$ ve motors. gearing, counters and hundreds of other components. 03 carriage
paid. $\quad R . A . F . \quad R / T$ testers. $2.500-6,700 \mathrm{ics} .$, 45-120 metres. two valves, in metal carrying case with leather handles, $16 \operatorname{in} \times 10 \operatorname{in} \times 6$ in polished wood box. comprising rectifiers. re'ays, potc., 5%. 1nput transformers, $50: 1$ or $7: 1$ mu.
 Lutbra hole cutters, adjustable, for use on wood. metal or plastic, $5 / 6$. 75 pf midget condensers. Twin gang $5 /=$, single-gang $2 / 6$, post $6 d$. Throat microphones with 3 ft lead and jack plug. $5 /-$ Throat microphone inserts, $1 / 6$ each. Permanent crystal detectors. ${ }^{2 / 6}$, post 4d. Wesdozen, post 6 d . M.C.R.L. batteries, 90 y . h.t. and $71 / 2 v .1 . t .1$ e/6 each, post 9d. Oil-filled 7.000 v d.c., $7 / 6$ each post 9 d . Tannoy carbon mike inserts. $2 / 6$ each. post 3 d . Moving coil meters, 0.5 ma and $0-.5 \mathrm{amps}, \mathrm{m}^{2 \mathrm{in}}$ dia.. 8/each. R.A.F. morse keys, 2/6 each, post 4d. each. $10 / 6$ per dozen. Inspection lamps with 3 it lead and plug. $3 / 6$. Oscillascope transpost 9d. Special offer. Collaro gram. inotors (a.c. oniy). with turntable, auto-stop and Collaro swivel head magnetic pick-up. complete
with
speed carriage paid. RADIO SUPPLY. Ltd.. 46, Lisle Stew Scroggie. "C. \& Lerrard br." bridge chassis, E5-- Box 177 parts, requires calibrating, cheap SYNCHRONOUS vibrator h.t. unit. 6-volt in High put. ${ }^{230 v}$ Ayr. 40 ma out.-Fairbairn. Ltd.. 181.

ARMSTRONG

OVERSEAS BUYERS

are cordially invited to send for prices and particulars of the following:-
Model EXP125. 14-VALVE ALLWAVE RADIOGRAM CHASSIS
iving continuous waveband coverage from 11.9 m . upwards. Waveband expansion R.F. Pre-amplifier. Two I.F. stages with variable selectivity. Electronic bass and creble lift controls. 15 watt push-pull ourpur. For 200-250 v. A.C. mains.

Model RF103. 10-VALVE ALL-WAVE RADIOGRAM CHASSIS
I0-valve circuit. R.F. Pre-amplifier. 'Wavcband expansion (Short waveband covers over 20in.). Large glass scale. 3 stages A.V.C. Treble lift conerol (operates on both radio and gramophone). Plus 6 db . Bass lift on Gramophone (to restore bass cut on some records). 10 watt push-pull output. For 200-250 v. A.C. mains.

Model UNI-103. 10-VALVE ALLWAVE RADIOGRAM CHASSIS FOR D.C.-A.C. MAIMS

IO-Valve circuit. R.F. Pre-amplifier. Waveband expansion (Shore waveband covers over 20in.). Large glass scale. 3 stages A.V.C. Treble lift control (operates on both radio and gramophone). Plus 6 db . Bass lift on Gramophone (to restore bass cut on some records). 6 watt push-pull output. For 200-250 v. D.C./A.C. mains.

Model EXP83. 8-VALVE ALLWAVE RADIOGRAM CHASSIS

incorporating waveband expansion. Large glass scale. Treble boost control. Gram witching. High quality push-pull outpur gives 10 watts audio. For $200-250$ v. A.C mains.

Model UNI-83. 8-VALVE ALLWAVE RADIOGRAM CHASSIS
incorporating wareband expansion, e.g. the $16-50 \mathrm{~m}$. band covers just over 20 inches on the large glass scale, treble boost control gram. switching, all conerols work on both gram. swio and gram., high quality push-pull output giving 6 watts audio. For 200-250 v. output giving 6 wate or A.C. mains.

HOME MARKET

Al:mited quota of the above is available to our friends at home, and we shall be glad ro send details and to give demonstrations at our show roams.

WARLTERS ROAD, HOLLOWAY, LONDON, N. 7 Phone: NORth 3213

CLYDESDALE, for bargains in ex-Services EX. - - R. N. No loud hailer for 12 vo:ts. $£ 25 / 15$; R1155 receiver unit. $£ 12 / 12$; T1154 transmitter unit
£10/10; R1132 VHF R1481 VHF receiver unit. $87 / 19 / 6$; AN/APAcathode ray indicator. £4/17/6: accumulator or charging ooard. $1,260 \mathrm{w}$. $23 / 3 ; 12$ volt pipah erial, $£ 1 / 8 / 6$; ail carriage and packing paid plus a host of other items; send for lists.
CLYDESDALE SUPPLY Co., Ltd., 2, Bridge St.
Glasgow. C.5. Tel. South $2706-9$.
A few unobtainable pre-war spares for comR^{F} units. type 24 and 25 . $10 /-$ each. $1 / 1$ post CoIL tormers.- All types to meet your require-
Belsize Lane. N.W.3. B ponents constructors parts, instruments $A^{2 R} . \mathrm{F}^{2}$. quality teeder unit available at $\& 8 / 8$: at also a 7 -valve all triode push pull amplifier
 $200-250 \mathrm{vanans} 12 \mathrm{v}$ at 2 amps: 4 per week for disposal privately or to one retailer; one on
approval.-Box 14691 HEADPHONES, new, complete with ear-pads. phones exR.A. $\mathbf{H}^{1 /-}$ new pair. postage 9d.: micro-
 TVNING scale assembly, glass scale 8×5 mount on chassis. drum, drive spindle and pointer. 15/6 comp.ete.-Will Owen (Radio). WAFER switches. 3 wafer, 1 p .6 w each wafer. short spindle $1 /-$ each. $9 /-$ doz; 2 wafer. $3 p 3 \mathrm{~W}$ ${ }_{2} \mathrm{p} 3$ wach waier, $7 / 6$ ea.-Will Owen (Radio). CONDENSER bargain. Micamold metal cased tub., 0.1 500v. 1/- ea., 10/- doz.; 0.25500 v .
 (Radio), 538 . Mansfield Rd. Nottingham. [1214 SEMI communication chassis. of 2 .F. Denco 6 and 3 valves. $£ 3 / 10$; Wilson 6 -wave coil unit £2/17/6.-Middlemas. 7. Rossmoyne Rd.. Scot 'TRANSFORMERS. unused ex-Govt. double250w wound $230-240$ to $110-115 \mathrm{v}$ 200w. 42/6: 250w. $45 /-$ - $300 \mathrm{w} .50 /-\mathrm{c}$ carr $5 /-\mathrm{i}$, 000w. 62/6; 276. Bath larker sizes available.-W. J FHT transformers. mains transformers and Der whokes for general purpose oscilloscope, as politan Radio Service Co... 1021, Finchley Rd.. N.W.11. Tel Speedwell 3000 . at Smith's, Edg-

1 ware Rd.!"Everything for the constructor, from a $1 / 10$ watt resistor to a radiogram cabinet; lowest prices. biggest variety- Near
 mike, $£ 12$:' 104 mike, $£ 3$ STC coil P.U. 4012 C spherical many other items, Manganin wire, service sheets; A MERICAN panel lights, high quality red cryA stal lens, plated bezei, M.B.C. fitting. H/ifin fixing hole. $1 / 6$ each; bulk enquiries invited. 100

$$
\begin{aligned}
& \begin{array}{l}
\text { K.C. crystals, new. } 10-\text { each; } \\
\text { meter rectifiers. new. } 2 / 6 \text { each, } \\
\text { CN } 348 \text { receivers, a few availab }
\end{array} \\
& \text { 12, BCN } 348 \text { receivers, a few available at }
\end{aligned}
$$ Ltd.: 27, Denmark St.. London W.C.2 ${ }_{\text {I }} 1362$ ARGE quantities of radio equipment for sale. ppers enamelled and silk-covered wire, standard size laminations sleeving, etc.-Apply Buying Dept., Monitor Radio, Stechford. Birming CLEARANCE sale.-New components at bargain prices; voi. controls. chassis, speakers. coils. pick-ups, ganged condensers. transpormers. knobs. switches, etc.

1154 transmitters, 88 ; BC603 10-valve re1. ceivers, $27 / 10 ;$ 301t sectional masts. 2J-, H.R. headphones. 8/6, agents 10 all makes: orders post free by return of post, $110-$ page cata, Paignton. 1459 CRYSTAL D. 104 type microphones for sate. availab'e; price $£ 2$: trade enquiries invited: send s.a.e. for full particulars.-Messrs. Multitone Electric Co.. Ltd.. 223-7. St. John St., ClerkenW. W. . ${ }^{\text {W. }}$ units, 2 h.f. stages, 1 detector and 1 video amplifier. incorporating iron-cored coils, suitable for nel E.A.50. brand new; 45/-: post free-Wilkinson's. 204. Lower Addiscombe 'THIS month's bargain; experimenter parcel sorted condensers, resistors, strip mounted, 625 mf . 350 v tubuiars. 2 Jones pugs and socket. densers. 3 assorted screening cans, 3 assorted mica condensers, 3 assorted pad condensers. 2 heavy duty carbon resistors $(25 \mathrm{k}, 50 \mathrm{k})$: $10 /-$

SPECIAL OFFERS THIS MONTH

EI,-R.A.F, RADAR RECEIVERS TYPE 3085. Containing 23 valves, 15 EF50, l high voltage rectifler 1 RL37, 1 YR5\%, hindreds of components, condensers resistances, pot/meters, 24 volt miniature moter transformers, metal rectifers,etc. Bulltonstrong metal chassis size ; 20in. long, 12in. wide, 3in. high. Totally ench sed in metal cabinet size; soin. long, 12in, wide 7 in . high. Cabinet is grey with front panel black Weight 35 lbs. The original cost of this unit was wel over £so. This recelver is unused, and a great bargain LASEY'S PRICE r9'6, carriage $5 /$. ext
Ez.A.M. RECEIVER UNIT TYPE 3515. Containing 21 valvea: 10 VR65, 1 EB34. I EA50, 1 VR5s cundensers and ot her uacful conponents. Totalty en closed in metal case gize. $18^{\prime \prime}$ I11" I 7°. Weizht $25 . \mathrm{bs}$ THIS IS A REAL BARGAIH.
LABEY'S PHICE 49/6, carriage 5;- extra.
EI-A.M. TEST SET TYPE 74. Special purpore obcilliscope. Brand new and unused. This set coutain
 16,J7, 1607,1 VR133, 3in. cathode ray tube type VCR 139 A , Incorporated is a receiver and sender complete with its own antenns. Totally enelosed in metal cabinet, grey finish, all controls clearly unarked. Size; 18in. Iong, 9in. Wide, 12 in . deep. Weight 45 llis. With modification to the time base of this unit it wil LASEI's PRICE \&4/19/6 carriage $10 /$ extra.
EI-A.M. ROTARY CONVERTORS, BRAND NEW ARD UNOSED. POWER UNIT TYPE 195. Input 24 volts D.C., output 230 volt a 50 c.p.s. In smart grey ensmelled metal box with hinged lid, leather carrying
handle. Complete with all cables and plugs. Sizc: 11 in . long, 11 in . wide, 8 in . deep. Weight 30 lbs . A BARGAN NOT TO BE MISNED.
LASKY'S PRICE 59/6, carriage $5 /$ - extra.
Send a 1d. stamp today for a copy of our list and your nanie on our mailing list.

LASKY'S RADIO

370, Harrow Rord, Paddington, London, W. 9 Telephone : Cunningham 1879
Open all day Saturday, hall day Thuraday.

THE
 BRITISH NATIONAL RADIO SCHOOL ESTD. 1940

for

New World Ideas and Old World Ideals !
The Urge to Serve and the Knowledge How!

Home Study Specialists with the Personal Touch.

Radio, Radar, Maths., Physics.

The B.N.R.S. FOUR YEAR PLAN

covers the full syllabus of
A.M.I.E.E., A.M.Brit.I.R.E. and CITY and GUILDS Radio and Telecommunications Exams.

Six months' trial period without obligation to continue.

Send for free tooklet to :-

STUDIES DIRECTOR
 BRITISH NATIONAL RADIO SCHOOL
 66, ADDISCOMBE ROAD, GROYDON
 Phone : Addiscombe 3341

T ELicVISION components again. including even tocussing coil assemblies; $40 /-$ only; s.a.e. for
 TELEVISION aerial equipment, 5 types fully 1 waterproofed aerials available. poles, Lashings, all types of teeder in stock; send for brochures; aerrals installed.-Wolsey Television, td. ${ }^{75}$, Gresnam Rd., Brixton, S.W. 9 . Bri. 7566 . I^{O} disposat surp-us to requirements, 1,50 seconds) delay relays model TYE, having single pole, 5 amp 23 v ; normaly open contact and heater wound for $220-230 y^{\prime}$ price for quantities upon application.-Box 8495 .
MAINS trans. 16/6; coil pac:s l.m.s. s.h. $465 \mathrm{kc}, 17 / 6 ; 1, \mathrm{~F}$. trans, $465 \mathrm{kc}, 10 /=$ pair; 36 condensers, carded, 10/6; 48 resistances $12 /-;$ voltage droppers. $2 / 9$ send for cheapest list in Bevendean Ave., Brighton. Tel. 4446. [1500 (H.G. ampifier transformers, T. 1 m:n:ature Q. grid to line, $18 / 6 ;$ O.P. tapped $3.15,20$ ohms, $45 /-$, and chose $20 /-$; T. 3 mains, $60 /-$ bass and treble lift condenser bans with switch. 25/- the parr; c.w.o. pack. and post, $1 /-$ extra.Boscombe Rado \& Electric, 595, Christchurch Rd. LTERCOMDE. A LTERATLONS clearance; sacr.fice at 11 each m / c meters; switches. togrgles, knobs, vol. conm / c meters; switches, toggles, knobs, vol con-
trols; resistances; sockets; steel case; rotaries. etc. Also 'air tested " R1116 8v all wave battery receivers in fine case. \&ll with valves. Barnes Rad.-Elec. Co., 2, EIndale Rd., Penn, Wolverhampton.
$\mathbf{N}^{\text {EW }}$ components, not ex-Govt.: Electroytics $18 \mathrm{mfd} 450 \mathrm{v}, 3 / 6 ; 8-8 \mathrm{mfd} 500 \mathrm{v}$. $5 /-; 25 \mathrm{mfd}$ 25v. 1/7, main3 transiormers, $200-250$ pri., 350 616in 14/6; 8 n 15/6; multi-ratio output trans. $6 \%-\mathrm{D}$.st free over $5 \%-;$ list free.-G2DJA, 137 . Randall Ave., London, N.W. ${ }^{2}$. 1235 R.F. amplifiers, type 2 ex Navy type B^{2} tranj(less valves), rated 50 watts. carrier cover, ng $100-146$ mcs, built-in phone monitor. 2 meters circuit diagram supplied, brand new, less valve: E4 10; carriage 3/6. TRANSFORMERS, 10K-352, approx $51 /$ in sq overall. upright mounting fitted terminal panels, primary 230 volts, ${ }^{\text {b }}$ secondaries: $0-50-$
$100-150$ volts at 50 ma , 16 volts at 50 ma . 6 $100-150$ volts at $50 \mathrm{ma}, 16$ volts at ${ }^{50} \mathrm{ma}$. ${ }^{6}$
volts at 3 amp , 6.3 volts at 5 amp . 65 volts at volts at 3 amp, 6.3 voits at 5 amp. 65 volts at
400 ma; price $19 / 6$; carriage $2 / 6$. TRANSFORMERS. ${ }^{2}$, carriage $10 / \mathrm{K} 1081$. 61% in $\times 4$, in \times 41/in, upright mounting impregnated. primary 230 v , secondaries 500 voits C.T. $100 \mathrm{ma}, 6.3$ volts 1 amp C.T.. 5 volts 3 amps. 4 volts 3 amps: price 27/6; carriage 2/6.
TWIN safety fuseholders. Belling \& Lee type, bakelite moulded, hods two cartridge iuses and price 4/6' postage 6d. DIPOLE units, approx 15% yds 80 ohm coax cable, fitted with waterproofed dipole and matching unit one end, can be used to match centre of a dipole into the coaxial line; price $17 / 6$: carriage 1/6.
TX variable condensers, made by S.T.C., sp.it stator condenser 400 pius 400 pid, 8 in $\times 61 / 4 i n$. plates easily removed to alter capacity, new: 17/6; postage $1 / 4$.
ARTIFlCIAL aerial, type LB, range $136 \mathrm{kc} / \mathrm{s}-15$ mc / s. size $10 \mathrm{in} \times 101 / \mathrm{in} \times 7 \mathrm{in}$, tuning condenser, dial and dummy load resistor: price 9/6; car
WIage 2/6. ${ }^{\text {WILFLO }}$ PRODCTS invites you to have a go. Send ld s.a.e. for our bargain list now.-Wilfo Products. 160-164. McAslin St.. Glassow. I1378 TTTLEWOODS, phones, 1.r. with headband div and cord. $3 /-$ pair; selenium rectifiers. $270 v, 70$ ma, halfwave, $6 /-$; Plessey heavy duty output transformers 50:1 ratio, ideal for 6 V 6 etc., 5/6; h.f. chokes, all wave. wire ends, $1 /-$ carbon mikes 1/6; North London's largest selec co. 27 Ballards Lane. Finchley, N. 3 . Fin. 3060 BARGAINS in ex-w.D. equipment.- 12 volt
i.f.f. rec.'transmitters. 10 valves, motor enerator, etc., new, in cartons, 25/-, mitter tuning units, TU6 B_{1} TU7 ' B TU10 B (easily converted to simple trans-ceiver as pe crackle case, $16 / 6$, c.p.; send s.a.e. for bargain list.-Fanthorpe, 6 , Hepworth's Arcade, Hull. TX power packs, $200 / 250 \mathrm{v}$ 50cs input, $1,200 \mathrm{v}$ 1200 ma d.c. smoothed out. metal rectifiers, relays, etc.; H.D. 100 in ventilated metal case; RX power pack. $200 / 250 \mathrm{v} 50 \mathrm{cs}$ input, 6.3 v at 13 amps d.c. and 250 v 110ma smoothed output, metal rec.. H.D. in ventilated metal case bargains at \&16 pair with carr.-Hughes (Lowestoft). Ltd., 88, Tonning St., Lowestoft. TEEADPHONES bargain! double balanced 1 armature units, reed driven corrugated aluminium diaphragms, adjust. headbands double, 8 ft cords $\& z$ jack-plug, d.c. resist. 60 ohm . these are brand new, boxed super-sensitive in struments worth two guineas: huge purchase of ables offer at $5 / 6 \mathrm{pr}, 2 \mathrm{prs}$ 10/\% trade 10 prs $35 /=100$ prs. $£ 15 .-($ Below $)$
RECTIFIERS. metal Westinghouse. 12v. lamp brand new, 2 for $10 /-$: trade 10 for £2-(Be.ow) VIBRATORS, Mallory, type 629C 6v non syn chronsus, brand new, 5/6 each. 48/- doz offers reqd.: large quan.; send 1d. s.a.e. fol radio list. 100 bargains.-A. C. Ltd., 15.
rence St.. Northampton or Tel. Chiswič
1601.
 SAPPHIRE NEEDLE

The Latest GOLDRING Pick-up No. 121 has many great advantages, including :-

- Full Frequency Reproduc tion in combination with a standard Wireless Set.
- Will abolish constant needie changing.
- Will safeguard records through reduced wear. Write for full descriptive leaflet
ERWIN SCHARF
49-51a, De Beauvior Road, London, N.I

POTENTIOMETERS

Type T.W. Wire Wound	
Rating	RANGES
5 Watt Max. (linear)	$\left\{\begin{array}{l}5-100,000 \text { (} 2 \text { M Max. } \\ \text { (linear) } \\ \text { 50-50,000 } \$ 2 \text { Max. }\end{array}\right.$
3 Watt Max. (graded)	$\left\{\begin{array}{c} \text { (graded) } \\ 100-10,000 \Omega \text { Non- } \\ \text { inductive } \end{array}\right.$
Type S.G. Composition	
1 Watt Max.	2,000 ohms to 5 megohms

CHARACTERISTICS: (both types) linear, tog., semi-log., inverse log., non-inductive, etcIULL DATA FROM :
RELIANCE
Manufacturing Co. (Southwark) Let. Sutherland Rd., Higham Hill, London, E. 17 Telephone : Larkswood 3245

GALP\｜N＇S

ELECTRICAL STORES，
408，HIGH STREET，LEWISHAM LONDON，S．E． 13
TERMS ：CASH WITH ORDER．NO C．O．D． EX－GOVERNMENT（G．E．C．）ELECTRIC FANS， 12 voles，A．C．／D．C．laminared field， complete with 5 in．impeller．New，boxed， $\begin{array}{ll}20 / \% & \text { each，post } 1 / \text { ．．．Transformer to suit，} 230 \\ \text { volts input，} 12 / 16 \text { volts at } 4 \text { amps．output，} 32 / 6\end{array}$ volts input， $12 / 16$ volts at 4 amps．output， $32 / 6$

MAINS VARIABLE RESISTANCES，

Government（new）slider type， 4,000 ohms

 .25 amps．． $35 /$－each．Worm Wheel Conerol， slider type， 60 ohms，to carry $1 \frac{1}{2}$ amps．，22／6 each ： 5.7 ohms， 8 amps．， $32 / 6$ each．Dimmer Resistances， Stud Switch Arm Type，2，700 ohms，to carry MAINS 27 ， $30 /$－each．MAINS VARIABLE RESISTANCES（slider type），new，ex－Govr．， 14 ohms，carry 1 to 4 amps．：
graduated，useful as dimmers，etc．， 25 ／each： graduated，useful as dimmers，erc．， $25 /$－each ；
another， 0.4 ohms，carry 25 amps．， $25 /$－each， another， 0.4 ohms，carry 25 amps， $25 /$ each，
post $1 / 6$ ．Ex－Govt．Moving－coil Cell Testers， $3-0-3$ volts（new），25／－each．
EX－GOVERNMENT（NEW）MAINS TRANSFORMERS， $200 / 250$ volts， 50 cycles， 1－phase input， $525-0-525$ voles， $150 \mathrm{~m} / \mathrm{amps}$ ． 6.3 voles， 5 amps．， 5 voles 3 amps．ourput，standard rating， $35 /-$ each，post $2 /$ ．Mains 5 moothing Chokes， $10 \mathrm{Hy}, 150 \mathrm{~m} / \mathrm{amps} ., 180$ ohms， $\mathrm{D} . \mathrm{C}$ ．
Res．， $8 / 6$ ；ditto， $100 \mathrm{~m} / \mathrm{amps} ., 5 / 6$ each，post 9 d ． All the above can be offered in large quantities． Please write for special quotation．
EX－R．A．F．MICROPHONE TESTERS（new）， These consist of a Ferranti 0 ro $450 \mathrm{~m} / \mathrm{amp}$ ．，2tin． Westinghouse Rectifier，the whole encased in polished teak case，calibrated at present 0 to 10 volts， $32 / 6$ each．
SPECIAL OFFER METERS，all new boxed， Moving Coil，firse grade instruments， 0 to 20 volts， 10／－each，or 3 for 25／－； 0 to 40 volts， $12 / 6$ each 0 to 10 amps．， $15 /$－each，all 2 in ．scale． 0 to 20 volts，A．C．，calibrated， 50 eycles， 25 －each． 0 to 4 amps．，thermo－coupled，25／－each．
MAINS TRANSFORMERS，as new，input 230 voles， 50 cycles，output 12 volts at $8 \frac{1}{2}$ amps．， A．R．P．shelter transformers，25／－each，post $2 /-$－
EX－NAVAL（SELF－ENERGISED）TELE－ PH－NAVAL（SELF－ENER HANDSETS， $10 / 6$ each，post or Complete Telephones，Magnero Ringing and Neon Light，at $35 /$－each，post $2 / 6$ ．
MAINS TRANSFORMERS（AUTO MAINS TRANS）．Voltage Changers tapped 10， 20 ， $25,90,130,150,190,210$ and 230 voles，all at 1,000 watts，a combination of 34 voltages can be obtained from this transformer new ex－Govern－ ment 5tock， $65 / 10 /$ each，carriage 5／－s Mains 8ooster Transformer，tapped 0，6，10，19，175， 200，220， 225,240 and 250 volts at 1,500 warts （new，ex－Government）， 200 volts input， 240 volts output at Another 200 volts input， 240 volts output at ratio， 110 volts inpur， 220 volts output，or vice versa，at 4,000 watcs，$\leqslant 12 / 10 /-$ ，carriage $10 /-$ Another 230 volts input，tapped ourpur 40,41 ，
$42,44,46,47,49$ and 52 volts at 105 amps．， 815 42，44，46，47， 49 and 52 volts at 100 amps．， 155
each，carriage $10 / \mathrm{F}$ ，the latter two are double wound：Another Auto Wound，tapped 0， 110 $150,190,210$ and 230 volts at 1,500 watts， $66 / 10 /$ each，carriage 5／a．Ditco 2,000 watts，E7／5／\％，
carriage $5 /-$－ UNITS．These units are new and weigh 90 lbs． Consisting of high voltage condensers， 15 volume controls，chokes，approx． 100 resistances and and tube holders（no valves），transformers are and tube holders（no valves），transformers are
included but are for 500 cys．，price to clear， $42 / 6$ each，carriage paid．
EX－R．A．F．RF UNITS（new）packed，containing 6 valves，all 6.3 heaters，including grounded grid eriode，also a miniature 24 －volt motor（universal） and approx． 80 resistances and condensers，all mounted on silver－plated chassis，to clear， $37 / 6$ each，carriage paid
L．T．RECTIFIERS（NEW）， 12 volts at $1 \frac{1}{2}$ amps． output， $10 / 6$ each； 12 volts at 6,8 amps．ourpur 45－each．Transformers can also be supplied for charging 6 or 12 volts（delivery 10 days from
date of order），prices respectively $25 /$ and date of
EX－R．A．F．IFF UNITS．As new，these units contain 10 valve $5 . P .41 \mathrm{~s}$ ，EF 50 s ，EA 50 s ，etc．，also approx． 100 resistances and condensers，also com－ plete with motor generator， 12 or 24 voles input， 450 voles at $50 \mathrm{~m} / \mathrm{amps}$ ．Output．To clear， 24 －vol type $35 /$ ：： 12 －volt type， $37 / 6$ ，carriage $3 / 6$ ．
 WA ma．convertible to A．C．motor by makint two connections， 106 ，post 1．：similar but nut $10 /-$ post $1 /-;$ cscillator units containing 2 CV6
1 Di television diode， $10,-i$ mfd 1.000 w wk
 TMMEDIATE delivery of chassis，panels，etc． －plain or drilled to spec．，metalwork to speci－ rication，prototypes or repetition；trade en－ quiries invited；panels in $18 \mathrm{~g}, 16 \mathrm{~g}, 14 \mathrm{~g}$ and 10 g $1 / 8 \mathrm{in}$ ）：B．A．bolts，nuts，washers；surplus chassis， 188 all， $161 n \times 16 i n \times 2 i n$ ，welded corners，as last monts，new in cartons．27／6，post，packing 6d： many other surpas bargains，components，units， racks，etc．－G．L．G．Radio，15，Halcyon Rd．．
Newton Abbot． ETAL rects，bridge 12 v Ga， $15 /-$ ：heavy
duty trans． $200-230 \mathrm{v}$ tapped 110 v in 20 v 11 duty trans． $200-230 \mathrm{v}$ tapped 110 v in 20 v
8 B 5 tappings out， $17 / 6$ ；hot wire ammeter $21 / \mathrm{in}$ Ba 5 tappings out， $17 / 6$ ；hot wire ammeter 21 inin
flush $9 a, 5 / 6$ ；complete kit $36 /-:$ condenser； flush $9 a, 5 / 6 ;$ complete kit $36 /-;$ condensers
$4 \mathrm{mfd} 1,000 \mathrm{v}, 2 / 6 ; 2 \mathrm{mfd} 1.500 \mathrm{v}$ ． $1 / 6$ ；new clean 4mfd 1．000v．2／6： 2 mfd 1.500 v ． $1 / 6$ ：new clean goods；Eddystone 358 X complete crystal filter．
meter，etc．，no p．p．coils or valves，good condi－ meter，etc．，no p．p．coils or valves．good condi－
tion $£ 6 / 10$ ； 35 watt res． $35.0000 \mathrm{~mm} 1 /-02 \mathrm{mfd}$ tion 5.000 v wkg．al．can， $2 / 6$ ．－ 0 Beam Ends，＂Tre－
［1302 garon Ave．E．Cosham，Portsmouth，［1302 CNQUIRE for anything in radio；satisfaction best makes；limited number gram motors， best makes，
$£ 4 / 2 / 5$ ；magnetic pick－ups from $30 /-1 / 4$－watt re－
sistors． 3 d each；volume controls $\mathrm{L} / \mathrm{S} 3 / 6$ ，W／S sistors， $3 d$ each；volume controls L／S $3 / 6$, W／S
$5 / 6$ ；Varley multiratio output transformer． $10 / 6$ ； 5／6：Varley multiratio output transiormer． $50 / 6$ ，or 4 m heaters． $30 /=$ ；shop soiled Avo Minur，$£ 3 / 10$ ， unused，guaranteed perfect：cash with order ol c．o．d．－Mail Order Dept．．Radio
I AWRENCE＇S，Liverpool．－Outstanding value， AWRENCE CRT indicators：ID17／APN3． 46 valves，f9； APN4， 24 valves， $100 \mathrm{xc} / \mathrm{s}$ Xtal，tube 5CP1， 55 ：
BC929， 7 valves， $3 B P 1,70 /-$ APS3．5FP7， $32 / 6$ ． BC929， 7 valves，3BP1，70／－：APS3．5FP7， $32 / 6$ ．
Receivers：BC453 6－valve superhet，circuits，con－ version boozlet included， $44 /-$ ： 14 volt dyna－ motor for same， $10 /-i, 1124 A, 6$ valves，die－cast case， $30 /-;$ Bendix $433 \mathrm{G}, 15$ valves， $173-1,500 \mathrm{~m}$ ；
circuit．$£ 5$ ；Bendix MN26， 12 valves， $150-695 \mathrm{k} /$＇s $\begin{array}{ll}\text { and } 3.4-7 \mathrm{mc} / \mathrm{s}, \text { circuit，control panel，} & \text { E5；re－} \\ \text { a } \\ \text { a }\end{array}$ $\begin{array}{ll}\text { peater motors，} 5 /-: \\ \text { Western Electric } & \text { HS3 } \\ \text { headphones，} & 6 /-: \\ \text { send }\end{array}$ wtamp for lists；all prices include carriage；cash with order．－Lawrence＇s，61，Byrom St．，Liver－ psol．Central 4430．Ltd．，Sound Specialists． G．The latest £10 amplifier kit，for P．A．High ga．n mic．stage．P．P．output 15 watts；finest value offered to constructors；the Tiny then figh fidelity amps，l2gns；our quality chassis，high fidelity triodes．separate bass and treble valves．output 6 watts．outstanding performance． $14 \frac{1}{2 g}$ gns． transformers for W ．W．circuits from $45 /-$ ；power
trans． $350 / 0,350 v 100 \mathrm{ma}, 30 /-;$ O．P．trans．for trans． $350 / 0 / 350 \mathrm{v}$ 100ma， $30 /-$ O．P．trans，fol
6V6＇s in P．P． $3 / 8 / 15$ ohms， $25 /-$ record players logns．speaker cases， $70 /-$ ；combine amp and speaker in case， 14 gns ；for these and hundreds of other items concerning sound ampne：G．L．PRODUCTS，Ltd．（S．Dept．） 294 ， Brite：G．L．PRODUCTS，Lent．［1200 Broadway，Bexieyhearh，RAGb．Romford Rd．，Manor noted for getting the price down；specialists in component parts for 15 years：tubular 25 mfd ， 25 v and 50 mfd 12 v condensers， $1 /-$ each．
doz； .01 mfd 000 y tubular condensers． $5 / 6$ doz .1 mfd 350 v tubular condensers． $5 / 6$ doz； 1 mfd 500 v tubular condensers， $6 / 6$ doz； 25 mfd 350 v tubular condensers， $9 / 0$ doz； 5 mfd 350 v tubular cindensers， $9 / 0$ doz： 25 mid tubvar condensers． densers， $86 /-8 \mathrm{mfd} 350 \mathrm{y}$ tubular condensers． $34 /$－ doz； $16+8$ mfd $350 y$ tubular condensers， $46 /-$ doz $16+8$ mid $450 v$ midget tubular condensers， $56 /$ doz； 32 mfd 350 v midget tubular condensers， $56 /-1$ doz
doz： 02 mfd 750 v tubular condensers． $5 / 6$ dot .05 mfd 350 v tubular condensers， $5 / 5 \mathrm{doz}$ ； 4 mtd $\begin{array}{lll}550 v \\ \text { double trimmer can type condensers，} & 15 /- & \text { doz；} \\ \text { condensers．} 140 \text { pis．} & 12 / 6\end{array}$ double trimmer type condensers． 140 pis． $12 /$
doz；double trimmer type cendensers， 50 pis， $11 /$ doz：single trimimer type condensers， 50 pis，
$6 /-$ doz；fixed mica condensers， 0005 mi rd． 325 ofs． 500 pfs． 590 pfs ． 4.550 pfs．all at $2 / 6$ doz $2001,300!400 \Omega, 500 \Omega .2 \mathrm{~K} \Omega .2 .2 \mathrm{~K} \Omega$ ． $5 \mathrm{~K} \Omega$ ， $10 \mathrm{~K} \oint, 20 \mathrm{~K}\{.500 \mathrm{~K} \Omega .1 .5 \mathrm{M} 9$ and $5 \mathrm{M} \Omega$ ；these in many other values at $3 /-$ dox， $30 /-$ gross only 11 in brown knobs， $4 / 6$ doz：clip－on pointer hands． 6 d each：complete octal screen can and base， $1 /-$ each， $11 /-$ doz；baikelite gram needle
cups． 8 d pair， $7 /-$ doz pairs；ex－Gov．group cups．8d pair，7／－doz pairs；ex－Gov．group Westector 1 180pi condenser， $2 / 6$ each：metal panel with 5－pin UX ceramic valve holder， 2 p－
watt resistances． 5 mica condensers．assorted watt resistances． 5 mica condensers assore and two 2 －way panels． $2 /$－ short wave choke and two 2－way panels． each，Mazria octal bakers $2 / 6$ per doz： 2 K wre wound vol controls． less switch， $12 /=$ doz： 50 K and 100 K long spindle．With switch． 36, doz； 10 K up to 2 meg ， 4／－each； 250 K ，less switch．2／－each， $22 /-$ doz standard or octal grid caps．6d doz；earphones
50Ω with headband． $4 /-$ pair：high resistance 50Ω with headband． $4 /=$ pair：hign resistance rectiflers，5／6 each．60i－doz；paxnlin panels
with tags．4－8－11－way，3－ways 1d：WX6 Westec－ with tags． $6 / \mathrm{doz}$ ；terms c．w．o．no cod． extra for postage orders under
all enquirles and 1 ist．

Complete Stock marked down to latest Taz Reductions BRIMAR．－152， $133.513 .5 U 4,80,523,5 \% 4,6 X 5,5 V 4$. $1155,25 \% 4,114 \mathrm{ti}, \mathrm{C} / 4,35 \% 4$ ．15D1．15522．912．SD2，

 1．50，US10．
MARCONL／OSRAM．－L10，UI4，MV14，1＇18／20，V550．

 DD20＇，HL23，HL23DD，V123，\＆P2220，SP42，I＇22， ACP4．
MULLARD．－WW2，DW゙4／350， $1 W^{2}+/ 350$ DW

 T1ODIK，If113C，VP13A，SPIB，Pen3GC，C1A，

 F（2．HC2A，DK＇s2．DAC32，CL33，CB1，1，CBL31， EBLR1，TBLSt，Tど21．
PHILIPS，－1K21．（＇Y：C1，C1C＇，C1，CY1
TUNGSRAM．－ILN210，1M220，1．L4，APPAC，APP4G，
 IfP＋106，HP＇1018．JP＇4101，MIIt105
HIVAC．－XL．XD，XY，XP，XSG，XH，XW．

 7B6， $10,12 \mathrm{~A} 5,12 \mathrm{~A} 6,12 \mathrm{~K}, 12 \mathrm{~J}, 12 \mathrm{~K}, 12 \mathrm{KK}, 12 \mathrm{Q}$,
 $14 \mathrm{B7}, 14 \mathrm{Bf}, 11 \mathrm{Q7}, 15,17,18,20,22,2574.26,27,32$ $34,35 \mathrm{~A}, 3516,4574,3575,37,3 \kappa,+1,42,43,46,48$ N84． $954,905,951,4001,9002,9003,9004,9005,9006$ ， and 101 more types．
tF7，184，fiAG，fixc\％，12HJ7， $25 \mathrm{~L} 6 \mathrm{GT}, 25 \%$ gat PN25．TH4 1
Oriler C．O．1D．above listed numhera or equizalent （aubject to stack）．Pleare enfuire for athy valve you
require．even if not linted．We nay bave it．Hld require，even if not liated．We
and new typen are arriving daily．

THIS MONTR＇S OFFER．
＂Pencil＂Type Midzet Soldering Iron，off if v
Service Sheets，British aud Anerican，our
Eay Terms on all Taylor Instruments，6－12
months．Ask for details．
Trimmer Tool Kit，ncw Marter Mon
nroved，in carrying care complete．
Mroved．in carrying care complete．．．．．．．． self energised．Jow impedauc
Telescopic Aerials，Steet $16 /$－，Almminium
＂Radio Cralt＂Amelican Library，Ilnst rateil．
＊Goldring＂Pickup Head
＊Goldring Ficzup Head lends old gramo－
phone radiocram nuality ．．．．．．．．．．．．．．．．．．．
＂Bairds＂Garrick Television，radiu－conthined l2in，tube，Pricc and Tax reduced．Superb． Mains／Battery Motors，（ff is or 12 V ，Batterien
or A．C／D．C．mains，For nuedinm sized models
0－1 Milliammeters， 21 Inch，ex－Govt．，new Electric Mouse Traps，wattles，clean，Bafe Miniature Photo Gameras．Fins aval．
Ruco Majns Noise Suppressors ．．．．．．．．．． Sin Loudspeakers，hrand new and hoxed Speaker Eabric，coupon Iree，I sq．ft Chassis Cutters， $11 \mathrm{H} ., 1$ in．， 1 in
Stop Press：
Ex－W．D．Compass， 4 －inch dial，precise instru－
ment in cabinet
10－inch Goodman Speakers
12－inch Celestion P44 Spearert coili，I．P．Coils，
Weariete Coils，Coil Packs，P，Coils，I．F．Coils，
Fildicator，Battery Level Indicstor and Filler Flikodisk Calculator，answers all Ohn＇s 1 sw problems
Henley＇s Solum Pencil Bit Soldering Iron
Please write innmediately to（W．W．）

HENRY'S

BC 221 FEEQUENCY METER. A further purchave

 enables us to re-offer this uutstanding American tent Instrument. Crystal-controlled, 22 is. $17,16 \mathrm{KN}$, phcomplete set of apare values. Coverage $125 \cdot 20,000 \mathrm{ki}$ Calibrated charts and instruction booklet supplied Battery operation 130 v. H.T. © \mathbf{v}. L.T. Ample spaca available for eapily constructed mains pack. New, by leading raanufacturer fi, 815 unly.
R1626 EX-A. M. RECEIVER. Comprising in valves, EF50, 2.EB34, gi volt rotary (ienerator, relaya, and hundreds of resiat orand condensers, complete in metal case, brand new, 75/- only.
VIBRATOR POWER UNITS, 2 volt. AR for Canadian 58 set. Completely amouthed, output $1.5 v, 1$.T. and 90 v . H.T. at 35 inla. Complete in grey metal box, olze $\sin . x 3 \mathrm{in} . x+1 \mathrm{n} . .50 /-\mathrm{on}$) E.H.T, TRANSFORMERS by STEWART. These transformers are super-Quality, wad-impmegnated and paper-interleaved. $1,0 c 0$ v., and 4 v. ('.T. or 2 y .
C.T., $50 /-1,750$ v... and 4 v. C'.T. or 2 v. ('.T., $50 /-$
4,000 v., and 2 v. C.L., $75 /-$.
TELEVISION COMPONENTS by " SCANCO." Highgrade tested components. Recommended for use with Elestronic Engmeering design, etc. Focus ('oil,
$37 / 6$, scanning Cuils, $35 /-$, Line Tranformer, $30 / \mathrm{-}$, Well-finished and guaranteed.
GRAMOPEONE MOTORS. COLLARO. A.C. 200/250 volts, complete with maknetic yick-up and 12 in . turn AUTOMATIC CHANGERS. Cullaro A.C. $200 / 250$ volt
. Collaro a 10 or $12 i n$, mixel, c'omplate' $12 i n$. turntable and
magnetic pick-up. A few only, 82278 , fic. Tax. In addition to the above, we have the most comprehensive atock of Eadio Components in the trade.

Send Stamp for latest List.
Wholesale A Retail
HENRY'S
5, HARROW ROAD, W. 2
PADdington 1008'9

without ancrificing accuracy and reliatblity. Weigh only 31 bs Height allows for full swiug of geverator handle

CONTINUITY TESTER
This latest addition to the Record Ohtumeter range is enclosed it a moulded bakelite case of pleasiug appearance. Cained dry battery. Specially designed teat spikes and leads can be supplied also a "test and carry" case in which the instrument may be used without removal. Ranges:-
$0: 2-0.30$ ohms. $0 / 30-$ $\begin{array}{ll}0 & 3-0 / 30 \text { ohms. 0/30- } \\ 0 & 300 \text { ohns. } 0 / 500-\end{array}$ 50,000 ohms. $0^{\prime} 1,040$
THE RECORD ELECTRICAL CO. LTD Broadheath, Altrincham, Cheshire. Te..' Altrincham 3221 :2 3. Uramb; " lnfuaion," Altrincham

T ELRAD ELECTRONICS. 70, Church Rd. W.D. surpius, comprehensive and up-to-date stocks of guaranteed valves and components
c.o.d. or cash with order: c.o.d. or cash with order; $2-$ gang conds. 6 v mains irans., $300-0-300,24 /-$ out put multi ratio. 9/-: valve holders amphenol type, 9d. each Donco stockists; Wearite coils, iull range, 3 each; tri.f. colls m/1. $7 / 9$ pair; coil packs, 3 wave
band, $27 / 6$; Wearite, $42 /-:$ volume controls, 1 s band, $27 / 6$, with switch $6 /-$; enquire for everything in radio. Write, call or 'phone Livingstone 4879 . \&PECIAL notice.-The famous ranse of A.IS products are now being munufact ured by the London Television Co., Lid. They conform in every respect to the original specifications, also the delivery position is greatly improved, most lines being available ex-stock. 40 coil pack, a superhet coil pack with h.f. Stage, uses 9 ironcrrcuit. $465 \mathrm{kc} / \mathrm{s}$ i.t., aligned and bain tested. with circuit diagram. enables amateur with no signal generator to construct first class ali-wave recever, price $£ 3 / 10$, circuit diagram oniy, $2 / 6$; send stamp now for price list and technical bulletin W. 1 enquiries pramptly dealt with and demonstrations given at uur showrooms. Tel Ley. 4380 for special information
THE LONDON TELEVISION Co
Bridge Rd., London, E.10. Co., Lid., 694 , Lea R UCO bandspread convert
R in power supply, 6 bands, 7 in dial puilt band, stylish cabinet, in two models, Model I, broadcast, 11 to 44.5 metres. model II, teleVision, amateur, shipping, $£ 13,5$; details, illustration on request. Teievision component for W.W. and E.E. circuits, scanning coil unit,
 Ultra midget $\underset{2}{ }$ E-E. Tang variable condenser for Personal portables. $10 /-$; Glass, $S . M . L$. dial. $\underset{\sim}{6} \times 8$ in, 4/6; pan. 4/6; escutcheon. $5 / 6$; 8in P.M., less trans., $17 / 6 ; 61$ esin P.M. with trans., $22 / 6$ P.P. output heavy duty trans. for 6 L 6 valves, tapped output 15 and 7.5 , and ditto
for 6 V 6 valves at $21 /-$ each; amplifier cases, undrilled chassis, $171,2 \times 81 / 2 \times 21,2 i n$, with detachable perforated cover, 20% condensers, $8 \mathrm{mfd}, 450 v$,
trimmer kit in smart case, 17 tools, "Qualrad,
$8 / 6$ $45 /=$ amplifier units, fully assembled. tested. for 6 Q 7 , $6 \mathrm{~V} 6,5 \mathrm{z4}$, less valves, $£ 5 / 17 / 6$; heavy duty variable resistance, 3000 hms . lamp., $15 /-$: test pro.. 4/- pair; rotary trans, in $6-12 \mathrm{v}$. out $200-480 v$, 50 ma , or as motor d.c. mains, 265. Whitechapel Rd. London, E.1. Bis, 5079 () SCILLOSCOPE units less 2.in C.R. tube 0-1 Mas meter, 7/6; 1/khp Universal motors \&1: out. £1: co-axial cable, $1 / 2$ in, 45 or 72 oh 7 . $1 /-$ per yard carbon telephone table stand microphones. 10 transtormers. 7,6 ; crystal microplone. in table stand, £3; brass model ship's engine, £25; 12 in diameter rellector lights, suit Stage of photography, $£ 3$; car charger, £4; ultra
violet foor stand outit, $£ 25$; Sound Sales amplifier, complete output PX25s, f20; a nother for $12 v$ D.C. portable, £25: charging board, 3 -circuit. fach 36 volt 5 amp. £25; Polystyrene solution, pint tins, $6-;$ heayy rubber cable, $44,0.012 .100$
yds. \&1: twin padded and braided mains. 100 ft . yds. £l: twin padded and braided mains. 100 ft , 15/-i beam Autosyn indicator and Master pair,
e3; RU16 G-vilve receivers, new, with 9 coils. £ 30 : Eddystone 3 -valve converter kits, $57 / 10$ 180 -watt vitreous $12 \mathrm{~K} \quad 100 \mathrm{~K}, 130$-watt 20 K , 50 K out each; alternators, D.C. mains in, A.C. mains mfd, 12, 6; $4+43,000 \mathrm{v}$. 21 ; 400 Mills l, chokes 40amp relay cut-outs, 9 -14-volt coil, 5 ,-i Morse keys. 2/6; 9in. ceramic spreaders, insulators. 6/ dozen; postage, carriage extra; trade lists avail-able.-Amateur Radio Service, Canning St.
Burnley. Tel. 2999 . *ELENIUM h.t. and 1.t. rectiflers, foolproof given for use of all goods supplied: add 7 d post given for use of all goods supplied: add 7 d . post-
age up to $15 /-, 1 / 3$ above Charger kits: 12 v 2 amp selenium rectiffer, with 50 -watt transformer and ballast bulb for $2 v$ to $12 v$ charger,
no rheostas and ammeter needed. $36 / 6$: dito no rheosta: and ammeter needed. $36 / 6$; ditto
with 3 amp rect. and 60 watt trans, $42 / 6$ ditto for $6 \mathrm{v}, 12 \mathrm{v}$ at $4 \mathrm{amp}, 62 /-$ ditto for $2 \mathrm{v}, 6 \mathrm{v}$ at 1 amp, $26 /-$ transformer and rectifier for $2 v$ charger amp trickle charger, $12 /-$ heavy duty amp giant finned type rectifier and ballast bulb for 6 V . 12 V charger. £5; transformer, rectifier. ballast bulb for 1 to 20 cells at 1 amp, $£ 4 / 15$: £6/15, ideal for small radio store, guaranteed i year; 2 v to 12 v chargers, 4 amp. $48 ; 1.5 \mathrm{amp}$. 10/6; 12 v 3 amp, $21 /-12 \mathrm{y}$. 4 amp, $25 /-$ amp, 12 v 5 amp, $27 / 6$; giant finned type $12 v 6$ amp.
$32 / 6$ also $12 v, 2 \mathrm{mp}$. $12 / 6 ; 6 \mathrm{v}$ amp, $9 / 6$; $34 / 6 ; 24 v, 5$ amp. $44 / 6 ; 36 v$ 5 amp. $64 /-24 v$ space, compact, 250 v 60 ma for converting A.C. D.C. radios, $7 /-; 120 \mathrm{v} 30$ ma for elininators
 tor kit, 120 v 20 ma. transformer. h.t. rectifier trickle charge rectifier, 2 condensers, 39,$6 ;$ Germanium crystal diodes, new, $3 / 9$; Rola 8 in p.m.
speakers. $17 / 6 ; 0-6$ amp ammeters $12 / 6$. ohm 10 amp rheostats. $13 / 6$.-Champion, 43,

14.5ns. plus P.T. £3.3.3. or as kit of parts for home construction fron £8.10.
Set of constructional blueprincs 4. $^{\text {. }}$ Special Offer. Few only DENCO four waveband 5 -valve superher chassis at $£ 14$ each, including tax. Cabinet to suit, £1.19.6. TELEVISION. Send for 70 -page booklet on television construction $2 / 8 \mathrm{~d}$. post free. Components and chassis availab'e. Focus coil assemblies $30,-$ Combined EHT and LHT transformers E5, 15s.

Hlustrated leaflets gladly sent upon receipt of postage from

THETELERADIOCO.,

 157, Fore St., Edmonton, N. 18
GOVT. SURPLUS, UNUSED

CONDENSERS of cIll typpes...

We can offer. FOR IMMEDIATE DELIVERY from very generous stocks, a wide range of ultra-high quality fixed paper Condensers, rom $.001 \mu \mathrm{~F}$ to $8 \mu \mathrm{~F}$. Also STOCKS of small, genuine MICA Condensers from .00001 (10 pf) to $.01 \mu \mathrm{~F}$ ($10,000 \mathrm{pf}$). Prices are exceedingly moderate.
Enquiries are invited for manufac turers requirements, wholesale and export only for bulk quantities, and for scheduled deliveries over a period, as required. Condensers of close or very close tolerance can be supplied within about one week.

CLAUDE LYONS LTD.

180, Tottenham Couri Rd., London, W. 1 and 76, Oldhall St., Liverpool 3, Lancs.

THE "FLUXITE QUINS" AT WORK
Cried OI "Cut the cackles you three It's rescue I need. Can't you see?
I'll crash down in two shakes if this aerial breaks
"It won't. It's FLUXITED" grinned EE.

See that FLUXITE is always by you - in the house - garage workshop - wherever speedy soldering is needed. Used for over 40 years in Covernment works and by leading engineers and manufacturers. Of ali Iron-mongers-in tins, $10 \mathrm{~d} ., 1 / 6 \& 3 /$ -

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-but IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price $1 / 6$, or filled, $2 / 6$.

all mfchanics will have

FLUXITEIT SIMPLIFIES ALL SOLDERING Write for Book on the ART OF "SOFT" SOLDERING and for Leaflets on CASEHARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price Id. each.

FLUXITE LTD.
(Dept. W.W.), Bermondsey Street, S.E.I

COMPONENTS and valves for constructors Deansfate, Manchester, 3 . So., Send for list. [9597 Deansrate, Manchester, 3, Send for list. 9597 MAINS transformers, output transformers and as per "W, World." May, 1947; delivery ex stock.-Metropolitan Radio Service Co.jo0. ALUE! Matt has it. Order with contidence. F Full satisfaction assured. Special offers: Headphones, $W /$ lead and jack plug, $3 / 11$ pair (boxed 2 pairs), 42/- doz. pars, line cord, 3amp. 60ohms per ft, 2 -way, $1 / 6 y d$. ., 3 -way, $2 /-y d$; tuning condensers, 0005 polar midset, | $11 / 6 ; .0005$ standard, 5/6; conaensers, .002, |
| :--- |
| $2 / 6$ doz. $.006,3 /-$ doz. $.1, ~ .01, ~ 9 /-~ d o z . ~$ |

 $3 /-8 \mathrm{mfd}, / 450 \mathrm{v}_{\text {. }} 4 /-: 4+4$ block, $3 /-$; speakers. P.M. (less trans.), 5 in, $12 / 6$; $61 n, 24 /-;$ limited quantity 8 in Truvox F.M. speakers, $16 / 6$; controls, all values (Centralab), L/S, $3 / 6 ; \mathrm{W} / \mathrm{S}$, 4/9: Dostage extra.-Matt Radio Service, 29, Castle St. Kingston-on-Thames, Surrey, Kingston 8353 , Send us your enquiries for all
radio components. Competitive prices. . A. RYALL, 65, Nightingale Lane. London S.W.12. Mail order only. Full list availamall control boxes with toggle, co-axial plug and socket, S.W. HF choke, condenser and resistance. $1 / 3$ each; No. 2 box with Yaxley switch, 2B.4w.2P. 2 ,in pointer knob; toggle $2 P . S T$, and toggle 2P.DT.CO, 3a 250v A.C., 3/6 each; No. 3 box with Yaxley type 2B.3P.3W, good knob, red lamp and holder, 10 w resistance panel with 280 ohm 2 W . pair of 25 mf 50 v elect. single plug ana jack, two-way plug and jack, twin rubber in two lengths, large plug aw anchor and inspection lengths, large plug 4w anchor and Yaxley type switch 3B.5w.2p, good knob; internal toggle, push switch DM and break, three green lampholders and bulbs, one clear type with Neon, relay of 20,000 ohms high voltage $1 \mathrm{~B}, 2 \mathrm{M}$. slugged, second relay 3.000 ohms SP. M \& B, $3 /-$ each; assortment of brand new resistance and condenser panels, 20 for $12 / 6$; meters, moving coil new. $31 / 4$ in external diameter,
$0-30 \mathrm{ma} 7 / 6$. Special list for the trade. 0-30ma 7/6. Special list for the trade. 11047 \rightarrow from the Ministry of Supply. You pay no fancy prlces, all is carriage free to any address in Great Britain. Send s.a.e. to-day for our latest list, Here are a few examples of the value we offer: Control Panel Mk. IV as advertised last month, still a few available at 35/-. This month's spectal!! Of interest to all television enthusiasts, harmonic filter unit No. $40-60 \mathrm{mcs}$. tuned by 2 J.B. slow-motion drives, ceramic-mounted condensers in steel case, approx. 6 in $\times 8$ in $\times 5 i n$; you cannot and and to miss this bargain at type BC938-A 7 -way push-button unit, etc., etc.. $5 /-$ a few only converted 230 v , a.c. electric motors, approx. $1 / 4 \mathrm{~h} . \mathrm{p} .79 / 6$: camera electrically heated covers, Q.S. Army, contain thermostat. $2 y d s$. twin flex and 5 amp. 2-pin plug. 4/11: G.P.O. single neadphone and mic, set, $3 / 11$; Townsend wave meter buzzer, $5 /$-i co-axial cable, $1 / 3$ per coil; 24 v . motor, 6/11; transmitter racks advertised last month at $32 / 6$ still available-Post orders to Walton's Wireless Stores, 203. Staveley Rd.. Wolverhampton. Callers, 48, Stafiord St., Wolverhampton.
C.'.C. seienium rectifiers, makers' current proW. ducts, damp-proof finish; from stock: H4/200 E.H.T for W.W. televisor, $28 /-$ each p.f. H.W.

 $4 \mathrm{a} 42 /=, 5 \mathrm{a} 43 / 6$: $100 \mathrm{v} 1.5 \mathrm{a} 7 \mathrm{~m}^{\prime} /-$ all p. $10 \mathrm{~d} . ; \mathrm{H.D}$.
 p. 1/4; industrial type, funnel cooled. 17 v 12a, $6 a, 114 /-: 100 \mathrm{v} 6 a, 160 /-$ all $\mathrm{p} .1 / 6$; new pro-
ducts: Two new chargers of our own manufacture with S.T.C. rectification; (1) to charge 6 . $12 v$ batteries at 8 a, (2) $6 v$ or 12 v output at
50 a . these chargers are built to a high speci50a, these chargers are built to a high speciflcation and are guaranteed ard ond others interested. please send for garages and others interested full details; valve chargers. conversions to metal full details; valve chargers. conversingar 68504 68530 and 0600 . etc. 5 mins to fit: kits: rect trans. and rheostat, 54 v 6a, £11/10, inc tap-

 6d.: $0-14 \mathrm{M} / \mathrm{c}$. 5 in scale, $£ 1 / 9 / 6$, p. $1 / 4$; slider res. all values. from 246 p. $1 /-\%$ chargers: All
metal rect. input $200-250$ A.C., to charge 12 metal rect. input $200-250$ A.C., to charge 12
cells at $4 \mathrm{a}, \mathrm{w} .2 \mathrm{M} / \mathrm{c}$ meters and fuses. steel cells at 4 . Wi, M / c meters and fuses. Stee
case. \&9/10, plu: carr.: 6-12v 5-6a rheo, and meter, steel case, carli9/6, carr, 5/6; 6-24v 12a M/c meter. fuses, steel case. cio. plus carr.; H.D. type, $24 \mathrm{v} 25 a$, steel case, control panel w M c meters. rheos. and fuses, £12, plus carr terms; c.o.d, post goods only. others c.w.o. or pro forma invoice: wholesale and retal.-Pearce 66. Gt. Percy St.. London. W.C. 16 Nr. Ange

ALEC DAVIS

SUPPLIES LTD.

18, Tottenham Court Road, LONDON, W.1.

Tel. : MUSeum 4539
Tel. : MUseum 2453
We are now able to offer our new range of coils and I.F. Transformers at highly competitive prices.
High Q Permeability Tuned Coils available in normal bands for 465 kc superhet operation.
Long Wave, Medium Wave or Short Wave each in three types for Aerial, H.F. or Oscillator. Single spire nut fixing. Each coil ndividually boxed (with eircuit enclosed).
All these are at $2 / 6$ each.
I.F. Transformers, iron-cored and tuned with high quality ceramic condensers. Q approx. 150. Available in 465, 1.6 and $10.6 \mathrm{Mc} / \mathrm{s}$. Each one complete in radiused aluminium can. Size $1 \frac{1}{2} \mathrm{in}$. square $\times 3 \mathrm{in}$. high. price per pair is $15 /-$
I.F. Transformers as above WITH additional windings for variable selectivity. Price per pair, $18 / 6$.
ENQUIRIES ARE ALSO INVITED FOR $90 \mathrm{Mc} / \mathrm{s}$ F.M. Coils, which are now being developed.
Television Components. $4^{\circ} \mathrm{KV}$ EHT transformers with 2 L.T. windings each of 4 volts centre tapped for alternative 2 -volt operation (for CRM91, 6501, MW22/7). Price € $3 / 5 /$-.
1.75 kV EHT, otherwise as above
(for VCR97, etc.) $£ 200$
I kV. EHT, otherwise as above $\& 176$
5 Hy. 250 mA choke \&1 36
10 Hy .80 mA choke, 130
And, of course, the normal range of Erie Resistors, Belling \& Lee components and TCC Condensers to complete.

LATEST SURPLUS LINES

(Limited supplies only.)

R. 3132 Receiver Chassis, complete except for valves and all in good condition. Price $7 / 6$ each, plus $2 / 6$ carriage and packing.
Celestion $2 \frac{1}{2} \mathrm{in}$. Midget Loudspeaker each one individually boxed and guaranteed Price only $17 / 6$ each.
.001 mid. 350 v. D.C. Working Midget, moulded mica. Price 9d. each.
Plugs and Sockets, chassis socket, flex plug.
10-way type, 3/-per pair (postage 4d.)
7-way type, $2 / 6$ per pair (postage 4d.)
5-way type, 2/- per pair (postage 4d.)
Standard . 0005 Mid. Variable Tuning Condensers
Single gang, 2 : 11 (postage 6d.)
Two gang, 10/6 (postage 6d.)
Three gang, $10 /=$ (postage 6d.)
Four gang, 4:- (postage 6d.)
TELEVISOR LIST NOW AVAILABLE.
Please send stamped addressed envelope for cop:
TRANSFORMERS WOUND TO YOUR
OWN SPECIFICATION-DELIVERY
14 DAYS.
-H in doubt-telephone MUSeum 4539/2453.

- 15 TELEVISION RECEIVER

This is the title of our latest publication giving wiring diagrams and constructional notes of an excellent little T.V. receiver. You can make this from Government surplus equipment and the total cost should not exceed fl 5 . A demonstration receiver can be seen at our address. To avoid disappointment orderyour copy immediately, the price is $7 / 6 \mathrm{~d}$. post free. INFRA-RED IMAGE CONVERTERS, with detaila, $14 / 8$ PHOTO CELLS, unlimited applications, with details, 14/6.
TELEVIBION RECEIVER UNITS, flat reaponge over wide band, with eight valves, for superhets, $55 /-$, E.H.T, tranetormers for T.V., 5,000 volt, £2 10 s . (plus 3/6).
E.B.T. Valve Rectiflers Hivae, 5,000 т.. 11/ COPE UNITS, type fiA, com, with ralver. 70/- (10/न) Q.F. UAITI. There make excellent short wave converters. Types $24 / 25.16 / 6$: types 26/27, $2^{77 / 6}$ earh. A.C. MODEL of the famous BC. 348 t 100 clasa com. munications recelver. Covera $200-600 \mathrm{kc}^{\prime} \mathrm{s}, 9$ valver. crystal filter, noise limiter, perfect in every respect,
f22 10 s . ABERICAN T. U.5.B, Makes super V.F.O., $22 / 6$ (36). il mains equipment needed to put it into immedinte use. Only time bsse values need altering, and we can supply detalin of conversion, £4 196 d ., plus $10 /$. SIGNAL GENERATOR. American made, accuracy hetter than 001 per cent., crystal controlled, covers
two bands, 8.15 Mc's and $1.5-2: 30$ Me's., A.C. nasins two bands, 8.15
BULL'SEX-GOVERNMENTDEPOT
ELECYRON EOUSE, WINDMILL HLLL, BUISLIP MANOR, MDDX
Carriags Charge in brackete. Open Sats. unill 5 p.m

EDDYSTONE

'504' '640' ، 680 and
Full range of S.W. components,

Also

Valves, condensers, transformers. resistances, etc.
All C.O.D. orders promptly executed.
52 page catalogue 1/- post free.

B.T.S

THE Radio firm of the South, 63, London Road, Brighton, I, Sussex. Phone Brighton 1555.

DARESM

Junt a Relection from our stock of 10,000 values
Rend forlint of typenavallable, all reduced to 33 f
 6R7, 6C6, 116, 6D6, 6D8, 6E5, 6C6, 6G4, 6JR, 6K5, 6K6, 7L7, 6U7, 6W7, 807, 5U4,5Vt, 5Z4, 6AG6, 6B6,

 $128 A 7,12 N \mathrm{~F}^{2}, 12 \mathrm{~S}, 17,123 \mathrm{Q7}, 12 \mathrm{SR} 7,14 \mathrm{~A} / 12 \mathrm{B7}$, $57,71 \mathrm{~A}, 77,78,79,80,83,84,89,1 \mathrm{LA} \mathrm{E}, 7 \mathrm{~A} 7 \mathrm{E}$,
 MULLARD,-AZ1, AZ31, EB34, EB91, E1 31, EC53.

 EBL31, FCC31, EC'32. FCCB4. ECr35, ECH35. DAC32, 1AF91, DF3:3, DF91, IKG1, DL33. DLA5, PM2A, PM12M, PM22A, PM22I, PM202, QP22B, 8P2, TDD2A, VP2B, CLI, CBL, CCH35, CL3 , CV1.
CY31, FC13, HL13C, TDD13C, TH3M, CY31, FC13, HL13C, TDIBE, THAKM, VR1C 2DAA, $16+\mathrm{V}, 354 \mathrm{~B}, \mathrm{TBP} 4$
VOLUME CONTBRIS
VOLUME CONTROLS,- 25,000 6d, 50,000 1/6,

VALVE HOLDeEs. Tax. B. A.A. 4 pin 2d., J pin 4d, CONDENSERG-Plesser Midget $R \times 8+50$ in $4 / 6$, 8 mfd .450 v. 2/11, Oil flljed 4 mfd. 600 v. $4,-, 2$ mfd. 350 v. 1/6, 1 nifd. 500 v. 7\%
YAXLEY TYPE SWITCEES,-i pole 2 way 2/6. 4 pole 2 way 2/-, 2 pole 2 way 3 bank 1/6, 11 way 34, BOND STBEET, BRIGETON.

Television.-Focus coils and shrouds, Prame and line deflector coils, line output transformers, blocking oscillator transblies also available, supplied correct to designer's specification for ". Wireless World ' all types reiver. Teievision components of masks, mains transformers and chokes, etc. etc. . in stock at current prices.-For particulars write or 'phone, "Handy Parts," 226,228 Merton Rd., Wimbledon, S.W.19. Libert 7461. Trade' enquiries invited.

TLECTROLYTICS, 8 mfd , 500 v , cans $2 / 9$ d $27 / 6$ doz; 8-8-8mfd, 500v, Govt, sur., blocks $3 / 6$ each. $36 /-$ doz; $8-16 \mathrm{mfd}$, 450 v , cans $5 / 6$ each 49/6 doz; bias types, 12 mfd . 50 v , $1 / 6$ each. $12 /-$ densers, small type, $0.0005 \mathrm{mfd}, 2$-gang, $7 / 6$ each $74 /-$ doz; single-gang, $2 / 11$ each; $4-g a n g$ each each, $84 /-$ doz; chassis: 16 gauge aiuminium, $10-$ $51 / 4-2 i n, 3 / 6$ each, $36 /-$ doz; $11-6-21 / 31 n, 4 /-$ each 42/- doz; 12-8-21,in, 4/9 each, 48 doz; 16-8-2 min 6/9 each. 72/- doz; Smoothing choxes 40 ma 12 h .3 each. $36 /-$ doz $60 \mathrm{ma}, 10 \mathrm{~h}$ 4/- each
$39 / 6$ doz selenium rectifiers. small type. 250 v $60 \mathrm{ma}, \frac{3}{5} / 11$ each $36 /-$ doz; $250 \mathrm{v} 75 \mathrm{ma}, 4,6$ each. $30 /=\mathrm{doz} ; 250 \mathrm{v} 100 \mathrm{ma}, 6 \%$ each, $52 /=\mathrm{doz}$; Mallory vibrators. $12 v 4$-pin, 4- each, $36 /-$ doz Wearite 6v 4-pin, 5/- each, 42/- doz; Midget pentode output transformers, ratio $40-1$, primary current, $35 \mathrm{ma}, 3 / 6$ each, $36 /-$ doz; $£ 15$ per gross Rola 10 in P.M. speakers, $30 /-$ eaclı; c.w. or or get Hili, Pudsey, Leeds. Lt, Leicester. [1339 1 new lists give details of over 100 items of ex-Govt. components and assemblies, offered at only $1 /-$ each or any 30 items for $£ 1$; other snip lines are: Rotary converters, 24 v d.c. to asstd., $5 /-; 50$ asstd. new condensers and re sistors, $10 / \% ; 200: 1$ slow motion dials with logging device reading to 3 decimal places, $5 /=+9 \mathrm{~d}$ post; meters, $0-20 a$ d.c., $0-.5,0-3,0-6 a m p s$ r.f. all at $5 /-+9 d$. post; $0-300,0-500 \mathrm{ma}$ d.c. at $7 / 6+9 \mathrm{~d}$. post; $0-3,500$ volt d.c. m/coil, $31 / 2 \mathrm{in}, 21 /-$ each; d.c./a.c. rotary converters, input 24 v 9 a .
output $230 \mathrm{v}, 50 \mathrm{cycles}$, 100watts, brand new in output $230 v, 50 c y c l e s, 100 w a t t s$, brand new in
carrying case, present cost over $£ 30$ our price carrying case, present cost over £30, our price 182A, compiete with Gin CR tube, 4 SPG1s, 3 EF50s, etc., condition soiled but otherwise as new $35 / \sim+4 / 6$ carriage; latest lists free; trade supplied; satisfaction guaranteed or money refunded Without question.
RADIO CLEARANCES. Ltd. 27 Tott [1458 R ADIO CLEARANCES. Ltd. 27 , Tottenham compasses, B.C. $433 \mathrm{G}, 15$-valve unit, incorporat-
ing D.F. section, and an 8 -valve rec. covering 171 mies. to 1.500 mtes. in 3 bands; rec, has 2 6L7, mixer 6 K 8 , I, F, 6K7, det. and AJC 6 FB . output $6 F 6$, rect. $5 \mathrm{Z4}$. D. F. section, $100 p$ amp
6 K 7, osc 6 N 7 mod $6 \mathrm{CC7}$, loop avc $6 \mathrm{~B} 8,2-2,051$, $6 F 6$ cath foll, rec I.F.: $142 \mathrm{kc} / \mathrm{s}$, power used,
28 v d.c., $115 \mathrm{v} 400 \mathrm{c} / \mathrm{s}$; supplied complete with 2 compass units, remote control box. flexible drive cable, plug and official instruction book; these receivers are brand new; the price, $56 / 9 / 6$. carriage and packing $10 /$ - extra; available boxes, is - 6-valve rec $\mathrm{B} . \mathrm{C}, 453$, line up, and BFO 12SR7, output 12A6, coverage 190$550 \mathrm{kc} / \mathrm{s}$, with $85 \mathrm{kc} / \mathrm{s}$ I.F.; size $11 \mathrm{in} \times 5$ in \times in $1 / 2 \mathrm{n}$; these sets were operated from 28 v plukhets (the Q Fiver of Jan Q.S.T.), supplied with valves less dynamotor, 39/6, postage $1 / 6$ extra; we have available for these rec control boxes with 3 dials, VC and switches at 4/6, posage 9 d ; fiexible drive cables (length 15 ft), 7/6, plus 9d, available only with rec; modula tors, BC 456B, 3 valves, 12J5, 1625 , VR 150 operated by 28 v dynamotor; supplied brand were and boxed, less motor, $17 / 6$. postage new marker beacon rec BC 357 m , 2 valves, 12 C 8 12SQ7, size $51 / 2$ in $\times 51 / \mathrm{in} \times 31 /$ in; ${ }^{2}$ vapplied with valves, no nower. $13 / 6$. post paid; pre-amplifiers. Packard Bell model K, 2 valves, 6SL7,
$28 D 7$. size $5 \mathrm{in} \times 4 \mathrm{in}$, ni, cane, contain I.P, 28D7. size $5 i n \times 4 i n$, ni, case, contain I.P.
and O.P. trans and relay; supplied with valves, $8 / 6$, post $1 /-;$ moving coil meters, metal cases. all 500 microamp. FSD. $11 / 2 \mathrm{in}$ circular. scaled $0-10,5 /-; 2 \mathrm{in}$ circular, scaled $0-500.8 / 6 ; 2 \mathrm{in}$ circular. Scaled 0-15v and $0-600 \mathrm{v}, 7 / 6 ; 2$ in circular, 0-20a, with shunt. 5/-i 0-40a. 5/-i R.F units, type 26 . with 2 VR 136 s , 1 VR 13 rea $50-60 \mathrm{~m}$ cs, brand new and boxed, $28 /-$
post $1 / 6 ; \mathrm{RF}$ units. type 27 , valves as above in good condition. $22 / 6$. post $1 / 6 ; \mathrm{RF}$ units, 25 with 3 VR 656 . 5 switched freas. $40-50 \mathrm{~m} / \mathrm{cs}$ in yood conlition, $10 / 6$. post $1 / 6$: RF units. 24 . With valves as 2.5 . freq $30-40 \mathrm{~m} / \mathrm{cs}$, siritched.
$8 / 6$. post $1 / 6$; meters, moving cotl bakelite $8 / 6$. post $1 / 6 ;$ meters, moving coil. bakelite
cases, $0-1 \mathrm{ma}, 2 \mathrm{in}$ square. $7 / 6$, $0-5 \mathrm{ma}$ 2in cases, 0-1 ma, 2 ln square, $7 / 6,0-5 \mathrm{ma}$ 2in 2hin circular, 7/6: 0-3a RF. 2in square. 6/-; amp. 21/sin circular. 19/6; 21/2in circular founda tion meter, 6 ma . F.S.D., 4 scales. $0-1.5 \mathrm{v}, 0-3 \mathrm{v}$ $0-60 \mathrm{ma}, 0-5,000$, $12 / 6$; visual indicators, cross over needle type, with 260 microamp movements, 4/-: 10-pin plugs and sockets, with locating peg, $1 / 6$ pair; 8 -way Jones P, and S $1 / 3$ pair; 6-way Jones P and E; $1 /$ pair coAli Can, $8 \mathrm{mf}, 500 \mathrm{v}, 3 /=16-8,450 \mathrm{v}, 5 / 6: 16$
$16,450 \mathrm{v}, 5 / 6: 16-24,350 \mathrm{v}, 5 / 6$.

CHARLES BRITAIN (RADIO) LTD.

Indicator Unit Type 182A. Contains 6 in
CR as the VCR97. Also 8 valves: 3, EF50, I, 5U4G 4, SP61. 13 volume controls etc. etc. The tube although slightly persistent is O.K. for television or "scope. Amazing bargain at $39 / 6$ plus 15:- carriage.
Indicator Unit Type 62. Size of case 9in. \times 12in. x IBin. Contains VCR97 tube. 16, SP61 2. EB34, 2, EA50. 16 Potmeters. Muirhead Dial, $117 \mathrm{~K} / \mathrm{cs}$ Crystal. Various switches, knobs transformers etc. Brand new $84 / 19 / 6$ carriage $15 /$ Indicator Unit Type 157. Almost exactly the same as above, in good condition $\mathbf{8 3 / 1 5 / \mathrm { m } \text { . plus }}$ |5/-carriage.
Rils5. Tested and complete with all valves in good condition price E8/8/-plus 10/-carriage and packing.
Receiver Type Il32A. Brand Spanking New in makers' original crates. Frequency coverage 124 to $100 \mathrm{Mc} / \mathrm{s}$. Complete with 10 valves Smeter in handsome metal case with slow motion dial, power supply required, 200 c. H.T. 6 v. L.t. A really first class UHF Communications receiver for only $44 / 19 / 6$ plus 10 -carriage.
SPECIAL ANNOUNCEMENT. We are shortly moving to more conveniently situated premises. Full details will be given in the next CHARLES BRITAIN (RADIO) LTD.

Radio House, 2, Wilson St, London E.C. 2

 Phone: BiShopsgate 2966.
MOIRSE CDIE THAINING

There are Candier Morse Code Courses for AND BEGINNERS A
OPERATORS nd for this Free "BOOK OF FACTS" It gives full details concerning all Courses.
THE CANDLER SYSTEM CO. (Room 55W), 121 Kingsway, London, W.C. 2

Candler System Co., Denver, Colorado, U.S.A.

NEW BETTER CHEAPER! P4

Permeability trimmed Midget I.F transformers " Q " $=110$ nominal impregnated.

7/6 еА.

Weymouth Radio Mfg. Co., Ltd. Crescent Works, Weymouth.

. tells you all about the complete Soldering Irons, for the standard voltage Soldering irons, ior the standard voltage
ranges of $200 / 220$ and $230 / 250: 65$ watt ranges of $200 / 220$ and $230 / 250: 65$ watt
and 125 watt models firted with ovaland 125 watt models fitted with oval-
tapered bits or pencil bits and 240 watt tapered bits or pencil bits and 240 watt
models fitted with oval-tapered bits are available.

Don't miss these BARGAINS
 BRAND NEW EX. AIR MINISTRY motor generators

 crate for 25 th
Type 31.
Input 1%
Contput
220
ntilk., plus
13 rimp
Price.
and packing

Apecial Trade inffer of five Mutor feneratara packed in
munufacturer's original emite for 85 the lot, including carriage.

Type 79.
$10 p n t 26$
Rotury Tranalormer. 1nput 26 rolls, output son 220 mills.. plus 150 v. 6 mills. In manufac. $16 /-$
turer's sealed carton, each, post free......

\star JUST ARRIVED

Magnetron Radar equipment. Tranmmitter-Modulator Tnits containing Magnetron. Rhumbatron. Klystron. several other ralves and twi" motor
blowers. Lease-tand Cost 4,402 dollars, Our price, in manufact urer's crate. .
$£ 1710$
Plus 10f-carriage and handling
T"nita. Leape-Lend coont noprox. Nono dollarm (onr
prire, in manufucturer'a erate...
plus $15 /-$. chrriage and handling
$£ 2210$
Send for our Lotest List of Brand New Radio and Radar Equipment.
WIRELESS INSTRUMENTS (Leeds) LTD.
54-56, The Headrow, Leeds. Tel. : 22262

VARIABLE seectivity $465 \mathrm{kc} / \mathrm{s}$ i.f trans-
formers, with three degrees of selectivity. gramophone scratch inter. $15 /-$ further pirticulars on request.-Radio Components. East (1PECIAL offer; electrolytics. small can. $8 \mu \mathrm{f}$ l, voov $10 \mu \mathrm{f}$ paper $16 \mu \mathrm{i}$. $16-16$ (suit Phillips). $4 / 3$; holders. $31 / 2 \mathrm{~d}$ each. tub. cons. $7 / 6$; 1 nt . oct. V. each: also in stock, connoissell pick-uns and preamplifiers. $4 v$ and 6 v ; B.S.R. grams units. $£ 7 / 12 / 4$: orders by return post free over $10 /--$
G. A. Taylor. 125 . Manchester Rd.. Denton. Manchester. L ponents for immediate delivery: fully guaranteed products for the discriminating user, including scanning coils (with linearity adjustmodel E.H.T. transformers (with l.t. windings). $65 /=$ each; h.t. transformers (250 ma) 4 l.t. windings, $75 /-$ each; all suitable for Electronic Enmarket. .. Home Built Televisor ", or "Wireless World Television " Manuals, $2 / 9$ each; let us quote you for chassis. etc. Examples of mains
transformers: $350-0-350$ (80ma) fully shrouded transformers: $350-0-350$ (80 ma). fully shrouded.
6.3 v 3a (C.T.) $5 \mathrm{v} 2 \mathrm{a}, 25 /-$ each. $350-0-350$ (100 6.3v 3a (C.T.), 5v 2a. 25/- each: 350-0-350 (100
mal. fully shrouded 6.3v 3a (C.T, $5 v 2 a .29 / 3$
each; 275-0-275 (80ma), half shrouded $6.3 v 25 a$
 other types of mains transformers flament transformers, chokes and output transformers for all requirements.-Send your requirements to E. Herts. Tel. Welwyn Garden 940 .
[1363 WANTED, EXCHANGE, ETC.
7 () $\frac{L}{178}{ }^{7}$ G.T. valve wanted urgently.-Box
WANTED, G.E.C. radio service bulletins.
 $W_{\text {ANTED, coils hor Edidystone }} \mathbf{3 5 8}$ commun!-
 WANTED, one copy each of the ". Wireless - 000 . February. March. and Index 1946 BOOKS on radio, second-hand, clean. send W.W. 246. High St.. Harlesden, N.W,10. WANTED. Decade resistance and condenser particulars to Ritson, Red Lion House. Hex-
WANTED. Cossor lead kit. type 426. B.T.H. Model 773 a.c.. W.W. Jan., 1937-Dec. 1943 , Mox 8438 .
Box. W.W. Jan..
$[1240$ WNAMELLED copper wire, all gauges wanted monds, 10 . Valencia Rd.. Stanmore. Middx Grimsdyke 608. required, 500 Santon switches. 5 amp 440 volt, double pole a 10 amp 250 volt or (or similar make) - Full particulars to Denfords Eng. Co.. Ltd.. Box Trees Mill. Wheatley, Hailfax D ANTED.-We are requiring ex-Government terested quantity if price right. $\mathrm{ZA}, \mathrm{M}_{\mathrm{B}} \mathrm{B}$, in Control. Ltd., Raydown Works, Epping, Essex Tel. 2163.
We buy for cash, new. used. radio. electrical radios, radiograms, test equipmecially wanted, radios, radiograms, test equipment, motors chargers, recording gear. etc.-If you want to
sell at the maximum price call, write or 'phone to University Radio. Ltd.. 22, Lisle St.. Leicester Sq.. W.C.2. Ger. 4447 .
R EWINDS promptly executed. new
M AINS transformer rewound and constructed 1 . to any specification; prompt delivery Brown, 3 Bede Burn Rd.. Jarrow.
OUDSPEAKER repairs, British, American. L any make. moderate prices.-Sinclair Speakers. 12, Pembroke St.. London, N.1. Ter1 AlNS iransformers rewound, new transMOTOR
MOTOR rewinds and complete overhauls; firstFlass workmanship, fully guaranteed.
Warser Gate. Nottingham. Est. Potters Bldgs. I OUDSPEAKERS repaired; clock coils 1 1 chokes rewound; prompt attention; prices
quoted.-E. Mason, 5. Balham Grove, Balham quoted.-E. Mason, 5. Balham Grove, Balham,
London S. W REWINDS and conversions to mains and outI. put transiormers, from $4 / 6$; pp equipment a Speciality-AN.L. Rewinds. 4. Brecknock Rd.
N. Thel. Arnold 3390 . A LL makes of electrical measuring instruments quickly-L. Glaser. 341 . City Rd., E.C. 1 (Dept. RADIO MAINTENANCE SERVICE. radio. specialists: no delays.-139, Goldhurst Terrace London, N.W. 6 , Mai. 6133
TOUDSPEARER repairs, any make. reasonaole quality fans: 25 years' combined experience with quality fans: 25 years combined experience with
Rola, Magnavox. Goodmans. Celestion.-Sound Service Radio. 80. Richmond Rd.. Kingston-on-

W/Coil Spalkers. Wel! known mifrs" nurplun; 10 hm 3in. with Tif. 27/6, Min. P.M. 2/3 ohtma $18 / 8$ 10'11. And all makes P.M. and energised.
Tuning Cond, (Twin gang). .0905 mid. ceramk $7 / 6$ Nidget .0nni mid. $5 / \mathrm{F}$. Mideet 0005 mfl with Trim. 14/6. Midget 0uns5 mifd. 14in. $\times 18 \mathrm{in} . \times$ $2 \mathrm{in} .129 .+$ gang $.0005 \mathrm{mfd} .5^{\prime} 9$.
Coil Packs. 4fas ke/a (lamor ultra mblyet S-M.L. 38/Coile, T.R.P. Matched pair M. \& L. 6/9. weymant
 each.
.F. Transi. $4 f 5 \mathrm{kc} / \mathrm{s}$. Wearite Mulget Iron Core 21/ gair. Weymunth Midget Irorn Core $18 / 9$ pair;
Service. Can. Tunel $1119 \mathrm{kc} / \mathrm{a}$ 15/- pr. Mftra
 Potentiometers. Centralab, $5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}$.

 L.F. Chokes. Porthmineter 20 Irng. 300 ohms 60
 12 '9
 Motion Drive $50-1,0-1$ m $)^{\circ} 78$. Drum Irive (2iss, firum. Irive-aghinde and cable tension spring) 24.
 10 to $2,(4) 0$ metrer A. (C. S19 145 , Ar ine E1844/5, cationne Od. Technical Bulletin $3 /-$
Meter Rectifiers. Westinchouse; $0-5 \mathrm{~m} / \mathrm{a} \quad 3 / 11$, Seleniam Rectiff

 11 \&. $236,70 \mathrm{v}, 1!$ a. 37, 6. Also L.T. 2!4v, 1 a. h/ware $3 / 6$.
Charger Transf. Infunt $200-230-250 \mathrm{v}$, out puts 4 v .

Ex-Govi, : T.M.C. Reed-type Headphones, 70 ohms Tranaf., 32-1, and Parafeed Tfr., 4-1, both lin. x lin. x *in. $3 /$ - each. $Y^{/} /$Pull Intervalve, 2.5-1 each half, and 0 品 Tit Tr. Go-1, both 11 in . $\times 1$ in. \times
 12/6. M'Coil Mike 2!6. I.F. Trausf. $6 . \mathrm{Nm} / \mathrm{cc} 6 / 6 \mathrm{pr}$. Television Transi. E.H.T., $4,000 v .3 \mathrm{~m} / \mathrm{a}, 2$ r. 11 amp. $350-0-250$ v. $2501 \mathrm{~m} / \mathrm{a}$, 6.1 v. 6 a., 4 v. 8 a., + v. 3 a. ti.3 v. (thpped 2 v.) 2a. $72 / 6$.

Kend "ad. stamp for very full istock Lists. When

STERN RADIO LTD.

109 \& 115, FLEET STREET, E.C.4.
Telephone : CENtral 5814 and 2280.

OLDCHURCH LABORATORIES And Now, TEST SET 74

This special-purpuse Oscillosmope l'nit, which operates frum son cycle A.U. Mains, can be readily , onverted to
a nurinal 3 Oscilloscope. 1 t contains 11 valves, plus a morinal 3 Orciloscope. It contains 18 vaives, plua the tube. Nize, 18 hy 12 by 9nches. Prise. complet
with Modsfication Dats 86100 with Modification Data We can supply the at
follewing apecification
follewing apecification.
Linear Time-Bane, 10 cycles to 200 K
X and Y Amplification.
Synchronisation.
Priventreceasary controls.
Why. 0 matete (plus carringe, etc.) $\ldots . . \mathbf{£ 1 4}_{0} 0$ If you already have one of these unita we can supply inatrustion Beoklet mad form Bluepritts, coverimg the complete conver sion
T. 8.73 Conversion 1)ata as $\begin{array}{ccc}\text { Prise } & \text { £1 } & 0 \\ \mathbf{P r i c e} & \mathbf{~} 1 & 0 \\ 0\end{array}$

Oldchurch Laboratories, 52c, Oldchurch Rd. Chingford, E.4. Telephone : SIL. 4987

L.R.S IN STOCK
 CASH or EASY TERMS

Goodmans "Axiom Twelve" Speaker Unit One of the finest quality speakers availabl to-day.
Avo Model 7 Cash price $\$ 1910$
Valve Tester, complete
And practically the whole AV'O range
Avo wide Range Signal Generator (ready nhorlly)
An R.F. Gencrator of remarkably wide range and accuracy of performance. Cash price $\$ 18$ Specifications of the above on request.

We can supply on convenient terms much of the Radio and Electrical Equipment at present available, all transactions being strictly between customers and ourselves.
Please let us know your requirements.

London radio supply co. Est. 1925
 BALCOMBE, SUSSEX

INDIVIDUAL TRANSFORMER REWINDS

SEND YOUR "BURNT OUT" TRANSFORMER TO BE REWOUND. NO TECHNICAL DATA REQUIRED. OUR TRANSFORMER WINDINGS ARE DOUBLE WOUND AND BACKED BY A SPECIALISED SERVICE LOUDSPEAKER REPAIRS, FIELD COILS.

SOUTHERN TRADE SERVICES LTD.

 297/299, HIGH STREET, Telephone: CROYDON 4870.
HILL \& CHURCHILL LTD. BOOKSELLERS

SWANAGE, DORSET

Available from Stock:

Sturley. "Radio Receiver Design,'
Amos \& Kellaway, "Radio Receivers and Transmitters
Schelkunoff. "Electro-Magnetic Waves
Zworykin \& Morton. "Television"
Sarbacher \& Edson. Hyper and Ultra H.F. Engineering "
Shea. "Transmission Networks and Wave Filters
Brainerd. "Ultra H.F. Techniques
A.R.R.L. Handbook, 1948

Radio Handbook (U.S.A.). New edition.

Postage Extra.

CATALOGUE ON APPLICATION

1 LECTRICAL measuring instruments skilfully repaired and recalibrated.-Electrical InLondon, W.9. Tel. Lad. 4168. [6935 A REWIND service which dup!icates or modi A. fies as required; thanstormers, loudspeakers, Addiscombe Rd. Croydon. Cro. 6537. " SERVICE with a Smile"-Repatrers of all coil rewinds; American andves, spares, line cord FF.R.1., Lid., 22. Howland St., W.1. Museuin
567. 11575 1 EPAIRS to moving coil speakers, cones, transformers, clock coils rewound; guaranteed satisfaction, prompt service; no mains trans. accepted. Closed Sat. Tooting, London, S.W.17. Balham 2359 .
WTURDY rewinds, mains transformers, chokes 5 and flelas; we give prompt delivery and guarantee satisfaction; 14 years experience; prices on request.-Sturdy Electric Co.. Lid. LLECTRICAL measuring instruments, commerHLECTRICAL measuring instruments, commergenerators skilfully repaired and recalibrated. Electrical Instrument Repair Service, 329, Kilburn Lane, London, w.9. Tel. Lad. 4168. ' 9724 IREWINDING of all types of transformens 1 chokes, etc.; quick service; motor rewindi ot all types; replacement bobbins suppiled; tut
transformers to any specification.-Radio $d x$ Transformers to any specification-Radio de Hollinwood. Lancs. 1863 . 1 EWINDS, mains transformers, speaker field delivery; new transformers constructed to customers specification, singly or 11 quantities.Metropolitan Radio service Co., 1021, Finchley
Rd., N.W.11. Speedwell 3000 . 2 - HOUR service, 6 months guarantee, any i.f.s. etc.; all types of new transi., etc., sippvice card for trade prices.-Majestic Winding Co.. 180, Windham Rd., Bournemoutl
(OIL specialists.-Tuning and oscillator coils. and wound to specification; wavewinding specialists; l.s. repairs, new cones, speech coil rewinds, ists; l.s. repails, new cones, speech coll rewinds, tronic Services, 17. Arwenack St., Falmouth Cornwall. 1 O/P trans., clock coils. Held coils. pick ups; vacuum and gram, motors; new trans formers to any specitication; guaranteed work competitive prices: delivery 2 days.-W lckneild Port Rd., B'mam. 16 . A.W.F. TRADE SERVICE offers you speedy assemblies, mains iransformer rewinds from $15 /-$ new transformers at keenest trade prices; transformers bunlt to your own specifications; lists id.-A.W.F. Rudio Products, Ltd., Borough MILS, Bradford, Yorks. Tel, 22 \& TELENALSIUN NATIONAL RADIO SERVICE, \& TELEVISIUN service any district: rewinds to all types transformers, armatures. motors, loudspeaker cones. speech coils fitted, British and American components anu valves; enquiries invited for contract trade service; multiple transformer wind-ing.-63. High St., St. Jolin's Wood. N.W.8.

MISCELLANEOUS

TIME switch synchronous motor driven 230 v - $\mathbf{1}$ - LINE telephone exchange comp.ete; offers - DAY Naylor, Blumfield St. Bury St. Edmunds - DAY jewelled time-switches: bargain. 15/6 Keighles. COPIES "Wireless World " and indexes from Guidford. Box 8371 , 11216 $1\{$ ACKS, 5 ft . for standard 19in panels, drilled -Wilkinson's. 204 Lower Addiscombe Rd., Croyं-
don.

WIRELESS World." 1944 (May missing) field Park Ave. Chelmsford. 11352 W ALNUT radiogram and television cabinets, details.-Walters. 501 , Hale End Rd. E. 4 . B OMBER cockpit lights, built-in switch; bar
Keighley. TELEVISION cabinets, floor console model for few only; $£ 16 / 10,-5$, Horsham Rd. Dorking,
Surrey, deas (patented or otherwise) [1330
N moulded rubber articles; a Royalty will be paid on all suggestions of proved commercial value, -Please reply to Box 7
TYUNGSTEN, molybdenum and magnesium wre for disposal, also large quantities of rubber grummetts, 8BA screws and washers.-List from
Wolsey Television, Ltd., 75 . Gresham Rd., S.W.9. MOMPIETE amateur station. VFO/PA, CO PA C mowulator, receivers, mikes, keys. coils. tubes, wavemeter, aerial; owner going abroad -G3BGS, 149, The Moors, Kidlington, Oxford BC-453,4,5 circuits, original parts list, sche$1)$ matic and modification, $2 / 6$ post free. Alba A.Cilconsole radiogram, medium and 25 , Glenmore Rd. Pirkenhead

for Secondary Frequency Standards * Accuracy better than 0.01%. (New angles of cut give a temperature coefficient of 2 parts in a million per degree Centigrade temperature change, t Vitreous silver electrodes fired direct on to the faces of the crystal itself, giving permanon to the faces of the crystalitself, giving perman-
ence of calibration. + Simple single valve circuit ence of calibration. t simple single valve circuit
gives strong harmonics at 100 kes. intervals up to givesstrong harmonics at 100 kes. intervals up to
20 Mes. \quad Oetal based mount of compact dimen20 Mes. * Octal based mount of compact dimen-
sions.
PRICE $45 /-$ Post Free

Full details of the $Q 5 / 100$, including circuit are contained in our leaflet QI. Send stamp to-day for your copy

THE QUARTZ CRYSTAL Co., Ltd.

 63-71 Kingston Road, NEW MALDEN, SURREY Telephone : MALden 0334
dECCA FREQUENCY TEST RECORDS

the following Deena Benards are now araklable with calibrationn in deeibeln on the labels.
Prieg 4 ! eaeh plus Purchase Tax 2,1 ithling tone, range 14,000 to 10 eyclea per second, firs characteristics
side A: Gliding tone 14,000 to 3,000 cycles Side A: Gliding tone 14,000 to 3,000 cycles
per second, constant velocit 5 . per second, constant welocits.
sude 15 : Gliding tone 3.000 to 10 yyles per second, conatant velocity to 300 anil constant anuplitude 250 to 10 eycles per

A.C.S. RADIO

SPECLALISTS IN SHORT WAVE
receiving and transmitting equipment. high quality broadcast reociven and Gramophone amplifiern.
Our Stock includes:-
Aerial equipment: Enamelled, St randed and Insulated Wire, Twin Feeder ro whins and 300 ohma impedance, and Coil Formers: Wearite and Edilyatone Coits, Coils and lulvalyrene Coil Wormers, Iron Cored Bormers VH W Coiln, I.F. Tranaformers and B.F.O. Colls, Transmitting Inductors.
Capacitori: Fixed, Filectrotytic. Paper and Mica typen Varlable Receiving and Transmitting, Neutralizing, Preset and Trimuer types.
Valvet, Receiving and Transmiteing types including V.H.F and Voltage Regulator Tubes.
Books: A full range of books on all radio subject s.
Inoudspeakers, I'ick-ups, Headphones, a large selection
Communications Reeeivers. The Eddyrtone 640 at $£ 39 / 10$ is to-day's best value in new Ham receivers.
Transmitting Eeys. We recommend the new kiddyston "Bug' Pattert Key at $\mathrm{E}^{2} / 176$. standari Pattern Morse Keys also in stock at $5 / 6$ each.
Our new Calalogue "W.W." gives full details of our entive stock and a copy will be gladly sent on request A.C.S. RADIO

44 WIPMORE RP BROMLEY, KENT

© PAKER cabinets, good class walnut Oor veneered, French polished, ultra modern, for 5 in units $17 / 6,6 \mathrm{in}$ £1, 8 in $23 / 6$, post 1 c.w.o. or c.o.d.-Eurmans. 64. Reighton Rd.. MOR sale, copper wire on reels, silk and cotton TOR sale, copper wire on reels, silk and cotton tons available. -John Walton \& Co. (Castleside). Ltd.. Metalex Works, Gt. Cambridge Rd.. Enfield, Middx. Tel. Enfleld 3425 . [1040 CIRCUIT diagrams individual destgns) to - specification; data, theory, technical advice for radio enthusiasts; opinions supplied on suit ability of designs.-Write to R. G. Young, 3 . Bridges Rd. Wimbledon, provide complete con GPARKS data sheets provide conmplete con man-prepared prints showing drilling, assembio and wiring plans of tested and muaranteed designs by L. Ormond Sparks.
LATEST release - The Challenger portable, an $\mathrm{ac} / \mathrm{dc} 3$-valve (plus rect.) T.R.F. circuit having an exceptional performance on med, and long waves, the ideal set for radio in any room, no aerial or earth: 6in Stentorian speaker gives amazing power and quality; no complica SWitching or adjustments; data sheet stamp for list giving full details of the 34 designs available. Brocirley, S.E.4. Tel. Lee Green 0220.
TIME switches, partly used, 14 -day, 5 -amp. 10 to 250 volts a.c. clockwork time switches. excellent condition. $£ 2$ mercury sealed tube $10-\mathrm{amp}$ type. £2/10; cash with order. J. DonoLUMINIUM chassis and panels any size A LuMiNIUM chassis and punched, bright or black crackle, from plain or punched, bright or black crackle, cored, permeabjlity tuned. 15/6 pair; 3 waveband h.f. stage tuner unit, \&3.-Mead, 13, Bence Lane, Darton, Barnsley. Baldwin Instrument TTELEVISION aerials.-Baldwin Instrument of duralumin tubes cut to correct length, suitable for television aerials; price, carriage paid: dipole only, $15 i-;$ dipole and reflector, $25 /=$ cash with order or c.o.d.-Baldwin Instrument Co. LoPPER wires, enamelled, tinned, Litz, cotton COPPER wires, enamelied, tinned, Litz, cotton, washers, soldering tags, eyelets; ebonite and laminated bakelite panels. tubes. coil formers: Tuinol rod; headphones, fiexes, etc.; latest radio publications, full range a vailable; list s.a.e.; trade supplied,-Post Radio Supplies. 33. Bourne Gardens, London, E. 4.
1 TOR sale, valve voltmeter, three ranges. 0/50. Douglas automatic coil winder, motorised and Douglas automatic coil Winder, motorised and in perfect condition; ${ }^{2}$ Kolectric hand coper in new condition; enamelled copper Winders, in new condition; enamelled copper
 Hamlets Rd., London, E.7. Tel. Maryland 1228. - $\mathbf{- 7}$, dent of mains: exceptionally powerful. operates from car or lorry battery; accumulators. lighting plants, etc., 6 or 12 volts, size 8 in $\times 41 n$ $\times 4$ in; free speed $2.000 / 5.000 \mathrm{rpm}$. current consumption 2 to 3 amps; totally enclosed first-clasi ball race motor, complete with 3 in \times, in x in aloxite grindstone, which is easily removable if machine is required for use with polishing mops. rotary wire brushes. circular saws, etc.-E.
Mason, 153 . Manchester Drive. Leigh-on-Sea.
BUBINESSES FOR SALE OR WANTED
BA8INESSE8 FOR SALE OR WANTEO - to purchase: capital up to $£ 100,000$ available; sale efrected without any publicity. - Barness Brokers. Ltd., 46, St. James's Place, London, S.W.l (Regent 4720). 19909 TEICESTER.-Radio electrical sales and sergoodwill and fixtures. s.a.v.; asso Nottinuham. main rcad, shop and house. brice $£ 2.700$, goodwill, fixtures and lease.-Montague Turnor ${ }_{\text {Belvoir St }}^{27}$ Belvoir St., Leicester. Tel, $65244-5$. Radio re. W EST Sussex Coastal Town--Radio, reas going concern, modern premises, possession of fiat; local distributors for uell-known refrigerators; agents for well-known cycles and radios; turnover at present $£ 500$ p.w.; lease 18 years unexpired; prıce $£ 2,500$; s.a.v.-Fox \& Sons. 41. Chapel Rd. Worthing. $[1374$ FOR sale as a going concern, well established 1 business of retall radio and electrical contractors. With four branches on long and favourable leases on order book in hand: the business is well known and has been well advertised; all is well known and has been well advertised, all legitimate rasons for sale.-Apply Box 147. 11393
RADIO engineer. pre-war experience, exHam, aye 30 , married. proceeding Canada (Ontario) shortly, willing to act as agent or repre sentative. temporary or permanent.-Box 209,
WE make wireless and radiogram cabinets for Whome and export; immediate deliveries. Radlac, Ltd. 26. Brondesbury Rd. London QADIO engineer-constructors. small-capacity R ADIO engineer-constructors, small-capacity types and jobs to specification for amateurs
and manufacturers.-Box 8355 .
|1174

Developerd from the popular type 104\%, this revelur will form the basis for a Radio-gran of unsurpassed performance, and at great saving in cost. Principal features include 1 stage superhet rircuit - 11 valle's with magir ye indicator - 4 wavelbands (11-*, 000 metres) - R.1* Amplifior - I.1*. stages - 4 stages AVC - 10 watts push-pull output e separate Prifents. This unit, comprising the H.f. jortion of the
 valves, etc. atud ready for usu when supplied
 1.s atmsp. The output will fully load any record reprorltution.
A.F. UNIT \& POWER PACK, Type I A.F. UNIT \& P OWER PACK, TYpe A high grade amplifer for radio or recoras, provided with additional H.T, and I.I.
foroperiting a radiofeedrr unit, Irincipat eature's include
Input for moving coil pick-ups Indivalual treble and bass controls I'rwer supplies for external unit (250 volts
 entrol umit Self-contained pre multifier ratio output irims fornler.

PEERLESS RADIO LTD.

374, KENSINGTON HIGH STREET, London W.14. Tel.: WEStern 122

High Quality TRANSFORMERS
and
CHOKES

Made specially for your requirements. Alf coils layer wound and insulated between layers.
Our modern factory is fully equipped with vacuum and pressure impregnators and all the latest testing equipment.

POWER OUTPUTS
up to 4 K.V.A.
AUDIO RATINGS
3-200 watts

AUSTIN MILLS LTD. LOWER CARRS, STOCKPORT

Estoslished 20 years. Phone : STO 3791

These high-quality precision instruments 200 240 volts $A C$ Type $5,100-250$ volts $A C / D C$ Type 6, have a coverage of $100 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ in 5 ranges. Calibrated by hand against a standard frequency accurate to 0.01%. Constructed in B.A. 60 alloy and finished black and cream. Price 14 Gns. Type 5 or 6. Immediate delivery.
Ithustrated leaflets on application to

R.R.DEVELOPMEDT LABORATORIES LTD BARMARD ROAD-BRADFORD

For Export And Home
 LDJYMIM YDILYI

Designed E Manufactured by
THE LOWTHER MANUFACTURING CO.
Lowther House, St. Mark's Road, BROMLEY, KENT.

Rav. 5225.

A.IB.
 DAK

wafer switehes
The wave-change switch with silverplated double contacts.
A.B. METAL PRODUCTS LTD., Great South-West Road, reltham, Middx.

MADTROTARY
 CONVERTERS

For Radio. Neon Signs, Television, Fluorescent Lighting, X-ray, Cinema Equipment and numerable other applications,

We also manufacture :-
Petrol Electric Generating Plants, H.T. Generators, D.C. Motors, etc., up to 25 K.V.A.

CHAS: F. WARD
LORDSCROFT WORKS, HAVERHILL, SUFFOLK Telephone: Haverhi!! 253 \& 4.

Mr. A. C. BARKER

is for the moment able to deliver his MODEL 148 SPEAKER from stock. No other reproducer has the patented construction which gives such natural reproduction. No Twin cones or Tweeters can give the smooth extended top, sharp clean transients and clear-cut bass which the laboratory built Barker 148 produces.
Write for details to
BCM/AADU, LONDON, W.C. 1

TLECTRONIC development
OUR laboratories and drawing office, devoted to the design and construction of complex elecronic, esectracal and electro-niechanical devices, have some capacity avallanle for design and de velopment of specialized equipment; capacity is also available for the building of prototypes and service is also avaiuable to manufacturers requir ing data and test reports on thear own products Brecomin Laboratories, Brecomin (England) Ltd.. Gads Hill, Gillingham, Kent. Tel BCM/HIFLDEL. W.C.1, is the address to D remember if you require apparatus de Slgned and built to your specification. H1sh fidelity feeders and amplifiers a speciality, [1225 1) RAWING and tracing work tor radio and engineering, photoprinting; full sets of draving: undertaken to cominercial or Ministry standards Drawing \& Tracing, Ltd., 456a, Ewert Rd. Tolworth. Surbiton. Tel. Elmbridge '7406. 17703

Vacancies advertised are restricted to persons

 or employments excepted from the provisions Of the Control of Engagement Urder 1947 Test assistant por electronic laboratory. exBox 4 . ${ }^{\text {PRN }}$ Agents for the Colonies,--Applications Crom qualitied candidates are invited for the following posts:-WlRELESS technicians (Aeradio) required by Hong Kong Government for 3 years; sa.ary $\$ 600$ a month, lising to $\$ 800$ a month plus expatria salary; cost of living aslowance between $\$ 216$ and $\$ 360$ a month according to dependants $\$ 1=$ 1/3); free passages. Candiaates, under 35, must hold P.M.G. Ist or 2nd certiticate of competency or air operator's certificate with appropriate ground oparating experience; they must be com-
petent to maintain modert ground cominumcations, transmitters and receivers. Radar ex. perience essential in a proportion of the posts Merchant Service operating experience an advantage: R.A.F. type maintenance experience de-sirable.-Apply at once by letter. stating age, of qualifications and experience, and mention. ing this paper to the Crown Agents for the Ccionies, 4. Mlllbank. London, S.W.L, quoting M/N/23617 (3B) on beth letter and envelope. CROWN Agents for the Colonies.-Applications from qualified candidates are invited for the rowns posts:-
GIRELESS operators (shore-based) required for Guvernment of Falkland Islands Dependencies of 30 months in first instance, with prospect of re-engagement: salary £360 a year; free quarters, food and clothing and free passage in Research Ship leaving United Kingdom middle October. Candidates, unmarried, should have lent. and be capable of operating and maintaining Naval 5G or Army type 33 equipment (or similar) on either petrol or diesel power suppiy. -Apply at once by letter. stating age and full particulars of qualiflcations and experience and mentioning this paper, to the Crown Agents for the Colonies, ${ }^{4}$, Millbank. London, S.W. 1 , quotCOMPETENT radio service engineer required (, W. 1 area.-Write, stating past experience and salary required. to Box $25 \wedge$. [14C1 RADIO mail order house require manager for have reasonable technical knowledge.-Box 148 . CHIEF inspector required to take charge of experience of mechanical inspection mantracts: progressive company; excellent prospects.-Box
THNGINEER to supervise layout and production fi of works making radio and general electrical goods in India; good opportunity for first-class mani state experience and salary required. With
copy testimonials.-Box 12 . CECHNICAL superintendent required to conL trol inspection and test gear sections of progressive company manufacturing radio components in West London area; degree or equivalent with several years' practical experience essenDROMINENT engineering firm in the northstantial requires radio engineers having subdesign of C.W. or pulsed apparatus reply stating qualifications experience and salary re-quired.-Box 7621
REQUIRED for electronics laobratory, circuit Ir development engineer; applicants should have experience in modern radio components and tus; experience in radio laboratory measuring apparatus and procedure an additional advan-tage.-Box 8997, engineer required with know11 ledge of general radar circuit design techníque; training in physics, ability and experience in layout and instrument design an advantage; particu'ars past experience.--Box 8999 write full iNGINEER-SALESMAN required by important it equipment distributors in South America. having first-class knowledge projectors and sound reproducers and preferably some acquaintance recording and cameras.-Rep'y with full details guese, present salary, to Box 143 .
[1375

Two colour crackle finish $15 \times 101^{\prime \prime} \times$ 50 Trade enquiries invited, Detailed leaflet from:-

BUCCLEUCH RADIO MANUFACTURERS

 1 \& 2 MELVILLETERRACE, EOINBURGH 9

RELAYS

for A.C. and D.C. 2 VA Coil consumption from 2 to 603 volts and tested to 2,000 volts, Aerial Change-over Relays, Mercury Relays Massuring Relays and Time Delay Relays.

Ask for leoflets $R E, W W$

LONDEX LTD.

Manufacturers of Relays 207 Anerley Road, London, S.E.20. SYO. 6258

सानucon

The alvance in Radio Technique offers unlimited pportunities of high pay and secure posts for those Radio Engineers who have had the foresight to become echnically qualitited. How you can do this quick and easily to rour spare time in fully explained in our nique handbook "Engineering Opportanities" rull details are ull details are pive A.I.I.E.E., A.M.Bri.I.R.E. City a Culds Exam., and parklars of up-todat hors Wa Wireless Engineering, Radio Sorvicing

We Guarantee 'NO PAS8-NO FEE trepare ior tormorrow'e opportunities and futurs competition by seading for your copy of this very informative 112-page guide NOW-FREE.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 388)
17, Stratlord Place, Lordon, W.1

CRYSTALS ror AIRCRAFT MARINE AND AMATEUR TRANSMITTERS
 ALL LOW TEMP. CO-EFF. CUTS. BROOKES CRYSTALS LTD.
 10, STOCKWELL ST., GREENWICH,
 GRE. 0410.
 LONDON, S.E.IO.

Cudix
 B.B. LTD.
 Electro-Mechanical Engineers

- Disc Recording Equipment Studio and Mobile.
- Gramophone Reproducer Turntables, Synchronous and Non-Synchronous Types.
- Ribbon Microphones.
- Specialised Receivers and Amplifiers for Schools Instal. lations.

EXPORT ENQUIR'ES :NVITED

Hockerill Works, Bishop's Stortford, Herts.
Telephone : Bishop's Stortford 1394

COULPHONE RADIO

'The Return-of-Post Mail Order Service"
58 DERBY STREET, ORMSKIRK, LANCS.

ALL VALVES

REDUCED PURCHASE TAX RATE. 300 different types-over 5,000 in stock

NEW 32 PAGE CATALOGUE COMPONENTS, VALVES, FEEDER UNITS.
Most comprehensive stock of radio spares in the British Isles. Send 2 t d. stamp (no envelope) and you will have this most useful catalogue by return of post.
ALL GOODS PREVIOUSLY ADVER-

TISED STILL AVAILABLE.

MAINS TRANSFORMERS
Primaries (Screened) tapped for 200, 230, 250 volts.
Universal L.T. Windings. 4/6.3v. 4z, 4,5v. 2.5 .

\section*{250-0.250v. 100 mA
 25/-
 $350-350 \mathrm{v} 100 \mathrm{~mA}$
 … $27 / 6$

2816}
$350-0.350 \mathrm{v} .100 \mathrm{~mA}$ $39 / 6$
GRAMOPHONE MOTORS (A.C.)
Conrad Rim Drive, 78 r.p.m., E4/7/9.
Garrard with Magnetic Pick-up £7/10/6.

SPEAKERS

Goodmans T2/I205 I2in. P.M. E6/15/-
Goodmans Axiom Twin Cone, E8/8:-
WILLIAMSON OUTPUT TRANS. FORMER
To specification. Tropical Finish, $63 / 7 / 6$.
Note.-All orders over 5/- are Post Free. 5end $2 \frac{1}{2} \mathrm{~d}$. stamp NO N for 32-page Catalogue.

R ADIO service mechanics required by arge stating age, experience and salary required to Box 16 11 teresting perienced man to work on the design of electronic equipment attached to research laboratory saiary up to $£ 500$: every assistance given to find suitanle accommodation; secure staff appointment for suitable app.icant.-App.y Box $1 / 12,{ }_{[1404}^{\text {living }}$
reference $D .0 .16$. W ANTED eiectronics engineer. graduate with W good training in physics, preferably with works experience to take charge as design engineer of electronics project office of large engineering lactory in vicinity of Birmingham. an all-round Enowledge of modern valve cording to application is esential; salary according to GOUTH-WESTERN division of a leading com-- pany invites applications for the post of test foreman; consideration will be given to applicants who have an intimate knowledge of communications and radar work to Govt. specifications, are able to assume responsiblity and con trol staff, the salary dilly -Full details, givin are and quallfications. to Box 144 . $[1376$ are and qualifications. tondon firm of specialist 1 speaker manufacturers have vacancies for (a) sentior and junior design engineers with prac tical development experience and goo sepresentacal knowledge, (b) technical successful record.Write, piving details of age, experience, quaifications and salary required to box $229-231$ High Holborn. W.C. 1. W OOLWICH Polytechnic.-A Laboratory assisW tant required in the Physics Department of Woolwich Polytechnic; previous experience in a physical laboratory is desirable. but lack of it will not disqualify a suitable applicant; salary £225-£15-£315 per annum; permanent appointment (after probationary perion) by letter. to annuation scheme.-Application, the Secretary at the Polytechic, Woolwich. the Secretary at the P08y. 1948 . WiECTRIC \& MUSICAL INDUSTRIES, LLd., D have vacancies for the following drawing tion and electro-mechanical engineering: (a) Senior electro-mechanical designer draughtsmen: (b) senior electrical designer-draughtsmen; (d) detail draukhtsmen.-Apply. stating age fullest details of experience and salary required, to: Personnel Department, E.M.I.. Ltd., Blyth Rd. Hayes, Middlesex.
1.M.M, institutes (associated with H.M.V... I. Marconiphone, etc.) reauire lecturer in radio communications whose duties wil ineering dearee (or equivalent) and nood oractical eutlook essential: commencing salary not less than Burnham scale according to age aualifications and experience, (minimum commencing rate \& 375 : Including cost of living bonus): superannuation benefits in addition.-Apply: E.M.I. Institutes, 43 . Grove Park Rd., W.4. MLECTRONIC circuit engineers required for academic qualifcations and apprenticeship. industrial or research experience essential; nnowledge of any of the following subjects desirable: radar and television pulse techniques, centimetric components, time-base generators, s.c. and d.c. ampliners. feed-back electro-mechanical stabilised power supply units. data transmission systems, cable form layouts. some mathematical ability is desirable.-Write. With full details of qualifications. experience, age and salary required, to, Personnel Manager, Sperry Gyroscope Co.. Ltd. Great West Rd., Brentord. Midatese
$T H E$ ENGLISH ELECTRIC VALVE Co. in1 vites applications for a valve engineer for the research laboratory; this is a ment calling for an essentially practical man with wide experience in the design and manufacture of electronic tubes; a Science Degree, together with a knowledge of photo-electric processes would be advantageous. The applicant should be a good organiser and capable of controlling staff, remuneration will be according to age, qualifications and experi-ence-Apply, giving full details of age, qualifications and salary required to Chlef of ReSearch, English
Waterhouse Lane. Chelmsford. youth wales. -The following vacancies exist is in the development laboratories of a modern, well-equipped factory in South Wales: Electronics Division: Two senior engineers required. must have wide and varied experience of development work for Government contracts, particularly on telecommunication and radio goparatus. Acoustics Division: One jundor techgineer, aged $20-25$; required with sound inchnica: knowledge and practical microphones. etc. yelopment Division: One senior engineer required with experience in the development of domestic electric appliances, experience in design of fractional hp motors an advantage. For all the above positions applicants must have previous experience of factory development work, engineering degree an advantage.-Write. giving required to Box 537. Arthur S. Dixon. Ltd.. 229 High Holborn. w.c.l

Specialists in

W. Bryan Savage Ltd
 WESTMORELAND ROAD, LONDON, M.W. -

Telephone : Colindole 7131

Lem RADIO CORMER

138, GRAY'S INN ROAO, LONDON, W.C. 'Phone: TERminas 7937.
Opers unth 1 p.an. saturday we are 2 mins. from High Ho"born, 5 mina. Irom King's Croal

WE OFFER

A large range of used and new Test Equipment, Converters, Recorders, Amplifiers, Motors, Transformers, etc.
All guaranteed and at very attractive prices.

We buy good modern used equipment of all types for spot cash.
UNIVERSITY RADIO LTD.
22 LISLE STREET, LONDON, W.C.2.
Tel. : GER 4447 \& 8582.

A few Domestic Corner Reflector type Horns at nearly threetimes pre-war price should be available soon. Additional names can now be equered on our waiting list.
VOIGT PATENTSLTD. S.E. 26
P.S. Mr. Voigt is not yet fit.

TRANSFORMERS \& COILS TO SPECIFICATION.
MANUFACTURED OR REWOUND Filter Coils ${ }_{-}^{+} \%$ a Speciality. JOHN FACTOR LTD.
9-II EAST STREET, TORQUAY. DEVON. 'Phone: Torquay 2162

HIGH "Q" IRON CORED COILS of Unsurpassed Quality for Discerning Amateurs
 AERIAL, H.F. OR OSCILLATOR, shnrt, medium or long wave, elize of formes th . $\times \mathrm{lin}$., $3 / 9$ each
 INPUT FILTER, $465 \mathrm{Kc} / \mathrm{s} .$, parallel or series tuned.
 39 each.
 I.F. TRANSFORMERS, $465 \mathrm{Kc} / \mathrm{h}$, midget, permea bility tuned, Rize lin. diam. $\times 11 \mathrm{ith}$ high. $8 / 6$ each. meability tuned, size 1 lin. square $x \quad 3$ ifin. high $8 / 6$ each.
 All coils fitted with adjustable iton cores, and snpplied TERMS : Cash with order or C.O.
 TRADE ENQUIRIES INVITED.
 MONOCHORD RADIO
 17 Streatham Hill, London, S.W. 2
 Phone: Tulse Hill $10{ }^{2} 1 / 2$.

1 ULLY experjenced rad.o mechanical engineer 1 lequired for electronics department; good posit on and perminancy to rignt man; write full
details. - Box 8993 . details.--Box 8993.

SITUATIONS WANTED

ALES and maintenance specialists, communi cations, industrial gear, covering North England.-Box 205.
CX-R.A.F. sgt., radar fitter, 21 , seeks post. d.W. London, exp. repair, radio, television. energetic, keen, able drive.-Box 6.
TX-R.A.F. senior radar officer, pre-war radio1] television servicing engineer, 26, experi enced administrator, at present with Middiesex firm, keen, ambitious. seeks progressive post echnical administration or technical sales. Box 11.
MORKS or production manager, age 41, seeks Counties: electronics, radar television or Home mitters, light engineering and assembly: full knowledge all factory services; plann:ng, processing. layouts, personnel and weifare; actual experience 700 emplosjees.-Box 9 .
TDUCATED Hungarian, 28 (studying). Huent 11 English, Hungarian, technical German, experience radio servicing. general factory maintenance seeks interesting progressive post radio. electronics, biophysical instruments, radiology portunities; wishes escape soul-destroying occu-pation.-Box 206. [1467 ACENT8 WANTED
1)DDYSTONE short wave radio.-Stration \& applications ior are now in a position to consider dealerships in areas not already covered; applica. tions are invited from expert and enthusiastic short-wave specialists at home and abroad.Write Stratton \& Co., Ltd. Alvechurch Rd., Wes Heath. Birmingham 31 .

TUITION
THE British National Radio School
OFFERS you a career
WRITE to-day for free booklet describing our wide range of training courses in radio Ring our Wide range of training courses in radio. Ritdar
telecommunications. principles, mathematics. physics. and mechanics; correspondence and day classes for the new series of C. \& G. examina tions; we specialise in turning "operator ', into "engineers.". and for this purpose our "" Four A.M.Brit.I.R.E. with 9 C. \& G.M.I.E.E. and A.M.Brit.I.R.E., with 9 C. \& G. Certiflcate
os interim rewards) is unsurpassed: "our guar as interim rewards) is unsurpassed: "our guar-
antee has no strings attached."-Studies Direcantee has no strings attached. Studies Direccombe Rd.. Croydon. Surrey. I Anro training - MG
R Anvo training.-P.M.G. exams. and I.E.E
lege, Hull. [0611]
A.M.I.Mech.E. A.M.I.E.E., City, and Guilds. 90% successes: for details of exams. and courses in all branches of engineering. building, etc. write for 108 -page handbook-iree.-B.I.E.T (Dept. 387B). 17. Stratford Place, London. W. 1 COMPLETE correspondence course covering consisting of 12 lessons; students trained for certificates of the City and Guilds of London Institute: send for particulars.-Orthic-Modern Institute. 72. St. Stephen's House, Westminster.
[9979 DOSTAL courses of instruction for amateur cates in wireless telegraphy. Ministry of Civil Aviation Certificate, radio engineering and television; also instruction at school.-Apply British School of Telegraphy, Ltd.. 179. Clapham Rd. London. S.W. 9 (Estd. 40 years).
CITY and Guids Telecommunications Engi(neering Intermediate Certificate for external candidates.-For details of home study courses and personal tuition in first-and secondyear subjects for this examination. write to The Correspondence School of Electrical and Applied TNDIVIDUAL training in radio and electrical Lengineering, mathematics and physics, modern methods that ensure success, courses ior A.M.G. certificate. City and Guilds Final: test our system for yourself entirely without obligation by sending for free lesson. stating subject in which interested.-Postal Polstechnic.
Lid.. Altrincham. Ltd.. Altrincham.

THE RADIO ENGINEERING SCHOOL air - Service training. Hamble, Southampton. ofiers full-time residential training for rad:o engineers seeking responsible positions in industry or civil aviation; students are coached for C as preferred: tuition also availabie to M.C. requirements in radio and radar.-For full de:tails apply to the Commandant. 19265 THE Institute of Practical Radio Engineers elementary, theoretical. mathematical. practical and laboratory tuition in radio and television engineering; the text is suitable coaching matter for I.P.R.E. Service entry and progressive exams.; tuitionary fees at pre-war rates-are moderate. -The Syllabus of Instructional Text may be | obld Rd.. Crouch End. N.8. Secretary. 20. Fair- |
| :--- |
| fla |
| 1222 |

THE

SERVIGE ENGINEER'S FIRST CHOICE

TELEVISION SCANNING COILS (${ }^{(R)}$
Technical Publication No. 29. Post 2td. HAYNES RADIO Ltd., Queensway, Enfield.

HAND MICROPHONES, CARBON, NO.8.

With press-to-talk Switch in Handle. Fitted with 6 ft . flexible lead, instruction sheet supplied, price 5/- each post paid.

[^9]
RADIO BATTERY TESTER

Use "Quixo" method of battery testing. Reliable results. Guaranteed. Send for interesting leaftet Riss on battery testing.

RUNBAKEN • MANCHESTEP

RESISTORS

Are you having difficulty in obtaining certain resistors for your receiver, amplifier, etc.? If so you should contact us, we have a very wide range of resistors of all values, wattages, and tolerances by leading manufacturers. They are all brand new, guaranteed, and are offered at the following prices:
offered at the following prices:
$t / \frac{1}{2}$ watt, $5 \mathrm{~d} . ; 1$ watt $9 \mathrm{~d} . ; 6 / 12$ watt, 1/ W Watt, Wd . Vitreous enamel, $2 / 6$. $6 / 12$ watt, Per dozen yous enamel, 2,6 .
Per dozen, your selection: $\frac{1}{1 / \frac{1}{w} \text { watt, 4/-; } ; ~}$ I watt. $7 / 6$; $6 / 12$ watt. W.W. Vitreous enamel. $27 /$-.
Don't forget we have a very wide range of quality components, and a stamp will bring you our Price List by return.
ROGERS DEVELOPMENT SCO. 106 HEATH STREET, HAMPSTEAD. LONDON, N.W. 3.
Telephone: HAMpstead 6901

TECHNICAL TRAINING
1 M.I.E.E., City and Guilds. etc.. on " No Pass ull details of modern courses in all branches of electrical technology send for our 112-page handbook. iree and post free.-B.I.E.T. (Dept. 388A). 17. Stratford Place. London. W.1. 16270 PRACTICAL radio course for servicing enmences August 3 rd. Write for details of this and mences August 3rd.- Write for details of this and vision. to Principal. E.M.I. Institutes, Ltd., Dept. WW. 43, Grove Park Rd., London. W.4. (Tel. Chiswick 4417.) INSTRUCTIONS. ETC [1461 BOOKS, INSTRUCTIONS, ETC.
W EBB'S 1948 radio map of world, new multiW colour printing, with up-to-date call signs and fresh information, on heavy art paper, 4, 6. Webb's Radio. 1-4 Soho St. W.1. Gerrard 2089

PHOTO-ELECTRIC CELLS
for
Talking Picture Apparatus. Catalogue now available RADIO-ELECTRONICS LTD., St. George's Works, South Norwood, Loridon, S.E. 2 S.

Grgnawes. etches. marks. writes.... on BRASS, COPPER, SILVER, NICKEL, ALUMINIUM, CHROMIUM. Hardene Steel

LOCKWOOD makers of Fine Cabinets

 and woodwork of every description for the Radio and allied trades LOCKWOOD \& COMPANY Lowlands Road, Harrow, Middx. Phone: BYRon 3704
THE NORTHERN POLYTECHNIC

 HOLLOWAY ROAD, N.7.Principal: T.J. DRAKELEY D.Sc., Ph.D., F.R.l.C., F.l.R.I.

Department of Radio and Musical Instrument Technology.

Head of Department :
S. A. Hurren, M.C., M.Bril.I.R.E Full-time Day Courses in TELCCOMHWNCATIONS ENEINEERNG in preparation for all recognised qualifications in this subject Practicallaboratory and workshop experience provided.
Prospectus free on application to Secre tary New Term begins September 27th.

 WELWYN ELEC
 cerbon resistor
 Resistors produced by the cracked carbon process remain stable to $\pm 1 \%$ of initial value.
 \therefore Tolerance $\pm 1^{\circ} \%$ $\pm 2 \% \pm 5 \%$
 Low temperature co-efficient.
 LaBORATORIES LTD.

Welwyn Garden City, Herts
Telephone : Welwyn Garden.

CITY SALE \& EXCHANGE (1929) LIMITED

90-94, FLEET STREET, LONDON, E.C. 4 OFFER THE FOLLOWING

[^10]
Technical Execllenec-

combines with beauty and soundness of DESIGN in the

DIFFERENTIAL AIR DIELECTRIC TRIMMER

 OXLEY DEVELOPMENTS CO., LTD. ULIERBTON, 'Nr LARCE. Tel. Ulverston 3306

$$
\text { Width: } 16.5 \mathrm{~mm} \text { Leugth: } 25 \mathrm{~m} \mathrm{~m}
$$

1.5 10 Height:
1.5 to $4 \mathrm{pF}-8 \mathrm{~m} \mathrm{~m}$
I. 8 to $20 p \mathrm{~F}-10.5 \mathrm{~mm}$
$22026 \mathrm{pF}-11.5 \mathrm{~mm}$ Law: Stralght line capacity Law: Straight Ine capacity 001 Insulation: Over 2.000 megohms Voltage: $500 \mathrm{Lb.C}$
 invaluable for the mounting and suspension of machines, equipment, instruments,

Wireless World August, 1948 A NEW B.P.L. INSTRUMENT

THE VOLTASCOPE-A combined valve-voltmeter and oscilloscope. VALVE-VOLTMETER-Infinite Input Resistance for D.C. ranges 0 to 300 volts. A.C. ranges 0 to 150 volts in 5 ranges. $3 \frac{1}{2}$ inch scale meter. OSCILLOSCOPE-3 inch screen tube provided with balanced amplifiers for Y and X plates giving a 5 times trace expansion. Maximum sensitivity $150 \mathrm{mV} / \mathrm{cm}$. Response from D.C. to 100 kcs .

Limited quantity available for early delivery.

BRITISF PEYSICAL LRBORRTORIES

HOUSEBOAT WORKS, RADLETT, HERTS.

SPHERE INSTRUMENTS NOW AVAILABLE!
 The new " 75" Range TESTGERR

Brief Specification of Item I
SIGNAL GENERATOR "75"

Model I

Frequency Range. 110 to 50 Megacycles. With calibrated extension covering London, and Midland Television frequencies, at over 60 Megacyeles.
Modulation. 400 C.p.s. sinusoidal.
Attenuator. 5-step ladder, with fine control.
Output. Switched via single test-lead. RF. and AF. 1 volt Max. External Radiation. Less than 1 microvolt.
For AC. mains operation. Complete with Standard Dummy Aerial.

LOW COST

EFEICIENCY
INQUIRIES INVITED
SPHERE RADIO LIMITED
HEATH LANE, WEST BROMWICH, ENGLAND

This condenser has a screwed boss for one hole chassis mounting. The can is negative and this connection is to be made by contact with the chassis. Where it is desired to insulate the condenser from the chassis an insulating washer and tag can be
supplied for the negative connection as illustrated. The condenser is of allaluminium construction with plain foil electrodes except where starred (*). Send 2 dd. stamp for List No. 123 showing tull range of T.C.C. Electrolytic Condensers.

ERSIN MULTICORE SOLDER

FOR ECONOMICAL SOLDERING

Most Radio Manufacturers use Ersin Multicore-the solder which provides precision soldered joints at known cost. Ersin Multicore with three cores of non-corrosive Ersin Flux ensures that no lengths of solder without flux will be wasted. By selection of the most suitable specification from the forty-five difierent standard combinations of alloy and gauge the maximum economy of material and labour is effected with freedom from dry or "H.R." joints.
Comprenensive technical information, incluoding tables of melting points and lengths per pound in feet for each alloy and gauge, is available free of charge to the staff of Radio and Electronic Manufacturers on application.

[^0]: 229. Hale Lane, Edgware, Middx.

 Tel. : EDG. 7312

[^1]: 138 SLOANE ST., LUNDON, S.W.I. 'PHONE SLOANE 2214, 5. FACTORY : SOUTH SHIELDS, CO. DURHAM.

[^2]: * Broadcast Reception: Sound and Television by Radio (Code 327:201). British Standards Institution: 5s.

[^3]: ${ }^{1}$ F. Brailsford, "Investigation of the Eddy* Current Anomaly in Electrical Sheet Steels;" Current Anomaly in Electrical Sheet Stee
 J.I.E.E., Part II, Feb. 1948 , Vol. $95, \mathrm{p} .38$.
 a "Standard Handbook for Electrical Engineers," (7th Edition). Edited by A. F". Knowlton, McGraw Hill Book Co., 1041.

[^4]: - Electronic Engincering, March, 1947.

[^5]: \dagger N. F. Barber, Wiveless Enigineer, May, 1947, p. 132.

[^6]: ' "Deflector Coil Coupling," by W'. T. Cocking, W'ireless World, November 1946, Vol. 52, p. 360.

[^7]: NOTES: The screen type is given by the following symbols: $\mathbf{A}=$ Afterglow; (long persistence); $B=B l u e ; B, G=H / u e$-Green; $D=D a r k T r a c e ;$ $G=$ Green $; W=$ White $: Y=$ Yellow.

 The size is given in mim, L, being the overall length, and D the diameter. The operating voltages are given in kilovolts, and the beam current in μ.
 $V_{1}=1$ st anode $; V_{3}=$ 2nd anode voltage $; V=3$ rd anode voltage
 $V_{\text {max }}=$ maximum final anode voltage $; \mathrm{I}_{b}=\mathrm{beam}$ current. The sensitivities are given in mm/V/V.

[^8]: 307, HIGH HOLBORN
 LONDON W.C.I. Phone: HOL6orn 4631

[^9]: WIRELESS SUPPLIES UNLIMITED
 (Proprs. Unlimitex Radio Ltd.) 264-266, Old Christchurch Road, BOURNEMOUTH, Hants.

[^10]: IF transformers, $46 \mathrm{Sk} / \mathrm{s}$, pretuned pair . OOOS single gang condensers.
 Slow motion drive for same
 Slow motion drive for same
 2-pole
 Record albums to hold $1210^{\prime \prime}$
 Record albums to hold 12 10"
 Record albums to hold 12 12"
 Record albums to hold $1212^{* \prime}$
 10^{n} emiscopes at pre-budget price
 Rothermel Senior pick-ups
 B.T.H. magnetic type.

 Also a few Columbia record players with new light-weight pick-up E13 18s. 3d., and many other components at reasonable prices. Enquiries invited.

