ave £20 on a DafaStation development kit. See page 42

ELECTRONICS WORLD

NOVEMBER 2003 £3.25

'RTTY decoder

16 MW switch
Accurate time measurement Project: Scanning Iforce microscope
Reader offer serica

Quality second-user test \& measurement equipment

Hewlett Packard 3314A Function Generator 20MHz
Hewlett Packard 3324A synth. function/sweep gen. (21 MHz) Hewlett Packard 3325B Synthesised Function Generator Hewlett Packard 3326A Two-Channel Synthesiser H.P. 4191A R/F Imp. Analyser (1GHz)
H.P. 4192A L.F. Imp. Analyser (13MHz)

Hewlett Packard 4193A Vector Impedance Meter $(\mathbf{4}-110 \mathrm{MHz})$
Hewlett Packard $4278 \mathrm{~A} 1 \mathrm{kHz} / 1 \mathrm{MHz}$ Capacitance Meter
H.P. 53310A Mod. Domain Analyser (opt 1/31)

Hewlett Packard 8349B (2-20 GHz) Microwave Amplifier
Hewlett Packard 8508A (with 85081B plug-in)
Vector Voltmeter
Hewlett Packard 8904A Multifunction Synthesiser (opt 2+4) H.P. ESG-D3000A 3GHz Signal Gen

Marconi 6310 - Prog'ble Sweep gen. (2 to 20GHz) - new
Marconi 6311 Prog'ble sig. gen. (10 MHz to 20GHz)
Marconi 6313 Prog'ble sig. gen. (10 MHz to 26.5 GHz)
R\&S SMG ($0.1-1 \mathrm{GHz}$) Sig. Generator (opts B1+2)
Fluke 5700A Multifunction Calibrator
Fluke 5800A Oscilloscope Calibrator

OSCILLOSCOPES

Gould 40020 MHz - DSO - 2 channe
Gould 142120 MHz - DSO - 2 channel
Gould 4068150 MHz 4 channel DSO
Gould $4074100 \mathrm{MHz}-400 \mathrm{Ms} / \mathrm{s}-4$ channel
Hewlett Packard 54201A - 300MHz Digitizing
Hewlett Packard 54502A - 400 MHz - $400 \mathrm{MS} / \mathrm{s} 2$ channel Hewlett Packard 54520A 500MHz 2ch
Hewlett Packard $54600 \mathrm{~A}-100 \mathrm{MHz}$ - 2 channel
Hewlett Packard 54810A 'Intinium' 500 MHz 2 ch
Hitachi V152N212N222N302B/N302F N353F/N550BV650F Hitachi V1 100A - 100 MHz - 4 channel
Intron $2020-20 \mathrm{MHz}$. Dual channel D.S.O (new)
|watstu SS $5710 /$ SS 5702 .
Kikusui $\operatorname{COS} 5100 \cdot 100 \mathrm{MHz}$ - Dual channel
Lecroy $9314 \mathrm{~L} 300 \mathrm{MHz}-4$ channels
Meguro MSO 1270A - 20MHz - D.S.O. (new)
Philips $3295 \mathrm{~A}-400 \mathrm{MHz}$ - Dual channel
Philips PM3070-100MHz - 2 channel - cursor readou
Philips PM3392-200MHz - 200Ms/s - 4 channel
Philips PM3094-200MHZ - 4 channel
Tektronix $468-100 \mathrm{MHz}$ D.S.O.
Tektronix $2213 / 2215-60 \mathrm{MHz}$ - Dual channel
Tektronix $2220-60 \mathrm{MHz}$ - Dual channel D.S. O
Tektronix, 2221 - 60 MHz - Dual channel D.S. O
Tektronix $2235-100 \mathrm{MHz}$ - Dual channel
Tektronix $2245 \mathrm{~A}-100 \mathrm{MHz}$ - 4 channel
Tektronix 2430/2430A - Digital storage - 150 MHz
Tektronix $2445-150 \mathrm{MHZ}$ - 4 channel + DMM
Tektronix $2445 / 2445 \mathrm{~B}-150 \mathrm{MHz}-4$ channel
Tektronix $2465 / 2465 \mathrm{~A} / 2465 \mathrm{~B}$ - $300 \mathrm{MHz} / 350 \mathrm{MHz} 4$ channe
Tektronix $7104-1 \mathrm{GHz}$ Real Time - with $7 \mathrm{~A} 29 \times 2,7 \mathrm{~B} 10$ and 7 B 15
Tektronix TAS $475-100 \mathrm{MHz}$ - 4 channel
Tektronix TDS 31050 MHz DSO - 2 channel
Tektronix TDS $520-500 \mathrm{MHz}$ Digital Oscilloscope

SPECTRUM ANALYSERS

Advantest 4131 ($10 \mathrm{kHz}-3.5 \mathrm{GHz}$)
AdvantestTAKEDA RIKEN $-4132-100 \mathrm{KHz}-1000 \mathrm{MHz}$ Anritsu MS2613A 9 kHz - 6.5 GHz Spectum Analyser Ando AC $8211-1.7 \mathrm{GHz}$
Avcom PSA-65A - 2 to 1000 MHz
Farnell SSA-1000A $9 \mathrm{KHz}-1 \mathrm{GHz}$ Spec. An.
Hewlett Packard 182T Mainframe + 8559A Spec.An. (0.01 to 21 GHz
 Hewlett Packard 853A Mainframe +8559 A Spec.An. (0.01
Hewlett Packard $3582 \mathrm{~A}(0.02 \mathrm{~Hz}-25.5 \mathrm{kHz}$) dual channel Hewlett Packard $3582 \mathrm{~A}(0.02 \mathrm{~Hz}-25.5 \mathrm{kHz}$) dual
Hewlett Packard 3585 A 40 MHz Spec Analyser
Hewlett Packard 3561A Dynamic Signal Analyser
Hewlett Packard $8568 \mathrm{~A}-100 \mathrm{kHz}-1.5 \mathrm{GHz}$ Spectrum Analyse Hewlett Packard 8590A (opt 01, 021, 040) $1 \mathrm{MHz}-1.5 \mathrm{MHz}$ Hewlett Packard 8596 E (opt $41,101,105,130$) $9 \mathrm{KHz}-12.8 \mathrm{GHz}$ Hewlett Packard 8713C (opt 1 E1) Network An. 3 GHz Hewlett Packard 8713 B 300 kHz - 3GHz Network Analyser Hewlett Packard 8752A - Network Analyser (1.3GHz) Hewletl Packard 8753A (3000 KHz - 3 GHz) Network An Hewlett Packard 8753B+85046A Network An + S Param (3 GHz) Hewlett Packard 8754A - Network Analyser $4 \mathrm{MHz}-1300 \mathrm{MHz}$) Hewlett Packard 8756A/8757A Scaler Network Analyser Hewlett Packard 8757C Scalar Network Analyser Hewlett Packard 70001A70900A/70906A/70902A/70205A-26.5 GHz Spectrum Analyser
IFR A7550 - 10 KHz -GHz - Portable
Meguro - MSA 4901 - 30 MHz - Spec Anayiser
Tektronix 492P (opt1,2,3) $50 \mathrm{KHz}-21 \mathrm{GHz}$
Wiltron $6409-10-2000 \mathrm{MHz}$ R/F Analyser
Tek 496 ($9 \mathrm{KHz}-1.8 \mathrm{GHz}$)
$£ 750$ $£ 1950$ £2500 £2500 £3995 84000 $£ 2900$ $£ 3500$ £3950 $£ 2000$

Radio Communications Test Sets

Hewlett Packard 8920B (opts $1,4,7,11,12$)
Hewlett Packard 8922M + 83220E
Marconi 2955
Marconi 2955A
Marconi 2955B/60B
Marconi 2955R
Motorola R2600B
Racal 6111 (GSM)
Racal 6115 (GSM)
Racal 6103 (opts 1, 2
Rohde \& Schwarz SMFP2
Rohde \& Schwarz CMT 90 (2GHz) DECT
Rohde \& Schwarz CMTA 94 (GSM)
Schlumberger Stabilock 4015
Schlumberger Stabllock 4031
Schlumberger Stabilock 4040
Wavetek 4103 (GSM 900) Mobile phone tester

MISCELLANEOUS

Ballantine 1620A 100Amp Transconductance Amplifier EIP 545 Microwave Frequency Counter (18GHz) EIP 548 A and B 26.5 GHz Frequency Counter
£1250

EIP 575 Source Locking Freq. Counter (18GHz)
EIP 585 Pulse Freq. Counter (18 GHz)
Fluke 6060A and B Signal Gen. 10 kHz - 1050MHz Genrad 1657/1658/1693 LCR meters
Gigatronics 8541C Power Meter +80350 A Peak Power Sensor Gigatronics 8542C Dual Power Meter +2 sensors 80401A Hewlett Packard 339A Distortion measuring set Hewlett Packard 436A power meter and sensor (various) Hewlett Packard 438A power meter - dual channel Hewlett Packard 3335 A - synthesiser ($200 \mathrm{~Hz}-81 \mathrm{MHz}$) Hewlett Packard 3457A muli meter $61 / 2$ digit Hewlett Packard 3784A - Digitał Transmission Analyser Hewlett Packard 37900 D - Signalling test set Hewlett Packard 34401A Multimeter
Hewlett Packard 4274A LCR Meter
Howlett Packard 4275A LCR Meter Hewlett Packard 4276A LCZ Meter (100 MHz -20KHz) Hewlett Packard 5342A Microwave Freq.Counter (18GHz) Howlett Packard 5385A - 1 GHz Frequency counter Hewlett Packard 6033A - Autoranging System PSU (20v-30a) Hewlett Packard 6033A - Autoranging System PSU (20
Hewlet: Packard 6060 and B Electronic Load 300 W
£1000
from $£ 1500$
$£ 1200$
£1200
£950
from $£ 500$
$£ 1250$
£12505
£600
from $£ 750$
§1750
ع1750
£850
£2950
£2550
£ 2500
$£ 500$
£1750
£2750
£1400

(20v-30a) | £495 |
| :--- |
| 750 |

Hewlin Packard 6622A - Dual O/P system p.s.u
£950
Hewlett Packard 6624A - Quad Output Power Supply
£1750 Hewlett Packard 8350B - Sweep Generator Mainframe $£ 1500$ Hewlett Packard 8642A - high performance R/F synthesiser ($0.1-1050 \mathrm{MHz}$) £2500 Hewlett Packard 8656A - Synthesised signal generator Hewlett Packard 8656 B - Synithesised signal generator Hewlett Packard 8657A - Synth. signal gen. ($0.1-1040 \mathrm{MHz}$) $£ 1500$ Hewlett Packard $8657 \mathrm{~B}-100 \mathrm{MHz} \mathrm{Sig}$ Gen - $2060 \mathrm{MHz} £ 3950$ Hewlett Packard 8657D - XX DQPSK Sig Gen Hewlett Packard 8901B. Modulation Analyser Hewlett Packard 8903A, B and E - Distortion Analyser
£3950
ع1000
Hewlett Packard 11729B/C Carrier Noise Test Set
from $£ 1000$
Hewlett Packard 53131A Universal Frequency counter (3GHz) Hewlett Packard 85024A High Frequency Probe
from $£ 2500$

Hewlett Packard 6032A Power Supply ($0-60 \mathrm{~V}$)-(0 -50A) Hewlett Packard 5351 B Microwave Freq. Counter (26.5 GHz) Hewlett Packard 5352B Microwave Freq. Counter (40 GHz) Keithley 220 Programmable Current Source
Keithley 228A Prog'ble Voltage/Current Source IEEE. Keithley 237 High Voltage - Source Measure Unit Keithley 238 High Current - Source Measure Unit Keithley $486 / 487$ Picoammeter (+volt.source) Keithley 617 Electrometer/source £850

Kelthley 8006 Component Test Fixture
Marconi 2840A 2 Mbits Transmission Analyser
Marconi 6950/6960/6960A/6970A Power Meters \& Sensors
Phillps 5515 - TN - Colour TV pattern generator
Philips PM 5193-50 MHz Function generator Phillips PM 6654C System Timer Counter
Panasonic VP 8175 A Sig. Gen. ($100 \mathrm{KHz}-140 \mathrm{MHz}$) AM/FM/CW
Rohde \& Schwarz FAM (opts 2,6 and 8) Modulation Analyser Rohde \& Schwarz NRV/NRVD Power meters with sensors Tektronix 1720 Vectorscope
£ 1000
£2000
£2750
§5250
£1750
£1950
£3950
ع3950
£1350/乏1850
£1950
$\Sigma 1750$
£1100
from $£ 400$
$£ 1400$
£ 1400
£750
as new $£ 650$
$£ 2500$

Tektronix 1735 Wavetorm Monitor $£ 1100$ £950 Tektronlx AM503 - AM503A - AM503B Current Amp's with MF and probe from £800 Wayne Kerr 3245 - Precision Inductance Analyser

All equipment is used - with 30 days guarantee and 90 days in some cases.
Add carriage and VAT to all goods.
1 Stoney Court, Hotchkiss Way, Binley Industrial Estate Coventry CV3 2RL ENGLAND

Tel: 02476650702
Web: www.telnet.uk.com
Email: sales@telnet.uk.com

Fax: 02476650773

3 COMMENT

Wireless, wireless everywhere

5 NEWS

- 16 MW switch is fastest yet
- UK lags in Pb -free race
- Casimir force measured
- Robots swarm maps and searches

- UK starts ceramic antenna research
- Second-generation DRM broadcast receiver
- Giant detector comes online

- Physics turns schoolkids off
- One step closer to SkyNet
- Chip de-thumps headphones
- Smart sand is more than silica

12 RTTY DECODER

Roger Thomas shares his love of long-range radio with this novel RTTY (teletype) decoder

22 THE MACROSCOPE

A practical project to produce a home-made scanning force microscope by Giacomo Torzo, Barbara Pecori, Pietro Scatturin and Girgio Delfitto.

29 NEW PRODUCTS

The month's top new products.

38 CIRCUIT IDEAS

- Bipolar reference generator from a printer port
- Current-to-current converter
- Using multiple-purpose timer chip to build inverting SMPS

44 CAPACITOR \& AMPLIFIER DISTORTIONS

Cyril Bateman continues using his 'de facto' distortion analyser with more practical measurements

51 LETTERS

- Historic receivers
- 1000 lines, Green
- Content and focus
- Automotive audio systems
- De-bounce II
- Design for EMC
- Errors, nonsense and 'The question'
- Google search
- Understanding ADCs

56 TIME MACHINE

Accurate time measurement on a budget by John Morrison

60 WEB DIRECTIONS
Useful web addresses for electronics engineers.

READER OFFER

Buy a discounted, software configurable serial I/O card, courtesy of Observant
Electronics.

Quasar Electronics Limited PO Box 6936, Bishops Stortford, CM23 4WP
Tel: 08702461826
Fax: 08704601046
E-mail: sales@quasarelectronics.com

Add £2.00 P\&P to all UK orders. 1 st Class Recorded - £4. Next day (insured £250)-£7. Europe -£5. Rest of World - £10 We accept all major credit/debit cards. Make cheques/PO's payable to Quasar Electronics Limited.
Prices include 17.5% VAT. MAIL ORDER ONLY.
Call now for our FREE CATALOGUE containing details of over 300 electronic kits, projects and modules.

Motor Drivers/Controllers

Here are just a few of our controller and driver modules for AC, DC, unipolar/bipolar stepper motors and servo motors. See website for full details.

DC Motor Speed Controller (6A/100V) Control the speed of almost any common DC motor rated up to $100 \mathrm{~V} / 5 \mathrm{~A}$. Pulse width modulation output for maximum motor torque at all speeds. Supply: 5-15VDC. Box supplied. Dimensions (mm): 60W×100Lx60H. Kit Order Code: 3067KT - £12.96 Assembled Order Code: AS3067-£19.96

NEWI PC / Standalone Unipolar
Stepper Motor Driver
Drives any 5,6 or 8-lead unipolar stepper motor rated up to 6 Amps max.
 Provides speed and direction control. Operates in stand-alone or PCcontrolled mode. Up to six 3179 driver boards can be connected to a single parallel port: Supply: 9V DC. PCB: $80 \times 50 \mathrm{~mm}$.
Kit Order Code: 3179KT - £9.96
Assembled Order Code: AS3179-£16.96
PC Controlled Dual Stepper Motor Driver Independently control two unipolar stepper motors (each rated up to 3 Amps max.) using PC parallel port and software interface provided. Four digltal inputs available for monitoring external switches and other inputs. Software provides three run modes and will half-step, single-step or man-ual-step motors. Complete unit neatly housed if an extended D-shell case. All components, case, documentation and software are supplied (stepper motors are NOT provided). Dimensions (mm): 55Wx70Lx15H. Kit Order Code: 3113 KT - £16.96 Assembled Order Code: AS3113-£24.96

NEWI Bi-Polar Stepper Motor Driver Drive any bi-polar stepper motor using externally supplied 5 V levels for stepping and direction control. These usually come from software running on a computer.

Supply: 8-30V DC. PCB: $75 \times 85 \mathrm{~mm}$
Kit Order Code: 3158 KT - $£ 12.96$
Assembled Order Code: AS3158-£26.96
Most items are available in kit form (KT suffix) or assembled and ready for use (AS prefix).

Controllers \& Loggers

Here are just a few of the controller and data acquisition and control units we have See website for full details. Suitable PSU for all units: Order Code PSU203 £9.95

Rolling Code 4-Channel UHF Remote State-of-the-Art. High security. 4 channels. Momentary or latching relay output. Range up to 40 m . Up to 15 Tx's can be learnt by one Rx (kit includes one Tx but more avail-
 able separately). 4 indlcator LED 's. Rx: PCB $77 \times 85 \mathrm{~mm}, 12 \mathrm{VDC} / 6 \mathrm{~mA}$ (standby), Two and Ten channel versions also available. Kit Order Code: 3180KT - £41.96 Assembled Order Code: AS3180-£49.96

Computer Temperature Data Logger 4-channel temperature logger for serial port. ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. Continuously logs up to 4 separate sensors located $200 \mathrm{~m}+$ from board. Wide range of free software applications for storing/using data. PCB just $38 \times 38 \mathrm{~mm}$. Powered by PC. Includes one DS1820 sensor and four header cables. Kit Order Code: $\mathbf{3 1 4 5 K T}$ - $\mathbf{£ 2 2 . 9 6}$ Assembled Order Code: AS3145-£29.96 Additional DS1820 Sensors - $\mathbf{£ 3 . 9 6}$ each

NEWI DTMF Telephone Relav Switcher Call your phone number using a DTMF phone from anywhere in the world and remotely turn on/off any of the 4 relays as desired
 User settable Security Password, AntiTamper, Rings to Answer, Auto Hang-up and Lockout. Includes plastic case. $130 \times 110 \times 30 \mathrm{~mm}$. Power: 12VDC. Kit Order Code: 3140KT - $\mathbf{\$ 3 9 . 9 6}$ Assembled Order Code: AS3140-£69.96

Serial Isolated I/O Module

 PC controlled 8-Relay Board. 115/250V relay outputs and 4 isolated digital inputs. Useful In a variety of control and sensing appllcatlons. Uses PC serial port for programming (using our new Windows interface or batch files). Once programmed unit can operate without PC. Includes plastic case $130 \times 100 \times 30 \mathrm{~mm}$. Power: 12VDC/500mA
Kit Order Code: 3108KT - £64.96
Assembled Order Code: AS3108-£64.96

Infrared RC Relay Board Individually control 12 onboard relays with included infrared remote control unit. Toggle or momentary. $15 \mathrm{~m}+$ range. $112 \times 122 \mathrm{~mm}$. Supply: $12 \mathrm{VDC} / 0.5 \mathrm{~A}$ Kit Order Code: 3142KT - $\mathbf{\$ 4 1 . 9 6}$ Assembled Order Code: AS3142-£69.96

PIC \& ATMEL Programmers

We have a wide range of low cost PIC and ATMEL Programmers. Complete range and documentation available from our web site.

Programmer Accessorles:

40-pin Wide ZIF socket (ZIF40W) £16.00 18V DC Power supply (PSU201) £6.96 Leads: Parallel (LEAD108) £4.96/Serial (LEAD76) £4.96/USB (LEADUAA) $£ 4.96$

NEW! USB 'All-Flash' PIC Programmer USB PIC programmer for all 'Flash' devices. No external power supply making it truly portable. Supplied complete with 40-pin wide-slot ZIF socket, box and Windows Software Kit Order Code: 3128KT-\$49.96 Assembled Order Code: AS3128-£64.96

Enhanced "PICALL" ISP PIC Programmer
 Will program virtually ALL 8 to 40 pin PICs plus a range of ATMEL AVR, SCENIX SX and EEPROM 24C devices. Also supports In System Programming (ISP) for PIC and ATMEL AVRs. Free software. Blank chip auto detect for super fast bulk programming. Requires a 40-pin wide ZIF socket (not included). Kit Order Code: 3144 KT - $\mathbf{£ 5 4 . 9 6}$ Assembled Order Code: AS3144-£69.96

ATMEL 89xxxx Programmer Uses serial port and any standard terminal comms program. 4 LED's display the status. ZIF sockets
 not included. Supply: 16-18VDC. Kit Order Code: 3123KT - £29.96 Assembled Order Code: AS3123-£34.95

NEWI USB \& Serial Port PIC Programmer USB/Serial connection. Ideal for
field use. Header cable for ICSP.
Free Windows software. See website for PICs supported. ZIF socket not incl. Supply: 18VDC.
IT $-=$ socket not incl. Suppler Code: 3149 KT - $\mathbf{\Sigma 2 9 . 9 6}$
Order
Assembled Order Code: AS3149-£44.96

EDITOR
Phil Reed
p.reed@highburybiz.com

CONSULTANT
Ian Hickman
CONTRIBUTING EDITOR Martin Eccles

EDITORIAL E-MAILS
EWeditor@highburybiz.com
EDITORIAL ADMINISTRATION
EWadmin@highburybiz.com
GROUP SALES
Reuben Gurunlian
01322611292

ADVERTISEMENT
E-MAILS
r.gurunlion@highburybiz.com

CLASSIFIED FAX
01322616376
PUBLISHING DIRECTOR
Tony Greville
ISSN 0959-8332
SUBSCRIPTION CUERIES
Tel (0) 1353654431
Fax (0) 1353654400

Disclaimer

We work hard to ensure that the information presented in Electronics World is accurate. However, Electronics World's publisher - Highbury Business Communications - will not take responsibility for any injury or loss of earnings that may resulf from applying information presented in the magazine. It is your responsibility to familiarise yourself with the laws relating to dealing with your customers and suppliers, and with salety practices relating to working with electrical/electronic circuitry - particularly as regards electric shock, fire hazards and explosions.

Wireless, wireless everywhere......

And half of it doesn't work. I reported a few months ago about the trouble I was having with getting a simple Bluetooth connection going between my laptop and a GPRS phone. Well, I have to admit defeat - the Nokia and Belkin softwares combine to be the most hideous piece of code and I'm now using infra-red.
The point of this, as I said at the time, is that we as engineers need to make this kind of technology accessible to the average member of the public for it to be successful, so that lots of people buy it and in the long term to keep us all in a job.
I've just had a similar 'radio' experience by putting in a $\mathrm{Wi}-\mathrm{Fi}$ network at home. In fact, setting up the network and even the ADSL router was extremely easy. The software and instructions from the 'black box' maker (D-Link) and the installation instructions from my ISP (Pipex) combined on this occasion to make the project go very smoothly.
I look forward to more 'public' Wi-Fi points opening up in the future although the small bandwidth allocated thus far is getting very cluttered. It will be wonderful, though in the not too distant future to be able to hook up to a proper, high-speed network, just using the adaptor in the laptop as opposed to hooking into other (not very reliable) networks. The hugely indebted G3 franchise holders could also learn a lesson or two. Whilst they are scrabbling around looking for a 'killer app' - the business community needs high-speed data on the move and is willing to pay for it. Sending your mates stupid videos or watching sports highlights on the phone is not going to do repay the huge fees these networks have had to shell out
to unscrupulous governments selling off bandwidth. But the plus side is that the proliferation of all this mobile networking can only help our industry back on its feet.

More housekeeping

As I reported last month, we are still experiencing problems with our admin without a new 'Jackie'. Readers who have been waiting for our offers will be pleased to hear that they have all been dispatched (in fact, by the time you read this I will be sunning myself in Rhodes and you will have received your goods. And of course look out for a new reader offer for those who were unlucky in our competition last month. You can buy an Observant Datastation development kit for $£ 20$ off (see page 42).

Phil Reed

New editorial and advertising address

The Highbury Business Communications office previously at Cheam, Surrey has moved to Swanley in Kent. All correspondence intended for the editorial and advertising departments should be addressed to:

Electronics World,
Highbury Business Communications, Nexus House,
Azalea Drive,
Swanley,
Kent, BR8 8HU
The switchboard phone no. is
01322660070
Advertising sales (Reuben Gurunlian)
Tel 01322611292
Fax 01322616339

[^0]Subscriptions: Wyern Subscription Services, Link House, 8 Bartholomew's Walk, Ely Cambridge, CB7 420.
Telephone 01353654431 . Please notily change of address.

Subscription rafes

1 year UK £38.95 O/S £64.50 US $\$ 100.62$ Euro 102.55

USA mailing agents: Mercury Airfreight Internotional Ltd Inc, 10 (b) Englehard Ave, Avenel NI 07001 . Periodicals Pastage Paid at Rohway NJ Postmaster. Send address changes to above.
Printed by Polestar (Calchester) Ltd, Filmselling by Impress Repro By Design A1 Parkway, Southgate Way, Orion Southgate, Peterborough, PE2 6YN

THERE IS INTERESTING NEWS

PC CONTROLUED MEASURING INSTRUMEN

 COMPLEFE PAGKicE SJARTNC AT 643 !
OSCILLOSCOPE

FFT ANALYSER

The Handyscope 3 is a powerful and versatile two channel measuring instrument with an integrated function generator.

> ¿ USB 2.0 connection (USB I.I compatible) ospeed up to 100 MHz per channel
> 8 to 16 bit resolution $(6 \mu \mathrm{Volt}$ resolution)
> ${ }^{\circ} 50 \mathrm{MHz}$ bandwidth

${ }^{\circ}$ input sensitivity from 200 mVolt up to 80 Volt

- large memory up to 131060 samples per channel
${ }^{\circ}$ four integrated measuring devices
${ }^{\circ}$ spectrum analyser with a dynamic range of 95 dB
${ }^{\circ}$ fast transient recorder up to 10 kHz ${ }^{\circ}$ several trigger features
${ }^{\circ}$ auto start/stop triggering
${ }^{\circ}$ auto disk function up to 1000 files ${ }^{\circ}$ auto setup for amplitude axis and time base
${ }^{\circ}$ auto trigger level and hysteresis setting ${ }^{\circ}$ cursor measurements with 21 read-outs
${ }^{\circ}$ very extensive function generator (AWG) $0-2 \mathrm{MHz}, 0-12 \mathrm{Volt}$

for more information, demo software, software, source code and DLL's visit our internet page: http://www.tiepie.

16 MW switch is fastest yet

Researchers at the US Virginia Tech have developed a high-power semiconductor switch.

Called an emitter turn-off thyristor (ETO), it operates without snubber circuits and can be controlled fibreoptically.
"An optical pulse is applied to turn on current flow. It can conduct $10,000 \mathrm{amps}$ of current and will withstand 16 MW of instantaneous power," said Professor Alex Huang of Virginia's electrical engineering department.

For continuous operation, the ETO can carry $1.5 \mathrm{kA}\left(\right.$ at $125^{\circ} \mathrm{C}$) and block

6 kV . Switching time is $5 \mu \mathrm{~s}$, on or off. "This switch allows us to advance very high power converters from a line speed of 60 Hz to 3 kHz switching at the same power level," said Huang. "This speed allows you to chop the voltage into whatever shape you need."
Present technology is the GTO (gate turn-off thyristor). "The GTO is reliable and inexpensive, but requires a snubber capacitor to protect it in the turn-off process." said Virginia, "The snubber uses significant power itself and increases the size of the switch."

The ETO is a hybrid made from a GTO (gate turn-off thyristor) and mosfets (insulated gate bipolar transistors). The two mosfets operate as a complementary pair to assist GIO turn-off. Q_{E} the emitter switch, is turned off and the gate switch Q_{G} is turned on. This diverts the GTO cathode current to its gate forcing the 'unity gain turnoff' - where all the minority charges in the p-base region are extracted quickly. In practice there are multiple mosfets in both positions and a single large GTO.

UK lags in Pb-free race

The British electronics industry has its head in the sand over the ban on leadbased solders and components, said ERA Technology.
The Surrey-based research firm has surveyed the UK electronics industry to find how ready it is to make the transition from $\mathrm{tin} / \mathrm{lead}$ solders to lead-free solders, and lead-free components
"Only three per cent of companies have developed lead-free products, only nine per cent of companies have started trials
with lead-free solders and 50 per cent of companies admit they don't understand the impact of banning lead-based solders," said ERA.

The EU 'Restriction of use of certain Hazardous Substances' (RoHS) directive bans lead from many finished electronic and electrical products from July 1st 2006.
"While the deadline may seem a long way off, there are currently no lead-free solders that are direct replacements for use in all existing products," said ERA,
"All lead-free solders are different in their properties and the way they need to be used."

Over 150 small, medium and large size companies were questioned by ERA.
"These were a broad cross-section of the country's electronics industry, which means the findings are truly representative," said ERA. "The good news is that 87 per cent of the sample at least knew about the RoHS directive, and half had contacted one supplier." www.era.co.uk/product/lead-freesurvey.htm to buy the report.

Casimir force measured

Physicists in the US have made a more accurate measurement of the Casimir force, that pushes together objects at close separations. The work could result in better photonic mirrors and nanomachines.
"The Casimir force is not a new discovery," said Purdue University's Professor Ephraim Fischbach. "Its effects on machines are essentially negligible until you start building at
the nanoscale. When the teeth of two tiny gears come together, for example, the Casimir force could push them together so strongly that they would stick and freeze up."

First predicted by Hendrik Casimir of Philips Research Labs in 1948, the force is due to the fact that objects close together cannot fit any photons, real or virtual, between them. Thus photons striking the outside of the
objects push them together.
In experiments the forces have been measured at up to Inanonewton, or 100μ dynes. Purdue's work has proven the theory within one per cent of experiment, which should lead to better modelling.
"It is not often you get to unify theory and practice this closely," said Fischbach.

Robot swarm maps and searches

US research institute SRI has made 100 Centibots to map and search unknown spaces.
"As totally self-contained, untethered entities, these robots can determine their own location and plan their own path, process images they see, make decisions based on a continually expanding knowledge base, and negotiate with other robots when teamwork is required," said SRI's Artificial Intelligence Center.
There are two types of Centibot. Mapping robots with laser range finders enter an area first, followed by a larger second wave of tracking robots that search.
As they move, the robots create an adhoc 802.11 (WiFi) network to enable all machines to stay in touch with the control centre which directs the swarm.
The robots run the Debian distribution of Linux and use a software control system developed the Artificial Intelligence Center that was first created as an integrated architecture for robot perception and action.
Processing power comes from 1 GHz mini-ITX size PC motherboards from VIA - which recently launched a Robotics Initiative "in response to the

inexorable melding of mechanical robots and the PC architecture", it said.
The Centibots project is sponsored
by the US military Defense Advanced Research Projects Agency (DARPA). www.ai.sri.com/centibots www.viaarena.com

UK starts ceramic antenna research

Leatherhead technology firm ERA Technology has begun a research programme on antenna technology using ceramic structures.
"The new technology will combine the efficiency and bandwidth of conventional antennas with the compactness of current ceramic designs," said the firm.
ERA will use the low temperature co-fired ceramic (LTCC) process to create complex 3D structures.

The technique could also lead to low cost phased arrays, said the firm, by combining conductors and active circuits in the same ceramic block.
"This new technology is a real breakthrough because of its versatility, compact size and low manufacturing cost," said Dr Robert Pearson, head of ERA's antenna business.
"In military applications, it offers favourable radar and electromagnetic
compatibility characteristics and therefore can be used as a fundamental building block on a range of future military platforms. As a bonus, the construction technique also offers exceptionally high temperature performance, making it ideal for fast jets and missiles.
Operating bandwidths will be better than ten per cent, claimed ERA, while the antennas could be configured as multiband devices.

A Cambridge University researcher has found that coating carbon nanotubes with conducting polymers could lead to supercapacitors that rival existing technology.

Dr Mark Hughes from the department of materials science and metallurgy found that both of the two materials have desirable properties and has worked on merging them.
Carbon nanotubes have high conductivity and a large surface area, while the conducting polymers, such as polypyrrole, can be oxidised and reduced easily and quickly, allowing many charge and discharge cycles.
When combines, these two materials offer a high capacitance material of more than

$2.6 \mathrm{Fcm}^{2}$.

The capacitance is more than double that of either material on its own, said Hughes.

These SEM images show (a) randomly oriented and (b) aligned composites of carbon nanotubes and polypyrrole.

Second-generation DRM broadcast receiver

A second-generation DRM (Digital Radio Mondiale) receiver has been announced by Coding Technologies.

A joint venture with Munich-based product design house Mayah, the radio is smaller ($21 \times 7 \times 13 \mathrm{~cm}$) than the $29 \times 7 \times 19 \mathrm{~cm} \times 1,000$ firstgeneration design, will be cheaper, said Coding, and also receives standard AM transmissions.
DRM is the digital transmission standard chosen by most of the world's broadcasters to replace analogue AM on shortwave, mediumwave and longwave
Coding is the company behind the audio compression technology which makes it possible to fit good quality audio into the limited spectrum normally allocated to an AM broadcast channel - hence its interest in popularising the format by developing receivers. "Now that many radio stations already broadcast a full DRM programme daily, these first mass-produced receivers will open the path to the end consumer for affordable access to Digital Radio Mondiale broadcasts," said Coding.
Called Spectral Band Replication
(SBR), Coding's technology allows a fictitious but realistic spectrum from 7 kHz upwards to be generated from an audio signal low-pass filtered to below 7 kHz , plus some 'helper' information.
Part of the helper information is the shape of the discarded upper spectrum and SBR generates harmonics of the low-pass filtered signal to fit the original upper spectrum profile. Other helper information describes significant signals above 7 kHz which were not harmonically related to lower frequencies.
The sub 7 kHz signal is compressed using standard MPEG 4 AAC audio compression.
The whole scheme is called aacPlus, where the Plus is SBR. "aacPlus delivers streaming and downloadable 5.1 multi-channel audio at $128 \mathrm{Kbit} / \mathrm{s}$, CD-quality stereo at $48 \mathrm{Kbit} / \mathrm{s}$, excellent quality stereo at $32 \mathrm{kbit} / \mathrm{s}$, and excellent quality for mixed content at $20 \mathrm{Kbit} / \mathrm{s}$ mono and below," said Coding.
www.mayah.com www.codingtechnologies.com

What does it sound like?
Electronics World heard a demonstration of aacPlus audio.
It is much more like the sound of FM on VHF or MP3encoded material than AM on MW. The simulated upper frequencies don't sound synthetic to the casual listener although more experienced people might of course be able to spot the difference between FM and aacPlus on MW

Giant detector comes online

UK scientists have started receiving data from the 6,000 ton MINOS detector located in an iron mine in northern Minnesota.
Minos - the Main Injector Neutrino Oscillation Search - hopes to gain more understanding of the neutrino mass.
"The MINOS detector in Soudan, Minnesota, together with the new Fermilab neutrino beam line, will provide a detailed look at the secrets behind neutrino
oscillations," said Dr Raymond Orbach, director of the US department of energy's office of science.
MINOS is over 30 m in length and took more than four years to build. Its 486 steel plates are each about 7 m high and are coated with scintillating plastic.
The detector is said to be able to tell the difference between neutrino and antineutrino interactions. Eventually neutrinos
'made' in Illinois will be sent through 450 miles of the earth directly to MINOS. Out of one trillion neutrinos per year, only about 1,500 will collide with an atomic nucleus in the detector.
Scientists hope to discover more about the three known types of neutrino electron, muon and tau - and how they switch from one to another as they move through space and matter.

1 kW output from fibre laser

A fibre optic laser with an output power exceeding 1 kW has been developed by Southampton Photonics (SPI) and Southampton University's Optoelectronics Research Centre (ORC).
While higher power fibre lasers have been reported, these are (optically) less pure multi-mode systems.
"Breaking the kW barrier with a
single fibre having high beam quality is a milestone thought to be virtually unattainable just a few years ago," said David Payne, SPI's chairman and director of the ORC.
SPI uses a cladding pump technique for its fibre lasers, which allows a multi-mode source to produce singlemode output. Light from a diode stack is launched into the inner cladding of a double-clad single-

Physics turns schoolkids off

A-level entries for physics and other science subjects have fallen again, according to figures from the Institute of Physics.
The number of students taking Alevel physics dropped by three per cent this year.
On the positive side, said the IoP, the ten year trend which has seen entries dropping from 60,000 to 30,000 is slowing.
The IoP blamed subjects such as
law and media studies for the declining fortunes of science subjects. In its promotion of the hard sciences it points to evidence that science graduates "have higher salaries than arts and humanities graduates in later life".
A shortage of physics teachers is being addressed by a $£ 750,000$ investment from the IoP in supporting development of teachers of 11 to 14 -year olds.
mode fibre. The pump light propagating through the inner cladding excites the rare-earth elements in the core, in this case ytterbium, producing single mode light at 1090 nm .
The firm has quadrupled its output power of these lasers since February. It will produce commercial versions for industrial and aerospace applications.

Book-sized PC for servers

Taiwanese PC component maker VIA has introduced a new series of motherboards in the $17 \times 17 \mathrm{~cm}$ mini-ITX format, aimed at networked systems "enabling the development of a wide variety of networking applications including servers, firewalls, and routers", said VIA.
Called the EPIA CL-Series, the boards have dual $10 / 100 \mathrm{Mbit} / \mathrm{s}$ LAN controllers, six USB 2.0 connectors for peripherals, four serial COM ports for older peripherals, support for LVDS embedded LCD panels and a PCI slot for expansion.
The soldered-in processor is VIA's own x86-compatible range including the fanless 677 MHz Eden (CL6000), the $800 \mathrm{MHz} \mathrm{C3}$ (CL8000) and the CL1000 that uses VIA's top-end 1 GHz Nehemiah chip.
All boards have a hardware MPEG-2 decoder and integrated graphics core.
www.via.com.tw

Future Electronics is offering a development kit for low power radios using the 433,868 and 915 MHz frequencies. The radios make use of the Xemics XM1202

RF transceiver module and Motorola's '908 microcontroller. The combination allows 'drop-in' designs to be created that will meet FCC/CE/ETSI certification, said Future. The module takes RS232 data and transmits over the RF link at between $4.8 \mathrm{kbit/s}$ and $76.8 \mathrm{kbit} / \mathrm{s}$. Output power can be programmed up to 15 dBm
(31.5 mW).

O. ${ }^{-1}$ Propuction - Developmont

PCB Production - Drefifing Matorials

 C4 Artwork Film (per 10 sheets) Clear Laser Film White HQ Laser Film "Dalo" Pen"Stgedtler" Ifch Resist T ramsfor Seno mixed DIL pads Seno mixed Rno pads $\mathrm{E}^{2} 24$ Alfac mixed pads
Alfac mixed lines Transfer Spatular we cary the lul range oot Sen

Soidering Irons

We carry in stock a wide range of soldering iron and
soldering occessories. Irons from 1210100 Watts. soldering access ories
15 W 240 C .
20 W cost 20 W 240 V Basic
25 W 240 V Ceramic 30 W 24 VV Basic Dosoldor Pump Basic $165 \times 18 \mathrm{mme}$ Antex Mini 198 mm

Soldoring Stafion

A 48 W a ciustable temperature
soldering station with a potan soldering station with a rotary ai-
al LED Pemperature metering on of switch, iron holder and tip clean ing sponge. This station features accurafe heat sensing for instant compensation $\&$ stable temperatures. Adiustable ${ }^{\circ}$ temperature
range of $150-420^{\circ} \mathrm{C}$, Low voltage iron with silicone cable. Model 167-540
£44.50

Soldoring Station

A 48W ad dustable temperature
soldering station with a rotary di soldering, station with a rotary di-
al, Dipital Temperature Indication
and cleaning sponge. This station fea instant compensation \& stable temperatures. Adijustoble tem-
perature range of $150-480^{\circ} \mathrm{C}$ Low voltage iron with Siliconé cable
Suply: 240 V , Iron: 24 V 48 W Model 167-570 £58.75

CTV V Comploto 8 ysfoms We carry the full range of

 Wicromark Black \& White and home or oftice.These complete easy install sys. power supply, cables ond all with ings. Simpe e plug-in connections
for use with a scort socket.

Biack \& Whito ${ }^{3}$ fromeme

\section*{AGY- Black \& Whifo Medulo} with a 3.6 mm F2 Lons, video output \& | power vig connectors provided. |
| :--- |
| pest |
| $180-800)$ |

ower 12 Vdc 50 A
ideo System CCR
Pixels 152×288
Min illumination: 0.5Lux
Dims: $35 \times 35 \times 28 \mathrm{~mm} 20 \mathrm{~s}$
Dish

Prill Bite

HSS parallel shank bits available in sizes from 0.3 mm to $0.3-0.95 \mathrm{~mm}$ in 0.05 mm steps $£ 0.60 \mathrm{ea} £ 4.00110$
$£ 0.40 \mathrm{ea} £ 3610$ $1.0-2.0 \mathrm{~mm}$ in 0.1 mm steps
HSS Reduced shank (2.35 mm) bit available in sizes from HSecuced shank (2.35 mm) bit available in sizes from
$0.6 \mathrm{~mm} 10.84 \mathrm{ea} £ 7.60 / 10$
Reground Ting in 0.1 mm steps Reground Tingsten carbide reduced shank (3.2 mm) avail-
able in sizes trom 0.6 to 1.6 mm in 0.1 mm steps
$£ 1.90$ abrilin sizes trom 0.6 Minicraf MXI 230V,
$8000-21000$ rom with chuck \& collet.
Model EPE270-390 Normal price £48

Sorvisol Leresol

NEW GATALOGUE OUT NOW

available from www.esr.ce.uk

Educentional Kita

These kits are an ideal way to start you interset in electronics. They freature re-useable components which are attached via springs \& wires and easy step by step. featurs a breadboard tor more complex circuits.

$130-\mathrm{in}-1$
300 -in${ }_{6} 55.20$

Panol Mofors

High quality analogue panel meters, class 2, zero point
correction, mirror scale and prewired for panel illumina correction, mirror scole and prewired tor pane il
tion. Meter size $46 \times 60 \mathrm{~mm}$, Cutout size: 38 mmg .

PCB Production - Laminatos
Copper clad - paper
Single sided low cost paper composite board
$100 \times 160 \mathrm{~mm}$ Board
$\begin{array}{lll}100 \times 220 \mathrm{~mm} \text { Board } & £ 0.62 \\ 160 \times 233 \mathrm{~mm} \text { Board } & \mathrm{E} .02\end{array}$
$220 \times 233 m m$ Board 1.40
$8^{\prime \prime} \times 12^{\prime \prime}$ Board 1.70
coppor cied -glass filire
Single 8 Double
Sing e \& Double $1.6 \mathrm{~mm} 305 \mathrm{~g} / \mathrm{m}^{2}$
$100 \times 160 \mathrm{~mm}$ Single 00.85 $100 \times 220 \mathrm{~mm}$ single
$160 \times 233 \mathrm{~mm}$ Single $220 \times 233 \mathrm{~mm}$ Single $8^{\circ} \times 12^{*}$ Single
$100^{2} \times 160 \mathrm{~mm}$ Double $100 \times 220 \mathrm{~mm}$ Double
$160 \times 233 \mathrm{~mm}$ D $220 \times 233 \mathrm{~mm}$ Double
8"x 12^{*} Double.
1.6 mm 35 micron Pre-coated with a high quality photoresisi layer. Available in low cost paper composite or
Glass fibre, Singie \& Double sided. Other sizes also available. Paper Glass Fibre
512
$4 \times$
$6 \times$
$9 \times x$
1
2

PCB Production - Chomicals
100 ml Aerosol Photoresist spray, covers 2 m 50 g
500 g Powder developer, makes it \quad Powder developer makes lolt 250 g Ferric Chloride Pe, (lets, makes 500 ml
 $1.1 \mathrm{~kg} \quad$ Clear Fine etch crystals, makes 51 l
90 $\begin{array}{lll}200 \mathrm{ml} & \text { Aerosol Fux spray } \\ 110 \mathrm{ml} & \text { Aerosol PCB Laquer spray }\end{array}$

Magnifying Desk Lamp A high quality scratch resistant anced swivel arm and desk mount. An integral flourescent tube provides illumination.
Magnification: $3 x$ Lens: $120 \mathrm{~mm} \varnothing$ Tube: 22 W Daylight simulation.

Model: 028-205 $£ 28.80$
Tools = Cuthora Stripport tropics a wide range of specialist tools for the elecside Cuttery
130 mm Low cost
115 mm Box Jointed
145 mm Long reach
130 mm Low
130 mm Low cost
150 mm Draper $5 \mathrm{~mm} \varnothing$
$£ 2.30$

Tools - Ratchet Grimping Pliert

High quality ratchet crimping pliers for various terminal Red / Bue / Yellow, £15.80
BNC TNC RF series 15.19 RJ11/12 Data series RJ 45 Data Series
RJ11/12 \& 45 ser
Green/Red/Blue
Red/Blue/Yellow
$0.24-2.5 \mathrm{~mm}^{2}$ crimps
$\begin{array}{ll}\text { Non insulated crimps } & \text { E2 } 24.38 \\ \text { N }\end{array}$
Ceble - RIbson
$7 / 0.127 \mathrm{~mm}$ Grey ribbon cable on a $0.05^{\prime \prime} 1.27 \mathrm{~mm}$ pitch with a red identifying stripe. Supplied by 305 mm (1 ff) or
on full $30.5 \mathrm{~m}(100 \mathrm{ff})$ reels.

CATSo Netwertaing

305 m box
CAT5E 100 MHz standa
ETA verified TIA/EIA 568-B. 2
Only $£ 25.99$ per box exc carriage.
$\frac{\mathrm{R} J 45 \text { Outlet Kit }}{\text { Backing Box }}$
2 Gang Plate
RJ 45 Module
Blank Module
Colour coded id
inserts.
Tools
\& cable stripper tool
Professional punch down 42
IDC \& trim

Now in stock

Patch \& Cross-over leads from $£ 0.50$, Full range of outle
modules/keystone outlets \& accessories.

One step closer to SkyNet

US computer scientists are to test a prototype of Cyberinfrastructure, the technology which will eventually support its inter-supercomputer data grid.
The prototype, NPACI Grid, is from the US National Partnership for Advanced Computational Infrastructure and will connect its main resource sites: at the San Diego Supercomputer Center (SDSC), the Texas Advanced Computing Center (TACC) in Austin, TX, and the University of Michigan, Ann Arbor. It will then be extended to the California Institute of Technology, Pasadena.
"NPACI Grid is a production,
heterogeneous national Grid consisting of interoperable software, scientific applications, and hardware resources," said the organisation. "It unifies mature software infrastructure efforts through the development of the interoperable, tested and hardened 'NPACKage' deployed at all resource sites."
Other parts of Cyberinfrastructure development are US National Science Foundation's NSF Middleware Initiative (NMI) and TeraGrid/ETF project.

The hardware resources in the NPACI Grid are a 1.7Tflop AIX cluster, Blue Horizon at SDSC, a 435Gflop AMD based Linux cluster

Qinetiq wins windfarm funding

Defence technology research firm Qinetiq has won funding from the DTI to develop 'stealthy' wind turbine blades.
Qinetiq hopes that by modifying their glass fibre reinforced polymer construction, it can reduce the unwanted radar reflections from the blades.

Air traffic control, marine navigation, weather monitoring and Ministry of Defence systems are all affected, it said.

NOI Scotland with work with Qinetiq on the blades. The firm, originating from Germany, has technology for building 50 m , resin-infused blades suited to offshore turbines producing 2 MW more more.
"This is an excellent example of how the results of military research can be exploited
for civil gain," said Steve Appleton, the QinetiQ technical leader of the DTI project.
The UK Government has set ambitious targets for clean energy production, with ten per cent of the countries energy to come from sustainable sources by 2010 , and 20 per cent by 2020 .
Despite our constant complaints about wind, the UK has only the eighth largest amount on installed wind generating power in the world at 570 MW . Germany tops the list with $12,000 \mathrm{MW}$, while the US has $4,700 \mathrm{MW}$ and Spain $5,000 \mathrm{MW}$.

According to the British Wind Energy Association, last year over a quarter of all proposals for windfarm developments were the subject of objections from radar operators.
at the University of Michigan and three large shared-memory server nodes at TACC delivering 1.16Tflop.

Smart sand is more than silica

Grains of sand might be worth a second glance if research at five of Scotland's leading universities comes to fruition.
A team from the universities of Edinburgh, Glasgow, Napier, St Andrews and Strathclyde has just won a $£ 1.3 \mathrm{~m}$ grant to develop networked computers as small as sand grains.
The project, called Speckled Computing, aims to integrate modest amounts of digital signal processing, an RF transceiver, power source and sensors.
Professor DK Arvind, director of Edinburgh's Institute for Computing Systems Architecture, said the project will proceed in two stages: "The aim is to produce these specks in a millimetre cubed of semiconductor." There is an intermediate stage of $5 \mathrm{~mm}^{3}$ in two years, with the final mm^{3} in four years."
Although each device will not have large amounts of processing power, because they are networked they will form a distributed system.
Arvind said the power source will be a photovoltaic cell, made using a gallium arsenide process. The radio will also use GaAs, while digital sections will use CMOS. The two sections will be bonded together.

Chip de-thumps headphones

Maxim has revealed a novel chip which removes switch-on clicks and thumps from headphones.
The MAX9890, as it is called, is placed between amplifier and headphone socket and open-circuits both left and right paths until transients are under control.
The device requires only one additional $0.1 \mu \mathrm{~F}$ capacitor and deals with switch-off transients as well.
Applications in portable equipment such as notebook, phones, DVD players and PDAs are foreseen, particularly where an existing model has a click problem, or the thump-prone audio amplifier is part of a larger chip which cannot be designed out.
There are two versions. The MAX9890A for use with DC-blocking capacitors of up to $100 \mu \mathrm{~F}$ and the 9890B for capacitors up to $220 \mu \mathrm{~F}$
Supply is 2.7 V to $5.5 \mathrm{~V}, 23 \mathrm{~dB}$ of click-and-pop suppression is provided, supply current is $20 \mu \mathrm{~A}$ and added THD +N is under 0.006% into a 32Ω load. Package is either $1.5 \times 1.5 \times 0.6 \mathrm{~mm}(9-\mathrm{pin})$ or an 8 -pin $3 \times 3 \times 0.8 \mathrm{~mm}$.

PROTEUS

- Fully compatible with manufacturers' SPICE models.

Proteus VSM - Co-simulation and debugging for popular Micro-controllers

- Supports PIC, AVR, 8051, HC11 and ARM micro-controllers.
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays, switches, keypads, virtual terminal and much, much more.
- Provides source level debugging for popular compilers and assemblers from Crownhill, IAR, Keil, and others.

Tel: 01756753440 Fax: 01756752857

Contact us for
Free Demo CD

Works with

PIC Basic Plus

from Crownhill
Associates

E lecetronices 53-55 Main Street, Grassington. BD23 5AA 53-55 Main Street, Grassington. BD23 5AA

RTTY Decoder

Radio Teletype (RTTY) is a direct machine-to-machine communications mode and has been in existence since the 1930's. The commercial use of RTTY on short wave has declined having been replaced with more robust transmission modes, however radio amateurs still use RTTY. Roger Thomas has designed an ingenious decoder

To encode and transmit text characters two different audio frequencies are transmitted. These two audio frequencies are commonly referred to 'mark' and 'space', where mark is usually the higher frequency. The most common audio frequencies used within Europe are 1275 Hz (space) and 1445 Hz (mark) and the difference between the two audio frequencies is called the 'shift'
Most amateur radio transmissions use 170 Hz audio shift, but shifts of 425 Hz or 850 Hz are used on other bands. It is possible for the transmission to be 'up side down' with the space frequency higher than the mark frequency, changing the receiver's side band settings and re-tuning will correct this. American amateur stations use a different set of audio frequencies $(2125 \mathrm{~Hz}$ and 2295 Hz) but as the shift is still 170 Hz this does not pose any problems with tuning or decoding.
Transmission speed is specified in baud, where baud is defined as the number of signal changes per second. Amateur RTTY transmissions in Europe are normally 45 or 50 baud but other speeds including 75 and 110 baud are used on other commercial bands. Although $45 / 50$ baud transmission may seem very slow in comparison to computer modems, it is fast enough for a typed conversation. A $45 / 50$ baud RTTY transmission equates to approximately 66 words per minute.
RTTY text characters are encoded using ITA2 (International Telegraph Alphabet Number 2) code, which uses five bits for each character. With only five bits per character, the maximum number of unique patterns is only 32 . To enable RTTY to transmit the full alphabet two different character tables are used, one for letters (all letters are in upper case) and one for figures (which includes punctuation). A letters or figures control character determines which table to use when printing the received character. Control and space characters are represented in both tables to reduce then number of times the letters or figure control character needs to be transmitted. RTTY signals do not have any error detection capabilities.
RTTY is relatively simple to decode in software, but the different combinations of transmission speed and shift means that it is impossible to decode every combination. The PIC program as given is designed to decode both 45 and 50 baud RTTY using 170 Hz shift as

Space (0)
Fig. 1. RTTY Character ' Y ' or ' 6 '.
this is the most common amateur radio signal, but both speed and shift parameters can be changed within the program.
RTTY is an asynchronous mode, which means that there is no common time frame between the station transmitting text and station receiving. In front of every 5 bit character is a single start bit (at space frequency) that makes the receiving printer ready for the incoming transmission. The five character data bits are transmitted, followed by a 'stop bit' which may be of a longer duration (one or one and a half units) and is transmitted at mark frequency. A useful feature to overcome the problem of noise or corrupt characters incorrectly signifying use of the figure table is to automatically revert to the letters table on receiving a space character.
Using start/stop bits means that after the receiving printer had printed out a character it was then waiting for the start bit of the next character. Thus synchronisation is not needed between sender and receiver.
RTTY uses the ITA2 (International Telegraph Alphabet 2) character set, sometimes called Baudot code (named after Emile Baudot), and is listed in Fig. 2. Where there is no designated character assigned (figure shift F, G, H) I have used characters from the teleprinter set.

Fig. 2. RTTY text characters.

letter	figure	RTTY	value
A	-	00011	3
B	$?$	11001	2
C	\vdots	11101	14
D	$\$$	01001	9
E	3	00001	1
F	$!$	01101	13
G	$\&$	11010	26
H	$\#$	10100	20
I	8	00110	6
J	?	01011	11
K	(01111	15
L)	10010	18
M		11100	28
N	9	01100	12
O	9	11000	24
P	0	10110	22
Q	1	10111	23
R	4	01010	10
S	$"$	00101	5
T	5	10000	16
U	7	00111	7
V	$=$	11110	30
W	2	10011	19
X	1	11101	29
Y	6	10101	21
Z	+	10001	17

Fig. 3. RTTY control characters.

RTTY	function	value
11111	letters shift	31
11011	figures shift	27
01000	carriage return	8
00100	space	4
00010	line feed	2
00000	blank	0

RTTY software description

The advantage of using a Microchip PIC 16F84 18-pin microcontroller is that it is electrically erasable and therefore reprogrammable using a low cost PIC programmer. This allows experimentation with different RTTY decode algorithms or variable values.
RTTY assembler code is ready for the Microchip MPLAB assembler, part of the MPLAB development software. This software is freely available from the Microchip web site
(www.microchip.com). Type in the assembler code in the same sequence as it is presented and you should end up with a working RTTY decoder program to burn into a 16F84 microcontroller. The assembler code is in upper case and to help understand the assembler code appropriate extracts from the source program are included. Feel free to alter and improve the assembler code.

Define variables routine

The first part of the decoder program defines the PIC registers, the names of the variables used and where the variable value is to be stored in memory. The STATUS register contains various flags including C (carry), Z (zero), RP0 (register banks select). The C flag is set (logic 1) if the result of an arithmetic operation produces a carry-out condition (i.e. most significant bit set). The Z flag is set if the operation result is zero.
Likewise the FLAGS byte contains Boolean flags for LTRS,
BUSYFLAG, CONVFLAG, TOPLINE. BINCHAR is the binary representation of the received RTTY character. The config command instructs the assembler on the internal PIC fuse settings (power-up timer enabled, watchdog disabled, crystal oscillator selected).

Start routine

When power is applied to the PIC microcontroller it immediately starts program execution at address zero, this location has a jump instruction to the START routine. ORG assembler command instructs the assembler to generate code from the address given.

ORG 0

goto START

Interrupt routine

The rising edge of the received audio waveform on PIC port pin RB0 causes an interrupt. When an interrupt occurs the PIC automatically runs interrupt service code located at address 4 . This block of code saves the current PIC status and then calls routine INTERRUPT. After returning from executing the INTERRUPT code the registers are restored to their previous values and the RETFIE (return from interrupt) instruction allows the PIC to resume execution as if the interrupt had not occurred.

ORG 4	; interrupt
MOVWF	IRQW
SWAPF	STATUS,W
BCF	STATUS,RPO
MOVWF	IRQS
MOVF	STACKO,W
MOVWF	IRQSTK
CALL	INTERRUPT ;
MOVF	IRQSTK,W
MOVWF	STACKO
SWAPF	IRQS,W
MOVWF	STATUS

SWAPF	IRQW, F
SWAPF	IRQW, W
RETFIE	

Conversion tables

The character data to convert received RTTY characters into the equivalent ASCII characters for display is stored in look up tables. How this table is derived is quite simple, for example the RTTY ' E ' character has a value of 1 (binary 00001), therefore ' E ' is located in the 1st position of the table called letters. RTTY character ' A ' has a value is 3 (binary 00011) so is located in the 3rd position in the table, and so on for the rest of the RTTY character set. An asterisk character is used where there is a non-print control character defined for that

Fig. 4. Defining the PIC variables used in the RTTY decode program.

	$\begin{aligned} & \text { list } p=16 F \\ & \text { _config } H \end{aligned}$	$3 F F 9^{\prime}$
; PIC register definitions		
RTCC	EQU D'1'	timer
status	EQU D'3'	; status flags
c	EQU D'0'	; carry
z	EQU D'2'	; zero
RP0	EQU D'5'	; page select
PORTA	EQU D'5'	; lcd port
RAO	EQU D'0'	; lcd_RS line
RA1	EQU D'1'	; lcd_E line
RA2	EQU D'2'	; lcd_RW line
PORTB	EQU D'6'	; lcd data port
RB0	EQU D'0'	; audio input
RB4	EQU D'4'	; 1cd DB4
RB5	EQU D'5'	; 1cd DB5
RB6	EQU D'6.	; 1cd DB6
RB7	EQU D'7'	; lcd DB6
INTCON	EQU D'11'	; register
IRQ_RB0	EQU D'1'	; interrupt flag
IRQ_TIMER	EQU D'2'	; interrupt timer
OPT	EQU D'1'	; option register
; program definitions		
STACK0	EQU D'12'	- temp use
STACK1	EQU D'13'	; temp use
STACK2	EQU D'14'	; temp use
STACK3	EQU D'15'	; temp use
STACK4	EQU D'16'	; temp use
IRQW	EQU D'17'	; interrupt
IRQS	EQU D'18'	; interrupt
IRQSTK	EQU D'19'	; interrupt
RTCCVAL	EQU D'20'	; timer valuẻ
VALRTCC	EQU D'21'	; timer value
CHAR	EQU D'22'	; output character
Savechar	EQU D'23'	; temp save CHAR
TEMP	EQU D'24	; store temp value
LCDPOS	EQU D'25'	; led cursor position
MARKCOUNT	EQU D'31'	; mark frequency count
SPACECOUNT	EQU D'32'	; space frequency count
BITCOUNT	EQU D'33*	; which bit of binchar
BINCHAR	EQU D'26'	; binary RTTY char
Charl	EQU D'0,	; bit 1 RTTY character
Char2	EQU D'1'	; bit 2 RTTY character
char3	EQU D'2'	; bit 3 RTTY character
CHAR4	EQU D'3'	; bit 4 RTTY character
CHAR5	EQU D'4.	; bit 5 RTTY character
FLAGS	EQU D'27'	; Boolean byte
LTRS	EQU D'0.	; letter/figure shift
BUSYFLAG	EQU D'1'	; led busy flag
CONVFLAG	EQU D'2'	; data convert flag
TOPLINE	EQU D'3'	; top or bottom line

particular position. For example, RTTY character 2 (binary 00010) is a line feed control character. There is a similar table for numbers and punctuation.
These look up tables (including the RTTY LCD message) are stored sequentially in memory in ascending order located after the interrupt handler routine.

Audio conversion

To calculate the specific mark and space audio frequencies that the RTTY program has to respond to the following formula is used, assuming a 4 MHz clock crystal. The actual timer frequency used is the 4 MHz clock divided internally in the microcontroller by four.

These numbers cannot be represented by the RTCC (Real Time Clock Counter) timer which is 8 bit (0 to 255 range), thus the clock used by the RTCC has to be divided by 4 using the internal prescaler.
space $=\frac{1,000,000}{1275}=\frac{784}{4}=196$
$\operatorname{mark}=\frac{1,000,000}{1445}=\frac{692}{4}=173$
Fig. 6. valRTCC centre values

space	mark	shift
$1275 \mathrm{~Hz}=196$	$1445 \mathrm{~Hz}=173$	170 Hz
$1275 \mathrm{~Hz}=196$	$1700 \mathrm{~Hz}=147$	425 Hz
$1275 \mathrm{~Hz}=196$	$2125 \mathrm{~Hz}=118$	825 Hz

Start routine

The START routine is always called whenever the PIC is reset.
START routine calls INITVAR, INITPORT, INITLCD, and
DISPLAY. After this the prescaler ratio is set (using bits PSx defined
in the OPTION register). The PSA bit is set to 0 , which assigns the prescaler to the timer rather than the watchdog timer. RB0 interrupt is selected and enabled in the INTCON register.

Loop routine

After initialising various options within the PIC microcontroller the program sits in the loop checking the CONVFLAG Boolean flag. This flag is set (true) in the INTERRUPT routine to indicate whenever new data is available and this flag is tested using the BTFSS instruction (Bit Test File, Skip if Set). If CONVFLAG is false then the next instruction GOTO LOOP is executed. If the result of the BTFSS is true the GOTO LOOP instruction is ignored and the CALL CONVERT is executed. File is Microchip terminology for what everyone else calls a register.

LOOP BTESS	FLAGS, CONVFLAG
GOTO	LOOP
; if convflag	$=$ true then
CALL	cONVERT
GOTO	LOOP

Initialise routine

INITVAR (initialise variables) routine sets various variables to zero using CLRF (Clear Register File) single instruction.
INITPORT (initialise port) routine configures the various port pins
that are attached to the LCD display as outputs using the BCF (Bit Clear File). Port pin RBO is set as an input using BSF (Bit Set File) instruction; this is the PIC pin that the RTTY audio is connected to.

```
INITVAR CLRF MARKCOUNT ; = 0
    CLRF SPACECOUNT ; = 0
    CLRF LCDPOS ; = 0
    CLRF BITCOUNT ; = 0
    CLRF BINCHAR ; = 00000
    CLRF FLAGS ; bits = false
; topline = true
    BSF FLAGS,TOPLINE
; Itrs = true
    BSF FLAGS,LTRS
    RETURN
```

INITPORT

BCF	PORTA, RA0	; output
BCF	PORTA,RA1	; output
BCF	PORTA,RA2	; output
BCF	PORTB,RB4	; output
$B C F$	PORTB,RB5	; output
$B C F$	PORTB,RB6	; output
$B C F$	PORTB,RB7	; output
$B S F$	PORTB,RB0	i input
$B C F$	STATUS,RP0	; page 0

Read timer interrupt routine

In the following interrupt routine, the 8-bit RTCC counter value is assigned to RTCCVAL variable. The timer overflow flag is set if the counter has reached 255 (maximum byte value) and has started counting again. The status of this flag is checked and if the timer overflow flag is true then the program will ignore the timer value as it is invalid.
The RTCC count is then cleared and starts to automatically count up from zero and the flags indicating an interrupt condition are cleared After this call the PIC re-loads the previously saved information and resumes processing from where it was before the interrupt had occurred.

```
interrupt:
if irq timer = false then
begin
    RTCCval = rtcc ;read 8 bit timer value
    convflag = true ; set data ready flag
end
clr(rtcc) ; zero 8 bit timer
irq_RBO = false; clear interrupt flag
irq_timer = false ; clear interrupt flag
INTERRUPT
    BTFSC INTCON,IRQ_TIMER
    GOTO INVALID ; timer overflow
; RTCCval = rtcc (read 8 bit timer value)
    MOVF RTCC,W
    MOVWE RTCCVAI
; convflag = true set data ready flag
        BSF FLAGS,CONVFLAG
INVALID CLRF RTCC ; zero 8 bit timer
; irq_RBO = false (clear interrupt flag)
        BCF INTCON,IRQ_RBO
        BCF INTCON,IRQ_TIMER
        RETURN
```


Convert RTTY mark audio

Within the routine, CONVERT the MarkCount and SpaceCount variables translates a sequence of mark or space frequency into either a 1 or 0 by counting the number of consecutive pulses received.

With reference to the line if (valRTCC >= 161) and (valRTCC $<=$ 185), the two numbers set the mark frequency (1445 Hz) capture range as 1553 Hz to 1352 Hz . Any number received within this range will be treated as a mark frequency and will increment the MarkCount variable accordingly. Variable bit count is used to keep track of which bit within the BINCHAR variable is to be used. After receiving a predetermined number of mark frequencies (26) a ' 1 ' is added to the BINCHAR variable by making the relevant charX bit within BINCHAR to ' 1 '. BINCHAR (binary character) becomes the binary representation of the received RTTY character.
The start bit of a RTTY character is always a space frequency, so if a mark frequency is detected as the first bit received this will be ignored and the bitcount is set back to zero. This helps prevent random noise generating random text. A RTTY station will send a continuous mark tone if there is no text ready to transmit.

```
Mark - 1445Hz
if (valRTCC >= 16l) and (valRTCC <= 185) then
begin
        inc(MarkCount) ; MarkCount = MarkCount+1
        if MarkCount >= 26 then
        begin
        clr(SpaceCount) ; SpaceCount = 0
        clr(MarkCount) ; MarkCount = 0
        inc(bitcount) ; bitcount = bitcount+1
        select bitcount
            case 1 : clr(bitcount); waiting for space
        case 2 ; charl = 1 ; set bit to l
        case 3 : char2 = 1 ; set bit to l
        case 4 : char3 = 1 ; set bit to l
        case 5 : char4 = 1 ; set bit to l
        case 6 : char5 = 1 ; set bit to l
                Text
            end select
        end if
end if
; clear data ready flag
CONVERT BCF FLAGS,CONVFLAG
; valRTCC = RTCCval
        MOVF RTCCVAL,W
        MOVWF VALRTCC
    Mark - 1445Hz
; if valRTCC >= 161 and <= 185 then
        MOVF VALRTCC,W
        MOVWF STACKO
        MOVLW D'161.
        SUBWF STACKO,W
        CLRW
        BTFSC STATUS,C
        ADDLW D'255.
        MOVWF STACK4
        MOVF VALRTCC,W
        SUBLW D'185'
        CLRW
        BTFSC STATUS,C
        ADDLW D'255*
        ANDWF STACK4,W
        BTFSC STATUS,Z
        GOTO SPACEF
- MarkCount = MarkCount+1
        INCF MARKCOUNT,F
i if MarkCount >= 26 then
    MOVF MARKCOUNT,W
    MOVWF STACKO
    MOVLW D'26
    SUBWE STACK0,W
    BTFSS STATUS,C
    GOTO SPACEF
```

PROJECT

	CLRF	SPACECOUNT	; $=0$
	CLRF	MARKCOUNT	$;=0$
	INCF	BITCOUNT, F	; +1
; bit 1 waiting for space			
BIT1	MOVF	BITCOUNT, W	
	SUBLW	D'1'	
	BTFSS	STATUS,Z	
	GOTO	BIT2	
	CLRF	BITCOUNT	
	GOTO	ALLDONE	
BIT2	MOVF	BITCOUNT, W	
	SUBLW	D'2'	
	BTFSS	STATUS,2	
	GOTO	BIT3	
	BSF	BINCHAR, CHARI	; set bit
BIT3	MOVF	BITCOUNT, W	
	SUBLW	D'3'	
	BTFSS	STATUS, 2	
	GOTO	BIT4	
	BSF	BI NCHAR, CHAR2	; set bit
	GOTO	ALLDONE	
BIT4	MOVF	BITCOUNT, W	
	SUBLW	D'4.	
	BTESS	STATUS,2	
	GOTO	BIT5	
	BSF	BINCHAR, CHAR3	; set bit
	GOTO	ALLDONE	
BIT5	MOVF	BITCOUNT, W	
	SUBLW	D'5'	
	BTESS	STATUS,Z	
	GOTO	BIT6	
	BSF	BINCHAR, CHAR4	; set bit
	GOTO	ALLDONE	
BIT6	MOVF	BITCOUNT, W	
	SUBLW	$\mathrm{D}^{\prime} 6^{\prime}$	
	BTFSS	STATUS, 2	
	GOTO	ALLDONE	
	BSF	BINCHAR, CHAR5	; set bit
	CALL	TEXT	

Convert RTTY space audio

Using valRTCC numbers of 181 to 212 gives a frequency capture range of 1381 Hz to 1179 Hz and any number received within this range will increment the SpaceCount variable. The relevant BINCHAR bit variable is already ' 0 ' so the space routine does not need to change BINCHAR but still needs to increment variable bitcount to point to the next bit.

```
; Space - 1275Hz
if (valRTCC >= 181) and (valRTCC <= 212) then
begin
    inc(SpaceCount) ; SpaceCount = SpaceCount +1
    if SpaceCount >= 24 then
    begin
        clr(MarkCount) ; MarkCount = 0
        clr(SpaceCount) ; SpaceCount = 0
        inc(bitcount) ; bitcount = bitcount+1
        if bitcount = 6 then
        begin
            Text
            end
        end
end
; Space - 1275Hz
; if valRTCC >= 181 and <= 212 then
SPACEF MOVF VALRTCC,W
    MOVWF STACKO
    MOVLW D'181'
    SUBWF STACKO,W
    CLRW
```

```
        CommandLCD
        topline = true ; lcd top line
        char = 255
    case b'll011' : ltrs = false ; figure shift
        char = 255
    case b'lllll' : ltrs = true ; letters shift
        char = 255
end select
if char <> 255 then ; 255 = non-print character
begin
    if ltrs = true then
    begin
        read(letters,binchar,char)
        TextLCD
    end
    else
    begin
        read(numbers,binchar,char)
        TextLCD
    end
end
clr(binchar) ; = b'00000'
TEXT ClRE BITCOUNT ; = 0
    MOVLW D'63.
    MOVWF CHAR ; char = '?'
    MOVF BINCHAR,W
    SUBLW D:4' ; space ?
    bTFSS STATUS,z
    GOTO CR
    BSF FLAGS,LTRS
    GOTO TEXTl
; carriage return ? (4)
CR MOVF BINCHAR,W
    SUBLW D'8'
    bTFSS STATUS,z
    GOTO LF
    CLRF LCDPOS
; char = b'10000000'
; cursor to top line
    MOVLW D'128.
    MOVWF CHAR
    CALL COMMANDLCD
; topline = true
    BSF FLAGS,TOPLINE
    MOVLW D'255'
    MOVWF CHAR
    GOTO TEXTl
; line feed ? (2)
LF MOVF BINCHAR,W
    SUBLW D'2'
    BTFSS STATUS,z
    GOTO FS
    CLRF LCDPOS
; char = b'10000000'
; cursor to top line
    MOVLW D'128'
    MOVWF CHAR
    CALL COMMANDLCD
; topline = true lcd top line
    BSF FLAGS,TOPLINE
    MOVLW D'255'
    MOVWF CHAR
    GOTO TEXTI
; figure shift ? (27)
FS MOVF BINCHAR,W
    SUBLW D'27'
bTFSS STATUS,z
    GOTO LS
```

Fig. 8. Summary of LCD commands.

instruction	$\begin{aligned} & R \\ & S \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { B } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { B } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { B } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { B } \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { B } \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \\ & 0 \\ & \hline \end{aligned}$	instruction description
clear display	0	0	0	0	0	0	0	0	0	1	clears display and cursor to home position
cursor home	0	0	0	0	0	0	0	0	1	X	returns cursor to home position
entry mode set	0	0	0	0	0	0	0	1	1	S	I - sets cursor move direction ($0=$ decrement, $1=$ increment) S - shift display
display control	0	0	0	0	0	0	1	D	C	B	D - on/off of display C - cursor on/off B - blink cursor character
cursor/display shift	0	0	0	0	0	1	S	D	X	X	S - sets cursor move or display shift D - shift direction ($1=$ right or $0=$ left)
function set	0	0	0	0	1	D	N	F	X	X	D - interface data length (4 or 8 bit) N - number of display line (I or 2 lines) F - character font ($0=5 \times 10$ or $1=5 \times 7$)
read busy flag	0	1	B	x	x	x	x	x	x	x	B - busy flag $1=\text { busy } 0=\text { not busy }$
move cursor	0	0	1	a	a	a	a	a	a	a	move cursor to address aaaaaaa $a=0$ line 1 , position 1 $a=64$ line 2, position 1
write character	1	0	d	d	d	d	d	d	d	d	write character dddddddd to display at current cursor position

To change the frequency range the valRTCC values need to be altered within the assembler program. Selecting too narrow a frequency range may make tuning difficult and not all amateur transmissions have exactly the right shift. Frequency drift within the receiver itself may need to be taken into consideration. Making the frequency range wider makes tuning easier and increases the chance of receiving less than perfect RTTY, however noise and co-channel interference could introduce errors.

RYRYRY

As the letter R is alternating between space and mark (01010) and the letter Y alternates between mark and space (10101) these two characters are sometimes used alternately (RYRY) when calling CQ. This distinctive pattern helps receiving stations to tune to the transmissions. Numbers 4 and 6 will appear if the figure table is being used.

LCD display

A low cost 16 character, two-line LCD is used to display the received RTTY text. The vast majority of these are based around the Hitachi HD44780 (or compatible) display controller. The display is initialised by calling routine InitLCD, the device is set for 4 bit data transfer, 2 display lines, 5×7 font, cursor on and character blink off.
Using a LCD connected to a PIC is a low cost and convenient method of displaying text, both the display and PIC circuit will run off a +5 volt regulated supply.
Although the interface to the LCD is 4 bits it may seem odd for the first three instructions sent (routine InitLCD) to set the data bus interface to 8 bits. The reason for this is that with a four bit interface there is no mechanism to tell the LCD which four bits is being sent (i.e. upper or lower nibble). If the LCD misses a nibble it will be out of sync for all the following data. During initialisation this will cause the LCD to be set in the wrong mode. Sending the 8 bit mode command (the four unconnected bits DB0 to DB3 will be correctly read) makes sure that everything is working correctly before the transfer mode is switched to four bits.

Fig. 9. LCD address of each display character position.

$$
\begin{array}{lllllllllllllllll}
\text { position } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\text { line 1 } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\text { line 2 } & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79
\end{array}
$$

Fig. 10. Initialise LCD.
INITLCD

; char $=$ b'00110000' 8 bit mode		
	MOVLW	$\mathrm{D}^{\prime} 48^{\prime}$
	MOVWF	CHAR
	CALL	INILCD
; char $=\mathrm{b}^{\prime} 00110000$ ' 8 bit mode		
	MOVLW	$\mathrm{D}^{\prime} 48{ }^{\prime}$
	MOVwF	CHAR
	CALl	INILCD
; char $=$ b'00110000' 8 bit mode		
	MOVLW	$\mathrm{D}^{\prime} 48{ }^{\text {, }}$
	MOVwF	CEAR
	CALL	INILCD
; char = b'00101000'		
; 4 bit, 2 lines, 5×7 font		
MOVLW D.40,		
MOVWF		CHAR
CALL		COMMANDLCD
; char = b.00011000'		
; cursor move, right shift		
MOVLW D'24,		
MOVWF		CHAR
CALL		COMMANDLCD
; char = b'00001110'		
; display+cursor on,blink off		
MOVLW D'14'		
MOVWF CHAR		
CALL COMMANDLCD		
; char $=$ b'00000100' entry mode		
	MOvLW	D'4'
	MOVWF	CHAR
	CALL	COMMANDLCD
; char = b'00000001' clear display		
	MOVLW	D'1'
	MOVWF	CHAR
	CALL	COMMANDLCD
	RETURN	

COMMANDLCD

CALL WAIT ; is led busy ?	
BCF	PORTA, RA2
BCF	PORTA,RAO

	CALL	SEND
; swap	over lower 4 bits	
	SWAPF	CHAR, F
	CALL	SEND
	RETURN	
INILCD	CALL	WAIT
	BCF	PORTA, RA2
	BCF	PORTA, RAO
	CALL	SEND
	RETURN	

Displaying RTTY text

The text and data is transferred to the display four bits at a time (routine send). The variable LCDPOS (LCD cursor position) is to make sure that we have not passed the end of the display line. If you are using a LCD that can display more than 16 characters then change this number. If the cursor is at the end of the line then the output character is stored and the Boolean flag is checked to see if the display is using the top or bottom display line. The appropriate command is then sent to the LCD to use the other display line and the cursor set to the first position before restoring the character and sending that to the LCD.
The higher four bits are sent first then the four lower bits. The swap command is used to exchange the lower and upper 4 bits of the byte, hence the output routine (SEND) is called twice.

Fig. 11. $L C D$ text output routines.

TextLCD:
if lcdpos > 15 then ; end of lcd line ?
begin
clr(lcdpos) ; position 0
savechar = char; temp save char
if topline $=$ false then
begin
char $=b^{\prime} 10000000^{\prime}$; cursor to top line
CommandLCD
topline $=$ true
end
else
begin
char $=b^{\prime} 10000000^{\prime}+64$;cursor to bottom line CommandLCD
topline $=$ false
end
char $=$ savechar ; restore original value
end
call wait ; is lcd busy ?
RA2 $=0$; 0 - writing to lod
RAO $=1 \quad$; 1 - data register
call send ; output upper 4 bits
swap(char) ; swap lower/upper 4 bits
call send ; output upper 4 bits
inc(lcdpos) ; next led position

TEXTLCD	MOVF	LCDPOS,W	
	SUBLW	$D^{\prime} 15$,	
	BTFSC	STATUS,C	
	GOTO	LINE	

; if lcdpos >15 then
CLRF LCDPOS ; position 0
; savechar = char
MOVF CHAR,W
MOVWF SAVECHAR
; if topline $=$ false then
BTFSC FLAGS,TOPLINE
GOTO BOTTM

```
; char = b'10000000' cursor to top line
    MOVLW D'128.
    MOVWF CHAR
    CALL COMMANDLCD
    BSF FLAGS,TOPLINE
    GOTO REST
; char = b' }10000000'+6
; cursor to bottom line
BOTTM MOVLW D'192'
    MOVWF CHAR
    CALL COMMANDLCD
    BCF FLAGS,TOPLINE
; char = savechar
; restore original value
REST MOVF SAVECHAR,W
    MOVWF CHAR
; is lcd busy ?
LINE CALL WAIT
    BCF PORTA,RA2
    BSF PORTA,RAO
; send output upper 4 bits
    CALL SEND
; swap lower/upper 4 bits
    SWAPF CHAR,F
    CALL SEND
; next lcd position
    INCF LCDPOS,F
    RETURN
```


SEND

; RB4 = char AND b' 00010000 '
MOVF CHAR,W
ANDLW D'16.
BTESS STATUS,Z
BSF PORTB,RB4
BTFSC STATUS, Z
BCF PORTB,RB4
; RB5 $=$ char AND b'00100000.
MOVF CEAR,W
ANDLW D'32'
BTFSS STATUS, Z
BSF PORTB,RB5
BTFSC STATUS, Z
BCF PORTB,RB5
; $\mathrm{RB} 6=$ char AND b. 01000000^{\prime}
MOVF CHAR,W
ANDLW D'64,
BTFSS STATUS, Z
BSF PORTB,RB6
BTFSC STATUS,Z
BCF PORTB,RB6
; RB7 $=$ char AND b' 10000000°
MOVF CHAR,W
ANDLW D'128.
BTFSS STATUS, Z
BSF PORTB,RB7
BTFSC STATUS, Z
BCF PORTB,RB7
; RA1 = 1 (enable high to low)
BSF PORTA,RA1
: RA1 $=0$ (data valid)
BCF PORTA,RA1
RETURN

Port A (bits 0 to 2) is used to provide the LCD control lines and port B (bits 4 to 7) is used as the four bit data bus. The Enable control line (RA1) is used to inform the display that data is available by taking the line high then low.

Fig. 12. Summary of $L C D$ control lines.

PIC	name	function	
RA2	lcd_rw	read/write	0 - write, 1 - read
RA1	lcd_e enable	$1 / 0$ data available	
RA0	lcd_rs register select	0 instruction register	
			1 display register

These LCD displays are slow in comparison to the operation of a PIC micro-controller and require time to complete commands. These range from 40 ms to 60 ms when sending data and up to 2 ms for clearing the display. Worst case delays have to be assumed to ensure that the command has been completed, which may make the program wait unnecessarily before communicating with the display.
By polling the display's busy flag to see if it can accept data means that the PIC program can send data to the display without using software time delays. To enable the PIC to send text to the display as fast as possible the LCD's internal busy flag is read in routine wait. This requires the port to switch from output to input. Busy flag is contained in the status byte as the most significant bit (the rest of the status information is ignored).

Fig. 13. $L C D$ wait routine.

```
wait:
RA2 = 1 ; 1 - reading from lcd
RA0 = 0 ; 0 - instruction register
input(RB4) ; make port pin input
input(RB5) ; make port pin input
input(RB6) ; make port pin input
input(RB7) ; make port pin input
busyflag = true ; is lcd busy ?
while busyflag = true ; 1 = busy 0 = ready
    RA1 = 1 ; read data high to low
    busyflag = RB7 ; read msb bit
    RAl = 0 ; receive upper 4 bits first
    RA1 = 1 ; not interested in lower 4
    RA1 = 0 ; ignore rest of status byte
loop ; if busy keep in the loop
output(RB4) ; make port pin output
output(RB5) ; make port pin output
output(RB6) ; make port pin output
output(RB7) ; make port pin output
WAIT BSF PORTA,RA2 ; reading lcd
    BCF PORTA,RA0 ; instruction register
    BSF STATUS,RPO
    BSF PORTB,RB4 ; pin input
    BSF PORTB,RB5 ; pin input
    BSF PORTB,RB6 ; pin input
    BSF PORTB,RB7 ; pin input
    BCF STATUS,RPO
    BSF FLAGS,BUSYFLAG
; while busyflag = true ( }1=\mathrm{ busy 0 = ready)
BUSY BTFSS FLAGS,BUSYFLAG
    GOTO READY
; if busy keep in loop
    BSF PORTA,RA1
; busyflag = RB7
        BTFSC PORTB,RB7
        BSF FLAGS,BUSYFLAG
        BTFSS PORTB,RB7
        BCF FLAGS,BUSYFLAG
        BCF PORTA,RA1
        BSF PORTA,RA1
        BCF PORTA,RA1
        GOTO BUSY
READY BSF STATUS,RP0
    BCF PORTB,RB4 ; pin output
    BCF PORTB,RB5 ; pin output
    BCF PORTB,RB6 ; pin output
    BCF PORTB,RB7 ; pin output
    BCF STATUS,RPO
    RETURN
```


Fig. 14. LCD wiring diagram.
Fig. 15. PIC connection list.

RA0	17	-	output to lcd RS line
RA1	18	-	output to lcd E line
RA2	1	-	output to lcd R/W line
RB4	10	- data bus to lcd DB4	
RB5	11	-	data bus to lcd DB5
RB6	12	-	data bus to lcd DB6
RB7	13	-	data bus to lcd DB7
Vdd	14	-	power supply +5v
VSS	5	-	power supply 0v
mclr	4	-	power supply +5v
RB0	6	-	audio input
osc2	15	-	4 MHz crystal
oscl	16	-	4 MHz crystal

Fig, 16. LCD pin description.

Vss	1	-	ground
VDD	2	-	$+5 v$
VO	3	-	contrast voltage
RS	4	-	register select line
R/W	5	-	read/write line
E	6	-	enable line
DB4	11	-	data bus 4
DB5	12	-	data bus 5
DB6	13	-	data bus 6
DB7	14	-	data bus 7
Vled	15	-	back lighting (optional)
Vled	16	-	back lighting (optional)

Fig. 17. Component list.

R1	-	120 kW
R2	-	1 kW
R3	-	47 kW
VR1	-	47 kW linear (audio)
VR2	-	47 kW linear (lcd contrast)
C1, 4	-	100 nF ceramic
C2, 3	-	10uF electrolytic
C5, 6	-	33 pF ceramic
TR1	-	BC549 or similar
IC1	-	PIC 16F84
IC2	-	$74 \mathrm{LS14}$ (hex buffer)
X 1	-	4 MHz crystal
LCD	-	16 by 2 line display

Circuit description

The circuit can be built using strip board with the majority of connections between the display and the PIC. LCD displays either have a single line of 14 pin holes or a double row of seven pins holes. If the display has a back lighting option then there will be 16 holes.
The LCD display may need a potentiometer ($20-50 \mathrm{~kW}$) to set the contrast voltage. This potentiometer should be connected between the positive supply rail and ground, connect the wiper to the LCD contrast pin (usually pin 3). If after reset no message is visible then this setting may need to be altered. Once this potentiometer is set for the best viewing angle it should not need to be altered again. For simplicity this contrast line can be connected direct to 0 v line but the viewing angle may not be optimal.
The circuit should be connected to a +5 volt regulated supply. Display and PIC circuit will consume around $8-10 \mathrm{~mA}$ but this rises
considerably if display back lighting is used. The amount of current depends on the type of back lighting, the display that I have (manufactured by Anders) has two side type LEDS and consumes over 50 mA when using the back lighting option.

Display routine

When power is first applied to the circuit, the PIC program should display 'RTTY DECODER' message, demonstrating that the program and display has been initialised correctly. The READ routine gets the appropriate character from the look up table.


```
Ov
display:
temp = 0
while temp<= 11 ; 11 characters in text
    read[ready, temp,char]
    TextLCD ; char = ready[temp]
    inc(temp) ; next character
loop
```

DISPLAY CLRF TEMP ; =
; 11 characters in text
DISP1 MOVF TEMP,W
SUBLW D'11'
BTFSS STATUS,C
GOTO DONE
; char $=\operatorname{read}($ ready,temp $)$
MOVLW D'18'
MOVWF STACKO
MOVLW D'O.
MOVWF STACK1
MOVF TEMP,W
MOVWF STACK2
CLRF STACK3
CALL READ
MOVWF CHAR
CALL TEXTLCD
; next character
INCF TEMP,F
GOTO DISP1
DONE RETURN
; Read from table
READ MOVF STACK0,W
ADDWF STACK2,f
BTFSC 3,2
INCF STACK1,f
MOVF STACK1,W
ADDWF STACK3,W
MOVWF $D^{\prime} 10^{\prime}$; PCLATH
MOVF STACK2,W
MOVWF $D^{\prime 2} 2^{\prime}$; PCL
END

Interface circuit

The transistor interface circuit is designed to be connected to the loudspeaker or headphones output of the receiver. Connection to the receiver is by screened audio cable, soldered either side of VR1 potentiometer. Set the potentiometer and volume control as appropriate when the radio is receiving RTTY for correct reception and comfortable listening level.
The transistor circuit changes the shape of the audio sine wave into a square wave. Using the 74LS14 buffer guarantees a constant amplitude TTL signal so that the audio edge properly triggers the PIC interrupt. The 74LS14 buffer has a Schmitt trigger type input which ensures a clean output signal and makes the interface less sensitive to noise. I used a BC549 npn transistor (plastic version of BC109) in the prototype but any general purpose npn transistor will do. Ideally, the interface circuit should be housed in a metal box to prevent any radio signals generated by the PIC from being picked up by the receiver.
Take care with the input level to prevent excessive signal input. Although some clipping of the audio signal does not affect the operation of the PIC as it is triggered on the waveform edge.
To check the operation of the circuit in the absence of a RTTY signal, find a clear steady tone and tune very slowly until a row of \% characters appear on the display (BINCHAR value of 0 being received). Under normal operations this display would signify that the tuning is close but incorrect. The frequency is being processed as a space frequency but a steady tone being transmitted by a RTTY station should be a mark frequency. The stronger and clearer the radio signal is the more RTTY will be correctly decoded.
Despite more 'modern' forms of data communications, there are still many RTTY signals to be heard on the amateur bands. A few radio amateurs continue to use mechanical printers but the majority use a computer and software. Indeed it is because RTTY signals can be produced and decoded entirely by computer software, and ease of operation, which has contributed to its continued use

The TMicroscopo': a dildactical version of the scanning Force Microscope

Abstract

A homemade device that mimics, at macroscopic level, the behaviour of an SFM (Scanning Force Microscope) that may be used for didactic purposes aimed at clarifying genesis and meaning of electronic micrographs. Giacomo Torzo, Barbara Pecori, Pietro Scatturin and Giorgio Delfitto ${ }^{1}$ elucidate

Fig. 1. SFM image of InAs nanoislands on GaAs substrate (3x3mm)

0ur world is full of images. Some of them, like the image of a coin, are part of a general background knowledge and, appearing 'natural', do not raise any curiosity about the mechanisms generating the image. But if we try to find out the value of a coin inside our pocket by hand inspection only, the process involved in our fingers collecting data and our brain transforming data into a 'coin image' is different from the usual way of transforming the eye's signals into images. It is more similar to the process used in modern scanning force microscopy (SFM).
These considerations brought us to design a device that
could be used, even by students with a poor physics background, to help understanding the basic processes through which images are normally built from electric signals acquired by sensors. The basic idea is to use a device working at macroscopic level with techniques similar to those used investigating the microscopic world.

How are topographic images produced? Electronic images may be of a different type. The simplest is the 'bit-mapped' one, i.e. matrix of dots of different colours that may be printed or displayed on a computer screen. Each pixel is a numeric value in the matrix stored in the computer memory.
Topographic images are special images, that give a quantitative representation of the surface of an object, where the colour of each pixel 'measures' the distance z from a geometric plane parallel to the average surface of the object $\left(z=z_{0}\right)$.
If we pick up only a row of the matrix, we obtain a vertical cross-section of the topographic image.
By plotting this set of numbers versus their position along x, with segments joining the nearby dots, we get an x -line profile. Putting in the same plot all the x -line profiles corresponding to the various y positions (each one shifted upward of the same quantity $\Delta \mathrm{z}$) we obtain a 3D representation of the surface that is named 'wire-frame'. The azimutal 'angle of view' of this 3D image is determined by the shift value $\Delta \mathrm{z}$, while a polar rotation of the angle of view may be obtained by applying a shift Δx to each x -line profile.
In Fig. 1. we report an image obtained with commercial SFM operating at constant force ${ }^{2}$ (square matrix of 256×256 pixel where lighter dots indicate larger z values): the single atomic layers in a Gallium Arsenide single crystal substrate are evident, as well as some Indium

Arsenide nanostructures (white dots) grown onto the substrate by Metal Organic Vapor Phase Epitaxy.

Working principle of the 'macroscope'

Our device is based on the technology of 'stylus profilometers'. The commercial profilometers work in one dimension, generating a line-profile of the investigated sample, while our device must scan a surface by moving the probe along a series of parallel lines (the raster scanning normally used by SFM when storing bitmapped images in a matrix). A simple software for real time data acquisition may be used to build a profilometer by using as a vertical displacement probe (z-axis) a tip soldered at the end of a cantilever whose deflection is measured by strain gauges and as a horizontal displacement sensor (x -axis) a micropositioner whose driving screw rotation angle is measured by a potentiometer
Our device is able to record two series of values (vectors) corresponding to the signal $\mathrm{V}^{\mathrm{z}}=\mathrm{V}(\mathrm{z})$ of the vertical displacement of the tip following the sample topography and to the signal $\mathrm{V}^{\mathrm{x}}=\mathrm{V}(\mathrm{x})$ of the potentiometer measuring the displacement along the x axis. On the computer screen it is therefore possible to trace the plot $\mathrm{V}_{\mathrm{z}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{x}}\right)$ reproducing the sample profile along a line parallel to x.
A series of scans (each one made for a different position along y-axis) contains information on the whole sample surface, but if we placed them all together in the plot $\mathrm{V}_{\mathrm{z}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{x}}, \mathrm{y}\right)$ the result would be unreadable, due to the overlap. We therefore used a simple 'trick' in order to make visible the sample topography and to produce a 'pseudo-3D' image. The trick consists of mounting the sample onto a tilted plane so that every displacement along the y-axis produces a vertical shift $\Delta \mathrm{V}^{2}=\mathrm{V}(\Delta y \tan \alpha)$
The tip-cantilever system (z -axis displacement sensor) is mounted on a metal holder that may be moved along the y axis by rotating a driving screw, while the sample-holder performs the x -axis scan. The x -axis movement is obtained using a cheap trolley (a Domino 50, produced by Schluderbacker) whose knob is ganged to the axis of a potentiometer by means of a pulley.
The maximum scan width is limited by the range of x and y screws (in our case about 20 mm in both directions). A sketch of the device is shown in Fig. 2.

The Z-detector

The strain gauge is made of a thin film resistance incorporated into a plastic strip to be glued to the object whose strain has to be measured. Applying to the film a tensile (compressive) strain increases (decreases) its resistance. The change in resistance $\Delta \mathrm{R}$ is proportional to the relative length change $\varepsilon=\Delta \mathrm{L} / \mathrm{L}$, with a gauge factor $\mathrm{G}=(\Delta \mathrm{R} / \mathrm{R}) / \varepsilon \equiv 2$. By gluing two identical strain gauges to an elastic cantilever and by connecting them in a Wheatstone bridge with two fixed resistors R, we obtain a force sensor (see Fig. 4. and Text Box 2).

Fig. 4. The Wheatstone bridge configuration of the strain gauges resistances R^{1} and R^{2}, and sketch of the cantilever geometry. The actual probe is a needle soldered at one end of the cantilever.
When the tip is pushed upward, with a vertical shift Δz, the cantilever deflection produces the relative change $+\varepsilon$ in lower strain gauge and $-\varepsilon$ in the upper one. The value of the shift may be written (see Text Box 2) $\Delta z=\varepsilon\left(2 L^{2} / 3 a\right)$, where a is the cantilever thickness and L its length, so that the relative resistance change is $\Delta R / R=G \varepsilon \cong \Delta z\left(3 a / L^{2}\right)$. For example for $\mathrm{L} \cong 30 \mathrm{~mm}, \mathrm{a} \simeq 0.3 \mathrm{~mm}$, we get $(\Delta R / R) / \Delta z \cong 10$. ${ }^{3} \mathrm{~mm}^{-1}$, a sensitivity comparable with the thermal drift of metallic resistances $\beta=(\Delta R / R) / \Delta T \cong 10^{-4} \mathrm{C}^{-1}$.
This explains why we use two strain gauges instead of

one: besides the gain of a factor of two in sensitivity, with matched gauges we make the system unaffected by thermal drifts. The voltage V^{A} at the strain gauge's midpoint depends on the bridge bias voltage V^{g} and on the values of the two resistances $(R-\Delta R)$ and $(R+\Delta R)$: $V^{A}=V^{z} / 2+V^{8} \Delta R / 2 R$. The fixed resistor's midpoint voltage is $\mathrm{V}^{\mathrm{B}}=\mathrm{V}^{\mathrm{z}} / 2$, so that the bridge output signal is $\Delta V=V^{A}-V^{B}=V^{\geq} \Delta R / 2 R=V^{\varepsilon} \varepsilon$.
For example, with $\mathrm{V} s \cong 1 \mathrm{~V}$ and $\Delta \mathrm{z} \cong 0.1 \mathrm{~mm}$ we get a signal $\Delta V \cong 1 \mathrm{mV}$, requiring a gain of about 1000 in order to match the input voltage range of the used interface (0 5 V). The signal measuring horizontal displacements is provided by a potentiometer, biased at 5 V , driven by a pulley linked to the micrometer axis through a rubber band. Typical resolution of a Helipot (10 turns potentiometer) is of the order of 10^{-4}, introducing an uncertainty smaller than that due to the ADC (10 bits): e.g. with a trolley moving 2 mm per each turn of the driving screw, the 5 mV sensitivity gives a theoretical resolution of 20 mm , better than the limit imposed by the curvature radius of the thinnest usable needles.
The signal conditioning circuit is shown In Fig. 5. It consists of an active bridge, built around IC3, biased by IC1, a REF03 2.5 V voltage reference buffered by IC 2 . The output V_{z} is amplified to obtain a signal suitable to the input range of our Data Acquisition System ($0 \div 5 \mathrm{~V}$). One

Fig. 3. A picture of our device.

Fig. 4. The Wheatstone bridge
configuration.

PROJECT

The BASIC Stamp II code for the stepping motors controller

STEP31.BS2

dx	var		bit	
sx	var		bit	
ay	var		bit	
by	var		bit	
au	var		bit	
i	var		word	
j	var		byte	
	input 0		'Pin 5 of BS2-IC; RIGHT BUTTON	
	input 1		'Pin 6 of BS2-IC, LEFT BUTTON	
	input 2		'Pin 7 of BS2-IC; UP BUTTON	
	input 3		'Pin 8 of BS2-IC; DOWN BUTTON	
	input 4output 8		'Pin 9 of BS2-IC; AUTO SCAN BUTTON	
			'Pin 13 of BS2-IC; $\overline{\mathrm{CK}}$	
	output 9		'Pin 14 of BS2-IC; CW/CCW	
signal	output 10		${ }^{\text {'Pin }} 15$ of BS2-IC; ENABLE signal for horizontal displacement 'Pin 16 of BS2-IC; ENABLE signal for vertical displacement	
	output 11			
	dx $=0$			
	$\mathrm{sx}=0$			
	ay $=0$			
	$\mathrm{by}=0$$\mathrm{au}=0$			
	low 10low 11			
loop:				
	buttonå 0å,0,255,1,dx,0,skip1 gosub dex			
skipl:				
	button 1,0,255,1,sx,0,skip2			
	gosub six			
skip2:				
	button 2,0,255,1,ay, 0 ,skip3			
	gosub aly			
skip3:				
	button 3,0,255,1,by,0,skip4 gosub bay			
skip4:	gosub bay	aly:	high 11	low 10
	button 4,0,255,1,au,0,skip5å		high 9	pause 100
	gosub aut	aly 1:		high 11
skip5:	gosb		button $2,0,255,1, a y, 1$, aly 2	for $\mathrm{i}=1$ to 77
	goto loop		low 11	pulsout 8,100
dex:			return	next
	high 10	aly 2 :		low 11
	high 9		pulsout 8,100	pause 100
dex 1:			goto aly 1	high 10
	button $0,0,255,1, \mathrm{dx}, 1$, dex 2	bay:		high 9
	low 10 return		high 11	for $\mathrm{i}=1$ to 4100
dex2:		bay 1:		pulsout 8,100 next
	pulsout 8,100		button 3,0,255, 1,by, 1,bay2	low 10
	goto dex 1		low 11	pause 100
six:	high 10 low 9	bay 2 :	return	high 11
				low 9
			pulsout 8,100	for $\mathrm{i}=1$ to 217
six 1 :			goto bay 1	pulsout 8,100
	button $1,0,255,1$, sx, 1, six 2	aut:	for $\mathrm{j}=1$ to 20	next low 11
	return		high 10	next
six2:			low 9	return
	pulsout 8,100goto six1		for $\mathrm{i}=1$ to 4100	

arm of the bridge is made of the two strain gauges (120ת) and the other one is made of two fixed resistors ($10 \mathrm{k} \Omega$) and a balancing potentiometer (500Ω), which allows zeroing of the system before starting scanning a sample. The strain gauges midpoint is kept at virtual ground by the operational amplifier IC3. The bridge is therefore biased by two signals: VB and $\mathrm{V}_{\mathrm{O}}=-\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{VB}$, where $\mathrm{R}_{2}=\mathrm{R}+\mathrm{G} \varepsilon$ and $\mathrm{R}_{1}=\mathrm{R}-\mathrm{G} \varepsilon$ are the gauge resistances and $\mathrm{G} \varepsilon=\Lambda R / R$ their relative resistance changes. The output signal $\mathrm{V}_{\mathrm{z}} \cong(1 / 2)\left(\mathrm{V}_{\mathrm{g}}+\mathrm{V}_{\mathrm{O}}\right) \cong 2 \varepsilon \mathrm{~V}_{\mathrm{B}}$, taken at the sliding contact of the potentiometer, is amplified by IC4 and IC5: a differential amplifier is not necessary to amplify the bridge output voltage Vz , given that it is referred to
ground. As IC $2+\mathrm{IC} 5$ we have used four OP1 177 precision low voltage offset and low drift op-amps.

The stepping motors controller

To make the displacements automatic in the x and y axis during the sample scan, we have used for our device a BS2-IC (BASIC Stamp II produced by Parallax, Inc. http://www.parallaxinc.com), a simple and versatile PIC based microcontroller with a BASIC interpreter on board The BASIC Stamp II program is shown in Text Box 1. The BASIC Stamp II has 16 Digital I/Os that can be software configured as input or output. We needed five inputs, to sense the state of five buttons (UP, DOWN,

Fig. 7. Profiles of 50 and 5 Pfennig coins.

LEFT, RIGHT, AUTO SCAN), and 4 outputs, to drive the stepping motors. A sixth button, connected to the RESET pin of the BS2-IC makes possible to stop the scan process.
Figure 7 shows the interface circuit that we have used to drive each stepping motor. It is composed by an L297, that integrates all the control circuitry required to contro bipolar and unipolar stepping motors, and by an L293E, a quad push-pull driver capable of delivering output currents
to 1 A per channel. Both pins 17 (CW/ $\overline{\mathrm{CCW}}$; clockwise/counterclockwise) of the two L297s are connected together. The same for pins 18 (CK).
The CW/ $\overline{\mathrm{CCW}}$ and $\overline{\mathrm{CK}}$ signals are generated by the BS2-IC pins 14 and 13 (P8 and P9, respectively). The ENABLE signals, for the two L297s come from pins 15 and 16 (P10 and P11) as can be seen in the programme Text Box 1).
H / F (half step or full step) is directly connected to the 'high' logic state. The interface output signals $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}, \overline{\mathrm{B}}$, drive the windings of the stepping motors. We chose the model 15PM-K004 low cost, unipolar, small angle motors by MINEBA CO. LTD. Their holding torque is 650 gcm and their current per winding is 0.36 A with 8.6 V applied The 27Ω power resistors between the windings common leads and the 18 V power supply are necessary to set the current at the correct value

Some images

To give an idea of the capabilities of this device we present in figure 7 some images of coins obtained using 40 lines of 100 points per line; with a sampling frequency of about 4 points per second a total acquisition time of about 10 minutes is required.
A photo of the sample coins (50,5 and 1 Pfennig, chosen for their small diameter and simple design) is shown in Fig. 8.
The images shown in figure 7 were taken using a woolneedle, with a not too sharp tip (whose radius of curvature $\mathrm{R}=0.28 \mathrm{~mm}$ is shown in figure 9 a), thus reducing the risk

Fig. 9. Photomicrographs of a wool-needle tip (a) and of a sewing-needle tip (b).

Figure 10: Images of the same sample (1 Pfennig coin) taken with different tips (see text)
of chokes and lateral deflections of the cantilever when crossing sharp steps on the sample. Our device is affected by this problem because it does not have the feedback mechanism that allows SFM to work at constant force: in that case when the tip meets a sample relief, the sample holder is suitably displaced along z to keep constant the cantilever deflection.
Obviously the lateral resolution is better the smaller the tip radius of curvature. To show this effect, that in the language of probe microscopists is named 'tip convolution ${ }^{\prime 1}$, we recorded two images, shown in figure 10 , of the same sample first using a sharper sewing-needle ($R=0.08 \mathrm{~mm}$) and then a ball-bearing sphere $(R=1.5 \mathrm{~mm})$ as probe tips.
Using a curvature radius larger than the coin thickness, we can detect the sample borders (the tip can cross steps slightly smaller than R), but we spoil our lateral resolution. Using a smaller curvature radius we get better resolution, but the probe-sample interaction becomes important (note that in our devices the applied force increases with $\Delta \mathrm{z}$), so that at the scan end the sample results are slightly damaged (see Text Box 2). The images shown in figures 7 and 10 report the x-axis calibrated in mm . How did we calibrated it? We simply measured the change $\Delta \mathrm{V} x$ corresponding to a known displacement Δx to calculate the conversion factor $K^{x}=\Delta x / \Delta V^{x}(\mathrm{~mm} / \mathrm{V})$. To calibrate the y-axis we measure the change in the V^{2} signal produced by a known
shift Δy along a flat region of the sample surface: the conversion factor is $\mathrm{K}^{y}=\Delta \mathrm{y} / \Delta \mathrm{V}^{2}(\mathrm{~mm} / \mathrm{V})$.
For the z-axis we have $K^{z}=\mathrm{K}^{y} \tan \alpha$, where α is the tilt angle between the sample surface plane and the $x-y$ scan plane.

References

1 Giacomo Torzo: Dipartimento di Fisica, Università di Padova, INFM and CNR
Barbara Pecori: Dipartimento di Fisica, Università di Bologna
Pietro Scatturin: Dipartimento di Fisica, Università di Padova
Giorgio Delfitto: Dipartimento di Fisica, Università di Padova and INFM
2 For a bibliography on SFM see the websites: http://www.park.com/spmguide/contents. htm, or http://www.spm.genebee.msu.su, or the book Yaminsky I. V., Elensky V.G. Scanning Probe Microscopy: Bibliography (1982-1997). Moscow: Scientific World, 1997. (A Series: Scanning Probe Microscopy; Vol. 2)
3 See G.Torzo and D. Cerolini: SFM image reconstruction reducing tip artifacts, Microscopy and Microanalysis, May 2000.

Calculus of the strain ε produced by the cantilever deflection Δz

The strain in elastic bodies is described by the relation $\varepsilon=1 / \mathrm{E}$ (F / S) relating $\varepsilon=\Delta L / L$ to the applied force F, the section S and the Young modulus E (for steel $\mathrm{E} \cong 22.10^{6} \mathrm{~N} / \mathrm{cm}^{2}$).
We are looking for a relation between the displacement Δz of the free end of a cantilever and ε. Thinking the cantilever (horizontal in equilibrium) as a beam of fibres, a deflection produces an increase of the fibres length on the convex side and a decrease on the concave side, with respect to the median fibre.Now, the length dx of an arc $\mathrm{P}-\mathrm{Q}$ (figure 11) of the median fibre may be written as product of the curvature radius $\rho_{\text {_ and }}$ angle α : $d x=\rho \alpha$
The relative length change, at the generic distance y from the median fibre is therefore $\varepsilon_{-}= \pm \mathrm{y} / \rho$, corresponding to an applied tangent force $\mathrm{dF}=\mathrm{EdS}(\mathrm{y} / \rho)$, where $\mathrm{dS}=\mathrm{bdy}$ is the cross section of the fibre. A cantilever deflection corresponds to an applied torque given by the integral:

$$
\begin{aligned}
& \Gamma=\int y d F=\int y^{2}(E / \rho) d S=(E / \rho) \mathrm{j} \\
& \text { where } \mathrm{j}=\int \mathrm{y}^{2} \mathrm{dS}=\mathrm{a}^{3} \mathrm{~b} / 12 .
\end{aligned}
$$

Because the angle between tangents to the fiber in P and Q is α,the differential contribution to vertical displacement is $\mathrm{dz}=$ $x d x / \rho$, where x is the distance of P from the cantilever end (tip position). By substituting ρ we get $\mathrm{dz}=(\Gamma / E j) \mathrm{x} \mathrm{dx}$. Neglecting the cantilever weight, the equilibrium between applied torque Fx and the restoring elastic torque Γ gives $\mathrm{dz}=(\mathrm{F} / \mathrm{Ej}) \mathrm{x}^{2} \mathrm{dxThe}$ total displacement is obtained by integrating along the cantilever length: $\Delta z=(F / E j) L / 3=(F / E)\left(4 L / b a^{3}\right)$.
The strain ε changes along x growing with curvature $1 / \rho$, reaching a maximum close to $x=L$, where the gauges are glued. Here $\varepsilon= \pm(\mathrm{a} / 2) / \rho= \pm(\mathrm{a} / 2)(\Gamma / E j)$, and the torque is $\Gamma=\mathrm{FL}$. From $\Delta z=(\mathrm{F} / \mathrm{Ej}) \mathrm{L} / 3$ we get $(\mathrm{FL} / \mathrm{Ej})=\Delta z /\left(3 / \mathrm{L}^{2}\right)$ and finally $\varepsilon= \pm(a / 2)(F L / E j)=\Delta z\left(3 a / 2 L^{2}\right)$. Higher sensitivity $(\sigma=\varepsilon / \Delta z)$ can be attained by increasing thickness a and reducing length L , but this also increases the tip to sample force $\mathrm{F}=\varepsilon \mathrm{Ea}^{2} \mathrm{~b} / 6 \mathrm{~L}=\mathrm{E} \Delta \mathrm{z} \mathrm{ba}^{3} / 4$ L^{3}. With $\mathrm{a}=0.3 \mathrm{~mm}, \mathrm{~b}=10 \mathrm{~mm}, \mathrm{~L}=30 \mathrm{~mm}$, the applied force with a deflection of 1 mm is $0.25 \mathrm{~N} \approx 25 \mathrm{~g}$, already sufficient to slightly scratch a metal with a sharp needle.

Fig. 11. Schematics of the cantilever deflection.

E2 BARGAIN PACKS

30A 600V BRIDGE RECTIFIER. Order Ref: 2P474 10 HOOK-UP LEADS. Assorted colours terminating with insulated crocodile clips each end, each lead length 36 cm . Order Ref: 2P459.
PHILIPS STEPPER MOTOR. 12 V 7.5 degrees. Order Ref: 2P457.
$32 \mu \mathrm{~F} 250 \mathrm{~V}$ A.C. CAPACITOR. Order Ref: 2P452. 4uF 440 V A.C. CAPACITOR. Order Ref: $2 P 454$. VERY POWERFUL MOTOR. Operates off 6,9 or 12 V D.C. $2^{1 / 2 i n}$. long, $1^{1 / 2 i n}$. diameter. Order Ref: 2P456. HIGH VOLTAGE STRIPPER. Contains many items for 10 kV working. Order Ref: 2P388.
GALVANISED EQUIPMENT BOX. 150 mm square without lid. Order Ref: 2P391.
4 r.p.m. GEARED MAINS MOTOR. 115 V but supplied with mains adaptor. Order Ref: 2P393 TWIN 50pF AIR-SPACED TUNING CAPACITOR, the veins wide spaced so suitable for transmitting. Order Ref: 2P394.
20 R.P.M. GEARED MAINS MOTOR. 115 V but supplied with mains adaptor. Order Ref: 2P396.
$20 \mu \mathrm{~F} 375 \mathrm{~V}$ CAPACITOR. Aluminium cased. Order Ref: 2P406.
9V-OV-9V MAINS TRANSFORMER. 25VA, upright mounting with fixings. Order Ref: 2P408.
COPPER CLAD BOARD. Size $15 \mathrm{in} . \times 10 \mathrm{in} . x^{1 / 16} \mathrm{in}$. thick for making p.c.b.s etc. Order Ref: 2P409. 20W TWEETER. 4in. x 4 in. 8 ohm by Goodmans. Order Ref: 2P403.
BATTERY CHARGER METER. OA-3A. Order Ref: 2P366.
W-SHAPED 30W FLUORESCENT. Philips, ideal name plate illuminator. Order Ref: 2P372
DIMMER SWITCH. Standard size flush place, state colour - red, yellow, green or blue. Order Ref: 2P380. TELEPHONE EXTENSION LEAD. 12 m with plug end, socket ends. Order Ref: 2P338.
FIGURE-8 FLEX. Mains voltage, 50 m . Order Ref: 2P345.
INFRA-RED UNIT. AS fitted TV receiver. Order Ref: 2P304.
L.C.D. CLOCK MODULE with details of other uses. Order Ref: 2P307
AM/FM RADIO RECEIVER with speaker but not cased. Order Ref: 2P308.
2A MAINS FILTER AND PEAK SUPPRESSOR. Order Ref: 2P315.
45A DP 250 V SWITCH. on 6 in . $\times 3 \mathrm{in}$. gold plate. Order Ref: 2P316.
SOLAR CELL. $3 \mathrm{~V} 200 \mathrm{~mA}, 5$ of these in series would make you a 12 V battery charger, $£ 2$ each. Order Ref: 2P374.
PERMANENT MAGNET SOLENOID. Opposite action, core is released when voltage is applied. Order Ref: 2P327.
HEATER PAD. Not waterproof. Order Ref: 2P329. DISK DRIVE. Complete less stepper motor, has all the electronics to control stepper motor. Order Ref: 2P280.
15 V 320 mA A.C. POWER SUPPLY. In case with 13A base, ideal for bell or chime controller. Order Ref: 2P281.
POWERFUL MAINS MOTOR with 4in. spindle. Order Ref: 2P262.
20M 80 OHM TV COAX. Order Ref: 2P270.
6-DIGIT COUNTER. Mains operated. Order Ref: 2P235.
13A ADAPTORS. Take two 13A plugs, pack of 5, £2. Order Ref: 2P187
3-CORE 5A PVC FLEX. 15m. Order Ref: 2P189.
MAINS TRANSFORMER. $15 \mathrm{~V}, 1 \mathrm{~A}$. Order Ref: 2P198.
7-SEGMENT NEON DISPLAYS. Pack of 8. Order Ref: 2P126.
MODERN TELEPHONE HANDSET. Ideal office extension. Order Ref: 2P94.
13A SWITCH SOCKET on satin chrome plate. Order Ref: 2P95.
500 STAPLES. Hardened pin, suit burglar alarm or telephone wire. Order Ref: 2P99.
ROTARY SWITCH. 40A with porcelain pointer control knob. Order Ref: 2P419.
AIR-SPACED TUNING CAP with one section 350 pF , the other 250 pF , with $1 / 4 \mathrm{in}$. spindle and slow motion drive. Order Ref: 2P422.
DITTO but 150 pF and 300 pF . Order Ref: 2P423. TRANSMITTER TUNER. 2 gang, wide spaced. Order Ref: 2P425.

[^1]SELLING WELL BUT STILL AVAILABLE HIVAC NUMICATOR TUBES, £1 each, £85 per 100. IT IS A DIGITAL MULTI-
TESTER, complete with backrest to stand it and hands-free test prod holder. This tester measures d.c. volts up to 1,000 and a.c. volts up to 750 ; d.c.current up to 10 A and resistance up to 2 megs. Also tests transistors and diodes and
has an internal buzzer for continuity tests. Comes complete with test prods, battery and instructions. Price £6.99. Order Ref: 7P29.
INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges: ACIDC volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$ each, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra. Order Ret: 7.5P4.

REPAIRABLE METERS. We have some of the above testers but slightly faulty, not working on all ranges, should be repairable, we supply diagram, $£ 3$. Order Ref: 3P176. bT TELEPHONE EXTENSION WIRE. This is proper heavy duty cable for running around the skirtling board when you want to make a permanent extension. Four cores properly colour coded, 25 m length only $£ 1$. Order cores prop 1067.
HEAVY DUTY POT. Rated at 25 W , this is 20 ohm resistance so it could be just right for speed controlling a d.c. motor or device or to control the output of a high current. Price $£ 1$. Order Ref: $1 / 33 \mathrm{~L} 1$.
ImA PANEL METER. Approximately $80 \mathrm{~mm} \times 55 \mathrm{~mm}$ front engraved 0-1000. Price $£ 1.50$ each. Order Ref: 1/16R2.
D.C. MOTOR WITH GEARBOX. Size 60 mm long, 30 mm diameter. Very powerful, operates off any voltage between 6 V and 24 V D.C. Speed at 6 V is 200 rmm , speed controller available. Special price $£ 3$ each. Order Ref: 3P108.
FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a Xenon tube and has an amber coloured dome. Separate fixing base is included so unit can be put away if desirable. Price £5. Order Ref: 5P267
MOST USEFUL POWER SUPPLY. Rated at 9 V 1 A , this plugs into a 13 A socket, is really nicely boxed. $£ 2$. Order Rel: 2P733.
MOTOR SPEED CONTROLLER. These are suitable for D.C. motors for voltages up to 12 V and any power up to $1 / 6 \mathrm{~h} . \mathrm{p}$. They reduce the speed by intermittent full voltage pulses so there should be no loss of power. Made up and tested, £18. Order Ref: 20P39
BALANCE ASSEMBLY KITS. Japanese made, when assembled ideal for chemical experiments, complete with weezers and 6 weights 0.5 to 5 grams. Price $£ 2$. Order Ref: 2P44.
CYCLE LAMP BARGAIN. You can have 1006 V 0.2 A MES bulbs for just $£ 2.50$ or 1,000 for $£ 20$. They are beautifully made, slightly larger than the standard 6.3 V pilot bulb so they would be ideal for making displays for night lights and similar applications.
SOLDERING IRON, super mains powered with long-life ceramic element, heavy duty 40 W for the extra special job complete with plated wire stand and 245 mm lead, £3. Order Ref: 3P221

RELAYS

MINI POWER RELAYS. For p.c.b. mounting, size 28 mm $\times 25 \mathrm{~mm} \times 12 \mathrm{~mm}$, all have 16A changeover contacts for up to 250 V . Four versions available, they all look the same but have different coils:

6 V - Order Ref: FR17

6V - Order Ref: FR17
$24 V$ - Order Ref: FR19 12 V - Order Ref: FR18 48 V - Order Ref: FR20 Price $£ 1$ each less 10% if ordered in quantities of 10 ,
same or mixed values. same or mixed values.
RECHARGEABLE NICAD BATTERIES. AA slze, 25p each, which is a real barga'n considering many firms charge as much as $£ 2$ each. These are in packs of 10 coupled together with an output lead so are a 12 V unit but easily divideable into a $2 \times 6 \mathrm{~V}$ or $10 \times 1.2 \mathrm{~V}$. $£ 2.50$ per pack, 10 packs for $£ 25$ including carriage. Order Ref 2.5P34.

4 CIRCUIT 12V RELAY. Qulte small, clear plastic enclosed and with plug-in tags, $£ 1$. Order Ref: 205 N . NOT MUCH BIGGER THAN AN OXO CUBE. Another relay just arrived is extra small with a 12 V coil and 6 A changeover contacts. It is sealed so it can be mounted in any position or on a p.c.b. Price 75 p each, 10 for $£ 6$ or 100 for $£ 50$. Order Ref: FR16
$1.5-6 \mathrm{~V}$ MOTOR WITH GEARBOX. Motor is mounted on the gearbox which has interchangeable gears giving a range of speeds and motor torques. Comes with full instructions for changing gears and calculating speeds, $£ 7$. Order Ref: 7P26.

FOR YOU

Latest newsletter and very useful free gift with chance to earn $£ 100$. Just send us 2 first class stamps to cover postage.

£2 BARGAIN PACKS

$24 V$ STEREO POWER SUPPLY. Mullard. Order Ref: 2P80.
UP TO 90 MIN 25A SWITCH. Clockwork. Order Ref 2 P90.
POWERFUL MAINS MOTOR. $1^{11 / 2 i n}$. stack, double spindle. Order Ref: 2P55.
SPEED CONTROL FOR MODELS. $6 \mathrm{~V}-12 \mathrm{~V}$ variable p.s.u., also reverse. Order Ref: 2P3

MAINS TIME AND SET SWITCH. 25A, up to 6 hours delay. Order Ref: 2P9.
MOTORISED 6 MICROSWITCHES but motor 50 V A.C. Order Ref: 2P19.

TWIN EXTENSION LEAD. Ideal lead lamp, Black \& Decker tools, etc., 20m. Order Ref: 2P20.
MAINS COUNTER. Resettable, 3 digit. Order Ref: 2P26.
iLLUMINOUS PANEL, $16 \times 16 \mathrm{~V}$ bulbs to light coal effect heater, etc. Order Ref: 2P317.
TIME AND SET SWITCH. 15A mains. Order Ref 2 P104.
D.C. VOLT REDUCER. 12V-6V, fits Into car Ilghter socket. Order Ref: 2P318.
CAPACITOR, VARIABLE. For tuning AM/FM with 1/4in. spindle. Order Ref: 2P269.
CAPACITOR, VARIABLE. 0.0005 solid dia. $1 / 4 \mathrm{in}$ spindle. Order Ref: 2P268.
COPPER CLAD BOARD. $15 \times 10 \times 1 / 16$ for p.c.b Order Ref: 2P409.
25 V -OV-25V MAINS TRANSFORMER. $1^{1 / 2} \mathrm{~A}$. Order Ref: 2P410.
$20 \mathrm{~V}-\mathrm{OV}$-20V DITTO. Order Ref: 2P411
$80 \mathrm{~mm} \times 46 \mathrm{~mm} 65 \mathrm{~mm}$ METAL PROJECT BOX with rubber feet, supplied as flat pack. Order Ref: 2P412 24V 1A MAINS TRANSFORMER. Order Ref: 2P413. 12V 2A MAINS TRANSFORMER. Order Ref: 2P414. 80 OHM COAX. Extra thin, 15m. Order Ref: 2P417. A.C. 250 V CAPACITOR. $20 \mu \mathrm{~F}$. Order Ref: $2 P 427$. 12 V P.S.U. 800 mA D.C. with pins for shaver socket. Order Ref: 2P428.
MAINS MOTOR WITH GEARBOX giving 6 revs per hour. Order Ref: 2P430.
CLOCKWORK TIMESWITCH with scale settable up to 6 hours. Order Ref: 2P432.
OLD TIME RADIO CASE for the Good Companion Order Ref: 2P436.
4 OHM TWEETER. 20W, by Goodmans. Order Ref: 2P437.
OLD TYPE 15A ROUND PIN PLUGS. Order Ref 2P438.
BT ENGINEER'S PHONE. Unused but missing some parts, ideal for stripping. Order Ref: 2P439
FLUORESCENT TUBE CHOKE. 65W or 80W. Order Ref: 2P440.
MINI MOTOR WITH GEARBOX, giving 16 r.p.m. Order Ref: 2P442.
ICESTAT. Cuts in just above freezing. Order Ref 2P443.
BALANCE KIT with gram weights for chemical experiments etc. Order Ref: 2P444.
Vu METER. 40 mm square. Order Ref: 2P445
SLYDLOK FUSE. 30A. Order Ref: 2P447
KV CAP. 1μ F 1500V. Order Ref: 2 P448.
9V P.SU. 1A D.C., plugs into 13A socket. Order Ref: 2P450.
6-CORE 3AFLEX. 15m. Order Ref: 2P451
SOME BUY ONE GET ONE FREE OFFERS CUPBOARD ALARM. Activated by light. When set, this alert is designed to let you know when small hands open medicine cabinets, drawers, desks or other places they shouldn't. Price £3. Order Ref: 3P155.
WATER LEVEL ALARM. When water reaches its sense head its internal alarm sounds. It is a ready-built unit which you can fix above where you want to know the water has risen. It then sounds its internal alarm. Needs only a battery. Price $£ 3$. Order Ref: 3P156.
DYNAMIC MICROPHONE. 500 ohm, plastic body with black mesh head, on/off switch, good length lead and terminated with audio plug. Price £1. Order Ret: 2P220.

TERMS

Send cash, uncrossed PO, cheque or quote credit card number. If order is $£ 25$ or over deduct 10% but add postage, $£ 3.50$ if under 2 kllo , $£ 6$ If under 4 kilo.

J \& N FACTORS

Pilgrim Works (Dept.E.E) Stairbridge Lane, Bolney Sussex RH17 5PA
Telephone: 01444881965

NFWPRODUCTS

Please quote Electronics World when seeking further information

White LEDs have 35 med brightness

Rohm has expanded its family of miniature surface mount white chip LEDs with three devices that combine high brightness with low typical and maximum forward voltage $\left(\mathrm{V}_{\mathrm{F}}\right)$ ratings of 3.0 V and 3.3 V respectively. Designed to provide enhanced PCB mounting flexibility, the new parts have dimensions down to $1.6 \times 0.8 \times 0.55 \mathrm{~mm}$ and are ideal for consumer and telecoms applications, said the supplier. Typical brightness levels for the

new devices are in the region of 35 mcd at a forward current $\left(\mathrm{I}_{\mathrm{F}}\right)$ of 5 mA . Maximum I_{F} is rated at 20 mA , while each LED will handle a peak I_{F} of 100 mA (pulse duration 30 ms) Rohm
www.rohm.co.uk
Tel: +44(0) 1908282284

2-2-2 DDR Dram

Smart Modular Technologies owned by Solectron, now has low latency PC2100 registered double data rate (DDR) memory modules aimed at increasing memory speeds in high performance computing and server applications. The line-up features a 2.1 Gbyte/s data throughput and CAS latency timings of 2-2-2 (CAS) delay,

RAS-to-CAS delay, precharge). Intel has validated the devices on a Xeon-based Prestonia server reference platform featuring the Plumas533 chipset (533 MHz , front side bus).
Smart
www.smartm.com
Tel: +44(0) 1928735651

Voltage regulator can be buck or switch

Semtech has a low-voltage current-mode regulator controller that can be configured into a buck, buck-boost

(inverter) or zeta (step-up or step-down) switching-regulator topology. The SC4508 is for driving p-channel power Mosfets to supply up to 6A output current. It accepts inputs from 2.7 to 15 V . Its programmable switching frequency, up to 1.5 MHz , allows for small capacitors and coils. Output voltage is programmable, through a resistor divider over positive voltages from V (Ref) to 0.9 x $V_{\text {in }}$ or, on the negative side, from -1 to -200 V . It typically draws about 3 mA in normal operation, which drops to $200 \mu \mathrm{~A}$ in shutdown mode. Semtech
www.semtech.com

MPC5200 PowerPC gets RTOS support

Green Hills Software is supporting Motorola's MPC5200 PowerPC processor with its Integrity RTOS, multi integrated development environment and $\mathrm{C}, \mathrm{C}++$ and Misra C compilers. This software is for developers of embedded systems for mobile and fixed applications in
telematics, gateways, industrial control and electronic and medical instruments. The deterministic RTOS builds on the hardware memory protection facilities of the MMU. It provides a firewall between the kernel and user tasks that prevents errant or malicious code from corrupting user data, the kernel, inter-process communications, device drivers and other tasks. It also runs with interrupts continuously enabled, guaranteeing access to the CPU and memory for critical tasks, even during RTOS system calls. The 400 MHz device delivers

Ethernet connector

Pulse has a range of IEEE 802.3af compliant Power over Ethernet (PoE), 10/100BASETX transformer modules, specifically designed for midspan PoE applications. The use of products H1180, H1183 and H1197 upgrades an existing Ethernet connection to a power over Ethernet compliant system, allowing a remote device to receive power and data over the same unshielded twisted pair (UYTP) cable. The H1180, H1183 and H1197 are placed in parallel (in-line) with the existing UTP Ethernet cabling architecture. Their high input impedance makes each transformer appear transparent to the existing Ethernet system,

instantly upgrading the connection, said the company. This upgrade thus reduces cost and time-tomarket for establishing a PoE-enabled system. The components can deliver 15 W of power to a remote device located 100 m away, making them suitable for remote power-feeding applications
such as security camera equipment, wireless networking systems, remote sensors and transducers, and VoIP phones. The modules deliver a minimum of $1,000 \mathrm{Vrms}$ isolation and 350 mA capability. Pulse
www.pulseeng.com Tel: +44(0) 1483401700

NEWPRODUCTS

Please quote Electronics World when seeking further information

760 Mips and consumes less than 850 mW .
Green Hills Software
www.ghs.com

Headphone amp for single-cell designs

National Semiconductor is offering a version of its Boomer stereo headphone amplifier to operate from a one cell 1.5 V battery. The LM4916 is unity gain stable. It is a mono differential output (for bridgetied loads or BTL) audio power amp and a single-ended stereo headphone amp. Operating from a 1.5 V supply, the mono BTL mode delivers 85 mW into an 8Ω load at 1 per cent THD+N.

In single-ended stereo headphone mode, the amp delivers 14 mW per channel into a 16Ω load at 1 per cent THD +N .
National Semiconductor www.national.com

Resolver-to-digital converter option improves accuracy

Data Device has announced an option for its RD19230FX resolver-to-digital monolithic converter that provides an accuracy of one arc minute. Resolver-to-digital converters take analogue AC inputs from resolvers, which are rugged angular transducers, and convert them to digital angular format. The device also provides programmable $10,12,14$ and 16-bit resolution, dual

bandwidth and tracking rates, +5 V only input power, internal synthesised reference, and A quad B encoder emulation. Applications include motor control, radar antenna position, machine tool control, robotics and process control. Available with operating temperatures of -40 to $+85^{\circ} \mathrm{C}$ (FX-205) and 0 to $70^{\circ} \mathrm{C}$ ($\mathrm{FX}-305$), the converter is in a 10 by $10 \mathrm{~mm}, 64-$ pin, plastic quad flat pack.
Data Device
www.ddc-web.com
Tel: +44(0) 16315675600

5 V reference accurate to $\pm 0.5 \mathrm{mV}$

Xicor has introduced 5 V reference devices which it claims offer a guaranteed absolute initial accuracy as low as $\pm 0.5 \mathrm{mV}$, straight-line temperature coefficients of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and a long-term stability of $10 \mathrm{ppm} / 1000$ hours.

Power supply packs it with plug-in modules

A configurable power supply that packs up to 700 W into a chassis that measures 266.7 x $127 \times 63.5 \mathrm{~mm}$ has been introduced by XP. The F7 modular AC-DC power unit uses plug-in modules to provide up to nine floating outputs between 1.9 and 150 V DC. Outputs can be connected in series or parallel, the latter using active current sharing. The rugged design has a universal AC input with integral power factor correction and 40A maximum peak inrush current. The outputs are adjustable by ± 5 per cent and have maximum ripple and noise of 50 mV or 1 per cent peak-to-peak,
whichever is greater. Line regulation is typically 0.1 per cent and load regulation is 1 per cent maximum for single output modules and 2 per cent for dual or triple output modules. It has over-voltage protection at 115 to 140 per cent of nominal, depending on the individual module and output, and overload protection which operates at 140 per cent of nominal rating. The signal set includes a TTL-compatible inhibit function, DC OK signal, power fail indication and a 5 V 1 A housekeeping rail. $X P$
www.xppic.com
Tel: +44(0) 1271856666

Power consumption is 500 nA of supply current. Both devices feature a noise voltage figure of $30 \mu \mathrm{~V}$ p-p (0.1 to 10 Hz), and an operating temperature range of -40 to $+85^{\circ} \mathrm{C}$. They are the first devices in an extensive family of precision voltage references manufactured using Xicor's proprietary FGA technology, which the firm claims achieves performance levels that exceed conventional burid-zener and band-gap technologies.
Xicor
www.xicor.com
Tel: +44(0) 1993700544

Tiny dual PLL runs up to 6 GHz

Fujitsu Microelectronics Europe has announced the MB15F7xUV series, sub-miniature dual PLL frequency synthesisers for high frequency mobile comms. The design of the PLLs enables the devices to be housed in the industry's smallest PLL enclosure, claims the firm, an 18 -pad 'bump chip carrier' measuring $2.4 \times 2.7 \times 0.45 \mathrm{~mm}$. Fabricated in Fujitsu's $0.35 \mu \mathrm{~m}$ BiCMOS, the family is capable of operating from 2.4 to 3.6 V . Fujitsu Microelectronics Tel: +44(0) 04961036900

Modular PSUs with increased output

Astic Power has added new output power ratings to its MOP modular power supply series The existing four MP models now deliver an extra 200 W of output power at high line voltage when compared to their universal voltage ratings. Four chassis sizes are available. These enable installed output modules to deliver maximum power levels of $600 \mathrm{~W}, 800 \mathrm{~W}$, $1,000 \mathrm{~W}$ and $1,200 \mathrm{~W}$ to their designated loads when operated at high line. Each chassis can be configured with almost any combination of more than 25 commercial-off-the-shelf output modules to provide a variety of output voltage combinations from 2 V to 60 V with output current capacities from 0.5 A to 120A. Each chassis can accommodate up to seven output

FRUSTRATED!
Looking for ICs TRANSISTORS? A phone call to us could get a result. We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SI 2SK 3N 3SK 4N 6 N 1740 AD ADC AN AM AY BA BC BD BDT BDV BDW BDX BF BFR BFS BFT BFW BFX BFY BLY BLX BS BR BRX BRY BS BSS BSV BSW BSX BT BTA BTB BRW BU BUK BUT BUV BUW BUX BUY BUZ CA CD DX CXA DAC DG DM DS DTA DTC GL GM HA HCF HD HEF ICL ICM IRF J KA KIA L LA LB LC LD LF LM M M5M MA MAB MAX MB MC MDA I MJE MJF MM MN MPS MPSA MPSH MPSU MRF NIM NE OM OP PA PAL PIC PN RC S SAA SAB SAD SAI SAS SDA SG SI SL SN SO STA STK STR STRD STRM STRS SV1 T TA TAA TAG TBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU U UA UAA UC UDN UEN UM UPA UPC UPD VN X XR Z ZN ZTX + many others

Please ask for our Free CD Rom STOCK LIST. WE STOCK A MASSIVE RANGE OF COMPONENTS!
Mail, phone, Fax, Credit Card orders \& callers welcome.

Cricklewood Electronics Ltd

40-42 Cricklewood Broadway, London NW2 3ET Tel: 02084520161 Fax: 02082081441 www.cricklewoodelectronics.co.uk
E-mail: sales@cricklewoodelectronics.com

ROLL-YOUR-OWN
 minimal embedded kinux system

Select the sottware to include in your target project. Use ELCT to launch source configuration programs, compile source, check for library dependencies and install to the target.
Included on the ELCT CDROM is enough open source software for you to roll-your-own minimal Linux system.

See our website for more details.

Ashdown Electronics Ltd

www.ashdownelectronics.com

sales@ashdownelectronics.com

 Telephone 01342315656
A QUANTUM LEAP IN EMBEDDED CONTROLLERS Quick ornire

SUPERCONTROELERS

pur range provides:-
The fastest 68000 based Core up to 66 Mhz .

- Extensive I/O:- Serial, IrDA, SPI, RC, Analogue, Timers/Counters, RTC, etc.
- Large Memory Capacity:Flash, SRAM, DRAM. Supports:Mono \& Colour LCD's, Touch Panels \& Keypads, Very Low Power.

ALSO LOW COST

DEVELOPMENT

Gharget easily \& quickly. Fule ANSI 'C' compiler, assembler \&. in ker all Windows32 based.

- Source Level Debug.

FFull Driver Support with Libraries.
Resal Time Multitasking OS with a free run time licence.

- Free Unlimited email support

WWW.cms.uk.com

see our web site for full details
CAMBRIDGE MICROPROCESSOR SYSTEMS LTD

NEWPRODUCTS

Please quote Electronics World when seeking further information

modules. The modules are suited to computing, networking, office systems and data communications.
Astec Power
www.astecpower.com
Tel: +44(0) 031243723212

Mobile test plafform for 3G troubleshooting

Tektronix has available a mobile protocol test platform equipped with application software to test complex third-generation (3G)

and existing second-generation ($2 \mathrm{G}, 2.5 \mathrm{G}$) mobile networks. According to the company, the test platform and supporting application software allows operators to resolve service degradation warnings within minutes with multi-interface call trace and automatic UMTS configuration. The real-time troubleshooting capabilities of the application software should also allow technicians to au tomatically configure monitoring parameters, correlate data coming from multiple interfaces and locate the root cause of faults while sustaining high data capture rates.
Technologies supported include UMTS, CDMA2000, cdmaOne, EDGE, GPRS and GSM
Tektronix
www.tektronix.com
Tel: +44(0) 01344392241

Power rocker switches

The CG and CL series of panel mount power rocker switches from ITT Industries, are targeted at small appliances, instrument panels, industrial controls, floor care products, and computers and peripherals. The CG series can be supplied with a two tone actuator or can be illuminated

with white, red, amber, or green actuators. Additionally, the actuators can be marked. The CL series feature a positive detent and were designed for easy snap-in mounting. With constant ratings of 16 A at 125 VAC or 10 A at 250 VAC , both series have UL and CSA approvals. The CG series also have VDE approval.
ITT Industries
www.ittcannon.com
Tel: +44(0) 016179696600

Kits adapt test equipment for cars

Fluke has introduced two kits aimed at technicians working on automotive systems. Designed for use with any handheld Fluke ScopeMeter, the kits include suitable shielded and heat resistant test leads, probes and clips together with PC

Smallest single-gate logic devices

Toshiba claims to have the smallest single-gate logic device. The logic-MOS (LMOS) device comes in a

76 per cent less than previous generation USV (SOT353) alternatives and over 60 per cent less than miniature ESV packages. The TC7SHxx devices operate with a supply voltage between 2 and 5.5 V and offer a typical propagation delay of 3.7 ns . Output current is 8 mA , with power dissipation 50 mW . All devices incorporate input power down protection as standard. The range includes two-input NAND, two-input AND, two-input NOR, twoinput OR and two-input EXOR single-gate logic
functions, as well as various inverter and buffer options. Toshiba
www.toshiba.com
Tel: +44(0) 0492115296254
compatible software. The SCC128 Auto Kit is designed for use with a 20 MHz or 40 MHz bandwidth, 5000 counts trueRMS 120 Series ScopeMeter, and the SCC198 Auto Kit for use with a ScopeMeter from the up-to- 200 MHz and
2.5Gsample/s 190 Series. Both kits contain FlukeView for Windows software and an optically isolated connecting cable. A library of named test set-up waveforms and measurements can be built up and uploaded to the ScopeMeter for comparison in the field. Captured waveforms, screens and measurement data can be downloaded to a PC for archiving, printing or importing into reports.
Fluke
www.fluke.co.uk
Tel: +44(0) 2079420700

Custom oscillators up to 2.4 GHz

RFX use PLL techniques to produce custom oscillator modules, with frequencies up to 2.4 GHz , from a high base oscillator. The oscillators may be locked to an internal or external high precision reference resulting in a very high precision clock. Jitter levels of 0.5 ps can be achieved together with excellent phase noise and low ageing characteristics producing accuracies to 0.005 ppm max./day. Modules are available with ECL or sine wave output. Applications are communications equipment, instrumentation and system synchronisation.
RFX
www.irfx.co.uk
Tel: +44(0) 01506873797

Battery-backed PSU has modbus functions

The Oracle 111200 batterybacked switch-mode power supplyfrom VXI Power has a built-in RS232/RS485 interface with modbus functionality, so it can be controlled or monitored remotely. As well as logging data on historical holdup events, the PSU lets the user monitor parameters such as system load

JOHN RADIO ELECTRONIC TEST AND COMMUNICATION EQPT. massive RETIREMENT CLEARANCE SALE

30.00SQ FT OF TEKTRONIX-HP-AGILENT-MARCONI-PHILIPS-RACAL ETC.
Over the rest of this year at our bulk Smithies Mill site sales by auction-Tender-Offer-all welcome private or trade-single or bulk items. Equipment sale floor 6000 sq $\mathrm{ft}+25.000$ sq ft of adjoining buildings plus 9000 sq ft will be slowly added from our Whitehall Works headquarter site.
Open weekdays $9 \mathrm{am}-5 \mathrm{pm}$ and Saturday mornings to $1: 00 \mathrm{pm}$ Closed dinner 1-2pm
ALWAYS PHONE FOR APPOINTMENT FIRST, Item lists-photos-site map-on website www.johnsradio-electronics.com www.johnsradio-electronics.co.uk www.johnsradio.com email: johnsradio@btconnect.com
Location M62 Junction 27, A62 to Huddersfield, 1 mile Birstall
Smithies Lights (6 roads) look to your left, site under factory chimney with aerials on top, road second left, Smithies Moor Lane, $100 y$ ds second entrance on left.
Johns Radio, Smithies Mill, Birstall Smithies Lights, 883-885 Bradford Rd, Batley, West Yorks WF17 8NN-8NS. Phone - 01924442905 - Fax - 01924448170
Our normal sales, workshop, repairs and calibration will continue until clearance of all items.
Contact Patricia at Whitehall Works-84 Whitehall Rd East, Birkenshaw, Bradford BD11 2ER. Phone - 01274684007 - Fax 01274651160 NEXT SALE FRI-SAT OCTOBER 24-25 DETAILS.www.tech-asset.co.uk

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITISE YOUR SLIDES

(using a video capture card)

"Liesgang diatv" automatic slide viewer with buill in high quality colour TV camera. It has a composite video output to a phono plug (SCART \& BNC adaptors are available). They are in very good condition with few signs of use. For further details see www.diatv.co.uk

Board cameras all with 512×582 pixels $8.5 \mathrm{~mm} 1 / 3$ inch sensor and composite video out All need to be housed in your own enclosure and have fragile exposed surface moun parts. They all require a power supply of between 10 and 12 v DC 150 mA .
47MIR size $60 \times 36 \times 27 \mathrm{~mm}$ with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye). $£ 37.00+$ vat $=£ 43.48$ 30 MP size $32 \times 32 \times 14 \mathrm{~mm}$ spy camera with a fixed focus pin hole lens for hiding behind a
 40 MC size $39 \times 38 \times 27 \mathrm{~mm}$ camera for ' \mathbf{C} ' mount lens these give a much sharper image than with the smaller lenses
all fixed........................... VSL1220F 12 mm F1.6 12×15 degrees viewing angle VSL4022F 4mm F1.2263×47 degrees viewing angle....................... $£ 17.65+$ vat $=£ 20.74$ VSL6022F 6 mm F1.22 42×32 degrees vewing angle..................... $£ 19.05+$ vat $=£ 22.38$ VSL8020F 8 mm F1.22 32×24 degrees viewing angle $£ 19.90+$ vat $=£ 23.38$ Better quality C Mount lenses
VSL1614F 16 mm F1.6 30×24 degrees viewing angle $£ 26.43+\mathrm{vat}=£ 31.06$ VWL813M 8mm F1.3 with iris 56×42 degrees viewing angle......... $£ 77.45+$ vat $=£ 91.00$ 1206 suriace mount resistors E12 values 10 ohm to 1 M ohm 100 of 1 value $£ 1.00+$ vat 1000 of 1 value $£ 5.00+$ vat
866 battery pack originally intended to be used with an orbitel mobile telephone it contains 101.6 Ah sub C batteries (42x22dia the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily..
$\varepsilon 7.46+\mathrm{vat}=£ 8.77$

JPG ELECTRONICS
Shaws Row, Old Road, Chesterfield, S40 2RB
Tel 01246211202 Fax 01246550959 Mastercard/Visa/Switch Callers welcome 9:30 a.m to 5:30 p.m. Monday to Saturday

or battery test cycles. The power supply incorporates a two-stage charger with power shift software to reduce battery recharge time. Operating from an $85-264 \mathrm{~V}$ AC autoranging input, the PSU is available in 12 and 24 U versions.
VXI Power
www.vxipower.com
Tel: +44(0) 1522500511

Devices allow digital Internet link

Epson has introduced the SIS61000 and SIS65000 TCP/IP network device products to let users develop and connect digital electronics to the Internet. The SIS61000 is an open-platform network controller that provides a development environment with the source code disclosed. The SIS65000 is a network controller that lets a camera network be built simply by connecting camera modules. Applications are in white goods, intelligent building, industrial and manufacturing control,
transaction and payment terminals, POS, Soho, laboratory measurement equipment, sensors and monitoing, remote data collection equipment, network cameras, video projectors and protocol converters such as serial-to-Ethernet. The SIS61000's network connection is via simple command operations using the firm's network control procedure. It controls devices from the network via general-purpose I/O pinsI ${ }^{2} \mathrm{C}$ bus, and is usable as a main processor thanks to its ARM720T with unified cacheCPU and open hardware and open software. The SIS65000 is a dedicated network camera controller. Based on the SIS61000, it is further outfitted with a camera interface and JPeg encoder, Pictures can be transmitted at up to 7.5 fps in VGA size. Features include PC-less Internet camera function capability, compatibilty with various camera modules, up to VGA size and rewritable JPeg encoder table. Energy-

Boxes suit handheld or desktop devices

Serpac's range of enclosures has been updated with the S, SL and A series cases for housing handheld, portable and desktop devices, and consisting of two or four piece

design,, assembled with four or six self-tappingscrews. The top panel of the SL series is inclined for improved ergonomics when used on a deck, said the supplier. The enclosures come with or without a battery compartment for a 9V PP3 cell. All ranges are made in ABS plastic (UL94 HB) in standard colours of black, grey or almond. Other colours are available on demand. As an option, the S series top panel can be recessed for mounting a membrane keypad or a product label. All include internal screw bosses for mounting PCBs. Accessories include a pocket clip that is welded to the base, replacement A series end panels in infra-red, clear and red Plexiglass, and black or clear self-adhesive feet Serpac
www.serpac.co.uk
Tel: +44(0) 1489583858
saving is done by using a timer or other device for intermittent starting or stopping. A wireless LAN interface is supported. Epson
www.epson-electronics.de. Tel: 498914005363

White LED for high end lighting

Vishay Intertechnology has added to its TLCx 5100 LED series with the TLCW5100, a 5mm white LED for high-end lighting applications. The TLCW5100 is a clear, nondiffused LED with 0.33 chromaticity and typical luminous intensity of 4000 mcd . The LED has a 9° angle of intensity and an untinted plastic lens. The TLCx5100 series serve as energy-saving alternatives to incandescent lamps in a broad range of applications. Vishay
www.epson-electronics.de. Tel: 497131672831

Humidity controllers blow hot and cold

A vailable from distributor Switchtec, Vemer measurement and regulation controllers for temperature, humidity and pressure can be used for most industrial applications, but particularly the air conditioning, heating and refrigeration industry. Such applications include chill cabinets as used in delicatessens and supermarkets The controllers offer mounting options including $72 \times 72 \mathrm{~mm}$,
32×74, panel, and DIN mount. Models with highly visible displays are available comprising three digit, seven segment units. Additionally, one, two or four relay output versions are available for controlling multiple external devices and equipment. Thermoresistances NiPt cover the range $-20^{\circ} \mathrm{C}$ to $+400^{\circ} \mathrm{C}$, thermoresistances NTC from $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$, and thermocouples JK ($\mathrm{Fe}-\mathrm{Co}$ and $\mathrm{Cr}-\mathrm{Al}$) from $-200^{\circ} \mathrm{C}$ to $+1200^{\circ} \mathrm{C}$

Switchtec

www.switchtec.co.uk
Tel: +44(0) 1785818600

Ferrite for transformers

TDK Electronics Europe GmbH has started mass production of its PC95 ferrite core material for use in power supply transformers. The PC95 ferrite addresses the increase in demand for smaller and higher efficiency transformers used in DC-DC converters and inverters, as well as the need to comply to a broader range of temperature conditions. Designed for use in near-optimal conditions over a broad temperature range of $25^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$, the PC95 is for use in conventional switching power supplies, as well as in the main transformers of DC-DC converters of electric automobiles.

TDK

www.tdk.de
Tel: 492119077183

UK's NO. 1 IEC CONNECTION

CALL OUR SALES HOTLINE

$050: 003-46$
VSA Masterceng ber

24 HOUR DELIVERY SERVICE

OLSON ELECTRONICS LIMITED

ISO 9002 REGISTERED FIRM GB 1907

Please quote Electronics World when seeking further information

Processor with IPsec accelerator

Renesas Technology has announced the SH7710 32-bit Risc microprocessor with an IPsec accelerator for fast encryption and communication processing. The device also has

two on-chip Ethernet controllers that enable connection to two Ethernet LANs. Both peripherals make it suitable for security enabled devices for networks such as VPN dedicated boxes, home gateway servers, surveillance cameras and IP phones. The SH7710 is based on a SuperH Risc SH3-DSP CPU core that operates at up to 200 MHz and achieves a processing capability of 260 Mips . The on-chip DSP supports various kinds of
middleware, such as a voice codec and echo canceller, and enables fast execution of multimedia related processing such as VoIP. The IPsec accelerator implements security in the IP or network layer and supports Des and 3Des encryption and decryption methods and MD5 and SHA-1 authentication data generation methods. As well as the encryption circuitry, buffer memory and dedicated data transfer DMACs are provided, allowing data transfer directly between external memory and the buffer memory, and between the buffer memory and encryption circuitry, without CPU load and enables communication processing to be executed at speeds upwards of $20 \mathrm{Mbit} / \mathrm{s}$ with a VPN configuration when using 3Des processing. Evaluation boards such as the Hitachi ULSI Systems' Solution Engine and Renesas Technology's E10A simple emulator - are supported as development environment tools. User development of various protocol stacks is supported by the third-party providers.
Renesas Technology
www.renesas.com
Tel: +44(0) 1628585100

Claim for smallest Schottky diode

The IRI40CSP Flipky device in a standard ball-grid array (BGA) package occupies $2.25 \mathrm{~mm}^{2}$. According to the supplier, this is 86 per cent smaller than the standard SMA package. The 1A, 40V Schottky diode is a four-ball, 1.5 x 1.5 mm device with a height of less than 0.8 mm .
The BGA package enables size reduction and better heat transfer away from the die junction to the circuit board.
Since this device is made with chip scale packaging, it dissipates heat directly from the die into the air, increasing thermal efficiency. Thermal resistance junction-to-ambient is $75^{\circ} \mathrm{C} / \mathrm{W}$ maximum and thermal resistance junction-toPCB is typically $55^{\circ} \mathrm{C} / \mathrm{W}$. International Rectifier
www.irf.com
Tel: +44(0) 2086458003

Filterless class D audio amplifier

Maxim Integrated Products is offering a filterless class D audio amplifier. The Max 9712 offers class AB circuit design with no output filters and class

Thermistors are linear

Betatherm has introduced what it believes is the world's first standard linear series of NTC thermistor probes. Betalinear thermistors, available from Sequoia Technology are based on a combination of precision resistors and thermistors, which
together generate a linear response to temperature. The linear composite typically consists of two or three sensor elements; the most popular being 36 K 53 Al , which uses two thermistor elements (30 K 5 and 6 K 3) and appropriate resistors to
give a linear output between 0 and $100^{\circ} \mathrm{C}$. The circuit designs can accommodate various circuit mounting options. These include custom probe assemblies for the thermistor sensing elements and mounting precision resistors at board level in a control module. It is also possible to package the thermistors and resistors that form the linearisation circuit into one probe construction. The networks are suitable for temperature measurement and control from -30 to $+100^{\circ} \mathrm{C}$ and can be configured in either resistance or voltage mode where they can provide up to ten times the voltage output of a thermocouple sensor. Betatherm Tel: 35391753238

AB audio performance (0.06 per cent THD +N), with 90 per cent class D efficiency, says the company. The device uses a modulation scheme that meets FCC radiated emissions standards without the need for an output filter or ferrite beads. It operates over a 2.4 to 5.5 V supply, has a fixed gain of 12 dB and produces up to 500 mW per channel into an 8Ω load. High 70dB PSRR at 217 Hz allows operation directly from a single lithium-ion cell without the need for additional supply conditioning. It includes four clocking options to optimise the noise spectrum for a given application. These include three internally generated clock rates and a fourth unique external-clock mode, letting the user control the exact placement of the switching energy. Multiple device scan operate in a masterslave configuration. It comes in 12-pin UCSP ($1.5 \times 2 \times$ 0.6 mm), ten-pin DFN ($3 \times 5 \times$ 1 mm) packages.
Maxim
www.maxim-ic.com
Tel: +44(0) 1189303388

Circular Dins for automotive use

ITT Cannon's APD circular DIN72585 connectors are for automotive, transport and industrial environments, including those subject to shock and vibration. Available in one, two, three, four, six and seven way configurations, the connectors come with a bayonet coupling or as a flanged version. The one way circular connector can handle up to 245A using a 50 mm square wire cross section. The dual way has two cavities that can accommodate 16 mm square wire cross section with a current capability of 74A. Two, three and four contact connectors have a maximum current rating of 30 A , while six and seven way products handle 16A.
ITT Canon
www. ittcannon.com
Tel: 497151699252

CIRCUITIDFAS

Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity. Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly. Where software or files are available from us, please email Jackie Lowe with the circuit idea name as the subject. Send your ideas to: Phil Reed, Highbury Business Communications, Nexus House, Azalea Drive, Swanley, Kent, BR8 8HU email ewcircuit@highburybiz.com

Bipolar reference generator from a printer port

Using a small and low cost circuit Fig. 1. with simple control software, you can extend the utility of your PC's printer port for yet another purpose. With your printer port, you can implement a versatile programmable bipolar reference generator by using this circuit. Built using a few readily available low cost components, the circuit occupies a very small space and can be easily attached to the printer port of your PC. You can effectively use this programmable reference generator as a 'stable reference source' for testing your circuits without going for a big, mains powered general-purpose reference generator or any PC add on cards. Further, with this design, you need not turn pots or set thumb wheel switches for setting or changing the reference output to any desired value. All you need to do is just enter the desired voltage and the PC does the rest to set the reference output to the desired bipolar value!
As shown in Fig.1. the circuit uses a low power, programmable 13-bit DAC (IC1, MAX5130), a
programmable inverting amplifier (IC2, OP07) and a polarity control switch (IC3, MAX4541CPA). The PC, depending on the reference output required by the user, controls the DAC using three-wire serial interface. Thus the data lines D_{0} to D_{2} of the data port ($0 \times 378 \mathrm{~h}$) of printer interface are used by the PC for sending the Chip Select (/CS), data(DATA) and clock (CLK) signals to the DAC. Depending on the data sent by the PC, the DAC produces a voltage output in the range of $0-4.0955$ volts in 8192 steps with a step resolution of 0.5 mV . Thus data of $0 \times 4000 \mathrm{~h}$ to the DAC produces the DAC output of 0.00 volts while the data of $0 \times 5 \mathrm{fffh}$ results in the DAC output of 4.0955 volts. Using the 2.5 volts internal reference available in the DAC itself, the output of the DAC and the data input are related as per the following equation:
$\mathrm{V}_{\text {out }}=+/-(2.5 *($ DATA/8192)*GAIN)
where DATA is the decimal equivalent of binary data sent to the DAC and GAIN is the gain of the DAC's

Fig. 1. Using this simple circuit, a printer port makes a versatile PC based programmable bipolar reference generator.
D25 Connector

```
Listing 1
/***Turbo C program for "Printer port implements a pro-
grammable bipolar reference generator***/
    /******Author: K.Suresh, MSD, IGCAR, Kalpakkam,
Tamil Nadu, India 603102****/
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<bios.h>
#include<dos.h>
#define CLK1 0x04 
#define Cs0 Oxfe
/*
Chip Select low to activate DAC*/
#define DATA1 0x02 /* Data
Pulse High*/
#define DATAO Oxfd /* Data
Pulse low*/
#define PLUSVREF 0x00
=positive*/
#define MINUSVREF 0x08
tive*/
int c[16],dport, ACTUALDATA,out,k; /*Global Declarations*/
float Vref ;/*Desired Reference output*/
void d2b(unsigned int x, int*c)/*Routine for Decimal to
Binary Conversion*/
{
int i;
for(i=0;i<=15;i++)
*(c++)=(x>>1) & 0xl;
}
float SETREF(void) /*Routine for getting the required
reference output from the user*/
{
int Vin;
printf("\n Enter the desired reference output Vref( -4.0955
V to 4.0955V):");
scanf("%f",&Vin)
while((Vin<-4.0955)|| (Vin>4.0955))
    {
        printf("\n ERROR!1! Vref Out of Range(-4.0955 V to
4.0955V)!");
printf("\n Press any key to continue");
getch();
    printf("\n Enter the desired reference output Vref( -
4.0955 V to 4.0955V):");
scanf("%f",&Vin);
    }
vref=Vin;
printf("\n Your Desired Reference is =%f\n",Vref)
return Vref;
}
void SETPOLARITY( float Vref ) /* Routine for setting the
Vref Polarity*/
{
if (Vref<0.0)
{
out|=MINUSVREF;
    outportb(dport,out); /* Set the Vref polarity as nega-
tive*/
}
else
out|=PLUSVREF;
outportb(dport,out); /* Set the Vref polarity as
positive*/
    }
}
void CLOCK_DAC(void)/*Routine for clocking the DAC*/
{
out|=CLK1;
outportb(dport,out);/*Setting the clock high*/
```

delay(1)
out\&=CLKO;
outportb(dport,out);/*Setting the clock low*/
delay(1):
\}
void LOAD DACDATA(int*C)/*Routine for loading actual data into the DAC*/
$\{$
out $\mid=C S 1$;
outportb(dport, out);/*Chip select high to disable DAC*/
delay(1):
out\&=CSO;
outportb(dport, out);/*Chip Select low to enable DAC*/
delay(1);
printf("\nDATA loaded into the DAC=");
for ($k=15 ; k>=0 ; k$)
\{
out $\mid=c[k]$:
outportb(dport,out)
printf("qd", (c\{k]<<1))
delay(1);
CLOCK_DAC ();
\}
out $\mid=C S 1$
outportb(dport,out)
delay(1):
\}
main()
\{
int v,inc;
float y;
unsigned int x;
double fraction, integer, number;
clrscr();
printf("\tPrinter Port as a Programmable Frequency
Generator") ;
printf("\n\t\t\t by\n");
printf("\tK.Suresh,MSD, IGCAR,Kalpakkam,TamilNadu-
603102,India")
dport $=$ peek $(0 \times 40,8) ; /$ ©heck up for availability of printer Port*/
if (dport==0)
\{
printf("\n\n LPT NOT AVIAILABLE! EXITING........");
exit(1);
\}
printf("\n\naddress of the printer port found
=0x\% $\mathrm{X}^{\prime \prime}$, dport) :
SETREF();
out $=0 \times 00$;
SETPOLARITY(Vref);
$y=($ Vref*8192) $/(2.5 * 1.6384)$;
$\mathrm{v}=\mathrm{y} / 1$;
number=y;
fraction $=\operatorname{modf}($ number, \&integer $)$;
if (fraction<0.44)
inc=0;
else inc=1;
ACTUALDATA $=16384+v+i n c ; / * A C t u a l$ data including the Control Word for DAC*/
d2b(ACTUALDATA, $c)$;
LOAD_DACDATA(c);
return 0 ;
\}
outportb(dport, out); /* Set the Vref polarity as nega-
tive*/
else
\{
out $\mid=$ PLUSVREF;
outportb(dport,out); /* Set the Vref polarity as positive*/
\}
void CLOCK_DAC(void)/*Routine for clocking the DAC*/
out|=CLK1;
outportb(dport,out);/*Setting the clock high*/
internal amplifier, usually set to 1.634 .
Normally the DAC output is unipolar (positive) only. As is normally done, you can also operate the DAC in bipolar mode with internal reference with an additional op amp as specified in the device data sheet. But here the range of the output is limited to -2.499 V to +2.499 V (for MAX5130) only. However, the present design enables you to overcome this and get an extended range of reference of -4.0955 V to +4.0955 V with a step resolution of 0.5 mV . As shown in the Fig. 1, you can achieve this extended bipolar output by using the programmable inverting amplifier (IC2) and the polarity control switch (IC3) combination. Depending on the control signal output at Pin 5(D_{3} of Data Port 0×378), the polarity control switch is either closed $\left(D_{3}=\operatorname{logic} 1\right)$ or open ($\left.D_{3}=\operatorname{logic} 0\right)$. This makes the programmable inverting amplifier function either as a unity gain inverting amplifier or as a unity gain buffer. If a positive reference output is required, the switch is opened by sending $0 \mathrm{~V}(<0.8 \mathrm{~V}, \operatorname{logic} 0)$ at D_{3} making IC2 work as a unity gain buffer. Then the DAC positive output is buffered by IC2 before being available at the output as $+\mathrm{V}_{\text {REF }}$. When a negative reference output is needed, the switch is closed by sending a $+5 \mathrm{~V}(\operatorname{logic} 1)$ at D_{3} and the positive DAC output is amplified by IC2 with a gain of -1 . The desired $-V_{\text {REF }}$ is now available at the output. Thus by controlling the 16 -bit data sent to the

DAC and the polarity control switch, the programmable reference generator can be made to output any user desired output.
The control software for this bipolar reference generator written in Turbo C is given in Listing 1. The software obtains the desired Vref from the user, checks the set value lying within the range of -4.0955 V to +4.0955 V . If it lies within the range, the program proceeds further. However, if the set value lies outside the allowed range, an error message warns the user about the over range and asks the user to input a correct Vref. When the desired Vref lies within the allowed range, the program first sets the polarity of the desired Vref by sending appropriate logic signal at pin 5 of the printer port and then calculates ACTUALDATA to be sent to the DAC. The d 2 b routine converts the ACTUALDATA into 16 -bit binary data. The program then enables the DAC (/CS= low) and then serially clocks the binary equivalent of ACTUALDATA, starting from MSBit to LSBit, one by one, to the data pin of the DAC. With LSB set at the data pin, the low to high transition of the clock latches the ACTUALDATA completely into the DAC. Now the user set Vref is available at the output!
K. Suresh

Kalpakkam
Tamil Nadu

Current-to-current converter

A current to current converter may often be needed if you have a fixed reference current source of current of the order of say, tens of microamperes and would like to have a current higher or lower than this for your application and to switch or change the direction of the input reference current.

Non inverting Current-to-current converter

You can build a programmable current source of any value higher than input current just by adding two resistors R_{1} and R_{2} to a unity gain bufferlvoltage follower as shown in Fig 1. a \& b.
The input current I_{1}, from an external current source that is to be scaled up flows through R_{1} (assuming that the bias current of the op amp is negligible) and creates a voltage drop $I_{1} R_{1}$ across R_{1}. Since the voltage follower has a severe negative feedback, the error voltage across its
inverting and non-inverting input terminals should ideally be zero. Therefore the potential at the output of the op amp has to be same as the potential at the non-inverting input. Since one end of R_{1} and R_{2} are tied together, the potential across R_{2} has to be same as the potential across R_{1}.
Potential across $\mathrm{R}_{2}=\mathrm{I}_{2} \mathrm{R}_{2}=\mathrm{I}_{1} \mathrm{R}_{1}$
The output current is sum of the input current flowing through R1 and the current supplied by the op amp flowing through R2

$$
\begin{aligned}
\mathrm{I}_{0} & =\mathrm{I}_{1}+\mathrm{I}_{2} \\
& =\mathrm{I}_{1}+\left(\mathrm{I}_{1} \mathrm{R}_{1}\right) / R_{2}=\mathrm{I}_{1}\left(1+\mathrm{R}_{1} / R_{2}\right) \\
\mathrm{I}_{0} & =\mathrm{I}_{1}\left(1+\mathrm{R}_{1} / R_{2}\right)
\end{aligned}
$$

The current gain is always greater than unity, which means that the output current to the load RL is always

Fig 2a.Current Sinks

Fig.2b.Curneni Source

Fig. 2. Inverting current to current converter
greater than the input current. The direction of the current that is delivered to the load is same as the direction of the input current.

The bias current of the op amp determines the minimum value of input reference current that can be handled. An FET op amp with very low input bias current and offset voltage would be a suitable choice for this application Cl \& C2 are the recommended decoupling capacitors for the op amp.

Inverting current-to-current converter

Fig. 2. is another current-to-current converter where output current to the load RL can be greater or lesser or equal to the input current with the direction of the output current changed.

The input current from a current source (assuming that the bias current of op amp is negligible) flows through R_{1} and creates a voltage drop $I_{1} R_{1}$ across the feedback resistor \mathbf{R}_{1}. The negative feedback forces the potential across inverting and non-inverting input to be zero. Therefore the potential across R_{2} has to be the same as the potential across \mathbf{R}_{1}.

$$
\mathrm{I}_{\mathbf{1}} \mathbf{R}_{1}=\mathrm{I}_{2} \mathbf{R}_{\mathbf{2}}
$$

If the bias current of the op-amp is negligible, the current through the resistor R2 and the current through the load RL is same.

$$
\begin{aligned}
& \mathrm{I}_{0}=\mathrm{I}_{2} \\
& \mathrm{I}_{0}=\mathrm{I}_{1}\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)
\end{aligned}
$$

An input current I_{1} that is sourced out from a current source causes a current I_{0} to $\sin k$ into the load R_{L} and vice versa as shown in the Fig.2. a \& 2b. Therefore I_{0} may be written as

$$
I_{0}=-I_{1}\left(R_{1} / R_{2}\right)
$$

The bias current of the op-amp determines the minimum value of input reference current that can be handled. An FET op amp with very low input bias current and offset voltage would be a suitable choice for this application C1 \& C2 are the recommended decoupling capacitors for the op amp.
V. Manoharan

Kochi
Kerala
India

Using Multiple-purpose Timer Chip to Build Inverting SMPS

Both positive and negative supply voltages are usually required for driving most op-amp. circuits, RS-232 line drivers, A / D and D / A conversion circuits, etc. As the power requirement of these circuits is generally small, an inverting regulator that generates negative supply from the positive one is a preferable alternative rather than employing a full line dual power supply. Despite the fact that this task can be easily accomplished by using a singlechip charge-pump, building an inverting switched mode regulator using an off-the-shelf multiple-purpose chip is interesting as it incorporates the educational aspects of understanding the principles of switched mode power supply.

The circuit being described in this article uses the popular 555 timer chip as a controller for inverting switched mode power supply to generate -5 V from +5 V supply. The timer is configured as an astable multivibrator with timing controlled by $R_{1}, R_{2}, C_{1}, V_{C C}$, and upper threshold voltage $V_{T U}$. The output high time of the timer is determined by the time required to charge C_{I} from $-V_{T U}$
to $V_{T U}$ through $V_{C C}, R_{1}$, and R_{2} that can be expressed by: $t_{h i}=\ln \left[\frac{V_{C C}-\frac{1}{2} V_{T U}}{V_{C C}-V_{T U}}\right]\left(R_{1}+R_{2}\right) C_{1}$
The $V_{T U}$ itself depends on $V_{C C}, 3 \times 5 \mathrm{k} \Omega$ internal resistors of the timer chip, feedback circuit R4, and VA through following equation.
$V_{T U}=V_{C C}-5 K \Omega \frac{V_{C C}\left(R_{4}+10 K \Omega\right)+10 K \Omega V_{A} \mid}{15 K \Omega R_{4}+5 K \Omega 10 K \Omega}$
The output low time of the timer is determined by the time required to discharge C_{I} from $V_{T U}$ to $V_{T U}$ through R_{2} and the internal discharge transistor of the chip which can be expressed by:
$t_{i o}=\ln (2) R_{2} C_{1}$

CIRCUIT IDEAS

The buck-boost switched mode regulator circuits consist of $Q_{2}, L_{1}, D_{1}, C_{2}$, and C_{3}. When the output of the timer chip is high during $t_{\text {hi }}, Q_{1}$ and Q_{2} will be turned on and energize inductor L_{l}. When the output of the timer chip is low during $t_{l o}, Q_{1}$ and Q_{2} will be turned off and L_{1} releases its energy to C_{2} and C_{3} through $D 1$ and thus generates negative voltage V_{A}. The value of V_{A} depends on $V_{C C}$, and also the on and off time of Q_{J} through following relation. $V_{A}=-V_{c c} \frac{t_{H i}}{t_{10}}$

As $t_{h i}$ itself depends on V_{A}, the timer chip serves as an active low pulse position modulator that regulates the output voltage. If V_{A} decreases (becomes less negative), VTU will increase and yield larger thi that implies higher energy to energize the inductor. This increase in $t_{h i}$ will then restore the intended value of V_{A} back. The opposite story will take place when V_{A} increases. Additional ripple filtering and voltage regulation are then carried out by R_{7}, D_{2}, C_{4}, and C_{5}.
Henri P. Uranus
Enschede Netherlands

Filectionics World reader ofer:

Save $\mathbf{£ 2 0}$ on a DataStation ${ }^{\text {™ }}$ development kit and get free delivery!* Get a DataStation plus development board and cable for just $£ 99$ +VAT (Normally priced at £1 19.50 + delivery).
DataStation ${ }^{\top M}$ is a 16 channel, software configurable I/O module offering more than 500 samples per second and 391 different I/O configurations from a single product. This unrivalled flexibility makes DataStation suitable for virtually any PC driven monitoring or control application. Please send your completed coupon and payment to:

EW Reader Offer

Observant Electronics Ltd. Unit F2b, Avonside Enterprise Park, Melksham, Wiltshire SN1 2 8BS

Alternatively call 01225704631 or fax your order to 01225708618.
*Note: free delivery is only available within the UK. For delivery outside of the UK please add $£ 2.50$.

Ofier valid until $28^{\text {th }}$ Wovemher 2003

Specifications:

Max Analogue Inputs: 6

ADC resolution:
Sample Rate:
Max PWM outputs:
Max PWM resolution:
Max Digital inputs:
Max Digital outputs:
Interface:
Supply Voltage:
Supply Current:
Dimensions:

8 or 12-bit selectable
> 500 samples per secon
2
10 bits
16
16
RS-232
7 to 35 v dc 15 mA typical $99 \times 82 \mathrm{~mm}$

Electronics World reader offer: x1, x10 switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

Probes

\qquad Name

Address \qquad

Postcode
Telephone
Method of payment (please circle)
Cheques should be made payable to Electronics World Access/Mastercard/Visa/Cheque/PO

Credit card no \qquad

Card expiry date Signed
Please allow up to $\mathbf{2 8}$ days for delivery

Seen on sale for $£ 20$ each, these highquality oscilloscope probe sets comprise:

- two $\times 1, \times 10$ switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5 m-long BNC-to-BNC links. Each probe has its own storage wallet. To order your pair of probes, send the coupon together with $£ 21.74$ UK/Europe to Probe Offer, Jackie Lowe, Highbury Business Communications,
Nexus House, Azalea Drive, BR8 8HU
Readers outside Europe, please add $£ 2.50$ to your order.

Specifications

Switch position 1

Bandwidth
Input resistance
Input capacitance
Working voltage
Switch position 2
Bandwidth
Rise time
Input resistance
$1 \mathrm{M} \Omega$
Input capacitance
Compensation range
Working voltage
DC to 10 MHz
$1 \mathrm{M} \Omega$ - i.e. oscilloscope i/p $40 \mathrm{pF}+$ oscilloscope capacitance 600 V DC or pk-pk AC

DC to 150 MHz
2.4ns
$10 \mathrm{M} \Omega \pm 1 \%$ if oscilloscope i/p is
12 pF if oscilloscope i / p is 20 pF 10-60pF
600 V DC or pk-pk AC
Switch position 'Ref'
Probe tip grounded via $9 \mathrm{M} \Omega$, scope i/p grounded

Capacitor \& Amplifitier Distortions

Cyril Bateman uses his real-time distortion measuring system to investigate capacitor distortions in audio power amplifiers

Assembled using polar aluminium electrolytic capacitors for $\mathrm{Cl}, 3,9$ and 11 , my workhorse 100 watt Maplin Mosfet amplifier, tested at 1 kHz and 25 watts into an 8Ω load, measured -81.5 dB second harmonic, -91.4 dB third harmonic, clearly meeting its claimed less than 0.01% distortion ${ }^{1}$. Fig. 1.
Replacing the four polar aluminium electrolytic capacitors in this schematic, with the same value and voltage rating bi-polar electrolytics and no other changes, amplifier distortion improved dramatically, becoming -92.1 dB second and -94.3 dB third harmonic, re-measured a few minutes later. This article is
based on more than eighty distortion measurements, taken while investigating the possible reasons for these improvements.
In the past, many amplifier designers have stated that provided the capacitance value is chosen to ensure only a small AC signal voltage drop can appear across capacitors at the lowest frequencies, then capacitor distortion can be ignored.
My original Capacitor Sounds series 2 found measurable distortions occurring in un-biased polar aluminium electrolytic capacitors tested at 0.1 volt AC, my smallest practical test voltage. With signals this small, second harmonic of the lowest distortion $100 \mu \mathrm{~F} 25$ volt DC

Fig. 1. Schematic circuit of my Maplin Mosfet 100W amplifier, redrawn for convenience using my Microcap MC6 circuit simulator.
rated polar capacitor I tested, measured -99.5 dB with 6 volt bias and -94.4 dB with 12 volt bias. Using 0.2 volt AC and larger test voltages, second and third harmonic distortions in polar aluminium electrolytic capacitors increase dramatically, measured with and without DC bias voltage.
Tested using a 1 volt signal, this capacitor's third harmonic remained close to -100 dB , with no bias its second harmonic was -93.2 dB , increasing to -77.9 dB at 6 volt bias and -72.9 dB with 12 volt bias. Application of a very small, optimal bias, typically less than 3 volts DC , to selected capacitors may minimise the second harmonic, however for every electrolytic capacitor I tested, further increase of bias voltage resulted in increased second harmonic distortion.
Contrary to the popular belief that a polar aluminium electrolytic capacitor should be biased to 50% rated voltage for minimal distortion, my measurements show that second harmonic distortion can only be minimised by using very small or no DC bias. Any further increase in DC bias increases the second harmonic generated by the capacitor.
Application of DC bias at 50% of the capacitor's rated voltage as shown in the figure, results in exceptionally large second harmonic distortions, even for this, the lowest distortion, the best polar capacitor, of those measured. Fig. 2.
At very low frequencies, as capacitor impedance increases, signal
voltages could occur in the circuit sufficient to generate measurably increased distortion. However at my 1 kHz distortion measurement frequency, all four capacitors have low impedance, so are subject only to small AC signal voltage drops, apparently not sufficient to explain my measured reduction in distortion when replaced by the same value and voltage bi-polar types.
At a given test frequency, capacitor distortions do vary with capacitor AC signal levels and DC bias voltage, but for my Maplin amplifier comparison tests, nominal capacitance values were unchanged so both sets of polar and bi-polar capacitors experienced the same signal voltages. Why should simply changing these capacitors from polar to bi-polar types, provide such benefit?

Capacitor C3 conditions

I ran a few simulations to identify the capacitor most likely to influence this amplifier's distortion. As in many power amplifiers, a $47 \mu \mathrm{~F}$ polar aluminium electrolytic capacitor, C3, is used in the feedback network, to roll off amplifier gain at low frequencies, minimising DC offset at its output. With $33 \mathrm{k} \Omega$ for R7 and $1 \mathrm{k} \Omega$ for R 6 , this capacitor is presented with a high impedance for charge and discharge currents. My original Capacitor Sounds measurements used lower impedances. Might this high impedance condition affect the capacitor's distortion contributions?
It seemed possible that distortions generated in the capacitor result from two mechanisms, a current dependant component in addition to the voltage component already identified. Throughout that series, I related distortions measured in capacitors to their signal and bias voltages, using test circuit source impedance some two thirds that of the capacitor's at 1 kHz for values to $1 \mu \mathrm{~F}, 100 \mathrm{~Hz}$ for $1 \mu \mathrm{~F}$ and larger values.
I expected to find some third harmonic current dependency from non-ohmic resistances in the capacitor internal connections. Second harmonic distortions in capacitors result from dielectric absorption effects, DC bias and test voltage level, so I wondered whether a change of measuring current with constant bias and test voltage, would reveal changes also in the second harmonic?
In my original Capacitor Sounds series I described test equipment designed and built to measure capacitor distortion at 100 Hz and 1 kHz . For another project last year I

Fig. 2. Distortion results for a Silmic $100 \mu \mathrm{~F} 25$ volt rated polar aluminium electrolytic capacitor, with 12 volt DC bias and tested using 10Ω source impedance generating 1 volt across the capacitor. With no bias, second harmonic distortion for this capacitor was -93.2 dB and -77.9 dB with 6 volt bias.
assembled a 5 kHz test oscillator, buffer amplifier, notch filter/preamplifier, using 1 kHz PCBs with smaller tuning and filter capacitors.
Following a few tests, I found this equipment could develop an undistorted 0.5 volt 5 kHz signal across my $1 \mu \mathrm{~F}$ FKP reference capacitor using 100Ω source impedance. I could measure distortions produced by a $1 \mu \mathrm{~F}$ polar aluminium electrolytic capacitor at three test frequencies, $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 5 kHz , using 100Ω source impedance, increasing capacitor test current from $314 \mu \mathrm{~A}$ at 100 Hz to 15.7 mA at 5 kHz at constant test voltage. Perhaps that would clarify any capacitor current dependant component.
Using 100Ω source impedance and no bias, I adjusted test levels to develop a 0.5 volt AC voltage across the capacitor at each frequency.
Second harmonic distortion increased by 8 dB and third harmonic 4.3 dB with this change of capacitor current. Clearly both second and third harmonic distortions do increase with capacitor current and AC voltage drop.

Second harmonic distortion increases rapidly with DC bias voltage.

Circuit conditions

A few simulation runs using measured capacitance and ESR values by frequency, would establish the voltage and current for capacitor C 3 , from 10 Hz to 20 kHz and beyond. Analogue behavioural modelling techniques could be used, but determining the capacitor model can be time consuming and many readers may not have a suitable simulator. Far simpler and quicker - make several frequency runs using measured values for a specific frequency in turn, noting the result for that frequency. This method is practical using the simplest simulator.

Fig. 3. To simplify my simulations, 1 extracted the C3 and C7 capacitor sub circuits from the Figure 1 schematic and used the amplifier output voltage as my calculation stimulus. Much simpler, quicker and less prone to simulation errors than when modelling the amplifier.

Table 1: With 0.5 volt AC test voltage, 100Ω source impedance and no bias, I found second and third harmonic distortion increasing with capacitor current. Clearly both second and third harmonic distortions do increase with capacitor current, voltage drop and second harmonic with DC bias.

Frequency	Impedance	Test Current	Second Harmonic	Third Harmonic	\% T.H.D.
100 Hz	100Ω	$314 \mu \mathrm{~A}$	-107.8 dB	-115.7 dB	0.00047%
1 kHz	100Ω	3.14 mA	-102.4 dB	-111.6 dB	0.00083%
5 kHz	100Ω	15.7 mA	-99.8 dB	-111.4 dB	0.00117%

Table 2: Measured values of a $47 \mu \mathrm{~F} 50$ volt Panasonic ' \mathbf{S} ' bi-polar aluminium electrolytic capacitor as used for C 3 , with results from my eight simulation runs

Measured Values.			
Frequency	Capacitance	Actual ESR	Impedance.
10 Hz	$49.08 \mu \mathrm{~F}$	25.74Ω	325.29Ω
20 Hz	$48.54 \mu \mathrm{~F}$	12.97Ω	164.52Ω
100 Hz	$45.41 \mu \mathrm{~F}$	1.862Ω	35.09Ω
300 Hz	$44.24 \mu \mathrm{~F}$	0.575Ω	12.01Ω
1 kHz	$43.4 \mu \mathrm{~F}$	0.272Ω	3.67Ω
3 kHz	$42.74 \mu \mathrm{~F}$	0.210Ω	1.26Ω
10 kHz	$41.71 \mu \mathrm{~F}$	0.191Ω	0.426Ω
30 kHz	$40.00 \mu \mathrm{~F}$	0.182Ω	0.225Ω

Simulation Results.	
Voltage drop	C3 Current
270.82 mV	$832.0 \mu \mathrm{~A}$
138.02 mV	$832.03 \mu \mathrm{~A}$
29.28 mV	$832.31 \mu \mathrm{~A}$
10.07 mV	$832.33 \mu \mathrm{~A}$
3.05 mV	$832.35 \mu \mathrm{~A}$
1.05 mV	$832.35 \mu \mathrm{~A}$
0.35 mV	$832.35 \mu \mathrm{~A}$
0.18 mV	$832.35 \mu \mathrm{~A}$

Fig. 4. One of eight simulations needed to accommodate C3 measured parameters by frequency, showing the 1 kHz results. Voltage across C3 reduces with frequency but current through C3 remains almost constant regardless of frequency.

I extracted the feedback resistor network with this capacitor from the main circuit and used the amplifier's output voltage for 100 watt into 8Ω as the stimulus. I measured a radial lead, $47 \mu \mathrm{~F} 50$ volt Panasonic ' S ' bipolar electrolytic, the type used when exchanging the capacitors, for capacitance and ESR by frequency. Self resonance was 300 kHz , so estimating 10 nH for its self inductance, typical of many radial lead aluminium electrolytics in a $20 \times 10 \mathrm{~mm}$ case, completed the model. Fig. 3.
Using my Hewlett Packard reference test jig and Wayne Kerr B6425 precision digital LCR meter, I measured this capacitor from 10 Hz to 30 kHz , for capacitance value and ESR. These pairs of values were inserted into the model in turn for each of eight simulation runs, noting the voltage drop across the capacitor model, from the negative side of the 10 nH to the junction of ESR and R6, also C3 through current.
For each run, similar voltage and current plots were observed with subtle changes at the frequency of interest, for the capacitor parameters used. Clearly capacitor signal voltage does reduce with increasing frequency but capacitor current remains almost constant, generating a near constant level of current dependant distortion. Fig. 4

Protection Diodes

Most published amplifiers using a polar aluminium electrolytic capacitor for this C3 position add a diode or pair of diodes in parallel, to

Fig. 5. A Rubycon YXF $47 \mu \mathrm{~F} 25$ volt rated polar aluminium electrolytic capacitor tested at 100 Hz and 200 mV with diodes. Without diodes, third harmonic was $\mathbf{- 1 2 2 . 6 7 d B}$, a more than 20 dB improvement. At this test voltage, low level AC mains harmonics cannot be eliminated, for clarity test frequency was 103.8 Hz and mains peaks labelled.
protect the capacitor should the amplifier 'go DC' with its output voltage 'stuck' to a supply rail. It has often been claimed such diodes do not distort at the capacitor's signal voltage levels, but I wondered if that were correct. Using a pair of 1 N4448 diodes and my $1 \mu \mathrm{FFKP}$ reference capacitor, I made measurements at 1 kHz with 100Ω source impedance and test voltages of $75 \mathrm{mV}, 100 \mathrm{mV}$, 150 mV and 200 mV , comparing distortion results with and without diodes.

Measured with diodes, third harmonic distortion was visible at -110 dB for the 75 mV test, increasing to -100 dB for 100 mV and -84.9 dB tested at 200 mV , when a fifth harmonic at -100 dB was seen. These harmonics result from the diodes conducting slightly at these test voltages since without diodes, my FKP reference capacitor was distortion free.
I measured distortions at 100 Hz , with and without diodes, for a variety of $47 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$ polar aluminium electrolytic capacitors, rated at 25 volt and 50 volt, comparing these results with those for the same value bi-polar electrolytics. The results were overwhelmingly conclusive. At 200 mV with diodes, third harmonic distortion increased by 20 dB with polar and bi-polar capacitors. At 100 mV I found smaller increases of third harmonic, depending on the level of distortion generated by the capacitor without diodes. Tested at 0.1 volt with diodes, this capacitor generated -96.8 dB second and -108.2 dB third harmonic distortion. Fig. 5.
I question whether these protection diodes are necessary for polar aluminium electrolytic capacitors in this circuit. They certainly are not needed using a bi-polar aluminium electrolytic capacitor of rated voltage similar to the amplifier's power supply voltage. That capacitor will happily survive indefinitely, regardless of whether the amplifier has 'gone DC' or is working correctly. More important it will generate almost no measurable distortion. Fig. 6.

All polar aluminium electrolytic capacitors inherently include a reverse polarity diode ${ }^{3}$ so should an amplifier 'go DC', reverse polarising the capacitor by more than 1 volt, capacitor reverse leakage current increases causing a voltage drop across R7. With ± 50 volt power supplies and $10 \mathrm{k} \Omega$ for R7, current cannot exceed 4.8 mA . This reverse current may degrade the capacitor which should be replaced during

Fig . 6. Without diodes, but otherwise exactly as Figure 5, this Panasonic 'S' $47 \mu \mathrm{~F} 50$ volt bi-polar aluminium electrolytic capacitor shows the distortion reduction available by changing a polar capacitor for a bi-polar type. With diodes, third harmonic increased more than 20 dB to $\mathbf{- 9 9 . 2 4 d B \text { , further proof of }}$ the diode effect.
repair, but is most unlikely to result in capacitor failure.

Zobel circuit

Many designers have expressed concern to me about the output stage CR Zobel network, that the signal voltage across resistor R15 with this resistor's voltage coefficient might generate audible distortion. With C7
and R15 already modelled, we can quickly explore this Zobel network.
With typical component values of $0.1 \mu \mathrm{~F}$ and 4.7 to 10Ω, the $0.1 \mu \mathrm{~F}$ capacitor sustains almost all the amplifier output voltage at least to 10 kHz and is more highly stressed than the resistor. At higher frequencies, resistor voltage increases but capacitor voltage reduces little.

Technical support

Full details of the 'Real Time' hardware test method and my original Capacitor Sounds low distortion oscillator, buffer amplifier, notch filter/preamplifier and DC bias assemblies, complete with parts lists, assembly manuals and full size printed circuit board drawings, as .PDF files arranged for easy viewing of the figures, on screen or hardcopy, are provided in my CD.
This CD includes updated and much expanded re-writes with very many more figures, of my first series Capacitor Sounds articles, supported now by some ninety capacitor distortion measurement plots as well as articles from this new Capacitor SoundsII series.
Also included are PDF re-writes of my earlier Understand Capacitors series together with articles on how to diagnose failed printed board mounted capacitors and essential low cost capacitor measurement methods, more than twenty popular articles.
This CD costs $£ 15$ Sterling inclusive of post \& packing.
I can also supply sets of three professionally manufactured printed circuit boards, FR4 with legend and solder resist also four gang potentiometers, as described in my original Capacitor Sounds articles.
One set of boards costs $£ 27.50$ but due to weight, post and packing is extra.
Four gang potentiometer if ordered together with PCBs costs $£ 5.00$.
Post packing UK and EU $£ 3.50$
Rest of World $£ 7.50$
Send cheques or postal/money orders in Pounds Sterling only to:-
C. Bateman.
'Nimrod' New Road. ACLE. Norfolk. NR13 3BD.
England.

Fig.7. Using the Figure 3 simulation circuit to analyse for $C 7$, we see the capacitor is highly stressed not resistor R15 and badly chosen C7 can generate large distortion. When an amplifier is used for high frequency sinewave tests with or without load, this capacitor frequently fails open, disabling the Zobel, the amplifier may oscillate. Yet R15 is frequently specified as 3 watt rating and C7 ignored.

Fig. 8. Actual measured distortion of the 'stacked' metallised PET capacitor in the Self Blameless 50 watt class B design, at 8 watts power in an 8Ω load. Distortion will increase rapidly with increasing power output.

With 100 watts output into 8Ω at 20 kHz , the capacitor must still withstand more than 28 volts while the resistor is subject to less than 2 volts or 0.6 watts. At such voltage a metallised PET capacitor can generate significant distortion. Fig 7 .

My test equipment cannot generate that voltage so I measured C7 distortions using an eight volt signal and 100Ω source impedance, equivalent to 8 watts power output, representative perhaps of normal
listening. I measured a $0.1 \mu \mathrm{~F}$ 'stacked' metallised PET capacitor, the unused spare for my 'Self' amplifier. At 8 watts output this capacitor generated -113.5 dB third and -126.3 dB fifth harmonic, distortions which would be reflected into the feedback network. Fig. 8.
Apart from this distortion, at 20 kHz and 100 watts, this capacitor is subjected to more than twice the permitted sine wave rating for an Evox-Rifa MMK $0.1 \mu \mathrm{~F} 63$ volt

metallised PET capacitor while almost any resistor easily manages the less than 2 volt and 0.6 w R15 dissipates. To minimise distortion in normal use and survive no-load sine wave testing, the capacitor choice for this network is important. I prefer a foil and Polypropylene or Polyphenylene Sulphide capacitor.

Input capacitor C1

Many designs use an unbiased 10$22 \mu \mathrm{~F}$ polar aluminium electrolytic capacitor, C 1 , to input the signal and block unwanted DC from entering the power amplifier, assuming that if sized to ensure minimal signal voltage across the capacitor at low frequency, low distortion is guaranteed. That may well be correct provided the capacitor is not subjected to DC bias. More than a few volts bias will result in second harmonic distortion which will be amplified.
I believe a polar aluminium electrolytic capacitor is false economy since quite small metallised PPS or PET capacitors are available. Polypropylene capacitors produce much lower distortion but are larger and expensive. An inexpensive bipolar electrolytic is small and produces little distortion unless subject to significant DC bias voltage. For the best performance use a film capacitor.

Class B bias stability networks
Many power amplifiers include another significant capacitor we should explore. Typically a $10-47 \mu \mathrm{~F}$ is used to bypass the signal across the bias current stabilisation network. For values up to $22 \mu \mathrm{~F}$ the lowest distortion most economic choice is a metallised PET style, closely followed by the 'double bi-polar' electrolytic capacitor ${ }^{4}$. For larger values, unless cost and size is no object, chose this electrolytic.
Many readers are familiar with the Douglas Self 'Blameless 50 watt class B' design, published in Electronics World February 1994. I have a pair, assembled on printed boards purchased from the magazine, which measured some 2.6 volts of DC bias voltage across their $47 \mu \mathrm{~F}$ polar aluminium electrolytic capacitor C 4 , the bias current stabilisation network bypass capacitor.
Measurements of the AC voltage across C 4 , with the amplifier driven to 50 watts into 8Ω shows its AC voltage increasing significantly with frequency. At low frequencies, while the amplifier still has substantial open loop gain, this voltage remains small. As the amplifier open loop
gain reduces with increasing frequency, C4 is subjected to a significant signal voltage. At 10 kHz I measured 1.15 volt AC using an AC coupled DVM to ignore the DC voltage. Any polar aluminium electrolytic capacitor subject to such AC voltage will generate very large second and third harmonic distortions.
The very best and quite expensive, specialist polar aluminium electrolytic capacitor of those I tested at 1 volt, generated some -93.2 dB second and -100 dB third harmonic with no bias. With 6 volt DC bias distortions increased dramatically, the second harmonic now -77.9dB. With 12 volt bias second harmonic increased tenfold to -72.9 dB . Other polar aluminium electrolytics generated even more distortion when tested using a 1 volt signal. The only cost effective, low distortion solution for this 1 volt signal level and DC bias voltage, is to use two double capacitance, 63 volt rated bi-polar aluminium electrolytic capacitors connected in series, the 'double bi-polar’ configuration recommended in the last article of my first Capacitor Sounds series, Electronics World January 2003. Measured using 1 volt and no DC bias, this 'double bi-polar' capacitor combination measured -117 dB second and -123 dB third harmonic. With 6 volt bias, second harmonic became -102 dB and -97.2 dB biased to 12 volt DC as shown in this plot. An almost twenty times smaller distortion than measured using the best polar capacitor I tested, with or without bias. Fig. 9
Contrary to common belief, using an electrolytic well below its rated voltage does no harm, in fact it is beneficial, reducing leakage current, like choosing a more expensive, professionally rated, long life capacitor. Production electrolytic capacitors rated at $25-63$ volt, provide better performance than lower and higher voltage types. In past years 'underunning' was frowned on because some badly designed electrolytes degraded the aluminium oxide dielectric. Subsequent application of rated voltage resulted in leakage current exceeding the maker's claim. Installed in circuit and underun for some time, a capacitor would not usually become subjected to rated voltage. Underunning never was a problem, rather a misunderstanding of capacitor and circuit behaviour.

Valve amplifiers

To date I have avoided discussing

Fig. 9. Two $220 \mu \mathrm{~F} 63$ volt Nitai bi-polar capacitors in series made this $100 \mu \mathrm{~F}$ "Double bi-polar" capacitor. Measured using a 1 volt AC and 12 volt DC bias as Figure 2, it generates almost twenty times less distortion. Second harmonic measured -101.75 dB with 6 volt bias, -117 dB unbiased.
valve amplifiers because I do not possess one and so cannot make any confirming measurements. However, I believe the DC blocking AC signal coupling capacitor used between a valve anode and subsequent grid, subjected to large DC bias and AC signals, can create distortion.
I decided to measure a specialist metallised Polypropylene $1 \mu \mathrm{~F} 630$ volt MKP capacitor ${ }^{5}$ and the $1 \mu \mathrm{~F}$ paper capacitor reported in my August article, using a 6 volt test signal, the largest very low distortion signal I can generate across a $1 \mu \mathrm{~F}$ capacitor using 100Ω source impedance, with DC bias from 0 to 100 volt, then compare the results.
The MKP capacitor performed as well as expected, second harmonic increasing from -132 dB with no bias to -123 dB with 100 volt DC bias, a superb result. In contrast the paper capacitor behaved rather less well, illustrating perhaps why second harmonic distortion often dominates a valve amplifier output.
With no DC bias, second harmonic of this paper capacitor measured 128.8 dB but biased to 30 volts DC its -116.5 dB second harmonic was worse than the MKP at 100 volts. Biased to 100 volts this paper capacitor performed badly, generating an enormous -108 dB second harmonic. Third harmonic for both capacitors changed little with bias, staying close to -130 dB . Second harmonic distortion for this and similar paper capacitors increases with DC bias or AC signal voltage. Fig. 10.

Power Rail Capacitors

The four polar electrolytic capacitors I exchanged for the bi-polar types included two $220 \mu \mathrm{~F}$ power rail capacitors which are irretrievably linked with the power supply so cannot easily be evaluated in isolation. I plan to explore these as part of a future article.
In my next article, the last for this series, I measure distortions in lowlevel IC op-amp circuits and include a novel circuit technique that allows a modest op-amp to produce lower than usual distortion driving a low impedance load. In response to reader's requests, I also include a brief look at possible resistor and potentiometer distortions.

Conclusion

Having examined a variety of capacitor styles and their audio frequency distortions over the past two years, it is perhaps appropriate with the benefit of hindsight to summarise some findings.

For low level and pre-amplifier circuits but ignoring supply rail decoupling, most capacitors used will be small value and many will need

Table 3: $A C$ and $D C$ voltages measured on $C 4$, with the amplifier set to generate 50 watts into 8R. This amplifier was assembled using printed circuit boards purchased from Electronics World.

Frequency	100 Hz	1 kHz	10 kHz
DC bias volts	2.6 v	2.6 v	2.6 v
AC signal voltage	0.095 v	0.158 v	1.15 v

FFT Software

Throughout my Capacitor Sounds series except the first two articles, I used the SpectraPlus 232 software for my distortion plots. This software is easy to set up and has served well. However some readers have asked whether lower cost software might be used, since a full set of options can become expensive.
I have now found two alternatives. Provided the reader can accept not having the on screen THD\% display, all other facilities I used are provided by purchasing only the Spectra base module, almost halving the cost. The on screen THD\% option can be purchased later.
My second alternative is 'WinAudioMLS Pro', I evaluated version 1.66 , a new version having its microphone correction ability updated for use with my test equipment, or a conventional microphone. It can be obtained from the Dr. Jordan web site.
As standard this software provides a THD +N display and cursor controlled readout of harmonic levels. It accepts the microphone correction file, essential when using my notch filter/preamplifier assembly. In addition to all the features needed for my measurements it also provides an MLS measuring facility. This can be used to measure loudspeaker and room responses as well as the impedance and phase of low impedance components, especially those used in loudspeakers. All this for less cost than for the basic SpectraPlus232 module, makes this software well worth your evaluation.
This software also has a range of additional upgrade options, but I found the base WinAudioMLS Pro version with their THD\% option, sufficient for my needs.

Contact
WinAudioMLS Pro
http://www.dr-jordan-design.de
SpectraPlus232
http://www.soundtechnology.com
1% tolerance. For values up to 47 nF we have a choice of near perfect, very low distortion, extended foil and Polystyrene or extended foil and Polypropylene capacitors, available at 1% in both axial lead and 'tombstone' styles. COG ceramic capacitors at 5% tolerance, as low cost discs for small values and multilayer capacitors to 100 nF , are distributor items. Larger capacitance values and closer tolerances are manufactured. COG ceramic provides low distortion, unsurpassed capacitance stability with voltage, temperature, time and frequency, the almost perfect capacitor.
For values of 100 nF and above, we could use multiples of the above types but foil and Polypropylene styles are available to $10 \mu \mathrm{~F}$, regardless of DC bias they assure very low distortion. Metallised PPS types produce little distortion unless subject to significant DC bias. Available to $10 \mu \mathrm{~F}$ and 1% tolerance, PPS capacitors provide excellent temperature and long-term capacitance stability in smaller case sizes than Polypropylene types.
Power amplifiers needing larger value signal path capacitors, should use bi-polar aluminium electrolytic capacitors, avoiding the conventional polar aluminium electrolytic capacitor for audio signals. With signal voltages across a large

capacitor of 0.5 or more volts, the 'double bi-polar' aluminium electrolytic capacitor, two double value conventional bi-polar aluminium electrolytic capacitors in series, is demonstrably the most economic low distortion choice. Many writers advocate using lesser value film capacitors, to bypass a polar aluminium electrolytic capacitor to reduce its distortion. My measurements show this has little effect, compared to using the bi-polar style, which produces much lower distortion at less cost
Distributor stocks of bi-polar aluminium electrolytic capacitors rarely exceed some $470-1000 \mu \mathrm{~F}$ at low voltage, this results from customer demand and not capacitor technology, manufacturers will respond to market demand as will distributor stockholdings.
More than 30 years ago I developed a range of bi-polar or reversible electrolytic capacitors up to $10,000 \mu \mathrm{~F}$ at 63 volt and the Erie Company manufactured many thousands. The largest example which I still have today, a $2,000 \mu \mathrm{~F} 100$ volt in a 115 x 45 mm case, was developed as the output coupling capacitor for a very high power audio amplifier.

References

1. Capacitor SoundsII. C. Bateman.

Electronics World, October 2003.
2. Capacitor Sounds. C. Bateman. Electronics World, July, September 02 , through January 03
3. Understanding Capacitors -

Electrolytics. Electronics World, June 1998.
4. Double bi-polar aluminium electrolytic capacitor. Electronics World, January 2003. Patent application GB 0227606
5. Audio-Grade Polypropylene axial capacitor. Maplin Electronics part no. KR 78 K .

Fig. 10. A typical $1 \mu \mathrm{~F}$ paper capacitor, with 6 volts AC at 1 kHz and 100 volt DC bias, produced this excessively large second harmonic distortion. The 630 volt 1μ F MKP Polypropylene capacitor was five times better with second harmonic 123 dB , third -130 dB , just 0.00008% distortion. This plot was measured using the Dr.Jordan software, the SpectraPlus232 gave almost identical results.

MATITRS to the editor

Letters to "Electronics World" Highbury Business Communications, Nexus House, Azalea Drive, Swanley, Kent, BR8 8Hu e-mail EWletters@highburybiz.com using subject heading 'Letters'.

Historic receivers

I was reading the article by Jeremy Stevens on 'Receivers of the Third Reich', which I found most interesting, but the marking of the capacitors reminded me of a similar situation in British military radio history.
Many years ago, I was employed by a TV sales and service company owned by an ex-army (probably REME) officer who had served in WW2. He loaned me some books entitled "Handbook of Wireless Telegraphy", the Admiralty Radio Handbook, published by HMSO in 1938. These tombs covered every detail of technology at the time, in fascinating detail.
The thing which sticks in my mind the most is that all capacitor values (or condensers, as the term was then) were given in 'jars'. Somewhere there was a note explaining that "the jar is now obsolete as the service unit, having been replaced by the Farad and sub-multiples thereof." Despite this statement, all the worked examples are done in terms of jars! Fortunately a colleague has the same manuals, and has loaned them to me to do this little piece of research.
The jar, based on early capacitors built in 'standard' Leyden jars was equivalent to 1000 cm . It goes on to give conversion factors to and from micro-Farads where $1 \mu \mathrm{~F}=900$ jars 1. The same paragraph states that a cm (centimetre, yes really) is that value of capacitor which when charged with 1 Electro Static Unit of charge, has a potential of 1 ESU of PD (voltage) between its plates. Further references define the ESU for charge and ESU potential difference.
Charge is defined in terms of force in dynes exerted between two unit charges at 1 cm distance in vacuo. This evaluates as 1 coulomb $=3 \times 10^{9}$ ESU. The ESU ${ }^{2}$ of PD is defined in terms of coulombs and ergs, and
evaluates to 300 volts ${ }^{3}$.
For the younger reader, the Leyden jar is a bit like a square glass jam-jar with a lift out metal centre and a metalised outer shell. The unit can be charged, separated, handled, then re-assembled and discharged. The only time I have ever seen one was in my physics lessons at school, where the thing was charged from a Van-der-Graaf generator, duly dismantled (using a long, insulated rod) and played with by the whole class, ultimately to be re-assembled and then discharged with an impressive 'crack'.
It was used to clearly demonstrate that the charge was stored in the dielectric, in this case, the glass. The metal parts from a fully discharged jar were then assembled around a previously charged and dismantled glass jar, with the same satisfying result.
Following on from the great EMC debate, most of us appreciate the thinking behind the CE marking of electronic equipment, but it is ludicrous to try to implement the regulations imposed in the manner that they have been. With so many loopholes and escape clauses, a carefully worded paragraph in the CE statement will let most things off the hook.
The tests applied can be quite selective. For example, electrically a kettle has a resistive element, is unlikely to be susceptible to RF emissions (short of a nuclear explosion) and providing that the switch has some spike suppression, is unlikely to emit much radiation. Is this device justified in being subjected to a full product spec EMC test similar to that for a complex multi-way fire alarm system?
Similar reasoning can be applied for a 'likely use' aspect of a piece of equipment. A simple battery and bulb torch may carry a CE mark. If one were to build a similar torch, but
using an inverter and white LEDs, should this have the same or a more stringent test applied? These decisions are left to the manufacturer, but if we get it wrong what then? Fines, confiscation of equipment, each director held singly and jointly at fault. What a minefield!
The great CE con is in full swing

1000 lines, Green

Leslie Green's article on Calculus was well written. The answers had 3 typos.
(1) answer 1 is $26.66 \mathrm{~V} /$ microsecond
(2) head of answer 3) missing
(3) answer 4) mean power in resistor is 25.75 W

George Barnes
Hunter Institute
Newcastle TAFE
Australia

Green II

Leslie Green's article on basic maths is admirable. Perhaps someone should likewise take up cudgels on behalf of logarithms. It's quite amazing (to the calculator-bound majority) what can be done with mental arithmetic and logarithms.
I should like, if I may, to propose a small clarification. 'RMS power' is of course calculable but is, as the article states, neither valid nor useful.
What's invariably meant is quite simply average power. Voltage or current is measured as Root Mean Square and is then squared in the process of calculating power. 'Root mean' squared becomes simply mean, a.k.a. arithmetic average. I suspect that to most of us plain 'average' simply sounds instinctively too vague, accurate thought it may be!
Re: Catt etc., please keep this stuff coming. It clearly makes a lot of us think and that's no bad thing! But could letter-writers on audio please read Doug Self's articles (or books) before armchair theorising? Usual disclaimers - I've never met him etc. etc. - but he's already invented the wheel and credit to him for telling us exactly how.
Richard Black
London
UK
now. Have you found a piece of equipment with a mains lead attached lately? It would appear that if the unit radiates undesirable RF signals from the lead, then technically it fails the EMC emissions test. On the other hand, if the lead can be unplugged, and the lead is CE marked (and most mains leads are fairly benign when not plugged in or connected only to a resistive load after all) then they are classed as separate items, and the unit with no lead can be certified. Hence the rise in equipment supplied with 'kettle' leads. Of course, having connected them together and switched on the unit, does the whole assembly fail to comply, and who could be held responsible for any undue emissions? Both the device and lead are CE marked and therefore can be supplied legally, but who is at fault - the customer? "I know nuffink, Guv! That's how it came in the box!"
Similar reasoning is applied to 'plug top' power supplies. On its own, the PSU passes the relevant tests for its class of equipment. Similarly, on its own, the powered

More history

I thoroughly enjoyed reading the well researched and illustrated historical article in the August 2003 EW issue on the VE301 valve radio receivers of the Third Reich. It is revealing to look back at the often elegant techniques used to solve design problems despite the limitations of the components available at the time. What is also striking is that the valve design goals where achieved with a very low component count - size and cost prevented 'Norwegian coast' designs (apologies to the late D. Adams!).
The nostalgic days of World War II were well before my time. I passed my formative years in the transition from valve to semiconductor technology in the 1960's and remember well the problems these fragile germanium newcomers provoked - do you remember the OC series ?!! It is amusing now to look at such details as the influence of valve chassis design culture on the early attempts at portable transistor radios, each stage often being an isolated island of components as if there was a phantom valve base. Compare that to a smd digital pcb of today!
There is much wealth and wisdom in the fascinating legacy of a century of electronics development. The scope for further historical articles drawn from this heritage can only be limited by your enthusiasm to print them, so please, more of that kind of thing!

Peter Sullivan

Geneva

Switzerland
I am actively looking at doing some more historical articles as it has proved very popular. Watch this space, and yes f remember them well! - Ed.
equipment passes, except for radiation from the power lead. So: fit a DC socket and CE label, and supply a CE marked PSU. Job done! Perhaps the faceless men in Brussels should stick to defining the size of the Euro-apple, or the colour of the standard Euro-tomato, or even the shape of the standard Euro-car, and let our industry do what it does best - make working, reliable products with minimal interference radiation and absorption problems.
After all is said and done, Joe Public will let us know, for certain, that his new video, TV, computer, radio etc. does not work, so we have to design in interference suppression anyway.
As for EMC susceptibility, again J.P. will avoid the radio that he has heard will only receive Radio 2 LW if it is in a steel shed down the garden!
References taken from "Handbook of Wireless Telegraphy Volume 1" published by HMSO 1938 paragraph. 167
paragraph. 95
paragraph. 102
Andrew Denham
By email

Content and Focus

I have been reading $W W W, E \& W W$ and now $E W$ as my magazine of choice since 1957 and have seen many changes in its presentation and content! Normally I'm one of the silent majority, but now feel the need to comment on this apparently vexatious matter. My latest copy is July due to normal subscription delays to NZ , so I hope that my comments are still appropriate.
Whilst I accept that change is constant and that any magazine, journal or periodical must adapt to survive, there are, I submit, some notable aspects that must never be seen as compromised. These would include technical accuracy and timeliness. Two areas that $E W$ seems to handle well I think. There also, seems to be a fair balance between non-computer based and computer based articles or those with a high degree of academy. If there's a lacking in any way, for me, it would be in the areas of 'High End' projects, especially those of the calibre of Cyril Bateman's "Capacitor Sound", or Doug Self's Audio projects and J.L. Hood's work.
An area that $E W$ can serve well is to support solid discussion on the many contentious issues often given only a
relatively fleeting coverage in Letters. With the many skilled writers and contributors at the disposal of $E W$, I could imagine some lively, interesting and engrossing articles. There is no other technical journal that does this that I know of.
Looking back and doing a brief check of my library, between 1957 and when $W W$ became $E \& W W$, the things most evident were its thickness and the relatively constant proportionality of articles to total pages along with the preponderance all thing British. In 1978 there were 128 pages and 44 of them were technical, in 1986 perhaps the publisher was hard up as it only had 96 pages and a similar proportion of technical, and in more recent times 2002 there were 55 pages of which 25 were technical. The other notable aspect is the value for money - this appears not to have markedly changed in relation to technical content. Say 40 pages for $£ 2.95$, which equates well to the costs of living during the past 20 years or so in May 1981 it was 60 pence. Also noteworthy in terms of value for money is my current issue (July) of the journal, for of its 64 pages, no less than 40 are technical if you count the letters! Value increased?
However, looking back again over that period, there seems not to be any replacements for regular small feature writers like 'Vector', 'Cathode Ray' and SW Amos or indeed the Lab Technician/projects manager. I note that many technical magazines have their own Lab and most have articles written from, or at least verified from their specific labs. Perhaps $E W$'s lab would have a lot to do with proving some of the letter discussions as mentioned. It could also enhance the credibility of some projects and become a reference point for those seeking advice on a project.
One of the dangers of change from a readership point of view, might be evident if the journal were to become too market oriented, by having larger numbers of advertisements or become a medium for specialised promoters like test gear manufacturers. For me, the current exposure of such material is now borderline. I know it helps to pay the bills, but we the readers, should not have that foisted upon us simply because of costs. I would be one of those who would approve an increased subscription rather than see the magazine degrade in that way. As an aside to this issue, are there any possibilities of any kind of relatively neutral
technical sponsorship?
There would I suggest, be a quite a large readership who read this Journal, purely for its technical content and detailed approach without ever making a project, often using it to keep up to date by, or as reference. For these readers the broadest technical content will always be welcomed and to limit it by concentrating on what is purely vogue or topical might not be useful.
In general, I applaud $E W$ for its breadth and depth and hope that it will continue to maintain its standards and even improve upon them with a resident Laboratory and Manager.
Terry Bicknell
Waikanae
New Zealand

Glass Houses

I would not judge Alan Bate MIEE as suitably qualified to comment on the contributions of others (Letters, $E W$, September 2003). I base this judgement on his description of a simple(sic) two-gate latch. He explains its operation using three statements - and all three are wrong. The latch (as drawn) does not set at power up - it resets. The latch does not change state as soon as contact A momentarily opens - it changes state when contact B momentarily closes. The latch has not already set by the time the switch pole is contacting B - it is still reset.
In the same issue R Harris concludes his(?) letter berating Electronics World for '... rather sloppy English ...' (citing a recent spelling error). However, his previous paragraph ends with a far worse example of sloppy English '.. any potential contributors out there.' The grammar is passable but the word 'potential' makes no sense at all, the correct word is 'prospective'. This is because we are all potential contributors by virtue of being able to write in English but, since most of us are insufficiently informed on the subject matter, we would first require a considerable period of study, so few of are prospective contributors.
I don't object to criticism but I do think that it should be properly informed.

Richard Burfoot

Yate
Bristol
UK

Automotive audio
 systems

I have enjoyed very much Mr. Catt returns in March issue and that Electronics World is appealing. Not a subscriber as yet but a buyer at the bookstand. When is the time that some writers will contribute to the automotive audio systems? The in-car-entertainment; manufacturer basics, like DIN connectors used and to interface such a task. Computer has so much learning criterion than I will see in automotive audio system. In bookstores are many computer books than any other books on the stand. Where is auto audio? Thank you for the great work.

Tony Neiburg

St. Paul
Minnesota
US
Sounds like a gauntlet being thrown down to me - Ed

De-bounce II

With reference to Alan Bate's comments on Deng Yong's switch de-bouncing circuit (Letters,
September 2003), would it be stating the obvious to point out that Mr
Yong's circuit will work with a simple ON/OFF switch, whereas the standard bistable circuit requires a two-way switch? The more complex circuit would be useful when adding-on circuitry to an existing piece of equipment, or in situations where a two-way switch is not feasible.

Ronald Ogilvie

Killearn
Stirlingshire
UK

Design for EMC

In his letter "Student knowledge and EMC" (EW Sept. 03), Cyril Bateman identifies one of the most significant sources of interference - EMC filters. These devices are designed to reflect unwanted energy back into the conductors. Since this energy is not dissipated in the conductor resistance, it radiates into the environment and reappears as unwanted interference. The culprit circuit may be immune, but what about other equipment in the vicinity of the supply line?
Mr. Bateman treats the topics of 'student knowledge' and 'EMC' as two entirely separate issues; thereby highlighting the fact that no one

Bateman in error - shock

Your current EMC debate is unlikely to resolve satisfactorily when even (respected) Cyril Bateman seems to be in error. In his letter of your September issue he states, "An EMC filter in contrast, while it may still produce 50 dB attenuation, dissipates almost no energy." Well, no, actually. A correctly designed EMC filter absorbs energy with a frequency proportionality inherent of ferrite loss characteristics, and after ferrimagnetic resonance the impedance becomes ostensibly resistive. Check out 'Ferroxcube' (now Yageo apparently) publications for elucidation. Of course pure reactance can play a part whereby the energy is reflected back to from whence it came, hopefully a sealed unit, but this is a very dangerous practice upon which to rely. My July 2001 article "Elastic Capacitors" alludes to the pitfall, as does Cyril, of the dubious practice of slapping in inductors in the blind belief that it will probably help.
The efficacy of the absorption is easily demonstrated. For instance, many years ago I designed a switcher of only a few watts and cleaned the spikes with a ferrite bead. It got reasonably warm. On a more recent 60 watt design, I burned a finger tip on an inappropriately selected filter ferrite when searching for what was smelling, and no it wasn't copper loss.
Regarding Cyril's appraisal of domestic washing machines having included EMC filter solutions for the last 30 years, I don't think my last machine was aware of this. My scope protested audibly when the thyristor spike generator kicked in. Could have fried pies on the radiation.

A S Robertson

Girvan
Ayrshire
Scotland
really expects young graduates to have any useful knowledge of electromagnetic compatibility. It is assumed that such knowledge can only be gained the hard way through experience.
This situation exists in spite of the need for a clear understanding of the phenomena by anyone who designs or uses electronic equipment. If no one is provided with the basic analytical tools when they are introduced to the subject, then very few are likely to discover those tools for themselves when faced with a real problem, especially when the budget is tight and the timescale is limited.
The young engineer is confronted with a virtual mountain of literature on the subject of EMC and is all too easy a prey for those who provide courses and seminars of dubious value at extortionate prices. The result is a sense of extreme frustration. Ivor Catt indicated this in his article in the March 03 issue of $E W$.

The nub of the problem is the fact that EMC requirements are not subjected to a rigorous analytical process; in sharp contrast to other design requirements such as system function, response time, stability, power consumption, reliability, mass, size and cost. Admittedly, there are useful hints, tips, and fixes to be
found in some books on the market.
But such advice can hardly be classed as analytical.
However, it is not particularly difficult to create a circuit model of the configuration under review, analyse the electromagnetic coupling between independent circuits, and validate the results using simple
bench tests. When the coupling mechanism is understood, it can be controlled.
Such an approach was introduced to readers of Electronics World in the August 1998 issue by the article 'Grounding on a different plane', and developed in subsequent articles. For those who have no time

Errors, nonsense and 'The Question'

It's not only my handwriting that gives rise to errors. John Barrow explained in his article 'Glitch' (New Scientist, $7^{\text {th }}$ June 03) that superior intelligences in a multiverse model - an extension of DeWitt's 'many worlds' interpretation (1973) are not immune from this phenomenon. Not only are they inevitable; they are necessary: for economical reasons (in terms of computing resources needed) and for survival (IGUS Information Gathering and Utilising System, GellMann and Hartle, 1989). Paul Davies believes that "our living in a fake, simulated reality is a nonsense", although the model is popular with many theorists.
If qPCs (quantum personal computers) become available we won't even need to switch them on - or buy them! Whether or not we'll need VDU/WP/email with this set-up is beyond my ken. Perhaps Ivor could explain?
Sébastien's observation that " 0.5% distortion is more appealing than (nearly) none at all" is something to think about, especially when you consider all the time and effort that has been devoted to eliminating it!
When you wrote that you "will draw a line under the EMC debate" at the end of Ivor's letter about the Catt Anomaly, I got a bit confused! No big deal.
The EMC debate has had a good airing and probably deserves a rest, but the same can't be said of the 'Catt Anomaly' which may be closely associated with one of the strangest problems that has cropped up in theoretical analysis to date, that is: - time reversal, or 'time runs backwards'. Martin Gardener has tackled this problem in his latest book "Are Universes thicker than blackberries?"
The idea stems from the work of Kornhuber (1976) and Libet (1979), which Roger Penrose discusses (at the end of his books) in conjunction with consciousness and language. The main findings are that (i), a and individual's brain response precedes a stimulus; and (ii), there is a 'dead time' of about 0.5 second. Little or no mention has been made to the relationship between 0.5 s and 2 Hz -
except in $E W$! The findings of brain research - in some cases, using electrical probes - was summarised by Susan Greenfield in The Mind Game (BBC 2 TV) in 2002: -
(i) time runs backwards
(ii) all history is pre-recorded in the brain
(iii)the brain samples the record at intervals to create a sense of time, objective or whatever?

These ideas are not new! (vide refs 2,4)
One of the most exciting developments comes from the findings of Vitor Ramachhandran, who appeared in The Mind Game. In the last of the Reith Lectures (BBC Radio 4) for 2003, he suggested that "the origin of cognition lies in the sounds found in the language centre of the parietal lobe.... and probably, quite a small number". Curtius listed 664 basic phonemes (roots and stems) of which 17.3\% involve Kappa and most conform to Zipf's law and Shannon's Eutropic order for intelligent interaction. 'Kai' is the locative pronoun from the Skt. 'kas', still used in Cyprus, which lends itself to the Latin 'que' (kwā); Italian lost the ' w ' whilst German and English lost the ' k '
Tracing 'kai', 'su' and 'tu' to its roots is easy - 'Bruton' (fermented wine) is more involved. If it's from Sanskrit 'brahm', by loss of aspirate (h), it should have carried the meaning 'whirring whirling motion' rather than 'whirring sound' or 'breath' Hebrew, however, uses HeBeL and HeVeL for 'whirring whirling motion' in Ecclesiastes 1:2 "Vanity of vanities... all is vanity" (KJ), but retains ' h ' in BaHiR (Job 37:21) for 'bright light'. Sanskrit 'ruk' (light) softened in Greek to 'luk' and further in Italian to 'luce', but is retained in 'èlěcktron' (amber, shining metal), although Curius associated a different provenance! Why?
One reason might be the mechanism which Rama' described: leakage from the parietal areas into other sensory and brain areas (synaesthesia), as for example, in the case of 'The man who couldn't tell the difference between his wife and his hat' (Oliver Sachs patient). The leakage might
be quite common, however, even in 'normal' people! - including physicists. If this mechanism is coupled with the 'many-minds interpretation' of Everett, elaborated by David Deutsch (in 1985) in a bifurcating model, as against the many worlds interpretation of DeWitt (multiverses), which Paul Davis thinks is nonsense, it's possible to see how the contradictions in modern physics may be resolved. This will create problems, however, for electronics theory where frequency and time are inversely related in standard models, which brain researchers assume! In bifurcating brain processes, period doubling is 'perceived' as frequency doubling. This is 'real time'.
To a certain extent, the reasoning in 'The Question' and in Nigel Cook's articles (The Electronic Universe) about 'awareness' of an open circuit are soundly based - it's not nonsense. Electrons, photons, beables (John Bell's), Hu particles are aware. That's what many leading physicists believe. David Bolm and Basil Hiley discuss this in 'The Undivided Universe', Routledge, (1993) in chapters 13,14 and 15.

Lit

1 George Curtius Principles of Greek
Etymology, $5^{\text {th }}$ edition, 2 vols English translation, A.S. Wilkins, E.B. England, Pub.: John Murray, London.
2 Gershom Scholem, Origins of the
Kaballah (1962), English translation (1987) Princeton University Press, Ch 2 The Book BaHir.
3 David Bohm and Basil J. Hiley The Undivided Universe, An ontological interpretation of quantum thoery, Pub: Routledge, (1993), London.
4 John Berges Hidden Foundations of the Great Invocation, Pub: Planetwork, NJ, USA.

G3OMD

Tony Callegari BSc., MPHIL., (Lond)
Much Hadham
Hertfordshire
UK
A model handwritten letter complete with an 'error code' column! My wife much appreciated it! -Ed.
to go hunting for back issues, the information is available at the website www.designemc.info.
The suggestion that any EMC problem could be analysed by any electronics engineer will be greeted with extreme scepticism; especially by those who have been steeped in the propaganda that it is an arcane subject whose secrets are available only to the gifted few. However, anyone who overcomes this scepticism will be able to visit the site. It contains an e-mail address for any comment.

Ian Darney

Kingswood
Bristol
UK

Google search

Ivor Catt suggested (EW Sept 2003 p.57) a Google search on "Pepper FRS". I did this and am pleased to have taken his advice; I spent the next three days virtually glued to my screen! Incredible stuff.

Charles Coultas

Wokingham
Berkshire

Self replies

In answer to William C. Cross' letter last month - if I understand this suggestion correctly, it could indeed be set up to make the input FET drains track the gates and so render non-linear capacitance here innocuous. This does however still leave you with the greater nonlinearity of a FET input stage to grapple with, plus the need to use expensive dual devices to cope with the input offset voltages.

Douglas Self

London
UK

Meaningless algebra

I must apologise that until now I have not had time to respond to Mr.
Koren's letter published in the August EW.
That someone can dismiss algebra as 'meaningless' needs no observation from me but Mr. Koren's misunderstanding regarding experimental error does need comment. Since he has declared his algebraic scepticism, let us work in the numeric field.
Suppose a Wheatstone Bridge uses all 1% resistors and in a particular job is balanced at 4321 ohms. At most this value could be 4364.21 , an inflation of 43.21 ohms. Of this the

Understanding ADCs

I am referring to the article "Understanding inputs to ADCs" by Mr. Daniel Malik in the June 2003 issue.
In the example given of the change in potential (voltage) when a 5 pF charged condenser (capaci-
tor) is connected in parallel with a discharged 0.5 pF . It is stated that the potential will drop to 95% of its original value.
My calculations below disagree. Assuming the condenser was originally charged to IV
$\mathrm{Ct}+\mathrm{Cp}=5 \mathrm{pF}$ (charged to $\mathrm{U}=1 \mathrm{~V}$)
$\mathrm{Cx}=0.5 \mathrm{pF}$ (discharged, connected in parallel)
$\mathrm{Q}=\mathrm{U} * \mathrm{C} \mathrm{Q}=5 \mathrm{e}-12 \mathrm{C}$ (original and final total charge)
$\mathrm{U}^{\prime}=\mathrm{Q} / \mathrm{Ct}+\mathrm{Cp}+\mathrm{Cx} \mathrm{U}^{\prime}=5 \mathrm{e}-12 / 5.5 \mathrm{e}-12 \mathrm{U}^{\prime}=0.91 \mathrm{~V}$ (final potential)
Also it is stated that $1 / 2(\mathrm{Ct}+\mathrm{Cp})^{*} \operatorname{Uin}^{\wedge} 2=1 / 2(\mathrm{Ct}+\mathrm{Cp}+\mathrm{Cx})^{*} \mathrm{U}^{\wedge} \wedge$. This implies that the energy is preserved after connecting the charged and discharged condensers in parallel. To the best of my knowledge, this not so.
I have not read the whole article, so I cannot comment any further.

George Nole

Wytaliba NSW Australia
error in the thousands is 40 , in the hundreds is 3 , in the tens is 0.2 and the units contribute 0.01 .
However, if only 10% resistors can be found for use in the units decade, the 1 ohm resistor could have a maximum value of 1.1 , which would now contribute 0.1 ohms to the total of 4364.3. Thus the overall accuracy would change from 1% to a maximum percentage error of 1.002%, i.e. practically no change at all. Consequently there is every reason to have high specification resistors in the upper decades while lower tolerance components can be used in the units decade since they will contribute less
significantly to errors overall.
It is with this in mind that manufacturers of test gear which use digit displays often declare their equipment to be ' 1% accurate, plus or minus one digit'.
The only time that using 10% resistors in the units decade would be significant is when the bridge is balanced at 000 X (X between 1 and 9) but this would represent poor use of the divide-by- 1000 facility designed as part of the bridge circuit in the published article.
David Ponting
Clutton
Bristol UK

July cover

No doubt you have been asked this many times, but I haven't spotted any reference.
What is the location of the spectacular storm photo (cover and inside article) in the July
issue?
Alan Watling
Colchester
Essex
UK
Unfortunately, the image came from a generic picture $C D$ that did not have any info as to the whereabouts of the satellite -Ed

TIME MACHINE

Accurate time measurement on a budget by John Morrison

When trying to calibrate a watch or any other device that produces a one cycle per second pulse it becomes very difficult, if not impossible, to measure and adjust using standard 'off the shelf' equipment. The oscilloscope is of no use as the graticule spacing resolution is unreadable when trying to calibrate to 0.001 of a second in the $0.2-0.5$ scale. A similar problem occurs with the frequency meter, as frequencies below 10 Hz cannot normally be measured.
However it is possible to make a low cost unit that can measure 1 Hz to a resolution of $1000^{\text {th }}$ of a second.

Measurement basics

If the pulse to be measured is used to turn a fixed frequency count on then off at, for example, 2000 cps , then the count available at the end of one second should be 2000 .
If the pulse to be measured produces a count that is above or below the 2000 expected - then the pulse is either slower or faster than one second. Note: a slow pulse will give a number greater than 2000

By using a homemade pick-up coil and an op amp, pulses can be detected from most quartz clocks that have hands. These clocks operate by pulsing a small solenoid at onesecond intervals.
The pulse to be measured may not be an exact square wave, as in the clock example, so the unit must take

Fig. 1. Pulse width comparison

A
 B

this into account.
The pulse width shown in Fig 1(B) is 1 second overall, but looks very different to A .
To measure the counter is cleared every time the pulse goes low. There is no stop counter.
Some sort of display is required to show the results of the measurement. Using a 4-digit display would be overkill. A 10 segment Bar graph display is cheaper and produces an easier to understand readout.
The unit could be produced using several discrete devices including decimal counters, and IC gates but a

Fig. 2. 10 segment bar graph display.
better way is to replace most of these with just one microcontroller. The other advantage with this approach is that any frequency can be measured with extreme accuracy, simply by changing the software.

Micro-controller

There are many cheap microcontrollers on the market. This design needs one that can drive LEDs directly, has an internal timer and a prescaler. The one chosen meets this specification, a Microchip 16F84. This controller also has reprogrammable code memory and is cheap and readily available.
If you have never worked with micro-controllers, this is an ideal choice as there is a huge amount of information and examples on the microchip website
www.microchip.com

ELECTRONICS WORLD

The world's leading electronics magazine, Electronics World is a technology- transfer magazine for the global electronics industry. It covers research, technology, applications, products and patents in areas such as audio, R.F., components, CAD design, circuit building, PC \& Micro based products, tests \& measurement, semiconductors, power sources and much, much more.....

A trustworthy source of reference each month for keeping ahead with the latest news and technical developments in the electronics industry.

As the longest established magazine in the industry - 80 years experience serving the electronics market, Electronics World is the leading technical journal for electronics professionals and high-level enthusiasts.

Make sure you receive your regular monthly

 copy by subscribing today..................Complete and fax the coupon to: +44 (0) 1353654400

The Electronics World Book Service offers access to our team of specialist publishing experts. We can order any book or CD-ROM currently in print from War And Peace to the Reference Data for Engineers. All books are delivered free of charge within the UK unless otherwise stated. Contact us at the numbers below:
Telephone: 01737812727 or 01737812676
Fax: 01737813526
Email: salesteam@boffinbooks.demon.co.uk

HIGH SPEED DIGITAL DESIG	
Howord W Johnson \& Grohom Mortin	
Reissue	
Focusing on the field of knowledge lying between digitol ond onolog circuit theory, this text sets out to heip engineers working with digitid systems shorten their product development cycles ond heip fix their latest design problems. It covers signol rellection ond crosstall.	
820 poges \triangle HB	
Code Pear 0133957241	¢ 44.99

MENSION: PARANORM ERIMENTS FOR HOBBYISTS ton Braga de to moking ond using porenormal rese scribes proctical electronic ciruvilis to be us riments involving instrumental tronstom dectronic roice phenomenon (EYP), ond iments involving ESP, ouras, ond Kirtion and pink noise generators for use inin communictaion (TCO experiments; Kirlio no experiments; extrosensory perceplion neic fields sensors.

BUILD AND UPGRADE YOUR OWN PC

Ian Sinclair
This third edition of Build ond Upgrade Your Own PC is bosed around building ond upgroding to the very lotest systems running processors with speeds over 2.0 Ghz and ulitrofast buses. It also covers upgrading to Windows XP ond Windows Me.

3rd edition Δ Jul 2002 a 335 pages \triangle PB Code HB 0750657588
£22.50

fabricating PRINTED CIRCUIT BOARDS

Jon Varteresian
Engineers ore often foced with the need for small quontities of a certoin boord design for constrution of a smoll number of devices. This book describes the process of making a printed circuit board, from the conversion of a schematic diagrom into o boord layout to the making of the board itself.

Jul $2002 _251$ pages $\triangle P B$
Code HB 1878707507
$£ 21.99$

BASIC AC CIRCUITS
Clay Rawlins
A step-by-step opprooch to AC circuits for beginners, providing thoraugh coverage of theory ond practice. The text provides individualized learning gools covering electronics concepts, terms ond the mothemotics required to understond $A C$ circuit problems.

2nd Edition $\triangle 0 \mathrm{Ot} 2000 \triangle \mathrm{~PB}$
Code HBO 750671734
E34.50

PRACTICAL ELECTRONICS mandBOOK

Ian Sinclair
A collection of olit the key dato, facts, proctical guidonce ond circuit design bosics needed by a spectrum of students, electronics enthusiosts, technicions and dirruit designers. II provides explanotions and protical guidance, and includes new setions on SHF techniques and intruder olorms.

5th edition \triangle Feb $2000 \triangle 571$ poges $\triangle P B$
Code HB 0750645857
£16.99

TH5 ARTOF Femmat	
ANALOE LAYOUT	
Roy Alon Hastings	
o brood understanding of the issues involved in	
successfully laying out anolog-integrated circuits ronging from the mechonics of loyout to essential	
information obout many related oreas physics, processing and failure modes	os device fects.

$0+2000 \triangle 559$ pages $\triangle \mathrm{HB}$ Code PEAR 0130870617

E 30.99

VERILOG DEVELOPER'S
 LIBRARY

Bob Zeidman

Verilog is one of the most used hordwore description longuages. This text contoins a librory of useful code for those users who do not want to recreote identical code for common tosks.

Jul $1999 \triangle 450$ poges $\triangle P B$
Code PEAO 130811548
$£ 79.99$

INTERFACING WITH C

Mike James \& How ard Huthings An exploration of interfocing personal computers using C An introduction to C; loops ond doto conversion; dato ocquistion using \subset; essentiol mathematics; convolution; digitol filters; Fouriee tronsforms; correlation; Kolman filters; data conversion; investigating the spectrol ond time-domoin performonce of z-transforms using computermonaged instruction; introducing oudio signol processing using $($; standord progromming structures. Dewey: 005.71262
2nd edition \triangle Dec 2000 - 308 pages
Code HB 0750648317
£20.50

ANALOG CIRCUIT TECHNIQUES WITH DIGITAL interfacing

Trevor Wilmshurst
Aimed ot junior undergroduales, this textbook offers comprehensive coveroge of onologue electronic circuit design with two full chapters devoted to the use of SPICE in circuit simulations. progrommes leading to IEng MSC Electronic conversion type courses.

Mor $2001 \triangle 320$ poges \triangle PB
Code HBO 75065094 X
$E 19.99$

DESIGN-FOR-TEST: FOR DIGITAL INTEGRATED CIRCUITS AND EMBEDDED CORE

Alfred L Crouch
An introduction to the basic concepts of Design-ForIest, on orea in chip design.

July 1999 - 350 pages \& CD-ROM
£59.99

PASSIVE
 COMPOMENTS FOR CIRCUIT DESIGN

lan Sinclair
Designed for technicion engineers ond onyone involved in circuit design, this text provides on introduction into o key area of anologue electronics. It covers oll component types capoble of power omplifications, inctuding: resistors, capocitors, tronslormers, solenaids and molors.

Nov $2000 _301$ pages \triangle PB
Code HBO $75064933 \times$

SELF ONI AUDIO

Douglas Self
This work offers o collection of
Electronics World orticles, inctuding self-build projects. It oims to demystify omplifier design and estoblish empiricol design techniques based on electronic design principles and experimentol dato.

Jul $2000 \triangle 256$ poges $\triangle P B$
Code HBO 750647655
£ 28.50

ELECTRONICS FOR SERVICE ENGINEERS
 Joe Gieszynski \& Dave fox

From simple mathematics and cirsuit theory to tronsmission theory and oerials, this text provides the ronge of know edge required to service electronic ond electricol equipment. Questions and worked examples illustrote the concepts described in each chapter.

Mor $1999 \triangle 294$ poges $\triangle P B$
Code HBO 750634766
£ 20.99

NEWNES TELEVISION AND VIDEO ENGINEER'S POCKET BOOK
 Eugene Trundle
 This text provides a pocket tool for service engineers. It presents a range of essentiol information in o compact form, covering television reception, sotellite ond coble television, video recarders, colour comero technology, teletext and foult-tinding.
 3rd edition \triangle Od $1999 \triangle 512$ poges \triangle H8
 Code HB 0750641940
 $£ 17.99$

BEBOP TO THE BOOLEAN BOOGIE

Clive Maxfield

Comprehensive introduction to contemporory electronics - friendly, funny and quirky. Whether you're an engineer, hobbyist, or student wha needs 0 thorough ond up-10-date electronics reference or a non-technical person who wants to understond more obout this election donce that has seemingly taken over the world, this book is the onswer. Hundreds of diagroms that clorify even the most difficult subjeets.

2nd Edition $\triangle \operatorname{Jan} 2003$
Code 180750675438
E27.50

ELECTRONIC SERVICING AND REPAIRS

Trevor linsley

Updotes the previous text toking into occount chonges in the City ond Guilds courses 2360 ond 2240 . Also features hardware tapiss, testing and fault diagnosis, PLIS ond CAD soffware, and new chopters. Health and sofety; eletronic component recognition; electranic circuit ossembly techniques; electronic semiconductor devices; electronic circuits in action; testing electronic circuits; digito electroniss; electrical circle theory; electronic systems; tommunicotion systems; security systems, sensors ond tronsducers.
3rdedition \triangle Aug 2000 - 261 poges
Code HB 0750650532
£18.99

ROBOTICS, MECHATRÓNICS, AND ARTIFICIAL INTELLIGENCE:

EXPERIMENTAL CIRCUIT BLOCKS

FOR DESIGNERS

Newton C Braga

This work simplifies the process of finding basic circuits to perform simple tasks, such as how to cantrol a DC or step motor, and provides instruction on creating moving robolic parts, such os on "eye" or an "ear"

Nov $2001 _317$ pages $\triangle P B$
Code HB 0750673893
$£ 21.99$

UNDERSTANDING AUTOMOTIVE ELECTRONICS

WB Ribbens

Covering the most recent technologicol advonces in operation and rroubleshooting of eleatronic systems ond components, including low-emission standards, an-boord diognostics and communications, digttol instrumentation, and digitol engine contral. A practical text, suitable for the outomotive technicial, sudent, ethusiost, or professionol who wants to upgrade his or her background in electronic systems found in the outomotive.
6thed. Dec 2002
Code H80750675993
£24.99

PIC IN PRACTICE: AN INTRODUCTION TO THE PIC MICROCONTROLLER

David W Smith
An exploration of the PIC microcontroller, designed to be used af a variety of levels. It introduces the reader to the ronge of tosks the PIC con perform and mokes use of readily ovoiloble components. The PIC used in the exomples is the re-programmoble EEPROM 16C84/16584.

Apr $2002 \triangle 261$ poges \triangle P8
Code HB 0750648120
£14.99

NEWNES GUIDE TO DIGITAL TV

Richard Brice
Covering oll ospects of digitat Itelevision (teriestrial, satellite and cable), this text has been updated with developments since the 2000 edition. Foundations of television; digital video ond oudio coding; digitol signol processing; video dato compression; oudio dato compression; digitol oudio production; digitol video prodution; the MPEG multiplex; broadcosting digitol video; consumer digitol technology; the future.

2nd edition $\triangle \operatorname{Sep} 2002 \triangle 304$ pages \triangle H8
Code HBO $750657219 \quad$ E24.99

DIGITAL LOGIC DESIGN

Brian Holdsworth \& Waods
This undergroduote text on digitiol
systems cavers first ond second year modules and HND units, and con olso be used as o reference text in industry. Updated topics in the fourth edition include: E8CDIC, Grey code, practical applications of flip.flops, linear and shaft encoders and memory e ements.

4th edition \triangle Aug $2002 \triangle 448$ poges
Code HB 0750645822
£19.99

EMBEDDED MICROPROCESSOR SYSTEMS: REAL WORLD DESIGN

Stuart Ball

Providing on introduction to the design of embedded microprocessor systems, this edition covers everyhhing from the initial concept through to debugging the final result. It also includes moterial on DMA, interrupts and on emphosis throughout on the realtime noture of embedded systems.

3rd edition \triangle Nov $2002 \triangle 368$ poges $\triangle P B$
Code HB 0750675349
$\$ 35.00$

DESIGNING EMBEDDED INTERNET DEVICES
 Brian DeMuth \& Eisenreich
 This guide to designing internet occess and communications capobilifies into embedded systems takes on integrated hardwore/software opproach, using the Jova programming language ond industrystandard microcontroillers. The CD-ROM has Jova source code ond a version of the text.
 Aug 2002 - 320 poges
 PB \& CD-ROM
 Code H8 187870798 I
 £ 35.00

If you ore ordering by credit curd, need further intormofion, ar would fike to use our search focilifies cull 01737812727 Fax 01737813526. The order/helpline is open from 9am io 5 pm, or leave your order on our out of hours onswerline or emmail us of solesteam@boffinbooks. demon. ro.uk.

When plaring orders please quote - Nome Address (home \& delivery) © Doytime elelaphone number - Debiv/(redit rard number - Expiry date - Details of order. Please note that prices moy change, but are correct at fine of going to press.

Botfin Books Lid., 24 Wollon Street, Wolton-on-hhe-Hill, Todworth, Surrey KT20 7RT, UK

NEWNES DICTIONARY OF ELECTRONICS

SW Amos \& R S Amos
Aimed ot engineers, technicions and students working in the lield of electroniss, his dictionory provides clear and concise definitions, including T, rodio ond computing terms, with illustrations ond circuit diograms.

4th edition \triangle Morch $2002 \triangle 394$ pages \triangle P8
Code H807506 56425
$E 12.99$

NEWNES interfacing COMPANION:
 COMPUTERS,
 TRANSDUCERS, INSTRUMENTATION
 AND SIGNAL PROCESSING
 Tony Fischer-Cripps
 Provides the fundamentals of electronics, tronsducers, computer orchitecture and interfocing techniques needed to use a simple PC or PLC-bosed system for the collection of data previously only obtoinable from expensive dedicoted equipment.
 Aug $2002 \triangle 320$ pages \triangle HB
 Code H8 0750657200
 £24.99

POWER SUPPLY COOKBOOK

Marty Brown

Providing on easy-to-foliow, step-bystep design fromework for a wide variety of power supplies, induding linear, switching and quasiresonant swith ing. There is also discussion of design topics such os magnetics, feedbock loop compensation design and EMI/RFI control in stralghtforword terms.

2nd edition \triangle Jun $2001 \triangle 336$ poges \triangle HB
Code H8075067329x
£ 24.99

RSGB RADIO AND ELECTRONICS COOKBOOK

Radio Society of Great Britoin
Only a basir knowledge of electronics is assumed for this collection of electronics projects, and it is ideal for oll electronics ond DIY enthusiosts ond experimenters. Designed by the RSG8, the UK rodio omoteurs federation, the projects ore cleorly exploined step by sep.

Hov $2000 \triangle 336$ pages \triangle P8
Code H8 050652144
£17.99

NEWNES RADIO AND RF ENGINEERING POCKET BOOK

Steve Winder \& Joseph J Carr

With a moss of information and data for students, rodio and telecommunications engineers, RF circuit designers, rodio hobbyists ond rechnicians, this guide covers oll ospects of radio ond rommunications engineering from low frequencies to microwaves, with on emphasis on mobile communitations.

3rd edition a Jul 2002 a 352 pages \triangle HB
Code HB 0750656085
£16.99

MIXED-SIGNAL AND DSP DESIGN TECHNIQUES

Wolt Kester
Mixed-signol processing implies the use of anologue and digitol in the same system; this is a specialized type of signol processing that requires a high level of experience and training. This book focuses primarily on signol processing hardwore - how it works, how to interfoce it, ond designit.
$0+2002 _336$ pages $\triangle P 8$
Code H8 0750676116
E39.99

Signed

 email:solesteom@boffinbooks.demon co.uk*Postage charges outside the UK available upon request or email to solesteom@boffinbooks.demon.co.uk
Send order form to: Boffin Books Ltd., 24 Walton Street, Walton-on-the-Hill, Tadworth, Surrey KT20 7RT, UK

To reserve your web site space phone Reuben Gurunlian Te:: 01322611292 Fax: 01322616376

FTDI designs and sells USB-UART and USB-FIFO interface i.c.'s. Complete with PC drivers these devices simplify the task of designing or upgrading USB peripherals

GREENWELD

http://www.greenweld.co.uk

Audio - Batteries \& Chargers Books - Communications Computer

- Cable - Capacitorse Car Equipment - Craft Goods - Dlsco Equipment Enclosures • Electrical \bullet Fuses Graphic supplies - Hardware -Instrumentation \bullet Kits \bullet Lighting Mechanical - Optical - Photographic - Power supplies - Transformers Resistors - Semlconductors Software - Soldering Irons - Surplus goods • Switches • Relays •
Telephone Accessories Tools Plus much more.
Whether your interest is in
electronics, model engineering,
audio, computer, robots or home and leisure products (to name just a few) we have a wide range of new and surplus stock available.

J W HARDY

COMMUNICATIONS
http://www.jwhardy.co.uk

R.F. Network Specialist. Shop online - for R.F.network components. We supply a full range of TV, radio reception equipment to receive analogue/digital signals from both terrestrial and satellite sources. We provide a free planning service for your R.F. networks, MATV and SMATV etc

LOW POWER RADIO SOLUTIONS

http://www.|prs.co.uk
LPRS produces radio modules with mbedded "easy-Radio" software protocols for short range radio appllcations. We also represent Circult Design narrow band modules in the UK.

MATRIX MULTIMEDIA LTD

wWw.matrixmultimedia.co.uk

Matrix Multimedia publishes a number of highly interactive CD ROMs for learning electronics including: Complete electronics course, Analogue filter design, and PICmicro(R) microcontroller programming (C and assembly).

NORCALL Ltd

http://www.tetra-com.co.uk
e-mail Norcall@aol.com
Suppliers programmers and repairers of new and refurbished two-way radio equipment. Retuning and recrystalling service available. All types of batteries chargers and aerials supplied.

QUASAR ELECTRONICS
www. QuasarElectronics.com

Over 300 electronic kits, projects and ready built units for hobby, education and industrial applications including
PIC/ATMEL programming solutions.
Online ordering facilities.
Tel: +44 (0) 8702461826
Fax: +44 (0) 8704601045
Email: sales@QuasarElectronics.com

RADIOMETRIX

http://www.radiometrix.co.uk
Radiometrix specialises in the design and manufacture of VHF \& UHF, RF data modules. We offer a broad range of PCB

mounted miniature transmit, receive and transceiver modules for OEM use. They comply with European harmonised standards EN300 220-3 and EN301 489-3 and are CE certified by an independent Notified Body.

SOFTCOPY

http://www.softcopy.co.uk
As a PC data base or hard copy
SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.

TECHNICAL AND SCIENTIFIC SUPPLIES

http://www.technicalscientific.com Suppliers of pre-1985 equipment and components.

- Test/Measurement equipment
- Valves and semiconductors
- Transducers and pressure gauges - Scientific books and catalogues - Manuals and data sheets

TELEVES

http://www.televes.com
Tel: 44(0) 1633875821 email hbotas@televes.com Televes website was launched as an easier way to keep in contact with our World-wide Network of Subsidiaries and Clients. This site is constantly updated with useful information/news plus you can download info on our range: TV Aerials \& accessories, Domestic and Distribution amplifiers, Systems Equipment for DTT and Analogue TV, Meters and much more.

TEST EQUIPMENT SOLUTIONS

http://www.TestEquipmentHQ.com
Test Equipment for rental or second user sale at the industry's lowest prices. All

types of equipment from all leading manufacturers including general purpose, communications and industrial test. tems fully refurbished with 1 year warranty. Rental rebate given on purchases.

TELONIC

http://www.telonic.co.uk

Telonic specialists in laboratory AC \& DC Power Supplies, Electronic AC \& DC Loads, Electrical Safety Testing and complete test systems. Plus RF Filters, Attenuators, Diesel Engine Smoke
Measurement, Quartz Crystal
Microbalances.
Tei +44 (0) 1189786911

TOTAL ROBOTS

http://www.totalrobots.co.uk

Robot Kits and Control Technology products, including OOPic the first Object-Oriented Programmable Integrated Circuit. Secure on-line ordering and fast delivery.

TELNET

http://www.telnet.uk.com

Top quality second-user Test and Measurement Equipment
eMail sales@telnet.uk.com

ULTRA-CREA OY

http://www.ultra-crea.fi

Our business idea is to provide our customers complete service, i.e. design from the customer specificatlon to the delivery of finished and tested products.
Our offerings are as follows:

- RF transmission line filters from 100 MHz to 3 GHz
- Special antennas to frequencies as above
- Transmitter and Receiver modules
- RF-subunits such as amplifiers. oscillators, directional couplers etc

VUTRAX PCB DESIGN

SOFTWARE
http://www.vutrax.co.uk

Vutrax electronic schematic and pcb design system for Windows 95/98, ME, NT, 2000, XP and Linux. Limited capacity FREE version downloads available, all upgradeable to various customised level.
WILMSLOW AUDIO
http://www.wilmslow-
audio.co.uk

'Uk's largest supplier of high quality loudspeaker kits and drive units. Comprehensive range of components and accessories, including damping products, connectors and grilles materials. Demonstration facilities available.

Ten year index: new update

Photo copies of Electronics World articles from back issues are available at a flat rate of $£ 3.50$ per article, $£ 1$ per circuit idea, excluding postage.

Hard copy Electronics World index Indexes on paper for volumes 100,101, and 102 are available of $£ 2$ each, excluding postage.

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles. circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. If runs on any IBM or compatible PC with 512 K ram and a hard disk.

The disk-based index price is still only $£ 20$ inclusive. Please specify whether you need 5.25 in , 3.5 in DD or 3.5 in HD format.

Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Ordering details

The EW index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders
Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide.
For enquires about photocopies etc please send an sae to SoffCopy Ltd.

Send your orders to SoftCopy Ltd,

1 Vineries Close, Cheltenham GL53 ONU.
Cheques payable to SoffCopy Itd, please allow 28 days for delivery.

World Beating Value in
 PCB Design Sofiware

trom High performance Windows based PCB Design Capfure, Simulation and Layout software at prices you'd expect from your local computer store!

NEW! in Easy-PC 7

- Library Databook
- Step and repeat plotting
- Swap Connection Mode
- Dimensioning
- Copy to Metafile plus much more......

Stop press... by customer demand, now
 with Tsien Boardmaker 2 design import...

Number One Systems delivers true 32 bit Windows software applications including features that a few short years ago would only have been available in software tools priced in the thousands!

Test drive Easy-PC and Easy-Spice for yourself and be prepared to be amazed at the super value..

Call for a brochure, price list and demo CD
on +44 (0) 1684773662 or email sales@numberone.com

Number One Systems
Oak Lane, Bredon
Tewkesbury, Glos GL20 7LR United Kingdom

High Resolution Oscllloscope

- High speed, 5GS/s dual channel oscilloscope
- $50 \mathrm{MHz}, 80 \mathrm{~dB}$ dynamic range spectrum analyser
- PicoScope \& PicoLog software supplied FREE
- Plug into any desktop or laptop PC
- High resolution - 12 bits
- Large 128 K memory
- 1\% DC accuracy

www.picotech.com/scope129

Tel: +44 (0) 1480396395 Fax: +44 (0) 1480396296 E-mail: sales@picotech.com

Service Link

ARIICIES WANTED

BEST CASH PRICES PAID

FOR VALVES KT88, PX4 AND MOST AUDIO/OTHER TYPES.
Tel: 01403784961
Billington Export Ltd. Sussex RH14 9EZ Fax: 01403783519
Email: sales@bel-tubes.co.uk Visitors by appointment

TOP PRICES PAID

For all your valves, tubes, semi conductors and ICs.
Langrex Supplies Limited 1 Mayo Road, Croydon, Surrey CRO 2QP TEL: 02086841166 FAX: 02086843056

FOR SALE

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS

www.rlaver.dial.pipex.com
TEL: 01223862550
FAX: 01223440853

FOR SALE

PRINTED CIRCUIT BOARDS
DESIGNED \& MANUFACTURED IHI - Prolotype or production quantities :I It Circuits - PCBs designed from circuit diagrams

- Atmost all computer files accepted
- PCB assembly - mechanical assembly

Unit 5, East Belfast Enterprise Park 308 Albertbridge Rd, Belfast BT5 4GX TEL. 02890738897 FAX 02890731802 info(sagarcircuits.com

COMMUNICATIONS
 TEST SET
 SCHLUMBERGER

STABILOCK 40400.4 - 960 mhz In good working order $\$ 750$
ANALOGUE \& DIGITAL SERVICES
Unit 1, Aghanloo Ind Est, Limavady, NI Tel: 02877764676 john@analogueanddigital.co.uk

SERVICES

POWER SUPPLY DESIGN

Switched Mode PSU Power Factor Correction designed to your specilication Tel/Fax: 01243842520 e-mail: eugen_kus@cix.co.uk
Lomond Electronic Services

WESTDALE ELECTRONICS

We would welcome the opportunity of quoting for your requirements. If you have a problem with your semiconductors or relays, give us a call and we will locate them for you.
We also have access to Inventory Stateside ie
Current, Obsolete, MII, Spec
Call: Bryan on Tel/Fax: 01159402127

SERVICES

Email: sales@designersystems.co.uk
Tel/Fax: +44 (0) 1872223306

1月 85 conv/PTH/Multi-Layer/Ffexible \bullet UK \& Far East production - CAD Layout - Electronic Design \bullet Assembly (prototype \& production) - SMD m/c assy @ 18,500 cps/hr

Tel: 0163540347 Newhury Electronics Ltd farathy Road Newbury Berks RC14 2 AO Fax: 0163536143
e-mail: circuits@newbury.fcom. co.ak
tultp://www. newburyelectronics,cD.ak

Usist
พWW, pcbtrain.com
The low cost source for prototype PCBs
trom 7 to 6 layers

WANIED

WANTEDSurplus or Obsolete Electronic Components Turn your excess stock into instant cash! SEND OR FAX YOUR LIST IN STRICTEST CONFIDENCE Will collect anywhere in the UK

28 College Street, Kempston, Bedfordshire, MK42 8 LU Tel: 01234363611 Fax: 01234326611 E-mail: sales@mushroom.co.uk Internet: www.mushroom.co.uk

Service Link

A thousand applications ONE SOLUTION!

Introducing DataStation "* 16 Channel, mixed-signal,

 software-configurable serial I/O controller.Greater than 500 samples per second, 391 different I/O configurations from one single product!

With up to:

- 6 Analogue Inputs
- Selectable ADC resolution
- 2 PWM Outputs
- 16 Digital Inputs
- 16 Digital Outputs
- RS-232 interface

Typical Applications:

- Machine control
- Industrial automation
- Environmental monitoring
- Robotics

This unrivalled flexibility allows designers to meet the needs of virtually any application with just one product, helping to reduce development costs and time-tomarket significantly.
To find out more or buy online visit: www.ObservantWorld.com

£89.00

 plus VAT(Significant discounts for higher volumes)

Unit F2b, Avonside Enterprise Park, New Broughton Road, Melksham, Wiltshire. SN12 8BS. U.K. Telephone: 01225704631 Facsimile: 01225708618 www.ObservantWorld.com Email: enquiries@ObservantWorld.com

AVR Controller Development System

* Based on the Atmel AVR controller
* Flexible and powerful
* Simple to configure
* Very compact

T1и

[^0]: Electronics World is published monthly. Orders, payments and general correspondence ta Jackie Lowe, Highbury Business Communications, Nexus House,
 Azalea Drive, Swanley,
 Kent, BR8 8HU
 Newstrade: Distributed by COMAG, Tavistock Road, West Drayton, Middlesex, UB7 7QE Tel 01895444055.

[^1]: ENGINEERS BENCH PANEL
 Thls has $2 \times 13 \mathrm{~A}$ malns sockels which are switched and illuminated, thus saving you having to keep pulling out the plugs. Nicely cased. Only E2. Order Ref: 2P461.

