Electronics World's renowned news section starts on page 5

SEPTEMBER 2003 £3.25

The history of the cathode

 Calculus is for lifeProfessional SDI router

Capacitor

 sounds II
LED spotlight

Hewlett Packard 3314A Function Generator 20MHz
Hewlett Packard 3324A synth. function/sweep gen. (21 MHz)
Hewlett Packard 3325B Synthesised Function Generator
Hewlett Packard 3326A Two-Channel Synthesiser
H.P. 4191 A R/F Imp. Analyser (1 GHz)
H.P. 4192A L.F. Imp. Analyser (13MHz)

Hewlett Packard 4193 A Vector Impedance Meter $(\downarrow-110 \mathrm{MH}$
Hewlett Packard $4278 \mathrm{~A} 1 \mathrm{kHz} / \mathbf{1 M H z}$ Capacitance Meter
H.P. 53310A Mod. I)omain Analyser (opt 1/31)

Hewlett Packard 8.49B (2-20 GHz) Microwave Amplifier
Hewlett Packard 8508A (with 85081 B plug-in)
Vector Voltmeter
Hewlett Packard 8904A Multifunction Synthesiser (opt 2+4) H.P. ESG-D3000A 3GHz Signal Gen

Marconi 6310 - Prog'ble Sweep gen. (2 to 20CHz) - new
Marconi 6311 Prog'ble sig. gen. (10 MHz to 20(9Hz)
Marconi 6313 Prog'ble sig. gen. (10 MHz to 26.5 GHz)
R\&S SMG ($0.1-1 \mathrm{GHz}$) Sig. Generator (opts B1 +2)
Fluke 5700 A Multifunction Calibrator
Fluke 580(1) Oscilloscope Calibrator
$£ 750$ $£ 1950$ $£ 2500$ £2500) £3995 £4000 £2900 £3500 £3950 £2000
$\mathbf{£ 2 5 0 0}$ 1750 $\$ 6995$ £2500 £2495 £ 3750 £2500 £12500 $\mathbf{8 9 9 9 5}$

OSCILLOSCOPES

Gould 40020 MHz - DSO - 2 channel

Gould 142120 MHz - DSO - 2 channel
8425
$£ 1250$
Gould 4068150 MHz 4 channel DSO
Gould $4074100 \mathrm{MHz}-400 \mathrm{Ms} / \mathrm{s}-4$ channel
Hewlett Packard 54201A - 300MHz Digitizing
Hewlett Packard 54502A - 400MHz - 400 MS/s 2 channel Hewlett Packard 54520A 500 MHz 2 ch
Hewlett Packard $54600 \mathrm{~A}-100 \mathrm{MHz}-2$ channel
Hewlett Packard $54600 \mathrm{~A}=100 \mathrm{MHz}-2 \mathrm{channel}$
Hewlett Packard 54810 A 'Infinium' 500 MHz 2 ch
Hewlett Packard 54810A infinium 500MHz 2ch
Hitachi V152N212N222N302B/N302FN353FN550BV650F
Hitachi V152N212V222N302B/N302F
Hitachi V1 100A - 100 MHz - 4 channel
Hitachi V1 100A-100MHz - 4 channel
Intron $2020-20 \mathrm{MHz}$. Dual channel D.S.O (new)
Iwatstu SS 5710/SS 5702
Kikusui COS $5100-100 \mathrm{MHz}$ - Dual channel
Lecroy $9314 \mathrm{~L} 300 \mathrm{MHz}-4$ channels
Meguro MSO 1270A - 20MHz - D.S.O. (new)
Philips $3295 \mathrm{~A}-400 \mathrm{MHz}$ - Dual channel
Philips PM3070-100MHz - 2 channel - cursor readout
Philips PM3392-200MHz-200Ms/s-4 channel
Philips PM3094-200MHz-4 channel
Tektronix $468-100 \mathrm{MHz}$ D.S.O
Tektronix $2213 / 2215-60 \mathrm{MHz}$ - Dual channel
Tektronix $2220-60 \mathrm{MHz}$ - Dual channel D.S.O
Tektronix $2221-60 \mathrm{MHz}$ - Dual channel D.S.O Tektronix $2235-100 \mathrm{MHz}$ - Dual channel Tektronix $2235-100 \mathrm{MHz}$ - Dual channe
Tektronix $2245 \mathrm{~A}-100 \mathrm{MHz}-4$ channel Tektronix 24302430 A - Digital storage -150 MHz Tektronix 24302430 A - Digital storage -150 MHz
Tektronix $2445=150 \mathrm{MHZ}-4$ channel + DMM Tektronix 2445 - 150MHZ - 4 channel +DMM Tektronix $2445 / 2445 \mathrm{~B}-150 \mathrm{MHz}-4$ channel Tektronix $2465 / 2465 \mathrm{~A} / 2465 \mathrm{~B}-300 \mathrm{MHz} / 350 \mathrm{MHz} 4$ channel Tektronix 7104-1GHz Real Time - with 7A29 x2, 7B10 and 7B15 Tektronix TAS $475-100 \mathrm{MHz}$ - 4 channel Tektronix TDS 31050 MHz DSO - 2 channel Tektronix TDS $520 \cdot 500 \mathrm{MHz}$ Digital Oscilloscope

SPECTRUM ANALYSERS

Advantest $4131(10 \mathrm{kHz}-3.5 \mathrm{GHz})$
AdvantestTAKEDA RIKEN $-4132-100 \mathrm{KHz}-1000 \mathrm{MHz}$ $£ 3750$
$£ 1350$
AdvantestTAKEDA RIKEN - 4132 - $100 \mathrm{KHz}-1000 \mathrm{MHz}$ Ando AC $8211-1.7 \mathrm{GHz}$
Avcom PSA-65A - 2 to 1000 MHz
Farnell SSA-1000A $9 \mathrm{KHz}-1 \mathrm{GHz}$ Spec. An.
Hewlett Packard 182T Mainframe +8559 A Spec.An. (0.01 to 21 GHz) Hewlett Packard 853A Mainframe +8559 A Spec.An. (0.01 to 21 GHz) Hewlett Packard 853A Maintrame +8559 A Spec.An. (0.01 Hewlett Packard 3582A (0.02Hz -25.5 kHz) dual
Hewlett Packard 3585 A 40 MHz Spec Analyser
Hewlett Packard 3585A 40 MHz Spec Analyser
Hewlett Packard 3561A Dynamic Signal Analyser
Hewlett Packard 3561A Dynamic Signal Analyser
Hewlett Packard $8568 \mathrm{~A}-100 \mathrm{kHz}=1,5 \mathrm{GHz}$ Spectrum Analyse
Hewlett Packard 8590A (opt 01, 021,040) $1 \mathrm{MHz}-1.5 \mathrm{MHz}$
Hewlett Packard 8596E (opt $41,101,105,130$) $9 \mathrm{KHz}-12.8 \mathrm{GHz}$
Hewlett Packard 8713C (opt 1 E1) Network An. 3 GHz
Hewlett Packard 87138 300kHz - 3GHz Network Analyser
Hewlett Packard 8752A - Network Analyser (1.3GHz)
Hewlett Packard 8753A (3000 KHz - 3GHz) Network An
Hewlett Packard 87538+85046A Network An + S Param (3GHz)
Hewlet: Packard 8754A - Network Analyser 4MHz -1300MHz)
Hewlett Packard 8756A8757A Scaler Network Analyser
Hewlett Packard 8757C Scalar Network Analyser
Hewlett Packard 70001A/70900A70906A/70902A70205A - 26.5 GHz Spectrum Analyser
IFR A7550-10KHz-GHz - Portable
Meguro - MSA 4901-30MHz - Spec Anayiser
Tektronix 492P (op $11,2.3$) $50 \mathrm{KHz}-21 \mathrm{GHz}$
Wiltron $6409-10-2000 \mathrm{MHz}$ R/F Analyser
Tek 496 ($9 \mathrm{KHz}-1.8 \mathrm{GHz}$)

Quality second-user test \& measurement equipment

Radio Communications Test Sets

Hewlett Packard 8920B (opts 1,4,7,11,12)
£6750
Hewlett Packard 8922M $+83220 E$
Marconi 2955
Marconi 2955A
Marconi 2955B/60B
Marconi 2955R
Motorola R2600B
Racal 6111 (GSM)
Racal 6115 (GSM)
Racal 6103 (opts1, 2)
Rohde \& Schwarz SMFP2
Rohde \& Schwarz CMT 90 (2GHz) DECT
Rohde \& Schwarz CMTA 94 (GSM)
Schlumberger Stabilock 4015
Schlumberger Stabilock 4031
Schlumberger Stabilock 4040
Wavetek 4103 (GSM 900) Mobile phone tester

miscellaneous

Ballantine 1620A 100Amp Transconductance Amplifier
EIP 545 Microwave Frequency Counter (18GHz)
EIP 548A and B 26.5 GHz Frequency Counter
EIP 575 Source Locking Freq.Counter (18GHz)
EIP 585 Pulse Freq.Counter (18 GHz)
Fiuke 6060A and B Signal Gen. 10kHz-1050MHz
Genrad 1657/1658 1693 LCR meters
ع2000
£1250
£1750
£3500
£1995
£2500
£1250
£1750
$£ 5000$
$£ 1500$
£3995
£4500
£3250
£2750
£1300
£1500
$\$ 1250$
$\$ 1000$
from $£ 1500$
$\Sigma 1200$
$£ 1200$
£950
from $£ 500$

Giar Sonso
£ 1250
Gigatronics 8542C Dual Power Meter +2 sensors 80401A
Hewlett Packard 339A Distortion measuring set £600
Hewlett Packard 436A power meter and sensor (various) Hewlett Packard 438A power meter - dual channel
rom $£ 750$
Hewlett Packard 3335A - synthesiser ($200 \mathrm{~Hz}-81 \mathrm{MHz}$)
Hewlett Packard 3457A muli meter 612 digit
Hewlett Packard 3784A - Digital Transmission Analyser
Hewlett Packard 37900D. Signalling test set
Hewlett Packard 34401A Multimeter
Hewlell Packard 4274A LCR Meter
Hewlett Packard 4275A LCR Meter
Hewlett Packard 4276A LCZ Meter ($100 \mathrm{MHz}-20 \mathrm{KHz}$) Hewlett Packard 5342A Microwave Freq.Counter (18GHz) Hewlett Packard 5385A - 1 GHz Frequency counter Hewlett Packard 6033A - Autoranging System PSU (20v-30a) Hewlett Packard 6060 A and B Electronic Load 300W Hewlett Packard 6622A - Dual OIP system p.s.u Hewlett Packard 6624A - Quad Output Power Supply Hewlett Packard 8350B - Sweep Generator Mainframe £1750
$£ 1750$
$£$
$\varepsilon 1750$
$\Sigma 850$
E2950
$\mathfrak{£ 2 5 0 0}$
$\Sigma 500$
£1750
£2750
£1400
$\Sigma 1400$
$£ 850$
$£ 495$
flom $£ 750$
fro
$\varepsilon 950$

Hewlett Packard 8642A - high performance R/F synthesiser (0.1-1050MHz) £2500
Hewlett Packard 8656A - Synthesised signal generator
Hewlett Packard 8656B . Synthesised signal generator
Hewlett Packard 8657A - Synth. signal gen. (0.1-1040MHz)
Hewlett Packard 8657B-100MHz Sig Gen-2060 MHz
Hewlett Packard 8657D - XX DQPSK Sig Gen
Hewlett Packard 89018 - Modulation Analyser
Hewlett Packard 8903A, B and E-Distortion Analyser
Hewlett Packard 11729 C C Carrier Noise Test Set
Hewlett Packard 53131A Universal Frequency counter (3 GHz) £850
Hewlett Packard 85024A High Frequency Probe
Hewlett Packard 6032A Power Supply ($0-60 \mathrm{~V}$)-(0-50A)
Hewlett Packard 53518 Microwave Freq. Counter (26.5 GHz) £2000
Hewlett Packard 53528 Microwave Freq. Counter (40 GHz) Keithley 220 Programmable Current Source
Keithley 228A Prog'ble Voltage Current Source IEEE.
Keithley 237 High Voltage - Source Measure Unit Keithley 238 High Current - Source Measure Unit Kerthley $486 / 487$ Picoammeter (+ volt.source) Keithley 617 Electrometer source
Keithley 8006 Component Test Fixture
Marconi 2840A 2 Mbit/s Transmission Analyser
Marconi 6950/6960/6960A6970A Power Meters \& Sensors
Philips 5515 - TN - Colour TV pattern generator
Philips PM 5193-50 MHz Function generator
Phillips PM 6654 C System Timer Counter
Panasonic VP 8175A Sig. Gen. ($100 \mathrm{KHz}-140 \mathrm{MHz}$) AM/FM/CW
Rohde \& Schwarz FAM (opts 2,6 and 8) Modulation Analyser
Ronde \& Schwarz NRV NRVD Power meters with sensors Tektronix 1720 Vectorscope
Tektronix 1735 Wavelorm Monitor
8750
$\$ 950$
$\$ 1500$
$£ 3950$
$£ 3950$
£1750
from $\sum 1000$
$£ 1000$
$£ 2000$
$£ 2750$
$£ 5250$
$\varepsilon 1950$
£1950
£3950
$£ 3750$
£1350/\& 1850
$\Sigma 1950$
£1750
$£ 1100$
from $£ 400$
$\mathbf{\Sigma 1 4 0 0}$
$£ 1350$

£2500
from $£ 1000$

Tektronix AM503 $£ 1100$
Wayne Kerr 3245 - Precision Inductance Analyser
Bias unit 3220 and 3225L Cal.Coil available it required. (P.O.A)
Wayne Kerr 3260A +3265 A Precision Magnetics Analyser with Blas Unit $£ 5500$ W\&G PCM 4 PCM Channel measuring set

All equipment is used - with 30 days guarantee and 90 days in some cases.
Add carriage and VAT to all goods.
1 Stoney Court, Hotchkiss Way, Binley Industrial Estate
Coventry CV3 2RL ENGLAND
Tel: 02476650702
Fax: 02476650773
Web: www.telnet.uk.com
Email: sales@telnet.uk.com

3 COMMENT

Who knows your whereabouts?
5 NEWS

- RF probe detects cancer
- Miniature engine
- Single photon transmission reaches 100 km
- Mosfets for no-adjust audio amplifiers

- Council raises the bar
- 3D transistor is fastest yet
- Wide band - low power
- Bistable LCD gets true grey-scale

Government gets $£ 7 \mathrm{~m}$ for wireless

- Japan leads supercomputer race
- Mobile radar for the troops

14 THE CATHODE

Patrick Mitchell gives us a quick history lesson.

19 CIRCUIT IDEAS

- Efficient lighting controller
- Control appliances remotely via the telephone
- Porch light control
- Super-LED regulator
- Battery-operated lamp timer

23 NEW PRODUCTS

The month's top new products.

31 CALCULUS IS FOR LIFE NOT JUST FOR CHRISTMAS

Leslie Green is appalled by the lack of knowledge of graduate job applicants. You could be in for a thousand lines.

36 PROFESSIONAL SDI ROUTER

Emil Vladkov, concludes the serial digital video routing system project with a stand-alone control panel.

43 FUNCTION GENERATOR BASED ON CURRENT CONVEYORS

Muhammad Abuelma'atti (et al) describes a novel function generator based on current conveyors.

46 CAPACITOR SOUNDS II

Cyril Bateman continues to explain how dielectric absorption with DC bias determines capacitor sounds' second harmonic distortions with a practical project.

52 LETTERS

- In praise of John Ellis
- Modern Impedance measurement and de-bounce
- Robots
- Student knowledge and EMC
- Dinosaurs
- Praise indeed
- Kernels
- Class AB, VAS \& C Dom

60 WEB DIRECTIONS
Useful web addresses for electronics engineers.

The Complete Alectronics Design System

Schematic \&
 PCB Layout

- Powerful \& flexible schematic capture
- Auto-component placement and rip-up/retry PCB routing.
- Polygonal gridless ground planes.
- Libraries of over 8000 schematic and 1000 PCB parts.
- Bill of materials, DRC reports and much more.

Mixed Mode SPICE Circuit Simulation

- Berkeley SPICE3F5 simulator with custom extensions for true mixed mode and interactive simulation.
- 6 virtual instruments and 14 graph based analysis types.
- 6000 models including TTL, CMOS and PLD digital parts.

Auto

 PlacememFitrivisemextants

Auto

Routing

- Fully compatible with manufacturers' SPICE models.

Proteus VSM - Co-simulation and debugging for popular Micro-controllers

- Supports PIC, AVR, 8051, HC11 and ARM micro-controllers.
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays, switches, keypads, virtual terminal and much, much more.
- Provides source level debugging for popular compilers and assemblers from Crownhill, IAR, Keil, and others.

E I e c t r o n i c s
53-55 Main Street, Grassington. BD23 5AA

Tel: 01756753440 Fax: 01756752857

Contact us for
Free Demo CD

- Drag and drop toolbars.
- Visual PCB packaging tool.
- Improved route editing.
- Point and click DRC report.
- Multiple design rules (per net).
- Multiple undo/redo.

Call Now for Upgrade Pricing

New Features in Version 6

Virtual System Modelling

EDITOR
Phil Reed
p.reed@highburybiz.com

CONSULTANT

Ian Hickman

CONTRIBUTING EDITOR

 Martin EcclesEDITORIAL ADMINISTRATION Jackie Lowe
02087226054

EDITORIAL E-MAILS

j.lowe@highburybiz.com

GROUP SALES
Reuben Gurunlian
02087226028
ADVERTISEMENT
E-MAILS
r.gurunlian@highburybiz.com

EDITORIAL FAX
02087226098
CLASSIFIED FAX 02087226096

PUBLISHING DIRECTOR
Tony Greville
ISSN 0959-8332
SUBSCRIPTION QUERIES
Tel (0) 1353654431
Fax (0) 1353654400

Disclaimer

We work hard to ensure that the information presented in Electronics World is occurate. However, Electronics World's publisher - Hightury Business Communications - will not take responsibility for any iniury or loss of earnings that may resulif from opplying information presented in the mogozine. It is your responsibility to familiarise yourself with the laws relaing to dealing with your customers and suppliers, and with sotety pracices relating to working with electricol/electronic circuity - particularly as regards electric shock, fire hazords ond explosions.

Who knows your whereabouts?

In Edinburgh, you can buy time on a parking meter with your mobile phone. You call the number displayed on the meter (with caller I.D. enabled), and a voice response system asks for the meter's I.D. number. This enables the parking system server to identify your location and activate the meter. The latter now lets you choose how long you want to pay for and prints out a ticket for you to place on view in your car. It also instructs the server to charge that amount to your credit card, or to a special account.
Obviously, in the process, the system knows just where you are. But this is not the only, or even the earliest system for locating you. Someone calling the U.K. emergency number 999 from a fixed line may be unable, or not in a fit state, to give his or her exact location. But the origin of the call can be traced via the exchange(s) involved, and the person thus located. In the United States, E911 (the 'Enhanced 911 mandate', passed 1996, revised 1999) requires all cell-phone operators to install facilities, able to locate a mobile caller dialling the 911 emergency number, to within 50 to 100 'meters', by 2005 (is the U.S. going metric at long last?).

In Europe, wireless network operators are already required by E112 to be able to locate a caller making a call to the emergency number 112 . However, there is currently no accuracy specification, and most wireless network operators will simply return the location of the cell via which the call was set up - leaving a "fix" which could cover hundreds or even thousands of metres. The GSM system is now spreading in the U.S., and mobile network operators there use uplink time difference of arrival. This depends upon the mobile being received via at least three base-stations, and the system may presumably have to instruct the mobile temporarily to transmit at higher power, to reach enough base-stations. The dominant U.S. mobile technology, like GSM, also uses TDMA, and uplink time difference of arrival technology is appropriate there also. CDMA (code division multiple access) is a different problem as uplink time difference of arrival is not appropriate, and many CDMA mobiles have a GPS function built
in. This returns good position information if the user is outdoors, but less accurate if indoors or in a heavily built up area. These systems are designed to identify a caller's location in an emergency, but in principle could be used by the police continuously to track any suspect, or by national security services for the same purpose, building up a record of an individual's movements up to the present time.
There are also other ways in which one's location, either current or at some time in the past, could be determined. RFID (radio frequency identification) tags are set to become ubiquitous. The Gillette Company of Boston, USA, proposes to buy up to five hundred million or so tags, to mark its razors and packs of blades. These tags are already incorporated in product being sold there, in U.K. and Germany, and the resulting improved inventory management is expected to save billions annually. The tags, read by scanners, will provide records giving details of the time of the sale and outlet, but will remain in the product and be accessible in principle thereafter. Similar tags could appear hidden in the hem of clothes, the binding of books, car tyres and almost any merchandise you can think of. The tags cost tens of pennies today and this will drop to just a few pence each before long. Almost any purchased item will be able to identify the whereabouts of the purchaser either in the past or in some cases, currently, creating or breaking - an alibi. Even the humble credit card will leave a trace whenever used, creating a record of what and when you bought what where. Japan is well ahead of the game and before long there you will be able to opt for personalised targeted advertising. Knowing where you are, the system could ring your mobile to alert you that the shop you are approaching sells your favourite brand of chewing gum.
Some of these means of telling where you are, are obviously beneficial, even potentially life-saving. But others can be expected to raise anxious representations from civil liberty groups. For more details on this story, see the July 2003 issue of Spectrum, (the journal of the IEEE.)

Ian Hickman

Electronics World is published monthly.
Orders, poyments and general
corrapondence io leckio Lowe,
Highbury Eusiness Communications,
Anne Eoloyn House,
$9-13$ Ewell Rood, Choom,
Surroy, SM3 8EZ.
Newstrade: Distributed by COMAG, Tavistock Rood, West Droyton, Middionex, UB7 7QE TOI 0189544055.

Subscripptions: Wywern Subseription Services, Link House, 8 Bartholomew's Walk, Ely Combridge, CB7 4ZD. Tolephone 01353 654431. Pleose notify chonge of address.

subscription rates

1 yeor UK £38.95 O/S £64.50 US $\$ 100.62$ Euro 102.55

USA malling agents: Morcury Aifreight International Ud Inc, 10(b) Englehord Ave, Avenol NV 07001. Periodicals Postage Paid at Rahway NJ Postmastor. Sond address changes to above.
Prinned by Polestor (Colchestioy Lod, Flimeoting by Impress Repro by Dosign Al Porkway, Southgot Woy, Orion Southgote, Peterborough, PE2 OYN

HIGHBURY Business Communications

[^0]Add £2.00 P\&P to all UK orders. 1st Class Recorded - £4. Next day (insured $£ 250$) - $£ 7$. Europe - $£ 5$. Rest of World - $£ 10$. We accept all major credit/debit cards. Make cheques/PO's payable to Quasar Electronics Limited.
Prices include 17.5\% VAT. MAIL ORDER ONLY.
Call now for our FREE CATALOGUE containing details of over 300 electronic kits, projects and modules.

Motor Drivers/Controllers

Here are just a few of our controller and driver modules for AC, DC, unipolar/bipolar stepper motors and servo motors. See website for full details.

DC Motor Speed Controller (6A100V) Control the speed of almost any common DC motor rated up to $100 \mathrm{~V} / 5 \mathrm{~A}$. Pulse width modulation output for maximum motor torque at all speeds. Supply: $5-15 \mathrm{VDC}$. Box supplied. Dimensions (mm): 60W×100Lx60H. Kit Order Code: 3067KT - £12.96 Assembled Order Code: AS3067-£19.96

NEW! PC / Standalone Unipolar

Stepper Motor Driver Drives any 5, 6 or 8 -lead unipolar stepper motor rated up to 6 Amps max. Provides speed and direc-
 tion control. Operates in stand-alone or PCcontrolled mode. Up to six 3179 driver boards can be connected to a single parallel port. Supply: 9V DC. PCB: $80 \times 50 \mathrm{~mm}$. Kit Order Code: 3179KT - $\mathbf{£ 9 . 9 6}$ Assembled Order Code: AS3179-£16.96

PC Controlled Dual Stepper Motor Driver
 Independently control two unipolar stepper motors (each rated up to 3 Amps max.) using PC parallel port and soft-
ware interface provided. Four digital inputs avallable for monitoring external switches and other inputs. Software provides three run modes and will half-step, single-step or man-ual-step motors. Complete unit neatly housed in an extended D-shell case. All components, case, documentation and software are supplied (stepper motors are NOT provided). Dimensions (mm): 55W×70Lx15H.
Kit Order Code: 3113 KT - $£ 16.96$
Assembled Order Code: AS3113-£24.96
NEW! Bi-Polar Stepper Motor Driver Drive any bi-polar stepper motor using externally supplied 5 V levels for stepping and direction control. These usually come from software running on a computer. Supply: 8-30V DC. PCB: $75 \times 85 \mathrm{~mm}$. Kit Order Code: 3158KT - \&12.96 Assembled Order Code: AS3158-£26.96

Most items are available in kit form (KT suffix) or assembled and ready for use (AS prefix).

Controllers \& Loggers

Here are just a few of the controller and data acquisition and control units we have. See website for full details. Suitable PSU for all units: Order Code PSU203 £9.95

Rolling Code 4-Channel UHF Remote State-of-the-Art. High security. 4 channels. Momentary or latching relay output. Range up to 40 m . Up to 15 Tx's can be learnt by one Rx (kit includes one Tx but more avail-
 able separately). 4 indicator LED 's. Rx: PCB $77 \times 85 \mathrm{~mm}, 12 \mathrm{VDC} / 6 \mathrm{~mA}$ (standby). Two and Ten channel versions also available. Kit Order Code: 3180KT - £41.96 Assembled Order Code: AS3180-£49.96

Computer Temperature Data Logger
 4-channel temperature logger for serial port. ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. Continuously logs up to 4 separate sensors located $200 \mathrm{~m}+$ from board. Wide range of free software applications for storing/using data. PCB just $38 \times 38 \mathrm{~mm}$. Powered by PC. Includes one DS1820 sensor and four header cables. Kit Order Code: 3145KT - $\mathbf{2 2 2 . 9 6}$ Assembled Order Code: AS3145-£29.96 Additional DS1820 Sensors - $\mathbf{\$ 3 . 9 6}$ each

NEW! DTMF Telephone Relav Switcher Call your phone number using a DTMF phone from anywhere in the world and remotely turn on/off any of the 4 relays as desired.
User settable Security Password, Anti-
Tamper, Rings to Answer, Auto Hang-up and Lockout. Includes plastic case.
$130 \times 110 \times 30 \mathrm{~mm}$. Power: 12VDC.
Kit Order Code: 3140KT - £39.96
Assembled Order Code: AS3140-£69.96

Serial Isolated VO Module

 PC controlled 8-Relay Board. 115/250V relay outputs and 4 isolated digital inputs. Useful in a variety of control and sensing applications. Uses PC serial port for programming (using our new Windows interface or batch files). Once programmed unit can operate without PC. Includes plastic case $130 \times 100 \times 30 \mathrm{~mm}$. Power: 12VDC/500mA.
Kit Order Code: 3108KT - £54.96 Assembled Order Code: AS3108- $\mathbf{2 4 . 9 6}$

Infrared RC Relay Board Individually control 12 onboard relays with included infrared remote control unit. Toggle or momentary. $15 \mathrm{~m}+$ range. $112 \times 122 \mathrm{~mm}$. Supply: 12VDC/0.5A Kit Order Code: 3142KT - E41.96 Assembled Order Code: AS3142- $\mathbf{2 6 9 . 9 6}$

PIC \& ATMEL Programmers

We have a wide range of low cost PIC and ATMEL Programmers. Complete range and documentation available from our web site
Programmer Acoessories:
40-pin Wide ZIF socket (ZIF40W) £16.00 18V DC Power supply (PSU201) 86.96 Leads: Parallel (LEAD 108) E4.96 / Serial (LEAD76) 4.96 / USB (LEADUAA) 24.96

NEW! USB 'All-Flash' PIC Programmer USB PIC programmer for all 'Flash' devices. No external power supply making it truly portable. Supplied complete with 40-pin wide-slot ZIF socket, box and Windows Software
Kit Order Code: 3128KT - 249.96
Assembled Order Code: AS3128-254.96
Enhanced "PICALL" ISP PIC Programmer
 Will program virtually ALL 8 to 40 pin PICs plus a range of ATMEL AVR, SCENIX SX and EEPROM 24C devices. Also supports In System Programming (ISP) for PIC and ATMEL AVRs. Free software. Blank chip auto detect for super fast bulk programming. Requires a 40-pin wide ZIF socket (not included). Kit Order Code: 3144 KT - $\mathbf{£ 5 4 . 9 6}$
Assembled Order Code: AS3144- $\mathbf{8 6 9 . 9 6}$

ATMEL $89 \times x \times x \times$ Programmer

Uses serial port and any standard terminal comms program. 4 LED's display the status. ZIF sockets
 not included. Supply: 16-18VDC. Kit Order Code: $\mathbf{3 1} 23 \mathrm{KT}$ - $\mathbf{£ 2 9 . 9 6}$ Assembled Order Code: AS3123-134.96

NEW! USB \& Serial Port PIC Programmer
 USB/Serial connection. Ideal for field use. Header cable for ICSP. Free Windows software. See website for PICs supported. ZIF socket not incl. Supply: 18VDC. Kit Order Code: 31 49KT - $\mathbf{2 9 . 9 6}$ Assembled Order Code: AS3149-244.96

UPDATI

Mosfets for no-adjust audio amplifiers

The need to adjust output device idle current in audio amplifiers following construction has been completely removed by Japanese component maker Sanken.
It has introduced 150 Vn and p channel power mosfets with lasertrimmed internal compensating resistors and diodes which mean all devices are matched within $\pm 1 \%$ for temperature and $\pm 20 \%$ for bias current.
Initially designed for a Pioneer hi-fi, the devices are called LEXAM (legend of excellent audio mosfet).
Temperature compensation is achieved by including a string of diodes in the gate circuit of the n device. The diodes are doped to give them a characteristic which matches the combined temperature curve of both n and p -fets together.
Adding diodes in only one of the pair works because both transistors dissipate equal power in a class-AB amplifier. Designers have to be
careful to heatsink both devices equally.
Sanken claims the internal compensation scheme is better than using a separate external sensing transistor mounted between the two devices, as is normal audio amplifier practice, because thermal lag is almost eliminated.
Gate voltage adjustment is achieved by mounting a laser-trimmable potentiometer alongside the semiconductor die in both n and p fets.
The pot is connected to the gate and can is trimmed to match gate threshold voltage which, given a fixed idle voltage on the device gate during operation, sets quiescent current in the amplifier to $100 \mathrm{~mA}(\pm 20 \mathrm{~mA})$.
"Other characteristics such as forward transconductance are optimised to achieve the best possible audio performance," said Sanken.
In the UK, Sanken audio products are available from Magnatec, part of the Semelab Group.

Council raises the bar

The UK's Engineering Council is to raise the Chartered Engineer and Incorporated Engineer entry requirements for professional engineers and also for engineering technicians.
The latest rules will ensure that engineers and technicians must demonstrate competence before registration. Firms will also be
encouraged to speed up the process and develop training and development schemes.
"We have high hopes that this new standard will help to ensure the UK continues to be recognised as one of the leading engineering nations of the 21st century," said council chairman Sir Colin Terry.

The three qualifications will remain the same: Chartered Engineer, Incorporated Engineer and Engineering Technician. The four-year MEng courses will still fast-track graduates towards CEng status.
The Engineering Council contains the national register for 250,000 professional engineers.

3D transistor is fastest yet

A three dimensional transistor with a channel length of just 30 nm (nanometres) has been demonstrated by Intel. The chip giant is claiming record performance and leakage figures for the NMOS device. Dubbed Trigate, the transistor has three gate contacts to the silicon channel, which makes the device easier to manufacture than planar devices.
With planar transistors of the type used in microprocessors, the silicon channel needs to be made very thin. For a device with 30 nm gate this channel would be perhaps just 10 nm
thick, creating what is known as a fully depleted transistor.
In Trigate, the silicon channel is the same thickness as the gate is long.
"There isn't any particular constraint now on lithography," said Ken David, co-director of the components research group at Intel. "It doesn't require unique modifications to the tooling."
Intel has so far characterised a 60 mm device. At 1.3 V it has a saturated drain current of $1.23 \mathrm{~mA} / \mu \mathrm{m}$ and an off current of $40 \mathrm{nA} / \mu \mathrm{m}$.
The firm is planning to use the 3D transistors when it reaches the 45 nm
processing stage. Trigate is now moving from a research phase into full process development.

This 30 nm transistor has its silicon channel running from left to right - source to drain - with the gate passing over the top. Thus it contacts the channel on three sides.

Bistable LCD gets true grey-scale
 ZBD Displays of Oxfordshire has
 for ZBD. The development of the

produced a demonstrator to prove its bistable LCDs can produce multishade images.
"This is an extremely exciting time

greyscale demonstrator shows the capabilities of our technology to offer both greyscale and eventually colour," said Henri-Luc Martin, CEO of ZBD.
ZBD, named after its technology: zenithal bistable displays, is developing and marketing technology which can be used in displays that use no power at all to maintain an image only needing energy to change state.
Previous bistable technologies have had the problem that each pixel is either or off, producing images which are black or white with no shades of grey.
There are ways around this: by using several sub-pixels per pixel which adds complexity, or rapidly turning the pixels on and off - which negates the power advantage
What ZBD has done is make a pixel
which can be set to one of several darkness settings and will hold the setting indefinitely.
Behind the ZBD technology is an in-pixel diffraction grating what aligns the liquid crystal within.
By varying the grating across each pixel, different parts of the pixel can be made to switch at different voltages - effectively making subpixels without needing separate connections to each.
The firm is claiming four error-free grey levels per pixel over a whole display - enough to make 64 colours if the technique was applied to, for instance, a colour display in a phone or PDA.
"The path to greyscale and colour is essential to match the requirements of e-books, electronic readers, shelfedge labels, PDAs, mobile phones and smart watches," said Martin.

Wide band - low power
 A firm from Cambridge reckons it

will soon be making wireless systems that can transmit $100 \mathrm{Mbi} / \mathrm{s}$ of data across 20 m using just $50 \mu \mathrm{~W}$ of transmit power.
Artimi claims its ultra wideband (UWB) chips will be made purely from CMOS processing and will conform to US and European standards.

UWB is touted as the future for wireless home networks. In its present form the system uses the band between 3 GHz and 10.6 GHz . Pulses are spread across the whole band with very low transmit power.
"Because you treat the entire spectrum as one flat band it makes the analogue design simpler," said Mark Moore, chief technology
officer at Artimi.
In fact the power limit of $50 \mu \mathrm{~W}$ has been defined by the US FCC for unlicensed communications in the band.
"The EU is tracking that ruling, and it's expected they'll grant a comparable licence," explained Moore. Until then, the firm has a licence from the Radiocommunications Agency.

In Brief

Liquid crystal lens varies focal length

A liquid crystal lens with electronically variable focal length has been developed by researchers at CRL Opto and Durham University.
Similar work has been carried out by institutions such as University College London. However, the Durham lenses are much larger, with diameters of up to 10 mm .
Chris Hughes, senior principal engineer at CRL Opto, said the lenses could be used in applications such as image zoom, wavefront correction and laser beam control.
"It could be used in variable focus optics systems and, depending on how clever you are, zoom elements with no mechanical components," he said.
The lens has a focussing value between 0 and 2 dioptre, meaning it can focus a parallel beam of light between 50 cm and infinity.
The design is based on nematic liquid crystal with electrodes around the edge. A
voltage potential is introduced across the lens that changes its refractive index.
The clever, and secret, part is getting a zero potential in the centre of the lens, which increases towards the outside edge.
Both spherical and cylindrical lenses can be made to focus light longer than 400 nm .

Government gets $\mathbf{£ 7 m}$ for wireless

The Government has completed its sale of licences for public fixed wireless access in the 3.4 GHz band, raising $£ 6.955 \mathrm{~m}$ in the process.
After 41 rounds of bidding all fifteen licences were sold to just three bidders. Poundradio, owned by Hong Kong firm PCCW, won thirteen licences, paying a total of $£ 6.3 \mathrm{~m}$. This included nearly $£ 2 \mathrm{~m}$ for the London licence. Red Spectrum took the Northern Metropolitan licence paying $£ 330,000$, while Public Hub paid $£ 330,000$ for the Southern Provincial licence.
"The aim of the auction was to see the licences in the hands of the operators best able to take advantage of them, and in turn, to see consumers - including those in areas currently without ADSL or cable -
benefit from fixed wireless broadband access," said Stephen Timms, Minister for e-Commerce and Competitiveness

Twice the brightness,

 no more powerOxford display developed Ocuity has revealed a switchable brightness display which can double its intensity for almost no power increase.
Based around something Ocuity calls a 'polarisation activated microlens', the add-on optics trade-off viewing angle for brightness when a boost is required.
The microlenses are in a thin sheet and can be switched between focussing and plain states by a voltage. They are also behind the company's other novel display which can be switched from normal 2D viewing to a 3D mode which does not need special glasses.
"We are already talking to manufacturers about licensing production," said company co-founder Graham Woodgate.
The Company first publicly showed its microlens technology, on a 2D/3D display, in February.
www.ocuity.co.uk

RF probe detects cancer

Italian military electronics company Galileo Avionica has developed a non-invasive probe which it claims can find cancer and other anomalies in the body.

Called TRIMprob (Tissue Resonance InterferoMeter Probe), it uses an effect accidentally discovered by the physicist Dr Clarbruno Vedruccio who was working on a mine detector.
"During laboratory experiments he noted and investigated the interference of this probe with live biological substances and consequently pursued his studies until the development of a demonstrator," said Galileo.
Inside the probe is an RF source, invented by Vedruccio, called a hybrid-state maser which "generates highly coherent space and time electromagnetic fields," said Galileo, "and through miniaturised sensors interacts microscopically with the organic substance under examination."
Operating in bands around 460, 930 and $1,390 \mathrm{MHz}$, it can detect in real time and at an early stage various disorders from inflammatory conditions to cancers, said the firm.
"When the electromagnetic field

hits a biologically altered tissue, a phenomenon of interference with the analysed structure takes place.
This phenomenon is interpreted by specially-developed algorithms, and allows the detection of cancer and other pathologies: vascular disorders, joint and bone diseases, sinew and muscle injuries, inflammatory conditions, fibromas,"
claimed Galileo.
TRIMprob is battery-powered and about 30 cm long. Working with a nearby receiver, it analyses the patient fully dressed and with no discomfort.
Medical trials are underway and a probe for prostate cancer is expected this summer.
www.galileoavionica.it

Single photon transmission reaches 100 km

Scientists at Toshiba Research Europe and Cambridge University have transmitted quantum cryptography keys using single photons of light over 100 km of fibre optic cable.
"As far as we are aware, this is the first demonstration of quantum cryptography over fibres longer than 100 km ," said Dr Andrew Shields, leader of the Toshiba group developing the system.
Quantum cryptography uses the rules of quantum mechanics to gives the highest level of secrecy yet found in a communications system.
Shields says it offers "unconditional secrecy", which is "independent of the computing power, fancy gadgetry or guile of an adversary".
Toshiba creates single photons using an attenuated laser and encodes data using the photon's phase. At the other end of standard fibre optic cable, avalanche photodiodes are used to detect the incoming photons.
Due to the rules of quantum mechanics, any interception of the photon by an eavesdropper has modify the phase (Heisenberg's uncertainty principle), so the receiver will be aware of tampering.
An eavesdropper "cannot gain any
information about the encoded single photons without causing a detectable disturbance", said Shields.
The quantum system is only used to send the key, which is then used in a standard 3DES or AES encryption system, or perhaps a one-time-Pad system. "That extends the security, but is only suitable for
small amounts of data," added Shields. The group's success has led to Government funding for a commercial system on unhackable communications.
"They're funding part of the future programme, to integrate a single photon source," said Shields. This quantum LED project has a budget of $£ 1 \mathrm{~m}$, he said.

Japan leads supercomputer race
 The world's most powerful computer
 uses a Quadrics interconnect and was

is still the Earth Simulator - according to the annual top 500 supercomputer list compiled by research labs in Germany and the US.
The Earth Simulator, built by NEC and installed in Yokohama, is rated at 35.86Tflop/s (teraflops or trillions of calculations per second) using the Linpack performance measure.
Number two is Hewlett-Packard's ASCI Q at Los Alamos with 13.88Tflop/s followed by the Intel Xeon-based MCR cluster at Lawrence Livermore Laboratory. This is the highest ever place for a cluster, which
manufactured by Linux Networx. Former world-fastest ASCI White came fourth, and would probably have come third with this years slightly modified Linpack if the computer had been available to be retested.
The upgraded 6,656-processor IBM SP system at the US National Energy Research Scientific Computing Center, which is almost identical to 8,192 processor ASCI White, came fifth with $7.3 \mathrm{Tflop} / \mathrm{s}$.
Away from Japan and the US, France gets tenth spot with

Ranked twelfth in the world, this is the UK's most powerful computer. Called HPXc it is a cluster of IBM SMP nodes containing 1,280 POWER4 processors and delivering 6.6 teraflop/s peak - around 3.5 teraflops/s sustained. It has 1.28 Tbyte of memory and 18 Tbyte of disk space.

3.98Tflop/s for its nuclear research HP AlphaServer SC, followed by Germany, and the UK at 12 with its 3.241Tflop/s HPCx - an IBM pSeries 690 based Oxforahire (see picture).
The number of systems in the top 500 list using Intel processors grew from 56 to 119 in the six months before the list was compiled, so Intel can at last join IBM (Power architecture) and HP (PA-RISC) as a big chip contributor.
Two notable newcomers among the top ten are Fujitsu's PrimePower HPC2500 system at the National Aerospace Laboratory of Japan, at seven the largest new Japanese system; and at eight, the highest ranked Itanium-based system, produced by Hewlett-Packard and installed at Pacific Northwest National Laboratory.
Almost 4Tflop/s are now required for a top ten position and 59 systems exceed ITflop/s.
If you add the performance of all 500 computers, IBM is producing 34.9 per cent of the power, HP 24.1 per cent and NEC 11.7 per cent.
The number of clusters grew again, to 149 systems of which 23 have been made by the organisations which use them.
It has been suggested the US Department of Defense's recent injection of almost $\$ 150 \mathrm{~m}$ into US supercomputer research was prompted by Japan's dominance of the list.

Miniature engine

Ceramic micro-engines just a few millimetres in length have been created by researchers at the University of Birmingham.
"These micro-engines will be much more energy efficient than standard batteries. It takes 2,000 times more energy to manufacture a battery than the battery dispenses while it is being used," said Dr Kyle Jiang, lead investigator at Birmingham's department of mechanical engineering.
However, Jiang's engine is not a fuel cell. "The difference is that a micro-engine gives a displacement, and produces electricity as well," he said.
In fact the micro-engine is an internal combustion engine, with the choice of fuel yet to be finalised. "At the moment the most likely fuel will be propane and a catalyst, platinum," said Jiang.
In the presence of platinum the propane
will spontaneously combust, avoiding the need for an ignition source, Jiang explained.
While hydrogen might be a better fuel choice, he said, because of its high energy density, it would need an ignition source inside the combustion chamber.
Manufacture of the engines is the University's main achievement. "We use UV lithography. The construction material is a kind of polymer," said Jiang. This is then converted to ceramic.
With conventional combustion techniques there is a minimum size to the device. If the combustion chamber drops below 1 mm on a side, the gas will not burn, claimed Jiang.
Micro-engines could be used to drive micro air vehicles and micro-robots for reconnaissance purposes, communications relays, micro-cameras and other sensor carriers.

Mobile radar for the troops

UK design consultancy Plextek has developed a mobile radar system that makes use of programmable logic and a handheld computer for its display.
The radar is called BLightER, and is designed to be set up in a battlefield to provide up to date information to troops. It can be set on a tripod or fixed to a building.
"It's at the concept stage at the moment," said Mark Radford, senior project consultant at Plextek. "It's a very lightweight unit."
BLightER is a frequency modulated, continuous wave radar operating at around 15 GHz . The electronically formed beam has a width of up to 5 degrees and a range of 10 km . Using ebeam allows different users to focus on different areas of interest.
It can resolve down to 10 m with doppler resolution of 1 mph , claimed Plextek.
Data is sent to one or more handheld iPAQs, with the option of using a wireless link.

"You could use wireless LAN, or extend the range by upping power or using some kind of directional antenna," said Radford.
Power could come from a car or lorry, battery pack or even a solar cell,
he said, as power consumption is around 15 W .
The signal processing should fit into a low cost FPGA to keep overall costs down, said Radford, hopefully to less than $£ 15,000$.

Spotlight uses LEDs

UK-based Publicscreen \& Lightsystem has produced spotlights using Luxeon high-intensity LEDs from Lumileds.
Called LEDSpot Randy 48 lamps, after lighting designer Randy German who helped design the lamps, each uses 48 Luxeons in red, green, blue and white.
DMX control, used in stage lighting, "in combination with Lumileds Luxeon LEDs allows a far quicker response of light, special effects and dimming, while providing a choice of over 16 million colours", said Publicscreen. "In addition, colour-fade effects can be created at
the same time as strobe effects, forming the basis for more artistic lighting techniques."
A total of 35 LEDSpots were used on a recent concert tour by German musician Herbert Groenemeyer.
"This is the first time a concert has been lit with LEDs and it marks a breakthrough in the acceptance of solid state technology as a major light source for the entertainment industry," said Ingo Teztlaff of Publicscreen.

- Lumileds has released details of the next Luxeons to be added to its porfolio.
Having previously made 1.2 W single-chip and 5 W quad-chip devices, it will now introduce 2 and 3W single-chip LEDs.
These will operate at 700 mA and 1A, and white versions will deliver 50 and 70 lumens, respectively.
Voltage drop in both is 3.5 V , meaning efficiency is $201 \mathrm{~m} / \mathrm{W}$, slightly under that of the company's 1.2 W chips.

The higher-power LEDs are thought to use a $1 \mathrm{~mm}^{2}$ die similar to that used in Lumileds' 1.2 W devices, mounted in a similar package to that used for its 5W LEDs, which has better thermal characteristics.
Lumileds is also now shipping
'warm white' 1W leds with, typically, a colour temperature near $3,200 \mathrm{k}$, colour rendering index over 85 and an average light output of 22 lumens. www.lumileds.com

Power to the peripheral

A standard for delivering power through Ethernet cable has been ratified by the IEEE.
Devices that are expected to make use of the standard include digital security cameras, wireless access nodes and Webcams. The technology could also be used to help power a laptop PC, increasing battery life when the laptop is connected to a network.
The IEEE802.3af standard specifies that -48 V DC is available on the four wires not normally used in Ethernet cabling. Up to 15.4 W can be injected into each port, giving each peripheral around 13 W to play with.
Using the system will have implications for power supply makers, however, as power fed into the network must meet 100 mV noise and ripple specifications. An isolation of $2,250 \mathrm{~V}$ DC is specified between wires.

THERE IS INTERESTING NEWS

OSCILLOSCOPE

 FFT ANALYSER VOLTMETER RECORDERThe Handyscope 3 is a powerful and versatile two channel measuring instrument with an integrated function generator.
${ }^{\circ}$ USB 2.0 connection (USB I.I compatible)
o sample speed up to 100 MHz per channel
${ }^{\circ} 8$ to 16 bit resolution ($6 \mu \mathrm{Volt}$ resolution)
${ }^{\circ} 50 \mathrm{MHz}$ bandwidth
${ }^{\circ}$ input sensitivity from 200 mVolt up to 80 Volt
${ }^{\circ}$ large memory up to 131060 samples per channel
${ }^{\circ}$ four integrated measuring devices
${ }^{\circ}$ spectrum analyser with a dynamic range of 95 dB
${ }^{\circ}$ fast transient recorder up to 10 kHz
${ }^{\circ}$ several trigger features
${ }^{\circ}$ auto start/stop triggering
${ }^{\circ}$ auto disk function up to 1000 files
${ }^{\circ}$ auto setup for amplitude axis and time base ${ }^{\circ}$ auto trigger level and hysteresis setting ${ }^{\circ}$ cursor measurements with 21 read-outs

for more information, demo software, sofware, source code and DLL's visit our internet page: http://mww.tiepie.nl

The cathode

> Throughout the history of thermionic valve manufacture there has been considerable impetus to develop improved cathodes, as it is the cathode that chiefly dictates a valve's power handling capacity and efficiency. Patrick Mitchell elucidates

Since the rise of semiconductors, thermionic cathodes have been relegated to a few specialised areas such as cathode ray tubes (CRT), high power microwave frequency circuits and high end audio amplifiers but much of the early development of electronics was intimately bound to cathode technology. After being sidelined for several decades, cathodes have again come to prominence with the accelerating development of cold field emission technology.
During the valve era extensive research was dedicated to devising cathodes with lower operating temperatures while maintaining or increasing their electron emissions. High cathode temperatures bring several drawbacks. One index of merit of a thermionic cathode is high emission current to required heating power ratio, which is a function of emissions per unit area, and operating temperature (Fig. 1 \& 2). This is far lower for cathode types with cooler operating temperatures. High temperature filaments have a limited life because of increased vaporisation of atoms from their surface, and impose considerable constraints on the design of cathodes and their surrounding elements, requiring wide spacing to control the temperature of close electrodes. ${ }^{1}$ A wide gap between anode and cathode means that a large anode voltage is necessary to create the necessary field in the immediate vicinity of the cathode to draw away the cloud of emitted electrons. Fig. 4. These electrons are then considerably accelerated as they pass to the anode. The energy they thus acquire is transferred to the anode on impact, heating it. Consequently high power valves often have hotter anodes than cathodes! The dividends from reducing cathode temperature are substantial.

The history of thermionic cathodes can be conveniently divided into two phases. From the discovery of thermionic emission in the 1870s until around 1912, thermionic devices were one class of many under investigation by scientists and engineers but did not show outstanding potential. During this period development was driven by curiosity and isolated individuals and was consequently haphazard. This situation then changed to one where thermionic devices assumed great economic importance.

Up to 1912 - scientific curiosity

The British physicist Frederick Guthrie advanced his theory of thermionic emission in 1873 following a series of experiments on hot charged bodies. When he placed a red-hot negatively charged metal sphere in a vacuum it discharged but a positively charged sphere did not. He thus concluded that hot metal bodies emit negatively charged particles. His hot spheres were the first thermionic emitters.
In the $\mathbf{1 8 8 0}$ s, three researchers: Goldstein, Hittorf, and Edison independently found that a current would flow between the heated filament of an incandescent light bulb and an extra electrode placed in the bulb. The light bulbs of the time (Swan and Edison types) used carbon filaments which formed the first thermionic filament cathodes. The first public description and demonstration of the effect was given on behalf of Edison by Edwin Houston in 1884 at the Philadelphia International Electrical Exhibition. William Preece, chief engineer of the British Post Office was present. He approached Edison for some sample valves and was generously given several. On his return to England he conducted a series of experiments into the
phenomenon and published his results in 1885 . He used the term "Edison effect" for the current flow between the filament and electrode in his paper and the name stuck. The nature of the current was not understood at the time. The discovery had been made in the course of investigating the blackening of bulbs due to the evaporation of carbon from the filament and condensation on the inside of the bulb. Early theories thus involved charged carbon vapour as the current carrier.
In 1897 JJ Thompson measured the charge to mass ratio of electrons establishing that they have -ve charge and mass. Electrons then became leading contenders for the thermionic charge carrier. Early valves had modest degrees of vacuum and ionised gas molecules as well as electrons carried appreciable current. Later when valves with high or 'hard' vacuums were produced electrons carried effectively all of the current.
A major early contribution was made by Owen Richardson who studied the behaviour of hot metal filaments in gases and vacuum. He published on the platinum filament in 1901 and further results from platinum as well as carbon and sodium in 1903. He formulated an equation to model the emission current per unit area: $\mathrm{i}=\mathrm{QT}-\mathrm{e}^{-\phi e / k T)} \mathrm{A} / \mathrm{m}^{2}$. A more accurate equation was provided by Saul Dushman from a quantum based derivation in 1920:
$\mathrm{i}=\mathrm{QT}^{2} \mathrm{e}^{-\phi / k T \mathrm{~T}} \mathrm{~A} / \mathrm{m}^{2}$
where $\mathrm{i}=$ saturation emission current from a hot cathode in $\mathrm{A} / \mathrm{m}^{2}$
$\varepsilon=$ the electronic charge (1.6022×10^{-19} coulombs)
$k=$ Boltzman's constant $\left(1.3807 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$
T = Kelvin temperature
$\phi=$ the work function of the cathode surface (see table 1)
$\mathrm{Q}=\mathrm{a}$ constant specific to the cathode surface (see table 1).
This is now know as the Richardson Dushman equation.
In this period cathodes were directly heated filaments first made of carbon and then platinum, tantalum or tungsten and operated at around 2500 to 3000 K . Tantalum was in use until around 1913 as a filament material but it tended to warp in service. It was replaced by tungsten but tungsten has lower emission than tantalum. Filaments made from tungsten wire with tantalum wrap known as Hudson filaments were briefly popular as was tungsten coated in a tantalum paste.
Such cathodes were superseded for most applications by thoriated tungsten in the 1920s and oxide cathodes in the late 1920s and 1930s. This chronology reflects the manufacturing difficulties associated with the types rather than the sequence of their discovery. ${ }^{3}$
Oxide cathodes that were later to dominate the field originated serendipitously in the pre 1912 period. The German scientist Arthur Wehnelt, while working with platinum wire heated to comparatively modest temperatures in gases, noted luminous spots on the wire. He traced this to contaminants deposited on the surface of the wires during preparation that gave localised areas of high electron emission, exciting gas molecules that emitted light on relaxation. This led to a series of experiments on oxide-coated cathodes, the results being published from 1903-1905.
Histories of the valve highlight de Forest, Fleming, and Langmuir; Wehnelt usually gets less attention. He has nevertheless a persuasive claim to each of the three main developments in valve technology. He used his alkali earth oxide coated cathode to make a diode valve that predated Fleming's (detailed in a 1906 patent application). It was for charging accumulators for x-ray equipment and was not applied to radio reception and so was of little interest

Fig. 1. Plots of emission current per cm^{2} against temperature for the three main thermionic cathode types.

Fig. 2. Emission per watt of heating current for three thermionic cathode types.
to radio historians. He invented a telephone repeater (amplifier) that worked by using a variable electric field to deflect a cathode ray on and off a target thus varying the cathode current. This predated de Forest's Audion (the first triode) and was conceived and designed for, built for and apparently fulfilled the purpose. Compare this with de Forest's triode which he happened on as one of numerous devices he investigated. He did not perform a detailed and accurate characterisation of its behaviour and exploited it after its potential had been recognised by others. Finally Wehnelt's oxide cathode predated the thoriated cathode by at least 10 years. ${ }^{3}$

1912 on - commercial development

Although de Forest introduced his 'Audion' triode in 1906, its potential as an amplifier was not appreciated at first. An urgent need for a means of amplification had meanwhile arisen from the demands of long distance telephone and radio communications. Various devices had

Table 1. Some values for the Richardson Dushman equation

Material	ϕ Volts	Q
Oxide coated cathode	1	0.01
Thoriated tungsten	2.86	15.5
Tungsten	4.53	60.2
Tantalum	4.07	60.2
Thorium	3.35	60.2
Platinum	6.26	.00017

emerged to fill this need including magnetic amplifiers, relay based devices and repeaters along the lines of Wehnelt's, but none was satisfactory. Lowenstein publicly demonstrated unambiguous amplification using a triode for the first time in 1912 shortly followed by de Forrest. At the time the performance of triodes in this role was poor but it was realised that if they could be improved they had the potential to get round the problems of competing systems: low maximum frequency, low sensitivity and high distortion. Powerful commercial interests hungry for a solution to their amplification problems began to finance intensive research. Rapid progress was the result and within 15 years the pattern of valve manufacture to the present day had been defined. This process was not sudden but the year 1912 has as good a claim as any to being the watershed. ${ }^{4,5}$.
As far as the cathode is concerned, this second period in valve history saw the replacement of the earlier high temperature cathodes with the more energy efficient oxide coated and thoriated types. Oxide coated cathodes had been in use for a decade by 1912 but the thoriated tungsten cathode was a product of General Electric's increased research effort. As with oxide cathodes their discovery was serendipitous. Early manufacturers of incandescent tungsten lamps found that at the operating temperature, tungsten formed into large crystals with correspondingly large boundaries between them. When used with AC , such boundaries gave rise to faults, hot spots, and early failure. Various additives were tried to keep the crystal structure fine and overcome this problem. Thorium nitrate and oxide proved to be effective. Thorium has a long association with the lighting industry as its oxide was the principal active component of gas lamp mantles! It has now been replaced in this role because thorium is weakly radioactive. General Electric used one of their lamp factories as a research base for thermionics. Valves under investigation used tungsten cathodes and by accident some thoriated tungsten was used for one batch. When tested, valves from this batch had greater than normal cathode currents. Sources differ ${ }^{3,4}$ on the date but this probably happened in 1913. GE's Dr. Irving Langmuir spotted the potential of this observation and began investigation. In 1914 he filed a patent containing all the elements of thoriated cathode preparation. This included 'flashing' at 2900 K for 1 minute, 'forming' at 2250 K for a few

Fig. 3. Plot of the changes in potential with distance in the space between a cathode and anode?. With anode and cathode potentials equal, the emitted electrons form a cloud or space charge around the cathode and consequently a potential minimum. Increasing the anode potential reduceds this minimum and increases cathode current until a point where the minimum is abolished (150 V in this example) and all emitted electrons pass to the anode and the cathode is 'saturated'. The high voltage necessary to abolish this minimum means that electrons are subsequently substantially accelerated towards the anode which absorbs their energy and gets hot.
minutes, operating at $17-1800 \mathrm{~K}$ and the reversion of emissions to the level of pure tungsten at 2800 K and the restoration by repeating the flash/form process. Langmuir's is a recurring name in electronic and chemical research of the first half of the 20th century. He was awarded the Nobel Prize for chemistry in 1932.
GE announced their thoriated filament valves in 1922 and they became generally available in 1923. A curious twist to the history of thoriated cathodes is that the British MOV (previously Marconi-Osram Valve) Company prototyped a thoriated filament valve in 1920 and marketed a production version in 1921. Considering the intensive efforts at GE, how was it that they were beaten to the product? Few details of the MOV valve and its development have survived. ${ }^{5}$
Thoriated tungsten cathodes were denoted 'dull emitter' because at their operating temperatures they glow dull red as opposed to bright emitter plane tungsten, tantalum and Hudsen types that glowed bright white. Like their predecessors they are directly heated filaments. Their operating temperature is around $1700-1900 \mathrm{~K}$. A small amount of thorium oxide is added to tungsten to form the cathode filament. In later types the filament was often blasted with steel grit to increase the surface area. Such filaments have emissions only slightly better than pure tungsten until they are heat treated as described by Langmuir. The successful configuration is a tungsten wire with a layer of metallic thorium one atom thick on the surface. The first step in production of this layer is to reduce some of the thorium oxide to thorium metal. At high temperatures an equilibrium exists between tungsten and thorium oxides. Although the equilibrium favours thorium oxide, tungsten metal is in vast excess in the filament so at suitable temperatures (above 2750 K) some oxygen passes to tungsten releasing thorium metal atoms. This is the basis of flashing, the first step in the heat treatment.
Flashing is done at 2800 K for $1-3$ minutes and results in the production of thorium throughout the volume of the wire. At this temperature, metallic thorium diffuses through solid tungsten to the surface where a layer would form if it stayed there but at 2800 K the rate of thorium evaporation from the surface exceeds that of arrival at the surface by diffusion. A second step in the heat treatment is hence necessary to form the surface layer and this is done at a temperature where appreciable diffusion of thorium takes place but evaporation does not exceed accumulation on the surface. Such temperatures are in the 'activating range' of $2200-2600 \mathrm{~K}$. At this lower temperature thorium oxide is not reduced to thorium to any significant degree, hence the need for two steps. Activation is done over about 20 minutes and the cathode emissions rise over this time. The effect is impressive, testing at $1500^{\circ} \mathrm{K}$, activation raises the output from that of clean tungsten ($91 \mathrm{nA} / \mathrm{cm}^{2}$) to $8.5 \mathrm{~mA} / \mathrm{cm}^{2}$; a 93,000 fold increase. Emissions per heating watt are around 5 times greater (Figure 2). Interestingly, the emissions from thoriated tungsten are considerably higher than those of pure thorium wire ($740 \mu \mathrm{~A} / \mathrm{cm}^{2}$ at 1500 K) and the rate of evaporation of thorium atoms from the surface is much smaller.
Damage to the thorium layer reduces emissions drastically. A 50% loss of thorium coverage reduces emission by 99%. With extended use the emission current of a thoriated cathode declines because of thorium loss through vaporisation and two processes involving stray gas molecules within the valve: poisoning and sputtering. ${ }^{1}$
Stray gas molecules within the glass envelope are easily ionised by electrons passing between the cathode and anode. Such ions are positive and are thus accelerated towards, and collide with the cathode. Such collisions
knock active surface atoms out of the cathode. This process is known as sputtering. Neon, argon, caesium and mercury are the chief offenders.
Cathode poisoning is due to chemical contamination of the cathode by gases, principally oxygen, which find their way into valves. Nitrogen actually temporarily enhances emissions from thoriated tungsten.
A feature of thoriated filaments is that they can be rejuvenated when emissions drop by repeat flashing and activating because the thorium oxide they contain is not expended by the first process.
The other major development in cathodes of the post 1912 era was the oxide-coated cathode, or rather the reliable deployment of the oxide-coated cathode as the cathode itself dates from 1903. The delay was because of the difficulties in producing a consistent and durable cathode and in producing and maintaining a sufficiently hard vacuum. Once again the principle benefit was to bring down the operating temperature, this time to about $1050^{\circ} \mathrm{K}$. Western Electric took an interest in oxide-coated cathodes and had successful valves in production by 1919. Early examples were expensive to make because platinum was used as the filament metal. This was soon changed to nickel alloy or tungsten. ${ }^{5}$
The chemistry of the oxide coating (usually barium, strontium, calcium or a combination of these oxides) is complex. They are manufactured with an oxide coating and are then activated or 'formed' by simultaneously heating the cathode above its normal working temperature and drawing a large cathode current. The duration of forming varies from minutes to days depending on the temperature and thickness of the coating. This denudes the coating of oxygen, leaving an excess of barium, which is required to maximise emissions. Contamination with oxygen will reduce emissions so paradoxically oxide cathodes are poisoned by oxygen.
The oxide cathode made indirect heating feasible and consequently engineers had much more control over the design of the emitting surface. Hotter cathodes are more difficult to heat indirectly because of the high filament temperatures required and severe constraints are imposed on the materials used for the cathodes as well as the proximity of other electrodes. With oxide coating, operating temperatures fell below 1200 K and this was achievable in an indirectly heated cathode. A tungsten or NiChrome filament could be coated in an insulating layer of aluminium oxide and located in a casing bearing the coating. Oxide cathodes improve the emission current: heater power ratio of cathodes by an order of magnitude over thoriated tungsten.
Another advantage that was particularly important at the time when oxide-coated cathodes were introduced concerned hum. Early electronic equipment was designed to be powered by batteries because mains electricity was not widely available. Large and expensive batteries were thus needed. AC mains became increasingly available during the first quarter of the twentieth century and was a far more attractive means of cathode heating than batteries but brought a problem with thoriated cathodes. The small mass and high temperature of thoriated cathodes means that they cool very quickly, quickly enough to suffer an appreciable temperature drop between peaks of the AC heating current at 50 to 60 Hz . Thus the temperature and emission current, fluctuates with heating current giving rise to hum. Radiant heat loss of a 'black body' (to which a hot filament is a good approximation) is given by $\mathrm{P}=\sigma \mathrm{T}^{4}$ $\mathrm{W} / \mathrm{m}^{2}$ where σ (Stephan's constant) $=5.67 \times 10^{-8}$ $\mathrm{Wm}^{-2} \mathrm{~K}^{-4}$, so oxide cathodes with their lower temperature and larger mass are far less prone to this problem. ${ }^{5}$
These improvements come at a price. Oxide cathodes

Fig. 4. Characteristic curves of a diode valve to illustrate emission behaviour6. Saturation currents are dependent on anode voltage. This is particularly pronounced with oxide cathodes. ${ }^{6}$

Fig. 5. Valves using oxide coated or thoriated tungsten cathodes appear silvery because of the use of a getter. This is a small amount of reactive metal that is vaporised during the valve manufacture and precipitates on the inside of the glass. Its function is to bind free gas molecules within the valve. It is called a getter because it 'gets' free gas molecules. For a similar reason it is sometimes referred to a 'keeper'.

Fig. 6. A cutaway view of a single element of a Spindt cathode or FEC. Electron emissions are controlled by the gate to cathode voltage. +50 to +100 volts on the gate turns the cathode on in this example. No heater is required.

anions that result from ionisation of gas molecules in the valve. This is why practical oxide cathode valves could not be made until the technology to produce and maintain a hard vacuum had been developed. Even hard vacuums are not perfect and heavy ion bombardment remains an issue to this day. Oxide valves last routinely $1,500-2,000$ hours compared to $5,000-10,000$ for thoriated. The problem is greatly exaggerated if the heavy ions are accelerated to high energies before impacting the cathode. This places a constraint on the anode voltages that oxide valves can tolerate. For Vaa >1000 volts or so cathode deterioration is excessive. This problem also affects thoriated cathodes though a process of carbonisation can limit the effect. This involves heating the cathode in a hydrocarbon atmosphere. Tungsten carbide is formed on the surface. This reduces the rate of degradation from sputtering by about 85%. ${ }^{2}$ The most resilient cathodes are of pure tungsten which is why they continued in use in high power, high anode voltage applications long after they had been superseded in other areas.
A further advantage of thoriated cathodes is that they have a small emitting surface area and so a low capacitance which is particularly important for high power high frequency applications. Where valves are operated with anode voltages of thousands of volts, powers of kW are handled with only a few amps of cathode current. The cathode heating power thus becomes rather immaterial. Such valves made to handle tens to hundreds of kilowatts for radio and TV broadcasting use thoriated cathodes. The EBAC XXX250000 is such a valve. It has a plate dissipation of 250 kW , and the filament dissipates 8 kW . It weighs 98 lb and measures 70 by 33 cm .
Both thoriated and oxide cathodes are very sensitive to stray gas in the valve so the vacuum must be "hard' and this places considerable demands on the initial pumping and long term impermeability of valves. The seals between the glass envelope and the contact pins of valves have always posed a tricky manufacturing problem and these seals are never perfect, allowing the influx of small amounts of atmospheric gas over time. The surfaces of the valve's components also give off dissolved gas molecules over the lifetime of the valve. To minimise the effects of gases a 'getter' is used. This consists of a piece of a reactive metal placed inside the glass envelope and vaporised by an induction furnace or by direct electric heating during evacuation of the valve. Magnesium, titanium (thoriated cathodes) or barium (oxide cathodes) are commonly used for this purpose. The metal then precipitates on the inner surface of the valve and absorbs oxygen and other gases. This is the reason valves appear silvery (Fig. 5).
Filament heater voltages deserve a brief note. Most early cathodes used between 1 and 5 volts. In an indirectly heated cathode, the heater voltage has a slight effect on valve operation as the cathode surface potential varies
from one end to the other. This tends to blunt the onset of saturation particularly at low anode voltages. This was not a particularly significant problem and does not apply to the indirectly heated oxide cathodes that had become dominant by the 1930s. Eventually by the mid 1930s 6.3 V was settled on as the standard heater voltage for directly and indirectly heated cathodes. This came about because of the demand in the USA for car radios. Valves were made for this purpose with the heater voltage chosen to match the car battery voltage that was universally 6.3 V at the time. ${ }^{5}$

Recent Progress - Cold Cathodes

Electron emission is divided into thermionic, photoelectric, secondary (electrons scattered from the surface by high energy impacting electrons) and field. Field emissions are induced by a strong electric field such as that occuring at the tip of a lightning conductor during a strike. It is the field emission cathode that brings the technology up to date. Field emission cathode (FEC) technologies today fall into two broad groups: Spindt and carbon based cathodes.
In 1976 by Dr. Charles A. Spindt of the Stanford Research Institute developed the first field or 'Spindt' cathode. It consists of an array of microscopic metal points beneath a perforated metal 'gate'. The Spindt cathode operates cold with a mode of action quite different from that of its thermionic counterpart. Electron emissions depend on electron tunnelling. In a conductor, free electrons are constrained by its surface potential barrier. The height of this barrier corresponds to the work function of the conductor. Thermionic and photoelectric emission work by giving a few electrons enough energy to pass over the potential barrier. Field emission cathodes work by modifying the barrier to maximise tunnelling of electrons which have insufficient energy to pass over the barrier, through it. To modify the barrier in this way field strengths of the order of $10^{16} \mathrm{Vm}^{-1}$ are induced over very short distances adjacent to the emitting surface. This is achieved with modest voltages (under 100 V) by the geometry of the emitters. Because of their small dimensions, field strengths between the points and gate are large. Field strength is greatest near conductor surfaces which curve with minimum radius as in the well known electrostatic windmill demonstration of school physics labs. Hence emissions are maximised with small sharp points. Spindt used semiconductor manufacturing techniques to produce molybdenum cones beneath holes in a molybdenum layer separated by SiO_{2} on a heavily doped Si wafer. He ended $u p$ with an array of conical electrodes $1.5 \mu \mathrm{~m}$ high and wide at the base below $1.5 \mu \mathrm{~m}$ diameter holes as illustrated in Fig. 6. More recent elements are of the order of 1 micron across. Spindt's invention began the study of vacuum microelectronics. Spindt cathodes are made on semiconductor wafers so they have the potential to be deployed in integrated circuits. The size achievable is limited to that of wafers of about 20 cm diameter. This limits their use in display applications.
Carbon films have been under investigation because of their field emitting properties since the mid-1970s when it was discovered that hydrogenated faces of diamond crystals have a particularly low electron affinity. Diamond based films display emission via two mechanisms. As well as the above noted low affinity for electrons, high aspect ratio geometry associated with diamond crystals facilitates emission from areas with higher electron affinity. A difficulty with this technology is that diamond is not a conductor and thus injecting electrons into the conducting band is difficult. Another approach using carbon that also resulted in good field emission used graphite type carbon materials in the form of nanostructures with high aspect
ratios leading to high values of electric field enhancement rather low electron affinity.
The discovery in 1991 by Japanese electron microscopist Sumio lijima of carbon nanotubes began a worldwide research effort that has revealed extraordinary physical characteristics making them not only structures of inherent fascination but also giving them numerous potentially revolutionary applications. From the point of view of electronics, double wall nanotubes have the potential to form 'ultracapacitors' able to store 50 joules per centimetre cube. Extremely high thermal conductivity along the major axis raises the possibility of heat sinking. They have the potential to act as superconductors and at room temperatures metallic conductivity is achievable. This last property coupled with their extremely large aspect ratio makes them ideal for field emission applications. Current densities of over $1 \mathrm{~A} / \mathrm{cm}^{2}$ have been achieved with fields of 7 V per $\mu \mathrm{m}$ in a cathode that shows less than 10% degradation after 2000 hours of continuous operation. This figure compares favourably with thermionic cathodes whose emissions range from around 0.1 to 3 amps per cm square depending on the type and the temperature. Unlike Spindt cathodes, carbon based field emission cathodes are made by coating substrates such as glass or metal sheets. They thus have the potential to be made to virtually any size. This feature is highly attractive in display technology.
Field emission cathodes offer major advantages over existing thermionic technology. One of the main forces driving their development is the large potential market for flat panel display products. Successful flat displays have been demonstrated using gated FECs between 0.2 and 5
millimetres behind a phosphorescent screen, each pixel having its own set of cathodes. the colour and brightness of the pixel being controlled with cathode gate voltages. They are brighter and faster than LCD technology and have a wider viewing angle. Large scale commercial production is awaited.
Another potential use is in the manufacture of valves. Durability will have to be improved before commercial exploitation but practical valves have been demonstrated. for example a 10 GHz 27 W travelling wave tube by Makishima et al of NEC, Japan.
Other diverse applications have been announced including electric thrusters for spacecraft, miniature X -ray tubes for medical robots, indicator and illuminator lights. and microwave devices. Cold cathodes look set to largely replace thermionic cathodes in the future. They also have the potential to make inroads into applications that are currently the domain of semiconductors and most significantly to extend the scope of electronics in general beyond what is now possible.

References and further reading

1. Fred Rosebury, Handbook of electron tube and vacuum techniques. ISBN 1563961210
2. A V. Eastman, Fundamentals of Vacuum Tubes. McGraw-Hill, New York, 1941
3. History of Thermionic devices. Conference proceedings of the Newcomen Society, 23 4/1994, ISBN:0-904685-05-5
4. GFJ Tyne, Saga of the Vacuum Tube. ISBN: 0-672-2 1470-9
5. John W. Stokes, 70 years of radio tubes and valves. ISBN 1-886606-11-0
6. Morgan Jones, Valve Amplifiers. ISBN 0-7506-2337-3
7. Handbook of Wireless Telegraphy 1938 Admiralty HM Stationery Office London 1938.

Easy-PC

World Beating Valve in PCB Design Software

> High performance Windows based PCB Design Capture, Simulation and Layout software at prices you'd expect from your local computer store!

NEW! in Easy-PC 7

- Library Databook
- Step and repeat plotting
- Swap Connection Mode
- Dimensioning
- Copy to Metafile plus much more......

Number One Systems

> Stop press... by customer demand, now with Tsien Boardmaker 2 design import...

> Number One Systems delivers true 32 bit Windows software applications including features that a few short years ago would only have been available in software tools priced in the thousands!

Test drive Easy-PC and Easy-Spice for yourself and be prepared to be amazed at the super value...

Call for a brochure, price list and demo CD on +44 (0) 1684773662 or email sales@numberone.com

ELECTRONICS WORLD

The world's leading electronics magazine, Electronics World is a technology- transler magazine for the global electronics industry. It covers research, technology, applications, products and patents in areas such as audio, R.F., components, CAD design, circuit building. PC \& Micro based products, tests \& measurement, semiconductors, Dower sources and much, much more.....

A trustworthy source of reference each month for keeping ahead with the latest news and technical developments in the electronics industry.

As the longest established magazine in the industry - 80 years experience serving the electronics market, Electronics World is the leading technical journal for electronics professionals and high-level enthusiasts.

Make sure you receive your regular monthly copy by subscribing today...................

Complete and fax the coupon to: +44 (0) 1353654400

I wish to subscribe for one year to Electronics World (12 issues) 1 year UK $£ 38.95$ \square O/S $£ 64.50$	Job Title
US\$100.62 \square Euro 102.55 \square	Company
Please tick preferred method of payment	Address
\square I enclose a cheque payable to Highbury Business Communications Ltd	
\square Please invoice me \square Purchase No	
(NB Purchase order must be inciuded to validate invoice)	Postcode/Zip
\square Please charge my: Master Card/Visa/Amex/Diners	
Club/Switch/Delta (please circle)	Country
Card No	
Expiry Date	Telephone/ Fax
(Switch/Detha Only) Valid from $\square \square \prime \square \square$ issue Number \square	E-mail
Signature	Please tick here if you do not wish to be contacted by other businesses either by Mail \square Telephone \square Fax \square E-mail
Date	Please return to: Highbury Subscription Services, Link Hous
Name	8 Bartholomew's Walk, Ely, Cambridgeshire CB7 4ZD, UK. Emall: wss@wyverncrest.co.uk (Quote Ref: EW1)

CIRCUITIDFAS

Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity. Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly. Where software or files are available from us, please email Jackie Lowe with the circuit idea name as the subject. Send your ideas to: Jackie Lowe, Highbury Business Communications, Anne Boleyn House, 9.13 Ewell Road, Cheam, Surrey SM3 8BZ
email j.lowe@highburybiz.com

Efficient lighting controller

In most parts of the world, turning on street and garden lighting is done either manually or on a time basis. Since the number of hours of sunshine in a day varies from day to day and from one place to another, and since a manually controlled system is prone to error, an automatic control system that detects the intensity of light and turns on/off the system is a more efficient solution.
This lighting controller is designed to take care of this. It also provides a manual control feature. Light dependent resistors - LDRs - are placed at different parts of the garden/locality, taking care that shadows from nearby trees of light from nearby buildings does not impair the effectiveness of the LDRs. In most parts of the world, during summer, the number of hours of sunshine varies from 10 hours to 6 hours and 12-15 hours during winter. The resistance of LDRs changes of the order of thousands of times when daylight turns to darkness and vice versa. This change is tapped using a potential divider.
Outputs from all the sensors are ANDed and NORed. These processed outputs are sent to an S-R bistable device shown in the diagram. Final output is sent to the relay via a transistor.

When sunlight fails on any of the sensors, the output of the bistable goes low and the relay is not activated. Lighting is activated only when outputs from all the sensors are low. Multiple sensors are used to make the system foolproof. If a bird sits on a sensor, or there's sudden clouds cover, etc., false triggering will not occur.
Switch S_{1} is used to select the type of control to be used. For manual control, a 14 -stage ripple counter, 4060 B , is used as an $R C$ oscillator whose resistance can be varied to get the necessary timeout, detailed in the Table.
Pin 3 of the 4060B is ORed with the reset switch S_{3} and fed into another SR bistable. Switch S_{2} is used trigger the oscillator. The output of this bistable triggers the relay.
R. Subramanian

Chennai
India

| Table. One resistor sets the 'on' |
| :--- | :--- |
| period in 'manual' mode. |
| No of hours Resistance $(\mathrm{k} \Omega)$
 6 105
 8 140
 10 175
 12 210
 14 245
 16 281 |

Street and garden lighting controllers usually use timers, which are rather crude as the onset of daylight of dark can vary considerably. Using distributed LDRs, this circuit makes sure that the lights are only turned on when they are needed.

Porch light control

Having once again found our porch light left on all night, it was time to try and design a circuit which would allow the lamp to be manually turned on but would automatically turn it off after a few minutes. For convenience, it should also fit safely into a standard mains patress box.
It seems that the only practical switch available which provides this facility is mechanical. You press a sprung plunger which closes the switch. On release, air returns to the cylinder through a very small hole and so the switch opens some time later. The time delay is very variable and uncontrollable. Surely there must be an electronic solution?
The problem is that behind every single switch in normal house wiring are only two wires: live in and switched live out. You cannot get directly at the neutral. So producing a small DC voltage to run an electronic switch is a problem extending beyond squeezing into a standard switch box a mains transformer (or even a volt-age-dropping capacitor), rectification and smoothing.
The circuit shown in the figure is a solution.
Pressing S1 results in the lamp being switched on via two diodes in the bridge and the 6.8 V Zener. Across the Zener is full wave rectified 6.8 volts which is smoothed by C 1 . IC1 is a frequency divider whose reset at pin 11 is briefly held high until C3 is charged. when the counter starts from zero to count the 50 Hz pulses at its clock input, pin 10. C2 ensures that any
spurious spikes appearing on the mains are not counted. The used output on IC1 is pin 3 where the resultant frequency is the clock divided by 2^{13}. This results in a wavelength of approximately 5 _ minutes.
The counting always starts from zero and so the first half of this output wavelength results in pin 3 being low. Hence Q1 is off and the LED in the MOC3041 optoisolator is lit via R5. At a zerocrossing point this switches on the triac in the isolator. In turn this provides gate current to the 400 V triac and hence the circuit remains latched on with the lamp lit even when push-button S1 is released.
However. after approximately 2 _ minutes the half wavelength ends. taking ICl pin 3 high. This switches on Q1 which shorts out the internal LED in MOC3041,
switching both triacs off, together with the lamp.
This circuit runs directly from the mains and the utmost care must be exercised in building, testing and fitting the circuit board into its switch box. Once the circuit board is fitted, it is potentially no more dangerous than the mechanical switch it replaces.
Note that S1 switches mains and therefore should be designed for 230 volts at no less than 1 amp . Further the Zener diode ZD1 carries all the current of the lamp. which means that it should be at least 5 watts and. for a good safety margin, only bulbs up to 100 watts should be used.

David Ponting

Bristol
Uk

Control appliances remotely via the telephone

Remote control of selected electrically-operated home appliances by switching on and off for a chosen
duration is desirable in many circumstances.

It may be useful, for instance. to

switch on a pump for watering the garden when you're away from home for a long period. While the house is empty, for security purposes, it is also wise to switch on a couple of lamps for a short time to give the impression that there's someone inside the house.
This note describes a circuit that exploits the home telephone to control appliances by switching them on or off using a digit dialled through the telephone.
Figure 1 shows the schematic block diagram of the circuit. When the caller dials the number of the telephone of his/her house from a remote place, the ringing signal is received at the home.
The ring signal is 75 V AC riding on 48 V DC. When it arrives, the opto-coupler connected in one arm of the telephone cable produces impulses. The 555 re-triggerable monostable multivibrator produces the 'count' output to the counter chain, comprising two 7493s, and it
starts counting the ringing pulses.
When 128 pulses are counted, the most significant bit of the second counter, D, becomes 'high' and this operates the relay $R L_{1}$ which closes the contacts $R L_{1 \mathrm{~A}, \mathrm{~B}}$ connecting the telephone lines to the rest of the circuit comprising the diode bridge, gyrator, resistive bridge, DTMF, demultiplexer, latches and relay circuits, to simulate the conditions of taking the telephone transceiver from its cradle. Ringing stops at this moment.
When the telephone is taken from the cradle, normally 40 mA current flows through the loop and this is a requirement to stop the ringing tone. In order to get a more or less constant current of 40 mA flowing in the loop, a gyrator circuit is employed.
The equivalent resistance of the gyrator circuit varies in accordance with the changes in the line voltage, drawing 40 mA of current in the loop. As soon as the ringing stops, the caller dials the control digit assigned for an appliance.
Figure 2 shows the detailed circuit, starting with the gyrator. The control digit is picked up and fed to a DTMF (KT3170) receiver which in turn produces the digit in binary form at its output.
The DSO output of the DTMF also becomes high whenever a valid tone is received. This state enables the accompanying decoder (74LS138). The decoder and the associated logic gates demultiplex the bit Q1 of the DTMF to the latches in accordance with the code obtained in Q4, Q3 and Q2 and the latched outputs drive the relay circuits accordingly. The information in Table 1 is given to each relay circuit as per the code obtained.
Only three appliances are considered here. If needed, two or three more appliances could be included in the system by using the remaining digits and special
characters available in the keyboard of the phone.
The de-multiplexed bit is latched (7474) in L_{2}, L_{3} and L_{4} and driven to

the relay drivers operating relays $R L_{2}$, $R L_{3}$ and $R L_{4}$ respectively. Switching is arranged so that appliances can be turned on or off manually. The trigger logic for the latches is shown in

Table 2.

The control action is sustained for half a minute, after which the control operation comes to an end. The re-
triggerable monostable multivibrator set for this half a minute delay clears the counter to open the contacts $R L_{1 \mathrm{~A}, \mathrm{~B}}$, simulating the condition of replacing the telephone on the cradle.

K. Balasubramanian

Mersin
Turkish Republic of Northern
Cyprus

Table 1. Dialling a number causes one of three appliances to be turned on or off, depending on the dialled number.

No dialled	DTMF output							Control action
	Q4	Q3	Q2	Q1				
0	0	0	0	0	Lamp off			
1	0	0	0	1	Lamp on			
2	0	0	1	0	Pump off			
3	0	0	1	1	Pump on			
4	0	1	0	0	Fridge off			
5	0	1	0	1	Fridge on			

Table 2. Number dialled versus the relay
latch switched.
Digit dialled

| Q4 | Q3 | Q22 | Latch | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0,1 | 0 | 0 | 0 | $\mathrm{~L}_{2}$ |
| 2,3 | 0 | 0 | 1 | $\mathrm{~L}_{3}$ |
| 4,5 | 0 | 1 | 0 | $\mathrm{~L}_{4}$ |

'Super-LED' regulator

This circuit was made out of oddments from my parts bin after someone gave me a Luxeon Star super LED as a present. It supplies the Luxeon with a variable regulated current enabling brightness to be set from 'off to on'.
An LM10 op-amp plus voltage reference is the main active component. Component $I C_{1 \mathrm{a}}$ is the

Luxeon LEDs

Luxeon is a range of high-brightness leds from Lumileds in California. Available in many colours, the white Star/O variant also includes optics to give an approximately 10° beam which is just about perfect for a camping torch. Max device current is 350 mA and dimming allows battery-life to be extended when less light is needed - when reading for instance.
The heat sink built in to the LED needs plenty of fresh air or conductive cooling if damage through overheating is to be avoided. www.futureelectronics.com will sell small quantities in the UK.
See also www.luxeonstar.com

200 mV reference buffer part of the LM10 which wired like this provides 200 mV at pin 1 .
The $4.7 \mathrm{k} \Omega$ resistor and $1 \mathrm{k} \Omega$ pot divide this down to a variable $0-35 \mathrm{mV}$ which is fed to the non-inverting input of the op-amp l_{16}.
Feedback around the op-amp is arranged so the voltage across the 0.1Ω resistor matches the $0-35 \mathrm{mV}$ from the reference section by varying the current through the 0.1Ω resistor between 0 and 350 mA .
As all this current, except for the small transistor base current, comes though the LED, it receives a regulated $0-350 \mathrm{~mA}$.
The transistor must have a low-saturation voltage at low base current as pin 6 cannot supply much current. Also, there is only 200 mV headroom between the 3.6 V NiMH battery voltage and the 3.4 V Luxeon voltage - and 35 mV of this is eaten by the 0.1Ω resistor.
I used a ZTX692B which was given free with Electronics World some years ago. This saturates to under

This regulator
keeps the Luxeon super LED bright as the battery voltage falls. At full power, it's over 90\%
efficient.

100 mV at 350 mA with 2 mA base drive.
As the battery flattens, the voltage at pin 6 rises as the op-amp works harder to maintain Luxeon brightness. This is indicated by the 'battery low' led.
Run on three NiMH cells, this circuit is over 90% efficient at full power and tops 80% for most of the rest of its range.
Although current is under 1 mA at minimum brightness, the circuit will still needs an on-off switch.

The LM10

National Semiconductor's LM10 was designed by Bob Widlar, originator of many analogue building blocks including the bandgap reference, three-terminal regulator and two-stage op-amp. To me the LM10 is like a symphony, with all the components playing in perfect harmony. We probably won't see anything like that again: it took Widlar five years to design it," said Hans Camenzind, designer of the famous 555 timer.

Correction

I would like to advise you that tracking transmitter circuit published in the June issue has an error: The $22 \mu \mathrm{~F}$ capacitor connects between the base of TRI and the collector of TR2. The 2.2 K Resistor also connects to the collector of TR2.
Amrith Ramjewan

Battery-operated lamp timer

Operation of this lamp timer is fairly self-explanatory. The circuit turns off by virtue of the rise in drain voltage across the left-hand MOSFET as the capacitor discharges. This in turn switches on the right-hand MOSFET to completely discharge the capacitor. The 100Ω resistors limit initial currents in the righthand MOSFET and capacitor.
Cheap battery-operated globestyle lamps are readily available from market stalls. Used for short term illumination, such as stairway cupboards, they are prone to be left on and the four

AA cells employed discharge very quickly.
The circuit shown is a minimal component timer that can be fitted inside the existing casing. A similar non-latching type can either replace the original latching push button, or the latching mechanism removed from within the existing button.
The circuit has many applications for battery operated equipment.
Henry Maidment
Salisbury
Wiltshire
UK

Battery-operated lamps are popular for applications where it's difficult, or just not worth it, to run mains lighting. Intended to prevent discharge of the batteries if the lamp is left on accidentally, this circuit turns the lamp off after a preset period.

NEMPRODUCTS

Please quote Electronics World when seeking further information

Power module's threephase inverter has gate drivers

International Rectifier has launched the IRAMS 10UP60A PlugNDrive power module which is designed for electronic motor control circuits in home appliances and light industrial applications. The module incorporates a three-phase inverter power stage with gate drivers and auxiliary circuitry in an isolated package. Rated at

10A, the module is designed for 400 W to 750 W motor drives found in washing machines, inroom air conditioners and commercial refrigerators. According to the supplier, the module will support the design of multi-shunt current feedback for a vector control loop, in V/Hz control loop, with no circuit layout limitation. Intemational Rectifier
www.iff.com
Tel: +44(0) 2086458003

GPS without seeing satellite

U-blox, a Swiss supplier of GPS-based positioning technology, is offering a sensorbased GPS receiver with a proprietary dead reckoning algorithm which the company says can provide accurate

navigation regardless of whether satellites are visible or not. The SBR-LS includes a GPS positioning engine with a dead reckoning algorithm to use information from a gyroscope and vehicle odometer for accurate navigation without GPS for extended time periods. Once the satellites are visible again, the GPS receiver with its fast reacquisition time of less than 1 second resumes to GPS navigation immediately. It will also carry out automatic calibration and temperature compensation. The receiver provides an MCX type RF connector and a 2 mm pitch connector with two serial inputs. U-blox
www.u-blox.com

PWM controller has quasi-resonant switch

On Semiconductor has introduced a pulse width modulated (PWM) current-mode controller with quasi-resonant (QR) switching capability that is designed to reduce power consumption and component count. Intended for switch-mode power supply designs, the NCP1207's QR design allows
better efficiency compared to existing fixed frequency controllers, says the supplier. The QR design minimises EMI and reduces switching losses. An adjustable skipmode capability under light loads minimises audible noise generation. The high-voltage start-up-current source offers a clean loss less start-up sequence. The device is self-supplied from a 40 V to 500 V DC rail, so it requires no transformer auxiliary winding or associated passive components. It is offered in two packages - the $7.62 \times 10 \mathrm{~mm}$ PDIP-8 package and the $5 \times 6.2 \mathrm{~mm}$ SO-8 package.
ON Semiconductor
www.onsemi.com
Tel: +44(0) 033534611388

Amplifier draws just $120 \mu \mathrm{~A}$ at 2.7 V

Fairchild Semiconductor is offering CMOS amplifiers for lower power applications. The LMV321 (single), LMV358 (dual), and LMV324 (quad) amplifiers consume a supply current of $120 \mu \mathrm{~A}$ maximum at 2.7 V and typically $100 \mu \mathrm{~A}$ at 5V. The amplifiers also provide
rail-to-rail output and offer a supply voltage range of 2.5 to $5.5 \mathrm{~V}(\pm 1.25 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V})$. With a gain bandwidth product of 1.4 MHz at 5 V and slew rate of $1.5 \mathrm{~V} / \mu \mathrm{s}$ at 5 V , each amplifier is available in different package types. The single LMV321 is available in a SOT23-5 or SC70-5, the dual LMV358 in an SOIC-8 or MSOP-8, and the quad LMV324 is available in a SOIC-14 or TSSOP-14 package. Fairchild Semiconductor
www.fairchildsemi.com

Remote sensing telemetry modules

Adcon Telemetry's latest remote telemetry units (RTUs) include solar-powered devices for unattended and permanent monitoring of sensor

Serdes for 6Gbit/s access routers

National Semiconductor has introduced a
serialiser/deseraliser (serdes) chipset exceeding 6Gbit/s performance. Typical system applications for this chipset include terabit core routers, multi-service access routers, optical switches, high performance colour printers and copiers, and storage area network fault tolerant servers. The DS90CR485 and DS90CR486 serdes chipset supports a full 48-bit parallel bus interface. Instead of serialising 32 bits of data onto four differential pairs, the D590CR485/6 serialises as many as 48 data bits (between $66-133 \mathrm{MHz}$) onto eight differential LVDS pairs. The clock is sent over

an additional 9th LVDS pair. This requires more serial data lines, but the lower data rates per line ease differential design requirements. In addition, the extra-wide 48 -bit parallel bus not only serialises 32 data
bits, but also extra data, control, and address signals. The devices are offered in a 100 -pin TQFP package. National Semiconductor www.national.com Tel: +44(0) 870242171

Please quote Electronics World when seeking further information

information from remote or isolated locations. Applications include water management, irrigation and environmental monitoring. these units can be supplied with low-power, licence-free communications capabilities, or with GSM function for communication over longer distances. Digital and analogue inputs and interface adapters for SD1-12 and standard $4-20 \mathrm{~mA}$ inputs are available. the company has also developed a range of modern units and OEM modules for end users looking to add radios to their own sensor and monitoring applications. M868-500 PowerLink, for example, is a single-channel wireless modem that operates licence-free at the 868 MHz ISM frequency band, and offers 4 km line-of-site range. A board-level version is available for OEMs. In addition, addLINK is a lowpower 'wireless connector' for licence-free use at data rates up to $10 \mathrm{kbit} / \mathrm{s}$. It includes a 868 MHz transceiver, an 8 -bit
microcontroller and an antenna in a $21 \times 38 \times 7 \mathrm{~mm}$ surface mount module.
Adcon Telemetry
+44(0) 1442263716

Flash micro draws $1 \mu \mathrm{~A}$

Renesas Technology Europe has announced its lowest cost flash microcontroller to date. The H8/38004F offers low power consumption of $l \mu \mathrm{~A}$ with 32 kbyte of on-chip flash memory and is the first in the series that is available in a 64pin QFP (quad flat pack) package. The device is ideal for many battery-powered, line-

powered and metering applications. Operating voltage is 2.2 to 3.6 V , with a fast oscillator start-up, typically about 20μ s using an external resonator. This makes it ideal for applications that spend the majority of time in the low power modes. The device has an eight channel 10-bit A/D converter. A peripheral set includes a 10 MHz clock oscillator, a 16 -bit timer and three 8 -bit timers, a USART, and a 25×4 LCD display drive. Renesas
www.renesas.com
+44(0) 1628585161

Digital broadcast tester offers on-screen TV picture

Rohde \& Schwarz has introduced a first broadcast instrument in its recently announced lower price benchtop test system range. The EFLI00 provides measurement functions for broadcast standards encountered in

Universal PCI cards for 3.3 and 5V buses

Brainboxes has launched a range of two-port and four-port serial card products for the universal PCI standard which supports either 3.3 V or 5 V PCI buses. They are available in standard or low profile PCI
form factor and are intended for applications in point of sale, banking, kiosk, and test and measurement. Universal PCI is a relatively new standard for PCI cards that can accept signals at either 3.3 V or

5 V , and can therefore connect to any PCI slot. PCI cards have traditionally been powered by 5 V but the 3.3 V PCI standard has been adopted primarily by the server market. This 3.3 V PCI bus is likely to move into, and become the standard for, all desktop PCs over the next two years, according to the company. 16550 UART provides a 16 -byte input and 16 -byte output FIFO hardware buffer for each of the serial ports to permit high data rates without data loss or overrun errors, CC-701, CC-734, CC712 and CC-260 half size cards ($6.5 \mathrm{~cm} \times 12 \mathrm{~cm}$) all come with fully moulded cables using standard 9-pin male ' D ' type connectors (25 -pin versions of all are available) which provide connection using 4 of the fourport CC-701 or CC-712 cards installed in one. Brainboxes www.brainboxes.com +44(0) 1512202500

analogue and digital TV and FM radio. The portable instrument includes an onscreen TV picture and built-in printer. In addition the instrument can receive and measure digital TV signals (DVB-Sat, cable, terrestrial) as well as analogue TV and FM radio signals. The on-screen TV picture, the built-in printer for measurement results and diagrams plus the integrated loudspeakers facilitate the operation of the EFL 100. Rohde \& Schwarz www.rohde-schwarz.com +44(0) 1252811377

Power supply has less than a watt standby power

FSE Group, a Taiwanese power supply manufacturer, has a range of what it calls Green Power products which are designed to work with less than one watt stand-by. Four models will be available. The input power is less than IW at PSOFF (main power shut down) and Vsb 0.1A load (0.5 W load) when input line is at AC 230 V . It is a switching power supply with a passive PFC circuit (optional) to meet EN61000-32/1995 +A1/1998 +A2/1998 + Al4/2000. The supplies incorporate a vacuumimpregnated transformer and include line input fuse protection. The power supplies operate up to 40 deg C . It will exceed 70 per cent efficiency when power is at full load. Additionally they feature over voltage and short circuit protection for high system security and increased stability. FSP Group
www.fspgroup.com
+44(0) 1721873668

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITISE YOUR SLIDES
 (using a video capture card)

"Liesgang diatv" automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a phono plug (SCART \& BNC adaptors are available). They are in very good condition with few signs of use. For further details see www.diatv.co.uk Board cameras all with 512×582 pixels $8.5 \mathrm{~mm} 1 / 3$ inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10 and 12 v DC 150 mA .
47MIR size $60 \times 36 \times 27 \mathrm{~mm}$ with 6 thfra red LEDs (gives the same illumination as a small torch but is not visible to the human eye)..£ $57.00+$ vat $=£ 43.48$ 30MP size $32 \times 32 \times 14 \mathrm{~mm}$ spy camera with a fixed focus pin hole lens for hiding behind a very small hole... $\mathbf{£ 3 5} .00$ + vat $=\mathbf{£ 4 1 . 1 3}$ 40MC size $39 \times 38 \times 27 \mathrm{~mm}$ camera for ' C ' mount lens these give a much sharper image

Economy C mount lenses all fixed focus \& fixed irls
VSL1220F 12 mm F1.6 12×15 degrees viewing angle. \qquad VSL4022F 4 mm F1. 2263×47 degrees viewing angle. \qquad
 VSL6022F 6 mm F1.22 42×32 degrees viewing angle. $\mathrm{£} 17.65+$ vat $=£ 20.74$ 6mm Fi. 2242×32 degres vowng angle $\ldots \ldots \ldots \ldots £ 19.05+$ vat $=£ 22.38$ VSL8020F 8 mm F1.22 32×24 degrees viewing angle. $. \Sigma 19.90+$ val $=\mathbf{£ 2 3 . 3 8}$ Better quality C Mount lenses
VSL1614F 16 mm F1.6 30×24 degrees viewing angle.. $\mathbf{£ 2 6 . 4 3 + v a t = £ 3 1 . 0 6}$ VWL813M 8 mm F1.3 with iris 56×42 degrees viewing angle $\ldots £ 77.45+$ val $=£ 91.00$ 1206 surface mount resistors E12 values 10 ohm to 1 M ohm 100 of 1 value $£ 1.00+$ vat 1000 of 1 value $£ 5.00+$ vat
866 battery pack originally intended to be used with an orbitel mobile telephone it contains 10 1.6Ah sub C batterles ($42 \times 22 d i a$ the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite the pack is new and unused and can be broken open quite

Please add $1.66+$ vat $=£ 1.95$ postage $\&$ packing per order

JPG ELECTRONICS

Shaws Row, Old Road, Chesterfield, S40 2RB
Tel 01246211202 Fax 01246550959 Mastercard/Nisa/Switch
Callers welcome 9:30 a.m .to 5:30 p.m. Monday to Saturday

Check out Flexit at www.ennovi.co.uk

ennovi Itd

e
$+44(0) 142547888$ selenemnovi.co.uk

Precielon measurement
Embeddied control
Intrinaic eafoty Internet embediced syeteme USE interface

wWW.cms.uk.com
 see our web site for full details

CAMBRIDGE MICROPROCESSOR SYSTEMS LTD

(1)1)Unit 17-18 Zone 'D' Chelmsford Rd. Ind. Est. Great Dunmow, Essex CM6 1XG
Telephone: 01371875644 email: sales@cms.uk.com

NEWPRODUCTS

Please quote Electronics World when seeking further information

Stepdown converter goes to 0.75 V

An 800 mA stepdown converter from Maxim Integrated Products can output voltages down to 0.75 V . The MAXI572 includes a built-in 170 ms DC-DC reset output with preset outputs for 0.75 V to 2.5 V , stepped in 50 mV increments. Maxim says the part is ideal for smartphone and PDA applications. Switching frequency is 2 MHz using a $2.2 \mu \mathrm{H}$ inductor and ceramic capacitors. Input voltage range is 2.6 V to 5.5 V for use with single lithium ion battery. Other features include analogue softstart with zero inrush current. To maximise battery life for handheld equipment, the quiescent current is $48 \mu \mathrm{~A}$ in logiccontrolled shutdown. The MAX 1572 comes in a 12 -pin QFN package and is screened for the extended-industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to + $85^{\circ} \mathrm{C}$). An evaluation kit is available to speed designs Maxim
www.maxim.com
$+44(0) 800585048$

SoC verification tools have API for profiling

AXYS Design Automation has a new release of the MaxSim and MaxCore Developer Suites for
multi-core system on chip (SoC) simulation, debugging and verification. The v4,0 of MaxSim Developer Suite features efficient collection of simulation data for profiling purposes enabling designers to meet product requirements with the optimal architecture. An API (application programming interface) for profiling information has been introduced. which works with standard SystemC components as well. The MaxSim Developer Suite also offers visualisation for the performance impact of caches, memories, bus-systems and user-defined statistics. Compared with v .30 the v .40 of maxCore Developer Suite features performance improvements of up to 60 per cent for instruction accurate models.
AXYS Design Automation www.axysdesign.com

First DC-DC converter

 in sixteenth-brick sized moduleAstec Power has introduced its first industry standard sixteenthbrick isolated converter
Measuring $41.9 \times 20.3 \mathrm{~mm}$ with a 8.3 mm profile. the 50 W ALX series preserves the same quarter-brick pin location assignments. The ALX series
operates from a 36 V to 75 V input bus voltage and delivers up to 20 A of current from the 1.8 V and 1.2 V models. 18 A from the 2.5 V and 15 A from the 3.3 V units. According to the supplier. the power density is 114 W per cubic inch. Power efficiencies can be up to 88 per cent for the 1.8 V model.

Astec Power
www.astec-europe.com
+44(0) 1384842211

Analytical software adds MATLAB and Visual Basic

The latest version of Maple, the analytical computation software from Canadian firm Maplesoft. is available from Adept Scientific. Maple 9 has added MATLAB and Visual Basic to the set of target languages in its code generation function, which already includes C. Fortran and Java. The function takes computational results and translates them into
programming code for other languages. Other improvements include an API which enables users to harness the Maple maths engine from external programs. For example. a database program written in C or Visual Basic could invoke Maple 9 algorithms for data analysis. Algorithms are available for

Boost converter IC for batteries

Zetex is offering a boost converter IC which. with an external switching transistor and diode, can be used in power supplies with 85 per
cent efficiency. ZXSC410 and 420 are voltage mode. operate from 1.65 to 8 V , and aimed at portable equipment. Load and line regulation means, for the

full supply range of Lithium lon cells said the supplier. output voltage typically changes by less than 1 per cent. Maximum output voltage depends on the V_{CE} of the external transistor. Output current up to 300 mA is available. The ZXSC420 swaps shut down for an end -of-regulation flag to indicate when the battery is approaching full discharge. Package is SOT23-6 and the company offers a companion transistor and Schottky device in a $3 \times 2 \mathrm{~mm}$ micro leaded package.
Zetex
www.zetex.com
Tel: +44(0) 1616224444

FFT. integration and solving differential equations. Maple 9 has also integrated the GMP libraries that enable computations with up to millions of digits accuracy. The system is available for Windows.
Macintosh (including Mac OS
X). Linux and various UNIX platforms.
Maple
http//maple.adeptscience.co.uk +44(0) 1462480055

2.4 GHz radio module ready for the freezer

Frequency hopping RF module supplier Aerocomm has upgraded its AC5124 module with improved operating temperature performance, and improved range. The module is a digital RF transceiver employing frequency hopping, spread spectrum (FHSS) technology.

Operating in the 2.4 GHz band the module's operating temperature range now covers -40 to +80 deg C . The module contains temperature compensating hardware and software to adapt across the entire industrial temp range. The device 's sensitivity has been improved from -90dB to -93 dB to detect lower signal le vels.
Aerocomm
www. aerocomm.com
Tel: +44(0) 1908326342

Environment simplifies debugging applications

Green Hills Software is offering an integrated development environment for embedded Linux systems. Providing an environment for debugging Linux applications, the Linux

£11.99
 Avallable from Electronics World

All tracks on this CD were recorded on DAT from cylinders produced in the early 1900s. Considering the age of the cylinders, and the recording techniques available at the time, these tracks are of remarkable quality. having been carefully replayed using modern electronic technology by historian Joe Pengelly.

21 tracks - 72 minutes of recordings made between 1900 and 1929. These electronically derived reproductions are no worse than - and in many cases better than - reproductions of early $78 \mathrm{rev} / \mathrm{min}$ recordings some are stunning...

Use this coupon to order your copy of Pandora's drums

Please send me CD(s) at $£ 11.99$ each including VAT

Cheque
Credit card details tick as appropriate
Name
Address
I
I
Phone number
I Total amount £..........
Make cheques payable to TELEVISION
Or, please debit my credit card.
Card type (MasterNisa)
Card No
| Expiry date
Please mail this coupon to Electronics World, together with payment.
Address orders and all correspondence relating to this order to
| Pandora's drums, Electronics World, Highbury Business
Communications, Nexus House, Azalea Drive, BR8 8HU
I

Pandora's ifums
Unique and atmospheric music recorded in the early 1900s - the days before 78s.

Track

1 Washington Post March, Band, 1909
2 Good Old Summertime, The American Quartet 1904
3 Marriage Bells, Bells \& xylophone duet, Burckhardt \& Daab with orchestra, 1913
4 The Volunteer Organist, Peter Dawson, 1913
5 Dialogue For Three, Flute, Oboe and Clarinet, 1913
6 The Toymaker's Dream, Foxtrot, vocal, B.A. Rolfe and his orchestra, 1929
7 As 1 Sat Upon My Dear Old Mother's Knee, Will Oakland, 1913
8 Light As A Feather, Bells solo, Charles Daab with orchestra, 1912
9 On Her Pic-Pic-Piccolo, Billy Williams, 1913
10 Polka Des English's, Artist unknown, 1900
11 Somebody's Coming To My House, Walter Van Brunt, 1913
12 Bonny Scotland Medley, Xylophone solo, Charles Daab with orchestra, 1914
13 Doin' the Raccoon, Billy Murray, 1929
14 Luce Mia! Francesco Daddi, 1913
15 The Olio Minstrel, 2nd part, 1913
16 Peg O' My Heart, Walter Van Brunt, 1913
17 Auf Dem Mississippi, Johann Strauss orchestra, 1913
18 I'm Looking For A Sweetheart And I Think You'll Do, Ada Jones \& Billy Murray, 1913
19 Intermezzo, Violin solo, Stroud Haxton, 1910
20 A Juanita, Abrego and Picazo, 1913
21 All Alone, Ada Jones, 1911

NEWPRODUCTS

Please quote Electronics World when seeking further information

kemel and Linux device drivers, the development system called Multi works with existing GNU development tool chains. These include those used for native Intel/Pentium, embedded MIPS, and embedded PowerPC environments. It is designed to give Linux kemel developers, who are accustomed to debugging their code with primitive print statements and command-line gdb debuggers, an optimised and simplified debugging process. According to the supplier, it will enable users to debug full source code, interrupt service routines, loadable kemel modules, nonISR kemel code (including

kernel threads), and complex device driver code that runs in the Linux kemel. It also provides debugging facilities such as its customisable Register Description Files (RDF), for example. The RDF considerably simplifiers driver development by allowing designers to create datablock-like views of on- and off-chip (e.g. PCI) device registers. The environment also provides full support for kemel breakpoints, enabling developers to save and restore breakpoints across debug sessions on a per-kemel-module basis. The debugger, hosted on a PC or Unix system, communicates with the Linux kemel on the target system through a highspeed probe (Green Hills Probe) attached to the target board's onchip JTAG or BDM connector. Green Hills Software
www.ghs.com
+44(0) 1844267950

N-channel Mosfets take 1.8W power dissipation

Fairchild Semiconductor has introduced the $30 \mathrm{~V}, 9 \mathrm{~mW}$ and the $100 \mathrm{~V}, 70 \mathrm{~mW}$ N-channel

Mosfets which are designed to handle 1.8 W of power dissipation. Intended for small form factor DC-DC power supplies, the FDC796N and FDC3616N offer low $\mathrm{R}^{\text {DS }}$ (on) ratings and low gate charge, typically 14 nC and 23 nC , respectively, in a package occupying $9 \mathrm{~mm}^{2}$ of PCB area, a third the area of the SO-8 package, said the company. The devices incorporate the firm's patented FLMP packaging. Fairchild Semiconductor www.fairchildsemi.com +44(0) 1793856831

Driver IC for colour LCDs in handsets

National Semiconductor has introduced an active matrix LCD driver chipset for mobile phone colour displays, Comprised of two ICs, the FPD94128 controller/column driver and the FPD93140 power supply/gate driver, the chipset intended to core of a design for driving amorphous silicon active matrix LCD (AMLCD) panels used in mobile phones that support full colour graphics, video and still images. The chipset features an image

dependent backlight controller for the reduction of backlight intensity.
National Semiconductor
www.national.com
+44(0) 870242171

STB Platform uncovered

IBM Microelectronics has teamed with Sony Semiconductor to offer a set-top box reference design platform for terrestrial and satellite digital TV standards. The firms said they aim to reduce time-tomarket cycles for set-top designs to three months. Sony supplies the terrestrial and satellite tuner/demodulators, and interface elements including the

Monitor for multiplexed 3G infrastructure

Tektronix has a passive network monitoring software which supports the use of inverse multiplexing for ATM (IMA) techniques on transitional next generation mobile phone networks. IMA is a technology that bundles present lower bandwidth (EI/DSI) network links to gain higher bandwidth (3G) backhaul capabilities on existing GSM network infrastructure. To employ IMA operators must have a non-intrusive monitoring tool that examines all lines without utilising additional test equipment. By combining innate protocol monitoring for specific interfaces with access to IMA links, this monitoring software enables users to perform upper-layer protocol analysis in addition to
retrieving information (statistics, alarms, etc.) from the lower-layer IMA links. GSM network operators own a vast infrastructure of EI/DSI hardware links connecting transceivers to the basestation controllers. These individual links lack the bandwidth to handle 3G UMTS traffic. IMA technology works by binding groups of these lowerbandwidth EI/DSI links to form "virtual" highbandwidth. The non-intrusive monitoring tool can be connected to the EI/DSI lines with IMA at any time without affecting live traffic, and there is no need to disconnect or restart the links being monitored.
Tektronix
www.tektronix.com
Tel: +44(0) 1344392241

(9)

UK's N0. 1 IEC CONNECTION

CALL OUR SALES HOTLINE
050
$\because 0 j-53$

24 HOUR DELIVERY SERVICE

OLSON ELECTRONICS LIMITED
OLSON HOUSE, 490 HONEYPOT LANE, STANMORE, MIDDX HA7 1JX
TEL: 02089057273 FAX: 02089521232 e-mail: sales@olson.co.uk web site: http://www.olson.co.uk

Please quote Electronics World when seeking further information

AV SCART switch and common interfaces. IBM provides PowerPC 405 microcontrollers and MPEG-2 compression subsystems. Sony and IBM selected Wind River's VxWORKS operating system, embedded software platform and Tornado cross-development tools for the reference design.

There are two platform variant DVB-Terrestrial and DVBSatellite, enabling entry level to mid-range designs targeted at both free-to-air services, such as UK Freeview, and retail satellite, where external conditional access is realised via the DVB Common Interface standard. Sony is supplying the CXD1973 and CXM3002 COFDM demodulator and single package silicon QPSK tuner and demodulator. Audio video switching for up to two SCART sockets is supported with minimal need for external components using the CXA7002.
IBM Microelectronics
www.chips.ibm.com
www.sony.net

Direct tyre pressure sensor circuit has RF controller

A pressure sensor from Motorola is designed to allow drivers to maintain proper tyre pressure by notifying them when pressure is not optimal.

Supporting direct tyre pressure by monitoring, the
MPXY8020A sensor is available with microcontrollers and an RF comms device. It is intended to be used in remote sensing modules mounted onto valve stems or wheel wells. It is available as a chipset which features a remote sensing module housing the MPXY8020A sensor and an MC68HC908RF2 8 -bit flash microcontroller. The MCU package also contains an RF transmitter.
Motorola
www.motorola.com
Tel: +44(0) 1355565000

Analogue scopes start from $£ 119$

A range of analogue oscilloscopes from Vann Draper now includes a single channel 10 MHz bandwidth unit, a dual channel 20 MHz unit, a dual channel 40 MHz unit and a dual channel 60 MHz unit. Triggering modes are Auto, Norm and TV, with the 40 MHz and 60 MHz versions also including PP Auto

Latest version of LabVIEW designed to target FPGAs

National Instruments has introduced the latest release of its LabVIEW graphical development and test operating system. The intention with LabVIEW 7 Express is to simplify the process of designing its card-based
measurement and automation applications as well as extending its use in a range of targets, from embedded FPGAs to Microsoft Pocket PC PDAs. There is a redesigned NI-DAQ driver framework and two new interactive assistants for data

acquisition and instrument control. The DAQ Assistant is designed to help users configure and define data acquisition tasks. For GPIB, serial, VXI and other traditional instruments, users can use the instrument I/O Assistant to prototype instrument control systems, take measurements and develop simple instrument drivers. The Instrument I/O Assistant delivers interactive instrument control, auto parsing of data and automatic LabVIEW code generation. The release of LabVIEW 7 Express product family includes the LabVIEW Base, full and professional development systems and addon modules including an FPGA module for developing applications to run in FPGAs on NI reconfigurable I/O hardware. National Instruments www.ni.com/uk Tel: +44(0) 1635523545
triggering for automatic triggering without the need for level adjustment. The CRT accelerating voltages are 1.3 kV for the MO10, 2 kV for the MO20 and 14 kV for the MO40 and MO60. Signal delay lines and Z modulation inputs are provided as standard on the $20 \mathrm{MHz}, 40 \mathrm{MHz}$ and 60 MHz models. All units include X1/X10 probes.
Vann Draper
www.vanndraper.co.uk
Tel: +44(0) 1283704706

Motor drive chips minimise noise

Toshiba's three-phase brushless motor drive ICs offer full sine wave pulse width modulation (PWM) outputs, which are designed to minimise levels of acoustic and electrical noise

without the need for external micro microcontrollers. According to the supplier, the built-in lead angle control function senses motor current and automatically varies the lead angle to ensure optimum efficiency for varying speed and load conditions. With previous generations of motor controller devices lead angle could only be adjusted for a fixed motor load and speed. The ICs operate with supply voltages of between 6 V and 10 V and feature a built-in triangular wave generation. Designed to operate with external IGBT modules, devices in the TB65xx family support bootstrap circuit configurations and feature a built-in deadtime function to ensure safe IGBT operation in a push-pull configuration
Toshiba
www.toshiba-europe.com
Tel: +44(0) 0492115296254

Calculus is for life - not just for Christmas

Abstract

In recent interviews of graduate applicants for the position of design engineer, I have been appalled by their lack of understanding of elementary calculus'. If you think your calculus is up to scratch, then there are two sets of simple test questions in this article. Do them. If you get any question wrong then your maths is not even close to being acceptable. You need to read the whole article carefully and try again. Leslie Green CEng MIEE, is handing out detentions....

Calculus is not something you should learn at school and then promptly forget; it is a general way of thinking that will outlast any technological changes that can happen in your career. This article is to give adequate stress to the subject for those who didn't realise its importance and to act as a primer to those who never studied it in the first place.
You will find all electrical engineering textbooks write equations using calculus notation or simplified forms derived using calculus. It is therefore in your best interests to know the basics of the subject, so that you do not feel and act like a novice.
As a teenager at school you would have done simple problems such as calculating the power in a DC circuit or investigating the acceleration of a mass when a constant force was applied. The equations given were:

$$
P=I \times V
$$

Power is the product of the current and the voltage.

$F=m \times A$

Newton's second law of motion.
These equations are for steady conditions, with no change occurring in the driving forces. This is a nice simple introduction to science and lets the student feel that it is possible to learn about science and make calculations.

Changing Conditions

Given the nice simple equation $F=m \times A$, the student is never asked to think about what would happen if the force were to change with time, or if the mass were to change with time. What would happen to the acceleration in these cases? As soon as changes occur in these simple situations, more advanced mathematics is called for. This step is not difficult to grasp if you understood the steps leading up to it. If you failed to get the earlier material, however, you get lost and confused. I was introduced to calculus in Advanced level maths classes by the simple statement that if $y=x^{n}$ the differential coefficient is given by,

$$
\frac{d y}{d x}=n x^{n-1}
$$

It was not even mentioned that we were now dealing with a subject called 'calculus'. With instruction like this, it is hardly
surprising that engineers are being 'trained' who don't know what the subject is all about. We need to go right back to basics and start again.

Calculus for Engineers

Once upon a time, charge was moved from one conductor to a nearby conductor. This caused a difference of potential between the two conductors. It was observed that moving twice as much charge created twice the potential difference. Using mathematical terminology it was said that the potential difference, V , was proportional to the charge, Q , which had been moved. This was written as, $V \propto Q$. Now all we have done here is to write an experimental observation in a concise mathematical form. The next step was to put in a constant to replace the proportionality sign. We now say that $Q=C \times V$ where we have a constant, C , for any particular system of two conductors. We call this the capacitance between the two conductors. There is now an equation, and a constant that we can measure. If charge moves with time we say that an electric current is flowing. More specifically we say that the rate of flow of charge past any fixed point is the definition of current. Now saying that "the rate of change of charge with respect to time is the current" is a very longwinded way of expressing the idea. So we use a mathematical notation instead and say:

$$
i=\frac{d Q}{d t}
$$

This is the notation presented in 1684 by Leibniz, when he published the first paper on calculus ${ }^{2}$.
We can apply this notation to the equation $Q=C \times V$ and we get,

$$
\frac{d Q}{d t}=\frac{d(C \times V)}{d t}
$$

Now we can look at the special case where the conductors are not moving relative to each other. In this case the capacitance is constant and the C can be moved outside of the 'rate of change' expression. This now gives us a very important equation:

$$
i=C \times \frac{d V}{d t}
$$

In words this says that the instantaneous current in a capacitor is equal to the product of the capacitance and the rate of change of voltage across the capacitor. If you have ever looked carefully at capacitor data sheets, you may have seen limiting values of.

$$
\frac{d V}{d t}
$$

This is nothing mysterious: if the rate of change of voltage across a capacitor is too high, the current through it will be too high and the capacitor will burn out. If you see a calculus expression like this and neglect it because it is 'too hard", then you will be a liability to everyone around you.

Origins

The rate of change of a quantity with respect to time is not a complicated issue. If you draw a graph of the quantity, with time along the bottom axis, then the rate of change is simply the slope of the line, also known as its gradient. If you wanted to know what the slope of any particular function was. then you could just draw a graph and measure the slope with a ruler. Now you may have thought that you should measure a slope with a protractor, an angle measuring device. Well, you can also measure a slope in terms of how far up you go compared to how far along you go: hence the use of the ruler. See figure1.

Fig 1: Plot of the voltage across a capacitor against time, as you might expect to see on a chart recorder or a scope.

The blue ivaveform is a plot of the voltage across a capacitor against time. as you might expect to see on a chart recorder or a scope: it is anything but constant. If we want to measure the slope at any point. we construct a right-angled triangle. where the long side (red = hypotenuse) is in the same direction as the waveform (the tangent to the curve). The slope is then defined as the length of the vertical line in the triangle (purple) divided by the length of the horizontal line in the triangle (green).
This is how one could go about measuring a slope from a graph. The method of calculus gets the slope from the equation of the curve. Rather than using x and y. which seems like a maths lesson. let's take a simple equation for a voltage.

$$
V=A \times t^{K}+B
$$

A. B and K are just constant values. We want to know what the slope of this curve is at some point in time, t_{1}. We know the value of V at this point: it is simply.

$$
V_{1}=A \times t_{1}^{\Lambda}+B
$$

But that hasn't yet told us the slope of the curve. Now comes the clever part. We can look at the value of V at some very short time later. We know that from the graph drawn previously, the triangle measuring the slope was very large compared to the bend in the waveform However. if we were to get out a magnifying glass and zoom in on a small part of the waveform, it would look almost straight. The closer in that we looked, the straighter it would appear.

Fig 2: Changes in V_{1} when time

Hence we are going to see what happens to v_{1} when time moves on by a very small amount δt. as in figure 2. The length of the purple vertical line is δv and the length of the green horizontal line is δt. These sizes are related by two equations:

$$
V_{1}=A \times t_{1}^{K}+B
$$

and the one obtained by moving forward in time by a small amount.

$$
V_{1}+\delta V=A \times\left(t_{1}+\delta t\right)^{\kappa}+B
$$

All we do now is subtract the first equation from the second.

$$
\delta V=A \times\left[\left(t_{1}+\delta i\right)^{\kappa}-t_{1}^{K}\right]
$$

Now comes the difficult part. Expanding the terms inside the square bracket uses another mathematical technique. the binomial expansion (remember Pascal's triangle?)

$$
\left(t_{1}+\delta t\right)^{K}=t_{1}^{K}+K \times \delta t \times t_{1}^{K-1} K+\delta t^{K}
$$

There are $K+1$ individual terms. The first term. t_{1}^{K}, is equal but opposite to a similar term inside the square brackets above: it therefore cancels. We are then left with K individual terms, where the power of the term δ r is steadily increasing. We now make use of a simple fact. If a number is small, then higher powers of that number are even smaller still. For example. take the number 0.01 : when squared it gives 0.0001 and when cubed it gives 0.000001 . Thus if we make δt small enough. we can neglect all the higher powers of it. We can then simplify our equation to.

$$
\delta V=A \times \delta t \times K \times t_{1}^{K-1}
$$

At this point we say that we make δt so small that is almost zero: mathematicians would say it is the limit as δt approaches zero. We then make the approximately equal sign ' \approx ' into an equals sign. because the error is arbitrarily close to zero. The curly δ is replaced by a straight version. a ' d '. to show that this limiting value has been used. This gives.

$$
d V=d t \times K A \times t_{1}^{K-1}
$$

We now have the slope of the line at the point t_{1}. It is simply,

$$
\frac{d V}{d t}=K A \times t_{1}^{N-1}
$$

This is differential calculus, because it deals in small differences. There is considerable complexity involved in applying these techniques to particular mathematical functions, but then mathematicians have been working on these problems for over 300 years. All we have to do is look in a book to find out how to get the slope of any particular function.
There is of course a mathematical name for getting the
slope of a function; it is called differentiating the function. The result is called the derivative, or more specifically the first derivative. You can also find the slope of the slope, the second derivative, and so on. For our function $V=A \times I^{K}+B$ we differentiate with respect to t to get the derivative,

$$
\frac{d V}{d t}=K A \times i_{1}^{K-1}
$$

TEST YOURSELF:

What do these fundamental equations mean?

$$
\begin{aligned}
& E=n \times \frac{d \phi}{d t} \\
& E=L \times \frac{d i}{d t} \\
& i=C \times \frac{d V}{d t} \\
& r=\frac{d V}{d i}
\end{aligned}
$$

Integral Calculus

We have a rule for getting the derivative of a function, for differentiating it in other words. This gives the slope of the curve. Another useful operation would be to find the area under the curve as shown in figure 3.

Fig 3: The area under the curve is a product of current and time.

The area under the curve above is the product of current and time, which is actually the total amount of charge that has moved during the interval in question. We could evaluate this area by drawing the graph on paper, cutting it up into little strips and then measuring the area of these strips. This is actually done in some elementary maths classes. The next step is to move on to finding the area by using the trapezium rule; mathematically splitting the graph up into strips and evaluating the area by means of numbers. The next logical step in this sequence is to make the strips really small.
Consider a more general curve described as $f(t)$. This is read " f of t ", and simply means that the function f varies in some manner according to the value of t. The beginning of the area of interest has been arbitrarily set to 0 . The end of the area has been marked as t_{1}. If the area is divided into n equal-width vertical strips, then each of these strips is $t_{1 / n}$ wide. For convenience we can call the width of these strips $\delta \mathrm{t}$. We zoom in on one of these narrow strips so that the curve seems to be straight over the small distance, illustrated in figure 4.
This strip has an area of,

$$
\delta t \times\left(\frac{f(\delta t)+f(0)}{2}\right)
$$

Fig 4: The curve appears straight over the small distance.

The next strip has an area of,

$$
\delta t \times\left(\frac{f(2 \times \delta t)+f(\delta t)}{2}\right)
$$

The total area is given by a summation of all of these little strips. The capital sigma, Σ, means sum the expression which follows, starting from the limit under the sigma symbol ($\mathrm{m}=0$) and ending with the limit above the sigma symbol ($\mathrm{m}=\mathrm{n}-1$) in steps of 1 .

$$
\text { Area }=\sum_{m=0}^{m=n-1} \frac{f([m+1] \delta t)+f(m \times \delta t)}{2} \times \delta t
$$

Inspection of this summation shows that there are always two halves of each term like $f(m \times \delta t)$, except at the end points.
We can therefore write:

$$
\text { Area }=\sum_{m=0}^{m=n} f(m \times \delta t) \times \delta t
$$

We now let n head off to infinity, which makes $\delta \boldsymbol{\delta}$ tend towards zero. This reduces the error at the end points to an arbitrarily small value. The approximate equality is replaced by an equality and the summation sign becomes an integral sign.

$$
\text { Area }=\int_{0}^{t_{1}} f(t) \times d t
$$

Closer examination of the integral sign shows it to be a large S , suggesting summation. Notice that the limits of integration given at the bottom and top of the symbol are in the same units as the variable of integration; in this case t. We are summing the function f over a range of time values. We can now bring on the fundamental theorem of calculus which says that differentiation and integration are an inverse pair of operations. In other words, if you integrate then differentiate, you end up where you started. Let me make this more real with an example. Using time as the reference, the integral of current is charge, and the derivative is charge is current. In symbolic notation:

$$
\int_{0}^{T} i \times d t=Q ; i=\frac{d Q}{d t}
$$

Using this notation we can now formulate precise statements about power, energy, equivalent heating effects etc.

> Power = rate of change of energy

$$
\text { energy }=\int_{0}^{T} p o w e r x d t
$$

In electrical terms the energy could be the heat dissipated in a resistor, for example,

$$
\operatorname{energ} y=\int_{0}^{T} \mathrm{v} \times \mathrm{i} \times \mathrm{dt}
$$

Measuring current is always more difficult than measuring voltage, so it is more convenient to say that the current is
the voltage divided by the resistance.

$$
\text { energy }=\int_{0}^{T} v \times \frac{v}{R} \times d t=\frac{1}{R} \cdot \int_{0}^{T} v^{2} \times d t
$$

Often the waveform is cyclic, with a period of say T. In these cases we are interested in the average (or more specifically the mean) power. We then write:

$$
\text { mean power, } P=\frac{\text { energy per cycle }}{\text { cycle time }}
$$

$$
P=\frac{1}{R} \cdot \frac{1}{T} \int_{0}^{T} v^{2} \times d t
$$

It would be nice to use a simplified form of this equation, where there was a voltage which when squared gave the same heating effect as the true calculus expression. It would then be:

$$
P=\frac{V_{E Q U N}^{2}}{R}
$$

This is then very similar to the simple DC case. You should be able to see that:

$$
V_{E Q U N}^{2}=\frac{1}{T} \int_{0}^{T} \mathrm{v}^{2} \times d t
$$

By taking the square root of both sides we get:

$$
V_{E Q U N}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2} \times d t}=V_{R M S}
$$

The equivalent voltage is the square Root of the Mean value of the sum of the Squared voltage, or RMS for short. This is the most elementary of electrical engineering topics and yet you still get 'engineers' who are unable to recognise that RMS voltage and RMS current are valid quantities, but that use of the term 'RMS power' is technical illiteracy, as there is no such valid, useful quantity.
This lack of understanding is not assisted by manufacturer's adverts, which talk of "true RMS power" measuring devices. This is tricky. Power measuring devices can measure peak power, assume the signal is sinusoidal, and give a calibration of the actual mean (average) power. A better technique is to measure the RMS voltage across a resistance, which gives the true power. In this case the manufacturer is trying to say that their measurement method uses a true RMS voltage measuring technique, which is more difficult to do but gives a more accurate answer. The adverts truncate this to a "true RMS power" measuring device, which confuses those with inadequate understanding of their basics.

Rules of differentiation and integration

 Integration is somewhat harder than differentiation in terms of the mathematical manipulations. Often one has to see what function when differentiated gives the function we are trying to integrate. You almost guess the answer, differentiate it and see if you were correct!In any case, most of the hard work has been done by our predecessors compiling tables of the difficult functions. What remains is for us to break any particular problem down into a form such that we can look the answer up in such a table. For both differentiation and integration, constant multipliers can be freely moved outside of the calculus part. For example, with a constant K ;

$$
\frac{d(K \times i)}{d t}=K \times \frac{d i}{d t}
$$

and,

$$
\int K \times V \times d t=K \times \int V \times d t
$$

Calculus operations can be split up between simple additions and subtractions. Thus:

$$
\frac{d\left(V_{1}+V_{2}\right)}{d t}=\frac{d V_{1}}{d t}+\frac{d V_{2}}{d t}
$$

and,

$$
\int\left(i_{1}+i_{2}\right) \times d t=\left(\int i_{i} \times d t\right)+\left(\int i_{2} \times d t\right)
$$

A constant has no rate of change with respect to anything. Thus the derivative of a constant is always zero, regardless of the variable we are differentiating with respect to.
Using the constant K again:

$$
\frac{d K}{d t}=0
$$

The integral of a constant gives the product of the constant and the variable of integration.

$$
\int_{0}^{T} K \times d t=K \times T
$$

This is obvious if you think about the integral as being the area under the curve. If the curve has a constant value, the area is rectangular and is simply the product of the height of the curve above the axis and the distance along the axis that we integrate over.

Limits of integration

So far I have skilfully avoided the subject of the limits of the integration. If I were to differentiate a function such as $V=K_{1} \times t^{n}+K_{2}$, the additive constant would 'disappear'.

$$
\frac{d V}{d t}=n K_{1} \times t^{n-1}
$$

This means that when I integrate some function, I always have to add on an arbitrary (unknown) constant. For example:

$$
\int t^{n} \times d t=\frac{t^{n+1}}{n+1}+K
$$

The rule for integration is seen as being the rule for differentiation done 'backwards'. In differentiating I multiplied by the index (n), then reduced the index by one. For integration I increase the index by one ($\mathrm{n}+1$) then divide by this new index.
What I have given here is an integral without limits. This is called an indefinite integral. I have asked the question, "What is the area under the curve up to a specified point?" but I have not given the starting point of the summation! This is a graphic explanation of why an indeterminate constant is required.
The last rule required for integration is that the limits can be split into parts. Suppose we have a waveform that is doing one thing up to a time t1, but then does something else up to the time T. We can split the integration up over these two intervals to make the integration easier.

$$
\int_{0}^{T} i \times d t=\left(\int_{0}^{n} i \times d t\right)+\left(\int_{t 1}^{T} i \times d t\right)
$$

By splitting the integral up into these intervals, it is possible to look up the individual function pieces in tables.

Table 1: This table uses time as the variable of integration. The derivatives are also done with respect to time.

Differentiate this to get that	Integrate this to get \leftarrow that
K	0
$\boldsymbol{R} \times \boldsymbol{t}^{\text {n }}$	$n k^{*} \times r^{n-1}$
$\underline{K \times r^{n+1}}$	$K \times \ell^{\prime \prime}$
$n+1$	
$\sin (\omega \times 1)$	$\omega \times \cos (\omega \times 1)$
$\cos (\omega \times 1)$	$-\omega \times \sin (\omega \times 1)$
e^{-k-1}	$-K \times e^{-K / 4}$

This table uses time as the variable of integration. The derivatives are also done with respect to time.

Now you are ready for the final test... These are very basic questions actually; if you can't do them or get them wrong, after having read this article carefully, then you definitely need to dust off those text books and put in some extra study.

FINAL TEST

What is the maximum slew rate of a 3 V RMS 1 MHz sinusoidal signal?
What is the current flowing in a $0.1 \mu \mathrm{~F}$ capacitor when a voltage is applied to it which increases linearly from 0 V to 100 V in the space of $1.5 \mu \mathrm{~s}$?
What is the RMS value of a repetitive 25 kHz rectangular voltage waveform which is at 10 V for $10 \mu \mathrm{~s}$, then at IV for the rest of the cycle.
What is the RMS power dissipated in a 1Ω resistor when the voltage of \#3 above is applied across it? Answers on page $51 \ldots$

References

1. The Latin word calculus means 'a small pebble used for counting', as well as 'the subject of reckoning'. The original presentation of this branch of mathematics was written in Latin.
2. "Nova Methodus Pro Maximis et Minimis, ...", Acta

Eruditorum 1684 by G.Leibniz; pp466-473 of the 16821687 volume (1966 reprint). Unfortunately this is all in Latin.

High Resolution Oscilloscope

- High speed, 5GS/s dual channel oscilloscope
- $50 \mathrm{MHz}, 80 \mathrm{~dB}$ dynamic range spectrum analyser
- PicoScope \& PicoLog software supplied FREE
- Plug into any desktop or laptop PC
- High resolution - 12 bits
- Large 128 K memory
- 1\% DC accuracy

Request your FREE Test \& Measurement catalogue and Software \& Reference CD, or visit our web site:

Tel: +44 (0) 1480396395 Fax: $\mathbf{+ 4 4} \mathbf{(0)} 1480396296$ E-mail: sales@picotech.com

Professional SDI router

Abstract

Known commercially as the 'DVRS-8x8', Emil Vladkov's stackable serial digital interface router provides eight inputs and outputs for digital video signals running at up to $400 \mathrm{Mbit} / \mathrm{s}$. This second article covers additional circuits, software and a dedicated keypad for controlling the router.

F
irst I will outline the optional add-on section of the design for those of you who need the reclocking signals from outputs 2 to 8 , Fig. 1. Although this is add-on circuitry, I have designed the router's main PCB to accommodate it.
The idea is, that if you don't need reclocking at outputs $2-8$, the components of this section can be skipped. If they
are omitted, it is important that input ports DOxIn are shorted to the output ports DOxOut with wire bridges In my prototypes, I have implemented the full-featured version, so I will discuss this section too. The retimer/reclock circuits for outputs 2-8 are $I C_{37-43}$. They have the same wiring as $I C_{10}$ in Fig. 3 of last month's article with the same component values.

Main features of the router

Full specifications for the router were presented in last month's article. Here's a summary of the router's main features.
8×8 digital cross-point switch capable of operating at data rates exceeding 360Mbit/s per channel;
Non-blocking architecture;
Low channel-to-channel crosstalk;
Channel jitter 200ps pk-pk typ.;
Fast output edge speed: 650ps typ.;
Input type: $800 \mathrm{mV}, 75 \Omega$, BNC;
Output type: $800 \mathrm{mV}, 75 \Omega$, BNC (Belden 8281 or equivalent transmission lines);
Conforms to SMPTE 259M serial digital
interfaces: NTSC/PAL, 4:2:2 component, $360 \mathrm{Mbit} / \mathrm{s}$ wide screen, also $540 \mathrm{Mbit} / \mathrm{s} 4: 4: 4: 4$ (optional);
Clock and data recovery at all channels at fixed data rates: 143, 177, 270 and $360 \mathrm{Mbit} / \mathrm{s}$. The data rate of the reclocked signal is displayed at the front panel;
Carrier detection and output mute for all input channels. The carrier detected signal is displayed at the front panel;
Automatic equalisation of all input channels: up to 300 metres of Belden 8281 cable;
Control via button panel (with
indication) or Windows 95/98 graphical user interface:
Visual indication on the local front panel of the routing system (64 channel cross-point LEDs plus 8 input CD LEDs plus data rate indicators for output channels 1-8);
Lock control preventing accidental switching;
Stackable using standard RS-232 cables - up to four devices can be independently controlled via the PC user interface;
Start-up configuration selectable by user;
Mains powered.

The active data rate LEDs are $\mathrm{D}_{116-129}$ and the driving buffers are $I C_{36 A, F}$ and $/ C_{44,45}$. Power supply decoupling is provided at every chip with two ceramic and one tantalum capacitor.

Microcontroller Firmware

The firmware is code residing in the microcontroller's external PROM. This code is presented in object code form in Listing 1. It is responsible for all configuration functions of the crosspoint matrix, for the LED indication at the front panel and for communication with the external keyboard or host PC. It also retransmits commands to any stacked devices connected at the slave port and it loads the start-up configuration.
This is not the place to discuss the assembler source code used to produce the object code shown, but but I should mention that this program is considerably large. I
consider it to be well thought through, providing redundancy and preventing lockups. Writing the software took a significant proportion of the system's total design time.

Device implementation and mechanical considerations

The DVRS -8×8 router is housed in a 19 in , IRU metal case. It's front panel with the LED indications and the back panel with the signal connectors and communication ports were shown on page 44 of last month's article.

Good electrical contact should be provided between the case base and the case lid to ensure good screening. A dedicated printed circuit board is available on request from me via the editorial offices of Electronics World. The price is dependant on demand email j.lowe@highburybiz.com.

Fig. 2. The router can be controlled via a PC host, but it is also designed to be a stand-alone router using this optional keypad.

The PCB is designed with microwave techniques in mind, although using conventional 1.5 mm double-sided material. Connections between the signal ports at the PCB and the panel-mounted BNCs at the rear panel should be implemented with short - but not crossing - coaxial cables without any additional board connectors. Belden type 8281 or equivalent can be used for the connections.
If necessary, the backs of the BNC-connectors and the mounting points at the PCB can be screened with copper plates. Connections to the LEDs and communication ports are made with standard ribbon cable. There's a lot of cabling to fit inside the small 1 RU case, so measure the lengths exactly and organise the cable to prevent running out of space.

Linear regulators $I C_{25}$ and $I C_{26}$ from Fig. 4b) in last month's article are mounted on separate heat sinks that are isolated from each other and the case. These are not mounted on the circuit board, but on the bottom of the case.
The mains transformer mounts on the PCB. Mains is fused at the back panel of the device near the mains switch. Don't forget to isolate carefully all wires carrying line voltage.

Controlling the router

There are two of controlling the DVRS-8x8. One is a dedicated keyboard, the other a user interface program running on a host PC .

The PVRS-2 8x8 keyboard. The dedicated keyboard has eight rows and eight columns of keys with a lock switch. It connects to the master serial port of the routeing system. Power for the keyboard is derived from the routeing system with a dedicated banana jack.
First I'll discuss the internal working of the PVRS-2 keyboard, Fig. 2.
The button matrix is built from eight rows by eight columns of standard non-latching push buttons. Scanning and interpretation of the keyboard is done in the Atmel ${ }^{1}$ microcontroller, $I C_{1}$.
The response of the keyboard to user actions is blocked i.e. the keyboard is locked - while switch S_{65} is closed. The 89 C 2051 looks at the level at this pin. If it sees a low level - i.e. switch closed - it loops, performing no action when a key is pressed.
The lock feature is useful for preventing accidental switching arising from operator error or inattention during live on-air applications of the router.

Scanning the keypad takes place as follows: the microcontroller, $I C_{1}$, addresses sequential rows from top to bottom, asserting incrementing addresses through its P3.3. P3.4, P3.5 lines to the decoder, $/ C_{3}$.

Outputs of the 74 HCl 38 decoder pull down the rows of the keyboard sequentially so only one row is low at a time. As all columns have pull-up resistors, namely R_{4-11}. when no key is pressed, port Pl of the micro connected to the columns of the keypad sees only high levels.
When a key is pressed, one of the port pins P1.7-P1.0 sees low level, and as the micro 'knows' which row is addressed it can identify exactly which button is pressed.

Software latch

As the buttons are not latching, a software latch has to be implemented. This works as follows: when a key is pressed

the microcontroller identifies the key and stores the information in its internal registers. Then the microcontroller puts out the key information to its Pl-port, which is also connected to all 74 HC 374 latches $/ C_{4-111}$. As the micro changes from one row to the next, it pulls the P3.7 line to the $I C_{3}$ first low and then high. This forces the formerly asserted row to go high, and after a time the next to go low, as depicted in timing diagram Fig. 3.
As the former row goes high, so does the respective Y0 to Y 7 line too. This latches the valid key information on Pl into the LED latches $I C_{4-11}$.

Note that the Y output lines of the decoder connect to the clock-lines of the latches, which are edge triggered. Corresponding LEDs in the active row light to reflect the action on the button, Fig. 4.

As the microcontroller scrolls down the rows looking for new keys pressed, it also calls out the stored information

Fig. 4. The
router's
keyboard's LED display matrix forms a map reflecting which signal's routed where.

Table 1. Commands recognised by the router.

All commands end with CR and not with CR+LF. The commands are simple ASCII-characters sets.

Command
OXXXXXXXX + CR

OXXXXXXXXXOXXXXXXXXX... + CR Device configuration for stacked devices. X can be any number between 1 and 8 or D for output disable.
Maximum 4 stacked devices can be configured in this way in the order: 1 -st, 2 -nd and so on. The first one is
this next to the PC this next to the PC
ODDDDDDDD + CR
SOXXXXXXXX + CR
All outputs are disabled (but the cable equalisers are active).
Save the Start-Up configuration - X can be any number between 1 and 8 or D for output disable. The current configuration is not affected. The configuration selected will be loaded at next device power up.
SOXXXXXXXXNXXXXXXXX

GetConfD + CR
$R Y X+C R$
GetConf + CR

GetConfF + CR
Description
Device configuration for a single device. X can be any number between 1 and 8 (respective input) or D for output disable.

CR Save the Start-Up configuration for stacked devices - X can be any number between 1 and 8 or D for output disable. The current configuration is not affected. Maximum 4 stacked devices can be configured in this
way. way.
The DVRS-8×8 returns the active configuration in the syntax OutInXXXXXXXX $+C R$, where X is $1-8$ for inputs 1 to 8 or D if the corresponding output is disabled.
Single output switch command. Y is the output concerned and X is any number between 1 and 8 or D for output disabled.
Get configuration command (for the AVRS-8×4). The DVRS-8×8 will only return the configuration for the first 2 outputs. This command makes it possible to connect the existing PVRS-1 8×2 keyboard to the digital router and control the first 4 outputs.
Get full configuration command (for the AVRS-8×4). The DVRS-8x8 will only return the configuration for the first 4 outputs.

Commands for the AVRS-8×4 routing system. These are retransmitted by the DVRS-8x8 system. The commands are not modified.
Out1234InXXXX + CR
Configuration command for the AVRS-8×4 system.
Save Start-Up configuration command for the AVRS-8x4 system.
SOut1234 In XXXX + CR
DIXXXXDIXXXX ... +CR
Configuration command for stacked AVRS- 8×4 systems.
OutYInX + CR
about the current row to see if a new key is pressed or whether the same key is pressed twice. If a new key depression is detected, the information stored is changed and a new word is loaded into the LED-registers.

Of course this may look simple as an algorithm, but many software tricks have been implemented, including button debounce.
LEDs associated with the 64 buttons are D_{3-66} and their associated current limiters are R_{12-75}. I chose red 3 mm type

Fig. 6. Software has been developed to allow the router to be controlled via a PC.
This is a screen shot from the software showing the status of the matrix.

LEDs because they more easily visible than other colours, and compact.
All information relating to keys pressed - and depressed - is transferred by microcontroller IC_{1} in form of a command to the DVRS-8x8 controller. This is carried out via the integrated serial interface within the microcontroller, the level converter $/ C_{2}$ and the serial port, P1 DB9.

This serial link is carried via a dedicated cable that mates with the DB9 female connector on the back of the router. This cable could also carry the power supply. However, in the interests of keeping the serial connector compatible with standard PC serial connections, the cable is split and a separate power banana jack is used to provide power supply.
In the circuit diagram, the power jack J_{1} is symbolic. Power carrying wires of the cable are soldered direct to special pads on the PCB. See below for details.
In the power supply, Fig. 5, diode D_{1} protects against accidental supply reversal. Capacitors C_{1} and C_{2} are DCinput smoothing capacitors. Raw power supply coming from the DVRS-8x8 is regulated down to 5 V via $I C_{12}$ and associated components C_{3-5}.

Power-on is indicated on the keyboard via the yellow LED D_{2}. Capacitors $C_{13-2!}$ are power supply decoupling capacitors placed at individual chips.

An interesting feature of the keyboard is that it can also retrieve the start-up configuration loaded into the router when it is powered on. This means that if you change the configuration with a PC and then connect the keypad to the matrix, or you power up the whole system with the keyboard inserted and the start-up configuration is enabled, then the correct LEDs on the PVRS-2 will be lit to represent the actual status.
The firmware of the keyboard is relatively small. It fits into the 2 k internal flash of the 89C2051 microcontroller, List 2. It can be obtained on request via the editorial offices, as can the PCB, Please email
J.lowe@highbury.biz.com for more information.

The graphical user interface, running on PC
The second way of controlling the DVRS- 8×8 digital router is to connect it to a PC via the master serial port.
Standard serial cable can be used, as the DB9 connector at the back panel of the system does not carry any power for the keyboard. A screen shot of the "graphical user interface' program that I developed is shown in Fig. 6.
The program is tested and works in Windows 95 or 98 . It should run under Windows NT too but I have not tried it.
The program provides all necessary features to control a single DVRS-8×8 device, a DVRS-8x8 device with an optional DARS-8x8 digital audio AES3 router or four independent stacked DVRS-routers. More useful information on digital audio signals in format AES3 can be found in reference 2.
The graphics side of the software represents the routing matrix in an intuitive way, where a valid connection from input to outputs is indicated by a red dot over the relevant crossing. The user can lock the software, to ensure that accidental switching cannot occur. Every input or output can be individually labelled, so the operator does not need to remember destination or source information.

The router's command set

For those of you who will not be using the dedicated keyboard or the GUI program written by me - or if you want to develop your own application/device - Table 1 shows all of the commands that the DVRS-8x8 system can responds to.
It is a remarkable feature of the digital router that it supports the whole command set for the analogue AVRS8×4 audio and video router too, described in earlier issues of the magazine ${ }^{3.4}$.
Commands for the AVRS- 8×4 routing system are retransmitted by the digital router from the master to the slave port immediately after they are received. This means that the user can not only connect many DVRS-8x8 devices in a stack, but also use the new digital equipment
without making the old analogue routers obsolete.
This convergence situation is depicted in Fig. 7, where the PC is connected to the digital router and the slave communication port of the DVRS-8x8 is connected to the existing analogue routeing system consisting of three video routers VRS-8x4 and 3 audio routers ARS-8×2 connected in stack.
The PC has the GUI programs for both the DVRS-8x8 digital and the AVRS- 8×4 analogue systems installed. These programs can be run in parallel with the unused program is minimised or hidden in the task bar so that simultaneous control of both new digital and old analogue routing systems are provided.

In summary

The DVRS-8x8 is a full-featured SDI digital router with many user control options. It is intended for upgrading broadcast and production studios from the analogue solutions to the new digital devices, which all support the uncompressed serial digital video standard.
A useful feature of the device - especially for the intermediate period of the transition from analogue to digital technology - is that the DVRS-8x8 router uses the same control set as existing analogue routing solutions and the same PC user interface.

For listings see page 42

Reference

1. Atmel, 8-Bit Microcontroller with $2 K$ Bytes Flash. AT89C2051 Data Sheet, www,atmel.com.
2. Watkinson, J., The Video Engineer's Guide to Digital Audio An NVISION Guide. ISBN 0-9640361-3-4.
3. Vladkov, E., Pro audio-visual router, Part 1, Electronics World, June 2001, pp. 423-431.
4. Vladkov, E., Pro audio-visual router, Part 2, Electronics World, July 2001, p-p. 538-543.

Fig. 7. In studio applications, routers can be stacked in a daisy-chain fashion so that only one command interface is needed.

Listing 1. Object code for the DVRS-8x8's microcontroller.

:030000000200807B

:08000300323232323232323265
08000800323232323232323250 :08001300323232323232323255
: 08001B0032323232323232324D
:080023001201F03232323232D8
:1000800075A800D2B5D2B4C2B3C296C297C2B2C2EA :10009000D1E587C2E7F587758DFD758BFD758921E3 :1000A000D28E759850D2ACD2AFE4C0E07980E4C370 :1000B00012082240F9B45A06DOEO2401COE0799039 : 1000C000E4C312082240F9B45A06DOE02402C0E08A : 1000D00079A0E4C312082240F9B45A06D0E02404PF :1000E000COEODOEOB40003020111B40702800302B3 : 1000F00001BA1208FF78307900E4C312082240F9EF : 10010000F60809B40DF312027880FEBOFC8OFAB0B4 : 10011000F879007A4F1209F0E4C3D2D11207E34014 : 10012000F4097A441209FOE4C3D2D11207E340F48F :10013000097A441209F0EAC3D2D11207E340F4096A : 100140007A441209F0E4C3D2D11207E340F4097AE9 : 10015000441209 P0E4C3D2D11207E340F4097A440F : 100160001209F0E4C3D2D11207E340F4097A441231 : 1001700009F0E4C3D2D11207E340F4097A4412092A : 10018000F0E4C3D2D11207E340F4097A441209F033 :10019000E4C3D2D11207E340F4097A531209F0E420 :1001A000C3D2D11207E340F4097A0D1209F0E4C377 : 1001B000D2D11207E340F41208C879807A5A1209A2 : 1001C000F0E4C3D2D11207E340F479907A5A1209CD : 1001D000F0E4C3D2D11207E340F479A07A5A1209AD : 1001E000F0E4C3D2D11207E340F41209F00200F2A6 : 1001F000C2AC7830C298E599F608B40D0FC29812D7 : 100200000278D2AC227830761BD2AC223098FDC274 :1002100098E599F608B86F027830B40DEF80DE22C9 :10022000782F794F0809E6F7B60DF922C2AC782F7E : 1002300008 C 29986993099 FDB60DF5C299D2AC22C3 : 10024000C2AC783808C29986993099FDB60DF5C2CE :1002500099D2AC22C2ACC2997599533099FDC2991A : 1002600075994F3099FD783A08C29986993099FD71 : 10027000B60DF5C299D2AC227830B64F1A08B675D1 : $100280001608 \mathrm{~B} 674120808 \mathrm{B6490D08B66E090808B3}$: 10029000B60D0412022C227830B6474B08B66547DB :1002A00008B6744308B6433F08B66F3B08B66E37CE : 1002B00008B6663308B60D32C2AC9009FE1209DDED : 1002C000C299797087993099FDC299900A051209EF :1002D000DDC299797187993099FDC2997599003070 :1002800099 FDC299D2AC220203A6B6465508B60DB6 :1002P00051C2AC9009PE1209DDC29979708799301C :1003000099FDC299900A051209DDC2997971879900 :100310003099FDC299900A0C1209DDC29979728751 :10032000993099PDC299900A131209DDC299797327 :1003300087993099FDC29975990D3099FDC299D26E :10034000AC22B6446108B60D5DC2AC900A1A12091F :10035000DDC299797087993099FDC2997971879931 : 100360003099 PDC299797287993099PDC299797354 : 1003700087993099PDC299797487993099PDC2990E
: 10038000797587993099 PDC299797687993099FD69 :10039000C299797787993099PDC29975990D3099ED 1003A000FDC299D2AC227830B64F2908B67525081F : 1003B000B6742108B6311D08B6321908B6331508CF $: 1003 \mathrm{C} 000 \mathrm{B6341108B6490D08B66E09783DB60D046D}$: 1003000012022 C 227830 B 6533408 B 64 F 3008 B 67566 : 1003E0002C08B6742808B6312408B6322008B63373 : 1003 F0001C08B6341808B6491408B66E10783EB614 : 100400000D0412022C22B6490412022C227830B6B6 : 100410004 F667839B6536108B60D5D7831E679706C : 10042000F775F03112061308E67971F775F032129C : 10043000061308 E 67972 F 775 F 03312061308 E 679 A 9 : 1004400073F775F0341206130BE67974F775F03512 :1004500012061308E67975F775F03612061308E6EA : 100460007976 F775F03712061308E67977F775FOA5 : $1004700038120613120740227830 \mathrm{~B} 6441108 \mathrm{B649E4}$: 100480000D7836B6440808B6490412022C2278309A : 10049000B6440008B649097836B60D0412022C226E : 1004A0007830B6534208B64F3E783AB60D3C7900E4 : 1004B000783008E6FA1209F0E4C3D2D11207E3401B : 1004C000F409B60DED197A531209F0E4C3D2D11232 :1004D00007E340F4097A0D1209FOE4C3D2D1120700 : 1004E000E340F41208C822020529B64E3C79007890 : 1004F0003008E6FA1209F0E4C3D2D11207E340F45F : 1005000009B64EED197A531209F0E4C3D2D112079D : 10051000E340F4097A0D1209F0E4C3D2D11207E3E3 :1005200040F41208C8120254227830B64F6278396B \& 10053000B600607831E67970F775F0311206130860 : 10054000E67971F775F03212061308E67972F775DD : 10055000F03312061308E67973P775F034120613B8 : 1005600008 E 67974 F 775 F 03512061308 E 67975 F 721 : 1005700075 F03612061308E67976F775F03712062D : 100580001308E67977F775F0381206131207402240 : 100590000205F6B64F607831E67970F775F03112E2 1005 A000061308E67971F775F03212061308E6793A : 1005B00072F775F03312061308E67973F775F034A5 : 1005C00012061308E67974F775F03512061308E67B : 100500007975F775F03612061308E67976F775P037 : 1005E0003712061308E67977P775P03812061312FA :1005F0000740120240227830B652177833B60D12F7 : 10060000783186 FOE 6243 FF 908 E 6 F 7120613120760 $: 10061000402222 \mathrm{C} 2 \mathrm{~B} 3 \mathrm{~B} 4310474008038 \mathrm{B4} 3204746 \mathrm{E}$: 10062000018031 B433047402802AB434047403802A : $1006300023 B 435047404801 C B 4360474058015 B 4$ E6 $: 1006400037047406800 \mathrm{~EB} 4380474078007 \mathrm{B4} 445825$: 100650007400D2B3COEOE5FOB4 310775F000D0E02B : 100660008049B4320775F008D0E0803FB433077595 10067000 FO 10DOE08035B4 340775F018DOE0802B4E : 10068000 B 4350775 F020D0E08021B4360775F02826 :10069000D0E08017B4370775F030D0E0800DB4 3863 :1006A0000775F038DOE08003DOE02245FOF590D215 : 1006B00096000000C2965407B4000720B33574FEBC : 1006C0008033B4010474FD802CB4020474FB8025D3 :1006D000B4030474F7801EB4040474EP8017B405E7 : 100680000474DF8010B4060474BF8009B407047476 : 1006 F0007 F800274 FFCOE0E5 POB4 000590800080C8
:100700003BB4 08059088008033 B4100590900080B9 : $100710002 \mathrm{BB4} 18059098008023 \mathrm{B4200590A0} 008089$ 100720001 BB4280590A8008013B4300590B0008059 : 100730000 BB 4380590 B 800800390 E 800 DOE 0 F 022 B 8 : 10074000C297000000D297000000C2972212075DF6 : $10075000 \mathrm{C4COE} 0 \mathrm{E} 5 \mathrm{~F} 012075$ DDOF045F022B4 3003EC : $10076000740022 \mathrm{B4} 3103740122 \mathrm{B4} 4203740222 \mathrm{B4} 3 \mathrm{~F}$: $100770003303740322 \mathrm{B4} 3403740422 \mathrm{B4} 35037405 \mathrm{C} 0$: 1007800022B43603740622B43703740722B4380344 : 10079000740822 B 43903740922 B 44103740 A 22 B 4 E 0 :1007A0004203740B22B44303740C22B44403740D4B : 1007B00022B44503740E22B44603740F22B46103BD : 1007 C 000740 A22B46203740B22B46303740C22B45F :1007D0006403740D22B46503740E22B46603740FAF : 1007E00022E42230D121120848401A2344A0C2E05A -1007F000120870400DE91208704007EA12087040B4 : 1008000001 C 3120862 C 2 D 12212084840142344 A0 36 : 10081000D2E012087040071208951208BBC31208F4 :100820006222COFOF5F0120848401A2344A0C2E04A :10083000120870400DE91208704007E5F011080237 : 100840000845120862 DOF 022 D2B5D2B430B5 11 30CA : 10085000B40E00C2B50000000000C2B4C3020861BB :10086000D322C2B50000D2B40000000000D2B522ED :10087000C0F075F0083392B500D2B400000000C299 : 10088000B4D5F0F1D2B50000D2B400000000A2B59A :10089000C2B4D0F022D2B5C0F075F008000000D28A : 1008A000B40000A2B533C2B4D5FOF1DOFO22C2B585 :1008B0000000D2B400000000C2B422D2B50000D2C1 -1008C000B400000000C2B4221209F07900E4C3129F : 1008D000082240F9FA742029F91209F0E4C3D2D1BO : 1008E0001207E340F4742029F91209F0E4C3D2D1CD :1008F0001207E340F4E9C39440F909BA0DCF22E4AA :10090000COE07900E4C312082240F9F5F074202910 :10091000F9E4C312082240F9B5F00909B40DE5D095 : 10092000E004C0E0 7900E4C312082240P9P5P07455 : 100930004029 F9E4C312082240P9B5F00A09B40DC0 :10094000E5DOEO0404COE07920E4C312082240F9BS : 10095000F5P0742029F9E4C312082240F9B5F00B30 :1009600009B4 ODE5DOE0040404COEODOEOB4000117 :1009700022B40107790075F0408018B402077900AD :1009800075P020800EB40307792075F0208029B41B : 10099000060022 E4C 312082240 P9FAE5FO29F9 1210 : 1009A00009F0E4C3D2D11207E340F4E9C395F0F9AA : 1009B00009BAODDF1 209F022E4C312082240F9FA45 :1009C000E9C395POF91209POE4C3D2D11207E3406C :1009D000F4E5F029F909BA0DDF1209P022E493B425 : 1009E0008002E422C299F5993099FDC299A380ED65 :1009P00075F025E4D5F00122D5E0FD80F7224F7592 : 100A00007431496E804F757432496E804F757433FE : 100A1000496E804F757434496E804F7574496E808D : 100A2000445652532D3878382C20436F70797269B0 :100A30006768742043203230303020456D696C2067 : 070A4000566C61646B6F76D8 $: 00000001 \mathrm{FF}$

Listing 2. Object code for the PVRS-2 keyboard microcontroller.

: 1000000002002 B 1202 ED 32000000001202 EE 32005 C : 100010000000001202 F 132000000001202 F 2320071 : 100020000000001202 F 3320000000075 A800C2D1E7 :10003000758A00758C4CC28DD2A9120321D2B2757B : 1000400090FF1204B51204B51204B51204B51204DF : 10005000B51204B51204B51204B51204B51204B5F4 : 10006000 C 2 AC 9004 FB 1204011204 B 59004 EE 12041 C : 1000700001 D2AFD2ACD28C30D1 FDC28CC2A9C2ACFD : 10008000 C 2 AF'C2B3C2B4C2B5D2B7797087901203FF : 10009000DB0987901203DB0987901203DB09879045 : 1000A0001203DB0987901203DB0987901203DB0937 : 1000B00087901203DB098790C2B77590FF30B2FDBD : 1000C0001203DB7590FFE590B4FF06796077FF803F : 1000 D000301203B8B4FF028028797087F0B5FO13AE : 1000E0007960B7FF1C797077FF7960F774FF1204AD :1000F00022800E7960B7PF097970F77960F71204F2 : 1001000022797087901203DB7590FFE590B4FF06AB : $10011000796177 \mathrm{FF} 80301203 \mathrm{B8B4FF} 0280287971 \mathrm{CB}$:1001200087F0B5F0137961B7FF1C797177FP7961BA :10013000F774FF12042A800E7961B7FF097971F70D : 100140007961F712042A797187901203DB7590FFA9 : 10015000E590B4FF06796277FF80301203B8B4FFFO : 10016000028028797287 P0B5F0137962B7FF1C79A5 : 100170007277FF7962F774FF120432800E7962B7EA : 10018000FF097972F77962F7120432797287901257 :1001900003DB7590FFE590B4FF06796377FP80304D : 1001A0001203B8B4FP028028797387P0B5F0137991
: 1001B00063B7FF1C797377FF7963F774FF12043A12 : 1001C000800R7963B7FF097973F77963F712043A00 :1001D000797387901203DB7590FFE590B4FF067981 : $1001 \mathrm{E} 0006477 \mathrm{FF} 80301203 \mathrm{~B} 8 \mathrm{B4FF} 028028797487 \mathrm{E} 7$: 1001F000F0B5F0137964B7FF1C797477FP7964F771 : 1002000074FF120442800E7964B7FF097974F7799C : 1002100064 F7120442797487901203DB7590FFE54E : 1002200090B4FF06796577FF80301203B8B4FF02FF : 100230008028797587 FOB5F0137965B7FF1C79755B :1002400077PF7965P774FF12044A800E7965B7FF6E :10025000097975F77965F712044A79758790120361 :10026000DB7590FFE590B4FF06796677FF8030126A : 1002700003 B8B4FF028028797687F0B5F013796669 :10028000B7FF1C797677FF7966F774FF1204528006 :100290000E7966B7FF097976F77966F71204527915 : 1002A0007687901203DB7590FFE590B4FF067967BF : 1002B00077PF80301203B8B4FF028028797787F087 :1002C000B5F0137967B7FF1C797777FF7967F77413 :1002D000FF12045A800E7967B7PF097977F77967BB : 1002E000P712045A79778790C2B70200BA22D2D1A6 :1002F000222222C2AC7830C298E599F608B40D0DDE : 10030000 C 298120336227830761 BD 2 AC 223098 FD 88 : 10031000C298E599F608B84F027830B40DEFBOE046 :1003200022E587C2E7P587758DFD758BFD758921FF 10033000D28E759850227830B64P1708B6751308CC $: 10034000 \mathrm{~B} 674$ OFO8B6490B08B66E07783DB60D02B5 : 100350008003 D2AC22783579701203820809120327 : 100360008208091203820809120382080912038213 : 10037000080912038208091203820809120382 D 2 B 3
: 10038000D122B6310377FE22B6320377FD22B6338F : 100390000377 FB 22 B 6340377 F 722 B 6350377 EF 22 D 3 1003 A000B6360377DF22B6370377BF22B638037736 : 1003B0007F22B6440077FF22B4FE0122B4FD012261 : 1003C000B4FB0122B4F70122B4EF0122B4DF012211 : 1003D000B4BF0122B47F012274FF22C2B7C2E0A2DF : 1003E000B392E0A2B492E1A2B592E205E0B40802B1 : 1003 F000C2E0A2E092B3A2E192B4A2E292B5D2B777 : 1004000022COE0E493B48004E4DOEO22C299F599DC : 100410003099FDC299A380EBC299F5993099FDC23C : 1004200099229004 FF120401803690050212040103 : 10043000802 E 900505120401802690050812040103 : 10044000801E90050B120401801690050E12040107 : 10045000800 E 90051112040180069005141204010 B 10046000 B4FE0474318036B4FD047432802FB4FBC2 : 100470000474338028 B4F70474348021B4EF047416 : 1004800035801 AB4DF0474368013B4BF0474378027 : $100490000 \mathrm{CB} 47 \mathrm{~F} 0474388005 \mathrm{B4FP} 0074441204184 \mathrm{~F}$: 1004A000740D1204181204B51204B51204B5120426 $: 1004$ B000B51204B522C0EOCOF075FO12E4DSF00525 : 1004 C000DOFODOEO22D5EOFD8 OF3DOFODOEO 2212 D1 : 1004D00004B51204B5 1204B5 1204B51204B5120421 : 1004E000B51204B51204B51204B51204B52247655D : 1004F00074436F6E66440D8044756D6D790D805246 $: 10050000318052328052338052348052358052369 \mathrm{C}$: 1005100080523780523880505652532 D 322 C 20430 F : 100520006 F70797269676874204320323030312CE3 :00053000204560696C20566C61646B6F7620 : 00000001 FF

Function generator hased on current conveyors

Abstract

Muhammad Abuelma'atti et al* describe a novel function generator based on current conveyors. Using current conveyors means that the circuit is fast relative to equivalents based on conventional op-amps, and it has a low component count. As a bonus, amplitude and frequency are controlled by simply altering resistance.

Anew function generator using positive-type second-generation current-conveyor, or CCIIt, is presented here. This generator can simultaneously produce sinusoidal, square and triangular wave outputs at low impedance.
The circuit enjoys independent resistance control of its frequency and amplitude of oscillation. Experimental results are included.

Background

Function generators having a variety of waveforms, for example sinusoidal, square and triangular, are widely used for testing and characterising electronic devices, circuits and systems. Traditionally, these function generators are designed using operational-amplifier based circuits.
However, function generators based on operational amplifiers are limited to low-to-medium frequency applications. This is attributed to the inherent limitations of the operational amplifiers, such as slew-rate and finite gain bandwidth product.
Without active or passive compensations, the finite gain bandwidth product of operational amplifiers, will limit the accuracy and reduce the operating frequency range.
Unlike operational amplifiers, current conveyors do not have their bandwidth restricted by feedback.

Second-generation current conveyors can, therefore, provide wider bandwidths and better accuracy when compared with operational amplifiers.
Various CCII-based analogue signal-processing circuits, such as sinusoidal oscillators, filters and amplifiers, have been reported in the literature. However, little attention has been paid to the realisation of CCII-based function generators with sinusoidal, square and triangular output voltages.
In this article, a CCII-based function generator is presented. The proposed circuit uses four positive second-generation current-conveyors, three capacitors, two of them grounded, and ten resistors, six of them grounded.
Oscillation frequency can be adjusted by controlling a resistor without disturbing the frequency of oscillation, and the amplitude of oscillation can be adjusted by controlling a different resistor without disturbing the frequency of oscillation. Thus, the proposed function generator enjoys independent frequency and amplitude control.

Proposed circuit

The proposed CCII+ based function generator is shown in Fig. 1. Conveyor $I C_{1}$ and its associated components form
-Muhammad Taher
Abuelma'atti,
Riyadh AI-Dakhil and Nezar Al-Said, King Fahd
University of
Petroleum and
Minerals, Dhahran,
Saudi Arabia.

Fig. 1. Being based on current conveyors, this function generator operates at higher frequencies than its conventional op-amp counterparts.

Fig. 2. Outputs at V_{1}, V_{2} and V_{3} respectively from the circuit of Fig. 1 with
components as listed in the main body text. Operating frequency is 200 kHz .
the sine wave oscillator ${ }^{1}$. Next is $I C_{2}$, which is configured as a schmitt trigger to convert the sinewave to a square wave 2. Finally, $/ C_{3,4}$ form an integrator to change the square wave into a triangular one ${ }^{3}$.
Assuming an ideal CCII + with $v_{x}=v_{y}, i_{y}=0$ and $i_{z}=i_{x}$ the frequency of oscillation and the condition of oscillation of the sinusoidal oscillator built around $/ C_{1}$ can be expressed ${ }^{1}$ as:

$$
\begin{equation*}
\omega_{0}^{2}=\frac{2}{R_{1} R_{2} C_{1} C_{2}} \tag{1}
\end{equation*}
$$

and,

$$
\begin{equation*}
C_{1} R_{1}=\left(C_{1}+C_{2}\right) R_{3} \tag{2}
\end{equation*}
$$

From these equations, it is easy to see that the frequency of oscillation can be adjusted by controlling the resistance R_{2} without disturbing the condition of oscillation. It is also clear that the condition of oscillation can be adjusted by controlling the resistance R_{3} without disturbing the frequency of oscillation. Thus, the sinusoidal oscillator built around $/ C_{1}$ enjoys independent frequency and amplitude control.

Conveyor $I C_{2}$, with its associated components, behaves as a Schmitt trigger with threshold voltages ${ }^{2}$ given by:

$$
\begin{equation*}
V_{T H}=\frac{R_{4}-R_{6}}{R_{4}+R_{5}} V_{s a u h} \tag{3}
\end{equation*}
$$

and.

$$
\begin{equation*}
V_{\pi L}=\frac{R_{4}-R_{6}}{R_{4}+R_{5}} V_{\text {sath }} \tag{4}
\end{equation*}
$$

where $V_{\text {satL }}$ and $V_{\text {sath }}$ are two stable states determined by the power supply voltages of the $I C_{2}$. Thus, the output of the circuit built around $I C_{2}$ will be a square wave.
The transfer function of the integrator, $I C_{3.4}$, is given by:

$$
\begin{equation*}
\frac{V_{3}}{V_{2}}=\frac{R+R_{8}}{s C R R_{7}} \tag{5}
\end{equation*}
$$

where $R=R_{9}=R_{10}$. Thus, the output of the circuit built around $I C_{3,4}$ will be a triangular wave.

Experimental results

The proposed circuit has been experimentally tested using the AD844 commercial current-feedback amplifier. This integrated circuit comprises a CCII+ and a unity-gain voltage follower.
The CCII+ behaves as an ideal current-conveyor over a wide frequency range. Results obtained at 200 kHz with:

$$
\begin{aligned}
& C_{1}=C_{2}=1 \mathrm{nF} \\
& C_{3}=100 \mathrm{nF} \\
& R_{1}=2 \mathrm{k} \Omega \\
& R_{2}=63 \mathrm{k} \Omega \\
& R_{3}=1 \mathrm{k} \Omega \\
& R_{4}=51 \Omega \\
& R_{5}=900 \mathrm{k} \Omega \\
& R_{6}=510 \Omega \\
& R_{7}=5.1 \mathrm{k} \Omega \\
& R_{8}=R=1 \mathrm{k} \Omega
\end{aligned}
$$

and a DC supply voltage of $\pm 15 \mathrm{~V}$ are shown in Fig. 2.
The results reported here were obtained using a breadboard implementation. Obviously, an integrated circuit implementation avoids stray capacitances and would result in even higher operating frequencies.

References

I M.T. Abuelma'atti and N.A. Humood, 'Current-conveyor sine-wave oscillator', Electronics and Wireless World, Vol. 94, \#1625, 1988, pp. 282-284.
2 G. Di Cataldo, G. Palumbo and S. Pennisi, 'A Schmitt trigger by means of a CCII+’, International Journal of Circuir Theory and Applications, Vol. 23, 1995, pp. 161-165.
3 S.A. Liu and Y.-S. Hwang, 'Dual-input differentiators and integrators with tunable time constants using current conveyors', IEEE Transactions on Instrumentation and Measurement, Vol. 43, 1994, pp. 650-654.

Electronics World reader offer: $\times 1$, 10 switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £ 19.24 each pair.

Please supply the following:

Probes

Total \qquad
Name
Address \qquad
\qquad

Postcode Telephone

Method of payment (please circle)
Cheques should be mode payable to Electronics World Access/Mastercard/Visa/Cheque/PO

Credit card no \qquad

Card expiry date
Signed
Pleose ollow up to $\mathbf{2 8}$ doys for delivery

Seen on sale for $£ 20$ each, these highquality oscilloscope probe sets comprise:

- two $\times 1, \times 10$ switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5 m -long BNC-ヶo-BNC links. Each probe has its own storage wallet. To order your pair of probes, send the coupon together with $£ 21.74$ UK/Europe to Probe Offer, Jackie Lowe, Highbury Business Communications,
Nexus House, Azalea Drive, BR8 8HU
Readers outside Europe, please add £2.50 to your order.

Specifications

Switch position 1

Bandwidth
Input resistance
Input capacitance
Working voltage
Switch position 2
Bandwidth
Rise time
Input resistance
1M
Input capacitance
Compensation range
Working voltage

DC to 10 MHz
$1 \mathrm{M} \Omega$ - i.e. oscilloscope i/p 40pF+oscilloscope capacitance 600 V DC or pk-pk AC

DC to 150 MHz 2.4 ns
$10 \mathrm{M} \Omega \pm 1 \%$ if oscilloscope i / p is
12 pF if oscilloscope i / p is 20 pF 10-60pF
600V DC or pk-pk AC
Switch position 'Ref'
Probe tip grounded via $9 \mathrm{M} \Omega$, scope i/p grounded

HTRMIMNDITIS Standalone distortion meter

Cyril Bateman continues to describe his improved real-time hardware distortion measuring system

AIl measurements to date for this series were made using the test equipment. comprising my real time second and third harmonic analyser as described in the July issue, together with my 1 ppm low distortion 1 kHz generator, buffer amplifier and notch filter preamplifier ${ }^{1}$ interconnected but otherwise laying 'loose' on the workbench ${ }^{2}$. While this arrangement worked exceptionally well, with so many separate exposed modules interconnected by easily broken coaxial cables, it was not particularly convenient to move and store away.
I have since assembled this
complete system into a relatively small, $250 \times 180 \times 100 \mathrm{~mm}$, low cost commercial case, type LC960 purchased from DIL/C-I Electronics ${ }^{3}$, producing a self contained freestanding distortion analyser which can be used testing both amplifiers or capacitors.
As a bonus this arrangement also outputs the notch filter reduced fundamental together with preamplified 'harmonic' signals for use with a soundcard and FFT software exactly as in my first Capacitor Sounds series'. Equally these harmonic signals can be used with my Hewlett Packard 331A distortion

Fig. 1. The Real Time hardware system as described in the July issue, fitted into the low cost LC960 250 x $180 \times 100 \mathrm{~mm}$ case, is shown measuring a $1 \mu F 50 \mathrm{~V} X 7 R$ ceramic capacitor at 0.5 V using my reference Hewlett Packard test jig. The LED's respond quickly, revealing how this capacitor's distortion changes with time and bias voltage.
meter or my Pico ADC100 16 bit A-D converter improving their distortion measurement capability by 40 dB , allowing them to measure distortions 100 times smaller than their unaided minimum. Fig. 1

Modifications to Modules

To facilitate testing amplifiers, the DC buffer PCB required a minor alteration to isolate the $I \mu \mathrm{~F}$ capacitor C91 from the five $2.2 \mu \mathrm{~F}$ capacitors C92-96. As they were designed to measure capacitor distortions, these capacitors were all connected by printed board tracks close to the terminal strip test jig. The five $2.2 \mu \mathrm{~F}$ capacitors C92-96 provide DC blocking for the test current which is now taken directly to the 'I-out' or far right front panel and test jig BNC connectors. The $1 \mu \mathrm{~F}$ capacitor C 91 acts to DC block but couple the test signal back into the notch filter for measurement. This capacitor is now taken directly to the ' V -in' or second from right BNC test connector.
The BNC outer braids are only used to screen the test signals so the remaining two BNC connector inners provide the earth returns for the measured voltage and test current respectively. These four BNC connectors are arranged at 22 mm centres to allow use either with standard Hewlett Packard (Agilent) LCR meter test jigs, my new low cost 'terminal strip' test jig or four discrete BNC test leads. Fig. 2
To fit into this case the notch filter module had to be mounted vertically. As originally assembled, the two

PTFE insulated terminals on its bottom case side would now foul the case floor and so must be removed. Originally these were used as an optional direct input to the notch filter and also to input the generator signal into the output buffer amplifier. Both were removed and the buffer's input cable was re-routed to now pass through a hole at the end of the screening case, adjacent to U45.
To fit conveniently into a front panel the display LEDs were reassembled 'end on' to their PCB using revised display printed boards. Both LED trees were arranged side by side as two parallel columns some 15 mm apart with the forty 3 mm LEDs now mounted at 4.1275 mm ($0.1625^{\prime \prime}$) centres, so as to fit vertically into this 100 mm tall front panel.
Resulting from these changes we now have a more convenient way to measure both amplifiers or capacitors using a permanent set-up which is easily re-configured externally, simply by choice of the external test jigging used or four separate test cables. We have gained both flexibility and convenience and improved the noise floor, without degrading measuring accuracy. Fig. 3
While not part of my original intention, I now see this arrangement of case mounted modules, would also benefit those readers who have built only the original generator, notch filter and DC bias printed boards and have no wish to build the Real Time add-ons.

Simply omit the Real Time hardware printed board complete with its LED displays and front panel level switch. The two panel meters could then be arranged to continuously display both the DC bias voltage and the AC test voltage being used.

Appearance

While the basic metal working needed is quite straightforward using only hand tools, the most difficult aspect of any self assembled test equipment is producing a suitably legended front panel. Over the years I have tried many methods, with some success. In past years few viable options existed, one could use 'Letraset' or similar transfers, cut a silk screen stencil or make an engraving onto the black/white two colour Traffolite or similar plastic laminate.

Fig.3. Testing the $1 \mu \mathrm{~F} 250 \mathrm{v}$ B32653 capacitor which featured in my last article, mounted in my easily fabricated, low cost, four terminal 'replica' capacitor test jig made from a 100 mm length of 15 mm Aluminium angle, four panel mounting BNC connectors at 22 mm centres and a terminal test strip.

The best method I've found, which was used for the front panel label of my Tan δ meter, was the excellent but relatively expensive 'Quick Mark' peel apart photosensitive label system from Mega Electronics ${ }^{4}$. This could be used to provide both positive and negative images from a positive master. Even the 0.5 pt lines in my logo were clearly legible when using a photoplotted-master.
Mega now offer a lower cost, directly laser printable, A4 sized self adhesive label system called 'QuickLaser', which can be easily overlaminated for extra protection. Quick Laser is a plastic film available in silver, yellow, blue, green or the white which I used for this assembly. Fig. 4

DC bias PCB

Having cut and drilled the case front panel, the first assembly stage is to modify this PCB. Remove the source impedance resistors R91-94 and R9799 , replacing R94 only with a link wire. Remove the charge discharge toggle switch and relocate onto the front panel, then cut through and remove the three PCB tracks which
connected C91 to the five $2.2 \mu \mathrm{~F}$ capacitors C92-96 also the charge/discharge resistor R95. Insert an insulated wire link from the now free end of R95 to re-connect to all five $2.2 \mu \mathrm{~F}$ capacitors C92-96.

To assist in earthing the coax cable from the I-out front panel BNC and also the I-low return current wire, I added an extra Vero pin to earth, fitted close to the bias output terminal connector strip where shown on the figure. Fig. 5.

Low Distortion Oscillator Module

To facilitate periodic re-calibration of this oscillator, without removing from the case, I drilled three 6 mm holes which are aligned over the three multi-turn pre-set resistors. To prevent stray cut wire ends falling inside this case during construction, these holes were covered by three removable blue sticky labels, as seen in the photo. Because this assembly sits over one case side flange, also the Real Time range switch spindle extension, a piece of scrap copper laminate was affixed, copper side

Fig. 2. The four BNC connectors mounted at 22 mm centres, provide true four terminal measurements, isolating the test current from the voltage being measured. Enable a quick change from measuring capacitors to amplifier circuits simply by change of test jig, with no change of any internal circuitry.

COMPONENTS

Fig.4. True scale
front panel layout as used for my prototype assembly. This drawing is available on my CD ROM as true size PDF file which can be directly printed, also as a fully dimensioned drawing.
down, underneath this module using four 2 mm screws and spacers at the mounting pads provided on the PCB. In addition to protecting the printed tracks from damage, this earthed copper laminate provides additional screening, further reducing generator noise and distortion. You should also refit three longer power supply leadwires and re-connect the coax cable between this module output and the notch filter input, before finally mounting the module into the case. I used PTFE insulated coaxial cable simply because while it is harder to
strip cleanly, I find it facilitates soldering into position without risk of damage to the inner core insulation.

Notch Filter/Preamplifier and Output Buffer

As for the oscillator module, the track side of this module also was screened and protected using scrap copper laminate affixed using four 2 mm screws. Note the top most screw adjacent to the panel meter clashes, so should be left out.
Two PTFE lead through terminals
on the case wall opposite to the range switch, conflict with the LC 960 case bottom when this module is mounted vertically as shown, so must first be removed. Remove also the short coaxial cable which connects between the test jig terminal strip and notch filter preamplifier input and the coax cable which originally connected between the oscillator output and the output buffer amplifier input.
Fit one end only of each of three new coax cables, to the buffer 50Ω output tag, the notch filter

preamplifier input tag and the buffer amplifier input tag through the hole in the case end adjacent to U45. The free end of the notch filter input coax will be connected to the DC bias buffer PCB output terminal strip and the buffer amplifier input coax reconnected to the oscillator output terminal.
The free end of the 50Ω output tag cable will later connect to the wire link replacing R94 on the DC bias PCB, via the new front panel mounted source impedance selector switch.
Three more coax cables also power leads will be connected to this module but are best fitted later, after it has been finally mounted into position inside the case.

Trial and initial assembly

Temporarily fix all switches, BNC connectors, panel meters in place on the un-legended front panel and assemble to the case. The PM128 panel meter bezel adjoining ends may need reducing by some 0.5 mm to fit into this panel layout. Check to make certain all remaining front panel modules fit correctly then dismantle and fix and trim the front panel label in position. Refit all front panel switches and BNC connectors, but do not refit the panel into the case or install the modules.
Fit and solder all required coax and wire leads to the front panel hardware also the two panel meter displays, but leave the new source impedance selector switch to later. Fit in place the DC bias PCB and connect to the front panel wiring as needed, then refit the front panel to the case.
Install the generator module and notch filter/preamp modules and connect up the free end of the notch filter input coax to the DC bias buffer PCB output terminal strip, to the left side terminal strip as seen in Fig. 6.

Source impedance switch

For this I used a three pole four way switch with two poles connected in parallel and used for the 1 kHz source resistors which were mounted directly onto the switch tags. The remaining pole was used for the 100 Hz source resistors. Both 100 Hz from the front panel and 1 kHZ from the buffer amplifier 50Ω output coax tag go direct to their relevant resistor chains, so as to supply both frequencies at the required source

Fig.5. Screen shot showing how I modified my original DC bias printed board for use in this cased assembly. By simply cutting three tracks and adding a short link wire, I isolated C91 from the five 2.2 $\mu \mathrm{F}$ C92-96 capacitors to provide full four terminal capability to the test jig, allowing capacitor or amplifier distortion measurement

Fig. 6. Rear view with the back panel laid flat shows the various coaxial cable connecting between the modules and front panel, in my assembly. The right hand top switch, with three coax cables is the new combined 100 Hz and 1 kHz source impedance selector, with the 100 Hz source impedance arranged ten times larger than for $1 \mathbf{k H z}$, matching the capacitors impedance at these frequencies.
impedance, direct onto the wire link which replaces R94 on the DC bias PCB.

Final Wiring

Connect the two short coax lengths from the front panel 'Level' and 'Harmonics' BNC connectors to the
meter and harmonics out PTFE terminals on the notch filter/preamp assembly and connect the power supply cables to the PCB tags.
Assuming the Real Time display modules are not being used, all wiring is now complete and the assembly can be tested.

Fig. 7. The same assembly now viewed from the front shows the Real Time printed board mounted on the case back panel. This view also shows the added insulation inserted between the LED display board and the notch
filter/preamp case lid.

Real Time Modules

Drill and fix the main PCB to the case back panel such that the input end of this PCB is fixed some 20 mm from the left side of the case back, using seven 2 mm screws and spacers fastened through the mounting pads on the PCB. Screw the two LED display boards together using 13 mm plastic spacers and insert the LEDs into the front panel drillings. It is essential the track side of the display board nearest the notch filter/preamp
module is insulated. For this I used a piece of 1 mm thick 'plasticard' from a model shop, but any similar thickness and insulator type will suffice, see Fig. 6.
Connect a coax cable between this PCB input terminals and the notch filter/preamp 'harmonics' PTFE output terminal. This is the coax cable seen far left in figure 6. For convenience I powered the panel meters using PP3 batteries, simply tucked away under the generator
module and retained using 'sticky fixer' pads.
Connect the LED display PCBs to the 15 volt out terminals, the OutA, OutB 2 kHz and 3 kHz Vero pins as appropriate. Connect both panel meter inputs to the Out2nd, Out3rd dB Vero pins with both negative inputs connected to the 6 V reference output and attach power supply leads. Fig. 7.
This completes the assembly which can now be tested. Using a 3 volt test level and measuring either a good 511Ω metal film resistor or a good $l \mu \mathrm{~F}$ metallised Polypropylene capacitor, both panel meter displays should read better than -120 dB and all display LEDs should be off. Fig. 3

Test Jigs

Throughout my Capacitor Sounds series I have repeatedly stressed the need to use good test jigs. I fortunately have several of the excellent four terminal Hewlett Packard LCR meter test jigs, having standardised on these for all my tests and measurements, whenever practical, many years ago.
However while these jigs are properly designed and of excellent quality they are expensive, so I don't expect many readers will be similarly equipped. I have designed a low cost alternative jig assembly which can be seen in use in figures 3 and 7 testing the excellent $1 \mu \mathrm{~F} 250 \mathrm{~V}$ B32653 metallised Polypropylene capacitor which featured in my last article.

Fig. 8. The jigs used for capacitor measurements. The HP16047A jig left, has plug in exchangeable adapters for axial and radial leaded components. The HP16047C jig right, my reference standard, has gold plated contacts which clamp onto component leads. My low cost alternative with a B32653 capacitor, is shown for comparison.

This jig was assembled using a 100 mm length of 15 mm Aluminium angle. four panel mounting BNC connectors. Farnell part 3650534. mounted at 22 mm centres to match my front panel and another terminal block as used for my DC bias buffer. Fig. 8.
The terminal block was mounted on a scrap piece of laminate and its active or white terminals simply isolated by hand carving. The black common (low) terminal was connected to both the current and voltage 'low' BNC connectors using a short length of twisted pair wires. with the wires placed one on each side of the terminal pin solder.
In similar fashion the white (high) test terminal pins were connected to the 'high' BNC connectors with the voltage wire to the test terminal adjacent to the common terminal. the current wire going to the opposite end terminal pin. In this fashion full four terminal connections were maintained right up to these capacitor test jig terminals.

Performance

Using a 3 V test level and with the original module calibration unchanged. my $1 \mu \mathrm{~F} 250 \mathrm{v}$ foil and Polypropylene FKP reference capacitor now reads better than -130 dB both for 2 nd and 3 rd harmonics. a clear indication that the improved screening with the modules assembled inside the case has lowered noise levels and reduced extraneous noise pickup. Altogether a significant improvement on an already excellent measuring system.
In my next article I explore using this equipment to measure distortions in amplifier circuits.

References

1. Capacitor Sounds. C. Bateman. Electronics World, July. September. October 02.
2. Capacitor Sounds 11. C. Bateman. Electronics World. July 2003.
3. DIL/C-I Electronics, Holland. email to dil@ euronet.nl
4. Mega Electronics Ltd. http://www.megauk.com

Technical support

Full details of this new hardware test method and my original Capacitor Sounds series 1 ppm low distortion oscillator, buffer amplifier, notch filter/preamplifier and DC bias assemblies. together with parts lists, assembly manuals and full size printed circuit board drawings. all as .PDF files arranged for easy viewing on screen or hardcopy, are provided in my new Capacitor Sounds CD.
This CD ROM includes updated and much expanded re-writes with very many more figures. of my recent series of six Capacitor Sounds articles. supported now by some ninety capacitor distortion measurement plots. Also on the CD are PDF re-writes of my earlier 'Understand Capacitors' series together with articles how to diagnose failed capacitors while still mounted on printed circuit boards and essential low cost capacitor measurement methods, more than twenty popular articles.
The CD is now available. cost $£ 15$ Sterling including post packing. Send cheques or postal/money orders in Pounds Sterling only to:-
C. Bateman.
'Nimrod' New Road. ACLE. Norfolk.
NR13 3BD. England.

Answers to Test Yourself from page 35

$$
E=n \times \frac{d \phi}{d t}
$$

This is Faraday's law of induction. For a coil of n turns. the EMF generated is equal to the rate of change of the flux, ϕ. multiplied by the number of turns. The law can also be stated as the rate of change of flux linkages, but this form is more understandable for stationary devices such as transformers.

$$
E=L \times \frac{d i}{d t}
$$

This is a key equation for an inductor. stating that the EMF across an inductor is equal to the rate of change of current through it, multiplied by its inductance. The equation can be re-arranged to work out the rate of change of current from an applied EMF. This is essential for an understanding of switched mode power supplies.

$$
i=C \times \frac{d V}{d t}
$$

This is the current in a capacitor caused by a changing potential difference across its terminals. This was explained in the text.

$$
r=\frac{d V}{d i}
$$

The small signal resistance of a component is the slope of its voltage/current curve. It is the small signal form of Ohm s law.

Answers to Final Test

A sinusoidal voltage is mathematically represented by the equation, $V=V_{1 / A x} \times \sin (\omega \times x)$. Now ω is the angular frequency in radians/second. It has to be in radians/second to make the calculus work correctly. The slew rate is the derivative of the voltage with respect to time.

$$
\frac{d V}{d t}=\omega \times V_{\mathrm{max}} \times \cos (\omega \times t)
$$

The maximum value of a cosine function is one, so:

$$
\left.\frac{d V}{d t}\right|_{\mathrm{MAX}}=\omega \times V_{\mathrm{MAX}}
$$

Remember that $\omega=2 \pi f$ and that the peak value of a sinusoid is $\sqrt{2}$ times the RMS value.

$$
\left.\frac{d V}{d t}\right|_{\max }=2 \pi \times 10^{6} \times \sqrt{2} \times 3=26.66 \mathrm{~V} / \mathrm{ms}
$$

2) $i=C \times \frac{d V}{d t}=0.1 \times 10^{-6} \times \frac{100}{1.5 \times 10^{-6}}=6.667 \mathrm{~A}$

25 kHz is a period of $40 \mu \mathrm{~s}$. The waveform is therefore at 10 V for 10 ms and IV for $30 \mu \mathrm{~s}$.

$$
\begin{aligned}
& V_{R M S}^{2}=\frac{1}{40}\left[\int_{0}^{10} 10^{2} \times d t+\int_{10}^{30} 1^{2} \times d t\right] \\
& \therefore V_{R M S}^{2}=\frac{1}{40}\left([100 \times t]_{0}^{10}+[1 \times t]_{10}^{10}\right) \\
& \therefore V_{R M S}^{2}=\frac{1}{40}(1000+30)=25.75 \\
& \therefore V_{\text {RUS }}=5.074 \mathrm{~V}
\end{aligned}
$$

As a quick check, we ensure that the RMS value is smaller than the maximum voltage (10 V) and larger than the minimum voltage (IV).
4) If you answered with just a number then you failed. If you were unsure, but thought it seemed wrong then you failed; you need a much better understanding of the basics than that. The answer I am looking for is that the question is faulty. The mean power in the resistor is of course 25.75』. The peak power is 100 W . The crest factor is 1.97 . The question asks for a stupid quantity, which, if calculated, would give a meaningless result. If anyone asks you for "RMS power" you have to interpret the request as being for mean power and then point out the error.

Matitars
 to the editor

Letters to "Electronics World" Highbury Business Communications, Anne Boleyn House, 9-13 Ewell Road, Cheam Road, Surrey SM3 8BZ e-mail j.lowe@highburybiz.com using subject heading 'Letters'.

Ellis replies

With reference to Kevin Aylward's letter (EW, June 2003) regarding my article on audio amplifier compensation, some points need answering.
Miller compensation is mathematically robust. Many circuits which were published, particularly in the 1970's and 1980's, used it without regard to the consequences on the slew induced distortion on the input stage. Perhaps we

Fig. 2. Voltage margins.

Input stage margin
can credit Otala ${ }^{1}$ at least for drawing our attention to this, even though his recommendations for a wide open loop bandwidth and limited feedback have largely faded from popular use.
Overloading of the input stage is a possibility in Miller-compensated amplifiers if the differential voltage margin is insufficient. Fig. 1. shows a typical amplifier input stage. VI is the input, V2 the feedback point, and ithe tail current. If we apply an input signal of the form $\mathrm{Vl}=\mathrm{kt}$, then it can be shown, subject to two provisos, that

$$
V 2 \sim \frac{g m \cdot k y^{2}}{2 \cdot C \cdot G}
$$

where C is the Miller capacitance, G the amplifier gain (from the feedback ratio), and gm the input stage transconductance. The provisos are (1) that the input stage does not become current limited and (2) that the feedback signal is still suppressed relative to the input. Fig. 2. shows a graph where the input stage has become current limited: the initial square law response becomes linear.
The differential voltage margin between V 1 and V 2 is also the minimum requirement for the input stage to remain linear. The definition of linear depends on tolerable distortion, but a minimum is where neither transistor becomes cut off. Two possible solutions are to use large enough values of emitter degeneration resistor so that the maximum input voltage excursion can be tolerated without cutting off a transistor or to increase the input

Table 1: Miller and PLIL distortion. Components above 3rd harmonic were either below noise or above audio band.

Frequency	Output voltage	Config	Distortion characteristics	
			2nd	3rd
	V RMS		$\mu \mathrm{V}$ RMS	$\mu \mathrm{V}$ RMS
1kHz	1	Miller	33	40
		PLIL	40	40
	10	Miller	421	300
		PLIL	483	475
10kHz	1	Miller	156	51
		PLIL	267	121
	10	Miller	2600	361
		PLIL	2630	600

stage tail current with smaller resistors to achieve the same voltage margin, as I said in the article. Mr Aylward does not say whether he considered either of these solutions as a resolution to the overload problem.
A better question may have been to ask whether extreme input conditions are possible. For most audio source material and media, it may be unlikely - Baxandall said as much, a long time ago, but it is worth revisiting in respect of new media such as CDs and DVDs. However, the worst-case situation is still in all probability with 'live' material and in my view 'the best' amplifier should have full input overload capability without becoming current limited. It is not always within the designer's control how amplifiers might be used. For example, it would be possible for a digital signal to switch from all zeros to all ones and create a fast transient, subject to any other amplifiers and filters before the power amplifier. Also, for high-end applications, it is possible that sampling rates will increase from the standard 44 kHz - so conservative, pedantic design may be more future-proof.

I am not familiar with the particular 1980's amplifier Mr Aylward referred to, and therefore cannot comment on that particular model. However, in general terms, it is possible to obtain lower THD and higher slew rates when the input stage gain and tail current are increased. This would encourage the use of small or no degeneration resistors, but would reduce overload margins. As well as quoting THD and slew rate, the input stage overload behaviour needs to be specified. Some designers circumvented the problem using a low-pass input stage filter, which at least one Electronics World reader has objected to.

Mr Aylward says that it was difficult to determine the real loop gains and phase margins of the design. Actually, this was precisely why I included the open loop gain curve, but I expected that interested readers would set up their own simulation and check the PLIL technique before using it rather than comparing graphs point by point. Nevertheless, having got
the simulated data files it was very easy for me to perform the subtraction, giving the Nyquist plot shown in Fig. 3. This is the polar form comparing retum difference with phase angle. The trace does not include the origin. I regret not including this graph in the article, as it confirms that the PLIL approach is stable.

Regarding the performance of a PLIL amplifier. I compared the distortion between a Miller compensated amplifier and a PLIL configuration. The results are shown in table 1. The Miller configuration used emitter degeneration resistors of 330 ohms, a tail current of 6 mA , giving a good overload margin, and a 47 pF Miller capacitor. The PLIL configuration used 100Ω degeneration resistors, $4.7 \mathrm{k} \Omega$ base resistors, a lnF - 100Ω series network between the two input bases and a 100 pF phase lead capacitor.
The PLIL amplifier has similar distortion level to, or within a factor of 2 of, the Miller figures. Both sets of results are quite respectable, being in the hundredths of percent level or less. These results are only offered as a quick comparison, since some conditions, such as power transistor temperature, was not controlled between tests. Both sets of data also include any distortion my oscillator is generating, hence are maximums.
The PLIL distortion figures could also have been predicted from the simulated open loop characteristics I presented. In that graph, the PLIL open loop gain was a fraction below that of the Miller circuit.

The question I posed in the article was whether the PLIL approach was an alternative to the Miller capacitor. The data I presented was objective and pointed out the disadvantages as well as the advantages, which does not warrant the label contradictory In conclusion, the PLIL seems to be a possibility which gives competitive performance to the Miller method and an alternative means to preventing input stage overload. To continue to be objective, it can be seen from the results given that it is possible to obtain a good performance from a Miller design which has a good input overload margin, so I am not sure why this has not become standard practice. If it were, then perhaps I would agree with Mr Aylward that the Miller issues are resolved.

John Ellis

Tavistock
Devon
UK

Reference

1. Otala, W "Transient Intermodulation Distortion in Audio Power Amplifiers", IEEE T-AU18, Sept. 1970

In praise of John Ellis

Once again I see a 'letter' relating to a published article that moans deconstructively about a personal presentation, without actually adding to anyone's understanding. I don't know either of these gentlemen, but in EW June

Fig. 3.
03. Kevin Aylward has taken words out of their original context and not even acknowledged that the original author had a name.
John Ellis, B.Sc, Ph.D, in his "Audio
power amplifier frequency compensation'
article, clearly stated measurements relating to the differential input base potential in an amplifier being increased from 2 mV to 25 mV due solely to a VAS collector connected Miller capacitor. (This was not voltage at the Miller capacitor itself!) The greater the input stage voltage differential that is caused by Miller capacitor current, then the greater will be the distortion introduced by the baseemitter characteristics of that first stage. Also, due to the current flowing through the Miller capacitor increasing with frequency and amplitude, the input stage errors also increase with frequency and amplitude, whilst that same dominant pole capacitor simultaneously reduces nfb loop

Modern Impedance measurement and de-bounce

In response to the letter from Mr . AJ Munday in EW April 2003, the FFT approach replaces the phase sensitive detector and associated reference stepped sine wave and phase shifting logic. This functionality is needed to extract the in-phase and quadrature components of the both the unknown voltage (represented in my article as Eu) and the voltage signal from the current measuring guard circuit represented as Es. The stimulus, or test frequency must not only be the same frequency for Eu and Es, but also remain constant throughout the whole measurement sequence. Normally Eu and Es will be of different amplitude and phase but the same frequency, hence the need for two measurements whether carried out using the PSD or FFT approach. The advantage of the FFT approach apart from higher noise rejection, was the potential to measure simultaneously the fundamental and also harmonic impedance's. One possible use for this could be production testing of TV line output transformers which I understand are tuned to the third harmonic of the TV line frequency in order to distort the scan current into the required Sshaped response to achieve linearity at the CRT face.

Also in the same issue Mr Yong's de-bounce ideas appear to 'go around the houses'. His idea is more complex and less efficient than the simple two-gate latch approach used throughout electronics. This circuit does not rely on RC delays and gives a clean edge coincident with the first edge of the switch 'rattle' and is also independent of the length of the mechanical burst.
See the following circuit and waveforms. The latch is initially set at power up by the original switch position. On a key press the latch changes state as soon as the switch contact momentarily
opens at A. By the time the switch pole is contacting at B, the latch has already set and locks out any further mechanical bounce. Simple and efficient. Although keys can be de-bounced simply, in software using a loop with a delay, this circuit is still used to avoid tying up processor time, particularly for simple non-multitasking microprocessor systems.

Alan Bate MIEE

Bradford
West Yorkshire
UK

error correction capabilities at the higher frequencies.
As for 'technicalities', I cannot see anything wrong with the published open and closed loop simulations, so maybe Mr Aylward would care to state exactly what he thinks is unclear. At the same time could he please explain how he knows a Miller capacitor to be essential for stabilising an audio amplifier. Does he not see the photographed differential input stage spikes of fig. 10a, which show exactly how the considerable delaying effect of a VAS collector connected capacitor causes the nfb loop to induce input stage non-linearity, before that VAS stage can itself complete nfb loop induced correction? And of course increasing the amount of nfb cannot reduce the effect of the Miller capacitor upon the input stage either, for the extra closed loop gain degeneration will merely lead to an increase in the amplitude of the error spikes. The PLIL distortion figures quoted are negligible compared to such spiky errors; errors that would not have been measurable on a THD distortion test set!!!!!

Far too many 'writers' have read 'text book' explanations as to how a dominant pole capacitor can control an amplifier, and then they have assumed that a Miller capacitor can do the same job in audio circuitry without investigating. The Miller capacitor so commonly fitted is then connected to the non-linearly acting output stage bases and resistors, not to an output node, which means that the

Robots

I would just like to say that the May 2002 article "Quickie - the inside story" put a few credits into my subscription renewal pot. Good article but I did feel some sympathy for the less technically enlightened entries to the Techno Games. However, now the facts are published the field is levelled for all to follow, provided the school science budget co-ordinators are sympathetic to the cause.

My interest in this article was also partly due to the work I did on matching a cycle dynamo to the lights and a NICAD charging circuit using switching technology. The results of this were published in the Dec 1994 EW+WW Circuit Ideas, however the descriptive text translation was not entirely accurate, the circuit works at all normal cycling speeds not from walking speed to 15 Mph as published! It is also worth pointing out that an electronics publication that has now disappeared from the shelves rejected the dynamo article with a single slip of paper "Does not work" This despite me providing a working prototype and documentary evidence that it did work. Thank you to your predecessors for publishing this.

Returning to school science lessons, I was dismayed to read this week that some schools are having to eliminate parts of the practical experiment side of the curriculum, this being due to class discipline having deteriorated to a point where it is impractical and dangerous to allow students to participate.
Pete Fry
Southampton
UK
capacitor waveform is no longer in phase with the input, and due to output device delays that vary with load, not in phase with the nfb loop output node either. The capacitor slows the amplifier down, and complex small signal stage errors increase when dynamic loudspeakers further load the output stage. Yes the amplifier is stable, but its high amplitude transparency is impaired, and no amount of nfb can improve it. It would be interesting to know if the $100 \mathrm{~V} / \mu \mathrm{S}$ amplifier mentioned by Mr. Aylward used a sole Miller capacitor C.dom, or a more complex stabilizing network.
Congratulations Mr. Ellis. You have imaged error effects that some writers fail to consider when studying audio power amplifier design. You have also discussed an altemative method for assuring amplifier stability. Maybe those who have yet to understand the significance of this topic should be less quick with their criticisms, and others their grumbles about the audio content of the magazine, which is always novel.
Graham Maynard
Newtownabbey
Northern Ireland
UK

Student knowledge and EMC

Recent editorial and letter comments about the lack of fundamental knowledge or mental calculations exhibited by some young graduates is not new. It existed more than 30 years ago when I was responsible for managing and recruiting engineers for our 25 strong field sales force.

To ascertain the ability of new recruits to think while standing, I found a simple circuit problem most revealing. It can easily be solved mentally in a couple of minutes, without benefit of calculators, simulators etc, however a pencil and paper does help. The question is this 'If all resistors shown have a value of 1 Ohm, what is the resistance between the two marked points ?' (See fig 1).

I claim no originality for this exercise, I first saw it I think in 'Smitty's Workshop' in Television or Electronics magazines sometime in the mid sixties.

I've also a few comments regarding
EMC. Having been deeply involved with
EMC filters ever since the first crewed Apollo flights, I read the various comments which resulted from the Catt article, with more than a passing interest. Obviously design stage attention to EMC problems must vary according to the cost and physical size of the equipment concerned.
When physical size and weight are far more important than cost, often one is left with no alternative other than to 'design in' EMC suppression as a "bolt

on afterthought', depending on the results of EMC tests. For example, domestic washing machines for the past 30 years have always included custom designed EMC filter solutions, introduced at a very early part of the design phase.

In contrast I still have vivid recollections of problems surrounding a military helicopter 28 volt DC de-icing motor. In tracking down that problem I destroyed the inputs of two quite expensive storage scopes before finding a 600 volt spike which occurred quite at random. Needless to say space and weight were crucial, cost of minor interest.

It is possible much of the myth surrounding EMC filters results from misunderstanding how a filter works. A 50 dB attenuator for example, is simple to understand, in effect just a simple resistive network which dissipates energy as heat. An EMC filter in contrast, while it may still produce 50 dB attenuation, dissipates almost no energy. It cannot because it contains no resistive element other than the tiny loss components of its capacitors and inductors. A filter
attenuates simply because it reflects back to the noise source energy which does not pass through the filter.

This is fundamental to the working of all conventional EMC filters, yet on almost every occasion in past years during discussion with design engineers, this reflection was to them a new topic. This reflected energy can result in aggravating the very problem one is seeking to solve. Interested readers may wish to look up an old article, 'Understanding EMI filters' EW May 1996, which explained these points in more detail.

Cyril Bateman

Acle
Norfolk
UK

Dinosaurs

Ivor Catt's article "Dinosaur Computers" in the June issue of $E W$ raises the question of multiple processor systems, and the failure by companies to exploit this technology. I recall that in the 1980's, Inmos marketed a system known as a

Transputer, which, if memory serves, was a parallel processing system. As far as I am aware, it has disappeared without trace. (along with Inmos?)
As far as his complaints against management generally, with their desire to keep power in their own reins and to withhold it from the technocracy, there is, no doubt truth in this, but I think it fair to say that this is a fault of human nature in general rather than one of management in particular. It is also true to say that whilst some engineers are happy to make the transition to management, many (including me and. I suspect, Mr. Catt). prefer to remain on the technical side of the fence. because by temperament and training, we are happier dealing with a world bounded by formulae. numbers and established principles, rather than the untidy one of company politics. changing situations, and fickle people. It is therefore perhaps not surprising that engineering is poorly represented at board level and that the type of people who prefer this activity are those perhaps from more of an arts or humanities background rather than a science or engineering one. I am not defending the situation, merely offering a possible explanation for it; like Mr. Catt, I find it deplorable that a company which was originally established to pursue an aspect of technology should subsequently run away from it, (often handsomely rewarding the defecting directors for their failure).
Changing subject, it is obvious from the letters in EW that many of the readers (and contributors) are, like me, in mid-life, having cut our teeth on electronics in the 1960's and 70's. In those days electronics hardware was much more accessible in the sense that it could be opened up. understood, modified and generally experimented with in a way that is impossible now. What is a young person who opens up a DVD player, computer or mobile phone supposed to make of, or do with, a multi-layer P.C.B. filled with surface mounted components? Where does he start? Perhaps our generation will be the last in which for so many of us, a boyhood hobby has turned into a fulfilling career. The new generation of electronics designers will be. perhaps, professional in the sense that their electronics education is wholly college or university acquired and their electronics endeavors are purely a 9 to 5 activity. Progress?
The recent series of articles on capacitors by Cyril Bateman, and LCR measurement by Alan Bate were excellent and just the sort of thing I want to read. I would also like to be able to leam in general terms about subjects such as, digital broadcasting. Bluetooth. DVD recording etc. if there are any potential contributors out there.
Finally, there is no excuse for some of the rather sloppy English which has

Class AB, VAS \& C Dom

Class $A B$ has had a bad press over the past few years, partly because of 'Gm Doubling'. Put simply, Gm Doubling has the effect of halving the open loop output impedance of the amplifier whilst both output devices are on during the 'A' phase at crossover. In closed loop, this means that at the output of the Voltage Amplifier Stage (VAS) the voltage gain and therefore the rate of change is modified by, for example 3% with emitter resistors of 0.25Ω and a load of 4Ω. The Quad $404{ }^{\circ}$ Current Dumping Amplifier' on the other hand, modifies this rate by many fold! and that sounded O.K. didn't it?
I personally have never liked the 'sound' of a grounded common emitter VAS, preferring instead a much more linear amplifier consisting of a symmetrical cascode stage with a relatively large emitter resistor (100Ω) and C Dom connected from the collectors to ground, NOT in the 'Miller' configuration to the bases (see Fig. 1).
Perhaps using a non-linear VAS to compensate for non-linearity in the output stage, leads to unnecessary Intermodulation Distortion? I know that this configuration is more complex, however when good transistors like the FMMT493/593 only cost about 10 p . I think it is well worth it given the smoother and more 'open' sound of amplifiers using this configuration.
My point: I have successfully designed and built several 'pot-less' class AB amplifiers in recent years, and realized that the home designer can build very good amps without the need for very expensive distortion analysis equipment for setting the pot required in class B amps. Class $A B$ also has the advantage that it is less temperature sensitive than it's class B counterparts, especially during thermal transients caused by peak current demands.

J. R. Charlesworth

Wombleton York UK

appeared in $E W$ recently; for instance, Ivor Catt's article was subtitled 'Personnel view', which should surely have read 'Personal view'.
R. Harris.

Brislington,
Bristol
UK

Thankyou for your suggestions. Quite how we got 'Personnel' and 'Personal' mixed up is beyond me - however I must admit to being too reliant on Bill Gates' excellent spell checker in Word - which can lull one into a false sense of security. - Ed.

Kernels

I have read Ivor Catt's fascinating and vicious article about his work over the last 3 decades to break from the 'von Neuman Bottleneck'. In the past, DDP arrays have been tried but SDP systems are the 'tried n' true' way, especially after the PC revolution of the 1980's (blast them decadent 80 's). One of the problems is coordinating the efforts of all those
parallel processors on to single task.
Organizing the actions of a single CPU is far simpler than tasking many. A 'kernel' used to be defined as the minimal utilities of a microprocessor based computer (cpu, ram, op-rom, dma, pic).
Chad Castagana
Woodland Hills
California
USA

Praise indeed

I have been following the debate in your letters pages regarding the content of Electronics World for some time, and I find myself in broad agreement with many readers who lamented the past lack of informative and interesting articles published. I find myself in good company with the majority of people who decided to stick with EW and wait for the old Wireless World (though I understand that it is no longer permissible to call it that). I am sure that those of us who have carried on with our subscriptions agree that your publication is improving monthly. Congratulations.

1 am personally most pleased at the return of the redoubtable Ivor Catt, whose recent piece on EMC was a godsend. Those who criticise him for his lack of presentational skills and diplomacy are missing the point entirely. Have they actually read anything on Associative Memory, the Catt Spiral, or Kemel Machine? This innovative and creative engineer should be awarded a regular column, and given free rein to air his refreshing views about whatever subject he chooses.

Keith W. Saxon,

St. Helens,
Merseyside.

EMC - A Fatally Flawed Discipline.

Numerous letters commenting on my article in March 2003 EW have been published, and I have written lengthy replies which can be found at www.ivorcatt.com/31.htm. However, shortage of space in Electronics World causes me to write the following shorter reply for publication.
In May 2003, Graham Elvis argues that EMC regulations are primarily to drive out competition from outside Europe. This is similar to my feeling that they serve primarily to suppress small company competition. He also points out that the EMC community is indifferent to a major source of interference which occurs only occasionally; harmless enough in the days of analogue systems but disastrous for today's digital systems.
In the same issue of $E W$, "Name and address supplied" puts his finger on further key issues. "For each type of

Help Wanted

- Complete set of boards, components and article reprints for the WW 1965 'High Quality Audio Amp' by J. Dinsdale. The copies also include all follow-up letters and modifications. These were discovered in a loft during a house clearance by a contributor. Cost will be about $£ 15$ to cover p\&p. If interested please contact the editor, by mail or email, details on page 3 .
- Does anybody have a schematic for a Grundig TK 120? If so, please contact C. Holwill, 275 Laburnum Grove, North End, Portsmouth, Hants, UK.
- A deceased reader has left a large quantity of WW and Practical Wireless magazines dating back to 1962. There are also a small quantity of Radio Constructor, BRTR Service Engineer and the RSGB Bulletin. If interested please contact the editor, by mail or email, details on page 3 .

Does anybody have remember some years ago, a couple of articles in EW/WW magazine that dealt with electronic warfare during WWII? In subsequent issues each part of the sequel focused on another point, e.g. 'radar and countermeasures', 'enigma and breaking its code', and so forth. In my opinion, all the articles had been taken from a single book, but I cannot remember its title; can anyone help me? Wolf-Dietrich Molzow, c/o Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, Einsteinufer 37, 10587 Berlin. Fon: +493031002678 , Fax +493031002602 .
product there is a committee of the great and the good from government departments, interested companies and 'EMC Magicians"'. Only big "interested companies" could afford the time, and would not object to a bureaucratic way to drive out their small competitors, in Europe and abroad. Like Elvis, this writer regards EMC regulations as part of a dirty trade war by Brussels.
I would like to give examples from the past. In 1962, Ferranti's Head of the Drawing Office, who had never done any logic design and never would, was the man adjudged important enough to go on the committee which would devise the British Standard for logic diagrams. He was so important that he did not consult any of us, who were busy actually doing logic design and drawing logic diagrams. The result was a ridiculous British Standard which meant that all our logic diagrams had to be redrawn three times larger, so increasing his empire of draughtsmen. This ridiculous British Standard for logic diagrams soon disappeared without trace. There are limits to British patriotism.
One of the minor issues at the core of the matter was whether a logic diagram should emphasise the circuit or the logic. De Morgan's Theorem tells us that the same circuit can do an AND function or an OR function. The problem is, should the logic diagram tell us how the logic designer viewed the role of the particular circuit? The British Standard got it wrong. while US MIL STD got it right by siding with the logic designer. Regardless of any other committees. US MIL STD 806B became the de facto world standard. including Britain.
In June, Ian Darney also criticised the EMC community. However, he was mistaken when he proceeded to criticise me. I did exactly what he said 1 should have done at West Herts College. I designed a revolutionary mains filter, which got over the problem that conventional mains filters generate too much earth leakage. The revolutionary circuit was drawn in my March article.
Eima Burdd, yet another joke name like the many that buried me in Wireless World in the 1980 s , wrote an incredibly long riposte to my article, giving me the Bird, ending by writing that ".... Mr. Catt is miauwing up the wrong branch", in case we would not otherwise grasp the joke, which 1 did not at first. More of the animal names used in Wireless World can be found at www.ivorcatt.com/31.htm

Michacl O'Beime began by saying he was not a professional engineer, but then proceeded to write at length! David Bridgen, commenting on my torpedoproof line printer, remembered a bomb blast-proof unit which plugged into a man-pack. John Blythe spoke up for GEC, ".... a fairly stable, profitable company for
many years", and called Mr. Catt incoherent.
In sharp contrast, in July, Roger Wilkins wrote; "[Catt] still retains his deep technical understanding", and lan Johnson wrote "I like [Catt's] in depth knowledge and his ability to shrug his shoulders when confronted by the lesser brains of people who should know better. I read the article on EMC and agreed with every word, having also worked for the great GEC empire" So was pro-GEC Blythe (EW May) ever employed by GEC?
Finally, Leslie Green wrote a lengthy letter, in which he writes; "Good EMC textbooks always give guidance on correct design procedures to minimise both emission and immunity problems." As the author of EW articles, Green has stature. (He also figures on my new website.) Please would he give the titles of "Good EMC textbooks", and we can go from there?
In August, Michael Turner wrote on ".... Catt's wearisome and paranoid rant". He seems to think that, when I criticise today's EMC standards, it follows that I am opposed to having any standards. I suppose that if I criticised an accident black spot, it would follow that I thought we would be better off with no roads at all. Kenneth Gundry went deeper. He says that academics, not practising engineers, devised them. His has the interesting idea that susceptibility to interference should not be in Standards, but should be left to the market. I think 1 agree. He also says that I am wrong in that EMC regulation now involves entering inside the unit involved. I would repeat his final remark; ".... The EMC standards are seriously flawed, but [they have] imposed a needed discipline on designers"

Chris Griffiths says the expensive standards have driven new products out of the market. Michael Edinger write that Catt ".... Sums up what many engineers feel about the EMC legislation and practice."
What is appalling it that, after all this copy, my last paragraph in March has been comprehensively ignored; "I need assistance to winkle out the technocrats responsible for the present standards, to require them to defend the test standards. and to be accountable for them....."
The reason for my involvement in the matter today is that these committees have the temerity to make it a criminal offence if we ignore their standards. The failure of our industry to organise the setting of standards competently means they have to be ignored and some of us have to be jailed, unless I gain enough support from you to identify and go after those who try to defend the EMC standards. "Name and address supplied" writes; ".... The prosecution only has to prove that the law has been broken". However, there are
many ways to wipe out the power of a law based on fantasy and ignorance, if I get your support.

Do all of the readership of $E W$ think I can do that on my own? Sorry, I won't. I need the weight of aggrieved companies and other institutions behind me before I would be willing to take up the cudgels. If you want to see what Catt achieves on his own against decadent institutions, do a Google search for "Pepper FRS". On his own, "A cat may look at a king," but if he is alone, the Queen will merely say; "Off with his head!" Nobody fears a disembodied cat. If our profession does not care enough, this problem will continue, and even worsen. What a pity the IEE is inert.
Ivor Catt

St. Albans

Hertfordshire
UK

More demise

Ray Lee BSc. Wrote to you about the demise of the electronics press. I have noted this same falling away of once famous titles, the main problem has been the ease with which people can now purchase well made items at low cost. With more and more components becoming hard to track down or just completely obsolete. Even obtaining parts to repair manufactured equipment is now a major problem. Projects that once were easily put together now have to be looked at very carefully before any ordering takes place. Even if all can be found at a suitable cost, there is the matter of what to put it all in?

Often this is where it all falls apart because the case can cost several times the total of the other components. Then there are the switches, knobs, sockets, etc. to be thought about. How many people have the machinery to produce metal enclosures? Then if all this is possible is the finished item going to prove useful? After all you only need so many amplifiers, power supplies and digital add-ons.
A good publication should be a forum where like-minded people can exchange ideas and, learn from each others experience. The well-presented article helps those who need some inspiration to achieve their ambition to complete a project. Electronics World has always been a publication for professionals and those studying electronics. I used to think it above my status, with many articles too complex for my experience at that time.
I feel sorry for you having to cater for a very diverse readership. We must frustrate you with our comments. I used to mainly read ETI Electronics Today International and other hobby publications now gone. Too many magazines were trying to compete for a rather small readership. Many shops and mail order companies have gone, also much government surplus
had since been used up. Fewer
manufacturers exist to supply surplus, to companies like Greenweld and Mainline surplus to name but two.

Fewer people advertise in the few publications now available. Maplin are the main supplier to the hobbyist to purchase from, the only thing is that they to continue to cut the variety of components available. Manufacturers trim back on their output as no one wants to keep stocks of any but the most commonly used lines. If you're not a manufacturer, ordering by the several thousand, it is impossible to purchase special parts at a reasonable cost if at all.More surface mounted components are used that do not lend themselves to home use. Even ten years ago it was plain to see the writing was on the wall for all to read. Too much reliance on all things digital, computer, and PIC, has made many decide to give up on electronics. People need to keep spending more to do less. This is because many digital projects are very task specific, with a lot of software problems attached. The future is uncertain as to where amateur electronics will be in the next few years.
1 hope $E W$ will keep going despite a diminishing readership.

Ian /ohnson.

Kidderminster

Worcestershire
UK

We'll keep trying as long as you guys keep reading. - Ed.

Enticing

Ray Lee asks "whether an electronics magazine such as $E W$ can find enough to sustain it" to which many subscribers might answer "no!" for reasons that he and others have outlined. Nigel mentioned circulation, upon which advertising revenue is very much dependent, and vice versa!
The May issue of $E W$ offers a CD (Pandora's Drums) for $£ 12$, which may be popular, but many journals and tabloids have these on the front covers, free of charge! My wife's built up quite a collection already including two by Andrea Bocelli, at $£ 4$ a time including an all-colour 100 page magazine (Classic FM). If some publisher offers Bob Dylan or Kate Bush CDs, well, I'm sorry but I've just gotta have 'em, even if they're on a computer journal. Gardening magazines have seeds and bulbs on the cover at a price less than they would cost if purchased separately. So popular are the flowers that one cereal producer has increased its range of freebies to include a choice of herbs along with the usual Goeditia, Nigella, and Eschscholzia califomica. Can you imagine future issues of $E W$ with seeds on the cover? No, of course not! Manuals, chips and various electronic items including CDs have been

Big Reductions

With reference to the letter from A G Callegari the editorial comment after this letter that use of word processing and email helps to avoid transcription errors may be true - but this poor chap's obviously only allowed to use crayon.
What is this incoherent nonsense doing in the pages of a respectable journal? The third paragraph (beginning "It's interesting to note...") in particular reads as if he had forgotten to take his medication that day. Please reserve your valuable space for rational contributors.
(I could do without Ivor Catt as well... His diatribes are vaguely amusing, but convey far more information about his personal grudges than anything in the way of useful or reliable facts. I agree entirely with Orde Solomons: the "Catt Anomaly" is an artefact of Catt's own psychology and failure of understanding, and has no objective existence.)
Pigeon
tried, with what success, I'm not sure. Solar panels, AAA rechargeables or wheels for Robot Wars might be popular with school kids, although they're heavily overloaded with course work which leaves little time for the outside activities like we had back in the 50s converting war surplus equipment to amateur bands. EW readers may have some better ideas for attracting young blood, but for the moment, music
CDs seem to be the best bet!
Tony Callegari BSC.
G3OMD
Much Hadham
Hertfordshire
UK
Readers will be interested to know that we are working on 'freebies' for EW and past results have been encouraging. As to how to attract the younger reader - we are devising a new reader survey - that will also target some non-reader groups to get their feedback. I will bear Kate Bush in mind when thinking of material for our next cover CD. But given your call sign would not 'Orchestral Manoeuvres in the Dark' be more appropriate? - Ed.

Hot valves

Further to the interesting article on German Warfare receivers in EW August, I was reminded of the remarkable valves of the Third Reich by Ostar Ganz which had 230 V heaters. I experienced no trouble with heater/cathode leakage, unlike some later CRTs. The insulation withstood the 326 V peak potential difference without complaint. They used a 7-pin holder, C07, with an earthed plate between heater, cathode and other elecrtrode pins to avoid hum pick-up. With no mains transformer, the result was a very light and simple $A C / D C$ chassis.

Graham Cox

Bexhill-on-sea

East Sussex
UK

The Electronics World Book Service offers access to our team of specialist publishing experts. We can order any book or CD-ROM currently in print from War And Peace to the Reference Data for Engineers. All books are delivered free of charge within the UK unless otherwise stated. Contact us at the numbers below:
Telephone: 01737812727 or 01737812676
Fax: 01737813526
Email: salesteam@boffinbooks.demon. co.uk

HIGH SPEED DIGITAL DESIGN

Howard W Johnson \& Graham Martin
Re-issue
Focusing on the field of knowledge lying between digital and analog circuit theory, this text sets out to help engineers working with digitol systems shorten their product development cycles and heip fix their lotest design problems. It covers signol reflection ond crosstalk.

820 poges \triangle HB
Code PEAR 0133957241
$£ 44.99$

ELECTRONIC PROJECTS

 FROM THE NEXT DIMENSION: PARANORMAI EXPERIMENTS FOR HOBBYISTS Newton BragaA guide to making and using por onormal research electionics. In desribes procticol electronix circuns to be used in experiments invohing instrumentol tronscommunication (IT), the electronic voice phenamensn (EVP), and paranormal experiments involving $E S P$, ouros, ond Kirlian phologruphy. White and pink naise generators for use in instrumental tronscommunication (ITC) experimens; Kirlian photography. piscsmo experiment; extrosensory perception testers: magnetic fields sensors.
Nov $2000 _256$ pages $\triangle P B$
Code HBO 750673052
£28.50

BUILD AND UPGRADE YOUR OWN PC

Ian Sinclair
This third edition of Build and Upgrade Your Own PC is based around building and upgrading to the very lotest systems running processors with speeds over 2.0 Ghz ond ultrafost buses. It also covers upgrading to Windows XP and Windows Me.

3rd edition \triangle Jul $2002 _335$ poges $\triangle \mathrm{PB}$
Code HB 0750657588
$\$ 22.50$

FABRICATING PRINTED CIRCUIT BOARDS

Jon Varteresian
Engineers are often foced with the need for small quantities of a certain boord design for construttion of o small number of devices. This book describes the process of making a printed circuit boord, from the conversion of a schemotic diogram into a boord layout to the moking of the boord itself.

Jul 2002 - 251 pages $\triangle P B$
Code HB 1878707507
$£ 21.99$

RF CIRCUTT	
DESIGN: TMEORY 8	
APPIICATION	3
Reinhold Ludwig; Pavel Bretchko	
This proctical guide intarduces RF circuit design fundomentals while emphosizing o circuit based approoch. It provides MATLAB routines to corry out simple tronsmission line computations ond uses a PC. bosed commerciol RF circuit simulation tool to demanstrate actuol circuit behoviour.	
Ot 1999 - 656 poges \triangle HB	
Code PEA O 130953237	£35.99

BASIC AC CIRCUITS

Clay Rawlins
A step-by-step opprooch to AC circuits for beginners, providing thorough coveroge of theory and practice. The texi provides individualized learning goals covering electronics concepts, terms and the mathematics required to understond $A C$ circuit problems.

2nd Edition $\triangle 0+2000 \triangle P B$
Code H807506 71734
E34.50

PRACTICAL ELECTRONICS

 handBOOK
Ian Sinclair

A collection of all the key dato, facts, practicol guidance and circuit design basies needed by o spectrum of students, electronis enthusiosts. lectricions and circuit designers. It provides explanotions ond practicol guidonce, ond includes new sections on SHF techniques ond infruder olarms.

Sth edition \triangle Feb $2000 \triangle 571$ poges $\triangle \mathrm{PB}$
Code H8 0750645857
$\$ 16.99$

THE ART OF

 ANALOG LAYOUT
Roy Alon Hastings

This text oims to provide students with o brood understonding of the issues involved in suctessfully laying out onolog -integrated circuitsronging from the mechonics of loyout to essentiol information obout mony related oreos, such as device physics, processing ond failure modes ond effects.

Oत $2000 \triangle 559$ poges $\triangle \mathrm{HB}$
Code PEAR 0130870617
$£ 30.99$

VERILOG DEVELOPER'S LIBRARY

Bob Zeidman
Verilog is one of the moss used hardwore description languages. This text contoins a librory of useful code for those users who de not wont to recreate identical code for common tasks.

Jul $1999 \triangle 450$ poges \triangle PB
Code PEAO 130811548
$£ 79.99$

INTERFACING WITH C

Mike James $\&$ Howard Hutchings An exploration of interfocing personol computers using C An introdution to C; loops ond dato conversion; doto ocquisition using C essentiol mothematics, convolution; digito filters; Fouries tronsforms; correlation; Kolman filters; doto conversion; investigating the spetrol ond time-domoin performonce of z-tronstorms using computer monaged instruttion; introduting oudio signol processing using Cistandord progromming structures. Dewey: 005.11262
$2 n d$ edition \triangle Der $2000 \triangle 308$ poges
Code HB 0750648317
$\$ 20.50$

ANALOG CIRCUIT TECHNIQUES WITH DIGITAL INTERFACING

Trevor Wilmshurst
Aimed of junior undergroduotes, this textbock offers comprehensive coveroge of onologue electronic circuir design with two fuil chopters devoted to the use of SPICE in circuit simulations. programmes leading to IEng MSe Electronic conversion type courses.

Mor $2001 \triangle 320$ poges $\triangle P B$
Code HBO $75065094 \times$
$\$ 19.99$

PRACTICAL RF HANDBOOK
 Ian Hickman
 A honds-on-guide for engineers, technicions, students and enthusiosts working in RF design, this comprehensive text covers oll the key topis in RF, indluding: onalogue design princtiples; rransmission lines, tronsformers; couplers; omplifiers; oscillotors; modualtion; ond ontennos.

3rd edition \triangle Feb $2002 \wedge 289$ poges
150 line drowings $\triangle P B$
Code HB 0750653698
$£ 19.99$

DESIGN-FOR-TEST: FOR DIGITAL INTEGRATED CIRCUITS AND EMBEDDED CORE

Alfred L Crouch

An introduction to the basit concepts of Design-ForTest, an oreo in chip design.

July 1999 - 350 pages 8 (0 -ROM Code PEAR D 130848271

PASSIVE COMPONENTS FOR CIRCUIT DESIGN

 Ian SinclairDesigned for technicion engineers ond onyone involved in circuit design, this text provides on introdurtion into a key orea of onologue electronic. It covers oll component types copoble of power omplifitutions, including: resistors, copacitors, tronsformers, solenoids ond motors.

Nov $2000 \triangle 301$ poges $\triangle P B$
Code HBO 75064933 X
£23.50

SELF ON AUDIO

Douglas Self

This work offers a collection of Electronis World orticles, ineluding
self-build projects It oims to demystify amplitier design ond establish empiricol design techniques bosed on electronic design principles ond experimentol doto.

Jul $2000 \triangle 256$ pages $\triangle P B$
Code H8O 750647655
£28.50

ELECTRONICS FOR
 SERVICE
 ENGINEERS

Joe Cieszynski \& Dave Fox
From simple mothematics ond dircuit theory to tronsmission theory and oerials, this text provides the ronge of knowledge required to service electronic ond electritol equipment: Questions ond worked examples illustrote the concepis described in each chopter.

Mor $1999 \triangle 294$ poges $\triangle P B$
Code HBO 750634766
£20.99

NEWNES TELEVISION AND VIDEO ENGINEER'S POCKET BOOK
 〔ugene Trundle
 This text provides a packet tool for service engineers. It presents o ronge of essentiol information in o comport form, covering television reception, sotellite ond coble television, video recorders, colour comero rechnology, telefext ond foull--inding.
 3rd edition \triangle Oct $1999 \triangle 512$ poges \triangle HB
 Code HB 0750641940
 $£ 17.99$

BEBOP TO THE BOOLEAN BOOGIE

Glive Moxfield
Comprehensive introduction to contemporary electronies - friendly, funny and quirky. Whether you're on engineer, hobbyist, or student whto needs a thorough and up-to-date electronics reference or o non-technical person who wants to understand more about this electron donce that has seemingly taken over the world, this book is the answer. Hundreds of diagrams thot darity even the most difficult subjects.

2nd Edition a Jan 2003
Code H8O 750675438
£27.50

ELECTRONIC SERVICING AND REPAIRS

Irevor Linsley

Updotes the previous text taking into occount changes in the Gity ond Guilds courses 2360 and 2240 . Also feotures hordware topiss, testing ond fault diagnosis, PLS and CAD sofware, and new shapters. Health and scotety; electronic component recognition; electronic circuit assembly techniques; electronic semiconductor devices; electronic circuils in oction; testing electronic circuits; digitol electronics; electricol cirde theory; electronic systems; communication systems; security systems; sensors ond iransducers. 3rd edition \triangle Aug $2000 \triangle 261$ pages Code HB 0750650532

E 18.99

ROBOTICS, MECHATRONICS, AND ARTIFICIAL INTELIIGENCE: EXPERIMENTAL CIRCUIT BLOCKS for designers

Newion C Broga
This work simplifies the process of finding basic circuits to perform simple tasks, such as how to control a DC or step motor, and provides instruction on ceating moving robotic ports, such os on "eye" ar an "ear"

Nov $2001 _317$ poges \triangle PB
Code HB 0750673893
E21.99

UNDERSTANDING AUTOMOTIVE electronics

W B Ribbens

Covering the most recent technologital advonces in operotion ond troubleshooting of electronic systems and companents, indluding low-emissian standards, on-boord diognostics and communications, digitol instrumentation, and digital engine contral. A practical text, suitable for the outomotive technicial, student, ethusiost, or professional who wants to upgrade his or her bockgraund in electronic systems found in the automotive.
6thed. Dec 2002
Code HB 0750675993
£24.99

PIC IN PRACTICE: AN INTRODUCTION TO THE PIC

 MICROCONTROLLER
Dovid W Smith

An exploration of the PI (microcontroller, designed 10 be used ot a voriety of levels. It introduces the reader to the range of tasks the PIC con perform and makes use of readily avoiloble components. The PIC used in the exomples is the re-programmoble EEPROM 16884/16884.

Apr $2002 \triangle 261$ poges $\triangle P B$
Code HB 0750648120
$£ 14.99$

NEWNES GUIDE TO DIGITAL TV

Richord Brice

Covering all aspects of digitol televisio (terrestrial, satellite and cable), this text has been updated with developments since the 2000 edition. Foundations of television; digitol video and audio coding; digital signal processing; video dato compression; oudio data compression; digital oudio production; digitol video production; the MPEG multiplex; broadcosting digitol videa; consumer digital technology; the future.

2nd edition $\triangle \operatorname{Sep} 2002$ - 304 poges \triangle HB
Code HBO 750657219
E 24.99

DIGITAL LOGIC DESIGN

 Brian Holdsworth \& Woods This undergraduote text on digital systems cavers first and second year madules and HND units, ond con alsa be used os a reference text in industry. Updoted topics in the fourth edition include: EBCDIC, Grey code, procticol applications of flip-flops, linear and shoft encoders and memory elements.4th edition \triangle Aug $2002 \triangle 448$ poges
Code HB 0750645822
£ 19.99

EMBEDDED MICROPROCESSOR SYSTEMS: REAL WORLD DESIGN

Stuart Ball

Providing on introduction to the design of embedded microprocessor systerms, this edition covers everything from the initiol concept through to debugging the finol result. It also includes moterial on DMA, interrupts and an emphosis throughout on the realtime nature of embedded syseems.

3rd edition \triangle Nov 2002 - 368 pages \triangle PB
Code HB 0750675349
£ 35.00

DESIGNING EMBEDDED INTERNET DEVICES
 Brion DeMuth \& Eisenreich
 This guide to designing internet occess ond communications capobilities into embedded systems takes an integrated hardware/solware approoch, using the Jova programming language and industrystandard microcontrollers. The CD-ROM has Jovo source code and a version of the text.
 Aug 2002 - 320 poges
 PB \& CD.ROM
 Code HB 1878707981
 £ 35.00

he order/foptbine is open from Yam no 5pm, ar leve yeur order on our out of haurs onse-tine or enall us ol shatrowiflimits toman co ur. When foulyrins sian quate number \bullet DSbit/restar tord number \bullet Expiry dote - Dualls del but ore corteit of lise of guing to press. Boffin Bools Ltd. 24 Wollon Street, Walion-on-1he-HIIL Todworth, Serrey KT20 7RT, UK

NEWNES DICTIONARY OF ELECTRONICS

SW Amos $\&$ R S Amos
Aimed ot engineers, technicions ond students working in the field of electronics, this dictionory provides cleor and concise definitions, including T, rodio and computing terms, with illustrations ond circuit diogroms.

4th edition \triangle Morch 2002 © 394 poges \triangle PB
Code HBO 750656425
£12.99

NEWNES INTERFACING COMPANION:

COMPUTERS,

transducers, instrumentation
AND SIGNAL PROCESSING
Tony Fischer-Gripps
Provides the fundomentiok of electronics, tronsducers, computer orchitecture and interfocing tecthniques needed to use a simple PC or PLC.bosed system for the collection of dota previousty only obtainable from expensive dedicated equipment.
Aug $2002 \triangle 320$ pages \triangle HB
Code HB 0750657200
£24.99

POWER SUPPLY COOKBOOK
 Morty Brown
 Providing on eosy-10-follow, slep-bystep design fromework for a wide variety of power supplies, including lineor, swithhing ond quosiresonont switching. There is otso discussion of design topics such or magnetics, feedback loop compensation design ond EMI/RFI control in straightforword terms.
 2nd edition Δ Jun $2001 \triangle 336$ pages \triangle HB
 Code HB 075067329 X
 £24.99

RSGB RADIO AND ELECTRONICS COOKBOOK

Rodio Sociely of Great Britoin
Only a basic knowledge of electronics is assumed for this collection of electronics projects, and it is ideol for oll electronics and DIY enthusiasts ond experimenters. Designed by the RSCB, the UK rodio amateurs federation, the projects are dearly exploined step by step.

Nov $2000 _336$ pages \triangle PB
Code HB 050652144
f17.99

NEWNES RADIO AND RF
 ENGINEERING POCKET BOOK

Steve Winder \& Joseph J Corr

With a moss of information and dota for studens, rodio ond telecommunications engineers, $R F$ circuit designers, rodio hobbyists ond technicions, this guide covers oll ospects of rodio ond communications engineering from low frequencies to microwaves, with on emphasis on mobile communications.

3rd edition \triangle Jul $2002 \triangle 352$ poges \triangle HB
Code HB 0750656085
E16.99

MIXED-SIGNAL AND DSP DESIGN TECHNIQUES

Walt Kester

Mixed signol proxessing implies the use of onalogue and digitol in the same system; this is o speciolized type of signol processing that requires a high level of experience ond troining. This book focuses primarily on signol processing hardwore - how it works, how to interfoce it, ond design it.

Oct 2002 a 336 poges \triangle PB
Code HB 0750676116
£ 39.99

ELECTRONICS WORLD ORDER FORM

Please order or search the following:

Code	Description	Qiy	Prise
	POSTAGE \& PACKING FREE IN THE UK*		
Name	Daytime Tel		
Address			
	Postrode		
Deliver	(erent)		
	Postode		
1 enclos	al order value £ payable to	in Bo	
Please	Visa/Switch/Delto card Issue number (S		
Cord N	Expiry Dote		
Signed	- emoilsolesteom	Aftinbod	demon
Postoge	UK avoilbble upon request or emoil to solesteom@boffinb	demon	
Send orde	dots tid, 24 Wathon STreel, Wator-or-he-Hel Todwe	surey	T20 $7 R$

Put your web address in front of 18,000 electronic lanatics.

Electronics World acknowledge your company's needs to promote your web site, which is why we are dedicating 2 pages in every issue to WEB ADDRESSES.

Linage only will cost $£ 150+$ vat for a full year.

Linage with colour screen shot will cost $£ 350+$ vat for a full year, this will include the above plus 3 cm shot of your web site which we can produce if required.
To take up this offer or for more information telephone

Reuben Gurunlian
Tel 02087226028

E-mail

r.gurunlian@highburybiz.com

ANASOFT LTD

http://www.anasoft.co.uk

SuperSpice, the affordable, mixed-mode windows circuit simulator. Wrote by an analogue design engineer for those Teletubbies who like keeping things simple.

CHARLES HYDE \& SON Ltd http://www.charleshyde.co.uk Search for both original and copy spare parts

in our extensive database covering Akai, Alba, Bush, Ferguson, Goldstar, Hitachi, LG Marant, Matsui, Nokia, Saisho, Sanyo, Sony, Sharp, Thomson, Panasonic, Philips, Samsung, Tascam, Teac, Toshiba, Yamaha and many more. In addition huge ranges of Lasers, Loots, Remote controls and Semiconductors may be accessed

CHYGWYN

http://www.chygwyn.com

ChyGwyn Limited offers electronic design and embedded software development for remote monitoring, embedded appliances, set-top boxes and similar devices. We are experts in customisation of Linux and write device drivers for custom hardware

CONFORD ELECTRONICS

http://www.confordelec.co.uk/ind ex.shtml

Lightweight portable battery/mains audio units offering the highest technical performance. Microphone, Phantom Power and Headphone Amplifiers. Balanced/unbalanced signal lines with extensive RFI protection

CRICKLEWOOD
 ELECTRONICS

http://www.cricklewoodelectronic s.co.uk

Cricklewood Electronics stock one of the widest ranges of components, especially semiconductors including ICs,
transistors, capacitors, all at competitive prices.

DB TECHNOLOGY

http://www.dbtechnology.co.uk/
EMC Testing and Consultancy.
Anechoic chamber and open area test site

- Compliance Tests
- Rapid, accurate pre-compliance tests. - Fixes included. FCC Listed

- Flexible hourly booking available.

DESIGNER SYSTEMS CO.

http://www.designersystems.co. uk
Electronic product design company with

over a decade of experience promoting it's own product range and designing and manufacturing innovative products for client companies/individuals.

EAGLE PCB DESIGN

 SOFTWAREhttp://www.puresoft.co.uk

- Professional PCB design made easy!

- Fully functional freeware download.
- Schematics, Layout \& Autorouting. - Free tech support

EasySync
http://www.easysync.co.uk

EasySync supplies a wide range of USBRS232 and USB-RS422/485 converters. It also specialises in USB test and measurement devices.

FELLER UK

http://www.feller-at.com Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards
FUTURE TECHNOLOGY DEVICES INTL. LTD.
http://www.ftdichip.com

FTDI designs and sells USB-UART and USB-FIFO interface i.c.'s. Complete with PC drivers these devices simplify the task of designing or upgrading USB
peripherals
GREENWELD
http://www.greenweld.co.uk

Audio - Batteries \& Chargers • Boaks - Communications Computer

- Cable - Capacitors Car Equipment - Craft Goods - Disco Equipment Enclosures • Electrical - Fuses • Graphic supplies - Hardware - Instrumentation - Kits - Lighting Mechanical - Optical - Photographic - Power supplies - Transformers Resistors • Semiconductors •
Software - Soldering Irons - Surplus goods - Switches - Relays Telephone Accessories - Tools Plus much more.
Whether your interest is in electronics, model engineering, audio, computer, robots or home and

To reserve your web site space phone Reuben Gurunlian Tel: 02087226028 Fax: 02087226096

leisure products (to name just a few) we have a wide range of new and surplus stock available.

J W HARDY

COMMUNICATIONS
http://www.jwhardy.co.uk

R.F. Network Specialist.

Shop online - for R.F.network components. We supply a full range of TV, radio reception equipment to receive analogue/digital signals from both terrestrial and satellite sources. We provide a free planning service for your R.F. networks, MATV and SMATV etc

LOW POWER RADIO SOLUTIONS

http://www.Iprs.co.uk
LPRS produces radio modules with embedded "easy-Radio" software protocols for short range radio applications. We also represent Circuit Design narrow band modules in the UK.
MATRIX MULTIMEDIA LTD
www.matrixmultimedia.co.uk

Matrix Multimedia publishes a number of highly interactive CD ROMs for learning electronics including: Complete electronics course, Analogue fitter design, and PICmicro(R) microcontroller programming (C and assembly)

NORCALL Ltd

http://www.tetra-com.co.uk
e-mail Norcallकaol.com
Suppliers programmers and repairers of new and refurbished two-way radio equipment. Retuning and recrystalling service available. All types of batteries chargers and aerials supplied

EASY-PC PCB DESIGN SOFTWARE
http://www.numberone.com
UK's leading PCB design soltware Runs under 95/98/MENT4/2000 \& XP Very easy to use - Schematic, - PCB, - Autorouting, - Simulation. Free professional UK based tech support 4 variants available to suit budget Demo CD available or download from web
QUASAR ELECTRONICS
www.QuasarElectronics.com

Over 300 electronic kits, projects and ready built units for hobby, education and industrial applications including PIC/ATMEL programming solutions. Online ordering facilities. Tel: +44 (0) 8702461826 Fax: +44 (0) 8704601045 Email: sales@QuasarElectronics.com

RADIOMETRIX

http://www.radiometrix.co.uk

Radiometrix specialises in the design and manufacture of VHF \& UHF, RF data modules. We offer a broad range of PCB mounted miniature transmit, receive and transceiver modules for OEM use. They comply with European harmonised standards EN300 220-3 and EN301 489-3 and are CE certified by an independent Notified Body.

SOFTCOPY

http://www.softcopy.co.uk
As a PC data base or hard copy SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.

TELNET
http://www.telnet.uk.com

Top quality second-user Test and Measurement Equipment eMail salesotelnet.uk.com

TELEVES

http://www.televes.com
Tel: 44(0) 1633875821 email hbotas@televes.com Televes website was launched as an easier way to keep in contact with our World-wide Network of Subsidiaries and Clients. This site is constantly updated with useful information/news plus you can download info on our range: TV Aerials \& accessories, Domestic and Distribution amplifiers, Systems Equipment for DTT and Analogue TV, Meters and much more.

TEST EQUIPMENT SOLUTIONS

http://www.TestEquipmentHQ.com

Test Equipment for rental or second user sale at the industry's lowest prices. All types of equipment from all leading manufacturers including general purpose, communications and industrial test Items fully refurbished with 1 year warranty. Rental rebate given on purchases.

TELONIC

http://www.telonic.co.uk

Telonic specialists in laboratory AC \& DC Power Supplies, Electronic AC \& DC Loads, Electrical Satety Testing and complete test systems. Plus RF Filters, Attenuators, Diesel Engine Smoke Measurement, Quartz Crystal
Microbalances.
Tel +44 (0) 1189786911

TECHNICAL AND
 SCIENTIFIC SUPPLIES

http://www.technicalscientific.com
Suppliers of pre-1985 equipment and components.

- Test/Measurement equipment
- Valves and semiconductors - Transducers and pressure gauges - Scientific books and catalogues - Manuals and data sheets

THOSE ENGINEERS LTD
http://www.spiceage.com

Working evaluations of SpiceAge mixedmode simulator, Spicycle PCB design tools and Superfilter demo (synthesises passive, active, digital filters). Tech support, sales links and price list.

TOTAL ROBOTS

http://www.totalrobots.co.uk
Robot Kits and Control Technology products, including 00Pic the first Object-Oriented Programmable Integrated Circuit. Secure on-line ordering and fast delivery.

ULTRA-CREA OY

http://www.ultra-crea.fi

Our business idea is to provide our customers complete service, i.e. design from the customer specification to the delivery of finished and tested products.

Our offerings are as follows:

- RF transmission line filters from

100 MHz to 3 GHz

- Special antennas to frequencies as above
- Transmitter and Receiver modules
- RF-subunits such as amplifiers, oscillators, directional couplers etc.

VUTRAX PCB DESIGN

 SOFTWAREhttp://www.vutrax.co.uk

Vutrax electronic schematic and pcb design system for Windows 95/98, ME NT, 2000, XP and Linux. Limited capacity FREE version downloads available, all upgradeable to various customised level.

WILMSLOW AUDIO

http://www.wilmslowaudio.co.uk

'Uk's largest supplier of high quality loudspeaker kits and drive units. Comprehensive range of components and accessories, including damping products. connectors and grilles materials. Demonstration facilities available.

Ten year index: new update

www.softcopy.co.uk

Photo copies of Electronics World articles from back issues are available at a flat rate of $£ 3.50$ per article, $£ 1$ per circuit idea, excluding postage.
Hard copy Electronics World index Indexes on paper for volumes 100,101, and 102 are available at $£ 2$ each, excluding postage.

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles. circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 K ram and a hard disk.

The disk-based index price is still only $£ 20$ inclusive. Please specify whether you need $5.25 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format.
Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Ordering details

The EW index data base price of $£ 20$ includes UK postage and VAT. Add an extra £1 for overseas EC orders or $£ 5$ for non-EC overseas orders
Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide.
For enquires about photocopies etc please send an sae to SoftCopy Ltd.
Send your orders to SoftCopy Lrd,
1 Vineries Close, Cheltenham GL53 ONU.
Cheques payable to SoffCopy Lid, please allow 28 days for delivery

AS PART OF OUR PLANNED DISPOSAL PROGRAMME

FINAL MASSIVE CLEARANCE SALE

ELECTRONIC TEST AND COMMUNICATION EQUIPMENT

TEKTRONIX - HEWLETT PACKARD - AGILENT MARCONI - PHILIPS - RACAL - W\&G - RES - ETC
Due to retirement closure and sale of our main Whitehall Works Trading Site. All stock is being moved over the next few weeks to our large bulk storage site - Smithies Mill - where we will hold a combined massive total clearance sale over the rest of the year.
Starting now 20,000 sq ft full of electronics is being made ready over the coming weeks for complete disposal, either bulk or single item offers can be made by anyone - trade or private. The warehouse is being opened for callers all day on Saturdays 9.00am-5.00pm or weekdays by appointment.

Instructions have been given to start early September to help with this disposal by way of auction/tender sales on site and on line by:
www.teck-asset.co.uk
E-mail: info@teck-asset.co.uk
Details also of electronic items by
www.johnradio-electronics.com www.johnradio-electronics.co.uk www.johnradio.com
Johns Radio, Whitehall Works, 84 Whitehall Road East,
Birkenshaw, Bradford BD11 2ER.
Tel: 01274 684007. Fax: 01274651160 Smithies mill
Location M62 Junction 27 A62 1 mile Birstall Smithies Ilghts under Smilthies Mill chimney topped wth aerials on left Tel: 01924442905 . Fax: 01924446170
Our normal workshop repairs and calibration checks - plus all sales are still on going contact Pat

FRUSTRATED!

Looking for ICs TRANSISTORS?
A phone call to us could get a result. We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).
2N 2SA 2SB 2SC 2SD 2P 2SI 2SK 3N 3SK 4N 6N 1740 AD ADC AN AM AY BA BC BD BDT BDV BDW BDX BF BFR BFS BFT BFW BFX BFY BLY BLX BS BR BRX BRY BS BSS BSV BSW BSX BT BTA BTB BRW BU BUK BUT BUV BUW BUX BUY BUZ CA CD DX CXA DAC DG DM DS DTA DTC GL GM HA HCF HD HEF ICL ICM IRF J KA KIA L LA LB LC LD LF LM M M5M MA MAB MAX MB MC MDA J MJE MJF MM MN MPS MPSA MPSH MPSU MRF NIM NE OM OP PA PAL PIC PN RC S SAA SAB SAD SAI SAS SDA SG SI SL SN SO STA STK STR STRD STRM STRS SV1 T TA TAA TAG TBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + many others

Please ask for our Free CD Rom STOCK LIST. WE STOCK A MASSIVE RANGE OF COMPONENTS!
Mail, phone, Fax, Credit Card orders \& callers welcome.

ADVERTISERS INDEX

CMS 25
Conford Electronics 63
Cricklewood Electronics 63
Ennovi Ltd 25
ESR Electronic Components 9
John's Radio 63
JPG Electronics 25
Labcenter 2
Olson 29
PC-Instrumentmart, Inc IBC
Pico Technology 35
Quasar Electronics 4
Telnet Ltd IFC
Test Equipment Solutions OBC
Tie Pie Engineering 11
Weastdev 17

Service Link

ARTICLES WANTED

BEST CASH PRICES PAID

FOR VALVES KT88, PX4 AND MOST AUDIO/OTHER TYPES.
Tel: 01403784961
Billington Export Ltd.
Sussex RH14 9EZ
Fax: 01403783519
Email: sales @bel-tubes.co.uk
Visitors by appointment

TOP PRICES PAID

For all your valves, tubes, semi conductors and ICs.
Langrex Supplies Limited
1 Mayo Road, Croydon, Surroy CRO 2QP
TEL: 02086841166 FAX: 02086843056

FOR SAIE

RF DESIGN SERVICES

All aspects of RF
hardware development
considered from
concept to production.
WATERBEACH ELECTRONICS
www.rlaver.dial.pipex.com
TEL: 01223862550
FAX: 01223440853

FOR SALE

PRINTED CIRCUIT BOARDS

desiomed a manufactuate Iffinagar

- Protape or poduction quanior ! I Be Circuits

Unir 5, East Belast Enterprise Park
308 Abertbrige Pd, Belmast BT5 4GX
TEL 02090738097 FAX 02890731802
info-ngarcircuits.com

SERVICES

POWER SUPPLY DESIGN

Switched Mode PSU
Powes Factor Correction designed to your specitication

Te/fax: 01243842520 e-mail: eugen_kusecix.co.uk Lomond Electronic Services

WESTDALE ELECTRONICS

We would welcome the opportunity of quoting for your requirements.
If you have a problem with your semiconductors or relays, give us a call and we will locate them for you.
We also have access to inventory Stateside le
Current, Obsolete, MII, Spec

Call: Bryan on -

Tel/Fax:
01159402127

For a FREE consultation on how best to market your products/services to a professional audience ring 02087226028

SERVICES

Email: sales@designersystems.co.uk Tel/Fax: +44 (0) 1872223306

WANIED

WANTEDSurplus or Obsolete Electronic Components
Turn your excess stock into instant cash! SEND OR FAX YOUR LIST IN STRICTEST CONFIDENCE Will collect anywhere in the UK

28 College Street, Kempston, Bedfordshire, MK42 $8 L U$ Tel: 01234363611 Fax: 01234326611 E-mall: salesemushroom.co.uk Internet: www.mushroom.co.uk

Service Link

SDS 200, 200MHz dual-channel digital storage oscilloscope. Small enough to fit in your palm! Powerful enough to perform like a bench scope of a well known brand!

Some of its characteristics

$200 \mathrm{MHz}, 5 \mathrm{GS} / \mathrm{s}$ equivalent. Vertical resolution: 9 bits/channel,Gain range: from 10 mV to $1000 \mathrm{v} / \mathrm{dv}$ (probe dependent). Timebase:2ns/div-10s/div.Math measurements (Vp-p, Vmax,Vmin,Vrms,Vamp,Vhigh,Vlow,pos./neg. overshoot, cycle mean, etc). FFT (Rectangular,Hanning, Hamming, Blackman), Advanced trigger(enabling the SDS200 to capture complex signals). Saves files as text, jpg/bmp, Excel or Word. Prints in color or B\&W. USB connection, not requiring additional power supply.

Simply the best! And only $£ 565$ + VAT. Order from our online store and save (www.pc-instrumentmart.biz). Call us at +44 1934 514595, attn: Mr. Bourner , for more details.

The Industry's
 Most Competitive Test Equipment Rental Rates

AMPLIFIERS

Amplifier Research 10 W10008 IGHz IOW RF Amplifier HP 8348A 26.5 GHz 25 dB 25 dBm Hicrowave Amplifier HP 834982 -20GHz $15 \mathrm{~dB}+20 \mathrm{dBm}$ Amplifier Kalmus KHS737LC 25W IOKHz-lGHz Amplifier

COMPONENT ANALYSERS

HP 4145B/16058A Semiconductor Parameter Analyser HP 4156 B Semiconductor Parameter Analyser HP 4192A 13MHz Impedance Analyser Tek 370 A Curve Ircer

DATACOMMS

Fluke DSP4000 Cat Se/6 LaN Cable Tester HP j2300D WAN Intemet Advisor Microtest PENTA SCANMER + Cat 5 Cable Tester

ELECTRICAL NOISE

HP $346 \mathrm{~B} / 00 \mathrm{I} 18 \mathrm{GHz} \mathrm{N}(\mathrm{m})$ Noise Source HP 8970B/020 2GHz Noise Meter

ELECTRICAL POWER

Dranetz PP4300 Power Quality Analyser
Dranetz IR2022 10-1000A Current Clamp For Pp4300

EMC

Chase HFR2000 30 HHz Heasuring Receiver
ress Ebloo 2OMHz-1GHz EMC Test Receiver Schafiner MSGI025 Fast Iransien/Burst Generator

FREQUENCY COUNTERS

HP 53131 INO3O 3 GHz Universal Counter
HP 5385A IGHz Frequency Counter
Philips PM6670 120 HHz Frequency Counter/Timer Philips PH6671 120 HHz Frequency CounterTimer Philips PM6673 120 HHz Frequency Counter/Timer Racal 1992 I.3GHz Frequency Counter Racal 1998 I.3GHz Frequency Counter Real 9903 50MHz Frequency Counter Timer

FUNCTION GENERATORS

HP 3325 Z 2IHHz function Generator Lecroy 9109/9100-(P Abitrary Waveform Generator Philips PM5I91 2 MHz function Generator Tek AWG2021 $125 \mathrm{MHz} 250 \mathrm{H} / \mathrm{s}$ s Abitary Waeform Gen Thandar TGIOIO 10 HHz function Generator

LOGIC ANALYSERS

HP 16500C Logic Anayyser Mainframe HP 16510 A 100 HHz Timing $/ 25 \mathrm{HHz}$ state 80 Ch Card HP 16600 NS 500 HHz Timing/IOOHHz State 136 Ch with DSO HP 1662A 500 HHz Timing/ 100 HHz State 68 Ch HP 1662AS 500 HHz Timing/ 100 HHz State 68 Ch with DSO HP 1670G 500 HHz Timing 150MHz state 136 Ch HP 1683A 200 HHz State/400HHz Timing 34 Channel

MULTIMETERS

Fluke 8050A 4.5 Digin Digital Multimeter HP 34401 A 6.5 Digit Digital Multimeter Keithley 2400 200Y Digital Sourcemeter Keithley $24101100 y$ High Yoltage Sourcemeter Sehlumberger $7150+6.5$ Digit Precision Multimeter

HP 8594E/004/041/101/130 2.96Hz Spectrum Analyser HP 8901N $001 / 002$ 1.3GHz Modulation Analyser HP $8901 \mathrm{~B} / 001$ I.3GHz Modulation Analyser HP 8903820 Hz To lookhz Audio Analyser

SIGNAL GENERATORS

HP 83732B/IEI/IES/IE8 0.01-20GHz Synth Signal Gen HP 8644B/002 2GHz High Performance Signal Generator HP $86488 /$ /ES $2 G H z$ Signal Generator
HP 86568 IGHz Synthesised Signal Generator HP 8657 A IGHz Signal Generator
HP 8657B/00I 2GHz Synthesised Signal Generator HP 8657D/001/H02 IGHz DQPSK Synth Signal Generator HP E442IB 3 GHz Signal Generator
HP E4433B/IOO/UNS/UND 4GHz RF Signal Generator HP E4433B/202/UN8/UN9/UND 4GHz RF Signal Generator Marconi 2017 IOKHz-1024MHz Low Noise Signal Generator Marconi 2019 80KHz-1040MHz Synthesised Rf Signal Gen

TELECOMS

HP 3 IllICIUKJ POH Transmission Analyser Trend AURORA DUET Basic \& Primary Rate ISDN Tester Trend AURORA DUET 8asic Rate ISDN Fester TC 141 2MBPS Handheld Communiations Analyser Π C Fireberd $30608 \mathrm{G703} 64 \mathrm{~KB} / \mathrm{s}$ Interface πC Fireberd 30609 2MB/s G704 interface TC Fireberd 40202 V35 Interface TC Fireberd 40204 lab Interface ΠC Fireberd $40323 \mathrm{G703} 64 \mathrm{~KB} / \mathrm{s}$ Interface TC Fireberd 41440 A T/FFI Drop \& Insert TC Fireberd $418002.048 \mathrm{Hb} / \mathrm{Wx} 64 \mathrm{k}$ Interiace Module TC Fireberd 42522 V35/RS449/R2I Interface חC Fireberd 6000A Communication Analyser TC IIMS-45 TMMS Test Set For Fireberd 4000/6000 W\&G DST-I Handheld E \& M Signalling Tester W\&G PCH-S/BN984/00.01/02/BM958.24 PCH Measuring Ser W\&G PFA-35 2MB/s Digital Transmission Analyser

WIRELESS

Annisu ME4SIOB Digiral Hicrowave System Analyser HP 11759 CRF Channel Simulator
HP 83220 A DCS1800 ($1710-1880$) Test Set
HP 8920N3/4/5/50 IGHz Radio Comms Test Set HP 89208///4/13/14/5I/102 IGHz Radio Comms Test Set IfR I600S/16/20/2I/22/35 IGHZ Radio Comms Test Set Marconi 29558 IGHz Radio Comms Test Set Marconi 29578 Analog AMPS Adaptor for 2955B Marconi $2957 D$ Analog \& Digital AMPS Adapter For 29558 Marconi 29608/10/20/30 Multi-Cellular Adaptor For 2955B Marconi 2965/II IGHz Radio Communications Test Set Marconi 54499-042L Psophometric corm Fither Marconi 600 OHM Adaptor For Marconi 2955 ReS CMD5S/B1/4/6/9/41/42/43/44/51/61/U18/U20 RCTS Res CH5S $/$ /BI/BS/B9/BIS/B28 IGHz Radio Comms Test Set Racal $6102 / 04 E$ GSM MS Radio Comms Test Set Racal 6103/001/002/014 Digital Mobile Radio Test Set Schlumberger 4015/EEE/DUPLEX SYWTHESIS IGHz RCTS W\&G 4107S GSM/DCSI800/PCN1900 Mobile Phone Tester Wavelek 4202s/aM Siband Digital Mobile Radio Test Set per week for a rental period of 4 weeks. Free carriage to UK mainland addresses for Sales. This is just a selection of the equipment we have available If you don't see what you want, please call. All items supplied fully tessed and refurbished. All manuals and accessories required for normal operation included. Certificate of Conformance supplied as standard; Cerificate of Calibration available at additional cost. Est Equipment Solutions Terms apply. E\&OE.

[^0]: a somsmer of msmurr mose commmations he

