Reader exclusive: brand new B2 Spice version - save 25\% see page 9

ELECTRONICS
 WORLD

MAY 2003 £3.25

Solar-powered robot

Henry Round remembered fen-Tec RX-320 review Doug Self on input current Balanced line driver

Quality second-user test \& measurement equipment

Radio Communications Test Sets

Hewlett Packard 3314A Function Generator 20MHz
Hewlett Packard 3324A synth. function/sweep gen. (21 MHz)
Hewlett Packard 3325B Synthesised Function Generator Hewlett Packard 3326A Two-Channel Synthesiser
H.P. 4191A R/F Imp. Analyser (1 GHz)
H.P. 4192A L.F. Imp. Analyser (13MHz)

Hewlett Packard 4193A Vector Impedance Meter ($4-110 \mathrm{MHz}$) Hewlett Packard $4278 \mathrm{~A} 1 \mathrm{kHz} / 1 \mathrm{MHz}$ Capacitance Meter

H.P. 53310A Mod. Domain Analyser (opt 1/31)

Hewlett Packard 8349B (2-20 GHz) Microwave Amplifier Hewlett Packard 8508A (with 85081B plug-in)
Vector Voltmeter
Hewlett Packard 8904A Multifunction Synthesiser (opt 2+4)
H.P. ESG-D3000A 3GHz Signal Gen

Marconi 6310 - Prog'ble Sweep gen. (2 to 20GHz) - new Marconi 2032 10Khz-5.4GHz Sig. Gen.
Marconi 6311 Prog'ble sig. gen. (10 MHz to 20GHz)
Marconi 6313 Prog'ble sig. gen. (10 MHz to 26.5 GHz)
R\&S SMG (0.1-1GHz) Sig. Generator (opts B1+2)
Fluke 5700A Multifunction Calibrator
Fluke 5800A Oscilloscope Calibrator

H.P 3458A DMM (8.5 digits)

Tek 371A Programmable Curve Tracer

OSCILLOSCOPES

Gould 40020 MHz - DSO - 2 channel
Gould 142120 MHz - DSO - 2 channe
Gould $4074100 \mathrm{MHz}-400 \mathrm{Ms} / \mathrm{s}-4$ channel
Hewlett Packard 54201A - 300MHz Digftizing
Hewlett Packard 54502A - $400 \mathrm{MHz}-400 \mathrm{MS} / \mathrm{s} 2$ channel
Hewlett Packard 54520A 500 MHz 2 ch
Hewlett Packard $54600 \mathrm{~A}-100 \mathrm{MHz}-2$ channel
Hewlett Packard 54810 A 'Infinium' 500 MHz 2 ch
Hitachi V152/V212/V222/V302BN302F/V353F/N550BV650F
Hitachi V1 $100 \mathrm{~A}-100 \mathrm{MHz}$ - 4 channel
Intron $2020-20 \mathrm{MHz}$. Dual channel D.S.O (new)
lwatstu SS 5710/SS 5702 .
Kikusui COS $5100-100 \mathrm{MHz}$ - Dual channel
Lecroy 9314 L 300 MHz - 4 channels
Meguro MSO 1270A - 20MHz - D.S.O. (new)
Philips $3295 \mathrm{~A}-400 \mathrm{MHz}$ - Dual channel
Philips PM3070-100MHz - 2 channel - cursor readout
Philips PM3392-200MHz-200Ms/s - 4 channel
Philips PM3094-200MHz - 4 channel
Tektronix $468-100 \mathrm{MHz}$ D.S.O.
Tektronix $2213 / 2215-60 \mathrm{MHz}$ - Dual channel Tektronlx $2220-60 \mathrm{MHz}$ - Dual channel D.S.O Tektronix $2221-60 \mathrm{MHz}$ - Dual channel D.S.O Tektronlx $2235-100 \mathrm{MHz}$ - Dual channel
Tektronix $2245 \mathrm{~A}-100 \mathrm{MHz}-4$ channel
Tektronix $2430 / 2430 \mathrm{~A}$ - Digital storage -150 MHz
Tektronix 2445-150MHZ - 4 channel +DMM
Tektronix $2445 / 2445 \mathrm{~B}-150 \mathrm{MHz}$ - 4 channel
Tektronix $2465 / 2465 \mathrm{~A} / 2465 \mathrm{~B}-300 \mathrm{MHz} / 350 \mathrm{MHz} 4$ chann
Tektronix $7104-1 \mathrm{GHz}$ Real Time - with 7A29 x2, 7B10 and 7B15
Tektronix TAS $475-100 \mathrm{MHz}$ - 4 channel
Tektronix TDS 31050 MHz DSO - 2 channel
Tektronix TDS $520-500 \mathrm{MHz}$ Digital Oscilloscope
£1250

SPECTRUM ANALYSERS

Advantest $4131(10 \mathrm{kHz}-3.5 \mathrm{GHz})$

Advantest/TAKEDA RIKEN $-4132-100 \mathrm{KHz}-1000 \mathrm{MHz}$
Anritsu MS2613A $9 \mathrm{kHz}-6.5 \mathrm{GHz}$ Spectum Analyser Ando $\mathrm{AC} 8211-1.7 \mathrm{GHz}$
Avcom PSA-65A - 2 to 1000 MHz
Farnell SSA-1000A $9 \mathrm{KHz}-1 \mathrm{GHz}$ Spec. An
Hewlett Packard 182T Mainframe + 8559A Spec.An. (0.01 to 21 GHz)
Hewlett Packard 853A Mainframe +8559A Spec.An. (0.01 to 21GHz)
Hewlett Packard $3582 \mathrm{~A}(0.02 \mathrm{~Hz}-25.5 \mathrm{kHz})$ dual channel
Hewlett Packard 3585A 40 MHz Spec Analyser
Hewlett Packard 3561 A Dynamic Signal Analyser
Hewlett Packard $8560 \mathrm{~A}(50 \mathrm{MHz}-2.9 \mathrm{GHz}$) High performance with Tracking Hewlett Packard 856
Generator option (02)
Hewlett Packard $8567 \mathrm{~A}-100 \mathrm{~Hz}-1500 \mathrm{MHz}$.
Hewlett Packard 8568A $-100 \mathrm{kHz}-1.5 \mathrm{GHz}$ Spectrum Analy
Hewlett Packard 8590 A (opt 01, 021, 040) $1 \mathrm{MHz}-1.5 \mathrm{MHz}$
Hewlett Packard 8590A (opt 01, 021,040) $1 \mathrm{MHz}-1.5 \mathrm{MHz}$
Hewlett Packard 8596 E (opt $41,101,105,130$) $9 \mathrm{KHz}-12.8 \mathrm{GHz}$
Hewlett Packard 8596E (opt 41, 101, 105,130) 9 KHz -
Hewlett Packard $8713 \mathrm{~B} 300 \mathrm{kHz}-3 \mathrm{GHz}$ Network Analyser
Hewlett Packard 8752A - Network Analyser (1.3GHz)
Hewlett Packard 8752A - Network Analyser (1.3GHz)
Hewlett Packard 8753B+85046A Network An + S Param (3 GHz)
Hewlett Packard $8753 \mathrm{~B}+85046 \mathrm{~A}$ Network $\mathrm{An}+\mathrm{S}$ Param (3GHz
Hewlett Packard 8754 A - Network Analyser $4 \mathrm{MHz}-1300 \mathrm{MHz}$)
Hewlett Packard 8754A - Network Analyser 4MHz -1300
Hewlett Packard 8756A/877090 Scaler Network Analyser Spectrum Analyser
Spectrum Analyser
IFR A7550-10KHz-GHz - Portable
Meguro - MSA $4901-30 \mathrm{MHz}$ - Spec Anaylse
Meguro - MSA $4901-30 \mathrm{MHz}$ - Spec Anaylser
Tektronix 492 P (opt1,2,3) $50 \mathrm{KHz}-21 \mathrm{GHz}$
Tektronix 492 P (opt $1,2,3$) $50 \mathrm{KHz}-21 \mathrm{GHz}$
Wiltron 6402 . 0 -2000 12 Hz Az
Tektronic 2782 (100 Hz-33GHz) Spec. An
Tek 496 ($9 \mathrm{KHz}-1.8 \mathrm{GHz}$)

Anritsu MT 8801C Radio Comms Analyser 300 kHz - 3 GHz (opt 1,4,7)
Hewlett Packard 8920 B (opts $1,4,7,11,12$)
Hewlett Packard 8922M + 83220E
Marconi 2955
Marconi 2955A
Marconi 2955B/60B
Marconi 2955R
Motorola R2600B
Racal 6111 (GSM)
Racal 6115 (GSM)
Racal 6103 (opts1, 2)
Rohde \& Schwarz SMFP2
Rohde \& Schwarz CMT 90 (2GHz) DECT
Rohde \& Schwarz CMTA 94 (GSM)
Schlumberger Stabilock 4015
Schlumberger Stabilock 4031
Schlumberger Stabilock 4040
Wavetek 4103 (GSM 900) Mobile phone tester
Wavetek 4106 (GSM 900, 1800, 1900) Mobile phone tester
$£ 6500$
£6750
£2000
$\Sigma 1250$
£1750
£3500
£1995
£2500

$$
£ 1250
$$

£1750
£5000
£1500

£3995

£4500
£3250
£2750
$£ 1300$
£1500

MISCELLANEOUS

Ballantine 1620A 100Amp Transconductance Amplifier EIP 545 Microwave Frequency Counter ($18 \mathrm{GHz} \mathrm{)} \mathrm{)} \mathrm{(1)}$
EIP 548A and B 26.5 GHz Frequency Counter
EIP 575 Source Locking Freq.Counter (18GHz)
EIP 585 Pulse Freq. Counter (18 GHz)
Fluke 6060A and B Signal Gen. $10 \mathrm{kHz}-1050 \mathrm{MHz}$
Genrad 1657/1658/1693 LCR meters
Gigatronics 8541C Power Meter +80350 A Peak Power Sensor
Gigatronics 8542C Dual Power Meter +2 sensors 80401A
Hewlett Packard 339A Distortion measuring set
Hewlett Packard 339A Distortion measuring set
Hewlett Packard 436A power meter and sensor (various)
Hewiett Packard 436A power meter and sensor (var
Hewlett Packard 438A power meter - dual channel
Hewlett Packard 3457A muli meter 6 1/2 digit
Hewlett Packard 37900D - Signalling test set
Hewlett Packard 34401A Multimeter
Hewlett Packard 4274A LCR Meter
Hewlett Packard 4275A LCR Meter
Hewlett Packard 4276A LCZ Meter ($100 \mathrm{MHz}-20 \mathrm{KHz}$)
Hewlett Packard 5350B 20 KHz Microwave Freq.Counter
Hewlett Packard 5385A - 1 GHz Frequency counter
Hewlett Packard 6060A and B Electronic Load 300W
Hewett Packard 6060A and B Electronic Load 300

Hewlett Packard 8350B - Sweep Generator Mainframe
$£ 1750$
$£ 1000$
from $£ 1500$
£1200
£1200
£ 1200
£1250
from $£ 500$
£1495
£1995

$$
\begin{array}{r}
£ 750 \\
\text { from } £ 750
\end{array}
$$

Hewlett Packard 438A power meter - dual channel
Hewlett Packard $3335 A$ - synthesiser ($200 \mathrm{~Hz}-81 \mathrm{MHz}$)
Hewlett Packard 3784A - Digital Transmission Analyser

Hewlett Packard 5342A Microwave Freq. Counter (18GHz)

Hewlett Packard 6033A - Autoranging System PSU (20v-30a)

Hewlett Packard 6624 A - Quad Output Power Supply
Hewlett Packard 6632A - System Power Supply (20v-5A)
from $£ 750$
$\begin{array}{ll}\text { Hewlett Packard 8350B - Sweep Generator Mainframe } & £ 1500 \\ \text { Hewlett Packard 8642A - high performance R/F synthesiser }(0.1-1050 \mathrm{MHz}) & £ 2500\end{array}$
Hewlett Packard 8656A - Synthesised signal generator
Hewlett Packard 8656B - Synthesised signal generator
Hewlett Packard 8657A - Synth. signal gen. ($0.1-1040 \mathrm{MHz}$)
Hewlett Packard 8657B-100MHz Sig Gen - 2060 MHz
Hewlett Packard 8657D - XX DOPSK Sig Gen
Hewlett Packard 8901B - Modulation Analyser
Hewlett Packard 8903A, B and E-Distortion Analyser
Hewlett Packard 11729B/C Carrier Noise Test Set
Hewlett Packard 53131A Universal Frequency counter (3 GHz) $£ 850$
Hewlett Packard 85024A High Frequency Probe
Kelthley 220 Programmable Current Source
Kelthley 228A Prog'ble Voltage/Current Source IEEE.
Keithley 237 High Voltage - Source Measure Unit
Keithley 238 High Current - Source Measure Unit
Keithley 486/487 Picoammeter (+volt.source)
Keithley 617 Electrometer/source
Keithley 8006 Component Test Fixture
$£ 1995$
$£ 850$
£850
£3750
$£ 2950$
£450
£2000
£ 1400
$\Sigma 850$
£2000
£495
£750
from $£ 750$
$\begin{array}{r}\text { £ } \\ £ 7550 \\ \hline\end{array}$
$£ 1250$

Marconi 2840A 2 Mbit/s Transmission Analyser
Marconi 6950/6960/6960A/6970A Power Meters \& Sensors
Philips 5515 - TN - Colour TV pattern generator
Philips PM 5193-50 MHz Function generator
Phillips PM 6654C System Timer Counter
Sig. Gen. ($100 \mathrm{KHz}-140 \mathrm{MHz}$) AM/FM/CW

All equipment is used - with 30 days guarantee and 90 days in some cases.
Add carriage and VAT to all goods.
1 Stoney Court, Hotchkiss Way, Binley Industrial Estate
Coventry CV3 2RL ENGLAND
Rohde \& Schwarz FAM (opts 2,6 and 8) Modulation AnalyseWavetek 178 Function generator (50 MHz)

CONTIANTS

3 COMMENT

Software grief

5 News

- UK 'coffee cup' fit for space
- Algorithm reads history
- LED power hits 10 W

- Pillars connect chips
- Battery gets under your skin
- Mast emissions safe, says Govt

- Security camera for under $€ 70$
- Plastic semiconductor made in-situ
- Electronics gets smart
- Diamond glitters for transistors
- CMOS challenged by novel diode

14 Quickie - the inside storey

Spurred on by son-of-Robot Wars (Techno Wars) Alan Heath Robinson designed a solar-powered speed record contender

21 HJ Round - the unknown genius

Henry Round had a huge impact on British history, but he is generally unknown. Ian Poole tries to change all that.

25 New products

The month's top new products.

34 Circuit ideas

- A new voltage-mode active-only universal filter - Making a stop-less digitally programmable potentiometer

38 Letters

- The EMC directive
- Motor identified
- Fatally Flawed EMC
- Theremin lives
- Mobiles in fuel stations
- On the demise of electronic magazines

40 Ten-Tec RX-320 DSP radio
The RX- 320 is a very flexible radio product. Roger Thomas puts it through its paces.

53 Class-AB balanced audio

 line driverNeed to send audio over balanced lines? This circuit from Wim de Jager should help.
53 Power amplifier input current and their troubles
Doug Self returns with some musings on power amp input currents

60 Web directions
Useful web addresses for electronics engineers.

Next issue, dated June on sale May 1

Quasar Electronics Limited
PO Box 6935 PO Box 6935 Bishops Stortford, CM23 4WP Tel: 08702461826 Fax: 08704601045 E-mall: sales@quasarelectronics.com

Add $£ 2.00 \mathrm{P} \& \mathrm{P}$ to all UK orders. 1 st class recorded - $£ 4$. Next day (Insured £250) - $£ 7$. Europe - $£ 5$. Rest of World - $£ 10$. We accept all major creditdebit cards. Make cheques/PO's payable to Quasar Electronics. Prices Include $\mathbf{1 7 . 5 \%}$ VAT. MAIL ORDER ONLY.
Free catalogue with order or send 2×1 st class stamps (refundable) for detalis of over 200 klts and publications.

QUASAR CREDIT CARD SALES

Controllers \& Loggers

The I/O Module and the Call Logger include plastic cases and don't need to be attached to a computer during operation. Complete documentation available from our web site.

Rolling Code 4-Channel UHF Remote
State-of-the-Art. High security. 4 channels. Momentary or latching relay output. Range up to 40 m . Up to 15 Tx's can be learnt by one Rx (kit includes one Tx but more available separately). 4 indicator LED 's.

Rx: PCB $77 \times 85 \mathrm{~mm}, 12 \mathrm{VDC} / 6 \mathrm{~mA}$ (standby). 2 and 10 channel versions also available. Kit Order Code: $\mathbf{3 1 8 0 K T}$ - £41.95 Assembled Order Code: AS3180-£49.95

Computer Temperature Data Logger 4-channel temperature logger for serial port. ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. Continuously logs up to 4 separate sensors located $200 \mathrm{~m}+$ from board. Wide range of free software appllcations for storing/using data. PCB just $38 \times 38 \mathrm{~mm}$.
Powered by PC. Includes one DS1820 sensor and four header cables.
Kit Order Code: $3145 \mathrm{KT}-£ 23.95$
Assembled Order Code: AS3145-£29.95
Additional DS 1820 Sensors - $£ 3.95$ each
NEW! DTMF Telephone Relay Swltcher
Call your phone number using a DTMF
phone from anywhere in the world and remotely turn on/off any of the 4 relays as desired. User settable Security Pass-
 word, Anti-Tamper, Rings to Answer, Auto Hang-up and Lockout. Includes plastic case. $130 \times 110 \times 30 \mathrm{~mm}$. Power: 12 VDC .
Kit Order Code: 3140 KT - £39.95
Assembled Order Code: AS3140-£59.95
Serial Isolated IIO Module
PC controlled 8-Relay Board. 115/250V relay = digital inputs. Useful in a variety of control and sensing applications. Uses PC serial port for programming (using our new Windows interface or batch files). Once programmed unit can operate without PC. Includes plastic case $130 \times 100 \times 30 \mathrm{~mm}$. Power: $12 \mathrm{VDC} / 500 \mathrm{~mA}$. Klt Order Code: 3108KT - £54.95 Assembled Order Code: AS3108-£64.95

Infrared RC Relay Board Individually control 12 onboard relays with included infrared remote control unit. Toggle or momentary. $15 \mathrm{~m}+$ range. $112 \times 122 \mathrm{~mm}$. Supply: $12 \mathrm{VDC} / 0.5 \mathrm{~A}$ Kit Order Code: 3142 KT - $£ 44.95$ Assembled Order Code: AS3142-£64.95

PIC \& ATMEL Programmers

We have a wide range of low cost PIC and ATMEL Programmers. Complete range and documentation available from our web site.
Programmer Accessories:
40-pin Wide ZIF socket (ZIF40W) $£ 15.00$ Power supply (PSU201) $£ 5.95$
Parallel Cable (CSLEAD108) £4.95

Enhanced "PICALL" ISP PIC Programmer Will program virtually ALL 8
 to 40 pin PICs plus certain ATMEL AVR, SCENIX SX and EEPROM 24 C devices. Also supports in System Programming (ISP) for PIC and ATMEL AVRs. Free software. Blank chip auto detect for super fast bulk programming. Requires a 40 -pin wide ZIF socket (not inc.) Kit Order Code: $\mathbf{3 1 4 4 K T}$ - $£ 59.95$
Assembled Order Code: AS3144-£64.95
ATMEL 89xxxx Programmer Uses serial port. No special programming software required. 4 LED's display the status. ZIF
 sockets not included. 16VDC Kit Order Code: 3123 KT - $£ 29.95$ Assembled Order Code: AS3123-£34.95

P16Pro PIC Programmer

Super low cost programmer for $8 / 18 / 28 / 40$ pin DIP serial PICs including 16F84 \& 12C508. Software needs to be registered @ £20.95. 1730 VDC or 13-20VAC
Kit Order Code: 3096 KT - $£ 10.95$
Assembled Order Code: AS3096-£15.95
NEW! USB \& Serial Port PIC Programmer
USB/Serial connection makes it ideal for field use. Free
$9 x / \mathrm{NT} / 2000$ Windows software. Call or see website for PICs supported. ZIF Socket not incl Kit Order Code: 3149 KT - $£ 29.95$
Assembled Order Code: AS3149-£49.95

Timers \& Counters

These modules use a microcontroller and crystal for accurate and low-cost. 4 digit 14 mm LED display used on all but 3141 .

Presettable Down Counter Starting count can be set. The 4-digit counter has four modes to control how the output behaves when it reaches zero. Max count rate of $30 / \mathrm{sec}$ or $30,000 / \mathrm{sec}$. PCB: $51 \times 64 \mathrm{~mm} .9-12 \mathrm{VDC}$.
 Kit Order Code: 3154 KT - £13.95 Assembled Order Code: AS3154-£22.95

4-Digit Timing Module

The firmware included with this motherboard kit is a programmable down timer of $10,000 \mathrm{sec}$. Timing accuracy: 0.04%. PCB: $51 \times 64 \mathrm{~mm} .9-12 \mathrm{VDC}$ Current: 50 mA .5 other firmware chips can be used with this motherboard. Each has a different timing mode and can be purchased as a pack. Kit Order Code: 3148 KT - $£ 9.95$ Assembled Order Code: AS3148-£18.95 5 Piece Firmware Pack: F3148-£14.95

Multt Mode Unlversal Timer

 Seven different timing modes in onel Modes and delay ranges are set by DIP switches. Tim-ing delays range between 255 sec (1 sec steps) and $42.5 \mathrm{~h}(10 \mathrm{~min}$ steps) Mains rated relay output. PCB: $48 \times 96 \mathrm{~mm}$. 12 VDC Kit Order Code: $\mathbf{3 1 4 1 \mathrm { KT }}$ - $£ 14.95$ Assembled Order Code: AS3141-£21.95

4-Digit Up/Down Counter

Count range is from $0000,1,2$.. to 9999. .lt can also count down. Maximum count rate of about 30 counts per second. Two counters can be connected together to make an 8 -digit counter. PCB: $51 \times 64 \mathrm{~mm}$. 9-15VDC.
Kit Order Code: 3129KT - £13.95 Assembled Order Code: AS3141 - £22.95

Most items are available in kit form (KT suffix) or assembled and ready for use (AS prefix).

Phil Reed
p.reed@highburybiz.com

CONSULTANT

Ian Hickman
CONTRIBUTING EDITOR Martin Eccles

EDITORIAL ADMINISTRATION Jackie Lowe
02087226054

EDITORIAL E-MAILS j.lowe@highburybiz.com

GROUP SALES
Reuben Gurunlian
02087226028
ADVERTISEMENT
E-MAILS
r.gurunlian@highburybiz.com

EDITORIAL FAX
02087226098
CLASSIFIED FAX
02087226096
PUBLISHING DIRECTOR
Tony Greville
MANAGING DIRECTOR
Roy Greenslade
ISSN 0959-8332
SUBSCRIPTION QUERIES
Tel (0) 1353654431
Fax (0) 1353654400

Disclaimer

We work hard to ensure that the information presented in Electronics World is accurate. However, Electronics World's publisher - Highbury Business Cammunications - will not toke responsibility far any injury or loss of earnings that may resulf from applying information presented in the magazine. It is your responsibility to familiarise yourself with the laws relating to dealing with your customers and suppliers, and with salety practices relating to working with electrical/electronic circuitry - particularly as regards electric shock, fire hazards and explosions.

Software grief

Iam often amazed how bad software can be - not doing things properly, conflicts with other software etc. Up until now, AOL had my vote as the worst piece of software on my machine - poor functionality, bugs and lousy customer support. But a few weeks ago I went out and dipped my toe into new technology waters (for me at least) and got myself a GPRS mobile phone. As I'm often out and about and nowhere near an internet connection or even a POTS land line - it gets quite frustrating not to be able to email - especially if there's some urgent $E W$ business to be done.
So the latest Nokia 7650 leapt into my shopping basket. And I thought it would be nice to be 'cable free' and got myself a Belkin Bluetooth adaptor. The first problem was making the Belkin 'pair' to the phone. Various changes to parameters (none of which were documented) finally got that bit working. In fact it was an email I received from O 2 (my airtime supplier) that got this going, as both manufacturers' documentation was absolute rubbish. Then came the phone talking to the computer. No mention of my operating system (XP) - and more exceedingly poor documentation. Until the Bluetooth
connection is running - the software will do nothing. You can't change any parameters or fault find - and when it finally started working (I've spent about 10 hours on it by now) the software is terribly clunky. Getting on the internet is not plain sailing - and even trying to sign up to AOL's WAP service is a nightmare. In fact I've given up with that. So, the point I'm trying to make here is that as engineers, we owe it to the end users to make this stuff work. It is no wonder that the take-up of these new technologies is slow - as word must get around that it needs an IT expert to get it going. And they think G3 will take off? I don't think so.
A few apologies are in order this month as we pulled a special offer page by mistake in the last issue. The RD Research Spice offer should have been in - but got dropped by mistake. Sorry to all readers who were looking for it and to RD themselves. Suffice to say that the offer is in this issue.
Also apologies to readers who may be waiting for an email reply - we had someone hack into our system a few weeks ago and this and main server problems mean that we have lost correspondence. If you' ve not had a reply - please mail in again.

Phil Reed

Electronics World is published monthly. Orders, payments and general correspondence to Jackie Lowe, Highbury Business Communications, Anne Boleyn House,
9-13 Ewell Road, Cheam,
Surrey, SM3 8BZ.
Newstrade: Distributed by COMAG, Tovistock Rood, West Drayton, Middlesex, UB7 7QE Tel 01895444055 . Subseriptions: Wywern Subscription

Services, Link House, 8 Bartholomew's Walk,
Ely Cambridge, CB7 4ZD.
Telephone 01353654431 . Please notify
change of address.
Subseription rotes
1 year UK £38.95 O/S £64.50
US\$100.62 Euro 102.55
Overseas advertising agents: France and Belgium: Pierre Mussord, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business

Publishing Lid, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 679 8888 Fox; (212) 6799455
USA mailing agents: Mercury Airfreight International ltd Inc, 10 (b) Englehard Ave, Avenel N 07001 . Periodicals Postage Paid al Rahway N Postmaster. Send address changes to above.
Printed by Polestar (Colchester) Ldd, Filmsetting by Impress Repro by Design Al Parkway, Southgate Way, Orton Southgate, Peterborough, PE2 6YN

THE IEC 320
CONNECTION
N SEQUENTIAL $\angle N E N$ ST] SEQAEN

UPDATE

UK 'coffee cup' fit for space
 academic exercise at most

Surrey students are working on PalmSat, a sub- 1 kg satellite.
"It will fit into the palm of your hand, coffee cup sized," said Dr Craig Underwood of the Surrey Space Centre - part of the University of Surrey. "The ultimate goal is to see just how small one can build a satellite and get a useful function out of it."

Whereas this would be a purely
universities, the Space Centre has close links with satellite builders Surrey Satellite Technology. The last time Underwood challenged his students to design something small and useful, the result was SNAP1, the football-sized satellite launched in 2000. "It went from paper to orbit in nine months," said Underwood.

Algorithm reads history

A US professor has developed method computers to find important topics in history by scanning large collections of documents for sudden, rapid bursts of words.
Jon Kleinberg, of Cornell University, New York, devised a search algorithm that looks for what he calls "burstiness". This measures not just the number of times words appear, but the rate of increase in those numbers over time
"The method is motivated by probability models used to analyse the behaviour of communication networks, where burstiness occurs in the traffic due to congestion and hot spots," he explained.
Inspiration came from dealing with a flood of incoming e-mail. Kleinberg reasoned that when an important topic comes up for discussion, keywords related to the topic will show a sudden increase in frequency.

After sorting his inbox, he tried the technique on State of the Union address texts, between 1790 and 2002 , from the Web. What he got was a list of words that summarised American politics over the period.
"While we already know about these trends in American history, a computer doesn't," said Kleinberg, "and it has found these ideas just by scanning raw text. So such a technique should work just as well on historical records in obscure situations where we have no idea what the important terms or keywords are."
It might even be used, he speculated, to screen e-mail 'chatter' by terrorists.
Kleinberg presented his technique at the annual meeting of the American Association for the Advancement of Science. www.cs.cornell.edu/home/kleinbe/

PalmSat - Preliminary key features

- <l kg mass - COTS (commercial off-the-shelf) design
- $364 \times 4 \mathrm{~cm}$ GaAs/Ge dual-junction solar cells (20% efficient)
- 4 V panels delivering $\sim 1.3 \mathrm{~A}$ max.
- 4 cell NiCd battery to deliver $\sim 2 \mathrm{~W}$ orbit-average power.
- 20 MHz PIC Micro-Controller; Flash memory.
- Amateur band VHF uplink, UHF downlink $9.6 \mathrm{Kbit} / \mathrm{s}$ FSK packet-link
- Passive magnetic orientation control
- VGA CMOS camera payload
- All subsystems on credit-card sized PCBs
- 12 cm diameter by approximately 10 cm height overall.

Options

- Advanced triple junction solar cells (28\% efficient) GPS positioning
- Active magnetic attitude control
- Micromachine gyro inertial navigation
- Optical attitude determination
- Micromachine micro-Thruster
- 2.4 GHz spread-spectrum inter-satellite link

LED power hits 10W

Taiwan-based United Epitaxy Company has announced a recordbreaking 10W LED. Total flux from the $2.5 \times 2.5 \mathrm{~mm}$ AlGaInP (red, orange and yellow) die is over 2001 m .
Getting heat out is the most significant problem as the LED structure must be grown on a GaAs substrate, whose conductivity ($44 \mathrm{~W} / \mathrm{mK}$) is too low.
By bonding the wafer face down to a silicon wafer ($146 \mathrm{~W} / \mathrm{mK}$), a far more conductive path can be established.
To expose the emitting junction, the remaining GaAs wafer is etched away, leaving the LED to emit through its back face.
UEC will start to mass-production from the first quarter of next year and intends also to bond its wafers to aluminium ($237 \mathrm{~W} / \mathrm{mK}$) and copper ($401 \mathrm{~W} / \mathrm{mK}$) - samples of which are due this year.
Power efficiency of these LEDs is currently only just better than light bulbs, but UEC is aiming for low cost.
According to it, and incandescent bulb costs about $\$ 0.001 /$ lumen. LEDs now cost $\$ 0.1 /$ lumen now and UEC's target is $\$ 0.01 /$ lumen in 2005.

Mast emissions safe, says Govt

Continuing work to assess the emissions output of mobile phone masts has yet to find a mast that breaches international guidelines. In 2002 the Radiocommunications Agency tested masts at 82 schools and 27 hospitals, with the highest reading being 731 times lower than the legal limit. Further studies are planned, said the Government.
"We are aware of public concerns and it is important to give the public the information
they need. These results continue to show that exposure levels of the public are well below recommended limits," said Stephen Timms, Telecoms Minister.
Exposure limits for mobile phone masts are set by the International Commission for Non-Ionizing Radiation Protection (ICNIRP). For the 400 MHz to 2 GHz range, the ICNIRP specifies a power density limit of $\mathrm{f} / 200 \mathrm{~W} / \mathrm{m}^{2}$, where f is the frequency.

The RA's testing team measures emissions in $\mu \mathrm{V} / \mathrm{m}$ at various locations around each school or hospital. This is then converted to $\mathrm{W} / \mathrm{m}^{2}$ for comparison to the limit.
The RA also hosts the very useful sitefinder website, which allows the public to locate any mobile phone mast in the UK. Details of the operator, frequency, maximum licensed power and actual power are available. Try it out at
www.sitefinder.radio.gov.uk

Battery gets under your skin

The flexible battery technology from Power Paper in Israel could be used as cosmetic patches, boosting efficiency of treatments.
The firm is working with a leading UK consultancy, Cambridge Consultants Ltd (CCL), to develop the technology. Applying micro-scale currents to the skin can restore elasticity and hydration, the firm claimed, and is a well used technique
in the beauty industry.
Power Paper already has agreements with three cosmetics firms. CCL will help to develop large scale manufacturing techniques.
The firm's aim "is to develop PowerCosmetics patch production lines that are capable of manufacturing tens of millions of patches per year", said Zohar Sagi from Power Paper.

Pillars connect chips

Polymer materials could be used to connect both electrical and optical signals between integrated circuits, according to researchers at the US Georgia Institute of Technology.
A team from the Microelectronics Research Centre at the Institute have built pillars from a polynorbornene polymer. The resulting columns are just $10 \mu \mathrm{~m}$ in diameter and could give up to 10^{5} connections per cm^{2}.
To make the pillars the material is
spun onto the die, exposed using a mask and etched. Pillars are formed on the die, cups in corresponding positions on the substrate to which the die is being attached.
To make electrical links the cups are filled with solder and the pillars coated with gold. This could be used for digital, analogue or even RF signals. A grating structure on the end of a pillar would be used to couple light into a waveguide.
Pillars could be formed directly
on top of a vertical emitting laser, photodetector or waveguide grating. The pillar's short length (under $200 \mu \mathrm{~m}$) means it does not need to be formed from a low-absorption material.
A single pillar could also carry an electrical and an optical signal. The base of the pillar is cleaved at 45° and coated with metal on one side. The metal coated angle provides a mirror for the optical half of the connection.

Micrograph of $5 \mu \mathrm{~m}$ wide polymer pillars distributed on a $12 \mu \mathrm{~m}$ pitch.

Micrograph of a set of polymer cups.

Government has green energy plan
 The Government has set an ambitious
 Trade and Industry Secretary Patricia

target of generating 20 per cent of electricity from renewable sources by 2020, and plans to phase out nuclear power stations.
Details of the plans, including $£ 348 \mathrm{~m}$ in spending on renewable energy projects over four years, were outlined in the Government's energy white paper.
"The Government is serious about cutting carbon emissions, but we know this cannot be achieved without a fundamental review of the way we produce and consume energy," said

Hewitt.
"We need to use less by improving energy efficiency and we must match this with a major expansion in renewable energy."
Today the UK generates 38 per cent of its energy from gas, 32 per cent from coal and 23 per cent from nuclear. Just three per cent comes from renewable sources.
By 2010 the energy from wind, wave and other renewable sources should reach ten per cent, with the 20 per cent target reached ten years later.

Battery gets simpler

A firm from Mansfield has demonstrated a replacement for the standard lead-acid battery that could halve the weight of automotive batteries.
Atraverda is developing its 'bipolar' battery for the 42 V automotive market. At this voltage the firm expects to be able to produce 9 kW .
Rather than using two plates per cell as in a lead-acid battery, the bipolar cell has just one plate. One side of the plate acts as the anode for one cell, the other side the cathode for another cell.
By stacking plates a battery of the required voltage is produced. At each
end of the stack single plates act as the final anode and cathode.
This simpler construction leads to the reduced weight, not only because of the fewer number of plates, but also due to the fact that bus bars are not needed to join cells together
"Existing batteries contain lots of inactive parts - a top tab on each plate, bus bars and lots of plastic to house the plates," said Dr Andrew Loyns, chief executive at Atraverda.
"Our plates cost more than lead, but total production costs will be the same."
Each plate can produce about 50Ah, so the battery is better suited to higher voltage systems.

New energy sources and more efficient use of electricity present a major opportunity for electronics firms, especially in automotive, lighting and motor drives.
By 2050 the Government plans to cut emissions of carbon dioxide to 60 per cent of 1990 levels.
Moreover, new nuclear power stations will not be built, said the white paper, leaving perhaps just one station running by 2025 . However, nuclear could still figure in future energy plans should it become economically viable.

Plates themselves are made from oxides of titanium, which are claimed to be conductive like a metal, but resist corrosion of the acid like a ceramic. This, said the firm, will lead to longer battery lifetimes.

Old processor gets new life on glass

Sharp has made a 280 processor from polysilicon on glass.
"We chose the Z 80 because we have good experience with it and this is good for characterisation," said company engineer Beyeol Lee.
The company has been making more and more complex logic using a modification of its CGS (continuous-grain silicon) polysilicon process, normally used to make active matrices for displays.
The intention is eventually to make display control logic alongside displays. Occupying $13 \times 13 \mathrm{~mm}$, the $\mathbf{Z 8 0}$ operates at 1.25 or 3 MHz , depending on whether is it made with $3 \mu \mathrm{~m}$ or $2 \mu \mathrm{~m}$ channel transistors. To prove it is a proper $\mathbf{Z 8 0}$, engineers wired the glass processor into an aging MZ80 desktop computer - and it ran.
Lee estimates Sharp will be making simple displays with all logic on-glass in 2005 using $0.8 \mu \mathrm{~m}$ transistors running at 20 MHz .

Six Z80s and a display in a standard 2.2inch display substrate.

Hydraulics power cars

An energy recycling system for use in cars and commercial vehicles is to be developed further in the UK.
Pi Technology from Cambridge has signed a deal to build a controller system for the stored hydraulic power system developed by SHEP
Technologies.
The SHEP system uses a two-way hydraulic pump attached to the driveshaft of a vehicle. When the car or truck brakes to a halt, energy from

Photograph:Timothy Soar
the shaft is transferred through the pump and is used to pressurise a gas.

As the vehicle begins to accelerate, the system works in reverse, adding power to the drivetrain. The technique eases the load on the engine, which when moving off from a standstill is at its least efficient.
Large vehicle tests have demonstrated the system is capable of storing enough energy to power a truck from standstill to 30 mph
without the engine. This process is said to reduce fuel consumption, pollution, brake wear and engine wear. Overall operating costs can be cut by up to 50 per cent, claimed SHEP.
The first test vehicle fitted out by Pi will be a Jaguar X-type. Pi hopes its experience with petrol engine management systems will allow it to build a smooth switching interface between the two systems.

LEDs light the domes of Whiteleys Shopping Centre in Bayswater

Biosensor

A sensor that interfaces to neurons and amplifies the signals for processing by computer has been developed in Germany.

LEDs light London skyline

The domes at Whiteleys Shopping Centre, Bayswater, London, have been lit with high brightness LEDs in this case from Californian firm Lumileds.
Central to the design are 60 million colour LED floodlights developed by London-base Light Projects
"This is the first lighting solution of its kind in the world," said Graham Baxter of engineering firm Rybka. "Light Projects has taken a tested and proven housing and combined it with the Luxeon light source to create a powerful floodlight, which offers incredible colour intensity and flexibility."
While the initial purchase cost of the LED solution was higher, overall costs of ownership is cut through power savings and the installation will
pay for itself within four years, is claimed.

Together the central and main domes have been lit using over 2,000 Luxeon LEDs in red, green and blue.
The scheme was the initial concept of lighting architects Speirs \& Major, with the engineering and design development by Edinburgh-based Rybka.
The LED floodlights are located in the maintenance space between the inner and outer layers of each dome. The inner dome is colour saturated from behind using a 'Grazing' technique, whereby the coloured light from the Luxeon LED floodlights is directed to follow the curve of the dome. The outer dome glows as a result of the reflection from the internal surfaces.

understanding of brain diseases and how information is processed and stored.
Neurons output very weak electrical signals, perhaps just 5 mV . This is read by a sensor array and amplified by circuitry underneath the sensor.
Each chip contains 16,384 sensors spaced $8 \mu \mathrm{~m}$ apart. A neuron is typically 10 to $50 \mu \mathrm{~m}$ in diameter.
The research team said the sensor could be used to analyse how individual neurons or groups of cells react to electrical or chemical stimulus. Cells can be grown in to networks on the array and kept alive for weeks at a time.
"That our long-lasting basic research on neuron-semiconductor interfaces now sees a high-tech chip, is like a dream coming true," said Professor Peter Fromherz from the MPI.

The minimum PC specifications are ' 486 or later processor is required. 32 Mb RAM minimum
Windows $95,98, \mathrm{ME}, 2000$, XP or NT 3.51 or later is recommended.

Other Features

E Analogue and digital mixed mode

- New RF simulations / Network Analysis
- Simulate lossy transmission lines

New and improved schematics with
DIN and ANSI symbols

- PCB export and bill of materials
- Smith and Polar plots
- Improved graphing and plotting - New "workspace" window to manage your projects and files
- New "parts chooser" window allows you to easily locate and place parts m Combined digital and analogue graphs - More parts in database, including RF parts
- Improved and faster simulations
- Schematic borders and title box
- Unlimited undo/redo

Device mirroring
. New easy-to-use parts browser © Create, manage and edit new models - Create new parts from a circuit or subcircuit
Easy to draw and edit wires
Browse-able, filterable, device libraries

- Complete macro device capability
- Rubber banding of wires and devices
- Quick menu selection of commonly used parts
Zoom in or out on an area or item with custom zoom factors
- Fit circuit to window function
- User-selectable colours and set-up

E Export circuit drawings and waveforms - Built-in Symbol Editor to create custom device symbols
m All parts are included as standard there are no hidden extras

Simulation Options

- Generate component faults and failures
\square Single / dual parameter DC sweep
- Parameter sweep of component values
- Transient parameter sweep
- AC sweep
- Interactive digital simulations
- RF analysis
- Transient analysis
- Small signal transfer function

Fourier analysis

- AC \& DC sensitivity
- Noise and distortion
- Smith charts
- Polar charts
. . Pole zero
- Monte Carlo analysis

Noise and distortion
Operating point

- Generate full digital tests
- Show logic race \& glitch conditions
- Temperature change

Illustrations available on CD ROM or electronically from RD Research

Exclusive Electronics World reader offer Save 25% off the normal price

Released in the last few months the new B2 Spice V4.2 offers users new standards in SPICE simulation.
Watch designs to come alive with Circuit Animation
This new feature shows wires changing shape to reflect current and voltages and parts changing colour to reflect heat dissipation. Relative voltages are colour-coded to magnitude and arrows display the actual current paths as they
flow within the circuit. Circuits can be animated with respeet to de stepping, frequency sweep, and time.

Change Results in Real Time

With the new version camponen 4 values can be changed in real ume whitle the simulation is running. As the value of a part-is-adjusted watch the results chonge in both tables and graphs pyaitgout stopping the simulation.

$3-10$

FPH Output
With B2 Spice A/D v. 4.2, users of Eagle PCB, can now transfer their circuit schematics to B2 Spice and run simulations. According to Rudi Hofer, of CadSoft Computer, "Without B2 Spice, the only way to simulate an Eafle circuit was to export a spice netlist, then insett spice models and simulation commands into the netlist by hand, and thenturrsimutatiensthrought a spice engine. With this new collaboration, Eagle users can transfer their schematics into B2 Spice where they can simulate them quickly and easily."

Accurate real world results

A user can design analogue and digital circuif quickly and easily and, as with previous verstorno of B2 Spice, this new version supports the design
of Radio Frequency circuits. The software is straightforward to use and comes complete with a model library of over 25,000 parts. There is even a wide selection of valves to choose from. Paul Williamson of RD Research says: "We have always placed the emphases on the 'accuracy' of our simulation results, one of the main reasons why B2 Spice is so popular with Universities and professional designers. In this version we have added a host of new features including the ability to animate circuits and change values in real time.

Library Management and Model Editing

B2 SPICE Version 4.2 comes with a library management tools enabling the user to ãdd thor modify existing symbols or models, or make 莫。 entire newlibraries if required. The generic parts list is extensive and includes all the gormal canponey's one would expect, aswehas everything from a seven-segment deplay to a multiway connector.
The developers have made sure that B2 SPICE Version 4.2 sets no limit on the size of the circuil franketg'large or as-complex as the user wapts. The software comes with a comprehensige 400page user manual with clear tutorials Tom on familiar with SPICE. This is backed up by free unlimited technical support, which aims to answer questions quickly by telephone or email.

30 Day Guarantee

This new version carries an unconditional 30 -day evaluation. If for any reason a user is dissatisfied they may return it within 30 days for a completererund no quibbles, no questions. f 1

Use this coupon to order your B 2 Spice AD V4.2 at the special discount price

SAVE 25% ($£ 70.21$) of the normal price inc VAT $£ 280.83$ Only $£ 210.62$
Name
Address

Phone number/fax

Total amount $£$.
 \qquad

I enclose a cheque \qquad made payable to RD Research
Please charge to my credit/debit card
Card type (Mastercard/Visa/Switch etc)
Card No \qquad
Expiry date \qquad
Please post this coupon to RD Research, Research House, Norwich Road, Eastgate, Norwich NR10 4HA, tel. 01603872331 , e-mail rd.research@paston.co.uk

CMOS challenged by novel diode

Field-emission diode (FED) logic could beat cmos on both speed and power, claims Farshid Raissi, a researcher at KN Toosi University of Technology in Tehran, Iran.
Raissi originally invented the FED after he graduated from University of Wisconsin-Madison in the US.
Although he left for Iran without getting a chance to fabricate one, modeling suggested the device will work and Raissi is now designed and modeling a series of logic gates around it.
Essentially, a FED is similar to a mosfet although instead of a single gate over its channel, there are two,

Security camera for under $€ 70$

This networked security camera, with a materials cost of just €70, has been developed by German firm Smart Network Devices. The camera can capture colour CIF resolution images (352×288 pixels) at between 5 and 10 frames $/ \mathrm{s}$. With its Ethernet connection it is ideal in security applications over both Internet and Intranet, said the firm. SND is also planning a Bluetooth version. Reference designs and evaluation kits are available.

one over each end. As well as this, the channel is doped differently at each end. The result can be likened to two half mosfets, a p-channel and an n-channel, in series.

By tying one gate to the appropriate power rail and using the remaining gate, the device can either act as a p or n channel transistor.
In these modes, the most significant difference between the FED and a normal fet is the diode formed midchannel as a result of the doping: which is where the name comes from. According to Raissi, who describes his work in detail in the IEE publication Electronics Letters, in operation the FED has a far lower onresistance compared with a conventional fet. This is because pinch off, which is the current limiting factor in mosfets, does not occur. More current means parasitic capacitance is charged more quickly and logic is faster. "It is worth noting that for comparable performance the total area of a circuit made by FED is less than the CMOS version because FED provides larger current," he said,
adding: "And FEDs scale [can be shrunk] like cmos."
Although speed is the key for Raissi, he sees other benefits. "In introducing the FED digital family we concentrated on its speed, but it is not the only advantage," he said." Although FED provides large currents, when switching action is taking place, the power consumption for FED circuit is less than CMOS version because it provides current for a very short period of time. For all the circuits that we have examined, the power consumption and the chip area is less for FED version."

One further possible advantage could be gained by using both gates as logic inputs: "It is possible to use FED as a three state NAND and NOR gate. Having such a possibility simplifies many digital circuits and increases memory storage."

There are disadvantages, FEDs must be made on more expensive silicon-on-insulator wafers, otherwise one end of the channel would short to ground. And the logic needs both positive and negative supplies.

Thicker means smaller

Neah Power Systems from the US has outlined a modified type of fuel cell that promises to be smaller and more efficient than existing designs. The firm is developing a unit to power laptop PCs to demonstrate the concept.
Neah's design is based around the proton exchange membrane (PEM) cell, but uses much thicker porous silicon rather than the thin polymer membrane.
The honeycomb structure of the silicon gives the catalyst in the fuel cell a much larger area over which to work, leading to increased efficiency. The silicon can also be exposed to more concentrated methanol fuel. Existing PEM fuel cells are only around 30 per cent efficient.
The firm said it expects to be able to offer fuel cells with two to three time more storage capacity than rechargeable batteries.

Neah Power Systems' fuel cell could be the answer to mobile power problems.

Electronics gets Smart

Electronics companies are leading the pack when it comes to winning Smart Awards and taking a significant portion of the Government money. At the recent Smart Achievement Awards in London, four of the 11 firms winning awards for commercial success were electronicsbased.
Diamond Consulting Services used its Smart Award to develop a road tolling system that uses inductive loops to count vehicle axles. Oxford Semiconductor won a $£ 150,000$ award that it used to develop its family of FireWire communications chips.
And Isle of Wight-based RF

Engines has developed a new form of frequency transform that is far simpler to implement than FFTs.
"With our national tradition of inventiveness, the UK is second to none at generating ideas," said Small Business Minister Nigel Griffiths. "Smart provides grants to small firms to help with the cost of researching and developing innovative and forward-thinking products."
Several levels of Smart Award are available to small firms in England (Wales, Scotland and Northern Ireland have their own systems).
Technology reviews can win a firm $£ 2,500$, while micro projects for firms with fewer than ten people are
worth up to $£ 10,000$. Feasibility studies have a $£ 45,000$ limit, while up to $£ 150,000$ is available for full scale product development.
"Smart is a long-running, wellestablished scheme. And a recent independent evaluation has shown just how successful it's been. Smart has increased annual turnover in the economy by $£ 500 \mathrm{~m}$," said Griffiths.
"This financial year we have seen an increasing number of Smart projects being supported nationally with nearly 700 offers of grant made by the end of December 2002. This means a total of $£ 34 \mathrm{~m}$ worth of investment in innovative Smart projects."

CMOS catches up with CCD

CMOS image sensors can now equal the quality of charge coupled device (CCD) sensors, according to Micron Technology. Better known for its DRAM, Micron has been working on CMOS imagers for some time.
The firm's latest sensor, a 1.3 million pixel device, is a progressive scan design, capable of capturing $30 \mathrm{frames} / \mathrm{s}$. A dark current of 20 electrons $/ \mathrm{s}$, and 10 electron noise level are similar to CCD-based devices, claimed the firm.
Micron also recently announced smaller VGA resolution sensors aimed at handheld equipment. With all the associated control circuits, the device consumes 85 mW at 15 frames/s output.

Diamond glitters for transistors

Jose Garrido of the Technical University of Munich has created a diamond transistor by exploiting its surface properties.
Diamond is attractive as a semiconductor as it had exceptionally good thermal properties. Unfortunately n-doping is extremely difficult so conventional transistors are next-to impossible.
The material in bulk has a tetrahedral structure which gets jumbled at its surface. However, by eroding the tangles and terminating its dangling carbon bonds with hydrogen, the diamond surface can be made conductive.
The channel of the 'in-plane gated' diamond transistor is a 100 nm to $1 \mu \mathrm{~m}$ wide strip of hydrogenated diamond surface between two (drain and source) aluminium electrodes.

Two further aluminium electrodes at the sides of the channel form the gate.
Gate-channel isolation comes from 100 nm strips either side of the channel made by electron-beam lithography. Here surface oxidation replaces the hydrogen with oxygen making a naturally-insulating oxygenterminated surface with a leakage current of $0.3 \mathrm{pA} / \mu \mathrm{m}$ at 100 V and room temperature.
Biasing the gate to +15 V causes complete pinch-off, and its makers claim the device has excellent switching characteristics and good saturation.
Researchers claim their approach can be used to make other components including singlehole transistors and point-contact devices - and diamond's bio-compatibility could also be exploited.

Plastic semiconductor made in-situ

Better conductive polymer films could spring from work at the University of Illinois at Chicago.
The techniques involves turning pre-cursor chemicals, in this case thiophene, into polymers as they hit the surface.
"Basically, the way it works is you have a surface upon which you want to grow a thin film. You put that into a vacuum chamber, pump all the air out, and you simultaneously deposit charged ions on to the surface and evaporate neutral molecules onto the surface. These ions and neutrals meet at the surface and form this continuous polymeric film," said chemist Luke Hanley.
The process is called surface polymerisation by ion-assisted deposition, or SPIAD.
"We've been able to show we can control the chemistry and shape of the surface on a nanometer scale," said Hanley. "It allows you to control what this thin film is on the sub-nanometer scale."
Commercial deposition looks possible. "We can actually grow large areas of films fairly quickly by this method. We're not quite at manufacturing scale yet, but we've demonstrated that we know how to get to that point," he said.
"Essentially, this is another tool in the toolbox for producing these useful devices.
 \title{
proteus
}
 \title{
proteus
}

The Complete Electronics Design System

- Powerful \& flexible schematic capture.
- Auto-component placement and rip-up/retry PCB routing.
- Polygonal gridless ground planes.
- Libraries of over 8000 schematic and 1000 PCB parts.
- Bill of materials, DRC reports and much more.

Mixed Mode SPICE Circuit Simulation

- Berkeley SPICE3F5 simulator with custom extensions for true mixed mode and interactive simulation.
- 6 virtual instruments and 14 graph based analysis types.
- 6000 models including TTL, CMOS and PLD digital parts.
- Fully compatible with manufacturers' SPICE models.
- Drag and drop toolbars.
- Visual PCB packaging tool.
- Improved route editing.
- Point and click DRC report.
- Multiple design rules (per net).
- Multiple undo/redo.

Call Now for Upgrade Pricing

Proteus VSM - Co-simulation and debugging for popular Micro-controllers

- Supports PIC, AVR, 8051, HC11 and ARM micro-controllers.
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays, switches, keypads, virtual terminal and much, much more.
- Provides source level debugging for popular compilers and assemblers from Crownhill, IAR, Keil, and others.

Tel: 01756753440 Fax: 01756752857

Contact us for
Free Demo CD

Works with

PIC Basic Plus

from Crownhill Associates

E I e cetronices 53-55 Main Street, Grassington. BD23 5AA

Inickic - the Inside Story

> Many readers will know of the TV programme Robot Wars, in which home-made so-called 'robots' beat one another up. Following its success, a sister programme Techno Games was launched, in which the contests are not so violent. It includes a number of events, many based loosely on the Olympics, such as walking, jumping, and swimming. Alan Heath Robinson describes how he made a practical entrant to one of these events.

0
ne of the events is the Solar Challenge, which is essentially a solar powered buggy race. In Techno Games 2001 it had just three entrants. One didn't turn up for the race. One didn't start, because the team expected to be able to charge batteries from the solar panel beforehand, but the producers quite rightly insisted they start with them flat. The third entrant, Push $I t$, made the 15 m distance in 2 minutes 8.5 seconds, or $117 \mathrm{mms}^{-1}$ on average. I found it all disappointing. The game needed raising, and there was only one way to do that - build something better for the 2002 series.

The Challenge

The rules gave the maximum physical dimensions, the minimum weight, and the maximum size of panel to use, which was 8 W nominal. Looking around, the only readily available 8 W panel I could find, in the Maplin catalogue, was too large for the given dimensions, even though there were 10W panels that would do. The
programme makers changed the rules to allow 10 W panels.
There was one piece of information I could not get at all. The games are filmed in December, so they wisely don't rely on sunlight. Instead, the race occurs indoors under an enormous bank of incandescent lamps. How much power would a 10W solar panel deliver under these conditions? They couldn't tell me. I don't think anyone had ever measured it.
Despite the unknowns, something had to be built. An ideal machine would have no friction at all, 100% efficient motors, and electrical arrangements to transfer as much energy as possible from the panel to the motors. That way all possible available energy would be converted to kinetic energy. The lighter the machine the better, too, since less energy would be needed to get it up to the same speed. This ideal cannot of course be achieved in practice, but did underlie the thinking behind the design.

The mechanics

Some design decisions are easy. Since friction had to be kept low, very free running disc wheels seemed the best option. Quickie's wheels are made from four of those unsolicited CD-ROMs people insist on putting through my letterbox. In the hubs are miniature ball bearings. Around the rims are slim tyres made from bits of rubber tubing.
The rules state a minimum weight of 1 kg . The solar panel as supplied weighs 1.1 kg , due almost entirely to its stainless steel backing plate. I trimmed some metal off the edges, but the panel is still by far the heaviest component. The total mass came out at 1.4 kg , so there is still scope for improvement there.
Early on it was unclear whether the race would be in a straight line or round a figure-of-eight, so I decided to allow for bends. Along the centre of each lane is a channel that accepts a guide pin. To make the pin forcibly push the machine sideways to keep it on track would involve a lot of friction, so the pin steers the front wheels instead, leaving the back wheels to drive it. Fixing both back wheels to a single driven axle was not an option because there would be wheel slip on curves, and consequent energy loss. Using a single motor and a differential in the back axle would be one possibility, but I settled for independent back wheels, each with its own motor.

Choice of Motor

Picking the right motor is crucial. There are plenty of very cheap model motors available, but they are inefficient and suffer from 'cogging' i.e. that tendency of the rotor to jump from one preferred position to another as you turn it with your fingers. Cogging is a problem if there is very little power available, because there may not even be enough to overcome the detent torque. Inefficiency is to be avoided at all power levels.
There are however far better motors available, known as 'ironless rotor' motors. These are permanent magnet DC motors in which the armature is a wound cylinder, or 'basket' of copper wire. The complete lack of iron in the rotor means there is no cogging, so very low currents will turn them over. The lack of iron also means there are no 'iron losses', the magnetic

INSTALLATION INSTRUCTIONS

 FOR SOLAREX MODULES LOCATIONLOcate argay in an unshaded area facing the ecuator and TILTED FMOM THE HORIZONTAL AS FOLLOWS:

630 Siplatex Court Fiedurith. A:E.. 21703. U.3.A.
hysteresis and eddy current losses due to the rotating magnetic field in the rotor. The major losses are only the 'copper losses' due to winding resistance, a small amount of windage, and friction in the precious metal commutator.
There is a downside to using these motors. They cost over $£ 20$ apiece, compared to the 50 p you can get cheap ones for. But it seems daft to spend $£ 100$ or so on a solar panel and throw half its output away by using poor motors.

Quickie uses two 6V 5W Maxon
'A-Max' ironless rotor motors, which have a terminal resistance of about 3.5Ω and need less than 5 mA to turn over. They are wired in series, which allows the wheels to run at different speeds, so going round corners would be no problem at all. Otherwise the pair behaves effectively as a single 12 V 10 W motor.

The Solar Panel

The solar panel, made by Solarex (now part of BP Solar) has a 10 W nominal output. This power is specified under standardised conditions, with $1 \mathrm{~kW} / \mathrm{m}^{2}$ insolation normal to the panel at $25^{\circ} \mathrm{C}$. Each panel is tested by the manufacturers, who put the results on a label on the back. Fig. 1 shows the label from Quickie's panel.
This panel contains 36 polycrystalline solar cells wired in series. Each cell is a large silicon diode. When light falls on a cell it kicks electrons across the diode
junction, generating a voltage that tends to forward bias the diode. When the cell is open circuit, the lightinduced current returns across the junction. When the cell is shortcircuited, it flows round the external circuit. In between these two extremes current and voltage are both present at the terminals, and power is output.
To get the maximum power from a cell it must be operated at its maximum power transfer point, or MPTP. This occurs when the terminal voltage has been loaded down enough for the majority of the light-induced current to flow round the external circuit, at something like 80% of the open-circuit voltage and 90% of the short-circuit current.
Fig. 2 shows the voltage/current characteristic of a typical solar cell. Depending on insolation and temperature, it will typically have an open-circuit voltage a little below 600 mV . The short-circuit current varies greatly, depending on insolation and cell area. The MPTP lies on the knee of the curve, between 450 mV and 500 mV .

The characteristics of solar cells are also temperature dependent. The short-circuit current increases slightly with temperature, but this effect is swamped by the reduction in diode forward drop, at about $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Cold cells can deliver more power than hot ones.

Fig. 3. Simulation set-up to see how the circuitry would behave with different amounts of light.

All Power to the Motors

An object of the exercise is to transfer as much power as possible to the motors. As Quickie's solar panel data in Fig. 2 shows, its MPTP is at 17.0 V and 610 mA , but that is under standard conditions including a known insolation and known panel temperature. What these would be on the day was quite unknown, and to make things even trickier the motor's back emf depends on its speed, and its winding resistance increases if it warms up.
To go as fast as possible some way of matching these unknown and changing characteristics is needed. Simply connecting the panel to the motors is not the way to do it, at least, not if you want that gold medal.
Techno Games gold medals are quite remarkable, being made from a kind of gold you can pick up with a magnet. But anyway.......
A standard well-known switchmode power circuit is the 'buck converter' (see Box). Since Quickie's panel would be working at an unknown voltage, but in the region of 16 V , and the motors at a lower but
rising voltage, a buck converter seemed a good way to transfer maximum power to the motors. By varying the duty factor, the panel could hopefully be kept working at its MPTP at all times. The truth is I decided to use a buck converter before deciding what motor voltage to use. Their combined voltage had to be lower than the panel voltage, but not too much.
Having decided to use a buck converter, the question became one of how to control the duty factor. One way, which should achieve good results, would be to vary it to keep the panel voltage at about 16 V , regardless of the current. I gave this quite some consideration, too. It shouldn't be hard to devise a simple analogue circuit, based around a few op-amps, and perhaps a 555 timer, that would generate a PWM waveform with a duty factor dependent on the panel voltage. It might perhaps be 0% below 15 V , and vary from 0% to 100% between 15 V and 17 V , and be 100% above 17 V . The sensible thing to do would be to make the voltage thresholds adjustable so it could be tweaked for best results.

Microprocessor Control

What I actually did was somewhat more sophisticated, perhaps unnecessarily so, because I had an idea I wanted to try out. If current and voltage were measured and multiplied, that would give the power transferred. It should be possible to devise a simple algorithm, running on a microprocessor that would hunt for the MPTP.
A time-honoured principle often applied when building one-off circuits like this is to use bits you already have. I happened to have some SGS-Thomson ST6260E single-chip microprocessors from a previous project. Compared to the popular PIC they have very little processing power, but they do have an on-board analogue to digital converter with input multiplexer, and a timer circuit that can be used to generate the PWM waveform to drive the buck converter. Even better, they consume very little power, which means there's more for the motors.
For this job this micro was just right. The hopelessly low processing power didn't matter. All that was needed was to include power supply

Buck Converters

Buck converters behave like nonisolating step-down DC transformers, in which the output voltage is lower than the input voltage, but the output current is higher than the input current. With ideal components the efficiency would be 100%, but there are losses in practice. Nevertheless, efficiencies above 90% are quite possible. In principle, the converter is simply a changeover switch and LC smoothing circuit, as shown in Fig. 7a. The switch S alternates between V_{IN} and common at a frequency usually well above the resonant frequency of the LC circuit, so there is little switching frequency ripple at the output. Vout is then $V_{i n}$ multiplied by the proportion of time the switch connects to V_{iN}. This proportion, anywhere between 0% and 100%, is known as the duty factor. Buck converters are most often used to regulate their output voltage, despite input voltage variations, by making the duty factor depend on the output
voltage, in a feedback arrangement. Usually the switching waveform will be generated by a regulator IC designed specifically for this job. The IC may well also include the switching transistor. This type of circuit is commonly called a buck regulator. Practical buck converters can usefully use the positive supply rail as the common connection, and a combination of a power transistor and diode as the changeover switch, as shown in Fig.7b. The advantage is that npn power transistors and n-channel MOSFETS of the same performance are easier to make. Here, an nchannel MOSFET acts as the switch. When turned on, the 'freewheel' diode D is reverse biased, and turns off. When the MOSFET turns off, the current through the inductor is diverted through the diode. Schottky barrier diodes are often used in low voltage converters because their low forward voltage drop and very fast

Fig. 7. The converter is simply a changeover switch and LC smoothing circuit.
switching time make for greater efficiency. The duty factor is the proportion of time the MOSFET is turned on. Quickie uses an arrangement just like this.
circuitry to give it some 5 V , a reset circuit, simple circuits to allow it to measure current and voltage, and the power stage of the buck converter. Oh, yes, and some software, too.
The job of the software is to find the MPTP, using a simple algorithm executed every 10 ms . On each pass it measures current and voltage and multiplies them to arrive at the power transferred. Then it increments or decrements the PWM duty factor by one notch, depending on the results of the power measurement. If the power transferred has increased since the last pass, the previous step in the duty factor is assumed to have taken it nearer to the MPTP, so it keeps going in the same direction. Conversely, if the power has reduced, it is assumed that it is moving away from the MPTP, so it reverses direction.
There were some added complications to get round problems at very low insolation, and to home rapidly in on the MPTP at the start, but that is basically how it works. Because all it does is hunt for maximum power, it does not need to know what the insolation, panel temperature, motor winding temperature, or back emf are. The current and voltage measurements do not need to be accurate either,
provided they are proportional to the actual values.

Testing the Circuitry

Circuits can be built and software written, but it all has to be tested somehow. It isn't possible to banish the clouds or turn the sun up and down at will. Another way is needed to simulate different amounts of light.
One thing not to do is partially shield the panel from the light. The
trouble is this doesn't affect the cells equally, unless you are very careful. You could stick black insulating tape over equal proportions of all the cells, but this is time consuming, and anyway is no use at all if the sun isn't out. I did most of my development on a few autumn 2001 evenings, and wanted a much easier way.
Fortunately, there is one. All you need do is shield the panel from bright light and connect a controllable

Fig. 4. Quickie block diagram.

Fig. 5. The analogue circuits.

current source to it, as in Fig .3. The current source substitutes for the light-induced current in the cells, and forward biases the diodes. It is especially easy if you have a bench power supply with a controllable current limit. When the power supply open-circuit voltage is set higher than the solar panel open-circuit voltage, the power supply goes into current limiting. Then the current limit control can be used to vary the 'insolation' and see how the circuitry would behave with different amounts of light.
This simulation isn't perfectly accurate because the current is generated externally, which has two effects. Firstly, the currents in the connecting conductors are in the opposite direction, so the panel
voltage will be a little bit higher Secondly, the real light-induced currents in the cells are not identical, whereas this test set-up passes exactly the same current through every cell. Nevertheless, it provides a close approximation and is a very convenient way to test the circuitry on the bench
When testing Quickie, I set the power supply at about 24 V and varied the current up to 1 A , even though the panel's nominal shortcircuit current is only 680 mA . This gave about 150% of nominal panel power, and ensured the circuits were tested well beyond anything they would meet in the real world. The buck converter got a bit warm, of course, but nothing blew up. To avoid
overheating the motors, I used a 7Ω
dummy load in their place, or only used such high power briefly.
A header on the circuit board ivas used to connect the power supply to the solar panel. An ammeter can also be connected here, which shorts out all the power control circuitry and diverts the panel current through the meter, thus measuring the panel short circuit current. This was to prove useful.

Avoiding Disaster at the Finish

I gave the microprocessor one more little job, because I couldn't find out was what was going to happen at the end of the track. Quickie doesn't hang about, but isn't built to withstand collisions either. The extra circuitry was a wheel revolution counter and a triac across the motors, to act as a brake. The sensor is simply a magnet in the wheel, operating a reed switch The microprocessor counts wheel pulses and fires the triac when it has travelled far enough to be beyond the finish line. A jumper can be used to short-circuit the wheel pulses and disable all this. In the event a sack of polystyrene beads was dumped on the end of the track, so this feature wasn't needed on the day.
In one way the behaviour of this circuit was unexpected. It turned out that it would still work in total darkness beyond the finish line. What happens is that the motors act as generators, the diodes in the power stage (one of them being the body diode in the power MOSFET) pass the motor output back into the power supply, and this is enough to keep the control circuits up and running. It wasn't intentional, but there is something rather elegant about it.

The drive circuit removed from its box. The wire link parallel to the board edge near the end of the cage-clamp terminal strip is actually the piece of resistance wire used to sense the solar panel current.

Choosing the Gear Ratio

The gear ratio between the motors and the wheels had to be decided. Too high a gear ratio would result in very rapid initial acceleration, but top speed would be too low. Once the motor back emf had risen to the panel MPTP voltage, the PWM duty factor would be stuck at 100% and little further acceleration would be possible. On the other hand too low a gear ratio would result in poor initial acceleration.
To solve this problem I knocked up a small simulator program to run on a PC. Using this, various gear ratios and insolations could be tried out. The result was something of a surprise, because the ratio turned out to be less critical than I had imagined. The gears in the final design used a two-stage reduction with an overall ratio of 50:3, near the middle of the range the computer suggested would be best.

The Circuitry in More Detail

Fig. 4 is a block diagram. The circuitry within the tone area is on a piece of Veroboard. Because it includes a microprocessor and switch-mode power circuit which might cause interference in a place where radio controls would be in use, I played safe and put it in a tinplate screening can stuck to the back of the solar panel with conductive epoxy, so the stainless steel backplate forms the top face. The bottom is a clip-on tinplate cover. All wires leaving the can have ferrite beads on them.
Strictly speaking, the object of the exercise is to deliver maximum power to the motors, so it ought to be the motor current and voltage that are measured. But the use of a low side switch in the buck converter makes it less easy to measure these, so the panel power is monitored instead, which should give near enough the same end result.
Fig. 5 shows the analogue circuits, built round an LM324, chosen because of its low quiescent power consumption, its low cost, and its input common mode voltage range includes 0 V . And I've already got some. Audiophiles might justifiably disparage them, but for this job they're brilliant.
IC1A is the current sense amplifier The panel current passes through R3, which is a short length of resistance wire. The voltage on the panel

negative terminal is small, and negative compared to $0 V$. IC1A and associated components amplify and invert this, to give a voltage between 0 and 5 V , the range required by the microprocessor's ADC.
IC1B and components are the reset circuit. When the panel voltage is below about 8.5 V the processor is held reset. The reset circuit shares the panel voltage divider R7, R8, R9 with the voltage sensor. The panel voltage is divided by four and fed to the microprocessor's ADC, giving a measurement range of 0 to 20 V .
IC1C and IC1D are regulated power supplies, 5 V for the microprocessor, and 10 V for the buck converter MOSFET gate drive. Both these circuits consume very little current, so the op-amps are more than up to the job.
Fig. 6 shows the motor drive circuits, including the buck converter and triac brake. The power switch is Tr 3 , whose gate is driven by half of a TC4426 dual MOSFET gate driver (that time-honoured principle again). When the microprocessor is reset its outputs are pulled high, so using an inverting driver ensures a reset will turn off the MOSFET. I found that with the unused input tied low the driver chip consumed about 1 mA less than when it was tied high, so low won

A Schottky barrier diode is used for D1. L1 was made by taking the windings off a $100 \mu \mathrm{H}$ iron powder core toroidal inductor, then handwinding twice the number of turns onto it. Because it is hand wound, I could use thicker wire than winding machines would have been able to handle, which gives it a lower resistance.
Normally a converter like this would include current limiting
circuitry, but in this case the solar panel's inherent current limit gives enough protection.

A triac is used instead of an SCR for the brake because it can be triggered by a negative gate current, which simplifies the circuitry a little. The triac is fired when the microprocessor thinks it has got past the finish line. Pulling its trigger output low sinks current from the gate via the cascode-connected Trl. The 2N6075A has a sensitive gate that is easily driven by this circuit.
The time-honoured principle is operating with a vengeance here. The 2 N 3725 is a ridiculous choice of transistor, being a 500 mA switching device in a TO- 39 can. Any old NPN signal tranny would have done just fine, but l've got a fistful of 2 N 3725 s I probably won't ever use up, even though they do also make good relay drivers.
The microprocessor itself hardly needs a detailed circuit diagram, so there isn't one. The ST62E60 is an 8 MHz device, operated here with a 7.3728 MHz crystal. The auto-reload timer used for the PWM generator divides this by 128 , to give a switching frequency of 57.6 kHz . The PWM duty factor can be varied to the nearest oscillator clock period, or 1/128 of the period. Each increment/decrement 'notch' used by the MPTP search algorithm is this size - about 0.78%.

On the Day

The race was held on a December evening at Shepperton Studios, just outside London. There were seventeen entrants in a knock-out competition with two machines per heat. As it turned out, the day's previous events had taken so long to film we were running out of time, and

Fig. 6. The motor drive circuits, including the buck converter and triac brake.
at the last minute the contest was turned into a time trial instead, still with two machines per heat. They don't do rule changes like that at the Olympics!
While waiting for the event to start, I was given an opportunity to measure the solar panel short circuit current under the lamps, using the test connector and a multimeter. The current varied from place to place but averaged out at roughly 400 mA , compared to the 680 mA given in the manufacturer's test results. 400 mA would translate into something like 5.5 W or 6 W , higher than I expected. Vaguely remembering the results of the computer simulations, I guessed Quickie might take 6 or 7 seconds to do the 15 m track distance. Since the previous year's winner took over 2 minutes, all present must have assumed this to be a bit of pre-race bluster. They appeared not to believe a word of it.
There were problems with the starting method. The original idea was to put covers over the machines and whip them off at the starting whistle. The low tables meant to be used as covers let past enough light for some machines to start anyway, so there was another rule change. Now the starting method is to switch the lights on. The switch-on surge must have been over a megawatt.
The previous 'World Record' of over two minutes was blown away right from the start, when Apollo Guys won its heat in 9.75 seconds. Soon after, Lightspeed came a fairly close second with a time of 10.07 seconds, and later Solar Slug managed 11.35 seconds. Quickie was in the very last heat, along with Push It V2, a new machine built by the previous year's winners. Quickie sped to the finish line in just 6.91 seconds. The TV people were stunned. I was relieved! Now they are upping the distance from 15 m to 25 m for the 2003 series.

Quickie's Performance

To go faster by a factor k requires k^{-2} times as much kinetic energy, to be collected in a period only k^{-l} times as long. To a rough first approximation, then, the speed varies with the cube root of the power conversion efficiency. It isn't really that simple, of course, but according to this crude index Quickie was better than the second place Apollo Guys by a factor of about $2 \cdot 8$. Its victory was much more decisive than most will realise, and just goes to show what Electronics World readers can do when having a bit of fun.
Is the performance really that amazing though? An InterCity 125 High Speed Train weighs about 450 tons and has a 2250 hp diesel engine at each end - its power-to-weight ratio is about $10 \mathrm{hp} /$ ton. Quickie weighs about 1.4 kg and has a panel power of 10.4 W , which works out at $7.4 \mathrm{~W} / \mathrm{kg}$, or about $10 \mathrm{hp} /$ ton. So it shouldn't hang about, should it?
Quickie weighed 40% more than the permitted minimum, and under the lighting conditions on the day the power-to-weight ratio was more like $6 \mathrm{hp} / \mathrm{ton}$, which is nearer that of an ordinary $100 \mathrm{mph}(160 \mathrm{kph})$ express train, but that detracts little from the point. I found it fascinating that one of the programme's resident expert professors should doubt this comparison with high speed trains when the power-to-weight ratio is a product of the rules of the event, not engineering ability on any contestant's part.
It is hard to know how fast it was going at the finish line. The average speed was about $2 \cdot 2 \mathrm{~ms}^{-1}$. At a final speed of $3.8 \mathrm{~ms}^{-1}$ (which sounds decidedly on the high side) its kinetic energy would be 10 J , ignoring the rotation of the motors. At 5.5 W to 6 W , the panel would have delivered in the region of 40 J in 6.91 s , so it seems less than a quarter of the panel's potential output ended up as kinetic energy. Clearly there is room for further improvement.

World Beating Value in PCB Design Software

 Simulation and Layout software at prices you'd expect from your local computer store!
NEW! Easy-PC Version 6

- Online design rule checking
- PCB footprint and schematic symbol wizards
- Import DXF from your mechanical system
- Single shot postprocessing plus much much more......

Stop press... by customer demand, now with Tsien Boardmaker 2 design import...
Number One Systems delivers true 32 bit Windows software applications including features that a few short years ago would only have been available in sottware tools priced in the thousands!

Test drive Easy-PC and Easy-Spice for yourself and be prepared to be amazed at the super value...

Call for a brochure, price list and demo CD
on +44 (0) 1684773662 or email sales@numberone.com

HJ Roundthe unknown genius

Abstract

Henry Round is not the most well known of scientific pioneers but he had a great impact on British history as well as being one of the leading lights in early radio development. If it was not for him, the Battle of Jutland, the largest naval battle of the First World War would not have occurred and neither would valve or radio development have progressed so swiftly during the first half of the twentieth century. Ian Poole reports.

0n top of the valve and radio developments, he made significant contributions to the development of ASDIC. As for his character, Round himself was an individualist. Short in stature, he was something of an extrovert and rather Churchillian in appearance, even down to a cigar. He also had a dislike for unnecessary protocol, preferring to get to the right person and to the point as soon as possible
Henry Joseph Round was born on 2nd June 1881 in the small Staffordshire town of Kingswinford. He was the eldest child of Joseph and Gertrude Round. His early education took place at Cheltenham Grammar School, but later he studied at the Royal College of Science where he gained first class honours.

Early work for Marconi

He started work by joining the relatively newly formed Marconi Company in 1902. It was a year after Marconi had made his historic first crossing of the Atlantic by radio. At the time the company was struggling financially as a result of the enormous outlay in building the transmitter sites for the Atlantic crossing, and revenues were only coming in slowly. Nevertheless Round was sent to the USA where his office junior was David Sarnoff, the man who was later to become the chairman of RCA (Radio Corporation of America), which was interestingly formed from the American

Marconi Company. Here in the USA Round experimented with a variety of aspects of wireless. Between 1903 and 1904 his main focus of activity was dust cored tuning inductors. However he also found time to undertake some experiments with transmission paths over land and sea by day and night, as well as looking at direction finding using frame antennas. Although this work did not yield any patents, it proved to be very a very useful foundation for future investigations he was to undertake.
In one area Round made a discovery that was many years ahead of his time. In 1906 H. H. Dunwoody had discovered the crystal detector - an important rival to Fleming's diode valve. Round performed a number of experiments on the detector. During his experiments he used a variety of semiconductors and even applied a direct current to them. Whilst doing this he noticed that some emitted light. Round reported this in the 9 th February 1907 edition of Electrical World. This is the first known report of the effect of the light emitting diode. Unfortunately Round was well ahead of his time and it took until the 1960s before it was fully exploited.

Redundant

Whilst the Marconi Company was breaking much new ground, its finances were far from sound. Large amounts of money needed to be invested into research and development as

H / Round.
well as the installation of expensive new equipment. This meant that money was very short within the company, particularly the American Marconi Company. Accordingly Round found himself without a job. After being turned away by Edison, Round found employment with the New York Telephone Laboratories. However he did not stay long with the Telephone Laboratories because Marconi soon found himself in a position to re-instate Round and he returned to England. Here he became deeply involved in the problems of valve amplification. This work soon paid dividends and in 1913-14 he patented a number of ideas for valve improvements including that of an indirectly heated cathode, which became the key to enabling valves to be used far more effectively and far more widely. Also during

HISTORY

this time he patented his auto-heterodyne (autodyne) receiver and developed the first use of automatic grid bias.

War

At the outbreak of the First World War, Round was seconded to Military Intelligence. With his previous experience in direction finding, he set up a chain of direction finding stations along the Western Front. These were so successful that he was requested to install a second system in England. It was on 30th May 1916 that these stations reported a 1.5 degree change in the direction of the communications from the German fleet that was supposedly at anchor at Wilhelmshaven. Combined with an increase in the level of traffic, the Admiralty correctly reasoned that they had put to sea. They ordered the British Fleet to put to sea to intercept the Germans, and the following day the Battle of Jutland was fought. It was the largest sea battle of all time. Although the British lost seven ships and about 7000 men and the Germans three ships and around 2500 men, it meant that the German fleet did not sail. After the war it was revealed that it was as a result of Round's endeavours that the Battle had taken place. Round made other contributions to the war effort, designing the first telephony transmitters and receivers for airborne use For all his services during the war, Round was awarded the Military Cross.

Type CA Valve designed by HJ Round, circa 1916

Peace

With his return to civilian life, Round turned his energies to more peaceful and commercially profitable developments for the Marconi Company. His first activities were focussed towards new valve developments. He developed two new transmitting valves that were given the part numbers MT1 and MT2. Using these valves he developed transmitters that were capable of producing up to 20 kilowatts of power. In March 1919 he undertook the installation of a telephony station at Ballybunion in Ireland. Operating at a wavelength of 3800 metres, this was the first European station to be heard in North America.
Later in 1919 Round developed more transmitters for range testing. These were located at the Marconi works in Chelmsford and radio amateurs were invited to listen and report on the transmissions. To provide some interest the carrier was modulated with a variety of sounds. When this included music, many enthusiastic reports were received from listeners who had enjoyed listening. As a result the idea of broadcasting as we know it today had dawned. Accordingly a regular wireless telephony news service was inaugurated on 23rd February 1920. Three and a half months later on 15th June Dame Nellie Melba, the famous Australian soprano, took part in a broadcast concert organised by the Daily Mail. This created a significant amount of public interest and many people listened to it. Unfortunately these entertainment transmissions were soon stopped because of the interference that was being caused to 'more serious' uses for wireless. Nevertheless, two years later more entertainment broadcasts were licensed, but this time from Writtle just outside Chelmsford. With the call sign Two Emma Tock (2 MT) the station took to the air using a transmitter again designed by Round. The success of this station lead to the establishment of another station at Marconi House in the Strand. With the call sign 2LO this station was taken over by the BBC at its formation in 1922. Round naturally played a very significant role in the foundation of broadcasting, providing much of the technical expertise and drive to ensure that it succeeded.
Despite his enormous efforts in establishing broadcasting, Round was still working on other projects. One of these was to convert the Marconi station at Caernarfon from a spark transmitter to valve transmission. This was no small undertaking. Using 56 MT2 valves with a plate high tension supply of 10 kV the transmitter was very powerful and on 19th November 1921 signals from the station were heard in Australia.

Other work

Round was appointed chief of Marconi Research in 1921, and he remained with the company until 1931, continuing to provide a phenomenal rate of output. During the remainder of his time with the company he

Fig. 1. Round's Autodyne receiver.
designed and built maritime valve receivers and transmitters, a broadcast receiver, a gramophone recording system and a large public. address system that was used to relay King George V's speech at the Wembley Exhibition. He also devised a system for providing sound with films during the 1930 cinema boom.
Despite all these successes, in 1930 Round decided to go into private practice as a consultant. However, he still worked very closely with the Marconi Company, frequently returning to undertake consultancy work there. Shortly after the outbreak of World War Two he worked for the Admiralty on ASDIC, continuing to work on this until 1950. After this period he undertook some more work for Marconi, primarily working on echo sounding.

Private Life

Round was married in 1911 to Olive Wright Evans. They were blessed with seven children, two sons and five daughters. Sadly his eldest son John was a Spitfire pilot and was killed in action in World War Two. He outlived Olive and remarried in 1960 to Evelyn Bays. Round himself died in August 1966 in a nursing home in Bognor Regis after a short illness
During his life he had achieved an astounding amount. He revolutionised the receiver design of the day. He developed new valves and moved thermionic technology forward. In addition to this he played a significant role in the technology used for the war effort in two world wars. He also had the distinction of being the first person to note the effect used today in light emitting diodes. He was awarded two main honours. In the First World War there was the Military Cross for his efforts mainly on direction finding and then in 1951 he was awarded the coveted Armstrong Medal by the Radio Club of America. Despite these two awards his name is not widely known and he is very much an unknown genius.
Further information about all aspects of radio and electronics technology, new and old can be found at www.radioelectroncs.com

Visit our website
www.distel.co.uk THE ORIGINAL SURPLUS WONDERLAND!
THIS MONTH'S SELECTION FROM OUR VAST EVER CHANGING STOCKS wanted for cash!

 Less than 30% Only $£ 29.95$ (B) or $4 / £ 99.00$ (D)

Order RW44	Order PH26
THE AMAZING TELEBOX	
\ldots.. - 17	$\begin{aligned} & \text { ITV SOUND \& } \\ & \text { MIDEO TUNER } \end{aligned}$ cable compatible

IC's -TRANSISTORS - DIODES $10,000,000$ items EX STOCK CALL or see web site www. distel.co COMPUTER MONITOR SPECIALS Legacy products
High spec genuine multysync. CGA, EGA, VGA, SVGA
Mitsubishi FA3415ETKL 14" SVGA Multisync colour monitor with fine
 ety of inputs allows connection to a
including IBM PC's in CGA, EGA
modes, BBC, COMMODORE (ind ARCHIMEDES
faceplate, text ully guaranteed fadures: EIched VGA cable for IBM PC included. Only $£ 129$ (E) Order as

Generic LOW COST SVGA Monitors We choose the make, which includes Compaq, cables, Standard RTB 90 day guarantee.		
$£ 59.00$	$£ 69.00$	£79
		order
upplied in good used condition. Shipping code (D)		

VIDEO MONITORS

colour monitor with both RGB and standard composite 15.625
Khz video inputs via SCART socket and separate phono jacks Khz video inputs via SCART socket and separate phono jacks.
Integral audio power amp and speaker for all audio visual uses. State of the art PAL (UK spec) UHF TV tuner module uts. Micro electronics all on one small PCB only $73 x$
mm enable full tuning control via a simple 3 wire link to
 ee www.distel.co.uk/data_myoo.htm for picture + full details

HARD DISK DRIVES $2 f^{\prime \prime}$ - 14°

 TOSHIBA MK1002MAT 1.1 Gb laptop $(12.5 \mathrm{~mm} \mathrm{H})$ New $£ 59.9$TOSHIBA MK4313MAT 4.3Gb laptop $(8.2 \mathrm{~mm} \mathrm{H}$) New $£ 105.00$ TOSHIBA MK6409MAV 6.1Gb laptop (12.7 mm H) New $£ 98.00$ o 3fi" conversion kit for Pc's, complete with connectors
COMPAQ 313706 -B21 (IBM) 9 gb ULT/SCSI3 New CONNER CP 302420 mb IDE I/F (or equiv.) RFE
CONNER CP3044 40 mb IDE IF (or equiv.) RFE QUANTUM $40 S$ Prodrive 42 mb SCSI I/F, New RFE MINISCRIBE 342520 mb MFM I/F (or equiv.) RF
SEAGATE ST-238R 30 mb RLL IIF Refurb SEAGATE ST-238R 30 mb RLL I/F Refurb
CDC $94205-5140 \mathrm{mb}$ HH MFM I/F RFE tested HP 97548850 Mb SCSI RFE tested C 30102 Gbyte SCSI differential RFE tested NEC D2246 85 Mb SMD interface. New
FUJITSU M2322K 160 Mb SMD I/F RFE tested FUJITSU M2392K 2 Gb SMD I/F RFE tested

19" RACK CABINETS Europe's Largest Stocks of quality rack cabinets, enclosures and accessories. Over 1000 Racks from stock

This month's special

 33 / 42 / 47 U - High Quality All steel Rack Cabinets
applications. A 10 mm fixed focus
wide angle lens gives excellent focus
and resolution from close up to long range. The composite video output will
connect to any composite monitor or
(via SCART recorders. Unit runs from 12 V DC so
ideal for security \& portable applica-
tions where malns power not Overall dimensions 66 m wide $\times 117$ deep $\times 43$ high. Supplied Ren

ONL Y $£ 79.00$ or 2 for $£ 149.00$ (B)

SOFTWARE SPECIALS

NT4 WorkStation, complete with service pack

 and licence - OEM packaged. ONLY £89.00 ENCARTA 95 - CDROM, Not the latest - but at this price $1 £ 7.95$DOS 5.0 on 3 fi" disks with concise books c / w QBasic
$£ 14.95$ $\begin{array}{ll}\text { DOS } 5.0 \text { on } 3 \text { fi" disks with concise books c/w QBasic } & £ 14.95 \\ \text { Windows for Workgroups } 3.11+\text { Dos } 6.22 \text { on } 3.5^{\prime \prime} \text { disks } & £ 55.00\end{array}$ Windows for Workgroups 3.11+ Dos 6.22
Windows 95 CDROM Only - No Licence - \qquad
SOLID STATE LASERS

DC POWER SUPPLIES

Virtually every type of power supply you

 imagine. Over 10,000 Power Supplies
RELAYS - 200,000 FROM STOCK

covering typeContinental, Contactors, Time
State, Printed Circuit Mounting£325

TEST EQUIPMENT \& SPECIAL INTEREST ITEMS

 18 Million Items On Line Now!Verisign WWW. distel.CO.UK
AII E Emomes 02086533333
ALL MAIL TO
Dept W, 29 / 35 Osborne Rd Thornton Heath
Open Mon - Fri 9.00 - 5:30
email = admin@distel.co.uk

WELDEX 2003
WELDCOME. 11-14 November 2003
National Exhibition Centre Birminghom, UK

Join us at Weldex 2003
The international welding, joining, cutting and fabrication exhibition co-located with Manufacturing Week INSPEX, Tooling and CIM (T.E.A.M)
Weld class event
At Weldex 2003 you will experience, first hand, the very latest products, services and technologies in welding, joining, cutting and fabrication. As the largest international show of its kind in the UK, Weldex 2003 represents a unique opportunity to make contact with some of the biggest and best names in the business, from all over the world.
Weldex 2003 is the event in the UK welding calendar Whether you are selling, buying, learning, or just staying in touch, Weldex 2003 is the place to do good business in the UK. So make a date to join us at the NEC, Birmingham, 11-14 November 2003.
For tickets and early registration visit: WWW.Weldexpo.com or call Nichola Mitchell: $+44(0) 1322660070$ NOW!

To find out who's exhibiting at Weldex 2003 contact: Karin Allfree or Isobel Roberts:

NFWPRODUCTS

Please quote Electronics World when seeking further information

Sensing leaky bottles

The SUNX EX-F70 series of sensors from MEW-UK is designed to detect small liquid leaks and inform a control system. Particularly suitable for use in applications such as bottle or container filling, it will enable technicians to monitor for spillage. The sensor head itself consists of a transmitter and receiver. When mounted in a liquid-free environment, the receiver collects light from the transmitter after it has passed through a specially designed sensing surface. When a liquid is placed within the area of the sensor the capillary effect causes the beam to be disrupted and no longer detected by the receiver. This will then switch the NPN transistor output.
MEW-UK
Tel: +44 (0) 1908350700

Fast recovery Mosfet for zero-voltage switching

International Rectifier has introduced a 500 V L-Series Hexfet power Mosfet with fast recovery body diode for reliable operation of zero-voltage switching (ZVS) power supplies, especially at light loads. According to the company, the Mosfets eliminate the need for series Schottky and anti-parallel high voltage diodes used in conventional designs, thereby reducing part count, simplifying PCB layouts, reducing overall losses and improving power density. Power supplies using ZVS circuits are designed to optimise efficiently at high frequencies. When Mosfets are

used in ZVS circuits operating at frequencies up to 250 kHz , body diode reverse recovery characteristics become critical, especially under light load conditions when the device ontime is very short. Mosfets can only withstand voltage across drain and source after the integral body diode has completed the reverse recovery period. The reverse recovery time of the integral body diode has a direct impact on the minimum duty cycle. The L series have improved body diode characteristics with close to 70 per cent reduction in reverse recovery time, which is 250 ns . International Rectifier www.irf.com
Tel: +44(0) 2086458003

Die-cast backshells in four sizes

Die-cast backshells from Tyco Electronics are available in four shell sizes to suit 9 to 37 position D-sub connectors. Typical applications for the ADK series include high integrity data links in

applications such as computer peripherals, industrial equipment, medical and instrumentation. The backshells feature straight or 45 degree cable entry, rugged and compact design as well as excellent EMI/RFI shielding performance. They are suitable for a range of cable sizes while a unique metal filled cable grommet ensures 360 degree shielding. The zinc die-cast nickel plated shells have a -40 to $120^{\circ} \mathrm{C}$ temperature range, 4.0 to 13.0 mm cable diameter and an attenuation factor of over 40 dB between

30 MHz and 1 GHz . The backshells meet the requirements of VDE 0871, FCC 20780 and 89/336/EU. ADK back-shells come as a complete kit comprising shells, jackscrews and four sizes of cable grommets. Available as an upgrade to the standard product is a high performance cable crimp kit offering a full crimped termination to the cable braid for greater screening integrity and enhanced cable strain relief. Tyco Electronics www.tycoelectronics.com Tel: +44(0) 2089542356

IDE for Motorola star core

Green Hills Software has released the Multi 2000 integrated development environment (IDE) and probe for the StarCore-based MSC8102 digital signal processor, from Motorola. The IDE, featuring C and $\mathrm{C}++$ optimising compilers and a multi-core debugger, provides a DSP-optimised superset of Multi's editing, debugging, profiling, and project management capabilities. The MSC8102 combines four StarCore SC140 cores running at speeds of up to 300 MHz with four enhanced filter coprocessors, delivering a peak performance of 6000 million multiply accumulates per second (MMACs). The IDE automates all aspects of software development for the MSC8102. Optimised for the MSC8102's SC140 core
architecture, it features a window-oriented editor. RTOSaware, multi-core source-level debugger graphical program builder, run-time error checker, version control system, and performance profiler. It also supports Motorola's StareCore instruction set simulator and
multi-core cycle-accurate simulator, which enable programmers to develop and test MSC8102 code on a PC or workstation without the need for the target hardware. Green Hills Software www.ghs.com Tet: +44 (0) 1962829820

Analysers support 10Gbit/s comms
A software package from Tektronix gives support to designers of comms systems using SPI-3 and SPI-4.2 interfaces. The system packet interfaces run at 2.5 and $10 \mathrm{Gbit} / \mathrm{s}$ respectively. The TCS101 software runs on the firm's TLA series of logic analysers and provides system level design and debug tools. These can solve the
challenges of gaining access to signals with minimal effect on signal integrity; laying out test connectors in limited de velopment board space; realtime triggering on data errors, protocol violations and other anomalies; and correlation of events on microprocessor, internal system bus and external serial bus ports. A nalogue and digital timing uses a listing window display.
Tektronix
Tel: +44(0) 1344392241

Kit for USB to PCI without firmware

A development kit for prototyping PCI -based USB devices using NetChip Technology's NET2280, is available from Silicon Concepts. On connection the NET 2280 RDK (reference design kit) allows any PCI host systems to be specified by a USB host without firmware, said the supplier. USB device side firmware and API's as well as USB host side drivers and sample applications are provided

to support data transfer and systems management. NET 2280 RDK is supplied in standard PCI form factor. Features include 3.3 V or 5 V universal PCI connections, complete PCI test headers, standard USB B connector, debug serial port and socketed EEPROM.
The NET2280 peripheral controller features PCI host adapter modes, a PCI initiator and target interface, 4 scatter gather DMA channels, a high speed USB 2.0 interface, 12
USB endpoints and an integrated 8051 CPU.
Silicon Concepts
Tel: +44(0) 1420537100

Composite video chipset

The ZXFV4583 sync separator and ZXFV4089 DC restoration amplifier from Zetex form a chipset managing composite video signals. Designed for applications including CCTV, video capture, mixing and special effects, the pair are pin compatible with standard industry alternatives. Acting as a black level clamp, the

ZXFV4089 provides brightness level stability in video systems. Configured using three external resistors, the ZXFV4583 separates out vertical, horizontal and composite synchronisation signals from PAL, NTSC, SECAM, and other standard and non-standard composite video signals. Timing of sync extraction is achieved by the
device through a sample and hold process that determines the 50 per cent point on the negative edge of the sync pulse. An optional on-chip low pass filter can also be employed to alleviate the effects of the colour subcarrier.
Zetex
www.zetex.com
Tel: +44(0) 1616224444

Switch with five separate movements

Knitter Switch has introduced a micro-miniature surface mount switch with five separate switch movements. The single actuator may be moved north, south, east, west and pushed down to select different functions. This means that up to five separate switches may be replaced by one or TSSJ- 2 switch may be used as a joystick controller. Designed for scanning and navigation functions such as menu scrolling and selection, the switch has body dimensions of $10.8 \times 2.25 \mathrm{~mm}$ with the actuator making the overall height 5 mm . The maximum contact rating is 10 mA at 5 V DC, insulation resistance better than $100 \mathrm{M} \Omega$ and operating temperature is in the range -20 to $+60^{\circ} \mathrm{C}$
Knitter Switch
Tel: +44(0) 1256338670

Colour TFT has 300 nits

Apollo Displays Technologies has introduced a low cost VGA resolution 6.4 in colour TFT display featuring 300-nit brightness plus integrated touch screen. The touch screen eliminates the pixel haze created by standard touch screens used on high pixel density displays, said the supplier. This 4 -wire technology, called "Clear-Clear" touch, employs both highly transmissive (85 per cent) and optically smooth ITO (indium tin oxide) substances for improved clarity. The VGA (640×480 pixel) display has a pixel pitch of 0.675 mm (W) x $0.203 \mathrm{~mm}(\mathrm{H})$. Two field replaceable CCT backlights are included. The touch-screen is mounted directly to the display matching viewing areas and gives no restriction to the display's mounting holes. The flex tail is made of a durable metal foil stiffener for easy insertion to standard connectors. The assembly can be supplied with an RS-232 or PS/2 touch controller mounted to the display. Other options include display inverter, anti-reflection film, analogue RGB/Video

THERE IS INTERESTING NEWS

OSCILLOSCOPE

\square VOLTMETER RECORDER

The Handyscope 3 is a powerful and versatile two channel measuring instrument with an integrated function generator.

${ }^{\circ}$ USB 2.0 connection (USB I.I compatible)
- sample speed up to 100 MHz per channel
${ }^{\circ} 8$ to 16 bit resolution (6μ Volt resolution) - 50 MHz bandwidth

input sensitivity from 200 mVolt up to 80 Volt

- large memory up to 131060 samples per channel
${ }^{\circ}$ four integrated measuring devices
${ }^{\circ}$ spectrum analyser with a dynamic range of 95 dB
${ }^{\circ}$ fast transient recorder up to 10 kHz
${ }^{\circ}$ several trigger features
${ }^{\circ}$ auto start/stop triggering
${ }^{\circ}$ auto disk function up to 1000 files
${ }^{\circ}$ auto setup for amplitude axis and time base
${ }^{\circ}$ auto trigger level and hysteresis setting
${ }^{\circ}$ cursor measurements with 21 read-outs
${ }^{\circ}$ very extensive function generator (AWG) $0-2 \mathrm{MHz}, 0-12 \mathrm{Volt}$

for more information, demo software, software, source code and DLL's visit our internet page: http://www.tiepie.nl

NEWPRODUCTS

Please quote Electronics World when seeking further information
controllers, PC-BUS and SBC kits. Sample delivery is typically 2 weeks from order. Apollo Displays Technologies www. apollodisplays.com Tel: $+44(0) 1634226880$

CD-ROM on lead-free soldering

A training and interactive technical CD-ROM on lead-free soldering technology has just been updated. It also includes over 20 video interviews with engineers from around the world on their views on lead-free materials and processes. The CDROM has been produced jointly by the National Physical Laboratory and Bob Willis to address the lack of practical information that is available in the industry for small and medium volume producers. The CD covers the following aspects of the technology: design rules, PCB soldering finishes, component terminations, impact on process conditions, impact on existing equipment, hand soldering, screen printing, reflow soldering, wave soldering, cleaning, rework, visual inspection, joint reliability, and in circuit test. Additional features will include lead-free alloy selection, interactive leadfree soldering guide, case studies, and a reference bibliography. The interactive defect guide provide solutions to many of the common process issues. Further information on the interactive CD-ROM is available from the website.

Bob Willis

www.bobwillis.co.uk
E-mail: bob@bobwillis.co.uk

Board-to board connector with 1.5 mm stacking height

JAE Europe has introduced a board-to-board connector series with a surface mount contact pitch of 0.5 mm which allows the stacking height to be 1.5 mm between parallel PCBs. Supplied on embossed tape and reel packaging as standard, the new connectors feature reinforced plastic insulators as well as integral hold-downs. Contact resistance is less than $70 \mathrm{~m} \Omega$

(while insulation resistance is more than $100 \mathrm{M} \Omega$). The AA01 series available with $10,30,40$ or 60 contacts rated at 0.2 A per contact, the parts are rated for 30 mating cycles and can be driven with an AC or DC voltage of 50 V . A withstandvoltage of 250 V AC rms per min contributes to increased reliability.
JAE Europe
www.jae.co.uk
Tel: +44(0) 1276404000

Test probe spring contacts

The P25/Z series of springcontact test probes has been introduced by Peak Test

Services to meet the demands of greater accuracy in ATE systems for printed-circuit board testing at 0.1 -inch centres, and achieve their accuracy through the use of an additional crimp at the top of the barrel, which optimises the point positioning. The $\mathrm{P} 25 / \mathrm{Z}$ series fit all existing P25 Series receptacles, and can directly replace most probes already in use on ATE fixtures. Most of the tip styles in the standard P25 Series are available. The probes are available directly from PeakTest Services in the united Kingdom and Eire.
Peak Test Services
www. thepeakgroup.com
Tel: +44(0) 1913871923

Multi-layering API for mixed graphics

QNX Software Systems has incorporated into its Photon microGUI, the native windowing system for the Neutrino RTOS, an API (application programme interface) designed to streamline the development of multi-layered graphical interfaces. Using this API, it is expected that developers will build multilayered displays for applications that display a mix of static and dynamic content on a single screen.
QNX Software Systems
www.qnx.com
Tel: +44(0) 1223204800

Quad switches have low leakage

Intersil has made three additions to its MightyMUX highperformance analogue switch line. ISL84521, ISL84522 and the ISL84523 quad switches are aimed at applications including portable battery-powered equipment such as mobile phones, pagers, notebooks and PDAs in which space and power consumption are concerns, as well as high-precision equipment used in medical, communications, and test fields. The quad switches feature low

Connectors share footprint

Honda Connectors has coaxial connectors for fibre-optic backplanes. The FXMU series features coaxial plugs, jacks and adapters, and comes in the same footprint as the firm's high-density MU optical interconnection systems. The interconnection system comprises a single-contact coaxial plug, high-density plug-in jack, single-contact coaxial connector and H-type vertical two-contact adapter. Standard coaxial connectors consist of an MU-type plug combined with the singlecontact adapter, while plug-in connectors are assembled by adding backplane and package housings to the MU-style coaxial plug and jack. Connections benefit from 50Ω

characteristic impedance and $10 \mathrm{M} \Omega$ contact resistance, with a frequency range from $D C$ to 5 GHz and VSWR of 1.25 or lower. The connectors can withstand 500 V AC for up to one minute and provide
insulation resistance of over $500 \mathrm{M} \Omega$ at 500 V DC. Operating temperature range is from -20 to $+650^{\circ} \mathrm{C}$. Honda Connectors www.hondaconnectors.com Tel: +44(0) 1793523388

£2 BARGAIN PACKS

30A 600V BRIDGE RECTIFIER. Order Ref: 2P474. 10 HOOK-UP LEADS. Assorted colours terminating with insulated crocodile clips each end, each lead length 36 cm . Order Ref: 2P459
PHILIPS STEPPER MOTOR. 12V 7.5 degrees. Order Ref: 2P457
$32 \mu \mathrm{~F} 250 \mathrm{~V}$ A.C. CAPACITOR. Order Ref: 2P452.
4μ F 440 V A.C. CAPACITOR. Order Ref: 2P454
VERY POWERFUL MOTOR. Operates off 6,9 or 12 V D.C. $2^{1 / 2 i n}$. long, $1^{1 / 2 i n}$. diameter. Order Ref: 2 P456 HIGH VOLTAGE STRIPPER. Contains many items for 10 kV working. Order Ref: 2P388
GALVANISED EQUIPMENT BOX. 150 mm square without lid. Order Ref: 2P391
4 r.p.m. GEARED MAINS MOTOR. 115 V but supplied with mains adaptor. Order Ref: 2P393.
TWIN 50pF AIR-SPACED TUNING CAPACITOR, the veins wide spaced so suitable for transmitting Order Ref: 2P394.
20 R.P.M. GEARED MAINS MOTOR. 115 V but supplied with mains adaptor. Order Ref: 2P396.
$20 \mu \mathrm{~F} 375 \mathrm{~V}$ CAPACITOR. Aluminium cased. Order Ret: 2P406.
$9 \mathrm{~V}-0 \mathrm{~V}-9 \mathrm{~V}$ MAINS TRANSFORMER. 25 VA , upright mounting with fixings. Order Ref: 2P408.
COPPER CLAD BOARD. Size $15 \mathrm{in} . \times 10 \mathrm{in} . \times 1 / 16 \mathrm{in}$. thick for making p.c.b.s etc. Order Ref: 2P409.
20W TWEETER. $4 \mathrm{in} . \times 4 \mathrm{in} .8 \mathrm{ohm}$ by Goodmans. Order Ref: 2P403.
BATTERY CHARGER METER. OA-3A. Order Ref: 2P366.
W-SHAPED 30W FLUORESCENT. Phillps, ideal name plate illuminator. Order Ref: 2P372.
DIMMER SWITCH. Standard size flush place, state colour - red, yellow, green or blue. Order Ref: 2P380. TELEPHONE EXTENSION LEAD. 12 m with plug end, socket ends. Order Ref: 2P338.
FIGURE-8 FLEX. Mains voltage, 50 m . Order Ref 2P345.
INFRA-RED UNIT. As fitted TV receiver. Order Ref: 2P304.
L.C.D. CLOCK MODULE with details of other uses. Order Ref: 2P307.
AM/FM RADIO RECEIVER with speaker but not cased. Order Ref: 2P308.
2A MAINS FILTER AND PEAK SUPPRESSOR. Order Ref: 2P315
45A DP 250 V SWITCH. on $6 \mathrm{in} . \times 3$ in. gold plate Order Ref: 2P316.
SOLAR CELL. $3 \mathrm{~V} 200 \mathrm{~mA}, 5$ of these in series would make you a 12 V battery charger, $£ 2$ each Order Ref: 2P374
PERMANENT MAGNET SOLENOID. Opposite action, core is released when voltage is applied Order Ref: 2P327.
HEATER PAD. Not waterproof. Order Ref: 2P329.
DISK DRIVE. Complete less stepper motor, has al the electronics to control stepper motor. Order Ref 2P280.
15V 320mA A.C. POWER SUPPLY. In case with 13A base, ideal for bell or chime controller. Order Ref: 2P281.
POWERFUL MAINS MOTOR with 4in. spindle. Order Ref: 2P262.
20M 80 OHM TV COAX. Order Ref: 2P270
LOCTITE METAL ADHESIVE. Tube and some accessories. Order Ref: 2P215.
6-DIGIT COUNTER. Mains operated. Order Ref: 2P235.
13A ADAPTORS. Take two 13A plugs, pack of $5, £ 2$ Order Ref: 2P187
3-CORE 5A PVC FLEX. 15m. Order Ref: 2P189.
MAINS TRANSFORMER. 15V, 1A. Order Ref 2P198.
7-SEGMENT NEON DISPLAYS. Pack of 8. Order Ref: 2P126
MODERN TELEPHONE HANDSET. Ideal office extension. Order Ref: 2P94.
13A SWITCH SOCKET on satin chrome plate. Order Ref: 2 P95.
500 STAPLES. Hardened pin, suit burglar alarm or telephone wire. Order Ref: 2P99.
PAD SWITCH for under carpets, doormats etc. Order Ref: 2P119.
ROTARY SWITCH. 40A with porcelain pointer control knob. Order Ref: 2P419
AIR-SPACED TUNING CAP with one section 350pF, the other 250 pF , with $1 / 4 \mathrm{in}$. spindle and slow motion drive. Order Ref: 2P422.
DITTO but 150 pF and 300 pF . Order Ref: 2P423.
TRANSMITTER TUNER. 2 gang, wide spaced. Order Ref: 2P425.

SELLING WELL BUT STILL AVAILABLE IT IS A DIGITAL MULTITESTER, complete win hands-tree test prod holder. This tester measures d.c. volts up to 1,000 and a.c. volts up to 750 ; d.c.current up to 10 A and resistance up up to 2 megs. Also tests transistors and diodes and transistors and diodes and
has an internal buzzer for continuity tests. Comes complete with test prods, battery and instructions. Price £6.99. Order Ref: 7P29.
INSULATION TESTER WITH MULTIMETER, Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has tour ranges: $A C / D C$ volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$ each, yours tor only $£ 7.50$ with leads, carrying case $£ 2$ extra. Order Ret: 7.5P4.
REPAIRABLE METERS. We have some of the above testers but slightly fautly, not working on alt ranges, should be repairable, we supply diagram, $£ 3$. Order Ret: 3 P 176 .
BT TELEPHONE EXTENSION WIRE. This is proper heavy duty cable for running around the skirting board when you want to make a permanent extension. Four cores properly colour to make a permanen exi £ 15 m length onder Ref: 1067.
HEAVY DUTY POT. Rated at 25 W , this is 20 ohm resistance so it could be just right for speed controlling a d.c. motor or sovice or to control the output of a high current. Price $£ 1$. Order Ret: $1 / 33 \mathrm{~L} 1$.
1 mA PANEL METER. Approximately $80 \mathrm{~mm} \times 55 \mathrm{~mm}$, front engraved $0-1000$. Price $£ 1.50$ each. Order Ret: $1 / 16$ R2.
D.C. MOTOR WITH GEARBOX. Slze 60 mm long, 30 mm diameter. Very powertul, operates of any voltage between 6 V diameter. Very poweriul, operates on any voltage betweent $\begin{aligned} & \text { and } 24 \mathrm{~V} \text { D.C. Speed at } 6 \mathrm{~V} \text { is } 200 \mathrm{rpm} \text {, speed controller }\end{aligned}$ available. Special price $£ 3$ each. Order Ref: 3 P108.
available. Special price I each. Onting in on a van, a tractor or FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a Xenon tube and has an amber colour is desite Price 5 . included so
Ret: 5P267.
MOST USEFUL POWER SUPPLY. Rated at 9V 1A, this plugs MOST USEFUL POWER SUPPLY. Rated at 9V 1A, this plugs into a $13 A$ socket, is really nicely boxed. $£ 2$. Order Ref: $2 P 733$. MOTOR SPEED CONTROLLER. These are suitable for D.C. motors for voltages up to 12 V and any power up to $1 / 6 \mathrm{~h} . \mathrm{p}$. They reduce the speed by intermittent tull volitage pulses so here should be no loss a Order Ret: 20P39
BALANCE ASSEMBLY KITS. Japanese made, when assembled ideal for chemical experiments, complete with weezers and 6 weights 0.5 to 5 grams. Price $£ 2$. Order Ret 2 P44.
CYCLE LAMP BARGAIN. You can have 1006 V 0.2 A MES bulbs for just $£ 2.50$ or 1,000 for $£ 20$. They are beautifully made, slightly larger than the standard 6.3 V pilot bulb so they would be ideal for making displays for night lights and similar pplications.
SOLDERING IRON, super mains powered with long-life ceramic element, heavy duty 40 W for the extra special job, complete with plated wire stand and 245 mm lead, £3. Order Ret: 3P221.

RELAYS

ENGINEERS BENCH PANEL

This has $2 \times 13 \mathrm{~A}$ mains sockets which are switched and illuminated, thus saving you having to keep pulling out the plugs. Nicely cased. Only £2. Order Ref: 2P461
We have thousands of relays of various sorts in stock, so if you need anything special give us a ring. A few new ones that have just arrived are special in that they are plug-in and come complete with a special base which enables you to check without having to go underneath
 without having to go underneath. We have 6 different types with varying coil voltages and contact arrangements.
Coll Voltage Contacts
12 V DC 4-pole changeover $24 \mathrm{VDC} \quad 2$-pole changeover 24 V DC includes base
Price includes base
MINI POWER RELAYS. For p.c.b. mounting, size $28 \mathrm{~mm} \times$ $25 \mathrm{~mm} \times 12 \mathrm{~mm}$, all have 16 A changeover contacts for up to 250 V . Four verslons available, they all look the same but have different coils:

6V - Order Ref: FR17 24V - Order Ref: FR19 12 V - Order Ref: FR18 48V - Order Ref: FR20 Price $£ 1$ each less 10% if ordered in quantities of 10, same or mixed values.
RECHARGEABLE NICAD BATTERIES. AA size, 25 p each which is a real bargain considering many firms charge as much as $£ 2$ each. These are in packs of 10, coupled together with an output lead so are a 12 V unit but easily divideable into a $2 \times 6 \mathrm{~V}$ or $10 \times 1.2 \mathrm{~V}$. $£ 2.50$ per pack, 10 packs for $£ 25$ including carriage. Order Ref: 2.5P34.
4 CIRCUIT $12 V$ RELAY. Quite small, clear plastic enclosed and with plug-in tags, £1. Order Ref: 205 N .
NOT MUCH BIGGER THAN AN OXO CUBE. Another relay just arrived is extra small with a 12 V coil and 6 A changeover contacts. It is sealed so it can be mounted in any position or on a p.c.b. Price 75 p each, 10 for $£ 6$ or 100 for $£ 50$. Order Ref: FR16
$1.5-6 \mathrm{~V}$ MOTOR WITH GEARBOX. Motor is mounted on the gearbox which has interchangeable gears giving a range of speeds and motor torques. Comes with full instructions for changing gears and calculating speeds, $£ 7$. Order Ret: 7P26.

£2 BARGAIN PACKS

24 V STEREO POWER SUPPLY. Mullard. Order Ref: 2 P80.
UP TO 90 MIN 25A SWITCH. Clockwork. Order Ref: 2 2P90.
POWERFUL MAINS MOTOR. $1^{1} / 2 \mathrm{in}$. stack, double spindle. Order Ref: 2P55.
SPEED CONTROL FOR MODELS. $6 \mathrm{~V}-12 \mathrm{~V}$ variable p.s.u., also reverse. Order Ref: 2P3.

MAINS TIME AND SET SWITCH. 25A, up to 6 hours delay. Order Ref: 2P9.
MOTORISED 6 MICROSWITCHES but motor 50 V A.C. Order Ref: 2P19.

TWIN EXTENSION LEAD. Ideal lead lamp, Black \& Decker tools, etc., 20 m . Order Ref: 2P20.
MAINS COUNTER. Resettable, 3 digit. Order Ref: 2P26.
iLLUMINOUS PANEL, $16 \times 16 \mathrm{~V}$ bulbs to light coal effect heater, etc. Order Ref: 2P317.
TIME AND SET SWITCH. 15A mains. Order Ref: 2P104.
D.C. VOLT REDUCER. $12 \mathrm{~V}-6 \mathrm{~V}$, fits into car lighter socket. Order Ref: 2P318.
CAPACITOR, VARIABLE. For tuning AM/FM with 1/4in. spindle. Order Ref: 2P269.
CAPACITOR, VARIABLE. 0.0005 solid dia. $1 / 4 / \mathrm{In}$. spindle. Order Ref: 2P268.
COPPER CLAD BOARD. $15 \times 10 \times 1 / 16$ for p.c.b. Order Ref: 2P409.
25 V -OV-25V MAINS TRANSFORMER. $1^{1 / 2}$ A. Order
Ref: 2P410.
$20 \mathrm{~V}-0 \mathrm{~V}-20 \mathrm{~V}$ DITTO. Order Ref: 2P411
$80 \mathrm{~mm} \times 46 \mathrm{~mm} 65 \mathrm{~mm}$ METAL PROJECT BOX with rubber feet, supplied as flat pack. Order Ref: 2P412. 24 V 1A MAINS TRANSFORMER. Order Ref: 2P413. 12V 2A MAINS TRANSFORMER. Order Ref: 2P414. 80 OHM COAX. Extra thin, 15m. Order Ref: 2P417. A.C. 250 V CAPACITOR. $20 \mu \mathrm{~F}$. Order Ref: 2 P 427. 12 V P.S.U. 800 mA D.C. with pins for shaver socket. Order Ref: 2P428.
MAINS MOTOR WITH GEARBOX giving 6 revs per hour. Order Ref: 2P430.
CLOCKWORK TIMESWITCH with scale settable up to 6 hours. Order Ref: 2P432.
OLD TIME RADIO CASE for the Good Companion. Order Ref: 2P436.
4 OHM TWEETER. 20W, by Goodmans. Order Ref: 2 P 437
OLD TYPE 15A ROUND PIN PLUGS. Order Ref: 2 P 438.
BT ENGINEER'S PHONE. Unused but missing some parts, ideal for stripping. Order Ref: 2P439.
FLUORESCENT TUBE CHOKE. 65W or 80W. Order Ref: 2P440.
MINI MOTOR WITH GEARBOX, giving 16 r.p.m. Order Ref: 2P442.
ICESTAT. Cuts in just above freezing. Order Ref: 2P443.
BALANCE KIT with gram weights for chemical experiments etc. Order Ref: 2P444.
Vu METER. 40 mm square. Order Ref: 2P445.
SLYDLOK FUSE. 30A. Order Ref: 2P447
KV CAP. 1μ F 1500V. Order Ref: 2 P448.
9V P.SU. 1A D.C., plugs into 13A socket. Order Ref: 2P450.
6-CORE 3AFLEX. 15m. Order Ref: 2P451.

SOME BUY ONE GET ONE FREE OFFERS

CUPBOARD ALARM. Activated by light. When set, this alert is deslgned to let you know when small hands open medicine cabinets, drawers, desks or other places they shouldn't. Price $£ 3$. Order Ref: 3P155.
WATER LEVEL ALARM. When water reaches its sense head its internal alarm sounds. It is a ready-built unit which you can fix above where you want to know the water has risen. It then sounds its intemal alarm. Needs only a battery. Price £3. Order Ref: 3P156.
DYNAMIC MICROPHONE. 500 ohm, plastic body with black mesh head, on/off switch, good length lead and terminated with audio plug. Price $£ 1$. Order Ref: 2P220.

TERMS

Send cash, uncrossed PO, cheque or quote credit card number. If order is $£ 25$ or over deduct 10% but add postage, $£ 3.50$ if under 2 kilo, $£ 6$ if under 4 kilo.

J \& N FAGTORS

Pilgrim Works (Dept.E.E) Stairbridge Lane, Bolney Sussex RH17 5PA Telephone: 01444881965
E-mail: jnfactors@aol.com

Please quote Electronics World when seeking further information

leakage currents (10 mA max), to lengthen hold times in sample-and-hold circuits, and fast switching speeds ($\mathrm{t}_{\mathrm{on}}=45 \mathrm{~ns}$, $\mathrm{t}_{\text {off }}=15 \mathrm{~ns}$), to reduce propagation delays in timing sensitive applications.
Intersil
Tel: +44(0) 1276686886

Hotswap controllers cope with 110 V backplanes

Xicor has a range of negative supply hotswap controllers that integrate functions promoting system reliability. Dubbed X80070, X80071, X80072, and X80073, the devices allow for hardware design flexibility by solving problems associated with high current glitches on the backplane, power Mosfet stress due to overheating, and variations due to capacitive load and downstream DC-DC modules. Hotswap features allow for insertion and extraction of line cards, network interface cards and other peripherals while 48 V power is present on the

Electrolytics for use in automotive \& industrial

Designed for high temperature and long-life applications, such as automotive electronics, GXL series capacitors from Young ECC are rated at 5,000 to 10,000 hours at $125^{\circ} \mathrm{C}$. Manufactured by Nippon Chemi-Con, the capacitors are also available in Pb -free versions that meet all the requirements of next-
generation lead-free soldering processes. Rated voltage range is 10 to $50 V_{D C}$, capacitance value range is $100 \mu \mathrm{~F}$ to $4,700 \mu \mathrm{~F}$ and capacitance tolerance is ± 20 per cent. Case sizes cover $12.5 \times 10 \mathrm{~mm}$ diameter to $31.5 \times 16 \mathrm{~mm}$ diameter. Young ECC
www. youngecc.com Tel: +44 (0) 1494753500

backplane. The controllers integrate several new hotswap functions to meet the demands of 30 V to 110 V live power backplanes. A selectable gate current feature provides for design flexibility to account for variations of load, current and transients. Hardshort detection with retry, overcurrent safety limit during insertion, and builtin contact bounce and high frequency noise filter allow for additional protection during live insertion and system start-up.

The integrated overvoltage, undervoltage, and overcurrent protection circuits can be used as a complete electronic circuit breaker.
Xicor
www.xicor.com
Tel: +44(0) 1993700544

Halogen-free cables

Users can now switch easily from fluorine-containing cables to halogen-free alternatives, using the Enviroflex cable family from Huber+Suhner. The new range is environmentally friendly and more cost effective than equivalent RG cable types. Using flame retardant LSFH (low smoke free of halogen) Radox materials, Enviroflex cables are highly flexible and easier to handle and dispose of than PTFE based RG cables. The polyethylene (PE) is foamed just to the point where a dielectric constant of 2.0 is obtained to ensure the dimensional compatibilty with the corresponding RG types. This ensures that standard connectors can be used without any restrictions. Radiation crosslinking allows the maximum application temperature of the PE to be increased from +70 to $+105^{\circ} \mathrm{C}$. This extended temperature range covers most applications and allows for operation in a higher power range, and connectors with soldered inner conductors can be applied. Seven different Enviroflex cable types (ranging from 1.84 to 10.1 mm diameter)
are available for applications such as radio basestations, antenna systems and closed environment applications. where PTFE cables are currently used. HubertSuhner
www. hubersuhner.co.uk
Tel: +44(0) 1869364229

Solid state interface relay

Relays and timer maker Finder has introduced a solid state interface relay aimed at applications requiring a high isolation, high speed, easy

maintenance interface between processor based control logic and the industrial environment. Dubbed 38.81 in screw terminal form and 38.91 in screwless guise, the relay is designed as a modular unit to provide input/output buffering and isolation within industrial control systems and similar applications. The DIN rail mounted relay

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK
Ring for Latest Reduced Prices on this advert

EXAMPLES OF SPECIAL OFFERS

GOVERNMENT INTENSIFIER NIGHT SIGHTS tested £300 each MARCONI TF2019A SIGNAL GENERATOR AM/FM 80kcs-1040 MCS, off the stack as come and seen untested $£ 190$ - or tested basic working £300 - or normal Johns Radio workshop test with warranty $£ 380$. All supplied with instruction book - qty available. TEK 2445A OSCILLOSCOPE - $4 \mathrm{CH}-150 \mathrm{MCS}$ with instruction book, off the stack as come and seen untested £250 each or tested basic working £350 - Johns Radio workshop test with warranty plus two probes and instruction book $£ 400$
TEK 2465-2465A-2465B etc available
RACAL DANA 1992 COUNTERS 1.3GHZ tested from £250
RACAL DANA 1999 COUNTERS 2.6GHZ tested from £400 H.P. 53131A COUNTERS 3.0GHZ tested from $£ 750$ BENCH + RACK POWER SUPPLIES large range qty from $£ 10$ H.P. POWER UNITS 66311B-66312A-66309D in large qtys from £250
H.P. 8922 RADIO TEST SETS TYPE G-H-M-M010 with HP83220 A OR E GSM CONVERTOR from $£ 500-£ 1,000$ options available including Spectrum Anz. quantity in stock.
Most previous advertised items available in stock.
ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS, PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE, VAT AND CARRIAGE EXTRA. ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-

SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel: (01274) 684007. Fax: 651160

The Phantom Power Box

48 volt microphone phantom powering unit
Professional portable units operating from an internal PP3 battery or external mains adaptor

\star Suitable for converting any microphone amplifier to P48 standard phantom power \star High efficiency DC to DC converter for extended battery life \star Accurate line balance for high common mode rejection \star Low noise and distortion \star Extensive RFI protection

The Balance Box (mic/line amplifier) - The Headphone Amplifier Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants gu30 70w

 Information line: 01428751469 Fax: 751223E-mail contact@confordelec.co.uk
Web http://www.confordelec.co.uk/

AM/FM synthesised signal AM/FM synthesised signal
generator $80 \mathrm{kHz} \cdot 1040 \mathrm{MHz}$

NOW ONLY

MARCONI 893C AF Power Meter. Sinad Measurement MARCONI 893B - No Sinad.. MARCONI 2610 True RMS van............................ $£ 30$ 25 MHz True RMS Voltmeter Autorangin 5 Hz GOULD J3B Sine/Sq Osc. $10 \mathrm{~Hz}-100 \mathrm{kHz}$. Low di....................................... AVO 8 MkG in Ever Ready Case with leads atc	
$15-£ 125$	Others Avos GOODWILL GVT 427 Dual Ch AC Millilivoltmeter..................... 10 mV in 12 Ranges Freq $10 \mathrm{~Hz}-1 \mathrm{MHz}$........................... $100-\Sigma 125$ SOLARTRON 7150 DMM $61 / 2$ digit True RMS - IEEE

SOLARTRON 7150 PLUS
HIGH QUALITY RACAL COUNTERS 9904 Universal Tumer Counter, 50 MHz 9916 Counter, $10 \mathrm{~Hz}-520 \mathrm{MHz}$ WAYNE KERR B424 Component Bridge RACALAIM 9343M, LCR Databridge Digito Automeasurements of R.C.L.Q.D. HUNTRON TRACKER Model 1000 MARCONI TF2015 AM/FM sig gen, $10-520 \mathrm{MHz}$ FLUKE 8050A 4.5 Digit, 24 True RMS FLUKE 8012 A 3.5 Digit. 2A.

JUST IN
H.P. 6063B DC Electronic Load 3-240V/0-10A 25
H.P. 66312A PSU 0-20V/0-2A
H.P. 66311 B PSU 0-15V/0-3A
H.P. 66309 D PSU Dual 0 - 15V 0-3A0-12V 0-1.5A . E
H.P. 66328 PSU 0-20V/0-5A..
H.P. 6623 A PSU Triple Output ranging from
$0-7 \mathrm{~V} 0-5 \mathrm{~A}$ to 0-20V 0-4A
H.P./Agilent 34401A DMM $61 / 2$ digit $£ 400 / 5$
H.P. 3478A DMM 51/2 digit.
FLUKE 45 DMM Dual Display
KEITHLEY 2010 DMM 71/2 digit
KEITHLEY 617 Programmable Electrometer $\$ 1$
H.P. 4338B Milliohmmeter
RACAL Counter type 19992.6 GHz
H.P. Counter type 53131 A 3 GHz
H.P.Agilent 33120A Function Gon/ARB $£ 900 / \& 100$ 100 micro Hz - 15 MHz
SONY/TEKTRONIX AFG320 Arbitary function Gen...E
H.P. 8904A Syn Function Gen DC - 600KHz $1000 / \mathrm{s}$
BLACK STAR JUPITOR 2010 Function Gen 0.2Hz-2
with Frequency Counter
H.P. 8116 A Pulse Generator $1 \mathrm{mH}-50 \mathrm{MHz}$............. $£ 1$
H.P. 8657 B Syn Signal Gen 0.1-2080MH2 $\$ 25$
CO-AXIAL SWITCH 1.5 GHz
IEEE CABLES
SPECTRUM ANALYSERS
H.P. $8561 \mathrm{~B} 50 \mathrm{~Hz}-6.5 \mathrm{GHz}$
H.P. $8560 \mathrm{~A} 50 \mathrm{~Hz}-2.9 \mathrm{GHz}$ Synthesised.
H.P. $8594 \mathrm{E} 9 \mathrm{KHz}-2.9 \mathrm{GHz}$
H.P. $8591 \mathrm{E} 1 \mathrm{MHz}=1.8 \mathrm{GHz} 75$ ohm
H.P. 853 A with $8559 \mathrm{~A} 100 \mathrm{KHz}-21 \mathrm{GHz}$
H.P. 8558B with Main Frame 100 KHz - 1500 MHz 57
H.P. $3585 \mathrm{~A} 20 \mathrm{~Hz}-40 \mathrm{MHz}$
H.P. $3580 \mathrm{~A} 5 \mathrm{~Hz}=50 \mathrm{KHz}$
ADVANTEST R $4131 \mathrm{~B} 10 \mathrm{KHz}-3.5 \mathrm{GHz}$
EATON/Ailtech $7570.001-22 \mathrm{GHz}$
MARCONI 2382100 Hz - $400 \mathrm{MHz} \mathrm{High} \mathrm{Res}$.
MARCON1 237030 Hz - 110MHz......................from $£ 5$
H.P. 182 with $855710 \mathrm{KHz}-350 \mathrm{MHz}$..................... $£ 500$
H.P. 141T Systems
$85531 \mathrm{KHz}-110 \mathrm{MHz}$
8554500 KHz - 1250 MHz
H.P. 8443 Tracking Gen/Counter 110MHz 2
H.P. 8444 Op1 059..
B \& K 2033R Signal Analyser.
H.P. 8754A Network Analyser $4 \mathrm{MHz}-1300 \mathrm{MHz}$.... $£ 12$
H.P. 3577A Network Analyser 5Hz - 200MHz......... 530
H.P. 53310A Modulation Domain Analyser
001/003.. 5
ONO SOKKI Portable FFT Analyser \sum^{15}
H.P. 8720 C Microwave Network Analyser 50MHz-20C
NTEED. Manuals supplied. elephone for lists. Please check availability beff be added to total of goods and carriage.

NEWPRODUCTS

Please quote Electronics World when seeking further information

occupies a panel width of 6.2 mm complete with integrated indication and coil suppression circuitry. Essential for highspeed automation, the relay offers on and off times of $90 \mu \mathrm{~s}$ and $18 \mu \mathrm{~s}$ respectively. With a virtually infinite life output switching capability of 2 A or 100 mA for rated voltages of 24 V DC and 48 V DC respectively, the device is similarly well specified for high-speed automation applications. The product has an integral ejector mechanism and the 38.81/91 series is available in familiar 'Finder' blue or black.
Finder
www.findernet.com
Tel: +44(0) 1785815500

Air flow detector for filters

Omron has introduced an "air flow detector' specifically to efficiently detect clogged conditions in air filters on servers and other types of

computer equipment. Aimed especially at large server farm type installations, the D6A-N sensor uses a thermistor to measure the velocity of the air passing through the air filter, detecting when filters become clogged with dust particles more efficiently than a conventional time totalling meter. By designing an appropriate response to the $0-5 \mathrm{~V}$ output signal from the detector, engineers can provide a reliable indication of which servers' filters need cleaning or replacing, before a more serious fault develops. Driven from a standard 12 V DC supply, the sensor is installed vertically in the flow being monitored. It is fitted using Nylon rivets. Omron
www.omroncomponents.co.uk Tel: +44(0) 8707505662

Analyser for GSM handover

Tektronix is offering a 2.5 G and 3 G wireless communications signal analyser that combines vector signal analysis and spectrum analysis in one instrument. The WCA200A analyser features simultaneous multi-domain analysis, frequency mask trigger, unmatched memory capture (up to 10 seconds of WCDMA signals), and rapid adjacent channel leakage ratio measurement speeds. The analyser is equipped to perform everyday RF characterisation
and verification, it also allows engineers to analyse WCDMA and GSM handovers by analysing WCDMA compressed mode, unique in any class of communications analyser. The WCA200A series includes the WCA230A (3GHz) and the WCA280A (8GHz). It features a frequency mask trigger which has both frequency and amplitude parameters that can be set independently of one another. The instrument triggers only on signals that meet the amplitude settings within the chosen frequency ranges. Two trigger amplitude levels can be specified: one with the "masked" frequency area and a different level for all other frequency bands. Acquisition memory is up to 256 Mbytes supporting acquisitions up to 10 seconds in length at the 5 MHz span required for W-CDMA work. Tektronix
www.tektronix.co.uk
Tel: +44(0) 1344392000

Lightning and surge protection for UHF communications

PolyPhaser now offers UHF communications lightning and surge protection with its UF50 surge protector. Available in type N or $7 / 16$ DIN connector configurations, both models are fully weatherproof and capable of handling up to 750 W (single channel). The high frequency devices offer very low

Dot matrix displays have 512 LEDs

Rohm has expanded its family with two low weight, highly of dot matrix LED displays integrated 512 dot single

colour design and implementation of large scale indoor and outdoor display screens. Combining high brightness yellow or high brightness orange output with low current operation, the LUM-512Hx35I singlecolour 16×32 displays feature 512 chip LEDs and all of the necessary driving and control circuitry for operation.
Rohm
www. rohm.co.uk
Tel: +44(0) 1908282666

throughput energy. The UF series can be used for transmitters as well as receivers. It also provides positive and reverse voltage protection. Both models feature multi-strike and multi-carrier capability, and are designed to operate over a temperature range of -40 to $+85^{\circ} \mathrm{C}$. Surge throughout has been measured at significantly less than $5 \mu \mathrm{~J}$ at $3 \mathrm{kA}(8 / 20 \mathrm{~ms}$ waveform).
PolyPhaser
www.polyphaser.com
Tel: +44(0) 7818457998

STN LCDs get low power backlights

Trident Displays is offering an upgraded range of mono and colour STN LCD modules, featuring improved, long life, low power backlights, and wider operating temperature ranges. The first module to be upgraded is the Hitachi SP14N 240×128 5.5 in . mono LCD, with CCFL (cold cathode fluorescent lamp) backlight, giving $150 \mathrm{~cd} / \mathrm{m}^{2}$ and up to 50,000 hours useful life. a feature is the display's working temperature range of -10 to $+60^{\circ} \mathrm{C}$. The module has the Toshiba T6963C controller on board, giving an 8 -bit interface and a range of built-in character sets to simplify host system design. There is also a mechanically compatible touchscreen equipped version, the Hitachi SP14N001-ZIA, which has a 4 -wire resistive analogue touch sensor factorybonded to the display.
Trident Displays
www. tridentmicrosystems.co.uk Tel: +44(0) 1737771908

TELFORD ELECTRONICS

Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford, Shropshire TF6 6DJ, UK
Tel: (0044) 01952605451 / 670178
Fax: (0044) 01952677978
E-mail: telfordelectronics@ btinternet.com / marc.007@btinternet.com / annie.007@ btinternet.com Web: http://www.telford-electronics.com

SHOP NOW OPEN TO THE PUBLIC EVERY SATURDAY FROM 9AM - 2PM

Second User -

Electronic Test and Measuring Instruments - DC to $100 \mathbf{G H z}$

FANTASTIC BARGAINS TOBE HAD

Please visit our regularly updated web site for all your equipment needs.
We have a clearance/graveyard site with goods from as little as £15.00!!!

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITISE YOUR SLIDES
 (using a video capture card)

"Liesgang diatv" automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a phono plug (SCART \& BNC adaptors are available). They are in very good condition with few signs of use. For further details see www.diatv.co.uk $\varepsilon 91.91+\mathrm{vat}=£ 108.00$ All neameras all with 512×582 pixels $8.5 \mathrm{~mm} 1 / 3$ inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10 and 12 v DC 150 mA .
47MIR size $60 \times 36 \times 27 \mathrm{~mm}$ with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye\}.. $£ 37.00+\mathrm{vat}=£ 43.48$ 30 MP size $32 \times 32 \times 14 \mathrm{~mm}$ spy camera with a fixed focus pin hole lens for hiding behind a very small hole.. $£ 35.00+v a t=£ 41.13$
40 MC size $39 \times 38 \times 27 \mathrm{~mm}$ camera for ' C ' mount lens these give a much sharper image than with the smaller lenses $£ 32.00+$ vat $=£ 37.60$
Economy C mount lenses all fixed focus \& fixed iris
VSL1220F 12 mm F1.6 12×15 degrees viewing angle.. \qquad $. £ 15.97+v a t=£ 18.76$ VSL4022F 4 mm F1. 2263×47 degrees viewing angle..................... $£ 17.65+$ vat $=£ 20.74$ VSL6022F 6 mm F1.22 42×32 degrees viewing angle. $\varepsilon 19.05+$ vat $=£ 22.38$
 Better quality C Mount lenses
VSL1614F 16 mm F1.6 30×24 degrees viewing angle.................... $£ 26.43+$ vat $=£ 31.06$ VWL813M $8 \mathrm{~mm} \mathrm{F1.3}$ with iris 56×42 degrees vewing angle........ $£ 77.45+$ vat $=£ 91.00$ 1206 surface mount resistors E12 values 10 ohm to 1 M ohm 100 of 1 value $£ 1.00+$ vat 1000 of 1 value $£ 5.00+$ vat
866 battery pack originally intended to be used with an orbiel moblie telephone it contains 10 1.6Ah sub C batteries (42×22 dia the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily..

Please add $1.66+$ vat $=\mathbf{\Sigma 1 . 9 5}$ postage \& packing per order

JPG ELECTRONICS

Shaws Row, Old Road, Chesterfield, S40 2RB Tel 01246211202 Fax 01246550959 Mastercard/Visa/Switch Callers welcome 9:30 a.m to 5:30 p.m. Monday to Saturday

CIRCUITIDFAS

Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process.
This includes the odd solution looking for a problem - provided it has a degree of ingenuity.
Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly. Where software or files are available from us, please email Jackie Lowe with the circuit idea name as the subject.
Send your ideas to: Jackie Lowe, Highbury Business Communications, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey SM3 8BZ
email j.lowe@highburybiz.com

A new voltage-mode active-only universal filter

We propose here a new voltage-mode universal filter implementing all of the five generic filtering signals. It involves only active components and is fully integratable.
Two op-amps and four operational transconductance amps are used and the circuit has three inputs and outputs. For simultaneous implementation of low-pass, band-pass and high-pass filtering functions, the circuit requires only one input, resulting in economy in chip area. The other filtering responses - all-pass and notch - are realised through suitable selection of inputs.
Offering independent electronic tuning adjustment of the filtering characteristics, the circuit needs no external passive components. This makes it integratable and programmable which highly suits IC construction.
Circuit designers endeavour to develop multifunction filter structures using the advantages offered by IC design techniques. But the continuous time filters reported in the literature are constrained. Typical problems are as follows.

- They use a large number of components.
- They use components having more spread than is permissible in IC design
- They use components that need to be matched
- They don't have an independent electronic tuning feature

for all filtering characteristics
- They don't realise all five standard filter responses
- They require changes in topology and/or use of additional components to implement all five standard filter functions.

The proposed circuit besides circumvent these problems. Electronic adjustment of ω_{0} and Q is achieved in a sequential manner through g_{3} and g_{2} respectively. Passband gain H is also electronically controllable through g_{1} and its adjustment is independent of preset values of ω_{0} and Q.
For biquadratic filtering, the number of op-amps required is two and to electronically adjust ω_{0}, Q and H in a non-interactive manner, three OTAs are needed.
To stabilise the performance factors against temperature variations, a fourth OTA is inevitable.

How it works

A routine analysis of the proposed filter circuit shown yields the following voltage transfer functions:

$$
\begin{align*}
& V_{01}=\frac{s^{2} V_{i 1} g_{i}+s\left(V_{i 2} B_{1} g_{2}-V_{i 3} B_{2} g_{3}\right)+V_{i 2} B_{1} B_{2} g_{3}}{D(s)} \tag{1}\\
& V_{02}=\frac{-s V_{i 1} g_{i} B_{1}+s V_{i 2} B_{1} g_{1}+V_{i 3} B_{1} B_{2} g_{3}}{D(s)} \tag{2}\\
& V_{03}=\frac{V_{i 1} g_{i} B_{1} B_{2}+s V_{i 3} g_{1} B_{2}+\left(V_{i 3} g_{2}-V_{i 2} g_{1}\right) B_{1} B_{2}}{D(s)} \tag{3}
\end{align*}
$$

Here:

$$
D(s)=s^{2} g_{1}+s B_{1} g_{2}+B_{1} B_{2} g_{3}
$$

The open-loop gain of op-amp at higher frequencies is assumed to be of the form:

$$
\begin{equation*}
A_{i}(s)=\frac{B_{i}}{s} \quad(i=1,2) \tag{4}
\end{equation*}
$$

where B_{i} is the gain-bandwidth product of the $i^{\text {th }}$ op-amp. Equations (1), (2) and (3) reveal the capability of the

T \& M EQUIPMENT

HEWLETT PACKARD

8653D/06/010 Vector Network Analyser with 006 \& $010(6 \mathrm{GHz}+$ time-domain options) $£ 10000$ $+8753 \mathrm{~B}(3 \mathrm{GHz}) 8752 \mathrm{~A}(1.3 \mathrm{GHz})$ in stock

- ralfe electronics - 1 protessiona Temp - professional electronic test \& measurement equipment -- Unit One, Olds Close, Olds Approach Ind Est, Tolpits Lane, WATFORD - Herts WD18 9RU - ENGLAND • Tel (+44) $01923721396 \cdot$ Fax (+44) 01923721402 www.raffe-electronics.co.uk email:ralfe.electronics@ralfe-electronics.co.uk

EST
45
YRS

AGILENT TECHNOLOGIES

 15534 A digitising oscilloscope card
33259 Inction generator with: $\mathbf{0 0 1}$ 33120 A 15 MHz tunction penerato
 37777 SDH PDH Lest sest 37717A SDH.PDH lest Sets Himpedance analyser 4192A H Impedace analyser ...
436A microwave power meter win 8481A sensor 4350 . 84000
 4936 A imaiment measuring sel (fiMS). 53310A modulation analyser (101030 (>10k). 85133F 2.4 mm fiexble test port cable set (IISt 4249) \qquad -

8970A noise figure meter with 346 A noise source
E8358A 300ikrl. 96 Hz network analyser (48k).

ISO9002 ACCREDITED STOCKIST MEASUREMENT \& TEST EQUIPMENT
circuit to implement a variety of filtering functions by choosing different combinations of inputs and outputs as depicted in the Table.
Filter performance factors are:

$$
\begin{align*}
& \omega_{0}=\sqrt{B_{1} B_{2}} \frac{g_{3}}{g_{1}} \tag{5}\\
& Q=\frac{1}{g_{2}} \sqrt{B_{2} g_{3}} \frac{g_{1}}{B_{1}} \tag{6}\\
& H=\frac{g_{i}}{g_{1}} \tag{7}
\end{align*}
$$

Equations (5), (6) and (7) reveal that ω_{0}, Q and H can be tuned via the transconductance gains of the operational transconductance amplifiers. To achieve non-interactive tuning of ω_{0} and Q it is essential to first tune ω_{0} through g_{3} and then Q through g_{2}
The pass-band gain, H, can be controlled by g_{i} and its adjustment does not affect the values of ω_{0} and Q. The transconductance gain, g_{i}, helps to

Table. Relationship between inputs, outputs and filter functions.

Input	Output		
	V_{01}	V_{02}	V_{03}
$V_{i 1}$	$H P$	$B P$	LP
$V_{\text {i2 }}$		$B P$	LP
$V_{i 3}$	$B P$	$B P$	
$V_{i 123}$	$A P /$ notch		

Here, $V_{i 123}$ implies that inputs 1, 2 and 3 are tied together, i.e. $V_{i 1}=V_{i 2}=V_{i 3}$. The conditions for implementing all-pass and notch responses are $\mathrm{B}_{2} \mathrm{~g}_{3}=2 \mathrm{~B}_{1} \mathrm{~g}_{2}$ for all pass and $\mathrm{B}_{1} \mathrm{~g}_{2}=2 \mathrm{~B}_{2} \mathrm{~g}_{3}$ for a notch.
stabilise these parameters against temperature variations. The active sensitivities of ω_{0}, Q and H are given as:

$$
\begin{aligned}
& S_{B_{1} \cdot B_{2}, g_{3}}^{\infty o 0}=-S_{8_{1}}^{o o 0}=0.5 \\
& S_{8_{2}, g_{3} \cdot g_{1}}^{Q}=-S_{B_{1}}^{Q}=0.5 \\
& -S_{g_{2}}^{Q}=1 \\
& S_{g_{1}}^{H}=-S_{g_{1}}^{H}=1
\end{aligned}
$$

which are less than or equal to unity in magnitude. N. A. Shah and S. Z. Iqbal Department of Electronics \& Computer Sciences The University of Kashmir Srinagar
India

References

1. A K. Singh \& R. Senani, 'Low-component-count active-only immitances and their applications in realizing simple multifunction biquads,' Electron. Lett., 1998, 34, (8) pp. 718-719.
2. Takao Tsukstani, Masami Higashimura, Yasuki Sumi \& Yutaka Fukui, 'Electronically tunable current-mode active-only biquadratic filter, Int. J. Electron., 2000, 87, (3), pp. 307-314
3. Takao Tsukstani, Masami Higashimura, Yasuki Sumi \& Yutaka Fukui 'Voltage-mode active-only biquad,' Int. J Electron., 2000, 87, (12), pp. 1435-1442.
4. Takao Tsukstani, Masami Higashimura, Nobuo Takahashi, Yashuki Sumi \& Yutaka Fukui, 'Novel voltage-mode biquad without external passive components,' Int J Electron., 2001, 88, (1), pp. 13-22.
5. Takao Tsukstani, Masami Higashimura, Nobuo Takshashi, Yasuki Sumi \& Yutaka Fukui, 'Novel voltage-mode biquad using only active devices,' Int J Electron., 2001, 88, (3), p. 339.

Making a stop-less digitally programmable potentiometer

Digitally-programmable potentiometers with an increment/decrement interface have limits or stops when moving the wiper in one direction or the other. A number of applications require the wiper to automatically reverse direction and move in the new direction.

The circuit shown is a stop-less digitally programmable potentiometer. Pulses that drive the /INC pin of the DPP are counted by a seven-bit binary counter, U_{1}. Output from the counter is compared by a magnitude comparator, U_{2}, with a fixed number.

Controlled by an input pulse train, this digital potentiometer has no end stops. When its resistance reaches minimum or maximum, the resisfance decrement or increment changes direction.

FRUSTRATED!

Looking for ICs TRANSISTORS? A phone call to us could get a result. We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SI 2SK 3N 3SK 4N 6N 1740 AD ADC AN AM AY BA BC BD BDT BDV BDW BDX BF BFR BFS BFI BFW BFX BFY BLY BLX BS BR BRX BRY BS BSS BSV BSW BSX BT BTA BTB BRW BU BUK BUT BUV BUW BUX BUY BUZ CA CD DX CXA DAC DG DM DS DTA DTC GL GM HA HCF HD HEF ICL ICM IRF J KA KIA L LA LB LC LD LF LM M M5M MA MAB MAX MB MC MDA J MJE MJF MM MN MPS MPSA MPSH MPSU MRF NIM NE OM OP PA PAL PIC PN RC S SAA SAB SAD SAI SAS SDA SG SI SL SN SO STA STK STR STRD STRM STRS SV1 T TA TAA TAG TBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU UUA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + many others

Please ask for our Free CD Rom STOCK LIST. WE STOCK A MASSIVE RANGE OF COMPONENTS!
Mail, phone, Fax, Credit Card orders \& callers welcome.

Cricklewood Electronics Lid

40-42 Cricklewood Broadway, London NW2 3ET Tel: 02084520161 Fax: 02082081441 www.cricklewoodelectronics.co.uk E-mail: sales@cricklewoodelectronics.com

Electronics World, Highbury Business Communications, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey, SM3 8BZ Note that not all issues are available and please allow 21 days for delivery.

A quantum Leap in

 EMBEDDED CONTROLLERS Quick omine
SUPERCONTROELERS

Dur range provides:-
The fastest 68000 based Core up to 66 Mhz .

Extensive 1/0:- Serial, IrDA, SPI, ${ }^{2}$ C, Analogue, Timers/Counters, RTC, etc.

- Large Memory Capacity:Flash, SRAM, DRAM.
Supports:-
Mono \& Colour LCD's, Touch Panels \& Keypads, Very Low Power.

ALSO LOW COST

DEVELOPMENT

CHarget easily \& quickly.
FUYANSI 'C' compiler, assembler \&Sthker all Windows32 based.

- Source Level Debug.
-Full Driver Support with Libraries.
thime Multitasking OS with a free run time licence. - Free Unlimited email support.

WWW.cms.uk.com

see our web site for full details
CAMBRIDGE MICROPROCESSOR SYSTEMS LTD

MAITRS to the editor

Letters to "Electronics World" Highbury Business Communications, Anne Boleyn House, 9-13 Ewell Road, Cheam Road, Surrey SM3 8BZ e-mail j.lowe@highburybiz.com using subject heading 'Letters'.

Abstract

The EMC Directive My congratulations to Ivor Catt for blowing the whistle! He is absolutely correct in stating that the directive fails to achieve its stated purpose. I am involved in building industrial control systems (a mixture of microprocessor equipment and PWM drives) comprised entirely of CE marked equipment. The directive should have ensured that electrical noise is not a problem but, in fact, problems are very common and very expensive to fix in the field. A simple example is that of the humble relay, operating once or twice per shift, its un-suppressed contacts can cause havoc among state-of-theart gizmos but the EMC directive completely ignores it! I recently came across the following quotation, which seems to

Motor Identified

I met several tape recorder motors of this type, (Identity Crisis, EW letters, March) made by Papst in Germany, while developing a studio tape deck. They have an external rotor which gives high inertia for smooth quiet operation. The external rotor also serves to contain the hum field. These motors usually have three identical windings in a star configuration, with no external connection to the star point. They are used with a permanently connected capacitor of about 2 microfarads; a 'motor run' mains rated type. One pair of wires is connected to the mains and the third is connected to line or neutral via the capacitor. Swapping the capacitor connection between line and neutral will reverse the motor. There are synchronous types for use as the capstan motor and eddy current types for spooling. The best 'three motor decks' used one for capstan drive and one for each spool, all by direct drive, which made the deck mechanics very simple and therefore robust. The capstan motor can be made a switched pole type to give two tape speeds. One professional deck intended for tape editing had the spool motors connected to either end of a large (20watt!) wire-wound pot, with the slider connected to the supply. With the deck in 'variable rewind' mode, the pinch roller was lifted from the capstan and the tape stayed in contact with the heads while the spooling speed could be continuously varied from full speed forwards to full speed rewind. The manual control was so smooth that it was easy to find an edit point and stop the tape on it.

Brian Johnson

London
me to explain a great deal: "Europe must set standards worldwide just as it did in the past. We must take care not to allow other countries and regions to set international standards and thereby pre-empt the markets for themselves. European standardisation is a tool for creating competitive advantage.. and should come to dominate the contents of international standards"
SIEMENS (Chairman of the Supervisory Board) Business Week October 1995
Clearly, it is irrelevant whether the directive works or not provided it acts as a trade barrier! My suspicions now fall on ISO9000 and its kin.

Graham Elvis

Cannock
Staffordshire
UK

Fatally Flawed EMC

As an engineer responsible for EMC compliance of radio products from a small company, I am well aware that many EMC rules are nonsense. I am in the position of having to improvise all kinds of test at minimum cost, which if done 'by the book' would make our products so expensive that there would be no market.

One prime example of EMC nonsense is the measurement of spurious emissions from transmitters. The ratio of maximum permitted spurious emissions to carrier power is the same regardless of whether you are testing a broadcast transmitter with an ERP of 100 kW or a low power device with a maximum RF output of 2 mW . With a 2 mW transmitter, you can have trouble even being able to measure the required level of spurious, because it is down in the noise floor of many spectrum analysers!

I have seen how the system works when these limits are set. For each type of product there is a committee of the great and the good from government departments, interested companies and "EMC Magicians" Certain of these Magicians crop up
on many different committees and, as only they know the buzzwords, they can often single handed set standards for areas with which that they have had no contact. I cannot see that fighting the resulting mess in the courts could help. The technical issues would be beyond the grasp of the average juror (or judge?) and the prosecution only has to prove that the law has been broken, not that the law is sensible or just.
Where there is a serious gaff, it can be caught at the "draft for public comment" stage or with an amendment. Many EMC documents do get amended. Some are first issued with glaring mistakes, which show that nobody on the relevant committee has read the final draft! Once a standard has been in force for a while it is harder to get any change. The emphasis on measurements rather than calculation for approvals is understandable because in the real world of leakage, inter-modulation, production variables, etc.

Theremin lives

This is a response to the letter from Robin Clark (UK) in the Jan '03 issue of Electronics World. (they arrive a few weeks late here in the states!)

A Kit of the Theremin you wished to see in a future issue is available (and was recently highlighted in a series of articles in "Poptronics" (electronics magazine here in the states)

The kit comes from PAIA Music Electronics (www.Paia.com)
3200 Teakwood Lane
Edmond, OK
73013, USA
Voice: (405)-340-6300
Fax: (405)-340-6378
The complete kit (Kit \# 9505K), including tax, shipping, handling, etc, is $\$ 150$ US
Ray Gordon
Larkspur
California
USA.
measurement of some kind is the only proof that EMC measures have had any positive effect. For the sake of standardisation some of the test procedures do seem bizarre and tell you little that is relevant to the real world. The way to better and more realistic standards is better education on EMC matters for all involved in the process so that a single "expert" on a committee cannot just trot out his favourite numbers unchallenged.
All this is rather missing the point. Much of the recent EMC activity is concerned with the imposition of standards throughout the EC as an end in itself to regulate trade. The 'CE' mark on products is just a visible symbol that Brussels has cocked its collective leg and marked its territory. Actual compliance is a secondary matter. In most areas, manufacturers can now 'self certify' products. This was rendered necessary because third party testing for every minor change to every product proved to be hopelessly impractical. Now, as before, only the worst excesses ever come to light and I suspect many are hushed up or ignored if egg on government faces is involved. The words "TETRA"

Mobiles in fuel stations

Who said that mobile phones were a safety hazard at petrol stations? Their use is only banned because some early analogue (high power) models could upset the electronic counter in some petrol pumps and hence were used by the criminally ingenious to obtain free petrol. That's all!

Richard Black,

London,

UK
I don't think that the current worry about the use of mobile phones in filling stations is based on any known characteristic of these devices. The whole panic probably dates back some 20 years or so, during the brief craze for illegal AM CB. (Whatever happened to CB?)

Some comedians were not content with breaking the law, but wanted to do it in spades; to this end they installed RF pa stages, spewing out several tens of watts, in their car
boots. To their delight they found that this much RF would immobilize the electronics in the pretty new digital petrol pumps which had become fashionable - result, free petrol!
This should have surprised no one; at work we had already found that you could not run even a properly engineered 20 W transmitter from the new generation of lab power supplies with programmable everything, the soup just got into the inputs of all the chips where it was rectified on the spot and blanked out all signals. Anyway, the upshot was a big panic and a general prohibition on the operation of all transmitters in petrol stations. No doubt pump designs have been refined in the meantime and mobile phones do not present any threat, but it is nice to have them banned, if only on social grounds.

Michael Hawkins

Farnborough
Hants
UK

and "Channel 5 " spring to mind.

 Attention to good EMC practice is essential to make certain products work properly or even at all, regardless of any regulation, but there are many managers andengineers who still regard EMC as an bolt on extra. Good EMC
performance must start on the 'back of the envelope' with the first ideas of a new design.
Name and address supplied.

On the demise of Electronics magazines

One of the major problems facing electronics magazines, including Electronics World formerly Wireless World, is that electronics has become a mature industry. Let me explain.
In the early 20th century many of the people fortunate enough to have cars, used to do all the work on maintaining them, often rebuilding them. Today there are many more cars, most are factory built, and only the dedicated few ever bother to do much more than put fuel in. The electronics industry is similar. At the time when I became interested in electronics, the early 1960's, transistors were just starting to make an impact in domestic equipment, although most of it was run on thermionic valves. The great boom of magazines was built on this upcoming technology and many new designs were devised to take advantage of this new technology. The production of both analogue and digital ICs, largely a byproduct of the cold war and space race, continued to bolster interest and articles for the electronics magazine. The introduction of microprocessers in the 1970's caused the launching a whole new raft of magazines with hobby computing as the main interest.
One incentive for the hobbyist was that often, new designs, and leading edge domestic products could be built from their component parts more cheaply, or certainly not much more expensively, than a
comparative commercial product. Since then most of the factories for both ICs and domestic products have been re-sited in third world countries, where people are paid a pittance to run production lines turning out well tested and proven designs. Apart from the few purists who are prepared to spend more time, effort and money on building things themselves, even many radio amateurs now rely heavily on manufactured equipment. One can today for instance buy a DVD recorder for $£ 400$, which yields better recordings than the state of the art professional video recorders of the late 1960's which were then around $£$ _ million. Today the only real incentives are for one off designs, where no commercial product exits, or the market is so limited as to make commercial products comparable or more expensive than home built devices. However there will always be a small number of people, (like those who still build their own cars) who will want the satisfaction of building their own electronic devices no matter what the cost. Whether an electronics magazine such as EW can find enough to sustain it on that basis remains to be seen.
I agree that current education methods may not help, and that there must surely be a role in teaching fundamentals. Also there must be a role in exploring the latest developments, thinking, theories etc. But the great designs, which sustained $E W$ (then WW) e.g. Lindsey Hood's, amplifiers, cassette recorders, FM tuners, and the great $W W$ colour TV design, are no longer relevant. Much of today's
consumer electronics requires factory facilities and specialist equipment to produce and set up. Most designs are proved in software, before ever a prototype printed circuit board is produced.
What concerns me is that today's young graduates using many of these design tools do not understand fundamental principles and are not taught how to do rough and ready calculations to know when the software, or calculator they are using, has given them a wrong answer. Speak to then about \log tables, slide rules, etc. and you get a glazed blank look. Likewise some of the people using CAD for audio designs fail to appreciate the importance of earth return routing for instance.
I hope this letter will spark some debate as to how a magazine like $E W$ can survive in the modern mature electronics industry, as I for one would miss it.
Regarding C. Holwill's "Identity Crisis" (letters March). Many tape recorders used what were essentially 3 phase induction motors sometimes with a permanent magnet in the rotor, to make it synchronous to mains. The single-phase mains was then 'capacitor split' using a large capacitor 4 to $8 \mu \mathrm{~F}$ and the inductive reactance of the windings, to provide a pseudo 3 phase. This was a reliable way of getting a constant speed for the tape transport.

Ray Lee BSC.

Gateshead
Tyne \& Wear UK

Fig. 1. RX-320
blank front panel with the top panel removed showing the RF board.

Ten-Tec RX-320 DSP radio

Abstract

The RX-320 DSP PC radio is manufactured by Ten-Tec located in Tennessee, USA. It is a computer controlled general coverage receiver with a frequency coverage of 100 kHz to 30 MHz . Reception modes are AM, USB/LSB and CW. Demodulation of the radio signal is all done entirely by Digital Signal Processing (DSP) software in the RX320. The received audio from the radio is usually fed through the line input of the computer's sound card as the radio does not have a built-in loudspeaker. Review by Roger Thomas

The radio is not a new product and has been on sale in the USA for a few years. It was not originally available to UK or European radio enthusiasts as it was not CE approved. This radio has now got CE approval.
The distributor for Ten-Tec products in the UK is TenTec DIRECT, part of AOR UK Ltd. The advantage of dealing with AOR is that they are also a radio manufacturer and their technical support and after sales service is highly regarded. Indeed, when I was originally considering this radio I contacted TenTec DIRECT and they were prepared to take apart their
demo receiver to check the device number of one of the ceramic filters for me and to measure and confirm the last IF frequency was 12 kHz . Why this was important will be explained later.

Black box

The RX- 320 radio is the proverbial 'black box' and is constructed using an aluminium chassis with the top and bottom ' U ' shaped panels made of steel, all sprayed black. Even the telescopic aerial is black! The front panel is entirely blank except for the Ten-Tec logo and the two screws that attach the internal aluminium to the panel. The only control is an on-off
toggle switch located on the rear panel.
Since all the radio's control functions and signal processing is done via on-board DSP the number of components required, and therefore cost, is significantly reduced. Consequently the radio has an excellent price to performance ratio but this makes the operation of the RX-320 totally dependent on the PC and the controlling program.

Fig. 2. RX-320 back panel showing connections and the all important CE mark (top panel removed showing the RF board).

Components supplied

The RX-320 radio comes with a mains power supply adapter - output rated at 12 volts at 500 mA , phono to BNC aerial adapter, phono plug for external aerial, open ended lead with power supply plug, 9 -pin serial computer lead, 3.5 mm stereo jack audio lead, telescopic aerial (black). In fact all the necessary cables are supplied so that connection and operation of the radio straight from the box is possible.
Ten-Tec Windows control software (version V1.29) was supplied on $3.5^{\prime \prime}$ floppy disk (a rarity these days) and also included on the disk is a programming guide (rx 320 prg) and circuit diagram (rx320tec) both in PDF format. This software and both documents are also available for download from the Ten-Tec web site.

User manual

The RX-320 PC radio comes with a 31 page booklet which is mostly an overview of the operation of the PC control software and includes an 'Introduction to Short Wave Listening' written by the late Joseph J. Carr, K4IPV. As it was written entirely for North American users some of the frequencies and descriptions do not apply to the UK or Europe. There are no technical details regarding how the radio or DSP operates.
This user's manual was written when the radio was first sold (1998) but has not been updated since, there are references to Microsoft Windows 3.1 and 95 but no mention of Windows 98/ME/XP, etc. Also, some of the control program examples and text refer to a 6 kHz bandwidth filter, originally this was the widest audio filter but an 8 kHz filter option was added later. This also explains the inconsistent filter numbering Fig 4.

Software

The software is easy to use and most functions do what is expected and obviously the layout is designed to resemble a real radio. When running the Ten-Tec Windows program the 'radio', 'spectrum' and 'memories' buttons toggle the visibility of the appropriate form. Figure 3 shows the screen of the Ten-Tec control program with the memories form enabled and a completed spectrum scan of part of the 31 m broadcast band, centred on the BBC World Service transmission. The strong radio signal next to the BBC signal is Radio Bulgaria on 9.40 MHz .
As can be seen, the top portion of the RX-320 control window has on the left the (optional) signal strength

Fig. 3. Ten-Tec RX-320 control program screen.
display, to the right of the frequency display there are the values for the various receiver options, local and UTC time.

Selectivity

To the left of the tuning knob are the buttons for audio bandwidth selectivity and any of these values can be selected irrespective of mode. The DSP audio filtering works well, with the 8 kHz audio bandwidth normally selected for medium wave reception. If there was adjacent channel interference, or when listening to short wave, the 6 kHz or 5.1 kHz option usually worked well. The various filters around 2 kHz are designed primarily for listening to amateur radio SSB signals. Narrow filters are used for Morse and some data transmissions. The program only shows five filter values but these can be any five out of the 34 different audio filter settings.
Audio quality from the radio is very good considering it has been processed and generated by the DSP, but what you hear is dependent on the quality of the soundcard and loudspeakers that are connected to your PC.

Memory

Further to the left of the selectivity options are the memory functions, the three buttons duplicating the options found on the memories form. Above these buttons is the name of the radio station (if available) that the RX-320 is currently tuned to.
On the memory form is a list of radio stations and this information can be displayed in various ways. The frequency list should be in ascending order but there is a numerical software bug. Pressing the 'add' button pops up an input form that permits the user to enter the radio
station name, frequency, mode, bandwidth, country, language and other information. The other buttons on this form allow individual entries to be deleted or amended. These are all useful features that allow a user to build and maintain a list of favourite radio stations.
The option of 'auto tune', when enabled, will automatically tune to the desired frequency and mode by a

Figure 4 list of audio filter bandwidth	
filter	bandwidth
0	6000 Hz
1	5700 Hz
2	5400 Hz
3	5100 Hz
4	4800 Hz
5	4500 Hz
6	4200 Hz
7	3900 Hz
8	3600 Hz
9	3300 Hz
10	3000 Hz
11	2850 Hz
12	2700 Hz
13	2550 Hz
14	2400 Hz
15	2250 Hz
16	2100 Hz
17	1950 Hz
18	1800 Hz
19	1650 Hz
20	1500 Hz
21	1350 Hz
22	1200 Hz
23	1050 Hz
24	900 Hz
25	750 Hz
26	675 Hz
27	600 Hz
28	525 Hz
29	450 Hz
30	375 Hz
31	330 Hz
32	300 Hz
33	8000 Hz

single left click of the mouse on the name of the radio station, or double click if auto tune is disabled. Alternatively, select the radio station and press the 'tune' button. This allows quick switching between stations that you listen to regularly or to monitor the same radio station broadcasting on different frequencies.

Mode

To the right of the tuning knob is the mode selection. When a mode is selected a default bandwidth and frequency step can also be automatically selected. This feature is enabled or disabled in the options menu. When clicking on AM mode the 8 kHz filter and 5 kHz frequency step can be automatically selected, for LSB/USB mode the 2.7 kHz filter is selected with 100 Hz frequency step, and 600 Hz filter for CW with 100 Hz step. Changing the mode can also change the tuned frequency. For example, if the radio is tuned to 909 kHz then pressing AM mode will change the frequency to 905 , the RX320 will re-tune down to the nearest frequency (which is not necessarily the nearest frequency) divisible by 5 or 0 . This is inconvenient when tuning to long or medium wave and then switching from another mode. If the RX-320 is already on such a frequency, then no re-tuning occurs.
The RX-320 can operate with slow, medium or fast AGC depending on the current propagation conditions. At power-up the radio will default to medium AGC mode. Fast AGC
option is useful for SSB signals.
To the right of the mode options are the step selection options. There are actually 12 different frequency steps available, although only five steps are displayed. Steps available are 1 Hz , $5 \mathrm{~Hz}, 10 \mathrm{~Hz}, 50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 500 \mathrm{~Hz}$, $1 \mathrm{kHz}, 2.5 \mathrm{kHz}, 5 \mathrm{kHz}, 10 \mathrm{kHz}, 50 \mathrm{kHz}$, or 100 kHz . Note that there is no provision for 9 kHz steps for UK listeners tuning long or medium wave. Changing the frequency step can also change the frequency the RX-320 is tuned to according to the step selected.

Tuning

A fundamental operational requirement is to be able to alter the frequency that the radio is tuned to and there are a number of ways of achieving this. This demonstrates the advantage of computer control. Below the frequency display is a linear scale, the actual frequency coverage depends on the mode selected. The red line in the middle indicates the currently tuned frequency. This scale can be used to quickly retune the receiver by holding down the left mouse button and dragging the scale, or double left click at a particular frequency.
At the end of the scale are right and left arrows. When these arrows are clicked the radio will tune in steps based on the currently selected step size in the direction of the arrow. With the double arrows the radio is tuned by ten times the step size. By placing the cursor on the upper half

Fig. 5. Example of RX-320 control software (written by George Privalov)
of the knob the receiver tunes up in frequency by the selected step size for each left mouse click; move the cursor to the lower half of the knob to tune the radio down in frequency. The receiver tunes continuously if the left mouse button is held down. Using the up and down cursor arrows on the keyboard has exactly the same effect. A right mouse click while the cursor is over the tuning knob brings up the frequency step selection menu.
Direct frequency entry is also possible via the numeric keypad. Type in the frequency and press ' k ' for frequency in kHz or press 'return' for frequency in MHz. For frequencies below 1 MHz the software works out the correct frequency so it does not matter whether ' k ' or 'return' is pressed. To tune the radio to long wave Radio 4 typing ' 198 ' and pressing ' K ' or 'return' on the keyboard tunes the radio to 198 kHz (0.198 is displayed). Unfortunately there is a bug in the software when entering medium wave frequencies over 1000 kHz . For example, typing in ' 1170 ' and pressing 'return' tunes the radio to 0.001170 MHz (i.e. 1170 Hz !). Instead type ' 1170 k ' or ' 1.170 ' and press 'return' and the radio will tune as expected.

Time

Clicking either button marked TIME/UTC brings up a list of frequency and time signal stations, such as the American WWV, WWVH ($2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$, 15 MHz , and 20 MHz) and Canadian CHU ($3.330 \mathrm{MHz}, 7.335 \mathrm{MHz}$, 14.670 MHz). As these broadcast on short wave they may be audible in the UK when propagation conditions allow. These stations can be used to check the RX-320 calibration and a receiver frequency offset can be entered on the options form.
The CHU broadcasts on 14.670 MHz give the time both in voice and data and this is a useful guide to current propagation conditions if you are interested in amateur radio on 20 metres. When Ten-Tec refers to world time they mean time in UTC.

Displays

There is a software option to display the received station's signal strength. This analogue meter has a 0 to 80 scale, representing a range of approximately 80 dB , rather than the more usual ' S ' units format. the lower needle indicates the current received signal strength while the upper needle shows a peak average. I did not find this meter very useful as the needles
spent most of their time at maximum and rarely dropped below 30 . For the most part I left this option switched off.
One of the advantages of controlling a radio by PC is having options like this spectrum analyser. This remarkable feature can display a plot of signal strength versus frequency from scan data generated by the DSP. The sweep bandwidths available are $1.5 \mathrm{MHz}, 750 \mathrm{kHz}$,
$300 \mathrm{kHz}, 150 \mathrm{kHz}, 75 \mathrm{kHz}, 30 \mathrm{kHz}$ or 3 kHz . Sweep time is around 30 seconds, irrespective of scan bandwidth. The receiver audio is muted while the scan takes place.
Once the scan is completed, moving the mouse cursor over the spectrum display will display the frequency and you can tune to that frequency by clicking the right mouse button. The scan centre frequency is the current tuned frequency and each scan will produce a slightly different pattern as the spectrum and signal strength of each radio station is constantly changing. The RX-320 is not accurately calibrated to determine actual signal strength of the individual radio stations.
Nevertheless using the spectrum scan can provide very useful information on the number and signal strength of radio stations broadcasting on a particular band.

Other software

Ten-Tec control software is rather basic in design but quite functional. The weakness of this software is that there is no 9 kHz channel step for long and medium wave. All North American short wave and medium wave broadcasts use 10 kHz channel spacing. However, there are a number of other control programs available which offer different options, including a 9 kHz step (such as the freeware program written by Clifton Turner). Some of these programs are freely available and others are commercial products. Many have an option to integrate to a radio station schedule database. The Ten-Tec web site has a link to this third party software list.
One of these programs (written by George Privalov) features a pseudo AM synchronous mode. If there is a heterodyne (whistle) caused by an adjacent radio station, then using this mode may help remove the annoying tone. As the RX-320 is very stable it is possible to zero-beat with the AM carrier (exalted-carrier type operation) and then either sideband can be selected as it is likely that the interference is only audible on one of the sidebands. The program will track

any small changes in the carrier frequency to maintain synchronisation. When using other control programs in AM mode simply tuning off-frequency will have a similar effect.

RX-320 set-up

The telescopic aerial screws directly into the radio board connector via a hole in the top panel. When fully extended the 6 section telescopic aerial measures only 21 " (530 mm). On the back panel is a standard 9 -pin D-type connector for the PC to RX320 serial communications. A 3.5 mm to 3.5 mm stereo jack lead connects the radio's audio output (marked line out on the panel) to the line input of the PC's sound card. Both of these cables are two metres in length.
The 12 V output of the supplied mains adapter was plugged into the DC input but using a Thurlby power supply the current required by the radio was measured at 335 mA at 12 V . Internally the RX-320 has five volt and ten volt voltage regulators. Installation of the software is straightforward and very quick. The only program set-up required was to select which serial COM port the RX-320 is connected to and the time
offset between local time and 'world time'. The Windows program only requires 796 kB of hard disk space.
The PC's sound card mixer program needed to be run to select the line input option (which has the audio from the RX-320) and to set the overall audio volume. Selecting 'sound and audio devices properties' and enabling the 'place volume in the taskbar' option from the control panel placed the loudspeaker icon on the taskbar (Windows XP). Both the line out and external speaker output levels of the RX-320 are set using the volume control slider on the Ten-Tec software.

Long wave reception

Although the RX- 320 tunes down to 100 kHz , sensitivity on long wave is poor. According to the specification there is reduced sensitivity of around 10 dB on frequencies below 1.5 MHz to prevent overloading of the receiver by strong medium wave radio stations. The RX- 320 does not have any selectable attenuators.
Using the Ten-Tec control software and telescopic aerial, reception of Radio 4 on 198 kHz was noisy ('S' meter reading of 46) and only four long wave stations were audible. An 8 metre external wire was temporarily

Figure 7 Long wave stations received

frequency	radio station	aerial	
		telescopic	long wire
162 kHz	France Inter	38	42
183 kHz	Europe 1	32	38
198 kHz	BBC Radio 4	46	60
216 kHz	Radio Monte Carlo	no signal	30
234 kHz	RTL France	30	40

Fig. 6. Example of RX-320 control software (written by Clifton Turner).
connected to the aerial phono connection and this improved reception. The telescopic aerial is automatically switched out of circuit when an external antenna is connected to the phono antenna (50 ohm input impedance) connection.
The Radio 4 ' S ' meter reading when using the wire aerial was increased to 60 and Radio Monte Carlo on 216 kHz became audible. It is not surprising that this American radio should have a poor performance on long wave as this is not designated a broadcast band within North America.

Medium wave

Reception on medium wave is good using the telescopic aerial. Figure 8 and Figure 9 demonstrate a spectrum scan of part of medium wave centred on 1053 kHz and scanning 375 kHz each side. One scan was taken during the day, the other scan taken at night. Along the top of the scan is the frequency scale in kHz . Looking at the daytime scan starting on the left, and ignoring stations with a signal strength of less than 0.25 , the first radio station is 693 kHz (Radio 5 Live), then 828 kHz (Classic Gold Luton), 882 kHz (Radio Wales),

Format

Style

Filter

Auto

Range

Center Frequency

Track Receiver -

Stop
Sweep

Fig. 8. Spectrum scan taken during the day (10:00 AM).

Fig. 9. Spectrum scan taken during the night (10:00 PM).

909 kHz (Radio 5 Live, again), 1053 kHz (TalkSPORT), 1089 kHz (TalkSPORT, again), 1197 kHz (Virgin Radio), and 1215 kHz (Virgin Radio, again). This scan also confirms the wasted spectrum required to maintain national coverage of a synchronised radio network. Comparing the two spectrum scans show that at night more distant UK stations and European stations become audible. This radio and control software is also designed for short wave reception of both broadcast stations and amateur radio.

Internal construction

The RX- 320 consists of two printed circuit boards, on top is the RF board and underneath is the DSP board. The DSP board controls the RF board functions. These two boards are connected either side to the aluminium middle plate using standoffs. Surprisingly even with the small size of the RX-320, there is still some room inside the black box. Incidentally, the Ten-Tec user's manual states that '... . Taking the covers off does not void the warranty'
The top printed circuit board has all the radio frequency components for amplification and frequency translation. Also the 15 kHz ceramic IF filter is mounted on this board and provides the receiver's selectivity. The telescopic aerial screws into a socket directly mounted on the board, located on the left below the power input socket. Visible on the right edge is the +10 volt regulator mounted on a heat sink.
There are surface mount components located on the underside of this board. These components include a TL082 op-amp used for the 12 kHz IF filter, a 74LS390 counter and an MC145170 PLL chip for generating the local oscillators. After mixing and down converting the radio signals to 12 kHz this signal is then passed to the DSP board.
The DSP board uses the Analog Devices ADSP-2101 DSP housed in a 68 -pin PLCC (Plastic Leaded Chip Carrier) socket. The ADSP-2101 is a 16-bit fixed point DSP processor running at 16.66 MHz with a 60 ns instruction cycle time.
The programmable audio analogue to digital converter and digital to analogue converter functions are handled by an Analog Devices AD1847 housed in a 44 -pin PLCC socket. This device is now obsolete and has not been manufactured in recent years. Between these two components is the DSP software in a

28-pin EPROM (version 1.06).
The external loudspeaker audio amplifier can just be seen bottom left of the picture in a plastic in-line power package, surrounded by capacitors. Top left is the +5 volt regulator. The underside of this board has mostly surface mount digital logic and the Analog Devices RS-232 serial interface driver
As well as signal processing and control, the DSP device provides the serial communication interface to the computer via the 9 -pin connector mounted on the board. The serial speed is rather low at only 1200 baud, with 8 data bits and no parity. In operation there is little data traffic between the PC and radio as there are only 8 commands necessary to control the RX-320 (commands described later).

Triple superhet

RX- 320 radio is a triple superhet design with intermediate frequencies (IF) of $45 \mathrm{MHz}, 455 \mathrm{kHz}$ and 12 kHz . The first local oscillator in the RX320 operates over a range of 45 75 MHz so the incoming radio signal is mixed and shifted up in frequency. The first local oscillator synthesiser is tuned in steps of 2.5 kHz controlled by the DSP with the fine-tuning achieved using DSP software.
The first and second local oscillator frequencies are derived from the same 14.84750 MHz reference crystal. Any frequency errors in the reference crystal causes the second local oscillator to move in the opposite direction of the first local oscillator. The net result is a reduction in overall drift.

Computers and monitors can create a lot of RFI (Radio Frequency Interference) - not good news when you want to control a nearby radio using a computer. After I had connected the RX-320 to my PC, I found a considerable amount of RFI present which made reception on long and medium wave virtually impossible and severe interference on short wave. The higher frequency bands are less affected by RFI.

By switching off the monitor and unplugging various leads the source of the interference was traced to the PC's switch mode power supply, different earthing arrangements were tried but this made no difference. I also tried extending the serial and audio cable and moving the RX- 320 further away from the computer but this made little difference. If the signal meter option is enabled then this constant data exchange can cause some interference to be generated from the serial lead.

Fig. 10. RF board - rear panel at top of picture.

Fig. 11. DSP board.

REVIEW

Fig. 12. Block diagram of $R X$ 320 showing frequency translation.

RX-320 has just been switched on and that the radio needs the mode, frequency, filter, agc (optional), speaker level, line output level parameters to be sent. After receiving all these parameters the audio mute is then switched off.
The RX-320 has two audio outputs marked line out and external speaker; these outputs can be controlled separately or together. The line level output can be connected to the line input of a PC sound card or to an external amplifier and speaker. Although the Ten-Tec documentation refers to volume control when setting the audio output, the command actually refers to an attenuation code.

The lower the number the louder the audio will be (less attenuation). The range is 0 through 63 where 0 represents the loudest setting (no attenuation) and 63 represents the lowest setting. Each step is equal to approximately 1.5 dB of attenuation.

Tuning

The RX-320 DSP is not able to accept a single command instructing the RX-320 to tune to a particular frequency. To tune the radio requires what Ten-Tec refers to as tuning factors. These factors are the results of complicated calculations made by the PC software. There are three factors involved - coarse tuning, DSP

Figure 13 RX- 320 command summary

function	command	options	description
AGC	'G'	1	slow
		2	medium
		3	fast
filter	'W'	see filter table	
mode	' ${ }^{\prime}$ '	0	AM
		1	USB
		2	LSB
		3	CW
volume	'V'	0 to 63	0-loud
			63 - quiet
line out	' ${ }^{\prime}$ '	0 to 63	0 - loud
			63 - quiet
volume \& line out	' ${ }^{\prime}$	0 to 63	0 - loud
			63 - quiet
signal strength	' ${ }^{\prime}$	returns	
		16-bit number	
firmware version	'?'	returns 'VER nnn'	

fine tuning, and the BFO (Beat Frequency Oscillator) factor when listening in SSB or CW mode. As can be seen on the block diagram, the first local oscillator is tuneable in 2.5 kHz steps. The coarse tuning sets this local oscillator as close as possible to the desired frequency. The fine tuning factor represents the difference between the desired frequency and the actual frequency.
There are only two commands that return data from the RX-320, they are requests for signal strength and DSP software firmware version. When the ' X ' command is sent, the radio will return a 16 -bit integer number that represents the relative signal level. When the radio receives the '?' command it responds with an integer number. Dividing this number by 100 will give the firmware version in N.nn format. When sent this command my RX-320 responded with 'VER 106' (version 1.06).

Conclusion

The RX-320 does not have noise or notch filters that we tend to associate with radios that have a DSP but unlike most other designs the DSP is also controlling the radio functions. The RX-320 radio has a very solid construction and build quality is good.
This radio is not an alternative to expensive DX receivers but works well, is good value for money, and fun. Software control of the radio makes operation easy and there are several different control programs that can be downloaded from the internet for free.
Reception is good using the telescopic aerial, but clearly using an external aerial is a better option. The
user's manual gives several examples of how to construct external aerials. As the only alternative aerial connection option is one with a 50 ohm input then using co-ax cable on the down lead will help reduce RFI being picked by the aerial.

Digital Radio Mondiale

One of the reasons that I bought this radio was for the reception of DRM (Digital Radio Mondiale). DRM is set to replace long, medium and short wave AM (Amplitude Modulation) broadcasts, although this will take many years to achieve. June 2003 is the target start date for regular DRM transmissions. At present there are several stations transmitting DRM test signals. To see a list of DRM stations visit the Radio Netherlands web site.
DRM promises much better audio quality than AM - comparable to VHF-FM mono, and thanks to the robust digital modulation scheme signal fading will not directly affect the received audio. Additional features that we associate with RDS and DAB are also included, such as the display of the station name, programme information, programme text, and alternative frequencies.
The spectrum scan Fig. 14, shows a Deutsche Welle DRM test signal received on 15.230 MHz (19 metre band) from their Sines transmitter located in Portugal and transmitting to Europe. If you listen to a DRM signal on a conventional AM radio all you will hear is low level noise, you may have tuned across a DRM signal and not even realised, thinking that the signal was just noise or static.
Apart from expensive receivers used by broadcasting organisations there are no consumer DRM radios available. Currently the only way to listen to DRM is to modify an existing radio and use a PC to decode the digital DRM signal. The DRM signal is extracted before the analogue demodulation stage (usually at the IF stage) and this signal is fed to a PC sound card for processing.
The majority of short wave receivers have a 455 kHz IF which is not a suitable signal for feeding directly into a sound card, as this is not within audio input range. The radio's 455 kHz IF has to be mixed with an external 467 kHz local oscillator (usually a crystal) to generate a 12 kHz IF , this frequency is suitable for connecting to a sound card for decoding.
The RX-320 already has this IF frequency feeding the DSP, so I intend to take this 12 kHz signal direct to the sound card. Now you know why I needed to be sure that the

Fig. 14. 19 metre spectrum scan centred on a
DRM Deutsche Welle test broadcast.
radio's third IF was at 12 kHz as I read a review of the RX-320 that suggested otherwise. I have written an article on decoding DRM using the RX- 320 which will be published next month in $E W$.
Note that the DRM signal occupies the whole channel all the time; whereas the bandwidth of AM broadcast signals varies according to the audio modulation. The AM bandwidth required is twice the highest audio frequency being transmitted as the same audio signal is carried on both side bands. This should help explain why I needed to know the actual bandwidth of the ceramic filters used in the RX-320 to ensure that an entire DRM signal can pass through the IF stages. With

DRM we are no longer interested in receiving only one of the side bands but the whole radio signal.

References:

Ten-Tec RX-320 PC Radio Programmer Guide. Ten-Tec RX- 320 Schematics.
TenTecDIRECT, 4E East Mill, Bridgefoot,
Belper, Derbyshire DE56 2UA
www.aoruk.com/tentec
www.tentec.com

For information about DRM - www.drm.org Radio Netherlands - www.rnw/realradio/html/drm.html

In the UK the radio sells for $£ 259$ including VAT and Omega delivery, this compares favourably with the American price of $\$ 295$ plus shipping.
$R X-320$ specification summary from manufacturer's data, degraded performance below 1 MHz

Receive mode:	AM USB LSB CW
	AM, USB, LSB, CW
Frequency range:	100 kHz to 30 MHz
Frequency accuracy:	+/- $100 \mathrm{~Hz} @ 25^{\circ} \mathrm{C}$
Audio output:	1 watt at 4 ohms.
	>1 vp-p line output into 600 ohms (sound card).
Mode	bandwidth sensitivity
AM 80\% mod @ 1 kHz	$6 \mathrm{kHz} \quad 0.64 \mu \mathrm{~V}$ for $12 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$
SSB/CW	2.5 kHz
Third order intercept (IP3):	$+10 \mathrm{dBm}$
Dynamic range:	$90 \mathrm{~dB} @ 2.4 \mathrm{kHz}$ bandwidth at 50 kHz spacing.
IF rejection:	$>60 \mathrm{~dB}$
Image rejection:	$>60 \mathrm{~dB}$
Aerial:	high impedance telescopic connection.
	50 ohm unbalanced for external antenna.
Size:	70 mm height $\times 155 \mathrm{~mm}$ width $\times 165 \mathrm{~mm}$ depth ($\left.2.7^{\prime \prime} \times 6^{\prime \prime} \times 6.5^{\prime \prime}\right)$
Weight:	1.2 kg (2.5lbs).

Electronics World reader offer: $\times 1$, $\times 10$ switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:
Probes
\qquad
Name \qquad
Address \qquad
\qquad

Postcode
Telephone
Method of payment (please circle)
Cheques should be made payable to ELECTRONICS WORLD
Access/Mastercard/Visa/Cheque/PO

Credit card no \qquad

Card expiry date
Signed
Please allow up to $\mathbf{2 8}$ days for delivery

Seen on sale for $£ 20$ each, these highquality oscilloscope probe sets comprise:

- two $\times 1, \times 10$ switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5 m -long BNC-to-BNC links. Each probe has its own storage wallet. To order your pair of probes, send the coupon together with $£ 21.74$ UK/Europe to Probe Offer, Jackie Lowe, Highbury Business Communications, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey, SM3 8BZ
Readers outside Europe, please add £2.50 to your order.

Specifications

```
Switch position }
Bandwidth
Input resistance
Input capacitance
Working voltage
```

Switch position 2

Bandwidth
Rise time
Input resistance $1 \mathrm{M} \Omega$
Input capacitance Compensation range Working voltage

DC to 10 MHz
$1 \mathrm{M} \Omega$ - i.e. oscilloscope i/p 40pF+oscilloscope capacitance 600 V DC or pk -pk AC

DC to 150 MHz
2.4 ns
$10 \mathrm{M} \Omega \pm 1 \%$ if oscilloscope i / p is
12 pF if oscilloscope i / p is 20 pF 10-60pF
600 V DC or pk-pk AC
Switch position 'Ref'
Probe tip grounded via $9 \mathrm{M} \Omega$, scope i / p grounded

Class-AB halanced audio line driver

Wim de Jager has designed a class-AB balanced audio line driver using feed-forward output balancing. It offers improved stability relative to existing configurations without compromising on accuracy.

This is a single supply class- $A B$ line driver for twisted-pair 600Ω audio lines implemented in an 18 V bipolar process including vertical p-n-p transistors. Output balancing is achieved with a feedforward connected transconductor. In contrast with common-mode feedback, this method has no stability constraints while achieving similar accuracy. Measurement results are provided.
Balanced audio line drivers are used to improve the sonic quality of audio systems by eliminating power line hum, RF interference and other externally-generated noise commonly encountered with long audio cables.
Implementation can be based on op-amps as illustrated in Fig. 1.
In spite of the fact that the circuit is balanced and $R_{f 1}=R_{f 2}=R_{f}$, a single-ended input signal applied to one input terminal of the circuit will produce unbalanced output signals. An additional inverting unity gain op amp can be used to obtain balancing, Fig. 2. However this results in different signal paths and the need for additional circuitry.
Figure 3 shows a traditional implementation using a
common-mode feedback-loop to achieve balanced output signals. ${ }^{1,2,3}$

Output voltages are summed with R_{x} and R_{y} and converted into common-mode feedback currents at the inverting input terminals of A_{1} and A_{2} by means of A_{3}, which is a dual-output transconductance amplifier.
For low values of closed-loop differential gain, a relatively large amount of common-mode feedback is needed for accurate balancing. This can cause commonmode instability. Moreover, even for an infinite value of the transconductance of A_{3}, the output balance accuracy still depends on the matching of $R_{x}-R_{y}$ and $R_{f 1}-R_{f} 2$.
The balancing of the line driver described here is based on a feed-forward connected transconductor. This avoids common-mode stability constraints while achieving accuracy that's similar to the conventional method.

Feed-forward output balancing

The principle of output balancing based on a feed-forward path shown in Fig. 4 uses, as well as the feedback circuit shown in Fig. 3, a dual output transconductance amplifier A_{3}. However, two important aspects are different.

Fig. 1. Op-amp based balanced line driver principle.

AUDIO DESIGN

Fig. 3. Output balancing using common-mode feedback.

Fig. 4. Output balancing using feed-forward.

Firstly, the input of A_{3} is connected to the input of the line driver, so there are no feedback restrictions. Secondly, there is an optimal value of the transconductance.
Symbolic analysis of the transfer of the circuit shown in Fig. 4 using the assumption of idealised op amps, $R_{f 1}=R_{f 2}=R_{f}$ and $G_{m 1}=G_{m 2}=G_{m}$ show the following results:

$$
\begin{align*}
& H_{(d i f f e r e m i a l)}=\frac{V_{o 1}-V_{o 2}}{V_{i}}=1+2 \frac{R_{f}}{R_{r}} \tag{1}\\
& H_{(\text {common) }}=\frac{V_{o 1}+V_{o 2}}{2 V_{i}}=1-2 G_{m} R_{f} \tag{2}
\end{align*}
$$

A balanced output is obtained, hence expression (2) becomes zero if $G_{m}=1 / 2 R_{f}$.
In bipolar technology, the transconductance G_{m} can be implemented using a resistor-based V / I converter. As a result, the accuracy of this method depends on resistor matching.
Note that the accuracy of the common-mode feedback circuit of Fig. 3 also depends on matching of the resistors R_{x} and R_{y} used for the output voltage-summing network. So, concerning the output balance accuracy,
there is no fundamental difference between the feedback and the feed-forward solution.
In spite of the fact that balancing can be obtained with a single output version of A_{3} a dual output version is preferable. Advantages of the dual output version are twofold.
Firstly, the common correction has no influence on the differential gain.
Secondly, the distortion of A_{3} is a common-mode error at the output of A_{1} and A_{2}. This distortion will be cancelled in the differential output signal.

Circuit description

Figure 5 shows a simplified balanced line-driver. A balanced current-feedback input stage is formed with Tr_{3} and $T r_{4}$. The DC offset $V_{B E}\left(T r_{3}, T r_{4}\right)$ is for the greater part compensated by the use of two additional n -$\mathrm{p}-\mathrm{n}$ emitter followers, $T r_{1}$ and $T r_{2}$.

Table 1 Measurement results taken using a 12 V supply rail

Input impedance	$45 \mathrm{k} \Omega$
Differential output impedance	2.8Ω
Differential gain	3.00 VN
Output unbalance	0.3 dB
HF -3dB cutoff frequency	1 MHz
Slew Rate	$36 \mathrm{~V} / \mathrm{ms}$
THO, $\mathrm{R}_{\text {(load) }}=600 \Omega, \mathrm{~V}_{0}=3.5 \mathrm{~V}$ (RMS),	
$\mathrm{f}=1 \mathrm{kHz}$	
$\mathrm{f}=10 \mathrm{kHz}$	-80 dB
Input voltage noise ($\mathrm{f}=80 \mathrm{kHz}$)	-65 dB
Maximum output current	$46 \mathrm{VV} / \mathrm{VHz}$
Supply current (unloaded, $\mathrm{V}_{\text {in }}=0 \mathrm{~V}$)	42 mA

Fig. 6. Square-wave response $f=100 \mathrm{kHz}$, vert. $1 \mathrm{~V} / \mathrm{div}$., $R_{\text {(load) }}=600 \Omega$.

Fig. 7. Square-wave response $f=100 \mathrm{kHz}$, vert. $1 \mathrm{~V} /$ div., $C_{\text {(load) }}=2.2 n F$.

The upper circuit part enclosed by the dashed line is a transistor-level implementation of the dual output transconductor amplifier A_{3} used for feed-forward output balancing. The DC emitter currents of Tr_{3} and $T r_{4}$ are equal to the value of I_{8} due to a dual output current mirror function of $\operatorname{Tr}_{15,16,17}$.
The DC level of $V_{\text {our1 }}$ and $V_{\text {our } 2}$ is set by the base-node voltage of $T r_{2}$ and is equal to $V_{c c} / 2$ to achieve a single supply operation. AC coupling is obtained with an external coupling capacitor C_{i}. For $R_{f}=R_{r}$ the differential gain is 3 .

A balanced output is obtained with $R_{c}=2 R_{f}$. Class-AB current-feedback amplifiers A_{1} and A_{2} are enclosed by dashed lines. The quiescent currents of the output stages are determined by bias control loops formed by $V_{\text {ref }}$, $\operatorname{Tr}_{7}, \operatorname{Tr}_{11}$ and $\mathrm{V}_{\text {ref }}, \operatorname{Tr}_{8}, \operatorname{Tr}_{12}$. They are based on the wellknown geometric class-AB control method.

Current sources I_{5} and I_{6} are needed for push-pull operation of the output stages. Miller frequency compensation is accomplished by means of $C_{m 1}$ and $C_{m 2} . C_{f 1}$ and $C_{f 2}$ are used for feed-forward frequency compensation around the common base connected levelshift transistors Tr_{11} and Tr_{12} respectively.

Measurement results

The line driver prototype has been fabricated in a 18 V bipolar process which includes vertical $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors. Test results at a 12 V supply - for automotive

Fig. 8. Chip photograph.
applications - are summarised in Table 1.
Input impedance is mainly determined by a $50 \mathrm{k} \Omega$ built-in resistor and the output unbalance of 0.3 dB is mainly caused by resistor mismatch. The HF -3 dB cutoff frequency is in agreement with the time constant formed by the feedback resistor R_{f} and the Miller capacitor C_{m} that is expected for current-feedback circuits.

Figure 6 shows the square-wave response at a load resistance of 600Ω while Fig. 7 illustrates a stable response at a load capacitance of $2.2 n \mathrm{~F}$. Finally a chip photograph is given in Fig. 8.
The circuit operates from a single 12 V supply and the output balancing accuracy is comparable with common-mode feedback solutions but has no stability constrains.

We would like to express our thanks to Toine Werner, Eric Klumperink, Bram Nauta and Rien van Leeuwen for helpful comments.

References

1. Philips Semiconductors, Consumer IC, Nijmegen, The Netherlands.
2. University of Twente, Dept. of Electrical Engineering, Enschede, The Netherlands.
3. Philips Research Laboratories, Eindhoven, The Netherlands.

Further reading

J. N. Babanezhad, 'A Low-Output-Impedance Fully Differential Op Amp with Large Output Swing and Continuous Time Common-Mode Feedback' IEEE J. Solid-State Circuits, 1991, vol 26, pp. 1825-1833.
M. Banu, J. M. Khoury, Y. Tsividis, 'Fully Differential Amplifiers with Accurate Output Balancing,' IEEE J. SolidState Circuits, 1988 vol 23 pp. 1410-1414.
J. N. Babanezhad, 'A $100 \mathrm{MHz} 50 \Omega-45 \mathrm{~dB}$ Distortion CMOS Line-Driver For Ethernet Networking Applications,' proceedings ISSCC98 pp. 320-321.

£11.99

Available from Electronics World

All tracks on this CD were recorded on DAT from cylinders produced in the early 1900 s . Considering the age of the cylinders, and the recording techniques available at the time, these tracks are of remarkable quality, having been carefully replayed using modern electronic technology by historian Joe Pengelly.

21 tracks - 72 minutes of recordings made between 1900 and 1929. These electronically derived reproductions are no worse than - and in many cases better than - reproductions of early $78 \mathrm{rev} / \mathrm{min}$ recordings some are stunning...

Use this coupon to order your copy of Pandora's drums

```
Please send me ....... CD(s) at \(£ 11.99\) each including VAT
```

Cheque

Pantiora's ifrums
Unique and atmospheric music recorded in the early 1900s - the days before 78 s .

Track

1 Washington Post March, Band, 1909
2 Good Old Summertime, The American Quartet 1904
3 Marriage Bells, Bells \& xylophone duet, Burckhardt \& Daab with orchestra, 1913
4 The Volunteer Organist, Peter Dawson, 1913
5 Dialogue For Three, Flute, Oboe and Clarinet, 1913
6 The Toymaker's Dream, Foxtrot, vocal, B.A. Rolfe and his orchestra, 1929
7 As I Sat Upon My Dear Old Mother's Knee, Will Oakland, 1913
8 Light As A Feather, Bells solo, Charles Daab with orchestra, 1912
9 On Her Pic-Pic-Piccolo, Billy Williams, 1913
10 Polka Des English's, Artist unknown, 1900
11 Somebody's Coming To My House, Walter Van Brunt, 1913
12 Bonny Scotland Medley, Xylophone solo, Charles Daab with orchestra, 1914
13 Doin' the Raccoon, Billy Murray, 1929
14 Luce Mia! Francesco Daddi, 1913
15 The Olio Minstrel, 2nd part, 1913
16 Peg O' My Heart, Walter Van Brunt, 1913
17 Auf Dem Mississippi, Johann Strauss orchestra, 1913
18 I'm Looking For A Sweetheart And I Think You'll Do, Ada Jones \& Billy Murray, 1913
19 Intermezzo, Violin solo, Stroud Haxton, 1910
20 A Juanita, Abrego and Picazo, 1913
21 All Alone, Ada Jones, 1911

Power amplifier input currents and their troubles

Abstract

When power amplifiers are measured, the input is normally driven from a low impedance signal generator. Some test gear, such as the much-loved Audio Precision System-1, has selectable output impedance options of 50,150 , and 600 Ohms . The lowest value available is almost invariably used because 1) it minimises the Johnson noise from the source resistance; 2) it minimises level changes due to loading by the amplifier input impedance. Doug Self explains

This is all very sensible, and exactly the way I do it myself 99% of the time. There are however two subtle effects that can be missed if the amplifier is always tested this way. These are distortion caused by the non-linear input currents drawn by the typical power amplifier and hum caused by ripple modulation of the same input currents.
Note that this is not the same effect as the excess distortion produced by FET-input opamps when driven from significant source impedances; this is due to their non-linear input capacitances to the IC substrate, and has no equivalent in power amplifiers made of discrete transistors.
Fig. 1 shows both the effects. The amplifier under test was a conventional Blameless design with an EF output stage comprising a single pair of sustained-beta bipolar power transistors; see Fig. 2 for the basic circuit. Output power was 50 Watts into 8 Ohms. The bottom trace is the distortion plus noise with the usual source impedance of 50 Ohms , and the top one shows how much worse the THD is with a source impedance of 3.9 k . Intermediate traces are for 2.2 k and 1.1 k sources. The THD residual shows both second harmonic distortion and 100 Hz ripple components; the latter dominating at low frequencies, while at higher ones
the reverse is true. The presence of ripple is signalled by the dip in the top trace at 100 Hz , where distortion products and ripple have partially cancelled. The amount of degradation is proportional to the source impedance.

Source impedance

This is not a problem in most cases, where the preamplifier is driven by an active preamplifier, or by a buffer internal to the power amplifier.
Competent preamplifiers have a low output impedance, often around 50 -

Fig. 1. Second-harmonic distortion and 100 Hz ripple get worse as the source impedance rises from 50 Ohms to 3.9K. 50 Watts into 8 Ohms.

Fig. 2. Simplified circuit of a typical Blameless power amplifier, with negativefeedback control of VAS current source TR5 by TR13. The bias voltage generated is also used by the input tail source

100 Ohms, to minimise highfrequency losses in cable capacitance. (I have just been hearing of a system with 10 metres of cable between preamp and power amp.)

However, there are two scenarios where the input source resistance is higher than this. If a so-called 'passive preamp' is used then the output impedance is both higher and

Fig. 3. There is less introduction of ripple and distortion with high-beta input transistors and the same set of source resistances as Fig. 1.
volume-setting dependent. A 10 k volume potentiometer has a maximum output impedance of onequarter the track resistance, i.e. 2.5 k , at its mid-point setting. It is also possible for significant source resistance to exist inside the power amplifier- for example, there might be an balanced input amplifier, which while it has a very low output impedance itself, may have a resistive gain control network between it and the power amp.
So - we have a problem, or rather two of them. It seems very likely that the input transistor base currents are to blame for both, so an obvious option is to minimise these currents by using transistors with the highest available beta in the input pair. In this amplifier the input pair were originally ZTX753, with a beta range of 70-200. Replacing these with BC556B input devices (beta range 180-460) gives Fig. 3 which shows a useful improvement in THD above 1 kHz ; distortion at 10 kHz drops from 0.04% to 0.01%. Our theory that the base currents are to blame is clearly correct. The bottom trace is the reference 50 Ohm source plot with the original ZTX753s, and this demonstrates that the problem has been reduced but certainly not eliminated.

The amplifier here is very linear with a low source impedance, and it might well be questioned as to why the input currents drawn are distorted if the output is beautifully distortionfree. The reason is of course that global negative feedback constrains the output to be linear - because this is where the NFB is taken from, but the internal signals of the amplifier are whatever is required to keep the output linear. The VAS is known to be non-linear, so if the output is sinusoidal the collector currents of the input pair clearly are not. Even if they were, the beta of the input transistors is not constant so the base currents drawn by them would still be non-linear.
It is also possible to get a reduction in hum and distortion by reducing the input pair tail current, but this very important parameter also affects input stage linearity and the slew-rate of the whole amplifier. Fig. 4 shows the result. The problem is reducedthough far from eliminated- but the high-frequency THD has actually got worse because of poorer linearity in the input stage. This is not a promising route to follow.
Both ripple and THD effects consequent on the base currents drawn could be eliminated by using FETs instead of bipolars in the input stage.

The drawbacks are:

1) Poor Vgs matching, which means that a DC servo becomes essential to control the amplifier output DC offset. Dual FETs do exist but they are discouragingly expensive.
2) Low transconductance, which means the stage cannot be linearised by local feedback as the raw gain is just not available.
3) Although there is no DC gate current, there might well be problems with non-linear input capacitance, as there are with FET-input opamps.

Component choice

Once again, not a promising route. The distortion problem looks rather intractable; one possible total cure is to put a unity-gain buffer between input and amplifier. The snag (for those seeking the highest possible performance) is that any opamp will compromise the noise and distortion of a Blameless amplifier. It is quite correct to argue that this doesn't matter, as any preamp hooked up to the power amp will have opamps in it anyway, but the preamp is a different box, a different project, and possibly has a different designer, so philosophically this does not appeal

Fig. 4. Reducing the tail current improves things at low frequencies but increases HF distortion above 10 kHz . The notches at 100 Hz indicate that the ripple content is still substantial.
to everyone. If a balanced input is required then an opamp stage is mandatory. (Unless you prefer transformers, which of course have
their own problems.)
The best choice for the opamp is
either the commonplace but
extremely capable 5532 (which is

AUDIO
 Fig. 6. Cascoding the input tail removes the ripple problem, but not the extra distortion.

pretty much distortion-free, but not alas noise-free, though it is very quiet) or the rather expensive but very quiet AD797.
The ripple problem, however, has a more elegant solution. If there is ripple in the input base current, then clearly there is some ripple in the tail current. This is not normally detectable because the balanced nature of the input stage cancels it out. A significant input source impedance upsets this balance, and the ripple appears.
The tail is fed from constant-current source TR1, and this is clearly not a mathematically perfect circuit element. Investigation showed that the cause of the tail-current ripple contamination is the Early effect in this transistor, which is effectively fed with a constant bias voltage A tapped off from the VAS negativefeedback current source. (Early Effect is the modulation of transistor collector current caused by changing the Vce; as a relatively minor aspect of bipolar transistor behaviour SPICE simulators model it in a rather simplistic way.) Note that this kind of negative-feedback current-source could control the tail current instead of the VAS current, which might well reduce the ripple problem, but is arranged this way as it gives better positive slewing. Another option is
two separate negative-feedback current-sources.

The root cause of our hum problem is therefore the modulation of the Vce of TRI by ripple on the positive rail, and this variation is easily eliminated by cascoding, as shown in Fig. 5. This forces TR1 emitter and collector to move up and down together, preventing Vce variations. It completely eradicates the ripple components, but leaves the inputcurrent distortion unaltered, giving the results in Fig. 6. where the upper trace is degraded only by the extra distortion introduced by a 2 K source impedance; the 100 Hz cancellation notch has also disappeared. The reference 50 Ohm source plot is below it.

The voltage at A that determines the Vce of TR1 is not critical. It must be sufficiently below the positive supply rail for TR1 to have enough Vce to conduct properly, and it must be sufficiently above ground to give the input pair enough common-mode range. I usually split the biasing chain R21, R22 in half, as shown, so Cl1 can be used to filter out rail noise and ripple, and biasing the cascode transistor from the mid-point works very well.

It may have occurred to the reader that simply balancing the impedances seen by the two inputs will cancel out
the unwanted noise and distortion. This is not very practical as with discrete transistors there is no guarantee that the two input devices will have the same beta. (I know there are such things as dual bipolars, but once more the cost is depressing) This also implies that the feedback network will have to have its impedance raised to equal that at the input, which would give unnecessarily high levels of Johnson noise.

Conclusion

If the system design requires an opamp at the input, then both hum and distortion problems are removed with no further effort. If not, perhaps because the amplifier must be as quiet as possible, then cascoding the input pair tail cures the ripple problem but not the distortion. Using high-beta input transistors reduces both problems but does not eliminate them.

ELECTRONICS WORLD

The world's leading electronics magazine, Electronics World is a technology- transfer magazine for the global electronics industry. It covers research, technology, applications, products and patents in areas such as audio, R.F., components, CAD design, circuit building, PC \& Micro based products, tests \& measurement, semiconductors, power sources and much, much more.....

A trustworthy source of reference each month for keeping ahead with the latest news and technical developments in the electronics industry.

As the longest established magazine in the industry - 80 years experience serving the electronics market, Electronics World is the leading technical journal for electronics professionals and high-level enthusiasts.

Make sure you receive your regular monthly copy by subscribing today..................

Complete and fax the coupon to: +44 (0) 1353654400

The Electronics World Book Service offers access to our team of specialist publishing experts. We can order any book or CD-ROM currently in print from War And Peace to the Reference Data for Engineers. All books are delivered free of charge within the UK unless otherwise stated. Contact us at the numbers below:
Telephone: 01737812727 or 01737812676
Fax: 01737813526
Email: salesteam@boffinbooks.demon. co.uk

HIGH SPEED DIGITAL DESIGN

Howard W Johnson \& Graham Martin

Re-issue

Focusing on the field of knowledge lying between digitol and anolog circuit theory, this text sets out to help engineers working with digital systems shorten their product development cycles ond help fix their lotest design problems. It covers signal reflection ond crosstalk.

820 poges \triangle H8
Code PEAR 0133957241
$£ 44.99$

ELECTRONIC PROJECTS
 FROM THE NEXT

 DIMENSION: PARANORMAI EXPERIMENTS FOR HOBBYISTSNewton Braga
A guide to making and using paramormal research electronics. Ir describes pratical electronic circuits to be used in experiments involving instrumental transcommunization (ITC), the electronic voice phenomenon (EVP), ond paronormal experiments involving EPP, ouros, and Kirlian photogrophy. White ond pink noise generotors for use in instrumentol tronscommunication (ITC) experiments; Kirlion photogrophy; plosma experiments; extrosensory perception testers; magnetis fields sensors.
Nov $2000 \triangle 256$ pages $\triangle \mathrm{PB}$
Code H807506 73052
$£ 27.99$

BUILD AND UPGRADE YOUR OWN PC

Ian Sinclair

This third edition of Build and Upgrade Your Own PC is based around building and upgrading to the very lotest systems running processors with speeds over 2.0 Ghz ond ulitrafost buses. It also covers upgrading to Windows XP and Windows Me.

3rd edition \triangle Jul $2002 \Delta 335$ pages \triangle P8
Code H807506 57588

FABRICATING PRINTED CIRCUIT BOARDS

Engineers ore often faced with the need for smoll quontilies of o certoin boord design for consstrution of o smoll number of devices. This book describes the process of moking a printed circuit board, from the conversion of a schemotic diagram into o boord loyout to the making of the boord isself.

Jul $2002 _251$ pages \triangle PB
Code HB 1878707507
$£ 21.99$

BASIC AC CIRCUITS

Clay Rawlins
A step-by-step opprooch to AC circuils for beginners, providing thorough coverage of theory ond proctice. The text provides individuolized learning gools covering electronics concepls, terms ond the mothematics required to Understand $A C$ circuit problems.

2nd Edition $\triangle 0$ © $2000 \triangle$ P8
Code H80 750671734
$\$ 33.99$

PRACTICAL ELECTRONICS handBOOK

Ian Sinclai

A collection of oll the key data, focts, practical guidance and dircuit design bosists needed by o spectrum of students, electronics enthusiosts, technicians ond circuii designers. It provides explanations ond procticol guidonce, ond includes new sections on SHF techniques ond intruder olorms.

5th edition \triangle Feb $2000 \triangle 571$ pages $\triangle \mathrm{PB}$
Code HB 0750645857
E16.99

THE ART OF ANALOG LAYOUT

Roy Alan Hastings
This text oims to provide students with a broad understanding of the issues involved in successfully laying out onolog-integrated cirvils. ranging from the mechonics of loyout to essentiol information about many related areas, such as device physics, processing ond failure modes and effects.

Oct $2000 \triangle 559$ pages \triangle H8
Code PEAR 0130870617
$£ 30.99$

VERILOG
 DEVELOPER'S
 LIBRARY
 Bob Zeidman

Verilog is one of the most used hardware description languoges. This text contains a library of useful code for those users who do not want to recreate identical code for common tosks.

Jul $1999 \triangle 450$ poges $\triangle P 8$
Code PEAO 130811548
$£ 79.99$

INTERFACING WITH C

Mike James \& Howard Hutchings
An exploration of interfacing personal computers using C. An introduction to C; loops ond dota conversion; doto ocquisition using C; essentiol mothematics; convolution; digitol filters; Fourier tronstorms; correlation; Kolmon Filters; doto conversion; investigoting the spectral ond lime-domoin performance of z-tronsforms using computermanaged instruction; introducing oudio signol processing using $C_{\text {; }}$ stondard programming structures. Dewey: 005.71262
$2 n d$ edition \triangle Dec $2000 \triangle 308 p o g e s$
Code H 80750648317
£19.99

ANALOG CIRCUIT TECHNIQUES WITH DIGITAL INTERFACING

Trevor Wilmshurst
Aimed ot junior undergraduates, this textbook offers comprehensive coveroge of onalogue electronic circuit design with two full chapters devored to the use of SPICE in circuit simulotions. progrommes leoding to IEng MSc Electronic conversion type courses.

Mor $2001 \triangle 320$ poges \triangle P8
Code H8075065094 X
£19.99

PRACTICAL RF HANDBOOK

Ian Hickman
A honds-on-quide for engineers, technicions, students ond enthusiasts working in RF design, this comprehensive eext covers oll the key topics in RF, including: anologue design principles; transmission lines, tronsformers; couplers; amplifiers; oscillotors; modualtion; and ontennos.

3rd edition 4 Feb $2002 \wedge 289$ pages
150 line drawings \triangle P8
Code HB 0750653698
$£ 19.99$

DESIGN-FOR-TEST:

 FOR DIGITAL INTEGRATED CIRCUITS AND EmBEDDED COREAlfred L Crouch
An introduction to the basic concepts of Design-ForTest, on area in chip design.

July 1999 - 350 pages \& (D-ROM
Code PEAR 0130848271

PASSIVE COMPONENTS FOR CIRCUIT DESIGN

Ian Sinclair
Designed for technicion engineers and anyone involved in cir cuit design, this text provides an infroduction into a key area of analogue electronics. It covers all component types capable of power amplifications, including: resistors, copocitors, transformers, solenoids and motors.

Nov 2000 - 301 poges \triangle P8
Code HBO 7506 4933X

SELF ON AUDIO

Douglas Self

This work offers a collection of Electronics World artitles, including self- build projects. It aims to demystify amplifier design and establish empiricol design techniques based on electronic design principles and experimentol dato.

Jul 2000 - 256 pages $\triangle P B$
Code 180750647655
£26.99

ELECTRONICS FOR
 SERVICE

ENGINEERS

Joe Cieszynski \& Dave Fox
From simple mathematics and circuit theory to transmission theory and oerials, this texi provides the ronge of knowledge required to service electronic and electrical equipment. Questions and worked exomples illustrate the concepls described in earh chapter.

Mor 1999 $\triangle 294$ pages \triangle P8
Code 180750634766
£ 20.99

NEWNES TELEVISION AND VIDEO ENGINEER'S POCKET BOOK
 Eugene Trundle
 This text provides a pocket tool for service engineers. If presents a range of essential information in a compod form, covering television reception, sotellite and coble television, video recorders, colour comera technology, teletext and foult-finding.
 3rd edition $\triangle 0$ ct $1999 \triangle 512$ poges \triangle HB
 Code H807506 41940
 £ 17.99

BEBOP TO THE BOOLEAN BOOGIE

 Clive MaxlieldComprehensive introduction to contemporary electronics - friendly, funny and quirky. Whether you're on engineer, hobbyist, or student who needs a thorough ond up-to-dote electionics reference or o non-technical person who wants to understond more obout this electron dance thot hos seemingly token over the world, this book is the onswer. Hundreds of diagroms that dorify even the most difficult subjects.

2nd Edition $\Delta \operatorname{Jon} 2003$
Code H80750675438
£27.50

ELECTRONIC SERVICING AND REPAIRS

Trevor Linsley

Updotes the previous text toking into occount chonges in the City and Guilds courses 2360 ond 2240 . Also feotures hordwore topics, testing ond foult diagnosis, PLCs and CAD softwore, ond new chapters. Heoth ond sofery; electronic component recognition; electronic circuit assembly techniques; electronic semicondutor devices; electronic circuils in oction; lesting electronik circuits; digitol electronics; electricol cirde theory; electronic systems; communicotion sysiems; theory; electronii systems s, communicoition
security systems, sensors ond transducers.
3rdedition \triangle Aug $2000 \wedge 261$ pages
Code H807506 50532
$\$ 18.99$

ROBOTICS, MECHATRONICS, AND ARTIFICIAL INTELLIGENCE:

 EXPERIMENTAL CIRCUIT BLOCKS FOR DESIGNERS
Newton C Braga

This work simplities the process of finding bosic circuits to perform simple tasks, such as how to control a DC or step motor, ond provides instruction on ceeoting moving robotic ports, such os on "eye" or on "eor".

Nov $2001 \triangle 317$ pages \triangle P8
Code HB 0750673893
2 21.99

UNDERSTANDING AUTOMOTIVE ELECTRONICS

 WB RibbensCovering the most recent technologicol odvances in operation and troubleshooting of electronic systems and components, including low emission standards, on-boord diagnastics and communications, digital instrumentation, ond digital engine contral. A proctical text, suitoble for the outomotive technicial, student, ethusiost, or professianal who wants to upgrade his or her background in electronic systems found in the outomotive.
6th ed. Dec 2002
Code HB 0750675993
£24.99

PIC IN PRACTICE:
 AN INTRODUCTION TO THE PIC MICROCONTROLLER

David W Smith

An explaration of the PIC microcantroller, designed to be used ot o variety of levels. It introduces the reader to the range of tosks the PIC can perform and makes use of readily ovailable components. The PIC used in the exumples is the re-programmable EEPROM 16884/16F84.

App $2002 \triangle 261$ pages \triangle PB
Code HB 0750648120
$E 14.99$

NEWNES GUIDE TO DIGITAL TV

Richord Brice
Covering all aspects of digital I elevision (terrestrial, satellite ond cable), this text has been updoted with developments since the 2000 edition. Foundations of felevision; digital video ond oudio coding; digitol signol processing; video data compression; oudio doto compression; digitiol audio production; digitiol video production; the MPEG multiplex; broodtasting digitiol video; consumer digital lechnology; the future.

2nd edition \triangle Sep 2002 304 pages \triangle HB
Code H80 750657219
£24.99

DIGITAL LOGIC DESIGN

Brian Holdsworth \& Woods
This undergraduote text on digitol systems covers first ond second year modules ond HND units, ond can also be used os a reference text in industry. Updated topics in the fourth edition include: EBCDIC, Grey code, proctical opplications of flip-flops, linear ond shoft encoders and memory elements.

4th edition \triangle Aug $2002 \triangle 448$ pages
Code HB 0750645822
£ 19.99

EMBEDDED MICROPROCESSOR
 POWER SUPPLY COOKBOOK

 SYSTEMS: REAL WORLD DESIGN
Stuar Ball

Providing on introduction to the design of embedded microprocessor systems, this edition covers everything from the initiol concept through to debugging the finol result. It also includes materiol on DMA interrupts ond on emphosis throughout on the realtime noture of embedded systems.

3rd edition \triangle Nov $2002 \triangle 368$ pages \triangle PB
Code HB 0750675349
E 35.00

DESIGNING EMBEDDED INTERNET DEVICES

 Brion DeMuth \& EisenreichThis guide to designing internet occess ond communiations capabilities into embedded systems takes un integroted hardwore/sothwore opproach, using the Jova progromming longuage ond industrystondard mirrocontrollers. The CD-ROM hos Jovo source cade ond a version of the text.

Aug $2002 \triangle 320$ poges
PB\& CD-ROM
Code H81 878707981

li you ore ordering by credit cord, nead further informalion or would lite lo use ous search forifies coll 01737812727 Fax 01737813526.
The ordea heepline is open from 9am to Spm, or leave your order on out out d hours answerline or emoil us at solestean@boflinbooks demonico.vk.

When plocing orders please quale

- Nome - Address hiome \& oflivery \bullet Doyrime telephone number © Debil/Credil card number - Eupiry dale - Derilis of order. Plense note that prices may chonge. but ore correct a f lime of going to press.

Botfin Books Lrd. 24 Wolton Sireet,
Wallon-on-hhe-Hill, Todworth, Surrey KT20 7RT, UK

NEWNES
 DICTIONARY OF ELECTRONICS
 SW Amos \& RS Amos
 RSGB RADIO AND ELECTRONICS COOKBOOK
 Radio Society of Greal Britain

Aimed ot engineers, technicions ond students working in the field of electroniss, this ditionory provides dear and concise definitions, including N, rodio and computing terms, with illustrotions ond circuit diagrams.

4th edition \triangle Morch $2002 \triangle 394$ pages $\triangle P B$
Code HBO7506 56425
E12.99

NEWNES INTERFACING COMPANION:
 COMPUTERS,

TRANSDUCERS, INSTRUMENTATION AND SIGNAL PROCESSING
Tony Fischer-Cripps
Provides the fundomentals of electronits, transducers, computer orchitecture ond interfocing techniques needed to use a simple PC or PLC-based system for the collection of dota previously only obtoinoble from expensive dedicoted equipment.
Aug 2002 © 320 poges \triangle HB
Code H8 0750657200
$\$ 24.99$

Marty Brown

Providing on eosy-to-follow, step-bystep design fromework for a wide variety of pawer supplies, including lineor, swithhing ond quosiresonant swith hing. There is also discussion of design topics such os magnetics, feedbock loop compensation design and EM1/RFI control in straightor ward terms.

2nd edition \triangle Jun $2001 \triangle 336$ poges Δ HB
Code H8075067329 X
£24.99

Only a basic knowledge of electronics is ossumed for this collection of electronics projects, and it is ideol for all electronis ond DIY enthusiosts and experimenters. Designed by the RSGB, the UK rodio omoteurs
federotion, the projects ore cleorly exploined step by step.

Nov $2000 _336$ poges \triangle PB
Code HB 050652144
£ 17.99

NEWNES RADIO AND RF ENGINEERING POCKET BOOK

Steve Winder \& Joseph J Carr
With a mass of infor mation and dato for students, rodio ond relecommunicotions engineers, RF circuit designers, radio hobbyists ond technicions, this guide covers all ospects of radio ond communications engineering from low frequencies to microwoves, with on emphosis on mobile communications.

3rd edition \triangle Jul 2002 - 352 poges \triangle HB Code HB 0750656085
$E 16.99$

MIXED-SIGNAL AND DSP DESIGN TECHNIQUES

Walt Kester
Mixed-signol processing implies the use of anologue and digital in the same system; this is o speciolized type of signol processing that requires a high hevel of experience ond troining. This book focuses primorily on signal processing hordwore - how it works, how to interfoce il, and design it.

0 ct $2002 \triangle 336$ pages $\triangle P B$
Code HB 0750676116
£39.99

Put your web address in front of 18,000 electronic fanatics.
Electronics World acknowledge your company's needs to promote your web slte, which is why we are dedicating 2 pages in every issue to WEB ADDRESSES.
Linage only will cost £150 + vat for a full year.
Linage with colour screen shot will cost $£ 350$ + vat for a full year, this will include the above plus 3 cm shot of your web site which we can produce if required.
To take up this offer or for more information telephone

Reuben Gurunlian
Tel 02087226028
E-mail
r.gurunlian@highburybiz.com

ANASOFT LTD
http://www.anasoft.co.uk

SuperSpice, the affordable, mixed-mode windows circult simulator. Wrote by an analogue design engineer for those Teletubbies who like keeping things simple.
CHARLES HYDE \& SON Ltd
http://www.charleshyde.co.uk
Search for both original and copy spare parts

in our extensive database covering Akai, Alba, Bush, Ferguson, Goldstar, Hitachl, LG, Marantz, Matsui, Nokia, Saisho, Sanyo, Sony, Sharp, Thomson, Panasonic, Philips, Samsung, Tascam, Teac, Toshiba, Yamaha and many more. In addition huge ranges of Lasers, Lopts, Remote contrds and Semiconductors may be accessed.

CHYGWYN

http://www.chygwyn.com

ChyGwyn Limited offers electronic design and embedded software development for remote monitoring, embedded appliances, set-top boxes and similar devices. We are experts in customisation of Linux and write device drivers for custom hardware.

CONFORD ELECTRONICS

http://www.confordelec.co.ukind ex.shtml

Lightweight portable battery/mains audio units offering the highest technlcal performance. Microphone, Phantom Power and Headphone Amplifiers. Balanced/unbalanced slonal IInes with extensive RFI protection.

CRICKLEWOOD ELECTRONICS

http://www.cricklewoodelectronic S.Co.uk

Cricklewood Electronics stock one of the widest ranges of components, especially semiconductors including ICs,
transistors, capacitors, all at competitive prices.

DB TECHNOLOGY

http://www.dbtechnology.co.uk/
EMC Testing and Consultancy.
Anechoic chamber and open area test site.

- Compliance Tests
- Rapid, accurate pre-compliance tests - Fixes included. FCC Listed.

- Flexible, hourly booklng available.

DESIGNER SYSTEMS CO.

http://www.designersystems.co. uk
Electronic product design company with

over a decade of experience promoting it's own product range and designing and manufacturing innovative products for client companies/individuals.
eagle pcb design SOFTWARE
http://www.puresoft.co.uk

- Professional PCB design made easy!

- Fully functional freeware download - Schematics, Layout \& Autorouting - Free tech support

EasySync
http://www.easysync.co.uk

EasySync supplies a wide range of USBRS232 and USB-RS422/485 converters. It also specialises in USB test and measurement devices.

FELLER UK

http://www.feller-at.com Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to Natlonal and International Standards
FUTURE TECHNOLOGY DEVICES INTL. LTD.
http://www.ftdichip.com

FTDI designs and sells USB-UART and USB-FIFO interface i.c.'s. Complete with PC drivers these devices simplity the task of designing or upgrading USB peripherals

GREENWELD

http://www.greenweld.co.uk

Audio - Batteries \& Chargers - Books - Communications - Computer - Cable - Capacitors Car Equipment - Craft Goods • Disco Equipment Enclosures - Electrical - Fuses Graphic supplies • Hardware - Instrumentation - Kits - Lighting Mechanical • Optical - Photographic - Power supplies - Transformers Resistors - Semiconductors Software - Soldering Irons - Surplus goods - Switches - Relays Telephone Accessories - Tools Plus much more.
Whether your interest is in electronics, model engineering, audio, computer, robots or home and

To reserve your web site space phone Reuben Gurunlian Tel: 02087226028 Fax: 02087226096

leisure products (to name just a few) we have a wide range of new and surplus stock available.

J W HARDY

 COMMUNICATIONShttp://www.jwhardy.co.uk

R.F. Network Specialist.

Shop online - for R.F.network
components. We supply a full range of TV, radio reception equipment to receive analogue/digital signals from both
terrestrial and satellite sources. We
provide a free planning service for your
R.F. networks MATV and SMATV etc

LOW POWER RADIO SOLUTIONS

http://www.lprs.co.uk
LPRS produces radio modules with embedded "easy-Radio" software protocols for short range radio applications. We also represent Circuit Design narrow band modules in the UK.

MAPLIN ELECTRONICS

http://www.maplin.co.uk

E-		-	
		-	
-		-	
		- 5ix	
-		5	\%

A fully secure and interactive internet ordering system from Maplin
Electronics, the specialist electronic retail and mail order company to business and retail consumers alike 15,000 products available on line.
MATRIX MULTIMEDIA LTD
www.matrixmultimedia.co.uk

Matrix Multimedia publishes a number of highly interactive CD ROMs for learning electronics including: Complete electronics course, Analogue filter design, and PICmicro(R) microcontroller programming (C and assembly).

NORCALL Ltd

http://www.norcall.co.uk
e-mail Norcall@aol.com
Suppliers programmers and repairers of new and refurbished two-way radlo equipment. Retuning and recrystalling service available. All types of batteries chargers and aerials supplied.

PHAEDRUS LTD

www. phaedrusltd.co.uk
Manufacturer and supplier of low cost general purpose and serial I/O digital modules and accessories. PC based software for data logging and control applications.

QUASAR ELECTRONICS
www.quasarelectronics.com

Over 250 electronic kits, projects and ready built units for hobby,
educational \& industrlal applications. TEL: 01279467799 FAX: 07092203496 or EMAIL:
ewsales@quasarelectronics.com

RADIOMETRIX

http://www.radiometrix.co.uk

Radiometrix specialises in the design and manufacture of VHF \& UHF, RF data modules. We offer a broad range of PCB mounted miniature transmit, receive and transceiver modules for OEM use. They comply with European harmonised standards EN300 220-3 and EN301 489-3 and are CE certified by an independent Notified Body

SOFTCOPY

http://www.softcopy.co.uk As a PC data base or hard copy, SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.

TELNET

http://www.telnet.uk.com

Top quality second-user Test and Measurement Equipment eMail sales@telnet.uk.com

TELEVES

http://www.televes.com
Tel: 44(0) 1633875821
email hbotas@televes.com
Televes website was launched as an easier way to keep in contact with our World-wide Network of Subsidiaries and Clients. This site is constantly updated with useful information/news plus you can download info on our range: TV Aerials \& accessories, Domestic and Distribution amplifiers, Systems Equipment for DTT and Analogue TV, Meters and much more

TEST EQUIPMENT SOLUTIONS

http://www.TestEquipmentHQ.com

Test Equipment for rental or second user sale at the industry's lowest prices. All types of equipment from all leading manufacturers including general purpose communications and industrial test. Items fully refurbished with 1 year warranty. Rental rebate given on purchases.

TELONIC

http://www.telonic.co.uk

Telonic specialists in laboratory AC \& DC Power Supplies, Electronic AC \& DC Loads, Electrical Safety Testing and complete test systems. Plus RF Filters, Attenuators, Diesel Engine Smoke Measurement, Quartz Crystal Microbalances.
Tel +44 (0) 1189786911

TECHNICAL AND SCIENTIFIC SUPPLIES

http://www.technicalscientific.com Suppliers of pre-1985 equipment and components.

- Test/Measurement equipment
- Valves and semiconductors
- Transducers and pressure gauges
- Scientific books and catalogues - Manuals and data sheets

THOSE ENGINEERS LTD http://www.spiceage.com

Working evaluations of SpiceAge mixedmode simulator, Spicycle PCB design tools and Superfilter demo (synthesises passive, active, digltal filters). Tech support, sales links and price list.

TOTAL ROBOTS

http://www.totalrobots.co.uk
Robot Kits and Control Technology products, including 00Pic the first Object-Orlented Programmable Integrated Circuit. Secure on-line ordering and fast delivery.

To reserve your web site space phone Reuben Gurunilian Tel: 02087226028 Fax: 02087226096

ULTRA-CREA OY

http://www.ultra-crea.fi

Our business idea is to provide our customers complete service, i.e. design from the customer specification to the delivery of finished and tested products.

Our offerings are as follows:

- RF transmission line filters from 100 MHz to 3 GHz
- Special antennas to frequencies as above
- Transmitter and Receiver modules
- RF-subunits such as amplifiers, oscillators, directional couplers etc

VUTRAX PCB DESIGN
SOFTWARE
http://www.vutrax.co.uk

Vutrax electronic schematic and pcb design system for Windows 95/98, ME, NT, 2000, XP and Linux. Limited capacity FREE version downloads available, all upgradeable to various customised level.

WILMSLOW AUDIO

http://www.wilmslowaudio.co.uk

"Uk's largest supplier of high quality loudspeaker kits and drive units. Comprehensive range of components and accessories, including damping products, connectors and grilles materials. Demonstration facilities available.

Ten year index: new update

www.softcopy.co.uk

Photo copies of Electronics World articles from back issues are available at a flat rate of $£ 3.50$ per article, $£ 1$ per circuit idea, excluding postage.

Hard copy Electronics World index Indexes on paper for volumes 100,101, and 102 are available at $£ 2$ each, excluding postage.

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles. circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 K ram and a hard disk.

The disk-based index price is still only $£ 20$ inclusive. Please specify whether you need $5.25 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format.
Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Ordering details

The EW index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders
Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide.
For enquires about photocopies etc please send an sae to SoltCopy Ltd.

Send your orders to SoftCopy Ltd,

1 Vineries Close, Cheltenham GL53 ONU.
Cheques payable to SoftCopy Ltd, please allow 28 days for delivery.

Only
 The UK's only DUD monthly with a free DVD every issue, plus the hest reviews of DVDs and home cinema equipment.

 The enthusiast's magazine for all digital TV - satellite, terrestrial, cable with equipment tests, and more!

 WHATVIEO\&TV
 For all your audiovisual needs, reviews, information and buying advice, this is your hest resource.

\triangle Everything you need to know about videomaking, including technique advice, product reviews and all the latest news.

Catering for hath camcorder novices and the experienced user, it features indepth tests, buying advice and tips.

Exclusive Subscription Offer

From the UK's best publisher of special interest magazines.

- First issue only 95p
 - Free discount voucher
 - Great magazines!

Subscribe today to any of these magazines and get your first issue for only 95p! Then you only pay $£ 2.99$ per issue thereafter. This is one of many special subscription offers available on over 40 Highbury House magazines. Look out for more fantastic titles in your next issue.

Just complete your details below or phone our subscription hotline on

01353654434 QUOTE REF: OVCO3

YES! I would like to subscribe to:

\square TOTAL DVD (12 issues) | year for 633.84

 \square WHAT SATELLITE (12 issues) I year for 633.84 \square WHAT VIDEO \& TV (12 issues) I year for $£ 33.84$$\square$ WHAT CAMCORDER (12 issues) I year for $£ 33.84$
\square CAMCORDER (12 issues) I year for 633.84

FREE VOUCHER

offering you a great holiday discount with every subscription!*

Highbury House Communications PLC may share information about you with other companies within the Highbury House Communications PLC group [and with other reputable companies so that we may let you know about products and services, which may be of interest to you \square
If you would prefer not to receive this information, please tick applicable box. Subscriptions will begin with the next available issue. Open to UK ants only. This offer closes 28th February 2003.
*Terms and conditions apply
Is this a renewal of a current subscription? \square Yes \square No
Method of Payment
\square Cheque (made payable to Highbury wViP) \square Mastercard \qquad \square Switch
Cardholder's name
Card no: $\square \square \square$ Issue no: $\square \square$ Valid date: $\square \square \square \square$
Expiry date: $\square \square \square \square$ signed: ..
My Details

Postcode: Tel:... E-mail:..........
I would like a gift subscription for:
Title: Forename: Surname: ..
Address: . PLEASE RETURN YOUR COMPLETED COUPON TO:
Highbury Subscriptions, Link House, 8 Bartholomews Walk, Ely, Cambs CB7 4ZD Tel: 01353 654434, Fax 01353654400 , wss@wyverncrest.co.uk

OVCO3

As an advertiser you can be certain that your sales message is going to be read by decision-making electronics professionals with the power to purchase your products.

Service

The pre-paid rate for semi-display setting is $£ 17$ per single column centimetre (maximum 4 cm). Box number $£ 22$ extra. All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc to be made payable to Highbury Business Communications Ltd. Advertisements together with remittance should be sent to Electronics World Classified, Highbury Business Communications Ltd, Anne Boleyn House, 9-13 Ewell Road, Cheam, Surrey SM3 8DZ.
Tel: 02087226028.
Fax: 02087702016.

ARTICLES WANTED

BEST CASH PRICES PAID

For all valves KT88 PX4 and other audio types
Wide range of valves and CRT stocked Tel: 01403784961

Billington Export Lid. Fax: 01403783519
Email: sales@bel-tubes.co.uk Sussex RH14 9EZ
Visitors by appointment

TOP PRICES PAID

For all your valves,
tubes, semi conductors and ICs.
Langrex Supplies Limited
1 Mayo Road, Croydon, Surrey CRO 2QP TEL: 02086841166 FAX: 02086843056

FOR SALE

PRINTED CIRCUIT BOARDS - PESTGNED \& MANUFACTURED HIH agar

- PCBs designed trom circuit disgrams
- Almos al computer files acceppled
- PCB assembly - mechanical assembly
- Full product doesign-manulachure-1est-repali

Unit 5, East Belfast Enterprise Park 308 Albertbridge Rd, Belfast BT5 4GX TEL 02890738897 FAX 02890731802 info@agarcircuits.com

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS
www.rlaver.dial.pipex.com
TEL: 01223862550
FAX: 01223440853

SERVICES

POWER SUPPLY DESIGN
Switched Mode PSU
Power Factor Correction designed to vour specification Tel/fax: 01243842520 e-mail: eugen_kusecix.co.uk Lomond Electronic Services

SERVICES

SERVICES

For a FREE consultation

 on how best to market your products/services to a professional audience contact REUBEN on 02087226028
WANIED

WANTED surplus or Obsolete Electronic Components
Turn your excess stock into instant cash!
SEND OR FAX YOUR LIST IN STRICTEST CONFIDENCE Will collect anywhere in the UK

6a St.Marys St, Bedford, Bedfordshire, MK42 OAS Tel: 01234363611 Fax: 01234326611 E-mail: sales@mushroomcomponents.com Internet: www.mushroomcomponents.com

NEW VERSION B ${ }^{2}$ Spice Pro v4.2

Watch your designs come alive

Setting new standards in price \& performance for SPICE

See what's really going on with powerful new Dynamic Schematics.

Make changes to designs during simulation and watch the effects in real time.

More simulation options than ever before. A massive parts database as standard.

Free telephone and on-line technical support.
Outstanding value at $£ 239$ ex VAT.
'We are so confident that B2 Spice Pro will impress you that we offer an unconditional 30 -day evaluation of the full boxed version, complete with printed user manual. If you don't like it, then simply return it.'

Call 01603872331

order on-line wWw.spice-software.com

Just some of what's new

A whole range of new features not found in packages costing under $£ 1000$.

Advanced animated schematics

Realtime 'live' simulation adjustments.
16 simulation options from Monte Carlo to RF .
Improved PCB export and bill of materials.
Detailed schematics with DIN and ANSI symbols.
RF simulations and network analysis.
Schematic borders and titles for professional output. Smith and polar plots.
A massive 25,000 parts database as standard.
Powerful new graphing and plotting - display \& switch between multiple graphs easily.
New "workspace" window to manage your projects.
New "parts chooser" window to easily pick and place.
Combined digital and analogue graphs.
Even faster simulations.
Unlimited undo / redo.
Many new simulation models.
Create new parts
Create and edit symbols.
Create new PCB layout parts.
New fully featured schematic editor.
Professional version $£ 239$ ex VAT
Standard version $£ 139$ ex VAT
Upgrade from earlier versions $£ 119$ ex VAT
Postage \& packing $£ 5.00$.
Education discounts and site licences available.

Cable laying problems? use licence free, call charge free

 Radio Data Transmission

 Radio Data Transmission}

