UNBEATABLE OFFER — SmartCard reader/writer half price!

LECTRONICS ORLD

E-fraud exposed

Audio-visual router

Impedance meter

Understanding transformers

LC resonant tanks

Hands-on DSP design

Ethernet i/o interface

Circuit ideas:

Low-power Class A Colour bar generator High-speed PC i/o Stepper controller 3-phase indicator Shunt regulator Ripple reducer Frequency doubler

Telnet

Tel: 02476 650702

Hewlett Packard		
8642A - high performance R/F synthesiser		
(0·1-1050MHz)	£	4750
3335A - synthesiser (200Hz-81MHz)	£	2200
Hewlett Packard		
436A power meter and sensor (various)	from	£750
437B power meter and sensor (various)	from £	1100
Hewlett Packard		
Marconi 6310 - programmable sweep generator		
(2 to 20GHz) – new	2	2750
Marconi 6311 Prog'ble sig. gen. (10MHz to 20GHz)	£	3500
Marconi 6313 Prog'ble sig. gen. (10MHz to 26.5GHz	() £	5750
Hewlett Packard		
5370B - universal time interval counter	£	1500
Hewlett Packard 8662A synth. sig. gen. (10kHz to 12	280MH	z)
	5	8250
Hewlett Packard 3324A synth. function/sweep gen. (21MH2	2)
	5	2500
Hewlett Packard 3314A Function Generator 20MHz	. 1	1250
Hewlett Packard		
8904A Multifunction Synthesiser (opt 2+4)		1950
R&S SMG (0.1-1GHz) Sig. Generator (opts B1+2)		2950

OSCILLOSCOPES

Gould 400 20MHz - DSO - 2 channel	0083.
Gould 1421 20MHz - DSO - 2 channel	0003
Gould 4068 150MHz 4 channel DSO	£1500
Gould 4074 100MHz - 400 Ms/s - 4 channel	£1350
Hewlett Packard 54201A - 300MHz Digitizing	£1995
Hewlett Packard 54600A - 100MHz = 2 channel	£750
Hewlett Packard 54502A - 400MHz-400 MS/s 2 channel	£1800
Hewlett Packard 54810A 'Infinium' 500MHz'2ch	£4000
Hewlett Packard 54520A 500MHz 2ch	£3000
Hamed 205-2 20MHz DSO	£550
Hitachi VI52/V212/V222/V302B/V302F/V353F/V550B/V650F	from £125
Hitachi VI 100A - 100MHZ - 4 channel	2900
intron 2020 - 20MHz. Dual channel D.S.O. (new)	£450
Iwatstu SS 5710/SS 5702 -	from £125
Kikusui COS 5100 - 100MHz - Dual channel	£350
Lecroy 9314L 300MHz - 4 channels	£3000
Meguro MSO 1270A - 20MHz - D.S.O. (new)	£450
Philips PM3094 + 200MHz - 4 channel	£1750
Philips 3295A - 400MHz - Dual channel	£1600
Philips PM3392 - 200MHz - 200Ms/s - 4 channel	£1995
Philips PM3070 - 100MHz - 2 channel - cursor readout	£750
Tektronix 465 - 100MHZ - Dual channel	£350
Tektronix 464/466 - 100MHZ - (with AN. storage)	£350
Tektronix 475/475A - 200MHz/250MHz -	from £450
Tektronix 468 - 100MHZ - D.S.O.	£650
Tektronix 2213/2215 - 60MHz - Dual channel	£350
Tektronix 2220 - 60MHZ - Dual channel D.S.O	£995
Tektronix 2235 - IOOMHZ - Dual channel	2600
Tektronix 2221 - 60MHz - Dual channel D.S.O	£995
Tektronix 2245A - 100MHZ - 4 channel	2900
Tektronix 2440 - 300MHz/500 MS/s D.S.O.	£2450
Tektronix 2445A/2445B - 150MHz - 4 channel	£1000
Tektronix 2445 - 150MHZ - 4 channel + DMM	£1200
Tektronix TAS 475 - 100MHZ - 4 channel	£995
Tektronix 7000 Series (I00MHZ to 500MHZ)	from £200
Tektronix 7104 – 1GHz Real Time – with 7A29 x2, 7B10 and 7B15	
Tektronix 2465/2465A/2465B - 300MHz/350MHz 4 channel	from £1250
Tektronix 2430/2430A - Digital storage - 150MHz	from £1250
Tektronix TDS 310 50MHz DSO - 2 channel	£750
Tektronix TDS 320 100MHz 2 channel	£850
Tektronix TDS 340A 100MHz DSO - 2 channel	£1250
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41200

SPECTRUM ANALYSERS

	SPECINUM ANALTSERS	
	Ando AC 8211 - 1.7GHz	£1500
	Avcom PSA-65A - 2 to 1000MHz	€850
	Anntsu MS 610B 10KHz - 2GHz - as new	£3500
	Anritsu MS3606B (10KHz-1GHz) network Analyser	£3500
	Advantest/TAKEDA RIKEN - 4132 - I00KHz - I000MHz	£1500
	Hewlett Packard 8756A/8757A Scaler Network Analyser	from £1000
	Hewlett Packard 853A Maintrame + 8559A Spec. An. (0.01 to 21GHz)	£2750
	Hewlett Packard 182T Mainframe + 8559A Spec. An. (0.01 to 21GHz)	£2250
	Hewlett Packard 8568A (100Hz - 1500MHz) Spectrum Analyser	£3500
	Hewlett Packard 8567A - 100Hz - 1500MHz	£3995
		£5995
	Hewlett Packard 8752A - Network Analyser (1.3GHz)	
	Hewlett Packard 8754A - Network Analyser 4MHz-1300MHz	£1500
	Hewlett Packard 3561A Dynamic signal analyser	£3995
	Hewlett Packard 35660A Dynamic signal analyser	£3250
P	Hewlett Packard 8753A (3000KHz-3GHz) Network An	€3500
	IFR A7550 - 10KHz-1GHz - Portable	£1950
	Meguro - MSA 4901 - 30MHz - Spec Analyser	£700
	Meguro - MSA 4912 - I MHz - IGHZ Spec Analyser	2995
	Tektronix 2712 Spec. Analyser (9kHz - 1.8GHz)	£3750
	Wandel & Goltermann TSA-1 system analyser (100Hz-180MHz)	£2750
	Wiltron 6409 - 10-2000MHz R/F Analyser	£1750

Quality second-user test & measurement equipment

NEW PHONE CODE FOR COVENTRY 02476

Radio Communications Test Sets

Marcon 2933	21000
Marconi 2955B/60B	23995
Marconi 2955A	£2000
Marconi 2955R	£2200
Marconi 2945 Comms service monitor	£4500
Antritsu MS555A2	£1200
Hewlett Packard 8922B (GSM)	€4000
Hewlett Packard 8920A (opts 1,2,3,4,5,11)	£5250
Hewlett Packard 8920B (opts 1,4,7,11,12)	£7250
Hewlett Packard 8922M	00002
Schlumberger Stabilock 4031	£3500
Schlumberger Stabilock 4040	£1500
Racal 6111 (GSM)	£1750
Racal 6115 (GSM)	£3995
Rhode & Schwarz CMTA 94 (GSM)	£4995
Rhode & Schwarz CMT 55 (2GHz)	00082
Rhode & Schwarz CMT 90 (2GHz) DECT	£4995
Wavetek 4103 (GSM 900) Mobile phone tester	£1500
Navetek 4106 (GSM 900, 1800, 1900) Mob. Phone tester	£2200
Commence of the last of the la	

£1500

Fax 02476 650 773

MISCELLANEOUS

Eaton 2075-2A - Noise Galin Analyser	at £2750
EIP 548A 26 5GHz Frequency Counter	£1995
EIP 548A 26.5GHz Frequency Counter ENI 440LA (150KHz-300MHz) 35 Watt Power Amp	£2500
ENI 1040 (10KHz-500KHz) 400 Watt Power Amp	£2750
Fluke 5100A/5100B/5200A - Calibration Units (various available)	from £1000
Fluke 2620 Data Buckets	€500
Fluke 45 Dual Display M/meter (IEEE)	€550
Hewlett Packard 339A Distortion measuring set	£1200
Hewlett Packard 778D Dual-Directional Couplers	€650
Hewlett Packard 3488A - Switch/Control unit	£250
Hewlett Packard 3457A multi meter 6 1/2 digit	€950
Hewlett Packard 3784A - Digital Transmission Analyser	£4500
Hewlett Packard 3785A - Jitter Generator & Receiver	£1250
Hewlett Packard 5385A - 1 GHZ Frequency counter	€650
Hewlett Packard 6033A - Autoranging System PSU (20v-30a)	€750
Hewlett Packard 6622A - Dual O/P system p.s.u.	£1250
Hewlett Packard 6624A - Quad Output Power Supply	£2000
Hewlett Packard 6632A - System Power Supply (20v-5A)	0083
Hewlett Packard 8350B – Sweep Generator Mainframe	£1500
Hewlett Packard 8656A Synthesised signal generator	€850
Hewlett Packard 8656B Synthesised signal generator	£1250
	£1750
Hewlett Packard 8657A Synth. sig. gen. (0.1-1040MHz)	£1750
Hewlett Packard 8901B - Modulation Analyser	from £1250
Hewlett Packard 8903A, B and E - Distortion Analyser	
Hewlett Packard 16500A + B - Logic Analyser Mainframes	from £1000
Hewlett Packard 16501A/B & C - Logic Analyser System Expander Frame	from £2000
Hewlett Packard 37900D - Signalling test set	£3750
Hewlett Packard 83220A DCS/PCS test sets	€3000
Hewlett Packard 86578 - 100KHz-2060 MHz Sig Gen	£3995
Hewlett Packard 8657D - XX DQPSK Sig Gen	£4500
Hewlett Packard 8130A - 300 MHz High speed pulse generator	£5250
Hewlett Packard 4275A LCR Meter (10KHz-10MHz)	£3250
Hewlett Packard 4276A LCZ Meter (100Hz-20KHz)-	£1500
Marconi 1066B - Demuttiplexer & Frame Alignment Monitor (140MBIT to 64)	(BII)
NEW	£1750
Marconi 2305 – modulation meter	2999
Marconi 2610 True RMS Voltmeter	€550
Marconi 6950/6960/6960B Power Meters & Sensors	from £400
Marconi 2840A 2Mbit/s Transmission Analyser	P.O.A.
Philips 5515 - TN - Colour TV pattern generator	£1400
Philips PM 5193 – 50MHz Function generator	£1500
Leader 3216 Signal generator 100KHz - 140MHz - AWFM/CW with built in F	M stereo
modulator (as new) a snip at	£795
Racal 1992 – 1.3GHz Frequency Counter	€500
Rohde & Schwarz NRV dual channel power meter & NAV Z2 Sensor	£1250
Systron Donner 6030 - 26.5GHz Microwave Freq Counter	£1995
Tektronix ASG100 - Audio Signal Generator	£7 50
Wavetek 178 Function generator (50 MHz)	£950
Wayne Kerr 3245 - Precision Inductance Analyser	£1995
Wayne Kerr 6245 - Precision Component Analyser	£2500

All equipment is used - with 30 days guarantee and 90 days in some cases
Add carriage and VAT to all goods.

Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF.

CIRCLE NO. 101 ON REPLY CARD

Tel: 02476 650 702 Fax: 02476 650 773

CONTENTS

411 COMMENT

Taxing times for the contractor

412 NEWS

- Photon-level secure comms
- New optical-fibre technology
- 1.5Mbit/s mains network
- New phone health worry
- UK electronics growth
- Commercial 3D displays

418 E-FRAUD EXPOSED

Andrew Emmerson reports on the growing problem of Internet and on-line fraud.

423 PRO AV ROUTER

Available commercially as the VRS 8x4. Emil Vladkov's, audio and video router system allows you to select one of the eight video inputs and one of eight stereo audio channels using either a keypad or a PC.

432 TECHNOLOGY THAT'S **ALL TALK**

After decades of research into speech

recognition, the technology still seems to have very few serious applications. David Manners reports.

434 PC INTERFACING VIA ETHERNET II

In this second article on connecting external devices to your PC via a cheap Ethernet card, Eddy Insam describes a development device that can get you going in no time at all.

442 DESIGNING WITH DSP

Using a design example incorporating audio data converters, Patrick Gaydecki reveals that the DSP hardware needed for communicating with a PC, memory addressing and codec interfacing is not too difficult to implement.

447 NEW PRODUCTS

New product outlines, selected and edited by Electronics Weekly.

458 UNDERSTANDING **TRANSFORMERS**

Ian Hickman provides a backgrounder on electricity and magnetism, arguing that unless you understand them, you cannot fully appreciate how a transformer works.

463 CIRCUIT IDEAS

- Colour-bar generator
- Efficient Class-A power
- Ripple reducing filter
- Measure revs-a-second via a PC
- Negative high-voltage regulator
- High-gain amp. uses power FET • Radio receiver works off 12µA
- Detect 3-phase faults
- PC-based step motor driver
- Single IC oscillator/doubler
- Load-sensing and switching

EXCLUSIVE OFFER - PAGE 472

This is believed to be the lawest cost smart-card reader/writer and SIM adaptor kit available - at just over £20 inclusive to EW readers.

473 100KHZ IMPEDANCE METER

Designed for checking electrolytic capacitor health, Cyril Bateman's impedance meter has a variety of other uses

480 WEB DIRECTIONS

Useful web addresses for the electronics

483 LC RESONANT TANKS

Joe Carr takes a look at how LC tank circuits work and describes how to get the best from them in radio designs.

Illustration: Hashim Akib

Capacitor guru Cyril Bateman has designed this 100kHz impedance meter with two ranges - 0-2Ω and 0-20Ω. Read about it on page 473.

A 10Mbit/s Ethernet card is a sophisticated interface, yet you can buy one for under a tenner thanks to mass production. On page 434, Eddy Insam describes how you can use them for real-world interfacing.

July issue on sale 1 June

b² **Spice** 2000

Analogue and digital circuit design for the PC

Design and test circuits quickly and easily

Packed with new features:

- · Uses the latest xspice engine for guaranteed accurate mixed mode simulation
- Parameterised ac sweep Monte carlo analyses . Parameterised transient sweep
- New xspice simulations New noise and distortion analyses • Improved features for processing plot families as units . New menu items to show local maxima, minima, and zero crossings and much morel

Accurate results that can be relied on

RD Research, Research House, Narwich Road, Eastgate, Norwich NRTO 4HA Tel: 01603 872331 Email: rd.research@paston.co.uk www.looking.co.uk/spice Please add £5.00 postage and packing. Tapplies to users of B2 Spice & B2 Logic. All trademarks acknowledged

CIRCLE NO.105 ON REPLY CARD

Next Generation Electronics CAD

Introducing Electronic Design Studio 2, the new modular electronics design system that includes simulation, schematic, PCB, autorouting and CADCAM modules as standard.

Our state of the art integrated design environment brings powerful management to your projects and now features expanded libraries with 3D style PCB footprints, and the new Viper autorouter. EDS 2 Advance also includes rip up and retry routing, net styles, shape based realtime design rule checking (DRC), full copper pour support with unlimited automatic zones, split power planes with router support, cross probing, netlist navigation, DTP quality feature rich schematics and a wide range of import/export options.

EDS 2 is fully compatible with the latest TINA Pro 5.5 with support for FAST TINA net import using the Project Wizard.

	Standard	Advance
Schematic, Simulation, PCB & CADCAM Modules	Yes	Yes
Viper Autorouter	Single Pass	Ripup/Retry
Multiple copper pour, thermal relief, power planes		Yes
Cross probing & Net Styles		Yes
Shape based Design Rule Check		Yes
Price'	£199	£349

www.dotqr.com

Quickroute Systems Ltd Regent House, Heaton Lane, Stockport SK4 1BS UK Tel/Fax 0161 476 0202/0505

Email sales@dotgr.com
*Price excludes P&P and VAT. (c) 2001 Quickroute Systems, E & O. E.

EDITOR

Martin Eccles 020 8652 3614

CONSULTANTS

Ian Hickman Philip Darrington Frank Ogden

EDITORIAL ADMINISTRATION

Jackie Lowe 020 8652 3614

EDITORIAL E-MAILS

jackie.lowe@rbi.co.uk

ADVERTISEMENT

SALES MANAGER

David Wilson 0208 652 3033

GROUP SALES EXECUTIVE

Pat Bunce 020 8652 8339

ADVERTISEMENT E-MAILS

pat.bunce@rbi.co.uk

ADVERTISING PRODUCTION

020 8652 8339

PUBLISHER

Mick Elliott

EDITORIAL FAX

020 8652 8111

CLASSIFIED FAX

020 8652 8938

NEWSTRADE ENQUIRIES

020 7907 7777

ISSN 0959-8332

For a full listing of RBI magazines: http://www.reedbusiness.com

Taxing times for the contractor

ery few tears are shed when IT contractors hit hard times. They are always the butt of jokes at work. There is often a simmering resentment between full-time employees and contractors who are paid twice as much and who have worked at the company for as many years. Their quality of work is generally low because of a lack of commitment – they are a pretty useless bunch really!

Managers take a different view though.
Contractors can offer specialist services not immediately available within the company. They possess a flexibility not possible with full time employees. They require only minimal supervision and often produce more than regular employees.

They can also be hired for other purposes – use of contractors in Government Departments is a convenient way to keep the number of civil servants down while getting more work done. The down side is that a contractor can become very valuable and will try to hold the company to ransom.

If you are technically minded, contracting can be an attractive career because of the high wages, the freedom, the variety of work and the absence of politics in getting the job done. When companies employ contractors, the work is often better defined and more focused on results.

The down side is the need to keep one's skills up to date, ensuring that you have a good agent who pays you when he should, providing for sickness and pension and too much travelling. And there's the uncertainty, particularly in times of economic slowdown.

Unfortunately, the tax man has now added to that uncertainty. Rules were announced, in the 1999 Budget press release number IR35, to close a loophole in the national insurance rules for contractors.

The previous scenario ran like this: a contractor sets up a limited company of which he or she would become an employee. That company would then offer its services to another company and be paid a handsome daily rate to work at that company's premises.

The contractor and fellow directors – husband, wife, partner and the like – would draw a minimum salary on which national insurance was payable, but then take a big dividend every quarter, which was not subject to national insurance. Expenses could also be offset against company profits thus reducing the tax bill. Quite neat really.

IR35 identified these contractors as "disguised employees" and said that they would in future have to be taxed at source and expenses would be limited to 5% (www.inlandrevenue.goc.uk/ir35/).

In the present climate, where it is politically incorrect to increase direct taxation, the Inland Revenue has been told to squeeze everyone as tightly as possible and to apply the rules rigidly. These new rules have created considerable uncertainty for both contractors and companies.

The interpretation and advice from the Inland Revenue is so woolly that companies are afraid that they will face heavy fines. It has also created genuine hardship by the sudden imposition of IR35. For example, some contractors travel great distances to work or have to stop over locally—which is frighteningly expensive in London. These genuine expenses will no longer be offset against tax.

The Professional Contractors Association (www.pcgroup.org.uk) was formed in May 1999 to fight IR35. They recently took the Inland Revenue to the High Court in an attempt to prove that IR35 contravenes EC and human rights laws.

More down to earth, it was said to restrict free movement and unfairly help large companies that do contract work but employ people directly. The judge ruled that IR35 was "unfair and unworkable" but not illegal.

The Inland Revenue has been told to redraft the guidance manual used by officials to assess who falls under IR35. This is a small victory that will ease the pain but not end the "suffering".

So what of the future for contracting? There have been the dire warnings that the UK will cease to be competitive in e-business, that contractors will move overseas etc, etc. In fact the impact of IR35 will probably be minimal.

Rates will increase – not immediately because of the economic slowdown – and some contractors will throw in the towel. If you are being taxed at source you may as well become an employee to enjoy the protection which that gives, and the lack of hassle from the tax man (and why is the tax system so complex?). The drop in salary could be compensated for by good company benefits such as a bonus scheme or share options.

There will continue to be a need for highlyskilled specialist contractors in the fast moving and risky high-tech world. Maybe the industry needed a shake out before Asian software competition really starts to bite.

Peter Marlow

SUBSCRIPTION HOTLINE Tel (0) 1444 475662 Fax (0) 1444 445447

SUBSCRIPTION QUERIES

rbp.subscriptions@rbi.co.uk Tel (0) 1444 445566 Fax (0) 1444 445447 Electronics World is published monthly. By post, current issue £2.80, back issues (If available). Orders, payments and general correspondence to L514, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tbx:892984 REED BP G. Cheques should be made payable to Reed Business Information Itd Newstrade: Distributed by Marketforce (UK) Ltd, 247 Tottenham Court Road Landon WTP OAU, tel. 020 7907 7777.

Subscriptions: Quadrant Subscriptions Services, Oakfield Hause

Subscriptions: Quadrant Subscription Services, Oakfield Hause Perrymount Road, Haywards Heath, Sussex RM16 3DH. Telephone 01444 445566. Please notify change of address. Subscription rates 1 year UK £36.00 2 years £58.00 3 years £72.00.

Subscription rates 1 year UK £36.00 2 years £58.00 3 years £72.00, Europe/Eu 1 year £36.00 2 years £82.00 3 years £103.00 ROW 1 year £61.00 2 years £98.00 3 years £123 Overseos advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd., 475 Park Avenue South, 2nd Fl New York, NY 10016 Tel; (212) 679 8888 Fax; (212) 679 9455

USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. Periodicals Postage Paid at Rahway NJ Postmaster. Send address changes to above.

Printed by Polestar (Calchester) Ltd, Filmsetting by JJ Typographics Ltd, Unit 4 Baron Court, Chandlers Way, Southendon Sea, Essex SS2

© Reed Business Information Ltd 1997 ISSN 0959 8332

UPDATE

DERA breaks photon-level secure communications record

Update is produced by Electronics

A team of UK scientists from the Defence Evaluation and Research Agency (DERA) is claiming a world record for transmitting quantum cryptography keys using a laser link.

The keys are sent via free-space

quantum transmission

"We transmitted successfully over 1.9km. That is 0.3km further than the previous best published result," said Professor John Rarity. The team working on the project are based at DERA's research site in Malvem.

Under 2km may not sound very far, but when you realise that "the demonstration experiment went down to 0.1photon/pulse," according to Rarity, you get some idea of the achievement. Only one in ten pulses leaving the transmitter contains a photon.

Quantum cryptograph key transmission relies on sending individual photons across a link with information encoded on their polarisation states.

Undetected eavesdropping is almost impossible because the photon disappears in the detection process.

Feedback by conventional means

DERA scientists in the lab. Pictured are (I to r): Phil Gorman, Professor John Rarity and Dr Paul Tapster. At the end of the telescope is the Wyche Inn – the pub that holds the transmission end of the new communication link.

tells the sender at what time a successfully detected photon arrived, then both sender and receiver can add this to a list of key bits that have completed the crossing.

The next step is, under the auspices of the European Quantum Cryptography Collaboration, to transmit over 20km between two mountains in the Alps.

The move to the Alps is to remove optical alignment problems in the experiment caused by turbulence in the air. "Turbulence wobbles the beam," said Rarity. "Britain is particularly bad, the Alps are better." Los Alamos, where the previous record was set, is in the desert and has one tenth of the turbulence typically found around Malvern, he said.

"The final aim, over the next four or five years, is to develop a key exchange between here and Los Alamos in the USA," said Rarity. This future link will involve free-

This future link will involve freespace transmission between Earth and satellites, and between satellites. It will be used for secure Government communication between the two countries.

Building to building communication links could be another development.

Steve Bush Electronics Weekly

UK company wins \$9m to develop a new generation of optical fibre

BlazePhotonics, a spin-off of the University of Bath, has won \$9m in first-round funding to develop photonic crystal fibre – also known as 'holey' fibre.

"Our fibres are going places," said Professor Philip Russell, who leads Bath's optoelectronics group. "Their properties give them the potential to out-perform and replace conventional fibres in a variety of applications. I am delighted that we now have the backing to build BlazePhotonics."

The company will use the funding to establish a custom built facility and increase its R&D and operational teams. The operations will remain close to Bath and will maintain links with the University.

As part of the deal, the University will be a significant shareholder and will vest all of its existing and future intellectual property arising from research in photonic crystal fibres in BlazePhotonics.

Funding was led by Celtic House Investment Partners and included Quester Capital Management.

Pre-incorporation seed cash came from Sulis Seedcorn Fund.

Photonic Crystal Fibres are singlematerial all-silica optical fibres. Instead of the conventional corecladding structure, light is trapped in the core by an array of tiny air holes running along the whole length of the fibre.

Steve Bush Electronics Weekly

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK Ring for Latest Reduced Prices on this advert

HP8444A Tracking Generator • 5-1300Mc/s - £450. HP8444A OPT 059 Tracking Gen • 5-1500Mc/s -£650. HP35601A Spectrum Anz Interface -£300. HP4953A Protocol Anz - 3400. HP8970A Noise Figure Meter + 346B Noise Head - £3k HP8755A+B+C Scalar Network Anz PI - £250 + MF 180C -Heads 11664 Extra - £150 each. HP3709B Constellation ANZ £1,000. FARNELL TVS70MKII PU 0-70V 10 amps - £150.
MARCONI 6500 Network Scaler Anz - £500. Meads available to 40GHz many types in stock.

Mixers are available for ANZs to 60GHz. Marconi TF2374 Zero Loss Probe - £200.
Racal/Dana 1250-1261 Universal Switch Controller + 200Mc/s PI Cards and other types.
Racal/Dana 9303 True RMS Levelmeter + Head - £450. TEKA6902A also A6902B Isolator - £300-£400. TEK CT-5 High Current Transformer Probe - £250. HP Frequency comb generator type 8406 - £400. HP Sweep Oscillators type 8690 A+B + plug-ins from 20Mc/s to 18GHz also 18-40GHz. HP Network Analyser type 8407A + B412A + 8601A 100Kc/s - 110Mc/s - £500 - £1000. HP 8410-A-B-C Network Analyser 110Mc/s to 12 GHz or 18 GHz - plus most other units and displays used in this 8411a-8412-8413-8414-8418-8740-8741-8742-8743-8 8650 From £1k. Recal/Dana 9301A-9302 RF millivoltme stock £250-£400 ainfram 9921-50Mc/s-3GHz - £100 - £400 - all fitted HP180TR. HP181T, HP182T mainfra HP432A-435A or B 436A or mete preferads to 60GHz - £150 - £1750 - \$60 mete preferads to 60GHz - £150 - £1750 - \$60 mete preferads to 60GHz - £150 - £1750 - \$60 mete preferads to 60GHz - £100 - £1250 mete preferads to 60GHz - £1000 mete preferads HP8620C Mainframe - £250. IEEE £350. HP8165A Programmable signal source - 1MHz - 50Mc/s HP3455/3456A Digital voltmeter - £400. HP5370A Universal time interval counter - £1k. HP5335A Universal counter - 200Mc/s-£1000. TEKTRONIX 577 Curve tracer + adaptors - £8 TEKTRONIX 1502/1503 TDR cable test HP8699B Sweep Pl YIG oscillator .01 MF-£250, Both £500. Dummy Loads & Power att.up to 2.5 FX up to 18GHz - microwave parts new and ex equal - relays - attenuators - switches - waveguides - Yigs - SMA - APC7 plugs - adaptors etc. qty. In stock.

B&K Items in stock - ask for list.

Power Supplies Heavy duty + bench in stock - Famell - HP -Weir - Thurlby - Racal etc. Ask for list. Large quantity in stock, all types to 400 amp - 100Kv.

HP8405A Vector voltmeter - late colour - £400.

HP8508A Vector voltmeter - £2500.

LIGHT AND OPTICAL EQUIPMENT

Anritsu ML93A & Optical Lead Power Net Anritsu ML93B & Optical Lead Power Net Power Sensors for above MA96A MA98 Battery Pack MZ95A. Battery Pack MZ95A.

Anritsu MW97A Pulse Echo Teste
Pl available - MH914C 1.3 - MH915B 1,3 - MH913B 0,85 MH925A 1.3 - MH929A 1.56 - MH925A 1.3GI - MH914C
1.3SM - 5500 A cos Pl 1.3SM - £500 + one P.L. Anritsu MW98A Time Domain Reflector. Pl available - MH914C 1.3 - MH915B 1.3 - MH913B 0.85 -MH925A 1.3 - MH929A 1.55 - MH925A 1.3GI - MH914C 1.3SM - £500 + one P.L Anritsu MZ100A F/O Converter MG912B (LD 1.35) Light Source + MG92B (LD 0.85) Light Source £350. Anritsu MZ118A O/E Converter. +MH922A 0.8 O/E unit + MH923 A1.3 O/E unit £350.

Anritsu MN95B Variable Att. 1300 £100 Photo Dyne 1950 XR Continuous Att. 1300 - 1500 £100. Photo Dyne 1800 FA An £100 Cossor-Raytheon 108L Optical Cable Fault Locator 0-1000M 0-10kM £200. TEK P6701 Optical Converter 700 MC/S-850 £250. TEK OF150 Fibre Optic TDR – £750. HP81512A Head 150MC/S 950-1700 £250. HP84801A Fibre Power Sensor 600-1200 £250. HP8158B ATT OPT 002+011 1300 1550 £300. HP81519A RX DC-400MC/S 550-950 £250.

STC OFSK15 Machine jointing + eye MISCELLANEOUS ITEMS HP 4261 LCR meter - £650 HP 4274 FX LCR meter

STC OFR10 Reflectometer - £250.

HP 3488 Switch Control ann. HP 75000 VXI 6 B-DVM-qu 990MC/S use with 322A - \$2.00.
HP 1630 1881 1890 1 1910 ANZ's in st P 8754A Network ANZ 4-1300MC/S

254A Network

83504 Sweepe 3500 Sweepe 350 3-12.40 H 3 - £3.50 1MCTOWAVE TWI - IMPLIFIC 10. PREAMPLIFIER 8447A 0.1-4 5.9-12.4 PLIFIER 69/ 120

7 - F300 PREAMPLIFIER 8 447A 0.1-4

P POW! AMPLIF 18 47F 0.01 SHz - £40

P PRE + ROVER A UFF 18 447F 0.01-13 GHz

P 15 hz A 2-13MC/S OP1 004 1400. oHz - £400. HP PRE + ROVER A LIFE 8447F 0.01 3Rz - C400
HP PRE + ROVER A LIFE 8447F 0.01-1 3G4z
HP IST Schop Pro A Life Beta From Pro Carlot Company
Market Beta From Market Beta From Proceedings Company
Market Beta From Market Beta From A Rev Beta From Proceedings Company
Market Be

£250

MARCONI 6950-6960B F Marin wads – E4 MARCONI SIO MAI SOURCE 255-6056-6057-6058 FX Rangu 1 E250-E4 RACAL 1797 CO MUNICATION RX – E5 Conty I Control Marin March Mar ads - £400 ba Highting and 1772 DMMUNICATION 04-506 MAINFRAN

X PI 5010-M1 og M

75 77 11-S1-S2-S3A-S4-S5-S6-

EK 7000 - 75 C 0 75 1-76 1-51 S51-557 91 HP POWE CMPT - C 621A 6623A Orystrature - Also 6000 types £POI 621A 6623A-6

WE REPAIN STOCK HP and of the doublers which when the story of the S/Generator doubles in the south to 50-2600MC S on the first 250 14 of A Grequency CANDUL SOCKET OF A COLOR EG.50-13PM-C/ £450 sach.

HP 9508A 100Hz 5GH HP 858B 100H 5GH HP 859B CCS 8 Hz 4,500 HP 859B CCS 8 Hz 2,500 HP 859B CC, 10 D 32GHz) - £3,50 HZ 35 Hz 6Hz 0PT 2 - £2,500 TEK49Z Hz GHz 0PT 1-2-3 - £3, TEK49Z F MHz 21GHz 0PT 1-2-3 - £3, TEK49Z F MHz 21GHz 0PT 1-2-3 - £3, 5GH: 25500 8GH2 M,500. 10 DJ 32GHz) - £3,500 TEK 32AP 50kHz-21GHz OPT 1-2-3 TEK 32AP 50kHz-21GHz OPT 1-2-3

TEK492BP 50kHz-21GHz - £3,000-£4, TEK495 100kHz-1 8GHz - F2 000 HP 8557A 0.01MC/S-350MC/S - £500 + MF180T or 180C -£150 - 182T - £500

HP 8558B 0.01-1500MC/S - £750 - MF180T or 180C - £150 -182T - £500 HP 8559A 0.01-21GHz - £1,000 - MF180T or 180C - £150

182T - £500 HP 8901A AM FM Modulation ANZ Meter - £800

HP 8901B AM FM Modulation ANZ Meter - £1,750. HP 8903A Audio Analyzer – £1,000. HP 8903B Audio Analyzer – £1,500.

MARCONI 2370 SPECTRUM ANAL ZEBS – HIGH QUALITY – DIGITAL STORAGE – 30th -1101, but arge qty to clear as received from Gov – all solutions is in the accomplete or additional accomplete or additional accomplete preferred – complete or add all some is is fund at a street pick your ownform - discount on gtys of

A EARLY MODE COLL horizontal alloy cooling fins

MODEL SHEY - vertical alloy cooling fins - £300. ATE MODEL BROWN - as above (few only) - £500.

DSCILLOSCOPES

DSCILLOSCOPES
TEK 455-455B 100MC/S + 2 probes - £250-£300.
TEK 466 100MC/S storage + 2 probes - £200.
TEK 475-475A 200MC/S-250MC/S + 2 probes - £300-£350.
TEK 2213-2213A-2215-22154
224-2225-2235-2236-2245-60-

TEK TAS 475-485 -100MC/S-20MC/S-4 ch + 2 probes - £900-

HP1748A - 100MC/S + 2 probes - £250 21. A - 100MC/S storage + 2 probes - £200. 21. A - 1722A - 1725A 2 MC/S + 2 probes - £300

0. 14A - 100MC/S ucrage urge screen - £250, HP1745A - 17 (6. 0. C/S uge screen - £350, HP54100 GH; use 1 - £500, HP54100 GH; use 1 - £500, HP54101 gitizing - £1,000

OWAVE COUNTERS - ALL LED READOUT

1510 ANY COUNTERS - ALL LED READOUT
1510 Autohet 20Hz-18GHz - £750.
EIP 371 Micro Source Locking - 20Hz-18GHz - £15
EIP 451 Micro Pulse Counter - 300MC/S-189Hz
EIP 451 Microwave Frequency Counter Microwave Frequency Com

HP5340A Migro Comer 10Hz-18GHz – Nixey – £500.

HP5342A Migro Comer 10Hz-18-24GHz – £800-£1K – OPTS

001-01 13-2 011 a grable.

HP531 340 source Synchronizer – £1.5K.

HP534 01 4C, \$1 10Hz LED Readout – £400.

HP5345 5358A Plugin – 4GHz – £700.

P5345A + 5355A Plugin with 5356A 18GHz Head – £1K.

5385A 1GHz 5386A-5386A 3GHz Counter - £1K-£2K Racal/Dana Counter 1991-160MC/S - £200.

Racal/Dana Counter 1992-1.3GHz - £600 Racal/Dana Counter 9921-3GHz - £350

SIGNAL GENERATORS HP8640A - AM-FM 0.5-512-1024MC/S - £200-£400

HP8640B - Phase locked - AM-FM-0.5-512-1024MC/S - 2500-£1.2K. Opts 1-2-3 available. HP8654A SYN AM-FM 0.1-990MC/S – £300. HP8656B SYN AM-FM 0.1-990MC/S – £900. HP8656B SYN AM-FM 0.1-990MC/S – £1.5K. HP8657A SYN AM-FM 0.1-1040MC/S – £2K. HP8660C SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £2K. HP8660D SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £3K. HP8673D SYN AM-FM-PM-0.01-26.5 GHz - £12K. HP3312A Function Generator AM-FM 13MC/S-Dual – £300. HP3314A Function Generator AM-FM-VCO-20MC/S – £600.

HP3325A SYN Function Generator 21MC/S – £800. HP3326A SYN 2CH Function Generator 13MC/S-IEEE -

HP3336A-B-C SYN Func/Level Gen 21MC/S - £400-£300

Racal/Dana 9081 SYN S/G AM-FM-PH-5-520MC/S – £300. Racal/Dana 9082 SYN S/G AM-FM-PH-1.5-520MC/S – £400. Racal/Dana 9084 SYN S/G AM-FM-PH-001-104MC/S – £300.

SPECIAL OFFERS

MARCONI 2019A SYNTHESIZED SIGNAL GENERATORS -80KC/S-1040MC/S - AM-FM - £400 inc. Instruction book -

Anritsu ML96B Power Meter & Charger £450

MARCONI 2022E SYNTHESIZED SIGNAL GENERATOR -10KC/S-1.01GHz AM-FM - E500 inc. instruction book

R&S APN 62 LF Sig Gen 0.1Hz - 260 kHz c/w book - £250.

MARCONI 2383 S.ANZ 100Hz - 4.2 GHz. £2K H.P RF AMP 8349A 2-20 GHz microwave, E2K. H.P. RF AMP 8347A 100 kHz - 3GHz £1,500. H.P. 8922 radio communication test sets G - H - M. options various. £2,000 - £3,000 each. H.P. 4193A VECTOR IMPEDANCE METER + probe kit. 400 kHz, To 110 ML/S. £3,500

H.P. 83220A – E GMS UNITS for above. £1,000 - £1,500. WAVETECK SCLUMBERGER 4031 RADIO COMMUNICATION TEST SET. Internal Spectrum ANZ. ANRITSU MS555A2 RADIO COMM ANZ. To 1000MC/S. No C.R. tube In this model, £450. TEK 2445A – 4CH – 150MLS SCOPE + New X1 + X10-probe. Instruction book, £500 each.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS, SAE FOR ENQUIRIES, PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE.
VAT AND CARRIAGE EXTRA. ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

New technology for home networking at 1.5Mbit/s over existing mains wiring

UK firm nSine has unveiled its powerline technology, providing 1.5Mbit/s network links through existing mains cables.

The company is aiming its nPlug technology at home and small office networking.

"The technology's been under development for three years now," says John Gilhooly, business development manager at nSine.

nPlug includes a digital baseband

controller, an analogue interface chip, and an AC coupler for connecting to the mains. The digital controller will be sold as a standalone chip or licensed as a core.

The system modulates data on to a carrier of between 10 and 30MHz.

"A low injected signal strength reduces the chances of that signal affecting other systems," said Gilhooly.

In order to ensure a robust system,

data is sent over multiple channels.

"You have various methods of ensuring robustness. We use multitone," said Gilhooly. "The early versions will send the same data down all four channels."

This is done because impulse noise on the mains can easily destroy the data on a channel.

Methods of avoiding this, such as forward error correction, are not used because of the cost implications.

"The focus here is low cost," said Gilhooly.

nSine estimates that a complete network node – including digital baseband controller, analogue interface and main coupler – will cost \$5.

Devices that could attach to the network include PCs, printers, audio and video systems, white goods and Internet gateways.

Four reference designs are available. Two link PCs and peripherals to the network via either a USB or PCI-bus. Third is an ADSL gateway, while the last is a standard telephone connection.

Future versions of nPlug will offer increased performance of up to 40Mbit/s, the firm said.

Report highlights health concerns over Tetra mobile comms

Worries over the health effects of GSM mobile phones could be eclipsed by new concerns about the digital packet mobile communications system known as Tetra.

These new mobile phone health concerns have been highlighted in a report on the siting of mobile phone masts by the House of Commons Trade and Industry Committee.

While welcoming the review, the cross-party Committee said: "We are very disturbed that there seems to have been no examination of the evidence on potentially adverse health effects before bringing it (Tetra) into service."

Concern about the technology has led to a review currently being undertaken by DERA and the National Radiological Protection Board (NRPB).

The problem is Tetra terminals use TDMA which produces a burst of energy at a rate of 17.6 times per second.

The Stewart Report, commissioned last year to look at mobile phones and health, recorded studies that showed the calcium loss from brain tissue was greatest at 16Hz, close to the 17.6Hz present in Tetra transmissions. It suggested amplitude modulation around 16Hz should be avoided.

"We thought that that was an area that should be avoided if at all possible. Clearly it has not been avoided," said Sir William Stewart, chairman of the Independent Expert Group on Mobile Phones which wrote the report.

Stewart told the Committee he was sure this area would "become a major facet of any future investigation".

BT, whose Tetra 'Airwave' service is being rolled out for UK police forces, said it fully complies with guidelines on exposure to electromagnetic fields. And despite the references in the Stewart Report "no health risks were suggested in the report and none have been identified".

Dolphin Telecom, which launched a commercial Tetra network in August 1999, told EW that it supported additional research into wireless technologies and possible health issues. But said its handsets and masts were "well below the recommended exposure guidelines." Melanie Reynolds, Electronics Weekly

Website for R&D launched by DTI

The Department of Trade and Industry has set up a new web site, www.ukresearchanddevelopment.com. It styles itself as 'a one-stop-shop for information on science parks, universities, research and development organisations and national laboratories involving all aspects of R & D in the UK'. Patricia Hewitt, e-commerce minister, said: "Visitors to the new Web site will be able to immediately identify which UK centres have the technical expertise to help them develop their products."

UK electronics growth despite US slowdown

The electronics sector in the UK is still predicted to grow this year, according to a recent report, despite growing fears that a US slowdown could hit the industry hard.

The latest set of figures from the Engineering Employers' Federation (EEF) forecasts that the economic slowdown in the US, combined with the cooling of the global boom in IT and telecoms, will halve growth in the UK electronics industry from 17 to 9 per cent for 2001.

Electronics business is leading growth in the engineering sector as a whole in the UK, which continues to grow but is already showing early signs of impact from the US slowdown, according to the EEF report.

Growth in the UK engineering industry will outstrip the rest of the economy this year but growth in orders and output is down on the last quarter of 2000, said the latest RSM Robson Rhodes-sponsored quarterly survey of the sector.

The EEF's chief economist

Stephen Radley said that, despite signs of slower world growth, output and orders had generally held up well and companies were reasonably optimistic about the future.

"The overall picture for the sector remains optimistic," agreed John Nutton, head of RSM Robson Rhodes Engineering Group.

However, Nutton added one caveat: "The pressure on margins

persists as UK-based companies continue to struggle against unfavourable European exchange rates and lower cost economies."

The report surveyed 1,396 companies in the UK during the period from February 12 to March 5, 2001.

It found that growth had slowed in the south east, south west and Scotland but identified growth in the north west and north east

Helps fight cancer using your PC's idle time

Spare personal computer time is to be harnessed to help cure cancer in an international project

backed by the University of Oxford and Intel among others. Anyone can join in and their computer will run mathematical models to assess the fit of molecules to each other. Intel estimates 50Tflop/s of spare capacity will be made available. Check out www.intel.com/cure if you are interested.

Commercial 3D displays on the horizon

Three dimensional displays have taken a step closer to commercial reality with US firm Actuality

Systems producing a 90 million voxel unit.

The display is a volumetric type system, with a flat, vertical screen rotating at 600rev/min. A series of images, between 4000 and 10 000 per second are flashed onto the translucent screen so, the eyes and brain perceive a 3D image.

The downside of volumetric displays – compared to other types of 3D display– is the sheer amount of data that has to be stored and projected.

With an refresh rate of 20Hz, the 10 000 frames/s results in 500 unique frames per revolution, each being a 768 by 768 pixel image, pixels

having eight colours. Thus feeding the display requires a memory buffer containing up to 6Gbit of data.

Actuality has worked with Avnet and Xilinx on the design. Xilinx's Spartan II FPGAs are used in the raster engine. This converts 3D data from a PC via an ultra-SCSI link into the individual image slices.

Image data is fed to the 6Gbit of buffer memory, organised as 1Gbitx3x2 (three colours, double buffered). The images are projected using a Texas Instruments micromirror projector and some rather clever optics.

Three mirrors reflect the image onto the screen ensuring accurate focus and that there is no parallax errors.

Avnet's contribution to the system

is its team dedicated to start-ups, helping Actuality source hard to find components.

Richard Ball Electronics Weekly

Three types of display have shown themselves suitable for 3D viewing; stereoscopic goggles, parallax viewers and volumetric displays.

Actuality is an example of the volumetric. A series of image slices is projected onto a spinning screen. The more slices that are projected as the screen rotates through 360°, the more lifelike the 3D image.

Parallax viewers are being looked at by firms such as Philips. A lenticular sheet, or other optics, in front of a display steers different images to each eye, causing a 3D effect.

Stereoscopic goggles are a simpler, but cumbersome, way of placing a different image at each eye.

New standard capacitor technique involves counting single electrons

In the Kingston-upon-Thames museum are standard yards from the past. Made of iron, they were the fundamental unit of length in their

The trouble is they differ in length, some by hundreds of millimetres, as they were based on the length of the Kings arm at the time.

If you had a short monarch, you got less cloth for your groat.

Times have changed and in an attempt to remove variability from standards, they are being related to the invariant - as far as anyone knows - quantities discovered by quantum physicists.

First to fall was time with the invention of the atomic clock. Then in 1990 two more went to a Josephson junction-based voltage reference and the Hall-effect quantum resistance standard.

If work at the US National Institute of Standards and Technology (NIST) proves to be right, capacitance will be next. So far, results compare favourably with an existing state-ofthe-art standard capacitor - based on an accurately made physical arrangement of metal plates in a vacuum.

The Institute has tackled the capacitance problem from the formula C=Q/DV using multiples of e, the invariant charge on an electron,

The proposed new standard is a cryogenic vacuum-gap capacitor of around 2pF.

The researchers measured it by counting 100 million individual electrons on to one plate then measuring the voltage change across the capacitor. The count takes around 40s and the voltage measurement takes 20s.

Key to the project is the electron. pump. This took two years to develop and is a seven-stage single-electron transistor, or SET, pump - see photo.

The pump is constructed from two layers of aluminium separated by aluminium oxide and shifted by 200nm. This forms 40 by 40nm tunnel junctions where the tip of an island overlaps its neighbour.

Sequential signals through gate capacitors - left and right - lower tunnel barriers and pump electrons between the metal islands.

The islands are small enough to hold only one electron when cooled to near absolute zero.

Steve Bush, Electronics Weekly

Scanning force microscope of a seven-junction electron pump. Its chain of tunnelling junctions move electrons with a certainty of 1 in 100 million. See text for more

Quantum devices are the key

The upper circuit is the standard capacitor, Cstd, and its measurement circuit.

The lower circuit is the standard capacitor in action, calibrating a room-temperature secondary standard $C_{\text{ref.}}$ Switches S_1 and S_2 switch between modes and the dotted line is the limit of cryogenic isolation.

E and the 1fF capacitor form a two-SET electrometer that can measure charge down to e-/100. These control the voltage source V to maintain the island as a virtual earth through C_{std} as N electrons are counted on to it. The value of the standard capacitance is then

C_{std}=Ne⁻/DV

Maintaining the virtual earth removes the effect of the 10pF stray capacitance and is necessary for the pump as it only works correctly with 0V across it.

To transfer the cryogenic standard value to a room temperature secondary standard, the two switches are toggled and a conventional AC bridge technique (V, V and the null indicator) is used to measure the ratio of Cod to Cref. Cref=CstdV1/V2

Moore and Colored 11

PROTEUS

Virtual System Modelling

Build It In Cyberspace

www.labcenter.co.uk

Develop and test complete micro-controller designs without building a physical prototype. PROTEUS VSM simulates the CPU and any additional electronics used in your designs. And it does so in real time. *

- CPU models for PIC and 8051 and series micro-controllers available now. 68HC11 comming soon. More CPU models under development. See website for latest info.
- Interactive device models include LCD displays, RS232 terminal, universal keypad plus a range of switches, buttons, pots, LEDs, 7 segment displays and much more.
- Extensive debugging facilities including register and memory contents, breakpoints and single step modes.
- Source level debugging supported for selected development tools.
- Integrated 'make' utility compile and simulate with one keystroke.
- Over 4000 standard SPICE models included.
 Fully compatible with manufacturers' SPICE models.
- DLL interfaces provided for application specific models.
- Based on SPICE3F5 mixed mode circuit simulator.
- CPU and interactive device models are sold separately build up your VSM system in affordable stages.
- ARES Lite PCB Layout also available.

*E.g. PROTEUS VSM can simulate an 8051 clocked at 12MHz on 3 300MHz Pentium II.

Write, phone or fax for your free demo CD - or email info@labcenter.co.uk.
Tel: 01756 753440. Fax: 01756 752857. 53-55 Main St, Grassington. BD23 5AA.

E-fraud

If problems are opportunities in disguise, then mounting on-line credit card fraud should present fabulous opportunities – and not just for criminals. Making technology solutions work is harder than it seems though, as Andrew Emmerson reports.

ot all attainments are creditable and the recent revelation that the United Kingdom is the 'epicentre' of illegal credit card dealings in Europe is a decidedly dubious honour.

There's little consolation for neighbouring countries, however, since across the European Union card fraud rose by a staggering 50 per cent in the year 2000.

Facilitating this spate of swindling is the wired society; a large proportion of this massive increase in deception involves payments made by telephone or over the Internet, the so-called 'cardholder-not-present' fraud. Overall, illegal transactions amounted to an estimated 600 million euros (\$553 million) across the European Union.

The penalty – quite apart from the obvious cost to those defrauded – is a reduced potential for expansion of electronic commerce. While on-line trading has exceeded the most favourable estimates, it remains inhibited by lack of confidence in the privacy and security of payment transactions performed over the Internet.

Doing the sums

- Between 20 and 40 per cent of on-line purchases are fraud attempts, according to US online fulfilment house Digital River.
- 'Cardholder not present' fraud in Britain alone cost an estimated £184 million last year.
- The cost of credit and debit card fraud in the USA this year is predicted to reach \$1221.87 billion.
- In the USA, Forrester Research estimates that e-commerce companies lost some \$2.8 billion last year on account of consumers' privacy concerns.
- While on-line credit card use accounts for only about 2% of Visa International's total credit card transactions, more than 50% of its discovered frauds and disputes relate to on-line use.

The Grand Plan

An ambitious three-year plan aimed at tackling frauds across Europe is the European Commission's response to this rise in illegal transactions. The aim is to increase coordination with the industry, so as to introduce, "the highest economically viable level of security" for remote transactions by mid-2002, majoring in five main areas:

- Technological improvements
- Improved information exchange
- Better educational material and co-operation, new

Fears allayed?

Two thirds of private customers with access to the Internet lack the confidence to buy goods and services on-line. It was this research, carried out last year for Barclaycard, that led the company to launch a multi-million pound advertising campaign on television aimed at laying to rest shoppers' fears about credit card fraud on the Internet.

James Davison, managing director of e-commerce at Barclaycard, hoped the promotion would persuade consumers that they could shop as safely on the net as they can on the high street. He expected a huge surge in the number of on-line purchases to follow.

Private individuals concerned about items falsely debited to their credit cards on the Net can take comfort in the fact that under the Consumer Credit Act of 1974, the card issuer (and vendor) are liable for disputed personal purchases worth more than £100 – with some exceptions. This applies to cardholders in Britain

Legislation is different in other countries. In the USA for instance card users can recover losses over \$50.

exposed

training programmes

- Specific fraud prevention measures
- Improved co-operation with non-EU countries.

In specific terms, proposals include:

- The introduction of a single phone number, operational in all EU member states – or at least a single phone number for all issuers based in each country – so as to make it easier for consumers to notify the loss or theft of their cards:
- The setting-up of an EU-wide fraud prevention web site with information on initiatives and links to all relevant organisations;
- Agreement on which key items of evidence are needed to investigate and prosecute fraud cases and on a common format for the exchange of relevant information.

While European in origin, these initiatives must be applied globally, the EC concludes. Action must be taken to prevent criminals from affecting the interests of the European Union by relocating their activities in third countries and only global co-operation will succeed in preventing fraud that's essentially international in scope.

Types of fraud

Most of the mechanisms built into credit card handling to prevent fraud fail when cardholders purchase using the Internet or telephone. So convenient and lucrative are these 'cardholder-not present transactions', however, that nobody would contemplate removing the facility, meaning that fraud proliferates seemingly unimpeded.

The types of frauds perpetrated on merchants revolve mainly around repudiation – when a customer refuses to pay for transactions already made – and impersonation – 'phantom' purchases made with stolen credit cards.

Users become the victim when they find their card statement indicates charges higher than agreed or repeat transactions that they never authorised. Both parties are the losers when thieves steal cardholder information from poorly protected web sites.

A victim-less crime?

Contrary to common belief, everyone pays for credit card fraud. Losses that card issuers cannot recover are simply spread over all users in the form of higher charges, but in general the banks aim not to be caught. The burden is thus transferred to the traders or merchants, also their customers, who may or may not be protected against losses at the hands of credit card thieves.

Whereas consumers' liabilities are generally restricted (see the panel entitled 'Fears allayed?'), the bulk of the burden of on-line fraud is borne by the traders themselves when credit card companies refuse to honour transactions.

A 'charge-back' is created when a cardholder refuses to accept a purchase on a monthly statement, a fertile source

being disputed visits to porno websites accessed using stolen credit cards.

For traders ('merchants' in card industry jargon) these chargebacks are very bad news, since not only do they receive no payment for the disputed transaction, they are also charged a penalty fee of around £10. Even worse, traders are under pressure from the card issuers to keep their charge-back rates to a minimum or face escalating 'review fee' penalties.

Smaller companies argue this policy could force them off the Web altogether, although it is felt that the real target of this policy is to 'punish' large merchants considered to have lax credit card authorisation policies.

A further charge on the profits of web site traders is a straightforward scam that exploits the all-too-simple way they handle purchases. Although their on-line shopping software correctly collects customers' orders, personal details and credit card data, the opportunity remains for buyers to alter the HTML code generated before clicking to confirm the purchase. Traders failing to examine that the sum paid matches the catalogue price of the good ordered on each transaction stand to lose large sums in aggregate.

Remedial measures

Techniques for counteracting these frauds rely on both technical and legal means. Credit cards were never designed to function on the Internet and the remedies to provide safer payment systems inevitably involve some redesign of methods in use.

Since April 2000, British card users have had to provide the three-digit identifier number printed on the signature

False security

Last year was a poor one for customer confidence in on-line trading.

A man logging on to Powergen's web site to pay his bill came across unencrypted credit card details, home address and payment records for himself and 7000 other customers.

Woolworths had to shut down its on-line store after customers' details and credit card numbers were spotted by another user.

In the USA, travellers with Northwest Airlines discovered a security breach in the company's web site that potentially exposed customers' credit card numbers and other personal information. Over there, American Express and Discover Financial Services had to replace the credit cards of all their customers who shopped at CD Universe. This followed a security breach at the on-line music store that exposed some 350 000 customer credit card numbers.

In Wales, police arrested two teenagers on charges of hacking into Web sites and stealing more than 26 000 consumers' credit card numbers from web sites based in the United States, Canada, Thailand, Japan and Britain.

Back in the USA a federal judge ordered three Californians to pay \$37.5 million for billing 700 000 credit card holders for visits they never made to X-rated web sites. Some of the cardholders wrongfully charged did not even possess computers, according to the Federal Trade Commission.

Quotes of the year

"I would like to thank the nice people at all the sites I cracked for having left their entire sales database, readable & writable for any one who bothered to check their site out. Maybe one day people will set up their sites properly before they start trading because otherwise this won't be the last page I post to the NET. Also greetz to my friend Bill Gates. I think that any guy who sells Products Like SQL Server, with default world readable permissions can't be all BAD. Credit card snaffler Curador.

"We're not blaming Microsoft, but that was the point of entry." Chris Keller, founder of SalesGate, one of the sites that Curador cracked. "We're still trying to make customers aware that there is a patch." Microsoft spokesperson.

"Payment card fraud is the fastestgrowing crime, bar none". Independent fraud prevention specialist, John McVitie,

"Nine out of ten Internet frauds in the UK go unreported." Richard Fiddis, Chief Operating Officer, Experian.

"Merchants who cannot control the flood of fraudulent purchase attempts will soon be out of business."

Alvin Cameron, Credit/Loss Prevention Manager, Digital River.

strip on the back of the card for cardholder-not-present transactions and also give their address. The companies have not introduced personal identification numbers (PINs), however, which many experts claim would be a highly effective means of preventing fraud.

The card companies are also working on the introduction of new chip technology, which they claim will put a stop to the counterfeiting of cards. Unfortunately, while a chip can guarantee that a card is genuine, it does not show that the person presenting the card is entitled to use it. Nor can it prevent 'phantom' purchases by telephone or Internet.

In the USA, American Express has announced a plan to give its US cardholders 'disposable', unique numbers for

each on-line purchase to avoid giving out their account number on the Web. By using the 'Private Payments' feature, the random number will expire even if a thief steals it from a merchant site or elsewhere.

MasterCard announced a similar plan replacing account data with customer numbers resembling PIN codes for use when shopping on-line or over cell phones.

Recourse to the law may provide a remedy, but it does not provide protection. It is debatable whether any sum recovered can compensate for the loss of status, reputation or competitive advantage following a security breach. Assuming that the police – or private investigators – will catch fraudsters is also unwise. Arrests under Britain's Computer Misuse Act of 1990 are by no means common and in most cases the culprits remain at liberty.

When the credit and business information company Experian UK questioned 800 firms about their attitudes to on-line fraud it transpired that just 57 per cent of them felt it worth reporting fraud cases to the police: of these a mere 9 per cent led to prosecution.

Furthermore, legal remedies lose effectiveness when incidents cross international borders. Even if culprits are caught, they are seldom in a position to compensate an organisation for extensive economic or other loss.

The cost of apathy

A recent survey of British companies involved in on-line trading indicated that most either did no checking or relied almost totally on manual fraud prevention measures. It's understandable, but equally unfortunate, that many companies implement effective information security technology only after a security breach has occurred, according to a report published by IDC Research.

Total suppression of fraud is impossible but Meridien Research calculates that investment in anti-fraud software would deduct \$2 billion from the cost of card fraud worldwide this year.

Virtually all damage is self-inflicted, either through inadequate discipline or by technical incompetence. When

Grand larceny - a practical example

The most sophisticated credit card fraud case ever seen in Britain came to light in February of this year when two Russian criminals were jailed for four years and served a deportation order for their part in a massive credit card fraud and pirate CD ring.

The Russian criminals had produced thousands of perfect-quality fake credit cards by 'stealing' and then copying the magnetic details from customers' cards in restaurants and hotels. Equipment seized by police included special duplicating plates to forge the hologram security marks of Visa and MasterCard.

The pirate music CDs were part of the same massive Russian organised crime operation, with couriers on false passports smuggling supplies from St Petersburg to a secret counterfeiting factory in North London.

According to trade association IFPI, the case shows an increasingly prevalent form of credit card fraud. A network of accomplices working as waiters or shop assistants would secretly clone the credit details with special swipe machines. The information was then handed to the Russian syndicate and fed into a lap-top computer to create an exact copy of the card.

As well as selling on thousands of fake cards and defrauding Britain's banks of millions of pounds, the gang distributed their top-hit CDs to retail outlets across London and South-East England.

Northwest Airlines confirmed that a programming error had revealed customers' credit card details to third parties, the company blamed the problem on a programmer who forgot to turn the encryption software back on after doing maintenance on the page that yielded the stolen data.

Bug-ridden software is another means of gaining sensitive information; last year, American on-line brokerage company E*Trade acknowledged that its web site had allowed unauthorised access to customers' log-in cookies. Because these were encoded, not encrypted, a cracker could easily unscramble the cookie, yielding customers' user names and passwords. The task is simplified when miscreants use automated software tools to scan the Web for commerce sites with security holes open.

In a high-profile case last year, a cracker using the screen-name Curador claimed responsibility for at least eight Web site break-ins in four countries. He, or she, claimed to have taken advantage of a known bug in Microsoft software to read sites' commerce databases for downloading more than 23 000 credit card numbers. Although Microsoft released a patch for the security hole in mid-1998 and alerted software users, the task of downloading and installing it was clearly too much trouble for the companies whose web sites were breached.

Never-ending battle

If on-line traders are to outsmart their adversaries, it's clear they must get their act together. Implementing SET – secure electronic transaction – standards universally is an ideal but one that's considered unworkable and unaffordable by many observers.

Instead, merchants must put their own houses in order, closing the loopholes currently exploited by crackers. And the card issuers must apply the same kind of neural software used for detecting fraud patterns that mobile phone companies are now using so successfully to combat swindlers. Allowing the *status quo* to continue is unthinkable.

One rule for all

Firms handling credit cards on line are expected to exercise due diligence to protect their customers and themselves against fraud.

A further incentive to act responsibly is a new regulation that the EC intends to impose. It forces companies to comply with national law in every one of the 15 member states and exposes them to legal redress wherever they trade.

Compliance with national legislation in the trader's home country will no longer suffice; businesses will be liable in any EU territory where they do business.

The proposal, known as *Rome II*, would supersede the current principle that e-commerce should abide by the rules of its country of origin. Although this accords perfectly with natural justice, in that companies trading abroad must abide by the laws of that country, certain interests in the British e-commerce community allege that forcing companies to comply with national law in every one of the 15 member states would stifle e-commerce.

Make sure of your copy of Electronics World

It can be difficult finding a copy of Electronics World at your local newsagents. The number of magazines being published keeps increasing, which means that newsagents have less shelf space for the display of particular titles. Specialist magazines in particular get crowded out.

There's a solution to the problem. Most newsagents provide "shop-save" and/or home-delivery services. There is no charge for a shop save. You simply ask your newsagent to order a copy for you: it will be kept on one side each month ready for you to collect. Home-delivered copies are ordered in the same way, but generally incur a delivery charge.

A newsagent can order any magazine for you, whether or not the shop normally stocks it.

If you buy your copies of Electronics World from a newsagent and want to make sure you get every issue, just ask at the counter.

TiePieScope HS801 PORTABLE MOST

ABRITARY WAVEFORM GENERATOR-STORAGE OSCILLOSCOPE-SPECTRUM ANALYZER-MULTIMETER-TRANSIENT RECORDER-

 The HS801: the first 100 Mega samples per second measuring instrument that consists of a MOST (Multimeter, Oscilloscope, Spectrum analyzer and Transient recorder) and an AWG (abritary waveform generator). This new MOST portable and compact measuring

integrated AWG you can generate every

instrument can solve almost every

measurement problem. With the

signal you want.

- · The versatile software has a user-defined toolbar with which over 50 instrument settings quick and easy can be accessed. An intelligent auto setup allows the inexperienced user to perform measurements immediately. Through the use of a setting file, the user has the possibility to save an instrument setup and recall it at a later moment. The setup time of the instrument is hereby reduced to a minimum.
- · When a quick indication of the input signal is required, a simple click on the auto setup button will immediately give a good overview of the signal. The auto setup function ensures a proper setup of the time base, the trigger levels and the input sensitivities.

- The sophisticated cursor read outs have 21 possible read outs. Besides the usual read outs, like voltage and time, also quantities like rise time and frequency are displayed.
- Measured signals and instrument settings can be saved on disk. This enables the creation of a library of measured signals. Text balloons can be added to a signal, for special comments. The (colour) print outs can be supplied with three common text lines (e.g. company info) en three lines with measurement specific information.
- · The HS801 has an 8 bit resolution and a maximum sampling speed of 100 MHz. The input range is 0.1 volt full scale to 80 volt full scale. The record length is 32K/64K samples. The AWG has a 10 bit resolution and a sample speed of 25 MHz. The HS801 is connected to the parallel printer port of a computer.
- · The minimum system requirement is a PC with a 486 processor and 8 Mbyte RAM available. The software runs in Windows 3.xx / 95 / 98 or Windows NT and DOS 3.3 or higher.
- · TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK Tel: 01480-460028; Fax: 01480-460340

TiePie engineering (NL), Koperslagersstraat 37, 8601 WL SNEEK The Netherlands Tel: +31 515 415 416; Fax +31 515 418 819

Web. http://www.tiepie.nl

audio-visual router

Available commercially as the AVRS8x4, Emil Vladkov's audio and video router system allows you to select one of eight video inputs and one of eight stereo audio channels using either a keypad or a PC. This first article looks at the multiplexer's hardware.

Audio specifications

Input

Impedance

Number of inputs

Common mode rejection

>20k Ω balanced (600 Ω option)

+27dBµ maximum

8 balanced stereo

>40dB, 20Hz to 20kHz

Output Impedance

Level Number of outputs

Gain

Frequency response

Total harmonic distortion Intermodulation distortion

Crosstalk Noise Floor

Coupling DC on output

600Ω balanced +27dBµ maximum

2 balanced stereo

1

<±0.25dB, 20Hz+20kHz 0.03%, 20Hz to 20kHz

<0.05 % (SMPTE) > 60dB to 20kHz

–75dBµ, 30kHz BW

DC

±50mV maximum

his audio and video switching system is professional quality and suitable for studio use. It consists of two sections, one handling the audio, the other the video. Each section can be used independently, or connected in a stack to perform simultaneous switching of the video sources with their accompanying sound sources.

Called the AVRS-8x4 commercially, this audio-visual router has eight inputs and four outputs on the video module and eight stereo inputs and two stereo outputs on the audio module. Every output of the devices can be connected to every input, or be disabled. This equipment is very useful for TV studio production.

Circuit details - video section

The schematic diagram for the VRS-8×4 video switcher is given on Fig. 1. The heart of the circuit is IC_1 , a Maxim MAX459 cross-point switch with integrated buffers.

The eight inputs are supplied through eight BNC connectors J_1 to J_8 . Each input presents a standard 75 Ω load via terminating resistors R_1 to R_8 . The signals can be AC or DC coupled to the switching matrix IC_1 . Capacitors C_1 to C_8 provide the AC coupling. Correct biasing of the inputs of IC_1 is performed with resistors R_9 to R_{16} .

An industry standard 80C51 microcontroller, IC_2 , is used. Code for the controller is stored in EPROM IC_4 and IC_3 serves the necessary address latching in a typical 8051 system.

A quartz oscillator is used, and the frequency of 11.0592MHz proved to be more than suitable for the switching purposes of the equipment.

Configuration data is loaded into the switch matrix IC_1 by connecting the signals of Port 1 of the microcontroller to the appropriate digital controls of the matrix. The transfer is performed in two passes because of the internal double latched architecture of the Maxim IC.

In the first pass, the input-select data, presented on lines D0-D3 (P1.0-P1.3), is latched in the input registers of IC_1 . The writing operation is performed by asserting the CE\(P1.6\) line low and applying a low-going write pulse WR\. This signal is generated automatically by the microcontroller when accessing external data memory.

In the second pass, data from the input registers is transferred to the switch registers of the outputs. At this point, the actual change in the switch configuration affecting the outputs takes place. This is done by asserting the UPDATE\ line (P1.7) low.

In the first pass, the output is selected by the address lines A0-A1

Table 1. Address lines A0 and A1 on the MAX459 determine which output is active.

A1	AO	O/p amp selected
L	L	0
L	H	1
H	L	2
H	H	3

Table 2. Three data inputs on the MAX456 video switch IC are used to select one of the eight input channels. A fourth line, D3; provides an active-high disable input.

D3	D2	D1	D0	I/p channel selected
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
Н	X	x	X	Disable output amplifier

(P1.4-P1.5). The amplifier selection and the input selection data is presented in Tables 1 and 2.

The input configuration data, Table 2, is written to each of the four output registers by asserting the corresponding address, Table 1. So the first pass consists of four write cycles. In the second pass, the update is performed only once.

The video switcher is programmed to load the new configuration at the vertical sync. pulse, so a genlock-feature is provided. The source of the sync. signal can be selected through jumpers JP_{13} and JP_{14} . It can be either input 1 or the external sync. input, J_{14} .

Vertical sync. pulses are separated by IC_{14} , a National Semiconductor LM1881 sync. separator. The VSYNC-output of this IC is applied as interrupt-source 0 (INT0) to the microcontroller, so that the firmware can decide when to switch the matrix

Actually the switching is performed in interrupt driven mode. If the sync. signal fails, because there is no source at input 1 or external sync input, the microcontroller waits for about two frame intervals and performs a timeout switching event. So locking of the video router is avoided, which can be disastrous in critical live studio applications.

Fig. 2. Audio switch section. As this router was designed for studio use, its audio inputs and outputs are balanced, but the audio is converted to unbalanced form to make it compatible with the 4051 switch IC, then back to balanced form before output. This should make it very easy to adapt the unit for unbalanced use.

Write to this address location to enable specific LEDs

The outputs of the video matrix are standard 75Ω , which is assured by resistors R_{17-20} . Again the outputs can be AC-coupled, through C_{11} to C_{14} , or DC-coupled through the jumpers JP_{9-12} . Output connectors J_9 - J_{12} are BNC types on the commercial design.

A composite sync. output from the IC_{14} sync. separator is provided at J_{15} (SyncOut). The signal is buffered by Tr_1 . This composite sync. signal can be used for supplying additional equipment with a clock signal.

Visual indication of the active configuration

is provided by four rows of eight red LEDs, D_{6-37} , with their current limiting resistors R_{25-56} . The LEDs are driven by IC_{10-13} 74HC374 latches. These are loaded with data by the firmware of the microcontroller.

Each of the four latches is visible as a loca-

tion in the external memory address space of the microcontroller. The decoding of the address, applied in a standard write MOVX operation of the micro, is performed by IC_9 . To light the corresponding LED, the micro has to write to the corresponding latch a word with logical 0 at the LED's location.

The microcontroller subsystem includes a non-volatile EEPROM memory IC_6 , which is a 24C02 or similar. This memory stores the data for the start-up configuration to be loaded into the matrix immediately after power is applied. Control signals for the serial EEP-ROM are emulated by the lines P3.4 (serial clock) and P3.5 (serial data).

The video router uses a linear power supply. It comprises T_1 , which is 2×9V, 330mA transformer, rectifying diodes D_{1-4} and voltage regulators IC_7 and IC_8 for the +5V and -5V rails respectively. In my design, the transformer is mounted on the PCB. Supply voltages of +5V and -5V are needed for the Maxim crosspoint switch.

Capacitors $C_{30.39}$ are power supply bypassing capacitors. The raw power supply after the rectifier can be used to supply an external keyboard, which can be used to control the switcher with a simple button interface. Such a keyboard would connect to the video switcher through the P_1 serial RS-232 port and the J_{13} power jack.

In the actual implemented configuration, I use only a small banana plug to apply the DC voltage supply to the keyboard. Ground is provided via the 'D' connector. Fuse F_1 , rated at 250mA, protects the power supply in the case the keyboard cable is damaged, resulting in possible short circuit.

A serial communication channel is used to control the switcher and to enhance its functions. This channel is incorporated in the 80C51 microcontroller. Voltage-level converter IC_5 is necessary to supply the RS-232 standard voltage levels.

There are two serial 9-pin D-type connectors at the back of each switcher module – one male and one female. The female connector P_1 is the master control input, where the external keyboard or the host controlling computer is connected. This port provides full duplex communication, which means that the switcher can not only receive configuration data through it but also return configuration status data.

Male port P_2 is the slave port, where the next device in the stack (discussed later) can be connected. This port provides no return receive channel. Only configuration data to the next stacked video router – or audio switcher – can be transmitted through it. Status information can not be received.

Power-on LED D_5 provides the user with a visual indication that there is no power supply failure and the system is on.

Circuit of the audio router

The schematic diagram of the stereo audio switcher is presented on Fig. 2. The routeing

Video specifications of the 8x4 audio-visual multiplexer

Input

Impedance

Video type Composite DC or AC coupled, backporch at ground

75Ω, internally terminated

Number of inputs 8

Return loss >40dB to 10MHz

Level 1V p-p nominal +1.5V to 0.5V

Sync Input 1V p-p composite video or 0.4V p-p composite sync Synchronisation From input 1 or sync input jumper selectable

Output

Number of outputs 4

Impedance 75ΩDC (or AC) coupled Return loss >40dB to 10MHz

Frequency response <±0.5dB to 5MHz 3dB bandwidth 90MHz

Gain 1 ±0.05dB Differential phase <0.140 Differential gain <0.13%

Tilt <0.1% (DC coupled mode)

Sync output 2.5Vp-p (loaded 75Ω) from sync Input or input 1 depending on

jumper position

Crosstalk >55dB worst case @ 4.43MHz

>65dB typ. @ 4.43MHz

S-to-n, inc. hum >70dB unweighted wideband

>76dB unweighted to 10MHz

Switch Vertical interval (external sync or from master input signal)

Electrical

Power consumption. Approximately 8W

Note: some specifications will depend on PCB layout. Figures given are for author's design.

matrix has eight balanced stereo inputs and two balanced stereo outputs.

The balanced input/output feature makes the device suitable for work in noisy environment. Connections JP_1 and JP_2 are for the left and right channels of output 1 and JP_3 and JP_4 are

The differential inputs are provided by NE5532 operational amplifiers $IC_{19.26}$, wired as differential amplifiers. The differential nature of the processing involved means that resistors with tolerance <1% have to be used for $R_{57.152}$ to achieve a good CMRR value. An alternative method is to select matched resistor pairs.

The internal processing of the signals is unipolar, minimising the number of channels for the audio multiplexers needed. The unipolar output signals of the multiplexers have to be converted back to differential signals. This is done by op-amps $IC_{15\cdot18}$, which are wired as followers and inverting amplifiers. The output is a standard 600Ω type, which is assured by resistors $R_{41\cdot48}$. The signal is AC-coupled through capacitors $C_{28\cdot35}$.

My PCB is designed so that additional 60002 resistors can be placed at the inputs to terminate properly the audio path if necessary. This is recommended only if you are sure that the source audio equipment can drive the loads. If

Router control system

Local control

Display: 4 (2) rows of 8LEDs
Configuration: Indication only

Keyboard control: PVRS-1 device, connected to the serial port of the first device in the

stack with the power plug inserted

PC control

Type: GUI-application, running under Windows95

Configuration: Full control, stackable Interface; Serial RS-232, 9600bit/s

it cannot, as in the case of my prototypes, these resistors should be omitted.

Four 4051 8-to-1 multiplexers, IC_{11-14} , switch the audio signals. Multiplexer $IC_{11.13}$ switch the left channel while $IC_{12.14}$ handle the right-channel signals. The multiplexers are controlled through the P_1 port of the 80C51 microcontroller IC_1 , clocked at 11.0592MHz (×1).

When writing the appropriate values to the port pins $P_{1,0}$, $P_{1,1}$ and $P_{1,2}$, the micro selects the source for the left output channel. Using line $P_{1,3}$, the microcontroller can inhibit the work of the multiplexer, so that no input is connected to the corresponding output. This is the so called 'disabled' state of the output.

Selection of the right-hand channel is controlled through lines $P_{1.4}$, $P_{1.5}$ and $P_{1.6}$, while the right-hand 'disable' function is controlled by $P_{1.7}$. The values, which should be written (after the OR-operation) to the P_1 port, are given in Fig. 2.

Code for the micro is stored in the EPROM IC_3 . The start-up configuration for the switcher is stored in EEPROM IC_5 . Address decoding is performed by IC_2 . This is necessary for the microcontroller subsystem.

A serial RS-232 transceiver is incorporated in the microcontroller and is supported by interface circuit IC_4 . Serial port connections P_1 and P_2 are built in a similar manner to those of the video switcher section, assuring the possibility of stacking mode of operation.

Visual indication of the actual connections is given via LEDs D_{6-21} , driven by latches $IC_{9,10}$. Resistors R_{5-20} are current limiting resistors for the LEDs.

To select the appropriate LED latch, decoder *IC*₈ is necessary. The two latches are at their corresponding locations in the address space of the microcontroller.

Linear power supply for the audio switcher consists of T_1 transformer, rectifiers D_{1-4} , voltage regulators $IC_{6,7}$ and the accompanying capacitors. Because of the great number of interface circuits and amplifiers, special attention has to be paid to power supply filtering. A great number of bypass capacitors are needed $-C_{14-23}$ and C_{76-104} .

Because the audio switcher can be used without the video switcher, the power supply option for an external keyboard is provided by J_1 power jack and the F_1 fuse.

The keyboard

The audio-visual routeing system can be controlled in two ways – through a computer, or via an external keyboard.

Despite having a powerful and versatile PC-based GUI interface, I found that some studio staff would prefer to work with simple buttons. So I developed this 8×2 keyboard.

This keyboard was published as a circuit idea in the March 2000 issue of *Electronics World*, pp. 259-260. I will not discuss it in detail here, but for the case of completeness the circuit diagram is given in Fig. 3.

The keyboard is build around the 89C2051

microcontroller. It has simple push buttons with LED user feedback. When pressed once, the corresponding connection is established. Pressing the button a second time releases the connection.

Communication with the rest of the system is performed through RS-232 $_{\rm s}(P_1)$ and the power is supplied to the power jack J_1 from the host system. Alternatively, you could use one of the unused D-connector pins to supply power, so that the keyboard is connected to the router with only one cable.

I have hard-wired the serial cable to the key-

board, and at other end (the AVRS-side) I have branched the cable into two connectors—one a standard male D-type connector and one a power-supply jack. So the serial port of the switcher remains standard (it does not carry power) and at the same time the power is transmitted through the dedicated single cable to the keyboard.

The keyboard has a very useful feature, namely a lock switch. When activated, it prevents its operator from disturbing the whole production in the studio by accidentally sitting on the keyboard.

Fig. 3. If you don't need the versatility of a PC-controlled AV router, you can add this keypad to the audio and video switches and control them manually.

Putting it together

I strongly advise that you use sockets for expensive components like the MAX459 crosspoint switch and the microcontrollers. The same is valid for the serial EEPROMS and the firmware EPROM.

For the transformers 1, used ANG parts. These are readily available here in Bulgaria – they are manufactured here. They are sealed and have excellent reliability. If you can not find the same components, use substitutes with comparable reliability.

In my system, the video and audio switchers are in separate single RU 19in metal cases. In

the commercial system, only the active connection LEDs and the power supply green LED are mounted on the front panel of the video router. The front panel of the audio switcher differs from the video panel only in the number of LEDs and their colour, because of the fewer output channels available.

The rear panels of the systems carry all the connectors. A mains switch, the AC-power connector and the fuse socket are also on the rear panel.

Master and slave connectors for the RS232 interface are standard 9-pin female and male D-type connectors. The inputs and outputs of

the video switcher use standard BNC-type connectors. The balanced inputs and outputs of the audio switcher are wired to two rows of screw type connectors that allow audio connecting cords to be connected directly.

Next month, Emil discusses the software needed for the audio and video section microcontrollers, and for the PC GUI. Details on how to obtain the software will also be revealed.

Technology

After decades of developing speech recognition technology there are a few commercial applications emerging like turning on the car radio but nothing dynamic that will fulfil its promise. David Manners* talks technology

*David is Components Editor with **Electronics** Weekly.

he question is always asked: 'When will speech recognition technology fulfil its promise?' The answer from the experts these past twenty years has always been: 'In the next three to five years'

The difficulties have always been under-estimated. Back in the 1980s, the UK government's 'Alvey Programme' tried to crack speech recognition and concluded that the necessary hardware processing power didn't exist. It still doesn't.

Nonetheless, Alvey produced some valuable

software that was widely licensed to, among others, Microsoft, AT&T, MIT. HP, Sharp and Logica.

Today, in Sweden, if you phone the directory enquiry service of network operator Telia, you will be asked to speak a postcode and street name and the phone number is automatically spoken back. That system was supplied to Telia by the UK company Vocalis which was spun out of Logica in 1993. The technology being used by Telia derives from the Alvey technology.

There are other examples of practical voice recognition technology. If you're in Los Angeles and dial 411 on a telephone, you'll get an automated voice asking for the name of the party you wish to call. You speak the name into the handset. The automated voice replies with the telephone number.

Pop into an up-market car salesroom and you'll find

that the top-of-the-range Jaguars, BMWs and Mercedes will be featuring speech recognition capabilities for the settings on their radios and for telephone dialling

Last October, NTT Data Corporation of Japan started selling a speech recognition telephone system to network operators and corporations which costs around \$20000 for four lines aimed at providing information services for tourism, medical help, educational assistance and corporate guides.

At the end of last year, AOL announced a service called AOLbyPhone by which users could telephone voice commands and receive information in return including having their e-mails read to them. It attracted 200 000 subscribers in its first three months of service.

So, after decades of development, we are seeing a few commercial applications emerging. But they are only a few, and they're not making anyone rich.

After all, Lernout & Hauspie (L&H), one of the world's great practitioners of speech recognition technology, is bankrupt. It went into Chapter 11 in the US last year and, in January, went into bankruptcy in Belgium. This is despite big investments. Intel invested \$30m in the company; Microsoft invested

With L&H looking as though it can no longer remain independent, the main speech recognition developers are IBM, Philips and Microsoft. All three are said to be considering buying L&H, because everyone regards the technology as potentially valuable. That's because it has always been thought that good speech recognition technology would be the key to a new electronics boom.

For instance take China where the language has over eight thousand characters making keyboards a problem. Or take the 50 per cent of the Western world who don't own a PC because it takes effort and training to use them and requires you to use your eyes,

brain and fingers.

A voice-controlled PC would not need such effort. It would be more of an electronic personal servant rather than a quirky, complicated machine seemingly intent on baffling its owner.

NEC has developed a personal robot called PaPeRo (partner-type personal robot) that can recognise 650 spoken phrases and speak more than 3000.

that's all talk

Some Jaguars, BMWs and Mercedes feature speech recognition capabilities for the settings on their radios and for telephone dialling.

For 3G mobile phones, speech recognition is thought to be valuable if their full potential is to be realised, and many companies are working on it. One is the Israeli company Advanced Recognition Technologies (ART). "From the time we set up the company we designed our algorithms to fit into a limited space", says ART's v-p Yakov Schulman. Accordingly ART's basic speech recognition programme fits into 60kbyte.

Thereafter, the storage requirement depends on the number of commands the user wants recognised. For 20 commands, the storage required is 50kbytes. For recognising 50 names, each taking one second to say, needs 30Kbytes.

Philips has developed special chips for adding speech commands to any product. Called SPHERIC, the speech recogniser chips require half a megabyte to store up to 120 words. In a one-user, one-language telephone application requiring 20 words of user-dependent vocabulary, the SPHERIC chip would need 47kbyte of storage of which 27kbyte would be user-dependent vocabulary. Other applications for SPHERIC are remote controls, telephones, answering machines, personal digital assistants, car navigation and audio systems and toys.

IBM produced the technology for adding speech

recognition to the PalmPilot. According to Tom Houy, of IBM's embedded speech operation, the add-on hardware device which is attached to the PalmPilot contains 400kbyte of memory and is capable of storing 500 words.

3G phones are one thing, but there's a better thing – a Holy Grail of a product which successful development of speech recognition will make possible – the portable, real-time translation machine.

Companies estimate, that this application will require 3Gips microprocessors, which are expected in 2003. Two years after that should come versions cool enough, and low power enough, to fit into portable products.

If the cost of processing power in terms of Mips/\$ continues to decline at the current rate – i.e. by two orders of magnitude per decade, from \$100 to \$1 in the '90s – then, in 2004/5, a microprocessor Mips should cost ten cents. This would price a 3Gips microprocessor at \$300, and a portable translator at an affordable \$1000.

The software people think they can do it. "In three to four years you will be able to say something in one language and the computer will say it in, for example, Japanese," said Jo Lernout at an L&H demo last year.

So it's three to four years away – so what's new? ■

HORDS IC

ASR 100

www, arteaup, coma

interfacing Ethernet II

Connecting external devices to your PC via a local-area network card is not as difficult as it may seem. In this second article on the topic, Eddy Insam describes a development device that can get you going in no time at all.

n last month's article, I covered some of the theory behind designing embedded microprocessors and local networks. In this second part, I describe a practical implementation using a preprogrammed PIC 16F877 controller. Together with a cheap, standard Ethernet PC card, this PIC can be used for demonstrations or as the basis for a prototype interface project.

The circuit

Figure 1 shows the main interface circuit diagram. To avoid using difficult-to-obtain parts such as Ethernet line transformers, I opted for a ready made cheap ISA PC LAN

card; these are readily available for less than £10.

The 16F877 uses quite a few of its available I/O ports to drive the PC card: port D is used for bi-directional 8 bit data transfers, five bits of port B are used to address the sixteen I/O mapped registers, and the three available bits of port E are used to drive the read/write strobes.

Remaining ports are available for user interfacing, including serial communications, reading the DIL switch, and for general purpose digital and analogue I/O.

As mentioned, only five address lines are used with the PC card. The Ethernet chip communicates via 32 I/O-mapped registers, so five bits are all that is needed. The other address lines are just hard wired to map to the nominal address range 0x300 to 0x30F, the usual default for this type of card.

You will notice that ISA PC cards have two edge connectors, and that I am using only one here. This is because these cards were designed as plug-compatible 16-bit enhancements of the original PC XT bus, which only work in 8-bit mode. The second edge connector carries the remaining 8 data bits plus a few more control lines. The electrical design of the card works in such a way that leaving the second connector floating or unconnected will automatically configure the card for XT compatible 8-bit transfers.

The only other IC device in the diagram is an RS232 converter. This is only needed if the PIC is to communicate with another controller, PC or microprocessor via its serial

interface. Of course, this is only relevant if you want to develop your own application and drive the PIC via the serial port.

You may decide to dispense with the converter chip and provide the output at TTL levels. After all, there is not much point in converting your data to RS232 levels only to be converted back to TTL levels at the other end. The serial interface operates at either 57600bit/s or 2400bit/s, depending on DIL settings.

I added a DIL switch to read startup conditions during reset, such as port serial speed. The PIC also operates a 'clean-up' reset to force the contents of the internal EEPROM to absolute default conditions. This is done by forcing port C6 down while resetting the chip, hence the two DIL positions connected to these pins.

Other DIL positions are connected in series with the LEDs to allow the same ports to be used as inputs and avoid being loaded by the resistance of the lights.

The demonstration software mentioned later uses these ports to flash the LEDs. No project is worth anything unless it can flash some lights, so this is a good reason for including them here. Of course, you can use these ports for anything you like, input or output.

The various spare I/O port data lines are brought out to connector J3. The assumption here is that there would be another PC board containing the 'user' section and other custom interfaces.

The 16F877 has a built-in 10-bit a-to-d converter, and can read analogue data from any of the 5 lines in port A. This can be quite useful for reading sensors and other devices. The analogue outputs must be conditioned to supply an output voltage range between 0 and 5 volts, as this is the range of the a-to-d inputs.

Figure 2 shows some simple examples of sensors that may be used

Fig. 1. Circuit diagram for the microcontroller. The ISA socket is a standard 62-pin, 0.1in pitch double-sided edge connector as used in most ISA PC motherboards. The trimmer potentiometer and LEDs are used mainly with the demonstration software. The circuit may draw up to 100mA from the 5V supply, depending on which ISA card you use.

100uF

GND

Fig. 2. Ethernet capuccino maker for the person who has everything. Various sensors for temperature, sound and light intensity can be used to feed back data to the PC on request. Data from the PC can be used to drive digital outputs such as the mains switch and timers.

Fig. 3. One PC can be used to test and also to drive the controller. The PC uses two Windows programs open at the same time, one driving the controller via the RS232 port, the other via the Ethernet network.

in a hypothetical Ethernet controlled coffee maker. In Fig. 2a), a standard opto detector diode is connected in voltage mode, making it respond to the logarithm of light intensity. The two resistors provide a gain of 6-8 to bring the output to within the 0-5

volt range.

Similarly, in Fig. 2b), a temperature sensor, namely a LM35CZ device with a sensitivity of 10mV/° output, is used with an op-amp with a gain of 5 to bring up the voltage output to cover a 0-100°C span within the required 0-5V range. The LM35 is a pretty accurate device, so 1% resistors should be used if you want to read temperatures to the nearest tenth of a degree or so.

In Fig. 2c), the ambient noise level sensor uses a basic electret microphone with a simple peak level detector to give an output roughly proportional to overall ambient noise levels. Gain and time constants can be adjusted to suit your requirements.

Figure 2d) shows how one of the

outputs can be used to switch the kettle on and off via an opto isolated triac circuit.

Those of you who are digitally inclined could use devices such as the Dallas one-wire bus temperature probes. These sensors do not rely on external analogue components for accuracy, and deliver their outputs as serial bit encoded data.

Outputs from these can be fed to a separate small PIC, a 16F84 for example, suitably programmed to generate a serial stream at either 57600 or 2400bit/s, which is then feed to the 16F877 via its serial port.

Putting it all together

You now need a network card. Ensure the card is an ISA card, not PCI, and uses the Realtek 8019AS chip-set. The 'AS' version of the 8019 chip includes an internal 16Kb buffer – the non-AS version does not. Many NE2000 generic cards are compatible with the 8019AS, but not all.

There may be a problem if you want to use an existing or obsolete card from your old computer. The 'Plug-and-Play' system in your PC may have initialised it to a different base address value from the default of 0x0300. If this is the case, the micro controller may not be able to access the registers.

Try reconfiguring the card by

Useful references:

It is impossible to give a thorough list of the products available, as they are appear – and disappear – faster than you can write them down on paper. This is just a very short selection. You may also like to try searching on the web under the keywords "embedded and TCP".

www.Siteplayer.com

www.rabbitsemiconductor.com

www.beck-ipc.com/products/catalog/a/chip.asp?status=0_EN_products_a

www.j-works.com

www.lantronix.com/products/embedded/coboxmicro/

www.compulab.co.il

www.ibutton.com

placing it back in your PC. Using the Control Panel in Windows 95 or 98, reconfigure the base address to 0x300. There is no need to change the interrupt settings as they are not used. It may be also possible to disable plug-and-play on the chip by hard wiring one of the pins on the 8019AS chip to V_{CC} . Refer to the chip's data sheet to find out the exact pin number, which will depend on the device package used. You will need a very small soldering iron.

After the PCB has been wired up and connected together, it is time for some tests. Plug the PC Ethernet card into the socket and power the board with 5V. The LED should start flashing at about once a second, indicating the PIC is working and addressing the Ethernet card.

Connect the unit to your PC LAN via the BNC or twisted cable*.

Ensure DIL switches B5-B7 are in the 'off' position. This will default the chip to 57600bit/s, and also enable demonstration mode. It is not essential to use the serial port at this

Fig. 4. Internal signal flow path for the controller. The switches correspond to bit flags in an internal register byte, and can be programmed to modify the path of the incoming signal. This seemingly unconventional architecture allows for various pre-processing levels for the incoming and outgoing data blocks. An external processor handling serial character streams is then presented with 'pre-cooked' data blocks, ranging from Ethernet raw packets to processed TCP segments. The controller also adds check sum and size entries to outgoing packets to simplify the user software. Using simple external processing power, the device can form the basis for a network analyser, embedded mail system or simple web server.

stage, but it could be very useful for performing initial tests and for generally seeing what's going on.
Connect the PIC serial port interface to a spare COM port in your computer.

You can use any terminal emulator software if you have one in your PC. Alternatively, use the supplied program "877driver.exe". This program has facilities for transmitting pre-programmed ASCII sequences making any setting up easier. The program communicates at 57600bit/s, so make sure that bit 5 of the DIL b5 is 'off', i.e. PORTB-5 or pin 38 of the PIC is not connected to ground, Fig. 3.

With '877driver.exe' running, resetting the controller will cause the string '<Pp>' to be sent to the PC, and be shown on the screen. This is an indication that the card is working. The character pair "Pp" is specific to Realtek 8019 chips. You may get a different character pair if your card uses other chip sets.

If the string is not displayed at all, the Ethernet card is not being

Technical support

A set of parts is available for this project for £35 including VAT and p&p in mainland UK. The kit consists of a preprogrammed PIC, PC demonstration software, application notes and an instruction manual.

More information on devices for the other applications mentioned is also available. Please contact Eddy for more details: e-mail edinsam@eix.co.uk or write to Eddy Insam, BelleVue, London Road, Harrow on the Hill, Middlesex HA1 3NH with an SAE.

You can obtain the hex code for the controller from Eddy's web site at:

http://www.eix.co.uk/Ethernet

addressed by the PIC properly. In this case, refer to the previous note on plug-and-play addressing.

Once you get a response, try querying the controller for its IP address. You do this by entering the single letter Q in the transmit Edit control, or alternatively by clicking the 'Query variables' tick box, followed by a click on the 'xmit' button to send the command to the PIC.

The PIC will return a string of bytes corresponding to the current MAC and IP allocations for the card. To display these properly, you must ensure the screen display is set to receive in hexadecimal notation. Just click on the appropriate 'hex display' box

If this is the first time that you are using the device, you may get the 'factory default' values. You can change these if you like, using the various options provided in the Windows software.

The default IP address is '192.68.0.15'. Some people prefer to use numbers ranging from '10.0.0.1'. The exact numbers used will not matter as long as each workstation in your domain has a different address.

If your PC is part of a larger system, contact your network manager, who will suggest a non conflicting address that you can use.

You will also need to know the IP address of your PC workstation. This can be found in Windows' Control Panel under the Network applet. If your PC is part of a larger network, your IP address may be dynamically allocated, so it may change from session to session. Consult your network manager, who will be able to allocate your workstation with a fixed IP address.

The address values are retained in

the PIC's EEPROM for future reference, so you will only need to enter them once. If you know your PC's allocated IP address, enter it under 'remote IP'.

Open an MS DOS console on your PC and use the ping and arp commands to check that the PC is talking to the controller and that all is working properly. If there is no response, ensure the controller address matches the requested ping address.

Also make sure that the network card green LED is flashing. This shows that packets are being fired across. Disk files supplied with the chip cover the above instructions in more detail, including examples and lists of commands available.

And now for some excitement... With '877driver.exe' running, enter the two digits '03' in the 'set status flag' box. Then set the tick next to it, and click on 'xmit' to send this command to the PIC.

Now watch the PC screen. Maybe nothing will happen. If this is so, get your PC to access other workstations on the network, e.g. via Network Neighbourhood in Explorer, or start a network printer. The screen display will suddenly start filling with packet information.

You are now watching your network connection and all packets that float past it. The command you have just entered has set the PIC to act in a 'receive all packets' mode.

Figure 4 shows how the internal flow in the PIC depends on this internal global flag. The data will quickly fill your screen, so press the 'clear screen' button every so often. You may notice that even when all the workstations are idle, there will be the odd packet being displayed. Soon you will easily differentiate between ARP, ICMP, DHCP and TCP messages, and with a bit of practice – and help from the literature – deduce where they come from and their purpose.

Can it flash lights?

On the 'set status flag' box, enter the two digits '08', set the tick next to it, and click on 'xmit'. This sets the PIC to demonstration mode. At this point, you don't need '877driver.exe' any more.

Now run the program
'877demo.exe'. This program is a
Windows version of the listing
shown last month. It sends a UDP
packet to the PIC via the network,
retrieves a response, and then
displays the results.

The GUI front end lets you tick

boxes to set any LEDs you want to turn on, and will also display the returning data as digital or analogue values. The program is very simple. It operates on the five least-significant bits of port C (digital output), and on return, reads port A bit 0 as an analogue voltage, which is displayed as a voltage between 0 and 5 volts.

With '877demo.exe' running, ensure the IP addresses shown in the top two windows correspond to that of your PC, and that of the PIC controller. Click 'send request', and wait for a response. If nothing happens, check again that all the IP addresses are correct. Do not forget to ensure the PIC board is set to demo mode as described. Reset the PIC with all the DIL switches in the off position to guarantee this.

Once you start getting a response, tick some of the LED selector boxes and click on 'send request' again. The LEDs on the PIC board should start turning on or off according to your settings. Try adjusting the trimmer on the PIC board, and watch how the progress bar follows it on the PC screen every time you transmit a request.

Full C++ source code is provided so that you can customise this program to your needs. The software was developed in Microsoft Visual C version 6. It should not be too difficult to port this to other environments such as Borland or Basic.

In practice you will only need to deal with one function or subroutine, which is fully documented to make it as easy to understand as possible. The rest of the program is just the standard template functions used by the Visual C environments to provide visual support for dialogue boxes, user buttons and others.

How fast can it work?

You should be asking this question, but a more relevant one is, "how fast can data be moved across the network?" I have used the controller to deliver a stream of 8-bit speech from a microphone at 8kbit/s, and 1 am sure it could easily run faster than that. The controller itself is purely limited by its ability to read or write the 8019 buffers via its I/O ports.

However, there are many other factors to consider as well. In practice, the main limit is the network itself, i.e. how busy it is. There is a major difference in performance whether you want to transmit short bursts of high speed data, or a continuous stream of bytes at a guaranteed rate. Starting a network printer or running a file transfer

between two PCs causes a noticeable flow disruption. This makes it impossible to guarantee a particular data transfer rate.

What else can it do?

The controller provides various levels of functionality. At the lowest level it can deliver raw formatted Ethernet IP or TCP packets via its serial port. The packets are enclosed in a simple header trailer arrangement, and simple software can be written to decode them. This is useful if you want to build a simple network 'sniffer', want to develop your own protocols, or just want to see what's going on in your network.

At the highest level, it can provide a point-to-point data stream with all necessary ARP and ICMP support handled internally and transparently. A single flag variable controls the overall data flow, Fig. 4.

On transmission you just supply the data component of the packet, the PIC will add all check sum and size fields, thus simplifying their generation.

A powerful combination is obtained when using the controller with another device, e.g. another PIC. The serial port is an effective method of communicating between the two and for passing both commands and data.

In a typical context, a separate PIC is used to accept data signals from the environment, perform the simple conversions, and to control the 16F877 PIC controller using plain byte and text commands. This is a very powerful option as you can develop your own software using your own device, avoiding the complexities of network protocols.

The example in Fig. 5, duplicated

here from last month's article, shows how an interface to a home X10 network could be wired up. The 16F84 shown has a simple job; it only needs to convert serial data sent from the PIC controller – at 2400bit/s in this case – to X-10 type commands.

Another example of a two-chip application is shown in Fig. 6. This forms the basis of a simple PC network-wide atomic clock reference. The circuit shows a 16F84 used to decode bit data stream signals from a standard Rugby MSF receiver. The '84 performs some simple conversion on the time received, and generates a simple preformatted UDP data packet containing the clock information which is reformatted as a 32-bit binary word.

The exact protocol and format is known as SNTP and is fully described in RFC 1769 and 2030. SNTP is the main method used in Windows 2000 and other networks to align all workstations to an external precision clock. SNTP is enabled in Windows by using the NET TIME command. More information can be found in the

http://msdn.microsoft.com technical information web site by searching under 'SNTP', 'Q216734' or 'Q224799'.

What you can't do

This Ethernet interface system's main limitation is the very small amount of RAM space available within the PIC chip. Input data is streamed, i.e. not stored, so incoming packets can be of any size. However output datagrams are buffered within the chip.

The buffer is dynamically allocated

to whatever remaining RAM is available at the time, usually between 80 and 200 bytes. This is enough for quite a few applications, but not enough for everything. I tried using the internal RAM buffer of the 8019AS for this purpose, but it appears it cannot be used in full duplex mode, i.e. for doing DMA read and write transfers at the same time.

This buffer ceiling places a limitation on any applications that needs to deal with large amounts of data. This means you won't be able to build sophisticated applications such as a web server that require large amounts of data. For this, you'd be better off buying readymade cards and devices with sufficient spare RAM or ROM.

Network security

The controller was originally developed as a custom tool for validating security and throughput aspects of routers and fire walls in both IPv4 and IPv6. Recent concerns about overloading systems using low level SYN attacks, incomplete IP fragments and other difficult to trace methods have made this a very relevant issue.

Note that using the controller in a shared network can cause real havoc if used irresponsibly. It can be distressing to think that such a small device can be used to bring an apparently secure network to a grinding halt, and without leaving any traces.

So if you want to use the controller in a shared office, lab or a college, make sure that you know what you are doing. Otherwise disconnect the cable to the rest of the network.

New Standards. Do we need them?

Nowadays, print servers are using TCP and SNMP for their configuration screens. The user just clicks open a standard internet browser to communicate with the print driver, or with the printer itself by means of a standard web page.

This has great advantages for the

The author

Dr Eddy Insam is a consultant in innovative applications of telecommunications and specialises in graphics and signal processing. He can be reached on edinsam@eix.co.uk.

If you are considering a serous application for this device, Eddy will endeavour to answer your queries via e-mail.

printer manufacturer. It means that special configuration software programs for the PC are unnecessary. Everything is done via web page commands and using a normal web browser.

Of course, the Ethernet connected printer or appliance has to act like a fully-fledged web server. But as shown in this article, this is not a difficult task, if you know how and have enough computer power.

For point-to-point and time-critical applications, some of these protocols are not efficient ways of providing communications. Some concepts such as safety, feedback paths and constant throughput have barely been considered in the present standards, which are mainly aimed at user oriented systems. So there is a possibility that new, or variations on existing standards may be developed specifically for certain areas of appliance and embedded device control and communications.

Pointers? In a nutshell, IP provides for basic routeing facilities, so any new standard will reap their benefits if developed on top of this. Protocols based on UDP are fast and easy to implement, but as UDP contains no in-built error management, facilities would have to be provided by the higher layers. This could result in performance degradation if not done properly.

TCP on the other hand, provides a reliable flow, but it requires disproportionate overheads both in terms of extra data and time delays. Many embedded devices may require a reliable connection with quick response, but not necessarily a time consistent circuit, so TCP could easily degrade efficiency. There is plenty of scope for experimentation and new ideas.

Of course, this may not happen at all. The Hayes AT modem command set is still in common use for computer driven applications, complete with its idiosyncrasies and computer unfriendly command set.

What next?

I hope that these two articles will have made you a bit more knowledgeable about using the Ethernet in your applications. My main purpose was to bring the concept of network aware devices from a 'bottom up' point of view, and help to dispel some of the black magic associated with ready-made boxed solutions.

If there is enough interest, I will produce more articles, perhaps on more specific projects, and using some of the latest devices available.

Make sure of your copy of Electronics World

It can be difficult finding a copy of Electronics World at local newsagents. The number of magazines being published keeps increasing, which means that newsagents have less shelf space for the display of particular titles. Specialist magazines in particular get crowded out.

There's a solution to the problem. Most newsagents provide "shop-save" and/or home-delivery services. There is no charge for a shop save. You simply ask your newsagent to order a copy for you: it will be kept on one side each month ready for you to collect. Homedelivered copies are ordered in the same way, but generally incur a delivery charge.

A newsagent can order any magazine for you, whether or not the shop normally stocks it.

If you buy your copies of Electronics World from a newsagent and want to make sure you get every issue, just ask at the counter.

THE OSCILLOSCOPE IS MOVING ON ...

Tel:+44 (0) 1480 396395, Fax:+44 (0) 1480 396296, E-mail: post@picotech.com

CIRCLE NO.110 ON REPLY CARD

H.P. 3312A Fun Gen 0.1Hz-13MHz. AM/FM Sweep/Tri/Gate/Burst etc. H.P. 3310A Fun Gen 0.005Hz-5MHz £125 Sine/Sq/Tri/Ramp/Pulse FARNELL LFM4 Sine/S Oscillator 10Hz-1MHz FLUKE 77 Multimeter 3½ digit Handheld FLUKE 77 Series 11
HEME 1000 LCD Clamp Meter 0-1000A. In \$60 Carrying Case.

RACAL 900B **AUTOMATIC** MODULATION METER AM/FM 1.5MHz~2GHz

H.P. 8494A Attenuator DC-4GHz 0-11dB N/SMA H.P. 8492A Attenuator DC-18GHz 0-6dB

MANY OTHER ATTENUATORS, LOADS, COUPLERS etc AVAILABLE

DATRON 1061 HIGH QUALITY 5% DIGIT BENCH MULTIMETER True RMS/4 wire Res/Curren Convertor/IEEE

STILL AVAILABLE . PREVIOUSLY ADVERTISED WITH PHOTOS

MARLUM 093C AF POWER METER, SINSO MESS	
Unused	
Used	
MARCONI 8938 - No Smad	
MARCONI 2610 True RMS Voltmeter Autorang	un 5Hz-
25MHz	£195
GOULO J38 Sine/Sq Osc 10Hz-100KHz. Low d	
2	
AVO 8Mk6 in Ever Ready Case, with leads etc Others Avos from ESO	£80
GOOOWILL GFC8010G Freq. Counter 1H2-	
GOODWILL GVT427 Qual Ch AC Millivortmeter £1 10mV-300V in 12 Ranges Freq 10H2-1MHz SOLARTRON 7150 OMM 6½ digit True RMS	00-£125
SOLARTRON 7150 Plus	
	1200
RACAL TRUE RMS VOLTMETERS	
9300 5Hz-20MHz usable to 60MHz, 10V-316V	
93008 Version	
9301/9302 RF Version to 1.5GHz from	00-£300
HIGH QUALITY RACAL COUNTERS	
9904 Universal Timer Counter, 50MHz	
9916 Counter, 10H2-520MH2	
9918 Counter, 10Hz-560MHz, 9-digit	
FARNELL AMM255 Automatic Mod Meter 1.5MH	2-2GH2
	e enine

CLASSIC AVOMETER DA 116 DIGITAL 3.5 DIGIT COMPLETE WITH BATTERIES AND LEADS ONLY

SOLARTRON 7045 BENCH MULTIMETER

4% digit BRIGHT LED WITH LEADS ONLY (30)

IT'S SO CHEAP YOU SHOULD HAVE IT AS A SPARE HUNTRON TRACKER Model 1000. M.P. 5315A Universal Counter, 1GHz, 2-ch. PLUKE 8050A DMM 4½ digit 2A True RMS FLUKE 8010A DMM 3½ digit 10A

TIME 1051 Low Ohm Res Box 0.01ohm to 1M Ohm in £100 0.01ohm steps. Unused

STEWART of READING 110 WYKEHAM BOAD, READING, BERKS BG6 1PL

Telephone: (0118) 9268041 Fax: (0118) 9351696 Callers welcome 9am-5.30pm Monday to Friday (other times by arrangement)

SCOPE FOR IMPROVEMENT

FOR THE FIRST TIME EVER ONLY IT'S SO CHEAP YOU SHOULD COE

REPLACE THAT OLD SCOPE	40)
VARCONI 2022E Synthesised AWFM Sig Gen	£525-£ 750
LP. 8657A Synthesised 2-18GHz Sig Gen.	B4000
I.P. 8657A Synthesised 100kHz-1040MHz Sig Gan	£2000
LP 86568 Synthesised 100kHz 990MHz Sig Gen	£1350
LP. 8656A Synthesised 100kHz-990MHz Sig Gen	1995
LP. 8640A AM/FM 500kHz-1024MHz Sig Gen	£400
LP. 864CA AM/FM 500kHz-512MHz Sig Gen	£250
PHILIPS PM5328 100kHz-180MHz with 200MHz Si	Gen Fred
Courter IEEE	£550
RACAL 9081 Synth AMFM Sig Gen 5-520MHz	£250
I.P. 3325A Synth Function Gen 21MHz.	£600
AARCONI 6500 Amplitude Analyses	£1500
I.P. 4275A LCR Weter 10kHz-10MHz	£2750
LP 8903A Distortion Analyser	£1000
WAYNE KERR 3245 inductance Analyser	£2000
ŁP. 8112A Pulse Generator 50MHz	£1250
DATRON AutoCal Multimater 51/-71/4 digit. 1065/1061A/	
	£300-£600
	£1000

AAHCONI 2400 Prequency Courter 20GHz	_ETU
LP 53508 Frequency Counter 20GHz	E20
LP 5342A 10Hz-18GHz Frequency Counter	£8
S&K Accelerometer type 4386	- 23
IP 116920 Duai Directoria Coupler 2MHz-18GHz	\$16
IP 11691D Dual Directional Coupler 2MHz-18GHz	_£12
EKTRONIX P61098 Probe 100MHz Readout Unused	9
EKTRONIX P6106A Probe 250MHz Readout Unused	- 6
APINELL AMM2000 Auto Mod Meter, 10Hz-2.4GHz. Unus	ed ES
AARCONI 2305 Mod meter: 500kHz-2GHz	om £7

ROHDE & SCHWARZ APK 62 SYNTHESISED 1Hz-260kHz SIGNAL GENERATOR. BALANCED/

ON-BALANCES DOTPOT. CCD DISPLAT	
M.P. 6012B DC PSU 0-60V; 0-50A 1000W	£1000
FARNELL AP60/50 1kW Autoranging	£1000
FARNELL H60/50 0-60V 0-50A	£750
FARNELL M60/25 0-60V, 0-25A	£400
Power Supply HPS3010 0-30V, 0-10A	£140
FARNELL L30-2 0-30V: 0-2A	083
FARNELL L30-1 0-30V; 0-1A	£60
Many other Power Supplies available	
Isolating Transformer 240V In/Out 500VA	£40
DODTADI E ADDI IAMCE TEC	TED

PORTABLE APPLIANCE TESTER Only £180 **MEGGER PAT2**

SPECTRUM ANALYSERS	
SPECINUM ANALISENS	4
ADVANTEST R3261A 9kHz-2.6GHz Synth 9	4

EATON/AILTECH 757 0.001-22GHz. TEKTRONIX 492 50KHz-18GHz..... H.P. 8558B with Main frame 100kHz-1500MHz £1250 H.P. 853A (Dig Frame) with 8559A 100kHz-21GHz H.P. 3580A Audio Analyser 5Hz-50kHz. As new £1000

MARCONI 2382 100Hz-400MHz High Resolution, £2000 __£1500 MARCONI 2370 30Hz-10MHz from £500 HP141 Systems 8553 1kHz-110MHz from £500 8554 500kHz-1250MHz from £750, 8555 10MHz-18GHz from £1000

UNUSED OSCILLOSCOPES

TEKTRONIX THS 720P as THS 720A, power \$1300 measurement £1300
TEKTRONIX THS 710 Dual Trace, 60MHz 250MS/S £750
HITACHI VC6523 Dual Trace, 20MHz 20MS/S Delay

OSCILLOSCOPES

PHILIPS PM3092 2+2 Ch 200MHz. Delay etc \$800 As new PHILIPS PM3082 2+2 Ch 100MHz Delay etc £700, As new £ TEK TAS465 Dual Trace 100MHz. Delay ... £ TEK 2465B 4 Ch 400MHz. Delay Curs.....£1250
TEK 2465 4 Ch 300MHz. Delay Curs.....£250
TEK 2445/A/B 4Ch 150MHz. Delay curs....£250
TEK 466 Dig Storage. Dual 100MHz Delay.£450
TEK 466 Analogue Storage. Dual 100MHz .£250
TEK 468 Dual Trace 350MHz. Delay....£600 TEK 475 Duai Trace 200 MHz. Delay..... TEK 4658 Duai Trace 100MHz. Delay..... PHILIPS PM3217 Dual Trace 50MHz. Delay

£250-£300 GOULD 0S1100 Dual Trace 30MHz. Delay .. £200 HAMEG HM303.4 Dual Trace 30MHz HAMEG HM303 Dual Trace 30MHz £325 HAMEG HM203.7 Dual Trace 20MHz. £250 FARNELL DTV20 Dual Trace 20MHz

MANY DTHER DSCILLOSCOPES AVAILABLE **RACAL RECEIVER RA1772**

USED EQUIPMENT – GUARANTEED. Manuals supplied
This is VERY SMALL SAMPLE OF STOCK, SAE or telephone for lists. Please check available
ordering. CARRIAGE all units £16. VAT to be added to total of goods and carriage

Designing with DSS P

Using a design example incorporating audio data converters,

Patrick Gaydecki reveals that the DSP hardware needed for

communicating with a PC, memory addressing and codec interfacing
is not too difficult to implement.

n the first article in this set, I introduced the general concept of real-time DSP. I also looked at some of the internal design features that allow DSP chips, such as the DSP56002, to perform arithmetic operations so quickly and efficiently.

Typical hardware requirements are covered in this second article, together with a simple design example incorporating the DSP56002 as the core processor.

Implementing DSP hardware

Figure 1 shows the pin assignments of the D\$P56002; pins are grouped according to function. These are described in detail in the D\$P56002 technical data document supplied by Motorola.¹

Although quite straightforward in concept, the design is suitable for advanced stereophonic signal processing of audio bandwidth signals, as is shown in Fig. 2. This design involves a dual-channel audio codec and 32K-words of external memory for holding both code and data. It also has facilities for communicating directly with the serial interface of a PC.

Because the design has been kept simple, it does not service interrupts generated by external hardware. However, this is not an issue here since the system is intended as a stand-alone processing environment.

It can of course respond to interrupts generated both by software and internal hardware systems: there's more on this later.

As Fig. 2 also indicates, a number of the control signals

Dr Patrick Gaydecki is a Senior Lecturer with the Department of Instrumentation and Analytical Science at UMIST in Manchester.

are tied to the power rail or ground by $15k\Omega$ resistors. This is because of the operating modes that have been selected for this system. For more detailed information, you should investigate the relevant Motorola literature. 2,3

Resetting and clocking

The DSP56002 is reset by a low-going pulse on its input. A suitable reset circuit is easy to construct, involving a capacitor, resistor and a Schmitt trigger such as a 74HC14.

As Fig. 1 shows, the DSP56002 may be clocked by connecting a crystal, a resistor and two capacitors to the pins labelled XTAL and EXTAL. It can also be clocked more simply by connecting a clock oscillator module to EXTAL. If you are using an oscillator module, XTAL should be left unconnected.

In common with many modern microprocessors, the DSP56002 incorporates a phase-locked loop (PLL) that can be programmed to multiply the externally applied clock frequency, generating a higher internal clock frequency. This enables a relatively low-frequency clock oscillator to be included in the design, minimising interference and EM radiation.

The PLL can be programmed not only with a multiplication factor, but also simultaneously with a division factor, thus generating non-integer multiples of the externally applied clock frequency.

If the PLL is used, a capacitor must be connected between the PCAP input and V_{cc} . Its value is given by 540pF×MF, where MF is the multiplication factor chosen. Hence if the external clock is 10MHz, and an internal clock of 60MHz is required, the capacitor must be 3.24nF; 3.3nF is suitable.

Initially, the PLL should be disabled by taking the PINIT

input low. This condition is changed via programming after reset, as discussed in a subsequent article.

Communicating with other hardware

As I mentioned in the previous article, port C is a triplefunction port that can act as a general-purpose I/O interface, as a three-pin serial communications interface (SCI) port or as a six-pin synchronous serial interface (SSI) port.

Since port C comprises nine pins, SCI and SSI modes can be made available together. To configure port C in a given mode or combination of modes, you load the associated internal control registers with an appropriate word, i.e. a bit-pattern; more on this in a later article.

For communicating with a PC, the SCI port is used. This is a full duplex interface; in asynchronous mode, used here, it can communicate at a maximum of 625kbit/s assuming a 40MHz clock. This port can also operate in synchronous mode, allowing a maximum communication rate of 5Mbit/s, again with a 40MHz clock.

Since the serial interface of the DSP56002 employs TTL, the voltage levels must be converted to those expected by the RS232 protocol, involving ±12V inverted logic, prior to interfacing with the PC's serial port. This is achieved with a MAX232CPE chip, as in Fig. 2.

Note that this device uses a number of capacitors that are not shown in the diagram for purposes of clarity. These capacitors act as reservoirs for the charge pumps. Refer to manufacturer's data sheets for more information on these.

Under normal circumstances, the SCI can be made to operate like a standard minimum-mode connection serial

interface, requiring TX, RX and a common ground. However, in bootstrap mode, an external clock signal must be supplied to the SCLK input. This should be a square-wave signal that is 16 times the bit rate of the interface. Hence if used at 19200bit/s, the clock signal frequency should be 307.2kHz. After reset booting, communication with the SCI no longer needs this clock.

As I have already shown, the DSP56002 can operate in one of several modes; the system described here operates under 'Mode 1', the special bootstrap mode. In this mode, following a hardware reset, the DSP downloads a program either from the SCI, as used here, from external boot memory, or from the host interface (HI). It then stores the code in its internal memory, and starts executing it.

Programs may be written on any text editor using DSP56000 assembly code and assembled into an object file. It is also possible to simulate the software's operation with a PC-based simulator. Both the assembler and the simulator are available free of charge from the Motorola DSP web site (http://wwwl.motorola-dsp.com/).

The assembled object file has a specific format known as a CLD file, which has some header information. In order to download this directly to the memory space of the DSP56002, this header information must be stripped off to leave a pure binary file. This file can now be directly transmitted to the DSP56002 from a PC via the serial interface.

The serial interface bootstrap mode is selected by setting appropriate logic levels on the control pins termed MODA, MODB and MODC during reset (0, 1, 1 respectively, as shown in Fig. 2).

Fig. 1. Pin-outs of the DSP56002 digital signal processor, grouped by function.

Bootstrap code must be preceded by three bytes that specify the number of program words and three bytes that specify the program start address. Following this, the code proper is downloaded, comprising three bytes for each program word loaded.

It is essential that the least significant byte is received first and the most significant last. After the final byte has been loaded, the code immediately commences execution at the start address specified.

It goes without saying that this facility is enormously useful. Effectively, it means that a simple emulator or evaluation module can be constructed for less than £50, and the results of any program changes can be seen within seconds.

External memory system

If program and data requirements are small, the DSP56002 can operate using just its internal memory. For more adventurous designs, external memory can be added.

The DSP56002 has 16 address lines and can therefore address 64K words of a particular memory type, each word being 24 bits in width. This requires a little explanation.

As mentioned in the first article, the DSP56002 exploits super Harvard architecture. Code and data memory space is segregated, and the data memory space is further subdivided between X data and Y data memory. Internally, all three memory spaces have their own address and data buses.

The three address and data buses are multiplexed into single bus structures externally. Harvard design is maintained by using control signals that determine the type of the external memory being accessed. Thus in total, the DSP56002 can address up to 64K words of code, 64K words of X data and 64K words of Y data memory.

This design incorporates 32K words of mixed-mode external memory; in other words, the design makes no distinction between the different memory types and the external memory can be used to hold code, data or both, in any combination. Although this does not compromise the speed of the system – since the external buses are multiplexed – it does mean the programmer must be aware of where code and data reside.

Figure 2 shows that three 32K by 8-bit static RAM chips are combined to hold the 24-bit words. The first chip holds the low order byte and is connected to data lines DD0-DD7; the second holds the mid-order byte, and is

connected to data lines DD8-DD15; the final chip holds the high-order byte, and is connected to data lines DD16-DD23.

All address lines are connected to A0-A14. The chips are enabled, i.e. selected, by connecting the A15 line to the inputs of each memory device. Only if this line is low during a memory cycle, i.e. an address is generated equal to or below 32K, will the external memory be activated.

At this point it is worth mentioning that the internal program memory resides at addresses between 0 - 511 (0-1FF₁₆), and the X data and Y data memory reside at addresses between 0 - 255 (0-FF₁₆).

If code or data are read from or written to any of these locations, the DSP56002 will not activate the external memory, i.e. it will keep line A15 high. This ensures that internal memory is used, which has a clear advantage in terms of access time.

Timing requirements

In order to select the appropriate external memory devices for the system, it is essential to consider the speed of the various bus signals and the timing relationships that exist between them. A handful of simple equations is all that is required for this procedure. It is important though to navigate the method with due diligence, since a mistake will lead to a faulty design which will simply not work.

Standard static RAM suitable for general-purpose microprocessors and microcontrollers is no use here; fast static RAM must be employed, with access times of Jess than 30ns.

Specifications necessary to determine the access time of the memory to be used are the external clock period, t_{ce} , the internal clock period, t_c , the internal clock low period, t_l , the PLL division factor f_d and the PLL multiplication factor f_m . These are discussed in detail in various Motorola technical documents.⁴

For a read cycle, these specifications allow you to calculate the time between the address becoming valid and the data appearing on the data bus. This is termed t_{aa} . For a write cycle, they allow you to calculate the time between the data becoming valid on the data bus and the de-assertion of the signal. This is termed t_{sd} . The relationships are shown in Fig. 3. The two parameters t_{aa} and t_{st} are obtained using the following expressions,

$$t_{aa} = t_{\varepsilon} + t_{\dagger} - 7ns \tag{1}$$

and,

$$t_i = 0.467t_{ee} \frac{f_d}{f_m} \tag{4}$$

Any memory used in the system should have values for t_{aa} and t_{sd} less than or equal to those calculated for the DSP56002, for given external and internal clock rates. For example, if the DSP56002 is clocked externally by a 10MHz oscillator with a PLL multiplication factor of 6, this yields a value for t_{aa} of 17.5ns and a value for t_{sd} of 7.4ns.

Motorola and other semiconductor manufacturers supply fast static RAM suitable for real-time DSP systems. In this case, a Cypress CY7C199-10 (32K x 8-bit fast static RAM) would be ideal. Figure 3 shows the timing involved in memory accessing.

The audio coder/decoder

Most DSP chips are designed to work with a wide range of different a-to-d and d-to-a converters, produced by different manufacturers, all of which have slightly different data formats.

Furthermore, in order to minimise the physical number of pins of VLS1 devices, many a-to-d and d-to-a converters and DSP chips make use of serial communication for digitised data streams.

Digital processors, and the DSP56002 is no exception, can be configured for these different formats by loading appropriate bit patterns in the relevant control registers. If a-to-d and d-to-a converters are combined into a single package, it is generally referred to as a codec.

Figure 2 shows a simple interconnection strategy for interfacing a codec – or separate a-to-d and d-to-a converters – to the SSI of the DSP56002. Because the device is synchronous, for any one device it requires a minimum of three signal lines.

Considering the a-to-d converter requirement first, it requires a framing signal that delimits the start and end points of a datum word sent by the a-to-d converter. This connects to pin SC2 of the SSI – also known as pin PC5, since it can be configured as a general purpose I/O pin of port C.

Next, it requires a serial bit clock whose negative transitions indicate to the DSP56002 when to sample the individual data bits. This connects to pin SCK/PC6. Finally, it requires a signal line carrying the data in serial form, connected to pin SRD/PC7.

For a d-to-a converter, an identical arrangement is used except that the serial data are transmitted by the DSP56002. Thus instead of SRD/PC7, the pin labelled STD/PC8 is connected to the data input of the converter.

If the a-to-d and d-to-a converters are combined as a codec, then the framing signal and serial bit clock are common to the input and output sections of the device; thus a codec will require a minimum of four signal lines.

The SSI can be configured to operate in slave or master mode; if in slave mode, the framing signal and serial bit clock are provided by the codec; if in master mode, they are generated by the SSI.

Figure 4 illustrates the various timing waveforms associated with the analogue voltage input/output process operating in normal mode. More complex arrangements

Fig. 3. Critical timing parameters for calculating access times of static RAM used with the DSP56002.

are also possible, and further information is provided in an article that has appeared previously in this magazine.⁵

An important property of the SSI interface is that the number of signal lines required does not increase if a multi-channel codec is used – for example a stereo or quadraphonic device.

With a multi-channel system, the SSI is set up to operate in what is termed network mode, also shown in Fig. 4 and is used in this design. In this protocol, the framing signal delimits the start and end points of all the datum words within one sample period.

The bit clock remains the same, and the serial data are multiplexed on the lines connected to SRD/PC7 and STD/PC8 in packets called time slots. Clearly, when the SSI is configured, information must be supplied that details the resolution of the a-to-d/d-to-a converter or codec system. Information is also needed as to whether the device must operate in normal or network mode, and the length of the time slots if the latter mode is used. How the SSI registers are configured for codec operation is discussed in a fourth article.

In the third and next article, I will introduce the DSP56K assembly language set, and explain why it facilitates powerful, efficient and high-speed real-time digital signal processing.

References

- DSP56002/DSPL56002 24-bit Digital Signal Processor, Motorola Inc. Technical Data, document DSP56002/D, 1995.
- DSP56000 Digital Signal Processor Family Manual, Motorola Inc. document DSP56KFAMUM/AD, 1995.
- DSP56002 Digital Signal Processor User's Manual, Motorola Inc. document DSP56002UM/AD, 1993.
- Calculating Timing Requirements of External SRAM for the 24-bit DSP56000 Family, Motorola Inc., document APR16/D, 1994.
- 5. Gaydecki P, 'Interfacing Digital Audio', *Electronics World*, December 1999, pp. 1026-1030.

Fig. 4. Synchronisation and data signals for transfer of information between a codec and the SSI.

New Version 2001 out now!

Call **01462 480055** today for vour FREE product quide or visit www.adeptscience.co.uk

"multiSIM could very well herald the next step forward in PCB design methodology, because it can co-simulate both HDL and SPICE components... at a very affordable price"

Schematic Capture, Simulation & Programmable Logic

multiSIM - the professional design solution from Electronics Workbench. Schematic capture, SPICE/VHDL/Verilog co-simulation of analogue and digital parts, built-in analyses and virtual instruments, and a huge library of parts in a single, affordable package.

Adept Scientific plc, Amor Way, Letchworth, Herts SG6 IZA Tel: 01462 480055 • Fax: 01462 480213 Email: ewb@adeptsclence.co.uk WebStore: www.adeptstore.co.uk

Copyright © 2001 Adect Scientific pils All rights reserved. All trademarks recogni

CIRCLE NO.112 ON REPLY CARD

WATCH SLIDES ON TV **MAKE VIDEOS OF YOUR SLIDES DIGITISE YOUR** SLIDES

"Liesgang diaty" automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a phono plug (SCART & BNC adaptors are available). They are in very good condition with lew signs of use. For further details see www.diatv.co.uk .£91.91+ vat = £108.00

Board cameras all with 512x582 pixels 8.5mm 1/3 Inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10 and 12v DC 150mA.

47MIR size 60x36x27mm with 6 Infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye). .. £37.00 + vat = £43.48 30MP size 32x32x14mm spy camera with a fixed focus pin hole lens for hiding behind a ...£35.00 + vat = £41.13 very small hole

40MC size 39x38x27mm camera for 'C' mount lens these give a much sharper image £32.00 + vat = £37.60 than with the smaller lenses.

Economy C mount lenses all fixed focus & fixed iris £15.97 + vat = £18.76 VSL1220F 12mm F1.6 12x15 degrees viewing angle £17.65 + vat = £20.74

VSL4022F 4mm F1.22 63x47 degrees viewing angle £19.05 + vat = £22.38 VSL6022F 6mm F1.22 42x32 degrees viewing angle. £19.90 + vat = £23.38 VSL8020F 8mm F1.22 32x24 degrees viewing angle... Better quality C Mount lenses

£26.43 + vat = £31.06 VSL1614F 16mm F1.6 30x24 degrees viewing angle. VWL813M 8mm F1.3 with iris 56x42 degrees viewing angle..... .£77.45 + vat = £91.00

1206 surface mount resistors E12 values 10 ohm to 1M ohm 100 of 1 value £1.00 + vat 1000 of 1 value £5.00 + vat

866 battery pack, originally intended to be used with an orbitel mobile telephone it contains 10 1.6Ah sub C batteries (42x22dia the size usually used in cordiess screwdrivers etc.) the pack is new and unused and can be broken open quite £7.46+vat = £8.77

Please add 1.66 + val = £1.95 postage & packing per orde

JPG ELECTRONICS

276-278 Chatsworth Road, Chesterfield, S40 2BH. Tel 01246 211202 Fax 01246 550959 Mastercard/Visa/Switch Callers welcome 9:30 a.m :to 5:30 p.m. Monday to Saturday

FREQUENCY SHIFTER FOR HOWL REDUCTION

- For public address and sound reinforcement.
- Provides more gain and greater stability.
- 5Hz Fixed Shift Board with mains supply.

- Broadcast Monitor Receiver 150kHz-30MHz.
- Advanced Active Aerial 4kHz-30MHz.
- Stereo Variable Emphasis Limiter 3.
- PPM10 In-vision PPM and chart recorder.
- Twin PPM rack and Box Units.
- PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and movements.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh GU6 7BG Telephone: 01483 275997 Fax: 01483 276477

NEW PRODUCTS

New Products are edited by Electronics Weekly

Power supplies suit network 1U uses

Lite-On Power supplies are for networks and communications in IU applications. They deliver 12, 24 and 48V DC with combinations available. Active PFC complies with IEC1000-3-2, having a typical power factor of 0.99. Size is 17.8 by 12.7cm by 1U for 350W units and 19 by 10.2cm by 1U for 200W models.

load. With an input of 85 to 264V AC, they are also available with active current share and hot plug ability, while airflow requirements are 11.9m3/hr. Lite-On Power Tel: 0191 427 0255 www.liteon-power.com

Electronic loads rate at 1kA to test cells

The Dynaload RBL singlechannel electronic loads have ratings of 1kA and are for testing batteries, power supplies, fuel cells and related DC power equipment. From Thurlby Thandar, the loads have a constant power feature to aid battery testing and analysis. The internal pulse generator provides variable slew rate up to zero to full scale in 10µs. They can perform below 0.5V at up to 1kA making them suitable for fuel-cell testing. They operate in five modes - constant-current. constant-resistance, constantpower, constant-voltage and

pulse. Multiple units can be synchronised as master and slave units that are controlled simultaneously using analogue control or the GPIB interface on the RBL488 model. Voltage is from 0 to 1kV and there are three power ranges: 0.8, 2 and

Thurlby Thandar Instruments Tel: 01480 412451 www trinst co uk

Flexible encapsulant in transparent layer

Dymax 9-20558 thick film coating from Intertronics provides a transparent layer to protect circuits and components from moisture, dust and contaminants. It cures in

seconds on exposure to UV and visible light. The flexible encapsulant adheres to and forms a coating over glass-filled epoxy, metal, ceramic and Kapton. It has a secondary heatcuring capability and flow characteristics for quick coverage without running. Cure time is 20 to 30s, even under 200mW/cm² longwave light. Cure depths of 0.635cm are possible. Intertronics Tel: 01865 842842 www.intertronics.co.uk

Electrolytic capacitor can handle heated situations

BC Components has announced an SMD electrolytic capacitor, the 140 CLH. Applications include mobile telephone network infrastructure, engine management, ABS systems and ovens. It can be used in environments at temperatures up to 150°C for short periods; useful life is up to 1500 hours at 125°C. It can also be used for filtering, buffering or smoothing voltages in applications where life times over ten years at 60°C are required. **BC** Components Tel: 00 31 40 259 0724 www.bccomponents.com

Power supervisor monitors supplies

An adjustable supervisor IC for monitoring power supplies down to 300mV has been developed by Micrel. Available in the firm's Ittybitty SOT23-5 packaging; the MIC2776 has a choice of output options. A manual reset input is provided for a reset switch or for daisychaining it onto existing power supervision circuitry. It is made using a BiCMOS process. The three versions are the MIC2776H-BM5 with an active-high output, the MIC2776L-BM5 with an active-low output and the MIC2776N-BM5 with an opendrain, active-low output. Micrel Semiconductor Tel: 01635 524455 www.micrel.com

Line interface uses ADSL card chip set

Advanced Power Components has launched the APCC78120 line interface hybrid component for ADSL line cards. It uses Centillium's multimode ADSL chip set. The hybrid contains the necessary transmit and receive filtering components, line drivers and matching components between the chip

set and the line interface transformers, occupying less than 3.9cm² per channel. It replaces discrete components with one module.

APC
Tel: 01634 290588

Embedded workbench includes promo

The latest release of IAR Systems' embedded workbench for Mitsubishi M16C microcontrollers includes a promotional version of the Segger Embos real-time operating system.

IAR Systems
Tel: 00 465 18 167800

www.iar.com

Quad amplifier alds signal processing

Zetex has launched an amplifier for video and high-speed signal processing applications. The ZXFV201 has a bandwidth of 300MHz, slew rate of 400V/us and output drive of 40mA. The device is stable with up to 400pF capacitance load. Differential gain is 0.01 per cent and differential phase 0.01°. Power supply requirements are ±5V at a current of 7mA per amplifier. The device is for -40 to +85°C operation. Applications are in video amplification and buffering, RGB driving, video distribution, high frequency instrumentation and medical imaging. Zetex

Tel: 0161 622 4422 www.zetex.com

Bluetooth tester checks true RF

Anritsu has introduced the MT8850A Bluetooth test set for

design proving and production test. The instrument can test Bluetooth modules or any product with a Bluetooth wireless interface, such as mobile phones, PDAs, PCs and other office or consumer devices. It lets developers conduct true RF measurements rather than simple functional testing. Test time is 10s for typical production requirements, including measurements of power, frequency, modulation and receiver bit error rate. Preprogrammed or user-defined test scripts are initiated by one press of the run key. The reference Bluetooth transceiver incorporated has a better than 1kHz frequency accuracy at the start of any packet and complies with dirty transmitter requirements. Anritsu Tel: 01582 433200

Dual output buffer adds to DHMM support

www.anritsu.co.uk

Fairchild has introduced a dual output registered buffer to add to its DDR Dimm support for 184-pin, 2.5V PC200 and PC266, 72-bit wide registered SDRAM modules. They comply with the Jedec DDR SDRAM Dimm design. The SSTV 16859 buffer is a 13-bit register for address and control buffering with 184-pin and 232 DDR-I

stacked memory modules. The device has a differential input clock, SSTL-2 compatible data inputs and an LVCMOS compatible reset input. It has been fabricated on a submicrometre CMOS process. Fairchild Semlconductor Tel: 001 888 522 5372 www.fairchildseml.com

Space mapping of Trillium Lynxos

Trillium Digital Systems and Lynuxworks have announced a certified application-space mapping of the Trillium SSI system services interface to Lynxos. Trillium compliant certification of Lynxos for the Trillium Tapa advanced portability architecture means developers can choose Lynxos for the Trillium SSI that can run Trillium protocol stacks in the application space. Tapa is a set of architectural and coding standards that is independent from the target system's compiler, processor, operating system and architecture. Telecoms equipment makers can use the Trillium software for developing IP telephony, session initiation protocol and next-generation converged network infrastructure. With Trillium's SSI laver, Lynxos will let companies migrate tens or hundreds of thousands of lines of protocol stack code out of the kernel into the application space. This reduces kernel software maintenance and improves system reliability because any protocol code failure that may occur is less catastrophic in application space than in the kernel. Lynuxworks Tel: 00 33 1 30 850600 www.lynuxworks.com

Power switch for chargers

Fairchild's latest power switch is a voltage mode PWM controller and SenseFET

Tester handles GSM

Rohde & Schwarz has introduced the CMU300 mobile base-station tester for all GSM bands and 8PSK Edge modulation. It can be upgraded for 3G mobile radio. It is available for GSM 400, 850, 900, 1800 and 1900 and provides various RF layer-one measurements on the transmitter and various receiver bit-error-rate measurements. Measurements are based on real-time coding and decoding of channels for GMSK and 8PSK modulation and circuit and packet switched modes.

Rohde & Schwartz Tel: 01252 811377 www.rohde-schwarz.com

(LDMOS) power switching element integrated into a single chip in an 8-lead DIPH. The FSDH0165 consumes 0.3W, it is a self-biased and protected linear control current-to-duty cycle converter with an open drain output.

Fairchild Semiconductor

Fairchild Semiconductor Tel: 001 888 522 5372 www.fairchildsemi.com

SM-compatible connectors suit PIHIR

Surface-mount compatible connectors for use with high-temperature production

processes, such as pin-in-hole intrusive reflow (PIHIR) soldering, are available from Townsend Coates. Made by Harting, they can withstand the temperatures associated with reflow soldering -210 to 225°C. They have controlled lead lengths for compatibility with the PIHIR process. The range includes straight and angled DIN41612 male and females, headers to DIN41651, D-subs and 1.27mm pitch SCSI connectors. Among the products in SM format is the recently introduced Har-Bus 64 with 160 contacts for VME 64 extensions bus applications. Townsend Coates Tel: 0116 276 9191 www.townsendcoates.co.uk

Models added to signal generators

IFR has announced two frequency models for its 2026 multi-source generator. The 2026B 2.51GHz model is for the 2.4GHz ISM frequency band, used for wireless LAN applications, including Bluetooth. The 2026A is a 2.05GHz model with two or

Transceiver to hit satellites

Later this year, Pascall plans to start shipping commercially the STR-1812 solid-state 18GHz transceiver for use in private satellite networks. It transmits at 17.3 to 18.4GHz and receives at 10.7 to 12.75GHz. Data rates of up to 2Mbit/s from a 1.2m antenna and up to 4Mbit/s from a 1.8m antenna are supported, making it suitable for V-Sat type networks

where data such as intranet information needs to be transmitted almost instantaneously around the globe. The L-band interface eliminates the up-conversion stage between interface and transceiver.

Pascall Microwaves
Tel: 01621 816655

www.paradise.co.uk

three sources. For research, development and manufacturing where there is a need for two or three combined sources for conducting tests such as intermodulation and selectivity performance of components and receiver assemblies, the signal generators use a built-in combiner, switches and cables to reduce measurement uncertainties introduced by connecting separate signal generators. Adding Option 116 to either extends the functionality to test amplifiers in GSM base stations and, when used with a radio test set, for providing the interference signals for GSM receivers and intermodulation tests. IFR Systems Tel: 01438 772087 www.ifrsys.com

SM crystals follow dual stocking deal

Flint has expanded its range of leaded and surface mount crystals following a dual stocking agreement with Acal to distribute standard and custom quartz devices from Advanced Crystal Technology. The agreement covers SMD metal can quartz crystals, surface mount oscillators, watch

crystals, through-hole microprocessor crystals, through hole oscillators, ceramic resonators and crystal oscillators. HC49 can microprocessor crystals also form part of the range with frequencies from 1.8432 to 160MHz. The HC49 metal can SMX-4 and SMX-6 SMD quartz crystals have frequencies from 3.2 to 75MHz, with frequency tolerance options between 10 and 50ppm. They have four and six pads respectively. A 2.5mm high version is also available. The ZTA, ZTB and ZTT through hole ceramic resonators are stable from -20 to +80°C. The ZTA and ZTT are available over a 1.8 to 50MHz frequency range, with the ZTB covering 190 to 1250kHz.

Tel: 01530 510333 www.flint.co.uk

Development kits based on SBC

Arcom has announced development kits for Microsoft Windows NT Embedded 4.0 and Windows CE 3.0 for embedded systems designers. Both kits are based on the firm's SBC-Geode-GXm single board computer providing EBX compatibility with multimedia functions. The embedded NT kit contains a set of components and comes in several preconfigured builds. The options support workstation products or server systems. They are licensed and ready to run out of the box. A CD includes pre-built implementations of the operating system. The component definitions for the SBC let developers use Microsoft Target Designer and Component Builder to generate customised implementations of the operating system. The Windows kit contains the Windows CE 3.0 kernel preloaded into an onboard flash drive on the SBC. It ships with a copy of Microsoft's Embedded Visual Tools. Both kits provide software drivers, cables and documentation. Also included are a PS/2 mouse, power supply

and cables for interfacing the SBC to a VGA-CRT display. An optional NEC 16.5cm TFT colour LCD module is available.

Arcom Control Systems Tel: 0800 411300 www.paradise.co.uk

SD connectors keep memory cards secure

Molex has introduced connectors for use with secure digital (SD) memory cards for products such as PDAs, portable audio players, digital cameras and cellular phones. The connectors can handle SD cards with a capacity of up to 64Mbyte and incorporate card detect and write protect switch functions for secure downloading of digital data such as audio or image files. Connectors come in top and bottom mount styles and are 3.1mm high. Metal grounding covers that provide EMI and RFI protection are incorporated. A push-push eject system is used for card insertion and extraction and secure card retention. The 2.5mm pitch connectors are rated at 0.5A and supplied on embossed tape for automatic board mounting. Molex

Tel: 01252 720720 www.molex.co.uk

Low-noise stereo volume controller

Profusion has introduced the WM8816 low-distortion low-noise stereo volume controller for audio applications. Total harmonic distortion plus noise is 0.001 per cent at 100dB. It combines digitally controlled volume adjustment and peak level detection on one chip. This makes it suitable for audio

amplifiers and preamplifiers. home entertainment systems, mixing desks and audio recording equipment. Maximum input signal level is ±18V and positive gain up to 15.5dB. The device is based on a resistor chain design with external op-amps, so users can tailor the system. It is controlled via a three-wire digital interface with daisy-chain capability for multichannel systems. The gain of each channel can be individually adjusted from -111.5 to +15.5dB in 0.5dB steps. On-chip peak detection circuitry can be used to implement volume monitoring and automatic gain control systems without the need to digitise the audio signal. It can be configured in double differential mode to reduce hum and other audible noise. Profusion Tel: 01702 543500

Tel: 01702 543500 www.profusionplc.com

Eight-channel d-to-a 14-bit converter

Hunt Engineering has announced that the HEGD14 14-bit DAC is shipping. Part of the Heron range, the digital-toanalogue converter is for high output rate applications, such as wireless, especially digital radio

transmission. It can also be used in test, high-speed control and instrumentation. The device provides eight channels of 14-bit d-to-a converter at up to 33MS/s. This is a mirror of the HEGD9 12-bit a-to-d converter. Hunt Engineering Tel: 01278 760188

Multiband transceiver for unilcensed use

The nRF903 is a single chip multichannel UHF transceiver for the unlicensed 433, 868 and 915MHz low power radio device frequency bands. Available from Clere, the

Nordic VLSI product has GMSK and GFSK modulation and demodulation capability at an effective bit rate of 76.8kbit/s for 153.6kHz bandwidths. With transmission power adjustable to a maximum of +10dBm and a differential antenna interface, it is suitable for PCB antenna applications. Configuration data is programmed by a 14-bit word architecture via a serial peripheral interface. Operating from a +3V DC supply, it has power down and standby modes, and complies with EN300 220-1 and CFR47.

Tel: 01635 298574 www.clere.com

Single board supports Celeron and Pentlum

From Advanced Modular Computers is the AMC-3782EVS Socket 370 architecture board. The CPU card supports both Celeron and Pentium III processors, up to 133MHz front side bus, up to 512Mbyte SDRAM and dual Ultra DMA66 IDE interface. The Intel i810E chip set uses a shared system architecture

allowing the on-chip VGA and audio to access system memory. Onboard utilities include dual Intel 82559 10 or 100Mbit/s Ethernet controllers, Ultra 160 SCSI chip and one Compactflash socket. Because the VGA and audio is onboard, slot space is freed up. AMC Tel: 01753 580660

www.amcuk.com

Solid-state relays in 6 and 8-pin models

Crydom has introduced six and eight-pin DIP solid-state relays. The G2 devices are available in contact configurations, including form A, dual form A, form B, dual form B and one form A one form B. All can be wired for AC operation or one of three DC configurations. They can switch AC or DC voltages from the microvolt and nanoamp range up to 400V and 400mA, and can be wired in series to achieve switching in the kilovolt range. Typical input voltage and current are 1.25V DC at 5mA. Dielectric strength input to output is 3750V and capacitance is 0.8pF for singlerelay and 1.2pF for dual-relay devices. Power dissipation is

Button has split screen

Omron has launched a rectangular lighted pushbutton switch with split screen options for process and motor control. The A3PJ measures 18.9 by 26.1mm and comprises a switch unit and indicator and pushbutton unit, which are joined with a snap action. The indicator unit is available in solid colour as well as two, three and four split screen options in horizontal and vertical orientations. Colours include white, red, green and orange and can be specified to 5, 12 or 24V DC. There are three types of indicator unit – LED-lit with built-in LED chip, LED ball-lit with removable LED and incandescent lamp-lit.

Tel: 0208 450 4646 www.omron.co.uk

THE ORIGINAL SURPLUS WONDERLAND!

THIS MONTH'S SELECTION FROM OUR VAST EVER CHANGING STOCKS

Surplus always wanted for cash!

THE AMAZING TELEBOX

Converts your colour monitor into a QUALITY COLOUR TVII

TV SOUND & **VIDEO TUNER**

The TELEBOX is an attractive fully cased mains powered unit, containing all pronics ready to plug into a host of video monitors or AV equipment which fixed with a composite video or SCART input. The composite video output sectionics ready to plug into a host of video monitors or averture in manager freed with a composite video or SCART input. The composite video output aid also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most television neceivers." (TELEBOX MB) Push button controls on the front panel allow reception of 8 fully tuneable tif at UHF colour television channels. TELEBOX MB covers virtually at television frequencies VHF and UHF including the HYPERBAND as used by most eable TV operators, ideal for desktop computer video systems & PIP (soure in picture) setups. For complete compatibity - even for monitors without sound - an Integral 4 watt audio ampilier and low level Hi Fl audio output are provided as standard. Brand new - fully guaranteed. TELEBOX ST for composite video input type monitors.

£16.95

£1ELBOX ST for composite video input type monitors.

£36.95

£1ELBOX ST for composite video input type monitors.

£36.95

£1ELBOX ST for composite video input type monitors.

£36.95

£1ELBOX ST for composite video input type monitors.

£36.95

£1ELBOX and Multiband VHF/UHF/Cable/Hyperband tuner.

£69.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

£26.95

State of the art PAL (UK spec) UHF TV tuner module with composite 1V po video & NiCAM hi if stereo sound outputs. Micro electronics all on one small PCB only 73 x 160 x 52 mm enable full tuning control via a simple 3 wire link to an I8M pc type computer. Supplied complete with simple working program and documentation. Requires +12V & +5V DC to operate. BRAND NEW - Order es MY00. Only £49.95 code (8) See www.distel.co.uk/data_my00.htm for picture + full details

FLOPPY DISK DRIVES 21/2" - 8"

All units (unless stated) are BRAND NEW or removed from often brand new equipment and are fully tested, aligned and shipped to you with a full 90 day guarantee. Call or see our web site www.distel.co.uk for over 2000 unlisted drives for spares or repair.

3%" Mitsubishi MF355C-L. 1,4 Meg. Laptops only	£25.95(B)
3¼" Mitsubishi MF355C-D. 1.4 Meg. Non laptop	£18.95(B)
5¼* Teac FD-55GFR 1.2 Meg (for IBM pc's) RFE	£18.95(B)
5%" Teac FD-55F-03-U 720K 40/80 (for BBC's etc) RFE	£29.95(B)
5%" BRAND NEW Mitsubishi MF501B 360K	£22.95 B
Table top case with integral PSU for HH 51/4" Floppy / HD	£29.95(B)
8" Shugart 800/801 8" SS refurbished & tested	£210.00(E)
8" Shugart 810 8" SS HH Brand New	£195.00(E)
6" Shugart 851 8' double sided refurbished & tested	£260,00(E)
8° Mitsubishi M2894-63 double sided NEW	£295.00(E)
8" Mitsubishi M2896-63-02U DS slimline NEW	£295.00(E)
Dual 8" cased drives with integral power supply 2 Mb	£499.00(E)

HARD DISK DRIVES 21/2" - 14

CONNER CP3024 20 mb NE Converted to the Converted to

IC's -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK 10.000,000 items EX STOCK

For MAJOR SAVINGS
CALL OR SEE OUR WEB SITE www.distel.co. VIDEO MONITOR SPECIALS

One of the highest specification monitors you will ever see -At this price - Don't miss it!!

Mitsubishi FA3415ETKL 14" SVGA Multisync colour monitor with fine
0.28 dot prich tube and resolution of 1024 x 768. A
variety of inputs allows connection to a host of computers including IBM PC's in CGA, EGA, VGA & SVGA
modes, BBC, COMMODORE (including Amiga 1200),
ARCHIMEDES and APPLE. Many leatures Etched
lacoplate, led switching and LOW RADIATION MPR
specification. Fully guaranteed. In EXCELLENT little
used condition.

VGA cable for IBM PC included.

Only £119 (E) Order as External cables for other types of computers available - CALL

Ex demo 17" 0.28 SVGA Mitsubishi Diamond Pro monitors, Full multisync etc. Full 90 day guarantee. Only £199.00 (E)

Just In - Microvitec 20" VGA (800 x 600 res.) colour monitors. Good SH condition - from £299 - CALL for Info

PHILIPS HCS35 (same style as CM8833) attractively styled 14" colour monitor with both RGB and standard composite 15.525 Khz video inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atari BBC computers. Ideal for all video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as front concealed flap controls, VCR correction button etc. Good used conditions - fully instead - guaranteed. used condition - fully tested - guaranteed Only £99.00 (E)

PHILIPS HCS31 Ultra compact 9" colour video monitor with standard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested & guaranteed (possible minor screen bums). In attractive square black plastic case measuring W10" x H10" x 13½" D. 240 V AC mains powered.

Only £79.00 (D) Only £79.00 (D)

KME 10° 15M10009 high definition colour monitors with 0.28' dot

pitch. Superb clarity and modern styling.

Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atari, Commodore Amiga, Acorn Archimedes & BBC. Measures only 13½° x 12° x 11°. Good used condition.

Only £125 (E)

Only £125 (E)

Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video & optional sound input. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.in EXCELLENT kittle used condition with full 90 day guarantee.

20"....£135 22"....£155 26"....£185(F)

We probably have the largest range of video monitors in Europe, All sizes and types from 4" to 42" call for info.

DC POWER SUPPLIES

Virtually every type of power supply you can imagine. Over 10,000 Power Supplies Ex Stoc Call or see our web site. Stock

TEST EQUIPMENT & SPECIAL INTEREST ITEMS

MITS. & FA3445ETKL 14" Industrial spec SVGA monitors FARNELL 0-60V DC @ 50 Amps, bench Power Supplies	£245 £995
FARNELL AP3080 0-30V DC @ 80 Amps, bench Supply	£1850
1kW to 400 kW - 400 Hz 3 phase power sources - ex stock	EPOA
IBM 8230 Type 1, Token ring base unit driver	£760
Wayne Kerr RA200 Audio frequency response analyser	£2500
IBM 53F5501 Token Ring ICS 20 port lobe modules	£750
IBM MAU Token ring distribution panel 8228-23-5050N	€95
AIM 501 Low distortion Oscillator 9Hz to 330Khz, IEEE	€550
ALLGON 8360.11805-1880 MHz hybrid power combiners	£250
frend DSA 274 Data Analyser with G703(2M) 64 Vo	EPOA
Marconi 6310 Programmable 2 to 22 GHz sweep generator	€6500
Marconi 2022C 10KHz-1GHz RF signal generator	£1550
Marconi 2030 opt 03 10KHz-1.3 GHz signal generator, New	€4995
HP1650B Logic Analyser	£3750
HP3781A Pattern generator & HP3782A Error Detector	EPOA
HP6621A Dual Programmable GPIB PSU 0-7 V 160 watts	£1800
MP6264 Rack mount variable 0-20V @ 20A metered PSU	€675
HP54121A DC to 22 GHz four channel test set	EPOA
MP8130A opt 020 300 MHz pulse generator, GPIB etc	€7900
MP A1, A0 8 pen HPGL high speed drum plotters - from	£550
NP DRAFTMASTER 18 pen high speed plotter	£750
EG+G Brookdeal 95035C Precision lock in amp	EPOA
View Eng. Mod 1200 computerised inspection system	£995
Sony DXC-3000A High quality CCD colour TV camera Kelthlay 590 CV capacitor / voltage analyser	EPOA
Racal ICR40 dual 40 channel voice recorder system	£3750
Flakers 45KVA 3 ph On Line UPS - New batteries	£9500
Emerson AP130 2.5KVA industrial spec.UPS	£2100
Mann Tally MT645 High speed line printer	£2200
ntel SBC 486/133SE Multibus 486 system. BMb Ram	£945
Siemens K4400 64Kb to 140Mb demux analyser	€2950

LUIAL INTEREST TILMS	
HP6030A 0-200V DC @ 17 Amps bench power supply Intel SBC 486/125C08 Enhanced Multibus (MSA) New	£1950 £1150
Nikon HFX-11 (Ephiphot) exposure control unit	£1450
PHILIPS PM5518 pro. TV signal generator	£1250
Motorota VME Bus Boards & Components List, SAE / CALL	
Trio 0-18 vdc linear, metered 30 amp bench PSU, New	€550
Fujitsu M3041R 600 LPM high speed band printer	£1950
Fujitsu M3041D 600 LPM printer with network interface	£1250
Perkin Elmer 299B Infrared spectrophotometer	€500
Perkin Elmer 597 Infrared spectrophotometer	£3500
VG Electronics 1035 TELETEXT Decoding Margin Meter	£3250
LightBand 60 output high spec 2u rack mount Video VDA's	
Sekonic SD 150H 18 channel digital Hybrid chart recorder	£1995
B&K 2633 Microphone pre amp	£300
Taylor Hobson Tallysurf amplifier / recorder	£750
ADC SS200 Carbon dioxide gas detector / monitor	£1450
BBC AM20/3 PPM Meter (Ernest Turner) + drive electronics	€75
ANRITSU 9654A Optical DC-2,5G/b waveform monitor	€5650
ANRITSU MS9001B1 0.6-1.7 uM optical spectrum analyser	EPOA
ANRITSU ML93A optical power meter	€990
ANRITSU Fibre optic characteristic test set	EPOA
R&S FTDZ Dual sound unit	€650
R&S SBUF-E1 Vision modulator	€775
WILTRON 6630B 12.4 / 20GHz RF sweep generator	€5750
TEK 2445 150 MHz 4 trace oscilloscope	£1250
TEK 2465 300 Mhz 300 MHz oscilloscope rack mount	£1955
TEK TDS380 400Mhz digital realtime + disk drive, FFT etc	€2900
TEK TDS524A 500Mhz digital realtime + colour display etc	£5100
HP3585A Opt 907 20Hz to 40 Mhz spectrum analyser	€3950
PHILIPS PW1730/10 60KV XRAY generator & accessories	EPOA
CLAUDE LYONS 12A 240V single phase auto, volt, regs	€325
CLAUDE LYONS 100A 240/415V 3 phase auto, volt. regs	€2900

19" RACK CABINETS

Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable front door, full height lockable half louvered back door and louvered removable side panels. Fully adjustable internal fixing struts, ready punched for any configuration of equipment mounting, plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make these racks some of the most versallie we stanked side by side and therefore

have ever sold. Racks may be stacked side by side and therefore require only two side panels to stand singly or in multiple bays. Overall dimensions are: 77% H x 32% D x 22* W. Order as: OPT Rack 1 Complete with removable side panels. £345.00 (G)

OPT Rack 2 Rack, Less side panels

Over 1000 racks, shelves, accessories 19" 22" & 24" wide 3 to 46 U high. Available from stock!

32U - High Quality - All steel RakCab

Made by Eurocraft Enclosures Ltd to the highest possible spec, rack features all steel construction with removable side, front and back doors. Front and back doors are hinged for easy access and all are lockable with five secure 5 lever barrel locks. The front door hinged for easy access and all are lockable with hive secure 5 lever barrel locks. The front door is constructed of double walled steel with a "designer style's moked acrylic front panel to enable status indicators to be seen through the panel, yet remain unobtrusive, internally the rack features fully slotted reinforced vertical fixing members to take the heaviest of 19" rack equipment. The two movable vertical fixing strust (extras available) are pre punched for standard 'cage nuts'. A mains distribution panel internally mounted to the bottom rear, provides 8 x IEC 3 pin Euro sockets and 1 x 13 amp 3 pin switched utility socket. Overall ventilation is provided by fully louvered back door and double skinned top section with top and side louvers. The top panel may be removed for fitting of integral fans to the sub plate etc. Other features include, fitted castors and floor levelers, prepunched utility panel at lower rear for cable / connector access etc. Supplied in excellent, slightly used condition with keys. Colour Royal blue. External dimensions mm=1625H x 635D x 603 W. (64" H x 25" Dx 23%" W).

Sold at LESS than a third of makers price!!

Sold at LESS than a third of makers price !!

A superb buy at only £245.00 (G) 42U version of the above only £345 - CALL

12V BATTERY SCOOP - 60% off !!

A special bulk purchase from a cancelled export order brings you the most amazing savings on these ultra high spec 12v DC 14 Ah rechargeable batteries. Made by Hawker Energy Ldt, type SBS15 featuring pure lead plates which offer a far superior shell & guaranteed 15 year service life. Fully BT & BS6290 approved. Supplied BRAND NEW and boxed. Dimensions 200 wide, 137 high, 77 deep. M6 bott terminals. Fully guaranteed. Current makers price over £70 sach Durch 200. each Our Price £35 each (c) or 4 for £99 (E)

RELAYS - 200,000 FROM STOCK

Save ££££'s by choosing your next relay from our Massive Stocks covering types such as Military, Octal, Cradle, Hermetically Sealed, Continental, Contactors, Time Delay, Reed, Mercury Wetted, Solid State, Printed Circuit Mounting etc., CALL or see our web site www.distel.co.uk for more information. Many obsolete types from stock. Save ££££'s BIG E

COLOUR CCD CAMERAS

Undoubtedly a miracle of modern technology & our special buying power! A quality product leasuring a fully cased COLOUR CCD camera at a give away price! Unit features full autolight sensing for use in low light & high light applications. A 10 mm fixed focus wide angle lens gives excellent focus and resolution from close up to long range. The composite video output will connect to any composite monitor or TV (via SCART socket) and most video recorders. Unit runs from 12V DC so ideal for security & portable applications where mains power not available.

Overall dimensions 66 mm wide x 117 deep x 43 high. Supplied BRAND NEW & fully guaranteed with user data, 100's of applications including Security, Home Video, Web TV, Web Cams etc, etc.

Web re! = LK33 ONLY £99.00 or 2 for £180.00 mm

ONLY £99.00 or 2 for £180.00 (8)

SOFTWARE SPECIALS

NT4 WorkStation, complete with service pack 3 and licence - OFM packaged. ONLY \$89.00 (8) and licence - OEM packaged. ONLY £89.00 (a) ENCARTA 95 - CDROM, Not the latest - but at this price 1 £7.95 DOS 5.0 on 31% disks with concise books c/w OBasic. Windows for Workgroups 3.11+ Dos 6.22 on 3.5" disks Wordperfect 6 for DOS supplied on 31% disks with manual £24.95

shipping charges for software is code B

STEL on the web!! - Over 16,000,000 items from stock - www.distel.co.uk

ALL MAIL TO Dept ww, 29/35 Osborne Rd Thornton Heath Surrey CR7 8PD Open Mon - Fri 9.00 - 5:30

LONDON SHOP

Open Mon - Sat 9:00 - 5:30 215 Whitehorse Lane South Norwood On 68A Bus Route Nt. Thornton Heath & Selhurst Park SR Rail Stati

DISTEL® Visit our web site

www.distel.co.uk email = admin@distel.co.uk ALL TO ENQUIRIES

FAX 0208 653 8888

500 or 600mW respectively. Relays are available in throughhole and surface-mount variants, including a package 2.2mm high, making it suitable for PCMCIA applications. Crydom
Tel: 01444 473555
www.crydom.com

1.2kW supplies will support hot swapping

Artesyn has launched two 1.2kW front-end AC/DC power supplies with configuration and control facilities for system integration and power management. For data processing, datacoms and telecoms applications that use distributed power architectures, the AFE1200 supplies have current sharing capabilities and support hot-swapping. Rackmountable power shelves are available for users wishing to configure multiple power

sources. There is a choice of 48 or 24V DC outputs. The 48V model can deliver up to 25A and the 24V model up to 50A. Both provide an auxiliary 12V, 1A DC output for powering items such as external housekeeping circuitry. The auxiliary output is isolated from the main output, and both outputs are floating, letting users adopt whatever rail reference configuration they require. They have an 85 to 264V AC universal input range and accommodate mains frequencies from 47 to 63Hz. The supplies incorporate power factor correction, providing a minimum power factor of 0.99. Artesyn Tel: 00 353 24 25572 www.crydom.com

Single board supports Celerón and Pentium

Azzurri is shipping the ZX4500 Openarchitect from Znyx Networks. The open-source Linux Ethernet switch provides a line-rate hardware switching environment that lets OEMs deploy standard and customised IP switching applications within a 6U CompactPCI blade. It handles packet manipulation within the switch silicon to achieve line-rate speeds of 6.6 million packet/s. Layers two to seven filtering is accomplished by downloading and running existing Linux networking applications. Media conversions are possible because it allows direct access to its switching fabric from its open PPMC slot. It has 12 or 24 10 or 100Mbit/s Ethernet ports, two Gigabit Ethernet ports, embedded Motorola 8240 PowerPC processor and a PMC or PPMC slot for an expansion processor or additional VO. The design is hot swap compliant, with all Ethernet ports implemented as rear-panel I/O. There are 64Mbyte of buffer RAM and a non-blocking switch fabric. Up to 30 switches may be stacked via one or both Gigabit ports, putting up to 720 10 and 100Mbit/s ports under the same management as the rest of the equipment in the chassis. It can be combined with Znyx's Rainlink technology to provide switch-to-switch or port-to-port failover and link aggregation and load-balancing services. Applications include VoIP gateway, network load balancing, web load balancing, Firewall IVPN, multimedia multicasting and SS7 signalling. Azzurri Technology Tel: 0118 944 5900

Ergonomic tuning knobs in six sizes

www.azzurri.com

OKW has introduced the Com-Knobs series of ergonomic tuning knobs. They come in six sizes from 16 to 50mm in diameter. The three-part construction comprises cover, knob and marking element. Individual marking elements, which slide into the side of the

knob moulding, are available in five standard colours – coral, beach, lagoon, sky and mineral. They can be attached to control spindles of 4, 6 or 6.35mm diameter using a collet system in the top of the knob moulding. The knobs are suitable for the fine control and adjustment of machines and devices and for electronic measurement applications. OKW

Tel: 01489 583858 www.okw.co.uk

Open-frame switcher has output choices

From Ultimate Renaissance is a 60W AC/DC power supply that provides power densities above 0.43W/cm³ in a 50.8 by 101.6 by 20.3mm package. The VLT60 open-frame switcher comes with single or multiple outputs, at various voltages, and has efficiencies above 85 per cent. It has universal inputs

from 90 to 264V AC. Operating between 0 and 50°C, the supply has overcurrent protection and convection cooling. Weighing 0.17kg, it can be used by OEMs in POS, data networking, computer peripherals, touchscreen displays, telecoms, medical equipment and industrial products. Maximum leakage current is 500µA and it qualifies as a class B FCC and CISPR EMI filter. Ultimate Renaissance Tel: 01793 439310 www.ur-home.com

The Headphone Amplifier Box

Balanced or unbalanced microphone or line input to headphone output

Professional portable units operating from an internal PP3 battery or external mains adaptor

* Precision transformerless balanced input * Bridged headphones output drive * Sensitivity selectable over a wide range of input levels * Low noise and distortion

* High common mode rejection * Loop through facility * Extensive RFI protection

The Balance Box (precision mic/line amplifier) -The Phantom Power Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants GU30 7QW

Information line 01428 751469 Fax 751223 E-mail contact@confordelec.co.uk Web http://www.confordelec.co.uk/

CIRCLE NO.115 ON KEPLY CARD

CIRCLE NO.116 ON REPLY CARD

LANGREX SUPPLIES LTD

PHONE 020 8684 1166

DISTRIBUTORS OF ELECTRONIC VALVES TUBES AND SEMICONDUCTORS AND I.C.S.

020 8684 1 MAYO ROAD . CROYDON . SURREY CRO 2QP 3056 24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS

	24 NOUR			ex@aol.		CRITEMS	
AZ31 CL33 E88CC E180F E180F E5180F EABC80 E891 EEF80 E8F89 EEL31 ECC33 ECC81 ECC83 ECC81 ECC83 ECC86 E	\$ p 8.00 15.00 8.50 20.00 1.50 25.00 25.00 1.50 3.50 3.50 3.50 25.00 5.00 25.00 5.00 25.00 5.00 25.00	KT66 Special KT88 Special KT88 Special KT88 Special KT88 Special N78 COA2 COA2 COA2 COA2 COA2 COA2 COA2 COA2	20.00 20.00 3.00 3.00 3.00 3.00 2.00 2.50 2.50 2.50 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3	ex@aol.c 524GT 6AQ5 6AR5 6AR5 6AS76GT 6AU6 6BA6 6BA6 6BA6 6BA6 6BA7 6BA7 6BA7 6BA	3.00 2.00 6.00 7.50 2.00 2.00 4.00 2.00 4.00 2.00 4.00 2.00 4.00 2.00 4.00 4	6U8A 6V6G 6V6GT 6X4 6X5GT 12AT7 12AU7 12AX7A 12BA7 12BA7 12BA7 12BY7 12B	1.50 10.00 3.00 3.00 3.00 3.50 5.00 7.50 6.00 2.00 10.00 7.50 10.00 27.50 45.00 7.50 85.00 27.50 85.00 27.50 85.00 85.00 85.00 12.50 85.00
EL360 EL509/519	15.00 - 7.50	3B28 4CX250B	12.00 45.00	6L6WGB 6Q7	10.00 3.00	7025	7.50
EM34	25.00	5R4GY	7.50	6SA7	3.00	7027A	26.00
EM81/4/7	5.00	5U4G	10.00	6SC7	3.00	7360	26.00
EN91	7.50	5U4GB	10.00	6SG7	3.00	7581A	15.00
EZ80/EZ81	5.00	5V4G	5.00	6SJ7	3.00	7586	15.00
GZ32	8.50	5Y3GT	2.50	6SK7	3.00	7587	20.00
GZ33/37	15.00	5Z3	5.00	6SL7GT	5 00	Prices corre	
WTC4	15.00	523	5.00	031/01	2 00	riices corre	CI WINGII

5.00 6SL7GT 6.00 6SN7GT going to press OPEN TO CALLERS MON-FRI 9AM-4PM, CLOSED SATURDAY

This is a selection from our stock of over 6,000 types. Please enquire for types not listed.

Disolete items are our speciality. Valves are new mainly original British or American brands.

Terms CWO/min order £10 for credit cards.

VISA

P&P 1-3 valves £2.00, 4-5 valves £3.00 Add 17.5% VAT to total including P&P

FAX

Customised design services from Intec **Associates Limited**

INTEC look for interdisciplinary collaborations with experts who work in other fields. We supply creative and cost-effective solutions.

Key expertise

- PC interfacing applications
- Implementation of PIC micro-controllers and PC-104
- Implementation of radio linkers
- Implementation of sensors
- Analogue and digital circuit design
- PC software development using VB, VC, Java, Turbo Pascal and Delphi

Applied areas

- Standalone data logger using PIC mlcro-controller
- Standalone devices using PIC micro-controller
- Data logging/control system using PCs or PC-104
- Remote data logging/control via radio link
- Remote data logging/control via telephone line

Intec instant solutions

- PC-based data loggers controllers
- Standalone data loggers
- Sound loggers
- Remote control and telemetry applications

www.intec-group.co.uk

11 Sandpiper Drive, Stockport, Cheshire, SK3 8UL, UK Tel: +44 (0)161 477 5855 Fax: +44 (0)161 477 5755 E-mail: mail@intec-group.co.uk

CIRCLE NO.118 ON REPLY CARD

Raid controllers support seven levels

Crellon Microsystems has introduced two controllers to support Raid levels zero, one, three, five, ten, 30 and 50. The Cyclone Microsystems PMC57 is a 64-bit Raid PMC module that can be used with single board computer hosts. The CPCI-975, also from Cyclone, is a 3U CompactPCI Raid controller with two channels of 80Mbyte/s Ultra2 LVD Scsi. Each controller has a 64-bit host PCl interface and is built round the Intel i960 I/O processor, which offloads the host processor by driving disk array controller functions including parity generation, Raid algorithms, striping algorithms and cache management. The controller firmware is in 2Mbyte onboard flash ROM. Integrated Raid management

software performs remote configuration and array management via Megaraid Webbios, clustering support, scatter and gather, tagged command queuing, synchronous operation and automatic, transparent rebuild of hot spare drives. The management software also supports error statistics, logging and on-line maintenance. Self monitoring and recovery technology is

common to both models, capable of detecting up to 70 per cent of detectable drive failures and recovering through drive remapping and on-line physical drive migration. Each controller supports the shared disk model of Microsoft Cluster Server for Windows NT clustering. Crellon Microsystems

Tel: 0118 977 6161 www.crellon.com

Dual regulators have built-in protection

Two voltage regulators from Rohm Electronics combine dual outputs of either 3.3 and 2.5V or 3.3 and 1.8V with built-in protection. The BA33C25FP and 18FP two-channel, lowdropout regulators are for inputs between 3 and 16V and maximum currents of 1A. Output voltages are controlled

BOOK TO BUY

Servicing Audio and Hi-Fi Equipment

Return to Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Servicing Audio and Hi-fi Equipment

Total

Name

Address

Postcode

Telephone

Method of payment (please circle)

Mastercard/Visa/Cheque/PO

Cheques should be made payable to **Reed Business Information**

Credit card no

Card expiry date

Signed

Its readers will benefit from its wealth of easily assimilated information, and repairs hitherto thought impossible will speedily become routine. And the first may well cover its purchase price. Congratulations on a comprehensive, well-written and lucid work' Electronics Informer.

'Interesting, entertaining and useful for both practitioners and teachers. All round a satisfying book which deserves to be considered as a tool rather than an ornament collecting dust on the shelf." Skillset Newsletter

Service engineers and technicians have come to regard this book as essential to their work. As a bench-side companion and guide it has no equal. Its purpose is to ease and speed up the processes of fault diagnosis. repair and testing of all classes of home audio

equipment: receivers, amplifiers, recorders and playback machines. The mechanics and electronics of domestic audio are examined by Nick Beer in a down-to-earth and practical way, concentrating on what goes wrong, how to track down problems, and how to solve

A symptom index and comprehensive manufacturer and supplier guide allow quick access to specific advice and suggestions.

The third edition is bang up to date with the latest technology -DVD, CD Recordable, PC audio systems. There is also new material on PA equipment

UK Price: £32.00 Europe £34.00 Rew £64.50

Price includes delivery and packing

- Essential bench companion for all service engineers.

Professional PCB Layout for Windows at Computer Store Prices!

Number One Systems

Call +44 1684 773662 or Fax +44 1684 773664 E-mail info@numberone.com Easy-PC For Windows 4.0

now reads Ultiboard designs/libraries*

Suddenly, a professional level PCB layout product is available at a realistic price. Just check the specification and see what excellent value you get with Easy-PC For Windows. Then test before you buy with a demo version - you will be simply amazed with Easy-PC For Windows.

True Windows 32 bit product Integrated Schematics and Layout as standard Windows drag & drop throughout Multiple documents open within display Technology files for fast start-up Tiled display - Cascade, Vertical, Horizontal Multi-level Undo/Redo Integrated standard Autoplace Optional shape based AutoRouter Full Copper Pour

Split powerplanes
Unlimited signal/powerplane layers
Unlimited non-electrical/doc layers
Keep out/keep in areas for routing
R/H mouse menu support

Pan across design to cursor position Cross probing between Schematics and PCB Full forward & backward annotation Schematics /PCB Modeless driven operation, no menu selection required

*Ultiboard is a trademark of Ultimate Technology

Over 7,000 users must be right!

Consistently, one of Europe's most popular PCB Layout products for Windows 95/98/NT/2000, Easy-PC has won praise from users for the wealth of features within each new release.

Many of these new features are normally only found in the world's most expensive PCB Layout software packages.

Now try Easy-PC For Windows for yourself.!

call us for a demonstration copy or download from WWW.numberone.com

Number One Systems, Oak Lane, Bredon, Tewkesbury, Glos, GL20 7LR. UK

CIRCLE NO.119 ON REPLY CARD

The Complete Integrated Schematic PCB Layout Package

Too good for words

The New Ranger XL Series

Ranger 2 for Windows

NEW Ranger 2XL

Strom

E500

REE Website Download Demo

SEETBOX

Advanced Systems & Technology for PCB Manufacturers

Old Buriton Lime Works, Buriton, Petersfield, Hants. UK GU31 5SJ Tel: (44) 01730 260062 Fax: (44) 01730 267273

CIRCLE NO.120 ON REPLY CARD

BOOK TO BUY

Valve Radio and Audio Repair Handbook

* A practical manual for collectors, owners, dealers and service engineers * Essential information for all radio and audio enthusiasts * Valve technology is a hot topic

This book is not only an essential read for every professional working with antique radio and gramophone equipment, but also dealers, collectors and valve technology enthusiasts the world over. The emphasis is firmly on the practicalities of repairing and restoring, so technical content is kept to a minimum, and always explained in a way that can be followed by readers with no background in electronics. Those who have a good grounding in electronics, but wish to learn more about the practical aspects, will benefit from the emphasis given to hands-on repair work, covering mechanical as well as electrical aspects of servicing. Repair techniques are also illustrated throughout.

This book is an expanded and updated version of Chas Miller's classic Practical Handbook of Valve Radio Repair. Full coverage of valve amplifiers will add to its appeal to all audio enthusiasts who appreciate the sound quality of valve equipment.

Contents: INCLUDES: Electricity and magnetism; Voltage, current, resistance and Ohm's Law; Real life resistors; Condensers; Tuning; Valves; Principles of transmission and reception; Practical receiver design; Mains valves and power supplies; Special features of superhets; Battery and mains battery portable receivers: Automobile receivers; Frequency modulation; Tools for servicing radio receivers; Safety precautions; Fault finding; Repairing power supply stages; Finding faults on output stages; Faults on detector/AVC/AF amplifier stages; Finding faults on IF amplifiers: Faults on frequency-changer circults; Repairing American 'midget' receivers; Repairing faults on automobile radios; Repairing battery operated receivers; Repairing FM and AM/FM receivers; Public address and high fidelity amplifiers.

UK Price: £22.50 Europe £25.00 ROW £27.00

** Price includes delivery and packing **

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Valve Radio and Audio Repair Handbook

	Total
Name	
Address	
Postcode	
Telephone	
Method of payment (please circle	e)
Mastercard/Visa/Cheque/PO Cheques should be made payab Reed Business Information	ole to
Credit card no	
Card expiry date	
Signed	

NEW PRODUCTS

Please quote *Electronics World* when seeking further information

to within ±2 per cent. They integrate a pnp transistor with over current output protection circuitry that prevents the IC being damaged if there is a short circuit. Onboard thermal shutdown circuit protects against thermal breakdown. They come in TO252-5 packaging.

Rohm Electronics
Tel: 01908 282666

www.rohm.co.uk

Configuration device has 16Mbit flash

Altera has available the EPC16 configuration device with 16Mbit flash memory. The chip is for system-on-aprogrammable-chip designs and those requiring multiple PLDs. Data compression lets the device provide up to 30Mbit configuration data. It has insystem programmability and reprogramming, and can configure two Apex EP20K1500Es and one EP20K600E, or any other combination of devices up to six million system gates of programmable logic. Altera Tel: 01494 602000

125W multi-output power supply taken to hospital

www.altera.com

Condor has announced a 125W multi-output switching power supply in an 89 by 152 by 38mm package. Called the GPFM125, it is approved to UL2601, CSA 22.2NO.601.1 and EN60601-1 for medical systems applications. Power density is 0.24W/cm³ and

power factor correction is integral to meet IEC10000-3-2. Rated at 125W continuous power with forced air, the supply can also be operated with only convection cooling with up to 80W of continuous power available. Eight models are available with four fully regulated outputs each. Outputs include a combination of 3.3, 5, 12, 15 and 24V. Features include power fail signal, remote sense and overvoltage protection.

Condor Tel: 01769 540744 www.condorpower.com

Contacts for supplies

ODU has designed single contacts for power supplies, testing and monitoring equipment, docking systems, lighting and aeronautics. Three

systems are available – slotted, lamella and Springtac – with contact diameters from 0.6 to 50mm. Solid pins are common to all three. In a typical 4mm contact, the slotted contact will provide two or four pin-to-socket contact points, the lamella will provide 18 and the Springtac 38. The Springtac has spring wires inside the socket each contacting the pin surface independently.

Tel: 0116 230 1457 www.odu.de

Quality Alphanumeric backlit LCDs in 4x40, 2x40, 4x20, 2x20 and 2x16 formats

Supplied either bare or pre-fitted with one of our Eze-Use, Serial interface boards with options such as software buzzer control, backlight control, operator interface, start-up message, big character generation, and PC-AT Keypad /mouse interface - all at very competitive pricing. We also stock Serial Interface Graphic modules and front panel bezels for all our LCDs. Please call (01977 683665) or check our web site (www.milinst.com) for full details and pricing.

Milford Instruments - your total LCD solution

Milford Instruments

Milford House, 120 High St South Milford LEEDS LS25 5AQ Tel 01977 683665 Fax 01977 681465

www.milinst.com

CIRCLE NO.121 ON REPLY CARD

Need directing to filters...

cables, connectors or sockets?

Whatever your business needs find it on kompass.com.

www.kompass.com

1.5 million companies worldwide at your fingertips. Telephone: +44(0)1342 335876.

Beginners' corner

Understanding transformers

As Ian Hickman explains, electricity and magnetism have many similarities – but they also have many differences. It is important to understand them before you can fully appreciate the main topic of this set of two articles – transformers.

promised in the January issue to write about transformer equivalent circuits and believe me, I will. But in considering how to start, where to start seemed the more important question. So in time honoured fashion, I'll begin at the beginning, in this case with basic electromagnetism.

This is a topic most of you will have studied at some stage in the past. But you will probably find that you are not as comfortable with it now as you are with Ohm's Law and the like.

I will develop the topic of electromagnetism by analogy with electric circuits.

Rivers and ring roads

Some phenomena are circular, like London's M25 ring road; the traffic goes round and round. Other phenomena are open ended, such as a river. But most phenomena are ultimately circular, everything thing forms part of a circuit

Water that a river empties into the ocean evaporates, falls as raih on the land and finds its way back into the river. Similarly, electric currents can only flow in a circuit – even if intermittently like lightning – and the same applies to magnetic flux. Whether this also applies to electric flux is a point I hope to be able to expand on in a future article.

The electric circuit

Figure 1 shows a source of EMF (electromotive force), a battery of voltage E volts say, capable of supplying current to a load consisting of a resistor of value R ohms. A potential difference of E volts exists between points A and B, due to the EMF of the battery.

If the switch is closed, the same potential difference exists between points A' and B', and a current of I amps flows through the resistor, where I=E+R. This is Ohm's Law; most of you will have been familiar with it for

longer than you care to remember.

Forgive me for stating the obvious, but if the switch is open, then no current flows out of the battery. This an important difference between the electric circuit and a magnetic circuit.

It is generally assumed that the resistance of the connecting wires is zero, or at least negligible compared with R. It is also assumed that the resistance of any insulators – in the switch and elsewhere – is infinite. If this were not the case, if air had a resistance which, although high, were finite, then some small current would flow even if the circuit via R was broken. This would be analogous to the magnetic circuit.

Considering resistor R in more detail, assume that it's a wire-wound type, the length of whose resistance wire is l metres. Now the current equals $E
ightharpoonup R = \rho l
ightharpoonup A, A being the cross-sectional area of the wire in square metres.$

$$I = \frac{E}{R} = \frac{EA}{\rho\ell}$$

where ρ - the Greek lower-case letter 'rho' - is called the resistivity, in ohm.metres, of the material that the resistance wire is made from.

In the case of a high-wattage resistor, this would typically be Nichrome, a nickel-chromium alloy with a reasonably low temperature coefficient of resistance, and good resistance to oxidation.

Rearranging,

$$I = \frac{EA}{\rho \ell}$$

a little gives,

$$\frac{I}{A} = \frac{E}{\ell} + \rho$$
, or $J = \frac{\varepsilon}{\rho}$

where J is the current density in amps per square metre of cross-section in the wire, and ε is the electric field strength gradient along the wire, in volts per metre. These terms will all prove to have analogous equivalents in a magnetic circuit.

The magnetic circuit

Figure 2 shows a source of magnetomotive force, or MMF for short, consisting of a single turn of current-carrying wire. In this instance, it is wound on a core of ferromagnetic material.

Imagine that this core is toroidal with a mean path length or effective circumference of l metres, and cross-sectional area Am^2 . If the current in the wire is l amps, the MMF is l amp.turns. The fashion nowadays is to

Fig. 1. An electromotive force causes current to flow in a circuit on closure of the switch.

Fig. 2. A magnetomotive force causes flux to flow in a magnetic circuit.

drop the 'turns', and say simply that the MMF is I amps, or NI amps if there are N turns.

My venerable textbook¹ defines the unit of MMF as the "ampere turn". But certainly in the example quoted, the MMF would still be I amps (or amp turns), if the current were one amp flowing in N turns, instead of I amps in 1 turn, if N=I.

You may find it easier, like me, to think in terms of amp turns, but as the number of turns N is a pure dimensionless number, it comes to the same thing.

The symbol for the units of MMF is 'A' (for amps). It is convenient though to also have a symbol to use in equations, to denote an MMF as a variable. I use 'F'. Thus in general, F=NIA; the MMF equals the number of amperes times the number of turns.

Note the convention that symbols denoting variable quantities in equations – such as N turns, I amps – are in *italics*, while constants and symbols denoting units, such as A for amps, V for volts, etc., are not.

Just as the EMF E volts in Fig. 1 establishes a voltage gradient on the wire of the resistor, forcing a current of I amps to flow through it, the MMF in Fig. 2 does something very similar. Where the voltage gradient $\varepsilon = E + l$ volts/metre, the MMF gradient is denoted by H, where H = F + l amps/metre, (ampere turns per metre).

Note the difference between the variable H with units $A.m^{-1}$, and the H that denotes the unit of inductance, the henry. Unfortunately, there are only 26 letters in the Roman alphabet, so inevitably some get used to denote both a variable and a unit.

The value of H is called the magnetic field strength. In Fig. 2, it is virtually constant at all points around the magnetic circuit of the toroidal core. Likewise, ε would be constant around the circuit in Fig. 1, if the resistor, switch and copper wires were all replaced by a single length of resistance wire of constant cross section.

In Fig. 1, ε causes a current to flow, of value related to the length, cross-section and resistivity of the wire. Something similar happens in Fig. 2. The magnetic field strength H=F+I causes a flux of Φ Wb, where Wb denotes webers, to flow in the core, where,

$$\frac{\Phi}{A} = \frac{F}{\ell} \times \mu_o \mu_r$$

The flux density $\Phi \div A = BT$, where T denotes teslas, is analogous to I + A = J in an electric circuit. So $B = H \times \mu_0 \mu_r$, just like $J = \varepsilon \div \rho \times A$. A run-down of the equivalent terms is given in the Table.

Rearranging one of the earlier equations gives,

$$I = E \times \frac{A}{\ell} \times \frac{1}{\rho}$$

where 1/p - the reciprocal of resistivity - is the

conductivity, σ , of the conductor. Conductivity is a measure of how easy it is to make current flow. The unit of conductivity is the siemen, and its abbreviation is S. Formerly, an inverted Ω sign was used, and the units were called 'mhos'.

A similar rearrangement gives,

$$\Phi = F \times \frac{A}{\ell} \times \mu_0 \mu_r$$

where $\mu_0\mu_r$ is a measure of how easy it is to make flux flow, and is called the permeability of the material. Parameter μ_0 is the permeability of free space, while μ_r is the permeability of the core material relative to μ_0 . Permeability μ_0 has a value $4\pi 10^{-7}$, specified in teslas per amp per metre, or T.m/A. On the other hand, μ_r may be anything from two or three for the highest frequency grades of ferrite, to $300\,000$ or more for certain types of transformer laminations in mu-metal.

By contrast, the conductivity of free space is zero, and virtually the same for air and all common insulators. Thus in Fig. 2, if the core were removed, there would still be some magnetic flux produced by the magnetic field. In Fig. 1 though, if the wire of the resistor were replaced by air, no current would flow.

Rearranging the last equation yet again, gives,

$$\frac{F}{\Phi} = \frac{\ell}{A \times \mu_0 \mu_r}$$

The term,

$$\frac{\ell}{A \times \mu_0 \mu_r}$$

is called the reluctance, S, of the magnetic path, and is specified in amperes per weber.

Comparing with,

$$\frac{E}{I} = \frac{\ell \rho}{A}$$

reluctance is to a magnetic circuit what resistance is to an electric circuit. And by analogy with resistivity,

$$\frac{1}{\mu_0\mu_r}$$

might be called 'reluctivity' – though I have never heard of the term – while permeability $\mu_0\mu_r$ is analogous to $1+\rho$ or conductivity σ . So just like,

$$I = \frac{E}{R}, \ \Phi = \frac{F}{S}$$

The crucial difference

Despite the similarities in the formulae involving EMF and MMF, the crucial difference concerns energy. In Fig. 1,

Table. Run-down of commonly used electrical quantities and their magnetic counterparts.

Name	Symbol in equations	Unit name	Abbreviation
Electromotive force (EMF)	E	volt	V
Magnetomotive force (MMF)	F	amp	A
Electric current	1	amp	A
Magnetic flux	Φ	weber	Wb
Potential gradient	3	volts per metre	V/m
Magnetic field	H	amps per metre	A/m
Current density	J	amps per square metre	A/m ²
Flux density	В	tesla (webers per square metre)	T (Wb/m ²)
Conductivity (1/resistivity)	σ(1/ρ)	1/(ohm.metre)	$(\Omega m)^{-1}$
Permeability	μ ₀ μ _r	webers per amp.metre	Wb/Am

the current through the resistance is responsible for the dissipation of electrical energy, measured in joules, abbreviated to J, into heat. The rate of dissipation is measured in joules per second, where J/s=W, where W is the abbreviation for watts. Dissipation W is $\int_{-R}^{R} R$.

By contrast, no energy is dissipated in Fig. 2, assuming that the turn of wire producing the MMF has zero resistance. But in the very act of the current starting to flow and creating a magnetic field, energy was stored in the resultant magnetic flux. In the steady state shown in Fig. 2, that energy just sits there, waiting for something to happen. The flux is conventionally indicated by lines of flux, forming closed loops; in Fig. 2 there will be some in the air and many more in the core.

Just as the individual resistances around an electric circuit can be added up when working out the total EMF E needed to cause a current I to flow, so in a non-homogeneous magnetic circuit – for example a core of magnetic material with a permeability μ_r , having an air gap – the reluctances of the core and gap can be added up to find the total MMF needed to cause a given total flux.

So far, I have looked at the field produced by a constant current of I amperes, but what happens when the current changes? Indeed, how can the current get to flow in the first place? Figure 2 rather begs the question by assuming that the current is already flowing.

Consider what happens when you connect an EMF of one volt to a very large single-turn coil, as in Fig. 3a). Assume that the coil has negligible resistance. Nothing can change instantaneously, so the moment after connecting the supply the current must be the same as the moment before, i.e. zero. Clearly, you can expect the current to increase thereafter, but how fast?

Assume that the current increases at one ampere per second, so that after one second the MMF F is just one ampere turn, and assume that the reluctance S is 1A/Wb (or, one amp per weber), so that the resulting flux Φ is one weber.

In fact, for this to be so, the coil would have to be very large indeed, or immersed in a magnetic medium with a huge relative permeability. But that is a minor practical point that does not affect the principle of the thing.

Having assumed the coil to have negligible resistance, the current will ultimately become very large; so why isn't it already huge after just one second? The reason is that the steadily increasing flux linking the coil induces an EMF in it, in opposition to the applied EMF: this is known as Lenz's Law.

If the flux Φ increases by a small amount $d\Phi$ in a fraction of a second dt, so that the rate of increase is $d\Phi/dt$, then the back EMF E_B induced in the single-turn coil is $E_B = -d\Phi/dt$. But $\Phi = MMF$ +reluctance = F + S, i.e. $\Phi = NI + S$. As the current and flux are both increasing, for this to remain true their rates of change must also be equal, i.e.,

$$\frac{\mathrm{d}\Phi}{\mathrm{d}t} = \frac{N}{S} \times \frac{\mathrm{d}I}{\mathrm{d}t}$$

This rate of flux increase will induce a voltage $-E_B = d\Phi/dt$ in series with each and every one of the N turns of the coil, so in all,

$$E_{B(total)} = -N_d \frac{\Phi}{dt} = -N \frac{N}{S} \times \frac{dI}{dt} = -\frac{N^2}{S} \times \frac{dI}{dt}$$

The term N^2+S , which determines the induced voltage resulting from a unit rate of change of current, is called the inductance L. It is measured in henries: that is, $L=N^2+S$ henries.

You must keep the difference between an electromotive force (EMF) and a potential drop or difference (PD) very clearly in mind, to understand the minus sign in E_B =-d/dt. To illustrate this, consider two secondary – i.e. rechargeable – batteries and a resistor as in Fig. 3b).

The total EMF round the circuit, counting clockwise, is 3+1 volts. This is balanced by the PD of IR volts across the resistor. The batteries supply a total of 4W of power, all of which is dissipated in the resistor.

If now you reverse the polarity of the 1V battery, as in Fig. 3c), the total EMF acting is 3-1V, so the current is 0.5A. The 3V battery is now supplying $3\times0.5=1.5W$, but the dissipation in the resistor I^2R is only 1W. The other 0.5W is disappearing into the 1V battery; but it is not being dissipated, it is being stored as chemical energy.

In Fig. 3d), the situation is just the same; the applied EMF of the battery is opposed by the back EMF of the inductor – which in turn is determined by the inductance and the rate of increase of the current – while energy from the battery is being stored in the steadily increasing magnetic flux. If the internal resistance of the battery and the resistance R of the inductor are vanishingly small, the current will continue to increase indefinitely; if not the current will reach a limit set by the applied EMF and the total resistance in the circuit.

Returning now to Fig. 3a), if the switch is closed one second after connecting the battery, at which time the current has risen to 1A, then there is no voltage across the ends of the coil. No back EMF means that $d\Phi/dt$ must be zero, so dI/dt is also zero. Hence the current now circulates indefinitely its value frozen at IA – provided that the coil really has zero resistance.

In the meantime, imagine the battery disconnected and replaced with a 1Ω resistor; you will see why in a moment. Thus energy stored in a magnetic field is preserved by a short-circuit, just as the energy stored in a capacitor is preserved by an open-circuit.

Now open the switch in Fig. 3a), thus substituting the 1Ω resistor in place of the short-circuit. At the moment the switch opens the current of 1A continues to flow in the resistor; it cannot change its value instantaneously. So the energy stored in the magnetic flux is being dissipated and

therefore the current must fall. This will establish a 1V potential difference across the resistor, of opposite polarity to the now disconnected battery. In other words, the top end of the resistor will be negative with respect to the lower end, because $dI \div dr$ is now negative.

The coil is now acting as a generator feeding its stored energy into the resistor, initially at a rate of 1 joule per second, i.e. 1W. How much energy is there stored in the field, and how long before it is all dissipated as heat in the resistor?

Initially the current must be falling at 1A per second, since we have 1V across the resistor, and E=-LdI/dt, where the inductance is unity in this case. Of course dI/dt is itself now negative, i.e. current is decreasing, as the polarity reversal witnesses.

After a fraction of a second, the current being now less than one ampere, the voltage across the resistor will have fallen likewise; so the rate of decrease of current will also be lower.

How much energy?

To find the energy stored in the field, you could integrate the product $E_B \times I$ from t=0 – i.e. the point at which the switch was opened – to infinity. But there is an easier way.

Suppose you use a variable resistor and increase its resistance, keeping the value inversely proportional to the current. Now *IR* will be constant at 1V and the current will fall linearly to zero in 1 second.

Since the induced voltage across the resistor has, by this dodge, been maintained constant at 1V, the energy dissipated in it is easily calculated.

On opening the switch, the dissipation is $1V\times1A$, and this falls linearly to zero over one second. So the average power is 0.5W maintained for one second giving a stored energy of 0.5J.

If the inductance had been 2H and the current 1A when the switch was opened, the initial rate of fall would have been 0.5A per second and the discharge would have lasted 2s, dissipating 1J in the resistor. This assumes that its value was adjusted to maintain 1V across it as before. Thus the stored energy is proportional to the inductance L.

On the other hand, if the current was 2A when the switch was opened, the voltage across the 1Ω resistor would have been 2V, so the rate of fall would need to be 2A/s, assuming 1H inductance. Thus the initial dissipation would have been 4W, falling to zero over 1s, giving a stored energy of 2J, or four times as much as with 1A.

So the stored energy is proportional to the square of the current. In fact, the stored energy is given by,

$$\bar{J} = \frac{1}{2}L \times I^2$$

Uses of inductors

An inductor can be, and often is, used as an energy store in

power supplies, but there are certain limitations to the inductor's energy storing ability. In particular, the energy stored in the magnetic field of a short-circuited inductor is rapidly lost due to dissipation in the resistance of its windings.

For a high-quality capacitor, the shunt loss resistance R is almost infinite, whereas it is not possible to make the series loss r of an inductor negligible. At very low temperatures though, the electrical resistivity of certain alloys and compounds vanishes entirely – a phenomenon known as superconductivity. Under these conditions an inductor-can store energy indefinitely in its magnetic field, as none is dissipated in the conductor.

In addition to use as energy storage devices, inductors have several other applications. For example, inductors with cores of magnetic material are used to pass the direct current output of a rectifier to later circuitry while attenuating the alternating hum components.

Air or ferrite-cored inductors – RF chokes – are used to supply power to radio-frequency amplifier stages while preventing RF power leaking from one stage to another via the power supply leads. This application, and others, makes use of the AC behaviour of an inductor.

Since the back EMF, E_B , is given by,

$$E_B = \frac{-Nd\Phi}{dt} = -L\frac{dl}{dt}$$

it follows that the higher the frequency, the smaller the alternating current required to give a back EMF balancing the applied alternating EMF. In fact, the reactance X_L of an inductor is given by $X_L=2\pi f L=\omega L$, where f is the frequency in hertz, ω is the angular velocity in radians per second, and L is the inductance in henrys.

This may be represented vectorially as in Fig. 4a), where the projection of the voltage E and current I vectors on the horizontal gives the instantaneous value of those variables. Thus the position of the vectors in Fig. 4a) corresponds to the start of the waveforms shown in b).

You can see that when the voltage is at its positive peak, the current is zero but increasing. In fact, the current is increasing – or becoming less negative – all the time that the applied voltage is positive and *vice versa*. The net energy flow is zero.

In calculations, the 90° phase shift between the voltage and lagging current can be accommodated by using the j operator and writing X_L =j ωL .

The foregoing provides all the background necessary to start unravelling the intricacies of transformers. I plan to cover those in another article.

Reference

 Fundamentals of Electrical Engineering in MKS Units, E. Hughes, Longmans, Green and Company, 1954.

CIRCUIT IDEAS

Fact: most circuit ideas sent to *Electronics World* get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem – provided it has a degree of ingenuity.

Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too – provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Don't forget to say why you think your idea is worthy.

Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best – but please label the disk clearly.

Send your ideas to: Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Colour-bar generator

This is a colour bar generator intended to soak test colour video monitors. It had to be low cost and small, therefore it had to have a low parts count. Some cunning tricks where employed to achieve this.

The heart of the colour bar generator is a 74LS90 decade counter. Its outputs are used as in the table.

If IC3 is used as a straightforward

divide-by-10, an error occurs in some monitors. Technically correct monitors use black level clamping on the back porch.

The back porch is defined as the period after the sync pulse but before the active video starts. If the counter were allowed to count to 10 there would be a blue bar in this time period. This would be clamped by the

	Blue	Red	Green	Sync	
Count	A	В	C	D	Colour displayed
0	0	0	0	0	Black
1	1	0	0	0	Blue
2	0	1	0	0	Red
3	1	1	0	0	Magenta
4	0	0	1	0	Green
5	1	0	1	0	Cyan
6	0	1	1	0	Yellow
7	1	1	1	0	White
8	0	0	0	1	Sync. (Black)
9	1	0	0	1	

monitor and so it would display no blue; to avoid this the counter is reset to zero at the ninth count, see above.

Timer IC₂ is the horizontal oscillator, running at 9 times the line frequency. It is used in the schmitt trigger mode to reduce component count – it saves a resistor. Output QD is inverted horizontal sync, settable in the range 14.7kHz to 21.7kHz.

The QD output of IC_3 is inverted by Tr_1 to give correct polarity horizontal sync. Timer IC_1 is the free running vertical oscillator, settable in the range 30Hz to 60Hz. Resistor R_2 sets the vertical sync time, while RV_1 & R_2 set the vertical frequency.

Vertical sync output is normally high and goes low at sync time. This is used as collector supply to Tr_1 and so mixes horizontal and vertical syncs together.

Outputs are at TTL levels but can be attenuated to 1V by inserting 270Ω series resistors and feeding into nominal 75Ω terminations.

Colin Pye Coventry

Ten year index: new update

www.softcopy.co.uk

Photo copies of Electronics World articles from back issues are available at a flat rate of £3.50 per article, £1 per circuit idea, excluding postage.

Hard copy Electronics World index Indexes on paper for volumes 100,101, and 102 are available at £2 each, excluding postage.

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of *Electronics World* articles going back over the past nine years.

The computerised index of *Electronics World* magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512K ram and a hard disk.

The disk-based index price is still only £20 inclusive. Please specify whether you need 5.25in, 3.5in DD or 3.5in HD format.

Existing users can obtain an upgrade for £15 by quoting their serial number with their order.

Ordering details

The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide. For enquires about photocopies etc please send an sae to SoftCopy Ltd, Send your orders to SoftCopy Ltd, 1 Vineries Close, Cheltenham GL53 ONU.

Cheques payable to SoftCopy Ltd, please allow 28 days for delivery.

Measure revs-per-second on a PC

This design uses the BIOS INT1Ch of a PC, together with a few inexpensive components, as a high-speed rev/min meter. The meter can measure speed in the range of 1 to 65500rev/s, which equates to around 1 to 3932160rev/min.

A dozen ICs are used, in conjunction with the computer's BIOS INT1Ch, without affecting its normal ISR. Printer port LPT1's data and and status ports are also used

Figure 1 shows the circuit diagram, which interfaces with LPT₁. The design was originally developed for remotely measuring the speed of turbo molecular vacuum pumps, but it can be used for any application where the speed range is up to 65 500 rev/s.

Input pulses are generated by a Hall element or slotted disk with infra-red photo diode, at a calibrated rate of 1 pulse per revolution. These pulses are fed via a 74LS08 AND gate to a 16 bit up/down counter.

Output from the counters and the flipflops' Q outputs are routed to the status port (at 0x379h) of LPT₁ through 74LS244 buffers. A 74LS138 3-to-8 line decoder, controlled from data port at 0×378₁₆, provides various control signals as dictated by the software.

A simple Turbo C program controls the speed measurement. The BIOS INT1Ch occurs 18.2 times a second. It is used only for keeping time of day. In this design, it is exploited for generating a timing window of 1 second by incrementing the TIMERINTR variable, which is set to zero initially.

At the start, input pulses are inhibited by disabling the AND gate. All the counters are loaded with 0×00₁₆ and the flip flops are cleared. When the INT1Ch interrupt occurs, it immediately enables the AND gate and the counters count up.

When each counter's output crosses from $0\times0F_{16}$ to $0\times0O_{16}$, its carry output sets the 74LS74 D-type flip-flop connected to it to logic 1. When the TIMERINTR reaches 18, the pulses are again inhibited by disabling the AND gate and flip-flop outputs Q_0 , Q_1 , Q_2 – initially set to 000 – are read through the status port. The timing window is actually 0.989

seconds, but the measurement is subsequently corrected to a one second measurement by multiplying by 18.2/18.

The binary word Q_0,Q_1,Q_2 indicates progress in counting, the counters involved and the maximum speed expected as given in the Table. This relieves the PC from reading all the counters. Instead it reads only the counters that actually counted, thereby reducing the number of read operations and subsequent manipulations.

The SPEEDREAD routine reads the counter output, a nibble at a time, starting from counter 1 (nib0), depending on the binary word, up to counter 4 (nib3).

Nibbles are manipulated and the speed in revolutions per second and revolutions per minutes are displayed.

At the end of one measurement cycle, the TIMERINTR is reset to zero and the counters and the flip flops are cleared, leading to another speed measurement cycle.

K Suresh Kalpakkam India

```
nib0=nib0>>4:
Software for the PC-based high-speed rev counter.
                                                                       bytel=nib010x00;
Turbo C code for "BIOS INTICh turns LPT of a PC into a
                                                                       byte2=0;
high speed measuring device"
                                                                                break:
#include<stdio.h>
                                                                       case 1: /*Counter 1 & 2 involved in counting*/
#include<dos.h:
                                                                       outp (DP, 0x04);
#include<comio.h>
                                                                       nib0=inp(SP)>>4; /*Read nibble 0*/
#include<process.h>
                                                                       outp (DP, 0x05);
#include<math.h>
                                                                       nibl=inp(SP)&0xF0;
                                                                                                  /*Read nibble 1*/
*define INT1C
                 0x1C
                          /*INT 1Ch*/
                                                                       bytel=nibl(nib0;
int TIMERINTR=0; /* Time Base Variable*/
                                                                       byte2=0;
float SPEED=0.0; /* Measured SPEED*/
int CUWORD=0, MCR, DP, SP;
                                                                       case 3: /*counters1,2 & 3 involved in counting*
float yl = 0.0, y2=0.0;
void interrupt (*oldvect)();
                                    /* INTlCh pointer*/
                                                                       outp (DP, 0x04);
void interrupt TIMEBASE();
                                    /*Routine for Time
                                                                                                  /*Read nibble 0*/
                                                                       nib0=inp(SP)>>4;
window of 1 sec*/
                                                                       outp(DP, 0x05);
unsigned int SPEEDREAD();
                                   /*Routine declaration
                                                                       nibl=inp(SP)&0xF0;
                                                                                                  /*Read nibble 1*/
for reading the*/
                                                                       outp (DP, 0x06);
/* counter output*/
                                                                                                  /*Read nibble 2*/
                                                                       nib2=inp(SP)>>4;
void interrupt TIMEBASE() / *Our ISR for INT1Ch*/
                                                                       bytel=nib1|nib0;
        disable();
                                                                       byte2=nib2&0x0F:
        outp(DP, 0x08); /"Enable AND gate and feed
                                                                       break;
input pulses */
                                                                                         /*all counters involved in
                                                                       case 7:
        TIMERINTR++;
                           /*Increment continues till
                                                              counting* /
TIMERINTR becomes 18*/
                                                                       outp(DP, 0x04);
        oldvect();
                                                                                                  /*Read nibble 0*/
                                                                       nib0=inp(SP)>>4;
        enable():
                                                                       outp (DP, 0x05);
                                                                                                  /*Read nibble 1*/
                                                                       nib1=inp(SP)&0xF0;
unsigned int SPEEDREAD()
                                                                       outp(DP,0x06);
        unsigned char nib0, nib1, nib2, nib3, byte1, byte2;
                                                                                                  /*Read nibble 2*/
                                                                       nib2=inp(SP)>>4;
         int temp, i, a;
                                                                       outp(DP, 0x07);
        y1=0.0;
                                                                       nib3=inp(SP)&0xF0;
                                                                                                  /*Read nibble 3*/
        y2=0.0;
                                                                       bytel = niblinib0;
        bytel=0;
                                                                       byte2 = nib31nib2;
        byte2=0;
                                                                       break;
        outp (DP, 0x03);
                                                              default:
         a=((inp(SP)>>4) & 0x07); /*Read the Flipflop
                                                                       printf("\n Error ! ... Check the flip flops");
output Q0Q1Q2*/
                                                                       exit(1);
        switch(a)
                                                                       /* Convert binary words bytel, byte2 to decimal*/
        case 0: /*Counter 1 alone counted, read nibble
0 * /
                                                                       for(i=8; i<16;i++)
        outp (DP. 0x04):
        nib0=inp(SP);
                                   /*Read nibble 0*/
```

Flip-1	lop out	put word	Count advanced to	Counters to be read	Maximum expected speed (rev/min)
Q2	Q1	Q0			
0	0	0	IC ₁	IC ₁	16*60
0	0	1	IC ₂	IC ₁ , IC ₂	256*60
0	1	1	IC ₃	IC ₁ , IC ₂ , IC ₃	4096*60
1	1	1	IC ₄	IC1, IC2, IC3, IC4	65536*60


```
temp=byte2;
                                                             printf("\n\n\n LPT1 address = 0x%x", DP);/* Address of
                 byte2=byte2 &(0x01);
                 y1=y1+byte2*pow(2,i);
                                                             DATAPORT*/
                                                                                      /*Address of STATUS PORT*/
                 byte2=temp;
                                                             SP = DP+1;
                 byte2=byte2>>1;
                                                             while(!kbhit())
                                                                                                /*store vector address
        for(i=0; i<8;i++)
                                                                      oldvect=getvect(0x1C);
                 temp=bytel;
                                                             of INT1Ch*/
                                                                     outp(DP,0x00); / Disable AND and inhibit
                 bytel=bytel &(0x01);
                 y2=y2+bytel*pow(2,i);
                                                             pulses to counter*/
                                                                                                /* Load the counters
                 bytel=temp;
                                                                      outp(DP, 0x02);
                 bytel=bytel>>1;
                                                             with 0x00h*/
                                                                                                /*Clear all Flip
                                                                      outp(DP, 0x01);
        CUWORD=(y1+y2);
                                                             Flops*/
                                                                     while (TIMERINTR<=18) / Wait for time base
        return(CUWORD); /*Return decimal equivalent*/
                                                             generation of 1 sec*/
                 /*Main Program starts here*/
                                                                               setvect(0x1C, TIMEBASE);
float CF=18.2/18;
                                                                              /*Disable AND*/
clrscr();
                                                             outp(DP, 0x00);
printf("BIOS INT1Ch turns LPT into a high speed
                                                             setvect(0x1C,oldvect);
                                                                              /*Read speed routine */
measuring);
                                                             SPEEDREAD();
                                                             SPEED= CUWORD*CF;
printf("\n\t\t\t device by");
printf("\n\tK.Suresh, MSD, IGCAR, Kalpakkam, Tamil
                                                             gotoxy(10,10);
                                                             printf("\nSPEED in RPS=%.1f", SPEED);/*Display speed in
Nadu, India");
DP = peek(0x40,8);
                       /*check up for availability of
                                                             RPS*/
                                                                                                         /*Display
                                                             printf("\nSPEED in RPM=%.1f",SPEED*60);
printer port */
                                                             speed in RPM*/
if (DP==0)
                                                             TIMERINTR=0;
                                                                      )/*Speed measurement continues till a key is
                 printf("\n\n\n LPT NOT AVAILABLE!
                                                             pressed*/
EXITING");
                                                             setvect(0x1C,oldvect);
                 exit(1);
```

Negative high-voltage regulator

hen a regulated negative supply is required, the LM337T may be used, provided the input never exceeds -40V. For higher voltages, the circuit shown in Fig. 1 is simple but effective.

The p-channel MOSFET $T\eta$ acts as the pass element, and can withstand up to 100V. It is regulated by means of the op-amp N_1 and voltage-

reference Z_2 , with feedback from the output provided by the potential divider consisting of R_5 and R_6 .

Output from N_1 is coupled to the gate of Tr_1 by the common-base transistor Tr_2 . If the voltage at the output terminals tries to exceed 24V, resistor R_4 moves upwards and current is drawn through Tr_2 and hence R_1 , tending to turn Tr_1 off by

reducing its gate voltage.

Zener diode Z_1 protects the gate against excessive voltage – which might occur when V_{in} is first applied. With the components shown, the circuit is stable with C_3 omitted.

The current that may safely be drawn depends primarily on the heat sinking of Tr_1 . Sense-resistor R_2 begins to turn the clamp Tr_3 on at approximately 250mA, thus robbing Tr_1 of more gate drive and limiting any further increase in output current.

Tests with the input varying from -65V down to -30V yielded less than 1mV shift in the -24V output; in fact the only observable change was from the warm-up of Z_2 , roughly 200ppm/°C. This could be improved by using a better device, such as 1.821 (100ppm/°C).

With the load current varied from zero to 200mA, output voltage fell by only 0.25mV, which implies an output resistance of less than $1.5\text{m}\Omega$. Using a raw supply that gave ripple of 4V pk-pk at 100Hz, the measured output ripple and noise was 0.2mV pk-pk, which is a stabilisation ratio of 20000.1

The minimum input/output difference for regulation is less than 6V at 250mA loading. For inputs higher than -85V, the value of R_1 should to be increased to reduce its dissipation.

If V_{in} is likely to exceed 100V, Tr_1 should be uprated, for example to an IRF9630 for 200V, or an MTP2PSOE for 500V. Output voltages other than the -24V shown in Fig. 1 can readily be obtained by scaling R_6 accordingly, but for more than -36V it is advisable to restrict the voltage supplied to N_1 ; this is easily done by adding R_8 and Z_3 , and re-arranging the feedback as illustrated in Fig. 2. C J D Catto Cambridge

Fig. 2. Rearranging the circuit around the op-amp in this way allows the circuit to give outputs greater than 36V.

High-gain amplifier uses medium-power MOSFET

This is a very good little general-purpose pre-amplifier, which was designed as part of a bigger project. It is rather unorthodox in that it uses a medium power MOSFET as the input device, but this is what gives it the edge over other designs.

It has a medium to high gain, (300 to 4000 adjustable or -50 to 72dB), a high input impedance of $10M\Omega$ and a bandwidth of 10Hz to 100kHz making it suitable for many audio applications. It is self-biasing, which takes care of the wide spread of threshold voltages for the FET, and it is stable with a

wide variety of input and output devices.

Output voltage can be as high as 8V pk-pk and so it can drive into most high power amplifiers directly. The VN10KM may be replaced with a 2N7000, which is probably more readily available.

Jack Paterson Livingston Scotland E82

Radio works off 2V

riginally, the low-power radio circuit in Fig. 1a) appeared in circuit ideas in the April 2000 issue. The circuit was so puzzling that I just had to see if it worked. The circuit reappeared as the winning entry in the June 2000 edition.

What is even more intriguing is that with a few changes, the sensitivity of the radio can be drastically increased, and at the same time made to consume even less power.

The original circuit is a negative resistance oscillator. Bases of the transistors are tied to each other collectors, making the oscillation swing very low in amplitude, and resulting in very low power consumption. The low slope of negative

resistance means that the oscillator can be very responsive and lock easily to external disturbances such as a radio signal.

By rearranging the circuit slightly, and by adding an extra 10uH coil, the circuit can be turned into a super-regenerative receiver Fig. 1b)

RF oscillations are blocked by the quenching action of the RC network in the emitter circuit. The radio only consumes power during oscillations, and sensitivity is sharply increased due to the regenerative action. Consumption is less than 12µA with a 2V supply.

Eddy Insam Via e-mail F71

Fig. 1. In a) is the low-power radio receiver, as published in the April 2000 issue. Fig. 1b) shows how the original circuit can be modified slightly to produce a superregenerative receiver.

Constant-current ripple reducer

ften, it is necessary to reduce the ripple on a power supply line. Usually, the solution is just to increase the filtering capacitance.

There is however an alternative possibility, using a capacitance multiplier circuit. The circuit shown was specifically designed as part of a Class-A amplifier power supply. It reduced 2V pk-pk ripple to less than 100µV while delivering 2A into the load. The only disadvantage is the 2.5V headroom required by the circuit.

Transistors Tr_1 and Tr_2 , together with R_1 and R_2 , form a constant current source providing 1mA into PR_1 . Transistors Tr_3 and Tr_4 form an output Darlington to provide current to the load. The high level of ripple reduction is due to the high impedance at Tr2's collector, which forms an AC voltage divider with the low impedance of C_1 . Potentiometer PR_1 allows the output voltage to be adjusted from zero to about 45V given a suitable power supply.

If the load current is less than an amp, Tr_3 and Tr_4 can be replaced with a TIP120 device.

Jeff Macaulay Chichester West Sussex F81

Low-dissipation Class A amplifier

his amplifier keeps the output transistor Tr_1 operating in Class A regardless of signal potential but without the large standing current that would normally be required. The circuit is initially set up with the preset R₉ so that 50mA flows in the output stage.

820F

(E80) 1R 39k V1 15V OP2134 ₹R₇ TIP142 10 ₹R₂ 2k7 47k RLOAD **OP2134** R₁₂ R₁₀ 39k ₹

R₆ 100 R11 R₁₅ R₉ 1R 8k2 1k 10k

Op-amp A_2 continuously monitors the current flow through Tr_1 via the voltage drop across R_5 . When Tr_1 's base is driven positive it turns on in the normal manner delivering power to the load. As it does so the non inverting input of A2 goes positive and it's output

goes negative cutting off Tr2.

On negative going signal excursions A2 biases Tr2 in such a way as to maintain the 50mA flow through R₅. Transistor Tr₂ thus supplies the load current, plus 50mA. Hence Tr₁ is always conducting and operating as a single-ended class-A stage.

Signal voltage supplied to the load is determined by A₁ and the associated negative feedback loop R_1 , R_2 and C_1 . By using the low noise, low distortion 2134 IC, distortion levels are below 0.01% and the bandwidth extends from 2Hz to around 100kHz.

Jeff Macaulay Chichester West Sussex E80

V2

15V

£75 winner

TIP142

Opto couplers detect three-phase faults

n many applications using threephase AC mains, such as motors, high-current DC power supplies, lighting systems, etc., presence of all the three phases is essential. Failure of even one phase can lead to a major failure of the systems being powered.

A simple and inexpensive optocoupler based circuit shown in the diagram continuously monitors the presence of all three phases, and in the event that one or more phase fails, it immediately cuts off the three-phase AC input to the system and lights a lamp to indicate the failure. In the circuit, each phase input is attenuated and converted to a dc voltage to drive the LED of an opto coupler, OC, by R_1 , D, C and R_2 . The diodes D_1 to D_3 and the transistor Q form a NOR gate.

An independent 12V battery powers the photo transistors of the opto coupler and the driver transistor Q to energise the relay RL_1 . In normal conditions, where all three phases are present, the photo transistors of all the opto couplers are on and LEDs D_{4-6} are lit, indicating the presence of all the three phases, and the NOR gate does not energise the transistor Q. Consequently RL_1 is in the off condition and the three phase AC input is applied to the system through its N/C contacts.

When one or more phases fail, the opto couplers in the failed phases are

off. Hence the NOR gate turns on transistor Q to energise the relay RL_1 . This cuts off the three phase supply to the protected system while switching on the lamp through one of its normally-open contacts.

By being off or on, LEDs D_{4-6} indicate which phases have failed or are OK. If the supply to the protected area also supplies its lighting, the lamp can be arranged to light the area during a fault, facilitating fault-finding and repairs. For this reason, the lamp is powered by the 12V battery rather than the mains.

K Suresh Kalpakkam India E89

Stepper motor driver using PC printer port LPTI

S mall stepper motors are often used for motion control. This simple and inexpensive stepper motor driver is for small stepper motors taking up to 500mA. It uses only one external component, a ULN2003, and the printer port LPT1 of a PC. The stepping sequence is generated with PC parallel port and the phase current is amplified with ULN2003. This IC has internal diodes to suppress the inductive transients of the motor coils, and can sink up to 500mA per phase. This is a resistive-inductive unipolar type of drive. The value of the series resistance is calculated as follows,

$$R_{series} = (V_{supply} - I_{motor} \times R_{coil}) \div I_{motor}$$

The program generates the sequence and outputs it through LPT1. The program given in the listing implements only a few basic features like half step, full step, number of steps and direction control. The software can be readily modified to include more features, such as acceleration, deceleration and variable speed.

Vikas W Meshram

Indore

```
Vmotor
    6
            13
25
       •
                                                                 ≶R<sub>series</sub>
     .
        .
     •
        •
                                                                              Steppermotor
                                                                              500mA max/phase
        •
                              Do
                                                      Yo
        •
                             D<sub>6</sub>
                                                       Y6
        .
                                               Supr.
                                   ULN2003
                                                                                  (E90)
```

Listing for the LPT controlled stepper motor driver. This software only implements a few basic features like half step, full step, number of steps and direction control but it can be modified to include features such as acceleration, deceleration and variable speed.

```
#include <stdio.h>
#include <dos.h>
#include <ctype.h>
#include <comio.h>
#define LPT1
                   0x378
#define R
#define F
                   0
void FullStep(intsteps);
void HalfStep(intsteps);
void park(void);
struct FSData ( unsigned char data;
         }DataFS[ ] = {10,9,5,6};
struct HSData { unsigned char data;
}DataHS[] = {10,8,9,1,5,4,6,2};
int i.
char StepMode, dir;
void main (void)
         int NoofSteps;
         park (');
                   ("\nFull/Half Step(H/F):");
         printf
         StepMode = getche ( ) ;
printf( "\nNo of Steps:");
scanf ("%d",&NoOfSteps);
         printf
                   ("\ndir:(F=1,R=0)");
                    ("%d", &dir) ;
         scanf
                   (toupper (StepMode) ) {
         switch
                             case 'F'
                                       FullStep (NoOfSteps) ;
                                       park ( ) ;
                                       break ;
                             case 'H'
                                       HalfStep(NoOfSteps);
                                       park ( ) ;
                                       break:
                             default:
                                       FullStep (NoOfSteps) :
                                       park ( ) ;
                                       break:
void FullStep (int steps)
         char BufStart :
```

```
BufStart=0:
                           for (i=0: i<=steps:i++) (
                                    outport (LPT1.
DataFS[BufStart].data);
                           delay (30);
                           BufStart++:
                           if (BufStart==Full)BufStart = 0:
         else(
                  BufStart=4:
                  for (i=0; i<=steps,i++) {
                           outport (LPT1,
DataFS[BufStart].data) :
                           delay (30):
                           BufStart-:
                                    if (BufStart==0)
                                    BufStart = 4 :
void HalfStep (int steps)
         char BufStart:
         char Full=8:
                  if (dir) (
                           BufStart=0:
                           for (i=0; i<=steps; i++) {
                           outport
(LPT1, DataHS[BufStart].data);
                           delay (30):
                           BufStart++:
                           if (BufStart==Full)
                           BufStart = 0;
elsel
         BufStart=8:
         for (i=0; i<=steps; i++) {
                  outport (LPT1, DataHS[BufStart].data);
delay (30);
                  BufStart -:
                  if (BufStart==0)
                  BufStart = 8;
void park (void)
outport (LPT1.0):
```

char Full=4:

if (dir) {

Single IC oscillator/doubler

A nalog Devices' AD725 RGB-to-PAL/NTSC encoder integrated circuit needs a $4F_{SC}$ clock signal of 17.734475MHz ($4\times F_{SC}$ PAL frequency). This is usually not widely available as a crystal frequency.

The chip's application note suggests a design for a low-cost crystal oscillator with a 17.734475MHz crystal and I have used the idea to build a clock with a

commonly available 8.867238MHz crystal. The generated frequency thus needs to be doubled.

The crystal oscillator uses one inverter in a 74HC04 IC, and a second as a buffer. The frequency doubler has been designed using the other four inverters in the same IC. The result is a frequency doubler using six inverters, two diodes and a few passive components.

Crystal oscillator U_{1A} and

 R_1 1M C_3 C_3 C_4 C_4 C_5 C_6 C_7 C_7

associated components is the design suggested in the application note, but operating at half the required frequency. Inverter U_{1B} buffers the signal, to avoid loading the oscillator.

The two edge-detector circuits, C_3 - R_3 and C_4 - R_4 , differentiate complementary squarewaves. Positive spikes are amplified and buffered by U_{1D} , U_{1E} , and combined by the diode negative OR gate D_1 , D_2 . Gate output is buffered and negated by the inverter U_{1F} .

The circuit works well and can be used with various crystal frequencies if the appropriate modifications in the crystal oscillator component values are made.

Emil Vladkov Sofia Bulgaria

Reference

 Low Cost RGB to NTSC/PAL encoder with Luma Trap Port., AD725 Data Sheet, Rev. 0, Analog Devices Inc., 1997, pp. 12-13.

Low-cost load-sensing and switching circuit

This arrangement allows the operation of an ac mains electrical load of 250W or less to be sensed, and for power to be switched to a slave circuit. This is particularly useful where the load is remote and the wiring difficult of access.

Where the load also has a local switch, such as a time-switch, thermostat or PIR, additional wiring to carry a control signal is eliminated. Applications could include:

- Synchronisation of a ventilation fan with other equipment
- Basic remote monitoring of a load, e.g., positive indication of load status in a home automation circuit, or security system
- Slave indicator of PIR operation, or synchronisation of several floodlights with one PIR detector
- · Slave operation of several domes-

tic lamps through switching on one lamp.

When the master load is switched into the circuit, alternating current flowing through the diodes develops a positive and negative voltage, equivalent to double the diode forward voltage drop. This triggers the triac via the 47Ω resistor within a few degrees of zero crossover.

Although RF levels in the power circuit caused by the triac switching are relatively low, there may be some configurations where additional filtration may be required.

If the load being sensed includes a residual current drain, such as a time-switch or sensor circuit, discrimination against a load of up to 5W can be achieved by including a $0.25W\ 47\Omega$ shunt resistor in the position shown.

Thermal considerations caused by current flow in the diodes and triac affect the master and slave circuit ratings, and heat sinking or relays should be deployed if necessary. The circuit as illustrated is adequate for 250W master and slave loads without additional heat sinking.

R J Phipps Bedford **E**99

Accurate recruitment information when you need it.

Simple Really.

Jobs

Our appointments service is online electronics enginee

Free Career H.
Electronics Wea
HyperActive ha:
with the online
service totalio*
its users a F

Every week HyperActive ha contract vacancies that are anywhere else! Click the lo search screen and choos "Job Type." field.

ElectronicsWEEKLY
Hyperactive

www.electronicsweekly.co.uk

www.crownhill.co.uk

Smart card reader/writer kit Exclusive reader offer

System features

Archive administration

- copy, save and restore complete card data sets
- display amount of available used memory on card
- options for each directory on how to add data:
- do not modify directory
- append entries to existing data
- overwrite existing directory
- quick links to the various data editing dialogs

Short message functions

- select net broadcast message topics of interest (weather, traffic)
- read and send short messages
- set up address templates for frequent message recipients

Preferred service providers

- selection of foreign GSM service providers
- setup of prioity ranking
- database which can be updated with new providers
- The card profile Detailed display of all card features: network operator (c ard issuer), card ID number, card phase, PIN status, size of data fields, avaible and enabled/disabled services.

PIN administration

- change, enable and disable PIN/PIN2
- unlock the card PIN(s)
- display the error countervalue for eachPIN

Charge control

- display the current value of the charge counter
- set up a charge counter limit
- interesting feature for rental services: set up the displayed price per unit (including

• The GSM editor

- immediate access to the file on a GSM card
- display of data content, status and access rights

Crownhill Associates is offering *Electronics World* readers what is believed to be the lowest cost smartcard reader/writer and SIM adaptor system available in the UK – at just over £20 fully inclusive. Full details in the panel below.

Available at this special price for a limited period only, the product is shipped with the ChipDrive Micro smart card reader/writer, a Mini SIM adapter and software – all in retail packing. The product is CE certified. Instructions are via a Windows help file. Help on installation is provided by printed documentation shipped with the product.

With the software included in the package, you can configure, modify, copy and print the data on any GSM card with the help of your PC. This easy-to-use software gives you access to all data on your card and you won't need to punch in complicated sequences on the numeric keypad of your mobile phone again.

- detailed card profile display
- prints report sheets on various data directories
- easy phonebook administration
- short messages, address templates, net broadcast messages.
- administration of PINs and much more...

Price and ordering details

The total UK inclusive price* £20.57

(*Carriage £2.50, VAT £3.07)

The total EC price £24.08*

EC postage and packing £5.50 inclusive of insurance.

EC customers pay VAT @ 17.5% unless they are VAT registered.

Overseas customers outside Europe will be charged according to the method of shipment, which will vary from country to country. Crownhill has distributors in TRNC, Cyprus, Algeria, Nigeria, Kenya, Tanzania, Australia, USA and Rep Ireland.

Purchase may be made by Credit card, cheque or postal order. This offer is for mailorder sales only and is limited to one purchase only per company or household. Quote "Electronics World offer" when ordering.

Post your order to: Crownhill Associates Limited, 32, Broad Street, Ely, Cambridge CB7 4AH, UK. Tel: +44 (0) 1353 66 67 09, fax +44 (0) 1353 66 67 10.

**Offer ends 30 June 2001

To the best of our knowledge this product cannot be used for illegal or nefarious purposes, such as, but not limited to, adding credit to a prepaid SIM card. Crownhill reserves the right to refuse sale to any person that we suspect may abuse the product or bring the product or our company's reputation into disrepute.

Impedance meter

Although designed for checking electrolytic capacitor health, Cyril Bateman's impedance meter has a variety of uses. Operating at a test frequency of 100kHz, the meter has two ranges, $0-2\Omega$ and $0-20\Omega$.

these four-terminal jigs plug into the 100kHz impedance meter front panel. This facilitates the measurement of axial or radial lead components. My prototype used four-terminal test sockets³ manufactured by Textool, Fig. 1.

At higher frequencies the 'soldered into stripline' test jig approach of my high frequency |Z| meter² becomes mandatory, but at 100kHz, using plug-in Kelvin contact test jigs is feasible.

Fig. 1. Measuring a 220µF OSCON capacitor that has been inserted into the radial-lead jig. This Textool test socket is available from RS Components.

ombining the charged capacitor protection circuits and four terminal input stage designs from my tano meter with the impedance measuring stages from my high-frequency impedance meter², I have designed a self contained, hand held, battery powered 100kHz impedance meter. Using a 150mV maximum test voltage, it provides two measurement ranges – $0-2\Omega$ and $0-20\Omega$. The result is displayed on a low-cost 3.5-digit PM128 liquidcrystal panel meter.

While designed for measuring the impedance of capacitors, this meter can be used to measure any impedance within its ranges, whether inductive, capacitive or resistive. Indeed 1% metal film resistors were used to confirm measurement

accuracy.

This 100kHz meter is intended to aid circuit design by accurately measuring the impedance of stock capacitors inserted into a four terminal test jig. Suitable jigs can be assembled using commercial Kelvin contact four-terminal test sockets, to accept axial or radial leaded devices.

Attached to 'panel mount plugs',

Table 1. Wayne Kerr 6425/HP16047A measurements of a Philips 1000µF 25V type 135 capacitor.

Capacitance	Tanδ	ESR $(m\Omega)$	IZI $(m\Omega)$	Phase angle (º)
980.2µF	0.06405	103.95	1627	-8 6.34
964.7µF	0.1457	80.15	555.6	-81.72
940.4µF	0.4175	70.595	183.4	-67.3
898.9µF	1.1228	66.335	88.64	-41.7
836.2µF	3.3024	62.83	65.78	-16.82
820µF	9.496	61.5	61.6	-6.0
0.7nH	115	59.4	59.5	+0.4
5.4nH	5.37	57.6	69.6	+28.0
	980.2µF 964.7µF 940.4µF 898.9µF 836.2µF 820µF 0.7nH	980.2µF 0.06405 964.7µF 0.1457 940.4µF 0.4175 898.9µF 1.1228 836.2µF 3.3024 820µF 9.496 0.7nH 115	980.2µF 0.06405 103.95 964.7µF 0.1457 80.15 940.4µF 0.4175 70.595 898.9µF 1.1228 66.335 836.2µF 3.3024 62.83 820µF 9.496 61.5 0.7nH 115 59.4	980.2µF 0.06405 103.95 1627 964.7µF 0.1457 80.15 555.6 940.4µF 0.4175 70.595 183.4 898.9µF 1.1228 66.335 88.64 836.2µF 3.3024 62.83 65.78 820µF 9.496 61.5 61.6 0.7nH 115 59.4 59.5

Fig. 2. Prototype meter performing an in-circuit measurement using my 'best' four-wire test-lead set.

Fig. 3. Two versions of my 'Method 3' impedance measurement. Using the stripline test jig and co-located sense resistor my High Frequency |Z| meter needed two voltages only. With the sense resistors mounted in the meter body, the voltage drop along the current return wire necessitates an extra measurement V3, the voltage at the sense resistor.

Despite using Kelvin contacts, mutual coupling between their voltage and current contacts introduces minor measurement errors. This can be corrected by offsetting a voltage measurement.

Alternatively, these plug-in jigs can be replaced by four-wire test leads fitted with test probes. The meter's 150mV maximum test signal then allows it to be used for accurate incircuit capacitor measurements, Fig. 2.

While the general circuit arrangement looks quite different, this meter uses exactly the same 'method 3' used in my high frequency |Z| meter² but with one essential difference. The current-sense resistor for that design was colocated with the device under test. The current sense resistors for this 100kHz portable meter are located within the test meter's body.

To ignore the voltage drop along the return current lead of the device being tested now requires the measurement of three voltages. When using a co-located sense resistor, two voltage measurements suffice, Fig. 3.

Four-wire test leads and jigs

At DC and low frequencies, designing four wire test leads/jigs is straightforward, provided the current leads used have low resistance compared to the generator's output impedance. As test frequency increases – and especially when measuring impedances⁴ less than 1Ω – a large test signal current flows through the current leads. This current couples an error voltage into the voltage sensing leads, resulting in incorrect readings.

At 100kHz and above, test lead inductance combined with mutual inductive coupling provides the main source of measurement errors. These can only be minimised by using the 'four-terminal pair' configuration.⁴ There's more on this in the panel entitled, 'Four terminal pairs'.

The classic four-terminal pair configuration uses four coaxial test cables. All four cable outer screens are bonded together only at the end of the cables where the device is being tested. This provides four fully shielded paths from the test meter to the four-terminal test jig. Two coaxial cables supply the test current and two monitor the voltage drop across the device being tested.

When measuring capacitors mounted on a PCB, a four terminal test jig with these essential earth paths is not practicable. Two test prods must be used. Routeing a four-terminal pair system into two test

Fig. 4. Prototype meter opened to show the general arrangement. The PM128 display and the 'top' board can be seen on the left. The +5V power supply and auto-off boards are located either side of the battery box top right. The top and

prods while maintaining adequate earth paths and minimising mutual coupling, proved extremely difficult. More on this later.

Why not simply use two test leads?

A conventional test-lead pair exhibits some $100m\Omega$ of DC resistance and around $2\mu H$ of self inductance. Even worse, this inductance is not a finite value; it increases significantly with separation of the leads and test prods.

Every capacitor also exhibits some self inductance. This is why most aluminium electrolytics become series self resonant between 10kHz and 1MHz, depending on capacitance value⁵. See the panel entitled 'Capacitor impedance versus ESR' for details.

For example, with just 5nH self inductance, a typical 1000µF radial-lead capacitor resonates close to 100kHz. Above resonance, the capacitor exhibits an inductive reactance, its measured impedance increases rapidly with frequency. For accuracy it is essential that any test leads used do not influence the capacitor's series self resonant frequency, Table 1.

To illustrate this test lead effect, I measured a $47\mu F$ 50V Panasonic radial-lead electrolytic capacitor using a Wayne Kerr 6425 precision component analyser, equipped with the Hewlett Packard 16047A four terminal test fixture. This expensive test fixture is usable up to 13MHz. At 300kHz, which is the analyser's highest test frequency, this $47\mu F$, 50V capacitor measured as -1° phase and $171.6m\Omega$ impedance. This confirms that the capacitor's self resonance frequency was above 300kHz.

Inserting a pair of test leads caused this 47µF electrolytic capacitor to resonate between 15 and 20kHz. This is substantially less than the desired 100kHz measuring frequency, resulting in gross impedance measurement errors when the device is re-measured at 100kHz.

Using a Wayne Kerr analyser at 100 kHz with the capacitor mounted directly in the Hewlett Packard test fixture, the impedance of this capacitor measured $171.6 \text{m}\Omega$. Replacing the test fixture with a pair of standard two wire test leads, the capacitor/test lead combination measured 1.26Ω .

As capacitance value increases, a two-wire test leads/capacitor combination will resonate at ever lower frequency, further increasing measured impedance errors. These errors can only be eliminated by using the 'four-wire pair' test lead configuration. There's more on this in the panel entitled, 'Four-terminal pairs'.

To ensure a professional finished appearance, I used the same OKW case as used for my tanδ meter design¹. The PCB is again split into two halves, one mounted in the

bottom of the case adjacent to the batteries, the other in the top half adjacent to the display module, Fig. 4

Bottom board

This board houses the test signal generator, the range switching relay and both the voltage and current

Fig. 5. Full schematic for the 'Bottom' or right hand board of Fig. 4, including all decoupling used. The 100kHz signal source is provided by the upper circuits, the voltage and current channel front ends comprise the lower half.

measuring differential input amplifiers together with their charged capacitor protection circuits, Fig. 5.

Isolating the four-terminal current and voltage sensing paths within the test meter PCB proved relatively easy. Adequate separation of components together with Faraday shielding earth tracks was found to suffice for the original prototype single range design.

Current-sensing resistors. The relay switching needed to provide two measurement ranges complicates the design because of the inductance introduced by the relay contacts. The physical size of a relay also increases the PCB path lengths. At 100 kHz these added inductances become important, so they must be compensated for by reducing the actual sense resistor value used for the 2Ω range.

While it preferable to use noninductive current-sense resistors, at 100kHz normal metal-film resistor inductance is small compared to the relay and PCB inductances. However,

Setting up

With a frequency meter connected between PL_1 and ground, adjust VR_1 to read 100kHz. Alternatively, connect a DVM between the V_{-out} test-pin, adjacent to U_{10} , and ground. Adjust VR_1 to maximise this voltage.

With nothing connected between pins PL_1 through PL_4 , connect a DVM between R_{73} and earth at the end nearest to U_8 . Adjust VR_{52} to read zero volts.

Solder a good short circuit directly to pins PL_2 and PL_3 , taking care to make contact only to these pins. Connect a DVM between R_{53} and earth at the end nearest to U_7 . Adjust VR_{51} to read zero volts.

Replace the short circuit with a known 10Ω resistor connected to PL_2 and PL_3 , link PL_1 to PL_2 also PL_3 to PL_4 and set the 100 kHz |Z| meter to its 10Ω range.

Connect a temporary short circuif across R_{84} . Adjust VR_{53} to read 10Ω on the PM128 display meter.

Replace the 10Ω resistor with a known 1Ω resistor. Set the 100 kHz meter to its 1Ω range. If necessary, adjust the value of R_{27} until the display reads 1Ω .

On the prototype meter a 6.8Ω resistor in parallel with R_{27} was needed to compensate for the relay contact resistance.

Remove the resistor and links from the four test pins.

With the axial-lead fourterminal test jig fitted to the meter, insert a good short circuit into this test jig. My usual short circuit is a 7mm wide 25mm long piece of 1mm thick, polished copper sheet.

Remove the short from R_{84} and adjust VR_{54} until the PM128 display reads zero.

Removing the short circuit from the test jig completes the setting up.

Fig. 6. The full schematic for the 'Top' or left hand board of Fig. 4. This board houses both Voltage and Current channel precision rectifiers, together with the INA126 output amplifiers. The 9V supply for the PM128 and the offset generator can be seen bottom left, the -5V generator is shown centre left of the circuits.

I designed my PCB to accommodate either low-inductance surface-mount current-sense resistors or conventional metal film types.

Sighal generator. The test signal generator for my tanδ meter used a low cost LT700 audio transformer to ensure a low source impedance. I could not find a suitable high-frequency transformer for this new meter. Eventually I decided to see if the LT700 could be used at 100kHz. I was pleased to find that its reduced output could be accommodated simply by increasing drive levels.

I evaluated a number of ICs for the

Fig. 7. This photo shows the test probe ends of the three test lead sets I assembled. The 'best' set, with its external braid link, can be seen at the top of the picture. The easiest to assemble lead was made using the black four-way screened flat strip cable at the bottom.

Test-lead assembly

My 'easy' test-lead set was assembled using a low-cost four-way screened audio cable, available in cut lengths from Maplin as part number XS95D. Comprising four individually lap screened 10/0.12mm wire cores, cojoined into a flexible flat strip cable, Fig. 8d).

All four wire screens were connected together inside the meter plug and isolated inside the test probes to produce effectively a five-terminal test arrangement. Using this test lead, resistance values of 0.47Ω and above could be measured.

I decided I needed to use much lower resistance current leads, but four screened or coaxial cables with thicker inner conductors were much too large to fit into most four-pin plugs.

I decided to tightly pre-twist and double screen the voltage wire pair for as far as possible, and use heavier non-screened current wires to ensure an acceptable cable diameter.

My remaining two lead sets used identical voltage lead pairs but with different current leads and test prods.

The voltage pair leads were twisted and double screened to minimise mutual coupling from the current leads. I used PTFE insulated 7/0.2mm wire with some screening braid removed from RG174 coax.

At 20cm from one end of two 1 metre lengths, I carefully opened the braid wires to form exit holes. Both braids were then expanded, sliding one onto 5mm the other onto 3.5mm knitting needles.

Fig. 8. Schematic drawing of the three possible four-wire test lead configurations. The traditional four-terminal arrangement (a) is restricted to low frequencies. The five-terminal lead set (b) offers improved performance. The shielded four-terminal (c) extends both usable frequency and impedance measurement range. Bottom line, the three leads I assembled. The 'easy' lead is shown in (d), the 'intermediate' lead in (c) and the 'best' lead is (f).

The smaller diameter was drawn inside the larger, to emerge via that exit hole.

A double braid, emerging as two short, separate, single braids, produced a 'Y' jointed cable. Using the knitting needles I carefully aligned both exit holes, ensuring an easy wire path from each single braid into and through the double braid section.

Two 1 metre lengths of the PTFE coated wires were twisted together for a distance of 70cm, leaving the remainder separate. Two pull wires were inserted, one into each single braid to pass into and through the doubled braid section, and used to draw the PTFE wires into position.

This 'Y' jointed assembly was covered in yellow heat-shrink sleeving. It is clearly visible in the photograph.

Both braid screens were connected to ground in the connecting plug.

For the intermediate test leads, two lengths of 0.5mm² extra flex and the double screened length were drawn into clear heat-shrink sleeving using a slow twist to aid flexibility of the completed test lead. Emerging from the 'Y' joint, one current wire and one screened wire were passed through each FH32K probe body, then soldered together into the

brass probe tip, Fig. 8e).

Using this intermediate test lead resistance values of 0.22Ω and above could be measured.

For the best accuracy test lead, a pair of Maplin HF33L pre-assembled test leads replaced the 0.5mm² wire and FK32K test prods. Otherwise, assembly generally followed that described for the intermediate lead set except for the screen braid ends at the test prods.

For this lead set the PTFE voltage wires were soldered to the test probes 1cm from the pointed ends. Both screening braids were then interconnected using another 10cm length of braid as in the photograph, Fig. 8f).

Using these best practical test leads, board mounted resistance values of 0.1Ω and above can be measured incircuit.

Using each of the above test leads to measure a good $100\mu\text{F}$ electrolytic I found much smaller differences, ranging from a measured impedance of 0.142Ω using the best leads to 0.28Ω for the worst.

For in-circuit diagnosis, all three test leads were able to identify a failed capacitor.

filter and output stages. Using NE5534 and NE5532 ICs with 1% polystyrene capacitors, the resistor values used in the filter stages were adjusted to provide a bandpass response. The resulting strange resistor values were obtained by parallel combinations of 1% metal films, mounted on Vero pins.

At 100kHz, variations in internal resistance in the HEF4047BP oscillator IC could result in a 7% frequency variation between ICs. This is compensated by the $5k\Omega$ preset resistor VR_1 .

While it is preferable to adjust this oscillator frequency to exactly 100kHz, if a frequency meter is not available, the oscillator can be adjusted to maximise the output signal. Using 1% components, the filter centre frequency for maximum output will usually be between 99 and 101kHz. This frequency accuracy should suffice.

Four-terminal inputs. The diac, fusible resistor and diode protection methods used in my $\tan \delta$ meter design¹ have been closely followed except for two resistor values R_2 and R_5 which are much increased. These resistors are only needed to maintain earth continuity should the test jigs/test leads be removed. So as not to affect the voltage measurement, their value must be much larger than the impedance of any test leads used at 100 kHz.

To monitor the voltage drop at the fest capacitor and across the current sense resistor, two instrumentation op-amps are used. For accurate measurements, better than 40dB of common-mode rejection at 100kHz is needed.

The INA118 in-amps used in tano meter have been replaced by INA128 instrumentation amps. These offer the same degree of input self protection and improved high frequency performance.

To optimise the input levels to the

rectifier stages, the voltage channel INA128 IC has been set to a gain of 12.9 while the current channel INA128 IC gain is set to 9.1 times. These gain differences are compensated after rectification.

Top board

This board contains the rectifier stages needed for the V and I measurement channels, together with a floating 9V supply for the PM128 meter and the -5V converter needed to power the op-amps, Fig. 6.

Rectifier stages. I originally hoped to be able to drive the rectifier stages direct from the INA128 instrumentation amps, but these could not supply sufficient drive to the 470Ω input resistors. So a buffer stage was needed. This could be provided using a dual amplifier, but for accuracy I also needed to minimise input offset voltages. Two single channel NE5534 ICs with offset nulling were used.

Both rectifier stages are evolved from those proven in my RF millivoltmeter and the high-frequency IZI meter. Designed to work with a 1V nominal maximum input signal, their output attenuators have been modified. This allows two INA126 instrumentation amps to be used to convert the floating outputs to single ended for the PM128 display. These have a minimum gain of five.

My earlier designs used two AD712 ICs to perform this task in a circuit with a minimum gain of two. While I was building the prototypes though, AD712s were in short supply.

With U_6 mounted in a turned-pin socket, various ICs, including the NE5532, TL2062, and TLE2072, were evaluated for use in these rectifiers. I had hoped that at 100kHz, lower cost devices would prove suitable. However as with my other designs, the Maxim MAX457 provides by far the best dynamic range and measurement accuracy.

Unfortunately it also consumes significant power – some 30mA at 5V.

Used only for in-circuit measurement, these other ICs could be used, almost doubling battery life but with the penalty of some reduction in low impedance measurement accuracy. For in-circuit diagnosis, this level of accuracy should suffice.

Measurement accuracy

After calibration, this measurement method ensures that a short circuit connected directly across the PCB terminals PL₁ through PL₄ reads as zero ohms. However with the mutual inductive coupling along the length of the four terminal contacts in the Textool jigs, the same short circuit mounted in these test jigs measures as a small resistance.

The mutual inductance produces a small, near-constant error voltage. This voltage can be overcome by introducing a similar error offset voltage into the 'Reference' input of U_{10} , pin 5. Usually, this pin connects directly to earth but 1 found that by connecting a 10Ω resistor to earth, the resulting few millivolts provided the necessary error correction.

This correction voltage is arranged using an LM334 IC to generate a constant current into R_{67} . This current can be varied from near zero to several milliamps by adjusting VR_{54} , to ensure accurate measurement.

If the meter is used only with test leads for in-circuit diagnosis using the 20Ω range, R_{67} can be shorted and the LM334 circuitry omitted.

Power supplies

The floating 9V supply is based on Siemens' low-cost B62152A4X30 two-hole ferrite 'balun' beads. This design has proved repeatable and reliable, consuming less than 2mA at 5V to power the PM128 meter.

The ferrite is conductive, so to avoid accidental stripping of the

Four-terminal pairs

At DC and very low frequencies, the conventional four-wire test cable with Kelvin contacts can provide accurate measurements, but mutual inductance generated errors increase with frequency, Fig. 8a).

The most accurate four-wire measurement – especially for high frequency or low impedance – uses the 'four-terminal pair' method.⁴

The five-terminal and shielded fourterminal cable arrangements provide a capability between these two extremes, Figs. 8b) & 8c)

The four-terminal pairs or '4TP' with Kelvin contacts are the best solution for any wide-range impedance measurements. From my own tests, they can be used at 100kHz with 1 metre leads without needing error correction.

This 4TP method relies on using four coaxial test cables with all four cable screening braids connected together by a low impedance path, immediately adjacent to the device under test.

Two coaxial cables supply the measurement current to and return from the

device under test. The remaining pair monitor the voltage drop across the device being tested. The inner cores of each cable should be connected separately to the component being tested to form Kelvin contacts.

The four earth braids must be directly interconnected, using typically a 1.6mm thick, 30mm by 50mm aluminium plate, or equivalent low-impedance connection, immediately adjacent to the device under test.

Unfortunately this 4TP method is not practical for in-circuit measurements.

winding wire enamel, any sharp edges around the holes should first be deburred then the cores varnished before winding.

Negative 5V supply is derived using MAX665 or TC660CPA switching inverters with low ESR electrolytics. This design provides a low noise, reliable, near -5V supply when supplied from +5V.

Display meter

Measured impedance is output as two voltages, one representing the voltage drop across the device under test, the second representing the DUT through current.

From Ohms law, these two voltages divided produce the unknown impedance. As with my tanô meter design, this division is most easily arranged using the PM128 digital panel meter, modified to ratio mode.

This modification is easily made by removing two resistors, R_2 and R_3 , from the PM128 module. The 100kHz |Z| meter 'Ref-Hi' output from U_9 connects to the 'Ref-Hi' pad which originally linked both resistors. The 'In-Hi' output from U_{10} connects to the PM128 normal 'In-Hi' terminals ad the 100kHz |Z| meter ground to the PM128 input ground.

Four-wire test leads

Considerable time and experimentation was needed to devise usable test leads that could measure in-circuit impedances with acceptable accuracy. I evaluated nine different possible configurations using three differing wire types. In each case my 100kHz impedance meter was calibrated to read 0Ω when measuring a short circuit mounted in the axial four wire test jig.

Carrying 100mA DC, the unscreened four-wire test leads from my $\tan\delta$ meter measure $35m\Omega$ per lead. At 100kHz using these leads, a good short circuit measured 0.19Ω to 0.4Ω depending on lead orientation. While excellent working at 100Hz, this lead was found to be suitable only when measuring impedances greater than 1Ω at 100kHz.

Similarly, a two-wire standard test lead that measured $62m\Omega$ at DC per lead, at 100kHz the same lead measured this short circuit as varying between 0.74Ω and 1.04Ω , depending on lead orientation. This two-wire test lead was not usable at 100kHz either.

By measuring the same test capacitors and resistors inserted directly into my four-terminal test jigs and then using test leads, I was able to ascertain the measurement errors caused by my differing test

Capacitor impedance versus ESR

When an alternating current is passed through an ideal, or perfect, capacitor, having neither inductance nor resistance, the voltage waveform lags that of the current by 90°. The capacitor produces an impedance with a phase angle of –90°.

At any one frequency, a practical capacitor can be represented by a series combination of inductance, capacitance and resistance. In a practical capacitor the inductive component may be relatively constant, but not so the resistive and capacitive components. Both are strongly frequency dependent. These combine to produce an impedance |Z| with a much reduced phase angle. Depending on frequency, the measured phase angle can be either positive or negative. Fig. 9.

Using the standard mathematical conversion from polar to rectangular notation, we find,

$$|Z| \angle 0 = R \pm jX$$

where *R* is the capacitor equivalent series resistance at the measured frequency and *X*

Fig. 9. Impedance and Phase Angle curves of another low ESR 1000µF 25V Philips type 135 capacitor, measured using my Highfrequency impedance meter². is the capacitor's net reactance at that frequency.

But as you probably know, this X comprises two elements⁴ – one a capacitive reactance X_C , the other an inductive reactance X_L .

$$|Z| = \sqrt{ESR^2 + (X_C^2 - X_L^2)^2}$$

From the above, you can see that ESR is not a finite value. It varies widely with frequency. Furthermore, with aluminium electrolytic capacitors it is also extremely temperature sensitive.

At one frequency only the capacitive reactance X_C and inductive reactance X_L , being equal and opposite, cancel. At all other frequencies |Z| is greater than ESR, but at this one frequency only, then |Z| is exactly equal to ESR.

1000 µF 25V Philips 135 Capacitor

lead designs exactly.

Ultimately, three test lead sets were assembled for final testing. One offered ease of assembly and use, one gave best accuracy for low impedance measurements but less ease of assembly or use, and the third represents an intermediate or compromise set, Fig. 7.

Using the 'easy-build' test leads, my short circuit measured 0.23Ω , but resistance values of 0.47Ω and above could be measured in-circuit, Fig. 8d). With the 'intermediate' test leads, my short circuit measured 0.075Ω , so resistance values of 0.22Ω and above could be measured, Fig. 8e). My best test-lead set measured this short circuit as 0.015Ω . Boardmounted resistance values of 0.1Ω and above, could then be measured in-circuit, Fig. 8f).

Performance

Using each of the above test leads to measure a good $100\mu F$ electrolytic incircuit, I found much smaller differences. They ranged from a measured impedance of 0.142Ω with the 'best' leads to 0.28Ω for the 'easy build' or worst. In practice, for incircuit diagnosis measurements, all

three assembled test leads were able to identify a failed capacitor.

Using either the axial or radial four terminal test jigs, with the meter set to its 2Ω range, impedances of a few milliohms to 1.999Ω were accurately measured, extending to 19.99Ω using the meter high range.

I plan to offer professionally made PCBs for this meter together with a self adhesive front panel label, and a set of drawings and assembly notes.

References

- Bateman C., 'Tanδ capacitor tester', Electronics World, Jan 2000.
- Bateman C., 'High-frequency impedance meter', Electronics World, Jan 2001.
- Axial or Radial Lead Sockets. (Textool) 3M Electronic Products Division, In-line socket (radial lead) RS Components part No 160-7090.
- 4. The Impedance Measurement Handbook, Agilent Technologies (HP) USA.
- Bateman C., 'Understanding Capacitors', Electronics World. June 1998.

Technical support For PCB details please send a stamped, self addressed, A4 sized envelope to Cyril at the address below. Overseas readers should send an International Reply Coupon and self-addressed envelope. Cyril Bateman, Nimrod, New Road, Acle, Norfolk NR13 3BD UK

WEB DIRECTIONS

ACQUIVISION

http://www.acquivision.com

AcquiVision solutions, including XY-Plotting, Oscilloscopes (with FFT), Data Loggling and Gustom Software, have been getting the most from computers since 1994. Download software. Telephone (01903)830502.

AQUILA VISION

http://www.aquila-vislon.co.uk

Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROM's.

ALCATEL COMPONENTS

http://www.components @alcatel.de

ASHWELL ELECTRONICS

http://www.ashwell-hq.com

Ashwell provide technical support for Apex Microtechnology op-amps and DC/DC'S; Aeroflex; EMP filtered connectors; M S Kennedy; Mintech obsolescence; NSC Mil/Aero; Teledyne Relays and isocom mil/optocouplers.

ARCOM

http://www.arcomcontrols.com/ew/

A leading international supplier of communication and control technology to industry, Arcom provides leading edge solutions through a comprehensive range of market leading products.

BROADERCASTING COMMUNICATIONS SYSTEMS

www.broadercasting.co.uk

WINRADIO now brings you a complete choice in personnel computer controlled

radio scanning and reception solutions ●
Broadcast ● Media ● Monitoring ●
Professional Amateur Radio communications

BEDFORD OPTO TECHNOLOGY LTD

http://www.bot.co.uk

Optoelectronic products UK design development manufacture standard and custom, LED bargraphs, circuit board indicators, stand offs,

transmissive/reflective switches, baseefa optocouplers tubular and surfacemount, pannel mount LED assemblies.

CONCEPT ELECTRONICS

http://www.conceptkey.co.uk

Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept's membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to ISO9001.

CONTROL SOLUTIONS

www.controlsolutions.co.uk

Data acquisition and control for beginners, hobbyists, and professionals. Perform mathematical and logical operations on data in real time. Email: info@controlsolutions.co.uk,

COOKE INTERNATIONAL

http://www.cooke-int.com e-mail: info@cooke-int.com

Stockists of Quality Used Electronic Test Instruments and Operating & Service Manuals.

CROWNHILL ASSOCIATES LTD

http://www.crownhill.co.uk

Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products Include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

DANIEL MCBREARTY

http://www.danmcb.demon.co.u k/eng.html

Experienced engineer based in London, specialist in audio and control systems. Available-for design, project engineering or general consultancy. Background of high-quality work.

DESIGNER SYSTEMS CO.

http://www.designersystems.co.

Electronic product design company with over a decade of experience promoting it's own product range and designing and manufacturing innovative products for client companies/individuals.

ECM SELECTION

http://www.ecmsel.co.uk

For the pick of the UK's Top High-Tech Software and Hardware career opportunities from fresh Grad/PhD to Senior Engineer/Manager —£22,000 -£70,000

EDWIN PCB DESIGN SOFTWARE

http://www.swifteurotech.co.uk

Swift Eurotech supply the best-selling EDWin CAD/CAE system for PCB design, including schematics, simulation and PCB design. Discounts up to 60% for noncommercial users.

ELECTRONICS AND COMPUTING PRINCIPLES

http://www.eptsoft.com

Studying efectronics or computing or just want to keep up-to-date in an easy and enjoyable way, then this fully interactive software is for you.

EQUINOX TECHNOLOGIES UK LTD

http://www.equinox-tech.com

Equinox Technologies UK Ltd., specialise in development tools for the embedded microcontroller market.

FARADAY TECHNOLOGY LTD

http://www.faradaytech.co.uk

Over 17 years experience in the design and manufacture of high quality passive filters and delay lines. Used in Broadcast, Telecommunications, Medical, Multimedia, and computer industries. Currently exporting worldwide

FELLER UK

http://www.feller-at.com

Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

FLASH DESIGNS LTD

http://www.flash.co.uk

Flash supply low cost AVR ISP programmers (£39), MINI-ICE starter kits (from £69), Portable Easy-ICE emulators (from £199), ICE Adapters & 'C' compilers for any ATMEL AVR, MCS51, Dallas, Hitachi H8 microcontroller. Download FLASH NEWS now, Watch out for Special Offers'. ARE YOU developing code in a Flash?

GOOT PRODUCTS

http://www.kieagoot.co.uk

Kiea Trading Company is the sole agent of

To reserve your web site space contact Pat Bunce Tel: 020 8652 8339 Fax: 020 8652 3981

Goot products, We specialise in supplying the soldering and desoldering product range manfactured by Goot Japan for the UK market. Goot uses advanced production technology to manufacture high quality soldering iron products for industrial, professional and general purpose use.

HSPS LTD

http://dspace.dial.pipex.com/hsps/

FILTER DESIGNER - Advanced analog and digital filter design software for the PC. - Standard and Professional versions. - Free download of Evaluation version.

HTB ELEKTRONIK

http://www.htb-elektronik.com

We are selling second-hand test & measurement equipment and accessories for over 10 years, from all leading manufactures.

LEVY/LATHAM GLOBAL

http://www.levylatham.com

U.S. Military Surplus meters, plug-ins, test sets, oscilloscopes, power supplies, signal generators, spectrum analyzers and radio components from Tektronix, Hewlett Packard, Sony, Phillips and more!

LOW POWER RADIO SOLUTIONS

http://www.lprs.co.uk

LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

MATRIX MULTIMEDIA LTD

www.matrixmultimedia.co.uk Matrix Multimedia publishes a number of highly interactive CD ROMs for learning

electronics including: Complete electronics course, Analogue filter design, and PICmicro(R) microcontroller programming (C and assembly).

NEWNES - BOOKS FOR THE ELECTRONICS WORLD

http://www.newnespress.com Over 300 books and information packages

for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.

NORCALL

http://www.norcall.co.uk

Suppliers and repairers of MOBILE RADIO equipment

HIRE

Huge stocks of used radios and spares Pye Philips Simoco Icom Kenwood Standard Cleartone Maxon Yaesu Key Midland.

WE CAN PROGRAM ANYTHING 24hr Service

OMEGA RESEARCH LTD

http://www.omega-research.co.uk

SMD prototyping adapters. Unique, flexible, low cost adapters to allow bench working with SM devices. Range suits most devices down to 0.5mm pltch.

PCA:PHILIP COLLINS & ASSOCIATES PTY, LTD

http://www.pca.cc

PCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wanting worldwide control of communications receivers and transceivers from any tone phone.

POLY-FLEX CIRCUITS LTD

http://www.polyflex.com

Design, manufacture and population of printed polyester flexible circuits, including Flip Chip on Flex providing practical, low cost, reliable solutions for today's small lightweight products.

QUASAR ELECTRONICS

www.quasarelectronics.com

Over 250 electronic kits, projects and ready built units for hobby, educational & industrial applications. TEL: 01279 306504, FAX: 07092 203496 or EMAIL: ewsales@quasarelectronics.com

QUILLER ELECTRONICS

http://www.guiller.com

100+ pages of detailed technical Information on Schrack Relays, MEC Switches, Hirose Connections.

RADIOMETRIX

http://www.radiometrix.co.uk

Radiometrix specialises in the design and manufacture of VHF & UHF, RF data modules. We offer a broad range of PCB mounted miniature transmit, receive and transceiver modules for OEM use.

RADIO-TECH LIMITED

http://www.radio-tech.co.uk

Radio modules, modems, telemetry, audio transmitters, pagers, antenna, remote controls and much more. All UK designed and manufactured.

RALFE ELECTRONICS

professional test & measurement www.ralfe-electronics.co.uk

RD RESEARCH

http://www.looking.co.uk/spice

Analogue and digital SPICE modelling software. Full details available on this site. Available on a 30 day evaluation basis.

RS COMPONENTS LTD

http://rswww.com

The award winning on-line service from RS

- 110,000+ products available
- Technical data library - Stock avallability check
- Integrated on-line purchasing
- Order by 8pm with you tomorrow.

SOFTCOPY

http://www.softcopy.co.uk

As a PC data base or hard copy, SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.

SESCOM, INC.

http://www.sescom.com

SESCOM, INC. is a 30-year manufacturer of audio 'problem solvers' and transformers. We also offer easily-fabricated aluminum enclosures for small production runs and prototypes.

STAFFORDSHIRE WIRELESS COMPANY

http://www.staffs-wireless.com

Wireless, communication, test equipment, bought and sold for very competitive prices visit our web site or telephone John on 01889 569928 or 0973 296461.

SUPRA AUDIO CABLES

http://www.ienving.se

Jenving Technology AB is the manufacturer of Supra Audio Cables. OEM productions are also accepted.

TEMWELL CORPORATION

http://www.temwell.com.tw

Manufacturer & Exporter of Heelical BPF Filter, 30 Watts BPF Power Filter and Handset/Base Station Duplexers

TEST EQUIPMENT SOLUTIONS

http://www.TestEquipmentHQ.com

Quality second user test equipment with full warranty and support. All types of equipment from all leading manufacturers including general purpose, communications and industrial test.

TELNET

http://www.telnet.uk.com

Top quality second-user Test and Measurement Equipment eMail telnetkm@msn.com

THOSE ENGINEERS LTD

http://www.spiceage.com

Working evaluations of SpiceAge mixedmode simulator, Spicycle PCB design tools and Superfilter demo (synthesises passive, active, digital filters). Tech support, sales links and price list.

THERMOSPEED

http://www.thermospeed.co.uk

Temperature and pressure, control and instrumentation. Full on-line purchasing.

- Overnight ex-stock delivery
- Create your own hotlist
- Download datasheets
- * Full technical support

TOTAL ROBOTS

http://www.totalrobots.co.uk

Robot Kits and Control Technology products, including OOPic the first Object-Oriented Programmable Integrated Circuit. Secure on-line ordering and fast delivery.

TRIDENT MICROSYSTEMS LTD

http://www.trident-uk.co.uk

Visit the Trident website for details and datasheets on their entire LCD and printer product range. Download data and subscribe for our regularly updated newsleter.

TOWER HILL TECHNICAL SERVICES

http://www.towerhillaerials.com

Everything you need for DIY Satellite & TV aerial Installation. The one stop shop for TV, FM, Satellite, Amateur Radio PMR Aerials, Distribution Equipment, Cable & Accessories.

TECHNICAL AND SCIENTIFIC SUPPLIES

http://www.technicalscientific.com

Suppliers of pre-1985 equipment and components.

- · Test/Measurement equipment
- Valves and semiconductors
- Transducers and pressure gauges
- Scientific books and catalogues
- · Manuals and data sheets

VANN DRAPER **ELECTRONICS LTD**

http://www.vanndraper.co.uk

Test equipment from Grundig. Kenwood, Hitachi, Fluke, Avo. Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies. generators, counters, soldering, digital ty etc.

VUTRAX PCB DESIGN SOFTWARE

http://www.vutrax.co.uk

VUTRAX electronic schematic and pcb design system for Windows 95, 98 and NT. Limited Capacity FREE version downloads available, all upgradeable to various customised levels

WOOD & DOUGLAS

http://www.woodanddouglas.co.uk

Wood & Douglas Ltd is the leading independent British designer and manufacturer of quality radio products for International telemetry, data, voice & video wireless communications

UK ELECTRICAL DIRECT

http://www.uked.com

For a comprehensive on-line directory. buyers guide and resource locator for the UK Electrical Industry look at this site. Many of the companies listed have links to their own web sites, making

this a one-stop shop for a huge amount of information

UK MAILING LIST GROUP

http://www.egroups.com/list/uk tyrepair

Following on from the newsgroup discussion last month there is a UK Email group for TV technicians where you can send an Email to everyone in the group. There's just over 30 people in the group at present. For more details and how to register look at the egroup home page. Just a general comment though you do have to be careful who you give your Email address to so that you can avoid "spamming" - that is getting lots of unwanted Email about dubious Russian site (amongst others).

REED CONNECT

http://www.reedconnect.net/

Another free internet access site, this time from Reed Business Information. However the site possesses a useful UK People and Business Finder, with an email search. There's also business news and local information, and some good links to directory sites.

REPAIRWORLD

http://www.repairworld.com

Repairworld is a sophisticated US based fault report database which is updated biweekly. It operates on a subscription basis and describes itself as an "affordable solution for all technicians". You can see some samples of the material for free, monitors, VCR, DVD and Camcorders being of particular relevance to UK users. The site also provides a "chat room".

Pat Bunce on 020 8652 8339 or fax on 020 8652 3981. or e-mail: pot.bunce@rbi.co.uk

Put your web address in front of 21 000 electronics enthusiasts and experts. Electronics World acknowledges your company's need to promote its web site, which is why we are now dedicating pages in every issue to announce your WEB ADDRESS.

This gives other readers the opportunity to look up your company's name, to find your web address and to browse the magazine page to find new sites.

We understand that cost is an important factor, as web sites are an added drain on budgets. But we are sure you will agree that the following rates make all the difference:

FOR 12 ISSUES:

Lineage only will cost £150 for a full year just £12.50 per month.

This includes your company's name, web address and a 25-word description. Lineage with colour screen shot costs £350 for

a full year, which equates to just £29.17 per month.

This price includes the above mentioned information, plus a 3cm screen shot of your site, which we can produce if required.

To take up this offer or for more information ring:

Pat Bunce on 020 8652 8339 or fax on 020 8652 3981. or e-mail! pat.bunce@rbi.co.uk

Company name	Web address

LC resonant tanks

Joe Carr takes a look at how LC tank circuits work and describes how to get the best from them. hen you use an inductor, L, and a capacitor, C, together in the same circuit, the combination forms an LC resonant circuit. This is also sometimes called a tank circuit or resonant tank circuit. These circuits are used to select one frequency, while rejecting all others – as in to tune a radio receiver.

There are two basic forms of LC resonant tank circuit: series, Fig. 1a) and parallel Fig. 1b). These circuits have much in common, and much that makes them fundamentally different from each other.

The condition of resonance occurs when the capacitive reactance X_C and inductive reactance X_L are equal in magnitude $(|+X_L|=|-X_C|)$. As a result, the resonant tank circuit shows up as purely resistive at the resonant frequency, Fig. 1c), and as a complex impedance at other frequencies.

LC resonant tank circuits operate by an oscillatory exchange of energy between the magnetic field of the inductor, and the electrostatic field of the capacitor. A current between them carries the charge.

Because the two reactances are both frequency dependent, and because they are inverse to each other, the resonance occurs at only one frequency f_r . You can calculate the standard resonance frequency by setting the two reactances equal to each other and solving for f. The result is:

$$f = \frac{1}{2\pi\sqrt{LC}} \tag{1}$$

Series-resonant circuits

Like other series circuits, the series-resonant circuit of Fig. 1a) is arranged so that the terminal current *I* from the source *V* flows in both components equally. The vector diagrams of Fig. 2a) and Fig. 2b) show the situation under three different conditions.

In Fig. 2a), the inductive reactance is larger than the capacitive reactance, so the excitation frequency is greater than f_r . Note that the voltage drop across the inductor is greater than that across the capacitor, so the total circuit looks like it contains a small inductive reactance.

In Fig. 2b), the situation is reversed: the excitation frequency is less than the resonant frequency, so the circuit looks slightly capacitive to the outside world. Finally, in Fig. 1c) the excitation frequency is at the resonant frequency, so $X_C = X_L$ and the voltage drops across the two components are equal but of opposite phase.

In a circuit that contains a resistance, inductive reactance and a capacitive reactance, there are three vectors to consider Fig. 3, plus a resultant vector. As in the other cir-

Fig. 1. There are two forms of LC tank – series, a), and parallel, b). At the resonant frequency, the tank is purely resistive, c).

Fig. 2. In a), the inductive reactance is larger than the capacitive reactance while in b), the situation is reversed.

Sadly, Joe passed away late last year. I don't know enough about Joe's background to produce a proper tribute, but I do know that he was extremely popular and an unbelievably prolific writer. I met Joe twice, but only briefly. He was a warm and friendly man and a great conversationalist. His passing is a great loss.

cuit, the 'north' direction represents X_L , the 'south' direction represents X_C , and the 'east' direction represents R.

Using the parallelogram method, first construct a resultant for the R and X_C , which is shown as vector 'A'. Next, construct the same kind of vector 'B' for R and X_C . The resultant, 'C' is made using the parallelogram method on 'A' and 'B'. Vector 'C' represents the impedance of the circuit: the magnitude is represented by the length, and the phase angle by the angle between 'C' and R.

Figure 4a) shows a series-resonant LC tank circuit, and Fig 4b) the current and impedance as a function of frequency. The series-resonant circuit has a low impedance at its resonant frequency, and a high

Fig. 4. In a) is a series- resonant-tank circuit and in b), its current and impedance plotted as a function of frequency.

Fig. 5. Parallel-resonant tank circuit, a), and its current and frequency characteristics, b).

impedance at all other frequencies. As a result, the line current *I* from the source is maximum at the resonant frequency and the voltage across the source is minimum.

Parallel-resonant circuits

The parallel-resonant tank circuit Fig. 5a) is the inverse of the series resonant circuit. Line current (I) from the source splits and flows in inductor and capacitot separately.

The parallel-resonant circuit has its highest impedance at the resonant frequency, and a low impedance at all other frequencies Fig. 5b). Thus, the line current from the source is minimum at the resonant frequency, Fig. 5c), and the voltage across the L_C tank circuit is maximum. This fact is important in radio tuning circuits, as you will see in due course.

Tuned RF/IF transformers

Many of the resonant circuits used in RF circuits – and especially radio receivers – are actually transformers that couple signal from one stage to another. Figure 6 shows several popular forms of tuned, or coupled, RF/IF tank circuits. In Fig. 6a), one winding is tuned while the other is untuned.

In the configurations shown, the untuned winding is the secondary of the transformer. This type of circuit is often used in transistor and other solid-state circuits, or when the transformer has to drive either a crystal or mechanical bandpass filter circuit. In the reverse configuration, where L_1 is the output and L_2 the input, the same circuit is used for the antenna coupling network, or as the inter-stage transformer between RF amplifiers in TRF radios.

The circuit in Fig. **6b**) is a parallel-resonant *LC* tank circuit that is equipped with a low impedance tap on the inductor. This type of circuit is often used to drive a crystal detector or other low impedance load.

Another circuit for driving a low impedance load is shown in Fig. 6c). This circuit splits the capacitance that resonates the coil into two series capacitors. As a result, we have a capacitive voltage divider. The circuit in Fig. 6d) uses a tapped inductor for matching low impedance sources – antenna circuits for example – and a tapped capacitive voltage divider for low impedance loads.

Finally, the circuit in Fig. 6e) uses a tapped primary and tapped secondary winding in order to match two low impedance loads while retaining the sharp bandpass characteristics of the tank circuit.

Construction of RF/IF transformers

The tuned RF/IF transformers built for radio receivers are typically wound on a common cylindrical form. They are surrounded by a metal shield can that prevents interaction of the fields of coils that are in close proximity to each other.

Figure 7a) shows the schematic for a typical RF/IF transformer, while the sectioned view Fig. 7b) shows one form of construc-

Fig. 6. Several popular configurations of LC tank circuit used in radio designs.

Fig. 7. Typical RF/IF transformer, a), and a cut-away view of a practical implementation of it, b).

Fig. 8. Parallel-resonant RF/IF transformer, a), the two coils of which are normally wound as in b). Bandwidth of such a transformer is the range of frequency between the -6dB points on the bandpass curve, c). The shape of this response curve represents critical coupling.

Fig. 9. In the undercoupled RF/IF transformer, a), the gap between the windings is greater than it is with critical coupling, b). This makes the bandwidth narrower, c).

tion. This method of building the transformers was common at the beginning of World War II, and continued into the early transis-

The methods of construction shown in Figs. 7c) and 7d) were popular prior to World War II. The capacitors in Fig. 7b) were built into the base of the transformer. while the tuning slugs were accessed from holes in the top and bottom of the assembly. In general, expect to find the secondary at the bottom hole, and the primary at the top

The term 'universal wound' refers to a cross-winding system that minimises the interwinding capacitance of the inductor, and therefore raises the self-resonant frequency of the inductor - a good thing.

Bandwidth of RF/IF transformers Figure 8a) shows a parallel resonant RF/IF

transformer, while Fig. 8b) shows the usual construction in which the two coils L_1 and L2 are wound at distance d apart on a common cylindrical form.

Bandwidth of the RF/IF transformer is the frequency difference between the frequencies where the signal voltage across the output winding falls off -6dB from the value at the resonant frequency $f_{\rm p}$ as shown in Fig.

If F_1 and F_2 are -6dB – also called the -3dB point when signal power is measured instead of voltage - frequencies, then the bandwidth BW is F_2-F_1 . The shape of the frequency response curve in Fig. 8c) is said to represent critical coupling.

An example of a subcritical or undercoupled RF/IF transformer is shown in Fig. 9. As shown in Figs. 9a) and 9b), the windings are farther apart than in the critically coupled case, so the bandwidth, Fig. 9c) is much narrower than in the critically coupled case. The subcritically coupled RF/IF transformer is often used in shortwave or communications receivers in order to allow the narrower bandwidth to discriminate against adjacent channel stations.

The overcritically-coupled RF/IF transformer is shown in Fig. 10. Note that in Figs 10a) and 10b) that the windings are closer together, so the bandwidth, Fig. 10c), is much broader.

In some radio schematics and service manuals - not to mention early textbooks - this form of coupling was sometimes called 'high fidelity' coupling because it allowed more of the sidebands of the signal - which carry the audio modulation - to pass with less distortion of frequency response.

The bandwidth of the resonant-tank circuit, or the RF/IF transformer, can be summarised in a figure of merit called Q. The Q of the circuit is the ratio of the bandwidth to the resonant frequency

$$Q = \frac{BW}{f_r} \tag{2}$$

An overcritically-coupled circuit has a low Q, while a narrow bandwidth subcritically

Fig. 10. In the overcritical coupled RF/IF transformer, a), the gap between the windings is relatively small, b), and the bandwidth much broader, c).

Fig. 11. Introducing resistance into the tank circuit causes its Q to go down, a). A switched resistor is sometimes used in radios to allow the bandwidth to be tweaked. Such a switch might be labelled 'fidelity' or 'tone'.

coupled circuit has a high Q.

A resistance in the LC tank circuit will cause it to broaden, that is to lower its Q. The resistor is sometimes called a 'de-Qing resistor'. The 'loaded Q' - that is, Q when a resistance is present - as in Fig. 11a) is always less than the unloaded Q. In some radios, a switched resistor, Fig. 11b) is used to allow the user to broaden or narrow the bandwidth. This switch might be labelled 'fidelity' or 'tone' or something similar.

In a second article on this topic, I will be looking at how LC tank circuits are implemented and the practical problems associated with them in radio designs.

R&D ELECTRONIC ENGINEERING POSITIONS

The company

CEL is a dynamic Irish company with expert knowledge in the total development process for automotive electronics. We focus on providing global automotive customers with innovative solutions in access and security technologies. We offer the opportunity to be part of a dynamic, vibrant company on a steep growth curve. There's a lot of excitement in CEL. Come and join our team?

SENIOR MICROWAVE DESIGN ENGINEER

The appointee must be qualified to degree level in Electronic Engineering or equivalent with a minimum of eight years' relevant experience. Primary responsibilities include RF design (DC-26GHz), RF filter design, antenna design, LNA design, signal processing and analog electronics. Experience of RF/Microwave simulation tools and signal processing is also required. Additionally, candidates should have project management skills and good communication skills. Salary £40k+.

ROWAVE DESIGN ENGINEER

The appointee must be qualified to degree level in Electronic Engineering or equivalent with a minimum of four years' relevant experience. Primary responsibilities Include RF design (DC-26GHz), RF filter design, antenna design, LNA design, signal processing and analog electronics, Experience of RF/Microwave simulation tools and signal processing is also required. Salary £30k+.

RF DESIGN ENGINEER

The appointee must be qualified to degree level in Electronic Engineering or equivalent with a minimum of four years' relevant experience. Primary responsibilities include development of low power UHF transmitters and receivers (200MHz-20GHz), design of: RF filter, antenna, and LNA. Also knowledge of signal processing, RF simulation tools, Analog Electronics, circuit design PCB layout, Design Failure Mode EffectAnalysis (DFMEA), Design for Manufacture and test (DFM&T), Design for Assembly (DFA), design and product validation testing as well as RF type approvals is also required Salary £30k+.

We employ skilled professionals, supported by state-of-the-art technology to provide our customers with the next generation of superior automotive products. These positions require a high level of innovation and creativity. The candidates must be self-starters who take ownership of a product development from initial specification through to the start of production.

Applications to: Human Resources Department, Connaught Electronics Ltd, Dunmore Road, Tuam, Co Galway Email: hr@cel.ie www.celeurope.com

Cheltenham Induction Heating Limited

We require a

POWER ELECTRONICS DEVELOPMENT ENGINEER

who has experience of medium to high power switching applications (like SMPS, motor drives and induction heating).

Duties will include:-

- New product conception
- Turn the concept into reality
- Design and test of prototype circuits
- Evaluate and debug pre-production design
- Development of existing technology

Reporting:- As a key member of the Development Team, the Development Engineer will be directly responsible to the Group Technical Director.

Salary:-

>£25k depending on experience and ability.

Cheltenham (relocation assistance If appropriate).

C.I.H. Ltd manufacture high power, load resonant inverters (induction heaters). We have a worldwide reputation for supplying quality products for use in industrial, scientific and medical applications.

We have licensing agreements in several countries, including the USA, whereby products of our design are manufactured under our

We use FET and IGBT power technology typically working in the 3kHz to 1MHz range and we produce equipments with continuous output powers of one kW to hundreds of kWs.

In the first instance, please send a current CV and covering letter to Andy Davies, Managing Director of:

Cheltenham Induction Heating Ltd Saxon Way, Battledown Industrial Estate, Cheltenham, Gloucestershire GL52 6RU www.cih-group.co.uk

Product Support Manager

Growing Midlands-based company in HEVAC industry is looking for a qualified and experienced Product Support Manager to take prototypes and develop them into live products.

Position will include considerable self-management, working to deadline and budget. This will involve visiting live site situations, as well as team working at head office. Experience in Building Control Network systems advantageous, computer literacy essential.

PO BOX NO. 23

c/o Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

As an advertiser you can be certain that your advertisement is going to be read by **DECISION-MAKING** ELECTRONIC PROFESSIONALS with the

POWER TO PURCHASE your products.

Why not let Electronics World help you?

Call Pat Bunce Tel: 020 8652 8339 Fax: 020 8652 3981 E-mail: patbunce@rbi.co.uk

As an advertiser you can be certain that your sales message is going to be read by decision-making electronics professionals with the power to purchase your products.

The pre-paid rate for semi-display setting is £17 per single column centimetre (maximum 4cm). Box number £22 extra. All prices plus 171/2% VAT. All cheques, postal orders etc to be made payable to Reed Business Information. Advertisements together with remittance should be sent to Electronics World Classified, 12th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Fax: 0208 652 3981. Tel: 0208 652 8339

Service

Link

ARTICLES WANTED

TOP PRICES PAID

For all your valves, tubes, semi conductors and ICs.

Langrex Supplies Limited

1 Mayo Road, Croydon, Surrey CR0 2QP TEL: 020 8684 1166 FAX: 020 8684 3056

Rack Enclosures

New and Used most sizes 16U to 50U side and rear panels mains distribution 19° Panel mounts optima eurocraft, Prices from £45 -vat

M&B Radio

86 Bishopsgate Street Leeds LS1 4BB Tel. 0113 2702144 Fax. 0113 2426881

BEST CASH PRICES PAID

For all valves KT88 PX4 and other audio types

Wide range of valves and CRT stocked

Tel: 01403 784961

Minimum Order UK -£50+VAT+Freight

Billington Export Ltd Fax: 01403 783519 Email: sales@bel-tubes.co.uk Sussex RH14 9EZ Visitors by appointmen

SERVICES

RF DESIGN **SERVICES**

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS

www.rlaver.dial.pipex.com

TEL: 01223 862550 FAX: 01223 440853

Please Meation Electronics World When Replying to advartisements

Concept

Electronic design and engineering services

- Embedded control

- Embedoed corario;
 Telecommunication products
 Datacommunication products
 SM PSU and battery management
 Wireless transmission systems
 Audio and Video processing
 DVD control systems

- Internet site and graphics authoring
- PCB design Schematic layout and re-drawing Technical documentation & translation

Tel/Fax: +44 (0) 1872 223306 Email: sales@designersystems co.uk

designersystems.co.uk

//www/

http:

POWER SUPPLY DESIGN

Switched Mode PSU Power Factor Correction designed to your specification

Tel/Fax: 01243 842520 e-mail: eugen_kus@cix.co.uk Lomond Electronic Services

PRINTED CIRCUIT BOARDS DESIGNED & MANUFACTURED

- Prototype or production quantitles
- Fast turnround available
- PCBs designed from circuit diagrams
- Almost all computer files accepted
- PCB assembly mechanical assembly
- Full product design-manufacture-testrepail TEL 028 9073 8897

agar FAX 028 9073 1802 FAX 028 9073 1802 agar@argonet.co.uk Unit 5, East Belfast Enterprise Park 308 Albertbridge Rd, Belfast BT5 4GX

ANALOGUE DESIGN

Designed to your specification

CONTACT BOX. D318

ELECTRONIC UPDATE

DAQ Designer™

National Instruments new DAQ Designer™ 2001 is a FREE CD that helps engineers and scientists interactively configure custom measurement systems. DAQ Designer™ 2001 includes the capability to recommend real-time data acquisition and motion control hardware and software. Phone: 01635 523545

Fax: 01635 524395 E-mail: into.uk@ni.com Web: www.ni.com/uk

CIRCLE NO.123 ON REPLY CARD

Energy Efficient Devices (EEDS):

Central Semiconductor's new family of Energy Efficient Devices (EEDs) are designed to reduce the power requirements necessary for today's portable electronic products.

With VF as low as 0.35V, Central's Schottky Rectifiers are the perfect solution for battery powered hand-held applications such as PDAs, pagers, laptops and cell phones.

In addition, the Low Leakage 200 Volt diodes and Ultra Low Leakage diodes provide design engineers with yet another tool for controlling size, power management, and battery conservation

Central Semiconductor is dedicated to complete customer satisfaction, perfect quality, on-time delivery, and reasonable prices. Visit our website at www.centralsemi.com for current information on all devices manufactured by Central.

Tel: 01420 542500

MB COMPONENTS Email: sales@mbcomponents.co.uk

Central

THE FUTURE OF SMD

CIRCLE NO.124 ON REPLY CARD

Hioki's New 8807/8808 Memory Recorder

These compact, light recorders have 2 or 4 analogue channels with isolated inputs, PC card slot, fax/modem communication versatile trigger function. functions and 3-way power. They are ideal for a variety of applications requiring long high memory lengths and transient speed capability.

Telonic Instruments Ltd Tel: 0118 978 6911 Fax: 0118 979 2388

CIRCLE NO.125 ON REPLY CARD

Second User ELECTRONIC TEST & MEASURING INSTRUMENTS Cooke International

Tel: (+44) 0 1243 555590 Fax: (+44) 0 1243 551455 Unit 9, Ford Lane Business Park, Ford, Arundel, West Sussex. BN18 0UZ. (U.K)

E-Mail: info@cooke-int.com Web: http://www.cooke-int.com All Our Equipment is Ex-Stock Ready for Next Day Worldwide Shipping. Customers Welcome (Please call to make Arrangements)

CIRCLE NO.126 ON REPLY CARD

ADVERTISERS' INDEX

ADEPT SCIENTIFIC446	LANGREX453
BETA453	MILFORD INST457
CONFORD ELEC453	PICO441
COOKE INTERNATIONAL488	QUICKROUTE410
CROWNHILLIBC	RD RESEARCH410
DISPLAY ELECTRONICS451	SEETRAX455
EPTSOFTOBC	SIGHTMAGIC455
INTEC ASSOCIATES453	STEWART OF READING441
JOHNS RADIO413	SURREY ELECTRONICS446
JPG ELECTRONICS446	TELNETIFC
KOMPASS457	TIE PIE422
LABCENTER ELECTRONICS417	WEB PAGES480, 481, 482

PIG BASIC Pro The Professionals Choice Write your PIC programs in BASICI - No STAMP REQUIRED!

MC Basin - 259.95

Ouicker and easier than 'C' or assembler. PIC BASIC is a true compiler providing faster execution and shorter programs than BASIC stamp interpreters, built in I2C routines and senal comms upto 115K Baud and full BASIC STAMP compatibility make writing for the Microchip PICmicro's easy IPIC BASIC compiles your basic language programs to Microchip Hex format for use with In-circuit emuallors or for programming directly Into the PIC CHIP. Supports PIC12C67x, PIC14Coox, PIC16C55x, 6xx, 8xx,8xx,9x2 axand 16F87 Full documentation with syntax examples are provided in the 168 page user manual, A technical support mailing list is provided for life time support.

PAR Basic Pro - 2169,95 the professionals choice

The PIC BASIC Pro compiler instruction set is compatible with the Basic Stamp II providing additional functionality over PIC BASIC, feature like LCD, ADCin, I2CRead, I2CWitte customisable Serial in / out. (Create a serial LCD display driver in militutes). Full de-bug facilities, compile with debug to produce assembly commented with your Basic commands PIC BASIC and PIC BASIC PRO compile tight efficient code without the use of a basic interpreter. Supplied with a 168Page manual, explaining each command and worked examples FREE PIC Macro compiler. FREE Programmers File Editor, FREE Windows Front End, PIC BASIC PRO Includes samples programs and code to support Smart card read&write.

Download the full 168 page PIC BASIC MANUAL and more

http://www.picbasic.co.uk Order Online via our secure server http://www.crownhill.co.uk

£35 When purchased < with PIC BASIC

PIC64 Prototype board - £8.50

Parallel port extension cable - £5.95 40Pin Zif socket - £22.50 8/18Pin ZIF Socket - £22.50 PIC8 Prototype board - £4.50 PIC18 Prototype board - £5.50

All prices one subject to VAI@17.5%

PIC Real-time Emulator' and Programmer &

Mogrammer.

ØFOr PIC 16F87X (emulates most PIC 16C6X/7X devices)

Øin-Circuit run time debugging

☑ Real Time code execution 32Khz to 20Mhz real time operation

☑ High Speed Parallel port interface

FIZ 5V to 6 V angrating range

Built in device programmer

MBun, Step. Ann to Cursor etc

Conditional Animation Break

Software animation trace captures 3 user defined variables

In addition to opcode, W. Status, FSR

registers and corresponding instructions.

Source Level and symbolic debugging

☑Runs under PICICO IDE (win95/98 or NT) or MPLAB

Supplied with ICD debug module, Proto board.

40Pin and 28Pin emglater headers.

Cables IDF software and user quide

All prices ove subject to VAIGN17.5%

MICROCHIP

PIC 16F84/04p - £1,90 PIC 16F84/04so-£2.00 PIC 16F84/10p - £3.95 PIC 16C622/04p - £2.50 PIC 16F877/04p -£5.50 PIC 16F877/20p - £6.00 PIC 16F876/04p - £4.50 PIC 16F874 / 04p - £4.50 PIC 16F873 / 04p - £4.50

PIC 12C5088 - £0.63 PIC 12C509A - £0.63 24LC16 - £0.95 24LC16 so - £0.95 24LC32 - £1.50 24LC64 - £1.50 24LC65 - £1.50

All prices are subject to VAT6097.5%

A comprehensive guide to using PIC BASIC

EXPERIMENTING with the

PICBASIC PRO

COMPILER

A COLLECTION OF BUILDING BLOCKS AND WORKING APPLICATIONS

USING MELABS SIMPLE TO USE VET POWERFUL COMPILER

Section 1

Section 2 Intertacing with Kaypads

Section3

Serial Eeproms

Section 4

Analogue to Digital Converters Section 5

Bigital to Analogue Converters

Section 6

Remote Control

Section 7

Temperature Mesurement

Section 8

Robotics

Section 9

Audio Control

Section 10

Programming Techniques

Section 11

Powering Up the PIC

Free Down pad: Section3 from www.pichasic.co.uk

Available NOW!

St.

SMARTCARD DEVELOPMENT SYSTEM

ChipDrive StarterKit + Windows Software Read and Write data on Smart Cards and Memory cards Microsoft PCSC compatible !

Package Includes:

Professional card Reader Writer (ChipDrive Micro), Assorted Smart Cards (3 pairs),

Samples of source code in VB3,4,5+6, C and Delphi.

Examples Apps to Read and Write to Smart Cards and GSM cards Documentation and detailed Windows DLL description.

Visit our web site for Smart Cards, Programmers and Smart Card applications. The Bk's largest stockist of Smart Card and Smart Card Technology Www.crownhili.co.uk/ltm00047.htm

OLabProg 48LV

Low Cost - High Performance

Intelligent Universal Device Programmer

includes: Connection cable Blagnostic POD **User Manual**

PC Sofware Driver 240VAC/12V adaptor **CE** certified

Adaptors for TSOP, PSOP, QFP, SOIC, PLCC True No Adapter Programming upto 48 Pins Programs and Verifies 2.2.7.3.3.3 & 5V devices FREE software updates 3 Year Warranty

Plugs into parallel port of your PC

Universal Serial EEprom programmer

Preprom UNIVERSAL Eprom Programmer Adaptors for TSOP, PSOP, QFP, SOIC, PLCC

Adaptors for Microprocesors Adaptors for Febrom

Emulator adator

All prices are subject to VAT@17.5%

MasterCare

Crownhill Associates Limited

ORDER ON-LINE

32 Broad Street Ely Cambridge Cb7 4PW Tel: 01353 666709 Fax: 01353 666710

All prices are subject to a delivery charge + VAT@17.5% CIRCLE NO. 102 ON REPLY CARD

I PRICES EVER

'Computer Science & Mathematics **Principles V7**

Computer Science:

Hardware Devices, Data Structures, Data Files, Computer Systems, Data Handling, System Development, Computer Programming, Data Analysis, Binary Numbers, Binary Antimetic.

Digital Techniques:-

Logic Gales, Flip Flops, Combinational Logic, Counters, Counting, Shift Registers, Boolean & DeMorgan's Theorems.

Microcomputers:-

Microprocessors, Basic Micro Computer, Busses, Memory Addressing, A.L.U, Clock and Reset, Instructions and Controls Memory RW, Addressing, Instructions #1, Instructions #2, Instructions #3

Mathematics:

Simple Numbers, Number Convention, Number Types, Roots, Triangle Ratio's, Triangle Angles, Area, Sunace Area & Symmetry, Volume, Percentages, Ratio's, Fractions, Vectors, Circles Angles, Laws, Algebra, Rules, Algebra, Rules, Powers, Simplifying, Equations, Graphing, Slope & Translation, Curves & Angle Conversion, Physical Science.

> Personal user £59.95 +VAT Education* £299.95 +VAT (*Includes unlimited multi-user site licence.)

'Electronics and Computing **Principles V7'**

clures, DC Current flow, Basic Electronics, Simple DC Along Structure. DC Current flow, Basic Electronics, Simple DC Circuits. Types of Switching, Variable Voltages, Ohm's Law, DC Voltage, DC Current, Series Provide Resistors, AC Measurements, AC Voltage and Current, AC Theory, ECL Series/Parallel Circuits, Capacitance, Capacitans, Inductance, Inductors, Impedance, Communication System, Signals, Atturnators, Passive/Active Filtern, Tuned Circuits, Coupling and Selectivity, Oscillators, Circuit Theorems, Diode Theory, Diode Applications, Transistor Circuits, Field Effect Transistors, Operational Amplifier Theory and Applications, Sum and Difference Amplifiers.

DC ard AC Power, SCR, Power Supplies, Voltage Regulators,
Magnetism, Motors/Generators, Transformers, Three Phase Systems.

Digital Techniques:-

Logic Gates, Flip Flops, Combinational Logic, Counters, Counting, Shift Registers, Logic Interfacing, Timers, Boolean Algebra and Del/lorgan's

Microprocessors and PIC Microcontrollers:-

Basic Micro-Computer, Busses, A.L.U. Clock and Reset, Instructions and Confrol. Memory Cells, ROM and RAM, Memory Addressing, Instructions, PIC Introduction, PIC16F84 Architecture, PIC16G71 A/D, Byte, Bit, Literal and Control Instructions.

Measurement and Component Testing:-

gue multi-meter, Measurement, Component

Mathematics:-

Simple Numbers, Number Types, Roots, Triangle Ratio's, Triangle Angles, Area, Surface Area and Symmetry, Volume, Percentages, Ratio's, Fractions, Vectors, Circle Angles, Laws, Algebra Rulés, Algebra, Powers, Simplifying, Equations, Graphing, Slope and Translation, Phase Angles, Complex Numbers, Statistics, Lottery Number Predictor, Physical Science.

Personal user £99.95 +VAT

13 · A5

Computing:-

Hardware Devices, Data Structures, Data Files, Binary Burns aust, Binary Arithmetic

Toolbox:-

DC Calculations, AC Calculations, Numbers, Application

Self-Assessment Questions:-

DC. AC. Power. Semi-Conductors. Op-Amps, Digital, Mathematics.

Components and Equipment Picture Dictionary:-

High quality digital camera images and explanatory text.

Education* £299.95 +VAT (*Includes unlimited multi-user site licence.)

Truly interactive PC based courses on CD-ROM for Windows '95, '98, NT and 2000 Visit www.eptsoft.com or telephone for full details.

Tel: +44 (0)1376 51 454 Face 44 (0)870 0509660. Email: info@eptsoft.com. Switch, Delta, Visa and MasterCard ccepted. No additional postage or airmail charges.