
An Introduction
to 68000
Assembly
Language
P.A. & J.W. PENFOLD

AN INTRODUCTION TO
68000 ASSEMBLY LANGUAGE

OTHER BOOKS OF INTEREST

BP147 An Introduction to 6502 Machine Code

AN INTRODUCTION TO
68000 ASSEMBLY LANGUAGE

by

R. A. & J. W. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this
book to ensure that any projects, designs, modifications and/or
programs etc. contained herewith, operate in a correct and safe
manner and also that any components specified are normally
available in Great Britain, the Publishers do not accept respon-
sibility in any way for the failure, including fault in design, of
any project, design, modification or program to work correctly
or to cause damage to any other equipment that it may be
connected to or used in conjunction with, or in respect of any
other damage or injury that may be so caused, nor do the
Publishers accept responsibility in any way for the failure to
obtain specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home -built equipment then that warranty may be void.

© 1986 BERNARD BABANI (publishing) LTD

First Published - August 1986
Reprinted - October 1988
Reprinted - October 1991

Reprinted - December 1994

British Library Cataloguing in Publication Data:
Penfold, R.A.

An introduction to 68000 assembly language.
1. Assembler language (Computer program language)
2. 68000 (Computer program language)
I. Title II. Penfold, J.W.
005.13k QA76.73.S6/

ISBN 0 85934 158 5

Printed and Bound in Great Britain by Cox & Wyman Ltd, Reading

PREFACE

Home computers are equipped with built-in software that
enables them to be easily programmed to do quite complex
tasks. The price that is paid for this programming ease is a
relatively slow running speed, far slower than the speed at
which the computer is really capable of running. Assembly
language programming entails direct programming of the
computer without using a built-in high level language such
as BASIC. This gives a vast increase in running speed, but
is something that can only be undertaken by someone who
has a reasonable understanding of the microprocessor and
some of the other hardware in the computer.

Assembly language programming is not as difficult as one
might think, and once a few fundamental concepts have
been grasped it is actually quite straightforward (although
admittedly never as quick and easy as using a high level
language). This book takes the reader through the basics
of microprocessors and assembly language programming, and
no previous knowledge of either of these is assumed. The
microprocessor dealt with is the 68000 (and its derivatives
such as the 68008), which is widely acknowledged as one of
the most powerful types currently available (possibly the
most powerful of all). This has led to it being used as the
basis of an increasing number of home and business com-
puters. A point well worth making is that the advanced
specification of the 68000 does not mean that it is
correspondingly difficult to program. In fact it is in many
ways more easy to program than the popular 8 bit micro-
processors, and is not one purely the domain of advanced
programmers.

R.A. Penfold

CONTENTS

Page

Chapter 1: THE MICROPROCESSOR 1

Assembly Language 2
The Processor 5
Binary 11
Signed Binary 14
Twos Complement 16
Overflow Flag 17
Binary Coded Decimal 18
Hexadecimal 20
System Operation 22
The Stack 26
Flags 28

Chapter 2: ADDRESSING MODES 30
1. Implicit 30
2. Register Addressing 30
3. Immediate Addressing 31
4. Absolute Short Addressing 31
5. Absolute Long Addressing 32

Address Register Indirect Addressing 32
6. Address Register Indirect with Displacement . 33
7. Address Register Indirect with Index and

Displacement 33
8. Address Register Indirect with Postincrement 34
9. Address Register Indirect with Predecrement . 34

10. Program Counter Relative with Displacement . 35
11. Program Counter Relative with Index and

Displacement 35

Chapter 3: THE INSTRUCTION SET 36

Chapter 4: ASSEMBLERS 84
Assembly Language Formatting 85
Labels 86
Assembler Directives 88

Page

Chapter 5: SIMPLE PROGRAMS 91
Addition 91
Subtraction 93
Multiplication 94
Division 95
Loops 97
Clearing a Section of Memory 98

Chapter 1

THE MICROPROCESSOR

All home and personal computers are equipped to operate
using a high level computer language such as BASIC or
FORTH, and these languages are designed to make program
design as quick and easy as possible. With most high level
languages the programmer uses words that are virtually plain
English, and the computer's built-in software then converts
these into machine code routines that the microprocessor at
the heart of the computer can interpret and act upon. Writing
programs direct in machine code is, on the face of it, rather
pointless, as it is somewhat harder and a considerably slower
process than using BASIC or another high level language to
achieve the same ends.

The advantage of machine code programs is the speed
with which they run. The speed of a machine code program
is, in fact, only limited by the operating speed of the com-
puter's microprocessor, and a computer can perform no
faster than when it is running a machine code program. High
level languages such as BASIC are inevitably much slower
due to the way in which each instruction has to first be
interpreted (converted into machine code) before it can be
executed. In other words, the program is stored in memory
in its BASIC form, and it is only when the program is ran
that each instruction is converted into machine code and
executed. The program is effectively brought to a halt during
the interpreting process, which accounts for more time than
the running of the interpreted machine code. The difference
in speed is probably much greater than most people realise,
and machine code is typically something approaching one
thousand times faster than an equivalent BASIC program.
Action games written in any form of BASIC are usually a
little sluggish due to this lack' of operating speed, especially
when a lot starts to happen at once, but a machine code
equivalent normally appears to operate instantly no matter
how much simultaneous action takes place. With some scien-
tific and business programs BASIC is too slow to be of any use

1

at all, and the use of machine code is mandatory. However,
the speed of machine code is its only advantage, and apart
(perhaps) for the fun of it, there is no point in using machine
code where a program written in a high level language would
be fast enough.

There are alternatives to machine code and high level
interpreted languages such as BASIC, and we will consider
these briefly before moving on to a description of the micro-
processor itself. Some high level languages are compiled rather
than interpreted. The difference is that with a compiled
language the interpreting process is carried out before the
program is run. The program may then run using the compiled
machine code, or using a sort of pseudo machine code which
requires a minimal amount of interpreting. In either case
programs should run at high speed, and should be far easier to
write than equivalent machine code programs. A compiled
language may seem like the ideal solution (and many people
would argue that it is), but languages of this type are generally
much more difficult to use than interpreted languages when
writing and debugging programs, and languages such as BASIC
are probably much better for beginners to programming. A
mixture of BASIC and machine code (with the latter only
being used where high operating speed is essential) can there-
fore be a more practical solution in many cases.

Incidentally, you may come across the terms "source code"
and "object code" occasionally. The former is the program
in its high level language form, and the latter is the machine
code or pseudo machine code produced after interpretation
or compilation.

Assembly Language

The terms "machine code" and "assembly language" seem to
cause a certain amount of confusion, and there seems to be a
general belief that they are different terms for the same thing.
In fact they are very similar, but there is an important differ-
ence. When machine code programming, the instructions for
the microprocessor are in the form of numbers which are
usually from 0 to 255, but in the case of the advanced 68000

2

series of microprocessors the numbers are from 0 to 65535.
In fact some instructions require more than one code number.
This is not a very convenient way of doing things, and it
inevitably involves almost constantly looking up instructions
to find their code numbers.

Assembly language uses a program in the computer to take
three or four letter codes and convert these into the corres-
ponding machine code instruction numbers. Most "assemb-
lers" also provide the programmer with some further
assistance, but not much when compared to a high level
language such as BASIC. The main function of the assembler
is simply to take the three or four letter "mnemonics", con-
vert them to the appropriate numbers, and store these in the
required area of the computer's memory. An assembler is
really the most basic of compilers, but as far as the program-
mer is concerned there is no real difference between assembly
language and machine code apart from programming ease,
and if you can program in one you can also program using the
other.

Of course, the main advantage of using an assembler is that
the mnemonics are chosen to closely relate to the instructions
that they represent. For example, the "Return From Sub-
routine" instruction has "RTS" as its mnemonic, which is
obviously much easier to remember than the machine code
number of 20085. If you intend to do a lot of machine code
programming an assembler could reasonably be considered
essential, since using anything other than a few short machine
code routines is generally rather awkward and inconvenient
with a home or personal computer which was designed primar-
ily for programming in a high level language. This is especially
the case with a computer that has an advanced microprocessor
such as one of the 68000 series, which makes assembly
language programming in many ways a relatively simple task,
but where machine code programming is a very slow and
tedious task indeed. The facilities offered vary somewhat
from one assembler to another, but most give at least some
aid with debugging, although they are nothing like as
sophisticated as the best BASIC languages in this respect.
Some assembly language routines are included in the final
section of this book so that you can try out a few programs,

3

and further information on assemblers and their use is

included in this section. Your 68000 based computer must
be loaded with an assembler in order to run any of these
programs.

One final point to bear in mind is that a high level language
such as BASIC varies only slightly from one computer to
another, and once you have mastered BASIC it is usually not
too difficult to write programs for any computer equipped
with some form of this language. Problems can arise with
the sound and graphics facilities which vary from one
machine to another, giving inevitable variations in the sound
and graphics commands, and some versions are more compre-
hensive than others. However, the language is fundamentally
the same for all the computers that use it. Machine code
programming is identical for any computers that use the
68000 microprocessor (or a derivative) as the central pro-
cessor. Although there are again differences in the sound
and graphics facilities available on various machines, these
do not affect the instructions that are available to the pro-
grammer (although to produce the desired effect it might be
necessary to use a different routine for each machine because
of differences in the supporting hardware for the micro-
processor). The situation is very different when dealing with
a computer that uses a different microprocessor such as the
6502. Apart from the differences in the sound and graphics
facilities, the microprocessor will have different machine code
numbers for each instruction, and probably even different
mnemonics. For instance, the 68000 Return From Subroutine
instruction, as mentioned earlier, has RTS as its mnemonic,
and 20085 is the instruction number. The equivalents for the
popular Z80 microprocessor are RET and 169. Furthermore,
the instruction sets of various microprocessors are substantial-
ly different, as are the registers they contain and the way in
which they handle certain tasks. Obviously all micro-
processors work on the same basic principle, but rewriting a
machine code program to run on a different microprocessor
is not usually just a matter of converting the mnemonics or
code numbers, and changing from programming one type to
programming an alternative device usually involves a fairly
substantial amount of work. In practice this means that you

4

should be able to program any 68000 series based computer
after conquering machine programming for these micro-
processors, but might fmd it difficult to program other
computers using machine code.

Some readers might be confused by references to the
68000 series of microprocessors, rather than just to the 68000.
This is necessary because there are several versions of this
microprocessor, and the Sinclair QL computer for example,
uses the 68008 with its eight bit data bus instead of the
standard sixteen bit type. As far as the assembly language
programmer is concerned this is all of academic importance,
and 68000 assembly language programs should run using any
version of the processor. The 68008 has to deal with 16 bit
words of memory as two 8 bit bytes, but the microprocessor
takes care of this and it is something that is not apparent to
the user.

The Processor

Although a microprocessor is an extremely complex device,
usually containing the equivalent of tens of thousands of
components, as far as the programmer is concerned it can be
regarded as a fairly simple set of electrical circuits known as
"registers" which will perform certain functions if fed with
the appropriate instruction numbers. The registers consist of
one or more circuits known as flip/flops, and these can pro-
duce an output voltage that is either virtually zero, or one
that is typically about 5 volts. From the software point of
view the voltages are not important, and we can think in
terms of "low" or logic 0 if the output of a flip/flop is near
zero volts, and "high" or logic 1 if it is at about 5 volts. A
circuit with an output that can represent just 0 or 1 may not
seem to be very useful, and in isolation such a circuit is not of
tremendous value, but as we shall see later, a number of flip/
flops together can represent large numbers, and can be used to
perform complex calculations etc.

The registers of the 68000 are shown in diagramatic form
in Figure 1, and this diagram may be a little meaningless to
you at this stage. In fact the register set of the 68000 is a little

5

D
O

D
1 D
2

D
3

D
4

D
5

D
6

D
7 A
O

A
l

A
2

A
3

A
4

A
5

A
6

3
1

1
6

1
5

8
7

0

I
I

I
1
1

liI
III

II
III

III
 II

III
 II

 II
T

T
1

P
ro

gr
am

 c
ou

nt
er

It
 I

II
II

 I
I

t
It

i
II

I
iii

i t
ill

 f
lit

t
I)

E
ig

ht
3
2

bi
t d

at
a

re
gi

st
er

s

S
ev

en
3
2

bi
t

ad
dr

es
s

re
gi

st
er

s

A
7

{
U

se
r

S
P

S
up

er
vi

so
r

S
P

T
ra

ce
 m

od
e

bi
t

S
up

er
vi

so
r

st
at

e
bi

t
In

te
rr

up
t m

as
k

bi
ts

Fi
g.

 1
.

T
he

 6
80

00
 r

eg
is

te
r

se
t

T
11

I
X

N
Z

V
C

E
xt

en
d

bi
t

fla
g

Z
er

o
fla

g

O
ve

rf
lo

w
 fl

ag
C

ar
ry

 fl
ag

T
w

o
32

bi
t s

ta
ck

po
in

te
rs

S
ta

tu
s

re
gi

st
er

unusual by conventional standards, and this diagram would
probably be meaningless to someone who is only familiar with
one of the popular 8 bit microprocessors such as the 6502 or
the Z80. Most microprocessors have a register called the
"accumulator", or in some cases there are two of these
registers. The accumulator is an extremely important register
since any manipulation of data (addition, subtraction, etc.)
normally takes place in this register, or to be more accurate,
the result of any data manipulation is placed in this register.
The calculations are actually handled by the arithmetic logic
unit (ALU), but this is something with which the programmer
does not become directly involved. If you give the micro-
processor certain instructions it carries them out and performs
a given task. Exactly how it manages to do this is something
that the programmer does not usually need to understand.

Looking at the register set there is an obvious omission in
that there is no accumulator. In fact the 68000 is a highly
advanced microprocessor which has the eight data registers
instead. These can all operate as accumulators, and can also
act as index registers or counters (something we will consider
in more detail later).

The seven address registers can be used as index registers,
or as straightforward address registers. They are not normally
used to hold data. In order to understand the function of the
various registers it is really necessary to understand, amongst
other things, the basic make-up of a computer. Figure 2 shows
in block diagram form the general arrangement used in a
68000 based computer. The memory is a bank of 16 bit
registers which are used to store both program instructions and
data. The number of registers in the memory block varies
from one computer to another, but the 68000 can operate
with a maximum of 16777216 (the cut down address bus
of the 68008 permits 1048'576 registers to be addressed,
which still permits a massive amount of memory to be used).
The address bus is 24 bits wide (20 bits on the 68008), and
these bits are produced by the program counter (see Fig. 1).
It is the program counter, via the address bus, that selects
the particular memory register that is connected to the micro-
processor. The data bus is used to transfer data between the
microprocessor and the memory block. An important point

8

In
te

rr
up

t
in

pu
ts

M
ic

ro
pr

oc
es

so
r

C
lo

ck

dd
re

ss
 B

u

D
at

a
B

us

C
on

tr
ol

 B
us

Fi
g.

 2
. B

lo
ck

 d
ia

gr
am

 o
f

a
co

m
pu

te
r

In
pu

t/O
ut

pu
t

de
vi

ce
s

M
em

or
y

(R
A

M
 a

nd
 R

O
M

)

to note here is that the data bus is bi-directional, and is used
by the microprocessor to take data and instructions from
memory, and to place data in memory. There are not separate
input and output busses on a microprocessor - the data bus is
used for both types of operation.

Most microprocessors have 8 bit registers, with some
possibly arranged in pairs to effectively form 16 bit registers.
Apart from the status register, all the 68000's registers are 32
bits long. This enables large numbers to be handled much
more easily and rapidly than is possible using an 8 bit micro-
processor, and is certainly a big advantage in many practical
applications. Most of the microprocessors in the 68000 range
have a 16 bit wide data bus, and therefore have to take in and
send out 32 bit chunks of data in two sections to the 16 bit
memory registers. The 68008 has only an 8 bit data bus, and
therefore has to handle 32 bit chunks of data in four sections
(and the memory registers are only 8 bit types). As mentioned
earlier, as far as the programmer is concerned this is only of
academic importance since the microprocessor automatically
takes in or outputs four 8 bit pieces of data, and to a large
extent there is no difference between 68000 and 68008
programs. The hardware is obviously different, but this is
not of importance to the programmer. The 8 bit data bus of
the 68008 does make it somewhat slower in operation than
the devices in the 68000 series which have a 16 bit data bus,
but this is unlikely to be of any significance in practice.

The 68000 does not have to deal with 32 bit blocks of data,
and it can handle data in 8 or 16 bit chunks where this would
be more convenient. A collection of 8 bits of data is normally
termed a "byte", and this is the size in which most micro-
processors handle data. Things are different in the case of the
68000 with its 16 and 32 bit capability, and a different
terminology is needed. The system that seems to have become
established, and the one we will use in this book, is to retain
the word "byte" for 8 bits, and to augment this with "word"
for 16 bits of data, and "long word" to cover 32 bits of data.
The way in which numbers can be represented by a series of
Is and Os is something we will consider shortly.

Returning to Figure 2, the control bus is used to make sure
that all the elements of the system are operating in unison, and

10

that if (say) the microprocessor sends data to a particular
register in memory, that register is ready to receive the data
and is not trying to output data to the microprocessor. All
the lines in the control bus operate automatically, are not
directly controlled by the programmer, and are not something
we need concern ourselves with here.

Binary

The 24 bit program counter can place 16777216 different
output combinations onto the address bus, and it is this that
limits the 68000 to 16777216 memory registers. Each
memory register occupies an "address", which is merely a
number from 0 to 16777216, and each of the output combina-
tions of the program counter corresponds to one of these
addresses. Therefore, by placing each bit of the program
counter at the appropriate state, the microprocessor can read
the contents of any memory register, or can write data to that
register, depending on the type of instruction it is executing.
In order to undertake machine code or assembly language
programming it is essential to understand the way in which the
bits of the address bus (and the data bus) are used to represent
a number.

The numbering system we normally use is commonly called
the decimal system and is, of course, based on the number 10.
There are ten single digit numbers from 0 to 9. This system of
numbering is not very convenient for an electronic circuit in
that it is difficult to devise a practical system where an output
has ten different voltage levels so that any single digit decimal
number can be represented. It is much easier to use simple
flip/flops which have just two output levels, and can only
represent 0 or 1. However, this bars such circuits from
operating directly in the decimal numbering system. Instead,
the binary system of numbering is utilised.

This system is based on the number 2 rather than 10, and
the highest single digit number is 1 rather than 9. If we take
a decimal number such as 238, the 8 represents eight units
(10 to the power of 0), the 3 represents three tens (10 to the
power of 1), and the two represents 2 hundreds (10 to the

11

power of 2 or 10 squared). Things are similar with a binary
number such as 1101. Working from right to left again, the
1 represents the number of units (2 to the power of 0), the 0
represents the number of twos (2 to the power of 1), the next
1 represents the number of fours (2 to the power of 2), and
the final 1 represents the number of eights (2 to the power
of 3). 1101 in binary is therefore equivalent to 13 in decimal
(1 +0+4+8 = 13).

The table given below shows the number represented by
each digit of a 16 bit number when it is set high. Of course, a
bit always represents zero when it is set low.

Bit 0 1 2 3 4 5 6

I I I I I I I

1 2 4 8 16 32 64

Bit 7 8 9 10 11 12

I I I I I I

128 256 512 1024 2048 4096

Bit 13 14 15

I I I

8192 16384 32768

Using 16 bits any integer from 0 to 65535 can be represented
in binary fashion, or using 8 bits any integer from 0 to 255
can be represented, and this exposes the main weakness of the
binary numbering system. Numbers of modest magnitude are
many binary digits in length, but despite this drawback the
ease with which electronic circuits can handle binary numbers
makes this system the only practical one at the present time.
With its 32 bit registers the 68000 can actually handle very
large numbers without difficulty (numbers in excess of 1000
million in fact).

Addition of two binary numbers is a straightforward
business which is really more 'simple than decimal addition.
A simple example follows: -

12

First number 11110000

Second number 01010101

Answer 101000101

As with decimal addition, start with the units column and
gradually work towards the final column on the left. In this
case there is 1 and 0 in the units column, giving a total of 1 in
the units column of the answer. In the next column two Os
give 0 in the answer, and the next two columns are equally
straightforward. In the fifth one there are two Is to be
added, giving a total of 2. Of course, in binary the figure 2
does not exist, and this should really be thought of as 10 (one
2 and no units), and it is treated in the same way as ten in
decimal addition. The 0 is placed in the answer and the 1 is
carried forward to the next column of figures. The sixth
column again gives a total of 10, and again the 0 is placed in
the answer and the 1 is carried forward. In the seventh
column this gives a total of 3 in decimal, but in this binary
calculation it must be thought of as the binary number 11
(one 2 and one unit). Therefore, 1 is placed in the answer
and 1 is carried forward. In the eighth column this gives an
answer of 10, and as there are no further Columns to be
added, both digits are placed in the answer.

Adding two 8 bit binary numbers together produces a
slight complication in that, as in this case, the answer is some
9 bits long. When a data register is used to add two numbers
it cannot always accommodate the extra bit when there is a
final carry -forward, but the 1 in the last column is not simply
lost (which would obviously give an incorrect answer and
would be unacceptable). Instead, the carry forward is taken
to one bit of the microprocessor's status register. Not
surprisingly, this is called the carry or "C" register. Like the
other status registers this is used to control conditional
instructions (i.e. if the carry bit is set high do this, if it is
not do that). Anyone who has done some BASIC program-
ming should be familiar with conditional instructions in the
form of BASIC IF . . . THEN or IF . . THEN . . . ELSE
instructions. There are other types of instruction which can

13

produce a carry forward, and these normally activate the
carry register (or carry "flag" as it is often termed) when
appropriate.

Signed Binary

The binary system described so far, which is often called
"direct binary", is inadequate in many practical applications
in that it is unable to handle negative numbers. One way
around the problem is to use "signed binary" numbers where
the first bit is used to denote whether the number is positive
or negative. The convention has the first bit as a 0 for
positive numbers and as a 1 for negative numbers. With this
system the normal nunther range of 0 to 255 is replaced with
a range of -127 (11111111) to +127 (01111111). The
problem is solved only at the expense of reduced maximum
magnitude for a given number of bits. Note though, that
where two or more bytes (or words, or long words) are used
to form a long number, only the most significant bit of the
high byte needs to be used to indicate whether the number
is positive or negative, and it is not necessary to use the most
significant bit of each byte in the number to do this.

Obviously a certain amount of care needs to be exercised
when dealing with binary numbers and you must know
whether a number is in signed or unsigned binary. For
example, 10000001 could be 129 (unsigned) or -1 (signed).
In this basic form the signed binary system has practical
limitations in that it can represent binary numbers without
any difficulty, but calculations fail to give the right result,
which makes the system of little practical value unless it is
modified to correct this anomoly. It is not used with the
68000 microprocessor in the basic form described above.

To illustrate the problem, consider the calculation shown
below: -

16 00010000

-5 10000101

Answer (-21) 10010101

14

Adding 16 and -5 should obviously give an answer of 11 and
not -21.

An alternative and related method of handling negative
numbers is the "ones complement" system. Here a negative
number is the complement of the positive equivalent. For
instance, +16 in binary is 00010000, and -16 is therefore
11101111. In other words, the ones are simply changed to
zeros and the zeros are changed to ones. This gives better
results when used in calculations, as demonstrated by the
example given below.

16 00010000

-5 11111010

Answer (266) 100001010

This answer may seem to be less use than the one obtain-
ed using ordinary signed binary, and the margin of error is
certainly greater, but this depends on how the answer is
interpreted. The first point to note is that the positive
number starts with a zero and the negative number starts with
a 1. Provided that sufficient digits are used this will always
be the case, and in this respect the system is not much differ-
ent to ordinary signed binary. The answer is completely
wrong of course, but if the carry is ignored the answer is much
closer to the right result. It then becomes 10 rather than 11.
So what happens if we try another example and again ignore
the carry in the answer?

32 0010000

-4 1111011

Answer (27) 00011011

As before, the answer is wrong, but is one less than the right
answer (which is of course 28 in this case).

15

Twos Complement

Clearly this system can be made to operate properly, and it is
just a matter of finding some way of correcting the answer.
The standard method used with most microprocessor, includ-
ing the 68000 is the "twos complement" system. This differs
from the ones complement system in that once the comple-
ment of a number has been produced, one is added to it.
Therefore, rather than -5 being represented as 11111010, it
becomes 11111011. If we now apply this to one of the
examples given earlier we obtain the following result.

16 00010000

-5 11111011

Answer (11) 00001011

This time, provided we ignore the carry, we have the
correct answer of 11. This is a convenient way of handling
subtraction (for the microprocessor anyway) since subtrac-
tion can be handled by the same circuit that handles
addition. To handle a sum such as 45 - 25 the figure of 25
is converted into (twos complement) -25, and then added
to 45. In other words, rather than calculating the sum in the
form 45 - 25 the microprocessor calculates it as 45 + (-25),
and either way the answer is 20.

The table given below shows some sample numbers in twos
complement form, and should help to clarify the system for
you. Note that, like ordinary signed binary, the first digit is
used to indicate whether the number is positive or negative.

Number Positive Negative

0 00000000 00000000
1 00000001 11111111
2 00000010 11111110
3 00000011 11111101
4 00000100 11111100
32 00100000 11100000

16

Number Positive Negative

126 01111110 10000010
127 01111111 10000001
128 010000000 10000000

Another point to note is that with 8 bit twos complement
numbers the range is from +127 to -128.

So far we have only considered calculations where the
answer is a positive quantity, but the twos complement
system works properly if the answer is negative. The following
example demonstrates this point: -

16 00010000

-31 11100001

Answer (-15) 11110001

The system also functions correctly when two negative
numbers are added together, as demonstrated by this
example:-

-4 11111100

-8 11111000

Answer (-12) 11110100

Overflow Flag

When using the twos complement system there is a slight
problem in that a number can be accidentally turned into a
negative quantity. The simple calculation shown below
demonstrates this point: -

64 01000000

127 01111111

Answer (-65) 10111111

17

If taken as an ordinary 8 bit direct binary number this does
give the right answer, but in the twos complement system the
carry forward from bit 6 to bit 7 has changed the sign and
magnitude of the number so that an answer of -65 instead
of 191 is obtained (we are only dealing with 8 bit numbers
here, but the same thing could obviously happen with 16 or
32 bit numbers).

This is termed an "overflow", and it is handled by micro-
processors such as the 68000 by a flag called (appropriately)
the overflow flag. In the diagram of Figure 1 this is given its
abbreviated name, the "V" flag. Like the carry flag, there are
special instructions connected with this flag, and these can
be used to prevent erroneous results from being produced, or
to give warning that an error has occurred. These flags are
normally at 0 and are set by an overflow or a carry forward.
They are automatically reset by some of the microprocessor's
instructions, and this helps to streamline things so that the
system operates rapidly and uses as little memory as possible.
The 68000 does not have instructions to specifically set or
reset flags of the status register.

At this stage it is probably best not to go into any more
detail about binary calculations and the way they are handled
by microprocessors. It is a complicated subject, and it is

probably clarified most easily by trying out a few programs
which demonstrate the techniques involved. Some practical
examples that can be run on a 68000 based computer loaded
with a suitable assembler program are given later in this book.
Even if you can only understand direct binary, provided you
also understand the main principles of microprocessors you
should be able to run and understand some simple assembly
language routines.

Binary Coded Decimal

The 68000 can use another form of binary known as "binary
coded decimal", or BCD. This is perhaps less frequently used
than the twos complement binary system described above, and
it has the disadvantages of being relatively slow and unecono-
mic on memory. However, it can be used to give a high degree

18

of precision, and it can be advantageous in certain applications.
It is certainly worthwhile considering this system briefly here.

With BCD four binary bits (often termed a "nibble") are
used to represent each decimal digit. The system operates in
the manner shown below:-

Decimal Number Bit Code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

The binary number is in fact just the normal binary representa-
tion of the number concerned, and it is only for numbers of
more than 9 that the system is different. The binary codes
from 1010 to 1111 are unused, and all two digit decimal
numbers require 8 bit binary codes. For instance, the decimal
number 64 would be represented by the 8 bit BCD code
01100100. The first four bits (0110) represent the 6, and the
second four bits (0100) represent the four. Each byte can
therefore represent any two bit number from 0 to 99, which
compares to a range of 0 to 255 for a straightforward 8 bit
binary number. This helps to contribute to the relative
inefficiency of the BCD system. Of course, when a nibble is
incremented by 1 from 1001 (9 in decimal) it does not go to
1010 (which is an illegal code in BCD), but cycles back to
0000. A carry forward of 1 should then be taken to the next
BCD nibble.

With this system there is no difficulty in handling large
numbers, and it is just a matter of using several bytes to
accommodate the required number of digits. Negative
numbers and decimal points can also be handled with ease by
this system, but this requires several additional digits. This

19

information is usually carried in the most significant bits (i.e.
at the left-hand end of the number). Some microprocessors
handle BCD by performing calculations in ordinary binary
and then adjusting the result using a special instruction. The
68000 performs calculations directly in BCD.

Hexadecimal

While on the subject of numbering systems it would perhaps
be worthwhile dealing with another system which you will
inevitably come across quite frequently, and this is the
hexadecimal system. There is in fact yet another system
known as octal which, as its name suggests, is based on the
number 8. Octal seems to have fallen from favour in recent
years, and as it is something you are not likely to encounter
these days we will not consider this system here.

A problem with binary numbers is that they tend to have
many digits with each digit being either 0 or 1, which makes
them rather difficult to deal with in many circumstances. For
instance, dealing with large addresses or microprocessor
instruction codes in their binary form would probably be
beyond most people's ability. On the other hand, binary
numbers give a graphic representation of the state of each bit
in the registers of the microprocessor, and this is something
that is often important. Decimal numbers are easier to use in
that they are much shorter and are in a familiar form. Con-
verting a decimal number into an equivalent binary one is
not a very quick and easy process, especially where large
numbers are concerned, and this is inconvenient when it is

necessary to visualise things on a bit by bit basis.
The hexadecimal system gives the best of both worlds in

that it takes just a few digits to represent even quite large
numbers, and is in fact slightly better than the decimal system
in this respect. On the other hand it is easy to convert
hexadecimal to binary, and it is fairly easy to use when
operating at bit level. The hexadecimal system is based on the
number 16, and there are sixteen single digit numbers.
Obviously the numbers we normally use in the decimal system
are inadequate for hexadecimal as there are six too few of

20

them, but this problem is overcome by augmenting them with
the first six letters of the alphabet. It is from this that the
system derives its name. The table given below helps to
explain the way in which the hexadecimal system operates.

Decimal Hexadecimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
16 10 00010000
17 11 00010001
163 A3 10100011

What makes hexadecimal so convenient is the way in which
multidigit numbers can be so easily converted into binary
form. The reason for this is that each hexadecimal digit
represents four binary bits. Take the hexadecimal A3 in the
above table for instance. The digit A represents 1010 in
binary, and the digit three converts to 0011. A3 therefore
represents 10100011 in binary. You may find that you can
memorise the four bit binary number represented by each of
the sixteen hexadecimal digits, but a little mental arithmetic
is all that is needed to make the conversion if you cannot.

The digits in a hexadecimal number represent, working
from right to left, the number of units, 16s, 256s, 4096s,
65536s, 1048576s, 16777216s and 268435450s (approx.).

21

You are unlikely to use hexadecimal numbers of more than
eight digits in length, and mostly you will deal with hexa-
decimal numbers of only five digits or less.

System Operation

If we now return to the block diagrams of Figures 1 and 2,
you should begin to get the idea of how data is moved around
the system and processed. At switch -on the microprocessor
has all the registers set to zero, including the program counter
which uses the numbers in the bytes at the bottom of the
address range to provide the start address of the computers
operating system program. This start-up procedure is not
normally of interest to the machine code or assembly language
programmer, since few people design their own systems, and
it is certainly only of academic interest to anyone writing
assembly language programs for a home or personal computer.
The program you write will normally go into a section of
memory occupied by random access memory (RAM). This is
memory where the microprocessor can set its contents at any
desired 8 or 16 bit binary number (depending on the version
of the 68000 in use), and then read back that number at a
later time. The contents of RAM can be changed an unlimited
number of times, but reading the contents of RAM does not
destroy the data there or affect it in any way. However, when
the computer is switched off the contents of RAM are lost.

Software such as the computer's operating system and
BASIC interpreter are usually in read only memory (ROM)
which retains its contents after the computer has been switch-
ed off (although the BASIC interpreter or other language
does actually have to be loaded from tape or disc on a few
home computers, and this is quite common with personal
computers). The contents of ROM are fixed, and writing to
ROM does not alter its contents. ROM is not an area of
memory that is normally used by the programmer, the excep-
tion being when there are useful routines there that can be
utilized.

The block marked input/output in Figure 2 includes such
things as the keyboard and the chip which produces the

22

television picture. The 68000 series of microprocessors all
use memory mapped input/output. In other' words, the
microprocessor reads data from or writes data to input/output
devices just as if they were RAM, and they are addressed in
exactly the same way. This has the advantage of making
programming more straightforward in that using a common
set of instructions for memory and input/output operations
gives fewer instructions to contend with. A minor drawback
is that some of the memory address range is occupied by the
input/output devices, but this does not normally seriously
deplete the maximum amount of memory that can be includ-
ed. This is especially so in the case of the 68000 with its
massive address range of over 16000000, and is hardly likely
to be a problem with the 68008 and its address range of over
1000000. Incidentally, when dealing with memory it is
common for the term "k" to be used, and this refers to the
kilo -byte of memory, which is actually 1024 bytes. A term
that is often used with the 68000 series and other advanced
microprocessors is "M", or mega -bytes of memory. This is
1048576 bytes or words of memory, and the 68000 therefore
has a 16M address range.

With the aid of the computer's operating system and
either the BASIC interpreter or an assembler, the machine
code program is placed in a suitable section of memory, and
the program is run by directing the microprocessor to the
appropriate address using the appropriate instruction. Exactly
how the program is run depends on whether it is true machine
code or assembly language. With the QL computer for
example, machine code is run from its Super BASIC using the
CALL instruction which can include data to be placed in some
of the microprocessor's registers, as well as the start address
of the routine. With assembly language things are dependent
upon the exact facilities that the assembler provides, but the
subject of assemblers is something that will not be considered
in more detail until the final section of this book.

Once into the machine code or assembly language program,
by whatever means, the program then operates by fetching an
instruction from the specified start address of the program,
and then shuffling data around its registers and the memory
as it goes through the set of instructions. This may seem a

23

rather vague description of things, but if you can grasp the
basic concept of instructions and data being taken from
memory, or possibly input/output devices, with the data
being processed in some way by the microprocessor before
being sent back to a memory location or an output device,
then you should not find it difficult to understand a few
simple machine code programs 'and then gradually progress to
more complex ones. If you cannot see how the system
operates overall, individual machine code instructions could,
to say the least, be rather difficult to understand, and even
simple programs would certainly be impossible to follow.

A simple example of how the system operates should now
be quite easy for you to understand. We will assume that
the program must take a number from one memory location,
then add this to a number taken from a second address, and
then finally place the answer at a third address. There is more
than one way of going about this, and the differences occur
due to the various addressing modes that the 68000 can use.
In other words, we can place the numbers at virtually any
addresses we like, and by using the appropriate addressing
mode (or modes) and instructions the program can be made
to obtain the numbers from the correct addresses. Addressing
modes is a fairly complex subject which is considered in
detail in a later chapter of this book, and it will not be
considered any further here. A simple addition program
could run along the following lines:-

Move immediate data to register DO
Add immediate data to register DO
Move immediate data to register AO
Move contents of DO to address stored in AO
Return from subroutine

The first instruction takes the data in the byte or bytes of
memory immediately following the instruction and moves it
to data register DO. This is known as immediate addressing
and is the most simple type. The data following the instruc-
tion is the first number in the calculation. The next instruc-
tion adds the immediate data (the second number in the
calculation) to the contents of data register 0. The next

24

instruction loads address register AO with the immediate data,
which in this case is the address where the result of the
calculation is to be stored. The next instruction moves the
contents of DO (the result of the addition calculation) to the
address stored in AO. Finally, the return from subroutine
instruction hands control back to the computer's operating
system, and terminates the program in a way that will not
crash the computer.

Something that will probably have become apparent is
that it takes a large number of machine code or assembly
language instructions to achieve quite simple tasks. When
programming in a language such as BASIC each instruction is
converted into a number of machine code instructions by the
interpreter. This is one of the factors which makes writing
machine code programs a relatively slow affair.

Something that is less apparent is that most instructions
have a large number of variations. The move instruction for
example, can move data from practically any desired location
to virtually any desired destination with a variety of addressing
modes to choose from. It is also necessary to specify whether
the data is a byte, word, or long word. When using an
assembler things are relatively straightforward, with an
instruction such as: MOVE DO,(A0) being used. This simply
moves the contents of register DO to the memory location
addressed by register A0. When using machine code it is
necessary to work out the state of each bit in the code
number, choosing the states that give not just the required
instruction but also the required variation, and then enter
this into the computer. This helps to make machine code
programming a very difficult and long process with any
68000 series microprocessor, and is the reason that the use
of an assembler has to be recommended for anyone writing
more than just a few very short machine code routines.

It should perhaps be explained that although the address
registers are 32 bit types, 8 bits are left unused when they
are used to hold 24 bit addresses (or 12 bits are left unused
in the case of the 68008 with its 20 bit address bus). It is
bits 24 to 31 (or 20 to 31 for the 68008) that are left unused.
Similarly, if a data register is used to hold a word bits 16 to
31 are not used, and bits 8 to 31 are not utilized if a data

25

register is used to hold a byte.

The Stack

There are a couple of registers in the 68000 (and shown in
Figure 1) which we have not yet considered, and we will take
a look at the function of these now. These are the two stack
pointers .(address register A7), one of which is used in the user
mode while the other is utilized in the supervisor mode. The
idea of these two modes is for the supervisor one to be used
by the operating system, and the user mode to be used for any
other programs. A few of the 68000 instructions are privileg-
ed and are only available in the supervisor mode. There are
output terminals on the microprocessor which indicate its
operating mode and can be used to disable hardware in the
user mode so as to restrict user access to areas of memory
or input/output devices (restrict rather than prevent access
since it is usually possible to call operating system routines
which make use of the protected memory or other hardware).
This is a subject with which you do not really need to become
deeply involved at this stage. It is acceptable for the two
stack pointers to have the same register number (A7) since
only one or the other can be used at one time, depending on
which operating mode the microprocessor is set to.

So far we have only considered the reason for having two
stack pointers, and not the purpose of these and the stack
itself. The purpose of the stack is to act as a convenient place
for temporary data storage, and some microprocessors have
the stack as an internal part of the microprocessor. This is
often termed a "hardware stack". This is in many ways the
most elegant solution to the problem, and it has the advan-
tage of high speed. It has the disadvantage of giving only a
relatively small number of registers, and does of course add
complexity to the microprocessor.

The 68000, in common with most general purpose micro-
processors, uses the alternative of a "software stack". This is
just an area of memory which is reserved for use as the stack,
and the system must, of course, provide RAM at the relevant
range of addresses. The stack pointer points to an address in

26

this block of RAM, and with the 68000 the stack can be any
section of memory that provides RAM. The stack uses the
"last in - first out" or LIFO system. In other words, each
time data is placed onto the stack the stack pointer is incre-
mented by 1, and each time data is taken from the stack the
pointer is automatically decremented by one. This is often
looked on as being analagous to a stack of plates, with plates
being loaded one on top of the other, building a pile from
the bottom upwards, and then removing plates from the top
of the pile and working downwards. This analogy does not
work too well with the 68000 as its stack pointer counts
downwards as the stack is enlarged. However, the last in -
first out doctrine still applies. The fact that the stack grows
downwards is really only of academic importance anyway,
since the stack pointer increments and decrements
automatically.

Apart from use as a convenient temporary data store, the
stack is also used when subroutines and interrupts are
implemented. We will not consider these in detail here, but
in both cases the microprocessor breaks out of its normal
operating routine, and branches off into another routine.
With an interrupt the signal to the microprocessor that it
must break out of its normal routine is provided by a hard-
ware device via the 68000's three interrupt inputs. A
typical application where interrupts are used is the timer that
is a feature of many home -computers. Here a counter circuit
generates an interrupt (say) every 10 milliseconds, and a soft-
ware routine is used to increment by one the number stored
at a set of memory locations. With suitable manipulation the
number in these RAM locations can be converted into suitable
data for a minutes and seconds display, or even for a real-time
clock. The number can be POKEd to any desired figure so
that the "clock" can be set at the required time. If the timer
is to achieve a reasonable degree of accuracy it is important
that the microprocessor carries out the software routine at
each request without waiting to complete other tasks first.
It is for this type of application that interrupts are ideal.

The problem with the use of interrupts is that the micro-
processor has to be able to break back into its main routine
again after it has finished the interrupt routine. To facilitate

27

this it is necessary to store on the stack the contents of any
registers that are in use when the interrupt is generated. After
the interrupt has been serviced the data on the stack is
returned to the registers from where it was obtained so that
the program can continue from where it left off. The general
situation is the same when a subroutine is called, and a sub-
routine could be regarded as a software generated interrupt.

When writing programs for home -computers it is unlikely
that you will need to deal with interrupts, and they are
principally used as part of the computer's operating system
and in a few specialised add-on hardware applications. A
detailed description of the 68000's sophisticated system of
interrupts would certainly be out of place in an introductory
book such as this one. However, it is important to realise that
interrupts are occurring while machine code programs are
running, since in some applications the disruption caused by
interrupts can prevent proper operation of the program. This
occurs where timing of the program is critical, and the delays
produced by interrupts prevent the computer from providing
some event at strictly regular intervals. When a program of
this type is running it is necessary to disable interrupts.

Flags

The 68000 has status flags apart from the carry and overflow
flags, and one of these is the "zero" bit. This is used by con-
ditional instructions which test to see whether or not this bit
is set. As its name suggests, this bit is set when the result of
an operation by the arithmetic logic unit has produced zero as
the answer.

The negative flag or N bit is equally straightforward, and
this bit is set when the result of an operation by the arithmetic
logic unit gives a negative result.

There are three interrupt mask bits in the status register,
and these are used to determine which devices connected to
the interrupt inputs are able to generate interrupts and which
are not. As mentioned earlier, there are three interrupt inputs
on the 68000, and the idea is for each device connected to
these inputs to produce a different binary pattern on them.

28

The lower the number, the higher the priority of the inter-
rupting device. Most microprocessors have a system of
interrupts that enables devices which must be serviced most
urgently to take precedence over less important devices, but
the seven tier system of the 68000 is far superior to most
other microprocessors. Note that only seven and not eight
different levels of interrupt priority are available since there
must be an inactive state.

The number placed in the interrupt mask bits enables
devices having and interrupt priority level equal to or less
than that number to generate interrupts. For instance, placing
101 (5 in decimal) in the interrupt mask bits enables devices
of priority level 5 or less to generate interrupts. Placing all
three masking bits at zero therefore disables interrupts.

The "S" bit of the status register selects the operating
mode, and is set at 1 in the supervisor mode and 0 in the user
mode.

The "X" or extend bit is a form of carry flag which is used
in microprecision arithmetic, and is something which goes
beyond the scope of this book.

An advanced feature of the 68000 is its trace mode, and the
device is forced into this mode by setting the "T" bit or trace
flag to 1. This is again something which goes beyond the
scope of this book, but the idea of the trace mode is to enable
the microprocessor to go through a program one instruction
at a time, enabling the contents of the registers to be examined
between instructions. This is something which aids the debug-
ging of programs, and which can be achieved with virtually
any microprocessor using a suitable monitor program, but it
is something which is more easily implemented with the 68000
and its trace mode.

29

Chapter 2

ADDRESSING MODES

Addressing is the means by which the processor determines
the location of the data, or operand, on which the instruc-
tion is to operate. Some instructions (for example, MOVE)
require two addresses, the source location and the destination
location.

Most instructions can use more than one addressing mode.
Where two addresses are required, a different mode of address-
ing may be used for each.

The MC68000 has 11 addressing modes.

1. Implicit

In fact, these instructions require no operand as such, though
they may store or retrieve data from the stacks. Examples
are NOP and RESET, which require no operand at all, and
RTE, RTS, RTV and the TRAP instructions, which use one
or other of the stacks.

Also in this category are those instructions which make
implied reference to one of the 68000 registers. These include
Branch and Jump instructions (which alter the program
counter), and some MOVE instructions which alter specific
registers.

In general, instructions which use implicit addressing can
only use implicit addressing.

2. Register Addressing

This mode is used to specify an operand residing in one of
the 68000's internal registers. It is subdivided into two
self-explanatory modes, Data Register Direct, and Address
Register Direct.

Most 68000 instructions allow Register addressing, but
there are a few which can only use registers as operands.

30

These are EXG (exchange registers), EXT (sign extend), and
SWAP (swap register contents). Certain MOVE instructions
can also only use registers as operands.

There are also some instructions which require that one of
the operands be specifically either an address or a data register.
For example, the ADD instruction requires one operand to be
a data register, and the ADDA instruction requires one oper-
and to be an address register.

3. Immediate Addressing

In this mode, the data follows immediately after the opcode
within the program in memory. This addressing mode is used
to include constant data within programs.

The 68000 has instructions for immediate data which can
be of byte, word (two byte), or long word (four byte) length.
This is indicated by appending B , W , or L to the instruc-
tion, for example ADD.L or SUB.B. Word length is assumed
if no indication is given.

The 68000 also has a 'quick' immediate addressing mode
for small operands. In these, the data is actually contained
within the opcode. ADDQ and SUBQ can add and subtract
numbers from 1 to 8. MOVEQ can be used to move
numbers from 0 to 255 (or --128 to +127) in 2's comple-
ment) to a register or memory location.

In assembly language, immediate addressing is indicated by
preceding the data with a 'hash' sign (#), thus:-

MOVE #2000,D3

This instruction would load 2000 (decimal) into the register
D3.

4. Absolute Short Addressing

Absolute addressing means that the address.of the data follows
immediately after the opcode in memory.

In absolute short addressing, the low -order half of the
address follows directly after the opcode in memory. The

31

high -order half of the address is assumed to be either 0000 or
FFFF (hex.), depending on whether bit 15 is 0 or 1. This
means if the two bytes following the opcode contain 0000 to
7FFF, this will be the address of the data, but if they con-
tain 8000 to FFFF. the addresses accessed will be from
FFFF8000 to FFFFFFFF. Thus this mode can address the
top 32K bytes of memory, and the bottom 32K. This is
called 'sign extension', because bit 15 would be the sign bit
in 2's complement representation.

It should be noted that the 68008 processor used in the
Sinclair QL can only address memory locations up to FFFFF
hex. Also, the bottom 32K of memory in the QL is occupied
by the system ROM.

This mode of addressing will be used automatically by an
assembler when appropriate. It saves memory space and time
compared to absolute long addressing.

5. Absolute Long Addressing

In this mode, the four bytes after the opcode contain the
addressing where the data is to be found. This mode allows
the processor to access any byte in memory, though it is not
used where absolute short addressing can be used. Again, it
must be remembered that the 68008 can only use addresses
up to FFFFF hex.

Address Register Indirect Addressing

In indirect addressing, an address in memory follows the
opcode, and the contents of this memory location are the
address from which the data must be fetched. The 68000
series microprocessors do not provide true indirect address-
ing (in fact very few processors do), but they do allow the
address of the data to be held in one of the processor's
address registers.

In assembly language. register indirect mode is indicated
by enclosing the address register to be used in brackets,
thus:-

MOVE DI A5)

32

This instruction means 'move the contents of register Dl
to the memory location addressed by A5'.

6. Address Register Indirect with Displacement

This is similar to address register indirect, but the address in
the register is modified by an offset which follows the opcode
in program memory, and is therefore normally a constant
offset. This mode is useful when we want to access a
particular item in an array or list. The base address of the
array is contained in the address register, and the various
elements can be accessed by the offsets following the
instructions.

In assembly language, this mode is indicated by placing
the offset before the address register (which is enclosed in
brackets, as for register indirect), thus:-

MOVE 40(A5),D0

This instruction means 'move the contents of the memory
location in register A5+40 bytes to register DO'.

Note that this mode does not alter the contents of the
address register.

7. Address Register Indirect with Index and Displacement

This is a further extension of the preceding mode, the address
of the data being the sum of three elements; the contents of
an address register, the contents of an index register (which
can be any data or address register), and a displacement
included in the instruction.

This is used for similar purposes to the preceding mode,
but it is more useful for structured data. The address
register can contain the base address of the data, the index
register can be used to point to a particular record in the
data, and the displacement to a particular part of the record.

The assembly language form is a fairly obvious extension
of the foregoing modes, with the address register and the index

33

register included together in the brackets, thus:-

MOVE 40(AO,A 1),D0

This means `move the contents of memory location (AO+
A 1 +40) to DO.

8. Address Register Indirect with Postincrement

This mode is used when accessing successive bytes in memory,
as for example when printing a string or moving a block of
memory, or when, accessing successive elements in an array of
data.

The address in the base register can be incremented by one,
two, or four bytes after each operation, depending on whether
the byte, word or long word form of the instruction is in use.

This mode is indicated in assembly language by placing a
+ ' sign after the closing bracket around the address register,

thus:-

MOVE.B (Al)+,D1

This instruction means 'load the contents of the memory
location addressed by register Al into register D1, then
increment Al by 1'.

9. Address Register Indirect with Predecrement

This is essentially similar to the foregoing, but is used to move
backwards through memory rather than forwards. This may
be preferred for some operations, and is essential for moving a
block of memory downwards (i.e. to lower addresses) when
the new addresses overlap the old.

In this case, the contents of the address register are modi-
fied before the operation is carried out rather than after. This
order of postincrement but predecrement is used to maintain
consistency with the way in which the 68000 stack pointers
operate .

34

This mode is indicated in assembly language by putting a
sign before the brackets enclosing the address register,

thus:-

MOVE.L -(A I),D1

This instruction means 'decrement the contents of register
Al by 4 (long word form) then move the contents of the
memory location addressed by Al to register D1'.

10. Program Counter Relative with Displacement

This is really a special case of register indirect addressing, but
using the program counter rather than one of the address
registers. This means that a program can run correctly
wherever it is loaded in memory, because all addresses can be
specified relative to the current position in the program. In
other words, it is an aid to writing 'position independent
code'.

This mode is similar to register indirect with displacement,
in that the instruction contains a constant displacement after
the opcode.

The assembly language form is also similar, but with 'PC'
in place of an address register in the brackets, thus:-

MOVE 20(PC),D2

11. Program Counter Relative with Index and Displacement

This is an extension to the previous mode, and is provided for
the same reasons. It is essentially similar to register indirect
with index and displacement, but using the program counter in
place of an address register.

The index register can be any of the address or data
registers.

The allowable assembly language forms for this mode vary
somewhat between different assemblers, and it would
probably not be helpful to give examples here. The documen-
tation with an assembler should include this information.

35

Chapter 3

THE INSTRUCTION SET

In this chapter, all the 68000 instructions are described.
The address modes available for each instruction are given in
chart form, except where only one mode is available (mostly
instructions using implied addressing).

Charts of opcodes are not given. The way in which the
registers, for instance, are coded within instruction codes,
makes the opcodes very tricky to calculate, even for experts.
Hand assembling for 68000 -series microprocessors is simply
not a practical proposition.

Where the result of an operation has to be stored, it is to
be assumed that it is stored in the destination data location
unless otherwise indicated.

ADD BINARY CODED DECIMAL
Mnemonic - ABCD

This instruction adds the source data and the value of the
extend flag X to the destination data, using binary coded
decimal (BCD) arithmetic.

This instruction can use either register direct addressing or
address register indirect addressing, but both operands must
use the same mode. It can therefore be used for register -to -
register addition, or memory -to -memory addition. Only the
least significant 8 bits of the data are affected.

When address register indirect addressing is used, the
addresses in both registers are decremented before the
addition. This is to simplify multi -byte BCD arithmetic.
Strings of BCD digits are normally stored with the least
significant digit at the highest memory address.

The carry (C) and extend (X) flags are set if a decimal
carry is generated, and are cleared otherwise. The zero (Z)
flag is cleared if the result is non -zero, unchanged otherwise.
Note this: the zero flag is not changed if the result is zero.
In multiple precision arithmetic, the zero flag should be set

36

first. If any part of the result is non -zero, the flag will be
cleared, otherwise it will remain set. The N and V flags are
undefined.

ADD BINARY
Mnemonic - ADD

This instruction adds the source data to the destination data,
storing the result in the destination. One of the operands for
this instruction must be a data register. All address modes
except implied can (in general) be used for the other operand,
but it must be remembered that address registers cannot
handle byte -size data (see charts).

The C and X flags are set if a carry is generated and cleared
otherwise. The Z flag is set if the result is zero and cleared
otherwise. The N flag is set if the result is nIgative and cleared
otherwise. The V flag is set if an overflow occurs and is
clearq.d otherwise.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect

37

Address Mode Source Destination
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

ADD ADDRESS
Mnemonic - ADDA

This is a special form of the ADD instruction to allow a
source operand to be added to a specific address register.
All address modes are allowed for the source operand.
Note that this instruction does not affect any of the status
flags.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

ADD IMMEDIATE
Mnemonic - ADDI

This instruction performs decimal addition between immediate
data and the source operand.

38

Address Mode Source Destination
Data register direct x
Address register direct
Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with offset x
Register indirect with index x
Absolute short x
Absolute long x
P.C. relative with offset
P.C. relative with index
Immediate x

The effect on status flags is the same as for ADD.

ADD QUICK
Mnemonic - ADDQ

This is a special form of immediate -addressing addition for
small source operands (i.e. 1 to 8). This form has the advan-
tage of being faster and using less memory space.

Address Mode Source Destination
Data register direct x
Address register direct x
Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with offset x
Register indirect with index x
Absolute short x
Absolute long x
P.C. relative with offset
P.C. relative with index
Immediate x

The status flags are affected in the same way as for the
ADD instruction.

39

ADD EXTENDED
Mnemonic - ADDX

Adds the source data plus the value of the X flag to the
destination data. As with ABCD, this instruction has register -
to -register and memory -to -memory forms. The data size can
be byte, word, or long word. It is used in multiple -precision
arithmetic.

In the address register indirect (memory to memory) form,
the contents of both address registers are automatically
decremented before the addition is performed (by 1, 2, or
4 depending on whether the B , W , or L form of the
instruction is specified).

The C and X flags are set if a carry is generated, cleared
otherwise. The Z flag is clear if the result is non -zero,
otherwise unchanged (see ABCD for comment on this). The
N flag is set if the result is zero and cleared otherwise. The V
flag is set if there is an overflow, cleared otherwise.

LOGICAL AND
Mnemonic - AND

This instruction performs a logical bitwise AND between the
source data and the destination data. One of the data registers
must be used as either the source or the destination. In
general, most other address modes can be used for the other
operand, as in the charts.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset

40

Address Mode Source Destination
P.C. relative with index
Immediate

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

The N flag will be set if the most significant bit of the
result is 1, cleared otherwise. The Z flag will be set if the
result is zero, cleared otherwise. The V and C flags are always
cleared, and the X flag is unaffected.

AND IMMEDIATE
Mnemonic - ANDI

Performs logical bitwise AND between immediate data and the
destination operand. The chart shows the available address
modes.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short

41

Address Mode Source Destination
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

In addition, the destination operand may be the condition
codes, or the entire status register. If it is the entire status
register, this is a privileged instruction and can only be execut-
ed in Supervisor Mode.

This instruction may be specified as byte, word, or long
word. The immediate data supplied must match the operand
size specified, that is, one or two words. If a byte operand is
specified, the second (low -order) byte is used.

The effect on the status flags is the same as for AND,
except, of course, where the status register is the destination.
In this case, the flags are set by the result of the operation.

ARITHMETIC SHIFT LEFT (DATA REGISTER)
Mnemonic - ASL

This instruction shifts the contents of a data register to the
left. The bit shifted out is placed in the C and X flags, and
zeroes are moved in on the right.

Shifting by more than one bit position is allowed. The
shift count may be specified by another data register, or
immediate data. In the first case, the shift may be from 0 to
63 places, in the latter from 1 to 8.

The C and X flags receive the shifted -out bits. If the shift
count is zero, C is cleared and X is unaffected. The V flag
indicates any sign change during the operation. The N and
Z flags are altered depending on the value of the result.

ARITHMETIC SHIFT LEFT (MEMORY)
Mnemonic - ASL

Similar to the previous instruction, but operates on an
operand in memory, is restricted to word -length data, and

42

can shift by one position only.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

The C and X flags are set by bit 15 of the (original) data,
the V flag indicates any sign change.

ARITHMETIC SHIFT RIGHT
Mnemonic - ASR

This instruction shifts the bits of the operand to the right.
The bits shifted out to the right go into the C and X flags, and
zeroes are moved in on the left.

As with ASL, there are versions of this instruction for
operations on data registers and memory locations, and the
same restrictions and flag indications apply, as do the address
modes applicable.

BRANCH ON CONDITION

This group of instructions test the flags, and may cause the
program to branch forward or back depending on the results.
Thus they are the decision -making instructions.

These instructions are most frequently preceded by a
compare instruction, but they may follow any instruction
which conditions the flags.

43

BHI - Branch high
Branches if both the C and Z flags are clear.

BLS - Branch Low or Same
Branches if either the C or Z flag is set.

BCC - Branch if Carry Clear
Self-explanatory.

BCS - Branch if Carry Set
Self-explanatory.

BNE - Branch if Not Equal (to zero)
Branches if the Z flag is clear.

BEQ - Branch if Equal (to zero)
Branches if the Z flag is set.

BVC - Branch if oVerflow Clear
Self-explanatory.

BVS - Branch if oVerflow Set
Self-explanatory.

BPL - Branch if PLus (positive)
Branches if the N flag is clear.

BMI - Branch if Minus (negative)
Branches if the N flag is set.

BGE - Branch if Greater or Equal
Branches if the N and V flags are either both set or both

clear.

BLT - Branch if Less Than
Branches if N is set and V is clear, or if N is clear and V is

set.

BGT - Branch if Greater Than
Branches if N and V are set and Z is clear, or if N and V

and Z are all clear.

44

BLE - Branch if Less or Equal
Branches if Z is set, or if N is set and V is clear, or if N is

clear and V is set.

The only address mode used by these instructions is
program counter relative. The displacement from the
instruction location can be from -126 to +129, or from
-32766 to +32769. Note that these figures represent
memory locations, not instructions.

The displacement is added to the program counter after
the program counter has been incremented by two.

Branch instructions do not affect the flags. The old value
of the program counter is lost.

TEST A BIT AND CHANGE
Mnemonic - BCHG

This instruction tests the state of a bit in a memory location
or data register, and complements it. The original state of the
bit is reflected in the Z flag. The number of the bit to be
tested may be either immediate data, or held in a data register.
Allowable address modes for the destination data are shown
in the chart.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

If the bit to be tested is in memory, then BCHG is restric-
ted to byte -size data.

45

This instruction only affects the Z flag.

TEST A BIT AND CLEAR
Mnemonic - BCLR

This instruction is identical to BCHG, with the exception
that the tested bit is always set to zero, regardless of its
original condition. For allowable address modes, etc., see
BCHG.

Again, only the Z flag is affected.

BRANCH ALWAYS
Mnemonic - BRA

This instruction is in all essentials similar to the conditional
branches, except that no testing of flags occurs, and the
program always branches. It is thus exactly equivalent to the
BASIC GOTO. For information on the range of allowable
displacements, etc., see the section on conditional branches.

TEST A BIT AND SET
Mnemonic - BSET

This instruction is identical to BCHG and BCLR, except that
the tested bit is always set. See BCGH for allowable address
modes, etc.

BRANCH TO SUBROUTINE
Mnemonic - BSR

This instruction is similar to BRA, but before branching it
saves the address of the instruction following BSR on the
stack. Thus an RTS (return from subroutine) instruction at
the end of the subroutine allows program execution to
continue with the instruction after BSR.

46

This instruction allows a relative unconditional jump to a
subroutine, and is useful when writing position -independent
code.

No flags are affected.

TEST A BIT
Mnemonic - BTST

This belongs to the same family as BCHG, BCLR, and BSET,
but in this case, the tested bit is not altered. See BCHG for
other information.

CHECK REGISTER AGAINST BOUNDARIES
Mnemonic - CHK

This instruction checks the contents of a data register against
a source operand. If the contents of the data register are less
than zero or greater than the source operand, a TRAP is
generated, and the processor enters exception processing.
Only the least significant 16 bits of the data register are used.
There are no byte or long word versions of this instruction.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute lung
P.C. relative with offset
P.C. relative with index
Immediate

This instruction provides a simple means of checking that a
block of data has not exceeded the space allowed for it.

47

The N flag is set if the contents of the data register are
less than zero, and cleared if the source data is less than the
contents of the data register. The C , V , and Z flags are
affected, but are left undefined. The X flag is not affected.

CLEAR AN OPERAND
Mnemonic - CLR

This instruction sets a data register or memory location to
zero. The data size for this instruction can be B , W , or L .
W is assumed if length is riot specified.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

This instruction always sets the Z flag, and clears the N ,
V , and C flags. The X flag is not affected.

COMPARE
Mnemonic - CMP

This instruction subtracts the contents of a memory location
or data register from the contents of a data register. The
result of the subtraction is not stored, but the status flags are
set according to the results. Both operands are unchanged.

48

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Note that address register direct addressing cannot be used
if the data size is byte.

The C , N , V , and Z flags are all affected by this
operation, the C flag representing a borrow. X is not
affected.

Compare instructions are normally followed by a condi-
tional branch.

COMPARE ADDRESS
Mnemonic - CMPA

This is a special version of the CMP instruction using an
address rather than a data register as destination operand.
Apart from this, and the fact that it can only use word and
long -word size operands, it is equivalent to CMP.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short

49

Address Mode Source Destination
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

For the effect on flags, see CMP.

COMPARE IMMEDIATE
Mnemonic - CMPI

This instruction subtracts the immediate data following the
opcode from the destination data. The result is discarded,
but the status flags are set according to the result of the
subtraction. The destination data is unaltered.

This instruction can be specified as B , W , or L size,
and the immediate data supplied must match the size

specified. If a byte operand is specified, the low -order (second)
byte of the immediate data is used.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

For the effect on the status flags, see CMP.

50

COMPARE MEMORY
Mnemonic - CMPM

This instruction compares the contents of two memory
locations, the addresses of which are held in two address
registers. This instruction can only use postincrement
register indirect addressing. As with other compare instruc-
tions, the contents of the memory locations are not altered,
but the status flags are modified.

This instruction is useful for searching a block of memory
for occurrences of a particular value, starting at the lowest
address and continuing to the highest, branching every time
an occurrence is found

The effect on the status flags is the same as for CMP.

TEST CONDITION, DECREMENT, AND BRANCH

This group of instructions are conditional branches which test
both the status flags and a data register.

The status flags are tested first. If the condition is met, the
next instruction in sequence is executed. If it is not met, the
data register contents is decremented by 1. Then the contents
of the data register are tested. If it contains -1, the next
instruction in sequence is executed. If not, the program
branches.

A 16 -bit displacement is specified, so the program can
branch by from -32766 to +32769 bytes (not instructions).

DBT - True
Branches if true (1).

DBF - False
Branches if false (0).

DBHI - High
Branches if both the C and Z flages are clear.

DBLS - Low or Same
Branches if either the C or Z flag is set.

51

DBCC - Carry Clear
Self-explanatory.

DBCS - Carry Set
Self-explanatory.

DBNE - Not Equal (to zero)
Branches if the Z flag is clear.

DBEQ - Equal (to zero)
Branches if the Z flag is set.

DBVC - oVerflow Clear
Self-explanatory.

DBVS - oVerflow Set
Self-explanatory.

DBPL - PLus (positive)
Branches if the N flag is clear.

DBMI - Minus (negative)
Branches if the N flag is set.

DBGE - Greater or Equal
Branches if the N and V flags are either both set or both

clear.

DBLT - Less Than
Branches if N is set and V is clear, or if N is clear and

 is set.

DBGT - Greater Than
Branches if N and V are set and Z is clear, or if N and

 and Z are all clear.

DBLE - Less or Equal
Branches if Z is set, or if N is set and V is clear, or if

N is clear and V is set.

52

This instruction is very valuable in implementing repetitive
loops, using a data register as a loop counter, as the instruction
both tests a condition and decrements the loop count.

This instruction does not affect the status flags.

DIVISION (SIGNED)
Mnemonic - DIVS

This instruction divides the 32 -bit contents of a data register
(destination operand) by a 16 -bit source operand. The
division is performed using 2's complement binary arithmetic.
A 32 -bit result is obtained, consisting of the quotient in the
least 16 bits of the destination data register, and the remainder
in the most significant 16 bits. The sign of the remainder and
the sign of the dividend unless the remainder is zero.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect

register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

The C flag is always cleared. The N flag is set if the
quotient is negative and cleared otherwise, but undefined if
an overflow occurs. The V flag is set if the source operand
is larger than the destination operand (an overflow), and the
division is aborted, leaving the operands unchanged. The
extend flag X is not affected. The Z flag is set if the
quotient is zero, cleared otherwise.

If division by zero (a mathematical paradox) is attempted,
the instruction is aborted, and a TRAP is generated. The
processor will automatically enter exception processing.

53

DIVISION (UNSIGNED)
Mnemonic - DIVU

This instruction divides the 32 -bit contents of a data register
(destination operand) by a 16 -bit source operand. The
division is performed using unsigned binary arithmetic. A 32 -
bit result is'obtained, consisting of the quotient in the least
significant 16 bits, and the remainder in the most significant
16 bits.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Apart from the N flag, the flags are set as for the DIVS
instruction. The N flag is set if the most significant bit of
the quotient is set, cleared otherwise. If an overflow occurs,
the N flag is undefined.

The effect of an attempted division by zero is the same as
with the DIVS instruction.

LOGICAL EXCLUSIVE -OR
Mnemonic - EOR

This instruction performs a bitwise exclusive -OR of the
contents of a data register with the contents of the destination
operand.

EOR is performed according to the following rules: -

54

1 EOR 1 = 0

1 FOR 0 = 1

0 EOR 0 = 0

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

The N flag is set if the M.S.B. of the result is set. The Z
flag is set if the result is zero, cleared otherwise. V and C
are always cleared, and X is not affected.

EXCLUSIVE OR IMMEDIATE
Mnemonic - EORI

Performs the EOR operation between immediate data and the
destination operand. See EOR for logic rules.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long

55

Address Mode Source Destination
P.C. relative with offset
P.C. relative with index
Immediate

In addition, the destination operand may be the condition
codes or the entire status register. When it is the entire status
register, the instruction is Privileged, and may only be exe-
cuted while the processor is in supervisor mode.

The effect on the flags is the same as EOR.

EXCHANGE REGISTERS
Mnemonic - EXG

This instruction swaps over the contents of two 32 -bit regi-
sters. Only register direct addressing is appropriate.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Note that the order in which the registers are given is
immaterial - EXG A4,A6 is the same as EXG A6,A4.

The status flags are not affected.

56

SIGN EXTEND
Mnemonic - EXT

This instruction extends bit 7 (word -length instruction)
through bits 8-15, or bit 15 (long -word instruction) through
bits 16-31 of a data register.

Only data register direct addressing is appropriate.
The N flag is set if the result is negative, cleared otherwise.

The Z flag is set if the result is zero, cleared otherwise. C
and V are always cleared, and X is unaffected.

JUMP
Mnemonic - JMP

This instruction loads a new address into the program counter,
causing an unconditional jump to that address. The old
address is lost.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

No flags are affected.

JUMP TO SUBROUTINE
Mnemonic - JSR

This instruction causes an unconditional jump to a new
address, but saves the old address on the stack. This

57

instruction is similar to BSR but uses an absolute address
rather than a relative displacement.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

No flags are affected.

LOAD EFFECTIVE ADDRESS
Mnemonic - LEA

This instruction calculates an effective address, and stores it
in one of the address registers.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

No flags are affected.

58

LINK AND ALLOCATE
Mnemonic - LINK

This instruction saves the contents of a specified address
register on the stack, and then stores the (updated) stack
pointer in that register. A signextended 2's complement
displacement from the instruction is then added to the stack
pointer.

The purpose of this instruction is to allow space (called a
`frame') to be reserved on the stack for local variables in a
subroutine. The UNLINK instruction is used at the end of
the subroutine to clear up the stack.

Note that the displacement must be a negative number to
reserve space. A positive displacement will cause the stack to
be overwritten.

No flags are affected.

LOGICAL SHIFT LEFT (DATA REGISTER)
Mnemonic - LSL

This instruction has the same effect as ASL (data register).
See that instruction for details.

LOGICAL SHIFT LEFT (MEMORY)
Mnemonic - LSL

This instruction has the same effect as ASL (memory). See
that instruction for details.

LOGICAL SHIFT RIGHT
Mnemonic - LSR

This instruction is identical to ASR, except that zeroes are
moved into the most significant bit position, instead of it
being kept intact.

59

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with offset x
Register indirect with index x
Absolute short x
Absolute long x
P.C. relative with offset
P.C. relative with index
Immediate

Consult the ASR instruction for details of LSR.
The effect on the flags is the same as for ASR, except that

the N flag is always cleared (because the MSB is always
cleared).

MOVE DATA
Mnemonic - MOVE

This instruction is used to move data. There are very few
restrictions on address modes with this instruction. It is the
equivalent of the LOAD and STORE instructions provided on
other processors, but data can be moved from memory to
memory without intermediate use of a processor register.

Address Mode Source Destination
Data register direct x x
Address register direct x
Address register indirect x x
Postincrement register indirect x x
Predecrement register indirect x x
Register indirect with offset x x
Register indirect with index x x
Absolute short x x
Absolute long x x
P.C. relative with offset
P.C. relative with index
Immediate x

60

Address register direct mode is not valid if the data size is
byte.

The data is examined as it is moved, and the N and Z
flags are conditioned accordingly. C and V are always clear-
ed, and X is not affected.

MOVE TO CONDITION CODES
Mnemonic - MOVE to CCR

This is a special MOVE instruction which moves the contents
of the source byte into the condition code register.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Clearly, all the flags are affected by this operation.

MOVE TO THE STATUS REGISTER
Mnemonic - MOVE to SR

This is a special MOVE instruction which moves the contents
of the source operand into the status register. This is a
Privileged Instruction and can only be executed in super-
visor mode.

Address Mode Source Destination
Data register direct
Address register direct

61

Address Mode Source Destination
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Clearly, this instruction will affect all bits in the status
register.

MOVE FROM THE STATUS REGISTER
Mnemonic - MOVE from SR

This instruction simply stores the 16 -bit status register in a
specified destination operand. It is not a privileged
instruction.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

No flags (or other bits in the status register) are affected.

62

MOVE USER STACK POINTER
Mnemonic - MOVE USP

This instruction moves the contents of the user stack pointer
(A7) to or from a specified address register. It is a Privileged
Instruction and can only be executed in supervisor mode.

MOVE ADDRESS
Mnemonic - MOVEA

This special MOVE instruction moves the contents of the
source operand to a specified address register.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Only word and long -word operands may be specified. Word
operands are sign -extended before being moved to the address
register.

This instruction does not affect the flags register.

MOVE MULTIPLE REGISTERS FROM MEMORY
Mnemonic - MOVEM

This instruction causes specified registers to be loaded from
consecutive memory locations beginning at the specified
effective address.

63

The registers are loaded in the order DO through D7, then
AO through A7. The lowest register specified is loaded from
the specified effective address.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect x
Postincrement register indirect x
Predecrement register indirect
Register indirect with offset x
Register indirect with index x
Absolute short x
Absolute long x
P.C. relative with offset x
P.C. relative with index x
Immediate

In assembly language, the registers to be loaded are separ-
ated by the backslash character, thus: DI/D3/D5/A0/A2.
Alternatively, a range of consecutive registers may be specified
using the minus sign, thus: DO - D5 (loads Dl ,D2,D3,D4,D5).

If word -size data is specified, the operands will be sign -

extended before being loaded into the registers.
This instruction is used to quickly restore the status of the

processor.
No flags are affected.

MOVE MULTIPLE REGISTERS TO MEMORY
Mnemonic - MOVEM

This is the complement of the previous instruction, and is used
to store the processor contents quickly in memory.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect x
Postincrement register indirect

64

Address Mode Source Destination
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

No flags are affected by this instruction.

MOVE PERIPHERAL DATA
Mnemonic - MOVEP

This instruction causes two or four bytes of data to be trans-
ferred between a specified data register and alternate -byte
memory locations. This instruction is intended to simplify
data transfer between the processor and 8 -bit peripheral
devices.

The only address mode allowed is address register indirect
with displacement.

The high -order byte of the data register is transferred first,
the low -order byte last. The address register is incremented by
two as each byte is transferred.

No flags are affected.

MOVE QUICK
Mnemonic - MOVEQ

This instruction is a memory and speed -efficient immediate
addressing move instruction for small operands (8 -bit). The
data can only be moved to a data register. It is sign -extended
to 32 bits before being stored.

The N flag is set if the data is negative, the Z flag is set
if it is zero. C and V are always cleared. X is not affected.

65

SIGNED MULTIPLY
Mnemonic - MULS

This instruction multiplies together two 16 -bit operands,
yielding a 32 -bit result, using 2's complement signed binary
arithmetic.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

The low -order word of the data register is the operand used
in the multiplication. The high -order half is ignored, and is
overwritten by the result.

N is set if the result is negative, cleared otherwise. Z is
set if the result is zero, cleared otherwise. C and V are
always cleared, X is not affected.

UNSIGNED MULTIPLY
Mnemonic - MULU

This instruction multiplies together two 16 -bit operands,
yielding a 32 -bit result, using unsigned binary arithmetic.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect

66

Address Mode Source Destination
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

The low -order word of the data register provides the
operand. The high -order word is ignored, and is overwritten
by the result.

N is set if the MSB of the result is set, cleared otherwise.
Z is set if the result is zero, cleared otherwise. C and V are
always cleared, and X is not affected.

NEGATE DECIMAL WITH EXTEND
Mnemonic - NBCD

This instruction subtracts the destination operand and the
value of the X flag from zero, and stores the result in the
destination. BCD arithmetic is used.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

This instruction always operates on only one byte of data.

67

The C and X flags are set if a borrow occurred, cleared
otherwise. The Z flag is cleared if the result is non -zero,
unaltered if it is zero. The N and V flags are undefined.
See ABCD for a comment on the Z flag.

NEGATE
Mnemonic - NEG

This instruction subtracts the destination operand from zero
using 2's complement binary arithmetic, storing the result in
the destination.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

C and X are set if a borrow occurs, cleared otherwise. N
is set if the result is negative, cleared otherwise. The V flag
is set if an overflow occurs, cleared otherwise.

NEGATE WITH EXTEND
Mnemonic - NEGX

This instruction subtracts the destination operand and the
value of the X flag from zero, storing the result in the
destination.

68

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

This instruction is similar to NEG, but is for use in multiple-

precision arithmetic.
C and X are set if a borrow occurs, cleared otherwise.

The N flag is set if the result is negative, cleared otherwise.
The Z flag is cleared if the result is non -zero, unchanged if it
is zero. The V flag is set if there is an overflow, cleared
otherwise. For a comment on the Z flag, see ABCD.

NO OPERATION
Mnemonic - NOP

Does nothing except advance the program counter. It can be
used to replace instructions that are no longer needed, without
having to recompute displacements, to produce a precise time
delay, or to temporarily replace instructions you do not want
to execute when debugging. It is rarely found in finished
programs.

LOGICAL NOT (COMPLEMENT)
Mnemonic - NOT

This instruction performs a bitwise complement of the destina-
tion operand. All 0's are changed to l's and all I's to O's, i.e.
it is a 1's complement operation.

69

Address Mode
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Source

x

Destination
x

x
x
x

x
x

x

N is set if the result is negative, cleared otherwise. Z is
set if the result is zero, cleared otherwise. C and V are
always cleared, and X is unaffected.

LOGICAL INCLUSIVE -OR
Mnemonic - OR

This instruction performs the inclusive -OR operation between
the source data and the destination data.

Inclusive -OR is performed according to the following rules:

1 OR 1 = 1

1 OR 0 = 1

0 OR 0 = 0

There are two general forms, depending whether a data
register provides the source or the destination operand.

Address Mode Source Destination
Data register direct x x
Address register direct
Address register indirect x
Postincrement register indirect x
Predecrement register indirect x

70

Address Mode Source Destination
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative'with offset
P.C. relative with index
Immediate

N is set if the result is negative, cleared otherwise. Z is
set if the result is zero, cleared otherwise. C and V are
always cleared, and X is not affected.

INCLUSIVE -OR IMMEDIATE
Mnemonic - ORI

Performs the inclusive -OR operation between immediate data
and the destination operand.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect

71

Address Mode Source Destination
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

In addition, the destination may be the condition codes or
the entire status register. If it is the entire status register, this
is a Privileged Instruction, and can only be executed in super-
visor mode.

The data size may be byte, word or long -word. The
immediate data supplied must match the operation size. If
byte -size data is specified, the low -order (second) byte of the
immediate data word is used.

The effect on the flags is the same as for OR.

PUSH EFFECTIVE ADDRESS
Mnemonic - PEA

This instruction calculates an address using one of the control
addressing modes, then pushes that address on the stack.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

No flags are affected.

72

RESET EXTERNAL DEVICES
Mnemonic - RESET

This instruction simply causes a pulse on the RESET pin of
the processor, as a reset signal to external devices. The only
effect within the processor is to increment the program
counter by 2. There is no change to other registers or memory.

ROTATE DATA REGISTER LEFT
Mnemonic - ROL

This instruction rotates the contents of a data register to the
left by a number of bit positions which may be contained in
another data register, or be given as immediate data. In the
first case, rotations of from 0 to 63 bit positions are possible,
in the latter from 1 to 8.

The bit shifted out on the left is placed in the carry flag,
and it is also moved in to the rightmost bit position.

C is set according to the last bit shifted out to the left. N
is set if the MSB is set, cleared otherwise. V is always cleared.
Z is set if the result is zero, cleared otherwise.

ROTATE MEMORY WORD LEFT
Mnemonic - ROL

Similar to the preceding instruction, but works on a memory
location. The data size is limited to word, and only rotations
of one bit position are possible.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short

73

Address Mode Source Destination
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

For the effect on flags, see previous instruction.

ROTATE RIGHT (DATA REGISTER)
Mnemonic - ROR

This instruction rotates the contents of a data register to the
right by a number of bit positions, counted as for ROL.

The bit rotated out on the right is placed in the carry flag,
and also in the leftmost bit position.

For the effect on the flags, see ROL.

ROTATE RIGHT (MEMORY)
Mnemonic - ROR

Similar to ROR (data register) but works on one word of
memory, and rotations are limited to one bit position, as for
ROL memory.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

For the effect on flags, see ROL.

74

ROTATE LEFT WITH EXTEND
Mnemonic - ROXL

This instruction is the same as the ROL (register and memory)
instructions, except that the leftmost rotated -out bits are
echoed in the X flag as well as in C and the rightmost bit
position. This version is intended for use in multiple -precision
arithmetic.

For details of address modes, etc., see ROL (data register)
and ROL (memory word).

ROTATE RIGHT WITH EXTEND
Mnemonic - ROXR

This instruction is the same as the ROR (register and memory)
instructions, except that the rightmost shifted -out bits are
echoed in the X flag as well as in the C flag and the leftmost
bit position. This version is intended for use in multiple -
precision arithmetic.

For details of address modes, etc., see ROR (data register)
and ROR (memory word).

RETURN FROM EXCEPTION
Mnemonic - RTE

This instruction terminates an exception processing routine,
and restores the state of the program by loading the status
register, and then the program counter, from the system stack.

After the RTE instruction, the processor may be in user or
supervisor mode, depending on the condition of the S bit
loaded into the status register.

Obviously, all flags are affected by this instruction.

RETURN AND RESTORE CONDITION CODES
Mnemonic - RTR

This instruction is used to terminate a subroutine. It pulls
a word from the stack, and places the 5 least significant bIts

75

in the status register. Then it pulls a return address from the
stack and loads it into the program counter, thus returning
control to the calling program.

There is no instruction that automatically saves the condi-
tion codes on the stack when calling a subroutine. To use
RTR, you must save the condition codes on the stack at the
beginning of the subroutine.

Obviously, all flags may be affected by this instruction.

RETURN FROM SUBROUTINE
Mnemonic - RTS

This instruction is used to terminate a subroutine. It causes
control to be returned to the calling program by pulling the
return address from the stack and loading it into the program
counter.

No flags are affected by RTS, thus with this return instruc-
tion the condition codes can be used to pass information from
the subroutine to the calling program.

SUBTRACT DECIMAL WITH EXTEND
Mnemonic - SBCD

This instruction subtracts the source data and the value of the
X flag from the destination data, using BCD arithmetic.

This instruction can use either register direct addressing, or
address register indirect addressing, but both operands must
use the same mode. It can therefore be used for register -from -
register subtraction, or memory -from -memory subtraction.
Only the least significant 8 bits of the data are affected.

The C and X flags are set if a borrow is generated, cleared
otherwise. The Z flag is cleared if the result is non -zero,
unchanged otherwise (see ABCD for a comment on this). N
and V are undefined.

SET ACCORDING TO CONDITION

This instruction tests a specified condition code, and if the

76

condition is met, the contents of a (byte -size) destination
operand are set to all ones. If not met, the byte is set to all
zeroes.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

The following is a list of mnemonics and conditions. For
an explanation of these conditions see Test Condition, Decre-
ment and Branch.

ST Set True
SF - - Set False
SHI Set High
SLS Set Low or Same
SCC - Set Carry Clear
SCS Set Carry Set
SNE - Set Not Equal
SEQ - Set Equal
SVC - Set oVerflow Clear
SVS - Set oVerflow Set
SPL Set PLus
SMI - Set Minus
SGE - Set Greater or Equal
SLT - Set Less Than
SGT - Set Greater Than
SLE - Set Less or Equal

No flags are affected by this instruction.

77

LOAD STATUS REGISTER AND STOP
Mnemonic - STOP

This instruction loads the status register from 16 -bit immedi-
ate data, and then stops program execution until a trace,
interrupt or reset occurs. The program counter is advanced by
four to point to the next instruction.

This is a Privileged Instruction and can only be executed
while in supervisor mode.

SUBTRACT BINARY
Mnemonic - SUB

This instruction subtracts the source operand from the destina-
tion operand using binary arithmetic.

There are two general forms of this instruction, with a data
register as either the source or the destination operand.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Note that address register direct addressing cannot be used
for byte -size operands.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect

78

Address Mode Source Destination
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

C and X are set if a borrow is generated, cleared other-
wise. N is set if the result is negative, cleared otherwise. V
is set if an overflow occurs, cleared otherwise. Z is set if the
result is zero, cleared otherwise.

SUBTRACT ADDRESS
Mnemonic - SUBA

This is a special form of SUB using an address register as the
destination operand.

Address Mode Source Destination
Data regiSter direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

If a word source data is specified instead of long -word, it
will be sign -extended prior to the subtraction.

Note that unlike SUB, no flags are affected by SUBA.

79

SUBTRACT IMMEDIATE
Mnemonic - SUBI

This instruction subtracts immediate data from the destina-
tion operand.

Address Mode Source Destination
Data register direct
Address' register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

The data size can be specified as byte, word or long -word.
If byte -size is specified, the low -order ,(second) byte of the
immediate data word is used.

SUBTRACT QUICK
Mnemonic - SUBQ

This is a special version of immediate -addressing subtraction
for small operands (1 to 8).

Address Mode
Data resister direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short

Source Destination
x
x
x
x
x
x
x
x

80

Address Mode Source Destination
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

Note that address register direct addressing cannot be used
if the operand size is byte.

The effect on flags is the same as for SUB.

SUBTRACT WITH EXTEND
Mnemonic - SUBX

This instruction subtracts both the source data and the value
of the X flag from the destination data.

This instruction can use either register direct addressing or
address register indirect addressing, but both operands must
use the same mode. Thus it can be used for register -to -register
or memory -to -memory subtraction.

When address register indirect addressing is used, both
address registers are decremented before the operation. This
facilitates multiple -precision arithmetic.

For the effect on the flags see SBCD.

SWAP REGISTER HALVES
Mnemonic - SWAP

This instruction exchanges the most significant 16 bits of a
register with the least significant 16 bits.

The N flag will be set to the value of bit 31 after the
swap. The Z flag will be set if the register contains zero.
C and V are always cleared, and X is not affected.

INDIVISIBLE TEST AND SET
Mnemonic - TAS

This instruction tests a byte of data in the destination operand,

81

and sets the N and Z flags accordingly. It then sets the
MSB of the destination data to 1. This operation cannot be
interrupted.

Address Mode Source Destination
Data register direct x
Address register direct
Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with offset x
Register indirect with index x
Absolute short x
Absolute long x
P.C. relative with offset
P.C. relative with index
Immediate

The C and V flags are always cleared, X is not affected.

TRAP
Mnemonic - TRAP

Initiates exception processing. The program counter is incre-
mented to point to the next instruction, then saved on the
system stack, followed by the current contents of the status
register. Program execution then continues at an address
obtained from the exception vector table.

A full description of this instruction and of exception
processing is beyond the scope of this introductory book.

TRAP ON OVERFLOW
Mnemonic - TRAPV

This instruction will initiate exception processing if the V
flag is set when it is executed.

82

TEST AN OPERAND
Mnemonic - TST

This instruction tests the destination operand, and sets the
N and Z flags accordingly. The destination data is not
altered.

Address Mode Source Destination
Data register direct
Address register direct
Address register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Register indirect with index
Absolute short
Absolute long
P.C. relative with offset
P.C. relative with index
Immediate

C and V are always cleared. X is not affected.

UNLINK
Mnemonic - UNLK

This instruction undoes the effect of a LINK instruction by
loading the system stack pointer with the contents of a speci-
fied address register. This address register is then loaded with
a long word pulled from the stack. See the description of the
LINK instruction.

83

Chapter 4

ASSEMBLERS

Writing a program in assembly language is done in two stages.
Firstly, the `source code' must be written. This source code
consists of the instructions we have covered in the last
chapter, assembler directives, labels, and constants. Comments
may also be included, but do not form part of the source
code proper. This source code is written using an `editor' (also
called a screen editor or text editor), which is similar to a
word processor, with facilities for entering the code, editing
it, and also some sophisticated facilities like block moves and
copies, and the ability to change a string of characters for
another string throughout the written code.

The editor produces what is essentially a text file. The
assembler proper reads this text file, and from it generates
the `object code', which is the actual machine code which will
constitute the final program.

Though all assemblers will be provided with some form of
editor, it is not usually necessary to use the editor supplied.
You can use an editor from one assembler with another
assembler, or you can use a word processor to generate the
source code. In fact, if you are familiar with a particular word
processor, this can be a good idea, as you do not then need to
learn a whole new set of commands to use the editor.

If you use a word processor, you produce the text file for
the assembler by 'printing' the document to a disc file instead
of the printer. The assembler will not be able to work from a
word processor work file. Also, you should not use any
features such as underlining or special typefaces, or anything
else which will cause printer control codes to be included in
the file, as this could cause problems at the assembly stage.

There are several ways in which an assembler can work. It
can take a text file in computer memory and place the object
code also in memory (RAM to RAM), it can take a text file
on disc and assemble the object code in memory (disc to
RAM), it can take a text file in memory and assemble to disc
(RAM to disc), or it can take a text file on disc and assemble

84

to disc (disc to disc).
Of these four options, the first is rare. It is found on a few

small home coputers with built-in assemblers (e.g. BBC micro,
Memotech) but is unlikely to be found on a 68000 machine.
The second option is provided by some assemblers, and is
useful for a quick test of small programs. The third option
is very rare. The fourth option is by far the most common.
It has the advantage that it allows all available memory in the
computer to be used by the assembler. This means the
assembler program can be more complex, which will usually
mean faster assembly, and also allows longer programs, as the
length is set by disc capacity not computer memory size.

Though I have referred to discs here, some machines may
use alternative storage media, such as `microdrives' on the
Sinclair QL.

Assembly Language Formatting

Assembly language is written in columns. Each of these
columns is described as a 'field'. Each field has a specific
purpose. It is important to place things in the right fields if
the assembler is to produce the object code correctly.

The first field is the 'label' field. A label gives a 'name' to
a memory location, which may be used to refer to this loca-
tion later in the program. You do not have to provide a label
for every instruction, this column may be left blank.

The second column contains the instruction mnemonic, and
is called the operation or instruction field. This is the only
field which can never be blank. It must always contain either
an instruction or an assembler directive.

The third column is the 'operand' or address field. An
`operand' is the data on which the instruction is to work.
With some instructions and address modes, such data is
inappropriate and this field will instead contain an address
(which may be a label) from which the data must be fetched
(or to which it must be stored) or to which the program must
jump or branch, etc.

Some instructions require two operands, or one operand
and an address, or two addresses. In these cases the two items

85

must be separated by a comma.
The last column is the 'comment' field. You may, in

general, place anything in this column, as its contents are
ignored by the assembler, rather like REMs in BASIC. This
field is used to document the program, so that you may know
the purpose of the code if you should work on it again some
time after originally writing it.

The assembler needs have some way of knowing where
each field begins. This varies from assembler to assembler. It
may be that a fixed width is allowed for each field, and each
field must be started in the correct screen column. For such
assemblers, the screen editor will usually have 'tab' stops to
allow easy movement to the right places.

Most assemblers, however, use 'delimiters' to separate the
fields. The delimiter will be some particular character. This
can vary from assembler to assembler, but by far the most
common is the space. It follows that you should be careful
not to put spaces where they should not be. For example, you
should never put 'MOVE .W' instead of `MOVE.W', or put
`MOVEQ 0, DO' instead of `MOVEQ 0,D0'.

Assemblers do vary in the way they require the source
code to be formatted, and you should be careful to read all
the documentation with the assembler you are using. There
are also differences in what will be regarded as a comment.
Many assemblers allow a whole line to be a comment, usually
by starting the line with an asterisk, though other symbols
are used.

Labels

In essence, labels are used in assembly language to give names
to memory locations. These names can be used instead of the
actual addresses in branch, jump, move and many other
instructions. Labels are an aid to the programmer, as a well-
chosen label name is easier to remember than a string of
digits, but the use of labels is also essential in producing
position-independant or relocatable code, as in these cases, the
actual memory locations will not be known.

86

Labels are used in conjunction with directives as well as
instructions, and indeed labels will always be used in conjunc-
tion with EQU directives, as the purpose of these is to define
a label.

The label field is the first column in an assembly language
instruction. You do not have to provide a label for every line.
When a label is present, the label is defined by the assembler
as the address into which the first byte of the instruction will
be assembled. The assembler keeps a table of these labels.

Obviously, once defined, you can use the label in another
instruction's address field. However, there will be occasions
when you will want to use a label in an address field before it
has been defined. This occurs whenever you want to perform
a forward branch.

To allow this, most assemblers use two passes of the source
code. On the first pass, any references to undefined labels are
assembled (usually) with the instruction's own address in the
address field. On the second pass, the assembler will use the
label definitions from first pass to correct these instructions.
If a label is still undefined on the second pass an assembler
error will be generated.

Most assemblers for the 68000 microprocessor will always
do a two -pass assembly whether forward branches are present
or not. However, on some you may have to specify whether
you want one -pass or two -pass assembly.

There are usually rules about what you can use as labels.
Often these are similar to the rules as to what you can use as
a variable name in languages like BASIC. Labels must usually
start with a letter, consist of letters and numerals only
(occasionally other symbols may be allowed), and must
normally not be the same as an instruction or directive (or in
some cases begin with an instruction or directive mnemonic).

Labels often have a fixed maximum length. In other
cases, the length may be unlimited (or have a long limit, like
64 characters) but only the first 5 or 6 characters may be used
to distinguish between one label and another. In this latter
case, it is, on the whole, better not to use more characters in
a label than the computer uses.

Within these rules, it is a good idea to use 'mnemonic'
labels which give some idea of what the label represents, as

87

this greatly improves `readability' of a program. In particular,
it is a help if you do some more work on a program some time
after you originally wrote it.

Assembler Directives

In addition to the processor instruction set, most assemblers
will accept 'directives', also called `pseudo -operations'. These
are similar to instructions, but instead of assembling into
code to be executed by the microprocessor, they 'instruct'
the assembler as to how the code is to be assembled.

These directives cover such things as the form in which the
object code is to be produced (i.e. position independant,
relocatable, absolute, etc.), the origin or start address if the
code is to be absolute, how much work space should be
allowed for the program, and similar things.

The Motorola assembler specification includes a number
of these directives. Specific assemblers may include additional
directives, perhaps to support machine -specific features (e.g.
multi -tasking) and in some cases the scope of some directives
may also be extended.

DATA. This directive is used to enable constants to be includ-
ed in a program. It is used for such purposes as lookup and
code conversion tables, messages and short text strings, com-
mands and conversion factors. The simplest form is

DATA 99

which will place the value 99 in the next memory location.
Most assemblers will allow more complex forms such as

DATA 99,17,23,44,43

which will place these values in the next 5 memory locations,
Or

DATA 'Press any key'

which will place the ASCII values of these characters in
successive locations.

88

There may be forms of the DATA instruction for byte,
word, and long word size data, or you may be able to define
what size you wish to use at the start of the source code.

Some assemblers may use the form DC (for Define Con-
stant), and this may be followed by .B, .W, or .L to define
the data size. To define a string constant, you use DC.B
followed by the string. If no data size is specified, word
size will be assumed, but some assemblers require that a
size is always specified.

There may also be a DS directive (again this will usually
be followed by a size specifier). This reserves memory
locations, but does not set them to initial values. You may
have to specify the number of locations to be reserved in the
operand field, i.e. DS.W 5 would reserve 5 contigious word -
size locations.

EQUATE or DEFINE. This directive allows names to be
equated with data or addresses. EQU is the normal
mnemonic for this, but DEF may also be found.

In its simplest form, the EQUATE directive assigns a
numeric value to a name, as in these examples

START EQU 8000
TABLE EQU 9680

It is also possible to equate one name to another, provided
the second have already been defined, or to use an equation
on the right of the EQU

RETRY EQU START
WARMSTART EQU START+66

Equate directives should normally be placed at the start
of the program.

ORIGIN. This directive (usual mnemonic ORG) allows the
programmer to specify the memory location where a program
is to start. Some assemblers also allow ORG to be used to
specify the starting points of subroutines and data areas.

It is inappropriate to specify an origin if position independ-
ant of reloctable code is to be produced. Some assemblers

89

take the absence of an origin as an instruction to produce
code in position independant form. There is a related direc-
tive RORG which allows a relative origin to be specified for
writing code in reloctable form.

RESERVE or SIZE. This directive allows the programmer to
reserve a block of memory of stated size to store the variable
data which will be used by the program, i.e. data tables,
temporary storage locations, a stack, buffers.

SIZE and RESERVE are normally not quite the same.
SIZE just reserves a block of memory of specified size. With
RESERVE, you can normally use a number of these to
`structure' the stored memory space, using labels.

Most assemblers will support one or the other, not both.

OTHER DIRECTIVES. Other directives are normally con-
cerned with linking several small assembly language programs
into one large one, or controlling the output of the assembler.

The linking instructions tend to vary a good deal from
assembler to assembler, so no useful general information can
be given here.

Most of the other directives are virtually self-explanatory.
For example, END marks the end of the program, and
NOLIST stops the assembler from producing a listing of the
object code on the screen (or printer). When producing an
output listing, there are likely to be instructions such as
PAGE, which causes a new page to be started, and SPACE
(SPC) which can be used to print a number of blank lines.
These help to improve the appearance of the output.

Most of these directives are optional, but on many
assemblers, the use of an END directive is obligatory.

90

Chapter 5

SIMPLE PROGRAMS

Addition

Though computers actually spend more time on data manipu-
lation than on arithmetic, simple arithmetical programs are
still the best introduction to assembly language programming.

This first example is to add two numbers and store the
result in memory. The 68000 series processors have a whole
host of addition instructions, but the most generally applic-
able one for binary arithmetic is ADD. This adds the source
operand to the destination operand, storing the result in the
destination operand. However, one operand must be a data
register, you cannot directly add the contents of one
memory location directly to another.

Adding the contents of a data register to a memory
location has the advantage that you cannot accidentally forget
to store the results of the addition (a common error with
accumulator -based microprocessors like the 6502) but does
mean that you can only use those address modes which
allow memory alteration for the destination operand.
Another disadvantage of this method in some circumstances
is that, as the memory location used to contain one of the
original numbers is used to store the result, this original
number will be lost, and you may not want this to happen.

Adding the contents of a memory location to a data
register allows more flexibility in the addressing modes which
can be used. You do have to use MOVE instructions first to
load one of the numbers into the register, and then to store
the result, and this makes the program longer, but has the
advantage that the original numbers are intact.

The 68000 series can add byte, word (16 bit) or long word
(32 bit) numbers. A point to remember, however, is that if
you add two byte -size numbers, the result may be too big to
fit into a single byte. The same holds true for word and long
word operations. However, it is not a good practice to use
a larger data size for the result than you use for the sources.

91

In MOVE operations from memory to memory, from data
registers to memory, and from memory to data registers, if
you move byte -size data into a word or long word size destina-
tion, only the one byte of the destination is affected, the other
byte(s) being unchanged. This can obviously lead to problems
with left -over' values from previous operations. The best rule
is always to select the data size needed for the result, and to
use this size for the source data as well.

In this example, word -size data is used throughout. Since
this is the default, the size specifiers could be omitted, but it
is good practice always to specify the data size.

ORG $6000

NUM1 DS.W I

NUM2 DS.W 1

RESULT DS.W 1

START MOVE.W NUM1,D1 FETCH FIRST
NUM BE R

ADD.W NUM2,D I ADD SECOND
NUMBER

MOVE.W D1,RESULT STORE RESULT

RTS END ROUTINE

END

Note that an origin has been specified. This program can
only be assembled as absolute code. This is because it is
illegal to use program -counter relative addressing to alter the
contents of a memory location, as would be done here in
storing the result.

There is a way around this by using an extra instruction.
This is one of the most useful and most used in the 68000 set,
LEA, or 'load effective address'. This is used to load the
address of the result location into one of the address registers.
Address register indirect addressing can then be used to store
the result. If the program is written in this way, the assembled
code can be loaded and run anywhere in memory.

92

NUM I DS.W 1

NUM2 DS.W 1

RESULT DS.W 1

START MOVE.W NUM1,D1
ADD.W NUM2,D1
LEA RESULT,A1
MOVE.W D1 ,(A1)
RTS

This program is suitable for use by being `CALL'ed from
BASIC. POKEs can be used to place the numbers in the
memory locations, and PEEKS to retrieve the result. The
RTS ending the routine will cause a return to BASIC, but
some computers will require extra instructions. For example,
the Sinclair QL needs a MOVEQ *0,D0 immediately before
the RTS, as if the register DO is not zero on return to BASIC,
an error is assumed, the value in DO representing the error
type.

Subtraction

You can turn the addition program into a subtraction simply
by changing the ADD instruction to a SUB instruction. In
this case, however, the problem of the result being larger than
the original numbers does not arise.

A point should be made here about signed binary arith-
metic. The 68000 processor normally assumes that all
arithmetic operations are being performed on 2's complement
signed binary numbers. This means that a 16 -bit word will
be regarded as containing numbers from -32768 to +32767
rather than from 0 to 65535. Thus there is no problem when
taking a larger number from a smaller, provided you remember
to treat the result as a signed binary number.

As with addition, subtraction can be performed with either
a memory location or a data register as the destination, but
one of the operands must be held in a data register. In this
example, the destination is a memory location. Byte -size
data is used, so only two memory locations are used to pass

93

the data. The value in NUM1 is subtracted from the value in
NUM2, the result being stored in NUM2.

NUM1 DS.B 1

NUM2 DS.B 1

START MOVE.B NUMI,D1 FETCH FIRST
VALUE

LEA NUM2,A1 LOAD
ADDRESS

SUB.B DI ,(A1) SUBTRACT
(NUM2-NUM1)

RTS

Note the shortness of this, despite the use of an LEA
instruction to allow the code to be produced in position-
independant form.

Multiplication

The 68000 instruction set includes two multiply instructions,
so simple multiplication can be performed with a routine
which is again very similar to the ones for addition and
subtraction.

The main difference with the multiply instructions is that
they only come in one data 'size'. They always take 16 -bit
source data, and yield a 32 -bit result. You should always
therefore use MOVE.W instructions to fetch the operand
and MOVE.L to store the result.

The destination for a multiply instruction must be a data
register. All address modes except address register direct can
be used for the source data.

The two multiply instructions are MULS and MULU. The
difference between them is that MULS uses signed binary
arithmetic and MULU uses unsigned binary arithmetic. This
means that the source data will be regarded as signed or
unsigned according to the form used, and the result will be in
the same form.

94

NUM1 DS.W 1

NUM2 DS.W 1

RESULT DS.L 1

START MOVE.B NUM1 ,D1 FETCH NUM1
MULS NUM2,D1 XTIPLY BY

NUM2
LEA RESULT,A1 LOAD

ADDRESS
MOVE.L D1 ,(A1) STORE RESULT
RTS

This program is again written in a form which will allow it
to be assembled in position-independant form.

It is possible to use this program by poking numbers into
the source locations and peeking the result. It will be instruc-
tive to try this with several sets of numbers, with the multiply
instruction in both MULS and MULU form. This will teach
you a lot about signed and unsigned binary arithmetic.

Division

The 68000 series processors even have instructions for division.
Again there are two of these, for signed (DIVS) and unsigned
(DIVU) binary arithmetic. Like the multiply instructions,
the data size for these instructions is fixed. A 32 -bit operand
in a data register is divided by a 16 -bit source operand, leaving
a 32 -bit result in the data register. The source operand can be
specified using any address mode except address register
direct.

A problem with any division operation is that of division by
zero. This is a mathematical paradox and simply cannot be
done. If division by zero should occur with the 68000 division
instructions, a TRAP occurs and the processor enters excep-
tion processing. On some machines, exception processing is
reserved for the operating system and may not be used by the
user. On such machines, you may need to check for a zero
source operand, and abort the operation if necessary.

95

The simplest way of doing this is to use the TST instruc-
tion on the source operand. This will cause the Z flag to be
set if the source is zero. The test can be followed by a BNE
instruction (Branch if Not Equal to zero) which will cause the
program to branch if the zero flag is not set. This is a good
introduction to assembly language decision -making, and has
been done in this example, in which NUM1 is divided by
NUM2.

NUM1 DS.L 1

NUM2 DS.W 1

RESULT DS.L 1

START MOVE.L NUM 1 ,D1 FETCH
DIVIDEND

LEA NUM2,A1 LOAD NUM2
ADDR

TST (Al) TEST DIVISOR
BNE OKAY IF NONZERO
RTS ABORT IF

ZERO

OKAY DIVS NUM2,D1 DIVIDE
LEA RESULT,A2
MOVE.L D1 ,(A2)
RTS

This is slightly unsatisfactory, as if the divisor is zero,
RESULT is left undefined. It would be better if some action
were to be taken to indicate that the operation was unsuccess-
ful. A simple way of doing this is to use another memory
location as a flag, and set this to zero if division occurs, or to
a nonzero value if the operation is aborted.

Note the use of the label 'OKAY' in this example. It is
used to give a forward branch, skipping over the first RTS if
the divisor is nonzero. Two -pass assembly is therefore essen-
tial in this example.

Note also how the branch instruction is used to skip over
unwanted instructions when appropriate. Such an action is
considered bad practice in BASIC, but in assembly language it

96

is perfectly acceptable, and often the best (and sometimes tae
only) way of arranging things.

Loops

As a first example of a loop in assembly language, we will see
how to add up all the whole numbers between zero and any
number up to 255. Such a program is interesting, as the same
thing can be done very simply in BASIC using a FOR . . .

NEXT loop. Comparing BASIC and assembly language pro-
grams doing exactly the same job is very instructive as to the
difference in speeds between the two!

In essence, this program consists of loading the limiting
number into a memory location, and loading the value 1 into
D1. The value in Dl is added to the memory location
labelled 'RESULT' (which is started at zero - note use of
LEA and register indirect addressing to permit relocatable
code again) and then D1 is compared to the limit. If it is
equal to the limit, the loop ends. If not, the contents of Dl
is increased by 1, and the program loops back to the point
where Dl is added to the result. Note the use of BRA
(BRanch Always) here.

An interesting point is the use of the ADDQ instruction
to increment the value in D1. The 68000 does not actually
have an increment instruction, found on most other micro-
processors. Instead it uses this 'add quick' instruction, which
can be used for small operands, from 1 to 8 only, and with
immediate addressing only for the first operand.

LIMIT DS.W 1

RESULT DS.W 1

START LEA RESULT,A1
MOVE.W #0,(A1) INITIALISE

RESULT
MOVE.W #1,D1 INITIALISE DI

LOOP ADD.W D1 ,(A1) ADD D1 TO
RESULT

97

CMP LIMIT,D1 CHECK FOR
LIMIT

BEQ OUT END IF Dl=
LIMIT

ADDQ.W #1,D1 INCREMENT DI
BRA LOOP LOOP ALWAYS

OUT RTS ENDS ROUTINE

Clearing a Section of Memory

As a second example of a loop, we will see how to clear a
section of memory, by which is meant setting all the locations
to zero. You may want to do this, for example, with video
memory in order to clear the screen. This example will also
show further ways in which the address registers can be used.

Two address registers are used. The first is initialised with
the first memory location to be cleared, the second with the
last to be cleared. The 68000 instruction set includes a CLR
instruction, and this is the fastest way of setting memory
locations to zero.

The memory location addressed by the first address register
is cleared. The register is then compared with the second
register using CMPA (compare address). If the two are equal,
the routine ends. If not, the first address register is incre-
mented, and another memory location cleared.

In this example, the memory is cleared a word at a time,
so the address register must be incremented by two on each
pass of the loop. The long -word form of CMPA is used.

In this example, the first and last locations to be cleared
are specified using the immediate addressing modes. The
locations specified are, in fact, the video memory area on the
Sinclair QL computer. This routine will, therefore, clear the
entire screen to black on this machine. For other machines,
the specified addresses can be easily altered.

START MOVE.L #$20000,A1 INITIALISE
ADDRESS

98

MOVE.L #$28000,A2 REGISTERS

LOOP CLR W (Al) CLEAR
LOCATION

CMPA.L Al ,A2 CHECK LIMITS
BEQ OUT END IF EQUAL

ADDQ.L #2,A1 INCREMENT Al
BRA LOOP

OUT MOVEQ.W #0,D0 FOR QL ONLY
RTS

This program demonstrates how quickly the 68000 series
can alter a large chunk of memory.

99

Notes

100

Notes

101

Please note following is a list of other titles that are available
in our range of Radio, Electronics and Computer Books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any
title in your area, then please write directly to the publisher
enclosing payment to cover the cost of the book plus adequate
postage.

If you would like a complete catalogue of our entire range
of Radio, Electronics and Computer Books then please send a
Stamped Addressed Envelope to:-

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

102

160 Coil Design and Construction Manual E250
227 Beginners Guide to Building Electronic Projects E195
BP28 Resistor Selection Handbook £060
BP36 50 Circuits Using Germanium Silicon & Zener Diodes £1 95
BP37 50 Projects Using Relays, SCRs and TRIACs £2 95
BP39 50 (EFT) Field Effect Transistor Projects £2 95
BP42 50 Simple LED Circuits El 95
BP44 IC 555 Projects E2.95
BP48 Electronic Projects for Beginners E7.95
BP49 Popular Electronic Projects E2.50
BP53 Practical Electronics Calculations & Formulae £3.95
BP56 Electronic Security Devices £2.95
BP74 Electronic Music Projects £2.95
BP76 Power Supply Projects E2.50
8P78 Practical Computer Experiments E1.75
BP80 Popular Electronic Circuits - Book 1 £2.95
13P84 Digital IC Projects £1.95ens International Transistor Equivalents Guide 1E3.95
BP87 50 Simple LED Circuits - Book 2 £1.95
BP88 How to Use Op -amps £2.95
BP90 Audio Projects E2.50
BP92 Electronics Sim plified - Crystal Set Construction £1.75
BP94 Electronic Projects for Cars and Boats £1.95
BP95 Model Railway Projects £2.95
BP97 IC Projects for Beginners E1.95
BP98 Popular Electronic Circuits- Book 2 E2.95
BP99 Mini -matrix Board Projects E2.50
8P105 Aerial Projects £2.50
BP107 30 Solderless Breadboard Projects - Book 1 £295
BP110 How to Get Your Electronic Projects Working E295
BP111 Audio E3.95
BP115 The Pre -computer Book £195
BP118 Practical Electronic Building Blocks - Book 2 £195
BP121 How to Design and Make Your Own PCB's £250
BP122 Audio Amplifier Construction £295
BP125 25 Simple Amateur Band Aerials £195
BP126 BASIC & PASCAL in Parallel £150
BP130 Micro Interfacing Circuits -Book 1 £2.75
BP131 Micro Interfacing Circuits - Book 2 E2.75
BP132 25 Simple SW Broadcast Band Aerials £195
BP136 25 Simple Indoor and Window Aerials £175
BP137 BASIC & FORTRAN in Parallel £195
BP138 BASIC & FORTH in Parallel £195
BP144 Further Practical Electronics Calculations & Formulae £495
BP145 25 Simple Tropical and MW Band Aerials £135
BP146 The Pre -BASIC 3ook f295
BP147 An Introduction to 6502 Machine Code £2.95
BP148 Computer Terminology Explained E1.95
BP171 Easy Add-on Projects for Amstrad CPC 464, 664, 6128 & MS5 Computers £295
BP176 A TV-OXers Handbook (Revised Edition) £5.95
8P177 An Introduction to Computer Communications E2.95
BP179 Electronic Circuits for the Computer Control of Robots £2.95
BP182 MIDI Projects £2.95
8P184 An Introduction to 68000 Assembly Language E2.95
BP187 A Practical Reference Guide to Word Processing on the Amstrad PCW8256 & PCW13512 £5.95
BP190 More Advanced Electronic Security Projects £2.95
BP192 More Advanced Power Supply Projects £2.95
BP193 LOGO for Beginners £2.95
BP196 BASIC & LOGO in Parallel £2.95
BP197 An Introduction to the Amstrad PCs £5.95
BP198 An Introduction to Antenna Theory £2.95
BP230 A Concise Introduction to GEM £2.95
BP232 A Concise Introduction to MS-DOS £2.95
BP233 Electronic Hobbyists Handbook £4.95
BP239 Getting the Most From Your Multimeter £2.95
BP240 Remote Control Handbook E3.95
BP243 BBC BASIC86 on the Amstrad PCs & IBM Compatibles - Book 1. Language £3.95
BP244 BBC BASIC86 on the Amstrad PCs & IBM Compatibles- Book 2: Graphics E3.95

and Disk Files
BP245 Digital Audio Projects £2.95
BP246 Musical Applications of the Atari ST's £5.95
BP247 More Advancer MIDI Projects E2.95
BP248 Test Equipment Construction E2.95
BP249 More Advancer Test Equipment Construction E3.50
BP250 Programming in FORTRAN 77 £4.95
BP251 Computer Hobbyists Handbook £5.95
BP254 From Atoms to Amperes E3.50
BP255 International Radio Stations Guide (Revised 1991/92 Edition) £5.95
BP256 An Introduction to Loudspeakers & Enclosure Design £2.95
BP257 An Introduction to Amateur Radio E3.50
BP258 Learning to Program in C (Revised Edition) E4.95
BP259 A Concise Introduction to UNIX £2.95
BP260 A Concise Introduction to OS/2 £2.95
BP261 A Concise Introduction to Lotus 1-2.3 (Revised Edition) £3.95

0P262 A Concise Introduction to Wordperfect (Revised Edition)
BP264 A Concise Advanced Users Guide to MS-DOS (Revised Edition)
BP265 More Advanced Uses of the MuUnmet°,
BP266 Electronic Modules and Systems for Beginners
BP267 How to Use Oscilloscopes & Other Test Equipment
BP269 An Introduction to Desktop Publishing
BP270 A Concise Introduction to Symphony
BP271 How to Expand. Modernise & Repair PCs & Compatibles
BP272 Interfacing PC's and Compatibles
BP273 Practical Electronic Sensors
BP274 A Concise Introduction to SuperCalc5
BP275 Simple Short Wave Receiver Construction
BP276 Short Wave Superhet Receiver Construction
BP277 High Power Audio Amplifier Construction
BP278 Experimental Antenna Topics
BP279 A Concise Introduction to Excel
BP280 Getting the Most From Your PCs Hard Disk
BP281 An Introduction to VHF/UHF for Radio Amateurs
BP282 Understanding PC Specifications
BP283 A Concise Introduction to SmartWare II
BP284 Programming in EluickBASIC
BP285 A Beginners Guide to Modern Electronic Components
BP286 A Reference Guide to Basic Electronics Terms
BP287 A Reference Guide to Practical Electronics Terms
BP288 A Concise Introduction to Windows3.0
BP290 An Introduction to Amateur Communications Satellite
BP291 A Concise Introduction to Venture
BP292 Public Address Loudspeaker Systems
BP293 An Introduction to Radio Wave Propagation
BP294 A Concise Introduction to Microsoft Works
BP295 A Concise Introduction to Word for Windows
BP297 Loudspeakers for Musicians
BP298 A Concise Introduction to the Mac System & Finder
BP299 Practical Electronic Filters
BP300 Setting Up An Amateur Radio Station
BP301 Antennas for VHF and UHF
BP302 A Concise Users Guide to Lotus 1-2-3 Release 3.1
BP303 Understanding PC Software
BP304 Projects for Radio Amateurs and SWLs
8P305 Learning CAD with AutoSketch for Windows
BP306 A Concise Introduction to Ami Pro 3
BP307 A Concise Introduction to QuarkXPress
BP308 A Concise Introduction to Word 5.1 on the Macintosh
BP309 Preamplifier and Filter Circuits
BP310 Acoustic Feedback - How to Avoid It
BP311 An Introduction to Scanners and Scanning
BP312 An Introduction to Microwaves
BP313 A Concise Introduction to Sage
BP314 A Concise Introduction to Ouattro Pro
BP315 An Introduction to the Electromagnetic Wave
BP316 Practical Electronic Design Data
BP317 Practical Electronic Timing
BP318 A Concise Users Guide to MS-DOS 5
BP319 Making MS-DOS Work for You
8P320 Electronic Projects for Your PC
BP321 Circuit Source - Book 1
BP322 Circuit Source - Book 2
BP323 How to Choose a Small Business Computer System
BP324 The Art of Soldering
BP325 A Concise Users Guide to Windows3.1
BP326 The Electronics of Satellite Communications
BP327 MS-DOS One Step at a Time
BP328 Sage Explained
BP329 Electronic Music Learning Projects
BP330 A Concise Users Guide to Lotus 1-2.3 Release 2.4
BP331 A Beginners Guide to MIDI
BP332 A Beginners Guide to TTL Digital ICs
BP333 A Beginners Guide to CMOS Digital ICs
BP334 Magic Electronic Projects
BP335 Operational Amplifier Users Handbook
BP336 A Concise User's Guide to Lotus 1.2-3 Release 3.4
BP337 A Concise Users Guide to Lotus 1-2.3 for Windows
BP338 A Concise Introduction to Word for Windows
BP339 A Concise Introduction to Wordperfect 5.2 for Windows
BP340 A Concise Introduction to dBase V
BP341 A Concise Users Guide to MS-DOS 6
BP342 A Conciser Users Guide to Lotus Improv

E3.95
£3.95
£2.95
E3.95
£3.50
E5.95
E3.95
E4.95
£3.95
£4.95
£3.95
£3.95
£2.95
£3.95
£3.50
E3.95
£3.95
E3.50
E3.95
£4.95
£4.95
E3.95
E5.95
£5.95
E3.95
E3.95
E3.95
E3.95
£3.95
£4.95
£4.95
E3.95
E3.95
£4.95
E3.95
£3.95
E3.95
£4.95
E3.95
E5.95
£4.95
£4.95
E5.95
E3.95
£3.95
£4.95
E3.95
£3.95
£4.95
E4.95
£4.95
£4.95
£4.95
£4.95
£3.95
£4.95
£4.95
E4.95
0.95
£4.95
E4.95
£4.95
£5.95
E4.95
£4.95
E4.95
£4.95
£4.95
E4.95
E5.95
E5.95
£5.95
E5.95
£5.95
£4.95
E5.95
Es.%

BERNARD BABANI BP184

An Introduction to
68000 Assembly

Language

 A vast increase in running speed can be obtained when using
programs written in assembly language, which in essence entails
direct programming of the computer without using a high level
built-in language such as BASIC. However, this can only be
undertaken by someone who has a reasonable understanding of
the microprocessor and some of the other hardware used in the
computer, but it is not as difficult as one might think and this book
tells the story.

The microprocessor dealt with is the 68000 series which is
widely acknowledged as one of the most powerful types currently
available, leading to its use in some of the latest home and
business computers such as the Commodore Amiga, Atari ST
range, Apple Macintosh range and the Sinclair QL etc.

£2.95

9

GB f NET +002.95

ISBN 0-85934-158-5

1
78 59

I
34 1

I
58 1

0 0 2 9 5

1 1

