
tv®

A$=A$+U$(R)

LEN A$

LEN At
IF B$(1) =A$(1) THEN

PRINT AT 1,K

HANGHAN
R=INT (RND +

(R) = '< ” THE
^3 L ET R = R — 1

110 GOTO 90
120 LET A$=""
130 LET U$=U$(1 TO R-
140 IF W$(R)”<', THEN C
150 LET
160 GOTO
170 FOR
180 PRINT
190 NEXT I
p.00 LET H = 0

10 PRINT AT 3
20 INPUT B$
’50 LET K=0
0 FOR 1=1 TO

1 NEXT I
IF K=0 THEN GOTO
LET A$(K)="i"
LET H = H + 1

'RINT

ITO

AT 4,0;
100

60

1 ; B$ C 3
IF H< >LEN A$ THEf'J

1

THE ART OF PROGRAMMING
THE 1KZX81

by
M. JAMES & S. M. GEE

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

Although every care has been taken with the preparation of
this book, the publishers or author will not be held responsible
in any way for any errors that might occur.

© 1982 BERNARD BABANI (publishing) LTD

First Published - July 1982

British Library Cataloguing in Publication Data
James, M.

The art of programming the IK ZX81 — (BP 109)
1. Sinclair ZX81 (computer) - Programming
I. Title II. Gee, S.
001.64’24 QA76.8.562/

ISBN 0 85934 084 8

Printed and bound in Great Britain by Cox & Wyman Ltd, Reading

PREFACE

For many people the ZX81 is their first introduction to
computing and they often find it difficult to write any
interesting or exciting programs. This is not at all surprising
since the ZX81 is actually quite a difficult machine to use —
even for a fairly experienced programmer. Writing programs
that fit into the tiny memory space that the IK machine has
left for them is a challenge and an art.

This book shows you how to use the features of the ZX81
in programs that fit into the IK machine and are still fun to
use. In Chapter Two we explain its random number generator
and use it to simulate coin tossing and dice throwing and to
play pontoon. There is a good deal of fun to be had, in
Chapter Three, from the patterns you can display using the
ZX81’s graphics and its animated graphics capabilities,
explored in Chapter Four, have lots of potential for use in
games of skill, such as Lunar Lander and Cannon-ball which are
given as complete programs. Chapter Five explains PEEK and
POKE and uses them to display large characters. The ZX81’s
timer is explained in Chapter Six and used for a digital clock,
a chess clock and a reaction time game. Chapter Seven is about
handling character strings and includes three more ready-to-
run programs - Hangman, Coded Messages and a number
guessing game. In Chapter Eight there are extra programming
hints to help you get even more out of your IK ZX81.

We hope you’ll find that this book rises to the challenge of
the ZX81 and that it teaches you enough artful programming
to enable you to go on to develop programs of your very own.

M. James and S. M. Gee

CONTENTS

Page
Chapter One, MAKING THE MOST OF YOUR ZX81........... 1

Artful programming.. 1
Fun and games.. 2
Know your limits... 3
The ZX80..4

Chapter Two, RANDOMNESS ... 5
Pseudo randomness!.. 5
RND and RAND ... 6
Making things happen..8
Random integers ... 11
Two improved programs ...12
The trouble with cards..15
Pontoon...16
Unequal probabilities — an advanced method................... 17

Chapter Three, GRAPHICS ...19
PRINT comma and semicolon...19
PRINT TAB and AT..20
Graphics characters...22
CHR$... 22
Random patterns... 23
Plotting .. 24
Some simple shapes.. 25
Arrows game...29
Randomness and symmetry..........31

Chapter Four, MOVING GRAPHICS.....................................36
From flashing to moving.. 36
Moving balls and velocity.. 40
Free flight and gravity... 42
Lunar lander...44
Throwing in a given direction...45
Cannon-ball... 47

Page
Chapter Five, PEEK AND POKE...49

What PEEK and POKE do..49
Using PEEK to draw big letters.. 51
Conclusion... 57

Chapter Six, A SENSE OF TIME...58
FAST, SLOW and PAUSE ..58
Using PAUSE...59
Delay loops ...59
The frame counter...61
Digital clock... 62
A chess clock...64
Reaction time game ..65

Chapter Seven, STRINGS AND WORDS................................68
Strings and things...68
Random words.......................,.. 70
Hangman ..72
Codes and cyphers...74
Numbers as words — a number guessing game76

Chapter Eight, HINTS AND TIPS .. 79
Space-saving screen displays... 79
Memory-saving numbers...81
Space-saving variables..83
Space-saving strings...83
Space-saving statements...85
How much space?... 86
The solution and more problems! 86

Chapter One

MAKING THE MOST OF YOUR ZX81

The ZX81 really is a remarkably powerful and versatile micro.
Considering its size and its price it is in a class of its own. Its
smallness and its cheapness mean that it has quickly achieved a
popularity that larger more expensive computers cannot yet
hope for but they do not mean that it is less capable or less
interesting. It is a machine to be reckoned with.

Artful programming
The IK ZX81 is, however, not a particularly easy machine for
the beginner to use. It is difficult to write programs that will
fit into what little memory is left over once the ZX81’s BASIC
has taken its share. To write an interesting program, for a
game, a simulation, or any other application that will fit into
the available space means using tricks and devices that are not
really part of introductory programming. This fact alone has
probably caused many an aspiring programmer to give up and
throw his ZX81 in the bin! After acquiring this book we hope
that if your ZX81 is still in the bin you will recover it and
make good use of it!

You may have read the BASIC manual that comes with the
machine and learned enough BASIC to program but still not
be able to produce any of the ideas in your head on the ZX81.
The reason for this is that, although you may know BASIC,
there is more to programming than knowing BASIC. In the
same way there is more to speaking English than knowing how
to pronounce a few words.

This book has been written to enable you to get the very
most out of the IK ZX81 (before you contemplate any
extras). (A note to ZX80 owners: a lot of the programs will
ran with only minor modifications on the ZX80 with 8K
BASIC ROM.) As mentioned above, in order to squeeze
interesting programs into so little space requires artful pro-

gramming — the programs in this book have been explained in
such a way that you learn this art as you go along. In addition
there are some special space-saving tricks and devices that are
needed for the IK ZX81 only and are not really anything to
do with programming in general. These are explained in the
last chapter of the book.

As you have probably gathered this is not an introductory
book in the strict sense — it does assume you have already got
your ZX81 working. If you are still a complete beginner the
book that you should read first is the Sinclair Manual “ZX81
BASIC Programming”, which comes with every machine. It
provides a good foundation course for the beginner and our
book goes on from where it finishes. However this will not
stop us from re-explaining some of the more difficult topics to
be found in the manual. All that we really require is that you
have a very basic grasp of BASIC!

Fun and games
This is a book of games programs. Why just games? There
are good reasons for the restriction. The Sinclair Manual pro
vides an explanation of how to use the various routines for
calculations and there is also a cassette of educational pro
grams that fit into IK. Although the ZX81 can be used for
business and household management, programs serving this
function do not fit into IK. These are the negative reasons.
The positive reason is that games can be designed to use all the
capabilities of the ZX81. Also games provide perhaps the best
medium for learning, and for learning in an enjoyable way.
Games must not be dismissed as nonsense. The dividing line
between sheer fun and the serious pursuit of knowledge is a
very blurred one as computers have demonstrated. After all,
the forerunner of the spaceship simulation games were really
used to put men and spacecraft into orbit and land them on
the moon.

When you’ve tried out the games in this book and under
stood how they work we hope that you will go on to write
programs of your own. There are always ways of improving
on games so perhaps you’ll start by making small modifica

tions to these programs, then larger ones and then you’ll have
the confidence to start from scratch and devise your own

' fames. And along the way we hope you will have some fun.

Know your limits

The ZX81 has other limitations apart from the limited
¡memory of the IK version and these need to be taken into
¡account when deciding what it is reasonable to expect it to do.
its graphics capability is 44 by 64 plotting points. This is by
no means “low” resolution graphics but neither is it “high”
«solution - compare the Apple II which in “high res” mode

¡fcas 160 by 270 points. This means that the ZX81 cannot be
¡asked to draw fine pictures, only fairly coarse ones.

The ZX81 may appear to be a bit slow. This is because the
CPL has to handle the screen display as well as doing all the
calculations involved. This is not true of other micros where
fcs function is performed by dedicated electronics, in many
cases a CRT controller chip. In the ZX81 a single chip is
«sponsible for virtually everything so it can be excused for
faking some time over operations.

The extent to which you can extend your ZX81 is limited.
You can add 16K of RAM and you can attach a printer to
■take “hard copy” of your programs or their output. You
can use a cassette deck to save and load programs but not to
Rve and load data — since there are no commands to facilitate

tis in the ZX81’s BASIC. There is, as yet, no way of attaching
sc drives to the ZX81 and even if there were this would
irdly seem sensible. For a start, disk drives are very expensive
Lative to the basic cost of the ZX81 - the very cheapest
ide disk drive costs twice as much as the ZX81 itself. There
i point beyond which it would be more sensible to sell your
KS1 and start again with a bigger machine.

However, do not be misled into thinking the ZX81 is not
¿pandable. There are already a number of plug-in boards
inch connect via the slot at the rear of the case. Some of
ese extra boards allow you to attach others to them so that
»u can use more than one at a time. Available boards include
les for sound, memory expansion (to 48K) and for colour.

2 3

The ZX80
The ZX81 is the successor to Sinclair’s first hand-held
computer, the ZX80. Brought out in 1980 there were over
50,000 ZX80s sold which means that there must be lots of
people still using them. At the same time as the ZX81 became
available an 8K BASIC ROM chip was also produced as a
replacement for one of the socketed chips in the ZX80. Using
this, ZX80 owners are able to upgrade their machines to match
many of the sophisticated features of its later counterpart and
to make use of the peripherals — including the 16K RAM pack
and the printer. One facility that the upgraded ZX80 still lacks
though is animated graphics. However even this can be
remedied as conversion kits to make the ZX80 produce
moving pictures are now available. Except for those in Chapter
Four, the programs in this book should work with only minor
changes on an upgraded ZX80. However, as we have not tried
them out on such a machine, we cannot comment on the sort
of results that you might obtain.

4

Chapter Two

RANDOMNESS

You may think that randomness is a funny place to begin a
book about games programming. After all, in the abstract it
is rather an esoteric subject. But this book is not about
abstract concepts, it is about using the features of the ZX81
to write programs that you can use to play games, and
randomness, or chance, is a fundamental component of games
of all sorts. For a start there are games of chance — games with
cards or dice, then there are games in which the speed with
which you react to a chance event counts, and then there are
games in which you use your skill to beat an opponent whose
decisions you cannot predict in advance. Random numbers are
at the heart of all these games.

Pseudo randomness!

What is a random number? Well, we’ve already hinted at the
answer. It is a number which you could not possibly have pre
dicted. The toss of a coin is random, so is the fall of a dice.
You cannot know in advance whether the coin will fall as
"heads” or as “tails”. Neither can you say which face of the
dice will fall uppermost and there is no way you can control
the outcome. It is the fact that the players cannot influence
the result that is the important aspect of a random event as far
is game playing is concerned.

You may already be questioning whether a computer can
ever produce a random number — after all, it can only output
i function of what has previously been input. Well, the
sceptics are in this case correct — a computer cannot give you
i truly random number. A computer can only produce
numbers that it calculates. The most important feature that we
use about randomness is that the next outcome, or number, is
unpredictable. We can make the computer calculate a set of
numbers such that it is very difficult to predict the next

5

number that comes up. Such a set of numbers is said to be
“pseudo random”.

To clarify matters, a pseudo-random number is one that is
not produced by a random event (such as the throw of a dice).
It is therefore theoretically predictable, but it can, for all prac
tical purposes, be generated in such a way that no onlooker
could ever work out what to expect next. In this sense we
could say that the computer generates unpredictable numbers
rather than random ones.

A computer generates its random numbers by using a
formula and so anybody who has a copy of the formula can
predict the next number in the sequence. However, in practice
the formula is sufficiently complicated that for the purpose of
playing games, where everything happens quickly, you’d need
to be a mathematical genius to apply the formula in time.

RND and RAND
The ZX81 uses the function RND to produce pseudo-random
numbers in the range 0 to 1. Every time you use the word
RND the ZX81 calculates the next number in the sequence.
Perhaps now you will not be too worried by the idea of the
next random number being calculated! The numbers that RND
calculates have one other very important characteristic — every
number between 0 and 1 has approximately the same chance
of being produced. Another, and more technical, way of
saying this, is to say that RND produced “uniformly distri
buted” pseudo-random numbers between 0 and 1.

Now that you understand what is going on when you use
the RND function let’s see how to use it. To demonstrate the
sort of output you get when you just ask for a random number
type: .

10 PRINT RND
20 GOTO 10
RUN

You will get a screen of numbers all lying between 0 and 1.
For example

6

.0011291504

.08581543

Are you struck by a coincidence? Have we just predicted the
two numbers at the top of your screen? If not, turn your
machine off and on again and then try. Now your screen
should display a list starting with those very numbers. The
reason this happens is that the sequence of random numbers is
generated by the same formula for all our machines — and the
formula itself is given in the manual so it’s no secret! If you
RUN the program more than once without switching off
between times the sequence will simply continue from the
pl-3ce it was at before.

The fact that the random sequence is absolutely repeatable
b actually very useful for some applications — for example for
testing alternative simulations where you want to repeat the
«me pattern of chance events — but for other purposes it is
entirely worthless. Playing games of chance with your ZX81
would soon lose its attraction if it was not for the RAND
ftinction. The RAND function gives an instruction to the
computer where to start in the sequence. This can either
Ie a set point or it can be a chance point — equivalent to
■ticking a pin in a list. To pre-determine the starting point you

RAND any number

fry for example:

10 RAND 35
20 PRINT RND
30 GOTO 20

In this a few times, the sequence is always the same. If you

10 RAND 35
20 PRINT RND
30 GOTO 10

Icu will find that you keep on printing the same number —
he starting point of the sequence given by RAND 35!

7

To get a different sequence each time use:
10 RAND 0

When you use RAND 0 what actually happens is that the com
puter uses the value in an internal counter that counts the
number of TV pictures displayed since you switched your
machine on (see Chapter Six). Although where the sequence
begins is actually related to the time your machine has been
switched on, the fact that the counter operates at a speed of
50 counts per second means that it is virtually impossible to
predict its position when you type RAND 0. To recap all we
have learned so far: the RND function calculates the next
random number in the sequence, we can use RAND to set the
starting point of the sequence, we can use RAND 0 to set the
starting point of the sequence in a way that is about as near to
random as we can manage. To prove this try:

10 RAND 0
20 PRINT RND
30 GOTO 10

This will print out a set of starting points selected by RAND 0.

Making things happen
On the face of it, the string of numbers that comes up on the
screen when we ask for a random number do not seem very
useful. So let’s take a simple application and see how to get
the sort of results we want. Consider tossing a coin. There are
two possibilities, “heads” and “tails”. How do we simplify the
raw output from the RND function to give one of these two
answers and to give them fairly, i.e. with equal probability of
the coin landing on either “heads” or “tails”? The solution is
to split the range of answers into two exactly equal halves. As
the range goes from 0 to 1, this is easy. The halfway point is .5

0 .5 1

As the numbers produced by RND are equally likely to fall

anywhere on the Une, half of them will fall below .5 and half
will fall above .5. If we call a number that falls below .5
“heads” and one that falls above .5 “tails”, then you can see
that we will get as many heads as tails. Translating this into a
program gives:

10 RAND 0
20 LET R = RND
30 IF R<5 THEN PRINT "HEADS”
40 IF R>=.5 THEN PRINT "TAILS”
50 GOTO 20

At line 10 we randomise the starting point of the random
numbers. At line 20 we get a random number into R and at
lines 30 and 40 we decide which half of the range it falls in.
If it’s less than .5 we print “heads”, if its greater than or equal
to .5 we print “tails’ . It’s as easy as that! We haven’t really
written an inspiring coin tossing program so we will return to
this problem a little later on.

What if you had a crooked penny? One that said heads
threequarters of the time? It’s not difficult to see how we
would alter the program to give the results that the bad penny
would give. Simply change the division of the range into two
unequal parts. In general if the probability of getting heads is
P then:

10 RAND 0
20 INPUT P
30 LET R = RND
40 IF R<P THEN PRINT "HEADS”
50 IF R>=P THEN PRINT "TAILS”

[60 GOTO 30

For tossing a coin all we have to do is allow for two possi-
katies, each of which occur with the same probability —
«fess we deliberately alter the odds as in the bad penny
«sample. There are other random situations where there are a
lamer number of possibilities and where the chances of the
[Afferent outcomes are not equal to one another.
I To the ordinary onlooker, the weather in this country often
■rems to be a matter of chance — or rather mischance. Let’s

write a program to- see if the weathermen do get it right by
forecasting using scientific principles, more often than if they
just made an “educated guess”. The guess combines a random
element with our knowledge of seasonal weather patterns.
The following program has been written for spring. In the 100
days of spring (the period from mid-February to mid-June)
you might expect 40 sunny days, 30 cloudy days, 20 rainy
days and 10 days of snowfall, putting this in terms of pro
bability: sun on .40 of the days cloud on .30 of the days rain
on .20 of the days and snow on .10 of them. Let’s see how this
fits together. Consider a line with 0 at one end and 1 at the
other and mark off sections the same in length as the probabi
lity of each weather. For example:

.4 .3 .2 .1

0 .4 .7 .9 1

If we produce random numbers evenly between 0 and 1 the
probability of a number falling in any given section of the line
is proportional to the length of that section. This is the key to
selecting the weathers with the correct probability. The
weather condition corresponding to the section in which the
random number occurs is the one predicted. So for the
number .6712348117 “Cloud” is given.

There is a problem with.this. What if the random number is
exactly one of the borderline points, say .4, will it be sunny or
cloudy? It’s not that important which we chose as long as we
decide. The correct choice is in fact to give the 0 point to the
first section and carry on giving the boundary to the section to
the right. What about the point corresponding to 1? Well if
you look carefully at the definition of RND you’ll find that it
gives numbers from 0 up to but not including 1. So the point
corresponding to 1 need not concern us because it is never
selected. The program for weather forecasting should now be
obvious:

10 RAND 0
20 LET R = RND
30 PRINT "THE WEATHER FORECAST"

10

40 IF R<.4 THEN PRINT "SUN”
50 IF R>=.4 AND R<.7 THEN PRINT "CLOUD”
60 IF R>=.7 AND R<9 THEN PRINT "RAIN"
70 IF R>=.9 THEN PRINT "SNOW"

The only difficult part of this program is testing which section
the random number falls in but this should be understandable
if you refer to the line diagram shown. There are lots of very
tricky ways of carrying out the test, some of which save
memory and some of which are faster, but the one used above
is the easiest to understand and will work on any machine.

Random integers

Dividing up the interval between 0 and 1 is one way of selecting
which “event” is going to happen. But it’s not the only way.
In a case where a given number of events occur with equal pro
bability, there is an alternative — which is to multiply the
number output by the computer by the number of possibilities,
round it off to a whole number and add one to the answer. In
fact this is easier than it sounds. Let’s look at the practical
example of throwing a dice. We have to choose one of six
possibilities. We could use the method of dividing the line into
¿x equal parts but instead let’s try the new method. If we
multiply RND by six we have a number that lies between 0
and less than 6. If we use the INT function to convert the
number to an integer — a whole number — we have a number
fiiat lies between 0 and 5. Adding one gives a number between
1 and 6. To see this in action try the following program:

10 RAND 0
20 LET R = RND
30 PRINT R
40 LET R = R*6
50 PRINT R
60 LET R = INT (R)
70 PRINT R
80 LET R = R + 1
90 PRINT R

11

If you run it a few times you should be able to see what’s
going on. Of course in practice you would carry out the whole
procedure in one statement:

10 RAND 0
20 LET R = INT (RND*6) + 1
30 PRINT R
40 GOTO 20

In general, if you want to produce random numbers between
N and M use

10 LET R = INT (RND*(M-N + 1)) + N

Usually N is 1 and then this simplifies to
10 LET R = INT (RND*M) + 1

if you put M=6 you get the dice program back again.
It is important to realise that this very easy method of

producing random events only works if each of the events is
equally likely.

Two improved programs
So far we have looked at randomness but we haven’t really
produced any complete games programs. The reason for this is
that randomness is usually found as some part of a bigger
program. Even so it is possible to do a better job withhhe two
small programs that we examined earlier. /

First let’s have a look at the coin tossing progranj. One of
the things that’s usually missing from a computer coin tossing
is the suspense. A coin is tossed ... it flys through t|e air. . .
it spins a bit. . . will it be heads... or tails. .. finallyht stops!
A computer tossing simply prints “heads” or “tail^” faster
than you can blink! Let’s try to slow down the selection part
of the program to give it an element of suspense. Try:

5 DIM B$(2,5)
10 RAND 0
30 PRINT "DO YOU WANT TO GAMBLE Y/N?"
40 INPUT A$

12

50 IF A$O"Y" THEN STOP
55 CLS
60 PRINT "HEADS OR TAILS (H/T)?";
70 INPUT A$
75 PRINT A$
80 LET R = INT (RND*15) + 10
90 LET B$(1) = "HEAD"

100 LET B$(2)="TAIL"
110LETK = 0
120 FOR 1 = 1 TO R
125 LET K = NOT K
130 PRINT AT 5,0;B$(K+1)
140 FOR J = 1 TO I
150 NEXT J
170 NEXT I
180 IF A$ = B$(K+1,1) THEN PRINT "YOU WIN"
190 IF AOB(K+1,1) THEN PRINT "YOU LOSE"
200 GOTO 20

e program works on a rather different principle to the
trie coin tossing program. Lines 5, 90 and 100 set up a
ing array containing the words HEAD and TAIL. The
>R loop starting at line 120 and ending at 170 prints one of
t two words each time through. The statement at line 125
* puzzle some readers — NOT K simply changes K to 0 if
i 1 and 1 if it’s 0. It is this “flipping” of K each time
ssugh the loop that causes heads and tails to be alternatively
■ted out. If K=0 then line 130 prints “heads” if K=1 it
in “tails”. This random element is introduced in line 80
■re R is the number of times that the loop is carried out.
■tcusly if R is odd, then the final result will be heads; if it’s
■ then the result will be tails. The final touch of suspense is
fee by making the words “heads” and “tails” alternate
■e and more slowly as time goes on by including a delay
y it lines 140 to 150.
This program is not easy to understand so don’t worry too
■it 2 you cannot follow all of it. Some of the commands
I techniques will be described in more detail later on.
O-r second improved program is a dice program. The

13

improvement is obvious — we print out the usual dice pattern^
of dots for each result. We can save some programming by
noticing that the pattern for three dots is the same as printing
the pattern for two and the pattern for one. Similarly the
pattern for four is the same as the pattern for two with twc
extra dots! And so on with five (four plus one) and six (foui
plus two extra dots). The resulting program is:

10 RAND 0
20 LET R = INT (RND*6) + 1
30 GOSUB R*100
40 INPUT A$
50 IF A$="S" THEN STOP
60 CLS
70 GOTO 20

100 PRINT AT 5,5;"*''
110 RETURN
200 PRINT AT 0,0;"*”
210 PRINT AT 10,10;"*"
220 RETURN
300 GOSUB 100
310 GOTO 200
400 PRINT AT 0,10;"*"
410 PRINT AT 10,0;"*"
420 GOTO 200
500 GOSUB 400
510 GOTO 100
600 PRINT AT 5,0;"*''
610 PRINT AT 5,10;"*"
620 GOTO 400

Examples:
* * *

* *

* * *

5 3

The only clever bit of the program is line 30 which selects
subroutine 100 if R is 1, subroutine 200 if R is 2 etc. To use
the program, press newline for each throw of the dice and
press “S” when you have finished using it.

The trouble with cards
So ¿far we have used random numbers to select which of a
number of events would happen. It might seem that we could
¡use the same methods to write programs that play card games.
A deck of cards consists of four suits each of 13 cards. There
are many ways of using a computer to pick a card. One of the
leisiest to understand is to simply generate two random
[■umbers, one between 1 and 4 to select the suit, and one
tt>etween 1 and 13 to select which card. The problem with this
pnethod is that if you draw a card — the ace of spades say —
[there is nothing to stop you from drawing it again! This sort of
»rawing of cards is the same as drawing a card, noting its value
■cd putting it back in the deck — it is drawing with replace-
■■Knt. The more usual way to draw' cards is to deal them out
[■id this, is drawing without replacement. You can arrange for
■tcs sort of drawing to be programmed but it does take a lot of
■pace - too much in fact for a IK ZX81 to handle.
I The second problem with cards is that anyone who is good
■t card games will tell you that a lot of the fun comes from
k? eking out odds and trying to remember the order in which
■he cards were dealt. Shuffling is a very inefficient way of re-
kranging the cards in a deck and if the last time around one
■■rd followed another then after shuffling the chances are that
■I •all still follow the same card. It is the use of this fact that
kikes a good card player. Imagine then a good player’s
■■action to playing against a computer — there are no cards
kd the random draw is far too good to allow associations
kt ween pairs of cards to remain.
■ The solution to both the drawing without replacement and
ke inefficient shuffling problem lies in the computer simuia-
kir of a deck of cards. For example if you set up a string
krtaining 52 different symbols — one for each in each suit —
ken dealing could be carried out by printing each symbol in

14 15

turn. Randomness could be ensured by the occasional simu
lated shuffle. For example, for one suit:

10 LET A$=" AH 1H 2H 3H 4H 5H 6H 7H 8H 9H
10H JH OH KH"

20 GOSUB 100
30 LET 1 = 1
40 PRINT A$(l TO I +2)
50 LET I = l+3
60 IF 1 = 13*3+3 THEN STOP
70 GOTO 40

100 FOR 1 = 1 TO 13
110 LET J = INT (RND*13)
120 LET B$=A$(J*3+1 TO J*3+3)
130 LET A$=A$(1 TO J*3) + A$(J*3+4 TO)
140 LET A$=A$+B$
150 NEXT I
160 RETURN

The array at line 10 represents the suit of cards from AH -
Ace of Hearts to KH — King of Hearts. Subroutine 100 carrie
out a simple shuffling by selecting a card at random am
putting it at the end of the deck 13 times. Lines 30 to 70 prin
out each card in turn. Notice that this is slow and that i
results in a not very good shuffle. If you want to, you can cal
the subroutine again for a more thorough shuffle — insert

25 GOSUB 100

As you can see by the above example good card games
take a lot of memory and are really best left for the 16KZX81
However, if you’re not too worried about shuffling it is
possible to program a simple card game such as pontoon.

Pontoon
10 LET T = 0
20 LET U=T
30 CLS
40 LET A$="YOU”
50 GOSUB 400

16

60 LET T=T+C
70 IF T>21 THEN GOTO 300
80 PRINT "YOUR ";T
90 PRINT "STICK OR TWIST S/T"

100 INPUT A$
110 IF A$="S" THEN GOTO 200
120 CLS
130 GOTO 40
200 CLS
210 PRINT "YOUR TOTAL ";T
220 LET A$ = "ZX81"
230 GOSUB 400
240 LET U = U+C
250 IF U>21 THEN GOTO 300
260 PRINT "ZX81 TOTAL ";U
270 INPUT A$
280 IF U<T THEN GOTO 200
285 PRINT "ZX81 WINS"
290 GOTO 330
300 IF T>21 THEN PRINT "YOUR"
310 IF U>21 THEN PRINT "ZX81"
320 PRINT "BUST"
330 INPUT A$
340 GOTO 10
400 PRINT A$;" GET ";
405 LET C = INT (RND*13) + 1
406 LET A$ = " "+STR$ C
410 IF C = 1 THEN LET A$ = "ACE"
420 IF C= 11 THEN LET A$ = "JACK"
430 IF C = 12 THEN LET A$ = "QUEEN"
440 IF C = 13 THEN LET A$ = "KING"
450 PRINT A$
460 RETURN

tis is a very simplified version of pontoon — it has to be to
into 1K. The card values are ACE=1, JACK=11, QUEEN=12,

bc KING=13. The cards are drawn without replacement and
Without any reference to suit — line 405. To allow the ZX81
to draw cards you have to press NEWLINE for every card
fa*n.

17

Unequal probabilities — an advanced method
We can use a special feature of the ZX81 to generate a number
corresponding to the interval into which a random number
falls in the case of unequal sized intervals as well as equal sized
ones. As we found earlier, if we want to generate four things
with equal probability we can use

10 LET R = INT(RND*4) + 1

but this will not work for unequal probabilities such as those
used in the weather program. However:

10 LET R = RND
20 LET W= (R>.4) + (R>.7) + (R>.9) +1
30 PRINT W
40 GOTO 10

will produce numbers from 1 to 4 with the same (unequal)
probabilities as the different weather conditions. It works
because the ZX81 “works out” if tests such as R>.4 are true
or false and uses 1 to mean true and 0 to mean false. To
understand line 20 let’s suppose that R is .5; R is bigger than
.4 so the first bracket works out to be 1 but R is smaller in all
the other tests so the second and third brackets work out to
be 0. When you add together all the Is and 0s — with the extra
1 — you get the answer that W is 2. If you try it for other
values of R you can convince yourself that W is the number of
the intervals that R falls in (starting at 1).

You could use this method to make the dice or coin tossing
program given earlier unfair. But we leave this as a project for
you to try for yourself!

Chapter Three

GRAPHICS
iwhat do we mean by graphics? The answer to this question

Wul become clear in this chapter but the most important point
tc grasp is that, as far as the ZX81 is concerned, graphics are

■•or at all special. Indeed, the computer does not distinguish
between text characters and graphics characters. This means
that we can handle graphics using the commands we’re already
fcniliar with for displaying text on the screen.

Let’s examine the ways we can make characters appear on
Be screen. There are actually two different approaches and
he th have their uses in graphics applications. The first relies on
Be PRINT command.

■RINT comma and semicolon
The PRINT command is actually a very versatile one so it’s
•enh spending some time making sure that we understand its
jfcer points. Using quotation marks we can print any character
Be choose on the screen. We also have the choice of where on
Be screen to print. Using the semicolon we can place items
■ext to each other on the current line. Using the comma we
be. place items at the left hand margin or in the middle of the
Kreen. The command that the comma issues is to place the
Bern at the beginning of the next “print zone”. There are two
Ktes each having half the width of the screen. The first starts
V fire first printing position on a line and the second starts at
Be 16th. For example

10 PRINT "FIRST.”/’SECOND”
20 PRINT "FIRST”,"SECOND”

¡¡once that the semicolon doesn’t even leave a single space
ri ween the two words. The comma can be used to save some

Nf rhe ZX81 ’s precious memory,

18 19

10 PRINT
20 PRINT "C"

can be written as
10 PRINT "A","B","C''

because after using the second print field on the current line
another comma is still taken to mean “use the next print
field” even if this means move to the next line!

There is another important use of the semicolon. If a
PRINT statement ends with a semicolon then it does not start
a new line. For example:

10 PRINT "THIS IS";
20 PRINT "ON THE SAME LINE"

The main use of this sort of thing is when you have a lot of
things to print out but they are generated at different places
in the program or by a FOR loop. For example you can fill
the screen with a character by:

10 FOR 1 = 1 TO 32*21
20 PRINT "A";
30 NEXT I

PRINT TAB and AT
Although the careful use of the comma and the semicolon
can handle most of our printing problems it is difficult to
place something exactly where you want it on a line. This
problem can be overcome by use of the TAB function. If you
use TAB(N) in a PRINT statement the next thing to be printed
will appear at column N on the current line. If the PRINT
statement has already gone beyond column N then the next
thing to be printed will appear at column N of the next line.
To show this try the following program:

10 PRINT TAB(25);"AB";TAB(25);"AB"

Notice that although you could use a comma after the TAB
command it wouldn’t be useful because it would move the

‘print position on from where the TAB left it! If you use a
¡value of N bigger than 32, then 32 is subtracted from it until
; it’s in the correct range.

All of the PRINT commands that we have used so far have
the limitation that they only allow positioning within the

I current line but there is a command, PRINT AT, that will let
you print anything anywhere.

i The AT command is very easy to use —

PRINT AT Y,X;"WORD"

will print WORD at row Y and column X. If there is already
something printed at row Y and column X, it makes no differ
ence, WORD replaces it. The ZX81’s screen is 32 characters
[wide by 22 lines high. The first row is at the top of the screen
land is numbered 0. The first column of characters is on the
left hand side of the screen and is also numbered zero. This
■Beans that X must lie between 0 and 31 and Y must lie
■between 0 and 21. If X or Y are outside of their proper ranges
■hen an error occurs. For a simple example of PRINT AT

I 10 PRINT AT 11,16;"*"

phich will print a star in the middle of the screen. You can use
■RINT AT to draw simple shapes on the screen. For example,

I 10 FOR l=0 TO 31
1 20 PRINT AT 2,1;"*"
I 30 NEXT I
I 40 FOR l=0 TO 21
I 50 PRINT AT 1,0;"*"
I 60 NEXT I

■A print a horizontal and a vertical line of stars. If you want
m see another example of the use of AT go back and look at
k unproved dice program in Chapter 2. You can use as many
Bls in a PRINT statement as you like and this can be used to
Barren programs slightly.

20 21

Graphics characters
The ZX81 has 22 additional characters that form the basis of
its graphics. These extra characters can be entered into PRINT
statements exactly like any other characters except that you
have to press the “SHIFT” and “GRAPHICS” keys first. This
changes the ZX81 into graphics mode which is indicated by
the cursor changing to a “G”. Because there is a difficulty in
reproducing the ZX81 graphics characters in listings, we will
indicate graphics characters by square brackets around the
letter on the key that you would press to produce it. So [A]
is the graphics character that you can see printed on the “A”
key on your keyboard.

To prove that graphics characters can be used in PRINT
statements try

10 PRINT "[A]”;
20 GOTO 10

which fills the screen with a grey mass.

CHR$
There is another way of producing graphics or any other type
of character — the CHR$ function. If you imagine all of the
ZX81’s characters written out in order, you could pick out a
character by saying “the 38th character”. This is exactly what
the CHR$ function does. CHR$(38) is the 38th character in
the ZX81’s character set. If you want to see all the character
set try:

10 FOR l=0 TO 255
20 PRINT CHR$(I);
30 FOR J = 1 TO 50
40 NEXT J
50 NEXT I

You will notice that sometimes nothing is printed — the
character is unprintable — and sometimes you get more than
you bargain for in the form of a whole word such as COPY or
LET. The ZX81 treats all of the BASIC words that you can

22

type in with one keystroke as a single character or symbol!
The rule is that if you can type it with one key then it’s one
character.

If you are very observant you will have noticed that the
graphics characters in positions 0 to 10 come round again but
in an inverted form at 128 to 138.

Random patterns

The last section has given us a very important link between
numbers and characters. The function CHR$ accepts a number
and outputs a character. We already know how to generate
random numbers so using CHR$ we can generate random
characters - in particular random graphics characters. For
example,

10 PRINT CHR$((RND*2)+8);
20 GOTO 10

produces a random mixture of graphics characters 8,9 and 10,
i typical sample of which can be seen below.

Lightly more interesting pattern can be made by including
ire characters,

23

10 PRINT CHR$((RND*2)+8);
20 PRINT CHR$((RND*2) + 136);
30 GOTO 10

which prints a random selection of characters, 8,9,10 and their
inverses.

Plotting
If you look at the graphics characters on the top two rows oi
the keyboard you will see that they take the form of a square
divided into four quadrants. Each character has a differenl
arrangement of quadrants coloured black or white. As hai
been stressed before, these characters can be printed on the
screen just like any others. However, if we want to, we can use
them to increase the resolution of our graphics screen. By
selecting the right character we can make lines and shapes
from the smaller quadrants rather than the full charactei
squares. The trouble is that selecting the right character is not
at all easy. So the ZX81 provides two commands that are jusl
the job. The command PLOT X,Y will select the corred
character to make the quadrant at X,Y white and UNPLO1
X,Y will select the correct character to make the quadrant al

24 |

~Y black. The only thing that’s missing in our description is
here the quadrant at X,Y is! The ZX81 numbers the hori-
mtal quadrants starting at 0 on the left hand side of the
^een just as in the case of the full character positions. You
tould be able to work out that the last horizontal quadrant

63. Vertically things are a bit more difficult. The first
rnical quadrant is numbered 0 but is at the bottom of the
ieen — the opposite of the first full character position. Again
be number of the last vertical quadrant should be obvious — 43.

To recap: by use of the “quadrant” graphics characters we
e double the screen resolution. The ZX81 PLOT and
NPLOT command do the selection of characters automatic-
ty and give us a “graphics” screen 0 to 63 horizontal and
to 43 vertical. The quadrant called 0,0 is in the bottom

ft hand corner.

■>e simple shapes

Kg the PLOT and UNPLOT commands and some simple
Rations we can draw regular shapes.
A computer like the Apple has a single command called
JOT that allows you to draw a straight line between two
■a is. The ZX81 lacks this command but it’s not too difficult
make one up! Let’s suppose that we want to draw a line
Ik X1,Y1 to X2,Y2. A little bit of maths that need not
Iry us too much shows that for any point on the line
li*X+C, with M=(Y2—Y1)/(X2—XI) and C=Y1-M*X1.
■ for the moment let’s forget about the values of M and C,
■ just decide which two points the line will pass through
■ important part is the equation Y=M*X+C. This allows us
Het different lines for different values of M and C. Try the

10 LET M=.4
20 LET C = 10
30 FOR X = 0 TO 63
40 PLOT X,M*X+C
50 NEXT X

।fie is the following:

Notice that although it is recognisable as a straight line it’s no!
a very adequate straight line - the ZX81’s graphics are good
but not that good! To gain confidence, it’s a good idea to trj
out the previous program with various values of M and C. Yoe
should discover that M alters the slope of the line and C mova
it up and down. You should also notice that sometimes yoi
get an error message because for some values of X the Y valufl
is off the screen. I

To return to the problem of drawing a line between t’
points, let’s try to draw a line between 10,10 and 20,20.

10 LET X1 = 10
20 LET Y1 = 10
30 LET X2=20
40 LET Y2=20
50 LET M = (Y2-Y1)/(X2-X1)

60 LET C=Y1-M*X1
70 FOR X = X1 TO X2
80 PLOT X,M*X+C
90 NEXT X

he things to notice about this program is that the FOR loop
: line 70 goes from XI to X2 and that the values of M and C
re worked out only once before the line is plotted. A more
mcient way of doing the same thing would be to work out M
id C (using the ZX81 as a calculator) and just setting them to
be result. For example, in the above program M works out to
and C works out to 0 so we could have used,

10 FOR X = 10 TO 20
20 PLOT X,X
30 NEXT X

iiich is a lot less demanding of space!
The next simple shape that we need to know how to draw

a circle. Once again our problem is solved by an equation. If
e want to draw a circle at X1,Y1 of radius R, then any point
i rhe circle satisfies the two equations Y=R*COS(T)+Y1 and
kR*SIN(T)+Xl for some value of T. It doesn’t matter if you
■ft understand the above equation, you can still make use of
! The important point, though, is that if T is given a value
M can generate a point on the circle. Try the following
¡■gram:

10 LET R = 10
(20 LET X1 =31

30LETY1=21
40 LET T = RND*6.283
50 PLOT R*SIN(T) + X1,R*COS(T) + Y1
60 GOTO 40

U should see a circle appear on the screen in random order,
k have used RND to produce random values of T and hence
Mem points on the circle. If we want to we can start with
■ and, by increasing T slowly plot all of the points on the
Ue. It just so happens that the circle will join up with itself
■bl T reaches the odd value of about 6.283 and this happens

26 27

to be twice the value of PI. (There is a deep and very good
reason for this but it need not worry us.) We can use the PI
key on the ZX81 instead of the rough approximation:

10 LET R = 10
20 LET X1=31
30 LET Y1=21
40 FOR T = 0 TO 2*PI STEP .4
50 PLOT R*SIN(T) + X1,R*COS(T)+Y1
60 NEXT T

«

■

If you run the above program you should see a circle appe
and if you look very carefully you should see the order
which the points are plotted. The distance between each poi
is governed by the STEP size. If we reduce the STEP size v
can make the points meet and the result is a continuous circl
If you change line 40 in the last program to,

40 FOR T=0 TO 2*PI STEP .1

you get,

The last simple figure that we shall deal with is the elips
This may sound like the sort of shape that you would new

28

require in games programs but once you realise that the elipse
is the shape that you see if you view a circle at an angle its
importance becomes obvious. If you think of an elipse as a
flattened circle then the way to draw it also becomes obvious:

10 LET X1=31
20 LET Y1 = 21
30 LET R1 = 10
40 LET R2=5
50 FOR T = 0 TO 2*PI STEP .1
60 PLOT R1*SIN(T) + X1,R2*COS(T) + Y1
70 NEXT T

Io draw an elipse we use the same equation as a circle but use
I1 values for the radius — a horizontal radius RI and a

ucal radius R2. If you alter these values in the program you
aid be able to produce elipses of different shapes.

vws game

simple game based on graphics is the arrows game. Two
:ws are printed, one with inward pointing ends and one
h outward pointing ends (see sample output). The object
me game is to say if the second arrow is the same length,
mer or longer than the first. This sounds easy but because
±e well known visual illusion the second arrow always
ks shorter than it really is! Try:

10 LET L = INT (RND*5+19)

20 LET Y=35

30 FOR 1 = 15 TO 20

40 PLOT l,Y
50 PLOT 60-1,Y60 PLOT l,60-Y

29

70 PLOT 60-1,60-Y
80 PLOT l + 5,Y-25
90 PLOT 1+5,45-Y

100 PLOT l + L,40-Y
110 PLOT l + L,20-Y
120 LET Y=Y-1
130 NEXT I
140 FOR I =20 TO 40
150 PLOT 1,30
160 NEXT I
170 FOR I =20 TO L+20
180 PLOT 1,10
190 NEXT I
200 INPUT A$
210 IF A$="E" AND L = 20 THEN PRINT "YES ";
220 IF A$="L" AND L>20 THEN PRINT "YES
230 IF A$="S" AND L<20 THEN PRINT "YES ";
240 PRINT L

If you run the program two arrows will be drawn, the first i
always 20 units long. The second is either the same length
shorter or longer depending on the random length L set in lin
10., If you think that the two lines are of equal length, tha
type E, if you think that the second is shorter, type S and j
you think that the second is longer, type L. If you’re correo
the word YES is printed next to the second arrow. Onq
you’ve made your guess the true length of the second arrow i
printed by line 240. ;

30

Randomness and symmetry
*¿0 doubt you have seen the fascinating displays of contin
uously changing patterns that other computers produce. Well
he ZX81 can do the same sort of thing.

Let’s start with a truly random pattern:

10 LET X = RND*63
20 LET Y = RND*43
30 PLOT X,Y
40 GOTO 10

e results of this program are interesting but hardly the type
pattern that you could watch for long. The trouble is that

B pattern is too random. Interesting and ever changing
Bems must use randomness for variety but they must use it
p controlling way. One of the basic organising principles in
pre is symmetry and this can be used in computer patterns
■Btroduce order.
ton the IK ZX81 you can only really handle fourfold
■retry but this is quite powerful enough to produce many
pasting patterns. Fourfold symmetry is best understood by
■kmg of the ZX81’s screen split into four quarters. If a
p£ -s plotted in the first quarter then a symmetrical pattern

31

will be produced if it is also plotted in the other three region
If you imagine that the two lines that divide the screen ini
four quarters are mirrors then the position of the other thre
points can be thought of as mirror images of the original. 1
the co-ordinate of the original point in the first quarter is X,’
then the co-ordinates of the mirror images are 63—X,1
X,43—Y and 63—X,43—Y. The best way to see that this is tra
is to use a piece of graph paper to draw the screen and wa
out the co-ordinates. Using these simple facts we can write
kaleidoscope program:

10 LET M=63
20 LET N =43
30 LET X = RND*M/2
40 LET Y = RND*N/2
50 PLOT X,Y
60 PLOT M-X,Y
70 PLOT X,N-Y
80 PLOT M-X,N-Y
90 GOTO 30

You may notice a number of strange jumps in the picture
the screen fills. This is a product of the way the ZX81’s sere
display works and is nothing to worry about. The only trod
with this program is that it normally ends with an error! I

32

reason for this is that the screen fills slowly to the point at
fchich all of the memory is used up. A solution to this problem
is to make the area of the screen that is actually used smaller.
If you change line 20 to LET N=35 then the program will run
kntil the screen is completely filled with plotted points.

Using this basic idea of fourfold symmetry it is possible to
kid other controlling features to make interesting patterns.
For example, it would be nice if the pattern didn’t fill up and
■at eventually there were both black and white areas. This is
asy, simply alternate a PLOT with an UNPLOT. It also might
k interesting if the random changes went in “cycles” starting
it the middle and working out. Putting these two ideas
iegether gives:

10 LET M=63
20 LET N =35
30 FOR X = 0 TO M/2
40 LET Y = RND*N/2

I 50 PLOT X,Y
I 60 PLOT M-X,Y
I 70 PLOT X,N-Y
I 80 PLOT M-X,N4Y
I 90 LET Y = RND*N/2
I 100 UNPLOT X,Y
| 110 UNPLOT M-X,Y
I 120 UNPLOT X,N-Y
I 130 UNPLOT M-X,N-Y
I 140 NEXT X
I 150 GOTO 30

Be result of this program is difficult to capture in print
■cause it depends on movement, but a typical output might
Bk like the pattern shown on the next page.
■ Randomness and symmetry can be used to produce
■rams other than the usual “spotty” sort. If we start off
Bk. a point in the center of the screen and let it wander
Band randomly by adding —1, 0 or 1 to each of its co-
■fcates we have a fairly interesting random line. But if we
Bb use the fourfold symmetry routine to reflect the line into
Bh quarter, the result is a collection of fascinating shapes,

■ 33

some samples of which are shown.

10 LET M=63
20 LET N=35
30 LET X = M/2
40 LET Y = N/2
50 GOSUB 100
60 LET X = X+RND*2-1
70 LET Y=Y + RND*2-1
80 GOTO 50

100 PLOT X,Y
110 PLOT M-X,Y
120 PLOT X,N-Y
130 PLOT M-X,N-Y
140 RETURN

34

We could continue for a lot longer with random patterns
I »e'll leave the rest of the subject for you to explore for
■rselves.

35

Chapter Four

MOVING GRAPHICS

One of the most rewarding areas of computing is dynamic o
moving graphics. It is not at all obvious how you can mov
from plotting a single point somewhere on the screen t
making a moving display. In fact the transition is not at
difficult.

From flashing to moving
If you plot a single point and then unplot it again you will s
a flashing dot. Try the following program:

10 PLOT 20,20
20 UNPLOT 20,20
30 GOTO 10

You can get the same effect by printing a reversed blar
CHR$(128) and then printing at the same place a norn
blank, “ ” or CHR$(0). Try:

10 PRINT AT 10,10;CHR$(128);
20 PRINT AT 10,10;CHR$(0);
30 GOTO 10

The flashing square produced by the use of the PRINT sta
ment is four times bigger than that produced by PLOT a
flashes faster because the ZX81 has to do a lot less work
PRINT than to PLOT.

In either case, to alter the flashing rate you have to i
delay loops. Delay loopS because if you try putting only <
FOR loop in, say at line 15, then the time the point is “on
increased but not the time it is “off’. To lengthen the “c
time you also need a FOR loop at line 25. For example try:

10 INPUT ONTIME
20 INPUT OFFTIME

36

30 PRINT AT 10,10;CHR$(128);
40 FOR 1 = 1 TO ONTIME
50 NEXT I
60 PRINT AT 10,10; CH R$(0);
70 FOR 1 = 1 TO OFFTIME
80 NEXT I
90 GOTO 30

elay loops will be explained in Chapter Six. For now, try
inning the program with different values for “on” time and
iff time, say 20 or 30.
We now know all there is to know about making things

ah - but what about move? Well the extension from
firing to moving is easy. If you plot a point and then unplot
ind then plot the point next to it, it looks as though the
pcmt" has “moved”. If you keep on repeating the process
k point can be made to appear to move continuously. For
Brnple let’s suppose that we want to make a dot move from
B side of the screen to the other in a straight line. We know
to to describe a straight line from the last chapter but let’s
I something a little easier first. If the point moves hori-
■Lilly then we simply have to increase the X co-ordinate
nt time we plot. Try the following:

10 LET Y = 35
I 20 FOR X = 0 TO 63
I 30 PLOT X,Y
I 40 UNPLOT X,Y
I 50 NEXT X

■ -orks in exactly the way we described. Line 30 plots a
kn line 40 unplots it; then line 30 plots the point next door
Bsc cn!
■ten using this method you have to make sure that every-
k neppens at just the right time to give the impression of
■Brent at the speed that you want. In this simple example
k ire two times that matter, the time between plotting and
krnng a point and then the time between unplotting the
kont and plotting the new point. A diagram might help to
■ ±s clear:

I 37

point plotted point unplotted next point plotted

The time t, is the time that any point is displayed for and t2 ?
the time that there is no point visible on the screen. The tot
time, tx + t2 is the time it takes to move from one point 1
another and this governs how fast the point is seen to mov
What most books on moving graphics don’t tell you is wh
values ti and t2 should have to produce a smooth display. T1
answer is not an easy one and in practice it is normal to chan|
the program’s values of tx and t2 to produce the best possib
display. It is easy to see what the values of tx and t2 should I
in theory. If you were watching a point moving behind a gr
of holes then the time the point would be visible would corn
pond to ti and the time that the point would be hidden wou
correspond to t2. If the grid of holes were close together ai
regular you would still be able to see the point “movin;
because the human brain tends to interpret a sequence
images as movement. What we are doing with the flash!
moving point on the ZX81’s screen is to copy the principle
an object hidden behind a grid of holes and rely on the fa
that the brain is fooled into seeing movement. The quality
the apparent movement on the screen can be related to hr
close we get to copying what is seen through the grid. If t
holes are very close together then the time that the point w
be seen will be large and the time that it will be hidden will I
small. Put another way tx will be much greater than t2. This
the condition for producing smooth movement on the ZX81
screen. Unfortunately this is not easy to satisfy. The ZX?
takes as long to PLOT as to UNPLOT so t2 tends to be as la
as tx. Indeed the method that we are using makes thin
worse. We PLOT a point, then UNPLOT it, then do some c
culation before we re-PLOT it. This actually means that t2
much longer than tx. The result of this inbalance in “on” a
“off’ times is that the moving point tends to “twinkle”
flash as it moves. We could improve on this by PLOTing 1
point, doing the calculation and then UNPLOTing the i
point and PLOTing the new point. The trouble is that t

38

quires storing the old position and the new position of the
otted point and in a IK ZX81 this might be too much to add
an already big graphics program. To see if the improvement

worth it try:

10 LET Y=35
20 FOR X = 0 TO 62
30 UNPLOT X,Y
40 PLOT X + 1,Y
50 NEXT X

simpler method of making the movement smoother is to
rease tx by putting a time-wasting statement, such as 35
T Y=Y, between PLOT and UNPLOT. This is the best
shod to use with the ZX81 but if you have a 16K ZX81
a might like to try some other methods.
There is something else that we can learn by thinking about
•mg a moving point through a grid of holes. If the point is
ng as a speed S and is invisible for a time t2 the distance
een the holes must be S*t2. This suggests that, as our
iem with the ZX81 is that t2 is too big for a smooth
ay. we might be able to do better by increasing the
nee between the displayed points! This can be done by
r. plotting a point, then unplotting it and instead of
ng its next door neighbour, plotting a point further
Try the following program:
10 LET Y = 10
20 FOR 1=1 TO 10
30 FOR X = 1 TO 31 STEP I
40 PRINT AT Y,X;CHR$ 128
50 PRINT AT Y,X;CHR$ 0
60 NEXT X
70 NEXT I

nme through the loop 30-60 a point moves across the
l from left to right. The first time the distance between
sc points is one, then next it is two and so on until the
ice is 10. What is interesting about this example is that,
when the point jumps by 6 or 7 points in one go, the
kl of movement remains and the smoothest movement is
■ec with something around a step size of 2 or 3.

39

Although this larger step movement is interesting it is ns
always useful because many dynamic graphics programs nee
the point to move only one step at a time.

Moving balls and velocity
Now we’ve seen how to make a point move around the scree
let’s consider how to use it in more exciting and interestir
ways. For a start we could plot and replot around the circur
ference of a circle or a square to make a point move in oth
than straight lines. However, let’s look at a more realistic app
cation. For dynamic games it would be useful to simulate tl
movement of a ball. This is best done by defining two velo
ties with which the ball is moving. At each movement step tl
plotted point (or ball) can move a number of places ho
zontally and a number of places vertically. Each step takes tl
same amount of time, so we can call the distance it mov
horizontally the horizontal velocity and the distance it mov
vertically the vertical velocity. Thus at each movement st
the horizontal velocity is added to the X co-ordinate and tl
vertical velocity is added to the Y co-ordinate. Try t
following program:

10 LET V = 1
20 LET H = 1
30 LET X-0
40 LET Y=0
50 PRINT AT Y,X;CHR$ 128
60 PRINT AT Y,X;CHR$ 0
70 LET X = X + H
80 LET Y=Y+V
90 GOTO 50

This program moves a ball from the top left of the screen
the bottom right and then off the screen. Because the b
shoots off the screen the program ends with an error. 1
obvious thing to do is to let, the ball bounce around the edi
of the screen — but how? The answer is surprisingly ei
because we have chosen to use the horizontal and verti
velocity idea. If the ball meets a vertical wall, i.e. the rij

40

tad edge of the screen, then it cannot carry on moving in the
me horizontal direction. In fact nothing but a complete
rersal of horizontal velocity will stop it going through the
kC ! The vertical velocity is not affected by meeting a vertical
Ball - why should it be?! So the rule is: when the ball meets a
tr.ical wall reverse the horizontal velocity. Similarly when the
■u meets a horizontal wall reverse the vertical velocity. Using
kese two rules we have:

10 LET V = 1
20 LET H = 1
30 LET X = 0
40LETY = 0
50 PRINT AT Y,X;CHR$ 128
60 PRINT AT Y,X;CHR$ 0
70 LET X = X + H
80 LET Y = Y + V
90 IF X = 0 OR X=31 THEN LET H=-H

100 IF Y=0 OR Y = 16 THEN LET V=-V
110 GOTO 50

■ s a remarkably simple program for the effect it achieves,
les 90 and 100 test for the presence of a horizontal or
■seal wall. If one is found then the appropriate velocity is
fcrsed. (If ou haven’t already worked it out, reversing a
khv is the same thing as putting a minus sign in front of
Be use of their different ways of numbering the screen

Bions, if you’re using PRINT AT statements positive
Betties take you from the top to the bottom of the screen,
t if you’re using PLOT statements they go from bottom to
L
IScw that you know how to make a ball move and bounce
■tat seem sensible to try to write a bat and ball type game,
b all. striking the ball with a bat follows the rules for
Bsmg velocity as does the ball striking a wall. If you do try
tale this sort of program in a IK ZX81 you find that you

। cut of memory very quickly and have to reduce the area
Ike screen that’s being used to the point that the game isn’t
F interesting. If you’ve followed the ideas in the bouncing
ly :u should be able to see how to program ball games and

41

you might even think up a game that is simple enough to
into the IK ZX8.1.

Free flight and gravity
The previous section discussed moving a ball around inside
frame and how it could be made to bounce. There is anoth
way in which a ball can move — it can be thrown through tl
air. Let’s try to find a way of making a ball move under tl
influence of gravity.

In outer space, where there is no gravity, a ball set movii
in a particular direction with a particular velocity will carry (
moving in the same direction and at the same velocity fc
ever! (Unless it hits some other object and then it wou
bounce off in the opposite direction at the same velocity lil
the ball in the previous section.) In this sense, the way that v
know how to move a ball at the moment corresponds i
gravity-free movement. Let’s write a program that simulates
ball thrown without any gravity.

10 LET V = 0
20 LET H = 1
30 LET X = 0
40 LET Y = 0
50 PRINT AT Y,X;CHR$ 128
60 PRINT AT Y,X;CHR$ 0
70 LET X = X + H
90 LET Y = Y+V

100 GOTO 50

If you look at lines 10 and 20 you should be able to see th
the ball is thrown horizontally forward from the top of tl
screen. It’s rather like pushing a ball off the top of a cliff
only in this case where there is no gravity instead of falling
moves in a straight line, totally unaffected by anything.

If we introduce gravity the difference is that the vertk
velocity changes. For example, if you just release a ball it fa
and its vertical velocity increases as it falls faster and faster,
other words as the ball moves one unit horizontally its vertk
velocity increases by a fixed amount. The value of the fixi
amount depends upon how strong gravity is but for o

42

purpose we can adjust it so that it gives a reasonable result. To
ee the falling ball add line 80:

80 LET V=V+.1

to the “free fall” program. When run, the new program mimics
a ball falling in a parabolic curve. The program gives an error as
icon as the ball “falls” off the bottom of the screen. If you

ant to improve the program try subtracting a small amount
cm the horizontal velocity to allow for wind resistance.

We can combine what we already know about bouncing
¿Is with what we have just discovered about gravity. If we
fine a horizontal wall at say Y=15 then as the ball reaches it
; can apply our previous “bounce” rule and reverse the
■nical velocity. The resulting program is:

10 LET V=0
20 LET H-1
30 LET X = 0
40 LET Y=0
50 PRINT AT Y,X;CHR$ 128
60 PRINT AT Y,X;CHR$ 0
70 LET X = X + H
80 LET V-V+.6
90 LET Y-Y + V

100 IF Y>15 THEN LET V = -V
110 GOTO 50

y cu remove line 60 then the output looks something like:

43

By now you should have a good idea how to make a ball d
anything that you want it to. Using the horizontal and vertic
velocity idea everything is much simpler. If you want to spee
up then add something to the appropriate velocity or subtrai
it to slow down.

Lunar lander
If we add a few extras to the falling ball program described i
the last section we can produce a reasonable lunar landin
game. A rocket landing on the moon behaves exactly like
falling ball except that it can fire its motors and reduce il
vertical velocity. To obtain a reasonable game we have t
change from PRINT statements to PLOT statements but this i
a minor change. Let H = height, S = speed, F = fuel, BR = bui
rate.

10 LET F=1200
20 LET B = 0
30 LET V = B
40 LET H = RND*2 + 1
50 LET X = V !
60 LET Y=43 j
70 PLOT X,Y
80 GOSUB 170
90 UNPLOT X,Y

100 LET X = X + H
110 IF X>30 THEN GOSUB 250 I
120LETY=Y-V 1
130 IF Y>0 THEN GOTO 70
140 IF V>.5 THEN PRINT "**CRASH**" j
150 IF V<5 THEN PRINT "ZX81 HAS LANDED"!
160 STOP j
170 LET B$ = INKEY$ I
180 IF B$ = "" THEN GOTO 200 I
190 LET B = VAL B$*10 I
200 LET F = F-B I
210 IF F<0 THEN LET B = 0 I
220 LET V = V-B/100+.5 I

44

230 PRINT AT 0,0;"H = ";INT (11.6*Y);" S=";
INT (200*V);" F = ”;F;" BR = ";B;" "

240 RETURN
250 LET X=0
260 CLS
270 RETURN

The amount of fuel that you start with is set in line 10. If you
mm to make the game easier increase the amount of fuel
torn 1200 to something larger. The rocket starts with a
B~dom horizontal velocity, line 40, and falls under gravity
■mil it hits the ground. As it falls you can burn fuel to reduce
to rate of descent.. Pressing any key between 0 and 9 sets the
Bie at which fuel is burned — the burn rate BR. The burn rate
B ten times the value of the key pressed. Which key is pressed
l checked at line 170 by using the INKEY$ statement. Keep
fressing the key that you want because it will only affect the
rogram once every time the rocket moves. The fuel burned is
■btracted from the fuel remaining and if you use it all up you
re fall to the surface. The object of the game is to land with

» vertical velocity of less than 100 metres per second. If you
■eve too far to the right the screen is cleared and you start
icm the far left again. Happy landings!

browing in a given direction
■ far we have found how a ball moves under gravity if thrown
inzontally from a cliff but many games need a ball to be
■cwn upward. This can be achieved by reversing the Y co-
■imates in a PRINT AT or simply using a PLOT statement
■ead. Remember that PLOT 0,0 is the bottom left but
UNT AT 0,0 is the top left. Try the following:

10 LET X = 0
20 LET Y = 15
30 LET H = 1
40 LET V=2
50 PLOT X,Y
60 UNPLOT X,Y
70 LET X = X + H

45

80 LET V = V-.1
90 LET Y=Y + V

100 IF Y<15 THEN STOP
110 GOTO 50

The initial velocity is H=1 and V=2. At each step the vertii
velocity is reduced by .1. So the ball first starts moving i
quite fast then slows down until it is only moving forwai
Then the vertical direction is reversed and the ball starts falli
down back to the bottom of the screen. The resulting shape
the well known parabola of a thrown object.

Normally we want to throw a ball at a given angle and wi
a given force. If we throw the ball with a given force
governs its overall velocity. That is, the harder you throw
ball the faster it moves at first. The angle at which you thr
it alters the distribution of this overall velocity between
vertical and horizontal parts. For example, if you throw
ball straight up at 90 degrees then the ball moves vertically 1
not horizontally. As you decrease the angle the ball mo
more horizontally and less vertically. If you analyse the sit
tion mathematically you will find that, if you throw the t
with a force F that produces a total velocity V at an angle
then the horizontal velocity is given by V*COS(T) and
vertical velocity is given by V*SIN(T). Using these two star
values for horizontal and vertical velocity we can use the si
sort of program to make the ball move under gravity. The oi
thing that we have to remember is that the ZX81 measu
angles in radians. To convert degrees to radians use

angle in radians = angle in degrees*PI/180

46

«non-bail
lbw that we know how to throw something at a given angle
ic with a given force, we can try to write a shooting game,
cu have a cannon set at the far left-hand side of the screen
■c a target randomly placed to the right. You have to specify
Be numbers — the angle 0—90 degrees and the force of the
barge — and try to hit the target. The force of the charge is
■Limited but values around 10 work well. An additional
Kolem is that if you shoot at such an angle that the cannon-
■£ leaves the screen anywhere it is counted as a miss. This
Bans that you have to fire the cannon at a low angle to make
re that you do not shoot off the top of the screen! This res-
K'uon also stops you from shooting down any of your own
Kraft! You’ll find low angle shots more difficult so the
■Elation actually improves the game.

10 LET B=30
20 GOSUB 300
30 INPUT F
35 LET F = F/4
40 INPUT T
45 LET H = F*COS (T*PI/180)
50 LET V = F*SIN (T*PI/180)
55 LET X=0
60 LET Y=B
65 PLOT X,Y
70 LET V = V-.1
75 UNPLOT X,Y
80 LET X = X + H
90 LET Y = Y + V

100 IF Y<B THEN GOTO 200
110 IF X>63 OR Y>43 THEN GOTO 200
120 GOTO 65
200 IF X>=P AND X<=P+3 THEN GOTO 250
210 LET M = M + 1
220 GOTO 260
250 LET S=S+1
260 PRINT AT 14,0;"H = ";S;" M =";M"

47

270 GOTO 30
300 LET P = RND*10+50
310 FOR l=P TO P+3
320 PLOT I ,B
330 NEXT I
340 LET M = 0
350 LET S = M
360 RETURN

H = 1 M=©

Subroutine 300 plots the target at a random position ■
points wide and initialises M and S the miss and scor
counters. Lines 30 to 50 input F the force and T the angle
The force is scaled in line 35 to give a reasonable range of veh
cities. The middle section is simply the thrown ball prograi
given earlier in this section but with extra statements to chec
if the ball has hit the target.

It is possible to write much more complicated program
along these lines, to allow for such things as air resistance an
wind direction — but not in a IK ZX81.

48

Chapter Five

PEEK AND POKE

fwo of the most mysterious instructions in the whole of
LASIC are PEEK and POKE. The question, “What can I use
PEEK and POKE for?” is frequently asked. The answer
iepends very much on which computer you are using. This
hapter gives a brief explanation of what PEEK and POKE do
■rd examples of how they can be used on the ZX81. Do not
■meet what you learn here about how to use PEEK and
POKE apply to other computers — it almost invariably will
Ei!

khat PEEK and POKE do

X the two instructions, PEEK is the easier to understand and
be safer to use. You cannot “crash” the machine with an
■correct use of PEEK but you most certainly can with POKE.
Lihough we have referred to PEEK as an instruction it is
■ere properly called a “function” because it returns a result.
F_nctions are things like SIN(X) which can be worked out to
K~e number — the result.) PEEK is a special sort of function
i mat it doesn’t “work” anything out it simply “returns” the
■dents of a particular memory location and converts it to
tecimal. For example,

10 LET A=PEEK 7688

■l set A to the contents of memory location 7688. There are
■any things that you will need to know about computers in
gneial and the ZX81 in particular before this example will
■ake very much sense to you. Firstly, you have to know that
■rnputers save and retrieve information from numbered
«mory locations. Each location has a unique number, known
B ns “address”. Secondly you need to know that the amount
f information that can be stored at each location is limited.
■ ihe case of the ZX81 each memory location can only store

49

one character. As you probably already know a computer ca
only store zeros or ones in its memory so how does it man^
to store an actual character in a memory location? The answi
is that a group of bits (zeros or ones) can be read as a numbc
For example 0101 is five. It’s not important at the moma
that you know how to convert a group of bits, it’s sufficiei
to know that it can be done. (If you want to find out how, st
“Beginners Guide to Microprocessors and Computing” — BP6i
by E. F. Scott.) A group of eight bits — a byte can represa
numbers from 0 (00000000) to 255 (11111111), so any ZX8
memory location can be thought of as holding a number i
this range. At this point you should realise how a character
stored as a group of 8 bits!

If you look at the back of the ZX81 manual you will find
list of the ZX81 character set. The first column is labelle
“code” and contains numbers starting at 0 and going up I
255. This means that we can either treat the contents of
memory location as a number, 49 say, or as a characti
CHR$(49) which gives L. The most important thing to unde
stand though is that any ZX81 memory location may contai
a number between 0 and 255. If you add PRINT A to ti
earlier example you will see that this is true — i.e. A li
between 0 and 255. If you look at the contents of any otb
memory location you will see many different numbers bi
none of them smaller than 0 or greater than 255.

The only other thing that you need to know about usu
PEEK is the range of addresses that you can use. The ZX8
numbers its memory locations starting at 0 and going up to
maximum of 65535. Not all of these memory locations corre
pond to anything in the ZX81; as we shall see later many o
them are unused. One last fact that it is important to know
that there are two types of memory — RAM and ROM. RA]
— Random Access Memory can be used to store and reca
information. ROM — Read Only Memory can only be used t
recall information. A IK ZX81 has only 1024 memory loc
tions that correspond to RAM but has 8192 memory locatioi
that correspond to ROM. This vast quantity of inbuilt info
mation in every ZX81 is used for many different things bu
one of the main uses is to define the rules of the BASIC lai

50

age. The ROM portion of memory starts at 0 and goes up to
91. The RAM portion starts at 16384 and goes up to 17407
you have IK of RAM or 32767 if you have 16K. Even in a
tl 16K ZX81 not all of the memory locations are used or
able.
The POKE instruction is easy if you have followed the

planation of how PEEK works. POKE allows you to store a
’.e in any RAM memory location. Doing this may destroy
ur program if it happens to be stored in a location that you
■eady use — so take care! The form of POKE is:

POKE address,byte

or example if you type in (no line numbers because you want
ie computer to carry out the command at once and you
on’t want a program in memory that might get in the way!)

POKE 17300,33
PRINT PEEK 17300

cu should (if your ZX81 is working) see 33 printed out on
: screen. What you have done is to store a pattern of bits
^resenting 33 in the memory location whose address is
300 and then printed out its contents. Try the same thing
th different data bytes to convince yourself that it works,
you try a POKE at addresses that correspond to ROM you
m’t get very far — for obvious reasons!

ing PEEK to draw big letters
ie interesting and useful part of the ROM area of memory is
; character generator. If you use PRINT “A” somehow or
rer the ZX81 has to construct a pattern of dots on the
een corresponding to the shape of the letter A. To do this it
)ks the pattern up in a table stored in the ROM region of
mory. This table is called the character generator and con
ns a pattern of dots for the shape of every character that
? ZX81 can print. A pattern of dots? In the last section we
covered that each memory location could only hold a group
eight bits, zeros or ones, so how can it store a pattern of

is? The answer is not difficult. If we call ala black dot and

51

. dot we can locatioMf

character. For example the letter A would be:
row of eight dots. I W^^CIXws of eight dots to draw ^h^r-acter then wc can store eight rows or eigiii u

pattern of bits decimal number
00000000 0
00111100 60
01000010 66
01000010 66
01111110 126
01000010 66
0 1 0000 1 0 66
00000000 0

If you find the A difficult to see they try colouring in all th
ones. The letter is surrounded by zeros to make sure that thea
is some space around each letter when it’s printed. The coluim
of decimal numbers corresponds to what would be printed cw
by PEEKing the memory locations where the share of A i
stored.

Knowing where the character generator table is stored j
ROM means that we can write a program to use the de
patterns to print or plot points to make larger characters. T
do this we have to solve a number of problems. We can ui
PEEK to find the number stored in any location but we neo
to know the pattern of ones and zeros. In other words, w
have to find a way to reduce a number to its sequence of zerc
and ones. This is not difficult to do if you understand binar
numbers and arithmetic. To avoid getting involved in to
much theory we will simply use the following prograa
without detailed explanation.

10 LET A=PEEK 7984
20 FOR 1=7 TO 0 STEP -1
30 LET B=A-2*INT(A/2)
40 LET A=INT(A/2)
50 PRINT AT 20,l;B
60 NEXT I

Address 7984 happens to be the start of the eight bytes tha

52

- ... -------— — — - r——~” '“■"_____ Bi
■ of the letter A into the variable called A! Each time
rough the FOR loop we extract one bit from A and print it.
le first time through we extract the leftmost bit, then the
xt leftmost and so on until we have printed all eight bits.
ie FOR loop goes from 7 to 0 because we want to print the
suit from left to right and the index I is used in the PRINT
T 0.1. You can get the whole pattern for A by repeating the
cgram eight times, once for each row of the letter A.

10 LET P=7984
20 FOR J = 0 TO 7
30 LET A=PEEK (P+J)
40 FOR 1=7 TO 0 STEP -1
50 LET B = A-2*INT (A/2)
60 LET A = INT (A/2)
70 PRINT AT 20,l;B
80 NEXT I
90 SCROLL

100 NEXT J

u should be able to see the dot pattern of the letter A after
s program. Now we are nearly home and dry I All we have to
is to add some statements to print a blank when B is 0 and

black square when B is 1 and we have a large letter A on
e screen. Add some code to pick out the appropriate part of
e table for any particular string of letters and we can have
•ge messages moving up the screen. Try the following:

10 INPUT A$
20 FOR 1 = 1 TO LEN A$
30 LET P=7688+(CODE (A$(l))-1)*8
40 FOR J=0 TO 7
50 LET A=PEEK (P+J)
60 FOR K = 7 TO 0 STEP -1
70 PRINT AT 20,K;CHR$ ((A-2*INT (A/2))*128)
80 LET A = INT (A/2)
90 NEXT K

100 SCROLL
110 NEXT J
120 NEXT I

53

If you type in any message it will be displayed as a sequence
moving big letters up the lefthand side of the screen.

54

Line 30 picks out the position in the table of each letter,
e table starts at 7688 and the graphics character CHR$(1)
the first. The function CODE is the opposite of CHR$. It
:es a letter and returns its position in the table. Each letter
:es eight memory locations, so you have to multiply the
iracter code by eight to get to the right place in the table,
le 70 uses the same method introduced in the earlier
:gram to decide if we have a zero or a one, but this time
lead of printing zero or one, it prints CHR$(0*128) i.e. a
ice. or CHR$(1*128) i.e. a black square. If you want to
:eat the message forever add

130 GOTO 20

One problem with our big letter display is that you can
iy get about three letters to a screen. If we could make the
:ers slightly smaller we could make it more useful as a
Aing display. We could make them half the size by using
OT instead of PRINT. Try the following program:

10 INPUT A$
20 FOR 1 = 1 TO LEN A$
30 LET P = 7688 + (CODE (A$(l))-1)*8
40 FOR J = 0 TO 7
50 LET ODD=J-INT (J/2)*2
60 LET A = PEEK (P+J)
70 FOR K = 7 TO 0 STEP -1
80 LET B = A-2*INT (A/2)
90 LET A = INT (A/2)

100 IF B = 1 THEN PLOT K,NOT ODD
110 NEXT K
120 IF ODD = 1 THEN SCROLL
130 NEXT J
140 NEXT I
150 GOTO 20

55

z

8
1
A
B
C
D
E

The only difference with plotting instead of printing is thal
you can fit two rows of plotted points in every print row. I
you were to plot a row and then SCROLL to make the display
move, you’d discover that each letter was broken up. The soln
tion is to PLOT the first row at Y=1 and the second row al
Y=0 and then SCROLL the completed line. To do this yew
have to introduce an extra variable ODD the tests for the row
number being odd (ODD=1) or even (ODD=0). Line 50 works
out the correct value for ODD. Line 100 looks a little strange
If B=1 then you need to plot a point, if the row number i
even you need PLOT K,l, if the row number is odd you new
PLOT K,0. The variable ODD is the wrong way round to let in
use PLOT K,ODD (ODD is 0 when the row is even and 1 whei
the row is odd), but we can reverse it using NOT ODD.

56

Remember that NOT ODD is 1 if ODD is 0 and 0 if ODD is 1.
¡la the same way line 120 causes the display to scroll after each
odd row has been plotted. This is of course exactly what we
need.

You could use either of these routines to add large letter
outputs to any program. In general though fitting a program
Mto IK ZX81 is difficult enough without adding features
«toh as big letters! If you have a 16K ZX81 there is no such

oblem.

onclusion

bis chapter has tried to give some idea of the way that PEEK
id POKE work. The example of using PEEK to display large
tiers is typical of the sorts of things that PEEK and POKE
e used for. Notice that, apart from knowing how PEEK
orks, the example requires knowledge about the machine —

the fact that a character generator exists, where it is and
hat its format is. These extra pieces of information some-
mes become confused with knowing how PEEK and POKE
ork. If you move to a new machine then the way PEEK and
DKE work will remain the same but the big letter program
di not work. It might be possible to change it so that it
orks if you know where the character generator is etc. By
jw you should be able to understand that there is no answer
the question “what are PEEK and POKE used for?” unless

ju say which machine you’re talking about.

57

Chapter Six

A SENSE OF TIME

Every computer has a way of keeping time built into it. Son
make it easy for a programmer to get at it, others make i
nearly impossible. The ZX81 is somewhere in between tha
two extremes in that it provides a timing command — PAUS
which allows you access to its clock — but for any really usefi
timing you have to use a PEEK and the occasional POK1
Before going on to examine methods of using time let’s se
what makes the ZX81 tick.

FAST, SLOW and PAUSE

As we mentioned in Chapter One, the ZX81’s microprocessa
the Z80 is responsible for maintaining the screen display, i
standard television set displays a picture every l/5Oth ofl
second (l/60th of a second in the USA). So the ZX81 has I
stop whatever it is doing every 1 /50th of a second and disph|
the TV screen. This is of course what slows the ZX81 do^
when doing calculations. In fact you do have a choice in til
matter because the ZX81 has two modes of operation — fai
and slow. Slow is the normal mode of operation that the ZX8
adopts when first switched on and in this mode the sere«
display is continuous. Fast mode is when the ZX81 forgd
about displaying the TV screen and gets on with whatever!
its main task. You can switch from slow to fast by typing tii
command FAST and back to slow by typing SLOW! Tl
increase in speed that you get by moving to fast mode is abod
15% so it can be well worth while switching modes during!
program. The trouble is that fast mode doesn’t display a«
results unless you stop the computer by asking for an INPU1
Even in fast mode the ZX81 will stop and wait for you to tyf
in an answer and while it waits it displays the screen. Lei
suppose that rather than display the screen until someo«
types something in at the keyboard, all we want to do is t

Idisplay the screen for a fixed time interval. For this we need a
new command. The ZX81 provides the PAUSE command for
just such a reason. If you use PAUSE N the machine will stop
[computing and display N TV frames i.e., it will display the
screen for N/50 seconds. (It is a limitation of the PAUSE

| command that if N is larger than 32767, a pause of 11
¡minutes, the machine will pause forever!) Using the PAUSE
command along with FAST and SLOW it is possible to do
some computing, show some results and then go back to the
computing without having to ask anyone to push any keys.
Take care, though, there is a fault in the ZX81 BASIC which

I requires every PAUSE in fast mode to be followed by a POKE
116437,255 to avoid destroying your program!

Using PAUSE
»Although the intended use of the PAUSE command is to allow
n screen to be displayed in the fast mode, it is more often used
Ito provide a fixed time pause in a program running in slow
mode. For example try the following program.

I 10 PRINT "TICK”
I 20 PAUSE 50
I 30 PRINT "TOCK”
I 40 PAUSE 50
I 60 GOTO 10

phis will print tick/tock on the screen at about one second
■mervals. There are two things to notice about this very
iimple program. Firstly, although each PAUSE causes a
■pause for 1 second (i.e. 50 frames) the time between each
■tock and tock is longer because the computer takes time to
pRINT and GOTO. Secondly, the screen flashes just before
■each tick or tock is printed. The flash is caused by the ZX81
■Clanging over from pausing and displaying to computing and
ifcplaying and there is nothing that can be done about it.

Delay loops
pne flashing of the screen following a PAUSE instruction can

58 59

destroy the intended effect of your screen display. For tl
reason it is often better to use a delay loop rather than
PAUSE command. A delay loop is simply a FOR loop th
does nothing but waste a fixed and known amount of tim
For example:

10 LET T=50
20 PRINT "TICK”
30 FOR 1 = 1 TO T
40 NEXT I
50 PRINT "TOCK"
60 FOR 1=1 TO T
70 NEXT I
80 GOTO 10 ‘

Two delay loops are included in this program. Each givq
delay of slightly less than one second and this makes the ti
between each “tick” and “tock” roughly one second. If y
want to check the accuracy and regulate the clock, the h
way is to time a large number of “tick/tocks” and work «
how long each takes. If it’s less than a second then increan
and vice versa. Notice that the time delay depends on the ty
of statement used as a delay loop. If you change FOR 1=1 ’
T to FOR 1=1 TO 50, the time that the loop takes will cha
very slightly.

Using the delay loop idea we can improve on the clock fi
display given in the Sinclair manual:

10 LET S = 24
20 FOR N = 1 TO 12
30 PRINT AT 10-10*COS (N/6*PI),

10+10*SIN (N/6*PI);N
40 NEXT N
50 LET T = 0
60 LET A=T/30*PI
70 LET SX = 21 + 18*SIN A
80 LET SY = 22 + 18*COS A
90 PLOT SX,SY

100 FOR 1 = 1 TO S
110 NEXT I

60

120 UNPLOT SX,SY
130 LET T=T+1
140 GOTO 60

The delay loop at lines 100 and 110 replaces a PAUSE state
ment and the result is a steady display.

3

8 4

7 5
6

frame counter
the ZX81 can PAUSE and display a given number of TV

mes you may have guessed that somewhere inside it is a
mory location that counts the number of frames that have
sn displayed. In fact there are two memory locations that
ep track of the number of frames and these together are
own as the FRAME COUNTER. The frame counter is at
dress 16437 and 16436. The memory location at address

6436 counts the number of frames since the machine was
■itched on. As the largest number that a single memory
xation can hold is 255 the number of frames that location

can count is limited. To overcome this problem
ition 16437 counts the number of times the lower location

aches 255. In other words, the lower location counts frames
id the higher location counts every 256 frames — i.e. the
wer counter goes from 0 — 255 for every one count of the

61

upper counter. This is very like a traditional clock dial, with!
the lower counter going “round” every 256 and then moving
the upper counter on one.

There is one additional complication — the counters both
count down rather than up. In other words, every frame sub
tracts one from the lower counter and every time the lower
counter reaches 0 the upper counter has one subtracted from
it. This causes no real trouble as long as we remember that as
time goes on the counters get less. To see this happening try: i

10 PRINT PEEK(16436) + 256*PEEK(16437)
20 GOTO 10

You will see a large number getting smaller all the time. The
difference between successive values is the number of frames]
that the ZX81 displays in between each print. To see the sama
number in terms of seconds all we have to do is divide by 50J
To make the displayed time increase rather than decrease!
requires two additional actions. First we must set the frame
counter to its maximum value using two POKE commands and!
then we can subtract the PEEKed time value from thel
maximum value! For example: I

10 LET P = 16436 I
20 POKE P + 1,255 I
30 POKE P,255 j
40 PRINT (65535-PEEK(P)-256*PEEK(P+1))/50 I
50 GOTO 40 I

Notice that it’s a good idea to POKE the fastest changing]
counter last - just as when you set a clock you deal with the!
hours first, then the minutes and finally the seconds. 1

Digital dock 1
There are many ways to turn the ZX81 into a digital clock.!
One of the easiest is to use the program in the previous section!
to provide the number of seconds since the machine was!
switched on. All you have to do is add the current time ini
seconds, convert the answer to hours, minutes and seconds and!
display the result. A more interesting method is based on the!

cck/tock program. Instead of using the frame counter to
seep track of the time why not use it to signal that one second
had passed. Try the following program:

10 LET P = 16437
20 POKE P,50
30 IF PEEK POO THEN GOTO 30
40 POKE P,50
50 PRINT "TICK"

I 60 GOTO 30

Before you decide that there has been a misprint, let me point
cut that this program does not work! The reason why it
doesn’t work is what interests us. It is difficult to see why the
program fails because the idea behind it seems foolproof. At
line 20 the lower frame counter is set to 50. At line 30 the
value of the lower frame counter is checked to see if it’s zero.
If it’s not then the program checks again. If it is zero then we
know that 50 frames have been displayed and one second has
passed. The counter is immediately reset and begins to count
cut the next second while we print “TICK” on the screen.
Why doesn’t this work? There is certainly plenty of time to get
to the IF statement before the count reaches 0 — not even the
ZX81 needs a whole second to carry out two lines of BASIC.
The trouble lies in the IF statement itself. The IF statement
takes longer than l/50s to complete! This means that when
the frame counter changes to 0 the program might only just
lave finished working out the result of the last PEEK! If you
run the program often you might just see one “TICK” printed
Icn the screen because by chance the IF statement happened to
•ead the frame counter just as it reached zero.

If you want to use the frame counter as an internal timer
Ihen you have to choose a time interval that is long compared
to the length of time that an IF statement takes to execute.
The upper frame counter changes only once every 256 frames
cr about every 5.12 seconds. If you are prepared to have a
dock tick only every 5.12 seconds then you can use the upper
feme counter in the sort of program that fails using the lower
frame counter. Try the following:

62 63

10 LET S=0
20 LET H=20
30 LET M=39
40 LET P= 16437
50 POKE P,255
60 LET A = PEEK P
70 LET B = A
80 LET A=PEEK P
90 IF A = B THEN GOTO 80

100 LET S=S+5.12
110 IF S<60 THEN GOTO 190
120 LET S=S-60
130 LET M = M + 1
140 IF M<60 THEN GOTO 190
150 LET M=0
160 LET H = H + 1
170 IF H<24 THEN GOTO 190
180 LET H=0
190 SCROLL
200 PRINT AT 0,0;H;AT 0,3;M;AT 0,6;INT S
220 GOTO 70

The program works by reading the upper frame counter at 1
60 and then reading it again at line 80 and waiting until
difference is one. When this happens 5.12 seconds have pas
and the second counter can be updated at line 100 and
time re-displayed by lines 110—200.

If you’ve got a 16K ZX81 then you might like to ad
large number display (see Chapter Five) or an alarm cl<
facility.

A chess clock

A simple application of the frame counter is a chess clock.
10 LET TW=0
20 LET TB=0
30 LET G=0
40 LET P = 16436

64

50 PRINT "PRESS ANY KEY TO START"
60 IF INKEY$ = "" THEN GOTO 60
70 CLS
80 POKE P+1,255
90 POKE P,255

100 LET T = PEEK (P)+PEEK (P+1)*256
110 LET T=(65535-T)/50
120 IF G = 1 THEN PRINT AT 0,15;"BLACK ";INT

((T + TB)/60)INT ((T+TB)-INT ((T+TB)/
60)*60);" ”

130 IF G=0 THEN PRINT AT 0,0;"WHITE "; INT
((T+TW)/60);".";INT ((T+TW)-INT ((T+TW)/
60) *60);" "

140 IF INKEY$ = "" THEN GOTO100
150 IF G = 0 THEN LET TW=TW+T
160 IF G = 1 THEN LET TB=TB+T
170 LET G = NOT G
180 GOTO 80

There is nothing really new in this program and you should be
able to spot some techniques from earlier chapters. The total
cove time is kept in TW for white and TB for black. The
variable G is 1 if black is playing and 0 if white is. Pressing any
key switches players (line 170). The time T since the last
■»itch is added to the correct total play time in lines 150 and
160 for black and white respectively and then the timer is

-set at line 80. The only limitation on this chess clock is that
iy move must take less than 20 minutes otherwise the frame
r enter reaches 0 and starts counting again.

faction time game
Jsing the lower frame counter it is possible to time events to
1 50 of a second. This makes it just feasible to write a reaction

□e program. It is important to realise that because of the
rwness of ZX81 BASIC the accuracy of the reaction times
easured is worse than l/50th of a second. This is not good
rough for any serious purpose but it is fun.

65

10 PRINT "READY"
20 FOR l=0 TO RND*50+40
30 NEXT I
40 LET P=16436
50 POKE P + 1,255
60 POKE P,255
70 PRINT "GO"
80 IF INKEY$ = "" THEN GOTO 80
90 LET T = PEEK (P) + PEEK (P+1)*256

100 PRINT "REACTION TIME = ";(65535-T)/50;"i
110 GOTO 10

After a random delay the word “GO” is printed. Pressing ai
key causes the time to be read and printed out. The progra
can be made more interesting and accurate by taking t
average of 10 reaction time measurements. After you ha
understood the previous program try:

10 LET S = 0
20 FOR J = 1 TO 10
30 CLS
40 PRINT "READY"
50 FOR l=0 TO RND*50+40
60 NEXT I
70 LET P= 16436
80 POKE P+1,255
90 POKE P,255

100 PRINT "GO"
110 IF INKEY$ = "" THEN GOTO 110
120 LET T = PEEK(P)+PEEK(P+1)*256
130 LET T=(65535-T)/50
140 LET S=S+T
150 NEXT J
160 CLS
170 PRINT "YOUR AVERAGE IS ";S/I
180 IF S/l>.08 THEN PRINT "SLOW**"
190 IF S/l>=.05 AND S/l<=.08 THEN

PRINT "NOT BAD"
200 IF S/K.05 THEN PRINT "WELL DONE"
210 IF S/K.02 THEN PRINT "VERY FAST"

66

The additional lines at the end of the program calculate your
score over tentries and print out an appropriate message. This
routine could be used as the basis for a variety of games — but
mey would all require more memory than a IK ZX81 has to
offer!

67

Chapter Seven

STRINGS AND WORDS

The ZX81 is very good at manipulating text! The trouble is
that text takes a lot of memory so despite being good at it
the IK ZX81 soon runs out of memory. In addition there are
a number of problems about using text to play games that all
computers share. Some of these problems have been solved but
others take us to the limits of our knowledge of computers.
They take us into areas of artificial intelligence.

Strings and things
Before starting on the subject of using strings, a quick recap
of how the ZX81 handles strings might be a good idea. Th
ZX81 distinguishes string variables from others by use of a
sign after a variable name. For example:

10 LET A$ = "NAME"

A string can be of any length if it fits into the memory. Y
can manipulate strings in three ways.

In the first method you can join them together using
+ operation. For example:

10 LET A$="FIRST NAME”
20 LET B$="LAST NAME"
30 LET A$=A$+B$
40 PRINT A$

This program takes the string “FIRST NAME” and the sti
“LAST NAME” and joins them together to make “FIE
NAMELAST NAME” in the variable A$.

In the second method you can pick out any part of a sti
using the slicing notation. For example:

10 LET A$="ABCDEFG"
20 PRINT A$(2 TO 5)

68

will print the string ABCDEFG from the second letter to the
fifth letter i.e. BCDE. You can use the notation A$ (start TO
finish) where “start” and “finish” are replaced by numbers to
mean — the string in A$ from and including the “start” letter
up to and including the “finish” letter. The ZX81 also allows
certain short forms of the slicing notation.

A$ (TO n) = A$ (1 TO n)
A$ (n) = A$ (n TO n) i.e. the nth letter
A$ (n TO) = A$ (n TO LEN(A$))
A$ (TO) = A$ (1 TO LEN(A$)) i.e. the whole

string

The third method of manipulating strings is very clever
indeed. You can change part of a string specified by slicing
notation. For example:

10 LET A$="ABCDEFG"
20 LET A$(2 TO 3) = "12345”
30 PRINT A$

will change the string ABCDEFG to A12DEFG. In other
words the slicer specifies the part of the string to be changed —
the second letter and the third. It doesn’t matter if the string
to the right of the equals sign is bigger than the part to be
changed — the correct number of characters are used starting
from the left. In the example only “12” is used even though
the stringis “12345”.

The ZX81 has the ability to use multidimensional string
arrays but these use up memory very quickly and in general
are best avoided in a IK machine. As a simple example of
string handling try the following

10 INPUT A$
20 LET B$=""
30 FOR l = LEN A$ TO 1 STEP -1
40 LET B$=B$+A$(I)
50 NEXT I
60 PRINT B$

Ulis reads in any string and reverses it. Type in the following
sentence “NUF EB NAC MARGORP SIHT” to find out what

69

YRND
POKE

TTSGN
»I'M
POKE

it says. Notice that the program works by “stripping” don
the input to single letters using the slicer notation and]
building it in the reverse order in line 40. You could use
program to send secret messages or simply to teach yo
to speak backwards!

Random words
We discovered how to use random numbers in Chapter T
and how to convert random number into random graphic»
Chapter Three. Using the same techniques we can gene
random characters. Try the following:

10 PRINT CHR$(RND*255);
20 GOTO 10

You will see the screen fill with random characters some
like:

LOAD
NEXT

*CLS AT TAN HSIN
ORACS SOR Ra LL1ST

. NEXT ft > AU?bT: 'W^^STOP LEN 9S0N ??»_
"toth» or load TiaBipsi

DLL SLOW DIN SLOW <_____ _:LERR TTTA
TCSIN TSjTRN »F®N I

O
ND

RETURN erfeSHM FOR I LET P NEU a NEXT^TTTdfeTRi »&»
IL SOR ? CLEAR A
8 CLEAR SCROLL SCROLL L l ----- ----- ETUSR Pi -------

ET SAUE I
R* PRINT
CROLL BB|
PLOT 6 RI
+“> PAUSE
1ST BP9R
EXP > 1 ;

AT ÖTTTT5CH
COPY LIST B? S
• . “SUSaarRB UN

SLOW

The next step is to try to generate random words. If you 1
at the screen full of random characters generated by
program you should see some words — like GOTO,
SCROLL etc. These are of course nothing more than
ZX81’s BASIC keywords printed on the keyboard. From
ZX81’s point of view these are the same as single charact

70

y are entered from the keyboard with one keypress and
f are stored in one memory location. The only difference

that the key words are expanded into a number of letters
en printed. Apart from these keywords it is very diffi-
b to generate random words on a computer. If you generate
bdom letters (excluding keywords and graphics) you will be
y lucky to see any long words! Try:

10 PRINT CHR$(RND*25+38);
20 GOTO 10

BKTUYFHRXDDIXKNGGNUUCHXUUUNJTZMS
AOYOYKIIAFBQY KOUOJGNUFELCYUQRI56
HUBPRUUTSIDCGFCNSt-ULMDUFROHKEGSY
PRKPXCRPUKRTUKXSDKYYRXDZNZeOETQV
SEIYP^YXPLHFHO RNFyRSgMFGeLEUPHI
RLP€8CGXKZKijl
ndsxbyyshkfoj
KCL.CVBGZSFCCPI
FDCADBHETOCICL------------ ... -------- _
C XTGNRTBMXZRCEIUYQ irUGBEPROQHTUD
JWCOYUHTDWQODUYFKMUXCKKHOUOHUOSX
MHPJ3UNXT5TEGOKDESYENOYGOKTICYU3
HOQYYLUGKGyXWSCESCYHIXIBHTYZXKH
ygfkdrcseecxdhbfplxjkhkhr^oemgx
AHU
NGT^LDPElboOSTUZLTUFOURUKyKXBRa
RLFHHYOIKUXTXUDIASQGXGUFDYFEHTBH
TCRFXXOCFKTGUYDUBNKTHEEQPXyPBHDN
BBCUFMKUOFQ^FQvFrDWLTOZUIPSPPFUNM
TOWCUUSMDIUXOUROKRGHJOCJERNRXUOE

u might pick out a few three or four letter words but
: very many when compared to the amount of gibberish
iduced.
This difficulty with generating random words severely
its the type of word games that a computer can indulge
For example, if you want to play a number guessing game,
computer can generate a random number and you can try

guess what it is. In the case of a word guessing game the
nputer has no way of generating a random word so the best
t you can do is to input a list of words at the start of the
ne and program the computer to pick a word at random. If
j can get someone else to type in the list of possible words
if the list is so long that you cannot remember all the words

71

then you can use this method to play word games. As the |
ZX81 cannot store very many words we have no choice buti
get someone else to type in the list of words.

Hangman
With the restriction described above, i.e. that someone d
types in a list of words when the player isn’t looking it
possible to play a simple form of hangman.

10 LET W$ = ”<"
20 FOR 1 = 1 TO 4
30 INPUT A$
40 LET W$ = W$+A$+"<”
50 NEXT I
60 CLS
70 PRINT "HANGMAN”
80 LET R = INT (RND*(LEN W$-1) + 1)
90 IF W$(R) = "<” THEN GOTO 120

100 LET R = R-1
110 GOTO 90
120 LET A$ = ””
130 LET W$=W$(1 TO R-1)+W$(R + 1 TO)
140 IF W$(R) = "<" THEN GOTO 170
150 LET A$=A$+W$(R)
160 GOTO 130
170 FOR 1 = 1 TO LEN A$
180 PRINT
190 NEXT I
200 LET H = 0
210 PRINT AT 3,0;"GUESS A LETTER”
220 INPUT B$
230 LET K = 0
240 FOR 1 = 1 TO LEN A$
250 IF B$(1)=A$(I) THEN LET K = l
260 NEXT I
270 IF K=0 THEN GOTO 210
280 LET A$(K) = "*”
290 LET H = H + 1

72

300 PRINT AT 1,K-1;B$(1)
310 IF HOLEN A$ THEN GOTO 210
320 PRINT AT 4,0;"WELL DONE"
330 PAUSE 100
340 GOTO 60

The program starts off (lines 10—60) by asking for someone
to type in four words. As each word is typed in it is added to a
list of words stored in W$. Each word in the list is separated
by a “<”. If you want to see this add 45 PRINT W$ to the
program. After clearing the screen the program then moves on
to the hangman game proper. The first thing to be done is to
pick a word from the word list at random. This is carried out
by lines 80—160. First a random number smaller than the
number of characters in the word list (W$) is generated in line
SO, This random number can be thought of as “pointing” to
the word that has been selected. We then have to transfer the
chosen word to another string variable (A$) and delete it from
the word list so that it cannot be picked again. This is done by
first moving the pointer R back to the first “<” and then
transferring everything from there to the next “<” in W$. This
is done by lines 90 — 160. After selecting the target word at
random the program goes on to print one for each letter
in the word (lines 170 - 190). Then the program waits for you
to type in a guess at line 220. The guess is compared with the
word in the FOR loop at lines 240—260. If a match is found
then the position of the match is saved in the variable K. Lines
270—310 print the correct letter in the correct position in the
word and blank out the guessed letter in the target word with
a (line 280). Blanking out the letter with a stops it
from being picked up as a correct answer in later guesses. If
the number of correct guesses is equal to the length of the
target word then you must have guessed the whole word — so
a congratulations message is printed (line 320) and the next
word, if there is one, is picked at random.

This program uses a number of interesting methods and is
well worth studying. If you have a 16K ZX81 you could
increase the number of possible words to something like 100
and then you could type in a list of words yourself because

73

you are hardly
words after a

likely to be able to remember all the hundred

add some graphics and
few games of hangman. You could also

devise a
number of tries taken to

proper scoring method for the

projects are 16K material.
get the correct answer. Both of these

Codes and cyphers
Being good at handling both numbers and text, computers are
an obvious tool for anyone interested in codes and cyphers. la
the second world war much secret information was discovered
by the computer “cracking” coded messages. It is not really
possible to use the ZX81 as a code cracker but it can be used
as a very good encoding and decoding machine using the pro
perties of the RND and RAND functions described in Chapter
Two.

10 PRINT "CODER”
20 PRINT "WHAT IS YOUR KEY"
30 INPUT K
40 RAND K
50 PRINT "DECODE OR ENCODE (0/1)"
60 INPUT D
70 IF D=0 THEN LET D = -1
80 PRINT "TYPE YOUR MESSAGE"
90 INPUT A$

100 FOR 1 = 1 TO LEN A$
110 LET A=CODE A$(l)-11
120 IF A$(l) =" " THEN LET A = 0
130 LET A=A+D*INT (RND*53)
140 LET A = ABS (A-INT (A/53)*53)
150 IF A=0 THEN LET A=-11
160 PRINT CHR$ (A + 11);
170 NEXT I

To try the program out decode the following message:

VKTIP(/ATL(2L.HK.9:;UB;

Run the program and answer 1982 to the question “WHAT IS
YOUR KEY”. Then answer 0 to the DECODE/ENCODE

74

question and type in the string of code given above — the
decoded message will be printed on the screen.

This program uses the fact that by using the RAND
function you can get a specific sequence of random numbers!
All you have to do to get exactly the same sequence of
numbers is to use the same value when defining RAND.
Remember that RAND 0 has a special meaning, it sets the start
of the random number generator according to the time since
the ZX81 was switched on. This would give you an unknown
key — one which could not be repeated in order for later de
coding. It is therefore the one value that should never be used
with this program! The program asks you to input the “KEY”
value you have chosen (line 30) and it is used to start the
random number generator (line 40). The same key value has to
be used for decoding so if you don’t know what key was used
to code a message then you cannot decode it. The message
typed in line 90 is broken down into letters and each letter is
turned into a number using the CODE function. By sub
tracting 11 from the CODE value we avoid getting graphics
characters in the output since graphics characters would be
difficult to write down and send to someone else. We code
space as 0 at line 120. The rest of the coding works by adding
a random number between 0 and 53 and then working out the
remainder when you divide the result by 53. The remainder
when you divide by 53 lies in the same range as the character
codes that we started with, i.e. 0 to 52. To print the resulting
characters we use CHR$(A+11) again remembering to correct
for the space character (line 150). To decode the message the
random number between 0 and 53 is subtracted from the code
restoring it to its original pre-coded value. The variable D is set
to —1 to decode and 1 to encode.

This coding program is short but it is quite good at pro
ducing codes that are difficult to crack. If you haven’t got the
key then it is virtually impossible to read a ZX81 coded
message because the characters are not broken into groups by
spaces and the same character can represent different
characters at different points in the message.

75

Numbers as words — a number guessing game
If you want to play a number guessing game of the sort that
involves guessing individual digits then you have to have a way
of matching the guess against the target number and you have
to know how to generate a random number with a fixed
number of digits. To do this you need to use strings in order to
manipulate the individual digits. The number guessing game
given below is quite well known. The computer picks a fom
digit number at random with no repeated digits. You guess a
four digit number and the computer tells you how many of
the digits in your number are:
a) in the target number
b) in the same place in the target number.
A digit that is in the same place in the target number is called
a place and a digit that is in the target number in a differenl
place is a hit. For example if the computer had picked 1234 as
the target number and you guessed 2035 then you’d have one
place — the three and one hit — the two. The reason for nol
allowing target numbers with repeated digits is to avoid any
difficulty with counting the number of hits.

10 LET A$ = ""
20 RAND 0
30 FOR 1 = 1 TO 4
40 LET B$=STR$ INT (RND*10)
50 FOR J=1 TO LEN A$
60 IF A$(J) = B$ THEN GOTO 40
70 NEXT J
80 LET A$=A$+B$
90 NEXT I

100 INPUT B$
110 IF LEN B$O4 THEN GOTO 100
120 LET P = 0
130 LET H=P
140 FOR 1 = 1 TO 4
150 IF A$(I) = B$(I) THEN LET P = P+1
160 FOR J = 1 TO 4
170 IF A$(J) = B$(I) THEN LET H = H + 1

76

. 180 NEXT J
190 NEXT I

' 200 LETH = H-P
210 PRINT AT 20,0;"P = ";P;" H = ”;H;" G = ";B$
220 SCROLL
230 IF AOB THEN GOTO 100
240 PRINT "CORRECT”

The random four digit number is generated in lines 30—90. A
random digit (0—9) is generated as a string at line 40 and the
¿gits produced so far are compared with it in Unes 50—70. If
its already present we jump back and generate another digit.
If it’s not already present it is added to the number in line 80.
|The program waits for a guess at line 100, if it isn’t four digits
llong then it is rejected without comment and the program
¡waits for a correct input. A correct guess is compared for
Iplace(s) or hit(s) in lines 140—190. Checking for a place is
[easy and is done by comparing both numbers, digit by digit in
¡fine 150 and adding one to P for every match. Checking for a
ffeit is slightly trickier and requires an extra FOR loop at lines
¡160 to 180. Each digit in the guess is compared with every
pother digit in the target and one is added to H for every
¡match. This hit count includes digits that are also in the right
[place so we have to subtract P to get a corrected hit count
lline 200). Numbers of places and hits are printed at line 210
¡and line 230 checks to see if you’ve guessed the number. In
the following sample of output, the computer’s number was
9072 and it took the player seven tries to guess it.

CORRECT

p=© H = 1 G=1234
P=1 H=0 G=5678
P=© H=2 G=569©
P=0 H=3 G=©967
P=3 Ha© G=9073
P=3 H=0 G=9071
P=4 H=0 G=9072

No instructions or messages are included in the program
and the output has been cut down to a minimum to allow the
full screen to be used to display the last 20 guesses. If you

77

have a 16K-ZX81 or feel that you could always work out
number in fewer guesses you could add some PRINT sta
ments to make the program “friendlier”. This game can
addictive, so play with care!

78

Chapter Eight

HINTS AND TIPS

This chapter is different from all the earlier chapters in that it
is specifically about the ZX81! The earlier chapters are about
using the ZX81 with general programming ideas that could
apply to any machine. This is all very well but if you want to
get the best out of a IK ZX81 then you have to resort to
special tricks to use the very meagre amount of memory to the
full. All of the programs that we have discussed have been
written without the use of any special tricks to make the
methods used more obvious. A consequence of this is that
many of the programs stop short of doing everything that we
would like them to do. Normally it’s only PRINT statements
for messages about what to do at any point in the program
that have been left out. Occasionally though, we have been
forced to leave out things like scoring and error detection
making the program not as much fun as it could be. After
reading this chapter of hints and tips you may be inspired to
go back and try to squeeze some extra statements into some of
the programs.

Space-saving screen displays
The ZX81 has a very clever way of using memory to produce a
screen display. If you display a screen full of characters then
you will need approximately 32x22 (704) bytes of memory.
On most machines no matter how many characters you are
displaying on the screen you always need the same amount of
memory. The reason for this is that most machines treat the
blank as a standard character. So when you think you are dis
playing a blank screen you are in fact displaying a screen full
of blanks. If this was the way the ZX81 worked you would
have very little space to write programs in — IK is 1024 bytes
and a full screen of blanks would leave about 320 bytes for
programs!

79

The way the ZX81 works is to store each line of the scree®
along with an end of line marker — a NEWLINE character.
When the ZX81 is first switched on or when the screen is
cleared by a CLS all that is stored in memory are 22 NEW-
LINE characters. If you print “HELLO” on the second line
then the characters “HELLO” are inserted between the second
and third NEWLINE character. The ZX81 displays whatever it
finds between the NEWLINE characters at the correct place on
the screen and then sends enough blanks to make the line the
correct length i.e. 32 characters long, before moving to the
next line. Using this method saves having to pad each line out
to 32 characters with blanks stored in memory.

What this means for the programmer is that the far right
hand side of the screen is expensive in memory and the left
hand side is cheap! If you print a single character on the far
right of an otherwise empty line you store 31 blanks plus the
character and a NEWLINE character in memory, i.e. 33 bytes.
If you place the single character at the far left of an equally
blank line you only store the character and a NEWLINE in
memory, i.e. 2 bytes. All of the other blanks are generated by
the ZX81 after it passes the NEWLINE character while dis
playing the screen. This extreme example should convince you
that it’s better to stay to the left! Otherwise you can use The
screen as you require. Leaving blank lines as you move down
the screen costs nothing extra in memory. These comments
also apply to characters that appear on the screen as the result
of a PLOT command.

You can get an idea of the amount of space that you have
left for screen display, after typing your program, by the
amount that you can LIST on the screen. In most cases the
number of characters that you can display on the screen is less
than the number that you can LIST on the screen because,
during a RUN of the program, memory is taken for new
variables. An interesting point is that in between RUNs the
memory used for variable storage is NOT freed. This means
that the number of characters that you can LIST on the screen
is the same as the number of characters you can display on the
screen while the program is running, as long as the program
doesn’t use any extra variables. Another useful point is that, if

80

you free all the memory used by the variables in the previous
RUN using the CLEAR command, you can get more program
fasting on the screen.

A simple trick that is sometimes overlooked when you’ve
run out of memory and can’t EDIT a line, is simply to LIST it
rhen clear the screen (CLS) and.press the EDIT key. Just
because you cleared the screen doesn’t mean that you can’t
EDIT the current line.

Memory-saving numbers
The ZX81 uses a lot of memory to store numbers that look as
though they ought to take very little. For example:

10 LET A = 1

This looks as though only one character/byte should be used
to store the number 1. In fact the ZX81 takes 7 bytes to store
the constant 1. In general every constant will take as many
bytes of memory as there are digits, plus a byte for the
decimal point if used, plus six more bytes that are used by the
machine to store the constant in binary. You can save a lot of
memory by using strings to hold constants and the VAL
function to convert the strings to numbers when required. For
example:

10 LET A = VAL "1”

The string “1” takes three bytes of storage — two for the
quotes and one for the figure one. Although the function VAL
looks as though it takes up three bytes of storage, because it is
entered by a single key stroke it only uses a single byte. So the
constant VAL “1” takes only four bytes while the simpler
looking 1 takes seven bytes. This method can be used for any
constants. For example:

3.134 takes 11 bytes but VAL ”3.134" takes 8 bytes
1235 takes 10 bytes but VAL "1235” takes 7 bytes

Another space-saving trick with constants is to use CODE to
give a number from 0 to 255. For example:

81

10 LET A=CODE "Z"

is the same thing as
10 LET A=63

or

10 LET A=VAL "63"

This first version uses one byte for CODE and three bytes fi
“Z” making a total of four bytes. The other two use eight a
five respectively. The only trouble with this method is tl
you cannot use it for numbers bigger than 255 and there m
be a character with the correct character code. Also, 1
method only saves more memory than the VAL method if 1
number has two or three digits.

You should also notice that these space-saving consta
can be used in other places than LET. For example:

10 GOTO VAL "120"

or
20 IF A=CODE "M" THEN LET A = VAL "0"

Two of the most used constants are 0 and 1 and there is
especially economical way of obtaining them on the ZX8
Try

10 LET A=PI/PI
20 LET B = NOT PI
30 PRINT A,B

Line 10 works because PI/PI is one and PI is one keystroke
the whole expression only takes 3 bytes. Line 20 is a bit mi
difficult to understand, NOT PI is zero because the NOT
any non-zero number is zero. NOT and PI take one byte e;
and so the whole expression takes 2 bytes.

The most space-saving and simple method of handl
constants is not to use them! If you are going to use a const
throughout a program assign it to a variable once and use
variable instead. For example:

82

instead of

10 LET A=0
20 LET B = 0

use

10 LET A=0
20 LET B = A

Space-saving variables
There are only a few simple things that you can do to save
space when using variables. The first hint is not to use them! If
you create a variable early in the program and it is no longer
needed later on, re-use it rather than create a new variable with
a more appropriate name, in order to keep the number of
variables that you use to a minimum.

The second simple rule is to keep variable names short. A
variable always takes five bytes plus one byte for each letter in
the name. For example A takes six bytes but APPLECOUNT
takes sixteen bytes.

Variables used in FOR loops — control variables — are
especially expensive in memory terms. Each control variable
uses 18 bytes so re-using control variables is very worthwhile.

Space-saving strings

Each string variable takes one byte for its name, two bytes to
record the length of the string and one byte for every
character in the string. The first thing that can be done with
strings is to try to minimise the number of characters in them
using the keywords on the ZX81’s keyboard. For example if
you wanted to print two asterisks you could type two aster
isks or one raised to the power sign. They both display as “**”
but the first uses two bytes and the second only one.

Another useful trick which applies to all constants in a
program but is very space-saving when applied to strings is to
delete the lines of the program that define them. Try:

83

10 LET A$="1234567890"
20 LET A = 100
30 PRINT A$,A

If you run this program you will see nothing unexpected. £
you then delete lines 10 and 20 (by typing their line numbers]
and then type GOTO 30 you will see that, although you haw
deleted the lines setting the variables, the PRINT statemenl
still prints out their old values. If you RUN the program, ho»
ever, you will get an error message. RUNning a program clean
all variables and starts everything from scratch. Using GOTO
to start a program leaves all the variables as they were the lad
time the program was run — even if the lines defining th|
values of the variables have been deleted. i

By deleting line 10 you save 21 bytes and still have tta
string stored in A$ and by deleting line 20 you save 15 bytq
and still have zero stored in A. The reason for this large savia
is that, whenever a constant is assigned to a variable, the ZX8I
saves a new copy of the constant under the name of ta
variable in an area of memory away from the program. The o»
copy of the constant still exists in the program, so wj
effectively have two copies of the constant, one of which wi
never be used again unless the constant is re-assigned to ta
variable. J

The only penalty for this space saving is that you have ■
use GOTO to run the program. To summarise the method: 1

1) Type in all the program lines that set variables equal a
constants. 1

2) RUN the small program 1
3) Delete each line in turn — do not use NEW which deletes a

the variables as well. 1
4) Type in the rest of the program that makes use of ta

variables set by the previous programs. 1
5) Do not RUN the program but use GOTO the first lia

number. I

You can SAVE such an incomplete program on taa
without any extra trouble because the ZX81 automatic»
saves all the variables defined by a program. So if you haa

84

SAVEd an incomplete program you can LOAD it and, as long
as you don’t use RUN but use GOTO, it will work just as if
the deleted lines were there!

Space-saving statements
Each BASIC statement that you use takes two bytes for the
line number, two bytes to record the length of the line, one
byte to mark the end of the line, plus the space required to
store the line that you type. Apart from the extra six bytes
every numeric constant takes, you can reckon that every key
stroke that you use to type in the line counts as one byte of
storage used. So do not type in unnecessary characters such as
plus signs in. front of numbers or brackets in functions when
they are not required. You can also save space in IF statements
by remembering that an IF regards any non-zero value as true
and zero as false. So instead of:

10 IF AO0 THEN PRINT A

use

10 IF A THEN PRINT A

and instead of
10 IF A = 0 THEN PRINT A

use

10 IF NOT A THEN PRINT A

If you’re really short of space then remember that every line
you start requires a minimum of 5 bytes. So do not start a
new line unless you have to. For example:

10 PRINT A
20 PRINT B

uses 17 bytes but

10 PRINT A,,B

uses only 10 bytes.
Finally do not use REM statements when you are short of

85

space. They use 6 bytes plus one byte for every keystroke in
the remark.

How much space?

The ZX81 uses two areas of RAM to store your program —
the program file where the program is stored and the variable
file where any variables created by your program are stored.

You can find how much space is being taken by the
program file by typing in the following line:

PRINT PEEK 16396+256*PEEK 16397-16509

To find out the size of the variable file use:
PRINT PEEK 16404 + 256*PEEK 16405-■

PEEK 16400-256*PEEK 16401

You could add these lines to the end of your program and find
out how much of each file you are using every time you run
the program but remember to subtract the space that the two
extra lines use up in the program file!

The solution and more problems!

The only real solution to the shortage of space on the IK
ZX81 is to buy the 16K RAM pack. This will save you from
the need to use all the devious tricks that we have listed above.
If, however, you have got into the habit of saving space you
may find yourself continuing to use them even when no longer
needed. But in computing there is a law which says that you
trade off space for speed. Most of these space-saving tricks will
actually make your programs run slower. This is a good reason
for not using them once you have a 16K RAM pack. In fact
as soon as you have a 16K RAM pack making your programs
run faster is the big problem — but that is another story.

86

Notes

The Art of
Programming
the IK ZX81

This book shows you how to use the features of the ZX81 in
programs that fit into the 1 K machine and are still fun to use. In
Chapter Two we explain its random number generator and use it
to simulate coin tossing and dice throwing and to play pontoon.
There is a good deal of fun to be had, in Chapter Three, from
the patterns you can display using the ZX81's graphics. Its
animated graphics capabilities, explored in Chapter Four, have
lots of potential for use in games of skill, such as Lunar Lander
and Cannon-ball which are given as complete programs. Chapter
Five explains PEEK and POKE and uses them to display large
characters. The ZX81's timer is explained in Chapter Six and
used for a digital clock, a chess clock and a reaction time game.
Chapter Seven is about handling character strings and includes
three more ready-to-run programs — Hangman, Coded Messages
and a number guessing game. In Chapter Eight there are extra
programming hints to help you get even more out of your 1K
ZX81.

We hope that you'll find that this book rises to the challenge
of the ZX81 and that it teaches you enough artful programming
for you to be able to go on to develop programs of your very
own.

	British Library Cataloguing in Publication Data

	Fun and games

	Know your limits

	The ZX80

	RND and RAND

	To get a different sequence each time use:

	Making things happen

	Random integers

	Two improved programs

	The trouble with cards

	Pontoon

	Unequal probabilities — an advanced method

	■RINT comma and semicolon

	PRINT TAB and AT

	Graphics characters

	CHR$

	Random patterns

	Plotting

	■>e simple shapes

	Randomness and symmetry

	Moving balls and velocity

	Free flight and gravity

	Lunar lander

	browing in a given direction

	«non-bail
	ing PEEK to draw big letters

	. dot we can	locatioMf

	onclusion

	FAST, SLOW and PAUSE

	Delay loops

	frame counter

	Random words

	Hangman

	Codes and cyphers

	Numbers as words — a number guessing game

	Memory-saving numbers

	Space-saving variables

	Space-saving strings

	Space-saving statements

	How much space?

	The solution and more problems!

	The Art of Programming the IK ZX81

