

Learning to
program in C

BOOKS AVAILABLE
By both authors:

BP306 A Concise Introduction to Ami Pro 3
BP327 DOS one step at a time
BP337 A Concise Users Guide to Lotus 1-2-3 for Windows
BP341 MS-DOS explained
BP343 A concise introd'n to Microsoft Works for Windows
BP346 Programming in Visual Basic for Wirdows
BP351 WordPerfect 6 explained
BP352 Excel 5 explained
BP353 WordPerfect 6.0 for Windows explained
BP354 Word 6 for Windows explained
BP362 Access one step at a time
BP372 CA-SuperCalc for Windows explained
BP387 Windows one step at a time
BP388 Why not personalise your PC
BP399 Windows 95 one step at a time*
BP400 Windows 95 explained*
BP402 MS Office one step at a time
BP405 MS Works for Windows 95 explained
BP406 MS Word 95 explained
BP407 Excel 95 explained
BP408 Access 95 one step at a time
BP409 MS Office 95 one step at a time
BP415 Using Netscape on the Internet
BP419 Using Microsoft Explorer on the Internet
BP420 E-mail on the Internet
BP426 MS -Office 97 explained
BP428 MS -Word 97 explained
BP429 MS -Excel 97 explained
BP430 MS -Access 97 one step at a time

By Noel Kantaris:

BP232 A Concise Introduction to MS-DOS
BP258 Learning to Program in C
BP259 A Concise Introduction to UNIX*
BP261 A Concise Introduction to Lotus 1-2-3
BP264 A Concise Advanced User's Guide to MS-DOS
BP274 A Concise Introduction to SuperCalc 5
BP284 Programming in QuickBASIC
BP325 A Concise User's Guide to Windows 3.1

Learning to
program in C

by

Noel Kantaris

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND
www.babanibooks.com

PLEASE NOTE
Although every care has been taken with the production of this
book to ensure that any projects, designs, modifications and/or
programs, etc., contained herewith, operate in a correct and
safe manner and also that any components specified are
normally available in Great Britain, the Publishers and
Author(s) do not accept responsibility in any way for the failure
(including fault in design) of any project, design, modification or
program to work correctly or to cause damage to any
equipment that it may be connected to or used in conjunction
with, or in respect of any other damage or injury that may be
so caused, nor do the Publishers accept responsibility in any
way for the failure to obtain specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home -built equipment then that warranty may be void.

© 1989. CO 1993 BERNARD BABANI (publishing) LTD

First Published - January 1989
Reprinted - April 1990

Reprinted - March 1991
Reprinted - January 1992
Reprinted - October 1992

Revised Edition - March 1993
Reprinted - January 1994

Reprinted - Decmber 1994
Reprinted - November 1995
Reprinted - December 1996

Reprinted - October 1997
Reprinted - August 1998
Reprinted - April 1999
Reprinted - May 2000
Reprinted - April 2001

British Library Cataloguing in Publication Data
Kanter's. Noel

Learning to Program in C
1. Computer systems. Programming languages:
I. Title
005.13'3

ISBN 0 85934 203 4

Cover design by Gregor Arthur. Cover Illustration by ,Ndarr Willis.
Printed and Bound in Great Britain by Cos & Wyman _td. Reading

PREFACE

C is a highly portable general purpose language which is
structured, modular and compiled. It was written by Dennis
Ritchie in the early 1970s to support the development of the
UNIX operating system. C is the result of a development
process that started with a language called BCPL (Basic
Combined Programming Language) which was developed from
CPL (an earlier language), by Martin Richards in 1967 as a
compiler writing tool. In turn, BCPL influenced a language called
B, which was developed by Ken Thompson and which finally led
to the creation of C in the 1970s.

For many years, the de facto standard for C was described in
The C Programming Language by Brian Kernigham and Dennis
Ritchie (Prentice -Hall, 1978) and as supplied with the UNIX
version 5 operating system. As such, C was used originally for
systems programming, but as UNIX became one of the most
popular multi-user operating systems, 85% of the code of which
is written in C, the language has been adopted by programmers
for almost any programming task. In 1983, a comm ttee was
formed to work on the creation of an ANSI standard that would
define C completely. By 1987 the proposed standard was being
adopted by all manufacturers of C compilers.

Most people are familiar with Basic, which is not a very
efficient computer language. A separate program called the
Basic interpreter, interprets each and every statement of a
Basic program every time it encounters it, into the machine
code the particular computer can understand. Although lately
Basic compilers have been made available, they tend to be
specific to a given Basic dialect which itsel4 is associated with a
particular computer. Thus, Basic code is slow in execution, and
one computer's Basic differs considerably f.-om that of another.

Traditionally, those who needed to write fast execution
programs, used to resort to writing in Assembler. However,
programming in Assembler is a very tedioJs and slow process
and has the added disadvantage of being different on different
computers, thus making such programs almost impossible to
transfer from one compiler to another. Amongst the many
languages that overcome the above limitations (Fortran, Cobol,
Pascal, C, etc), C is by far the most up and coming language of
today.

C is a structured language some features of which are to be
found in some other popular languages running on IBM
compatibles, such as Pascal and Fortran 77, particularly in the
area of control of program flow. Programs can be written in
modular form which when compiled provide the building blocks
for larger and more complicated applications. A separate
program, the C compiler, is used to generate the machine
specific code that will actually be executed by the particular
computer. This means, of course, that instead of having to learn
to program several computers in their own specific language
such as Assembler or some dialect of Basic, you only need to
learn to program in C.

C combines elements of high-level languages with the
functionalism of assembler. For example, 0 supports the
concept of data types just as other high-level languages, but it
is not a strongly typed language like, say, Pascal. On the other
hand, C provides access to bitwise operations and the
manipulation of bytes and addresses, as well as allowing the
storage of variables in registers for more efficient and fast code
- operations that normally are restricted to assembly language
programming. Thus, if you intend to write programs that need to
be compact, fast in execution, and yet transportable from one
computer to another, then C is the language you should be
using.

ABOUT THIS BOOK

This book is a guide :o C programming. C statements are
introduced and explained with the help of simple, but completely
working programs. The user is encouraged to type these into
the computer, save them, and keep improving them as more
complex language statements and commands are encountered.
Graded problems are set at the end of each chapter, some with
financial or scientific bent, so that users can choose their own
level of problem difficulty on which to practise wth some
additional choice in the preference of the field of application.
Full working solutions appear at the back of the book.

Chapters 1-3 deal with the basic C statements which control
program flow and allow the user to manace with most aspects
of the language, with the result that most general problems can
be solved easily and effectively. Chapters 4-5 introduce the
concepts of string arrays, numeric arrays and function
subprograms which expand the programming capabilities of the
user beyond the beginnar's level. Chapters 6 deals entirely with
data -file handling on disc, while part of Chapter 7 ceals with
unique C structures, both of which shoulc be of interest to all
those who need to process large quantities of data.

If you would like to purchase a floppy disc containing all the files/programs
that appear in this, or any other listed book(s) by the same author(s), then fill
in the form at the back of the book and send it to the stipulated address.

ABOUT THE AUTHOR

Graduated in Electrical Engineering at Bristol University and
after spending three years in the Electron cs Industry in Lordon,
took up a Tutorship in Physics at the University of Queens and.
Research interests in Ionospheric Physics, led to the degrees of
M.E. in Electronics and Ph.D. in Physics. On return to the UK,
he took up a Post -Doctoral Research Fellowship in Radio
Physics at the University of Leicester, and in 1973 a Senior
Lectureship in Engineering at The Camborne School of trines,
Cornwall, where since 1978 he has also assumed the
responsibility of Head of Computing.

l

ACKNOWLEDGEMENTS

I would like to thank colleagues at the Camborne School of
Mines for the helpful tips and suggestions which assisted me in
the writing of this book.

TRADEMARKS

IBM is a registered trademark of International Business
Machines Corporatior

MS-DOS is a registered trademark of Microsoft Corporation

Turbo C is a registered trademark of Borland Internationa

CONTENTS

1. LANGUAGE OVERVIEW 1

Comment Lines 2
The Function main() 2
Variables and the Declaration Statement 2

Table of C Keywords 4
Type Conversion 4
Constants and Expressions 5

Constants 5
Expressions 5

The printf Function 6
The scant Function 6
The Assignment Statement 6
Compiling and Executing a Program 7
Summary of Some C Rules 10
Problems 10

2. OPERATORS & I/O CONTROL 11

Arithmetic Operators 11

Formatted Output 12
Table of I/O Field Types 13
Table of Escape Sequences 14

Character I/O 15
The % Operator in Integer Division 16
Relational Operators 17

Table of Relational Operators 17
Logical Operators 17
Ternary Operator 18
Unary Operators 18
Address Operators 19
Bitwise Operators 20

Table of Bitwise Operators 20
Combined Operators 22

Table of Priority o4C Operators 23
Problems 24

3. CONTROL OF PROGRAM FLOW 25
The if Statement 25
The if..else Statement 26
Nested if..else Statements 27
The while Loop 27
The do while Loop 28
The for loop 29
Nested Loops 32
Speeding up Loops by Using Registers 33
Unconditional Program Branching 33

The goto Statement 33
The continue Statement 34
The break Statement 34

The switch Command 35
Problems 37

4. ARRAYS & POINTERS 39
Defining a String 39

Character Array Definition 39
Character Pointer Definition 41

Pointer Memory Allocation 41

String Arrays 43
Table of ASCII Conversion Codes 46

String and Substring Manipulation 47
Subscripted Numerical Variables 49
The Bubble Sort Technique 51

Table of String Functions 52
Problems 54

5. FUNCTIONS 55
Standard Arithmetic Functions 55

sln(x), cos(x) and tan(x) 56
asln(x), acos(x) and atan(x) 56
hypot(x,y) 56
scirt(x) 56
exp(x) 57
log(x) and log10(x) 58
abs(n), fabs(x) and labs(x) 58
poly(x,n,ca) 58

User -defined Functions 59

Pointers and Functions 62
Pointers to Variables in Functions 62
Pointers to Strings in Functions 63
Pointers to Arrays in Functions 64

Recursion 65
Problems 68

6. STREAMS & FILES 69
Types of Streams and Files 69

Table of Values of Mode 70
Table of Common Library File Functions 71

Sequential Data Fi es 72
Command -line Arguments 73
Error and EOF Handling 74
File Read/Write Functions 75
File Scan/Print Functions 78
Random Access Files 80
Problems 86

7. DEFINED DATA TYPES 87
The typedef Keyword 87
Enumerated Data Types 87
Structures 89
Arrays of Structures 91

Unions 95
Bitfields 96
Linked Lists 97
Problem 98

APPENDIX A - THE ED UNE EDITOR 99
Invoking the ed Line Editor 99

The Append Command 100
The List Command 101

The Write Command 101

The Change Command 102
The Insert Command on an Existing File 102
The Delete Command 103
The Move and Transcribe Commands 103
The Search Gormand 103
The Substitute Command 104

Exiting ed 105

APPENDIX B - SOLUTIONS TO PROBLEMS 107
Problem 1.1 107
Problem 1.2 107
Problem 2.1 108
Problem 2.2 108
Problem 3.1 109
Problem 3.2 110
Problem 4.1 111
Problem 4.2 112
Problem 5.1 113
Problem 5.2 114
Problem 6.1 115
Problem 6.2 116
Problem 7.1 118

INDEX 121

1. LANGUAGE OVERVIEW

C is a high level programming language which is easy to learn,
but which remains extremely flexible. A program written in C,
called the source program, is compiled into machine code, called
the object code, which is very compact and executes extremely
fast. If you are operating under the MS-DOS environment, you
can enter a new C program in your computer with the use of
either the full screen ecitor Edit, if you are a DOS 5 or higher
user, or the line editor edlin, if you are a pre -DOS 5 user. If, on
the other hand, you are operating under the UNIX environment,
then you could use the Ed line editor which is fully explained in
Appendix A. However, you could use a word processor to enter a
C source file, provided it runs on the particular environment and
is of a type that creates an ASCII file. Some implementations of
C, such as Microsoft's and Borland's Turbo C, corre with their
own editor in an integrated package.

In what follows, it is assumed that ycur editor is evoked by
typing the appropriate command followed by the filename. For
example, to create a C source file called average, using UNIX's
line editor ed, type

ed average.c (followed by pressing <Enter>)

If the filename average.c does not already exist on the disc, the
editor will inform you of the fact. A program to calculate the
average of three numbe-s will have to be entered as follows:

/* CALCULATE AVERAGES */
main()

float a,b,c,d,average:

printf(*Enter three nanbers: ');
scanf("%f %f-,&a.&b,8(c);
d=a+bc;
average=d/3.0;
printf(*The average is %f',average);

The above program is presented to give an overview of what a C
source program is and how it is entered in the computer. All the
C statements contained therein will be d scussed in detail in the
following pages. So, there is no need to worry!

1

Comment Unes
A C source program consists of statements (one per line) and
comment lines. Comment lines are enclosed by the characters /*
(at the start of the comment) and */ (at the end of the comment).

The Function main()
Every C program must have a function called main which must
appear only once in a program. The parentheses following the
word main must be present, but there must be no parameters
included (parameters will be explained later, when we discuss C
functions). The main part of the program is enclosed within
braces { }, and consists of declaration statements, assignment
statements and other C functions. In the above program there
are six statements within the braces; a declaration statement
(the first statement of the main program starting with the word
float), two assignment statements (the foLrth and fifth
statements starting with the variable names d anc average) and
three function statements, two to print information on the screen
and one to scan the keyboard for input.

As C is a free form language, the semi -colon (;) at the end of
each line is a must. It acts as a statement terminator, telling the
compiler where an instruction ends. Free form means that
statements can be indented and blank lines inserted in the
source file to improve readability, and statements can span
several lines. However, each statement must be terminated with
a semi -colon. If you forget to include the semi -colon, the
compiler will produce an error, indicating the next line as the
source of the error. This can cause some confusion, as the
statement objected to can be correct, yet a syntax error is
produced.

Variables and the Declaration Statement
A variable is a quantity that is referred to by name, such as a, b,
c, d and average in the above program. A variable can take on
many values during program execution, but you must make sure
that they are given an initial value, as C does not do so
automatically. However, before variables can be used in a
program, they must be declared in a type declaration statement.
In C, a variable can be one of three distinct data types, float, int
and char, with several additional qualifiers. The most common of
these are listed on the next page:

2

float

double

int

for single precision floating point numbers,
such as 3.33333. These are expressed in
22 bits and their range is ±3.4E±38;

for double precision floating point
numbers, which are twice as large as vari-
ab es of type float expressed in 64 bits
within the range ±1.7E±308;

for integer numbers, which are whole
numbers without a decimal point, ex-
pressed in 16 bits within the range -32768
to 32767;

long for long integer numbers, in 32 bits within
the range -2147483648 to 2147483647;

char for storing one byte or one ASCII char-
acter, which are any of the characters ap-
pearing on the keyboard. These are
expressed in 8 bits and their range is -128
to 127;

unsigned int ursigned integer numbers, expressed in
16 bits within the range 0 to 65535;

unsigned long unsigned long integer numbers expressed
in 32 bits within the range 0 to
4294967295;

unsigned char unsigned character, expressed in 8 bits
within the range 0 to 255.

Thus, before we can use any variable in a C program, we must
declare its type (float, double, int, long, or char) and its name.
Variable names can 'oe of any length, but only the first eight
characters are significant. Upper and lower case variables can
be used, but it is traditional to use lower case for names of
variables and upper case for names of constants (to be
discussed shortly). Use of the underscore within variable names
(for example, x_value) s permitted and can be used to improve
readability.

C reserves a number of keywords for use as commands (listed
on the next page) and these must not be used as variables.

3

Table of C Keywords

auto double int struct
break else long switch
case num register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Once variables have been declared and have values assigned to
them, they can be used in assignment statements and/or
expressions in the rest of the program to perform desired
calculations. A variable must have a value before it is used in an
expression or in the right hand side of an assi,gnment statement.

Type Conversion
Sometimes certain operations require us to use a variable in a
type -form other than the one it was declared in the type
statement. For example, suppose variables a, b, c and d, of the
previous program had been declared as integers, as follows:

main()

int a,b,c,d;
float average;

printf('Enter three numbers: ');
scanf('%d %d %d*,&o,&b,&c);
d=a+b+c;
average=d/3;
printf('The average is %r,average);

1

If we then supplied the program with the values 1, 2 and 2, the
value of d will be 5. The value of average will then be the integer
division of 5/3 which is 1. Clearly this is wrong.

To overcome this, we can temporarily change the type of
variable d to floating point by using the statement

average=(float)d/3;

which will result in the correct average value being calculated.

4

Similarly, a variable x, which was declared as a floating point
variable in a declaration statement, can be changed temporarily
to an integer by writing (int)x.

Also, note that C follows the convention of automatically
converting an integer variable into floating point if it is used in an
expression containing other floating point numbers. That is why
we divided d by 3, rather than 3.0 in the previous program!

Constants and Expressions
Constants:
A constant is a quantity that either appears as a number (3.0 in
the fifth statement in the main part of the AVERAGE program) or
is referred to by name, but has only one value during program
execution; that which was allocated to it. Constants can be
defined via the #define statement which must appear before the
main() function.

Thus, a constant called TOTAL can be iefined as follows

#define TOTAL 3.0
main()

average=d/TOTAL;

}

Note the convention of using upper case letters for constants to
distinguish them from variables. Also note that the hash s gn (#)
of the define statement must be in the first column of the line in
which it appears. This and the placement of the #include
statement (which will be discussed later) are the only restrictions
to C's free -form statement entry.

Expressions:
An expression, when referred to in this text, implies a constant, a
variable or a combination of either or both, separated by
arithmetic operators (*, /, %, +, and -). Of the five arithmetic
operators, only the symbol for modulus which is the %) will be
unfamiliar to the newcomer to the C language.

5

The printf Function
The printt function allows the printing of text to prompt the user
to supply information as was done in the first printf statement of
the AVERAGE program. Note that such text must be enclosed in
full quotation marks ("). The function can also be used to print
the result of a calculation, as was done on the second printf
statement of the same program. This result is held in the variable
named average.

Following the opening brackets of the printf function, there is
information on what we intend to print out, enclosed in full
quotation marks. The information was included in the program to
make it easier for the user to identify the output. Note the %f
which appears prior to the closing quotes; it informs the compiler
that the variable average which follows, is to be printed in
floating point format. Later we will discuss other formats which
exist for both input and output (I/O) streams.

The scanf Function
The scant function allows formatted input to be taken from the
keyboard. Three %f formats (separated by a space and enclosed
in quotes) inform the compiler that each of the three inputs are
going to be floating point numbers. Also, note that scant requires
the arguments used in it to be pointers to the actual variables.
Thus, &a holds the address in memory where the variable a is to
be stored.

The space between the three %f format commands, used in
the scant function, indicates that the three corresponding
variables will be entered with a white space in between them,
that is, the numbers typed on the keyboard will be separated by
a space (or any number of spaces), or by line feeds (which are
created when pressing the <Enter> key after typing each
numeric value). If we wanted to separate these numeric values
with a comma (instead of a space), we would nsert commas
between the %f format commands.

The Assignment Statement
Note that what appears as an equation in expressions is, in fact,
an assignment statement and not an algebraic identity. As long
as the values of variables on the right of an equals sign are
known, the calculated result will be assigned to the variable on
the left of the equals sign. As an example, consider the following
short program.

6

/' EXAMPLE OF ACCUMULATION ''/
main()

float sum;

SUM =0;
SUITI=SUM + ;

printt('Accumulated result is %t ,sum);

The third executable statement of the main program would be
meaningless had it been an algebraic expression. In computing
terms the statement slates 'take the present value in sum, add
one to it and store the result in sum'. When this statement is
executed, the value of sum (set in the previous statement) is
zero and adding one to it results in a new value of sum ecual to
one.

Compiling and Executing a Program
The translation of a C program (source file) to a machine specific
code (object file) that will eventually be executed by the
particular computer is the task of the C compiler. The compiled
object file can then be linked to the appropriately selected ibrary
routines (supplied with the compiler), anc the resulting exec file
may or may not be executed immediately; it largely deperds on
the version of the compiler in your particular machine.

To illustrate the prccedure of compiling and executing a C
program we shall use here Borland's Turbo C Compiler in an
MS-DOS operating environment. The exact steps taken in
compiling the source fi e, linking the resulting object fle and then
executing the resulting exec file, might vary slightly for different
compilers, but the general philosophy remains the same.

It is assumed here that the C compiler has been installed
according to the instri.ctions given in the installation manual of
your particular package and that appropriate batch and
configuration files have been written to allow access to the
appropriate sub -directories in which the library and r"eader
routines are to be found.

For example, in the case of Turbo C, we assume that the
TCC.EXE and TLINK.EXE files of the package have been copied
to a sub -directory of tle root directory which we shall call
\TURBOC.

7

Further, we assume that all the .LIB and appropriate .OBJ
(start-up) files have been copied into a sub -directory called \UB,
while all the .H (header) files have been copied into a
sub -directory called \INC _UDE.

To enter the source file for the average program, change
directory to \TURBOC and use the line editor to create the
average.c file. Once the source program has been created, we
can use the command

tcc average

which causes the source file of the average program to be
compiled and linked to the appropriate library routines. The tcc
command is similar to UNIX's cc command.

Note that in this instance, we have not bothered to separate
the process of compilation from that of linking; a step that might
be desirable under certain circumstances, for example, when
linking already compiled subroutines to a newly compiled
program.

If compilation is successful, the system creates two files with
the following extensions.

.OBJ the object file, and

.EXE the executable file.

If there are any compilation errors, none of these files will be
created. The compiler will simply inform you which line in your
source file is in error. In such a case, use your editor to correct
the original source file and re -compile. If there are no compilation
or linking errors, execution of the program car be started by
simply typing the name of the executable file, in this case,

average

which will cause the computer to respond with

Enter three numbers:
Typing,

235

the three numbers (separated by spaces) corresponding to
variables a, b and c in the scanf function of the program, causes
the computer to respond with

The average is 3.333333

8

To re -execute the program, we only need to re -type its name
and supply different values to the program variables.

In the case of the UNIX environment, the program is compiled
with the command

cc average.c

and if no errors occur. you'll just get the appropriate shell prompt.
To execute the compiled program (which is always called a.out),
type

a out

If you want to keep the compiled program, you must rename it
before compiling any otners by using the my command.

9

Summary of Some C Rules
Only the first forty characters of variables and constant
names are significant. They should only contain letters,
numbers and the underscore, and the first character must
be a letter.

Variable names are customarily written in lower case
letters. They must be declared within the main program by
type and name before they can be used.

Constant names are customarily written in upper case
letters. The must be defined with the //define prior to the
main program and a value must be given to them. The
value of a constant must not be changed du-ing execution
of the program.

Integer variables and constants have no decimal point.

Floating point (also known as real) variables and
constants must always have a decimal point.

The left hand side of an assignment statement must
contain only one variable. This variable can be of different
type (integer or real) to the expression on the right hand
side of the assignment statement. If you mix variable types
(also called mixed mode arithmetic), watch out for
truncation.

Problems

1.1 Write a program, using the scant function, which assigns
three numbers to the variables days, hours and minutes
and then calculates and prints the total number of minutes
involved. Compile and execute the program.

1.2 Write a program, using the scant functioi, which can
convert degrees Fahrenheit (f) to degrees Celsius (c). Use
the relationship

Degrees Celsius = (Degrees Fahrenheit - 32) * 5/9

Use the //define statement to assign the constant 5/9 to
FACTOR.

10

2. OPERATORS & I/O CONTROL

Arithmetic Operators
The symbols *, /, %, +, and - are Pie standard arithmetic
operators in C. With these, together with brackets (), to enclose
expressions, and the assignments statement (=), allcw the
manipulation of most arithmetic expressions. For example, the
calculations in the average program of the previous chapter are
performed in the fourth and fifth executable statements of the
main program. We can combine these into one statement, by
writing

average= (a+b+c)/3.0, (Not average =a + b +c/3.0);

It is important that the numerator of this expression is in

brackets. If it were not, C would evaluate first c/3.0 and then add
to it a+b, which would give the wrong result. This is due to an
in-built system of priorities, as shown below. A full list appears at
the end of this chapter.

Arithmetic Operators and their Priority

C symbol Exampe Priority Function

() (a+b)/c 1 Parenthesized operation

a*b 2 Multiplication
/ a/b 2 Division
% a%b 2 Modulus

a+b 3 Addition
a -b 3 Subtraction

a=b 4 Assignment

On evaluating expressions, C performs arithmetic operations in
the order of priority iidicated in the table. Expressions in

parentheses are evaluated first.
Thus, through the use of parentheses, the order of priority of

execution, and therefore the final value of an expression, can be
changed. If a line has an expression which contains several
operators of equal pricrity, C will evaluate it from left to righ.

11

Note that in C, the equal (=) sign is a replacement operator. This
means that expressions such as

a = b = c

are permissible, but the order of evaluation is now from right to
left, so that c would be assigned to b, which in turn would be
assigned to a, giving all three variables the same value, namely
that of c.

Formatted Output
The prinff function in C is used to provide a formatted output in
a manner similar to that of the FORMAT statement in Fortran.
This gives us full control on the layout of the output, as well as
the form in which the numbers printed out will appear. The
function is implemented as follows:

printf ("format string", variables);

where 'format string' specifies the form in which the variables are
to be printed, that is, type of value, spacing, and so on).

To illustrate the mechanism, let us examine a program that
calculates a specified percentage of a given value. The listing is
given below, and we shall refer to it as the PERCENT program.

/" CALCULATE PERCENT'/
main()

float value, rate, percent;

printf('Enter a number: ");
scanf('%f',&value);
printf('Enter % rate: 1;
scanf('%f",&rate);
percent=value*rate/100;
printf('Result = %0.2f,percent);

Note that the last prinff statement has a 0.2 following the %
control character. It specifies that the variable percent must be
printed out with two digits after the decimal point. The f indicates
the 'field' type which, in this case, is floating point.

The control characters used to specify field types are shown
on the next page.

12

Table of I/O Field Types

Type Meaning

%c one character output. The prefix u (%uc) can be
used for unsigned char type constants.

%d decimal (base 10), integer values. The prefix u or I

can be used - (%ud) for unsigned int type number,
or (%Id) fcr long int type number.

%e scientific rotation (3.6E-5) fcr expressing very large
or very small real numbers.

%f floating point value - must include a decimal point.

%g general format to represent values in either e or f
format, whichever has the shortest form.

%o octal (base 8) values.

%p pointer values.

%s string variables.

%u unsigned integers.

%x hexadecimal (base 16) values.

Examples of using these format controls are given below, with
the type of output they will produce shown overleaf.

/'FORMAT CONTROLS /
main()

printf('Single specified character: %c \ n',.a');
printf('ASCII character of decimal 65: %c \ n',65);
printf('Integer 65 in decimal: %d \ n', 65);
printf('Integer with leading zeros: %04d \ n',65);
printf('Scientific notation: %e \ n',12345.6);
printf('Floating point: %0.3f \ n',123.45);
printf('Short gene'a format: %g \ n',12.34);
printf('Short gene 'al format: %g \ n',0.00000012);
printf('Octal number 9 in decimal: %o \ n',9);
printf('String variable: cYcs \ n','Hello');
printf('Hexadecirr a of decimal 11: %02x \ ,11);

13

Note the escape sequence (\n) within the format string. It simply
provides a newline so that the output of the next prIntf statement
appears on a separate line.

This, and additional escape sequences which can be used to
format output are listed below.

Table of Escape Sequences

Type Meaning

backslash
single quote
double quote

\? question mark
\a audible bell
\b backspace
\f formfeed
\n newline
\O NULL character
\r carriage return
\t tab (horizontal)
\v vertical tab
\xhhh insert ASCII code hhh

Note that the 0 (zero) following the % control character within the
format string of our previous program, forces lead ng zeros to be
printed out. The number following, specifies the width of the
printed field.

Type this program into your computer, compile i-. and run it. On
executing the program, the following output should appear on
the screen.

Single specified character: a
ASCII character of decimal 65: A
Integer 65 in decimal: 65
Integer with leading zeros: 0065
Scientific notation: 1.23456e004
Floating point: 123.450
Short general format: 12.34
Short general format: 1.2e-007
Octal number 9 is decimal: 11
String variable: Hello
Hexadecimal of decimal 11: Ob

14

Character I/O
A string of characters can be entered into a program using the
scanf function. However, before we give an example, we must
mention the fact that when performing character I/O, we need to
include into our program the stdio.h (standard i/o header file).
This is done with the #include statement which must precede
the main() program. As was the case with the #define
statement, the hash sigr (#) must again be placed in column one
of the program. Thus, a program to read in our name could be
written as follows:

/ USING scant TO INPUT A STRING */
#include <stdio.h>
main()

char name[201;

printf('What is you name? ');
scanf('%s',name);
printf('HeIlo, %s',nome);

Since name was declared as an array of 20 characters, the
value of name is the address of the first character of the array
itself. As a result, the address operator (&) in front of name is not
needed.

The above program works correctly, provided you don't include
a space in the input string, as would be the case for example if
you were typing in your full name, because a space signals the
end of a string.

To overcome the above limitation, the gets function should be
used, which reads in everything you type until you press
<Enter>, at which point it appends a null (\O) at the end of the
input line. This function is used as follows:

/' USING gets TO INPUT A STRING */
#include <stdio.h>
main()

char name[50);

printf('What is your name?');
gets(narne);
printf('Hello, %s',name);

15

Finally, there is a routine that can accept a single character from
the keyboard without echoing it on the screen. This is the
getcharo function, which takes the following form:

letter = getchar(),

To output this character, we could use the putcharO function, as
follows:

putchar(letter),

which echoes it onto the screen.

The % Operator in integer Division
Integer division will not give the same results as real number
division because integer variables do not contain decimal points.
Dividing integer 10 by integer 3 will give the answer 3. The
remainder is lost.

The modulus operator (%) gives that remainder. The following
program illustrates the point.

main()

int a,b,x=10,y=3;
a=x/y;
b= x%y;
printf('Division result is: %d \ n',a);
printf(*Remainder is: %cr,b);

Note the variable declaration and initialization. All four variables
are declared integer, while variables x and y are initialized to 10
and 3, respectively.

On execution, the message

Division result is : 3

Remainder is: 1

appears on the screen. It must be stressed that tie % can only
operate on integer operands.

16

Relational Operators
Relational operators are used within If statements known as
conditional expressiors which will be discussed later. We use
relational expressions to determine whether one value is equal to
(==) another value. A listing of C's relational operators is shown
below.

Table of Relational Operators

C symbol Example Meaning

>=

1=

a -b
a < b

a <= b

a> b
a >= b

al=b

a equal to b

a less than b

a less than or equal to b

a greater than b

a greater than or equal to b

a not equal to b

Logical Operators
The power of conditional statements can be inceased
considerably by combining them with the logical operators AND
(&&) and OR (II). For example, we might have the situation
where we needed to know whether a number was within the
range 0 to 100. With relational statements we would have to test
for both

If (number > 0)
if (number < 100)

whereas a better way would be to include a logical opera -or and
test these within one statement, as shown below:

if (number > 0 && number < 100)

which states that only if both combinations are met will the value
of 1 (the Boolean true) be returned and the block of statements
following the test will be executed. If either fails, then the value of
0 (the Boolean false) is returned and none of the b ock of
statements following the test will be executed.

17

Note that all relational and logical testing is dcne within brackets
and the variable name must be repeated for each relational
expression.

The second logical operator can be used in the following way:

if (number < 0 I I number > 100)

which states that when either is true, then the block of
statements following the test wilt be execired. This test will
return 0 (the Boolean false) for all numbers between 0 and 100.

Examples of use of both relational and logical operators will be
given in Chapter 3, where the control of program flow will be
discussed in some detail.

Ternary Operator
C provides a unique type of statement which employs a ternary
operator. It can be used as follows:

a = (b > c) ? b : c;

which has the following effect. If the value in b is greater than the
value in c, then variable a takes the value of b, else variable a
takes the value of c.

Unary Operators
C has two unique unary operators which do not exist in other
high level languages. These are the increment operator (++) and
the decrement operator (--), which add or subtract 1 from an
integer variable. To illustrate their use, we write an
ACCUMULATION example as follows:

/* EXAMPLE OF ACCUMULATION'/
main()
{

int sum=0;

SUM=SUrT1+1;
printI('Accumulated result is %cr,sum),

1

where the declaration and initialization of variable sum, which is
now an integer, is achieved on one line. We can now rewrite the
assignment statement sum=sum+1; in the form of an increment
operator, as

SUM). SUIT1+ +,

18

where the ++ operator increments the value contained in the
variable sum by 1, and then assigns the result to sum.

Similarly, the decrement operator can be used as

surn=sum--;

to decrement sum by 1.
There are four further variations to these operators. These are

as follows:

sum=o+b++
sum=a+b--
sum=a+ ++b
sum=a+ --b

The first means "add a and b together, assign the result to sum,
and increment b by 1" the second means "add a and b together,
assign the result to sum, and decrement b by '"; the third
means "increment b by 1, then add the result to a, and assign to
sum"; the fourth means "decrement b by 1, then add the result
to a and assign to sum".

Use the following program to verify the previous identities.

1 EXAMPLE OF UNARY OPERATORS */
main()

int sum,a=5,b=3;

printf('Oriiginal values: \ n a b\n %d %d \ rr,a,b);
sum=a + --b;
printf('Results are: \ n a b sum \ re);
printf('%d %d %d',a.b,sum);

Try all the above combinations by editing the assicnment
statement containing tie unary operator.

Address Operators
C supports two special address operators: the (&) which returns
the address of a given variable, which is assigned by the
compiler, and the (*) which is the indirection operator and returns
the character to which tie pointer points. The following program
will help to illustrate the point.

19

main()

int number;
char *salut;

number=15;
salut='Sir \ n';
printf('Value= %d Address= %p \ ri,number, &number);
printf('Character= %c Address= %p \ n',*salut, salJt),

On executing this program, C writes on the screen

Value= 15 Address= FF D8
Character= S Address= 009A

where the content of number is given by Value= 15 followed by
its address, and content of *salut points to character S (the first
letter of 'Sir') followed by its address.

Bitwise Operators
C supports many operations that are normally to be found only in
assembler level. Amongst several of these is the ability to apply
bitwise operators on variables of type Int and char.

The table below lists the available bitwise operators.

Table of Bitwise Operators

C symbol Meaning

>>

bitwise AND

bitwise OR

bitwise exclusive 3R

right shift

left shift

ones complement

20

The bitwise AND (&) performs a logical AND for each of the bits
in a variable when compared with the bits in a second variable. A
bitwise AND (&) operation produces a 1 in each bit location of
the result, only if the bits in the same position in both values are
1. Otherwise the result s 0.

For example, if the two variables shown below contain the
binary values:

Variable Binary representation

value_1
value 2

10010011
11110000

then, the operation

value_1 & value_2

produces 10010000
Similarly, the bitwise OR (I) performs a logical OR on each bit

within two variables, resulting with a 1 if either bit i-. the
corresponding locations in the two variables is 1. Thus,

value_1 I value_2

produces 11110011

if the same binary values for the variables value_1 aid value_2
are assumed.

A bitwise exclusive OR (^) operation produces 1 in each bit
location of the result only if the bits in the same location in either
of the variables is 1. Thus,

value 1 value 2

produces 01100011

The right and left shift operators, shift the bits in a variable to the
right or the left, respectively, by a specified number cf bits, while
the locations being left empty as a resu t of the shift are filled
with zeros. For examp e, if variable b_value contains the pinery
number 00010011, then

a value = b value « 3

produces the result 10011000.

21

Finally, the ones complement operator (-), has the effect of
inverting the bits in each location. Thus, assuming that variable
b_value contains the binary number 00010011, then the
expression

a value = b_value

will put the binary number 11101100 in variable a_value.

Combined Operators
C provides another type of operator which is a short -hand way of
assigning the contents of variables. These are:

a*. b; which is equivalent to a = a " b;
a 1= b; which is equivalent to a = a i b;
a += b; which is equivalent to a = a + b;
a -= b; which is equivalent to a = a - b;
a %= b; which is equivalent to a = a % b;
a «=b; which is equivalent to a = a «b;
a »=b; which is equivalent to a = a »b;
a &= b; which is equivalent to a = a & b;
a 1= b; which is equivalent to a = alb;
a "= b; which is equivalent to a = a b;

Although you might never use this form of assignment, you
should know of its existence.

Finally, taking into account all the operators available in C, the
arithmetic priority is as shown on the next page.

22

Table of Priority of C Operators

C symbol Example Priority Function

() (a+b)/c 1 Parenthesized opera: on

a= -b 2 Unary minus
a=+b 2 Unary plus
!a 2 Logical NOT
a= -b 2 Bitwise complement
a=&b 2 Address
a=*b 2 Pointer reference

sizeof() a=sizeo'(b) 2 Size of
++ a++ and +-a 2 Increment

a-- and --a 2 Decrement

* a*b 3 Multiplication
/ a/b 3 Division
% a%b 3 Modulus

a+b 4 Addition
a -b 4 Subtraction

a=b»c 5 Shift right
a=b«c 5 Shit left

> a>b 6 Greater than
>= a>=b 6 Greater or equal

a<b 6 Less than
<= a<=b 6 Less or equal

== a==b 7 Equal to
!= a!=b 7 Not equal to

a=b&c 7 Bitwise AND

a=blc 8 Bitwise OR

a=b^c 9 Bitwise XOR

&& a&&b 10 Logical AND

II allb 11 Logical OR

a=b 12 Assignment

23

Problems

2.1 Write a program to read in a positive floating point number
into a variable called value, place the irtegral part of it into
variable Integral, and the fractional part of it into variable
fractional. Print out the original number, the integral and
fractional parts of it, tabulated under appropriate headings.

2.2 Write a program to calculate the cost of electricity at 5.5
pence per unit between quarterly meter readings
low_value and hi_value which represent the 'low meter
reading value' and the 'high meter reading value'. The flat
quarterly charge, irrespective of units used, is £8.85.

Use the scant function to assign values to low_value,
hi_value, and the #define statemeit to assign the
constants to UNIT_COST and FLAT_RATE.

24

3. CONTROL OF PROGRAM FLOW

The if Statement
The if statement allows conditional program branching which
means that we can decide whether to execute certain statements
or not. The decision depends on relational tests. In gene -al we
can think of the statement as follows:

if (relational test is true)

execute these
statements

To illustrate the point, -efer to the program below which as'<s you
to enter a number. l ghat number is ii the range 5-10, the
program prints the message

True

otherwise it ends without any message appearing on the screen.
Note the absence of semicolon at the end of If.

/ CHECK FOR SPECIFIED RANGE */
main ()

int number;

printf('Enter a number (5-10 true) \ n");
sconf('%d',&number);
if (number>=5 && number<=10)

printf('True \ n');

An alternative program, to check whether the number is outside
a specified range, would be

main ()

}

int number;

printf('Enter a number (5-10 not true) \ n');
scanf("%d',&number);
if (number<5 I I number>10)
printf(lrue \ n');

25

The If..else Statement
In many cases we have to perform an If statement twice over to
detect which of two similar conditions is true, 3.5 illustrated below.

/* THE TWO if STATEMENTS /
main()

int number;

printf('Enter a number between 1 and 99:
scanf('%d",number);
if (number < 10)
printf('One digit number);

if (number > 9)
printf('two digit number);

A more advanced version of the if statement allows both actions
to be inserted in its trailer. The statement :akes the following
form:

if (relational test is true)

execute these
statements

else

execute these
statements

An example of this is incorporated in the modified program
below.

/ USE OF THE if..else STATEMENTS /
main()

int number;

printf('Enter a number between 1 and 99: ');
scanf('%d',&number);
if (number < 10)
printf('One digit number');

else
printf('two digit number);

26

Note that braces under the If or else statements are only
required if statements 'ollowing them occupy more than one line.
Execute the program and supply numbers between 1 and 99.
Obviously, if you type in numbers greater than 99 the prcgram
will not function correctly in its present form. But assumirg that
you have obeyed the message and typed 50 the DrIntf
statement after the else will be executed. On the other hand, if
the number typed is less than 10, the first printf statement will
be executed.

Nested if..else Statements
The above program can be made to test for the correct input
range by the inclusion of the AND (&&) logical operator within an
additional If..else staterrent, as follows:

/* USE OF THE it else AND && STATEMENTS */
main()

int number;

printf('Enter a number between 1 and 99: *);
scant(*%cr,&nurnber),
if (number > 0 && number < 100)

if (number < 10)
printf(*One digit number);

else
printf(*two digit number);

else
printf(*Number not within range*);

Type in the additions the program, corr pile and execute it.

The while Loop
The while loop provides a mechanism fa- repeating a group of C
statements. The genera form of the statement is:

while (condition)

execute these
statements

27

We can modify the previous program to incorporate the while
loop so that the program is repeated provided it is supplied with
a positive number. When a number less than 1 is typed in
response to the message "Enter a number between 1 and 99: ",
the program stops.

/ USE OF THE while LOOP */
main()

int number=1;

while (number > 0)

printf('Enter a number between 1 and 99: ');
scanf('%d',&number);
if (number > 0 && number < 100)

if (number < 10)
printf('One digit number \n');

ese
printf('two digit number \n');

1

else
printf('Number not within range \n");

1

Note the initialization of the integer variable number - this is only
required in this particular program because of the logic
incorporated in the design of the program itself, and is not a
necessary part of the while loop. Also, note the inclusion of the
line feed character (\n) in some of the printi stwements which
help in the presentation of information on the screen.

The do while Loop
The do while loop is similar to the "repeat uitil" loop of other
high-level languages. It allows the execition of certain
instructions at least once, and then tests to find pit whether the
group of instructions should be repeated. The following program
illustrates the method.

28

/ THE do while LOOP'/
#include <stdio.h>
main()

char letter;

printf('Press Y or N only \ n*),
do

letter=getchar();
}

while (letter 1= 'Y' && letter 1= 'N');
printf('You pressed *);
putchar(letter);

On executing this prcgram, the command getchar() w II be

repeated until letter hclds the value Y or N. Note that the
specified letters must be in upper case.

To avoid having to type a letter in a specific case, use either
the toupper() or the tolower() command, immediately below
the getchar() command as follows:

ietter=toupper(letter);

or by replacing both these lines by the statement

letter= toupper(getchar());

Although a single instruction is employed between the do and
while elements of the loop in the above example, t has been
enclosed in braces to illustrate their place in case of
compounded instructions.

The for Loop
The for statement marks the beginning code which w.II be
executed repeatedly according to the corditions supplied by the
control variable within the for loop. The general form of the
statement is

for (Initialization; cond Lion; Increment)

with the 'initialization' and 'increment' potions of the statement
being optional. The statement can be either a single instruction
or a collection of code enclosed in braces.

29

To illustrate the point, a simple example is given below.

/* EXAMPLE USING THE for LOOP */
main()

int k;

for (k=1; k<=5; k++)
printf("44d \ re,k);

In the for statement, the control variable k is assigned the value
1 which is increased repeatedly by the last portion of the
statement until it reaches 5 (the condition in the middle of the
three portions of the statement). It thus has the values 1, 2, 3, 4
and 5. Since it cannot have these values simultaneously, a loop
is formed beginning with the for statement and ending with the
semicolon of the statement below it.

The statements within the loop are re -executed five times,
each time with a new value for k, until such time as the value of
the control variable k exceeds its final assigned value of 5. When
this happens, program control passes to whatever statement
follows the semicolon (in the case of a single statement) or the
closing brace (in the case of compounded statements).

The control variable within a for loop can be assigned integer,
real or double precision values, provided the control variable
name has been declared appropriately. In addition, in the case of
a real control variable, the increment could be less than unity.
The following program converts the values 1, 1.5, 2.0, 2.5, etc,
inches, into centimetres.

/* CONVERTING INCHES TO CENTIMETRES */
main()

float inches,centims;

printf('Inches \ t Centimetres \ n');
for (inches=1; inches<=5; inches+=0.5)

centims=2.54*Inches;
printf(*%6.21%7.2f \ n',Inches, centims);

30

The output should be as follows:

Inches Centimetres
1.00 2.54
1.50 3.81

2.00 5.08
2.50 6.35
3.00 7.62
3.50 8.89
4.00 10.16
4.50 11.43
5.00 12.70

A negative increment is legal in C. For example

main()

int x;

for (x=5; x>=1; x--)
printf(*%d \ rr,x);

will print the values 5, 4, 3, 2 and 1.
Finally, the initialization and increment portions of a for loop

are not limited to one variable. It is possible, for example, to
initialize two variables, and continue to increment the first and
decrement the second for as long as they are not equal. The
following example helps to illustrate the point.

/ INITIALIZING AND INCREMENTING TWO */
/ CONTROL VARIABLES WITHIN A for LOOP */
main()

int x,y;

printf(' X \ Y \ n');
for (x=15, y=-5; xl=y, x --,y++)
printf('%d %8d \ re,x,y);

Here, x is initialized to 15 and decremented by one, while y is
initialized to -5 and incremented by one. This will continue for as
long as the condition x 1= y (x not equal to y) is met. the last
printout will occur when x is equal to 6 and y is equal to 4.

31

Nested Loops
Iterative constructs can be nested to allow programming of loops
within loops as shown in the example below.

/' NESTED for LOOPS'/
main()

int i,j;

for (i=1; l<=2; i++)

prIntf(*Outer loop with 1= %d \ n', i);
for (J=1; j<=3; j++)

}

}

printfC \ t Inner loop with j= %d \ n', D:

On execution, two loops are set up as follows:

for(i

for (j Nested loop

4- - - - Outer loop

The outer loop is initialized with i=1 and immediately the inner
nested loop is executed 3 times. Then, variable i is incremented
by 1, so that now 1=2 and the nested loop is executed another 3
times. The output is as follows:

Outer loop with i = 1

Inner loop with j = 1

Inner loop with j = 2

Inner loop with j = 3

Outer loop wAh i = 2

Inner loop with j = 1

Inner loop with j = 2

Inner loop with j = 3

Additional levels of nesting are possible. However, deep nesting
is costly in terms of memory space.

32

Speeding up Loops by Using Registers
Amongst the low-level operations that C allows is the direct
placement by the compiler of specified variables in reg sters.
This provides significant improvement in speed of access over
the slower process of continually referencing main memcry for
the values of such variables. To utilise this feature, the compiler
must be informed of our intention with the use of the register
command within the declaration statement.

For example, the previous program can be rewrittei as
follows:

/* USING THE register COMMAND */
/ TO SPEEDUP VARIAB_E ACCESS /
main()

register int x,y;

printf(' X \ t Y \ n');
for (x=15, y=-5; xl=y; x --,y++)

printf('%d %8d \ n',x,y);

The program is identical but for the inclusion of the recister
command in the declar.at on statement.

Unconditional Program Branching
C provides three statements which cause unconditional program
branching. These are: t-ie goto, the continue and the break
statements.

Of these, the goto statement should be avoided as much as
possible, as its use tencs to result in 'unstructured' code which
can lead to programming errors. The use of the continue
statement should be severely restricted, as it is possible tc write
code to carry out the same program flow in a more efficien-. way.
Finally, the break statement should only be used with the switch
command.

The goto Statement:
The goto statement provides unconditioral program branching;
it causes an immediate jump to an indicated statement label.
Program execution contiiues sequentially again, beginning with
the line just reached. The general form o -t the statement can be
illustrated as follows:

33

start: if (condition) goto done;

block of statements
to be executed if
(condition) is not true

goto start;
done:

In the above program the first goto statement can send program
execution to label done:, while the second sends program
execution back to label start:.

The continue Statement:
The continue statement causes the immediate execution of the
next iteration of a loop and as such, it alters the flow of control
within a loop. The following program, which prints out the even
numbers between 1 and 40, will help to illustrate the point.

/* ILLUSTRATING THE continue STATEMENT */
main()

int number;
for (number.); number<40; number++)

if ((number % 2) == 0) continue;
printf(*%d\n', number);

On executing the program, only the odd numbers are printed out
because, if the variable number holds an even value, the
remainder of the integer division is equal to zero, therefore the
continue portion of the If statement is executed, which causes
the immediate execution of the next iteration of the loop.

The break Statement:
The break statement also affects the control of program flow
within a loop, by allowing the program to exit the loop. The
statement is mostly used in the switch command which will be
discussed next.

In the case of nested loops, the break statement causes the
execution of the nested (currently executing) loop to cease, while
the outer loop continues executing.

34

An interesting use of the for with the break statement can be
used in setting up repeatedly accessible menus. For example,

for (;;) / sets up an infinite loop*/

printf('Press a key: ');
ch=getchar();
if (ch=='cr)
break;

will set up an infinite loop which can only be broken out of by
pressing the character q.

The switch Command
The switch command is one of C's aids to writing readable
programs and provides an efficient alternative to multiple if
statements. For example, assume we had the code

if day=='S'
printf(*Weekend ');

else if day=='M'
printf('Week day);

else if day-'T'
printf('Week day);

else if doy=='W'
printf('Week day);

else if day=='F'
prinff('Week day);

else
printf("Not o day):

A more efficient way of writing this code would be the adcption
the switch command in the following way.

35

/* USING THE switch COMMAND'/
#include <stdio.h>

main()

char day;

printf('Which day? ');
day=getchar();

switch(day)
case 'S': printf('Weekend '); break;
case 'M': printf('Week day); break;
case 'T': printf('Week day); break;
case 'W': printf('Week day); break;
case 'F': prinff('Week day); break;
default: printf('Not a day');

Typing the first letter of a named day, displays whether that day
is part of the weekend or a week day. Ary other character
causes the program to display the default value.

36

Problems

3.1 Write a program that reads in the examination number
of candidates (i i the range 0-32768), together with the
percentage marks attained in a g ven examination. The
marks have to be graded as follows:

Over 70%, A; 60-69%, B; 50-59%, C; 40-49%, D;
Below 40%, F.

The program should print, under suitable headings, the
candidate number, mark and grade for each candidate.
Arrange for the program to stop when a negative
candidate number is entered.

3.2 Compound interest can be calculated using the formula

A = P (1 +R/100)"

where P is the criginal money lent, A is what it amouits to
in n years at R per cent per annum interest.

Write a program to calculate the amount of money owed
after n years, where n changes from 1 to 15 in yearly
increments, if the money lent originally is £5,000 and the
interest rate remains constant throughout this period at
11.5%. Format the output to restrict calculated vales to
two decimal places and tabulate the results.

37

4. ARRAYS & POINTERS

Defining a String
Just as numerical values can be assigned to variables and
constants, strings can be assigned to character variables,
provided they have been declared in a char statement. Even
though C does not support a separate string data type, it allows
for two different methcds for defining strings. One method is to
use a character array, while the other is to use a character
pointer. Both techniques have been used previously it this
book, while discussing various types of C operators, but now
the subject will be discussed to some depth.

Character Array Definition:
As an example of character array definition, we will use the
following program.

/* USING A CHARACTER ARRAY */
/* TO DEFINE A STRING */
main()

char name[15];

strcpy(name,'Mr Goodfellow'),
puts(name);

The [15] after the variable name instructs the compiler to set
aside an array of 14 char variables, with the 15th space being
taken by the null character \O. On executing tie strcpy
statement, the compi er creates the string "Mr Goodfellow",
followed by the null character \O. It then calls a function called
strcpy, which copies tie string, character by character, into the
memory location pointed to by name, until it copies the null
character. When the puts(name) function is executed, the
compiler passes the address in name w'iich points to the first
letter of the string in memory and then checks for a null
character at that address; if it finds one it ceases operation,
otherwise it prints the character, adds one to the address and
checks the character in the new location for a null.

As a result of this dependency on a null character terminator,
C can have strings of any length, provided there is suff cient
memory to hold them.

39

The following program will help to explair how the strcpy
function works. The program uses the getcharO function within
a for loop to get each character from the keyboard. When all
the expected characters have been fetched, then a null (\

character is appended to the string.

/* USING A CHARACTER ARRAY */
/' TO DEFINE A STRING */
#include <stdio.h>
main()

int count;
char narne[1 0];

printf('Type 'Goodfellow' \ n \ n');
for (count=0; count<10; count++)
name[counfl=getchar();

nameicountj=. \0';
printf(' \ nHello, Mr ');
puts(name);

Similarly, the following program could be used to display the
characters held in array name, one at a time, with the use of
the putcharo function within a for loop.

/' USING CHARACTER ARRAY */
/ TO DEFINE A STRING'/
#include <stdio.h>
main()

Int count;
char narne[151;

strcpy(name,"Mr Goodfellow);
printt('Hello, *);
for (count=0; name[count] I= \ 0'; count++)
putchar(name[count]);

The above program shows how, by incorporating the null (\0)
character at the end of a string, we can read the contents of a
string array without having to know its actual length.

40

Character Pointer Definition:
The second definition of a string can be achieved through a
character pointer. To illustrate this, edit as follows, the first
program used to show low a character array can be used to
define a string.

/* USING A CHARACTER POINTER */
/* TO DEFINE A STRING */
main()
{

char *name,

name.'Mr Goodfel ow',
printt(*Hello, '),
puts(name);

The in front of name tells the compiler that name is a po nter
which holds the address of the first character of a string. The
asterisk () is known as the indirection operator and returns the
character to which the pointer points. When the compiler
executes the program and comes across the state-ient
name="Mr Goodfellow'';, it creates the string "Mr Goodfellow",
followed by a null (\O) character somewhere within the abject
code file, and then assigns the starting address of that strirg to
variable name.

Pointer Memory Allocation
When a variable is declared as int or float and a string is
declared in char as an array of characters, memory space for
that variable or string is automatically allocated. However, when
a variable is declared as a pointer to int or float, and a string is
declared as a pointer to char, no specific space in memory is
allocated to store these variables; the pointer simply refers to
any random location in memory and, since other declarat ons
will allocate the same area of memory, the space used for such
objects may become corrupted.

To overcome the above problem, such pointers must be
initialised to point to a currently allocatec area of the program
heap. To do this, the pointer is assigned the value returned
from the malloc family of functions.

41

The function, in the case of a string, is used as follows:

/* USING malloc TO ALLOCATE MEMORY */
/* TO A CHARACTER POINTER */
#include <alloc.h>
main()

char *name;

name=(chor *) malloc(14);
strcpy(name,'Mr Goodfellow*);
printi('Hello, ');
puts(name);

The call to malloc sets aside 14 bytes (one extra for the end of
string marker) of memory and assigns the address of that
memory to name.

Similarly, in the case of variable numbers, the function is used
as follows:

/* USING malloc TO ALLOCATE MEMORY */
/* TO A VARIABLE POINTER */
#include <alloc.h>
main()

int *number;

number=(int*) malloc(sizeof(int));
*number=555;
printf(*Address of no.: %p \ n*, number);
printf('Value of no.: %d', *number);

The statement number=(lnt malloc(sizeof(Int)); has the
following effect: First, the slzeof(Int) returns the number of
bytes required to store a variable of type Int; then, malloc()
allocates that number of consecutive bytes of the available
memory to store the number; then, it returns the starting
address of those bytes. The (Int *) part of the statement, type
casts the pointer as type Int.

On executing this program, it writes

Address of number: 03EC
Value of number: 555

on the display.

42

String Arrays
A number of strings can be stored under a common name in
what is known as a string array. Let us assume that we nave
four names i.e. SMITH, JONES, BROWN and WILSON which
we would like to store in a string array. The following program
will achieve this.

/ USING STRING ARRAYS'/
main()

Int i;
char names[4](61;

strcpy(names[0],'SMITH*);
strcpy(namesp],'.ONES');
strcpy(names(2],'BROWN*);
strcpy(names[3],'WILSON');
for (1=0; i<4; i++)

puts(names(0);

Alternatively, we could use an array of pointers to do the same
job, as follows:

/* USING ARRAYS OF POINTERS */
<alloc.h>

main()

int i;
char names[4];

for (1=0; i<4; i++)
names[i]=(char 7 molloc(6);

names[0).'SMITH'
names[1]='JONES';
names[2]='BROWN';
names[3]='WILSON';
for (1=0; i<4; I++)

puts(nomes[i]);

The definition char names[4];, informs the compiler that we
intend to use an array of pointers to character strings.

Using arrays of pointers, rather than string arrays, allows for
easy manipulation of strings.

43

For example, to swap two strings around, it nerely requires the
swapping of the pointers, as opposed to having to exchange
each string, character by character. The tollowing program,
which sorts a number of strings in alphabetical order, will help
to illustrate the technique.

/' SORTING A LIST OF STRINGS */
#include <alloc.h>
#include <string.h>
main()

int i,j,k;
char names[4J, temp;

for (1=0; k4; I++)
names[i).(char) molloc(6);

ternp=(char) malloc(6);
names[0]='SMITH';
names[1]='JONES';
nomes[21='BROWN';
nomes[3)='INILSON*;

printf('Unsorted list \ n');
for (1=0; i<4; i++)

puts(nomesp));

for (1=0; l<3; i++) * Start of sort routine `\

for (j=0; j<3; J++)
if (strcmp(names[j), names[j+1)) > 0)

temp=names[j);
names[j]=names[j+ I];
names[j+1]=temp;

1

printf(' \ nSorted list %d \ n',1);
for (k=0; k<4; k++)

puts(names[k]);
} \` End of sort routine * \

The 'start' and 'end' of the sort routine are marked with
comment lines. Note the use of the C function strcmp which
requires the header file string.h to be 'included'.

44

The strcmp function compares two strings, characte by
character, according to the ASCII conversion codes (see :able
below) and returns a value (<0, 0, >0) based on the results of
comparing strl (or part of it) to str2 (or pal of it).

On compiling and executing the program you will see that
information appears on the screen in suct. a manner as to allow
us to distinguish the result of each execution of the outer for
loop (by printing the list of strings in the order they happen -o be
at the time). What you see on the screen is:

Unsorted list
SMITH
JONES
BROWN
WILSON

Sorted list 0
JONES
BROWN
SMITH
WILSON

Sorted list 1

BROWN
JONES
SMITH
WILSON

Sorted list 2
BROWN
JONES
SMITH

WILSON

Within the nested for loop, when j=0, the first string of the ist is
compared with the second and if it is found to be larger, the two
strings are interchanged using temp as .3 temporary string for
the swap. When j=1, the second string is compared with the
third, and so on until j=3, when the penultimate string is

compared with the last.
This process is repeated (with the use of the outer for loop)

n-1 times, where n is the total number of strings in the list.
Obviously, there is room for improvement here, because = the
list of strings were in order, we still force the nested for loop to
be repeated n-1 times.

45

N
A

M
V

,A
,O

N
W

C
P

,0^,
,
0
1
.
-
0
0
0
1
0
.
N
M
O
N
W
M
O
.
N
M
V
0
,
0
1
.
.
.
W
O
N
O
W
l
s

I
N
N
N
N
N
N
N
N
M
M

M
M
M
0
,
0
0
0
0
0
0
0
0
0
0

.
.
.
.
.
.
.
.
.
.

N

N

N

N

N

N

N

N

C
.00E

M
U

m
m

m
m

,a..a0W
7m

7
°IW

O
M

W

O
l

0.0 017 da.a-a C
ra.C

.-an.X
.-1

C

0
0
4
0
.
6
4
0
)
4
J

>

I

X

>
I
N

-
-
-

-
1

'
0

8
1

o
u

o
c
'
2
u

o

u

u

o
u

u

W
I

C0.
.W

'
-
'
2
=
7
.
1

,
0
,
0
.
.
.
,
,
,
,
,
,
,
,
,
,
.
.
.
.
.
.
.
.
.
.
0
.

mw
.
,
.
.
-
-
-
.
0
.
0
,
,
,
,
,
.
.
0
.
,
.
0
.
0
,
0
,
,
,
.
0

)0
,
,
,
w
o
.
.
.
w
.
,
,
,
.
.
.
x

o
>
,
.
.
4
o
m
m
,
0
0
0
0
m

U
.
o
.
u
.
o
.
.
o
v
a

.-
X
.
.
.
7
Z
Z
O
G
I
.
0
C
K
W
F
D

.
.
.
,
a
m
u
n
w
w
o
x
.
-
)
x
a
z
z
o
a
o
m
m
i
.
D
>
x
)
.
.
N
-
-
-
-
-
,

1

U

M

f
l
E
q
U
E
E
q
E
q

4
8

u
u
u
u
u
u
u
u
u
u
u

0.-.N
M

sP
U

I,0N
W

0.O
 N

IM
pU

I,O
N

C
O

M
O

,,O
N

C
0010.-.N

M
.0,0N

W
M

0.-.N
IM

M
M

M
M

M
M

M
M

 0000000000W
W

W
W

.
0

X

X

4
-
1
0

.
1
4
r
-
1

D
I

4
.
)
,
I
4

0 44 4-, 0 C
 U

 w
 .0 .0

m
4M

U
0W

W
0=

0.40-J
C

a -a
alla an d. ,4

--- ^ +
I

0
na

aean .0 N
 m

0.
..V

II
N

.
1
4
4
4
4
4
4
.
1
.
1
Q

W
I
Z
W
M
g
r
4
C
4
M
4
t
=

E
.
E
F
F
E
.
E
.
F
E
F
F
.
F
.

O
U
V
U
U
O
U
O
U
O
U

m

co

Note: In the above table, groups of two or three lower case
letters are abbreviations for standard ASCII control characters.
Codes within the range 128 to 255 form the extended IBM
character set. This can be accessed by typing a number within
the range 128 to 255 on the numeric key pad while holding
down the 'Alt' key. 01 releasing the Alt key the character
represented by the typed decimal will appear on the screen.

String and Substring Manipulation
We shall now introduce a method which allows substring
manipulation. For example, suppose we want to sort our
previous list of strings to a depth of n characters only, so that
names like Smith and Smyth were not actually sorted, if we
chose a sort depth of two characters. We can achieve this by
the simple replacement of the 'string comparison' statement in
the 'Sorting a List of Strings' program, by

strncmp (names[j], names(j+1], number)

where number is the number of characters to be considered in
our logical comparisons. Note that the function name strncmp
now includes the letter n, as its purpose, and effect, is different
from that of the strcmp function.

A list of the 25 string functions available in C, is given in the
table at the end of this chapter.

Perhaps the most important use of string manipulation is that
of building up string oerlays. What we mean by this is the
ability to create an empty string of fixed length, and then p ace
characters in it anywhere along its length. The following
program will help to illustrate this effect. Note the allocation of
characters into the three strings line, aster and blank, as
shown below:

line.'
aster.'`';
blenk=-:

particularly string line which has forty spaces between the two
quotes. Also note the functions within the puts statement,
which is reproduced below.

puts(strcat(strncat(blank,line,pos-1),aster)),

47

The two function calls within the puts statement can be
simplified by considering the innermost function first, which is

strncat(blank,line,pos-1);

and states 'string concatenate n characters (in this case,
pos-1) from the second string (line) to the first string (blank).
The 'result' of this operation is then used by the outer function,
namely,

strcat(resultaster);

where result is what the innermost function returned. The
strcat function simply concatenates aster to result. The full
program listing is given below.

/ OVERLAY OF STRINGS'/
Ninclude <alloc.h>
#include <string.h>
Ndefine MAX_LEN 40
main()

int pos;
char *line, *aster, *blank;

line=(char) malloc(MAX_LEN);
aster=(char malloc(1);
blank=(char *) malloc(1);
line='
aster.***;
blank=";

printf(*Enter position of star (1-40)
scanf(*%d,&pos),

if (pos > 0 && pos < 41)

printf(\ n');
printf(' 1 2 3 4 \ re);
printf('1234567890123456789012345678901234567890 \ n');
puts(strcot(strncat(blank,line,pos-1),aste));

else
printf('Out of range'),

');

In the char declaration we inform the compiler of three pointers
to strings line, aster and blank, the contents of which were
discussed earlier. We then input the position we would like to

48

see an asterisk in our output into Int variable pos.
Subsequently, we concatenate pos-1 spaces to the end of
blank which is one blank character in length (thus, the pos-1
blank character se:ected form line). To this, we then
concatenate a single asterisk and print out the final result under
a 'line ruler' so that we can check the exact position of the
asterisk.

This overlay technique could be used to present visua ly the
results of an experimert in the form of a scatter plo-. or a crude
graph, although the reason for introducing the technique here
was to introduce several string functions.

Subscripted Numerical Variables
Subscripted numerical variables permit the representation of
many quantities with one variable name. A particular quantity is
indicated by writing a subscript in square brackets after the
variable name. Individual quantities are called elements, while a
set of elements is cal ed an array. A subscripted nurrerical
variable may have one, two or three subscripts and it then
represents a one-, two- or three-dimensional numerical array.

The elements of a one-dimensional array can be represented
as follows:

A[0] A[1] A[2] A[3]

while those of a two-dimensional array as:

A[0] [0] A[0] [1) A[0] [2] A[01[3]
A[1][0] [1 I Ap [2] Ap 1[3]
A[2][0] A[2][1] A[2][2] A[21[3]

The first of the two subscripts refers to the row number, starting
at 0, while the second subscript refers to the column number,
again starting from 0. Thus, the above array is a 3 row by 4
column table.

A three-dimensional array can be thought of as stacked
two-dimensional arrays with the third subscript, running from 0
to the maximum height of the stack, thus forming a cube, while
a four-dimensional array will be a row of cubes, and so on.

49

In the computer, however, arrays are stored with elements
following one another on a single line as shown below.

A[0][0] A[1][0] A[2][0] A[0][1] A[1][1] A[2][1]

with the first subscript changing more rapidly than the second,
and the second more rapidly than the third (in the case of a
three-dimensional array). Provided that this is recognized and
understood, we can use the previously discussed tabular form
of representation for programming purposes.

Arrays must be declared in a declaration statement such as

type nomeirows1(columns][height]...isizeN)

which must precede any executable statements in a program.
The following program illustrates the use of numerical arrays.

Data are read into a one-dimensional array and subsequently
the contents of the even numbered elements are summed into
variable even, while the contents of all the odd elements are
summed into variable odd.

/* SUMMING ELEMENTS OF AN ARRAY'/
#include <stdio.h>
#define COL 16

main()

int value[COL];
int I, even=0, odd.();

printf('Enter the following %d numbers \ n \ n',C01);
printf('7,6,1,9,7,14,39,24,19,32,21,8,5,15,28,4');
printt(' \ n\ n');
for (1=0; i<COL; i++)

printf('No. %d \ 1%41);
scanf('%d',&value[i]);
}

for (1=0; i<COL; i+=2) /* SUM EVEN ELEMENTS'/
even+=value[1];

for (1=1; i<COL; l+=2) /* SUM ODD ELEMENTS */
odd+=value(l];

printf(' \ nSum of even elements = %d',even);
printf(' \ nSum of odd elements = %d',odd);

50

On executing this program, and entering the 16 suggested
numbers, the output

Sum of even elements = 127
Sum of odd elements = 112

is printed on the screen.

The Bubble Sort Technique
The following program illustrates the use of numerical arrays as
implemented within the bubble sort technique.

/* BUBBLE SORT TECHNIQUE /
#include <stdio.h>
#define COL 16

main()

int value[C01];
int i,j,ternp,max flag;

printf('Enter the following %d numbers \ n \ n',COL);
printf('7,6,1,9,7,14.39,24,19,32,21,8,5,15,28,4 \ n');
printf(' \ nUnsorted list \ n');
for (1=0; i<COL;1++)
scanf("%d'Avalue[i]);

max=COL;
for (1=0; i<COL-1; i++)

max=max-1;
flag=0;
for (j=0; j<max: j++)

if (value0j> value0+11)

temp=valLe01;
valueiji=valLe[j+1);
value(j+1]=temp;
flag=1;

if (flag == 0) beak;

printf(' \ nSorted list \ n');
for (1=0; i<COL;
printf('%d ',value[i]);

51

The numbers to be sorted are best entered with spaces
between them, so that they can appear on one line, making it
easier to check against the suggested input. The output of the
program then appears, sorted in ascending order, on the line
below.

Since the highest valued number drops to the bottom of the
list, we can reduce the upper limit (represented by variable
max) of the J (inner) loop by one for each execution of the I

(outer) loop, thus reducing the total number of comparisons to a
minimum. Also, while the full COL -1 iterations may be needed
in the worst case, the list will often be sorted in somewhere
between 0 and COL -1 iterations. This can be overcome by
incorporating a flag in the program whose value is set to 0
normally, but is reset to 1 every time an exchange takes place.
By testing for the value of the flag at the end of each iteration of
the inner loop, we can tell whether or not we need to execute
the outer loop one more time. Type the program into your
computer, save it under the filename bubble, compile and
execute it.

Table of String Functions

Function Call Operation

strcat (str 1 ,str2)

strncat (str 1 ,str2,n)

strcmp(strl ,str2)

Concatenates (appends) string str2
to str1

Concatenates n number f bytes
from string str2 to str1

Compares string str2 to str1. Re-
turns a value (<0, 0 or >0) based
on result of comparison

stricmp(strl ,str2) Compares string str2 to str1, with-
out case sensitivity

strnicmp(strl ,str2,n) Compares n number of bytes from
string str2 to str1, without case
sensitivity

strcpy (str 1 ,str2) Copies string str2 into str1

52

strdup(pnt,strn) Copies a string into a new location,
returning a po nter

strncpy(strl ,str2,n) Copies n number of bytes from str2
to strl

strlwr(strn) Converts upper case letters i i a
string to lower case

strupr(strn) Converts lower case letters n a
string to upper case

strlen(strn) Returns the length of a string

strrev (strn) Reverses a string and returns a
pointer

strtod(strn) Converts a string to a double value

strtol(strn) Converts a string to a long value

strchr (strn,chr) Scans string strn for the first oc:ur-
rence of a character in cnr, renJrn-
ing a pointer

strospn(strl,str2) Scans string strl for the first seg-
ment not containing any subset of
characters in str2, and returns a
pointer

Scans string strl for the first oc:ur-
rence of any character from string
str2

strpbrk (strl ,str2)

strrct.r(strn,chr)

strspn(strt ,str2)

strstr:,str 1 ,str2)

Scans a string (in the reverse ciec-
tion) for the last occurrence of a
given character

Scans string strt for the first seg-
ment that is a subset of str2, re-
turning its length

Scans string str2 for occurrence of
string strt , returning a pointe to
the element in str2

53

strtok(strl ,str2)

strnset(strn,n,chr)

strset(strn,chr)

Scans string str1 for delimited
tokens which are defined in string
str2

Sets n number of bytes in string
stm to a given character in chr

Sets all characters in string stm to
a given character in chr

Problems

4.1 Modify the 'String Sorting' program, to be found under
the 'String Arrays' section of this chapter, so that it is
written in general form and can acceot a specified
number of names (of specified length) from the
keyboard, before sorting them in alphabetical order. Use
the #define statement to define MAX_NUM (the
maximum number of strings) and MAX_LEN (their length)
as constants.

4.2 The Fibonacci sequence starts with the numbers 1 and
1. The next number is the sum of these and subsequent
numbers are the sum of the preceding pair. So we get:

1, 1, 2, 3, 5, 8, 13, 21,

Write a program to calculate the first 12 Fibonacci
numbers and store them in an integer one-dimensional
array series, while in a second one-dirr ensional array
sum, store the average of adjacent numbers. Note that
array sum must be capable of storing floating point
numbers, if the result of averaging is to be correct.

Arrange for the printout to be headed appropriately.

54

5. FUNCTIONS

Standard Arithmetic Functions
C contains standard functions to perform many mathematical
operations. They relieve the user from programming his own
small routines to calculate such common functions as sines of
angles, square roots, logarithms, aid so on. Standard
mathematical functions have a call name followed by a
parenthesized argumert. They are pre -defined (requiring the
stdlib.h or math.h reader files), and as such may be used
anywhere in a program. C's most common standard functions
are listed below.

Standard C Functions

Call Name Meaning Type

abs(n) Absolute value of n int

acos(x) Arc -cosine of x double
asin(x) Arc -sine of x double
atan(x) Arc -tangent of x double
atof(ch) Converts string to number double
atoi(ch) Converts string to integer int

atol(ch) Converts string to long long
cos(x) Cosine of angle x double
cosh(x) Hyperbolic cosine of x double
ecvt(x) Converts number to string double
exp(x) Raises e to the power Df x double
fabs(x) Absolute value of x double
fmod(x,y) Calculates remainder of x,/y double
hypot(x,y) Calculates hypotenuse double
labs(x) Absolute value of x long

log(x) Natural logarithm of x double
log 1 0(x) Logarithm to base 10 of x double
poly(x,n,c() Generates nth polynomial in x double
pow(x,y) Raises x to power of y double
pow1 0(n) Raises 10 to power of i int
rand(void) Random number gene-ator irrt

sin(x) Sine of angle x double
sinh(x) Hyperbolic sine double
sqrt(x) Returns the square root of x double
tan(x) Tangent of angle X double
tanh(x) Hyperbolic tangent double

55

Function calls can be used as expressions or elements of
expressions wherever expressions are legal. A further
explanation of the use of these functions is given below.

sin(x), cos(x) and tan(x):
The sine, cosine and tangent functions require an argument
angle expressed in radians. If the angle is stated in degrees,
conversion to radians can be achieved with the relation
Radians= Degrees*PI/180.0, where P1=3.141592654.

asin(x), acos(x) and atan(x):
The arc -sine, arc -cosine and arc -tangent functions return a value
in radians, in the range +1.570796 to -1.570796 corresponding
to the value of a sine, cosine or tangent supplied as the
argument x. Conversion to degrees is achieved with the relation
Degrees= Radians*180.0/PI, where P1=3.141592654.

hypot(x,y):
The hypot() function calculates the hypotenuse of a right-angle
triangle of sides x and y.

sqrt(x):
The sqrt() function returns the square root of the number
supplied to it.

We shall illustrate the use of the above functions by
considering a simple problem involving a 2 m long ladder resting
against a wall. We assume that the angle between ladder and
ground is 60 degrees and with the help of simple trigonometry
we shall work out the vertical distance between the top of the
ladder and the ground, the horizontal distance between the foot
of the ladder and the wall and also the ratio of the vertical to
horizontal distance.

The program on the next page uses the trigonometric functions
sin(), cos(), tan(), atan() and also the function hypot() to
solve the problem. In addition, it calculates the original angle and
ladder length.

56

1* LADDER AGAINST WAL _

#include <math.h>
#define PI 3.141592654

main()

double angle,length arads,vert,horiz,ratio,

angle= 60:
length=2;

arads=angle*PI/180.0;
vert=lengthsin(arads);
horiz=lengthcos(orads);
ratio=tan(arads):
printf('Original angle = %9.6f \ n'single):
printt('Vertical dist.. %9,6(n,ven):
printf('Horizon. dist. = %9.6f \ n',horiz);
printf(Tatio of sides = %9.6f \ n',ratio);
arads=atan(vert/horiz);
angle=arads180.o'Pl;
printf(*Calculat angle = %9.6f \ n',angle):
length=hypot(vert,hcriz);
printf(*Calcul. length = %9.6f \ n',Iength);

On compiling and executing the program, C outputs

Original angle = 60 000000
Vertical dist. = 1 732051
Horizon. dist. = 1 000000
Ratio of sides = 1 732051
Calculat angle = 60 000000
Calcul. length = 2 000000

on the screen.

exp(x):
The exponential function raises the number e to the power Df x.
The exp() function is the inverse of the log() function. The
relationship is

log(exp(x)) = x

57

log(x) and log10(x):
The logarithms to base e and base 10 are given by these
functions. Antilogarithm functions are not given but they can
easily be derived using the following identities:

Antilog(x)=eK (base e. This is exp(x))
Antilog(x)=10° (base 10)

abs(n), fabs(x) and labs(x):
The abs() function returns the absolute (positive) value of a
given integer number. For example abs(12) is 12, while
abs(-24) is returned as 24.

The tabs() function can be used to detect whether the values
of two variables say, x and y (both declared of type double), are
within an acceptable limit by using the statement in the form

if (fobs(x-y) < 0.00001)

1

else

execute these if true

execute these if not true

in which case the block of statements following the If statement
will be executed only if the absolute difference of the two
variables is less than the specified limit, indicating that they are
approximately equal. We need to use the tabs() function in the
above statement otherwise a negative difference, no matter how
small, would be less than the specified small positive number.

poly(x,n,c[]):
The poly() function generates a polynomial in x, of degree n,
with coefficients c[0], c[1], c[r1]. For example, if n=3, the
generated polynomial is

c[3]x3 + c[2]x2 + c[1]x + c[0]

and poly returns the evaluated polynomial for the given x.

58

User -defined Functions
In some programs it may be necessary to use the same I/O
process or mathematical expression in several places with n the
program, often using different data. C's user -defined functions
enable definition of unique operations or expressions. These can
then be called in the same manner as standard functions.

The user -defined function is identified by a call name followed
by a parenthesized a:gument list, containing the parameters
passed to the function from the main prcgram. Functions must
be defined using the following format:

[type value returned[lame(paraml, param2, ...)
parameter declarations,

local variable dec orations;

function statements;

return(value);

Functions are usually defined after the end of the main program
and several parameters, or none, can be passed to it. By
definition, a function returns only one value and unless that value
is of type Int, we must declare the type returned as float, double
or char. If the functicn is used to accomplish sone process
(such as printing a message), which does not return a value,
then the function can be defined as type void.

Constants, data types, variables and function names which are
declared outside of any function, including main(), become
global. This means that They can be usec by any function in the
program, including main(), which follows their declaration.

Parameters must be declared immediately following the
function definition. C coes not permit direct access to the
parameter values (unless pointers are used), but sends a copy
of the parameter values to the function subprogram. What this
means, of course, is that the function cannot change the values
of these parameters, therefore only one value is returned from
the function, via the return(value) statement which nowially
appears at the end of a function.

59

The exemption to this rule is when an array is passed to a
function. The actual parameter is then a pointer to the first
element in the array which means that the function can access
and change the contents of the array directly.

Variables declared within a function are known as local
variables. Their values or names are not known to other
functions or indeed the main program.

The following program, which calculated the volume of a
cylinder, illustrates the use of a user -defined function.

/' USER -DEFINED FUNCTION - VOLUME OF CYLINDER'/
#include <math.h>
define PI 3.141592654
double base();

main()

double volume,height,radius,result;

printf('Enter radius of cylinder ');
scanf(%tr,&radius);
printt('Enter height of cylinder ');
scanf('%If',8theight);
result=base(radius);
volume=height*result;
printf(' \ nResults from main program \ n');
printf('Elase area = %If \ n',result);
printf(*Volume = %Jf \ n',volume);

1

double base(r)

double r;

/* Function definition */

/ Parameter declaration */

double area; /* Variable declaration /

area=Plpow(r,2);
printf(' \ nResults from within function: \ n");
printf('Radius squared = %If \ n',pow(r,2));
printf('Area = %If \ n',area);

return(area);
1

60

Starting from the very top of the program, after the I/Include
statement, constant PI is defined. By defining it outside the main
program and all function subprograms, it implies that it can be
used by any part of the program. Immediately following this, the
compiler is informed that a function is to be used, by the name
base(), and that it is of type double. Then follows the main
program with appropriate variable declarations.

Variable radius is the argument in the calling statement of
function base(), which causes a copy of the value held in the
variable to be passed to the function through parameter r. There
must be the same number of arguments in the call statement as
there are parameters in the function defin tion, because there is
a one to one correspondence between these two, although they
don't have to have the same variable names.
If the first argument is of type float, then tbe first parameter must
also be of type float, and so on.

Following the function definition, come the parameter
declarations and then the function statements enclosed in

braces. First amongst these statements are the local variable
declarations which are :o be known only to that function. Finally,
note that the result of the calculation is return(ed) to the main
program through a parenthesized variable (in this case, area),
via the last statement in the function.

In this program you will find print statements liberally scattered
in both the main program and the function. This was done on
purpose so that the user can see the results from different parts
of the program. When developing a program you should follow
this example to make sure that what you think the function
should return to the main program is actually what the function
does return. It is a Lseful method by which to debug new
program code.

Functions such as the Jser-defined function discussed above,
are self-contained program units which can perform specific
processes. Furthermore, as all parameters and local variables
have no connection with similar quantities in other functions or
the main program, it makes it easy and possible for us to build
up a library of standard functions, which can then be used as
building blocks to assemble new, lengthier programs.

61

Pointers and Functions
As stated previously, pointers can provide a method of changing
the value of more than one variable from within a function. When
ordinary variables are passed through the argument list of the
call statement to the function via the parameters list, only a copy
of the value of these variables is passed to the function. The
function cannot alter the values of these variables because it is
unaware where they are kept in memory. When, on the other
hand, we use pointers, we are actually passing the address of
the memory location where the variables are stored, therefore
their value can be changed from within the function.

Pointers to Variables in Functions:
To illustrate the above point, the program below tests for the
values held in two variables a and b. If the value in a is less that
the value in b a function swaps the values of the two variables.

1 USING POINTERS TO VARIABLES IN FUNCTIONS /
void swap();
main()

float a,b;

printf(*Enter two numbers
scanf('%f %t', &a, &b);
If (a < b)
swap(&a,&b);

printf(' nRequired order is: %5.2f %5.21\ n',a,b);

void swap(pnta,pntb)
float *pnta, *pntb;

{

float temp;

temp = pnta;
pnta = *pntb;
*pntb = temp;

Note that the function is defined as void, which means that there
is no value to be returned. When entering the two variables a
and b, we store the address (by using &) where their respective
values are stored. The parameters within the function are then
declared as pointers to the addresses where the values of a and
b are to be found.

62

In this example, the statement temp = *pnta; should be
interpreted as 'place the contents of memory location pointed to
by *pnta into variable temp', while statement *pnta = *pntb;
should be interpreted as 'place the contents of memory location
pointed to by *pnta into the memory location pointed to by
*pntb'. Thus, by using pointers we can change the contents of
more than one location.

Pointers to Strings in Functions:
Similarly, we can use functions to manipulate strings by using
pointers, as illustrated in the example below.

/* USING POINTERS TO STRINGS IN FUNCTIONS */
#include <stdio.h>
#include <alloc.h>
void swap();
main()

char *name), *nom e2;
namel =(char *) maiioc(9);
name2=(char *) rr ailoc(9);

printf('Enter two names: ');
scanf(*%s %s',namel, name2);
if (strcmp(namel, name2) > 0)
swap(&namel ,&name2);

printf(' \ nRequired order: %s %s \ n', name), name2);
1

void swap(pnta,pntb)
char *(*pnta), *(*pntb);

char *temp;
ternp.(char *) rialloc(9),

temp = *pnta;
*pnta = *pntb;
*pntb = temp,

The char declaration of *pnta and *pntb within function swap()
can be interpreted as 'pointers to pointers to character strings'. In
this way we can swap :he addresses of the strings (which are the
values passed to the function), rather than having to swap each
character of each string until the null (\0) character is reached.

63

Pointers to Arrays in Functions:
When we pass a numeric array to a function, we actually pass a
pointer to the first element of the array which means that we
know where the elements of the array are stored in memory
since they occupy contiguous locations. The following program
allows us to input two floating point numbers into an array, it then
examines them to see if they are in descending order (if not, it
swaps them), and then prints them out. Note that the number of
columns of array[doesn't have to be declared within the
function as it was already declared in the main program.

1* USING POINTERS TO ARRAYS IN FUNCTIONS','
void swap();
#define COL 2
main()

float array(COL);
int i;

printf('Enter two numbers: *);
for (1=0; '<COL; I++)

scanf('%f",&array[1]);
for (1=0; i<COL; I++)

If (array[0] < array(1 1)
swap(array);

printf(' \ nRequired order Is: ');
for (1=0; I<COL; I++)

printf("Y.5.2r,array[11);

void swap(array)
float array[];

float temp;

temp = array[0];
array[0] = array());
array() = temp;

64

Recursion
Functions can even call themselves; the technique is then called
recursion. Recursion is simply a means of letting a function call
itself. This can lead to some very elegant and efficient prog-ams.
The program listed below can be used to provide a conversion
table from one currercy to another. It is recursive, wits the
function calling itself many times until the problem is completed.
This program is worth studying as recursive programming can be
a very powerful technique once it is understood.

/ CURRENCY CONVERSION (RECURSIVE) */
#include <alloc.h>
float convert();
float rote,result;
int max;
main()

char "rnamel ,*norne2;
namel =(char *) mal'oc(9);
name2.(char *) malloc(9);

printf('Enter Currency 1: ');
scanf(%s', namel);
printf('Enter Currency 2: *);
scanf('%V, name2);
printf('Enter Exchange Rate: ');
scant(%P, &rate);
printf('Enter Max Range: ');
scanf("%d', &max:;
printf(' \ n%s \ t %s \ n',namel ,name2);
result=convert(max);

float convert(max)
int max;

if (max > 0)

result= convert(max-1);
result=max*rate;
printf('%3d \ t %5.21 \ n",max,result);
return(result);

return(0);
}

65

Type in this program, save it under the filename currency and
compile it. On execution, C asks you to give values to the four
variables, after which it calculates and prints the answers.

Enter Currency 1: Pounds
Enter Currency 2: Dollars
Enter Exchange Rate: 1.54
Enter Max Range: 10

Pounds Dollars
1 1.54
2 3.08
3 4.62
4 6.16
5 7.70
6 9.24
7 10.78
8 12.32
9 13.86

10 15.40

If we hadn't used recursion, we would have had to set up a loop
to iterate through the required range. However, by using
recursion, we have simplified the problem.

It is quite difficult to understand how the logic of a recursive
procedure works at first. To illustrate the process, we shall look
at the above example with max=3, indicating the flow of logic.

After the call statement in main() the program diverts to the
function convert() with max set to 3. As max is greater than 0,
program control passes to the next line within the function where
the function is called again with max=2. Once more control is
passed to the function definition statement after which there is
another call to the function with max=1. Finally, this is repeated
with max=0. At this point a change in the program flow takes
place because max is equal to 0 so the return(0) statement is
executed. The statement result= (on the line after the last
function call) is then reached and the first line of the table is
printed. There is now another end to the function with the
return(result) statement so the program jumps to the line
following the previous function call and the second line of the
table is printed. This is repeated once more before control
passes to the last statement of main() where program execution
ends.

66

E4 result=convert(max 3);

float convert(max 3)

If (max > 0)

 result=convert(max-1 2);
result=max*rate, 4
printf(**43dt%5.2f \ n",max,resultt;
return(result);

return(0);

}
float convert(max 2)

if (max > 0)

 result=convert(max-1 1);
result=max*rate, 4
printf(%3d t %5.2f \ n',max,result);
return(result),

return(0);

float convert(max 1)

if (max > 0)

 result=convert(max-1 0);
result=maxrate, 4
printfr%3d t %5.21 \ re,max,result I;
return(resul7);

return(0);
}

float convert(max 0)

if (max > 0)

result=convert(max-1 0);
result=max*rate;
printf("%3d,.t %5.2f \ n',max,result);
return(resul);

return(0);

67

Flow of logic in recursion

Problems

5.1 Newton's method of finding the square root of a number
x_val is as follows:

(a) Make a guess at the square root, say guess. A good
approximation for this could be built into the program as
guess = x_val/2.

(b) Find ratio = x_val/guess

(c) Find the average of ratio and guess

(d) If ratio is approximately equal to guess (use the
absolute floating point function in the statement if
(fabs(ratio-guess) < 0.001), then the average in (c) gives
a good approximation of the square root

(e) Otherwise, take the average as one new value of
guess and repeat from (b).

Write a program capable of finding the square root of any
number.

5.2 Modify the bubble program (to be found Chapter 4) so
that the actual swapping part of the bubble sorting routine
is written as a function subprogram and is called as many
times as it is necessary to sort a given list of numbers.

68

6. STREAMS & FILES

C, in line with the proposed ANSI standard, adopts the
buffered -file system which is designed to work with a wide
variety of internal and external devices. An internal file is a
character array or character variable, and as such is a

sequential file; that is, tie file is a sequence of character array
elements, each one of which is a record. The order of the record
is the same as the order of the array elements. All records have
the same length, that of the array elements.

Most C device -files are external; that is, they are a physical
device. Even though each device is direrent, the buffered -file
system transforms each one into a logical device called a
stream. Because streams are device (file) independent, the
same functions that car write to the screen can also write to a
disc file. There are two types of streams and two types of files.

Types of Streams and Files
The two types of streams are:

(a) text, which is a sequence of characters organized into
lines that are terminated by a new line (\n) character, and

(b) binary, which is a sequence cf bytes that have a
one-to-one correspondence to those bytes in the external
device.

The two types of file access are:

(a) sequential, for files associated with 'sequential devices',
such as the keyboard, screen, printer, and data files
created in sequential form, and

(b) random, for accessing disc files whose reccrds can be
read or written in any order.

A stream is associated with a specific file Dy the use of the library
function fopen(), which returns a file pointer which, if the file
exists, it points to the beginning of the file. As each character is
read from or written to the file, the file pointer is a.itomatically
incremented, to point to the next piece of information.

69

The format of fopen() is as follows:

FILE '10, lopen();
fptr = fopen('tilename', 'mode*);

where filename is a string associated with the name of the file,
and mode can be one of the operations shown in the table
below.

Table of Values of Mode

Symbol Meaning

"r" allows reading from a text file
. allows writing to a text file, but could overwrite

existing data

' a" allows data to be appended to the existing data
of a text file

"rb" allows reading from a binary file

"wb" allows writing to a binary file, but could
overwrite existing data

"ab" allows data to be appended to the existing data
of a binary file

"r+" allows read/write from a text file

"w+" creates a text file for reading/writing

"a+' allows read/write or creates a text file

"r+b" aiiows read/write from a binary file

"w+b" creates a binary file for reading/writing

"a+b" allows read/write or creates a binary file

Note that if a file opened in write or append mode does not exist,
a file with the specified filename will be created on disc.

When the specified file in an fopen() cannot be opened (for
example as when an attempt is made to open a file in the read
mode, and the file does not exist), a NULL (\O) character is
returned. NULL is a macro that is defined in stdio.h header file.

70

To avoid fatal errors, program code should test for the return of
NULL in the following way:

while ((fptr = fopen(filename,T)) == NULL)

printf('File could not be opened \ n');
exit(1);

A file can be disconnected from a specific stream by using a
close operation. By closing a stream, the computer is forced to
write any contents of the associated stream buffer to the external
device. All files are automatically closed when a program
terminates normally by main() or by a call to fclose() or exit().
Files are not closed if the program ends abnormally through a
crash. If that happens, you'll lose all information held in the
buffer, but not what was already written to disc.

When a program irst executes, the compiler opens three
predefined streams. These are stdin, stdout and stderr. They
normally refer to the standard I/O device, which is the console
(keyboard and screen), and their structure is defined as of type
FILE in the stdio.h header file. As C, however, allows
redirection, these routines may be redirected to read or write to
other devices, but mast never be defired explicitly. The most
common library file functions are listed below.

Table of Common Ubrary File Functions

Name Function

fopen()
getc()
putc()
fseek()
fscanf()
fprintf()
feof()
ferror()
rewind()
remove(
fclose()

Opens a file
Reads a character from a file
Writes a character to a file
Seeks a specified byte in a file
Scans a file for input
Prints output to a file
Returns true if EOF is reached
Returns true if an error occurs
Resets pointer to start of file
Deletes the specified file
Closes a stream

71

Sequential Data Files
Most of the above library file functions are associated with
sequential data files. To write data into such a file, we must use
a small C program which will 'create' the file aid then 'write' into
it the data representing the information we would like to store on
disc. The program below, which incorporates a few of the library
functions listed previously, does this.

/* WRITING TO AND READING FROM A FILE /
#include <stdio.h>
main()

int count,letter;
char msg[20);
FILE lopenO, *fptr;

if ((fptr=topen('message.dat',W)) == NULL)

printf('Error In opening file \ n');
exit(1);
1

strcpy(msg,'Message to/from file');
for (count=0; msg[count)1='\0'; count++)
putc(msg[count),fptr);

fclose(fptr);

if afptr=fopen('message.clat',T)) == NULL)

printf("File cannot be opened \ n');
exit(1);

while ((letter=getc(fptr)) 1= EOF)
putchar(letter);

putchar(' \ n');
fclose(fptr);

The above program (call it flick)), first opens a file by the name
message.dat for writing ("w"), using the fopen() function. If no
errors occur, it first copies the message "Message to/from file"
into character string msg, then the contents of msg are written
character by character in the file, using the putc() function, until
character 10' is encountered, signifying the end of the string,
when the file is closed.

72

The file is then reopened for reading ("r") and the gets()
function is used to read its contents until the EOF (end of file)
marker is encountered.

Command -line Arguments
It is often useful to pass information to a program when
executing it, for exanple, passing the actual filerame to the
previous program, rather than having its name as part of the
program code. This can be achieved by passing two special
built-in arguments to the function main(), namely argc and
argv. These are the only arguments that main() can have.

The argc parameter, which is an integer, holds the number of
arguments on the command line which must be entered with a
space between them. Parameter argc will always be at least 1,
because the name of the program counts as the first argJment.
The argv parameter is a pointer to an array of character
pointers, each element of which points to a separate command -
line argument. The following program lines illustrate these points.

1* USING COMMAND -LINE ARGUMENTS /
#include <stdio.h>
main(argc,argv)
int argc;
char argv(J;

int count,Ietter;
char msg[20];
FILE ifopen(), *fptr.

if (argc 1=2)

prinff('FIlename required \ n');
exit(1),

if ((fptr=fopen(arg,.(1),W)) == NULL)

prinff('Error in opening file \ n');
exit(1);

---- rest of the code

73

Note that parameters argc and argv must be declared
immediately after main() and before the opening brace of the
main program. By declaring argv as an array, its individual
arguments can be accessed by indexing.

Thus, argv[0] will point to the first string of the array, which is
always the program's name; argv[1] will point to the second
string of the array, which is the first argument of parameter argv.

Error and EOF Handling
C allows one program to execute another, in which case it is
desirable for the calling program to check the status of functions
from the executing program. There are two such mechanisms
available; the exit() function and the file pointer stderr.

The exit() function (used previously) provides a method of
terminating a program at a specific point. The function can return
several values, the most common of which are 0 (for normal
termination) or 1 (for abnormal termination) as used in the
previous program to signify that the file had not been opened.
These returned values can be examined by other calling
program to check whether the program has been completed
successfully before continuing with its own processing.

The stderr (standard error file) file pointer provides a
mechanism for finding out whether an error has occurred in the
two file pointers stdln and stdout when used to pipe output from
one program as an input to another. Normally, if an error occurs
within the first program, the error will not be sent to the screen,
but will also be piped as input to the second program. To avoid
such a situation happening we should use the fprintf() function
together with the file pointer stderr to display the error message
on the screen. Function fprintt() is similar to printf(), but with
the first argument being a file pointer to the destination of the
output. The general form is:

fprintf(siderr, 'Error hos occurred %s \ n*, string);

which directs the error message to the display.
The final error trapping mechanism is the feof() function. It

was stated earlier that the buffered -file system can operate
equally on text and binary data. However, when a binary file is
opened for input, it is possible that the computer may interpret
an integer value as the EOF.

74

The feof() determines where the end -of -file marker is by taking
a file -pointer argument and returning 1 if the end of file has been
reached or 0 if it has not. Thus the loop

while ((letter=getc(fptr)) 1= EOF)
putchar(letter);
putchar(' \ n');

in our earlier program can be substituted by the loop

while (Ifeof(fptr))

letter=getc(fptr);
putchar(letter),

putchar('\n');

which can also be adopted when reading text files.

File Read/Write Functions
In addition to the putc() and getc() functions used above, C
provides several other functions which can be used to read from
or write to a sequential device such as a stream or a fi e. For
example, the functions getw() and putty() can be used to read
and write integers from and to a file; they are similar to putc()
and getc(), but instead of reading and writing a character, they
read and write an integer. Another pair of functions is the fgets()
and fputs() which can read and write strings from and to a
stream; they are similar to gets() and puts(), but instead of
reading and writing a string from and to the console, they read
and write a string from and to a stream.

Perhaps the most useful buffered I/O functions are the (read()
and fwrite(), which allow us to read and write blocks of data.
They can be used as follows:

fread(value,sizeof(value),num,fptr);
fwrite(value,sizeof(value),num,fptr);

where, in the case of (read(), value is a pointer to a memory
region that will receive the data read from the file, while for
fwrite(), value is a pointer to the information that will be written
to the file. In both cases, num represent 'number of times' each
block of bytes given by slzeof() will be accessed and fptr is the
file pointer to a previously opened stream.

75

As long as the file is opened for binary data, head() and fwrlteO
can read and write any type of information. The following
program, which is the solution to Problem 5.2 with several
additions for file manipulation, is used to demonstrate the power
of these functions. Save it under the filename ffiesort.

/* WRITE OUTPUT OF BUBBLE SORT */
/* TO EITHER SCREEN OR FILE /
#include <stdio.h>
#define COL 16
void swap();

main(argc,argv)
int argc;
char *orgy(j;

int value(COLJ;
int i,j,temb,max,flag;
char letter;
FILE *fopen(),*fptr;

If (argc 1=2)

prInff('Output filenames required \ n');
ex11(1);

1

printf('Enter the following %d numbers \ n',COL);
printf('7,6,1,9,7,14,39,24,19,32,21,8,5,15,28,4 \ n');
printf(" \ nUnsorted list \ n');
for (1=0; '<COL; I++)

scanf("%d',&value[1]);
max=COL;
for (1=0; I<COL-1; I++)

max=max-1;
flag=0;
for (J=0; j<max; j++)

if (value[j] > value[j+11)

swap(value,j,max);
flag=1;
1

If (flag == 0) break;

printf('Output to Screen or File (S/F)');
do
letter=getchar();

76

while (letter 1= 'S' && letter I= 'F');
if (letter == 'S')

printf(' \ nSorted list \ n');
for (i=0; i<C01.; i++)

printf('%d ',value[i));
1

else

rf ((fptr=fopen(argv[1),'w+b1) == NULL)

printf('Error in opening file for output \ n');
exit(1);
}
printf('Writing sorted list to file \ n');
fwrite(value,sizeof(value),1,fptr);
rewind(fptr);
printf('Reading from file \ n');
fread(value,sizeof(value),1,fptr);
fclose(fptr);
for (1=0; i<COL; ;++)
printf('%d ',valueli));

}

void swap(value,indeK)
int value[);
int index;

int temp;

temp = valuelindex);
value[index] = value[index+1];
value[index+1 = temp;

1

The program asks you to enter a certain list of numbers which
are stored into array value. The contents of the array are then
sorted into ascending order using the swap() user -defined
function, and the program then asks whether the output should
be directed to the screen or to the named file in the
command -line. If the user responds with F, the wl'ole a -ray is
written into the file, the pointer rewound, so that the conterits of
the file are read into the array and subsequently dispayed on the
screen.

77

File Scan/Print Functions
In addition to the buffered I/O functions introduced so far, two
more will be discussed, namely the fscanf() and fprintf() which
are particularly useful when we need to read from or write to a
disc file assorted data types. The general form of declaration is:

fscanf(fptr,'control string',argument list);
fprintt(fptCcontroi string',argument list),

where fptr is the file pointer returned by fopen(). These
functions act in the same manner as scant() and printf(),
except for directing output to the file defined by fp*.r.

The following program illustrates these functions. A file holds
the name, telephone number and units used by each subscriber.
The program can either add subscribers to the file, or interrogate
the file by name for a subscriber, and if found, calculate and
display the charges owed.

/* CHARGES FOR TELEPHONE SUBSCRIBERS'/
#include <stdio.h>
kdefine COST 0.07
void newsubs(),search();
FILE lopen(),'fptr;

main(argc,argv)
int argc;
char argv(];

char ch;

if (argc 1=2)

printf('Datia filename required \ n');
exit(1);

if ((fptr=fopen(argv[1],'a+')) == NULL)

printf('File cannot be opened \ n'),
exit(1);

do

printf(' \ nChoose (N)ew, (S)earch, or (Q)uit ');
ch=tolower(getche());
printf(' \ n');

78

while (ch 1= 'n' && ch 1= 's' && ch 1= 'a');
it (ch == 'n')

newsubs();
if (ch == '5')
search();

if (ch == 'cr)
exit(1);

void newsubs()

char customer[1.5],number(10);
int units;

printf('Enter information on new customer \ n');
printfC \ nNarne
fscanf(stdin,%r,customer);
printf('Phone No.: ');
fscanf(stdin,%s', num be r);
prIntf('Units used: ');
fscanf(stdin,'%c',&units);
fprintf(fptr,'%s %s %d \ n',customer,nirnber,units);
fclose(fptr);

void search()

char customer[15],name[15],numbeitl 0);
int units;
float charge;

printf('Enter customer name: ');
scanf(%s',name).
while (Ifeof(fptr))

{

fscanf(fptr,'%s %dg,customer,number,&units);
if (stricmp(customer,name) == 0)

charge=COSf*units;
printf(' \ nCustomer: %s \ n",customer);
printf('Phone N Jrn: %s \ n',number);
printf('Units used: %d \ n',units);
printf(*Charge: £%5.21 \ n',charge);
break;

fclose(fptr);
}

79

The program uses two user -defined functions, newsubs() to
add new subscribers to the file, and search() to look up a given
subscriber by name. The user is required to give the data file,
say customer.dat, as a command line argument.

The data file is opened in the main part of the program for
appending and reading after which a one line menu is displayed
on the screen. The three options offered are (N)ew, (S)earch or
(0)uit. The program line following the display of the menu uses
the getche() function to get one only character from the
keyboard (return is not required), and the tolower() function,
which converts the character entered to lower case. Thus, typing
N or n, passes program control to function newsubs(), while
typing S or s passes program control to function search().

Note the use of fscanf() within function newsubs(). We use
the automatically opened stream stdin as a file pointer to the
keyboard, and print its contents, using fprintf(), to the file
pointed to by fptr. Also note that in function search(), we use
the case insensitive stricmp() function to compare the entered
name with those held in the file.

Type the program into your computer and create a simple list
of subscribers, as given below.

Name Phone Num Units used
Smith 7141435 300
Jones 5743129 198
Adams 8466487 245
Brown 8673521 543

Use only single names and numbers without spaces, if the
program is to work correctly.

Random Access Files
Records in a random-access file are numbered sequentially, with
the first record as number 0, and all records have the same
length, specified by the offset (in bytes) from a specified origin in
the fseek() function. Sequential data files, as we have used
them up to now, can have different record lengths, and as such
can occupy less space on disc. Records in a random access file
can be read or written in any order by simply specifying the offset
from the origin which can indicate the record number (or specific
byte) to be read from or written to the file. The number of bytes
written to a record must be less or equal to the record length.

80

The format of function fseek(), used to place the file pointer at a
specified location within the file is:

fseek(fptr, offset, origin);

where fptr is the file pointer returned by a call to fopen(); offset
is a long integer indica:irg the number of aytes required to reach
the new position frorn a given origin; origin is one of the
following integers:

Origin Integer
start of file 0
current position
end of file 2

Once fseek() has placed the file pointer in the required position,
we can perform eithe ead or write operations. The function
fseek() returns the value 0 if the operation was successful, or a
negative value if an error occurred.

The following program, an adaptation of the previous one,
illustrates some of the above points and introduces additional
concepts. It requires you to create a telephone list, similar to that
of the sequential file case (call it telist.dta), in which the names,
telephone numbers and units used by each subscriber are part
of the input. This file is then part of the command line input. Save
the program under the filename ranfile (Random access Fi;es).

/ TELEPHONE SUBSCRIBE3S IN RANDOM FILE'/
#include <stdio.h>
#define COST 0.07
#define SIZE 128

void newsubs(),search(),create();
FILE *fopen(),*fpdta;
long int offset,length;

main(argc,argv)
int argc;
char *orgy(1;

char ch;

if (argc 1=2)

printf('Data filename required \ n');
exit(1);

}

81

do

printf(' \ nChoose');
printInn(N)ew, (S)earch, (C)reate, or (Q)uit: *);
ch=tolower(getche());
printf(' \ n');
1

whIle(ch1='n' && chi='s' && chi='c' && Chi='c');
If (ch == 'n')

If ((fpdta=fopen(argv[1],'r+W)) == NULL)

prIntf(-Data file cannot be opened \ re);
exit(1);

1

newsubs();
1

If (ch ==

If ((fpdta=fopen(argvil rrtY)) == NULL)

printf('Data file cannot be opened \ n');
exit(1);

search();

if (ch == 'c')

If ((fpdta=fopen(argv[1],'wb')) == NULL)

printf(*Data file cannot be opened \ n');
exlt(1);

}
create();
fclose(fpdta);
if ((fpdta=fopen(argv[1],"r+W)) == NULL)

printf('Data file cannot be opened \ n');
exit(1);

newsubs();

If (ch == 'q')
exit(1);

1

82

void newsubs()

char customerp 51, num berp 0];
int units,recnum;

fscanf(fpdta,*%d'.&recnum);
printf("Records in :Ile = %d \ n',recnum):
printf('Enter information on new customer \ n");
printf(' \ nName: ');
fscanf(stdin,'%4',customer);
printf('Phone No.: ');
fscanf(stdin,'%V,number);
printf('Units used: ');
fscanf(stdin,"%d",&unIts);
offset=(recnurn+1)*SIZE;
if (fseek(fpdta,offset,0))
printf('Seek error \ n');

length=ftellypdta::
printf('Pointer before writing at %Id \ n',Iength);
fprintf(fpdta,'%s %s %d \ n',customer,number,units);
recnum+=1;
rewind(fpdta);
fprintf(fpdta,'%d',recnum);
fclose(fpdta);

1

void search()

char customer[15:,name[15],number[10],ch;
int units,recnum,searnum;
float charge;

fscanf(fpdta,'%d',&recnum);
printf('Records in File = %d \ n',recnum);
do

print \ nChoose');
printfC \ nBy (N)umber, or by (C)ustomer: ');
ch=tolower(getche());
printf(' \ n');
1

while(ch1='n' && chi='c');
if (ch == 'c')

printf('Enter customer name: ');
scanf('%s",name);
offset=0;

83

while (Ifeof(fpdta))

offset+=SIZE;
if (fseek(fpdta,offset,0))

printf(*Seek error \ n');
fscanf(fpdta,'%s %s %d',customer,number,&units);
if (stricmp(customer,name) == 0)

{

charge=COST*units;
prinff(' \ nCustomer: %s \ n",customer);
printf('Phone Num: %s \ n',number);
printf('Units used: %d \ re,units);
printf('Charge: £%5.2f \ n',charge);
break;
}

if (ch == 'n')

do
{

printf('Enter record number: ');
scanf("%d',&searnum);

while(searnum > recnum);
offset=searnum*SIZE;
if (fseek(fpdta,offset,0))

printf('Seek error \ n');
ftell(fpdta);

printf('Pointer before reading at %Id \ n',Iength);
fscanf(fpdta,"%s %s %d',customer,numbe*,&units);
charge=COST*units;
printf(' \ nCustomer: %s \ n',customer);
printf('Phone Num: %s \ n',number);
printf('Units used: %d \ n',units);
printf('Charge: £%5.2f \ n',c barge);

fclose(fpdta);

void create()

}

int recnum=0;

fprintf(fpdta,"%d*Jecnum);
printf('New file created \ n'),

84

The program keeps track of the number of records entered on
the zeroth position of the file, with actual entries starting on the
first record.

When you first stat the program, (C)reate the data file by
choosing option (C) from the menu. The file with the name given
in the command argument list will then be initialized and you will
be asked to enter the first record. New subscribers can be added
to the list by rerunning the program and choosing the (N)ew
option from the menL. As additional subscribers are acded to
the list, the information on the total number of records is
updated.

Note the use of the statement ftell(fpdta), which returns the
position of the pointer from the origin of the file. Various print
statements relating to the position of the pointer, either before
writing to the file or before reading from the file, are incorporated
in the program so that the user can get a feel of what is
happening.

When you have created in this manner a list of several
subscribers, use the :S)earch option of the menu to search for
subscribers either by (C)ustomer name or by record (Niumber
from a sub -menu of the (S)earch option. Do remember that the
first customer is to be found in record 1, the second in record 2,
and so on.

The program could be shortened considerably by the adoption
of appropriate additional functions to deal with repetitive
statements, as used at the beginning of the program to check
whether the file could be opened or not. Try to add this facility.

Also, as an exercise, write an additional section to the program
so that information already in the TELIST.DTA file can be edited,
but make sure that the data file is opened with the "r+b" mode.
Using any other mode can result in losing the information already
in the file. Try it, you will learn a lot from this exercise.

Finally, C supports a second, unbuffered disc file I/O system,
which uses functions that are slightly different from those of the
buffered -file system. This second type of low level disc -file I/O
system is similar to the Unix filing system. However, as the
ANSI -standard committee has elected to standardise the
buffered disc file I/O system and not the low level system, the
latter is not dealt with in this book.

85

Problems

6.1 Modify the filelo program, appearing at the beginning of
this chapter, so that it incorporates both command -line
parameters (enabling the user to specify the name of the
file to be written to or read from, as well as the mode of
these operations) and the feof() function :to allow binary
files to be read correctly).

6.2 Modify the filesort program so that it can accept as input
a list of employees which are then sorted in alphabetical
order and can be written either onto the screen or into a
sequential file. Save the program under the filename
employee.

86

7. DEFINED DATA TYPES

C allows user definition of five different categories of data types.
These are: Defining data types with the use of the typedef
keyword, which creates a new name for an existing data type;
Using the typedef keyword to define enum (enumerated) data
types; Structures, which is a method of grouping related
variables under a common name; Unions, which allows the use
of the same area in memory by two or more different type of
variables, and bitfield, which is a variation of the structure type
and allows access to the individual bits wiThin a byte.

The typedef Keyword
The typedef keyword allows the definitior of a new name for an
existing data type. The general form of tie typedef statement
is:

typedef type name;

where type is any allowable data type and name is the new
name chosen for this type. The name chosen by such a
definition is in addition to, and not a replacement for, the
existing data type.

For example, we could create a new name for char by us ng

typedef char week;

which informs the compi er to recognise week as another name
for char. Later on we could create a ciar variable by _sing
week as follows:

week day;

where day is now a character variable of type week.

Enumerated Data Types
An enumerated data type is implemented by C and is used to
describe a discrete set of integer values. For example, we :ould
declare the following:

enum {Sun, Mon, Tue, Wed, Thu, Fri, Sat } days,

in a typedef definition. The names listed in days are integer
constants with the first (Sun) being automatically set to zero,
the second (Mon) set to one, and so on.

87

The following example will help to illustrate this type of
definition. Note the declaration of variable number in the
main() part of the program.

/* USING THE enum TYPE DEFINITION STATEMENT */

typedef enum Sun, Mon,Tue,Wed,Thu,Fri,Sat } days;

main()

days number;

printf('Which day number (0-6)? ');
scanf(''/Od',&number);

switch(number)
case 0: printf('Sunday); break;
case 1. printf('Monday); break;
case 2: printt(quesday); break;
case 3: printf('Wednesday); break;
case 4: printt(-Thursday); break;
case 5: printl('Friday); break;
case 6: printf('Saturday); break;
default: printf('Not a day);

}

Alternatively, the program can be writter with the actual
enumerated variables (Sun to Sat) appearing in the case
statements of the switch command in place of the numbers 0
to 6, as follows:

switch (number)
case Sun: printf('Sunday); break;
case Mon: printf(*Monday); break;
case Tue: printf(quesdaY); break;
case Wed: prIntf('Wednesday); break;
case Thu: printf("Thursday); break;
case Fri: prinff(*Friday); break;
case Sat: printf('Saturday); break;
default: printf("Not a day);

}

with the rest of the program, including the input to it, remaining
identical to the previous version.

88

It is possible to override the automatic setting of variable days
to the value from 0 onwards by specifying a particular value
within the enum statement. For example the statement could
be used as shown below:

enum months {Apr=4, Ju-1=6, Sep=9, Nov=1 },

to put in the correct monthly sequence al the months with 30
days, as shown below:

/* USING THE VALUED enum STATEMENT /

typedef enum { Apr=4, Jun=6, Sep=9, Nov=' 1 }months,

main()

months number;

printf('Which month") (1-12)');
scanfr%d",&numbet);

switch(number) (
case 4: printf('April has 30 days*); break;
case 6: printf('June has 30 days'); break;
case 9: printf(*September has 30 days'); break;
case 11: printf(*November has 30 days*); break;
default: printf('Not a 30 day month*);

Note that a variable of an enumerated type can be assicned
any value of type Int, but must be within the range -32768 to
32767.

Structures
A structure is defined in C as a collection of variables that can
be referenced under one name. They are equivalent to records
in other high-level languages. You can think of a structure
definition as a template :hat you may use to create structure
variables. In general, all elements that make up a structure are
logically related. For example, a list of customers with their
telephone numbers can be declared as a structure. The
structure definition is as follows:

89

struct subscriber {
char narne[20];
char phone[15];
int units;

1;

Note the semicolon which terminates the definition. The reason
for the existence of the semicolon is the fact that a structure is
a statement. Further, the structure tag subscriber specifies
the particular structure. To declare an actual structure
variable customer, we can either use the definition

union subscriber customer;

or include the variable between the closing brace 0) and the
semicolon which terminates the definition, as follows:

1 customer;

Structure elements can be accessed by using the dot (.)
operator as shown in the program segment below:

customer.units = 1234

where, for example, customer.units references the third
element of the structure.

To print the number of units used by the specific customer we
would write

printf("%cr, customer.units);

which will print the units element of structure variable
customer.

To access the structure variable through a pointer, as would
be the case if we wanted to pass the address a' an element of a
structure to a function called display(), we must use the &
operator prior to the variable name, for example

display(&customecunits);
display(customer.phone);

Note that the & sign is not required in the second line as it is a
string element. Also, within the function itself, we declare the
argument as a pointer to the structure, as follows:

display(person)
struct subscriber person;

90

and again we refer to individual elements of the structure with
the dot notation, as follows:

(*person) phone

Since structures are often passed to functions, C has a un que
notation to describe pointers to structures. The notation -> is
used in place of the dot notation. Thus, the previous reference
can now be written as

person -> phone

Arrays of Structures
The most common use of structures is perhaps in arrays of
structures. To declare an array of structures, we first define a
structure, and then declare an array variable of that type For
example, to declare a 50 -element array of structures
subscriber that was defined earlier, we write

struct subscriber customer[50];

which creates 50 sets of variables that are organised in the
same way as declared in the definition of structure subscriber.

To access a specific structure element, we index the structure
name. For example, to print the number of units of structure 2,
we write

printf('%d%, customer' 1 I units);

which prints the third element (units) of -he definition, but the
second structure, as all structures, like arrays, begin their
indexing at zero.

The example on the next page, will help to clarify al the
points mentioned so far. However, in order to avoid having to
retype alf of the code of this program, you could modify the
code of the "Charges for telephone subscribers" which appears
under the section 'File Scan/Print Functions' of Chapter 6. Apart
from the additional code, several changes have been made to
the main() part of the program, most of which deal with the
appearance of the menu selection.

91

/ CHARGES FOR TELEPHONE SUBSCRIBERS /

#include <stdio.h>
',define MAX 50
',define COST 0.07

struct subscriber {
char ncrne[25];
char phone[151;
int units;
Icustomer[MAX];

void newsubs(),search(),file_it(),load_it();

main()

int i;
char ch,filename[12);

for (1=0; I<MAX; I++)
*customerii).name=' \ 0';

prIntf('Enter name of file. ');
scanf('%s',filename);

for(;;)

prIntf(' \ n(N)ewsubs:');
printf(' \ n(S)earchl;
printf(' \ n(F)ile_it:');
prIntf(' \ n(L)oad_it:');
printt(' \ n(Q)uit: \ n \ n');
do

printI('Choose ');
ch=tolower(getche());
prinr\b\b\b\b\b\b\b\b\b\b\b\WY
1

while(Istrchr('nsfIcr,ch));
printf(' \ n');
If (ch == 'n') newsubs();
If (ch == 'V) search();
If (ch == 'f') file_11(filename);
If (ch == 'I') load_11(filename);
if (ch == exit(1);

92

void newsubs()

int I;

for (1=0; i<MAX; I.+)
11(1*customerlil.nome)

break;
if (i==MAX)

printf('Subscriber array full \ n');
return;

printf("Enter information on new customer \ n');
printf(' \ nName: ');
scanf(*%s",customer[i].name);
printf('Phone No.: ');
sconf("%s',customer[11.phone);
printf('Units used: ');
sconf('%d',&customer[ii.units);

voic search()

int i;
floot charge;
char person[25);

printf('Enter customer name: ');
scanf('%s',&person);

for (1=0; i<MAX; I.+)

if (stricmp(customerN.nome,person) == 0)
{

chorge=COST`customer[iyunits;
printf(' \ nCustomer: cks \ n",customeIii.name);
printf('Phone Nun: %s \ n',customertil.phone);
printfrUnits used: %d \ n",customer(ii.unIts);
prIntf('C barge: £%5.21 \ n',charge);
break;

93

void fileit(filename)
char filenamell 2];

FILE iopen(),"Iptr;
int I;

if ((fptr=fopen(filename,'wb'))==NULL)

printf('File cannot be opened \ n');
return;

for (I=0;i<MAX; I++)
if (*customer[1].narne)

if (fwrlte(&customer[i], sizeof(struct subscriber) 1 fptr)I=1)
printf('Error while writing \ n');

fclose(fptr);
1

void loadit(filename)
char filename[121;

FILE *fopen(),*Iptr;
int I;

for (i=0; i<MAX; I++)
*customertil.narne=' \ 0';

if ((fptr=fopen(filename,'rb'))==NULL)

}

printf('File cannot be opened \ re);
exit(1);

for (1=0; I<MAX; i++)
If (fread(8icustomer[i], sizeof(struct subscriber),1ipt01=1)

If (feof(fptr))

fclose(fptr);
return;

printf(*Error while reading file \ n');

94

On starting the program, a structure called subscriber is defined
and four functions are declared. These functions can
respectively add new subscribers into memory, search the
memory of a given subscriber, save the resultant database into
the named file, or load into memory a previously filed database.
Within the function main(), the array customer[].name is
initialised by placing in it a NULL (10'), which will be taken to
signify an empty location into which we could adc new
subscribers later on.

Note the use of the for(;;) statement within main() which sets
up an infinite loop enclosing the menu statements. This allows
us to consecutively load a file, add new subscribers to it, save
it, search it, without exiting the program, which would result in
loss of the information held in memory. This loop can only be
abandoned by pressing q for quit, or by trying to load a
non-existent file. Try it for yourself. Save the program under the
filename structure.

Unions
A union is defined in C as a memory location which is used by
several different variables, which can be of different types. The
union definition is as follows:

union identity {
int id_number;
char_name[20];
float wages;
};

which is similar to the struct definition. -he union tag Identity
specifies the particular union. To declare an actual union
variable, say, worker, we use the definition

union identity worker;

In variable worker, the declared integer id_number, character
name[] and floating point variable wages share the same
memory location. Further, when a union is declared, C
automatically creates a variable large enough to accommodate
the largest variable in the union. Thus, using a union keeps
your program code independent of the machine in which it is
being used as the compiler itself keeps track of the sizes of the
variables that make up the union.

95

Union elements can be accessed by using the dot (.) operator
as shown in the program segment below:

if (worker == number)
print1('%d \ n", identity.id number);

if (worker == surname)
print1('%c \ n', identity.name);

if (worker == earnings)
printr'/Of \ n*, identity.wages);

where, for example, identity.name references the second
element of the union.

To access the union variable through a pointer, as would be
the case if we wanted to pass the address of an element of a
union to a function called display(), we must use the &
operator prior to the variable name, for example

display(&worker.id number);

and within the function itself we must declare the argument as a
pointer to the union, as follows:

display(person)
union Identity *person

Thus, unions should be viewed as simple variations of
structures which we have already discussed.

Bitfields
A unique feature in C, based on structures, is its ability to
access a single bit within a byte. This can be useful when
trying, for example, to control external devices. Although most
of the operations accessible through bitfields can also be
performed with bitwise operators, the adoption of a bitfield can
add more structure to a program code. The general form of a
bitfield definition is

struct device_nome
type namel : length;
type name2 : length;

) code,

Bitfields must be declared as either int, signed or unsigned,
with those of length 1 as unsigned.

96

As the application of bitfields is rather specialised and only of
interest to relatively few people, we will not pursue it any
further. Those interested should refer to more advanced books
in C.

Unked Lists
In our previous example, lists of subscribers were either created
in memory or loaded from a file into memory, but at all times we
used an array of MAX dimension to hold our list. This can be
wasteful in terms of memory usage. Once the list grows beyond
the defined size, we must increase its size. C provides an
answer, in the form of linked lists, which can help to eliminate
this wastage of memory space. Linked lists can dynamically
grow or shrink to hold exactly the correct, but minimum, number
of records.

Linked lists utilise the ability of a member of a structure be
a pointer to a structure of the same type as the one in which it is
itself contained. For example, using our telephone subscribers
list, we could incorporate a pointer to point to the next
subscriber, as follows:

struct subscriber {
char ncrne[25];
char phone[15],
int units;
struct subscriber *folh,

where the first subscriber in the list points forth to the second,
the second to the third, and so on, with the last pointing to the
value NULL. Additional subscribers can be inserted between
the last subscriber and the value NULL.

When first creating a linked list, a pointer should be assigned
to point to the start of the list, as follows:

struct subscriber *customer, *start:
if ((customer = (struct subscriber)

calloc(1,sizeof(struct subscriber)))==NULL)

printf(*No ayailabe memory for allocalon \ n");
exlt(1);

customer -> forth = NULL
start = customer;

97

We can then assign values to the first subscriber in the usual
way. For example,

printf('Enter information on new customer \ n');
printf(' \ nName: ');
scanf(*%s',customer->name);
printf('Phone No.: ');
scanf('%s%customer->phone);
printf('Units used: ");
scanf('%d*,&customer->units);

Linked lists are very powerful, but difficult for many
programmers to thoroughly understand. Furthermore, as the
application of linked lists is rather specialised and only of
interest to those relatively few who intend to write their own
database, we will not pursue this vast and complex subject any
further.

Apart from linked lists, C provides several other methods for
dealing with lists of information, such as queues, stacks, and
binary trees. Those interested in these, as well as on how to
use system resources in order to control the screen of their
display - including the ability of using graphics, keyboard or

peripheral devices, should refer to books which
deal specifically with these subjects as the depth and
complexity of the required knowledge is beyond the scope of
introductory books such as this.

However, having said this, controlling system resources, such
as the screen and the keyboard, or using graphics, is made
extremely simple with Borland's Turbo C, Version 1.5 compiler
with its built-in functions. These are not pursued in this book for
two reasons; (a) they are well covered by Borla'id's User Guide
Supplement, (b) they are not supported by other C compilers.

Problem

7.1 After you have examined the code of the structure
program and have understood it thoroughly, incorporate
a sixth menu option to the program which can display the
names and associated phone numbers of all the
subscribers in the list. Call this function display().

98

APPENDIX A
THE ED LINE EDITOR

UNIX provides you with its own simple line editor, called Ed - the
subject of this appendix and you should become familiar with its
use, if UNIX is your pert cular environment.

If, on the other hand, you are using the DOS environment,
then you have a wider choice of editors, such as the full screen
editor Edit which is available to users of DOS 5 and beyond, or
the line editor Edlin whi:h is the only one available to pre -DOS 5
users. Further, if you are using either Microsoft's or Borland's C
compilers, then you Asp have the particular package's editor at
your disposal. As these editors are all d fferent, they will not be
covered in this book as the space required to describe them all
will be out of proportion to the total number of pages in the book.

In general, Ed and t-te other editors allow the creating and
editing of ASCII files. These are text files which when sem. to the
screen or printer are interpreted as text. Such editors cal also
be used to create the source code of various programming
languages, such as C and Fortran. In such cases, you should
remember to give you' source file the appropriate extensicn. For
the two languages mentioned above, these will be .c and .for,
respectively.

Invoking the ED Line Editor
To invoke Ed, the UNIX System disc or a disc that contains it
must be in the logged drive, and the file you want to create or
edit must be specified. Thus, typing the command:

$ ed test.txt

expects to find both Ed and the fictitious file test.txt on tt-e disc
in the logged directory (n this case $), while typing

$ ed c:test.txt

expects to find Ed on the disc in the logged drive and the file
test.txt on the disc in tt-e c: drive.

If the file does not exist on the specified disc drive, then Ed
responds with

? test.txt

99

The query (?) is Ed's response to instructions it does not expect
(in this case because the file does not exist) and waits for further
commands.
If the file already exists, then ed loads the file into RAM and
responds with a number indicating the file's size in bytes, for
example

321

Let us now create a text file, called test.txt, which we will use to
demonstrate the power of ed. To start, type at the prompt the
command

$ ed test.txt

which should cause ed to respond with

? test.txt

if that file does not exist on your disc or directory. If it does exist
and you do not want to spoil its contents, then type q (for quit)
and press the Return key.

The Append Command:
To append lines of text, use the command a (for append). In the
case of a new file, as no lines of text exist in the file, type a and
then type in the short text given below, pressing the Return key
at the end of each line.

a
first line of text
second line of text
third line of text
fourth line of text

The contents between a and . (dot), are appended to the empty
file. As ed does not give any prompt at all, the text given above
is exactly what you see on the screen. The dot ends the
appending mode and also marks the last line of text (in this case
line 4), as the current line. The current line is also known as the
dot line, but still refers to the last line of text to be entered,
changed or listed. To find out which line is the current (or dot)
line, type 'n' which will display its number. Typing '.', will display
the contents of the current line, while displays the number of
the very last line in the file.

100

The list Command:
To see what text is in the file, type I (for list), as follows:

fourth line of text

The line listed by ed is the current line (the last line of text
appended previously).

To list specific lines, use the I command with line numbers. For
examp e,

1,31

will list lines from 1 to 3 inclusive, while

2,$1

will list lines from 2 to the end of file, as the $ symbol is ta<en to
mean "end of file".

Note the command syntax which is: "From start number -.o end
number list". There must be no comma between the second line
number and the command letter. Also note that listing lines
causes the 'current line' to be changed to the last listed line.

The Write Command:
Created text can be saved to disc by writing it to file, using the w
command. Thus, typing

w

will cause the above two lines of text to be written to the test.txt
file.

From that point on, you could quit ed by typing

q

Had the text not been written to file or edited in any way since
the last write to file, ed will respond with

and replying by pressing q again, will quit the editor with
consequent loss of information.

101

The Change Command:
To change a specific line of text, type its number, followed by c
(for change), which first deletes from the buffer the contents of
the line to be changed. If the line number is omitted then it is
assumed that you intend to change the current line. In either
case, this puts you in the change mode and anything you type
will replace the intended line.
In our case, we want to change line 2 to

second line of text, edited

so, enter the change mode by typing

2c

and change the line appropriately by re -typing t and typing '.'
(dot) to terminate the change mode.

The insert Command on an Existing File:
To insert lines of text, use the command f (for insert). However,
be warned. Using I by its own will insert the new line before the
current line. To insert lines at any other point, give the line
number before the command.

In our case, we would like to insert
between the first two lines. To do this, type

2i

in between line

Again, insertion mode is terminated by typing a dot. If we now list
the first three lines of the file, we get:

1,31

first line of text
in between line
second line of text, edited

Note that the last line to be inserted becomes the current line (in
this case line 2) which was the case prior to ssuing the list
command, after which line 3 becomes the current line as it is the
last line to be listed.

102

The Delete Command:
To delete unwanted lines of text, use the d command (for
delete). However, if you use the d command without any number
associated with it, you will delete the current line. Therefore, if
you want to delete line 2, say, type

2d

or if you want to delete a group of lines, type

13,15d

which is translated as "lines 13 to 15 to be deleted". If the range
given is beyond the file -end, ed responds with its usual '?'.

The Move and Transcribe Commands:
To move or transcribe (copy) text, use the m or t commands (for
move or transcribe). These commands must be preceded by
numbers, as follows.

13,15m8
13,15m$

which is interpreted as "lines 13 to 15 to be moved to a position
after line 8", and "lines 13 to 15 to be moved to the end of the
file", respectively. If the range given is beyond the file -end, ed
responds with its usual '?'.

Similarly, the t Gorr mend will transcribe a block and hsert it
after the given line. To move or transcribe a single line, precede
the command with only one number. If the command letter is
given without a leading line number, ed assumes you want to
operate on the current line.

The Search Command:
To search for the occurrence of a word or a specified nur ber of
characters in a file you have created using ed, use the search
command. Just as in the list and delete commands, a line range
could be specified, followed by the string to be searched for in
slashes. The command

/edited/

will start a search for 'edited' from the current line to the end of
the file, and if it does not find a match, it will continue from the
beginning of the file.

103

Thus, each line of the file is searched forwards from the current
line. When a match is found, the contents of the matched line are
displayed. Typing 'n', will give its line number.

The search command finds only the first occurrence of the
specified string. To continue the search for further occurrences
of the same string, simply type

//

again, as ed remembers the last pattern used. Thus, typing

/ir/
first line of text
//
third line of text

causes ed to first find the string 'ir' in the word 'first' of line 1,
then by typing //, it displays the second occurrence of the same
string 'ir' in the word 'third' of line 3. However, pressing the
Return key, displays the contents of the next numbered line in
the file irrespective of search pattern.

The Substitute Command:
This command is similar to the search command, except that it
requires the s command and a replacement string. Thus, typing

1,4s/edited/re-edited/

will cause the first occurrence of the word 'edited' within the
specified line range of text, to be replaced by the word
're-edited'. Here, of course, it occurs once in line 2 of the text.

If you want to substitute ll occurrences of the specified string
by another within the given range, then use the g (for global)
option, as follows:

1,4s/edited/re-edited/g

If only one line number is specified before the s command, only
that line will be affected. Further, the command

s/re-//

will replace the word 're-' by nothing, effectively deleting it,

provided the characters 're-' are to be found on the current line,
otherwise ed will respond with '?'.

104

Similarly, the & option could be used to insert characters either
before or after a specified string, depending on the position of
the &. For example,

s/line/&d/
s/line/under&/

will replace the string 'line' with 'lined' in the first case, and 'line'
with 'underline' in the second case.

Exiting ed
To end the current session and exit ed at any point, type

w

which writes to disc the contents of the file under the ciosen
filename, then type

q

to quit the editor.
If, on the other hand, you realised that too many mistakes

were made during editing, you could use the q command to quit
ed, but without first writing to disc with the w command. This will
invoke the

response, to which you will have to reply by pressing q aga n.

Ed supports a wealth of extra commands whicg were not
discussed above. The commands presented are more than
adequate for writing and editing all but the most difficult
programs within the JNIX environment. If you intend to write
complicated programs which might require extensive editing,
then it is best to use a full screen editor such as Vi.

105

APPENDIX B
Solutions

Problem 1.1

/ DAYS & HOURS TO MINUTES CONVERSION */
mar()

float days,hours,minutes,total,

printf('Enter number of days: ');
scanf('%f*,&days);
printf('Enter number of hours: ');
scanf('%f',&hours);
printf('Enter number of minutes: ');
scanf('%r,&minutes);
total=24*60*days+60Thours+minutes;
printf('Total number of minutes are %f .total);

Problem 1.2

/ TEMPERATURE CONVERSION FROM °F TO °C
kdefine FACTOR 5/9
mair()

float f,c,

printf('Enter degrees Fahrenheit
scanf('%f',&f);
c=(f-32.0)*FACTOR;
printf('Degrees Celsius = 'Yor,c);

107

Problem 2.1

/* INTEGRAL AND FRACTIONAL PARTS OF A NUMBER /
main()

float value,fractional;
int Integral;

printf('Enter a value ');
scanf('%f",&value);
integral=value;
fractional=value-integral;
printf(' \ nOriginal \ Integral \t Fractional \ n');
printf('%f \ t %d \ 1 \ t %r,value,integral,fractioral);

Problem 2.2

/' COST OF ELECTRICITY /
#define UNIT COST 5.5
#define FLAT_RATE 885.0
main()

}

float low_value,hi_value,cost,frate,ucost;
int units;

frate=FLATRATE/100;
printf('Enter last quarters meter reading
scanf('%f',&lowvalue);
printf('Enter this quarters meter reading:
scanf('%f',&hi_value);
units=hivalue - low value;
ucost=units`UNITCOST/100;
cost=ucost + FLAT RATE/100;
printf(' \ nUnits used :%7d',units);
printf(' \ nUnits cost :£%6.2r,ucost);
printf(' \ nFlat rate :£%6.2r,frate);
printf('\nTotal cost :£%6.2r,cost);

108

' 1;

');

Problem 3.1

/* GRADING EXAMINATION RESULTS 1
main:)
{

int number, mark;

printf('Enter cand date number: ');
scanf('%d',&nurnber);
while (number >= 0 && number <= 32767)

printf('Enter exam mark: ');
scanf('%d',&mark);
printt(' \ nNumber \ Mark \t Grade\r);
if (mark >= 70 && mark <= 100)

printf('%d \ %d \ t %c \ n",number,mark,'A');
else if (mark >= 60 && mark < 70)

printf('%d \ t %d \ t %c \ n',number,mark,'B');
else if (mark >= 50 && mark < 60)

printf('%d \ t %d \ t %c \ n",number,mark.'C');
else if (mark >= 40 && mark < 50)

printf('%d \ t %d \ t %c \ n',number,mark,'D');
else if (mark >= 0 && mark < 40)

printt('%d \ %d \ t %c \ n',number,mark,'F');
printf(' \ nEnter candidate number: ');
scanf('%&,&number);

109

Problem 3.2

/ COMPOUND INTEREST */
Sideline MAX_YEARS 15
main()

int n,k;
float rate=11.5;
float moneylent=5000.00;
float result,value,amount;

value=l+rate/100;
for (n=1; n<=MAX yEARS; n++)

result=1.0; / routine to /
for (k=1 ; k<=n; k++) /* raise // 'value' */

result=result*value; / to the */
} /* power of n */

amount=moneylenrresult;
printf(*%10d %15.2f %15.21\ rr,n, result, amount);

}

1

110

Problem 4.1

/* GENERAL STRING SORTING PROGRAM'/
#include <alloc.h>
#include <string.h>
#define MAX NUM 4
Hdefine MAX_LEN 6
main()

int i,j,k;
char "names[MAX_NUM], *temp;

for (1=0; i<MAXNUM; i++)
namesiiHchar malloc(MAX LEN);

temp=(char *) mclloc(MAX_LEN);
printf('Enter %d names, each of \ n',MAXNUM);
printf("%d characters in length \ n',MAX_LEN);
printf(' \ nUnsorted list \ n');
for (i=0; i<MAX_NLM; i++)

printf('%d ',i+1);
gets(names[i]);

for (i=0; i<MAX_NLM-1; i++)

for (j=0; j<MAX_NUM-1; j++)
it (strcmp(names[j], names(j+11) > 0)

temp= name s[j];
names[j]. ncmes[j+ 1];
names[j+ 1] =tem p;

}

prinff(' \ nSorted list \ re);
for (k=0; k<MAX NUM; k++)

puts(namesik1).

111

Problem 4.2

/*FIBONACCI SERIES /
0/include <stdio.h>
kdefine COL 12

main()

}

int series[C01], i;
float surn[COL-1];

serles[0]=1;
series[1]=1;
for (1=2; 1<COL; 1++)

series[1]=serles[1-2]+series[1-1];

for (1=0; I<C01-1; I++)
surn[11=((fioat)sertesp)+(float)serlesti+11)12.0;

printf('Flbonacci series \ n');
for (1=0; i<COL; i++)

prIntf('%6e,serles[1]);

prIntf(' nAverages of adjacent terms is: \ n');
for (1=0; I<COL-1; I++)

prIntf(%6.1r,sum(l));

112

Problem 5.1

/ NEWTON'S METHOD OF FINDING SQUARE ROOTS'/
#include <math.h>
//define MAX_ITER 50
main()

double xval,guess,ratio,aver;
int i;

printf('Enter a number: ');
scanf('%Jf",&xval);
printf('Guess a value : ');
scanf('%Jf",&guess);
printf(' \ niter \ t Average \ n');
for (i=0; i<MAX_ITER; i++)

ratio=xval/ guess;

aver=(ratio+guess)/2.0;
printf('%d \ 1%9.51f \ n',i,aver);
if (fabs(ratio-guess) < 0.0001)

printf(' \ nSquare root of %9.51f ",xval::
printf(' = %9.5tf n',aver); break;

else
guess=aver;

if (i==MAX_ITER-1)

printf('Not converging in %d ',MAX_ITEr?);
printf('Iterations \ n");

113

Problem 5.2

I BUBBLE SORT TECHNIQUE WITH SWAP FUNCTION *1
#include <stdio.h>
Odefine COL 16
void swap();

main()

int value[COL];
int 1,j,temp,max,flag;

printf('Enter the following %d numbers \ n \ n',COL);
printf('7,6,1,9,7,14,39,24,19,32,21,8,5,15,28,4\h');
prIntf(' nUnsorted list \ n');
for (1=0; i<COL: i++)
scanf('%d',&value[i]);

max=COL;
for (1=0; i<COL-1; i++)

max=max-1;
flag=0;
for 0=0; j<max; j++)

if (value01 > value[j+1])
1

swap(value,j,max);
flag=1;

if (flag == 0) break;
1

printf(' \ nSorted list \ n');
for (1=0; i<COL; i++)

printf('%d ',value(11);
1

void swap(valueindex)
int value(1;
int Index;

int temp;

temp = value[Index],
value(Index) = value[index+ 1],
value[Index+1) = temp;

114

Problem 6.1

/* WRITING TO AND READING FROM A FILE *,
#include <stdio,h>
#include <alloc.h>
main(argc,argv)
Int argc;
char *orgy(1;

1

Int count;
char `msg,letter;
FILE iopen(

msg=(char malloc(50);

if (orgc 1=3)

printf('Filename & Mode required \ n');
exit(1);

1

if Wptr=fopen(argv[1],argv[2])) == NULL)

printf(' \ nError in cpening file \ re);
exit(1);

printf('Enter message: ');
gets(msg);
printf(' \ nWriting to disc \ re);
for (count=0; msg[count] 1=' \ 0.; count++)

putc(msg[count],fptr);
fclose(fp1r);

printf(' \ nReading from disc \ re);
if ((fptr=fopen(argv[1],T)) == NULL)

printf('File cannot be opened \ n');
exit(1);
1

printf(*Message is ",;
while (Ifeof(fptr))

letter=getc(fptr);
putchar(letter);
1

putchar(' \ n');
fclose(fptr);

115

Problem 6.2

/ SORTING LISTS OF EMPLOYEES /
Oinclude <alloc.h>
#include <stdio.h>
#defIne NUM 5
#define LEN 6
void swap();
void rewind();

main(argc,argy)
int argc;
char argv[1;

char *employee[NUM);
int 1,1,max,flag;
char letter;
FILE *fopen(),*lptr;

If (argc 1=2)

printf('Output filenames required \ n');
exit(1);

for (1=0; '<NUM; 1++)
employee[i)=(char *) malloc(LEN);

printf('Enter the names of %d employees \ n',NUM);
printf(' \ nUnsorted list \ n');
for (1=0; I<NUM; i++)

gets(employee(11);
max=NUM;
for (1=0; I<NUM-1; I++)

max=max-1;
flag=0;
for 0=0; j<max; J++)

if (strcmp(employee0), employee0+1)) > 0)

swap(employee,Lmax);
flag= 1 ;

If (flag == 0) break;

prIntf(' \ nOutput to Screen or File (S/F)');

116

do
letter=getchar();

while (letter I='S' && letter 1='F');
If (letter == 'S')

printf(' \ nSorted list \ re);
for (1=0; i<NUM; I++)

printt('%s \ n',employee[i]);

else

if (yptr=fopen(argv[l],'w+ b')) == NULL)

printf(Irror in opening file for output', n');
exit());

prIntf(' \ nWriting sorted list to file \ n');
fwrite(employee,sizeof(employee),1,1atr);
rewind(fptr);
printf(' \ nReadirg from file \ n*);
fread(employee,sizeof(employee),1,'ptr);
fclose(fptr);
for (i=0; I<NUM; i++)

printf('%s \ n',employee[i]);
}

void swap(employee,index)
char *employee(]:
int index;

char *temp;

temp = employee[index];
employee[Index] = employee[index-1];
em ployee [index+ 1] = temp;

117

Problem 7.1

Statements that need to changed in function main() of the
STRUCT program are identified with the plus (+) symbol which
appears in the first column of the listing below.

The code for the function display() is shown in its entirety.

/' CHARGES FOR TELEPHONE SUBSCRIBERS */

#include <stdio.h>
#define MAX 50
#define COST 0.07

struct subscriber
char name[25];
char phoneI151;

int units;
lcustomer[MAX];

void newsubs(),search(),display(),,oad_it();

main()

int i;
char ch,filename[12];

for (i=0; i<MAX; i++)
*customer[i].name=. \ 0';

printf('Enter name of file: ');
scanf('%s',filename);

for(;;)

prinff(' \ n(N)ewsubs:');
printf(' \ n(S)earch:');
printf(' \ n(D)isplay:');
printf('
printf('n(L)oad_it:');
printf(' \ n(Q)uit: \ n \ n');
do

printf(*Choose ');
ch=tolower(getche());
printf('\b\b\b\b\b\b\b\b\b\b\b\b');

118

while(Istrchr('nsdflq%ch));
orintf(' \ n');

if (ch == 'n') newsubs();
f (ch == 's') search();
f (ch == 'd') display();
f (ch == file_it(filename);
f (ch == 'I') loadit(filename);
f (ch == 'q') exit());

void display()

Int i;

for (1=0; I<MAX; i++)

if (customer[i).name)

printf(%s \ r,customer[iyname);
printf('%s \ n',customertil.phone);

119

r-

INDEX

A
abs0 function 55, 58
Accumulator 18
acos() function 55, 56
Addition 11

Address operator . 15, 19, 41
alloc() function 41

Ampersand (&) 6, 15, 19
AND (&&) logical operator 17
ANSI standard 85
Append file mode 70
argc 73
Argument 6

command line 73
argv 73
Arithmetic

operators 5, 11
priority 1' , 23
symbols 5, 11

Arrays 15
declaration 15, 50
numerical 49
pointers 39
strings 43

ASCII
characters 14
codes 46
files 1

asin() function 55, 56
Assignment statement . E, 11

Asterisk (*) 1S, 41
atan() function 55, 56
atof() function 55
atoi 0 function 55
atol 0 function 55

B
Backslash 14
Binary data 21

Bitfield 96
Bitwise operators 20
Boolean

true 17

false 17
Borland's Turbo C

compile' 7

resource control 98
Braces 2

break statement 34
Bubble sort 51

Buffered -f le system 69

C
calm() function 97
case() function 36
char type 3, 15
Character

array 15, 39
definition 39
I/O 13, 15
pointers 39, 41
string 39

Combined operators 22
Command -line argument 73
Comments 2

Compiling 7

Concatenation 47
Conditional operators 25
Constant declaration 5

continue statement 34
Control program flow 25
cos() funct on 55, 56
cosh() function 55

121

D
Data files

random access 69, 80
sequential 69, 72

Data type 3
arrays 15
constants 5
conversion 4
definition 5
initialisation 1

qualifiers 3
register 33
variables 2

Decimal numbers 3
Declaration

arrays 49
constants 5
variables 2, 3

Decrement operator (-) .. 19
default statement 36
define

statements 5, 15
data types 87

Division 11
do -while loop 28
Dot notation 91

double type 3

E
ecvt() function 55
Ed line editor 99
else statement 26
enum type 87
Enumeration 87
EOF 74
Equality operator (==) 17
Error handlers 74
Escape sequences 14
Evaluation of expressions 11

.EXE files 8
Executable files 7, 8

exit() function 71
expO function 55, 57
Expressions 5, 10

F
fabs0 function
fdose() function

55, 58
71

feof() function
terror() function

71, 75
71

FILE type 7, 69
File

descriptor 70
error handlers 74
Input/Output mode 70
random access
pointers

69, 80
69

sequential
stderr
stdin
stdio h header
stdout

float type

69,
71,
71,
15,
71,

72
74
74
71

74
3

Floating point values 3
Flow of control 25

break 34
continue 34
goto 33
if 25
if -else 26
iterative statements 27
switch 35

fmod() function 55
fopen() function
for loop

69, 71

29
nested 32

for (;;) infinite loop 35, 95
Format

controls 13
specifications 6

Formatted output
fprintf() function ... 71,

12,
74,

13
78

122

tread() function 75
fscanf() function 71, 78
fseek() function 71, 80
Functions

arguments 56, 59
library 71

pointers 62, 63
recursion 65
variables 60

fwrite() function 75

G
getc() function 71

getchar() function . 16, 29, 35
getche() function 78
gets() function 15
Global variables 59
goto statement 33

H

Header files 15
Hexadecimal numbers 13, 20
Hyperbolic functions 55
hypot() function 55, 56

if statement 25
if -else statement 26

nested 27
include statement 5, 15
\INCLUDE subdirectory
increment operator (++) ... 18
Indirection operator (*) 19, 41
Inequality operator (!=.) ... 17
Infinite looping 35, 95
Initialisation 4
Input/Output (I/O)

field types 13
formatted 12
priority 11

stream 6

int type 3
Integer

definition 5

division 16
variables 3

J
Join strings 47

K
Keywords 3, 4

L
Label 32, 34
labs() function 55, 58
\LIB subdirectory 8

Line editor ed 99
Linked lis-s 97
Local variables 60
log() function 55, 58
log10() function 55, 58
Logical operators 17
long int type 3
Loop breaking 34
Loop -control variables 28
Loops 27

M
Machine code 1

Mode in file operations 70
main() function 2, 15
malloc() function 41

math.h header 55
Mathemat cal functions 55
Modifiers 3
Memory

address 6, 15, 20, 41
Modulus 11, 16
MS-DOS 1, 7
Multidimensional arrays ... 49
Multiplication 11

123

N
Nested loops 32
Newline escape sequence 14
NOT OD logical operator 18
Numbers

decimal 13
hexadecimal 14
octal 13

NULL character 14, 39

0
.OBJ files 8
Object

code 1

files 8
Octal numbers 13
Offset 80
Operators

arithmetic 11

bitwise 20
combined 22
decrement 19
increment 18
logical 17
priority 11, 23
redirection 71

relational 17, 25
replacement 12
ternary 18
unary 18

OR (II) logical operator 17
Overlays 47

P

Parameter declaration 59
Parentheses 2, 11, 23
Parenthesised operation .. 11
Pointers 39

arrays 39
arrays in functions 64
file 69

functions 62
memory 41

strings 39
strings in functions 63
structures 89
variables 6

poly() function 55, 58
pow() function 55
pow100 function 55
printfo function 6, 12, 15
Priority 11, 23
Program flow 25
putc() function 71

putchar() function 16, 40
puts() function 39

0
Qualifiers 3
Quotation maim 6

R

rand() function 55
Random access files .. 69, 80
Read file mode 70
Real variables 10
Records 89
Recursion 65
Redirection operators 71
Register variable 33
Relational operators .. 17, 25
remove() function 71

Replacement operator 12
return statement 59
rewind() function 71

S
scanf() function 6, 12, 15
Semicolon 2
Sequential files 69, 72
sin() function 55, 56
sinhO function 55

124

sizeof() function 42
Source program 1

Sorting 51

sgrtQ function 55, 56
Standard arithmetic fuict's 55
Statements 1, 2
stderr() function 71, 74
stdin() function 71, 74
stdio.h header 71

stdlib.h header 55
stdout() function 71, 74
strcat() function 47, 53
strcmp() function .. 44, 47, 53
strcpyO function 39, 53
strncatO function 47, 53
strncmp() function 47, 53
Streams 6, 69
String

arrays 39, 43
concatenation 47
format 13, 15
functions 52
overlays 47
pointers 39

string.h header 44
strlenO function 53
struct statement 90
Structure arrays 91

linked lists 97
unions 95

Subdirectories 8
Subscripted variables 49
Substrings 47
Subtraction 11

switch statement 35, 88

T
Tab escape sequence 14
tang function 55, 56
tanhO function 55
TCC.EXE 7

Ternary operator
TLI NK. EXE

18
7

tolower() function 78, 80
Turbo C compiler 7

Type variable
conversion 4

declaration
modifiers

2, 50
3

typedef statement 87

U
Unary operators 18, 19
Unconditional branching .. 33
Underscore 3

union 95
unsigned types 3

User defined functions 59

V
Variable

constants 5

declaration 2
double 3
float 3

floating point 10

I/O types 13
initialisation 5
int 3
global 59
local 60
names 3

pointers 41

real 10
register 33
type conversion 4

void 62

while loop 27
White space 6
Write file mode 70

125

NOTES

126

COMPANION DISC TO THIS BOOK
This book contains several example file listings. There is no reason
why you should type them yourself into your computer, unless you
wish to do so, or need the practice.

The COMPANION DISC comes with all these listings, ready fcr you
to load them into the program described in the book.

COMPANION DISCS fcr most books written by the same author(s)
are also available and are listed (without an asterisk) at the front of
this book. Make sure you fill In your name and address and
specify the book number and title in your order.

ORDERING INSTRUCTIONS
To obtain your copy of the companion disc, fill in the order form
below, or a copy of it, enclose a cheque (payable to P.R.M. 0 Ivor)
or a postal order, and send it to the address given below.

Book
No.

Book
Name

Unit
Price

Total
Price

BP

BP £3.50

BP £3.50

Name

Address

Sub -total

P & P

(© 45p/disc)

Total Due

£

£

£

Send to: P.R.M. Oliver, CSM, Pool, Redruth, Cornwall, TR15 3SE

PLEASE NOTE
The author(s) we tufty responsible to providing this Canparoon Disc serv.ce The publishers al this
bock ao:apt no casponsabiley for the supply, quality. or magnebc contents of the disc. or in resoact of

any damage. or reury that meght be suffered or caused by its use

1

ME- fr
Babani Computer Books

Learning to program in C
This book is a guide to C programming, C state-
ments are introduced and explained with the help
of simple, but completely working programs.
Graded problems are set at the end of each chap-
ter, some with financial or scientific bent, so that
users can choose their own level of problem diffi-
culty on which to practise with some additional
choice in the preference of the field of application.
Full working solutions appear at the back of the
book.

Chapters 1-3 deal with the basic C statements
which control program flow and allow the user to
manage with most aspects of the language.
Chapters 4-5 introduce the concepts of string
arrays, numeric arrays and function subprograms
which expand the programming capabilities of the
user beyond the beginner's level. Chapter 6 deals
entirely with data -file handling on disc, while chap-
ter 7 deals with unique C structures, both of which
should be of interest to all those who need to
process large quantities of data.

pg Beginners ig Intermediate ig Advanced

BP 258

i06.99 9

ISBN 0-85934-203-4

78 9 3 420 32

0 0 6 9 9>

1;1

