EIECTRONIC PRiCJIETS Yua Can Mare

 Over 25 rested Projects:

 Over 25 rested Projects:}

* Tape Compressor
* Phonecom
* Broadcast Station
* VMF Receiver
* Electronic Keyer
* CB Band Sweeper
* Metronome
* Ham Transmitter

A FAKE McCAHILL!

That's right! After years of mere imitators we've dug up an out-and-out imposter of Tom McCahill, first and greatest car tester. A man who not only looks like our Uncle Tom but calls himself Thom Cahil! Zounds! But don't shoot yet, McCahill fans. Further investigation tells us this make-believe McC is only doing it to help the blue-blood Madison Avenue Sports Car Club in a loving spoof of America's best-known automotive reporter. It could happen, though! Play it safe. Settle for nothing less than the genuine Tom McCahill, found only in the pages of Mechanix Illustrated. And it still costs only a quarter at all newsstands!

MECHANIX ILLUSTRATED

Introducing

easy-to-build solid-state electronic kits!

 Creative electronics fun for everyone!Everybody can enjoy building EICOCRAFT TruKits.
No technical knowledge or experience needed.
The step-by-step instructions guide you
to a perfect assembly.
For the beginner: Excellent introductions to the creative enjoyment of building profession kits. Easy, fast. educational, useful\%. ...

For the sophisticate: Convenient relaxing projects that are both "jiffy" and 100%-professional. Many projects are "expandable" by adding kits t gether-your imagination is the only limitatior.
and less expensive. You don't miss out on any ingredients of the self-expressive fun of building professional electronickits. You get:

- Modern professional all solid-state circuitry
EICOCRAFT Trurife are exactly what the name states-true "' ectronic kits. They are every bit as profes. 1 al in quality, performance and opportuni for participation by the builder as the $20-36$, famous E:ICO line of kits for stereo, hi-fil CB, ham gear and test instruments. Only the complexity has been reduced to make kit-building faster, easier.
- Pre-drilled copper-plated etched printed circuit boards
- The finest professional quality parts
- Kasy comprehensive step-by-step instructions
- No technical know-ledge or experience necessary.

EICOCRAFT TruKits available include:

EC. 100 Electronic Siren Kit, $\$ 4.95$ Powerful 3-transistor battery-operated alarm; emits a penetrating wail.
EC-101 Electronic Burglar Afarm Kit, $\$ 6.95$ Powerful 3.transistor 6 -volt battery-operated burglar alarm; ex. cellent warning device against intruders.

EC-102 Electronic Fire Alarm Kit, $\$ 6.95$ Thermosensor trips at about $135^{\circ} \mathrm{F}$-activates powerful 3 -transistor 6 -volt battery-operated fire alarm.
EC. 200 Electronic Intercom Kit, $\$ 3.95$ Rugged 2-transistor battery-operated master intercom station for a 2-way communication system.

EC- 300 Audio Power Amplifier Kit, $\$ 4.95$ High quality battery-operated 3-transistor general purpose 2 watt audio amplifier

Ec. $\mathbf{4 0 0}$ Electronic Metronome Kit, $\$ 3.95$ Adjustable, 2-transistor precision battery-operated Metronome.
EC. 500 Tremolo Kit, $\$ 7.95$ Reliable 3-transistor bat. tery-operated Tremolo for guitar and other musical instruments.

EC-600 Electronic Light Flasher Kit, $\$ 3.95$ Rugged 2.transistor battery-operated "multivibrator" or "flip. lop" circuit

EICOCRAFT

 is an exclusive product engineered and manufactured by EICO, famous for 20 years of leadership in creative electronics.EC. 700 Electronic "Mystifier" Kit, \$4.95 Amazing re. laxation oscillator battery-operated set of 6 blinking lights. Only you can control its random or geometric sequence of blinks.
EC-800 Photo Cell Nite Lite Kit, $\$ 4.95$ Sensitive bat. tery-operated photocell with a 2 -transistor high-gain amplifier/switch for adjustable sensitivity.
EC-900 Power Supply Kit, \$7.95 Reliable transformer. operated high current, transistor regulated, 6 -volt DC output Power Supply with full-wave bridge rectifier using silicon diodes.
EC. 1000 Electronic Cade Oscillator Kit, $\$ 2.50$ Rugged 2-transistor battery-operated code practice oscillator producing strong, sharp tones.

FREE 1967 EICO CATALOG
 EP-11

EICO Electronic Instrument Co., Inc.

131-01 39th Ave., Dept. EP, Flushing. N. Y. 11352
Send me FREE catalog describing the full EICO line of 200 best buys, and name of nearest dealer. I'm interested in:
EICOCRAFT Kits
stereo/hi-fi
\square ham radio
automotive electronics Citizens Band radio
test equipment

Name

Address
City
State. $2 i p$

ELECTRONIC PROJECTS You Can Make

A FAWCETT BOOK	NUMBER 629
LARRY EISINGER	EDITOR-IN-CHIEF
GEORGE TILTON	MANAGING EDITOR
SILVIO LEMBO	ART EDITOR
HAROLD E. PRICE	ASSOC. ART EDITOR
W. H. Fawcett,	t
Roger Fawcett	General Manager
Gordon Fawcett	Secretary-Treasurer
Roscoe K. Fawcett	Circulation Director
Donald P. Hanson	nt General Manager
George H. Allen	Vice President
Ralph Daigh	Vice President
George H. Carl	. Production Director
Al Allard.	. Art Director
Ralph Mattison.	sociate Art Director
nnette C. Packer	Production Manager

GEORGE TILTON
EDITOR

STAFF ARTISTS

Mike Gaynor	-	John Selvaggio
Richard Rhodes	-	Herbert Jonas
Alex Santiago	-	Paul Howard

Catherine S. Carr Production Editor
Claire Herman Assistant Production Editor

ELECTRONIC PROJECT5 YOU CAN MAKE, Fowcett Book 629 is published by Fowcelt Publicotions, Inc., Groenwich, Conn. Editorial and Advertising Offices: 67 West 44th 5treet, New York,
Now York 10036. General Offices: Fowcetl Building, Groenwich, Connecticul 06830 . Printed in U.5.A. Copyright © 1964,
1965, 1986 by Fawcelt Publicalions. Inc. ELECTRONIC PROJ-
ECT5 YOU CAN MAKE is registered in the U.5. Potent Office.
Printed by Fawcett-Hoynes Printing Corp., Lovisville, Ky.

[^0]
CONTENTS

CB Pager 4
Broadcast Station 10
Phonecom 14
Compact BCer 16
CB Band Sweeper 19
1-Transistor SW Converter 23
Tape Compressor 27
Pot Computer 31
CB Channel Slicer 35
Full-Range Speed Control 39
Electronic Name Dro er 43
Slot-Car Lap Timer 45
Mini Mitter 49
Modular Metronome 54
VHF Receiver 56
Soup-up for AC/DC5 61
Bridge to Nowhere 64
All-American 5 70
Antenna Control Center 74
Sun-Powered CB 77
Full-Band VLF RCVR 79
Junk Box Vox 85
Walkie-Talkie Tester 89
Electronic Keyer 93
Switchless Intercom 95
Ham Transmitter 99
Touch to Switch 104
Canned Ohmmeter 107
Phone Tap 110
Six Bit Meter Saver 112

If you're interested in Radio, TV or Electronics - as a hobby or a possible future career-clip the coupon below and mail it for your FREE copy of this new 64 -page booklet. It was written to answer the questions people usually ask about these fields. Questions you may well have.

For example: What electronics course should you study? It depends on your reason for wanting to learn about electronics-and "Electronics" helps you match your personal ambitions with the types of courses that are available. You'll learn what each kind of course will teach you .. . and what jobs it will prepare you to fill. (The booklet uses 22 International Correspondence Schools courses for reference; they represent the broadest range you'll find anywhere.)
"Electronics" also contains a detailed description of the home study "extras" you can expect when you study with I.C.S.

What's it like to study an electronics course by mail? "Electronics" tells you. "What guarantee do you have of success in electronics? An eminent educator answers this and other basic questions. How
long will your study take? What do former students say about the benefits they are receiving from home sludy? How valuable do employers consider home study? The booklet answers these questions, as well as many, many more.

Your FREE copy of "Electronics" is waiting for you. All you have to do is fill out the coupon now, and mail it right away.

CLIP COUPON HERE I.C.S. Scranton, Pa. 18515 Accredited Member, National Home Study Council

It puts the Citizens Band on any broadcast radio anywhere in your home!

By HERB FRIEDMAN, KBI9457

SERIOUS Citizens Banders aren't known to be time wasters. They're quick to get messages across, then go on to other business. Seldom do they just sit and look at the rig, waiting for something to happen as would a short-wave listener.

But sometimes they must sit around waiting for a prearranged call to come through or to monitor a channel. More often than not there are other things waiting to be done around the house that could be taken care of during these idle moments.

This means that if they can't be within reasonable earshot of the rig you must crank the gain up so high that when the call finally does come through it rattles windows halfway across town.

The best way to be sure of hearing an incoming call away from the rig is with our Pager. It's a device that rebroadcasts incoming CB calls to you through any broadcast radio. It works this way: the Pager is a lowpower broadcast-band oscillator. The CB transceiver's speaker output is fed to the Pager to modulate its oscillator, which is tuned to broadcast the call from the rig on
an unused broadcast-band frequency.
To keep within FCC regulations and to insure privacy, the Pager's range is limited to about 100 ft . This is enough to cover the average home, backyard or your neighbor's home where you may be visiting. To keep distortion down the Pager has a built-in modulation meter. And the circuit is designed to

Pager is tuned to an unoccupied spot on the broadcast band by adjusting a front-panel-mounted coil. Radio becomes quiet when Pager is on Irequency.

work from a flea-whisper signal.
Construction. All component values are critical and substitutions must not be made. The Pager operates at the legal input power limit of 100 milliwatts. Do not attempt to increase the power or you will destroy transistor Q1 and possibly oscillator coil T'3.

The circuit is built on the U-section of a $51 / 4 \times 3 \times 21 / 8-i n$. Minibox. Modulation meter M1 is mounted dead center on the front panel (its hole can be cut with a standard $11 / 2-\mathrm{in}$. chassis punch). To insure that
there's enough room for Tl and T 2 , mount the 7 -lug terminal strip (at the right in the pictorial) as close to the right edge of the cabinet as possible.

Since the components just fit into the cabinet, assemble the Pager in the following order. First (after all chassis holes are cut), mount the terminal strip at the right. Second, mount T3 on the front panel as shown, with the color dot facing up. Then connect all leads to T3. Connect the remaining components to the terminal strip before installing

Space is at a premium but you'll be able to fit everything in a $51 / 4$ $\times 3 \times 21 / \mathrm{s}-\mathrm{in}$. Minibox if you proceed in this order: cut meter hole in center of cabinet; drill holes for switch. coil. transformers, terminal strip, binding post and jack: wire oscillator circuit on terminal strip at right. install coil, meter. transformers and other parts. Because of crowding around terminal strip ot right and oscillator coil, use spaghetti on ell leads. Heat sink Ql's leads to prevent heat damage to it when soldering.

1

BULLD 20 RADIO CIRCUITS AT HOME with the New Improved PROGRESSIVE RADIO "EDU-KIT" ${ }^{\circledR}$

Practical Home	Radio Cour
Now Inctudes * 12 RECEIVERS * SQ. WAVE GENERATOR Signal iencer * AMPLIFLER * SIGNAL INJECATR	* No Knowledge ol Radio
	* No Additional Parta or Toil
	School inquiries invited
	* Sold in 73 Countries
YOU DON'T	HAVE TO SPEND

HUNDREDS OF DOLLARS FOR A RADIO COURSE

YOU DON'T HAVE TO SPEND The "EEdu.Kit" offerk you an outstanding PRACTICAL HOME RADIO COUNSE ak
rock-bottom price. Our kit is designed to train Radio \& Electronies Technicians, making use of the most modern methods of home training, You will learn radio theory; conatruc* tion practice and servicing. This is a comp regular schematics; how to wire and solder
You will learn how to build radios, using in a professional manner: how to service radios. You will work with the tandard type of punched metai chassis ate well as the tatest development of printed circuis erk with
 hF and AF amplifiersind oncillators, detectory Ocolitiator. You will learn and prackice and practice code, using the Propressive signal Tracer, Progressive Signal Injector, Progressive Dynamic hadio at
ing instructional materiml. for the Novice, Technicians and General ciastes of F.C.C. Tadio You will receive training for the Novice. rechniciamitter, Square Wave Qenerator. Code
 Absolutely no previous knowledge of radio of sience experience. The "Edu-kit"' will the product of many yeirs of teach in clectronics and Padio, worth many times the low pric you axy Th THE KIT FOR EVERYONE

You do not need the slightes backpround in radio or seience. Whetronics because you want an interesting hobby, a well paying business or a job with a future, you will find

PROGRESSIVE TEACHING MEIHOD

The Progressive Radio "Edu.kit" is the foremost educationai Fiuis Kit in the worid,
and is universaliy accepted as the stand ard in the field of electronics training. The "Edu, and is universaliy accepted as the principle of "Learn by Doing." Therefore you construct. Kit" uts the modern educational prictice trouble shooting-all in a closely integrated pro. gram designed to provids an easily-learned, thorough and ", Edu-kit," You then learn the You begin by examining the tharious radio Then you build simple radio. With this firt function, theory and wiring to reqular broadcast stations, learn theory, practice teating it you will enjoy listenng thengou bulld more advanced radio, learn more advanced theory and trouble shooting. oraually, in a progreasive manner, and at your own rate, you wif find yourself constructing more advanced mician. Technicilator, signal prolessional Radio Technician, course are Meceiver. Transmitter, Code Oscillatory signal Tracer, Square Weve Generator and signal Injector Circuita. These are not unprofessionay Tracer, square Wave ibredboard" experiments, but genuine radio circiuts, constructed by means of profesionan wiring and toldering on motal chasis, plos cinted circuitry thest circuits operate on your regular AC or DC house current.

THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructions meweseary te build twenty different radio and electronies circuits, each guaranteed to operate. Our Kits contain tubes, tube sockets, varis. able, electrolytic, mica, ceramic and paper dielectric eondensers, resistors, ilion solder, selenium rectifiers, coils, volume controls and wwitches, tic. In addition, you receive Printed circuit materials, aisciuding receive aseful set of tools, special tobat sockets, hardwars iron, and a self-powered oynamic kadio and siectronics
 tor, in madition to F. C.C. Radio Amateur Lracer and the Progrestive Signal Injector, a Migh For servicing with the qrogrtook. You receive Memberkhip in Radio-TV club, Free consultation service. certificate of Weris and Discount

PRINTED CIRCUITRY

At ne increaee in price, the "Eidu-Kit" now includes Printed Circuitry. You bulld - Printed Circult Signal injector, a unique servicing instrument that can detect many Radio and TV troublob This revolutionary new technique of radio construction is now becominc
A Printed Circult is a special Inculated chaseis on wich has been doposited chassis on which has been deposited conductin material which ance place of wrink. merely plugged in and soldercd to terorn Autemation Electronics. A knowledse of this subject is a necesislty today for anyen interested in Electronics.
ages and backgrounds have succesafully
used the "Eduokit" in more than 79 counused the "Eduokit" in more than 79 countries of the world. The "arefully designed, step by step. so that you eannot make a mistake. The "EEdu-kit' allows you to teach yoursell at your own
aye intorested in electronics._._._

CB PAGER

Q1. Since Q1's leads must be short, heat sink each when soldering.

All capacitors except C2 can be ceramic discs rated at 75 V or higher. But C2 must be a silvered-mica type. The specified value of $33 \mu \mu \mathrm{f}$ will produce an output between 1000 kc and 1600 kc . If you want to lower the output frequency, change C 2 to $50 \mu \mu \mathrm{f}$. Install MI, then T1 and T 2.

Battery B1 is a standard transistor-radio size. In intermittent service it will last several months. If you plan to use the Pager constantly, install a larger $9-\mathrm{V}$ battery and mount it on the outside rear of the cabinet.

Tuneup. Connect an antenna no longer than 10 ft . to BPI. Temporarily connect the Pager via JI to the voice-coil lugs on your transceiver's speaker. Make sure that if one of the voice-coil leads is grounded the ground lead from J 1 is connected to this lug.

With the transceiver off and SI on, place a radio near the Pager's antenna and tune the radio to a quiet spot between 1000 and 1600
kc. Then adjust T3's slug with the special alignment tool specified in the Parts List until you pick up the signal in the radio. You'll know the carrier's there by a sudden quieting of the radio.

Next, set S1 to off, turn the transceiver on and tune in an active channel. Turn the transceiver's volume way down and then turn Si on. Slowly advance the transceiver's volume until M1 indicates 100 per cent modulation on speech peaks. If all is well you will hear the CB signal from the radio with very little distortion. If the sound is distorted move the radio away from the Pager's antenna.

Since the transceiver's output during normal listening is several times that required to modulate the Pager, both Q1 and M1 could be damaged if the Pager is left on during normal transceiver operation. Always make certain S1 is set to off before you turn up the transceiver's volume.

The level of the signal to the Pager should be adjusted on a moderate-level signal from the $C B$ rig. If adjusted on a strong signal the weak signals hardly will be heard. If adjusted on a weak signal, a strong signal will cause overload and distortion.

I am printing my mossage in a magazine. It may come to the attention of thousands of eyes. But of all those thousands, only a few will have the thousands. only a Many may read: vision to understand. Many may read: but of a thousand only you may have the intuition. the sensitivity, to understand that what I am writing may be intended for vou-may le the tide that shapes your destiny. which. taken at the cresst, carries you to levels of independence beyond the dreams of avarice.
Don't misunderstand me. There is no mvsticism in this. I ani not speaking of occult things. of innumerable laws of nature that will sweep you to success without effort on vour part. That sort of talk is rubbish' And any. one who tries to tell you that volu can think your way to riches without effort is a false friend. I am tox much of a realist for that. And I hope you are

I hopee you are the kind of man-if vou have read this far-who knows that anything worthwhilo has fo be rearned" I hope you have loarmerd that there is no reward without effort. If you have learned this, then you may the ready to take the next step in the ready to take the next step in the development of your karma-you may the roady to learn and use the sereret I have to impart.

I Have All The Money I Need

In my own life I have gone beyond the need of money. I have it. I have gone beyond the need of gain. I have two businewses that pay me an income well alove any amount I have need for. And, in addition. I have, the satisfaction-the deep satisfartion-of knowing that I have put more than three hundred other men in businesses of their own. Since I have no need for money, the greatest satisfaction I get from life is sharing thy serret of personal indejendence with others-seeing them achieve the same heights of happiness that have come into my own life.

Please don't misunderstand this state ment. I am not a philanthropist. I believe that charity is something that no proud man will arcept. I have never seen a man who was worth his salt who would accept something for mothing. I have never met a highly successfu! man whom the world re. spected who did not sacrifice something to

l'd like to give this to my fellow men... while I am still able to help!

I was young once, as you may be today I am older. Not too old to enjoy the fruits of my work, but older in the sense of being wiser. And once I was poor, desperately poor. Today almosit any man can stretch his income to make ends meet. Today, there are few who hunger for bread and shelter. Hut in my youth I knew the pinch of porverty; the emptiness of hunger: the cold stare of the creditor who would not take excuses for money. Today, all that is past. And behind my city house, my
summer home, my Cadillars, my win-ter-long vacations and my sense of independence-behind all the wealth of cash and deep inner satisfaction that I enjoy-there is one simple secret. It is this secret that I would like to impart to you, If you are satisfied with a humdrum life of service to another master. turn this page now-read no more. If you are interested in a fulter life. free from hosses, free from worries, free from fuars, read further. This message may be meant for you.

By Victor B. Mason

gain his position. And, unless you are will ing to make at least half the effort. I'm not interested in giving you a "lep up" to the arhievement of your goal. Frankly. I'm going to sharge youl something for the secret I give vou. Not a lot-inat enough to make me felieve that you are a little above the fellows who merely "wish" for success and are not willing to sacrifice something to get it.

A Fascinating and Peculiar Business

I have a business that is peruliar-one of my businesses. The unusual thing about it is that it is neecled in every little cormmunity throughout this country. But it is a business that will never be invaded by the "hig fellows." it has to be handled on a local basis. No giant octopus can ever gobble up the whole thing. No big combine is ever going to destroy it. It is essentially a "one than" business that can be ogerated with out outside help. It is a business that is goox summer and winter. It is a business that is growing each year. And, it is a busi ness that can le started on an investment so small that it is within the reach of any ne who has a television set Hut it has nothing (o) do with television

This business has another peruliarity. It can be started at home in spare time. No risk to pressent job. No risk to preseent in couc. And no need to let anyone else know vou are "on your own." It can be run as a spare time business for extra money. Or. as it grows to the point where it is paying mure than vour present salary, it ran be expanded into a full time business-overnight. It ran give you a sense of personal independence that will free you forever from the fear of lay-off, loss of job, depressions, or exonomic reverses.

Are You Mechanically Inclined?

While the operation of this business is partly automatic, it won't run itself. If you are to use it as a stepping stone to inde pendence. vou must be able to work with cour hands. use such tools as hammer and screw driver, and enjoy getting into a pair of blue jeans and rolling up your sleeves Hut two hours a day of manual work will keep vour "factory" running 24 hours turn ing out a product that has a steady and
rearly sale in every community A half dollar spent for raw materials can bring on six dollars in cash-six times a day
In this message I'm not guing to try to tell von the entire story. There is not enoragh space on this page. And. I am not going to ask you to spend a penny now to learn the sectet. Ill send vou all the information. free. If sou are interested in becoming independent, in becoming your own boss. in knowing the sweet fruits of surcess as 1 know them, send me your name That's all. Just vour name. I won't ask vou for a penny. Ill send you all the information about one of the most fascinating businesses you can imagine. With these facts. you will inake your own investigntion. You will check up on conditions in your neightorhoed. You will weigh and analyze the whole propositiom. 'I'hen. and then only, if wou deride to take the next step. I'l allow von to invest $\$ 15.00$. And even then. if vou decide that vour fifteen dollars has been badly invested I'll return it to you. Uon't hesitate to send your name. I have no alesmen. I will merely write yoll a long efter and send vou complete facts abous he husiness I have found to be so surcese ful. After that. von make the decisions.

Does Happiness Hang on Your Decision?

I kn't put this off. It may lxe a coins-idence that you are reading these words right now. Or. it may be a matter that is more deeply connected with your destiny than either of us can sav. "There is only' one thing certain: If wou have read this far you are interested in the kind of independence I enjoy. And if that is true, then you must take the next step) Nis coupon on this advertisement. If you don't think enongh of sour future happiness and prosperity to write your name on a positcard and mail it to me. forget the whole thing. Ibut if you think there is a destiny that shapes men's lives, send your name now. What I send you may convince ou of the truth of this proverb. And what I send vou will not cost a penny. now or at anv other time

VICTOR B. MASON

1512 Jarvis Ave., Suite M-206-P1 CHICAGO, ILLINOIS 60626

At camp, school or home, would-be disc jockeys have it made with this

 closed-circuit wireless broadcaster.THE entertainment you want when you want it. That takes a lot of patient dialtwisting these days. In fact, you may never be able to locate the station that plays your kind of music and with few commercials. But hefore you and your friends give up radio as an entertainment medium, have you ever thought about operating a station with your own programs?

We don't mean a 50 -kilowatter. What we have in mind is a low-cost, low-power radio station. With such a setup you can broadcast your newest records, deliver hardhitting commercials and give your own inaccurate weather forecasts. It's the chance to show what a witty dise jockey you could be if only somebody would discover you and give you a breák.

With our low-power broadcast station you can do all this and more. It has inputs for a microphone and record player (or tape). mixing controls and a modulation-level meter. Just turn it on, pick a clear spot on the broadcast band and you're on the air!

Because the FCC frowns on unlicensed broadcast stations, and since a licensed station costs a pile of dough, our rig was designed for limited range. Its low power is perfectly legal and you won't get into trouble with the FCC. You won't be heard all over town-in fact, you won't even be heard at the other end of the block. But in your own apartment building, your neighbor's house, at camp or in a college dorm, you'll be top dog on the band.

Our station actually is a deluxe version of the old wireless microphone. But instead of having an antenna wire hanging out of the back. our rig uses the $A C$ power line that it's plugged into to carry the signal. And with good conditions the range may exceed that of the wireless mike of old.

Our station doesn't produce the usual hare-ly-readable signal like many wireless mikes. It has extra power-supply filtering for low hum, and its low-distortion mike and phono preamps make its signal sound as if it is coming from a commercial station.

build your own

BROADCAST

 STATIONBy AL TOLER

The station will fit on a $5 \times 7 \times 2-\mathrm{in}$. aluminum chassis. Parts layout and wiring are critical; therefore, we urge you to duplicate our layout. After the chassis has been drilled. mount VU meter MI. Space is at a premium and it might be difficult to install M1 after other components are mounted. Coil L.I should be mounted last to protect its slugadjustment screw, which protrudes a considerable distance outside the can. Pay special attention to the values we specify for components associated with V2; do not make changes or substitutions.

Coil L1 must be modified, as shown in the diagrams on the third page of this article, to work in the station's oscillator circuit. The modification is not difficult but must be done with care to avoid damaging the delicate coil wires.

First. remove the single screw which holds the coil assembly in the can. If your coil is supplied with a rivet instead of a screw, use $\mathrm{a}^{1 / 4-\mathrm{in} \text {. drill to remove the rivet's head. Then }}$ punch the rivet through the can with a nail or a center punch. Carefully slide the coil assembly out of the can. The slug remains attached to the can, so don't move the coil to the side when taking it cut. Slide it straight down.

Note that the coil has a terminal board at the bottom and that the color-coded leads are attached to only four of the five terminals. The remaining terminal is the junction for two 100 -mmf capacitors.

Remove the capacitor going to the greenlead lug by clipping its leads (don't try to unsolder it). Then cut out the 100 K resistor and remove the blue lead. Cut off the green lead and attach it to the terminal that was the junction of the two capacitors. Install the coil in the can again. Disregard the instructions supplied with 1.1 and connect it as shown.

Install C3 so it can be removed easily. If you want to use the station for baby-sitting purposes only, eliminate J2. R5, R6, R7, C5 and M1 and connect R4's wiper directly to pin 7 on VIB.

Make certain that C 8 is connected to the contact on S 1 that goes to TI . It should not connect to the line side of SI. Twist the leads going to switch SI and to neon lamp NLI. Use shielded wire to connect J2 to R5.

Checkout

Iurn on power by rotating RS until the

This Free sample lesson

 can start you on a high-pay career as accountant, AUDITOR CPA

T demand for trained Accountants far exceeds the number available. Salaries keep going higher. promotion come faster. Why emain in a dull job with insufficient pay when you can qualify easilyin your spare time-for the big rewards offered to the Accounting-trained man?

To prove this to yourself, send for the interesting sample lesson which demonstrates the remarkable LaSalle method of home training. This lesson is yours free of cost or obligation. It will show you how vou are guided step by step through actual Accounting work...how you learn by doing...how thoroughly you are prepared for every Accounting task you will The called upon to handle in the business world.

No previous experience required

LaSalle's distinguished faculty of expert Accountants and CPA instructors starts you right at the beginning ...then supervises, corrects and grades your work all the way. The cost is remarkably low.

For over half a century. I alalle has been a world leader in business education. It has provided training to more than $1,000,000$ ambitious men and women. That is why a LaSalle Accounting diploma is respected by employers. Mail coupon for free lesson and "Opportunities in Accounting" booklet.

There's plenty of room for all parts in the chassis we selected. All leads should be short and direct to keep hum and distortion low and to assure proper oscillator (V2) operation. Braid on shielded lead from J2 to R5 is grounded at J2 only. Twist AC lead to Sl and position it near the chassis.

Coil Ll as it appears when removed from can, at left. Modify it by removing 100 mmf capacitor, 100 K resistor, blue lead; also move the green lead.

BROADCAST STATION

power switch clicks. Allow the unit to warm up for a few minutes, then turn on an $A C$ or $\mathrm{AC} / \mathrm{DC}$ radio plugged into the same circuit and tune the radio to a spot where there is no station. Adjust Ll's slug until you pick up the signal on the receiver. The radio will get quiet and the background noise will disappear. Check to make certain the rig is not interfering with a commercial station. If the receiver is physically too close to your station you may pick up two signals, one on the high end of the dial and one on the low end. The low-end signal usually is false; it will not be received when the radio is moved to another room. (It is possible that the highend signal is false, although this is rare.)

Connect a mike to J 1 and plug a record player with a crystal or ceramic cartridge

Mike signal is amplified by V1A and fed via R4 to V1B and further amplified. The signal continues to V2A which, because it is connected between Hartley oscillator V2B and ground, modulates the oscillator.

Capacitors:
Cl-. $01 \mathrm{mf}, 400 \mathrm{~V}$ tubular
$\mathrm{C} 2-.02 \mathrm{mf}, 400 \mathrm{~V}$ tubular
C3, C5-30 mf, 15 V electrolytic C4- $.05 \mathrm{mf}, 400 \mathrm{~V}$ tubular
C6, C8- $330 \mathrm{mmf}, 500 \mathrm{~V}$ disc
C7- $.001 \mathrm{mf}, 500 \mathrm{~V}$ ceramic disc
C9A, B, C-20/20/20 mf, 250 V electrolytic
J1, J2-Phono jack
Ll-Phono oscillator coil: J. W.

PARTS LIST
Miller No. 522. Allied Radio stock No. 61 G 005, $\$ 2.97$ plus postage. (Not listed in catalog)
M1-VU meter (Lafayette 99 G 5024)

NL1-NE. 2 neon lamp and holder Resistors: $1 / 2$ watt, 10% unless otherwise stated. Values in ohms. R1-1 megohm R2, R9-1,500 R3, R8, R10-100,000
R4. R5-250,000 ohm audio-taper
potentiometer
R6, R7-470,000 R11, R15-2,200
R12-22,000 R13-220,000
R14-1,200 R16-270,000
S1-SPST switch on R5
SR1-Silicon rectifier: $500 \mathrm{ma}, 400$ PIV or higher
Tl-Power transformer: secondaries; 125 V @ $15 \mathrm{ma}, 6.3 \mathrm{~V}$ @
0.6 A Lafayette 33 G 7502.

V1-12AY7 tube V2-12AX7A tube
in J2. (You would also connect a tape deck output to J2). If your record player has a magnetic cartridge, plug it in Jl and connect a 22 K -ohm resistor from J 1 to ground.

Adjust volume controls R4 and R5 until MI indicates between 60 and 85 per cent modulation. (Don't try to push the modulation any higher or you will produce a distorted signal.) Move the radio away to check the station's range. If the range is only a few feet, reverse the station's plug.

Since power lines have considerable losses at broadcast frequencies the station's operating range will depend on the type of house wiring (metal-clad BX or insulated Romex) and the equipment connected to the line, such as lights. heaters or motors. The range also will depend on power-line transformers. If you are on one side of a distribution transformer and your neighbor is on the other, he won't be able to pick up your signal.

If the operating range is too restricted by power-line problems, it can be extended by converting the station to wireless operation. To do this, install an insulated binding post on the chassis, disconnect C 8 from S 1 and connect C 8 to the binding post. Then connect a $50-\mathrm{in}$. length of wire to the binding post. If the station's frequency changes when the wire antenna is approached, change C8's value to 50 mmf . If you find the mike or phono signal has too much bass, remove C3.

Service Hints

If L1's slug does not lower the output frequency sufficiently, increase the value of C8 by 50 mmf . If Ll's adjustment can't raise the output frequency sufficiently, lower the value of C 8 by 50 mmf . If the sound is distorted severely and MI doesn't indicate, or just barely wiggles, check C5's polarity. Be sure the positive end connects to pin 3 of V2A

An intercom for only $\$ 5$ a station?
 Right, and every unit is a master from which you can call all others.

By LAWRENCE GLENN

LIKE the chap who got a real bargain 1 when he bought a pair of $\$ 1,000$ elephants for only $\$ 500$, you'd be hard pressed to find a better buy than the no-guts telephones that are now available for around $\$ 8.50$ a pair. Only problem is-like the gent with the elephants-what do you do with them after you get them home?

Though they come with handset, cradle and wiring, the phones can do absolutely nothing as they are because they have no bell and no repeat coil, not to mention a few other deficiencies. But for $\$ 1$ or so you can make these white elephants into useful telephone intercoms-complete with signals and multi-station convenience (phones are connected in parallel so additional units do not require rewiring the complete system).

The Modification

To convert the basic phone into something useful cut the red wire from the telephone's handset at the terminal strip in the base where it connects to the red output wire. (Virtually all phones in surplus have the same wiring and color-coding.) Then connect a normally-open push-button switch and a $1 / 2-V$ buzzer across the lugs to which the yellow and green leads connect as shown in the schematic at the right.

Sl is a miniature push-button switch mounted in the center of the dial-hole cover. Don't worry about drilling the case. There is a small knock-out plug in the center of the cover that exposes a pilot hole which
vou simply drill larger. If your phone doesn't have the pilot hole. center-punch the cover before drilling or you might crack it.

The buzzer is the sound unit from a onecell bicycle horn; it can be mounted anywhere on the bottom plate. Both switch and buzzer are connected directly to the screw terminal strip on the phone base. Don't try to cut into the existing phone wires because they are a special cord-wound wire that won't take solder.

The cradle switch shown in our schematic is part of the telephone. Do not remove it and don't disconnect the wiring to it since it is used to disconnect the power supply when the handset is on the hook.

The power supply consists of a $6-\mathrm{V}$ battery in series with the secondary (used as a choke) of a $6.3-\mathrm{V}$ filament transformer (T1). To avoid getting a shock from the kick-back voltage when the buzzer sounds. cut off the black primary leads at TI's case. Do not

Basic telephone modified for intercom. In original unit you must remove red wire from lead connecting phone and mike to the red output wire.

Power supply consists of 6-V battery in series with filament transformer's secondary. Mount transformer as shown to change battery easily.

Best place to install the buzzer is inside the telephone on the base. Buzzer is sound unit that is removed from an inexpensive bicycle hom.

Operation

The buzzers and the speaking circuit are in parallel. Depressing the button on any phone will cause all buzzers to sound. Anyone can then join the conversation by picking up the nearest handset.

If you use more than two phones, a coded-ringing system can be used for signaling. That is, one ring means the call is for phone No. 1; two rings would mean phone No. 2, etc.

BI is a heavy-duty battery such as an Eveready 510 S . If you don't want to use this type, use four standard D cells wired in series. The batteries and the transformer can be located at any convenient out-of-the-way spot near the connecting cable.

The important thing to remember is that the handset should not be lifted while you press the buzzer. If one of the phones is to be used in an area where there is a lot of noise (such as the basement workshop or garage) install a $6-\mathrm{V}$ pilot lamp in the phone to provide a visual signal. Merely connect the lamp in parallel with the buzzer v

PARTS LIST

B1-6 V battery (Eveready 5:0S or equiv.) Sl-Miniature normally-open push-button switch
T1-6.3 V filament transformer (Lafayette 33 R 3702)
Misc.-Telephones (Lafayette 44 R 6501), buzzer from bicycle horn.

External power supply consists of a battery in series with a choke (secondary of filament trans. former). Connect all telephones in parallel.
nal is developed across it. If $\mathrm{T} \mid$ is not used the battery's low internal impedance will short the signal.

Hooking Them Up

The modified phones are connected as shown below. Use a 3 -wire cable and connect the matching color-coded wires from one phone to the other. The power supply connects to the yellow and green wires; battery polarity doesn't matter. Additional phones are connected to the system simply by hooking their output cables to the main cable or the nearest phone. Be sure to connect like colors. You can simply keep adding phones until the power supply no longer is able to deliver enough current to sound the buzzers

- 1-Compactron Circuit
- Big-Speaker Sound

By HOMER L. DAVIDSON

BACK in the early days of radio everyone wore earphones and sat arourd a table while Dad carefully adjusted the catwhisker for hest reception. Time passed and eventually a tube was used as a detector. Not long after that more tubes were added for amplification and some sets came to have more tubes than a cat has lives.

But the all-American five design trimmed the number of tubes somewhat. Today some cut-to-the-bone superhets have only three tubes, thanks to clever bottles that pack everything from diodes to pentodes into one envelope. Think the rise and fall in tube count has ended here? Not by a long shot.

The Compact BCer has only one tube but in terms of performance it's a mighty far cry from that one-tube job of 30 or more years ago. The BCer's sensitivity and tone will surprise you. Secret of its simplicity and performance with only one bottle is a Compactron. It's a dual pentode job. one section of which is a hot regenerative detector. The other section is a power pentode that can deliver up to 2 watts of audio to the speaker.

And there aren't many other parts in the BCer-all together there are 11 capacitors and eight resistors. All components are standard, there is only one simple coil to wind
and the circuit is transformer-powered to eliminate the shock hazard associated with AC/DC sets. You'll find the Compact BCer a snap to get together and it will make a wonderful one-evening project.

Construction

The BCer fits on a standard $61 / 8 \times 4 \times 1$-inch aluminum chassis. Follow as closely as possible our layout shown in the photo and pictorial. Don't worry about mounting the

Completed radio ready for installation. If you build cabinet we show here. mount speaker tirst and attach loopstick near back of the cabinet.

speaker at this time. It and the loopstick antenna can be attached to the cabinet after the chassis is installed.

Take your time when wiring VI's socket. There are a lot of connections to it and it's easy to short something. Ll, the detector's feedhack coil, should he wound over the bot-
tom end of the loopstick's coil. First, wrap a turn or two of tape over the loopstick's coil. then wind 35 turns of No. 36 enameled wire on the tape. The width of the coil should be about 5/16 inch. After L1 has been wound, wrap a turn or two of tape over it to keep it from unwinding. 1.1 's leads should be covered

There's plenty of room under the chassis we specify in the Parts List. Watch the pin numbers on Vl's socket-ihe spacing between lugs 1 and 12 isn't much great. er than between the other lugs. R3 and C2 can be mounted anywhere on the top of the chassis to match a different cabinet design. Be sure to use spaghelti on leads to loopstick antenna.

Capacitors: 500 V ceramic disc unless otherwise indicated $\mathrm{C} 1-.005 \mathrm{mf}, 400 \mathrm{~V}$ tubular C2-10-365 mmf variable (Lafayette MS-214 or equiv.) C3-100 mmf
C4- $1 \mathrm{mf}, 400 \mathrm{~V}$ tubular
C5— 250 mmf C6-. 01 mf C7-. 005 mf
C8- $50 \mathrm{mf}, 25 \mathrm{~V}$ electrolytic
C9, C10- $50 / 50 \mathrm{mf}, 150 \mathrm{~V}$ elec.
trolytic C11-. 05 mf
L1-35 turns No. 36 enameled wire wound over L2 (see text) L2-Loopstick antenna (Lafa.

PARTS LIST
PARTS LIST
yette MS-11 or equiv.) L3-10 microhenry RF choke
(J. W. Miller 4612 or equiv.) Resistors: $1 / 2$-watt, 10% unless
otherwise indicated
R1-5.6 megohms
R2- 15 megohms
R3-200,000 ohm linear-taper
ootentiometer with switch
R4, R5-1 megohm
R6- 68 ohms
R7- 1,500 ohms, 1 watt
R8- 33 ohms
S1-SPST switch on R3
SR1-Silicon diode. $750 \mathrm{ma}, 400$

PIV (Lafayette SP-196 or equiv.)
Tl-Power transformer: primary, 117 VAC; secondaries, 250 V @ 25 ma and 6.3 V @ 1 A. (Stancor PS8416 or Altied 62 G 008)
T2-Output transformer: primary, 2,000 ohms: secondary, 4 ohms; 5 watts (Stan cor A3876 or Allied 62 G 065) V1-6ALII tube
Misc.-Speaker, $61 / 8 \times 4 \times 1$-inch aluminum chassis (Bud CB-1620)

V1A is a regenera. tive detector. Regeneration is controlled by the amount of $\mathrm{B}+$ ap. plied to VlA's screen grid (pin 7) by R3. Feedback is achieved by wind. ing L1 over L2. V1B, a power pentode. delivers up to 2 watte to speaker.

The COMPACT BCer

with spaghetti, and should be about 8 inches long to reach the connection points under the chassis.

If your cabinet design is different from ours, don't worry about mounting tuning capacitor C2 on the chassis. Put it wherever you like but don't forget to run a wire from its frame to the chassis. If there's a trimmer on the side of the capacitor you use for $\mathbf{C} 2$, open it all the way. It is necessary to use the size transformer specified for T1 to provide current for VI's heater (900 mat). Be sure to cut short and tape one of Tl 's red leads.

Tune-Up and Adjustment

After you've double-checked your wiring. plug in the tube, turn on power and slowly turn regeneration control R3 clockwise. Eventually you will hear a squeat or rushing
sound. If you don't hear this with R3 full clockwise, reverse the connections of L.I's leads.

To calibrate the dial, open C2 to a point corresponding to that of the tuning capacitor in another radio tuned to a station whose frequency you know. Advance R 3 until the BCer squeals, then back off R3 a bit. Without touching the antenna lug on the loopstick. adjust the loopstick's slug until the same station comes in loud and clear. If necessary. readjust LI's slug if a station is missing at either end of the dial.

To find and tune in a station, turn R.3 almost full clockwise and turn C2 slowly. When you hear a squeal. it means there's a station at that point: then back off R3. You'll get the knack of this quickly. A 10- or 15 foot antenna will be adequate for local stations. For distant stations use a longer outdoor antenna and a good ground.

 CB BAND SWEEPER

Flip a switch, sit back and your transceiver
will be tuned automatically and continuously
from the low to the high end of the band. It's the easy way to listen in on every $C B$ channel.

By R. L. WINKLEPLECK

CITIZENS BANDERS have come up with a new form of the twist that doesn't have a trace of hip action. Every bit as frantic, their version involves a fast back and forth twisting of the wrist as they turn their transceiver's channel-selector knob to hear who's on each channel and what they're talking about. A cure hasn't been found yet but the twisting can be greatly reduced by the CB Band Sweeper.

The Sweeper is an electronic tuning adaptor that you plug into one of the receive crystal sockets in your rig. The frequency of the Sweeper's oscillator changes constantly to tune the rig automatically from the low to the high end of the band. In about $11 / 2$ minutes you listen briefly to every channel$1,2,3$, etc. up to channel 23 . Then the receiver jumps back to channel 1 and the cycle repeats. Without effort on your part, you can
listen in on a portion of every conversation on the band. When you hear something of more than passing interest you just flip the mode switch from auto to manual and tune in the channel manually on the Sweeper.

Construction. To be on the safe side, duplicate the layout of our model, which is built in a $4 \times 5 \times 6-\mathrm{in}$. aluminum utility box. The components are mounted on an L-shaped chassis, made of scrap aluminum, which is held to the front panel by S1 and S2.

Since the RF oscillator (V1) operates around 27 mc , placement of parts associated with it is critical and can affect its operating frequency. However, the wide range of frequency adjustment provided by piston capacitor C4 permits you to compensate for some minor changes in layout. Short and direct leads and good grounds are a must.

Coils LI and 1.2 are made from a single

CB BAND SWEEPER

Our Model's $33 / 4 \times 4$-in. chassis is made from $\alpha 5^{1 / 4}$ $\times 4$-in. piece of scrap aluminum. It is held to the cabinet's front panel by S1. S2. R9 (pictorial) connects to ground strap on R10's mounting bushing.

Barker and Williamson Miniductor coil form. Unwind a turn from one end for a connecting lead and leave five turns intact for LI. Cut the next wire and unwind a half turn in each direction for the inner leads of Ll and L2.

Leave three more turns for 1.2 , then unwind one more turn for L2's final lead. Cut away the remainder of the coil stock. The plastic supports can be cut with a hot razor blade. Note that the four plastic wire supports are used to space L1 and L2 exactly one turn apart. Mount the two-coil assembly on terminal strip TSI and use additional terminal strips where shown for other components.

A short length of RG59/U coax should be used to connect the Sweeper to the transceiver. On one end of the cable install a plug made from an old CB crystal to match the crystal socket in your rig. The plug must be polarized; that is, the shield of the coax from the Sweeper must go to the grounded side of the crystal socket in the transceiver.

Adjustment and Calibration. After the wiring is completed and checked, a few preliminary tests should be made. Turn on
power and let the Sweeper warm up. Using a VTVM, measure the voltage at pin No. 5 of V1. It should be 140 to 150 volts. If V1 is oscillating there should be a slight negative voltage on pin 6. If V1 is not oscillating reverse L2's leads.

Set S1 manual and measure the voltage across DI to see whether it can be varied by R10 from approximately 2.5 to 7 volts. Then set S1 to auto and check to see that the sweep oscillator (Q1) is supplying a varying 3- to 6 -volt sawtooth voltage to DI.

If all is satisfactory, put the Sweeper's plug into a receive crystal socket in your transceiver. Set the transceiver's channel-selector switch to the appropriate position and put S 1 in the manual position. R10 should be at about half rotation.

Set another nearby rig to one of the center channels, such as 11 or 12 , and put it in the transmit mode. Slowly adjust C4 until you pick up the signal.

During this adjustment you may find a couple of settings of C4 where the S-meter will deflect but you won't hear the signal. This means the Sweeper's oscillator is operating at your rig's IF frequency (or a harmonic

Rear view of Sweeper. Note the way coils Ll and L2 are mounted. Potentiometer R10 should be mounted on front panel before transformer and electrolytic capacitor can are installed on the chassis.
of it). Ignore this. Or you may pick up highor low-end-of-the-band channels. Ignore these, too, since if the Sweeper is centered on them, it won't sweep across the entire band.

Continue to adjust C4 carefully and slowly until you finally locate the channel on which the second rig is transmitting. There will be two points where this signal can be found. Note the quality and strength of each and continue adjusting C4 until you tune in the strongest signal. Alignment is now completed.

It should now be possible to tune from one end of the band to the other with R10. When S 1 is in the auto position, the Sweeper should tune from the low to the high end of the band in about $11 / 2$ minutes. This should be long enough for you to tell what's going on on every channel and to spot the vacant ones. The sweep can be speeded up by making either R6 or Cl smaller. If either component is increased in value, the sweep will be slower.

How it Works. The Sweeper's RF oscillator is a modified Armstrong. It replaces the crystal-controlled oscillator in the rig and supplies the local oscillator signal to produce the IF signal. To make the oscillator sweep

Detailed sketch shows what coils look like and how they're mounted. Since parts on terminal strip TSl are in RF-oscillator circuit, position them where shown and keep the leads short.

CB BAND SWEEPER

Sawtooth voltage gen erator consists of unijunction transistor Q1. C1, R6 and associated components. When Sl is in auto position, sawtooth voltage developed across Cl is applied to varactor diode Dl, causing its capacitance to change. Since Dl is part of RF oscillator's (V1) tuned circuit (D1, C4. L1), it changes operating frequency of RF oscillator in step with the sawtooth voltage. Output of Sweeper is led to mixer stage in CB transceiver via crystal socket, causing receiver to tune from the low to the high end of band. To calibrate R10's dial, have a friend use another rig to transmit on each channel while you tune in and mark dial.

back and forth so the set tunes from channel 1 to 23 . a capacitance diode (D1, a varactor) is connected in parallel with 1.1 (D1, C4 and Ll form the oscillator's tuned circuit). A varactor is a special silicon diode that can be used as a capacitor. The capacitance between its leads is a function of the reversebias voltage across it. When a varying voltage is applied to DI, DI's capacitance changes in step with the voltage. This changes the RF oscillator's frequency, which causes the transceiver to tune from the low to the high end of the band. (The transceiver also can be tuned manually with R10, which varies DI's voltage from about 2.5 to 7 volts.)

The varying voltage which is applied to D1 is produced by a unijunction-transistor relaxation oscillator. After power is turned on, capacitor Cl begins to charge slowly through R6. When the voltage across Cl (and DI) reaches about 6 volts (the rig will be tuned to channel 23), the emitter-base (B1) junction of Q1 conducts, causing CI to discharge through R2 to ground. This abruptly reduces the charge on Cl (and the voltage across D1) to about 3 volts. This tunes the transceiver back to channel 1. The charge/ discharge cycle repeats continuously

1-Trunsistar Shart-Wave [onverter

Now you can DX the world's short-wave stations on any broadcast radio!
"(YOME up and see me sometime," Mae West once said. Thanks loads, Mae, but Spanish girl friends have given us a more modern challenge-to DX them. We've taken them up on it and found it much more fun-and stimulating, too.

And our gals have lots of friends in other countries who also keep asking us to DX them. Doubt it? Then build our one-transistor short-wave converter and find out for yourself. You'll be surprised at the number of female announcers there are on the air. And each one sounds more intriguing than the next.

Our converter turns any broadcast radio into a short-wave receiver so you can tune from 5 to 15 mc -the most-popular short-wave frequencies. And you don't have to make connections or modifications to the radio since the converter radiates its output signal to the BCB radio. The converter includes a band-spread capacitor that opens up those crowded short-wave bands. A $9-\mathrm{V}$ battery supplies power.

 on $77 / 8 \times 51 / 8 \times 1 / 4$-in.thick piece of plywood over which cabinet fits. Be sure C1A/C1B's and C2A/C2B's brackets are connected together and to circuit ground.

1-Transistor Shart-Wave Converter

Construction

The converter can be housed in either a wooden cabinet or a commercially-made Bakelite box. The $81 / 2 \times 53 / 4 \times 21 / 2$-in. cabinet shown on the first page of this article is made of $1 / 4$-in.-thick walnut veneer. The tuning ($\mathrm{C}|\mathrm{A} / \mathrm{C}| \mathrm{B}$) and bandspread ($\mathrm{C} 2 \mathrm{~A} / \mathrm{C} 2 \mathrm{~B}$) capacitors, battery and circuit board are mounted on a $77 / 8 \times 51 / 8 \times 1 / 4$-in.-thick piece of piywood which becomes the cabinet's base.

If you want to build your converter in the Bakelite box shown in Fig. 5, mount the aforementioned parts on the bottom of the box. The box's cover then becomes the top on which the radio is placed. The construction notes that follow are for the Bakelite box. Building the converter in a wooden cabinet is practically the same.

Begin by cutting a $61 / 2 \times 21 / 4-\mathrm{in}$. piece of perforated circuit board. Cut $3 / 8-\mathrm{in}$. squares out of two corners on one of the long sides, then mount all parts where shown in Fig. 1.

Drill and countersink four holes in the bottom of the box and mount the board with 1 -in.-long flat-head machine screws to keep the board $1 / 4 \mathrm{in}$. above the bottom of the box.

Tuning capacitor CIA/CIB is mounted with a $13 / 4 \times 21 / 4-\mathrm{in}$. bracket made from a $21 / 4 \times 25 / 8$-in. piece of scrap aluminum. After you make the bracket put CIA/C1B on the bottom of the box to determine the location

Fig. 3-Signal from antenna is tuned by Tl-ClA and capacilively coupled to base of oscillator/ mixer transistor Q1. T2, in oscillator porlion of circuit, is tuned by ClB. As C1A/ClB are ganged, frequency of oscillation (above tuned signal) remains fixed. I 1 . which is in Ql's collector circuit, radiates the difference frequency to radio.

PARTS LIST

B1-9 V battery
C1A, C1B- $10.365 \mu \mu$ f. $2-\mathrm{gang}$ variable capacitor with $6: 1$ ratio planetary drive (J.W. Milter $565-8$. Allied $60 \mathrm{~J} 088, \$ 3.15$ plus postage. Knob: J.W. Miller 565-26. Allied 60 J 089, $51 \notin$ plus postage. Not listed in catalog)
C2A. C2B-3-15 $\mu \mu \mathrm{f}, 2$-gang variable capacitor. Bud LC- 1660 (Allied 13 Z 555, $\$ 3.30$ plus postage. Not listed in catalog)
C3. C4. C7-. $005 \mu \mathrm{f} .500 \mathrm{~V}$ ceramic disc capacitor
C5-5,000 $\mu \mu \mathrm{f}, 5 \%$ silvered mica capacitor
C6- $470 \mu \mu \mathrm{f}, 5 \%$ silvered mica capacitor
Jl-Phono jack
L1-Loopstick antenna coil: $Q=250$ (J.W. Miller 6300. Lafayette 34 R 8705)

Q1-2N1180 transistor (RCA)
R1-5.600 ohm. $1 / 2$ watt, 10% resistor
R2— 2.700 ohm. $1 / 2$ watt, 10% resistor
R3-1.000 ohm, 1/2 watt. 10% resistor
S1-SPST switch
T1—5.5-15 mc antenna stage RF coil (J.W. Miller C-5495-A. Lafayette 34 R 8751. Modi. fied, see text)
T2-5.5-15 mc RF, stage RF coil (J.W. Miller C.5495-RF. Lafayette 34 R 8717 . Modified, see text)
Misc. $-63 / 4 \times 51 / 4 \times 21 / 4-i n$. Bakelite Box (Lafayette 19 R 2002), cover for box (Lafayette 19 R 3702), perforated board, flea clips, knobs, aluminum for brackets.
of the hole for its shaft in the front of the box. (Note: In the Bakelite box, C1A/CIB's plates will open only to 90 per cent of maximum. Don't worry about this. You still will be able to tune up to 15 mc .

Then drill holes in the bracket for ClA / C1B's three mounting screws and drill and countersink two holes in the bottom of the box for the bracket's flat-head mounting screws.

Next, make a $2 \times 2-\mathrm{in}$. shield out of a piece of $3 \times 2-\mathrm{in}$. scrap aluminum for C2A/ C2B. This shield is required to minimize detuning from hand capacitance when you adjust C2A/C2B. Cut a $3 / 8$-in.-dia. hole in the center of the shield for C2A/C2B's shaft bushing. Cut a hole in the front panel for C2A/C2B's shaft and slip the bushing through the shield and the cabinet. Do not use too much force when tightening the mounting nut or the box may crack.

Transformers T1 and T2 have to be modified as shown in Fig. 2. First, remove the $18-\mathrm{in}$. length of plastic-covered wire supplied
on L.I and set it aside. Carefully unwind three turns of the heavy-wire winding on T 1 , starting at the end of the winding near lug 4. Cut off the unwound wire, discard it and solder a $1-\mathrm{in}$. length of \#22 tinned wire to end of the remaining turns. Then solder a few inches of the plastic-covered wire removed from L.I to the same point. Wind three turns of the plastic-covered wire close together (in the same direction as the remaining turns of wire) around TI to replace the three removed turns. Solder the wire to pin 4. Repeat the procedure for T2 but tap the coil at the fourth turn.

Make two brackets for mounting T1 and T2 and put solder lugs under each bracket's mounting screw. Put flea clips in the board under lugs I and 2 on T1 and T2 for added support. Solder lugs 1 and 2 to the flea clips. Solder nuts on T1's and T2's slug-adjustment screws to make alignment easier. Mount LI on the board with the bracket supplied with it and put a solder lug under the mounting screw.

Fig. 4-Photo shows completed converter ready for installation in cabinet. C2A/C2B (right) is mounted on $5 / 6-\mathrm{in}$.thick wood block so shaft will be on same level as ClA/C1B's shaft. Author's model originally was built in Bakelite box; hence. notches in comers of circuit board to clear corner posts in box. Mount Ll (lower left) high so it will be near the top of the cabinet.

1-Transistar Shart-Wave Converter

Connect $\mathrm{ClA} / \mathrm{C} 1 \mathrm{~B}, \mathrm{C} 2 \mathrm{~A} / \mathrm{C} 2 \mathrm{~B}, \mathrm{~J} 1$ and S 1 as shown, keeping all leads short and direct. Bend a piece of aluminum around ClA/ C1B's outer, or larger, shaft and make a pointer on the other end.

Alignment \& Calibration

Turn Tl's slug-adjustment screw so it's about $1 / 4 \mathrm{in}$. out of the form. Turn T2's slugadjustment screw so it's $3 / 4 \mathrm{in}$. out of the form. Connect the hot lead of a signal genera-

Fig. 5-The 2 3/16 in. height of Bakelite box will prevent ClA/ClB's plates from opening all the way. However, unit will still tune up to 15 mc .
tor through a $300-\mathrm{ohm}, 1 / 2$-watt resistor to JI and connect the ground lead to Jl's shell. Close ClA/ClB's plates and open C2A/ C2B's plates.

Place a transistor radio near LI and turn on the radio and the converter. Tune the radio to a quiet spot on the dial between 540 and 1200 kc . Set up the signal generator for a modulated output at the frequency to which the radio is tuned and adjust 1.1 for maximum volume from the radio.

Set the signal generator to 5 mc and adjust T 1 's and T 2 's slugs for maximum volume. Set the signal generator for 15 mc and open $\mathrm{C} 1 \mathrm{~A} / \mathrm{ClB}$'s plates until the pointer is at approximately the same position as the $15-\mathrm{mc}$ point on the dial shown on the first page of this article. Adjust C1A/C1B's trimmer capacitors for maximum volume. Repeat the $5-\mathrm{mc}$ and $15-\mathrm{mc}$ alignment and then calibrate C1A/ClB's dial with the signal generator.

Operation

Write the converter's output frequency on the back of the cabinet so you can set a transistor radio to this frequency quickly.

You may be able to pick up signals without an antenna. However, for best reception, a 25 - ft . antenna and a good ground are a must. To listen to short wave, put the radio as close to L 1 as possible, tune it to the converter's output frequency and tune with C1A/ C1B. To hear a particular station in a crowded band tune with bandspread capacitor C2A/C2B.

By WALT HENRY TAPING the monthly meeting of the debating club isn't just a matter of setting the recorder's level control when the first member starts speaking. Reason is, the discussion may get quite heated before you realize it. Ther others, trying to emphasize their point. begin to move closer to the table and mike. Several people start talking at once, then suddenly everyone's shouting. By this time the record-level indicator's needle is pinned.

Or, after setting the recorder's level control for one person you discover some other members speak softly. When you play the tape back you find it's difficult to hear them. One solution is to get the moderator to adjust the record-level control constantly. But this would distract him and is not a particularly fast or reliable way to maintain a constant-level signal.

Our tape compresser is like having an extra hand there to ride gain all the time. You connect the mike to the compressor and feed its output to the recorder's mike input. Next, you make a test tape of the quietest speaker sitting a normal distance from the mike. While you do this you set the recorder's level control for optimum record level.

Then you start talking loudly and simultaneously increase the compression to pull the record-level indicator's needle back into the safe area. You're all set for the great debate. And no matter who speaks, you can rest assured that the meek will be heard and the loudmouths will be gagged. The compressor also can be used with a PA system. This will permit the speaker to move away from the mike or shout until the rafters ring. The sound level in the room always will be the same.

Or suppose you want to record a fading short-wave program. The compressor will put a constant-level signal on the tape. The same is true if you want to tape the Citizens Band or Aircraft Band. A strong signal that comes blasting through will come out of the compressor no louder than weak or moderate-level signals. Your gain-riding days are over.

There are several other applications for the compressor. For example, it can be used between your mike and a CB or ham transmitter to produce a modulating signal whose amplitude remains constant regardless of changes in the level of your voice. This means more talk power, which makes your signal sound as though your RF is much greater than it actually is.

Our compressor has all the features of commercial models. The compression is variable from zero to a maximum of about 26 db . The noise level is -60 db . A preamp stage and a gain control enable the compressor to be used with almost any program source. There's plenty of gain (25 db) which means a dynamic mike can be used with it. The compressor will handle inputs up to 5 V peak-topeak (1.77 V rms).

The circuit has a fast attack time (time required for the compressor to reduce the level of a strong signal). The hold (decay) time required for the gain to return to maximum after the input signal is removed is

Fig. 1-lnside the compressor. First thing to do is mount all parts on a $3 \times 53 / 4$-in. piece of perforated board, as shown, using flea clips for tie points. Then install other parts on 5×7-in. chassis cover plate. Use two small angle brackets to attach circuit board to panel about $31 / 4 \mathrm{in}$. from the edge near 12 and 14. Mount jacks J5 and 76 undemeath the circuit board. Note that several ground leads are tied together and connected to the ground lug on J4.

PARTS LIST

B1-9 V battery (Burgess 2MN6 or equiv.) $\mathrm{C} 1, \mathrm{C} 12-.47 \mu \mathrm{f}, 200 \mathrm{~V}$ tubular capacitor C2, C8, C10- $30 \mu \mathrm{f}, 15 \mathrm{~V}$ electrolytic capacitor C3, C4-5 $\mu \mathrm{f}, 15 \mathrm{~V}$ electrolytic capacitor
C5, C6, C9, C11-50 $\mu \mathrm{f}, 15 \mathrm{~V}$ electrolytic capacitor
C7-100 $\mu \mathrm{f}, 10 \mathrm{~V}$ electralytic capacitor C13-. $02 \mu \mathrm{f}, 500 \mathrm{~V}$ ceramic disc capacitor C14-150 $\mu \mathrm{f}, 15 \mathrm{~V}$ electrolytic capacitor
C15, C16-. $015 \mu \mathrm{f}, 500 \mathrm{~V}$ ceramic disc capacitor
D1, D2-1N914 diode D3, D4-1N270 diode
J1, J3-Phono jack J2, J4-Phone jack
J5, J6-Insulated tip jack (H.H. Smith type 241 or equiv.)
Q1, Q2-2N3393 transistor (GE)
Q3, Q4-2N414 transistor (GE, RCA)
Resistors: $1 / 2$ watt, 10% unless otherwise in. dicated
R1-22,000 ohms R2, R3, R15-56.000 ohms R4, R9--2,200 ohms
R5-10,000 ohm, linear taper potentiometer R6, R20-120,000 ohms R7-15,000 ohms R8- 120 ohms R10, R22- 3,300 ohms R11-8,200 ohms
R12, R18- 50,000 ohm, linear taper
potentiometer (SPST switch on R18)
R13, R17, R21- $1,000 \mathrm{ohms}$
R14-22,000 ohms
R16- 560 ohms R19-33,000 ohms
R23. R24- 10,000 ohms
S1-SPST switch on R18
Misc.—Perforated board, flea clips, $5 \times 7 \times 3$ in. aluminum chassis (Premier ACH-428GH). 5×7-in. aluminum chassis bottom plate (Premier ABP-423GH).

Fig. 2-Q1, a bootstrapped emitter-follower, gives compressor an input impedance of 250,000 ohms. Incoming signal is amplified by Q2 and fed via R10, R12 and C8 to Q3. Q3 amplifies signal and feeds it back via C7 to rectifier diodes D3 and D4. DC is applied to D1 and D2 causing them to attenuate, or compress. signal led via R11, R18 and Cl0 to the oulput transistor, Q4.
about one second. The compressor does not clip or limit the audio signal-it reproduces it without distortion.

An output stage (Q4) and an output level control (R18) permit you to adjust the level of the output signal to match it to the input of any tape recorder, amplifier or transmitter. Since the current drain is only about 10 ma , the battery will last a long time. As a bonus we've included a four-component circuit (Fig. 4) that will turn the compressor into a 1,000-cps oscillator for checking audio equipment.

Construction

Circuit layout is fairly critical; therefore, try to duplicate ours. All components except for the input, output and battery-test jacks, the controls, R1I and R13 are mounted on a $3 \times 53 / 4-\mathrm{in}$. piece of perforated circuit board on which flea clips are used as tie points. Note in Fig. 1 that several ground wires must be attached to the ground lug on J4. This is important to keep hum and noise low.

Our compressor was built in a $5 \times 7 \times 3$-in. aluminum chassis. The battery, circuit board, controls and jacks are mounted on the chassis' cover plate. The cabinet could be plastic or wood; however, we recommend that it be metal to shield the circuit to prevent pickup of hum and noise.

Note that we put jacks (J5 and J6, not shown in Fig. 1) on the front panel so that the battery voltage can be checked without
disassembling the unit. If you want to use a separate supply, any well filtered source of $6-$ to $9-V$ DC will do.

Checkout

After construction is finished, double check your wiring. Then, turn the preampgain (R5) and compression (R12) controls full counterclockwise and turn on power. Measure the DC voltage from the emitter of Q1 to ground. It should be between 3 and 6 V with a new battery. Next, measure the voltage on Q2's collector. It should be between 4 and 7 V . Measure the collector voltage on Q3 and Q4. It should be between 3 and 6 V . If any of these voltages do not fall within these ranges, they can be corrected by changing the values of R3, R6, R15 and R20, respectively.

Using the Compressor

As we said, the compressor will handle up to $5-\mathrm{V}$ (peak-to-peak) input signals. However, with a signal this large R5 must be carefully set to prevent the input stage from being overloaded and to prevent distortion. (RS has little effect on compression characteristics.) The preamp stage is simply a variablegain amplifier which was included to boost low-level input signals to get full compression.

Here's the way to adjust the controls by making a test tape or with a pair of highimpedance phones plugged in J4. Turn R12 full counterclockwise. When the input signal

Fig. 3-Inside of compressor. Author's model is built on fiberglass board, but perforated board will be suitable. Because of high-gain stages, try to duplicate our layout. Buss wires at top and bottom of board facilitate connections to ground as well
 as to the $9-V$ supply.
is at its highest permissible level, increase R5 until the signal becomes slightly distorted. Then back off on R5 until the distortion disappears.

Once R5 is adjusted with a high-level input signal, it need not be changed again. Now, set R12 for the desired compression. (It may be necessary to readjust R18 when compression is changed.) When recording speech, R12 should normally be set full clockwise. Generally speaking, the compressor should not be used when recording music since loud and soft passages are an important part of musical expression.

To use the compressor as an oscillator set R12 full clockwise. Set R18 for the desired output level, and turn R5 clockwise until the circuit just begins to oscillate.

How It Works

Input stage Q1 is a bootstrapped emitterfollower which gives the compressor an input impedance in excess of 250,000 ohms. Preamp stage Q2 provides a voltage gain of about 20 db so that low-level signals can be

Fig. 4-Connect this Wien-bridge circuit from the input to the output and the compressor will be converted into a 1,000-cps audio oscillator.
compressed. Gain control R5 compensates for different input-signal levels.

The circuit that automatically controls compression is a push-pull diode attenuator which consists of D1-D4, C5 and C6. Since the resistance of diodes D1 and D2 depends on the DC current through them, they function as variable attenuators. Here's what happens: An input signal fed to Q2 appears at the junction of R10, D1 and D2 and the base of Q3.

Q3 amplifies a portion of the signal and feeds it to D3 and D4 where it is rectified and then filtered by C5 and C6. The DC is then fed to gain-control diodes D1 and D2. When the input-signal level increases the output of Q3 increases causing more DC to flow through diodes D1 and D2. D1 and D2 reduce the overall circuit gain (compress) by lowering the level of the signal to Q3 and to (via R11, R18 and C10) output transistor Q4. Compression control R12 permits you to vary compression up to about 26 db .

The external plug-in oscillator circuit (Fig. 4) is simply a Wien-bridge network. When it is connected from the input to the output, the compressor becomes an audio oscillator. The part values shown produce approximately a $1,000-\mathrm{cps}$ frequency. You can experiment with other values for different frequencies. If desired, the oscillator circuit can be built in. Simply connect R24 directly to J3. Use a SPST switch to connect the junction of R23, C15 and C16 to J1 and J2. Be sure to disconnect any other inputs when using the unit as an oscillator.-

Take the sweat out of math with switches, batteries and potentiometers.

By VERNON SIMMS

UNIVAC take note--here's a Samdiac. Expand those letters and you get subtracting, adding, multiplying, dividing, integrating, analog computer. Unlike its big brothers, Samdiac costs about $\$ 8$ to build. But don't count on it to do your math homework. It functions like a slide rule, therefore. answers are only approximate.

How It Works. The computer consists of two basic circuits. Take a look at Fig. 1 to see how it multiplies and divides. To multiply 5×5, you set R1 to 5 on the dial. This is the center of its resistance range. Since the supply voltage is 10 V , the voltage from the arm of R1 to ground is 5 V . The 5 volts goes to R2. Since R2 also is set at its midpoint, the voltage is again divided. That is, 2.5 volts now appears from the arm of R2 to ground. This voltage is the answer to the problem: however, you have to shift the decimal point mentally.

To read out the answer, you would have to use a sensitive voltmeter, such as a VTVM. A less-sensitive voltmeter would draw excessive current from R1 and R2 and adversely affect accuracy. We get around this by adding a third potentiometer (R3) and a zero-center microammeter.

Note that R3 also is across a source of 10 V . When R3's arns is set to select 2.5 V , the voltage at the right side of the meter is exactly the same as the voltage at the left side. Since the meter nerely indicates balance at zero, it draws little current from the circuit. You read the answer from R3's dial. To use the circuit for division, you set up the problem on R3 and R2 and read the answer from RI's dial.

Fig. 2 is the basic circuit for addition and subtraction. Instead of dividing voltages, the circuit adds them. Let's add 3 and 2. Note that RI takes 2 V from one $10-\mathrm{V}$ source and passes it to R2. R2 takes 3 V from its $10-\mathrm{V}$ source. The two voltages are added and 5 V goes to the meter. The balance and indicator circuits work the same way as before.

In the practical circuit (Fig. 5) two $1.5-\mathrm{V}$ batteries are the voltage sources. However the voltage relationships are exactly the same. Construction details are covered in the captions for Figs. 3 and 4.

Operation. Set S4 to square, $\sqrt{-}$ only for square and square root problems to be described later. Never press fine-adjust switct S2 until the problem has been set up.

- Multiplication. Let's say you want tc

Fig. 1-Multiplication, division. Rl feeds part of 10 V to R2, which teeds part of voltage to M1. M1 zeros when voltages from R2 and R3 are equal.

Fig. 2-Addition, subtraction. Part of voltage from R1 is connected in series with voltage from R2. M1 zeros when voltages from R2. R3 are equal.

Fig. 3-Our computer is built on $a 15 \times 8 \times 1 / 4$-in thick piece of plywood. Overall size is determined by diameter of dials for R1, R2 and R3. The location of batteries and switches is not important.
multiply 5×8. Set S3 to on and set SI to $\times \div$ After dialing the problem-RI (left knob) to 5, R2 (middle knob) to 8 -adjust R3 (right knob) until M1 indicates zero. Then press S2 and adjust R3 for zero again. Read the answer, 40. from R3's dial. With higher numbers you'll have to do some thinking to determine where the decimal place goes.

Accuracy is poor when both knobs which set up the problem are on numbers below 3. Accuracy improves when either knob is higher than 3 and is best when both knobs are higher than 3.

- Division. Set the right knob to the number to be divided (dividend) and the middle knob to the dividing number (divisor). Zero MI with the left knob. read the answer (quotient) from its dial and determine the position of the decimal point. If it is impossible to zero MI (for example. When you divide 80 by 5) shift the 80 on the right dial down to 8 .
- Addition. Set Sl to + - and set up the problem on the left and middle dials. You read the answer on the third dial after MI is

SEND CARD FOR RCA'S NEW 1966 HOME STUDY CAREER BOOK TODAY

CUT THE TIME BETWEEN NOW AND SUCCESS

- Find out about RCA Institutes Career Programs.
- Learn about the amazing "Autotext" programmed instruction methodthe easier way to learn.
- Get the facts about the prime quality kits you get at no extra cost.
- Read about RCA Institutes' Liberal Tuition Plan-the most economical way for you to learn electronics now.
- Discover how RCA Institutes Home Training has helped its students enter profitable electronic careers.
Lots more helpful and interesting facts too! Send postage-paid card for your FREE copy now. No obligation. No salesman will call.

RCA INSTITUTES, Inc. Dep't. EG.06
351) West 4ih Street. New York, N Y. 10014

Fig. 5-Complete schematic of computer. To square or get the square root of a number, the left (R1) and middle (R2) potentiometers would have to be set to the same number. To make sure they are, we use another polentiometer, R1B (which is the same resistance as H2 and is mechanically coupled to R1A) instead of R2. When S4 is set to square/square root. R1B is connected in circuit instead of R2. Therelore, when left knob is sel to, say. 6, RIA and RIB (the equivalent of R2) are both set to 6 automatically.

Fig. 4-Rear view of computer. The strip of wood at the top of the board should be higher than the strip at the boltom to tilt the board upward.
zeroed. When you find M1 cannot be zeroed when both knobs are set above 4 at the same time, shift the knobs down to the equivalent sub-divisions. For example, to add 9 and 8 . place the left knob one-half division below 1 , and the middle knob one division below 1 .

- Subtraction. To subtract, reverse the adding process. The larger number is set with the right knob, the smaller number with the middle dial. The answer appears on the first knob's dial after it's used to zero M1.
- Squaring and Square Roots. Set S1 to $\times \div$ and S 4 to square, $\sqrt{-}$. Turn the left knob to the number to be squared. Zero MI with the right knob and read the answer on its dial. (The middle knob is not used.)

For square roots, turn the right knob to the number whose square root you want to determine. Next, turn the left knob until the meter is zeroed. Read the answer from its dial. \hat{v}

PARTS LIST

B1, B2-1.5 V penlite cell
M1-Zero-center balance meter, $\pm 100 \mu \mathrm{a}$. (Lafayette 99 R 5034 or equiv.)
R1A. R1B- $50 / 500$ ohm dual wirewound linear taper potentiometer. IRC-CTS WPK. 50 (La. fayette 33 R 4453 and WM-500 (Lafayette 33 R 4526)
R2-500 ohm wirewound linear taper potentiometer
R3-5,000 ohm wirewound linear taper potentiometer
R4- 47.000 ohm, $1 / 2$ watt, 10% resistor S1, S4-DPDT toggle or slide switch S2-SPST push-button switch S3-DPST toggle or slide switch Misc.-Battery holders. 2-in. pointer knob (Allied 44 U 176)

Fig. 6-Dial dimensions. Mark right dial 0-100.

Jam-packed channels are wide open when a rig has razor-sharp tuning.

WITH the new FCC rules crowding all communications between stations of different licenses (or calls) into only seven channels, CBers are likely to find the going rougher than ever. Getting a clear spot on the band will be like looking for a seat on the subway at rush hour.

One of the few good antidotes to the crowding malady will be a receiver with extremely sharp selectivity. Luckily, you don't have to throw out that budget transceiver and then spring for a high-price double-conversion job. Instead, keep the low-cost rig and merely add our CB Channel Slicer as an accessory. The Slicer makes adjacentchannel interference a thing of the past, giving you selectivity so sharp that you can separate two stations on the same channel if they are slightly off frequency.

In fact, if you're working a roundtable and everyone isn't in the center of the channel you'll have to trim the tuning each time a different station comes on.

The Slicer is a double-conversion adaptor which adds a $100-\mathrm{kc}$ IF amplifier to transceivers whose IF is around $1,600 \mathrm{kc}$. The Slicer is not designed for transceivers with a

455-kc IF because the selectivity of these rigs is quite sharp, anyway.
The Slicer has an option. You can either cut a channel in tho with 100 -kc IF transformers or you can use $262-\mathrm{kc}$ transformers. While not as sharp as 100 kc , selectivity still will be excellent. If an audio-frequency signal generator with a $100-\mathrm{kc}$ output is not available do not use 100-kc transformers; alignment will be almost impossible without a generator. The 262 -kc transformers are factory aligned and a reasonably good alignment job can be done by ear. Just adjust TI as described later on, tune in a station and adjust T2 and T3 for maximum meter indication. Whichever you chaose, construction is the same.

Since the $100-\mathrm{kc}$ IF transformers are not stocked by many distributors, you will have to order them directly from Miller. To satisfy Miller's minimum-order requirement it will be necessary to order a complete set of transformers, consisting of oscillator transformer T1 and the two IF transformers. T2 and T3. Further ordering information appears at the end of the Parts List.

Because the power supplies of many trans-

CBCHMME SICHA

ceivers already may be overloaded with accessories, the Slicer has its own power supplywhich means its operation is confined to base stations. It can't go mobile.

Construction. The Slicer fits easily on a $7 \times 7 \times 2$-inch aluminum chassis. Component placement and values are critical so changes and substitutions should not be made

IF transformers T 2 and T3-whether 100 kc or 262 kc -are mounted with the adaptor plate supplied with them. The adartor hole should be cut with a $11 / 8$-inch chassis punch. Take care that you position them exactly as shown: pin 1 is color-coded green.

T2 and T3 are held in place by a U-clip (supplied with them) which fits through the adaptor plate and into the transformer cans Using your thumb. first press one side of the clip into position and then the other. Do not try to force both sides of the clip in place at once. Note that T2 and T3 are not connected

Capacitors: 600 V ceramic disc unless otherwise indicated C1- 240 mmf C2- 47 mmf C3- 33 mmf (see text) C4, C5, C11-. 005 mmf C6A, C6B-40/40 mf, 150 V electrolytic
C7-. $05 \mathrm{mf}, 75 \mathrm{~V}$ or higher
C8-. $1 \mathrm{mf}, 75 \mathrm{~V}$ or. higher
C9- $20 \mathrm{mf}, 150 \mathrm{~V}$ electrolytic C10-. 1 mf
D1-1N34A diode
F1- $1 / 2$ A fuse and holder
J1, J2-phono jack
Pl-6.V pilot lamp and holder
Resistors: $1 / 2$-watt. 10%

PARTS LIST

R1-1 megohm
R2, R6-22,000 ohms
R3- 470 ohms R4- 100 ohms
R5- $\mathbf{2 . 2}$ megohms
R7- 1,000 ohms
S1-SPST toggle switch
SR1, SR2-Silicon diode: 50 ma , 500 PIV minimum ratings

- T1-540-1,600 ke miniature ad. justable oscillator coil (Miller 70.05 C .)
-T2-IF transformer: 100 kc . Miller No. 1710; 262 kc , Miller
- T3-IF transformer: 100 kc . Miller No. 1710; 262 kc , Miller No. $12 \mathrm{H}-2$
T4-Power transformer: 250 V center tapped @ 25 ma; 6.3 V @ 1 A (Stancor PS-8416 or equiv.)
V1-6BE6 tube V2-6BJ6 tube
*Available as a group only from J. W. Miller Co., 5917 S. Main St., Los Angeles, Calif. 90r03. 1 -No. 70-OSC and 2-No $1710, \$ 5.34$ plus postage. 1No. $70-0$ SC, 1 -No. $12 \mathrm{H}-1$ and 1 -No. $12 \mathrm{H}-2$. $\$ 4.62$ plus postage.

Output ($1,600 \mathrm{kc}$) of CB rig's IF strip is fed to pentagrid converter V1. Output of V1 (100 kc or 262 kc. depending on the value of C3) then goes to IF stage (100 kc or 262 kc) consisting of T2. V2 and T3. Circled letters are test and alignment points and are relerred to in text. Watch the lug numbers on Tl .

as specified in the instruction sheet supplied with them; use our connections.

Take extreme care when connecting oscillator transformer T1 since the Slicer will not work if just one set of leads to T 1 is reversed. If you employ 262-kc IF transformers, use a 24 mmf capacitor for C3. [C3 in any case should be an NPO disc or tubular ceramic.]

Connecting the Channel Slicer. The Slicer is connected between the transceiver's last IF transformer and the detector circuit. The modification to the $C B$ rig is shown in the schematic directly below. To facilitate future transceiver servicing, connections for the Slicer should be brought to phono jacks on the transceiver's rear apron.

The IF transformer lug to which a diode (semiconductor or tube element) is now connected, is connected to the Slicer's input (J1). Next, unsolder the components from the IF transformer lug that feeds the AVC/audio line. Twist the leads together and connect them to the Slicer's output (J2). Then ground the IF transformer terminal which fed the AVC/audio line.

The connecting cables between the transceiver and Slicer should be made with short lengths of RG58/U coaxial cable.

Alignment. In order to align the 1F trans-

Modification of CB rig. Disconnect top lead of secondary of last IF transiormer and connect to phono jack on the rear of chassis. Disconnect bottom secondary lead and ground it; run all AVC line leads to secondary to another jack installed on rear of transceiver chassis.
formers you must use the proper alignment tool. Attempts to use a screwdriver will damage the transformers. The $100-\mathrm{ke}$ transformers require a hexagonal alignment tool whose parallel sides are $1 / 8$-inch apart. The 262 -kc transformers require a K-Tran alignment tool.

Temporarily disconnect the cable to the Slicer's input (J1). Connect a VTVM set to about - 15 VDC to point $\mathrm{C}(\mathrm{C} 11)$ and connect an audio-frequency generator set to 100 kc to point B (pin 1 of V 2). If you are using 262-kc transformers use an RF signal generator set to 262 kc .

Adjust the generator's output for the lowest readable meter indication; if necessary. switch to a lower meter range. Turn T3's bottom slug full counterclockwise. Then slowly turn the slug clockwise until the meter peaks. There will be two peaks but the correct one is with the slug nearest full counterclockwise. Align T3's top slug the same way. Then repeat the procedure. As you adjust the slugs the meter may go off scale. Rather than change the meter's setting, reduce the generator's output. Connect the signal generator output to point A (pin 7 of VI) and repeat the procedure on $T 2$.

Now connect an RF signal generator set to the transceiver's IF frequency to JI. Adjust Tl's slug-starting from full counterclock-wise-for maximum meter indication. Disconnect the generator and connect the transceiver's output cable to Jl .
lune in a station on, let's say, channel 10 to check dial calibration. If the calibration is off, turn the tuning knob so the channel 10 dial marking is directly under the pointer. Now adjust $T 1$ so you receive channel 10 right on the nose. This will be the point of highest meter indication.

Finally, tune in a strong station and adjust the transceiver's last IF transformer for a maximum meter indication. Disconnect the VT VM and the Channel Slicer is ready to go.

Just so you don't think that something's wrong we'd better warn you of what reception will sound like with the Slicer. The volume will be about that of an unmodified transceiver but everything will sound unusually quiet. This is normal. The less IF bandwidth, the less noise. With 100-kc transformers tuning will be razor sharp. In fact, if you're tuned to the center of the channel and someone comes in 3 kc off frequency, it's quite likely you won't hear him. With $100-\mathrm{kc}$

Because of the frequency at which the Channel Slicer operates. layout is importont. Duplicate the arrangement shown here and you won't run into trouble later on. Install capacitor C3 on oscillator transformer Tl before you mount the tromsformer. Center lug on Pl's socket is frame and is grounded. It your socket doesn't have such a lug. ground one of the filament leads to the socket's frame. Use heat sinks on D1's leads when soldering in place.

CB CHAMEE SLLCEH

transformers, and to a lesser degree with 262-ke transformers, speech will sound somewhat muffled. This also is normal.

Service Hints. If T2 and T3 can be aligned but the IF signal cannot be pushed through the Slicer, the oscillator may be inoperative. Check this with the VTVM connected to pin 1 of V1. If the oscillator is working you will get an indication in excess of -10 VDC. If you fail to get the correct indication, check to see if a pair of Tl 's leads is reversed.

If the Slicer is working-as evidenced by your ability to align it and feed a signal through-but won't work when connected to the transceiver, either Tl is adjusted incorrectly or the connections to the transceiver's last IF transformer are incorrect - v

Chassis is wide open; therefore, you shouldn't have difficulty getting everything in place. Long leads will cause trouble, so keep them short.

MANY is the hobbyist who has put together, say, a speaker cabinet requiring a couple of dozen screws. By the time the last one was in, he would have given his numb right arm for a power screwdriver. But there's no need to run out and buy one when you own a common electric drill. True. the speed of the drill is much ton high to drive screws. But our Full-Range Speed Control can solve this problem easily. Plug the drill into the controller, turn the knob counterclockwise to get the speed way down and that second cabinet will go together in half the time.

Speed controls are becoming both popular and plentiful but they're not all alike. Most are half-wave jobs with limited control range and fading torque. Our controller is a full-wave design that permits you to vary the speed of any universal motor from full speed to a virtual standstill-and the torque (or twisting power) remains constant

FWLL-RANEE SPEED GONIROL

Now you can have the ultimate versatility in power fools or appliances with variation in rpm from full speed to a virtual stondstill—and with torque that a/ways will remain constant.

By DARRELL THORPE

SPREED CONTIROL

throughout the range. As the work load increases so does the power supplied to the tool to maintain torque.

There are many applications for the controller. When using a saber saw to cut metal or hard wood you must slow the motor to keep the blade from overheating. When cutting plastic the speed of the saw also will have to be reduced or the heat build-up will melt the cut edges of the plastic, causing them to fuse.

Or suppose you have to drill a $1 / 2-\mathrm{in}$. diameter hole in a thick piece of steel. Run the drill at full speed and the bit will burn up. lose its cutting efficiency and the hole will be filled with burrs. Not so at slow speed, though, and you'll be able to start the hole without a center punch because the bit won't creep.

Besides being able to reduce the speed of shop tools, the controller will work with fans. movie projectors, sewing machines, food blenders, sanders, lathes, vibrators or almost any tool or appliance that has a series or universal (brush) motor that does not draw

Fig. 1-Inside of controller. Mount SO1, F1. S1 and R4 near the edges of the cabinet to allow room for the heat-sink chassis in the center. Lead from BJ on Ql goes only to anode of SR4. Underside of heat-sink chassis. below. Mount SCR1 and SCR2 as shown in the detail diagram at the right. Be careful when installing the chassis that SR1 and SR2 do not touch the cabinet or get pushed aqainst SCR1 and SCR2.

Fig. 2--Put lape on the mside of the other half of Minibox so that Rl's (top) and Cl's (bottom) leads do not short to the cabinet.

Fig. 3-Detail diagram above shows how SCRs are mounted with hardware supplied with them. Heal-sink chassis dimensions are shown below.
more than $61 / 2 \mathrm{amps}$. Although some of the aforementioned appliances have built-in speed controls, the speed range and torque characteristics will be improved greatly by our controller. How does the controller achieve all this?

Many early-design speed-control devices had only one controlled rectifier. Hence, they were able to supply only half-wave power to the motor. This meant that the maximum speed was only about half the normal full speed. And at less than full speed many motors can't develop sufficient torque to keep turning as the work load increases.

Our controller overcomes these disadvantages because it provides full-wave power to the motor. It has a unique feedback circuit that furnishes extra power to maintain torque as the work load increases. To test this characteristic after you've built the controller. plug a drill into it and set potentiometer R4 for a speed of about 100 rpm . Then hold the chuck with your hand and turn the drill on. You'll be pleasantly surprised at the high starting and running torque.

Construction. Because many of the semiconductors used in the controller may be difficult to obtain locally, we have arranged with Allied Radio to supply a package of all parts except the fuse, resistor R1, the AC plug and other small hardware. However, our Parts List has sufficient information for you to purchase all parts on your own if you choose to do so. The Parts List includes Allied's special stock number and price for the parts package.

Our model is built in a $3 \times 51 / 4 \times 21 / 8-\mathrm{in}$. Minibox. Silicon-controlled rectifiers SCR1 and SCR2 must be mounted on a $1 / 16$-in.thick aluminum (or copper) chassis. It is important that the chassis be this thick since it serves as a heat sink. A thinner piece of metal will not conduct the heat away quickly enough to prevent damage to the SCRs.

The SCRs also must be electrically insulated from the chassis, as shown in Fig. 3, with two mica washers, a bushing and hardware supplied with them. It is important that the holes for the SCRs be free of burrs or the mica washers may be punctured and there will be a short. This will create a shock hazard because the cabinet would have one side of the AC line connected to it. After the SCRs are mounted, install diodes SR1, SR2, SR3 and SR5 on the underside of the plate as shown in Fig. 1.

Drill the necessary mounting holes in the cabinet for mounting the SCR chassis, speedcontrol potentiometer R4. on/off switch S1 and the fuse holder. However. do not mount R4. SI and the fuse holder in the cabinet until the SCR chassis has been installed. After all major parts are mounted. complete the interconnecting wiring. Where wiring must carry the load current, use heavy wire.

If the motor requires between 2 and 3 amps. RI should be a 1 -ohm. 5 -watt wirewound resistor. For a 5 to 6 amp motor. RI should be a $1 / 2$-ohm. 1($)$-watt wirewound resistor. If you want to be exact about it. com-
pute R I with this formula: $\mathrm{RI}=2 / \mathbf{\mathrm { m }}$. where 1 m is the maximum rated current of the appliance's motor in amperes.

Operation. Plug the appliance into SO| and plug PL 1 into an AC outlet. Set switch Sl to on. With the speed-control knob fully clockwise, the tool's motor will operate at full speed. Turning the knob counterclockwise will reduce speed until the motor runs at only a few rpm.

If you cannot slow down a power tool sufficiently, connect a $10,000 \mathrm{ohm}, 1 / 2$-watt. 10% resistor in series with R3.

Most tools and kitchen appliances have a universal motor. However, if you are not sure of the type of motor, look for brush holders. or brushes, which are characteristic of this type of motor.

Fig. 4-Amount of power full-wave bridge (SR1, SR2, SCR1. SCR2) furnishes to motor (at SOl) is a function of the point in each half of the AC cycle at which the SCRs are caused to conduct by voltage applied to gates. This is established by phase-control circuit (C1, R3, R4, D1, Q1).

PARTS LIST

C1-. $33 \mathrm{mf}, 200 \mathrm{~V}$ tubular capacitor
C2- $10 \mathrm{mf}, 25 \mathrm{~V}$ electrolytic capacitor
D1-Zener diode: 7 V, 1 watt, $\pm 10 \%$. Sarkes Tarzian VR7 (Allied, $\$ 1.50$ plus postage) F1-6 A, 3AG fuse and Littlefuse Type 342014 holder
PLI-AC plug with ground lug
Q1-2N2160 unijunction transistor (GE)
R1—Resistor (see text)
R2- 15,000 ohm, 2 watt, 10% resistor
R3- 3,300 ohm, $1 / 2$ watt, 10% resistor
R4-25,000 ohm linear taper potentiometer (Mallory U-29 or equiv.)
R5- $220 \mathrm{ohm}, 1 / 2$ watt, 10% resistor S1-_DPST toggle switch rated at 6 A or higher SCR1, SCR2-Motorola MCR1305-4 siliconcontrolled rectifier: 8 A, 200 PIV (Allied, $\$ 2.15$ plus postage)
SO1-AC socket with ground lug
SR1, SR2, SR6-3 A, 200 PIV rectifier. Motorola MR1032A (Allied, 67¢ plus postage)
SR3, SR5-1N4004 rectifier: 1 A, 400 PIV. Motorola (Allied, 67% plus postage)
SR4-1N4001 rectifier 1 A, 50 PIV. Motorola (Allied, $45 \not \ddagger$ plus postage)
SR7-1N4003 rectifier: 1 A, 200 PIV. Motorela (Allied, 60% plus postage)
Misc.- $3 \times 51 / 4 \times 21 / 9-i n$. Minibox (Bud CU $2106-A$ or equiv.), $1 / 16-\mathrm{in}$. thick aluminum.
NOTE. A package of parts including the fuseholder (but not F1, PL1, R1, terminal strips, $1 / 16$-in. aluminum, the line cord and small hardware) is available from Allied Radio Corp., 100 N. Western Avenue, Chicago, III., 60680. The price is $\$ 14.95$ plus postage. Specify special stock No. 39 AX 820.

MANY people say a little booze is the best way to start a tea party swinging. Could be, but we guarantee that anyone who wears our Electronic Name Dropper to a social will find himself in the midst of a crowd in less time than it takes to pour a double Scotch on the rocks.

So if you're the shy type and have trouble asking names, just tuck our Name Dropper in your pocket and wait for spectacular results. The gadget costs about $\$ 8$ to build, and that's economical in terms of Arthur Murray dance lessons or Charles Atlas muscies.

The Name Dropper has other uses, too. At conventions, where look-alike name tags are standard, it gives you a chance to be different. It can be made to supply flashing numbers for the front of your house, or it can become a warning light when you're stuck on the road at night.

Construction

The Name Dropper can be built in a $5 \frac{1}{4} \times 3 \times 21 / 8$-inch Minibox. Since this is the thinnest box on the market that will accommodate all the parts, cut its thickness down to about I $1 / 4$ inches with a hacksaw so it will fit comfortably into your jacket or trouser pocket. In the bottom of the case mount a Keystone Model 182 battery holder for the four penlight batteries.

Directly above the battery holder mount Cl and hold it in place with a heavy wire soldered to one of the holder's lugs. Mount Tl in the upper right corner of the case and mount Q1 upside down in the upper left corner. Switch SI should be mounted in the top. The hole through which the wires to the NiteLite pass should have a grommet.
Cut the lugsoff a Sylvania Panelescent NiteLite so they are about $1 / 8$-inch long and solder a pair of twisted leads to the nubs. To one of the nubs solder a piece of stiff wire shaped like a clip. This will hold the Nite-Lite in your lapel pocket. Be sure to tape the exposed nubs and clip. The 500 volts they carry could give you a man-size jolt that would be dangerous.

Operation

The oscillator circuit produces a strong pulse about every half second, using the parts values specified. This short pulse is stepped up by TI to about 500 volts. The pulse is fed to the Nite-Lite, causing it to flash much more brightly than it would when plugged into an $A C$ outlet. However. the flash duration

ELECTRONIC NAME

 $\because{ }^{D R} 0_{P_{P}}$You come on strong at cometan or atat ood E no one forgets your name ... if you're properly equipped!

NAME DROPPER

is short and the average power delivered to the Nite-Lite is about the same in both cases.

By reducing the value of R1, the flashing speed can be increased. In fact if RI is reduced in value sufficiently, the Nite-Lite stays on all the time. R2 controls the length of time the Nite-Lite is on. By changing R2's value you can increase or decrease the on-time independently of the flashing speed.

Don't worry about a squeak in the transformer. It is normal and is caused by the heavy surge of current through the primary. The sound comes from loose transformer laminations. As a matter of fact, the squeaking adds another attention-gathering feature to the gadget.

We found the best batteries to use are pen-light-size alkaline energizers. They cost more than ordinary flashlight batteries but they produce a brighter flash and last longer. It you want to keep the size down, use smaller mercury batteries but keep the operating voltage around 5 to 7 volts.

You can letter the Nite-Lite with India ink or transfer-letter decals. The decals are available in a wide assortment of sizes at art supply stores. To protect the letters, spray the face of the Nite-I ite with clear lacquer

PARTS LIST

B1-B4-1.5-volt alkaline-energizer penlight battery
C1-1,000 mf, 6 V electrolytic capacitor Q1-2N176, 2N554 or 2N669 trans stor R1-2,700-ohm, $1 / 2$.watt resistor (see text) $\mathrm{R} 2-56.0 \mathrm{hm}, 1 / 2$-watt resistor (see text) Sl-SPST slide switch
Tl_Transistor output transformer (Stancor TA.10)

When Sl is closed Q1 conducts, producing heary current in primary of Tl . which is stepped up to tire Nite-Lite. Current also charges Cl. which then culs off Ql, causing the Nite-Lite to go off.

Our model was built in a standard $51 / 4 \times 3 \times 21 / 6$ inch Minibox, which was cul down so the thickness was reduced to $11 / 4$ inches. The case will easily fit into your jacket pocket with relative comfort.

There's plenty of space in Minibox for uncrowded layout. Cl is held in place by heavy wire soldered to lug on battery holder. Q1 is mounted upside down with machine screw through the case.

SLOT-CAR LAP TIMER

Now you can worry iust like Jim Clark and Dan Gurney about how to get your lap time down to minimum!

By AL TOLER
YOU could be running absolutely flat-out on your HO or $1 / 32$ nd track at home or wheeling with the best on the big banks at a slot parlor but all the soup-ups, tune-ups and stillful driving won't mean a thing unless you can prove it. And the way to do that is to race against an accurate clock.

You might win heat after hea: but no one will know who really is the Jim Clark of the house until yous use the same kind o: neasuring stick that they employ on the oval and road courses-lap times. Clark holds many lap records. So do Graham Hill and Dan Gurney. Who holds the lap record at your house or slot parlor? Now you can build our Lap Timer and find out!

While you can time slots with a stopwatch. the split-second pauses at the start and finish become a mighty large error when you consider that the average lap time is but a few seconds. But our timer is controlled by

the cars themselves-as on regulation tracks.
The timer starts when the car breaks the beam of light across the track. When the car comes around and breaks the beam again the timer stops. Since the timer is light-controlled, there are no mechanical connections to slow or throw the cars. In addition, the timer can be set up anywhere-curve or straightaway. Take it to a friend's layout or even take it down to your slot parlor.

The timer consists of three units: control box, remote-pickup box and light-source box. All component values are critical. Do not make substitutions.

The control box is built in the main section of a $3 \times 5 \times 7$-in. Minibox. You must mount impulse-relay RY1 on the bottom as shown. If it's installed on the side or the top RY1 may trip slowly-causing timing errors--or may not trip at all.

RY1 is supplied with two sets of DPDT contacts but only one set is used; it doesn't matter which as long as one lead is connected to the wiper (B in pictorial).

The specified clock motor (CM) makes a 360 -degree sweep in 60 seconds; it was selected because it costs only $\$ 1.19$ and because our car takes slightly less than one minute to get around our track. While a 60 -second sweep will be adequate for many tracks, you might prefer a slower or faster sweep.

Motors are available which turn as fast as I revolution per second or as slow as 1 revolution in several minutes. The choice is yours and depends on track length and speed of your car. Our chart lists some other clock motors and their prices.

Position the motor in the cabinet so the largest possible dial can be used. Since the motors are equipped with only a shaft, drill a

Interior of control box. Our motor was mounted $31 / 4 \mathrm{in}$. from top of $3 \times 5 \times 7$-in. cabinet to allow room for a $41 / 2-\mathrm{in}$. dial and for relay RY1.

Light-source box. Push pilot lamp through grom. met so edge of lamp's base is fush with side of grommet. We added a switch for convenience.

Pickup box. Cover photocell with tape so tape extends $1 / 2$-in. beyond cell's, face. Fit cell through $1 / 4$-in.-dia. hole so tape protrudes $1 / 4 \mathrm{in}$.

Light source and pickup boxes on track. Light from pilot lamp to photocell must be high enough to be broken by body, not just wheels.
tight-fitting hole in a block of plastic or wood and cement it on the motor's shaft after the motor is installed. Draw a dial on a piece of stiff paper, glue the paper on the cabinet and then cement a pointer to the shaft block with epoxy.

The pickup box is a $31 / 4 \times 21 / 8 \times 15 / 8-\mathrm{in}$. Minibox. Place a car on the track and measure the distance from the table-not the track-to the center of the side of the car. Then drill a hole in main section of the Minibox the same distance from the edge. This is important because if PC1 is mounted too low the car's wheels will interrupt the beam and produce two pulses-instead of one-each time the car passes.

Drill a $1 / 4-\mathrm{in}$. hole and then mount a threelug terminal strip directly behind the hole. Wrap three turns of plastic electrical tape around PCl forming a tube so that the face
of PCl is recessed $1 / 2 \mathrm{in}$. from the front of the tube. Then wrap two turns of tape around the back of PCl so it is light shielded.

Position PCI in the hole sc only $1 / 4 \mathrm{in}$. of tape tube protrudes from the front of the cabinet. Secure PCI by wrapping several turns of wire around it, then solder the wire to the center lug of the terminal strip. Make the pickup box's connecting lead long so it can be located a distance from the control box.

The light-source box is the same size as the pickup box. Drill a $1 / 2-\mathrm{in}$. hole in the box the same distance from one edge as you did for PCl in the pickup box. Then install a $1 / 2-\mathrm{in}$. rubber grommet and push P1, a No. 47 lamp, into the grommet from the inside so the base just touches the grommet. Solder Tl's secondary leads directly to PI's base and the center terminal.

Scheinatic of light scurce is in upper left comer. Control-box circuit is at right. When beam of light on PCl is broken by car, SCRI fires, causing RY1 to trip and clock motor CM to start. Because RYI is latching-type relay, its contacts remain closed after light beam comes back on. When car returns and breaks beam a second time, SCRI fires and energizes RY1. causing its contacts to open and motor to stop.

CM-1-rpm clock motor (Olson Electronics MO-113). See text J1-Phone jack
NL1-NE-23 neon lamp (Allied 7 U'S50, 16 q plus postage Not listed in catalog.
F1-No. 47 pilot lamp
PCl--Photoconductive photo.
cell; Clairex type CL-603A
(Allied 7 U 462)

PARTS LIST
PLl-Phone plug
R1- 100,000 ohm, $1 / 2$ watt. 10\% resistor
RY1-Impulse relay: 115 VAC coil, DPDT. Potter \& Brumfield type PCllA. (Allied 76 U 500 or equiv.)
Sl-Pushbutton switch
S2-SPST toggle switch

SCR1-GE type C6B silicon con. trolled rectifier. (Allied No. C6B. $\$ 2.07$ plus postage. Not listed in catalog)
SR1-Silicon rectifier: 750 ma, 400 PIV. (Lafayette 19 R 4202)

T1—Filament transformer: secondary: 6.3 \vee @ 0.6 A

Plug the pickup box into SO1. Turn on the light source and put it about 6 in . away from $\mathbf{P C 1}$. Then turn on the control box with S2. The clock motor may or may not start-it doesn't make any difference. Also, RY1 may or may not click when S2 is closed. If RY1 buzzes turn off the power and check to see that PCl 's plug is making good contact in JI . If the connection checks out, look for a wiring error. (Note: RY1 will buzz if the light doesn't fall directly on PC1.)

Break the light beam with your finger. If RY1 fails to click in, check that SR1 is not installed in reverse and is not defective. If SR1 is all right and is installed correctly and RY1 still fails to operate, cover PCl with your finger and see whether NL1 is glowing. If it is not, check the wiring of R1, PCI and the SCR's gate (G) lead.

If everything checks out-indicating the control-box circuit is put together properlytrip RY1 once by passing your finger in front of PCl to stop the timer. Bring the timer back to zero by pressing and holding S2. Finally, make a tube about 1 in . long from stiff paper and fit it over P1.

Place the pickup box on one side of the track and the light-source box on the other side of the track so P1 is shining directly at $\mathrm{PC1}$. Then turn on power with S 2 . If the
motor is running place your finger in front of PC1 to stop it. Then reset the timer to zero with PB1. Place the car (s) directly behind PC 1 and let it go. The instant the car cuts the light beam, the timer should start. When the car comes around and cuts through the beam a second time the clock motor will stop and indicate the lap time. Reset on the second lap and then time the third. The timer will time every other lap.

TIMING MOTORS				
RPM	Sec. per revolution	Mfgr.	Price	Source
$1 / 4$	240		$\$.59$	Olson Elec. tronics MO-115
1	60	Ingraham	1.19	Olson Elec- tronies MO-113
4	15	Hurst Type SM	10.68	Lafayette 30 R 3802
6	10	Hurst Type SM	10.68	Lafayette 30 R 3803
30	2	Synchron	4.95	* Herbach and Rademan HI-14
60	1	Synchron	4.95	* Herbach and Rademan HI-18
150	0.4	Synchron	4.95	* Herbach and Rademan HI-21
* 1204 Arch St., Philadelphia, Pa. I9107.				

By russ alexander IT occupies little more space than a telegraph key, W6IEL weighs less than the power transformer it does not have, yet is more powerful than any of the popular lunch-box rigsthat's our Mini-Mitter, a neat $281 / 2$-ounce package that can put a clean 15 -watt (input power) signal on the 40 -meter band.

Secret of the Mini-Mitter's small size, of course, is the missing power transformer. In its absence, power is provided by a solid-state voltage doubler. The two tubes aren't visible because they're mounted on the outside of the back panel to keep everything cool. And because the two tubes have $50-\mathrm{V}$ heaters they are connected in series with a power resistor across the line. This means no tilament transformer, either.

The first day we put the Mini-Mitter on the air in California we contacted not only the East Coast but UAфER in Russia as well (see log excerpt)!

Fig. 2-Rear (above) and front (right) panels. Standoti terminals (circle at extreme left) that hold R9 are sol.

Mini-Mitter

Later we worked Japan. Alaska and many points in the U.S.A.

When our main rig failed, Mini-Mitter kept up our MARS schedules and maintained other schedules up and down the Pacific Coast. Because of its vest-pocket size, MiniMitter has been carried along on several field
trips without difficulty. It and a Drake 2-B** receiver were powered by a 12 VDC-to-117 VAC converter in the car. On several radio picnics we used all sorts of antennas hung from trees, kites and balloons.

The Mini-Mitter circuit is pretty straightforward but includes several unusual teatures. As we said, instead of the usual heavy power transformer, there is a solid-state voltage doubler for the plate supply. A neon lamp is used as an RF-resonance indicator.

Fig 3-Photo of completed panels ready to be installed in cabinet. Only lead from Cll on right panel remains to be connected to $\sqrt{2}$ in upper corner of left parel. Waich tor loose struads on interconnect. ing wires at leminal strips. These strips are close to panel edges. Monnt all of the com.
 ponents near panels.

dered to C10. C11. Mount others with screws. seeing that screw heads on L4's don't touch plates of C10. Cl I.

The rapid response of the lamp to RF voltage provides visual monitoring while you send and is of great help when tuning.

The final has pi-net tuning and there's a switch to add or remove capacity for matching to different impedance antennas. The power supply delivers about 310 V when the key is down. All of this goes to putting out a mighty easy-to-copy signal.

Mechanically, the Mini-Mitter has several features which simplify its construction.

Refer to the pictorial in Fig. 2. Note that the front and back panels are separate parts that are joined electrically by flexible leads. This makes it possible to mark and drill the panels and then mount and wire the components on a flat surface. Layout and handling are thus simplified.

Construction

The first step is to remove the front and back panels from the $3 \times 4 \times 5-\mathrm{in}$. case. Holes

Fig. 4-Sketch at lar left is of supporting plate (ot 1/16-in. scrop aluminum) that should be used to support and electrically comect front and rear panels so transmitter can be operated out of cabinet. Plate is shown in use in Fig. 6. Sketch at left shows method of mounting key jack 11 so it is insulated elec. trically from cabinet.

Fig. 5-Schematic of Mind-Mitter. Since JI is connected directly to one side of line. it must be insulated from cabinet. Make sure the AC plug is wired so that one side of the key will not be hot.

Mini-Mitter

for mounting the components should be drilled next. As an aid to laying out the panels, rubber-cement brown wrapping paper on them. After marking and drilling is completed the paper can be pulled off easily and the rubber cement can be rolled off. This technique prevents the panels from being scratched and permits laying out all holes with easy-to-see pencil markings.

Next, install 6 -lug terminal strips (TSI, TS2) on the bottom of each panel. The lugs are the component and wiring terminations (shown as circles on the schematic) and are used to join circuits on front and back panels.

The power-supply filter capacitors (Cl 3 and CI4) are mounted by cementing their cardboard jackets directly to the front panel. Cambion (Cambridge Thermionic Corp.) standoff terminals rather than ordinary terminal strips are used to support several components. These lugs are excellent space savers for miniature equipment. One is shown in detail in the circle at the extreme left of the

PARTS LIST

Capacitors: ceramic 'disc unless otherwise indicated
C1—30 $\mu \mu \mathrm{f}, 1,000 \mathrm{~V}, \mathrm{C} 2-220 \mu \mu \mathrm{f}, 1,000 \mathrm{~V}$ C3, C6, C9, C15, C16-. $02 \mu \mathrm{f}, 500 \mathrm{~V}$
C4, C5-. $001 \mu \mathrm{f}, 500 \mathrm{~V}, \mathrm{C}, \mathrm{C}$ - $.01 \mu \mathrm{f}, 500 \mathrm{~V}$
C10, C11-10-365 $\mu \mu \mathrm{f}$ variable capacitor
(J. W. Miller No. 2111. Newark Electronics

40F190. \$2.10 plus postage)
C12-390 $\mu \mu \mathrm{f}, 1,000 \mathrm{~V}$
C13- $60 \mu \mathrm{f}, 150 \mathrm{~V}$ electrolytic
C14-60 $\mu \mathrm{f}, 350 \mathrm{~V}$ electrolytic
J1-Open-circuit phone jack
J2-Coax connector, SO-239
Ll-620 μ hy RF choke (J. W. Miller No. 4650)
L2-. 15 mh RF choke (J. W. Miller No. 4644)
L3-2.5 mh RF choke (J. W. Miller No. 6302)
L4-Barker and Williamson Miniductor No. 3007. 2 -in. long, $5 / 8$-in. dia., 16 turns per in. (Lafayette 40 R 1616 or equiv.)
M1-0-100 ma DC milliammeter (Lafayette 99 R 5055 or equiv.)
NLI, NL2-NE-2 neon lamp
Resistors: $1 / 2$ watt, 10% unless otherwise indicated
R1-47,000 ohms, R2-8,200 ohms, 1 watt
R3- 27,000 ohms, R4-130 ohms, 5 watts
R5-6,200 ohms, 1 watt, R6, R7- 10 ohms, 1 watt
R8-100,000 ohms, R9-40,000 ohms, 10 watts
S1, S2-Miniature DPDT toggle switch (Lafayette 99 R 6162 or equiv.)
SR1, SR2-Silicon rectifier, minimum ratings: 750 ma., 600 PIV
TS1, TS2-6-lug terminal strip
V1-50HC6 tube, V2-50L6GT tube
XTAL-40-meter crystal and socket
Misc.-Solder terminals (6 reqd. Cambion No. 1947-2. Newark Electronics 40F1842). 7 pin tube socket, octal tube socket, 3×4 $x 5$-in. utility box (LMB No. U.C 971 , Newark Electronics 91F1025), 4-lug terminal strip

Fig. 6-Photo shows how mounting plate shown in Fig. 4 supports front and rear panels to permit transmitter to be operated out of the cabinet.

Fig. 7-Rear view of Mini-Mitter. If you leel uneasy about building the transmitter in such a small box the answer is obvious. Get a larger cabinet!

Tune Up

The Mini-Mitter is now ready for testing with a 15 -watt, 117-V lamp. After inserting the tubes, plug in a 40 -meter crystal and the key. Turn on your receiver and tune it to the crystal's frequency. Turn on the receiver's BFO. Turn on the Mini-Mitter's power and note if NL2 and the tubes light up.

After a warmup of about one minute. press the key. If the Mini-Mitter is wired correctly vou'll hear its signal on your receiver. Close $\$ 1$ and adjust ClO (tune) to obtain the brightest glow from NL. 1 and the lowest plate current, as indicated on MI. (From the full counterclockwise position, we used the first dip.) The 15 -watt lamp should glow. indicating RF output.

To load the transmitter. gradually decrease the capacity of C1I (open its plate), simultaneously dipping plate current by adjusting Clo. At maximum loading the meter should indicate about 80 ma and the neon and $15-$ watt lamps will glow brilliantly.

The Mini-Mitter is now ready to go on the air. Connect it with RG59/U coax to a dipole or vertical 4()-meter antenna and tune it again. using an SWR or field-strength meter, if available. Capacitor C12 may be cut in or out of the circuit, as needed, for different connect the two with flexible insulated leads between the indicated lugs on TSI aflatersphistoryantennas

Potted parts, an hour's time and you've got the beat.

"IIME is the stuff life is made of," someone once said. And it you've studied a musical instrument you know how true this is since timing and rhythm are as important as hitting the right note. To get the music really swinging you've just gotta have the beat. Best way to develop it is with a metronome.

Most standard spring-wound metronomes cost around \$12. Commerciallymade electronic metronomes could run a lot more. However our Modular Metronome (MM) can be built for about $\$ 6$. Its construction is so simple that all you have to know is the difference between black and white piano kev to get it together.

Secret of its simplicity is a module designed specifically for the application. It's a potted black cube that contains transistors, capacitors and resistors: five leads extend from it.

Add batteries, a potentiometer, switches, a resistor and a speaker and you've got a two-speed metronome that counts from 20 to 200 beats per minute. And besides being useful to musicians, it can also be used as an audible timer in a darkroom. For this application you'd just set the MM to 60 beats per minute and count off the seconds. This will allow you to pay full attention to other operations instead of watching a sweep-second hand on a clock. You could even use the MM to help you count sheep when you're trying to fall offi to sleep.

Construction. A $3 \times 4 \times 5$-inch Minibox will house the MM perfectly. The speaker is mounted in the top of the box. Use a piece of grille cloth or perforated metal to protect the speaker's cone from dirt or damage.

Potentiometer R1 should be mounted in the upper center of the front panel as shown in the photo on the next page. On-off switch S2 should be mounted on the lower left side of the front panel, and slow-calibrate switch SI should be mounted at the lower right.

Switch S1 and resistor R2 aren't really necessary, but their added expense is worth it for two reasons: 1) They produce an extra slow speed of about 20 beats per minute, and 2) they spread out the calibration markings. Even if you don't want the two-speed feature, it's a good idea to use R2 for the second reason. If you don't use S1, place S2 in the center of the front panel.

All wiring is straightforward and not critical. Terminal strips are not required

Instructions supplied with metronome module specily a 2-megohm potentiometer for Rl. However we used a $1 / 2$-meg. ohm potentiometer to get the unit to operate at about one beat every three seconds when Sl is open. Close Sl and slowest speed is about 40 beats par minute. Speed increases as Rl's wiper approaches R2.

PARTS LIST

B1.B4-1.5-volt penlite battery
R1-500,000-ohm linear-taper potentiometer
R2-330,000-ohm, $1 / 2$.watt resistor
S1, S2-SPST slide switch
SPKR-2-inch PM speaker
Metronome module (Lafayette SP.298)
Misc. $3 \times 4 \times 5$-inch Minibox. pointer knob. battery holder

Mount the speaker on top of the cabinet and glue the module in place. Author used plastic boxes for batteries, but a Keystone type 182 battery holder (Allied 55 j 904) will do the job just as well. Cover the module leads with spaghetti.
since the module leads can be used for tie points.

It's a good idea to mark calibrations on a separate circular disc rather than on the front panel since calibration is affected by battery voltage and, to some extent, by temperature. Cut the disc from a thin sheet of soft aluminum and paint it dull black or dark gray. It should be about $31 / 2$-inches in diameter to allow the use of a large pointer knob and so there will be plenty of room for all markings. By sandwiching the disc between an extra set of nuts and washers on R1's shaft, the disc can be turned to correct calibration.

Calibration requires a sweep-second hand watch and patience. With the disc mounted in position, turn on the MM and close SI. Rotate R1's shaft full counterclockwise, aim the pointer knob straight down and tighten it on the shaft. Now, simply count the number of beats in one minute. There should be
around 40 , but this may vary with individual modules.

Great accuracy is not required or attainable with the MM, so count to the nearest round number. Rotate the knob about 45 degrees and count for one minute. Put a light pencil mark on the disc opposite the pointer and keep track of the number of beats for each mark on a separate sheet of paper. You'll find after about 180 degrees of rotation that the speed increases more rapidly with only a small change in knob position. therefore pick out numbers about 20 beats apart.

When calibration is completed remove the disc and mark it with transfer-type numbers. The easiest way to check the calibration is at 60 beats per minute. Always move this marking on the disc under the pointer knob when it is set for this speed. The rest of the scale will now be pretty close. -

WHAT YOU CAN DO WITH

 KNIGHT'S KG-221 VHF RECEIVER
First build the kit.

Then modify it
—that's what!

ABIG world of fascinating listening awaits you in the VHF reaches of the radio spectrum. Once you've spent a few hours monitoring some of the bands, you may just put the old short-wave receiver back up on the shelf and give the TV set a well-deserved rest.

One of the best ways to break into VHF is with the $\$ 39.95$ Knight-Kit KG-221 FM receiver which tunes from 152 to 174 mc . First we'll talk about the kit and then describe later how to modify it for operation from 88 to 176 mc .

The $152-174-\mathrm{mc}$ band for which the receiver is designed will enable you to monitor police and fire calls, private mobile telephone conversations, Civil-Defense messages, U.S. Weather Bureau reports, taxis, railroads, public-utility vehicles as well as conservation and forestry-service communications. Modified, the receiver will tune the $88-108-\mathrm{mc}$ FM broadcast band, the 108 - to $136-\mathrm{mc}$ aircraft band and the 2-meter (144 to 148 mc) ham band.

The KG-221 is not a difficult or time-consuming kit to put together. The circuit includes five tubes and one transistor. Because of the frequencies it tunes, the critical frontend is supplied completely assembled and aligned.

The Circuit

The front-end consists of a dual triode (12AT7) one section of which is a mixer; the other section is a Colpitts oscillator. You simply mount the assembly on the chassis and make four connections to it.

The mixer's output is amplified by two $10.7-\mathrm{mc}$ IF stages (I2BA6) and fed to a

ratio detector (the solid state diodes are built in the ratio-detector transformer). From the detector, the audio signal is amplified by two triodes (12AX7A) and fed to a 6AQ5 power amplifier. The squelch circuit contains a single transistor. The transformer power supply is half-wave, solid state. Other features include vernier tuning, headphone jack (8 ohms) and a squelch control.

How did the kit go together? Without any hitches. The manual is profusely illustrated with large pictorials each of which covers only a few steps. This means uncrowded illustrations that are very easy to follow.

The few parts that went into the kit were logically packaged and all resistors came

Fig. 1-Top-chassis view of recelver. Front-end is supplied wired and aligned. It's on the chassis on which the antenna terminal strip is also mounted.

Fig. 2-Underside of chassis. Note how little crowding there is. Everything is wide open and there are no tight corners to work in. Froat-and fits in large area at right. Large hole in front-end chas. sis can be used for wires added for modification of recelver for operation on other bands.
mounted on cardboard strips and identified. We completed construction in about 5 hours.

How it Worked

The KG-22l's front-end and IF transformers are supplied pre-aligned, and well aligned they are. Sensitivity necessary to deliver an intelligible signal was $9 \mu \mathrm{v}$. Instrument alignment only improved the sensitivity to $8 \mu \mathrm{v}$. Either factory or instrument aligned, the receiver's squelch opens up the audio at the point where the signal strength is just strong enough to produce intelligibility-a good feature.

While the selectivity-the ability to reject interfering signals on adjacent frequenciesis not outstanding, it will be adequate most

Fig. 3-Vlew of tuning capacitor before modification. Coils weren't bent by accident. Knight shaped them this way during alignment procedure.
of the time.
Image rejection is about 8 db -comparable to that of an inexpensive short-wave receiver. Considering that the band covered by the KG-221 is not going to be busy everywhere at the same time, image interference was not and will not be a problem.

Audio quality is exceptionally good though there is a tendency toward microphonic howling at high volume levels. However, this is common in inexpensive high-frequency receivers. Knight makes mention of the possibility of this happening in the instruction manual and suggests you use an external speaker, which can be plugged into the headphone jack, for high-volume listening.

Our on-the-air test revealed some distor-

Fig. 4-Vlew of tuning capacitor after modification. Coils were removed and bracket with two coll sockets was added. Note short connections.

KNIGHT'S KG-221 VHF RECEIVER

tion which we at first thought was caused by overload from a strong signal. We felt this was possible since the receiver lacks AGC. Curious, we did a little troubleshooting and found a defective ratio-detector transformer. We replaced the transformer and the problem was solved.

While Knight includes an instrument alignment procedure (which they do not recommend unless a repair results in changes to the factory alignment) it requires a special signal generator not generally found in even the hest radio-TV service shops. We tried alignment with the type generator you'd find on a hobbyist's bench and found the receiver could be aligned easily using standard techniques.

But as we said, home alignment is not necessary since factory alignment is just about perfect. As K.night suggests, we recommend you don't realign the receiver unless absolutely necessary and then only if you've had experience with VHF-equipment alignnent.

Weighing the few minor shortconings against its really hot performance and remarkably good frequency stability after a 15-minute warmup. the KG-221 ranks as one of the hest huys in Allied's catalog.

Fig. 5-View of the tuning capacitor with L1, the $88-108-\mathrm{mc}$ coil, plugged in. Note the position and connections of leads from antenna terminal strip.

Fig. 6-Bracket for sockets for coils is made from a piece of 1/16-in.-thick scrap aluminum. Tab at right goes on back of the funing capacitor.

Modifying the Receiver

While the KG-221 does a good joh in covering 152 to 174 mc . hearing signal 29, car 4.3. 10-4 may get pretty boring after a while. With our plug-in-coil conversion, you casily can extend the range of the KG-221 to receive FM and AM stations all the way from 88 to 176 mc in four bands.

The plug-in coils you use are built on four $13 / 4 \times 25 / 16-\mathrm{in}$. pieces of perforated circuit hoard. You insert them from the rear of the receiver into a socket assembly on top of the tuning capacitor. A slide switch added at the rear of the chassis changes detectors for FM or AM reception on any band. The under-chassis circuit modification is not tricky.

Begin by carefuly unsoldering the coils and trimmer capacitors on top of the tuning capacitor (Fig. 3). Store them in case you want to convert the receiver back to its original design later on. Leave the antenna lead going to the nixer coil in place and unsolder the

Fig. 7-Diagram of top of tuning capacitor shows the bracket mounted in place. Keep leads from sockets to tuning capacitor and C101's leads short.

Fig. 8-Schematic shows addition of AM detector circuit to re. ceiver in tone. When S101 is in FM position. output is taken from ratio detector. When Sl01 is in AM position, output is taken from diode detector D101. Use shielded wire from R101, R7. R9 to Sl01.

lead from the antenna terminal strip.
Cut the coil-socket bracket shown in Fig. 6 and bend the ends to fit the rear and side of the tuning capacitor. The bracket is mounted at an angle (Fig. 4) to enable you to plug the coils in easily and to keep the connections to the tuning capacitor short. Mount the two crystal sockets on the bracket as shown in Figs. 4 and 7 and position its mounting holes over the existing holes on the side and rear of the tuning capacitor.

Use a machine screw and nut to mount the bracket and the two ground lugs on the rear of the tuning capacitor (Figs. 4 and 7). Use a self-tapping screw to mount the bracket on the side of the tuning capacitor as it is difficult to fit in a machine screw and nut. Make sure the screws do not touch the capacitor's rotor or stator plates. We cut away a small length of the fiber tie strip on the rear set of rotor plates to provide clearance for the bracket's mounting screw.

Refer to Fig. 7. Cut Clol's leads as short as possible and solder Cl01 to SO2. Then solder the lead from the antenna terminal-
strip lug to C101. Position Cl01 so it isn't touched by the rotor blades on the rear section of the tuning capacitor. Make sure all connections are as short as possible.

Make a small bracket for Sl01 (Fig. 9) and mount it on the rear of the chassis. Install a 3-lug terminal strip under the chassis near V3 as shown in Fig. 9. Unsolder the 180,000 -ohm resistor (R7) at the volume control (R9) and connect it to the new 3-lug strip as shown. Connect the shielded wires and run them through the large hole in the front-end to switch S101 on top of the chassis as shown in Fig. 7

The Coils

Cut the perforated circuit boards to the sizes shown in Fig. 10. Bend the \# 16 buss wire to shape before mounting on the boards then fit them in the flea clips. Cut the lead ends so they protrude about $1 / 8-\mathrm{in}$. beyond the edge of the board. Crimp the flea clips on the wire and apply solder to prevent the wires from coming out. Cut off the excess lengths of the flea clips and install the eight trimmer

KNIGHTS KG-221 VHF RECEIVER

NOTES

1. ALL DIMENSIONS IN INCHES
2. CAPACITORS SHOWN IN SMALLER SCALE FOR CLARITY
3. ALL BOARDS ARE 1-3/4 BY 2-5/16
4. BCARDS ARE PERFORATED BOARDS WITH $1 / 16$ HOLES ON $3 / 16$ CENTERS
5. $3 / 32$ FROM BOTTOM EDGE OF BOARDS TO $\&$ OF 1 ST ROW OF HOLES
6. USE 28 PUSH-IN TERMINALS WHERE INDICATED BY *
capacitors (C1A through C4B). Bend the wires so they slip in the sockets easily.

Tune Up

Connect a $16-\mathrm{in}$. length of wire to the antenna terminal and plug in a coil. Set up a signal generator (capable of going up to 176 mc) to produce a modulated output at the high end of the band for which you've installed a coil. Open the tuning capacitor's plates and loosely couple the generator's output to the antenna wire. Then adjust the A trimmer to pick up the signal. Tune up the B trimmer for maximum signal amplitude. Repeat this procedure for each coil.

PARTS LIST

C1A-C4B-0.9.7 $\mu \mu \mathrm{f}$ miniature trimmer capacitor (8 reqd.) Arco No. 400 (Allied $17 \cup 087$ or equiv.)
C101-5 \quad н μ f, 500 V silvered-mica capacitor
C102- $10 \mu \mu \mathrm{f}, 1,000 \mathrm{~V}$ ceramic disc capacitor D101-1N64A diode
Flea clips-(Vector type T28. Allied $40 \cup 879$ or equiv.)
Perforated board-1/16-in. thick, 0.062-in.* dia.-holes spaced $0.18 \cdot \mathrm{in}$. center-to-center. (Vector 45B30. Allied 46 U 005 or equiv.) R101-180,000 ohm, $1 / 2$ watt. 10% resistor S101-SPDT slide switch
SO1,SO2-Crystal socket: 0.05.in.-dia. pins spaced 0.486 in. (Allied 45 U 532 or equiv.) Misc-- h_{8} in. thick aluminum for bracket. shielded wire, No. 16 buss wire, 3 -lug terminal strip, hardware.

ANYONE looking for a good, cheap table radio-one with decent sound quality, reasonable sensitivity and a fair number of operating conveniences-doesn't have to go far. True, you couldn't find such a set on the market for under $\$ 30$. But hike up to the attic or down to the basement, dig out that old All-American 5 and you've got the makin's of a darn good table radio. All it takes is an evening's work and a few bucks' worth of parts.

In its day the AA5 was a major breakthrough in consumer electronics. It used but five tubes and about as many resistors and capacitors as you have fingers. And, thanks to a relatively large cabinet and a 4 - or $5-\mathrm{in}$. speaker, the AA5 delivered pretty good sound.

What's more, it was built to last and last and last. Even that old squawker you've held onto just for spare parts can be rebuilt for like-new performance. Or you can go all-out and add a tone control, instant-on, extra sensitivity for DXing, even extra selectivity to untangle howls and groans when night-time DX rolls in.

A new lease on lite for the AA5 starts with capacitors. Years of high ambient temperatures probably have caused the capacitors to leak like washerless faucets so the first job is to replace all paper capacitors. But only paper ones. Ceramic or molded capacitors in the oscillator circuit could foul up the alignment if replaced so leave them alone. Also replace the filter capacitors with new ones having at least the capacitance ratings of the originals. If your radio sports a value not commonly available-such as a dual 70/ $40 \mu \mathrm{f}$-substitute the next highest rating, an $80 / 40$, say.

Since you will be dropping solder blobs in the chassis, this also would be a good time to add instant-on and a tone control. Instanton idles the heaters at reduced current with the plate voltage off. Within a second or so of turning on the power switch the radio comes on, just like a transistor portable. And don't worry about shortening tube life; it's clicking tubes on and off that burns them out.

To add instant-on, simply connect a silicon rectifier rated at 200 PIV, 500 ma (or higher) across the power switch as shown in Fig.

New capacitors, new tubes and careful alignment are all it takes to give most any AllAmerican 5 a new lease on life. Pencil points to silicon diode which can be connected across power switch to provide $\mathrm{AC} / \mathrm{DCs}$ with in-stant-on operation much in the manner of modern all-transistor sets.

SOUP-UP FOR AC/DCs

I. Make certain the SR's cathode-the end marked with a + or band-is connected to the line side of the switch. The SR's anode connects to the side of the switch that feeds the heaters and rectifier plate (if the SR is reversed the whole radio stays on).

Addition of a tone control-actually a high-cut (low-pass) filter-allows you to get a more balanced tone from the speaker. Further, since you now can reduce your set's high-frequency response, it often makes copying DX stations a little easier. The necessary components appear in color in the circuit in Fig. 2. A . 05μ f capacitor usually is adequate for CI , but if you want a little more bass you might try a . I $\mu \mathrm{f}$.

Capacitor C2, a . $001 \mu \mathrm{f}, 500 \mathrm{~V}$ ceramic disc, is needed only if adding the tone control causes a buzz. Whether you get the buzz or not depends on the wiring layout of the radio. First try just Cl and RI (a $20,000-\mathrm{ohm}$, linear-taper potentiometer); if the sound is clean forget about C2. Potentiometer R1 is installed on any clear spot on the front apron; if the chassis is too crowded you may find it necessary to use a miniature pot.

So long as you have a wooden cabinet you'll have no trouble cutting the hole for the tone control's shaft. If the cabinet is Bakelite or plastic, use a sharp, high-speed drill.

With all the drilling and soldering completed, vacuum the solder blobs and metal chips from the chassis; then blow the dust off. If the tuning capacitor originally was noisy-if you got Rice Krispies (snaps, crackles and pops) every time you tuned in a station-spray the tuning capacitor's plate with No-Noise, Contact-Kleen or similar product and rock the capacitor back and forth several times. Should the noise persist, repeat the procedure.

The foregoing will result in a good-sound-

Fig. 1-A single component, a $500 \mathrm{ma}, 200 \mathrm{PIV}$ diode (SR1), brings instanton to any AC/DC radio.
ing table radio; but you now can move on to a real soup-up in sensitivity and selectivity. Let's tackle sensitivity first.

If your radio is equipped with a loop an-tenna-many turns of wire on the back panel -you can't improve sensitivity for local reception by removing the loop and substituting a loopstick. To be sure, there are advertising claims to the contrary but they're not necessarily true.

On the other hand, if your radio has an antenna coil with a short wire antenna trailing out the back you can eliminate the wire and possibly pick up a little extra sensitivity by removing the coil/wire combination and installing a ferrite-rod loop antenna such as the Miller 705A. Use the largest rod you can fit on the back of the radio-the larger the rod the greater the sensitivity (an itsy-bitsy rod delivers an itsy-bitsy signal).

For real DX work you need an outdoor antenna and this is no problem if your set is equipped with a rod. Just wrap a few turns of the antenna's free end around the rod as far as possible from the rod's coil. Tune in a weak signal, slide the antenna coil toward the rod's coil, then tape it in the position that results in maximum sensitivity. If your radio is equipped with a loop and you need extra sensitivity for DXing, replace the loop with a rod antenna and, similarly, wrap the antenna around the rod. The increased sensitivity immediately should be apparent, with even local stations coming in much stronger.

For extra selectivity you can install a gimmick which will regenerate the IF amplifier. Explanation is that regeneration will cause an IF amplifier to be on the verge of selfoscillation. Circuit Q rises sharply at this point and selectivity, therefore, is increased many-fold. The circuit in Fig. 3 shows how

Fig. 2-Simple tone control consisting of Cl and RI improves audio quality, helps in DX work.
simple it is to pull off this trick. Just connect a short length of solid, insulated hookup wire to the plate of the IF amplifier and a similar wire to the grid, then twist them together two or three times to form a gimmick.

Turn on the radio (if you've replaced the antenna coil align the receiver first). If you can't hear any signals or if you get squeals cut off a small section of the gimmick. Keep repeating the cut-and-try until the signals suddenly boom in without squeals. A properly trimmed gimmick can turn a jumble of stations into individual, in-the-clear signals. Don't forget to pull the plug before snipping away at the gimmick; high voltage is present. When you have the right length, tape the ends of the insulated wires.

Final step is to install a complete set of new tubes and align the radio. And to do the job right, buy or borrow a signal generator. First, connect one lead of a $150-\mathrm{V}$ AC voltmeter to a ground, such as a cold-water pipe, and the other lead to the chassis. Insert the radio's plug in the outlet and turn the power on. If the meter indicates full line voltage reverse the plug to put the chassis at ground potential.

Next, set the tuning capacitor's plates to full open, connect the signal generator's ground lead to the radio chassis and connect the generator's output lead through a . 01 $\mu \mathrm{f}$ capacitor to the mixer's input grid-the grid which connects to the antenna coil. Set the generator to the radio's IF frequency and adjust the generator for minimum output. If you have a VTVM, connect it to the radio's AVC buss (usually across the volume control), set the generator for no-modulation and align for maximum negative voltage. Lacking a VTVM, you can turn the receiver's volume control full on, set the generator for

Fig. 3-Gimmick causes IF amplifier to be on verge of oscillation, increases selectivity significantly.

Replacing old-style loop antenna with modern ferrite rod permits addition of exterial long-wise.
internal modulation and align for maximum speaker volume. In either instance, be certain the signal generator is at its minimum usable level.

Alignment chiefly consists of using an insulated alignment tool to adjust the IF transformers for maximum output. Unless junior has screwed the loose screws tight, even an old radio should require just a slight trimming for peak alignment. On the other hand. addition of the gimmick may have thrown the alignment off considerably.

Now disconnect the generator's output lead and set the generator to 1000 kc for RF alignment. If you have a loop antenna it's a single adjustment. Place the generator's output lead near the loop or clip it over the loop. Set the radio dial to 1000 kc and adjust the oscillator trimmer for maximum output. (The oscillator trimmer is the one for the small set of tuning capacitor plates.) Then adjust the antenna trimmer (the one for the larger plates) for maximum output.

If you are using an adjustable rod antenna. place the generator's output cable near the coil or clip it to the rod. Adjust the oscillator as previously described. Then, pushing the rod's coil with an insulated alignment screwdriver, position the coil for maximum output at 1000 kc . This done, set the ciial and generator to 1600 kc and adjust the antenna trimmer for maximum output.

The receiver now should exhibit reasonably linear sensitivity over the entire BC band. For extra sensitivity at some particular frequency, just peak the antenna trimmer for that frequency. Such adjustment may give little effect on loop or fixed rod antennas, but it can increase sensitivity appreciably with an adjustable rod antenna.

EXPERIMENTING with a new project has a special kind of satis-faction-but it has frustrations, too. Like when you're pawing through the junk box for an inductor. You find one that looks like it might be the right value. When you examine it closely though, you discover to your dismay that the markings have vanished. It's useless.

Or you have an odd-looking variable capacitor that was removed from a piece of surplus equipment. How would you determine its capacitance range?

Even though you own a VOM and perhaps even a capacitance meter these two instruments won't always measure a wide range of resistance and capacitance accurately. It takes an impedance bridge to do this job.

Our impedance bridge turns those unidentifiable parts into useful components. It measures resistance from 0.1 ohm to 14 megohms, capacitance from $1 \mu u f$ to $14 \mu \mathrm{f}$ and inductance from $10 \mu \mathrm{~h}$ to 10 hy. Carefully calibrated, its accuracy is ± 5 per cent.

For most measurements, the bridge is powered by a battery. A few ranges however, require a $60-\mathrm{cps}$ signal. Since low-frequency transistor oscillators can be complex, a $60-\mathrm{cps}$ signal from a $6.3-\mathrm{V}$ filament transformer (and, consequently, 117 VAC) is used some of the time when measuring either induc-

Fig. 1-View down into bridge. Wire selector switches S1. S2 and S3 belore mounting them on front panel. Then mount circuit board on bottom of U-section of Minibox with four $11 / 4$ -in.-long spacers. Connect frontpanel controls to circuit board. then install filament trans. former T2 and associated components on rear panel. pictorial of components on rear panel is shown in Fig. 3.

Fig. 2-Circuit board and front-panel wiring. Perforated board is $81 / 2 \times 31 / 2 \mathrm{in}$. To prevent oscillator output from getting to amplifier, put oscillator at right of board and amplifier input at extreme left. Note that shield on wires from BP2 to R11 and from C9 to R18 is grounded at R11 and R18 ends only.

Fig. 3-Alter circuit board is installed. mount these components on top of rear panel. We soldered FI in AC line but you could use fuse holder. I1 and J2 normally are connected with jumper. When checking electrolytics, remore jumper and connect + terminal of 9.V battery to JI, negative terminal to J 2 .

BRIDEE TO NOWHERE

Construction

Circuit layout is not critical but for best performance a few points should be noted. When laying out the circuit board be sure the oscillator (Q1) is located to the right of the output end (Q5) of the amplifier to minimize stray-signal pickup. This keeps the oscillator away from the amplifier input at Q2.

The ground wire from the front-panel components to the circuit board should be connected near the second stage (Q3) as shown in Fig. 2. Note that several ground wires are connected to R10 to stabilize the circuit. Filament transformer T2 should be located away from the input end of the amplifier. In our model it is mounted on the top of the back of the U -section of the Minibox as shown in Fig. 2. One of T2's green secondary leads should be cut short and taped.

So little AC power is consumed that we did not use a switch to turn off power to T2. But since the amplifier is battery powered switch S4 should be turned off when the instrument is not in use. All wiring should be short and direct. Note that shielded wires are used from BP2 to R11 and from R18 to C9. Ground the shield at the R11 and R18 ends only.

To lay out R10's dial as shown on the first page of this article, put 0.1 and 1.0 marks 180° apart on a horizontal line. Then mark off 20° divisions for 0.2 through 0.9. Also mark off 20° divisions for 1.1 through 1.4 .

Test and Calibration

Set S2 to R and set test freq. switch SI to 60 cps . Do not plug in the line cord. Turn potentiometers R8, R9 and R10 full counterclockwise. Set S4 to on but leave amp. gain pot R24 full counterclockwise. Measure the voltage with respect to ground on Q5's emitter (point A on the schematic) and on the collector (point B). The voltage at A should be about twice the voltage at B. If it is not. use a different value resistor for R 28 to get the proper voltage.

Now measure the voltage on Q2's collector (point C). It should be between 2 and 4 V . If it is not in this range a slight change in the value of R 20 will do the trick.

Set range switch S 3 to E and slowly turn R24 clockwise. With the gain wide open the meter should indicate below 5 microamps. If it is higher Q2 may be noisy and should be replaced.

Leave S3 at E, turn R24 counterclockwise and plug in the line cord. Connect a $10,000-$ ohm, I per cent calibration resistor to BPI and BP2 and turn R24 clockwise until M1 deflects almost all the way to the right. Now adjust mult. pot R10 until the meter nulls. It may be necessary to readjust R 24 . (If you don't get a null go on to the next paragraph.) Loosen the set screw on R10's knob, set the pointer to 1.0 and tighten the set screw. Now connect a 1.000 -ohm, I per cent resistor to BPI and BP2. The null should occur when R10 is set to 0.1.

If you don't get a null it is because components are out of tolerance. It probably will

Ronge Switch	Multiply R10 by		
	C	R(ohms)*	L
A	$10 \mu{ }^{\text {f }}$,	-
B	$1 \mu \mathrm{f}$	10	100 uh
C	. $1 \mu \mathrm{f}$	100	1 mh
D	. $01 \mu \mathrm{f}$	1,000	10 mh
E	. 001 uf	10.000	100 mh
F	$100 \mu \mu \mathrm{f}$	100,000	1 hy
G	$10 \mu \mu \mathrm{f}$	1 meg	10 hy*
H	-	10 meg	-
* Use 60 cps			

Fig. 4-Cut out this chart and paste on top of cabinet for relerence. Set 53 for approximate value of component to be checked. For exact value of part, multiply reading on R10's dial when meter nulls by figure in the appropriate column.
be necessary to change the value of R7A, B, C slightly to get nulls at exactly 1.0 and 0.1 . We had to parallel R7 with a 1,500 -ohm resistor. An easy way to determine the value of the resistor is to parallel R7 with a 5,000 -ohm pot and repeat the above procedure with different potentiometer settings until nulls occur at exactly 1.0 and 0.1 : Measure the pot's resistance and solder a resistor of the same value in parallel with R7. If R7 shoutd happen to be too low ird value, replace one of the 68 -ohm resistors with an 82 -ohm resistor and repeat the procedure.

When you are through tighten the knob set screw securely. It is a good idea to check the other ranges, using several resistors of known value. The bridge's accuracy can be increased if R11 through R18 are 1 per cent resistors instead of the 5 per centers specified in the Parts List.
For accurate capacitance measurements, the values of C 5 and C 6 must be selected; their combined value will be close to $0.3 \mu \mathrm{f}$. We obtained the proper value by paralleling $0.1 \mu \mathrm{f}$ and $0.18 \mu \mathrm{f}$ capacitors. Connect a $0.001 \mu \mathrm{~F} 5$ per cent calibration capacitor to BP1 and BP2. Set S3 to E, S2 to C and S1 to 20 kc . Increase the gain (R 24) for a fullscale deflection and adjust R10 for null. Try various parallel combinations for C5 and C6 until the null occurs with R10 set at 1.0. Then use a $100 \mu \mu \mathrm{f}$ capacitor to make sure the null occurs when RIO is set at 0.1. Always adjust R9 or R8 first for sharpest dip. Check other ranges with different capacitor values. For values greater than $1 \mu \mathrm{f}$, SI should be
set to 60 cps instead of to 20 kc .
If the capacitor under test is an electrolytic, connect a 6 - to $9-\mathrm{V}$ battery to ext. bias jacks J1 and J2. Be sure to observe polarity marks when connecting the capacitor to BP1 and BP2.

Calibration for inductance is accomplished by selection of C7 and C7A. Their combined value normally is about $0.25 \mu \mathrm{f}$. We obtained the proper value by paralleling a $0.22 \mu \mathrm{f}$ and a $0.047 \mu \mathrm{f}$ capacitor. Connect a 1 -mh choke to BPI and BP2, set S3 to C, S2 to L and SI to 20 kc . Adjust R8 and R10 for sharpest null and try parallel combinations for C7 and C7A until the null occurs when R10 is set at 1.0. Check out the other ranges with other chokes. For values above 1 hy, 60 cps should be used.

The bridge can be simplified if you're willing to sacrifice some features. For example, if you do not have to measure capacitance above $1 \mu \mathrm{f}$, inductance above 1 hy, and resistance above 1 mieg, T2, S1, R8, R4, R9, F1, J1, J2 and NLI can be eliminated. S5 and R33 can be left out if you don't need the battery-test feature.

A less sensitive meter can be used with some loss in measurement sensitivity. For example you can use a 1 -ma meter and eliminate R35 and D5. But change R34 to 2,200 ohms.

Operation

First, check the battery. With S4 off, press butt. test push button S5. If the meter indicates between 30 and 40 microamps, the battery is good.

For all resistance measurements, set Si to 60 cps . For capacitance measurements up to $1 \mu \mathrm{f}$, set S1 to 20 kc . Above $1 \mu \mathrm{f}$, set S1 to 60 cps . Do likewise for inductance up to 1 hy. Set switch S 2 to either C, L or R, depending on the component you are checking.

Set S3 to the appropriate position determined from the chart in Fig. 4. Adjust either R9 or R8 (depending on the test frequency) for the sharpest null, keeping R24 turned down to prevent M1 from going off scale.

Then adjust R10 for a sharper dip, turn R24 clockwise and adjust R10 for another null. Now multiply the value on RIO's scale by the number in Fig. 4 to get the value of the part.

How it Works

The bridge contains three major circuits: the signal source (20 kc from the built-in os-

PARTS LIST

```
Bl-9 V battery (Burgess 2MN6 or equiv.)
B2-6 to 9 V battery (see text)
BP1. BP2-Five.way binding post
C1-100 \muP. 10 V efectrolytic capacitor
C2. C3. C4-.01 \muf. 100 V (or higher) ceramic disc
    capacitor
C5-.1 \muf. 200 V tubular capacitor (see text)
C6--. 2 \muf, 200 V tubular capacitor (see text)
C7-22 \muf, 200 V tubular capacitor (see text)
C7A-}.022 \muf,200 V tubutar capacitor (see text
C8, C9--1 uf, 200 V tubular capacitor
ClO-. 1 ff, 100 V (or higher) ceramic disc
    capacitor
Cl1, C16-5 \muf, 10 V electrolytic capacitor
C12-.47 \muf. 200 V tubular capacitor
C13, C14. C15-50 \muf, 10 V electrolytic capacitor
DI-D4-1N60 diode
D5-IN270 diode
F1-3/8 A fuse
J1, J2-Phone tip jack
Ll-10 mh RF choke (J. W. Miller 70F102Al.
    Newark Electronics 59F250: 99& plus postage.
    Minimum order $2.50)
M1- 0.50 microampere panel meter (lafayette
    99 R 5042 or equiv.)
NL1-NE2 neon lamp
Q1. Q3, Q4-2N388 transistor
Q2. Q5-2N414 transistor
Resistors: 1/2 watt. 10% unless otherwise
    indicated
R1-100,000 ohms
R2, R23, R34-10,000 ohms
R3-- 4,700 ohms
R4-150,000 ohms R5-390 ohms
R6-10 ohms, 1 watt
R7A, R7B-68 ohms (see text)
R7C-1,500 ohms (see text)
R8-250,000 ohm, linear taper potentiometer
R9-10,000 ohm, linear taper potentiometer
R10-50 ohm, wirewound potentiometer
        (Clarostat 58C1.50. Newark 8F439. $1.35 plus
        postage)
    R11-1 ohm, 1% R12-10 ohms. 5%
R13-100 ohms, 5% R14-1.000 ohms, 5%
Bl-9 \(V\) battery (Burgess 2 MN6 or equiv.)
B2-6 to \(9 \vee\) battery (see text)
BP1. BP2-Five-way binding post
\(\mathrm{Cl}-100 \mu \mathrm{P} .10 \mathrm{~V}\) efectrolytic capacitor
C2. C3. C4-. \(01 \mu\) f. 100 V (or higher) ceramic disc capacitor
C5-. \(1 \mu \mathrm{f} .200 \mathrm{~V}\) tubular capacitor (see text)
C7- \(22 \mu \mathrm{f}, 200 \mathrm{~V}\) tubular capacitor (see text)
C7A- \(.022 \mathrm{mf}, 200 \mathrm{~V}\) tubutar capacitor (see text)
C8, C9-1 1 f, 200 V tubular capacitar
\(\mathrm{C} 10-1 \mu \mathrm{f}, 100 \mathrm{~V}\) (or higher) ceramic disc capacitor
C11, C16- \(5 \mu \mathrm{f}, 10 \mathrm{~V}\) electrolytic capacitor
\(\mathrm{C} 12-.47 \mu \mathrm{f} .200 \mathrm{~V}\) tubular capacitor
C13, C14. C15- \(50 \mu \mathrm{f}, 10 \mathrm{~V}\) electrolytic capacitor
D1.D4-IN60 diode
D5—IN270 diode
J.
J1. J2-Phone tip jack
- 10 mh RF Choke (J. W. Miller 70F102A1. Minimum order \(\$ 2.50\) )
M1- 0.50 microampere panel meter (lafayette 99 R 5042 or equiv.)
NL1-NE2 neon lamp
Q1. Q3, Q4-2N388 transistor
Q2. Q5-2N414 transistor
Resistors: \(1 / 2\) watt. \(10 \%\) unless otherwise indicated
R1-100,000 ohms
R2, R23, R34- 10,000 ohms
R3-- 4,700 ohms
R4-150,000 ohms R5- 390 ohms
R6-10 ohms, 1 watt
R7A, R1, 68 ohms (see (ext)
RTA - 1,500 ohms (see text)
R8- 250,000 ohm, linear taper potentiometer
R9- 10,000 ohm, linear taper potentiometer
R10- 50 ohm , wirewound potentiometer
(Clarostat 58C1.50. Newark 8F439. \$1.35 plus postage)
R13-100 ohms, \(5 \%\) R14-1.000 ohms, \(5 \%\)
```

R15-10,000 ohms, 5\%
R16- 100,000 ohms, 5%
R17-1 megotm, 5%
R18- 10 megohms. 5%
R19- 68,000 ohms R20- 270,000 ohms
R21-220,000 ohms R22-5,600 ohms
R24- 10,000 ohms, log taper potentiometer with
SPST switch
R25-22.000 ohms
R26-6,800 ohms
R27-220 ohms
R28-43,000 ohms. 5%
R29- 3,900 ohms
R30, R35- 1,000 ohms
R31- 3,300 ohms
R32-2,200 ohms
R33-200,000 ohms, 5\%
S1-3-pole, 2-position non-shorting rotary switch (Centralab PA-1007. Allied 35 U 068)
S2-3-pole, 3-position non-shorting rotary switch (Centralab PA-1013. Allied 35 U 071)
S3-1-pole. 8-position non-shorting rotary switch (Centralab PA.1001. Altied 35 U 065)
S4-SPST switch on R24
S5-Normally-open push-button switch
T1-Transistor audio transformer; primary impedance: 500 ohms, center tapped. Secondary impedance: 3.2 ohms (Lafayette 99 R 6127 or OIson T-231)
T2-Filament transformer; secondary: 6.3 V center tapped@1.2A (Allied 61 U 419 or equiv.)
Misc. $6 \times 10 \times 7$.in. Cowltype Minibox (Bud SC-2130), RG174/U coàx, terminal strips, fine cord, perforated board, flea clips, knobs.
Note-One of each of the following parts should be borrowed or purchased to calibrate the bridge: 10,000 ohm, 1% resistor; $1,000-\mathrm{hm}$. 1% resistor; 1-mh RF choke (J. W. Miller 70F103A1. Newark 59F243. 75\& plus postage); $.001 \mu \mathrm{f}, 5 \%$ capacitor (Centralab CPR-1000J. Newark 19F2377. $15 \ddagger$ plus postage); $100 \mu \mu \mathrm{f}$. 5% capacitor (Centralab CPR-100J. Newark 19F2353. $15 \&$ plus postage).

BRIDEE TO NOWHERF

cillator or 60 cps from a filament transformer), the bridge circuit and the amplifiermeter circuit. An AC signal is applicd to the hridge circuit and the bridge is balanced by turning R8, R9 and R10. The output from the bridge then is applied to the high-gain amplifier.

The amplified signal is rectified by a diode bridge whose DC output goes to MI. The meter current depends directly on the ampliude of the signal from the bridge. Thus, when the bridge is balanced, the meter indicates a low value, or nulls.

Switch S3 permits you to check component values over a wide range. Switch $S 2$ sets up the bridge for measurement of resistance, inductance or capacitance. The test frequency is selected by SI and the instrument's sensitivite is adfusted be R24

The 20-kc oscillator (QI and associated components) is a modified Colpitts whose output is coupled through a transistor alldio. output transformer (TI) to the bridge. The oscillator's frequency is determined by I.I. C 2 and C3. The output is a clean sine wave.

The bridge has to have different circuit configurations for measuring R, 1 . or C. Switch S2 makes the necessary changes. For inductance and capacitance measurements. two potentiometers (R8 for 60 cps. R9 for 20 kc) cancel variations in component val. ues.

The four-stage amplifier (Q 2 through Q 5) has a high input impedance and a high voltage gain. Stability or motorboating problems are eliminated by the upside-down output stage, Q5. The use of this configuration made stage-by-stage decoupling unnecessary. The oscillator is decoupled from the amplifite by R5 and (1. R34. R35 and I) 5 prevent the meter from heing overloaded \hat{v}

Four tubes, new circuit and as hot as its 5-tube forefathers!

YTOU MIGHT SAY the All-American 5 did for radio what Betsy Ross did for the flag. Why? Well, American flags came in all shapes and sizes until a little seamstress named Betsy stitched up a design that became standard. And, in the days following development of the first AC-operated tube, radios came in every configuration under the sun. Triodes were used for everything from RF amplifiers to power tubes, and there were enough transformers on those early chassis to heat a five-room doghouse.

But the move toward line-operated receivers eventually dumped those transformers.

In time, a five-tube hookup evolved that proved all but unbeatable. Matter of fact, the All-American 5 was top dog in the radio re-

Built on $5 \times 7 \times 2$-inch chassis to fit in cabinet above and at right radio is styled for living room or den. The loopstick antenna is in front.
ceiver scheme of things for years and years and years. Sure, six- and seven-pin and then octal tubes eventually gave way to modern miniatures. But the circuit didn't change one hair, and for good reason. All things considered, it was as good as could be.

Today, transistors have replaced vacuum tubes in a good many AM sets, but the AllAmerican 5 is far from done for-yet. New tubes promise even better performance and, thanks to nine-pin miniature tubes, it takes even fewer to do the same job. Our updated All-American 5, for example. could have been the All-American 3 had we chosen to use a silicon diode in place of the rectifier. And its performance is every bit as good (if not better) as the All-American 5 that was king for so long.

Though it has one less tube, our circuit offers everything the old All-American 5 did and then some. There's a separate oscillator and mixer, something the old hookup couldn't provide, and a feedback network around the audio stages that cuts distortion and adds just the right amount of bass boost for good sound quality.

Want to learn something about the one circuit that's still a champion? Then build our updated All-American 5.

Construction. We built the radio on a $5 \times 7 \times 2$-inch chassis so it would fit in the cabinet shown. Layout is fairly critical since you are working with RF. Give special attention to mounting tuning capacitor Cl . Its mount-
ing holes are right under the stator plates and if the screws are too long they'll ground the plates. Quarter-inch-long 6-32 screws with three star washers under their heads will prevent trouble. Drill $1 / 4$-inch holes in the chassis for the leads that go to Cl and use insulated wire for the connections.

And leave plenty of space for filter capacitors C12 and C13. We didn't use a dual filter capacitor because it would have taken up too much space in one place and might make future service difficult.

Oscillator coil TI is supplied without a chassis mount and it isn't possible to attach one. Therefore, mount T1 on a terminal strip with \#16 or \# 18 wire before mounting the terminal strip in the chassis. Make certain the mounting is rigid since considerable pressure will be applied to Tl's slug during alignment. Disregard the instructions that come with TI and connect it as we've shown. Make certain connections to the color-coded terminals are right or the oscillator will not work. T1's green lug is not used. The colorcoded IF transformer leads also must be connected exactly as shown.

Do not connect T4's secondary leads until the radio is completely wired, and then do not solder them. Temporarily connect resistor R9 and C8 and turn on power. If there is oscillation or motorboating, reverse T4's secondary leads. If there is no oscillation, solder the leads.

Loopstick 1.1 should be mounted diagon-

Why not take the time to dress it up? Cabinet is a simple construction job and the wooden speaker enclosure makes a world of difference in the sound. Sides. top and front are hald-inch mahogany. Base is three-quar. ter-inch mahogany and can be any length you want. Loopstick antenna should be mounted diagonally in the lop of the cabinet at left. Leare back oft radio for venti. lation and to adjust loopstick antenna.

PARTS LIST
Capacitors: Ceramic discs or tubulars. 500 V or higher unless otherwise indicated
Ci-Two-gang superthet variable capacifor (Lafayette MS.141)
C2-470 mmf C3-. 047 mf
C4— $220 \mathrm{mmf} \quad 6.5-02 \mathrm{mf}$
C6- 500 mmf
C7. C8, C11, C14-. 1 mf
$\mathrm{C} 9-100 \mathrm{mmt} \quad \mathrm{ClO}-.005 \mathrm{mf}$
C12- $80 \cdot \mathrm{mf}, 150 \cdot \mathrm{~V}$ electrolyt ic
C13-40.mf, 150 V electrolytic
J1-Phono jack
L1-Seven-inch loopstick antenna (Lafayette MS.44)
Resistors: $1 / 2$-watt. 10% unless otherwise in dicated
R1-1.000 ohms R2, R6-1.500 ohms
R3-2.2 megohms R4, R7 $-470,000$ ohms
R5-500,000-ohm audio-taper potentiometer with switch R8-180 ohmis, 1 watt
R9-8.200 ohms R10-47.000 ohms
R11-3,300 ohms R12-1.500 ohms. I watl
R13. R14-220,000 ohms
S1-SPST switch on R5
T1-O Oscillator coil (Meissner 14-1073)
T2. T3-455-kc IF transformer (Meissner 16-6678)
T4-Output transformer; primary: 2.500 ohms secondary: 3.4 ohms (L.afayette TR. 10 or equiv.)
V1-19EA8 tube \quad V2-12EQ7 tube
V3-35DZ8 tube V4-50DC4 iube
Misc. $5 \times 7 \times 2$-inch aluminum chassis. 4×6-inch oval speaker. tube shields and sockets terminal strips
ally in the top of the cabinet away from the chassis. If it is too close to the chassis there may he oscillation at one or more spots on the diat.

Though not shown in our radio, we rec ommend you install a buss wire for all ground connections to reduce shock hazard. The buss is grounded to the chassis through ('14 and R14.

Alignment. For top performance you must have a signal generator and know how to use it. It is not possible to do a good alignment joh hy ear. Alignment by car or with a poor-quality signal generator will result in low sensitivity and tracking problems.

Connect the signal generator, set to 455 kc . to pin 2 of V1A. Set the function switch of : V V VM to measure negative $D C$ voltage. and set its range switch to the lowest position. Connect the VTVM's ground lead to the ground buss and connect the hot lead to the junction of R3 and C.4. Set C'l's plates 10 ahout full mesh where there is no station to override the signal from the generator

Turn on the radio, signal generator and VTVM and let them warm up abollt 15 min

Underside of chassis is tight, but there is room
for every part. Wire the heaters. If translormers
first, other parts and then install the electrolytics.

Unlike its predecessors, our circuit has a separate oscillator and mixer (V1A. V1B) instead of a penta-grid-converter tube. Diode detector is included in first IF tube (V2). Two audio stages are combined In one envelope (V3A, V3B), and feedback network (C8, R9) improves bass response. To prevent shock hazard, make ground connections to buss wire. CT's, near C1A and C2A are luning-capacilor trimmers.
utes. Then adjust the generator's output (unmodulated) for the lowest readable indication on the VTVM. Using a non-metallic alignment tool, adjust T2's and T3's trimmers for highest meter indication. If the voltage soars, reduce the generator's output. Repeat the adjustments two or three times.

Next, set the generator to 550 kc , fully mesh Cl's plates and adjust Tl's slug for

Mount Tl on lerminal strip before installing terminal strip on chassis. We recommend using No. 18 wire for the ground buss (not shown here).
highest meter indication. This adjustment is critical so do it slowly. Open CI's plates all the way, set the generator to 1600 kc and adjust Cl 's oscillator-section trimmer (smaller set of plates) for highest indication. Remember to keep the generator's output as low as possible. Repeat this procedure several times to get good tracking.

Disconnect the generator from V1 and put its output cable near L1. Set the generator to 550 kc and close C1. Adjust L1 by sliding the core within the coil for highest indication. The adjustment is critical so take care. Next, set the generator to 1600 kc , open Cl's plates all the way and adjust C1A's trommer for highest indication. Repeat this procedure several times.

Do not try to peak L 1 on one station, for example, 770 kc . While you'd get really hot performance on this station, sther stations might not come in as well.

If built and aligned as specified, our AllAmerican 5 will give you more than satisfactory performance in terms of senisitivity and tone. We do not recommend any changes or modifications to the circuit.

Twist a switch for your choice of three skyhooks or two dummy loads. By VERNON SIMMS

'TTHA1 mess of antenna cables, adaptors, coax connectors and dummy loads--toss it all out and install the Antenna Control Center, Connected to your CB transceiver, the Center will permit you to connect conveniently as mary as three antennas or two dunimy loads to the rig's output. Then, at the twist of a switch - and that's a lot easier than plugging in and removing half a dozen connectors-you have your choice of skyhook or test load.

And there's no geed to remove the Center from the line. It can remain connected permanently to your receiver. It has no effect on SWR and will not cause significant loss of power to the antenna.

Here's what the Center will do:

- Antennas. As we said, the Center enables you to hook as many as three different antennas to your rig, Maybe you want to shift from ground-plane to directional beam or collinear to quad. No need to fumble at the back of the rig-you can make a quick changeover with a rotary switch. This function is valuable for making instant comparisons between two or three different antennas.
- On The Air. Ever wonder whether you're really getting out or just heating up the microphone? Glance at the Center's meter and you'll know whether RF is going to the antenna. And no matter what the switch posi-
tion, the meter samples continuously and indicates whether there's RF in the line.

The meter also gives warning if something's wrong. That is, its indication should be about the same each time you hit the push-to-talk switch. If there's a provision on your transceiver for peaking the final the Center will be an invaluable aid in tuning up.

- Dummy Loads. The Center also can connect either of two dummy loads to your rig's output. One load is the old standby, a No. 47 pilot lamp. Main purpose of this indicator, which will glow brightly when you

Built in $a 3 \times 5 \times 7$-in. cabinet, the Antenna Control Center enables you to connect any of three antennas or two dummy loads to your rig.

transmit, is to give a quick check of modulation. As you speak into the mike, varying lamp brightness tells you whether audio is modulating the carrier.

The second dummy load is used when you have to troubleshoot the rig. It's resistive and is a close match to the transmitter's output impedance (unlike the lamp). It lets you run lengthy tests on the transmitter portion of the transceiver without violating the law or interfering with others on the channel.

How It Works

Your CB rig's output is fed via socket SOI (see schematic) to the wiper of selector switch SI. From there, RF can be fed to either of the three output connectors depend-
ing on Sl 's position. A fourth position on Sl sends the signal to the lamp. The fifth position applies the signal to the resistive dummy load. The three load resistors add up to 48 ohmsa close enough match to the 50 -ohm transmitter output. Wattage of each resistor is sufficient to provide a safety factor when fed the typical 3 -watt output of a transmitter.

The meter circuit takes an insignificantly small amount of signal from the wiper of the selector switch and applies it to a diode detector circuit which converts RF to DC for the meter. A control pot (R5) permits you to adjust the meter's sensitivity.

Construction

Here are some tips you should keep in

Signal from CB rig is fed inlo Center at connector SOl at right. Antennas are plugged into three connectors at left. Watch the polarity of D1 when install. ing it. End with color band gets connected to junction of R4 and C1. Shield on coax from Sl to SO2. SO3 and SO4 is grounded at connector end only and not at Sl. Shield on coax from Sl to SOl is soldered to PI and to R5's case.

Antenna Control Center

mund when building the Center in a $3 \times 5 \times 7$ in. Minibox. Use short lengths of RG58/U coax to connect the three antenna sockets to the selector switch. The wire shields. however, are soldered only to lugs placed under each socket's mounting nut. Trim off the shields at the other end and do not connect them to the selector switch.

The coax from SOl to the switch should have its black jacket removed completely. This permits you to solder the shield to both R5's case and to the ground lug on pilot lamp PI's socket. Note that the ground lug is the one closest to the lamp. The other lug is connected to selector switch S1 with a spaghetticovered piece of No. 16 wire. This arrangement will hold the lamp socket in place. The bulb should protrude through the panel in a 7/b-in. dia. rubber grommet.

The resistor load, R1, R2, R3, is selfsupporting. Be certain that none of the resistor leads shorts to the case. Other components are soldered to a five-lug terminal strip two of whose lugs are grounded. Avoid excessive heat on diode DI's leads while soldering.

Operation

Run any convenient length of RG58/U coax from your transceiver's output to SO1. If you don't wish to place the center on or next to the rig. it can be wall-mounted so it's within easy reach. Connect the cables from your antennas to the output connectors SO2, SO3, and SO4.

[^1]

Signal from CB rig is led via Sl to either of three antennas or pilot lamp or resistive dummy loads. Part of signal is detected and ted to Ml.

PARTS LIST

$\mathrm{C} 1, \mathrm{C} 2-.001 \mu \mathrm{f}, 500 \mathrm{~V}$ ceramic disc capacitor D1-1 N60 diode Ll- 2.5 mh RF choke
M1-0.1 ma DC milliammeter (Lafayette $99 R$ 5040 or equiv.)
P1—No. 47 pilot lamp and socket
R1, R2, R3- 16 ohm, 2 watt carbon resistor R4- $10,000 \mathrm{ohm}, 1 / 2$ watt, 10% resistor R5-50,000 ohm, linear taper potentiometer Sl-1 pole, 5 position rotary switch (Mallory 3115J or equiv.)
SO1-SO4-SO-239 coax connector
Misc. $-3 \times 5 \times 7$ in. Minibox, 5 lug terminal strip, grommet, solder lugs, 2 ft . RG58/U coax.

The meter sensitivity may vary from one switch position to the other because of the different antenna. Therefore use R5 to keep the needle from going off scale. An indication about halfway up the scale is most desirable. Finally, if your rig is a transistor job, don't switch to an antenna position that does not have an antenna connected to it. No harm would be done to tube sets, but a transistor rig might he damaged if operated without a load.

SUN POWEREID

By
HERB FRIEDMAN, KBI9457

YOU would think batteries were going out of style the way walkie-talkies use them up. Not only do pennies spent on batteries add up to mucho dollars each month but it's a sure bet a battery will do a fast fade just when you need it most.

You know the scene. You're on a picnic or camping or hunting or perched on the roof trying to orient a TV antenna while your wife watches the screen and you're listening either for others in your party or for your wife. Then just as you hear something other than static from the speaker and press the button to answer, the extra current drain is too much for the battery and away it goes to join the big rig in the sky.

But power is available for free-enough to keep the receiver running all day without removing a bit of energy from the battery. This means that when a call is received the battery is ready to put out a strong signal. The free power comes from Old Sol himself-the sun. Just make a minor change in the transceiver's wiring and plug in a solar cell. As long as the sun shines you've got free power to run a walkie-talkie's receiver, or in an emergency, even its transmitter. The only restriction is that the walkie-talkie must be powered by a $9-V$ battery, such as a Burgess 2 U 6 or equivalent.

The Hoffman model HSB-9 solar cell we use delivers 9 to 10 volts with sufficient cur-

The photo at the left shows where we placed the jack and one solar-cell mounting cup on our walkie-talkie. The photo below shows where we mounted another cup for the cell. This exira cup is used to store the cell when it is not in use. The two containers hold the epoxy cement and, like the two plastic cups, they are supplied with the cell.

SUN POWERED CB

rent for small walkie-talkies-about 15 ma . At higher current drains the voltage falls. However, the cell can deliver about 8.5 V with a 20 - to 25 -ma current drain. This amount of current often is enough to drive a three- or four-transistor walkie-talkie when transmitting.

Installation. All that's required is a slight modification of the receiver's power supply connections, as shown at the bottom of this page. The schematic diagram at the left shows the normal battery connection. The modification is shown at the right. A miniature jack (J 1) is connected in series with the battery's positive lead. When the cell is not plugged in battery current flows through the normally closed contacts to the circuit. When the cell is plugged in, the plug opens the connection and the cell's output goes to the transceiver.

Select a part of the transceiver's case which is not jammed with components and mount J1. But remove all the guts, including the speaker, before you do any drilling. To avoid melting the plastic case with the soldering iron, solder the leads to Jl before it's in-
stalled. Put the guts back in and solder the battery leads to JI.

The cell has a ball-joint mount. Two mounting cups and epoxy cement needed to glue the cups to the transceiver's case are supplied with the cell. Cement one cup on the back of the case near the top. Cement the other cup on the top of the case. Make certain it is mounted away from the antenna to allow the cell to be turned.

Operation. Snap the cell into the top or rear cup and orient it so it faces the sun. Then plug PLI into J 1 . When the power switch is turned on the transceiver will operate as if the battery was being used. To transmit, pull the plug out and press the push-to-talk button.

PARTS LIST

Jl-Subminiature phone jack. Switchcraft Tini-Jax No. 42A. Allied 44 U 985 or equiv. PL1-Subminiature phone plug. Switchcraft Tini-Jax No. 750. Allied 41 U 520 or equiv. Solar Cell-Hoffman HSB-9. Olson Electronics BA-114. $\$ 7.98$ plus postage.

The schematic above shows the normal connection of the walkietalkie's battery. The switch usually is on the back of the volume control but it could be elsewhere.

Modification of rig for solar cell operation. Connect cell's positive lead to plug's tip. Be sure to keep polarities straight when connecting battery and lead from switch to the jack.

Explore radio's fascinating basement with our 3-tube receiver!

By Charles green, waikh

IELL someone you have a radio that tunes from 10 kc to 30 kc and he'll figure you spend your time listening to dog whistles and super-duper tweeters.
But way down in this world called VI.F (very-low frequency) there's some mighty interesting activity. Imagine hearing a U.S. Navy station transmitting messages to ships at sea and submerged submarines! In addition, you'll be able to pick up useful fre-quency-standard and time transmissions similar to those from WWV.

Why such low frequencies for communications when the trend nowadays is toward higher and higher frequencies in the gigacycle region and beyond? Greater reliability for one thing. Transmissions down in radio's basement are affected little, if at all, by ionospheric disturbances. The other reason is that VLF is about the only way to communicate with submerged subs hundreds of miles from land. Matter of fact, VLF station NAA (17.8 kc) at Cutler. Me., puts out the world's most powerful signal-a 2 -million watter-that can be picked up by submerged subs alnost anywhere in the world.

You'll find the activity on the VLF band is of two types: frequency-standard and time signals and straight coded CW. The stability of VLF frequency-standard transmissions is much greater than those from WWV since the signals are not affected by ionospheric conditions and magnetic-storm blackouts. The CW often is marine communications, in the form of weather and time reports, and is excellent for code practice.

The output power of most VIF stations is many times greater than that of higher-frequency stations. The power, frequency and type of transmissions of a few stations are listed in our table. But frequencies, power and operating hours change occasionally since experimentation is going on coristantly.

Full-Band VLE RCVR

Fig. 1-Underside of receiver. To lay out your chassis, take dimensions from diagram and multiply by 1.7. For best performance duplicate layout as closely as possible. Chassis has been cut away under Cl in diagram to show how three sections of Cl are connected. $\mathrm{C} 8^{\circ}$ s sections also are tied together

```
                                    PARTS LIST
```

Capacitors: 600 V ceramic disc untess otherwise indicated
C1A, B, C; C8A, B, C-3 gang variable capacitor $12.367 \mu \mu$ f per gang. (Allied 13 (1) 5?2)
C2, C4-1,000 $\mu \mu \mathrm{f}$
C3, C6, C19-. $01 \mu \mathrm{f}$
C5, C15-4 $\mu \mathrm{f}, 150 \mathrm{~V}$ electrolytic
C7, C9. C11-500 $\mu \mu$ i
C10, C13, C17, C20-5,000 $\mu \mu \mathrm{f}$
C12A. B, C-20/20/20 uf. 150 V electrolyfic.
C14-5 $\mu \mathrm{f}, 6 \mathrm{~V}$ electrolytic
C.16-2,000 $\mu \mu f$

C18-10 $\mu \mathrm{f}, 25 \mathrm{~V}$ electrolytic
Fl-1 A fuse and holder
11, J3-Phono jack
12-Closed circuit phone jack
L.1. L.2- 65.300 mh tapped adjustable inductor (J. W. Miller No. 9018. Lafayette 34 R 8999)
L.3-10 hy variable inductor (UTC No. HVC. 9. Allied 62 G 123. $\$ 9.60$ plus postage: not listed in catalog)
Resistors: $1 / 2$ watt. 10% unless otherwise indi. cated
R1, R4- 1.2 megohms
R2, R5-4,700 ohms
R3, R6, R10, R16-180.000 nhms
R7 - 15000 ohms

R8-200.000 ohm, linear taper potentiometer
R9-2.2 megolmms
R1]- 30,000 ohm, linear taper potentiometer
R12-1,800 ohms, 2 watts
R13-47,000 ohms, 2 watts
R14-1 megohm. linear taper potentiometer with
SPST switch
T15-1.000 ohms
R17-1 macohm
R18-560 ohms, 1 watt
Sl-SPST switch (on R14)
SPKR-3-4 ohm, 3-in. speaker
SR1, SR2-Silicon rectifier: $500 \mathrm{ma}, 400 \mathrm{PIV}$ (Lafayette 19 R 4204 or equiv.)
T1-Power transformer, secondaries: 250 V c.t. @ $25 \mathrm{ma} .6 .3 \mathrm{~V} @ 1 \mathrm{~A}$ (Allied 62 u 008 or equiv.)
T2-Output transformer. primary impedance: 10,000 ohms; secondary imperlance: 4 ohms (Allied 61 U 448 or equiv.)
V1-12AT7 tube
V2-6U8A tube
V3-6AK6 tube (Allied $\$ 1.40$ plus postage)
Misc.-2 $\times 7 \times 11$-in. aluminum chassis (Premier ACH-405 or equiv.), 7. and 9 -pin tube sockets. terminal strips. No. 28 enameled wire. phone plugs. RG174/U Coax.

With this sensitive 3 -tube receiver you'll be aible to tune in all this activity from 10 to 30 kc . The circuit is a TRF/regen and has both a speaker and a jack for headphones.

Construction

Best way to build the receiver is as we did it-on a $7 \times 11 \times 2$-in. aluminum chassis, mounting the components where shown in the pictorial (Fig. 1) and top-chassis photo (Fig. 5). Since the operating frequency is so low the layout is not terribly critical.

First. drill and punch the chassis. The easy

Fig, 2-There's plenty of space so there should be no crowding. Keep long runs of wire at top and center close to chassis in the locations shown.
way to mount variable capacitors Cl and C 8 is to make a paper template of the undersides. Then transfer the mounting-hole locations to the chassis. Make sure that C 8 is mounted right at the front of the chassis to permit the dial to operate properly. Mount the dial on the chassis with two brackets and extra-long mounting screws.

To mount 1.1 and 1.2 , first put $3 / 8-\mathrm{in}$. rubher grommets in the chassis. Next, remove the core and mounting clip from both coils and insert the forms in the grommets as far in as they will go. Then replace the cores and clips. Make sure that you locate I.I's mounting hole so Cl doesn't touch the coil.

When wiring the receiver make sure that leads from pin 6 on V2 to I. 3 and capacitors C2, C4. C7, C9. C13 and C17 are positioned above surrounding wiring. Use rubher grommets when running wires through chassis holes to prevent fraying of insulation.

Antenna Construction

Cut four 22 -in.-long $x \quad 3 / 4 \times 1 / 4-\mathrm{in}$. wood strips and mount them at the corners of a $91 / 2$-in.-square piece of perforated Masonite as shown in Fig. 5. Wrap plastic electrical tape on the four screws mounted at the ends of each strip to prevent chafing of the wire.

Wind 38 turns of No. 28 enameled wire
|Article continued on next page.
text continued on page 84.]

Fig. 3-Schematic of receiver. Signals from the loop antenna enter at Il and are fed to the Li/Cl tuned circuit. V1A and V1B amplify selected signal and R8 controls the gain of the stages, C7 couples the amplified signal to the regenerative detector V2A via the cathode tap on L2. L2 is tuned by three-gang variable capacitor C8. R11 controls amount of regeneration and Cl3 feeds the detected signal to volume control R14. Signal then goes to audio amplifier stage V2B. L3 and C16 in V2B's plate circuit constitute a l-kc peak filter that sharpens receiver selectivity. C17 couples the audio signal to V3 where it is further amplified to drive speaker. T2 and C20 provide output to speaker or phones jack J2. The B + and heater power is supplied by transformer T1, full-wave rectifier circuit comprising SRI, SR2 and R/C filter which includes R12. R13 and C19A, B, C. Output tube V3, a GAK6, is capable of delivering up to 1 watt of audio.

Fig. 4-Loop antenna. Three wooden strips are mounted firmiy to Masonite board. Fourth strip should have slots cut for mounting screws so strip can be adjusted to tighten loop. Wind 38 turns of No. 28 en ameled wire around screws at ends of wood strips and cover turns with plastic electrical tape. Then wind electrostatic shield over loop. Be sure to space ends of shield as shown in upper left comer. Detail diagram at lower right shows connections of loop and shield. Be sure to connect shield to ground lug on jack 13.

SOME VLF STATIONS				
Call	Freq. (kc)	Power (kw)	Location	Transmission
FUB	17.0	-	Paris, France	-
GBR	16.0	300	Rugby, England	-
NAA	17.8	2,000	Cutler, Me.	CW-Navy traffic
NBA	18.0	36	Balboa, C.Z.	Pulses each second. Every fifth pulse omitted.
NPG/NLK	18.6	250	Jim Creek, Wash.	CW-Navy traffic
NPM	19.8	100	Lualualei, Hawaii	CW-Navy traffic
NSS	21.4	100	Annapolis, Md.	CW-Navy traffic
WWVL	20.0	1	Ft. Collins, Colo.	Frequency and time standards. Call sign given every 20 min. and on the hour.

Full-Band ULE RCVR

around the screws and connect the ends to a two-lug terminal strip. Cover the loop carefully with a single layer of plastic tape. To minimize noise pickup. an electrostatic shield made of ordinary hookup wise must be wound around the loop. Connect one end of each electrostatic shield wire to the ground side of 13 as shown in Fig. 4 and wind the wire spirally with about $1-\mathrm{in}$. spacing around the loop. I eave a 3 -in. space at the ends of each shield wire as shown. For hest performance vou can trv different loop sizes.

Calihration and Operation

An audio signal generator with a range of 10 kc to 30 kc is a must to calitrate the receiver. If the generator goes only to. say. 20 ke use the second harmonic of a lower frequency:

Allow the receiver to warm up for a few minutes, then connect the output of the audio generator to ground and the high side of rollume control R14. Set the generator in I kc and adiust the screw on 13 for peak volume.

Connect the generator to Jl and set its output to 10 kc . Set R14 to half rotation.
adjust regen control Rll until the receiver starts oxcillating, then turn $R F$ gain controt R8 counterclockwise to prevent overload.

Close C'X's plates and adjust 1.2's slug for zero heat. Use the audio gencrator to calihrate the dial, heing careful not to disturh the adjustment of 1.2 . We calibrated our receiver at 1 -kc points to 20 kc and every 2.5 kc to 30 kc . Use C'l ion peak the signal as required hut be sure that you're not tuned to the wrong harmonic.

After the dial is calihrated disconnect the signal generator and connect the loop antenna. When hanging up the loop keep it away from fluorescent lights and large metal objects.

Couple the audio generator foosely to the receiver hy connecting a length of hookup wire to the hot side of the generator's output cahle and placing it near 1.1. Set the generator's output to 10 kc and tune the receiver to ahout 11 kc for a heat note. Set (i) to full capacity (plates closed) and adjust 1.1's slug for maximum heat-note volume. Disconnect the signal generator and turn it off to eliminate any chance of the receiver', picking up its signal.

Now tune the receiver for signals. keeping ($)$ in approximately the same position as (6 to minimize reception of station harmonich Turn the loop around to find stations 0

Fig. 5--Top of receiver. Coil Ll is at extreme lelt and antenna tuning capacitor Cl is right next to it. V1 is behind Cl . Main tuning capacitor C8 is located in center of chassis. LI is located between Cl and C . Variable in. ductor L3 is low gray object to the right of C8. Power transformer T1. output transformer T2 and speaker are at right side of chassis.

JUNK BOX VOX

intruder alarm.
The vox's sensitivity can be made so high it will trip when a doorknob is turned. The circuit shown in fig. 4 is for the intruder alarm/baby-sitter version. 'The only difference between this model and a basic vox is the cabinet-mounted speaker.

If the vox has an external speaker-mike, a sound input will trip relay KY 1, which will release one-half to two seconds after the sound ceases. When the speaker is mounted in the same cabinet, the click RYl makes as it opens will be picked up by the speaker. This may cause RY। to trip again and again until power is turned off. A bulb or buzzer and battery connected to the vox will blink or buzz until power is turned off. Set up in a child's room, a cough, cry or fall out of bed will set the alarm into continuous operation. Placed in the basement or a backroom, the vox will sound off when someone enters.

Fig. I-Betore mounting perforated-board subas. sembly, install the speaker, R1 and Jl on 4×5-in. side of main section of Minibox. Put spacers under the board to keep it away trom the cabinet.

Fig. 2-Cabinet before installation of board. Connect wire from ground buss on circuit board to solder lug on one of speaker's mounting screws.

Construction. The unit shown is built in a $3 \times 4 \times 5-\mathrm{in}$. Minibox. The amplifier/relay circuit is built as a subassembly on a $23 / 8 x$ $31 / 2-\mathrm{in}$. piece of perforated board. Flea clips are used for tie points. Parts layout isn't critical.

Transistors Qi, Q2 and Q3 can be a gen-eral-purpose type such as the RCA 2N217. Even the three-for-a-buck variety transistors will do. For super-sensitivity use high-gain 2N26I3 transistors. With 2 N 217 s the vox will be tripped by a moderate-level voice two feet from the speaker-mike. With 2 N 2613 s a whisper will trip the vox at four feet. Intermediate sensitivity can be obtained using general-purpose transistors and a 500 -ohm to 3.2 -ohm output transformer (T2 in the Parts List) connected between the speaker-mike
and sensitivity control R1
Resistors can be up to double the specified values. Except for C3, capacitors can range in value from half to twice the values listed. However, C3's value is somewhat critical as it partially determines RY1's hold-in time. The specified value of $100 \mu \mathrm{f}$ will hold RYI in for full sentences with a loud voice two feet from the speaker-mike. For a longer hold-in time, or for lower input levels, CI should be increased to $200 \mu \mathrm{f}$ to $500 \mu \mathrm{f}$ (with high-gain transistors $100 \mu \mathrm{f}$ is generally adequate). For a shorter hold-in time, say, complete words or syllables, C4's value should be reduced.

Any SPDT relay can be used as long as its coil resistance is from 150 to 400 ohms and the pull-in current is 10 to 20 ma . Two

Fig. 4-To increase the gain without adding another transistor, connect a 500 to 3.2-ohm transformer between J1 and R1. The 500 -ohm winding goes to Rl.
 net-mounted components should be soldered to the circuit board belore installing board in the cabinet.

PARTS LIST

B1-9 V battery (Eveready 206 or equiv.)
B2-9 V battery (Eveready 246 or equiv.)
Capacitors: 15 V electrolytic unless otherwise indicated
C1,C2-10 10 f. 6 V
C3-100 $\mu \mathrm{f}$ (see text)
C4,C6-50 μ f
C5- $100 \mu \mathrm{f}$
D1-1N34A diode
J1-Closed-circuit phone jack
21,Q2,Q3-2N217 or 2N2613 transistor (see text)

Resistors: $1 / 2$ watt, 10% unless otherwise indicated
R1- 5,000 ohm, audio taper potentiometer
R2-33,000 ohms
R3-4,700 ohms
R4- 180,000 ohms
R5- 10,000 ohms
R6-22,000 ohms
RY1-SPDT relay, $250-335$ ohm coil. Sigma 11 F.250-G/SIL or Potter and Brumfield RS5D
RY2-DPDT relay, 117 VAC coil (Potter and Brumfield KAllAY)

SIA,S1B-DPST switch on R1
S2—Normally-closed push-button switch
SPKR-8 ohm speaker
T1-Transistor output transformer. primary: 500 ohms, secondary: 3.2 ohms (Lafayette 99 R 6123). See text
TS1,TS2-3-lug screw type terminal strip (Cinch-Jones $17-3$ or equiv.) Misc.-perforated board, flea clips. $3 \times 4 \times 5-\mathrm{in}$. Minibox, knob, battery connectors

Fig. S-To use the vox to control a tape re corder (lelt). connect RYl's normally-open confacts in series with motor. To switch a CB or ham transmitter (right), connect the nor-mally-open contacts in parallel with the PTT switch in transmitter.

Fig. 6-To obtain con. tinuous operation of re. corder after vox is tripped, another relay. RY2, must be used. Recorder is restored to normally-ott by press. ing S2, a normally. closed push.button switch. Relay RY2 is a 117 VAC DPDT type.

JUNK BOX VOX

batteries must be used. Battery B1, which powers Q1 and Q2, can be an ordinary tran-sistor-radio battery. B2 must be no smaller than an Eveready No. 246 or equivalent.

Using The Vox. The vox will not work with a crystal or dynamic microphone. You must use a speaker. Reason is QI's low input impedance will load any other microphone and reduce its output. Because RYI closes as soon as power is applied (it opens a second later), don't hook the vox to the equipment to be controlled until the vox is turned on or the power-on pulse will trip the controlled equipment.

There are two ways to control a tape recorder. The first method starts and stops the recorder's motor (or the capstan motor if the machine has more than one motor) in step with the input signal. When a sentence is complete, the motor stops. Fig. 5 shows how it's done. Trace the leads which go to the capstan motor and open one lead. Then connect the opened leads to RYI's normallyopen contacts. The only difficulty with this method is that a time delay of a second or so needed to allow the motor to come up to speed. It is best to activate the vox by clear-
ing your throat first to allow the motor to get up to speed.

The second method gives continuous operation once the vox is tripped. Open the motor leads but now connect the relay circuit shown in Fig. 6. When RY1 closes, power is applied to relay RY2. One set of RY2's contacts starts the motor and the second set of contacts applies a holding voltage to RY2's coil to keep it closed after the vox releases. The recorder is stopped by pushing S2.

To use the vox to control a CB transceiver or ham transmitter, connect RYI's normallyopen contacts across the rig's push-to-talk leads as shown in Fig. 5. Place the vox's speaker-mike alongside your regular mike and adjust R1 so RY1 holds in for complete sentences.

In the intruder-alarm version, rotate RI just enough to turn power on, then slowly turn R1 fully clockwise. The slightest vibration to the cabinet or even a footstep will be enough to trip the vox.

If the vox fails to trip, check Q1's collector voltage; it should be 4 to 6 volts with respect to ground. If it isn't, select a value for R2 which produces $4-6$ volts. Similarly, try other values for R4 to get 3 to 5 volts at Q2's collector.

Walkie-Talkie Tester

Put punch back in your transceiver with this all-in-one service instrument.

SO long as it's working, a walkie-talkie is an extremely reliable, rugged electronic device. But when it gives up the ghost it becomes a giant migraine headache.

When it comes to servicing walkie-talkies, you'd think a conventional signal generator would be the answer. But a generator has only rough calibration at 27 mc and it's useless for alignment. And a 5 -watt rig, more often than not, will overload the walkie-talkie rather than provide a useful test signal.

What you need for alignment is a crystalcontrolled signal generator with an adjustable low-power output. You also need an audio signal for testing the modulator and speaker/ mike. A remote indicating field-strength meter (FSM) fur measuring the walkie-talkie's RF output at a distance also is a must.

The Walkie-Talkie Tester sports all these features. It's a modulated crystal-controlled

RF generator whose signal you use to align the walkie-talkie's receiver. It also puts out an audio signal at just the right level so you can check if the walkie-talkie's modulator is working or if its speaker/mike is defective. Finally, it's a sensitive remote-indicating FSM.

Construction. Component values are critical. therefore, make no substitutions. The Tester is built in the main section of a 4 x $5 \times 6-\mathrm{in}$. Minibox. A large cabinet is needed to prevent the whip antenna from tipping over the cabinet.

First, build the modulator/AF oscillator, on a piece of $27 / 16 \times 33 / 8 \mathrm{in}$. (stock size) perforated board, following the pictorial in Fig. 1. Cut off the yellow and green leads on TI's secondary and use only the white and brown. Set the board aside and go on to the oscillator.

Fig, 1-Mount the antenna on home-brew Lbracket using fiber shoulder washers to insulate it. Shield between FSM ai left and RF oscillator at right is made of scrap aluminum.

Walkie-Talkie Tester

The construction of coil T2, which is wound on a stock form, is critical so take care when winding it. If it isn't a neat job. start over again. First, tensilize a 2 -foot length of \#22 enameled wire by clamping one end in a vise and pulling the wire until it goes dead slack. If the wire is not tensilized it will unwind after you wind the coil. Scrape about $1 / 4-\mathrm{in}$. of insulation from one end and solder it to lug C near the mounting screw.

Run the wire along the form for $1 / 8 \mathrm{in}$. and then wind 5 closewound turns. Bring the wire away from the form to make a loop, bring the wire back to the form, twist the loop once at the form and then wind 6 more turns. Solder the wire to Lug A. Scrape away the loop's enamel insulation, twist it tightly and tin it with solder.

In the center of the coil right over the loop, wrap a single turn of \#22 wire as shown in the detail sketch in Fig. I. Twist the loop's leads on the side opposite the form's lugs. The single-turn link should have 6 -in.-long leads. Cover the coil with coil dope or radio service

Fig. 2-Antenna hole is $17 / 8$ in. back from front of cabinet. Put grommets between board and boitom of cabinet. Put tape on cabinet under board.
cement and set it aside to dry for about 24 hours.

Now build the oscillator on the front of the cabinet. Connect all leads, except the lead from JI, to the modulator board and connect the battery. Install a $2 \frac{1}{4}-\mathrm{in}$. wide by $4-\mathrm{in}$. long shield, cut from a section of scrap alumi-

Fig. 3-Modulator is built on a $27 / 16 \times 33 / \mathrm{b}-\mathrm{in}$. piece of perforated board. Drill holes in comers and mating holes in cabinet bottom for mounting.
num, from the top of the cabinet to the antenna L-bracket. Drill a $1 / 8-\mathrm{in}$. hole in the shield, as shown in the pictorial, pass one lead from the single-turn link (D) through the shield and solder it to S . The remaining linklead (E) connects to the ground lug on nor-mally-closed jack JI. Make certain that the lead from R3 to J1 is connected to lug that's lifted when a plug is inserted.

Next, install the FSM section (at the left of the antenna in Figs. 1 and 2). No problems here as LI is a stock coil; just push its
tap out of the way. Complete all wiring, install the collapsible antenna using a grommet in the top of the cabinet. Finally, connect the antenna to SI.

The FSM's remote indicator is built in the main section of a $21 / 4 \times 21 / 4 \times 4-\mathrm{in}$. Minibox as shown in Fig. 6. Any layout will do.

Checkout and Operation. Plug a thirdovertone CB transmit crystal into SOI, extend the antenna and set up your 5 -watt rig or a walkie-talkie nearby. Either should be tuned to the same channel as the crystal in the Tester. Put a knob on T2's slug-adjustment screw. Set SI to ose and from the full counter-clockwise position, adjust T2's slug until you hear the Tester's signal on the 5 -watter or the walkie-talkie. If necessary a slight adjustment of T2's slug will rubbed (shift) the oscillator's frequency slightly This will be indicated by a fall in the 5 -watt er's S-meter indication or by distortion of the tone in the walkie-talkie.

The Tester is deliberately designed to shif the crystal frequency as many walkie-talkie: are not exactly tuned to the channel fre quency. And it is important that the walkie

Walkie-Talkie Tester

talkies be aligned to each other's operating frequency, regardless of what it is.

Before you attempt to do anything to the walkie-talkie, be sure to get hold of a copy of its schematic. In addition to the schematic, try to obtain a diagram showing the physical location of all parts so you can quickly find the RF and IF transformers and coils.

To align a walkie-talkie set up the Tester across the room from the walkie-talkie. Then extend both the walkie-talkie's and Tester's antennas. Adjust T2's slug if necessary, to get the oscillator working. Then adjust T2's slug again for maximum S-meter indication on the 5 -watter or for undistorted tone on the walkie-talkie. Collapse the Tester's antenna until the signal received by the walkietalkie being aligned is just audible.

Now, align the walkie-talkie receiver's RF and IF transformer for maximum audio output. Keep the Tester's signal at the lowest readable level by collapsing the antenna or moving the Tester farther away to prevent the walkie-talkie's AVC from masking the alignment adjustments.

If the walkie-talkie just produces an unmodulated carrier, disconnect its speaker and connect it to JI. If the speaker is okay you'll hear a weak but clean tone. If the speaker checks out, connect the leads that went to walkie-talkie's speaker to JI. If the walkietalkie's modulator is defective there will be no modulation of the carrier (as received on another walkie-talkie or the 5 -watter) .

You can then signal-trace as you'll have a steady tone feeding into the walkie-talkie. If you can drive the tone through the modu-lator-even if it sounds distorted-the defect is probably in the speaker or switching leads.

Fig. 6-FSM remote is built in $a 21 / 4 \times 21 / 4 \times 5$-in. Minibox. Parts placement is not critical. Connect it to Tester with RG174/U coax cable.

The remote FSM is used to tune up the walkie-talkie's transmitter. Extend the Tester's antenna all the way, set S 1 to $f s m$ and plug the remote indicating meter into J3 using shielded cable. Set R7 to about mid-position and activate either an operating 5 -watt transceiver or a walkie-talkie. Using a plastic alignment tool, adjust Ll for maximum meter indication. Use R7 to keep the pointer onscale.

To peak the walkie-talkie's transmitter, place the Tester as far as possible from the walkie-talkie. Stand the walkie-talkie upright —away from metal objects-and peak-up the transmitter for highest meter indication.

After the transmitter is peaked, check to make sure it starts by pressing the push-totalk button. The FSM should indicate as soon as you press the button. If it doesn't, slightly detune the oscillator, tuning first on one side and then the other until the oscillator starts each time the button is pressed.

PARTS LIST

ANT.- 12 section, $541 / 2$ - in. collapsible antenna (Lafayette 99 R 3008 or equiv.)
B1-6 V battery (Eveready 724 or equiv.)
C1, C3, C9-. $001 \mu \mathrm{f}, 500 \mathrm{~V}$ ceramic disc capacitor
C2-25 $\mu \mu \mathrm{f}, 500 \mathrm{~V}$ ceramic disc capacitor
C4-30 $\mu \mathrm{f}, 15 \mathrm{~V}$ electrolytic capacitor
C5, C7-. $25 \mu \mathrm{f}, 75 \mathrm{~V}$ ceramic capacitor
C6-. $1 \mu \mathrm{f}, 75 \mathrm{~V}$ ceramic capacitor
C8- $62 \mu \mu \mathrm{f}, 500 \mathrm{~V}$ silver mica capacitor
D1-1N34A diode
J1-Single closed circuit phone jack
(Switchcraft 12A or equiv.)
J2, J3—Phono jack
L1-CB transceiver oscillator coil (1,650 kc IF) Lafayette 32 R 0909
M1- 0.50μ a DC microammeter
Q1-2N274 transistor
Q2-2N217 transistor
Resistors: $1 / 2$ watt, 10% unless otherwise indicated
R1—33,000 ohms
R2-22,000 ohms
R3-2,700 ohms
R4- 82 ohms
R5-270,000 ohms
R6-10,000 ohms
R7-1,000 ohm, linear taper potentiometer
S1-Miniature DPDT toggle switch
so1-HC6/U crystal socket
T1-CB modulation and audio output transformer; primary: 500 ohms, center tapped. Secondaries: 8 ohms and 3,000 ohms. Lafayette 99 R 6132
T2-Oscillator coil wound on a J. W. Miller No. 42A999CB1 coil form (Lafayette 34 R 8948). See text.
XTAL-Third overtone CB transmit crystal
Misc. $-4 \times 5 \times 6$-in. and $21 / 4 \times 21 / 4 \times 5$-in. Miniboxes, perforated phenolic board, flea clips, battery holder, terminal strip, shielded cable

BRASS pounders become artists with the key after using an electronic keyer. Quite unlike the ham's old standhys, the J- 38 straight key and the semi-automatic bug, an electronic keyer enables you to send perfect code every time. Hold its paddle to one side and it produces dahs continuously. Hold the paddle the other way and dits pour out without end. And you never have to worry about character duration and spacingthey're always perfect.

Up to now electronic keyers have been expensive accessories and regarded as luxuries around the ham shack. But the $\$ 39.95$ Heathkit HD-10 has brought the electronic keyer into the ball park of practically any operator whose dream has been to send clean-as-2whistle code effortlessly.

Eleven transistors. in a computer-like circuit full of flip-flops, put the HD-10 among the most advance-design keyers. Regardless of where the speed knob is set the spacing hetween and the length of the characters remain constant. The dits and dahs are selfcompleting. That is. even if you just tap the paddle to one side of the other. the dit or dat lasts for its full duration.

Building It

Construction includes two types of wiring: printed-circuit and point-to-point. The circuit board virtually eliminates all chances of error and saves much construction time. However, there's enough routing and soldering of cable-harness wires to give that real huild-it-yourself feeling. It's about a ten-hour
job to assemble the kit. plus a little time for puttering with mechanical adjustments.

On The Air

It was with trepidation that we put this keyer on the air for the first time. Reason was that its design looked similar to a circuit we'd seen published somewhere before. We constructed that circuit. which worked beautifully until the transmitter was flipped on. Then RF fields occasionally caused false triggering and garble.

The problem did not exist with the HD-10. It keyed a 100 -watt transmitter when it was about 15 ft . from the antenna (thus in strong

The keyer contains a lot of components but construction is not that difficult since most parts are mounted on an uncrowded printed-circuit board.

Controls in cover are connected to circuit board with cable harness. The dual pot is the speed control. Other pot is for the leying-monitor volume.

LOW-COST ELECTRONIC KEYER

RF fields) without one misfire. A big feature of the HD-10 is that it has electronic (transistor) switching instead of a rat-a-tat-tat keying relay found in some other keyers.

If the keyer can be faulted at all it's for lack of flexibility in allowing selection of the basic speed range. Early in construction you must decide whether you want to send 10 to 20 wpm or 15 to 60 wpm . You then solder either a 10,000 -ohm or a 68,000 -ohm resistor on the board, depending on desired speed range. Neither range met all the requirements for our CW operator, an 18 -to- 25 -wpm man.

The high-range resistor did not permit the keyer to be slowed sufficiently for two important functions: working DX through heavy QRN/QRM conditions or working slower operators who could well provide a rare QSL, say, to get a worked-all-states certificate. Installing a low-range resistor, on the other hand, can cramp your style if you want to get over 20 wpm .

The back panel of the keyer permits hookup of a manual key for slow-speed work, but in a sophisticated instrument such as the HD-10 the addition of a speed-range switch would be a welcome feature.

The keyer works with most transmitters but cannot be plugged indiscriminately into every key jack. Keyed current shouldn't exceed 35 ma and voltage across the key contacts must be under 105 V .

The manual gives a good checkout procedure plus a method for adjusting the dit-

Final assembly step. Key lever is mounted on ballast plate, a heary sub-chassls that prevents the unit from walking across table when operated.
space ratio with a VTVM. Shown, too, are several possible hookups for listening to your fist through the keyer's built-in speaker or via your receiver.

Old-time hams like to caution beginners against any kind of speed key. You'll send faster than you can receive, goes the argument. We disagree. The statement is almost true since anyone who sends faster than he can copy has neither much fun nor success on CW. And he soon finds it out. An electronic key, on the other hand, provides a near-effortless method for sending remarkably clean code that others find a pleasure to copy. Getting the hang of the key takes no great skill-just some practice.

Rear terminal board takes connections to transmitter for keying, to receiver for optional monitoring and has a jack for a conventional key.

Now!

Hands-free

conversation with our

 SWITCMLEES DNTERCOMBy DAVID WALKER

HOW many times have you watched a conversation between two people that never mastered the art? Before long they're both talking at once. And what happens if these same people try to talk to each other over an ordinary intercom? You guessed it-they'll be tied in knots after two minutes of fiddling around with the push-to-talk switches.

The answer is not a course in the fine art of conversation but a switchless intercom like ours. Such an intercom lets each party break into the conversation at any time. It's like the telephone, but with loudspeaker volume. While one person is yacking, the other can start talking and will be heard instantly. You can even interrupt while your friend is interrupting you!

There are no voice-operated relays or other switches to delay the back-andforth action. Everything is done electronically. But before you set about ordering parts, consider carefully the end use of such an intercom. Though fun to operate, its special design requires plenty of construction and parts.

Unlike push-to-talk intercoms, the switchless intercom requires two complete amplifiers instead of the usual one. Total cost of parts is about $\$ 30$ to $\$ 35$ if everything is purchased new. But for certain applications, you can't beat it.

Say the boss is dictating a letter to his secretary in another room. She can stop him and ask how to spell phthisis without a lot of distracting button pressing.

Construction. Since both units are identical, we show the diagrams of only one and the power supply. Most of the parts are mounted on a $31 / 2 \times 51 / 2$-inch piece of perforated board. Mount all parts on the board before fastening it in the U-section of an $8 \times 6 \times 31 / 2$ inch Minibox. Flea clips or other small push-in terminals serve as tie points. Transformer TI and transistor Q4 are installed
on the board as shown in the pictorial.
Grounds are important. Notice that a piece of heavy bare wire runs along two edges of the hoard. One point on this wire must connect to the solder lug which is attached to a Inng machine screw near C2. This screw also supports the front edge of the board about $3 / 4$ inch above the bottom of the cabinet. A third nut on the top of the board locks it in place. The rear of the board is held to the case with two small L-brackets.

Another ground point is binding post 13. It is not necessary to use a fiber insulating
washer for this post since it must make contact with the case. Binding posts Jl and J 2 must be insulated from the case. The solder lug at one side of transistor Q4 is not for grounding. It is for T2's connection to Q4's collector (the case).

Set-Up and Operation. After both units and power supply are complete, connect all similarly marked terminals (gnd, sig, -9V) with a length of 3 -conductor wire (No. 20) plastic-insulated hookup wire). The aud terminal that appears in the photo of the power supplv has no internal connection th the

SWITCHLESS INTERCOM

First model was built in metal carinet, hence 11, 12, 13. R8, R10 and the speaker are mounted as shown below. Circuit board is held in place with angle brackets at rear and machine screw at front. Later model (photo at right) was built for installation in wood cabinet shown on first and last pages of story. For this construction, mount R8 and screw-type terminal strip with angle brackets.

Capacitors: all electrolytic unless otherwise indicated
C1, C3-10 mf, 15 V
C2, C10- $500 \mathrm{mf}, 12 \mathrm{~V}$
C4- $10 \mathrm{mf}, 6 \mathrm{~V}$
C5, C9- $100 \mathrm{mf}, 15 \mathrm{~V}$
C6, C7-. $1 \mathrm{mf}, 200 \mathrm{~V}$ tubular
C8- $30 \mathrm{mf}, 12 \mathrm{~V}$
-C11-1,000 mf, 25 V
*C12-1.000 mf, 15 V
J1-J5-Five-way binding posts
Transistors: all RCA
Q1-2N2613 Q2-2N217
Q3-2N408 Q4-2N2147
Resistors: $1 / 2$ watt, 10% unless otherwise indicated
R1-1 megohm

PARTS LIST

R2, R4-1,000 ohms
R3-10,000 ohms
R5-150,000 ohms
R6, R7-820 ohms
R8-10,000 ohm linear-taper pot
R9-47,000 ohms
R10-5,000 ohm audio-taper pot
R11-82 ohms
R12-270 ohms, 1 watt
R13-39 ohms
R14, R15-2 ohms, 5%

* R16-32 ohms
*S1-SPST toggle switch
*SR1, SR2--Silicon rectifier: $500 \mathrm{ma}, 100 \mathrm{PIV}$
SPKR- 3×5-inch speaker

T1—Driver transformer: primary, 8,000 ohms: secondary, 3.2 ohms (Allied 62 G 093)

T2—Output transformer: primary, 100 ohms: secondary, 3.2, 8, 16 ohms (Allied 64 G 149)
*T3-Power transformer: primary. 117 V ; secondary. 26.5 V@.6 A (Allied 61 G 476) Misc.- $8 \times 6 \times 31 / 2$ and * $5 \times 21 / 4 \times 21 / 4$-inch Miniboxes, perforated board, flea clips, crystal microphone
Note: Order twice the quantity of all parts except those marked with an asterisk ()

Signal from mike is amplified by Q1 and fed to Q2. Out of phase signals at Q2's emitter and collector cancel in R8 and very little signal gets to speaker. Hence. no feedback from mike to speaker at same unit. Signal at Q2's emitter is coupled by C5 to II and other intercom. Signal from other in. lercom is fed by C5, C7, R8 and R10 to Q3 where it is further amplified and ied to the speaker.
supply. It is just a tie point for the sig wires of the two intercoms. The location of the power supply may be anywhere along the line.

First thing to do is place the intercoms in separate rooms and close the door. (Feedback will occur if the two stations "hear" each other.) The mike should be located about two feet to the side of each intercom's cabinet. With power turned on, turn the volume control on one unit all the way up. Chances are you'll hear howling feedback. Reduce this by slowly turning balance control R8.

At some point near the middle of R8's rotation, the feedback should stop or become very weak. Now repeat this procedure at the other unit. (Note: this adjustment must be always made with both units connected.) If there is no feedback hold the mike a few inches from the speaker.

It is possible that feedback cannot be killed with the R8 because of mechanical feedback between mike and speaker through the table surface. You can determine this by holding
the mike in your hand. If this stops it, place some soft material under the mike. Feedback may also occur if the mike is placed atop the intercom case or if it is too close to the speaker.

Some experimentation will be required to determine the best speaking level and setting of the volume control. Talking too close to the mike will produce distortion at the other unit. With our model. speaking at a distance of about one foot from the mike produced good intelligibility at the other unit.

How it Works. It's easy enough to use two wires with a telephone communications system, since there's no problem in having signals travel two ways simultaneously on one pair of wires. And there's no feedback at either end because the microphone and earphone are separated by the handset and hecause the gain is low.

With most conventional intercoms, the speaker is not used as a microphone and a speaker at the same time because there d bc feedback. Okay, you say, why not build an

If you install intercom in wood cabinet. mount speaker first. then output transtormer. Attach volume control to front panel with long leads then mount circuit board atop machine screws. Connect one lead ol output transtormer's primary to collector of Q4. and other lead to the terminal strip.

SWITCHLESS INTERCOM

intercom with a speaker and mike at each end? Fine, except that you'd get feedback between them because of the high gain required to produce room volume.

The switchless intercom solves this problem. Here's how. Take a look at the schematic. When you talk into the mike, you want your signal to go to the other unit but not to your speaker. Watch what happens. The signal from your mike is amplified by Q1 and fed to Q2. This signal now appears at both Q2's emitter and collector. These two signals, which are 180 degrees out of phase, are fed to balance potentiometer R8, and at some point on R8 they cancel each other out. That point is where R8 must be set for minimum feedback. as we explained earlier. Since there's hardly any of the signal from your mike at this point none of it gets through to Q3. Q4 and to your speaker. Hence, there

won't be any feedback at your unit.
Remember that we said your signal also appears at Q2's emitter. At this point the signal is not cancelled out. It is coupled through C5 to JI and fed to the other intercom. Let's see what happens at the other intercom which is identical to yours.

The incoming signal at J 1 goes through C5 to the emitter of Q2. Since this signal never goes through Q2 from its base, it is not cancelled out. Therefore it continues through C7 to R8 and goes on to Q3, Q4 and the speaker. In a nutshell, then, your signal to your own speaker is cancelled out at R8. But it is fed to the other intercom through C5. The signal passes through C7 to R8 and goes on to Q3, Q4 and to the speaker

Power supply right. and schematic, left. Lug marked "aud" on chassis is not shown in schematic as it is merely a tie point. Be sure you hook up SR1 and SR2 correctly.

Channelized Ham Transmitter

Now! The convenience of instant positive tuning to preselected frequencies!

By RUSS ALEXANDER, WGIEL

MANY'S the ham who can recall when he was clobbered by what sounded like a kilowatt transmitter on his roof. Like as not, the interruption occurred in the middle of a DX QSO or during a local rag chew. Most of the time the only solution is either to close up the shack or to hunt around for another crystal that likely has fallen behind something or other.

By the time the vital rock is located and inserted and the rig retuned, the QSO is long gone. Our 40 -watt Channelized Ham Trarsmitter will solve this problem. Designed for instant frequency changes that can be made with the ease and convenience of channelswitching on the (pardon the expression) Citizens Band, it lets both Novices and Generals enjoy the delights of 40 -meter DX with the stability only crystals can offer. With ten rocks inside and another on the front panel, this neat brief-case-size rig sports an 11position rotary switch that permits you to pick a new operating frequency as quickly as you could with a VFO. A spot switch enables
you in a second to find your operating frequency with your receiver and also aids in finding the right crystal for answering a $C Q$.

The rig's high-voltage supply is worthy of note, too. A solid-state voltage doubler is the key to this two-tuber's light weight and trim size. There's no plate transformer. Shock hazard-a sometimes unpleasant aspect of voltage-doubler circuits-has been eliminated by including a keying relay which isolates the key from the chassis.

Construction. The secret to the rig's trim appearance lies in the way it's built in a standard $12 \times 8 \times 3$-in. aluminum chassis. The first step is to remove an $8 \times 11-\mathrm{in}$. piece of aluminum from what normally would be the top of the chassis with a nibbling tool or by drilling holes and hacksawing.

Next, form part of the removed metal into an L-shape subchassis as shown in Fig. 3. The main part of the subchassis on which the tubes are mounted is $27 / 8 \times 71 / 2 \mathrm{in}$. The side of the subchassis is $27 / 8 \times 2 \frac{1}{2} \mathrm{in}$. A $5 / 16-\mathrm{in}$. lip should be formed along the edges and

Fig. l-Head-on views of rear (top) and front (botom) panels show component locations. Install all parts before mounting subchassis. Cl7's and Cl8's extension shafts pass through panel bearings (Allied 44 U 096). Portion of home-brew bracket for crystal sockets and $S 1$ is shown at right of front panel.

Channelized Ham Transmitter

$1 / 2$-in. lips should be left on the ends of the subchassis to fasten it inside the main chassis.

Looking at the underside of the subchassis in Fig. 4, drill a $5 / 8$-in.-dia. hole $11 / 8 \mathrm{in}$. from the left side for tuning-capacitor CI7's shaft. Also drill a $5 / 8$-in.-dia. hole $11 / 4 \mathrm{in}$. from the right side of the chassis for loading-capacitor C18's shaft. After the holes have been drilled the subchassis should be held in its mounted position and a pencil passed through each of the shaft holes to the back of the center of the panel. The pencil marks will locate the holes for the capacitor shafts in the front panel. Drill holes in the front panel and insert the shaft bearings in them. Mount the capacitors on the subchassis and locate the tube sockets between them. Mount the tube sockets, terminal posts TP1-TP3 and L3. Wire the subchassis following the schematic (Fig. 5) and pictorial (Fig. 4).

The crystal-selector switch bracket shown in Figs. 1 (bottom panel) and 2 should be made next. It is made by bending a U -shape bracket from metal left over from the piece
cut out of main chassis or from other scrap aluminum. The side of the bracket on which the crystal sockets are mounted is $25 / 8 \times 31 / 4$ in. The part of the bracket that separates the front and back of the bracket is 2 in . long. The shape of the bracket through which SI is mounted is triangular (see Fig. 1). Mount the switch and ten crystal sockets on the

Fig. 2-Part of bracket on which crystal sockets are mounted is $25 / 2 \times 31 / 4$-in. Front of bracket (not shown) fits between Sl's bushing. front panel.

Fig. 3-View into top of transmitter shows location of major components. Leads from underside of subchassis to back panel and to Sl pass through grommeted holes. Note especially position of L5, L4/R3 combination, NLl and L6. Lead from L4/R3 should be long enough to permit installation of clip on V2's cap.
bracket and connect the sockets to the switch. With this completed mount the assembly in the left front corner of the chassis as shown in Figs. 1, 3 and 6.

Next, install all parts on the front and back panels. After the power supply and the front panel have been wired, install the subchassis and wire it into the circuit. The shaft extensions for CI8 and CI7 should be installed next and the knobs tightened.

The LA/R3 combination should be pre-
pared by winding 9 turns of No. 22 enameled wire around R3. Solder the ends of the wire to R3's leads. This component (a parasitic choke) should be installed by soldering one of R3's leads to the top of L5. Solder a piece of hookup wire to the other resistor lead and solder VI's plate cap on the other end of the hookup wire. The wire should be made long enough so the plate cap can be removed. Install the crystals and tubes.

Checkout. Before the final can be checked

Fig. 4-Underside of $27 / 0 \times 71 / 2$-in. subchassis. Mount parts where shown and keep all leads short and direct. Wize from meter (not shown) passes through grommeted hole under C12's ground lug and connects to L5's bottom lug (not shown, but visible in Fig. 3). Lead from R7 also goes through hole in lower right corner.

Fig. 5-Schematic of transmitter. Two chasgis grounds (center pin on PLl and BP1) are for safety; either one may be used. RYI reduces shock hazard by isolating key from chassis; key has only 6VDC across it. Key click is suppressed by C4 whose value you may have to expariment with. When loading transmitter into antenna, NLI's intensity will help in tuning for maximum output. Spot switch S3 makes zeroing in with receiver on crystal frequency selected by S1 a quick and simple operation.
it is necessary to tune the grid circuit. This is done best with a grid-dip oscillator (GDO) tuned to the center of the 40 -meter Novice band (7175 kc) and held near L3. While watching the GDO, adjust L3's slug for a dip.

If you don't have a GDO, plug a crystal, whose frequency is near the center of the band, into the front-panel socket and fire up the transmitter (but do not press the key). Tune your receiver to the crystal's frequency. The receiver's BFO should be turned on, the AF gain should be turned up and the RF gain should be just cracked. Press spot switch S3. You should be able to hear a tone from the receiver. (If it isn't clean, reverse the AC plug.) Adjust L3's slug for maximum volume.

Tune Up. The transmitter's final now is ready to be tested. Connect a 40 -watt light bulb to SO3. The receiver setup used in the preceding step again should be used. Be certain not to touch anything inside the transmitter since high voltage is present. Plug a key into JI and close it. You should see an
indication of plate current on the front-panel meter (M1) and hear a loud tone from the receiver. While holding the key, quickly adjust tune capacitor C17 for maximum brilliance of neon lamp NLI and the lowest indication on M1. Then adjust load capacitor C18 for the brightest glow of the neon and 40-watt lamp. Repeat this procedure of dipping with C17 and increasing lamp brilliance with C18 until the meter indicates about 140 ma .

On the Air. Ground BP1 (or else the center pin of SO2) and connect your antenna to SO3 with 52 -ohm coax. Tune and load the transmitter the same way as you did with the light bulb. Neon lamp NL1 (near L6 and C17) should serve as a guide in tuning the antenna. After tuning the rig you're ready for your first CQ. You'll soon appreciate the performance of this transmitter. It's quiet when the key is up and scoots around the band at the quick twist of a switch. Good DXing!

Fig. 6-View into bottom of transmitter is mirror image of top view in Fig. 3. One part that can be seen better in this view is capacitor C15 at base of L5 and VI. Author used surplus mica but you can use a mylar. Note No. 16 enameled wire connecting C18 (extreme left) to L6. Capacitor C16. barely visible, is at the base of L5 (between the tubes). Mount rubber leet on corners of bottom cover. Install top and bottom covers before put. ting transmitter on air.

Capacitors:

Cl - $20 \mu \mu \mathrm{f}, 1.000 \mathrm{~V}$ ceramic disc
C2-220 $\mu \mu \mathrm{f}, 1,000 \mathrm{~V}$ ceramic disc
C3-. $005 \mu \mathrm{f} .1,000 \mathrm{~V}$ ceramic disc
C4. C6-.01 $\mu \mathrm{F}, 1.000 \mathrm{~V}$ ceramic dise
C5-100 $\mu \mathrm{f}, 25 \mathrm{~V}$ electrolytic
$\mathrm{C} 7, \mathrm{C} 10, \mathrm{C} 16-.001 \mu \mathrm{f}, 1,000 \mathrm{~V}$ ceramic disc
C8. C9- $100 \mu \mathrm{f}, 350 \mathrm{~V}$ electrolytic
C11- $40 \mu \mu \mathrm{f}, 1,000 \mathrm{~V}$ ceramic dise
C12-390 $\mu \mu \mathrm{f}, 500 \mathrm{~V}, 5 \%$ silvered mica
C13-. $05 \mu \mathrm{f}, 600 \mathrm{~V}$ mylar
$\mathrm{C} 14-.0047 \mu \mathrm{f}, 1,000 \mathrm{~V}$ ceramic disc
C15-. $005 \mu \mathrm{f}, 1,600 \mathrm{~V}$ mylar
C17-10-365 $\mu \mu \mathrm{f}$ variable (Lafayette 32 R 1103 or equiv.)
Cl8A,B,C-12.367 $\mu \mu \mathrm{f}, 3$-gang variable (Allied 13 U 522 or equiv.)
J1—Phone jack
L1, L2- 2.4 mh , iron-core RF choke (J.W. Miller 4666. (Newark Electronics Corp., 223 W. Madison St., Chicago, III. 60606. Stock No. 59F304; 754 plus postage.)
L.3-Adjustable RF coil, nominal inductance: 15 ${ }_{8906 \text { (J.W. Miller }} 21 \mathrm{~A} 155 \mathrm{RB}$. Lafayette 34 R
L4-Choke, 9 turns No. 22 enameled wire wound
on R3 on R3
L5-2.5 mh RF choke (Natinnal R-300S. Allied 61 Z 515 . $\$ 1.12$ plus postage. Not listed in catalog) L6-15-turn air-wound inductor. Made from $1-\mathrm{in}$. dia., 16 -turns-per-in., No. 20 wire, Barker \& Williamson No. 3015 Miniductor (Lafayette 40
R 1624 or equiv.) R 1624 or equiv.)
M1- 0.300 ma DC milliammeter
NLI-NE-2 neon lamp
Pl-No. 51 pilot lamp and socket
PL1--AC plug with ground lug
PL2-3-contact plug (Cinch-Jones P-303-AB)

PARTS LIST

R1-47,000 ohm, $1 / 2$ watt, 10% resistor
R2— 27.000 ohm, $1 / 2$ watt. 10% resistor
R3- 22.000 ohm .1 watt, 10% resistor
R4-8,200 ohm. 1 watt, 10% resistor
R5- $10 \mathrm{ohm}, 5$ watt, wirewound resistor
R6, R7-25,000 ohm, 10 watt, wirewound resistor RY1-SPDT relay; $6 . V, 85-\mathrm{hm}$ coil. (Phillips Advance No. 15-6-1C. Newark Electronics Stock No. 60F1747. $\$ 1.50$ plus postage.)
S1-1-pole, 11-position, non-shorting rotary
switch. (Centralab No. 1403. Newark Electronics 22F439. $\$ 2.52$ plus postage.)
S2—SPST toggle switch
S3-SPDT pushbutton switch
SO1-Crystal socket (11 reqd. National Type CS-6, Lafayette 40 R 3713 or equiv.)
SO2-3-contact cable-clamp socket (Cinch-Jones S-303-CCT)
SO3-SO-239 coax connector
SR1-Silicon rectifier, minimum ratings: 100 ma ,
100 PIV
SR2, SR3-Silicon rectifier, minimum ratings: 750 ma, 750 PIV
Tl-Filament transformer, secondary: 6.3 V @ 6 A (Allied 62 U 325 or equiv.)
TP1-TP7-Solder terminals (Cambion No. 1947-2, Newark Electronics 40 F 1842 or equiv.)
V1-6CL6 tube V2-6DQ5 tube
XTAL 1 to XTAL $11-40$-meter crystals. (Available for $\$ 1.50$ ea. from Jet Crystal Lab, 24248 S . Crenshaw BIvd., Torrance, Calif., and others.) Misc. $-12 \times 8 \times 3$-in. ailuminum chassis, 9 -pin and 8 -pin (octal) tube sockets. $1 / 4$-in. extension shafts and couplings, terminal strips (TS1, TS2), Binding post (BP1), rubber feet (4 reqd.). 12×8-in. perforated aluminum (2), sheet-metal
screws.

Go modern! Instead of flipping switches, be lazy and just touch a plate.
By A. J. MOLINARA

PEOPLE get lazier every day. It seems whenever you turn around there's a new labor-saving device designed to make life easier. For example, did you know it's even possible to eliminate the strain of flipping a switch?

We got so exhausted from turning the lights on and off with a wall switch the other day that we built a gadget to spare ourselves even this exertion. Now, all we do is touch a small plate to control the lights.

Commonly known as a capacity switch, our gadget has many other practical applications. Amateurs, for instance, can put the sensing plate near the mike and use our touch switch as a transmit/receive switch. Install the switch's sensing plate at the front door and you have a light-touch doorbell button.

Put the sensing plate near the top of a tank or tub and when the water level gets too high a bell will ring. Install the plate near the ground at the back door and all Fido has to do is touch it with his nose to let you know he wants in.

You have an option when building our touch switch. Our design includes a latching
relay (RY2) to keep, say, a light or bell on after you remove your finger from the sensing plate. To turn the light or bell off, you touch the sensing plate a second time.

If you are going to use the switch for a doorbell or a water-level alarm, eliminate RY2 and connect the bell circuit to contacts 3 and 4 on RYI. The doorbell then will stop ringing the instant you remove your finger from the sensing plate.

Construction. Our model is built on a $27 / 8 \times 5-\mathrm{in}$. piece of phenolic board. However, perforated board, plastic or bakelite will work just as well. If you expect to mount the circuit board inside a $4 \times 6 \times 2-\mathrm{in}$. chassis (Premier ACH-431), check the clearance before mounting the relays on the board.

Temporarily position the relays, terminal strips and transformer to determine where to drill mounting holes for them. Then mount these components. Install all wiring on the board before mounting components.

When installing diodes D1, D2, D3 and D4, hold the leads near the case with a pair of longnose pliers while bending them. If you simply hold the diode itself and bend a lead, the lead may break out of the diode's

Touch to Switch!

body. Also, be sure to hold the pliers on the leads when soldering to dissipate heat.

The cathode end of diodes D1, D2, D3 and D4 (marked with a + sign in our schematic and pictorial) is identified with a color band on the diode's body. Be sure to use 5 per cent resistors for R6 and R7 and the tem-perature-compensating capacitors specified for C3 and C4.

Coil L2 is a modified 3 -section. 2.5 -millihenry RF choke. The modification converts the choke into a transformer in which the center section becomes the primary and serves as the inductance in the RF oscillator circuit. The two outer sections become secondaries of the transformer and couple the RF from the oscillator to the four-diode bridge.

Take a look at the pictorial of the coil at the top of the second page of this article.

L2 MODIFICATION

L. 2 must be a three-section, 2.5 -millihenry RF choke. It is modified by breaking the wires between sections, unwinding them and soldering the wires from the left and right windings together.

Space is at a premium on the $27 / 8 \times 5$-in. board shown in the photo above, so take care. Author used the brown and orange secondary leads of T1, across which the voltage was highest. Keep wires from L. 2 to DI-D4 and other parts short and mount capacitor C6 so it can be adjusted through hole in cabinet.

RF produced by Q1 is coupled to the two secondary windings of L2. If capacitances to ground at Jl and C6 are equal, vohage across diode bridge and Q2's base is zero. When Il is touched, bridge is unbalanced and its output forward-blases Q2, causing it to conduct and energize, which then energizes RY2.

Break the wire between the sections and unwind a few turns from each section. Wires from the left and right sections are connected together. We have identified each wire with a letter and show circuit destinations.

Check-Out. First thing to do is determine if the RF oscillator is working. Plug in the touch switch and tune a broadcast radio placed nearby to around 800 kc . If the oscillator is working you'll hear it (the radio will go silent). The frequency isn't critical so long as you pick it up somewhere in the broadcast band.

If you are not going to mount the switch in a metal box, plug a 3 -ft. wire with a 1 -in. dia. plate on one end in J1. (If you are going to mount the switch in a metal box, hold off making the following adjustment until the board is installed in the box.) Connect a VTVM set to a low DC range to jacks J2 and J3. Using a plastic alignment tool, adjust C6 for the lowest voltage.

If you are going to mount the switch in the box, be sure to use spacers to keep the back of the circuit board away from the box. After mounting the board, mount jacks J1, J2 and J3 and SO1. Now, make the adjustment discussed in the preceding paragraph.-

PARTS LIST

C1, C5- $.01 \mathrm{mf}, 100 \mathrm{~V}, 10 \%$ mylar capacitor C2- $50 \mathrm{mf}, 50 \mathrm{~V}$ eiectrolytic capacitor C3-240 mmf, 600 V temperature compensating (N750) tubular capacitor (Centralab TCN-220, Lafayette 33 G 2222)
C4- $510 \mathrm{~mm}, 600 \mathrm{~V}$ temperature compensating (N750) tubular capacitor (Centralab TCN.510. Lafayette 33 G 2231)
C6- 9.180 mmf trimmer capacitor (Lafayette 34 G 6831 or equiv.)
D1, D2. D3, D4-1N34A diode
J1, J2, J3-Insulated pin jack or phono jack L1- 2.5 mh . 3 -section RF choke (National R-50, Lafayette 32 G 5118)
L2-2.5 mh, 3-section RF choke (Modified National R.50; see text)
Q1-2N1305 transistor Q2-2N696 transistor
R1-22,000 ohm, $1 / 2$ watt, 10% resistor
R2-2,700 ohm, 1/2 watt, 10% resistor
R3- 100 ohm, $1 / 2$ watt, 10% resistor
R4-3,900 ohm, $1 / 2$ watt, 10% resistor R5-1, 1,500 ohm, $1 / 2$ watt, 10% resistor R6, R7- $24,000 \mathrm{ohm}, 1 / 2$ watt, 5% resistor R8-4,700 ohm, $1 / 2$ watt, 10% resistor RY1-SPDT relay, 2500-ohm coil (Potter \& Brumfield RS5D, Lafayette 30 G 8599) RY2-Latching relay; SPDT 5A contacts, 117 V. 60-cycle coil (Guardian IR-610L-Cll6. Available from Newark Electronics Corp., 23 W. Madison St., Chicago, Ill. 60606. Stock No. 24F098. $\$ 4.50$ plus postage) SO1-AC socket SR1, SR2-1N1692 diode T1-Filament transformer, primary: 117 V secondary: 26 V @ .04 A , (UTC type FT-13, Lafayette 30 G 7129)

IONG before VOMs or VTVMs came along to measure resistance. a bridge that 1 never crossed a river was used to do the job. Called a Wheatstone Bridge, it determined resistance by comparing an unknown-value resistance with a knownvalue resistance.

Using about $\$ 2$ worth of parts and your transistor radin for any audio-signal source) you can build a Wheatstone Eridge ohmmeter that will measure resistance from less than an ohm to 1 megohm. Most any small container can he used as a case. A handy one from the size standpoint is a cleaned-out shoe-polish can which ours was built in. If calibrated with cate its accuracy will be as good as the tolerance of resistors R2-R8.

To measure resistance you simply plug the ohmmeter via PLI into the earphone jack of a transistor radio and put the Canned Ohmmeter's earphone in your ear. Turn the ohmmeter's kno' (R1) until the volume is at a minimum. or until you don't hear anything, then read the value of the resistor from the ohmmeter's dial. Construction details are covered in the pictorial's caption.

To calibrate the dial, turn RI full counterclockwise and mark this point on the dial. Turn RI full clockwise and also mark this point on the dial. Having found RI's rotation extremes, use a zombass and a ruler to determine the exact midpoint of rotation. This point represents half of $\mathrm{R} \mid$'s resistance and should be

Came ohmurer

marked 10 on the dial.
Plug PLI into the earphone jack of a radio tuned to a strong station. Put the earphone in your ear and put PI. 2 in the hole in SOI marked $\times 100$. You should be able to hear the station. Now, connect a 5,000 -ohm potentiometer (which weill call pot A) to the alligator clips. set R1 to number 10 , and adjust pot A until you either hear nothing or the volume is at minimum (null). Pot A is now set at 1.000 ohms. In conjunction with a $10,00(0$-ohm potentiometer (which we'll call pot $B)$ connected in series with pot A. we are now going to calibrate the ohmmeter's dial from 1 to 10 .

With pot A (which is set at 1.000 ohms) connected to the alligator clips. move Pl? from the $\times 100$ to the $\times 1.000$ bole in SO 1

Our model was built In a $2^{3 / 4}$-in.-dia. shoe. polish can. A larger housing, and consequently a larger dial, will enable you to make more accu. rate measurements. Socket SOl should be right next to the edge of the can. And put tape on all connections so they don't short to the can. PLI mates with phone jack on your transistor radio.

Canned Ohmmeter

Remove pot A and connect pot B to the alligator clips without moving R1. Adjust pot B for null (pot B's resistance is now 2,000 ohms). Connect pots A and B in series and again adjust R1 for null. Mark this as point 3. Remove pot A and connect pot B to the clips. Adjust pot B for null. (Pot B's resistance is now 3,000 ohms.) Connect pots A and B in series and to the clips. Adjust R1 for null. Mark the dial 4. Continue in this manner until you calibrate the dial from 1 to 10 . Just remember that pot A always remains set at 1,000 ohms and pot B is adjusted

Cut a plece of cardboard to fit over the top of the can and draw a circle on it $1 / 4$-in. in from the edge. Cut a V-section out of the cardboard for SOI. RI's mounting nut holds the cardboard.
to produce a null at the newly found resistance. When you reach 10 on the dial the pointer should be right over the 10 mark

Mark the rest of the dial as follows: place PL2 in the $\times 1,000$ hole in SOI, set RI at 2 (connect pot B to the alligator clips), and adjust it for null (pot B's resistance is now 2,000 ohms). Move PL2 from $\times 1,000$ to $\times 100$ and turn R1 for null. Mark this as point 20. Place PL2 in $\times 1,000$, set R1 to 3 and adjust pot B for null. Put PL2 in $\times 100$, turn R1 for a null, and mark 30 on the dial. Continue this procedure until you reach 100 .

zip code

 helps keep postal costs

BUT ONLY IF YOU USE IT.

Souped-Up Phone Tap

Remove flange from 8 mm film reel. slip on cardboard disc $3 / 16$ inch from other flange, then wind 1,000 turns.

Atter removing cardboard disc from reel hub, pull oft coil. compress turns and wrap tightly with tape.

Movie-film reel with flange removed; cardboard-dise spacer and coil are
at left. Finished tap is at right.

EASIES'I way to tap your phone (that's legal) to record a message or for group listening through an amplifier is with an induction pickup coil. One commercially available type is a thin rectangle and tits under the telephone base. But it's hard to find the best coupling position. Cylindrical coils with a uction cup have somewhat better pickup than the llat-coil bit they're clumsy and often fall off the handset. Both types are high impedance (1,000 ohnis) and are designed to work with tube or transistor amplifiers.

Our souped-up phone tap can be made tor hall the cost of other coils and. hecause it has a larger coupling area. it is about twice as sensitive. And its lower impedance (100 ohms) is a hetter match for transistor-amplifier inputs.

The rubber cap in which our coil is installed a see top photo) is called a Tele-Mutl and is available for about 25 in stationery and office-supply stores. It holds the coil in perfect position over the handset carpiece and affords ear comfort.

The best form on which to wind the coil is the hub of a 50 -foot 8 mm movie film reel or a 3 -inch tape recorder reel (modified, see second photo). If neither of these is available, wind the 1.000-turn coil (No. 34 enameled wire) on a $1 / 2 / 4$-inch-diameter form between cardboard flanges spaced $3 / 16$ inch apart. A quarter-pound spool of No. 34 wire has about 2,000 feet-enough for four pickup coils.

After the coil is wound. remove it from the form and wrap it tightly with masking tape. Neatness isn't terribly important but don't scrape any enamel insulation off the wires or you will short out some of the turns. Connect the coil leads to a length of shielded microphone wire.

Cut two $21 / 4$-inch discs from cardboard and punch about six holes near the center of each (see top and bottom photos). Sandwich and glue the taped coil between the two discs. Then punch a small hole near the front of the Tele-Muff for the cable. Pull the cable through and push the coil/cardhoard sandwich all the way into the Tele-Muff. Install a plug on the other end of the wire and you're ready to go.-Gregs Bruce. Jr.

FREE... World's Largest Electronic Kit Catalog

Portable Phonograph Kit ... New alt-transistor ... 4 speeds ... Automatic ... plays anvthing from the Beatles to Beethoven .. assembles in just 2 hour ... Only $\$ 39.95$

Citizen's Band Radio Kits... New preassembled 2-watt Walkie-Talkie just $\$ 99.95$... plus 3 other walkie-talkie kits, and a full tine of transceivers and accessories.

Portable And Table Model Radio Kits New Transistor FM/F̈M Stereo Table Radio at $\$ 69.95 \ldots$ wide array of AM, FM and shortwave models ... easy to build, superb performance.

Stereo/Hi-Fi Component Kits . . . New ! World's most deluxe stereo tape recorder kit, plus complete line of tube and transistor tuners, amplifiers, receivers, speakers, turntables, cartridges, furniture.

Test and Lab Instrument Kits ... New professional 5" DC Oscilloscope complete instrument line for home workshop, Industrial and Educational use. Kit ... New all transistor AC or battery powered new integrated circuit first time ever in a kit ... assembles in only 10 hours ... \$119.95

Tape Recorders ... New Heathkit version of the Magnecord 1020 ... 4. track, 3 mbtors, solenoid operation plus a host of other professional features save $\$ 170$ - Only $\$ 399.50$

Transistor Organ Kits..
New instant-play COLORGLO "Artiste" ... deluxe 17 -voice "Coronado" both famous Thomas models in easy-to-build Heathkit form . . . Save up to $\$ 350$.

World's Best Colór TV Buys... New Early American cabinet for Deluxe 25" model . . . built-in self-servicing facilities for the best color picture at all times... from parts to programs in iust 25 hours.

Plus Full Complement Of Marine Elactronics for your boat, Educational Kits for Home Study or Classroom, Photographic Aids, unique Stereo Systom Planning Guide, and actual page illustrations of Heath assembly manual to show you what easy fun kit-building really is.

six-Bit meter saver

EVEN if it's only a $\$ 10$ VOM, nobody likes to see it burned out by a moment of carelessness. And if it's a $\$ 60$ instrument you've deep-sixed, the grief and loss of green stuff are horrifyingly real.

Sure, most of us at one time or another by incorrectly setting a switch or by putting a test lead in the wrong place have sent a meter movement to the big shop in the sky. It usually happens fast enough to prevent second chances. All it takes to burn-out proof most any meter is cigarette money and ten minutes work.

The secret is two inexpensive silicon diodes connected back-to-front and paralleled across the meter terminals, as shown below. But you cannot protect a meter that has a series resistor built into it. The terminals must be connected directly to the meter coil.

Silicon diodes require a nominal 0.7 V across them before they conduct. Most me-
ters when deflected fully will have a voltage that is less than 0.7 V across their terminals. The diodes, therefore, will have no effect on the meter. But when the meter is overloaded severely the voltage across its terminals reaches the diode's breakover voltage, the diodes conduct and excess current is bypassed around the meter.

SR1 and SR2 can be any low-cost silicon diodes, such as Lafayette's 19 R 5001. They will protect virtually any $50-\mu a$ to $1-m a \operatorname{DC}$ meter. With some meters the diodes may interfere with accuracy. To check whether they do, try them before they're installed permanently. Measure a voltage and note the quarter-. half-, three-quarter- and full-scale deflections. Connect the diodes temporarily across the meter terminals and repeat the procedure. If the meter readings don't change. connect the diodes permanently in place.
-Chet Stephen.

Install diodes (shown here outlined in white) directly across meter terminals in VTVM or VOM.

Diodes bypass current around meter when full-scale deflection voltage is exceeded. Two diodes prevent overload either way.

BUILD, EXPERIMENT, EXPLORE, DISCOVER WITH NRI CUSTOM-DESIGNED TRAINING KITS

BLilLD YOUR OWN PHONE/CODE TRANSMITTER

This is just one of seven training kits programmed into NRI's Complete Communications course. You get actual practice in building your own crystal-controlled, phone/code transmitter and putting it on the air. You experiment with modula. tion, "clamping" circuits, key filters, other aspects of commercial transmitter operation. Can be put on the air simply by attaching an antenna and complies with FCC regulations. As with all NRI training kits, you get the most modern features and parts.

BUILD ACTUAL ANALOG COMPUTER CIRCUITS

Industry, business offices, the government and military all need trained Electronics Technicians. NRI's Industrial Electronics course prepares you. You progress through 10 carefully designed training kits, topping off your practical experience phase of training by experimenting with feedback control systems, analog computers and digital computer elements. You actually solve problems on this analog com. puter you build yourself. This is the practical, fast way to a good paying, career position.

BUILD A CUSTOM-ENGINEERED TELEVISION RECEIVER

Want to earn $\$ 4$ to $\$ 6$ an hour in s,are time? Want your own parttime or fulf-time busiress? In Ra-cı-TV Servicing ycu learn to ins:all, maintaın, service radios, TV sets, hi-fi and stereo, other home Electronics equipment. In your training are eight training kits, including this complete, modern, stim-line TV receiver. You build it yourself, become familiar with components and circuits, learn servicing procedures . . . and earn extra money as you train. National Radio Institute, Washington, D.C.

Join the Thousands Who Gained Success with NRI

"'I am a Senior Engineering Aide. Without NRI I would still be working in a factory at a lower standard of living." D. F. CONRAD Reseda, Calif.

Available Under NEWGI BILL

If you served since lanuary 31 . 1955, or are in service, check Gl line in postage-free card.
.POSTAGE WILL BE PAID BY
NATIONAL RADIO INSTITUTE
3939 Wisconsin Avenue
Washington, D.C. 20016

FIRST CLASS PERMIT
NO. 20.R
Waskington, D.C.

SEE OTHER SIDE
\qquad hold FCC License, am master control engineer master control engineer WOOD, Fargo, N.D. Naval Dis the 11th course was priceless." J. J. JENKINS, San Diego, Calif.
"'Many thanks to NRI. I

YOU GET MORE FOR YOUR MONEY FROM NRI
 Below is an erample of material included in just one NR? course. Other NRI home study plans are equally complete.

AMERICA'S OLDEST AND LARGEST RADIO-TV, ELECTRONICS HOME-STUDY SCHOOL

Abstract

Compare if you like. You'll find-as have so many thousands of others-that NRI training can't be beat. Frorn the delivery of your first lessons in the remarkable, new Achievement Kit sent the day we receive your enrollment, to "bite-szze," easily read texts and carefully designed tiaining equipment . . . NRI gives you more value. The picture above dramatically illustrates the material included in just one NRI course. Everything you see is included in low-cost NRI training. But NRI is more than kits and texts. It's also friendly, per-

sonal services which have made NRI a 50 year leader in the home study field.

Whatever your interest or need . . . whatever your education
there is an NRI instruction plan in Radio-TV Servicing, Electronics or Communications to fit your needs; tuition rates to fit your budget. Prove to yourself-your best home-study buy is NRI. Mail postage-free card today. No salesman will call. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D.C. 20016.

SEE OTHER SIDE

National Radio Institute, Electronics Division Washington, D.C. 20016

36-017
Please send me your catalog. I have checked the field(s) of most interest to me. (No salesman will call) PLEAS PRINT.
\square Television-Radio Servicing
\square Complete CommunicationsIndustrial-Military Electronics
FCC Licerse
\square Math for Electronics
\square Basic Electronics
\square Electronics for Automation
[. Aviation Corrmunications
\square Marine Conmunications
\square Mobile Communications
\square Check for facts on new GI Bilif.
Name

Address_

City State

[^0]: Fawcett Publications, Inc., is a member of
 American Book Publishers Council, Inc.

[^1]: Output side of Center. Scrape away the paint on Minibox under connectors to make sure there is good contact between connectors and the cabinet.

