

August, 1948

A matter of Balance...

Advertisements

High fidelity in radio and television is a matter of precise balance in the circuit. A matter too, of knowing that B.I. Callender's manufacture types of low-loss radio frequency cables in standard ranges covering all telecommunications and electronic requirements involvand even higher than ing frequencies up to, This publication contains useful technical information and details of the standard radio frequency cables 3,000 Mc/s.

made by B.I. Callender's. Write to-day for free copy of Publication No. 223.

RADIO FREQUENCY nders CABLES

BRITISH INSULATED CALLENDER'S CABLES LIMITED NORFOLK HOUSE, NORFOLK STREET LONDON W.C 2 August, 1948

A

Wireless World

A comprehensive instrument built into one compact and convenient case, which will test any standard receiving or small power transmitting valve on any of its normal characteristics under conditions corresponding to any desired set of D.C. electrode voltages. A patented method enables A.C. voltages of suitable magnitude to be used throughout the Tester, thus climinating the costly regulation problems associated with D.C. testing methods.

fine Limits of Accuracy

Complete Valve Characteristics including Ia/Vg, Ia/Va, Is/Vg, Is/Va, Amplification Factor, Anode A.C. Resistance, 4 ranges of Mutual Conductance covering mA/V figures up to 25 mA V at bias values up to -50V., together with "Good/Bad" comparison test on coloured scale against rated figures. "Gas" test for indicating presence and magnitude of grid current, inter-electrode insulation hot and cold directly indicated in megohuns, separate cathode-to-heater insulation with valve hot. Tests Rectifying and Signal Diode Valves under reservoir load conditions, and covers all the heater voltages up to 126 volts.

The AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD. WINDER HOUSE, DOUGLAS STREET, LONDON, S.W.1. 'Phone : VICtoria 3404-9

recision Electrical Testing Instruments-

2 Advertisements

CELESTION

Here are two excellent Celestion Speakers with dimensions which make them ideal for use in sma'l domestic receivers, as extension speakers, for cir radios and intercommunication sets.

Model P2V can also be used as a microphone.

THE MIDGET 2 CABINET MODEL CTII7 (as illustrated) uses the P2V Speaker in its bakelite cabinet of modern design which is available in a variety of pleasing colours.

CHASSIS MODEL P3CO.

Dia $3\frac{1}{2}^{\prime\prime}$. Baffle opening $3^{\prime\prime}$. Voice coil impedance at 400cps., 30hms. Pole dia $\frac{3}{4}^{\prime\prime}$. Flux density gauss 7,700. Total gap flux 24,000. Peak power capacity 1 watt.

Price less transformer (Suitable for output I-5 ohms) £1:19:6

WHERE TO BUY CELESTION SPEAKERS The Public are requested to order from their local Radio Dealer.

Wholesalers are supplied by the sole Distributors: CYRIL FRENCH LTD., High Street, Hampton Wick, Middlesex. Phonə: KINgston 2240.

Manufacturers should please communicate direct with

MIDGET 2 CABINET MODEL CT117

Size : Height 4 $\frac{1}{4}$ " Width 6 $\frac{1}{4}$ " Depth 2 $\frac{3}{4}$ "

PRICE complete in cabinet £2:3:6

TECHNICAL DETAILS OF CHASSIS MODEL P2V

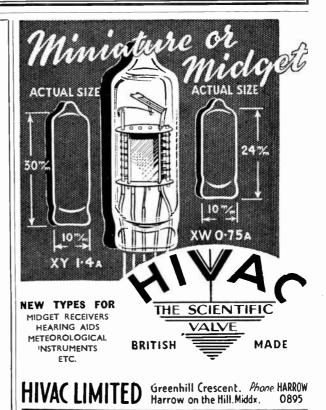
Dia $2\frac{1}{4}$ " Baffle opening $2\frac{1}{4}$ ". Voice coil impedance at 400 cps., 3 ohms. Pole dia $\frac{7}{16}$ ". Flux density gauss 8,500. Total gap flux 8,000. Peak power capacity $\frac{1}{4}$ watt.

Price less transformer (Suitable for output I-S ohms). **£1 : 7 : 0**

Write for Brochure "W.W." It gives details of all Celestion Chassis and Cabinet Speakers.

CELESTION LTD., KINGSTON-ON-THAMES, SURREY

Phone : KINgston 5656, 7, 8 and 9


CONSTANT VOLTAGE POWER SUPPLY UNITS

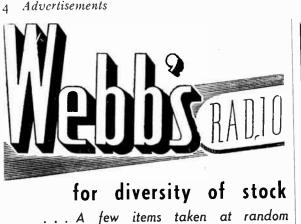
NEW SERIES 101

Our new Laboratory Power Supplies, Series 101, are based on our well-known Model 101-A, but incorporate a number of improvements and refinements.

DETAILS ON REQUEST. ALL-POWER TRANSFORMERS LTD. 8a, GLADSTONE ROAD, WIMBLEDON, S.W.19 Tel.: LIBerty 3303.

August, 1948

one in a thousand


Fifteen years ago we introduced the first British-made low-loss ceramic. To-day the range of Frequentite components covers more than a thousand pieces of every shape and size.

With such a store of manufacturing experience we are able to offer advice backed by practical knowledge on your insulation problem. Please consult us before you finalize your design.

STEA1 PORCELAIN PRODUCTS Å FITE Head Office: Stourport-on-Severn, Worcs, Telephone: Stourport 111. Telegrams : Steatain, Stourport.

S.P.27

from our new 1948 Catalogue

£12 0 0

11 3

£3 17 6

£8 8 0

EDDYSTONE CRYSTAL CALIBRATOR No. 690

EDDYSTONE CRYSTAL CALISPATOR No. 690 Invaluable for accurate receiver alignment, etc., this unit gives marker signals every 100 KC's and 1,000 KC/s, the harmonics from the 100 KC/s oscillator being usable up to 30 MC/s and those from the 1,000 KC/s oscillator up to 60 MC/s. Two separate vacuum mounted crystals are incorpor-ated. The small size ($4 \pm in. \times 3 \pm in. \times 2 \pm in. deep$) makes it admirably suited for use on a crowded laboratory bench or for portable service work. A self-contained power pack allows operation from 200/250 volts A.C. mains. Price allows operation from 200/250 volts A.C. mains.

B.T.H. GERMANIUM RECTIFIER TYPE CGI-C.

A modern permanent detector having many uses for field strength meters and radio detection in general. Readers of the American Technical Press recognise this crystal as being similar but improved to U.S.A. type IN34. Price (A further range of B.T.H. Silicon detectors is also available)

EDDYSTONE "BUG " KEY No. 689.

EDDYSTONE "BUG" KET NO. 807. A British-made semi-automatic key of excellent design with extended speed control, giving a full range of operating conditions with the highest speed comparable to any U.S.A. design and lower limits extended for practice work. The design and lower limits extended for practice work. The streamlined die-cast housing gives complete protection, the finish being ripple black with a pleasing chrome relief. Mounted on rubber feet with optional fixing holes and short circuiting switch Price short circuiting switch

GOODMANS HIGH FIDELITY LOUDSPEAKER

GOODMANS HIGH FIDELITY LOUDSPEAKER TYPE T2//**1206-TC 15** One of the many high fidelity reproducers stocked by Webb's, the Goodmans T2/1206-TC/15, with its twin cone construction. is of special interest to those wishing to obtain full frequency response from one Loudspeaker. This unit is used by some of the leading manufacturers of specialised Cabinet Loudspeakers and when used by the home con-structor will give an excellent frequency response from 40 to 15,000 c.p.s. The overall diameter is 12 $\frac{1}{8}$ and the depth $6\frac{1}{8}$. Voice coil impedance 15 ohms, nett weight 12 lbs. Price 12 lbs. ... Price

WODEN MODULATION TRANSFORMERS

WOEN MODULATION TRANSFORMERS A range of modulation transformers, primary winding for push-pull operation, meeting all amateur transmitting requirements. By means of the multi-match connecting chart some 15 anode to anode loads on primary, between 2,000 and 18,000 ohms can be covered. The secondary figures for RF loads, etc., can be adjusted in greater variety between 200 and 29,800 ohms.

		Max. Audio	Class " C " input	Max. D.C.	
Woden type I		30 watts	60 watts 120 watts	120 m/A 200 m/A	54/- 72/6
	JM2 JM3	60 watts 120 watts	240 watts	250 m/A	90 -
	JM4	250 watts	500 watts	400 m/A	215/-

★ WEBB'S NEW 1948 CATALOGUE should be with every laborator. ★ WEBB'S NEW 1948 CATALOGUE should be with every laboratory and home experimenter. It covers both complete apparatus and all individual components for experimental construction and the contents include sections of topical interest—television components—operating details of transmitting valves—Cathode ray tubes—Communication Receivers—high fidelity apparatus—test apparatus, etc. Two interest-ing sections cover the all-important "Useful Oddments" and our "Special Offers" of unrepeatable Ex-Service material.

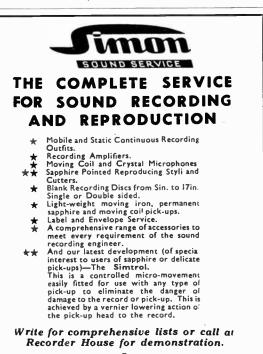
The catalogue costs 6d. to callers, or 71d. post free.

Webb's Radio, 14, Soho St., Oxford St., London, W.1

Phone : GERrard 2089. Shop Hours : 9 a.m.-5.30 p.m. Sats. 9 a.m.-1 p.m.

Wireless World

August, 1948


M.R. SUPPLIES Ltd. CHERENCE HIGH-QUILTY POWER AMPLIFIERS (A described in the July series). Final opportunity for the VR'2 (Swatta) 223 model for £1215/- and the July series (Hadiolympia 1947) at 18 gns. We are now able to offer this excellent micro-hone delivers in the series of the series with hum-hocker (Beas transformer). Very special opportunity, 156- (departed h. [6), FA. SF284EE3, Resido and other grave proceed to portunity, 156- (departed h. [6), FA. SF284EE3, Resido and other grave proceed to portunity, 156- (departed h. [6), FEAVY DUTY, W': model providing 11 ratios from 12/1 to 75/1 with centre-tapped prim, and our-section acc. Weight 71 bits. Terminal panels on prim. and sec. Hand-HG/200 (Howatta) 25 waits, 55/6 EOTHERMEEL HIGH-QUALTY POWER AMPLIFIERS (As described in the July search. Final opportunity for the VR'2 (Swatta) 225 model for £12/15/- and the HG/200 (Howatta) 255 model for £121/15/- (den. ether 5/-). Both for A.C. operation. ROTHERMEEL HIGH-QUALTY POWER AMPLIFIERS (As described in the July search. Final opportunity for the VR'2 (Swatta) 225 model for £12/15/- and the HG/200 (Howatta) 255 model for £12/15/- (den. ether 5/-). Both for A.C. operation. ROTHERMEEL HIGH-QUALTY EXPORT. Handsome model in chronium and black. Priced (Hadiolympia 1947) at 18 gns. We are now able to offer this excellent micro-phone at only 24/17/6, heav, boxed, perfect. ROTHERMEEL PEZO-CRYSTAL HEADPHONES, with adjustable headhanda. Response 10/10,000 eta. Weight 6 osa. Used in normal way and can also be used as microphones. (Last 23/10/-). Last few pairs at 32/8 ROTARY CONVERTEREE (EX Adminalty). Input 100/110 v. D.C., output 230 v. 50 evcles, rated at 200 watts but capable of 750 watts continuous duty. Nize 19in. by 111. by 19in. Weight for approx. 100 110 b. Despatched in original Govt. Dacking cases at 210 each, carr paid. HIGH-CURERENT STEP-DOWN MAINS TRANSFORMERS. Prim: 20/240 v.

at £10 each, carr paid. HIGH-CURRENT STEP-DOWN MAINS TRANSFORMERS.

Prim : 220/240 v.

EXTERATOR FANS (Vent-AXIB). The Source 5, while the second state of the second state o

Telephone : MUSeum 2958

RECORDER HOUSE, 48/50 GEORGE ST. PORTMAN SQUARE, LONDON, W.I.

Telephone: WEL 2371/2 Telegrams: Simsale, Wesdo, London

器

Wireless World

Advertisements 5

LIMITATIONS OF THE HUMAN EAR

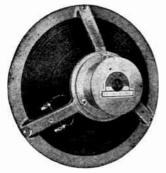
Many people do not realise that it is essential to listen to reproduced sound at the right volume level. They feel that if they turn the volume control down, all that

Perfect Reproduction?

*PROBLEMS REFERRED TO IN PREVIOUS NOTES

Spatial Distribution of Sound. Echoes in the Listening Room. Limitations of Single Channel. happens is that the whole programme becomes softer. Unfortunately, the frequency characteristic of the ear is by no means level and at any frequency there is a threshold level below which the ear fails to respond. Curves taken from a large number of human ears show that the threshold level at 50 cycles is about 40 decibels higher than at 2000 cycles — and above this frequency the threshold rises again.

If, therefore, we listen to three tones — one at 100 cycles, another at 2000 cycles, and the third at 5000 cycles, and arrange that they are all of the same intensity, then, as the volume control is turned down there will come a time when the 100 cycle note becomes inaudible, while the other two are still heard. This phenomenon is quite easy to notice when listening to an orchestra if one pays attention to the bass; at low volume levels the bass frequencies will appear weak, but as the volume is increased the bass intensity grows with respect to the upper and middle levels.


Special circuit arrangements for altering the frequency characteristic of a reproducer with the volume control setting, have been proposed and used from time to time. Their success depends entirely on the extent at which A.V.C. is able to keep all carrier strengths the same at the de-modulator.

33

WELWYN GARDEN CITY, HERTS.

murphy radio

limited

Speech coil 3 or 15 ohms impedance **PRICE 75/-**

Wharfedale NEW GOLDEN 10 inch LOUDSPEAKER ...

Wireless World

August, 1948

During the last eight years hundreds of Wharfedale Golden Units have been supplied to the B.B.C. and G.P.O.

The Speaker was selected by reason of its level response.

The new model is fitted with precision die-cast chassis, improved spider, and Alcomax 11 Magnet increasing the flux density from 10,000 to 12,500.

Ask your Dealer or send for book "Loudspeakers" by G. A. Briggs 5/in which acoustic loading is fully explored.

Made and Guaranteed by WHARFEDALE WIRELESS WORKS

 BRADFORD ROAD, IDLE, BRADFORD

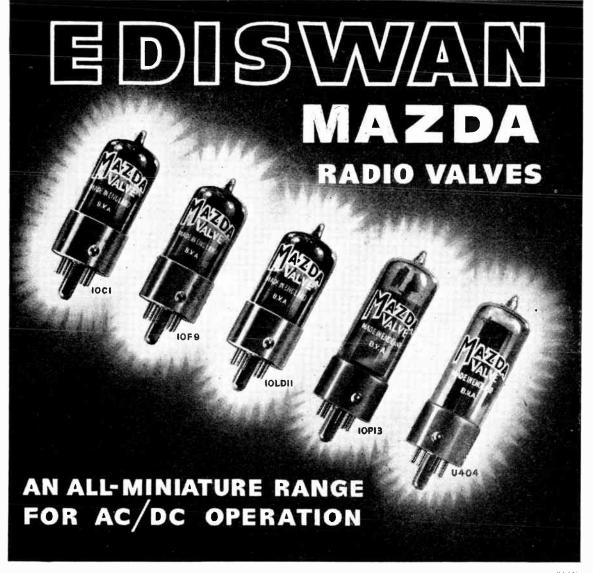
 Telephone : IDLE 451.
 Telegrams : Wharfdel, Idle, Bradford

... is it Rotary or Pushbutton or Slider ? Is it wanted for circuit selection, band selection, tap switching ? Is it for a new design or in quantities for a well proved circuit ?

Whatever it is — the answer is always OAK ! The basic design of all Oak switches is one of strength and efficient functioning, including such exclusive features as the double-contact clip and the floating rotor, ensuring self-alignment of each section.

BRITISH N.S.F. CO. LTD., Keighley, Yorkshire (Sole Licensees of OAK Manufacturing Co., Chicago) A.B. METAL PRODUCTS LTD., Feltham, Middx. (Sub-Licensees of N.S.F.)

The only Manufacturers of OAK Switches under Patent Nos. 478391 & 478392


FOR THE RADIO SERVICEMAN DEALER AND OWNER

The man who enrols for an I.C.S. RadioCourselearnsradiothoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.

Write to the I.C.S. Advisory Dept. stating your requirements. Our advice is free.

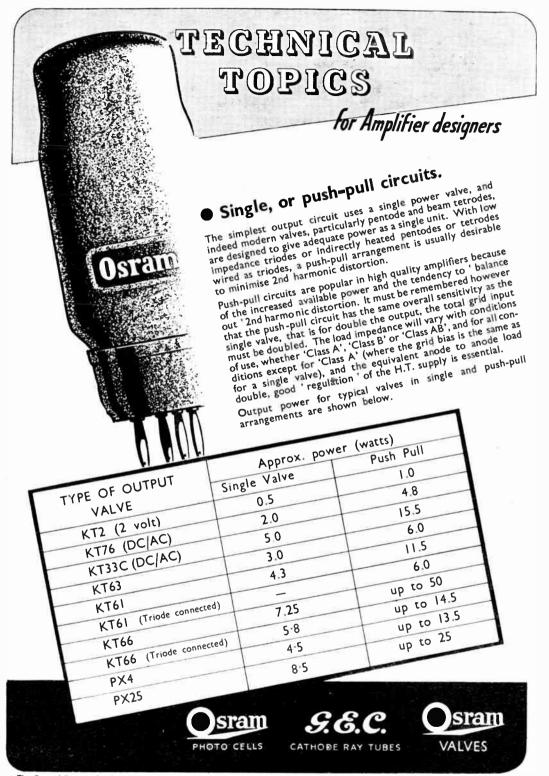
Wireless World

Advertisements 7

(V.66)

		vn.	1 n .
10C1	FREQUENCY CHANGER	28.0	0.1
10F9	VARIABLE MU HF PEN	13.0	0.1
10LD11	DOUBLE DIODE TRIODE	15.0	0.1
10P13	OUTPUT PENTODE	40.0	0.1
U404	HALF WAVE RECTIFIER	40.0	0.1

Full technical details on request.


THE EDISON SWAN ELECTRIC COMPANY LIMITED

RADIO DIVISION

155 CHARING CROSS ROAD, LONDON, W.C.2

August, 1948

The General Electric Co., Ltd., Magnet House, Kingsway, W.C.2.

Wireless World August, 1948

is on a 'ow it souther There is something fascinating about the sound of silver clinking into a bag-and it is the true reproduction of the "noises-off" that mean so much when listening to a favourite programme-Home, Light or Third. It has taken us 18 years to achieve such realism . . . it's yours to-day. A range of three extension cabinet speakers is in the dealers' shops already, "Monobolt" speaker chassis in four sizes are there, too, you can hear them now. High fidelity pickups and "Wafer" speakers are well on the way. A postcard will bring full details.

MODEL BX.105. One of the new range of Truvox Extension Cabinet Speakers. This model incorporates 10" Monobolt chassis, volume control recessed in side. Beautiful Walnut cabinet with contrasting chamfers and fret motif in £5.10.0 List Price Maple.

Truvox Engineering Co. Ltd., Truvox House, Exhibition Grounds, Wembley, Middx.

Headphones which uphold British Prestige

S. G. BROWN, Type 'K' Moving Coil Headphones, supply that High Fidelity **Reproduction demanded for** DX work, monitoring and laboratory purposes, etc.

OUTSTANDING

CHARACTERISTICS. D.C. RESISTANCE, 47 Ohms. IMPEDANCE, 52 Ohms at 1,000

c.p.s. SENSITIVITY, 1.2 x 10-12 Watts at 1 kc. = .0002 Dyne/cm².

Descriptive Literature on request.

PRICE £5.5.0 PER PAIR

Your Local Dealer can supply

For details of other S. G. Brown Headphones (prices from 30/- to 63/-) write for illustrated Brochure "W.W."

HEADPHONES WHICH UPHOLD BRITISH PRESTIGE.

TELECOMMUNICATION. RADIO FOR GENERAL ELECTRICAL WORK AND

Outstanding Characteristics :---

I. Chemically activated rosin core ensures high degree of "wetting." 2. Increased fluidity acceler-

ates production. 3. Allows more moderate soldering iron bit temperatures, and minimises the risk of physical damage and alteration to the electrical values of small pre-calibrated components such as Capacitors, Resistors, Coil windings, etc. 4. Ensures complete mechanical bonding of joint metals, maintaining perfect electrical conductivity. Reduces to a minimum 5. the solder required per joint

and cuts down waste. 6. Residue is non-corrosive,

solidifies to a semi-transparent film of high electrical insulation value, is nonhygroscopic and unaffected under tropical conditions.

heating of the The 7. activated rosin core does not cause any deleterious fume deposits.

 mechanical bonding of joint
 Tune deposits.

 Where a separate flux is desirable use
 "Telecene" Liquid Activated Rosin Based Flux.

 'Superspeed Special '' Cored
 "Superspeed Special Solder is supplied in Activated Rosin Based Flux

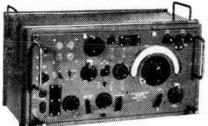
 Activated Rosin Based Flux
 of gauges and alloys

 conform to British Post Office and Air Ministry Specifications.
 7-Ib. reels, in Work

"Superspeed Special " Cored Solder is supplied in a wide range 7-1b. reels, in Works Coils or as required. Prices on application.

Sole Manufacturers: H. J. ENTHOVEN & SONS LTD. Forum House, 15-18 Lime Street, LONDON, E.C.3.

Nsion House 4533 Telegrams : Enthoven Phone London Works : Croydon, Rotherhithe and Derbyshire. Telephone : MANsion House 4533

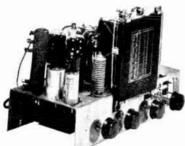

August, 1948

Wireless World

Advertisements 11

(No. 169 will remain open as usual). All POST ORDERS to 167, LOWER CLAPTON ROAD, LONDON, E.S. 'Phone : AMHerst 4723. Terms of Business : Cash with order or C.O.D. over £1. Send 21d. Stamp for list.

R107. ONE OF THE ARMY'S FINEST COMMUNICA-TIONS RECEIVERS. (See "W.W.," August, 1945). 9 valves, R.F. and, o.e., Frequency Changer, 2 IF.'s (465 kc.), 2nd Detector, AYC. Af. amp. B.F.O. A.Y. mains, 100-250 v. or 12 v. accum. Frequency range 175 to 7 mc s., 7.25 mc/s. to 2.9 mc/s. 3.0 to 1.2 mc s. Yonitor 1.5. built in. Complete. Write for full details, £16(16)... Carriage paid.


ALUMINUM CHASSIS. Substantially made of bright aluminum, with four sides. 10in. 8 lin. 2 jin., 7's; 12in. × 9in. × 2 jin., 7's; 16in. 8 m. × 2 jin., 10/6; 22in. × 10in. × 2 jin., 13 6.

List No.	Output	Price
SP.175A.	175-0-175 v. 50 m/a, 6,3 v. 2-3 a,.	
	5 v. 2 a. 175-0-175 v. 50 m/a. 4 v. 1 a., 4 v. 2-3 a.	25/-
SP.175B.	-175-0-175 v. 50 m/a, 4 v. 1 a., 4 v. 2-3 a.	25/-
SP.250A.	-250-0-250 v. 60 m/a, 6,3 v. 2-3 a.,	
	5 v. 2 a	25 -
SP.250B.	5 v. 2 a	
	4 v. 3-5 a. 300-0-300 v. 60 m/a, 6,3 v. 2-3 a.,	25/-
SP.300A.	- 300-0-300 v. 60 m/a, 6,3 v. 2-3 a.,	
	5 v. 2 a. 300-0-300 v. 60 m/a. 4 v. 2-3 a.,	25/-
8P.300B.	300-0-300 v. 60 m/a, 4 v. 2-3 a.,	
	4 v. 3-5 a., 4 v. 1-2 a	25 -
SP.301A.	300-0-300 v, 120 m,a. 5 v. 2-3 a.,	
	6.3 v. 3-4 a	28/-
SP.301B.	300-0-300 v. 120 m/a. 4 v. 2-3 a.,	
	4 v. 2-3 a., 4 v. 3-5 a	28/-
SP.350A.	350-0-350 v. 100 m/a. 5 v. 2-3 a.,	
	6.3 v. 2-3 a	29/-
SP.350B.	350-0-350 v, 100 m/a, 4 v, 2-3 a.,	
	4 v. 2-3 a., 4 v. 3-5 a	29'-
SP.352.	350-0-350 v. 150 m/a. 5 v. 2-3 a.,	
	6.3 v. 2-3 a., 6.3 v. 2-3 a	36/-
SP.501A.	500-0-500 v. 150 m/a, 5 v. 2-3 a.,	
	6.3 v. 2-3 a., 6.3 v. 2-3 a	50 -
SP.25E.	2,500 v. 3 m/a. 2-0-2 v	25 -
SP55E.	5,500 v. 3 m/a. 2-0-2 v	35 -

CATHODE RAY TUBES-VCR97 (equals MULILAR) ECR60) Sin, electrostatic tube, green screen, sh rt persistence, high sensitivity. Recommended in last month's issue of 'Wireless World.'' for use in the con-struction of an Oscilli scope. Each tube is brand new and individually packed in box for transit. Price 55/-osly. With Holder.

PREMIER KITS AT NEW **REDUCED PRICES**

ALL-WAVE SUPERHET KIT. A Kit of Parts to build a 6-valve (plus rectifier) receiver, covering 16-50 metres. Medium- and Long-wave bands. Valve line-up, 6K8, 6K7, 6Q7, 6J7, two 25A6 in push-pull. Metal Rectifiers are incorporated for H.T. supply. Output impedance is for 3 and 15 ohms. The latest Wearite Coll Pack incorporating Iron Dust Coils is used, making construction and alignment extremely simple. A pick-up position on the wave-change switch and pick-up terminals is provided. A complete kit, including valves, but without speaker or cabinet. Chansis size, 14in.×6in. Overall height, 9in. Price, £10/16/6, including Purchase Tax. Wired and tested, £13/15/-.

Suitable loudspeakers are the GOODMANS 10in. 6-watt P.M. at 47/6, or for superlative reproduction, the Goodmans 12in. P.M. at $\pounds 6/15/$ -.

NEW 2-VALVE SHORT WAYE KIT. 16 to 2,000 metres, Nwitched Coil l'ack ready wired and tested. 2 Mazda HL23 Valves, 'Phones, H.T. and L.T. Batterles, Con-densers, resistors, diagrams and steel case, all ready to assemble, \$3/10/-. Including P.T.

NEW1948 MIDGETT.R.F. RADIO KITS with Huminated Glass Dial. All parts including Valves, M/(* Speaker and instructions. 3 valves plus Metal Heetilier. 200-557 metres and 700-2,000 metres. 200 to 250 v. A.C. or A.C./D.C. mains. State which is required. Size, 10in. × 6in. × 6in., \$7/7/6, including Purchase Tax.

NEW 1948 MIDGET SUPERHET RADIO KIT with Illuminated Glass Dial. All parts including Valves, M/C Speaker and instructions. 4 valves plus Metal Rectifier. 16-50 metres and 200-257 metres. 200 to 250 v. A.C. or A.C./D.C. mains. State which is required. Size, 10in. > 6in. x 6in., £8/5/-, including Purchase Tax.

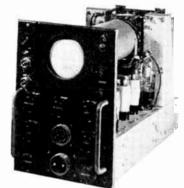
MIDGET RADIO CABINETS in Brown Bakelite 216 d for either of the above Midget Kits at 25/-, including P.T.

MOVING COLL EARPLECES

Comprise a 11in. Moving Coil Loudspeaker fitted with noise excluding rubber caps. Make excellent Mikes, Phones or Speakers, 2/- each, 18 - doz.

COLLARO AUTO CHANGERS with Magnetic Pick-up. A.C. only, 100-250 v., £22,4,4.

COLLARO ELECTRIC GRAMOPHONE MOTORS with 12in, turntable. A.C. only. 100-250 v., £5/18/4.


COLLARO ELECTRIC UNIT with Marnetle Pick-up and Auto Stop. A.C. only, 100-250 v., £9/13/6. DITTO UNIT with Crystal Pick-up. A.C. only, 100-250 v., £11/2/2.

CONRAD	RIM D	RIVEN	ELECTR	C GRAMO	PHONE
				d Speed (78	
		. only, t	o clear 57	6 including	P.T.
LOUDSPE	AKERS	RY	FAMOUS	MAKER	

LOUDSPEA		F.	AMOUS	MAI	KER	
5in. P.M.	2-3 ohms					10/11
6in. "	2.3					16/6
8in	2-3					17/6
10in. ,	2-3 .,					23/6
12in	15 ,,	1.1				85/-
10in. Energ	ised. 2,000	opru	tield	• •		25/-

METERS. All meters are by the best makers and are contained in bakelite cases. Prices are about one-quarter the original cost.

	Ext.			
Range	Diam.	Fitting	Type	Price
40 v.	21 in.	Flush	M.C. D.C.	5/9
21 a.	21in.	Flush	Thermo H.F.	5/-
20 a.	21in.	Flush	M.C. D.C.	7/6
40 a.	21in.	Flush	M.C. D.C.	7/6
23 a.	31in.	Flush	M.C. D.C.	7/6
25 a.	3jin.	Proj.	M.C. D.C.	7/6
25 a.	3lin.	Flush	M.I. D.C.	2 11
500 µa.	21in.	Flush	M.C. D.C.	76
5 m.a	21in.	Flush	M.C. D.C.	5
1 m'a	3£in.	Flush	M.C. D.C.	15/11
500 µa.	Siin.	Flush	M.C. D.C.	19/6
20 v.	21 in.	Flush	M.C. D.C.	59
15 v.	31in.	Flush	M.I./A.C. D.C.	76
150 m/a	21in.	Flush	M.C. D.C.	6
200 m/a	31in.	Flush	M.C. D.C.	8'6
5.000 v.		Flush	Electrostatic	50 -
1 m/a	21in.	Flush	M.C. D.C.	8/6
50 m'a	24in.	Flush	M.C. D.C.	8/8
30 m a.	34 in.	Flush	M.C. D.C.	10.6

TEST UNIT TYPE 73 consists of a special purpose Oscilloscope that requires only rewiring and the addition of a few condensers and resistors to convert into a standard Oscillogroupe, nput 230 v. 50 c. A 34in. C.R. tube and 1 8U220A, 1 EB34, 1 524, 3 NP41, 8 EA50, are included. Controls are "Brightness," "Velocity," "X Shift," "Y Shift," Focus Amplifier, "Infout," "Calibrate," "0 on off, TX." Price 28/8/-. Carriage condensities 700 and packing 7/6.

÷1

FOR THE

The illustration above shows an ACOUSTICAL product of ten years ago-an amplifier designed for high quality reproduction of records and radio programmes.

Using push-pull triodes throughout-RC coupled throughout—independent treble, middle and bass controls etc., it was considered about the best that could then be obtained. Indeed the circuit is often specified today for high quality reproduction.

A comparision of the performance with that of the QA12/P reveals the extent of recent developments.

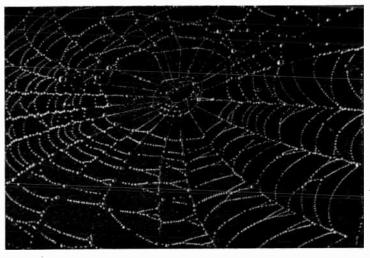
	Pre-War	QA12/P	Improvement achieved
Output deviation within 20-20,000 c.p.s. range	3 db	0.3 db	7 times better (% powerchange).
$\begin{array}{llllllllllllllllllllllllllllllllllll$	30-15,000 c.p.s.	15-30,000 c.p.s.	increase of two octaves.
Total distortion at 10 watts (Both models rated 10–12 watts).	2%	0.1%	20 times less distor- tion.
Sensitivity (r.m.s. for full output)	0.2 v	0.0015 v	120 times more gain
Background noise (equivalent r.m.s. at input)	120 microvolts	l microvolt	with no background increase.
Background for equal (low) gain	65 db	—80 db	15 db lower back- ground.
Load impedance Internal impedance	2	12	Better damping.
Treble and bass con- trols	variable extent of boosts and cuts.	variable slope of boosts and cuts.	Wider range of con- trol and slopes of controls more ac- curately designed for small room listening conditions.
PRICE	£60	£30	50% less cost.

Acoustical Manufacturing Co., Ltd., HUNTINGDON. Tele. : Huntingdon 361.

RIBBON TYPE JB/P/R/i Fixed Point Pressure of 1 oz. Output voltage, 10 to 15 mV, Permanent Point 6 times harder than Sapphire. Price in U.K., with special mumetal screened trans-former, and Purchase Tax, £10/14/11

ARMATURE TYPE JB/P/A Fixed Point Pressure of 1 oz. Output voltage, 1 v. approx. Permanent Point 6 times harder than Sapphire. Price in U.K., with special mumetal screened trans-former, and Purchase Tax, £9/7/8.

GRAMOPHONE PICKUPS, for use where the highest possible quality of reproduction that can at present be obtained from records is required.


Demonstrations and Stockists :---

ARTHUR COULTON, ARTHUR COULTON, 13, Manchester Road, Haslingden, Rossendale (East Lancashire) HOLIDAY & HEMMERDINGER LTD., Hardman Street, Manchester WEBB'S RADIO, Soho Street, London, W.1 A. C. FARNELL LTD., 15, Park Place, Leeds, 1 J. E. ROGERS, Eversley, Kingsland, Shrewsbury.

- J. H. BRIERLEY (GRAMOPHONES & RECORDINGS) LTD. 46, TITHEBARN STREET, LIVERPOOL, 2.

August, 1948

Design for purpose is as important in radio servicing as in nature. The Weston Model E772 Analyser has been designed to make the detection of electrical faults as simple and speedy as possible. Its features include high sensitivity (20,000 ohms per volt on all D.C. ranges), wide range coverage and robust construction— its quality is unsurpassed. Please write for details.

WESTON EN Conalysen

SANGAMO WESTON LTD.

ENFIELD

. MIDDX.

Telephone : Enfield 3434 & 1242

PHYSICAL CHARACTERISTICS OF AVAILABLE TYPES

	COMPO	SITION	Deflection	Resistivity	Maximum	
ТҮРЕ	Low Expansion % Ni	Low Expansion High Expansion % Ni % Ni		michrohms/cm. cube at 20°C.	Working Tem. °C.	
BIMETAL 140	38	20	14.0×10^{-6}	75	300	
BIMETAL 160	36	20	15.6 x ,,	78	250	
BIMETAL 400	42	20	11.0 × "	70	400	
BIMETAL 15	36	100	9.7 × "	15	200	

* The deflection constant (d) is defined as the deflection of a strip of unit length and unit thickness for each $^{\circ}C_{*}$ rise in temperature over the linear part of the deflection curve.

Further details on application.

THE TELEGRAPH CONSTRUCTION & MAINTENANCE CO. LTD.

Head Office : 22 OLD BROAD STREET, LONDON, E.C.2. Telephone : LONdon Wall 3141 Enquiries to: TELCON WORKS, GREENWICH, S.E.10. Telephone: GREenwich 1040

We can now put our best FOOT forward

12" SPEAKER CHASSIS Type S12135

It may be news to you that we make a chassis of this size, and we admit that we've kept rather quiet about it until now. The reason ?- simply that our output has been fully taken up by Public and Educational Authorities. Now, reorganisation of our manufacturing programme enables us to

offer this magnificent example of Whiteley skill to a wider field of users. entarian

Highest distortion - free performance accurate reproduction over widest possible audio-frequency range. Magnet of "Alcomax," the most efficient anistropic alloy. Die-cast chassis. Flux density: 13,500 gauss. Total flux : 106,000 gauss. Speech coil impedance : 15 ohms. Handling capacity : 15 wates.

PRICE £6.6.0 (without transformer) £7.7.0 (with transformer)

LOUDSPEAKERS AND RADIO EOUIPMENT

WHITELEY ELECTRICAL RADIO CO. LTD. MANSFIELD. NOTTS

Advertisements 15

Made in Three Principal Materials

FREQUELEX

August, 1948

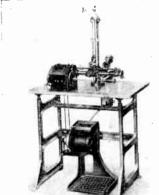
An insulating material of Low Di-electric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.

PERMALEX

A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX

A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.


rs BULLERS CERAMICS OSS

tring them to

LONDON. E.C.4 BULLERS LTD., 6, LAURENCE POUNTNEY HILL. Telephone : Mansion House 9971 (3 lines) Telegrams : "Bullers, Cannon, London"

SPEEDIER PRODUCTION at LOWERED COST THE A1/1 AUTOMATIC

COIL WINDING MACHINE offers you speedier production and lowered costs and incorporates many outstanding features

in its design. Wire Gauge indicator : Calibrated

- Wire Gauge indicator : Calibrated in mils or millimetres, as desired. The wire gauge capacity is 020in (.508 M/M) to .001 in. (.0254 m/m). Suitable $\frac{1}{2}$ h.p. Integral Clutch Motor : Can be supplied, fitted with 3 step pulley to give operating speeds of 750-1,500-3,000 r.p.m. Stand and Table : Cast iron stand
- and plywood table also motor mounting pedestal, as illustrated can be supplied if desired. H/1 HAND

THE

- Workmanship : Conforming to the highest engineering standards.
- Capacity: For coils up to 5in., (127 m/m) diameter or across corners, and 7½in. (190.5 m/m) long.
- Dual Reel Holder and Wire Tensioner: Quickly and easily set independent tensioning to each reel for all wires in the above range. For reels up to 5in. dia-meter and 5in. long.

COIL WINDING **MACHINE** is ideal for winding : Solenoid, Choke and Transformer Coils, etc., etc., up to 6 inches diameter by 71 inches long (16 S.G.W. to 45 S.W.G.) Field Coils, etc., up to 12 inches A/C corners. This machine can be supplied with $\frac{1}{8}$ H.P. integral clutch motor with foot treadle control. We can also offer a special APMATURE WINDING HEAD which has been derived for the second s ARMATURE WINDING HEAD which has been designed for use with type H/I. Details on request.

20, AVONMORE ROAD · LONDON W.I4 · Telephone : FULham 4211-2 KO ECTRIC TD

Plus 5/- carr. and pkg FRACTIONAL H.

A.C. MOTORS. Brush type, 220-250 v. 50 cycles, approx. 5,000 r.p.m. Overall diam.

10×4in., in. spindle ex-tends lin. both ends. 25/=

tends lin. both ends. **25**/-Special reduction. Post 2 6 extra. **SLIDING RESISTANCES. Suitable for Voltage Con-trols. Speed Regulators. Type 867A.** 100 ohms on slider 3 amp. max. Tapped fixed 700, 800, 50 ohms. **21**/c care paid

h xed 700, 800, 50, 50 ohms. **21**/- carr. paid. **Type 868A.** 450 ohms on slider 2 amp. max. Tapped 200, 200, 200 ohms. **21**/- carr. paid. **Type 868B.** 100 ohms on slider 5 amp. max. Fixed 200, 400, 50, 50 ohms. **21**/- carr. paid. **21**/- carr. paid.

Small Type. 50 ohms, amp. Dimensions 6in. 4in. × 2½in. high.

amp. 4in. $\times 21$ in. mg. 10/6 carr. paid. EX.R.A.F. CAMERA MOTORS. Dimensions 3in. $\times 2in. \times 11$ in. 12 v. and

COUNTERS. Ex G.P.O., every one perfect, electro-magnetic, 500 ohm, coil,

counting to 9,999 operated from 25 v.-50 v. D.C., many industrial and

See previous advts, for other interesting iter-

other interesting items. EX-G.P.O. TELEPHONE TRANSMITTERS on table

domestic applica-

×2in. × 1½in. 12 v. 24 v., 8/6. ELECTRO-MAGNETIC Fx G.I

50 ohms, .5

5/6

lead

H.P.

moving coil voltneter U-40 V. The main duty sliding resistances, etc., complete in metal case as shown with fold-back doors. Size, 18×17×84 ins. Offered at less than half the component value. **£4.19.6** Price, carr. 12/6 extra.

3-VALVE R.F. AMPLIFIERS V.H.F. Type 25. 40/50 mc/s. Complete with valves. In metal case. Brand new in carton 16/6 Carr. and pkg. 1/6.

Type Demolition Mk. 1. EX-ARMY TEST SET—NEW. For circuit continuity and general testing. In hardwood carrying 50/-

NEW MILNES H.T. UNITS (Everiasting). 120 v. 60 mA. Will charge from 6 v. 67/6 accumulator. For callers only. 67/6

RADAR VIEWING UNITS. Consisting of 6in. diameter Electrostatic C.R. tube, 7 valves, including four EF50, potentiometers, resis-tances and other associated components. In metal cabinet $18 \times 8 \times 74$ in. £3.7.6 Bargain price.

THE FAMOUS EDDYSTONE 358 COM-MUNICATIONS RECEIVER. Range 31 mc/s to 90 kc/s, 9 plug-in coils, 7 valves and rectifier, variable selectivity, B.F.O. stand-by switch, A.V.C. switch, band-spread dial, switch, A.V.C. switch, band-spread dial, valve check meter. In heavy black crackle finished steel cabinet with chrome fittings. Complete with 200-250 v. A.C. Power Supply Unit. Carriage and packing 17/6 £25 extra.

10-VALVE COMMUNICATION RECEIVER-Type R1155. These sets are as new. Need only Type R1155. These sets are as new. Need only a power pack for immediate use (see "W.W." July, 1946). Freq. range 7.5 mc/s 75 kc/s in five wavebands. Complete with 10 valves, including magic eye. Enclosed in metal case. Every receiver is aerial tested. Set only 10 Gns. Set only

FREE with reach receiver. Complete circuit, description and modifications for civil use, reprinted from "W.W." July, 1946.

Please Note .--- We regret we do not issue lists or catalogues.

stand, with screened and Jack Plug. 1 10/6. Carr. pd. New.

23, LISLE ST. (GERrard 2969) LONDON, W.C.2 Closed Thurs. 1 p.m. Open all day Sat. and weekdays 9 a.m.-6 p.m.

Wireless World

IMPORTANT! These lines were all

selected by us as being of special interest to all

readers of the "Wireless World."

OUTSTANDING BARGAINS IN GOVERNMENT SURPLUS MATERIAL

L.F. HEAVY DUTY CHOKES

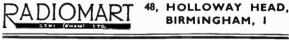
These L.F. Chokes represent the finest value over off red, and will be unobtainable at double the cost when our present stocks are cleared. Send for your requirements now to avoid disspontment. They are all brand new in rectangular cast aluminium " Pots," and can eafely be run at 100% above specified ratings in amateur service.

30H 100 m.a. 150 ohms (weight 14 lbs.), 20%, plus 2/6 postage. 20H 126 m.a. 100 ohms (weight 14 lbs.), 22(Å, plus 2/6 postage. 30H 150 m.a. 150 ohms (weight 14 lbs.), 25%, plus 5% Passn. carr. and packing.

HIGH VOLTAGE TRANSFORMERS

All by first class manufacturers, brand new in original cartons. 1,250-0-1,250 v. 200 m.a. 115 v. 50 cycles primary, may be connected in series for 230 volt working. (Secondaries in parallel 1,250-0-1,250 v. 300 m.a. Secondaries in series 2,500-0-2,500 v. 200 m.a. tapped 1,250-0-1,250 v. 200 m.a. Or may be used with auto-transformer. Weight 21 ibs., 30/-, plus 5/- Passn. Carr. and Packing.

R.F. PIE WOUND CHOKES


2.5 m.h. 100 m.s. Receiving type, 1/6 each, 15/- dog. 2.5 m.h. 250 m.s. Transmitting type, 1/9 each, 18/- dog. 2.5 m.h. 40 m.s. Lilliputian type, 9d, each, 7/6 dog.

(Spr., 1) takin (5): 002. 201 and 10 min. W max. In minutan (5) pr. 90. 201. (7) 003. MICBO/PHOMES. Ansaira single button, carbon type breat samely, ribbed aluminium diaphragm, bakelite case, complete with 3:-position switch, brand new in original cartons, 9:6. Ex-R. A.F. Throat type, comprising two midget mikes and strap. 3:6. Moving Coil Ireadphone and Microphone assembly with press to take awitch, 12:6. Moving Coil assembly in bakelite case with Sin, grill, can be used as midget speaker, 3/11. Moving Coil hand microphone with switch, 5:6.

All the above moving coil units have genuine Alni magnets.

Many other bargains too numerous to mention here, also full range of Raymart standard components.

SEND S.A.E. FOR RAYMART CURRENT LIST AND NO. 7 "W.W" SPECIAL OFFERS LIST.

G.L.P. PRESENT LATEST PRODUCTIONS OF OUTSTANDING MERIT

TUNER UNITS : CONSTRUCTOR'S 15w £10 KIT; IT; SIX WATT QUALITY AMPLIFIER; NEW GENERAL PURPOSE AMPLIFIERS.

TUNER or FEEDER UNITS. Add radio programmes to your entertainments, suit any amplifier, simply plug-in. T.R.F. Model, 2 valve chassis M. & L. wave complete, £5.

SU/TU Superhet with a.v.c. Three wave band tuner using 6A8, 6K7, 6Q7. In self contained case. Wide vision dials each model. SU/TU unit, £10.

(P.T. extra on above 24/5 and 48/10 respectively.)

KIS CONSTRUCTION KIT. A fifteen watt push pull chassis for mic and gram, complete to the last nut, with all components, valves, drawings, etc. £10.

THE G/Q for Good Quality. 6L6's as triodes 6 w. P.P. Bass and Treble lift and cut independent controls. Suit any pick-up, six stage circuit. $\pounds 15/4/6$. (Factory built—accurately balanced.)

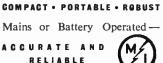
TWO GENERAL PURPOSE AMPLIFIERS. GPIS and GP25. Latest portables, up-to-the-minute improvements. Bass and treble cut and lift. H.G. for all mic's. GPIS complete l6 gns. GP25 complete 19 gns.

Write for details on these and other new releases. " What to choose," A leaflet to assist in selecting suitable amplifiers and accessories, Price $2\frac{1}{2}d$. "Loudspeakers," by C. A. Briggs. Describes speakers. baffles, horns, technicalities, from A to Z. 5/-.

WHARFEDALE BRONZE SPEAKERS 45/-. G TWELVE INCH P.M. s in cabinets, dk. oak, £8/10/-. GOLDEN 75/-

"Winder House," 294 Broadway, Bexley Heath, Kent. (3021).

LIFT TO ALL FLAWS!

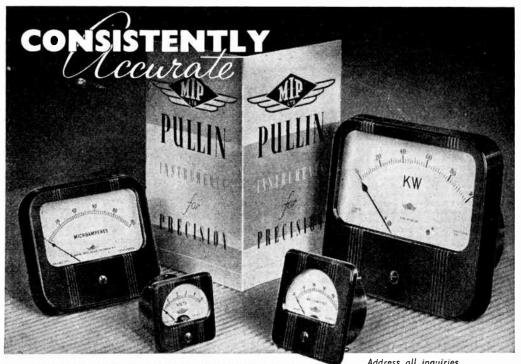

In the hands of the radio engineer this universal "Measurtest" instrument will detect and locate the slightest flaw in receiver performance. Yet, weighing only 201b. and operated from either mains or batteries, it can be lifted with ease for use anywhere, any time.

The PORTABLE RECEIVER TESTER is ideal also for complete tests on audio amplifiers. In one compact assembly it incorporates the facilities of signal generator, output power meter and crystal calibrator—three instruments, in fact, for the price of one. And many novel features contribute to the attainment of unique standards in both performance and operational convenience. Your enquiries are invited and a demonstration can be arranged. HIRE PURCHASE TERMS AVAILABLE

2 Instruments-in-One COMPACT · PORTABLE · ROBUST

Combined SIGNAL GENERATOR OUTPUT POWER METER CRYSTAL CALIBRATOR

в


MARCONI INSTRUMENTS LTD

66.

n

_

ST. ALBANS, HERTS. Telephone: St. Albans 6161/5. Northern Office: 30 ALBION STREET, HULL. Tel.: Hull 16144. Southern Office & Showrooms: 109 EATON SQUARE, S.W.1. Tel.: Sloane 8615, Western Office: 10 PORTVIEW ROAD, AVONMOUTH. Tel.: Avonmouth 438.

MEASURING INSTRUMENTS (PULLIN) LTD. (Dept. J.) Winchester St. London W.3

Scree Scree Eordon	NKTERSS REISTREE
	Manufacturers of LOUDSPEAKERS LAMINATIONS SCREENS In RADIOMETAL PERMALLOY SILICONALLOYS
ELECTRICAL SOUND & TELEVI 12, Pembroke Street, London, M 2/4, Manor Way, Boreham Wood,	SION PATENTS LTD N.1. Terminus 4355 Herts. Elstree 2138

)

S	YI		N	A	R		
OFFER							IG
8in. Permanent Magn 6‡in. Permanent Magr 42–1 Output Transform	iet Spea		•••	•••			14/- 12/6 5/6
2 Gang 0005 60 ma. Chokes, 400 of 465 kc. I.F. Transform	 hms.					 pr.	6/6 5/- 15/6
405 xC, 1.P. Transform 8-8 mfd, 500 v. Alum 32 mfd, 275 v. Alum 4 mfd, 200 v. Tubular	Cans Cans	 	 	••••	 	·	5/- 3/- 2/-
25 mfd. 25 v. Tubular 25 mfd. 50 v. Tubular		•••• ••••	···· ····	···· ···	···· ····	 doz.	1/6 1/6
.1 mfd. 350 v .1 mfd. 1000 v .111 250 v Octal Holders	···· ····	•••• ••••	···· ····	···· ····	···· ···	doz. doz. doz.	3/6 6/- 6/- 4/6
Octal Holders 12 v. lamp Rectifiers Vibrator Packs 12 vol Toggle Switches 8.P.	 t input						6/- 25/- 1/6
Mains Transformers, S Other types and volta	270 v. 6 ages in s	0 ma., stock.	6,3 v, 5			•••	20/-
GRAMOPHONE AMI 2nd detector and A Complete with circu GRAMOPHONE AMP	V.C. c uit and	ompon valves	ents. . A.C.	All part	, me ls moi 	unted. £4 £4	96 50
Terms: Cash with (and packing extra. 1	Retailer	rs' enqu	uiries fo	or abov	e wel	comed.	
SYLMA 197, Lower Ric						LT 1, Su	

Wireless World

All parts plated and keyed to body. Available in bracket or clip-fixing types.

End the Flickering of Dial Lights with THE NEW MOULDED M'E'S LAMPHOLDER

The new design eliminates all risk of noisy intermittent contacts. Screw-in bulb is gripped firmly in vibration-proof holder. Place your enquiries now for early deliveries.

THE GENERAL ACCESSORIES CO. LTD.

21 BRUTON STREET, LONDON, W.I

Telephone : MAYfair 5543 Ra. 2

Stabilised Insulation BY **MODERN IMPREGNATION METHODS**

HYMEG Synthetic Insulating Varnishes are recognised and widely used for their mechanical rigidity, improvement of electrical properties of windings; heat, moisture, oil, acid and alkali resistance as well as for the considerably reduced stowing impersent. stoving time necessary.

Now, special methods of continuous conveyor impregnation and baking developed with the use of HYMEG have still further reduced processing times to a fraction of those previously believed necessary. Often faster than infra-red baking with none of the defects, reduced handling, absence of special jigs, with complete freedom from blistering, bubbling and porosity, are some of the advantages claimed and substantiated for HYMEG

High Speed Production methods.

After much research in our laboratories and in conjunction with many well-known specialist manufacturers, we have now evolved the Hymeglas system of Insulation which comprises modifications of Hymeg as used for coil impregnation to meet the varying conditions applying to each field of manufacture of manufacture.

This integrated system of development is successful in enabling machines to be designed and operated without weak links in the chain of insulation below 200°C. Thus the fullest advantage is taken of modern glass fibre insulation by providing a degree of bonding and insulation at every point in which the uniting of Hymeş impregnation with the Hymeş as used for subsidiary insulations gives a solid homogeneous winding of equally efficient characteristics and heat resistance throughout.

Hymeglas therefore virtually eliminates any risk of insulation failure and enables motors and the like to operate under abnormal conditions for long periods without risk of electrical breakdown.

Due to the excellent space factor of glass fibre as compared with the more usual asbestos and mica Class B insulations, it is often possible in redesigning with the Hymeglas system to employ larger copper sections with well-known advantages. The Berger Technical Service—the research work of which produced "HYMEG' and "HYMEGLAS" is available to advise manufacturers on all problems of insulation. Get in touch now with—

LEWIS BERGER & SONS LTD. (Est. 1760) 35, BERKELEY SQUARE, LONDON. W.1. Telephone : MAYfair 9171.

MANUFACTURERS OF HIGH - PERFORMANCE INSULATING VARNISHES AND ENAMELS

Advertisements 20

Potted Transformers are particularly suitable for incorporating in equipment for tropical or home use.

Note these advantages

Clean layout and smart appearance when built into equipment. Universal fixing allowing above or below chassis wiring. Silence in operation with absolute reliability.

PTM 11a 250-0-250 60 m a 5v 2a 6·3v 3a PTM 12a 275-0-275 120 m a 5v 2a 6·3v 3a 1 TM 13a 350-0-350 120 m/a 5v 2a 6.3v 4a PTM 14a 425-0-425 150 m a 5v 3a 6·3v 6a PTM 15a 500-0-500 150 m a 5v 3a 6·3v 4a PTM 16 650-0-650v 250 m/a PTM 21 500-450-0-450-500v at 250 m/a PTM 22 350-0-350v 180 m a

Also available with 4v Filament Windings.

Modulation Transformers, Smoothing and Swinging Chokes also available in Potted Types. Prompt delivery.

Send for New Catalogue.

TELEPHONE : BILSTON 41959,0

Speaking of Operations

Speaking of operations, a suiting the weight of coil to delicate but highly successful cone we have reduced the one has been carried out in peaks and secured a freedom striking the balance of correct- from break-up, while the ly matched voice coil and curvilinear cone for our new 12" loud speaker. By carefully

very high flux density of the large Alcomax magnet considerably increases the sensitivity, especially in the higher frequencies. All very worth while as you may see, or rather hear.

Overall diam. 121". Depth 6". Weight 71b. 15 ozs. Voice Coil Impedance 15 ohms. Fundamental resonance 60 cycles. Flux density 14,000 lines per. sq. cm. Frequency range 50°7,000 c.p.s. Fixing holes 4 holes 1" diam. spaced 90° on p. Ch. 121". 4 holes 1" P.C.D. 121".

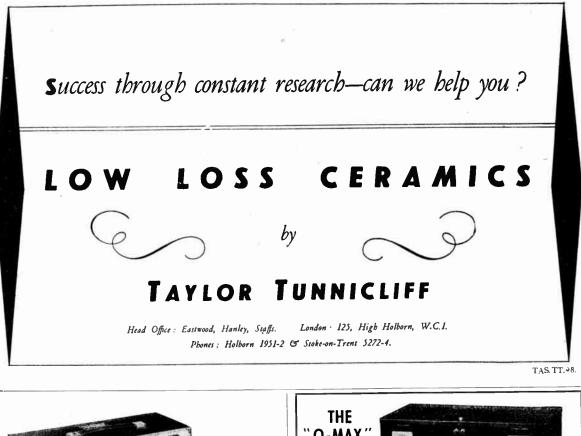
DELIVERY FROM STOCK LIST PRICE £6-10-0 REPRODUCERS LTD

Hampton Road, Hanworth, Middx. Phone: Feltham 2657

padding and trinimer condensers. Write for descriptive stating literature vour problem.

TESTED

LABORATORY

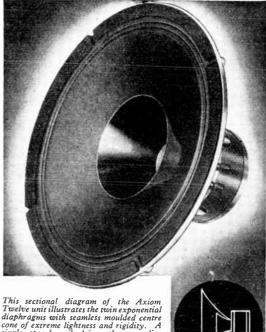


H. C. ATKINS Laboratories, 32 Cumber and Road, Kew, Surrey. Richmond 2950

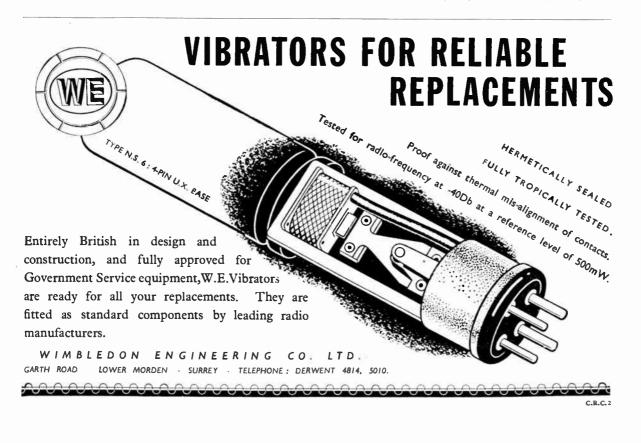
J.T.L. 48,7

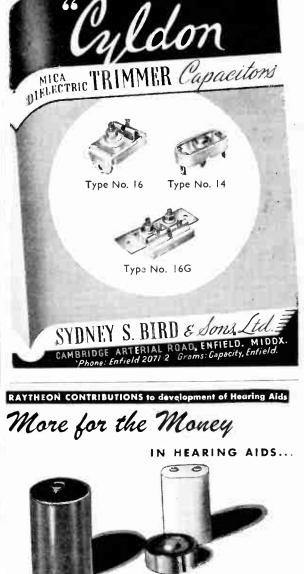
AT 105

÷2


This outstanding instrument marks a further important stage in the development of faithful sound reproduction. The patented twin diaphragm assembly* and high magnetic flux together account for the excellent overall frequency and transient response. Provided that the electrical input is faultless, every inflexion of the human voice is rendered with startling realism, and the natural range and contrast of the orchestra are strikingly re-created. It is absolutely essential to use this Loudspeaker with equipment which has been specifically designed for High Fidelity reproduction, as it will reproduce everything fed to it, including any distortion that may be present. For all normal requirements we recommend our standard 12in. model T2.

Please send for illustrated folder D88 giving full technical details. * British Patent No. 451,754. Other patents pending.


NOTE. To obtain the best results from the Axiom Twelve Loudspeaker it is important to use a first class output transformer, correctly designed to match the equipment. Goodmans type H4 Transformers fulfil these conditions, being wound to individual load requirements. They can be supplied at short notice.


diaphragms with seamless moulded centre cone of extreme lightness and rigidity. A single speech coil drives the two diaphragms, which are coupled through a mechanical compliance. This achieves a perfectly smooth cross-over without any electrical filter network.

GOODMANS INDUSTRIES LTD., LANCELOT ROAD. WEMBLEY. MIDDLESEX. 'Phone: Wembley 4001, Grams: " Goodmans, Wembley 4001 '

99

A big factor in making the modern Hearing Aid such a neat, compact instrument is the great reduction made possible in size of batteries. In 1939 valves used in the average Hearing Aid drew almost one-third of a watt from the "A" battery. Today, thanks to Raytheon developments in valve design and construction, drain on the "A" battery is 80 per cent less, battery life ten times greater, so that batteries can now be much smaller, with many times the life. Because of this and other important developments Raytheon is supplying more than 90 per cent of all Hearing Aid valves in use today.

And other important developments have for a supprime index that 90 per cent of all Hearing Aid valves in use today. Ask for complete information. Address your inquiry to Sub-marine Signal Company (London) Ltd., Artillery House, Artillery Row, London S.W.I England, or to:

She Type 1684 series of Oscilloscopes is already well known. The new Model retains the desirable features of this series-d.c. shift controls, response flat to video frequencies, d.c. coupled symmetrical amplifiers on both axes, fully - automatic synchronisation of the time base, etc. but incorporates many new 'eatures of design, both electrical and mechanical. 1684 B has, in fact, been accorded an enthusiastic reception and despite steadily mounting orders, a three-fold increase in production is enabling reasonable deliveries to be maintained.

PRINCIPAL FEATURES ★ TUBE 3¼ in. diam. Blue, green or delay screen.

AMPLIFIERS. D.C. to 3 Mc/s., 18 mV. r.m.s. per cm. or D.C. to I Mc s., 6 mV per cm. Symmetrical or asymmetrical input. X and Y amplifiers are similar.

★ TIME BASE. 0.2 c/s to 150 kc/s. Variable through X amplifier 0.2 to 5 screen diameters.

ACCESSORIES. Camera, telescopic light shield, ruled graticule.

Wireless World

August, 1948

PAINTON & CO. LTD · KINGSTHORPE · NORTHAMPTON

Dubilier HIGH STABILITY **Resistors** 1/8TH Watt

- Absolutely stable in operation.
- Lowest noise level.
- Maximum resistance to moisture in all operating conditions.
- Eminently suitable for use in all circuits where high stability characteristics are essential.

Telephone: Acorn 2241 (5 lines)

50Ω to

100Ω to

RESISTANCE RANGE

10 Ω to 0.75M Ω ± 5%

 $0.5M\Omega \pm 2\%$

 $0.5M\Omega \pm 1\%$

DUBILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, W.3 Telegrams: Hilvoltcon, Phone London Cables: Hilvoltcon, London. Marconi International Code D.17B

Wireless World

AUGUST 1948

38th YEAR OF PUBLICATION

Praprietars :	ILIFFE & SONS LTD.
Managing Editar	HUGH S. POCOCK, M.I.E.E.
Editar :	H. F. SMITH
Editarial, Adve	rtising and Publishing Offices:
DORSET HO	USE, STAMFORD STREET,
	LONDON, S.E.I.
Telephone Waterloo 33	
(60 lines).	London."
	•
PU	BLISHED MONTHLY
	Price : 1/6
(Publication da	ate 26th of preceding month)
Subscriptian Rai	te : 20/- per annum. Hame and Abraad
	Branch Offices :
Birmingham : K	ing Edward House, New Street, 2
Coventry :	

Glasgaw :

26B, Renfield Street, C.2.

In this Issue

EDITORIAL COMMENT	••	271
VIBRATOR POWER PACKS By D. A. Bell	••	272
THE SYNCHRODYNE By "Cathode Ray "	••	277
MANUFACTURERS' PRODUCTS	••	282
ELECTRONIC CIRCUITRY By J. McG. Sowerby	••	283
NOVEL CAR RADIO	••	285
HIGH-STABILITY LC OSCILLATOR By Thomas Roddam	• •	286
FRAME DEFLECTOR-COIL EFFICIENCY By W. T. Cocking	5	289
WORLD OF WIRELESS	• •	293
MORE CATHODE-RAY TUBE DATA By D. W. Thomasson	••	296
HIFAM By Sarkes Tarzian	••	297
QUALITY IN THE HOME By H. S. Casey	••	299
SHORT-WAVE CONDITIONS	••	303
UNBIASED By "Free Grid "	••	304
LETTERS TO THE EDITOR	••	305
RANDOM RADIATIONS By "Diallist "	••	308
RECENT INVENTIONS	••	310

alves and their applications

DELAYED AGC WITH E/UAF42

Receivers using AGC without delay suffer from the disadvantage that full output will only be obtained with a much larger signal input than in the case of a similar receiver with delay, and

the overall amplification will appear to be less.

Delayed AGC may be obtained with various types of twodiode circuits, but modulation distortion frequently results from the loading of the primary of the IF transformer by the delayed AGC diode. This disadvantage may be overcome by the use of a three-diode circuit in which each diode performs its separate function—detection, AGC, and delay. The circuit to be described is a modification of this circuit which uses a single-diode pentode, the pentode section being the IF amplifier valve. While the advantages of coupling the AGC diode to the primary of the final IF transformer are lost, the circuit avoids modulation distortion and a very satisfactory delayed AGC characteristic results.

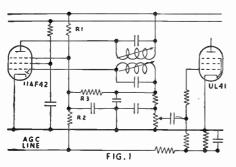
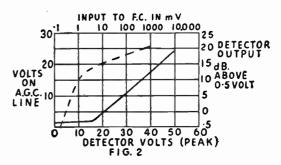



Fig. 1 illustrates a circuit using a UAF42 (or EAF42) diode pentode in which the main diode D1 provides the detector and AGC voltages while the suppressor is used as an auxiliary diode D2 to provide the delay which prevents operation of the AGC line until a predetermined signal level is reached.

The satisfactory operation of the circuit depends on the fact that for the E/UAF42 (a) the Ig3/Vg3 characteristic rises sharply with increasing suppressor volts and will consequently give a well defined delay voltage and (b) the internal resist-

ance of D2 is low (50K Ohm). The suppressor is connected through a high resistance R1 to the HT supply and through R2 to the AGC line. For small signals, the suppressor will be at substantially the same voltage as cathode since the negative voltage developed by D1 will be small. D2 will conduct and the AGC line voltage will remain constant; as the input signal increases, the suppressor will be driven negative, D2 will no longer conduct and the AGC line will operate. The magnitude of the delay voltage will be determined mainly by the values of R1 and R3 : R1 = 22M Ohms, R2 = R3 = 2.2M Ohms, HT = 170 volts, the delay will be approximately 15 volts.

The graph of volts on AGC line against peak detector volts (in full line) in Fig. 2 shows that the change in AGC line voltage over the range 0 to 15 peak detector volts is only 0.5 volts compared with 9 volts from 15 to 30 peak detector volts. The AGC characteristic for 30% modulation of a typical receiver using E/UAF42 is shown (in dotted line) in Fig. 2, the delay operates from 0.2 to 1mV and the AGC characteristic is flat to within 5db from 1 to 1000mV signal.

Reprints of this report together with additional circuit notes can be obtained free of charge from the address below.

MULLARD ELECTRONIC PRODUCTS LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE., W.C.2

(MVM72)

Wireless World

RADIO AND ELECTRONICS

Vol. LIV. No. 8-

-August 1948

Comments of the Month

T is freely admitted that broadcast receivers are numbered among the very few articles of commerce of which the present supply exceeds demand by a considerable margin. The recent reduction in purchase tax has apparently done little to stimulate buying, and, indeed, the reason for reluctance on the part of the general public to do so is by no means obvious. Judging by the steadily rising licence figures, broadcasting is not losing its attraction, and new homes, presumably needing new equipment, are being set up in considerable numbers.

The price of receivers, if we deduct the unpopular purchase tax, has not risen since 1939 to as great an extent as that of most other comparable articles. In spite of that, it is widely believed in wireless circles that high cost is responsible for public apathy, and the view is often expressed that there would be a widespread demand for a really cheap set. Those who voice such opinions generally add that such a set could best be produced by abandoning continuously variable tuning in favour of switch selection of three or four stations. The advocates of this type of set contend that it would be vastly cheaper, and would satisfy the needs of the majority; even the minority who normally require continuous tuning and a good R.F. performance would buy it freely as a "second set," especially if the price were made sufficiently attractive.

This question of the cheap set raises many interesting problems, both technical and economic. In the first place we doubt very much if a switchtuned receiver, of a design suitable for use in all areas of the country, would be appreciably cheaper than the more-or-less standardized 4+1superheterodyne. It might well be more costly. Admittedly, a really cheap receiver for use in districts where high selectivity is not necessary for meeting the simpler requirements could easily be devised, but its retail distribution would probably introduce many commercial problems. This matter of selectivity is the fundamental problem; so far,

the most economical solution has been found in the conventional superheterodyne. We think; however, that the time has come for designers of broadcast receivers to explore basically new methods of cheapening production.

Radio Equipment of Buildings

E welcome the issue, under the ægis of the Ministry of Works, of a "Draft for Comment" of a British Standard Code of Practice* on the equipment of new buildings for broadcast sound and television reception. The recommendations relate mainly to aerial systems, the installation of which has hitherto been in the nature of an afterthought. A number of different types of aerials are treated.

On the broader issue, it is gratifying that the code is issued in the form of a "draft for comment," available to any interested member of the public who cares to buy it; comments are specifically invited, and will presumably be taken into account in the preparation of the final code. This is a procedure that might be followed much more widely. Standard specifications are being issued at a great rate and, however good the qualifications of those who prepare them, there is always the risk of some glaring error or serious omission, due, perhaps, to lack of knowledge on some highly specialized aspect of the subject by those responsible. A case arose recently where it was found that standardized symbols could not be legibly printed by ordinary type-setting methods, with the result that the wide adoption of this particular form of standardization was in jeopardy. This is a matter where a great deal of circumspection and a fine discrimination is clearly needed. "In a multitude of counsellors there is safety," though, as some cynic recently added, "there is the probability of intolerable delay."

* Broadcast Reception: Sound and Television by Radio (Code 327:201). British Standards Institution; 55.

Vibrator Power Packs Some Notes on the Principles of Design

Βv

D. A. BELL, M.A., B.Sc..

ARGE numbers of vibrator power packs are now being used in mobile P.A. and V.H.F. equipments for obtaining H.T. supply from a lower-voltage D.C. source. It therefore seemed worth while to collect the results of investigations into several aspects of vibrator power packs which the author has carried out at various times. The problems can be sub-divided as follows :—

(i) The role of the "timing" or "buffer" condenser which is connected across the transformer secondary, and the choice of the correct capacitance.

(ii) Operating conditions of the transformer iron and copper with approximately square-wave currents.

(iii) Regulation.

(iv) Suppression of radio interference or "hash."

The fixed condenser which is connected across the whole of the secondary winding is sometimes called the "buffer" condenser, but in view of its true function it is better described as the "timing" condenser. The basic circuit of a transformer with a self-rectifying or synchronous vibrator is shown in Fig. 1, and both sides of the transformer are wound for double voltage and centre-tapped in the same way as the secondary of a transformer feeding a full-wave valve rectifier; but to obtain the simplest circuit for theoretical analysis we will first replace the double-wound transformer and vibrator by a single-wound transformer and reversing switch, and then replace the transformer by the equivalent circuit viewed from Thus in the secondary side. Fig. 2 the battery is assumed to be stepped up to the secondary voltage, R is the secondary load, C the timing condenser and L and r the inductance and resistance of the transformer circuits as viewed from the secondary.

The operation of the vibrator is then represented by the periodical changing over of the reversing switch, and when this opens there is a certain current, $i_{\rm L}$ say, flowing through the inductance L as well as a load current flowing through R. The inductance tends to maintain this current $i_{\rm L}$, but the load R is disconnected by whatever rectifying system is used (since the maintenance of $i_{\rm L}$ after

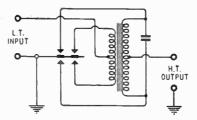
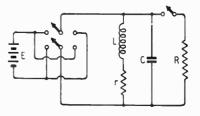



Fig. 1. Circuit of synchronous vibrator with transformer and "timing" condenser.

the battery switch is opened would require current flow through R in a sense opposite to that of the main battery current through R), and in the absence of the condenser C there would be an abrupt cessation of the current through L, i.e., a large negative value of $di_{\rm L}/dt$ and hence a high voltage. In fact there will always be some stray capacitance even if no external condenser is fitted, so the current $i_{\rm L}$ after the opening of the battery circuit flows in an oscillatory circut, L, r, C; and if there were no losses (r = 0)conservation of energy would require the condenser to be charged to a peak voltage V_c such that

 $\frac{1}{2}CV^2_c = \frac{1}{2}Li^2_L$... (I) In the particular case of a transformer supplying a small radio set with 50 mA at 300 V, if the secondary inductance is 30 H, the stray capacitance is 0.001μ F. and the "magnetizing current" $i_L = 10$ mA, equation (I) will give $V_c = 1740$ V. approx. This is the secondary voltage "spike" which in the absence of losses would occur under incorrect operating conditions and would break down any insulation designed for the normal 300 volts working.

Now suppose that the capacity across the secondary is increased by adding an external condenser, The peak voltage is reduced according to the square root of the capacitance, since from equation (1), $\mathrm{V_{C}}=i_{\mathrm{L}}\sqrt{\mathrm{L/C}}$, and at the same time the period of oscillation is increased as the square root of the capacitance. Considering only a single break of the circuit, the effect of adding capacitance is to change the waveform from curve (i) to curve (ii) of Fig. 3(a). In practice the vibrator contacts re-close in the opposite polarity shortly after opening, so ideally the voltage waveform should be as shown in Fig. 3(b), and the problem is to produce a rate of voltage change during the " con-tacts open " part of the cycle which will fit as smoothly as

Fig. 2. Equivalent circuit of vibrator and transformer.

possible into the "contacts closed" parts. This will occur if the point marked X in Fig. 3(a), curve (ii), which corresponds to -300 V., also corresponds in the time scale to the instant of reclosing of the vibrator contacts.

Fig. 4 shows idealized waveforms for limited variations of condenser capacitance about the correct value, and Fig. 5 shows tracings from oscilloscope pictures obtained in practice with different sizes of condenser. Clearly the timing conditions will be least critical if the point X in Fig. 3(a) occurs near the (negative) crest of the free oscillation of voltage, where the rate of change of voltage with time is small; but in the absence of dissipation the reverse-voltage peak would fall to the working voltage only when the condenser was so large as to make the oscillation period of the same order as the whole period of the vibrator cycle, i.e. the transfer of the inductive energy to the condenser would take as long as its accumulation in the inductance. With the small condenser required for correct timing, therefor, the voltage is likely to be still rising at the instant of vibrator contact closure, though the presence of iron and copper losses in the circuit reduces the amplitude of free oscillation.

One firm manufacturing vibrators has suggested including a the resistance in series with timing condenser, presumably in order to provide additional damping for this purpose, but it is more usual for the damping to be light enough for the voltage to over-swing appreciably, and correct timing is relied upon to give the appropriate voltage for re-closing the contacts. For a given time of change-over of vibrator contacts, the value of capacitance C which is required is inversely proportional to the transformer inductance L.

Now in any given iron-cored transformer the inductance L will usually vary inversely with the flux density, and therefore inversely with the input voltage. It follows that if the timing capaci-

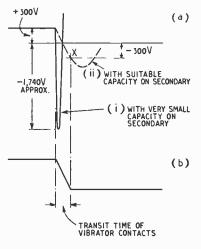


Fig. 3. (a) Effect of secondary capacitance on voltage waveform for a single break. (b) Ideal voltage waveform for break and re-make.

tance is initially set to be correct at nominal input voltage (e.g. 12 volts from a 6-cell lead-acid accumulator), it will be too small when the transformer inductance falls on high input voltage (e.g. 15 volts with battery on charge) and too large on low input voltage (e.g. 10.8 volts from a discharged battery). Since too small a capacitance can give rise to dangerous over-voltages on the transformer secondary, but too large a condenser causes little more than a slight loss of efficiency the timing condenser should always be chosen of value appropriate to the highest input voltage

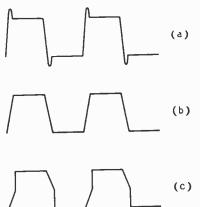


Fig. 4. Theoretical waveforms for different condenser values; (a) too small, (b) correct, (c) too large.

likely to be met, not to the mean or nominal input voltage.

If the condenser is too large, giving a waveform of the type of (c) in Figs. 4 and 5, the condenser is abruptly charged to the new voltage when the contacts re-close, but since the energy from the inductance will not all have been transferred to the condenser, the residue of the inductive energy should be transferred back to the battery. Small upward pulses of primary voltage have been detected under such conditions, but according to a moving-coil ammeter there is no saving of mean battery current. In fact, the capacitance value for minimum mean battery current corresponds very closely with the value which gives waveform (b) of Figs. 4 and 5; and although it is desirable to check the waveform oscillo-

graphically, the condenser size can in an emergency be adjusted

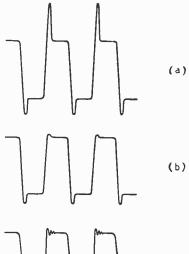


Fig. 5. Observed waveforms corresponding to Fig. 4.

for minimum input current. An open-circuit timing condenser makes the transformer behave like a short circuit, even if no permanent damage is caused, and this is presumably due to the secondary voltage surges setting up a continuous arc across the vibrator contacts.

Provided that the timing condenser is of sufficient capacitance to give correct timing with the transformer in question at maximum input voltage, there appears to be no reason why it should have any exceptionally high voltage rating : it is never likely to receive a voltage more than 10 per cent above the amplitude of the square wave on the transformer secondary. On the other hand, it is working under A.C. conditions, and must be capable of handling a small amount of current. The changeover time of a vibrator is, in very round figures, I millisecond; and if we take a condenser of 0.02 μ F reversing its charge from + 300 to - 300 volts, the current can be found as the change of charge divided by the time during which it occurs, and comes out to 12 mA. This should not cause any trouble.

The simplified form of the voltage wave of a typical vibrator

(c)

Vibrator Power Packs-

transformer is illustrated at (a) in Fig. 6. This is drawn to scale for a vibrator with contact closure

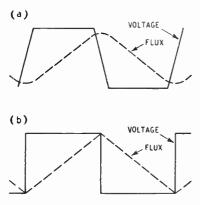


Fig. 6. Voltage and flux waveforms. (a) Vibrator, 80% time efficiency. (b) Perfect square wave.

time of 40 per cent each way, i.e. each contacts-open period is 10 per cent of the complete cycle. Since the voltage per turn is proportional to the rate of change of flux, $E_o = 10^{-8}$. $d\Phi/dt$, the flux may be determined by integrating the observed voltage :

$$\boldsymbol{\Phi} = 10^8 \left| \mathbf{E}_o dt \right|$$

By carrying out the integration of the voltage waveform for a vibrator-driven transformer (full line in Fig. 6a) the flux waveform is obtained, as shown dotted ; and for the sake of comparison the pure square wave of equal amplitude and its integral have been plotted in Fig. 6(b). Since the flux is the integral of the voltage, the maximum flux is less in Fig. 6(a) than in Fig. 6(b) in the same ratio as the mean arithmetic value of voltage is less in Fig. 6(a)i.e. by a factor of (1 - x/2) where x is the fraction of the cycle for which the vibrator contacts are open. (x = 0.2 in Fig. 6a).

It might be thought that since the primary circuit is broken during the period of voltage reversal, and the primary current is then zero, the magnetomotive force and the flux would also be zero. But in fact the flux is maintained, as shown, by the secondary current which is flowing into the timing condenser.

Now the flux Φ is the product of the area A of core section and the flux density B, so that

$$\mathbf{B} = \frac{\mathbf{I}\mathbf{O}^8}{\mathbf{N}\mathbf{A}} \int \mathbf{E}dt + \mathbf{B}_o \qquad \dots \qquad (2)$$

where N is the number of turns in the winding across which E is measured, and B_o is the value of B at t = o. Since a half-period of the vibrator cycle covers the reversal of the flux from a maximum in one direction to a maximum in the other, the flux change corresponding to the integration of E over half the period T of the vibrator is equal to twice the maximum flux:

$${}^{2}B_{nus} = \frac{10^{8}}{NA} \int_{0}^{T/2} E dt$$
 (3)

E is constant over a half wave of the square waveform of Fig. 6(b), so that $2B_{max} = 10^8 \text{ET}/2\text{NA}$ and writing T = 1/f where f is the vibrator frequency in c/s., and 1 - x is the "time efficiency."

 $B_{max} = (10^8 E/4 A N f)(1 - x/2)^2$. (4) A transformer operating on a sinusoidal voltage of R.M.S. value V would have $B_{max} = 10^8 V/4.44 A N f$; so that comparing D.C. input voltage with R.M.S. alternating voltage, the transformer fed through a vibrator will run at II per cent higher flux density than it would if fed with a sinusoidal voltage of the same nominal magnitude. (If one compared the D.C. voltage with the peak value of a sinusoidal voltage, the

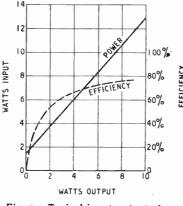


Fig. 7. Typical input-output characteristic of vibrator transformer.

ratio would be increased to r.57: I; and this comparison is relevant if the transformer with sinusoidal input feeds a rectifier with condenser-input filter, the D.C. output of which on no-load is equal to the peak voltage from the transformer.)

Having determined the flux density, the iron loss can now be considered. It is, unfortunately, a characteristic of vibrator transformers that their efficiency is usually about 60 per cent to 70 per cent instead of the 90 per cent which one might expect from a small transformer working on sinusoidal supply. A plot of output power versus input power shows that an appreciable part of the loss is constant and may be regarded as the open-circuit or magnetising-current loss. An analysis of the power input at full load to the transformer responsible for the graph of Fig. 7 was as follows :

Output power	•••		watts
Open-circuit losses	•••	1.4	,,
Vibrator contact losses	•••	0.93	,,
Secondary copper loss		-0.37	,,
Primary copper loss	•••	0.11	,,
		11.84	••
Total input power	•••	12.2	••
Balance of loss un- accounted for	•••	0.36	,,

The vibrator contact losses were checked both by measuring the voltage drop across the contacts oscillographically and by observing the temperature rise of the vibrator when handling current. The temperature rise was calibrated in terms of the constant power dissipated in the vibrator driving coil, and since a vibrator with independent drive circuit was used the driving power was the same with or without load current on the contacts. The open-circuit losses are the biggest item, and since there can be little loss in the timing condenser they must be mainly iron loss. The genuineness of this dissipation is confirmed by the fact that if the timing condenser is removed the peak voltage does not rise to the extent indicated by calculations based on equation (1).

According to elementary theory, the hysteresis loss should depend only on the maximum flux density and the frequency of repetition of the hysteresis loop, and should therefore be the same for a square wave as for a sinusoidal wave of the same frequency and B_{max} . Eddy-current loss is usually assumed to be based on an expression of the type E^2/R where R is the resistance of the path round which the eddy current flows and E, the E.M.F. driving this current, is proportional to flux density and frequency, so that the loss increases as the square of the frequency. E is also assumed to be proportional to a uniform flux density. and therefore to have the same waveform as the transformer input voltage. The mean-square value averaged over a quasisquare wave such as Fig. 6(a) is nearer to the peak value than is the mean-square of a sinusoidal wave; and therefore for a given maximum flux density, E^2/R will be greater the more nearly the vibrator waveform approaches a perfect square wave. By integration of the actual trap. zoidal wave, one can calculate the average value of E^2/R in terms of the proportion of the complete cycle time for which the contacts are closed on one side or the other, and compare the ratio of meansquare-voltage to maximumvoltage-squared with the similar ratio for a sinusoidal voltage, which is 0.5.

rapid, as shown by Fig. 8 which is based on handbook² figures for transformer sheet of 0.014in thickness. The vibrator waveform can be approximated by the limited series

$$= \frac{4}{\pi} E_o \left(\sin pt + \frac{1}{3} \sin 3pt + \frac{1}{5} \sin 5pt \right)$$

where E_o is its peak amplitude. The mean-square value of the wave is equal to the sum of the mean squares of the harmonic components (since the product terms of two components of different frequency vanish when averaged over the cycle) and for this series is of magnitude 0.935 E_o . If in a particular case E_o corresponds to the flux density for which Fig. 8 was plotted (9,000 gauss) and the vibrator frequency is 100 c/s, the total iron loss for this material should be

$$W = \frac{4}{\pi} \left(W_{100} + \frac{I}{3} W_{300} + \frac{I}{5} W_{500} \right)$$

where the W's represent the losses at the various frequencies. From

Contacts-closed time, per cent	${{f E}^2/{f E}^2}_{max}$ for vibrator	$\frac{\overline{\mathbf{E}}^2/\mathbf{E}^2{}_{max} \text{ for vibrator}}{\overline{\mathbf{E}}^2/\mathbf{E}^2{}_{max} \text{ for sinusoid}}$
2×35	0.8	1.6
$\frac{2}{2} \times \frac{30}{40}$	0.87	1.73
2×45	0,93	1,86
$\frac{5}{2 \times 50}$	1.0	2.0

Е

Thus even with a perfect vibrator having contacts-closed time of $2 \times 50 = 100$ per cent and transit time zero, the increase of eddy-current loss on this basis would be only 2:1 for a given maximum flux density and it would be about 1.7:1 for the average practical value of vibrator closure time. This is not enough to account for the observed iron loss. But it is generally known that the iron loss in a transformer increases with frequency more rapidly than can be accounted for by an increase of the measured hysteresis loss linearly with frequency and a calculated eddycurrent loss. It has been suggested¹ that the additional increase of loss with frequency is due to distortion of the flux waveform within the body of the core; but whatever the cause, the increase of loss with frequency is

Fig. 8 this leads to W =
$$\frac{4}{\pi} \left(0.85 + \frac{4 \cdot 4}{3} + \frac{10}{5} \right) = 5.5$$
 watts/lb

or about six times the loss for a 100 c/s sinusoid of the same B_{max} as the square wave. This agrees qualitatively with the observed losses, but should not be regarded as quantitatively true because the loss mechanism is probably non-linear with amplitude and this will invalidate the addition of the effects of the component frequencies.

In addition to the effect of secondary copper loss, the mean output voltage is less than the product of effective primary volt-

⁴ "Standard Handbook for Electrical Engineers," (7th Edition), Edited by A. E. Knowlton, McGraw Hill Book Co., 1941. age and turns ratio, because of the intervals when the vibrator contacts are open. If x is the fraction of the cycle for which the contacts are open, the mean output voltage when feeding a resistance load would be $(1 - x)E_0$; and correspondingly the current in the windings when the contacts are closed would be $i_0 / (1 - x)$ where i_0 is the mean output current. The regulation is therefore increased by a factor 1/(1 - x). The maximum squared current is increased by $(1 - x)^{-2}$, but it flows for a fractional time I - xonly, so that the mean squared current and therefore the copper loss is increased by a factor 1/(1 - x) only.

In the practical case, with a reservoir condenser connected across the rectified output, the conditions are slightly less favourable, because the loss of charge during contacts-open periods tends to cause an initial peak of current when the contacts close; but this is not very serious since the variation in condenser voltage is usually less than 5 per cent.

The fraction of the cycle for which contacts are closed is commonly known as the "time efficiency" of the vibrator. It has no direct relationship to the output/input power ratio of the complete equipment, but a high "time efficiency" is useful for the following reasons :—

(i) It reduces the size of "buffer" or timing capacitor required.

(ii) By bringing the mean output voltage nearer to the peak voltage it lowers slightly the maximum flux density, so reducing

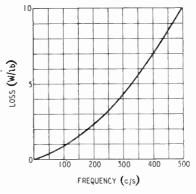
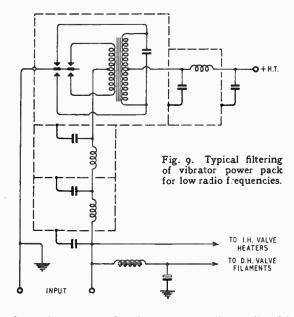


Fig. 8. Loss v. frequency for 0.014in. transformer sheet.

World Radio History


⁴ F. Brailsford, "Investigation of the Eddy-Current Anomaly in Electrical Sheet Steels," *J.I.E.E.*, Part II, Feb. 1948, Vol. 95, p. 38.

Vibrator Power Packs—

iron losses, and at the same time it reduces the ratio of R.M.S. to mean currents in the windings.

The interruption of the current from battery to transformer primary by the vibrator contacts produces a series of discontinuities which can be represented by **Fourier series extending throughout** the radio-frequency band. As-suming a periodic time of 10 milliseconds (100 c/s) the circuit is likely to be broken in a time of less than 0.1 m-sec; with a primary current of 5 amperes this phenomenon may be described as a rate of change of current of 50,000 amperes per second, which perhaps suggests some radio interference. The secondary contacts of a self-rectifying or synchronous vibrator cause relatively less interference, partly because of the smaller current and partly because the timing condenser reduces the steepness of the wave-front.

The best method of suppressing the interference depends on the particular frequency band which

is to be protected. In general, suppression is more difficult at the lower frequencies, and one of the worst cases is a receiver which has to cover the long-wave broadcast band. At such frequencies it is difficult to make a choke of high R.F. impedance but low D.C. resistance, and the reactance of a condenser of reasonable dimensions is not very low. Therefore, the volt-drop limitations require that the minimum and (b) better cooling of the transformer, but if the transformer is to be hermetically

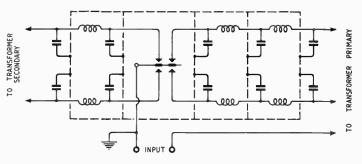


Fig. 10. Filtering of individual vibrator contacts is practicable at high radio frequencies.

number of filter stages should be used; and by completely screening the vibrator and transformer, only two leads need be filtered, the live battery lead to the primary and the H.T. + outgoing lead, of which the battery lead will probably need a 2-stage filter but the H.T. lead only a single stage, as indicated in Fig. 9. If filament

(directly - heated) types of valve are used in the equipment, care must be taken to avoid the injection of lowfrequency ripple into the filament circuits via the impedance of any common battery leads, and it may even be necessary to include a further stage of lowfrequency filtering in the lead to the valve filaments.

Where only the higher frequencies are involved, e.g. in V. H. F. equipment, adequate attenuation can be obtained with

filter coils of low D.C. resistance. It is then feasible to insert filters directly in the leads to all vibrator contacts, and so avoid the necessity for enclosing the transformer also in a screen. An arrangement of this type is illustrated in Fig. 10. The advantages of eliminating the screen round the transformer are (a) easier wiring and assembly sealed for tropicalization it might as well be screened by the same enclosure.

This article originated in work which was carried out in the Research Laboratories of A. C. Cossor, Ltd., in 1945-6.

MANUFACTURERS' LITERATURE

Leaflet describing "Superspeed Special" cored solder for use in the radio and electrical industries, from H. J. Enthoven and Sons, 15-18, Lime Street, London, E.C.3.

Publication No. 27 dealing with "Co-ax" articulated R.F. cables, including new types for photocells and high-power transmission lines, from Transradio, Ltd., 138A, Croniwell Road, London, S.W.7.

Catalogue of T.M.C. Capacitors for telecommunications, electro - medical and industrial applications, from the Telephone Manufacturing Co., St. Mary Cray, Orpington, Kent.

Pamphlet describing a commercially built version of the "Williamson" amplifier described in Wireless World, April and May, 1947, from Radio Trades Mfg. Company, 141, Little Ealing Lane, London, W.5.

Leaflet describing a new range of 12and 18-way switches from Taylor Electrical Instruments, Ltd., 419, Montrose Avenue, Slough, Bucks.

Loudspeaker Cone Assemblies

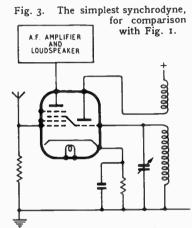
To facilitate the rapid repair of damaged loudspeakers, A. W. F. Radio Products, Sharpe Street, Bradford, can supply diaphragms, centring spiders, cardboard fixing segments, etc., to fit the principal commercial types. Diaphragms are supplied in cartons of 12 in various assortments and prices range from 48s to 96s per carton. Instructions for fitting the cones are included.

August, 1948 Wireless World

The SynchrodyneSelectivity Without Tuned Circuitsso the tuning
within range

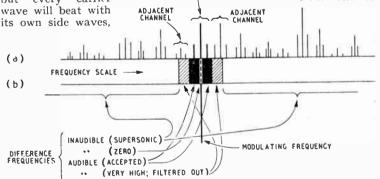
By "CATHODE RAY"

AST month I tried to show that modulation, frequency dechanging, beating, tection, rectification, etc., were all fundamentally the same-the results of alternating currents in non-linear circuit elements. Invariably there is the production of new frequencies, and the name that one calls the process depends mainly on which of these frequencies one has a use for. Admittedly there are differences in the practical details, and one of them-the difference between the so-called


Fig. 1. With a simple additive detector and no tuning, there is no selectivity, because every programme received is subiect to its non-linearity.

a d ditive and multiplicative methods—is important. In both methods the modulating signal varies the slope of the modulator characteristic, but in the additive method it does it as a fellow passenger (not necessarily left-wing, though it often should be to avoid grid current !) and is liable to be modulated itself, whereas in the multiplicative method it does so, as it were, from its own private control room, shielded from personal risk.

Where in this co-ordinated scheme of things, one may ask, fits the receiver system known as the synchrodyne,* developed mainly by Dr. D. G. Tucker of the G.P.O.? It appears in some ways to be revolutionary, notably in requiring no tuning circuits other than an oscillator, and yet providing exceptionally high selectivity.


To see how this remarkable feature is possible, consider why tuning is necessary in the ordinary receiver. Imagine an aerial connected direct or via an untuned amplifier to a detector of the rectifier type, such as a crystal, as in Fig. 1. All signals picked up by the aerial are applied indiscriminately to the detector. Generally they would include an assortment of broadcast transmissions. Since the sidebands constituting, say, a variety programme are excessively complicated, let us simplify matters by supposing that all the stations are doing their morning tuning notes, and that for identification these notes are all different. Then each carrier wave is escorted by two side waves differing from it in frequency by one of these audible frequencies. The top part of Fig. 2 represents the transmissions in part of the broadcast band in the form of a spectrum. Each of the upright lines represents by its position a transmitted frequency and by its height the received strength. The non-linearity of the detector will cause every frequency to modulate every other; so even with our simplifying assumption there will be a glorious mix-up. The ± frequencies due to intermodulation between different stations' transmis-

sions will, in general, be above audibility; but every carrier wave will beat with its own side waves, so the tuning note of every station within range will be made audible. When their programmes come on, all will be heard at once; which is just what one would expect cf a receiver with no selectivity.

Suppose now we substitute a multiplicative detector for the additive one. Although a triodehexode (Fig. 3) is not the best for the purpose, it is the most familiar, so will do very well for explanation. The important thing is that the hexode section should work on as nearly as possible a linear part of its controlgrid characteristic, otherwise it would act more or less in the same

> OTHER CARRIERS & SIDE FREQUENCIES

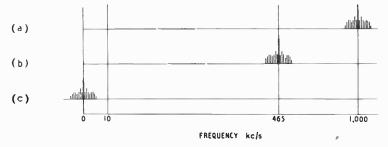
SELECTED CARRIER

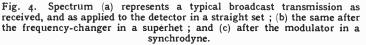
Fig. 2. Part of a broadcast frequency band. Each of the groups of three lines on level (a) represents a carrier wave and a single pair of side frequencies; the single vertical line on scale (b) (which can be shifted horizontally by the tuning control) represents the oscillator frequency in a synchrodyne. Between them is shown the various zones of difference frequencies produced when (b) modulates (a). They move along with (b).

^{*} Electronic Engineering, March, 1947.

278

The Synchrodyne-


way as Fig. 1. Since this is an imaginary receiver, it is as easy to imagine it to be perfectly linear as anything else. On that assumption, no new frequencies can be formed; and as all those coming in from the aerial are radio frequencies there is complete silence.


Now start the triode oscillating. It varies the slope and amplification of the hexode sinusoidally, modulating all the incoming signals and forming \pm frequencies with them all, as I explained last month. Whereas the slope of the rectifier characteristic in Fig. I is varied at *all* the incoming frquencies, so that they all modulate one another, in Fig. 3 the right of modulation is strictly reserved to itself by the oscillator frequency.

When that frequency is adjusted to be exactly the same as the carrier frequency of one of the broadcasting stations, as shown in the lower part of Fig. 2, the difference between it and that carrier is (obviously !) zero, so is inaudible. The difference between it and the side frequencies from that station is, of course, its tuning note, so that is made audible. The difference between it and any of the other stations' carrier waves modulation frequencies of the wanted station may then suffer.

But compare that with any orthodox receiver, where to cut out this adjacent-channel interference it is necessary to use R.F. bandpass filters. Even the best designs tend to cut the wanted modulation at a considerably lower frequency than the interference, while if they are very beautifully aligned to give exceptionally good results they all the more easily drift out of adjustment. An audio filter can be made with better characteristics and has practically no tendency to lose them.

Looking at Fig. 3 you may have thought it seemed remarkably like a superhet, except for the lack of tuning. If so, it is all the easier for me to say that in principle it is a very extreme case of super-het. Only it isn't the "super" that is extreme; quite the con-trary, for "super" here has no connection with the enthusiastic exclamation "It's super !" but is an abbreviation for "supersonic "---" above audibility." In Fig. 4, where again there is a horizontal scale of frequency (not very uniform this time, I'm afraid), the line (a) carries a

or sidebands is generally too high to be audible; except that those immediately next to it in frequency (the ''adjacent channels'') may be only 9 or 10 kc/s different, so if they are strong enough a heterodyne note of that frequency will be heard, together with lower but generally more transient notes due to the nearer sidebands. If these are annoying, then the low-pass filter used for disposing of the R.F. by-products must be adjusted to cut off at a lower frequency and the highest spectrum representing an incoming broadcast on (for example) 1,000 kc/s. The more complicated sidebands show that it is transmitting something more interesting than a single note. In a straight set, all the tuning circuits have to be adjustable to select such a band, which is very narrow, anywhere out of the whole frequency scales provided. In a superhet the oscillator frequency is adjustable to make one set of difference frequencies come into line with the fixed-tyned I.F. amplifier, as indicated on line (b). The nearer the oscillator frequency is to the incoming frequency, the lower the I.F. In the synchrodyne the oscillator frequency is adjusted so near to the incoming carrier frequency that it actually coincides with it, making the "I.F." zero, as shown on line (c). The sidebands are, as before, arrayed on each side.

But how can one of them be arrayed beyond zero, in what is presumably a zone of negative frequency? We came up against this entertaining little question last month, and once more I am going to ask you to postpone it for a while and in the meantime just to regard them as frequencies, without any + or -.

The important point is that whereas in the straight set and superhet all the frequencies are supersonic and have to be "detected" by some non-linear device which sets up audible beat notes between carrier and sidebands, in the synchrodyne they are already in the A.F. band and no detector is needed.

An interfering station with a a carrier spaced 9 kc/s from 1,000 kc/s is less than I per cent different in frequency, so it is difficult to make a variablefrequency filter cover the wanted sidebands evenly, and then cut off sharply to exclude such a near neighbour. In the superhet the separation is increased to 2 per cent and the filter tuning does not have to be varied, so the problem is eased. In the synchrodyne, the adjacent carrier is as much as 8b per cent higher in frequency than (say) 5 kc/s wanted sidebands; or looking at it another way, the synchrodyne filter can be made to accept wanted sidebands much closer to an interfering adjacent channel than either straight or superhet receivers.

Incidentally, what is really the same scheme has been suggested for getting round the general difficulty of making filters with very narrow pass bands.[†] The signals are frequency-changed to bring the desired band down to the region of 'zero; a simple low-pass filter is used to cut out all the others; and the remaining ones can then, if desired, be trans-

[†] N. F. Barber, Wireless Engineer, May, 1947, p. 132.

ported back to their original frequencies. The synchrodyne is the same thing without the transporting back. Or in other words it is a "superhet" in which the frequency changer changes the frequency direct to audio instead of first to an intermediate frequency.

Fig. 3, as I implied, is a highly theoretical sort of synchrodyne. imagined solely for explaining the basic principle. To make the idea work in practice it has to be elaborated. The two main things are the oscillator and the modulator. Taking the oscillator first; it is obvious that the whole plan depends on its frequency being adjusted and kept exactly the same as the carrier frequency of the wanted station. The slightest difference would cause a loud heterodyne note, reminiscent of the dark ages of wireless. One possible solution is to use the carrier wave itself as the modulating oscillation. But to do that it would be necessary to have an extremely selective tuner, variable over all the reception bands. to pick the carrier out; which would destroy most of the attractiveness of the synchrodyne for broadcast reception. Something like this has been used under the name of "exalted-carrier" reception, for working on fixed commercial frequencies, to counteract distortion due to fading of the carrier wave

A more convenient idea is to make use of the fact that an oscillator automatically falls into step with another oscillation on nearly the same frequency. This fact was more generally familiar in the days of receivers with reaction controls. If such a receiver was brought to the oscillating condition and tuned around, the heterodyne whistle due to an incoming carrier wave grew lower in pitch as exact tuning was approached, but instead of declining steadily to zero, as indicated by the dotted line in Fig. 5, it generally fell suddenly to it and remained silent over an appreciable span of the tuning control until it emerged suddenly at the other side. This "silent space" was the range of oscillator tuning within which its own free-running frequency was under the overriding influence of the carrier wave.

By having the incoming signal

coupled to the oscillator, the synchrodyne is locked in synchronism against a reasonable amount of inaccurate tuning or drift. Within those limits, drift causes some variation in volume, but except at very high frequencies or with a bad oscillator that is not a very serious trouble.

The important thing is that, unlike what happens with the ordinary highly-selective receiver, slight mistuning of the synchro-

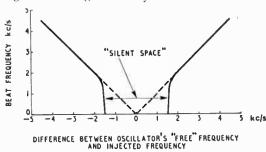


Fig. 5. The dotted line illustrates how an oscillator can be "tuned to zero beat" with another if the other is not coupled to it. When coupled it falls in step over a range of frequency (the "silent space") whose width depends on the closeness of coupling.

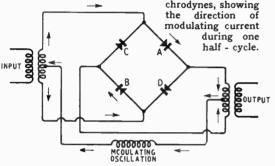
dyne causes no appreciable variation in *quality* of reproduction.

As Dr. Tucker has shown, the synchronized oscillator is a very selective device, for the other frequencies present in the control circuit have negligible effect unless they are very strong or very close in frequency. As regards the former, it is not much trouble to provide a moderate amount of tuned-circuit selectively as a protection against relatively strong interference. The point to notice is that this selectivity is used in the synchronizing circuit, not in the main signal circuit, so has no effect on fidelity. And the influence of very close frequencies, such as those in the sidebands of the station being received, can be minimized by reducing the coupling to the oscillator.

During the process of tuning from one station to another, the loud heterodyne whistles are an unpleasant feature. At least, they are with the continuously-variable method of tuning, which is the only one provided in most broadcast receivers, notwithstanding that it is quite unsuited to the listening habits of the vast majority of people. I estimate that in 90 per cent of homes all the time and in 99.9 per cent of homes nearly all the time, people listen to one of two or three stations. But for the sake of the small minority of ether-searchers, the patient British public are condemned to grind away at the old tuning knob every time they want to change between llome and Light, and have to carry out the skilled operation of setting the control accurately to the carrier-wave frequency. It is

not surprising that the accuracy is often poor, and the quality of reproduction correspondingly poor. What nearly everybody wants most of the time is a switch or set of buttons for instantly selecting any of the usual programmes, with continuous tuning as an optional extra for those "ho care to pay for it.

Assuming then that tuning is carried out in what, for ordinary needs, is the common-sense way, and not the archaic way still commonly provided, the synchrodyne howl need never be heard. Although the synchrodyne is feasible for long-range reception, especially if preceded by a superhet section, it seems to me that its natural role is as a high-quality localstation receiver with switch tun-There is then no need to ing. spoil its sweet simplicity by having to provide elaborate R.F. amplification to bring the weaker carriers up to oscillator-control strength, or means to prevent the stronger signals from overstepping the linearity of the modulator.


That brings us to the modulator. A triode-hexode is possible, but not very suitable, because the carrier voltage needed to synchronize the oscillator section is of the order of ten times larger than the maximum that can be allowed at the control grid if perceptible intermodulation is to be avoided ; which means that a carrier amplifier is desirable. Dr. Tucker favours one of the balanced rectifier types of modulator, such as the one shown in Fig. 6. The arrows show the direc-

The Synchrodyne-

tion of current during one halfcycle of the modulating signal from the synchronized oscillator. You will see that it balances out in both input and output circuits, so does not interfere directly with them.

What it does do is to make the resistance of rectifiers A and B low and C and D high, so that the output is connected one way round to the input. In the next modulating half-cycle the situation is reversed, and so are the input-to-output connections. The frequency of the carrier wave in the input is, of course, the same as that of the modulating signal.

Fig. 6. One type of bridge modulator used in syn-

What happens to it depends on their relative phases. If it is in phase, the carrier is full-wave rectified, giving a D.C. (plus carrier harmonics) output in one direction, Fig. 7 (a); while if the phase difference is 90° the changeover in polarity of the carrier occurs half-way through each half-cycle of the modulating signal, and cancels out, giving no output.

The last point is an interesting one, because if the phase can be controlled accurately enough the synchrodyne principle can be used to *reject* a signal completely.

At intermediate phases, the D.C. attains intermediate amplitudes; which is the cause of the volume declining when the oscillator is tending to pull out of synchronism. If there are strong tendencies of this kind, as there would be when receiving short waves, it is a good thing to employ something like A.F.C. (automatic frequency correction) to keep the synchronization steady.

So much for the receiver carrier. What about the sidebands? Each frequency in these is slightly

different from the carrier frequency, so there is a progressively increasing phase difference between them, amounting to one whole cycle for every cycle of the audio frequency. During that cycle the component of output due to the side frequency first adds to the carrier D.C., then declines to zero, reverses, grows to a maximum in opposition to the D.C., declines, reverses, and completes the cycle with a maximum, Fig. 7 (b). The addition of this to the D.C. due to the carrier is shown at (c). In words, the output reproduces the modulation of the received programme. This is where one can take another

look at the vector diagram, Fig. 7 (d), in which the observer is supposed to be rotating with the vectors at the same speed as the carrier vector so that it appears stationary, with the sideband vectors rotating in opposite directions. In Fig. 7 the modulating signal does this slowing down

for us, rather like a stroboscope, converting the R.F. carrier into D.C. and each pair of R.F. side waves into a + and - A.F. vector (that negative frequency again!).

Just one other thing about this modulator that may worry some readers. During the modulating • half-cycle shown in Fig. 7 (or any other half-cycle for the matter of

that) the input signal has to go through one of the rectifiers in opposition to the modulating current. This does not mean that it has to defy nature's traffic regulations by going the wrong way through a one-way street. If a cyclist on a long lorry which is proceeding in the legal direction through such a street cares to ride his machine from front to back of the vehicle he is riding in the

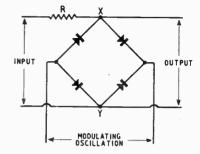
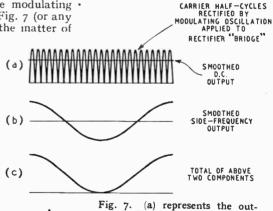
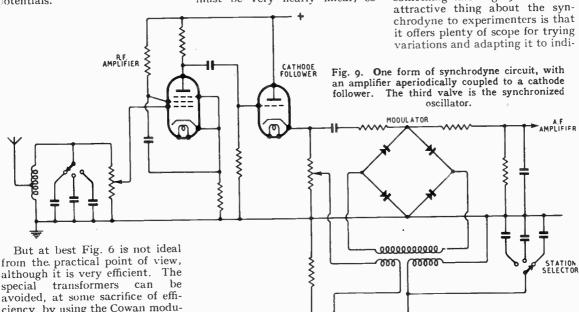



Fig. 8. An alternative synchrodyne modulator, more convenient but less efficient than Fig. 6.

"wrong" direction, but, assuming the speed of the lorry is greater than his, his net velocity is opposite to the way he is facing, and no offence is committed by him, at any rate in respect of the one-wayness of the street. What is thought of his conduct in other respects is not our business. The point is that the modulating current is always made much larger than the modulated current, so that to the latter the rectifiers appear to be either practically linear low resistances or very high resistances.

A suitable input signal is 0.1 V which is just about what is needed to synchronize an oscillation of I V or rather more, which in turn is just about what is needed to work the modulator, if the new germanium rectifiers are used. They are more convenient than thermionic diodes; especially in


rig. 7. (a) represents the output in Fig. 6 due to a received carrier wave. When smoothed it is D.C. (b) represents the output due to side waves, after smooth-

ing. Added to (a), they give (c) a reproduction of the original transmitter modulation. (d) is the vector diagram; the resultant as the side-wave vectors rotate varies as at (c).

(d)

the Fig. 6 circuit, where the cathodes are all at different R.F. potentials.

The vital thing about any premodulator stages is that they must be very nearly linear, so

although it is very efficient. The special transformers can avoided, at some sacrifice of efficiency, by using the Cowan modulator, shown in Fig. 8. Here the points X and Y are always at the same potential so far as the modulating oscillator is concerned, because the current (if any, and if the rectifiers are well matched) divides equally and sets up equal potentials, as in a balanced bridge. During one half-cycle it makes all rectifiers low resistances, so that they more or less short-circuit the input-to-output path, and most of the signal is absorbed by R. During the next modulating halfcycle all rectifiers are high resistances and the signal goes through. So what we have is a half-wave modulator, and a less than perfect one at that; while twice the modulating voltage is needed, to cope with two rectifiers in series.

To supply the "signal" to either type of modulator using germanium rectifiers, a fairly lowimpedance source is desirable; preferably a cathode follower. What goes before the cathode follower depends on how strong are the signals one wants to receive. Except for very strong locals, at least one stage will be needed. It can be broadly tuned, not selective enough to cause any reduction of the highest programme modulation frequencies, but enough to reduce relatively strong signals, noise, etc., to a level at which it cannot intermodulate.

negative feedback is indicated. The post-modulator stages can be vidual taste and fancy. So I'll say no more.

on normal high-fidelity lines.

Putting these parts together gives

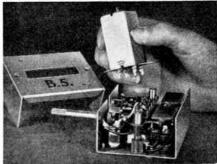
something like Fig. 9. But the

Miniature Coil Pack and I.F.T.

SYNCHRONIZEO OSCILLATOR

A THREE-RANGE coil pack measuring $3\frac{1}{16} \times 2\frac{1}{2} \times 1\frac{3}{2}$ in overall and small permeability tuned 1.F. transformers to match for use in miniature superhets have been produced by the Weymouth Radio Manufacturing Co., Ltd., Crescent Street, Weymouth, Dorset.

Three models of the coil pack are available, the type B5 (illustrated here) when used with a two-gang midget condenser having a 365-pF capacitance swing tunes over the following wavebands:16 to 50, 200 to 550 and 800 to 2,000 metres.


There is a B6 pack designed for a standard size 483-pF tuning condenser and two export models (types B7 and B8) covering 12 to 37, 33 to too and 200 to 550 metres. The coils in all these packs

The coils in all these packs have adjustable dust cores and each includes all necessary trimmer and tracking capacitors. Each is fully screened and costs 355.

Weymouth type B5 coil pack and miniature I.F. transformer.

pack The companion 1.F.Ts are assemrigin bled in aluminium cans measuring

bled in aluminum cans measuring in square and zin, high. Primary and secondary connections are brought to the base and trimming is effected by adjustment of the cores, one on the base, the other at the top. The dynamic resistance is given as $300k\Omega$ and the Q 110 (at 465 kc/s), so that a stage gain of about 140 is available with a normal type I.F. valve and good selectivity is assured. These transformers cost 78 6d each.

Manufacturers' Products

"Cathodray" Capacitor Improvements

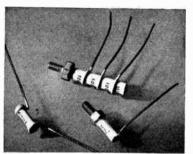
A SPECIALLY developed and processed mineral oil impregnant is now used by the Telegraph Condenser Company, Ltd., North Acton, London, W.3, in the manufacture of the "Cathodray" range of high voltage tubular capacitors. The resulting improvement achieved in the paper dielectric has led to a better power factor, greater ability to withstand short-time transient surges and a higher breakdown voltage for the same form of construction.

Other manufacturing modifications, not apparent in either the shape or size of the capacitors, combine to make them less affected

than hitherto by changes in atmospheric humidity,

Fixing arrangements are as for existing models of the same capa-

OUR COVER


A control position at the B.B.C.'s short-wave station at Skelton, Cumberland, is illustrated on our front cover. Each of the twelve 100-kW Marconi transmitters is completely controlled from an independent glasspanelled cubicle. Through the window can be seen the two valves in the final stage.

citance and rating so that no replacement problems arise.

Triple Ceramic Capacitor

A MONG the latest products of United Insulators is a miniature triple capacitor of the post, or ver-

Some of the latest miniature ceramic capacitors, including a triple model, made by United Insulators.

tical mounting, type. All three sections have a common earth connection and each has a value of 1,000 pF. These comparatively high values of capacitance for such small dimensions (the overall length is just over 1 in and the diameter is less than $\frac{1}{4}$ in) are obtained by the use of the latest type of "Hi-K" ceramic.

The illustration also shows two other new types using this form of dielectric. Their small sizes and good dielectric characteristics make them particularly attractive for use in television and other equipments designed for operation on extra high frequencies. The makers are United Insulator Co., Ltd., Oakcroft Road, Tolworth, Surbiton, Surrey.

Pre-Amplifier Converter

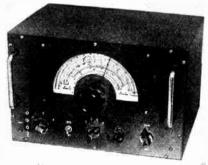
THIS is a self-contained unit which can be used either as a superhet converter or as a pre-amplifier for an existing amateur communications receiver.

It covers the four following bands: 14 to 14.5 Mc/s, 21 to 21.5 Mc/s, 27 to 30 Mc/s and 50 to 60 Mc/s. The last-mentioned is wider than the others to take in the 6-metre band.

Special care has been taken to

ensure good oscillator stability throughout, as C.W. telegraphy is now so widely used on the two highest frequency bands.

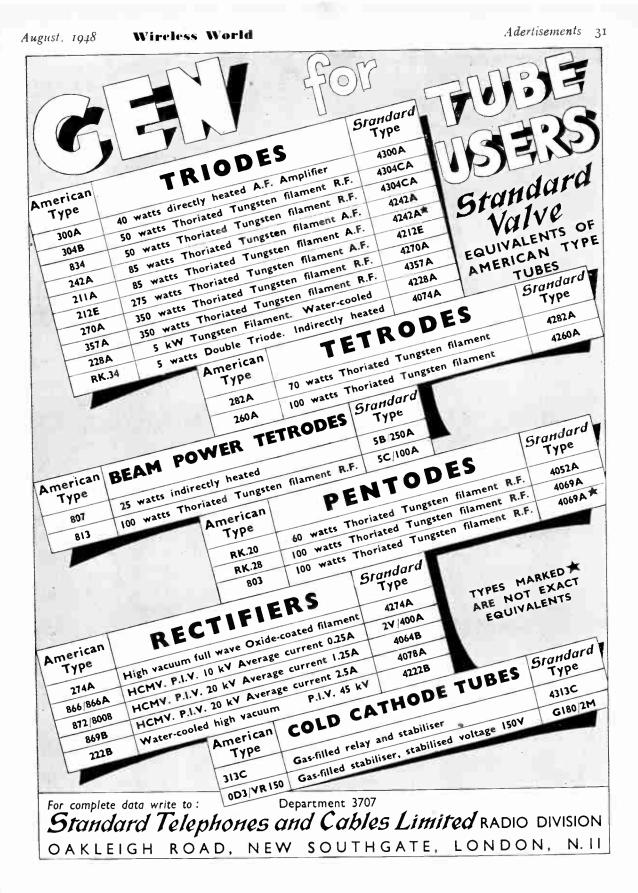
When the unit is used as a preamplifier it covers the three lower frequency bands only, the EF50 R.F. stage giving high amplification with a good signal-to-noise ratio and its two tuned circuits greatly improves image-signal rejection. As a converter the EF50 is followed by an ECH35 frequency changer and the two signal circuits are ganged with the oscillator.

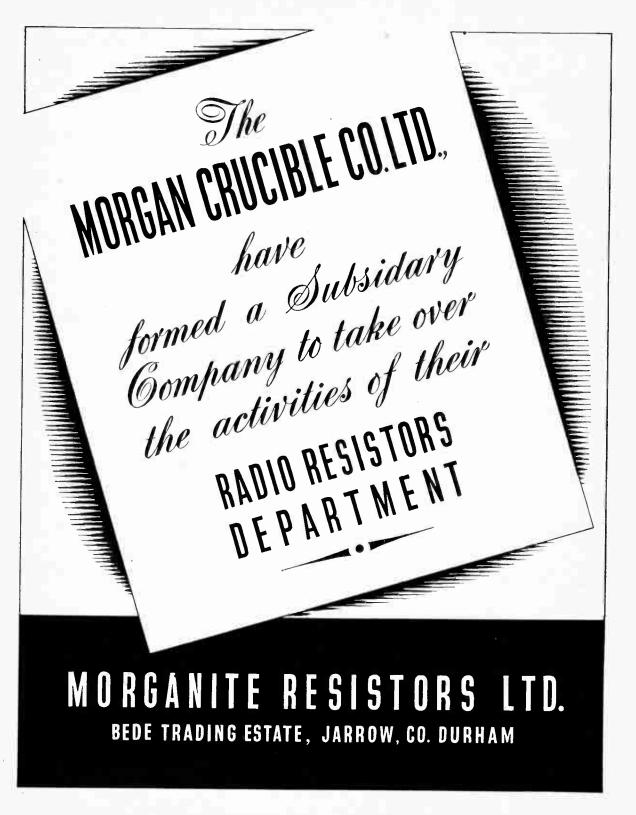

The unit can be left permanently connected to the main receiver as all operations, such as switching on and off, range selection and aerial change over from the unit to the main set, are effected by switches neatly arranged on the front panel. There is also a transmit-receive switch. The large semi-circular dial is calibrated for each range. The I.F. is 4 Mc/s.

Made by Labgear, Ltd., Willow Place, Fair Street, Cambridge, the price for A.C. operation is $\pounds 25$.

Three-Band Scale and Drive

A CONDENSER drive giving a reduction ratio of 16 to 1 and fitted with an attractive tuning scale measuring roin long and 4½ in high has been produced by The Albert Manufacturing Company, 5, Shakespeare Road, Finchley, London, N.3.


It is intended for use in a 3-band receiver having a short-wave range of from 16 to 50 metres. Station names and tuning points, as well as



Labgear optional pre-selector or convertor unit for A.C. operation.

wavelength scales, are included for all three ranges. The dial consists of glass and provision is made for diffused illumination from the top. Price is 225 6d.

World Radio History

Electronic Circuitry

Selections from a Designer's Notebook

Bv J. McG. SOWERBY (Cinema Television Ltd.)

Negative Feedback Circuit. ----Readers will be familiar with the use of negative feedback in the stabilization of amplifier gain. It is generally applied to audio amplifiers-when the stabilization of gain is a secondary effectthe aim usually being the reduction of distortion. However, in amplifiers for oscillographs and measuring instruments generally the stabilization of gain against valve and supply variations is of as much (or greater) importance as the reduction of distortion. Such amplifiers often have to operate over bandwidths of 100 kc/s upwards.

When applying feedback to a wide bandwidth amplifier it is tempting to employ circuits similar to those used in audio amplifiers, simply because the technique is familiar. Unfortunately the standard methods nearly all involve potentiometer circuits of fundamantally high impedance, and at high frequencies the effect of stray capacitances is often troublesome. À useful way of avoiding some of these troubles and of combining three stages in a negative feedback loop is given in H. W. Bode's book "Network Analysis and Feedback Amplifier Design " (Macmillan and Co.) and is shown in Fig. 1.

The figure shows only the bare bones of the circuit, without decoupling and bias arrangements. It will be seen that the feedback is applied from the cathode of the third stage back to the cathode of the first via the common cathode resistor R_e of very low resistance, and a little consideration will show that the phase relations are correct for negative feedback. The gain obtained from such an amplifier is best expressed in terms of the three individual valve gains M_1 , M_2 , and M_3 , and the overall gain M_o when R_e is zero; i.e. $M_1 \cdot M_2 \cdot M_3 = M_o$ When R_c is inserted the overall gain becomes

$$M'_{o} = \frac{M_{o}(1 - R_{e}/M_{o}R_{1})}{1 + R_{e}[M_{1}/R_{1} + (M_{o} + M_{3})/R_{3}]}$$
(1)
For many practical cases the approximate simplified relation:
$$M'_{o} = \frac{M_{o}}{M_{o}} \dots$$
(2)

is quite sufficiently accurate.

Taking practical values of $M_1 = M_2 = M_3 = 20$, giving $M_0 = 8,000$; $R_1 = R_2 = R_3 = 4$ k Ω

valves, when in fact it has been due to an unsuspected common cathode impedance in the wiring if only of a fraction of an ohm.

Cathode-coupled Limiter. -Occasionally in electronic devices of one sort or another it is required to clip a waveform of arbitrary shape to a square or rectangular shape. For example, it is desirable to clip incoming work waveforms to a roughly square shape before using them to synchronize an oscilloscope time base, for then the sharp-fronted waveform and constant amplitude enables the time base to be synchronized more stably over a wider range of frequency than would otherwise be possible.

Various clipping devices using

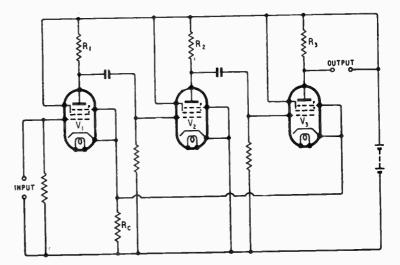
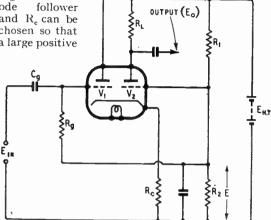


Fig. 1. Feedback circuit for wide-band amplifiers.


and $R_e = 10$ ohms: $M'_o = 379$ by (1) and $M'_o = 381$ by (2). So we see that quite a low common cathode resistance reduces the gain very markedly by a factor of more than 20 in this case—thus stabilizing the gain to a great extent. Incidentally it is rather interesting to make R_e one ohm in the above example. Even this modest feedback reduces the gain by a factor of three, and it rather makes one wonder how often an unduly low gain has been ascribed to poor diodes or pentodes are well known. The double triode cathode-coupled limiter is not perhaps so well known, but has certain advantages The circuit is shown in Fig. 2. It will be seen that it consists, virtually, of a grounded-grid triode (V_2) , and a cathode-follower driver (V_1) , and so is a relatively wide bandwidth device, since Miller effect is absent.

On the positive half-cycle of the input, the common cathode follows the grid of V_1 , and V_2 is

Electronic Circuitry-

cut off. if the input is of sufficient amplitude. On the negative halfcycle of the input, the current in V_1 is soon reduced to zero and is, in fact, transferred to V_2 ; thereafter V_1 is cut off and has no further effect. When V2 is cut off, V₁ is work-

ing as a cathode follower and R_c can be chosen so that a large positive

peak input voltage can be handled without grid current in V1. This is a very real advantage if the mark/space ratio of the clipped wave must be constant with varying input amplitude. In limiters depending on grid current (such

as the standard pentode type) the current charges the grid coupling condenser and imposes an undesired negative bias on the valve. This can only be eliminated by ensuring that such a limiter is driven from a lowimpedance source-a require-

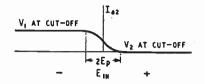
ment which is not imposed by the double triode circuit.

The characteristic of the limiter of the figure is much as shown in

Fig. 2. Cathodecoupled limiter. Typical values are: $E_{HT} = 250 V$, E = 50 V, $R_c = 27 k\Omega$, $R_L =$ $27 \text{ k}\Omega, E_p = 3.5 \text{ V}, E_o = 50 \text{ V}, E_{in}$ (peak) = 50 V (approx.). V₁, V₂, ECC35.

Fig. 3, and it will be seen that limiting action does not begin to take place until the peak input amplitude is greater than E_v. A short cut-off valve such as the (Mullard) ECC35 or ECC91 should therefore be used when E_p must

New Book


Valve Technique. By D. N. Cor-field and P. V. Cundy. Pp. 99; 59 figures. The Radio Society of Great Britain, New Ruskin House, Little Russell Street, London,

W.C.1. Price 3s 6d. THIS publication sets out to "present in as simple a manner as possible the calculations associated with the application of ther-mionic valves." It is obvious that mionic valves." It is obvious that only a part of this field can be covered in the space of 99 pages, and, many omissions can be explained by the somewhat obscure line of demarcation drawn between valve and circuit technique. Sub-jects clearly on the "valve" side of the line, on which little or no information is given, include voltage stabilizers, crystal valves, limiters, noise diodes, and frequency drift in local oscillators. The last two of these are of particular importance to anyone concerned with communication receivers and the authors have missed an opportunity of filling some of the more serious gaps in existing amateur radio literature.

The greater part of the book is comprised of useful material. The various "Classes" of power amplification, voltage amplification (audio and video), detectors, frequency changers, frequency multipliers, power rectifiers and cathode and anode followers are treated in a simple manner adequate for most purposes, which will appeal particularly to those readers who like numerical examples.

The treatment of noise in valve amplifiers (Ch. IX) contains numerous misleading statements. Johnson noise is attributed to thermal agitation of molecules and described as dependent on the passage of a current, bandwidth is wrongly defined, the equivalent noise tem-perature of a television aerial (actually about 5,000°) is taken as 293°, and instead of obtaining the required input circuit bandwidth by proper aerial coupling a damping

be small. It is obvious that separate valves may be used if a double triode of exactly the desired

Fig. 3. Characteristics of limiter.

characteristics is not available.

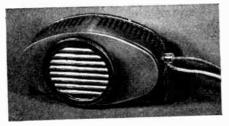
In design, the values of R₁ and R, should be chosen to permit the use of a fairly high value of R_c, and the drop, E, across R₂ should be 20 to 100 volts. The peak-to-peak amplitude of the output waveform will be $E_0 =$ ER_{L}/R_{e} approximately, and the maximum permissible peak input will be that corresponding to the onset of grid current as calculated for V_1 with an anode current of $(E\,+\,E_{\rm in})/R_{\rm e}$, and an anode voltage of $(E_{HT} - E - E_{in})$, as is usual for a cathode follower.

The writer feels certain that this circuit has been published elsewhere, but has been unable to trace any reference to it. Any information on this point would be much appreciated.

resistance is introduced, and with it unnecessary noise (correctly calculated) and loss of signal. The figures given for "the input impedance (R_e) of valves intended for V.H.F. operation" are only correct for valves such as the EF54, and the figure of merit for different valves is not, as stated, the noise resistance R_{eq} but for most purposes the ratio R_e/R_{eq} , both quantities being (for example) about 10 times higher for Acorns than for the EF54.

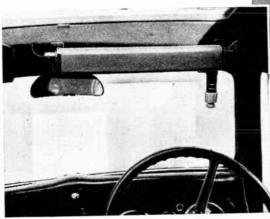
The section on wide-band amplifiers is technically correct as far as it goes, but the presentation is misleading; for example the bandwidth is expressed in the form $f\sqrt{L/C/R}$ which makes it apparently dependent on f and L, instead of in the more useful form $1/2\pi CR$. There is no mention of the valve "figure of merit," g_m/C .

The glossary defines Q as the "usefulness" of a tuned circuit. If this were correct the circuits in a wide-band amplifier would be more useful" with the damping resistances removed! The definition of 'Class A'' is at variance with BS204. L. A. M.


Novel Car Radio

Two-Unit T.R.F. Receiver for Mounting Above the Windscreen

HE car radio receiver made by the Kresta Electric is quite different from any other apparatus of its kind both as regards the nature of the construction and the circuit design. It consists of two parts, the most interesting one being the receiver unit, which is assembled in a long flattened tube measuring 15 by 21 by 11in, designed for mounting along the top edge of the windscreen. Where space is available it could even be fitted between the inner fabric and the roof of the car.


A small control pillar, containing the scale, the tuning knob, onoff switch and volume control projects downwards at one end, where it is very conveniently located for the driver. In the majority of cars it will be at about eye level, but being close to the vertical screen pillar it does not impair the driver's view ahead.

The main technical feature of interest is that a T.R.F. circuit is

used with permeability tuning, giving continuous coverage on the medium waveband and one spot frequency on the long waves. There are three R.F. stages, each completely screened from its neighbour, and these, in conjunction with the very efficient interstage couplings employed, give ample sensitivity for all normal requirements in a car.

As only a limited amount of travel of the adjustable dust cores is possible in a set of this design, the necessary variation in coil inductance is obtained by using Ushaped cores and binocular coils. The cores are operated by a thin

The R.F. unit of the Kresta Car radio set is intended to be mounted above the windscreen. Above is an enlarged view of the control column.

steel tape, the movement of which is effected by the tuning mechanism inside the control pillar. This carries a spirally engraved scale marked with the names of the principal British and European broadcast stations.

The volume control is concentric with the tuning knob and combines the function of switching on and off the set.

A separate wavechange is not employed, but it is arranged that when the tuning control reaches

the end of its travel insulated tongues on the dust core carriages trip switches that bring the long-wave circuits into use. For use in

Loudspeaker, power output valve and H.T. supply are contained in one unit, which is usually fitted below the instrument panel.

this country these circuits are pretuned to the Light programme.

Four valves are used in the receiver unit, two being exclusively R.F. amplifiers. The third, a double-diode R.F. pentode, combines the functions of R.F. amplifier, detector and A.G.C., while the fourth is an A.F. amplifier.

The signal from the receiver is fed, via a screened cable, to the supply unit which contains a power amplifier, loudspeaker and a synchronous-type vibrator for the H.T. supply.

During the course of a brief test made in the centre of London Continental broadcast stations

were well received with the car in motion and using a very short inside aerial.

Although only one suppressor was fitted to the engine, in the coil lead to the distributor, ignition noise was noticeably absent. The power unit contains filters in the input supply leads, and owing to the mounting position of the set the lead to the aerial is well removed from the worst zones of interference.

Heavy lorries, coaches and buses produced some interference when passing, but otherwise the reception of the Home and Light programmes was free from extraneous and background noise. The A.G.C. is particularly good, and the performance in general was most impressive. The quality of reproduction compared very favourably with that of the average domestic receiver operating under very much more favourable conditions.

The receiver is made by Kresta Electric, Ltd., Parkes Street, Warwick, and distribution is effected by J. H. Carvill & Co., Ltd., 5, The Vinyard, Richmond, Surrey. It costs £22 plus purchase tax, and both 6- and 12-volt models are available. The consumption on 12 volts is 2.75 amps only.

VALVE TESTING

A NEW range of valve adaptors (including types for the B9G, B8A, etc.) for use with Taylor valve testers has been introduced by Taylor Electrical Instruments, Ltd., 419, Montrose Avenue, Slough, Bucks. There is also a new issue of the firm's valve supplement.

August, 1948

High-stability LC

Performance Approaching Crystal Control Standards

N recent years the growing popularity of the resistancecapacitance oscillator and the superlative performance of the best crystal oscillators have tended to divert attention from the merits of the inductancecapacitance oscillator. For many purposes the fixed-frequency LC oscillator provides a performance which is quite adequate, and which is considerably better than that obtainable from an RC oscillator. Indeed, a good LC oscillator is quite as stable as a bad crystal oscillator.

The bridge-stabilized LC oscillator, which is described in this article, has a very high short-

the valve characteristic and their exact performance is difficult to calculate in advance. Usually they are not calculated at all exactly, but a rough calculation is followed by a series of trials of different component values until satisfactory performance is a achieved. This circuit, however, really does work exactly as predicted, and the job of prediction is no harder than that of designing a single-valve Class "A " amplifier: in fact, that is all it is. Moreover, the waveform of the oscillator is very good.

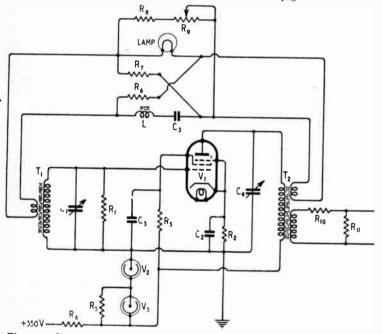
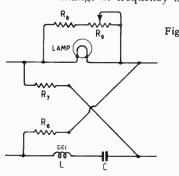


Fig. 1. Circuit diagram of high-stability LC oscillator. C₁, C₄, 950pF + 100pF variable; C₂, 2μ F; C₃, 0.1μ F; C₅, 500pF + 10pF variable; R₁, see text; R₂, 82\Omega; R₃, 22,000Ω; R₄, 1,000Ω; R₅, 100,000Ω; R₆, R₇, 100Ω; R₈, 1,500Ω; R₉, 2,000Ω variable; R₁₀, R₁₁, 50Ω; V₁, 6AG7; V₂, V₃, VR150; T₁, T₂, L, see text.

period stability, and has the additional advantage that it works exactly as calculated. Most oscillator circuits depend to some extent on the non-linearity of

The oscillator described was designed to operate at a frequency of 20 kc/s to provide calibration points at 20 kc/s intervals up to 1.5 Mc/s. The actual frequencies

By THOMAS RODDAM

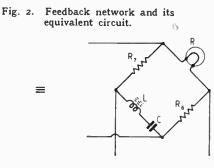

 $n \times 20 \text{ kc/s}$ were obtained by means of a single-valve transitron pulse generator, locked at 20 kc/s, which will not be described here. The 20 kc/s was checked by beating the 10th harmonic with the Droitwich transmitter carrier in an ordinary broadcast receiver. If the beat is adjusted to one per second the frequency is correct to within 5 parts in a million, so that the 50th harmonic, which is I Mc/s, is within 5 c/s of the correct value. This was more than sufficient for the purpose for which the oscillator was constructed. Furthermore, a crystal oscillator using an X-cut crystal, without temperature control, had failed to give this accuracy, but was causing trouble owing to the trust in crystals which led the users to leave the frequency unchecked for too long. The LC oscillator gave a short-term stability of I in 105, so that the error at I Mc/s never exceeded 10 c/s.

All oscillators consist essentially of an amplifier and a selective feedback network. The circuit of Fig. I has been arranged so that the two parts of this oscillator can be seen clearly. The lower part is the amplifier, a single high-gain pentode, with tuned input and output circuits. Negative feedback is not used, for any improvement obtained by stabilizing the amplifier itself is lost as a result of the reduced gain. The feed-back network is the upper part of the circuit, which is redrawn in Fig. 2. If the coil has an effective resistance R at the operating frequency and the lamp has a resistance R_0 , the bridge is exactly balanced if $R_6 = R_7 = R = R_0$. This can only be true if $I/(2\pi f)^2 LC$ = I: that is, if the tuned circuit is resonant at the operating frequency. Suppose now that Ro is reduced slightly; then the bridge will give a finite output : if R. is increased beyond the balance

August, 1948 Wireless World

Oscillator

point, the bridge will give a finite output, but in the opposite phase. If therefore the value of R_0 is initially below that needed for balance, the feedback circuit can be connected so that it gives positive feedback. Increasing R_0 passes through the balance point the feedback becomes negative. If a small change of frequency is



made, two things happen: there is phase shift at the output and there is also, if R_0 is less than the value for balance, a reduction in the amplitude. The operation of the oscillator depends on making R_0 self adjusting to the correct value which will just maintain oscillations at a chosen level. By using a small tungsten-filament lamp, any increase in the bridge input causes an increase in the power dissipated in the lamp, and consequently an increase in R₀. This reduces the amount of positive feedback and the amplitude is reduced accordingly. It is assumed that the amplifier is operating under Class "A" conditions and that it has zero phase shift.

The design starts with the choice of a lamp. The one actually used was a 4.5 volt torch bulb which was found to have a resistance of 100 ohms at 2 volts and a characteristic shown in Fig. 3. If approximately equal ratio arms are used in the bridge, the bridge impedance is 100 ohms and the total power dissipated is 160 milliwatts. The bridge input voltage is then 4 volts R.M.S.

It was decided to design the oscillator to give I watt output.

This means that the amplifier must have an available output of 1160 milliwatts, of which 1000 milliwatts is useful power and 160 milliwatts is dissipated in the bridge. The valve chosen was the 6AG7, a high-slope pentode. Operated with an anode voltage of 300, and 150 volts on the screen, the anode and screen currents are 30 mA and 7 mA respectively with -3 volts on the grid. The optimum load is then 10,000 ohms, the cathode bias resistor 82 ohms and the mutual conductance II mA/volt. The screen dropping resistor

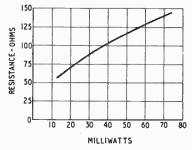
is 22,000 ohms. In Fig. 1 it will be noted that the 150 volts for the screen could have been obtained directly from the voltage regulating tubes, but it was desired to keep the oscillator independent of the power supply arrangements.

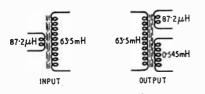
To obtain 1160 milliwatts in 10,000 ohms we required 108 volts R.M.S., or 153 volts peak. With a mutual conductance of 11 mA/ volt, the peak grid swing is seen to be 1.4 volts, which is well within the -3 volts bias provided.

The output transformer is designed from a power point of view; this is much easier than thinking in terms of impedances. The 108 volts R.M.S. on the primary must produce 4 volts at the bridge input, so that the ratio is 27: I. With an output impedance at the load winding of 100 ohms, the power of I watt means 10 volts R.M.S., so that this ratio must be 10.8: IThe three windings are therefore $27: I: 2\frac{1}{2}$.

The input transformer should have as high a step-up ratio as possible, in order that the amplifier gain should be high. The limit is set by the stability of the input capacitance. If we assume that the valve capacitance will be stable to within $\pm 1\text{pF}$, we must be sure that this will not produce too great a frequency shift. The frequency shift produced by a detuning of I c/s in the transformer secondary, assumed to have a Q equal to Q_1 , will be Q_1/Q_2 c/s, where Q_2 is the Q of the frequency controlling circuit. This is because the phase shift produced by detuning the transformer must be balanced by a phase shift in the feedback tuned circuit, and the oscillation frequency changes until the two phase shifts are equal and opposite.

We can probably assume a Q of 200 for the tuned circuit : for the transformer we can take a Q of 10. The effect of detuning the transformer is then to produce 1/2 oth c/s change in oscillation frequency for each I c/s detuning. We know also that if we change the tuning capacitance by $x^{\circ/2}$ the frequency will change by x/2%. Then if we change the transformer tuning capacitance by x°_{0} the operating frequency will change by $1/20 \times x/2\%$. For this oscillator it was decided to keep the instability from this cause to within $\pm \frac{1}{2}$ c/s at 20,000 c/s, with an assumed change in valve capacitance of 1 pF. Immediately it can be seen that the total grid capacitance must be 1,000 pF. As the Q is to be 10, this gives a secondary impedance of $Q/2\pi fC = 80,000$ ohms so that a step-up of $I: \sqrt{800}$.




Fig. 3. Characteristic of tungstenfilament lamp used in bridge.

or 1:28, is used. The overall gain from bridge output to bridge input is then $28 \times 11 \times 10 \times 1/27$, or just over 40 decibels. The loss through the bridge is, of course, also 40 decibels, which is very close indeed to the balance point.

World Radio History

High-stability L.C. Oscillator—

Both anode and grid are tuned with 1,000 pF, from which the inductance at 20 kc/s is given immediately as 63.5 mH. To save a little arithmetic the grid ratio was made 1:27, so that both step-up at the amplifier input and step-down to the bridge are the same. The inductance of the bridge windings is then $87.2 \,\mu$ H. The step-down to the load is 108:10, which means that the

Fig. 4. Inductance values required in the dust-cored input and output transformers.

load winding must have an inductance of 0.545 mH. These values are collected together in Fig. 4. The transformers were constructed on special dust cores which are not commercially available. They are quite straight forward affairs, however, though it is probably worth while making the bridge windings screened and balanced if facilities are available.

The inductance for the frequency control circuit must have a resistance of about 100 ohms at 20 kc/s. The writer used a 127 mH coil, tuned by 500 pF, which had a Q of just over 200. This gives a resistance of 80 ohms, and it was considered that this was satisfactory. The stability increases as the Q is increased, so that a good Q is desirable and the recommended procedure is to use that value of inductance which will give a resonant impedance of 80-100 ohms with the core material available. If it is impossible to get such high values with a good Q, the design must be modified to use a lower bridge impedance by the use of unequal ratio arms or a lower resistance lamp.

The actual setting up of the circuit is quite easy if a reasonable amount of test equipment is available. The amplifier is connected up and an input of about 20 millivolts at 20 kc/s applied to the input transformer. The input and output circuits are tuned for maximum gain, and the input

transformer is loaded with R₁ to bring the Q down to about 10. If an oscilloscope is available the tuning can be done very exactly by collapsing the ellipse produced when the input is applied to the X plates and the output to the plates. This is not as easy as Y it looks, because the oscillograph amplifiers must have identified phase shifts at 20 kc/s if it is to be carried out successfully. When the amplifier has been adjusted the feedback circuit is connected and the resistance R₉ adjusted until the circuit oscillates and gives an output of 10 volts R.M.S. across the load winding or 306 the volts peak-to-peak at anode if an oscilloscope is to be used for the measurement. By adjusting R, we can control the operating level until it is equal to that assumed in the design, which we know to be well within the Class " A " limits. If no accurate way of tuning up C_1 and C_4 is available, it is possible to get the optimum values by varying the anode voltage and observing the frequency shift. C_1 and C_4 are trimmed to give the best stability. Several different anode voltages must be used, as there is a danger of passing through zero beat and getting a false value for the frequency shift.

In the circuit of Fig. 1 there are a few additional points which require mention. When first adjusting the circuit to operate at the correct level R, was set to its mid position and R6 or R7 trimmed by means of a parallel resistance to achieve an approximate balance. R10 and R11 were used simply because the following circuit requires 5 volts input in a high-impedance circuit, and it was necessary to dissipate the one watt for which the oscillator was initially designed. Voltage stabilization was included to save the trouble of checking the overall stability of the oscillator, which was needed for immediate use. Neon stabilizers were also connected across the heater supply circuits, although this precaution has now been removed. The whole oscillator, including the VR150's was mounted inside a metal box and this was enclosed by a wooden outer box. Heating lamps and a bimetallic strip maintained the internal temperature at $40^{\circ} \pm 1^{\circ}$ C : this also was

intended to be a time-saving feature. Other oscillators of this type now under construction will not include such elaborate precautions.

The calculation of oscillator values above really does mean something: it is as easy as that. In the writer's experience oscillator circuits are normally very stubborn brutes, if only because adequate valve data is not available to enable the amplitudes This circuit, to be calculated. operating as it does well within the linear region of the valve characteristic, behaves exactly as it should. It is well worth using when a stable fixed frequency is needed, and is probably satisfactory if modified to work over a limited band by the use of a wideband amplifier.

News from the Clubs

Baldock.—The call sign of N. F. Wilshire, secretary of the Baldock and District Radio Club, was misquoted in our last issue; it is G3CEU.

Halifax.—Meetings of the Halifax Experimental Radio Society are held fortnightly in the Toc H Rooms, Clare Road, Halifax. Sec.: E. Allen, 13, New Road, Halifax, Yorks.

Romford.—The transmitter, G4KF/P, of the Romford and District Amateur Radio Society is now operating on 160 metres. Reports will be welcomed. Weekly meetings are held on Tuesdays at 8, at the Y.M.C.A., Western Road, Romford. Sec.: R. C. E. Beardow, G3FT, 3, Geneva Gardens, Whalebone Lane N., Chadwell Heath, Essex.

Southall.—The West Middlesex Amateur Radio Club is in need of a permanent club room where a workshop can be provided for members. Meetings are held on the second and fourth Wednesdays of the month at 7.30 at the Labour Hall, Uxbridge Road, Southall. Sec.: C. Alabaster, 34. Lothian Avenue, Hayes, Middlesex.

Stockport.—It is learned from the late secretary of the Stockport Amateur Short-Wave Radio Society that it is at present inactive owing to the lack of suitable premises.

Walworth,—The radio club associated with the Walworth Men's Institute has been reconstituted and the new secretary is B. E. Symons, 100, East Dulwich Grove, London, S.E.22.

Watford.—Monthly meetings of the Watford Radio and Television Society are held at 7.30 on the first Tuesday in each month at the Carlton Tea Rooms, Clarendon Road, Watford. Sec. S. E. Sumner, G3BGK, 48, Hilfield Lane, Aldenham, Herts.

Weston-super-Mare Group, R.S.G.B., meets at 7.30 on the first Friday of each month at the Y.M.C.A. Sec.: W. C. Holley, G5TN, 252, Locking Road, Weston-super-Mare, Som.

Frame Deflector-coil Conditions in Coil and Valve Efficiency

T is well known that the back-E.M.F. across a deflector coil which is carrying a saw-tooth current consists of the sum of a pulse and a saw-tooth voltage. The pulse voltage is produced by the inductive element of the coil and the saw-tooth by the resistive element. The magnitude of the latter depends on the amplitude of the current, but the magnitude of the pulse depends on the rate of change of the current.

In the case of the line scan the inductive back-E.M.F. greatly predominates and the resistive component is often considered negligible in comparison. The frame scan is much slower, however; the inductive back-E.M.F. is only about I/5,000th as great and it is usually small compared with the voltage drop across the resistive element. Because of this, it is sometimes thought that the inductance of a frame deflector coil is an unimportant quantity and that only the resistance is important.

This would be true if only the scan conditions had to be considered, but it is very far from being true when the fly-back is taken into account. Resistance and inductance then become of at least equal importance. In order to show this, it is necessary to examine in some detail not only the characteristics of the deflector coil but the conditions in the valve and circuit which are used to feed it.

During the scan period τ_1 , which is 19 msec for the present transmissions, it is assumed that the current in the deflector coil has its ideal form and changes linearly with time in the manner shown by Eqn. (1) of the appendix. The power which must be supplied to the deflector coil is given by Eqn. (2) and, since τ_1 is a constant, it depends on two factors only—I²L and R/L.

With a given cathode-ray tube, picture height and final anode voltage the magnitude of these factors depends only on the design of the deflector coil. Under these conditions the magnetic field required in the neck of the tube is of constant maximum amplitude. Now the term I^2L is a measure of the total field produced by the coil. Consequently, if the field in the tube neck stays constant, an alteration in the value of I^2L means a change in the ratio of the useful to the total fields. Regarding the coil in its primary function as a field-pro-

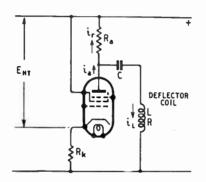


Fig. 1. Basic circuit of a resistancecapacitance fed deflector coil.

ducing device, its efficiency increases as I^2L becomes less. In the design of a deflector coil, therefore, it must be a major aim to minimize the value of I^2L .

The second term, R/L, is a measure of the resistance loss and, again, it is clearly advantageous to minimize it. Its importance depends on its magnitude relative to $6/\tau_1$, however. Practical values of R/L range from about 200 to 2,000 while the value of $6/\tau_1$ is 316. In practice, therefore, the value of R/L has a considerable influence on the power needed by the coil.

It is important to note that with a deflector coil of given design the values of both $1^{2}L$ and R/L are substantially independent of the number of turns, N, on the coil. It is well known that under the conditions assumed the ampere-

By W. T. COCKING, M.I.E.E.

turns NI are constant and $L \propto N^2$; therefore

$$l^2 \propto I/N^2$$
 and $l^2 L \propto \frac{I}{N^2} \times N^2 =$

constant. For a given wire diameter $R \propto N$, but for a constant winding area the wire area is inversely proportional to N; hence, $R \propto N^2$ and R/L is constant.

The coil power is thus independent of L. Varying the inductance does alter the ratio of voltage to current, however, and has the same effect as altering the turns ratio of a matching transformer. The inductance must be chosen to suit the valve and its supply voltage, and its choice becomes a form of impedance matching.

The foregoing remarks about the constancy of I^2L and R/L are true only for a coil of given design. By changing the physical shape of the coil and the winding area, large changes in their values can be obtained. Not a great deal of information about their possible values is available, but there is some evidence to indicate that R/L tends to increase as I^2L decreases.

So far only the question of the coil power has been considered. The magnitude of this is not a matter of very much interest in itself, however, for the factor of real importance is the power drawn from the H.T. supply. This must be greater than the coil power but does not necessarily bear any direct relation to it.

Two methods of coupling a valve and a deflector coil are available—transformer and resistance-capacitance coupling. Both are confimonly used, but there is an increasing tendency towards the use of the latter because it permits an appreciable saving of wire and laminations to be made. In view of this, only resistancecapacitance coupling will be considered here, and the circuit is shown in Fig. I.

Frame Deflector-coil Efficiency-

It will be assumed that the valve characteristics are linear and that the capacitance of C is large enough for any voltage change across it to be negligible. In practice neither assumption is strictly true, and a finite capacitance is used to compensate for non-linearity of the valve characteristic.¹ However, the voltage changes across C are normally sufficiently small to have an unimportant effect on the power calculations.

The conditions existing in the valve are sketched in Fig. 2, for a pentode (a) and for a triode (b). The D.C. load line is R_a and the mean voltage drop across this resistance is $i_o R_a$, where i_o is the mean anode current. Ignoring for the moment the effect of the inductance, the A.C. load line is for $RR_a/(R + R_a)$ and is drawn through the intersection of the R_a -line with the i_o -current ordinate. During the scan there is a constant back E.M.F. of magnitude LI/τ_1 across the inductance, however, and so the actual load line is displaced to the left on the diagram by this amount.

The relations involved are developed in the Appendix and Eqns. (5), (6), (7) and (8) summarize everything of importance during the scan.

From the point of view of power efficiency there is an optimum relation between the coupling resistance R_a and the coil resistance R which is given by Eqn. (9). Provided that this relation can be adopted there is a direct relation between the input power P_{in} and the coil power P_L , and a reduction of the latter involves a reduction of P_{in} of the same order of magnitude. No such relation necessarily exists if the optimum value of R_a/R is not used.

In practice, it is common to find that the optimum value cannot be used, for the attainment of proper fly-back conditions sets a minimum value to R_a . It is usually permissible to ignore shunt-capacitance effects on the frame fly-back. If, also, the flyback of the grid-voltage waveform s more rapid than that of the anode, the conditions are approximately those of a current-carrying

" "Deflector Coil Coupling," by W. T. Cocking, Wireless World, November 1946, Vol. 52, p. 360. coil L shunted by a resistance R_f comprising R in series with the parallel value of R_a and r_a , the effective A.C. resistance of the value.

The current has changed by 98 per cent of its total value when $\tau_2 R_f/L = 4$, where τ_2 is the flyback time; this is 1 msec for the present transmissions. This leads to Eqn. (10) which gives the smallest value of R_a/R which is order to obtain a sufficiently rapid fly-back. It is found that under this condition, which is a common practical one, P_{in} does not depend nearly so much on P_L . In particular, P_{in} becomes insensitive to changes of R/L.

Expressed somewhat more fully, the input power is always reduced if the coil power is lessened by a reduction of $1^{2}L$. If the reduction is achieved by altering R/L,

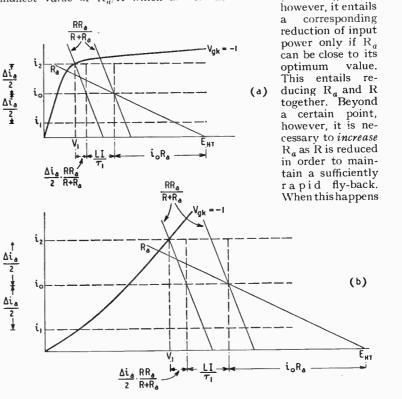


Fig. 2. The operating conditions of the valve are shown here (a) for a pentode and (b) for a triode.

permissible if an adequately rapid fly-back is to be secured. When the A.C. resistance of the valve is high, as it usually is with a pentode, the simpler Eqn. (11) can be used.

When R/L is fairly large (say above 1,500) $R_{a(OPT)}$ is usually larger than $R_{a(MIN)}$. The optimum condition can be adopted and P_{in} is usually proportional to P_L ; the fly-back time may be less than the maximum allowable value, but there is no harm in this. With smaller values of R/L, however, $R_{a(OPT)}$ will be less than $R_{a(MIN)}$, and it is necessary to adopt the minimum permissible value in the efficiency of the coupling falls off rapidly as the efficiency of the coil increases and the net result is only a small change of input power. As a consequence, there is usually little to be gained by reducing R/L beyond a certain point.

Before giving an example of this it is necessary to consider the valve. There are three important factors—the values of V_1 , i_1 and r_a .

The value of i_1 , the minimum permissible anode current is set chiefly by the amount of nonlinearity which can be allowed, and it varies somewhat with different

World Radio History

valves. It is not possible to assign any exact value to i_1 without rather lengthy and laborious calculation. With the sort of values usually adopted, however, it is generally satisfactory to take i_1 as about 5 mA-of the order of 10-20 per cent of the mean anode current. The main effect of choosing a low value of i_1 is to increase efficiency and valve distortion; the latter makes it more difficult to secure a linear scan, The value of i_1 is usually much the same for both triode and pentode.

The value of V_1 , the minimum permissible anode voltage, varies much more. With a triode it is set quite definitely by the intersection of the i_2 -ordinate (i_2 = peak current = $i_1 + \Delta i_a$) with the gridvolts curve for a grid-cathode voltage which is just sufficiently negative to avoid grid currentabout -1V. The working A.C. load line must be arranged to pass through this point, as shown in Fig. 2 (b). It is only necessary to inspect a number of valve curves to see that V_1 increases markedly with an increase of i_2 . V₁ depends also on the A.C. resistance of the valve and increases with it. With a valve of under $1-k\Omega$ resistance V_1 is likely to be around 50-100 V with one of $3-k\Omega$ resistance it is of the order of 100-150 V, and still more with a higher resistance valve.

In the case of a pentode, V_1 is again set by the intersection of the i₂-ordinate with a grid-volts curve. This curve is not now necessarily the one which just avoids grid current, although this still sets one limit ; it may be one more negative than this. It is set chiefly by the knee of the curve and does not vary with current nearly as much as with a triode. It nearly always lies between 50 V and 100 V, and in most cases is around 70 V.

It is clear from Fig. 2 that V_1 reduces the effective H.T. voltage. Consequently its practical importance depends on its value relative to E_{HT} . If E_{HT} is very large compared with V_1 , a change in the latter will affect the input power very little, whereas if the two are of comparable magnitude an increase of V₁, say, will entail a reduction of L and an increase in I and i_o , and hence, quite a large increase of P_{in} . If the A.C. resistance of the

valve is below a certain value it is not possible with any value of R_{μ} to obtain a quick enough fly-back in the absence of negative current feedback. With a higher value an adequate fly-back is possible, but entails the use of a much higher value of R_a than would be needed This results in for a pentode. some improvement of current efficiency but a considerable reduction of voltage efficiency, and the power efficiency is nearly always lower.

However, it is always possible to make the effective valve resistance as high as with a pentode by using sufficient negative current feedback. The A.C. resistance does not then affect the power efficiency. It is usually found, however, that the input voltage to the grid becomes inconveniently large when this is attempted, and it is rarely practicable to use as much feedback as this.

It is also desirable to consider the power loss in cathode-bias and screen-feed circuits. A triode tends to need more bias than a pentode, although not all types do, and so the power loss in the cathode resistor tends to be greater. There is, however, no screen-grid to supply.

It is not possible to draw any general conclusion about the superiority of either type of valve. In some cases there is not a great deal to choose between the two. However, it will nearly always be found that the pentode

TABLE I

		Coil A	Coil B
L	(H)	1	1
R	(Ω)	1,700	208
L	(mÁ)	40	58
l²L	. ,	0.0016	-0.0034
R/L		1,700	208
Pi l	(W)	0.269	0.149

is better than the triode when the H.T. supply voltage is under about 250 $\dot{V}_{\textrm{,}}$ for then the lower value of V_1 obtained with this valve has a considerable influence and there will also be no loss in a dropping resistor for the screen supply-only the actual screen loss of the valve itself. At higher voltages V1 becomes less important, and as few pentodes can be

operated with the screen at more than 250 V, a dropping resistor becomes necessary and causes an extra power loss. The triode may then become the more efficient of the two, but it may still be the less convenient on account of the large amount of negative feedback required. In addition, the highvoltage low-current conditions suited to a triode demand a high value of inductance in the deflector coil, and it may prove impracticable to wind a suitable coil.

In order to illustrate these effects two deflector coils of very different design will be considered. Both are of 1-H inductance, but whereas one - coil A - has $R = 1,700 \Omega$ and I = 40 mA, the other—coil B—has $R = 208 \Omega$ and l = 58 mA. The values of I^2L are thus respectively 0,0016 and 0,0034, while R/L has the values 1,700 and 208. Coil A is the more efficient of the two in producing a magnetic field where it is needed for deflecting the beam of the C.R. tube, but coil B has a much lower resistance loss in its windings. As far as the coil power is concerned the resistance loss outweighs the field loss and coil B needs little more than one-half the power of coil A. For convenience of reference the relevant figures are collected in Table I.

Now consider the use of these coils with a pentode valve of high A.C. resistance for which $V_1 = 70$ V and $i_1 = 5$ mA. The first step is

TABLE II $V_1 = 70 V$; $i_1 = 5 \text{ mA}$; $r_a \rightarrow \infty$

		Coil A	Coil B
R _{a(OPT)} R _{a(MIN)} i_0 E _{HT} P _{in}	$(\Omega) \\ (\Omega) \\ (mA) \\ (mA) \\ (V) \\ (W)$	$2,760 \\ 2,300 \\ 37.3 \\ 69.5 \\ 210 \\ 7.85$	$\begin{array}{r} 670\\ 3,800\\ 35.5\\ 66\\ 215\\ 7.65\end{array}$

to apply Eqns. (9) and (10). As shown in Table II, the optimum values of R_a for coils A and B are 2,760 Ω and 670 Ω , whereas the minimum permissible values are 2,300 Ω and 3,800 Ω respectively. In the case of coil A the optimum value is higher than the minimum, and it can be adopted. With coil B, however, the minimum value is much higher than the

Frame Deflector-coil Efficiency-

optimum, and it is necessary to adopt this minimum value. In what follows, therefore, the values of R_a for coils A and B are respectively 2,760 Ω and 3,800 Ω .

The application of Eqns. (5), (6), (7) and (8) leads to the remaining figures of Table II, and it is interesting to see that the powers drawn from the H.T. supply are almost the same-7.85 W and 7.65 W. Practically speaking, the difference is negligible. Although one coil needs only about one-half the power of the other, because of the fly-back requirement it can only be coupled so much less efficiently to the valve that there is virtually no difference in the demands on the H.T. supply.

Now with a valve such as the EL33 with a screen-cathode potential of 215 V the grid bias needed is approximately -4.25 V and the grid saw-tooth voltage input some 7 V p-p. The screen current is some 4 mA. For coil B, therefore, there is a screen power loss of 215 \times 0.004 = 0.86 W and a cathode bias-resistor loss of 4.25 \times 0.0395 = 0.168 W. The total power drawn from the H.T. supply system thus becomes 7.65 + 0.86 + 0.168 = 8.078 W.

If the same value is connected as a triode it has an A.C. resistance of about 3,000 Ω , and so a large amount of negative feedback must be used. Suppose R_a is made arbitrarily 4,500 Ω , then r_a must be 24,500 Ω and sufficient feedback must be employed to increase the effective A.C. resistance from 3,000 Ω to 24,500 Ω .

With this value of R_a , i_o and i_2 are negligibly different from their previous values. Inspection of the valve curves for $i_2 = 66 \text{ mA}$ and - I V between grid and cathode shows V₁ to be 180 V. The grid bias needed is about -3.7 V and the bias power loss is some $3.7 \times 0.0355 = 0.13$ W. Application of Eqn. (7) gives $E_{HT} = 350V$ and so $P_{in} = 12.4$ W and the total power becomes 12.4 + 0.13 =12.53 W as compared with 8.08 W for the pentode. Taking feedback into account the input grid voltage needed will be about 5.4 \times 24,500/3,000 = 44 V p-p. The pentode input of 7 V p-p will, in practice, be greater rather because it is usually desirable to employ some feedback even with this

type of valve in order to linearize the characteristic. The difference of input grid voltage is not, therefore, a very important one.

In this instance the pentode is very considerably superior to the triode on a power basis. This superiority is due almost entirely to the lower value of V_1 obtainable with it. It is obvious from first principles that the advantage of the pentode will decrease if I. is made larger, for this will decrease the current needed and V, will fall more for the triode Such a than for the pentode. change will increase E_{HT}, however, and this may be undesirable ; in addition, with some designs of deflector coil it is inconvenient to make L much over I H, for it entails the use of very fine wire, and there is an increased risk of fracture during the construction.

It thus becomes clear that the pentode usually leads to higher power efficiency than the triode, and this is especially the case when the H.T. supply voltage is limited and it is necessary to use a deflector coil of moderate inductance and needing a fairly large current. In seeking to improve efficiency it is much more important to reduce I²L than R/L as long as the latter is not of such a value that $R_{u(OPT)}$ is much less than $R_{a(MIN)}$.

Appendix

Let the current through the de-

$$\left(\frac{\mathrm{R}_{a}}{\mathrm{R}}\right)_{\mathrm{OPT}} = \frac{\sqrt{2}}{1+2i_{1}/\mathrm{I}} \sqrt{1+\frac{\mathrm{L}}{\tau_{1}\mathrm{R}}+\frac{\mathrm{V}_{1}}{\mathrm{I}\mathrm{R}}} \qquad \dots \qquad (9)$$

flection coil have the ideal form

$$i_{\mathrm{L}} = \mathrm{I}\left(\frac{t}{\tau_1} - \frac{\mathrm{I}}{2}\right) \ldots \ldots \ldots$$
 (1)

during the period τ_1 of the scan.

The power loss in the resistance is I^2R/I_2 . The energy stored in the inductance once each cycle is $LI^2/2$ and this is dissipated in the resistance elements during the following flyback. The total power supplied to the deflector coil is thus :—

$$P_{L} = \frac{I^{2}L}{12} \left(\frac{R}{L} + \frac{6}{\tau_{1}} \right) \dots \dots (2)$$
The heads F M F across the de-

The back E.M.F. across the de flector coil during the scan is, $d = \frac{1}{2}$

$$-\left(i_{\mathbf{L}}\mathbf{R} + \mathbf{L}\frac{\mathbf{u}_{\mathbf{I}\mathbf{I}}}{dt}\right)$$
$$= -\left\{\mathrm{IR}\left(\frac{t}{\tau_{1}} - \frac{\mathbf{I}}{2}\right) + \frac{\mathbf{LI}}{\tau_{1}}\right\} \quad .. \quad (3)$$

the minus sign indicating that it acts in opposition to the E.M.F., which drives the current through the circuit. When the change of voltage across C can be considered negligible, this is also the back E.M.F. on the anode of the valve additional to the mean voltage drop in R_a .

Referring to Fig. 2 the D.C. load line for R_a is drawn from E_{HT} in the usual way and the mean drop across it is i_0R_a . The A.C. load line for $RR_a/(R + R_a)$ is drawn through its intersection with the i_0 -current ordinate. On account of the back E.M.F. across L, the actual working line during the scan is displaced by the amount LI/ τ_1 .

The change of voltage during the scan is clearly $\Delta i_a \frac{RR_a}{R+R_a}$ and this must be equal to the change of voltage across the coil resistance IR. Hence,

$$\Delta i_a = I \left(I + \frac{R}{R_a} \right) \dots \dots (4)$$

By inspection of Fig. 2

$$i_{0} = i_{1} + \Delta i_{a}/2 = i_{1} + \frac{1}{2} \left(1 + \frac{R}{R_{a}} \right) \dots (5)$$

and

$$\begin{split} \mathbf{E}_{\mathbf{BT}} = \mathbf{V}_{\mathbf{1}} + \frac{\Delta i_a}{2} \cdot \frac{\mathbf{R} \mathbf{R}_a}{\mathbf{R} + \mathbf{R}_a} \\ + \frac{\mathbf{L} \mathbf{I}}{\tau_1} + i_0 \mathbf{R}_a \\ = \mathbf{V}_{\mathbf{1}} + i_1 \mathbf{R}_a + \\ \mathbf{IR} \left(\mathbf{i} + \frac{\mathbf{R}_a}{2\mathbf{R}} + \frac{\mathbf{L}}{\tau_1 \mathbf{R}} \right) \dots \dots (2 \end{split}$$

The power drawn from the H.T. supply is clearly,

 $P_{in} = E_{HT}i_0$... (3) Differentiating (7) with respect to R_a/R and equating to zero gives for the optimum value,

During fly-back the coil current is approximately of the form,

$$i_{\mathrm{L}} = \mathrm{I} \left(e^{-t \,\mathrm{R}_f/\mathrm{L}} - rac{\mathrm{I}}{2}
ight)$$

assuming shunt capacitance effects to be negligible and the fly-back time of the grid voltage to be less than that of the anode. The change of voltage is 98 per cent complete when

$$tR_f/L = 4$$
 where $R_f = R + \frac{R_a r_a}{R_a + r_a}$,
and so the minimum permissible value of R_a/R is,

$$\left(\frac{R_a}{R}\right)_{MIN} = \frac{I}{\frac{1}{\frac{4L}{\tau_2 R} - I} - \frac{R}{r_a}} \qquad \dots \quad (IO)$$

and when r_a is large this reduces to, (R_a) 4L

$$\left(\frac{R_a}{R}\right)_{\text{MIN}} \approx \frac{4L}{\tau_2 R} - I \qquad \dots \qquad (11)$$

August, 1948

Wireless World

Providing technical information, service and advice in relation to our products and the suppression of electrical interference

SUPPRESSION AT THE SOURCE

A customer wrote to us about the suppression of H.F. interference from a pump motor. He had tried one of our L. 300 mains filters (usually litted at the receiver end) without success. We wrote confirming that it would probably do the job but that it must be fitted as near as possible to the pump motor, stressing the fact that "every inch matters." Back came the reply that "Fitting your L.300 suppressor close up to the AC/DC motor, with only a 3in. lead, has entirely cured the interference trouble. It was previously about four feet away and with a poor earth."

This leads us to a fundamental point. It is preferable to apply suppression at the source of trouble, where one suppressor will cure the interference for everybody. The fact that we manufacture more filters expensive and aerial systems does not deter us from encouraging simple effective remedies -we prefer to sell our products on the goodwill derived from giving sound technical advice. It would be pointless to advise the erection of a costly aerial where interference from a vacuum cleaner or similar appliance could be suppressed adequately with a flex lead suppressor *1, at a fraction of the cost.

The "Belling & Lee" Flex Lead Suppressor L301 for fitting in the supply lead to vacuum cleaners, hairdriers, fans, etc. *1

SUPPRESSION AT THE RECEIVER

If the source of mains borne interference is inaccessible or un-traceable, a mains filter (" Belling-Lee " List No. 300/3 or 305 *2) should be tried at the mains outlet point, from which the receiver is being fed. It is essential, however, to establish that interference is mains borne before seeking a remedy of any kind. This can be done simply by detuning the receiver to a point between stations and where interference is heard at its highest level; the aerial and earth should then be disconnected and if no perceptible reduction of noise level results, it may be assumed either that the interference is mains borne,

The well-known set lead suppressor L300 Manfd. by Belling & Lee Ltd. is normally fitted at the plug point supplying the receiver. *2

or that the receiver itself is collecting radiated interference from house wiring or adjacent metal objects. If, on disconnecting the aerial, the interference ceases, a further test should be made.,

Move the receiver away from the mains supply socket, until the mains lead is almost straight. Connect to the aerial terminal of the set, about.six feet of wire and hold it, fully extended, first at a right-angle then close to and parallel with the mains lead. If the interference increases when the aerial lead is placed near the .mains lead, the presence of mains borne interference may be assumed. If mains filtering, in these circumstances, does not provide suppression, it can be accepted that suppression at the source of the interference is essential.

ANTI-INTERFERENCE AERIALS

A mains filter will not be effective against radiated interference, which reaches the set by way of the aerial or earth systems, or both. An "Eliminoise" *3 or "Skyrod" *4 anti-interference aerial system gives the best results when this type of interference has to be overcome. It is necessary, however, that this equipment should be sited properly that the responsive portion so of the aerial is erected in a position which is reasonably free from interference. By this means, clear signals are fed to the receiver through the interference field bythe screened downlead which prevents the superimposition of the disturbance.

Relative merits of vertical and horizontal aerials are :

(1) Since most interference is horizontally polarised a vertical collector is usually less responsive to it. (2) The effective height of an 18 feet vertical spike is somewhat less than that of a 60 feet horizontal span erected at the same height, with a consequent reduction in signal pick-up.

(3) Generally, signal to noise is improved by employing the vertical rod.

(4) The vertical aerial is more readily installed in different situations (e.g. where no garden space is available.)

(5) For multi-point installations the vertical spike will supply 5 or even 6 points and the horizontal span will feed 12 points without amplification.

(6) The vertical aerial is very much less susceptible to night fading on local stations due to its poor response to downcoming high angle waves.

*1. Flex lead suppressors L.301 (3 core) 21/-. L.1174 (2 core) 12/6 each.

*2 Set lead suppressors L.300/3 (1 amp.) all wave **59/6** each. L.305 (2 amp.) Short and Medium wave **63/-.**

*3. "ELIMINOISE" (Regd. Trade Mark) Anti-interference aerial kit L.308/K complete shown above £6 6s.

*4. "SKYROD" (Regd. Trade Mark) Vertical, chimney fixing 18ft. spike with "Eliminoise" transformers screened downlead and earth wire etc.

L.638/K £10.

L.638 collector only £4 4s.

*5. "ELIMINOISE" additional receiver transformers for multi-point installations.

L.307 receiver transformers each $\pounds 2 2s$.

L.621/5 receiver lead each 9s.

ERRATUM

"Belling & Lee "page "Wireless World" June. Sub.: Burnt-out Eliminoise Transformers. Para I Line 12. 10 milliamps should read 1.0 milliamps.

CAMBRIDGE ARTERIAL ROAD. ENFIELD. MIDDX

IN BRIEF

World of Wireless-

writer states that the only additional equipment is an extra modulator at the transmitter-which is connected to a telephone line-and at the receiving end a unit connected to the telephone and an additional threevalve unit in the receiver.

The picture is given a flicker which cannot be steadied unless the viewer asks the local telephone operator to connect him to the television station, whereupon the beam becomes steady. The telephone operator records the period during which the viewer was connected to the station and the charge for the P.V. service is added to the telephone bill.

It is pointed out that the use of P.V. does not interfere with incoming and outgoing telephone calls.

L.C.C. RADIO COURSES

IN addition to the full range of courses in electrical and telecommunication engineering and applied physics for the National Certificate and City and Guilds exams, the South-East London Technical College is providing a number of special day and evening courses for the next session which commences in September.

Among these are the following, each of which will be held on one evening per week :---

Television-Two courses, one of about 12 lectures and one of about 30 lectures

- and practical work. Industrial Electronics-about 25 leetures.
- Communication Networks (Theory and Design)—about 30 lectures. Communication Engineering Economics

-about 30 lectures.

-about 30 lectures. Applications of the C.R.T. to Industrial Problems—about 6 lectures. Radio-Frequency Measurements—about 10 evenings, including practical work. High-Vacuum Technique—about 6 lec-

tures Electronic Equipment and Instrumenta-tion—about 6 lectures.

The printed prospectus for the 1948-49 session will be available in August from the College, Lewisham Way, London, S.E.4.

RESEARCH FOR INDUSTRY

"HE firm of Mactaggart & Evans has opened a Research Institute at Sondes Place, Dorking, Surrey, for general investigations into the problems of industrial production. The services of the institute are available to small firms who may not be in a position to maintain research departments of their own. Work is undertaken for an agreed fee, and any patents arising from the research become the property of the client.

The laboratories are equipped for chemical, physical, biological and metallurgical research and there is an electronics laboratory dealing primarily with problems of servocontrol in industrial processes. Other work for which this section is equipped includes ultrasonics, electro-biological research and the development of electro-mechanical computing methods.

TELEVISION CONSTRUCTION

NEW printing of the booklet A Television Receiver Construction" (consisting of reprints of a series of Wireless World articles) is now available: price 28 6d from booksellers or 2s od by post from our Publishers.

The Mullard MW22-7 C.R. tube used in the set as described is tending towards obsolescence and the makers have introduced a new type to replace it. This is the MW22-14C and is identical except for a heater-current rating of 0.3A instead of 0.6A. The new tube can be used, therefore, without any alteration to the equipment.

PERSONALITIES

Sir Edward Appleton, secretary of D.S.I.R., has recently been honoured by two foreign academies. He has been elected a Foreign Member of the Royal Swedish Academy of Science and a Member of the Pontifical Academy of Sciences. The latter has only seventy members, who are nominated by the Pope.

L. H. Bedford has been awarded the Fellowship of the American I.R.E. "for his development of special circuits, particularly those used for scan-ning purposes, in television." As Cossor's director of research he was one of the first two industrial engineers to be taken into the confidence of the Government on radar. He is now with Marconi's.

T. E. Goldup celebrated on July 2nd twenty-five years' service with Mul-lards, of which he is now a director.

Boards of British Rola and Celestion but is maintaining his export connec-tions. His address is "Riverhome," The Green, Hampton Court, Middx. (Tel.: Molesey 3795).

Television Licences have increased nearly threefold during the past twelve The number in force at the months. end of May, 1947, when it was for the first time possible to know the number of viewers, as all the old ios soundand-vision licences had expired, was 18,850. At the end of May this year the total reached 52,500, an increase of 3,300 in a month.

C. R. Nortcliffe has resigned from the

Broadcast Licences in force at the end of May totalled 11,235,700. This number includes television licences.

P.T. on Pickups .- It has been ruled by H.M. Customs and Excise that where a matching transformer is sold with a pickup, but not as an integral part of the pickup, the transformer shall not, in future, be subject to Pur-chase Tax, which is now $60\frac{3}{2}\%$ on graniophone equipment. In consequence of this decision, the following price re-vision for the Marconiphone Type 14 lightweight pickup and transformer is announced: Pickup £2 105, P.T. £1 15 8d; transformer £1 55.

"Cast out the beam. . . ."-B.B.C. staff will not in future be permitted to use their private cars on Corporation business unless interference suppressors have been fitted. "Suppression" is now a prerequisite for car allowances. The cost of fitting the suppressor will be borne by the Corporation.

Olympic Games .--- Television receivers are being installed by the Radio Industry Council in all the Embassies for the duration of the Olympic Games, many events of which will be televised by the B.B.C. Extensive arrangements are being made by the B.B.C. to facilitate the coverage of the Games by reporters from overseas.

Scientific Films .- The second conress of the International Scientific Film Association will be held in London from October 4th-11th. The primary aim of the Association, which was founded by twenty-two countries last year, is "to raise the standard and to promote the use of the scientific film . . . in order to achieve the widest possible understanding of scientific method and outlook. . . ." Details of method and outlook. . . ." Details of the congress are available from the Scientific Film Association, 34, Soho Square, London, W.L.

Record Library .-- A choice of more than 2,000 records, including frequency test discs, is available to subscribers to the Yorkshire Gramophone Library, 166, Briggate, Leeds, r. The postal service provides a parcel of ten records per month and subscriptions range from £1 15s 6d for three months, to £6 5s 6d for a year. There is a returnable deposit and subscribers undertake to use thorn or fibre needles except where express permission is given to use an approved lightweight pickup.

T. E. GOLDUP.

For some years he was in charge of the Technical Service Dept. and in 1938 was made a director of the subsidiary company, Radio Transmission Equipment, Ltd., at Balham. Frequency allocations to all services in the entire telecommunication spectrum—to kc/s to 10,500 Mc/s—as agreed at the Atlantic City conference, are given on a sixteen-colour chart, measuring 5,in by 30in, issued by Mullards. The vertical columns are divided into three—one for each of the three Regions. It is available from the Communications Division, Mullard Electronic Products, Ltd., Century House, Shaftesbury Avenue, London, W.C.2, price 30s. A smaller six-colour edition will be available later.

Television Demonstrations are now given every afternoon from 3 to 4 at the Science Museum, South Kensington. Admission to the Museum, which is open from 10 a.m. to 6 p.m. week-days and from 2.30 to 6 p.m. on Sundays, is free.

Aids to Production.—Although the first national mechanical handling exhibition, held at Olympia in July, was mainly concerned with the handling of heavier products than those generally associated with the radio industry, there were some examples of mechanical aids to light production engineering. A full report of the show will be given in the August issue of our associated journal Mechanical Handling.

Brazil.—The new broadcasting station in Recife, Brazil, equipped by Marconi's for the Radio Jornal do Commercio, was inaugurated on July 3rd. The installation includes a 20-kW M.W. transmitter and two 25-kW S.W. transmitters.

Television and the Cinema.—A convention is being organized by the Société de Radioélectriciens of France on the question of the relationship between television and the cinema. It will be held in Paris in the autumn and invitations have been sent to other countries for contributions. Full details are obtainable from the society, 10, Avenue Pierre Larousse, Malakoff (Seine), France.

N. American F.M.—Agreement has been reached between the U.S. and Canada regarding the allocation of frequencies for F.M. stations, their power and height of aerial. Eighty-one frequencies have been distributed among Canada's nine provinces.

Royal Yacht Radio.—Broadcast receivers and radio-gramophones for the King of Norway's yacht "Norge" were supplied by Golden Voice Radio, Ltd., 25, Haymarket, London, S.W.I. Special superheterodyne receiver chassis were designed to work from the ship's mains and the cabinet work of the seventeen pieces was varied to blend with furniture and panelling.

I.P.R.E.—A Midlands Section of the Institute of Practical Radio Engineers has now been formed. The secretary is F. Prosser, 27, Duncroft Road, Yardley, Birmingham, 26.

Amateur Radio Exhibition.—The second annual exhibition of amateur radio equipment is being organized by the R.S.G.B. and will be held in London from November 17th to 20th.

I.E.E. Council. — Among the new members of the Council of the I.E.E.

to fill the vacancies which occur on Sept. 30th are A. J. Gill, B.Sc. (Eng.), who is appointed a vice-president, and Dr. W. G. Radley, C.B.E., from the Radio Section.

FREDERICK SMITH, O.B.E.

I.E.E. Radio Section.—The new chairman of the I.E.E. Radio Section Committee is Frederick Smith, O.B.E., who is general manager of the M.O. Valve Co. There are two vice-chairmen this year; they are R. T. B. Wynn, M.A., B.B.C. asst. chief engineer, and C. F. Booth, O.B.E., staff engineer in charge of the Post Office Radio Development Branch. The following have been elected to fill the four vacancies occurring on the committee on Sept. 3oth: Dr. H. G. Booker, M.A. (Cavendish Laboratory, Cambridge); Dr. L. F. Broadway, B.Sc. (E.M.I. Research Laboratories); E. Fennessy, O.B.E., B.Sc. (Deca); and F. R. Willis, B.Sc. (Eng.) (Sir Alexander Gibb & Partners).

INDUSTRIAL NEWS

Magnetic Disc Recorder.—A portable recording machine, the "Recordon," using paper or plastic discs coated with powdered magnetic material, is to be manufactured under licence in this country by Thermionic Products, Ltd., Pratt Walk, London, S.E.11. The machine, which is intended primarily for office dictation, weighs about 11 lb and gives a playing time of 3 minutes (approx. 450 words) per disc. The design is based on the "Mail-a-Voice" recorder of the Brush Development Co., of America.

"Better Listening."—Plans have been made by B.R.E.M.A. to launch a "Better Listening" campaign in the autumn to encourage the replacement of old receivers and, in the London area, the purchase of television sets. The campaign will be run from September 26th to October 9th.

Radio Ball.—The second annual Radio Industries Club Ball will be held at Grosvenor House, Park Lane, on September 30th.

Philips Electrical has installed two 50-watt amplifiers and over fifty loudspeakers at Lord's Cricket Ground.

Mullard-Hallicrafter Agreement provides for Hallicrafter-designed communication transmitters and receivers to be manufactured by Mullards, who will also represent Hallicrafters in the U.K., Eire and Australasia.

۰.

Marconi E.H.F. radiotelephone equipment was installed in each of the six tugs used during the launching of the whale-tanker "Kosmos V," at Middlesbrough, on July 8th. The equipment, together with a seventh set temporarily fitted in the "Kosmos V," will facilitate the handling of the ship, the longest—675ft—launched at this port.

British Rola, Ltd.—At the request of the company a receiver has been appointed to go into its affairs with a view to reconstruction. A net loss of over $f_{10,000}$ was incurred last year compared with the previous year's profit of over $f_{13,000}$.

E.M.I.—The Service Division of E.M.I. Sales and Service, Ltd., has been transferred from Hayes to the recently acquired Sheraton Works, Wadsworth Road, Greenford, Middx. (Tel.: Perivale 3344), to which all enquiries regarding servicing should be addressed. The E.M.I. London depot, previously at Clerkenwell Road, has also been transferred to Greenford, where all orders for gramophone records and accessories should be sent.

Philco.—In addition to the reduction in price of Philco sets consequent upon the decrease in Purchase Tax the Philco Radio and Television Corp. is adjusting the prices of receivers so that the selling price will be reduced by about 25 per cent.

Partridge.—The new factory for Partridge Transformers, Ltd., on the Kingston By-pass, Tolworth, Surrey, is nearing completion and it is hoped to start production in August. Enquiries should continue to be sent to the new offices in Peckford Place, London. S.W.9. (Tel.: Brixton 6506.)

S. G. Brown, Ltd., who manufacture headphones and precision instruments, have moved from North Acton to a larger factory in Shakespeare Street, Watford, Herts. (Tel.: Watford 7241).

Goodmans.—The telephone number of the registered offices and works of Goodmans Industries, Ltd., at Lancelot Road, Wembley, has been changed to Wembley 1200.

Melton Metallurgical Laboratories, Ltd., manufacturers of ''liquid silver'' for capacitors, have moved from Slough to 42, Towngate Street, Poole, Dorset (Tel.: Poole 872-3).

Wolsey Television has moved to 75, Gresham Road, Brixton, London, S.W.9. (Factory: 102. Barrington Road, S.W.9.)

Tannoy.—Guy R. Fountain, Ltd., who manufactures Tannoy equipment, has gone into compulsory liquidation.

Advert. Corrections.—In the advertisement of Reproducers and Amplifiers, Ltd., in our June issue, the tolerance should have been given as ± 0.0005 m not 0.005 m as printed. Purchase tax on the Collaro Microgram de Luxe equipment, incorrectly given in the July issue advertisement, should be 48 125 11d.

More Cathode-ray Tube Data

Further Notes on Ex-service Types

THE following list has been compiled in response to a number of requests for an extension of the original list given in the December, 1947, issue.

A number of correspondents were anxious to have details of C.R. tubes suitable for use in television receivers, but a careful search has revealed only one type with white

Compiled by D. W. THOMASSON

trace, large screen (12in) and magnetic deflection. This tube, the the CV274, has not been seen in the surplus market as yet, and it seems that television experimenters must

either put up with a green or blue trace and electrostatic deflection or buy in the civilian market.

There are a good many tubes for magnetic deflection, but they are mostly of the "afterglow" type, and useless for television. It is useful to note that such screens can generally be identified by the greenish tint of the screen caused by

Туре	Screen	Si	ze		Operat	ing Con	ditions		Sensit	ivity	Remarks	
1390	Serven	Base	L	D	V ₁	V_2	V 2	V maz	I,	X	Y	
ACR1	w		495	136	3	0.6	3	4	15	600	675	
ACR2	As	ACR1,	but less	stringe	nt spec	ification						
ACR8	W or G	\ <u> </u>	\ \	136	0.15	0.56	3	3	20	870	500	
ACR10	G	12.4	205	70	0.45	0.07	0.45	1	2	170	170	=VCR139A
CR11		As A	CR8, bu	it with	metalli	zed out	er coat	ing.				
ACR12	G	I — I	620	295	4	0.8	4	5	—	650	650	
ACR13	G	-	431	160	2	0.48	3	5	15	620	1160	
VC2	G	8.1	414	136	Gas	Focus		1.5	—	450	450	0.6 V Htr.
VC3	G	9.1	203	71	—		—	0.8	—	120	150	
SC4	B/G	Other		NC2.								0.6 V Htr.
NC5	Ŵ	6.1	495	136	3	0.55	3	4	_	600	675	
NC8	Red		-	Gas fo	cus	-	1.5	-	—	-		=32E
NC9	B	12.5	380	114	-	-		2	—	490	490	
NC10	W	6.1	495	136	3	0.55	3	4	—	600	675	
NC11	G	12.3	420	160	1.8	0.8	5	6	3	550	1000	Obsolete.
VC13	G	12.3	495	175	0.45	0.44	2.2	4	—	520	520	
NC15	G	12.6	380	116	1.2	0.35	1.2	2	—	530	370	=VCR518
NC17	D	8.2	393	90	Mag.	Focus		15		Mag.	Defl.	Skiatron
NC18	Y	12.3	431	160	2	0.8	5	6		620	1160	=CV966
NC20	G	12.5	585	300	4	0.8	4	5	20	900	900	
VCR84	A	12.7	685	305	1.8	0.65	3.5	4	—	1175	550	Obsolete.
VCR85	A	12.7	660	300	1.8	1.6	6	7		1345	1300	
VCR86	A	12.7	570	160	1.8	0.97	5	5.5	—	900	700	Obsolete.
VCR87	A	12.7	512	160	3	0.7	3	5.5		700	750	
VCR112	G or W		495	135	0.2	0.56	3	3.5		870	500	
VCR131	G	12.7	585	300	4	0.8	4	5	<u> </u>	900	900	
VCR138	G	12.3	340	90	1.2	0.2	1.2	2.5		357	780	
VCR138A	G	12.3	340	90	1.2	0.2	1.2	5		357	780	Larger screen than
VCR139A	G	12.4	205	70	0.8	0.135	0.8	1	3	170	170	VCR1
VCR140	A	8.2	587	306	Mag.	Focus	5.5	6.5		Mag.	Defl.	
VCR511	A	12.7	585	300	4	0.8	4	6.5		1000	1000	$\begin{cases} 2 & \text{screen variants} \\ A & B. \end{cases}$
VCR514	G	12.3	370	90	0.8	0.28	2	2.5		380	580	
VCR515	B or G	_	384	90	0.2	1.2	—	1.5		480	400	2 anodes
VCR516	A	8.2	452	230	Mag.	Focus	4	5		Mag.	Defl.	
VCR517	A	12.3	431	160	2	[-0.5]	3	6		720	880	5 screen variants A-F
VCR518 VCR518A	B G	12.6	380	116	1.2	0.35	1.2	2		530	370	Double Beam.
CR519	Ğ		640	312	0.5	0.5	2.2	4		720	720	Compass.
VCR520	Ă	8.2	393	885		Focus	10	15			Defl.	
VCR521	A	12.3	340	92	1.8	0.7	4	5		357	780	
VCR522A	G	9,1	145	39	0.8	0.135		i i		90	90	
VCR523	Ĝ	12.7	660	295	1.8	1.6	6	7		1345	1300	Similar to VCR85.
										1		

NOTES: The screen type is given by the following symbols: A = Afterglow; (long persistence); B = Blue; B/G = Blue-Green; D = Dark Trace; G = Green; W = White; Y = Yellow. The size is given in mm, L being the overall length, and D the diameter. The operating voltages are given in kilovolts, and the beam current in

μΑ. $V_1 = 1$ st anode ; $V_2 = 2$ nd anode voltage ; V = 3rd anode voltage ; $V_{max} = maximum$ final anode voltage ; $I_b = beam$ current. The sensitivities are given in mm/V/V.

World Radio History

August, 1948 Wireless World

More Cathode-ray Tube Data-

phosphorescence. After exposure to sunlight, the screen glows plainly when shaded again. This will not, of course, identify a tube with a 'dark-trace'' screen.

All but two of the tubes listed are 4-V heater types, the current drawn being of the order of IA. The deflection and focus are generally electrostatic, the exceptions being noted.

BASE TYPES

There are a large number of variations between tubes of a given type, but the connection lists are framed to cover these as far as possible.

	1	2	3	4	5	6	7	8	9	10	11	12	Side Caps
6.I 8.1 8.2 9.1 12.1 12.2	$ \begin{array}{c} \mathbf{K} \\ \mathbf{A} \\ - \\ \mathbf{X}_{1} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \end{array} $	G Y ₁ H Y ₁ -	H F 	$H X_1 H, K H H H$	$\begin{array}{c} A_2 \\ G \\ G \\ H \\ A_1 \\ A_1 \end{array}$	$\begin{array}{c} A_1 \\ Y_2 \\ \hline \\ G \\ A_2 \\ A_2 \end{array}$	F H A _{1,3} Coa Coa	$\begin{array}{c} -\\ X_2\\ K\\ X_2\\ X_2\\ X_2\\ Y_2 \end{array}$	$\overline{\begin{array}{c} \hline \\ \hline $	 A_3 A_3		$\begin{array}{c} - \\ - \\ - \\ X_1 \\ Y_1 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
12.3 12.4 12.5 12.6 12.7	G K K K	K G G G	H H H H H	H H H H H	$\begin{array}{c} A_1\\ A_2\\ -\\ -\\ A_1\\ -\\ A_1 \end{array}$	$\begin{array}{c} A_2^- \\ - \\ A_2 \\ A_2 \\ A_2 \\ A_2 \end{array}$	$\begin{array}{c} \text{Coa} \\ Y_2 \\ - \\ A_4 \\ \text{Coa} \end{array}$	$\begin{array}{c} \mathbf{Y}_2^-\\ \mathbf{X}_2^-\\ \mathbf{Y}_2^-\\ \mathbf{Y}_2^-\\ \mathbf{Y}_2^-\\ \mathbf{Y}_2^-\end{array}$	$\begin{array}{c} X_2 \\ A_3 \\ X_2 \\ X_2 \\ X_2 \\ X_2 \end{array}$	$\begin{array}{c}\mathbf{A_3}\\\mathbf{X_1}\\\mathbf{A_3}\\\mathbf{A_3}\\\mathbf{A_3}\\\mathbf{A_3}\end{array}$	$\begin{array}{c} X_1 \\ Y_1 \\ X_1 \\ X_1 \\ X_1 \end{array}$	$\begin{array}{c} Y_1 \\ \hline \\ Y_1 \\ Y_1 \\ Y_1 \\ Y_1 \end{array}$	

 $\begin{array}{l} \mathsf{SYMBOLS:} \quad G = \mathsf{Grid} \quad (\mathsf{Modulator}) \;; \; H = \mathsf{Heater} \;; \; K = \mathsf{Catbode} \;; \; \mathsf{Coa} = \mathsf{Coating} \; (\mathsf{Internal}) \;; \; X_1, \; X_2, \; Y_1, \; Y_2 = \mathsf{X-} \; \mathsf{and} \; \; \mathsf{Y}\text{-}\mathsf{axis} \; \mathsf{deflector} \; \mathsf{plates} \; \mathsf{A_1} = \mathsf{1st} \; \mathsf{anode} \;; \; \mathsf{A_3} = \mathsf{2nd} \; \mathsf{anode} \;; \; \mathsf{A_4} = \mathsf{Splitter} \; \mathsf{plate} \; \mathsf{in} \; \mathsf{double-beam} \; \mathsf{tubes}. \\ & \mathsf{The} \; \mathsf{probable} \; \mathsf{variations} \; \mathsf{are} \; : \; \mathsf{Coating} \; \mathsf{and} \; \mathsf{A_1} \; \mathsf{to} \; \mathsf{A_3}, \; \mathsf{K} \; \mathsf{to} \; \mathsf{H} \; \mathsf{,and} \; \mathsf{X_1}, \; \mathsf{Y_1} \; \mathsf{to} \; \mathsf{A_3}. \end{array}$

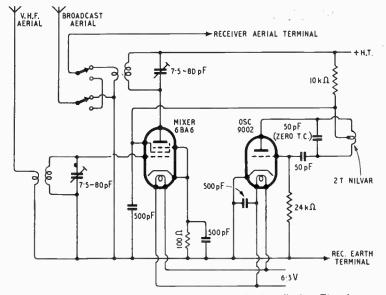
E.H.F. Amplitude-modulated HIFA Broadcasting in U.S.A.

N common with a large number of radio engineers, it has been the writer's opinion that the extra high frequencies could be utilized more economically by using A.M. than F.M. In order to study the radio service possibilities, particularly for small communities, of A.M., an experimental station, W9XHZ, was constructed in Bloomington, Indiana. W9XHZ operates on a frequency of 87.75 megacycles with radiated power into the aerial of 200 watts. The word "HIFAM" (highfidelity A.M.) has been coined to describe the service.

In the area covered by W9XHZ, the terrain is very hilly, some of the hills around the transmitter being as high as 900 feet above sea level. The aerial, which is non-directional, is 795 feet above sea level. It consists of eight coaxial units mounted vertically and hanging down from the tower platform, and has a power gain of about 10. This is a very inexpensive type of aerial to construct. It gives vertical polarization, which has advantages when small vertical aerials are used for reception.

In all urban districts of Bloomington, the field strength is high, ranging from 250,000 to

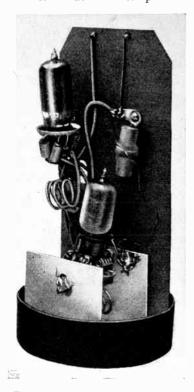
By SARKES TARZIAN


5,000 μ V/metre. The 50- μ V per metre contour is about 25 miles with 200 watts of radiated power. The maximum power output of the transmitter is 500 watts. The fidelity characteristic of all components was specified as $\pm 3 \, db$

. . . .

٤ World Radio History

from 30 to 10,000 c/s. A compression amplifier is used in order to maintain a relatively high modulation level. The fidelity characteristic of the studio equipment is ± 1 db from 30 to 15,000 c/s.


Amplitude modulation permits the use of inexpensive converters

The input Fig. 1. Circuit diagram of the converter unit described. frequency is 87.75 Mc/s and the output 1,500 kc/s.

HIFAM-

with standard broadcast band receivers which are already in use in thousands of homes. A great deal of development work was done in the design of an inexpensive converter to be sold at \$5.95; the circuit arrangement is shown in Fig. 1. The problem was to build a highly stable oscillator with a frequency stability of 0.002%. It is essential to have high signal/noise ratio in the mixer stage. This was achieved by using a high k_m tube as mixer (6BA6 and 12BA6). The frequency stability was obtained by using a "chimney" type of construction which maintains a flow of cool air at room temperature

The inexpensive converter used for the American experiments in A.M. broadcasting to small communities on 87'75 Mc s.

past the oscillator components. An Invar oscillator coil and zerocoefficient capacitors are used in the oscillator tank circuit. In all cases the oscillator stabilizes after ten minutes. In many cases it is stable after five minutes. Fig. 2 shows the drift characteristic in production units. The overall gain of the converter is 25. The average broadcast band receiver with 5 or 6 tubes has a signal/ noise ratio of about 25 to 1. Production converter units have a ment with age will not cause such serious distortion as in E.M. receivers. In all our tests since May, 1946, we have encountered no multipath distortion. The

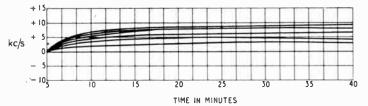


Fig. 2. Frequency stability curves of production models of the converter shown in Fig. 1.

signal/noise ratio of over 110 to 1. Converters that have been in operation since July, 1946, have fulfilled the designers' expectations.

We have also developed small converters with an R.F. stage. These have been used in the 50 to 100- μ V field strength areas and have given excellent results. These units can be sold for \$9.95 to the public.

Several combined broadcastband and E.H.F. receivers were developed. A low-cost 6-tube receiver was designed which is no more complicated than any standard-band receiver with a simple short-wave band added. Common broadcast components can be used throughout. The band width of the IF system, which is tuned to 460 kc/s, is broadened for The HIFAM-AM HIFAM use. receiver can be sold at a profit for \$29.95. Receivers for the AM system will always be simpler and cheaper than those for F.M.

In larger console type HIFAM-AM receivers, it is possible to eliminate all oscillator drift. This is accomplished by using a crystal (cost \$1.20) to obtain a double superheterodyne. In addition to a standard broadcast band receiver, a crystal and two tubes are used for HIFAM reception.

Very satisfactory radio service has been given to the small community of Bloomington with a radiated power of 200 watts, and there has been no trouble from atmospheric interference, because the frequency use is inherently immune. Man-made electrical disturbances cause very little interference at 88 Mc/s and higher.

HIFAM receivers are very stable and any change in aligncountry is very hilly and multipath distortion would be easily detected if present. This is another decided advantage of HIFAM over F.M.


Due to its nature HIFAM needs a much narrower band of frequencies than F.M. This permits the assignment of a greater number of stations on a given frequency spectrum. The number assigned will depend, of course, on the highest modulation frequency.

Pre-set Tuner Unit

THE tuner illustrated has been produced to simplify the construction of small superhet broadcast sets. Ganging and alignment of circuits are avoided by using preset tuning and a selector switch giving the choice of three stations in the medium waveband and one in the long.

Efficient dust iron coils with adjustable cores are used and the sensitivity and selectivity should compare favourable with the more usual capacitor tuning.

The unit measures $3 \times 2\frac{1}{2} \times 3$ in and costs 3.3. Makers are Electro Technical Assemblies, Eta Works, West Hill, St. Leonards-on-Sea.

Eta switch-selected four-station tuner.

August, 1948 Wireless World

This is a 10-valve amplifier for recording and play-back purposes for which we claim an overall distortion of only 0.01 per cent., as measured on a distortion factor meter at middle frequencies for a 10-watt output. The internal noise and amplitude distortion are thus negligible and the response is flat plus or minus nothing from 50 to 20,000 c's and a maximum of .5 db down at 20 c/s.

A triple-screened input transformer for $7\frac{1}{2}$ to IS ohms is provided and the amplifier is push-pull throughout, terminating in cathode-follower triodes with additional feedback. The input needed for IS watts output is only 0.7 millivolt on microphone and 7 millivolts on gramophone. The output transformer can be switched from IS ohms to 2,000 ohms, for recording purposes, the measured damping factor being 40 times in each case.

Built-in switched record compensation networks are provided for each listening level on the front panel, together with overload indicator switch, scratch compensation control and fuse. All inputs and outputs are at the rear of the chassis

Send for full details of Amplifier type AD/47

C.P.20A. 15 WATT AMPLIFIER

for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. to D.C. and "stand by" positions and only consumes $S_{\frac{1}{2}}$ amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.S and 15 ohms. Complete in steel case with valves.

As illustrated. Price £28 0 0

RECORD REPRODUCER

This is a development of the A.C.20 amplifier with special attention to low noise level, good response (30-18,000 cps.) and low harmonic distortion (1 per cent. at 10 watts). Suitable for any type of pick-up with switch for record compensation, double negative feedback circuit to minimise distortion generated by speaker. Has fitted plug to supply 6.3 v. 3 amp. L.T. and 300 v. 30 m/a H.T. to a mixer or feeder unit.

Complete in metal cabinet and extra microphone stage. As *illustrated*. Price $25\frac{1}{2}$ Gns. CHASSIS, without extra microphone stage. Price £21.

EXPORT

Enquiries from Overseas will receive prompt attention. CONTINENTAL BUYERS are invi-

ted to get into touch with our Belgian Agents :

129 Avenue de la Reine.

Bruxelles

Ms. Constant L. Bisman,

Téléph. 16.10.31.

257-261 THE BROADWAY, WIMBLEDON, LONDON, S.W. 19

TELEPHONES: LIBerty 2814 and 6242-3. TELEGRAMS: "VORTEXION, WIMBLE, LONDON."

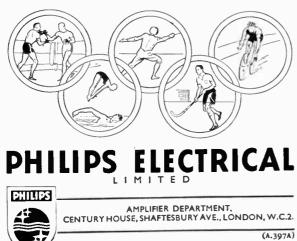
World Radio History

LOUDSPEAKERS at the **OLYMPIC GAMES**

Obviously, for the Olympic Games, the loudspeaker arrangements must be the finest available in the world. That is why the Olympic Games Committee have relied very largely on Philips.

Philips loudspeakers will be installed at the EMPIRE STADIUM, WEMBLEY

(opening and closing ceremonies and main events) WEMBLEY POOL (swimming and boxing)


WEMBLEY PALACE OF ENGINEERING (fencing)

WINDSOR GREAT PARK (long distance cycle race)

LYONS' SPORTS GROUND, SUDBURY GUINNESS' SPORTS GROUND, PARK ROYAL POLYTECHNIC STADIUM, CHISWICK (preliminary hockey heats)

ALDERSHOT, CENTRAL COMMAND GROUND (equestrian events and modern pentathlon)

The responsibility for the sound amplification at these events is being shared by Philips Electrical Ltd., and Dealers.

E.M.I. TRAINI FOR CAREERS IN ELECTRON

An E.M.I. correspondence course, brings students into direct contact with scientists of Britain's Largest Electronic organisation.

BASIC RADIO or BASIC TELEVISION

(Ready this Autumn) INTERMEDIATE MATHS. HIGHER MATHS. ADVANCED RADIO

City and Guilds Telecom. Finals. A.M.Brit.I.R.E.

City and Guilds Telecom. Finals.

INDUSTRIAL ELECTRONICS

Also FULL TIME COURSES

for

Whatever course is chosen, the E.M.I. staff give first hand up-to-the-minute knowledge of the application of electronics to industry. Write for full details to:-

The Principal : PROFESSOR H. F. TREW'MAN, M.A. (Cantab) M.I.E.E., M.I.Mech.E., M.Brit.I.R.E.

Quality in the Home Are High-Powered Amplifiers Necessary?

S O much has been written on the design of high-quality amplifiers that it may appear to readers, especially after the recent articles by D. T. N. Williamson and P. J. Baxandall, that the subject is played out, and that there can be little justification for monopolizing the time of readers by a further article. Yet despite this I humbly submit that much that has been written is inconsistent, and that the underlying basic data of many amplifiers is based on false premises.

In Wireless World, March 10th, 1938, "Cathode Ray" had been advocating remedies for "scale-distortion" as he called it, and the climax came when he visited the Queen's Hall, London, with "loudness" measuring equipment to prove that there was such a difference between the actual and reproduced levels of sound that a "weighting" network was necessary at the reproducing end to restore the bass response to the same level as the middle register.

The loudest playing of the B.B.C. Symphony Orchestra in peaks was 105 phons, the softest 55 phons. The sustained climaxes of loud playing were 90 phons. In measurements in a small room furnished in the customary style the power needed for a similar level was only 11 watts. The extreme contrasts were perhaps 10 phons less. I take this to mean the range in the Hall 55-105 phons was compressed to 60-100 phons in the room. This is borne out by his other measurements with a commercial receiver, nominal output 312W (actual about 2), which gave IIO phons close to the speaker and less than 100 some distance away. Assuming that the power ouput in the distorted condidition was $3\frac{1}{2}$ W I deduce a mean level of 103 phons. Taking the 14 watts and adding 5 db (to restore the peaks) we have an output of 5 W for a peak intensity of 105 phons which is in close agreement with the 31 W-103 phons deduction. Or again, take the third statement that IW pure tone gave 110 phons in the mouth of the speaker and considerably less elsewhere, a figure of 5 W for peaks of 105 phons is not

By H. S. CASEY

unreasonable. Finally the formula he quoted gave 0.57 W for 100 db or 1.6W for 105 db. He expressed doubts about the formula and thought it was a little on the low side.

Summing up I deduce that, with a baffle-loaded moving coil loudspeaker, an output of 5 W is all that is necessary at home to secure maximum ear-drum pressure comparable with that at the Queen's Hall.

While not being entirely convinced by all the arguments adduced by the writer, we print this article as a salutory reminder of the incontestable fact that equipment for high-quality reproduction should be treated as a whole, and not as a collection of detached pieces.

It is relevant, I suggest, at this point to ask whether this level is necessary for the complete and full enjoyment of serious music. I am aware I am treading on dangerous ground, but it is necessary to go wherever the pursuit leads. I have a number of friends and acquaintances whose radio knowledge is practically nil, but who express keen interest in serious music. They have never suggested that the B.B.C. Symphony Orchestra was itself not powerful enough to fill the Albert Hall, although this hall is considerably larger than the Queen's Hall and must therefore have a lower average "phon" level than the old home of the Promenade Concerts. Such criticism has been made about solo voices and instruments but never, to my knowledge, about the whole orchestra. From this I deduce that there is a fair margin in the ear-drum pressures permissible for the complete enjoyment of orchestral works. The figure of 5 W may therefore be regarded as a "peak of peaks," and a figure of 11 W maximum is not unreasonable. Remembering that these figures assume expansion by 5 phons, a figure for normal peak output for B.B.C. reproduction would be 1 to 11 watts. In case

these figures may appear absurdly small I would add that the 600-milliwatt power output of an AC/P valve proved quite satisfactory in my own case for seven years with an efficient 12in energized moving coil speaker.

There is another aspect of this problem which tends to be overlooked — interference with one's neighbours. For this reason we should aim at the lowest peak level consistent with the full enjoyment of the music and this level is something lower than was experienced at the old Queen's Hall.

I submit, therefore, that our amplifier need not exceed 5 W for high fidelity reproduction in the average home.

The next consideration is frequency response. The limits are variously placed from, say, 50-8,000 c/s to 10-20,000 c/s. "Cathode Ray,'' in his article, said that with a pure tone the output varied widely over the room. So far as the listener with normal hearing is concerned binaural listening eliminates to a considerable degree the presence of standing waves produced by reflection, so long as the wavelength of the note is not too great compared with the distance between the ears. This difficulty becomes worse as the frequency decreases and when the wavelength approaches that of the principal measurements of the room, regions of maximum and minimum sound intensity become very marked indeed and their location varies with the wavelength. Realistic reproduction in an average living room is therefore, I suggest, impracticable for notes whose wavelengths are greater than the physical dimensions of the room. Taking the greatest measurement as 15 feet this limits the reproduction to 80 c/s. I submit on this basis that it is impracticable to reproduce in an average living room the sound heard in, say. the nave of Westminster Abbey when an organist is sounding his pedal notes going down to a fundamental frequency of 16c/s.

So far as I have been able to read there is no equivalent upper limit to the frequency range. Accordingly we need an amplifier with a range from, say, 50 c/s (to be on the safe

Quality in the Home-

side) to 20,000 c/s with a power output of 5 W.

.

.

The instrument we shall use for reproduction will be a baffle-loaded moving coil loudspeaker. First the loudspeaker: the average 12in "high fidelity" speaker will handle 12 W at 400 c/s, and this limit on power input is normally dictated by consideration of heat dissipation. I deduce, I hope correctly, from elementary dynamics that the limit on power input based on the amplitude of vibration of the voice coil will be greater at low frequencies. Thus, supposing the 12 W at 400 c/s was the maximum input before the voice coil travelled outside the zone of uniform magnetic field then the power input at 200 c/s would be 3 W, at 100 c/s 3 W, at 50 c/s 3 W, etc. In practice the power-handling capabilities of a loudspeaker are governed by consideration of amplitudes of vibration at the lowest frequencies and heat dissipation at the middle frequencies. There are at least two methods of ensuring a wide excursion of diaphragm movement with freedom from intermodulation difficulties caused by variations in magnetic field. The first, by using a thicker "top-plate" than the length of the voice coil, and the second, converse of the first, by using a longer voice coil than the thickness of the top plate. The objection to the first method is the impracticability of obtaining a high flux density with a thick top plate. and to the second, the loss of sensitivity and increase in mass of the voice coil. To take a practical example, one manufacturer uses a $\frac{3}{16}$ in top plate with a $\frac{1}{2}$ in voice coil. This limits the travel to $\frac{1}{32}$ in and theoretically the maximum input before frequency doubling occurs at 50 cycles to 1 W. Another speaker with a 12in diaphragm can handle 1 W at 50 cycles before difficulties ensue. It has a lin top plate. For a 12in speaker with a top plate of in thickness a reasonable figure for the power handling capacity at 50 cycles would be 4 W.

Bass Resonance

Our troubles with the loudspeaker are not yet over, for there are at least two more considerations. First, the frequency of resonance in the extreme bass—I believe it is true to say that the movement of the loudspeaker above this frequency is

substantially inertia controlled, i.e., the stiffness of the surround and suspension do not constitute the major factor governing the amplitude of the diaphragm movement. Below this frequency, however, the audio output falls off sharply. For practical purposes it can be said that the linear range of the acoustic output of a loudspeaker starts from just beyond the frequency of major resonance in the bass. If the reader is interested he is recommended to study the curves of loudspeakers published in Wireless World since 1935 to appreciate this assertion. Let there be no mistake; I am not saying; there is no output below this point, but I am emphasizing the fact that the output is no longer linear with frequency. The fundamental frequency is usually about 60-70 c/s for the average 12in speaker. If, therefore, this type of speaker is chosen for high quality reproduction in the average small room there is another reason why we need not bother to go below 50 cycles,

The second difficulty with conventional loudspeakers is the production of spurious notes by a development of the Doppler principle. Take, for example, a speaker reproducing a "pedal" note of an organ at 50 c/s with a displacement of its diaphragm of 1 cm each way from the position at rest and also reproducing a flute note of 1,500 cycles. To the listener the diaphragm will approach and recede 100 times per second with a peak velocity of 50 cm/s, assuming a sine wave motion. When the diaphragm is approaching the 1,500 c/s note will rise in pitch and become 1,565 c/s and when it is receding will fall to 1,431 c/s. This is almost a variation of a semitone. The aural result is a harshness of tone as of, say, many flutes playing some half a tone flat and some half a tone sharp with others in between. The smaller the amplitude of the pedal note the less the displacement of tone. The amplitude of $\frac{1}{2}$ cm is certainly the maximum likely to be experienced without frequency doubling, but the aural effect is noticeable with much less than this input.

Recapitulating, it is not practicable to aim at a reproduction below 50 cycles because of acoustic limitations of a small room, and because of limitation in loudspeaker performance.

We will proceed to the placing of

the loudspeaker on a baffle and point out that the power radiated depends on the size of the baffle. A baffle offt square will result in 16 per cent efficiency or 8 db loss at 50 cycles, and many baffles are less than this in size. The difficulty in the production of long waves in small rooms is still further increased by the impracticability of housing large baffles. The use of a dividing wall between rooms as a baffle does not seem to be an unqualified success for various reasons.

The Output Stage

Proceeding now to the examination of the output valve, we must bear in mind that with the application of negative feedback the characteristics of the tetrode can be made similar to those of the triode in output impedance, distortion, etc. A. W. Stanley in the August, 1946, Wireless World produced curves for constant current and constant voltage input to a particular loudspeaker. The former rose 20db at the bass resonance frequency; the latter was level at this point. Translating these extreme cases into those of the KT41 tetrode and PX4 triode without feedback, the gain will be reduced from 20db to 14db for the tetrode and increased from zero to 1.7db for the triode. The result for the tetrode is excessive boom and over-accentuation of the range 1,000 c/s to 5,000 c/s. Filters are required to tune at the bass resonance, to reduce the gain by 10-14db, and again progressively between 1,000 c/s to 5,000 c/s by a similar amount but to restore the full output by 10,000 c/s, as the total spherical power radiated between 5,000 c/s to 10,000 c/s is much less than would be inferred from the axial response curve.

The use of negative feedback will not alter the response to these requirements and S. W. Amos in an article in *Wireless World*, Dec., 1944, stated that if too much feedback were used the top response sounded dead, and he proposed restoring some of the loss of "top" due to feedback. Feedback applied to triodes is open to this objection.

This leads on to the amount of distortion which can be tolerated before a detectable difference in quality is apparent. I would refer readers here to an article in the Post Office Electrical Engineers'

2.2.

Journal, April, 1939, "Non-Linear Distortion of Music Channels with Particular Reference to the Bristol-Plymouth System." The findings of this study were for non-linear distortion with single- and two-tone inputs to be just audible by direct comparison, and the percentages were :

- 2nd harmonic (a) up to 25 per cent at 100 e/s
 - (b) up to 3 per cent higher
 - than 200 c/s (c) up to 1 per cent higher
- than 400 c/s 3rd harmonic (a) up to 5 per cent at 100 c/s (b) up to 1 per cent higher
- than 400 c/s
- Quadratic Distortion
 - (a) up to 15 per cent at 100 c/s
- (b) up to 7.5 per cent higher than 200 c/s (c) up to 1.5 per cent higher than 400 c/s
- Cubic Distortion (a) up to 30 per cent at 100 c/s
 - (b) up to 10 per cent higher than 200 c/s
 - (c) up to 5 per cent higher than 400 c/s
 - (d) up to 1 per cent higher than 800 c/s
- Quadratic or cubic difference tones
 - (a) at any frequency between 100-200 c/s, 20 per cent
 - (b) at any frequency between 200-400 c/s, 5 per cent
 - (c) at any frequency between 400-800 c/s, 2 per cent
 - (d) at any frequency between 800-6,400 c/s, l per cent

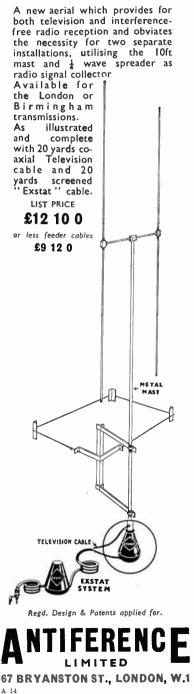
From this article there is abundant evidence to show that it is unnecessary to worry about small percentages of distortion at low frequencies and it would appear that distortion percentages to which the average radio engineer would hold up his hands in horror would pass unnoticed to the human ear if the frequency is low enough. Consider 25 per cent 2nd harmonic at 100 c/s; at 30 c/s a figure of 50 per cent would not be out of place. " Iron " distortion in transformers does not therefore appear important.

Adding all our deliberations together we need an amplifier which son in his articles in the April and May issues of Wireless World last year showed that the output for 1 per cent distortion without feedback is not much less than the nominal output for the valves in push-pull. The rated output of one KT66, triode-connected, is 5.8W; of a PX4, 3.5W. Two PX4s in pushpull will give 7W with I per cent distortion total, and I contend that a satisfactory output can be obtained without feedback with distortion less than is audible by direct comparison. There are thus no major reasons why negative feedback should be used with triodes.

On the subject of tetrodes without feedback, two KT41s in pushpull, 250 V screen, 250 V anode, will give 4 W with 1 per cent third harmonic, zero second; or 9 W with 31 per cent third harmonic, zero second.

There remain at least two further considerations; the type of output valve, whether directly or indirectly heated, and the type of bias, whether fixed or cathode.

Normally a directly heated valve should always be chosen, as the control influence exercised by the grid at low anode current levels is greater than that of an indirectly heated valve. It is for this reason among others that manufacturers list their output triodes as directly heated: vide "Introduction to Valves" by F. E. Henderson. This superiority of the directly heated valve is reflected in the power output for a given degree of distortion. It is observed that the makers claim a greater output for the KT66, triode-connected, than the PX25, but this is most unusual. A comparison of other valves is given in the Table below.


	Type of	Valv	•		Efficiency per cent (Power output)	Distortion per cent	
						(Power input)	
	(6L6 (tr	iode-	onnect	ed)		12.5	6
	6F6 (tr					10.0	6.5
Indirectly heated	MLA					17.0	5
	ACP					20.0	5
	ACPI			•••		19.0	5
	(PX4					23.0	5
Directly heated						23.0	5
meeting meater in	2A3 PX25					22.0	5
	DO30					27.5	5

has not more than I per cent distortion over the middle register and the rest of the scale will in all probability be satisfactory if standard components are used. Mr. William-

A further advantage of directly heated valves is their superior life; it is generally admitted by manufacturers that this is so.

The American valve handbooks

August, 1948

Quality in the Home-

make a point of the superiority of fixed bias over cathode bias in reducing distortion, so far as triode valves are concerned. The details in the Table below have been extracted from the "R.C.A. Handbook."

I have no literature for B.V.A. valves with fixed bias, but no doubt the distortion would be reduced in like fashion. In the American cases cited above I observe that the load coupling values will not fit such a low resistance.

Recourse can be made to transformer coupling, but my experience in this direction has not been entirely satisfactory. Although the transformer used was rated to have an adequate primary inductance with a particular value of D.C. flowing in its primary winding I found that fairly heavy A.C. voltage input was necessary to secure this induct-

	2A3	2A3	6F6	6F6	6L6	6L6
Conditions	Fixed Bias Push pull	Cathode Bias Push pull	Fixed Bias Triode co		Fixed Bias Triode Connected	Cathode Bias Single Valve
Power output Watts Distortion per cent	$\begin{array}{c c}15\\2.5\end{array}$	10 5	and pu 13 2	sh pull 9 3	1.4 5	1.3 6

resistance chosen produces considerable variations in anode current under working conditions, and I assume that fixed bias is helpful only where the power output is such as to cause these variations. These variations are not confined to the Class "AB1" and "AB2" conditions, but occur in simple Class "A." Thus a PX4 with -42 V bias and $_{300}$ V on the anode takes 50 mA, but when a grid swing of $_{42}$ V peak is applied the current varies between 95 mA and 12 mA giving a mean of 53.5 mA; i.e., a rise of 3.5 mA.

With cathode bias this means an alteration of grid voltage tending to reduce the output of the extreme peaks of the wave applied to the grid, producing in turn added distortion. There is an added advantage of fixed bias, inasmuch as the potential for the anode need not now exceed the required value by the amount of the bias voltage. A separate metal rectifier can supply the bias and the total heat dissipation in the output stage can be reduced by something like 10 per cent. As usual, however, there is a snag. American valve manufacturers specify a grid-cathode resistance, under fixed bias conditions, of a fifth to a tenth of the normal value. The B.V.A. do not normally list the grid-cathode resistance of 15-watt dissipation triodes under fixed and cathode bias. One value only is usually given—around 1 megohm. The American 2A3 valve is limited to 50,000 ohms with fixed bias and the conventional resistance-capacity ance. The normal values of applied A.C. are between $3\frac{1}{2}$ and 5 volts. With a transformer of 1:2 ratio feeding two PX4s the input to the primary would need to be 42 volts for 7 W output. Allowing our programme level of 105 phons corresponding to 5 W, the average level is 80 phons and this corresponds to 2 V. The softest passages, 55 phons, correspond to a level of 0.11 V. It is essential therefore that the primary inductance of any intervalve transformer should remain adequate at these low input voltages and I fear this does not happen,

especially when the transformer is directly fed. If the transformer is parallel-fed the presence of the resistance in the anode circuit of the "driving" valve limits the voltage output with any specified degree of distortion. The best valve I can find for transformer coupling is the American 6P5. The use of a centretapped primary and push-pull input valves overcomes this trouble, but a phase inverter will be necessary.

The performance in the extreme bass of a transformer coupling is usually criticised on the grounds of ''iron'' distortion, but, as I have shown, the Post Office experts do not consider distortion as audible at low frequencies until it is very excessive.

Recapitulating, the amount of distortion can be reduced by the use of fixed bias, but this involves unusually low grid-cathode resistors and the penultimate stage requires special care if use is made of the resistance-capacity type of coupling. Transformer coupling is satisfactory provided steps are taken to see that the primary inductance is adequate at low signal inputs, and that the circuit arrangement does not prejudice the delivery of the required peak voltage output.

Summing up, a pair of PX4s in push-pull without feedback should provide all that is necessary for home use under normal conditions with a baffle-loaded speaker.

Books Published for "Wireless	Wor	·ld ''
	Net Price	By post
RADIO LABORATORY HANDBOOK. Fourth Edition, by M. G. Scroggie, B.Sc., M.I.E.E	12/6	1211
TELEVISION RECEIVER CONSTRUCTION. A reprint of 10 articles from "Wireless World "	2/6	2/9
FOUNDATIONS OF WIRELESS. Fourth revised Edition, by M. G. Scroggie, B.Sc., M.I.E.E.	7/6	7/10
WIRELESS DIRECTION FINDING. By R. Keen, M.B.E., B.Eng. (Hons.), Fourth Edition,	45/-	45/9
TELEVISION RECEIVING EQUIPMENT, by W. T. Cocking, M.I.E.E., Second Edition	12/6	12/11
WIRELESS SERVICING MANUAL, by W. T. Cocking, M.I.E.E., Seventh Edition	10/6	10/10
HANDBOOK OF TECHNICAL INSTRUCTION FOR WIRE- LESS TELEGRAPHISTS, by H. M. Dowsett, M.I.E.E., F.Inst.P., and L. E. Q. Walker, A.R.C.S., Eighth Edition	30/-	30/8
BASIC MATHEMATICS FOR RADIO STUDENTS, by F. M. Colebrook, B.Sc., D.I.C., A.C.G.I.	10/6	10/10
GUIDE TO BROADCASTING STATIONS, Third Edition	1/-	1/1
RADIO DATA CHARTS, by R. T. Beatty, M.A., B.E., D.Sc., Fourth Edition—revised by J. McG.Sowerby, B.A., Grad.I.E.E.	7/6	7, 11
Obtainable from all leading booksellers or from		
ILIFFE & SONS LTD., Dorset House, Stamford Street, Lo	ndon,	S.E.1.

Short-wave Conditions

June in Retrospect : Forecast for August

By T. W. Bennington and L. J. Prechner (Engineering Division, B.B.C.).

DURING June the average maximum usable frequencies for these latitudes decreased during the day in accordance with the seasonal trend, but during the night they increased rather more than was expected, possibly because of the still considerable sunspot activity. Consequently there was very little difference between the day and night M.U.F.s.

Communication on frequencies higher than 35-Mc/s was very infrequent, although contact was maintained with South and-Central Africa on the 28-Mc/s band. Conditions on the lower frequencies were poor, and frequencies below 14 Mc/s for distances exceeding 3,000 miles were not practicable at night.

In accordance with the seasonal trend the rate of incidence of Sporadic E was very high and many contacts were made with the Continent by this medium. Very occasionally frequencies as high as 58-Mc/s came through. Longrange tropospheric propagation was again observed in June. Thus, the Paris television transmissions (sound 42 Mc/s, vision 46 Mc/s) were received in southern England on a number of occasions, but not as frequently as in May.

Although sunspot activity in June was about the same as in May, June was a very quiet month. Ionosphere storms occurred on r9th, 22nd, 26th/27th, none of them being very severe. There may have been some connection with the sunspots, as four fairly large groups were observed in June, which crossed the central meridian on 2nd, 18th, 25th and 29th respectively.

and 29th respectively. Many "Dellinger" fadeouts have been recorded, although fewer in number than in May. Those on 3rd, 18th, 20th and 21st were particularly severe.

Forecast. — During August the working frequencies for longdistance transmission should, generally speaking, be much the same as during July, although the daytime usable frequencies may tend to be a little higher and the nighttime usable frequencies a little lower.

Working frequencies for *long-distance* transmission should, therefore, continue to be relatively low by day and high by night. As in July, day-time communication on very high frequencies—like the 28-Mc/s band—is not likely to be very frequent, although near the end of the month they may begin to become more useful, particularly towards the south of this country. Over many circuits fairly high frequencies—like 17 Mc/s—will remain regularly usable till midnight. Frequencies like 15 Mc/s may remain of use throughout the night on many circuits, but frequencies lower than 11 Mc/s will be seldom required.

For medium distances up to about 1,800 miles the E and F_1 layers will control transmission for considerable periods during the day.

Sporadic E is usually somewhat less prevalent than during July, and so on many occasions (which it is, however, impossible to predict) communications over distances up to 1,400 miles may be possible by way of this medium on frequencies greatly in excess of the M.U.F.s for the regular E and F layers. For example, frequencies as high as 60 Mc/s may be occasionally reached for a very short time.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during August for four longdistance circuits running in different directions from this country (All times G.M.T.) In addition, a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time.

Montreal :	0000	11 Mc/s	(16 Mc s)
	0300	9	(15
	0800	11 ,	(15
	1000	15 ,,	(19
	1400	17	(21 ,)
	2000	15	(19)
	2300	11	(16
Buenos Aires	: 0000	15 Mc/s	(19 Mc/s)
Digottop All of	0400	11 ,,	(16 ,,)
	1000	17	(23 ,)
	1110	21	(27 ,,)
	2100	17 "	(22
A			
Cape Town :	0000	17 Mc/s	(22 Mc/s)
	0100	15 ,,	(19 ,,)
	0300	11 ,,	(18 ,,)
	0500	15	(20
	0600	17	(23
	0700	21 ,,	(26
	1000	26 ,	(32 ,,)
	1700	21	(26
	2100	17	(22
Chungking :	0000	11 Mc/s	(16 Mc/s)
	0500	15 "	(19 ₁₁)
	0800	17 ',,	(22 ,,)
	1700	15 ,,	(19 ,, j
	2000	11 ,,	(16 ,)

Ionosphere storms are not usually very prevalent during August, but at the time of writing it would appear that the most likely periods during which disturbances may occur are 3rd/6th, 9th/10th, 14th/ 15th, 21st/23rd, 25th/27th and 30th/31st.

New TRIX Ribbon Microphone

Unbiased

Glass Houses and All That

THE suggestion that it should be made illegal for anybody to own or drive an unsuppressed motor vehicle has been made on more than one occasion and I am glad to see that "Diallist," writing in the July issue, lends it the weight of his advocacy. No doubt the critics

Totalitarianism in the family circle.

will say that the idea smacks somewhat of totalitarianism, but I think none the less of it for that. Totalitarianism in moderate doses and in the proper place has much to commend it, more especially in the family circle. In Queen Victoria's day the head of the family might truly say, as was said of another potentate, that "all the Earth trembled before him." This is certainly more than he has been able to say since 1918 when Lloyd George, playing Delilah to his Samson sheared of his locks by extending the franchise to women.

Although, therefore, I am on the whole, in favour of legislation to "suppress" motor vehicles and all other interference-producing apparatus ranging from trams to electric razors, I cannot consent to something which would, metaphorically speaking, hand me over, bound hand and foot, to the perpetrators of a far greater nuisance, the noisyloudspeaker brigade. At present whenever I hear the loudspeaker in a neighbouring garden bellowing out a futile appeal by the B.B.C. to people to moderate the volume, I can secure almost instant compliance by switching on Mrs. Free Grid's so-called violet-ray beautifier. This is, of course, nothing more than a dolled-up version of a ship's

By FREE GRID

plain aerial' spark transmitter of bygone days. This always has a far more salutary effect than all the B.B.C.'s plaintive appeals. Moreover it causes no harsh words among neighbours who, under my guidance, imagine the din to be caused deliberately by an omniscient and omnipotent B.B.C. to secure compliance with its request.

Now if an anti-electrical-interference law were passed my exercise of the functions of a benevolent totalitariocrat would come to an end—as I could not think of breaking the law. My neighbourhood would, therefore, cease to be the peaceful and law-abiding one that it is and would at once become a bedlam of babbling loudspeakers. Frayed tempers and ill-feeling between neighbours would be prevalent as in most other districts during the summer months.

I think, therefore, that the wireless-using community—which means virtually everybody—ought to put their own house in order before expecting motorists and others to bother about the particular type of interference caused by them.

Meaningless Misnomers

I THOUGHT that in the statement of my views in the June issue I had effectively scotched the attempt that is being made in various quarters to foist on us strange-sounding units to denote thousands and millions of megacycles. Apparently it is not so, however, and I cannot allow to pass unchallenged a bid which is being made to get us to adopt an uncouth word like gigacycles to denote ro^o cycles.

This numerically meaningless term can do nothing but hold us radio men up to public ridicule, as it is at once suggestive of the unit which a schoolgirl might properly use to define the degree of her risibility (giggles to you). What is still more surprising, however, is one of the reasons which a correspondent in the July issue of *Wireless Engineer* — that most sternly puritanical of journals in technical matters—appears to advance in its favour, namely that it is in use on the Continent. To my mind this is strangely reminiscent of the "I've-seen-it-in-print" method of reasoning. A correspondent in a recent issue of *Electronics*, who has also "seen it in print," goes even further as, in addition to wishing us to perpetuate the Greek prefix "giga" (giant) for 10⁹ cycles, he wants us to follow certain textbooks and indicate 10¹² cycles by using the prefix "tera." This is of course derived from a Greek word which, appropriately enough, means "a strange thing" or "a monster"!

He also delves into the question of the nomenclature of sub-units which we use for measurements of capacitance and upholds "nano" (dwarf) as a prefix for 10^{-9} and "pico" for 10^{-12} . The correspondent of *Electronics* supposes the latter term to be of Latin origin. I can at least assure him that he is correct in his supposition. It is a direct descendant of the *litera picata*, or large black letter, which the monastic scribes employed to commence a fresh section of the Church liturgy long before the followers of Caxton adopted it as part of their jargon.

I still maintain that every prefix, whether intended to indicate multiples or sub-units, should possess a definite numerical meaning, as in the case of the metric system, which would itself be greatly improved by adopting my logarithmic method of nomenclature. I could, however, go even further and sweep away all existing prefixes and, starting off with a cycle as the logical unit, would use hexacycle (10⁶ cycles) for megacycle, and so on.

10 ⁻³ Tres 10 ⁻⁶ Sex 10 ⁻⁹ Novem
10 ⁻¹² Duodecim

Prefixes for cycles, metres, farads or what have you? Words can be amended for the sake of euphony by omitting final letter, if a consonant, adding a vowel or in other ways as is freely done in the metric system.

10³ cycles would not, of course, become a tricycle but a treiscycle, as we do not want to use the Greek adverbial prefix which the muddleheaded makers of three-wheeled velocipedes adopted merely because it rhymed with the Latin prefix "bi" used for two-wheeled machines whereas the Latin prefix "ter" did not,

TO THE EDITOR LETTERS

High-quality Broadcasting + Renaming Printed Circuits + Future of Television + Full-wave Detection

Is High-quality Broadcasting Wanted?

THE discussion on the E.H.F. broadcasting service in your recent issues is very interesting, but seems to be mainly academic. An essential question which has not been asked is: "Are there enough listeners interested in high quality, and prepared to pay for it, to justify such a scheme? "

Present receiver sales suggest that the answer is "No." Most listeners are content with "'Home'' and 'Light," and show no inclination to wander farther afield. They like the bass well boosted, and the top severely cut, in spite of the best efforts which have been made to persuade them that the resulting quality is very bad.

These people will have little interest in a high-quality service, and will not be prepared to pay large sums for new F.M. receivers. It is doubtful if the converter method would attract them much more. The service will therefore be of interest only to those few who appreciate quality and can pay for it.

In these circumstances, it seems absurd to proceed with a scheme whose success is in any doubt, and there seems to be considerable doubt regarding the value of F.M. Even Thomas Roddani, who calls A.M. "cheap and nasty," has listed some very nasty features of F.M. (Wireless World, Feb., 1947, p. 70).

In the same article, he says that the cost of an F.M. receiver will be "rather higher" than that of a normal broadcast receiver. Manufacturers estimate that the cost will be at least double, if not more. This assumes that proper advantage is taken of the possible quality of reproduction.

America has produced an object lesson and a warning. Unable to sell high-quality receivers for F.M. in nign-quanty receivers for P.M. In sufficient quantity, the manufac-turers over there have devised a small set whose quality is com-parable with that of an average A.M. midget set. The main ad-vantage of the E.H.F. service is thus sacrificed.

These points have been made without reference to the technical matters affecting the case : difficulty of tuning, maintenance of align-ment, and all the others. These are

. . . 1

well known, and have been discussed at length. Add them to the case given here, and it appears that the B.B.C. would be well advised to delay the introduction of F.M. until the economic health of the country is in a better state. Any losses incurred would then be less important, and the public would be more prepared to buy quality. Exeter. D. W. THOMASSON.

Onlaying

PLEASE save us from this "applique" business (July "applique" business (July issue, p. 260). It is surely unnecessary to maul both the French and English languages to find a name for sprayed-on or printed-on electronic circuit manufacture. Let us coin new words for the new things-SPRON and PRON-and see the result:

"A factory spronning radio chassis can spron 5,000 a day, but, using the pronning process, hundreds can be pronned every hour.' Yes . . ? I don't like it much either.

But there is already a word "inlay" in our language; why not coin a word "onlay" to describe the manufacture of a unit having its wiring onlaid by a spraying or printing process?

I rather care for that. W. IRE LESS.

Planless Television

T is understandable that Britain has not been able to extend her television service at a rate commensurate with the promise of 1937, when the service started; since then she has suffered from the effects of a crippling war. But I think we are entitled to protest against the lack of any long-term plans for future extension of the service.

We read that America proposes to make television programmes available to nearly 67 million listeners by the end of 1948. Many will have alternative programmes. Nobody would suggest, while we are feeling the economic after-effects of war, that anything approaching equivalent growth can be planned here, but we should at least have some kind of declared aim, if only for the remote future.

Our distribution of population and the shorter distances for radio

OUALITY REPRODUCTION

High Fidelity Amplifier suitable for reproducing Frequency Modulation and Television Sound wide band transmission. Separate base and treble controls. Out-put, triodes in Push Pull. (12 watts undistorted). Blue Prints, 2 full size practical and theoretical 7/6.

NEW CIRCUIT T.R.F. OUALITY RECEIVER

For first class radio reproduction on the three standard programmes of the B.B.C. (Third, Light and Home). Two R.F. stages. Infinite Impedance Detector, with special filter circuit and Interference Suppression. Double triode phase inverter and LF amplifier, feeding into two triodes in push pull. Blue prints, 2 full size practical and theoretical 7/6.

> MONTH'S LAST **NEW CIRCUIT**

We are now able to give fuller details of this efficient and simple circuit for receiving the new Frequency Modulation Transmission of the B.B.C. One RF. stage of wide band amplification. Frequency Changer. Two I.F. stages, limiter, detector. Output rectifier. Tuning eye. Mains transformer, smoothing choke. Can be used as an H.F. unit in conjunction with high fidelity amplifier by removing output valve and plugging in socket from amplifier. All coils wound on polystyrene formers, and with two gang 10 pf. tuning condenser. Blue Prints, 2 full size practical and theoretical 7/6.

F.M. Coils. Silver plated on polystyrene formers, adjustable brass rod core, range from 25-10 metres tuned with a 10 pf. variable or air spaced preset condenser as used on our latest F.M. and Television circuit, 3/3 per coil. A.HF. or Osc.

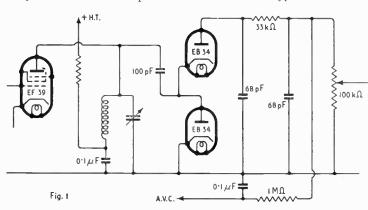
Audio frequency heterodyne filter choke, as used on our infinite impedance detector output circuits. Can also be used as a filter in any Grid circuit from detector. Cuts out unwanted whistles. Price 7/6 with circuit.

307, HIGH HOLBORN

LONDON W.C.I. Phone: HOLborn 46

0-177 F

ıMΩŞ


Fig. 2

44

250 kΩ (APPROX.)

Letters to the Editor-

and cable links, as compared with America, should help us to make up leeway with reasonable speed as tector; the answer is twofold. First, A.V.C. can be obtained in the usual way. Secondly, measurements I have made on typical valves in the do. At low frequencies a diode circuit can be given a high input impedance by putting in front of it a cathode follower, and for L.F. work

soon as the economic conditions of the country permit. H. T. STOTT.

Chadwell Heath, Essex.

Aircraft and Television Reception

CAN any of your readers suggest a remedy for the complete break-up of a raster which occurs when low-flying aircraft are in the vicinity of a vision receiver.

This interference is quite common in this area and appears to be a greater menace than the increased interference created by the return of the basic petrol ration.

The interference is comparatively negligible in the sound channel and appears to be associated with the actual audible note and has what I term a "Doppler Effect." In less severe cases the interference is manifest in the form of fluctuating light density without affecting sync to any extent.

R. M. STAUNTON-LAMBERT. London, N.W.6.

Full-wave Detection

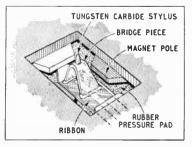
THE renewed interest shown in the Cockcroft-Walton multiplier circuits for H.T. and E.H.T. supplies prompts me to report that the circuit can be used with advantage also at the detector stage in a straight set, the principal advantage being that the use of an R.F. choke is avoided.

The circuit values I have chosen are shown in Fig. 1, and although it can be seen that the detector will give a damping across the tuned circuit of about 25 or 30 k Ω , a typical R.F. valve (EF39) passing 6 or 8 mA will still be able to develop plenty of signal across it without distortion. Readers may ask, of course, why I prefer this circuit to the "infinite-impedance" de"infinite-impedance" circuit $(6C_5, 6J_5)$ do not confirm the popular view that the circuit provides linear detection; diodes on the other hand

I have found the single-valve circuit of Fig. 2 quite useful, since an almost linear scale is obtained.

LkΩ

33 k Ω


Malvern, Worcs. E. F. GOOD.

Ribbon Pickup

New Equipment Demonstrated

A^T a recent joint meeting of the City and Guilds Radio Society and Imperial College Musical Society, J. H. Brierley, gave a demonstration of reproduction from commercial gramophone records, using one of his latest designs of ribbon pickup.

Essentially this pickup consists of a U-shaped foil strip folded so that the plane of the foil lies parallel to the magnetic field. A bridgepiece of light plastic material is attached to both limbs of the ribbon and carries a tungsten carbide stylus which is cemented in position. A special grade of carbide, which does not flake, has been chosen and is stated to have a hardness six times greater than sapphire. The mass of the moving parts is about 1/25th of that of a standard needle so that record and stylus

Ribbon and stylus assembly in the Brierley pickup.

wear is very small. The top resonance has been measured by harmonic methods and is stated to be in the region of 40 kc/s.

Demonstrations given with the full frequency response were remarkable for the excellent transient response and attack, but surface noise on standard commercial pressings

> Brierley type JB/12 a amrlifier and LPF I filter used at the demonstration.

was also faithfully repro-duced. With a low-pass filter cutting off at 8,000 c/s the difference in quality of reproduction was easily discern-ible, but there was less scratch. Musical critics in audience the called for the

August, 1948 Wireless World

8,000 filter at the beginning of the recital, but after hearing recordings with and without the filter, pre-

The tone arm bearing in the Brierley pickup consists of widely spaced, spring load ballraces in a dust-proof housing.

ferred the improvement in quality resulting from an extended H.F. response and agreed to tolerate the surface noise.

The electrical output from the

brierley amplifier equipment showed no trace of hum pick-up when demonstrated in conjunction with a wide-range loudspeaker reproducing down to at least 40 c/s.

pickup is small and care is necessary in the design of the amplifier |

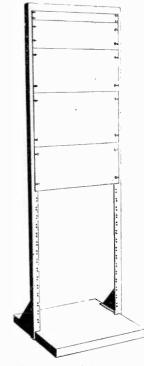
New Domestic Receivers

DESIGNED with an eye to the export market as well as for home consumption, the Model 600 console receiver, made by Ace Radio, Tower Road, Willesden, London, N.W.10, employs an R.F. stage before the frequency changer and covers seven short-wave bands between 13 and 55 metres in addition to the usual long- and mediumwave ranges. A resistance-coupled push-pull amplifier provides an output of 10 watts and the bandwidth of the I.F. amplifier can be expanded to 20 kc/s for high-quality reception of local stations. The price is £54 125 6d, including purchase tax.

A 14-inch glass scale with a separate pointer for short-wave stations is a feature of the Model U75 made by E. K. Cole, Southendon-Sea. Suitable for operation from A.C. or D.C. mains, 200-250 volts this receiver employs a four-valve plus rectifier superheterodyne circuit with a high-gain output pentode used with negative feedback. The price is f_{22} 198 11d, including purchase tax.

The Philips Model 474B is a sixvalve, three-waveband superheterodyne for battery operation. There are two I.F. stages and the output stage employs two pentodes in quiescent push-pull. The normal consumption is 0.4 amp L.T. and 9.5 mA H.T., but an economy switch is fitted which reduces these figures to 0.3 amp and 5.5 mA for a slight reduction in sensitivity and power output. Battery connections are provided for combined II.T. and L.T. dry battery blocks, or separate batteries and the L.T. can be supplied from cither a 1.5V dry cell or a 2V accumulator. A rubber accumulator tray is provided to isolate acid leakages and prevent damage to the interior of the set. The makers are Philips Electrical, Century House, Shaftesbury Avenue, London, W.C.2, and the price is £22 18s 11d, including tax.

The Mullard Model MBS147 has a similar technical specification but a different style of cabinet; the price is the same and the makers are Mullard Electronic Products, Century House, Shattesbury Avenue, London, W.C.2.


An attractive plastic case with detachable carrying handle has been designed for the Pye Model M78F miniature receiver. This is a four-valve two-waveband superhet running from dry batteries and measures $7\frac{1}{2}$ in $\times 5\frac{1}{8}$ in $\times 3\frac{1}{4}$ in; the weight is $4\frac{1}{4}$ b. Made by Pye Ltd., Radio Works, Cambridge, the price

Pye miniature portable. Model M78F

is f_{12} 12s (excluding purchase tax). The chassis design is unconventional and permits the use of a 5in loudspeaker—a notable achievement in a set of this size.

And now the STANDARD RACK

Latest edition to the imhof range of cases is the new Standard Rack and Panel assembly. Of heavy gauge mild steel angle, it is strongly constructed with welded corners, and finished in grey stove enamel. Standard 19" Rack panels of $\frac{1}{2}$ thick mild steel plate are available in four sizes:---13", 53", 83" and 103" deep finished in grey stove enamel.

Prices:-

19" x 12" 3s. 2d. Plated chassis with associated mour	
Plated chassis with associated mour	
brackets 15s. per set.	

Telephone: MUSeum 5944

Random Radiations

By "DIALLIST"

Superlatives

308

IT IS REFRESHING to learn that in future Wireless World will have no truck with the wild welter of superlatives which often make it difficult to gather exactly what class of frequencies is under discussion when they are described as super, extra, very or ultra high. For readers E.H.F. will in future mean all frequencies above 30 Mc/s, except that V.II.F. may be used when it relates beyond question to the 30-300 Mc/s band only. Excellent, so far as it goes; but are we yet quite out of the wood? I hardly think so, for we really do seem to need some separate terms for the 3,000-30,000 Mc/s and the above-30,000 Mc/s bands. The corre-sponding wavelengths are nicely taken care of by calling them centimetric and millimetric; how would it be to adopt the same terms for the frequencies? If it were understood that the term "centimetric frequency" was a portmanteau expression standing for "Frequency corresponding to a centimetric wavelength,'' there couldn't be much objection to its use. An extension to metric, decametric, hectometric and kilometric frequencies would enable us to be just as precise in talking or writing of radio frequencies as we can now be in talking or writing of radio wavelengths. One can't, unfortunately, evolve a precise classification on the same lines based on the cycles-persecond. The wavelength classes are all simple tenfold multiples or submultiples of the metre; but the cycles-per-second classes involve 3, 30, 300 and so on, and the corresponding terms would be over-large mouthfuls to receive any kind of welcome

Radar and Cable Faults

AN INTERESTING application of radar technique for the location of faults in cables is now coming into use. When a discontinuity occurs in one of the leads a short pulse is injected into the line. The pulse is reflected back at the point of discontinuity and the time for the out-

and-home journey is measured by means of an oscilloscope. I'm told that results are exceedingly good. There are, of course, a good many snags; but means of overcoming most of them have been worked out and any that still remain will no doubt be dealt with in due course. Any reader who recalls the positive shambles that was apt to result in wartime, when breaks in radar, searchlight, predictor and other heavy multi-core cables had to be located without proper instruments and repaired in the shortest possible time, will realize what a packet of money such fault locators would have saved. In everyday life they should, if they give accurate information (as I am told they do), play an even more valuable part in assisting the maintenance of the vast and growing network of cables that now lies over and under so much of the world's surface.

French Television

THE FRENCH P.T.T. authorities. I hear, have decided to adopt an 819-line system for the high-definition television service of the near future. The Paris station already possesses two cameras and a small transmitter designed for 819 lines, and experimental transmissions are being made. Like ourselves, the French have decided that their present lower-definition system with 455 lines is to be extended. A guarantee has been given that it will be continued for at least another ten years. Transmitters relaying the 455-line Paris programmes and probably sending out some items of their own are likely to be in operation before very long in Lille, Lyons, Toulouse, Marseilles and probably Bordeaux. Both in Paris and in these towns 819-line transmitters are to be installed to send out the same programmes. Television will thus be available both for those who install simple, moderately priced 455-line receivers and for those whose purses can run to the more elaborate 819-line sets. It is also intended to erect television theatres in certain towns. In these, large audiences will be able to see

big-screen reproduction of the $\$_{19}$ line transmissions. Success has already been obtained by using the intermediate film method, in which a film is made of the images on the C.R.T. screen and then developed, fixed and passed through a projector, all in less than 60 seconds. A friend who has seen projection on to a 12ft × 10ft screen describes the images as being as good as those of the 16 mm cine.

Battery Set Indicators

D. A. BELL'S SUGGESTION of the use of a flashing neon lamp as an indicator that a battery set is switched on is an interesting one. The snag, as he says, is that it is difficult to get neons to strike at much below 90 volts. Or, perhaps, it might be put in another way: there are small neons that strike at considerably less, but it's almost impossible to get hold of them. The kind I have in mind are not much bigger than peas and they're used in neon voltage testers. I've been trying ever since the end of the war to find one or two of them, but so far I haven't managed to do so. Used with a capacitor-and-resistor circuit with a time constant of a second or so, they'd be ideal for the job.

Vision Only

A READER takes me to task for having written recently that the vision-only receivers seen at Radiolympia before the war didn't catch on because people were not attracted by the tiny images on their 2½ in or 3 in tubes. He reminds me that there was at least one model with a 7-inch tube. He tells me that he bought one of these and is still getting good service from it. I'd forgotten that there were any vision-only sets with screens of this size-I'm sure, anyhow, that there can't have been many of them. But I do feel that any manufacturer who cares to try a modern version of the vision-only set with a 6-inch or 7-inch tube might find that it was just what a good many people wanted. What happened in prewar years is really nothing to go by. Television of any kind was very "sticky" then, and there was only a feeble demand for receivers. Today people are becoming more and more television-minded, as the continuing rapid increase in television receiving licences shows. Many who

August, 1948 Wireless World

feel that they can't afford even the lowest-priced sound-and-vision table model might jump at a small visiononly set, if it cost appreciably less.

Tail-piece

YOU, I EXPECT, get as bored as I do by the Old-Uncle-Tom-Cobbley-and-all lists of "those taking part" in broadcast programmes. I thought that bottom had been touched when the fellow whose sole contribution to the entertainment was "Your coffee, sir," was listed as "The butler, played by so-and-so." But I was wrong, quite wrong. The other night we had: "The part of the deaf mute was played by. . . ." They'll never beat that one, unless they name the player of the part of The Man Who Was Not There in some whimsey piece.

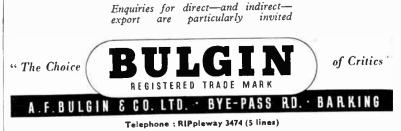
BOOKS RECEIVED

Fundamental Principles of Ionosphere Transmission.—Radio Research Special Report No 17, issued by the Department of Scientific and Industrial Research. Written to provide background knowledge on short-wave propagation, particularly for those engaged in applying the results of ionosphere measurements to the organization of communication services. Pp. 82; figs. 69. H.M. Stationery Office, Kingsway, London, W.C.2. Price 15 6d.

Loudspeakers: The Way and How of Sound Reproduction, by G. A. Briggs. A collection of data gathered during 15 years of loudspeaker manufacture, including notes on the design of cabinets. Pp. 85, with numerous illustrations. Wharfedale Wireless Works, Bradford Road, Idle, Yorks. Price 5s.

Microwave Transmission Design Data, by Theodore Moreno. An advanced textbook giving basic formulæ and design data for the "plumbing" in microwave equipment. Is limited to problems arising in the propagation of energy in transmission lines and waveguides at frequencies above 300 Mc/s Pp. 241, with numerous illustrations, tabl@s and graphs. McGraw Hill Publishing Co., Aldwych House, London, W.C.2. Price 245 in U.K.

Applied Electronics. By D. Hylton Thomas. Fundamental principles and description of valves, cathode-rav tubes, photocells and other electronic devices, with their applications. Pp. 131; 90 figures. Blackie and Son, 66, Chandos Place, London, W.C.2. Price 78 6d.


Photoelectric Cells in Industry. By R. C. Walker. A comparatively brief exposition of the theory of operation, followed by detailed information on the practical industrial uses of the cells in relay circuits and for such uses as measurement, control, reproduction of sound, facsimile and television. Pp. 500; 241 figures. Pitman and Sons, Parker Street, Kingsway, London, W.C.2. Price 405.

The BULGIN range of Tag Strips, Group Boards (with tags or holes), Captive-Screw Strips (4 B.A.) and Removable-Screw Connector Strips (4 B.A.) is most comprehensive and caters for all manufacturing requirements. The selection illustrated above, includes a few of our standard designs for upright mounting, centre-fixing, twin end-fixing, flush panel mounting and chassisbase mounting. Numerous standard types are manufactured, and special facilities exist for the production of individual designs, in quantity, to manufacturers' own requirements.

These components utilise the highest possible grades of lowmoisture-absorbing S.R.B.P. or S.R.B.F. phenolic thermo-setting plastics-sheet, and non-ferrous metal parts, heavily silver plated. Tag strips are spaced $\frac{3}{4}$ on $\frac{3}{4}$ strip.

For working at 500y. max. pole-to-pole and to Earth. Insulation resistance is $40M\Omega$ min. at 1 KV. peak, dry.

RECENT INVENTIONS

A Selection of the More Interesting Radio Developments

DIRECTION FINDING

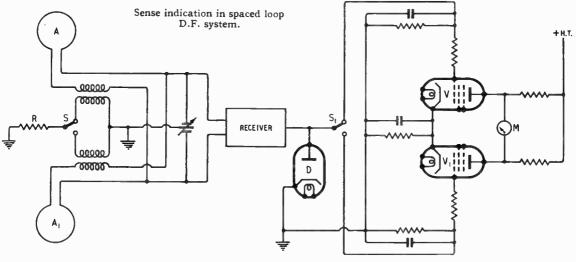
RELATES to a direction finder of the kind in which two parallel loop aerials, spaced apart, are rotated about a point halfway between them. The polar diagram of such a system is free from polarization errors, but in-cludes four different directions of zero signal strength.

The diagram shows an arrangement for resolving this ambiguity. Each of the aerials A, Ar is coupled, in rapid alternation, through a switch S, to an earthed resistance R. A second switch SI, driven synchronously with the first, feeds the output from the receiver to an indicating meter M, through a pair of amplifiers V, VI, the effect of the switching frequency being smoothed out by the circuits associated with the second detector D. The periodic inattracted upwards, against gravity, to form a deposit on the screen. When the layer is sufficiently thick, usually after two or three minutes, the screen is removed and exposed to a gaseous suspension of phosphoric acid, which settles uniformly on it, and binds the fluorescent coating firmly in position. To reduce the risk of subsequent

damage, the coating process can be carried out on the screen after it has been mounted inside the bulb of the cathode rav tube.

Cinema-Television, Ltd., and R. B. lead. Application date, Feb. 1st, llead. 1945. No. 592860.

RADAR INTERROGATOR


SMALL self-contained unit is designed to radiate a characteristic series of pulses in response to a

circuits, one including a time-delay network equal to the pulse interval. Each circuit feeds one of the grids of a twogrid relay valve, which is normally non-conductive, until "unblocked" by the coincidence of the two impulses. An oscillation generator of the multi-vibrator type is thereupon triggered and the response signal is radiated.

Standard Telephones and Cables, Ltd. (assignees of 11. G. Busignies), Convention date (U.S.A.) October 26th, 1943. No. 588777.

RADIO ALTIMETERS

IN a radar set of the pulsed echo type, auxiliary indications are pro-vided to show when the measured range falls short of, or exceeds certain predetermined limits. In the case of a radio altimeter, for instance, one

clusion of the resistance R in the aerial circuits creates a different sequence of deflections, to right and left, in the centre-zero meter M, as the aerial system is rotated clockwise. This allows the directional sense of each of This the four zero channels to be distinguished and identified.

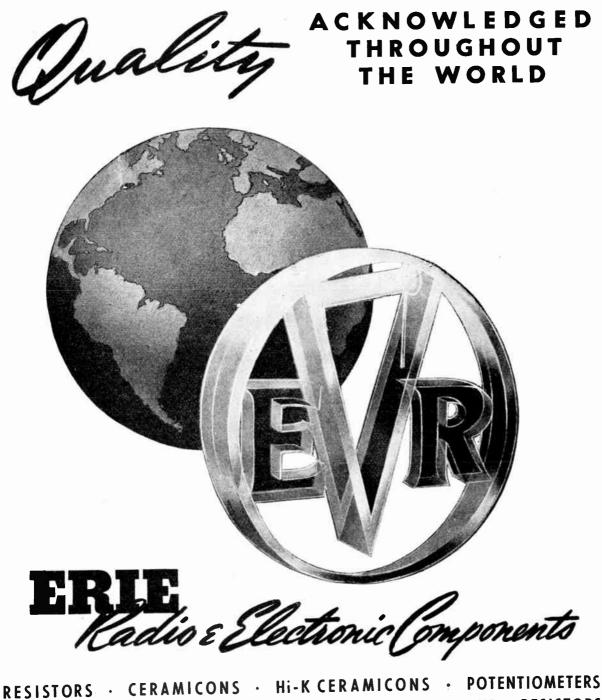
F. Chaplin and J. H. Bagley. Application date, June 7th, 1945. No. 593063.

FLUORESCENT SCREENS

HE sensitive screen of a cathode THE sensitive screen of a constantic ray tube is coated by electrostatic attraction from a suspension of fluorescent particles, in such a way as to ensure a uniform layer of very fine grain.

The screen is placed, face down-wards, in a chamber containing a fine wards, in a chamber containing a nine spray or mist of zinc silicate or sul-phide, or other suitable material, and is connected to one pole of a 50-kV sup-ply, the other pole being earthed. Only the finer particles of the suspension are

definite calling or triggering signal. If one or more of these devices are placed surreptitiously near an enemy post they can subsequently be interrogated, sav


by a radar set for controlling artillery fire. Their useful life is, however, limited to a few hours or days, at most. The receiving valve must be kept constantly active, but in order to make the most of the battery power avail-able, the transmitting circuits are only brought into action as and when the unit is interrogated. The calling signal takes the form of equally spaced pulses which are passed through two parallel

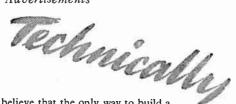
The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1/- eachlamp lights automatically when the aircraft is flying too low, whilst a second lamp may similarly indicate, either too high an altitude, or the presence of a mountain or other obstacle in the path of the machine.

The incoming echo signals are fed in parallel to the indicator lamps through two separate amplifiers, which through two separate amplifiers, which are normally biased to cut-off, but are periodically "unblocked" by two positive voltage waves which are generated at different times relatively to the master frequency control of the set. One positive wave is initiated by each exploring pulse, and only lasts long enough to allow short-range echoes to light one lanus: the other positive to light one lamp; the other positive wave is delayed so that the second lamp can only respond to long-range echoes. Between these selected limits, neither of the lamps is lit.

Marconi's Wireless Telegraph Co., Ltd. (assignees of W. D. Hershberger). Convention date (U.S.A.) January 30th, 1943 No. 588715.

August, 1948

 RESISTORS
 VITREOUS
 ENAMELLED
 WIRE-WOUND
 RESISTORS


 SUPPRESSORS
 VITREOUS
 ENAMELLED
 WIRE-WOUND
 RESISTORS

 Erie
 Resistor
 Ltd.,
 The Hyde,
 London,
 N.W.9,
 England

 Telephone:
 COLindale 8011-4.
 Cables:
 RESISTOR,
 LONDON.

 Factories:
 London & Gt. Yarmouth, England · Toronto, Canada · Erie, Pa., U.S.A.

World Radio History

We believe that the only way to build a receiver is to begin at the beginning with a sound circuit design—a design that's been tested and re-tested—a design that will stand up to the most critical examination. From this design a prototype is constructed in which every component receives the same rigorous testing. We leave the experts to pass judgment on the resulting Sobell receivers. We are confident that for ease of control and absolute fidelity of reproduction these models will be found to have no equals—that, in fact, you will pronounce them to be 'technically outstanding'.

Roll top gives easy access to gramophone turntable. The receiver is a 5-valve super-het. operating from 200/250 volts, 40/100 cycles per second A.C. supply. Wave range : 16-50 metres; 193-577 metres; 800-2, 140 metres.

SOBELL MODEL 717 7-VALVE RECEIVER

Built with a push-pull output stage giving 8 watts undistorted output. Incorporates a 10 loudspeaker. Covers long, medium and two short wave ranges. Voltages as for 516 T.G.

IWO YEARS' FREE ALL-IN SERVICE IN THE HOME Advt. of Sobell Industries Ltd., Langley Park, near Slough, Bucks. 8-53

BIF 2-13 MAY 1949

BRITISH INDUSTRIES FAIR LONDON & BIRMINGHAM

INTENDING EXHIBITORS should apply for space by 9th August, 1948.

Manufacturers who have not received an application form should apply at once :

for the *London Section* to Export Promotion Department, Board of Trade, 27 Old Queen Street, LONDON, S.W.1

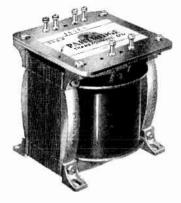
or for the

Engineering & Hardware Section to BIRMINGHAM CHAMBER OF COMMERCE, INC. 95 NEW STREET,

BIRMINGHAM 2.

Rate 6/- for 2 lines or less and 3/- for every additional lines or part thereof, average lines 6 words. Box Numbers, 2 words plus 1/-. Press Day: September, 1948 issue, first post Wednesday, Angust 6tb. No responsibility first post Wedness

August. 1018


WARNING

Readers are warned that Government surplus components which may be offered for sale through our columns carry no manufacturer's guarantee. Many of these components will have been designed for special purposes making them unsuitable for civilian upon the same do. unsuitable for civilian use, or may have de-teriorated as a result of the conditions under which they have been stored. We cannot undertake to deal with any complaints regarding any such components purchased.

NEW RECEIVERS AND AMPLIFIERS C.348 receiver, modified for 200-250v A.C.: £22.-Box 145. [1390] D 222.-Box 145. FEEDER units with R.F. stage, ready aligned tor connection to audio amp.iner. s.m.i. wave; send 2½d, stamp for illustrated evaluation couphone Radio, 58, Derby St. Ormskirk, 11423

Bard By Stand System 10: Introduction of the system of the

Partrídae Hews

LONDON SALES OFFICE

For the benefit of our many friends we have made arrangements for the im-mediate supply from stock of small quantities of our standard components (see paragraph below). These can be collected from our address at King's Buildings, Dean Stanley Street, Millbank Westminster, S.W.I. Tel.: Abbey 2244. (250 yards from Big Ben). Hours : 10 a.m.-1.0 p.m. and 2-S.30 p.m. (Mondays to Fridays only). Kindly note this address is for stock sales only, and all correspondence and other enquiries should be sent to Peckford Place. For the benefit of our many friends we

* * * *

comprehensive range of mains and audio components is now available from stock, and we can despatch small from stock, and we can despatch small quantities of these per return. We would stress that before ordering you send for our list detailing these com-ponents. Our stock range now covers almost all normal requirements, and by availing yourself of this service you will save the inevitable delay in the pro-duction of a special component. We shall be pleased to send you our stock list upon receipt of your address.

* * *

THE NEW PARTRIDGE MANUAL The completely revised post-war edition of this new Manual, now available. contains -Many useful circuits including New IS watt high quality amplifier with 40 db of negative feedback over three stages.

Also articles on Sound Reinforcing and Public Address, Acoustical Problems, cross-over networks, etc. A useful appendix is included consisting of six selected design charts.

Price 5/- Post Free,

R.A.F. I.F.F. responser units, complete with television diodes, 2 twin triode mains waives and 1 kF50 Mullard; also includes 24v motor generator, suitable for modification to universal motor, 2 magnetic relays, several mechanical multi-contact several mechanical motor, 2 magnetic relays, several mechanical consolitation of the several mechanical consolitation of the several mechanical contact of the mechanical several mechanical contact of the mechanical several several mechanical several several mechanical several several

-THESE ARE IN STOCK-

Radio Laboratory Handbook. By M. G. Scroggie, 12s. 6d. Postage 4d. Standard Valves. Standard Telephones & Cables, Ltd. 15s. Postage 4d.

Radio Engineering. By F. E. Terman, 42s. Postage 9d.

Television Receiver Construction. (10 articles from W.W.). 2s. 6d. Postage 2d. Principles of Radar-M.I.T. 30s. Postage 9d. Electronic Transformers and Circuits. By R. Lee. 27s. Postage 9d.

Testing Radio Sets. By J. H. Reyner-ISs. Postage 4d.

acuum Tubes. By Karl R. Spangenberg. 45s. Postage 9d. Vacuum Tubes.

Radio Circuits. By W. E. Miller. 3s. 6d. Postage 2d.

Television Receiving Equipment. By W. T. Cocking, 12s. 6d. Postage 4d.

The Mathematics of Wireless. By Ralph Stranger. 7s. 6d. Postage 4d.

Elements of Radio Servicing. By Marcus & Levy. 27s. Postage 9d.

Ultra-High Frequency Techniques. By Brainerd, etc. 28s. Postage 9d.

Radar Engineering. By Donald G. Fink-42s. Postage 9d.

The Cathode-Ray Tube Handbook. By S. K. Lewer, 6s. Postage 4d.

We have the finest selection of British and American radio books. Complete list on application.

THE MODERN BOOK CO. (Dept. W.7),

19-23, PRAED STREET, LONDON, W.2

MIDLAND INSTRUMENT Co. BRAND NEW **GOVT. SURPLUS STOCK**

GOVT.SURPLUS STOCK BURGES MICEO SWITCHES, make and break, 1:6, 16, post 3d., 15/- dor. MAINE SWITCHES with on/of. 20/950 v., output 50 v. at 11 amp., or with little state and the state of the state of the state of the 20/950 v., output 50 v. at 11 amp., or with little burgets and state of the state of the state of the 20/950 v., output 50 v. at 11 amp., or with little burgets and state of the state of the state of the 20/950 v., output 50 v. at 11 amp., or with little burgets and state of the state of the state of the 20/950 v., output 50 v. at 11 amp., or with little burgets and state of the state of the state of the 20/950 v. and the state of the state of

MOORPOOL CIRCLE, BIRMINGHAM, 17 Tel. HARborne 1308 or 2664

A R.88. comm. rx., new cond.; first reasonable offer.-46. Derrick Rd., Beckenham. [1280] H ALLICRAFTERS, Sky Champion S.20. r. offers.-178. Cambridge Rd., Ilford Essex. A RMSTRONG 6-valve chassis. A.C., & in spXr: E7/10.-7. Middle St., Montacute, Som. H R.O., 6 coils and power unit, valves new and guaranteed, good condition; offers.-Box 8584. VORTEXION, 10wait amplifier AD.47, as new; E60, or best offer.-J. L. Shaw. 31 Market St. Bradford. RMSTRONG, r.f.103, 12in Go dman. o.t.

And A. Maranteed, wood condition, Onels-1-Box 672.
Yokata K. Baranteed, wood condition, Onels-1-Sector best offer.-J. L. Shaw. 31 Market St. Bradford. (1228)
RMSTRONG, r.f.103. 12in Go dman. o.t. An an new. £25.--Cymaryklewicz. 1 St. Frohens Gdns. W.2.
H200
Hard RIOG receiver, almost new. colls, power pack, mfrs. diagrams, full data: offers.--Cushion. 46. Belmont Rd., E.15.
Urard A. Barante, K. 10. 1138
Worder, as new. £10.-Write J. Webber. 1.
Ciaremont Villas. Up'ands. Stroud. G'os. 11365
TLEVISION and radio.-Cossor 1210A 15in tube, perfect, working below; £100 or offers.-Wilson 9. St. Peter's Rd., St. Leonards. [1411
HAMMERLUND super-pro 100-400kc.s. 2.5-IPERCOND, 9. St. Peter's Rd., St. Leonards. [1411
Hammerkund, St. Ives, Huntingdonshire.
R.K. 12in energised speaker with rectifier.
R.K. 1155 as new, 6v6 output, power pac's and specifiers.-Bits transmitter. 80 watts.
20. 40. 80 metres, key and mike, £8.-Denell.
14, Lipon H.II Terr., Lip on. P.ymouth. (1381)
T. 62 S. 24. Alderton Rd., Croydon. Surrey. (1225)
O there and the analysis of the same state. With a perfect. complete with phones. £25.-W. To ceg. 24. Alderton Rd., Croydon. Surrey. (1229)
O that TY Moreton-Cheyney amplifier. 20-2008/s. P.225. [eduat. ass. treble. 20 db up or dwn. £40; heard tondon.-Box 8447.
ChudultY equipment. 2 R.F., inf. imp. det. heard by service sin in hew condition and is perfect. complete with phones. £25.-W. To ceg. 24. Alderton Rd., Croydon. Surrey. (1229)
O hydraft thele used. cost £22/10; price for quick sale. £17/10; owner go.ng, 116; hosp ta..-Taffar.
D. WATT Moreton-Cheyney amplifier, very they ondition; £100. or offers. bargain.-Box 6366.
P. Yasta Sayo, a.c., banel

The lot 225 -F. Smith. C.nema. Thurcrot. N. Rotherham. [1437 OUND SALES 8-10-watt amplifier with t.r.f. Deeder, valves 2.90, DH.65, L63.KT.61 (2). complete in case B.B.C. grey, excellent condition; E16.-R. North. "The Nag's Head." High St. Sunningdale. Tel. Ascot 707. [1468 D'HILLIPS communication receiver, P.Pk 230 D'AC. RF stage, BFO. Phone Jack, speaker. 2,000-16 mtrs., new. £17/10; 2 Ediswan ES75 watt TX valves. 10/- each.-E. Martin. 70. Bridge St., Worksop. Nottinghamshire. [1328 MATEURS will find a host of uses for the Canadian Mark 58 Walkie-Talkie set; these receiving and transmitting radius of approx. 10 miles, with short-wave reception over a wide range of overseas stations; price £12/10 com-glete.-Apply G.T.C. 82-94. Seymour Place. Lon-don W.1.

miles, with short-wave reception over a wide range of overseas stations; price & 12/10 complete ---Apply G.T.C., 82-94. Seymour Place. London W.I.
P10.--Army A set Mk. III receiver-transmitter.
A set 2-8 mcs. B set 255 mcs. complete with 12volt power unit and connector. less control boxes and phones. diagram of phone and mic. connections supplied; £4 each. for dismantling, 19 Set and 12volt power unit less valves and colls; motor generators, input 12v 32a output. 1.200V 0.2 a. £1: input 9.3v 22a, output 13v 1.8a and 200V 50 ma. 5'---- Poc'or, Hawkshead. Nr. Ambleside.
P-VALVE Western Electric R1585 Midget and statistic and speaker: all smoothing in the receiver 234-258 mcs. Size 11'nx 6inX5in. valve 3X6A*5 7X9001 FPC33 and 12A6. 4 gang RF, tuner, F.C. I.Fs. 2F.O. Det. AVC and output: easily converted to 6 or 12v car rad'o; no extra colls or other components required exceep power unit and speaker: all smoothing in the receiver; a remote control box is included with the set. but no connecting cab'es are available; these ex-Govt. receivers 124 ea.
H. ENGLISH. The Maltings, Rayleigh Rd. Hutton. Bren'wood. Essex.

OPPORTUNIT ES"

reveals how you can become technically-qualified at home for a highlypaid key-appointment in the vast Radio and Television Industry. In 108 pages of intensely .nteresting matter, it includes full details of our up-tothe-minute home study courses in all branches or TELEVISION and RADIO, A.M. Brit. I.R.E., A.M.I.E.E., City & Guilds, Spacial Television, Servicing,

Sound Film Projection, Shor: Wave, High Frequency, and General Wireless Courses.

We Definitely Guarantee "NO PASS-NO FEE"

I you're earning less than £10 a week, this enlightening book is for you. Write for your copy today. It will be sent FREE and without obligation

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 388b. Shakespeare House 17/19, Stratford Place, London, W.I.

Radio Receiver Servicing and Maintenance

By E. J. G. Lewis. This work is an established favourite among radio dealers and service engineers. gives up-to-date and reliable assistance in the technical details of their work, and includes a handy faultfinding summary.

" Practical, replete with facts, and wellarranged." -WIRELESS WORLD.

OPPORTUNITIES

ENGINEERING

WIRELESS WORLD August, 1048

August, 1948 VIRELESS 90 the weight of wireless for £15; type 19 sale, comprising set with 16 valves, etc., bower unit, with vibrator and rotary transformer, etc., and aerial variometer, made by R.C.A. Canadian Victor, carriage extra, packing re-turnable for credit, or would dispose of the lot intervention of the sale of the sale of the sale intervention of the sale of the sale of the sale intervention of the sale of the sale of the sale intervention of the sale of the sale of the sale intervention of the sale of the sale of the sale intervention of the sale of the sale of the sale of the sale intervention of the sale of the s

TV

cabinet, designed to extend loudspeaker irre-quency range; prompt deliver per passenger train. BAKER'S Selhurst Radio, 75, Sussex Rd., South Croydon. Tel. Cro. 4226. IOUSPEAKERS, SECONO-HAND GOUDSPEAKERS, SECONO-HAND GOUDSPEAKERS, SECONO-HAND GOUDSPEAKERS, SECONO-HAND GOUDSPEAKERS, SECONO-HAND Hakins, Ael-y-Bryn, Waunlwyd, Ebbw Vale, Mon. HARTLEY TURNER 215, Vitavox, Lexington, Woodville Ave., Liverpool, 23, 15, as new.-R. North, "The Nag's Head," High St., Sun-ningdale, Berks. Tel, Ascot 707. VIA60 VOIGT Domestic Corner reflector horn, com-plete unit and rectifier; £90, near offer.-Grose, Erin Lodge, Symons Hill, Palmouth. VITAVOX and Truvox 20w pressure tess horn, P.M. M.C. Upe 5 or 75, near offer.-geach.-H. english: Horn, special model. in cover, twin light oak veneer, with horn mouth cover, twin light oak veneer, with horn mouth cover, twin light oak veneer, stebw Vale. A frew dozen unused Drydex 120volt batteries, trees of the det refeat IS 22 hor of 5 at 59%.

Instituta ingite Call distriargim. perfect: £55
 or offers.—Brewer, Bethcar St., Ebbw Vale.
 BATTERIES
 A standard type, retail 15/2; box of 5 at 59/6, carriage paid; guaranteed sound.—Dox 9483.
 E Xibbe batteries, 12voit, box of 5 at 59/6.
 Carriage paid; guaranteed sound.—Dox 9483.
 E Matteries, 12voit, built to aministry specification (first class), economication of war contract, a beautifuble for any duty, fitted with Davis non-spill weats, carrying handles, etc., carriage 96 and the sound of the sound of the sound of the sound contract, a beautifuble for any duty, fitted with Davis non-spill weats, carrying handles, etc., carriage 90 and 10 and 10 any duty, fitted with Davis non-spill weats, carrying handles, etc., carriage 90 and 10 any duty, fitted with Davis non-spill weats, carrying handles, etc., carriage 90 and 10 any duty, fitted with Davis non-spill weats, carrying handles, etc., carriage 90 and 10 any duty, fitted with Davis non-spill weats, carrying handles, etc.
 Carriage 90/-.
 TEDDINGTON ENGINEERING Co., Ltd. 29-31.
 High St., Teddington, Middx, Kin, 1193-4.
 TONAMOS, MOTORS, ETC.
 Materia Barden Transformer Supplies, 39.
 Materia Barden, Ltd., New Malden, Surrey. 11319
 Materia Barden Transformer Supplies, 39.
 Materia Barden Transformer Supplies, 39.
 Materia Barden, Ltd., Towester. 1996
 Materia Ci. generating set, 23/4 K.V.A. 230
 Materia Ci. generating set, 23/4 K.V.A. 230
 Materia Barden, Ltd., Towester. 1996
 Materia Ci. generating set, 23/4 K.V.A. 230
 Materia Barden Ci. Actor converters, electric motors.
 Materia

ELECTRADIX Bargains! FREQUENCY METERS. Crompton mains frequency meter I/C 230 v. 40/60 cy. 5in. dia.,

frequency meter 1/C 230 v. 40/60 cy. Sin. dia., for flush panel fixing. E8. WATT METERS. Met. Vic. Wattmeter, range 5 to 30 kW., full circular scale, 6 $\frac{1}{2}$ in dia., 230 v. 3 ph. 50 cy., with compensator. E5. Wireman's self-contained circuit tester, Govt. model, un-used, 6 $\frac{1}{2}$ x $\frac{1}{2}$ x $\frac{1}{2}$ in, almost pocket size, for all electrical circuits, totally enclosed, polished wood

electrical circuits, totally enclosed, polished wood box and carrying strap and contact switch. The experimenter's best friend, worth 2 guineas, but a limited number are available at 12/6 each. METERS. I/C switchboard type, 4in., G.E.C., 0-60 volts and 0-40 amps. A.C., 45/- each. Crompton I/C anmeter, 0-50 amps. A.C. Voltmeter to match, 0-75 volts, 64 x 64 x 4in., with lamp on top to illuminate dial, 55/- each. Sin dial A.C. anmeter, 10-60 amps. 42, - Panel meters, Weston D.C. moving coil Milliammeters, central zero 25-0-25 m/a, 12/6 each. D.C. Moving coil ampeters, total zero, 25-0-50 amps., 15/-, 0-30 volts, 10/-, C.Z. 100-0-100 v, 10/-, 0-20 amp., 12/6. amn 12/6

ELECTROSTATIC VOLTMETERS, panel type, 0-3,500 volts, £l each. LIGHTING PLANTS, 500-watt Stuart Turner,

LIGHTING PLAN IS, 500-wat Stuart furner, 50 vole 10 amps, Engine and dynamo with fuel and water tank, £45. J.A.P. Engine with 14/32 volt 9 amp, generator and switchboard, in first-class condition, £20, carriage extra. HAND MAGNETO GENERATORS. 4 and 5 magnet type, 150 volts 50 m/a., A.C. output, new condition, P.M. Steel magnet and gearing in bandle 12/6 accessed 1/

new condition, P.M. Steel magnet and gearing in handle, 12(4, postage 1)-. CUTOUTS. Auto non-mercury in bakelite case, 3 x 3 x 2½in., 18 volts 30 amps., 21|-. G.E.C. 12 volts 15 amp. non-mercury auto cutouts, 4(6. WIRELESS CONTROL UNITS, ex-R.A.F., contain Yaxley switch and knob, connection strips, fuse and holder, coil socket and connections, 2(4, norstage 9(1) argser model with 2 Yaxley switches

fuse and holder, coil socket and connections, 2/6, postage 94. Larger model with 2 Yaxley switches and pilot lamp, 4/-, plus 1/- postage. ELECTRO MAGNETS. Powerful 1/C electro-magnet 6/25 volts D.C., with screw-in solenoid core, weight 1 b. 10 ozs., 2½ x 1½in., will lift 7-28 lbs., type No. 1, 4/-; small 2/6-volt D.C. electro-magnet weight 10 ozs., lift 1½ to 4 lbs., 7/6. Solenoid Coils of 27 gauge wire, 6 ozs. TRANSFORMERS. B.T.H. 200/230/250 volts

50 cy. input 2 volts 20 amps. and 75 volt 6 amps. with 15 taps output; 70/- C.P. England and Wales. 250-watt Cores with lams and wire for rewind, 25/-

25/-.
SWITCHES. Dewar Key switches, 7 pole C.O., as new, with top plate, 5/-, D.P.C.O. Toggle switch, flush panel, 250 v. 1 amp., 3/-, S.P.C.O., 2/- each. Lucas 8-way switch box, 3/6; 6-way, 3/-, Santon 10-amp, D.P.S.T., back of board type, 7/6 each. Square type, S.P.S.T. back of panel, 15 amp., 2in, x 1 jin, x 2 jin, 3/6.
DIMMER RESISTANCES. Torally enclosed panel type, 100 ohms ½ amp. or 50 ohms ½ amp., 2/6 each, post 6d. Open type wire wound, porcelain base, 10 ohms 1 amp., 2/6.
MORSE KEYS. Here is the key you have been waiting for, a solid job for the transmitter, bakelite

waiting for, a solid job for the transmitter, bakelite base 31 in. x 12 in., insulated arm and large knob, heavy adjustable back and front contacts,

heavy acjustable back and front contacts, smooth action, beauti-tifically designed with length of heavy in-sulated cord and jack without cord and plug, 15'.- Transformer, 4/6.

TERMINAL BOXES. Bakelite power terminal boxes 34 x 27 x 28 highly polished black with fin. centre fillet and screwed cover 2-pole 5/16in. connection studs and nuts. Admirable terminal or branch top on large

transformer, 2-pole light power or charging circuits 10/50 amps. Wall or ceiling fixing, 2/6 each, 20/- per dozen. Special quotations

for large quantities. PARCELS. 10 lb. useful oddments for the junk box. All clean, dismantled from Government and other surplus apparatus, 7/7 post free. (Not for Overseas buyers.)

Please include postage for mail orders.

ELECTRADIX RADIOS 214, Queenstown Road, London, S.W.8. Telephone : MACaulay 2159.

Advertisements 41 **ELECTRIC** motors.—Our famous range of in motors again a vallable from stock; example is disce-gased from stock; example B datterfay chargers for home and export, 4 models, 2-6-12v, 1, 2 or 4amp dc, any mains voltage; generous trade terms; write for cata-logue.—Tel. Hoddesdon, Aerts **L'ECTRIC** motors, adaptable to gramophone drive, totally enclosed with built in ter-minals. size 2×2×5in (double ended spindle). hp 1/30 approx. complete for 200-250 a.c./dc. (nominal 24), 34/-, post paid; with separate resistance (adjustable), 31/-, --W.P.H., 31a, Com-mercial Rd., Newport. Mon. **R** OTARY converters. ex-A.M., new, input **R** OTARY converters. ex-A.M., new, input

Croydon. [110] PROFESSIONAL recording equipment to the trade: M.S.S. recording machines, recording amplifiers, ribbon and M/C microphones, blank discs, etc., etc.; gramophone motors and light-weight pick-ups, radio pre-stage units and quality speakers, all from stock on full trade terms; Victor 16mm talkie projectors for imme-diate delivery.—Sound Discs (Supplies), Ltd., 4. Irton Rd., Southport, Lancs. [1199 **TEST EQUIPMENT** INSTRUMENTS.

4. Irton Rd., Southport, Lanes, [1199] **TEST EQUIPMENT** INSTRUMENTS.
MOST makes in stock, some on terms.—Writa for details and list of radio and electrical spares, new and ex-Govt, to The Instrument Co. 244, Harrow Rd., London, W.2.
COSSOR 339A double beam oscillograph as mew; £40.—Box 187.
Itadé
UMONT oscilloscope 224A, new; £25; very comprehensive; listed £70.—Box 204. [1464
PULLIN series 100 meter, as new; £8/10.— 1161, Christchurch Rd., Boscombe, Hants.
MARCONI standard signal generator, TF 1446, in perfect order; offers.—Box 208.
UNIV. meter, sig. gen, and valve tester (un-Box 3.
UTALRAD sig, wen, 100Ks/c to 56mc/s, AF.
AG, CRMETER, 90a, as new; offers order 2114.
AG, CRMETER, 90a, as new; offers order 2114.
AG, and, charts, £12; Wilson 6w.b. coll pack, £3/10.—Box 3569.
RIDCE 1 pt to 100mfd, 1 ohm to 100m ohms.
RUDCE 1 pt to 100mfd, 1 ohm to 100m ohms.
RUDCE 1 pt to 100mfd, 1 ohm to 100m ohms.
Very accurate; £7.—Jordan, 15. Dane Rd.
St. Leonards-on-Sea.
AVO, new, unused, not Government surplus. Avorcester.
AVO, new, unused, not Government surplus. Avorcester.
<l

backs, value solution field activity placed, the solution of t

World Radio History

YOU can become first-class A RADIO ENGINEER

We are specialists in Home-Study Tuition in Radio, Study in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for employment or well-paid profitable spare-time work.

T. & C. RADIO COLLEGE

King Edward Ave., Aylesbury, Bucks.

______ (Post in unsealed envelope, 1d. stamp) Please send me free details of your Home-Study Mathematics and Radio courses. NAME ADDRESS

BC433G

RADIO COMPASS UNITS by Bendix A 15 valve superhet receiver which with slight A 15 valve superhet receiver which with slight modifications will prove one of the most sensi-tive and selective of receivers. New and com-plete with instruction books. Frequency 200-1750 KCs. Size 2010, X 121, X 810, W(t, 47 lbs, 115 v. 400 c/s Power supply included. Valves supplied:— 4 of 6K7, 1 each of 6N7, 6SC7, 6L7, 6J5, 5Z4, and 2 of 6F6, 2051, and 6B8.

£5.10.0 (Carr. and pkg. 10/-).

RECTIFIER POWER UNITS PP51'APO9

A 4 valve power supply including 4 brand new 5R4GY rectifiers, high voltage condensers, chokes and transformers. Input 115 v. 400-2,600 c/s. Outputs 370 v. 130 m/a.; 730 v. 380 m/a.; 935 v. 3.7 m/a.; 6.3 v. 2 amps. AND ALL FOR 25/- (carr and pkg. 5/-).

MODULATOR UNIT TYPE 169

A brand new unit incorporating a 10 cm. Klystron tube type CV67. Also with EF50, 5U4G, CV88 and 3 neon-stabilisers. Power supply incorporated. Wt. 35 lbs. Size 18in. x 84in.

U.H.F. experimenters—please note! In wooden transit cases. ONLY 37/6. (carr. and pkg. 5/~.)

Have you had a copy of our News Letter? Send 6d. for one NOW! * Post orders to 3, Robert Street, Hampstead Road, London, N.W.I.

MAIL ORDER SUPPLY CO. 24, NEW ROAD, LONDON, E.I. Stepney Green 2760-3906.

CAMBRIDGE 5ms, Vacuo Junctions, new, 6/6. Elliott 6ma, 21/ain. a.c./d.c. thermal meter. 18/6: Weston 1ma. 21/ain meter. 18/6: w.o. TRANSMITING EQUIPMENT A dition: £25: no offers.-Box 8372. [1217 A dition: £25: no offers.-Box 8472. Canter and the station of the statistic statistis

Winkrins & WRIGHT coil pick-up, almost Rev. perfect condition, £4/10.—Box 10.
Brishosworth, Briston, Eylstone, Grange Rd., Elshosworth, Briston, Eylstone, Grange Rd., 1247
Brown's type K M/C headphones, as new; construction of the state o

with permanent sapphire stylus

-was fully described in The Wireless World's recent article "Crystal Pick-ups-Basis of Design for Fidelity Reproduction."

This remarkable pick-up, which represents the ultimate in high-fidelity reproduction, is now available in limited quantities through your radio dealer, price 104/- incl. P.T. a.

FREE ILLUSTRATED FOLDER describing this new pick-up may be ob- tained by returning the
coupon below. TO COSMOCORD LTD. ENFIELD, MIDDX. Please send folder of ACOS Pick-ups.
NAME
ADDRESS
W.W.

NO LACK OF IDEAS

Technically our policy is always to design and produce the best possible equipment, but our design ideas outstrip the best efforts of our production department. In the economics of production and selling our policy is always to charge as little as possible for these first-class technical ideas. This we achieve by ruthless elimination of non-productive labour, and main-taining our workshops at constant activity throughout the year.

To this end we look for and find good men and To this end we look for and find good men and give them security of employment, for we have no slumps. Rather we are always trying to cope with mild booms. When we are very hard-pressed we could take on hordes of workers and sack them when they are no longer needed, but their output would not come up to harded. their output would not come up to Hartley-Turner standards.

As a result of all this we try the patience of some of our customers very hard. We should like to produce at once all the bright ideas we have promised and will introduce in time, but this would not be consistent with our policy of high quality coupled with fair prices and a square deal to a loyal staff. So we ask you to integrate your needs with our capabilities and the result will be a true partnership of creative effort with real satisfaction to you and to us.

At the moment we can deliver speakers from scock and tell you how to build certain of our products, with a substantial saving in cost. Send for our interesting data-sheet catalogue, and above all read '' New Notes in Radio '' (3s. 8d. postfree).

Here are all the answers to high-fidelity problems, whether you are a Hartley-Turner "fan " or not.

H. A. HARTLEY CO. LTD.

152, HAMMERSMITH RD., LONDON, W.6 RIVerside 7387.

Wireless World

Simon SOUND SERVICE can supply your needs. [8712 GRAM. motor units.—Collaro type 43. £2/10. Garard type 5. £2/5. both units have pick-up and auto-stop: Audix unit, £4/15. less P. U.; Hoover induction motors. suitable turntable drive, self-starting, silent running, extension shaft, new, £6/-; larger model, 50/-; post extra. —Cook, Old Barn Rd., Christchurch, Hants. —THE Enock pick-up is now available in limited quantities; moving coll, licenced under Pateni No. 558,058, with precision made polished diamond stylus, weight at needle point. %oz. or resonances within the recorded range; price £36/15, inc. tax.—Full particulars from Joseph Enock. Licd., 273a, High St., Brentford, Middle-sex. Ealing 8103. [1218]

Enock. Lid., 273. High St., Brentford, Midde sex. Ealing 8103. VolGT light coil twin unit, with profession-nished in eggshell gloss are manned. Action Ferranti M.I. speaker, 25; Lexinthemed. 2010. Performed and the super series and the series of the pick-up de luxe with sapphire. 44/10; E.M.I. type 12 lightweight P.4 and transformer. E4/10; Paillard gramophone metor, 230 volt a.c., 45; all in first class order.—Box 8492. **1948** metor, 200 to 250volts, a.c., induc-tion type, 10in non-magnetic turntable, constant speed auto stop, adjustable to any pick-up, num level nil, silent motor, suitable for high plate. 14in×11in, black ripple finish; £7/7, car-riage paid; c.w.o. or c.o.d.—Martuck Eng. Co., Yew View. Bristol Rd., Whitchurch, Bristol. The cheapest on the market, consisting of a concealed rim-driven constant speed induction motor, 100-240volts a.c., 9in turntable, crystal pick-up, all mounted on a strong rubber-mounted metal chassis, 14in×121/sin×3in deep, at 84/gns, including purchase tax, packing and carriage cash with order please.—Televox Sound Service. Alpha Works, Boulton Rd., Southsea, Hants. (Portsmouth 5006.) VALVES 813, sas nw; 55/-.-Box 1. [1322

VALVES 813, sa nw; 55/-.-Box 1. NEW, boxed, 30 types at pre-pre-Budget prices. Melectric Shop, Medburn St., London, N.W.1. NEW and unused, pair 813s, pair 805s, pair 807s, pair 1622s, three 6J7s metal; offers loi or separate.-Smith, 44, Plevna St., Stourton, Leds. 10. 1444

a solis, par 1022, the boys mean, othern, othern, team, othern, and the solis, the solid solution of the solid so

RADIO publications, "Radio Valve Manual, British and American Alternatives and Equi-va.ents," 3/6, post 3d. All publications pre-viously advertised still available. Send 2½d for

British and American Alternatives and Equit-Va.ents," 3/6, post 3d. All publications pre-viously advertised still available. Send 24/d for complete list. 200-250v, 1/kh.p. 2.000 r.p.m., ideal for light work, 55/-: carriage pro-rest and hundreds of other components, £3 carriage paid. R.A.F. R/T testers, 2.500-6700cs,. 45-120 metres, two valves, in metal carrying case with leather handles, 16inx1010nx6in 20/-, carriage paid. Telephone line units, in polished wood box, comprising rectifiers, relays, etc., 5/-. Input transformers, 50:1 or 7:1 mu. metal, 5/- each. Dipole aerials, U.H.F., 4/6; Lufbra hole cutters, adjustable, for use on wood, metal or plastic, 5/6. 75 pt midget condensers. Twin gang 5/-, single-gang 2/6, post 6d. Throat microphones with 3t lead and jack pug. 5/-Throat microphone inserts, 1/6 each. Per-manent crystal detectors, 2/6, post 4d. Wes-tectors, W.X.6 and W.112, 1/- each, 9/- per dozen, post 6d. M.C.R.L. batteries, 90v. ht. and 71/9v. 1t., 6/6 each, post 3d. Oli-filed condensers, 1mfd, 7.500v. d.c. and .5mfd, 7,000v. d.c., 7/6 each post 3d. Moving coil meters, 0-5ma, and 0-5amp3, 21n dia. 8/-each. R.A.F. morse keys, 2/6 each, post 4d. Double-sided recording blanks, 51/51n dia., 1/-each, 10/6 per dozen. Inspection lamps with 3t lead and plug, 3/6. Oscillascope trans-formers, ratio 1: 1, brand new, boxed, 2/6, post 9d. Special offer, Collaro gram. inotors (a.c. only) with turntable, auto-stop and Col-laro swivel head magnetic pick-up, complete with special offer, Collaro gram. inotors (a.c. colly) with turntable, auto-stop. and Col-laro swivel head magnetic pick-up, complete with special offer, Collaro gram. inotors (a.c. colly) with turntable, auto-stop and Col-laro swivel nead magnetic pick-up, complete with special offer, Collaro gram. inotors (a.c. colly) with turntable, auto-stop and Col-laro swivel nead magnetic pick-up, complete with special recording blanks, 51/51n dia., 1/-each, 10/6 per dozen. Inspection lamps with 3t lead and plug. 3/6. Oscillascope trans-form

ARMSTRONG

OVERSEAS BUYERS

are cordially invited to send for prices and particulars of the following :--

Model EXP125. 14-VALVE ALL-WAVE RADIOGRAM CHASSIS

giving continuous waveband coverage from 11.9 m. upwards. Waveband coverage rom 11.9 m. upwards. Waveband expansion. R.F. Pre-amplifier. Two I.F. stages with variable selectivity. Electronic bass and treble lift controls. IS watt push-pull output. For 200-250 v. A.C. mains,

Model RF103. 10-VALVE ALL-WAVE **RADIOGRAM CHASSIS**

Ilovalve circuit. R.F. Pre-amplifier. Wavc-band expansion (Short waveband covers over 20in.). Large glass scale. 3 stages A.V.C. Treble lift control (operates on both radio and gramophone). Plus 6 db. Bass lift on Gramophone (to restore bass cut on some records). 10 watt push-pull output. For 200-250 v. A.C. mains.

Model UNI-103. 10-VALVE ALL-WAVE RADIOGRAM CHASSIS FOR D.C.-A.C. MAINS

10-Valve circuit, R.F. Pre-amplifier, Wave-band expansion (Short waveband covers over 20in.). Large glass scale, 3 stages A.V.C. Treble lift control (operates on both radio and gramophone). Plus 6 db. Bass lift on Gramophone (to restore bass cut on some records). 6 watt push-pull output. 200-250 v. D.C./A.C. mains. For

Model EXP83. 8-VALVE ALL-WAVE RADIOGRAM CHASSIS

incorporating waveband expansion. Large glass scale. Treble boost control. Gram, switching. High quality push-pull output gives 10 watts audio. For 200-250 v. A.C. mains

Model UNI-83. 8-VALVE ALL-WAVE RADIOGRAM CHASSIS

incorporating waveband expansion, e.g. the 16-50 m. band covers just over 20 inches on the large glass scale, treble boost control, gram, switching, all controls work on both radio and gram., high quality push-pull output giving 6 watts audio. For 200-250 v. D.C. or A.C. mains.

HOME MARKET

A limited quota of the above is available to our friends at home, and we shall be glad to send details and to give demonstrations at our showrooms.

ARMSTRONG WIRELESS & TELEVISION CO. LTD. WARLTERS ROAD, HOLLOWAY, LONDON, N.7 'Phone : NORth 3213

Advertisements 43

<page-header><page-header><page-header>

dard size laminations, sleeving, etc. - Apply Buy-ing Dept., Monitor Radio, Stechford, Birming-ham. [1326] C LEARANCE sale. - New components at bar-colls, pick-ups, ganged condensers, transformers, knobs, switches, etc.; bargain hunters, send s.a.e. for list. - Adams (G2YN), Radio Works, Wilton, Salisbury. [1408] **11.5.4** transmitters, £8; BC603 10-valve re-ceivers, £7/10; 30ft sectional masts; orders post free by return of post; 10-page cata-logue free. - Torbay Electric, 43, Colley End Park, [1459]

orders post ifee by leterit, 45, Colley End park, logue free.—Torbay Electric, 45, Colley End park, CRYSTAL D.104 type microphones for sale. CRYSTAL D.104 type microphones for sale. Surplus to our requirements, only a few sale. For full particular structures invited; send sa.e. for full particular structures invited; send sa.e. for full particular structures invited; send sa.e. for full particular structures invited; send ul. fr.1. U. fr.0. micludes 35, F.50 and 1 E.A.50, brand new; 45/-post free.—Wilkinson's, 204. Lower Addiscombe Rd Croydon. [1385] THIS month's bargain; experimenter parcel containing following components: 40 as-sorted condensers, resistors, strip mounted, 6 25 mf. 350v tubulars. 2 Jones prugs and socket. 2 pots. 1 intervalve×former. 2 H.V.W. block con-densers, 3 assorted screening cans, 3 assorted mica condensers, 3 assorted pad condensers. 2 heavy duty carbon resistors (25k, 50k); 10/-only, and 1/- post: s.a.e. list.—Brabant. 43. Josephine Ave., Brixton, S.W.2. [1195]

SPECIAL OFFERS THIS MONTH

Ex.-R.A.F. RADAR RECEIVERS TYPE 3085. Con-taining 21 valves, 15 EF50, 1 high voltage rectifier type HVR2, 1 rectifier type R3, 2 EA30, 2 CV60, 1 RL37, 1 V453, h underlies of components, condensets. resistances, pot/meters, 24 volt miniature motor, transformers, metal rectifiers, etc. Builton strong metal chassis size : 20in, long, 12in. wide, 3in. high. Totally enck sed in metal a cabinet size : 2ⁿin. long, 12in. wide, 7in. high. Cabinet is grey with front panel black. Weight 35 10s. The original cost of this unit was well over E50. This receiver is unused, and a great bargain. Ideal for the television constructor. LASEY'S PRICE 79 6, carriage 5/ extra.

LADGE'S FAILS FOR CHIRGE OF CALLS. Ex.-A.M. BECEIVER UNIT TYPE 3515. Containing 21 valves: 10 VR65, 1 EB34, 1 EA50, 1 VR53, 5 VR56, 3 VR55. 2 relays and hundreds of resistance condensers and other useful components. Totally en-closed in metal case size: 18° x 11° x 7°. Weight 25.bs. **THIS IS A REAL BARCAIN**. LASKY'S PRICE 49/6, carriage 5/- extra.

LABEN'S PRICE 49/6, carriage 5, extra. Ex-A.M. TEST SET TYPE 74. Special purpose oscilliscope. Brand new and unused. This set contains its own power pack for use on 250 vulks 50 c.p.s. (517, 1627, 1 VR133, Sin, exthode ray tube Hope VCR 139 A, Incorporated is a receiver and sender, complete with its own antenna. Totally enclosed in metal cabinet, grey finish, all controls clearly marked. Size; 130, 1008, 910, wide, 120, deep. Weight 45 lbs. With modification to the time base of this unit it will make an excellent general purpose coelloscope. LASEN'S PRICE 24/19/6 carriage 10/-extra.

LASKY'S PRICE 24/19/6 carriage 10/-extra. Er.A.M. ROTARY CONVERTORS, BRAND NEW AND UNUSED. POWER UNIT TYPE 195. Input 24 voits D.C., output 230 voits 50 c.p.a. In smart grey enamelled metal box with hinged lid, leather carrying handle. Complete with all cables and plugs. Size; lim.long. lim. wide, Sim. deep. Weight 30 lbs. A BARGAIN NOT TO BE MINSED. LASKY'S PRICE 59/6, carriage b/-extra.

Send a 1d. stamp today for a copy of our list and bulletin of other Ex-Government bargains, and get your name on our mailing list.

LASKY'S RADIO 370, Harrow Road, Paddington, London, W.9 Telephone : Cunningham 1979 Open all day Saturday, half day Thursday.

THE BRITISH NATIONAL RADIO SCHOOL **ESTD. 1940**

for

New World Ideas and Old World Ideals 1

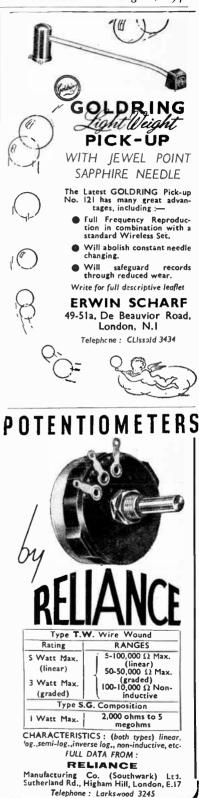
The Urge to Serve and the Knowledge How !

Home Study Specialists with the Personal Touch.

Radio, Radar, Maths., Physics.

The B.N.R.S. FOUR YEAR PLAN

covers the full syllabus of :


A.M.I.E.E., A.M.Brit.I.R.E. and CITY and GUILDS Radio and **Telecommunications Exams.**

Six months' trial period without obligation to continue.

Send for free booklet to :-

STUDIES DIRECTOR BRITISH NATIONAL RADIO SCHOOL 66, ADDISCOMBE ROAD, CROYDON Phone : Addiscombe 3341

TELZVISION components again. including even better standard, single-unit, scanning and focussing coil assembles: 40. only, 5.a.e. for denils or all seven better standard, single-unit, scanning and the seven se

GALPIN'S ELECTRICAL STORES,

HIGH STREET, LEWISHAM, LONDON, S.E.13 408. LONDON, S.E.13 Phone : LEE GREEN 0309.

TERMS : CASH WITH ORDER, NO C.O.D. EX-GOVERNMENT (G.E.C.) ELECTRIC FANS, 12 volts, A.C./D.C. laminated field, complete with 5in. impeller. New, boxed, 20/= each, post 1/-. Transformer to suit, 230 volts input, 12/16 volts at 4 amps. output, 32/6

MAINS VARIABLE RESISTANCES, ex-Government (new) slider type, 4,000 ohms, .25 amps., 35/- each. Worm Wheel Control, slider type, 60 ohms, to carry 1½ amps., 22/6 each : 5.7 ohms, 8 amps., 32/6 each. Dimmer Resistances, 5.7 ohms, 8 armps., 32/6 each. Dimmer Resistances, 5tud Switch Arm Type, 2,700 ohms, to carry .27 amps., 30/- each. MAINS VARIABLE RESISTANCES (slider

MAINS VARIABLE RESISTANCES (Slider type), new, ex-Govt. 14 ohms, carry 1 to 4 amps., graduated, useful as dimmers, etc., 25/- each, another, 0.4 ohms, carry 25 amps., 25/- each, post 1/6. Ex-Govt. Moving-coil Cell Testers, 3-0-3 voits (new), 25/- each. EX GOVERNMENT (NEW) MAINS

TRANSFORMERS, 200/250 volts, 50 cycles, 1-phase input, 525-0-525 volts, 150 m/amps., 6.3 volts, 5 amps., 5 volts 3 amps. output, standard 5.3 Voits Jamps, 9 Voits Jamps, 001, standard Voits, Jamps, 190, standard Voits, Jamps, 180 ohms, D.C. Res., 8/6; ditto, 100 m/amps, 5/6 each, post 9d. All the above can be offered in large quantities.

Please write for special quotation. EX-R.A.F. MICROPHONE TESTERS (new). These consist of a Ferranti 0 to 450 m/amp., 21 in

EX-RAP. MICROPHONE TESTERS (new). These consist of a Ferranti 0 to 450 m/amp., 24in. scale meter shunted to 1 m/a. incorporated Westinghouse Rectifier, the whole encased in polished teak case, calibrated at present 0 to 10 volts, 32/6 each. SPECIAL OFFER METERS, all new boxed. Moving Coil, first grade instruments, 0 to 20 volts, 10/- each, or 3 for 25/-; 0 to 40 volts, 12/6 each; 0 to 10 amps., 15/- each, all 2in. scale. 0 to 20 volts, A.C., calibrated, 50 cycles, 25/- each. MAINS TRANSFORMERS, as new, input 230 volts, 50 cycles, 02/5- each, ost 2/-. EX-NAVAL (SELF-ENERGISED) TELE-PHONE HANDSETS, 10/6 each, post 1/-, or Complete Telephones, Magneto Ringing an Neon Light, at 35/- each, post 2/6. MAINS TRANSFORMERS (A UTO WOUND). Voltage Changers tapped 10, 20, 25, 90, 130, 150, 190, 210 and 230 volts, all at 1,000 watts, a combination of 34 voltage can be obtained from this transformer new ex-Govern-

1,000 watts, a combination of 34 voltages can be obtained from this transformer new ex-Govern-ment Stock, $\xi5/10^{-1}$ each, carriage 5/-. Mains Booster Transformer, tapped 0, 6, 10, 19, 175, 200, 220, 225, 240 and 250 volts at 1,500 watts (new, ex-Government), $\xi5/5/$ - each, carriage 5/-Another 200 volts input, 240 volts output at 2,500 watts, $\xi7/10/$ -, carriage 7/6. Another 2 to 1 ratio, 110 volts input, 240 volts output at 4,2, 44, 46, 47, 49 and 52 volts at 100 amps, £15 each, carriage 10/-, the latter two are double wound: Another Auto Wound, tapped 0, 110, 150, 190, 210 and 230 volts at 1,500 watts, $\xi7/10/$ -each, carriage 5/-. carriage 5/-. EX-NAVAL CATHODE RAY RECTIFIER

EX. NAVAL CATHODE RAY RECTIFIER UNITS. These units are new and weigh 90 lbs. Consisting of high voltage condensers, 15 volume contensiting of high voltage condensers, 15 volume contensers all coloured, coded or marked, valve and tube holders (no valves), transformers are included but are for 500 cys., price to clear, 42/6 each, carriage paid. EX-R,A,F. RF UNITS (new) packed, containing 6 valves, all 6.3 heaters, including grounded grid triode, also a miniature 24-volt motor (universal) and approx. 80 resistances and condensers, all mounted on silver-plated chassis, to clear, 37/6

mounted on silver-plated chassis, to clear, 37/6

each, carriage paid. L.T. RECTIFIERS (NEW), 12 volts at 1½ amps. output, 10/6 each; 12 volts at 6/8 amps. output, 45/- each. Transformers can also be supplied for charging 6 or 12 volts (delivery 10 days from date of order) prices respectively 25/- and date of order), prices respectively 25/- and 45/- each

EX-R.A.F. IFF UNITS. As new, these units contain 10 valve 5.P. 41s, EF 50s, EA 50s, etc., also approx. 100 resistances and condensers, also complete with motor generator, 12 or 24 volts input, 450 volts at 50 m/amps. output. To clear, 24-volt type 35/-; 12-volt type, 37/6, carriage 3/6.

L'A-GOVT. rotary trans. 18v d.c. to 460v 50 two connections. 106, Data J.C. molor by making the constraints of the second sec

Complete Stock marked down to latest Tax Reductions

wmprete atock marked down to latert Tax Reductions BRIMAR. -- R2, R3, 5Y3, 5U4, 80, 5Z3, 5Z4, 5X5, 5V4, 105, 25Z4, 106, CZ4, 35Z4, 15D1, 15T2, 9D2, 8D2, 10D1, 11D3, 11D5, 7D5, 4D1. COSSOR, -- 42BU, 431U, 4THA, 418TH, MYSPenB, MSPen, MSPenB, 1D1L4, 1D17, 41MTL, 41MHL, MSPenB, P1, 12, P1, 41MXP, 2020TH, 13VPA, 13APA, 2020D17, 210VTA, 210HF, 210D17, 215P, 2400P, 215S44, 210LF, 4TSP, 4TSA, 202VPB, 0M4, 0M5, 0M10.

GMG, OM10.
 MARCONI/05BAM.--U10, U14, MU14, U18/20, U50, U52, U31, U74, U76, X41, VM14G, M84B, M842, KT241, D41, M144, MH41, M144, MKT4, KT41, KT41, B74, D430, VM84B, H30, X63, X65, KT65, KT65, KT2, K56, KT61, K63, KT61, K63, KT61, K63, KT61, K64, K761, K761, K64, K761, K64, K761, K64, K761, K64, K761, K761,

ACPJ

MDEAN, HEAN, MEMORY, VIEW, GUENO, GUENO, GUENO, ACP4.
 MULLARD, -DW2, DW4/350, 1W4/350, DW4/500, IW4/500, FW4/500, AL, AZ31, UR30, TH4B, FC4, VP4, VP4A, VP4B, SP4, 2D4A, TD1D4, 354V, TT4
 MP34M, PeralDD, PenB4, AC044, D024, Pen428, TH21C, TH30C, PC13A, SP13F, SP13C, 2D13G, TD1D3G, TH30S, DP4B4, AC044, D024, Pen428, TH21C, TH30C, PC13A, SP13F, SP36C, C14, Pen40DD, CCH55, DAF91, DF51, DF91, DK91, D159, L556, EF63, EF63, EF63, EF63, EC31, EC43, EC434, EC444, EC434, SP13F, EF36, EF64, EF35, EF44, EK38, EC31, EC434, EC434, EC434, EC434, CC434, EC445, EL35, EL37, EL35, EL37, EL35, EL47, EL58, EL53, EL54, EL54, EL54, EL54, EL54, EL54, EL54, EL54, EL54,

PA20, 1141. Order C.O.D. above listed numbers or equivalents (subject to stock). Please enquire for any valve you require, even if not listed. We may have it. Old and new types are arriving daily.

THIS MONTH'S OFFER.

THIS MONTH'S OFFICE.	
" Pencil " Type Midget Soldering Iron, off 6 v.	10/6
car battery or transformer Service Sheets, British and American, our	10/0
selection, good value per 24	21/-
Easy Terms on all Taylor Instruments, 6-12	WA/-
months. Ask for details.	
Trimmer Tool Kit, new Master Model, im-	
proved, in carrying case complete	30/-
Midget Extensions (2in.) for Speakers and Sets,	
self energised, low impedance	7/6
Telescopic Aerials, Steel 16/-, aluminium	10/-
"Radio Craft " American Library, Illustrated,	054
10 hooks (not many left)	35/-
"Goldring " Pickup Head lends old gramo-	31/6
phone radiogram quality	26/-
" Bairds " Garrick Television, radio-combined	~U/-
12in. tube, Price and Tax reduced. Superb.	
Mains/Battery Motors, off 6 or 12 v. Batteries	
or A.C/D.C. mains, For medium sized	
models	30/-
0-1 Milliammeters, 21 inch. ex-Govt., new	15/-
Electric Mouse Traps, wattles, clean, safe	12/6
Miniature Photo Cameras. Films available	27/4
Ruco Mains Noise Suppressors	16/6 15/-
5in Loudspeakers, brand new and boxed Speaker Fabric, coupon free, 1 sq. ft	3/6
Chassis Cutters, 1 kin., 1 in., 1 in.	12/6
Stop Press :	1.0
Ex-W.D. Compass, 4-inch dial, precise instru-	
ment in cabinet	15/9
10-inch Goodman Speakers	30/-
12-inch Celestion P44 Speakers	75/-
Weariete Coils, Coil Packs, P. Coils, I.F. Coils,	
Fildicator, Battery Level Indicator and Filler	6/6
Flikodisk Calculator, answers all Ohni's law	
problems	76 21/-
Henley's Solum Pencil Bit Soldering Iron	<i>4</i> ,1/-
Please write immediately to (W.W.)	
~	
	_
RADIO	.VES

246 HIGH ST HADIESDEN WID

HENRY'S-

BC 221 FREQUENCY METER. A further purchase enables us to re-dir this outstanding American test instrument. Crystate-controlled, 2 6017, 618, plus complete set of spare valves. Coverage 125-20,000 k os. Calibrated charts and instruction booklet supplied. Battery operation 130 v. H.T. 6 v. L.T. Ample space available for easily constructed mains pack. New, by leading maanifecturer £15 only.

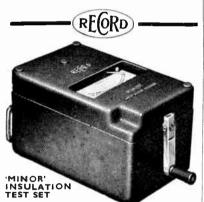
B1626 EX-A.M. RECEIVER. Comprising 10 valves, EF50, 2.EB34, 24 volt rotary Generator, relays, and hundreds of resistors and condensers, complete in metal case, brand new, 75/- only.

VIBRATOR FOWER UNITS. 2 volt. As for Canadian 58 set. Completely smoothed, output 1.5 v. L.T. and 90 v. H.T. at 35 m/a. Complete in grey metal box, size 8in.×3§in.×4§in.. 50/- only.

E.H.T. TRANSFORMERS by STEWART. These transformers are Nuper-Quality, wax-impregnated and paper-interleaved. 10.00 v., and 4 v. (T. or 2 v., C.T., 50/-, 1,750 v., and 4 v. (C.T. or 2 v., C.T., 50/-, 4,000 v., and 2 v. (C.T., 75/-,

TELEVISION COMPORENTS by "SCANCO." High-grade tested components. Recommended for use with "Electronic Engineering" design, etc. Focus ('oil, 37/6, Scanning Cuis, 35/-, Line Transformer, 30/-, Well-finished and guaranteed.

GRAMOPHONE MOTORS. COLLARO, A.C. 200/250 volts. complete with magnetic pick-up and 12in, turnvolts, complete with magnetic pick-up and table. Still at the old price, £9 inc. Tax.


AUTOMATIC CHANGERS, Collaro A.C. 200/250 volts 10 or 12in. mixed. Complete 12in. turn-table and magnetic pick-up. A few only, £22,7,8, inc. Tax.

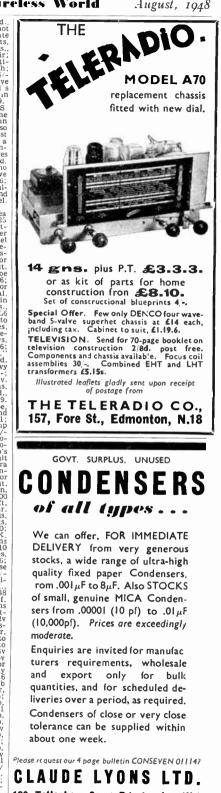
In addition to the above, we have the most comprehen-sive stock of Radio Components in the trade.

Send Stamp for latest List

Wholesale & Retail

HENRY'S 5, HARROW ROAD, W.2 PADdington 1008/9

Compact and inexpensive without sacrificing accuracy and ieliability. Weighs only 30bs Height allows for full swing of generator handle. Ranges up to 20 megohms 500 volts. Weighs only


CONTINUITY TESTER This latest addition to the Record Ohumeter range is enclosed in a moulded bakelite case of moulded bakelite case of pleasing appearance. Equipped with self-con-tained dry battery. Speci-ally designed test spikes and leads can be supplied also a "test and carry" case in which the instru-ment may be used with ment may be used with-out removal. Ranges:-0 3-0/30 ohms. 0/30-0 3-0/30 ohms. 0/30-0 300 ohms. 0/30-0 50,000 ohms. 0/1,000-0/200,000 ohms.

THE RECORD ELECTRICAL CO. LTD., Broadheath, Altrincham, Cheshire, Tel.; Altrincham 3221 2 3. Grams: "Infusion." Altrincham LONDON : 28. Victoria St., S.W.1. "Phone : Abbey 5148

TELRAD ELECTRONICS, 70. Church Rd., Upper Norwood, London, S.E. 19.—New not w.D. surpus. comprehensive and up-to-date stocks of guaranteed valves and components. Control Gash, with Order, 20. sang. conds. To the strain strains, 300-0-300, 24.-; output - multi-patol, 9.-; valve holders amphenoi type, 94. each: Donco stockists; Wearite coils, full range. 3-sach: t.f. coils m.1, 7.9 pair: coil packs, 8 wave band, 27.6; Wearite, 42,-; volume controls, 1 s radio.—Write, call or 'phone Livingstone 4879. PECIAL notice.—The famous range of A.I.S. Precial notice.—The famous range of A.I.S. Precial notice.—The famous range of A.I.S. superhet coil pack with h.f. stage. uses 9 iron-cord coils in 16-50, 200-550 and 800-2,000 metres circuit. 465 kc/s.1., aligned and gain tested. signification of the signal specifications. Also inters being available ex-stock. 40 coil pack a superhet coil pack with h.f. stage. uses 9 iron-cord coils in 16-50, 200-550 and 800-2,000 metres circuit. 465 kc/s.1., aligned and gain tested. signification of the signal specifications. Tel-tropic and start on calles and technical bui-tetin W.I. enquires promptly dealt with and demonstrations given at our showroms. Tel-tratice on and specifications. Tel-bard, stylish cabinet, in two models. Model ivision amaieur. Shipping, £13.5; detail, the state and the set of the set of the set of the set of the set trans. 17/6; 6/s/in Manual. 2/6; Personal portables, T.exvision Component for W.W. and E.E. circuits. scanning coil unit. 30.-; line transformer, 30.-; rubber 9in tube msk, 15/-; E.E. Television Manual. 2/6; Personal portables, 17/6; 6/s/in Manual. 2/6; Personal portables, 2/7; with trans. 2/6; P.P. output fs and 4.5, and ditto fundities chasts 17/2; 6/s/in Manual. 2/6; Personal portables, 5/17/6; 1/s/in Park 4/s/-, amplifier units, fully assembled, tested, four with and anone, or as more dc. mans. 1/s/-, fu

Wireless World

August, 1948

180, Tottenham Court Rd., London, W.1 and 76, Oldhall St., Liverpool 3, Lancs,

August, 1948

QUINS'' AT WORK THE "FLUXITE Cried OI " Cut the cackles you three It's rescue I need. Can't you see? I'll crash down in two shakes if this aerial breaks ' "It won't. It's FLUXITED " grinned EE.

See that FLUXITE is always by you—in the house — garageworkshop — wherever speedy soldering is needed. Used for over 40 years in Government works and by leading engineers and manufacturers. Of all Ironmongers-in tins, 10d., 1/6 & 3/-.

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-but IMPORTANT.

Components and valves for constructors and amateurs: special terms to radio cluss. The and amateurs: special terms to radio cluss. The angle Radio Service Co. 45a. Wood St. The Andrew Stransformers output transformers and provide the angle of the service Co. 1021. The special terms to the service Co. 1021. The special service Co. 1021. The service Co. 1021. The service Co. 1021. The service Co. 1021. The service Co. 2021. The service Co. 2022. The service Co. 2023. The service Co. 2024. The service Co. 2025. T

hes in 12yd. cons. 1/3 per cont. 249, mooil, 6/11: transmitter racks advertised last month at 32/6 still available.—Post orders to Wal-ton's Wireless Stores, 203, Staveley Rd. Wol-verhampton. Callers, 48, Stafford St., Wolf425 inampton. Callers, 48, Stafford St., Wolf425 inampton. Callers, 48, Stafford St., Wolf425 indextone and the start of the start

Advertisements 47

ALEC DAVIS SUPPLIES LTD. 18. Tottenham Court Road, LONDON, W.1.

Tel. : MUSeum 2453 Tel.: MUSeum 4539

We are now able to offer our new range of coils and I.F. Transformers at highly competitive prices.

High Q Permeability Tuned Coils available in normal bands for 465 kc superhet operation.

Long Wave, Medium Wave or Short Wave each in three types for Aerial, H.F. or Oscillator. Single spire nut fixing. Each coil ndividually boxed (with circuit enclosed).

All these are at 2/6 each.

I.F. Transformers, iron-cored and tuned with high quality ceramic condensers. Q approx, 150. Available in 465, 1.6 and 10.6 Mc/s. Each one complete in radiused aluminium can. Size 1±in. square x 3in. high. price per pair is 15/~.

I.F. Transformers as above WITH additional windings for variable selectivity. Price per pair, 18/6.

ENQUIRIES ARE ALSO INVITED FOR 90 Mc/s F.M. Coils, which are now being developed.

Television Components. 4 KV EHT transformers with 2 L.T. windings each of 4 volts centre tapped for alternative 2-volt operation (for CRM91, 6501, MW22/7). Price £3/5/-.

(for VCR97	, otherwise as above , etc.)	£2	0	0
I KV. EHT,	otherwise as above	٤I	17	6

5 Hy. 250 mA choke £1 3 6

10 Hy. 80 mA choke 13 0

And, of course, the normal range of Erie Resistors, Belling & Lee components and TCC Condensers to complete.

LINES LATEST SURPLUS (Limited supplies only.)

R.3132 Receiver Chassis, complete except for valves and all in good condition. Price 7/6 each, plus 2/6 carriage and packing.

Celestion 21 in. Midget Loudspeaker, each one individually boxed and guaranteed. Price only 17/6 each.

.001 mfd. 350 v. D.C. Working Midget, moulded mica. Price 9d. each.

Plugs and Sockets, chassis socket, flex plug. 10-way type, 3/- per pair (postage 4d.)

7-way type, 2/6 per pair (postage 4d.)

5-way type, 2/- per pair (postage 4d.)

Standard .0005 Mfd. Variable Tuning Condensers :

Single gang, 2/11 (postage 6d.)

Two gang, 10/6 (postage 6d.)

Three gang, 10/- (postage 6d.)

Four gang, 4/- (postage 6d.)

TELEVISOR LIST NOW AVAILABLE. Please send stamped addressed envelope for copy.

TRANSFORMERS WOUND TO YOUR OWN SPECIFICATION-DELIVERY 14 DAYS.

-If in doubt-telephone MUSeum 4539/2453.

£15 TELEVISION RECEIVER -

This is the title of our latest publication giving wiring diagrams and constructional notes of an excellent little T.V. receiver. You can make excellent little i.v. receiver. Tou can make this from Government surplus equipment and the total cost should not exceed f15. A demonstration receiver can be seen at our address. To avoid disappointment order your Copy immediately, the price is 7/6d. post free. INFRA-RED IMAGE CONVERTERS, with details, 14/6 PHOTO CELLS, unlimited applications, with details,

or for E.H.T. tra 3/6).

E. E. 1. transformers for 1.5., 9,000 volt, 22 108. E. H.T. Valve Rectifiers Hivac, 5,000 volt, 22 108. E. H.T. Valve Rectifiers Hivac, 5,000 v. 11/-, SCOPE UNTES, type 6A, com, with valves, 70/- (10/-), R.F. UNITS. These inake excellent short-wave con-verters. Types 24/22, 18/6 types 20/27, 27/8 each. A.C. MODEL of the famous BC.348 ±100 class com-nunications receiver. Covers 200-500 kc's, 9 valves, crystal filter, noise limiter, perfect in every respect, AMERICANT, U.S.B. Makes Nuper V.F.O., 22/6 (3 6). TEST SET 74. This has 21in, tube, eight valves and all mains equipment needed to put it into immediate use. Only time base values need altering, and we can supply details of conversion, 24 19 6d., plus 10/-. SIGNAL GENERATOR. American made, accuracy better than '001 per cent., crystal controlled, covers two bands. 8-15 Mc's and 13-230 Mc's, A.C. mains operated, 295.

BULL'SEX-GOVERNMENT DEPOT ELECTRON HOUSE, WINDMILL HILL, RUISLIP MANOR, MUDX. Carriage Charge in bracketa. Open Sals. unlil 5 p.m.

EDDYSTONE · 504 ' · 640 ' · 680 '

and

Full range of S.W. components,

Also

Valves, condensers, transformers. resistances, etc.

All C.O.D. orders promptly executed. 52 page catalogue I/- post free.

B.T.S.

THE Radio firm of the South. 63. London Road, Brighton, I, Sussex. Phone Brighton 1555.

FOR RADIO VALVES Just a selection from our stock of 10,000 valves, Send for list of types available, alireduced to 334% tax BRIMAR.-ICS, 1145, 1755, 302, 246, 546, 1144, 287, 687, 605, 106, 6D6, 6D8, 6E5, 6G6, 6G4, 6J8, 6B5, 6B8, 6C5, 6T6, 6J5, 6J7, 6K7, 6K8, 6Q7, 6R7, 6U6, 698, 7, 625, 107, 6W7, 304, 304, 524, 546, 6B6, 6B8, 6C5, 6T6, 6J5, 6J7, 6K7, 6K8, 6Q7, 6R7, 6U6, 698, 7, 625, 127, 6W7, 1243, 91, 215, 124K, 1207, 128A7, 12847, 12847, 12847, 1287, 14A7, 1287, 128A7, 12847, 12847, 1287, 14A7, 1217, 3524, 11726, 18, 26, 27, 31, 34, 37, 39/44, 41, 43, 46, 7, 71A, 77, 87, 79, 80, 83, 84, 89, 11A4E, 7A7E, 785E, 786, 787, 7B8, 7C5, 7C4, 7Y4. MULLARD,-AZ1, AZ1, EB34, EB91, FC31, EC52, EC53, EF6, EF9, EF92, EF36, EF37, FF39, EF30, EF34, EK32, EL2, EL45, EL52, EL55, EL55, EL77, EL54, EL50, EM1, EM4, EM34, E238, EHV3, FBC33, DAC52, DAF91, DF33, DF91, DK81, DL33, DL45, DL42, KPC3, KF23, 1142, KH142, FC2, FY2, PM22, PM24, PM12M, PM22A, PM22D, PM202, QP22B, 527, JD43, VF2B, CL4, CBL, CC455, CL435, CL43, CV33, FC13, FL132, KH142, CT434C, VR1C, VD14, EC0NTEOL5, -25,000 6d, 50,000 1/6, 300/02 H H7D002 M, 12, Hm45, TT4, VP4, VP4A, VP4A, VP4B, 204A, 16, V, 28, D145, M124, M124, A100, V, 416, 300/02 H H7D020, L16, 1 mec, 2, 6, 2 mec, 2,-W124, ENDT, 146, 500, 74, 4 mole S007E0L5, -25,000 6d, 50,000 1/6, 300/02 H H7D020, L16, 1 mec, 2, 6, 2 mec, 2,-4 mole S007E0L5, -25,000 6d, 50,000 1/6, 300/02 H H7D020, L16, 1 mec, 2, 6, 2 mec, 2,-4 mole S007E0L5, -25,000 6d, 50,000 1/6, 300/02 H H7D020, L16, 1 mec, 2, 6, 2 mec, 2,-4 mole S007E0L5, -25,000 6d, 50,000 1/6, 300/02 H H7D020, 1/6, 1 mec, 2, 6, 2 mec, 2,-300, 1/6, 1 mid, 500 r, 7d, 4 mole S007E0L5, -25,000 6d, 50,000 1/6, 300,002 H H7D020,002 H H7D020,000 4,-2, 2 mid, 50, 1, 6, 1 mid, 500 r, 7d, 4 mole S007E0L5, -25,000 6d, 50,000 1/6, 300,002 H H7D020,002 H H7D020,002

Wirel
TelEVISION.—Focus coils and shrouds.
Transformers, blocking oscillator transformers; complete focus and deflector assem
bless also available. supplied correct to dessigner's specification for "Wireless World"
television receiver. Television components of
all types, valves, condensers, resistors, tube
masks, mains transformers and chokes, etc.,
etc., in stock at current prices.—For particulars write or phone, "Handy Parts," 226, 228,
Merton Rd., Wimbledon, S.W.19. Liberty
7461. Trade enquiries invited. 12/427/6 doz; 8-8-8mid, 500, Cons 2/9 each,
49/6 doz; blas types, 12mid, 50v, Cons 2/9 each,
49/6 doz; blas types, 12mid, 50v, Cons 2/9 each,
49/6 doz; blas types, 12mid, 50v, Cins 5/6 each,
49/6 doz; blas types, 12mid, 50v, Cins 5/6 each,
49/6 doz; blas types, 12mid, 50v, Cins 5/6 each,
49/6 doz; blas types, 12mid, 50v, Cins 5/6 each,
49/6 doz; blas, 11, 4/9 each, 42/- doz; tuning con40/6 doz; blas types, 12mid, 50v, Cins 5/6 each,
49/6 doz; blas, 11, 4/9 each, 48 doz; 16-8-2×in,
6/9 each, 72/- doz; Smoothing chokes, 40 ma,
12h, 3/9 each, 36/- doz; 60 ma, 10h, 4/- each,
49/6 doz; blas, 12v, 4-yin, 4- each, 52/- doz;
Mallory vibrators, 180, 46/- each, 52/- doz;
Mallory vibrators, 180, 46/- primary
entrent, 33 m3/6 each, 36/- doz; 60 ma, 10h, 4- each,
49/6 doz; selenium rectifiers, smail type, 250v,
60 ma, 3/11 each, 36/- doz; 60 ma, 10h, 4- each,
39/6 doz; selenium rectifiers, 50/- each, 52/- doz;
Mallory vibrators, 50/- each, 50/- each, 52/- doz;
Mallory vibrators, 78/6 each, 36/- doz; 60 ma, 10h, 12 minary
entrent, 35 m3/6 each, 36/- doz; 60 ma, 10h, 12 minary
entrent, 35 m3/6 each, 36/- doz; 60 ma, 10h, 4/- each,
39/6 doz; selenium rectifiers, smail type, 250v, 60
and, 30/- doz; 250v 100 ma, 6/- each, 52/- doz;
Mallory vibrators, 180, 40-1, primary
entrent, 35 m3/6 each, 36/- doz; 00 ma, 10h, 12 minary
entrent, 35 m3/6 each, 36/- doz; 00 ma, 10h, 12 minary
entrent, 35 m3/6 each, 36/- doz; 00 ma, 10h, 12 minary
entrent, 35 m3/6 each, 36/- doz; 00 ma, 10h, 12 minary
entrent, 35 m3/6 each, 3

35.-+4./6 carriage: latest lists free; trade supplied; satisfaction guaranteed or money refunded without question.
 FRITH RADIOCRAFT, Ltd., Leicester, Tel. 58927. Tottenham Court Rd., W1. Mus. 9188.-Bendix radio compasses, B.C. 4353(, 15-valve unit, incorporating D.F. section, and an 8-valve rec. covering Table 1, 5802 (Section, and an 8-valve rec. covering C.F. 1995). The section of the section. 100, and 50 (Section, 2000). Section of the section. 100, and 50 (Section) and the section of the sectin section of the section of the section of the sectin of the se

Wireless World

CHARLES BRITAIN (RADIO) LTD.

Indicator Unit Type 182A. Contains 6in, CRT VCR517 which has the same base connections as the VCR97. Also 8 valves : 3, EFSO, 1, 5U4G, 4, SP61. 13 volume controls etc. etc. The tube although slightly persistent is O.K. for television or 'scope. Amazing bargain at 39/6 Jun 15/. carriage

tube although slightly persistent is O.K. for television or 'scope. Amazing bargain at 39/6 plus 15/-carriage. Indicator Unit Type 62. Size of case 9in. x 12in. x 18in. Contains VCR97 tube. 16, SP61, 2, EB34, 2, EA50. 16 Pot'meters. Muirhead Dial, 117 K/cs Crystal. Various switches, knobs, transformers etc. Brand new £4/19/6 carriage 15/-. Indicator Unit Type 157. Almost exactly the same as above, in good condition £3/15/-, plus 15/- carriage.

15/- carriage. R1155. Tested and complete with all valves in good condition price £8/8/- plus 10/- carriage and nacking.

Receiver Type 1132A. Brand Spanking New in makers' original crates. Frequency coverage Receiver Type 1132A. Brand Spanking New in makers' original crates. Frequency coverage 124 to 100 Mc/s. Complete with 10 valves, S meter in handsome metal case with slow motion dial, power supply required, 200 c. H.T. 6 v. L.t. A really first class UHF Communications receiver for only £4/19/6 plus 10/- carriage. SPECIAL ANNOUNCEMENT. We are

shortly moving to more conveniently situated premises. Full details will be given in the next issue.

issue. CHARLES BRITAIN (RADIO) LTD. Radio House, 2, Wilson St., London, E.C.2 Phone : BIShopsgate 2966.

MORSE CODE TRAINING

There are Candler Morse Code Courses for BEGINNERS AND OPERATORS Send for this Free

"BOOK OF FACTS" It gives full details concerning all Courses.

THE CANDLER SYSTEM (Room 55W), 121 Kingsway, London, W.C.2 Candler System Co., Denver, Colorado, U.S.A.

NEW

BETTER

CHEAPER !

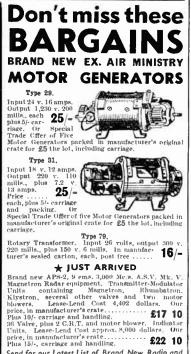
P4 Permeability trimmed Midget I.F. transformers "Q" = 110 nominal impregnated.

7/6 EA.

Weymouth Radio Mfg. Co., Ltd. Crescent Works, Weymouth,

August, 1948

Wireless World


NEW FOLDER-... tells you all about the complete range of Henley SOLON Electric Soldering Irons, for the standard voltage ranges of 200/220 and 230/250 : 65 wait and 125 wait models fitted with oval-tapered bits or pencil bits and 240 wait models fitted with oval-tapered bits are available.

THIS USEFUL

Write Today for the new folder ref. Y.10 describing

(Engineering Dept.) 51-53 Hatton Garden, London, E.C.I

Send for our Lotest List of Brand New Radio and Radar Equipment.

WIRELESS INSTRUMENTS (Leeds) LTD. 54-56, The Headrow, Leeds. Tel. : 22262

World
 WARIABLE selectivity 465 kc/s i.f. transformers, with three degrees of selectivity, 11.; gramophone scratch inter. 15/-; further pirticulars on request.—Radio Components. Eads to Darlington.
 Weld, of the selectivity of the selectivity.
 Territat, offer; electrolytics, small can. 6pt 2/-, 16pt 3/-, 16-16 (suit Phillips), 4/3; 1,000 10pt paper, metal case, 7/6; 11. oct. v-holders, 3/4d each; tub, cons. 1 500 500/w, 5d each; also in stock, connoisseu; pick-ups and preamplifiers, 4v and 6v; B.S.R. grams units, 57/12/4; orders by return post free over 10/-,-6, A. Taylor, 125, Manchester Rd., Denton, Manchester, NTTER television and radio company of the selection of the delivery fully guaranted products for immediation (1186) of the selection o

V cation receiver.—Ritson, Red Lion House, II352 WANTED, one copy each of the "Wireless World," February, March, and Index 1946. -Box 9000. BOOKS on radio, second-hand, clean, send by post, cash offer by return.—Bulls (W.W.1, 246. High St., Harlesden, N.W.10. WANTED, Decade resistance and condenser boxes, three and four dial.—Send full particulars to Ritson, Red Lion House, Hex-ham.

MANTED, Cossor lead kit, type 426, B.T.H., Whorn tweeter, service sheet, Ferguson Model 773 a.c., W.W. Jan., 1937-Dec., 1943.– Box 8438. [1240

Model 773 a.c., W.W. Jan. 1937-Dec., 1843... Box 8438. IL20 PNAMELLED copper wire, all gauges wanted urgently, no quantity too large.-Sim-monds, 10. Valencia Rd., Stanmore, Middx, Grimsdyke 608. U reference SR125LK. 10kmp 250 volt or 5 amp 440 volt, double pole a.c. reversing switches. for similar make).-Full particulars to Denfords Eng. Co., Ltd., Box Trees Mill, Wheatley, Hailfax. W ANTED.--We are requiring ex-Government terested quantity if price right.-Mcc B. Heat Control, Ltd., Raydown Works, Epping, Essex. Tel. 2163, for cash, new, used, radio, electrical radios, radiograms, test equipment, motors chargers, recording gear, etc.--If you want to sell at the maximum price call, write or 'phone to University Radio, Ltd., 22, Lisle St., Lelcester Sq., W.C.2. REPAIRS AND SERVICE

sell at the maximum price call, write or 'phone to University Radio, Ltd., 22, Lisle St., Leicester St., W.C.2. Ger. 4447. **REPAIRS AND SERVICE REVINDS** promptly executed, new trans.— **REPAIRS AND SERVICE REVINDS** promptly executed, new trans.— MAINS transformer rewound and constructed to any specification; prompt delivery.— Brown, 3 Bede Burn Rd., Jarrow. (Jourspeck KER repairs, British, American, Speakers, 12, Pembroke St., London, N.I. Ter-minus 4355. **M** AINS transformers rewound, new trans. formers to any specification. MOTOR rewinds and complete overhauls; first-class workmanship, fully guaranteed. F.M. ELECTRIC Co., Ltd., Potters Bidgs. UODSPEAKERS repaired; clock coils. UODSPEAKERS repaired; clock coils. UotoBEAKERS repaired; clock coils. UotoBEAKERS repaired; clock coils. Lochokes rewound: prompt attention; prices guoted.—E. Mason, 5, Balham Grove, Balham. London, S.W. Beckerts, and completed accurately and quict and constructed accurately and quict and calibrated accurately and quict and and calibrated accurately and propage. Condor S.W. Godmans, Celexion.—Sound Speaker, transformer and motor repair specialists; no delays.—I39, Goldhurst Terrace. Londor, N.W.6, Mai, 6133. Londor, N.W.6, Mai, 6133. Londor, N.W.6, Mai, 6133. Londor, S.W. Godmans, Celexion.—Sound Service Radio, 80, Richmond Rd., Kingston-on-thames. Kin, 8008. (4977

Advertisements 49

M/Coil Speakers. Well known mftrs surplus; 10in P.M. with Tfr. 27/6, 8in. P.M. 2/3 ohms 18/9-6jin. P.M. 2/3 ohms 16/6, 5in. P.M. 2/3 ohms 10/11. And all makes P.M. and energised.

1011. Juning Cond. (Twin gang). 0005 mfd. ceranic 7/6 (with Trim. 8 6). 0003 mfd. with Trim. 10/6. Midget 0001 mfd. 5/4. Midget 0005 mfd. 11n. × 2in. 12 9. 4 gang. 0005 mfd. 11n. × 2in. 12 9. 4 gang. 0005 mfd. 5/9.

Coil Packs. 465 kc/s (Ismor ultra midget S-M-L 33/-Atkins S-M-L, Iron core coils with R.F. Stage 66/-

Coils, T.R.F. Matched pair M. & L. 6/9. Weymouth ditto 9/8 pair. S/Het. matched S.M. & L. 8/9, 10/6 and 11/6 pair. All Wearite "P" Coils 3/each.

each. 1.P. Tranf. 465 kc/a, Wearlte Midget Iron Core 21/-pair. Weymouth Midget Iron Core 18/9 pair. Nervice, Cap. Tuned 110 kc/a 15/- pr. Mitra Surpha, new, High Q, 465 kc/a Iron Core 10/- pr. Potentiometers. Centralab. 5K, 106X, 25K, 50K, 100K, 4, 4, 1 and 2 Mez, less Switch 4'3, With writch 6'-, Midget with writch, 4 and 1 Meg, 6/-, Special .75 mez, with switch 4 9. Electrolytics. B.E.C., Miket, k-5 mid. 450 v., 1 jin. × in. 5/6, and 32 mid. 350 v., 1 jin. × jin. 5/6, and 32 mid. 350 v., 1 jin. 33, 1 mbiller s mid. 500 v., 2 jin. × jin. 4/-, And all makes and types.

types. LF. Chokes. Porthuninster 20 Hny. 300 ohms 60 m/a 6,8 20 Hny. 350 ohms 100 m/a 12/9, 20 Hny. N5 ohms 250 m/a 30/-, 50 Hny. 1,000 ohms 60 m/a

hts U.G. 250 m/s 30/-, 50 Hny. 1,000 ohms 60 m/s 12.9.
hts and Drives. J.B. with Escutch and Glass, 2 whand 11/6, 3 whand 11/6, Multhead Nlow-Motion Drive 50-1, 0-180° 7.9. Drum Drive (2n. drum, drives, jnide and cable tension spring) 2.9.
S/Het, R/Gram Chassis by Dence. 6 valves 5 w hands 10 to 2 (000 metres A.C. 219 14/5, AC 10C 219 4/5, incl. P. Tax. Also Dence Coil Torrets. Dence catilocure 94. Technical Bulletin 3/-.
Meter Escillers. Westinchouse: 0-5 m/s 3/11, 0-10 m/s 76, 0-11 m/s 10, 62 Sec. 10, 000 m/s 24, 200 v. 100 m/s 76, 300 m/s 10, 200 v. 100 m/s 59, 2250 v. 100 m/s 7/6. Bridge Rect.; 6 v. 14 amp. 6/3, 12 v. 14 amp. 12.6, 12 v. 3 amp. 24-c, 12 v. 6 a. 37/6, 36 v. 14 a. 23.6, 50 v. 14 a. 37.6, Also L.T. 2/4 v. 1 a. 1/wave 3/6.
Charger Transf. Input 200-230-250 v. 00 m/s 1/6. Sec. 36.6, 36 v. 14 a. 23.6, 36 v. 14 a. 37.6, Also L.T. 2/4 v. 1 a. 1/wave 3/6.
Charger Transf. Juput 200-230-250 v. 00 m/s 1/6. Sec. 36.7, 00 m/s 1/6. Sec. 36.7, 00 m/s 1/6. Sec. 15 M/s 300 ohns, 15 m/s 1/6. Also 1/6 m/s 1/6. Note 1/6.5, 1/6. Note 1/6.6 p. 7 Mu-Metal Intervalve Transf. 6.4 m/s 6/6 p. 7 Mu-Metal Intervalve Transf. 3.1, 51 or 10-1 3/9 each.

Television Transf. E.H.T., 4,000 v. 3 m/a, 2 v. 11 amp. (197) 197 174.131, 21, 11, 41, 400 v. 5 ni, 2 v. 1 and 45/- 500-0-500 v. 250 m/a, 4 v. 5 a, 63 v. 8 a, 75/- 350-0-350 v. 250 m/a, 6.3 v. 6 a, 4 v. 8 a, 4 v. 3 a, 6.3 v. (tapped 2 v.) 2a. 72/6. 75/-

Send 21d, stamp for very full Stock Lists. When wordering please cover packing and postage.

STERN RADIO LTD. 109 & 115, FLEET STREET, E.C.4. Telephone : CENtral 5814 and 2280.

Zworykin & Morton. "Television" Sarbacher & Edson. "Hyper and Ultra H.F. Engineering "...... Shea. "Transmission Networks and Wave Filters "......... 42/_ 36/-38/-Brainerd, "Ultra H.F. Techniques" 28/-A.R.R.L. Handbook, 1948 16/6 Radio Handbook (U.S.A.). New edition ... 17/6 Postage Extra. CATALOGUE ON APPLICATION

ELECTRICAL measuring instruments skilfully repaired and recalibrated.—Electrical in-strument Repair Service, 329, Kilburn Lane, London, W.9, Tel. Lad, 4168, [6935] REWIND service which duplicates or modi-fies as required; transformers, loudspeakers, ctc.; prompt returns.—Raidel Services, 49, Lr. Addiscombe Rd., Croydon, Cro. 6537, "SERVICE with a Smile."—Repairers of all oil rewinds; American valves, spares, line cord. —F.R.1., Ltd., 22, Howland St., W.1. Museum 5675.

5675

 $\mathbf{R}^{5675}_{EPAIRS}$ to moving coil speakers, cones, cones, cost fitted, field rewound or altered; speaker transformers, clock coils rewound; guaranteed satisfaction, prompt service; no mains trans. satisfaction, pror

A coils fitted, hield rewound or altered; speaker transformers, clock coils rewound; guaranteed satisfaction, prompt service; no mains trans. accepted. Closed Sat.
 L.S. REPAIR SERVICE, 49, Trinity Rd., Upper Tooting, London, S.W.17. Balham 2359.
 S and fields; we give prompt delivery and guarantee satisfaction; 14 years' experience; prices on request.—Sturdy Electric Co. Ltd., Dipton, Newcastle-on-Tyne.
 L'ELECTRICAL measuring instruments, commer-electrical Instrument Repair Service, 322, 6924
 B LECTRICAL measuring instruments, commer-lencer on skillfully repaired and recalibrated.— Electrical Instrument Repair Service, 328, 6924
 B Chickes, reph ement bobins supplied; new transformers Stores, 570, Manchester Rd, Hollinwood, Lancs.
 R EWINDS, mains transformers, speaker field coil, chokes, high-grade workmanship, 7day delivery; new transformers, speaker field coil, chokes, high-grade workmanship, 7day delivery; new transformers, speaker field coil, chokes, high-grade workmanship, 7day delivery; new transformers, speaker field coil, chokes, high-grade workmanship, 7day delivery; new transformers, speaker field coil, chokes, high-grade workmanship, 7day delivery; new transformers, speaker field coil, chokes, high-grade workmanship, 7day delivery; new transformers, speaker field coil, chokes, high-grade workmanship, 7day delivery; new transformers, speaker field coil, chokes, high-grade workmanship, 7day delivery; new transformers, speaker field coil, cholds, scruce, 6 months' guarantee, any fis., etc.; all types of new transf, etc., s'ap-plied to specification; business heading or ser-vice card for trade prices.—Majestic Winding co., 180, Windham Rd, Bournemouth.
 COIL specialists, -Tuning and oscillator coils, ist.; l.s. repairs, new cons, speech coil rewinds, etc.—Rynford Industries, Ltd. (formerly Elec-tronic Services, 17, Arwenack St., Faimouph; gorw, Brader drame, Cook, cools, field coils, meck-vice card

tronic Services, 17, Arwenack St., Falmouth. (9988) Revenue (1988) Cornwall. By C.P. trans., clock coils, field coils, pick-ormers to any specification; guaranteed work; competitive prices; delivery 2 3 days.-W. Groves, Manufacturing Electrical Engineer, 154, Ickneild Port Rd., B'nam. 16. Werther and the service of the service of the service assemblies, mains transformer rewinds from 15/-; new transformer rewinds from transformer rewinds from 16/-; new transformer rewinds from transformer rewinds fro

MISCELLANEOUS

TiME switch synchronous motor driven 230v 10amp Solar dial; £5.-Box 3. [1225] 40 Little telephone exchange complete; offers. 5.-BAY jewelled time-switches; bargain. 15/6; 5.-bay jewelled time-switches; bargain. 15/6; 5.-bay jewelled time-switches; bargain. 15/6; 6.-bay jewelled time-switches; bargain. 15/6; 5.-bay jewelled time-switches; bargain. 15/6; 6.-bay jewelled time-switches; bargain. 15/6; 1428 COPIES "Wireless World." 1947 4.-Wilkinson's, 204 Lower Addiscombe Rd., Croy-don. 11387 117182LESS World." 1944 (May missing)

Wilkinson's, 204 Lower Adalscombe red., 11367 don. (11867) W 1945, 1946, 30/- jot.-George, 77, Spring-held Park Ave., Chelmsford. (1352) W ALNUT radiogram and television cabinets, W ALNUT radiogram and television cabinets, OMBER cockpit lights, built-in switch, bar-details.-Walters. Sol, Hale End Rd., E.4. OMBER cockpit lights, built-in switch, bar-gain, 7/6.-Stansfield, Aireworth Terr., Keighley. TELEVISION cabinets, floor console model for 12-inch tube, new, manufacturers' surplus; few only; £16/10.-5, Horsham Rd., Dorking, Surrey. (accepted or otherwise), for

Iz-intra toro -5, Horsham Rd., Dorking, Surrey. (1330)
 Surrey. (1330)
 NEW deas (patented or otherwise) for moulded rubber articles: a Royalty will be paide on-Passe reply to Box 7. (1349)
 Toro disposal, also large quantities of rubber runmetts, BBA screws and washers.—List from Wolsey Television, Lid., 75, Gresham Rd., S.W.9. COMPLETE amateur station, VFO PA, CO PA, ComMPLETE amateur station, VFO PA, CO PA, Commulator, receivers, mikes, keys, colls. tubes, wavemeter, aerial; owner going abroad. -G3BCS, 149, The Moors, Kidlington, Oxford. Batte and modification, 2/6 post free; Alba A.C. console radiogram, medium and long. E28.—Williams, 25, Glenmore Rd., Birkenhead

100 kcs. OUARTZ CRYSTAL UNIT Type Q5/100

Wireless World

for Secondary Frequency Standards

★ Accuracy better than 0.01%. ★ New angles of cut give a temperature coefficient of 2 parts in a million per degree Centigrade temperature conto the faces of the crystal itself, giving permanence of calibration. ★ Simple single valve circuit gives strong harmonics at 100 kcs. intervals up to 20 Mcs. ★ Octal based mount of compact dimensions PRICE 451. Part Free Parts Part sions. PRICE 45/- Post Free

Full details of the Q5/100, including circuit are contained in our leaflet Q1. Send stamp to-day for your copy

THE QUARTZ CRYSTAL Co., Ltd. 63-71 Kingston Road, NEW MALDEN, SURREY Telephone : MALden 0334

DECCA FREQUENCY TEST RECORDS

The following Decea Records are now available with calibrations in deribels on the labels. Price 4 9 cach plus Purchase Tax 2,1 Wiking tone, range 14,000 to 10 cycles per

K 1802

Guing tone, range 14,000 to 10 cycles per second, firr characteristics Side A: Oliding tone 14,000 to 3,000 cycles per second, constant velocity. Side B: Oliding tone 3,000 to 10 cycles per second, constant velocity to 300 and constant tamplitude 250 to 10 cycles per second.

constant amplitude 250 to 10 cycles per second lde A: Steady tone in bands, constant vehcity, 14,000 to 6,000 cycles per second, lde B: Steady tone in bands, constant vehcity, 4,000 to 400 nol constant ampli-tude 250 to 30 cycles per second K 1803

K 1804

THE DECCA RECORD CO. LTD., LONDON, S.W.9 Phone Reliance 3311

SPECIALISTS IN SHORT WAVE

receiving and transmitting equipment, high quality broadcast receivers and Gramophone amplifiers.

Our Stock includes :--

Aerial equipment: Enamelled, Stranded and Insulated Wire, Twin Feeder 80 ohms and 300 ohms impedance, Coasial Feeder, Insulators, Television Aerial, et ac. Colls and Coil Formers: Wearite and Eddystone Coils, Ceramie and Polystyrene Coil Formers, Iron Cored Formers, V.H.F. Coils, I.F. Transformers and B.F.O. Coils, Transmitting Inductors Inductors.

Capacitors : Fixed, Electrolytic, Paper and Mica types, Variable Receiving and Transmitting, Neutralizing, Pre-Variable Receiving and set and Trimmer types.

Valves, Receiving and Transmitting types including V.H.F and Voltage Regulator Tubes.

Books : A full range of books on all radio subjects Loudspeakers, Pick-ups, Headphones, a large selection available.

Communications Receivers. The Eddystone 640 at £39/10 is to-day's best value in new Ham receivers.

Transmitting Keys. We recommend the new Eddyston "Bug" Pattern Key at 23/17/6. Standard Pattern Morse Keys also in stock at 5/6 each.

Our new Catalogue "W.W." gives full details of our entire stock and a copy will be gladly sent on request A.C.S. RADIO

44 WIDMORE R? BROMLEY, KENT Phone KAVensbourne 0156

August, 1948

Presker cabinets, good class walnut veneered, French polished, ultra modern. or sin units 17.6. 60 ft 21, 80 ft 23, 60 ft 21, 50 ft 2

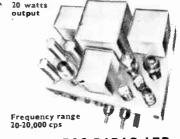
AGENCIES AGENCIES AGENCIES ACENCIES ACENCI

Peerless

Precision

Radio-gram Chassis Developed from the popular type 1047, this receiver will form the basis for a Radio-gram of unsurpassed performance, and at great saving in cost. Principal features include : 12 stage superhet circuit • 11 valves with magic eye indicator • 4 wave bands (11-2,000 metres) • R.F. Amplifor • 2 1.F. stages • 4 stages AVC • 10 watts push-pull output • Separate treble and bass controls • Tropicalised com-ponents. ponents

R.F. FEEDER UNIT (Available Shortly) This unit, comprising the H.F. portion of the 1148 Receiver (abov.) is supplied complete with valves, etc., and ready for use when supplied with H.T. 150 200 volts 60 na, and 6.3 volts at 1.5 amsp. The output will fully load any 1.5 amsp. The output will fully load any normal amplifier designed for gramophone record reproduction.


Advertisements 51

NEW EQUIPMENT OF INTEREST TO THE DISCRIMINATING ENTHUSIAST

A.F. UNIT & POWER PACK, Type |

A high grade amplifier for radio or records, provided with additional H.T. and L.T. for operating a radio feeder unit. Principal features include :

Input for moving coil pick-ups • Individual treble and bass controls • Power supplies for external unit (250 volts H.T., 75 ma., 6.3 volts 3 amps) • Remote control unit • Self-contained pre-amplifier • Multi ratio output transformer.

PEERLESS RADIO LTD. 374, KENSINGTON HIGH STREET, London W.14. Tel.: WEStern 1221

High Quality TRANSFORMERS and CHOKES

Made specially for your requirements. All coils layer wound and insulated between layers.

Our modern factory is fully equipped with vacuum and pressure impregnators and all the latest testing equipment.

POWER OUTPUTS up to 4 K.V.A.

AUDIO RATINGS 3-200 watts

AUSTIN MILLS LTD. LOWER CARRS, STOCKPORT

Phone: STO 3791 Established 20 years.

ALL-WAVE SIGNAL-**GENERATORS** Type 5&6 These high-quality precision instruments 200-240 volts AC Type 5, 100-250 volts AC/DC

Type 6, have a coverage of 100 Kc/s to 30 Mc/s in 5 ranges. Calibrated by hand against a standard frequency accurate to 0.01%. Con-structed in B.A.60 alloy and finished black and cream. Price 14 Gns. Type 5 or 6. Immediate delivery.

Illustrated leaflets on application to :

wafer switches The wave-change switch with silverplated double contacts. A.B. METAL PRODUCTS LTD., Great South-West Road, Feltham, Middx.

WARD ROTARY CONVERTERS

For Radio, Neon Signs, Television, Fluorescent Lighting, X-ray, Cinema Equipment and numerable other applications

We also manufacture :-

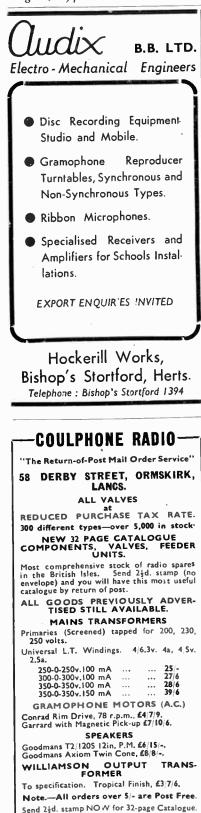
Petrol Electric Generating Plants, H.T. Generators, D.C. Motors, etc., up to 25 K.V.A.

CHAS. F. WARD LORDSCROFT WORKS, HAVERHILL, SUFFOLK Telephone : Haverhill 253 & 4.

Mr. A. C. BARKER is for the moment able to deliver his MODEL 148 SPEAKER

from stock. No other reproducer has the patented construction which gives such natural reproduction. No Twin cones' or Tweeters can give the smooth extended top, sharp clean transients and clear-cut bass which the laboratory built Barker 148 produces.

Write for details to


BCM/AADU, LONDON, W.C.1

Wireless World

ELECTRONIC development.

World Radio History

R ADIO service mechanics required by larke failing age experience and salary required, 19 E. L'eresting vacancy exists in Midlands for ex-pronic equipment attached to research laboratory salary up to £SOC every assistance given to find iterating vacancy exists in Midlands for ex-pronic equipment attached to research laboratory salary up to £SOC every assistance given to find iterating in physics, preferably with works experience to take charge as design emiliating factory in ord modern with exist patients that the salary according to patients attack of the salary according to patients and a salary exception. The storeman consideration without salary according to experience and salary according to patients and a salary according to patients and a salary according to patients and a salary ender to for each of the storeman consideration with be gived of om-mutations and a read work to for each of the storeman consideration with the gived of com-trol staff, the salary work to for each of the storeman consideration with the gived of com-trol staff, the salary according to a speaker manufacturers have vacancies for the store and just of tesis nentimeers with prac-cal knowledge. (b) Lethnical salary the store and salary required to for the store of the store and salary required to for the store of the store and salary required to for the store of the store and salary required to for the store of the store and salary required to for the store of the store of the top the store of the store of the the store of the top the store of the store of the the store of the top the store of the store of the the store of the top the store of the store of the the store of the store of the top the store of the the store of the store of the top the store of the the store of the store of the top the store of the store of the store of the store of the store the

Specialists

W. Bryan Savage Ltd

WESTMORELAND ROAD, LONDON, N.W.9

Telephone : Colindale 7131

A special offer of these superb instruments. Rance 125 kes -20,000 kes with accuracy of better than.01% Contains crystal controlled oscillator, heterodyne oscillator, and an audio frequency amplifier. Each instrument has been individually calibrated, and is complete with calibration book, instruction book, valves, crystal, etc. A really Precision Instrument, well within G.P.O. limits. Illustrated leaflet available.

TRADE ENQUIRIES INVITED. MONOCHORD RADIO (Established 1929) Streatham Hill, London, S.W.2 Phone : Tulse Hill 1051/2. 17

Wireless World

communi

[1465

1359

TUITION

ALL NEW GOODS.

Primary tappes. Screened.
 Mains
 Transformers.
 Primary
 tapped.

 200/210,
 220/230,
 240/250v.
 Screened.

 H.T. Sec.
 350-0-350 or 250-0-250 at 80 m/A.
 H.T. Sec. 350-0.350 or 250-0.250 at 80 m/A. L.T. Sec. Universal. 6.3 v.-4 v.-0 v. at 4 amps., 5v. -4v. -0v. at 2 amps. Half-shrouded. 18'6 each. Fully shrouded, 19'6 each. As Above, half-shroud only, 6.3v. -3 amp., C.T. 5v. 2 amp., 18'- each. Super Multi-Ratio. O.P.T. Ratios, 26, 46, 56, 66, 90, 120/1. 50 m/A, max. push pull to 6v.6C. PX4, etc. Separate matching Class B and Q.P.P. 2 to 4 ohms. Speech coil 5/- each.

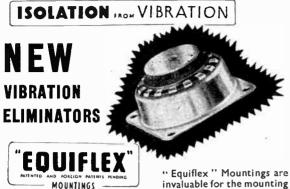
coil, 5/- each. Midget Power Pentode O.P.T. Ratics 30.

Midget Power remove 60, 9011, 3/2 each. Terms: C.W.O. (add 2/6 carriage and pack-ing for orders under £2). H. ASHWORTH

676, GREAT HORTON ROAD, BRADFORD, YORKS. Special quotations for quantities.

HIS Does these-

HAND MICROPHONES. CARBON, NO.8.


With press-to-talk Switch in Handle. Fitted with 6 ft. flexible lead, instruction sheet supplied, price 5/- each post paid.

WIRELESS SUPPLIES UNLIMITED (Proprs. Unlimitex Radio Ltd.) 264-266, Old Christchurch Road, **BOURNEMOUTH**, Hants.

Wireless World

AN (AN) PRODUCT

"Equiflex "Mountings are invaluable for the mounting and suspension of machines, equipment, instruments, and whenever elimination

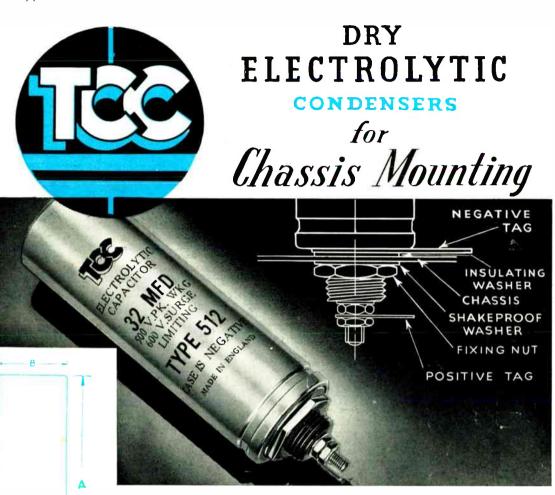
electrical apparatus, motors, etc., and whenever elimination of vibration and shock is required. SPECIAL FEATURES

Flexible in all directions at an equal deflection. Can be loaded on any side, thus eliminating vibration in Vertical, Horizontal and Longitudinal planes employing best quality natural rubber spring clements and complete with snubbing device. Special Fittings made to suit customers' require-

ments. Also available as previously advertised, the ALL-METAL construction comprising an ingenius Damped Spring System. Write for illustrated brochure, and send us details of your requirements. A. WELLS & CO. LTD., (Dept. W.W.), STIRLING ROAD, WALTHAMSTOW, LONDON, E.17 "Phone: Larkswood 2691

Wireless World August, 1948 A NEW B.P.L. INSTRUMENT

THE VOLTASCOPE—A combined valve-voltmeter and oscilloscope. VALVE-VOLTMETER—Infinite Input Resistance for D.C. ranges 0 to 300 volts. A.C. ranges 0 to 150 volts in 5 ranges. 3½ inch scale meter. OSCILLOSCOPE—3 inch screen tube provided with balanced amplifiers for Y and X plates giving a 5 times trace expansion. Maximum sensitivity 150mV/cm. Response from D.C. to 100 kcs.


Limited quantity available for early delivery.

BRITISH PHYSICAL LABORATORIES

HOUSEBOAT WORKS, RADLETT, HERTS.

Printed in Great Britain for the Publishers, LIFVE AND SONS LTD., Dorset House, Stamlord Nreet, Lohdon, N.E.I, by THE CORNWALL PRESS LTD., Paris Garden, Stamford Street, London, S.E.I. "Wireless World" can be obtained abroad from the following-Australia and New Zealand: Gordon & Gotch, Ltd. INDIA: A. H. Wheeler & Co. Canada: Imperial News Co.; Gordon & Gotch, Ltd. South Africa: Central News Agency, Ltd.: William Dawson & Sous (S.A.), Ltd. United States: The International News Co.

CAPACI-	PEAK		Dimen	sions in	Inches		LIST
TANCE in Mfds	WORKING VOLTS	SURGE VOLTS	A	В	с	TYPE NUMBE R	PRICE
*32	350	400	2%	I	ļ	312	9 -
4	500	600	2 🕺	i i	1	512	7 -
8	500	600	41	1	1	512	8 -
16	500	600	4	L1 -	3	512	116
32	500	600	4 Ĩ	1 ŝ	3	512	176
8	600	700	4 .	13	3	922	15 -
			-	~	•		

IN THE BEST SETS YOU'LL SEE This condenser has a screwed boss for one hole chassis mounting. The can is negative and this connection is to be made by contact with the chassis. Where it is desired to insulate the condenser from the chassis an insulating washer and tag can be supplied for the negative connection as illustrated. The condenser is of allaluminium construction with plain foil electrodes except where starred (*). Send 2½d. stamp for List No. 123 showing full range of T.C.C. Electrolytic Condensers.

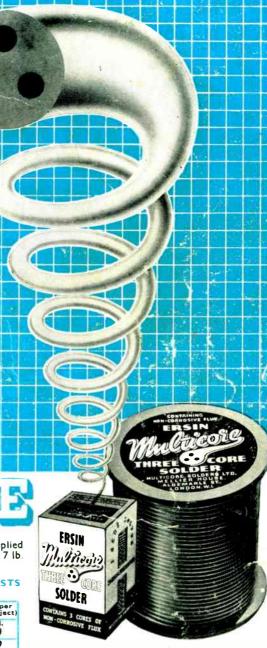
JOINTS

Wireless World Advertisements

ERSIN MULTICORE SOLDER

FOR **ECONOMICAL** SOLDERING

Most Radio Manufacturers use Ersin Multicore-the solder which provides precision soldered joints at known cost. Ersin Multicore with three cores of non-corrosive Ersin Flux ensures that no lengths of solder without flux will be wasted. By selection of the most suitable specification from the forty-five different standard combinations of alloy and gauge the maximum economy of material and labour is effected with freedom from dry or "H.R." joints.


Comprehensive technical information, including tables of melting points and lengths per pound in feet for each alloy and gauge, is available free of charge to the staff of Radio and Electronic Manufacturers on application.

ODINENTING

Ersin Multicore Solder is supplied IANUFACTURERS. in 5 alloys and 9 gauges from 10 to 22 S.W.G. on 1 lb. or 7 lb. reels. Bulk prices upon request.

FOR SERVICE ENGINEERS AND RADIO ENTHUSIASTS Size I Cartons are available in the following specifications.

Catalogue Ref. No.	Alloy Tin/Lead	s. W.G.	Approx. length per carton	List pr carton	rice per (subject)
C 16014	60/40	14	37 feet	6	d. 0
C 16018	60/40	8	95 feet	6	9
C 14013	40/60	13	23 feet	- 4	10
C 14016	40 60	16	50 feet	5	3

PRODUCTION

PRECISION SOLDERED

MULTICORE SOLDERS LTD. NDON, W.I. Tel.: REGent 1411