

FUSION

HMS

April 20, 1988

Tom,
Please find attached some F USION material I picked up from Bob Hulks in London. It should provide some background information on the subject. Once Giles Santini (IMS France) completes the proposal for the IMS Canadian PMB and BBM fusion project, Ill send you a copy for information. Tied in with that proposal. there is a good chance Giles will come to New York in the not too far distant future. As soon as I learn more. Ill let you know - as I'm sure you'll want to meet him.

Hope you had a good trip home!

Split quexionnaires or paralle! surveys

Questions

The same situation occurs when two independent but similar samples are respectively interviewed on $\mathbf{A}+\mathrm{B}$ and $\mathrm{A}+\mathrm{C}$.

Reinterviews
Questionnaires

Revolviag panels

For period P, the data is not available each week for all of the subsamples Varying respondents subsamples

The respondents subsamples vary from one week to another although the responses are needed for each week on a reference sample.

Updating

is it possible to match different samples which contain already existing, but different, information?

As already suggested by the examples cited in frame 1 , fusion techniques are not only alternative solutions to the problems of singlesource systems. There are also situations in which fusion techniques will be of great value within the process of a single-source system. But let us consider now how fusions are made.

3. Basic principles of fusion techniques

3.1. Probabilistic nature of the method

Today, research users demand that survey data be made available to them in a form which allows the user to employ multi-purpose data analysis software and cross-tabulating systems on the data directly. They no longer accept dependance on their survey suppliers for complementary analysis, and instead are looking for good interactive facilities to explore their data. This makes pre-processing of the responses necessary, in order to organise the data in a simple table form, with respondents as rows, questions as columns, and with no structurally missing information.

In order to meet such requirements, we have to perform the basic operation illustrated in frame 3. Such an operational design is referred to as a canonical fusion problem. Any problem, no matter how complex, can be broken down into sf"eral canonical sub-problems.

Although fusion, as illustrated in section 1, can be used in response to missing information, we like to think of it not as a missing data solution, but rather as a parameter-free micromodeling approach in a multisources context.

FRAME 4
TYPES OF MARRIAGES CONSIDERED IN FRF

macroscopic probabilistic structure.

3.2. Technical outline of the method

Bearing in mind the canonical form of the fusion problem, let D denote the donors file, and R the recipients file. Let $Q R$ be the set of the questions answered by the respondents in both files. Such information will be used as relay information between R and D. Let $Q T$ be the set of the questions answered by the respondents in file D but not in file R. Such information will be called transferred information when passed by the fusion process from file D to file R.

In order to transfer, at an in
dividual level, the $Q T$ questions, one tries to link each recipient with a donor. The underlying paradigm for such a method is that one believes that the closer a recipient is to a donor (closer according to some kind of multivariate statistical distance), the more likely that the recipient comes from the same population group as the donor. Con-s-p̣uently, one can ascribe to the recipient the observations (answers) available from the donor.

Basically, the fusion process could be thought of as the global minimisation of the average distance between linked respondents, under the constraint that the same individual
resolved, three analyses have been published that tend to prove that fusion processes lead to a statistically valid outcome.

In his paper presented at the Salzburg Media Symposium in 1985, Jacques Antoine [2] reported some data from the CESP Media Marché 84, which shows that:

- No significant differences were found between two parallel studies and the sample obtained by fusion, as far as products and brands were concerned.
- A good consistency was obtained between observed and simulated press and broadcast results.
- Intensive analysis of crosstabulated data on press by broadcast listening and viewing habits, before and after fusion, exhibits only a small 10% of significant departures.

Jürgen Wiegand [10], reporting to the 1986 ESOMAR Media Seminar on combining two separatelyderived data sets by two different methods, showed that the Wendt fusion delivers no major shifts between samples, and that:

- Integrated data sets deviate from single-source data by a similar amount to data sets derived from different samples.
- The distribution of exposures as derived from the original survey, and fused data, produce practically identical curves for large target groups, and only slightly different ones in special cases.

Recently, in collaboration with CESP, we performed an experiment on the French 1981 Audience Survey, which contained at that time both press and broadcast data. Although a small number of relay variables was available, we processed an FRF fusion on two random sub-samples, in which press and

FRAME 5
TRENDS IN MARKETING RESEARCH

Trends	Corresponding need for fusion
Survey vehicles tend to become different according to media	Inter-media fusion
Some surveys are not carried out annually	Up-dating of audience media data banks
Development of audience measures through panels techniques	Processing data as if the sample were constant, which is never the case Permanent up-dating of a fixed sample according to a changing universe
Additional samples with partly specific questions and partly common questions with the main sample	Fusion of additional samples with maia sample

broadcast data respectively were hidden; we studied, at several levels, the deviation between real and fused data. Our findings can be summarised as follows:

- Fusion is not an acceptable method to project or predict specificindividual behaviour.
- Fusion is an excellent method for predicting or forecasting global behaviour. Very low levels of bias are encountered on the total sample global distribution.
- Fusion is a satisfactory method for setting up a data base to be used for cross-tabulation. Statistical checks demonstrate that the level of discrepancy introduced by the fusion process is acceptable in most cases.

5. Present and future developments

Historical and bibliographical references indicate that fusion techniques are not new. They have been used for some 20 years in countries like the Federal Republic of Germany and France. Fusion is now enjoying a wave of interest in a variety of countries: experiments are under way in the UK and Belgium, while
projects are being considered in countries like Finland, Spain and the United States.

The increased interest of media researchers in the fusion approach is due mainly to three factors, the first two of a technical nature:
(a) As mentioned previously, users require that survey data is made available to them in a standardised form, enabling them to make full use of their computer software and cross-tabulating systems.
(b) More general availability of efficient fusion algorithms designed to handle large data files, and better statistical insight into the technique, has led to wider use among marketing research companies.
(c) The third factor has to do with trends in marketing research, summarised in frame 5.

6. Conclusion: A false problem?

there need be nc controversy between supporters of single-source development, and those who favour fusion techniques.
(I) Even with the development of electronic devices which have
(1) Socio-economic variables. Directly available from the 29,577 interviews.
(2) Press audience variables. Available from the press interviews, directly for 16,415 of the press sample, estimated through fusion techniques for 13,162 people from the ra-dio-television survey.
(3) Radio-television audience variables.
Available from radio-television interviews, directly for 13,162 peo-
ple from the radio-television sample, estimated through fusion techniques for the 16,415 people of the press survey.
(4) Market variables.

Available from the selfadministered specific questionnaire after the second waves of both the press and the radio-television surveys. These variables, available for 79% of the interviewed people in both second waves, were estimated, either through injection (other inter-

FRAME 8

(1) and (2): 'Injection' of missing data/products brands to non-respondents.
(3) and (4): Simulating missing data/products brands for people interviewed in press waves 1 and 3 (inter-wave 'fusions').
(5) and (6): Simulating missing data/products brands for people interviewed in radio-ietevision waves 1 and 3 (inter-wave 'fusions').
(7) to (12): Simulating missing data/media for each wave and vice-versa (inter-studies 'fusions').

FRAME 9

For 39 weeklies	For 66 monthlies
0 for 12 tides	0 for 24 tiles
140 for 11 tilles	1% for 33 tilles
240 for 14 tives	2% for 8 titles
340 for 2 tilles	4% for 1 title

views of both second waves), or through fusion (interviews of waves 1 and 3) for other interviews.

Finally, 12 operations (two injections and ten fusions, among which six vice-versa) were provided, according to the scheme shown in frame 8.

Validation of the fusion was obtained by comparing some results before and after fusion, with the help of x^{2} tests. It was found that:
(a) Global results such as AIR (Average Issue Readership), or similar ratios for radio and TV audiences, remained relatively unaltered by the fusion. As an example, AIR discrepancies (before and after fusion) are shown in frame 9. Another example can be seen in frames 10a and 10b. Frame 10a shows figures an general TV viewing habits: viewing every day, or nearly every day/average Monday to Friday. For the same six time periods, based on three TV channels ($6 \times 3=$ 18 time periods), the discrepancies before and after fusion are listed in frame 10 b .
(b) Breakdowns of audiences according to socio-demographics were fairly well maintained after fusion.

Some cross tabulations showed significant discrepancies; these results have suggested improvements for future fusions, such as additional constraints to be provided within the fusion process.

For example, the cumulated TV audience, by demographic grouping, has been subjected, for different time-periods and various TV channels, to χ^{2} tests, in order to search for -ignificant differences: ? channels x y time periods $\times 51$ demographic sub-groups, generated $1377 x^{2}$ tests, of which 122 , or 8.9%, were significant at a 5% level. This is illustrated in frame 11.
It was noticed that, of the 122 significant $x^{2}, 39(32 \%)$, were due to
fondamentaux des techniques de fusion et en donnent un schéma technique. Les auteurs parlent aussi de la validation des procédés de fusion; ils démontrent que les méthodes de source unique et les techniques de fusion peuvent être des procédés complémentaires plutôt que des alternatives. L'article se termine par une brève étude de cas.

Zusammenfassung

Jacques Antoine und Gilles Santini untersuchen in diesem Artikel die Situationen, mit denen gerade Me dienforscher konfrontiert werden und die zur Anwendung von sowohl 'single-source'-Methoden als Fusionstechniken geführt haben. Sie beschreiben die Grundprinzipien der Fusionstechniken und geben einen technischen AbriB. Auch die Validität von Fusionstechniken wird erörtert. 'single-source'-Methoden und Fusionstechniken können, argumentieren die Autoren, eher sich ergänzende Prozesse als Alternativen sein. Der Artikel endet mit einer Fallstudie.

References

[1] Antoine, Jacques and Gilles Santini (1986)
-An experiment to validate fusioned files obtained by the referential factorial method'. ESOMAR Seminar on New Developments in Media Research, Helsinki, April.
[2] Antoine, Jacques et al. (1985) 'Fusion techniques: Objectives, a case study, perspectives', Salzburg Media Research Symposium. [3] Benguigui, Alexis and Gilles Santini (1984) 'Rapprochement de données ou fusions d'enquètes'. IREP Séminaire Media.
[4] Bergonier, Henri, Lucien Boucharenc and Philippe Irrmann (1967) 'Fusion d'enquêtes application à l'évaluation de projets de plans média', Revue Française du Markeling 22, no. 1.
[S] Boucharenc, Lucien (1981) 'Les techniques de fusion appliquées aux études CESP', Memorandum. Nov.
[6] Santini, Gilles (1984) 'La méthode de fu= sion sur référentiel factoriel' (IREP).
[7] Santini, Gilles (1986) 'Mérhodes de fusion: Nouvelles réflexions, nouvelles expériences, nouveaux enseignements'. Dec. (IREP).
[8] Wendt, Friedrich (1976) 'Beschreibung einer Fusion', Schriftenreihe Band 21 (Gruner + Jahr, Hamburg).
[9] Wendt, Friedrich (1983) 'The AG.MA model'. Montréal Media Research Symposium.
[10] Wiegand, Jürgen (1986) 'The combining of two separately derived datasets into an integrated intermedia planning system: The German model of partnership', ESOMAR Seminar on New Developments in Media Research, Helsinki, April.

Tokvo Branch
Artn.: Mr. T. Kato
28.1 Yushims. 3 chome. Buntrvo.Ku

TOKYO 113
TH. $1031836-0810$
Telen: 02657617
for the rest of the world please coniact

Ms W. van Cilienourch PO. Bon 211
1000 AE AMSTEROAM The Neinerlancs Te.: $102015803.714,715$ Telen: 18582 ESPANL Cables ELSPUBCO Amsterdam

The usual method for doing this is to match or marry each respondent on one survey, the recipient survey, to a respondent on the other survey, the donor survey, by choosing the donor who appears to be most similar in terms of the common variables: i.e those/items which are covered by information that is on both the surveys. These common variables can be divided between cell and non-cell variables. Cell variables are ones like sex, which have to match exactly before a marriage is permitted. Non-cell variables do not have to match exactly; instead, they are used in combination to produce a measure of the similarity between recipient and potential donors.

Note that the essential difference between the recipient and donor surveys is that the recipients are always monogamous, whilst the donors can also be batchelors or bigamists i.e. respondents on the recipient surveys are each used exactly once, whilst respondents on the donor surveys may not be used at all, be used once or used more than once. Furthermore, if the surveys are weighted, the natural inclination will be for the fused database to use the recipient survey's weighting system. As we will see, however, this may not be an optimal choice.

The common variables can be divided between a limited number of cell variables whose boundaries are not crossed when making a fusion e.g. people are not married if they are in different sex or age groups, and non-cell variables, which are used to construct similarity scores, which determine who is to be married to whom.

REASONS FOR FUSION

The usual reason for wishing to undertake a data fusion is to enable cross-tabulations to be prepared showing the relationship between a variable which is only on the recipient survey with one which is only available on the donor survey. For example, in the German Partnership Model', the objective was to enable mixed media scheduling from separate surveys on readership and the consümption of broadcast media.

Whilst I have spoken of cross-tabulation, the media planner will often only be interested in a single row or column of the table i.e. a particular target group. For example, we have recently been engaged in an investigation of the feasibility of fusing the National Readership Survey (NRS)
with a survey on financial matters conducted by Financial Research Seryices (FRS)*. From our point of view, the object of this exercise would be to enable the readership behaviour of particular target groups not identifiable on the National Readership Survey, such as holders of Local Authority Bonds, to be examined.

It is also tempting to use fused databases for primary data, since they require only one set of analysis protocols instead of two or more different ones. Assuming, as is the case with the NRS, that the donor; surver has been properly conducted, we should not fall prey to this temptation. Bad data should not be allowed to drive out good. Fusion generally causes some loss of data quality in the donor survey. It is therefore better to use the primary databases.

The only possible exception is where the donor survey has suffered from a low response rate, or is derived from a restricted or totally different population. In these circumstances, fusion may act as a system of post-stratification which makes the donor survey more
representative of the population under study. Needless to say, the National Readership Survey does not come into this category and JICNARS has decided that fused databases should not be employed to produce estimates which can be obtained directly from the NRS.

There is also a beneficial side effect from data fusion. This is that it encourages those responsible for each of the two surveys to compare their results and learn from each other. This advantage is most apparent when the two surveys have always been separately conducted by different organisations.

THE NEED TO TEST DATA FUSIONS

Over the years, market research practitioners have gained confidence in their methods. So long as they know that the methodology followed is sound, they trust in their results. (Even so, those who are prudent cross-check them against other surveys or against population data, take sampling error into account and consider the possible effects of question order or wording.)

[^0]It is tempting to carry this confidence over into data fusion and have as much confidence in the fused database as in its two component parts. This, however, is a mistake. This is not just because fusion methodology is both more novel and less often employed thàn conventional survey research. Far more important is the fact that there is no way of knowing in advance whether or not the common variables, those used to link the donor and recipient samples, are adequate.

Discussions about fusion are, perhaps, too often concentrated on which particular matching technique should be employed and too little on whether or not the common variables are adequate. This is probably because the statistician conducting the matching has been brought in to match two already existing súrveys and does not have an opportunity to influence the choice of common variables. Nonetheless, bricks made with insufficient straw fall apart and fusions based upon inadequate common variables cannot hope to succeed. If the only common variables are colour of hair and ager there is little chance of estimating the relationship between social class, derived from one survey, with income, derived from another.

ADEQUACY OF COMMON VARIABLES

What do we mean when we demand that the common variables be adequate? In essence, it is that, once allowance is made for the common variables, there should be no residual variables. This is the requirement of conditional independence*. Here is a simplified example to show why conditional independence is important.

Suppose we are interested in discovering the relationship between reading newspaper A in the past year and viewing television programme B, using as a common variable the weight of television viewing. To keep the arithmetic simple, let us assume that our surveys show the following results:-

[^1]TABLE 1
Readership Survey
Reads A:-

i.e. half the population reads A, half views B and half are heavy viewers. Furthermore, heavy viewers are very prone to read A and to view B.

We now wish to use this information to estimate the relationship between reading A and viewing B. This is done by rearranging the information as follows:-

TABLE 2

We "now have to find a way of filling in the blank squares for Heavy and Light Viewers, so that the results can be added together to give the total table at the right.

The standard fusion procedure assumes that within the sub-groups of heavy and light viewers, there is no association between readership and viewership; in other
words, the numbers in each cell are exactly those which would be expected on a chance basis. On this basis, we have:-

TABLE 3

This leads to the conclusion that 68\% of readers of A view B, and so on.

Of course, we have no way of knowing that this is really the case. All we can say for sure is that the numbers are not less than zero.

At one extreme, we could have the following pattern:-

TABLE 4

Here, instead of 68% of readers of A viewing B, the proportion is only 60%, so the true relationship is weaker than that suggested by the fusion.

On the other hand, the true relationship could be much stronger. The pattern for the opposite extreme is:-

TABLE 5

In this example, then, we have an estimated figure of 68% with a possible range of 60% to 100%.

Fusion practitioners hope that, as more and more common variables are taken into account, the likelihood of achieving conditional independence in the cells is increased. Furthermore, even if conditional independence is not achieved, they hope that in some cases, the correlation between readership and viewership will be negative as in Table 4, and in other cases, it will be positive as in Table 5, so the effects will cancel each other out.

These hopes may not be unreasonable, but no amount of care or complication in the computer procedures will guarantee them. For this reason, it is necessary to check the quality of Data Fusion.

Even before this stage, other checks are needed.

FLISION IN REAL LIFE

The previous example was both simplified and idealised. It was" simplified because, in actuality, marriage is based upon a multiplicity of common variables which can exist, not at just two levels, such as 'yes' or 'no', but at several. In these circumstances, marriage is not a question of choosing a partner at random from a number all of which match exactly, but of choosing the one which appears to match most closely. Real life fusion, like real lî̃e marriage, is a matter of compromise.

The example is idealised because, in this instance, we have assumed that the number of donor and recipient respondents are identical, and that the distributions of the common variables are identical. This"enables our model to reflect the puritanical ideal of each donor'being married once and once only.

In real life, the number of donors will differ from the number of recipients. Furthermore, the donor and recipient surveys may define the common variables differently or may represent slightly different populations. In these circumstances, there can be significant differences between them in the distribution of the common variables.

CHECKING THE COMMON VARIABLES'

The first step in that there are no surveys in terms Ideally, of be undertaken before the fusion starts, so that discrepancies can be resolved.

Differences can arise for a number of different reasons. These need to be resolved in different ways:-
(a) Population Differences

The two surveys may represent different populations. For example, the weighted estimate of the population aged under 24 on the NRS is different to that on the FRS, since the NRS covers the population aged 15 and over, whilst the FRS only covers that aged 16 and over. Fortunately, the NRS codes respondents, ages exactly, so this discrepancy could be handled by removing the 15 year-olds from the NRS sample.
(b) Weighting Procedure Differences

A comparison of the sex ratio by age within class showed that on the NRS, this is constant across the social classes, although of course it increases with age. In the case of the FRS, on the other hand, although the ratio increased as it should with age, it also was slightly higher for young ABCls than young C2DEs, but lower for older ABCls than for older C2DEs. The differences are shown in the following table.

TABLE 6

EXCESS OF WOMÉN OVEŔ MEN - \%

Ages:-	$\underline{15 / 16-44}$		$\underline{45+}$	
	NRS	FRS	NRS	FRS
ABC1	-1%	$+3 \%$,$+20 \%$	$+17 \%$
C2DE	-2%	-6%	$:+23 \%$	$+23 \%$
Difference	$+1 \%$	$+9 \%$	-3%	-6%

This difference seems to be related to the fact that, whilst both surveys are rim-weighted, the NRS sets its rims separately for men and women, whilst the FRS's rim totals are set for the two sexes combined. Young male ABC1s are one of the hardest groups to contact, and they usually need to be upweighted to compensate for non-response. If separate rims are not set for men and women, then young male ABCls are unlikely to be upweighted as fully as they should. If it is thought to be serious, a problem such as this can, if it is identified, be solved by using a suitable form of weighting. This would seem to be an example of the way in which fusion can produce a side benefit through encouraging a closer comparison of the two participant surveys.
(c) Differing Non-response Patterns

- There can be non-response effects not compensated
- for by the weighting scheme. Here, it is necessary to decide whether it is the donor or the recipient survey which is most likely to be in error, this can sometimes be done by comparison with known population statistics. In other cases, we have to consider overall levels of response or the types of non-response to which the two surveys are most likely to be prone. If it is concluded that the recipient survey is less likely to be at fault than the donor survey, then no action need be taken. If, on the other hand, it is thought that the recipient survey is more likely to be at fault, it may be better to reweight the recipient survey to match the donor survey totals.

(d) Differences in Definition

There can be differences in/definition between the two surveys. These can arise if coders in the two survey organisations are given different instructions on, for example, how to code social class, or because the questions used differ. For example, an initial comparison of the FRS with the NRS showed that the percentage of the population holding unit trusts according to the NRS was 25%, more than the FRS figure. Further investigation revealed that this was due to the fact that the FRS estimate did not include those who purchased unit trusts through a life insurance policy. This was correctable. However, the fact that the FRS has rather more C2 and fewer E class individuals (29.8\% v 27.8\% and 12.2% v 14.6%) than the NRS reflects a difference in definition that cannot be corrected so easily. Where differences of this nature are found, either the common variable should not be used for matching purposes or consideration should be given to recategorising some respondents so that the distributions match more closely. For example, if one survey's ABs are, in fact, more upmarket than another's, it would be inappropriate simply to match them, and a preferable step would be to upgrade some Cls to be ABs.

In the upshot, a comparison of a number of items between the two surveys showed that there was close agreement between them:-
. Ownership of:-

NRS

 \%64.6
22.5
16.7
15.9
3.6
3.7
4.3

FRS

Any current account Visa, etc, cards. Access, etc, cards Stocks \& shares Unit trusts British Telecom shares TSB shares
\%
67.4
20.9
16.0
14.3
3.3
4.4
4.8

The sample sizes used on the NRS and FRS are large. Consequently, even though the comparison is quite close, differences such as those for stocks and shares are statistically significant. This is probably because of factors such as those already described.

It was not thought necessary to correct for these differences before marrying donors to recipients.

Abstract

CHECKING THE TYPES OF MARRIAGE Antoine and Santini ('Fusion Techniques: Alternative to Single-Source Methods') ${ }^{2}$ list the types of marriage used in their fusion procedure. These can be described as follows:-

TYPES OF MARRIAGE

(1) Love at first sight. The donor and recipient respondents are each closer to the other than they are to anyone else.
(2) Childhood sweethearts. The recipient respondent cannot be married to the closest donor, because he/she 'loves', i.e. is closer to, someone else, so the recipient 'marries' someone else who is suitable but not quite so well-matched.
(3) Adultery. A variant of case 2. Where there is no suitable 'childhood sweetheart', the donor respondent is allowed to marry two recipients.
(4) Attentiveness. When, because of their previous commitments, a donor cannot be married either to its ideal mate or to a 'childhood sweetheart', it can marry a thirdor fourth-best choice recipient, provided from the recipient's point of view, the match is a good one.
(5) Convenience. Where none of the previous rules can be applied and marriages are performed according to an optimisation procedure.
(6) Shot-gun marriages. These are cases where the last remaining recipients are married off by the use of cut-off rules in the optimisation procedure.

A copy of the diagram used to explain these different types of marriage by Antoine and Santini is attached as an Appendix to this paper.

An examination of the frequency distribution of the different types of marriage may give some indication of the likely quality of the fusion. In the following table, the marriage profile of the FRS/NRS data fusion is compared with that for the CESP ${ }^{3}$ fusion :-

TABLE 7

MARRIAGE PROFILES

NRS ${ }^{\prime}$ CESP

(1)	Love at first sight.	23%	
(2)	Childhood sweethearts.	3%	$\mathbf{2 9 \%}$
(3)	Adultery.	10%	$\mathbf{2 \%}$
(4)	Attentiveness.	2%	$\mathbf{6 \%}$
(5)	Convenience.	$\mathbf{4 5 \%}$	$\mathbf{4 \%}$
(6)	Shot-gun marriages.	$\mathbf{1 7 \%}$	$\mathbf{5 1 \%}$
			$\mathbf{7 \%}$

The FRS/NRS fusion showed fewer cases of love at first sight and more shot-gun marriages than the CESP fusion, which Antoine and Santini reported was reasonably successful. It would be interesting to know how the FRS/NRS distribution compared with other fusions. It
should, however, be remembered that the distribution will depend, not only upon the suitability of the fusion, but also upon the numbers of donor and recipient respondents and the density with which they are clustered.

Nonetheless, even though I do not spend much time reading romantic novels, I would feel happier if there were more cases of love at first sight and fewer shot-gun marriages. The high proportion of marriages of convenience may also be a cause for concern.

It would be very helpful if, when tests of fusion are conducted using common data sets from which some variables have been deleted, as in the CESP study quoted and the AGMA Studies (Wiegand, Op. Cit.), the results could be analysed by marriage type.

Even in other cases, it is worth testing the effect of marriage type on fusion by examining cross-tabulations of donor against recipient variables within the different types.

THE FREQUENCY DISTRIBUTION OF MULTIPLE MARRIAGES

Donors can not only commit bigamy or, to use Antoine and Santini's term, 'adultery', they can also remain batchelors.

If some donors are not used at all, whilst others are used an above average number of times, the accuracy of the donated data will be reduced

On theoretical grounds, the expecteid reduction in accuracy will be equivalent to a reduction in the effective size of the sample of ($1+R V$), where $R V$ is the relative variance of the distribution* of the number of times each donor was used.

In the case of the FRS/NRS data fusion, the frequency distribution of the extent to which donors were used was as follows:-

TABLE 8

HOW OFTEN DONORS WERE USED

Number of times
a donor is used

0	11%
1	21%
2	32%
3	23%
4	8%
5	3%
$6+$	2%
	2.21
rad deviation	1.92
	3.69

This implies that the effective size of the donor sample will be reduced by a factor of 1.76 to 57% of its original value.

An examination of the frequency distribution shows that a few donors have been used a very large number of times. If these heavily used donors are atypical in their reading behaviour, then they can have a considerable effect on the apparent readership of individual target groups. I am no more a moralist than I am a romantic, but I cannot resist pointing out that, as in life, so in fusion, a fewhighly promiscuous people can cause a lot of problems.

[^2]
CHECKING FUSED AGAINST UNFUSED DATA

We can see the combined effect of variations in the number of times donors are used and of differences in the targets to which the surveys are weighted by! checking the extent to which the donor sample is distorted 'by the fusion process.

It must be remembered that this is not a check of the crucial questions of the adequacy of the common variables and the efficiency of the fusion algorithms. Indeed, regardless of these factors, the donated variables would be totally undistorted by the fusion if the donor and recipient samples had the same non-response rates and patterns, and had been weighted in the same way to represent the same population, and each donor was used the same number of times.

For this reason, comparisons such as the following only set an upper limit to the likely accuracy of a fusion. They should not be considered as providing a rigorous test.

A comparison of average issue readership estimates from the NRS with those from the fused database showed a good level of agreement in many cases. (Estimates for the Financial Times were 1.8% in both cases; for the Daily Mirror 20.1% on the NRS, 20.2% fused; for the Daily Mail 9.9% and
10.3%,)

On the other hand, there were some cases which were far less satisfactory e.g.:-

TABLE 9

EXAMPLES OF INEXACT FUSION ESTIMATES

Publication	Unfused		Fused
A	2.2%		1.1%
B	0.9%		0.5%
C	0.4%		1.0%
D	1.1%		1.9%
E	0.7%		1.2%
F	1.8%		

Admittedly, none of these were publications of great financial interest. Furthermore, cases A and B were quickly resolved when it was found that these were publications which had had a special weight attached because they had only been on the NRS for half the study period. Unfortunately, this weight had not been carried across into the fused database. This reflects not only how
important it is to make are correct but also to analysis proceeds.
sure that the analysis protocols cross-check the results as the

Discrepancies between the fused and/ unfused estimates are best compared by calculating a statistic similar to the chi-squared statistic i.e. $(f-u)^{2} / u$, where f is the fused percentage readership estimate and u the unfused one. This can then be converted to give the effective sample size by dividing this statistic into 100. This calculation can be performed either for individual publications or by taking the average of the statistic across a number of publications, on the assumption that the deviations will be independent of each other.

This analysis yields the following results:-

TABLE 10

Effective Sample Sizes - Total Sample

	Effective Sample	$\%$ of Actual $(14,258)$
National Dailies		
" Sundays	4207	30%
Sunday Supplements	7754	54%
Regional Dailies	6709	47%
" Sundays	1165	8%
General Weeklies	1751	12%
Women's Weeklies	7681	54%
Fortnightlies	8081	57%
General Monthlies	3535	25%
Women's Monthlies	1960	14%
Bi-Monthlies	4497	32%
Pulications	17075	$>100 \%$

All Publications

3030
21%
It will be seen that, overall, the effective sample size in this case averages out at only 3030 i.e 21% of the actual NRS sample, but results for some types of publication, such as Sunday newspapers, were close to their theoretical levels*. As we will see, the reduction in the effective sample size is concentrated on certain sections of the population.

[^3]The analysis was produced after correcting for the two publications whose readership was inadvertently halved, but not making any other changes. Subsequently, IMS carried out a further adjustment. This reallocated respondents as readers or non-readers so as to bring the fused readership levels within specified demographic groups more closely into line with the NRS. It is, however, not clear that this improvement would carry over into FRS target groups not identified by the NRS.

A further passible cause for the reduced 'effective sample size, apart from the effect due to the unequal distribution of the number of times donors were used, might be that the FRS sample is weighted in a different way to the NRS. Investigations in this area suggested that the benefit from re-weighting would be slight.

The overall effective sample size was reduced quite substantially by a poor as those quoted earlier. but the low sample sizes because marriages were performance on a few titles, such The reason for this is not known, for regional publications could be not confined within circulation areas.

It is also worth analysing how close the fused estimates are to the NRS within different sub-sections of the population. This is shown in the following table.

TABLE 11

Effective	Actual	Effective/
Sample	NRS	Actual
	Sample*	\%
1660	1451	>100
1508	1092	>100
2084	1765	>100
1586	1395	>100
634	2102	30
1886	1796	>100
172	2388	7
2236	2269	99

It will be seen that the problems are concentrated amongst 16-44. year old C2DEs, and particularly amongst the women. This section was the one showing the highest degree of variation in the extent of donor use i.e. the highest proportions of batchelors and adulterers.

[^4]
COMPARISON FOR TWELVE-ISSUE PENETRATIONS

The NRS is used to analyse schedules by means of a modelling approach. Consequently, there is a need to see how this model stands up to the fusion process. One test is to compare how the twelve-issue cumulative penetration for different publications compares between the fused and unfused database. This comparison was made following the adjustment referred to earlier, and was confined to National Dailies and Sundays, Sunday Supplements, the two programme magazines and the Reader's Digest. The
adjustment increased the effective sample size beyond the actual sample size at the one-issue level, but in spite of this; effective sample sizes for twelve-issue coverage were much lower . Results are shown in the first two columns of the following table:-

TABLE 12
EFFECTIVE SAMPLE SIZE FOR TWELVE-ISSUE COVERAGE

	Initial		After Bias Correction	
	Effective Sample	\% of Actual+	Effective Sample	\% of Actual+
National				
Dailies	853	6	3360	24
National				
Sundays	1326	9	8395	59
Sunday				
Supplements	2047	14	5704	40
2 Programme				
Magazines \& Reader's Digest	908	6	27521	>100
All the Above Publications	1113	8	5197	36

$+14,258$
One of the reasons why discrepancies were so much worse for twelve-issue coverage was that coverage estimates for the fused database were generally higher than those for the NRS. Of the 28 publications studies, only 2 had lower coverages in the fused database than on the NRS, and on average, fused database coverages were over 5% higher than unfused ones. Once this bias was removed, the effective sample sizes improved considerably. This is shown in the second two columns of Table 12.

However, in view of the double correction, the results are still disappointing compared to the uncorrected figures for the single issue penetration. The explanation for the poorer performance is probably that, in this case, estimates will be affected if the fusion process distorts either the frequency of reading pattern or readership levels within the different reading frequency groups.

This demonstrates that complex estimates are likely to be more severely distorted than simple ones.

TESTS OF THE CONDITIONAL INDEPENDENCE ASSUMPTION

Although these tests set an upper limit to the accuracy of a fusion, they only skirt round the real problem, which is to what extent will readership estimates for a particular target group correspond with their true values, if these were available (i.e. with the estimates which would be obtained if the same respondents could be interviewed using both questionnaires).

This in effect amounts to a test of the conditional independence assumption. The ideal way of testing this would be to re-interview the recipients to see whether discrepancies between their actual and predicted characteristics are distributed at random, so the results for any given target group will be unbiased.

Of course, it would also be encouraging if the number or extent of such discrepancies were small, but the key requirement is that there should be no correlation with target group characteristics. Providing this requirement is met and the sample sizes are adequate, random discrepancies will cancel each other out.

Unfortunately, it is usually too expensive to re-interview respondents, so we have to use indirect methods. In the following sections of this paper, we discuss the indirect methods which are available.

These tests are, in effect, tests of the accuracy with which the fused database measures the selectivity of different media for a target group. It is therefore worth discussing how we might expect selectivity* to be affected by"fusion.

[^5]It will have been seen from our initial example the objective of conditional independence is losses or gains in selectivity are both possible.
that, if not met,

This is because the actual association between two variables such as readership and'membership of a target group will, in effect, be the sum of the association predicted using the common variables and an amount proportional to the residual association conditional on these common variables ${ }^{4}$

The predicted association will therefore be lower than its true value if the residual association has the same sign as the predicted one, and higher if the signs are opposite. In the first case, apparent selectivity is reduced by the fusion; in the second, it is increased.

An analogy with stepwise regression suggests that a loss in selectivity may be more likely than an increase. Normal experience with stepwise regression is that, as independent variables which are correlated with those already there, are added, then the size of the earlier coefficients is more likely to be reduced than increased.

In stepwise regression, the initial value of the coefficient is equivalent to the actual level of selectivity. The final value is the residual association, so this experience is consistent with a loss in selectivity being more likely than a gain.

Part of the reason why this is likely to happen is that, when we are dealing with frequencies, the range of possible values for the residual association can, as it was in our first sample, be assymetrical.

Obviously, tests of selectivity cannot be made directly without a single source database. A number of indirect tests.are, however, possible.
(a) The non-cell common variables attached to the donors will, in general, not match exactly those attached to the recipients.

We can therefore compare the true association between donor and non-cell common variables with that shown by the matched data set, and use this, not only to determine whether there has been a loss or gain of selectivity, but to estimate a maximum figure for the effective sample size of the fused database.
(b) In the previous test, the effective sample size will be overestimated because the common variables also played a role in the matching process. If, however, one is prepared to accept a possible loss in efficiency, one or more of the common variables could be held back from the matching process. By this means, a more realistic estimate of sample size could be obtained.
(c) Alternatively, the common variables can be viewed as representing a sample of the full population of variables which would be used in an ideal matching procedure. This idea can be extended by carrying out a number of separate fusions eliminating one or more of the common variables in turn, and testing the effect of dropping a variable on the directions of the fused relationship, as well as making effective sample size estimates as in (b) above.

This test depends on the idea that, unless the set of common variables has been carefully constructed, it is unlikely to be just sufficient for the fusion. Providing the set of common variables is not insufficient for conditional independence to be achieved, there will be a redundancy of information, and variables can be dropped without having any substantial effect on estimates from the. fused database.

The fusion of sizeable data sets still places a heavy burden on computer time. It is therefore unreasonable to expect a number of separate fusions to be undertaken with different sets of common variables, simply in order to estimate accuracy.

There is, however, no reason why sub-samples of donors and recipients should not be selected, and the quality of the fusion tested on these.
(d) In the previous example, it could be argued that it would be unreasonable to test the effect of dropping certain variables because it is well recognized that they are crucial to the fusion. On the other hand, if only the most irrelevant common variables are dropped, then a false illusion of security could be *. created when it was found that these had no effect.

One way of overcoming this problem would be to ask a number of suitably qualified people, who do not know what is covered in the data sets, to list all the variables they could possibly want to see included in a fusion, and rank them in order of importance. (Conditional statements along the lines of ' A is
important, unless B is present', or ' C is only important if D is also included' might also need to be allowed.)

This ideal list can then be treated as the full population of common variables, and the actual set of common variables as a sample drawn from it. Any variable whose importance was ranked higher than all those not common to the two sets could then be treated as crucial and protected from being dropped. This idea can be extended to indicate the probability with which variables should be retained or dropped when carrying out the fusion tests.
(e) : If fusions are produced using different sets of common variables, then each recipient involved can be thought of as having a different set of donated variables attached for each of the fusions. Consequently, tabulations of the relationship between recipient and donor variables can be prepared, not just once, but several times. The variability between the results produced by the different tabulations can then be used to estimate the likely degree of error associated with the fusion process.

This is the essence of the multiple imputation technique proposed by Rubins i.e. to each recipient there should be imputed not just one but several sets of values of the donor variables, so that estimation errors can be investigated.

Rubin, however, takes the argument a stage further, and proposes that the imputations should be made not only under the assumption of conditional independence, but after assuming other values than zero for the residual degree of association i.e. - account should be taken not just of the common variables, but also of the values of the recipient and donor variables when deciding whether or not a marriage should take place in any particular fusion.

At present, this procedure, if it is feasible at all, could only be applied to sub-samples of the large data sets used in media research. This would w. still help considerably in checking the sensitivity of the fusion to the choice of common variables and to deviations from the conditional independence hypothesis. In the future, however, we may hope to see whole fusions conducted, not just once, but several times.

To the sceptic, this may seem like a means of producing even larger quantities of data garbage. However, remember that, if you see an object in isolation, it may be impossible to tell whether it is a piece of garbage or a work of art, but if you look at a large number of such objects, it is easy to see whether you are in an art gallery or a junk-yard.

IS VALIDATION OF FUSION WORTHWHILE?

Finally, it may be worth saying something about the quality of results that should be achieved before a fused database can be considered to be acceptable.

If a single-source database, is not available, then media planners are, in effect, forced into estimating the media consumption of a desired target group by indirect means. Normally they do this implicitly by choosing a target group that is fairly similar to the desired one but which is on the database e.g. owners of stocks and shares, which is on the NRS, may be used as a surrogate for owners of Local Authority Bonds.

This, in effect, amounts to the assumption that there is a perfect correlation between the two. A more careful media planner might seek out another survey such as the FRS, and check whether or not this assumption held good. In fact, of course, it will not.

The media planner, then, has to estimate the relationship between readership and the target group indirectly. For example, one might assume that the relationship is the same as that for owners of stocks and shares, even though the two measures are not perfectly correlated.

One criterion for the acceptability of a fusion is that it should be more accurate than such judgemental estimates. One could perhaps (although I would prefer not to) go even further and argue that the convenience and objectivity of a fused database are advantages which would make it preferable, even if it was slightly less accurate than a media planner's judgement.

An alternative approach would be to consider the relative cost of using the fused database and of obtaining a single source estimate from a sample having the same effective sample size. When making this comparison, it should be remembered that the single source survey may also suffer a reduction in effective sample size and selectivity, as a result of the additional weighting that is required to offset the increase in non-response due to the additional
respondent burden, and the greater likelihood of respondent error through fatigue.

Furthermore, the media planner has to use what is at hand today. Even if it is thought to be more efficient, it may be harder tó organise support for a single source database than to fuse two surveys which are already in existence.

Nonetheless, calculations of effective sample size, such as those contained in this paper, can assist, those who have to plan future media research strategy, besides providing a convenient summary of the effectiveness of a fusion exercise.

REFERENCES

1. Wiegand, Jürgen 'Combining Different Media Surveys: The German Partnership Model and Fusion Experiments', Journal of the Market Research Society, April 1986.
2. Antoine, Jacques and Santini, Gilles, 'Fusion Techniques: Alternative to Single-Source Methods?', European Research, August 1987
3. Antoine, Jacques and Santini, Gilles, 'An Experiment to Validate Fusioned Files Obtained by the Referential Factorial Method', ESOMAR Helsinki, April 1986.
4. Barry, J. 'An Investigation of Statistical Matching', unpublished dissertation, University of Edinburgh.
5. Rubin, Donald B: 'Multiple Imputation for Nonresponse in Surveys', Harvard University, pub. John Wiley \& Sons Ltd, 1987

FRAME 4

TYPES OF MARRIAGES CONSIDERED IN FRF

If A is the closest to B and B is likewise closest to A then there is an immediate imarriage'.

If A is closest to B but B is already married to A^{\prime}, then A becomes married to B^{\prime} who is not quite as close.

3. Adullery

A variation of case number 2 occurs when B ' is too far from A in relation to B. In spite of the penalty atributed to B because of its first marriage, we effect a new union berween B and A.

5. Convenience

Beyond the simple cases illustrated above, there are other marriages for which the decisions are complex and are only resolved by optimization of distances at a global level.
(We use, to perform such óptimization, a method called the Hungarian method, well-known by operations research people, and which we have adapted to fit the present problem.)

6. Shotgun marriages

Finally we take care of remaining individuals; such cases are mainly due to cut-off rules in the optimization process.

FUSION
thenrs - frs experience
LONDON SEPTEMBER J6 th, 1987

1 THE SURVEYS

FRS is a financial behaviour survey, which covers all sectors of the financial market. 34000 respondents were interviewed from april to september 1986.

NRS collects all year long readership data, about 7000 respondents are interviewed every three months.

The idea was to merge the two sets of data, adding to FRS information the detailed readership collected in NRS, in order to allow a more efficient matching up of media opportunities with financial prospects.

The survey period selected for fusion was apritseptember 1986. corresponding to the six months NRS survey; because of the dynamics of readership, it was thought preferable to choose the same time period for both surveys.

FRS
APRIL - SEPTEMBER 1986
34105 RESPONDENTS
SOCIAL DEMOGRAPHICS

MEDIA EXPOSURE READERSHIP TV VIEWING

NRS

APRIL - JUNE 1986 JULY - SEPTEMBER 1986
$7020+6996=14016$ RESPONDENTS

SOCIAL DEMOGRAPHICS

MEDIA EXPOSURE READERSHIP TV VIEWING

2 THE FUSION PROCESS

STAGE 1 ANALYSIS OF CORRESPONDANCES (AFC)

Analysis of correspondances was achieved on the april-september NRS respondents file; then, all FRS respondents were projected in that factorial referential.

Because AFC is

- non sensitive to redundancy between variables,
- robust against outliers among respondents,
- scale effect free,
all common variables between the two surveys were selected to define the factorial referential.

They fell into three categories :

- social demographics,
- media exposure level.
- financial products.

Category 1 includes age, sex, marital status, informant status (head of household), terminal education age, social grade of head of household, occupationnal status, household tenure, telephone ownership, number of people in household, presence of children, car ownership, household income, region, "Acorn" neighbourhood type.

Category $\underline{2}$ contains media exposure according to FRS questionnaire. TV viewing : number of days per week viewed and hours viewed per day,for total TV, ITV and Channel 4.

Readership : regular readers
of daily newspapers:
Today
Daily Mirror
The Star
The Sun
Daily Record
Daily Mail
The Scotsman
The Times
The Financial Times

```
The Guardian
The Daily Telegraph
of sunday newspapers :
Sunday Mirror
Sunday People
News of the World
Observer
Sunday Express
Sunday Telegraph
Sunday Times
Sunday Post
The Mail on Sunday
Sunday Mail
of weekend colour supplements :
Sunday Times Colour Magazine
Observer Colour Magazine
Telegraph Sunday Magazine
Sunday Express Magazine
Sunday (News of the World)
You (the Mail of Sunday)
and of two program publications :
Radio Times
T.V. Times
```

Category $\mathbf{3}$ concerns financial products :
Possession of a check book, ownership of British Telecom shares, ownership of others stocks and shares, ownership of unit trusts. possession of credit cards : Barclays (Trustcard, Visa) Access, Diner's Club, American Express, American Express Gold, Barclays Premier.

These common variables lead to a total number of 236 modalities.

STAGE 2 DEFINITION OF CELLS FOR DATA MARRIAGE

Cells were based on combinations of the following criteria :

- Sex (3 breaks : men, women, housewives, women not housewives),
- Age (6 breaks : 15-24, 25-34, 35-44, 45-54, 55-64, 65 and more),
- Terminal education age (2 breaks : less than 19,19 and more),
- Social grade of informant (5 breaks : $A+B, C 1, C 2, D, E)$.

78 cells were constituted, one example is :
Men, 15-34, TEA 19+, A+B

STAGE 3 FUSION IN EACH CELL

Between NRS donors and FRS recipients.
Within each cell, every FRS respondent receives all readership information from his closest NRS respondent (donor) on the basis of the distance calculated in the factorial referential.

The tabulation of results by cell shows the relative importance of the different types of marriages :

Love at first sight $\quad 16.5 \%$
Childhood sweethearts $2,6 \%$
Adultery $6,3 \%$
Attentiveness $\quad 1.6 \%$
Convenience 52.0%
Shotgun marriages 21.0%

On average, each donor has been used 2,17 times, 24% of respondents in the donor file having not been used.

3 THE FRS FUSIONED FILE

Every FRS respondent has added the whole readership information from the NRS questionnaire : 12 cards of additional media data.

The fusioned file is accessible through cross-tabulation, cost-ranking, interactive reach and frequency and schedule evaluation.

Some examples will be found here after.

THE FRS FUSIONED FILE

1

 OBER 1986 - MAR
MRS/FRS FUSION

THE OCTOBER 1986 - MARCH 1987

PETER CHANNELL
13 TH APRIL 1988

Introduction

This paper is not intended as a complete 'Guide to Fusion'. It assumes the reader knows what fusion is, why one may be performed, and has a fair knowledge of certain terms used in fusion literature eg. AFC (Analysis of Correspondence), 'childhood sweetheart' marriages etc. This paper then does not deal with fusion techniques per se, but is a detailed account of the application of those techniques to the October 86 - March 87 NRS/FRS fusion.

This was the second such fusion between the NRS and FRS and was a considerable improvement over the first (April - September 86). Differences in input to the various stages between the two fusions are highlighted throughout. These differences are almost certainly the reasons for the improved results.

Some basic sample statistics are in order before going further:

	Unweighted NRS			
FRS			\quad	Ave no of donations
:---:				
per NRS respondent				

Note the FRS does not sample 15 year olds. In order to match the FRS sample, 15 year olds were REMOVED from the NRS before the fusion began.

```
3+-%
ze
\[
\because \theta_{0}
\]
Common Variable Selection
```

The first stage in any fusion is the selection of the common variables. This requires a careful examination of both questionnaires. importantly each proposed variable should be run offagatic sampling differences. unweighted \%s compared in order to highlight any variable. The codes in brackets Table 1 shows this information for each coum aFC. There were several differences between this of regular readers of each of the FRS titles. The HRS 'equivalents' were takest always significantly lower than often' readers before. FRS levels what this may have had the effect of lowering those of the NRS and it is thought these readership variables represented in fact a the fused readership levels. quarter of the common variable information. Other differences
i) Income was redefined on the NRS such that estimated refusals were treated solely as refused's (as per the FRS which does not estimate income) and therefore not double counted. Income groups were also collapsed, achieving 5 broadiy comparable net (NRS) vS gross (FRS) bands.
i) Acorn was collapsed from the 40 types to the 12 families, thus smoothing out any large sampling variations.
iii) Hours out of 10 C4 watched was dropped since, in fact, the questions are not the same on both surveys.
iv) Ownership of TSB shares and Midland Gold Card were added.
v) The important financial segmentor FINPIN was also added.

The AFC

Correspondence analysis scales the rows and columns of a rectangular data matrix in corresponding units so that each can be displayed in the same low-dimensional space. Here the data matrix is the $1425816+$ NRS respondents by each of the 146 common variables. The data in this matrix are unweighted. FRS respondents are then projected passively into the space. Table 2 shows part of the AFC for axes 1-7.

Familiarity with interpretation is assumed, but to help build up a mental picture of what each axis measures, the 'high' (30+) contributors are listed below, split according to whether their co-ordinates are positive or negative.

HIGH CONTRIBUTORS

Axis
Co-ordinate

	+ve	-ve
1.	65+ widowed etc female head of household TEA 13-14 social grade E rents from council lives alone no car no cheque book low income	mortgage
2.	65+ widowed etc TEA 13-14 part time <8 own outright lives alone	$16-24$ female non housewife single still studying unemp loyed
3.	```16-24 female non housewife single still studying unemployed 0T10 AD11```	married with children

4.

with children
FTV1
FTV8
DT10
AD11
5.
female housewife widowed etc female head of household
6.
7.
female housewife not head of household lives alone
not head of household social grade A Scot land ACORN 7
FINPIN 10
high income
male
male head of h'hold full time lives with one other
male
male head of household
rent from someone else ACORH 3
FINPIN 8

The lists provide bare outlines only. A less stringent contribution criterion, say $20+$, and a close look at correlations would aid interpretation, although it can still be difficult to describe each axis concretely.

It was decided to use the first 15 axes as the space for subsequent marriages. Fewer axes were deemed not to explain enough variance.

Definition of the Marriage Cells

In order to prevent marriages between respondents with basic demographic differences, the sample was divided into 74 cells and a separate fusion performed on each. These cells were interlacings of age, sex, class, and TEA. Table 3 shows the sample within each cell for both surveys. An index is also shown which, when divided by 100, can of course be interpreted as the average number of donations per NRS respondent in that cell. Several of the TEA 19+ cells had to be collapsed in order to acheive sufficient donors.

The following is a summary of the information in Table 3.

No of donors	No of cells
$1-49$	4
$50-99$	11
$100-149$	14
$150-199$	13
$200-249$	14
$250-299$	9
$300-349$	3
$350-399$	4
$400+$	2
Ave no of donations	No of cells
-1.49	2
$1.50-1.74$	3
$1.75-1.99$	14
$2.00-2.24$	21
$2.25-2.49$	23
$2.50-2.74$	8
$2.75+$	3

These statistics were an improvement on those for the first fusion which had 12 (out of 78) cells with less than 50 donors, and some fairly high average numbers of donations as a result.

Marriages and Region Restrictions

The marriage process was improved upon that used last time by imposing four regional constraints. Donors from one region were not allowed to marry recipients from another. The regions were London and South East, North/North West/North East, the rest of England, and Scotland. The net effect of this was that donor readership of regional titles was only transferred to recipients in the same region. Thus the situation that existed on the last fusion, eg 59% of the Scotsman's readers living outside Scotland, could never arise here. This of course was the main reason for adding the contraints.

Nearest neighbour techniques (Antoine \& Santini) were used as per the previous fusion to marry donors to recipients. The distribution of marriages by type showed improvements. (April-September 1986 fusion figures in brackets).

MARRIAGES BY TYPE

	$\%$
Love at first sight	$23(16)$
Childhood sweethearts	$3(3)$
Adultery	$10(6)$
Attentiveness	$2(2)$
Convenience	$45(52)$
Shotgun	$17(21)$

Convenience and shotgun marriages had fallen whilst love at first sights had increased. More marriages were achieved at the local level as a whole than before.

The distribution of the number of times donors were used was also an improvement.

HOW OFTEN DONORS USED

0	$11(24)$
1	$21(19)$
2	$32(20)$
3	$23(18)$
4	$8(10)$
5	$3(4)$
$6+$	$2(5)$

The number of donors not used had fallen significantly, and there were fewer 4+ marriages.

First Results

These were very encouraging and much improved compared with the earlier fusion. Overall readerships were close to NRS levels as shown in the first two columns of Table 4.

Several magazines, viz Photography, Sporting Gun, The Field, Saga Magazine, and Under Five only had three months worth of data on the NRS. This explains why their fused readership \%s were much lower than their NRS \%s, which, in the table, have already been multiplied by 2.

Sample duplications and cumes also compared well with the NRS. These behaved as well as, and in some cases better than, TGI figures, whose a.i.r.s are controlled to NRS levels.

Adjustments

It was decided to fine tune the readerships and in more detail than before. Each publication was controlled to give the NRS \% in each of eight age within class within sex groups.

The method by which this was done involves switching readership on (for groups where the NRS level was higher than the fused level) and off (in the reverse case) for a certain number of respondents, at random within each group. Thus, for each publication, certain respondents gain the a.i.r. punch, whilst others loose it.

The technique is an iterative one since respondents have different weights, and achieving a desired increase/decrease in readership is to some extent trial and error. The process is bound to disturb duplications and cumes, but not, it was observed, unduly.

Table 4 shows NRS and 'before and after' fused readership \%s for $16+$ adults and each of the eight control groups.

The adjustment process has difficulty bringing Saga Magazine into line with the NRS because the initial readership was much too low, for reasons mentioned earlier. Otherwise the process works fairly well.

It will be noticed that the overall NRS and fused readership levels of a publication controlled exactly within each group may differ. This is because the NRS \& FRS have slightly different age, sex and class profiles.

TAF:LE 1

-...----

164
NRS FRS

UNWGT \% 17.3 19.5

UNWGT \% 18.2 18.4
35-44 (AGE3)
UNWGT \%
17.4
17.4

UNWGT \%
14.3
13.2

55-6^ (AGES)
UNWGT \%
13.6
13.5
$65+(A G E 6)$
UNWGT \%
19.3
18.0

SEK
MEle (HOMM)

Femile N'wife (FMEN)

Fernele roonin'wire (FNME)

MAKITAL SThTUS hierried (STA1)

Sirssle (STAZ;
47.8
46.3

$$
63.7
$$

UNWGT \%

UNWGT \%
UNWGT \%

$$
61.9
$$

22.n
24.3

AE. 1
7.0
8.2

UNWGT \%

UNUGT \%
45.5

TAELE 1
$13+$
NES FRS

Widowed etc (STA3)

UNUGT \%
H'HOLO STATUS
Male heed of
h'inold (MEN1)

Female head of h'inold (MEN2)

UNWGT \%
14.0
12.4

Not heas of h'mold (MEN3)
T.E.A. 13-14 (AFE1)

15 (AFE2)
UNWGT :

UNWGT \%

UNWGT \%
25.7
27.6

17-18 (AI:C.4)

19+ (AFES)

Still studsing (AFE6)

FRS
13.9
13.8

UNUGT \%
36.4
35.2

UNWGT \%
49.6
52.5
24.3
24.5
24.4

16 (AFES)

UNWGT \%
11.3
11.5

UNWGT \%
9.0
7.9
3.9
1.2

TAELE 1

NFSS FFS

Not stated (AFET)

UNUGT \%
1.6
0.0
socinl grane A (c.sci)
$\left.\right|_{\text {E }}(\csc 2)$

C1 (csc3)
UNWGT Z

UNWGT Z
27.5

2E. 6
[1 (cscs)
UNWGT \%
18.1

1 E. 1
E (cscs)
UNWGT $\%$
14.7
15.9

WORK STATUS
Full time (ACT1)

UNWGT \%
31.2
40.5

Fart time 8…29 (AC.T2)

UNWGT \%
10.7
11.4

Fare lime 8
(ACT3)
38.3

SOUFCE: UK NKS OCTOEEE 19BG…KAECH 1937 , UK FFS DCTOREF 3966 -- MAFC.H i987

TAELE 1

$16+$

NRS
 FRS

Uriemsioused
(AC.TA)
UNGGT \%
10.2
9.9

Not stated (ACTS)

UNWGT \%
0.1
0.0

TENIJRE
Mortsase (LQG1)
UNUGT \%
38.7
33.0

Own sutrissint (LOG2)

UNWGT \%
23.9
18.0

Rerit from councill (l.0G3)

UNWGT \%
27.1
23.9

Fierit from
someorie else (LOGB)

UNWGT $\%$
7.5
4.5

Otiver (LOGラ)
UNWGT \%
Not sicied (LOGG)

UNWGT \%
0.5
19.1

TELEFHOME Yes (TEL1)

UNWGT \%
82.9
83.1

SOURCE: UK MES OCTORER 198ふ-14AFECH 1987, UK FFE OCTOFFF 1986 - NAFCH 1987

TAFL.E 1

$16 t$

			NFS	FRS
No (TELZ)				
	UNWGT	\%	16.7	16.9
Not stated (TEL3)				
	UNWGT	$\%$	0.3	0.0
H'HOI_O SIZE				
1 (FOY1)				
	UNWGT	$\%$	13.7	11.4
2 (F0\%2)				
	UNWGT	\%	30.8	27.9
3 (FOY3)				
	UNWGT	\%	20.8	20.3
4 (FO\%A)				
	UNWGT	\%	21.5	24.0
5t (FOY5)				
	UNWGT	\%	12.1	14.4
Chilmren				
O-S (ENIO)				
	UNWGT	\%	13.0	15.9
S-10 (EN20)				
	UNWGT	\%	13.8	12.0
11-15 (EM30)				
	UNWGT	\%	12.2	16.5
0-15 (EMnO)				
	UNWGT	\%	28.6	33.1

[^6]TAELEE 1
-........-

164

CAR
YES (AUTI)

CAF No (AUTZ)

STANOARI REGION Norih (REG1)

Yorkshive \& Humberside (FEG2)

East Kidlands (FEG3)

East Anslia (REG4)

South West (FEGE)

West Mislands (FEG6)

North West
(FEG7)

UNWGT \%
31.5
32.6

UNGGT \%
9.5
11.0

FRS

NES

UNWGT \% 68.5
67.4

UNWGT \%
5.8
8.4

UNWGT \%
9.3
10.1

UNWGT \%
7.0
6.7

UNWGT Z
3.5
3.0

UNWGT \%
7.8
8.5

UNGGT \%
11.5
10.3
${ }^{-}$

SOUFER: WK MRS OCTOREK 198ヵ-MARCH 1937, UK FFIS OCTOEEF 198.6 - MAFECH 1987

TAEL.E 1

$16+$

a (ACOB)
$9(A C O 9)$
$10(A C 10)$

11 (AC11)

Unicl:35sipied (AC.12)

IAYY A WEEK
TU WATCHEII
Never (FTVI)
$\left.\right|_{i=1}$ (FTV2)

1-2 (FTU3)
$3-4$ (FTVA)

5 (FTVE)
UNWGT \%

UNWGT:
UNWGT \%

UNWGT \%

UNWGT \%

UNWGT: $\%$

UNWGT \%

UNWGT \%

UNWGT \%

UNWGT \%

UNWGT \%

6 (FTリG)

NKS FRS
3.5
4.0
0.4
1.6
0.3
0.3
2.0
2.6
3.3
4.9
3.1
2.7
14.1
3.8
4.1

都
2.
$2 \cdot 3$
0.9

TARL.E 1

164

1.3
0.0
4.1
18.6
23.3
20.0
14.1

ع. 3
3.9
2.2
3.6

SOUFCE: UK MRS OCTOFEFE 19B6‥MAFCA 1987, UK FFS OCTOFEF 1966 - HAFCH 1987

TAELE 1

$16 t$

NRS
 FRS

Not ststias ($\operatorname{liT} 10$)
UNWGT \% 1.8 1.9
HOURS DUT OF 10
ITV/CA WATCHEII
None (ATIV1)
$5=1(A D \cup Z)$
2 (AnU3)
3 (ANU4)
14 (anus)
15 (anvo)

UNWGT \%
5.9
8.0
9.1

UNWGT \%

UNWGT \%

UNWGT \%
8.8
10.7
11.0

UNWGT \%

UNWGT \%
8.6
10.2

9+ (Allo)
UNWGT \%
2. ?

TABLE 1

1st

NFS FRS
Noístisicd (All11)

UNUGT \%
2.3
1.2

CHEQUE ROOK
Yes (CRO1)
UNWGT \%
63.1
64.6

No (CRO2)
UNWGT \%
35. 4
34.9

Not staced (CFO3)

RT SHARES
Yes (TAC1)

No (TC12)

TSE SHARES
Yes (TSB1)
UNWGT \%
4.1
1.5

No (TSR2)

OTHER STOCKS
8 SHARES
Yes (TAC3)

UNWGT \%
9.7
5.4

No (TC32)
90.3
54.6

TGBL．F 1

－－－•－－－－

164
UNIT TEUSTS
Yes (TACE)

UNWGT \％

UNWGT \％

NKS

FRS

－ーー－ーー

3.5
3.1

No（TCJ2）

HARCLAYCARH／ TRUSTCAFI／UISA Yes（CCR1）

No（RFil2）

ACCESS
Yes（CCN2）

No（CR22）

IINEFS CLUR
Yes（CCF3）
UNWGT \％
0.4
0.2

No（CRI32）

AMEX GFEEEN
Yes（CCFA）

Ho（CRA2）
UNWGT \％
58.5
59.1

```
    -
```

 TAEI.E 1

 \(16+\)
 1
 AMEX GOLII
 YES (CLRE)
 | No (CRES2)
B'CLAYS FREMIER
Yes (CCRG)
1
No (CF62)
UNWGT \%
0.2
0.1
UNWGT \%
NFE FRS
99.8
99.9
UNWGT \%
0.2
0.1
UNWGT \%
99.E.
99.9
MIOLANG GOLA
Yes (MID1)
1 No (MXN2)
UNWGT \%
0.3
0.1
UNWGT \%
95.7
99.9
\mid FINFIN
1 (FJO1)
1
UNWGT Z
11.9
10.8
2 (FIO2)
13 (FIO3)
UNWGT \%
7.2
E. 3
UNWGT \%
10.1
$\varepsilon .4$
$14(F I 0.4)$.
UNWGT \%
7.2
7.2
$\mid 5$ (FIOS)
UNWGT \%
6.7
7.3
SOUF:CE: UK MRS OCTOFEF 19B6-MAREH 1937, UK
FRS OCTOREF $198 G$ - MARCH 1587

AMERICAN RADIO HISTORY.COM

WWW.AMERICANRADIOHISTORY.COM

TARLE 1

$16+$
1
| Refused etc

FRS
NFE

..--

50.8

AMERICAN RADIO HISTORY.COM

WWW.AMERICANRADIOHISTORY.COM

Table 2.

$J 1$	01.1			1：\％	COH	CIK！	2＝F	COR	CTR！	JロF	COR	CTR！	4＊F	COR	CTR	5－F	c．0R	CTR！	6－F	COR	CTR：	7mF		
51^{\prime} EN40：	714	9	b！	－514	114	13！	－－391	66	12！	－050	312	$63!$	532	132	$30!$	476	98	28！						
SE．AUT1：	504	22	$3!$	－139	420	23：	－11	0	$0!$	66	10	$1!$	－78	13	1！	－51	98	28！	-213 159	30	$8!$	－72	2	$1:$
53＇A！／T2！	517	10	6 ！	991	147	51：	3 ？	1	$0!$	－81	3	$1!$	129	7	$2!$	73	2	$1!$	－329	19	15！	－21	0	－
Sa＇nec1：	13	\square	日：	233	4	$1!$	－20．	3	$1!$	－276		$1!$	12	0	$0!$	－117	1	$0!$	－35	19	$0!$	－19	0	O！
S5＇negr：	12	3	H：	275	日	$1!$	－98	1	$0!$	－103	1	$0!$	－9	0	$0!$	－95	1	0 ！	21	0	$0:$	－76	1	
3h＇negJ：	11	2	θ ！	－80	0	$0:$	125	1	$0!$	14	0	$0!$	－151	2	$1!$	－17	0	$0!$	272	6	$2!$	－233	5	$0!$
57REGa！	3	1	A	－94	－	$0!$	189	1	$0!$	91	0	$0!$	17	0	$0!$	79	0	$0!$	199	1	$0!$	－160	1	$2!$
SBraEgS	37	3	0 ！	－250	5	$1!$	309	日	$2!$	129		01	－190	3	$1!$	82	1	$0:$	327	9	$4!$	－339	0	$1!$ 5
Sonfags：	9	3	0 ！	94	0	$0!$	－115	1	$0!$	－32	0	$0!$	－14	0	$0!$	-100	1	$0: 1$	120	2	$1!$	－209		$3!$
co＇neg\％	5	4	θ ！	119	2	0 ！	－56	0	$0!$	64	1	$0!$	11	0	$0!$	－59	0	$0!$	－9．5	1	$0!$	－98		
6）＇rege：	12	2	$8!$	69	0	$0!$	2 A	0	$0!$	－8	0	$0:$	－139	1	$0!$	32	0	$0!$	－906	1	$2!$	-98 -291	1	$1!$
serrfge：	157	1	$8!$	343	18	$3!$	－373	22	$5!$	－234	9	$2!$	11	0	$0!$	－208	7	$3!$	－210	7	$3!$	－291	96	34！
ajrhalo：	64	7	B！	－77	1	$0!$	170	3	$1!$	365	19	$4!$	274	8	$3!$	152	3	$1!$	－499	27	$11!$	241	76	$44!$
－3＇RG11！	55	5	$7!$	－379	28	$4!$	246	12	$3!$	141	4	$1!$	－53		$0!$	148	4	$2!$	98	2	$1!$	－137	4	$3!$
bS！ncol！	17	1	$0!$	－30s	3	$1!$	195	1	$0!$	62	0	$0!$	－89	0	$0:$	－3	0	$0!$	519	9	$4!$	－319	4	$2!$
66＇ACO2！	日 4	5	$7!$	－567	39	$9!$	80	1	$0!$	－20	0	$0!$	－58	1	$0!$	171	5	$2!$	263	13	$5!$	－166	4	$2!$
$67 . A C O J!$	120	¢	7 ！	3	0	$0!$	149	5	$1!$	5	0	$0!$	－85	2	$0!$	－13	0	$0!$	359	26	$10!$	－618	07	
Q日＇ACO4：	98	1	日：	436	0	$1!$	－90	0	$0!$		0	$0!$	152	1	$0!$	－150		0！	－39	0	0 ！	－918	36	381 18
GP：ACOS：	77	9	日！	296	13	$2!$	－418	26	$6!$	-310	14	$4!$	－6	0	$0!$	-360	20	$2!$	50	0	$0!$	2.05	6	18 3 3
To：Acob：	172	3	$0!$	794	47	11！	－358	14	$1!$	－412	19	5 ！	－4	0	Oi	－480	27	10 ！	－232	6	$2!$	$5{ }^{5}$	37	3！
71：ACO7：	222	2	0 ！	819	52	8！	－770	18	12！	－461	16	$5!$	243	j	$1!$	－213	3	1！	－232	32	$13!$	969	37	171
7a＇ACOD．	31	1	8！	292	3	$1!$	－199	1	$0!$	378	，	$1!$	569	11	$4!$	－-6	0	$0!$	－350	11	5！	923 -119	66	32！
73＇＾c07：	¢ 9	1	E！	7	0	$0:$	798	2	$1!$	933	31	$9!$	553	11	$4!$	430	7	$3!$	－653	15	71	－119	0	$0!$
74＇AC．10！	183	5.	\cdots	－507	61	$2!$	461	3 B	$9!$	380	26	$7!$	－247	11	$3!$	260	12	$4!$	－650	1	O！	－264	3	$1!$
75＾AC11！	52	1	8 ：	－186	，	$0!$	$\mathrm{H}_{1} \mathrm{~S}$	2 n	$7!$	548	13	41	－240	3	$1!$	268	12	$1!$	－164	0	$0!$	113 2.14	35	16！
76．ncir？	37	1	8！	2	0	0 ！	307	3	$1!$	2.91	3	$1!$	－6	0	01	497	9	$4!$	－164	0	$0!$	－773	22	$11!$
771FTV！	104	0	$7!$	1081	4	1！	935	3		2400	21	$6!$	6077	134	46！	－665							4	
teriver	$?$	0	？！	16	0	$0:$	278	0	$0!$	＋ 294	1	01.	－8077	134	46！	-665 502	2	$1!$	2107	16	$7!$	1020 -120	4	$2!$ 0 0
73！FTV3！	28	1	9：	－ 463	4	$1!$	－133	0	$0!$	621	日	$2!$	－1	0	$0!$	439	4	$2!$	－470	5	$2!$	－176		O！
B0！FTVA！	47	，	8！	－327	4	$1!$	－294	2	$1!$	684	16	$5!$	－85	0	$0!$	464	7	$3!$	－653	15	$6!$	－297	3	$0!$
日1＇Fivs．	23	1	8！	－537	7	$1!$	45	0	$0!$	479	5	$2!$	－52	0	$0!$	300	2	$1!$	－607			－11		$1!$
日2＇FTV6：	13	0	$9!$	－583	4	1！	170	0	$0!$	715	6	21	－179	0	$0!$	－69	${ }_{0}$	$0!$	－490	3	11	-11 -154	0	$0!$
日3＇rTV7：	241	29	1 ！	36	10	$0!$	0	0	$0!$	－90	67	$2!$	－139	148	$6!$	－68	11	O！	$\begin{array}{r}-490 \\ \hline 25\end{array}$	3	11	-154 4	0	$0!$
EATFTVE：	760	0	9：	1056	16	$3!$	907	12	$3!$	2312	91	28！	6342	579	196！	－622	6	$2!$	1866	50	$22!$	670	0	0！ $3!$
Qsintvi！	77	3	G：	－918	25	A！	96	t	$0!$	494	23	$6!$	－67	0	0 ：	309	9	$4!$	－462	20	日！		1	$3!$ $0!$
gsiotve！ ajobruj．	76	7	$7!$	－435	54	$8!$	43	0	$0!$	186	9	$2!$	－87	2	$1!$	78	2	$1!$	-160	7	$2!$	－27	0	0！
g日＇ntua！	17	6	7	－224	13	$2!$	－3	0	$0!$	63		$0!$	－129	1	$1!$	－16	0	0 ！	17	0	$0!$	－139	5	$2!$
89：DTV3：	41	4	$\theta:$	326	15	a！	-51 -9	1	$0!$	-75 -243	？	$0!$	－169	6	$2!$	－144	4	$2!$	117	3	$1!$	－108	2	$1!$
90．DTVS：	11	3	$8:$	558	26	$4!$	18	0	$0!$	－243	${ }^{9}$	$2!$	－197	6	$2:$	－162	4	1！	204	6	$2!$	－59	1	$0!$
91＇0TV？	25	1	8 ：	710	17	$3!$	101	0	$0!$	－431	10	$3!$	－176	3	$1!$	－56	0	$0!$	123	1	$1!$	101	1	$0!$
92：0rve：	24	1	0 －	724	14	$2!$	－199	1	$0!$	－ 512	7	$2!$	－181	1	$0!$	97	0	0 ！	115	0	0！	31	0	$0!$
93！diva！	97	1	$8!$	1106	56	$7!$	－363	6	$2!$	－512	12	$4!$	-107 -27	\bigcirc	$0:$	146		$0!$	71	0	$0!$	232	1	1！
P4！DT10！	950	1	9！	1056	21	$4!$	905	15	$1!$	－316		34！	-27 6181	718	20！	＋60	0	$0!$	－462	10	$4!$	565	15	$7!$
9S＇ADV1！	9	0	9 9：	－2b7	0	0 ！	4 ta	1	$0!$	106	$1{ }^{1}$	0 0！	－199				7	$3!$	1887	67	$29!$	745	10	$5!$
96＇ADV2！	27	1	8！	－310	12	$2!$	489	10	$3!$	147	－	$0!$	－199	0		796	3	$1!$	177	0	$0!$	157	0	$0!$
97：ADVJ！	19	2	8 ！	－374	7	$1!$	197	2	$1!$	214	3	$1!$	－144	1	0	311 167	4	$2!$		2	$1!$	96	0	$0!$
＇98＇ADV．＇	32	3	日！	－443	18	$3!$	179	3	$1!$	201		$1!$	－94	1	$0!$	167 59	0			2	$1!$	43	0	$0!$
－＇renadus．	1.3	？	8 ！	－335	0	$1!$	81	1	$0!$	192	2	$0!$	-94 -109	1	O！	11	0	$0!$	-272 -134	6		－45	0	$0!$
100＇ADV号	27	1.3	5	－62	：3	0：	12	0	$0!$	43	1	$0!$	－172	20	$4!$	－71．	3	$1!$	－134	－ 0	1！	－7？	0	$0!$

SOURCE: UK NRS OCTORER 1986-KARCH 1987, (KK FRS OCTOBER

1988- NARCH 1987

SOURCE: UK HRS OCTOAER 198S-HARCH 1837, OCTORFR 1996

- MARCH 1987 HRS/FRS FUSION (UNADJUSTED), OCTORER 1988
- MARCH 1987 MRS/FRS FUSIOH (ADJUSIFD)

SOURCF: IUK MRS OCTORER 1988-MARCH 1937, OCTORER 1998

- MARCH 1987 nRS/FRS fusion (unanjusted) , octorer 1986 - MARCI 1937 NRS/FRS FUSION (ADJUSTED)

SOURCE: IIK NRS OCTORER 1988 -MARCH TY87, OCTORER 1986

- HARCH 1987 NRS/FRS FUSION (UNARJUSTED), OCTORER 1988
- harch 1937 nes/frs fus (on (nduusted)

SOUKCE: LIK NRS OCTOBER 1988-MARCH 5987, OCTORER 1986

- harch 1987 NRS/fRS FUSION (UNADMSTED), OCTORER 1988
- MARCH 1987 NRS/FRS FUSION (AD.USTED)

SOIIKCF: IJK MRS OCTOBER 1986-HARCH T9M7, OCTORER 1906

- hanch 1987 NRS/FRS FUSION (UNADMSTED), OCTORER 1986
- MARCH 1787 NES/FRS fIISIOM MDJustiol

			$16 t$	Hen ARC1 16-44				Hen ABC1 45t			Hen C2DE 16-44			Hen C2DE 454		
		HRS	INADJ FUSFD	ADJ FUSED	HRS	$\begin{aligned} & \text { UNADJ } \\ & \text { FUSED } \end{aligned}$	AnJ FUSED	MRS	LNADJ FUSED	$\begin{aligned} & \text { AD. } 1 \\ & \text { FUSED } \end{aligned}$	NRS	URARJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$	MRS	UHADJ FUSED	ADJ FUSED
	WGID 2	0.5	0.5	0.5	0.4	0.5	0.4	0.1	0.2	0.1	0.3	0.2	0.3	0.0	0.0	0.0
Jackie																
	WGTD 2	1.3	1.2	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.7	0.8	0.3	0.3	0.3
Just Seventern																
	UGTD 2	1.7	1.8	1.7	0.8	1.0	0.8	0.1	0.1	0.1	0.8	0.6	0.8	0.2	0.3	0.2
Loving Weekly															-	
	ngTo 2	0.3	0.2	0.3	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
Ms Lonidon																
	MGTD 2	0.7	0.6	0.6	0.7	0.7	0.7	0.2	0.2	0.2	0.3	0.3	0.3	0.0	0.0	0.0
Hy Guy																
	HGTD 2	0.7	0.7	0.7	0.2	0.2	0.2	0.0	0.0	0.0	0.4	0.3	0.1	0.0	0.1	0.0
My Weekly																
	HGID 2	4.6	1.9	4.6	0.6	0.6	0.6	1.2	1.1	1.2	Oin	0.8	0.8	1.4	1.6	1.1
Fatches																
	UGTD \boldsymbol{z}	0.5	0.4	0.5	0.2	0.2	0.2	0.0	0.0	0.0	0.3	0.2	0.3	0.0	0.1	0.0
The Lady																
	HGTD 2	0.6	0.5	0.6	0.0	0.0	0.0	0.6	0.7	0.6	0.1	0.1	0.1	0.0	0.0	0.0
Prople's Friend ugit y 4.10 .1																
Hoa3n's Oun way																
	HGTD \%	11.6	11.3	11.4	4.5	4.1	4.5	4.3	4.1	4.3	3.1	3.0	3.3	2.9	3.0	2.9

[^7]

SOURCE: UK MRS OCTORER 1986-HARCH 1937, OCTORER 1998

- MARCH 1987 NRS/FRS FUSION (IINADJUSTED) , OCTOBER 1986
- MARCH 1907 NRS/FRS FIJSION (ADJUSTED)

[^8]- HARCH 1937 NRS/FRS FUSION (ADMUSTED)

SOURCE: IJK NKS OCTORER 1786-HARCH 1817, OCTORER 1986

- Malch 1987 nts/ffs filsidny (anjulisten)

[^9]

SOURCE: UK NRS OCTORER 1986-MARCH 1887, OCTORER 1986

- MARCH 1587 NRS/FRS FUSION (UNADJUSTED), OCTORER 1986
- harch 1987 migsifrs fusion (aduuster)

SOURCE: UK NRS OCTORER 1998-HARCH 1987 , OCTOBER 1936

- harch 1987 nkis/ffs fusion (umanmusten), octoref less
- march 1987 mis/fis fusion (anuusted)

SOURCR: UK HRS OCTORER 198S-MARCH 1987 , OCTOBER 1996

- MARCH 1987 NRS/FRS FUSION (UNADJUSTED) , OCTORER 158
- MARCH 1987 NRS/FRS FUSION (UNADJUSTED), OCTORER 1580
- MARCH 1987 NRS/FRS flISION (ARUUSTFO)

		$16+$			Men ARCS 16-44			Men ARC1 4it			Heri C2ne 16-41			Men C20E 45t		
		HKS	UNADJ FUSED	ADJ FUSED	NKS	UKADJ FUSED	$\begin{aligned} & \text { ARJ } \\ & \text { FUSED } \end{aligned}$	NRS	UNADJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSES } \end{aligned}$	NRS	UNADJ FUSED	$\begin{aligned} & \text { ARS } \\ & \text { FUSED } \end{aligned}$	NH5	UMATS fused	$A D J$ FUSED
		---	----	----	---	--	-----	---	-	----	---	-	--	--	---	---
What Dist?	nGTR x	0.5	0.5	0.5	0.1	0.0	0.1	0.2	0.2	0.2	0.3	0.1	0.3	0.4	0.4	0.4
quarterlits																
Rirds	HGTD 2	1.6	1.4	1.6	2.0	1.6	1.9	3.8	3.6	3.8	1.5	1.0	1.1	1.4	1.5	1.4
Hair	hGIn 2	4.5	4.2	4.3	2.2	2.1	2.1	0.0	0.0	0.0	2.1	1.7	2.0	0.2	0.3	0.2

[^10]

SOURCE: UK NRS OCTORER 1986-MARCH 1947, OCTORER 1986 - HARCH 1987 NRS/FRS FUSION (UNADJUSTED), OCTORER 1988

- MARCH 1997 hrs/frs fusinn (Anjusten)

[^11]- harch 1937 NRS/FRS FUSSION (ANJUSTEN)

SOUKCE: UK NRS OCTORER 1986-MARCH P987, OCTORER 1986

- hafch $1987 \mathrm{KkS} / \mathrm{FRS}$ FUSION (UNADJUSTED) , OCTORER 1988
- HARCH 1937 NKS/FRS FUSIDN (AOJUSTEO)

		Hosen ARC1 16-44			Homen ABCI 45			Hosen C2IE 16-4A			Homen C2IE 45t		
		MRS	UNADJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$	NRS	unans FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FISED } \end{aligned}$	HRS	UNADJ FUSED	anJ FUSER	HRS	UKADJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$
		---			---		--	-					-----
Sunday Mail	UGTD 2	4.4	4.2	4.3	2.6	2.4	2.5	7.1	7.5	7.1	6.0	5.7	6.0
Sunday Mirror	UGTD 2	15.9	16.3	15.9	10.7	11.0	10.7	24.7	23.9	21.5	21.6	22.5	21.6
Sunday People	UGTD \%	11.4	11.4	11.4	10.4	10.5	10.4	19.8	20.8	15.8	22.0	23.4	22.0
Sunday Telesraph	UG1D 2	6.6	7.0	6.6	11.0	11.0	11.0	$\begin{aligned} & 3 \\ & 1.8 \\ & 1.8 \end{aligned}$	1.4	1.8	1.9	1.9	1.9
Mail on Sunday	UGTD 2	18.5	18.3	18.5	10.5	10.4	10.5	8.5	6.6	8.1	5.5	5.4	5.5
Observer	METD $\%$	10.4	11.0	10.4	6.9	6.7	6.9	2.0	1.6	1.9	1.5	1.4	1.5
Sunday Post	UGTD 2	5.6	5.6	5.6	7.2	6.9	7.2	8.1	7.7	8.1	12.7	12.5	12.7
Sunday Tices	UGTD 2	14.7	13.9	14.4	10.4	10.1	10.2	2.8	2.7	2.8	2.3	1.9	2.2
Sunday Today	ngto \%	1.2	1.3	1.2	0.7	0.7	0.7	1.1	0.9	1.1	0.6	0.5	0.6
REGIONAL SUNDAYS Ariy Resional Sundzy	UGTD \%	1.9	2.2	1.9	1.2	1.3	1.2	2.0	4.8	2.0	2.1	2.0	2.1
Suriday Mersury	UGTD $\%$	0.8	0.8	0,8	0.6	0.6	0.6	0.8	3.6	0.8	0.9	0.8	0.9

[^12]| | | | ABC1 16 | | | ABCI 4.5 | . | | C2IE 16 | | | C2nE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | HRS | UNADJ FUSED | $\begin{aligned} & \text { AnJ } \\ & \text { FUSED } \end{aligned}$ | HRS | UNADJ FUSFD | ADJ
 FUSED | HRS | UNADJ
 FUSED | $\begin{aligned} & \text { AD.I } \\ & \text { FUSED } \end{aligned}$ | NRS | UNARJ FUSED | ADI FUSED |
| Sunday Sun | WGTn 2 | 0.8 | 0.7 | 0.8 | 0.3 | 0.1 | 0.3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| sunday SUPPLERENTS Observer Hasazine | UGTD 2 | 11.0 | 11.7 | 11.0 | 7.0 | 6.8 | 7.0 | 2.2 | 1.8 | 2.2 | 1.6 | 1.1 | 1.6 |
| Sunday Express Hasazine | UGTD 2 | 13.6 | 14.0 | 13.6 | 26.6 | 27.0 | 26.6 | 6.7 | 9.2 | 6.7 | 8.8 | 8.0 | 8.7 |
| Sunday Tises Masazine | UGTD Z | 15.2 | 14.8 | 14.9 | 10.1 | 10.0 | 10.1 | 3.7 | 3.4 | 3.7 | 2.2 | 1.8 | 2.1 |
| Sunday | WGTI 2 | 18.8 | 20.0 | 18.8 | 13.0 | 12.9 | 13.0 | 36,6 | 35.0 | 36.1 | 28.0 | 27.1 | 26.0 |
| Telesriaph Sunday has. | WGTD 2 | 7.0 | 7.3 | 7.0 | 11.0 | 11.3 | 11.0 | 1.8 | 1.3 | 1.8 | 1.8 | 1.9 | 1.8 |
| You | UGTD 2 | 19.2 | 19.1 | 19.2 | 10.6 | 10.5 | 10.6 | 9.1 | 6.7 | 8.1 | 5.5 | 5.5 | 5.5 |
| GENERAL WEEKLIES
 Anateur
 Gardenins | UGTD 2 | 0.2 | 0.3 | 0.2 | 1.6 | 1.6 | 1.6 | 0.3 | 0.2 | 0.3 | 1.1 | 1.1 | 1.1 |
| fasteur fhotosrafher | WGID 2 | 0.6 | 0.9 | 0.6 | 0.9 | 1.0 | 0.9 | 0.7 | 0.8 | 0.7 | 0.3 | 0.3 | 0.3 |

[^13]- HARCH 1987 HRS/FRS FIISION (ADJUSTEO)

SOURCE: IUK NRS OCTORER 1986-MARCH 1937, OCTORER 1986

- HARCH 1987 NRS/FRS FUSION (IINADJUSTED) , OCTORER 1986
- March 1987 nRS/FRS fusidn (Andusten)

SOURCE: UX HRS OCTORER 1911S-MARCH 1987, OCTORER 1986

- hafch 1987 NRS/FRS FUSION (IINADJUSTED), octorer 1986

		Honen ARC1 16-14			Wonen ARC1 4is			Women C2DE 16-44			Homen cane 45		
		MRS	UNADJ FUSED	$\begin{aligned} & \text { ARJ } \\ & \text { FUSED } \end{aligned}$	NRS	UNARS FUSED	$\begin{aligned} & \text { ARI } \\ & \text { FUSE: } \end{aligned}$	NRS	UNADJ fused	$\begin{aligned} & \text { AD.I } \\ & \text { FUSED } \end{aligned}$	HRS	UNADJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$
		---	---	----	---	---	--	---	---	---	---	-	----
	UGTD 2	0.2	0.4	0.2	0.1	0.2	0.1	0.5	0.4	0.5	0.1	0.1	0.1
Sounds	WGTD 2	0.4	0.5	0.4	0.1	0.0	0.0	0.5	0.4	0.5	0.0	0.0	0.0
IV Times	UGTD 2	25.2	25.4	25.2	21.1	21.7	21.4	21.9	25.4	21.9	17.5	17.7	17.5
The Economist	UGTD 2	1.6	1.3	1.6	0.5	0.8	0.5	0.2	0.3	0.2	0.0	0.0	0.0
The Listener	UGTD 2	0.7	0.7	0.7	0.7	0.8	0.6	0.3	0.1	0.3	0.0	0.1	0.0
The Spectator	UGID 2	0.3	0.3	0.3	0.4	0.5	0.4	0.0	0.0	0.0	0.0	0.0	0.0
Tine Out	MGTD 2	1.9	1.5	1.9	0.1	0.2	0.1	0.5	0.3	0.5	0.0	0.0	0.0
Weekend	UGTA 2	1.7	1.5	1.7	1.4	1.4	1.4	2.1	2.1	2.1	1,5	1.4	1.5
Heekly Nens	UGTD 2	1.7	2.1	1.7	3.7	3.8	3.7	4.7	4.4	4.7	6.7	6.8	6.7
WOMEN'S heEKLIES Rlue Jeans	HGTD 2	1.4	1.6	1.4	0.1	0.4	0.1	2.8	2.2	2.8	0.1	0.4	0.4
Chat	MGTP 2	4.1	4.5	4.1	2.5	2.6	2.5	9.0	8.0	8.7	3.6	4.3	3.6
Cook's Heekly	UGTD 2	0.4	0.4	0.4	0.4	0.3	0.1	0.7	0.5	0.7	0.4	0.1	0.4

[^14]

SOURCE: UK HRS OCTORER 1986-MARCH IŞ87, OCTORER 1986

- HARCH 1987 NKS/FKS FUSION (UNADUUSTED), OCTORER 1986 - MARCH 1987 NKS/FFS FUSION (UNADJUSTED), OCTORER 1986 - MARCH 1987 hra/fra fusidn (hodisten)

tafle 4

		Hosen ARC1 16-44			Howen ABCI 454			Hoaen C2IE 16-14			Homen C20E 454		
		HRS	$\begin{aligned} & \text { UNADJ } \\ & \text { FUSED } \end{aligned}$	$\begin{aligned} & \text { ADJ. } \\ & \text { FUSE:D } \end{aligned}$	NRS	UNABS FUSED	ADJ FUSED	HRS	UKADJ FUSED	AD. 1 FUSED	HRS	UNARJ FUSED	$\begin{aligned} & \text { AD.1 } \\ & \text { fUSED } \end{aligned}$
Howan's Weekly													
	ngin x	10.7	9.5	10.3	15.7	15.5	15.6	10.3	12.5	10.3	15.0	15.9	15.0
Homin													
	ngro 2	18.1	17.6	18.0	12.8	13.0	12.6	17.5	16.5	17.2	10.9	10.9	10.9
GEMERAL													
forthightlies													
Illustrated													
	HGTD 2	0.1	0.1	0.1	0.3	0.3	0.3	0.1	0.2	0.1.	0.0	0.0	0.0
Horse : Pony													
	UGTD $\%$	1.9	1.8	1.9	0.3	0.5	0.3	1.3	3.7	1.3	0.5	0.5	0.5
Kerrans													
	HGTD 2	0.3	0.5	0.3	0.2	0.3	0.2	0.8	0.8	0.8	0.0	0.0	0.0
Hi2z													
	UGTD 2	2.4	2.0	2.4	0.3	0.5	0.3	2.8	2.3	2.8	0.1	0.1	0.1
Private Eye													
	UGTD $\%$	4.8	4.7	4.8	2.0	2.2	2.0	1.1	0.8	1.1	0.3	0.4	0.3
Snash Hits													
	hGTR $:$	8.0	7.8	8.0	0.7	0.5	0.6	10.3	12.2	10.3	0.5	0.5	0.5

SOURCE: IJK WRS OCTORER 1986-HARCH T987, OCTORER 1988

- harch 1987 MRS/FFS fusion (UMAD Justen), octorer 1988
- HARCH 1987 NES/FRS FUUSION (ADJUSTED)

tarte 1

		Huaten ABC1 16-44			Women ArCi 4 at			Homen C2DE 16-44			Wonen C2aE 45t			
		HRS	UNADJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$	HRS	unirs fUSED	ARJ FUSED	HRS	UNADJ FUSED	$\begin{aligned} & \text { ADD } \\ & \text { fuSED } \end{aligned}$	NRS	$\begin{aligned} & \text { UNADJ } \\ & \text { FUSED } \end{aligned}$	ADJ FUSED	
		-	-----	----	---	--.--	----	---	--..-	----	--	-....-	-----	
Do-It-Yoursely														
	HGTD 2	1.2	1.2	1.2	1.5	2.0	1.5	2.0	1,8	2.0	0.9	1.1	0.9	
Escort														
	UGTD 2	0.1	0.1	0.1	0.0	0.0	0.0	0.3	0.3	0.3	0.0	0.0	0.0	
Fast Lañe														
	WGTD 2	0.2	0.3	0.2	0.0	0.0	0.0	0.2	0.2	0.2	0.0	0.0	0.0	
Fiesta														
	HGTD 2	0.4	0.1	0.4	0.1	0.1	0.1	0.7	0.7	0.7	0.1	0.2	0.1	\%
Garden Answers														
Geosraphical Masazine														
	UGTD 2	2.0	1.6	1.9	1.4	1.7	1.4	0.1	0.1	0.1	0.1	0.1	0.1	
Golf Montilly														
Golf Horld														
	ugin 2	0.8	0.8	0.8	0.7	$\cdots 0.8$	0.7	0.1	0.4	0.1	0.2	0.1	0.2	
Gramophone														
	uGID 2	0.3	0.2	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.1	
Hi-Fi Answers												;		
	UGTD z	0.3	0.2	0.3	0.0	0.1	0.0	0.3	0.2	0.3	0.0	0.0	0.0	
Hi-fi News : Record Review														
	UGID 2	0.2	0.2	0.2	0.1	0.1	0.1	0.3	0.2	0.3	0.2	0.2	0.2	
Illustrated London Hews														
	ucin 2	0.6	0.9	0.6	1.0	0.9	1.0	0.1	0.0	0.1	0.2	0.2	0.2	

SOURCE: UK NRS NCTORE: 1986-HARCH 1987 , OCTORER 1986

- MARCH 1987 mirs/ffs fusion (unad susten) , october 1986
- harcil 1987 hes/frs fusidn (andistea)

SOURCE: UK NRS OC IOBER 1986-KARCH 1987, OCTORER 1988

- harch 1987 nRs/FRS fusion (unanJusted), oc.toren 1586
- MARCH 1987 NRS/FRS fUSION (UNADJUSTED)
- MARCH 1987 HISS/FRS fuston (IIRJUSTFD)

		Homen ARC: 16-44			Woden ARC1 454			Howen C2ne 16-44			Hoaen C2DE 454		
Rumning		HRS	UNADJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$	HRS	UHADS FUSED	$\begin{aligned} & \text { ARJ } \\ & \text { FUSED } \end{aligned}$	NRS	UMADJ FUSED	All. 1	HRS	UNADJ FUSED	$A D J$ FUSED
		--	-----	-----	---	----		---	----	---	---	----	----
	wGTd z	0.8	0.5	0.7	0.1	0.2	0.1	0.3	0.3	0.3	0.1	0.2	0.1
SLR Pholosraphy													
	HGTD 2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.1
Sporting Gun													
	nati 2	0.7	0.4	0.6	0.1	0.1	0.1	0.3	0.1	0.4	0.2	0.1	0.2
Street Hachine													
	WGTD 2	0.4	0.3	0.4	0.1	0.1	0.1	0.7	0.8	0.7	0.1	0.2	0.1
Superbike													
	UGTD 2	0.7	0.7	0.7	0.1	0.2	0.1	0.5	0.3	0.5	0.0	0.0	0.0
The face													
	UGTD 2	1.3	1.2	1.3	0.1	0.2	0.1	0.7	0.8	0.7	0.0	0.0	0.0
The Fipld													
	WGTD 2	1.3	0.9	1.3	1.9	1.0	1.4	0.2	0.1	0.2	0.3	0.3	0.3
The Garden													
	UGTD \dot{z}	0.5	0.4	0.5	1.4	1.7	1.4	0.1	0.1	0.1	0.3	0.2	0.3
The Scot's Masazine													
	notioz	0.4	0.5	0.4	1.6	1.3	1.6	0.3	0.3	0.3	0.7	0.6	0.7
The Scotsuan Hasazine													
TithitsKagazineHGTEY													

SOURCF: IIK NAS OCTOPER 1986-MARCH 19987, OCTORER 1986

- harch 1987 NRS/FRS FUSION (UNADMUSTED), OCTORER ISB
- harch 1987 NRS/FRS FIISION (ndjusten)

		Wonen ARCI 16-14			Wowen ABCI $45+$			Wonen C2IE 16-44			Women C2ne 45t		
		HRS	UNADJ FUSFD	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$	MRS	UNAMS FUSED	ADJ FUSED	MRS	UNADJ FUSED	ADJ FUSED	HRS	UKALJ	ARJ
	mgti 2	0.6	0.4	0.6	0.1	0.0	0.1	0.2	0.1	0.2	0.0	0.0	0.0
Trout Fisherisun													
	WGTD I	0.2	0.0	0.2	0.1	0.2	0.1	0.1	0.3	0.4	0.0	0.0	0.0
Trout i Salaon													
	UGTD x	0.4	0.4	0.1	0.5	0.5	0.5	0.1	0.1	0.1	0.1	0.2	0.1
What Car?													
	WGTD 2	2.9	2.6	2.8	1.2	1.0	1.1	1.0	1.0	1.0	0.4	0.5	0.4
What Hi-Fi?													
	UGTD 2	0.7	0.6	0.7	0.1	0.2	0.1	0.6	0.4	0.6	0.0	0.1	0.0
Which Compact Mise													
	UGTD 2	0.7	0.5	0.7	0.2	0.4	0.2	0.7	0.7	0.7	0.0	0.0	0.0
Yachting													
	UGTD 2	0.8	0.7	0.8	0.7	0.6	0.7	0,3	0.2	0.3	0.1	0.1	0.1
Yachting World													
	Wgid 2	0.4	0.3	0.4	0.3	0.3	0.3	0.2	0.2	0.2	0.1	0.0	0.1
Your Horse													
	WGTD \%	0.9	0.8	0.9	0.2	0.2	0.2	0.8	3.1	0.18	0.1	0.1	0.1
HOMEN'S MONTHL IES '19'													
	WGTD 2	4.3	4.4	4.3	0.4	0.7	0.4	4.9	4.3	4.8	0.3	0.4	0.3
A la carie ugroy 1.9													
	UGID $\%$	1.9	1.9	1.9	0.7	0.8	0.7	0.3	0.3	0.3	0.1	0.1	0.1

SOLKCE: UK NRS OCTORER 1986-HARCH TY87, OCTORER 1988

- MARCH 1987 NRS/FRS FUSION (UNADJUSTED) , OCTORER 1986
- HARCH 1987 nRS/FRS FIUSIDN (ADMISTED)

SOURCE: JXX NES OCTORER 1986-MARCH 1987, octorer 1998

- MARCH 1987 MRS/FRS FUSIOH (UNANUUSTED), OCIORER 1986
- harch 1987 MRS/FRS fusion (admisten)

		Wonen ARC1 16-44			Howen ABCI $45 t$			Wonen C2DE 16-44			Humen C2ME 45t		
		NRS	UNADJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$	NRS	UNADJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$	NRS	UKADJ FUSED	$\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$	NRS	UNADJ FUSED \qquad	$\begin{aligned} & \text { ARJ } \\ & \text { FUSED } \end{aligned}$
Annaisel	WGTD $\%$	2.8	3.1	2.8	3.5	3.1	3.2	2.1	1.7	2.1	2.1	1.5	2.1
Company	HGTO \%	5.0	4.8	5.0	1.0	0.9	1.0	2.1	1.7	2.1	0.1	0.3	0.1
Cosmopolitan	WGTa 2	13.7	12.7	13.4	4.8	4.7	4.8	7.1	5.9	6.7	1.3	1.4	1.3
Country Homes 1 Interiors	WGTD \%	2.8	2.3	2.7	2.2	2.1	2.2	0.9	1.0	0.9	0.7	0.8	0.7
Country Livins	UGTD 2	3.5	2.7	3.3	2.3	2.7	2.3	0.9	0.7	0.9	0.3	0.4	0.3
Elle	UGTD 2	6.6	6.6	6.6	2.2	2.2	2.2	2.7	2.1	2.6	0.2	0.3	0.2
Fanily Cirsle	UGTA 2	14.7	14.3	14.6	11.0	12.3	11.0	11.6	11.4	11.6	6.3	5.9	6.2
Fitness	WGTR 7	2.2	2.3	2.2	0.7	0.8	0.7	1.8	1.4	1.7	0.6	0.6	0.6
Goud													
Housekeepins	WGIn 2	14.9	13.8	14.5	12.6	12.7	12.6	6.8	6.3	6.7	4.5	4.5	4.5
Hair flair	ngid z	3.7	4.1	3.7	0.7	0.6	0.7	3.5	2.7	3.4	0.8	0.8	0.8
Harpers 1 Queen	ngti x	4.4	4.6	1.4	4.1	4.3	4.1	1.5	1.2	1.5	0.6	0.4	0.6
Here's Health	ugta 2	1.9	1.6	1.8	1.7	1.6	1.6	1.1	0.8	1.1	0.6	0.4	0.6

[^15]| | | | ARCI 16 | | Woaen ABCI 45 t | | | Homen C20E 16-14 | | | Wowen C20E 454 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | NRS | UNADJ FUSED | $\begin{aligned} & \text { ADJ } \\ & \text { FUSED } \end{aligned}$ | NRS | UNADJ FUSED | ADJ FUSED | NRS | UKADJ FUSED | ADJ
 FUSED | NRS | UNADJ FUSED | $\begin{aligned} & \text { ARJ. } \\ & \text { FUSED } \end{aligned}$ |
| Farents | UGTD 2 | 3.5 | $\overline{3} .3$ | 3.5 | 0.4 | 0.5 | 0.4 | 4.9 | 6.9 | 4.9 | 0.3 | 0.4 | 0.3 |
| Fins: Needles | UGTD 2 | 1.7 | 2.0 | 1.7 | 2.2 | 2.4 | 2.2 | 1.7 | 1.9 | 1.7 | 1.6 | 1.9 | 1.6 |
| Fri*z | nGTI z | 9.4 | 9.0 | 9.3 | 4.0 | 5.1 | 4.0 | 7.3 | 9.8 | 7.3 | 2.2 | 2.6 | 2.2 |
| She | UGTD 2 | 6.2 | 6.1 | 6.2 | 4.2 | 4.2 | 4.2 | 4.0 | 3.7 | 3.9 | 1.7 | 1.4 | 1.7 |
| The Tatler | UGTD \% | 2.0 | 2.0 | 2.0 | 1.6 | 1.1 | 1.4 | 0.4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| True Romances | UGTD 2 | 3.1 | 3.9 | 3.4 | 1.4 | 1.6 | 1.4 | 8.6 | 8.1 | 8.5 | 3.6 | 3.5 | 3.6 |
| True Story | WGTD 2 | 2.1 | 2.3 | 2.1 | 1.3 | 1.2 | 1.3 | 6.7 | 6.5 | 6.7 | 3.2 | 3.0 | 3.2 |
| Vosue | HGTD 2 | 11.7 | 12.0 | 11.7 | 7.7 | 7.8 | 7.7 | 7.9 | $9.4{ }^{\prime}$ | 7.9 | 1.7 | 1.7 | 1.7 |
| Howan : Howe | HGTD \% | 9.3 | 10.3 | 9.3 | 16.6 | 17.5 | 16.6 | 6.3 | 5.9 | 6.2 | 8.7 | 8.7 | 8.7 |
| Wonan's Journal | WGID 2 | 5.8 | 6.3 | 5,8 | 6.3 | 5.4 | 5.7 | 2.4 | 2.3 | 2.4 | 2.3 | 1.8 | 2.2 |
| Homan's Story | UGII 2 | 1.1 | 1.1 | 1.1 | 0.5 | 0.5 | 0.5 | 3.2 | 2.8 | 3.1 | 1.1 | 1.0 | 1.1 |
| Homan's Horld | ugin 2 | 4.4 | 4.9 | 4.4 | 2.1 | 2.1 | 2.1 | 4.0 | 4.1 | 4.0 | 2.2 | 2.3 | 2.2 |

[^16]

SOURCE: WX HRS OCTORER 1986-HARCH 1887, OCTORER 1988

- harch 1987 mRS/FRS FUSION (UMADNSTED), OCIORER IS8S
- march 19 H 7 Ms/frs fusion (ad Misten)

Akron, OH PMSA
Akron. OH TSA
Abany/Schenectady/Troy, NY MSA
Albuquerque, NM BDM*
Alexandria, LA MSA
Allentown/Bethlehem, PA-NJ MSA
Amarillo, TX MSA
Anchorage, AK MSA
Ann Arbor, MI PMSA
Appleton/Oshkosh/Neenah, WI MSA
Atlanta, GA MSA
Augusta, GA-SC MSA
Austin. TX MSA
Bakerstield, CA MSA
Baltimore, MD MSA
Bangor, ME BDM*
Baton Rouge, LA MSA
Beaumont/Port Arthur, TX MSA
Benton Harbor, MI MSA
Billings, MT MSA
Biloxi/Gultport/Pascagoula, MS BDM*
Binghamton NY MSA
Blimingham, AL MSA
Boise, ID BDM*
Boston, MA BDM*
Boston ADI
Brattleboro, VT BDM*
Breckenridge/Nail, CO BDM*
Bridgeport, CT BDM*
Bridgeport/Milford, CT PMSA
Buffalo/Nlagara Falls. NY CMSA
Burlington. VT BDM*
Camden/Miller/Morgan, MO BDM*
Cape Cod, MA BDM*
Cedar Rapids, IA MSA
Central Upper Michigan BDM*
Charleston, SC MSA
Charieston, WV MSA
Charlotte/Gastonia/Rock Hill, NC-SC MSA Charlottesville, VA MSA
Chattanooga, TN-GA MSA
Cheshire County, NH BDM ${ }^{*}$
Chicago/Gary/Lake, IL-IN-WI CMSA
Chico. CA MSA
Cincinnati, OH-KY-IN PMSA
Cleveland, OH BDM*
Colorado Springs, CO MSA
Columbia, SC MSA
Columbus, GA-AL MSA
Columbus, OH MSA
Corning/Eimira, NY BDM*
Corpus Christi, TX MSA
Dallas/Fort Worth, TX BDM*
Davenport/Rock island/Moline, IA-IL MSA
Dayton/Springfield, OH MSA
Denver/Boulder, CO CMSA
Des Moines, IA MSA
Detroit, MI PMSA
Dothan, AL BDM*
Dubuque, IA MSA
Duluth, MN/Superior, WI BDM *
Eastern Long island, NY BDM ${ }^{*}$

Elkhart/Goshen. IN MSA
El Paso, TX MSA
Erie, PA MSA
Eugene/Springfield, OR MSA
Evansville, IN-KY MSA
Evansvilie, ${ }^{\text {F-K }}$ Fairbanks, AK BDM*
Fayetteville, NC BDM*
Flint, MI MSA
Florence, AL MSA
Florence, SC MSA
Fond Du Lac, WI BDM
Ft Collins/Greeley/Loveland, CO BDM*
Ft Laud/Hollywood/Pompano Beach, FL PMSA
Ft Myers/Cape Coral. FL MSA
Fort Walton Beach, FL MSA
Fresno. CA MSA
Fresno, CA TSA
Gainesville, FL BDM*
Glens Falls, NY BDM*
Grand Rapids, MI MSA
Green Bay, WI MSA
Greensboro Winston-Salem/High Point, NC MSA Greenville-Spartanburg. SC MSA
Hagerstown/Chambersburg Waynesboro, MD-PA BDM*
Harrisonburg, VA BDM
Harrisburg, PA BDM
Harfford/New Britain/Middletown, CT BDM
Hartford-New Haven ADI
Hattiesburg, MS BDM ${ }^{\text {² }}$
Houston/Galveston/Brazoria. TX CMSA
Huntington/Ashland, W-KY-OH MSA
Huntsville, AL BDM*
Huntsvile, AL BDM
lowa City, IA MSA
lowa City, IA MSA
Jackson, MS MSA
Jackson, MS MSA
Jacksonville, FL BDM*
Jacksonville, FL BDM
Jefterson City, MO BDM
Jefferson City, MO BDM*
Johnson City/Kingsport/Bristol, TN-VA MSA
Joplin. MO MSA
Kalamazoo, MI MSA
Kansas City, MO-KS MSA
Killeen/Temple. TX MSA
Knoxville, TN MSA
Lancaster. PA MSA
Lansing/East Lansing. MI MSA
Laredo. TX MSA
Las Cruces, NM BDM
Las Vegas, NV MSA
Lebanon, NH BDM*
Lexington/Fayette, KY MSA
Lima, OH MSA
Little Rock/North Litile Rock, AR MSA
Longview/Kelso, WA BDM*
Longulow/Marshall. TX MSA
Los Angeles/Orange County, CA BDM*
Loulsville, KY-IN MSA
Lubbock TX MSA
Lynchburg, VA BDM*
Madison, WI MSA
Madison, WI TSA

Manchester, NH MSA
Mecosta County, MI BDM* Mediord, OR MSA
Memphis, TN-AR-MS MSA
Miami/Ft Lauderdale, FL CMSA
Miami/Hialeah, FL PMSA
Milwaukee/Racine, WI CMSA
Minneapolis/St Paul, MN-WI MSA
Mobile, AL MSA
Modesto, CA MSA
Monmouth/Ocean, NJ PMSA
Monroe, LA MSA
Montgomery, AL MSA
Morgantown/Clarksburg/Fairmont, W-PA BDM* Muskegon, MI MSA
Nashville, TN MSA
Nassau/Suffolk, NY PMSA
New Bedford/Fall River, MA BDM*
New Haven/Meriden, CT MSA
New Orleans, LA MSA
New York/N NJ/Long isl, NY-NJ-CT CMSA Norfolk/Nirginia Beach/Newport News, VA MSA Northern East Michigan BDM*
Northern Lower Michigan BDM*
North Shore Lake Tahoe, NV BDM*
Odessa/Midland, TX BDM*
Oklahoma City OK MSA
Omaha, NE-IA MSA
Orlando, FL MSA
OxnardNentura, CA BDM*
Paducah, KY BDM*
Panama City, FL MSA
Pensacola, FL MSA
Peoria, IL MSA
Philadelphia, PA-NJ PMSA
Phoenix, AZ MSA
Pittsburgh/Beaver Valley, PA CMSA
Plymouth/Norfolk/Barnstable/Bristol, MA BDM* Plymouth, MA BDM
Plymouth/Norfolk, MA BDM*
Plymouth/Barnstable, MA BDM*
Portland/Lewiston/Auburn, ME BDM*
Portland/Nancouver, OR-WA BDM*
Portsmouth/Dover/Rochester, NH BDM*
Providence, RI BDM*
Raleigh/Durham, NC MSA
Reading PA MSA
Reno, NV MSA
Richiand/Kennewick/Pasco WA MSA
Richiand/Kennewick/Pasco
Richmond/Petersburg, VA MSA
Riverside/San Bernardino, CA BDM*
Roanoke, VA MSA
Rochester, MN MSA
Rochester, NY MSA
Rockiora, IL MSA
Rome, GA BDM*
Russellville/Bowling Green/Hopkinsville
Clarksville, KY-TN BDM*
Sacramento, CA MSA
Saginaw/Bay Clity/Midiand, MI MSA
St Clair County, MI BDM*
St Joseph, MO BDM*

St Louls, MO-IL

Salem, OR MSA

Salina, KS BDM
 Salinas/Seaside/Monterey, CA BDM*

Salisbury/Ocean City, MD BDM*
Salt Lake City/Provo/Ogden, UT BDM ${ }^{*}$
San Angelo, TX MSA
San Antonio, TX MSA
San Benito County, CA BDM ${ }^{*}$
San Diego, CA MSA
San Francisco/Oakland/San Jose, CA CMSA San Jose, CA PMSA
San Luis Obispo, CA BDM*
Santa Maria/Lompoc, CA BDM*
Savannah/Beaufort/Hilton Head, GA-SC BDM* Scranton Wilkes-Barre, PA MSA
Seattle/Tacoma. WA BDM
Shreveport, LA BDM*
Shreveport, LA BDM
Shreveport. LA TSA
Sierra Vista. AZ BDM*
South Bend/Mishawaka, IN MSA
South Shore Lake Tahoe, CA-NV BDM*
Spokane, WA BDM*
Springfield, MA BDM*
Springfield, MO MSA
Springtield, MO TSA
Staunton Waynesboro, VA BDM*
Steuben County, IN BDM*
Steubenville Weirton OH-W MSA
Stockton, CA MSA
Stockton, CA MSA
Sumter, SC BDM*
Sumter, SC BDM
Syracuse, NY MSA
Syracuse, NY MSA
Tallahassee. FL MSA
Tallahassee, FL MSA
Tampa/St Petersburg/Clearwater, FL MSA
Taney/Stone Counties, MO BDM*
Terre Haute, IN MSA
Texarkana, TXTexarkana, AR MSA
Toledo, OH MSA
Topeka. KS MSA
Toronto C.M.A., Ontario
Traverse City/Cadillac, MI BDM*
Tulsa, OK BDM*
Tuscaloosa. AL MSA
Tyler, TX MSA
Utica/Rome, NY MSA
Valdosta (Lowndes County), GA BDM*
Washington, DC-MD-VA MSA
Waterloo/Cedar Falls, IA MSA
Wausau, WI MSA
Wausau/Rhinelander, WI BDM ${ }^{*}$
W Palm Bch/Boca Raton/Delray Bch, FL MSA Wichita, KS MSA
Wichita, KS TSA
Wichita Falls, TX MSA
Williamsport. PA MSA
Winchester, VA BDM*
Worcester, MA MSA
Yakima, WA MSA
York. PA MSA
YoungstownWarren, OH MSA
Yuba Clity, CA MSA

BDM - Birch Defined Market

Regional Sales Offices

Atlanta
2110 Powers Ferry Road, \#460

Atlanta, Georgia 30339
$(404) 955-6317$ (404) 955-6317

$$
\begin{gathered}
\text { Birch/Scarborough } \\
\text { Research Corp. } \\
12350 \text { N.W. } 39 \text { Street } \\
\text { Coral Springs, Florida } 33065 \\
(305) 753-6043 \\
\text { Corporate Headquarters } \\
44 \text { Sylvan Avenue, \#2D } \\
\text { Colonial Plaza } \\
\text { Englewood Cliffs, New lersey } 07632 \\
\text { (201) 585-7667 }
\end{gathered}
$$

[^0]: * In this paper, results obtained during the course of this investigation will be quoted. It is emphasized that these figures are interim. They are quoted for illustrative purposes only, and do not necessarily indicate the accuracy to be expected in the final database if a successful fusion is achiered.

[^1]: * A possible alternative to the requirement of conditional independence is that the relationship should be close to some assumed. value.

[^2]: * i.e. The variance of the frequency distribution divided by the square of its mean.

[^3]: * It is not surprising that bi-monthlies exceeded the theoretical limits since they are few in number. For the reasons stated earlier, there is no reason why the effective sample size should not appear to be greater than the actual one.

[^4]: * Pro-rated from NRS Age within Class Tabulations July 1986-June 1987.

[^5]: * By 'selectivity' I mean the extent to which the penetration of a publication in a target group differs from that amongst the population as a whole.

[^6]: SOIJFCE: UK NKS OCTOFEK 1986‥个AF:CH 1937 , UK FFE OCTOEEF 1986 - MAKCH 1987

[^7]: SOURCE: IIK NES OCTORER 1986-MARCH T987, OCTORER 198S
 MARCH 1987 HRS/FRS FILSION 《INADNSTED), OCTORER 1986

 - harch 1907 NRS/Frs fusion (ADJUSted)

[^8]: SOURCE: UK NRS OCTORER 1986-MARCH 1987, OCTORER 1986

 - harch 1987 NkS/FRS FUSION (UNADJUSTED), OCTORER 1986

[^9]: SOURCE: UK NRS OCTORER 1986-MARCH [987, OCTORER 1986

 - harch 1987 NRS/FRS FUSION (UNAD.MUSTEN), octorer 1986
 - HARCH 1937 NRS/FRS FIJSIOM (ADUUSTEB)

[^10]: SOURIE: UK NKS OCTORER 1936-HARCH 1987, OCTOAER 1986 - harch 1987 mRS/FRS fusion (URADUUSIED), octorer 1986 - HARCH 1937 MRS/FRS FIISION (ADJUSTER

[^11]: SOURCE: IIK RAS ACTORER 1986-KARCH 1987 , OCTORER 1986

 - hafch 1987 mes/frs fusion (unanuusted), octorer 1986

[^12]: SOURCE: UK NRS OCTORER 1986-KARCH 1987 , OCTOBER 1986

 - harch 1987 N:S/fRS FUSION (UNADNUSTED), OCTORER 1986
 - MARCH 19B7 NRS/FRS FIUSION (NDDUSTED)

[^13]: SOURCE: UKK NES OCTOR:R 1988-MARCH 1987, OCTORER 1986

 - HARCH 1987 HKS/FRS FUSION (UNADJUSTED), OCTORER 1986

[^14]: SOURCE: IJX NRS OCTORFR 1988-MARCH [987, OCTORER 1986

 - MARCH 1987 nes/FRS FUSIOn (UNADJUSTED), OCtORER 1988
 - hafch 19a7 hrá/fas fusion cimuistema

[^15]: SOURCE: UK NES OCTORER 1986-MARCH 1987, OCTORER 1988
 SOURCE: UK NES OCTORER 1986-KAKAN MUSTED), OCIORER 1986

 - MARCH 1987 NRS/FRS fusion (ADJIISTEA)

[^16]: SOURCE: IJK NRS OCTOAER 1986-HARCH 1PG7, OCTORER 1996

 - MARCH 1987 NRS/FRS FUSION (UNADJUSTED), UCTOHER 1986
 - march 1987 mes/frs fusion (abjusted)

