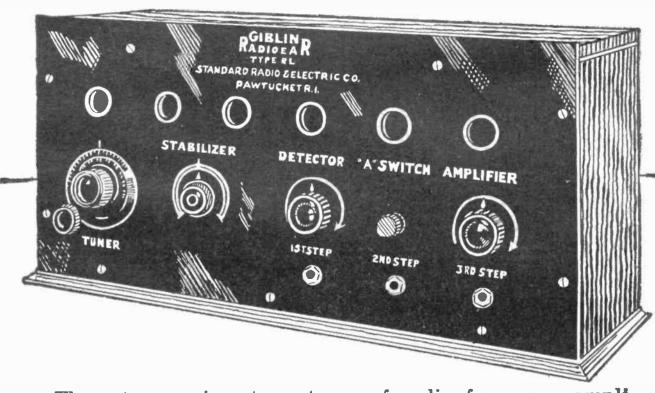
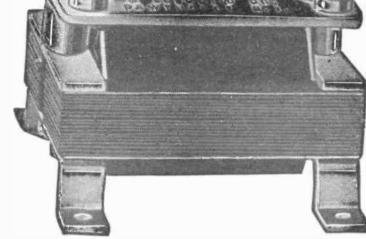


Building the New Deresnadyne The "A" "B" Charger Why the Wave Lengths Change How Vacuum Tubes Are Made


YOU WILL UNDERSTAND THIS MAGAZINE ... AND WILL LIKE IT

PUBLISHED TWICE A MONTH

The Giblin Broadcast Receiver


THE Giblin Radio Frequency Broadcast A Receiver makes it possible to obtain radio entertainment without the necessity of erecting outside antenna wires or using a troublesome ground wire. A small, loop aerial placed near the set will pick up signals, which, though they have come long distances, and are weakened by hills, valleys, trees and buildings, will be clear and of great volume. Many families, living in apartments where it is undesirable or impossible to erect antenna wires, can now hear enjoyable, ever-changing programs through the day and evening by "listeningin" with a Giblin Radio Frequency Broadcast Receiver.

The set comprises two stages of radio frequency amplification, a detector and three stages of audio frequency amplification. The parts are mounted on a sub-base to which a Bakelite panel is attached. It is enclosed in a handsome solid mahogany cabinet.

The Giblin Audio-Frequency Amplifying Transformer Price \$4.50

The Giblin Radio-Frequency Amplifying Transformer Price \$5.00

Buy Giblin Products from your dealer

Write for descriptive circulars

STANDARD RADIO & ELECTRIC CO. PAWTUCKET, RHODE ISLAND

FREE! If You Act Quickly

We have a limited number of

GIBLIN

 $2 \le k^{\prime\prime}$

Sterre .

100

Audio Amplifying Transformers

(Type A-201)

(List price \$4.50)

which will be given free with a \$3.00 subscription for one year to RADIO PROGRESS, (the Radio Magazine you can understand), issued on the first and fifteenth of each month.

Only 12 More Left NO MORE WHEN THESE ARE GONE Address Radio Progress P. O. Box 728, Providence, R. I. 8 Temple Street,

RADIO PRO	ORFSS
	JULLINN
HORACE V. S. TAYLO	DR, EDITOR
Volume 1 *	Number 23
* Contents fo	7
FEBRUARY 13	5, 1925
·	PAGE
HAVE YOU MET A VOLT OR AMPERE?	· · · · · · · · · · · · · · · · · · ·
AMERICAN RADIO RELAY LEAGUE	
CHOPPING A SLICE OF VIBRATIONS:.	
BUILDING THE NEW DERESNADYNE	
WHY THE WAVE LENGTHS CHANGE	
AMUSING ADVENTURES OF RADIO SP	PEAKER 16
HOW VACUUM TUBES ARE MADE	
REMARKS RECEIVED FROM READERS.	
EDITOR'S LOUD SPEAKER:	
THOSE SPITEFUL CALL LETTERS.	
A TAX ON TUBES	93

GRINDING THOSE AXES 24
THE "A"-"B" CHARGER
HOW THE ECLIPSE AFFECTED RADIO
DR. RADIO PRESCRIBES
FONE FUN FOR FANS
U. S. BROADCASTING STATIONS
,

.

RADIO PROGRESS is issued on the 1st and 15th of each month by the Oxford Press at 8 Temple Street, Providence, Rhode Island. John F. O'Hara, Publisher. Yearly subscription in U. S. A., \$3.00. Outside U. S. A., \$3.50. Single copies, 15 cents. Entered as second-class matter, April 4, 1924, at the Post Office at Providence, R. I., under the Act of March 3, 1879. Address all communications to RADIO PROGRESS, 8 Temple Street (P. O. Box 728), Providence, R. I. Title registered at United States Patent Office.

The publishers of this magazine disclaim all responsibility for opinions or statements of contributors which may at any time become subjects of controversy.

BE SURE YOU SEE NEXT ISSUE HERE ARE SOME OF THE REASONS

Probably the most likely thing to go wrong in your set is a tube. If it burns too well and looks bright, that does **not** show that it is good. The apparatus to test all your tubes is described by Freed in **"Weed-ing Out Bad Tubes."**

It is surprising how radio is invading all lines of science. Central Stations are now using it to help keep the power on their lines. You know how disgusting it is to have your electric light flicker badly at night. This is now being avoided as told in "How Radio Keeps Your Lights Burning," by Smith.

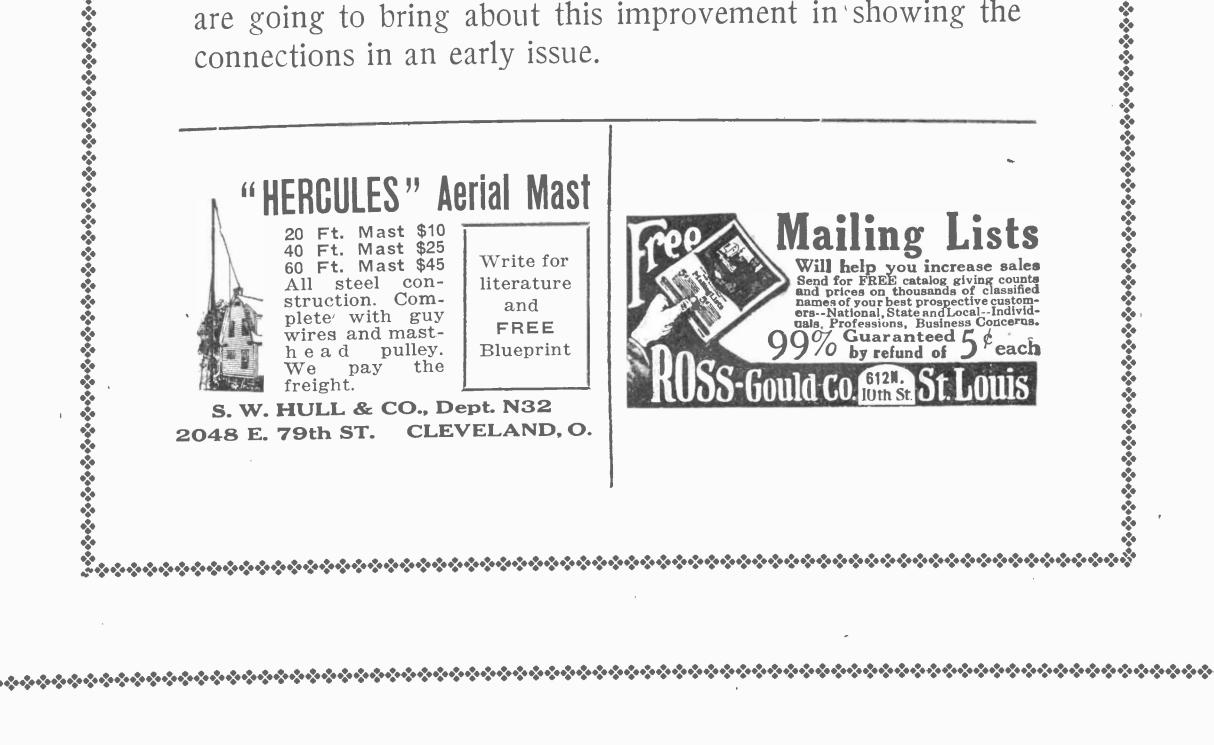
We see so much about the receiving end of broadcasting that we are apt to forget the sending station. Many amateurs are now putting in a sending equipemnt of their own and by keeping below 200 meters are able to **talk** to their friends. See "**The Sending End of Music,**" by Rados.

We have had considerable favorable comment on our Hook-up number and in particular various fans have asked for further details about making over a single circuit set so it will cut out locals. Arnold tells you how to do this and shows the paths of the various oscillations in **"Sharpen Your Single Circuit Set."**

In "Seven Ages of Radio," Dr. Goldsmith shows the development of the art, not only from the electrical point of view, but also from the legal and commercial sides. This is a rather unusual article, and is very interesting.

Regenerative set, superheterodyne, neutrodyne, reflex—what do they all mean? Many intending purchasers of sets are now wondering which is which, and why. This is explained by Taylor in "What Set Names Mean."

Making it Easier to Handle Hook-ups


Even the absent-minded professor picks up an idea quicker from a picture than he does by reading over a written description.

Even if you are an expert at radio circuits you will find that a drawing catches your eyes and gives you quicker information than a write-up, however clear it may be.

At the request of many of our readers we are going to adopt a method which gives a picture of each piece of apparatus used in all our hook-ups. Of course, we shall also give the usual wiring diagrams as well. And, by the way, have you noticed how much clearer our-hook-ups are than those in most magazines? You will find that there are fewer wires crossing and much fewer corners in the lines than is usual. Of course, this makes such a diagram easier and quicker to follow.

Although this means a lot more time and expense, we

are going to bring about this improvement in showing the connections in an early issue.

"ALWAYS ABREAST OF THE TIMES"

Vol. 1, No. 23

FEBRUARY 15, 1925

15c PER COPY, \$3 PER YEAR

Have You Met a Volt or Ampere?

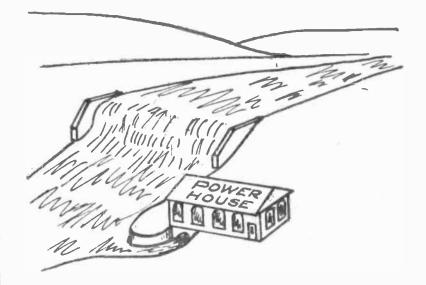
These Two Common Names Are Often Badly Mixed Up

By HORACE V. S. TAYLOR

DALPH, the radio man, had a frown K on his face until he saw his friend Bill, coming through the door. "Why so glum?" said the latter. "Have you been trying to make out your Income Tax Blank?" "No," was the reply, "but two of my customers were just in and I can't seem to remember their names."

"That's easy," said Bill, "compared with the trouble 1 have remembering volts and amperes. Sometimes I say one and mean the other, and sometimes the other, and don't mean anything. How can I tell them apart?"

"B" Battery an Exception


ground. Of course, in a general way, with the average plot of ground you know that if the length is great, the width is also apt to be fairly big. And in the same way, if you have a circuit with lots of voltage, it usually happens that the current is apt to be rather large. But just as you may find occa-

sionally a long and narrow lot, so in the "B" battery circuit you have a high voltage and very small current."

"Well, what is the difference between the two?" was the next question. "Just this," replied the radio man; "if you have a city main full of water, the pres-

the length and width of a piece of measured at the end of the first second."

> "Yes," Bill agreed, "I have noticed that when I park my automobile with the lights on at night, the ammeter

"There is a lot of confusion about

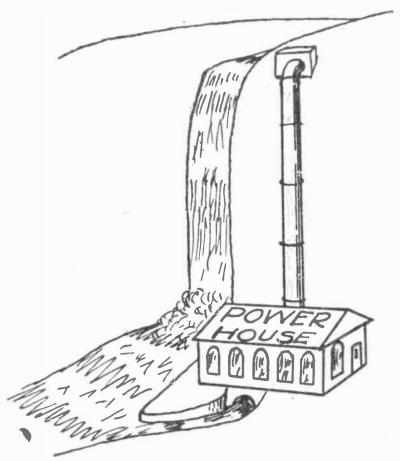


Fig. 1. High Voltage, Low Current

them," said Ralph. "Lots of radio fans use them interchangeably, but there is a great deal of difference between them. In fact, they are no more alike than is

sure is measured in pounds per square inch. With a battery or generator, the electrical pressure is measured in volts. And the current flowing through the water supply pipe is expressed in gallons per minute. In the electric wire, the flow is rated in amperes."

Not Amperes Per Second "Does that mean amperes per minute or per second?" asked Bill. "Fortunately we don't have to bother with the time when we talk about electric current. You know that if you have a river which flows 120 gallons per minute, that is the same thing as two gallons per second. Whichever we express it, it is the same amount of current. When names are given to electrical units, the flow is measured just as a *current*, and so the length of time is not needed in the expression. If one ampere flows through a wire for one hour, it reads on an am-

Fig. 2. Here the Voltage is Low

points to 5 whether I leave it for a minute or an hour. I suppose that means five amepers are flowing all the time." "Yes, you are right. As a matter of fact, it is too bad that we haven't some convenient expression for the water current in a pipe or river without having to bring in the phrase expressing time in minutes or seconds."

Nor Volts Per Square Inch

"Well, what is meant by a volt?" queried Bill. "That corresponds to pressure in pounds per square inch. And again the engineers who named electrical units used a lot more common sense than those that first called water pressure by name. If you have one pound per square inch, that is the same thing as 144 pounds per square foot, since there are that number of square inches meter just the same as if it had been to the foot; whichever way we express

FEBRUARY 15, 1925

come to a dry cell, we say it has a pres-

pressed air, it is the amount of air times sure of 1.5 volts. It is not necessary to the pressure which determines how much mention anything about square inches horse power you will use. The same or feet, because the definition of a volt thing holds true with a generator. The takes care of everything. The ordinary volts times the amperes gives the power.

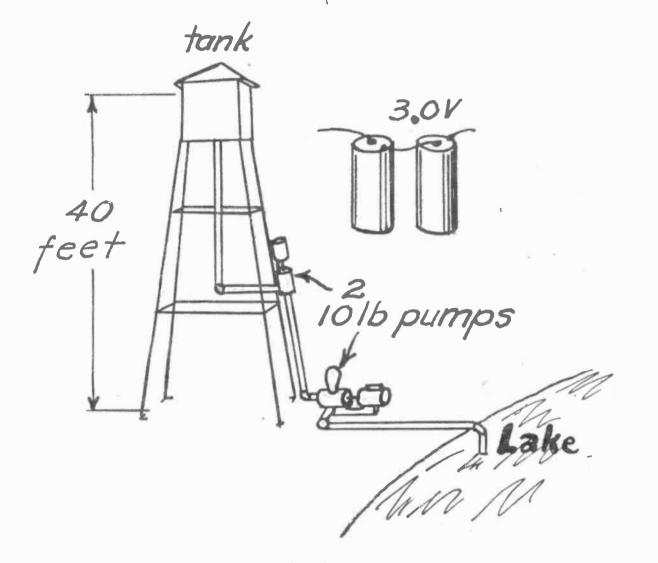
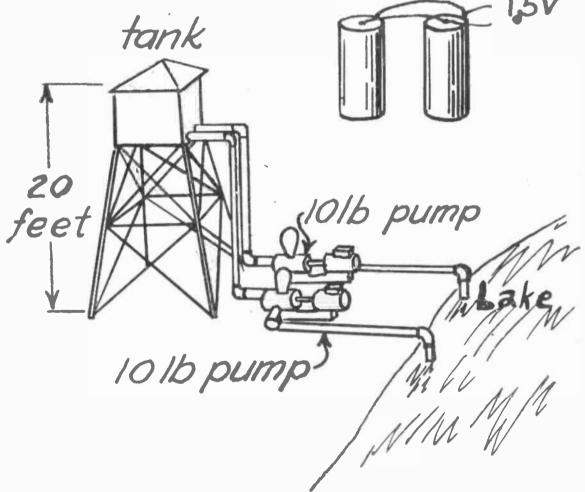
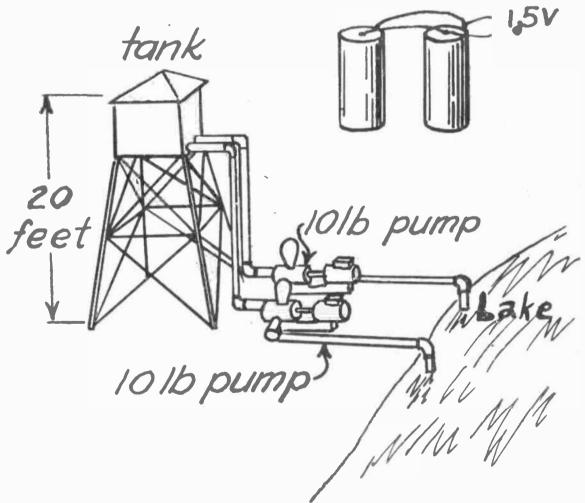



Fig. 3. Pumps in Series, Double Pressure

volt meter reads the answer directly on the scale, and no one has to worry about how big the meter or the battery may be."

"Which of the two gives more power?" was next asked. "Neither one," came back the snappy answer. "Let us look


One-horse power exactly equals 746 of these volt-amperes or watts, as they are called. So you see that a 1500-watt cell running to the minus of the next.

it, the pressure is the same. When we mechanics. If you want to use com- sure of one dry cell for instance, is 1.5 volts when new. This drops off to one volt or less when ready to be discarded. In order to work a UV tube, it is necessary to hook up several of these together to get enough pressure for heating the filament of the tube to full brightness. Three dry cells are needed for the UV-199, for instance."

Adding Two Pumps

"In such a case do you hook them up in series or in parallel?" asked Bill. "In this case it will be in series, since we wish to add up the pressures of the different cells. Look at Fig. 3, and you will understand how this is done. We have a tank 40 feet high, which contains water. This will give about 20 pounds per square inch of pressure at the lake. The pumps which are to raise the water, let us suppose have a maximum pressure of only ten pounds. How are we going to get this water into the tank? There is only one way,---that is to have the output from the first pump feed into the next one, and the two together will then add their pressure as shown. This is just like two batteries connected in series, with the plus of one

6

at a river to see the reason. Fig 1 shows a power house in the Alps. The water fall is very high, but the river itself is only a small stream, and does not have very much water. However, the big pressure (voltage) derived from the high falls combined with the amount of water, even though it may be only moderate, gives plenty of power at the station. Now look at Fig 2, which is a power house on the Mississippi River. There are no pronounced falls anywhere on this stream so the pressure (voltage) is low. But there is a tremendous stream flowing by and the current (amperes) is quite large. So the big current, even at the small pressure gives plenty of power at the power house."

Two Horse Power Per Aerial "Does that mean," asked Bill, "that it is the current multiplied by the pres-Ralph, "the same in electricity as in voltage rather than the power. The pres- Bill. "No, the output in current for

Fig. 4. Pumps in Parallel, Double Current

broadcasting station, like KDKA or Just as the pumps add 10 and 10 to give WGY, will have an output in the aerial of about two horse power." "Is that why they connect up several cells in a battery?" "Yes, partly. But sure that counts?" "Yes," answered it is unusual, however, to change the

a pressure of 20, so the cells add 1.5 and 1.5 to make a total of 3 volts."

"The two pumps together don't give any more water than before," remarked

FEBRUARY 15, 1925

7

the two is just the same as it was for one alone. It is only the pressure that is added up. By getting twice the pressure you see we have twice the power. If the current were also increased at the same time, we would get more than twice the power and that means that we would be getting something for nothing, which can't be done in mechanics any more than in oil stocks."

How to Double the Current

"How could we get more current if we wanted it?" inquired Bill. "By putting the two pumps in parallel we should get just this effect. Fig. 4 shows how it is done. Since neither pump will raise water more than twenty feet, we shall use a tank of that height. The two pumps working side by side, each delivers an equal quantity of water to the cistern, and so the amount is double. Notice, however, that the pressure is just the same as before. This is like hooking up two cells in parallel, as shown in Fig. 4. Each one has a pressure of $l_{2}^{1/2}$ volts, and a total current capacity when new of 25 or 30 amperes. By connecting zinc to zinc and carbon to carbon, we still have only $1\frac{1}{2}$ volts, but are now able to take from 50 to 60 amperes."

"When would such a connection be used?" was the next question. "This is

Portrait of Popular Performer

Marcel Dupre is a famous French New York; .WGY, Schenectady, and

done in three tube sets using WD tubes," answered Ralph. "You see either the WD-11 or WD-12 requires only 1.1 volts, and this is easily supplied by a single 1.5 volt cell by inserting a rheostat to cut down the extra pressure. Such a single cell will furnish current to operate three tubes in parallel, but the efficiency is not as great as it might be, because of the heavy current drain. Each WD takes ¼ ampere, which means ¾ for the set.

Boosting the Battery Efficiency "By using two cells in parallel, this current is divided into 3% ampere through each. The cells are much more efficient at this rate. Of course, by using three or four of these units, the drain is still further reduced with slight further increase in proportionate length of battery life. However, it usually does not pay to use more cells than you have tubes with a WD set."

organist, whose recitals on the Wanamaker Concert Organ, New York City, have been broadcast by Stations WJY, four manual organ.

"Which is it that kills a person," asked Bill, "volts or amperes?" "It is the volts which are dangerous," Ralph explained; "you can walk right up to a generator used for copper or nickle plating and put your hand on a wire carrying 2000 to 10,000 amperes, and never feel the slightest thing, as the pressure for such work is very low. On the other hand, a voltage as low as 220, will give you something of a jolt, and 550 volts has often times proved fatal. So keep away from high voltage lines," was the final advice of the radio man.

A MOOSE LOUD SPEAKER

The receipt of programs of entertain-States would be interested in the ment by radio must be a welcome item from the loggers that deer are pl for the Maine loggers in their pictur- and black ducks run in swarms.

esque surroundings, if the letters from such camps are any indication. A group in East Sullivan, Maine, write that they are indebted to radio and, in their letter, describe natural surroundings, which should make radio entertainment a popular feature. They are six miles from he nearest store. They live in the woods all the time. In the winter, their only mode of travel is either by dog-team or snow shoes. They haven't many things in common with the outside world. But their long evenings are made happy by their receiving set. Moose horns are used for loud speakers, and they fit the case nicely. Aspiring Nimrods in the States would be interested in the report from the loggers that deer are plentiful

American Radio Relay League

ECLIPSE THROUGH CLOUDS see the recent eclipse owing to dense clouds, so a radio amateur went up above the clouds in an airplane and told them all about it by radiophone. It was planned entirely by three amateurs. The voice that literally came down from the air was a big surprise to hundreds of listeners throughout the midwest states whose sets were tuned in at the time.

The success of the plan was made possible through a relay system using two different wavelengths and involving two types of radio transmitters and one receiver. The three operators used such good team work that the thing was accomplished without a hitch and reports of clear reception subsequently were received from radio listeners in the Dakotas and Montana.

In the first place, an amateur radiophone transmitter was installed in the airplane by Hugh S. McCartney and operated by him in giving a description of the glories of the corona. His view of the phenomenon was just as good as that obtained in the eastern part of the country under more favorable con ditions. He gave a rapid-fire description of the event while the bank of clouds drifting below shut off the view of many thousands. His voice carried perfectly, and was picked up by Raymond Pfisterer, operator of amateur station 9CCX, on a low loss receiver from which it was relayed to the remote control panel WCCO, the 500 watt broadcast station of the Washburn Crosby Company of Minneapolis. Lyoll K. Smith, city manager of the American Radio Relay League, operating the latter station sent the report over the air on the broadcast waves.

The people of Minneapolis could not covered through the timely assistance of amateur radio. Five front page stories under various date lines distributed between New York and Los Angeles carried the head "By Amateur Radio."

> In a subsequent issue, after the rush and excitement of the emergency had subsided and the wires had been repaired, "The Herald" carried a detailed story of the most unusual incident in its history under the heading: "Radio Amateurs Responsible for Herald Associated Press News." This graphic story of news gathering under the most trying circumstances told how Mark Spies of Decatur and W. C. Fowler of St. Louis, youthful operators of private telegraph code transmitters, worked "nine-hour watches" for two nights in order to keep the people of Decatur in touch with news of the outside world.

When the Worst Happens

In all newspaper offices, no event is more dreaded than an accident which cuts off all contact with vital news sources, and the wires, usually so busy, suddenly grow silent. Immediately every resource of the paper is used to bridge the break. In this case, there appeared to be no solution until Herbert B. Rickards, radio editor of "The Herald," got in touch with Spies of the American Radio Relay League who reported by telephone that he had "raised" an amateur in St. Louis and was already prepared to receive dispatches from the A. P. Headquarters in that city. In Spies Radio room, things were by no means running smoothly. The weight of ice on the antenna wires caused a pull on the lead-in, which broke the window and let the cold north wind into the room. There was nothing handy to stop up the hole and Spies could not leave his receiver for some time to repair the damage. He turned up his coat collar and stuck to his work.

usual with all important events fully however, 'stuck to their keys,' working continuously without stopping for supper, and rendered a service which is perhaps unprecedented in the history of amateur radio."

THE CODE WEDNES-LEARN DAY

The New Mexico College of Agriculture and Mechanic Arts, Station KOB, started a radio broadcast course in telegraphy in January. The regular Wednesday night period of KOB's schedule (7:30 to 8:30 p. m., Mountain time) will be devoted to this. Anyone may enroll in the course by writing the Radio Department of Station KOB for an application blank. There is no expense connected with the course except for postage and the purchase of a small practice set.

The lessons will be given regularly every Wednesday. These should be received by the student and written down. He will be expected to practice the lesson on his set until mastered. From time to time tests will be sent which the student should copy and mail in with a stamped return envelope for correction and grading. A careful record will be kept of these sheets so that the progress of each student may be watched and commented upon. Certificates will be graded as students attain speeds of ten, twelve, fifteen and twenty words per minute. As the course progresses, the lesson hour will be divided into periods representing stages of progress. There are undoubtedly many fans becoming more and more interested in learning the code used in telegraphic communication. That it is a language and not simply a code, as is popularly supposed, will be attested to by all operators of experience. Just as in English or other language, each letter or group has a particular sound, so does each letter when expressed in the language of the telegrapher. Likewise, words are built up of combinations of letter sounds. The telegrapher, however, has the added responsibility of writ-

ť

11

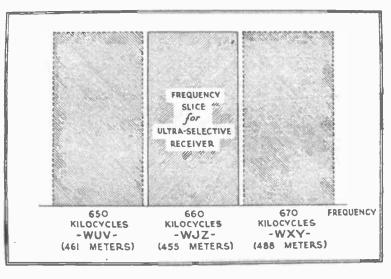
ASSOCIATED PRESS GETS ACROSS

All the wires were down. No telegraph lines connecting with the Associated Press national news source were in order following a heavy snow fall.

"In addition to these difficulties," declared Radio Editor Rickards, in describing the event in "The Herald," fad-But the "Decatur (Ill.) Herald," a ing made frequent repetition necessary morning newspaper, went to press as and reception uncertain. Both operators ing down the received words.

Chopping a Slice of Vibrations

How Selective Should the Best Set be Made?


By ALFRED N. GOLDSMITH, B. S., PhD., Fellow I. R. E., Chief Broadcast Engineer, Radio Corporation of America

RADIO designers have always wanted as recommended by the Second and wide to be passed through. If this is completely excluding all others. But, edge of just what the limit really was and partly because the making of an ultra-selective radio is a very complicated matter, this result has only recently been put on the market.

It is well known that every sending station has its own frequency (expressed in meters.) It is also found that two stations, if their frequencies are too close together, interfere with each other in the following way.

1. The speech or music of both of them can be heard at the same time in mentioned above. (As a matter of in-

to reach the last word in freedom Third National Radio Conference. For not done, the quality of the music will from interference with radio programs. example, WJZ at New York has a fre-be ruined because either the high notes A receiver was desired which would be quency of 660 kilocycles, and therefore or the low notes will be suppressed and the very limit of selectivity-which no other broadcasting stations can be in lost, and the effect will sound unwould let only one signal be heard while operation in that region from 650 to pleasant. The ideal receiver will then 670 kc., at the same time without caus- act as shown in the accompanying

Fig. 1. Size of Block Needed

partly owing to an imperfect knowl ing interference and the whistling note drawing, Fig. 1. It is seen that it admits a slice of frequency ten kilocycles wide and nothing else.

> Therefore, it will enable perfect reception of the music from WJZ at 660 kilocycles, while totally excluding the stations WUV and WXY (imaginary call letters) on 650 and 670 kilocycles respectively. It will do this even if WJZ were being received from a great distance whereas the other two stations were nearby and powerful ones. Such a feature is of course a great advantage to the critical radio listener who wants

the loud speaker, which results in con- formation, 660 kc., corresponds to 455 fusion. Sometimes one of them is so much fainter (perhaps farther away) than the other that its program is not 448 meters.) heard even though it is on nearly the same frequency.

That Bad Beat Note

2. More serious, however, is the continual whistling note (called a "beat note" by the engineers) which always results when two stations operate on frequencies less than about ten kilocycles (10,000 oscillations per second) apart. This objectionable note will be quite audible even when one of the interfering stations is so faint that it is not possible to understand speech or even to hear music from it.

It follows, then, that powerful stations must not be nearer to each other in frequency than ten kilocycles (kc.) and the Department of Commerce, in its frequency assignments to the various clusion that the best set must permit a

meters wave length, and 650 and 670 kc., are equivalent respectively to 461 and

How Big a Slice

It is clear, then, that the ideal receiver, having the best selectivity, should chop out a slice of frequency certainly less than twenty kc., wide, and should permit receiving all stations within that band or slice while totally excluding all remaining stations having frequencies outside of that band. But it is not clear, offhand, how narrow the slice of frequency, which the receiver will admit, may be made with safety. For example, it might be asked: would it not be a good idea to reduce the width of the slice of frequency actually receivable to two kilocycles? The answer is emphatically, no.

Theory and practice agree in the con-

to pick-up a concert from far away right through transmission by powerful local stations on nearby frequencies or wave lengths.

Must Not be too Good

It may seem somewhat startling at first to learn that a receiver simply must not hew out less than a ten-kilocycle slice of frequency for broadcast reception. However, up to the present, receivers have been very far from meeting any such requirement as this, and it has needed the use of every resource of modern radio engineering finally to The Radiola Superdesign such sets. VIII and Radiola Super-Heterodyne (see Fig. 2.) receivers are two designs which fully meet the necessary requirements for ultimate selectivity. This radio (they use the same circuits) has a number of very interesting qualities which are shared by no other type of set. For one thing, its selectivity is enbroadcasters has carried out this idea band of frequency about ten kilocycles tirely independent of the adjustment of

FEBRUARY 15, 1925

out just the same width for its received slice of frequency.

Unlike most regenerative receivers, and most non-regenerative even radios, these two sets have a selectivity once and for all fixed by the designer and the factory at the highest value which will permit perfect broad.

the receiver. That is, it always picks the exclusion of all other stations is accomplished here. In other words, the set tunes not only to the frequency of the incoming signal but also to a new and more favorable wave length into which the incoming frequency has been directly reduced. This is what is called super-heterodyne engineers the by system of reception.

are a good many stations to be heard and where the listener does not wish to take the trouble to adjust delicately a critical circuit.

No Birds in This Hand

The possibility of producing "birdies" or twittering notes by having the receiver in an oscillating condition has been entirely avoided in this receiver, which does not effect its neighbors at all and is therefore another example of the "Golden Rule" type. It is also of great practical interest to note that this style is so sensative that no antenna or ground are needed at all, (including "short grounds" and "balancing wires" and lots of other electrical curiosities.) Only a small unseen, and self-contained loop aerial, actually forming a part of the receiver, is employed, and with this it is possible to get louder signals from distant stations than with ordinary regenerative three-tube sets using a large outdoor antenna! So it is quite proper to call such circuits and the radio containing them not only as the last word in selectivity, but also as ultimate in practical sensitiveness.

WHEN WBZ SELLS STRAPS

It is a good thing to live in a city lodging a broadcasting station of national range. While a Springfield man was on a recent motor trip one of the straps on his tire carrier broke and arriving in Ashtabula, Ohio, the harness maker of the town was paid a visit. Leather straps were sought but the prices were staggering. "Why, where I come from we can buy the same strap for certainly one-half that price and possibly one-third," he said. The harness maker inquired as to this city of cheap prices and when he was told it was Springfield, Mass., his face lit up with a glow. "Then you know a lot about that WBZ station which Westinghouse operates there." The strap-seeker admitted that he did know a few interesting facts about it. The harness maker listened intently, stating that WBZ was his family's best bet, but suddenly left the room and came back with a strap which he offered at a figure way below the one originally asked. If the visitor had known a little more of the station and its personnel the harness man might

11

Fig. 2. This Set Will Pull in Slice of Vibrations

cast reception. Furthermore, this selectivity and freedom from local interference from other broadcasting stations, is found to be astonishingly high, way above that of the usual receiver.

Two Frequencies at Once The general way of obtaining this selectivity is by getting away from the ordinary methods of tuning altogether. circuit alone, or any other one having the same frequency, the vibration speed picking out of the desired station and important in neighborhoods where there have paid him to take the strap.

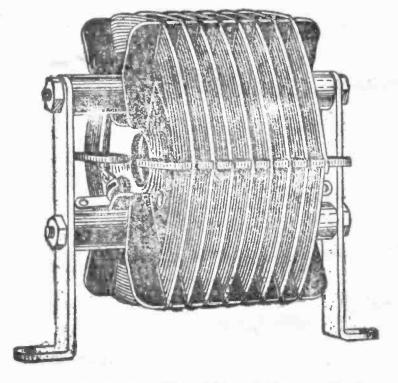
Furthermore, the amplification of the incoming signal largely takes place on the new or transformed frequency, and is therefore accomplished not only with complete stability but with the utmost efficiency. Thus great sensitiveness of the receiver and full use of the tubes Radio listeners have are obtained. found the effects of this "transformed That is, instead of tuning the antenna frequency" and the selectivity it allows to be a distinct and pleasant novelty. Handling a circuit which "cuts sharp' of the incoming signals is first shifted in the most definite possible fashion, no by a single simple adjustment to a new | matter how the receiver is adjusted, is lower fixed frequency. Then the actual a real aid to the user. It is particularly

Building the New Deresnadyne

Two Steps of Radio Without Neutralizing Condenser a

By HARRY J. MARX

tuned radio amplification detector and two audio steps is quite popular. Most such circuits require a neutralizing condenser to prevent the first two tubes from oscillating. It is rather difficult to get these condensers set at exactly the right spot to give the best results. Also when your tubes wear out and have to be replaced it seems that the trouble of neutralizing the set must be had all over again.


The Deresnadyne hook-up gets rid of the oscillations without this bother of neutralizing. The general theory is this. When the vibrations from the output or plate of a tube are led to the next transformer they are, of course, very much stronger than the input which caused them. A second step still further multiplies the effect. Naturally, this is what you use amplification for. But if any of the output vib-

small, will add to that which is already coming in and the result will be that is tuned. once an oscillation is started it keeps itself going.

Detuning the Plate Circuit

In this set the method of preventing the action just described is to detune or deresonate the plate circuits of the tubes by proper design of the RF transformers. This method was described at greater length in the January 1, 1925, issue of RADIO PROGRESS in "A Spiderweb Neutrodyne." Instead of using spiderweb coils this new hook-up employs a special form of winding, called the paddlewheel coil from its general appearance, as shown in Fig. 1.

THE five tube set with two steps of of the first tube by electric or magnetic In this condition, the plate circuit is leakage then this energy even though not resonant to the signal being received and to which the grid circuit

Fig. 1. Called "Paddle Wheel' Coil

Due to the increased tendency to os-The number of turns in the radio cillate at lower wave lengths, we must frequency transformers, are reduced to provide some means to prevent the voltsuch a point that maximum signal age across the plate circuit from in-

ration happens to get back to the grid strength is obtained without oscillation. creasing as the set is tuned to receive

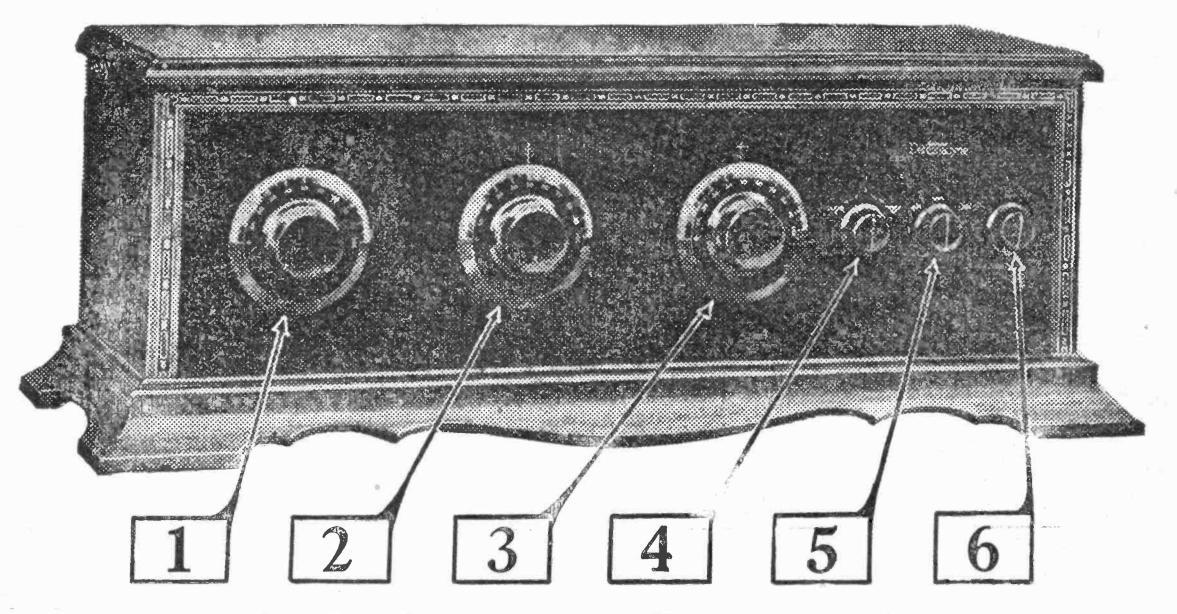


Fig. 2. First Three Dials Pick Station; 4, Volume; 5, Switch; 6. Rheostat

FEBRUARY 15, 1925

the lower wave length station. There this type the insulation supporting the 1 are several ways by which this can be coil winding is made in such a shape accomplished. One of these is the use that absorption losses are almost elimiof the plate control to lower the plate nated. The high inductance value is 3 voltage of the radio frequency tubes as shown by the fact that variable conlower wave length stations are tuned in. densers with only 13 plates are used for This method will be described later on. Although these methods are the subject range. of several patent applications their free use by the home builder is encouraged. 1 Panel, $3/16 \ge 7 \ge 26$.

tuning over the entire wavelength

List of Parts

Stage control switch, SP SW. Audio Frequency Transformers, $3\frac{1}{2}$ $\mathbf{2}$ to 1, AT 1, 2. Dials, 4 inch. Cabinet, to fit. ŀ Miscellaneous wire, terminals, screws, etc. Extras 5

Vacuum tubes. "A" battery, 6 volts.

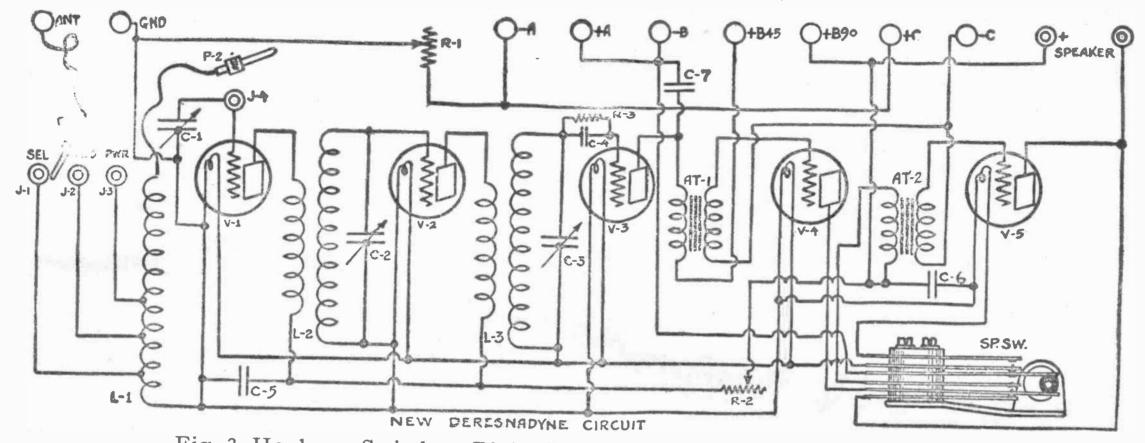


Fig. 3. Hook-up. Switch at Right Controls Steps of Audio Amplification

Insulating strip for posts.

13-plate, C 1, 2, 3.

The Paddlewheel Inductances 1 Baseboard, $\frac{1}{2} \times 9 \times 253/4$. The efficiency of the circuit as a **9** Binding Posts. whole, depends to a very great extent upon the efficiency of the coupling coils 3 RF coils (Paddlewheel). L 1, 2, 3. used in the stages of tuned radio frequency amplification.

It is often times foolish to spend a lot of money to get a low loss conden-5 ser if you are going to use a coil which has large losses. It is like walking to town to save a nickle and then throwing away all the money you have when 2 you get there.

"B" battery, 90 volts. "C" battery, 41/2 volts. Aerial and ground.

Optional

3 Variable condensers, .00025 mfd., 1 or 2 jacks to take the place of the special switch. 1 Battery switch.

HI-

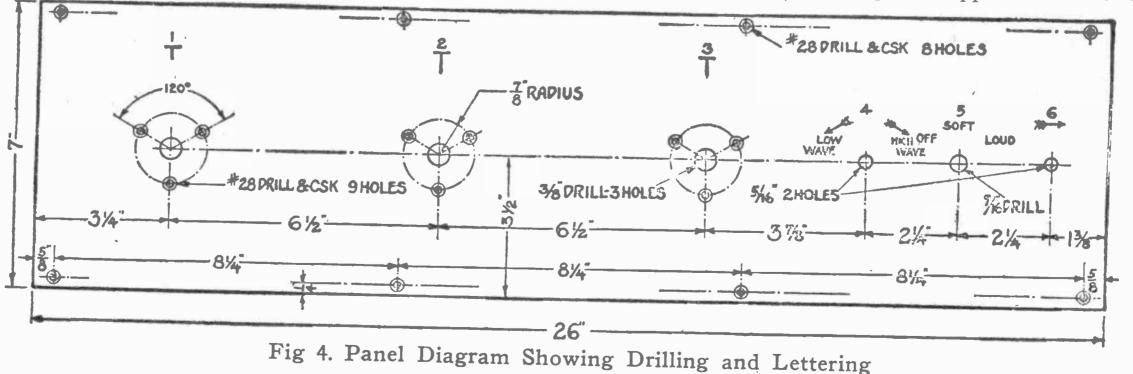
Hit

ł

This Paddlewheel Inductance (Fig. 1.) is a new type of real low loss of induc-1 tance unit. In measuring coil efficiency, 1 the highest possible ratio of inductance to resistance is wanted. In a coil of 1 Adjustable grid leak, R 3.

.5.

1 Grid condenser with clips, .00025 mfd., C 4.


Standard tube sockets, V 1, 2, 3, 4,

- Fixed condensers, .1 to .5 mfd., C 5, 6.
- 1 Fixed condenser, .001 mfd., C 7.
 - Rheostat, 2 to 6 ohms, R 1.
 - Variable resistance, 0 to 200,000 ohms, R 2.

Tap switch and points for antenna control.

The Panel Lay-out

The use of a seven by twenty-six inch panel gives good spacing of the three variable condensers and the paddlewheel coils so as to avoid coupling in the radio frequency stages. Trying to save a few inches of panel stock and crowding the apparatus close together

FEBRUARY 15, 1925

₽,

RADIO PROGRESS

his foolishness when he starts operating the set. Compactness is a good thing, but not at a sacrifice of quality and efficiency.

All told there are only six units to be mounted on the panel. The three variable condensers (1, 2, and 3 in Fig. 2.) are kept to the left as shown in Fig. 4. The next knob, 4, is the variable resistance, then comes the stage control switch, 5, and last the rheostat, 6, (Fig. 2), which controls the lighting of all five tubes.

By increasing the resistance the pressure is cut down to a point were the tubes will not oscillate.

Keep Tuning Sharp

This would naturally decrease the sharpness of the tuning, so to prevent it

will soon convince the constructor of be varied from 0 to .2 meghom. When with it the plate energy and thus prethis value is small the full pressure of venting self oscillation. By keeping the "B" is impressed on the RF tubes. just below this oscillating point, the greatest radio frequency amplification is obtained with wonderful clearness of tone. It also acts as a volume control.

Picking the Parts

In building the set, Fig. 2, the first the large capacity, C5 bridges this re- point of importance, after the circuit sistance to the filaments. The radio is understood, is the selection of the frequency (RF) waves do not have to parts. It is useless to take particular flow through the resistance but return pains in getting the best of some parts

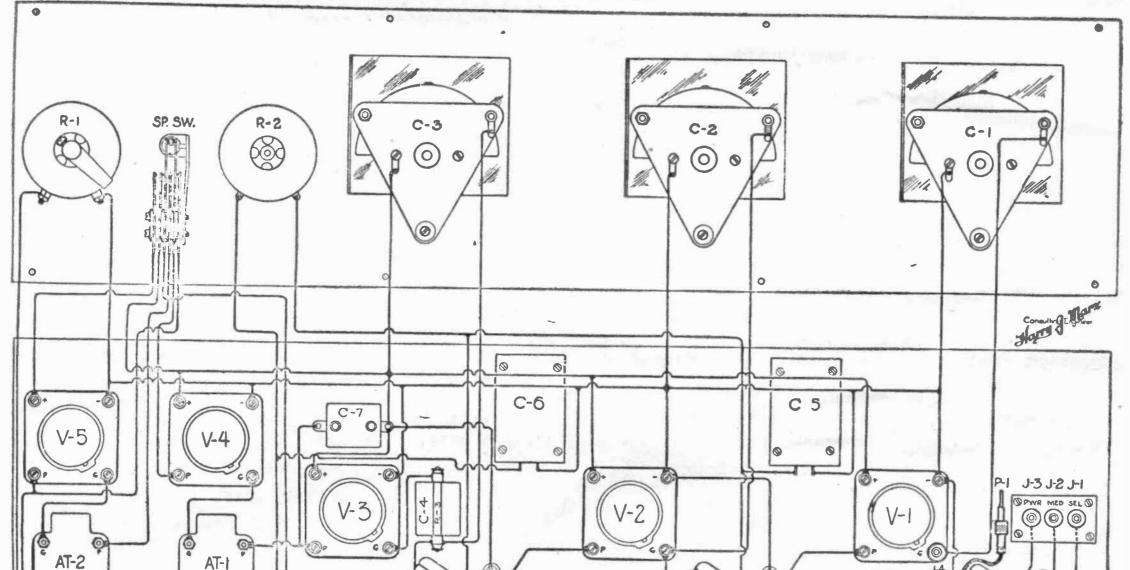


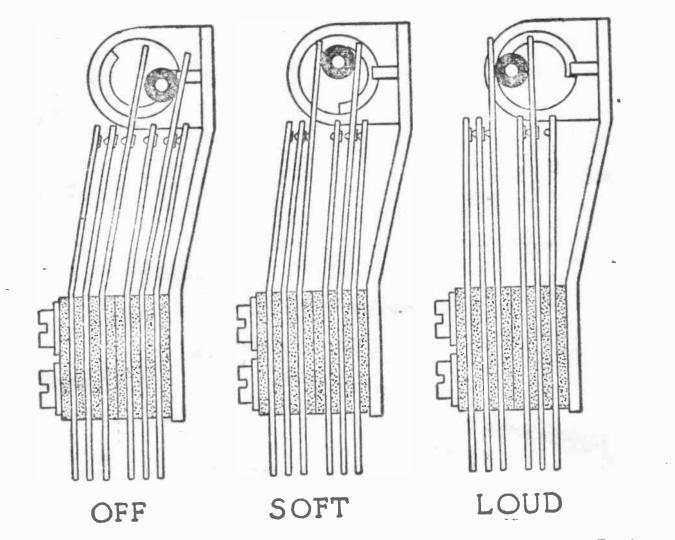
Fig. 5. Lay Out of the Parts. This Corresponds to Hook-up, Fig. 3

Plate Balance Control In order to secure highest efficiency at long wavelengths, the Paddlewheel inductances have their primary turns so proportioned as to give maximum amplification without oscillation. Α variable resistance, R2, Fig. 3, is connected in series between the plate coils and the "B" battery terminal to prevent oscillation at high frequencies (short wave lengths).

This resistance is connected right in the line from the "B"+90 to the plates of the first two tubes. The current from the "B" battery runs through it before reaching the primary of the RF transformers, L2 and L3. R2 can

directly through this capacity to the and then neglecting the rest by buying filament.

This variable resistance provides a means of reducing plate voltage and thus the plate circuit energy. At low radio frequencies (long waves), with the knob turned to the right (zero resistance) the deresonance of the plate coil is depended on to stabilize the circuit. As the tuning approaches the higher frequencies, say 1000 kc. and gets closer to the natural resonance point of the plate circuit, the set approaches the oscillation point. Now, by turning the knob to the left, resistance


the first thing that is offered. Low-loss variable condensers have been discussed to such an extent that the average fan has become quite familiar with the subject. How many are taking the same pains in purchasing their audio frequency transformers? Don't buy the high ratio type (10 to 1), unless you are willing to accept distortion as a price for volume. Low ratios $(3\frac{1}{2} to)$ 1) will always give you good quality amplification.

A little shielding between the variable condensers and the panel will do is inserted between the plate and the lots of good in preventing body capacity, battery, thus lowering the voltage, and so don't leave it out because it adds

FEBRUARY 15, 1925

stopped to consider how many manufactured sets use shielding? The manufacturer wouldn't put it in if it weren't worth while. The shield should be connected to ground.

a little more work. Have you ever of the panel that is the cause of unsatisfactory operation. Fig. 5 gives a clear illustration of the best arrangement of apparatus on the baseboard and at the same time indicates the logical locations of wiring to conform to

the springs make good positive contact with the prongs on the base of the tubes. Poor contact between spring and prong will make more trouble than can be imagined.

In buying fixed condensers, get good the hook-up diagram, Fig. 3. There is ones. Those of mica are best. In buy- ample room on the baseboard, so no ing tube sockets, get the kind in which | fears need be entertained regarding the accessibility of the various units for soldering the leads.

Terminal Strips

The hook-up, Fig. 5, shows three binding post strips; the long one at the bottom left takes all the battery connections. The one at the right contains aerial and ground terminals. Of course, these could be mounted on the same strip as the batteries if you wish. There is also a strip with 3 connections marked J3, J2, J1. A plug is shown connected to the antenna which is inserted in one of the 3 binding posts and gives greatest power at the left and greatest selectivity at the right. lnstead of this plug scheme a 3 point tap switch may be used.

made directly to the antenna and ground binding posts, but plug P2, is taken from jack J4 and left disconnected, while the plug Pl, is inserted in jack J4, instead. This takes the coil L1 from the grid circuit and directly connects the one side of the loop to the grid. The other end of the loop, on the ground post, connects to the negative filament but inside of the rheostat, R1.

Kind of Tubes

The tubes should be all of the 201-A type, but be sure you are using good ones. Poor tubes will ruin the best set. A detector tube of the UV-200 or C-300 type is not recommended here.

The storage battery should be of a good reliable make with about 80 ampere-hour capacity, in order to avoid frequent recharging. It would be advisable to buy a good charger for this purpose. The use of dry cells is possible but will not be found economical.

The "B" battery may consist of four $22\frac{1}{2}$ volt blocks or two 45 volt units. The heavy type is recommended for greater economy in the long run. Storage "B" batteries will also be found very satisfactory, but good ones must be purchased.

When it comes to the subject of loud speakers, naturally a good one is advised. The writer's experience in this line is that you get just what you pay for! The cheaper the price, the pooreer the quality. It will surprise many, to know how much the loud speaker has to do with satisfactory reception.

14

الا التي المراجع من المحاصلين المراجع محاصل المراجع ال محاصل المراجع ا

11

The special resistance, R2, Fig. 3, from zero to 200,000 ohms must be of the non-inductive type. A wire-wound type would not only be impractical but would have an inductance value that would effect tuning. The special switch SP, SW, Fig. 3, not only acts as a battery switch, but also connects the loud speaker for either one or two stages of audio frequency amplification as required. If desired the regular jack system and a battery switch may be substituted. No provision is made for plugging in headphones as they are unnecessary; all tuning in can be done with the loud speaker.

It seems to be a simple matter for the average fan to assemble the apparatus on the front panel, but for some reason or other the rear of many a set looks like a cross-word puzzle. Perhaps the inside is not visible for guest's criticism, but don't overlook the fact that in nine cases out of ten, its the rear

Using a Loop Aerial

An additional jack is mounted on the grid terminal of the tube socket, V1, making electrical connection with it. When using an outdoor aerial, the plug, P2, which is connected by a flexible lead to the grid terminal of the paddlewheel inductance L1, is plugged in to this grid jack J4.

When a loop is used, connections are

The Stage Control Switch

The stage control switch presents some interesting features. The illustrations of Fig. 6 shows this in the OFF SOFT and LOUD positions. In the OFF position, the "A" battery connection is closed and the loud speaker is connected to the plate of tube V4. When the knob is turned to the LOUD position, the plate of tube V4, is connected to the plate terminal of audio transformer AT2 and the loud speaker is already in the plate circuit of tube V5. In the SOFT position, one stage of audio amplification is used, while the LOUD covers both stages.

Continued on l'age 22

Why the Wave Lengths Change

Your Favorite Stations Don't Come in Where They Used to

NE of the results of the third radio (or hard) to separate 550 from 560 kc., conference recently held by the department of commerce under secretary and 1060 kc. But this does not hold Hoover, was the change in the basis of true when you talk about wave length assigning wave lengths. The old ratings in meters. Five meters is a big difference of the various broadcasting stations and makes easy tuning if the stations were bunched together at some wave happen to be on short waves as for inlengths and at others they were wide stance, 280 and 285 meters. But this stretches where no waves came in.

as it is to differentiate between 1050 same separation will not work at all As a result of this irregularity it often even with the best and sharpest receive-

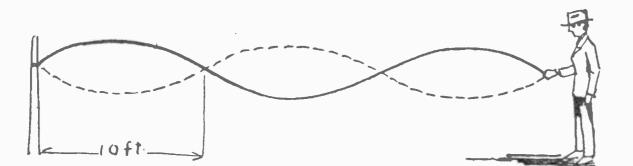


Fig. 1. Why Frequency Beats Wavelength

be picked up together with a shift of 545 meters. only a few degrees of the tuning dials while at other points all of ten degrees would be passed over without hearing a peep. Naturally this caused considerable interference at the spots where the

happened that five or six stations would | ing set at the long wave stations like 540,

Easy Way is Best

As just explained the kilocycle separation is always the same but the wave length distance varies all over the lot. Besides this it is much easier to get the idea of speed of vibration than it is to grasp length. In Fig. 1, a clothes line is vibrated up and down three times a second so anyone can see in an instant it has a frequency of three vibrations per second. But only a measurement would show that each wave length was ten feet long. In the same way if you are told that KDKA is oscillating 970,000 times every second (970 kc.) you will have a picture of this high speed in your mind. But if you are informed (what amounts to the same thing) that the wave length is 309.1 meters do you get any real grasp of the fact? For these two reasons the Department of Commerce is now assigning a Fig. 2. Stations by Frequency Call W. L. Freq. Letters. Location. Meters. K.C 1070 1060 1050 1050 1050

_	Reserved	1030
2	WEAO—Columbus O 203 0	1030
	WBAVColumbus, O. 293 9	1020
	$\Lambda \Gamma KU - Bristow, Ukla, \dots, 296.9$	1010
-	WPG—Atlantic City, N. I., 299.8	1000
L	WIASElgin, III	99 0
	WJJD-Mooseheart, III	990
	WJAR—Providence, R. I	980
5	KDKA—East Pittsburgh, Pa309.1	970
	Reserved	960
	WAHG—New York. N. Y	950
,	KEDM_Beaumont Torog	950
	KFDM—Beaumont, Texas	950
·	KOA—Denver, Col	940 930
	WMH—Cincinnati, Ohio	930 920
	WSAI—Cincinnati, Ohio	920 920
	Xeserved. 320 5	910
	WDZ-Springheid, Mass 333 1	900
	WSAU—Ulemson College, S. C. 336.9	890
	KFWX—Northfield Minn 226.0	890
	WCAL—Northfield, Minn	890
	WKAQ—San Juan P. R	880
	WCAL—Northfield, Minn	880
		870
	WCBD—Zion, Ill	870
	WTIC—Hartford, Conn	860
	WWJ—Detroit, Mich	860 850
	WJAD—Waco, Texas	850
	Reserved	840
	WHN—New York, N. Y	830
Í	WHB-Kansas City, Mo	820
	WDAF—Kansas City, Mo	820
ſ	WEBH—Chicago, Ill. 370.2	810
	WGN—Chicago III 370.2	810
	KIHS—Hot Springs, Ark	800
	w GY — Schenectady, N Y	790
	WHAZ-Troy. N. Y	790
	WMBF—Miami Beach, Fla	780
	WTAM—Cleveland, Ohio	770
ł	WEAR-Cleveland, Ohio	770
	WFI—Philadelphia, Pa	760
	WOAI—San Antonio, Texas	760
	WHAS_I ouisville Kar 200 g	760
	WHAS—Louisville, Ky	750 740
	WJY—New York, N. Y	740
	Reserved. 410.7	730
	Reserved	720
l	WLW—Cincinnati, Ohio 422.3	710
	WMH—Cincinnati, Ohio	710
	WSK—Atlanta (La 1283	700
	NAA—Arlington, Va. (Reserved)434.5	690
	WDWF-Cranston, R. I	680
	NAA—Arlington, Va. (Reserved)	680
	WUJ—Chicago, III	670
	W MAQ - Cnicago, 11	670
	WJZ-New York, N. Y	660
	WCAE—Pittsburgh. Pa	650 640
	WRC—Washington, D. C. 468.5	640 640
	WEEI—Boston. Mass	630
	WBAP—Fort Worth, Texas	630
ł.	WFAA—Dallas Texas 475.0	630
ĺ	WHAA—Iowa Citv. Iowa	620
ļ	WOC-Davenport. Iowa	620
	WEAF-New York, N. Y	
1	WMC-Memphis. Tenn. ,	600
	WOO-Philadelphia, Pa	590
	WIP—Philadelphia, Pa	590
	WCX—Detroit. Mich	580
	WNYCNew York, N. Y	570
	WHO-Des Moines, Iowa	570
	WUNW-Omana. Neb	570 560
	WOAW—Omaha_Neb	560 560
	KSD-St. Louis. Mo	550
	KFUO—St. Louis, Mo	550
		000
Į	Continued on Page 22	

stations came in together.

Frequency Beats Wave Length

In reassigning the waves to powerful stations there were two possibilities. Stations might be given wave lengths varying by an equal number of meters. For instance, they might be assigned 350, 355, 360, 365 etc. Another way that this might be accomplished is to make the frequency or speed of oscillation equally spaced. Under that plan the readings would run like this: 860, 870, 880, 890, etc. kilocycles (kc.). This is a short way of writing 860,000 vibrations per second. Of the two plans the latter is much better.

It is found that when two stations are broadcasting using nearly the same wave they can be separated by a good sharp-tuned radio if they are spaced 10 kc., apart. This holds true no matter whether two frequencies are high or low. For instance it is just as easy

FEBRUARY 15, 1925

Amusing Adventures of Radio Speaker

Trials of Talking to a Mike Which is Mum

By RICHARD K. MORTON

SICKLY looking red light (and, roundings. The voice of a piano rarely admirers brought along by artists was like other red lights, it certainly meant danger!) was burning. I was in a tomb-like room, devoid of echoes and, it seemed, of everything else that would bring comfort to the nerves. Even the light gleamed in a weird color. My shoes sank into a thick carpet. Heartless spectators, and a cynical announcer, watched me critically and without mercy, as if it had suddenly been discovered that I was in dire need of a serious surgical operation, or as if I had been a previously unknown kind of worm.

As I looked into an instrument that seemed like a cross between a chicken's water-supply pan and an automatic vender of penny candy, I imagined that every listener-in was already chuckling over my predicament. My knees were playing "Home Sweet Home," with considerable jazz mixed in, I guess. The "mike" had holes around its edge, which looked large enough to put twenty-five Indeed, I should gladly cent pieces in. have deposited ten dollars, then and there, if that act would have whisked me away-somewhere, anywhere! Never in my life did I want more earnestly to indulge in generous glups.

trembles.

One night, I went to a studio, alone, for the purpose of delivering a short talk. To my embarrassment, I found the studio filled with musical artiststogether with all their admirers they

the big reason why he could always make his announcements so cheerful.

Like a Telephone Booth

On another occasion, I arrived in a large studio, just a few moments before my time. The studio had been used continually for the previous two hours; it had been filled with artists and visitors; and it had been almost hermetically sealed. The announcer had been vigorously smoking a cigarette. What an enchanting atsmophere in which to talk ten minutes! To make things worse, I could hear the visitors making sophisticated and belitting remarks about me and my talk.

Not long ago, I essayed to be the director of a radio program lasting two hours. I was also to give a short talk. I had to round up all those who had agreed to take part. When the date arrived, I never was more miserable in my life. Artists were late-they boarded the wrong car, misunderstood directions, etc., ad infinitum. They brought music barred from broadcasting. Others got chronic attacks of nervousness. I paced the studio floor, trying to think of ways to keep my crowd rounded up-I would rather go out West and round up all the cattle on a Texan ranch than repeat the experience. When you are listening to a program given by a club or society, just remember this, and sympathize with the director of it.

16

Talk No. 1

My first radio talk! That's how it seems to the radio speaker who innocently aspires to speak over the air. Announcers have their stories to tell, but radio artists also have their adventures which are about as colorful. That is how it might seem to you, if you were to apply to a nearby station for the privilege to broadcast.

The "atmosphere" in a studio alway. seems to me like a mixture of a mysti-

MISS MIRIAM STEEP, star of the Wash? ington Square College Players, will be heard in a series of radio dramas from Station WJZ, New York City, during February, March and April.

could get to come with them, it seemed. They took possession of the entire place, watched every move, and so comically tried to disguise their gaping at the cal seance and a funeral. A radio studio fittings, that I had a hard time musician, to get oriented in his new sur- that the observation of the actions of

Why Announcer Fainted

During another talk, the announcer became nervous, and he kept hoping that I would end my talk. Misinterpreting a gesture that I made, he waved for members of a large orchestra to take their places near me. Then, I suddenly picked up four more pages of typespeaker has a harder time than the to get through. The announcer told me written manuscript, and the unhappy Continued on Page 22

How Vacuum Tubes are Made

Differences Between the Various Kinds are Explained

An Interview from J. L. BERNARD

means that \$3.00 does a fadeaway from your pocketbook. Or perhaps you accidentally drop the "B" battery connection on the filament circuit. Or even, a too high voltage from the "A" battery if impressed on the tube for a long time will ruin it. In any event, when you buy a new tube you may wonder what is inside and how it is built.

To begin with there are five different styles in ordinary use. The ones we are about to describe are those made by the Radio Corporation but the product of other manufacturers is substantially the same. Of these five, two (WD-11 and WD-12) are exactly alike electrically and differ only in the base. The WD-11 has a special base with the prongs for plate and grid on opposite sides, while stituted, without changing the adjustthe WD-12 fits in a standard socket ment, the UV-200 varies so from one with these two prongs side by side.

PLOP! goes a tube on the floor. Which dates back a good many years. It is a detector tube and is probably the most sensitive one known. It uses five volts on the filament and consumes one ampere. This current is at least four times as large as that taken by any other tube and for this reason it is becoming somewhat unpopular with users who have not any means of charging their own storage batteries.

> This style is what is called a "soft tube." It contains a small amount of inert gas which does not have any effect on the filament as air would. This has the result of making the detector action stronger, but with it the drawback that it can not be made in quantities with very great regularity. While other styles of tubes can be depended on to repeat their characteristics so that if one is burned out another can be subspecimen to another that it is quite nec-

The Loudest Amplifier

A 201-A makes the loudest amplifier of the series. The filament uses five volts and one-quarter ampere. This tube-is used as standard on a large number of sets, both as radio and audio amplifiers. Used with the UV-200 detector they undoubtedly give the best all round performance of any receiver. Owing to the variations in individual UV-200 detectors and also the large current consumption of the latter, as just described, the 201A is also used as a detector in many hook-ups.

The WD-11 and WD-12 (alike except for base) were developed to meet the demand for tubes which would work without a storage battery. They use just as much current as a 201-A but at a much lower pressure. Instead of requiring five volts on the filament a pressure 1.1 (1-1/10) volts gives full brightness. Since a dry cell has a

essary to check up the adjustments with pressure of $1\frac{1}{2}$ volts when new it will a new tube. For instance, the grid leak operate several WD's in parallel. But, Differences of the Four better efficiency from the batteries is obmay need a change and more or per-Taking the tubes up in order the UV-This haps less feedback will often be required. tained by allowing two or three cells 200 was the one first invented.

Battery usedStorageStorageDryUryNumber of cellsThreeThreeOneThreeKind of filament.TungstenAlloyCoatedAlloyFilament voltage.5.0 volts5.0 volts1.1 volts3.0 voltsFilament current.1.0 amps¼ amps¼ amps1/16 ampsRheostat for 1 or 2 tubes.2 or 6 ohm6 ohm6 ohm30 ohmRheostat for 3 to 5 tubes.Not used2 or 6 ohm2 ohm10 or 20Plate voltage detector.15 to 2520 to 4520 to 4520 to 45Plate voltage amplifier.Not used20 to 10020 to 8020 to 80Use as detector.BestGoodGoodGoodUse as radio amplifier.Not usedBestGoodGoodUse as radio amplifier.BrightDimVery dimDimColor of filament burning.BrightDimVery dimDimColor of glass.ClearSilverClearSilverAmount of vacuum.FairHighestHighestHighestHighest	Kind of tubeUV-200	UV-201A	WD-11 & 12	UV-199 -
	Battery usedStorageNumber of cellsThreeKind of filamentTungstenFilament voltage5.0 voltsFilament current1.0 ampsRheostat for 1 or 2 tubes2 or 6 ohmRheostat for 3 to 5 tubesNot usedPlate voltage detector15 to 25Plate voltage amplifierNot usedUse as detectorBestUse as audio amplifierNot usedUse as radio amplifierNot usedColor of filament burningBrightColor of glassClear	Three Alloy 5.0 volts 1⁄4 amps 6 ohm 2 or 6 ohm 20 to 45 20 to 100 Good Best Good Dim Silver	One Coated 1.1 volts 1⁄4 amps 6 ohm 2 ohm 20 to 45 20 to 80 Good Good Poor Very dim Clear	Three Alloy 3.0 volts 1/16 amps 30 ohm 10 or 20 20 to 45 20 to 45 20 to 80 Good Good Best Dim Silver

Fig. 1. All the Features of Five Kinds of Tubes Are Listed Here

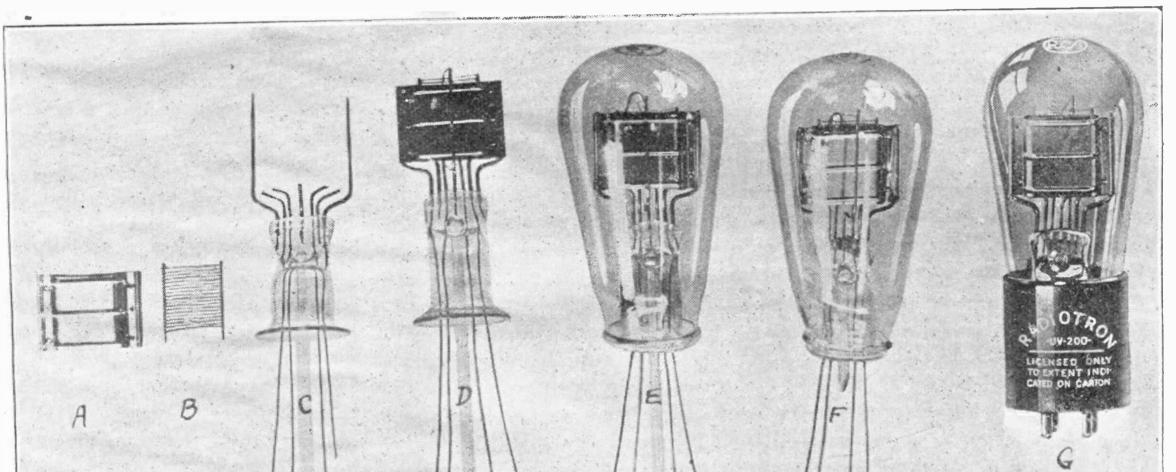
for a three tube set. That is, two cells will last about $2\frac{1}{2}$ times as long as one.

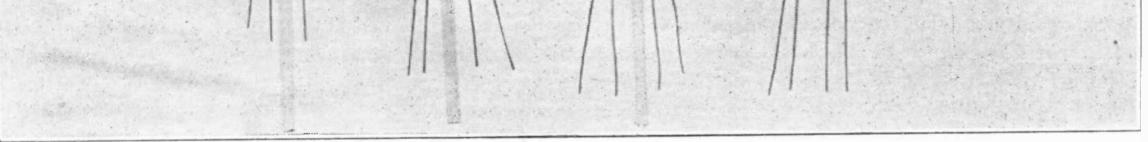
The Best Radio Amplifier

The best tube for use as a radio amplifier is the UV-199. Owing to the extremely low internal capacity between the grid and filament there is very small loss of energy at this point. This low capacity, or condenser action, is found because of the arrangement of the leads. These are separated as far as possible, and are also made very short where they project from the base. For this reason they are preferred to the 201A where the utmost in radio amplification shape to conform with the grid.

Comparing the Requirements

The table as given in Fig. 1 shows the characteristics of these tubes:


Parts of Tube


The elements in a Radiotron consist of a "filament" like that in an ordinary incandescent lamp, surrounded by a "grid," which in turn is surrounded by a "plate". In the UV-200 and UV-201A the filament is the shape of a hair pin; in the others it is a straight wire. The grid of the UV-200 and UV-201A others are cylindrical in form.

the elements with the terminals of the base are sealed into glass making an air tight joint, as shown at "C". Two wires are required for the filament, one connected to each end, one for grid and one for plate; hence four wires pass through the seal.

Wet by Red Hot Glass

These wires, where they thread this seal, are of a special composition which expands and contracts at about the same rate as glass. Another interestis oval shape in a plan view; the ing thing about the wire-it must be The wet by melted glass. It is not difficult to plates of various tubes are similar in find various metals or alloys which have the same rate of expansion with tem-

Shows the Various Steps in Manufacturing the UV-200 Detector Tube Fig. 2.

is wanted. As audio amplifiers, they are not quite as good as the 201A especially on loud signals.

The current consumption is the lowest of any style. Only 1/16 ampere at three volts is required to light the filament. Three dry cells, when new, give a pressure of $4\frac{1}{2}$ volts, and this is reduced by the rheostat to three, at the terminals. For ordinary dry cell use this tube is perhaps better than the WD, where several are employed. For the single tube sets, the WD has a great advantage in that one cell only is needed while with the 199 a minimum of three must be connected in series to get the proper voltage.

which represents the parts of the UV-200, WD and 199 tubes respectively. At of red hot glass will not stick to it com-"A" in each of these drawings is shown pletely. The result is that when cooled the plate while "B" represents the grid. The filament is not pictured separately as it is a piece of plain wire, stretched inside the grid.

The three elements are mounted in a glass bulb from which the air is later exhausted to a high degree. The amount of vacuum in the UV-200, however, is action.

not as high as the others and it is called a "soft" tube, the others being "hard." The elements are rigidly supported so that they will not touch each The "flare" on the "Leading-in" wires, connecting to the nesk of other.

This can be seen in Figs. 2, 3 and 4, parature that glass has. However, most of these when poked through a piece there is a tiny crack around the wire between it and the glass. This crack is so small that it cannot be seen by a microscope. However, it is big enough to let in a slow trickle of air. This destroys the vacuum in time. The special alloy used in these bulbs prevents this

> The elements are mounted on a glass "stem," this "mount" being inserted into a bulb. This is shown at "D." stem is fused the glass bulb,

FEBRUARY 15, 1925

RADIO PROGRESS

"E," and the air is then exhausted Making a Mount through a glass tube which is afterwards melted off, "F." The base is heated at one end and when soft is is pinched together forming the seal,

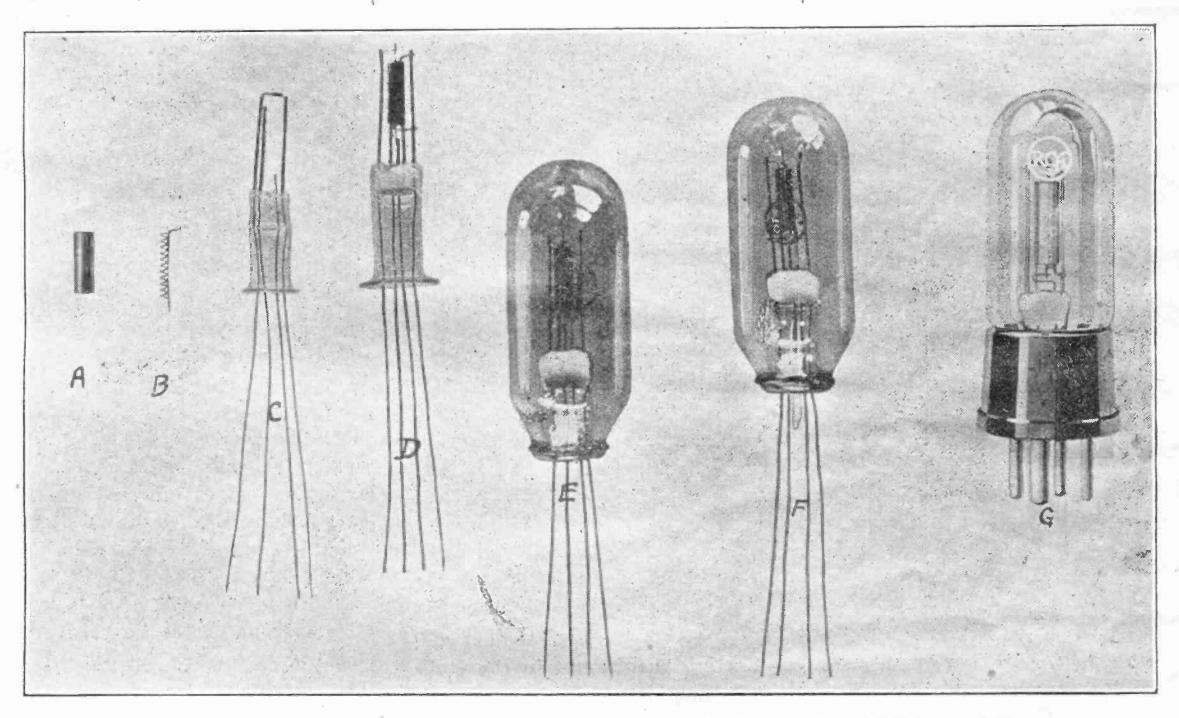


Fig. 3. This Illustrates Making a WD-11 Bulb. WD-12 is Same Except Base

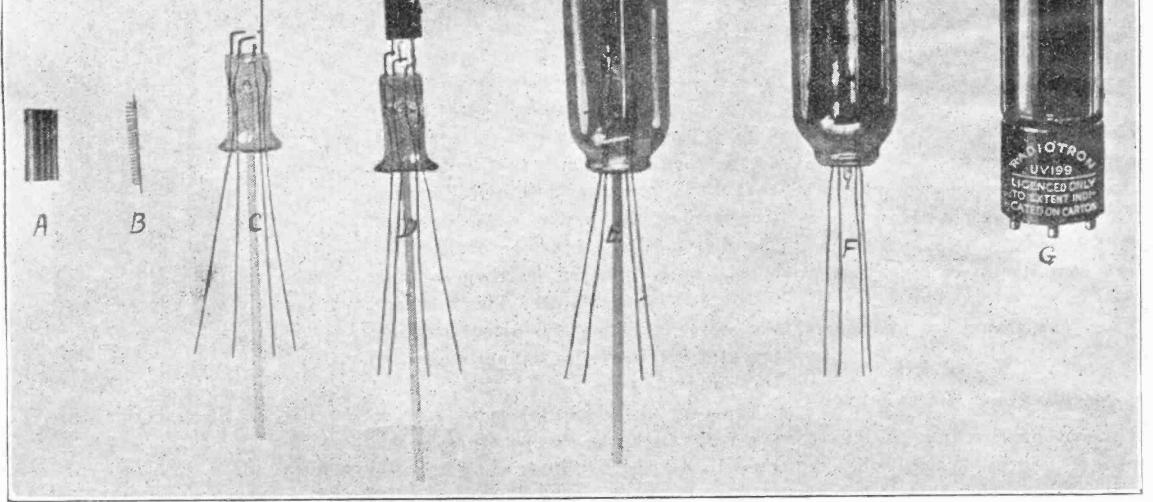


Fig. 4. The UV-199 is Put Together Like This. It Uses an Alloy Filament

cemented to the neck of the bulb, the flared out. This flared tube is then the wires becoming imbedded in the four lead-in wires being soldered to the heated at the other end, the necessary glass. The various wires are then bent leading-in wires and extra supports for the proper shape and cut to the right

length, the stem appearing as at "C". The stems are then tested for open circuits, crosses and short circuits.

The exhaust tube, through which the air is sucked out, is at present welded to the stem, thus making a "tipless" tube. Formerly it was fastened to the

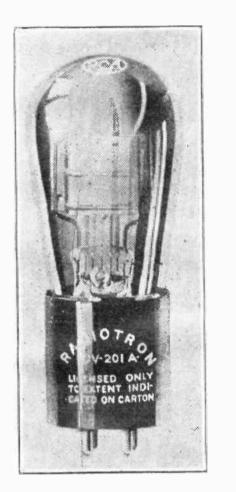
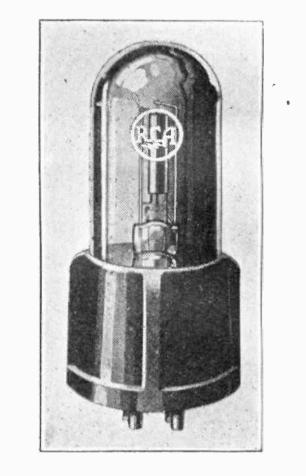


Fig. 5. Complete 201-A

end of the bulb. The tipless tube has its "tip," the sealed end of the exhaust tube, covered by the base, whereas formerly it was exposed on the end of the bulb. The exhaust tube, in the tipless construction, is inserted in the stem tube at the same time the wires are inserted. When the end of the stem tube is pinched together, the exhaust tube is welded to it at the same time. This end of the exhaust tube then unavoidably becomes closed, and is opened up again at the pinched seal by a slight air pressure being put on the open (lower) end of the exhaust tube while the glass is still red hot. The tipless tube is a great advance over the previous one as it prevents damage by breaking the exposed tip. For forty years lamp manufacturers have tried to produce a tipless lamp, but heretofore the expense has prevented its general use.

tween the jaws of a press. A heavy current is sent through from one jaw to the other at the instant of pressing air from them. This current is the wires together. large enough to bring them up to white heat in an instant. The pressure drives the two together in such a way that they become practically a single piece.

In the UV-200 and UV-201A, in addition to the leading-in wires supporting each element, there is an additional support, or anchor, for the filament, another for the grid and still another for the plate. Thus in these Radiotrons there are seven wires imbedded in the seal, only four of which go through it to connect with the base,


In the UV-199 there are no other supports inserted in the seal, the upper end of the grid and plate being fastened to wires imbedded in a glass bead which is fastened to the leading-in wire connected to the upper end of the filament. This is shown at "D" Fig. 4. In the WD there is one extra support for the plate.

Sealing the Mount in the Bulb The mount is inserted in the bulb and gas flames heat its neck. When the glass is white hot and soft, the neck of the tube welds to the flare on the stem of the mount which has also become heated. This makes an air tight joint as the glass has been fused. The only opening to the inside of the bulb is now through the exhaust tube which has been welded on as described.

plate and grid inside are not. heated enough by the oven to eliminate all Remember that the filaments has two leads and so a current can be run through it, but both plate and grid have only one terminal apiece. Then as they do not touch each other there is no chance of a circuit through This prevents both these eleeither. ments from being heated by a direct current as is done with the filament.

Fooling the Plate

If the plate thinks that because it has only one lead we cannot heat it by electric current it is much mistaken. To be sure direct current cannot be used as just mentioned. But a large coil is placed around the outside of the entire tube. By running a high frequency alternating current through this coil we may induce eddy currents (at the same high frequency) in any metal lying inside the coil. The plate is located so that these powerful eddy currents circulate around in it and heat it so hot that it raises the temperature of the grid inside it. In this way the metal is brought up to a heat high enough to clean out all the air. The action is similiar to a short circuit secondary coil of the transformer. In this case the coil outside the bulb is the primary

20

Welding the Wires

grid, both of which elements then go inside the plate. The three elements are electrically welded to the proper supports and leading in wires. This welding is an interesting process. The two wires to be welded, the lead-in and

Exhausting the Air

The air is next pumped out of the The exhaust tube is connected bulb. to a vacuum pump, the bulb being heated in an oven. The high temperature assists the pump in drawing out the air and moisture, the final traces of air being removed by chemicals put inside the glass. In the UV-200, after the unit has been exhausted, a slight trace of an inert gas is purposely put back into the tube.

The oven in which the tubes are ex-The filament is next put inside the hausted raises the temperature of the glass to red heat. It must not get hotter than that or it will soften so much that the vacuum inside and the atmospheric pressure outside will collapse the walls in. This temperature is high enough to drive practically all of the the filament, are squeezed together be- air out of the glass walls. The metal

Fig. 6. Special Base of WD-12

and the plate the shorted secondary.

The heat produced vaporizes the chemicals, which condense on the cooler surface of the bulb, coating the inside of the bulb in the case of the UV-201A and UV-199 with a mirror Continued on Page 21

Remarks Received from Readers

EDITOR, RADIO PROGRESS,

Dear · Sir:

The radio public is accustomed to the use of condensers, which are rated in microfarads capacity. When two are put in parallel, the values add, as for instance, a 2 + a 1 mfd. capacity equals 3 mfd. Being familiar with this usage, makes it hard to get the idea of the megohm rating of grid leaks. For here, if we have a 2 in parallel with a 1 megohm leak, the answer is not 3 megohms, but a value even less than the smaller. For this reason, when one speaks of "adding more leak" it is impossible to know whether he means more resistance or a bigger leak for current. One naturally thinks that a big leak would pass more current than a small one, but as the megohms go up, the current drops off. As an example, some people call a ten megohm leak a large one, because the figure is big. Others call onequarter megohm a big leak because it lets the current leak away very fast. Which way is the proper one?

To get around this difficulty, there is a unit for the amount of current which a leak will conduct. I refer to the terms "Mho," which is the word "Ohm" spelt backwards. This is the unit of conductance, and a wire with a large resist-

for house fuses than any fellow this side of the River Jordan. My electric light bill breaks my back. My experiments break my pocketbook, and my dear wife -bless her soul-breaks my head. Radio and women don't mix worth a cent.

She never can see the point for the reason that electricity is so mixed up in foreign terms that it is impossible to make a woman understand just what you are trying to accomplish. All they can see is the muss and dirt of it. But, my dear Ed, this is family affairs, and does not interest you in the least, as you have enough of your own without reading about the other fellows.

Life is a great thing, and it is the same over and over. During the evenings I start to putter on some apparatus.

"What in the name of heavens are you doing now? says my wife.

"Making a complexoplex."

"What's that?"

"It's so and so-etc-etc."

"What are you going to do with it?" "Sell it."

"For how much?"

"About \$1500 for all rights-etcetc."

Two Weeks Later

is then melted off, the exhausted bulbs then appearing as at "F".

Taking its Base

The exhausted bulbs are then based. Some cement is smeared on the outside edge of the base, the four leading-in wires being threaded through the holes in the base contacts as the base is put on the neck of the bulb. The tubes are then passed through a heater which hardens the cement. This done, the excess length of leading-in wires is cut off and the ends soldered to the base contacts.

The manufacture of the radiotron is now completed and it appears as at "G". . Each Radiotron, however, has to pass through several tests before it is packed for shipment to insure that the product is up to standard.

As already explained the 201A is built like the 200 except that the filament is made of an alloy so that it gives off enough plate output with only 1/4 ampere filament current. Fig. 5 shows this tube completed. Fig. 6 is a picture of the WD-12. Notice that the base is much bigger than that of the WD-11.

Testing the Tubes

1

E +

|--|

FEBRUARY 15, 1925

ADVENTURES OF SPEAKER Continued from Page 16

announcer nearly collapsed.

Having heard so many thin, puerile voices over the radio, I resolved, during my first broadcast, to make my voice unusually loud and clear. After I had, with an air of satisfaction, finished my broadside, one of the operators said to me: "Sure, you were all right; bellow all you want to, for we can tone you down upstairs!"

I got a genuine fright in another studio by listening to a speaker coming before me, as his talk came through a loudspeaker out in the outer studio. Such frog-like croaking and sputtering I had never heard before. I wondered if I was going to sound like that!

Talking in Bunches

Any radio speaker should keep in mind the fans with loudspeakers. After one of my talks, I passed by a radio store where people were listening to broadcasts from a large street loudspeaker. A man was talking, and his rapid words were hoarse jumbles. I learned a lesson, then and there, to talk more slowly and distinctly.

I can now recall several occasions when I found, only too late, that foolish errors had crept into the final copy of the fear that a thought I had just expressed was utterly senseless. This haunting fear made me skip lines and pages, mispronounce, and have a generally miserable time.

my copy of a talk to be delivered the 6 (rheostat) any further than necesnext day. I sat on the rocks overhanging water about six feet deep. The tide was going out, and a brisk off-shore breeze was blowing. I began revising my talk, when suddenly it flew out of my hand and landed far out in the be retarded (turned to the left) for water! And the talk was due the next evening! To make up the loss I spent one very busy evening.

In another studio, I was directed to sit down in a cramped position at a very low table. My arms were in an awkward as well as uncomfortable position, and I had to lean over to get near the microphone. Besides, I had to keep my manuscript out of the way, so that no crackling of the leaves would be transmitted. I was, moreover, cheerfully advised by the announcer to watch the signal board, so as to tell how my talk was going out. In looking at my paper, the microphone, and the signal board, I had quite a task. Besides, the paper and the "mike" were just right, so as to make me become slightly cross-eyed. Try putting yourself in a similar situation! I really believe there is exercise in these contortions of sufficient value to warrant their inclusion by Mr. Camp in his "Daily Dozen!"

my talk. I had to stumble on, regard- stand "pat" before the "mike"! Radio ferent wavelengths. less of how I felt about it. On another artists must continue to provide the occasion I was unusually bothered by wherewithal which permits radio enthusiasm to be all "het up" over a heterodyne, or crystallized in a crystal set.

pression, I took down to a nearby island | first four will be lit. Don't turn knob sary. Why use more battery current than is necessary to operate the set? In addition economical operation will also increase the life of the tubes.

> 3. This plate balance knob 4 should low wavelengths, near the zero end of the large dials and advanced to the right for high wavelengths near the 100 end of the large dials. This is indicated by the arrow arrangement shown in the panel layout Fig. 4. Advancing this knob 4 increases the strength of reception, and retarding it clears up signals and eliminates undesired noises.

Aerial Length Changes Dial

4. To locate stations, turn dials 1, 2, and 3, slowly, keeping approximately the same number on each dial in line with the indicator line on the panel. This can be done by setting dials 2 and 3, say at 60, then turning dial 1 slowly from 55 to 65. If no station is heard set dials 2 and 3 at 57 and repeat the operation with dial going from five points below the setting to five points This is done because different above. antennas slightly effect the setting of dial 1. Proceed with this operation until a station is heard, but don't forget Never mind, the radio speaker must the relative position of knob 4 on dif-

5. After a station is heard, carefully

22

200 Years Apart

Radio speakers do not realize until too late how awkward and impossible to enunciate clearly over the radio, are some of the phrases and words they attempt. Every speaker ought to read out loud carefully his radio speech, before he considers delivering it. From experience, I know that dates are easily misread—such as saying 1719 for 1917.

I shall remember the night at a studio when a terrible orchestra was playing. The announcer left the studio holding his nose, and exclaiming: " How on earth shall I get them off the air?"

This Was a Free Blow Desiring to make the best possible im-

BUILDING THE NEW DERESNADYNE Continued from Page 14

Tuning the Set

Before trying to operate the set, it will be well to read over carefully the following points on tuning the set.

1. Turn the stage control switch knob 5 to the LOUD position; if during the tuning the volume is too loud, it can be shifted to the SOFT position. When in the LOUD position the rheostat knob 6 will have to be advanced more as one more tube is connected in the filament circuit.

2. This rheostat knob should be turned to about a horizontal position pointing to the right. With knob 5 in the LOUD position all five tubes should light, but in the SOFT position only the

adjust each of the three dials for best position. Then adjust knob 4 for maximum clearness and volume. Make a record of the dial setting for each station that you tune in and keep it for reference when you want that station again. This will also provide a guide of the approximate setting for any particular wavelength you may wish to tune in for.

6. As was explained before, for greatest selectivity put the antenna plug in "selector" position, normally use , the "medium," but when interference doesn't bother you use the "volume."

WHY WAVE LENGTHS CHANGE

Continued from Page 15 wave to each broadcasting station, as a frequency and wave length is found from it by dividing 300,000 by the figure representing the kc. Every ten kilocycles Continued on Page 30

THOSE SPITEFUL CALL LETTERS

sit up until 'steen o'clock to pick exact words at that instant to be make the best adjustment on that up that far away station and fin- able to recognize them. ally you catch the coast. You are sure that it must be at least as far away as that and the music without giving his call letters. urally get rather tired of the con-Suddenly as the music stops he says, "the station you have just apt to say the mystic words as been listening to is Umpty Squeal seldom as possible. When they

seems to be quite clear and easily do it are certainly wrong, since out overpaying them, since at preunderstood so often can not be they are not paid to please them sent they are receiving nothing heard when the call letters are an- selves, but to help the thousands at all. Even John McCormack, nounced? There are several rea- of waiting fans who are hanging at the top of the list, recently resons for it. In the first place it breathless on their announce-ported that he received no finanis perhaps partly a trick of our ments. If you find that any par- cial return for broadcasting reown minds. If we pick up three ticular station is at fault in this cently in one of the Victor Concalls in succession and then miss way, by all means drop them a certs. Perhaps this may have unthe fourth, we are more disap-line, complaining of it. A few consciously influenced him in his pointed at the single failure than jolts from the public will let such decision not to repeat the perwe are pleased at the three suc- careless announcers see the light. formance. cesses. It is always the biggest fish which drops off the line into blame yourself, you and your ing? This is an old question. In the water. matter of context. If you hear ment on your set while the piece proposed that funds for this pursome one reciting a poem and he has been played, haven't you ofgets to the line, that sounds like, ten starting jiggling your con-"You're a better fan than I am, trols at the instant when you ex-Hunk-of-Tin," you can probably pect the call? Lots of others would be paid once and for all, recognize it as one of Kipling's around you have done this too. poems. That is why in testing a Since every one who is listening come from that particular set untelephone line Edison recom- to that particular station is nat-less some accident happened to mended using a chemical cata- urally on the same wavelength, destroy the part in question. logue to read from, because the it means that so many slight ad- Tubes must be renewed, however, listener at the other end could not justments and increases in feed- and if the tax were placed on this guess what was coming from the back from the regenerative sets important part it would be col-

and city are mentioned, there is radio waves coming in from far no context at all to help you out, across the Continent. The only Has this happened to you? You and you must rely on hearing the remedy for this condition is to

Blame the Announcers

is quite clear although very soft. on the announcers themselves. this and get your neighbors to do Unfortunately, the announcer After saying the same station the same you will find that the seems to have forgotten where he over every few minutes for the elusive call letters will come in lives, since he goes on and on last two or three years, they nat- better than they are now doing. stant repetition and so they are Squeak." There is fifteen minutes do repeat them there is a tendency much people are interested in of your time wasted as you will to get an unpleasant business money, isn't it? This time it is now have to listen for another over as soon as possible and so in connection with radio artists quarter of an hour until the spirit some of them slur over the syla-again. As a matter of fact, there moves him to give his name again. bles in a way which makes it dif- is no doubt but what their com-Why is it that station which ficult to understand. Those who pensation could be doubled with-But lastly, you are somewhat to friends. After being contented a recent issue of the Radio and And then another thing is the with a good, reasonable adjustcontext. When the call letters will unavoidably distort the faint lected every once in so often as

wave during the playing of the music and then when the announcement is about to be made Part of the blame should be put hands off the set. If you will do

A TAX ON TUBES

The question of money is again being raised. It is strange how Who should pay for broadcast-Phonograph Dealer a contributor pose should be raised by a tax on parts of radio sets. If a coil or condenser were to be taxed, it and then no more revenue would

FEBRUARY 15, 1925

ly in proportion to the amount of in existence. This plan was to its use, a tube tax would perhaps have gone into effect the first of be fairer than other way of assessment. While two bulbs working together will have unequal life, one, perhaps, lasting twice as long as the other, still in general the life of this unit is a fairly fixed quantity when taken on the average. In the same way electric light bulbs in your house have variable life. One of the lamps in the dining room burned out in three months, while one bedroom lamp has been there since the house was built. But still. you know that the number of lamps which you buy during a year is about the same from one year to another. And the number of tubes which are bought per set depends very largely on the use you make of them.

Furthermore, if we believe that it is fair to charge in proportion to the service received, then a fivetube set should pay a lot more than a one-lunger. It is able to receive from much farther distances, and pulls in the music a great deal louder. If the assessment were to be made as so much per tube, then it would bear its

If we wish to tax a radio rough- wave lengths to the stations then three or four associate editors, the year. However, it was finally cancelled because so many new applications were received for opening additional broadcasting stations that there were altogether too many of them to fit in with the plan.

They Like to Talk

With all these concerns which are willing to supply the public with programs for nothing, it seems a little beside the mark to offer to subsidize broadcasting. The claim is made that by doing so we could have better programs. This is doubtful. The numbers put out by the large companies like General Electric, Westinghouse, Crosley, and the large newspapers, to name only a few, are now so good that it is hard to think how they could be made better.

Of course, there are many small stations now on the air which put out ready-made programs by running off a series of phonograph records, but such stations would not receive any of the subsidy anyway. The taxing plan contemplates giving the money only to a few superstations and letting the small fry feed themselves. Small locals would therefore not be helped at all to raise the quality of their offerings. In view of this situation, we recommend that any such tax be postponed until the time when the radio stations show a pronounced trend to smaller numbers. It will Notice that we say, "Provided be time enough to raise money for

long as the set was being used. complete scheme for assigning given over almost entirely to the each of whom described in detail the product of his company. While there is no doubt that the sets and parts put out by each of the manufacturers are quite reliable and good, still it gets a bit tiresome to hear a person continually praising himself and his works, particularly if it is written up in the body of the magazine and not labelled "Advertisement." Many readers will rely more on an editorial comment than they they will on an advertisement about the same thing.

That is, we feel that the editor of a magazine should not keep praising his own apparatus unless he makes it plain to the reader that it is an advertisement that is being written. Oftentimes the editors as well as the readers are fooled.

We know of a case where a radio magazine was paying a certain writer for regular contributions each issue. They began to get stronger and stronger in advertising flavor, and finally the author was looked up. He was found to be the publicity manager on the payroll of the company whose products he was boosting. Of course, the contract was immediately cancelled, but that same author continued to send it articles without pay in the hope that they would be published as free advertisements.

proportional share of the burden.

Although the proposal to tax the crystal of a crystal set does not seem quite so well adjusted to the needs of fairness, still the whole scheme appears to be more equitable than any we have run across, provided that radio must be taxed.

Is a Tax Needed?

that radio must be taxed." We the few struggling stations when are not all convinced that it is said stations begin to struggle. necessary to raise money in any such way. As long as there are so many broadcasters who are willing--even eager-to run their stations themselves without any cry over financing?

of Commerce had worked out a of a popular radio magazine was know immediately.

GRINDING THOSE AXES

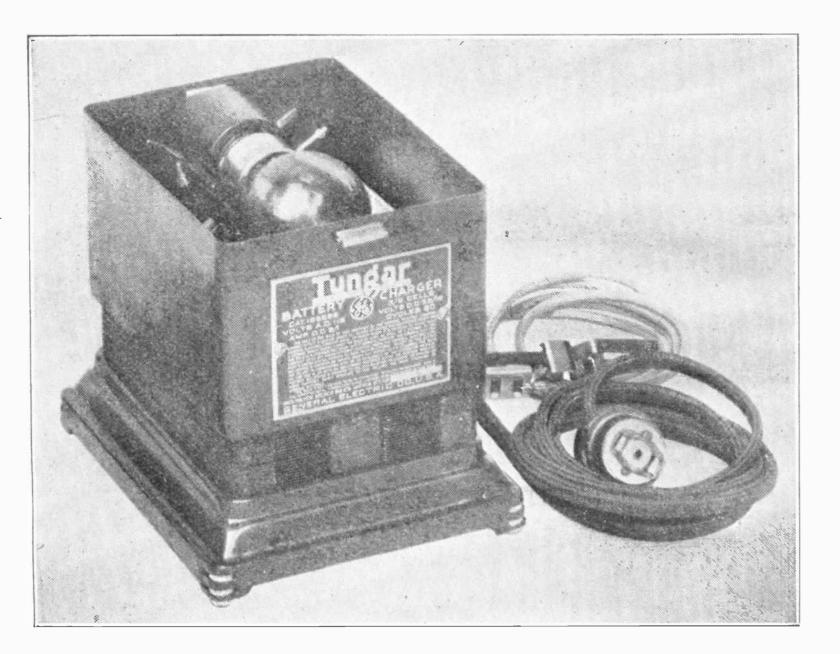
It is surprising how much radio literature these days is a kind of But if you should happen to find outside contributions, why is it advertising. Look over the varinecessary to make such a hue and ous publications and notice that fallen into the mistake of diseach chap is writing in praise of guising advertisements as regular Remember that the Department his own article. One recent issue articles we hope you will let us

Caught with the Goods

As an editorial policy, RADIO PROGRESS is trying to keep away from such a course. Naturally, we have a great many articles describing certain devices which are on the market. This is necessary. since, if we are to be "Abreast of the Times," we must keep you informed as to all the latest improvements which are being made. that • we have unintentionally

The "A" --- "B" Charger

This New Device Needs No Battery Switch to Disconnect


By OLIVER D. ARNOLD

kinds of battery chargers on the market. Most of these take care of the "A" battery only, and a few of the "B". Besides these there are some which are designed primarily for six volt output | alternating current (AC) the user might

a case no trouble would be experienced.

Burning Out the Tubes

But sometimes in plugging in on the

THERE are a great many different would happen to come together. In such types of rectifier use a small amount of current from the battery to get the right polarity for the charge. The bulb type represented by the Tungar must be connected with the plus of the battery to the red wire, or else it will be discharged instead of boosted. These vibrating types have the advantage that you can hook-up the battery with the positive running to either of the leads. In this respect it is trouble proof, but to pay for this very slight advantage a certain small amount of current drain from the battery is needed.

> This is another reason why this style of unit can not be left connected to the battery all the time. The amount of current wasted by this requirement is so small that it is lost in the shuffle while the battery is being charged. But if it were to run twenty-four hours a day,

25

Fig. 1. Rectifier Which Charges "A" and "B" Batteries

but can be made to charge up to 22 or | happen to get the connection made so 45 volts by use of a special attachment. that the two grounds were on opposite quired a battery switch to disconnect case there would be a short circuit, battery and charger while the set was being used. This was necessary for this reason. The electric light system which furnishes the power to the unit has one side ground. This is the almost uniersal custom throughout the United States. Also one side of the "A" battery is likewise grounded in the usual radio set. As there is a connection between the input and output sides of most chargers it would sometimes occur that the grounds on the two systems it is true that most of the vibrating

Practically all such charges have re- sides of the 110 volt line. In such a which might include the tubes in which event three of four new bulbs would be sold by some radio dealer. The only way to prevent such a catastrophe was either to open a switch connecting the battery to the set or else what amounted to the same thing, to disconnect the battery by taking off its clips.

Fool Proof for Polarity

Besides the trouble of short circuit,

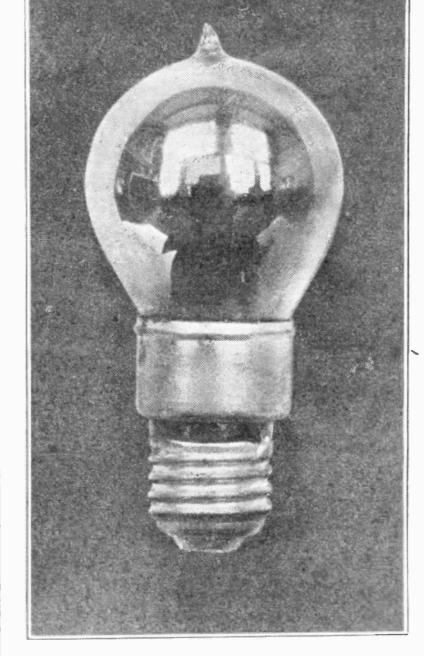
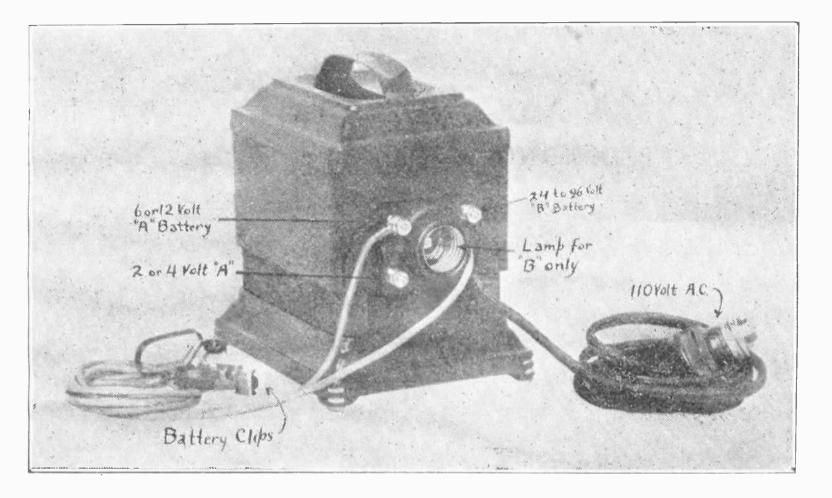



Fig. 2. New Tungar Bulb

FEBRUARY 15, 1925

seven days a week, it would reduce the life of the charge in the battery quite considerably so it is not practical to leave battery and charger hooked together all the time.

around the base. To connect this bulb is supplied by the 110 volt source.

These Troubles Overcome

The new Tungar rectifier, which is just being put out, gets rid of the disadvantages just mentioned. To be sure the output is polarized-the plus of the battery must still be connected to the red line. But since this connection may be made once for all and never disturbed again, this need can not be regarded as a drawback.

all that is needed is to screw it into the base like an electric light. All these connections (two for the filament and the plate) are made at the same time.

110 YAC supply primary 000000000000000

Fig. 2, shows the appearance of the 18 amperes at $2\frac{1}{2}$ volts by the large new unit. Notice that the plate con- rectifier. The right current and voltage nection no longer comes through the are automatically given by the transforglass but is made to the metal rim mer windings, and of course this energy

Charging the "B" Battery

To fill up your storage "B" battery no extra attachment is needed at all. Fig. 3 is a near view of the instrument. Notice the socket in the middle of the back. This is not used at all while the "A" battery is on the line. For the "B" a 110 volt electric light is screwed into this socket. The size of this depends on the "B" battery you are charging. For a small one a 25 watt light is correct, while a large capacity "B" or a 90 volt outfit can be charged all in series with a 100 watt lamp.

The terminals are marked in Fig. 3. With this equipment you can charge any amount of "B" battery at the same time in series up to 90 volts. However, a 22 volt "B" will not be overcharged and so damaged. To handle a six volt "A" battery the indicated terminal is used. This takes care of sets using 200 and 201-A tubes.

26

Fig 1, shows the appearance of the It is changed quite a lot new device. both inside and out from the old form of The first difference that Tungar. catches your eye is the new mounting and kind of bulb. Of course, it is the bulb itself which really is the rectifier. The windings on the transformer are needed to change to the proper voltage and also to light the filament. But it is the bulb which acts like a valve and allows the current to flow in one direction, but not to reverse.

Top Connection Omitted

The old style of unit had two terminals at the base, just like an electric light, and also one wire sticking out through the top of the glass. This was hooked up to a flexible wire with a clip on the end of it which came out from the transformer winding. To make this extra contact was something of a nuisance, and also there was some danger of breaking it off.

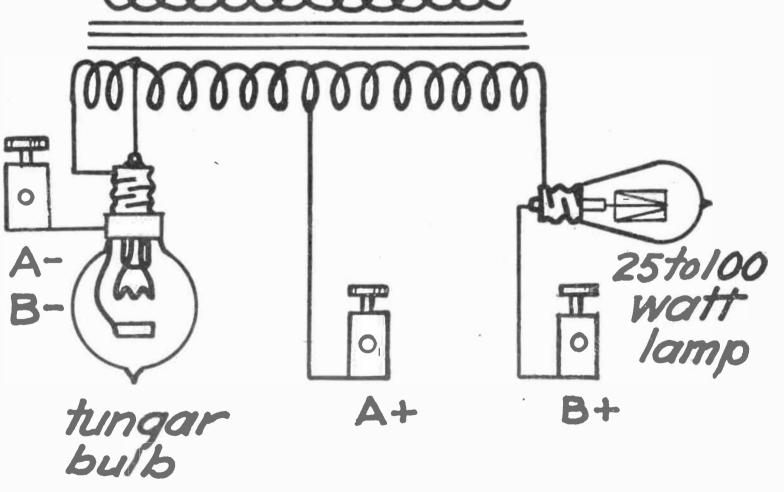


Fig. 4. Hook-Up of Charger. Note Bulb and Lamp.

The operation of the device is the same as before.

The current consumption of the filament is low. Twelve amperes at $2\frac{1}{2}$ volts are required for the small size and

For Dry Cell Sets The WD and 199 tubes are very popular at the present time. These are intended primarily to take 1 or 3 dry cells Continued on Page 30

How the Eclipse Affected Radio

First Report on the Results Transmitting Tests from

By R. H. G. MATHEWS

THE biggest free spectacle shown in willing to take the engineer's word for Ohio, Indiana, Michigan, Wisconsin, and century not only effected the specta- | lar time for listening to radio. tors but also disturbed radio conditions to some extent. This was one of the things looked for by the scientists. It will probably be a year or more before the results will be known completely since the amount of data gathered by the various observers is very large. This is a first report which is interesting since it verifies the ideas of radio which we have all believed in the past few years.

as to what causes the big increase in range of radio transmitters during the night compared with the day time. It was thought that this was due to the fact that by day the powerful sunlight ionized the air while at night this action was absent. which in combination with the control The powerful rays of the sun particularly the short wave lengths beyond the were placed in a temporary studio arviolet—the so-called ultra violet light ranged in the front show window of the are much stronger way above the garage display room. Precautions were earth than they are filtered through 10 or 20 miles of dio to avoid echos and other bad acoustic At these high altitudes they air. so powerful that they someare times knock an electron out of some of the air molecules and this ionization disturbs the radio waves passing by.

northeastern United States in a it, as this is a distinctly unpopu-

Foreseeing the possibility of testing this sunlight absorption theory during the period of artificial darkness produced by a solar eclipse, the Zenith Radio Corporation established its 100watt Portable Broadcasting Station WJAZ mounted on a one ton truck in Escanaba, Michigan, in the exact center of the path of totality of the solar eclipse of January 24th.

The oscillator, modulator and five-There has always been a question watt amplifier on the truck were placed at the rear of a garage building with a 100-foot, four-wire copper braid antenna running almost straight up to a 75-foot mast. Two wires covered with tin foil (to shield them from interference) were run to the line amplifier, board for the three microphones used, after being taken in draping and arranging the stueffects. A frequency of 1,120 kc., was used with a total power of 100 watts, the radiation current in the aerial being about three amperes.

Illinois being reached with fair regularity. The normal range of the transmitter during the night period therefore would appear to be 800 miles as a maximum. This is good for a portable 100-watt station.

During the evening preceding the eclipse a program was rendered from 10:00 P. M. until 1:30 A. M., the farthest point reached being New York City. It was curious that practically no other distant telegrams were received, indicating that either the transmitter was not covering its normal range in all directions or that weather conditions were peculiarly unsatisfactory. (Maybe the confirmed listeners had gone to bed early so as to get a good start at the eclipse the next morning.)

At 3:00 A. M. a second program of music was started and this ran through until 9:00. The eclipse occurred at 8:02 A. M., Central Standard Time. No change was made in the apparatus from

Listening in at 4:00 A. M.

It has been noticed for years that the range of radio stations is about ten times at night what it is during the day time. This is fortunate for those of us who have to work during the day and use the evening to annihilate space with our radio. A somewhat unexplained fact has been the increase in range during a momentary period at the breaking of dawn. Just before daylight for a few moments tremendous distance covered during these evening

Prizes for Distance

A three-hour musical program was given each evening for three nights preceding the morning of the eclipse. These performances ran from 10:00 P. M. until 1:00 A. M. Several Zenith receivers were awarded as prizes each night for telegrams received for the greatest distances covered, and also by the method of drawing from all the messages received. An average of 500 telegrams per night were brought in, and the longest ranges can be covered greater than even programs was approximately 800 miles, station. At this time, the familiar in-

the time of the earlier evening program, and from 3:00 A. M. until 5:30, only ordinary normal results were obtained, a few telegrams coming in from Missouri, Kansas and Eastern Nebraska reporting reception. This is not surprising, considering the time of day.

Testing for Audibility

1

1

The engineers of the Zenith Radio Corporation in the Research Laboratory at Chicago reported fair reception at this time on their instruments with which they were carefully checking the loudness, the reading on the audibility meter at this time being about 30. This meant that the music was 30 times as loud as was necessary to be just heard by straining one's ears

At 5:30 A. M. the first faint flush of light appeared in the east as observed by the engineers with the broadcasting during the darkness. Most people are various points in Nebraska, Missouri, crease in range due to the dawn effect

FEBRUARY 15, 1925

preiously mentioned, was looked for. We were not disappointed.

Uncanny Volume at Dawn.

A telegram was received filed at 5:31 A. M., from Porum, Oklahoma, reporting reception. The signals apparently, however, instead of falling off nearly to nothing at these distant points, as is usual immediately after this dawn effect, continued steadily to increase or at least to hold this uncanny volume at extreme distance.

At the same time a peculiar thing was happening in a band or ring at distances of 25 to 80 miles. In this band we had listeners who were able to hear us with only slight volume at night, but at this time on the morning of the eclipse our signal strength was excellent. These receivers apparently were in what is known as the daylight range of the station and therefore our signals were louder in the daytime than at night. In the case of listeners inside of a 25mile circle no change was noticed at this time.

While Sender Was in Shadow This condition of extreme volume at extreme distance continued through the entire period of the eclipse and until the moon had passed completely from in front of the sun as far as the locality of the transmitting station was contime of the following telegrams: lutely. There is no longer any question

the weak night time volume, immediately after totality coming up to the loud daylight signal strength again. In the band of 8 to 25 miles, a slight decrease in volume was noted during the totality, again coming up to normal after this period had passed.

Summary of Effects

Summing up these results we have the following three sets of conditions. In a ring running from 8 to 25 miles we have strong night time signals with no apparent decrease in daylight, but a slight decrease during totality. In the band of 25 to 80 miles strong daylight signals and a marked decrease during totality with restoration immediately thereafter. In the long distance band of over 100 miles, we have an average range of 800 miles at night with nothing in the few minutes. Apparently during the endaytime, with a very marked increase in range and volume during the daylight period preceding and following the eclipse until after the entire phenomenon has passed, the range being increased to about 1800 miles during the period from the normal average of 800. In this long distance band no change in volume was noted during the eclipse, the tremendous increase being evident during the entire morning.

The first part of our theory, that the sun's rays have a marked effect on radio cerned. This is indicated by the filing transmission is therefore proved abso-

miles we have this daylight effect still more strongly shown. Here we are easily heard by day and only faintly audible at night; therefore during the period of totality, which is apparently artificial night and affects our radio wave in the same way as does night, our signals drop very nearly out, with a restoration when daylight again comes.

Dawn All Morning

Now we come to the extremely interesting phenomenon of the increased volume and range over long distances. As mentioned in the first paragraph the ordinary socalled "dawn effect" at which with the first flush of light in the east at the transmitting station the range is largely increased, is purely momentary phenomenon and ordinarily lasts but a tire time of the passage of the moon across the sun, the moon's shadow has given us a second edition of this dawn effect, continuing this abnormal condition until the shadow has completely passed. As a result, during this artificial continuation of the dawn, we have more than doubled the range of the transmitting station. This being the case, there would certainly be no reduction of strength during the period of totality. It is even probable that the slight rise might take place during this period, but would be rather difficult to measure, especially because it would be

Atkinson, Nebraska5:35	A .	M.
Lincolnton, N. C9:02		
Fond Du Lac, Wis8:34	A .	M .
Pocahontas, Va7:25	A .	M .
Traverse City, Mich9:11	A .	M.
Gillett, Ark	A .	M .
Binghampton, Ont., Canada. 5:42	Α.	M .
Piedmont, Okla9:08	A .	M .
Wichita, Kansas7:05	Α.	M .
New Sharon, Iowa8:06	Α.	M.

Each of these telegrams reported no variation in signal strength up to the time of filing and from those filed after the eclipse, the information was noted that no variation in signal strength was evident during the period of totality. These receivers were of course all outside the eclipse band.

A different result was noted by observers in the band of from 25 to 80 miles. In this band the signals were very weak during our night broadcasts but very loud during the morning period and during totality again returned to night. In the ring running from 25 to 80 dead.

but that sunlight has an extremely marked effect on radio transmission, and it is also evident that the mere presence of the moon's shadow neutralizes this interference of the sun's rays to a sufficient extent to equal or even exceed night time conditons.

Analyzing each of the three rings or sets of distances mentioned in the preceding, we have the following: In the local range-that is, to 8 miles, no variation of any kind is noticed because the power of the station is so great at that distance that the variations are not noticeable. In the ring of from 8 to 25 miles we are approaching our daylight range belt-in other words, that section of our range which is within our normal daytime transmitting radius. Therefore, during the period of totality, a reduction of volume might be expected, as our signal strength in this belt is normally slightly greater in the daytime than at

over so quickly.

The eclipse of January 24th in some narts of the country was not a success from the standpoint of the astronomers. But it was a tremendous success along radio lines. It has proved conclusively that the theory of ionization and absorption of radio waves due to the sun's rays is no longer a theory only, but actually a fact. And we have in addition the interesting knowledge that the shadow of the moon has produced a continuation of the "dawn" effect by preventing this ionization until the moon has completely passed across the face of the sun. Knowing clearly the conditions with which transmission must contend, radio engineers will now be able to design their appartus more intelligently to meet and overcome these circumstances.

Our only regret in this matter is that the astronomers are not now arranging to have another eclipse until we are

4

NOTE: In this section the Technical Editor will answer questions of general interest on any radio matter. Any of our readers may ask not more than two questions, and if the subjects are of importance to most radio fans they will be answered free of charge in the magazine. If they are

of special interest to the questioner alone, or if a personal answer is desired, a charge of fifty cents will be made for each answer. This will entitle the questioner to a personal answer by letter. However, if the question requires considerable experimental work, higher rates will be charged.

tween radio and wireless?

Answer. In the theory of the thing there is no difference, since they both work by means of waves which travel through the ether. In general conversation, however, the terms are not the same. Radio has come to mean the radiophone, which sends out music, speeches, and the like, and can be easily understood by any one. Wireless, on the other hand, is restricted to the telegraph, which transmits only dots and dashes. To understand the latter you must know the code.

The instruments to receive the two are just alike, except that the wave

Question. Is there any difference be-then there is no way it can be connected is still forward, then it is evident that to eliminate completely the effect of you cannot tell which is the plus and hand capacity. In such a case the stator should always run to the grid of the tube as this will reduce this unwanted capacity to as low an extent as possible. However, it will not be zero by any means. If a metal shield is fastened on the back of the panel and insulated from the condenser, but connected to ground, then such a combination with the condenser connected as just described, makes a set which is it on all the time, should have a knot practically free from body capacity.

> If the condenser is made of three separate parts, rotor, stator, and frame, and the latter is completely insulated from, either of the others, then by grounding it and connecting the stator to the grid as described, a set nearly without hand capacity can be built.

which the minus, but if it now goes off the scale backwards, you will know it is built with a magnet, and it can be used for this test. If it is this kind of meter, then try it out on a "B" battery or dry cell, of which you know the polarity. The lead which goes to the plus when the meter reads forward, should be marked with a "P" or a plus, and the wire connecting to it if you lead tied in the end so as to tell it easily.

Question. When dipping two wires into water, which end gives out the bubbles, and why?

band of radio broadcasting lies between the frequencies of 500 and 1500 kilocycles per second. (600 to 200 meters.) No code work is allowed between those wave lengths, and so the receiving sets to pick up the latter must have either smaller coils and condensers to bring in the faster vibrations, or larger ones te bring in the slower ones. From this you can see that if anyone insists on using radio and wireless interchangeably, you cannot say he is absolutely wrong, but he is not following the ordinary usage of the words.

Question. Why do various condenser manufacturers advertise that their rotor is grounded and so prevents body capacity?

Answer. They should not make any such claims, as they are not fulfilled as a general thing. If the condenser consists of two parts—the rotor and stator -which is the ordinary construction,

Question. How can I find the polarity of a battery?

Answer. The easiest way to test for the polarity is with a volt meter which is built to indicate it. Ordinary meters are made in either one or two ways. Those that use no permanent magnet will read the voltage no matter what way the leads are connected up. Those which have a permanent magnet inside the case, will read forward when the connections are made one way to the battery, and then if these leads are reversed the needle reads backwards or below the zero of the scale.

To tell whether your meter will indicate polarity or not, hook it up to any battery and notice the reading. If it used up all the oxygen absorbed by the is forward then reverse the leads. If it water.

Answer. The negative pole is the one which shows most of the bubbles. The reason is that the water is composed of two parts of hydrogen and one of oxygen, and the hydrogen goes with the current, while the oxygen travels against it. Since there it twice as much hydrogen it shows up as so many more bubbles as it follows the electric current through the liquid, and deposits itself on the negative pole. Another reason why the hydrogen shows up so much more is because the water absorbs oxygen very easily. This is how fish breathe in the water as you probablv know. If you have gold fish in a glass globe, you will find that after they have been in a quantity of water for some ten or twelve hours, they begin to gasp at the top of the water or "cluck" as it is called because they have

Lucky Angler

Maud-"The dictionary says that a

Marie-''I suppose that's why you

He Trusted Her

FEBRUARY 15, 1925

Fone Fun For Fans

-Froth.

Wise, Too Dumb-"You certainly sling a terri-'bob' is something used in angling." ble lingo. You ought to go to London and learn the King's English."

got yours, dear."-Boston Transcript. Dumber-"Oh, I know he's English." -Sour Owl.

Famous Last Words

"Hold the wheel, Pete, while I open another bottle."-Aetna.

The Modest Minister There was a young parson named Teedle, Who wouldn't accept his degree; He said, "It's enough to be Teedle, Without being Teedle D. D."-Dirge. | balloon needing tires?"-Texas Ranger.

"A"-"B" Charger Continued from Page 26

respectively. However, many users have installed storage cells to take their place as with them the voltage is much steadier and a charge lasts a great deal longer than in a dry cell. For such use a single cell of storage is used with a WD tube, or two in series for the 199.

If such a battery were charged by the old style equipment, the current taken would be above the rating of the Tungar bulb and as a result its life would be very short. By using the extra terminal as marked in Fig. 3, either one or two cells of storage battery may be charged without danger of exceeding the rating of the tube. This gives long life (1000 to 2000 hours) of burning.

the current reverses in the primary and so a negative wave in the secondary tries to discharge the battery by the same amount which an instant before was left in it. However, when this impulse of current starts out from the transformer and attempts to go through the bulb from the filament to the plate it is held up as the bulb acts like the turnstile at the baseball ground exit. It is easy to get out, but when you try to get back again you find it can't be done. The small charge that was left in the battery by the positive half of the wave, is trapped there and the negative loop can not undo the good work.

Millions of Charges

This action occurs sixty times every second, since most electric light stations are sixty cycle current. This makes 3600 times every minute or 216,000 times an hour. You see that for an overnight charge there will be two or three million of these small impulses that have run into your battery and been prevented by the bulb from leaking out again. Thus your battery, either "A" or "B" is ready for another period of broadcast receiving.

WHY WAVE LENGTHS CHANGE

Continued from Page 22 there is now a wave assigned to some broadcasting station. As there are not enough waves to go among all the powerful transmitters some stations have to share their frequency with one or two others. But unless the stations happen to be separated by hundreds of miles they are not both allowed to be on the air at the same time. In this way interference is avoided.

Poker---- "Won't your wife miss you?" Chip—"No, she's a pretty fair shot."

Nobody

Aloysius-"Have you seen the new balloon tires?"

Dulcinia-"Why, who ever heard of a

tery. There is an intermediate wire (not shown) for taking care of the two and four volt "A". At the end of the winding is a connection which gives 90 volts for filling up the "B" battery. However, the lamp socket is in series with this line and by using the proper electric light bulb, as already described, this pressure is dropped to either 45 or 22 volts, depending on what style of "B" you are using.

The negative terminal for charging all batteries is taken off from the plate in the Tungar bulb. It will be remembered by those who have studied the action of vacuum tubes, that current will run from the cold plate, through the vacuum of the tube itself to the hot filament. This is because negative particles or electrons are being shot out by the filament, but none are given off the cold plate.

30

How Circuits Work

The hook-up of this equipment is shown in Fig. 4. At the top we have the primary winding, which is connected direct to 110 volts, 60 cycle electric light circuit. Since, as already explained, this is an insulating transformer, which keeps the power entirely off the battery circuit, it makes no difference which way the input is plugged into your lamp socket.

Below this is shown the secondary winding, with several taps. The first one gives $2\frac{1}{2}$ volts at the terminals of the rectifier bulb. This lights the filament and makes it give off electrons in tubes of your radio set. The next tap shown is the one which produces the current for charging a 6-volt "A" bat- plates of the battery. An instant later usual.

How the Current Travels

As the AC vibrates back and forth through the primary coil at 110 volts, it induces similar oscillations in the secondary winding by transformer action. The pressure in the secondary is considerable lower, however, since there are much fewer turns than in the primary. This pressure starts out and induces current flowing from the "A" plus terminal through the battery back to the From there it jumps "A" minus. across from the plate to the grid of the ing of call leters will not be quite so the same action as occurs in the vacuum bulb and so returns to the transformer winding again.

Revised List of Stations

This list is the official one just released by the Department of Commerce. Notice that the stations are grouped by the sending kilocycles. This is a convenient arrangement for logging your dials. If you have a straight line condenser to tune with you will find that the various call letters are spaced evenly around the dial. If your condenser has not a straight line curve then the groupeven but will still be fairly well spaced. The alphabetical list of call letters will This puts a small charge into the be found in our columns on page 31 as FEBRUARY 15, 1925

RADIO PROGRESS

UNITED STATES BROADCASTING STATIONS ARRANGED ALPHABETICALLY BY CALL LETTERS

Abbreviations: W.L., wave length in meters; K.C., frequencies in kilocycles; W.P., wattpower of station.

W.L. K.C. W.P.

KDKA-Westinghouse Elec. & Mfg. Co., East Pittsburgh...326- 920-1000 KDPM-Westinghouse Elec. & Mfg. Co., Cleveland, O....270-1110- 500 KDPT-Southern Electrical Co., San Diego, Cal......244-1230-100 KDZF-Auto. Club of So. Cal., Los Angeles, Cal......278-1080- 500 KFAD-McArthur Bros. Mercantile Co., Phoenix, Ariz....360- 908- 100 KFAE—State College of Washington, Pullman, Wash.....330- 910- 500 KFAR-Studio Lighting Service Co., Hollywood, Cal.....227-1320-100 KFBG-Search Light Publishing Co., Fort Worth, Tex.....254-1180- 100 KFCL-Los Angeles Union Stockyards, Los Angeles, Cal. 236-1270- 500 KFCZ-Omaha Central High School, Omaha, Neb.....259-1160-100 KFDY-So. Dakota State College, Brookings. So. Dakota .. 273-1100- 100 KFGH-Leland Stanford Jr. Univ., Stanford Univ., Cal...273-1100-250 KFGJ-Mo. Natl. Guard, 138th Infantry, St. Louis, Mo..265-1130-100 KFGX-First Presbyterian Church, Orange, Tex......250-1200- 50C KFJF-National Radio Mfg. Co., Oklahoma, Okla......261-1150-225 KFJK-Delano Radio & Electric Co., Bristow, Okla.....233-1290- 100 KFJM-University of N. Dakota, Grand Forks, N. Dak...280-1070- 100 KFKB-Brinkley-Jones Hospital Assn., Milford, Kans.....286-1070- 500 KFKQ-Conway Radio Laboratories, Conway, Ark.....250-1200-100 KFKX-Westinghouse Elec. & Mfg. Co., Hastings, Neb....285- 880-1000 KFLR-Korber Wirelss Station, Albuquerque, N. Mexico..254-1180- 100 KFLZ-Atlantic Automobile Club, Atlantic, Ia......273-1098- 100 KFLV-Swedish Evang. Mission Church, Rockford, Ill....229-1310- 100 KFNF-Henry Field Seed Co., Shenandoah, Iowa......266-1145- 500 KFOA-The Rhodes Co., Seattle, Wash......454- 660- 500 KFON-Echophone Radio Shop, Long Beach, Cal......234-1290-100 KFPL-C. C. Baxter, Dublin, Texas..... 252-1190- 100 KFPR-L. A. County Forestry Dept., Los Angeles, Cal...231-1300- 500 KFPX-First Presbyterian Church, Pine Bluff, Ark.....242-1240- 100 *KFQC-Kidd Brothers Radio Shop, Taft, Cal......231-1300- 100 KFQI-Thomas H. Ince Corp., Culver City, Cal......234-1280- 100 KFRN-United Churches of Olympia, Olympia, Wash....220-1360- 100 KFSG-Echo Park Evangelistic Ass'n, Los Angeles, Cal...278-1069- 500 *KFUO-Concordia Theological Seminary, St. Louis, Mo..545- 550- 500 KJR-Northwes' Radio Service Co., Seattle, Wash......270-1110- 100 *KJS-Bible Institute of Los Angeles, Los Angeles, Cal....252-1190- 500

W.L. K.C. W.P.

KLX-Tribune Publishing Co., Oakland, Cal...... 508- 590- 500 KNT--Grays Harbor Radio Co., Aberdeen, Wash...... 263-1140- 250 KOB-N. M. C. of Agri. & Mech. Arts. State Col., N. M. .360- 833- 500 *KOP-Detroit Police Dept., Detroit, Mich......278-1090- 500 KQV-Doubleday-Hill Electric Co., Pittsburgh, Pa.....275-1090- 500 KSD-Post Dispatch, St. Louis, Mo......545- 550- 500 KUS-City Dye Works & Laundry Co., L. Angeles, Cal... 360- 833- 100 KUVQ-Kreetan Co., Johnswood Drummond Island, Mich. 450- 666-1000 KYW-Westinghouse Elec. & Mfg. Co., Chicago, Ill.....535- 560-1500 *WAAW—Omaha Grain Exchange, Omaha, Neb......278-1080- 500 WAAZ-Hollister-Miller Motor Co., Emporia, Kans......360- 833- 100 WABE-Y. M. C. A., Washington, D. C..... 283-1060-100 WABM-F. E. Doherty Auto. & R'dio Co., Saginaw, M...254-1180- 100 WBAK-Penn. State Dept. of Police, Harrisburg, Pa.....400- 750- 500 WBAP-Wortham-Carter Pub. Co.. Fort Worth, Tex., ... 476- 630-1000 WBAW-Marietta College, Marietta, Ohio......246-1220- 250 WBBR-Peoples' Pulpit Ass'n, Roseville, N. Y...... 244-1230- 100 *WBZ-Westinghouse Elec. & Mfg. Co., Springfield, Mass..327- 890-1500 WCAE-Kaufmann & Baer Co., Pittsburgh, Pa......461- 650- 500 *WCAH-Entrekin Electric Co., Columbus, Ohio.......266-1130-200 WCAJ-Nebraska Wesleyan Univ., Univ. Place, Neb..... 280-1070- 500 WCAP-Chesapeake & Potomac Tel. Co., Washingt'n, D. C. 469- 640- 500 *WCAR-Alamo Radio Elec. Co., San Antonio, Texas.....263-1140- 100 WCAS-W. H. Dunwoody Ind. Inst., Minneapolis, Minn. 280-1220- 100 WCAT-S. Dakota State Sch. of Mines, Rapid City, S. D...240-1250- 100 WCAY-Milwaukee Civic Broad. Assn., Milwaukee, Wis...266-1130- 250 WCBC-Univ. of Michigan, Ann Arbor, Mich...... 229-1310- 200 WCCO-Washburn-Crosby Co., Minneapolis, Minn......417-720-500 *WCK-Stix, Baer & Fuller Dry Goods Co., St. Louis, Mo..273-1100- 100 WCM-Texas Mkts. & Warehouse, Dept., Austin, Tex....268-1120-250 WDAE—Tampa Daily Times, Tampa, Fla......273-1100-250 *WDBE-Gilham, Schoen Electric Co., Atlanta, Ga.....278-1080-100 WDBR-Tremont Temple Baptist Church, Boston, Mass. 256-1170- 100 - 500

17

RADIO	PROGRESS

W.L. K.C. W.P.

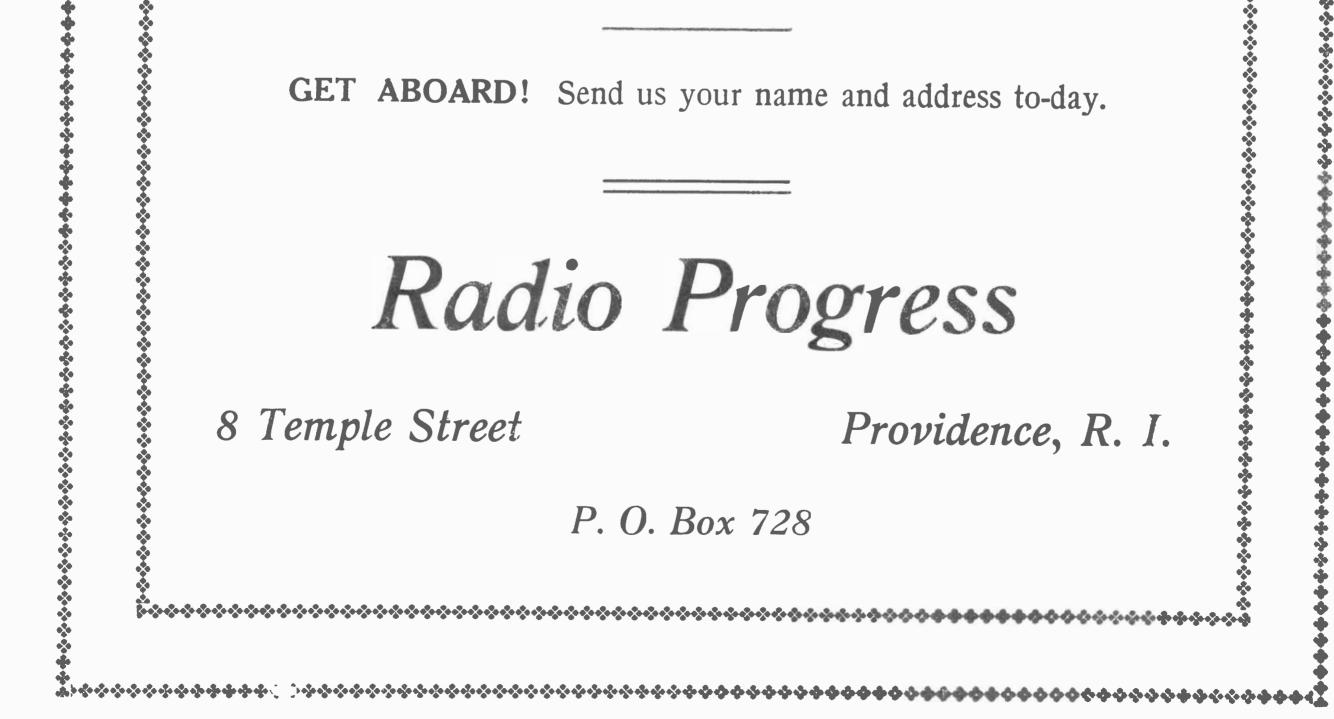
*WEAJ—Univ. of S. Dakota, Vermillion, S. Dakota......278-1080- 100 WEAM-Borough of N. Plainfield, N. Plainfield, N. J....261-1150-250 WEAU-Davidson Bros. Co., Sioux City, Iowa......275-1090-100 WEBJ-Third Avenue Ry. Co., New York, N. Y......273-1100- 500 *WEEI-Edison Elec. Ill'm'n't'g Co., Boston, Mass......405- 990- 500 *WEMC-Emmanuel Missionary Col., Berrien Springs, Mich..268-1120- 500 WFAA---Dallas News & Dallas Journal, Dallas, Tex.....476-630-500 WFAN—Hutchinson. Elec. Serv. Co., Hutchinson, Minn. 286-1050- 100 WFAV—Univ. of Nebraska, Dept. of E. Eng., Lincoln, Neb. 261-1250- 250 WFBH-Concourse Radio Corp., New York. N. Y......273-1100- 500 WFBI-Galvin Radio Supply Co., Camden, N J......236-1270-100 WFBK—Dartmouth College, Hanover, N. H......256-1170-100 WFBN-Radio Sales & Service Co., Bridgewater, Mass....226-1330- 200 WFBR-5th Infantry, Maryland, N. G., Baltimore, Md...254-1180-100 WFBW—Ainsworth-Gates Radio Co., Cincinnati, Ohio.....309-970-750 *WFBY-U. S. Army, Fort Benj. Harrison, Ind......258-1160- 100 WGAQ-Youree Hotel, 406 Market St., Shreveport, La....263-1140- 100 *WGBG-Breitenbach's Radio Shop, Thrifton, Va......226-1330- 100 WGI-Am. R'dio & Res'ch Corp., Medf'd Hillside, Mass...360- 833- 100 WGR-Federal Manufacturing Co., Buffalo, N. Y......319-940-750 *WHAD-Marquette University, Milwaukee, Wis......275-1090- 500 WHAS—Courier-Journal & Louisville Times, Louisville, Ky. 400-750-500 WHAV—Wilmington Elec. Spec. Co., Wilmington, Del....266-1130-100

32

1

W.L. K.C. W.P. WMAH—General Supply Co., Lincoln, Neb......254-1180-100 WMAP-Utility Battery Service, Easton, Pa.....246-1220-150 WSY-Alabama Polytechnic Institute, Auburn, Ala.....250-1200- 500 WMAY-Kingshighway Presbytern Church, St. Louis, Mo. 280-1070- 100 WMH—Ainsworth-Gates Radio Co., Cincinnati, Ohio..... 309- 970- 750 *WNAP-Wittenberg College, Springfield, Ohio......248-1210-100 WNAT-Lenning Brothers Co., Philadelphia, Pa.....250-1200-100 WNAX—Dakota Radio Apparatus Co., Yankton, S. D....244-1230-100 WNYC—City of New York, New York, N. Y......526-570-1000 WOAI-Southern Equipment Co., San Antonio, Tex..... 384- 780- 500 WOAL-William E. Woods, Webster Groves, Mo......229-1310-100 WOAN-Vaughn Conserv't'y Music, Lawrenceb'rg, Tenn.. 360- 833- 200 WOAV-Penn. Nat'l Guard, 2d Bat., 112th Inf., Erie, Pa. 242-1240- 100 WOO-John Wanamaker, Philadelphia, Pa..... 508- 590- 500 WOQ-Unity School of Christianity, Kansas City, Mo....278-1080- 500 WOS-Mo. State Marketing Bureau, Jefferson City, Mo.... 441- 680- 500 *WPAK-North Dakota Agri. Col., Agri. College, N. D...275-1090- 250 WPAL-Avery & Loeb Elec. Co., Columbus, Ohio......286-1050- 100 *WPG--Municipality of Atlantic City, Atlantic City, N, J. 296-1010-500 *WPSC-Pennsylvania State College, State College, Pa. ... 261-1150-500 WQAA-Horace A. Beale, Jr., Parkesburg, Pa.....220-1360- 500 WQAN-Scranton Times, Scranton, Pa.....250-1120-100 WQAO-Calvary Baptist Church, New York, N. Y...... 360- 833- 100 WOJ-Calument Rainbo Broadcasting Co., Chicago, Ill....448- 670- 500 WRAL-No. States Power Co., St. Croix Falls, Wis......248-1210-100 WRBC-Immanuel Lutheran Church, Valparaiso, Ind.....278-1080- 500 WRC-Radio Corp. of America, Washington, D. C.....469- 640- 500 WRK-Doren Bros. Electric Co., Hamilton, Ohio......270-1110- 200 WRW-Tarrytown Radio Research Lab., Tarrytown, N. Y.. 273-1100- 500 WSAB-State Teachers College, Cape Girardeau, Mo.....275-1090- 100 WSAI-U. S. Playing Card Co., Cincinnati, Ohio.,.....309- 970-1000 WSAJ-Grove City College, Grove City, Pa.....254-1180-250 WSAP-7th Day Adventist Church, New York, N. Y.....263-1140-250 WSAR-Doughty & Welch Elec. Co., Fall River, Mass....254-1181- 100 WSAV-Clifford W. Vick Radio Const. Co., Houston, Tex. . 360- 833- 100 WSAY-Chamber of Commerce, Port Chester, N. Y.....233-1304- 100 WTAB-Fall River Daily Hearld, Fall River, Mass......248-1130-100 *WTAC-Pennsylvania Traffic Co., Johnstown, Pa.....209-1430- 150 *WTAM-The Willard Storage Battery Co., Cleveland, O. . 389- 770-1500 WTAT-Edison Electric Illum. Co., Boston, Mass......246- 1220- 100 WTAW—Agri. & Mech. College, College Station, Texas....270-1110-250 *WTAY—Oak Leaves Broadcasting Station, Oak Park, Ill..250-1200-500 WWAD-Wright & Wright, Inc., Philadelphia, Pa.....250-1200- 500 WWAF-Galvin Radio Sup. Co., Camden, N. J......236-1260- 500 WWAO-Michigan College of Mines, Houghton, Mich....244-1230-250 WWJ-Detroit News, Detroit, Mich..... 517- 580- 500

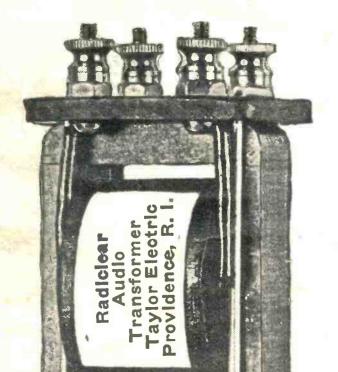
WHAZ-Rensselaer Polytechnic Institute, Troy, N. Y.... 380- 790- 500 WHB-Sweeney School Co., Kansas City, Mo.....411- 730- 500 WHN-Loew's State Theatre Bldg., New York, N. Y..... 360- 833- 500 WIAD-Howard R. Miller, Philadelphia, Pa.....234-1180-100 WIK-K. L. Electric Co., McKeesport, Pa.....234-1280- 100 WIP-Gimbel Brothers, Philadelphia, Pa...... 508- 590- 500 *WJAD-Jackson's Radio Eng. Laboratories, Waco, Tex....353- 850- 500 *WJAG-Norfolk Daily News, Norfolk, Neb......270-1110-250 *WJAS-Pittsburgh Radio Supply House, Pittsburgh, Pa....275-1090- 500 WKAA-H. F. Parr, Cedar Rapids, Iowa......278-1080- 100 WKAF-W. S. Radio Supply Co., Wichita Falls, Tex..... 360- 833- 100 WLAG-Cutting & Radio Wash. Corp., Minneapolis, Minn. 417- 720- 500 WLBL-Wisconsin Dept. of Markets, Stevens Pt., Wis....278-1080- 500 *WMAF-Round Hills Radio Corp., Dartmouth, Mass.....349- 833- 500


* Alterations and corrections.

Radio Dealers!

Practically every Radio Fan who comes into your store will subscribe to RADIO PROGRESS, if you will keep a few copies on your counter. Those who won't subscribe will at least buy a single copy.

Why not ring up some of this business on your Cash Register? We will help you and will put you in touch with our distributor in your territory.


You'll be surprised when you discover how big an item this business will amount to in the course of a year. And you take absolutely no risk, nor do you have to invest a single cent of capital.

Why Joe Brownell Was Sore

Joe had just bought a new two-tube radio set. He was complaining to his friend, "I get the stations very clearly on the phones and the music is sweet on the detector, but when I plug in on the amplifier it sounds like a tin pan. What do you suppose is the trouble?"

His friend hastened to explain. "That's easy; you are using an audio transformer which doesn't let the low notes through and which censors the

high notes, too. There are not many transformers on the market like the RADICLEAR, which treats them all alike."

"Would it be hard for me to change over my step of audio amplification to use the RADICLEAR?" "No; this transformer is very easy to install and will improve your results a great deal. It costs only \$3.95, and if you like you can add a second step for \$6.00, complete. The kit includes transformer, socket, rheostat, jack, binding post, and wire. Complete instructions tell you how to make the connections."

"Thank you," said Joe. "I will write for one immediately," and that is how we happened to add Joe Brownell to our list of satisfied customers.

The Taylor Electric Company, 1206 Broad Street, Providence, R. I.

Please send me the following by parcel post. (Mark which one you want.) Radiclear Audio Transformer @ \$3.95 Amplifier Kit for.....tube @ \$6.00 Audion Crystal @ 25c. Gold Plated Cat Whisker @ 15c.

I enclose \$.... to pay for these.
(These above prices include the postage.)
Send them to me C. O. D. I
will pay the above price plus postage.
(Indicate which way you wish to pay.)

Name.		•	٠	*	4	4	•	•	٠	*	9	a	×			ć	÷	4	,	e	•	

Address.....

TAYLOR ELECTRIC CO.

1206 Broad Street

Providence, R. I.