

ATIONAL RADIO CLUB NIGHT PATTERN BOOK, 2ND EDITION. COPyright C 1975 by Russell J. Edmunds for the National Radio Club. All right reserved. No part of this book may be used or reproduced in any brief quotations embodied in critical articles or reviews. For information adaress:
national radio club, p.o. Box 127, Boonton, N. J., 07005

The Publishing Committee of the National Radio Club takes great pleasure in dedicating this Pattern Book to the

seni

Ernest R. Cooper

 Ernie Cooper's weekly column, MUSINGS OF THE MEMBERS, has appeared in each issue of DX NEWS for the last 27 yearand has been a cornerstone of the NRC since the first Musing appeared in 1947. The volunteer workers who have produced this volume feel that it is only appropriate to dedicate it to the Editor whose unpaid volunteer efforts over the past 27 years have made the NRC the world leader in the medium wave DX hobby!

CREDITS

This volume is the result of volunteer and unpaid efforts of many lub members. Several hundred man-hours were consumed during the various phases of the project
obtaining patterns and information: Wes Boyd, Paul K. Hart, Charles Schaffer and Russell J. Edmunds. Valuable assistance was also provided by: Steve Taafe, Tom McCormack, Doc Hardester, Scott Brockway, Craig Cook, Joe Kureth, Ernie Wesolowski, Jerry Robertson, Pierre Tremblay, Andy Rugg, John Oldfield, Bill Feidt, and Eric Norberg.

Scaling and drawing patterns: Wes Boyd and John Silliman.
Keying: John Silliman, Wes Boyad, Gordon P. Nelson, Mark Katz, George Kelly and Jerry Starr.

Typing: Don Erickson, Glenn Cooper, Jerry Starr, Wes Boya, Rick Briggs and John Silliman

Composition and formatting: Wes Boyd, Gordon P. Nelson, George Kelly, Mark Katz and Russell J. Edmunds.

Printing: Colony printing, Denville, N. J.

FOREWARD

The second edition of the NRC Night pattern Book was made possible through the cooperation of club members and owners of the previous publication. Suggestions from DXers, broadcasters and other owners have been included in this book. Without their suggestions, consideration and cooperation, this edition would not have been poss ible. Similar books are available in the "Over $\$ 100$ " price range,
but we feel that our Night pattern Book is equally informative at a price which makes it available to a much wider audience.

Our previous edition only showed directional patterns for stations operating in the U.S. and canada. This edition not only includes new or changed patterns, but also limited time stations that were omitted from the previous book. Also included are Mexican stations operating at powers over 1000 watts. As in the previous book, Canadian low power repeaters are not shown. Hawaiians are not shown as there are no directional stations in the 50th state, and we felt it was too far removed from the mainland to merit estimating coverage. The 107 broadcast band frequencies have been reduced to (graveyard) Canadian patterns will be found on a separate map pag at the end of the book. Patterns shown are the actual measured horizontal radiation patterns
as licensed by the appropriate governmental body. Presentation is the polar plot showing measured field intensity in millivolts per meter (mV / m) at one mile. Most patterns in this book are at the
$300 \mathrm{mV} / \mathrm{m}$ scale, but most stations with powers of 10,000 watts or more are drawn at the $900 \mathrm{mV} / \mathrm{m}$ scale to help reduce clutter on some frequencies. Those patterns drawn at the $900 \mathrm{mV} / \mathrm{m}$ scale are marked "*" near the key number. Patterns without such indication are all drawn at the $300 \mathrm{mV} / \mathrm{m}$ scale. An example is the page for $750-760-$ 770-780. Here KFMB San Diego (5kW) appears to have similar coverage to KOB or KCRL (both 50 kW) until you look for the "*" indication on these two stations. These two patterns would actually be thre reduced scale avoids clutter.
limited time stations use the same scaling procedure, but are drawn with dashed lines to distinguish them from fulltime facilities. Stations operating nondirectionally are represented by estimated average field in mV / m for the appropriate class of station. In all cases, however, patterns shown do not indicate actual station coverage.
Approximately 1400 patterns have been scaled and drawn for this edition of the NRC Night Pattern Book. As in the previous edition there were a few patterns which eluded us, and these are marked as "not available". Missing patterns as well as corrections, additions and other changes will appear in DX News to allow you to keep your book as up to date as possible.
Articles have been included on the basics of directional antenna patterns, treaties and allocations, understanding polar plot patterns estimating daytime coverage, night coverage and others. Most of

The maps used are not the common Mercator projection, but a modified Lambert projection. In most cases bearings are close enough to Lambert projection. In most cases bearings are close enough to not uniformly directed towards the top of the page but varies in direction from east coast to west coast. It's best to judge true north by state boundaries, etc. (See atached map.)
We suggest that $D X$ 'ers be careful when discussing patterns with stations in reception reports. Should you log a station with an indicated null in your direction, don't jump to the conclusion that the pattern is out of adjustment. Technical complications associated with conductivity, skywave propagation, tilting of layers of the ionosphere, auroral conditions and other highly variable factors can allow such receptions.

The National Radio club is the largest and oldest hobby group deal ing exclusively with medium-wave DX'ing (established in 1933). The NRC's magazine-bulletin, DX NEWS, is published weekly during the winter DX season for a total of 30 issues per year and is crammed with information specifically by and for the MW DXer. In our lat est publication year we carried more than 1000 pages of information exclusively for the MW DX'er - feature and technical articles, the latest FCC and DOT information, plus page upon page of invaluable tips from our membership telling what's actually being heard. The NRC was the first DX club to produce a handy-sized bulletin by commercial printing - not mimeograph.

The NRC is a nonprofit, volunteer-operated club, and membership dues go to pay the expenses of printing and mailing DX NEWS for the membership, and for other essential club services. Since each member's dues pays for his portion of the NRC's operating costs, and for his share of postage, dues are dependent upon postal rates. At present rates the dues are $\$ 14.00$ yearly for First Class mail delivery and $\$ 15.00$ for domestic Air Mail. Special airmail rates can be arranged for overseas members. If you're an active MW DX'er or just getting started, you'll get a wealth of unique information by joining the NRC today!

The NRC offers numerous special publications for members and non-members alike, although most prices to members are discounted. Our other major effort is our Domestic station Log currently in its 3 rd edition in its current format. This book lists all U.S. and canadian stations on $A M$ by frequency and gives addresses, powers, pattern types, network, schedules etc. We also publish Reprint Reference Manuals including many former articles from DX NEWS on such subjects as Antennas and Receivers, as well as offering Xerox reprints of many other inportant articles. Our introductory booklet entitled "Getting Started In Medium Wave DX'ing" contains many articles on introductory phases of the hobby and is free with every new membership. Non- phers may obtain the book for the regular price. We are even now working on still further publishing efforts.

NRC'ers are among the friendliest people around, and informal gatherings and get-togethers take place in many parts of the country. Our annual conventions held over every Labor Day weekend attract many many members from the U.S., Canada and foreign countries for a long weekend of DX discussions, station tours, shoptalk and general partying..

HOW TO USE THIS BOOK

In the allocition of frequencies, the F.C.C. (Federal Communications Commission) and the C.R.T.C. (Canadian Radio-Television Commission) specify the signal intensity contours that are to be protected fro interference. At the same time they specify the minimum field the station should develop over the city of license, and the minimum field the station itself should develop. Exact fields vary with the class of station, and the sub-classification. In the requires the f
ter, or $\mathrm{mv} / \mathrm{m})$.

Class I Stations:
$225 \mathrm{mV} / \mathrm{m}$ one mile from the antenna, for 1000 watts nondirectional. Class II \& III Stations:
$175 \mathrm{mV} / \mathrm{m}$ one mile from the antenna, for 1000 watts nondirectional. Class IV Stations:
$150 \mathrm{mV} / \mathrm{m}$ one mile from the antenna, for 1000 watts nondirectional ($75 \mathrm{mV} / \mathrm{m}$ for 250 watts and $47.5 \mathrm{mv} / \mathrm{m}$ for 100 watts).
Few stations actually operate at these minimum fields. Most operate with fields about 10% above the minimum. Class IV's usually develop closer to $175 \mathrm{mV} / \mathrm{m}$; Class III's develop closer to $190 \mathrm{mV} / \mathrm{m}$; Class IIs develop closer to not more, hut class III's, and almost as much as most class I's.)

A station's primary service area is that area where groundwave isn subject to interference. This primary service area depends upon the station's frequency, power and the ground conductivity. To show how conductivity varies across the U.S., a copy of the F.C.C.'s R-3 con ductivity map has been included. Values are stated in millimho (mmos), a unit of conductivity.

ESTIMATED GROUND CONDUCTIVITY

Class I stations are protected to the $0.1 \mathrm{mv} / \mathrm{m}$ contour daytime. All the other classes are protected to the $0.5 \mathrm{mV} / \mathrm{m}$ contour. The distance from the station's antenna to this contour depends on frequency as much as it depends on power. In the U.S. stations are licens ed at powers of $250,500,1000,2500,5000,10000,25000$ and 50000 watts. (The 100 watt power was dropped in the mid '60s, and the 2500 att power is new.) Canadian powers are 100, 250, 500, 1000, 2500 $5000,10000,15000,25000$ and 50000 watts.

The field strength of any station varies according to the square of ts power, so it is possible to calculate the field at powers other than 1000 watts using the fields mentioned earlier. Increasing to wice the power increases the field to 141.4%; halving power reduces field, while reducing to one fourth power reduces the field to half. Going to five times the power increases the field to 224%, and a reduction to one fifth reduces the field to 44.7%. Increasing to ten times the power increases the field to 316\%; reducing to one tenth reduces the field to 31.6%. An increase in power of 50 times inreases the field to 707%, and a reduction to one fiftieth reduces the field to 14.1%.

Class IV Stations:

Power	Minimum Field	Average Field	Power Watts	Minimum Field	Average Field
1000	$150 \mathrm{mV} / \mathrm{m}$	$175 \mathrm{mV} / \mathrm{m}$	5000	$392 \mathrm{mV} / \mathrm{m}$	$425 \mathrm{mV} / \mathrm{m}$

A change in power by a factor of two is a change of 3 decibels (dB). or about half an S unit. changing by a factor of four is a change of 6 dB , or just under one S unit. A factor of five is a change of 7 dB , or just over one S unit. Going by a factor of ten is a 10 dB change, or about $1 \frac{1}{2} S$ units. Changing power by a factor of 50 is a change of 17 dB , or just under 3 S units.

Looking at the field in mV / m, you'll note tremendous changes in field as power increases. The actual change is really much less when you consider the change in decibels for the same power increase.
The conductivity graphs in this article represent the effect of con ductivity upon attenuation at different frequencies. These graphs are similar to those in older N.A.B. (National Association of Broad-

Gripg 1. Groundwave feld intensity vs. distance, $540-560 \mathrm{kc}$. Computed for 550 kc , e-15,

Graph 7. Groundwave field intensity vs. distance, 720-760 kc. Computed for 740 kc . labeled.

These graphs show groundwave field intensity curves plotted against distance for different values of conductivity. The reference $100 \mathrm{mV} / \mathrm{m}$ assumes that the station has the power and efficiency for an inverse-distance field of $100 \mathrm{mV} / \mathrm{m}$ at one mile.
 kc , e $=15$, and the ground conductivities expressed in mmhos/m for which the curves are
labeled.

Gmpr 16. Groundwave field intensity vs. distance, $1250-1330 \mathrm{kc}$. Computed for 1290
kc, e $=15$, and the ground conductivitios expressed in mohos $/ \mathrm{m}$ for which the curves are $\mathrm{kc}, \boldsymbol{e}=15$, and the ground conductivitios expressed in mmhos $/ \mathrm{m}$ for which the curves are

These graphs show groundwave field intensity curves plotted against distance for different values of conductivity. The reference $100 \mathrm{mV} / \mathrm{m}$ assumes that the station has the power and efficiency for an inverse-distance field of $100 \mathrm{mV} / \mathrm{m}$ at one mile.
casters) Engineering Handbooks, and are simpified versions of similar F.C.C. graphs. Only five graphs are shown in this article to show changes across the broadcast band. There are actually some 20 graph used to cover the entire band in both the N.A.B. and F.C.C. publications.

Looking at the graph for 550 kHz , the top curve for 5000 mahos intersects $100 \mathrm{mV} / \mathrm{m}$ at one mile, and $10 \mathrm{mV} / \mathrm{m}$ at 10 miles. This shows that the unattenuated field is dependent only on distance. It also shows that groundwave field is inversely proportional to distance.

Again using the graph for 550 kHz , we'll find the distance to the $0.5 \mathrm{mV} / \mathrm{m}$ contour for a 5000 watt class III station in a conductivity of 10 muhos. First we must use the previous values of the field i mV / m at one mile, and then convert this figure to a totally different figure to be used in finding the $0.5 \mathrm{mV} / \mathrm{m}$ distance on the graphs.

The field of $0.5 \mathrm{mV} / \mathrm{m}$ is also $500 \mathrm{uV} / \mathrm{m}$ (microvolts per meter), so we must multiply $500 \mathrm{uV} / \mathrm{m}$ times $100 \mathrm{mv} / \mathrm{m}$ (the scale used on the graphs) to field of a 5000 watt Class III station) to arrive at the figure of $118 \mathrm{uV} / \mathrm{m}$. Convert this field back to mV / m, for a field of $0.12 \mathrm{mV} / \mathrm{m}$ to be used on the graphs.

Go down the left hand portion of the graph until you find the field of $0.12 \mathrm{mV} / \mathrm{m}$. Follow this directly across the page until it intersects with the curve for a conductivity of 10 mahos. From this point go straight down the page and read the mileage. In this example our 5000 watt Class III station develops $0.5 \mathrm{mV} / \mathrm{m}$ out about 150 miles from the antenna.

Finding the distance to any other contour uses the same procedure Find the field you want, convert that field into $u V / m$, and multiply it by 100. Divide that answer by the field in mV / m for the power and class of station desired. Convert that answer to mV / m and find sired conductivity, then down the page to find the mileage.

The following chart gives the necessary "graph fields" for finding the $0.5 \mathrm{mV} / \mathrm{m}$ contour of a Class III station developing $190 \mathrm{mV} / \mathrm{m}$ at .one mile.

Power, watts	Average Field, mv/m	Graph Field, uV/m
250	95	526
1000	190	263
5000	425	118
1000	600	83
50000	1343	37
250000	3000	17
1000000	6000	8.5

Using these fields and the system described previously, the distance to the $0.5 \mathrm{mv} / \mathrm{m}$ contour has been calculated at different frequencies and powers. Because of the distances involved, these were not cal are based on conductivity of 10 monhos.
550 kHz

Watts \begin{tabular}{c}
$0.5 \mathrm{mV} / \mathrm{m}$

Miles

\quad

740 kHz

Watts

$0.5 \mathrm{mV} / \mathrm{m}$

Miles

\quad

1000 kHz

Watts

\quad

$0.5 \mathrm{mV} / \mathrm{m}$

Miles
\end{tabular}

Remember that these figures are based on the assumption that a Class III station could operate at powers over 5000 watts, and on a clear channel. The sole purpose of this chart is to show what powers are required to produce similar coverage as frequency increases, using the same type antenna and with the same ground conductivity.
Notice that 5000 watts on 550 kHz would have similar coverage to 50,000 watts on 1000 kHz , or about two million watts up on 1600 kHz . A station with 50,000 watts on 1290 kHz would have slightly less covkHz would develop almost identical coverage to that of a 250 watt station on 550 kHz .

It's also possible to estimate coverage on other frequencies using these same graphs. As an example, a 1000 watt station on 1000 kHz has coverage of 55 miles, and on 1290 kHz , 41 miles. The midpoint between these mileages is 48 miles, while the midfrequency is 1145 kHz . Had a graph for 1140 kHz actually been used, the coverage quite close.
The distance to the $0.5 \mathrm{mV} / \mathrm{m}$ contour also varies as values of conductivity change. In the following chart conductivities of 2 monhos 5 ductivity change. In the following chart conductivities of 20 minhos were used to find the distance to our 5000 watt, Class III station's $0.5 \mathrm{mV} / \mathrm{m}$ contour.

	Distance in Miles:		
Freq. in kHz	2 manos	5 manhos	20 mmhos
550	61	101	207
640	52	87	185
740	44	72	160
840	40	64	140
940	35	56	123
1000	33	$52 \frac{1}{2}$	113
1140	$29 \frac{1}{2}$	4512	98
1210	$27 \frac{1}{2}$	4212	91
1290	$26 \frac{1}{2}$	3912	85
1350	25	3712	79
1470	2312	3412	73
1560	21六	311	67

Ganpe 19A. Groundwave field intensity vs. distance, $1560-1640 \mathrm{kc}$. Computed for 1600
ke, e 15, and the ground conductivitios expressed in mmbos/m for which the curves are

WMBS RADIO, Uniontown 590 KC 1000 WATTS

IS ONE OF THE BEST BUYS IN THE ENTIRE COUNTRY.

WMBS Radio	FREQUENCY and POWER relationship						
	$\underset{\text { mavoser }}{ }$	wats on powa					
		250	1000	800	10.80	23.000	50,000
		${ }_{\text {mases }}^{\text {mows }}$	mus	${ }_{\text {mows }}$	mases	${ }_{\text {mases }}^{\text {mows }}$	mas
	540-560	110	170	225	278	312	335
	570.590	108	162 153	220	268 250	310 300	325 318
590 KC	600-620	103	153	200	250	300	318
	630.650	101	150	195	240	290	310
	660.680	100	140	190	235	${ }^{278}$	305
1000 Watts	690.710	96	135	185	228	265	300
	720.760	90	130	170	200	220	265
	770-810	82	120	160	185	210	235
surpasses coverage	820.860	78	110	150	175	192	225
supasses coverage	870.910	72	98	137	160	180	210
given by	920.960	70	96	130	150	165	${ }^{200}$
given by	970.1030	64	87	120	140	155	185
50,000 watts	1040-1100	61	84	115	135	149	175
50,000 watts	$1110 \cdot 1170$	55	74	${ }^{110}$	120	145	160 155
on 1110 KC	1180.1240	53	72	98	115	130	155
on 1110 KC	1250-1330	50	65	90	110	115	142
	1340-1420	48	62	86	100	112	135
	1430-1510	38	53	80	9	103	130
	1520-1600	30	50	74	87	98	115
	All the above entimated .5MV/M contours assuming a ground conductivity of 20 and a $1 / 2$ wave antenme in all cases. Eatimations based on FCC cem ductivity curves dated 1954.						

The figures in the conductivity of 20 mmhos follow rather closely those in WMBS's "Frequency and Power Relationship" chart. Differences are due to WMBS estimating coverage using a half wave antenna, while our estimates are for a quarter wave antenna. Further proof is found in a statement found on the coverage map of KSFO in San Francisco, stating "With 5000 watts at 560 on the dial, KsFo deliv be reached by a station with 250,000 watts at 1110 kHz or a station with two million watts at 1500 kHz ."

These examples give a good idea of how radically a station's pattern can affect reception of that station in different directions. with patterns like these in wide use across the U.S. and Canada, it is obvious that many mysteries of strong or poor reception can be explained with the information contained here in the NRC Pattern Book.

how directional patterns are produced on the bce
 * Wes Boyd, wHOT

The NRC Night Pattern Book contains some 1,450 different directional patterns. We're sure some questions will arise as to how such patterns are created. It is beyond the scope of this article to much more than scratch the surface of this subject. This is due mostly to the math involved which has been omitted here.

A basic rule of thumb is the number of towers in an array equals the amber of nulls in the final pattern. This can be twisted around quite a bit useful.
In our examples we will be dealing with ideal conditions. In reality, this is almost impossible due to buildings, power lines, etc. So rather than add
more complexity to an already confusing subject, we will deal with ideal conditions.

A single vertical tower in a fixed location fed with a specific power will radiate equally in all directions. Now we assume a straight line running north nd south of this tower. With the add

Phasing and spacing of this second (identical) tower controls the actua pattern. Null depth control and pattern shaping is accomplished by magnitud hanges between the towers

Moving tower \#2 to a location 180 degrees north of tower \#1, we develop a figure 8 pattern if both towers have equal power and magnitude. The field cancellation. Identical conditions exist in out of phase and causes mutual to form north and south of the towers. Figure \#1 is such a pattern.

An additional phase shift of 90 degrees on tower \#2 will create a basic cardioid pattern. To the north, the field from tower $\$ 2$ leads the field from we find that the fields combine and creat cancel out. Moving south of the towers The field to the side of the towers creates a field some 418 stronger than nondirectional operation would.

Most arrays of more than two towers are only combinations of the simple patterns just explained. Additional towers in a figure 8 pattern will narr effect but we'll explain this later. Figure $\# 3$ shows such a figure 8 .

We could use four towers for a figure 8 pattern. Here two basic figure 8 patterns are formed by each set of two towers. These interact mutually on each other for a pattern similar to that in figure \#4.

Such interaction can be used with cardioids to form patterns with little power in very wide nulls. Two cardioids interacting will narrow the lobe and achieve a pattern similar to figure \#6.

Additional towers in an array are not always used to deepen/widen nulls or to create powerful lobes. They can be used to create "cloverleaf" or "dog leg" patterns for additional coverage.

Wers. This allows the pattern having a tower offset in respect to the other note a small side lobe and similar small lobes in other multiple tower arrays. These are a product of the interaction of the two patterns.
figure clow look like a cloverleaf or modified to look lik figure \#8. Most likely this is a combination of both cloverleaf and dog leg achieve any specific pattern.
End fire arrays consist of three/four or more towers and the interaction End fire arrays consist of three/four or more towers and the interaction
of several different patterns. Figures \#9 and \#10 show how such patterns are ated.
\#d \#2 create a figure 8 while towers \#1 and \#3 create a cardioid pattern. The interaction of these two patterns will give the final pattern shown.

The pattern obtained in figure \#10 uses three basic patterns. Two are basic figure 8 patterns with magnitude changes. This simple means one tower has more magnitude changes are used on two figure 8 patterns.

Our first figure 8 is between towers \#1 and \#2 with the magnitude being greater in tower \#2. Another figure eight is developed between towers \#1 between towers \#1 and \#4. The interaction of these patterns creates the final pattern shown.
Figure necessary, such multiple patterns can interact upon themselves Figure \#11 shows a pattern developed with the combination of two of the patterns we developed in figure "9.
the scope of this article to do been answered.

FIGURE \#1

FIGURE \#2

This article is intended to answer some of the questions from owners of the first edition of the NRC Night Pattern Book. The patterns shown are the They make no attempt to show any skywave radiation that may exist. In reality the FCC doesn't acknowledge such radiation at angles much above 50 degrees. Figure "1 is information available in the FCC's Rules and Regulations.
It indicates vertical radiation at different antenna heights for 1,000 watts non directional on the left hand side. The right hand side shows everything scaled to $100 \mathrm{mv} / \mathrm{m}$; however, we won't be using this section.
With the left hand section we can read the field in mv/m at one mile. It the thers have cost for them. The bottom 1 ine indicates the field, and we can see a 0.25 wavelength
tower develops $180 \mathrm{mv} / \mathrm{m}$ at one mile. This can be increased to $200 \mathrm{mv} / \mathrm{m}$ by tower develops $180 \mathrm{my} / \mathrm{m}$ at one mile. This can be increased to git meiv/mt were
going to a tower 0.311 wavelength but both are very similar. If increased to 0.5 wavelength, the field increases to $230 \mathrm{mv} / \mathrm{m}$, with reduced skywave. A further increase to 0.625 wavelength increases to $280 \mathrm{mv} / \mathrm{m}$ with ven less skywave signal.
We could reach similar fields with a 0.25 wavelength tower but the power required isn't licensed by the FCC. To reach $230 \mathrm{mv} / \mathrm{m}$,
1,500 watts and for $280 \mathrm{mv} / \mathrm{m}$, we need about $2,000 \mathrm{watts}$,

Increasing height much beyond 0.5 wavelength does increase the field at
Int one mile BUT also develops a secondary lobe. This can be seen in figure "1 at an angle of about 60 degrees and a field of about $80 \mathrm{mv} / \mathrm{m}$. In most cases KDKA-1020, Pittsburgh, Penna., uses such a tower and has problems. Our econdary lobe returns and causes interference with normal groundwave signal. his creates a "hole" with severe fading from about 45 to about 70 miles fro transmitter

Figure \#2 shows different tower heights required by the FCC for the hould be at 0 ses of stations. We can also estimate what the tower height hould be noted that the tallest tovers are required for frequencies. It stations; however, they also are to serve the largest areas.

A class I station operating on 600 kHz (if the FCC would allow it) would ave a tower height of about 550 feet unless limited to 500 feet by the FAA. In reality, most stations stay closer to 0.25 wavelength towers which would be loser to 400 feet tall. Class II and III stations on this frequency could
se towers of about 300 feet. In these cases, the height is less than 0.25 wavelength and the skywave is increased.
Some stations on upper frequencies do use tall towers for the increased coverage. Many of these can be spotted in the NRC Night Pattern Book by the ncreased coverage of stations of similar power. Some will not be very obvious educed from what it might reach.
wHOT-1330 has its night transmitter site on an old strip mine. This will eep the field down from what it might achieve at a better site. However it till has more coverage than other 1,000 watters with similar patterns. Compare the patterns on 1410 kHz of WING/WPOP and $\mathrm{KgV} / \mathrm{WDOV}$. These all use 5,000 watts full time and the patterns of the examples are very similar. WING and WPOP show the Dayton station is using tall towers or is located at a very excellent site. The same is true when you compare $\mathrm{KgV} / \mathrm{wDOV}$ but the
pittsburgh station uses towers of over 0.5 wavelength for the additional coverage.

Fig. 1

yCC 83.190 , FIGURE 7

Fig. 2

Basics of Directional Patterns

by Paul K. Hart*

As the population increases in the United States and Canada, more media services all types are required. This includes medium wave broadcasting where greater choice of programming material is available and as a consequence more stations can be supported by advertising revenue. All stations legally transmitting in the U.S. and Canada are licensed by the F.C.C. in Washington or the D.O. T. in Ottawa, in keeping with the international treaty obligations contained in the North American Regional Broadcasting Agreement (N.A.R.B.A.). A more detailed discussion of the relationship between channel allocations and the N.A.R.B.A will be found elsewhere in this book.

With more than 5, 000 stations in the U.S. and Canada operating on only 107 channels, many stations have been forced to make use of directional transmitting antennas to reduce interference to an acceptable level. Many stations now operate with highly sophisticated directional antennas in order to meet the str and D.O.T rules and regulations.

It is important to realize that the formal interference criteria established by the licensing agencies are based upon the ordinary home-type broadcast receiver. DXers with highly sophisticated receiving equipment are often able to hear distant stations even though the listener is located in a null of the transmitter antenna pattern. When reporting reception to these highly directional stations it is therefore most important to stress in your reception report that you are a DXer and not a regular listener with "ordinary" receiving equipment.

The allocation of frequencies by the F.C.C. and D.O.T. involves specification of a signal intensity contour of the station coverage area which must be protected from objection able interference from other licensed stations. This contour level varies with the class of the station on the channel (i.e., Clear, Regional, or Local).

The primary service area of a station is the region where the ground-wave signal is free from objectionable interference from other licensed stations. The secondary coverage area is the region covered by the sky-wave signal; while the secondary coverage area may b protected from interference from other stations by F.C.C./D.O.T. rules and regulations, fading and other propagation effects may prove important in actual practice.

During the daylight hours the sky-wave signal is almost totally absorbed in the lowe onosphere at broadcast band frequencies; thus secondary coverage of any particular station exists only at night. There is also an intermittent coverage area located just on the edge of gion between the station's own sky-wave and ground-wave signals.

Directional antenna systems are used to provide primary and secondary coverage without interference to existing stations on the same and nearby frequencies. The problem of satisfying all of the interference criteria specified by the licensing agency can be very omplex in actual practice, often necessitating elaborate engineering studies and costly directional antenna arrays.

Suppose a new station is proposed to operate on 1420 with 1,000 watts day and night.

* condensed and abridged from the original article in DX NEWS by permission of the author by Wes Boyd and Gordon Nelson.

In another town 25 miles away there is a station operating on 1430 with 500 watts non-directiona daytime. The new facility must provide protection to the existing coverage of the second station. Since the second station does not operate at night, secondary protection is not required However, other stations operating on 1420 , towards them at night. This may requitting array.

In this case the station might require two different patterns, one for daytime and one for night. The exact values for these antenna fields are set forth in the rules and regulations in accordance with the interference criteria. Care must be taken in designing directional patterns so they not only protect the required stations but provide adequate coverage throughout the primary coverage area.

A common tactic near coastlines is to locate the transmitter inland so the peak of the pattern covers the city of interest and then goes out to sea; while fine for foreign DXers, this common approach often results in very weak radiation in the direction of the opposite coast. Similiar tactics are often used by stations close to the borders. Many stations reduce power at night in conjunction with pattern changes to limit the interference to the required level. In recent years more stations have been using separate transmitter sites for day and night operation.

Bear in mind that the pattern is a graphical representation of field intensity generated by the combination of the transmitter and antenna system. All of the patterns shown in this volume are polar plot patterns showing field intensity at one mile from the antenna as measured at ground level (0 degrees elevation). This style of presentation is used because it is the form in which data must be supplied to the licensing agencies; aditional discussion of the rela

Were a station to test with 50,000 watts into a dummy load antenna, the field strength at one mile might well be unmeasurable - this is the extreme case of an inefficient antenna! The e tation high field strength at one mile. The less efficient the antenna, the weaker the field strength produced by a particular transmitter power. This illustrates a basic fact: transmitter output power alone is not the only factor which determines station coverage - antenna efficiency and directionality must also be considered if actual receptions are to make any sense at all.

Figure 1 is the non-directional daytime pattern for WGH, Newport News, Virginia on 310 kHz . This pattern is unusual because it is almost perfectly non-directional in practice as well as theory. The bearings around the outside indicate the compass heading FROM THE ANTENNA referred to TRUE NORTH corresponding to 0 degrees (or 360 degrees) at the top f the plot. The distance from the center of the pattern to the curve in any diraction is proportional to the signal intensity in millivolts per meter (mV / m), the standard measure of eld strength, as measured one mile from the antenna. Figure 1 shows that the 5,000 watt WGH transmitter generates a field of $420 \mathrm{mV} / \mathrm{m}$ in all directions. Were the transmitter powe educed to 1,000 watts, this field drops to $188 \mathrm{mV} / \mathrm{m}$ - or a bit less than half the 5,000 watt overage (remember that the field strength varies as the square of the power). If have to increase the field from $420 \mathrm{mV} / \mathrm{m}$ to $840 \mathrm{mV} / \mathrm{m}$ (twice the coverage), they would have to increase transmitter power to 20,000 watts.

Another concept essential to any discussion of directional patterns is the RMS field. The RMS field shown on the patterns in this article is the field strength a station would generate

if all of the station's power were radiated in a PERFECT CIRCLE. The non-directional pattern of WGH is almost a perfect circle so the RMS will be very close to $420 \mathrm{mV} / \mathrm{m}$.

Figure 2 is the non-directional daytime pattern of KFGO, Fargo, N.D. on 790 kHz . Note that even tough this station has but a single tower and is therefore supposedly non-direct ional, the coverage is not actually uniform in all directions. This is caused by factors such
as non-uniform ground conductivity and such terrain features as buildings, power lines, and as non-uniform ground conductivity and such terrain features as builaings, power lines, and $441 \mathrm{mV} / \mathrm{m}$. Notice that WGH's RMS is only $420 \mathrm{mV} / \mathrm{m}$ compared with KFGO's $441 \mathrm{mV} / \mathrm{m}$ while both use the same transmitter power. This indicates that KFGO is using its transmitter power more effectively and more of it is being translated into field strength. For the most part the RMS is a useful indicator of the efficiency of the transmitter/antenna combination.

The F.C.C. and D.O.T. require that certain minimum values of field strength be The F.C.C. and D.O.T. require that certain minimum values of field strength be
generated with assigned powers for all stations. These minimum fields vary with the power and class of the station. The stations which are required to have the most efficient antennas are the Class I (Clear Channel) stations; this explains why these stations have huge antennas and vast no case will the F.C.C. permit new construction of an antenna less than 150 feet in height.

Directional patterns on the broadcast band are produced by employing multiple vertical towers and driving each tower with a definitely established and carefully maintained fraction of the total transmitter output power. As a result of tower spacing and electrical tuning networks, the radiated power is altered in amplitude and phase as required to produce cancellation or reinforcement effects which create the pattern. The design and construction of directional patterns is a very complex business and beyond the scope of this article. One simple rule-ofthumb of value to DXers is that the number of nulls in the pattern is equal to the number of the remainder of this article we will deal with the final measured patterns without going toe eply into the drils of the antennas themselves. DXers interested in more details are refer to the numerous articles which have appeared in DX NEWS and which are available as reprints from NRC headquarters.

The polar plot patterns shown here are of some stations selected to illustrate typical situations for discussion. The original sheets have details including tower location, phasing, spacing, height, and orientation which are not included in the interest of simplicity

Figure 3 shows 50,000 watt KRLD in Dallas on 1080 kHz . This pattern is typical of the simplest types using two towers aligned along a line of peak and null. The RMS value of 1740 mV / m indicates a very good antenna efficiency. This pattern protects WTIC, Hartford, Conn. All of West and South Texas (along with most of the Southwest) lies in the KRLD secondary coverage area, thus guaranteeing interference-free reception over a wide area at night.

Figure 4 is WOR, New York City, on 710 kHz . This is a non-symmetrical pattern produce produced by a three tower array in a triangular layout. There are many other fullime stations on 710 but they have patterns which protect WOR and are located a good distance from New York City. The main lobe covers N.Y.C., Long Island, and most of New England. Wor's southwest lobe covers New Jersey and a large portion of Pennsylvania. The RMS value of $1,600 \mathrm{mV} / \mathrm{m}$ indicates good antenna efficiency; it is lower than some other 50,000 watt stations however. Thi is because as antenna arrays become increasingly complex, the RMS produced for the same power input usually drops because of the power losses in the associated power lines and tuning

networke.
Figure 5 is WDGY, Minneapolis, Minn. on 1130 kHz . This pattern was achieved with 25,000 watts and a complex 9 tower system. In this pattern the nulls off the back of the array are so deep that a separate expanded scale is necessary to plot them. It is a safe bet that WDGY's transmitter is located to the south or southwest of Minneapolis-St. Paul area. His signal in these cities and to the north must be fantastic, but the signal must drop off quite rapidly to the south of the transmitter site.

On 1130 the primary stations are KWKH Shreveport, La., WNEW New York City, and On 1130 the primary stations are KWKH Shreveport, La., WNEW New York City, and
CKWX Vancouver, B.C. All 3 stations operate with 50, 000 watts full time; however the location of the 3 leaves a "dead spot" on 1130 in the mid-west. In this "dead spot" the trio of WCAR Detroit, Mich., WISN Milwaukee, Wis., and WDGY Minneapolis, Minn. operate with powers
ranging from 10,000 to 50,000 watts. All 3 of these "secondary" stations operate under very strict rules so that none of them interfere with each other or any of the primary stations. Due to the relatively close geographical spacing of these "secondary" stations (all with high power) very sophisticated patterns are required. All three stations operate with patterns that are very similar.

Looking back at KRLD's night pattern you will notice that the pattern crosses the RMS field at 150 and 330 degrees. If you lived along either of these bearings the power from KRLD is
50,000 watts whether the pattern is used or not. If you lived in the "back" of the pattern the signal 50,000 watts whether the pattern is used or not. If you lived in the
would be less than 50,000 watts. Along the bearing of 60 degrees the power at night is about 3,000 watts. For those in Arizona wondering why KRLD is so powerful for 50,000 watts, the power at a bearing of 260 degrees is almost 100,000 watts.

In the case of the WDGY pattern the power along a bearing of 17 degrees is almost 300,000 watts. At the same time WDGY's power at 180 degrees is less than 50 watts. The peak value of the curve on a bearing of 17 degrees for WDGY is almost $3,000 \mathrm{mV} / \mathrm{m}$. This is mor Col towers the power from WDGY's narrow high intensity beam is fantastic.

540	Canada I-A, Mexico I-A	1010	Canada I-A
640	USA I-A, Canada I-B	1020	USA I-A
650	USA I-A	1030	USA I-A
660	USA I-A	1040	USA I-A
670	USA I-A	1050	Mexico I-A
680	USAI-B	1060	Mexico and USA I-B
690	Canada I-A, Mexico I-B	1070	Canada and USA I-B
700	USA I-A	1080	USA I-B
710	USA I-B	1090	Mexico and USA I-B
720	USA I-A	1100	USA I-A
730	Mexico I-A	1110	USAI-B
740	Canada I-A, Mexico I-D	1120	USA I-A
750	USA I-A	1130	USA and Canada I-B
760	USA I-A	1140	Mexico and USA I-B
770	USA I-A	1160	USA I-A
780	USA I-A	1170	USAI-B
800	Mexico I-A	1180	USA I-A
810	USA I-B	1190	Mexico and USA I-B
820	USA I-A	1200	USA I-A
830	USA I-A	1210	USA I-A
840	USA I-A	1220	Mexico I-A
850	USA and Mexico I-B	1500	USA I-B
860	Canada I-A	1510	USA I-B
870	USA I-A	1520	USAI-B
880	USA I-A	1530	USAI-B
890	USA I-A	1540	Bahamas I-A, USA I-B
900	Mexico I-A	1550	Canada and Mexico I-B
940	Canada and Mexico I-B	1560	USA I-B
990	Canada I-A	1570	Mexico I-A
1000	Mexico and USA I-B	1580	Canada I-A

Abbreviations

CLASS OF OPERATION

mascellaneous:

In construction of directional antenna systems, several factors must be considered. \#1. Protection to existing stations on the same or on adjacent frequencies. \#2. Providing maximum coverage of the city of license. \#3. The
expense of land in locations that could be used. \#4. Coverage of adjacent communities if desired or necessary. These requirements make transmitter site placement very unique. As an
example, we shall look at some typical class IV installations. Normally these operate with 1,000 watts daytime, 250 watts night non directional Most such stations have towers of 150 feet or a bit taller.

Several stations operating on these frequencies will use excellent antenna systems to obtain maximum coverage. In most cases this also involves coverage to a larger adjacent city. With careful transmitter placement, they covered.

WENZ 1450 Highland Springs (Richmond), Virginia; the city of license is about 5 miles east of Richmond. By locating the transmitter about $11 / 2$ mile to the west of Highland Springs, that city receives excellent coverage. Thi also places the transmitter about $31 / 2$ miles east WEXL 1340 Royal Oak, Michigan, is some 5 miles north of Detroit. As with WEN2 transmitter placement allows coverage of the larger city. In this case, the transmitter is $11 / 2$ miles south of Royal Oak. Such a location offers excellent coverage of both the city of license and Detroit.
located in areas that provide excellent coverage of Chicago. These cormunities are adjacent to Chicago on the city's west side. From here, transmitter sites on top of buildings in the area will have great coverage.
Such rooftop installations are not always used to provide maximum coverage. If properly used, they can increase or decrease coverage. Location of antennas A shorter building would provide more coverage; however, not as much as one over one-quarter wavelength tall would.

Among other stations using transmitter placement to serve communities other than the city of license: WNIA 1230 New York; WJMO 1490 Ohio; WLPM 1450 Several years ago the F.c.c. made an attempt to limit the number of radio stations in larger coumunities. At the time, many stations were licensed to these cities and used the F.C.c.'s ruling to become licensed fulltime. If the city had adequate service, they wouldn't license any more fullitime stations without (in the F.C.C.'s terms) local service.
These stations would become licensed for fulltime operation. Then with careful transmitter placement, be able to serve the larger community anyhow. The coverage was not as good as it could be (or should be) to serve these air. Some of these included wicue 1150, Akron, Ohio; WVOL 1470 Nashville, Tenn., and kudL 1380, Kansas City.
During this same era, other stations went on the air as daytimers licensed to suburban cities. Then after several years, finally were given permission to operate fulltime. In both cases, the stations placed transmitters so they
would provide coverage of the larger communities. These include whor 1330, WPAT 930, KDAY 1580, KQRS 1440, WYOO 980, etc.

In most cases, the area to be served determines the shape of the pattern more than the protection to existing stations does. Many stations could have lower power or less complica
KRXD 580 Nampa, Idaho, wouldn't require such a night pattern if coverage of Boise, Idaho, wasn't wanted. On such a lower frequency, the coverage is tremendous even at lower power levels. The large west lobe has enough signal
to let the transmitter be several miles from Nampa. Since Boise is about 10 niles east of Nampa, the transmitter could be midway between them. Such a location allows the front lobe to serve the city of license while the lobe to the northeast will provide a very good signal in Boise.
Similar transmitter placement was used by WSAR 1480 Fall River, Mass. With a location west of Fall River, the east lobe covers the city of license. At the same time, the secondary lobe north/northwest covers Providence, R.I.
WTSN 1270 Dover, N.H., has a location just west of Dover. This allows Dover to be in the main lobe east. The back lobe provides coverage of Rochester, N.H., for a secondary coverage. At the same time, the front lobe is powerful enough to provide a good signal in Portsmouth.

WIBX 950 and WRUN 1150 Utica, New York, use transmitter placement to
ide coverage of Rome, New York, (10 miles away) but both used different provide coverage of Rome, New York, (10 miles away) but both used different systems. WIBX 950 has a tocation to the west of Utica 80 it lies in the east
lobe. This allows Rome to be covered by the lobe to the North. WRUN 1150 is located to the northwest of Utica so it lies in the southeast lobe. The lobe to the northwest then covers Rome

Dallas/Fort Worth, Texas, provides similar problems in transmitter placement. Of the stations here, liLIF 1190 is the most unique. Protection to WOAI 1200, KVOO 1170 and other 1190 stations are required. The pattern used位位s this protection but makes coverage of both cities difficult. Tiansmitte location near Irving, Texas, (northwest of Dallas) allows Dallas to be served
with the lobe to the southeast. Then the main lobe southwest will cover Fort worth with signals of excellent quality. With this pattern coverage of both cities is impossible unless the transmitter is in this area.
In coastal areas (New York City and Los Angeles are excellent examples), the stations have transmitters several miles inland. If stations in this area as strong as stations licensed there. Others are licensed to communities surrounded by larger cities. They place the transmitter 10 miles away from the larger city and with power lobes cover both cities to serve the city of
license. KDAY 1580 and KROQ 1500 in California are great examples of this.

The NRC Night Pattern Book has been a great aid to DXers. A glance is all it takes to see if a station nulls toward you or has a lobe in your direction. If you have compared the patterns shown with actual listening experiences, you
will note some stations which should be heard are not while some with nulls in your direction are quite audible. This article will explain why this is so an Thelp you obtain more information from the pattern book.
The patterns shown in the pattern book indicate the electrical field strength in different directions from the transmitter due to radiation in the horizontal or ground plane. When considering nighttime skywave we must deal with radio waves leaving the antenna system at some angle above ground. This angle
of elevation will be referred to as angle B in the following discussion. Radio waves at broadcast band frequencies normally propagate at night by reflection off the E layer of the ionosphere. The shorter the distance from the transmitter the greater the elevation of angle b. For single hop transmission beyond 00 miles, angle B is quite small. In this case the pattern book gives a good less than 700 miles, angle B becomes progressively larger and the pattern becomes considerably altered from the groundwave pattern indicated in the pattern book. However, only a certain type of pattern is applicable.

We will ignore for now that radio waves radiate preferentially in a ground lane. An antenna system composed of two or more towers located along a in three dimensions is symmetrical about a line connecting the bases of the towers. From here on this will be referred to as the "axis of symmetry". For the ground plane patterns shown in the pattern book, the two-dimensiona pattern produced is symmetrical about an axis of symmetry.
s. That of WICC 600 is symmetrical about an NW-SE axis, as is wTOR 610 . WVNT 620 has an axis of symmetry running more or less $N \& S$. WINR 680's axis goes NE-SW, while WELM 1410 is nearly $N \& S$.
The results of this article can not be applied unless you know which axis of symmetry corresponds to the line in which the towers lie. Also it is not
necessary to have in-line towers to produce a symmetrical pattern. Four tower located at the corners of a square will also produce a symmetrical pattern. Any calculations based on this article are accurate only if the towers are actually along a line.
At this point we will introduce another angle which we will call angle A. This is an acute angle between the axis of symmetry and a line from the tra
mitter to the receiver. A definition of this angle is shown in Figure "1.

Angle B has been defined as the elevation angle, and it varies with the transmitter-receiver separation. This separation is always measured along the osine of angle B.

In this expression the arguments of the sine and cosine are in radians, and measured in miles. H is the reflection height and D is the transmittermiles and an assumed reflection height of 65 miles, this expression simplifies to:

$$
\cos 8=\frac{(0.508) 0}{\sqrt{0.2540^{2}+4225}}
$$

This expression will provide an answer with less than 18 error. Figure is a graph of cosine B versus the transmitter-receiver distance D .
In determining the radiation pattern at angle B , we must look at the point on radiation pattern given in the pattern book and not at angle A. In
ceality, we should look at angle C which is obtained from the equation:

$$
\begin{aligned}
& \cos C=(\cos A) \cdot(\cos B) \\
& C=\text { ARC } \cos (\cos A) \cdot(\cos B
\end{aligned}
$$

In effect for skywave we must look at the pattern more broadside to the axis of symmetry than we would for groundwave. A few examples will help to
make this clear.
Let's evaluate the signal whot 1330 has towards Flint, Michigan, where

Let's evaluate the signal whor isso another station operates on the same frequency. Figure III shows the pertinent
angles. In this example D is 210 miles and A is 56 degrees. A look at figure II shows that cos B is 0.858 for the distance of 210 miles. Cos A is 0.559 thus
$\cos C=\cos A$. $\cos B=(0.559) .(0.858)=0.480$. This then makes the magni-
 $100 \mathrm{mv} / \mathrm{m}$ instead of the approximately $150 \mathrm{mv} / \mathrm{m}$ measured at angle A . It becomes apparent that this null near angle C was designed to protect the Flint, Michigan, tation.

Example "2: Here we will evaluate the signal that whor 1330 directs towards Erie, Pa., where another station operates on 1330 kHz . The pattern might indicate to you that wHoT doesn't protect this station at all, but this is not the case. Using figure III again we find the angles of interest, A^{*} and C^{*}. The * being used to distinguish these angles from those used in connection with the station in Flint, Michigan. For this example, $D=74$ miles and $A=11$ degrees. Figure III tells us the value of $\cos B$ in this case is 0.502 and cos
A is 0.982 . Thus $\cos C=\cos A \cdot \cos B=(0.982) \cdot(0.502)=0.493$. This make the magnitude of angle C 60.5 degrees, and this corresponds to a field strength of $120 \mathrm{mv} / \mathrm{m}$ at one mile towards Erie and lies quite close to the null. The groundwave radiation towards Erie is much higher (at angle A) at about $640 \mathrm{mv} / \mathrm{m}$ at one mile. This is a prime example of where a location seems to be in a lobe
while it is really in a null as far as skywave is concerned. There is considerable error possible in these examples mostly due to the small size of the patterns in the pattern book and the slight errors that inevitably occurred in
the drawing of these patterns. If we had the exact pattern of whot and knew the the drawing of these patterns. If we had the exact pattern of whot and knew the xact bearing of the axis of symmetry we may have found that Erie and Flint lie
Example \#3: In this example, we will evaluate the signal received at Ithaca, New York, from WPTR 1540 Albany, New York. Figure IV shows the angles involved. or this example we have $D=142$ miles and the corresponding cos $B=0.746$ (Figure II) thus $A=29$ degrees and $\cos A=0.875$

Therefore $008 C=00 A_{A}, \cos B=(0.875) \cdot(0.746)=0.652$ hence $C=49.3$

calculating skyhave radiation towaros Erie, pand and flint, michigan.

degrees. This angle is very close to the null and it is difficult to get a value for the field strength at one mile. However, this should be a
about $100 \mathrm{mv} / \mathrm{m}$. It should be pointed out that the radial at angle c is on the other side of the null from the radial towards Ithaca at angle A. Ground wave signal towards Ithaca is approximately $300 \mathrm{mv} / \mathrm{m}$ at one mile at angle
Example "4: Instead of calculating the field at one point, we can
alculate the entire pattern corresponding to radiation at a certain elevation angle (B). If we continue the case just considered, we can calculate the entire pattern. First we evaluate the pattern at an elevation angle of 41.75 degrees corresponding to the transmitter-receiver distance of 142 miles (cos $\mathrm{B}=0.746)$. Several representative points can be taken and the resulting
俍 the calculations won' t be shown, rather the resulting pattern is shown in figure V. The pattern shows that if you were to circle the transmitter at distance of 142 miles, you would get the strongest field in approximately North and East directions, 49.5 degrees from the axis of symmetry. These part of Boston, Mass. The weakest signals lie across the axis of symmetry to the southwest of Albany, 10 miles west of Scranton, Pa. We note the rear lobe has disappeared and that the pattern itself is somewhat smoother. This smoothness at high radiation angles is a general result

11 at all angles above the horizon; this is just not true. radiate equally effect is the same whether a station is nondirectional (single tower) or directional (multiple towers). As angle B increases, the strength of radiation generally decreases. Extremely tall towers have peculiar variations in field strength with increasing B. Figure VI shows the relative radiation at variou
elevation angles B compared to radiation in the horizontal plane. It is plotted in cos B since we have been working directly with this quality in this article. Note that of cos B of about 0.80 the radiation drops to zero for a $5 / 8$ wavelength antenna. This value of cos B corresponds to a transmitterreceiver distance of about 168 miles (see figure II). At this distance from
a station using a $5 / 8$ wavelength antenna, virtually no skywave will be received. It should be noted that the taller towers radiate a stronger signal in the ground plane than the shorter towers do. A radio station using a $5 / 8$ wavelength tower has a ground plane field strength of almost double that af atan using a $1 / 4$ wavelength antenna on the same frequency.

The pattern obtained for WPRR is not correct in magnitude although it is
an cowers if we were to get the correct magnitude of the pattern. If they towers if we were to get the correct magnitude of the pattern. If they were
$1 / 2$ wavelength tall, figure vI shows the field strength is 34 of that in the
groundplane $(B=41.75$ degrees, cos $B=0.746)$. Should these towers be $5 / 8$ wavelength tall, then the appropriate factor is 123 .

Local WTKO 1470 recently began nighttime operation from four in-line towers on the south end of Ithaca. These towers seem to be $5 / 8$ wavelength tall which means it should be difficult to receive them 165 to 170 miles from the transmitter. Reception would be difficult sutawney, Penna.; or Plainfield, New Jersey.
If a station uses towers of two or more
one, the results of calculations shown in this article will not be accurate even though the towers do lie in a straight line.

We should mention that the radiation pattern at some elevation angles on different from the ground plane pattern shown in the pattern book. Especially for large angles which correspond to transmitter-receiver distances less than 150 miles. If you are broadside to a station's antenna system, the pattern stays the same in your direction.
null remains a null and a lobe remains a lobe.

NRC PUBLICATIONS

SPECLAL INTERNATIONAL AGREEMENTS

Still another set of "clear channels" are shared as Class II frequencies with other countries. Those shared with Canada are 1070 and 1130. Those shared with Mexico are: 850-1000-1060-1090-1140 and 1190 .

There are many other "Gentlemen's Agreements" that allow operations on other frequencies. Such U.S. operations are: New York City on 1010 and 1050 kHz , Cleveland on 1220 kHz , Santurce, P. R. on 730 , and Alaska on 800 and 900 kHz . Similar agreements allow Canada to Mexico to operate on $660-760-830$ and 1030 kHz

Further treaty agreements allow U.S. operations on certain Canadian I-A channels:740-$860-990$ and 1580 kHz ; these stations must be located a specified distance from the Canadian border and must employ directional antennas to limit radiation to Canada to prespecified levels.

If the preceeding special agreements were not enough to confuse the overall pattern, dditional special arrangements allocate 1540 as Class I-A for the Bahama Islands, and 620 as Class I-C to the Dominican Republic. We will not consider the allocations for Cuba since most have not been honored since the Liberation government came to power.

Along with all these agreements as the use of frequencies, each country has its own rules for maximum transmitter power within the NARBA guidelines. While the U.S. and Canada limit power to 50 kw (recall that a NARBAI-A channel can contain a station operating with more than有 5,000 watts, but in Canada many stations operate with 10,000 or 50,000 watts on these channels. The regional channel power limit- in Mexico is 25,000 watts. Local channels in the U.S. and Canada are very similar - almost all stations operate 1,000 daytime and 250 watts nondirectional t night.

There are some 15 or 20 stations in the U.S. operating with directional antennas in the daytime. Since Class IV stations are licensed for the most part as 250 watts nondirectional, the directional antennas are used to limit interference to adjacent channels at the 500 or 1000 watt evel.

The few Canadians operating full-time with directional antennas are not difficult to understand either. These simply limit the power toward the U.S. to levels approaching the field strength they would achieve with 250 watts nondirectional. In all cases they have large lobes directed to the North.

Mexicans operating on local channels seem to have 3 different sets of rules, all dependen upon the location of the station. Those within 62 miles of the border operate with 250 watts nondirectional full-time. Those from 62 to 93 miles operate 1,000 watts day and 250 watts nondirectional at night. All others operate with 1,000 watts day and 500 watts nondirectional at night.

The ARC is proud to announce its list of companion publications to the Domestic Station Log. All of these itema are available from the National Radio club

DOMESTIC LOG
This epiral-bound volum AM stations including 1 networks, schedules and nembers and $\$ 7.50$ to no America please enquire NIGHT ANTENNA PATTERN BO This epiral-bound volum patterne of Canadian an
comercial pubs are dione of thilerin orriciar your much for this most valuable DX reference. Cost to members is $\$ 6.50$ postpaid and to non-members $\$ 7.50$ in U.S. and Canada. (New edition 1975) ANTENNA REFERENCE MANUAL

This manual is a compilation of numerous articles on the subject of antennas for MN DXers which have appeared in the pages of DX NEWS over the past several years in one handy volume. Includes data on air- and ferrite-core loops, antenna tuners for longwires, and bev erage antennas, along with various coupling devices. 60 pages:
gETTING STARTED IN MEDIUM WAVE DX'in
This booklet is designed to assist the novice DXer in pursuit of the hobby. It includes introductory articles on foreign and domestic DX ing as well as related topics. Included are articles on reception reports and safety and preventive maintenance of your DX gear. All memp bok who pay the New Member Fee automatically recelve a copy of thi RECEIVER REFERENCE MANUA
This manual is similar to the above manual on antennas, except that the subject is DX receivers. It includes useful articles on recsiver modifications and accessories, and reviews of many of the comonly r/experimenter.

LOG a PATTERN BOOK UPDATERS
Periodic updaters for the NRC Domestic Station Log and the NRC Nighttime Antenna Pattern Book are published in the pages of dx NEwS. Non-members may obtain reprints of these updaters in composite by ordering them through the NRC Reprint Service. Cost is $\$ 1.00$ for nembers and $\$ 2.00$ for non-members, covering all updaters from time of the most recent edition of the Log or Pattern Book to the date of the order.

570 кнz REGIONAL

610 кнz REGIONAL

	call	class	location
1	c Jox	DA-2	grand ba
2	CHNC	DA-1	NEW CARLISLE
3	WGIR	DA-2	Manchester
4	WSNG	DA-2	turr ingtun
5	WIP	DA-2	PHILADELPHIA
6	WHPL	DA-2	WINCHESTER
7	WSLS	DA-2	RUANUKE
8	WAYS	DA-2	CHARLUTTE
9	WSGN	DA-N	BIRMINGHAM
10	WIOD	DA-2	MIAMI
11	1 CKM	DA-N	MUNT LAURIER
12	CKTB	DA-1	STE. CATHERINE
13	3 WTVN	DA-N	COLUMBUS
14	4 KDAL	DA-N	DULUTH
	5 WDAF	ND	KANSAS CITY
16	6 KILT	DA-2	HOUSTON
17	7 KRKE	DA-N	ALBUOUER
18	8 KVNU	DA-N	LUGAN
19	9 KOJM	DA-2	havre
20	CHTM	ND	THOMPSON
21	1 CKYL	DA-N	PEACE RIVER
22	2 CHNL	DA-N	KAMLOOPS
23	3 CJAT		TRAIL
	4 KONA	DA-2	$\begin{aligned} & \text { RENNELCNO/PASCU } \\ & \text { RICHANO } \end{aligned}$
25	5 KFRC	ND	SAN FRANCISCO
	6 KAVL	DA-2	R

moind Redonision

1280 Khz REGIONAL

3

n

\bigcirc
Copyright 1975 by Russell J. Edmurt
for the Nat iorial Fell
\qquad
Sncis sin (0)

1330 кнz REGIONAL

call		class	location
1	WCRB	UA-2	Waltham
3	WEVD	UA-2	Hew Yukk
	WP UW	OA-1	NEW Y Ykk
	has requested to use Wiun DA)		
4	\%BTM	UA-N	Lanville
5	WLAT	DA-N	Cunwiay
6	WF BC	UA-N	greenville
7	WMLT	dA-N	UUBLIIN
8	6.FTP	DA-N	fort pierce
9	kvol	da-n	Lafayette
10	WJPR	DA-N	gre:
11	WJPS	DA-N	evans ville
1 ?	V:'HOT	DA-2	CAMPBELL
13	WRIE	DA-2	ERIE
14	WTRX	DA - ?	FLINT
15	KWWL	DA-?	WATEPLU0
16	WHBL	DA-2	sheborgan
17	WLIL	DA-2	minneapulis
18	KFH	DA-N	WICHITA
19	kVKM	DA-N	monahans
20	kgak	DA-N	gallup
21	kove	OA-N	LANCER
22	CKkR	UA-1	kUSETUWN
23	kpoJ	DA-I	purtland
2.4	KFAC	UA-N	lus andeles

1550 kHz
CLEAR

	call	class	location
1	CBE	DA-1	WINOSOR
2	WBSC	DA-N	bendetts ville
3	WKFE	ND	yauco
4	WCTw	DA-?	NEW CAStLe
5	WCVL	DA-N	CRAWFORDSVIL
6	wasy	DA-N	hUNTSVILLE
7	wokJ	DA-2	JACKSON
8	koka	DA-N	SHRE VEPORT
9	kKJo	DA-N	ST. JOSEPH
10	KkHI	DA-2	SAN FRANCISCO
11	xeno	DA-N	nuevo laredo

