

TECHNOLOGY -VIDEO - STEREO - COMPUTERS - SERVICE

Build R-E's Video Switcher. Add push-button control to your video entertainment center ${ }^{\text {l }}$

How to
service your own
Videodisc player

What's available in add-on accessories for your satellite-TV system

Build R-E's Atari duplicator and transfer your game cartridges to cassette tape

Allabout thermistors and how to
use them effectively

How to design sinewave, squarewave, and triangular
waveform generators
using op-amps

Special 16-page tear-out section. CompUnERDIGET

100 MHz scope, counter, timer, multimeter: All one integrated system.

100 MHz dual time base scope 3.5 ns risetime, sweeps from 0.5 s to $5 \mathrm{~ns} /$ div; alternate sweep; $\pm 2 \%$ vertical/horizontal accuracy; vertical sensitivity to 2 mV/div@ 90 MHz .

9-digit fluores-
cent display.

$$
\begin{aligned}
& \text { cent display. } \\
& \text { Digitally accurate } \\
& \text { readouts accom- } \\
& \text { pany the CRT } \\
& \text { waveform. Error } \\
& \text { messages and } \\
& \text { prompts also } \\
& \text { appear on the } \\
& \text { display. }
\end{aligned}
$$

When you need to hear the action from wherever you are, Regency delivers. Our portable scanners keep you in touch with the local news. Whether it's bank hold ups, three alarm fires, weather, business, marine radio, or aircraft calls, Regency portables bring you the on the scene action. While it's happening from where it's happening . . . in your neighborhood.

PROGRAMMABILITY WITH A CHOICE

Regency offers you two new exciting keyboard programmable hand held scanners. First there's the HX2000 20 channel, no crystal scanner. It offers UHF and VHF ranges with the important addition of 800 MHz and aircraft frequencies. And with features like search and scan, priority, liquid crystal display, and selectable search
increments, the HX2000 is a sure winner.
If you don't need the extended coverage, there's the HX1000. It let's you cover your choice of over 15,000 frequencies on 30 channels at the touch of your finger. No crystals are necessary. Six band coverage, search and scan, priority control, and a liquid crystal display with special programming messages and clock are all part of the package. And with the sealed rubber keyboard and die-cast aluminum chassis, the HX1000 is the most rugged and durable hand held on the market.

CRYSTAL-CLEAR

If you don't need all the features of programmables, but you want the convenience of portability, we've got you covered. Our two crystal controlled hand held scanners, the HX650 and HX750, offer
six channels, individual channel lock outs, LED channel indicators, step control, two antennas and an adaptor/charger. Both cover VHF high and low, UHF and "T" public service bands, with the FX 750 offering the additional coverage of VHF aircraft band.

DECIDE FOR YOURSELF

Your Regency Scanner dealer would be happy to give you a free demonstration of these and other new Regency Scanners. Stop in today. Or, write Regency Electronics, 7707 Records St., Indpls., IN 46226.

ELECTRONICS, INC.
7707 Records Street
Indianapolis, IN 46226

Bearcat

Products

Communications Electronics,* the world's largest distributor of radio scanners, is pleased to announce that Bearcat brand scanner radios have been acquired by Uniden Corporation of America. Because of this acquisition, Communications Electronics will now carry the complete line of Uniden Bearcat scanners, CB radios and Uniden Bandit" radar detectors. To celebrate this acquisition, we have special pricing on the Uniden line of electronic products.

Bearcat ${ }_{+}^{\oplus}$ 300-E

List price $\$ 549.95 / \mathrm{CE}$ price $\$ 339.00$
7-Eand, 50 Channel © Service Search Nocrystal scanner. AM Aircraft and Public Service bands. - Priority Channel - AC/DC Bands: 32-50, 118-136 AM, 144-174, 421-512 MHz The Bearcat 300 is the most advanced automatic scanning radio that has ever been offered to the public. The Bearcat 300 uses a bright green fluorescent digital display, so it's ideal for mobile applications. The Bearcat 300 now has these added features: Service Search, Display Intensity Control, Hold Search and Resume Search keys, Separate Band keys to permit lock-in/lock-out of any band for more efficient service search.

Bearcat ${ }^{\circledR}$ 20/20-E
 List price $\$ 449.95 /$ CE price $\$ 269.00$

 7-Band, 40 Channel Crysfallest Searches AM Aircraft and Public Service bands - AC/DC Priority Chennel - DireciChennel Access Deley Frequency range 32-50. 118-136 AM, 144-174. 420-512 MHz Find an easy chair. Turn on your Bearcat 20/20 and you're in an airplane cockpit. Listening to all the air-to-ground conversations. Maybe you'll pick up an exciting search and rescue mission on the Coast Guard channel. In a flash, you're back on the ground listening as news crews report a fast breaking story. Or hearing police and fire calls in your own neighborhood, in plenty of time so you can take precautions. You can even hear ham radio transmission, business phone calls and government intelligence agencies. Without leaving your easy chair. Because you've got a Bearcat $20 / 20$ right beside it.The Bearcat $20 / 20$ monit ors 40 frequencies from 7 bands, including aircraft. A two-position switch, located on the front panel, allows monitoring of 20 channels at a time.

Bearcat ${ }^{\text {² }}$ 210XL-E
 List price $\$ 349.95 /$ CE price $\$ 209.00$

 ©-Band, 18 Channel Crystalless AC/DC Frequency range 32-50, 144-174, 421-512 MHz . The Bearcat 210 XL scanning radio is the second generation scanner that replaces the popular Bearcat 210 and 211 . It has almost iwice the scanning capacity of the Bearcat 210 with 18 channels plus dual scanning speeds and a bright green fluorescent display. Auto matic search finds new frequencies. Features scan delay, single aintenna. patented track tuning and more.
Bearcat ${ }^{\text {© }}$ 260-E

List price $\$ 399.95 /$ CE price $\$ 249.00$

8-Eand, 16 Channel Priority AC/DC

 8-Eand, 16 Channel Priority 4 . $/$ DCFrequency range $30-50,138-174,406-512 \mathrm{MHz}$ Keep up with police and fire calls, ham radio operators and other transmission while you're on the road with Bearcat 260 scanner. Designed with police and fire department cooperation, its unique, practical shape and spectal two-position mounting bracket makes hump mounted or under dash installation possible in any vehicle. The Bearcat 260 is so ruggedly built for mobile use that it meets military standard 810c, curve y for vibration rating. Incorporated in its rugged. all metal case is a spectally positioned speaker delivering 3 watts of crisp, clear audio.

List price $\$ 279.95 / C E$ price $\$ 179.00$

 -Band, 16 Channel - Crystalless AC only Priority Scan Delay One Key Weather Frequency range 30-50, 118-136 AM, 146-174, 420-512 MHZ The Bearcat 201 performs any scanning function you could possibly want. With push button ease, you can program up to 16 channels for automatic monitoring. program up to 16 channels for automatic monitoring. Push another button and search for new frequencies.There are no crystats to limit what you want 10 hear.

NEW! Bearcat ${ }^{\circ}$ 180-E

List price $\$ 249.95 /$ CE price $\$ 149.00$

8-Band, 16 Channol Priority AC onfy Frequency range: $30-50,138-174,406-512 \mathrm{MHz}$ Police and fire calls. Ham rado transmissions. Business and government undercover operations. You can hear it all on a Bearcat 180 scanner radio. Imagine the 1 hrill of hearing a major news event unfold even before the news organizations can report it. And the security of knowing what's happening in your neighborhood by hearing police and fire calls in time to take precautions. There's nothing like scanning to keep you in-the-know, and no better way to get scanner radio performance at a value price than with the Bearcal 180 .

Bearcat ${ }^{\text {® }}$ 100-E

The lirst no-crystal programmable handheld scanner. List price $\$ 449.95 /$ CE price $\$ 234.00 /$ PPEC/AL! -Band, 16 Channel Liquid Crystal Display Search - Limil - Hold e Lockout - AC/DC frequency range: $30-50,138-174,406-512 \mathrm{MHz}$ The world's first no-crystal handheld scanner has compressed into a $3^{\prime \prime} \times 7^{\prime \prime} \times 1 \frac{11 a^{\prime}}{}$ case more scanning power than is found in many base or mobile scanners. The Bearcat 100 has a full 16 channels with frequency coverage that includes all public service bands (Low High, UHF and " Γ ' bands), the $2-$ Meter and 70 cm . Amaleur bands, plus Military and Federal Government frequencies. It has chrome-plated keys for functions that are user controlled. such as lockout, manual and automatic scan. Even search is provided, both manual and automatic. Wow...what a scanner!
The Bearcat 100 produces audio power output of 300 milliwatts, is track-tuned and has selectivity of better than 50 dB down and sensitivity of 0.6 microvolts on VHF and 1.0 microvolts on UHF. Power consumption is kept extremely low by using a liquid crystal display and exclusive low power integrated circuits.
Included in our low CE price is a sturdy carrying case earphone, battery charger/AC adapter. six AA ni-cad batteries and flexible antenna. The Bearcat 100 is in stock for quick shipment, so order your scanner today.

Bearcat ${ }^{\circledR}$ DX1000-E

List price $\$ 649.95 /$ CE price $\$ 489.00$
Frequency range 10 kHz to 30 MHz .
The Bearcal DX1000 shortwave radio makes tuning in London as easy as dialing a phone. It features PLL synthesized accuracy, two time zone 24-hour digital quartz clock and a built-in tımer to wake you to your favorite shortwave station. It can be programmed to activate peripheral equipment like a tape recorder to record up to five different broadcasts. any frequency. record up to five difterent broadcasis. any trequency. AM, LSB. USB. CW and FM broadcasts.
There's never been an easier way to hear what the world has to say. With the Bearcat DX1000 shortwave receiver, you now have direct access to the world

Uniden ${ }^{\circledR}$ PC22-E

List price $\$ 159.95 /$ CE price $\$ 99.00$
The Uniden PC22 is a 40 channel AM remote mobile CB radio. It's the answer for today's smaller cars which don't always provide adequate space for mounling. Since all the controls are on the microphone, you can stash the guts" in the trunk. The microphone has up/down channel selector, digital display. TX/RX indicator and external speaker jack. Dimensions: $5^{3} / 4{ }^{\prime}$ W $\times 7^{7}$ 日 $D \times$ $1_{2} \cdot \mathrm{H} .13 .8 \mathrm{VDC}$, positive or negative ground

OUANTITY DISCOUNTS AVAILABLE

 Order two scanners at the same time and deduct 1%, for three scanners deduct 2%, four scanners deduct 3%, five scanners deduct 4% and six or more scanners purchased at the same time earns you a 5% discount off our super low single unit price.

Buth Bundst radar detenturs feature F: DIT the
 falec ularm whah

Uniden ${ }^{\circledR}$ PC33-E
List price $\$ 59.95 /$ CE price $\$ 44.00$
The Uniden PC33 boasts a super-compact case and front-panel mike connector to fit comfortably in today's smaller cars. Controls: Power \& Volume, Squelch; Switches: ANL. Other features of the PC33 include Graduated LED "S"/RF Meter, Digital channel indicator Dimensions: $6^{\prime \prime} W \times 6^{\prime \prime} \mathrm{D} \times 17 \mathrm{~m}^{\prime \prime} \mathrm{H} . \pm 13.8 \mathrm{VDC}$.

Uniden® PC55-E

List price $\$ 89.95 /$ CE price $\$ 59.00$
The full featured Uniden PC55 front-panel mike connector makes installation easjer when space is a factor If has ANL. PA-CB, Channel 9 and RF Gain switches. LED "S' /RF meter, TX lite, PA\& external speakerjacks Dimensions: $6^{\prime \prime} W \times 6^{\prime \prime} D \times 1 / "^{\prime \prime} H . \pm 13.8 \mathrm{VDC}$.

Bandit"' Radar Detectors
 Now that everyone else has taken their best shot at

 radar detection, the Uniden Bandit" hasdone them one better...with E.D.I.T." the Electronic Data Interference Terminator that actually edits-out false alarm signals.The Bandit 55, features a convenient brightness/ dimmer control for comfortable day or night driving. plus a handy highway/city control for maximum flexibility wherever you drive. The Bandit 95 Remote. is a two-piece modular unit that lets you mount the long-range radar antenna behind the grilt, out of view. The ultra-compact control unit can then be inconspicuously tucked under the dash or clipped to the visor. Order Bandit 55-E for \$119.00 each or the Bandit 95.E Remote for $\$ 139.00$ each.

OTHER RADIOS AND ACCESSORIES FB-E-E Frequency Directory for Eastern U.S.A..... $\$ 12.00$ FB-W-E Frequency Directory for Western U.S.A.... $\$ 12.00$ BC-WA-E Bearcat Weather Alert* $\$ 35.00$ A60-E Magnet mount mobile antenna A70-E Base station antenna $\$ 35.00$ Add $\$ 3.00$ shipping for all accessories ordered at the same time. Add $\$ 3.00$ shipping per scanner antenna.

BUY WITH CONFIDENCE

To get the fastest delivery from CE of any product in this ad, send or phone your order directly to our Scanner Distribution Center. Michigan residents please add 4\% sales tax or supply your tax I.D. number. Written purchase orders are accepted from approved government agencies and most well rated firms at a 10\% surcharge for net 10 billing. All sales are subject to availability, acceptance and verification. All sales on accessories are final. Prices, terms and specifications are subject to change without notice. All prices are in U.S. dollars. Out of stock items will be placed on backorder automatically unless CE is instructed differ* ently. A $\$ 5.00$ additional handling fee will be charged for all orders with a merchandise total under $\$ 50.00$. Shipments are F.O.B. Ann Arbor, Michigan. No COD's. Most products that we sell have a manufacturer's warranty. Free copies of warranties on these products are available prior to purchase by writing to CE. International orders are invited with a $\$ 20.00$ surcharge for special handling in addition to shipping charges. Non-certified checks require bank clearance.

Mail orders to: Communications Electronics," Box 1002. Ann Arbor, Michigan 48106 U.S.A. Add $\$ 7.00$ per scanner, radar detector or CB or \$12.00 per shortwave receiver for U.P.S. ground shipping and handling in the continental U.S.A. For Canada, Puerto Rico, Hawaii, Alaska, or APO/FPO delivery, shipping charges are three times continental U.S. rates. If you have a Visa or Master Card, you may call and place a credit card order. Order toll-free in the U.S. Dial 800-521-4414. In Canada, order toll-free by calling 800-22 1 -3475. WUI Telex CE anytime, dial 671-0155. If you are outside the U.S. or in Michigan dial 313-973-8888. Order today. Scanner Distribution Center* and CE logos are trademarks of Communications Electronics.' Ad \#070184-E \dagger Bearcat is a registered trademark of Uniden Corporation. Copyright 1984 Communications Electronics

OrderToll Free... call 1-800-521-4414

Communications ELECTRONICS"

Consumer Products Division

818 Phoenix - Box 1002 Ann Arbor, Michigan 48106 USA Call TOLL.FREE 800-521.4414 or outtide U.S.A. 313.973 .888

January 85
 Ratio
 Eectroniss
 Electronics publishers since 1908

Vol. 56 No. 1

SPECIAL FEATURE:	63	SERVICING VIDEODISC PLAYERS Part 2. This month, we lurn our attention to the CED system with a look at how a CED player works. John D. Lenk
BUILD THIS	41	RF SWITCHER Gets rid of your video-switching woes and that jumble of cables at the back of your set. Bob Grossblatt
	51	ATARI GAME RECORDER Part 2. This month we look at the software you need to operate the game recorder. David A. Chan and Guy Vachon
	59	HIGH-POWER FET AUDIO AMPLIFIER Part 2. More on this high-performance, high-fidelity FET amplifier. Reinhard Metz

TECHNOLOGY
 8 VIDEO ELECTRONICS
 Tomorrow's news and technology in this quickly changing industry.
 David Lachenbruch

CIRCUITS AND
COMPONENTS
14 SATEllite tV
TVRO components. Bob Cooper, Jr.
75 SATELLITE-TV ACCESSORIES
Add-on devices. Marc Stern
33 NEW IDEAS
Multiple-outlet control circuit.

47 ALL ABOUT THERMISTORS
Learn more about how thermistors work, and how they are used. This month, we'll look at the basics. Harry L. Trietley
67 DESIGNING WITH LINEAR IC's
Part 8. Op-amp based sinewave, square wave, and triangular-wave generators. Joseph J. Carr
79 HOBBY CORNER
A versatile expansion module for your calculator. Earl "Doc" Savage, K4SDS
85 STATE OF SOLID STATE
Get rid of some of those house keys with all electronic lock. Robert F. Scott
87 DRAWING BOARD
Doing division with the 4089 , and more!
89 DESIGNER'S NOTEBOOK
How to protect audio circuitry from overloads. Robert Grossblatt

VIDEO

91 SERVICE CLINIC
A look at kit building. Jack Darr

RADIO

83 COMMUNICATIONS CORNER
"Phantom" power. Herb Friedman

COMPUTERS

 following COMPUTER DIGESTpage 82 A machine-code development system for your $\mathrm{ZX}-81$, expanding the VIC-20, Building the BioBox, and lots more!

EQUIPMENT REPORTS

28 Radio-Shack Model 4 Personal Computer
31 Computer Accessories P12 Power Director

DEPARTMENTS

114 Advertising and Sales Offices
114 Advertising Index
115 Free Information Card
22 Letters
94 Market Center
38 New Products
10 What's News

ANNUAL INDEX

JANUARY—DECEMBER 1984
To present the maximum number of articles to our readers. we have not published the Annual Index as part of this issue. A 4 -page brochure containing this index is available for those who need one. To get your free copy. send a stamped self-addressed envelope (legal size) to:

Radio-Electronics

Annual Index
45 East 17th Street
New York, NY 10003
Any requests postmarked on or before April 30 are free. After that date there is a 50c fee. Questions and comments about anything other than the Index that are included with your request cannot be handled. Send them separately to our Editorial Offices.

Buying our reputat

ion just got easier:

CIRCUITMATE

4n

Cover 1

These days, the home TV has become much more than a device for viewing broadcast TV. Cable-TV, pay-TV, videocassette recorders, videodisc players, videogames, and personal computers all make use of the TV for display. That means a tangle of wires, and a constant hooking up and unhooking of connectors-unless you have a device like our RF switcher. To learn more about the switcher, including how to build it, turn to page 41 .

Next Month

ON SALE JANUARY 17

STEREO-TV

Stereo TV is here at last! Next month, we'll look at the technical standards that have been adopted to make it all possible.

OSCILLOSCOPE UPGRADE

Add a video-sync separator to your oscilloscope.
UNIVERSAL CASSETTE INTERFACE
Record your programs on cassette tape via your computer's RS-232 port.

RESISTOR AND CAPACITOR SELECTION

All about the many different types of resistors and capacitors, and when and where each type should be used.

AND LOTS MORE!

Radio Electronics

Hugo Gernsback (1884-1967) founder M. Harvey Gernsback, editor-in-chief Larry Steckler, CET, publisher

EDITORIAL DEPARTMENT

Art Kleiman, editor
Brian C. Fenton,
technical editor

Carl Laron, WB2SLR
associate editor
Robert A. Young, assistant editor
Julian S. Martin, editorial associate
Byron G. Wels, editorial associate
Jack Darr, CET, service editor
Robert F. Scott,
semiconductor editor
Herb Friedman,
communications editor
Earl "Doc" Savage, K4SDS, hobby editor
Bob Cooper, Jr. satellite-TV editor
Robert Grossblatt, circuits editor
David Lachenbruch,
contributing editor
Lou Frenzel, contributing editor
Bess Isaacson, editorial assistant

PRODUCTION DEPARTMENI

Ruby M. Yee, production manager
Robert A. W. Lowndes,
editorial production
Dianne Osids, advertising production Karen Tucker, production iraffic

CIRCULATION DEPARIMENT
Jacqueline P. Weaver, circulation director
Rita Sabalis, assistant circulation director

Jacqueline Allen, circulation assistant

Cover photo by Robert Lewis

Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literalure.

Microfilm \& Microfiche editions are available. Contact circulation depar"ment for details.

Advertising Sales Offices listed on page 114.

77 • 0.3\% Accuracy

- Manual or Autorange
- 10A + mA Range - Beeper
- "Touch-Hold" Function

WE CARRY A FULL LINE OF FLUKE MULTI-METERS. IN STOCK NOW

Sale ends Jan. 85

BECKMAN'S

 CIRCUITMATE ${ }^{\circ}$ ALL UNDER $\$ 100$

VIDEO News

DAVID LACHENBRUCH
 CONTRIBUTING EDITOR

- Super VCR. Although some firms are now introducing VCR's in the new 8 mm video format, many Japanese video companies have lost their enthusiasm for the new small tape and instead are working to develop $1 / 2$-inch recorders of vastly improved quality, while retaining compatibility with existing formats. While the original thought behind 8 mm was to develop miniaturized units that will provide quality equal to $1 / 2$-inch, those companies instead are seeking to apply the new 8 mm specifications to $1 / 2$-inch tapes and come up with vastly better quality in the older compatible formats.

Those projects are still closely guarded secrets, but they are aiming at a home machine capable of 400 lines of horizontal resolution, as compared with about 250 on today's VCR's, and a 50-55 dB signal-to-noise ratio, up from 40-45 today. Being explored is the use of high-band color, similar to that used in broadcast VTR's, along with metal tape, new heads, and highly integrated electronics. Both the VHS and Beta groups are working toward these super VCR's, which could be ready in about two years. One of the goals is to make the new system far superior to anything that could be accomplished within the 8 mm video format, thereby calming any fears that 8 mm will take over as the standard for home decks and keeping it relegated to the status of a system for portable use only.

The key to any improved $1 / 2$-inch system must be compatibility, according to Shizuo Takano, Managing Director of Video Products for JVC, who is known as the "father of VHS." Takano envisions the current $1 / 2$-inch formats existing for many years, and being flexible enough to encompass many signal improvements. Takano recently told us: "If a completely new format is ever necessary, it should be when the broadcasting system is changed"-for example, to a widescreen high-definition system.

- Cassettes that communicate. Borrowing a page from 8 mm , the Video 2000 VCR system
developed by Philips and Grundig in Europe uses a notched cassette to let the recorder know how much tape it contains, so that the display panel on the VCR can show the time remaining in the cassette. The 8 mm videocassette specifications, developed by a 122-company committee in Japan, provides for similar "recognition holes which make an automatic detection of such parameters as kind of tape and tape thickness possible."

The use of notched videocassettes may soon become universal. The VHS group is now exploring whether to add such notches to standard $1 / 2$-inch cassettes, and undoubtedly the Beta proponents are working on a similar project. Such a notched cassette could tell the VCR of the future whether the tape is of an oxide or metal type and direct it to make automatic adjustments in bias and signal processing, retaining compatibility of any future "super VCR" with current tape types.

A new VHS recorder developed by Grundig for the European market uses a somewhat similar cassette identification system to cue a taperemaining indicator on the VCR. Instead of notches, that system involves stick-on bar-code symbols, which are read by the machine as the tape is loaded. The Grundig VCR also contains a special security system-the user punches in any four-digit code on the keypad. After the cassette is loaded, the machine won't play unless the code is re-entered-as a matter of fact, unless the code is re-entered the cassette can't even be removed from the recorder. A user who forgets his security code can have the machine unlocked only by taking it to an authorized Grundig service station with proof of purchase. A sticker on the recorder notifies prospective burglars that the VCR is totally useless without the four-digit security code.

The Grundig recorder, which is compatible with other VHS machines but uses a "U"-type wraparound the head drum instead of the standard VHS "M"-wrap-is expected to be available eventually in the U.S.

R-T

What's News

Library of Congress receives Compact Discs

The Compact Disc Group-in a special presentation last July 25presented more than a thousand compact digital-audio discs to the Library of Congress. The presentation included every compact disc released in the United States to that date.

The Compact Disc Group is composed of leading equipment and record manufacturers, united to educate the public and create further awareness of the distor-
tion-free sound of the laser-read Compact Disc.

The discs were officially presented to Deputy Librarian William J. Welsh by Leslie Rosen, Director of the Compact Disc Group. An 1897 Berliner recording of John Philip Sousa's "Stars and Strips Forever," recorded just 13 days after Sousa composed the work, was compared with later renditions, the finale being a Compact Disc recording.

WILLIAM J. WELSH, DEPUTY LIBRARIAN of the Library of Congress, receives a Compact Disc from Leslie Rosen, Director of the Compact Disc Group. Toward the rear, from left to right, are: John L. Broderick, Deputy Librarian for Research Services, Roger Nichols, recording engineer ard producer, Robert Saudek, Chief of the Motion Picture, Broadcasting and Recorded Sound Division of the Library, and RCA recording artist Larry Elgart.

13 FCC call areas of the United States. (More than one VEC may serve in a given call area.) The League is, accordingly, calling for volunteer examiners. Those must hold advanced or extra class licenses. Advanced class license holders may administer only the exam elements required for the technical license; Extra class licensees may administer all written element and international code tests. (Novice licenses will continue to be given by novice examiners under the new novice rules.)

Applicants need not be members of the ARRL. They must be at least 18 years old, hold advanced or extra class licenses, and have no record of license suspension or revocation.

If you qualify and would like to be a volunteer examiner in ARRL's VEC program, you may request an application by writing to Volunteer Examiner Accreditation, American Radio Relay League, 225 Main St., Newington, CT 06111.

Semiconductor shortage

 eases up in 1984The year-long semiconductor shortage, which peaked in January 1984-when orders overran shipments by more than 50 percentwas reported to be dropping off by early Fall 1984. Some parts, such as microprocessors, were still reported in short supply but the shortage of older products had declined sharply.

Part of the greater availability of many types of semiconductors may have been due to the seasonal summer slowdown in sales, especially of personal and home computers. In June, 1984, orders outstripped shipments by 15 per-cent-in July the difference was down to 6 percent.

R-E

LITTLE THINGS MEAN A LOT

Being the first company to make solderless breadboards isn't necessarily what makes us the best. It's all the little things you don't see, like our spring clip terminals, that make AP' PRODUCTS ACEBOARDS so big on reliability.

From our larg. est ACEBOARD with over 5000 tie points, to a single tie point block, our spring clip terminals give you nothing but good, solid contact on every connection. They accommodate a wide variety of leads and have the best electrical properties, because our spring clips are solid alloy, not plated nickel. We've even developed enough normal force to break through any oxides which could occur on solder plated leads. You've come to trust our test clips for the same reason.

Since one bad connection can ruin a whole circuit, we pay close attention to how well our spring clip terminals sit within the insulator cell areas.
Spring clip edges are never exposed at the insertion window.

Leads
won't buckle, clips won't oxidize, it all adds up to longer life. Even from the out- see there - side there's more is more than a presto an ACEBOARD sure sensitive mount. than meets the It also insulates to prevent eye. Our durable shorts and seals the botAcetal Copolymer tom of the individual plastic body is a spring clip cells. good insulator with excellent If solder shavings from dielectric properties. And special manufacturingtechniques in the insertion of the contacts into the plastic body insure that your Breadboard will always remain flat. No skimping or planned obsolescence here. Again, just good solid contact on every connection. Turn our breadboard body over...and you'll discover another key to it's reliability. The double-sided foam you'll

ACEBO
sizes. It's also our commitment to you that if your ACEBOARD doesn't

For the name of the
distributor nearest you.
call TOLL FREE (800) 321.9668.
(In Onio. call collect (216) 354 -2101)

A P PRODUCTS INCORPORATED

9325 Progress Parkway, Box 540
Mentor, Ohio 44060. [216] 354-2101
TWX: 810-425-2250
in Canada, call Lenbrook Electronics • (416) 4777722
CIRCLE 76 ON FREE INFORMATION CARD

This coupon is worth 10% off the purchase price of any size ACEBOARD or Breadboard product. Offer expires 2/28/85.

Your Name

Address

City

\qquad State \qquad Zip \qquad

Dealer Name \qquad
ACEBOARD \#

MODEL Y-212
$\$ 461.00$
DC to $20 \mathrm{MHz}, 1 \mathrm{mV} /$ div, Dual Trace
Feature 6" Rectangular CRT Full 2 year parts and labor warranty.

플 Polaroid CR-10 Camera

Now you can get an instant picture in black \& white or color from any oscilloscope screen. Includes CRT hood.
*Large hoods also available to fit computer terminals and CAD/ CAM screens.
$\$ 369.00$
GLOBAL SPECIALTIES
TRIPLE OUTPUT POWER SUPPLY

MODEL 1301
$\$ 219.00$

- Fully regulated triple output
- Fixed 5VDC, 1 A
- V1 + 5 VDC to 18 VDC .5 A
- V2 - 5 VDC to 18 VDC .5A
- Fully automatic current limiting
(Л) Electro mpustaies inc

(1) | DC POWER |
| ---: |
| SUPPLY |
| $\$ 125.00$ |

MODEL 3002NO-30 VOC/O-2A

model v-650F
$\$ 956.00$
DC to 60 MHz , Dual Trace Delayed Sweep

-

MODEL \boldsymbol{v} - 1050 F

$\$ 1276.00$

DC to 100 MHz , Quad Trace, Delayed Sweep.

- All prices include full set of factory probes - up to $\$ 120.00$ value.

GLOBAL SPECIALTIES

- Senses state of node, presets pulse polarity
- Short circuit protected circuit powered
- Handheld digital signal injector

- Length $=7.4^{\prime \prime}$
- Width $=4.5^{\circ}$
- 14 pin IC capicity $=12$
- Terminals $=248$
- Tie points $=1240$

MODEL PD-102
\$34.95

LP-1

digital logic probe
\$19.95

- Use to 50 ns .10 MHz
- Circuit powered, portable
- Compatible with most logic families
digital capacitance meter

- Battery operated
- 31/2 digit LCD display
- Range 1 PF to 2,000 UF
- 0.2\% basic accuracy

MODEL 3000
$\$ 139.00$

- Master Charge	ADD FOR SHIPPING AND INSURANCE
- VISA - COD - -	\$0 to \$250.00 \$4.50
- Money Order	\$251.00 to \$600.00 \$ $\mathbf{6 . 5 0}$
- Check	\$501.00 to \$750.00 \$8.50
	\$751.00 to \$1000............. . $\$ 12.50$
COD's extra (required 25\% deposit)	over $\$ 1000.00$. $\$ 15.00$

RAG ELECTRONICS, INC. / 21418 Parthenia Street / Canoga Park, CA 91304 / 1-818-998-6500

 Electro industries. inc
 GIANT 14th ANNIVERSARY SALE!

FLபKE
 70 SERIES MULTIMETERS

- Analog Display - Rotary Knob - Volts AC \& DC • Resistance to - $32 \mathrm{M} \Omega \bullet 10 \mathrm{Amps} \cdot$ Diode Test - 3200 Counts Fast Autoranging - Function Annunciators in Display - PowerUp Self Test - $2000+$ Hour Battery Life w/Power Down "Sleep Mode" - New Test Leads - VDE \& UL Approval
$73 \quad \$ 85.00$
- 0.7\% Accuracy
- Autorange Only
- 10 Amp Only
$75 \quad \$ 99.00$
- 0.5\% Accuracy
- Manual or Autorange
- 10 A + 300 mA Range
- Beeper

$77 \quad \$ 129.00$

- 0.3\% Accuracy
- Manual or Autorange
- 10 A + mA Range
- Beeper
- "Touch-Hold Function

WE CARRY A FULL LINE OF FLUKE MULTI-METERS, COUNTERS, AND DIGITAL TEMPERATURE METERS

41⁄2 DIGIT MULTIMETER

- Frequency measurements to 200 KHz
- dB measurements
- Basic dc accuracy 0.4\%;
- $10 u \mathrm{~V}, 10 \mathrm{nA}$ and $10 \mathrm{~m} \Omega$ sensitivity
- True RMS
- High-speed Beeper
\$349.00
inaten
PORTABLE OSCILLOSCOPES
MODEL 8060A

z

正
(30.

R12

MODEL SS-5705
DC to 40 MHz
Vertical and horizontal deflection accurate within $\pm 2 \%$. CRT acceleration voltage 12 KV .3 channels,
6 traces. High precision calibrator
($\pm 1 \%$). Fastest sweep rate: 10 ns.

- High sensitivity $1 \mathrm{mv} / \mathrm{div}$
- CH_{1} signal output
- Beam finder
- Delayed sweep
- Alternate time base
 Alernate time

MODEL SS-5702
$\$ 535.00$
DC $-20 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{div}$
Dual trace
6 inch rectangular internal graticule CRT.
Includes 2 each $\times 1 / \times 10$ probes and full factory warranty, 2 years on parts, labor and CRT.

Audio Sine/Square Wave Generator

- Distortion from <0.03\%
- 10 Hz to 1 MHz

LAG-120A
$\$ 259.95$

MODEL 3010

- Sine, squere
- Variable and fixed TTL outputs
- 0.1 Hz to ${ }^{\text {Y }} \mathrm{MHz}$ in six ranges
- Typical distortion under 0.5% from 1 Hz to 100 kHz
- Variable DC oftset
- VCO inpuif for sweep tests

MODEL WD-755 $\$ 259.00$

- 5 Hz to 125 MHz
- 8 Digit LED Display
- Period Measurement 5 Hz to 2 MHz
- Totalizes to 99,999,999 Plus Overflow
- Frequency Ratio Mode
- Time Interval Mode
- Switchable Attenuator $\&$ Low Pass Filter

RELAY YOA . . 5-way protection

$\$ 49.00$

model wr-532A

- Fast relay opens input circuit on overload
- Lamp indicates when relay is open
- Easy-access battery compartment and testlead storage
- High-accuspacy. $\pm 2 \%$ DCV, $\pm 3 \% \mathrm{ACV}$
- 3-to-1 ranges (like VTVM)
- Large, 5 $\mathbf{h}^{\prime \prime}$ mirror meter
- Front pernel and meter scales coded in 3 colors for quick function identification
- Battery-condition indicator for overload protection circuit

$\$ 145.00$
MODEL 3PNIOIOY
rag carries the complete staco VARIABLE TRANSFORMER LINE
CALL US WITH YOUR REOUIREMENTS.

SATELLITE TV

Changes in the TVRO industry

$\boldsymbol{\partial}$

b

FIG. 1

IN THE LAST INSTALLMENT OF THIS COLumn, we looked at the business opportunities presented by the home-TVRO industry today. We also took a backward look at the basic hardware contained in the system with a sort of "then-andnow" comparison of how hardware developments have paced rapidly expanding equipment sales. This time we'll look at the individual components that make up those systems.

TVRO components

The first home-TVRO systems, bought by genuine consumers (not "technology buffs" who'd purchase anything new and exciting) were extremely cumbersome to operate. Not only that, one segment of the system was missing from the equipment line-up: the "dish mover" or motor-drive unit.
"Publisher, CSD magazine
(It had not yet been invented, nor would it be until late in 1980.)

Early enthusiasts who built or assembled their own systems were seldom satisfied to watch programming from a single satellite for long. After all, part of the fun and excitement was being able to "cruise the skies" looking for action. With cable programming concentrated on a single satellite (F1 in 1980), the 20 or so channels emanating from its transponders were entertaining, but were hardly all that was in the sky.

Those early TVRO owners talked glibly about picking up 30 or 40 channels as if they were all easily accessible from an easy chair. Of course, they were not. In fact, to receive programming beyond the first 20 or so channels, somebody had to go out in the yard and "wrestle" with the antenna because the original mount was of

BOB COOPER, JR.* SATELLITE EDITOR

NTE Flameproof Resistors are the latest addition to NTE's line of quality components. They're designed to provide you with a premium quality replacement device ... that won't flame out or short even under the most severe overloads.
Our resistors range in capability from $1 / 4$ Watts to 25 Watts with resistance values from . 10 to 1.5 Megohms. They're totally noncombustible with a metallic resistance material between a nonresistant core and a special ceramic outer cover.
NTE Flameproof Resistors are the ideal replacement components for electronic
games, telecommunications, medical, data processing, military, broadcast and home entertainment equipment.
Don't take chances with your expensive equipment. Use NTE Flameproof Resistors ... they handle the current. Look for NTE's full line of quality replacement parts in the bright green polybags and cartons at your nearest distributor.

Only NRI Gives You This Kind of Training and Equipment. Only NRI Cives You So Much Professional Preparation For a TV/Audio/Video servicing Career.

Build this 25" Heath/Zenith Color TV with 112 channel tuning system, infrared remote control, advanced sound system, and in-set space phone.

Get complete, thorough instruction in the theory, servicing, and repair of TV, VCR, video disc players, audio equipment, AM/FM receivers, antenna systems, home video cameras, projection TV, and more with 65 easy-todigest, bitesize lessons.

Only NRI gives you so much practical training with equipment you learn on and keep. You learn by doing. That's the way to make it interesting, that's the way to make it enjoyable, that's the way to get the hands-on experience and know-how you need.

Hands-On Training For Real Bench Experience and Priceless Confidence

You start with experiments and demonstrations on the unique NRI Discovery Lab. You learn basic circuit wiring and soldering techniques, and then quickly move on to more advanced concepts as you come to understand electronic theory, solid-state devices, digital systems, and microprocessors. You learn by actually building and observing the action of circuitry you'll be working with in real-life situations.

Exclusive NRI Training On Videotape

In addition to profusely illustrated lessons, you get NRI's Action Audio cassette to "talk" you through the use and operation of the professional digital multimeter you receive as part of your equipment. Even more exciting are your NRI Action Videocassettes...videotaped lessons that show you graphic presentations of electronic systems, vivid closeups of servicing techniques and professional "shortcuts" to study and replay as often as you want.

You Get TV, VCR, DMM and More Equipment To Keep

You also build your own $25^{\prime \prime}$ Heath/Zenith color TV, a state-of-the-art unit that includes infrared remote control, a Time Control Programmer, and the incredible Advanced Space Phone that lets you telephone from your chair. Using the videocassette recorder that's included as part of your training, you learn how to adjust, service and re-
pair these fast-selling units. Your front-loading VCR features up to 6 -hour recording capacity, remote control, and programmable touchbutton tuning.

The digital multimeter you receive is a truly professional instrument. You use it in the experiments throughout your course and as a key servicing tool on the job. Using the meter along with the NRI Discovery Lab, you'll learn how to measure voltage, current and resistance and how to diagnose all types of servicthe world. It has pioneered and refined the teaching techniques that make learning at home the NRI way
one of the most economical and effec. tive methods ever conceived. You learn at your convenience as a class of one, backed by skilled NRI instructors and carefully designed lessons that take you a step at a time toward your goal. No time away from your job, no night school grind, no classroom pressures. Yet your training is thorough and complete, with a foundation of hands-on experience unequalled by any other training organization.
ing problems.
 for Service and Maintenance

The art of TV/Audio/Video servicing has taken quantum leaps into the future. Now, successful technicians must understand advanced concepts like digital control, electronic tuning, laser video discs, microprocessors, and more. NRI gives you the training you need for success...state-of-the-art concepts and practical, hands-on experience working with the kind of equipment you'llencounter on the job.

7 Decades of Teaching Electronics Skills At Home

NRI is the oldest, largest, and most successful school

Our 104-page catalog gives you all the details. In it, you'll find a summary description of every lesson, and photos and specifications for and photos and specifications for your course. You'll also learn about other fascinating career opportunities in the world of electronics... Microcomputers, Industrial Electronics including robotics, Communications, and more.

Mail the postage-paid card today for your free copy. See how completely and how thoroughly NRI gets
you started on your pletely and how thoroughly NRI gets
you started on your of its kind in

Send For Free Catalog Covering 12 Electronics Courses

SATELLITE TV
continued from page 14

titude of field failures to get suppliers thinking about the strains being placed on the system.
To complicate things, just as the mechanics of the system were being ironed out, a firm in Tulsa, Oklahoma introduced a drive system with a built-in programmable memory. The user simply pro-
grammed several satellite locations into the unit using a two- or three-digit code and the control box "remembered" where the satellites were.
As you might expect, that development brought with it an entire new wave of problems. Memories would fail (forget) when there was a power failure or glitch. Dish positioning would be knocked off by a degree or two by a glitch. Power surges would wipe out memory entirely, and the user

SATELLITE TV/

The First Five Years!

TVRO dealer "Starter Kit" available

Bob Cooper's CSD Magazine has arranged with a number of TVRO equipment suppliers to provide a singlepackage of material that will help introduce you to the world of TVRO dealership. A short booklet written by Bob Cooper describes the start-up pitfalls to be avoided by any would-be TVRO dealer, in addition, product data and pricing sheets from prominent suppliers in the field are included. That package of material is free of charge and is supplied to firms or individuals in the electronics service business as an introduction to the 1984/85 world of selling TVRO systems retail.

You may obtain your TVRO Dealer Starter Kit free of charge by writing on company letterhead, or by enclosing a business card with your request. Address your inquiries to: TVRO STARTER KIT, P.O. Box 100858, Fort Lauderdale, FL 33310. That kit not available to individuals not involved in some form of electronics sales and service.
would be forced to re-program the memory. The problems seemed endless.

Fortunately, virtually all those early problems are now behind us. Modern drives have memories that remember, infrared or UHF wireless remote-controls, and "floating" gimbel-type brackets that transfer the load of the dish away from the motor-driven jack screw. They also have the ability to interface to fully remote-controlled receivers, as well.
As recently as 1983, dealers were reporting in annual TVRO-dealer surveys that "dish movers" were their most frequent problem causers. That's not true anymore. However, pricing still continues to be surprisingly high for that portion of the system.
At dealer pricing levels, simple "east-west" systems with a single switch control run in the $\$ 300$ and up range. More elaborate systems with memories can cost twice that amount, while those with full re-mote-control capabilities may cost a dealer.
Perhaps the most significant signs of maturity in the TVRO industry are the warranties now attached to motor-drive and control systems. One year is standard, and some offer even longer fullcoverage protection.

Next month, we'll look at more component changes.
paid. Enter order to: CSD Anthology, Radioping charges preMagazine, 200 Park Av. S., New York, NY 10003; or call 305-771-0505 for credit card orders ONLY

Shipping charges pre-

SEND CSD ANTHOLOGY/2 Vols. + CSD Bonus. SEND CSD October '84 Special Issue ONLY.
NAME \qquad COMPANY
ADDRESS
CITY \qquad STATE \qquad ZIP
Payment: $\$ 60$ US funds (Anthology + Bonus), $\$ 15$ US funds CSD Oct. ONLY; payable "CSD ANTHOLOGY.

OK's Hot Tip for Desoldering Problems

SA-6 DESOLDER IRON

Revolutionary new electric desoldering iron combines the ease and portability of a hand-held, manual, desolder pump, with performance of an industrial desolder station. This unique AC powered compact tool features portable, one hand desoldering eliminating the need for separate soldering iron and desolder pump. No shop air required Essential for all tool kits, field service technicians, and repairmen, as well as production applications. Vacuum chamber is easily removed for cleaning or replacement. Replacement tips available. Tool is supplied with SAT-6-059 tip, diameter. 059 inch $(1,5 \mathrm{~mm})$.
FEATURES:

- Self contained suction power and heating element.
- Economical
- Lightweight $40 z$. (113gms)
- Compact size 101/a inches (26 cm).
- Replacement nozzles available

MODEL NO.	INPUT VOLTAGE	
SA-6-115	$115 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$	
SA-6-230	230V AC 50/60Hz	
NOZZLE	NOZZLE HOLE DIAMETER	
	INCH	
SAT-6-059	.059	
SAT-6-070	.070	

3455 Conner Street, Bronx, New York, 10475, U.SA Telex 125091 OK NYK Felex 232395 OK NY UR. Phone (212) 994-6600.

LETTERS

WRITE TO:

LETTERS

Radio-Electronics 200 Park Ave. South New York, NY 10003

CORRECTION

In "All About Power Supply Circuits", Radio-Electronics, July 1984, I believe an error exists in the schematic shown in Fig.4. The caption for that figure states that Figs. 3 and 4 are equivalent. Please note that diodes D1 and D2 are connected "across" the whole secondary of T1, whereas diodes D3 and D4 are "across" only one-half the winding. Therefore, $-V$ oul will be one-half that of $+V$ out, supposedly. However the circuit shown in Fig. 4 would not work well because the cathode of D3 is grounded.

1 enjoy your magazine very much, as long as you do not go "computer happy." I was a fan of Popular Electronics, but they went crazy over computers and that turned me right off (l'd rather switch than fight)! Please, minimize your articles on computers. Let's continue to have good material on phone accessories, control circuits, timer circuits, and such. along with explanations of how various circuits function. For example, the "All About Power Supply Circuits" article was great. EDWARD BALASKI Torrington, CT

An error certainly does exist in Fig. 4. The caption describes what was supposed to be there. But, as you indicale, diode D3 is shown incorrectly. Its cathode should be connected to the bottom of the transformer.-Editor

SERVICE MANUAL NEEDED

I enjoy your magazine very much and I eagerly await the first of the month for the latest issue so that I can see what new projects I can build and find what new information I can use.

Perhaps some of your readers can help me. I have a Sansui $A U$

Versatile Lab Power Supply

- 0-30 VDC at 0-2A - Excellent Regulation - Ripple \& Noise - 500 uV RMS - Built-in Short-Circuit and Overload Protection
Model 3002A features continuously adjustable current limiting and precision constant voltage/constant current operation with "automatic crossover." This lab-grade unit can also be used as a current regulated power source. Options: 10-Turn Voltage and Current Controls, \$25.00 ea. (can be ordered individually)
Also available...TRIPLE MICHTY-MITE LAB POWER SUPPLY: Three Fully Regulated DC Outputs; two $0-25 \mathrm{~V} / 0.5 \mathrm{~A}$ and one fixed 5V/3A, Variable Tracking \& Independent Modes, Dual Panel Meters. Other models to 60 VDC , to 12A.

TERMS: Check, Money Order or COD. COD's \$2.00 extra. Add $\$ 3.50$ for shipping \& insurance in 48 states. Please contact our Sales Department for other shipping rates. Illinois residents add 7% sales tax.

Free Literature On Request

ELECTRO INDUSTRIES
4201 W. IRVING PK., CHICAGO, IL 60641 312/736-0999

Cabum convoring Pilce SuASHITiS

-60 Channel Capacity

- P.L.L. Tuning
- TV On-Off Feature
- 6 Channel Memory
- Infra-Red Wireless Remote Control onLY 5995
FACTORY REFURBISHED

- MasterCard \& Visa Add 5\%
- Checks - Allow 14 Working Days
- Freight Charges: Sent Collect
- Order 20 or More - Freight Prepaid
- Special Price on New Factory Fresh Units - $\$ 69.95$
- Warranty Not Valid After 15 Days From Receipt

OTHER MODELS ALSO AVAILABLE
Jerrold JRX-3 \$49.95*
Jerrold RSC-3 \$39.95*
Jerrold JRX-3 $\$ 69.95^{\circ}$

- Recondit:oned Units With 30 Day Warranty

Phoenix Electronics
1 Midwood
Allendale. NJ 07401 (201)848-8229

3900 amplifier that is not operating. I need a schematic or, better yet, a service manual for the unit, but the Sansui distributors are unable to get it for me. In addition, neither Sam's Photofact nor the Radio College of Canada list the appropriate schematic. I am hoping someone can help me.
BRIAN COLLINS
3179-138th Ave.
Edmonton, Alberta, Canada T5Y 1R1

EXPANDING THE ZX81

I was working on a project in which an output line is turned alternately high and low under computer control using a Timex/ Sinclair 1000. When Neil Bungard's article on interfacing the ZX8I appeared in the July 1984 issue of Radio-Electronics, I felt a modification of his circuit was just what I needed.

I sat down at my computer to test the program I wrote to accom-

EXPLORE THE ROBOTICS AGE

by reading Robotics Age magazine. Discover industrial, commercial and experimental robotics. Enhance your technical skills. Robotics
 Age explores technological applications, rescarch and current events in:

- Microprocessor engineering
- Real-time control software
- Mechanics and kinematics
- Vision...and other senses
- Robot communications
- Mobility
- Artificial intelligence
- Practical techniques

Robotics Age is your monthly journal of intelligent machines.

Subscribe today!

YES!
 Sign me up TODAY for my personal subscription to Robotics Age, The Journal of Intelligent Machines.

Also available at many local book and magazine dealers.
plish the task. Immediately I ran into trouble. In spite of using only even-numbered addresses as Neil has advised, my program crashed. Experimentation finally revealed that the program ran fine using odd-numbered addresses. Had Neil mislead his readers? No! The problem arose because he only told half the story.

There exists somewhere in the innards of the ZX81 an NMI (nonmaskable interrupt) generator. That generator must be on in the slow mode, but off in the fast mode. Evidently Sinclair uses the address line $A \emptyset$ to turn that generator on and off. I was operating in the fast mode, so every time the computer executed an OUT instruction to an even address, it turned on the NMI generator, causing a crash. Neil must have been operating in a slow mode, so every time his computer executed an OUT instruction to an odd address, it turned off the NMI generator, causing a crash.
The rule then is: In the fast mode, out instructions should use only odd addresses, but in the slow mode, out instructions should only use even addresses.

Another caution: The monitor uses hexadecimal output addresses FF, FE, and FD, and hexadecimal input address FE. That means that it will activate output 8 on IC3 and IC4. That could result in undesired outputs and inputs by the normal running of the monitor. Neil has guarded against that by the decoder circuit using IC9 and ICI-c. He also has left open output 8 on IC3 and IC4.
WALTER E. STYLES
Richmond Area Timex/Sinclair Users Group
Chester, VA

MANUAL NEEDED

I received some old equipment from friends, but they did not have the operating manual. Perhaps there are some Radio-Electronics readers who know where I can get a manual and hopefully a schematic for an Electronic Measurement Corp. tube and transistor Tester, model 215.
TOM BRACLETT
22258 Gregory
Dearborn, M1 48124

SATELLITE STEREO DEMODULATOR

The correct telephone number of Video Control, who is offering kits of parts for the satellite stereo demodulator described in the October issue of Radio-Electronics, is (206) 693-3834

ANTIQUE RADIO CLASSIFIED

There is now a publication that may interest the growing number of antique-radio collectors. Beginning in September, 1984 Antique Radio Classified will feature free classified ads for buyers, sellers, and traders of old radios and related items.
Antique Radio Classified will be published nationally each month and will also contain coverage of upcoming radio conventions, meetings, and flea markets for the antique-radio collector.
GARY B. SCHNEIDER
Publisher
Antique Radio Classified
9951 Sunrise Blvd.
Cleveland, OH 44133

INFORMATION EXCHANGE

The Data Processing Amateurs Society of Quebec is the oldest such association in Eastern Canada.

The goal of the association is to have an interesting hobby, and together to increase our knowledge and experience. We do our best to help beginners with meetings, courses, demonstrations, etc.

Our members asked us to try contacting other clubs or associations in Quebec and surrounding areas to exchange experiences, information, and friendship. As over 30% of our members are using modems, we succeeded in organizing our own telecommunication system: TELESAIQ 11 . We are learning a lot with this project, and it is not over, because we do not have full services.

We are negotiating with other systems and networks to exchange services.

Since yours is one of the most popular publications in the field, we thought of turning to you for assistance. We would appreciate if you could help us by publishing our address so that other similar
organizations could contact us.
GERALD BOULET
SIAQ
Societe D'Informatique Amateur du Quebec
C.P. 9242

Sainte Foy, Quebec, Canada GIV $4 B 1$

SCHEMATIC NEEDED

I recently acquired a $B \& K$ model 1075 TV Analyst in need of repair. I know it needs a horizontal width/ frequency coil, but I have no other
information on the unit itself. I would hope that one of your readers has a schematic and parts list for that older device. I am a student in electronics and would greatly appreciate any and all help other readers could provide.
TERRY B. SCHWARTZ
1864 Eleanor Ave.
St. Paul, MN 55116

POWER-SUPPLY CORRECTIONS

The article, "All About Power-
Supply Circuits," (Radio-Elec-

tronics, July, 1984) contained several significant errors and omissions:

1. The VA rating calculation for a power-supply transformer is not correct for the circuits shown. It should be: Secondary RMS voltage \times DC current $\times 1.2(\mathrm{CT})$ or 1.8 (bridge). Also, the transformer regulation factor for the typical small hobbyist transformer is $15-20 \%$, not the 10% stated.

2 . The PIV rating for the rectifiers is at least twice the second-
ary voltage, allowing for a safety factor.
3. 3-terminal regulators can rarely be used for their rated current unless "bolted to an anvil sitting on a block of ice." Without any heat sink, those popular 1-amp "tab" regulators are only good for about $100-200 \mathrm{~mA}$. The heat sink is what really determines the rating of most regulators.
4. A good-quality filter capacitor is important. Audio-grade capacitors, identified by their flimsy

VIEW 8 TRACES ON YOUR SINGLE OR DUAL TRACE SCOPE WITH THIS LOW COST DEVICE!!

Now you no longer have to spend thousands on an expensive multi trace oscilloscope - our single trace Hitachi scope combined with this module will allow you to view up to 8 simultaneously occuring analog o dime and amplitude relationship The time and amplude relationship. The MPX 101 may be used on any oscil loscope, whether single, dual or multiple traces. Its low cost makes it a particular tavorite for designers, iest ers, hobbyiss an reparmen who played signals in a timing diagram format. The controls on the front panel of the metal case allow you to vary amplitude and spacing of the displayed signals.

MODEL MPX101 FULLY ASSEMBLED \& TESTED!
 WARRANTY

- Made In The United States -

SPECIFICATIONS

Inputs: 8 signals plus ground via 9 input leads terminated with alligator clips
Bandwidth: $\pm 1 \mathrm{~dB}$ to 5 MHz
impedance: 10.9 K
Input Voltage: $\pm 5 \mathrm{~V}$ peak (diode clamped to ± 5 Volt supplies)
Output: Staircase waveform summed with input signals, $0-800 \mathrm{mV}$ full scale
Step Amplitude: Variable 0 to 150 $\mathrm{mV} / \mathrm{step}$
Signal Voltage: Variable 0 to
$150 \mathrm{mV} / \mathrm{step}$ @ 5 V input
Multiplex Rate: Switch selectable, 40 KHz or 4 KHz
Impedance: 50 Ohms
Power: 105-135 VAC @ 1 V a
Dimensions: $6.25^{\prime \prime} \times 3.25^{\prime \prime} \times$ 4.75" (W×H×D)

Operating Temperature: $0-40^{\circ} \mathrm{C}$
Weight: 1 lb .10 .5 oz .
Warranty: one year full replacement warranty from date of purchase
Lighted on/off power switch
Wood grain finished metal case
distributor and representative inquiries invited

VISA, MASTERCARD, AMEX TELEPHONE ORDERS ACCEPTED! 6 Herman Drive, E. Granby, CT 06026 \square 203/651-0285

CIRCLE 61 ON FREE INFORMATION CARD

September 1984) with interest. On the whole someone outside medicine might not find the article interesting. It is, however very informative. There is one error of note in Fig. 5, page 57. The radiograph (X-ray), is printed backward, making some of the labeling incorrect.

I mention that because I am a Radiographer by profession and things like backward X-rays really stick out.

Keep up the good work. I really enjoy your magazine.
RONALD I. BOHLAND, R.T.(R) Toledo, OH

EDITORIAL "AMEN"

I saw your editorial in RadioElectronics, September 1984. "When is a Change not a Change?", and I say AMEN! There are plenty of magazines that tell about computers-seems like they all do-and that is the sole reason I changed to Radio-Electronics a few months ago from another similar magazine. I am a circuit guy, not a button pusher. I realize that computers are great for the non-technical, but there are a lot of us who are technical. Anyhow you get the point.

That particular issue really rang the bell on articles. I liked "Sonic Motion Detector," (I have been looking for years for this), "Electronic Measurements in Medicine," "What's New in Batteries," "Squarewave Generator Circuits," and the departments were also of interest.

Congratulations! I think your courage will pay off!

CHARLES DEMING

Mariposa, CA

AMPLIFIER SCHEMATIC NEEDED

A few years ago, 1 brought a Lafayette LA-324A stereo amplifier from a friend. Last week it burned up due to a power overload. I am interested in rebuilding that amplifier, but the schematic diagram is missing from my records. Is there any reader that can help? I need a copy of the service manual or the schematic diagram. I'd appreciate any help from any source. ARTURO OTERO BRACERO
P.O. Box 2821-S, San Juan, Puerto Rico, 00903

HaMEr A.anomos For Field Service and Laboratory

HM605 60MHz Dual Trace US\$ 965,-
Sensitivity $5 \mathrm{mV}-20 \mathrm{~V} /$ div at $60 \mathrm{MHz}, 1 \mathrm{mV}$ at 5 MHz • Automatic peak-value or normal triggering to 80 MHz 。 Delay line • Variable sweep delay from $100 \mathrm{~ns} \cdot 1 \mathrm{~s}$. Timebase range from $2.5 \mathrm{~s} /$ div to max. $5 \mathrm{~ns} /$ div • Unique last-rise-time $1 \mathrm{kHz} / 1 \mathrm{MHz}$ calibrator \bullet Bright high-resolution 14 kV CRT.
HM204 20MHz Dual Trace USS 758,-
Sensitivity $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{div} \bullet 1 \mathrm{mV}$ at 5 MHz • Timebase range 1.25 s/div-10ns/div • Automatic peak-value triggering to 50 MHz Delay line e Variable sweep delay • Single sweep mode -Y-Output - Z-modulation - Overscan indicator Unique $1 \mathrm{kHz} / 1 \mathrm{MHz}$ calibrator.
HM203 20MHz Dual Trace • US\$ 605,-
Western Europe's best selling 29 MHz -Scope! Sensitivity 2 mV $20 \mathrm{~V} /$ div • Triggerbandwidth 40 MHz • Timebase range 0.2 s max. $20 \mathrm{~ns} / \mathrm{div}$
HM 103 10MHż Single Trace - US $\$ 410$,-
Small, compact service scope \bullet Sensitivity 2 mV - $20 \mathrm{~V} /$ div \bullet Timebase range $0.2 \mathrm{us}-0.2 \mathrm{~s} / \mathrm{div}$ • TV.V and TV.H triggering.
local unit of the American Cancer
Society and ask for American Cancer
Society and ask for Society and ask for
their free pamphlet. "Helpting Your Employees to Protect Themselves Against Themselves Again
Carcer." Start | your company on a policy of good f. health today!

American Cancer Society

Each year cancer strikes 120,000 people in our work force, and causes our economy to lose more th!an $\$ 10$ billion in earnings. Earnings that American workers micht still be generating if they had known the simple facts on how to protect themselves from cancer.

Protect your employees. your company and yourselt . . call your tocal unit of the

EquIpment Reports

Radio Shack Model 4 Computer

An 8-bit, Z80-based personal computer
the radio shack (ONE tandy Center, Ft. Worth, TX 76102) Model 4 is a personal computer that will run both TRSDOS and CP/M programs without the need to get into the guts of the computer and attempt some rather hairy and complex circuit retrofits. As such, essentially the Model 4 is a merger of the best features of Radio Shack's Model III and Model // computers.

The computer is available in three configurations: tape-based at $\$ 799$; one disk drive for $\$ 1099$; and two disk drives plus the optional RS-232 I/O for $\$ 1299$. We will concern ourselves only with the

Jerrold Cordless Cable T.V. Converter

 JERROLDMODEL LCC-58 (Specian)

Bü paecision

MODEL DM• 2802 \$4995

The DM2802 is the srrallest digital multimeter on the market. Its probe-style design makes it ideal for taking measurements in hard-to-reach test area.
Features Include:

- small size
"touch hold"
- complete autoranging

ELECTRONICS

770 Amsterdam Ave., New York, NY 10025

- Write for FREE 136 page Catalog

SHIPPING CHARGES For Order $A 0 D$ 25.100....................... 56.50 $\$ 100 \cdot \$ 500$ 3500 - $\mathbf{7 7 5 0}$ 3750 end up Parcel Post. MAstERCARO

Send Purchase Order, Check, Money Order or C.O.D. or Call Toll Free 800-223-0826 in N.Y. State (212) 865-5580

MEET THE MICROPROFESSOR

A portable learning center.
Learning shouldn't be limited to the classroom. That's why we made the MicroProfessor 'ighter and less bulky than the average textbook. Supported by easy-to-understand documentation, the MicroProfessor leads you through dozens of experiments. And with a wealth of accessories to choose from, including a printer, EPROM programming board and sound and speech synthesis, there's virtually no limit to the kinds of applications you can try your hand at
Custom tailored to a variety of educational needs.
Whether you're a computer novice or prodigy, interested in guided instruction or independent learning, the MicroProfessor will meet your educational objectives. A teaching tool without peer, the MicroProfessor
puts hundreds of hands on lessons in programming, system architecture and circuit design right at your fingertips. Your computer skills will increase dramatically as the MicroProfessor translates important concepts into practical experience.

Unique Microcomputer Products for Education

The most cost-effective instructional microcomputer on the market. Today, tight budgets are a fact of life and doubly so for educators and students. At under \$200.00 including Instruction Manual and AC Power Supply-less than half the price of any competitive product-the MicroProfessor is a very attractive educational resource.
For more information about putting the MicroProfessor advantage to work in your computer education, please write or call:

195 West El Camino Real, Sunnyvale California 94097
Outside California call (800) 538-1542
In California call (408) 773-8400
two-disk model because that offers the user the best value; the others are but way-stations on the way to two disk drives.

Highlights of the two-disk Model 4 include 64 K of RAN that can be user-upgraded to 128 K , automatic operation in the Alodel III mode by simply using Model III disks, and a llodel $\&$ mode that features an 80-column $\times 24$-line screen with normal and reverse video, a $4-\mathrm{MHz} \mathrm{Z80} \mathrm{CPU}$, and the
ability to run CP/M. Also, the computer will read and write tapes for the Alodel 100 "briefcase" computer.

The Nodel 4 is very similar in appearance to the Nodel III except for color and minor, though important, keyboard improvements. Replacing the "Mercedes gray" color of the previous mod-els-which looks great on a car but awful on a plastic cabinet-is the light beige color common to most

A breakthrough... Global Data Breakout Breadboards.

Now, transmission lines in any
pattern...
faster than
ever before!

Data Router Breakout Breadboards from Global Data represent a significant breakout box design innovation. With our solderless breadboard interface area, rewiring, testing and monitoring data transmission lines is as quick and easy as slipping a wire lead into a contact point. To change the routing, simply pull out the wire and insert it into another contact point. That's all there is to it.

You can reroute signals in any configuration, even split signals and multiple loopback connections. There is a wide variety of possible interface connections for up to 24 lines.

Choose from three Data Router models: Our basic 125 with the unique Global breadboard interface area, the 225 with 8 LED's for monitoring signals on any 8 lines, and the 325 with all
and out by the software. It can be used as straight additional memory, or all or part can be used to function as a simulated disk (RAM disk), or as a printer spooler. If you don't install the optional 64 K RAM expansion, the computer's TRSDOS operating system can use part of the basic 64 K of memory for both RAM disk and spooling. (Spooling is a way to print and use the computer at the same time; it avoids tying up the computer when printing.)

By itself the Model f is a formidable machine, but a complete package consisting of the Modelt, CP/M (from Montezuma Micro, Box 32027, Dallas, TX 75232), and Newdos 80 (for those who use Model III and Model I software) is hard to beat. Newdos 80 is available from Apparat Inc. (4401 South Tamarac Pkwy, Denver, CO 80237). The complete package is ideal for schools, small businesses, or anyone who needs a lot of computing power at a reasonable price. R-E

Computer Accessories P12 Power Director

End powerline woes, add powerline conditioning, and centralize control of your computer system with this device.

CIRCLE 6 ON FREE INFORMATION CARD

II YOUR (OMPUIIR SYSIIM IS IIKI most, one of its most apparent "features" is a maze of powerlines. Likewise, powering up your system might be a task worthy of a contortionist, what with all of the reaching and stretching required to hit all of the power switches. If so, you may be a candidate for a product like the P12 power director from Computer Accessories (7696 Formula Place, San Diego, CA 92121). In addition to alleviating the above conditions, the unit
provides line conditioning to guard against powerline glitches.

The power director

The power director provides three functions. First of all, it is a six-outlet power strip. Most computer installations have a common problem-the number of power cords exceeds the number of available power outlets. The power director allows your computer and all of its peripherals to be plugged into one central location, eliminat-
ing powerline tangles in the process. A single line leads from the unit and is to be plugged into a grounded outlet.

Each of the outlets is individually controlled by iront-panel mounted rocker switches. If you leave the computer's and/or peripherals' power switches permanently on, you can use those rocker switches to lurn any device connected to the power director on or off. Each of the rocker switches has a pilot light to help

A QUALITY TRIPLE-REGULATED POWER SUPPLY AT A LOW, LOW PRICE!!

MODEL PS101 This DC triple regulated variable power supply has all the features you could ask for plus a full 1 year guarantee. Fully adjustable Irom $1 / 2 \mathrm{VDC}$ to 35 VDCI Three completely independent supplies that offer many advantages! They can be either a pcs. supply or a neg. supply...trey can also be stacked in series so that a 5 V and iwo 15 V sup. plies can total a 35 VDC supply or any combina tion of the three...(atter one of the terminals is grounded to give it a reference)... for the first time you can now purchase this American made fully adjustable power supply at a price that is one half of what you'd expect to pay!

FULLY ASSEMBLED \& TESTED!

SPECIFICATIONS

3 outputs

Protection built in, current limiting, with

Fixed $5 \mathrm{VDC} \pm 0.2 \mathrm{~V}$

2 variable $\leq 1 \frac{11 / 2}{}$ V $10 \geq 15$ VCC
Polarity - floating; can be used as pos. or neg.
Ripple less than 10 mV at full toad.
Regulation $\leq 1 \%$ no load to full load.
Line Regulation <0.2\% 108 VAC to 135 VAC.

Current:

Fixed supply 1.0 amp max.
Variable supplies 0.5 amp max.
Dimensions: $81 / 4^{\prime \prime} \times 31 / 4^{\prime \prime} \times 71 / 6^{\prime \prime}(W \times H \times D)$ Wood grain finished metal case Weight: 4 lbs., 9 ozs.
sighted on/off power switch, easy-10-read Voltmeter and large binding posts. Warranty: one year full replacement warranty from date of purchase

DISTRIBUTOR AND REPRESENTATIVE INQUIRIES INVITED

VISA, MASTERCARD, AMEX TELEPHONE ORDERS ACCEPTED! 6 Herman Drive, E. Granby, CT $06026 \square$ 203/651-0285
you quickly identify which switches are on or off. Finally, there is a master switch that can be used to turn on or off the entire system.

Last, and perhaps most important, the power director contains line-conditioning circuitry. The level of protection aftorded by the unit exceeds that specified by the 1983 IEEE industry guide for surge voltages in low-voltage AC circuits (IEEE-587). The surge-suppression device used in the power director is General Semiconductor's

TranZorb. That device responds in less than a nanosecond to suppress transients. An RF filter is used to handle RF noise. Each outlet has line-to-line and line-toground protection against voltage spikes, surges, RF noise, etc.

Other features of the unit include a digital clock and a media ($51 / 4$-inch floppy disk) storage slot. An option available is a Data Director switch box. That switch box can direct the data from your computer's serial or parallel port to any of

New Ideas

Multiple-outlet control circuit

AIMOST IVERY EILCIRONIC DEVICI IS used with one or more different accessories. For example, an AM/ FM receiver might have a tape deck, equalizer, and lurntable connected to it. Or you may have a video system consisting of a TV set, VCR, video enhancer/stabilizer, and so on.

Each of those units has its own power-on switch, which means that if you want use one or more of those components in conjunction with the main unit (receiver or TV set), you'll have to turn on each component individually. That means that there is always the possibility that one or more components will be accidentally left on when you're finished.

There are many ways to get around that problem-for instance, you could use one of seeveral commercially available switched outlet-strips, which can cost $\$ 15$ and up. Those products (often containing a surge suppressor) are tine for things like computers; but for other electronic devices, like stereos or TVs, they're simply not needed. There is, however, another way to go about it and save some bucks in the process.

Outlet control circuit

Figure 1 shows a circuit that can be use to turn on several components of an audio or video system at the same time. The beauty of that scheme is that it can be built using a handful of easy-to-get parts. But that's not all: With a little imagination and some experimenting, it can be made to do the same things that the commercial products do, making it more than worth the parts cost and time spent building it.

First you should note that the circuit draws no standby current; in other words, when a device plugged into socket SO1 is turned off, no power is supplied to SO2. You may be wondering why no switch is included in the 110 -volt AC line. Well, the answer to that question will become clear as we discuss the circuit's operation.

One more point: T1 is a 6 -volt transtormer with its primary and secondary connected in reverse (i.e. the secondary in parallel with R1 and the primary feeding the Triac gate). Resistor R1 is chosen according to the load connected to SO1: If the SO1 load is 125-150 watts, R1 should be a 1-ohm, 10watt unit. For loads of 250-300

FIG. 1

NEW IDEAS

This column is devoted to new ideas. circuits, device applications, construction techniques, helpful hints, etc.

All published entries, upon publication, will earn $\$ 25$ In addition, for U.S. residents only. Panavise will donate their model 333-The Rapud Assembly Circuit Board Holder, having a retail price of $\$ 39.95$. It features an eightposimon rotating adjustment, indexing at 45degree increments. and six positive lock positions in the vertical plane. giving you a full teninch height adjustment for comfortable working.

I agree to the above terms, and grant Radio-Electronics Magazıne the right to publish my idea and to subsequently republish my idea in collections or compilations of reprints of similar articles. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material has not been previously published.

Fitle of Idea

Signature
Print Name Date

Street

City State Zıp
Mail your idea along with this coupon 10: New Ideas Radio-Electronics, 200 Park Ave. South. New York, NY 10003
watts, use a .5 -ohm, 10-watt resistor or you can parallel two 1 ohm, 10 -watt urits if desired.

When the device connected to SO1 is turned off, no current will flow because that leg of the circuit is open and therefore, there is no voltage developed across R1. (Remember the power switch on any device is used to complete a circuit.) Because there is no voltage drop across resistor R1, no voltage is fed to transformer T1. When the device plugged into SO1 is turned
on, current flows to SO1 through resistor R1 causing a small voltage to be developed across the resistor.

The voltage across R1 is then applied to the secondary of T1 (which is used as a step-up transformer), resulting in a higher output voltage at its primary. The output from T1 is fed to the gate of Triac TR1 When TR1 is turned on, power is supplied to the load at SO2. That means that the on-off function of any device connected to SO 2 is

controlled by the power switch of the SO1 load. Therefore, it is not necessary to include one in the $A C$ power line

Additional sockets may be placed in parallel with SO 2 so that any other device that you may want to use in conjunction with the main unit at SO1 may be powered up in the same manner. Just keep the 6 -amp limitation of the Triac and the total current requirements of the load in mind when adding extra sockets. Also, the current rating of the Triac assumes proper heat sinking. If the 6-amp limit is a problem, you may want to check into some of the higher rated Triacs, like those listed in the ECG Replacement Guide

Although it is not necessary, you may want to add switches in series with the extra sockets, so that any device connected to those sockets may be turned off from a central location as needed. A final note: The circuit should be mounted in a case for safety's sake. -Theodore Stern

Co ElectronicsSeries

The fast, easy and low cost way to meet the challenges of today's electronic innovations. A unique learning series that's as innovative as the circuitry it explains, as fascinating as the experiments you build and explore.

From digital logic to the latest 32-bit microprocessor, the McGrawHill Contemporary Electronics Series puts you into the electronic picture one easy step at a time. Fifteen unique Concept Modules, sent to you one every 4-6 weeks, give you a handle on subjects like optoelectronics, robotics, integrated circuits, lasers, fiber optics and more.

Each Concept Module goes right to the heart of the matter. You waste no time on extraneous material or outdated history. It's a fast, efficient, and lively learning experience...a non-traditional approach to the most modern of subject matter.

Unique Interactive Instruction

With each module, you receive a McGraw-Hill Action Audio Cassette. Each tape is a dynamic discussion that drives home the key facts about the subject. Your learning

experience is reinforced through interaction with vividly illustrated text, audio cassettes, and actual electronic experiments. Indexed binders preserve backup material, notes, and tapes for convenient referral.
 in Contemporary Flectronics
Throughout your series, laboratory experiments reinforce every significant point. This essential experience ...dynamic, hands-on demonstrations of theory in practice... will help you master principles that apply all the way up to tomorrow's latest VLSI (Very Large
 Scale Integrated) circuitry.

In your very first module, you'll use integrated circuits to build a digital oscillator, verifying its operation with a light emitting diode (LED). You'll learn to identify passive and active components, understand concepts common to all electronic circuits.

For Anyone Interested in Flectronics

The Contemporary Electronics Series is designed for anyone from hobbyist to professional. It's for you if you're looking for new fields of interest...if you're a teacher who

Measures

 frequency to 1.2 GHz> With period, period average and totalize functions too, for only $\$ 750$

The B\&K-PRECISION Model 1855 is a high accuracy multifunction counter with $\pm 1 \mathrm{ppm}$ temperature stability (TCXO), with all these features:

- 5 Hz to 1.2 GHz range
- 0.5μ S to $200,000 \mu \mathrm{~S}$ period range
- Totalizes to 99.999.999
- Selectable resolution - 8 digit LED display
- Low pass filter - Display hold
- Switchable X1 X10 attenuator
- Remote start-up
- kHz, MHz, μ SEC. Gate and overflow indicators
For measurements to 520 MHz , the Model 1851, with the same features as the Model 1855, sells for $\$ 575$.
Both Models are available for immediate delivery from B\&K-PRECISION distributors.

6460 West Cortland Street Chicago. Illinois 60635-312 889-9087

PRODUCTS

CIRCLE 11 ON FREE INFORMATION CARD

AUDIO/VIDEO CONTROL CEN. TER, NEC model AV-200E, performs its audio functions via a 12 . watt-per-channel, built-in stereo amplifier with tone control, headphone jack, and inputs for a tape deck, tuner, and auxiliary sources such as a CD player. A sophisticated synthetic-stereo circuit uses a bucket-brigade device to synthesize a stereo signal from any mono source.
Video signals are processed through a full complement of inputs and outputs, including in-
puts/outputs for two VCR's (one front-panel set; one rear-panel set), and two AUX inputs-all with stereo audio capabilities. Monitor output and a set of inputs and outputs for an audio tape deck are also provided. A switchable image enhancer improves contrast and sharpness for either playback or dubbing purposes.
The NEC model AV-200E is priced at \$199.00.-NEC Home Electronics (USA) Inc., 1401 Estes Avenue, Elk Grove Village, IL 60007.

SCANNER, model HX750, is a sixchannel hand-held scanner that can monitor activity in six popular bands-including such services as police, fire, public safety, aircraft, business, and amateur 2-meter bands. Channeis can be scanned automatically at about 15 -per-second, or stepped manually.

Individual channel lock-out switches temporarily skip over unwanted channels. LED's indicate which channel is being monitored.

The model $H X 750$ comes with an AC adapter/charger, a flexible ("rubber ducky") antenna, and a wire antenna. It offers both a builtin speaker and an earphone jack for private listening. It can be operated from a 6 -volt external DC power-supply, or four standard or rechargeable AA batteries (not included). Current drain is 16 mA (stand-by, squelch on) to 70 mA at full audio output. The unit is FCCcertified (part 15 , subpart C); it measures $31 / 4 \times 51 / 2 \times 1$ inches and

CIRCLE 12 ON FREE INFORMATION CARD
weighs approximately nine ounces (without batteries). It is priced at \$159.95.-Regency Electronics, Inc., 707 Records St., Indianapolis, IN 46226-9989.

MICROCONTROLLER, the model $R 8 E$ is an enclosed, stand-alone programmatole-control system that features real-world inputs and outputs. It is conligured as a programmable controller, data logger, or interface device; both transducers and AC devices mav be connected directly. Included are high and low level A/D inputs (8 channels), numerous digital-control lines, parallel and serial ports, and solid-state power relays. The

CIRCLE 13 ON FREE INFORMATION CARD
controller is programmed in its resident BASIC interpreter through any terminal or CRT; no "programmer" or host system is needed. Sockets for up to 16 K of ROM/EPROM or RAM are provided.

The model R8E runs on 2 -volts DC or 24 -volts DC and is priced at \$599.00.-HHS Microcontrollers, 5876 Old State Road, Edinboro, PA 16412
$100-\mathrm{MHz}$ OSCILLOSCOPE, model 1580 features dual time-base circuitry and 5 mV /div vertical sensitivity over the $100-\mathrm{MHz}$ bandwidth with $1-\mathrm{mV} /$ div vertical sensitivity to 50 MHz in the $\times 5$ mode. The V mode can be used to display two signals unrelated in trequency. Other features include Z-axis input; Channel-1 output; calibrated delayed sweep; $X-Y$ operation; Channel-2 invert; $20-\mathrm{MHz}$ bandwidth limiter, and a variable trigger hold-otf that permits stable observation of compiex pulse trains

The user can select from 23 calibrated sweep-time ranges from 0.5 $\mathrm{s} / \mathrm{div}$ to $20 \mathrm{~ns} / \mathrm{div}$ in a $1-2-5 \mathrm{se}$ quence. Sweep time is fullv adjustable between calibrated ranges. To allow closer examination of waveforms, a $\times 10$ sweep. magnification teature is provided.

CIRCLE It ON FREE INFORMATION CARD
The triggering circuitry offers five trigger sources: $\mathrm{CH}, \mathrm{CH} 2$, EXT ernal, IINE, and v mode. In the V MODE, each waveform displayed becomes its own trigger, thereby allowing steady display of two signals unrelated in frequency. Signals are displayed on an 8×10 div (1 div $=10 \mathrm{~mm}$) rectangular CRT with internal graticule and 16 -kilovolt accelerating potential.

The model 7580 is priced at \$1,595.00.-B\&K Precision/Dynascan Corporation, 6460 West CorHand Street, Chicago, IL 60635. R-E

OVER 50 KITS AVAILABLE

FREE
CATALOG OF ALL KITS
A: allable natlonwide at your local electronics store.
(Or send \$1 00 shipping \& handling 10 address below.)

EKI ELECTRONIC KITS

 INTERNATIONAL, INC791 RED ROCK ROAD
ST. GEORGE, UTAH 84770
Call TOLL FREE
1-800-453-1708
Special Prices for Educators

Where's Your ELECTRONICS Career Headed?

The Move You Make Today Can Shape Your Future

Yes it's your move. Whether on a chess board or in your career, you should plan each move carefully. In electronics, you can move ahead faster and further with a

B. S. DEGREE

Put professional knowledge and a COLLEGE DEGREE in your electronics career. Earn your degree through independent study at home. with Grantham College of Engineering. No commuting to class. Study at your own pace, while continuing your present job.
The accredited Grantham non-traditional degree program is intended for mature, fully employed workers who want to upgrade their careers :. . and who can successfully study electronics and supporting subjects through

INDEPENDENT STUDY, AT HOME

Free Details Available from:

> Grantham College of Engineering 10570 Humbolt Street Los Alamitos, California 90720

Independent Home Study Can Prepare You Study materials, carefully written by the Grantham staff for independent study at home, are supplied by the College, and your technical questions reiated to those materials and the lesson tests are promptly answered by the Grantham teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.

Grantham College of Engineering R-1-85 10570 Humbolt Street, Los Alamitos, CA 90720

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Name __Age
Address
City \qquad State \qquad Zip

Get rid of switching woes, and that "pile of spaghetti" in back of your TV set, with the "Select-A-Matic" RF switcher.

RF SWITCHER

ROBERT GROSBLATT

IN THE DIM PRE-HISTORY OF THE ELECtronic age, just after the disappearance of the dinosaurs, the family television set had but one simple job-displaying broadcast TV signals (although many of you probably thought that it was to keep your children from doing their homework).

Not any more.
Today's family television set has a whole new set of functions. And it sometimes seenis that not a day goes by without the development of yet another device that uses the tube for a display. Computers. videodiscs, VCR's, and videogames all compete with the simple antenna for access to the back of the set. But since the input on most televisions is limited to the two little screw terminals for the antenna, you can find yourself doing a lot of wire swapping anytime you decide to watch a tape or blast a few aliens.

That is, unless you build the Select-AMatic. That device can take any one of eight inputs and assign it to any one of four outputs. Not only will that make it much easier to organize things, it will also help eliminate the usual pile of "spaghetti" found at the back of the set. Keyboard entry and a visual display make operation of the Select-A-Matic a snap. And even if you don't have a lot of interest in RF switching, the theory and design can easily be incorporated into audio. appliance control, or just about any area where you need to choose among several devices

The theory behind the Select-A-Matic is evident when you take a look at Fig. I,
the block diagram of the circuit. One input and one oulput are selected from a keyboard, and the control signal that results is stored in a latch at the selected part of the circuit. It's really that simple. There's nothing exotic in the parts list and the basic design of the Select-A-Matic is easy to adapt to a whole host of other uses.

The simplicity of the circuit can be seen further in Fig. 2, the schematic. Since we're dealing with eight inputs and four outputs, there are 32 possible combina-
tions we have to be able to select. Although there are several ways to handle it. the most straightforward approach is to arrange the $1 / O$ in a matrix with the inputs on the columns and the outputs on the rows as shown in Fig. 3. Selecting an input turns on the whole column and selecting an output turns on a whole row. That scheme routes the selected input exclusively to the selected output.

The easiest way to see how that theory is translated from ink to electrons is to go

FIG. 1-BLOCK DIAGRAM of the Select-A-Matic. The unit can switch things other than RF signals by modifying the I/O boards to suit the particular application.

FIG. 3-IN THE SELECT-A-MATIC, switching is handled using a matrix arrangement.
bach to the schematic and follow the operation of the circuit. IC1-a and ICl-b are half a toll quad vasi) gate set up as a gated occillator running at about 8 kHz . That simply means that a high on pin? turns the oscillator on. and a low turns it off. The output is connected to the clock imput of IC2. a $4(0) 7$ decade counter. That IC sequentially turns each of its satputs. high as long as pin 13, the Exibit: input. is hed low: When one of the inper still:CT switches. SI 10 S9. is closed. nothing happens until that particular output of the 4017 goes high. As somen at it dees. one of the corresponding keybard diodes. DI to DY. is formard bianed: that disables both the clock through ICI-d) and IC2 (hy presenting a high to its revable input).

That same high also stores the selected column information in IC 3 . a +508 dual yuad latch. Athough that IC has wo separate yuad latches. We ve set it up-and shown it in the schematic-as an octal latch by connecting the control pins of cach side in parallel. Pins 2 and 14 control the $I C$: inputs. When they're high. data presented to the inputs will be seored. and when they re low. the inputs are ignored. Closing one of the input switches, therefore. selects one of the inputs and stores it in the "column" latch. You should also notice that we're able toget an input-clear function for free by selecting one of the 4017 outputs that is not connected to IC3. Thats taken care of by connecting the (IIAR N switch to pin 9) an unused output of the 4017. When it's presed. eight lows are stored in IC3. werwriting any other data that was sored there

Pins 3 and 15 of the $450 x$ are the output control pins. Bringing them low will enable the ouputs. and making them high will put the IC in its high-impedance mode. Since theres no need for that in the circuit all these pins are connected together and tied low. permanently enabling the outputs of all the $4508:$ in the circuit. The importance of that can be seen by looking at the row selectors. $1 C+10$ IC 7 . The inputs of those IC"s are all in parallel and are connected to the outputs of IC3. If IC 3 was allowed to go to its high-impedance state, the inputs of IC +0 IC7 would be able to tloat and. since ne re dealing with CMOS. that is a detinite nono.

The operation of the row selector is much the same as the column selector. Closing one of the outpet select switcher. SII to SIt. causes the selected IC to store whatever information is presented at its inputs. Since the outputs are always enabled. they follow the inputs. and the selected control signals are available on the appropriate line of the 32-bitwide output bus. Selecting one input and one output. therefore. will turn on one of the output. control lines. Since the outputs are grouped in four rows of eight lines. selecting an output for ICt. for example. won't change the information stored in IC5 to IC7. the other output latches.

Turning off the outputs can be done one of two ways. You can press the cliear in key and then select the output you want to turn off. That will store a low in each cell of the output latch and turn off everything controlled by it. Closing switch Sio will turn off all the outputs as well as clearing the input latch. IC3. That happens because all the chear pins of the +508 s are tied logether and pressing S 10 brings them all high. Ordinarily they re controlled by ICD-c. That gate is set up as a power-on reset to make sure that all the latches are cleared when the Select-AMatic is tirst turned on. Resistor R5 and capacitor $C 2$ generate a negative pulse at power up. The pulse is cleaned up and inverted by ICl-c. causing a short positive pulse to be sent through R 3 to all the clear pins of all the latches. Alter that. the clear pin is held low unless $S(0)$ is closed.

Each of the output control lines go through a IN91t diode and an LED. Both of those devices help isolate the digital control circuits from the things they"re controlling. The LED's also serve to show which outputs are turned on. but it's interexting to note that they re also used as old fashioned diodes. The great majority of the circuits that have LED's in them use them only as status indicators of one kind or another and it's easy to forget that they're really diodes. not some kind of long lasting light bulb. One side benefit of

FIG. 4-DIODE SWITCHING is used to handle the RF switching in the Select-A-Matic. Because they can handle the frequencies involved, Schottiky diodes are used.
using them like this is they don't have to have their own current limiting resistors. You can't forget about that altogether because some other part of the circuit can take care of it.

The RF switching of the Select-AMatic is a straightforward application of diode switching. Figure 4 makes it a lot easier to see what's going on. The input signal passes through a capacitor to isolate the source of the signal from the DC control voltages generated by the Select-A-Matic. The next thing the signal sees is a Schottiy diode that does the actual switching in the circuit. As long as the Select-A-Matic has the output turned off, the diode is turned off. When the output is turned on, the diode is forward biased and starts conducting. The input RF passes through the diode, the output capacitor. and shows up at the output connector of the Select-A-Matic. The resistor not only provides the DC return for the Schottky diode. it also serves as the current limiter for the LED.

The layout

As you can see, the basic operation of the Select-A-Matic is easy to understand and, although we're using it to switch RF. the same approach can be used to switch just about anything. The PC layout (the foil patterns for the boards are shown in Figs. 5. 6. and 7) was designed with the aim of making the Select-A-Matic as versatile as possible. All the digital control circuitry is located on the main logic board (see Figs. 5 and 6). The output bus show's up at the far end of that board and is grouped conveniently in four groups of nine solder pads-- The ninth connection is system ground. If you want to switch audio signals. for example. you only have to design your analog I/O (to replace the RF $1 O$ used by this project) and connect it to the logic I / O on the logic board of the Select-A-Matic.

The I/O boards of the Select-A-Matic (see Fig. 7) have female connectors (see Fig. 8) to mate with right-angle male connectors on the logic board making the assembly of the whole unit a plug-in operation. The connectors used are header strips with 0.1 -inch spacing. Of course you can replace the board connectors with wire. but since we're switching RF, you'll have to be really careful about length. layout, and shieldirg. The frequencies being switched by the Select-A-Matic can go up as high as 800 MHz . (the top of ('HF). and signal behavior can get really strange when you get up in that kind of raretied atmosphere. Stray capacitance, leakage. and some unplanned-for resonance are only a few of the pitfalls that can completely foul up the operation of the circuit. If you take a look at the foil pattern for the I/O boards, you'll see that component leads are kept as short as possible and several options are provided for handling

FIG. 5-COMPONENT SIDE of the double-sided logic board. The board is shown full sized.

ground

A ground plane is provided for both the RF ground. (at the top of the board). and logic ground. (at the bottom of the board). The answer to how you should handle this is a resoundingly unsatisfying "it depends." There are as many theories about grounding as there are about why the dinosaurs disappeared. The best approach is to try various things and decide what works hest. It pains us to sav this, but as far as this problem is concerned. a logical approach is no help whatsoever. Anyone who uses a simple dipole antenna for FM knows that there is a prescribed way to orient it. They also know that the best orientation is usually found by bunching it up and throwing it on the floor?

Pads are provided on the I/O board to connect RF and logic ground as well as mounting holes if you want to surround all the components on the RF circtia: in ith a metal shield. You should use shielded cable to go from the chassis-mounted F connectors at the back of the unit to the $1 / O$ boards. There are places on the $1 / 0$ board to connect the cable shield (see Fig. 9). But whether connecting the shield there. elsewhere or nowhere works best is something you'll have to find out by experiment.

For what it's worth. here's what hap-
pened in our case. We had a lot of trouble with crosstalk when we first assembled the Select-A-Matic. We got rid of it completely by lining the inside of the case with aluminum foil (see Fig. 10). That tied together all the RF grounds at the chassismounted F-connectors. We connected the shied of the cable on the case side but left it unconnected at the I/O hoards. Jumpers on the I/O boards were used to connect the RF and logic ground. That eliminated all of our crosstath problems. If it had not. the next step would have been to build shied for the I/O boards-probably with aluminum foil at first and then with copper foil so we could solder a connection from the shield to the board. Fortunatel! that nightmare was unnecessary in our case.
Since signal strength in our location is very good. the slight loss of signal through the Schotky diodes didn't present us with any problem. You may find that to be difierent-it all depends where you live. In general. signals that come in well won't be degraded much by putting the Select-A-Matic in the signal path. If. however. you re looking at reception that s matrgimal even on a good day. you ve got a problem. You can use the Select-AMatic to handle home-grown RF from such things such as VCR's. videogames.
and the like but broadeast signals are probably out of the question unless you add an RF amplitier to the Select-A-Matic output lines. That can be a one-rransistor circuit or anything you need to get the job done

Construction

There"s nothing especially difficult about constructing the Select-A-Matic if you use PC boards. As previously mentioned, the foil patterns for that board, one of which is double-sided. are shown in Figs. 5. 6. and 7: the parts placement diagrams are shown in Figs. 9 and 11 . Wirevrapping or breadboarding are unsuitable because of the frequencies running around the circuin. The breadbourded version we built worked. but the performance of the circuit was terrible. When it was put on PC boards. noise. cronstalh. rejection. and all the other thines that had been a problem completely disappeared Remember. CMOS digital signals are just about noise immune-even if you grind the wires into the ground with your heel. Look cockeyed an RF and the whole circuit can go bananas.

The power supply for the Select-AMattic is designed to be located el sewhere. All vou've got is a jach for a small wall unit that puts out more than 5 - but less

FIG. 6-FOIL. SIDE of the logic board. The board is shown here full sized.

FIG. 7-FOIL SIDE of the I/O board. Four of these slngle-sided boards are required.
than 7 -volts DC with a reasonably small amount of ripple. If you use one that's really noisy. sou can put a nice chunky capacitor across the pins of the jach on the
chassis. If it's really a problem isolate the circuit by putting a resistor in series between the power supply and the Select-A-Matic- you can use the power fach for that as well. Since the whole cercuit draws less than 20 mA . a value around 200 ohms. should be in the ballpark. You can also leave out the protection diode on the $+V$ line. but it's alwas better to be sate than sorry.

The switches used in the Select-A Matic are soldered directly to the logic circuit board. They re made by Oah Switches and the pin spacing on the hoard was designed to accommodate them.

FIG. 8--HEADER STRIPS are usec to make the connections between the I/O boards and the logic board.

Those switches are brand new (and a special thank you to Henry Richter, Inc. for providing them to us for use in this project) but should be available from most Oak distributors by the time you read this. If vou have a hard time finding them. you can make up a wiring harness and locate the switcher off the board. The same is true of L.ED33. the power pilot-light. Just make sure you heep the feads sraight and remember that the current limiter for that I.ED. RIt is located on the board.

When you're atsembling the board. watch the polarity of all the diondes. especially the Schothy diodes. These are a lot more expensive than vour garden-vartiety diodes and it's distressing, to say the least to break one when you solder it. We used those diodes because they re fast enough and have a low enough turn on voltage to be perlect for UHF mixing. Although we haten't tried it. IN914 or IN.3HA germanium diodes could be used as well. but we don't hnow how far up the spectrum you"ll be able togo betore signal loss gets excessive All we can tell you is the work for clannel three hut we don's hnow if they can even mathe the frequencs junp found around Channel 6 . If vou want
to try them. got athed.
Since the logic board is double-sided. you'll have to solder feedthroughs from one side of the board to the other. Thread hookup wire back and forth through the indicated holes (marked with an asterisk in Fig. It . solder on both sides and then cut it off. We tried (o) do all the side jumping on component legs. but there aren't a lot of components on the board so there are quite a few stand alone feedthroughs.

Use IC sockets, caution. and common sense to keep potential problems from the board. And make sure you use a lowwaltage iron when you re soldering the diodes-glass-caned diodes are really fragile.
(One note on the 1/() hoard. While there are four such boards reguired, only one is shown in the interest of space. All four

FIG. 9-PARTS PLACEMENT DIAGRAM for the I O boards. Note that only board 1 is shown; four 1 / O boards in all are used by the project (see text).

FIG. 10-TO ELIMINATE CROSSTALK, the inside of the case was lined with aluminum foil.

FIG. 11-PARTS PLACEMENT diagram for the main logic board. Note that-although not marked by an asterisk-feed throughs are required at the I'O connections.

PARTS LIST

All resistors $1 / 4$ watt, 5%, unless other-

 wise notedR1, R3, R4, R6-R9-10,000 ohms
R2, R5-100,000 ohms
R14-1000 ohms
R10-R13-270 ohms
Capacitors
C1, C2-. $01 \mu \mathrm{~F}$, ceramic disc
C3-C38-12pF, ceramic disc
Semiconductors
IC1-4011 quad Nando gate
IC2-4017 decade counter
IC3-IC7-4508 dual quad Latch
D1-D41-1N914 diodes
D42-D73-5082-2835 Schottky diodes
D74-1N4001 diode
LED1-LED34-miniature LED's
S1-S14-SPST switch, momentary
boards are identicat. In other words. where board I (shown) uses eight 12-pF capaitors (C.3-ClO). board 2 (not shown) uses eight $12-\mathrm{p}$ I capacitors ($\mathrm{Cl} / \mathrm{O}-\mathrm{Cl}$) and so on. A yuick look at the schematic (Fig. 2) should help remove any confusion: which components go on which board is clearly shown there.

Troubleshooting

If the unit doesn't work when you get it all atssembled, and it probably won't the first time. use all the standard troubleshooting techniques. The most suspect things are mechanical-solder bridges. bad joints, components in backwards, and all of the rest of the usual stuff. If everything seems OK as far as that goes. then start suspecting the components. Is the clock clocking!' Are signals showing up
pushbutton (Oak 225)
S15-SPST switch, toggle
J1-J12-F-type connectors, chassis mount
J13-miniature jack
Miscellaneous: PC boards, aluminum foil for shield, case, wire, solder, male header strips, right angle (AP products 929835 or equivalent), female header strips (AP products 929974 or equivalent), etc.

A set of the five PC boards, etched and drilled, but not plated through, is available from Hal-Tronix, PO Box 1101, Southgate, MI 48195. The price is $\$ 39.95$. Please add $\$ 2.00$ for shipping and handling. MI residents add 4% tax.
where they should:-hut you ve heard all of that before, Exercise simple calution and you shouldn't have any major problems (famous last words). Actually, though, the circuit is simple enough io severely limit the number of problems you can have. Save all your energy for tiguring out how to take care of the ground.

If you find that nothing you do will solve the kinds of RF problems we talked aboul before, you always have the option of substituting smatl relays for the Schorthy diodes and capacitors (RF). That kind of lasi resort solution should work no matler what the problem is. And you'll be athle to switch anything-including audio and video. Another benetit you'll get is that the coil resistance of the relay will probably be great enough to work as a current limiter for the LED's.

All ABOUT THERMISTORS

HARRY L. TRIETLEY
Here's an article designed to make you feel at ease with thermistors. This month, we'll look at thermistor basics.

IVE ALL KNOW WHAT THERMISTORS ARE The name "thermistor" itself gives us a good idea: THERMal res/STOR-a device whose resistance changes with temperature. While you might be familiar with those devices from building one of the projects you ve seen in Radio-Electronics that used them. do you really know how to design with them?

Thermistors are highly nonlinear-and often only loosely defined-devices. That's the reason why even many experienced engineers and circuit designers do not leel at ease with them. But once you get tamiliar with them. you'll find that thermistors are actually quite straightorward. That s what this article is for: 10
help you become familiar with thermistors. This month. we ll study the basics of thermistors-how they re made. what types are available. the equations and specitications that describe them, and how they typically behave. After we go through the basics. we ll present design techniques. circuit examples. and applications ideas.

Therınistor basics

We should start off by saving that not all devices that change resistance with emperature are called thermistors. For example. resistance thermometers are made from smatl. Wirewound coils or from deposited metal tilms. While thev
are temperature dependent, they don't behave like themistors. The term thermistor is generally reserved for themally sensitite semiconduring devices.

There are lwo general classes of thermistors: NTC INeqative Temperature Coefficient) and P'TC (Positive Temperature Coefficiento. There are two distinctly different types of PTC thermistors manufactured. One is produced by means similar 10 NTC thermistors. the other is made of silicon. We will cover PTC's only brietly. reserving most of the space for the much more common NTC's. In fact. from this point on. unless we specity otherwise, we will be talhing about NTC-type thermistors

NTC thermistors are narrow-range. nighly sensitive, nonlinear devices whose resistances decrease with increasing temperature. Figure l-a curve relating resistance change to temperature-shows typical resistamese-temperature characteristics. The sensitivity is about $+5 \% /{ }^{\circ} \mathrm{C}$ $\left(1^{\circ} \mathrm{C}=2.5^{\circ} \%\right.$. A wide range of resistance is awailable, and resistance changen may be many ohms or even kilohms per degree.

FIG. 1-NEGATIVE TEMPERATURE COEFFICIENT thermistors are very sensitive and highly nonlinear. Ro may be ohms, kilohms, or megohms.

Basically, thermistors are semiconducting ceramics. They are formed from powdered metal oxides (usually nickel and manganese oxides), sometimes with small amounts of other oxides added. The powdered oxides are mixed with water

TABLE 1— RESISTANCE-TEMPERATURE CHARACTERISTICS OF TYPICAL NTC THERMISTORS

Temperature	100』) (a $25^{\circ} \mathrm{C}$	1K (a) $25^{\circ} \mathrm{C}$	10K @ $25^{\circ} \mathrm{C}$	1MEG (a) $\mathbf{2 5}^{\circ} \mathrm{C}$
$-80^{\circ} \mathrm{C}\left(-1112^{\circ} \mathrm{F}\right)$	14.47K	278.80K	3558K	
$-70^{\circ} \mathrm{C}\left(-94^{\circ} \mathrm{F}\right)$	7475	132.60K	1694K	
$-60^{\circ} \mathrm{C}\left(-76^{\circ} \mathrm{F}\right)$	4066	66.78 K	845.9K	
$-50^{\circ} \mathrm{C}\left(-58^{\circ} \mathrm{F}\right)$	2315	35.39K	441.3K	
$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right)$	1374	19.64K	239.8 K	
$-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)$	846.0	11.35K	135.2K	
$-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$	538.9	6815	78.91 K	
$-10^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right)$	354.1	4232	47.54 K	
$0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$	239.2	2710	29.49K	3966K
$10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$	165.9	1785	18.79K	2238K
$20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{C}\right)$	117.7	1206	12.26K	1299K
$30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$	85.4	834.0	8194	774.5K
$40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$	63.1	589.5	5592	473.2K
$50^{\circ} \mathrm{F}\left(122^{\circ} \mathrm{F}\right)$	47.5	424.8	3893	295.9 K
$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	36.4	311.9	2760	189.1K
$70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$	28.3	233.0	1990	123.3K
$80^{\circ} \mathrm{C}\left(176{ }^{\circ} \mathrm{F}\right)$	22.3	176.9	1458	81.98K
$90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$	17.8	136.2	1084	55.48 K
$100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$	14.3	106.4	816.8	38.20 K
$110^{\circ} \mathrm{C}\left(230^{\circ} \mathrm{F}\right)$			623.5	26.76K
$120^{\circ} \mathrm{C}\left(248^{\circ} \mathrm{F}\right)$			481.8	19.03K
$130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$			376.4	13.74 K
$140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$			297.2	10.05K
$150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$			237.0	7447

and various binders to form a slurry. which is formed into the desired shape and sintered (tired) at temperatures above $1000^{\circ} \mathrm{C}\left(1832^{\circ} \mathrm{F}\right)$. A conductive metal coating (generally silver) is fired on, and leads are added. The finished thermistor is usually coated with epoxy or glass, or otherwise packaged.

FIG. 2-A BROAD VARIETY OF thermistor styles and assemblies are available. Shown here are some of the more common.

As you can see from Fig. 2. there is a wide variety of thermistor styles available. Those styles include discs and washers from under (). I inch to an inch or so in diameter, and rods of various dimensions. Some thermistors are formed first as large. flat sheets, then diced to form squares. Very small bead thermistors are made by tiring a drop of the slurry directly on a pair of high-temperature platinum alloy lead wires, then dipping the thermistor in glass to coat it.

Typical specifications

To say "typical specitications" is mis-leading-there are very few typical specitications for thermistors. The wide variety of thermistor styles, sizes, shapes, resistances. and tolerances that are available creates an equally wide variety of specifications. What's more, thermistors offered by different manufacturers often are not interchangeable with one another.

Table I lists resistance versus temperature for a few commercially available devices. You can buy thermistors with resistances (at $25^{\circ} \mathrm{C}$ - which is how a thermistor's resistance is normally specified) as low as one ohm and as high as ten megohms or more. A thermistor's size and shape influence its resistance, but for any given style the manufacturer can provide a five- or six-decade range of resistance values simply by changing the oxide mixture. Changing the mixture also changes the shape of the resistance-temperature ($\mathrm{R}-\mathrm{T}$) curve and influences the stability at high temperatures. Fortunately, thermistors that have resistances high enough to be useful at high temperatures also tend to be more stable.

Inexpensive thermistors usually have fairly loose specifications. For example. resistance tolerances (again at $25^{\circ} \mathrm{C}$) range from $\pm 20 \%$ down to $\pm 5 \%$. At higher or lower temperatures, those specifications loosen further. For a typical thermistor with a sensitivity of 4% per degree C. the corresponding temperature measurement tolerances are around ± 5 to $\pm 1.25^{\circ} \mathrm{C}\left(\pm 9\right.$ to $\left.\pm 2.2^{\circ} \mathrm{F}\right)$ at $25^{\circ} \mathrm{C}$. Much higher precision is available at costs generally ranging from $\$ 2.00$ on up. depending on specifications. We will explore high-precision thermistors later in this article.

We stated earlier that thermistors are narrow-range devices. That should be clarified: Most thermistors operate from -80° to $+150^{\circ} \mathrm{C}\left(112\right.$ to $+302^{\circ} \mathrm{F}$). and units are available (generally glass coated) which work to $400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right)$ and beyond. For practical purposes. however, the high sensitivity of thermistors limits their useful temperature range. A typical thermistor's resistance may change by 10,000 or 20.000 to one between -80 and $+150^{\circ} \mathrm{C}$. You can imagine the difficulty of trying to design a circuit that will accurately measure both ends of such a range (unless you use range switching). A thermistor having a useful resistance at zero degrees will be no more than a few ohms at $400^{\circ} \mathrm{C}$.

Most thermistors use solder to attach their leads internally. Obviously, you can't use such a thermistor to measure temperatures higher than the melting point of solder. Even without solder, their epoxy coatings are good only to around $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$. For higher temperatures it is necessary to use glass-coated thermistors with welded or fired-in lead wires.

Stability considerations also limit hightemperature use. Thermistor structures tend to change when left at high temperatures. and the rate and type of change is greatly affected by the oxide mix and the way that the thermistor is manufactured. Epoxy-coated thermistors begin to drift a bit at temperatures above $100^{\circ} \mathrm{C}$ $\left(212^{\circ} \mathrm{F}\right.$) or so. If such a thermistor is operated continuously near $150^{\circ} \mathrm{C}$. it may drift by several degrees in a year. Low-resistance thermistors (below, say, 1000 ohms at $25^{\circ} \mathrm{C}$) often are worse-they can drift noticeably when used at about $70^{\circ} \mathrm{C}$ $\left(158^{\circ} \mathrm{C}\right.$) and become unreliable by $100^{\circ} \mathrm{C}$.

Inexpensive, loosely specified devices are produced with less attention to detail and can give even worse results. On the other hand, some properly constructed glass-coated thermistors have excellent stability at even higher temperatures. Glass-coated bead thermistors show excellent stability as do the glass-coated disc thermistors that have recently become available. Remember that drift depends on time as well as temperature. So. for example, you can generally use an epoxy-
coated thermistor for brief times at $150^{\circ} \mathrm{C}$ without significant shifts.

When using thermistors you must be aware of the specification for dissipation constant. A small epoxy-coated thermistor, for example, will have a dissipation constant around one milliwatt per degree C in still air. In other words, one milliwatt of power in the thermistor will raise its internal temperature by one degree C: two milliwatts will raise it hy two degrees, etc. If you apply one wolt to a IK thermistor with a dissipation constant of I $\mathrm{mW} /{ }^{\circ} \mathrm{C}$, you will produce a measurement error of $1^{\circ} \mathrm{C}$. Thermistors will dissipate more power if they are immersed in liyuids. The same small epoxy-coated thermistor we used in our example will dissipate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ in well-stirred oil. Larger thermistors have better dissipation constants than smaller devices. For example, a one-inch disc or washer may dissipate 20 or 30 milliwatts per ${ }^{\circ} \mathrm{C}$ in air. Keep in mind that as the thermistor'; resistance changes with temperature. so does its power dissipation.

Thermistor equations

There is no such thing as an exact equation to describe a thermistor's behavior: there are only approximations. We will look at two commonly used approximations.

The tirst approximation, an exponential, is reasonably good over limited temperature ranges, especially when using non-precision thermistors. The second. known as the Steinhart and Hart equation. provides excellent precision over ranges as wide as $100^{\circ} \mathrm{C}$.

The resistance of an NTC thermistor decreases approximately exponentially with increasing temperature. Over limited temperature ranges its $\mathrm{R}-\mathrm{T}$ curve is described reasonably well by:

$$
R_{T 2}=R_{T 1} e^{\beta}\left(\frac{1}{T_{2}} \frac{1}{T_{1}}\right)
$$

where T1 and T2 are absolute temperatures in degrees Kelvin (${ }^{\circ} \mathrm{C}+273$): $\mathrm{R}_{\mathrm{T} 1}$ and $\mathrm{R}_{\mathrm{T} 2}$ are the thermistor's resistances at T1 and T2, and β is a constant. determined by measuring the thermistor at two known temperatures.

If beta and $\mathrm{R}_{\mathrm{T},}$ are known, this equation can be rearranged and used to calculate temperature by measuring the resistance:

$$
\frac{1}{T_{2}}=\frac{1}{T_{1}}+\frac{1}{\beta} \ln \frac{R_{T 2}}{R_{T 1}}
$$

Beta is a large, positive number whose units are degrees Kelvin. Typical values run from 3000 to $5000^{\circ} \mathrm{K}$. Manufacturers often include a value for beta in their specifications but. since the exponential equation is only an approximation, the value of beta depends on the two temperatures
used to calculate it. Some manufacturers use 0 and $50^{\circ} \mathrm{C}$: others. 25 and $75^{\circ} \mathrm{C}$.

Other temperatures may be used: you can compute your own values for beta from the manufacturer's resistance-temperature tables. The equation will typically agree with measured values to within $\pm 1^{\circ} \mathrm{C}$ over a span of $100^{\circ} \mathrm{C}$. The equation should not be trusted very far beyond the temperatures used to tind beta.

Before going on to the Steinhart and Hart equation let us look at two other terms often used to specify thermistors: alpha (α) and ratio. Alpha is simply the slope of the R-T curve-the sensitivity, at some particular temperature. Alpha is usuadly specitied as a "percent per degree." Typical values run between 3% and $5 \% /{ }^{\circ} \mathrm{C}$. Like beta, alpha depends on the temperatures at which it is measured. Its value decreases somewhat at higher temperatures.

The ratio term is simply the ratio of the resistance at one temperature (usually 0 to $25^{\circ} \mathrm{C}$) to the resistance at a second, higher temperature. For example, the $0^{\circ} / 50^{\circ} \mathrm{C}$ ratio of the 10 -kilohm thermistor shown in Table 1 is 7.58 . Beta may be computed from this ratio and vice versa. Typical values of the $0^{\circ} / 50^{\circ} \mathrm{C}$ ratio are between 5 and 10 .

When using precision thermistors, you generally will have a degree-by-degree chart of resistance versus temperature furnished in the manufacturer's data. Sometines. however. it is handy to have a precise equation when doing design calculations or (especially) when using a computer to convert the thermistor's resistance to temperature. Except for very narrow temperature spans, the single-term exponential is not good enough: more terms are needed.

The best approximation in common use today is known as the Steinhart and Hart equation:

$$
\frac{1}{T}=a+b \ln R+C(\ln R)^{3}
$$

where T is the absolute temperature (in degrees Kelvin). R is the thermistor's ressistance, and a, b, and c are experimentally determined constants.

Rewriting the equation to show resistance as a function of temperature results in a rather messy-looking equation. However. it is easily handled using a computer or programmable calculator:

$$
\begin{aligned}
& R=\exp \left[\left[-\frac{\alpha}{2}+\left(\frac{x^{2}}{4}+\frac{\beta^{3}}{27}\right)^{12}\right]^{13}\right. \\
& \left.\quad+\left[-\frac{\alpha}{2}-\left(\frac{\alpha^{2}}{4}+\frac{\beta^{3}}{27}\right)^{12}\right]^{13}\right] \\
& \text { where } \alpha=\frac{a-\frac{1}{T}}{c} \text { and } \beta=\frac{b}{c}
\end{aligned}
$$

We should point out that these values of alpha and beta are not related to the alpha and beta used with the single-term exponential equation.

Although the Steinhart and Hart equation is more complex. it generally agrees with the actual thermistor to within a few thousandths of a degree over spans as wide as $1000^{\circ} \mathrm{C}$. Of course, it can be that good only if the experimental thermistor data is equally accurate. Temperatures accurate to thousandths of a degree can be provided only in top-grade laboratories. You will probably want to rely on the manufacturer's tables rather than try to provide your own measurements.
To find a, b, and c it is necessary to know the thermistor's resistance precisely at three temperatures and substitute each set of data (R and T) into the Steinhart and Hart equation, in three unknowns. (The unknowns are a, b and c.) Algebra must then be used to simultaneously solve the three equations to find the three constants. Using the manufacturer's tables. choose R versus T data at each end and at the middle of the temperature range you plan to use. Manufacturer's generally do not provide specified values of a, b and c, since they vary depending on your temperature range.

Precision thermistors

Ordinary thermistors are specified only to between $\pm 5 \%$ and $\pm 20 \%$ at $25^{\circ} \mathrm{C}$. with looser tolerances at other temperatures. With proper manufacturing control and measurement, however, much better precision is possible. Three types of precision thermistors are available: precision interchangeable dises, precision beads, and matched-curve bead pairs. Precision thermistors allow readout instruments to be electronically calibrated without the need for precise temperature sources. Interchangeable thermistors also allow replacement of the thermistor without recalibrating the electronics.

Precision interchangeable disc thermistors are manufactured with careful control and measurement of the R-T characteristics and stability of the oxide mixture. Mixes that don't conform to precise specifications are discarded. The thermistors are mixed, shaped and fired using normal techniques. Then. in a fluid bath at a carefully controlled temperature. each thermistor is ground to bring its resistance to a specified value. Before shipment. each thermistor is measured at two or three temperatures and discarded if it does not meet specifications.

You can buy stocked. cataloged tolerances between 0 and $70^{\circ} \mathrm{C}$ of $\pm 0.2^{\circ} \mathrm{C}$ or $\pm 0.1^{\circ} \mathrm{C}$, with accuracies loosening to about $+1^{\circ} \mathrm{C}$ at -80 and $+150^{\circ} \mathrm{C}$. Special high-stability glass-coated disc thermistors are offered with tolerances as tight as $0.05^{\circ} \mathrm{C}$. Figure 3 shows the resistanceand temperature-tolerance characteristics

FIG. 3-TEMPERATURE AND RESISTANCE TOLERANCE for precision interchangeable thermistors. The dotted lines show temperature tolerance ($\pm{ }^{\circ} \mathrm{C}$) and the solid lines show resistance tolerance ($=\%$). In a, we see the curves for $a \pm 0.2^{\circ} \mathrm{C}$ thermistor, while in b we see the curves for $a=0.1^{\circ} \mathrm{C}$ thermistor.
need to make precision measurements with beads (which offer the ultimate in small size and high-temperature operation). you can ask the manufacturer to provide a measurement and printout of each thermistor's R-T curve. Or, you can specify thermistors selected to a specific resistance and tolerance at one temperature.

Another way in which bead manufacturers provide precision and interchangeability is to routinely measure each thermistor, then connect selected matched pairs in series or parallel to match a specific curve.

Thermal behavior

Thermistors are resistors. They obey Ohm's law $(E=I \times R)$-until you change their temperature. Remember that it takes only a few milliwatts to raise a thermistor's temperature by one degree or more and that the resistance will drop by about 4% per degree C. If you connect a current source to a thermistor, and slowly increase the current. you will see the voltage rise more and more slowly as the thermistor's resistance decreases. Eventually the voltage will stop rising al-

FIG. 4-THE RESISTANCE OF AN NTC thermistor drops as it is heated by high currents until it eventually enters a negative-resistance mode.
for typical interchangeable thermistors.
Those high-precision, interchangeable thermistors are available only as small size discs or squares coated with epoxy or (for higher stability) glass. Several manufacturers offer some or all of the following resistances at $25^{\circ} \mathrm{C}: 100,300$ and 500 ohms. 1.0. 2.252, 3.0, 5.0. 10.0. 30.0. $50.0,100.0$, and 300.0 kilohms and 1.0 megohm. The 2.252, 3.0 and 5.0 K thermistors are interchangeable among manufacturers, the other generally are not. A variety of temperature probes that use 2.252 K thermistors are available.

Bead thermistors can be very precise and very stable. but their small size and methods of construction make it impossible to grind them to an exact value. If you
together, then actually drop as the current is increased further. The graph of Fig. 4 shows typical voltage-versus-current curves. Also on the graph are lines indicating constant resistance and constant power dissipation. At low current and low power, the curve follows a line of constant resistance, showing that the thermistor is not being heated very much. As the power increases. you can see that its resistance begins to drop. At the high-power end of the curve. the thermistor, in a sense, acts as a negative resistance in that its voltage goes down as the current goes up.

That's all we have room for now. Next time, we'll continue with our look at thermistor basics and then turn our attention to some practical applications.

BUUTMD TCHIS

Last month we looked at the basic approach we il follow to store the contents of Atari 2000 game cartridges on audio cassette tape. We also looked at the hardware that's required, and brietly studied how cassette $1 /($) is handed. This time.
discussing cassette I/O. Figure 5 slowed a how charr that described the cassette-read algorithm. Lers look at the sotiwate in more detail to see how it's uned to detect the data and syone pulses. (Remember that syme pulses are sent out every 2 milliseconds. Data pulses are sent between the
might wonder why we write 2000 ero bits and look for only 50 . There's a very practical reason: It allows the automatic gain control (AGC) of most recorders enough time to settle down.

After the recorder linds 50 consecutive zero bits, it keeps on looking until it finds

> You can record the contents of your Atari 208 videogame cartridges on audio cassette tape! This month, we'll take a look at the scftware that's needed.
we ll look at the sotiware in more depth. Then we If see how we can build the game reconder and put it to use.

Game-recorder software

The complete sottware listing for the game recorder's operating system appears in Table 1. Note that it is written in $\mathrm{Z8O}$ memonics. Although we won't be discussing the software line by line you might want to study Table i to get the details.

When we left off last time, we were
sync pulses-a pulse repreents a I bit. while the lack of a pulse represents a zero bit.)

When the contents of a game carridge is written to a cassette tape, a header of 2000 evero bits preceeds the actual beginning of the program bits. After the header. the game recorder also writes a (user-selected) label before each ganie. When the game recorder teads the contents of a cassette lape, its sotware looks for tifty consecutive zeros to decide that it has found the beginning of a game program. You
a l bit. It then checks the name tag, which is output to the LAST GAMERO ND display. If the name tag matches the name of the game you selected, it keeps on reating bytes and storing them in the RAM. If the tag doesn't match, the game recorder keeps looking for another stant-of-game header. (We'll give more details on thatand wher operation aspects of the com-puter-a little later on in this atticle.)

You may recall that a parity bit is added 6) each instruction so that the game recorder will recognize when something

At CIE, you get electronics career training from specialists.

If you're interested in learning how to fix air conditioning, service cars or install heating systems- talk to some other school. But if you're serious about electronics... even earning an Associate Degree... come to CIE - The Electronics Specialists.

Why trust your education and career future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Be sure to shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type-with serious career goals in electronics-take a close look at what we've planned for you at CIE.
What you should look

for first.

Part of what makes electronics so interesting is it's based on scientific discoveries-on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed ${ }^{\text {B }}$ Lessons. Each lesson takes one or two principles and helps you master them -before you start using them!

How practical is the

 training?This is the next big important question. After all, your career will be built on what you can doand on how well you do it.

Here are ways some of CIE's career courses help you get your "hands-on" training...

With CIE's Personal

 Training Laboratory... you learn and review the basicsperform dozens of experiments. Plus, you use a 3 -in-l precision Multimeter to learn testing, checking, analyzing!
When you get your own

 5MHz, solid-state oscilloscope, you take some real professional steps. You use it as a doctor uses an X-ray nachine-to "read" waveform atterns...lock them in...study, nderstand and interpret them!Vhen you get your Digital earning Laboratory, you'll
be into digital theory-essential training today for anyone who wants to keep pace with the state of the art of electronics. With CIE's Digital Lab, you'll be applying in dozens of fascinating ways the theory you've learned. For example, you'll compare analog and digital devices. You'll learn to make binary to decimal conversions and to work with semiconductor devices and circuits. You'll see how digital equipment is vital to today's exciting, growing fields such as security... where digital theory provides the brains for space-age alarm and protective devices.
You'll build your Microprocessor Training Laboratory, a workirg microcomputer-from "scratch." You'll also learn how to program and interface it with displays, memories, switches, and more.
Earn An Associate Degree from CIE.

One of the best credentials you can have in electronics -or any other career field -is a ccillege degree. That's why CIE gives you the op-

Cleveland Institute of Electronics, Inc.
1776 East 17th Street. Cleveland, Ohio 44114 Accredited Member National Home Study Council
in Electronics Engineering Technology. Any CIE career course can offer you credit toward the degree...more than half of the number needed in some cases.

You can also prepare for the government-administered FCC (Federal Communications Commission) Radiotelephone License, General Class. It can be a real mark in your favor... government-certified proof of your specific knowledge and skills.
Shop around...but send for CIE's free school catalog first!
Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's FREE school catalog-plus a complete package of independent home study information! For your convenience, we'll try to have a representative contact you to answer your questions. Mail the card or couponor write: CIE, 1776 East 17th St., Cleveland,

[^0]

TABLE 1 (continued)

TABLE 1 (continued)

has been mistecorded. If incorrect partity is detected when the computer is reading from the tape, it will stop reading. and the LASI (aAME lot No display will show a message of three horizontal bars to indi-

Before we go any further. we should talh a little about the memory mapping used in the same recorder. The system ROM resides from 00000 H to 1 FFFH Note that a capital " H " indicates that a number is written in hexadecimal.) The game cartridge occupies the second 8 K blach-20 200 H to 3 FFFH . The game re-
corder: RAM is located from 4 (OK) to 5FFFH. Cassete $1 / 0$ and the displays are also memory mapped: The block from 800 0 OH to 9 FFFH is used for the I Ast GAMA: fouvis display and the cassette data output. while the block from A 000 H to BFFFH is used for the giant selestor display and for the remote cassette control. The cassette data input and the switches are memory mapped from Co ()H to DFFFH Note that two 8 B hlochs $(6$ $000 \mathrm{H}-7 \mathrm{FFFH}$ and $\mathrm{EOOOH}-\mathrm{FFFFH}$) ate not used.

The casiest job that our computer has to
do is to real the program ROM. As it operates now. the computer can copy all $2 \mathrm{~K} \times 8 \mathrm{ROM}$ s and $4 \mathrm{~K} \times 8$ ROM: As you might eapect it is possible to modify the recorder to eopy $8 K \times 8$ ROMI s Note. for example that athough an 8 K bloch was left available for program-storage RAM, the hardware as presented has provision for only 4 K .

We'll talk mere aboul how to expand the unit to recod larger programs. and show you how to huild and use it. when we continue our book at the Atari game recorder next time

Part 2 NOW THAT WI: KNOW how our FET power amplitier works. let's now turn our attention to building the unit

Get high performance and high fidelity from this FET stereo amplifier. It feels equally at home in your living room or in a disco!

Building the amplifier

It is essemtial that a printed-circuit board be used for the amplitier. Figures 6 and 7 show foil patterns for the component and solder side respectively. Note that one board is required for each chamel. If you don't want to etch your own boards. etched. pre-drilled. and plated-through boards are available: see the Pars List for information. If you do want to etch your own boards from the patterns shown. heep in mind that the hoard uses plated-through holes. You can of course. get around that by soldering some of the components. including the oumput transistors. on both sides of the board. Note that the wiring to the output transistors is incorporated in the PC-hoard layout. That keeps the wire lengths to the output devices to a mini mum. (It also simplifies construction by eliminating 48 wires. reducing the chance of error in that particularly critical area!)

Before we begin with the construction details. we should point out that the values shown in the schematic are for 1%-1olerance resistors. For most applications. it is not essential that you use such parts. Thus. he parss list also shows acceptable values for 5%-tolerance resistors. (One source for 1% resistors is Digi-Key Corporation. Highway 32 South. P.O Box 667. Theit River Falls. MN 56701.)

Once you have your boards and components. you can begin construction by referring to the parts-placement diagram in Fig. 8 and by installing the fixed resistors Check the values with an ohmmeter as you go and be sure that the leads are sufficiently far from the ground plane!

Next. install capacitors carefully checking values and ensuring that the polarized electrolytic types are properly oriented. Follow by instaliing the diodes.
except for D3-D5. (Those three diodes mount on the output-transistor heat sink. and should not be installed yet.) Again. be careful of the polarity-the diode band indicates the cathode. Next, install the transistors (except for the output transistors Q21-Q28). Transistors Q19 and Q20 should be mounted with insulators and heatsink compound. (lf you look closely at Fig. 9, you'll see some heatsink compound around those transistors.) Transistors Q12. Q13, Q15. and Q18 use TO-5-type heat sinks.

Adjust potentiometers R8 and R19 to their middle positions and install. (For R19. which is a multiturn potentiometer you will need to use an ohmmeter.) You will have to make LI: Wind 15 urns of 16 gauge magnet wire on R42. Solder to the leads of R42, and install the assembly. The PC boards are now complete.

FIG. 6-THE COMPONENT SIDE of the amplifier board is mainly used as a ground plane.

FIG. 7-THE SOLDER SIDE of the amplifier board. Remember that you need one board for each channel.

Preparing the heat sink

The Wakerield heat sinks that are used for the output transistors (see Fig. 10) were not chosen arbitrarily. Their design is almost 100% more efficient for natural convection applications than c゙onventional designs of equivalent volume.

You can use other heat sinks but a minimum surface area of 800 square inches per channel is required. A tlat-backed heat sink is desirable for the T()-2?0 package. but is not essential.

The Wakefield type 512 is available in a 14-inch long extrusion. which need lo be cut in half to yield the wo 7 -inch pieces called lor. After you cut it. drill holes for the output transistors according to the layout shown in Fig. 11. To keep the tran-sistor-mounting hardware to a minimum. you might want to drill and tap the heat sink. However. screws with nuts may also be used. The optional over-temperature sensor and thermal-compensating diodes

D3-D5 should also be glued to the heat sink as shown in Fig. 11 .

If you have a confined-space application, you can mount the two heat sinks back to back: they will then readily accept a mutfin fan for forced convection. For home applications. however. we recommend natural convection-to eliminate the noise, filter. and/or temperature-sensing aspects typically associated with fans. We should make a final note that wiring length should be kept to a minimum. with less than 2 inches from transistor to PC board. Even with that length, a ferrite bead is necessary on each gate lead. and using coaxial cable is recommended.

Preparing the chassis

The design and construction of a chassis for the amplitier is not critical. The atuthor's prototype was built with rack mounting in mind. It consists of an 8×17 inch bottom plate with 1 inch turned up at
the front and back. The front plate is 19×17 inches. As shown in Fig. 10. the two heit sinks mount on the back of the unit. leaving a $21 / 2 \times 7$-inch strip for a small plate where the input and output jacks and luses are mounted. Finally. an K1/4 $\times 31$-inch L'shaped piece of pertorated metal makes up the cover.

Begin mounting the components with the transformer. bridge rectifier. filter capacitors. and fuse-holders. Then. mount the power switch. pilot lights. and level controls on the front pancl.

Next you*ll have to make up a suitable mounting plate and install output jatks that are insulated from their mountings. Install the input-fuse holder and the power cord with a strain reliet. Then wire the transformer primary and secondary as shown in the schematic. If vou plan to use the optional thermal cutouts. leave a pair of wires to go to the heat-sink area. L'se 18 -gauge (minimum!) wire in the power supply. We recommend that you use some simple color code for the I)(wiring-it will help reduce the possibility of errors during subsequent tests.

Locate a suitable single-point ground. such as a screw through the bottom of the chassis near the power supply. and attach the filter capacitors common power-supply ground to it. If you use a 3 -wire power cord. do not ground or terminate the cords ground lead.

Checkout procedures

The amplifier checkout is by far the most important part of building this amplitier. so. shift intolow gear and proceed with great care through the following steps!

First we strongly advise you to make a tinal visual check of all parts placements on the circuit boards and the power-supply wiring. Then. before applying any power. measure each supply terminal with an ohmmeter to ground. An initial low reading should slowly move up to high resistance as the capacitors charge Install the main power fuse and. with the IDC fuses F2-F5 not installed. apply power. Check the two supplies for ± 75 volts. Remove power. and discharge the filter capacitors through a IK resistor.

Next, install a pair of $1 / 4$-amp fuses for F2 and F3. Measure the resistance from each power-supply input to ground an both driver boards. The reading should be greater than 100 K . It it is. temporarily connect one board to F2, F3 and ground. Connect a clip-lead from the collector of Q! to the collector of Q3. Connect another clip-lead from the collector of $Q 7$ to the collector of Q8. Temporarily clip-lead D3. D4. and D5 into the circuit. Apply power. and measure the voltage between the bases of Q16 and Q17. It should be near 7 volts. Adjust R19, and observe this voltage changing. Leave it at 6.8 volts. Measure the voltage from the emitter of

FIG. 8-PARTS-PLACEMENT DIAGRAM for the amplifier board. Refer to the text for information on mounting the output transistors (Q21-Q28) on a heat sink.
each particular type) so that they will share the output current equally. A simple circuit for checking the matching is shown in Fig. 12. They should be matched to be within 100 millivolts of gate voltage at 50 mA of drain current and 200 millivolts of gate voltage at 2 amps of drain current. Make the 2-amp measurement quickly, or with :he transistor heat-sinked.

To mount the transistors, first bend the leads up at at 90 -degree angle right at the point where their width changes. Spread the leads a bit and insert in board. Solder caretully while aligning the transistors as much as possible in a common plane. (They may temporarily be screwed to the heat sink as a holding fixture for this operation.) Solder short leads from D3-D5 to the fottom of the driver board, carefully observing polarity. Apply heat-sink compourd and insulators to the transistors. and icrew the driver and output-transistor assembly to the heat sink, using insulating shoulder washers. Tighten carefully.

Measure each transistor's tab for case. if you are using TO-3's) to the heatsink. The readings should all be infinite. indicating no insulator shorts. (If you are using TO -3 output parts, it will be necessary to run individual leads to each transistor. When doing that, be extremely cautious: Double-check all your connections and

FIG. 9-AMPLIFIER BOARD is shown here mounted on heat sink. Note that Q12, Q13, Q15, and Q18 use TO-5 type heat sinks.

FIG. 10-COMPLETE STEREO AMPLIFIER with cover removed. The chassis configuration is not at all critical.

Q19 to the +75 -volt supply, and the woltage from the emitter of Q20 to the - 75volt supply. One should be around 7 volts and the other about 6 volt. Remove

FIG. 11-HEAT-SINK DRILLING GUIDE. Note thal some parts are fastened with epoxy to the heat sink.
power. discharge the fitter capacitors, remove clip leads, and repeat with the other driver board.

Next, solder the output transistors to the driver board. Note that it is important that the transistors be matehed (within
keep your leads as short as possible. Don't forget to install a ferrite bead on ench qate lead if you are using TO-3's. In no case should the wiring to the transistors be more than 2 inches in length.) Install the heatsink and driver assemblies.

FIG. 12-TO CHECK THE MATCHING OF TRANSISTORS, you might want to use this simple circuit. Start by setting the potentiometer's wiper voltage to zero. Then turn it up to the desired drain current and measure the voltage as shown. For N-channel devices (IRF630), V should be $\cdot 5$ volts. For P-channel devices (IRF9630), V should be -5 volts.

Wire one channel to F 2 and F 3 with 18 gatlee (minimum) wire. Comned at wire from the circuit board ground, near the output. W the chansis single-point ground. Install a $1 \times$-amp fuse for F -3. and a $1-\mathrm{mA}$ fuse for F2. Apply power, and check for a current through 1.3 of less than $50(0 \mathrm{~mA}$. Also check that the output volsage at LI is between ± 1 wolt. If either of those tests fail, immediately turn off power. and look lor the source of the problem before proceeding. Adjust R19 to set the current through $F 3$ wo atout 250 mA . corresponding to an output idle current of about 150 mA . Next. adjust R8 carefully to bring the ouput vollage at L . as close as posible to zero. Turn of the power. and repeat for the second channel. using fuse positions Ft and FS .

PARTS LIST-BARGRAPH DISPLAY

 and CLIPPING INDICATORSAll resistors are $1 / 4$ watt, 5%, unless otherwise specified.
R43-24,000 ohms
R44, R46. R53- 12.000 ohms
R45, R52, R70-22.000 ohms
R47, R54- 1000 ohms
R48, R55-470,000 ohms
R49, R51, R58, R59, R61, R62- 10.000 ohms
R50, R56- 150 ohms
R57, R60-53,000 ohms
R63. R65-1200 ohms
R64, R66-7500 ohms
R67- 350 ohms, 20 watts
R68- 15.000 ohms
R69-2200 ohms, 5 watts

Capacitors

C18. C19-1 $\mu \mathrm{F}, 10$ volts, electrolytic
C20-2.2 $\mu \mathrm{F}, 10$ volts. electrolytic

Semiconductors

IC1-LM139 Quad op-amp
Q30-ECG291
D17, D18-1N4001
D19, D20-1N4741A 11 volts, 1 -watt. Zener
D21-1N4735A 6.2 voits, 1 watt, Zener D22-1N4744A 15 volts. 1 watt Zener D23-1N4750A 27 volts, 1 watt, Zener LED1, LED2-Standard red LED DISP1, DISP2—NSM39158 logarithmic bargraph display with driver (National) Other components
S2. S3-SPDT
The following items are available from A\&T Labs, Box 552, Warrenville, Illinois, 60555: Etched, drilled, platedthrough PC boards, $\$ 22$ each; Power transformer, $\$ 69$ each; Set of 8 matched power FET's, S66; Drilled heatsink (type 512), \$27. Add 5\% shipping and handling, 12% for transformer. lllinois residents include 5-1/4\% sales tax.

FIG 13-CLIPPING INDICATORS can be added to your amplifier, if desired.

FIG. 14-BAR-GRAPH POWER METERS will certainly make a nice addition to any stereo amplifier.

FIG. 15-THIS POWER SUPPLY is needed if the clipping indicators and bar-graph power meters are added. Note that Q 30 requires a 10 -watt heat sink.

L'pon completion of thene initial tests. tinish wiring the remainder of the chassis. Run at least 18 -gauge wire from cath dris-er-hoardoupur. along with a ground from the board to the output binding posts. Shielded cable should be used from the kevel controls to the input jacks. The in-put-coupling capacitors mount at the level control.

For continuous full-power applications. it will be necessary to use 5 -amp fuses for $\mathrm{F} 2-\mathrm{F} 5$. and 8 -amp output fusen for FI. However for nomal, or even loud general lissening situations, it is advisable to use much smaller fuses to protect the speahers. It is usually sulticient to use 2amp supply and 1 - or 2 -amp output fuses. and work up from there if necesary.

You may want to add clipping indicators and or har-graph power meters to your amplitier. The clipping indicator is shown in fig. 13. the power meter. in fig. 14. and the power supply needed for the two additions is shown in Fig. 15. R-E

Servicing

Videodisc Players

Part 21.ASt Hinit. WF Bl:GAN our look at servicing videodise plavers with a discussion of how LV platers worked. Let is timish that discossion now and then move on to an owerview of the CED swtem.

Referring of Fig. fi (see P. 6x. December 19xt Radio-Electronies), the primo in designed to deviate the path of the retlected heam so that the beam passes through the eylindrical kens to the photodiodes. which generate (or control) three voltages in response to the three light beams returning from the dice. The center beam generates the Fil signall and
the focus error-voltage. As shown in Fig. 7. if the dise is touclone or tox far from the objective lens. the reflected beam becomes elliptical in shape. If the dise mowe too close to the objective lens. diodes \therefore and β receive more light, and conduet more than (e and 1). The opposite is true if the dise moven too far from the lens. If the light bundle is not perfectly focused on s.B. © . and 1), a focus emor-voltage in generated an move the objective lens up or down as required to maintain correct focus. The objective lens is attached to a coil of wire and is surrounded hy a permanem magnet. smilar to a boudspeaker.

Curent through the eoil, as determined bs the photodiodes. mowes the lens up or down as necemary:)

The light beams striking diodes a and 1 . serve to maintain correct radial tracking. If the beams shift to the left or right. I: receites a different amount of light than r. and a radial error-voltage is gencrated io nowe the radial-tracking mirror an necenary to dellect the beam back onto the center of the track. The movable tangen-tial-mimer operates in an identical manner. but receives the error correctionwoltese from the videocircuits.

We will not go further into the LY op-

FIG. 7-PHOTODIODES are used to keep the videodisc perfectly in focus. The ones in a show a disc in focus, the ones in b show a disc that is too far away, and the ones in c show a disc that is too close.
tical system here. except to say one thing: The optical system of an LV player for more properly the optical/mechanical system) is the critical part of the player from a servicitg standpoint. You must follow the manufacturer's instructions regarding adjustment and/or replacement. Even a minor misadjustment can result in poor player performance (and possibly no performance).

The basic CED videodisc system

Lets begin our look at CED with a review of user controls. Again. remember that the controls described here are "typical" for most CED plavers.

With (CED) the dise is stored in a protective plantic sleeve or caddy. which is insered into the player as shown in Fig. 8 . The CED disc is mounted on a rigid spine (Fig. 9) that holds the dise in plate, both in the caddy and in the plater.

In some players. a feverow lever (or some similar control) must be in the load position to insert and remove the dise. Many of the more recent CED plavers have some form of automatic load function. and do not include such a lever.

The caddy ensures that the CED dise is always correctly loaded. as well as protected when not being played. Once the dise is loaded. the re wormever is set to play (or the automatic mechanism places. the player in play). At that time, a system control microprocessor takes control of the player. At the end of the program, the user sets the feverios lever to unload for the player puts itself into unload) and the user reinserts the caddy into the player to remove the disc. The caddy now serves as a safe, convenient storage container for the CED videodise mounted on the spine.

In players equipped with a function lever. throwing the finconon lever to load applies power and opens the caddy door. allowing the caddy to be inserted into the plaver. After the caddy has been remowed. leaving the dise and spine inside the player. thernernow lever is placed in the play position. That causes a stylus to be lowered onto the disc. allowing the player to begin detecting signals on the dise and generating a display on the TV screen. Note that the CED stylus is somewhat similar to that of an ordinary phonograph pickup. in that the stylus must be driven across the grooves by means of an arm and drive motor (although not a true tracking servo as in the case of LV).

To operate a plaver equipped with autoload. you apply power by pressing the on/ off button. which places the player in load (caddy dororopen). A loaded caddy is then inserted into the plaver (gently) until the player's automatic loading mechanism takes hold and pulls the caddy into the player. (In any type of CED player. do not force the caddy into the plaver.) When the caddy spine is latched. the loading mechanism reverses and returns the emply caddy out beyond the door. You then remove the emply caddy and the player places itself in play. In about 10 seconds. a picture appears on the TV screen. In most players. a digital readout displays the clapsed playing time in minutes.

About 10 seconds after play is completed. the player places itself in tenomad. The caddy door then opens, and you inser the empty caddy to retrieve the dise and spine.

In a typical CED player the user controls also include rapio-acciss (to rapidly move in both forward and reverse directions for quick location of a particular program segment) and vistiatsearch controls (which do the same thing). The difference is that with former. the stylus is lifted and you get no display on the TV (you use the elapsed time indicator to find a program segment), and with the latter. you get a video display in fast motion (but no audio). Most CED players also have a pause feature that raises the stylus (no video display) and cuts the audio at any point during the program.

A special code is recorded at the end of the program on each side of the disc. That code causes the player to go into and "end" mode. When the code is detected. the stylus is lifted and the elapsed-time readout will display a tlashing l:. The player remains in the end mode until the disc is removed. or until rapit access or visioat. search are selected.

Capacitance pickup theory

The CED disc is somewhat like a typical phonograph record in that the signal information is placed in grooves. However, there are many differences. One such difference is the density of the

FIG. 8-THE CED DISC is protected by a plastic caddy. The disc is inserted into the player by inserting the caddy as shown.

FIG. 9-THE CED DISC rests on a rigid spine. Both the disc and the spine are enclosed by the caddy.
grooves. There are about 10.000 grooves in a 1 -inch radius of the CED dise that density is about 40 times that of a phonograph record).

In CED, the audio and video signals are placed on the disc via FM carriers by varying the groove depth. As the stylus travels over the grooves. the vertical position of the stylus remains constant (unlike that of a phonograph record). A thin metalized electrode is placed on the trailing surface of the stylus. That electrode acts as one plate of a "capacitor." The CED disc. which is made of a conductive plastic with a thin lubricating coating. acts as the other plate. As the dise rotates. the distance between the bottom edge of the stylus electrode and the modulation in the groove varies as a function of the modulation. even though the stylus does not move vertically. That action varies the distance between the plates of the "capacitor" at the modulation frequency. and thus modulates the capacitance of the stylus capacitor.

The changing of stylus-to-disc capacity. in turn. modulates a UHF signal in the pickup-arm resonator assembly. The resultant AM UHF signal is peak-detected. generating an output signal that is a voltage replica of the FM audio and video carrier signals recorded on the disc. Those FM carriers are then demodulated to re-
cover the video and audio signals.
Note that the stylus is part of a curtridge. Many CED player cartridges are provided with handles. and are easily removable. That makes it possible to replace the stylus/cartridge simply, often from the outside of the player through an access door. (But do not count on such easy access to the stylus/cartridge on all CED players. Also. do not assume that all CED cartridges are interchangeable with all other CED cartridges.)

CED signals

The CED system uses a vertical tield rate of 60 Hz . and is phase-locked to the AC power line. The CED system also uses the conventional black-and-white TV horizontal rate of 15.750 Hz . The color signals from a CED player are at the NTSC standard of 3.579545 MH 。 The video signal recorded on the CED disc is an FM $5-\mathrm{MHz}$. video carrier. As shown in Fig. 10, the black level of the video signal causes zero deviation of the carricr. or a frequency of 5 MHz . Syne tips cause the video-carrier frequency to deviate to 4.3 MH r. Peak white in the video signal causes the video-carrier signal to deviate 106.3 MHz . The sidebands from that frequency modulation extend from 2 to 9.3 MHz .

On monaural CED videodiscs. one channel of adodo is placed on a FM carrier at 716 kHz . (On stereo or two-channel independent CEI) dises, the two channeh of audio are at 716 and 905 kHz . Audio signals generate a frequency deviation of $\pm 50 \mathrm{kHz}$.
Prior to modulating the $5-\mathrm{MH} /$ video carrier, the $3.58-\mathrm{MHz}$ chroma subcarrier. and resultant sidebands are down converted to 1.535626 MHz (usually called 1.53 MHz) as shown in Fig. 11. Down-converted chroma is developed by heterodyning the $3.58-\mathrm{MHz}_{\mathrm{c}}$ chroma with a $5.115170-\mathrm{MH} /$ oscillator signal. The resultant $1.53-\mathrm{MHz}$ chroma subcarrier is then sideband-limited to $\pm 500 \mathrm{kHz}$. L.tminance information is then added to the down-converted chroma to gencrate a composite video signal.

CED player operation

As shown in Fig. 12. The operation of a CED player is controlled entirely by a microprocessor. User functions such as plat. Rapil access. vistial. Search. etc.. are input to the microprocessor through the corresponding user function switches. In turn, the microprocessor decodes the commands and controls the player's electronics to carry out the functions. Note that when the syluelch line from the microprocessor is low. all electronic circuits are disabled (to provide an automatic shutoff feature).

The microprocessor also controls the pickup arm electronics, including the stylus lifter operation (which raises and

FIG. 10 -CED SIGNALS. As shown here, the black level is at 5 MHz , which is the carrier frequency, the peak white is at 6.3 MHz , and the sync tips are at 4.3 MHz .

FIG. 11-THIS SIMPLIFIED BLOCK DIAGRAM shows the method used to record CED discs
lowers the stylus as various functions are initiated) and the kicker operation (which enables the system to provide vistial. search. and to prevent the stylus from being stuck in a groove). The microprocessor also decodes the digital auxiliary information (DAXI) code recorded on the disc. The DAXI code contains a field idenification number that is decoded to display the elapsed play time of the program (in minutes). Since DAXI is not available during rapid access (the sylus is lifted from the disc) a photo intervipter circuit provides the approximate elapsed tince by tracking the relative position of the pickup arm with respect to the dise.
The pickup arm assembly contains components that are responsible for delecting video information on the disc. The arm also contains stylus-kicker coils that cause the stylus to skip grooves in the disc (to prevent a locked groove condition and
to provide for visceal stiar(h). Also loca:ed in the pickup arm is the armstretcher ransducer. which corrects for timebase variation in the recovered chroma and luminance signals (the variation may be due to warpage eccentricity, and/or changes in turntable speed).

The main function of the pickup electronics is to detect the video signals on the disc. That is done by modulating a 910 MHz resonator circuir (a UHF tuned line) with capacitance changes on the dise surface. The variations in capacitance cause the $910-\mathrm{MHz}$ resonator center frequency to be modulated. The video and audio carrier signals from the arm are applied to two FM demodulator stages. The sound demodulator decodes one of the audiocarriers and generates an audio signal that then FM-modulates a $4.5-\mathrm{MHz}$ carrier in the RF modulator. The sound demodulator also contains a defect corrector or

FIG. 12-SIGNAL PROCESSING CIRCUITS. This simplified block diagram shows the circuitry used to playback a CED videodisc.
dropout corrector (DOC) similar to that in a VCR

Before demodulation. the FXI videocarrier is passed through a nonlinear aperture correction (NL.AC) circuit that eliminates the 716-andor 905-kHz sound beats in the video due to sound-carrier phase modulation of the recovered videocarrier information. The video demodulator abo contains a $D(O C$ circuit that allows a portion of the previous horizontal line to be inserted when a dropout occurs.

The output of the video demodulator is applied to a comb-filter circuit that separates chroma. luminance and DAXI information from the composite video. The DAXI signal is supplied through a DAXI bufferdecoder to the microprocessor. The chroma luminance information is applied to the video converter, which up convers the $1.53-\mathrm{MH} /$ data to $3.58 \mathrm{MH} /$ and combines the chromaluminance signals. The composite-video signal is then supplied to the RF modulator (along with the audio).

The video converter also develops a drive signal for the armstretcher time-base correction circuits. Any phase or frequen© difference produces an error signal. which is applied to the armstretcher solenoid and moves the stylus as necessary to maintain a constant dise-to-stylus velocity. The armstretcher ouput is also coupled to the video-comenter oscillator in order to maintain phase lock between the up-converted $3.5 x-21 \mathrm{H} /$ color signal and the $3.58-\mathrm{MH} /$ reference.

Test equipment

The test equipment used in videodisc player service is basically the same as that
used in TV service. In addition. a test, or reference disc, and a video monitor can prove to be most valuable.

Nose player manufacturers provide test dises as part of their recommended lest equipment and/or tox)ls. A test dise is essentially a standard videodise with several very useful signals recorded at the factory using very precise test equipment and signal sources. You play the test dise on a player being serviced, and note the response. and/or use the signals to perform alignment and adjustment. With the proper test dise, you can generally climinate the need for your own signal soures (signal generators, audio generator, color generator. etc. 1 There is no standardization in test dises. Also, the alignment proededures found in most service literature calls for signals and displays not abailable on all test dises. The only way around that problem is to use the recommended test disc.

A video monitor has no tuner; it is designed to accept video and audio inputs from some source such as a separate tuner. VCR, or videndixe plaver. There are also some TV' receivers on the market that can accept video and audio inputs. A monitor or receiver with sideoraudio inputs is very useful in videodise-player service as they make it possible to examine the audio and video signals from the player before they are applied to the RF modulator so you can check the baseband signals independently from RF. Without such connections. it is difficult to tell if faults are present in the audio/video circuits or in the RF unit. If you use a TV receiver as a monitor. it is helpful to adjust the verticalheight control to underscan the picture (so
you can see the video switching point in relation to the start of vertical blanking).

Maintenance

Videodise player manufacturers disagree considerably about routine maintenance. For example. one manufacturer recommends that the laser be replaced at $5(0)$ () hours, the motors at 3() o() hours and the turntable components after 9000 plays. Another manufacturer recommends "fix it if it breaks down." Nevertheless. remember the following points.

The picture quality of an Ll player can be degraded if too much dust or dire accumulates on the objective lens. Dust can be remowed with an air blower (as used on a camera lens). Never touch the lens surface. Keep the lid closed, except when inserting or remowing a disc. If an LV disc becomes very diry. hold the dise by the edges. and wipe both sides with a clean. soft. dry cloth. Check for warped LV dises since a warped dise can cause skipping. loss of picture. and even hit the lens or lid. Some manufacturers recommend removing scratches on an LV' disc with polishing compound (but never use rubbing compound). If LV discos are very cold (frozen). allow about 45 minutes for the dise to return to room temperature before playing. Store LV disces in their jackets on the edge in a standard phonograph record rack. Do not stack $1 . \mathrm{S}^{\prime}$ videodises. and awoid storage in hot areas.

Keep CED dises in their caddy. Never remove a CED dise from the caddy cescept in the players. Never try to clean a CED disc.

Next time. we'll show you how to service $I X$ and CED players.

R-E

DESIGNING WITH LINEAR IC'S

A look at op-amp based sinewave, squarewave, and triangular wave generators.

JOSEPH J. CARR

Part 8THIS MONTH, W'… turn our attention to squarewave, triangular wave, and sinewave generator circuits based on operational amplifiers. The heart of each circuit is a comparator. While there are several different types of IC comparators available. for the purposes of our discussion we will consider only op-anm-based comparators.

Op-amp comparators

One author once called the comparator "an amplitier with $t o o$ much gain." The purpose of the comparator is to provide unique outputs to indicate the relative values of two voltages. V1 and V2. The three possible conditions are: $\mathrm{VI}=\mathrm{V} 2$. '1 less than V 2 and V 1 greater than V 2 .

Figure 1 shows a simple comparator circuit. Note that the operational amplifier has no negative feedtack circuit. That fact means the gain is essentially the open-loop gain ($\mathrm{A}_{\text {vol }}$) of the op-amp. Depending upon type. Avol. might be anything from 20.000 to over 1.000 .000 . An implication of that is that very small input voltages will saturate the output of the op-amp. Iet's assume. for example. atn op-amp with 12 -volt power supplies that permits $\pm 1(\theta-$ volt output signals. With a gain of 100.000 (moderate for an (op-amp), the input voltage that will saturate the output is $(10$-volts) $/ 1(0)$.(0) () or 0.0001 volt (i.e. $100 \mu \mathrm{~V}$)!

If V'I equals V_{2}, then output $V_{(0)}$ will be zero. If V 1 is greater than V ? , we get the same result as applying a positive voltage to an inverting amplitier: the output saturates at a negative voltage. The last situation, V1 less than V2, is the same as
applying a negative vellage to an inverting amplitier: the output saturates at a positive voltage.

Diodes D1 and D2 are sometimes used to limit the output voltage $V_{(x)}$, to some value. That limitation might be to protect a following circuit, or to sharpen the output wateform (saturated amplatiers don't always recover quickly). Diode DI limits, the output on positive excursions to V_{D}, +0.7 volts. while diode ID2 limits negative excursions to $-\left(\mathrm{V}_{1 \text { ! }}+0.7\right.$ volts $)$. In both cases. one diode is in the reverse-bias Zener region. while the other is forward biased (which accounts for the 0.7 -volt lerm).

If we ground the noninverting input of a comparator, then $\mathrm{V}^{\prime} 2=0$. By applying a

FIG. 1-A SIMPLE COMPARATOR built around an op-amp. Note that the op-amp has no feedback circuit.

FIG. 2-THIS COMPARATOR CIRCUIT can be used to convert sinewaves to squarewaves and to detect positive to negative (zero crossing) transistions.

0.6 V

FIG. 3-WAVEFORMS for the circuit shown in Fig. 2.
sinewave to the inverting input we will generate a squarewave (${ }^{\prime}$ of in Fig. 3) at the comparator output. Because of their ability to convert a sinewave into a squarewave comparators are used sometimes as the input stage of frequency counters. Modem's and other devices.

A comparator can also be used as a ero-crossing detector by differentiating the comparator output; that is the function of RI and Cl in Fig. 2. The waveform at V_{A} is the differentiator output. The timeconstant formed by KI and Cl should be very, very short (e.g. O.Ol)compared with the duration of waveform V^{\prime} or. We can setect either positive-going (as shown) or negative-going transitions by placing diode Dl inseries with the signal line. That diode will clip the spikes of one polarity or the other. (As shown in Fig. 2, it clips the negative spikes (see Fig. 3); reverse it to clip positive spikes).

FIG. 4-AN OP-AMP BASED one-shot circuit.

FIG. 5-TIMING WAVEFORMS for the circuit shown in Fig. 4. Note that the one-shot can not be retriggered until both the period t and the refractory period have expired.

Monostable multivibrators

A monostable multivibrator. or oneshot. is a circuit that has but one stable state. When triggered by an input pulse. the one-shot switches to the unstable state for a predetermined period of time before reverting to the stable state.

Figure 4 shows a one-shot circuit based on the op-amp. while Fig. 5 shows the timing waveforms for that circuit. There are two feedback paths in the circuit of Fig. 4. The negative feedback path consists of Rl and Cl . in which Cl charged by the current in RI generated by potential $\mathrm{V}_{(}$. The positive feedback loop consists of $R 3$ and $R 4 ; V_{1}$ is the positive leedback voltage.

When a negative-going trigger pulse is applied to differentiator $\mathrm{C} 2-\mathrm{R} 5$, the opamp output will snap to $-V_{6}$. and remain there. The voltage will be negative. so capacitor Cl will begin to charge to a negative voltage. When $-V_{c}=-V_{0}$ the op-amp output snaps high again. ending the output pulse period. Capacitor Cl is then discharged because V_{0}, is positive. Diode DI clamps V_{0} to +0.7 volts.
The period T of the output pulse is:

$$
\begin{equation*}
T=R 1 C 1 \ln \left[\frac{1+\left(0.7 V / V_{0}\right)}{1-R 4(R 3+R 4)}\right] \tag{1}
\end{equation*}
$$

If we put some constraints on values. then Equation I can be simplified. If C_{0} is much larger than 0.7 wolts (it almost always is! ! . and R3 $3=$ R4. then Equation I reduces to:

$$
\begin{equation*}
T=.69 R 1 C 1 \tag{2}
\end{equation*}
$$

Normally. we know the required period T. and will select Cl from tables of standard values. We will thus want to rearrange Equation 2 to tind RI :

$$
\begin{equation*}
\mathrm{R} 1=\frac{\mathrm{T}}{.69 \mathrm{C} 1} \tag{3}
\end{equation*}
$$

When designing the circuit. try several values of Cl in order to tind a value for Rl that is close to a standard value.

The circuit of Fig. 4 cannot be retriggered until both period t_{m} and the refractory period (i.e. time to discharge Cl) expire. Figure 6 -a shows the operation of such a circuit. When the tirst trigger pulse is received at time 1_{1}. the output \mathcal{V}_{0} drops to $-\mathrm{V}_{\mathrm{O}}$ for period t_{m}. The second trigger pulse (at t_{2}) has no effect. The third trigger pulse (at t_{3}) effects the output because the period has expired as has the refractor period. That type of one-shot is sometimes called a nonretriggerable monostable multivibrator.
Figure 6-b shows the timing diagram for a retriggerable monostable multivibrator. The output drops low (i.e. to $-V_{0}$) at time t_{1} when the first trigger pulse is received. If no other pulses are received. the output will snap high si.e. to $\left.+V_{0}\right)$ after time period $t_{m 1}$ expires. But betore $t_{m 1}$ expires. a second trigger pulse is received. That pulse resets the timing for another period $t_{m 2}$. The total period the output remains low is t_{m} plus the previously expired portion of the other pulse. In other words. $\mathrm{t}_{\mathrm{m}}($ total $)=\mathrm{t}_{\mathrm{m}}+\left(\mathrm{t}_{2}-\right.$ t_{1}.

Figure 7 shows a method for making the one-shot circuit of Fig. 4 into a retriggerable one-shot. Transistor Q1 is connected across timing capacitor Cl. In the dormant state, the positive voltage on the trigger input keeps QI reverse biased. thereby turned off. But when a negative triggering pulse is received, however. QI is momentarily forward biased. discharging Cl; that restarts the timing period. A subsequent trigger pulse will discharge Cl again. provided the pulse is received prior to the end of t_{m} (or after the refractory period).

FIG. 6-A NONRETRIGGERABLE ONE-SHOT can not be retriggered until both t_{m} and the refractory period have expired; the timing diagram for such a circuit is shown in a. In a retriggerable one-shot, each trigger pulse restarts the timing period, t_{m}; the timing diagram for that circuit is shown in b.

FIG. 7-THE NONRETRIGGERABLE ONE-SHOT of Fig. 4 can be turned into a retriggerable oneshot with the modification shown here.

Squarewave generator

A squareware generator produces a train of equal duration pulses that alternately snap between positive and negative extremes. A perfect squarewave is symmetrical in two ways: amplitude and perjod. In other words. the positive and negative excursions have equal durations and equal amplitudes. A perfect squarewave will also have extrencly fast rise and fall times (which requires high-frequency op-amps). An implication of that latter characteristic is that the squarewave is rich in upper harmonics (which is why squareware oscillators are used in frequency multipliers and erystal frequencymarkers).

FIG. 8-A SIMPLE op-amp based squarewave generator.

Figure 8 shows a typical squarewave generator batsed on an IC operational amplitier: Fig. 9 shows the timing diagram for the circuit.

The squarewave-generator circuit bears a certain resemblance to the one-shot circuit shown previously. There are two feedback paths. The negative feedback path consists of timing components RI and Cl . That circuit causes capacitor Cl to be charged by a current in R1, which is generated by output voltage V_{0}.

The positive teedback path consists of resistor voltage-divider network $R 2 / R 3$.

Voltage V_{f} (see Fig. 8) is the feedback voltage, and is a equal to $\mathrm{V}_{0} \mathrm{x}$ R2/(R2 + R3).

Looking at Fig. 9. output waveform V_{0}, is superimposed on capacitor charging voltage V_{C}. Let's assume the output V_{0} snaps high (i.e. to $+V_{0}$) at turn-on. Capacitor Cl will start charging in a positive direction at a rate determined by the values of RI. CI. and V_{0}. When capacitor voltage V_{C}. rises to $+V_{f}$. the op-amp essentially sees a zero-voltage differential input, so the output snaps low again. At this point. V_{0} is negative so capacitor Cl begins to charge in the negative direction. When $-V_{0}=-V_{f}$, the output will snap high again.

FIG. 9-TIMING DIAGRAM for the circuit shown in Fig. 8.

A generator whose output alternates back and forth. as is the case for the circuit in Fig 8 . is called an astable multivibrator: in other words, it has no stable states.

The pertod of the waveform in Fig. 9 is the sum of high and low times. and can be expressed by:

$$
\begin{equation*}
T=2 R 1 C 1 \ln \left(1+\frac{2 R 3}{R 2}\right) \tag{4}
\end{equation*}
$$

where T is in seconds. If $R 2=R 3$. we can simplify Equation + to the form:

$$
\begin{equation*}
T=3.2 \mathrm{R}_{1} \mathrm{C} 1 \tag{5}
\end{equation*}
$$

As with many textbook equations. Equations 4 and 5 are not in the most practical format. In most caties, we will know T and will select Cl from a table of standard values. Thus, we need to rearrange Equation 6 to solve for R1. The value of RI can be calculated from:

$$
\begin{equation*}
\mathrm{R}_{1}=\frac{\mathrm{T}}{3.2 \mathrm{C} 1} \tag{6}
\end{equation*}
$$

For example. fet's tind the value of RI if Γ is $0.2 \mathrm{~ms}(2 \times 10$ tseconds) and Cl is $0.01 \mu \mathrm{~F}$.
$\mathrm{RI}=\mathrm{T}, 3.2 \mathrm{C}$
$\mathrm{RI}=0.0002 \mathrm{sec} / 3.2(1 \times 10)^{-8}$ farads)
$\mathrm{RI}=2 \times 10+\mathrm{sec} / 3.2 \times 10^{\mathrm{x}}$
$\mathrm{RI}=6250$ ohms

FIG. 10-A SYMMETRICAL WAVEFORM is not always desired. This modification to Fig. 8 produces an asymmetrical waveform.

FIG. 11-ANOTHER WAY to generate a squarewave with an asymmetrical waveform is to use a potentiometer. The circuit shown here is another modification of the one shown in Fig. 8.

FIG. 12-ONE COMMON METHOD of generating a triangular wave is to input a squarewave into a Miller integrator.

The circuit of Fig. 8 produces the symmetrical waveform of Fig. 9. Both positive and negative excursions occupy equal time durations. That situation occurs because $1+V_{0} \mid=1-V_{0}$. and $C 1$ is charged through RI on both sides of the waveforms. Unfortunately, however. symmeiry is not always desired. The modifications to Fig. 8 shown in Figs. 10 and 11 provide asymmetry in a controlled manner.

The method shown in Fig. 10 uses two feedback resistors and a pair of switching diodes to accomplish the job. The polarities of the diodes are such that D3 is formard biased by negative V_{0}. while D4 is forward biased by positive V_{0}. As a result, the capacitor is charged by $-V_{0}$ via $R_{i t}$, and by $+V_{0}$ through R_{b}. If R_{a} and R_{b} are not equal, then the durations of positive and negative excursions of waveform V_{0} are not equal.

An alternate to varying the symmetry is shown in Fig. II. An offiet voltage (either positive or negative) is provided by selting potentiometer R2. Since varying R2 will vary the voltage across C1, it can be used to modify the charging time required for V_{1} to reach either $-V_{f}$ or $+V_{f}$ (depend-

In Computer Electronics...

NTS ITTRDCILC" HOME TRAINING GIVES YOU

 THE EDGE> The competition for High-Technology careers is strong, and the rewards are great. Give yourself the edge you need by training with NTS.

NTS IMTROMLL home training provides you with a special kind of "Hands-On" experience that prepares you better, develops your skills faster. You advance as quickly as you wish, working with actual circuits, diagrams, schematics, and state-of-the-art hardware. There are a dozen different NTS programs in electronics to help you develop and reach your potential. They range from basics to advanced areas in several fields. And the ALL-NEW NTS course catalog spells it all out. It's free, and does not obligate you in any way. Send for it today.

A GROWTH INDUSTRY

High-Technology is a growth industry. The evidence is clear, and most observers predict a steady expansion due to a relatively strong flow of investment capital into computers, electronics and precision instruments. Sales of computers alone will reach an estimated ten million units this year. This means challenges and new
employment opportunities, especially in servicing and maintenance. Computer servicing skills can best be learned by working directly on field-type equipment. NTS electronic hardware is selected and developed especially for the training program with which it is associated. You learn by doing, by assembling, by performing tests and experiments, covering principles of computer electronics, microprocessor troubleshooting, and circuitry.

MICROCOMPUTERS

NTS offers three programs in computer electronics. You will receive training covering solid-state devices, digital logic circuitry, and the fundamentals of the computer itself. Instruction includes micro-control technology and detailed operation of microcomputers. These courses will prepare you for entry-level in many facets of the computer industry such as field service and customer engineering as well as programmirig. In addition to written texts your course includes the NTS/HEATH disc-drive computer which you assemble as part of the training process. The assembly and use of the computer will serve to reinforce practical application of principles.

MICROPROCESSOR TECHNOLOGY

The field of industrial and microprocessor technology encompasses the application of electronic microprocessor control principles. Your course takes you from fundamentals of digital electronics and associated circuitry through the application of the microprocessor as a control device. You will learn how to move and manipulate instructions and information. The microprocessor trainer included in your course is a microcomputer system designed as a practical tool for learning the use of software and hardware techniques utilized in the linking of microprocessors to various systems.

DIGITAL ELECTRONICS

The NTS Compu-Trainer is a fascinating solidstate device which you will build in order to perform over ninety logic circuit experiments. These experiments serve to emphasize an area of electronics which is essential to the understanding of state-of-the-art control equipment; they are also extremely important to those wanting to pursue a career in computer servicing. Separate courses involving the Compu-Trainer are also available in Microcomputer Servicing and Digital/Analog Electronics.

ROBOTICS \& VIDEO TECHNOLOGY

Other NTS courses cover a wide range of specialization. In Robotics, the NTS/Heath Hero I is included to train you in robotic applications in

NO OBLIGATION
1 SATIONAL
TECHNICAL TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, CA 90037

manufacturing processes. In Video technology, a new course features the advanced NTS/Heath Z Chassis "Smart Set" color TV with computer space command remote control and space phone. This is an excellent program for those interested in a career in video servicing with microcomputer basics.

EARN CEU CREDITS

America's industrial giants are turning more and more frequently to home study as an effective way to upgrade employee skills. You benefit from the experience NTS has gained in its 79 years as a leader in technical training. The skills and experience gained in the building of kits and test equipment provide you with training that cannot be duplicated. And, depending on the program you select, you can earn up to 30 CEU credits for successful completion. Complete details included in the catalog.

Use the mall-in card or III out and mall the coupon. Indicate the fleid of your cholce. (One, only please.) FREE Iull color catalog will be sent to you by return mall.

NATIONAL TECHNICAL SCHOOLS Depl 206-015 4000 South Figueroa Street, Los Angeles. CA 90037 Please send FREE color catalog on course checked below.

\square Robotics.	\square Computer Electronics
\square Digital Electronics	\square Video Technology
\square Auto Mechanics	\square Home Appliances

\square Air Conditioning/Solar Heating

ing upon the polarity of \backslash. An advantage of the circuit shown in Fig. II is that it inctudes a potentiomeler that allows you to continuously vary the relative duration of the positive and negative excursions of the waveform.

FIG. 13-TIMING DIAGRAM for Fig. 12. The squarewave, shown in a, is input to the Miller integrator; the resulting triangular waveform is shown in b.

Triangular waveform generator

There are several ways to generate a triangular wateform. Figure 12 shows one very common method-drive a Miller inegegator with a squarewave generator. The liming waveform is shown in Fig. 13.

The triangle, wate circuit is modified in Fig. It to include a self-generating squarewave source. The frequency of the output of that circuit is given by:

$$
\begin{equation*}
f=\frac{\mathrm{R} 2}{4 \mathrm{R} 3 \mathrm{R}_{1} \mathrm{C}_{1}} \tag{7}
\end{equation*}
$$

Sinewave oscillators

Sinewaves can be generated either by filtering a square or triangular waveform. or by using a feedback oscillator circuit.

The filtering method uses a very sharp cut-off low-pass tilter, or a notch filter, to remove the harmonics from a complex waveform such as a triangular wave or squarewave. Of course, the amplitude is greatly reduced. but that problem is casily overcome through the use of fixed-gain amplifiers.

FIG. 14-THIS TRIANGULAR-waveform generator includes an integral squarewave generator.

FIG. 15-AN RC phase-shift oscillator, such as the one shown here, can be used to generate a sinewave.

FIG. 16-THIS WIEN-BRIDGE OSCILLATOR can also be used to generate a sinewave output.

An advantage of the filtering method is that it is easy to maintain amplitude stability over a wide range of frequencies. Where tixed frequency operation is used. however. one might want to use a teedback oscillator.

There are two criteria that must be met by a feedback oscillator: The loop gain must be one or greater, and the feedback must be in-phase with the input signal only at the desired frequency of oscillation. Two different sinewave oscillator circuits are presented here-the RC phaseshift oscillator and the Wien-bridge oscillator.

The RC phase-shift oscillator is shown in Fig. 15. The inverting amplifier ICI provides 180 degrees of the required 360 degrees of phase shift. The remaining 180 degrees of phase shift is provided by a three-stage RC network (each stage provides 60 degrees). The frequency of oscillation is given by:

$$
\begin{equation*}
f=\frac{1}{2 \backslash 6 R C} \tag{8}
\end{equation*}
$$

The circuit will oscillate provided that the gain, which is set by $-R_{\downarrow} / R$. is sufficient too overcome the losses of the RC phase-shift network. Analysis shows that the attenuation factor of the network ($\mathrm{V}_{\mathrm{f}}+$ V_{0}) is $1 / 29$, so the gain must be 29 or more.

The Wien-bridge oscillator is shown in Fig. 16. The "bridge" is a frequency-selective $A C$ version of the old-fashioned Wheatstone bridge. If $\mathrm{RI}=2 \mathrm{R} 2$, the circuit will oscillate at a frequency of f $=1 / 2 \pi R C$.

"Rudio is just like TV-only the picture nube blew:"

Bat

Satellite-TV Accessories

Once you have your basic TVRO system set up, it's time to look for add-on devices to make your viewing more enjoyable, or simply more convenient. Here we'll take a look at some of those accessories.

MARC STERN

While a basic tvro systen-made up of a receiving antenna. LNA. downconverter, and receiver-will certainly bring you much enjoyment, there are many accessories that can make your setup even more pleasant. For example, you can add a stereo synthesizer or stereo processor. a remote antenna actuator. and a host of other devices.

In this article. we 'll tell you about some of the many of the satellite add-ons that are available and how to choose them. We'll also describe what they can do for your system. Let's begin our look at these items with the stereo synthesizer and the stereo prisessor. both of which will add to your listening pleasure

Stereo synthesizers and processors

A stereo synthesizer, as its name implies, creates synthetic stereo sound from the mono signal that may be transmitted by a satellite s transponder. It is pseudo stereo, not true stereo sound. However. when you use such a synthesizer with at good sterco amplifier, you can achieve rather good results.

A stereo processor, on the other hand. is used to decode stereo signals from satellites. The result is true stereo. not pseudo stereo. We recommend stereo processors over stereo synthesizers, especially since the price of decoders has dropped rather dramatically. In fact, sterec synthesizers are becoming in-
creasingly difficult to find. because their price advantage has slipped away.

A stereo processor should have a tuning range from 5.5 to 8 MHz - that will permit you to tune in the whole range of possible audio subcarrier frequencies. If you're á regular Radio-Electronics reader. then there's a good chance that you'll want to build a stereo processor yourself. If so. check our October 1984 issue for construction details for a stereo decoder.

Many stereo processors feature selectable bandwidths (150 and 500 kHz . for example). Selectable audio bandwidth can be a useful feature to help increase the signal-io-noise ratio ol many signals. But remember that as you decrease the band-
width. you lose some of the high-frequency music information. However, in noisy conditions, that is often a worthwhile tradeoff.

IF filter

Another useful add-on component for your TVRO setup is an IF filter. There are several kinds. One type is a passband fil-ter-it filters out those frequencies above and below the satellite-TV IF. It also narrows the IF bandwidth. Thus, it can be useful to pull some weak signals out of the snow (but you don't want to use it with stronger signals).

Another type of filter is the notch filter. Its main purpose is to eliminate annoying black and white spots (sparklies), which are usually caused by terrestrial interference. (Transcontinental telephone microwave transmissions have carriers at $\pm 10 \mathrm{MHz}$ from the transponder's center frequency.) When connected between the downconverter and receiver, the filters can eliminate the interference at 60 and/or 80 MHz .

Do you really need a filter?' We think that you should put off buying one until you set up your TVRO system. You may find that your reception is adequate without a filter. Anyway, they are easy enough to install (they just connect in-line between the downconverter and receiver) so that you can add them at any time.

Antenna positioners

Because of their popularity, it is becoming hard to think of antenna positioners as TVRO add-ons. Since few people are willing to run outside to crank their dishes to a new position, antenna positioners are becoming more like standard equipment! In general, an antenna positioner consists of two parts: a control unit and an antenna actuator. The control unit is mounted indoors at the satellite receiver. It controls the actuator, which is mounted at the dish.

The two units are connected by a cable, and the control voltage is low, usually around 24 volts DC. Many control units feature digital displays that let you return the antenna to a particular satellite. Those displays, typically from 2 to 4 digits, are not true indicators of position. They are guide numbers so that you can return to a particular satellite. In other words, when you locate a satellite (such as SATCOM F3), you make note of the display (say, " $247^{\prime \prime}$). Then, whenever you want to return to SATCOM F3, you simply press the direction controls until the display shows "247." Some positioners allow you to store satellite positions in memory so that you can return to them, with a single command. And some units let you store the satellite name in memory as well.

When shopping for an antenna positioner, make sure that the actuator is protected against damage from overtravel. If
it isn't. someone who is not familiar with the system could easily damage the actuator. Most systems do have limit indicators and automatic braking so that the possibility of damage from misoperation is small.

Some positioners offer "extra" features that you might find to be very convenient. Read through our look at the marketplace for more details. The other considerations in buying an antenna positioner are mostly mechanical. Of course, you should look for sturdy construction. and systems with little backlash. Weatherproofing is also desirable. Most important of all, perhaps, is to make sure that your actuator has at least a one-year warranty.

Video switching

It is quickly becoming true that the average television set isn't just receiving an input from a VHF or UHF antenna anymore. Instead, it may have inputs from a video cassette recorder, a cable-television system, a home computer, as well as a home satellite-signal receiving system. A video switcher is almost a necessity to eliminate the familiar "rat's nest" of wire and cable, and the confusion that grows as the TV is called upon to handle so many items.

There are two things you want to look for when buying a switcher: High isolation between inputs, and a lot of inputs. (You should get more inputs than you think you have need for-you're sure to need them eventually.) As an added convenience, you might want to buy one with two or more outputs as well.

There are other accessories that you can get for your TVRO. Signal splitters, distribution amplifiers, remote controllers, outboard signal-strength meters and tunable audio (if your receiver is not so equipped), etc. can all be found along with a host of other goods. Let's now take a look at just some of those add-ons you will find in the marketplace:

Arunta

Arunta has three IF filters available for $\$ 165$. The 47022 threshold extension filter passes 59 to 81 MHz with fairly sharp skirts. It helps to reduce interference on weak transponders. The 47019 notch filter features dual notches at 60 and 80 MHz . It is most useful for eliminating terrestrial (telecommunications) interference. The narrow-bandwidth 47015 enhances reception of INTELSAT feeds. (While most TVRO systems have bandwidths of about $27-30 \mathrm{MHz}$, INTELSAT signals have bandwidths of about 18 MHz .) Each filter can be simply turned on or off with the touch of a button (especially important with the 47015).

Arunta also offers their SSP-318 satel-lite-stereo processor, which can be used to listen to mono signals as well as those
broadcast in multiplex, adaptive deviation multiplex, matrix, and discrete formats. It features dual tuners, a $5-8 \mathrm{MHz}$ range. automatic deviation, dual tuning meters, noise reduction, dynamic-range expansion. and AFC. Dual IF bandwidths (300 kHz and 130 kHz) are also offered.

Burr Equipment

Burr`s Sat-Trol / satellite actuator and positioner control box, is available for \$479.95. The Mini-Trol is available for $\$ 399.95$.

The Sat-Trol I uses membrane-type east-west control keys: it has dual scan rates and a position indicator. The actuator uses zinc-plated tubes, a die-cast aluminum powerhead, and a special weatherproof boot.

BURR EQUIPMENT Sat-Trol 1 actuator.

The Mini-Trol is designed to eliminate electronic problems. Built without potentiometers or Hall-effect sensors, only the motor and screw are left at the dish. Although that system is very reliable, there is no display of position at the control unit. So returning to a specific satellite is more difficult than it would be with the Sat-Trol 1, which does feature a digital display of position. The Mini-Trol features pushbutton operation and an automatic brake circuit. It is rated at 1,000 pounds thrust and 5,000 pounds static loads.

R.L. Drake

Drake offers several add-on TVRO accessories; among them are APS24 antenna positioner (\$499), their VS35 video selector (\$165), and their NF60/80 notch filters.

The APS24 makes it easy to relocate a polar-mount antenna. The console features a two-digit LED display and EASTwest actuator buttons. The control motor operates on 36 -volts DC, and can be used with most antennas that require a maximum linear travel between 18 and 36 inches.

R.L. DRAKE VS- 35 video switch.

The VS35 video selector takes inputs from 5 program sources. It offers pushbutton source-selection and isolation is better than 60 dB . Its frequency response $(0 \mathrm{~dB}$ to 3.5 dB) is $50-400 \mathrm{MHz}$. Three outputs are offered: tv, remote, and

VCR. All active inputs and outputs are indicated by front-panel LED's.

The $N F 6() / 80$ notch filers, available for $\$ 79.95$, cut out terrestrial microwave interference. The $N F 60$ is for removing interference at 60 MHz , while the $N F 80$ is for 80 MHz . For each filter, the notch depth is 45 dB . and the $3-\mathrm{dB}$ bandwidth is $\pm 1.5 \mathrm{MHz}$ of the center frequency.

Dynasat

The DT-200 Power Tracker, available for $\$ 289$, combines a weather-sealed. maintenance-free actuator and an electronic control unit that features two-speed east and west controls. An LED readout and Polarotor / control are also included. The 24-volt DC system uses Hall-effect sensors. It features an 18 -inch stroke, hardened steel gears, stainless steel extension tube, and a rated thrust of 2.000 pounds

Earth Station Accessories

A weatherproofing boot for satellite actuators/positioners is available for \$21.50. It can be used to protect many positioning jacks. A two-piece boot protects motor and gear works.

Houston Tracker Systems

The Tracker IVplus is a top-ot-the-line antenna positioner with remote control ($\$ 610$ with remote. $\$ 439$ without). The computer-programmable drive system features UHF wireless remote control (up) to $2(0)$-feet away'). Other features include a 16-character, blue fluorescent display that gives instructions while programming. and parental lockout capability.

The Tracker /Vplus offers control of the Chaparral Polarofor $/$, and can intertace
directly to many receivers for automatic polarity selection. (Some receivers require an interface board.) The cast-west over-travel limits are user programmable. The unit is supplied with an 18 -inch, ballscrew actuator and 100 feet of wire.

The Tracker /I (\$305) is a manual-drive antenna and positioner that features an LCD readoct of satellite "location" and user-adjustable over-travel limits. It features a self-contained 6 -amp power supply. The suggested system load is 800 pounds or a 10 -foot lightweight dish. The Tracker $/ I$ is supplied with an 18 -inch actuator and 100 feet of wire

ICM/Video

The VP-300C (\$349) is a completely automatic video processor. It regenerates synchronizing signals, and a clamp circuit removes hum and flicker. It features a copyguard stabilizer. four video and audio outputs, NTSC and PAL compatibility, AGC . and a $6-\mathrm{MH} 2$ bandwidth. Its S / N is specified at 50 dB .

ICM VIDEO Signal Purifier
The $V E-20(0)(\$ 495)$ is also automatic. It regenerates all sync signals and features a copyguard stabilizer, four audio and video outputs. image enhancement and noise reduction. fade to black, a $5-\mathrm{MHz}$ bandwidth. and its S / N is specified as 60 dB . It has controls for video level, color level.

HOUSTON TRACKER SYSTEMS Tracker // antenna positioner and actuator.
burst phase. and noise level.
The SA-50 Signal Purifier (\$150) is a filter/amplifier containing a five-pole bandpass filter to reduce out-of-band interference. The SD40 (\$325) stereo matrix decoder is used to decode matrixstereo transmissions. The TA-30 $(\$ 115)$ is a tunable-audio device-it allows you to tune all subcarrier frequencies from 5.5 to 8.5 MHz (but not in stereo).

Kent Research

The SurvevorSeven, available for about $\$ 320$. is a programmable (12-memory) antenna positioner that offers an optional remo'e control. It features an LCD antenna "position" indicator: east-west travel and limit indicators. Up to 12 positions can be set in its non-volatile memory and recalled by turning a 12 -position rotary control.
The Survevor-167. which sells for about $\$ 7(0)$. is perhaps the most sophisti-

KENT RESEARCH Surveyor- 7 antenna positioner and actuator.
cated controller on the market. It is interfaced directly with your receiver. (That is done by your dealer-or by yourself, if Kent is convinced that you are capable of doing it yourself. One disadvantage is that interfacing the Surveyor-167 will void your receiver warranty.) Once the 167 is installed, your complete station can be controlled by a handheld unit. That includes channel, scanning, polarity, audiofrequency (and stereo) selection: video inversion, power and volume control, antenna position, fine tuning, bass and treble, AFC, etc. The 167 also features a parental lock-out system.

There are no knobs, dials, or readouts on the unit-all controls are on the handheld remote. Another impressive feature is that you can display in color, on your TV screen, the satellite that you are watching, the channel you are watching, the date and time, the channel lock-out status and total system status.

The Surveyor- 167 features a 36 -satellite memory, two-speed drive, up and down scanning, a timer, parental lock-out, a key lock to prevent unauthorized programming, polarity control, non-volatile memory. LED indicators, skew compensation. and a scan function. The actuator has an

18-inch stroke and its thrust is rated at 1,500 pounds. Skew, tilt, and format correction are chosen automatically, and audio frequencies are automatically selected. It also features stereo decoding, volume mute, bass-treble adjustment. AFC, and dynamic noise reduction.

KLM

KLM station-accessory offerings include their Memory Trak (\$550) and a stereo processor (\$360). Memory Trak is an antenna positioner featuring a 50 -satel-lite-position memory, digital readout of relative position and satellite name, polarity control, full east-west manual dish control, and 80 -hour memory retention.
which features a $3.7-4.2 \mathrm{GHz}$ output. It is calibrated in transponder numbers and the output can be modulated with audio and video to test LNA's, LNC's or downconverters. It features an RF-transmittirg horn antenna. and selectable signal level at 70 MHz and $3.7-4.2 \mathrm{GHz}$. Audio (mono. discrete or matrix stereo) and composite video outputs, as well as a color-bar output are available. The unit contains a built-in battery charger.

The GBS $2000(\$ 2,995)$ features a microwave output that is tunable from $3.7-4.2 \mathrm{GHz}$. Its power level is equivalent to 11 dB CNR. Its LNA feed has a nominal level of -30 dBm . The $70-\mathrm{MHz}$ output. which can be used to align IF and detector

KLM's stereo processor works with standard receiver video outputs or unfiltered, unclamped video outputs. It features discrete and matrix modes. A and $A+B$ subcarriers, narrow and wide deviation, individual A and B tuning controls, a $5.3-8.3 \mathrm{MHz}$ range, center tuning edgemeters. noise reduction, an interference filter, expansion switch, LED multiplex indicator, video output jack. and mono-audio output jack. The decoder includes an amplifier section (5 watts per channel) with volume control, left and right speaker terminals, headphone jack, and bass boost.

Luxor

The model 9534 remote-controlled antenna actuator is available for $\$ 699$. It features wireless remote operation. microprocessor control, 30 -satellite memory: battery backed-up memory, 175-feet of cable, and automatic polarity switching. The unit can be manually controlled for programming setup and override. An LED satellite readout and position readout is included. The 95.36 infrared remote control sensor is available for $\$ 99$.

Newton Electronics

Newton offers satellite-TV test equipment. including the $\$ 995$ GBS 2600.

NEWTON ELECTRONICS GBS 2000 satellite-TV test set.
systems, has a power level of -10 dBm . It contains an internal audio generator, and the four most commonly used subcarrier frequencies (5.8.6.2, 6.8, and 7.4 MHz) are front-panel selectable.

Quantum Associates

The $\$ 395$ Quanta Q-7 programmable satellite scanner can be programmed for 12 satellites and has a 2-digit LED position readout as well as a liquid-crystal clock display. It teatures manual and automatic scanning capability. Two drive units are available: The short unit extends 18 inches, the long drive one 52 inches.

Regency

The VDS-5000 electronic video switcher, available for $\$ 119.95$, features auto-

REGENCY electronic video switcher
matic pushbutton switching of four inputs (labeled ant, Sat, vCr, and game) to two outputs (TV and VCR). The inputs are indicated by LED's.

Sat-Tec

The \$159 S-5000 stereo demodulator decodes matrix or discrete stereo. It features $5-8 \mathrm{MHz}$ subcarrier tunability. The bandwidth is selectable (150 or 500 kHz)

SAT-TEC S5000 stereo demodulator.
and its frequency response is 15 Hz to 15 kHz . Its harmonic distortion is specified as less than I percent. Standard line outputs, for connection to stereo amplifiers, are included.

Satellite Reception Systems

A variety of devices are available, including the Speedster trailer (\$1885).

SATELLITE RECEPTION SYSTEMS Speedster trailer and dish.
which includes an 8 -foot dish and feed. The trailer, which weighs 875 pounds, can be taken with you when traveling! It uses a 3 -inch pole polar mount.

Superwinch

Superwinch offers their $\$ 470$ Skywalker I/ programmable antenna controller and actuator. It features an LED readout, a 16 -position satellite memory. illuminated satellite-position display, a limit indicator (which shows antenna is at end of travel), one-week memory protection, overvoltage protection, and full automatic and mamual operation. R-E

Hobsy Corner

A versatile module

EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

Itek, which use the RC-103 along with an inexpensive Timex Sinclair computer. One circuit forms a signal conditioner for reading "difficult" tapes. Others provide onscreen readouts of resistance, capacitance, and frequency. (Though I haven't tried it yet, I see no reason why the same circuits shouldn't work equally well with other computers-Commodore, Radio Shack, etc.-provided appropriate changes are made in the short machine-language and BASIC programs.)

As you would expect, using a computer for the calculations and display opens up all sorts of possibilities. For example, the measurements can be displayed just in numbers, but why not graphs or words, or both for convenience (which would be especially useful to the young student)? And how about a "lie detector" measuring skin resistance and showing a ther-mometer-like readout rising from "True" through "Are you sure?" to "Why not tell the truth?"

If you have been looking for low-cost test instruments, give some thought to the RC-111 and RC-103 with a calculator or computer. James Pennington (FL) could make a device for tuning his musical instrument. Kaltek will send you the application notes for $\$ 1.00$ and an SASE, then give you a buck credit on your subsequent order.

The saga of Kaltek is not yet up to date. They've developed another module, the SL-6. With a couple of components (included with the SL-6 for \$17.46, postage paid), it
makes a touch-sensitive switch that holds "on" for about one second. Of course, the hold time can be changed by substituting another capacitor for the one that is supplied.

So what good is a short delay circuit? The SI- 6 was developed as an addition to the keyboard of the Tinex Sinclair 1000 computer (also known as the Sinclair ZX8I). In small inexpensive computers, like the Timex 1000, many keys serve
several functions, depending on which mode the computer is in.
For example, a single key might be use to enter a letter, a graphics character, and the cosine function. To enter the function you first press the shift key and then the alphanumeric/function-control key. In the function mode, the alphnumeric keys become function keys
The short delay allows you to press the shift key and then use

the same hand or finger to hit the control key. That greatly increases the convenience and speed of keyboard operation. It can be especially valuable for certain handicapped individuals.
While the SL-6 application notes refer to the Timex 1000 and its shift key, it should function equally well on other keys and other machines. I am just beginning to experiment with the SL-6 on other computers, and I'll let you know the results of my efforts.

Certainly, use of the SL-6 is not limited to computer keys. Instead of completing a circuit around a computer key, it could complete a circuit to energize a small relay. That could make a dandy compact and portable alarm to sound off when someone touches a doorknob or a car, for example.
Perhaps now you can understand why I find Kaltek an interesting company. I suspect that more and more applications will be found for the RC-111, RC-103, and SL-6 modules. (If you discover one, be sure to let me know about it.) There is also a rumor that Kaltek is on the development trail that will soon lead to another useful module.
Oh yes, please note that I own no stock in Kaltek (wish I did!). And if you wish to contact them, be aware that they are planning to move. The current address is Box 7462, Rochester, NY 14615. After January 1, it will be Box 971, Adjuntas, PR 00601.

Help!

A request has come in from Jack Agueros (NY) for information that I have been completely unable to find. He is looking for a means of getting in touch with others interested in old radio receivers. There must be clubs and newsletter publishers for collectors and hobbyists. If you know of one (or more), let me know and l'll pass the word to Jack and others who are interested that subject. (Editor's note: You might try these: The Horn Speaker, PO Box 53012, Dallas, TX 75253, Bruce Kelley, Secretary, Antique Wireless Association, Holcomb, NY 14469, and Niagara Frontier Wireless Association, Box 68, Central Park Station, Buffalo, NY 14215.)

Select 5 Books for Only $\$ 2^{95}$

 Save up to $\$ 108.75$ when you join

-A wealth of Troubleshooting \& Repair tips!

 -Hundreds of Projects! -State of the Art Technology!-Exceptional Savings!
-The Choice of Hobbyists and Professionals for over 19 years!

1682
List \$14.95

1765 List \$21.95

UNDERSTANDING ELECTRONKS	$\begin{gathered} 1532 \\ \text { List } \$ 11.50 \\ \text { (paper) } \end{gathered}$
$\begin{gathered} 1553 \\ \text { List } \$ 21.95 \end{gathered}$	
	$\begin{gathered} 1670 \\ \text { _ist } \$ 14.95 \end{gathered}$

See other side for more exciting selections!

Please accept my membership in Electronics Book Club and send the 5 volumes circled below, plus my free copy of the Electronics Buyer's Guide billing me only $\$ 2.95$ plus shipping and handling charges. If not satisfied, I may return the books within ten days without obligation and have my membership cancelled. I agree to purchase 4 or more books at reduced Club prices (plus shipping/handling) during the next 12 months, and may resign any time thereafter. Order subject to acceptance by Electronics Book Club. Valid for new members only.
$\begin{array}{lllllllll}800 & 1183 & 1199 & 1211 & 1218 & 1409 & 1431 & 1449 & 1474\end{array}$
$\begin{array}{llllllllll}1487 & 1498 & 1532 & 1536 & 1537 & 1542 & 1553 & 1561 & 1575 & 1577\end{array}$
$\begin{array}{lllllllll}1605 & 1616 & 1670 & 1673 & 1679 & 1682 & 1719 & 1765 & 1820\end{array}$

Name	
Address	Phone \quad _
City	
State	Zip___

Build Your Electronics Skills . . . Join Now! No other book source offers so much for such low cost!

 Take 5 Books for Only \$2.95

The Electronics Book Club puts you in the mainstream of today's electronics practice

- Access to the latest state of the art developments in lasers, microcomputers, holography, robotics, test instrumentation, and more!
- Step-by-step how-to's for building your own electronic games, gadgets, home control devices, solar energy units, more!
- Expert guidance in every phase of electronics practice!
- Time- and money-saving tips on choosing, installing, maintaining all kinds of electronic equipment!
- Practical advice on how to turn your electronics knowledge into a profitable full- or part-time career!
- No other electronics information source offers you so much at such low cost . . . Save now, save every time you order the latest electronics and microcomputer titles from the Electronics Book Club!

1431
List \$17.95

1183
List $\$ 15.95$

1679
List \$17.95

1719
List \$18.95

1820
List $\$ 16.95$

1409
List \$15.95

If card is missing, use this address to join: Electronics Book Club, P.O. Box 10,Blue Ridge Summit, PA 17214

NO POSTAGE NECESSARY IF MAlLEI) IN THE UNITED STATES

BUSINESS REPLY CARD

first Class permit no a bll'e ridge summit. pa 17214

POSTAGE WILL BE PAII BY ADDRESSEE
The Electronics Book Club P.O. Box 10

Blue Ridge Summit, PA 17214

7 very good reasons to join Electronics Book Club P.O. Box 10

Blue Ridge Summit, PA 17214
 NEW KIND OF MAGAZINE FOR ELECTRONICS PROFESSIONALS

MACHINE CODE DEVELOPMENT SYSTEM

Build this and put your Sinclair ZX-81 to work as a machine code development system, PROM programmer, and PROM emulator

GERMSBACL:

COMPLETING THE BIOBOX
Build our Biofeedback Monitor and use your computer to keep calm.

Enjoy the convenience of addfifonal expansion ports for more memory or games

CONTENTS

7 Machine Code Development System

Turn your Timex Sinclair 1000 into a machine-code development system, EPROM programmer, and EPROM emulator.
Mark W. Latham
12 Build The Bio-box
Part 2. This month, we show you the software needed to drive our biofeedback monitor. Jim Barbarello

15 VIC-20 Expander
Add three or more expansion ports to your Commodore VIC-20 computer. Jim Steele

4 Editorial

5 Letters

5 Computer Products

Our VIC-20 Expander is shown here ready to go. To find out more about it, see page 15.

ON THE COVER

If you own a Sinclair ZX81 or a Timex Sinclair 1000, you already know that programs written in BASIC execute very slowly on those machines. What's more, programming those computers in machinecode can be somewhat less than convenient. This month, we'll show you a project that can make writing and storing machinecode programs a lot easier. What's more, it can double as an EPROM programmer for the $\mathrm{ZX} 81 / 1000$, or an EPROM emulator for another computer system. See page 7.

EDITORIAL

Here we go again!

-It's 1985. You know what that means... For the next few weeks, you're still going to be writing "1984" on your checks and leiters. A new year takes a little getting used to. But the number of the year isn't the only thing that changes.

We're going to be seeing some changes-drastic changes-in our business, too. It seems that there will be drastic new developments announced this year. That computer that you bought because it was the latest, the best, the most up-to-the-minute model, is suddenly going to pale by comparison, and you're going to wonder if you shouldn't trade it in on one of those newer units. Suddenly, the features announced on the new machines will seem essential to you, and you'll wonder how you manage to get along without them.

Don't misunderstand-This is called "built-in obsolesence," and we're in favor of it. It helps keep the economy moving, keeps the money circulating (your money) and the challenge to produce the new and unique in order to compete, keeps the manufacturers on their toes. This results in technological advancement that benefits us all.

Timing is usually a critical factor, too. Remember when the Christrnas Season began on December 25th? Now it seems to start on Thanksgiving Day. And the people in Detroit introduce their next year's models during the previous Summer. Happily, computers haven't fallen prey to that gambit as yet. The 1985 models will be coming out now-in 1985. That has both its good and bad aspects: On the positive side of the ledger, those who plan to buy new computers will now be ready to spend their bucks, now that they can shop for the new lines. And others who have been looking for a traded-in "bargain" will therefore find the shelves loaded with choices. And many of us, our Christmas-present money burning a hole in our pockets, will be ready to spend.

People who had been planning to change their jobs waited until after the holidays so they could collect their time off and those Christmas bonuses, but since that's behind us, they will be changing jobs now. That's probably going to mean more money for them, a chance to advance for others, and still more openings for those looking for jobs.

Yes, 1985 bodes well for the economy.
And for all of us too.
We, the staff of ComputerDigest wish all of our friends a healthy, happy and prosperous 1985

Byron G. Wels Editor

[^1]
COMPUTER DIGESI

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-inchief
Larry Steckler, CET, publisher
Art Kleiman, editorial director
Byron G. Wels, editor
Brian C. Fenton, technical editor
Carl Laron, associate editor
Robert A. Young, assistant editor
Ruby M. Yee, production manager
Robert A. W. Lowndes, production associate
Dianne Osias, production assistant
Karen Tucker, production assistant
Jacqueline P. Weaver, circulation director
Arline R. Fishman, advertising coordinator

Gernsback Publications, Inc.
200 Park Ave. South
New York, NY 10003
Chairman of the Board:
M. Harvey Gernsback

President: Larry Steckler
ADVERTISING SALES 212-777-6400
Larry Steckler
Publisher

EAST/SOUTHEAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
212-777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
Radio-Electronics
540 Frontage Road-Suite 325
Northfield, Illinois 60093
312-446-1444

PACIFIC COAST Mountain States
Marvin Green
Radio-Electronics
15335 Morrison St., Suite 227,
Sherman Oaks, CA 91403
818-986-2001

LETTERS

DESIGN THOSE AUDIO NETWORKS CORRECTIY!

It was a peasure to see my article "Compuier-Designed Audio Networks" in the November issue of ComputerDigest. It was not as pleasant to see that some errors crept into the program listing. The corrected lines follow:

5 CLS: PRINT
115 ON N GOTO 120.150: PRINT "ERROR - DO OVER": GOTO 110
125 RA $=\operatorname{INT}(Z((K-1)(K-1))):$ RC $=\operatorname{INT}(Z($ ($2-K)$ $(K(2-1))): A=Z: B=Z$
145 GOSUB 2000: GOSUB 2025: GOSUB 2055: GOTO 3000
$160 \mathrm{RA}=\operatorname{INT}(((1)-B) K A)-$ ($A-B$) 2)
220 GOSUB 1000: GOSUB 1030: GOSUB 1050
$310 \mathrm{RA}=\operatorname{INT}((\mathrm{A} \operatorname{SQU}(\mathrm{A} B))$ ($(\mathrm{K}=\operatorname{SQR}(\mathrm{A} B))-1) \mathrm{K})$)
$530 \mathrm{DB}=\mathrm{CINT}$ (ABS $(20 \cdots$ (LOG $(S Q R$ (1 (A B) (1 - SQR(1-(1) (A B)))) LOG(10)) -1)
$2055 X=60$: FOR $Y=16$ TO 19 SET(X.Y): NEXT Y
$2060 X=60:$ FOR $Y=24$ TO 28.
SET(X,Y): NEXT Y
In line 135, the auotaiton marks were omitiec after tre last word, bu: tre program will rur withou: them -Frank Ga'des, Murrysville, PA

Sorry, Frank. Program IIsings are irnerently subjec: :o :ypese:ting trarscription errors-even more so than schema*ics! If anvone has oians :o submit a listing with an article, sending i: on an 8 -incn SSSD (IBM 3740 forma:) disk is the bes: way to avola any prob ems

FLYING ENTHUSIAST

l ve become enchanted with the fligr: simulaior on my computer and want :o know how valuabe this can be toward get:ing a biots IIcense? -Frank Stembo, Dallas, TX.

Frank, as a pilo: myse f I can iell you lis very va uab e! Siuden: plo:s spenc a ' 0 : of tme in tre alr (anc cual insirucion cosis peniyl) learning ine ruaments of insirumen: figh: anc navigation your ilght simulator is saving you a for:ure in :ha: way alone Bu: as one cfire old grea: avia:ors once salc, If you wan: to 'earn abou:
fying, watch the birds If you wan: :o 'earn to fiy, ge: in:o an airplane!'

COMPUTER VERSATILITY

MOS: peop e buy compuiers :0 so ve one parsicular probem in their lives and only rarey do they look for other apolicaions ou:sice their immeciate sphere of in:eres: Your magazine ras made me aware of some of the other tings computers can co, and you've broacened my own compuier usage Tharks'-Mort Sabin, yonkers, Ny $\langle\omega\rangle$

COMPUTER PRODUCTS

For more details use the free information card inside the back cover

EDUCATIONAL SOFTWARE, TRe NOtabue Prartom, seaches crildren ages 5-10 basic keyboard (musical) and note-reading skills as they compete against a slew of specters, spiders, and the famous phantom rimse f

Haunted-rouse ghouls lead players through exercises to identify note names and positions on a music staf and keyboard, and to train the ear to

idertify diferen: : ones, depend ng or wich lesson olar :he user selec:s

Crindren learn to reac music usirg a songbook of favorite: unes tha: is incuded in every gare Budding composers can save :"eir own song c'eaiors and piay them back aier

The software comes with a rea 's"ic keyboard overlay of biack and white notes, more irar ar oziave and a rallf The suggested price of Tre Noiab e prantor is $\$ 4995$-Designware, 185 Berry Sireet, San Francisco, CA 941C7

PRINTER, the ThinPririt 80, is designed for use winn poriab e compuiers I: is battery-powered, weigns oniy four bounds, and supports elemer serial ior oarallel interfacing to most computers (including Tandy 100 \& PC-2, Ensor $1-X$-20, IXO Telecomouter, IBM PC XT, If and many others)

Tre TrinPrint 80 mas 80 or 136

CIRCLE 22 ON FREE INFORMATION CARD
columns Der line, 40 craracier-iersecond bidirectional orinting, 2 K buffer memory, and i20 dot-per-inch gradrics I: ho ds 80 pages of 8 wide Daber, produces silent thermal or nting, and fits into ess :ran rafa
briefcase. Its suggested retal price is $\$ 27900$, complete with rechargeable batteries, AC adapter, and one roll of paper-Axonix Corporation, 417 Wakara Way, Salt Lake City, UT 84108.

FILING System, Dial N File, is designed for $51 / 4$ diskettes. It is made of high-density, molded plastic and holds up to ten $51 / 2$-inch diskettes and one PerfectData drive-head cleaning

CIRCLE 23 ON FREE INFORMATION CARD
disk. When opened, the plastic cover swings into an easel position and becomes a display stand. A clockwise turn of the dial operating the fanning action, places individual diskettes at the user's fingertips, with all diskette labels clearly visible. The Dial N file case closes with a counterclockwise turn of the dial, and locks securely to protect diskettes from damage and contaminants. Its suggested retal price 15 \$6.95- PerfectData Corporation, 9174 Deering Ave., Chatsworth, CA.

SPREADSHEETS, the VisiCaic Package, is a two-in-one product containing both a single and a double disk-drive spreadsheet program-VisiCalc and VisiCalc Advanced Version- for users of the Apple I/ family of personal computers.
The VisiCalc disk includes models in home management and finance that can be expanded by the user. They are: checkbook balancing, household budget, individual retirement account analysis, future value of an investment,

CIRCLE 56 ON FREE INFORMATION CARD
6 ComputerDigest - JANUARY 1985

CIRCLE 24 ON FREE INFORMATION CARD
income averaging, and car-loan payment analysis.

The VisiCalc Advanced Version features full word prompts and variable column-width capabilities, as well as date functions, print commands that produce presentation-quality reports, and both 40 - and 80 -column displays.

The VisiCalc Package is priced at \$179.00.-Software Arts Inc, 27 Mica Lane, Wellesley, MA 02181

COMMUNICATIONS INTERFACE is

 IEEE-696 (S-100) compatible. It provides a means to connect up to 8 RS232-C devices, regardless of their baud rate, stop bit, and parity configuration. Up to eight of these cards can be used in one system, for a total of 64 channels, with data rates up to 38.4 baud. Also featured are a

CIRCLE 25 ON FREE INFORMATION CARD
calendar/clock, switch register, and an encryption device. The calendar/clock is battery backed-up and the device may be disabled in systems requiring several cards. The encryption device is an MMI PAL, and its use is generally for software protection. The interface is priced at $\$ 695.00$.-Inner Access Corporation, PO Box 888 , Belmont, CA 94002. \langle D \rangle

MACHINE CODE DEVELOPMENT SYSTEM FOR YOUR TIMEX SINCLAIR 1000

Turn your Timex Sinclair 1000 or Sinclair ZX81 into a high-speed, machine-code development system.

MARK W. LATHAM

-By now you may have seen dozens of Timex Sinclair 1000/Sinclair ZX81 add-on projects in various electronic magazines. It's not surprising considering that at one time, TImex was shipping 100,000 units a morth. While some people are content to fool around with whatever they can hook up to the back of the unit, others have bought real keyboards and extra RAM, hoping to turn their computers into real business or entertarment machines.

If you've ever used a Timex Sinclair 1000 (which we'll simply call a TS 1000 from here on), you know that speed keeps that computer from serving any useful purpose. You could take a short nap while the computer is loading even a 16 K program from cassette. Once it's loaded, you run into the other speed problem-execution time. That's because the Z80A CPU spends most of its time updating the video, and, let's face it, the BASIC is too slow, even in the FAST mode. The simplicity of the TS 1000 , which is one of its virtues, is also its downfall.

If you own a TS 1000 and want to turn it in:o a useful device, why not consider the following: 1) run highspeed machine-language level programs and, 2) store those programs in EPROM.

This project, a machine-code-developmerit-system/ EPROM-programmer, will let you do just that. With it, you can use your TS 1000 to load programs from EPROM's, and program EPROM's with data anywhere in the RAM. You will be able to store and recall $4 K$ bytes of battery-backed-up external CMOS RAM. AlsO, the unit can be disconnected from the TS 1000 and used to emulate an EPROM for a different microprocessor.

You will be able to use the EPROM programmer as a general I/O port, each line of which is monitored by LED's. The LED's are great if you are just learnins machine language commands. Of those lines, 20 are available for input/output, while four others are configured as output-only lines capable of sinking 500 mA each. All those lines are available through a socket in the back of the unit and, if you hook them up with a test clip, you will have a five-volt, multi-charnel iogic monitor with both LED and on-screen viewing. Eest of all, the whole EPROM I/O system operates under machine-language level software control, which is, of course, stored in EPROM.

System architecture

The unit is interfaced to the TS 1000 with an 8255 PPI (parallel peripheral interface) I/O port. We could have treated the program socket as a memory space accessed directly by the Z80A, but then we would have had to insert many wait states during the program pulse. Unfortunately, there is no way the CPU can refresh dynamic RAM during waits so that option is out. What we must do then is create a second bus system as shown in Fig. 1, the schematic diagram.

Gates IC1-c and IC2-c allow the Z80A to access the 8255 when $A 7$ and $\overline{O R G}$ are low. (A7 is included to ensure that there will be no erroneous writes to the 8255.) If we leave the 8255's AØ and $A 1$ lines set for all I/O operations, the computer's monitor system won't crash during I/O operations regardless of whether the computer is in the fast or slow mode. The A4 and A5 lines of the Z80A are used to control the 8255's A 0 and A1 inputs, so, in hexcidecimal, the I/O addresses will be $\emptyset 3 \mathrm{H}, 23 \mathrm{H}$, and 33 H .

The 8255 has three eight-bit ports, one of which is bit-addressable. Port C (PB4-PB7) will function as the secondary bus control outputs. Port B (PBØ-PB7) will function as the data I/C port, and ports C (PC3$P(\varnothing)$ and $A(P A \varnothing-7)$ will function as address outputs $\varnothing-11$, respectively: (The reason PC3-PCD are used in reverse as A \emptyset-A 3 is twofold; that both simplifies circuit board layout and arranges the bus and LED's for use as a logic monitor, as you will see later.)

When the 8255 is reset (either by the computer or on power up) all the ports are configured as inputs. Any time those ports are cranged from inputs to outputs, or vice-versa, all the port registers are reset That presents a problem for the control lines in our secondary bus system because those lines must remain high (set) until a memory access is desired. Transistors Q1-Q4 are used to alleviate that problem. If a port's input or output is low, the corresponding transistor output is high, holding the control line secure. If the data in the CMOS RAM is of no importance, then those transistors may be used as high current outputs, capable of sinking up to 500 mA each.

The CMOS RAM, IC9 and IC10, and the CMOS one-of-eight decoder, IC7, provide 4 K of data storage for program saving and ROM emulation. The decoder

FIG. 1-COMPLETE SCHEMATIC DIAGRAM. Reference the diagram carefully while reading the text, as it helps clarify some of the more-complicated points.

FIG. 2-FULL-SIZE CIRCUIT BOARDS are provided here for those readers who desire to duplicate the boards from scratch. Note that the main board is shown in a and the display board in b. The boards are double-sided; the side

∂

PARTS LIST

Resistors
All resistors are $1 / 4$ watt, 5%
R1-220 ohms
R2-R4, R32-R35, R37, R39-R43-12,000 ohms
R5-R7-18 ohms
R8-47 ohms
R9-R31-270 ohms
R36, R47-39,000
R38-1 megohm
R44-56,000 ohms
R45- 10,000 ohms, potentiometer, PC mount
R46-2.2 ohms
Capacitors
$\mathrm{C} 1-\mathrm{C} 4, \mathrm{C} 7, \mathrm{C} 13-0.1 \mu \mathrm{~F}$, ceramic disc
C5- $100 \mu \mathrm{~F}, 16$ volts, miniature radial electrolytic
C6, C11- $10 \mu \mathrm{~F}, 16$ volts, miniature radial electrolytic
C8- $470 \mu \mathrm{~F}, 16$ volts, miniature radial electrolytic
C9- $220 \mu \mathrm{~F}, 35$ volts, miniature radial electrolytic
C10- $2200 \mu \mathrm{~F}, 25$ volts, miniature axial electrolytic
C12-10pF, ceramic disc
Semiconductors
D1-D4-1N4001
reads $\overline{\text { RAMCS }}(P C 7)$ and $A 11$ to select the appropriate memory IC. Those three IC's are powered by either the five-volt supply through D1 or the lithium three-volt

D5, D6-1N914
DB1-RB151 1.5-amp, 50 volt, diode bridge
Q1-Q18-MPSA13
LED1, LED6-LED9, LED14-LED17, LED22-LED25-
red LED, XC556R or equivalent
LED 2-yellow LED, XC556Y or equivalent
LED3-LED5-tricolor LED, XC5491 or equivalent
LED10-13, 18-21-XC556G
IC1-74LS10 triple 3-input nand gate
IC2-74LS27 triple 3-input nor gate
IC3-P8255 programmable peripherial interface
IC4-IC6-74LS240 octal buffer
1C7-74HC138 3 to 8 decoder/multiplexer
IC8-2716 EPROM
IC9-723N positive adjustable regulator
IC10, IC11-HM6116LP-4 CMOS static RAM
IC12-7805 5-volt regulator
Miscellaneous
T1-12VAC, 1-amp, wall-plug transformer
P1-coaxial power plug
J1-coaxial power jack
S1-3PDT switch
battery through D2. Pin 6 of the decoder monitors the five-volt supply and disables the RAM when the power is off.

FIG. 3-THE SOLDER SIDE OF BOTH BOARDS (the main board is shown in a; the display board in b) is given here, also full size. Both boards can be etched at once and then cut apart.

b

S2-SPST switch
S3-DPDT switch, center-off
H1-50-contact, right-angle header
$\mathrm{H} 2-26$-contact header
PROGRAM SOCKET-24-pin ZIF socket with extender pins (or wire wrap socket)
PC boards, IC sockets, enclosure, hardware, ribbon cable, card-edge connector, DB-25 connector, etc.

The following are available from Wildonics Computer Technologies, P.O. Box 1763, Boise, ID, 83701: Complete kit of all parts including power supply, all connectors, lithium battery, PC boards, and case (does NOT include 2716 EPROM with Operating System), \$149.95; 2716 EPROM with Operating System, $\$ 19.95$; set of drilled and etched PC boards only \$19.95; Assembled and tested unit with Operating System Software, $\$ 219.95$. Shipping, handling and insurance, $\$ 3.00^{-}$for EPROM with software or PC boards only. $\$ 6.00$ for complete kit or assembled unit.

With S3 set for mimic and the 8255's ports all configured as inputs, a secondary CPU can directly access the CMOS RAM through the program socket.

Setting 53 for mimic simply Or-ties the $\overline{\text { RAMCS }}$ and the EPROMCS lines and bypasses $V_{\text {pp }}$-blocking diode D5 Resistors R38 and R39, and transistor Q8, which normally act as an inverter for the RESET signal, hold the 8855 reset if the EPROM-I/O unit is used apart from the ZX81 during a mimic operatıon.

When S 3 is set to PROGRAM, the output of the V_{pp} switching regulator, $I C 9$, is connected to the appropriate EPROM I/O pIn. $\overline{W R}$ (PC7) controls the regulator's output by sourcing the base of the regulator's current limiting transistor. For that application, that transistor's emmitter is connected to ground. Capacitor C12 is connected to the frequency-response pin to slow the $V_{p p}$ rise and fall tımes. Diodes D3 and D4 and capacitors C8 and C9 act as a voltage doubler to provide 30 volts at 60 mA to the regulator's input. All the bus lines can be monitored with the display board. Three 74 LS240's, IC4-IC6, power the LED's. Red LED's (LED6-LED9, LED14-LED17, and LED22-LED25) are used for the the adcress lines and the LED's for the data lines (LED10-LED13 and LED18-LED17) are green. Those LED's will light wher the corresponding bus lines are high or high-impedance. The yellow LED (LED2) will light if the $\overline{W R-V_{D P}}$ line: is low.

While we are out of space, we're not our of things to say. We'll finish up next month. $\langle\boldsymbol{\omega}\rangle$

BUILD THE BIO-BOX

You can build this biofeedback monitor for your TRS Model I or Model III.

JIM BARBARELLO

Part 2Last month, we described the BioBox and told you how to build it.
However, while we gave you a brief idea of what software was involved, we still have a lot to say about it. We'll start there. Then we'll tell you how to put the BioBox in action.

The BASIC program

The BioBox BASIC program is shown in Program Listing 2. This version is for the Model I, cassette or disk based, 16 K to 48 K memory.

On the Model I, addresses 16561 (least significant byte or LSB) and 16562 (Most Significant Byte or MSB) point to the top of BASIC memory. Addresses 16527 (LSB) and 16528 (MSB) point to the single USR entry point in a cassette-based system. Also, address 16561 is always 255 , but 16562 's contents vary according to the available memory (127 for $16 \mathrm{~K}, 191$ for 32 K and 255 for 48K). With this understood, we must protect memory for the machine-language subroutine that will be placed there by POKE-ing the individual data values. So our first command is to POKE the number 215 into location 16561. This reserves an ample 40 bytes for our subroutine. Next, we clear 1000 to reserve string storage space and reset BASIC pointers. Line 10 also defines an error handling routine starting at line 550.

Line 20 is valid for a disk system. J is set to two bytes past the protected memory start. The second statement adjusts J if it is greater than 32767 , so it can be used in the POKE statements. Finally, we jump over line 30 (which is used only for cassette-based systems) and continue execution at line 40 . If we run this program on a cassette-based system, the DEFUSR statement in line 20 will cause an error, branching execution to line 550 .

Line 560 checks to see if the error has occurred in line 20 (indicating that this is not a disk system). If so, we resume execution at line 30 . In this manner, we can have the program decide which line to use, based on the system configuration.
The first statement in line 30 is for older Model I's. Those units had a software error in the ROM which affected the DATA pointer, making DATA reads impossible. POKE-ing 255 into location 16553 corrects this. Line 30 then sets the USR entry point and calculates the starting location to begin POKE-ing the machine language code. Line 40 prints a heading, while line 50 POKES the subroutine code into memory. Line

50 also performs a checksum and aborts the program if the sum of all placed bytes is incorrect.
Line 60 clears the working area of the screen (GOSUB 900) and prints the vertical graph axis. Lines 90 through 140 complete the screen presentation. Line 150 tests a flag (FLG) to see if this is the initial run of the program (as opposed to a restart). If FLG is not equal to 0 , the option to view the instructions is skipped. Otherwise, the user is given the option to view the instructions contained in a subroutine starting at line 600. Line 170 sets the flag and asks for your initial mood. Line 180 allows only numbers between 2 and 9 as a valid input. Line 190 equates the number you enter to CC, which is then used to create string AB. Line 200 uses AB to reprint the graph presentation minus all boxes to the right of the row you specified. It also clears the message line (above the graph).

Initialization takes place in lines 210 through 240. Based on the user's individual skin resistance, the BioBox will produce a count between 1 and 65535 . The initialization procedure obtains an average start reading, equating this to the initial mood you selected. It then sets upper (maximum calm) and lower (maximum tenseness) count limits and a change increment ($\operatorname{INC)\text {.INCisthemaximumchangeincount}}$ that will cause one box to be removed or added. The USR call in line 210 is not included in the average count, but simply insures that the BioBox is reset before sampling begins. Line 240 erases the INITIALIZING message before proceeding to the actual biofeedback monitoring of lines 250 through 410.

First we print a box at the present position, and a period (dot) directly above it. Then line 260 samples the BioBox and, if 0 is returned, creates an error to pass execution to the error-trap routine at line 550. Line 270 increments the time (XT) and line 280 polls the keyboard to see if a Restart or End was requested (GOSUB 740). If not, the current square is blanked out (this creates the blinking effect). Line 300 checks to see if the count change is less than one increment. If so, execution branches to line 410 where a delay proportional to the current count is created before returning to line 250 for the next sample.

If the change is greater than one increment, line 310 checks to see if the count is increasing (less tense) or decreasing. For an increasing count, line 330 increases XO by one increment. Then R and C are checked and adjusted if necessary to point to the top of the preceding column (if the last square in the current

10 POKE 16561.215:CLEAR 1000:DEFSTR A: DEFIN ${ }^{\top}$ C.I.R:DIM T $(50,3)$ ON ERROR GOTO 550
$20 \mathrm{~J}=217+\operatorname{PEEK}(16562)^{*} 256: \mathrm{J}=\mathrm{J}+(\mathrm{J}>32737)$ -65535:DEFUSR = J + 1:GOTO 40
30 POKE 16553,255:POKE 16526.217:POKE 16527,PEEK (16562): $\mathrm{J}=216+\operatorname{PEEK}(16527)^{*} 256: \mathrm{J}=\mathrm{J}+(\mathrm{J}>32737)$ -65535
40 CLS:PRINTTAB(14);"B IOF E EDBACK M ONITOR" :PRINTSTRING\$(63,131): PRINTTAB(18):"(c) 1983 by J. J. BARBARELLO"
50 FOR $1=1$ TO32:READ N:POKE $J+1, N: K=K+N: N E X T: I F$ $K<>3647$ THEN PRINT (" 536. "CHECKSUM ERROR.":END
60 GOSUB 900:FORI = 1TO10:PRINT" ";CHRS(157) :NEXT:PRINT" ":CHRS(141)
70 DATA $243,62,1,211,255,6,64,16,254,62.0,211,255,17,1$, 0.33

80 DATA $0.0,219,255,254,255,40,3,25,48,247,251$, 195,154,10
90 PRINT (1 839, CHR\$(140);:FORI = 1TO10:PRINTSTRING \$(2,140):CHRS(142);STRING\$(2,140); NEXT
$100 \mathrm{AL}=" \mathrm{"}: \mathrm{A}=$ STRINGS(3. 143) + " " $: \mathrm{FORI}=1$ TO10: $A L=A L+A: N E X T$
110 FORI = 1TO10:PRINT (" $201+(1-1)^{*} 64$, AL;: NEXT
120 PRINT (" 905. ::FORI = 1TO10:PRINTUSING"\#\# ": $1 ;$:NEXT
130 PRINTı, 968, "CALM";TAB(52);"TENSE":
140 TS = "^TENSE":FORI = 1 TO6:PRINT (1 259 + 1×64. MIDS(TS,I,1)::NEXT
150 IF FLG>0 THEN 170
160 PRINT (1980 . "INSTRUCTIONS? (Y N) ..."::GOSLB 80 0:IF AI = "N" THEN PRINT (" 980.STRING\$(25,32); ELSE GOSUB 600
170 FLG = 2:PRINT(", 145, "SELECT INITIAL MOOD (2-9)...";
180 AR = INKEYS:IF AR = "THEN180 ELSE GOSUB 760:IF VAL (AR) <2 OR VAL (AR) >9 THEN 180
190 PRINTAR: $: C C=$ VAL (AR) $: R=200: C=C C * 5$: $A B=$ STRING $\$((10-C C) * 5,32)$
200 FORI $=0$ TO9:PRINT $\left(\neq \mathrm{R}+\mathrm{C}+64^{*} \mid, \mathrm{AB} ;: \mathrm{NEXT}:\right.$ PRINT(145 , STRING $\$(50,32):: C=C-5)$
210 PRINT $(1985$, "INITIALIZING..."; $; Y=0: F L G=2 ; X T=0$: $X=$ USR (0)
220 FORI $=1$ TO5:PRINT \neq R-62 + C, ".";:X=USR(O): PRINT(九 R-62 + C." ": :IFX<0 THEN X=65534 + X
$230 \mathrm{Y}=\mathrm{Y}+\mathrm{X}:$ NEXT: $\mathrm{XO}=\mathrm{Y} 5: \mathrm{INC}=X \mathrm{O}\left(10^{\circ}(\mathrm{CC}+5)\right)$:XL = XO-CC*INC* 10
240 PRINT(" 985.STRING\$(15,32):
250 PRINT $(\neq R+C+1, A ;$ PRINT $\neq 1$ R-62 $+C, \cdots " ;$
$260 X=$ USR(0):IF $X<0$ THEN $X=X+65536$ ELSE IF $X=0$ THEN ERROR 1
$270 X T=X T+X 30000$
280 GOSUB 740
290 PRINT(* R-62 + C. " ";
300 IF ABS $(X O-X)<$ INC THEN 410
310 IF $X<X O$ THEN 370
320 IF $\mathrm{X}<\mathrm{XO}$ THEN 400
330 PRINT ($1 \mathrm{R}+\mathrm{C}+1$. STRING\$(50-C.32);:XO $=\mathrm{XO}+$ INC: $R=R+64: I F R=840$ THEN $R=200: C=C-5$
340 IF C >-1 THEN GOSUB 500:GOTO 320
350 PRINT (e 468, "MAXIMUM CALM ATTAINED.";: PRINT " 525, "PRESS < R > TO RESTART, OR < E > TO END...":
360 GOSUB 740:GOTO360
$370 R=R-64:$ IF $R=<136$ THEN $R=776: C=C+5$
380 IF C >45 THEN $C=45: R=200: G O T O 400$
$390 \times O=$ XO-INC:PRINT $(\ldots$ R $+C+1, A ;$ GOSUB 500:GOTO 310
$400 \mathrm{X}=\mathrm{XO}$
410 FORI $=1 \mathrm{TO}(X-X L)^{*} 250 /$ XL:NEXT:XT $=X T+1,500: \mathrm{GOTO}$ 250
510 FOR $Z=1$ TO 50:NEXT:XT = XT + .25:RETURN
530 PRINT (1980 , "PRESS ANY KEY TO CONTINUE";
$540 \mathrm{AI}=\mathbb{N} K E Y \$: I F A I=" "$ THEN 540 ELSE RETURN
560 IF ERR $=56$ THEN PRINT \neq 985, "PRINTER

ERROR"::STOP ELSE IF ERL = 20 THEN RESUME 30
570 PRINT (" 966, "ERROR OCCURRED. PRESS <R> TO RESTART, <E> TO END ..":
580 AR = INKEY\$:IF AR = ""THEN580 ELSE $\mathrm{NU}=\mathrm{ASC}(\mathrm{AR}): I F \mathrm{NU}>91$ THEN AR = CHRS(NU-32)
590 IF AR<> "R" AND AR<>"E" THEN 580 ELSE PRINT (, 966,STRING\$(55,32);:RESUME 760
610 GOSUB 890:PRINT" 260 . "The Biofeedback System I measures and displays your changes in mood. Before beginning, check that the hardware interface is attached, and power is appliec."
620 PRINT" Next, attach one BioProbe to your index finger above the first joint. Then place the remaining BioProbe on your middle finger above its first joint."
630 PRINT" When you have finished reading these instructions, you'll be asked the question ";CHR\$(34);" SELECT INITIAL MOOD (2-9)...";CHRS(34);". Select a number between 2 (CALM) and 9 (TENSE). ":
64C PRINT"If you're in an average mood, select 5 . If you're calmer, try a lower number (like 3). Otherwise, select a higher number (like 8).";
65C GOSUB 530:GOSUB 890
66C PRINT (" 260, "Your mood is represented by the 100 blocks. When you select your initial mood, the higher tension-indicating b ocks will disappear.";
67C PRINT"The object is to relax and in the process make all the blocks disappear. If you increase tension the blocks will begin reappearing. A blinking dot will remind you where you currently are.";
680 PRINT"The more tense you get, the faster it blinks. The calmer you get, the slower it blinks."
690 PRINT"If a fault occurs in the BioBox (EX: BioProbes come loose, power not applied), a message will appear and allow you to re-start by pressing $\langle R\rangle$. If you wish to restart at any other time, press $<\mathrm{R}>$.":
700 PRINT"When you wish to end the session, press $<E>$."
710 GOSUB 530:FLG = 2:GOTO 60
750 AR = INKEYS:IF AR = "'THEN RETURN
760 IF AR = "R" OR AR = "r" THEN PRINT (" 128, TAB(24); "R E S T A R T";TA3(60);:GOSUB 840:GOTO 60
770 IF AR = "E" OR AR = "e" THEN GOSUB 840:GOTO 990 ELSE RETURN
$800 \mathrm{AI}=$ INKEYS:IFAI = "THEN800 ELSE NU = ASC(AI)
810 IFNU >91 THEN NU $=$ NU-32
$820 \mathrm{Al}=\mathrm{CHRS}(\mathrm{NU}): I F A I<>$ " Y "ANDAI $<>$ "N"THEN8O OELSERETURN
840 REM* ${ }^{*}$ STORE RESULTS
850 PRINT("980, "STORE RESULTS? (Y/N)..";:GOSUB 800:PRINTAI:
860 IF AI = "Y" THEN $\mathrm{S}=\mathrm{S}+1: \mathrm{T}(\mathrm{S}, 1)=\mathrm{CC}: T(\mathrm{~S}, 2)=X \mathrm{O}-(\mathrm{Y} 5))^{\prime}$ INC:T(S.3) = XT
870 RETURN
900 PRINT ($\quad 128$," ":FORI = 1TO11:PRINT" ":NEXT: PRINT (1960 STRING\$(63,32);:PRINT ((192,,$:$ RETURN
1000 ST $=1:$ TN $=0:$ GOSUB 9000:IFS $=0$ THEN 1050 ELSE ON ERROR GOTO 1050
1010 PRINT("64, TAB(27);"R E S U L T S"TAB(63): PRINT (" 129, "TRIAL \#" TAB(20)
"START"TAB(32) "END"TAB(44) "TIME"TAB(56) "FACTOR":PRINTSTRING\$(62,"-")
1020 FORI = ST TO S:PRINTUSING" \#\#";I;PRINTTAB(21); :PRINTUSING" \#\#\#";T(1,1)*10;:PRINTTAB(32); :PRINTUSING":T(I,1)"10-TI,2);:PRINTTAB(43); :PRINTUSING"\#\#\#\#";T(1,3):
1030 PRINTTAB (55);:PRINTUSING"\#\#\#\#.\#\#":T(I.3)/ $T(1.2)$
$1040 \mathrm{TN}=\mathrm{TN}+1: \mathrm{IF}$ TN = 10 THEN GOSUB 530: TN = 0:ST = ST + 10:GOSUB 900:GOTO 1010 ELSE NEXT
1050 PRINT:PRINT"RESTART? (Y/N) ...":GOSUB 800:IF AI = "Y" THEN PRINT (1 64,STRING\$ $(63,131)$; STRING\$(65,32):ON ERROR GOTO 550:GOTO 60
1060 END
column is being removed). If C has not been decremented past 0 , we jump to the subroutine at line 500 , where a fixed delay is created and the time is updated. Then we return to line 320 . This procedure continues until the difference between X and $X O$ is less than one increment. The same procedure is followed in lines 370 through 390 for a decreasing count.

If at any time, all squares are removed, execution passes to line 350 where the MAXIMUM CALM ATTAINED message is displayed, and we are allowed to (R)estart or (E)nd. Lines 500 through 710 contain various subroutines, including that to display the instructions. The Restart/End subroutine begins at line 740. This subroutine is used throughout the program and allows one to restart or end at almost any time. It also calls another subroutine that gives you the option to save the results of any trial for later presentation. (STORE RESULTS, beginning at. line 840).

The END routine begins at line 990 . Line 1000 passes execution to Line 1050 (Restart?) if no data are present, or branches to the error trap if any error occurs. Otherwise, line 1010 proceeds to display the results previously stored in the T array. Notice that the "Factor" is a relative measure of results, since it reflects number of squares removed per unit time. Since up to 50 trials can be stored, the FOR/NEXT loop starting at line 1020 prints results in groups of 10 maximum, waits for you to press any key, and then continues. Line 1050 allows you to restart or truly end. In this manner, you can select the END function at any time, review your results and then RESTART to continue monitoring.

Using the biobox

Select a quiet, comfortable area (around 70 degrees F). Relax by loosening tight clothing, removing your shoes, etc. Sit in a comfortable position that provides arm and elbow support. Make sure your hands are clean and dry.

Type in, save and then RUN the BIO program. After the initial screen has been displayed, place the black cassette cable plug in J2 (out) and the large grey cassette cable plug in J (in). The small grey plug is not used. Place S1 (power) in the ON position.

The display consists of a title at the top, an underline, an "option/status" line, the biofeedback graph and a command line. At this point, the status line contains a copyright notice and the command line is asking "Instructions? (Y/N)..." Press " Y ." The screen will clear below the title and the first page of instructions will be displayed. When done reading, press any key to continue (as instructed at the bottom of the screen) to read the second page of instructions. When you press any key again, you are returned to the opening screen. But note that the copyright notice is replaced by the question "SELECT INITIAL MOOD (2-9)..." You would have been brought to this point immediately if you responded $N(n o)$ to the "INSTRUCTIONS" question.

Now place one bioprobe on your index finger, and the other bioprobe on the middle finger of the same hand. The bioprobe foil should contact the fingerprint. Set the BioBox's ON/OFF switch to the ON position, and press " 5 ." Columns 6 through 10 will disappear. The
message "INITIALIZING" will appear at the bottom, and a dot (period) will appear over the top box on the last row (5th row in this example). If the BioBox is not working properly, (power not on, bioprobe not attached, skin resistance too high, etc.) the message "ERROR OCCURRED. PRESS (R) TO RESTART, (E) TO END..." will appear at the bottom. Correct the problem (power up the BioBox, attach probes, clean fingers, etc.) and press (R) to try again. You will be asked if you want to "STORE RESULTS? Y/N..." If you have completed a valid session, you would select "Y." If you encountered an error (or simply do not want to store results) press " N." The message "R E S T A R T" will appear at the top of the screen and the original display will be provided.

Select an initial mood between 2 and 9. The dot will blink five times, and the "INITIALIZING" message will then disappear. You are now in the biofeedback monitoring mode. Make a fist; boxes will begin to be added. Release the fist; boxes will disappear (in an actual session, you should keep your hand stationary). The object is to remove all boxes. If you do, the message "MAXIMUM CALM ATTAINED. PRESS (R) TO RESTART, OR (E) TO END..." will appear in the middle of the screen. Whichever you choose, the message "STORE RESULTS? (Y / N)..." will appear at the screen bottom. Note that during monitoring you may press (R) to restart or (E) to end at any time, but you may have to hold the key down for a second or so before it is recognized. When you select (E) you will see the RESULTS screen. The RESULTS display contains five columns, labelled TRIAL \#, START, END, TIME and FACTOR. For each trial, the START and END columns show the number of squares you started and ended with. For instance, if you selected " 6 " as your initial mood and acheived maximum calm, the START indication would be 60 (6 columns $\times 10$ squares/ column $=60$) and the END indication would be 0 . The next column indicates the elapsed time of the session (not seconds, but relative units of time). The final column gives an indication of how well you did. It is a ratio of the number of squares removed per one unit of time. The object is to get this number as close to zero without going negative (which indicates squares were added, not removed.)

If there are more than 10 results stored, they will be shown in pages of 10 . When all results have been displayed, you will be given the option to "RESTART? (Y / N)..." By pressing " Y " you can continue monitoring. (This allows you to periodically check your progress and then return to monitoring.) If you select " N," the program will end. As currently written, the data is not permanently saved. Depending on your individual system and requirements, a short subroutine may be added to save the data to a tape or disk file.

Summing it up

The BioBox can turn your Model | or ill into a computerized biofeedback monitoring system, and may even help you to reduce everyday stress and tensions. But don't limit it strictly to biofeedback monitoring. Try it as a lie detector at your next party. Just make sure you don't become the subject! <(D)

VIC-20 EXPANDER

Build this expansion port for your VIC-20.

JIM STEELE

-lf you own a Commodore VIC-20, you're probably tired of switching memory-expansion modules and game cartriges in and out of the user port. You might have considered buying one of those port expanders you've seen advertised. They are certainly a possible solution-you can switch between several cartridges at the flip of a switch-but they're expensive. We'll show you a less-expensive alternative-building your own port expander.

Additional ports

While the expander module shown here will provide three additional ports with another available for future expansion, there is no reason why this selfsame system could not be further expanded upon almost to an infinite number of ports, limited only by your own requirements and your own pocketbook. There are actually two ways to go.

FIG. 1-EXPANSION MODULE READY TO GO. Here, we're looking down at the top of the board.

One way is to make additional expanders, as shown here, and simply plug the second expander unit into the open port on the first one. However, if you anticipate the need for several more ports than would be furnished by this unit, you can readily "expand the expander" by adding additional ports wired in the same configuration as these are.

The result will be even more versatlity.
The justification for this expander is simply in its added conveniece to the user. Before the expander, it was necessary (within limiations) to pull a carrridge
and replace it with another when cartridges needed changing. If you rarely if ever change cartridges, the expander will seem a mere nicety that you could probably do as well wishout. However, if you're constantly changing cartridges, as would be the case when you're using your computer predominatly for game-playing, the expander becomes a vital and important tool, as you leave all the cartridges plugged in, and flip switches to change from one to another. It makes life a great deal simpler.

You can put the expender together for about $\$ 20.00$ - perhaps less it you have some of the parts around. But it will work just as well as the commercial models that cost up to five times as much. The expander we'll show you was built to accept three cartridges, with a fourth available for future additions. It is fully switchable and 't's fused to protect both the VIC and cartridges.

Easy to build

Even if you don't have much experience building electronics projects, you shouldn't have too much trouble with the expander. The hardest task is the point-to-point wiring, but you can get around that by designing a printed-circuit board. Whatever method you use, you should be able to finish everything up in a weekend.

To begin with, you will need a general-purpose plus board with a 22:44 eage connector. Such boards are available from many sources, including Radio Shack. Next, you will need three or four wire-wrap 44-pin card-edse connectors. Those, too, are easily available. You'll also need some 30-gauge (or larger) insulated wire. Stranded wire works best, and you should try to use a color-coded arangement. Finally, you will need a 2- or 3-amp line fuse and three or four switches. I used an eight-position PC-toard-mounted switch.

With one exception, the card edge and card-edgeconnector sockets are wired in parallel. Example: Cor.tact "A" on the contact board is wired to contact " A " on each card-edge socket. Contact " B " is wired to contact "B" on each socket, etc. (See the diagram, Figure 2.) The only exception to that is contact No. 21, which is the +5 volt supply from the computer to the expander board. This contact is wired through a switt.h for each socket, and then to contact No. 21 of the socket. Thus, what is plugsed into the socket will be? powered up only when the switch is closed. Contacts "Z" and No. 22 are common ground.

Another altemative for those who are of an experimental turn of mind, would be the use of a rotary switch mounted to a small panel. You'd want to use a switch with the same number of contacts as th :re are switches on the boards, or ports on the boards, and wire to the rotary switch instead of having individual switches ai each port. While this might appear to complicate the circuit a bit, it would result I up-front contrcl of the ports. Make sure you use a nonshorting rotary switch for this application, and the rotary switch can then be mounted in a small separate plastic box of its own and placed either atop or alongside the computer. The added convenience that this affords would make it worth looking into.

BOTTOM TOP EXPANOER-BDARO CONTACTS
FIC. 2-SCHEMATIC DIAGRAM shows simple point-to-point wir ng. Circuit is straightforward and direct with no hidden trap:

FIG. 3-UNDERSIDE VIEW R̄EVEALS WIRING. The VIC-20 expander makes a good one-weekend project that will reward you with years of added convenience.

Check the wiring!

Once the wiring is completed, check the continuity of each circuit. This procedure is a must because any bad connection could cause your VIC to behave radically or crash memory at a most inopportune time When you are sure that each connection is right, plug your unit into the VIC-20 expansion port, wire-side down, making sure the contacts line up. Plug in your game and/or your memory expansions. Check the operation of each of the expansion ports with a game you are familiar with or a memory expansion. If you turn on your VIC and it does not work properly, turn it off and recheck your wiring and make sure that the contacts from the plug line up with the expansion port contacts

That's all there is to it! Unless you have more than three expansion modules and games you don't have to worry about plugging in a module every time you

Communications

 Corner
Phantom power

ONE OF THESE DAYS, SOMEONE IS going to write a definitive book called Reinventing the Wheel. It will be a book containing all the ideas rediscovered by succeeding generations. If asked for suggestions about what wheels to include, I think phantom power should head the list. Each new generation of students and hobbyists with whom I've been involved has "discovered" phantom power. For those of you who haven't rediscovered it yet, phantom power is a means whereby the supply voltage for a device is carried along on the same line with the signal.
The first time I ever heard of phantom power was as an assistant radio-technician on my first remote broadcast. I was the guy who lugged around heavy cases containing boat anchors (better known as portable mixers). Maybe it was the free lunch that we were served, but my supervisor took ill and I was left hanging on by my fingernails with equipment that I knew next to nothing about. Under such circumstances, everything will go wrong. (And everything did!)

First, the private phone line dropped out; then the headphones wouldn't work. Finally, after locating a public telephone, I called the head honcho at the studio who mumbled something about us being on a solid-wire circuit. He then told me to bypass the resistive pad on my mixer's output, and connect a spare dial lamp from the center tap of the mixer's output transformer to an earth ground. I was told that when the light went on I was "on the air."

FIC. 1

FIG. 2

FIC. 3

Phantom-powered circuits

The phantom-power circuit used to light the signal lamp is shown in Fig. 1. It's almost a textbook circuit. Back then, though, it was "the cutting edge of technology." (Textbooks, however, forget to mention that between the transformer and the output lines, we usually place a resistive padthe one I had to jumper.) Needless to say, the darn thing worked. And even though we had plenty of induced hum in the commonground circuit, someone back at the studio was able to get rid of it with a notch filter.

In the years that followed, I've seen phantom power rediscovered to feed such devices as condenser microphones. If we were to look back and trace the history of phantom power, we would find that it originated with the telephone system (for their line amplifiers). Most of you are probably more familiar with phantom power for TV amplifiers and microwave converters.

Figure 2 shows the most com-
mon phantom-powered circuit that technicians are likely to run across: a mast-mounted TV "antenna amplifier." Of course, in such an application, you do not want to run both a power line and antenna feed to the amplifier. Phantom power lets the amplifier gets its supply voltage from the transmission line. At the receiver end, a DC voltage from the power supply is coupled to the coaxial cable through an RF choke, L1. The choke isolates the RF circuit from the power supply.

At the amplifier/converter end (on the antenna mast), the DC voltage is stripped off the coaxial cable by another RF choke, L2, to power the solid-state devices. As far as the RF signal is concerned, the choke impedance is so high that no RF appears on the DC side.

Phantom powered modems

One of the inconveniences of a modem is the power supply. It can be internal (which requires a fairly large cabinet) or external (which requires a wall-mounted $A C$ adapt-

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.
er-always an inconvenience.) The modem may have to be plugged into the terminal or computer so it can tap the equipment's power supply; or the supply could be a battery, which is sure to fail when most needed.
The more modern (not really modern) way to get the power is the way it's done in the Universal Data Systems 1003LP answer/originate modem, directly from the telephone system. The no-load voltage on a dial-up telephone line is 48 -volts DC, which falls to nominally 6 volts when the handset is taken off hook, or any normal load is connected across the line.
Fortunately, micropowered sol-id-state devices-like modemswork very well on $5-6$ volts, so we can phantom-power a complex active device directly from the telephone circuit. Figure 3 shows a simplified phantom-power source for a manual communications modem, therefore, no ring detector/automatic power circuits are shown.
Switch S1 connects the modem to the telephone line. The fullwave rectifier (consisting of diodes D1-D4) ensures against polarity problems with the telephone lines; regardless of the line connections, the rectifier's output polarity is unchanged. A metal-oxide varistor, MOV1, is inserted on the line side of the bridge rectifier to prevent transients that may be on the line from: entering the modem.
The modem's I/O transformer, T 1 , is in series with the DC output of the rectifier. Capacitor C1 provides DC filtering and the AC return path for T 1 . (The signal current in T 1 induces an input voltage to the modem, while the modem's output varies the DC current, hence the current in the telephone circuit.) Zener diode D5 is used to clamp the DC at 5 or 6 volts; however, it can be replaced by a voltage regulator.

While the circuit in Fig. 3 looks simple enough, it is not seen in general use because it takes a lot of hardware when a high supplycurrent is required. In such a case, it simply isn't cost effective. But if micropower devices are used, it's possible to sell a modem-such as Universal Data System's 103LP-for a list price of $\$ 150$.

State Of Solid State

Electronic locks

ROBERT F. SCOTT, SEMICONDUCTOR EDITOR

FIG. 1
the rapidir rising crime rate has forced us to go to the extremes to protect our valuables. For instance, it is not uncommon to see two and three locks on a single door.

If you use conventional locks to secure your home or valuables, you could find yourself carrying large numbers of keys. That means everytime you want to open a door or gain access to your property, you'll be saddled with the task of sorting through several keys to find the one you need at that particular moment. However, there is another way to get the needed se-curity-replace some of those conventional locks with coded electronic types.

Two electronic locks worth your consideration are the LS7228 and

LS7229 from LSI. Figure 1 is a block diagram of the innards of the LS7229 (the LS7228 is similar). Both units are ion-implanted, PMOS encoder circuits that include all the necessary logic to interpret the entry code and develop a momentary lock-control output. The LS7228 address decoder is keyed by two pulse trains of logic one's and zero's applied to the correct terminals. The LS7229 is keyed by two double-throw momentary pushbutton switches (which are used to enter one's and zero's).

Both units (housed in 16-pin DIP's) feature stand-alone lock logic, out-of-sequence disabling circuits, current-source lock-control outputs, externally controlled delay to set maximum time between pulses, and a 9-bit entry
code determined by 9 parallel inputs. Each IC is powered from a single-ended 2.5- to 15-volt supply. Maximum standby current is 15 $\mu \mathrm{A}$.

The locks are controlled by a 9 . bit binary code that has 512 possible combinations. The leading or most significant bit is set by pin 1 and the end (least significant) bit is set using pin 9. Code terminals 1 through 9 control a 9 -bit shift register. The entry code is programmed into the lock by either jumpering or floating (leaving open) certain pins. Refer to Fig. 2, a practical circuit for the LS7229.

To program any given input to accept a logic 1, the pin corresponding to that input is left open. Jumpering a pin to ground programs a zero into the device at the
corresponding position in the entry code. For example, if pins 3, 4, 5,6 , and 9 are grounded and the others left open, the binary ac-cess-code would be 110000110.

The device is unlocked by entering the code (one's and zero's) in the correct sequence through switches S1 and S2. The zeros' and ones' entry ports are initially at logic zero (ground). As each key is pressed, its entry port goes to logic one and then returns to zero. When the first correct bit of the
code is keyed in via S1 and S2, the external capacitor is discharged and an internal inhibit is removed so the circuit will be receptive to the second bit, and so on.

If all nine bits are in the correct sequence, a logic one passes through the shift register to the lock output at pin 11. An out-ofsequence entry or incorrect bit at any point in the entry code inhibits any further entry. After a delay period (determined by the time constant of an external R/C net-

Fluke 73

Fluke 75

Fluke 77
 Volts orms 10A mA
diode lest
Audble continulty Pouch Hold lunction Autorange irange hold 03% biec de acouracy $\frac{03 \% \text { bus de acouracy }}{2000 \text { - hour patery }}$ 2000 - hour tatery lite 3 -yedr warrant 5 Multipurpose holster

BKMITSOG DYNABCAN
 EECKMAN
 Simpan
 EPolaroid

Com

Drfitacherine
DData precision
hfMEE
POWER DESIGNS YEW (N)

WESTON
FROM THE WORLD LEADER IN DIGITAL MULTIMETERS

The Professional Test Equipment Source The Instrument Mart
295 Community Drive. Great Neck, New York 11021 (516) 487-7430 Outside N.Y. (800) 645-6535

FIC. 2
work) a new sequence of key pulses may be applied.

The lock-output (pin 11) switches from zero to logic one as the voltage on pin 9 returns to zero following the last pulse of the entry code. It remains at logic one for a period about 30% longer than the R/C time constant. To hold the output at logic one, apply a tenth entry bit to either pin 13 or pin 14 and hold it high for as long as is necessary.
The output control is a current source so a load must be connected between pin 11 and ground. The source-current range depends on the supply voltage and the voltage across the load. For example, the source current averages 9 mA with a 9 -volt supply and 8.5 volts across the load. It sources 26 mA with 7.5 volts across the load.
The time constant of the external R-C network at pin 12 determines the duration of the output pulse and the maximum permissible interval between valid entrycode bits. The time constant in seconds is the product of the resistance of R1 in megohms and the capacitance of C 1 in microfarads. When using a 9 -volt supply, the minimum suggested value for R 1 is 2200 ohms and the maximum value is 3.3 megohms.

The LS7228 and LS7229 binarylock circuits are available from LSI Computer Systems, Inc., 1235 Walt Whitman Road, Melville, NY 11747 at $\$ 2.70$ each for 1 to 24 pieces. Include $\$ 5.00$ for shipping and handling. New York State residents add sales tax. Data sheets are available on request. R-E

DRAWING Board

More on the 4089

ROBERT GROSSBLATT

LAST MONTH WE LEARNED A THING; OR two about the 4089 , but were not quite finished with that device. This time, let's start off by seeing how it can be used to do division.

Division with rate multipliers

Since we treated multiplication as successive addition, let's think of division as successive subtraction. In simpler terms, how many times can we subtract one number from another before we reach zero? To be practical about it, let's take a look at the circuit from our last discussion.

What we want to do with the circuit this time around is to keep track of the multiplied-rate pulses and count the base-rate pulses (the opposite of what we did previously). In hardware terms, that means we have to switch two wires in the circuit!

Figure 1 can be considered an addendum to the circuit we did last month; it shows the extra hardware needed to switch between the multiplication and division modes. With the display added, all we need do is put a DPDT switch to change the operation of the circuit from multiplication to division.

Doing more complex forms of arithmetic, such as squares and roots, is possible as well. Virtually any arithmetic operation can be written as a series of operations that involve only multiplication and division. A good mathmatics textbook will show you what has to be done.

Once you have that taken care of, arrange your circuit to do the necessary arithmetic and that should be that. Start out with

FIG. 1

FIG. 2
square roots and continue from there. If any of you do breadboard such a circuit, send me the details and I'll put them in the column for everybody else to see. Remember that the whole point of this col-
umn is to share information (you've got to give a little to get a little).

There are two problems left for us to talk about. The first is figuring out a way to make the circuit easier to use and the second is making the circuit more useful. Let's tackle the second one first.

Cascading the 4089

The 4089, and all the other rate multipliers, are easy to cascade and there are two different ways of doing it. Which way you choose depends on the kind of arithmetic you want to do.

In Fig. 2-a, the IC's are cascaded in what National Semiconductor calls the "add" mode. IC1 works just the way it did in our demonstrator circuit and if you were to check the output of IC1, you would see the same results we saw earlier. Things aren't terribly straightforward when you're in the "add" mode, however. Since IC2 has its cascade input connected to the output of IC1, its multiplied rate will be 16 times greater than that of IC1.

On the other hand, if you wanted to do division by-let's say, 72you would have to remember that IC1 is working with a base of 16 and IC2 is working with a base of 256 (16 times 16). In order to figure out what numbers to present to the inputs of the 4089, you have to do some additional work to reduce everything to a base of 256 . If A is the most significant digit (at IC1) and B is the least significant digit (at IC2), then:

$$
(A \times 16)+B=72
$$

The trick is to find how large you can make a without exceeding 73 .

SAVE BY BUILDING OUR RACK MOUNT STUDIO EQUIPMENT

QUADRAFUZZ - for separate frequency bands of distortion are mixed for the smoothest fuzz you've ever heard. no. 6720.
\$ 39.88
HYPERFLANGEICHORUS - the cleanest, widest range, most versatile flanger anywhere at any price.
no. 6750
$\$ 149.95$
VOCODER - unmatched perfor. mance in a versatile, low cost rack package. no.6710. $\$ 99.95$

HOT SPRINGS - user's agree, short of studio plate systems, you won't find a better reverb at any price. no. 6740 .
$\$ 59.95$

ADD \$3 SHIPPING
 FOR EACHKIT ORDERED

Innovative, cost effective designs by Craig Anderton in easy to assemble kits from:

A Electronics, Inc.

Direct mailorders and inquiries to: Dept.11R 1020 W . Wilshire, Oklahoma City, OK 73116 - (405)843.9626 Ask for your free catalog.

CHARGE TO VISA OR MC TOLL-FREE

 1-800-654-8657 9AM to 5PM CST MON.FAI CIRCLE 90 ON FREE INFORMATION CARD

MANUFACTURERS OF QUALITY ELECTRONIC COMPONENTS
\qquad

Minor brain burning gives us an answer of four for A ; therefore, B has to be eight. To sum it up, we put a binary four (9100) and a binary eight (1000) at the weighted inputs of rate multipliers IC1 and IC2, respectively.
A much easier way to take care of that is to use the second method of cascading the 4089 , which $\mathrm{Na}-$ tional Semiconductor refers to as the "multiply" mode. That configuration, shown in Fig. 2-b, is a standard cascading arrangement. It is more common than the "add" mode, but as we'll soon see, it is not as versatile.
The procedure is little different and a lot simpler than the previous method. Here the outputs of the IC's are multiplied together in a normal cascade arrangement, making the arithmetic a lot easier, as can be seen from the equation:

$$
A \times B=72
$$

Our only restriction in choosing values for A and B is the four-bit width of the IC's; 12 and 6 are the only choices.
You've probably noticed that not all numbers can be obtained using that method, which is why the add mode is more versatile However, if we were doing multiplication, the restriction wouldn't apply and this method would be better, since it would mean fewer traces on the board
Like almost everything else in digital circuitry, our description makes it sound much more complicated than it really is. If you try working with the rate multiplier, you'll find that it can provide easy solutions to what would otherwise be seemingly impossible circuit problems.
The second problem is designing some sort of circuit that would make it easy for us to select the numbers we want to use. Because the 4089 has binary inputs, the keyboard encoder covered in the February, March, and April 1983 installments of "Drawing Board" would be perfect.
If you're interested in the topic of keyboard data entry, check out those issues of Radio-Electronics (if you don't have them, try your local library). If there is enough interest in the subject, let us know; we'll spend some more time talking about it.

R-E

DESIGNER'S Notebook

ROBERT GROSSBLATT

Audio overload protection

IN ANY CONTEST TO RATL THE MOST popular areas of electronics, audio circuits and projects would undoubtedly be among the top ten. There is probably more home "tinkering" done in the areas of equalization, noise reduction, amplification, and so on than in any other field. And, as we all know, hardly a day goes by without an announcement from one semiconductor manufacturer or another about a new audio IC.

Each successive generation of audio IC has more features packed into it than its predecessor and can handle really mind boggling amounts of power. For instance, it wasn't long ago that an LM386 driv-er-amp blew everybody away because, with just a handful of external parts, it could output a $1 / 2$ watt of continuous power into an 8 -ohm load. These days, however, IC power-amps need virtually no external components, and one

FIG. 1

FIG. 2

FIG. 3
with more than 10 watts of powerhandling capability can be held on the end of your little finger!

Every amplifier (regardless of type) has maximum power ratings. If those limits are exceeded, the amplifier and any associated components may be destroyed, so you must be careful. (Remember overloading can cause lots of trouble.)

Overloading is hard to guard against because a typical audio sig. nal can have a really wide dynamic range-sometimes more than 30 dB .

Overload protection scheme

Protecting audio circuitry against overload (accidental or otherwise) is an important consid-

CIRCLE 100 ON FREE INFORMATION CARD

No contly School. No commuting to class. The Original Home-Study course that prepares you tor the FCC Radiotelephone license exam in your spare time! An FC' (iovernment license is your "tichet" to thousands of exciting jobs in Communications. Radio \& TV. Mobile tho-may. Micronate. Computers. Kadar. Aeroיpace and more. You don't need a college degree to qualify, but you do need an FCC License. No need to quit your job or go to school! You learn hou to pass the r-CC I.icense exam at home at your oun pace with this easy-to-understand, proven course. It's easy. fast and lou cont! (il'ARANTEED PASS You get your HCC I icense or money relunded. Write for free details. Soon you could be on your way to being one of the highest w orkers in the electromes field. Send for FREE facts now. MAIL COUPON TODAYI
COMMAMD PRODUCTIONS
FCC LICENSE TRAINING, Dept. 90
P.O. Box 2223, San Francisco, CA 94126
Rush FREE facts on how I can get my FCC License
In spare time. No obligation. Nósalesman will call.
NAME
AOORESS
CITY \quad STATE ZIP_

Learn micro-processing with the new MICRO-PROFESSOR 1P

Students, engineers or techniciansupgrade your micro-processing skills with the new Micro-Professor 1P.
The MPF-1P features:

- extensive suftware support
- more built-in memory
- improved keyboard
- larger display

Three tutorial guides help cover all capabilities. The ideal training tool! MPF-IP will deliver you into the growing world of micro-processing. Invest now!
Plus-FREE GIFT Only $\$ 179.95$
\square Check this box for FREE Z-80 Microprocescor
Programming and
Interfacing textbook when you order within 7 days.
$\$ 12.95$ value. (Include

$\$ 5.00$ postage ${ }^{2}$ 14803 N.E. 40th handling)

Redmond, WA 98052

For immediate action call TOLL FREE:

 1-800-426-1044Full money back guarantee. VEA' 1
CIRCLE 111 ON FREE INFORMATION CARD

TECHNICIANS, Get serious about your profession;
 Now you can order
 the "Study Guide for
 the Associate-Level CET
 Test" from the International
 Society of Certified Electronics
 Technicians. It includes material
 covering the most often missed questions on the Associate CET Exam. $81 / 2^{\prime \prime} \times 11^{\prime \prime}$, paperback,
 COET CERTIFIED! GET CERTIED

Send check to ISCET, 2708 W. Berry St., Ft. Worth, TX 76109.
Name
Address
City
State

coples (a) $\$ 5.00$ ea,
Send material about ISCET and becoming certified.
eration, and should be on the mind of any serious audio-circuit designer. The best place to guard against overload is in the early stages where signal levels are low. The further along you are in the audio chain, the "beefier" the signal becomes, and the harder it is to add some type protection scheme. To complicate matters, overloads in the final power stages stand a much greater chance of "smoking" some expensive parts.
The circuit shown in Fig. 1 is the beginning of a protection scheme that can be made from a few common components. It's capable of monitoring circuit gain, and will also make sure that signal levels stay within the pre-set range. (The original circuit used a nonstandard optocoupler or optoisolator constructed from readily available parts, which we'll tell you how to make a little later.)
The best place to put the circuit is either in the feedback loop or shunted across the preamp input. Although the circuit tends to limit the gain of a preamp, keep in mind that it's meant to show you one way to approach the problem, and is by no means the only way to get the job done. Once you try it and become familiar with how it works, there are several "offshoots" of that design, which you can make following the same basic idea.

Figure 1 shows a 500 -ohm potentiometer (R1) sitting right on the line feeding power to the preamp. When the audio signal is increased, the preamp draws more power to handle the larger signal. That results in a greater amount of current through R1, which causes a proportionate voltage to develop across the potentimeter.
Transistor Q1 monitors the voltage supplied to the amp through resistor R 1 . Whenever that voltage reaches the V_{CE} threshold, the transistor turns on, causing the LED in the optocoupler to light. That, in turn, causes the phototransistor to conduct. What you do with output of the optocoupler depends on how you design your audio circuit but (as already stated) the best place for it is either in the feedback loop or across the preamp input.
continued on page 112

Service Clinic

Kit building made easy

hands-on electronics is a good phrase. Everyone should have some experience in making things. Once you've actually built something, you'll know much more about how it works.

One thing every electronics hobbyist should have is some test equipment. But, as you probably know, the most desirable equipment can be expensive. There is, however, a way to get the test gear you need, and save a good deal of money in the process. Of course, I'm referring to test equipment in kit form.

Saving money isn't the only ad-vantage-you can also gain much knowledge about how the device is made and what it can do. Kits range from the simplest (an analog VOM, for example) to things more complex than a digital frequency counter. I speak from much experience: at least ten instruments among my collection were made from kits, and they're darn good instruments, too!

One of the niceties of kit building is that the most complex instrument can be just as easy to build as the simplest one! Instruction and construction manuals (see Fig. 1) supplied with the kit tell you exactly how the instrument works and how to use it. Be warned, however, you must follow the construction manual to the letter. Don't take short cuts!.

The manuals were written by people who have made and sold thousands of those devices. Therefore, what they tell you to do is always the best way to do that particular job. Follow them closely and you'll find that the job goes much faster, and you'll wind up

with an instrument that stands a far greater chance of working the first time it's turned on.

Believe it or not, I've almost never had one work the first timealways because of some stupid mistake I'd made! And that's what this article is about: how to find and correct those mistakes. Not only will the information found here aid you in kit building, but it can help make any construction project or repair job go a bit smoother.

Correcting construction errors

In building any electronic device, you should check your work
both during and after each phase of construction. For instance, when placing a part in a circuit board, make sure it's in the right place, correctly oriented, and is the value called for in the instructions before soldering. In that way, any mistakes-parts put in backwards, etc.-can easily be corrected.

After soldering, check for solder bridges-splashes of solder caused by sloppy workmanshipespecially between closelyspaced, adjacent PC-board conductors (see Fig. 2). Solder bridges can be a real headache to locate, because they are the same color as the conductors of the PC board! A magnifying glass is a handy thing to have around when checking for solder bridges. It can help you locate those hair-line bridges, which often are undetectable to the naked eye.
I once wired up a fairly complex kit, taking extreme care (or so I thought) to avoid solder bridges. But when I powered it up, it did nothing! Checking over my work carefully with a big magnifying glass, I found no less than five bridges. After correcting the problem, my kit worked like a charm. So don't ever be too confident that you haven't made any bridges. Look your work over very closely, and if you find any bridges, take them out.

While you're checking for bridges, look for any unsoldered terminals or cold solder joints. Unsoldered terminals are a common occurrence in kit building. That is, after you've finished putting the kit together, a joint or two is still not soldered. That's usually
caused by not reading the instructions carefully.
A good construction manual (from Heathkit, for example) will tell you to put in a part and then "S," for solder or "NS," for not solder-which should tell that there are more parts to be connected to that joint-so that terminal should not be soldered yet. After completing a section, make sure that each terminal is soldered or not soldered as instructed.

Cold solder joints are another common source of trouble. They can be identified by their frosty appearance. If you find one or more, simply reheat the joint and, if necessary, apply a bit more solder. A good solder joint usually shines like silver. Assuming that all appears well, you can power up the device.

If nothing happens, follow the same routine you would with any other piece of "dead" equipment. Go back and check the wiring, parts placement, and so on. Then if you find no errors, power it up again and check the DC voltage source and the places where DC voltages should be.

Chances are you'll find that the voltage is missing in one or two places. When you find a place that should have voltage but does not, simply trace back through the circuit until you find the place where the trouble is. Fix that point and make sure that there are no more missing voltages. Once you get the DC voltages all straightened out, the device should work. If it doesn't, you'll have to recheck everything. Never be lulled into a false sense of security because you believe you've followed every step. Remember, overconfidence can be disastrous!

Suspect everything until you have double checked it. Go back, recheck the manual, and be sure the part in each position is the type and value called for. If you do that carefully, there's a far greater chance of your project working the first time.

Kits are really very easy to assemble (as you will find out) if you follow the instructions. Take it very slow and easy, and be sure to check off each step as you go (using a red pencil, so the check marks will stand out).

R-E

TIMEX/SINCLAIR 1000, 1500, 2068, ZX81, SPECTRUM Hardware \& Software for all computers: NEW! Floppy disk interface. Std format. Order FLOPPY: \$200. PRTR I/FCentronics printer interface. Order PRTIF: \$50. ASM/DSM—Full featured assembler/ disassembler. Order ASMDSM: \$40. ALSO, Cables for all products. Write for prices and descriptions. When ordering, specify type of computer. Research Service Laboratories, P.O. Box 19124, OKC, OK 73144.

CIRCLE 274 ON FREE INFORMATION CARD

P-250 AMBIANCE/SURROUND SOUND DECODER. Extracts ambiance from stereo recordings and Surround Sound effects from Dolby ${ }^{\text {M }}$ encoded movies. P-250-DL (kit) \$180, P-250-DLA (assem \& tested) \$250. MC/Visa OK. 203-643-4484 Phoenix Systems, Inc., POB 628-RE, Manchester, Ct. 06040.

CIRCLE 69 ON FREE INFORMATION CARD

APPLIANCE REPAIR HANDBOOKS-13 volumes by service experts; easy-tounderstand diagrams, illustrations. For major appliances (air conditioners, refrigerators, washers, dryers, microwaves, etc.), elec. housewares, personal-care appliances. Basics of solid state, setting up shop, test instruments. \$2.65 to \$5.90 each. Free brochure. APPLIANCE SERVICE, PO Box 789, Lombard, IL 60148. 1-(312) 932-9550.

CIRCLE 84 ON FREE INFORMATION CARD

- $6 \times$ rate $\$ 650$ per each insertion.
- Reaches 225,016 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at not additional charge

Call 212-777-6400 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS. RADIO-ELECTRONICS. 200 Park Ave. South. New York. NY 10003.

SUBSCRIPTION TV MANUAL. This information packed book details the methods used by subscription TV companies to scramble and descramble video signals. Covers the Sinewave, Gated Pulse, SSAVI system, and the methods used by most cable companies. Includes circuit schematics, theory, and trouble shooting hints. Only $\$ 12.95$ plus $\mathbf{\$ 2 . 0 0}$ first class P\&H. ELEPHANT ELECTRONICS INC., (formally Random Access) Box 41770-R, Phoenix, AZ 85080 CIRCLE 120 ON FREE INFORMATION CARD

California-DC Regulated Switching Power supply + 5v dc@ 5 amp + 12v dc @ 2.8 amp $+12 v \mathrm{dc}$ @ $2 \mathrm{amp}-12 \mathrm{vdc}$ @ 5 amp $115-230 \mathrm{v}$ ac input, fused. EMI filtered. Removable DC Power Harness and Schematics included. $7.4^{\prime \prime} \times 6.2^{\prime \prime} \times 1.7^{\prime \prime} \mathrm{ht}$. Visa/MC M.O./check; when clears. $\$ 37.50$ ea. (Free shipping in U.S.) 1-800-327-7182/305-830-8886. Power Plus, 130 Baywood Ave. Longwood, FI. 32750. (Call for quantity price).

CIRCLE 125 ON FREE INFORMATION CARD

SATELLITE TELEVISION RECEIVER SEMIKIT with dual conversion downconverter. Features infrared remote control tuning, AFC, SAW filter, RF or video output. stereo output, Polorator controls, LED channel \& tuning indicators. Install six factory assembled circuit boards to complete. Semikit \$400.00. Completed downconverter add $\$ 100$. Completed receiver and downconverter add \$150. JAMES WALTER SATELLITE RECEIVER, 2697 Nickel, San Pablo, CA 94806. Tel 415-724-0587. CIRCLE 124 ON FREE INFORMATION CARD

FREE 1984 ELECTRONIC TOOL \& IN. STRUMENT CATALOG is packed with over 5,000 quality technical products for assembling, testing and repairing electronic equipment. All products fully illustrated with photographs, detailed descriptions and pricing to allow for easy ordering by phone or mail. Most orders are shipped within 24 hours. 100\% satisfaction ${ }^{\text {g guarantee. }}$ CONTACT EAST, 7 Cypress Drive, Burlington, MA 01803. (617)272-5051.
CIRCLE 55 ON FREE INFORMATION CARD

ZENITH SSAVI-1, STV -1, STV-2 COMPLETE DESCRAMBLER MANUAL Original Zenith schematics. Theory of operation and repair information Modifications for use on cable and satellite systems. How to bypass addressing system. Replacement parts and power supplies available.
$\$ 19.95$ plus S\&H C.O.D. Visa or Mastercard. S\&L ELECTRONICS, 3800 Enterprise Drive, Allen Park, Michigan, 48101. (313)562-9747.

CIFCLE 272 ON FREE INFORMATION CARD

SCIENTIFIC ATLANTA Introducing the CM04 cable TV descrambler. Compatible with Scientific Atlanta 8500 series cable systems. Total channel capability. Assembled and tested. Simple plug-in installation. Regular Price $\$ 180.00$. Special Introductory Offer $\$ 145.00$. C.O.D. orders accepted. Quantity discounts available. V.I.P. Electronics, P.O. Bcx 628, Forestdale, R.I. 02824, (617) 755-9778.

CIRCLE 273 ON FREE INFORMATION CARD

ZORBA 64K PORTABLE COMPUTER 9" Green or Amber CRT. Two 400 K DSDD Drives. CP/M 2.2 Operating System. \$799.00. Gemini Electronics, Inc., 130 Baywood Ave., Longwood, FL 32750. 1-800-327-7182, 305-830-8886.

CIRCLE 258 ON FREE INFORMATION CARD

FREE CATALOG OF HARD-TO-FIND TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's line of more than 40 tool kits. Send for your•free copy today! JENSEN TOOLS INC., 7815 46th St., Phoenix, AZ 85040. (602) 968-6231.

ZENITH SSAVI DESCRAMBLERS only \$159; complete with power adapter ready for UHF channels 22,23,27,31,50,54, and others, or Z-tac cable, chs. 2-13, A-W, with optional block converter. Quantity discounts! GATED PULSE \& SINEWAVE decoders available. SATELLITE SYSTEMS starting at \$845; Installation and program guide, $\$ 3$. Dealers welcomed. Catalog \$1. Visa/MasterCard AIS SATELLITE, P.O. Box 1226-E, Dublin, PA, 18917. (215) 249-9411.
CI马CLE 255 ON FREE INFORMATION CARD

MARKET CENTER

FOR SALE

CABLE-TV Secrets-the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime. descramblers, converters, etc. Suppliers list included. \$8.95. CABLE FACTS, Box $711 \cdot$ R. Pataskala, OH 43062.

RESISTORS v_{4} W\& $1 / 2 \mathrm{~W} 5 \% 3$ cents. 1% metalfilms, precision custom wirewounds, $\$ 1.00$ refundable to: JR INDUSTRIES, 5834-B Swancreek, Toledo, OH 43614.

FREE catalog featuring scanner accessories, carrier'subcarrier detectors, voice scramblers, unusual kits. CAPRI ELECTRONICS, Route 1R. Canon, GA 30520.

THE Intelligence Library-Restricted technical information \& books on electronic surveillance, sur-velllance-device schematics, lock-picking, investigation, weapons, identification documents, covert sciences, etc. The best selection avallable. Free brochures. MENTOR, (Dept. Z), 135-53 No. Blvd., Flushing, NY 11354.
CABLE-TV equipment, tunable notch filters for "beeping" channels. Information $\$ 1.00$. DK VIDEO, PO Box 63/6025 RE, Margate. FL 33063.
DIGITALKER Speech Synthesizer has 136 word vocabulary. Interfaces with paralle! port of your computer. PCB and plans $\$ 12.00$. JIM RHODES, INC., 1025 Ransome Lane, Kingsport. TN 37660.

THE BEST PLACE to BUY. SELL or TRADE NEW and USED EQUIPMENT NUTS \& VOLTS MAGAZINE BOX 1111 -E P PLACENTIA, CA 92670 (714) 632-7721

Join Thousands of Readers Nationwide Every Monch
ONE YEAK U.S. SUESCRIPTIONS
$\$ 10.00 \cdot$ Ind Clem - $\$ 15.00$ - In Clime

TUBES, new, unused. Send self-addressed, stamped envelope for list. FALA ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.
FREE Pay-TV reception. "How-To" book. HBO, Showtime, Cinemax. $\$ 5.00$. DIPTRONICS, Box 80 (E2), Lake Hiawatha, NJ 07034.
CONVERTERS all types for all systems. Lowest prices anywhere, quantity discounts, dealer inquiries accepted. Send $\$ 1.00$ for catalog, PG VIDEO CORP., PO Box 296, Latham, NY 12110. (518) 274-6593.
AUTOMOTIVE Security Catalog. 1984, 24-page color catalog, $\$ 2.00$. ASE, Dept. 1, PO Box 382 , Plainview, NY 11803.
COMPUTER hacking: How it's done and how to stop it! Details: A.T.I.S., 61 Gatchell, Buffalo, NY 14212.

CLASSIFIED RATES

15 word minimum: $\mathbf{\$ 3 7 . 5 0}$, $\mathbf{\$ 2 . 5 0}$ per word commercial; $\mathbf{\$ 3 0 . 0 0} \mathbf{\$ 2 . 0 0}$ per word personal. Expanded type ad, $\$ 3.75$ per word. Ads set in all bold-face type at 20% premium. Ads set with background screen at 25% premium. Display ads $1^{\prime \prime} \times 2 V_{4}{ }^{\prime \prime}-\$ 270.00 ; 2^{\prime \prime} \times 2 y_{4}^{\prime \prime}-\$ 540.00 ; 3^{\prime \prime} \times 2 V_{4}{ }^{\prime \prime}$ $\$ 810.00$. General Information: frequency rates and prepayment discounts are available. Payment must accompany order. Copy subject to publishers approval. Must be typewritten or printed. First word set in all capitals and boldface: Advertisers using P.O. Boxes must supply permanent address and telephone numbers. Orders are not acknowledged. They wiill appear in the next available issue after receipt. Copy to be in our hands on the 20th of the third month preceding the date of the issue (i.e. August issue closed May 20th. When normal closing date falls on Saturday, Sunday or a holiday issue closes on preceding working day. Send order and remittance to Classified Advertising Radio-Electronics, 200 Park Avenue South, New York, New York 10003. For your convenience a simplified order form is provided on this page.

ORDER FORM
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 20.00$.

()

Special Category: $\mathbf{\$ 2 0 . 0 0}$

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35

WANTED; RCA, Cunningham, Western Electric Genalex, Telefunken, GE, Sylvania, McIntosh, Marantz, Altec, JBL, Tannoy: Tubes, amplifiers, speakers. (713) 728-4343, MAURY, 11122 Atwell Houston, TX 77096.
CABLE-television facts and secrets. Now you can get the informative publication that CATV companies have been unsuccessfully trying to get banned for 15 years. Movie Channel, HBO, and Showtime converters, etc. Send $\$ 8.75$ to: CABFAX, P.O. Box 091196, Bexley, OH 43209.

WHOLESALE MATV/CATV equipment, antenna, accessories, cartridges, radios, speakers, wires. (718) 897-0509, D\&WR, 68-12 110 Street, Flushing, NY 11375.
BIGGEST TI-99/4A selection. Newest exciting software and hardware bargains. Hard-to-get items. Send for free catalog. Fast service. DYNA, Box 690 , Hicksville, NY 11801.

GUARANTEED quality surplus for less! Free flyer. ELECTRONIX LTD., 3214 South Norton, Sioux Falls, SD 57105.
CORDLESS- phone owners. Increase distance, reduce static on $1.7 / 49 \mathrm{MHz}$ phones. Details $\$ 1.00$ refundable. HP PHONES, Box 273, Mesa, AZ 85201.

DELUXE cable/UHF converters. Zenith, SSAVI-1\$199.95. Zenith Cable-\$229.95. Jerrold, Oak and others available. Dealers wanted. $\$ 2.00$ catalogUNITED ELECTRONIC SUPPLY, Box 1323, Elgin, IL 60121-0119. (312) 697-0600.
COCO owners-Free color computer soltware and hardware catalogue. SPECTRUM, Box 9866, San Jose, CA 95157-0866.
INDIVIDUAL photofact folders. No. 1 to no. 1400 , $\$ 3.00$ postpaid. LBT, 414 Chestnut Lane, East Meadow, NY 11554.

This ad is set with a background screen. Notice how it stands out on the page. This ad incurs a 25% premium charge. Perhaps your next ad could have a screen background. For ordering information, see top of Market Center listing.

TRICKS of the burglar alarm trade: Well illustrated, non-technical. Covers equipment, installation procedures, troubleshooting, "by-pass" methods \& countermeasures. Free brochure: MENTOR PUBLICATIONS, (Dept. L), 135-53 No. Blvd., Flushing, NY 11354.
CABLE-TV equipment: Jerrold, Hamlin, Zenithmany others. Factory units/lowest dealer prices. Send large self-addressed-stamped-envelope to: CABLETRONIX, 73251/2 Reseda Blvd., Reseda, CA 91335, (818) 346-5071.
AUTOMOTIVE AM/FM stereos $\$ 49.95$ up. 40 piece socket set, lifetime warranty $\$ 39.95$. Free catalog, NEPTUNES CAVE, Box 8837, Fort Worth, TX 76124-0837.
B\&K 747B iube tester like new, \$250.00-(702) 642-7906.

WE HAVE QUALITY PARTS, DISCOUNT PRIGES AND FAST SHIPPING!

FRIEE! FREE! FREE! SEND FOR

Tw \rightarrow MRE~上 TWO WIRE 18ga TWO WIRE
3 FOR S 1.00 THREE WIRE ICM 1Bga THREE WIRE 2 for $\$ 1.00$
\qquad $\$ 2.00$ EACH

SOLDERING IRON STAND

$\$ 5.00$ EACH

TRANSISTORS

2N706	4FOR $\$ 1.00$
2N2222A	3FOR $\$ 1.00$
PN2222	4FOR $\$ 1.00$
2N2904	3FOR $\$ 1.00$
2N2905	3FOR $\$ 1.00$
2N2907	3FOR $\$ 1.00$

POWER SUPPLY W/PRE-AMP
HIS SUPPLY WAS USED TO POWER
AN 8 TRACK/CASSETTE UNIT. IT AN 8 TRACKICASSETTE UNIT. IT
WILL SUPPLY APPROX. 18 VDC AND includes a small pre-amp To BOOST SIGNAL LEVEL.
RCA PLUGS FOR LINE IN/OUT

[^2] RIBBON CABLE

$\$ 7.50 \mathrm{EACH}$ ELECTRONIC ORGANS YO PROVIDE ACOUSTIC DEIAY MPE DANCE 2250 OHMS IMPEDANCE B OHMS. OUTPU

SOUND AND VIDEO MODULATOR

$=3$
0
0
0
0
0 FOR T.I. COMPUTER
T.I. UMI 381-1. DESIGNED FOR USE
WITH T,I, COMPUTERS. CAN BE USED WITH
YIDEO SO VIDEO SOURCES BUILT-IN AB SWITCH. CHANNEL 3 OR 4 SELECTION SWITCH.
OPERAEES ON 12 VDC. HOOK UP DIAGRAM includeo.
$\$ 10.00$ EACH
ROTARY SWITCH

$\begin{aligned} & \text { EDGE } \\ & \text { CONNECTORS } \end{aligned}$	
	120V INDICATOR
	$\triangle=\square$
	neov inoicato
10 PIN EDGE	(120V13 W MOUTS
CONNECTOR	758 EACH
TRW M50-10-20 ${ }^{\text {a }}$ S2.00 EACH	
18/36 GOLD Soloer eyelet 82.00 Each	GEL CEL
22/44 TIN	BATTERY
Style. no mounting ears $\$ 7.50$ EACH 10 FOR $\$ 14.00$	BAT
22/44 GOL	
C. STVLE $\begin{gathered}\$ 2.00 \mathrm{EACH} \\ 10 \mathrm{FOO} \$ 1000\end{gathered}$	18
28/56 GOL	
28/56 GOLO P PATED CONTACTS . 156 COH IACT SPACING	$4 \times 113 / 16^{\circ} \times 21 / 8^{0}$
\$2.50 EACH L0FOR \$22.00	315.00 EACH

48 PAGE CATALOG FREE! FREE! FREE!

 LARGER!SMWNHI

120V INDICATOR
neon indicitor, rateo 6^{*} HoLE . RED LENS 75 Each GEL CELL BATTERY

L.E.D.'S

 STANDARD JUMBO DIFFUSED RED 10 FOR $\$ 1.50$ GELLOW 10 FOR $\$ 2.00$FLASHER LED

$$
\begin{aligned}
& \text { SVOTOPERATION } \\
& \text { RED JUMBO SIIE }
\end{aligned}
$$ $\$ 1.00$ EACH

Bi POLAR LED
LED HOLDERS WO PIECE HOLLER 9 fir FOR 65C 200 FOR S100 CLEAR CLIPLITE HOLDER EL. MAKELEOAFANC,

3 1/2

$\left.\begin{aligned} & \text { COMPUTER } \\ & \text { GRADE }\end{aligned} \right\rvert\,$

CAPACITORS

2,000 mid. 200 VDC

3/4"DIA. $=$ E"HIGH $\quad \$ 2.00$

$3,600 \mathrm{mid} .40 \mathrm{VDC}$

$6,400 \mathrm{mid} .60 \mathrm{VDC}$

 $22,000 \mathrm{mld} .40 \mathrm{VDC}$
$31,000 \mathrm{mfd} .15$ VDC

72,000 mfd. 15 VDC

2° DIA $43 / 8$. HIGM $185,000 \mathrm{mld}$ 6 VDC

SLIDE POTS K Inear tape 2" LONG
$15 / 8-$ TRAVEL
75C EACH 500K Ilnear taper 13/4" TRAVEL 75 EEACH DUAL 100K audlo taper $31 / 2^{2}$ LONG
$21 / 2^{\prime \prime}$ TRAVEL
CRYSTALS

$2 \mathrm{MHZ} \left\lvert\, \begin{aligned} & \text { COLORBURST } \\ & 379.545 \mathrm{KC}\end{aligned}\right.$| col ORBURST | |
| :--- | :--- |
| 3579.585 KC | |
| | $\$ 1.00 \mathrm{EACH}$ |VARISTOR

G.E : V82z
voltag GE 5/8" DIAMET
2 FOR $\$ 1.50$
N MINIATURE TOGGLE SWITC

CS
OESIGNED Y PROVIDE A
STEADY $=5$ YVC@ 240 M ROM A BATTERY SU

$216^{\circ} \times 11 / 16^{\circ} \times$
$1 / 16^{-1} \mathrm{HIGH}$.
$\$ 1.50 \mathrm{EACH}$
nLL ELECTRONICS CORP.
905 S. VERMONT AVE. P.O. BOX 20406 LOS ANGELES, CA 90006

NOTCH filters for Cable-TV. Channels 2-6, 14-22, A1. Send $\$ 20.00$ for sample and quantity price list. Specify channel. Money back guarantee. CATV, PO Box 17621, Plantation, FL 33318

WALKMAN style headphones $\$ 7.00$. Plezo super iweeter, $40,000 \mathrm{~Hz} \$ 8.00$. JAMES FIGIELSKI, PO Box 42, Florham Park, NJ 07932. No checks
DESCAMBLERS for downconverters. High gain. Send \$2.00. RB ELECTRONICS, PO Box 643, Kalamazoo, MI 49005.
CABLE- TV converters, Zenith, Scientific Atlanta, Jerrold, Oak, others available. Fast service, UNITED ELECTRONICS SUPPLY, PO Box 1206, Elgin, IL 60121. (312) 697.0600.
PCB for Satellite Stereo Project in October article is now only $\$ 15.00$. JIM RHODES, INC., 1025 Ransome Lane, Kingsport, TN 37660.
"SATELLITE descramblers"-lowest prices anywhere! Dealer inquiries welcome. Send $\$ 3.00$ for catalog. We ship C.O.D.s, STARVIEW INC., PO Box 103, Rexiord, NY 12148, (518) 785-1288

AUTOMATIC telephone dialing, programming unit, solid-state, auto-reset, drives cheap recorder, cassette tapes, monitors refrigeration etc. Alarm control module, paich cords, instructions, warranty, \$39.95. HAROLD DAVIS, (601) 366-4112
CONVERT overseas videotapes PALISECAM 10 American system, viceversa. Optical/digital, lowest rates. $110-220$ audio, video, TV's. Copying machines discounted. APPLE AUDIO, 74-18, 37th Avenue, Queens, NY 11372, (718) 507-5800.

SAMS Photofacts, old radios, television, combos $\$ 2.00$ each, $\$ 10.00$ set. SEASAW, 575 East Trem ont, Bronx, NY 10457

This ad is set with a background screen. Notice how it stands out on the page: It incurs a 25% premium charge. Perhaps your next ad could have a screen background. For more information, see top of Market Center listing.

CABLE-TV products Jerrold, Hamlin, and Oak converters. Send $\$ 3.00$ for information. ADDITIONAL OUTLET CORP., 1041 W. Commercial Blvd., FI. Lauderdale, FL 33309.

ZENTIH SSAVI Manual. Original manual used by technicians. Theory of scrambling, schematics, parts list, repair. For UHF and cable. For speedy delivery send $\$ 15.00$ cash or money order. BAY STATE ELECTRONICS, PO Box 263, Accord, MA 02018.

INTEL model No. MDS225, Intel Dual Disk Drive model No. MDS720, Intel Universal Prom Program mer model No. UPP103. Equipment in excellent condition. Call Ted Belben, (416) 832-2241, EIRICH MACHINES LTD., PO Box 550, Maple, Ontario, Canada L0J 1E0
TOKO coils and printed circuits. Quantity dis counts. JIM RHODES, INC., 1025 Ransome Lane Kingsport, TN 37660.
ELECTRONIC catalog. Over 4,500 items. Parts \& components. Everything needed by the hobbyist or techńician. $\$ 2.00$ postage \& handling (United States only), refundable with first $\$ 15.00$ order. T \& M ELECTRONICS, 472 East Main Sireet, Patchogue, NY 11772, (516) 289-2520
OPTICAL character reader input any computer Construction cost $\$ 75.00$. Plans $\$ 29.95 .50$ page catalog $\$ 3.00$. DBE, Box G, Waikiki, HI 96815, MC VISA orders (808) 395-7458.

RECONDITIONED test equipment. $\$ 1.00$ for catalog. JAMES WALTER TEST EQUIPMENT, 2697 Nickel, San Pablo, CA 94806

CABLE-TV converters, police radar detectors and scanners. Send $\$ 1.00$ for catalog. GREAT LAKES COMMUNICATIONS,INC., 0-2026 Chicago Dr. Jenison, MI 49428

IMPORTS-car stereos, boosters, speakers, tools jeweiry. List $\$ 1.00$ (refundable). J.R.C. IMPORTS 329-76th, N. Bergen, NJ 07047

नBMODIFIFATIMS
Increase channels, range, privacy! We specialize in frequency expanders, speech processors, FM converters, PLL \& slider tricks, how-to books, plans, kits. Expert mail-in repairs \& conversions 16-page catalog $\$ 2$.

CBC INTERNATIONAL, P.O. BOX 31500RE,
 PHOENIX, AZ 85046 (602) 996-8700

TIMEX/SINCLAIR 1000

TS-1000 2 K software. Personal finance, educational, robotics, business, $\$ 9.99$ each. Postpaid Guaranteed. Visa/MasterCard. Free information STURDIVANT LABORATORIES, Box 116RE, Bed ford, MI 49020

This is an expanded type ad. Notice the increased visibllity. Yes, you'll pay a premium for this kind of ad. But it will help your ad stand out from the rest. For ordering information, see top of Market Center listing.

APPLE SOFTWARE

ELECTRONICS made easy for Apple II users with Mentor, the proven theoretical circuit design package. Excellent learning aid too. \$174.95 KORSMEYER ELECTRONIC DESIGN, INC. 5701 Prescott, Lincoln, NE 68506, (402) 483-2238

ENJOY SATELLITE TV Save money with easy, guaranteed do-it-yourself antenna plans / kits Send $\$ 1.00$ for catalog or $\$ 8.95$ for 1984 "Consumer Guide to Satellit Television " GFI-D

GFI-D9
(11) Box 9108

Missoula, MT 59807

Radio Shaek Parts Place

Over 1000 Items in Stock! The Store for Builders and Fixers Since 1921.

- Wide Selection

Save Money, Install Your Own Phones
Easy-to-Understand "How-10" Manual
Itlustrated 150-page manual gives you step-by-step instructions for installing telephones, automatic dialers, answerers, ringers and wiring. Plus inio on single and multi-line business systems. 62-1390

Communications ICs

With Pin-Out And Data

		Cat. No	Each
XR 2206	AFSK	Generator	$276-2336$
	5.95		
XR 2211	AFSK Decoder	$276-2337$	5.95
ICL8038	Function Generator	$276-2334$	5.95
LMS65	Phase Locked Loop	$276-1720$	1.99
MC1488	Quad Line Driver	$276-2520$	1.79
MC1489	Quad Line Receiver	$276-2521$	1.79

Computer / Game Connectors

Type	Positions	Cat. No	Each
Solder Sub-D Male	9	$276-1537$	1.99
Solder Sub-D Female	9	$276-1538$	2.49
Hood for Above	9	$276-1539$	1.99
Solder Sub-D Male	15	$276-1527$	2.49
Solder Sub-D Female	15	$276-1528$	3.49
Hood for Above	15	$276-1529$	1.99
Solder Sub-D Male	25	$276-1547$	2.99
Solder Sub-D Female	25	$276-1548$	3.99
Hood for Above	25	$276-1549$	1.99
Solderless Sub-D Male	25	$276-1559$	4.99
Solderless Sub-D Fem.	25	$276-1565$	4.99
Printer Connector	36	$276-1534$	6.99
Cable Socket	34	$276-1525$	3.19
Disk Drive Connector	34	$276-1564$	495

Voice Synthesizer IC

SPO256-AL2. MOS LSI Uses a program stored in its built-in ROM to synthesize any English word. Requires low-cost support components and host computer. Easy to interface. Requires 3.12 MHz clock crystal (available through Radio Shack). 5 VDC, single supply. 28-pin DIP with detailed data. 276-1784

n First Quality

-No Waiting

4000-Series CMOS ICs

With Pin-Out and Specs

Type	Cat. No.	Each
4001	$276-2401$.99
4011	$276-2411$.99
4013	$276-2413$	1.19
4017	$276-2417$	1.49
4049	$276-2449$	1.19
4066	$276-2466$	1.19

TTL Digital ICs
With Pin-Out and Specs

Type	Cat. No.	Each
7400	$276-1801$	89
7404	276.1802	.99
7408	$276-1822$	1.29
7447	$276-1805$	1.59
7490	$276-1808$	1.09

Operational Amplifiers

Type		Cat. No.	Each
741	(Single)	$276-007$	89
MC1458	(Dual)	$276-038$.99
LM324	(Quad)	$276-1711$	1.29
TL082	(Dual)	$276-1715$	1.89
TL084	(Quad)	$276-1714$	2.99
LM3900	(Quad)	$276-1713$	1.39
LM339	(Quad)	$276-1712$	1.49
TLC271	(Single)	$276-1748$	1.59
TLC272	(Dual)	$276-1749$	2.19
TLC274	(Quad)	$276-1750$	2.99

Voltage Regulators

Type	Adjustable	Cat. No.	Each
LM723	0 to 40 VDC	$276-1740$	99
LM317T	1.2 to 37 VDC	$276-1778$	2.79
Type Fixed Output Cat. No. Each 7805 +5 VDC $276-1770$ 1.59 7812 +12 VDC $276-1771$ 1.59 7815 +15 VDC $276-1772$ 1.59 7905 -5 VDC $276-1773$ 1.59 7912 -12 VDC $276-1774$ 1.59			

1/4-Watt, 5\% Resistors
Pkg. of 5 39c

Ohms	Cat No.	Ohms	Cat No
10	271-1301		
100	-271.1311	10k	271.1335
150	271.1312	15k	271-1337
220	271-1313	22k	271.1339
270	271.9314	27k	271-1340
330	271-1315	33k	271.1341
470	271.1317	47k	271-1342
1k	271-1321	68k	271.1345
1.8 k	279.1324	100k	271.1347
22 k	271-1325	220k	271.1350
33 k	271.1328	470k	271.1354
47 k	271-1330	1 meg	271.1356
6.8k	271-1333	10 meg	271.1365

Replacement Transistors

With Pin-Out and Data

Type		Cat No	Each
2N1305	PNP	$276-2007$	1.19
MPS2222A	NPN	$276-2009$.79
PN2484	NPN	$276-2010$	89
MPS3904	NPN	$276-2016$	69
TIP31	NPN	$276-2017$	99
TIP3055	NPN	$276-2020$	1.59
MPS2907	PNP	$276-2023$	79
MJE34	PNP	$276-2027$	149
2N3053	NPN	$276-2030$	99
MPS3638	PNP	$276-2032$	79
TIP120	NPN	$276-2068$	1.29
2N3055	NPN	$276-2041$	1.99
MJ2955	PNP	$276-2043$	2.19
2N4401	NPN	$276-2058$	59
MPSA06	NPN	$276-2059$	59
MPSA13	NPN	$276-2060$	59
MPSA42	NPN	$276-2061$	69
2SC945	NPN	$276-2051$	79
2N3819	N-FET	$276-2035$	99
MPF102	N-FET	$276-2062$	99
IRF511	V.FET	$276-2072$	2.59
IRFD123	V-FET	$276-2073$	149
2SC1308	NPN	$276-2055$	7.95

Compact SPST

 Reed RelaysOnly 149 Each
Perfect for use when space is limited. Approx. $1 \times 5 / 15^{\prime \prime}$. Pins for PC mounting. Contacts rated amp at 125 VAC. Sensitive, low-current coils.
5VDC Coll. 275-232
.49

"Big meter" features at a "little meter" price! Fused, surge-absorber protected. Shunt protection of meter movement when shut. With leads, manual. Open: $71 / 4 \times 45 / 16 \times 11 / 4^{\prime \prime}$. Battery extra. 22-211
29.95

Regulated DC Supply

Breaker Protected

Converts 120 VAC to 12 VDC

Ideal test bench power source for autosound, CBs, ham rigs and more, Produces 13.8 VDC at 2.5 amps continuous load. 5 A surge. Rugged metal cabinet, $2^{1 / 2} \times 41 / 2 \times 6^{3 / 4} / 4^{\prime \prime}$ U.L. listed. 22-124 34.95

Compact 16-Range Digital Multimeter

Single-IC Design For Low Battery Drain and High Accuracy
49^{95}

PLANS AND KITS

PRINTED-circuit boards. Quick prototypes, production, design, reflow solder. Send print or description for quote to KIT CIRCUITS, Box 235 Clawson, MI 48017.
FREE catalog, 99 cent kits-audio, video, TV computer parts. ALLKIT, 434 West 4 h Street, West Islip, NY 11795.
HIFFI speaker kits, auto speaker systems and speaker components from the world's finest man ufacturers. For beginners and experts. Free liter ature. A \& S SPEAKERS, Box 7462R Denver CO 80207 (303) 399-8609
CABLE-TV converters: Jerrold, Hamlin, SB-3 AN-3, Mini-Code, Zenith \& more. UHF converters: Deluxe II sinewave kits $\$ 95.00$, gated pulse add/on $\$ 70.00$. Complete units $\$ 195.00$, with gated pulse $\$ 255.00$. (Quantity discounts.) Repairs of all converters \& cable boxes. Send S.A.S.E. (54 cents postage) or call for info. 1 (312) 637-4408. HIGGINS ELECTRONICS, 6014 W . Nelson, Chicago, IL 60634. No lllinois orders accepted.

PROJECTION TV ...Convert your TV to project 7 foot picture ...Results comparable to $\$ 2,500.00$ proj ectors...Total cost less than $\$ 30.00$...Plans and 8 lens $\$ 19.95$...llustrated information free. MAC ROCOMA-GE, Washington Crossing, PA 18977 Creditcard orders 24 hours, (215) 736-3979
CATALOG: Hobby, radio broadcasting, CB, lowfers Transmitters, linears, active antennas, converters, scramblers, bugging devices, more! PANAXIS, Box 130-F1, Paradise, CA 95969
DESCRAMBLER kits repaired for February's is sue $\$ 24.00$ parts \& labor, $\$ 2.50 \mathrm{~S} \& \mathrm{H}$, for details send $\$ 1.00$ (otfer void in Massachusetts.) 6-8 weeks returns, NORTH EASTON ELECTRONICS. PO Box 534 , North Easion. MA 02356.
DIGITAL Klock Kit plays 1-of-12 melodies each quarter hour. Displays time, date, and other features. Send $\$ 2.50$ for assembly plans and pricing to KERBER KLOCK KO. 36117 Hillcrest, Eastlake, OH 44094.

QUALITY printed-circuit boards. 15 cents sq-in Free drilling. Quantity discounts. INTERNATIONAL ENTERPRISE, 6452 Hazel Circle. Simi Valley, CA 93063
DESCRAMBLER plans. New design decodes gated sync suppressed signals-newest pilotless method. Circuit boards, most parts from Radio Shack. Detailed theory drawings, schematics, in structions $\$ 14.95$ plus $\$ 2.00$ shipping. DIRIJO CORP., Box 212. Lowell, NC 28098.
CHRISTMAS Sale-Improve TV reception! 25dB UHF preamp kit $\$ 22.95$. 24 dB VHF/UHF/FM assembled amplifier $\$ 29.95$. A must for stablizing descrambler units. FV-3, FV-4, FV-5, Super-Z kit repair $\$ 99.95$ plus $\$ 5.50$ shipping. HOWARD RE. SEARCH AND DESIGN, Box 204, Ellicott City, MD 21043, (301) 465-8116.

For Free Sound Info Call 1-800-233-3865 or write WERSI USA Dept. M 8 P.O. Box 5318 Lancaster, PA 17601

展Active
 THE ELECTRONIC COMPONENTS PEOPLE

QUALITY PARTS, NOT MAIL ORDER SURPLUS

Mail orders shipped within 48 hours STORES OPEN AT 8:00 am

CONTROL your world with your computer! Control up to 48 devices easily. Complete plans, schematics, programs \$9.95. B \& W ELECTRONICS, 3621 Lowden, Kalamazoo, MI 49008
FREE: 44 page parts calalog avallable from hOSFELT ELECTRONICS, 2610 Sunset BIvd. Steubenville, OH 43952

FREF KIT Catalog
 FUNCTION GENERATOR KIT $\$ 59.9$
 Phone 209-772-2076
 DAGE SCIENTIFTC INSIRUMENIS

APPLE II + compatible cards: Z80 \$39.95, disk APPLE II + compatible cards: Z80 $\$ 39.95$, disk
controller $\$ 35.95$, EPROM programmer $\$ 49.95$, RS-232C $\$ 42.95$, 16 K-RAM $\$ 34.95,5$ amp power supply $\$ 39.95$, R.F. modulator $\$ 5.95$. Great prices on I.B.M. items too! Free listing: 3 month warranty. KOMPUTECH, Box 597, Alexandria Bay, NY 13607.
DESCRAMBLE cable/over-the-air programs-kits \$97.95-plans \$9.95-details \$1.00-MINUTE, Box 531, Westchester Station, Bronx, NY 10461
TIMEX Sinclair Brother EP20 interface plans and software listing. $\$ 10.00$ U.S., Michigan res. 4% tax, $\$ 1.00$ S. \& H., check or M.O. OROSZ, 1604 Pagel, Lincoln Park, MI 48146.
GET more spatial realism with these kits. The KIR-1 at $\$ 97.00$ expands stereo sound to fill your room. The KVSP- 1 at $\$ 95.00$ creates full stereo from mono and patches your TV to your audio system. Plans alone $\$ 1.00$ each. Prices include UPS to 48 states Send check, Visa or M.C. to SOUND CONCEPTS Box 135, Brookline, MA 02146.
PROJECT your TV to wallsize image for \$19.95. "Guaranteed". Details VIDEOQUEST, Box 2312, Glenview, IL. 60025.
COMMODORE 64 numeric keypad for use with MLX and numeric data entry. Plans and software $\$ 4.00$ complete kit of parts $\$ 24.00$, ck or M.O. SYNTRONICS, 2324 Dennywood Dr. Nashville, TN 37214.

ELECTRONIC kits: Polyphonic digital synthesizer, digital sound sampler and accessories. Build a professional system at low cost. The VMS synthesizer system is compatible with most microcomputers, (Apple, Commodore, Sinclair, etc..) Complete software packages available for the Commodore 64. Imported from West Germany. Send $\$ 5.00$ for brochure and demo-cassette. Mail to: CEDOS ELECTRONICS, PO Box 101, Waukesha, WI 53187

SINE WAVE QUESTIONS?

TROUBLE shooting, alignment, antenna hookup. improvements manual, $\$ 6.00$. STV authorization control, $\$ 3.00$. Both, $\$ 8.00$. SIGNAL, Box 2512-R, Culver City, CA 90231

GRAPHIC EQUALIZERS, ETC.

NOISE eliminators, expanders, power meters others. Twelve. 24 bands/channel equalizers from $\$ 89.00$ Kit see R-E 5-6/78, 2/80, 3-4/81. Catalog SSS, 856R Lynnrose, Santa Rosa, CA 95404. (707) 546-3895.

CABLE TV

DEALERS wanted: Channel 2, 3, and 4 notch filters. Money back guarantee. Send $\$ 15.00$ for sample and quantity price list. Specify channel(s). LEE KURTZ, PO Box 291394, Davie, FL 33329.

CABLE CONVERTERS \& DESCRAMBLERS
 HAMLIN OAK JERROLD

SCIENTIFIC SYLVANIA ZENITH
ALL TYPES OF CABLE TV EOUIPMENT
MICROWAVE ANTENNAS G ACCESSORIES

ISO-1 ISOLATOR

3 isolated sockets; quality spike suppression: basic protection. . 881.95

ISO-3 SUPER-ISOLATOR
3 dual isolated sockets; supprensor: commercial protection.
8122.95

ISO-17 MAGNUM ISOLATOR
4 quad isolated sockets; suppressor, laboratory grade protection. . 8213.95

ESF\% Electronic Speclalists, Inc 171 S. Main, Natick, MA 01780 (617) 655-1532

Toll Free Order Desk 1-800-225-4878 MasterCard. VISA. American Express

CIRCLE 60 ON FREE INFORMATION CARD

TENMA

31⁄2 DIGIT LCD

 MULTIMETER- DC input impedance 10 M ohm - Diode and HFE Transistor tests Overioad protection Auto polarity $\mathbf{2}$ year limited Warranty

$$
43080
$$

TENMA

20MHZ DUAL TRACE OSCILLOSCOPE
Two High Quality 10:1 probes included. Backed by our 2 year limited warranty. For specifications see MCM Catalog \#8 page 108.
${ }^{422320} \$ 38995$

TENMA ${ }^{*}$ COMBINATION DMM/ CAPACITANCE METER
(With Transistor Gain Tester)

- User can easily read Voltage, AC and DC current, resistance up to 20 M ohms, capacitance up to 20 microfarad, and HFE on a clear $1 / 2 \mathrm{inch}, 31 / 2$ digit LCD display - 2 year limited Warranty
\#72.045
$\$ 74.95$ each

\#72.190

LOGIC PROBE WITH MEMORY
图 Multi-family compatibit ny-DTL TTL/HTL/CMOSIC - Detects puises as short as 50 nanoseconds

2-WAY SPLITTER

- Zinc diecast construction - Power passive - 5-900 MHZ
\#33-070

DELUXE CORDLESS CABLE CONVERTER BY JERROLD

- 58 channel capacity Approved by the F.C.C., UL and C.S.A.
Wineless hand controller switches channels, turns TV set on and off and even fine tunes the picture
Compatible with all cable systems
- Jerrold ${ }^{\circ}$ model \#LCC-58-3
\#32-380

BE SURE TO CALL FOR YOUR FREE 120 PAGE CATALOG! OVER 4,500 ITEMS!!

PUSH ON BALUN \#33-010
matching
transformer

F. 59 CONNECTOR

MATCHING TRANSFORMER
 -75-300 ohm matching transformer UHF/VHF/FM
\#:33-050

\#32-180 hour record/play. back machines

PANASONIC TYPE VIDEO HEAD

CHANNEL COMBINER

The 33-255 enables the user to combine a channel 3 output signal from an STV, MDS, VCR or video game device with an existing MATV system containing adjacent channels 2 and 4 .

> \#33.255
$\$ 11.25_{(1-9)}$

$\$ 985$

We Also Have.... a full line of. lest equipment computer accessories telephone accessories, speakers television pants. llybacks, yokes. switches, fuses, lamps. capacitors, resistors cartridges, styll. wire, CATV equipment and many more Over 4.500 Items AT THE LOWEST PRICES AROUND:

Terms: . $\$ 10$ minimum order $\$ 1.00$ charge lor
 orders under $\$ 10$

- $\$ 20$ minimum charge card order - Orders shipped UPS C.O.D - Most orders shipped within 24 hours Sales office open 8.30 am to 6.00 pm Saturdays 10.00 am to 3 pm . EST

Commodore ${ }^{8}$ Accessories
RS232 ADAPTER FOR
VIC-20 AND COMMODORE 64

The JE232CM allows connection of standard serial RS232 printers, modems, etc. to your VIC-20 and C-64. A 4-pole wilch allows the inversion of the 4 control lines. Com - Piugs Into User Port - Provides Slandard RS232 signal levels - Uses 6 signals (Transmit, Receive, Clear to Send Request to Send, Data Terminal Ready, Data Set Ready) JE232CM
\$39.95
VOICE SYNTHESIZER
FOR APPLE AND COMMODORE

- Over 250 word vocabulary - affires allow the formation ol more Than 500 words - Builn-th amplifier, speaker, votume control, and audio pack - Recreates a cieat, natural male voice - Plug-in user
teady with documentation and sample sotware. Case size: $1 V_{4}{ }^{*} \mathrm{~L} \times 31 / 4{ }^{-} W \times 1.3 / 8^{* H}$
 Computer Memory Expansion Kits IBM PC AND PC XT

PROMETHEUS

* HAPPY HOLIDAYS! 発

Intelligent 300/1200 Baud Telephone Modem with Real Time Clock/Calendar
The ProModem " is a Betl 212A (300/1200 baud) intelli gent stand-alone modem - Full leatured expandable modem - Standard features include Auto Answer and Auto Dial. Help Commands. Programmable Intellgent Draling. Touch Tone and Pulse Dialing $\&$ More - Haye command set compatible plus an additional extended command set . Shown w/alphanumeric display option

Description

RS-232 Stand Alone Unit. .

Apple II, IIt and He Internal Unit.
BM PC and Compatible Internal Uni? Macintosh Package. Includes PM1200, 20, Cable, \& ProCom Software
OPTIONS FOR ProModem 1200
(ProCom Communication Software
Please specity Operating System. Options Processor).
(Options Processor Memory - 16 K)
(Options Processor Mernory - 32 K).
(Options Processor Memory - 64 K).
(Aptions Processor Memo
(Alphanumeric Display). .
(Aphanumaric Display). ...
(Apple IIc to PM 1200 Cable)
Apple lic to PM1200 Cable).
KEYBOARDS

Mitsumi 54-Key Unencoded All-Purpose Keyboard
SPST keyswitches - 20 pin riobon cable connec-
tion - Low profile keys. Fealufes cursor contols.
 KB54.

76-Key Serial ASCII Keyboard - Simple serial intientace - SPST mechanical switch-
ing. Operates in upper and lower case. Five user unction key: F1. F5. Six Wnger edge card colnec
lion - Color (kevs): tan . Weight: 2 lbs - Data inc Apple Keyboard and Case $\$ 29.95$ for Apple II and IIt
for Apple II and II

Case: Accommodates Ke. A68 - Pop-up lid for
\qquad s. Size: $15 \mathrm{~m} \mathrm{~W} \times 18.0 \times 4.4 \mathrm{H}$

KB-EA1 Keyboard and Case (pictured above) $\$ 134.95$
 $\begin{array}{ll}\text { KB-A68 } & \text { 68-Key Apple Keyboard only. } \\ \text { EAEC-1 } & \text { Expanded Apple Enclosure C }\end{array}$

POWER SUPPLIES

TRANSACTION TECHNOLOGY, INC
5VDC@ 1 AMP Regulated Power Supply
Twout: $\$ 5 \mathrm{VDC}$ e 1.0 amp (al so $\pm 30 \mathrm{VDC}$ regulated). (mput $115 \mathrm{VAC}, 60 \mathrm{~Hz}$
PS51194
$\$ 14.95$

Power/Mate Corp. REGULATED POWER SUPPLY

- Inpul: $105-125 / 210-250 \mathrm{VAC}$ a $47-63 \mathrm{~Hz}$ - Line regulation: $=0.05 \%$ - Three moung surfaces Overvohage protection - Ul recognis CSA cerimio

New! POWER PAC INC. REGULATED POWER SUPPLY

PS2922.
$\$ 69.95$
4-CHANNEL SWITCHING POWER SUPPLY

 FCS-604A.
. $\$ 69.95$
Switching Power Supply for APPLE II, II \& \& $\| e^{\text {m/ }}$
Can drive four Hoppy disk drives and up to eight expansion cards Short circull and overload protection. Fits inside Apple computer Fully regulated +5 V @ $5 \mathrm{~A} .+12 \mathrm{~V}$ \& $1.5 \mathrm{~A} .-5 \mathrm{~V} @ .5 \mathrm{~A} .-12 \mathrm{~V}$ ® .5 A Direct plug-In power cord included. Size: $99^{\prime L} \times 3{ }^{2} \mathrm{~W} \times 2 \mathrm{~m}^{\prime} \mathrm{H}$ Weight: 2 lbs .
KHP4007 (SPS-109)
$\$ 59.95$
$\$ 10.00$ Minimum Order - U.S. Funds Only Callfornia Residents Add $61 / 2 \%$ Sales Tax
Shlppling - Add 5% plua $\$ 1.50$ insurance Spec Sheets - 30 e each
Send $\$ 1.00$ Postage for your
FREE 1985 JAMECO CATALOG FREE 1985 JAMECO CATALOG Prices Sublect to Change
MasterCard

VISA ${ }^{\circ}$ ELECTRONICS
1355 SHOREWAY ROAD. BELMONT. CA 94002 12/a4 PHONE ORDERS WELCOME - (415) 592-8097 Telex: 176043

Apple ${ }^{*}$ Accessories

51/4" APPLE ${ }^{11}$ Direct Plug-In Compatible Disk Drive and Controller Card The ADD. 514 Disk Drive Uses
Shugart SA390 mechanics -143 K lormatted storage $\cdot 35$ tracks - Compatible with Apple Controlcomes complete with connector and cable - just plug $8-9 / 16 \mathrm{D}$. Weight; $4 \% / \mathrm{lbs}$. ADD-514 (Disk Drive). .
$\$ 169.95$ ACC-1 (Controller Card) $\$ 49.95$
More Apple Compatible Add-Ons...
APF-1 (Cooling Fan). $\$ 39.95$

KHP4007 (Switching Power Supply). $\$ 59.95$
JE614 (Numenc/Aux, Keypad for hel. $\$ 59.95$
KB-A68 (Keybotra wheypad tor $11811+1{ }^{2}$.

DISK DRIVES

$\begin{aligned} & \text { RFD480 } \\ & \text { JAS51-2 } \end{aligned}$	(Remex 54/4 full-ht.). \$129.95 (Panasonic 5\%" half-ht). \$139.95
TM100-2	(Tandon 5\%" full-ht.). \$159.95
FD55B	(Teac 5\%" half-ht.). \$ $\$ 149.95$
SA455	(Shugart 54/ "half-ht.). \$159.95
FDO100-8	(Siemens 8* lull-ht.). \$139.95
PCK-5	(514." Power Cable Kit). \$2.95
PCK-8	(8" Power Cable Kit). $\mathbf{\$ 3 . 9 5}$

UV-EPROM Eraser

JE664 EPROM PROGRAMMER 8K to 64K EPROMS - $24 \& 28$ Pin Packages Compietely Sell Contrimed - Requires ho haditioal Systems bor Owrition

 54108

 JE664 A

$$
\text { Anembieo } A \text { Iosered }
$$

EPROM PTogrammer w/JE665 Option JE664-ARS.
$\$ 1195.00$

FIWEST min SOllisi

SN 60/40 Rosin Core (RA)
 Soldercrafic call Tou fibe 800-645-4808

INVENTORS!

IDEAS have value! Ever think of an idea, forget it, and see it later on the market? Many people don't forget, act quickly, and are rewarded by American incustry. Write down your idea! We offer free disclosure registration and initial consultation regarding your idea's potential value. Call or write without delay for your free information package. AMERICAN INVENTORS CORPORATION, 82 Broad Street, Dept. RE, Westfield, MA 01086, (413) 568-3753. A fee based marketing company. Offices coast 10 coast.

NEWSLETTERS

ELECTRONIC SYSTEMS NEWSLETTER is a monthly publication written especially for the electronics hobbyist/experimenter. Fascinating projects, new ideas, sources. Free detalls. AF PUBLISHING, Dept. R2, PO Box 524 , So. Hadley, MA 01075.

BUSINESS OPPORTUNITIES

US $\$ 8.00$ including disk thousand name brand programs for Apple IBM-PC details RELIANT, PO Box 33610, Sheungwan, Hong Kong
MECHANICALLY inclined individuals desiring ownership of small electronics manufacturing busi ness-without investment. Write: BUSINESSES 92-R, Brighton 11th, Brooklyn, NY 11235.
PROJECTION TV ...Make $\$ \$ \$$'s assembling projectors ...Easy...Results comparable to $\$ 2,500.00$ projectors...Your total cost less than $\$ 20.00$ Plans, $8^{\prime \prime}$ lens \& dealer's information $\$ 17.50$... Illustrated information free... MACROCOMA GEX Washington Crossing, PA 18977. Creditcard orders 24 hours (215) 736-2880.
YOUR own radio station! AM, FM, cable. Home operation possible. BROADCASTING, Box 130-F1. Paradise, CA 95969
BURGLAR alarms--booming business. Get in now. Starting information \$2.00. DYNAMIC SECURITY, PO Box 1456-T, Grand Papids, MI 49501. PICTURE tube rebuilding equipment. Buy/sell, new used machinery. Full training. CHICAGO TELEVISION 633 North Semoran Blvd., Orlando, FL 32807, (305) 281-1260

BIG
pROFITS

DO-IT-YOURSELF TV REPAIR

NEW!...Repair any TV...Easy. Anyone can do it. Write, RESEARCH, Rt. 3, Box 601 BR, Colville, WA 99114.

EDUCATION \& INSTRUCTION

FCC General Radiotelephone License correspon dence course, $\$ 89.50$ for 60 individual lessons Payment plan, results guaranteed! Details free AMERICAN TECHNICÁL INSTITUTE, Box 201 Cedar Mountain, NC 28718.

ATTENTION
 ELEGTRONLO TECHMHOLANS Highly EHeclive Home Study BSEE Degree Progrom for Experienced Electronic Technicions Our Now Advanced Placement Program grants Credit for previous Schooling \& Protessional FREE DESCRIPTIVE LIIERAIUREI
 Cook's Institute of Electronics Engineering P.O. BOX 20345, JACKSON. MS 39209

WANTED

OLD tubes: 2A3, 10's, 45's, 50's, 80's, 81's, 211, 242 845, VT-52, VT-62. WESTERN ELECTRIC EQUIPMENTS: (818) 576-2642, David POB 832, M-Park CA 91754

OLD lubes, unused and boxed. Send your slocklist TSUTOM YOSHIHARA, C1-105. Deguchicho-34 Suita, Osaka 564, Japan.

INVENTIONS, ideas, new products wanted! Indus try presentation/national exposition. Call free (1-800) 528-6050. Arizona, (1-800) 352-0458. X831

REEL-TO-REEL TAPES

AMPEX professional series open reel tape, 1800-or 2400 -feet on 7 -inch reels, used once. Case of 40 $\$ 45.00 .101 / 2 \times 3600$ feet and cassettes available MasterCard Visa. VALTECH ELECTRONICS, Box 6-RE, Richboro, PA 18954 (215) 322-4866

MICROWAVE TV ANTENNA SYSTEMS

LIFETIME LIMITED WARRANTY PARTS \& LABOR

ALUMINUM EQUIPMENT CABINET

$9^{\circ} \times 12^{\circ} \times 3-1 / 2^{\circ}$ ORIG COST $\$ 40$. NEW HEAVY gauge aluminum (1/8" Sidewalls) with attractive black finish, great for all sorts of test and COMPUTER EQUIP. FRONT PANEL IS PUNCHED POR COUNTER/DVM USE (EASILY COVERED), REAR PANEL HAS OPENINGS FOR LINE PLUG, SWITCH, ETC. $\begin{array}{lllll}x-8000 & \text { WT } 5 & \text { LB } & \$ 9.95 & 10 / \$ 89 \\ 100 / \$ 7\end{array}$

LED VU METER

M-4275
WT O.1 LB

NATIONAL NSM 3916-9 INCLUDES A 10 ELEMENT LED LINEAR ARRAY WITH AN LM3916 DECODER/DRIVER. THRESHHOLDS ARE SET AT COMMON VU POINTS the first 7 Leds are green, THE LAST 3 ARE RED. $2^{\prime \prime} x$ 0.85^{n} OVERALL, OPERATES FROM 3 TO 24 VDC, 18 accuracy, Data - . 504 10/\$34 100/:300.

7-12 VOC LED CLOCK

NATIONAL MA-6008 IS A COMPLETE DC POWERED CLOCK WITH KEYBOARD TIME/DATE ENTRY, TIME BASE CONSISTING OF AN MM5 369 AND 3.579 MHz CRYSTAL, ALL in A $2-3 / 8 \times$ 3-1/4 MODULE. BRAND NEW, 1001 FUNCTIONAL. DATA-. $25 \ddagger$ $10 / \$ 25 \quad 100 / * 200$.

SOUND EFFECTS

PC BOARD WEEPA!

MM/ HAS FLASHING LIGHTS, HEAVY DUTY 2-1/4" SPEAKER, RUNS ON 9-12 VDCl MAKES SIREN \& EXPLOSION SOUNDS, BUT YOU CAN RE-PROGRAM THE SN76487 TO MAKE LOTS OF OTHERS!
$\mathrm{x}-1560$ WT 0.2 LB
$\$ \mid 95 \quad 10 / \$ 1750$
YOU SAY YOU WANT A FREE FLYER AND YOU WANT IT NOW? UST SEND US ADDRESSED STAMPED BUSINESS SIZE ENVELOPE

IANONDEACK
Ehectronics company PO BOZ 12095
SARASOTA, FL. 33578
Phone Ordere (813) 953-2829
continental us add $\$ 1.80$ for the first pound and 504 for each additional pound. Canada add $\$ 3.50$ first ib and $\$ 1$ for each additional. plorida add 5 sales tax.

MIL OADET $\$ 7$ MIMIMOM COD, UPS CASE CILI $\$ 15$ MII.

ZIF SOCKETS

16 malf	5.90
24 min 219	190
28 pin $21 F$	8.80

ZIF = TEXTOOL (Zero Ineertion FOFCe)

DISKETTES

 51/4"
- athana

ss/sD...... 15.90
ss/DD...... 16.90
DS/DD...... 22.90
SOFT SECTOR with HUB RING
BULK 51/4" DISKETTES (no label)
SS/DD ... 10 for 14.90 100 up........... 139.00
(Lifetime Warranty)

The FLIP SORT ${ }^{\text {w }}$

The new Flip Sort" has all the fine qualities of the original with some added benefits: a new design and 50% greater capacity. Holds 75 diskettes and the price is now lower than ever- \$16.95

The Flip Sort PLUS ${ }^{\text {T }}$

The new Flip Sort PLUS" adds new dimensions to storage. Its smoked acrylic elegance holds over 100 diskettes with all the features you expect from the Flip Sort Family -
\$24.95

IBM ACCESSORIES

MEMORY EXPANSION KIT

4164 150ns 9 for $\$ 45.00$

MULTIFUNCTION CARD

- 64K to 384K Ram
- Pinillal Port
- Surtal Part
- Clock Calandar
- Sofiwan includad - 1-Yaar Warmaty
\$249.95

MEMORY CARD

- Expandatia to $512 K$
- Fully compatille with 18 M software
- Fully compatibis w/IBM diaprostic utllitles
- Sarial Port Avallablo
- 1-Yoar Warnaty
$\$ 199.95$
-VUTEK—
Color - Parallel - Serlal Card

- Full bit-mapped Color Gmphics
- Priatar Port (LPT1, LPT2. (PT3)
- Siral Port (Coml, Com2)
- IBM PC, XT and Portalie compatibla
- Full soltuan compatilility
- Compatiblo with Lotus 1-2-3, Multi-Pian ant Flight Simulator
- Full 2-Yaar Warnaty Pirts and Labor
$\$ 299.00$

DISK DRIVES

Tandon TMIO0-2 DS/OD 199.00
Teac FD-558 DS/DO 159.00
KEyboard extension cable $\$ 19.95$

COOLING FAN 38.95

APPLE COMPATIBLE POWER SUPPLY $74 .{ }^{95}$

- Powers Apple type systems
- +5V @ 5A +12V@3A
$-5 V @ .5 A-12 V @ .5 A$
- Includes Instructions

16K RAM Card - Apple II+

- 2-Year Warranty

Assembled \& Tested 39.95
APPLE COMPATIBLE DISK DRIVE

199.0

- Shugar mechanism, made in U.S.A.
- Directly replaces Apple Disk II
- Fully compatible with Apple Controller or other Apple compatible controllers. - One Year Warranty

micromax

VIEWMAX-80 14995

- 80 Col. card for Apple II+
- Video Soft Switch
- Inverse Video
- 2 Year Warranty

VIEWMAX-80e 12995

- 80 Col. card for Apple IIE
- 64 K RAM Expandable to 128 K

64K RAM Upgrade $\quad 40.00$

Reg. Power Supply Model 4A/PS (99/4)

3 DC Outputs:
12V@.4A, +5V@1.1A
-5V @.2A Highly Filtered
6.95

TERMS: Minimum order $\$ 10.00$
For shipping and handling. include
\$2.50 'or UPS ground or \$3.50 for UPS Eive (air). For each additional air pound. add \$1 for UPS Blue shipping and handling. Californa residents must include 6\% sales tax: Bay area and LA residents include $61 / 2 \%$ sales tax. Prices are subject to change without notice. We are not responsible for typographical errors. We reserve the right to limit quantities and to substifute manufacturers. All merchandise subject to prior sale.
CAll in VOLUME Quotes HOURS: Mon - Fri. 7:30 to 5:00

Saturdays 10:00 to 3:00 VISIT OUR RETAIL STORE

2100 De La Cruz Blvd. Santa Clara, CA 95050 (408) 988-0697 ALL MERCHANDISE IS 100\% GUARANTEED Telex: 756440 Dokay

PARTILL LISTING OULY- PLEASE CALL OA WRIIE FOR FREE GATALOG.

FTJDR Microdevices
 1224 S. Bascom Avenue, San Jose, CA 95128 800-538-5000 • 800-662-6279 (CA) (408) $995-5430$ - Telex 171-110 FAX (408) 275-8415

PABTILL LISTING OULY- HLEASE GILL OR WRIIE FOR FREE GATALOG.

CAPACITORS ELECTROLYTIC
 \author{ RADIAL

 AXIAL}$\begin{array}{lllll}.47 u f & 50 v .14 & 10 & 50 v & .16 \\ 10 & 50 v .15 & 22 & 16 v & .14 \\ 47 & 35 v .18 & 47 & 50 v & .20 \\ 100 & 16 v .18 & 100 & 15 v & 20\end{array}$ $\begin{array}{lllll}100 & 16 v .18 & 100 & 15 v & .20 \\ 220 & 35 v .20 & 150 & 25 v & .25\end{array}$
$50 v$ MONOLITHIC

$.01 u f$.14	.1
.047	.15	.47
	$50 v$	DISC
$10 p f$.05	470
22	.05	560
25	.05	680
27	.05	820
33	.05	$.001 u f$
47	.05	.0015
56	.05	.0022
68	.05	.005
82	.05	.01
100	.05	.02
220	.05	.05
330	05	.1

SPECIALS ON BYPASS CAPS

. 01 uf disc	$50 v$	$100 / 6.00$
$.1 u f$ disc	$12 v$	$100 / 8.00$
.01 uf mono	$50 v$	$100 / 12.00$
.1 uf mono	$50 v$	$100 / 15.00$

ACCESORIES \& PERIPHERALS FOR IBM
MAXIMIZER Memory Multifunction
HAYES SMARTMODEM 1200 B
HAYES SMARTMODEM 12008
PC PEACO:K C slor Display Adaptor 130W POWER S JPPLY
PROTOTYPE CARD
PROTOTVPE CARD With Docoding FOR APPLE
JDR 16K RAM CARD
BAL-500 $1 / 2 \mathrm{Ht}$. Disk Drive. Teac Mechanism MITAC AD-1 Ful Height, Shugart Mochanisn DISK CON-ROLLER CARD
OMNIGRAPH Parallel Graphics Card
VIEWMAX 80 80 Coilumn For Appla tiv
VIEWMAX -80e 30 Column For Apple lle
THUNDERCLOCK Official PRODOS Clock KRAFT JOVSTICK
6OW POWER SUIPPLY

MISCELLANEOUS

ZENITH ZVM-123 15 MHz Green Monit
NEC JB12C $1 \mathrm{M}=0 \mathrm{MHz}$ Green Monitor
BMC BM-AU91E1U Comp. 13° Color Monizor
BMC BX-80 PRIVTER
NASHUA DISKETTES SS/SD Box of 10
VERBATIM DATALIFE DISKETTES DS/DD
DISKETTE FILE Holds 70 Disherres

IDC CONNECTORS

DESCRIPTION
 AIBBON HEADER SOCKET

ORDER BY \qquad
TDSAx
IDExx 1.86
2.36
2.43

CONTACTS

RIB8ON EDGE
TRUC

D-SUBMINIATURE

DESCRIPTION		ORDER BY	CONTACTS			
			9	15	25	37
SOLDER CUPS	MALE	D8xxP	2.08	2.69	250	4.80
	FEMALE	D8xxS	2.66	3.63	325	7.11
$\begin{aligned} & \text { RT ANGLE } \\ & \text { PC SOLDER } \end{aligned}$	MALE	D8xxPR	1.65	2.80	300	4.83
	FEMALE	D日xxSR	2.18	3. 63	4.42	6.19
	MALE	IDExxP	3.37	4.-5	6.23	9.22
	FEMALE	108xxS	3.69	5.13	6.84	10.08
HOODS	BLACK	H000-8		1.60	1.25	
	GREY	H000	1.60	1.60	1.25	2.95

259.95
419.95
239.95
175.00
27.95
29.95
39.95
169.95
179.95
49.95
79.95
159.95
129.95
129.95
39.95
49.95
105.00

169.00

279.00
249.00
19.95
34.95
16.99

IC SOCKETS/DIP CONNECTORS

LEADS	LOW PROFILE SOLDERTAIL		3 LEVEL WIREWRAP		$\begin{aligned} & \text { TEXYOOL } \\ & \text { ZERO INSERTION } \\ & \text { ZIFXX } \end{aligned}$	COMPONENTCARRIESICC $x x$	$\begin{aligned} & \text { IDC PLUG } \\ & \text { RIBBON CABLE } \\ & \text { IDP×× } \end{aligned}$
			1.99pcs.	1008up			
8	1.15	11	. 59	49 52	5.95	$\frac{65}{75}$	
$\frac{16}{16}$	17	13	69	58	5.95	85	1.65
18	20	18	99	90		1.00	
20	29	. 27	1.09	. 98	-	1.25	
22	30	27	1.39			1.25	
24	. 30	27	1.49	1.35	7.95	1.35	2.50
28	40	. 32	1.69	1.98	8.85	1.50	
40	49	39	1.99	1.80	10.95	2.10	4.15
64							

he "orderby" part number lisfed. EXMAMPLE: A 20 pir ribbon edge card would be IDE 20 .

FOR ORDERING INSTRUCTIONS. SEEIOC CON V. ABOVE

RIBBON CABLE
CONTACTS SINGLE COLOR \mid COLOR CODED

CONTACTS	1	10°	1°	10°
25	.75	6.60	1.32	11.80
34	98	8.80	1.65	1.80

36 PIN CENTRONICS
CEN36 MALE SOLDER CU
IDCEN 36 MALE RIBBON CABLE
IDCEN 36 F FEMALE RIBBON CABLE

VOLTAGE
REGULATORS

\section*{7915T} $\begin{array}{lrrr}7805 \mathrm{~J} & .75 & 7915 \mathrm{~T} & .85 \\ 78 \mathrm{mO5K} & 35 & 7805 \mathrm{~K} & .39\end{array}$ $\begin{array}{llll}\text { 7EMO5C } & .35 & 7805 K & 1.39 \\ \text { 7E08T } & .75 & 78 \text { H05K } & 9.95\end{array}$ 7E12T $\quad .75$ 7812K 1.39 $\begin{array}{llll}7815 T & .75 & 7912 K & 1.49\end{array}$ | $7824 T$ | .85 | $78 L 05$ | .69 | 4017 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llll}\text { 7セ05T } & .85 & 79 \mathrm{LO} 05 & .79 \\ 7 \in 12 T & .85 & 79 \mathrm{~L} 12 & .79\end{array}$ C. T-TO-220, K=TO-3. L=TO. 92

9000

9334 9368

 9602INTERSIL
ICL7107 12.95 $\begin{array}{ll}I C L 7660 & 2.95\end{array}$ DIP SWITCHES 4 position 6 position 7 position 8 position

2.50
3.95
1.50
2.95
2.95
3.95
$H E S$
.85
.90
.95
.95

bIRGAIM HUNTERS CORMER
 2 LEVEL WIAs Wphy sOCKETS

51/4" DISK DRIVES
TANDON TM100-2 DS/DD 199.00 SHLGART SA400L SS IDD 199.95 MPI B52 DS/DD 139.95 TEAC FD55B $1 / 2 \mathrm{Ht}$. DS $/$ DD 159.00 TEA: FD55F $1 / 2 \mathrm{Ht}$. DS/Quad 200.00 8' DISK DRIVES
SIEMENS FD200-8 DS/DD 195.00
SIEMENS FD100-8 SS/DD 149.95

LIGHT EMITTING DIODES JUMBO
 DISPLAYS

RED $\quad 1.99$ 100-up
MAN-72 CA. $3^{\prime \prime \prime} .99$
RED $\quad .90 .09$
MAN-74 CC. 3", 99

TRANSISTORS

2N2222	.25	PN2907
PN2222	.10	$2 N 3055$
2N29C5	.50	$2 N 3904$
2N29C7	.25	2N3906

DISCRETE

$1 N 751$
1N75C
1 N41<8
$1 N 4148$
$1 N 40 C 4$
KBPOZ
KBPO2
4 N 33
$5.1 v z e n e r$
12.0vzener
(1N914) switching 400PIV rectifier 200PIV 1.5a bridge
OPTO-ISOLATOR
$25 / 1.00$
$25 / 1.00$
$10 / 1.00$

$\mathbf{E C G}^{\circledR} / \mathbf{C}$	
HORIZONTAL OUTPUT	
3/5K3306	
528/sk5906......... 11.75	
528/Ek53929	
558/5k3905	2SC1308K 2.45
557/5k3904.......... 14.95	2SD1341P 2.25
POPULAR DIODES	AU
SPECIAL OF THE MONTH152...25¢ MIN. 10 Pc.	
FOR A COMPLETE LISTCALL OR WRITE -C.O.D. Orders Welcome (MIn. Order \$25) DIGITRON ELECTRONICS 110 HILLSIDE AVENUE, SPRINGFIELD, NEW JERSEY 07081 Toll Froe 800-5284028, In NJ 201-370-2078 Telex 138441 PRICES SUBJECT TO CHANGE WITHOUT NOTICE. OFFER GOOD WHILE SUPPLY LASTS. Digitron Electronke IS Is not assoclated in any wav wth Pnilios ECC.	

CIRCLE 57 ON FREE INFORMATION CARD

Tens: MICRO-MART accepts VIsa MC and ielephone COD's. Minimum order $\$ 10.00$. ShippingU.S. orders. $\$ 200$. Canada and other countries $\$ 3.50$ (inctudes ins.). Shipping rate adiusted where applicable. NJ residents add 8% sales tax
WICRO-IMRT - 50S CEITMAL AVE., WESTFIELD, Md 07000 - [201] 854-6038

DISK DRIVE SPECIAL: Shugart \#SA 200 5 $1 / 4$ In. 2/3 Height. New In Box. 40 Track, SS-DD. Compare At Up To $\$ 159$ Ea. Our Price $\$ 69.95$ or Two For $\$ 125$. Limited Oty.

THE NEW ZRT-80

CRT TERMINAL BOARD!

A LOW COST Z-80 BASED SINGLE BOARD THAT ONLY NEEDS AN ASCII KEYBOARD, POWER SUPPLY, AND VIDEO MONITOR TO MAKE A COMPLETE CRT TERMINAL. USE AS A COMPUTER CONSOLE OR WITH A MODEM FOR USE WITH ANY OF THE PHONE-LINE COMPUTER SERVICES

FEATURES:

- Uses 280A and 6345 CRT

Controller for powertul video
capabtilties.

- RS232 at 16 BAUD Rates from 75 to 19,200 .
- Opitonal formats fromal (60 Hz) Optional formats from 24×80 $(50 \mathrm{~Hz})$ to 64 llnes $x 96$ characters
$(60 \mathrm{~Hz}$. Higher d
3 edditlonal 2K 885116 RAMS 3 sdditionsl $2 K$ K 8.6116 RAMS. Gen. and USART combo IC - 3 Terminal Emulation Modes whi include the LSI-ADM3A. the Heath $\mathrm{H}-19$, and the Bethive.
Composile or Split Video.
Any polarity of video or sync.
- Inverse Video Capability.
- Small Size: 6.5 y 9 nnches.
- Upper \& lower case with descenders.
- 7 n 9 Character Motrin.
- Requires Par. ASClI keyboard.

WITH 8 IN.
SOURCE DISK!
(CP/M COMPATIBLE
s9995
(COMPLETE KIT
$2 K$ YIDEO RAM)
Digital Research Computers
P.O. BOX 461565R • GARLAND, TEXAS 75046 • (214) 225-2309

Call or write for a Iree catalog on 2-80 or 6809 Single Board Computers, SS-50 Boards, and other S-100 products.

TERMS: Add $\$ 3.00$ poatage. We pay belence. Orders under $\$ 15$ add $75 ¢$ handMng, No
C.O.D. We eccept Visa and MastorCard. Teres Res. add $5-1 / 8 \%$ Tar. Foreign orders C.O.D. We accept Vias and MasterCard. Terse Res. add 5-1/8\% Tan. Foreign orders
(encepl Canada) add 20% \& H . Orders over $\$ 50$ add 85 for insurance.

ELECTRONIC PARTS - KITS - ACCESSORIES RETALLWHOLESALESURPLUS HOBBIESTS = EXPERIMENTERS * TECHNICIANS * REPAIRMEN	
CAP	CURRENT SPECIALSEMICONDUCTORS:
RESISTORS - Standard values	
IC'S - Popular linear \& CMOS	SEMICONDUCTORS: 1330 Generic (No mrking.). 80 ea. LM386N 50 ea. or $\$ 35.00 / 100$
POTS - PC mt., pannel mt.,	
SWITCHES - Mini-toggle (AMF	NE564 2.00 ea.
SPDT 1.00 ea	565 Generic
DPDT 1.50 ea	1349 Generic 1.00 ea.
$\begin{array}{r} \text { REGULATORS - } 7851(8.5 \mathrm{~V}), 7812 \\ 7815,7818 \ldots . \end{array}$	7815(House \#). 50 ea.or \$35.00100 CAPACITORS:
CHOXES - $15 \mu \mathrm{~h}, 33 \mu \mathrm{~h}, 100 \mu \mathrm{~h}, 1 \mathrm{mh}$. . . . 50	470 μ f Rad. Lytic .50 ea. or \$10\%100
TOOOR MATCHING	$5-50$ pf Trimcap . 65 ea. or $\$ 50 / 100$
TRANSFORMER 2.00 ea.	RESISTORS/POTS:
A-B SWITCH . 3.00	Resistor assortments (mixed values) V/ Watt $\$ 2.00 / 100$
UHF AMTENNA	
4 BAY BOW-TIE	1 Watt \$10.00/100
EST-BUY FOR UNDER \$50.00!	25 K CRL Vert. PC Trimpots . 30 ea .
$\$ 14.95$ ea./3 FOR $\$ 40.00$ (Mounting Hardware Inctuded)	MUCH MORE!!! SEND FOR FREE FIYER
UHFNHF/FM ANTENMA AMPLIFIER(With FM Trap)	
HIGH GAIN!	X-TRA SPECIALS
(25 DB AVERAGE)	7805 Regulator 50 ea.
** A GREAT BuY!	. 01 ¢f Mono Caps (50V) \$12.001100
\$22.95 ea./3 FOR \$60.00	Indoor Matching Transformer . 50 ea.
SPEAKERS:	
$3^{3 \prime} \times 5^{\prime \prime}(80 \mathrm{hm}, 2 \mathrm{~W}) \quad \$ 1.50$ ea. $/ 3$ for $\$ 4.00$	AMY SIZE OROEA PUTS YOU ON OUR MAILING LIST. YOU WILL RECEIVE OUR UPDATEO CATALOGS FREE OF Charge or obligation.
$3^{\prime \prime}$ (Round)	
TRANSFORMERS: 120/20 vac \qquad $\$ 4.00$ ea $/ 3$ for $\$ 10.00$	
120/12 VDC Wallpack $\quad \$ 4.00$ ea./3 for $\$ 10.00$	
STEREO AMP. HOBBY KTT	TERMS Check, Money Order or COD Minimum Order $\$ 10.00$ Add $\$ 2.50$ S $8 \mathrm{H} / \mathrm{S4.00} \mathrm{COD}$ IL. add 7% Sales Tax (Allow 2-3 wks. for personal checks) Phone 10 AM - 5 PM Chicago Time
MUCH, MUCH, MORE!!!!	
DEAL ELECTRONICS	
$3462 \text { N. PULASKI }$	
60641	

\$5,000,000 SALE CELEBRATION
SAVE NOW AT NEW LOW PRICES! 9th Year Anniversary SALE!

supen saver IBM PC	M-TECH SPECMLS TMS99532NL
${ }^{3} 124^{\text {¢5 }}$	${ }^{3} 14^{95}$

IBM PC HAROWARE

DISK DRIVES

DESIGNERS NOTEBOOK

continued from page 90
You can build an optocoupler using a Light Dependant Resistor (LDR), a jumbo red LED, and some heatshrink tubing. To make the optocoupler, simply place the LED and LDR inside the tubing so that the light from the LED can strike the lens of the LDR. Don't forget to allow the leads to extend beyond the tubing.

You can then use your optocoupler as you would any other pre-packaged type. Using that arrangement helps keep the activecomponent count to a minimum. The slow rise and fall times of the LDR actually work out for the best because it gives the action of the limiter a much more natural sound.
As I said, the general approach is more important to understand than the particular example. Figure 2 is an actual preamp using the familiar 741 as a non-inverting amplifier. As you see, the phototran-
sistor (contained in the optocoupler) is connected in parallel with the feedback resistor. When an excessively high signal is pumped into the circuit, the amplifier draws more power to handle the increased input.

When the threshold voltage of the transistor is reached, it turns on and the LED inside the optocoupler lights causing the phototransistor to turn on and lower the gain of the amplifier.

You could just as easily have connected the phototransistor or LDR from the input leg of the preamp to ground. However connecting it in such a manner requires a bit of recalculation of the resistor values in the circuit. Since I don't know what the change in voltage would be across your choice of optoisolator, you'll have to work the values out yourself.

Remember, because our approach to the problem of audio limiting is a general one, you'll have to tailor it to fit the specific needs of your circuit.

In Figure 3, I've put the limiter to work in an amplifier made from a 4049 CMOS hex inverter. Since the gain of the circuit is only a function of R2/R1, connecting the phototransistor in parallel with R2 will reduce amplifier gain whenever signal levels get excessive. The trigger for the circuit comes from the amp's current draw, rather than from the audio itself. That means that the gain is decreased before the amp overloads.

Our approach to limiting has several advantages over more conventional ones. It's has a built-in failsafe because if anything happens to the LED, the phototransistor will not conduct (or the LDR will assume it's in-dark resis-tance-usually well over 1 megohm).

Since what we've been talking about here is an idea rather than any one particular circuit, drop me a line and let me know how you were able to use this method of signal limiting. More than likely you'll find a use for it that never even occurred to me.

R-E

> ACTIVE RECEIVING ANTENNA Gives excellent reception, 50 KHz to 30 MHz .

Now MFJ-1024 Actlve Receiving Antenna mounts outdoors away from electrical noise for maximum signal.
Gives excellant reception of 50 KHz to 30 MHz signals. Equivalent to wire hundreds of feet long. Use any SWL, MW, BCB, VLF or Ham receiver High dynamic range RF amplifier. 54 in. whip. 50 foot coax. 20 dB attenuator prevents receiver overload. Switch between two receivers. Select auxiliary or active antenna. Gain control. "ON" LED. Remote unit, $3 \times 2 \times 4$ in. Control, $6 \times 2 \times 5$ in. 12 VDC or 110 VAC with optional adapter, MFJ-1312, \$9.95
512995
Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping) One year unconditional guaranteo.
Order today. Call TOLL FREE 800-647-1800. Charge VISA, MC. Or mail check, money order Write for free catalog. Over 100 products.
CALL TOLL FREE . . 800-647-1800
Call 601-323-5869 in Miss., outside continental USA, tech/order/repair info. TELEX 53-4590.

ENTERPRISES, INCORPORATED
Box 494, Mlsslsalppi State, MS 39762
CIRCLE 105 ON FREE INFORMATION CARD

SATELLITE TELEVISION

UNSCRAMBLE secret satellite channels watch all the good stuft. Plans \$19.95-kits \$169.95-complete units $\$ 395.00$-Details and order forms $\$ 3.00$. SCRAMCO, 8688 Royal Drive, Noblesville, IN 46060.

SATELLITE-TV receiver breakthrough! Build your own system and save! Instruction manuals, schematics, circuit boards! Send stamped envelope: XANDI, Box 25647, Dept. 21G, Tempe, AZ 85282.

[^3]SATELLITE systems and accessories. Dishes, receivers. LNA's, actuators. Top brands, low prices $\$ 5.00$ catalog. B \& T ELECTRONICS, PO Box 3156. Grand Rapids, MI 49501.

STOP DREAMING START BUILDING

HANDY MAKES IT EASY!

Build anything from computers to LED flashers ... any project you want the fast, easy, fun way. Use HANDY solderless breadboards to build, test, modify and expand your ideas.

SATISFACTION GUARANTEED OR YOUR MONEY BACK!

JUST LOOK AT THESE SOCKET FEATURES...

- Full contact labeling - simplifies component layouts
- New durable clip design assures reliable, low resistance, corrosion-free interconnections
- High temp plastic - no warping or melting...ever!
- Self-adhesive backing - mounts anywhere
- Big 9 14-pin IC capacity per socket
- Expands horizontally and vertically

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number		Page	268	New Deal Electronics	. 110
255	A.I.S. Satellite	93	-	New-Tone Electronics.	15
108	AMC Sales	88	270	OK Industries	21
76	A P Products	. . 11	252	Omnitron	28
-	Active Electronics	99	89	PTS	32
-	Advance Electronics	... 7	90	Paia	88
106	Advanced Computer I'roducts	. 111		Phoenix Electronics	22
107	All Electronics	. 95	69	Phoenix Systems	92
72	Amazing Devices	112	26.4	Pocket Technology	CV3
84	Appliance Service	. 92	125	Power Plus	93
77	BKK Precision	. 38	251	Print Proalucts International	25
98	Heckman Instruments	4. 5	119	Professional Video	100
81	CEI	. 80	-	Qualitone Industries	34
-	CIE	. 52	269	RAG Electronics	12. 13
56	CIU	CD6	121	RF Electronics	100
-	Command Productions	90	78	Kadio Shack	98
79	Communications Electronics	2	70	Ramsey	105
55	Contact East	. 93	261	Regency	
-	Coop's Satellite Digest	20	274	Kesearch Service I.ab	92
263	Diamondback	. 104	-	Robotics Age	24
82	Digi-Key	97	272	S \& 1. Electronics	93
-	Digital Research Computers	. . 110	75	Spartan Electronics	114
57	Digitron	. . 119	-	Tehtronix	CV2
110	Dokay	106. 107	273	VIP Electronics	93
99	EKI	. 39	-	Wersi	99
-	Electro Industries	. 22	103	Wm. B. Allen	

Gernsback Publications, Inc
200 Park Ave. South
New York, NY 10003
(212) 777-6400

Chairman of the Board
M. Harvey Gernsback

President; Larry Steckler
ADVERTISING SALES 212.777-6400
Larry Steckler
publisher
Shelli Weinman
advertising associate
Arline Fishman
advertising coordinator
Lisa Strassman
credit manager
Donna Goldstein
credit associate
Naomi Matten
advertising assistant
Sales Offices
EAST/SOUTHEAST
Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
212-428-6037, 212-777-6400
MIDWEST/Texas/Arkansas/Okla
Ralph Bergen
Radio-Electronics
540 Frontage Road-Suite 325
Northfield, IL 60093
312-446-1444
PACIFIC COAST/Mountain States
Marvin Green
Radio-Electronics
15335 Morrison St.-Suite 227
Sherman Oaks, CA 91403
818-986-2001

FOR FREE

 INFORMATION USE THESE POST－PAID CARDS1 Print your name，ad
dress and Zip Code
one of the attached
postage－paid cards
2 Circle the number
numbers）on the ca
that matches the
number at the botto
of each ad or edito
item that you want
mation on．Advertis
free information nu
bers also appear in
ad index on the fac
page．
3 Mail the card．It＇s
Postage－Paid．

The bottom free－information card is a BUSINESS／PRO－ FESSIONAL CARD．If you use this card you MUST complete the spaces for Company Name，Title，and Phone Number．If these are not filled in，the card will not be processed．

NOTE：
Use the postcard address for Free Product Information only．Address all editorial inquiries to Editor，Radio－ Electronics， 200 Park Ave South，New York，NY 10003.

Radio

factronios
Your favorite electronics magazine and still getting better

Radio-Elecironics

Name (Please Pnnt)

Address
City

NO POSTAGE
NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY CARD

POSTAGE WILL BE PAID BY ADORESSEE

Radio-Electronics.

FREE PRODUCT INFORMATION
P.O. Box 13775

PHILADELPHIA, PA. 19101

Subscribe today to the magazine that keeps you up-to-date with the newest ideas and innovations in electronics. (If you already are a subscriber, do a friend a favor and pass this subscription card along to him.)

check offer preferred

$\square 1$ Year- 12 issues ONLY $\$ 15.97$
(You save $\$ 7.43$ off single copy price)Canada- 12 issues $\$ 20.97$
$\square 2$ Years (SAVE MORE)—24 issues $\$ 30.97$ (You save $\$ 15.83$ off single copy price)
\square Canada-24 issues $\$ 40.97$

ALL SUBSCRIPTIONS PAYABLE IN US FUNDS ONLY
\square Payment enclosed
Bill Me
\square Check here if you are extending or renewing your subscription

Company Name (If applicable) \qquad
\qquad
State \qquad
Allow 6 -8 weeks for delivery of first issue Zip

For New Ideas In Electronics read RadioElectronics every month.
During the next 12 months

Radio-Electronics will carry up to the minute articles on:

- Computers - Video
- Solid-state technology
- Outstanding construction projects
- Satellite TV - Telephones
- Radio - Stereo - Equipment reports
- Test equipment - VCR's
- Servicing - Industrial electronics

NEW IDEAS AND INNOVATIONS IN ELECTRONICS APPEAR IN EVERY ISSUE OF RADIO-ELECTRONICS
KEEP UP TO DATE! DON'T MISS ANY ISSUES!
SUBSCRIBE TODAY!
USE THE ORDER CARD ON YOUR LEFT!

Detivers construction article after construction article.....Exciting columns including Jensen on DXing, Friedman on computers, Test bench tips, Noll with Calling All Hams, New Products and more.

BUSINESS REPLY CARD

 FIRST CLASS PERMIT NO. 27346 PHILADELPHIA, PA.POSTAGE WILL BE PAID BY ADDRESSEE

Radio-Electronics.
FREE PRODUCT INFORMATION
P.O. BOX 13775

PHILADELPHIA PA. 19101

SUBSCRIBE TODAY!

Meet Our New LogicScope" 136. ... A True Dual Trace 10 MHz Digital Storage Scope. Only $\$ 495$.

Lagicacops ขะc!(E)

"ownery

True Dual Trace • 10 MHz Real Time Bandwidth • 3 Input Channels • I/O Port Digital Waveform Storage - Boolean Waveform Operations - Audio Functions 8.25 (L) x 4.5 (D) x 1.75 (H) Inches • 1.25 Pounds • 9 Volt Battery/AC Operation

Consider the LogicScope ${ }^{\text {TM }} 136$

- The LogicScope 136 is the next logical step in test instrumentation for you. It combines many of the features and capabilities of sophisticated logic analyzers and oscilloscopes and it fits in your hand. Never before has so much technology been available in so small an instrument, at such a low price. - The pocket-sized LogicScope 136 is made possible by a patented breakthrough in display technology. The conventional cathode ray tube has been replaced by a uniqu.e array of 400 LED's that permits simultaneous display of two digital waveforms.
- The 136 can be used for viewing single shot everts, or repetitive waveforms. It can be operated in real time mode, or in memory mode which permits acquisition and storage of up to 24128 -bit waveforms. These can be recalled, logically compared (AND, OR, EXCLUSIVE OR) to other stored/input waveforms, or output to an external device via an RS 232 port. - Its very low cost, convenience and ease-of-use máke the LogicScope the ideal instrument, for designing, troubleshooting or repairing digital systems.

Consider its Engineering \& Field Service Applications: - On microprocessor-based systems, check the timing relationship of various parameters relative to the system clock and other key events. Its storage capability allows visual and logical comparison of non-repetitive waveforms to known reference signals. Output in the start-up of the digital device can be compared to reference signals to determine the operating state of the device. Questionable waveforms can be stored for analysis. - Its light weight and small size make the LogicScope convenient to take on every service call. The 136 provides much more information for trouble shooting a digital system or peripheral than a logic probe or digital multimeter, without having to lug an oscilloscope or logic analyzer along

Contact us for the name of your local distributor CIRCLE 264 ON FREE INFORMATION CARD

7320 Parkway Drive, Hanover, MD 21076 301-796-3300

Youtouch.

It holds.

$\$ 129^{\circ}$ gets you the world's first handheld digital/analog multimeter with "Touch Hold." The Fluke 77

Its unique "Touch Hold" ** function automatically senses and holds readings, leaving you free to concentrate on positioning test leads without having to watch the display.

Then, when you have a valid reading, it signals you with an audible beep.

The Fluke 77 is perfect for those test situations where accessibility is a problem, or when extra care is needed for critical measurements.

It's the top model in the world champion Fluke 70 Series line - the first industrial quality autoranging multimeters to combine digital and analog displays. These tough, American-made meters feature a three-year warranty and 2000+ hour battery life.

So call now for the complete story on the Fluke 77 with "Touch Hold." Because if you don't deserve the world's first, who in the world does?

For the name of your distributor or a free brochure, call our toll-free hotline anytime 1-800-227-3800, Ext. 229. From outside the U.S., call 1-402-496-1350, Ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLபKㅌ

[^0]:
 MAIL TODAY!
 RE-01
 $\square \square \square \square \square \square$
 \square

[^1]: ComputerDigest is published monthly as an insert in Radio-Electronics magazine by Gernsback Publicatıons. Inc. 200 Park Avenue South, New York, NY 10003. Second-Class Postage Paid at New York. N Y and additiona mailing offices. All rights reserved. Printed in US.A.

[^2]: TOLL FAEE OADERS ONLY 1-800-826. 5432
 (ORDER ONLY (ORDER ONLY)
 (IN CALIFORNIA: 1-800-258-6666)
 ALASKA, HAWAII
 (213) 380-8000

[^3]: MULTI channel microwave antennas, highest quality, low prices, dealers welcome. D.T. compact quality, $10 w$ prices. dealers welcome. D. Grid $\$ 69.00$,
 $\$ 38.00$. PT-1 $\$ 48.00$, SR-1 $\$ 65.00$, D. $\$ 38.00$, PT-1 $\$ 48.00$, SR-1 $\$ 65.00$, D. T. grid $\$ 69.00$,
 PTS-33 $\$ 75.00$, all units complete. DAISY TENNA, Box 42010, Phoenix, AZ 85080, (1-800) 874-9033.

